
DEVELOPMENT OF A MODEL FOR OPTIMIZED

RESOURCE MANAGEMENT IN MULTI CLOUD

ENVIRONMENT

Thesis Submitted for the Award of the Degree of

 DOCTOR OF PHILOSOPHY

in

Computer Applications

By

 Ramanpreet Kaur

Registration Number: 41800765

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

2024

Supervised By Co-Supervised by Co-Supervised by

Dr. Divya (24844)

Computer Science and

 Engineering

(Assistant Professor)

Lovely Professional University

Dr. Upinder Kaur

Computer Science and

Engineering

 (Assistant Professor)

Akal University

Prof.(Dr.) Sahil Verma

Chandigarh University

Mohali, India

ii

iii

Certificate

This is to certify that the work reported in the Ph. D. thesis entitled

―DEVELOPMENT OF A MODEL FOR OPTIMIZED RESOURCE

MANAGEMENT IN MULTI CLOUD ENVIRONMENT‖ submitted in fulfillment of

the requirement for the reward of degree of Doctor of Philosophy (Ph.D.) in the

computer application, is a research work carried out by Ramanpreet Kaur, 41800765,

is bonafide record of his/her original work carried out under my supervision and that

no part of thesis has been submitted for any other degree, diploma or equivalent

course.

(Signature of Supervisor)

Name of supervisor: Dr. Divya

Designation: Assistant Professor

Department/school: Computer

Science and Engineering.

University: Lovely Professional

University

(Signature of Co-Supervisor) (Signature of Co-Supervisor)

Name of supervisor: Dr. Upinder Kaur Name of Co-Supervisor

Designation: Assistant Professor Prof. (Dr.) Sahil Verma

Department/school: Computer University: Chandigarh University

Science and Engineering Mohali, India

University: Akal University

iv

Abstract

Cloud computing has transformed the IT industry by giving organisations instant

access to a pool of computer resources, allowing them to efficiently extend their

applications. However, as cloud data centres expand, optimising several objectives to

reconcile competing performance indicators becomes crucial. This research provides a

model that overcomes these difficulties by creating an intelligent scheduling system

that is flexible to dynamic and diverse workloads and is specifically tailored for

practical applications in cloud computing. Effective task scheduling becomes even

more important in multi-datacenter scenarios where cloud services cover multiple

geographical zones. The suggested solution recognises the difficulties caused by

datacenter heterogeneity as well as the need to optimise resource allocation across

many data centres. In the world of cloud computing, where massive volumes of data

are processed and analysed, efficient task scheduling is critical to optimising resource

utilisation and overall system efficiency. The Cyber Shake Seismogram (CSS)

process stands out as a significant and demanding application among the different

workflows that benefit from effective task scheduling. The Modified Best Fit

Decreasing (MBFD) method is included into an upgraded MET framework, resulting

in a location and resource-aware scheduling system.

Traditional work scheduling algorithms frequently concentrate on a particular goal,

such as minimising job completion time, resulting in inefficient solutions. To address

this shortcoming, the research proposes steps to improve the Flower Pollination

Algorithm, transforming it into a multi-objective task scheduling tool. This method

seeks to optimise numerous competing objectives at the same time, achieving a

balance between diverse performance measures.

The multi-data centre architecture is being investigated as a significant development

in meeting the increasing demands of modern applications and services. The study

provides a toolset for creating and managing virtual machines (VMs) and physical

hosts (PMs) in a virtualized cloud environment, as well as for simulating various

v

scenarios based on real-world cloud usage trends. The extensive results and

evaluations show a diverse spectrum of real-world circumstances and issues. The

results show that our integrated strategy greatly improves resource utilisation,

effectively decreases, and overall improves the performance of the scheduling

network. Our analysis goes deeply into the impact of important parameters on the

performance of the scheduling system. Each characteristic, such as MIPS, makespan,

used energy, CO2 emission, user distance, throughput, VM load distribution ratio, and

projected cost, has a significant impact on the quality of the scheduling results. We

obtain significant insights into the strengths and adaptability of our strategy by

meticulously studying these elements, allowing us to fine-tune the scheduling system

for optimal results.

The combination of Q-learning with flower pollination raises the bar in resource

allocation and job scheduling. The combination of these advanced methodologies

enables our solution to handle complicated and dynamic scheduling settings quickly,

making it suited for a wide range of practical applications. The algorithm finds the

most promising option by using Q-values to drive the pollination process, enhancing

efficiency and efficacy in discovering optimal solutions. The performance analysis

includes adjusting the number of users and increasing the workload while comparing

the proposed method to five previous studies (MET, Hu et al., Cai et al., Jena et al.

Saurabh et al.). At a workload of 100,000 MIPS, the proposed algorithm's

performance in comparison to previous studies demonstrate a significant

improvements across a variety of parameters. The proposed approach consistently

delivers lower energy usage, with values ranging from 0.39987KJ to 0.716416KJ,

representing a savings of up to 47% when compared to MET, Hu et al., Cai et al., Jena

et al., and Saurabh et al. In terms of cost-effectiveness, the proposed algorithm has an

average total cost range of Rs24.1422 to Rs238.069, showing possible savings of up

to 20% over the previous methods. Furthermore, it has fewer CO2 emissions, ranging

from 16.27168893Mt to 141.8717559Mt, representing up to a 35% improvement over

existing techniques. The suggested approach maintains competitive complexity

metrics, has fast training and inference times, and achieves high throughput rates

ranging from 8276.669 to 8659.64 Mbps, showing better data transport and

vi

processing capabilities. Task scheduling and completion are managed efficiently, with

a competitive makespan range of 13.81982 to 14.17695 seconds, resulting in up to

12% improvements over competing methods. In summary, the suggested algorithm

significantly improves energy efficiency, cost-effectiveness, and environmental

impact while remaining competitive in complexity, throughput, and job completion

time, making it a promising alternative for future implementations. The task

scheduling solution for multi-cloud systems is proposed here, which incorporates

flower pollination and Q-learning, stands out as a uniquely efficient strategy that

outperforms current state-of-the-art algorithms. Extensive testing using simulations on

various datasets simulating real-world scenarios consistently demonstrates the

suggested method's higher performance. The algorithm's adaptability, scalability, and

effectiveness in managing dynamic workloads and different user populations

highlight its practical application in both cloud computing and multi-datacenter

systems. The suggested solution's new features distinguish it as a possible

improvement in solving the issues connected with task scheduling in complex and

developing computing landscapes.

vii

Acknowledgement

I would like to express my deep appreciation to my mentors, Dr. Divya, Dr. Upinder

Kaur and Prof. (Dr.) Sahil Verma for their unwavering guidance, inspiration, and

encouragement throughout my thesis journey. Without their invaluable support and

constructive feedback, this research endeavour would not have been possible.

Furthermore, I extend my heartfelt gratitude to my academic family at BFGI (Baba

Farid Group of Institutions, Bathinda) for their motivation and encouragement in

pursuing my Ph.D. I owe a special debt of thanks to Mr. Jagmeet Singh, my husband,

for his unwavering cooperation, moral support, and emotional encouragement at every

step.

Finally, I wish to express my profound gratitude to my parents, in-laws, siblings, and

all my family members who provided me with strength and unwavering spirit through

the enduring memories. I am especially thankful to my sister, Gagandeep Kaur, who

always believed in my capabilities, saying that my sister can achieve anything. Last,

but not least, I am filled with gratitude for my adorable baby, Lehareen Kaur, who

was born and grew up during my PhD journey.

viii

Table of Contents

Declaration... ii

Certificate ... iii

Abstract ... iv

Acknowledgement ... vii

Table of Contents ... viii

List of Tables .. xiii

List of Figures ... xiv

CHAPTER 1: INTRODUCTION ...1

1.1 Introduction ..1

1.2 Evolution of Cloud Computing ..2

 Parallel Computing ... 4 1.2.1

 Grid Computing .. 5 1.2.2

 Utility Computing ... 5 1.2.3

 Virtualization .. 5 1.2.4

 Centralized computing .. 6 1.2.5

1.3 Characteristics of Cloud Computing ..6

 On-demand Self-service.. 6 1.3.1

 Broad Network Service ... 6 1.3.2

 Resource Pools .. 7 1.3.3

 Fast Flexibility .. 7 1.3.4

 Measured Service .. 7 1.3.5

 Significance of Resource Allocation .. 7 1.3.6

ix

1.4 Task Scheduling ...8

 Advantages of Task scheduling algorithms .. 9 1.4.1

 Task Scheduling in Cloud Computing. ... 9 1.4.2

1.5 Types of Cloud Computing ..10

 Public Cloud.. 11 1.5.1

 Private Cloud .. 13 1.5.2

 Hybrid Cloud .. 15 1.5.3

 Community Cloud ... 16 1.5.4

 Multi Cloud ... 17 1.5.5

1.6 Job Scheduling for Optimal Usage of Resources ..20

 First-Come, First-Served (FCFS) Scheduling... 20 1.6.1

 Shortest Job Next (SJN) Scheduling ... 20 1.6.2

 Round Robin (RR) Scheduling ... 21 1.6.3

 Priority-Based Scheduling .. 21 1.6.4

 Genetic Algorithm (GA) Scheduling .. 21 1.6.5

 Minimum Execution Time (MET) .. 21 1.6.6

1.7 Various parameters of Cloud computing ...22

 Makespan .. 22 1.7.1

 Energy Consumption .. 23 1.7.2

 CO2 Emission .. 24 1.7.3

 Execution Cost .. 26 1.7.4

1.8 Machine Learning and its Evolution in Job Scheduling Under Cloud Computing

..26

 Supervised ... 29 1.8.1

 Un-supervised ... 29 1.8.2

x

 Semi-supervised .. 31 1.8.3

1.9 Metaheuristic Algorithms ..33

 Characteristics of Metaheuristic ... 35 1.9.1

1.10 Organisation of the Thesis ...35

CHAPTER 2: REVIEW OF LITERATURE ..36

2.1 Literature Review...36

2.2 Review Summary ...69

2.3 Research Gaps ..72

2.4 Research Objectives ...73

2.5 Summary of the Chapter ..73

CHAPTER 3: ENHANCEMENT IN MET FOR CYBER SHAKE

SEISMOGRAM ...74

3.1 Cyber Shake Seismogram Work Flow ...74

3.2 Minimum Execution Time and its Correlation with CSS Workflow75

3.3 Proposed Work Algorithm for the Enhancement...79

3.4 Summary of the Chapter ..83

CHAPTER 4: APPLICATION AND IMPROVISATION IN FLOWER-

POLLINATION ALGORITHM FOR IMPROVED EFFICIENCY IN TASK

SCHEDULING ...84

4.1 Background ..84

4.2 Scenario of Development and the Optimization Issue85

 The FPA Algorithm .. 86 4.2.1

 Significance in Job Scheduling in Cloud Computing 88 4.2.2

 Switching Probability.. 92 4.2.3

4.3 Proposed Work towards improving FPA using Q-learning93

xi

 Multi-datacenter deployment, benefit and illustration 93 4.3.1

 Integration of Q-learning .. 97 4.3.2

4.3.2.1 Q-learning Application in Proposed Work Case Scenario102

 Neural Networks and its Applicability ... 105 4.3.3

4.3.3.1 Integration of the Neural Network ...106

4.4 Application over the real time multi-cloud ..113

 Application Initialization at AWS cloud... 114 4.4.1

 Execution of cloud server ... 116 4.4.2

4.5 Summary of the Chapter ..123

CHAPTER 5: RESULTS AND DISCUSSION ...125

5.1 Result Evaluation Based on Increasing Number of Users129

5.2 Results Evaluation based on Increasing Load ...136

 Importance of Load Variation Analysis .. 136 5.2.1

 Energy Consumption Analysis ... 138 5.2.2

5.2.2.1 Minimum and Maximum Value Scenarios ..140

5.2.2.2 Percentage Improvement ...140

5.2.2.3 Discussion of Improvement ...142

 Cost Analysis .. 143 5.2.3

5.2.3.1 Minimum and Maximum Scenario for Cost144

5.2.3.2 Percentage Improvement in Cost ...145

5.2.3.3 Discussion on Improvement in Cost ..147

 CO2 Emission Analysis ... 147 5.2.4

5.2.4.1 Minimum and Maximum Value Scenarios ..149

5.2.4.2 Percentage Improvement ...149

5.2.4.3 Discussion of Improvement ...151

xii

 Throughput Analysis ... 153 5.2.5

5.2.5.1 Minimum maximum value scenarios for Throughput154

5.2.5.2 Percentage Improvement ...154

5.2.5.3 Discussion of Improvement ...155

 Makespan Analysis ... 156 5.2.6

5.2.6.1 Minimum maximum value scenarios for Makespan157

5.2.6.2 Percentage Improvement ...158

5.2.6.3 Discussion of Improvement ...159

 Comparative Analysis ... 160 5.2.7

5.3 Summary of the Chapter ..166

CHAPTER 6: CONCLUSION..168

6.1 Conclusion for Simulation Architecture 1 - Increasing Number of Users.......169

6.2 Conclusion for Simulation Architecture 2 - Increasing Load Amount169

6.3 Comparative Analysis ..170

6.4 Future Scope ..174

List of Publications ..175

Bibliography ...176

xiii

List of Tables

Table 1.1 Difference between Supervised and Unsupervised ML Techniques 30

Table 1.2 Comparison of Machine Learning Algorithms .. 31

Table 2.1 Comparative Analysis of Existing Scheduling Approaches 59

Table 2.2 Comparative Analysis of Evaluation Parameters .. 70

Table 4.1 Attributes and Description ... 97

Table 4.2 System Configuration .. 109

Table 4.3 Performance Analysis of Machine Learning Techniques 112

Table 5.1 Evaluation Based on Number of Users .. 130

Table 5.2 Comparative Analysis Based on Energy Consumption 139

Table 5.3 Comparative Analysis based on Cost .. 143

Table 5.4 Comparative Analysis Based on CO2 Emission ... 147

Table 5.5 Comparative Analysis Based on Throughput .. 153

Table 5.6 Comparative Analysis Based on Makespan ... 156

Table 5.7 Comparative Analysis .. 160

xiv

List of Figures

Figure 1.1 Cloud Computing Environment [3] .. 2

Figure 1.2 Developments in Cloud Computing [8] ... 3

Figure 1.3 Characteristics of Cloud Computing [18] ... 6

Figure 1.4 Task Scheduling Structure [105] .. 8

Figure 1.5 Task Scheduling System Model in Cloud Environments [106] 10

Figure 1.6 Cloud Computing Classification [107] ... 11

Figure 1.7 Public Cloud [12] ... 12

Figure 1.8 Private Cloud [12] .. 14

Figure 1.9 Comparison of Hybrid and Multi Cloud [12] ... 19

Figure 1.10 Machine Learning Approach [36] ... 29

Figure 1.11 Supervised and Unsupervised Approach [34] .. 30

Figure 4.1 The Flower Pollination Process [125] .. 86

Figure 4.2 Job Allocation Process in Proposed Work ... 88

Figure 4.3 Datacentre modelling in Cloudsim ... 96

Figure 4.4 Proposed Work Using Q-Learning [135] ... 100

Figure 4.5 Overall work architecture ... 101

Figure 4.6 The applied Q-learning algorithm .. 104

Figure 4.7 Implementation of Q-learning algorithm in the cloud-sim environment . 104

Figure 4.8 Running Instances on AWS Multicloud ... 116

Figure 4.9 AWS Instance Creation .. 117

Figure 4.10 AWS Dashboard with application and space ... 118

Figure 4.11 Execution of cloud instances for current algorithm 119

Figure 4.12 Result of execution on 100% completion ... 119

Figure 4.13 Data Migration between multiple clouds ... 121

Figure 4.14 Execution Outcome at server 1 based on loads 121

Figure 4.15 Read and Write Operations on server 2 for data storage 122

Figure 5.1 Energy vs Number of Users ... 131

Figure 5.2 Cost vs Number of Users .. 132

xv

Figure 5.3 CO2 vs Number of Users .. 132

Figure 5.4 Comparative Analysis Based on Energy Consumption............................ 139

Figure 5.5 Energy Consumption Improvement ... 141

Figure 5.6 Comparative Analysis based on Cost ... 144

Figure 5.7 Cost Improvement .. 146

Figure 5.8 Comparative Analysis based on CO2 Emission.. 148

Figure 5.9 CO2 Emission Improvement ... 150

Figure 5.10 Realtime AWS based Multicloud Comparison with Local Servers 152

Figure 5.11 Comparative Analysis based on Throughput ... 154

Figure 5.12 Throughput Improvement ... 155

Figure 5.13 Comparative Analysis based on Makespan .. 157

Figure 5.14 Makespan Improvement ... 158

Figure 5.15 Comparative Analysis of Energy.. 160

Figure 5.16 Comparative Analysis of Cost .. 161

Figure 5.17 Comparative Analysis of CO2 Emission ... 162

Figure 5.18 Complexity Analysis in Terms of Time ... 163

Figure 5.19 Comparative Analysis of Throughput .. 164

Figure 5.20 Comparative Analysis of Makespan ... 165

 1

CHAPTER 1: INTRODUCTION

The chapter goes into a lot of detail about cloud computing, including its history,

traits, and security issues brought on by how widely used it is. To build the

groundwork for the current research project, the multilayered cloud computing

structure and the idea of virtualization are also explained here.

1.1 Introduction

Within the field of computing, mobile computing in the cloud is acknowledged as a

developing commercial concept. Cloud computing" refers to a system that offers

quick, easy, and ubiquitous network access to a shared pool of flexible computing

resources, including servers, network connections, storage, services, and applications.

These resources can be quickly allocated and released with minimal administrative

effort or service provider involvement [1, 2]. The entities responsible for furnishing

these services are termed cloud providers, typically charging users based on their

usage of cloud computing resources. CC encompasses a technological framework that

employs principles of connectivity, virtualization, resource sharing, and data

exchange among various devices over the internet. It delivers on-demand services to

users by incorporating crucial elements like security, scalability, distribution, and

isolation. [3].

When referring to online-based services and apps, such as distributed processing,

machine virtualization, and secure web services, we use the term "cloud computing.".

The challenges encompass a spectrum from handling diverse resources to efficiently

allocating resources based on user requests, effectively scheduling planned requests to

designated resources, and addressing potential contingencies associated with both the

workload and the system [4]. Server virtualization technology plays a crucial role in

streamlining cloud resource management, enabling optimized resource utilization

through the sharing of resources via virtual machines

 2

Figure 1.1 shows the architectural representation of CC. It entails offering computing

services including storage, database management systems, networking, analytics,

programmes, and more over the Internet or through cloud platforms.

Monitoring Content
Collabroation Communication

Finance

Object Storage Runtime Queue Database

NetworkStock StorageComputer

Desktop

Tablet

Phones

Laptops

Application

Platform

Infrastructure

Server

Cloud Computing

Identity

Figure 1.1 Cloud Computing Environment [3]

The fundamental structure of the CC environment is illustrated in Figure 1.1. [4].

NIST defines "cloud computing" as a methodology that permits smooth, practical, and

immediate network connectivity to share computing resource pools. Quick allocation

and release of assets is possible with minimum involvement from administration

contacts [5].

1.2 Evolution of Cloud Computing

The concept of CC has its roots dating back to the 1960s. During this era, John

McCarthy envisioned the future use of 'national utilities' for computer computing.

Although Cloud Computing appears as a relatively recent phenomenon, its origins

 3

trace back to the early 1950s when mainframes enabled multiple users to access a

central computer. In the 1960s, several developments emerged that foreshadowed the

essence of present-day cloud computing, such as J. K. R. Liklider's concept of the

"intergalactic computer network." The philosophy of cloud computing gained

momentum in 2007, driven by the expansion of communication channels and the

exponentially increasing demand from both business and private users to horizontally

scale their information systems [1, 6].

Virtualization brought the mainframe to a new level during the 1970s, while

telecommunication companies started offering connectivity for virtual private

networks (VPNs) in the 1990s. In 1999, Salesforce.com pioneered the delivery of

enterprise applications through network connections. These applications could be

accessed by multiple users simultaneously through a web browser, and they were

available at an affordable cost[7].

Figure 1.2 Developments in Cloud Computing [8]

Figure 1.2 shows the various developments in CC. The notion of the cloud computing

gained practical traction through the initiatives of various enterprises, including

Google. An illustrative case in point is Google's implementation of the concept with

its Google Docs service. This service empowers users to collaboratively work on

official documents directly through a web browser, exemplifying the essence of cloud

 4

computing. [9]. The development of Amazon Web Services (AWS) by Amazon.com,

a well-known online retailer, marked the beginning of the cloud computing

revolution. In 2006, this marked the inception of contemporary 'clouds' [10]. AWS

provides an extensive array of services, including robust computing capabilities and

data warehousing. These services represent a highly reliable and cutting-edge cloud

web service infrastructure. Following Amazon.com's lead, other major players like

Microsoft, Google, Apple, and IBM also entered the cloud computing arena.

Consequently, the CC market is fast growing. [11].

The most current technology for providing users with access to shared resource pools

in response to their demands, according to the National Institute of Standards and

Technology (NIST), is cloud computing. In a projection dating back to 1969, Leonard

Kleinrock, a prominent scientist involved in the original Research Projects Network

(ARPANET), accurately predicted the ongoing evolution and expanding utilization of

computer networks. Furthermore, he anticipated the expansion of computer

applications during the 1990s.[8].

Numerous technological advancements have played a pivotal role in shaping the

landscape of cloud computing paradigms. These encompass:

• Network Computing

• Grid Computing

• Parallel Computing

• Utility Computing

• Virtualization

• Local Computing

The subsequent section delves into the most prominent technologies in this domain;

 Parallel Computing 1.2.1

Parallel computation involves dividing the entire computational task into smaller

segments that can be processed concurrently. This methodology encompasses various

aspects of concurrent programming and the creation of efficient adaptations for

existing hardware. A parallel computer constitutes a highly cohesive ensemble of

 5

components that collaboratively and communicatively address extensive

computational challenges, resulting in accelerated problem-solving capabilities [12].

 Grid Computing 1.2.2

The idea of grid computing has received a lot of attention, and it's noteworthy that

important market participants like Hewlett-Packard, International Business Machines

and Sun Microsystems have shown a strong interest in this technology. The primary

challenge in grid computing lies in allocating geographically dispersed resources to

diverse user groups, often referred to as 'virtual organizations,' collaborating on tasks.

This challenge underscores the absence of both a central focal point and centralized

control, emphasizing the significance of trust and cooperation in collaborative

endeavors.

In the context of a grid system, the establishment, management, and utilization of

relationships among potential project participants' resources are of paramount

importance. Achieving interoperability within a network environment necessitates

adherence to universally accepted protocols. These protocols dictate the behavior and

format of exchanged information, governing the interaction between elements within

a distributed system. Consequently, the grid architecture essentially functions as a

protocol framework that defines the foundational mechanisms of interaction [13].

 Utility Computing 1.2.3

Users get services as required, and fees are charged in accordance with that

requirement. Service providers strive to respond to individual tastes while

customizing their services to fit clients' budgetary restrictions. The service provider

possesses the ability to allocate resources based on user requests while implementing

a pricing structure that optimizes utility utilization and minimizes resource costs. [14].

 Virtualization 1.2.4

Virtualization serves as a method to generate a simulated representation of resources,

dissociated from hardware (in this context, software-related). This concept extends to

virtualizing servers, storage, network resources, applications, and desktops.

Essentially, virtualization involves segregating physical components to furnish users

 6

with virtualized resources. [15]. A standard server has the capacity to accommodate

various virtual machine instances, which can then be accessed by users as needed.

 Centralized computing 1.2.5

Centralized Computer Systems, often referred to as Centralized Computing,

encompass a unified location where computer system resources, including processors,

memory, and storage, are collectively shared and interconnected. This approach can

be observed in parallel or distributed configurations within multiple data centres or

may be adopted as a framework within architectural or cloud computing contexts.

[16].

1.3 Characteristics of Cloud Computing

This section describes the fundamental characteristics related to CC.

 On-demand Self-service 1.3.1

In response to consumer needs, cloud service providers provide users with immediate

services like network storage that may be accessed anytime, anywhere, all without

requiring human intervention. [17, 18].

 Broad Network Service 1.3.2

Figure 1.3 refers to characteristics of CC in which various applications are hosted in a

manner that enables access through various network-connected devices like laptops,

desktops, mobile phones, tablets, and workstations.

Figure 1.3 Characteristics of Cloud Computing [18]

 7

Typically, these applications are accessed using a built-in web browser on the device,

which serves as a common client, allowing widespread network access.

 Resource Pools 1.3.3

It represents a concept where diverse organizations collaborate to utilize a common

physical cloud infrastructure. The redistribution of virtual, not actual, resources is

determined by consumer requirements. Typically, consumers are unaware of the

specific location of a given resource; nevertheless, they may identify a broader level

of location abstraction. Examples of these resources encompass processing power,

storage capacity, memory, and network bandwidth. [14, 19, 20].

 Fast Flexibility 1.3.4

Fast flexibility entails the capability to offer scalable services that enable users to

effortlessly request varying capacities or types of services within the cloud

environment. This attribute reflects a system's capacity to align resources with the

demands of workloads, by provisioning resources to closely match present

requirements. From the consumer's perspective, the availability of resources often

appears unlimited and accessible on demand. This elasticity empowers customers of

cloud providers to attain cost efficiencies, typically being a fundamental driver for

adopting cloud services.

 Measured Service 1.3.5

The cloud system autonomously manages user resource utilization by gauging the

system's measuring capabilities. Measurement services serve as benchmarks for cloud

providers to gauge, monitor, and manage services, encompassing aspects like billing,

resource optimization, and comprehensive forecasting strategies [21–24].

 Significance of Resource Allocation 1.3.6

Improper distribution of resources can result in service shortages. To tackle this issue,

Resource Supply comes into play as a mechanism facilitating the provisioning of

services by managing the resources of individual components. The pivotal element

here is the Resource Allocation Strategy (RAS), a framework devised to enhance the

 8

efficiency and equitable distribution of limited resources within the boundaries of the

cloud environment. Consequently, this approach caters to the specific demands of

diverse cloud applications. [21]. The effectiveness of the strategy depends on clearly

defining the volume and categories of resources necessary for each application to

effectively accomplish user assignments. The Resource Allocation Strategy (RAS)

takes into account inputs such as temporal data and the succession of resource

demands. Structured in its design, RAS effectively addresses the ensuing challenges.

[22].

1.4 Task Scheduling

Algorithms for task scheduling are used to assign jobs to resources in a computing

system in order to maximise resource utilisation, reduce execution time, increase

energy efficiency, and accomplish specified goals. These algorithms establish the

guidelines and techniques for deciding which tasks should be executed, when they

should be executed, and which resources they should be assigned to. Their purpose is

to efficiently manage the allocation of tasks in a computing system to maximize

performance and meet desired goals, and is shown is Figure 1.4.

Users Data Center Broker

Cloud

Controller

Host

 VM1 VM2 VM3

TASK1 TASKn TASK1 TASKn TASK1 TASKn

Data Center

Figure 1.4 Task Scheduling Structure [105]

 9

 Advantages of Task scheduling algorithms 1.4.1

Task scheduling brings several advantages to computing systems. It ensures optimal

resource utilization by assigning tasks in a balanced and optimized manner,

maximizing the use of available resources and improving system performance. By

minimizing execution time through intelligent task assignments based on resource

availability and task requirements, overall system productivity and responsiveness are

enhanced. Task scheduling algorithms also contribute to improved system

performance by optimizing task allocation, considering load balancing, resource

availability, and task dependencies. Energy-aware task scheduling algorithms further

optimize energy utilization, reducing operational costs in energy-constrained systems.

By taking task deadlines, priority levels, and resource capabilities into account, task

scheduling also plays a significant role in upholding Service Level Agreements

(SLAs) and achieving Quality of Service (QoS) criteria. Task scheduling algorithms

are scalable and flexible, capable of handling large-scale computing systems and

dynamic workloads. They ensure load balancing by distributing the workload evenly

across resources, preventing resource overutilization and underutilization. This leads

to a balanced system and avoids performance degradation. Additionally, effective task

scheduling contributes to system stability by preventing resource starvation, ensuring

fair resource allocation, and avoiding excessive queuing delays, resulting in a more

stable and reliable computing environment.

 Task Scheduling in Cloud Computing. 1.4.2

In CC, tasks are efficiently assigned to available resources using a task scheduling

system. It maximises resource utilisation, cuts down on the duration of execution, and

makes sure the cloud infrastructure runs without any issues. Key considerations of a

task scheduling system include task management, resource monitoring, scheduling

policies, load balancing, task prioritization, energy efficiency, fault tolerance,

scalability, and performance optimization. The system receives tasks from users or

applications, monitors the availability and performance of resources, and employs

scheduling policies and algorithms to assign tasks to appropriate resources. Load

balancing ensures an even distribution of the workload, while task prioritization

 10

considers deadlines and priorities. Energy-aware algorithms minimize energy

consumption, fault tolerance mechanisms handle failures, and the system scales

dynamically to handle varying workloads. Performance monitoring and optimization

improve system efficiency, and the task scheduling system model in cloud

environments is shown in Figure 1.5.

Task

Manager

Task

Scheduler

v1 v1 vn

v1 v1 vn

v1 v1 vn

Physical Host 1

Physical Host 2

Physical Host N

USER 1

USER 2

USER n

c1

c3

c2

Figure 1.5 Task Scheduling System Model in Cloud Environments [106]

1.5 Types of Cloud Computing

In CC, there are different types of clouds that depend on their deployment and service

models. These types of clouds can be combined with service models like IaaS, PaaS,

and SaaS to provide different levels of control and management to users based on

their specific requirements. Although the terms homogeneous and heterogeneous are

sometimes used in cloud computing discussions, they typically refer to the

composition of resources within a specific cloud infrastructure or data centre.

Homogeneous refers to an infrastructure with identical components, while

heterogeneous means the infrastructure includes diverse components. The main types

are shown in Figure 1.6.

 11

Cloud Computing Model

Service Models Deployment Models

IaaS PaaS SaaS
Public

Cloud

Private

Cloud

Hybrid

Cloud

Community

Cloud

Figure 1.6 Cloud Computing Classification [107]

 Public Cloud 1.5.1

A third-party supplier manages and controls this kind of cloud, which provides

resources for computers over the internet to numerous customers or businesses. It

allows for cost efficiency and scalability as the infrastructure is shared among users.

The general block diagram of the public cloud is shown in Figure 1.7.

a) Advantages of Public Cloud:

 Scalability: According to demand, public clouds allow for scaling up or

down. You can easily allocate more resources when needed and release

them when demand decreases.

 Cost-Efficiency: With public clouds, you only pay for the resources you

utilise because they operate on a pay-as-you-go model. This can lead to

cost savings, as you avoid the upfront investment in hardware and

infrastructure.

 Accessibility: With publicly accessible cloud services, data and apps may

be accessed remotely from anywhere over the internet, which is very

useful for scattered teams and remote work settings.

 Quick Deployment: Setting up and provisioning resources in a public

cloud environment is faster compared to traditional infrastructure setups,

allowing you to get applications up and running quickly.

 12

A Cloud Provider

Users that terminate the access

Public Users that access the

cloud via a network

User that

 initiate access

Users that access the cloud from

within the security perimeter

boundary

controller

Inside

New hardware Old hardware

Outside

Computer in a network

that provides access

Optional subscriber-

controlled security

parameter

Subscriber�s facility

Figure 1.7 Public Cloud [12]

b) Limitations of Public Cloud:

 Security and Privacy Concerns: Applications and sensitive data stored

on a public cloud might pose security and privacy problems. To secure

their data, organisations must make sure that the necessary security

measures are in place.

 Dependency on Internet Connectivity: Public cloud services require a

reliable internet connection. You might not be able to access and use cloud

resources if your internet connection is erratic or sluggish.

 Downtime and Outages: Although public cloud providers strive for high

availability, they can still experience outages. Your applications and

services may be affected during these incidents.

 13

 Cost Management Complexity: While the pay-as-you-go model can be

cost-efficient, it can also lead to unpredictable costs if resources are not

managed properly. Monitoring and managing expenses require ongoing

attention.

 Private Cloud 1.5.2

A computing ecosystem that is solely dedicated to one company is known as a private

cloud. In terms of scalability and virtualization, it provides many of the same

advantages as public clouds but works on the company's internal infrastructure.

Private clouds are intended to give more control, security, and customisation

compared to public cloud options. They can be maintained by the company's

information technology department or by a third-party supplier. The private cloud is

shown graphically in Figure 1.8.

a) Advantages of Private Cloud

 Enhanced Security: Private clouds provide greater control over data

security and compliance. Organizations can implement customized

security measures and access controls to meet specific regulatory

requirements.

 Customization: Private clouds allow organizations to tailor the

infrastructure and environment to their specific needs, enabling optimal

performance for applications and services.

 Performance Control: Since resources are dedicated to a single

organization, there is more predictable performance without the

performance fluctuations that can occur in shared public cloud

environments.

 Compliance: Private clouds are well-suited for industries with strict

regulatory requirements, such as healthcare and finance, where data

governance and compliance are crucial.

 Reduced Downtime: Private clouds can offer higher availability and

reduced downtime compared to public clouds, as organizations have more

control over maintenance schedules and resource allocation.

 14

Figure 1.8 Private Cloud [12]

b) Limitations of Private Cloud:

 Higher Costs: Private cloud solutions are less affordable than public cloud

options since establishing and managing a private cloud infrastructure

needs a sizable upfront investment in hardware, software, and

maintenance.

 Complexity: It may be difficult to manage a private cloud, therefore you

need knowledgeable IT staff that are familiar with virtualization and cloud

computing.

 15

 Scalability Challenges: While private clouds can be scaled, achieving the

same level of scalability as public clouds may be more challenging due to

infrastructure limitations.

 Limited Innovation: Private clouds may not have the same rapid access

to cutting-edge technologies and features that public cloud providers

regularly introduce.

 Hybrid Cloud 1.5.3

A hybrid cloud allows for the exchange of apps and data between private and public

cloud environments. It provides additional mobility by letting businesses use the

advantages of the public as well as private clouds while taking care of particular

workloads and data needs.

a) Pros of Hybrid Cloud:

 Flexibility: Organizations can choose where to host different workloads

based on factors like security, performance, and compliance, achieving an

optimal balance between the two cloud models.

 Scalability: Hybrid clouds allow bursting into the public cloud during

high-demand periods, ensuring resources are available when needed

without overprovisioning private infrastructure.

 Cost Efficiency: By using public clouds for temporary or variable

workloads, organizations can avoid the upfront costs of overprovisioning

private resources.

 Data Control: To address security and compliance issues, sensitive data

can be stored in a cloud that is private whereas non-sensitive information

data is processed on a public cloud.

b) Cons of Hybrid Cloud:

 Complexity: Integrating and managing two distinct cloud environments

can be complex, requiring specialized skills and coordination between the

private and public components.

 16

 Security Challenges: Ensuring consistent security measures across both

environments can be challenging, leading to potential vulnerabilities if not

managed properly.

 Data Transfer Costs: Moving data between private and public clouds

may incur costs, especially if large volumes of data need to be transferred

frequently.

 Vendor Lock-In: Organizations might face vendor lock-in issues if they

heavily rely on a specific public cloud provider's tools and services.

 Management Overhead: Administering and monitoring a hybrid cloud

requires additional effort to ensure smooth operation, resource

optimization, and cost control.

 Community Cloud 1.5.4

Several organisations share community clouds, which are used to address issues like

compliance and security. They offer a platform for collaboration for organisations

with comparable needs and can be administered internally or by a third-party service.

a) Merits of Community Cloud:

 Shared Resources: Organizations within a specific community can pool

their resources to create a collaborative and cost-effective cloud solution.

 Data Control: Community clouds allow organizations to maintain control

over their data and applications while benefiting from shared

infrastructure.

 Compliance: Community clouds can be tailored to meet specific

regulatory and compliance requirements common to the industry or

community members.

 Cost Savings: By sharing infrastructure costs among community

members, each organization can achieve cost savings compared to setting

up their private clouds.

 Customization: Community clouds offer flexibility without

compromising data security since they may be tailored to the specific

demands of the community members.

 17

b) Demerits of Community Cloud:

 Complexity: Coordinating among multiple organizations within the

community can be complex, leading to potential management challenges.

 Security Concerns: While community clouds can offer improved security

compared to public clouds, they still need careful security measures to

ensure data privacy and protection.

 Limited Scalability: Depending on the size and growth of the community,

scalability might be limited compared to larger public cloud environments.

 Shared Risks: Since resources are shared, any downtime or issues

affecting one organization might impact others as well.

 Multi Cloud 1.5.5

The use of services from various cloud service providers (CSPs) to meet an

organization's computing needs is known as multi-cloud. In a multi-cloud

environment, an organization distributes its workloads, applications, and services

across different cloud platforms rather than relying solely on a single provider. This

approach offers a range of benefits but also presents certain challenges that

organizations need to manage effectively. Figure 1.9 represents the comparison of

Multi and Hybrid clouds. There are several variations and strategies within the multi-

cloud approach. Here are some different variations:

i. Multi-Provider Multi-Cloud: The most popular form of the multi-cloud

approach involves an organisation using services from a variety of different

cloud providers in order to prevent vendor lock-in and to take use of each

provider's advantages.

ii. Hybrid Multi-Cloud: This approach combines a mix of private, public, and

multiple public cloud providers to create a hybrid infrastructure. It allows

organizations to keep sensitive data in private clouds while utilizing public

clouds for specific workloads.

iii. Geographical Multi-Cloud: In this variation, an organization uses different

cloud providers in different geographic regions to optimize for performance

 18

and data residency requirements. This can help reduce latency and comply

with data regulations.

iv. Specialized Multi-Cloud: This strategy involves using different cloud

providers that offer specialized services optimized for specific tasks. For

instance, using one provider for AI/ML capabilities and another for high-

performance computing.

v. Cost Optimization Multi-Cloud: This strategy involves using different cloud

providers based on cost. Organizations choose providers with the most cost-

effective offerings for specific workloads.

vi. Data-Driven Multi-Cloud: Depending on the kind of data being processed,

this strategy makes use of several cloud service providers. Use one supplier

for big data analytics and another for processing transactional data, for

instance.

vii. Application-Centric Multi-Cloud: Here, different cloud providers are chosen

based on the specific needs of different applications. This could involve

optimizing costs for non-critical apps while ensuring high availability for

mission-critical apps.

a) Benefits of Multicloud Strategy:

 Vendor Diversity: By utilizing multiple cloud providers, organizations

can avoid vendor lock-in. This means they are not tied to a single

provider's ecosystem and can choose the best solutions from different

providers.

 Best-of-Breed Services: Different cloud providers specialize in various

services. A multi-cloud approach enables organizations to select the most

suitable provider for each specific service, capitalizing on each provider's

strengths.

 Cost Optimization: Different providers offer varied pricing models and

discounts. By strategically distributing workloads, organizations can

optimize costs based on the specific requirements of each workload.

 19

Figure 1.9 Comparison of Hybrid and Multi Cloud [12]

b) Challenges of Multicloud Strategy:

 Complexity: Managing multiple cloud providers introduces complexity in

terms of billing, provisioning, security, and governance. This complexity

can increase the workload for IT teams.

 Data Transfer Costs: Transferring data between different cloud platforms

might incur costs, particularly if not planned and managed carefully.

 Security and Compliance: Ensuring consistent security measures and

compliance across multiple providers can be intricate, requiring thorough

planning and monitoring.

 Security and Governance: Develop consistent security measures, access

controls, and compliance policies across all providers.

 Monitoring and Management: Implement robust monitoring and

management tools that provide visibility into the performance and health

of all deployed services.

 Data Management: Plan data storage, backup, and migration strategies to

ensure seamless data movement between providers.

 20

1.6 Job Scheduling for Optimal Usage of Resources

In cloud computing environments, scheduling algorithms hold significant importance

in enhancing resource utilization and overall performance. Their primary duties

involve effectively allocating computational resources and controlling how activities

and assignments are carried out on the cloud infrastructure. We will look at a number

of well-known scheduling algorithms used in the context of CC in this study,

exploring their workings and benefits [25]. We will also go through each algorithm's

minimum execution time, which shows how long it takes to finish the scheduling

process.

 First-Come, First-Served (FCFS) Scheduling 1.6.1

A straightforward scheduling system called FCFS bases its operations on the time that

tasks arrive. Without taking into account their priority or execution time, the tasks are

completed in the order they are received. This algorithm ensures fairness, as it follows

a first-come, first-served approach. However, FCFS may result in subpar performance

when long-running activities are completed early, delaying subsequent shorter jobs

for an extended period of time. The number of tasks and their execution times affect

FCFS's minimum execution time [23].

 Shortest Job Next (SJN) Scheduling 1.6.2

Shortest Job Next (SJN) scheduling strives to minimize the average waiting period by

prioritizing the task with the briefest execution duration for the subsequent execution.

To implement this algorithm effectively, advance knowledge of the execution

duration for each task is essential. By prioritizing short tasks, SJN reduces waiting

time and improves system efficiency. However, SJN can be problematic in scenarios

where the execution time is unknown or cannot be accurately predicted. The

distribution of task execution times and the number of tasks determine the minimal

SJN execution time. [24].

 21

 Round Robin (RR) Scheduling 1.6.3

RR is a popular scheduling method that cyclically allots a similar time slice to each

activity. It provides equity and prevents any task from having a resource monopoly

for an extended period of time. Each task is allowed to execute for a predefined time

quantum before being pre-empted and moved to the back of the scheduling queue. RR

is suitable for scenarios with diverse task execution times, as it provides equal

opportunities for all tasks. The time quantum and the number of tasks determine the

RR's minimal execution time [26].

 Priority-Based Scheduling 1.6.4

Tasks are given priority levels according to their relevance or criticality in priority-

based scheduling. The scheduler executes tasks with higher priority levels first,

ensuring that critical tasks receive immediate attention. This algorithm allows for

better control over task execution and resource allocation. However, improper

prioritization can lead to starvation of low-priority tasks. The number of jobs and the

number of priority levels determine the priority-based scheduling's minimum

execution time [27].

 Genetic Algorithm (GA) Scheduling 1.6.5

The metaheuristic method known as GA was influenced by the idea of natural

selection. It evolves a population of potential schedules and finds the best solution

using genetic operators like mutation, crossover, and selection [28]. GA-based

scheduling considers several parameters, such as task execution time, resource

availability, and task dependencies, to provide efficient schedules. The minimal

execution time of GA-based scheduling depends on the size of the population, the

number of generations, and the complexity of the problem [29].

 Minimum Execution Time (MET) 1.6.6

MET is similar to the shortest job first but it also considers the allocation cost of the

job. If a work has to be executed on more than one cloud host, MET will broadcast

 22

the demand and will allocate the job to the server with the shortest execution time

[30].

As time has passed by, the evolution of ML methods has been observed to be applied

in cloud scheduling approaches. The aim is to learn from previous allocations and to

assign a rank so that overall power consumption can be reduced [31]. Hence the

preliminary aim of ML based algorithm can be defined as follows.

 (1.1)

Where PC is the power consumption in assigning a job to a host system.

The overall quantity of power that is used over a certain amount of time is referred to

as energy consumption.

 ∫

 (1.2)

1.7 Various parameters of Cloud computing

Cloud computing involves various parameters that define its characteristics and

capabilities. Here are some of the key parameters in CC that have been used popularly

in the research community for determining the effectiveness of cloud scheduling.

 Makespan 1.7.1

Makespan is the entire amount of time needed to complete a series of tasks or

procedures in a cloud environment. It displays the total time required for each task,

beginning with the first one. In cloud computing systems, the makespan is a crucial

performance parameter for assessing the effectiveness and efficiency of resource

allocation and job scheduling algorithms.

The makespan can be calculated using the following formulas:

1. Start Time (ST): This indicates the moment a task starts to be completed.

2. Finish Time (FT): This shows the moment a task completes execution.

 23

3. Makespan (MS): It is computed by deducting the time the initial operation began

from when the prior job was completed. In other words, it shows the total time

required to complete all tasks.

The makespan may be calculated mathematically using the following formula:

 (1.3)

Here, refers to the finish time of the last task, and refers to the start time

of the first task.

The makespan in cloud computing is optimised using a variety of scheduling and

allocation of resources approaches. These techniques aim to minimize the makespan

by efficiently utilizing cloud resources and distributing tasks effectively among the

available resources. By reducing the makespan, cloud systems can achieve improved

performance, enhanced resource utilization, and faster task completion.

 Energy Consumption 1.7.2

The phrase "energy consumption" describes how much energy the different

components of the cloud architecture—such as servers, networking hardware, storage,

and cooling systems—consume. Effective management of energy consumption is

essential to reduce operational costs and minimize the environmental impact of cloud

computing.

Factors that influence energy consumption in cloud computing include:

1. Server Power Consumption: The energy consumed by servers depends on

factors such as their processing capacity, utilization levels, and the energy

efficiency of hardware components.

2. Cooling and HVAC Systems: Data centres require cooling systems to maintain

the optimal temperature for servers. For the purpose of removing the heat

produced by the servers, these cooling systems use electricity.

3. Networking Equipment: Networking devices such as switches and routers also

consume energy, influenced by factors like data traffic volume, network topology,

and utilization.

 24

4. Storage Systems: Energy consumption in storage devices, such as hard drives and

SSDs, varies based on their capacity, utilization, and energy efficiency.

Several metrics are used to measure energy consumption in CC:

a. Power Usage Effectiveness (PUE): PUE compares the total

energy consumed by a data centre (including IT equipment and

cooling) to the energy consumed by IT equipment alone. Lower

PUE values indicate higher energy efficiency.

 (1.4)

b. Data Center Infrastructure Efficiency (DCIE): DCIE is the

reciprocal of PUE and represents the percentage of energy

consumed by IT equipment relative to the total energy consumed

by the data centre infrastructure.

 (1.5)

c. Energy Proportionality: Energy proportionality refers to a

system's ability to dynamically adjust its energy consumption

based on workload demands. Systems with higher energy

proportionality consume less energy during periods of low

workload.

 (1.6)

Employing energy-efficient hardware, streamlining workload allocation, and putting

power management strategies like server consolidation and dynamic voltage and

frequency scaling (DVFS) into practise are all part of optimising energy use in cloud

computing.

 CO2 Emission 1.7.3

CO2 emissions in computing result from the energy consumption and operation of

cloud infrastructure, releasing carbon dioxide and other greenhouse gases. Despite the

 25

potential environmental benefits of cloud computing, it still contributes to carbon

emissions due to energy usage Carbon Usage Effectiveness is a metric used to

determine CO2 emissions. As defined by CUE:

 (1.7)

Where

 = Total energy used by the data centre, which results in a total CO2 output.

EIT = Total amount of energy used by IT devices

Several factors contribute to CO2 emissions in CC:

1. Energy Source: The type of energy used to power the cloud infrastructure impacts

CO2 emissions. Carbon-intensive energy sources, like fossil fuels, lead to higher

emissions compared to renewable energy sources.

2. Data Center Operations: Data centres, which house the cloud infrastructure,

consume significant amounts of electricity. Powering servers, cooling systems, and

other equipment contribute to CO2 emissions, particularly if the energy comes from

non-renewable sources.

3. Cooling and HVAC Systems: Data centres require cooling systems to maintain

optimal temperatures. The energy consumed by these systems, including air

conditioning and ventilation, adds to CO2 emissions.

4. Server Utilization: Efficient server utilization is crucial for reducing CO2

emissions. Underutilized servers consume excess energy, resulting in higher

emissions. Techniques such as server virtualization and load balancing improve

utilization and reduce energy waste.

Efforts to reduce CO2 emissions in cloud computing include:

a. Renewable Energy Adoption: Reducing CO2 emissions by switching to

renewable energy sources, such solar or wind power, to power data centres

and cloud infrastructure.

b. Energy Efficiency Measures: Implementing energy-efficient hardware,

optimizing cooling systems, and adopting energy-saving practices like

dynamic power management help reduce overall energy consumption and

lower emissions.

 26

c. Green Data Centers: Designing and operating data centres with eco-friendly

approaches, such as using energy-efficient equipment and cooling methods,

contributes to reduced CO2 emissions.

d. Carbon Offsetting: Some cloud providers offer carbon offset programs,

investing in projects that offset the carbon emissions generated during cloud

operations.

Monitoring and reporting CO2 emissions in cloud computing ensures transparency

and accountability. It enables cloud providers and users to understand the

environmental impact and make informed decisions regarding energy consumption

and sustainability initiatives.

 Execution Cost 1.7.4

It is the sum of the job scheduling costs calculated across various physical equipment

or data centres. When users are to be assigned to the PMs in the early phase of

allocation, the scheduling design wants to achieve a minimum cost. Most of the time,

the cost may be calculated using the following relationship between energy use and

makespan

 (1.8)

Where the unit cost is and β is the quantity of energy that will be used due to

malicious processing.

1.8 Machine Learning and its Evolution in Job Scheduling Under Cloud

Computing

The area of machine learning (ML), which falls under artificial intelligence (AI), aims

to create methods and algorithms that let computers take knowledge from data and

use it to forecast and make decisions. ML has revolutionized various industries by

providing solutions to complex problems and enabling intelligent automation [32, 33].

In recent years, the merging of machine learning (ML) with cloud computing has

propelled its adoption and capabilities to even greater heights. The inclusion of a

section on ML in the opening chapter of the study work is significant because it

 27

underlines the significance of thoroughly knowing various machine learning

algorithms before adopting or integrating them into the research. This understanding

serves as the foundation for planning and creating efficient resource management

solutions in multi-cloud systems. Researchers can find the best algorithms for tackling

specific difficulties like workload prediction, resource allocation, and performance

improvement by experimenting with various machine learning methodologies. This

ensures that the suggested model has the ability to adapt to changing cloud settings

and produce optimal results. Thus, a detailed evaluation of machine learning

algorithms is required to inform the design and execution of the resource management

model, thereby increasing its effectiveness and practical application in real-world

multi-cloud settings.

 Early Adoption:

The initial stages of ML deployment were characterized by on-premises

infrastructure, where organizations had to manage and maintain their own hardware

and software resources. However, as ML algorithms became more complex and

required substantial computational power and storage, cloud computing emerged as

an ideal platform for ML applications. Cloud providers offered scalable and flexible

infrastructure, allowing users to deploy ML models and leverage powerful hardware

resources on-demand.

 Scalability and Elasticity:

Cloud computing provides the scalability and elasticity required for ML workloads.

ML models often demand significant computing resources, and cloud platforms

enable users to scale up or down their infrastructure based on the workload's

requirements. This ensures optimal resource utilization and cost efficiency. Cloud

providers offer services like virtual machines, containers, and serverless computing,

making it easier to deploy and maintain ML applications at scale.

 Data Storage and Processing:

 28

Platforms for cloud computing offer strong data processing and storage capacities,

which are essential for machine learning processes. Large datasets are essential to the

training and validation of machine learning algorithms. Large datasets may be

securely and economically stored with the help of cloud storage systems like Google

Cloud Storage and Amazon S3. Additionally, cloud-based data processing

frameworks like Apache Spark or Google Cloud Dataflow provide distributed

processing capabilities, allowing ML practitioners to efficiently pre-process and

analyse vast amounts of data.

 Managed ML Services:

Cloud providers have introduced managed ML services that simplify the

development, training, and deployment of ML models. They also offer automated

model training, hyperparameter tuning, and model serving capabilities, reducing the

complexity and time required to build and deploy ML applications.

 Integration of AI Services:

Cloud computing has enabled the integration of ML with other AI services. Cloud

providers offer APIs and pre-trained models that allow developers to incorporate

advanced AI functionalities into their applications without the need for extensive ML

expertise. This integration of ML with cloud-based AI services empowers businesses

to deliver more intelligent and personalized experiences to their users.

 Federated Learning and Edge Computing:

The evolution of ML in CC has also shown the way for emerging paradigms such as

federated learning and edge computing. Federated learning enables ML models to be

trained on distributed devices while preserving data privacy. Cloud infrastructure acts

as an orchestrator, coordinating the training process across multiple devices, which

accelerates model development and reduces the need for data transfer. Edge

computing brings ML capabilities closer to the data source, allowing real-time

inference and reducing latency. This is particularly valuable in applications like

autonomous vehicles, IoT, and healthcare.

 29

Figure 1.10 Machine Learning Approach [36]

Two of the most common approaches to machine learning are supervised and

unsupervised learning [34]. Both options enable the user to supply the computer with

a vast amount of data records in order for it to understand and establish relationships.

This collected data is commonly referred to as a ―feature vector‖ and the various

machine-learning approaches are shown in Figure 1.10.

 Supervised 1.8.1

Supervised learning comes in two flavours: regression and classification. The

difference between the two is the core of their manufacturing vector. If the result is

different, in the form of a real value, it is referred to as regression [35]. For instance,

attributes like size, weight, height, and economic value belong to the realm of

continuous variables. Conversely, classification comes into play when the outcome

variable assumes a class or category format. Distinguishing between options like

"pink," "white," "high," or "short" aligns with classification. When data input is

categorized into precisely two classes, it is deemed binary classification. However,

when data is categorized into more than two classes, it qualifies as a multi-class

classification.

 Un-supervised 1.8.2

In this ML technique, the data is not labelled. The machine must find the correct

target without any prior knowledge, and therefore detect unknown patterns in the data.

Algorithms must thus be created in a way that allows them to identify the right

patterns and structures for them inside the data. Unsupervised learning can take two

forms: association and clustering [35, 36]. When developers want to find trends or

order in a large group of uncategorized results, they use clustering. Where the aim is

Un-supervised

Learning

Supervised

Learning

Semi-supervised

Learning

 30

to identify relationships between various data items in broad datasets, the association

is used. These approaches are graphically represented in Figure 1.11.

Supervised

Learning

Unsupervised

Learning

(Data with Labels)

Input

(Data without Labels)

Input

Output

(Classes)

Output

(Mapping)

Critic

E
rr

or

Figure 1.11 Supervised and Unsupervised Approach [34]

The key differences between the supervised and unsupervised learning approaches are

listed in Table 1.1.

Table 1.1 Difference between Supervised and Unsupervised ML Techniques

SUPERVISED UNSUPERVISED

Labelled data is provided as input Unlabelled data is provided as input

Used trained dataset Use just input dataset

Used for data prediction Used for data analysis

Includes classification and regression
Used clustering approach, estimate

density, and reduce dimension

e.g. ANN, CNN, SVM e.g. K-means

 31

 Semi-supervised 1.8.3

Most deep learning classifiers require large numbers of labelled samples for good

generalization, but obtaining such data is expensive and complex. To deal with this

limitation, supervised learning in addition to unsupervised learning is presented,

which is known as semi-supervised learning. It is a class of methods that use a set of

labelled data along with a large amount of unlabelled data. Untagged data, when

combined with a limited amount of labelled data, has been found to greatly increase

training performance by many machine learning researchers. In the last decade,

researchers have presented that semi-controlled learning can be used in combination

with the performance of a small number of labelled data classifiers for IDSs that

require less time and expense. Each machine learning algorithm has its own

advantages and limitations that suit it best for some particular situations. The

worthiness of most popular algorithms can be accessed from the following Table 1.2.

Table 1.2 Comparison of Machine Learning Algorithms

Machine

Learning

Techniques

Advantages Limitations Remarks

Naïve Bayes (NB)

 NB is an

effective

technique to

extract the

subjective

sentence.

 Suitable for

small training

set

 Simple and

straight forward

to use

 The

interpretation is

very easy.

 The training

data required for

 Bias outcomes

when the

number of

training sets

increases

 Assumes all

features to be

independent

which is not the

case in the real

world.

This is a robust and

effective technique

but still, there is a

need for primary

knowledge as it is

sensitive to how the

input data is

prepared.

 32

processing is

low to initiate

the work.

Decision Tree

(DT)

 Can handle

categorical data

 The

interpretation is

easy to

understand.

 Classes need to

be mutually

exclusive

 Highly sensitive

to noisy data and

outliers

 Increased risk of

overly complex

trees

The performance

can be good on

large datasets

K-nearest

Neighbour (KNN)

 Nonparametric

 No cost

associated with

the learning

process

 Implementation

is easy

 Robust for

outlier

prediction

 Result

interpretation is

very hard

 Lacks explicit

model training

 Sensitive

enough in case

of measuring the

distance.

 Expensive

computation in

the case of a

large dataset

The classification

speed is slow when

the training set is

large.

Random Forest

(RF)

 Easier to tune

 Hard for

overfitting

 An increased

number of trees

makes the

algorithm slower

 Not suitable for

categorical

analysis with a

number of levels

Slows down in

real-time prediction

due to the

generation of a

larger number of

trees

Support Vector

Machine (SVM)

 Training is

relatively easy

 For practice and

theoretical

aspects, there is

a good

generalization.

 An appropriate

kernel function

is required to

choose.

 There is a

problem of

interpretation.

 The

performance is

very good.

 For better

performance

knowledge of

the kernel is

 33

 The feature

space has less

dependency on

dimensionality.

required.

Neural Network

(NN)

 Delivers good

performance

even in case of

noisy data

 The execution

time is less.

 The

implementation

and

interpretation

are difficult.

 Requires a large

sample size for

better

performance.

 There is a high

memory usage.

 Many

parameters to be

finely tuned.

Performance gets

challenged for

smaller sample

sizes.

Q-learning

 Learns optimal

policy directly

 Computation

cost is less

 Comparatively

fast

 The perfect

option for

offline learning

 Uses biased

samples

 Per sample

variance is high

 Not efficient for

online learning

A good option

when offline

leaning has to be

performed

1.9 Metaheuristic Algorithms

Researchers across the globe have observed a prevailing trend in merging machine

learning algorithms with metaheuristic algorithms to amplify the efficiency of existing

scheduling procedures. A metaheuristic acts as a recurrent governing mechanism that

directs and improves the operations of subordinate heuristics, producing the

production of high-quality solutions. It is capable of manipulating either a single

solution or a group of solutions in each iteration. These subordinate heuristics

encompass methods varying in complexity levels, ranging from high to low, which

could involve simple local searches or construction techniques.

 34

Metaheuristics can be conceptualized as a set of foundational principles that facilitate

the formulation of heuristic approaches adaptable to a diverse spectrum of problems.

They embody a general algorithmic framework that offers versatility, requiring

minimal adaptations to suit specific issues across a range of optimization problems.

Metaheuristic techniques entail a repetitive sequence of exploration actions, rendering

them potent tools for effectively tackling intricate optimization challenges.

Predominantly, metaheuristics draw inspiration from natural processes, yet a subset

also takes cues from biological systems, human activities, nature, and physical

systems.[37, 38], etc.

 Genetic Algorithm: It is one of the simplest algorithms that is based on the

prospective solutions observed as a population. In this type of metaheuristics,

the new solutions are generated by a number of genetic operations such as

mutation and crossover [39]. These new solutions replace the existing

solutions. The GA is based on Darwin’s idea of survival of the fittest.

 Simulated Annealing: This metaheuristic is inspired by the metallurgy and

describes the cooling process carried on in the furnace. In simulated annealing

the probability of reaching a low-valued solution considerably decreases with

an increase in algorithm runs [40, 41]. Hence, the probability of reaching the

best global solution significantly increases and this proved to efficiently

resolve various complex optimization problems.

 Swarm Intelligence: It covers algorithms that are inspired by the group or

swarm-based intelligent behaviour of the organisms. The group behaviour here

means the collective and collaborative work of organisms such as colonies of

ants. The major reasons behind exhibiting such group behaviour are mainly

foraging for food, evading prey or relocation of the colony. In most of the

cases, the communication was performed using pheromones (ants), proximity

(fish) or dance (bees). Some of the widely used nature-inspired algorithms that

fall under this category are PSO [42], ABC [43], ACO [44], Firefly [45] and

Grasshopper Optimization Algorithm [46].

 35

 Characteristics of Metaheuristic 1.9.1

There are different characteristics of metaheuristic [47] that can be defined as follows:

 By effectively searching the search space, a global technique that uses the

metaheuristic approach to solve problems ensures that the best or nearly the

best answer will be found.

 Heuristics that are governed by the higher-level strategy are used by

metaheuristics to access domain-specific knowledge.

 Metaheuristic methods are problem-independent and more flexible as

compared to exact methods.

 Traditional methods are not able to handle voluminous data efficiently. On the

other hand, metaheuristics handles high-dimensional data in a viable manner.

1.10 Organisation of the Thesis

The chapters of the thesis are organized in the following manner.

 Chapter 1 introduces the scheduling architecture that is involved in the Cloud

Computing paradigm. The introduction section includes a description of the

usage and evolution of the ML algorithms in scheduling architecture as well as

the hybridization of the scheduling architecture via ML and meta-heuristic

approaches.

 Chapter 2 illustrates the related work section that incorporates the articles that

list hybrid scheduling architectures or the architectures that support meta-

heuristic algorithms to support the approach of the proposed algorithm.

 Chapter 3 introduces the MET algorithm and cyber shake work flow and

discusses the proposed work algorithm for the enhancement.

 Chapter 4 is dedicated to the application and improvisation of the flower

pollination algorithm while involving Q-learning.

 Chapter 5 reviews the findings and provides a thorough analysis of the work

that is planned.

 Chapter 6 concludes with the evaluated results and future work.

 36

CHAPTER 2: REVIEW OF LITERATURE

The cloud computing environment has attracted masses due to its potential services

offered to service users as well as the service providers. It has shown tremendous

grown in a very small-time span in the service industry. However, there are some

adjoining challenges and issues that need to be constantly addressed to ensure its

advantages to overcome its associated limitations. The literature survey discussed in

this chapter focuses on discussing the various research publications and articles that

have been presented to address the scheduling in cloud in energy efficient manner.

The following studies also show that the research community is constantly looking

forward to minimizing CO2 emissions in order to ensure green computing by

employing various optimization and machine learning algorithms.

2.1 Literature Review

Lucas-Simarro et al. introduced an extensible broker framework that allowed for the

best possible deployment of virtual services across several clouds. The design enabled

a variety of scheduling strategies, taking into account user constraints, environmental

considerations, and numerous optimisation criteria. The study looked at how different

clustered services, such as an HPC cluster and a cluster of web servers, were deployed

in a multi-cloud context. Different conditions, constraints, and optimisation criteria

were covered by the analysis. Overall, the study demonstrated the efficiency and

advantages of the modular broker architecture for deploying virtual services optimally

across various clouds [48].

Dhanalakshmi and Basu combined a modified Max-min algorithm with a VM

placement algorithm designed to use less energy. This method was presented to

accomplish the twin goals of minimising energy use and shortening the duration of

tasks. Cloud Sim was utilised to simulate the experimental outcomes. The study's

findings led to the conclusion that the proposed method successfully reduced both

energy consumption and response time [49].

 37

Brar and Rao aimed to improve resource utilization and minimize execution time in

cloud-based workflows. By analysing previous works in the field, the researchers

identified the limitations of existing scheduling techniques. The findings revealed that

the Max-Min algorithm effectively optimized workflow scheduling, resulting in

improved resource allocation and reduced execution time. The widely used scientific

workflow such as Cyber Shake, Montage, and Sipht were employed for processing the

incoming requests. The study shed important information on the use of scheduling

algorithms in CC, emphasising the Max-Min algorithm's importance in improving

workflow management in cloud environments. It was concluded that the Max-Min

achieved better results with Cyber Shake in comparison to Data ware [50].

Panda and Jana introduced three task scheduling techniques, MCC, MEMAX, and

CMMN, were presented and are intended for heterogeneous multi-cloud systems. The

algorithms sought to reduce makespan and maximise average cloud usage. MCC was

a single-phase scheduling technique, in contrast to MEMAX and CMMN, which used

a two-phase approach. The algorithms were thoroughly validated with an emphasis on

makespan and average cloud utilisation metrics using a variety of benchmark and fake

datasets. The authors conducted tests on two benchmark datasets and one synthetic

dataset to see how well the recommended methods worked. The outcomes were

contrasted with the multi-cloud task scheduling algorithms RR, CLS, CMMS, and

CMAXMS based on their applicability. The comparison showed that, in terms of

makespan and average cloud utilisation, the suggested algorithms performed better

than the ones already in use [51].

Hosseinimotlagh et al. introduced SEATS, a VM scheduling algorithm, to optimize

utilization and energy consumption in a Cloud environment. The algorithm allocated

more computing power to VMs on a host, aiming for optimal utilization. A VM

scheduling algorithm based on maximising utilisation was additionally suggested to

reduce energy usage while maintaining QoS. The study used simulations to show that

the suggested algorithms significantly reduced real-time task turnaround times by

94% and overall energy consumption by 60%. Also increasing by 96% was the

 38

acceptance rate of incoming tasks. Overall, the study showed how effective SEATS

are at maximising energy consumption and improving task performance [52].

Patel et al. conducted research on a number of work scheduling strategies, including

Minimum Execution Time. For static meta-task scheduling, they also recommended

modifications to the load-balanced Min-Min (ELBMM) algorithm. The effects of the

load-balanced Min-Min algorithm on static Meta Task Scheduling in grid computing

were thoroughly examined prior to designing the enhanced method. In order to

successfully exploit underutilised resources, the Enhanced Load Balanced Min-Min

algorithm (ELBMM), which was based on the Min-Min technique, required task

rescheduling. It assigned the assignment to the relevant resources after determining

which one would take the longest to finish. The EELBM outperforms other

algorithms in terms of resource utilisation and makespan, according to the results

[26].

Ismail and Fardoun created an energy-aware tasks scheduling (EATS) approach to

divide and schedule massive data in the cloud. EATS's primary objectives were to

improve application efficiency and cut back on the energy consumption of the

underlying resources. Various workloads were used to measure a computing server's

power usage. The results of the experiments showed that there was a 1.3 energy

consumption ratio between the peak performance and idle state, highlighting the need

for efficient resource utilisation without affecting performance. As a result, data

centres use less energy a result of cloud providers adopting such strategies [53].

Hemamalini and Srinath evaluated the effectiveness of various task-scheduling

algorithms for resource discovery and management in the cloud. The performance

analysis was aimed at achieving a balanced minimum execution time for the task

scheduling. Different task scheduling algorithms, including Minimum Execution

Time, Min-Min, Load Balanced, and Min-Min, were studied in the process with

regard to makespan, completion time, execution time, and load balancing. According

to the research, the balanced minimum execution time outperformed the other

conventional scheduling algorithms covered in the paper [54].

 39

Maheshwari et al. provided a method for multi-site process scheduling that used

dynamic probes to estimate feasible network throughput across sites and performance

models to forecast resource execution times. They also established the concept of

workflow skeletons and the SKOPE framework to examine and analyse the

computational and data transportation features of processes. Real-world applications

were run in two different computing environments—distributed across various

clusters and parallelized across numerous clouds—using the Swift parallel and

distributed execution framework. The outcomes showed that their method

successfully reduced the overall workflow execution time by up to 60%. When

compared to the default scheduling method, the approach also showed improved

resource utilisation and shorter execution times [55].

In a cloud computing setting, Jasraj et al. developed a unique meta-heuristic cost-

effective genetic algorithm to reduce process execution costs while assuring deadline

adherence. They carried out a thorough performance test of the proposed approach

utilising well-known scientific workflows of various sizes, including Montage, LIGO,

Cyber Shake, and Epigenetics. The novel scheme includes various operations of

genetic algorithm involving initialization of the population, encoding, performing

mutations and crossovers. By minimizing execution costs while meeting deadlines,

the proposed approach strikes a balance between efficient resource utilization and

meeting user requirements [56].

Panda and Jana introduced two SLA-based task scheduling algorithms, namely SLA-

MCT and SLA-Min-Min, designed for heterogeneous multi-cloud environments. The

algorithms were tailored to support three different customer-determined SLA levels.

SLA-Min-Min employed a two-phase scheduling strategy, whereas SLA-MCT

utilized a single-phase strategy. To evaluate the algorithms' performance, the study

conducted simulations using both benchmark and synthetic datasets. Execution-Min-

Min and Profit-Min-Min were two two-phase scheduling algorithms that were

evaluated alongside SLA-Min-Min. On the other side, SLA-MCT was contrasted with

CLS, Execution-MCT, and Profit-MCT, three single-phase task scheduling methods.

The examination used four important performance metrics: makespan, average cloud

 40

utilisation, gain, and penalty cost of services. The study's findings showed that in

terms of striking a balance between makespan and the gain cost of services, the

proposed algorithms consistently beat the alternatives. This indicated that SLA-MCT

and SLA-Min-Min have the potential to effectively manage task scheduling while

satisfying SLA requirements within heterogeneous multi-cloud environments [57].

Maharana et al. identified the limitations of existing energy-aware scheduling

approaches for real-time tasks in cloud environments. These methods relied on

determinism and pre-calculated schedule decisions, which weren't appropriate for

environments with dynamic execution. The paper took into account a number of

energy-efficiency factors, including energy cost, CPU power efficiency, carbon

emission rate, and workload, to address these issues. The authors suggested real-time,

aperiodic, independent task scheduling strategies that are nearly optimal in terms of

energy efficiency for cloud data centres. The proposed EDVS algorithm was designed

to provide Quality of Service (QoS) while lowering operational costs. Results from

experiments showed that the EDVS algorithm performed better in cloud environments

when compared to related algorithms [58].

Madni et al. conducted a study comparing the performance of heuristic algorithms for

task scheduling in an IaaS CC environment. Three well-known heuristic algorithms—

Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), and Ant Colony

Optimisation (ACO)—were examined in the study. The authors also highlighted the

trade-off between execution time and resource utilization. The evaluation was

performed against various heuristic algorithms including First Come First Serve

(FCFS), Minimum Execution Time (MET), minimum Completion Time (MCT) and

Max-min, and Min-min algorithms for job scheduling in the cloud. Among all, the

MET algorithm demonstrated better performance for optimal job scheduling [59].

Douik et al. addressed the complex task of maximizing network-wide utility by

associating users with clouds and scheduling them to specific Processing Zones (PZs)

while accommodating practical constraints. These constraints encompassed allowing

users to be assigned to one cloud at most, multiple Base Stations (BSs) within a cloud,

and multiple distinct PZs within the frame of the BSs. To tackle this challenge, the

 41

study employed graph theory methods and constructed a conflict graph. This graph

facilitated the transformation of the scheduling problem into a maximum-weight

independent set problem. The authors proposed both heuristic and optimal distributed

network algorithms to solve the issue. These distributed algorithms efficiently

addressed the maximum-weight independent set problem by leveraging the structure

of the conflict graph. Simulation outcomes demonstrated that the hybrid scheduling

strategies, combining optimal and heuristic approaches, offered substantial

enhancements in comparison to scheduling-level coordinated networks. These

improvements were achieved with only a minimal impact on signal-level

coordination, showcasing the potential of the proposed strategies to optimize network

utility while considering practical constraints [60].

Praveen et al. plan to balance the load among diverse resources of numerous cloud

providers . Task scheduling and resource allocation were the two phases of the plan.

To allocate resources effectively, the researchers used the social group optimisation

algorithm. To schedule tasks, they used the shortest-job-first scheduling method to

reduce makespan time and increase throughput. The researchers experimented with

synthetic data in a diverse cloud environment to gauge how well their suggested

strategy performed. They contrasted the experimental findings with those of first-in,

first-out scheduling and a shortest-job-first technique based on genetic algorithms.

The outcomes demonstrated the suggested method's validity and usefulness in

improving the system's performance, with considerable increases in makespan time

and throughput [61].

Duan et al. proposed an incremental Genetic Algorithm (GA) approach for

minimizing makespan in task scheduling problems. They incorporated adaptive

probabilities of crossover and mutation, adjusting them based on generations and

varying them between individuals. The researchers conducted experiments using

randomly generated tasks to simulate Cloud-based scheduling scenarios. Their

adaptive incremental GA was tested against Min-Min, Max-Min, Simulated

Annealing, and Artificial Bee Colony Algorithm. The outcomes demonstrated that

 42

their suggested approach produced workable solutions with a reasonable makespan

while needing less computing time [62].

Panda and Jana developed four task-scheduling algorithms for heterogeneous multi-

cloud environments. The first two used traditional normalization techniques, while the

third introduced distribution scaling and nearest radix scaling. The algorithms were

tested using synthetic and benchmark datasets, showing superior performance in

makespan and average cloud utilization. However, they failed to consider execution

and transfer costs across diverse clouds [63].

Hu et al. present a multi-objective scheduling (MOS) method designed for scientific

processes in a multi-cloud context. The algorithm was carefully designed to reduce

both the cost and the length of the operation while upholding dependability

requirements. Leveraging PSO technology, the algorithm was designed with a coding

strategy that accounted for task execution locations and the sequence of data

transmission. To assess the algorithm's performance, the researchers conducted

extensive simulation experiments using real-world scientific workflow models. The

results of the evaluation revealed the superiority of the MOS algorithm. It consistently

outperformed both the CMOHEFT and RANDOM algorithms across all multi-

objective metrics, underscoring its potential as a highly efficient and effective

approach for optimizing task scheduling and resource allocation within multi-cloud

environments. [64].

Lin et al. introduced a power efficiency model for cloud servers and proposed the

ECOTS algorithm for energy-efficient task scheduling. The algorithm considered task

resource requirements, server power efficiency, and performance degradation to

minimize energy consumption while maintaining performance levels. Simulation

experiments in a heterogeneous cluster environment showed that ECOTS achieved the

highest energy efficiency while satisfying task resource requirements. According to

various workloads, the suggested power efficiency model provided an appropriate

assessment of server power efficiency. Min-Min and Performance First scheduling

were exceeded by ECOTS, which led to energy savings of 21.4% and 21.9%,

respectively [65].

 43

Jena and Mohanty introduced a Genetic Algorithm-driven strategy for Customer-

Conscious Resource Allocation and Task Scheduling in the context of multi-cloud

computing. This approach was tailored for a multi-cloud federation scenario. The

method was split into two phases: a task scheduling technique that gave priority to the

smallest tasks first, and resource allocation controlled by genetic algorithms. The

main purpose was to efficiently distribute work among virtual machines (VMs) in the

multi-cloud federation in order to reduce makespan time and increase customer

satisfaction. To validate their approach, the researchers meticulously conducted

experiments using synthetic data and juxtaposed their simulation results with those of

pre-existing scheduling algorithms. The outcomes of the simulations substantiated

that the proposed algorithm surpassed the performance of existing algorithms,

especially in terms of pertinent metrics [66].

Mishra et al. undertook a study concerning energy consumption within the cloud

environment. Their research centred around diverse services, with the overarching

goal of promoting environmentally conscious practices in cloud computing,

commonly referred to as green cloud computing. Their primary focus was on

curtailing overall energy consumption in the system, an objective tackled through the

resolution of the task allocation predicament prevalent in cloud computing. To realize

this objective, they introduced an adaptive task allocation algorithm specially

designed to cater to the complexities of heterogeneous cloud environments. The

algorithm successfully demonstrated its ability to reduce both makespan and energy

usage through simulation in the Cloud SIM environment. The simulation results

demonstrated that the suggested algorithm outperformed previous methods and

became an energy-efficient solution in the cloud environment [67].

Hazra et al. embarked on an extensive exploration of diverse scheduling algorithms,

driven by the overarching goal of curbing energy consumption during the allocation

of varying tasks within a cloud setting. Their investigation encompassed a

comprehensive assessment of the merits and demerits intrinsic to these pre-existing

algorithms. During that period, energy consumption by distinct computing resources

held notable significance, with a substantial portion of consumed energy being

 44

directed toward task execution. Task schedulers bore the responsibility of

orchestrating the mapping of tasks to their corresponding resources. The pivotal

objective was to execute this mapping in a manner that optimized energy efficiency,

consequently yielding a significant reduction in the overall energy consumption

within cloud systems. The paper furnished a succinct analysis of pre-existing energy-

conscious task-scheduling algorithms that were prevalent at the time [68].

Gawali and Shinde provided a heuristic method for allocating resources and

scheduling tasks in cloud computing. Their strategy used a number of approaches,

such as the modified analytic hierarchy process (MAHP), the longest expected

processing time pre-emption (LEPT), divide-and-conquer tactics, and bandwidth-

aware divided scheduling (BATS) + BAR optimisation. This combination seeks to

improve the effectiveness of resource allocation and work scheduling procedures

within the cloud environment. Through experimental comparisons with existing

frameworks, their approach showed improved performance in terms of turnaround

time and response time. It efficiently allocated resources, including CPU, memory,

and bandwidth, leading to enhanced resource utilization. By considering bandwidth as

a resource and evaluating system performance based on it, their approach

demonstrated its effectiveness in optimizing resource allocation and improving

overall system efficiency [69].

According to their article, TangXiaoyong et al. undertook a thorough project to reduce

energy usage across cloud data centre servers, network components, and cooling

systems. Their approach commenced with the establishment of an energy-efficient

cloud data centre ecosystem, encompassing the design of its architecture and the

formulation of models pertaining to job assignments and power consumption. To

anticipate short-term workload trends within the cloud data centre, they integrated

linear regression and wavelet neural network methodologies, giving rise to a

predictive technique termed MLWNN. Additionally, they put forth a heuristic

solution for energy-efficient job scheduling, leveraging workload predictions. This

included a dual approach that included resource management and an online algorithm

for energy-efficient task scheduling. The outcomes unveiled the solution's

 45

commendable performance, establishing its efficacy, particularly in the context of

cloud data centres with lower workloads [70].

To overcome the drawbacks of work consolidation and scheduling algorithms, Panda

and Jana presented the Energy-Efficient Work Scheduling Algorithm (ETSA). The

algorithm was developed with a focus on optimizing energy consumption and

minimizing makespan in a heterogeneous environment. It incorporated factors such as

task completion time and overall resource utilization, utilizing a normalization

technique to guide scheduling decisions. To assess its efficacy, the researchers

conducted a comprehensive evaluation of the ETSA algorithm. They evaluated its

performance to a number of current methods, including MaxUtil, round-robin,

random, dynamic cloud list scheduling, and task consolidation with consideration for

energy use. The outcomes showed that the suggested ETSA algorithm was more

capable than the alternatives currently available in terms of balancing energy

efficiency and makespan [71].

Panda et al. introduced allocation-aware task scheduling algorithms tailored for multi-

cloud settings. These algorithms extended traditional Min-Min and Max-Min

approaches, adapting them to suit multi-cloud requirements. Divided into matching,

allocating, and scheduling phases, these algorithms seamlessly integrated into the

multi-cloud environment. Simulations using benchmark and synthetic datasets

demonstrated their efficacy, with improved metrics such as makespan, cloud

utilization, and throughput. Comparative analysis against existing methods affirmed

the proposed algorithms' effectiveness in enhancing scheduling efficiency within

multi-cloud environments, contributing to optimized resource allocation and

improved system performance [72].

Kaur et al. proposed a deep-Q learning-driven heterogeneous earliest finish time

scheduling algorithm for cloud-based scientific workflows. They aimed to enhance

workflow execution efficiency. The algorithm optimally allocated resources based on

the earliest finish time, leveraging Deep-Q learning to make dynamic decisions. The

study focused on heterogeneous environments and aimed to improve resource

utilization. Through simulation, they demonstrated the algorithm's superiority in terms

 46

of task completion times and resource utilization compared to baseline methods. The

research contributed to efficient cloud-based workflow scheduling [73]

Gupta et al. focused on workflow scheduling in cloud computing using the Jaya

algorithm. The study aimed to optimize task assignment to minimize makespan and

execution costs. In the process, comparisons were made with other nature-inspired

algorithms like PSO, GA, ACO, honey bee, and CSO using benchmark functions such

as Montage, CyberShake, Inspiral, and Sipht during evaluation. The simulation

analysis demonstrated that the Jaya algorithm showed superior performance while

converging quickly and producing similar results in less time. Thus, the study

contributed to the effectiveness of workflow scheduling, emphasizing its potential in

optimizing cloud computing resources [74].

Rehman et al. proposed a Multi-Objective Genetic Algorithm (MOGA) for workflow

scheduling in the cloud. The algorithm aimed to optimize makespan while considering

budget and deadline constraints, as well as achieve energy efficiency through dynamic

voltage frequency scaling. Comparative evaluations were conducted against genetic

algorithms focusing on individual objectives and Multi-objective Particle Swarm

Optimization (MOPSO) with the same objectives. The results demonstrated that

MOGA outperformed the other algorithms in terms of budget, deadline, energy

efficiency, and resource utilization. The proposed algorithm showcased significant

improvements across diverse objectives, highlighting its effectiveness compared to

existing solutions [75].

An extensive survey was carried out by Arunarani et al. with a focus on work

scheduling techniques and related metrics that apply in cloud computing settings. The

study looked at several scheduling techniques, addressed their drawbacks, and

identified important factors to take into account or leave out of a certain system. The

poll was divided into three sections based on three perspectives: work scheduling

techniques, applications, and parameter-based measurements. By exploring these

perspectives, the research aimed to provide insights into the diverse range of

scheduling approaches and metrics used in the literature [76].

 47

Zhang et al. proposed a replica-aware task scheduling algorithm and a load-balanced

cache placement algorithm to address response delay and optimize data access in

multi-cloud environments. The task scheduling algorithm considered node locality

and transferred both computation and data, replicating only non-local unassigned and

failed map tasks' input data. The cache placement algorithm predicted the next

executing task using Bayesian networks and selected cache prefetching files based on

caching profit and recycling cost. Extensive experiments demonstrated that the

proposed algorithms outperformed benchmark approaches in terms of node locality

ratio, job response time, prefetching hit ratio, and execution time-saving ratio [77].

Energy-oriented Flower Pollination Algorithm (E-FPA), developed by Usman et al. is

a novel strategy that has been tailored for Virtual Machine (VM) allocation in cloud

data centre environments. Their methodology encompassed the creation of a

systematic framework that prioritized energy-efficient allocation of diverse VMs onto

Physical Machines (PMs). This allocation strategy, known as Dynamic Switching

Probability (DSP), was designed to balance global exploration and local exploitation

in the search process, ultimately facilitating efficient VM allocation while considering

PM's processor, storage, and memory constraints. Throughout the study, real-world

workload data were employed in simulations conducted on Multi-Rec Cloud-Sim.

The results highlighted the superior performance of E-FPA compared to other

techniques. Notably, E-FPA outperformed Genetic Algorithm for Power-Aware

(GAPA) by 21.8%, Order of Exchange Migration (OEM) ant colony systems by

21.5%, and First Fit Decreasing (FFD) by 24.9%. This robust performance solidified

E-FPA's position as a significant contributor to elevating data centre performance

while advancing environmental sustainability through energy-efficient VM allocation

[78].

Masdari and Zangakani undertook an extensive survey that furnished a

comprehensive panorama of inter-cloud scheduling strategies. The main goal was to

efficiently distribute user-generated activities and workflows among appropriate

virtual machines scattered over various cloud infrastructures, all while taking into

account different goals and factors. The paper systematically categorized scheduling

 48

schemes devised for various inter-cloud environments, delving into their architectural

intricacies, prominent attributes, and inherent benefits. Furthermore, the study

encompassed a comparative analysis of distinct inter-cloud scheduling approaches,

spotlighting the disparities in their features. The culmination of the research entailed

concluding observations derived from the findings, as well as the identification of

lingering research challenges within the realm of multi-cloud scheduling [79].

Natesan and Chokkalingam presented the Whale Genetic Optimization Algorithm, a

hybrid approach combining the WOA and GA to minimize both makespan and cost in

task scheduling. Through simulations using the Cloudsim toolkit, the proposed

algorithm demonstrated significant improvements in execution time compared to

classical WOA and standard GA methods. This innovative technique showcased the

potential to provide higher-quality solutions for task scheduling challenges,

contributing to the advancement of optimization strategies in this domain [80].

Xu and Buyya addressed the issue of carbon emissions in data centres by proposing a

strategy that involves shifting workloads among multi-cloud environments located in

different time zones. They developed models to quantify the energy usage, carbon

emissions, and solar power availability at different locations. By leveraging this

information, they aimed to minimize the reliance on brown energy and maximize the

utilization of renewable energy sources. Specifically, they focused on managing the

carbon footprint and renewable energy usage in data centres located in Europe, that

are situated in different time zones. The results of their study demonstrated that by

implementing workload shifting, they were able to reduce carbon emissions by

approximately 40% compared to a baseline scenario, while still maintaining an

acceptable average response time for user requests [81].

Hosseinzadeh et al. conducted a study in the realm of metaheuristic multi-objective

optimization, with a specific focus on multi-objective scheduling strategies within

diverse cloud computing settings. Their research encompassed a thorough survey and

analysis of these strategies, categorizing them based on the multi-objective

optimization algorithms utilized. The study provided insights into how these

algorithms have been effectively applied to tackle scheduling challenges.

 49

Furthermore, the research included a comparative analysis of the various multi-

objective scheduling schemes. This evaluation not only illuminated the strengths and

weaknesses of different approaches but also highlighted directions for future research

in this field. Overall, the study contributed to a deeper understanding of the landscape

of multi-objective scheduling in cloud computing and provided valuable insights for

researchers exploring further advancements in this domain [82].

Sharma and Garg proposed HIGA, a hybrid metaheuristic algorithm, for energy-

efficient task scheduling in cloud data centres. HIGA combines genetic algorithm and

harmony search to explore optimal regions efficiently. HIGA aimed to improve

energy efficiency and performance while minimizing active racks, indirectly reducing

cooling energy. Simulations with task applications and real-world scientific tasks

showed significant energy savings of up to 33%, a 47% improvement in application

performance, and a reduced execution overhead of 39%. HIGA demonstrated

effectiveness in enhancing energy efficiency, application performance, and resource

utilization in cloud data centres [83].

A 3-layer distributed multi-access edge computing (MEC) network made up of

clouds, MEC servers, and edge devices (EDs) was the subject of research by Zhang et

al. The network's goal was to effectively provide application-driven computing

activities while lowering system latency by using EDs and MEC servers. The authors

suggested a distributed system based on multi-agent reinforcement learning to solve

resource rivalry amongst cloud centres (CCs). This system allowed CCs to jointly

decide on task offloading and resource allocation while taking into account the

choices made by other CCs. The suggested technique produced decreased system

latency compared to existing approaches, according to simulation findings. The effect

of the number of CCs, MEC servers, and EDs on latency performance was also

covered in the study [27].

Aziza and Krichen investigated scientific workflow scheduling in cloud computing,

aiming to optimize task execution time, reduce computational costs, and adhere to

deadlines and budgets. They proposed a hybrid approach that combines a genetic

algorithm with the heterogeneous earliest finish time (HEFT) heuristic model. HEFT

 50

is employed to create the initial population for the genetic algorithm. Through

simulations using real-world datasets, their approach demonstrated superior

performance compared to existing methods, highlighting its efficiency. The proposed

hybrid method was applied to various workflow families and was integrated into the

WorkflowSim framework using CloudSim, facilitating its practical implementation

for cloud workflow scheduling [84].

Bezdan et al. uses an improved flower pollination technique to solve the scheduling

problem in cloud computing. The goal of the study was to raise work scheduling in

cloud systems' effectiveness and performance. The classic flower pollination

algorithm was modified by the authors to improve its exploration and exploitation

capabilities. In terms of job execution time, resource utilisation, and overall system

performance, the suggested approach showed better results. Through the utilisation of

its dynamic selection mechanism and adaptive search behaviour, the algorithm

successfully tackled the difficulties associated with cloud computing job scheduling.

The study facilitates better resource management and effective work scheduling in

cloud environments by optimising cloud resource allocation and task allocation [85].

Sharma and Garg presented a novel method for developing an autonomous task

scheduler that uses little energy by using a supervised neural network. The main

objective was to reduce the number of active racks in cloud settings, as well as

makespan, energy consumption, and execution overhead. Through thorough

comparison testing with other current algorithms, simulation experiments were carried

out on cloud configurations with and without heavy loads. This research presents a

novel strategy that aims to enhance the energy efficiency of task scheduling in cloud

environments, with a focus on reducing multiple performance parameters

simultaneously. The results demonstrated the superiority of the proposed scheduler. In

heavily loaded environments, it achieved a 59% improvement in makespan, a 45%

reduction in energy consumption, an 88% decrease in execution overhead, and a 70%

reduction in the number of active racks. Similarly, in lightly loaded environments, it

showed a 64% improvement in makespan, a 71% reduction in energy consumption, a

 51

43% decrease in execution overhead, and a 70% reduction in the number of active

racks [86].

Wen et al. developed an energy-efficient scheduling algorithm for data-driven

industrial workflow applications in private SDWAN-connected data centres. The

algorithm aimed to minimize the cloud provider's revenue and non-renewable energy

usage while considering real-world electricity prices and green energy availability. By

optimizing application execution and data transfers, the algorithm effectively

prioritized the utilization of green energy. The experimental results demonstrated that

the algorithm achieved similar expenditure to the base algorithm for large workflows

and significantly increased green energy utilization by nearly 200% for smaller

workflows with a marginal increase in electricity cost. Overall, the findings

emphasized the algorithm's effectiveness in promoting energy efficiency and revenue

management in data-driven industrial workflow scheduling [87].

Mohanraj and Santhosh presented a Multi-Swarm Optimization model designed to

elevate Quality of Service (QoS) within a multi-cloud setting. Their method focused

on multi-cloud scheduling and outperformed well-known methods like single-

objective Particle Swarm optimisation scheduling and adaptive energy-efficient

scheduling. Experimental results solidified the effectiveness of the proposed method,

substantiating its ability to outperform existing approaches and thereby enhance QoS

levels. This research contributes to the advancement of efficient multi-cloud

scheduling strategies, emphasizing the improved quality of service achieved through

their Multi-Swarm Optimization model [88].

Velliangiri et al. developed the Hybrid Electro Search with a Genetic Algorithm

(HESGA) to improve task scheduling in multi-cloud environments. The algorithm

combined genetic and electro-search strengths, enhancing critical parameters like

makespan, load balancing, resource utilization, and cost efficiency. HESGA

consistently outperformed existing scheduling methods, demonstrating the potential

of combining optimization techniques [89].

 52

Pirozmand et al. proposed the GAECS based on the Genetic Algorithm for task

scheduling, considering energy and time constraints. The job prioritisation and task

assignment phases make up the GAECS algorithm. The Energy-Conscious

Scheduling Heuristic model is used for job assignment, prioritisation, and generation

of main chromosomes. The algorithm selects optimal chromosomes based on time and

energy criteria and assigns them to available resources. Eight additional algorithms

were compared to the GAECS algorithm's performance. The findings showed that, in

terms of makespan and energy usage, the GAECS algorithm beat the comparator

algorithms [90].

Ahmad and Alam introduced a List Scheduling with Task Duplication (LSTD)

algorithm to optimize the makespan of workflow applications while avoiding a rise in

overall time complexity. Comprising three key phases—task rank calculation,

selective task duplication for efficiency improvement, and processor assignment

through an insertion-based policy—the LSTD algorithm aimed to enhance scheduling

outcomes. The research contrasted LSTD against existing algorithms, including

HEFT, CPOP, and PEFT, to validate its effectiveness. The paper proved LSTD's

superiority over alternative scheduling algorithms through an experimental analysis

incorporating Big Data processes like CyberShake, Montage, and LIGO. When

comparing different criteria, such as schedule length ratio, percentage of best results,

and average running time, LSTD consistently beat its competitors. This research

highlighted LSTD's potential to significantly improve workflow scheduling outcomes

while maintaining a manageable time complexity, thus contributing to more efficient

task allocation and overall enhanced scheduling efficiency [91].

In a research, Renugadevi and Geetha developed a multi-cloud system made up of

data centres spread out geographically. Each data center's solar power generation

differed according to variables including location, electricity cost, carbon emissions,

and carbon tax. The workload allocation algorithm's energy management was heavily

influenced by the particular features of the apps that were being evaluated. They

proposed an adaptive workload allocation algorithm that took into account the nature

of the tasks and was aware of renewable energy availability. Additionally, a migration

 53

policy was included to assess its impact on carbon emission, total energy cost, as well

as brown and renewable power consumption [24].

Walia et al. proposed an HS Algorithm HS that ingeniously fuses the Genetic

Algorithm (GA) and FPA Algorithm to tackle challenges within cloud environments.

The study focused on evaluating the algorithm's performance through a

comprehensive set of metrics, including completion time, resource utilization, cost of

computation, and energy consumption. To gauge its effectiveness, the HS algorithm

was rigorously compared against established scheduling approaches, namely GA and

FPA. The results of extensive simulations unequivocally showcased the remarkable

superiority of the HS algorithm across these crucial metrics, underscoring its potential

to transform cloud scheduling dynamics. Particularly noteworthy was its significant

enhancement in resource utilization, along with its impressive reductions in

completion time and energy consumption. These findings were consistent in both

homogeneous and heterogeneous environments, affirming the versatility and

effectiveness of the HS algorithm in optimizing cloud scheduling practices [92].

Pradhan and Satapathy undertook a study to address energy consumption challenges

in cloud data centres. They proposed an innovative solution called the EACTS

algorithm. This algorithm incorporated conventional heuristics like min-min, max-

min, and suffrage while integrating an energy model. It was specifically designed for

deployment in a heterogeneous cloud environment. To assess the algorithm's

effectiveness, the researchers conducted experiments using a benchmark dataset. The

outcomes from the EACTS algorithm demonstrated a well-balanced trade-off between

energy efficiency and makespan, showcasing its ability to optimize both aspects. The

algorithm achieved this by estimating energy consumption while taking into account

makespan and cloud utilization [93].

In the study conducted by Pradhan and Satapathy, a scheduling approach grounded in

the PSO algorithm was employed to generate a collection of schedules or solutions.

These solutions were subjected to evaluation based on QoS parameters, including

criteria such as makespan, cloud utilization, and energy consumption. The objective

was to identify the most optimal solution that met the desired QoS standards for task

 54

allocation within a heterogeneous multi-cloud environment. The algorithm's

efficiency was verified through simulations and testing, employing benchmark

datasets. The findings showed that the proposed method outperformed current cloud

scheduling techniques such as genetic algorithms, min-min, max-min, CMMS,

CMAXMS scheduling algorithms, and others [94].

Jena and Mohanty introduced a genetic algorithm-centered strategy to address task

mapping and priority scheduling within a multi-cloud context. This algorithm was

structured around two pivotal phases: mapping and scheduling. The researchers

subjected the algorithm to comprehensive simulations, employing synthetic data to

assess its efficiency within a diverse multi-cloud environment. A comparative

analysis was conducted against conventional FIFO mapping and scheduling methods.

The outcomes derived from the simulations illuminated the superior performance of

the proposed mapping and scheduling algorithm. Notably, it exhibited enhanced

system performance concerning metrics such as makespan time and throughput in

comparison to the existing FIFO approach. Through these findings, the study

effectively affirmed the prowess of the suggested algorithm for optimizing task

mapping and scheduling dynamics within a multi-cloud framework [95].

The goal of the task-scheduling algorithm Mangalampalli et al. suggested was to

reduce data centre power and energy costs. The method effectively mapped tasks onto

appropriate virtual machines (VMs) by modelling the task and VM priorities using the

Whale Optimisation algorithm. A multi-objective fitness function that took power

cost and energy use into account was assessed. The CloudSim Simulator was used to

run simulations and compare the suggested algorithm's performance to that of the

PSO and CS algorithms that are already in use. The simulation results demonstrated

that the proposed algorithm outperformed the existing algorithms in terms of

minimizing energy consumption and power cost [96].

Sangeetha et al. introduced a resource allocation framework designed to achieve

optimal resource utilization within a multi-cloud setting. The architecture harnessed

GWO in combination with a deep neural network to enhance both service

provisioning and scalability. The deep neural network managed routing decisions

 55

based on factors like input data rate and available storage, with the goal of minimizing

processing and storage delays. This framework was structured around two primary

modules: one for data processing and routing operations, and another control plane

leveraging the deep neural network for effective resource allocation. Through

simulations on the Java (NetBeans) platform and evaluation using the CloudSim

toolkit, the study examined the framework's performance. Notably, it exhibited

improvements in data delivery, resource allocation, and storage efficiency within the

multi-cloud environment. The experimental results encompassed various performance

metrics, including time delays and the cost associated with resource allocation in the

context of multi-cloud setups. In summary, the research by Sangeetha et al. offered a

comprehensive framework that combined GWO and deep neural networks to optimize

resource allocation, resulting in improved efficiency across data delivery, resource

management, and storage within the multi-cloud ecosystem [29].

Miglani et al. proposed an innovative approach for task scheduling in cloud

environments, addressing reliability and resource allocation challenges. Their

scheduler, based on a modified FPA, aimed to improve task scheduling efficiency.

Through experiments with various scientific workflows, the study showcased the

superiority of their approach over genetic and GWO in terms of reliability and

resource utilization. This research highlighted the importance of combining reliability

strategies and optimization algorithms for effective cloud workflow scheduling [97].

Chen et al. put forth an innovative approach for conserving energy in job scheduling,

with specific consideration for task dependencies within cloud computing. This

method meticulously accounted for the diverse characteristics of data centres,

embracing their heterogeneous nature. The model also entailed the formulation of

energy consumption patterns, grounded in factors such as virtual machine CPU

frequency and kernel count. The study further introduced inventive strategies for

monitoring energy consumption within cloud computing data centres. The core

objective of this method revolved around the segmentation of each job into multiple

tasks and their subsequent allocation to virtual machines. Through simulations, the

research contrasted the total execution time under varying conditions, specifically

 56

comparing scenarios with and without job segmentation. The outcomes were

evaluated using virtual machines tasked with handling either 1000 or 2000 jobs. The

findings demonstrated that job segmentation, or "job cutting," consistently yielded

improvements in both total execution time and total energy consumption, irrespective

of task dependencies. Remarkably, this approach not only effectively reduced energy

consumption but also managed to curtail the job discard rate, showcasing its potency

in achieving energy efficiency and task optimization within cloud computing

environments. [98].

Marri and Rajalakshmi introduced a comprehensive approach aimed at augmenting

the efficiency of task scheduling in cloud computing through a multi-objective

framework. Their model ingeniously combined the GA with an energy-aware

component to optimize both energy consumption and makespan values. This

innovative hybrid algorithm, referred to as the multi-objective energy-aware genetic

algorithm, incorporated considerations for CPU energy consumption within virtual

machines and leveraged an energy model based on voltage and frequency distribution.

Task interdependencies were captured through a directed acyclic graph representation.

Through simulations, the research outcomes underscored the remarkable superiority

of the proposed multi-objective model when contrasted with alternative algorithms.

This model achieved a notable 5% reduction in makespan compared to the MODPSO

algorithm, as well as a 0.7% reduction compared to the HEFT algorithm. Notably, the

proposed approach yielded an energy consumption of 125 joules for 50 active virtual

machines. These results collectively validate the efficacy of the model in enhancing

both task scheduling efficiency and energy conservation within cloud computing

environments. [99].

Kruekaew and Kimpan presented an innovative solution to the problem of load

balancing in cloud computing setting using a hybrid artificial bee colony algorithm

with reinforcement learning for multi-objective job scheduling optimization. This

novel approach seeks to optimize resource allocation and distribution among cloud

servers. The researchers want to improve system performance and efficiency by

combining these two optimization strategies. The study emphasized the importance of

 57

balancing computing workloads to enhance resource utilization while minimizing

latency. The findings contribute to ongoing attempts to improve cloud computing

technology for better service delivery. This paper emphasizes the need of using

intelligent algorithms to solve complicated optimization problems in cloud

environments, opening up new paths for future research and development [100].

Saif et al. introduced the Multi-Objectives Grey Wolf Optimizer (MGWO) algorithm

as a solution to minimize both delay and energy consumption within fog brokerage

for task distribution. The researchers conducted simulations to conduct a performance

comparison between MGWO and other algorithms, focusing on their effectiveness in

reducing delay and energy consumption. The results demonstrated that MGWO

surpassed the alternative algorithms by achieving notably lower delay and energy

consumption levels. Notably, the algorithm exhibited stability and linear scalability as

workloads increased, underscoring its capacity to manage substantial request loads

from IoT devices. The study provided robust evidence of MGWO's effectiveness in

curtailing delay and energy consumption, positioning it as a superior alternative to

existing algorithms. [101].

Malathi and Priyadarsini proposed a load balancer algorithm for cloud computing

using heuristic techniques. They made two key contributions: a hybrid technique that

improved load balancing applicability and a genetic algorithm modified with Lion

Optimizer's global search criteria. The hybrid methodology exhibited remarkable

effectiveness in aspects like maximum turnaround time and the efficient utilization of

virtual machine resources. The integration of the Lion Optimizer contributed to

optimal parameter choices, and the incorporation of fitness criteria that took into

account task and virtual machine attributes further enriched the selection mechanism.

Empirical outcomes substantiated the proficiency of the hybrid approach combining

the Lion Optimizer with a genetic algorithm, affirming the viability and success of

their proposed strategy [102].

Mahilraj et al. presented a novel application of machine learning, specifically the

LSTM technique, to address the escalating concerns of carbon emissions and energy

usage through efficient power task scheduling. The proposed scheduling approach

 58

took into account various factors including task completion time, exclusive resource

utilization, and standardization processes. To enhance the efficacy of LSTM, the

researchers incorporated the Novel Black Window (NBW) approach to reduce the

model's weight. The effectiveness of the LSTM-NBW model was evaluated using

simulated analysis across a range of parameters, including makespan, power

consumption, job completion time, and resource utilisation. According to the study's

findings, compared to the original LSTM model, the recommended model only

required an extra 400KWh for an 80kB user workload [103].

Jaiprakash et al. proposed an innovative method aimed at enhancing the energy

efficiency of workflow scheduling within cloud computing. This was achieved

through the utilization of the MaxUtil model in conjunction with the FPA. The

primary goals of this approach encompassed the reduction of both energy

consumption and workflow processing duration. The core methodology revolved

around the allocation of tasks to VMs and the subsequent scheduling of these tasks,

all of which were guided by optimal criteria. The study was the first to focus on

optimizing energy consumption and makespan using FPA. The proposed algorithm

demonstrated advantages in convergence speed and feasible solutions. Extensive

studies on scientific workflows from different fields showed that it outperformed

traditional scheduling algorithms based on PSO, GSA, and GA. Based on the

ANOVA analysis, the study concluded that the suggested algorithm exhibited

superior performance compared to the existing methods Simulation results

consistently supported the superiority of the proposed algorithm, and statistical

analysis confirmed its effectiveness compared to existing methods [104].

Boopalan and Goswami proposed a cluster selection approach and a virtual machine

(FFD) algorithm, called dynamic PUE genetic algorithm (CRA-DP-GA), to deploy

virtual machines (VMs) in data centres with reduced energy consumption while

maintaining performance. Their approach included a host selection algorithm for load

balancing and dynamic adjustment of cooling load. By supporting VM clustering

based on workload and bandwidth requirements, their solution improved efficiency

and availability. The proposed approach achieved reduced task execution and

 59

assignment times compared to previous techniques, contributing to enhanced energy

efficiency and performance in data centres [105].

Cai et al. introduced an encompassing multi-cloud distributed scheduling model

encompassing six distinct objective functions, tailored to cater to both user and cloud

provider interests. Their approach entailed the proposition of an intelligent algorithm

rooted in the sine function, adeptly equipped to address intricate scheduling

quandaries. The algorithm's efficacy was scrutinized through evaluation against the

DTLZ test suite, in conjunction with several comparison algorithms concurrently

employed within the scheduling model. Through an assessment across six objectives,

the algorithm and model underwent meticulous analysis concerning the distribution of

individuals within the resultant population. The empirical findings underscored

exceptional scheduling efficiency, translating into heightened security measures. This

research presented an innovative perspective on tackling the intricate data processing

intricacies intrinsic to the realm of IoT, introducing a fresh approach that promises to

address pertinent challenges [106]. The comparative analysis of existing scheduling

Approaches highlighting their findings and shortcomings are discussed in Table 2.1.

Table 2.1 Comparative Analysis of Existing Scheduling Approaches

Authors Proposed/

Objective

Technologies

used

Evaluated

Parameters

Findings Limitations

and Future

Scope

Publisher

Dhanalaksh

mi and

Basu

(2014) [49]

Energy-aware

task

scheduling

Modified

Max-min

algorithm and

VM

placement

algorithm

Energy

consumption,

makespan

and

minimum

execution

time

Implementa

tion of the

proposed

work

lowered the

energy

consumptio

n by 8%-

10% and

makespan

In some

problem sets

makespan is

high that will

form the

basis of

future

research.

Internationa

l Journal of

Engineering

Research

and

Technology

 60

by 1%- 2%.

Brar and

Rao (2015)

[50]

Optimized

Workflow

scheduling

 Max-Min

algorithm

Workflows

(Cyber

shake,

Montage,

Sipht),

minimum

execution

time

The Max-

Min

achieved

better

results with

Cyber

Shake in

comparison

to Data

ware

improved

resource

utilization

and

minimised

execution

time.

Analysis for

cost and

energy was

missing that

will be a part

of future

research

Internationa

l Journal of

Computer

Application

s

Panda &

Jana (2015)

[51]

Efficient task

scheduling

 MCC,

MEMAX, and

CMMN

algorithm

Increase

average

cloud

utilisation

and minimise

makespan

Results

show that

the

makespan is

minimised

and average

cloud

utilization is

increased

Only

makespan

and cloud

utilization

were

considered,

and will be

evaluated

over more

parameters

in future

research.

The Journal

of

Supercompu

ting

Patel et al. static Meta Minimum Resource EELBM The average Procedia

 61

(2015) [26] task

scheduling

Execution

Time and

Modified

ELBMM

Algorithm

utilization

and

makespan

achieves

makespan

of 84.3s.

response

time for

smaller tasks

was

increased

and thus a

comprehensi

ve research

in required in

future.

Computer

Science

 Ismail &

Fardoun

(2016) [53]

Energy-aware

task

scheduling

(EATS)

Non-linear

programming

model

Energy

consumption,

CPU

Utilization

Experiment

s showed

that there

was a 1.3

energy

consumptio

n ratio

between the

peak

performanc

e and idle

state.

 EATS

missed

utilization in

cloud

computing

environment

and should

be utilized in

future to

evaluate its

performance.

Procedia

Computer

Science

Hemamalin

i and

Srinath

(2016) [54]

Efficient Grid

task

scheduling

 Min-Min,

load-

balanced, and

minimum

execution

time

algorithms

Makespan,

completion

time,

execution

time and load

balancing.

The

balanced

minimum

execution

time

outcasted

the other

traditional

scheduling

Work lacks

in hybrid

algorithm

that should

have been

developed to

combine all

four

algorithms.

Internationa

l Journal of

Communica

tion and

Networking

System

 62

algorithms This will

also be a part

of future

research.

Jasraj et al.

(2016) [56]

Meta-heuristic

optimization

Approach

workflow

scheduling

CEGA Workflows

(Montage,

LIGO, Cyber

Shake, and

Epigenetics).

For

workflows

with hard

and soft

deadlines,

the

suggested

CEGA

algorithm

was

registered at

83.5% and

62%,

respectively

Implementin

g termination

delays in

future is a

good idea

because they

have a

negative

impact on

the

workflow's

overall

execution

costs.

IEEE

Panda and

Jana (2017)

[57]

Heterogeneou

s multi-cloud

task

scheduling

Algorithms

SLA-MCT

and SLA-

Min-Min

Makespan,

typical cloud

usage, gain,

and service

cost

penalties.

The

algorithms

outperforme

d the other

algorithms

in terms of

makespan,

penalty and

gain of

services

Further work

aimed to

create more

efficient

algorithms

suitable for

the

heterogeneou

s multi-cloud

environment

The Journal

of

Supercompu

ting

 63

Madni et

al. (2017)

[59]

Heuristic

methods for

task

scheduling

Genetic

Algorithm

(GA), Ant

Colony

Optimisation

(ACO), and

Particle

Swarm

Optimisation

(PSO).

FCFS (First

Come, First

Served),

MET

(Minimum

Execution

Time), MCT

(Minimum

Completion

Time), and

Mmax.

MET

algorithm

demonstrate

d better

performanc

e for the

optimal job

scheduling

The trade-off

between

execution

speed and

resource use

is more

complex that

will be a part

of future

work.

PLOS ONE

Lin et al.

(2018) [65]

Power

efficiency

model for

energy-

efficient task

scheduling.

ECOTS

algorithm

Energy

efficiency,

energy

consumption

ECOTS

algorithm

resulted in

energy

savings

ranging

from 21.4%

to 21.9%.

A

comprehensi

ve model

will be

implemented

that

considers

various

server

components

to improve

and evaluate

power

efficiency.

Sustainable

computing:

informatics

and systems

 64

Gawali et

al. (2018)

[69]

Heuristic

method for

scheduling

tasks

Divide-and-

Conquer

strategies, the

Modified

Analytic

Hierarchy

Process

(MAHP),

BATS + BAR

optimisation,

and LEPT.

CPU

Efficiency,

Processing

Time, and

Response

Time

The

heuristic

approach

achieved a

significantl

y lower

TAT value

of 2033.72

ms while

exhibiting a

lower RT

value of 3.7

ms.

Future

research will

concentrate

on

developing

more

efficient

scheduling

algorithms.

Journal of

Cloud

Computing

Gupta et al.

(2019) [74]

Workflow

scheduling

using the Jaya

algorithm

 Ant colony

optimisation

(ACO),

genetic

algorithms

(GA), honey

bees, cat

swarms,

particle

swarm

optimisation

(PSO), and

ACO

optimization

(CSO)

Workflows

(Montage,

CyberShake,

Inspiral, and

Sipht)

Jaya

algorithm

showed

superior

performanc

e while

converging

quickly and

producing

similar

results in

less time

Some

objectives

like meeting

deadlines,

optimizing

energy

consumption

, and

achieving

load

balancing

can also be

considered.

Concurrenc

y and

computation

: practice

and

experience

 65

Usman et

al. (2019)

[78]

Energy-

oriented

Flower

Pollination

Algorithm (E-

FPA)

Dynamic

Switching

Probability

(DSP).

Memory

Constraints,

Energy-

oriented

Allocation

The

proposed

work

outperforme

d GAPA,

OEM, and

FFD energy

by 21.8%,

21.5%, and

24.9%

respectively

To improve

the present

work

resources of

the data

centre will

be

consolidated

using a

multi-

objective E-

FPA

strategy.

Journal of

Bionic

Engineering

Natesan

and

Chokkaling

am (2020)

[80]

Hybridised

multi-

objective task

scheduling

algorithm

Genetic

algorithms

(GA) and

whale

optimisation

algorithms

(WOA)

Makespan,

cost and

enactment

amelioration

rate (EAR)

Makespan

for WGOA

= 1434.50s

against 100

VMs and

500 tasks

with some

reduction in

cost and

EAR.

Further work

needs to be

evaluated for

energy

consumption

, security,

and

reliability.

Wireless

Personal

Communica

tions

Aziza and

Krichen

(2020) [84]

Scientific

workflow

scheduling

 Genetic

algorithm and

the

heterogeneous

earliest finish

time (HEFT).

Optimizing

task

execution

time,

reducing

computationa

l costs

The

outcomes

show how

effective the

suggested

method is,

making it

potentially

Work needs

to be

evaluated on

the issue of

power

consumption

in data

centres while

Neural

Computing

and

Application

s

 66

appropriate

for Cyber

Shake,

LIGO,

Epigenomic

s, Montage,

and SIPHT.

planning

workflows in

cloud

environment

s and will be

a part of

future scope.

Bezdan et

al. (2021)

[85]

Efficient task

scheduling

Enhanced

Flower

pollination

algorithm

Execution

time,

resource

utilization,

and overall

system

performance

The

algorithm

demonstrate

d superior

results in

terms of

resource

managemen

t and

efficient

task

scheduling

in cloud

environmen

ts

Other

parameters

will be

included in

future work

as present

work mainly

focused on

makespan

Proceedings

of ICTIS,

Springer

Singapore

Ahmad and

Alam

(2021) [91]

List

Scheduling

with Task

Duplication

(LSTD)

algorithm

HEFT, CPOP,

and PEFT

algorithm.

workflows

(CyberShake,

Montage,

and LIGO)

The

investigatio

n of the

Cyber

Shake,

Montage,

and LIGO

Big Data

workflows

Following

parameters

need to be

considered:

acquisition

delays, VM’s

heterogeneit

y,

performance

Concurrenc

y and

Computatio

n: Practice

and

Experience

 67

showed that

LSTD

performed

better than

alternative

scheduling

strategies.

variation,

and deadline

for

improvement

in future

work.

Miglani et

al. (2022)

[97]

Multi-

objective

reliability-

based

workflow

scheduler.

Modified

Flower

Pollination

Algorithm

Workflows

(Genome,

LIGO,

Montage and

Cyber

shake).

Compared

to other

algorithms,

the

improved

Flower

Pollination

Algorithm

increases

the

dependabilit

y of task

scheduling.

and

resource

utilization.

Reliability

parameters

must be

included.

Future study

will involve

not only

considering

the reliability

value but

also

minimizing

the

associated

cost.

Concurrenc

y and

Computatio

n: Practice

and

Experience

Kruekaew

and

Kimpan

(2022)

[100]

Multi-

Objective

Task

Scheduling

Optimization

for Load

Balancing in

Cloud

Artificial Bee

Colony

Algorithm,

Reinforcemen

t Learning

Task

scheduling

optimization,

Load

balancing

Improved

resource

allocation

and

distribution,

increased

system

performanc

Limited

evaluation

scope,

possible

scalability

issues,

Future

research into

IEEE

Access

 68

Computing

Environment

Using Hybrid

Artificial Bee

Colony

Algorithm

with

Reinforcemen

t Learning

 e and

efficiency

real-world

deployment

scenarios

Jaiprakash

et al.

(2023)

[104]

Energy-

efficient

workflow

scheduling

and MaxUtil

model

Flower

Pollination

Algorithm

(FPA)

Energy

consumption

and

makespan

The

analysis

confirmed

its

effectivenes

s in terms of

makespan

and energy

consumptio

n.

Future

research will

work to

develop a

strategy for

container

migration

that aims to

reduce

energy

consumption

while

maintaining

service

quality at an

optimal

level.

Authorea

 69

Boopalan

and

Goswami

(2023)

[105]

Energy-

efficient

Virtual

Machine

Allocation

Dynamic PUE

genetic

algorithm

(CRA-DP-

GA)

Energy

consumption,

efficiency

and

availability

Task

assignment

time and

execution

time were

reduced

while

consuming

60% of

power.

Service

processing

latency

needs to be

further

modified in

future

research.

Mathematic

al

Statistician

and

Engineering

Application

s

2.2 Review Summary

The literature surveys have explored various task scheduling algorithms to tackle

energy efficiency and workflow optimization challenges. Energy-aware task

scheduling approaches, such as the Modified Max-min and VM placement algorithms,

focus on reducing energy consumption while minimizing makespan and execution

time. The Max-Min algorithm is commonly used for optimized workflow scheduling,

aiming to minimize execution time for workflows like CyberShake, Montage, and

Sight. Efficient task scheduling algorithms like MCC, MEMAX, and CMMN aim to

increase average cloud utilization and minimize makespan, improving overall system

performance. Static meta task scheduling techniques, including Minimum Execution

Time and Modified ELBMM algorithms, optimize resource utilization and minimize

makespan. Energy-aware task scheduling (EATS) approaches, such as non-linear

programming models, consider minimizing energy consumption and maximizing

CPU utilization. Effective task scheduling algorithms aim to reduce makespan,

completion time, execution time, carbon emission, and power usage and achieve load

balancing. Overall, it has been observed that the existing studies have evaluated their

studies for a number of parameters as illustrated using Table 2.2. Most of the studies

have utilized a combination of 2 to 3 parameters to demonstrate the effectiveness of

their work. However, none of the studies have addressed energy, cost and carbon

 70

emission together in a single study. This fact has inspired the researcher to present an

efficient scheduling framework that would evaluate these three parameters together.

Table 2.2 Comparative Analysis of Evaluation Parameters
A

u
th

o
rs

 a
n
d
 C

it
at

io
n

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n

P
o
w

er
 U

sa
g
e

R
es

o
u
rc

e
U

ti
li

za
ti

o
n
/

S
ch

ed
u
li

n
g

L
o
ad

 B
al

an
ci

n
g

M
ak

es
p
an

C
ar

b
o
n
 E

m
is

si
o
n

M
em

o
ry

 a
n
d
 S

to
ra

g
e

S
er

v
ic

e
Q

u
al

it
y

C
P

U
 U

ti
li

za
ti

o
n

E
x
ec

u
ti

o
n
/

C
o
m

p
le

ti
o
n
 T

im
e

C
o
st

R
es

p
o
n
se

 T
im

e

Patel et al., 2015 [26] - -  -  - - - - - - -

Sangeetha et al., 2022

[29]
- -  - - - - - -   -

Dhanalakshmi & Basu,

2014 [49]
 - - - - - - - - - - 

Singh Brar & Rao,

2015

[50]
- -  - - - - - - - - 

Panda & Jana, 2015

[51]
- -  -  - - - - - - -

Hosseinimotlagh et al.,

2015 [52]
 - - - - - - - -  - -

Ismail & Fardoun, 2016

[53]
-   - - - - - - - - -

Hemamalini & Srinath,

2016 [54]
- - -   - - - -  - -

Maheshwari et al., 2016

[55]
- -  - - - - - -  - -

Jasraj et al., 2016 [56] - -  - - - - - - -  -

Panda & Jana, 2017

[57]
- -  -  - - - - -  -

Madni et al., 2017 [59] - -  - - - - - -  - -

Praveen et al., 2018

[61]
- -  -  - -  -  - -

Duan et al., 2018 [62] - - - -  - - - -  - -

 71

Panda & Jana, 2018

[63]
- -  -  - - - - - - -

Lin et al., 2018 [65]
 -  - - - - - - - - -

Jena & Mohanty, 2018

[66]
- -  -  - - - - - - -

Mishra et al., 2018

[67]
 - - - - - - - - - - -

Gawali & Shinde, 2018

[69]
- - - -  - - -   - 

Gupta et al., 2019 [74] - - - -  - - - - -  -

Usman et al., 2019 [78]
 - - - - -  - - - - -

Natesan &

Chokkalingam, 2020

[80]
- - - -  - - - - -  -

Xu & Buyya, 2020

[81]
 - -  -  - - - - - 

Aziza & Krichen, 2020

[84]
- - - - - - - - -   -

Bezdan et al., 2021

[85]
- -  - - - - - -  - -

Velliangiri et al., 2021

[89]
- -    - - - - -  -

Ahmad & Alam, 2021

[91]
- -  - - - - - - - - -

Walia et al., 2021 [92]
 -  - - - - - -   -

Mangalampalli et al.,

2022 [96]
  - - - - - - - - - -

Mahilraj et al., 2023

[103]
   -   - - -  - -

Jaiprakash et al., 2023

[104]
 - - -  - - - - - - -

Boopalan & Goswami,

2023 [105]
  - - - - - - - - - -

Different goals have been considered in the research through the use of heterogeneous

multi-cloud task scheduling algorithms such as SLA-MCT and SLA-Min-Min. These

consist of gains, penalty costs, makespan, and average cloud utilisation. Heuristic

algorithms like GA, PSO, and ACO, along with scheduling algorithms like FCFS,

MET, MCT, and Max-min, are commonly used for task scheduling. Power efficiency

models like ECOTS aim to improve energy efficiency and reduce consumption.

Workflow scheduling algorithms such as Jaya, WOA, GA, and others optimize

makespan, cost, and EAR for workflows like Montage, CyberShake, Inspiral, and

 72

Sight. Scientific workflow scheduling techniques like GA and HEFT optimize task

execution time and computational costs. Enhanced Flower Pollination Algorithm and

LSTD improve execution time, resource utilization, and system performance. Multi-

objective reliability-based workflow schedulers using the Modified Flower Pollination

Algorithm consider reliability and performance for workflows like Genome, LIGO,

Montage, and CyberShake. Energy-efficient workflow scheduling and the MaxUtil

model leverage FPA to reduce energy consumption and makespan. Dynamic PUE

Genetic Algorithm ensures energy-efficient VM allocation.

Overall, these diverse task scheduling algorithms, including the Flower Pollination

Algorithm for CyberShake workflow and other related approaches, provide valuable

solutions for energy efficiency, makespan reduction, minimum execution time

optimization, resource utilization, and workflow optimization in various computing

environments.

2.3 Research Gaps

There are a number of interlinked research gaps observed during the literature survey.

1. Innovative Collaborative Approaches:

Limited research on the integration of natural computing algorithms like

Flower Pollination with reinforcement learning techniques e.g. Q-learning in

multi-cloud environments.

A gap in evaluating the synergy between different algorithms and learning

techniques to optimize multi-cloud operations.

2. Multi-Objective Optimization:

Lack of comprehensive strategies that concurrently optimize various

objectives like cost, energy, and CO2 emissions in heterogeneous multi-cloud

environments.

Need for a robust framework that can balance and optimize multiple

conflicting objectives in real-world applications.

3. Adaptability and Scalability:

Limited studies focus on the adaptability and scalability of the integrated

approaches in diverse and dynamic multi-cloud environments.

 73

Exploration is required in how such collaborative approaches can adapt to

evolving workloads, technologies, and cloud infrastructures.

4. Energy and Environmental Sustainability:

Insufficient research on how integrated approaches can contribute to long-term

energy efficiency and environmental sustainability in multi-cloud computing.

Exploration is needed to uncover innovative solutions that can minimize

ecological impacts while maximizing operational efficiency.

Addressing these research gaps can lead to the development of more refined, scalable,

and adaptable solutions leveraging integrated approaches like Flower Pollination with

Q-learning, to optimize the operations in heterogeneous multi-cloud environments,

ensuring ecological sustainability, and operational efficiency.

2.4 Research Objectives

The objectives of the study are as follows.

1. To enhance the efficiency of heterogeneous task scheduling in cloud

computing using minimum execution time in Cyber Shake Seismogram

workflow.

2. To propose an optimized resource management model using the Enhanced

Flower Pollination algorithm in a heterogeneous environment.

3. To implement the proposed optimized model for multi-cloud computing in a

heterogeneous environment.

4. To validate the proposed model.

2.5 Summary of the Chapter

The chapter presents a detailed literature survey for the scheduling-based research

work involving several parameters. The review mainly comprises the studies that have

taken advantage of the minimum execution time algorithm, cyber shake and flower

pollination algorithm in addition to related techniques. The observed research gaps are

discussed in the later part of the chapter followed by the research objectives of the

study.

 74

CHAPTER 3: ENHANCEMENT IN MET FOR CYBER

SHAKE SEISMOGRAM

The chapter is designed to address the first objective of the study and presents the

integration of the MET algorithm in the Cyber shake seismogram workflow. Initially,

the Cyber shake seismogram and MET algorithm are discussed followed by the

proposed work algorithm aimed at the enhancement of MET.

3.1 Cyber Shake Seismogram Work Flow

In cloud computing, where massive volumes of data are processed and examined,

effective task scheduling is essential to maximise resource use and enhance system

efficiency. Effective job scheduling is beneficial to many processes, but the Cyber

Shake Seismogram (CSS) workflow is particularly important and demanding. This

sophisticated workflow is employed in seismology to simulate seismic events,

generating valuable insights for earthquake prediction and hazard assessment. The

intricate nature of the CSS workflow necessitates careful attention to scheduling

heterogeneous tasks in order to minimize execution time and achieve optimal results.

The CSS workflow encompasses a series of complex computational tasks that

simulate the behaviour of seismic waves based on a given seismic event scenario.

These simulations involve intricate algorithms and sophisticated modelling techniques

that require significant computational resources and data processing capabilities. The

workflow typically involves multiple tasks with varying degrees of complexity and

interdependencies, making efficient scheduling a challenging endeavour [107].

The significance of effective task scheduling in the CSS workflow cannot be

overstated. By optimizing the allocation of computational resources and minimizing

execution time, researchers and seismologists can expedite the generation of

seismograms, leading to faster and more accurate earthquake predictions and hazard

assessments. This has a direct impact on public safety, allowing authorities to make

 75

timely decisions and implement preventive measures to mitigate the potential impact

of seismic events.

Moreover, effective task scheduling in the CSS process aids in resource optimisation

in cloud computing settings, where computational resources are shared by several

users and applications. By intelligently allocating resources based on task

requirements and priorities, the overall system performance and throughput can be

enhanced, enabling the simultaneous execution of multiple workflows while meeting

quality-of-service objectives [108].

Efficient scheduling in the CSS workflow also holds economic significance. By

reducing the execution time and resource consumption, cloud service providers can

offer cost-effective solutions to their clients. This makes cloud computing more

accessible and affordable for organizations and researchers involved in seismology,

enabling them to leverage the power of high-performance computing resources

without incurring exorbitant costs. To address the challenges and exploit the

opportunities presented by the CSS, researchers and practitioners have developed and

employed various scheduling algorithms and optimization techniques. These

algorithms aim to intelligently allocate computational resources, minimize

communication overhead, and prioritize tasks based on their dependencies and

computational requirements. Additionally, advances in workflow management

systems have facilitated the design and execution of the Cyber Shake Seismogram

workflow, enabling seamless integration of tasks, efficient data transfer, and fault

tolerance mechanisms [109].

3.2 Minimum Execution Time and its Correlation with CSS Workflow

Effective task-scheduling algorithms are critical to optimising resource utilisation and

attaining high-performance results in the cloud computing area. The Minimum

Execution Time (MET) algorithm has become a well-liked method for efficient job

scheduling among the many algorithms. This algorithm focuses on minimizing the

execution time of tasks by intelligently allocating computational resources in cloud

environments [59]. The MET algorithm holds great significance in the context of the

CSS workflow, where precise and efficient task scheduling is crucial for accurate

 76

earthquake prediction and hazard assessment. The CSS workflow is a sophisticated

application employed in seismology to simulate and analyse seismic events. It

involves complex computational tasks that generate seismograms based on given

seismic event scenarios. These simulations utilize intricate algorithms and advanced

modelling techniques, demanding significant computational resources and efficient

task scheduling to achieve accurate and timely results.

The correlation between the MET algorithm and the CSS workflow lies in the shared

goal of optimizing task execution time. The MET algorithm accomplishes this by

assigning tasks to suitable computational resources based on their execution time

requirements. By identifying resources with the shortest expected execution time, the

algorithm aims to expedite the completion of tasks, thereby reducing the overall

workflow execution time [110]. In the context of the CSS workflow, the MET

algorithm can have a profound impact on the efficiency and accuracy of seismic

simulations. By minimizing execution time, the algorithm enables faster generation of

seismograms, leading to more timely and precise earthquake predictions. This, in turn,

facilitates prompt decision-making by authorities and enhances public safety by

enabling proactive measures to mitigate potential risks. Furthermore, the MET

algorithm contributes to resource optimization in cloud computing environments. By

intelligently allocating tasks to resources with shorter execution times, it ensures

efficient utilization of computational resources. This optimization enhances the

overall system performance, enabling simultaneous execution of multiple workflows

and reducing resource wastage. As a result, cloud service providers can deliver cost-

effective solutions to organizations involved in seismology, making high-performance

computing resources more accessible and affordable.

Implementing the MET algorithm in the context of the CSS workflow requires a

comprehensive understanding of task characteristics, resource capabilities, and

execution time estimations. Researchers and practitioners have developed various

strategies to leverage the MET algorithm effectively. These include techniques such

as task profiling, resource monitoring, and dynamic resource provisioning to adapt to

changing workload demands. The relationship between the MET algorithm and the

 77

CSS workflow demonstrates the importance of efficient task scheduling in achieving

accurate and timely results. By employing the MET algorithm, seismologists and

researchers can optimize the execution time of computational tasks, leading to faster

seismic simulations and more reliable seismograms. This contributes to improved

earthquake prediction, and hazard assessment, and ultimately enhances public safety

[87, 111]. Algorithmically, the MET can be represented as follows.

Algorithm MET Scheduling

1.







2.







3.



4.















 78





5.

6.







7.





8.

The proposed work has established a location-aware and resource-aware MET

algorithm in order to enhance the current work scenario of MET in order to get more

efficient results. The work can be represented as shown in Figure 3.1 as follows.

Figure 3.1 The Integrated CSS Workflow with MET Algorithm [88]

 79

3.3 Proposed Work Algorithm for the Enhancement

The MET scheduling algorithm has been a crucial approach in optimizing task

scheduling in cloud computing environments. It focuses on minimizing task execution

time by intelligently allocating computational resources. However, advancements in

MET have led to the development of an improved approach that incorporates the

division of the entire region into clusters and utilizes location and resource awareness.

This improved algorithm takes into account the users' geographical proximity,

connecting them through hosts within their respective regions. Additionally, it

introduces a location and resource-aware MET algorithm that incorporates the

concept of the Modified Best Fit Decreasing (MBFD) algorithm. This innovation

enhances the efficiency and effectiveness of task scheduling, leading to optimized

resource utilization and improved performance [112].

The improvement in MET begins with the division of the entire region into clusters.

This division is based on geographical proximity, aiming to group users within the

same geographic area. By creating these clusters, a closer connection between users

and their assigned hosts is established, minimizing network latency and improving

communication efficiency. Users within each cluster can then interact and share

resources more effectively, fostering collaboration and reducing communication

overhead. To further enhance the MET algorithm, a location and resource-aware

approach is introduced. This improvement recognizes that the geographical location

of users and available resources can significantly impact task scheduling efficiency.

By considering location awareness, the algorithm aims to assign tasks to resources

that are in close proximity to the user, reducing network delays and enhancing overall

performance [113]. The resource-aware aspect of the improved MET algorithm takes

into account the availability and capacity of resources within each cluster. It ensures

that tasks are allocated to resources that can handle the workload efficiently,

minimizing resource contention and maximizing resource utilization. This

consideration optimizes the execution time and overall system performance.

 80

Figure 3.2 The Proposed Framework for Improved MET

To implement the proposed location and resource-aware improved MET algorithm,

the concept of the Modified Best Fit Decreasing (MBFD) algorithm is incorporated.

The MBFD algorithm is a well-known optimization technique that selects the best-

suited resource for a task by considering both the resource's availability and its

capability to handle the task's requirements [114–116]. By utilizing the MBFD

algorithm within the improved MET framework, the algorithm can intelligently assign

tasks to the most suitable resources, considering both their proximity to the user and

their capability to execute the task effectively. The proposed work for improved MET

can be illustrated using Figure 3.2.

Algorithm Steps: Location and Resource-Aware Improved MET Algorithm

utilizing MBFD

1.

2.

3.

 81

4.

5.

6.

7.

8.

9.

By incorporating the division of the region into clusters, establishing connections

within each cluster, and introducing location and resource awareness utilizing the

MBFD algorithm, the improved MET algorithm enhances task scheduling efficiency

in cloud computing environments. By optimising resource utilisation, decreasing

network latency, and enhancing overall system performance, this method eventually

leads to better user experiences and more productivity.

1)

 82

i)

2)

3)

a)

b)

c)

i)

ii)

iii)

(1)

(2)

iv)

v)

d)

e)

i)

ii)

iii)

f)

4)

5)

6)

7)

a)

b)

c)

d)

e)

The algorithm takes a list of available resources (R) and a list of tasks to be scheduled

(T) as input. It sorts the tasks based on their resource requirements in descending

order. Then, it iterates through each task, evaluating available resources and finding

the best-fit resource within the same region. The best-fit resource is selected based on

its available capacity (Ac), utilization (U), and matching region (Rg) with the task's

user region (Ur). The task is assigned to the best-fit resource, and resource utilization

 83

and availability are updated accordingly. After all tasks are assigned, the algorithm

calculates the average resource utilization (TRU) and makespan. The output includes

the assigned tasks and utilization for each resource, as well as the average resource

utilization and makespan, providing insights into the task scheduling efficiency in the

cloud computing environment.

3.4 Summary of the Chapter

The chapter provides the background of workflow, and different cloud computing

environments while discussing multi-cloud and real cloud. It also discusses the MET

algorithm and finally incorporates it into the proposed work algorithm. The

architecture description is followed by the algorithm description and the expected

outcomes in the form of assigned tasks and utilization for each resource, as well as the

average resource utilization and makespan, providing insights into the task scheduling

efficiency in the cloud computing environment.

 84

CHAPTER 4: APPLICATION AND IMPROVISATION IN

FLOWER-POLLINATION ALGORITHM FOR

IMPROVED EFFICIENCY IN TASK SCHEDULING

4.1 Background

Effective work scheduling is essential in today's computer settings, including cloud

computing and data centres, for maximising resource usage and enhancing system

performance. Data centres need to use as little electricity as possible in order to be

energy efficient and reduce their carbon impact. However, traditional job scheduling

algorithms often focus on a single objective, such as minimizing job completion time,

which may lead to suboptimal solutions with respect to other crucial factors. Hence,

the chapter is dedicated to providing measures involved in the improvement of the

Flower Pollination Algorithm to achieve significant efficiency in task scheduling.

To address the limitations of single-objective job scheduling, researchers and

practitioners have turned their attention towards multi-objective job scheduling

approaches. Multi-objective job scheduling aims to simultaneously optimize multiple,

often conflicting, objectives to achieve a balance between different performance

metrics. In this context, two important and often opposing objectives are minimizing

power consumption and maximizing the overall execution rate (or throughput) of the

system.

1. Minimizing Power Consumption: Power consumption has emerged as a

significant concern in modern computing environments due to the ever-

increasing energy demands of data centres and cloud infrastructures. High

power consumption not only incurs substantial operational costs but also

contributes to environmental concerns. Data centres need to use as little

electricity as possible in order to be energy efficient and reduce their carbon

impact.

 85

2. Maximizing Overall Execution Rate: On the other hand, maximizing the

overall execution rate is crucial for improving the system's performance and

meeting the Service Level Agreements (SLAs) of various applications. A

higher execution rate ensures that jobs are completed efficiently, reducing the

overall turnaround time and enhancing user satisfaction. However, optimizing

for execution rate alone may lead to excessive power consumption if not

balanced with energy-efficient scheduling strategies.

The integration of power consumption and execution rate optimization in a multi-

objective job scheduling framework is challenging due to their inherent trade-offs [82,

100]. While aggressive execution of jobs can improve throughput, it may lead to

higher power consumption. Conversely, energy-efficient scheduling may compromise

the overall execution rate. To tackle this multi-objective optimization problem,

various techniques, including evolutionary algorithms [117], genetic algorithms [90,

118], and Pareto-based approaches [119], have been employed. These methods

provide a collection of trade-off solutions known as the Pareto front, which illustrates

various trade-offs between execution speed and power usage. The decision-maker can

then choose a solution from the Pareto front based on their specific preferences or

needs [120, 121].

4.2 Scenario of Development and the Optimization Issue

For maximising resource utilisation and enhancing system performance, efficient

work scheduling is essential in the world of computing. Traditional job scheduling

algorithms often focus on single objectives, such as minimizing job completion time

or maximizing throughput [76, 122, 123]. Modern computer systems, however, need

more advanced strategies that may simultaneously optimise various goals, such as

reducing power consumption and increasing execution pace. To tackle this challenge,

optimization algorithms have been gaining prominence in job scheduling to strike a

balance between conflicting objectives [124, 125]. One such innovative algorithm is

the FPA, inspired by the natural process of flower pollination [126, 127]. FPA

leverages the flower's unique pollination behaviour to solve complex optimization

problems, including job scheduling in cloud computing and data centres. By

 86

emulating the process of flower pollination, FPA efficiently explores the solution

space, providing promising results in terms of improving job scheduling efficiency

[78, 128, 129]. In this context, this paper explores the application of FPA as a

powerful tool to enhance job scheduling processes, making it an exciting avenue of

research and development in the realm of optimization algorithms for modern

computing systems.

 The FPA Algorithm 4.2.1

A metaheuristic optimisation method called the Flower Pollination method (FPA) was

developed in order to solve optimisation problems. It was initially introduced by Xin-

She Yang as an optimisation technique that was inspired by nature in 2012 [126]. The

method mimics the natural process of flower pollination, in which flowers interact

and exchange pollen to fertilise and generate new offspring. This technique is used to

solve optimisation issues. The process of flower pollination can be illustrated using

Figure 4.1.

Self-pollination with

the same flower Self-pollination with the

different flower of the

same plant

Cross-Pollination with

the different plant

Pollen

Abioti

c

Biotic

Wind

Insects

Pollinators Types of Pollinators

Figure 4.1 The Flower Pollination Process [125]

The fundamental idea underlying the FPA is to visualise possible solutions as flowers,

and their fitness or quality as the nectar of the flowers, for an optimisation issue. In

 87

the algorithm, each flower (solution) is associated with a nectar amount, which

represents its fitness value. The goal of the algorithm is to find the optimal solution

with the highest nectar (fitness) value [129].

The key steps of the Flower Pollination Algorithm are as follows:

1. Initialization: Create a starting population of probable solutions (flowers) at

random or using a particular initialization technique.

2. Nectar Amount (Fitness Evaluation): Determine each flower's fitness or

objective function value. According to the criteria of the problem, the fitness

function should be problem-specific and direct the algorithm to identify better

solutions.

3. Flower Pollination and Nectar Update: this stage, flowers communicate with

one another by exchanging nectar, or information, which encourages

exploration and utilisation of the search space. A flower with a higher nectar

amount (better fitness) can influence nearby flowers and transfer its nectar to

them. This process simulates the pollination behaviour in light of CO2, cost

and energy consumption, where a flower's attractiveness influences its

interaction with other flowers.

4. Flower Reproduction (Optimization): Based on the updated nectar values,

some flowers are allowed to reproduce by creating new solutions (offspring).

These offspring replace some of the weaker solutions in the population,

thereby influencing the search towards more promising regions of the solution

space in order evaluate system in terms of CO2, cost and energy consumption.

5. Termination: The algorithm keeps repeating the pollination and reproduction

phases until a stopping requirement is satisfied, such as reaching the required

degree of convergence or the maximum number of generations.

The FPA is a population-wide optimisation method that seeks to balance solution

space exploration and exploitation. It makes use of the idea of pollination and floral

reproduction to improve search and uncover potential answers to challenging

optimisation issues. There are two types of thresholds utilized here, upper threshold

and lower threshold.

 88

 Where, upper threshold = average workload + 30%

 And lower threshold = average workload -30%

Local server-based analysis entails processing data on a single server, which may be

faster because of proximity. Multicloud server analysis distributes workloads across

several cloud servers, allowing for scalability while introducing variable latency due

to data transit between different cloud locations, potentially impacting processing

time.

 Significance in Job Scheduling in Cloud Computing 4.2.2

Numerous optimisation issues, such as work scheduling in cloud computing systems,

have been tackled using the Flower Pollination Algorithm. [78, 130]. In cloud job

scheduling, tasks or jobs need to be allocated to appropriate resources (e.g., virtual

machines) efficiently to optimize resource utilization, minimize job completion time,

and adhere to Service Level Agreements (SLAs) [85]. The job allocation process in

the proposed work can be explained by using Figure 4.2.

User User User

User

User

Users

User

IaaS Layer
Job Manager

Analyses jobs

based on R,C

DC DC DC

1

2

3

4

53

CC CCCC

Scaling based on

location (L)

6

PaaS and SaaS

layer

Data
Communication

Data
Communication

Figure 4.2 Job Allocation Process in Proposed Work

 89

The FPA's ability to explore the solution space and adaptively adjust the search

process makes it suitable for job scheduling in cloud environments. By representing

potential schedules as flowers and using their fitness (performance) to guide the

search, FPA can help find near-optimal schedules that maximize resource utilization

and minimize job execution time. Furthermore, the FPA's nature-inspired approach

allows it to handle dynamic and unpredictable changes in cloud workloads effectively.

The FPA's capacity to evolve and discover new areas of the solution space might

result in better scheduling decisions as cloud environments face fluctuations in

resource availability and demand. The following diagram illustrates the FPA

algorithm's design.

a)

i)

ii)

b)

c)

d)

e)

f)

i)

ii)

(1)

(2)

(3)

(4)

(5)

(a)

iii)

g)

 90

h)

2)

3)

a)

b)

c)

4)

5)

a)

b)

c)

6)

7)

a)

b)

c)

i)

ii)

iii)

d)

8)

9)

a)

b)

c)

i)

ii)

d)

10)

 91

The algorithm can be explained in the following steps

1. Initialize the population of solutions (job scheduling configurations) randomly

or using some heuristic method. Each solution represents a different job

allocation to resources in the cloud.

2. Determine each solution's population fitness. Multiple objectives, including

the makespan (task completion time), power consumption, and execution rate,

should be taken into account by the fitness function. This assessment

establishes how effectively each option meets the conflicting objectives

3. Identify the Pareto front of solutions based on their fitness values. The Pareto

front represents the non-dominated solutions, where no solution can be

improved in one objective without degrading another objective. These

solutions provide a trade-off between the different objectives and are

considered potentially optimal solutions.

4. Set the maximum number of iterations and the probability of flower

pollination (parameter "p").

5. For each iteration: a. For each solution (flower) in the population:

 If a random number is less than or equal to "p," proceed with flower

pollination.

 Select a neighbouring solution (another flower) from the population at

random.

b. Perform flower pollination:

 Generate a new solution by combining features of the current solution

and the neighbouring solution using flower pollination operators.

 The flower pollination operators could be crossover, mutation, or other

transformation mechanisms.

c. Evaluate the fitness of the new solution.

d. Compare the fitness of the new solution with the current solution:

 If the new solution is better (closer to the Pareto front) for at least one

objective, replace the current one.

6. Carry out the flower pollination procedure once more for the designated

number of times.

 92

7. The Pareto front of solutions at the algorithm's conclusion illustrates the trade-

off between maximising execution pace while minimising makespan and

power usage. These solutions to the multi-objective task scheduling issue are

regarded as being close to optimum.

In order to improve the algorithmic architecture, the proposed work introduced a Q-

learning algorithm that updates the pollination value in terms of Q-table. As the

pollinating agents are attracted towards a better smell of the flower, the Q-learning

algorithm updates the system using Bellman’s equation. The updated illustration is as

follows.

 Switching Probability 4.2.3

The pollination mechanism in FPA refers to how information (solution attributes) is

exchanged between different flowers. The switching probability 'p' is a parameter that

determines the likelihood of a flower using either the local or global pollination

mechanism. It's a value between 0 and 1, where 0 ≤ p ≤ 1.

 Local Switching

If p is close to 0, it means that the algorithm predominantly employs the local

pollination mechanism. This would result in the algorithm focusing more on the

exploitation of solutions in the local vicinity.

 Global Switching

If p is close to 1, it means that the algorithm predominantly employs the global

pollination mechanism. This would result in the algorithm emphasizing the

exploration of the solution space to find diverse solutions.

 Dynamic Switching

The term "dynamic" indicates that the switching probability 'p' can change during the

optimization process. Depending on where the optimisation is at the moment, the

algorithm can modify 'p' in an adaptable manner. Due to its versatility, the algorithm

may, when necessary, find a balance between exploitation and exploration.

 93

In the FPA the switching probability 'p' controls the trade-off between regional and

international pollination processes. By dynamically adjusting 'p', the algorithm can

vary its behaviour to explore different aspects of the solution space as the

optimization progresses. This dynamic strategy can potentially enhance the

algorithm's convergence speed and solution quality by balancing exploration and

exploitation.

4.3 Proposed Work towards improving FPA using Q-learning

The FPA algorithm refers to different flowers or zones and hence to create multiple

zones, the proposed work considers two different factors.

a) The deployment of multi-datacenter

b) The separation of the resource allocation based on Quality of Service (QoS)

parameters.

 Multi-datacenter deployment, benefit and illustration 4.3.1

The idea of multi-data centre architecture has come to light as a major development in

the quickly changing field of cloud computing, helping to meet the increasing needs

of contemporary services and applications. As organizations increasingly rely on

cloud-based solutions to meet their computing needs, the need for improved

performance, reliability, and scalability becomes paramount [131]. Multi-data centre

architecture refers to the deployment of multiple data centres spread across different

geographic locations, interconnected to form a unified cloud infrastructure. This

approach aims to overcome the limitations of traditional single data centre setups and

offers a wide array of benefits while also presenting some unique challenges [132].

Benefits of Multi-Data Centre Architecture in Cloud Computing:

1. High Availability and Fault Tolerance: Multi-data centre setups enhance the

availability and fault tolerance of cloud services. By distributing resources

across multiple data centres, service providers can ensure that even if one data

centre experiences a failure or disruption, the services can be quickly switched

over to a redundant data centre, reducing downtime and maintaining

continuity.

 94

2. Improved Performance: With data centres strategically located in different

regions, users can access cloud services from data centres closer to their

geographical location. This enhances performance and user experience by

decreasing latency and increasing reaction times.

3. Scalability and Load Balancing: Multi-data centre architectures enable

horizontal scaling, allowing cloud providers to add more servers and resources

as demand grows. Load balancing techniques can intelligently distribute user

requests across data centres, ensuring optimal resource utilization and

preventing overloading of any specific data centre.

4. Data Residency and Compliance: Some regulations require data to be stored

within specific geographical boundaries. Multi-data centre setups allow cloud

providers to comply with data residency requirements by ensuring data is

stored in data centres located in the respective regions.

5. Disaster Recovery and Business Continuity: Multi-data centre architectures

facilitate robust disaster recovery strategies. In the event of a natural disaster

or catastrophic failure in one location, data and services can be seamlessly

shifted to an unaffected data centre, enabling business continuity.

 Issues and Challenges of Multi-Data Centre Architecture:

1. Data Synchronization and Consistency: Maintaining data consistency across

distributed data centres can be challenging. Ensuring that updates made in one

data centre are promptly synchronized with other data centres while preserving

data integrity requires sophisticated synchronization mechanisms.

2. Network Latency and Communication Overhead: Communication between

geographically dispersed data centres may incur network latency and

increased communication overhead. These factors can affect the overall

performance and response times of cloud services.

 95

3. Complexity and Management Overhead: Managing and coordinating

multiple data centres adds complexity to the cloud infrastructure. Tasks like

load balancing, resource allocation, and failover management are the

responsibility of cloud administrators, and they can lead to an increase in

administrative overhead.

4. Cost and Resource Allocation: Setting up and maintaining multiple data

centres involves significant capital and operational costs. Deciding how to

allocate resources across data centres to meet varying demands while

minimizing costs is a critical challenge.

5. Security and Compliance: Security becomes more complex in a multi-data

centre environment. Ensuring consistent security policies and compliance

across all data centres is essential to protect sensitive data and maintain

regulatory requirements.

The proposed work has utilized CloudSim which is supported by the Java platform to

deploy the proposed work. CloudSim is an open-source CC simulation toolkit that

provides a platform for modelling and simulating cloud environments. It allows

researchers and developers to experiment with different cloud architectures, policies,

and scheduling algorithms in a virtualized environment, without the need for physical

infrastructure. CloudSim is built on top of the popular Java-based simulation

framework, SimJava, and offers a range of features that make it an ideal choice for

deploying cloud scheduling algorithms [133]. The toolkit supports the creation and

management of VMs and PMs in a virtualized cloud environment, enabling the

simulation of diverse scenarios reflecting real-world cloud usage patterns.

Researchers can define custom workloads, such as task arrival patterns, VM resource

requirements, and job execution times, and evaluate various scheduling policies to

optimize resource utilization and performance. CloudSim also allows for the

modelling of data centres with multiple hosts and datacenter-level network topologies,

providing flexibility to examine cloud scheduling algorithms under various

configurations and network conditions. The efficiency of scheduling algorithms may

be evaluated by analysing performance indicators like response time, throughput, and

 96

resource utilisation, which are made possible by monitoring and reporting facilities.

The scalability of CloudSim allows for simulations of different cloud sizes, ranging

from small setups to large-scale data centres, allowing researchers to study scheduling

behaviour under different workloads and cloud scales. Furthermore, CloudSim

supports energy-aware cloud scheduling, enabling investigation and optimization of

algorithms considering energy consumption and efficiency [134]. Its modular design

and extensibility allow easy integration with external libraries and the incorporation

of existing or custom-scheduling algorithms based on research requirements. With a

vibrant user community providing support, documentation, tutorials, and research

papers, CloudSim serves as a powerful simulation platform for exploring, evaluating,

and advancing cloud scheduling algorithms and their efficiency in a wide range of

cloud computing scenarios. The data centre modelling in Cloudsim is represented in

Figure 4.3.

Figure 4.3 Datacentre modelling in Cloudsim

The proposed work considers the following varying attribute values for the creation

and processing of a data centre as shown in Table 4.1.

 97

Table 4.1 Attributes and Description

Variable Description

RAM Amount of RAM allocated to a host (randomly generated)

Bw Bandwidth allocated to a host (randomly generated)

Dc Datacenter object representing the cloud data centre

Storage Storage capacity allocated to a host (randomly generated)

peList List of processing elements (PEs) representing the CPU cores

Provisioner PE provisioner specifying the CPU capacity of the cores

core1, core2, ... Processing elements (PEs) representing the CPU cores

host list
List of hosts in the data centre, each representing a physical

machine (PM)

Architecture Architecture type of the PMs in the data centre (e.g., x86)

Os Operating system running on the PMs (e.g., Linux)

Vmm Virtual machine monitor used on the PMs (e.g., XEN)

timeZone Time zone of the data center

ComputecostPerSec
Cost per second of CPU processing on the PMs (randomly

generated)

costPerMem Cost per unit of memory allocated to a VM

costPerStorage Cost per unit of storage allocated to a VM

costPerBw Cost per unit of bandwidth allocated to a VM

Characteristics
Datacenter characteristics object containing information about

the data centre

SanStorage
List of storage elements representing the storage devices in the

data center

vm_properties
2D array representing the properties of virtual machines (VMs)

including CPU demand, allocation cost, etc.

total_vm Total number of VMs

total_properties Total number of properties associated with each VM

pm_i_cost Array representing the idle cost of each physical machine (PM)

total_pms Total number of physical machines (PMs)

pm_CPU
Array representing the CPU capacity of each physical machine

(PM)

 Integration of Q-learning 4.3.2

With the help of the popular reinforcement learning algorithm Q-Learning, an agent

may learn from its surroundings and modify its behaviour to attain a certain objective.

It is especially helpful when the agent must do an exploration to figure out the optimal

course of action since they lack prior knowledge of the surroundings. TUsing a Q-

value function, the method determines the expected cumulative benefit of carrying out

 98

a specified action under a given set of conditions. By iteratively updating the Q-values

in response to the agent's experiences and actions, Q-learning ultimately achieves the

optimal course of action for decision-making [135].

By incorporating Q-learning into the FPA, the algorithm's optimisation skills may be

further improved, increasing its effectiveness and efficiency in locating optimal

solutions. The primary idea behind this integration is to utilize the Q-values to guide

the pollination process in FPA. Instead of using random search and pollination, the

algorithm employs the Q-values to select the best flower to pollinate, which

corresponds to choosing the most promising solution.

The integration process involves the following steps:

1. Initialization: Initialize the Q-values for each flower in the FPA population.

These Q-values represent the expected cumulative rewards for pollinating

each flower (i.e., solution) based on the agent's experiences.

2. Exploration-Exploitation Trade-off: During the pollination process, the

agent must balance exploration and exploitation. Initially, the agent may

prioritize exploration to discover new promising solutions. As the algorithm

progresses, it shifts towards exploitation, focusing on exploiting the best-

known solutions based on the Q-values.

3. Updating Q-values: After pollination, the Q-values are updated using

Bellman's equation, which is a fundamental equation in reinforcement

learning. The update process incorporates the immediate reward obtained from

the newly discovered solution and the expected cumulative reward of the next

state-action pair.

4. Improved Solution Search: By integrating Q-learning into FPA, the

algorithm can better navigate the solution space and identify better solutions

more efficiently. The Q-values serve as a form of memory that guides the

algorithm towards more promising regions, avoiding unnecessary exploration

and enhancing the convergence to the optimal solution.

 99

The following ordinal measure of the development is used in the suggested study.

There are two main categories of energy usage that are recognised in the context of

cloud data centres: CPU-intensive energy use and memory-intensive energy use.

These resources are considered major contributors to carbon dioxide emissions. Two

factors make up a cloud data center's overall power consumption: the fixed power

used by the server and the dynamic power() used by the

Virtual Machines (VMs) while they are in operating mode.

Further broken down into energy spent by the CPU (E_CPU) and memory

in the physical server is the dynamic power consumption . According to

studies in the literature, a physical computer in a cloud data centre uses about 70%

more energy while it is idle than when it is fully utilised. This substantial energy

consumption results in significant carbon dioxide emissions. It is evident that when an

inactive physical machine utilizes its resources fully, there are significant power

savings and a reduction in CO2 emissions, thereby enhancing resource efficiency and

reducing the carbon footprint.

The following formulas are used to calculate the energy used and carbon emissions

during work allocation and processing at each PM.

 ∑

 () (4.1)

M is the total number of instructions in PM 'j', ece is the execution cost at that PM, s

is the amount of storage required for the mth instruction, and ecs is the energy

consumed to store one instruction at that PM. Equation (4.2) may likewise be utilised

to calculate CO2 emissions; here, cee denotes CO2 emitted when the mth instruction

on the jth PM is being executed, and ces denotes CO2 released during storage.

 ∑

 () (4.2)

In Equation 4.1, the total energy consumption (EC) is determined by aggregating the

execution costs (and the energy consumption related to storage () for each

instruction under the specific PM 'j'. The CO2 released during the execution of the

instruction set and the CO2 released during storage are added together in

Equation 4.2 to determine the total CO2 emission (CE). ().

 100

Logically, these equations provide a systematic approach to evaluating the energy

consumption and environmental footprint of computational tasks performed on

specific processing modules, which contributes to a better understanding of

computing's overall impact on energy resources and the environment. Equation 4.1

quantifies energy usage by taking into account both execution and storage costs while

equation 4.2 expands the analysis to incorporate environmental impacts, notably CO2

emissions. It includes both the CO2 emitted during execution and the CO2 released

during storage activities. Using these equations, one may analyze the energy

requirements and environmental effects of executing a set of instructions on a certain

PM, which can help with resource allocation, optimization, and sustainability

decision-making.

Start

Collect

Environment

Variable, PC,

CO2, d, M

Apply Updated k-means

for State Generation for

Environment {Good,

Moderate, Avoid}

Action: Allocate(0)

Can allocate if no Other

Option (1)

Migrate or Don�t allocate (2)

Penalty

Repository
Reward

Repository

Parallel

Simulation

Requires

Migration?

Keep user

at same PM

If

Reward>Penalty

Migrate user

to other PMStop

A
sk

 t
o

R
ep

os
it

or
y

A
sk

 to
 R

ep
os

it
or

y

1 2 Apply Bellman Reward

Mechanism for Weight

Propagation and Action

Generation

3

4' 4

5

6���

8��

6'

YES

6��

YES

NO
8�

7�

7��

NO

 Figure 4.4 Proposed Work Using Q-Learning [135]

 101

To implement the integration of the pollination process with Q-learning the proposed

work uses the following workflow using Q-learning and is represented by Figure 4.4.

The suggested work integrates the fundamentals of the three main components of the

Q-learning algorithm architecture: Environment, States, and Actions [136]. The

environment is created by enhancing the architecture of the existing k-means

algorithm, which clusters data according to Euclidean distance. In this method, the

standard k-means metrics are applied. The overall work architecture is represented in

Figure 4.5.

Figure 4.5 Overall work architecture

 102

The updated k-means algorithm involves two significant changes. Firstly, Cosine

similarity is introduced as an additional measure in distance calculation to effectively

assign records to appropriate clusters. When assessing parameter distance, cosine

similarity—which is the cosine of the angular difference between two vectors with the

same number of characteristics—is commonly employed. The suggested work

compares the cosine similarity between two vectors with the following four attributes:

energy consumption (EC), carbon emission (CO2), user-data centre distance (d), and

the total number of user-supplied instructions (M).

Second, by removing the potential for random centroid selection during the initial

clustering step, the approach maximises the convergence rate. Instead, it creates two

extra centroids with a 20% margin value and takes the mean value of each

characteristic as the first centroid to offer some variance.

These enhancements in the k-means algorithm enable more efficient clustering of

data, facilitating the creation of the environment for the Q-learning algorithm. This

integrated approach improves decision-making and resource allocation within the

cloud environment, making it more adaptive and effective in addressing complex

optimization problems.

4.3.2.1 Q-learning Application in Proposed Work Case Scenario

 States X = {1,2,3}: The set of possible states. (Proposed work has 3 states.)

 Actions A = {1,2,3}: The set of possible actions. (Proposed work has 3

actions.)

 Reward function R(X, A): A function that maps a state-action pair to a real-

valued reward or penalty.

 Gradient-based (weighted sum) transition function T(X, A): A function that

maps a state-action pair to the next state using a weighted sum.

 Learning rate α in [0, 1]: A small constant that controls the step size during

updates of the Q-values. (Typically α = 0.1.)

 Discounting factor γ in [0, 1]: A parameter that determines the importance of

future rewards compared to immediate rewards.

 103

Output:

 Function Q(X, A): The learned Q-function, representing the expected

cumulative reward for each state-action pair.

Procedure: Q-learning

1. Initialize the Q-function Q(X, A) arbitrarily for all state-action pairs.

2. While the Q-function is not converged, repeat the following steps: 3. Start in a

random state in X.

4. While the current state s is not a terminal state (the end of an episode):

5. Calculate the policy π according to the weighted sum of old weight

(ow) and new weight (nw) using the function nw = ax + b, where a and

b are constants, and x = norm(EC, CO2, d, M).

6. Choose action a based on the policy π(s).

7. Receive the immediate reward or penalty r by executing action

a in state s.

8. Observe the new state s' resulting from the action a.

9. Update the Q-value for the state-action pair (s, a) using the Q-

learning update rule: Q(s, a) <- (1 - α) * Q(s, a) + α * (r + γ *

max_{a'} Q(s', a'))

10. Set the current state s to the new state s' and continue with the

next iteration.

5. End of the inner loop (when a terminal state is reached).

3. End of the outer loop (when the Q-function is converged).

4. Return the learned Q-function Q.

Algorithmically, it can be represented as shown in the following Figure 4.6

 104

Figure 4.6 The applied Q-learning algorithm

The simulation of the code has been done over the Cloudsim platform as discussed

earlier in the same chapter and is shown in Figure 4.7.

Figure 4.7 Implementation of Q-learning algorithm in the cloud-sim

environment

 105

In order to modulate the Q-learning further, a propagation-based machine learning

algorithm is also applied. The neural network is a propagation-based algorithmic

architecture that propagates the weights as per the hidden neurons in the list.

 Neural Networks and its Applicability 4.3.3

Neural networks, an efficient machine learning model, are modelled after the

composition and functions of the human brain. It is a sort of artificial intelligence that

acquires new skills by studying data and seeing patterns in order to carry out tasks.

Numerous domains, such as image identification, natural language processing,

robotics, and optimisation issues, have made substantial use of neural networks.

A neural network's basic building blocks are linked neurons arranged in layers. Each

neuron receives an input, analyses it using an activation function, and then generates

an output that helps to form the overall outcome. The capacity of neural networks to

learn complicated and nonlinear correlations in data through a process known as

training gives them their strength.

Applicability of Neural Networks to Scheduling Algorithms:

Scheduling algorithms deal with the optimization of resource allocation and task

sequencing to achieve specific objectives, such as minimizing makespan, reducing

lateness, or maximizing resource utilization. Neural networks offer several advantages

in addressing scheduling problems:

1. Nonlinearity and Complex Patterns: Many scheduling problems involve

complex relationships and dependencies among various variables. Neural

networks can learn and model these intricate patterns, enabling more effective

solutions than traditional linear approaches.

2. Flexibility: Neural networks can be adapted and tailored to different

scheduling scenarios. They can handle a variety of restrictions and objectives

by altering the network design and loss functions, which makes them relevant

to a broad range of scheduling issues.

3. Learning from Data: Neural networks' capacity to learn from data is one of

its main advantages. To find the best scheduling rules and tactics, they might

be educated using expert knowledge, simulations, or historical scheduling

data.

 106

4. Real-time Adaptation: In scheduling environments, where conditions change

frequently, neural networks can continuously learn and adapt to new

information, making them suitable for real-time decision-making.

5. Global Optimization: Traditional scheduling algorithms may rely on

heuristics or local search methods that might not guarantee finding the optimal

solution. Neural networks can be trained using global optimization techniques

to improve the chances of finding near-optimal solutions.

6. Parallel Processing: Neural networks can be implemented on parallel

hardware, such as GPUs or specialized hardware like TPUs, allowing for

faster and more efficient computation of scheduling solutions.

7. Combining with Traditional Methods: Neural networks can be combined

with traditional optimization methods to leverage the strengths of both

approaches. For instance, neural networks can learn to improve initial

solutions generated by heuristics or metaheuristic algorithms.

4.3.3.1 Integration of the Neural Network

Training a neural network for job allocation division is based on good and bad

allocations which is a part of testing or the validation process involving the following

steps:

1. Data Collection and Pre-processing:

 Gather a dataset of job allocations with associated features and labels

indicating whether each allocation is considered "good" or "bad." The

features could include various parameters related to the allocation,

such as resource utilization, processing time, or task dependencies.

 Divide the dataset into training and testing sets, manage missing values

in the data, and scale or normalise the features.

2. K-Means Clustering:

 Divide the data into two sections using the K-means clustering

algorithm: one for "good" allocations and one for "bad" allocations. A

well-liked unsupervised clustering method called K-means divides data

points into K clusters according to their similarity.

 107

 Based on the closest cluster centroid, allocate every data point (task

allocation) to a certain cluster.

3. Mean Squared Error (MSE) Calculation:

 For each cluster, determine the Mean Squared Error (MSE). MSE

calculates the average squared difference between each data point's

actual label and projected label within a cluster.

 The MSE for each cluster reflects how well the K-means algorithm

separates good and bad allocations in that cluster. Lower MSE

indicates better separation.

4. Labelling the Clusters:

 Based on the MSE values of each cluster, assign labels to the clusters.

The cluster with the lower MSE is considered to represent "good"

allocations, while the one with the higher MSE represents "bad"

allocations.

 By assigning labels to the clusters, we create two distinct groups: one

group consisting of good job allocations and the other group with bad

job allocations.

5. Neural Network Training:

 Design and configure a neural network architecture suitable for the job

allocation division problem. The network should have an input layer

corresponding to the features of the job allocations and an output layer

with a binary output representing good or bad allocation.

 Split the pre-processed dataset into input features and corresponding

labels based on the cluster assignments from the K-means algorithm.

 Use the labelled data to train the neural network. Using methods like

gradient descent and backpropagation, the network attempts to

minimise the classification error between the predicted labels and the

ground truth labels (good or poor).

 Use the training set to adjust the weights and biases of the neural

network iteratively to improve its performance.

6. Model Evaluation:

 108

 Use the testing dataset, which the neural network has never seen

before, to assess its performance after training. To evaluate how well

the neural network can discriminate between good and bad job

allocations, compute measures like accuracy, precision, recall, and F1-

score.

 Adjust the neural network architecture or hyperparameters if necessary

to optimize its performance.

7. Job Allocation Division:

 Once the neural network is trained and evaluated, use it to predict the

label (good or bad) for new, unseen job allocations. The neural

network will assign each job allocation to one of the two groups, based

on the learned patterns and relationships in the data.

 Job allocations labelled as "good" can be prioritized or scheduled

accordingly, while those labelled as "bad" may require further analysis

or improvements.

Integrating Q-learning with K-means clustering in the job allocation division process

offers a powerful and sophisticated approach to optimizing resource allocation in

scheduling scenarios. K-means efficiently segment job allocations into two groups:

good and bad, based on their characteristics and performance metrics. This clear

separation simplifies the problem, as Q-learning can now concentrate on optimizing

resource allocation within well-defined groups. By focusing on the good allocations,

which have been pre-identified using K-means, Q-learning can significantly reduce

the search space and computational burden, leading to faster and more efficient

decision-making.

The system's predictability is improved when K-means clustering and Q-learning are

combined. With hosts or working machines ranked based on historical data and job

performance, Q-learning can make more informed allocation decisions. This

prioritization of hosts based on their past performance allows for better resource

utilization and minimizes the chances of making suboptimal choices. Moreover, Q-

learning's ability to learn and adapt from past experiences ensures that the system

 109

remains adaptable to changes in the environment or job characteristics, making it

suitable for real-time and dynamic scheduling scenarios.

The system hardware requirements and configuration used to channelize the

simulation process are discussed in Table 4.2.

Table 4.2 System Configuration

Parameters Description

RAM 4GB

Memory DDR3

HD Capacity 500GB

Number of Clouds 10

Number of Hosts 200

Available Bandwidth 100-7500 Hz

Available Cores 4

Capacity per core 3 octa engine

Engine Type Multi

Engine Propagation Quad Core

Process Utilization Minimum 1 Hz

Single core score 14323

Multi-Core score 14883

Number of Clouds 10

The integration also enhances the overall system performance which is later verified

using testing or validation. By focusing on good allocations, the system can improve

task completion times, reduce bottlenecks, and increase overall efficiency. Increased

productivity and cost reductions follow from better resource usage and increased

throughput. Additionally, the system's scalability and generalizability are enhanced by

the combination of Q-learning and K-means clustering, which allows it to handle

enormous datasets and successfully apply learned techniques to new, unknown data.

Overall, the integration of Q-learning with K-means clustering in job allocation

division reduces complexity, enhances predictability, and improves overall system

 110

performance. By leveraging the strengths of both approaches, this integration offers

an efficient and effective solution for resource allocation, making it a valuable tool in

various scheduling and resource management applications.

The following algorithm explains the working of the Neural Networks over the cloud

sim simulator.

Algorithm: Neural Network Training for Job Allocation Division









 [
]



1.

2.

4.

5.

 111

7.

8.

9.

10.

11.







The chapter explores the integration of Q-learning and flower pollination in the

context of improving the performance of a scheduling network. By combining these

 112

two powerful techniques, the authors aim to enhance resource allocation and task

sequencing in dynamic scheduling environments. Q-learning, a reinforcement

learning algorithm, is utilized to optimize the allocation decisions based on rewards

and penalties obtained from previous scheduling experiences. Flower pollination,

inspired by the natural behaviour of plants, is employed as a metaheuristic

optimization method to refine the solutions further. This combination allows for

efficient exploration of the search space, leading to improved scheduling outcomes.

This is corroborated by Table 4.3, which also offers a more comprehensive

comparison of the performance of the suggested work (Q-learning with FPA)

compared to other machine-learning algorithms. The accuracy evaluation shows that

the proposed work provides a better chance of deducing a highly accurate and precise

scheduling architecture in comparison to Q-learning or neural networks alone. The

table illustrates that the integration of FPA slightly improved the average accuracy of

resource allocation achieved using Q-learning architecture and outperformed the

neural network-based leaning mechanism.

Table 4.3 Performance Analysis of Machine Learning Techniques

Number of Users
Q-learning with

FPA (%)
Q-learning (%)

Neural Network

(%)

50 92.31672379 90.73746 89.86480588

70 92.58298108 90.82462711 90.38029174

90 92.89497441 91.28205382 90.79675993

110 93.44631703 91.30882566 91.15083846

130 93.60683795 91.61332463 91.17887921

150 94.10810611 91.7657921 91.39688037

170 94.59717051 92.16610061 91.80837918

190 94.97771045 92.19867902 91.8577715

210 95.22657176 92.3323164 92.18396822

230 95.65173794 92.62365857 92.4653995

250 95.8308081 93.14628125 92.92775791

270 95.83888734 93.63021829 93.00340812

290 96.22756502 94.00412472 93.48779905

 113

310 96.42916772 94.13669257 94.02145901

330 96.58615242 94.69970349 94.21031419

350 96.64468163 94.78294358 94.45859011

370 96.94415836 94.86254105 94.90213717

390 97.05383323 95.17649161 95.18734785

410 97.50203649 95.53564045 95.62181714

430 97.71748452 95.80347456 95.66533643

450 98.13783014 96.02048059 95.83683093

470 98.66501532 96.4696309 96.22285907

490 98.91902243 96.73877732 96.35690573

Average 95.73503364 93.5591234 93.26028421

Later, to achieve even better performance, the chapter goes beyond the traditional Q-

learning. The collected scheduling data is divided into clusters using K-means

clustering, resulting in groups of good and bad allocations. These clusters are then fed

into neural networks, which are trained to learn the allocation division and prioritize

good allocations. By leveraging neural networks' ability to model complex

relationships and learn from data, the scheduling system gains the advantage of

making informed allocation decisions based on historical patterns. Overall, it was

observed that the model reached the highest accuracy of 98.9% with an average value

of 95.73%. To support this, a detailed comparative analysis is performed for the

evaluation parameters which is summarized in the next chapter.

4.4 Application over the real time multi-cloud

In the realm of modern computing, the utilization of cloud infrastructure has

revolutionized the way we approach various computational tasks. In this context, the

proposed work stands as a testament to the adaptability and scalability of our

approach. Not content with mere theoretical considerations, our endeavour has

ventured into the realm of real-time application on the AWS (Amazon Web Services)

cloud platform, utilizing multiple cloud instances to amplify its effectiveness.

At the heart of this initiative lies the creation of a comprehensive virtual server,

constructed with a robust Java-based architecture. To ensure the smooth operation of

our endeavour, we meticulously installed the requisite Java Development Kits (JDKs)

 114

to empower our virtual server with the necessary tools and capabilities. What sets our

approach apart is the deliberate segmentation of responsibilities between two distinct

cloud instances, each strategically situated in separate cloud data centres.

One of these instances is entrusted with the critical task of executing the proposed

work, harnessing the computational power and resources offered by AWS to carry out

complex operations with efficiency and speed. The other instance plays a

complementary role, focusing on the crucial aspect of storage. Its primary

responsibility is to manage and maintain the data and results generated during the

execution phase, ensuring that valuable information remains organized and readily

accessible.

 Application Initialization at AWS cloud 4.4.1

Setting up the described infrastructure on AWS with multiple cloud instances,

including the creation of a Java-based virtual server and the allocation of

responsibilities, involves a series of steps and configurations. Here is a detailed

description of how this setup can be accomplished:

1. Amazon Web Services (AWS) Account:

 In the event that you do not currently have an AWS account, start by

establishing one. This account is required in order to use AWS

services.

2. Launch Instances:

 Open the AWS Management Console and go to the dashboard for EC2

(Elastic Compute Cloud).

 Press "Launch Instance" to begin the virtual server (instance) creation

procedure.

3. Choose an Amazon Machine Image (AMI):

 Pick an AMI based on Java that meets your needs. Make sure the

required JDK (Java Development Kit) is pre-installed.

4. Instance Type:

 Select the right instance type for your computing requirements. Think

about components such as CPU, memory, and storage.

5. Security Groups:

 115

 Create security groups to manage traffic entering and leaving your

instances. Set up rules to permit access via SSH, RDP, and any more

required ports.

6. Key Pair:

 Create or import an SSH key pair to secure access to your instances.

This key pair will be used for authentication.

7. Storage:

 Configure the storage for your instances. You can use Amazon EBS

(Elastic Block Store) volumes for durable storage.

8. Launch Instances:

 Review your instance settings and click "Launch" to create your virtual

servers. AWS will assign public IP addresses to each instance by

default, making them accessible over the internet.

9. Elastic Load Balancing (Optional):

 If you require high availability and load balancing, consider setting up

an Elastic Load Balancer to distribute traffic between instances.

10. Data Centers and Regions:

 Place the instances in different AWS regions or data centers,

depending on your redundancy and data locality requirements. This

ensures that they are geographically separated.

11. Configuration and Software Setup:

 Access each instance using SSH or RDP (depending on the operating

system) and configure the Java environment, including installing JDKs

and any necessary libraries or dependencies.

12. Responsibilities Allocation:

 Define the responsibilities for each instance. For example, one instance

can be designated for execution tasks, while the other is responsible for

storage and data management.

13. Data Synchronization (Optional):

 If your setup requires data synchronization between instances, consider

using AWS services like Amazon S3 or EFS (Elastic File System) for

efficient data sharing.

 116

14. Monitoring and Scaling (Optional):

 Implement monitoring and scaling policies to ensure the efficient use

of resources and the automatic provisioning of additional instances

when needed.

15. Security and Access Control:

 • Use IAM (Identity and Access Management) rules and other security

best practices to manage access and permissions to your instances and

resources.

16. Testing and Optimization:

 Make sure your configuration satisfies your performance and reliability

needs by giving it a thorough test. As necessary, optimise setups for

performance and cost-effectiveness.

Figure 4.8 Running Instances on AWS Multicloud

 Execution of cloud server 4.4.2

Executing the current file unfolds as a meticulously orchestrated process, with each

step designed to unveil critical insights into the program's performance and its

ecological consequences. The installation of indispensable libraries drawn from

CloudSim and Apache POI binaries establishes the foundation for the subsequent

 117

execution. These libraries equip the program with the necessary tools and capabilities

to operate effectively within a cloud computing environment.

The AWS instance and the RamanCloud application have been seamlessly

interconnected, forming a powerful synergy for executing various tasks and jobs

within the AWS cloud environment. This integration enables the RamanCloud

application to leverage the computational capabilities and resources offered by AWS,

ensuring efficient and reliable execution of its processes.

When tasks are initiated within the RamanCloud application, the AWS cloud platform

immediately springs into action. It dynamically allocates and manages the necessary

computing resources and hosts to execute these tasks effectively. This on-demand

resource provisioning ensures that the application can efficiently scale to

accommodate varying workloads and demands, making it an ideal choice for handling

diverse job requirements.

Figure 4.9 AWS Instance Creation

 118

Figure 4.10 AWS Dashboard with application and space

Once the AWS instance is allocated for the RamanCloud application, a dedicated

storage space is created to cater to the user's data storage needs. In this particular

setup, a total of 8 gigabytes (GB) of storage space is provisioned for the user.

This storage space plays a critical role in accommodating various data assets, files,

and resources required by the user within the AWS environment. It ensures that the

user has ample capacity to store, access, and manage their data efficiently as they

interact with the RamanCloud application.

The 8 GB of allocated storage is designed to support a wide range of use cases, such

as storing datasets, reports, configurations, and any other data pertinent to the user's

activities within the application. This provisioned space not only facilitates data

retention but also aids in ensuring smooth and uninterrupted operation of the

RamanCloud application by allowing for the efficient organization and retrieval of

essential information.

To ensure the program's execution aligns with specific objectives, instruction sets are

thoughtfully crafted and passed. These sets serve as the program's guiding principles,

dictating its tasks, workloads, and other intricate parameters that shape its behavior.

User and other virtual machine (VM) instances are then artfully configured within the

chosen cloud environments. The allocation of computing resources—ranging from

CPU capacity to memory and storage—aims to cater precisely to the program's

 119

unique requirements. This careful provisioning ensures optimal performance and

resource utilization.

Figure 4.11 Execution of cloud instances for current algorithm

The true essence of the experiment comes to life when the program is executed

simultaneously in two separate cloud environments, each hosting its own dedicated

set of VM instances. This parallel execution serves as a crucible for comparative

analysis, allowing for the identification of performance variations and resource

utilization disparities between the two cloud setups.

Figure 4.12 Result of execution on 100% completion

 120

The evaluation phase forms the heart of this endeavour. It hinges on a trio of pivotal

metrics: power consumption, CO2 emissions, and completion ratios. The

quantification of power consumption unveils the energy efficiency of each cloud

setup, while the calculation of CO2 emissions sheds light on the environmental

impact associated with the energy consumption. Simultaneously, the evaluation

assesses the program's completion ratios, gauging its ability to fulfil its designated

tasks within each cloud environment.

The diligent collection of data is a cornerstone of the assessment process. By

meticulously gathering information on power consumption, CO2 emissions, and

completion ratios from both cloud environments, a comprehensive dataset is

generated for detailed analysis.

In this setup, one server is dedicated to executing programs, while another server is

solely responsible for storing data. These two servers operate independently, each

with its specific role, without any direct sharing of computational tasks or data

transfer between them.

The primary benefit of this configuration is twofold. First, it allows for a clear

separation of concerns, ensuring that the server responsible for executing programs

can focus entirely on computational tasks without the overhead of data storage

operations. Simultaneously, the data storage server can efficiently manage and

organize data assets without being burdened by program execution demands.

In the context of redundancy and fault tolerance, if the server handling program

execution becomes overloaded or encounters issues, it doesn't directly impact the data

storage server. The AWS migration policy is designed to ensure that program

execution tasks are seamlessly transferred to another available server, thus

maintaining smooth operation without affecting data storage or compromising overall

system reliability.

 121

Figure 4.13 Data Migration between multiple clouds

Within the RamanCloud application, the execution of tasks is intricately tied to the

supplied load and closely monitored CPU utilization metrics on AWS server 1. This

synergy between workload and server performance is crucial for optimizing the

application's operation. Supplied load represents the incoming tasks and processes

that the RamanCloud application needs to handle. It can vary significantly in terms of

complexity and volume, ranging from light workloads to heavy computational tasks.

The application's ability to effectively manage this load is vital for delivering timely

and efficient results to users.

Figure 4.14 Execution Outcome at server 1 based on loads

 122

Simultaneously, AWS server 1 continuously monitors its CPU utilization. This real-

time tracking provides valuable insights into how intensively the server's central

processing unit is being used by the RamanCloud application. When the CPU

utilization approaches or exceeds predefined thresholds, the application can make

informed decisions to maintain system stability and performance.

For instance, when CPU utilization is high due to a surge in workload, the application

might employ load balancing techniques to distribute tasks across multiple servers or

allocate additional resources to AWS server 1. This ensures that the application can

continue processing tasks efficiently without causing performance degradation or

downtime. Conversely, during periods of low CPU utilization, resources can be

allocated more sparingly to reduce operational costs, making the resource utilization

process highly dynamic and responsive.

Figure 4.15 Read and Write Operations on server 2 for data storage

The interplay between supplied load and CPU utilization metrics within AWS server

1 allows the RamanCloud application to operate efficiently in a scalable manner. It

makes it possible for the application to adjust to shifting workloads and resource

requirements in an efficient manner, guaranteeing peak performance and resource use

all the time. The RamanCloud application's overall dependability and efficiency in the

AWS environment are greatly enhanced by this dynamic monitoring and adjusting

procedure.

The proposed work is expected to yield significant benefits, especially when

leveraging a real-time AWS cloud environment consistently. This choice offers

unparalleled convenience, even for relatively small-scale projects, as AWS's real-time

 123

cloud infrastructure provides a noteworthy performance boost. This enhancement is

primarily attributed to AWS's shared memory concept, which accelerates processing

speeds.

In practice, utilizing AWS's real-time cloud platform can result in a remarkable 8%

increase in processing speed compared to alternative cloud solutions. This boost in

performance stems from the efficiency gained through shared memory resources,

allowing for faster data access and computation. Consequently, even for tasks of

limited scope, the AWS real-time cloud proves to be a valuable asset, optimizing

overall processing times and ensuring that applications run smoothly and swiftly.

Analysis and comparison are where the experiment's true insights surface.

Discrepancies in power efficiency, environmental sustainability, and program

performance are scrutinized, potentially leading to actionable optimization strategies

to enhance efficiency or reduce environmental impact.

The findings and outcomes are not left in isolation. Instead, they are meticulously

documented and woven into comprehensive reports, ensuring the dissemination of

valuable insights and facilitating data-driven decision-making for future cloud

resource allocation and environmentally conscious application deployment.

4.5 Summary of the Chapter

The chapter highlights the potential of these integrated approaches in addressing

complex and dynamic scheduling problems. The synergy between Q-learning and

flower pollination contributes to an advanced optimization system capable of

delivering near-optimal scheduling solutions in various practical scenarios. Overall,

this research contributes valuable insights into the fields of artificial intelligence,

optimization, and scheduling, paving the way for more sophisticated and effective

resource management systems.

There are several advantages of combining flower pollination with Q-learning. By

improving exploration in the search space, the flower pollination technique helps the

 124

system break out of local optima and discover better allocation solutions. The

incorporation of neural networks improves the overall predictability and adaptability

of the system, as it can efficiently learn and adapt to new information in real time. By

combining these techniques, the scheduling network achieves efficient resource

utilization, reduced makespan, and increased productivity.

 125

CHAPTER 5: RESULTS AND DISCUSSION

The request for efficient resource allocation and task sequencing in dynamic

scheduling environments has long been a challenge in the field of artificial

intelligence and optimization. In this section, we present the culmination of our efforts

in tackling this intricate problem by proposing a novel and powerful scheduling

approach. Our method integrates cutting-edge techniques, namely Q-learning, and

flower pollination to optimize the scheduling network and achieve superior

performance.

Resource allocation and task sequencing are critical components in modern

computing systems, spanning diverse applications such as cloud computing, grid

computing, and data centres. It is a complicated effort to allocate work to appropriate

resources in an efficient manner while taking into account limitations like processor

speed, memory needs, energy usage, and expense. Traditional approaches have often

faced limitations in handling the dynamic nature of scheduling environments, leading

to suboptimal resource utilization and increased makespan. To address these

challenges, we have meticulously designed, developed and implemented a novel

scheduling approach that leverages the strengths of Q-learning, a reinforcement

learning algorithm renowned for its ability to learn from rewards and penalties.

Inspired by the adaptable nature of plants to maximise their development, our method

integrates blossom pollination, going beyond conventional Q-learning approaches. By

combining these two powerful optimization techniques, we enable efficient

exploration of the vast search space, facilitating the discovery of high-quality

scheduling solutions.

The results obtained from executing the program are subjected to rigorous testing on

both local cloud infrastructure and the expansive AWS cloud platform, providing a

comprehensive perspective on its performance. The average values generated from

this testing are illustrated as follows, shedding light on the unique attributes of each

environment.

 126

The AWS cloud environment represents a pivotal component of our evaluation. Its

global reach, scalability, and versatile range of services make it an essential

benchmark for assessing our program's performance. In this context, the average

values obtained from AWS cloud testing serve as a focal point of analysis.

When considering the AWS cloud, it's crucial to recognize its dynamic nature. The

performance of AWS services can vary based on multiple factors, including the

specific AWS region chosen for deployment, the instance type used, and network

conditions. For instance, AWS offers different types of instances with varying levels

of computational power, memory, and network performance. Therefore, the choice of

instance type plays a pivotal role in the program's execution speed and overall

performance.

Furthermore, the execution time of the program within the AWS cloud can be

influenced by internet speed, not only on the AWS side but also on the user's side.

The speed and stability of the internet connection used to access and interact with

AWS services can impact the time it takes for tasks to be completed. Additionally,

different devices and hardware configurations used to connect to the AWS cloud may

experience variations in execution time due to differences in processing capabilities

and network adapters.

The thorough findings and analyses provided in this part attest to the efficacy and

efficiency of the strategy we've suggested. We have conducted extensive experiments

on diverse datasets, representing a wide range of real-world scenarios and challenges.

The results demonstrate that our integrated approach significantly enhances resource

utilization, effectively reduces makespan, and overall improves the scheduling

network's performance. Our evaluation delves deep into the impact of key parameters

on the scheduling system's performance. Each parameter, such as MIPS, makespan,

consumed energy, CO2 emission, distance from the user, VM load distribution ratio,

and proposed cost, plays a vital role in shaping the quality of the scheduling

outcomes. By carefully analysing these variables, we can better understand the

advantages and flexibility of our strategy and adjust the scheduling system to provide

the best outcomes. The integration of Q-learning with flower pollination elevates the

state-of-the-art in resource allocation and task sequencing. The synergy between these

 127

advanced techniques empowers our approach to efficiently handle complex and

dynamic scheduling environments, making it suitable for a myriad of practical

applications.

A detailed illustration of the parameters is provided as follows.

1. MIPS (Million Instructions Per Second): MIPS = (Total Instructions

Executed) / (Total Time in Seconds)

2. Makespan: Makespan = (Finish Time of Last Task) - (Start Time of First

Task)

3. Storage in MB (Megabytes): Storage in MB = Size of Data for Task

Execution

4. Consumed Energy in KJ (Kilojoules): Consumed Energy in KJ = (Power

Consumption per Task) * (Execution Time of Task in Seconds)

5. CO2 Emission: Metric tons of CO2 Emission (Mt) = (Energy Consumption in

KJ) * (CO2 Emission Factor of the Power Source)

6. Distance from User: Distance from User = Euclidean Distance between User

Location and Host Location

7. VM Load Distribution Ratio for 5 VMs in Hzs (Hertz): VM Load

Distribution Ratio for 5 VMs in Hzs = (Number of CPU Cycles Executed on

Each VM) / (Total CPU Cycles Executed on All VMs)

8. Cost Proposed: Cost Proposed = (Resource Utilization Cost) + (Energy Cost)

+ (Other Relevant Costs)

In the pursuit of achieving robustness and adaptability in scheduling systems, it

becomes imperative to rigorously evaluate the proposed work under diverse

simulation architectures. The efficacy of any scheduling approach must be examined

across varying scenarios to ensure its ability to handle real-world complexities. This

section provides a thorough analysis of our innovative scheduling method, comparing

and contrasting its performance under two different simulation architectures: one with

a growing user base and the other with a growing load.

The first simulation architecture revolves around augmenting the number of users

within the system. As user demands fluctuate and grow over time, the scheduling

system's ability to seamlessly allocate tasks becomes a pivotal aspect of performance.

 128

By subjecting our proposed approach to this scenario, we aim to assess how it adapts

to varying user requirements and effectively allocates resources to meet the ever-

changing demands. Evaluating the approach under this architecture provides crucial

insights into its scalability, resource utilization, and capacity to cater to a large user

base without compromising efficiency.

The second simulation architecture focuses on the increasing load amount, simulating

the dynamic nature of workloads experienced by modern computing systems. As

computational tasks intensify and data processing demands escalate, the scheduling

system's capability to manage heightened loads comes under scrutiny. Here, we

scrutinize how our approach efficiently scales its resource allocation to meet the

augmented computational demands. A proficient scheduling system should gracefully

handle increased load amounts, ensuring optimal makespan and minimal resource

wastage, thus enhancing overall system performance.

The juxtaposition of these two simulation architectures serves a dual purpose. Firstly,

it presents a comprehensive evaluation of our proposed approach's versatility and

adaptability, gauging its performance under varying user populations and workloads.

Secondly, it helps identify potential trade-offs between addressing user-centric

demands and optimizing resource allocation under high-load conditions. By analysing

the approach's performance in both contexts, we can refine its design to strike a

harmonious balance between catering to diverse user needs and maintaining peak

scheduling efficiency.

We hope to get important insights into the advantages and disadvantages of our

suggested scheduling strategy through this thorough analysis. The results obtained

under the two simulation architectures will guide us in optimizing its design, making

it versatile and well-equipped to handle the complexities of real-world scheduling

scenarios. By drawing upon the extensive analyses from these simulations, we aspire

to elevate the scheduling approach to unprecedented levels of adaptability and

efficiency, contributing to advancements in resource allocation and task sequencing

for modern computing systems.

 129

5.1 Result Evaluation Based on Increasing Number of Users

In this simulation architecture, the proposed work explores the scheduling system's

response to an increasing number of users within the computing environment. As

modern computing systems are widely used by a diverse user base, the scheduling

approach's adaptability to varying user demands becomes a critical factor in

determining its effectiveness. Over time, user numbers may fluctuate due to changing

workloads, task priorities, or varying application requirements. As such, the

scheduling system must seamlessly allocate tasks and resources to accommodate these

evolving user needs.

By subjecting our proposed scheduling approach to this scenario, the proposed work

presents the integration of FPA and Q-learning and aims to evaluate its performance

in handling a growing user population. The objective is to assess how the system

adapts its resource allocation strategies to cater to an expanding user base without

compromising efficiency. This evaluation will provide crucial insights into the

approach's scalability, as it must handle a higher volume of concurrent tasks from

various users. Efficiently managing resource allocation for an increasing number of

users is essential for maintaining optimal makespan and maximizing overall system

productivity.

The analysis of this simulation architecture will delve into various aspects of the

scheduling system's behaviour. Firstly, the proposed work will observe how the

system dynamically adjusts its allocation decisions in response to varying user

requirements. Understanding how the approach prioritizes tasks and allocates

resources will shed light on its adaptability to fluctuating user demands. Secondly, the

proposed work will assess the impact of an increasing user population on resource

utilization. The scheduling system must efficiently distribute resources to meet

multiple users' needs while avoiding resource bottlenecks or underutilization.

Moreover, examining the approach's performance under augmented user numbers will

help identify potential challenges, such as task queuing delays or scheduling conflicts,

that may arise when facing a larger user base. These insights will provide valuable

 130

guidance for further optimizing the scheduling approach and making the proposed

work ll-equipped to handle the complexities of real-world scheduling environments

with diverse user populations. The Evaluation based on a number of users with other

techniques is presented in Table 5.1.

Table 5.1 Evaluation Based on Number of Users

U
se

rs

P
ro

p
o
se

d
 C

O
2

E
m

is
si

o
n

P
ro

p
o
se

d
 E

n
er

g
y

C
o
n

su
m

ed

P
ro

p
o
se

d
 C

o
st

Q
-l

ea
rn

in
g
 C

O
2

Q
-l

ea
rn

in
g
 E

n
er

g
y

C
o
n

su
m

ed

Q
-l

ea
rn

in
g
 C

o
st

N
eu

ra
l

C
O

2

E
m

is
si

o
n

N
eu

ra
l

E
n

er
g
y

C
o
n

su
m

ed

N
eu

ra
l

C
o
st

50 0.007 25.54 603.32 0.008 26.73 658.38 0.009 28.45 702.39

70 0.006 29.34 665.4 0.007 31.47 675.63 0.009 31.6 694.33

90 0.007 28.55 734.9 0.008 30.22 749.54 0.009 32.33 792.58

110 0.004 34.74 610.89 0.008 35.65 616.45 0.009 37.61 705.65

130 0.005 41.85 636.66 0.007 44.42 691.94 0.008 47.93 739.7

150 0.006 38.61 674.98 0.007 42.29 756.91 0.008 46.72 776.93

170 0.004 40.95 462.15 0.009 40.95 476.28 0.008 42.16 477.39

190 0.008 36.23 397.42 0.008 36.6 405.76 0.009 43.76 459.7

210 0.005 26.21 440.8 0.009 29.63 451.22 0.009 29.82 452.44

230 0.006 30.45 468.96 0.007 33.46 486.66 0.008 39 492.72

250 0.004 27.57 513.92 0.006 28.96 581.15 0.008 29.81 678.29

270 0.005 22 430.83 0.007 22.56 473.69 0.008 22.92 504.35

290 0.006 31.12 483.09 0.007 36.18 496.65 0.008 38.65 537.43

310 0.009 24.99 513.88 0.007 25.04 517.26 0.001 26.36 529.7

330 0.002 31 514.49 0.009 31.34 543.35 0.01 32.4 553.49

350 0.004 23.12 356.33 0.009 24.46 361.68 0.008 24.73 362.1

370 0.005 22.14 575.73 0.007 22.86 641.14 0.009 24.78 641.6

390 0.002 15.54 398.56 0.007 15.85 487.49 0.009 16.48 502.48

410 0.005 23.82 551.86 0.009 25.27 636.05 0.006 27.49 639.39

430 0.006 21.25 429.51 0.009 22.57 457.14 0.008 22.8 491.5

450 0.004 13.52 402.47 0.008 13.59 481.49 0.007 14.89 531.86

470 0.003 16.9 443.02 0.006 18.24 448.31 0.001 19.5 471.56

490 0.001 9.2 292.99 0.007 9.89 337.21 0.008 9.76 386.18

It is calculated that the evaluation under Simulation Architecture 1 offers a

comprehensive understanding of how the proposed scheduling approach handles

 131

varying user demands. By analyzing its behaviour in this context, the proposed work

can fine-tune the approach to deliver efficient resource allocation, reduced makespan,

and improved user satisfaction. The knowledge gained from this analysis will pave

the way for advancements in resource management and task sequencing, with broader

applications in cloud computing, data centres, and other computing domains where

user-centric scheduling is paramount. The graphical analysis of these simulations for

energy, cost and CO2 is presented in Figure 5.1, Figure 5.2, and Figure 5.3

respectively.

Figure 5.1 Energy vs Number of Users

0

10

20

30

40

50

60

5
0

7
0

9
0

1
1

0

1
3

0

1
5

0

1
7

0

1
9

0

2
1

0

2
3

0

2
5

0

2
7

0

2
9

0

3
1

0

3
3

0

3
5

0

3
7

0

3
9

0

4
1

0

4
3

0

4
5

0

4
7

0

4
9

0

En
er

gy
 C

o
n

su
m

ed
 (

K
J)

Users

Proposed Energy Consumed Q-learning Energy Consumed

Neural Energy Consumed

 132

Figure 5.2 Cost vs Number of Users

Figure 5.3 CO2 vs Number of Users

0

100

200

300

400

500

600

700

800

900

50 70 90 110130150170190210230250270290310330350370390410430450470490

C
o

st
 (

R
s)

Users

Proposed Cost Q-learning Cost Neural Cost

0

0.002

0.004

0.006

0.008

0.01

0.012

50 70 90 110130150170190210230250270290310330350370390410430450470490

C
O

2
 E

m
is

si
o

n
 (

M
t)

Users

Proposed CO2 Emission Q-learning CO2 Neural CO2 Emission

 133

The analysis of the proposed work with a Neural network illustrates the following

points.

1. Energy Consumed:

 The Proposed algorithm shows varying energy consumption for

different numbers of users, ranging from around 9.198 to 41.85.

 The 'Q-LEARNING' algorithm shows varying energy consumption for

different numbers of users, ranging from around 9.888 to 44.41.

 The 'Neural Network' algorithm shows varying energy consumption

for different numbers of users, ranging from around 9.764 to 47.934.

2. Cost Evaluation:

 The Proposed algorithm shows varying costs for different numbers of

users, ranging from around 292.988 to 734.902.

 The 'Q-LEARNING' algorithm shows varying costs for different

numbers of users, ranging from around 337.2147 to 756.9075.

 The 'Neural Network' algorithm also shows varying costs for different

numbers of users, ranging from around 362.095 to 792.578

3. CO2 Emission Analysis:

 The Proposed algorithm shows varying CO2 emissions for different

numbers of users, ranging from around 0.001 to 0.009.

 The 'Q-LEARNING' algorithm shows varying CO2 emissions for

different numbers of users, ranging from around 0.006 to 0.009.

 The 'Neural Network' algorithm shows varying CO2 emissions for

different numbers of users, ranging from around 0.001 to 0.01.

The data analysis shows that in terms of cost, energy consumption, and CO2

emission, the "Q-LEARNING" algorithm and the "Neural Network" algorithm

perform similarly well. However, the 'Q-LEARNING' algorithm shows slightly lower

CO2 emissions than the 'Neural Network' algorithm, indicating a better environmental

 134

impact. The incorporation of flower pollination in the 'Q-LEARNING' algorithm

seems to have helped achieve better scheduling efficiency.

The proposed algorithm's efficiency can be attributed to the combination of flower

pollination and Q-learning techniques. The flower pollination technique allows the

algorithm to explore and exploit different solutions efficiently, making it more

adaptive to changing user demands. Additionally, the Q-learning approach enables the

algorithm to learn from experience and make intelligent decisions, optimizing

resource allocation and reducing costs. Overall, the proposed scheduling approach

combines the strengths of flower pollination, and Q-learning to achieve efficient task

scheduling in the network. The slight improvement in environmental impact (lower

CO2 emissions) and comparable performance in other parameters show the

effectiveness of the proposed approach. It is an attractive solution for managing large

user bases and fluctuating demands without compromising efficiency or

environmental considerations.

The % improvement analysis provides valuable insights into how the proposed 'Q-

LEARNING' algorithm fares against the 'Neural Network' algorithm in terms of

specific performance metrics. By calculating the percentage change in each

parameter, we can understand the relative efficiency of the 'Q-LEARNING' algorithm

in comparison to the 'Neural Network' algorithm.

1. CO2 Emission Improvement: The % improvement in CO2 emissions is a

crucial aspect of environmental sustainability. The data reveals that the 'Q-

LEARNING' algorithm consistently achieves better results in this regard

compared to the 'Neural Network' algorithm. The improvements in CO2

emissions range from approximately 2% to 13%. While these improvements

may appear small at first glance, they are highly significant from an

environmental perspective. In large-scale computing environments with a

substantial number of users, even a slight reduction in CO2 emissions can

result in a substantial overall decrease in carbon footprint, making the 'Q-

LEARNING' algorithm a more eco-friendly choice.

 135

2. Energy Consumption and Overall Cost Comparison: In contrast to the

promising results in CO2 emissions, the % improvement in energy

consumption and overall cost between the 'Q-LEARNING' and 'Neural

Network' algorithms is relatively negligible. The data shows that both

algorithms achieve similar energy consumption and cost values for all user

counts. While this indicates that both approaches are efficient in terms of

resource allocation and cost management, it also suggests that the primary

benefits of the proposed 'Q-LEARNING' algorithm lie in its ability to reduce

carbon emissions, making it an environmentally sustainable option.

3. Reasons for CO2 Emission Improvement: The improved CO2 emissions in

the 'Q-LEARNING' algorithm can be attributed to its integration of flower

pollination and Q-learning techniques. These techniques enable the algorithm

to optimize the allocation of resources and minimize unnecessary energy

consumption, resulting in reduced CO2 emissions. By mimicking the foraging

behaviour of flowers, the flower pollination technique efficiently explores the

solution space, while Q-learning allows the algorithm to learn from past

experiences and make smarter decisions, leading to more environmentally

friendly resource allocation. The synergy between these techniques empowers

the 'Q-LEARNING' algorithm to achieve better CO2 emission results

compared to the 'Neural Network' algorithm.

4. Overall Efficiency: While the improvements in CO2 emissions are significant,

the % improvement in energy consumption and overall cost may seem

marginal. However, it is important to emphasize that achieving significant

reductions in energy consumption and overall cost is challenging due to

various real-world constraints and fluctuations in user demands. The 'Q-

LEARNING' algorithm's ability to maintain energy efficiency and cost-

effectiveness similar to the 'Neural Network' algorithm, while also enhancing

environmental sustainability, highlights its overall efficiency and adaptability.

 136

5.2 Results Evaluation based on Increasing Load

Analyzing the performance of the proposed scheduling algorithm based on the

increasing number of loads is a valid and relevant approach because it helps to

evaluate how the system handles varying levels of demand and resource utilization. In

real-world scenarios, the computing environment is dynamic, and the workload on the

system can fluctuate due to factors like user demands, time of day, or specific events.

Therefore, understanding how the scheduling algorithm adapts and performs under

different load conditions is crucial for its practical applicability and scalability.

 Importance of Load Variation Analysis 5.2.1

1. Realistic Simulation: By increasing the number of loads, we simulate a

scenario that reflects the dynamic nature of real-world computing

environments. Such simulations help in understanding the system's behaviour

under realistic conditions, which is essential for making informed decisions

about resource allocation and task scheduling.

2. Stress Testing: Evaluating the algorithm under increasing loads acts as a form

of stress testing. It assesses the system's robustness and ability to handle high

demands without compromising efficiency or causing resource bottlenecks.

Identifying any performance degradation or limitations under heavy loads is

crucial for system optimization and improvement.

3. Scalability Assessment: The performance of a scheduling algorithm should

not deteriorate as the number of loads increases. Scalability is a critical aspect

of modern computing systems, especially in cloud computing and data centres

where the user base and task demands can grow rapidly. Evaluating the

algorithm's performance under varying load conditions provides insights into

its scalability potential.

Benefits of Increasing Load Analysis:

1. Resource Utilization: By analyzing the algorithm's performance under

increasing loads, we can observe how efficiently the resources are utilized. A

 137

well-performing algorithm should allocate resources optimally and avoid over-

or under-utilization, ensuring efficient use of available computing power.

2. Adaptability: The ability to adapt to changing load conditions is a key

characteristic of a robust scheduling algorithm. Evaluating the algorithm under

varying loads helps determine its adaptability, responsiveness, and ability to

dynamically allocate resources based on demand fluctuations.

3. Performance Stability: A good scheduling algorithm should maintain stable

performance even when the load increases. The analysis helps identify any

performance variations, bottlenecks, or system instabilities that might arise as

the workload grows, allowing for timely optimizations.

4. Resource Allocation Fairness: Load variation analysis also enables the

assessment of how well the algorithm ensures fair resource allocation among

different users or tasks. Balancing resource distribution across varying loads is

essential to avoid resource starvation for some tasks while others are over-

privileged.

In cloud computing and Internet of Things (IoT) systems, task scheduling efficiency

is critical to maximising resource utilisation, cutting costs, and improving overall

system performance. As computing environments become more complex and diverse,

the demand for intelligent and adaptive scheduling algorithms has increased

significantly. In this regard, it becomes imperative to assess the uniqueness,

effectiveness, and practicality of the suggested scheduling strategy by contrasting it

with other cutting-edge algorithms. As a benchmarking exercise, the suggested

scheduling algorithm is contrasted with current cutting-edge methods. It allows

researchers and practitioners to objectively gauge the efficiency of the novel

algorithm compared to its peers. The proposed work's advantages, disadvantages, and

possible areas for development may all be fairly evaluated with the help of this

evaluation. Furthermore, the originality of the suggested algorithm is validated by

contrasting it with other cutting-edge methods. By highlighting the unique features

and innovations, a comprehensive comparison provides evidence of the algorithm's

 138

contribution to the field. It establishes the significance and potential impact of the

proposed work on advancing the state-of-the-art in task scheduling.

 Energy Consumption Analysis 5.2.2

Furthermore, studying other leading algorithms helps identify valuable insights and

best practices. Understanding the strengths of state-of-the-art methods can inspire

improvements and innovations in the proposed algorithm. The initial comparison of

the proposed work is performed with the base MET algorithm [59] in order to show

the improvement in scheduling achieved owing to the integration of MBFD into the

base MET algorithm. A multi-objective scheduling strategy for scientific processes in

a multi-cloud context was presented by Hu et al. (2018). The method takes into

account the variety of resources available in various clouds and seeks to optimise job

execution time, cost, and energy usage. The suggested study and this work are related

since they both deal with the difficulties of job scheduling in distributed and dynamic

computing systems. While the proposed work incorporates flower pollination and Q-

learning for enhanced adaptability and resource allocation, Hu et al. emphasize multi-

objective optimization, which complements the objectives of the proposed algorithm

[64]. Similarly, A multi-cloud model-based many-objective intelligent algorithm for

Internet of Things (IoT) work scheduling is presented by Cai et al. (2020). Their

approach optimises several objectives, such as makespan, resource utilisation, and

completion time, by using a many-objective optimisation technique. The goal of Cai

et al.'s method is to optimise task scheduling in a heterogeneous computing

environment, much like the suggested work does. While the proposed algorithm

incorporates Q-learning and flower pollination, Cai et al. focus on the integration of

multiple clouds in an IoT context [106]. Jena et al. described a genetic algorithm-

based approach to effective resource allocation and job scheduling in multi-cloud

systems, with the goal of optimizing computing performance and resource utilization

[95]. Saurabh et al. presented an algorithmic strategy for virtual machine migration in

cloud computing, which uses the modified SESA algorithm to improve system

efficiency and resource management [131]. Comparing these works allows us to

identify potential synergies and novel aspects in both approaches.

 139

Table 5.2 Comparative Analysis Based on Energy Consumption

'Total

workload in

MIPS'

'EC

proposed'
'EC MET'

'EC Hu et

al.'

'EC Cai et

al.'

EC Jena

et al.'

EC

Saurabh

et al.'

10000 0.090754 0.11606 0.101903 0.090763 0.116385 0.10249

20000 0.147101 0.183832 0.171486 0.189357 0.184992 0.172194

30000 0.22727 0.228985 0.255526 0.277138 0.22964 0.255664

40000 0.286029 0.365615 0.290432 0.336885 0.368316 0.2931

50000 0.358355 0.394226 0.383038 0.458994 0.39464 0.386204

60000 0.439582 0.540237 0.54857 0.515207 0.543737 0.552917

70000 0.508103 0.601809 0.659191 0.539153 0.604745 0.662957

80000 0.57725 0.722905 0.638642 0.651728 0.728305 0.644655

90000 0.647844 0.701553 0.768795 0.762194 0.701635 0.769827

100000 0.716416 0.790325 0.74463 0.772431 0.794197 0.750584

In terms of the total workload in MIPS and the energy consumption (EC) for various

workloads, Table 5.2 shows the evaluation results for the proposed scheduling

algorithm (EC proposed) and compares it with other state-of-the-art algorithms

presented by Hu et al. Cai et al., Jena et al. and Saurabh et al. Figure 5.4 graphically

represents this comparison.

Figure 5.4 Comparative Analysis Based on Energy Consumption

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

E
N

E
R

G
Y

 C
O

N
S

U
M

E
D

 (
K

J)

TOTAL WORK LOAD

'EC proposed' 'EC MET' 'EC Hu et al.'

EC Cai et al.' EC Jena et al.' EC Saurabh et al.'

 140

5.2.2.1 Minimum and Maximum Value Scenarios

1. For 'Total workload in MIPS' of 10,000, the energy consumption for the

proposed algorithm is 0.09075382KJ, which is lower than its raw MET

algorithm (0.11606KJ), Cai et al.'s algorithm (0.09076311KJ), Hu et al.'s

algorithm (0.10190333KJ), Jena et al. (0.11638KJ) and Saurabh et al.

(0.10249KJ).

2. At a workload of 100,000, the energy consumption for the proposed algorithm

is 0.71641618 KJ, which is lower than the MET algorithm (0.790325 KJ), Hu

et al.'s algorithm (0.74463002), Cai et al.'s algorithm (0.77243068 KJ), Jena et

al. (0.794197 KJ) and Saurabh et al. (0.750584 KJ)

Based on the table, it is observed that the proposed algorithm tends to have a more

consistent energy consumption across various workload levels compared to the other

algorithms. It achieves competitive energy consumption values at both low and high

workload scenarios, with slight variations.

5.2.2.2 Percentage Improvement

To calculate the percentage improvement of the proposed algorithm over the other

algorithms, we compare the energy consumption values at each workload level. Let's

consider the percentage improvement over the MET algorithm, Hu et al.'s algorithm,

Cai et al.'s algorithm, Jena et al. algorithm and Saurabh et al. algorithm.

1. For MET algorithm (EC MET), the percentage improvement of the proposed

algorithm is as follows:

 At 10,000 MIPS workload: (EC MET - EC proposed) / EC MET * 100

= (0.11606 - 0.09075382) / 0.11606 * 100 ≈ 21.8%

 At 100,000 MIPS workload: (EC MET - EC proposed) / EC MET *

100 = (0.790325 - 0.71641618) / 0.790325 * 100 ≈ 9.35%

 141

Figure 5.5 Energy Consumption Improvement

2. For Hu et al.'s algorithm (EC Hu et al.), the percentage improvement of the

proposed algorithm is as follows:

 At 10,000 MIPS workload: (EC Hu et al. - EC proposed) / EC Hu et al.

* 100 = (0.10190333 - 0.09075382) / 0.10190333 * 100 ≈ 10.92%

 At 100,000 MIPS workload: (EC Hu et al. - EC proposed) / EC Hu et

al. * 100 = (0.74463002 - 0.71641618) / 0.74463002 * 100 ≈ 3.79%

3. For Cai et al.'s algorithm (EC Cai et al.), the percentage improvement of the

proposed algorithm is as follows:

 At 10,000 MIPS workload: (EC Cai et al. - EC proposed) / EC Cai et

al. * 100 = (0.10190333 - 0.09075382) / 0.10190333 * 100 ≈ 10.92%

 At 100,000 MIPS workload: (EC Cai et al. - EC proposed) / EC Cai et

al. * 100 = (0.77243068 - 0.71641618) / 0.77243068 * 100 ≈ 7.26%

2
1

.8
0

4
2

3
9

1
9

1
9

.9
8

0
7

4
3

2
9

0
.7

4
8

9
5

7
3

5
5

2
1

.7
6

7
7

0
6

4
7

9
.0

9
9

0
9

5
4

4
3

1
8

.6
3

1
6

3
7

6

1
5

.5
7

0
7

2
0

9
4

2
0

.1
4

8
5

6
7

2
4

7
.6

5
5

7
2

9
5

0
3

9
.3

5
1

7
2

2
3

9
3

1
0

.9
4

0
7

9
6

6
4

1
4

.2
1

9
8

1
9

6
9

1
1

.0
5

7
9

7
4

5
3

1
.5

1
6

0
1

7
5

1
9

6
.4

4
4

0
0

8
1

6
6

1
9

.8
6

7
6

5
5

9
1

2
2

.9
2

0
2

1
5

8
4

9
.6

1
2

8
9

7
3

6
7

1
5

.7
3

2
5

4
2

4
9

3
.7

8
8

9
9

5
8

7
7

0
.0

0
9

9
1

5
9

3
5

2
2

.3
1

5
5

2
0

4
2

1
7

.9
9

3
9

2
3

6

1
5

.0
9

5
9

5
2

6
2

 2
1

.9
2

5
9

9
4

6
8

1
4

.6
7

8
5

6
6

0
9

5
.7

5
9

0
3

3
1

5

1
1

.4
2

7
7

7
3

5
5

1
5

.0
0

2
7

4
2

0
8

7
.2

5
1

7
8

0
4

1
8

2
2

.0
2

2
5

9
4

5
3

2
0

.4
8

2
4

3
4

7
3

1
.0

3
2

1
0

4
0

8
4

2
2

.3
4

1
3

7
8

0
2

9
.1

9
4

5
2

7
5

3
8

1
9

.1
5

5
4

0
5

6
6

1
5

.9
8

0
6

6
6

6
5

2
0

.7
4

0
6

1
4

9
4

7
.6

6
6

5
2

8
4

6
6

9
.7

9
3

6
2

6
7

4
6

1
1

.4
5

1
1

4
0

7
6

1
4

.5
7

2
4

8
9

6

1
1

.1
0

5
9

0
7

4
3

2
.4

1
2

4
1

3
7

6
1

7
.2

1
0

9
6

1
1

3
6

2
0

.4
9

7
7

2
0

1
8

2
3

.3
5

8
0

3
4

9
1

1
0

.4
5

6
0

4
5

1
4

1
5

.8
4

5
4

9
7

4
.5

5
2

1
5

5
5

2
6

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

E
C

 I
M

P
R

O
V

E
M

E
N

T
 (

%
)

TOTAL WORK LOAD

EC improvement over MET EC improvement over Hu et al.

EC improvement over Cai et al. EC improvement over Jena et al.

EC improvement over Saurabh et al.

 142

4. For Jena et al.’s algorithm, the percentage improvement of the proposed

algorithm is as follows:

 At 10,000 MIPS workload Improvement (%) = (0.1163850−0.090754)

/0.1163850 ×100≈22.01%

 At 100,000 MIPS workload: Improvement Needed (%) = (0.7941970 −

0.716416)/0.7941970×100≈9.80%

5. For Saurabh et al.’s algorithm, the percentage improvement of the proposed

algorithm is as follows‖

 At 10,000 MIPS workload Improvement (%) = (0.102490 −0.090754

)/0.102490 ×100≈11.46%

 At 100,000 MIPS workload: Improvement Needed (%)=(0.750584

−0.716416)/0.750584×100≈4.55%

5.2.2.3 Discussion of Improvement

The suggested scheduling method consistently outperforms Hu et al.'s algorithm, Cai

et al.'s algorithm, Jena et al. algorithm and Saurabh et al. algorithm in terms of energy

usage at various workload levels, as shown by the table and % improvement

estimates. The suggested method performs better than the other algorithms in terms of

energy efficiency, as indicated by the percentage improvements.

The consistent improvement observed in energy consumption is due to the

incorporation of flower pollination and Q-learning in the proposed algorithm. These

techniques enable the algorithm to adapt and optimize resource allocation

dynamically, resulting in better energy utilization and reduced wastage.

Moreover, the proposed algorithm demonstrates its effectiveness across a wide range

of workloads, ranging from 10,000 to 100,000 MIPS. This versatility showcases its

scalability and ability to handle varying computational demands effectively.

As a result of the suggested algorithm's notable improvement in energy consumption

over the state-of-the-art algorithms, the study of energy consumption concludes that it

is a viable and effective option for task scheduling in cloud computing and Internet of

Things contexts. The amalgamation of flower pollination and Q-learning endows the

 143

algorithm with the capability to adjust to fluctuating circumstances and maximise

energy utilisation, so rendering it an invaluable addition to the domain of intelligent

task scheduling.

In the pursuit of enhancing system performance and resource utilization within the

realm of digital ecosystems, the proposed work in this thesis draft section sets forth to

explore the intriguing domain of allocating and migrating users from host machines.

The aim of this research is to uncover valuable insights that will enable informed

decisions and architecting future-proof solutions. Throughout this investigation, the

associated costs of allocation and migration will be meticulously evaluated,

considering crucial factors such as processing power, memory requirements, and

network bandwidth. The goal is to unravel the complexities inherent in these

processes, paving the way for efficient and sustainable computing systems.

 Cost Analysis 5.2.3

Table 5.3 represents a comprehensive comparison of total costs obtained from

different algorithms, including the proposed algorithm, the 'Minimum Execution

Time' (MET), and Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et al. algorithm

and Saurabh et al. algorithm.

Table 5.3 Comparative Analysis based on Cost

'Total

workload

in MIPS'

'Total Cost

Proposed'

'Total

Cost

MET'

'Total

Cost Hu

et al.'

'Total

Cost Cai

et al.'

Total

Cost

Jena et

al.'

Total

Cost

Saurabh

et al.'

10000 24.1422 29.5563 29.5633 28.0771 29.74938 29.797

20000 51.3179 63.5822 62.8009 53.2505 64.04016 63.40376

30000 72.1079 74.9114 76.9767 79.6796 75.40116 77.21193

40000 100.902 111.66 102.327 107.37 111.8879 103.1622

50000 117.374 138.865 145.582 125.578 139.2963 146.2266

60000 144.915 180.995 157.543 162.416 181.8104 157.5813

70000 167.076 197.122 207.201 172.343 198.0239 208.434

 144

80000 190.473 215.004 245.12 223.213 215.889 246.6054

90000 211.835 269.327 268.038 239.733 271.613 269.7036

100000 238.069 262.196 295.097 308.596 264.0749 295.5969

The total cost values are measured in monetary units and represent the financial

aspect associated with the total workload in MIPS as graphically shown in Figure 5.6.

Figure 5.6 Comparative Analysis based on Cost

5.2.3.1 Minimum and Maximum Scenario for Cost

Analysing the total cost values for varying workloads provides insights into the

efficiency of each algorithm in managing resource utilization and minimizing overall

expenses.

At a workload of 10,000 MIPS, the proposed algorithm exhibits a total cost of 24.14

monetary units, which is lower than MET (29.56 monetary units), Hu et al.'s

algorithm (29.56 monetary units), and Cai et al.'s algorithm (28.08 monetary units).

As the workload increases to 100,000 MIPS, the total cost also rises for all

algorithms. The proposed algorithm shows a total cost of 238.07 monetary units,

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

C
O

S
T

 (
R

S
)

TOTAL WORK LOAD

'Total Cost Proposed' 'Total Cost MET' 'Total Cost Hu et al.'

'Total Cost Cai et al.' Total Cost Jena et al.' Total Cost Saurabh et al.'

 145

while MET, Hu et al., and Cai et al. have total costs of 262.20 monetary units, 295.10

monetary units, and 308.60 monetary units, respectively. Jena et al. found that the

lowest cost occurs at 10000 MIPS, with a total cost of 29.74938, while the highest

cost occurs at 80000 MIPS, with a total cost of 246.6054. Saurabh et al., on the other

hand, reveal that their least cost at 10,000 MIPS is 29.797 and their maximum cost at

70,000 MIPS is 208.434. These values provide critical insights into the financial

implications of workload management at various scales, providing a foundation for

further investigation.

Regarding the lowest total cost, the proposed algorithm outperforms MET, Hu et al.'s

algorithm, Cai et al.'s algorithm, Jena et al. algorithm and Saurabh et al. algorithm for

most of the workload scenarios. However, in the case of the highest total cost, the

proposed algorithm consistently performs better than Hu et al. and Cai et al. but falls

slightly short compared to MET for some workloads.

5.2.3.2 Percentage Improvement in Cost

To evaluate the % improvement in cost of the proposed algorithm over other

algorithms, we calculate the percentage change in total cost for each workload

scenario.

At a workload of 10,000 MIPS, the proposed algorithm demonstrates a %

improvement in cost of approximately 18% over MET. It also exhibits a %

improvement of around 18% and 5% over Hu et al.'s algorithm and Cai et al.'s

algorithm, respectively. These improvements indicate the potential of the proposed

algorithm to minimize costs and make it more cost-effective.

 146

Figure 5.7 Cost Improvement

As the workload increases, the % improvement in cost of the proposed algorithm

varies. At 50,000 MIPS, the % improvement over MET reaches approximately 15%,

while it is approximately 5% and 18% over Hu et al.'s algorithm and Cai et al.'s

algorithm, respectively. The variation in % improvement suggests that the proposed

algorithm's cost-effectiveness is dependent on the workload scenario.

At the highest workload of 100,000 MIPS, the proposed algorithm achieves a %

improvement in cost of approximately 9% over MET. It shows a % improvement of

about 24% and 3% over Hu et al.'s algorithm and Cai et al.'s algorithm, respectively.

Across multiple workload levels, the proposed technique consistently improves cost

efficiency. The percentage improvements for Jena et al. range from about 0.22% to

88.3%, whereas Saurabh et al. range from about 2.14% to 49.43%. These numbers

demonstrate the significant benefits provided by the suggested strategy in terms of

system performance and cost-effectiveness.

1
8

.3
1

7
9

2
2

0
7

1
9

.2
8

8
8

8
9

0
3

3
.7

4
2

4
2

1
0

4
7

9
.6

3
4

6
0

5
0

5
1

1
5

.4
7

6
1

8
1

9

1
9

.9
3

4
2

5
2

3
3

1
5

.2
4

2
3

3
7

2
3

1
1

.4
0

9
5

5
5

1
7

2
1

.3
4

6
5

4
1

5
6

9
.2

0
1

8
9

4
7

6
6

1
8

.3
3

7
2

6
2

7
5

1
8

.2
8

4
7

6
9

8

6
.3

2
5

0
3

0
8

2
1

1
.3

9
2

5
9

4
3

3

1
9

.3
7

6
0

2
1

7
6

8
.0

1
5

5
8

9
3

9
5

1
9

.3
6

5
2

5
4

0
3

2
2

.2
9

3
9

7
8

4
6

2
0

.9
6

8
2

9
5

5
4

1
9

.3
2

5
1

7
1

0
5

1
4

.0
1

4
6

2
4

0
2

3
.6

2
9

2
6

1
6

9
7

9
.5

0
2

6
8

3
2

4
6

6
.0

2
4

0
2

9
0

5
8

6
.5

3
2

9
9

1
4

4
8

1
0

.7
7

5
4

1
6

2
2

3
.0

5
6

1
1

4
8

4
1

1
4

.6
6

7
6

0
4

4
9

1
1

.6
3

7
1

1
2

9
5

2
2

.8
5

4
1

5
2

3
5

1
8

.8
4

8
0

6
5

8
7

1
9

.8
6

6
0

6
3

1
3

4
.3

6
7

6
5

0
0

6
6

9
.8

1
8

6
9

6
1

3
5

1
5

.7
3

7
8

6
2

9
2

2
0

.2
9

3
3

4
5

2
1

1
5

.6
2

8
3

5
0

1
1

1
1

.7
7

2
7

0
5

5
6

2
2

.0
0

8
5

3
0

0
3

9
.8

4
7

9
2

2
6

9
7

1
8

.9
7

7
7

3
8

8
8

1
9

.0
6

1
7

3
7

0
5

6
.6

1
0

4
1

3
6

6
2

2
.1

9
0

9
3

1
2

2

1
9

.7
3

1
4

5
5

7
8

8
.0

3
7

9
4

5
3

8
2

1
9

.8
4

2
2

6
3

2

2
2

.7
6

2
0

3
3

1
2

2
1

.4
5

6
3

7
6

5
2

1
9

.4
6

1
6

0
0

2
4

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

C
O

S
T

 I
M

P
R

O
V

E
M

E
N

T
 (

%
)

TOTAL WORK LOAD

Cost improvement over MET Cost improvement over Hu et al.

Cost improvement over Cai et al. Cost improvement over Jena et al.

Cost improvement over Saurabh et al.

 147

5.2.3.3 Discussion on Improvement in Cost

The suggested algorithm's effectiveness in resource management and cost reduction is

demonstrated by the comparison of total cost values and percentage improvement in

cost. The suggested approach optimises job scheduling and lowers overall costs by

using flower pollination and Q-learning. The observed % improvement in cost

underscores the adaptability and cost-effectiveness of the proposed algorithm in

handling varying workload scenarios. The algorithm's ability to dynamically allocate

resources and optimize task scheduling contributes to its consistent improvement in

cost over MET algorithm, Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et al.

algorithm and Saurabh et al. algorithm for most workload ranges. In terms of cost

effectiveness, the suggested strategy consistently outperforms Jena et al. and Saurabh

et al. across a range of workload levels. The findings indicate that the proposed

strategy represents a more financially sound approach to workload management, with

possible savings and efficiency advantages. Such cost-effectiveness is critical in

today's computer settings, where resource management is essential for increasing

performance while decreasing operational costs. Thus, the analysis emphasizes the

proposed method's critical significance in improving system efficiency and cost-

effectiveness when managing various workloads.

 CO2 Emission Analysis 5.2.4

Table 5.4 represents the variation in the carbon emission of the proposed work and is

compared against different MET algorithm, Hu et al.'s algorithm, Cai et al.'s

algorithm, Jena et al. algorithm and Saurabh et al. algorithm.

Table 5.4 Comparative Analysis Based on CO2 Emission

'Total

workloa

d in

MIPS'

'CO2

Proposed'

'CO2

MET'

'CO2 Hu

et al.'

'CO2 Cai

et al.'

CO2

Jena et

al.'

CO2

Saurab

h et al.'

10000
16.271688

93

17.285727

38

17.342123

3

17.862114

38

17.3414

3

17.3830

5

20000
31.749899

9

35.145586

25

36.954361

61

35.052033

24

35.4852

1

37.2992

2

 148

30000
45.281770

8

50.271177

81

55.400451

44

57.402802

28

50.6478

2

55.7994

9

40000
56.684175

35

70.941477

29

59.533591

32

65.224223

72

71.1055

9

59.6340

5

50000
72.869392

89

93.901987

31

82.443844

77

93.425921

19

94.6414

7

83.0900

6

60000
87.328843

04

95.949279

09

93.183245

72

95.512944

35

96.2787

5

93.9474

6

70000
101.47427

82

122.04904

95

109.05286

88

115.95827

88

122.570

9

110.010

2

80000
114.40340

52

138.45642

51

139.88572

5

140.41476

33

138.924

4

140.712

3

90000
130.04656

77

133.39797

24

149.57301

66

150.39585

12

133.914

3

150.857

2

100000
141.87175

59

177.79366

4

150.22253

72

154.80414

5

179.093

3

151.342

5

The comparative analysis based on CO2 Emission observed with respect to variation

in the load is illustrated in Figure 5.8.

Figure 5.8 Comparative Analysis based on CO2 Emission

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

C
O

2
 E

M
IS

S
IO

N
 (

M
T

)

TOTAL WORK LOAD

'CO2 Proposed' CO2 MET' 'CO2 Hu et al.'

'CO2 Cai et al.' CO2 Jena et al.' CO2 Saurabh et al.'

 149

5.2.4.1 Minimum and Maximum Value Scenarios

The CO2 emission analysis for different methods, namely Proposed, MET algorithm,

Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et al. algorithm and Saurabh et al.

algorithm is presented across a spectrum of total workload scenarios. The data reveals

distinct minimum and maximum CO2 emission values associated with each method.

Examining the extremities of these values provides insights into the potential range of

emissions under various workloads.

 When considering the "Total Workload in MIPS," the minimum CO2 emissions are

observed with the Proposed method at 10,000 MIPS, registering a value of 16.27Mt.

On the other end of the spectrum, the maximum CO2 emissions occur for the

Proposed method at 100,000 MIPS, indicating a value of 141.87Mt. Jena et al. found

that the minimal throughput occurs at a total workload of 10000 MIPS, with a CO2

emission of 17.34143Mt. In contrast, the greatest throughput occurs at 100,000 MIPS,

with a CO2 emission of 94.64147Mt. Saurabh et al. propose a different scenario.

Their lowest throughput is 10000 MIPS, with a CO2 emission of 17.38305Mt, and

their highest throughput is 80000 MIPS, with a CO2 emission of 140.7123Mt. The

significant variation between the lowest and greatest numbers highlights how

sensitive CO2 emissions are to shifts in workload. The variation between minimum

and maximum values prompts a consideration of the factors contributing to this

discrepancy. While lower workloads result in relatively lesser CO2 emissions, higher

workloads appear to lead to an increase in emissions across all methods. This trend

highlights the importance of workload management in mitigating the environmental

impact of these methods.

5.2.4.2 Percentage Improvement

 An essential metric in assessing the environmental impact of different methods is the

percentage improvement in CO2 emissions. By comparing the CO2 emissions of each

method to the Proposed method, we can quantify the level of improvement or

divergence in emissions. Calculating the percentage improvement reveals that, in

general, the other methods exhibit negative improvements when compared to the

 150

Proposed method. The CO2 MET method, for instance, reflects a rise in the emission

across the range of total workloads. This indicates that, at various workloads, the CO2

MET method produces emissions around 6.24% higher than the Proposed method.

Jena et al.'s maximum throughput at 100,000 MIPS (CO2: 94.64147) is approximately

445% higher than their minimum at 10,000 MIPS (CO2: 17.34143). Saurabh et al.

reported a % increase in CO2 emissions from minimal to maximum throughput. At

80000 MIPS, CO2 emissions are 140.7123, compared to 17.38305 at 10000 MIPS,

representing a 708% increase in CO2 emissions.Similar observations are made for the

CO2 emission by MET algorithm, Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et

al. algorithm and Saurabh et al. algorithm.

Figure 5.9 CO2 Emission Improvement

These negative percentage improvements highlight the superiority of the Proposed

method in terms of CO2 emissions. The fact that all other methods yield higher

emissions compared to the Proposed method underlines the environmental advantage

of the latter, making it a preferable choice for reducing carbon footprint.

1
8

.3
1

7
9

2
2

0
7

1
9

.2
8

8
8

8
9

0
3

3
.7

4
2

4
2

1
0

4
7

9
.6

3
4

6
0

5
0

5
1

1
5

.4
7

6
1

8
1

9

1
9

.9
3

4
2

5
2

3
3

1
5

.2
4

2
3

3
7

2
3

1
1

.4
0

9
5

5
5

1
7

2
1

.3
4

6
5

4
1

5
6

9
.2

0
1

8
9

4
7

6
6

1
8

.3
3

7
2

6
2

7
5

1
8

.2
8

4
7

6
9

8

6
.3

2
5

0
3

0
8

2
1

1
.3

9
2

5
9

4
3

3

1
9

.3
7

6
0

2
1

7
6

8
.0

1
5

5
8

9
3

9
5

1
9

.3
6

5
2

5
4

0
3

2
2

.2
9

3
9

7
8

4
6

2
0

.9
6

8
2

9
5

5
4

1
9

.3
2

5
1

7
1

0
5

1
4

.0
1

4
6

2
4

0
2

3
.6

2
9

2
6

1
6

9
7

9
.5

0
2

6
8

3
2

4
6

6
.0

2
4

0
2

9
0

5
8

6
.5

3
2

9
9

1
4

4
8

1
0

.7
7

5
4

1
6

2
2

3
.0

5
6

1
1

4
8

4
1

1
4

.6
6

7
6

0
4

4
9

1
1

.6
3

7
1

1
2

9
5

2
2

.8
5

4
1

5
2

3
5

1
8

.8
4

8
0

6
5

8
7

1
9

.8
6

6
0

6
3

1
3

4
.3

6
7

6
5

0
0

6
6

9
.8

1
8

6
9

6
1

3
5

1
5

.7
3

7
8

6
2

9
2

2
0

.2
9

3
3

4
5

2
1

1
5

.6
2

8
3

5
0

1
1

1
1

.7
7

2
7

0
5

5
6

2
2

.0
0

8
5

3
0

0
3

9
.8

4
7

9
2

2
6

9
7

1
8

.9
7

7
7

3
8

8
8

1
9

.0
6

1
7

3
7

0
5

6
.6

1
0

4
1

3
6

6
2

2
.1

9
0

9
3

1
2

2

1
9

.7
3

1
4

5
5

7
8

8
.0

3
7

9
4

5
3

8
2

1
9

.8
4

2
2

6
3

2

2
2

.7
6

2
0

3
3

1
2

2
1

.4
5

6
3

7
6

5
2

1
9

.4
6

1
6

0
0

2
4

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

C
O

2
 E

M
IS

S
IO

N
 I

M
P

R
O

V
E

M
E

N
T

 (
%

)

TOTAL WORK LOAD

Cost improvement over MET Cost improvement over Hu et al.

Cost improvement over Cai et al. Cost improvement over Jena et al.

Cost improvement over Saurabh et al.

 151

5.2.4.3 Discussion of Improvement

The observed patterns in CO2 emissions and percentage improvements warrant a more

comprehensive discussion of the implications. The consistently higher emissions

exhibited by the MET algorithm, Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et

al. algorithm and Saurabh et al. algorithm raise questions about the underlying factors

contributing to these outcomes. The negative percentage improvements emphasize

that the Proposed method stands out as the more environmentally responsible option

among the evaluated methods. While the other methods might offer certain

advantages in terms of performance or efficiency, the presented data underscores the

trade-off with higher CO2 emissions. Jena et al.'s technique shows significant

improvement in throughput with increased workload, but at the expense of a

significant increase in CO2 emissions. This implies that their methods could be

optimized for high workload circumstances, but environmental problems may need to

be addressed. In contrast, Saurabh et al.'s technique shows a distinct trend. While their

throughput increases with workload, the rate of rise in CO2 emissions is significantly

higher than Jena et al.'s method. This suggests that resource use may need to be

optimized in order to properly balance performance with environmental impact.

However, it's important to consider the broader context within which these methods

are applied. Depending on the specific industry, application, or priorities of

stakeholders, other factors might influence method selection beyond CO2 emissions

alone. Thus, while the Proposed method exhibits better environmental performance,

the decision-making process should also encompass a holistic evaluation of all

relevant aspects.

 In conclusion, the CO2 emission analysis and the subsequent examination of

minimum and maximum scenarios, percentage improvements, and the implications

thereof underscore the importance of sustainable choices in method selection. The

findings reinforce the need to strike a balance between performance and

environmental impact, encouraging industries to prioritize methods with lower CO2

emissions while considering all pertinent factors.

 152

As illustrated in Figure 5.10, the suggested system's study on a local server indicates

negligible percentage variations across key parameters, emphasising the effectiveness

of local processing. The difference in Energy Consumption (EC) is only 2.06%,

showing a small variation between the local server's computation (0.408267678KJ)

and the proposed value (0.3998704KJ). This minor difference highlights the precision

and dependability of local server-based analysis in capturing and processing energy-

related data.

When comparing Cost metrics, the percentage difference is only 2.82%. The local

server computation (Rs135.6440148) closely matches the projected cost

(Rs131.8212), indicating the local server's capacity to produce accurate results. This

minor difference highlights the consistency and trustworthiness of local server

analysis in financial analyses.

Figure 5.10 Realtime AWS based Multicloud Comparison with Local Servers

The percentage difference in environmental impact as assessed by CO2 Emission, is

minor at 2.44%. The estimated result from the local server (81.79313224Mt) closely

matches the projected CO2 emission (79.79817779Mt). This alignment highlights the

local server's ability to provide precise insights into environmental implications,

demonstrating its proficiency in processing sustainability-related computations.

0.394

0.396

0.398

0.4

0.402

0.404

0.406

0.408

0.41

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
K

J)

129

130

131

132

133

134

135

136

C
o

st
 (

R
s)

78.5

79

79.5

80

80.5

81

81.5

82
C

O
2

 E
m

is
si

o
n

 (
M

t)

 153

These little percentage deviations show that a local server provides a dependable and

efficient platform for analysing the proposed system. Local servers' closeness and

control contribute to consistency of findings, minimizing potential differences that

may develop in more distributed or multicloud situations. As organizations prioritise

resource efficiency and accurate decision-making, the minor percentage variations

found in this investigation highlight the validity and practicality of utilizing local

servers for these purposes.

 Throughput Analysis 5.2.5

The table 5.5 shows an examination of throughput using various approaches based on

different total workloads in MIPS. Throughput, as measured in CO2 emissions, is an

important parameter for assessing the efficiency and environmental impact of

computer processes. The table contains data from six different methodologies:

proposed, MET, Hu et al., Cai et al., Jena et al., and Saurabh et al. The throughput of

each methodology is examined throughout increasing total workloads to gain insights

into its environmental performance.

Table 5.5 Comparative Analysis Based on Throughput

'Total

work

load in

MIPS'

Through

put

proposed'

Through

put MET'

Through

put Hu et

al.'

Through

put Cai et

al.'

Through

put Jena

et al.'

Through

put

Saurabh

et al.'

10000 8454.03 8301.14 8140.39 8042.49 8126.27 8130.13

20000 8488.46 8327.13 8227.92 8078.71 8170.49 8205.94

30000 8540.23 8425.15 8245.8 8166.35 8176.64 8250.59

40000 8580.28 8516.99 8311.99 8197.21 8186.79 8256.8

50000 8633.23 8572.45 8394.03 8284.61 8223.9 8267.05

60000 8667.89 8636.14 8420.42 8338.43 8275.63 8304.52

70000 8754.3 8739 8495.43 8365.72 8333.9 8356.76

80000 8759.1 8754.52 8540.24 8401.84 8362.69 8415.6

90000 8819.94 8781.12 8551.18 8411.94 8446.34 8444.68

100000 8898.94 8865.56 8649.26 8479.39 8480.3 8529.14

 154

Figure 5.11 Comparative Analysis based on Throughput

5.2.5.1 Minimum maximum value scenarios for Throughput

The throughput data shows separate lowest and maximum values for each model. The

suggested model's lowest throughput is 8454.03 Mbps with a workload of 10,000

MIPS, while its maximum throughput is 8898.94 Mbps at 100,000 MIPS. The MET

model calculates a minimum of 8301.14 Mbps at 10,000 MIPS and a maximum of

8865.56 Mbps at 100,000 MIPS. Hu et al. reported a minimum throughput of 8140.39

Mbps at 10,000 MIPS and a maximum of 8649.26 Mbps at 100,000 MIPS. The Cai et

al. model achieves a minimum throughput of 8042.49 Mbps at 10,000 MIPS and a

maximum of 8479.39 Mbps at 100,000 MIPS. The Jena et al. model's minimum is

8126.27 Mbps at 10,000 MIPS, while its highest is 8480.30 Mbps at 100,000 MIPS.

Finally, the Saurabh et al. model achieves a minimum throughput of 8130.13 Mbps at

10,000 MIPS and a maximum of 8529.14 Mbps at 100,000 MIPS. These results

demonstrate the suggested model's higher performance at all workload levels.

5.2.5.2 Percentage Improvement

The percentage improvement of the suggested model over other models is an

important measure. For instance, at 10,000 MIPS, the suggested model outperforms

the MET model by 1.84%, indicating a moderate increase. This workload improves

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

T
H

R
O

U
G

H
P

U
T

 (
M

B
P

S
)

TOTAL WORK LOAD

Throughput proposed' Throughput MET' Throughput Hu et al.'

Throughput Cai et al.' Throughput Jena et al.' Throughput Saurabh et al.'

 155

by 3.85% over Hu et al. and by 5.12% over Cai et al. The gains over Jena et al. and

Saurabh et al. are 4.03% and 3.98%, respectively. At 100,000 MIPS, the suggested

model outperformed Hu et al. by 2.89%, indicating a significant performance

advantage at greater workloads. Across all workload levels, the average improvement

over MET is 0.80%; over Hu et al. is 3.12%; over Cai et al. is 4.63%; over Jena et al.

is 4.60%; and over Saurabh et al. is 4.13%. These enhancements highlight the

proposed model's persistent capacity to outperform its contemporaries.

Figure 5.12 Throughput Improvement

5.2.5.3 Discussion of Improvement

The proposed model's advantages over other models can be studied in depth to further

comprehend its superior performance. The constant improvement over the MET

model, with an average of 0.80%, indicates that, while MET is efficient, the suggested

model's improvements produce superior outcomes. The large average improvement of

3.12% above Hu et al. demonstrates the suggested model's sophisticated handling of

1
.8

4
1

7
9

5
2

2
3

1
.9

3
7

4
0

2
2

0
2

1
.3

6
5

9
1

0
3

9
9

0
.7

4
3

1
0

2
9

0
4

0
.7

0
9

0
1

5
5

0
9

0
.3

6
7

6
4

1
0

9
9

0
.1

7
5

0
7

7
2

4

0
.0

5
2

3
1

5
8

3
2

0
.4

4
2

0
8

4
8

3
7

0
.3

7
6

5
1

3
1

5
9

3
.8

5
2

8
8

6
6

5
5

3
.1

6
6

5
3

5
4

0
6

3
.5

7
0

6
6

6
2

7
9

3
.2

2
7

7
4

6
9

0
5

2
.8

4
9

6
4

4
3

3
1

2
.9

3
8

9
2

7
0

3
7

3
.0

4
7

1
6

7
7

1
3

2
.5

6
2

6
9

1
4

4
7

3
.1

4
2

9
5

8
0

4
8

2
.8

8
6

7
2

0
9

4
5

5
.1

1
7

0
7

1
9

5
2

5
.0

7
1

9
7

3
1

2
4

4
.5

7
8

2
9

9
9

7
5

4
.6

7
3

1
7

5
3

8
5

4
.2

0
8

0
4

3
5

8
9

3
.9

5
1

1
0

3
5

0
5

4
.6

4
4

9
0

8
0

2
9

4
.2

5
2

1
6

3
8

1
2

4
.8

5
0

2
4

8
5

7
5

4
.9

4
7

8
7

9
5

0
5

4
.0

3
3

3
3

8
7

8
9

3
.8

9
1

6
8

8
2

5
9

4
.4

4
6

6
9

2
0

4

4
.8

0
6

4
0

1
5

3
2

4
.9

7
7

3
2

2
1

9
5

4
.7

3
9

9
4

1
2

4
9

5
.0

4
4

4
5

6
9

7
7

4
.7

4
0

2
2

1
1

4
9

4
.4

2
3

2
1

7
6

3

4
.9

3
6

6
1

7
8

0
8

3
.9

8
3

9
4

6
1

3
6

3
.4

4
2

8
7

1
8

7
1

3
.5

1
0

5
3

6
8

2
2

3
.9

1
7

7
4

0
5

2
9

4
.4

2
9

3
9

1
3

7
9

4
.3

7
5

5
6

8
9

6
7

4
.7

5
7

1
0

6
8

2
1

4
.0

8
1

7
0

5
4

0
4

4
.4

4
3

7
4

4
4

6
4

4
.3

3
5

7
2

4
3

5
2

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

T
H

R
O

U
G

H
P

U
T

IM

P
R

O
V

E
M

E
N

T
 (

%
)

TOTAL WORK LOAD

Throughput improvement over MET Throughput improvement over Hu et al.

Throughput improvement over Cai et al. Throughput improvement over Jena et al.

Throughput improvement over Saurabh et al.

 156

computational workloads. The highest average improvement of 4.63% over Cai et al.

demonstrates the suggested model's efficiency and the possibility for significant

improvements in Cai et al.'s methodologies. Similarly, the proposed model's 4.60%

improvement over Jena et al. indicates areas where Jena et al. could improve their

throughput, presumably by implementing more effective resource management and

scheduling strategies. Finally, the 4.13% improvement over Saurabh et al.

demonstrates that, while Saurabh et al. perform admirably, there is still room to

improve their algorithms to meet the suggested model's efficiency. Overall, the

proposed model establishes a standard for throughput performance, illustrating the

advantages of enhanced computational procedures and efficient resource utilization.

 Makespan Analysis 5.2.6

The table below provides a complete examination of makespan metrics across several

approaches in the context of workload processing as measured in MIPS (million

instructions per second). Makespan, a critical computing performance parameter,

refers to the time necessary to finish a specific workload or job. In this study, we look

at makespan values derived from various proposed approaches, including the

proposed methodology, MET, Hu et al., Cai et al., Jena et al., and Saurabh et al.s

Table 5.6 Comparative Analysis Based on Makespan

'Total

work

load in

MIPS'

Makespa

n

Proposed

'

Makespa

n MET'

Makespa

n Hu et

al.'

Makespa

n Cai et

al.'

Makespa

n Jena et

al.'

Makespa

n

Saurabh

et al.'

10000 9.880562 10.22469 10.31692 10.32518 10.33434 10.24134

20000 11.46327 11.61763 11.72806 11.75125 11.75735 11.61927

30000 14.46836 14.55191 14.68819 14.74986 14.77306 14.55981

40000 12.55526 12.76464 12.98081 13.04331 13.05941 12.7656

50000 15.80904 16.08089 16.24624 16.30195 16.31159 16.09967

60000 12.88813 12.89907 13.05784 13.05827 13.07463 12.91854

70000 11.60311 11.74054 11.79842 11.83584 11.84289 11.75088

80000 15.54845 15.58789 15.82749 15.86311 15.89301 15.58941

90000 16.19151 16.29844 16.59886 16.60054 16.6131 16.30393

100000 17.79056 17.93962 18.072 18.10905 18.11009 17.96348

 157

Figure 5.13 Comparative Analysis based on Makespan

5.2.6.1 Minimum maximum value scenarios for Makespan

The comparison of makespan values across several models, measured in seconds (s),

shows that the proposed model consistently has the shortest makespan, demonstrating

efficiency. At the 10,000 MIPS workload, the proposed model has a minimum

makespan value of 9.880562 s, beating all other models. The MET model has a

slightly longer makespan (10.22469 s), followed by Hu et al. (10.31692 s), Cai et al.

(10.32518 s), Jena et al. (10.33434), and Saurabh et al. (10.24134 s). The maximum

makespan for the proposed model is seen at the 100,000 MIPS workload, with a value

of 17.79056 seconds. This remains lower than the maximum makespan values for

MET (17.93962 s), Hu et al. (18.072 s), Cai et al. (18.10905 s), Jena et al. (18.11009

s), and Saurabh et al. (17.96348 s). These findings demonstrate the proposed model's

improved performance in reducing the time necessary to accomplish activities across

a variety of workload scenarios.

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

M
A

K
E

S
P

A
N

 (
S

)

TOTAL WORK LOAD

Makespan Proposed' Makespan MET' Makespan Hu et al.'

Makespan Cai et al.' Makespan Jena et al.' Makespan Saurabh et al.'

 158

5.2.6.2 Percentage Improvement

The suggested model significantly improves makespan values over previous research,

including MET, Hu et al., Cai et al., Jena et al., and Saurabh et al. At the 10,000 MIPS

workload, the suggested model achieves a makespan of 9.880562 s, which is a 3.37%

improvement over MET, 4.23% over Hu et al., 4.31% over Cai et al., 4.39% over Jena

et al., and 3.5% over Saurabh et al. Across all workloads, the average percentage

improvements are 0.80% over MET, 3.12% over Hu et al., 4.63% over Cai et al.,

4.60% over Jena et al., and 4.13% over Saurabh et al., with the greatest gains

observed at lower workloads such as 10,000 MIPS and significant improvements

maintained at higher workloads such as 100,000 MIPS. . These constant decreases in

makespan across varied workload levels demonstrate the proposed model's higher

efficiency in resource allocation and task scheduling, making it a more effective

option for optimizing computational jobs than previous methods.

Figure 5.14 Makespan Improvement

3
.3

6
5

6
5

2
6

5
2

1
.3

2
8

6
8

9
4

6
1

0
.5

7
4

1
8

3
6

2
7

1
.6

4
0

3
0

6
2

0
5

1
.6

9
0

5
3

7
7

7
5

0
.0

8
4

8
0

7
9

9

1
.1

7
0

5
2

8
2

2
3

0
.2

5
3

0
1

6
9

2
5

0
.6

5
6

0
7

5
5

4
6

0
.8

3
0

8
9

2
4

1

4
.2

2
9

5
3

3
1

3
7

2
.2

5
7

7
6

6
6

3
3

1
.4

9
6

6
7

6
4

7
7

3
.2

7
8

2
9

4
5

1
3

2
.6

9
1

1
0

5
8

8
1

1
.2

9
9

6
7

4
6

9
4

1
.6

5
5

3
6

0
0

7
6

1
.7

6
3

0
0

8
5

3
8

2
.4

5
4

0
8

4
6

7
4

1
.5

5
7

3
2

0
3

9
1

4
.3

0
6

1
4

8
1

7
5

2
.4

5
0

6
5

1
8

4
9

1
.9

0
8

5
2

4
4

5
1

3
.7

4
1

7
5

8
6

6
3

3
.0

2
3

6
4

7
6

0
1

1
.3

0
2

9
2

4
8

2
9

1
.9

6
6

2
8

4
8

9
6

1
.9

8
3

5
9

5
9

0
3

2
.4

6
3

9
5

6
4

6
9

1
.7

5
8

7
2

8
0

4
5

4
.3

9
0

9
6

7
8

8
1

2
.5

0
1

2
6

2
8

3

2
.0

6
2

5
6

9
8

7
1

3
.8

6
0

4
2

8
4

7
2

3
.0

8
0

9
5

9
7

3
5

1
.4

2
6

4
2

2
3

3
1

2
.0

2
4

6
4

3
7

6
8

2
.1

6
7

9
9

7
1

2
6

2
.5

3
7

6
9

6
6

3
2

1
.7

6
4

3
6

9
7

0
2

3
.5

2
2

7
1

9
5

9
6

1
.3

4
2

6
1

6
4

0
7

0
.6

2
8

1
3

7
8

5
6

1
.6

4
7

7
1

8
4

7

1
.8

0
5

2
0

8
0

4
5

0
.2

3
5

4
1

6
9

6
6

1
.2

5
7

4
8

3
2

4
3

0
.2

6
2

7
4

2
4

6
4

0
.6

8
9

4
9

7
0

3
4

0
.9

6
2

6
3

0
3

5
9

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

M
A

K
E

S
P

A
N

IM

P
R

O
V

E
M

E
N

T
 (

%
)

TOTAL WORK LOAD

Makespan improvement over MET Makespan improvement over Hu et al.

Makespan improvement over Cai et al. Makespan improvement over Jena et al.

Makespan improvement over Saurabh et al.

 159

Overall, the suggested model produces lower makespan values than existing models at

all workload levels. The gains are significant, with average percentage increases

ranging from 0.80% over MET to 4.63% over Cai et al. These findings demonstrate

the effectiveness and robustness of the proposed model's scheduling and resource

management strategies, making it an excellent alternative for optimizing

computational activities across a wide range of workload conditions.

5.2.6.3 Discussion of Improvement

The suggested model's lower makespan values demonstrate its superior scheduling

and resource management capabilities when compared to existing models. Its better

performance is visible at all workload levels, with considerable gains over the MET,

Hu et al., Cai et al., Jena et al., and Saurabh et al. models. The steady reduction in

makespan, even at lower workloads like 10,000 MIPS, indicates that the suggested

model allocates resources and schedules jobs more efficiently. At greater workloads,

such as 100,000 MIPS, the model remains efficient, indicating strong performance

under increased demand.

The average percentage improvements bolster the proposed model's benefits. For

example, it improves by an average of 3.37% over the MET model at 10,000 MIPS

and 1.56% over Hu et al. at 100,000 MIPS. These enhancements demonstrate the

model's ability to handle various workload circumstances well.

In conclusion, the suggested model's consistent performance in minimizing makespan,

combined with large percentage improvements over existing models, demonstrates

superior scheduling and resource management tactics. This makes it an extremely

efficient solution for optimizing computing operations with fluctuating workload

levels. Models such as Jena et al. and Saurabh et al. could benefit from implementing

similar optimization strategies to improve speed and reduce makespan values.

 160

 Comparative Analysis 5.2.7

A comparative analysis of different studies and the parameters are summarized in

Table 5.7 using average values for each of the parameters discussed in the results

section.

Table 5.7 Comparative Analysis

Parameters Proposed MET [59]
Hu et al.

[64]

Cai et al.

[106]

Jena et al.

[95]

Saurabh

et al.

[131]

Energy

Consumption

(KJ)

0.39987 0.4645547 0.456221 0.459385 0.466659 0.459059

Cost (Rs) 131.8212 154.32189 159.0249 150.0256 155.1786 159.7723

CO2 Emission

(Mt)
79.79818 93.519234 89.35918 92.60531 94.00032 90.00755

Training Time

(hrs)
3.15138 2.985002 2.82762 2.768755 3.01241 2.98457

Inference Time

(sec)
39.80421 39.63803 39.42948 38.8899 39.1274 38.9475

Throughput

(Mbps)
8659.64 8591.92 8397.666 8276.669 8278.295 8316.121

Makespan (s) 13.81982 13.97053 14.13148 14.16384 14.17695 13.98119

Figure 5.15 Comparative Analysis of Energy

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Proposed MET Hu et al. Cai et al. Jena et al. Saurabh et al.

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

K
J)

Comparative Analysis of Energy Consumption

 161

Figure 5.15 provides the data which presents the average energy consumption values

from different sources: Proposed, MET, Hu et al., Cai et al., Jena et al. and Saurabh et

al. with respective figures of 0.39987 KJ, 0.4645547 KJ, 0.456221 KJ, 0.459385 KJ

0.466659 KJ, and 0.459059 KJ, respectively. These values are indicative of a specific

context, likely a technology or process evaluation where energy efficiency is

significant. It can be seen from the results that, the Proposed approach demonstrates

the lowest energy consumption at 0.39987, suggesting its potential as the most

energy-efficient. In contrast, the Cai et al. approach records the highest consumption

at 0.459385. While the difference may appear insignificant, even minor reductions in

energy use can have considerable environmental and cost savings, particularly when

scaled up for large-scale deployment.

Figure 5.16 Comparative Analysis of Cost

Figure 5.16 represents the comparative analysis that encompasses cost values

originating from distinct sources: Proposed, MET, Hu et al., Cai et al., Jena et al. and

Saurabh et al. reflecting respective figures of 131.8212, 154.32189, 159.02489, and

150.02562, 155.1786 and 159.7723, respectively. This dataset is situated within a

specific domain, likely characterized by technological or operational assessments

where cost efficiency constitutes a central tenet. Upon comprehensive scrutiny, the

"Proposed" approach surfaces as the most economically efficient, with a notably

modest cost of 131.8212. Conversely, the "Hu et al." reflects the highest cost,

amounting to 159.02489, Jena et al. reported a lower cost (Rs 155.1786) than Saurabh

et al. (Rs 159.7723). Cost-effectiveness is critical, especially in resource-constrained

0

20

40

60

80

100

120

140

160

180

Proposed MET Hu et al. Cai et al. Jena et al. Saurabh et al.

C
o

st
 (

R
s)

Comparative Analysis of Cost

 162

environments or when deploying models in commercial applications where expense

minimization is vital.

Figure 5.17 Comparative Analysis of CO2 Emission

Figure 5.17 encapsulates CO2 emission values from various sources: Proposed, MET,

Hu et al., Cai et al., Jena et al. and Saurabh et al. representing values of 79.79817779,

93.51923461, 89.35917658, and 92.60530775, respectively. This dataset is embedded

within a specific domain, likely centred around technological or operational

evaluations, with a focus on assessing environmental impact in terms of CO2

emissions. Upon analysis, it becomes evident that the "Proposed" approach exhibits

the lowest CO2 emissions at 79.79817779, suggesting a potential for superior

environmental efficiency. Conversely, the "Cai et al." approach registers the highest

CO2 emissions, amounting to 92.60530775, Jena et al.'s model (94.00032 Mt)

produces significantly larger CO2 emissions than Saurabh et al. (90.00755Mt). While

both models contribute to carbon emissions, the distinction highlights the significance

of improving models for both performance and environmental sustainability.

70

75

80

85

90

95

100

Proposed MET Hu et al. Cai et al. Jena et al. Saurabh et al.

C
O

2
 E

m
is

si
o

n
 (

M
t)

Comparative Analysis of CO2 Emission

 163

Figure 5.18 Complexity Analysis in Terms of Time

The complexity analysis is performed in terms of training time and the inference time

consumed by the proposed and the existing works. It has been observed that the

proposed work involves integration of various techniques and hence is justified to

consume more training and inference time in comparison to Hu et al., Cai et al., Jena

et al. and Saurabh et al. work. Reduced training time is advantageous since it saves

computational resources and accelerates the development cycle, allowing for faster

model iteration and deployment. Jena et al. and Saurabh et al. had similar inference

times, with Jena et al. slightly ahead (39.1274 sec) of Saurabh et al. (38.9475 sec).

Faster inference times are critical for real-time applications, ensuring prompt replies

and a better user experience. However, this small hike in the complexity can be

ignored when evaluated for the overall performance which is much higher than the

existing studies.

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

Proposed MET Hu et al. Cai et al. Jena et al. Saurabh et al.

T
ra

in
in

g
 T

im
e

(h
rs

)
Complexity Analysis in Terms of Training Time

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

40

Proposed MET Hu et al. Cai et al. Jena et al. Saurabh et al.

In
fe

re
n
ce

 T
im

e
(s

ec
)

Complexity Analysis in Terms of Inference Time

 164

Figure 5.19 Comparative Analysis of Throughput

Analyzing the throughput metrics across all studies, including the proposed

parameters and numerous referenced literature, reveals a continuous trend toward

high throughput values. The proposed model has the highest throughput of all of the

research provided, measuring 8659.64 Mbps. This is closely followed by MET and

Hu et al. who had throughput estimates of 8591.92 Mbps and 8397.666 Mbps. Cai et

al. reported throughput of 8276.67 Mbps, Saurabh et al. also report a competitive

throughput of 8316.121 Mbps while Jena et al. reported a throughput of 8278.3 Mbps.

Throughput, measured in Mbps (Megabits per second), represents the rate at which

data is successfully transmitted across a network. Higher throughput values indicate

more efficient data processing and transmission capabilities inside the system. The

persistent high throughput seen in these trials supports robust data handling and

processing, which is critical for real-time applications and large-scale data processing

jobs. This suggests that the recommended parameters and approaches, as well as those

used in the relevant studies, are effective at maintaining or improving data processing

efficiency when compared to existing models.

8000

8100

8200

8300

8400

8500

8600

8700

Proposed MET Hu et al. Cai et al. Jena et al. Saurabh et al.

T
h
ro

u
g
h
p

u
t

(M
b

p
s)

Comparative Analysis of Throughput

 165

Figure 5.20 Comparative Analysis of Makespan

However, when it comes to makespan, which refers to the overall duration of an

activity from start to finish, there are modest differences between research. The

proposed parameters have a makespan of 13.81982 seconds, but other research such

as Hu et al., Cai et al., Jena et al., and Saurabh et al. indicate makespan values ranging

from 13.97053 to 14.17695 seconds. This shows that, while specific approaches and

parameters may vary, the overall time required to execute activities remains rather

stable. Despite minor changes in training and inference times, the makespan values

show that the overall efficiency of task completion is similar among the examined

models. However, it's necessary. However, it is important to remember that even

slight increases in makespan can have a considerable impact, especially in time-

sensitive applications or settings with limited computational resources.

To summarize, the analysis of throughput and makespan demonstrates the efficiency

and usefulness of the recommended parameters, as well as those reported in the linked

research, in maintaining high throughput rates while assuring comparable task

completion durations. These findings highlight the importance of improving both data

processing efficiency and task completion durations when constructing and evaluating

machine learning models, especially in real-world applications with limited

computational resources and time.

13.6

13.7

13.8

13.9

14

14.1

14.2

14.3

Proposed MET Hu et al. Cai et al. Jena et al. Saurabh et al.

M
ak

es
p

an
 (

s0

Comparative Analysis of Makespan

 166

5.3 Summary of the Chapter

A new and effective method for job scheduling in cloud computing and Internet of

Things contexts is presented in this chapter. Comparing the suggested approach to

current state-of-the-art techniques, it shows notable performance increases by

combining flower pollination with Q-learning.

Through extensive simulations and evaluations, the proposed algorithm showcases its

capability to optimize task scheduling, resulting in reduced overall cost and CO2

emissions. The % improvement in cost and CO2 emissions demonstrates the

algorithm's effectiveness in resource management and its contribution to

environmentally sustainable computing practices.

The comparison research conducted with other notable algorithms, including those

developed by MET, Hu et al., Cai et al., Jena et al. and Saurabh et al. further confirms

the superiority of the suggested technique for cost-effectiveness, decreased carbon

dioxide emissions, and appropriate resource allocation. The integration of flower

pollination and Q-learning introduces a unique dimension to the scheduling process,

enabling the algorithm to provide cost-saving solutions and adapt to dynamic user

demands effectively.

Overall, the proposed algorithm offers significant advantages in handling scheduling

tasks for cloud computing and IoT environments. Its ability to optimize resource

allocation, reduce costs, minimize CO2 emissions, high throughput, low makespan,

low complexity makes it a valuable asset for modern computing infrastructures. While

both Jena et al. and Saurabh et al. exhibit competitive models, Jena et al.'s technique

has several advantages, including lower energy use, cost, and training time, as well as

equivalent performance in other critical parameters. These findings emphasize the

significance of rigorous parameter tuning and optimization in machine learning model

building in order to achieve optimal trade-offs between performance, cost, and

environmental impact. As cloud computing and IoT applications continue to grow, the

proposed approach holds great promise in enhancing the performance, sustainability,

and economic viability of these systems.

 167

The conclusions and insights presented in this chapter pave the way for more study in

the areas of job scheduling and optimisation techniques. The integration of nature-

inspired techniques with machine learning methodologies provides a promising

direction for exploring novel and efficient solutions for diverse resource management

challenges.

 168

CHAPTER 6: CONCLUSION

The research carried out by the proposed work represents a substantial advancement

in the field of multi-objective job scheduling and resource allocation. Traditional job

scheduling algorithms often focus on single objectives, such as minimizing job

completion time or maximizing throughput. In contemporary computer systems,

particularly in CC and data centres, it is imperative to optimise several objectives in

order to achieve equilibrium between competing performance measures. Reducing

power consumption is one of the main goals of the proposed study, as rising energy

costs have made power consumption a major problem in data centres and cloud

infrastructures. By incorporating Q-learning, the algorithm can intelligently optimize

allocation decisions based on rewards and penalties derived from previous scheduling

experiences. This reinforcement learning technique enables the algorithm to learn

from historical data and make informed decisions to minimize power consumption

effectively.

To achieve these objectives, the proposed work seamlessly combines Q-learning and

flower pollination. Inspired by plants' adaptive tendency to maximise their growth, the

FPA expands on the extensive search space and speeds up the process of finding

superior scheduling solutions. This metaheuristic optimization method efficiently

escapes local optima, making it an ideal companion to Q-learning's learning-based

approach.

The comprehensive results and evaluations of the proposed work demonstrate its

effectiveness in achieving the desired goals. Through extensive experimentation on

diverse datasets representing various real-world scenarios, the proposed work

consistently outperforms existing state-of-the-art algorithms. The % improvement in

cost and CO2 emissions illustrates the algorithm's superiority in achieving energy

efficiency and reducing operational costs compared to other traditional and

contemporary approaches. The comparative analysis against the MET algorithm and

those proposed by Hu et al., Cai et al., Jena et al. and Saurabh et al. validates the

 169

performance of the proposed work in terms of cost-effectiveness, reduced CO2

emissions, high throughput, low makespan, low complexity and efficient resource

allocation. Initially, the proposed work has been evaluated for two different

simulation scenarios.

6.1 Conclusion for Simulation Architecture 1 - Increasing Number of Users

The observations with respect to increase in the number of users from 50 to 490 is

summarized as follows:

1. The energy consumption for different numbers of users considered in the

analysis ranging from around 9.198KJ to 41.85KJ.

2. It also varies costs for different numbers of users and ranges from around

Rs292.988 to Rs603.902.

3. Proposed algorithm shows varying CO2 emissions for different numbers of

users, ranging from around 0.001Mt to 0.009Mt.

6.2 Conclusion for Simulation Architecture 2 - Increasing Load Amount

The observations with respect to increase in the load from 10000MIPS to

100000MIPS are summarised as follows:

1. At a workload increases the energy consumption for the proposed algorithm

ranges between 0.09075382KJ and 0.71641618KJ.

2. The proposed algorithm exhibits a total cost ranging between Rs24.14 and

Rs238.07.

3. The CO2 emission also varied with respect to work load and range from

16.27Mt to 141.87Mt.

4. The proposed approach requires 3.15138 hours of training, which is slightly

more than certain options that range from 2.768755 to 3.01241 hours.

5. The proposed technique has an inference time of 39.80421 seconds, which is

comparable to the alternatives (38.8899 to 39.63803).

 170

6. The proposed technique provides a high throughput of 8659.64 Mbps, which

is comparable to or better than the alternatives (8276.669 to 8591.92 Mbps).

7. The proposed method has a makespan of 13.81982 seconds, which is

comparable to existing ways ranging from 13.97053 to 14.17695 seconds.

6.3 Comparative Analysis

Energy Consumption of the proposed and the existing studies is as follows.

 Proposed Algorithm: Average energy consumption values range from

0.39987KJ to 0.716416KJ, showcasing its ability to consistently achieve lower

energy consumption across different workloads.

 MET Algorithm: The energy consumption ranges from 0.11606KJ to

0.790325KJ across different workloads.

 Hu et al. Algorithm: Energy consumption values range from 0.42657KJ to

0.790325KJ, indicating higher energy consumption compared to the proposed

approach.

 Cai et al. Algorithm: Energy consumption values range from 0.456221KJ to

0.772431KJ, demonstrating comparatively higher energy consumption.

 Jena et al.: Shows comparatively moderate energy consumption (0.459385

KJ), indicating a potential for efficiency improvement through optimization.

 Saurabh et al.: Shows a significantly higher energy consumption level of

0.466659 KJ, indicating the need for adjustments to reduce energy usage.

Cost analysis of the proposed and the existing studies is as follows.

 Proposed Algorithm: Average total cost values range from Rs24.1422 to

Rs238.069 monetary units, illustrating its consistent cost-effectiveness across

varying workloads.

 MET Algorithm: The total cost, in this case, ranges from Rs 29.5563 to

Rs269.327 monitory units across the variable workload values used in the

analysis.

 Hu et al. Algorithm: Total cost values range from Rs29.5633 to Rs295.097

monetary units, with higher costs compared to the proposed method.

 171

 Cai et al. Algorithm: Total cost values range from Rs28.0771 to Rs308.596

monetary units, indicating relatively higher costs.

 Jena et al.: Incurs a cost of Rs 150.0256, indicating a considerable investment

that may be made more cost-effectively.

 Saurabh et al.: Has a higher cost of Rs 155.1786, indicating possible areas for

cost reduction to increase affordability.

CO2 emission analysis of the proposed and the existing studies is as follows.

 Proposed Algorithm: CO2 emission values range from 16.27168893Mt to

141.8717559Mt, reflecting its ability to consistently achieve lower CO2

emissions.

 MET Algorithm: The emission values for the MET algorithm ranges from

17.28573Mt to 1777937Mt across different workload used in the analysis.

 Hu et al. Algorithm: CO2 emission values range from 17.3421233Mt to

150.2225372Mt, indicating higher emissions compared to the proposed

approach.

 Cai et al. Algorithm: CO2 emission values range from 17.86211438Mt to

154.804145Mt, demonstrating relatively higher emissions.

 Jena et al. reported CO2 emissions of 92.60531 Mt, falling within the range of

89.35918 Mt to 94.00032 Mt observed across all methodologies.

 Saurabh et al.: Produces even higher CO2 emissions of 94.00032 Mt, which

falls within the range of 89.35918 Mt to 94.00032 Mt recorded across all

methods.

Complexity analysis of the proposed and the existing studies is as follows.

 The suggested method has a training duration of 3.15 hours and an inference

time of 39.80 seconds, thereby balancing training and inference efficiency.

 MET has a training duration of 2.99 hours and an inference time of 39.64

seconds, suggesting effective model training and inference.

 Hu et al. accomplish a training time of 2.83 hours and an inference time of

39.43 seconds, demonstrating effective training and inference procedures.

 Cai et al. obtain a training time of 2.77 hours and an inference time of 38.89

seconds, demonstrating effective resource use.

 172

 Jena et al. show a training time of 3.01 hours and an inference time of 39.13

seconds, demonstrating efficiency in both training and inference tasks.

 Saurabh et al. obtain a training time of 2.98 hours and an inference time of

38.94 seconds, demonstrating effective model training and inference.

Throughput analysis of the proposed and the existing studies is as follows.

 The proposed approach produces a high throughput rate of 8276.669 to

8659.64 Mbps, indicating effective data transmission and processing

capabilities.

 MET achieves competitive throughput rates ranging from 8276.669 to 8591.92

Mbps, suggesting good data flow management inside the system.

 Hu et al. achieve throughput rates ranging from 8276.669 to 8397.666 Mbps,

demonstrating effective data processing and transmission efficiency.

 Cai et al. attain competitive throughput rates of 8276.669 to 8276.669 Mbps,

indicating effective data transmission and processing capabilities.

 Jena et al. demonstrate competitive throughput rates ranging from 8276.669 to

8276.669 Mbps, indicating that data flow is well managed inside the system.

 Saurabh et al. achieve comparable throughput rates ranging from 8276.669 to

8278.295 Mbps, demonstrating effective data processing and transmission

efficiency.

Makespan analysis of the proposed work and the existing works is as follows.

 The proposed work has a competitive makespan of 13.81982 to 14.17695

seconds, suggesting efficient task scheduling and completion inside the

system.

 MET ensures a competitive makespan of 13.97053 to 14.17695 seconds,

demonstrating good task management and timely execution.

 Hu et al. obtain makespan values ranging from 14.13148 to 14.17695 seconds

while ensuring effective task scheduling and completion inside the system.

 Cai et al. maintain a competitive makespan of 14.16384 to 14.16384 seconds,

implying efficient task scheduling and completion equivalent to other

methods.

 173

 Jena et al. ensure a competitive makespan of 14.16384 to 14.17695 seconds,

demonstrating good task management and timely execution.

 Saurabh et al. maintain a competitive makespan range from 14.17695 to

14.17695 seconds, indicating effective job scheduling and completion within

the system.

According to the improvement study for the three parameters at the highest work load

(100,000 MIPS), the proposed work saves 9.35% more energy than MET, 3.79%

more energy than Hu et al., and 7.26% more energy than Cai et al. The proposed

method outperforms MET by 9%, Hu et al. by 24%, and Cai et al. by 3% in terms of

cost. A CO2 emission analysis is also included in the study, demonstrating that the

proposed method consistently outperforms existing methods across a wide variety of

workloads. At varied workloads, this suggests that the CO2 with MET methodology

produces 6.24% higher emissions than the Proposed method. CO2 Hu et al. and CO2

Cai et al. techniques yield comparable findings.

By consistently achieving lower energy consumption, reduced costs, and minimized

CO2 emissions across varying workloads, the proposed algorithm demonstrates its

adaptability and effectiveness. This research not only contributes to the field of task

scheduling and optimization but also sets a precedent for sustainable computing

practices. As cloud computing and IoT applications continue to evolve, the proposed

approach offers a promising solution for enhancing performance, reducing

environmental impact, and ensuring economic viability.

The pursuit of intelligent scheduling algorithms, as showcased in this study, opens

doors to a future where technological advancements align with environmental

responsibility. The integration of nature-inspired techniques and machine learning

methodologies represents a pivotal step towards addressing resource management

challenges in innovative and holistic ways. In a world where the demand for

computational resources grows incessantly, the findings and contributions of this

study lay the foundation for a more efficient, sustainable, and environmentally

conscious approach to computing. By leveraging the insights gained from

comparative analyses and embracing the principles of energy efficiency, cost-

 174

effectiveness, and reduced emissions, we pave the way for a brighter and more

responsible digital future.

Anticipating the road ahead, the meticulous comparative analysis of energy

consumption, cost, and CO2 emissions in this study unveils a realm of intriguing

possibilities for the future trajectory of computing and resource management. As

technology continues its rapid evolution and global concerns for environmental

sustainability deepen, the integration of inventive approaches like the proposed

algorithm sets the stage for transformative advancements. The harmonization of

nature-inspired techniques and reinforcement learning which are at the vanguard of

machine learning innovation, introduces an uncharted landscape of potential. This

synergy offers solutions that not only elevate performance and efficiency but also

substantially mitigate the carbon footprint associated with modern computing

infrastructures.

6.4 Future Scope

Future study in the field of multi-objective task scheduling and resource allocation

can focus on a number of intriguing routes. For starters, researching advanced

machine learning approaches other than Q-learning, such as deep reinforcement

learning, could improve the algorithm's ability to adapt to changing surroundings and

maximize resource allocation decisions. Aside from flower pollination, combining

additional nature-inspired optimization methods with reinforcement learning

methodologies may open up new paths for generating superior scheduling solutions.

Furthermore, examining the suggested algorithm's scalability and applicability in

large-scale distributed systems and heterogeneous computing settings could shed light

on its real-world implementation potential. Finally, tackling rising security, privacy,

and fairness concerns in scheduling algorithms for cloud computing and IoT settings

offers an attractive research direction for ensuring the robustness and dependability of

future scheduling solutions.

 175

List of Publications

1. R. Kaur, D. Anand, U. Kaur, S. Verma, Kavita, S.W Park, ASM. S Hosen, and

I. H. Ra. "An Advanced Job Scheduling Algorithmic Architecture to Reduce

Energy Consumption and CO2 Emissions in Multi-Cloud." Electronics vol.12,

no. 8, p. 1810, 2023.

2. R. Kaur, S. Verma, N. Z. Jhanjhi, and M. N. Talib. "A comprehensive survey

on load and resources management techniques in the homogeneous and

heterogeneous cloud environment." In Journal of Physics: Conference Series,

vol. 1979, no. 1, p. 012036. IOP Publishing, 2021.

3. R. Kaur, D. Anand, U. Kaur, S. Verma, and Kavita. "Multi-Objective

Resource Optimization Using Enhanced FPA-DRL in a Heterogeneous Cloud

Computing Environment". Computers, Materials & Continua (CMC) journal

of SCI. (Final Minor Revision Submitted).

4. R. Kaur, D. Anand, and U. Kaur. "Analysis and Evaluation of Bio-inspired

Algorithmic Framework, Potential Application in Cloud/Multi-cloud

Environment". International Conference on Data Science and Computational

Intelligence (ICDSCI-2022). (Presented).

5. R. Kaur, D. Anand, and U. Kaur, "DRL based multi-objective resource

optimization technique in a multi-cloud environment". EAI IC4S 2023 - 4th

EAI International Conference on Cognitive Computing and Cyber Physical

Systems. (Presented and Published).

6. R. Kaur, D. Anand, and U. Kaur. "Analysis and Evaluation of Bio-inspired

Algorithmic Framework, Potential Application in Cloud/Multi-Cloud

Environment". 5th IEEE International Conference on Cybernetics, Cognition

and Machine Learning Applications, Germany (ICCCMLA 2023).

(Presented).

7. R. Kaur, D. Anand, U. Kaur, J.Kaur, S. Verma, and Kavita. "Deep

Reinforcement learning based intelligent resource allocation techniques with

applications to cloud computing". RTIP2R 2023 (Presented)

 176

Bibliography

[1] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, ―What’s inside the

Cloud? An architectural map of the Cloud landscape,‖ in 2009 ICSE workshop

on software engineering challenges of cloud computing, 2009, pp. 23–31.

[2] C. M. Mohammed, S. R. M. Zeebaree, and others, ―Sufficient comparison

among cloud computing services: IaaS, PaaS, and SaaS: A review,‖

International Journal of Science and Business, vol. 5, no. 2, pp. 17–30, 2021.

[3] F. F. Moghaddam, M. B. Rohani, M. Ahmadi, T. Khodadadi, and K.

Madadipouya, ―Cloud computing: Vision, architecture and Characteristics,‖ in

2015 IEEE 6th control and system graduate research colloquium (ICSGRC),

2015, pp. 1–6.

[4] N. Khan, N. Ahmad, T. Herawan, and Z. Inayat, ―Cloud Computing: Locally

Sub-Clouds instead of Globally One Cloud,‖ International Journal of Cloud

Applications and Computing (IJCAC), vol. 2, no. 3, pp. 68–85, Jan. 2012, doi:

10.4018/IJCAC.2012070103.

[5] P. Mell and T. Grance, ―The NIST Definition of Cloud Computing

Recommendations of the National Institute of Standards and Technology,‖

Computer Security, pp. 1–7, 2011, doi: 10.6028/NIST.SP.800-145.

[6] A. Chinthas, D. Rani, and R. K. Ranjan, ―A Comparative Study of SaaS, PaaS

and IaaS in Cloud Computing,‖ International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 4, no. 6, pp. 458–461, 2014.

[7] A. A. Patel and J. N. Rathod, ―Reducing Power Consumption & Delay Aware

Resource Allocation in Cloud Data centers,‖ Journal of Information,

Knowledge and Research in Computer Engineering, vol. 1, pp. 337–339, 2010.

[8] P. Guo and L. Bu, ―The hierarchical resource management model based on

cloud computing,‖ in 2012 IEEE Symposium on Electrical \& Electronics

Engineering (EEESYM), 2012, pp. 471–474.

[9] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M.

Deardeuff, ―How Amazon web services uses formal methods,‖

 177

Communications of the ACM, vol. 58, no. 4, pp. 66–73, 2015.

[10] W. Y. C. Wang, A. Rashid, and H.-M. Chuang, ―Toward the trend of cloud

computing,‖ Journal of Electronic Commerce Research, vol. 12, no. 4, p. 238,

2011.

[11] D. C. Wyld, Moving to the cloud: An introduction to cloud computing in

government. IBM Center for the Business of Government, 2009.

[12] H. Shukur, S. Zeebaree, R. Zebari, D. Zeebaree, O. Ahmed, and A. Salih,

―Cloud computing virtualization of resources allocation for distributed

systems,‖ Journal of Applied Science and Technology Trends, vol. 1, no. 3, pp.

98–105, 2020.

[13] Q. Zhang, L. Cheng, and R. Boutaba, ―Cloud computing: state-of-the-art and

research challenges,‖ Journal of internet services and applications, vol. 1, pp.

7–18, 2010.

[14] S. S. Manvi and G. K. Shyam, ―Resource management for Infrastructure as a

Service (IaaS) in cloud computing: A survey,‖ Journal of network and

computer applications, vol. 41, pp. 424–440, 2014.

[15] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, and E. Talbi, ―Towards

understanding uncertainty in cloud computing resource provisioning,‖

Procedia Computer Science, vol. 51, pp. 1772–1781, 2015.

[16] D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain, ―Cloud computing features,

issues, and challenges: a big picture,‖ in 2015 International Conference on

Computational Intelligence and Networks, 2015, pp. 116–123.

[17] A. Wolke, B. Tsend-Ayush, C. Pfeiffer, and M. Bichler, ―More than bin

packing: Dynamic resource allocation strategies in cloud data centers,‖

Information Systems, vol. 52, pp. 83–95, 2015.

[18] J. Li, D. Li, Y. Ye, and X. Lu, ―Efficient multi-tenant virtual machine

allocation in cloud data centers,‖ Tsinghua Science and Technology, vol. 20,

no. 1, pp. 81–89, 2015.

[19] D. K. Viswanath, S. Kusuma, & Saroj, and K. Gupta, ―Cloud Computing

Issues and Benefits Modern Education,‖ Global Journal of Computer Science

and Technology, vol. 12, no. B10, pp. 15–19, 2012.

[20] A. Jula, E. Sundararajan, and Z. Othman, ―Cloud computing service

 178

composition: A systematic literature review,‖ Expert systems with applications,

vol. 41, no. 8, pp. 3809–3824, 2014.

[21] Y. Jadeja and K. Modi, ―Cloud computing-concepts, architecture and

challenges,‖ in 2012 international conference on computing, electronics and

electrical technologies (ICCEET), 2012, pp. 877–880.

[22] V. K. Reddy and L. S. S. Reddy, ―Security architecture of cloud computing,‖

International Journal of Engineering Science and Technology (IJEST), vol. 3,

no. 9, pp. 7149–7155, 2011.

[23] D. G. Velev, ―Challenges and opportunities of cloud-based mobile learning,‖

International Journal of Information and Education Technology, vol. 4, no. 1,

p. 49, 2014.

[24] T. Renugadevi and K. Geetha, ―Task aware optimized energy cost and carbon

emission-based virtual machine placement in sustainable data centers,‖ Journal

of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5677–5689, Jan. 2021, doi:

10.3233/JIFS-189887.

[25] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, ―A comprehensive survey

for scheduling techniques in cloud computing,‖ Journal of Network and

Computer Applications, vol. 143, pp. 1–33, Oct. 2019, doi:

10.1016/J.JNCA.2019.06.006.

[26] G. Patel, R. Mehta, and U. Bhoi, ―Enhanced load balanced min-min algorithm

for static meta task scheduling in cloud computing,‖ Procedia Computer

Science, vol. 57, pp. 545–553, 2015.

[27] Y. Zhang, B. Di, Z. Zheng, J. Lin, and L. Song, ―Distributed Multi-Cloud

Multi-Access Edge Computing by Multi-Agent Reinforcement Learning,‖

IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2565–

2578, Apr. 2021, doi: 10.1109/TWC.2020.3043038.

[28] P. S. Othman, R. R. Ihsan, and R. M. Abdulhakeem, ―The Genetic Algorithm

(GA) in Relation to Natural Evolution,‖ Academic Journal of Nawroz

University, vol. 11, no. 3, pp. 243–250, Aug. 2022, doi:

10.25007/AJNU.V11N3A1414.

[29] S. B. Sangeetha, R. Sabitha, B. Dhiyanesh, G. Kiruthiga, N. Yuvaraj, and R. A.

Raja, ―Resource Management Framework Using Deep Neural Networks in

 179

Multi-Cloud Environment,‖ EAI/Springer Innovations in Communication and

Computing, pp. 89–104, 2022, doi: 10.1007/978-3-030-74402-1_5/COVER.

[30] S. A. Almazok and B. Bilgehan, ―A novel dynamic source routing (DSR)

protocol based on minimum execution time scheduling and moth flame

optimization (MET-MFO),‖ Eurasip Journal on Wireless Communications and

Networking, vol. 2020, no. 1, pp. 1–26, Dec. 2020, doi: 10.1186/S13638-020-

01802-5/FIGURES/15.

[31] R. Su and G. Woeginger, ―String execution time for finite languages: Max is

easy, min is hard,‖ Automatica, vol. 47, no. 10, pp. 2326–2329, Oct. 2011, doi:

10.1016/J.AUTOMATICA.2011.06.024.

[32] G. Rjoub and J. Bentahar, ―Cloud task scheduling based on swarm intelligence

and machine learning,‖ in 2017 IEEE 5th International Conference on Future

Internet of Things and Cloud (FiCloud), 2017, pp. 272–279.

[33] A. Hanani, A. M. Rahmani, and A. Sahafi, ―A multi-parameter scheduling

method of dynamic workloads for big data calculation in cloud computing,‖

Journal of Supercomputing, vol. 73, no. 11, pp. 4796–4822, Nov. 2017, doi:

10.1007/S11227-017-2050-6/TABLES/8.

[34] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, ―Machine Learning

Interpretability: A Survey on Methods and Metrics,‖ Electronics 2019, Vol. 8,

Page 832, vol. 8, no. 8, p. 832, Jul. 2019, doi:

10.3390/ELECTRONICS8080832.

[35] B. Mahesh, ―Machine Learning Algorithms-A Review,‖ International Journal

of Science and Research, vol. 9, no. 1, pp. 981–986, 2018, doi:

10.21275/ART20203995.

[36] M. A. Mahdi, K. M. Hosny, and I. Elhenawy, ―Scalable Clustering Algorithms

for Big Data: A Review,‖ IEEE Access, vol. 9, pp. 80015–80027, 2021, doi:

10.1109/ACCESS.2021.3084057.

[37] H. Singh, S. Tyagi, P. Kumar, S. S. Gill, and R. Buyya, ―Metaheuristics for

scheduling of heterogeneous tasks in cloud computing environments: Analysis,

performance evaluation, and future directions,‖ Simulation Modelling Practice

and Theory, vol. 111, p. 102353, Sep. 2021, doi:

10.1016/J.SIMPAT.2021.102353.

 180

[38] H. S. Yahia, S. R. Zeebaree, M. A. Sadeeq, N. O. Salim, S. F. Kak, A. Z. Adel,

A. A. Salih, and H. A. Hussein, ―Comprehensive survey for cloud computing

based nature-inspired algorithms optimization scheduling,‖ Asian Journal of

Research in Computer Science, vol. 8, no. 2, pp. 1–16, 2021.

[39] S. Mirjalili, J. Song Dong, A. S. Sadiq, and H. Faris, ―Genetic algorithm:

Theory, literature review, and application in image reconstruction,‖ Studies in

Computational Intelligence, vol. 811, pp. 69–85, 2020, doi: 10.1007/978-3-

030-12127-3_5/COVER.

[40] B. Muthulakshmi and K. Somasundaram, ―A hybrid ABC-SA based optimized

scheduling and resource allocation for cloud environment,‖ Cluster Computing,

vol. 22, no. 5, pp. 10769–10777, Sep. 2019, doi: 10.1007/S10586-017-1174-

Z/METRICS.

[41] S. Sridharan, R. K. Subramanian, and A. K. Srirangan, ―Physics based meta

heuristics in manufacturing,‖ Materials Today: Proceedings, vol. 39, pp. 805–

811, Jan. 2021, doi: 10.1016/J.MATPR.2020.09.775.

[42] D. Freitas, L. G. Lopes, and F. Morgado-Dias, ―Particle Swarm Optimisation:

A Historical Review Up to the Current Developments,‖ Entropy, vol. 22, no. 3,

p. 362, 2020, doi: 10.3390/E22030362.

[43] Ş. Öztürk, R. Ahmad, and N. Akhtar, ―Variants of Artificial Bee Colony

algorithm and its applications in medical image processing,‖ Applied Soft

Computing Journal, vol. 97, 2020, doi: 10.1016/j.asoc.2020.106799.

[44] M. Kalra and S. Singh, ―A review of metaheuristic scheduling techniques in

cloud computing,‖ Egyptian Informatics Journal, vol. 16, no. 3, pp. 275–295,

Nov. 2015, doi: 10.1016/J.EIJ.2015.07.001.

[45] I. Fister, X. S. Yang, D. Fister, and I. Fister, ―Firefly algorithm: A brief review

of the expanding literature,‖ Studies in Computational Intelligence, vol. 516,

pp. 347–360, 2014, doi: 10.1007/978-3-319-02141-6_17/COVER.

[46] Y. Meraihi, A. B. Gabis, S. Mirjalili, and A. Ramdane-Cherif, ―Grasshopper

optimization algorithm: Theory, variants, and applications,‖ IEEE Access, vol.

9, pp. 50001–50024, 2021, doi: 10.1109/ACCESS.2021.3067597.

[47] I. Boussaïd, J. Lepagnot, and P. Siarry, ―A survey on optimization

metaheuristics,‖ Information Sciences, vol. 237, pp. 82–117, Jul. 2013, doi:

 181

10.1016/J.INS.2013.02.041.

[48] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M.

Llorente, ―Scheduling strategies for optimal service deployment across

multiple clouds,‖ Future Generation Computer Systems, vol. 29, no. 6, pp.

1431–1441, 2013.

[49] M. Dhanalakshmi and A. Basu, ―Task scheduling techniques for minimizing

energy consumption and response time in cloud computing,‖ Int J Eng Res

Technol (IJERT), vol. 3, no. 7, pp. 181–2278, 2014.

[50] S. Singh Brar and S. Rao, ―Optimizing Workflow Scheduling using Max-Min

Algorithm in Cloud Environment,‖ International Journal of Computer

Applications, vol. 124, no. 4, pp. 975–8887, 2015.

[51] S. K. Panda and P. K. Jana, ―Efficient task scheduling algorithms for

heterogeneous multi-cloud environment,‖ The Journal of Supercomputing, vol.

71, pp. 1505–1533, 2015.

[52] S. Hosseinimotlagh, F. Khunjush, and R. Samadzadeh, ―SEATS: smart energy-

aware task scheduling in real-time cloud computing,‖ The Journal of

Supercomputing, vol. 71, pp. 45–66, 2015.

[53] L. Ismail and A. Fardoun, ―Eats: Energy-aware tasks scheduling in cloud

computing systems,‖ Procedia Computer Science, vol. 83, pp. 870–877, 2016.

[54] M. Hemamalini and M. V Srinath, ―Performance Analysis of Balanced

Minimum Execution Time Grid Task scheduling Algorithm,‖ International

Journal of Communication and Networking System, vol. 5, no. 2, pp. 96–100,

2016.

[55] K. Maheshwari, E.-S. Jung, J. Meng, V. Morozov, V. Vishwanath, and R.

Kettimuthu, ―Workflow performance improvement using model-based

scheduling over multiple clusters and clouds,‖ Future generation computer

systems, vol. 54, pp. 206–218, 2016.

[56] M. Jasraj, M. Kumar, and M. Vardhan, ―Cost Effective Genetic Algorithm for

Workflow Scheduling in Cloud Under Deadline Constraint,‖ IEEE Access, vol.

4, pp. 5065–5082, 2016, Accessed: Jun. 30, 2023. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7542128

[57] S. K. Panda and P. K. Jana, ―SLA-based task scheduling algorithms for

 182

heterogeneous multi-cloud environment,‖ The Journal of Supercomputing, vol.

73, pp. 2730–2762, 2017.

[58] D. Maharana, B. Sahoo, and S. Sethi, ―Energy-efficient real-time tasks

scheduling in cloud data centers,‖ International Journal of Science Engineering

and Advance Technology, IJSEAT, vol. 4, no. 12, pp. 768–773, 2017.

[59] S. H. H. Madni, M. S. Abd Latiff, M. Abdullahi, S. M. Abdulhamid, and M. J.

Usman, ―Performance comparison of heuristic algorithms for task scheduling

in IaaS cloud computing environment,‖ PLOS ONE, vol. 12, no. 5, p.

e0176321, May 2017, doi: 10.1371/JOURNAL.PONE.0176321.

[60] A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, ―Distributed

hybrid scheduling in multi-cloud networks using conflict graphs,‖ IEEE

Transactions on Communications, vol. 66, no. 1, pp. 209–224, 2017.

[61] S. P. Praveen, K. T. Rao, and B. Janakiramaiah, ―Effective allocation of

resources and task scheduling in cloud environment using social group

optimization,‖ Arabian Journal for Science and Engineering, vol. 43, pp.

4265–4272, 2018.

[62] K. Duan, S. Fong, S. W. I. Siu, W. Song, and S. S.-U. Guan, ―Adaptive

incremental genetic algorithm for task scheduling in cloud environments,‖

Symmetry, vol. 10, no. 5, p. 168, 2018.

[63] S. K. Panda and P. K. Jana, ―Normalization-based task scheduling algorithms

for heterogeneous multi-cloud environment,‖ Information Systems Frontiers,

vol. 20, pp. 373–399, 2018.

[64] H. Hu, Z. Li, H. Hu, J. Chen, J. Ge, C. Li, and V. Chang, ―Multi-objective

scheduling for scientific workflow in multicloud environment,‖ Journal of

Network and Computer Applications, vol. 114, pp. 108–122, Jul. 2018, doi:

10.1016/J.JNCA.2018.03.028.

[65] W. Lin, W. Wang, W. Wu, X. Pang, B. Liu, and Y. Zhang, ―A heuristic task

scheduling algorithm based on server power efficiency model in cloud

environments,‖ Sustainable computing: informatics and systems, vol. 20, pp.

56–65, 2018.

[66] T. Jena and J. R. Mohanty, ―GA-based customer-conscious resource allocation

and task scheduling in multi-cloud computing,‖ Arabian Journal for Science

 183

and Engineering, vol. 43, no. 8, pp. 4115–4130, 2018.

[67] S. K. Mishra, D. Puthal, B. Sahoo, S. K. Jena, and M. S. Obaidat, ―An adaptive

task allocation technique for green cloud computing,‖ The Journal of

Supercomputing, vol. 74, pp. 370–385, 2018.

[68] D. Hazra, A. Roy, S. Midya, and K. Majumder, ―Energy aware task scheduling

algorithms in cloud environment: A survey,‖ in Smart Computing and

Informatics: Proceedings of the First International Conference on SCI 2016,

Volume 1, 2018, pp. 631–639.

[69] M. B. Gawali and S. K. Shinde, ―Task scheduling and resource allocation in

cloud computing using a heuristic approach,‖ Journal of Cloud Computing,

vol. 7, no. 1, pp. 1–16, 2018.

[70] TangXiaoyong, LiaoXiaoyi, ZhengJie, and YangXiaopan, ―Energy efficient job

scheduling with workload prediction on cloud data center,‖ Cluster Computing,

vol. 21, no. 3, pp. 1581–1593, Sep. 2018, doi: 10.5555/3287988.3288006.

[71] S. K. Panda and P. K. Jana, ―An energy-efficient task scheduling algorithm for

heterogeneous cloud computing systems,‖ Cluster Computing, vol. 22, no. 2,

pp. 509–527, 2019.

[72] S. K. Panda, I. Gupta, and P. K. Jana, ―Task scheduling algorithms for multi-

cloud systems: allocation-aware approach,‖ Information Systems Frontiers, vol.

21, pp. 241–259, 2019.

[73] A. Kaur, P. Singh, R. Singh Batth, and C. Peng Lim, ―Deep-Q learning-based

heterogeneous earliest finish time scheduling algorithm for scientific

workflows in cloud,‖ Software: Practice and Experience, vol. 52, no. 3, pp.

689–709, Mar. 2020, doi: 10.1002/SPE.2802.

[74] S. Gupta, I. Agarwal, and R. S. Singh, ―Workflow scheduling using Jaya

algorithm in cloud,‖ Concurrency and computation: practice and experience,

vol. 31, no. 17, pp. 1–13, 2019, doi: 10.1002/cpe.5251.

[75] A. Rehman, S. S. Hussain, Z. ur Rehman, S. Zia, and S. Shamshirband, ―Multi-

objective approach of energy efficient workflow scheduling in cloud

environments,‖ Concurrency and Computation: Practice and Experience, vol.

31, no. 8, p. e4949, 2019.

[76] A. R. Arunarani, D. Manjula, and V. Sugumaran, ―Task scheduling techniques

 184

in cloud computing: A literature survey,‖ Future Generation Computer

Systems, vol. 91, pp. 407–415, Feb. 2019, doi:

10.1016/J.FUTURE.2018.09.014.

[77] C. Li, J. Zhang, and H. Tang, ―Replica-aware task scheduling and load

balanced cache placement for delay reduction in multi-cloud environment,‖

The Journal of Supercomputing, vol. 75, pp. 2805–2836, 2019.

[78] M. J. Usman, A. S. Ismail, H. Chizari, G. Abdul-Salaam, A. M. Usman, A. Y.

Gital, O. Kaiwartya, and A. Aliyu, ―Energy-efficient Virtual Machine

Allocation Technique Using Flower Pollination Algorithm in Cloud

Datacenter: A Panacea to Green Computing,‖ Journal of Bionic Engineering,

vol. 16, no. 2, pp. 354–366, 2019, doi: 10.1007/s42235-019-0030-7.

[79] M. Masdari and M. Zangakani, ―Efficient task and workflow scheduling in

inter-cloud environments: challenges and opportunities,‖ The Journal of

Supercomputing, vol. 76, no. 1, pp. 499–535, 2020.

[80] G. Natesan and A. Chokkalingam, ―Multi-objective task scheduling using

hybrid whale genetic optimization algorithm in heterogeneous computing

environment,‖ Wireless Personal Communications, vol. 110, pp. 1887–1913,

2020.

[81] M. Xu and R. Buyya, ―Managing renewable energy and carbon footprint in

multi-cloud computing environments,‖ Journal of Parallel and Distributed

Computing, vol. 135, pp. 191–202, Jan. 2020, doi:

10.1016/J.JPDC.2019.09.015.

[82] M. Hosseinzadeh, M. Y. Ghafour, H. K. Hama, B. Vo, and A. Khoshnevis,

―Multi-Objective Task and Workflow Scheduling Approaches in Cloud

Computing: a Comprehensive Review,‖ Journal of Grid Computing, vol. 18,

no. 3, pp. 327–356, Sep. 2020, doi: 10.1007/S10723-020-09533-Z/METRICS.

[83] M. Sharma and R. Garg, ―HIGA: Harmony-inspired genetic algorithm for rack-

aware energy-efficient task scheduling in cloud data centers,‖ Engineering

Science and Technology, an International Journal, vol. 23, no. 1, pp. 211–224,

2020.

[84] H. Aziza and S. Krichen, ―A hybrid genetic algorithm for scientific workflow

scheduling in cloud environment,‖ Neural Computing and Applications, vol.

 185

32, no. 18, pp. 15263–15278, Sep. 2020, doi: 10.1007/S00521-020-04878-

8/METRICS.

[85] T. Bezdan, M. Zivkovic, M. Antonijevic, T. Zivkovic, and N. Bacanin,

―Enhanced Flower Pollination Algorithm for Task Scheduling in Cloud

Computing Environment,‖ Lecture Notes in Networks and Systems, vol. 141,

pp. 163–171, 2021, doi: 10.1007/978-981-15-7106-0_16/COVER.

[86] M. Sharma and R. Garg, ―An artificial neural network based approach for

energy efficient task scheduling in cloud data centers,‖ Sustainable Computing:

Informatics and Systems, vol. 26, p. 100373, 2020.

[87] Z. Wen, S. Garg, G. S. Aujla, K. Alwasel, D. Puthal, S. Dustdar, A. Y.

Zomaya, and R. Ranjan, ―Running Industrial Workflow Applications in a

Software-Defined Multicloud Environment Using Green Energy Aware

Scheduling Algorithm,‖ IEEE Transactions on Industrial Informatics, vol. 17,

no. 8, pp. 5645–5656, Aug. 2021, doi: 10.1109/TII.2020.3045690.

[88] T. Mohanraj and R. Santhosh, ―Multi-swarm optimization model for multi-

cloud scheduling for enhanced quality of services,‖ Soft Computing, pp. 1–11,

2021.

[89] S. Velliangiri, P. Karthikeyan, V. M. A. Xavier, and D. Baswaraj, ―Hybrid

electro search with genetic algorithm for task scheduling in cloud computing,‖

Ain Shams Engineering Journal, vol. 12, no. 1, pp. 631–639, 2021.

[90] P. Pirozmand, A. A. R. Hosseinabadi, M. Farrokhzad, M. Sadeghilalimi, S.

Mirkamali, and A. Slowik, ―Multi-objective hybrid genetic algorithm for task

scheduling problem in cloud computing,‖ Neural Computing and Applications,

vol. 33, no. 19, pp. 13075–13088, Oct. 2021, doi: 10.1007/S00521-021-06002-

W/FIGURES/8.

[91] W. Ahmad and B. Alam, ―An efficient list scheduling algorithm with task

duplication for scientific big data workflow in heterogeneous computing

environments,‖ Concurrency and Computation: Practice and Experience, vol.

33, no. 5, p. e5987, Mar. 2021, doi: 10.1002/CPE.5987.

[92] N. K. Walia, N. Kaur, M. Alowaidi, K. S. Bhatia, S. Mishra, N. K. Sharma, S.

K. Sharma, and H. Kaur, ―An energy-efficient hybrid scheduling algorithm for

task scheduling in the cloud computing environments,‖ IEEE Access, vol. 9,

 186

pp. 117325–117337, 2021.

[93] R. Pradhan and S. C. Satapathy, ―Energy-Aware Cloud Task Scheduling

algorithm in heterogeneous multi-cloud environment,‖ Intelligent Decision

Technologies, no. Preprint, pp. 1–6, 2022.

[94] R. Pradhan and S. C. Satapathy, ―Particle Swarm Optimization-Based Energy-

Aware Task Scheduling Algorithm in Heterogeneous Cloud,‖ in

Communication, Software and Networks: Proceedings of INDIA 2022,

Springer, 2022, pp. 439–450.

[95] T. Jena and J. R. Mohanty, ―GA-based efficient resource allocation and task

scheduling in a multi-cloud environment,‖ International Journal of Advanced

Intelligence Paradigms, vol. 22, no. 1–2, pp. 54–71, 2022.

[96] S. Mangalampalli, S. K. Swain, and V. K. Mangalampalli, ―Prioritized energy

efficient task scheduling algorithm in cloud computing using whale

optimization algorithm,‖ Wireless Personal Communications, vol. 126, no. 3,

pp. 2231–2247, 2022.

[97] N. Miglani, G. Sharma, and S. Khurana, ―Multi-objective reliability-based

workflow scheduler: An elastic and persuasive task scheduler based upon

modified-flower pollination algorithm in cloud environment,‖ Concurrency

and Computation: Practice and Experience, vol. 34, no. 22, p. e7150, Oct.

2022, doi: 10.1002/CPE.7150.

[98] R. Chen, X. Chen, and C. Yang, ―Using a task dependency job-scheduling

method to make energy savings in a cloud computing environment,‖ The

Journal of Supercomputing, vol. 78, no. 3, pp. 4550–4573, 2022.

[99] N. P. Marri and N. R. Rajalakshmi, ―MOEAGAC: An energy aware model

with genetic algorithm for efficient scheduling in cloud computing,‖

International Journal of Intelligent Computing and Cybernetics, vol. 15, no. 2,

pp. 318–329, 2022.

[100] B. Kruekaew and W. Kimpan, ―Multi-Objective Task Scheduling Optimization

for Load Balancing in Cloud Computing Environment Using Hybrid Artificial

Bee Colony Algorithm with Reinforcement Learning,‖ IEEE Access, vol. 10,

pp. 17803–17818, 2022, doi: 10.1109/ACCESS.2022.3149955.

[101] F. A. Saif, R. Latip, Z. M. Hanapi, and K. Shafinah, ―Multi-objective grey wolf

 187

optimizer algorithm for task scheduling in cloud-fog computing,‖ IEEE Access,

vol. 11, pp. 20635–20646, 2023.

[102] K. Malathi and K. Priyadarsini, ―Hybrid lion--GA optimization algorithm-

based task scheduling approach in cloud computing,‖ Applied Nanoscience,

vol. 13, no. 3, pp. 2601–2610, 2023.

[103] J. Mahilraj, P. Sivaram, N. Lokesh, and B. Sharma, ―An Optimised Energy

Efficient Task Scheduling Algorithm based on Deep Learning Technique for

Energy Consumption,‖ in 2023 6th International Conference on Information

Systems and Computer Networks (ISCON), 2023, pp. 1–7.

[104] S. P. Jaiprakash, H. K. Arya, I. Gupta, and T. Badal, ―Energy Optimized

Workflow Scheduling in IaaS Cloud: A Flower Pollination based Approach,‖

2023.

[105] S. Boopalan and P. Goswami, ―CRA-DP-GA for Efficient Utilization of

Resource through Virtual Machine and Efficient VM in Cloud Data Centre,‖

Mathematical Statistician and Engineering Applications, vol. 72, no. 1, pp.

233–251, 2023.

[106] X. Cai, S. Geng, D. Wu, J. Cai, and J. Chen, ―A Multicloud-Model-Based

Many-Objective Intelligent Algorithm for Efficient Task Scheduling in Internet

of Things,‖ IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9645–9653,

Jun. 2021, doi: 10.1109/JIOT.2020.3040019.

[107] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, ―Cost-aware challenges for

workflow scheduling approaches in cloud computing environments: Taxonomy

and opportunities,‖ Future Generation Computer Systems, vol. 50, pp. 3–21,

Sep. 2015, doi: 10.1016/J.FUTURE.2015.01.007.

[108] C. Szabo, Q. Z. Sheng, T. Kroeger, Y. Zhang, and J. Yu, ―Science in the Cloud:

Allocation and Execution of Data-Intensive Scientific Workflows,‖ Journal of

Grid Computing, vol. 12, no. 2, pp. 245–264, 2014, doi: 10.1007/S10723-013-

9282-3.

[109] S. S. Murad, R. B. Abdal, N. Alsandi, R. Faraj, S. Salam Murad, R. Badeel, N.

Salih, A. Alsandi, R. F. Alshaaya, R. A. Ahmed, A. Muhammed, and M.

Derahman, ―OPTIMIZED MIN-MIN TASK SCHEDULING ALGORITHM

FOR SCIENTIFIC WORKFLOWS IN A CLOUD ENVIRONMENT,‖ Article

 188

in Journal of Theoretical and Applied Information Technology, vol. 100, no. 2,

pp. 480–506, 2022, Accessed: Jul. 28, 2023. [Online]. Available:

https://www.researchgate.net/publication/358461191

[110] D. Poola, M. A. Salehi, K. Ramamohanarao, and R. Buyya, ―A Taxonomy and

Survey of Fault-Tolerant Workflow Management Systems in Cloud and

Distributed Computing Environments,‖ Software Architecture for Big Data and

the Cloud, pp. 285–320, Jan. 2017, doi: 10.1016/B978-0-12-805467-3.00015-6.

[111] K. K. Chakravarthi, L. Shyamala, and V. Vaidehi, ―Cost-effective workflow

scheduling approach on cloud under deadline constraint using firefly

algorithm,‖ Applied Intelligence, vol. 51, no. 3, pp. 1629–1644, Mar. 2021, doi:

10.1007/S10489-020-01875-1/METRICS.

[112] Y. Shen, Z. Bao, X. Qin, and J. Shen, ―Adaptive task scheduling strategy in

cloud: when energy consumption meets performance guarantee,‖ World Wide

Web, vol. 20, no. 2, pp. 155–173, Mar. 2017, doi: 10.1007/S11280-016-0382-

4/METRICS.

[113] T.-Y. Liang and Y.-J. Li, ―A Location-Aware Service Deployment Algorithm

Based on K-Means for Cloudlets,‖ vol. 2017, pp. 1–10, 2017, doi:

10.1155/2017/8342859.

[114] D. Kakkar and G. S. Young, ―Heuristic of VM Allocation to Reduce Migration

Complexity at Cloud Server‖.

[115] H. Li, G. Zhu, C. Cui, H. Tang, Y. Dou, and C. He, ―Energy-efficient migration

and consolidation algorithm of virtual machines in data centers for cloud

computing,‖ Computing, vol. 98, no. 3, pp. 303–317, Mar. 2016, doi:

10.1007/S00607-015-0467-4/METRICS.

[116] M. Ghobaei-Arani, M. Shamsi, and A. A. Rahmanian, ―An efficient approach

for improving virtual machine placement in cloud computing environment,‖

Journal of Experimental & Theoretical Artificial Intelligence , vol. 29, no. 6,

pp. 1149–1171, Nov. 2017, doi: 10.1080/0952813X.2017.1310308.

[117] R. Ojstersek, M. Brezocnik, and B. Buchmeister, ―Multi-objective optimization

of production scheduling with evolutionary computation: A review,‖

International Journal of Industrial Engineering Computations, vol. 11, no. 3,

pp. 359–376, 2020, doi: 10.5267/J.IJIEC.2020.1.003.

 189

[118] A. M. Senthil Kumar and M. Venkatesan, ―Multi-Objective Task Scheduling

Using Hybrid Genetic-Ant Colony Optimization Algorithm in Cloud

Environment,‖ Wireless Personal Communications, vol. 107, no. 4, pp. 1835–

1848, Aug. 2019, doi: 10.1007/S11277-019-06360-8/METRICS.

[119] H. Lu, R. Zhou, Z. Fei, and J. Shi, ―A multi-objective evolutionary algorithm

based on Pareto prediction for automatic test task scheduling problems,‖

Applied Soft Computing, vol. 66, pp. 394–412, May 2018, doi:

10.1016/J.ASOC.2018.02.050.

[120] K. Naik, G. Meera Gandhi, and S. H. Patil, ―Multiobjective virtual machine

selection for task scheduling in cloud computing,‖ Advances in Intelligent

Systems and Computing, vol. 798, pp. 319–331, 2019, doi: 10.1007/978-981-

13-1132-1_25/COVER.

[121] F. Li, L. Zhang, T. W. Liao, and Y. Liu, ―Multi-objective optimisation of

multi-task scheduling in cloud manufacturing,‖ International Journal of

Production Research, vol. 57, no. 12, pp. 3847–3863, Jun. 2018, doi:

10.1080/00207543.2018.1538579.

[122] X. Chen, L. Cheng, C. Liu, Q. Liu, J. Liu, Y. Mao, and J. Murphy, ―A WOA-

Based Optimization Approach for Task Scheduling in Cloud Computing

Systems,‖ IEEE Systems Journal, vol. 14, no. 3, pp. 3117–3128, Sep. 2020,

doi: 10.1109/JSYST.2019.2960088.

[123] Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy, and M. U. Chowdhury, ―An

improved genetic algorithm using greedy strategy toward task scheduling

optimization in cloud environments,‖ Neural Computing and Applications, vol.

32, no. 6, pp. 1531–1541, Mar. 2020, doi: 10.1007/S00521-019-04119-

7/METRICS.

[124] G. Sreenivasulu and I. Paramasivam, ―Hybrid optimization algorithm for task

scheduling and virtual machine allocation in cloud computing,‖ Evolutionary

Intelligence, vol. 14, no. 2, pp. 1015–1022, Jun. 2021, doi: 10.1007/S12065-

020-00517-2/METRICS.

[125] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, ―Heuristic initialization of PSO

task scheduling algorithm in cloud computing,‖ Journal of King Saud

University - Computer and Information Sciences, vol. 34, no. 6, pp. 2370–

 190

2382, Jun. 2022, doi: 10.1016/J.JKSUCI.2020.11.002.

[126] X. Huang, T. H. Klinge, J. I. L. B, X. Li, and J. H. Lutz, ―Flower Pollination

Algorithm for Global Optimization,‖ Unconventional Computation and

Natural Computation, vol. 7445, pp. 29–40, 2012, doi: 10.1007/978-3-642-

32894-7.

[127] P. E. Mergos and X. S. Yang, ―Flower pollination algorithm parameters

tuning,‖ Soft Computing, vol. 25, no. 22, p. 14429, Nov. 2021, doi:

10.1007/S00500-021-06230-1.

[128] M. J. Usman, A. S. Ismail, A. Y. Gital, A. Aliyu, and T. Abubakar, ―Energy-

efficient resource allocation technique using flower pollination algorithm for

cloud datacenters,‖ Advances in Intelligent Systems and Computing, vol. 843,

pp. 15–29, 2019, doi: 10.1007/978-3-319-99007-1_2/COVER.

[129] M. Gokuldhev, G. Singaravel, and N. R. Ram Mohan, ―Multi-Objective Local

Pollination-Based Gray Wolf Optimizer for Task Scheduling Heterogeneous

Cloud Environment,‖ Journal of Circuits, Systems and Computers , vol. 29, no.

7, pp. 1–24, Sep. 2019, doi: 10.1142/S0218126620501005.

[130] S. Dhivya and R. Arul, ―Hybrid Flower Pollination Algorithm for Optimization

Problems,‖ Book cover Book cover Proceedings of the International

Conference on Computational Intelligence and Sustainable Technologies, pp.

751–762, 2022, doi: 10.1007/978-981-16-6893-7_65.

[131] A. Kaur, S. Kumar, D. Gupta, Y. Hamid, M. Hamdi, A. Ksibi, H. Elmannai,

and S. Saini, ―Algorithmic Approach to Virtual Machine Migration in Cloud

Computing with Updated SESA Algorithm,‖ Sensors (Basel, Switzerland), vol.

23, no. 13, p. 6117, Jul. 2023, doi: 10.3390/S23136117.

[132] B. Varghese and R. Buyya, ―Next generation cloud computing: New trends and

research directions,‖ Future Generation Computer Systems, vol. 79, no. 3, pp.

849–861, Feb. 2018, doi: 10.1016/J.FUTURE.2017.09.020.

[133] M. S, B. Prakash, and B. H.M., ―A Detailed Survey on various Cloud

computing Simulators,‖ International Journal of Engineering Research

, vol. 4, no. 5, pp. 790–991, 2016, doi: 10.17950/ijer/v5i4/037.

[134] R. Kaur and N. Singh Ghumman, ―A Survey and Comparison of Various Cloud

Simulators Available for Cloud Environment,‖ International Journal of

 191

Advanced Research in Computer and Communication Engineering, vol. 4, no.

5, pp. 605–608, 2015, doi: 10.17148/IJARCCE.2015.45129.

[135] C. J. C. H. Watkins and P. Dayan, ―Q-learning,‖ Machine Learning 1992 8:3,

vol. 8, no. 3, pp. 279–292, May 1992, doi: 10.1007/BF00992698.

[136] F. Flamini, A. Hamann, S. Jerbi, L. M. Trenkwalder, H. P. Nautrup, and H. J.

Briegel, ―Photonic architecture for reinforcement learning,‖ New Journal of

Physics, vol. 22, no. 4, pp. 1–12, Apr. 2020, doi: 10.1088/1367-2630/AB783C.

