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Abstract 

Cloud computing has transformed the IT industry by giving organisations instant 

access to a pool of computer resources, allowing them to efficiently extend their 

applications. However, as cloud data centres expand, optimising several objectives to 

reconcile competing performance indicators becomes crucial. This research provides a 

model that overcomes these difficulties by creating an intelligent scheduling system 

that is flexible to dynamic and diverse workloads and is specifically tailored for 

practical applications in cloud computing. Effective task scheduling becomes even 

more important in multi-datacenter scenarios where cloud services cover multiple 

geographical zones. The suggested solution recognises the difficulties caused by 

datacenter heterogeneity as well as the need to optimise resource allocation across 

many data centres. In the world of cloud computing, where massive volumes of data 

are processed and analysed, efficient task scheduling is critical to optimising resource 

utilisation and overall system efficiency. The Cyber Shake Seismogram (CSS) 

process stands out as a significant and demanding application among the different 

workflows that benefit from effective task scheduling. The Modified Best Fit 

Decreasing (MBFD) method is included into an upgraded MET framework, resulting 

in a location and resource-aware scheduling system. 

Traditional work scheduling algorithms frequently concentrate on a particular goal, 

such as minimising job completion time, resulting in inefficient solutions. To address 

this shortcoming, the research proposes steps to improve the Flower Pollination 

Algorithm, transforming it into a multi-objective task scheduling tool. This method 

seeks to optimise numerous competing objectives at the same time, achieving a 

balance between diverse performance measures. 

The multi-data centre architecture is being investigated as a significant development 

in meeting the increasing demands of modern applications and services. The study 

provides a toolset for creating and managing virtual machines (VMs) and physical 

hosts (PMs) in a virtualized cloud environment, as well as for simulating various 
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scenarios based on real-world cloud usage trends. The extensive results and 

evaluations show a diverse spectrum of real-world circumstances and issues. The 

results show that our integrated strategy greatly improves resource utilisation, 

effectively decreases, and overall improves the performance of the scheduling 

network. Our analysis goes deeply into the impact of important parameters on the 

performance of the scheduling system. Each characteristic, such as MIPS, makespan, 

used energy, CO2 emission, user distance, throughput, VM load distribution ratio, and 

projected cost, has a significant impact on the quality of the scheduling results. We 

obtain significant insights into the strengths and adaptability of our strategy by 

meticulously studying these elements, allowing us to fine-tune the scheduling system 

for optimal results.  

The combination of Q-learning with flower pollination raises the bar in resource 

allocation and job scheduling. The combination of these advanced methodologies 

enables our solution to handle complicated and dynamic scheduling settings quickly, 

making it suited for a wide range of practical applications. The algorithm finds the 

most promising option by using Q-values to drive the pollination process, enhancing 

efficiency and efficacy in discovering optimal solutions. The performance analysis 

includes adjusting the number of users and increasing the workload while comparing 

the proposed method to five previous studies (MET, Hu et al., Cai et al., Jena et al. 

Saurabh et al.). At a workload of 100,000 MIPS, the proposed algorithm's 

performance in comparison to previous studies demonstrate a significant 

improvements across a variety of parameters. The proposed approach consistently 

delivers lower energy usage, with values ranging from 0.39987KJ to 0.716416KJ, 

representing a savings of up to 47% when compared to MET, Hu et al., Cai et al., Jena 

et al., and Saurabh et al. In terms of cost-effectiveness, the proposed algorithm has an 

average total cost range of Rs24.1422 to Rs238.069, showing possible savings of up 

to 20% over the previous methods. Furthermore, it has fewer CO2 emissions, ranging 

from 16.27168893Mt to 141.8717559Mt, representing up to a 35% improvement over 

existing techniques. The suggested approach maintains competitive complexity 

metrics, has fast training and inference times, and achieves high throughput rates 

ranging from 8276.669 to 8659.64 Mbps, showing better data transport and 
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processing capabilities. Task scheduling and completion are managed efficiently, with 

a competitive makespan range of 13.81982 to 14.17695 seconds, resulting in up to 

12% improvements over competing methods. In summary, the suggested algorithm 

significantly improves energy efficiency, cost-effectiveness, and environmental 

impact while remaining competitive in complexity, throughput, and job completion 

time, making it a promising alternative for future implementations. The task 

scheduling solution for multi-cloud systems is proposed here, which incorporates 

flower pollination and Q-learning, stands out as a uniquely efficient strategy that 

outperforms current state-of-the-art algorithms. Extensive testing using simulations on 

various datasets simulating real-world scenarios consistently demonstrates the 

suggested method's higher performance. The algorithm's adaptability, scalability, and 

effectiveness in managing dynamic workloads and different user populations 

highlight its practical application in both cloud computing and multi-datacenter 

systems. The suggested solution's new features distinguish it as a possible 

improvement in solving the issues connected with task scheduling in complex and 

developing computing landscapes. 
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CHAPTER 1: INTRODUCTION 

The chapter goes into a lot of detail about cloud computing, including its history, 

traits, and security issues brought on by how widely used it is. To build the 

groundwork for the current research project, the multilayered cloud computing 

structure and the idea of virtualization are also explained here.  

1.1 Introduction 

Within the field of computing, mobile computing in the cloud is acknowledged as a 

developing commercial concept. Cloud computing" refers to a system that offers 

quick, easy, and ubiquitous network access to a shared pool of flexible computing 

resources, including servers, network connections, storage, services, and applications. 

These resources can be quickly allocated and released with minimal administrative 

effort or service provider involvement [1, 2]. The entities responsible for furnishing 

these services are termed cloud providers, typically charging users based on their 

usage of cloud computing resources. CC encompasses a technological framework that 

employs principles of connectivity, virtualization, resource sharing, and data 

exchange among various devices over the internet. It delivers on-demand services to 

users by incorporating crucial elements like security, scalability, distribution, and 

isolation. [3]. 

When referring to online-based services and apps, such as distributed processing, 

machine virtualization, and secure web services, we use the term "cloud computing.". 

The challenges encompass a spectrum from handling diverse resources to efficiently 

allocating resources based on user requests, effectively scheduling planned requests to 

designated resources, and addressing potential contingencies associated with both the 

workload and the system [4]. Server virtualization technology plays a crucial role in 

streamlining cloud resource management, enabling optimized resource utilization 

through the sharing of resources via virtual machines 
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Figure 1.1 shows the architectural representation of CC. It entails offering computing 

services including storage, database management systems, networking, analytics, 

programmes, and more over the Internet or through cloud platforms. 

Monitoring Content
Collabroation Communication 

Finance

Object Storage Runtime Queue Database

NetworkStock StorageComputer

Desktop

Tablet
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Application
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Infrastructure
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Identity

 

Figure 1.1 Cloud Computing Environment [3] 

The fundamental structure of the CC environment is illustrated in Figure 1.1. [4]. 

NIST defines "cloud computing" as a methodology that permits smooth, practical, and 

immediate network connectivity to share computing resource pools. Quick allocation 

and release of assets is possible with minimum involvement from administration 

contacts [5]. 

1.2 Evolution of Cloud Computing 

The concept of CC has its roots dating back to the 1960s. During this era, John 

McCarthy envisioned the future use of 'national utilities' for computer computing. 

Although Cloud Computing appears as a relatively recent phenomenon, its origins 
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trace back to the early 1950s when mainframes enabled multiple users to access a 

central computer. In the 1960s, several developments emerged that foreshadowed the 

essence of present-day cloud computing, such as J. K. R. Liklider's concept of the 

"intergalactic computer network." The philosophy of cloud computing gained 

momentum in 2007, driven by the expansion of communication channels and the 

exponentially increasing demand from both business and private users to horizontally 

scale their information systems [1, 6]. 

Virtualization brought the mainframe to a new level during the 1970s, while 

telecommunication companies started offering connectivity for virtual private 

networks (VPNs) in the 1990s. In 1999, Salesforce.com pioneered the delivery of 

enterprise applications through network connections. These applications could be 

accessed by multiple users simultaneously through a web browser, and they were 

available at an affordable cost[7]. 

 

Figure 1.2 Developments in Cloud Computing [8] 

Figure 1.2 shows the various developments in CC. The notion of the cloud computing 

gained practical traction through the initiatives of various enterprises, including 

Google. An illustrative case in point is Google's implementation of the concept with 

its Google Docs service. This service empowers users to collaboratively work on 

official documents directly through a web browser, exemplifying the essence of cloud 
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computing.  [9]. The development of Amazon Web Services (AWS) by Amazon.com, 

a well-known online retailer, marked the beginning of the cloud computing 

revolution. In 2006, this marked the inception of contemporary 'clouds' [10]. AWS 

provides an extensive array of services, including robust computing capabilities and 

data warehousing. These services represent a highly reliable and cutting-edge cloud 

web service infrastructure. Following Amazon.com's lead, other major players like 

Microsoft, Google, Apple, and IBM also entered the cloud computing arena. 

Consequently, the CC market is fast growing. [11]. 

The most current technology for providing users with access to shared resource pools 

in response to their demands, according to the National Institute of Standards and 

Technology (NIST), is cloud computing. In a projection dating back to 1969, Leonard 

Kleinrock, a prominent scientist involved in the original Research Projects Network 

(ARPANET), accurately predicted the ongoing evolution and expanding utilization of 

computer networks. Furthermore, he anticipated the expansion of computer 

applications during the 1990s.[8]. 

Numerous technological advancements have played a pivotal role in shaping the 

landscape of cloud computing paradigms. These encompass: 

• Network Computing 

• Grid Computing 

• Parallel Computing 

• Utility Computing 

• Virtualization 

• Local Computing 

The subsequent section delves into the most prominent technologies in this domain; 

 Parallel Computing 1.2.1

Parallel computation involves dividing the entire computational task into smaller 

segments that can be processed concurrently. This methodology encompasses various 

aspects of concurrent programming and the creation of efficient adaptations for 

existing hardware. A parallel computer constitutes a highly cohesive ensemble of 
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components that collaboratively and communicatively address extensive 

computational challenges, resulting in accelerated problem-solving capabilities [12]. 

 Grid Computing 1.2.2

The idea of grid computing has received a lot of attention, and it's noteworthy that 

important market participants like Hewlett-Packard, International Business Machines 

and Sun Microsystems have shown a strong interest in this technology. The primary 

challenge in grid computing lies in allocating geographically dispersed resources to 

diverse user groups, often referred to as 'virtual organizations,' collaborating on tasks. 

This challenge underscores the absence of both a central focal point and centralized 

control, emphasizing the significance of trust and cooperation in collaborative 

endeavors. 

In the context of a grid system, the establishment, management, and utilization of 

relationships among potential project participants' resources are of paramount 

importance. Achieving interoperability within a network environment necessitates 

adherence to universally accepted protocols. These protocols dictate the behavior and 

format of exchanged information, governing the interaction between elements within 

a distributed system. Consequently, the grid architecture essentially functions as a 

protocol framework that defines the foundational mechanisms of interaction [13]. 

 Utility Computing 1.2.3

Users get services as required, and fees are charged in accordance with that 

requirement. Service providers strive to respond to individual tastes while 

customizing their services to fit clients' budgetary restrictions. The service provider 

possesses the ability to allocate resources based on user requests while implementing 

a pricing structure that optimizes utility utilization and minimizes resource costs. [14].  

 Virtualization 1.2.4

Virtualization serves as a method to generate a simulated representation of resources, 

dissociated from hardware (in this context, software-related). This concept extends to 

virtualizing servers, storage, network resources, applications, and desktops. 

Essentially, virtualization involves segregating physical components to furnish users 
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with virtualized resources. [15]. A standard server has the capacity to accommodate 

various virtual machine instances, which can then be accessed by users as needed. 

 Centralized computing 1.2.5

Centralized Computer Systems, often referred to as Centralized Computing, 

encompass a unified location where computer system resources, including processors, 

memory, and storage, are collectively shared and interconnected. This approach can 

be observed in parallel or distributed configurations within multiple data centres or 

may be adopted as a framework within architectural or cloud computing contexts. 

[16]. 

1.3 Characteristics of Cloud Computing 

This section describes the fundamental characteristics related to CC. 

 On-demand Self-service 1.3.1

In response to consumer needs, cloud service providers provide users with immediate 

services like network storage that may be accessed anytime, anywhere, all without 

requiring human intervention. [17, 18]. 

 Broad Network Service 1.3.2

Figure 1.3 refers to characteristics of CC in which various applications are hosted in a 

manner that enables access through various network-connected devices like laptops, 

desktops, mobile phones, tablets, and workstations. 

 

 

Figure 1.3 Characteristics of Cloud Computing [18] 
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Typically, these applications are accessed using a built-in web browser on the device, 

which serves as a common client, allowing widespread network access. 

 Resource Pools 1.3.3

It represents a concept where diverse organizations collaborate to utilize a common 

physical cloud infrastructure. The redistribution of virtual, not actual, resources is 

determined by consumer requirements. Typically, consumers are unaware of the 

specific location of a given resource; nevertheless, they may identify a broader level 

of location abstraction. Examples of these resources encompass processing power, 

storage capacity, memory, and network bandwidth. [14, 19, 20]. 

 Fast Flexibility 1.3.4

Fast flexibility entails the capability to offer scalable services that enable users to 

effortlessly request varying capacities or types of services within the cloud 

environment. This attribute reflects a system's capacity to align resources with the 

demands of workloads, by provisioning resources to closely match present 

requirements. From the consumer's perspective, the availability of resources often 

appears unlimited and accessible on demand. This elasticity empowers customers of 

cloud providers to attain cost efficiencies, typically being a fundamental driver for 

adopting cloud services. 

 Measured Service 1.3.5

The cloud system autonomously manages user resource utilization by gauging the 

system's measuring capabilities. Measurement services serve as benchmarks for cloud 

providers to gauge, monitor, and manage services, encompassing aspects like billing, 

resource optimization, and comprehensive forecasting strategies [21–24]. 

 Significance of Resource Allocation 1.3.6

Improper distribution of resources can result in service shortages. To tackle this issue, 

Resource Supply comes into play as a mechanism facilitating the provisioning of 

services by managing the resources of individual components. The pivotal element 

here is the Resource Allocation Strategy (RAS), a framework devised to enhance the 



 

  8 

 

efficiency and equitable distribution of limited resources within the boundaries of the 

cloud environment. Consequently, this approach caters to the specific demands of 

diverse cloud applications. [21]. The effectiveness of the strategy depends on clearly 

defining the volume and categories of resources necessary for each application to 

effectively accomplish user assignments. The Resource Allocation Strategy (RAS) 

takes into account inputs such as temporal data and the succession of resource 

demands. Structured in its design, RAS effectively addresses the ensuing challenges. 

[22]. 

1.4 Task Scheduling  

Algorithms for task scheduling are used to assign jobs to resources in a computing 

system in order to maximise resource utilisation, reduce execution time, increase 

energy efficiency, and accomplish specified goals. These algorithms establish the 

guidelines and techniques for deciding which tasks should be executed, when they 

should be executed, and which resources they should be assigned to. Their purpose is 

to efficiently manage the allocation of tasks in a computing system to maximize 

performance and meet desired goals, and is shown is Figure 1.4. 

Users Data Center Broker

Cloud 

Controller

Host

 VM1  VM2  VM3

TASK1 TASKn TASK1 TASKn TASK1 TASKn

Data Center

 

Figure 1.4 Task Scheduling Structure [105] 
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 Advantages of Task scheduling algorithms 1.4.1

Task scheduling brings several advantages to computing systems. It ensures optimal 

resource utilization by assigning tasks in a balanced and optimized manner, 

maximizing the use of available resources and improving system performance. By 

minimizing execution time through intelligent task assignments based on resource 

availability and task requirements, overall system productivity and responsiveness are 

enhanced. Task scheduling algorithms also contribute to improved system 

performance by optimizing task allocation, considering load balancing, resource 

availability, and task dependencies. Energy-aware task scheduling algorithms further 

optimize energy utilization, reducing operational costs in energy-constrained systems. 

By taking task deadlines, priority levels, and resource capabilities into account, task 

scheduling also plays a significant role in upholding Service Level Agreements 

(SLAs) and achieving Quality of Service (QoS) criteria. Task scheduling algorithms 

are scalable and flexible, capable of handling large-scale computing systems and 

dynamic workloads. They ensure load balancing by distributing the workload evenly 

across resources, preventing resource overutilization and underutilization. This leads 

to a balanced system and avoids performance degradation. Additionally, effective task 

scheduling contributes to system stability by preventing resource starvation, ensuring 

fair resource allocation, and avoiding excessive queuing delays, resulting in a more 

stable and reliable computing environment. 

 Task Scheduling in Cloud Computing.  1.4.2

In CC, tasks are efficiently assigned to available resources using a task scheduling 

system. It maximises resource utilisation, cuts down on the duration of execution, and 

makes sure the cloud infrastructure runs without any issues. Key considerations of a 

task scheduling system include task management, resource monitoring, scheduling 

policies, load balancing, task prioritization, energy efficiency, fault tolerance, 

scalability, and performance optimization. The system receives tasks from users or 

applications, monitors the availability and performance of resources, and employs 

scheduling policies and algorithms to assign tasks to appropriate resources. Load 

balancing ensures an even distribution of the workload, while task prioritization 
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considers deadlines and priorities. Energy-aware algorithms minimize energy 

consumption, fault tolerance mechanisms handle failures, and the system scales 

dynamically to handle varying workloads. Performance monitoring and optimization 

improve system efficiency, and the task scheduling system model in cloud 

environments is shown in Figure 1.5. 

Task 

Manager

Task 

Scheduler

v1 v1 vn

v1 v1 vn

v1 v1 vn

Physical Host 1

Physical Host 2

Physical Host N

USER 1

USER 2

USER n

c1

c3

c2

 

Figure 1.5 Task Scheduling System Model in Cloud Environments [106] 

1.5 Types of Cloud Computing 

In CC, there are different types of clouds that depend on their deployment and service 

models. These types of clouds can be combined with service models like IaaS, PaaS, 

and SaaS to provide different levels of control and management to users based on 

their specific requirements. Although the terms homogeneous and heterogeneous are 

sometimes used in cloud computing discussions, they typically refer to the 

composition of resources within a specific cloud infrastructure or data centre. 

Homogeneous refers to an infrastructure with identical components, while 

heterogeneous means the infrastructure includes diverse components. The main types 

are shown in Figure 1.6. 
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Figure 1.6 Cloud Computing Classification [107] 

 Public Cloud 1.5.1

A third-party supplier manages and controls this kind of cloud, which provides 

resources for computers over the internet to numerous customers or businesses. It 

allows for cost efficiency and scalability as the infrastructure is shared among users. 

The general block diagram of the public cloud is shown in Figure 1.7. 

a) Advantages of Public Cloud: 

 Scalability: According to demand, public clouds allow for scaling up or 

down. You can easily allocate more resources when needed and release 

them when demand decreases. 

 Cost-Efficiency: With public clouds, you only pay for the resources you 

utilise because they operate on a pay-as-you-go model. This can lead to 

cost savings, as you avoid the upfront investment in hardware and 

infrastructure. 

 Accessibility: With publicly accessible cloud services, data and apps may 

be accessed remotely from anywhere over the internet, which is very 

useful for scattered teams and remote work settings. 

 Quick Deployment: Setting up and provisioning resources in a public 

cloud environment is faster compared to traditional infrastructure setups, 

allowing you to get applications up and running quickly. 
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Figure 1.7 Public Cloud [12] 

b) Limitations of Public Cloud: 

 Security and Privacy Concerns: Applications and sensitive data stored 

on a public cloud might pose security and privacy problems. To secure 

their data, organisations must make sure that the necessary security 

measures are in place. 

 Dependency on Internet Connectivity: Public cloud services require a 

reliable internet connection. You might not be able to access and use cloud 

resources if your internet connection is erratic or sluggish. 

 Downtime and Outages: Although public cloud providers strive for high 

availability, they can still experience outages. Your applications and 

services may be affected during these incidents. 
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 Cost Management Complexity: While the pay-as-you-go model can be 

cost-efficient, it can also lead to unpredictable costs if resources are not 

managed properly. Monitoring and managing expenses require ongoing 

attention. 

 Private Cloud 1.5.2

A computing ecosystem that is solely dedicated to one company is known as a private 

cloud. In terms of scalability and virtualization, it provides many of the same 

advantages as public clouds but works on the company's internal infrastructure. 

Private clouds are intended to give more control, security, and customisation 

compared to public cloud options. They can be maintained by the company's 

information technology department or by a third-party supplier. The private cloud is 

shown graphically in Figure 1.8. 

a) Advantages of Private Cloud 

 Enhanced Security: Private clouds provide greater control over data 

security and compliance. Organizations can implement customized 

security measures and access controls to meet specific regulatory 

requirements. 

 Customization: Private clouds allow organizations to tailor the 

infrastructure and environment to their specific needs, enabling optimal 

performance for applications and services. 

 Performance Control: Since resources are dedicated to a single 

organization, there is more predictable performance without the 

performance fluctuations that can occur in shared public cloud 

environments. 

 Compliance: Private clouds are well-suited for industries with strict 

regulatory requirements, such as healthcare and finance, where data 

governance and compliance are crucial. 

 Reduced Downtime: Private clouds can offer higher availability and 

reduced downtime compared to public clouds, as organizations have more 

control over maintenance schedules and resource allocation. 
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Figure 1.8 Private Cloud [12] 

b) Limitations of Private Cloud: 

 Higher Costs: Private cloud solutions are less affordable than public cloud 

options since establishing and managing a private cloud infrastructure 

needs a sizable upfront investment in hardware, software, and 

maintenance. 

 Complexity: It may be difficult to manage a private cloud, therefore you 

need knowledgeable IT staff that are familiar with virtualization and cloud 

computing. 
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 Scalability Challenges: While private clouds can be scaled, achieving the 

same level of scalability as public clouds may be more challenging due to 

infrastructure limitations. 

 Limited Innovation: Private clouds may not have the same rapid access 

to cutting-edge technologies and features that public cloud providers 

regularly introduce. 

 Hybrid Cloud 1.5.3

A hybrid cloud allows for the exchange of apps and data between private and public 

cloud environments. It provides additional mobility by letting businesses use the 

advantages of the public as well as private clouds while taking care of particular 

workloads and data needs. 

a) Pros of Hybrid Cloud: 

 Flexibility: Organizations can choose where to host different workloads 

based on factors like security, performance, and compliance, achieving an 

optimal balance between the two cloud models. 

 Scalability: Hybrid clouds allow bursting into the public cloud during 

high-demand periods, ensuring resources are available when needed 

without overprovisioning private infrastructure. 

 Cost Efficiency: By using public clouds for temporary or variable 

workloads, organizations can avoid the upfront costs of overprovisioning 

private resources. 

 Data Control: To address security and compliance issues, sensitive data 

can be stored in a cloud that is private whereas non-sensitive information 

data is processed on a public cloud. 

b) Cons of Hybrid Cloud: 

 Complexity: Integrating and managing two distinct cloud environments 

can be complex, requiring specialized skills and coordination between the 

private and public components. 
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 Security Challenges: Ensuring consistent security measures across both 

environments can be challenging, leading to potential vulnerabilities if not 

managed properly. 

 Data Transfer Costs: Moving data between private and public clouds 

may incur costs, especially if large volumes of data need to be transferred 

frequently. 

 Vendor Lock-In: Organizations might face vendor lock-in issues if they 

heavily rely on a specific public cloud provider's tools and services. 

 Management Overhead: Administering and monitoring a hybrid cloud 

requires additional effort to ensure smooth operation, resource 

optimization, and cost control. 

 Community Cloud 1.5.4

Several organisations share community clouds, which are used to address issues like 

compliance and security. They offer a platform for collaboration for organisations 

with comparable needs and can be administered internally or by a third-party service. 

a) Merits of Community Cloud: 

 Shared Resources: Organizations within a specific community can pool 

their resources to create a collaborative and cost-effective cloud solution. 

 Data Control: Community clouds allow organizations to maintain control 

over their data and applications while benefiting from shared 

infrastructure. 

 Compliance: Community clouds can be tailored to meet specific 

regulatory and compliance requirements common to the industry or 

community members. 

 Cost Savings: By sharing infrastructure costs among community 

members, each organization can achieve cost savings compared to setting 

up their private clouds. 

 Customization: Community clouds offer flexibility without 

compromising data security since they may be tailored to the specific 

demands of the community members. 
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b) Demerits of Community Cloud: 

 Complexity: Coordinating among multiple organizations within the 

community can be complex, leading to potential management challenges. 

 Security Concerns: While community clouds can offer improved security 

compared to public clouds, they still need careful security measures to 

ensure data privacy and protection. 

 Limited Scalability: Depending on the size and growth of the community, 

scalability might be limited compared to larger public cloud environments. 

 Shared Risks: Since resources are shared, any downtime or issues 

affecting one organization might impact others as well. 

 Multi Cloud 1.5.5

The use of services from various cloud service providers (CSPs) to meet an 

organization's computing needs is known as multi-cloud. In a multi-cloud 

environment, an organization distributes its workloads, applications, and services 

across different cloud platforms rather than relying solely on a single provider. This 

approach offers a range of benefits but also presents certain challenges that 

organizations need to manage effectively. Figure 1.9 represents the comparison of 

Multi and Hybrid clouds.  There are several variations and strategies within the multi-

cloud approach.  Here are some different variations: 

i. Multi-Provider Multi-Cloud: The most popular form of the multi-cloud 

approach involves an organisation using services from a variety of different 

cloud providers in order to prevent vendor lock-in and to take use of each 

provider's advantages. 

ii. Hybrid Multi-Cloud: This approach combines a mix of private, public, and 

multiple public cloud providers to create a hybrid infrastructure. It allows 

organizations to keep sensitive data in private clouds while utilizing public 

clouds for specific workloads. 

iii. Geographical Multi-Cloud: In this variation, an organization uses different 

cloud providers in different geographic regions to optimize for performance 
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and data residency requirements. This can help reduce latency and comply 

with data regulations. 

iv. Specialized Multi-Cloud: This strategy involves using different cloud 

providers that offer specialized services optimized for specific tasks. For 

instance, using one provider for AI/ML capabilities and another for high-

performance computing. 

v. Cost Optimization Multi-Cloud: This strategy involves using different cloud 

providers based on cost. Organizations choose providers with the most cost-

effective offerings for specific workloads. 

vi. Data-Driven Multi-Cloud: Depending on the kind of data being processed, 

this strategy makes use of several cloud service providers. Use one supplier 

for big data analytics and another for processing transactional data, for 

instance. 

vii. Application-Centric Multi-Cloud: Here, different cloud providers are chosen 

based on the specific needs of different applications. This could involve 

optimizing costs for non-critical apps while ensuring high availability for 

mission-critical apps. 

 

a) Benefits of Multicloud Strategy: 

 Vendor Diversity: By utilizing multiple cloud providers, organizations 

can avoid vendor lock-in. This means they are not tied to a single 

provider's ecosystem and can choose the best solutions from different 

providers. 

 Best-of-Breed Services: Different cloud providers specialize in various 

services. A multi-cloud approach enables organizations to select the most 

suitable provider for each specific service, capitalizing on each provider's 

strengths. 

 Cost Optimization: Different providers offer varied pricing models and 

discounts. By strategically distributing workloads, organizations can 

optimize costs based on the specific requirements of each workload. 
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Figure 1.9 Comparison of Hybrid and Multi Cloud [12] 

b) Challenges of Multicloud Strategy: 

 Complexity: Managing multiple cloud providers introduces complexity in 

terms of billing, provisioning, security, and governance. This complexity 

can increase the workload for IT teams. 

 Data Transfer Costs: Transferring data between different cloud platforms 

might incur costs, particularly if not planned and managed carefully. 

 Security and Compliance: Ensuring consistent security measures and 

compliance across multiple providers can be intricate, requiring thorough 

planning and monitoring. 

 Security and Governance: Develop consistent security measures, access 

controls, and compliance policies across all providers. 

 Monitoring and Management: Implement robust monitoring and 

management tools that provide visibility into the performance and health 

of all deployed services. 

 Data Management: Plan data storage, backup, and migration strategies to 

ensure seamless data movement between providers. 
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1.6 Job Scheduling for Optimal Usage of Resources 

In cloud computing environments, scheduling algorithms hold significant importance 

in enhancing resource utilization and overall performance. Their primary duties 

involve effectively allocating computational resources and controlling how activities 

and assignments are carried out on the cloud infrastructure. We will look at a number 

of well-known scheduling algorithms used in the context of CC in this study, 

exploring their workings and benefits [25]. We will also go through each algorithm's 

minimum execution time, which shows how long it takes to finish the scheduling 

process. 

 First-Come, First-Served (FCFS) Scheduling 1.6.1

A straightforward scheduling system called FCFS bases its operations on the time that 

tasks arrive. Without taking into account their priority or execution time, the tasks are 

completed in the order they are received. This algorithm ensures fairness, as it follows 

a first-come, first-served approach. However, FCFS may result in subpar performance 

when long-running activities are completed early, delaying subsequent shorter jobs 

for an extended period of time. The number of tasks and their execution times affect 

FCFS's minimum execution time [23]. 

 Shortest Job Next (SJN) Scheduling 1.6.2

Shortest Job Next (SJN) scheduling strives to minimize the average waiting period by 

prioritizing the task with the briefest execution duration for the subsequent execution. 

To implement this algorithm effectively, advance knowledge of the execution 

duration for each task is essential. By prioritizing short tasks, SJN reduces waiting 

time and improves system efficiency. However, SJN can be problematic in scenarios 

where the execution time is unknown or cannot be accurately predicted. The 

distribution of task execution times and the number of tasks determine the minimal 

SJN execution time. [24]. 
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 Round Robin (RR) Scheduling 1.6.3

RR is a popular scheduling method that cyclically allots a similar time slice to each 

activity. It provides equity and prevents any task from having a resource monopoly 

for an extended period of time. Each task is allowed to execute for a predefined time 

quantum before being pre-empted and moved to the back of the scheduling queue. RR 

is suitable for scenarios with diverse task execution times, as it provides equal 

opportunities for all tasks. The time quantum and the number of tasks determine the 

RR's minimal execution time [26]. 

 Priority-Based Scheduling 1.6.4

Tasks are given priority levels according to their relevance or criticality in priority-

based scheduling. The scheduler executes tasks with higher priority levels first, 

ensuring that critical tasks receive immediate attention. This algorithm allows for 

better control over task execution and resource allocation. However, improper 

prioritization can lead to starvation of low-priority tasks. The number of jobs and the 

number of priority levels determine the priority-based scheduling's minimum 

execution time [27]. 

 Genetic Algorithm (GA) Scheduling 1.6.5

The metaheuristic method known as GA was influenced by the idea of natural 

selection. It evolves a population of potential schedules and finds the best solution 

using genetic operators like mutation, crossover, and selection [28]. GA-based 

scheduling considers several parameters, such as task execution time, resource 

availability, and task dependencies, to provide efficient schedules. The minimal 

execution time of GA-based scheduling depends on the size of the population, the 

number of generations, and the complexity of the problem [29]. 

 Minimum Execution Time (MET) 1.6.6

MET is similar to the shortest job first but it also considers the allocation cost of the 

job. If a work has to be executed on more than one cloud host, MET will broadcast 
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the demand and will allocate the job to the server with the shortest execution time 

[30].  

As time has passed by, the evolution of ML methods has been observed to be applied 

in cloud scheduling approaches. The aim is to learn from previous allocations and to 

assign a rank so that overall power consumption can be reduced [31]. Hence the 

preliminary aim of ML based algorithm can be defined as follows. 

                        (1.1)  

Where PC is the power consumption in assigning a job to a host system.  

The overall quantity of power that is used over a certain amount of time is referred to 

as energy consumption.  

   ∫      
 

   
        (1.2) 

1.7 Various parameters of Cloud computing 

Cloud computing involves various parameters that define its characteristics and 

capabilities. Here are some of the key parameters in CC that have been used popularly 

in the research community for determining the effectiveness of cloud scheduling. 

 Makespan 1.7.1

Makespan is the entire amount of time needed to complete a series of tasks or 

procedures in a cloud environment. It displays the total time required for each task, 

beginning with the first one. In cloud computing systems, the makespan is a crucial 

performance parameter for assessing the effectiveness and efficiency of resource 

allocation and job scheduling algorithms. 

The makespan can be calculated using the following formulas: 

1. Start Time (ST): This indicates the moment a task starts to be completed. 

2. Finish Time (FT): This shows the moment a task completes execution. 
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3. Makespan (MS): It is computed by deducting the time the initial operation began 

from when the prior job was completed. In other words, it shows the total time 

required to complete all tasks. 

The makespan may be calculated mathematically using the following formula: 

                             (1.3) 

Here,        refers to the finish time of the last task, and         refers to the start time 

of the first task. 

The makespan in cloud computing is optimised using a variety of scheduling and 

allocation of resources approaches. These techniques aim to minimize the makespan 

by efficiently utilizing cloud resources and distributing tasks effectively among the 

available resources. By reducing the makespan, cloud systems can achieve improved 

performance, enhanced resource utilization, and faster task completion. 

 Energy Consumption 1.7.2

The phrase "energy consumption" describes how much energy the different 

components of the cloud architecture—such as servers, networking hardware, storage, 

and cooling systems—consume. Effective management of energy consumption is 

essential to reduce operational costs and minimize the environmental impact of cloud 

computing.  

Factors that influence energy consumption in cloud computing include: 

1. Server Power Consumption: The energy consumed by servers depends on 

factors such as their processing capacity, utilization levels, and the energy 

efficiency of hardware components. 

2. Cooling and HVAC Systems: Data centres require cooling systems to maintain 

the optimal temperature for servers.  For the purpose of removing the heat 

produced by the servers, these cooling systems use electricity. 

3. Networking Equipment: Networking devices such as switches and routers also 

consume energy, influenced by factors like data traffic volume, network topology, 

and utilization. 
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4. Storage Systems: Energy consumption in storage devices, such as hard drives and 

SSDs, varies based on their capacity, utilization, and energy efficiency. 

Several metrics are used to measure energy consumption in CC: 

a. Power Usage Effectiveness (PUE): PUE compares the total 

energy consumed by a data centre (including IT equipment and 

cooling) to the energy consumed by IT equipment alone. Lower 

PUE values indicate higher energy efficiency. 

     
                       

                
       (1.4) 

b. Data Center Infrastructure Efficiency (DCIE): DCIE is the 

reciprocal of PUE and represents the percentage of energy 

consumed by IT equipment relative to the total energy consumed 

by the data centre infrastructure. 

     
 

   
  

                

                       
     (1.5) 

c. Energy Proportionality: Energy proportionality refers to a 

system's ability to dynamically adjust its energy consumption 

based on workload demands. Systems with higher energy 

proportionality consume less energy during periods of low 

workload. 

    
             

           
        (1.6) 

Employing energy-efficient hardware, streamlining workload allocation, and putting 

power management strategies like server consolidation and dynamic voltage and 

frequency scaling (DVFS) into practise are all part of optimising energy use in cloud 

computing. 

 CO2 Emission 1.7.3

CO2 emissions in computing result from the energy consumption and operation of 

cloud infrastructure, releasing carbon dioxide and other greenhouse gases. Despite the 
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potential environmental benefits of cloud computing, it still contributes to carbon 

emissions due to energy usage Carbon Usage Effectiveness is a metric used to 

determine CO2 emissions. As defined by CUE: 

     
    

   
          (1.7) 

Where 

      = Total energy used by the data centre, which results in a total CO2 output. 

EIT = Total amount of energy used by IT devices 

Several factors contribute to CO2 emissions in CC: 

1. Energy Source: The type of energy used to power the cloud infrastructure impacts 

CO2 emissions. Carbon-intensive energy sources, like fossil fuels, lead to higher 

emissions compared to renewable energy sources. 

2. Data Center Operations: Data centres, which house the cloud infrastructure, 

consume significant amounts of electricity. Powering servers, cooling systems, and 

other equipment contribute to CO2 emissions, particularly if the energy comes from 

non-renewable sources. 

3. Cooling and HVAC Systems: Data centres require cooling systems to maintain 

optimal temperatures. The energy consumed by these systems, including air 

conditioning and ventilation, adds to CO2 emissions. 

4. Server Utilization: Efficient server utilization is crucial for reducing CO2 

emissions. Underutilized servers consume excess energy, resulting in higher 

emissions. Techniques such as server virtualization and load balancing improve 

utilization and reduce energy waste. 

Efforts to reduce CO2 emissions in cloud computing include: 

a. Renewable Energy Adoption: Reducing CO2 emissions by switching to 

renewable energy sources, such solar or wind power, to power data centres 

and cloud infrastructure. 

b. Energy Efficiency Measures: Implementing energy-efficient hardware, 

optimizing cooling systems, and adopting energy-saving practices like 

dynamic power management help reduce overall energy consumption and 

lower emissions. 
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c. Green Data Centers: Designing and operating data centres with eco-friendly 

approaches, such as using energy-efficient equipment and cooling methods, 

contributes to reduced CO2 emissions. 

d. Carbon Offsetting: Some cloud providers offer carbon offset programs, 

investing in projects that offset the carbon emissions generated during cloud 

operations. 

Monitoring and reporting CO2 emissions in cloud computing ensures transparency 

and accountability. It enables cloud providers and users to understand the 

environmental impact and make informed decisions regarding energy consumption 

and sustainability initiatives. 

 Execution Cost 1.7.4

It is the sum of the job scheduling costs calculated across various physical equipment 

or data centres. When users are to be assigned to the PMs in the early phase of 

allocation, the scheduling design wants to achieve a minimum cost.  Most of the time, 

the cost may be calculated using the following relationship between energy use and 

makespan 

                                        (1.8) 

Where the unit cost is   and β is the quantity of energy that will be used due to 

malicious processing. 

1.8 Machine Learning and its Evolution in Job Scheduling Under Cloud 

Computing  

The area of machine learning (ML), which falls under artificial intelligence (AI), aims 

to create methods and algorithms that let computers take knowledge from data and 

use it to forecast and make decisions. ML has revolutionized various industries by 

providing solutions to complex problems and enabling intelligent automation [32, 33]. 

In recent years, the merging of machine learning (ML) with cloud computing has 

propelled its adoption and capabilities to even greater heights. The inclusion of a 

section on ML in the opening chapter of the study work is significant because it 



 

  27 

 

underlines the significance of thoroughly knowing various machine learning 

algorithms before adopting or integrating them into the research. This understanding 

serves as the foundation for planning and creating efficient resource management 

solutions in multi-cloud systems. Researchers can find the best algorithms for tackling 

specific difficulties like workload prediction, resource allocation, and performance 

improvement by experimenting with various machine learning methodologies. This 

ensures that the suggested model has the ability to adapt to changing cloud settings 

and produce optimal results. Thus, a detailed evaluation of machine learning 

algorithms is required to inform the design and execution of the resource management 

model, thereby increasing its effectiveness and practical application in real-world 

multi-cloud settings. 

  Early Adoption: 

The initial stages of ML deployment were characterized by on-premises 

infrastructure, where organizations had to manage and maintain their own hardware 

and software resources. However, as ML algorithms became more complex and 

required substantial computational power and storage, cloud computing emerged as 

an ideal platform for ML applications. Cloud providers offered scalable and flexible 

infrastructure, allowing users to deploy ML models and leverage powerful hardware 

resources on-demand. 

 Scalability and Elasticity: 

Cloud computing provides the scalability and elasticity required for ML workloads. 

ML models often demand significant computing resources, and cloud platforms 

enable users to scale up or down their infrastructure based on the workload's 

requirements. This ensures optimal resource utilization and cost efficiency. Cloud 

providers offer services like virtual machines, containers, and serverless computing, 

making it easier to deploy and maintain ML applications at scale. 

 Data Storage and Processing: 
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Platforms for cloud computing offer strong data processing and storage capacities, 

which are essential for machine learning processes. Large datasets are essential to the 

training and validation of machine learning algorithms. Large datasets may be 

securely and economically stored with the help of cloud storage systems like Google 

Cloud Storage and Amazon S3. Additionally, cloud-based data processing 

frameworks like Apache Spark or Google Cloud Dataflow provide distributed 

processing capabilities, allowing ML practitioners to efficiently pre-process and 

analyse vast amounts of data. 

 Managed ML Services: 

Cloud providers have introduced managed ML services that simplify the 

development, training, and deployment of ML models. They also offer automated 

model training, hyperparameter tuning, and model serving capabilities, reducing the 

complexity and time required to build and deploy ML applications. 

 Integration of AI Services: 

Cloud computing has enabled the integration of ML with other AI services. Cloud 

providers offer APIs and pre-trained models that allow developers to incorporate 

advanced AI functionalities into their applications without the need for extensive ML 

expertise. This integration of ML with cloud-based AI services empowers businesses 

to deliver more intelligent and personalized experiences to their users. 

 Federated Learning and Edge Computing: 

The evolution of ML in CC has also shown the way for emerging paradigms such as 

federated learning and edge computing. Federated learning enables ML models to be 

trained on distributed devices while preserving data privacy. Cloud infrastructure acts 

as an orchestrator, coordinating the training process across multiple devices, which 

accelerates model development and reduces the need for data transfer. Edge 

computing brings ML capabilities closer to the data source, allowing real-time 

inference and reducing latency. This is particularly valuable in applications like 

autonomous vehicles, IoT, and healthcare. 
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Figure 1.10  Machine Learning Approach [36] 

Two of the most common approaches to machine learning are supervised and 

unsupervised learning [34]. Both options enable the user to supply the computer with 

a vast amount of data records in order for it to understand and establish relationships. 

This collected data is commonly referred to as a ―feature vector‖ and the various 

machine-learning approaches are shown in Figure 1.10. 

 Supervised  1.8.1

Supervised learning comes in two flavours: regression and classification. The 

difference between the two is the core of their manufacturing vector. If the result is 

different, in the form of a real value, it is referred to as regression [35]. For instance, 

attributes like size, weight, height, and economic value belong to the realm of 

continuous variables. Conversely, classification comes into play when the outcome 

variable assumes a class or category format. Distinguishing between options like 

"pink," "white," "high," or "short" aligns with classification. When data input is 

categorized into precisely two classes, it is deemed binary classification. However, 

when data is categorized into more than two classes, it qualifies as a multi-class 

classification. 

 Un-supervised 1.8.2

In this ML technique, the data is not labelled. The machine must find the correct 

target without any prior knowledge, and therefore detect unknown patterns in the data. 

Algorithms must thus be created in a way that allows them to identify the right 

patterns and structures for them inside the data. Unsupervised learning can take two 

forms: association and clustering [35, 36]. When developers want to find trends or 

order in a large group of uncategorized results, they use clustering. Where the aim is 
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to identify relationships between various data items in broad datasets, the association 

is used. These approaches are graphically represented in Figure 1.11. 
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Figure 1.11 Supervised and Unsupervised Approach [34]  

The key differences between the supervised and unsupervised learning approaches are 

listed in Table 1.1. 

Table 1.1 Difference between Supervised and Unsupervised ML Techniques 

SUPERVISED UNSUPERVISED 

Labelled data is provided as input Unlabelled data is provided as input 

Used trained dataset Use just input dataset 

Used for data prediction Used for data analysis 

Includes classification and regression 
Used clustering approach, estimate 

density, and reduce dimension 

e.g. ANN, CNN, SVM e.g. K-means 
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 Semi-supervised 1.8.3

Most deep learning classifiers require large numbers of labelled samples for good 

generalization, but obtaining such data is expensive and complex. To deal with this 

limitation, supervised learning in addition to unsupervised learning is presented, 

which is known as semi-supervised learning. It is a class of methods that use a set of 

labelled data along with a large amount of unlabelled data. Untagged data, when 

combined with a limited amount of labelled data, has been found to greatly increase 

training performance by many machine learning researchers. In the last decade, 

researchers have presented that semi-controlled learning can be used in combination 

with the performance of a small number of labelled data classifiers for IDSs that 

require less time and expense. Each machine learning algorithm has its own 

advantages and limitations that suit it best for some particular situations. The 

worthiness of most popular algorithms can be accessed from the following Table 1.2. 

Table 1.2 Comparison of Machine Learning Algorithms 

Machine 

Learning 

Techniques 

Advantages Limitations Remarks 

Naïve Bayes (NB) 

 NB is an 

effective 

technique to 

extract the 

subjective 

sentence. 

 Suitable for 

small training 

set 

 Simple and 

straight forward 

to use 

 The 

interpretation is 

very easy. 

 The training 

data required for 

 Bias outcomes 

when the 

number of 

training sets 

increases 

 Assumes all 

features to be 

independent 

which is not the 

case in the real 

world. 

This is a robust and 

effective technique 

but still, there is a 

need for primary 

knowledge as it is 

sensitive to how the 

input data is 

prepared. 
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processing is 

low to initiate 

the work. 

Decision Tree 

(DT) 

 Can handle 

categorical data 

 The 

interpretation is 

easy to 

understand. 

 Classes need to 

be mutually 

exclusive 

 Highly sensitive 

to noisy data and 

outliers 

 Increased risk of 

overly complex 

trees 

The performance 

can be good on 

large datasets 

K-nearest 

Neighbour (KNN) 

 Nonparametric 

 No cost 

associated with 

the learning 

process 

 Implementation 

is easy 

 Robust for 

outlier 

prediction 

 Result 

interpretation is 

very hard 

 Lacks explicit 

model training 

 Sensitive 

enough in case 

of measuring the 

distance. 

 Expensive 

computation in 

the case of a 

large dataset 

The classification 

speed is slow when 

the training set is 

large. 

Random Forest 

(RF) 

 Easier to tune 

 Hard for 

overfitting 

 An increased 

number of trees 

makes the 

algorithm slower 

 Not suitable for 

categorical 

analysis with a 

number of levels 

Slows down in 

real-time prediction 

due to the 

generation of a 

larger number of 

trees 

Support Vector 

Machine (SVM) 

 Training is 

relatively easy 

 For practice and 

theoretical 

aspects, there is 

a good 

generalization. 

 An appropriate 

kernel function 

is required to 

choose. 

 There is a 

problem of 

interpretation. 

 The 

performance is 

very good. 

 For better 

performance 

knowledge of 

the kernel is 
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 The feature 

space has less 

dependency on 

dimensionality. 

required. 

Neural Network 

(NN) 

 Delivers good 

performance 

even in case of 

noisy data 

 The execution 

time is less. 

 The 

implementation 

and 

interpretation 

are difficult. 

 Requires a large 

sample size for 

better 

performance. 

 There is a high 

memory usage. 

 Many 

parameters to be 

finely tuned. 

Performance gets 

challenged for 

smaller sample 

sizes. 

 

Q-learning 

 Learns optimal 

policy directly 

 Computation 

cost is less 

 Comparatively 

fast 

 The perfect 

option for 

offline learning 

 Uses biased 

samples 

 Per sample 

variance is high 

 Not efficient for 

online learning 

A good option 

when offline 

leaning has to be 

performed 

1.9 Metaheuristic Algorithms 

Researchers across the globe have observed a prevailing trend in merging machine 

learning algorithms with metaheuristic algorithms to amplify the efficiency of existing 

scheduling procedures. A metaheuristic acts as a recurrent governing mechanism that 

directs and improves the operations of subordinate heuristics, producing the 

production of high-quality solutions. It is capable of manipulating either a single 

solution or a group of solutions in each iteration. These subordinate heuristics 

encompass methods varying in complexity levels, ranging from high to low, which 

could involve simple local searches or construction techniques. 
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Metaheuristics can be conceptualized as a set of foundational principles that facilitate 

the formulation of heuristic approaches adaptable to a diverse spectrum of problems. 

They embody a general algorithmic framework that offers versatility, requiring 

minimal adaptations to suit specific issues across a range of optimization problems. 

Metaheuristic techniques entail a repetitive sequence of exploration actions, rendering 

them potent tools for effectively tackling intricate optimization challenges. 

Predominantly, metaheuristics draw inspiration from natural processes, yet a subset 

also takes cues from biological systems, human activities, nature, and physical 

systems.[37, 38], etc.  

 Genetic Algorithm: It is one of the simplest algorithms that is based on the 

prospective solutions observed as a population. In this type of metaheuristics, 

the new solutions are generated by a number of genetic operations such as 

mutation and crossover [39]. These new solutions replace the existing 

solutions. The GA is based on Darwin’s idea of survival of the fittest.  

 Simulated Annealing: This metaheuristic is inspired by the metallurgy and 

describes the cooling process carried on in the furnace. In simulated annealing 

the probability of reaching a low-valued solution considerably decreases with 

an increase in algorithm runs [40, 41]. Hence, the probability of reaching the 

best global solution significantly increases and this proved to efficiently 

resolve various complex optimization problems.  

 Swarm Intelligence: It covers algorithms that are inspired by the group or 

swarm-based intelligent behaviour of the organisms. The group behaviour here 

means the collective and collaborative work of organisms such as colonies of 

ants. The major reasons behind exhibiting such group behaviour are mainly 

foraging for food, evading prey or relocation of the colony. In most of the 

cases, the communication was performed using pheromones (ants), proximity 

(fish) or dance (bees). Some of the widely used nature-inspired algorithms that 

fall under this category are PSO [42], ABC [43], ACO [44], Firefly [45] and 

Grasshopper Optimization Algorithm [46].  
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 Characteristics of Metaheuristic 1.9.1

There are different characteristics of metaheuristic [47] that can be defined as follows: 

 By effectively searching the search space, a global technique that uses the 

metaheuristic approach to solve problems ensures that the best or nearly the 

best answer will be found. 

 Heuristics that are governed by the higher-level strategy are used by 

metaheuristics to access domain-specific knowledge. 

 Metaheuristic methods are problem-independent and more flexible as 

compared to exact methods.  

 Traditional methods are not able to handle voluminous data efficiently. On the 

other hand, metaheuristics handles high-dimensional data in a viable manner. 

1.10 Organisation of the Thesis  

The chapters of the thesis are organized in the following manner.  

 Chapter 1 introduces the scheduling architecture that is involved in the Cloud 

Computing paradigm. The introduction section includes a description of the 

usage and evolution of the ML algorithms in scheduling architecture as well as 

the hybridization of the scheduling architecture via ML and meta-heuristic 

approaches.  

 Chapter 2 illustrates the related work section that incorporates the articles that 

list hybrid scheduling architectures or the architectures that support meta-

heuristic algorithms to support the approach of the proposed algorithm. 

 Chapter 3 introduces the MET algorithm and cyber shake work flow and 

discusses the proposed work algorithm for the enhancement.  

 Chapter 4 is dedicated to the application and improvisation of the flower 

pollination algorithm while involving Q-learning. 

 Chapter 5 reviews the findings and provides a thorough analysis of the work 

that is planned.  

 Chapter 6 concludes with the evaluated results and future work. 
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CHAPTER 2: REVIEW OF LITERATURE 

The cloud computing environment has attracted masses due to its potential services 

offered to service users as well as the service providers. It has shown tremendous 

grown in a very small-time span in the service industry. However, there are some 

adjoining challenges and issues that need to be constantly addressed to ensure its 

advantages to overcome its associated limitations. The literature survey discussed in 

this chapter focuses on discussing the various research publications and articles that 

have been presented to address the scheduling in cloud in energy efficient manner. 

The following studies also show that the research community is constantly looking 

forward to minimizing CO2 emissions in order to ensure green computing by 

employing various optimization and machine learning algorithms. 

2.1 Literature Review 

Lucas-Simarro et al. introduced an extensible broker framework that allowed for the 

best possible deployment of virtual services across several clouds. The design enabled 

a variety of scheduling strategies, taking into account user constraints, environmental 

considerations, and numerous optimisation criteria. The study looked at how different 

clustered services, such as an HPC cluster and a cluster of web servers, were deployed 

in a multi-cloud context. Different conditions, constraints, and optimisation criteria 

were covered by the analysis. Overall, the study demonstrated the efficiency and 

advantages of the modular broker architecture for deploying virtual services optimally 

across various clouds [48].  

Dhanalakshmi and Basu combined a modified Max-min algorithm with a VM 

placement algorithm designed to use less energy.  This method was presented to 

accomplish the twin goals of minimising energy use and shortening the duration of 

tasks. Cloud Sim was utilised to simulate the experimental outcomes. The study's 

findings led to the conclusion that the proposed method successfully reduced both 

energy consumption and response time [49]. 
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Brar and Rao aimed to improve resource utilization and minimize execution time in 

cloud-based workflows. By analysing previous works in the field, the researchers 

identified the limitations of existing scheduling techniques. The findings revealed that 

the Max-Min algorithm effectively optimized workflow scheduling, resulting in 

improved resource allocation and reduced execution time. The widely used scientific 

workflow such as Cyber Shake, Montage, and Sipht were employed for processing the 

incoming requests. The study shed important information on the use of scheduling 

algorithms in CC, emphasising the Max-Min algorithm's importance in improving 

workflow management in cloud environments. It was concluded that the Max-Min 

achieved better results with Cyber Shake in comparison to Data ware [50]. 

Panda and Jana introduced three task scheduling techniques, MCC, MEMAX, and 

CMMN, were presented and are intended for heterogeneous multi-cloud systems. The 

algorithms sought to reduce makespan and maximise average cloud usage. MCC was 

a single-phase scheduling technique, in contrast to MEMAX and CMMN, which used 

a two-phase approach. The algorithms were thoroughly validated with an emphasis on 

makespan and average cloud utilisation metrics using a variety of benchmark and fake 

datasets. The authors conducted tests on two benchmark datasets and one synthetic 

dataset to see how well the recommended methods worked. The outcomes were 

contrasted with the multi-cloud task scheduling algorithms RR, CLS, CMMS, and 

CMAXMS based on their applicability. The comparison showed that, in terms of 

makespan and average cloud utilisation, the suggested algorithms performed better 

than the ones already in use [51]. 

Hosseinimotlagh et al. introduced SEATS, a VM scheduling algorithm, to optimize 

utilization and energy consumption in a Cloud environment. The algorithm allocated 

more computing power to VMs on a host, aiming for optimal utilization. A VM 

scheduling algorithm based on maximising utilisation was additionally suggested to 

reduce energy usage while maintaining QoS. The study used simulations to show that 

the suggested algorithms significantly reduced real-time task turnaround times by 

94% and overall energy consumption by 60%. Also increasing by 96% was the 
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acceptance rate of incoming tasks. Overall, the study showed how effective SEATS 

are at maximising energy consumption and improving task performance [52]. 

Patel et al. conducted research on a number of work scheduling strategies, including 

Minimum Execution Time. For static meta-task scheduling, they also recommended 

modifications to the load-balanced Min-Min (ELBMM) algorithm. The effects of the 

load-balanced Min-Min algorithm on static Meta Task Scheduling in grid computing 

were thoroughly examined prior to designing the enhanced method. In order to 

successfully exploit underutilised resources, the Enhanced Load Balanced Min-Min 

algorithm (ELBMM), which was based on the Min-Min technique, required task 

rescheduling. It assigned the assignment to the relevant resources after determining 

which one would take the longest to finish. The EELBM outperforms other 

algorithms in terms of resource utilisation and makespan, according to the results 

[26].  

Ismail and Fardoun created an energy-aware tasks scheduling (EATS) approach to 

divide and schedule massive data in the cloud. EATS's primary objectives were to 

improve application efficiency and cut back on the energy consumption of the 

underlying resources. Various workloads were used to measure a computing server's 

power usage. The results of the experiments showed that there was a 1.3 energy 

consumption ratio between the peak performance and idle state, highlighting the need 

for efficient resource utilisation without affecting performance. As a result, data 

centres use less energy a result of cloud providers adopting such strategies [53]. 

Hemamalini and Srinath evaluated the effectiveness of various task-scheduling 

algorithms for resource discovery and management in the cloud. The performance 

analysis was aimed at achieving a balanced minimum execution time for the task 

scheduling. Different task scheduling algorithms, including Minimum Execution 

Time, Min-Min, Load Balanced, and Min-Min, were studied in the process with 

regard to makespan, completion time, execution time, and load balancing. According 

to the research, the balanced minimum execution time outperformed the other 

conventional scheduling algorithms covered in the paper [54]. 
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Maheshwari et al. provided a method for multi-site process scheduling that used 

dynamic probes to estimate feasible network throughput across sites and performance 

models to forecast resource execution times. They also established the concept of 

workflow skeletons and the SKOPE framework to examine and analyse the 

computational and data transportation features of processes. Real-world applications 

were run in two different computing environments—distributed across various 

clusters and parallelized across numerous clouds—using the Swift parallel and 

distributed execution framework. The outcomes showed that their method 

successfully reduced the overall workflow execution time by up to 60%. When 

compared to the default scheduling method, the approach also showed improved 

resource utilisation and shorter execution times [55]. 

In a cloud computing setting, Jasraj et al. developed a unique meta-heuristic cost-

effective genetic algorithm to reduce process execution costs while assuring deadline 

adherence. They carried out a thorough performance test of the proposed approach 

utilising well-known scientific workflows of various sizes, including Montage, LIGO, 

Cyber Shake, and Epigenetics. The novel scheme includes various operations of 

genetic algorithm involving initialization of the population, encoding, performing 

mutations and crossovers. By minimizing execution costs while meeting deadlines, 

the proposed approach strikes a balance between efficient resource utilization and 

meeting user requirements [56]. 

Panda and Jana introduced two SLA-based task scheduling algorithms, namely SLA-

MCT and SLA-Min-Min, designed for heterogeneous multi-cloud environments. The 

algorithms were tailored to support three different customer-determined SLA levels. 

SLA-Min-Min employed a two-phase scheduling strategy, whereas SLA-MCT 

utilized a single-phase strategy. To evaluate the algorithms' performance, the study 

conducted simulations using both benchmark and synthetic datasets. Execution-Min-

Min and Profit-Min-Min were two two-phase scheduling algorithms that were 

evaluated alongside SLA-Min-Min. On the other side, SLA-MCT was contrasted with 

CLS, Execution-MCT, and Profit-MCT, three single-phase task scheduling methods. 

The examination used four important performance metrics: makespan, average cloud 
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utilisation, gain, and penalty cost of services. The study's findings showed that in 

terms of striking a balance between makespan and the gain cost of services, the 

proposed algorithms consistently beat the alternatives. This indicated that SLA-MCT 

and SLA-Min-Min have the potential to effectively manage task scheduling while 

satisfying SLA requirements within heterogeneous multi-cloud environments [57]. 

Maharana et al. identified the limitations of existing energy-aware scheduling 

approaches for real-time tasks in cloud environments. These methods relied on 

determinism and pre-calculated schedule decisions, which weren't appropriate for 

environments with dynamic execution. The paper took into account a number of 

energy-efficiency factors, including energy cost, CPU power efficiency, carbon 

emission rate, and workload, to address these issues. The authors suggested real-time, 

aperiodic, independent task scheduling strategies that are nearly optimal in terms of 

energy efficiency for cloud data centres. The proposed EDVS algorithm was designed 

to provide Quality of Service (QoS) while lowering operational costs. Results from 

experiments showed that the EDVS algorithm performed better in cloud environments 

when compared to related algorithms [58]. 

Madni et al. conducted a study comparing the performance of heuristic algorithms for 

task scheduling in an IaaS CC environment. Three well-known heuristic algorithms—

Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), and Ant Colony 

Optimisation (ACO)—were examined in the study. The authors also highlighted the 

trade-off between execution time and resource utilization. The evaluation was 

performed against various heuristic algorithms including First Come First Serve 

(FCFS), Minimum Execution Time (MET), minimum Completion Time (MCT) and 

Max-min, and Min-min algorithms for job scheduling in the cloud. Among all, the 

MET algorithm demonstrated better performance for optimal job scheduling [59]. 

Douik et al. addressed the complex task of maximizing network-wide utility by 

associating users with clouds and scheduling them to specific Processing Zones (PZs) 

while accommodating practical constraints. These constraints encompassed allowing 

users to be assigned to one cloud at most, multiple Base Stations (BSs) within a cloud, 

and multiple distinct PZs within the frame of the BSs. To tackle this challenge, the 
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study employed graph theory methods and constructed a conflict graph. This graph 

facilitated the transformation of the scheduling problem into a maximum-weight 

independent set problem. The authors proposed both heuristic and optimal distributed 

network algorithms to solve the issue. These distributed algorithms efficiently 

addressed the maximum-weight independent set problem by leveraging the structure 

of the conflict graph. Simulation outcomes demonstrated that the hybrid scheduling 

strategies, combining optimal and heuristic approaches, offered substantial 

enhancements in comparison to scheduling-level coordinated networks. These 

improvements were achieved with only a minimal impact on signal-level 

coordination, showcasing the potential of the proposed strategies to optimize network 

utility while considering practical constraints [60]. 

Praveen et al. plan to balance the load among diverse resources of numerous cloud 

providers . Task scheduling and resource allocation were the two phases of the plan. 

To allocate resources effectively, the researchers used the social group optimisation 

algorithm. To schedule tasks, they used the shortest-job-first scheduling method to 

reduce makespan time and increase throughput. The researchers experimented with 

synthetic data in a diverse cloud environment to gauge how well their suggested 

strategy performed. They contrasted the experimental findings with those of first-in, 

first-out scheduling and a shortest-job-first technique based on genetic algorithms. 

The outcomes demonstrated the suggested method's validity and usefulness in 

improving the system's performance, with considerable increases in makespan time 

and throughput [61]. 

Duan et al. proposed an incremental Genetic Algorithm (GA) approach for 

minimizing makespan in task scheduling problems. They incorporated adaptive 

probabilities of crossover and mutation, adjusting them based on generations and 

varying them between individuals. The researchers conducted experiments using 

randomly generated tasks to simulate Cloud-based scheduling scenarios. Their 

adaptive incremental GA was tested against Min-Min, Max-Min, Simulated 

Annealing, and Artificial Bee Colony Algorithm. The outcomes demonstrated that 
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their suggested approach produced workable solutions with a reasonable makespan 

while needing less computing time [62]. 

Panda and Jana developed four task-scheduling algorithms for heterogeneous multi-

cloud environments. The first two used traditional normalization techniques, while the 

third introduced distribution scaling and nearest radix scaling. The algorithms were 

tested using synthetic and benchmark datasets, showing superior performance in 

makespan and average cloud utilization. However, they failed to consider execution 

and transfer costs across diverse clouds [63]. 

Hu et al. present a multi-objective scheduling (MOS) method designed for scientific 

processes in a multi-cloud context. The algorithm was carefully designed to reduce 

both the cost and the length of the operation while upholding dependability 

requirements. Leveraging PSO technology, the algorithm was designed with a coding 

strategy that accounted for task execution locations and the sequence of data 

transmission. To assess the algorithm's performance, the researchers conducted 

extensive simulation experiments using real-world scientific workflow models. The 

results of the evaluation revealed the superiority of the MOS algorithm. It consistently 

outperformed both the CMOHEFT and RANDOM algorithms across all multi-

objective metrics, underscoring its potential as a highly efficient and effective 

approach for optimizing task scheduling and resource allocation within multi-cloud 

environments. [64]. 

Lin et al. introduced a power efficiency model for cloud servers and proposed the 

ECOTS algorithm for energy-efficient task scheduling. The algorithm considered task 

resource requirements, server power efficiency, and performance degradation to 

minimize energy consumption while maintaining performance levels. Simulation 

experiments in a heterogeneous cluster environment showed that ECOTS achieved the 

highest energy efficiency while satisfying task resource requirements. According to 

various workloads, the suggested power efficiency model provided an appropriate 

assessment of server power efficiency. Min-Min and Performance First scheduling 

were exceeded by ECOTS, which led to energy savings of 21.4% and 21.9%, 

respectively [65]. 
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Jena and Mohanty introduced a Genetic Algorithm-driven strategy for Customer-

Conscious Resource Allocation and Task Scheduling in the context of multi-cloud 

computing. This approach was tailored for a multi-cloud federation scenario. The 

method was split into two phases: a task scheduling technique that gave priority to the 

smallest tasks first, and resource allocation controlled by genetic algorithms. The 

main purpose was to efficiently distribute work among virtual machines (VMs) in the 

multi-cloud federation in order to reduce makespan time and increase customer 

satisfaction. To validate their approach, the researchers meticulously conducted 

experiments using synthetic data and juxtaposed their simulation results with those of 

pre-existing scheduling algorithms. The outcomes of the simulations substantiated 

that the proposed algorithm surpassed the performance of existing algorithms, 

especially in terms of pertinent metrics [66]. 

Mishra et al. undertook a study concerning energy consumption within the cloud 

environment. Their research centred around diverse services, with the overarching 

goal of promoting environmentally conscious practices in cloud computing, 

commonly referred to as green cloud computing. Their primary focus was on 

curtailing overall energy consumption in the system, an objective tackled through the 

resolution of the task allocation predicament prevalent in cloud computing. To realize 

this objective, they introduced an adaptive task allocation algorithm specially 

designed to cater to the complexities of heterogeneous cloud environments. The 

algorithm successfully demonstrated its ability to reduce both makespan and energy 

usage through simulation in the Cloud SIM environment. The simulation results 

demonstrated that the suggested algorithm outperformed previous methods and 

became an energy-efficient solution in the cloud environment [67]. 

Hazra et al. embarked on an extensive exploration of diverse scheduling algorithms, 

driven by the overarching goal of curbing energy consumption during the allocation 

of varying tasks within a cloud setting. Their investigation encompassed a 

comprehensive assessment of the merits and demerits intrinsic to these pre-existing 

algorithms. During that period, energy consumption by distinct computing resources 

held notable significance, with a substantial portion of consumed energy being 
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directed toward task execution. Task schedulers bore the responsibility of 

orchestrating the mapping of tasks to their corresponding resources. The pivotal 

objective was to execute this mapping in a manner that optimized energy efficiency, 

consequently yielding a significant reduction in the overall energy consumption 

within cloud systems. The paper furnished a succinct analysis of pre-existing energy-

conscious task-scheduling algorithms that were prevalent at the time [68]. 

Gawali and Shinde provided a heuristic method for allocating resources and 

scheduling tasks in cloud computing. Their strategy used a number of approaches, 

such as the modified analytic hierarchy process (MAHP), the longest expected 

processing time pre-emption (LEPT), divide-and-conquer tactics, and bandwidth-

aware divided scheduling (BATS) + BAR optimisation. This combination seeks to 

improve the effectiveness of resource allocation and work scheduling procedures 

within the cloud environment. Through experimental comparisons with existing 

frameworks, their approach showed improved performance in terms of turnaround 

time and response time. It efficiently allocated resources, including CPU, memory, 

and bandwidth, leading to enhanced resource utilization. By considering bandwidth as 

a resource and evaluating system performance based on it, their approach 

demonstrated its effectiveness in optimizing resource allocation and improving 

overall system efficiency [69]. 

According to their article, TangXiaoyong et al. undertook a thorough project to reduce 

energy usage across cloud data centre servers, network components, and cooling 

systems. Their approach commenced with the establishment of an energy-efficient 

cloud data centre ecosystem, encompassing the design of its architecture and the 

formulation of models pertaining to job assignments and power consumption. To 

anticipate short-term workload trends within the cloud data centre, they integrated 

linear regression and wavelet neural network methodologies, giving rise to a 

predictive technique termed MLWNN. Additionally, they put forth a heuristic 

solution for energy-efficient job scheduling, leveraging workload predictions. This 

included a dual approach that included resource management and an online algorithm 

for energy-efficient task scheduling. The outcomes unveiled the solution's 
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commendable performance, establishing its efficacy, particularly in the context of 

cloud data centres with lower workloads [70]. 

To overcome the drawbacks of work consolidation and scheduling algorithms, Panda 

and Jana presented the Energy-Efficient Work Scheduling Algorithm (ETSA). The 

algorithm was developed with a focus on optimizing energy consumption and 

minimizing makespan in a heterogeneous environment. It incorporated factors such as 

task completion time and overall resource utilization, utilizing a normalization 

technique to guide scheduling decisions. To assess its efficacy, the researchers 

conducted a comprehensive evaluation of the ETSA algorithm. They evaluated its 

performance to a number of current methods, including MaxUtil, round-robin, 

random, dynamic cloud list scheduling, and task consolidation with consideration for 

energy use. The outcomes showed that the suggested ETSA algorithm was more 

capable than the alternatives currently available in terms of balancing energy 

efficiency and makespan [71]. 

Panda et al. introduced allocation-aware task scheduling algorithms tailored for multi-

cloud settings. These algorithms extended traditional Min-Min and Max-Min 

approaches, adapting them to suit multi-cloud requirements. Divided into matching, 

allocating, and scheduling phases, these algorithms seamlessly integrated into the 

multi-cloud environment. Simulations using benchmark and synthetic datasets 

demonstrated their efficacy, with improved metrics such as makespan, cloud 

utilization, and throughput. Comparative analysis against existing methods affirmed 

the proposed algorithms' effectiveness in enhancing scheduling efficiency within 

multi-cloud environments, contributing to optimized resource allocation and 

improved system performance [72]. 

Kaur et al. proposed a deep-Q learning-driven heterogeneous earliest finish time 

scheduling algorithm for cloud-based scientific workflows. They aimed to enhance 

workflow execution efficiency. The algorithm optimally allocated resources based on 

the earliest finish time, leveraging Deep-Q learning to make dynamic decisions. The 

study focused on heterogeneous environments and aimed to improve resource 

utilization. Through simulation, they demonstrated the algorithm's superiority in terms 
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of task completion times and resource utilization compared to baseline methods. The 

research contributed to efficient cloud-based workflow scheduling [73] 

Gupta et al. focused on workflow scheduling in cloud computing using the Jaya 

algorithm. The study aimed to optimize task assignment to minimize makespan and 

execution costs. In the process, comparisons were made with other nature-inspired 

algorithms like PSO, GA, ACO, honey bee, and CSO using benchmark functions such 

as Montage, CyberShake, Inspiral, and Sipht during evaluation. The simulation 

analysis demonstrated that the Jaya algorithm showed superior performance while 

converging quickly and producing similar results in less time. Thus, the study 

contributed to the effectiveness of workflow scheduling, emphasizing its potential in 

optimizing cloud computing resources [74]. 

Rehman et al. proposed a Multi-Objective Genetic Algorithm (MOGA) for workflow 

scheduling in the cloud. The algorithm aimed to optimize makespan while considering 

budget and deadline constraints, as well as achieve energy efficiency through dynamic 

voltage frequency scaling. Comparative evaluations were conducted against genetic 

algorithms focusing on individual objectives and Multi-objective Particle Swarm 

Optimization (MOPSO) with the same objectives. The results demonstrated that 

MOGA outperformed the other algorithms in terms of budget, deadline, energy 

efficiency, and resource utilization. The proposed algorithm showcased significant 

improvements across diverse objectives, highlighting its effectiveness compared to 

existing solutions [75]. 

An extensive survey was carried out by Arunarani et al. with a focus on work 

scheduling techniques and related metrics that apply in cloud computing settings. The 

study looked at several scheduling techniques, addressed their drawbacks, and 

identified important factors to take into account or leave out of a certain system. The 

poll was divided into three sections based on three perspectives: work scheduling 

techniques, applications, and parameter-based measurements. By exploring these 

perspectives, the research aimed to provide insights into the diverse range of 

scheduling approaches and metrics used in the literature [76]. 
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Zhang et al. proposed a replica-aware task scheduling algorithm and a load-balanced 

cache placement algorithm to address response delay and optimize data access in 

multi-cloud environments. The task scheduling algorithm considered node locality 

and transferred both computation and data, replicating only non-local unassigned and 

failed map tasks' input data. The cache placement algorithm predicted the next 

executing task using Bayesian networks and selected cache prefetching files based on 

caching profit and recycling cost. Extensive experiments demonstrated that the 

proposed algorithms outperformed benchmark approaches in terms of node locality 

ratio, job response time, prefetching hit ratio, and execution time-saving ratio [77]. 

Energy-oriented Flower Pollination Algorithm (E-FPA), developed by Usman et al. is 

a novel strategy that has been tailored for Virtual Machine (VM) allocation in cloud 

data centre environments. Their methodology encompassed the creation of a 

systematic framework that prioritized energy-efficient allocation of diverse VMs onto 

Physical Machines (PMs). This allocation strategy, known as Dynamic Switching 

Probability (DSP), was designed to balance global exploration and local exploitation 

in the search process, ultimately facilitating efficient VM allocation while considering 

PM's processor, storage, and memory constraints. Throughout the study, real-world 

workload data were employed in simulations conducted on Multi-Rec Cloud-Sim. 

The results highlighted the superior performance of E-FPA compared to other 

techniques. Notably, E-FPA outperformed Genetic Algorithm for Power-Aware 

(GAPA) by 21.8%, Order of Exchange Migration (OEM) ant colony systems by 

21.5%, and First Fit Decreasing (FFD) by 24.9%. This robust performance solidified 

E-FPA's position as a significant contributor to elevating data centre performance 

while advancing environmental sustainability through energy-efficient VM allocation 

[78]. 

Masdari and Zangakani undertook an extensive survey that furnished a 

comprehensive panorama of inter-cloud scheduling strategies. The main goal was to 

efficiently distribute user-generated activities and workflows among appropriate 

virtual machines scattered over various cloud infrastructures, all while taking into 

account different goals and factors. The paper systematically categorized scheduling 
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schemes devised for various inter-cloud environments, delving into their architectural 

intricacies, prominent attributes, and inherent benefits. Furthermore, the study 

encompassed a comparative analysis of distinct inter-cloud scheduling approaches, 

spotlighting the disparities in their features. The culmination of the research entailed 

concluding observations derived from the findings, as well as the identification of 

lingering research challenges within the realm of multi-cloud scheduling [79]. 

Natesan and Chokkalingam presented the Whale Genetic Optimization Algorithm, a 

hybrid approach combining the WOA and GA to minimize both makespan and cost in 

task scheduling. Through simulations using the Cloudsim toolkit, the proposed 

algorithm demonstrated significant improvements in execution time compared to 

classical WOA and standard GA methods. This innovative technique showcased the 

potential to provide higher-quality solutions for task scheduling challenges, 

contributing to the advancement of optimization strategies in this domain [80]. 

Xu and Buyya addressed the issue of carbon emissions in data centres by proposing a 

strategy that involves shifting workloads among multi-cloud environments located in 

different time zones. They developed models to quantify the energy usage, carbon 

emissions, and solar power availability at different locations. By leveraging this 

information, they aimed to minimize the reliance on brown energy and maximize the 

utilization of renewable energy sources. Specifically, they focused on managing the 

carbon footprint and renewable energy usage in data centres located in Europe, that 

are situated in different time zones. The results of their study demonstrated that by 

implementing workload shifting, they were able to reduce carbon emissions by 

approximately 40% compared to a baseline scenario, while still maintaining an 

acceptable average response time for user requests [81]. 

Hosseinzadeh et al. conducted a study in the realm of metaheuristic multi-objective 

optimization, with a specific focus on multi-objective scheduling strategies within 

diverse cloud computing settings. Their research encompassed a thorough survey and 

analysis of these strategies, categorizing them based on the multi-objective 

optimization algorithms utilized. The study provided insights into how these 

algorithms have been effectively applied to tackle scheduling challenges. 
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Furthermore, the research included a comparative analysis of the various multi-

objective scheduling schemes. This evaluation not only illuminated the strengths and 

weaknesses of different approaches but also highlighted directions for future research 

in this field. Overall, the study contributed to a deeper understanding of the landscape 

of multi-objective scheduling in cloud computing and provided valuable insights for 

researchers exploring further advancements in this domain [82].  

Sharma and Garg proposed HIGA, a hybrid metaheuristic algorithm, for energy-

efficient task scheduling in cloud data centres. HIGA combines genetic algorithm and 

harmony search to explore optimal regions efficiently. HIGA aimed to improve 

energy efficiency and performance while minimizing active racks, indirectly reducing 

cooling energy. Simulations with task applications and real-world scientific tasks 

showed significant energy savings of up to 33%, a 47% improvement in application 

performance, and a reduced execution overhead of 39%. HIGA demonstrated 

effectiveness in enhancing energy efficiency, application performance, and resource 

utilization in cloud data centres [83]. 

A 3-layer distributed multi-access edge computing (MEC) network made up of 

clouds, MEC servers, and edge devices (EDs) was the subject of research by Zhang et 

al. The network's goal was to effectively provide application-driven computing 

activities while lowering system latency by using EDs and MEC servers. The authors 

suggested a distributed system based on multi-agent reinforcement learning to solve 

resource rivalry amongst cloud centres (CCs). This system allowed CCs to jointly 

decide on task offloading and resource allocation while taking into account the 

choices made by other CCs. The suggested technique produced decreased system 

latency compared to existing approaches, according to simulation findings. The effect 

of the number of CCs, MEC servers, and EDs on latency performance was also 

covered in the study [27].  

Aziza and Krichen investigated scientific workflow scheduling in cloud computing, 

aiming to optimize task execution time, reduce computational costs, and adhere to 

deadlines and budgets. They proposed a hybrid approach that combines a genetic 

algorithm with the heterogeneous earliest finish time (HEFT) heuristic model. HEFT 
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is employed to create the initial population for the genetic algorithm. Through 

simulations using real-world datasets, their approach demonstrated superior 

performance compared to existing methods, highlighting its efficiency. The proposed 

hybrid method was applied to various workflow families and was integrated into the 

WorkflowSim framework using CloudSim, facilitating its practical implementation 

for cloud workflow scheduling [84]. 

Bezdan et al. uses an improved flower pollination technique to solve the scheduling 

problem in cloud computing. The goal of the study was to raise work scheduling in 

cloud systems' effectiveness and performance. The classic flower pollination 

algorithm was modified by the authors to improve its exploration and exploitation 

capabilities. In terms of job execution time, resource utilisation, and overall system 

performance, the suggested approach showed better results. Through the utilisation of 

its dynamic selection mechanism and adaptive search behaviour, the algorithm 

successfully tackled the difficulties associated with cloud computing job scheduling. 

The study facilitates better resource management and effective work scheduling in 

cloud environments by optimising cloud resource allocation and task allocation [85]. 

Sharma and Garg presented a novel method for developing an autonomous task 

scheduler that uses little energy by using a supervised neural network. The main 

objective was to reduce the number of active racks in cloud settings, as well as 

makespan, energy consumption, and execution overhead. Through thorough 

comparison testing with other current algorithms, simulation experiments were carried 

out on cloud configurations with and without heavy loads. This research presents a 

novel strategy that aims to enhance the energy efficiency of task scheduling in cloud 

environments, with a focus on reducing multiple performance parameters 

simultaneously. The results demonstrated the superiority of the proposed scheduler. In 

heavily loaded environments, it achieved a 59% improvement in makespan, a 45% 

reduction in energy consumption, an 88% decrease in execution overhead, and a 70% 

reduction in the number of active racks. Similarly, in lightly loaded environments, it 

showed a 64% improvement in makespan, a 71% reduction in energy consumption, a 
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43% decrease in execution overhead, and a 70% reduction in the number of active 

racks [86]. 

Wen et al. developed an energy-efficient scheduling algorithm for data-driven 

industrial workflow applications in private SDWAN-connected data centres. The 

algorithm aimed to minimize the cloud provider's revenue and non-renewable energy 

usage while considering real-world electricity prices and green energy availability. By 

optimizing application execution and data transfers, the algorithm effectively 

prioritized the utilization of green energy. The experimental results demonstrated that 

the algorithm achieved similar expenditure to the base algorithm for large workflows 

and significantly increased green energy utilization by nearly 200% for smaller 

workflows with a marginal increase in electricity cost. Overall, the findings 

emphasized the algorithm's effectiveness in promoting energy efficiency and revenue 

management in data-driven industrial workflow scheduling [87]. 

Mohanraj and Santhosh presented a Multi-Swarm Optimization model designed to 

elevate Quality of Service (QoS) within a multi-cloud setting. Their method focused 

on multi-cloud scheduling and outperformed well-known methods like single-

objective Particle Swarm optimisation scheduling and adaptive energy-efficient 

scheduling. Experimental results solidified the effectiveness of the proposed method, 

substantiating its ability to outperform existing approaches and thereby enhance QoS 

levels. This research contributes to the advancement of efficient multi-cloud 

scheduling strategies, emphasizing the improved quality of service achieved through 

their Multi-Swarm Optimization model [88]. 

Velliangiri et al. developed the Hybrid Electro Search with a Genetic Algorithm 

(HESGA) to improve task scheduling in multi-cloud environments. The algorithm 

combined genetic and electro-search strengths, enhancing critical parameters like 

makespan, load balancing, resource utilization, and cost efficiency. HESGA 

consistently outperformed existing scheduling methods, demonstrating the potential 

of combining optimization techniques [89]. 
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Pirozmand et al. proposed the GAECS based on the Genetic Algorithm for task 

scheduling, considering energy and time constraints. The job prioritisation and task 

assignment phases make up the GAECS algorithm. The Energy-Conscious 

Scheduling Heuristic model is used for job assignment, prioritisation, and generation 

of main chromosomes. The algorithm selects optimal chromosomes based on time and 

energy criteria and assigns them to available resources. Eight additional algorithms 

were compared to the GAECS algorithm's performance. The findings showed that, in 

terms of makespan and energy usage, the GAECS algorithm beat the comparator 

algorithms [90]. 

Ahmad and Alam introduced a List Scheduling with Task Duplication (LSTD) 

algorithm to optimize the makespan of workflow applications while avoiding a rise in 

overall time complexity. Comprising three key phases—task rank calculation, 

selective task duplication for efficiency improvement, and processor assignment 

through an insertion-based policy—the LSTD algorithm aimed to enhance scheduling 

outcomes. The research contrasted LSTD against existing algorithms, including 

HEFT, CPOP, and PEFT, to validate its effectiveness. The paper proved LSTD's 

superiority over alternative scheduling algorithms through an experimental analysis 

incorporating Big Data processes like CyberShake, Montage, and LIGO. When 

comparing different criteria, such as schedule length ratio, percentage of best results, 

and average running time, LSTD consistently beat its competitors. This research 

highlighted LSTD's potential to significantly improve workflow scheduling outcomes 

while maintaining a manageable time complexity, thus contributing to more efficient 

task allocation and overall enhanced scheduling efficiency [91]. 

In a research, Renugadevi and Geetha developed a multi-cloud system made up of 

data centres spread out geographically. Each data center's solar power generation 

differed according to variables including location, electricity cost, carbon emissions, 

and carbon tax. The workload allocation algorithm's energy management was heavily 

influenced by the particular features of the apps that were being evaluated. They 

proposed an adaptive workload allocation algorithm that took into account the nature 

of the tasks and was aware of renewable energy availability. Additionally, a migration 
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policy was included to assess its impact on carbon emission, total energy cost, as well 

as brown and renewable power consumption [24]. 

Walia et al. proposed an HS Algorithm HS that ingeniously fuses the Genetic 

Algorithm (GA) and FPA Algorithm to tackle challenges within cloud environments. 

The study focused on evaluating the algorithm's performance through a 

comprehensive set of metrics, including completion time, resource utilization, cost of 

computation, and energy consumption. To gauge its effectiveness, the HS algorithm 

was rigorously compared against established scheduling approaches, namely GA and 

FPA. The results of extensive simulations unequivocally showcased the remarkable 

superiority of the HS algorithm across these crucial metrics, underscoring its potential 

to transform cloud scheduling dynamics. Particularly noteworthy was its significant 

enhancement in resource utilization, along with its impressive reductions in 

completion time and energy consumption. These findings were consistent in both 

homogeneous and heterogeneous environments, affirming the versatility and 

effectiveness of the HS algorithm in optimizing cloud scheduling practices [92]. 

Pradhan and  Satapathy undertook a study to address energy consumption challenges 

in cloud data centres. They proposed an innovative solution called the EACTS 

algorithm. This algorithm incorporated conventional heuristics like min-min, max-

min, and suffrage while integrating an energy model. It was specifically designed for 

deployment in a heterogeneous cloud environment. To assess the algorithm's 

effectiveness, the researchers conducted experiments using a benchmark dataset. The 

outcomes from the EACTS algorithm demonstrated a well-balanced trade-off between 

energy efficiency and makespan, showcasing its ability to optimize both aspects. The 

algorithm achieved this by estimating energy consumption while taking into account 

makespan and cloud utilization [93]. 

In the study conducted by Pradhan and  Satapathy, a scheduling approach grounded in 

the PSO algorithm was employed to generate a collection of schedules or solutions. 

These solutions were subjected to evaluation based on QoS parameters, including 

criteria such as makespan, cloud utilization, and energy consumption. The objective 

was to identify the most optimal solution that met the desired QoS standards for task 



 

  54 

 

allocation within a heterogeneous multi-cloud environment. The algorithm's 

efficiency was verified through simulations and testing, employing benchmark 

datasets. The findings showed that the proposed method outperformed current cloud 

scheduling techniques such as genetic algorithms, min-min, max-min, CMMS, 

CMAXMS scheduling algorithms, and others [94]. 

Jena and Mohanty introduced a genetic algorithm-centered strategy to address task 

mapping and priority scheduling within a multi-cloud context. This algorithm was 

structured around two pivotal phases: mapping and scheduling. The researchers 

subjected the algorithm to comprehensive simulations, employing synthetic data to 

assess its efficiency within a diverse multi-cloud environment. A comparative 

analysis was conducted against conventional FIFO mapping and scheduling methods. 

The outcomes derived from the simulations illuminated the superior performance of 

the proposed mapping and scheduling algorithm. Notably, it exhibited enhanced 

system performance concerning metrics such as makespan time and throughput in 

comparison to the existing FIFO approach. Through these findings, the study 

effectively affirmed the prowess of the suggested algorithm for optimizing task 

mapping and scheduling dynamics within a multi-cloud framework [95]. 

The goal of the task-scheduling algorithm Mangalampalli et al. suggested was to 

reduce data centre power and energy costs. The method effectively mapped tasks onto 

appropriate virtual machines (VMs) by modelling the task and VM priorities using the 

Whale Optimisation algorithm. A multi-objective fitness function that took power 

cost and energy use into account was assessed. The CloudSim Simulator was used to 

run simulations and compare the suggested algorithm's performance to that of the 

PSO and CS algorithms that are already in use. The simulation results demonstrated 

that the proposed algorithm outperformed the existing algorithms in terms of 

minimizing energy consumption and power cost [96]. 

Sangeetha et al. introduced a resource allocation framework designed to achieve 

optimal resource utilization within a multi-cloud setting. The architecture harnessed 

GWO in combination with a deep neural network to enhance both service 

provisioning and scalability. The deep neural network managed routing decisions 
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based on factors like input data rate and available storage, with the goal of minimizing 

processing and storage delays. This framework was structured around two primary 

modules: one for data processing and routing operations, and another control plane 

leveraging the deep neural network for effective resource allocation. Through 

simulations on the Java (NetBeans) platform and evaluation using the CloudSim 

toolkit, the study examined the framework's performance. Notably, it exhibited 

improvements in data delivery, resource allocation, and storage efficiency within the 

multi-cloud environment. The experimental results encompassed various performance 

metrics, including time delays and the cost associated with resource allocation in the 

context of multi-cloud setups. In summary, the research by Sangeetha et al. offered a 

comprehensive framework that combined GWO and deep neural networks to optimize 

resource allocation, resulting in improved efficiency across data delivery, resource 

management, and storage within the multi-cloud ecosystem [29]. 

Miglani et al. proposed an innovative approach for task scheduling in cloud 

environments, addressing reliability and resource allocation challenges. Their 

scheduler, based on a modified FPA, aimed to improve task scheduling efficiency. 

Through experiments with various scientific workflows, the study showcased the 

superiority of their approach over genetic and GWO in terms of reliability and 

resource utilization. This research highlighted the importance of combining reliability 

strategies and optimization algorithms for effective cloud workflow scheduling [97]. 

Chen et al. put forth an innovative approach for conserving energy in job scheduling, 

with specific consideration for task dependencies within cloud computing. This 

method meticulously accounted for the diverse characteristics of data centres, 

embracing their heterogeneous nature. The model also entailed the formulation of 

energy consumption patterns, grounded in factors such as virtual machine CPU 

frequency and kernel count. The study further introduced inventive strategies for 

monitoring energy consumption within cloud computing data centres. The core 

objective of this method revolved around the segmentation of each job into multiple 

tasks and their subsequent allocation to virtual machines. Through simulations, the 

research contrasted the total execution time under varying conditions, specifically 
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comparing scenarios with and without job segmentation. The outcomes were 

evaluated using virtual machines tasked with handling either 1000 or 2000 jobs. The 

findings demonstrated that job segmentation, or "job cutting," consistently yielded 

improvements in both total execution time and total energy consumption, irrespective 

of task dependencies. Remarkably, this approach not only effectively reduced energy 

consumption but also managed to curtail the job discard rate, showcasing its potency 

in achieving energy efficiency and task optimization within cloud computing 

environments. [98]. 

Marri and Rajalakshmi introduced a comprehensive approach aimed at augmenting 

the efficiency of task scheduling in cloud computing through a multi-objective 

framework. Their model ingeniously combined the GA with an energy-aware 

component to optimize both energy consumption and makespan values. This 

innovative hybrid algorithm, referred to as the multi-objective energy-aware genetic 

algorithm, incorporated considerations for CPU energy consumption within virtual 

machines and leveraged an energy model based on voltage and frequency distribution. 

Task interdependencies were captured through a directed acyclic graph representation. 

Through simulations, the research outcomes underscored the remarkable superiority 

of the proposed multi-objective model when contrasted with alternative algorithms. 

This model achieved a notable 5% reduction in makespan compared to the MODPSO 

algorithm, as well as a 0.7% reduction compared to the HEFT algorithm. Notably, the 

proposed approach yielded an energy consumption of 125 joules for 50 active virtual 

machines. These results collectively validate the efficacy of the model in enhancing 

both task scheduling efficiency and energy conservation within cloud computing 

environments. [99]. 

Kruekaew and Kimpan  presented an innovative solution to the problem of load 

balancing in cloud computing setting using a hybrid artificial bee colony algorithm 

with reinforcement learning for multi-objective job scheduling optimization. This 

novel approach seeks to optimize resource allocation and distribution among cloud 

servers. The researchers want to improve system performance and efficiency by 

combining these two optimization strategies. The study emphasized the importance of 
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balancing computing workloads to enhance resource utilization while minimizing 

latency. The findings contribute to ongoing attempts to improve cloud computing 

technology for better service delivery. This paper emphasizes the need of using 

intelligent algorithms to solve complicated optimization problems in cloud 

environments, opening up new paths for future research and development [100]. 

Saif et al. introduced the Multi-Objectives Grey Wolf Optimizer (MGWO) algorithm 

as a solution to minimize both delay and energy consumption within fog brokerage 

for task distribution. The researchers conducted simulations to conduct a performance 

comparison between MGWO and other algorithms, focusing on their effectiveness in 

reducing delay and energy consumption. The results demonstrated that MGWO 

surpassed the alternative algorithms by achieving notably lower delay and energy 

consumption levels. Notably, the algorithm exhibited stability and linear scalability as 

workloads increased, underscoring its capacity to manage substantial request loads 

from IoT devices. The study provided robust evidence of MGWO's effectiveness in 

curtailing delay and energy consumption, positioning it as a superior alternative to 

existing algorithms. [101]. 

Malathi and Priyadarsini proposed a load balancer algorithm for cloud computing 

using heuristic techniques. They made two key contributions: a hybrid technique that 

improved load balancing applicability and a genetic algorithm modified with Lion 

Optimizer's global search criteria. The hybrid methodology exhibited remarkable 

effectiveness in aspects like maximum turnaround time and the efficient utilization of 

virtual machine resources. The integration of the Lion Optimizer contributed to 

optimal parameter choices, and the incorporation of fitness criteria that took into 

account task and virtual machine attributes further enriched the selection mechanism. 

Empirical outcomes substantiated the proficiency of the hybrid approach combining 

the Lion Optimizer with a genetic algorithm, affirming the viability and success of 

their proposed strategy [102]. 

Mahilraj et al. presented a novel application of machine learning, specifically the 

LSTM technique, to address the escalating concerns of carbon emissions and energy 

usage through efficient power task scheduling. The proposed scheduling approach 
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took into account various factors including task completion time, exclusive resource 

utilization, and standardization processes. To enhance the efficacy of LSTM, the 

researchers incorporated the Novel Black Window (NBW) approach to reduce the 

model's weight. The effectiveness of the LSTM-NBW model was evaluated using 

simulated analysis across a range of parameters, including makespan, power 

consumption, job completion time, and resource utilisation. According to the study's 

findings, compared to the original LSTM model, the recommended model only 

required an extra 400KWh for an 80kB user workload [103]. 

Jaiprakash et al. proposed an innovative method aimed at enhancing the energy 

efficiency of workflow scheduling within cloud computing. This was achieved 

through the utilization of the MaxUtil model in conjunction with the FPA. The 

primary goals of this approach encompassed the reduction of both energy 

consumption and workflow processing duration. The core methodology revolved 

around the allocation of tasks to VMs and the subsequent scheduling of these tasks, 

all of which were guided by optimal criteria. The study was the first to focus on 

optimizing energy consumption and makespan using FPA. The proposed algorithm 

demonstrated advantages in convergence speed and feasible solutions. Extensive 

studies on scientific workflows from different fields showed that it outperformed 

traditional scheduling algorithms based on PSO, GSA, and GA. Based on the 

ANOVA analysis, the study concluded that the suggested algorithm exhibited 

superior performance compared to the existing methods Simulation results 

consistently supported the superiority of the proposed algorithm, and statistical 

analysis confirmed its effectiveness compared to existing methods [104]. 

Boopalan and Goswami proposed a cluster selection approach and a virtual machine 

(FFD) algorithm, called dynamic PUE genetic algorithm (CRA-DP-GA), to deploy 

virtual machines (VMs) in data centres with reduced energy consumption while 

maintaining performance. Their approach included a host selection algorithm for load 

balancing and dynamic adjustment of cooling load. By supporting VM clustering 

based on workload and bandwidth requirements, their solution improved efficiency 

and availability. The proposed approach achieved reduced task execution and 
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assignment times compared to previous techniques, contributing to enhanced energy 

efficiency and performance in data centres [105].  

Cai et al. introduced an encompassing multi-cloud distributed scheduling model 

encompassing six distinct objective functions, tailored to cater to both user and cloud 

provider interests. Their approach entailed the proposition of an intelligent algorithm 

rooted in the sine function, adeptly equipped to address intricate scheduling 

quandaries. The algorithm's efficacy was scrutinized through evaluation against the 

DTLZ test suite, in conjunction with several comparison algorithms concurrently 

employed within the scheduling model. Through an assessment across six objectives, 

the algorithm and model underwent meticulous analysis concerning the distribution of 

individuals within the resultant population. The empirical findings underscored 

exceptional scheduling efficiency, translating into heightened security measures. This 

research presented an innovative perspective on tackling the intricate data processing 

intricacies intrinsic to the realm of IoT, introducing a fresh approach that promises to 

address pertinent challenges [106]. The comparative analysis of existing scheduling 

Approaches highlighting their findings and shortcomings are discussed in Table 2.1. 

Table 2.1 Comparative Analysis of Existing Scheduling Approaches 

Authors Proposed/ 

Objective 

Technologies 

used 

Evaluated 

Parameters 

Findings Limitations 

and Future 

Scope 

Publisher 

Dhanalaksh

mi and 

Basu 

(2014) [49] 

Energy-aware 

task 

scheduling 

Modified 

Max-min 

algorithm and 

VM 

placement 

algorithm 

Energy 

consumption, 

makespan 

and  

minimum 

execution 

time  

Implementa

tion of the 

proposed 

work 

lowered the 

energy 

consumptio

n by 8%-

10% and 

makespan 

In some 

problem sets 

makespan is 

high that will 

form the 

basis of 

future 

research. 

Internationa

l Journal of 

Engineering 

Research 

and 

Technology 
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by 1%- 2%. 

Brar and 

Rao (2015) 

[50] 

Optimized 

Workflow 

scheduling 

 Max-Min 

algorithm  

Workflows 

(Cyber 

shake, 

Montage, 

Sipht), 

minimum 

execution 

time 

The Max-

Min 

achieved 

better 

results with 

Cyber 

Shake in 

comparison 

to Data 

ware 

improved 

resource 

utilization 

and 

minimised 

execution 

time. 

Analysis for 

cost and 

energy was 

missing that 

will be a part 

of future 

research 

Internationa

l Journal of 

Computer 

Application

s 

Panda & 

Jana (2015) 

[51] 

Efficient task 

scheduling  

 MCC, 

MEMAX, and 

CMMN 

algorithm 

Increase 

average 

cloud 

utilisation 

and minimise 

makespan 

Results 

show that  

the 

makespan is 

minimised  

and average 

cloud 

utilization is 

increased 

Only 

makespan 

and cloud 

utilization 

were 

considered, 

and will be 

evaluated 

over more 

parameters 

in future 

research. 

The Journal 

of 

Supercompu

ting 

Patel et al. static Meta Minimum Resource EELBM The average Procedia 
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(2015) [26] task 

scheduling  

Execution 

Time and 

Modified 

ELBMM 

Algorithm 

utilization 

and 

makespan 

achieves 

makespan 

of 84.3s.  

response 

time for 

smaller tasks  

was 

increased 

and thus a 

comprehensi

ve research 

in required in 

future. 

Computer 

Science 

 Ismail & 

Fardoun 

(2016) [53] 

Energy-aware 

task 

scheduling 

(EATS) 

Non-linear 

programming 

model 

Energy 

consumption, 

CPU 

Utilization 

Experiment

s showed 

that there 

was a 1.3 

energy 

consumptio

n ratio 

between the 

peak 

performanc

e and idle 

state. 

 EATS 

missed 

utilization in 

cloud 

computing 

environment 

and should 

be utilized in 

future to 

evaluate its 

performance. 

Procedia 

Computer 

Science 

Hemamalin

i and 

Srinath 

(2016) [54] 

Efficient Grid 

task 

scheduling 

 Min-Min, 

load-

balanced, and 

minimum 

execution 

time 

algorithms 

 

Makespan, 

completion 

time, 

execution 

time and load 

balancing. 

The 

balanced 

minimum 

execution 

time 

outcasted 

the other 

traditional 

scheduling 

Work lacks 

in hybrid 

algorithm 

that should 

have been 

developed to 

combine all 

four 

algorithms. 

Internationa

l Journal of 

Communica

tion and 

Networking 

System 
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algorithms This will 

also be a part 

of future 

research. 

Jasraj et al. 

(2016) [56] 

Meta-heuristic 

optimization 

Approach 

workflow 

scheduling  

CEGA Workflows 

(Montage, 

LIGO, Cyber 

Shake, and 

Epigenetics). 

For 

workflows 

with hard 

and soft 

deadlines, 

the 

suggested 

CEGA 

algorithm 

was 

registered at 

83.5% and 

62%, 

respectively 

Implementin

g termination 

delays in 

future is a 

good idea 

because they 

have a 

negative 

impact on 

the 

workflow's 

overall 

execution 

costs. 

IEEE 

Panda and 

Jana (2017) 

[57] 

Heterogeneou

s multi-cloud 

task 

scheduling 

Algorithms 

SLA-MCT 

and SLA-

Min-Min 

Makespan, 

typical cloud 

usage, gain, 

and service 

cost 

penalties. 

The 

algorithms 

outperforme

d the other 

algorithms 

in terms of 

makespan, 

penalty  and 

gain of 

services 

Further work 

aimed to 

create more 

efficient 

algorithms 

suitable for 

the 

heterogeneou

s multi-cloud 

environment 

The Journal 

of 

Supercompu

ting 
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Madni et 

al. (2017) 

[59] 

Heuristic 

methods for 

task 

scheduling 

Genetic 

Algorithm 

(GA), Ant 

Colony 

Optimisation 

(ACO), and 

Particle 

Swarm 

Optimisation 

(PSO). 

FCFS (First 

Come, First 

Served), 

MET 

(Minimum 

Execution 

Time), MCT 

(Minimum 

Completion 

Time), and 

Mmax. 

MET 

algorithm 

demonstrate

d better 

performanc

e for the 

optimal job 

scheduling 

The trade-off 

between 

execution 

speed and 

resource use 

is more 

complex that 

will be a part 

of future 

work. 

PLOS ONE 

Lin et al. 

(2018) [65] 

Power 

efficiency 

model for 

energy-

efficient task 

scheduling. 

ECOTS 

algorithm 

 

Energy 

efficiency, 

energy 

consumption 

 

 

 

 

 

ECOTS 

algorithm 

resulted in 

energy 

savings 

ranging 

from 21.4% 

to 21.9%. 

A 

comprehensi

ve model 

will be 

implemented 

that 

considers 

various 

server 

components 

to improve 

and evaluate 

power 

efficiency. 

Sustainable 

computing: 

informatics 

and systems 
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Gawali et 

al. (2018) 

[69] 

Heuristic 

method for 

scheduling 

tasks 

Divide-and-

Conquer 

strategies, the 

Modified 

Analytic 

Hierarchy 

Process 

(MAHP), 

BATS + BAR 

optimisation, 

and LEPT. 

CPU 

Efficiency, 

Processing 

Time, and 

Response 

Time 

The 

heuristic 

approach 

achieved a 

significantl

y lower 

TAT value 

of 2033.72 

ms while 

exhibiting a 

lower RT 

value of 3.7 

ms. 

Future 

research will 

concentrate 

on 

developing 

more 

efficient 

scheduling 

algorithms. 

Journal of 

Cloud 

Computing 

Gupta et al. 

(2019) [74] 

Workflow 

scheduling 

using the Jaya 

algorithm 

 Ant colony 

optimisation 

(ACO), 

genetic 

algorithms 

(GA), honey 

bees, cat 

swarms, 

particle 

swarm 

optimisation 

(PSO), and 

ACO 

optimization 

(CSO) 

Workflows 

(Montage, 

CyberShake, 

Inspiral, and 

Sipht) 

Jaya 

algorithm 

showed 

superior 

performanc

e while 

converging 

quickly and 

producing 

similar 

results in 

less time 

Some 

objectives 

like meeting 

deadlines, 

optimizing 

energy 

consumption

, and 

achieving 

load 

balancing 

can also be 

considered. 

Concurrenc

y and 

computation

: practice 

and 

experience 
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Usman et 

al. (2019) 

[78] 

Energy-

oriented 

Flower 

Pollination 

Algorithm (E-

FPA)  

Dynamic 

Switching 

Probability 

(DSP). 

Memory 

Constraints, 

Energy-

oriented 

Allocation 

The 

proposed 

work 

outperforme

d GAPA, 

OEM, and 

FFD energy  

by 21.8%, 

21.5%, and 

24.9% 

respectively 

To improve 

the present 

work 

resources of 

the data 

centre will 

be 

consolidated 

using a 

multi-

objective E-

FPA 

strategy. 

Journal of 

Bionic 

Engineering 

Natesan 

and 

Chokkaling

am (2020) 

[80] 

Hybridised 

multi-

objective task 

scheduling 

algorithm 

Genetic 

algorithms 

(GA) and 

whale 

optimisation 

algorithms 

(WOA) 

Makespan, 

cost and 

enactment 

amelioration 

rate (EAR) 

Makespan 

for WGOA 

= 1434.50s 

against 100 

VMs and 

500 tasks 

with some  

reduction in 

cost and 

EAR. 

Further work 

needs to be 

evaluated for 

energy 

consumption

, security, 

and 

reliability. 

Wireless 

Personal 

Communica

tions 

Aziza and 

Krichen 

(2020) [84] 

Scientific 

workflow 

scheduling 

 Genetic 

algorithm and 

the 

heterogeneous 

earliest finish 

time (HEFT). 

Optimizing 

task 

execution 

time, 

reducing 

computationa

l costs 

The 

outcomes 

show how 

effective the 

suggested 

method is, 

making it 

potentially 

Work needs 

to be 

evaluated on 

the issue of 

power 

consumption 

in data 

centres while 

Neural 

Computing 

and 

Application

s 
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appropriate 

for Cyber 

Shake, 

LIGO, 

Epigenomic

s, Montage, 

and SIPHT. 

planning 

workflows in 

cloud 

environment

s and will be 

a part of 

future scope. 

Bezdan et 

al. (2021) 

[85] 

Efficient task 

scheduling 

Enhanced 

Flower 

pollination 

algorithm 

Execution 

time, 

resource 

utilization, 

and overall 

system 

performance 

The 

algorithm 

demonstrate

d superior 

results in 

terms of 

resource 

managemen

t and 

efficient 

task 

scheduling 

in cloud 

environmen

ts 

Other 

parameters 

will be 

included in 

future work 

as present 

work mainly 

focused on 

makespan 

Proceedings 

of ICTIS, 

Springer 

Singapore  

Ahmad and 

Alam 

(2021) [91] 

List 

Scheduling 

with Task 

Duplication 

(LSTD) 

algorithm 

HEFT, CPOP, 

and PEFT 

algorithm. 

workflows 

(CyberShake, 

Montage, 

and LIGO) 

The 

investigatio

n of the 

Cyber 

Shake, 

Montage, 

and LIGO 

Big Data 

workflows 

Following 

parameters 

need to be 

considered: 

acquisition 

delays, VM’s 

heterogeneit

y, 

performance 

Concurrenc

y and 

Computatio

n: Practice 

and 

Experience 
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showed that 

LSTD 

performed 

better than 

alternative 

scheduling 

strategies. 

variation, 

and deadline 

for 

improvement 

in future 

work. 

Miglani et 

al. (2022) 

[97] 

Multi-

objective 

reliability-

based 

workflow 

scheduler. 

Modified 

Flower 

Pollination 

Algorithm 

Workflows 

(Genome, 

LIGO, 

Montage and 

Cyber 

shake). 

Compared 

to other 

algorithms, 

the 

improved 

Flower 

Pollination 

Algorithm 

increases 

the 

dependabilit

y of task 

scheduling. 

and 

resource 

utilization. 

Reliability 

parameters 

must be 

included. 

Future study 

will involve 

not only 

considering 

the reliability 

value but 

also 

minimizing 

the 

associated 

cost. 

Concurrenc

y and 

Computatio

n: Practice 

and 

Experience 

Kruekaew 

and 

Kimpan 

(2022) 

[100] 

Multi-

Objective 

Task 

Scheduling 

Optimization 

for Load 

Balancing in 

Cloud 

Artificial Bee 

Colony 

Algorithm, 

Reinforcemen

t Learning 

Task 

scheduling 

optimization, 

Load 

balancing 

 

 

 

Improved 

resource 

allocation 

and 

distribution, 

increased 

system 

performanc

Limited 

evaluation 

scope, 

possible 

scalability 

issues, 

Future 

research into 

IEEE 

Access 
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Computing 

Environment 

Using Hybrid 

Artificial Bee 

Colony 

Algorithm 

with 

Reinforcemen

t Learning 

 e and 

efficiency 

real-world 

deployment 

scenarios 

Jaiprakash 

et al. 

(2023) 

[104] 

Energy-

efficient 

workflow 

scheduling 

and MaxUtil 

model 

Flower 

Pollination 

Algorithm 

(FPA) 

Energy 

consumption 

and 

makespan  

The 

analysis 

confirmed 

its 

effectivenes

s in terms of 

makespan 

and energy 

consumptio

n. 

Future 

research will 

work to 

develop a 

strategy for 

container 

migration 

that aims to 

reduce 

energy 

consumption 

while 

maintaining 

service 

quality at an 

optimal 

level. 

Authorea 
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Boopalan 

and 

Goswami 

(2023) 

[105] 

 

Energy-

efficient 

Virtual 

Machine 

Allocation 

Dynamic PUE 

genetic 

algorithm 

(CRA-DP-

GA) 

 

Energy 

consumption, 

efficiency 

and 

availability 

Task 

assignment 

time and 

execution 

time were 

reduced 

while 

consuming  

60% of 

power. 

Service 

processing 

latency 

needs to be 

further 

modified in 

future 

research. 

Mathematic

al 

Statistician 

and 

Engineering 

Application

s 

2.2 Review Summary 

The literature surveys have explored various task scheduling algorithms to tackle 

energy efficiency and workflow optimization challenges. Energy-aware task 

scheduling approaches, such as the Modified Max-min and VM placement algorithms, 

focus on reducing energy consumption while minimizing makespan and execution 

time. The Max-Min algorithm is commonly used for optimized workflow scheduling, 

aiming to minimize execution time for workflows like CyberShake, Montage, and 

Sight. Efficient task scheduling algorithms like MCC, MEMAX, and CMMN aim to 

increase average cloud utilization and minimize makespan, improving overall system 

performance. Static meta task scheduling techniques, including Minimum Execution 

Time and Modified ELBMM algorithms, optimize resource utilization and minimize 

makespan. Energy-aware task scheduling (EATS) approaches, such as non-linear 

programming models, consider minimizing energy consumption and maximizing 

CPU utilization. Effective task scheduling algorithms aim to reduce makespan, 

completion time, execution time, carbon emission, and power usage and achieve load 

balancing. Overall, it has been observed that the existing studies have evaluated their 

studies for a number of parameters as illustrated using Table 2.2. Most of the studies 

have utilized a combination of 2 to 3 parameters to demonstrate the effectiveness of 

their work. However, none of the studies have addressed energy, cost and carbon 



 

  70 

 

emission together in a single study. This fact has inspired the researcher to present an 

efficient scheduling framework that would evaluate these three parameters together.   

Table 2.2 Comparative Analysis of Evaluation Parameters 
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Patel et al., 2015 [26] - -  -  - - - - - - - 

Sangeetha et al., 2022 

[29] 
- -  - - - - - -   - 

Dhanalakshmi & Basu, 

2014 [49] 
 - - - - - - - - - -  

Singh Brar & Rao, 

2015 

[50] 
- -  - - - - - - - -  

Panda & Jana, 2015 

[51] 
- -  -  - - - - - - - 

Hosseinimotlagh et al., 

2015 [52] 
 - - - - - - - -  - - 

Ismail & Fardoun, 2016 

[53] 
-   - - - - - - - - - 

Hemamalini & Srinath, 

2016 [54] 
- - -   - - - -  - - 

Maheshwari et al., 2016 

[55] 
- -  - - - - - -  - - 

Jasraj et al., 2016 [56] - -  - - - - - - -  - 

Panda & Jana, 2017 

[57]  
- -  -  - - - - -  - 

Madni et al., 2017 [59] - -  - - - - - -  - - 

Praveen et al., 2018 

[61] 
- -  -  - -  -  - - 

Duan et al., 2018 [62] - - - -  - - - -  - - 
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Panda & Jana, 2018 

[63] 
- -  -  - - - - - - - 

Lin et al., 2018 [65] 
 -  - - - - - - - - - 

Jena & Mohanty, 2018 

[66] 
- -  -  - - - - - - - 

Mishra et al., 2018 

[67] 
 - - - - - - - - - - - 

Gawali & Shinde, 2018 

[69] 
- - - -  - - -   -  

Gupta et al., 2019 [74] - - - -  - - - - -  - 

Usman et al., 2019 [78] 
 - - - - -  - - - - - 

Natesan & 

Chokkalingam, 2020  

[80] 
- - - -  - - - - -  - 

Xu & Buyya, 2020 

[81] 
 - -  -  - - - - -  

Aziza & Krichen, 2020 

[84] 
- - - - - - - - -   - 

Bezdan et al., 2021 

[85] 
- -  - - - - - -  - - 

Velliangiri et al., 2021 

[89] 
- -    - - - - -  - 

Ahmad & Alam, 2021 

[91] 
- -  - - - - - - - - - 

Walia et al., 2021 [92] 
 -  - - - - - -   - 

Mangalampalli et al., 

2022 [96] 
  - - - - - - - - - - 

Mahilraj et al., 2023 

[103] 
   -   - - -  - - 

Jaiprakash et al., 2023 

[104] 
 - - -  - - - - - - - 

Boopalan & Goswami, 

2023 [105] 
  - - - - - - - - - - 

Different goals have been considered in the research through the use of heterogeneous 

multi-cloud task scheduling algorithms such as SLA-MCT and SLA-Min-Min. These 

consist of gains, penalty costs, makespan, and average cloud utilisation. Heuristic 

algorithms like GA, PSO, and ACO, along with scheduling algorithms like FCFS, 

MET, MCT, and Max-min, are commonly used for task scheduling. Power efficiency 

models like ECOTS aim to improve energy efficiency and reduce consumption. 

Workflow scheduling algorithms such as Jaya, WOA, GA, and others optimize 

makespan, cost, and EAR for workflows like Montage, CyberShake, Inspiral, and 
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Sight. Scientific workflow scheduling techniques like GA and HEFT optimize task 

execution time and computational costs. Enhanced Flower Pollination Algorithm and 

LSTD improve execution time, resource utilization, and system performance. Multi-

objective reliability-based workflow schedulers using the Modified Flower Pollination 

Algorithm consider reliability and performance for workflows like Genome, LIGO, 

Montage, and CyberShake. Energy-efficient workflow scheduling and the MaxUtil 

model leverage FPA to reduce energy consumption and makespan. Dynamic PUE 

Genetic Algorithm ensures energy-efficient VM allocation. 

Overall, these diverse task scheduling algorithms, including the Flower Pollination 

Algorithm for CyberShake workflow and other related approaches, provide valuable 

solutions for energy efficiency, makespan reduction, minimum execution time 

optimization, resource utilization, and workflow optimization in various computing 

environments. 

2.3 Research Gaps 

There are a number of interlinked research gaps observed during the literature survey. 

1. Innovative Collaborative Approaches: 

Limited research on the integration of natural computing algorithms like 

Flower Pollination with reinforcement learning techniques e.g.  Q-learning in 

multi-cloud environments. 

A gap in evaluating the synergy between different algorithms and learning 

techniques to optimize multi-cloud operations. 

2.  Multi-Objective Optimization: 

Lack of comprehensive strategies that concurrently optimize various 

objectives like cost, energy, and CO2 emissions in heterogeneous multi-cloud 

environments. 

Need for a robust framework that can balance and optimize multiple 

conflicting objectives in real-world applications. 

3.  Adaptability and Scalability: 

Limited studies focus on the adaptability and scalability of the integrated 

approaches in diverse and dynamic multi-cloud environments. 
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Exploration is required in how such collaborative approaches can adapt to 

evolving workloads, technologies, and cloud infrastructures. 

4. Energy and Environmental Sustainability: 

Insufficient research on how integrated approaches can contribute to long-term 

energy efficiency and environmental sustainability in multi-cloud computing. 

Exploration is needed to uncover innovative solutions that can minimize 

ecological impacts while maximizing operational efficiency. 

Addressing these research gaps can lead to the development of more refined, scalable, 

and adaptable solutions leveraging integrated approaches like Flower Pollination with 

Q-learning, to optimize the operations in heterogeneous multi-cloud environments, 

ensuring ecological sustainability, and operational efficiency.  

2.4 Research Objectives 

The objectives of the study are as follows. 

1. To enhance the efficiency of heterogeneous task scheduling in cloud 

computing using minimum execution time in Cyber Shake Seismogram 

workflow. 

2.  To propose an optimized resource management model using the Enhanced 

Flower Pollination algorithm in a heterogeneous environment.  

3.  To implement the proposed optimized model for multi-cloud computing in a 

heterogeneous environment.  

4.  To validate the proposed model. 

2.5 Summary of the Chapter 

The chapter presents a detailed literature survey for the scheduling-based research 

work involving several parameters. The review mainly comprises the studies that have 

taken advantage of the minimum execution time algorithm, cyber shake and flower 

pollination algorithm in addition to related techniques. The observed research gaps are 

discussed in the later part of the chapter followed by the research objectives of the 

study.  
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CHAPTER 3: ENHANCEMENT IN MET FOR CYBER 

SHAKE SEISMOGRAM 

The chapter is designed to address the first objective of the study and presents the 

integration of the MET algorithm in the Cyber shake seismogram workflow. Initially, 

the Cyber shake seismogram and MET algorithm are discussed followed by the 

proposed work algorithm aimed at the enhancement of MET. 

3.1 Cyber Shake Seismogram Work Flow  

In cloud computing, where massive volumes of data are processed and examined, 

effective task scheduling is essential to maximise resource use and enhance system 

efficiency. Effective job scheduling is beneficial to many processes, but the Cyber 

Shake Seismogram (CSS) workflow is particularly important and demanding. This 

sophisticated workflow is employed in seismology to simulate seismic events, 

generating valuable insights for earthquake prediction and hazard assessment. The 

intricate nature of the CSS workflow necessitates careful attention to scheduling 

heterogeneous tasks in order to minimize execution time and achieve optimal results. 

The CSS workflow encompasses a series of complex computational tasks that 

simulate the behaviour of seismic waves based on a given seismic event scenario. 

These simulations involve intricate algorithms and sophisticated modelling techniques 

that require significant computational resources and data processing capabilities. The 

workflow typically involves multiple tasks with varying degrees of complexity and 

interdependencies, making efficient scheduling a challenging endeavour [107]. 

The significance of effective task scheduling in the CSS workflow cannot be 

overstated. By optimizing the allocation of computational resources and minimizing 

execution time, researchers and seismologists can expedite the generation of 

seismograms, leading to faster and more accurate earthquake predictions and hazard 

assessments. This has a direct impact on public safety, allowing authorities to make 
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timely decisions and implement preventive measures to mitigate the potential impact 

of seismic events. 

Moreover, effective task scheduling in the CSS process aids in resource optimisation 

in cloud computing settings, where computational resources are shared by several 

users and applications. By intelligently allocating resources based on task 

requirements and priorities, the overall system performance and throughput can be 

enhanced, enabling the simultaneous execution of multiple workflows while meeting 

quality-of-service objectives [108]. 

Efficient scheduling in the CSS workflow also holds economic significance. By 

reducing the execution time and resource consumption, cloud service providers can 

offer cost-effective solutions to their clients. This makes cloud computing more 

accessible and affordable for organizations and researchers involved in seismology, 

enabling them to leverage the power of high-performance computing resources 

without incurring exorbitant costs. To address the challenges and exploit the 

opportunities presented by the CSS, researchers and practitioners have developed and 

employed various scheduling algorithms and optimization techniques. These 

algorithms aim to intelligently allocate computational resources, minimize 

communication overhead, and prioritize tasks based on their dependencies and 

computational requirements. Additionally, advances in workflow management 

systems have facilitated the design and execution of the Cyber Shake Seismogram 

workflow, enabling seamless integration of tasks, efficient data transfer, and fault 

tolerance mechanisms [109]. 

3.2 Minimum Execution Time and its Correlation with CSS Workflow  

Effective task-scheduling algorithms are critical to optimising resource utilisation and 

attaining high-performance results in the cloud computing area. The Minimum 

Execution Time (MET) algorithm has become a well-liked method for efficient job 

scheduling among the many algorithms. This algorithm focuses on minimizing the 

execution time of tasks by intelligently allocating computational resources in cloud 

environments [59]. The MET algorithm holds great significance in the context of the 

CSS workflow, where precise and efficient task scheduling is crucial for accurate 
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earthquake prediction and hazard assessment. The CSS workflow is a sophisticated 

application employed in seismology to simulate and analyse seismic events. It 

involves complex computational tasks that generate seismograms based on given 

seismic event scenarios. These simulations utilize intricate algorithms and advanced 

modelling techniques, demanding significant computational resources and efficient 

task scheduling to achieve accurate and timely results. 

The correlation between the MET algorithm and the CSS workflow lies in the shared 

goal of optimizing task execution time. The MET algorithm accomplishes this by 

assigning tasks to suitable computational resources based on their execution time 

requirements. By identifying resources with the shortest expected execution time, the 

algorithm aims to expedite the completion of tasks, thereby reducing the overall 

workflow execution time [110]. In the context of the CSS workflow, the MET 

algorithm can have a profound impact on the efficiency and accuracy of seismic 

simulations. By minimizing execution time, the algorithm enables faster generation of 

seismograms, leading to more timely and precise earthquake predictions. This, in turn, 

facilitates prompt decision-making by authorities and enhances public safety by 

enabling proactive measures to mitigate potential risks. Furthermore, the MET 

algorithm contributes to resource optimization in cloud computing environments. By 

intelligently allocating tasks to resources with shorter execution times, it ensures 

efficient utilization of computational resources. This optimization enhances the 

overall system performance, enabling simultaneous execution of multiple workflows 

and reducing resource wastage. As a result, cloud service providers can deliver cost-

effective solutions to organizations involved in seismology, making high-performance 

computing resources more accessible and affordable. 

Implementing the MET algorithm in the context of the CSS workflow requires a 

comprehensive understanding of task characteristics, resource capabilities, and 

execution time estimations. Researchers and practitioners have developed various 

strategies to leverage the MET algorithm effectively. These include techniques such 

as task profiling, resource monitoring, and dynamic resource provisioning to adapt to 

changing workload demands. The relationship between the MET algorithm and the 
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CSS workflow demonstrates the importance of efficient task scheduling in achieving 

accurate and timely results. By employing the MET algorithm, seismologists and 

researchers can optimize the execution time of computational tasks, leading to faster 

seismic simulations and more reliable seismograms. This contributes to improved 

earthquake prediction, and hazard assessment, and ultimately enhances public safety 

[87, 111]. Algorithmically, the MET can be represented as follows.  

Algorithm MET Scheduling 

1.                                          

                                          

                                                     

                            

2.                                                       

                            

                                                       

                                                 

                                                  

3.                                                                

                                                                        

                                    

4.                                                

                                              

                                                             

                                                                     

                       

                                           

                                                                     

                

                                                      

                                                              
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                                         

                                                                       

5.                                                    

6.                                                 

                                                            

                                                                      

                                                             

                                                            

                                          

7.                                

                                                                  

                                                              

                                                                     

                                                         

8.                    

The proposed work has established a location-aware and resource-aware MET 

algorithm in order to enhance the current work scenario of MET in order to get more 

efficient results. The work can be represented as shown in Figure 3.1 as follows.  

 

Figure 3.1 The Integrated CSS Workflow with MET Algorithm [88]  
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3.3 Proposed Work Algorithm for the Enhancement  

The MET scheduling algorithm has been a crucial approach in optimizing task 

scheduling in cloud computing environments. It focuses on minimizing task execution 

time by intelligently allocating computational resources. However, advancements in 

MET have led to the development of an improved approach that incorporates the 

division of the entire region into clusters and utilizes location and resource awareness. 

This improved algorithm takes into account the users' geographical proximity, 

connecting them through hosts within their respective regions. Additionally, it 

introduces a location and resource-aware MET algorithm that incorporates the 

concept of the Modified Best Fit Decreasing (MBFD) algorithm. This innovation 

enhances the efficiency and effectiveness of task scheduling, leading to optimized 

resource utilization and improved performance [112]. 

The improvement in MET begins with the division of the entire region into clusters. 

This division is based on geographical proximity, aiming to group users within the 

same geographic area. By creating these clusters, a closer connection between users 

and their assigned hosts is established, minimizing network latency and improving 

communication efficiency. Users within each cluster can then interact and share 

resources more effectively, fostering collaboration and reducing communication 

overhead. To further enhance the MET algorithm, a location and resource-aware 

approach is introduced. This improvement recognizes that the geographical location 

of users and available resources can significantly impact task scheduling efficiency. 

By considering location awareness, the algorithm aims to assign tasks to resources 

that are in close proximity to the user, reducing network delays and enhancing overall 

performance [113]. The resource-aware aspect of the improved MET algorithm takes 

into account the availability and capacity of resources within each cluster. It ensures 

that tasks are allocated to resources that can handle the workload efficiently, 

minimizing resource contention and maximizing resource utilization. This 

consideration optimizes the execution time and overall system performance. 
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Figure 3.2 The Proposed Framework for Improved MET 

To implement the proposed location and resource-aware improved MET algorithm, 

the concept of the Modified Best Fit Decreasing (MBFD) algorithm is incorporated. 

The MBFD algorithm is a well-known optimization technique that selects the best-

suited resource for a task by considering both the resource's availability and its 

capability to handle the task's requirements [114–116]. By utilizing the MBFD 

algorithm within the improved MET framework, the algorithm can intelligently assign 

tasks to the most suitable resources, considering both their proximity to the user and 

their capability to execute the task effectively. The proposed work for improved MET 

can be illustrated using Figure 3.2. 

 

Algorithm Steps: Location and Resource-Aware Improved MET Algorithm 

utilizing MBFD 

1.                                                                         

2.                                                                                   

                                                                   

3.                                                                     
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4.                                                                 

5.                                   

6.                                                                

                                                 

                                                                   

                                        

                                             

                                                     

                                    

7.                                                       

                               

                                                                

                                                                       

                                                            

                                                                           

                               

8.                                

                                                           

                                                                           

                                                                      

                                                        

9.                    

By incorporating the division of the region into clusters, establishing connections 

within each cluster, and introducing location and resource awareness utilizing the 

MBFD algorithm, the improved MET algorithm enhances task scheduling efficiency 

in cloud computing environments. By optimising resource utilisation, decreasing 

network latency, and enhancing overall system performance, this method eventually 

leads to better user experiences and more productivity. 

                          

1)                                        
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i)                                   

2)                                                        

3)                        

a)           

b)                     

c)                      

i)                                                

ii)                                                              

iii)                           

(1)                                               

(2)                                                    

iv)        

v)        

d)         

e)                        

i)                                                                 

ii)                                                                

iii)                                                                        

f)        

4)         

5)      

                                                      

                                            

6)           

                                                                                 

                         

7)          

a)                                       

b)                                       

c)                               

d)                           

e)                    

The algorithm takes a list of available resources (R) and a list of tasks to be scheduled 

(T) as input. It sorts the tasks based on their resource requirements in descending 

order. Then, it iterates through each task, evaluating available resources and finding 

the best-fit resource within the same region. The best-fit resource is selected based on 

its available capacity (Ac), utilization (U), and matching region (Rg) with the task's 

user region (Ur). The task is assigned to the best-fit resource, and resource utilization 
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and availability are updated accordingly. After all tasks are assigned, the algorithm 

calculates the average resource utilization (TRU) and makespan. The output includes 

the assigned tasks and utilization for each resource, as well as the average resource 

utilization and makespan, providing insights into the task scheduling efficiency in the 

cloud computing environment. 

3.4 Summary of the Chapter 

The chapter provides the background of workflow, and different cloud computing 

environments while discussing multi-cloud and real cloud. It also discusses the MET 

algorithm and finally incorporates it into the proposed work algorithm. The 

architecture description is followed by the algorithm description and the expected 

outcomes in the form of assigned tasks and utilization for each resource, as well as the 

average resource utilization and makespan, providing insights into the task scheduling 

efficiency in the cloud computing environment. 
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CHAPTER 4: APPLICATION AND IMPROVISATION IN 

FLOWER-POLLINATION ALGORITHM FOR 

IMPROVED EFFICIENCY IN TASK SCHEDULING  

4.1 Background 

Effective work scheduling is essential in today's computer settings, including cloud 

computing and data centres, for maximising resource usage and enhancing system 

performance. Data centres need to use as little electricity as possible in order to be 

energy efficient and reduce their carbon impact. However, traditional job scheduling 

algorithms often focus on a single objective, such as minimizing job completion time, 

which may lead to suboptimal solutions with respect to other crucial factors. Hence, 

the chapter is dedicated to providing measures involved in the improvement of the 

Flower Pollination Algorithm to achieve significant efficiency in task scheduling. 

To address the limitations of single-objective job scheduling, researchers and 

practitioners have turned their attention towards multi-objective job scheduling 

approaches. Multi-objective job scheduling aims to simultaneously optimize multiple, 

often conflicting, objectives to achieve a balance between different performance 

metrics. In this context, two important and often opposing objectives are minimizing 

power consumption and maximizing the overall execution rate (or throughput) of the 

system. 

1. Minimizing Power Consumption: Power consumption has emerged as a 

significant concern in modern computing environments due to the ever-

increasing energy demands of data centres and cloud infrastructures. High 

power consumption not only incurs substantial operational costs but also 

contributes to environmental concerns. Data centres need to use as little 

electricity as possible in order to be energy efficient and reduce their carbon 

impact. 
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2. Maximizing Overall Execution Rate: On the other hand, maximizing the 

overall execution rate is crucial for improving the system's performance and 

meeting the Service Level Agreements (SLAs) of various applications. A 

higher execution rate ensures that jobs are completed efficiently, reducing the 

overall turnaround time and enhancing user satisfaction. However, optimizing 

for execution rate alone may lead to excessive power consumption if not 

balanced with energy-efficient scheduling strategies. 

The integration of power consumption and execution rate optimization in a multi-

objective job scheduling framework is challenging due to their inherent trade-offs [82, 

100]. While aggressive execution of jobs can improve throughput, it may lead to 

higher power consumption. Conversely, energy-efficient scheduling may compromise 

the overall execution rate. To tackle this multi-objective optimization problem, 

various techniques, including evolutionary algorithms [117], genetic algorithms [90, 

118], and Pareto-based approaches [119], have been employed. These methods 

provide a collection of trade-off solutions known as the Pareto front, which illustrates 

various trade-offs between execution speed and power usage. The decision-maker can 

then choose a solution from the Pareto front based on their specific preferences or 

needs [120, 121].  

4.2 Scenario of Development and the Optimization Issue  

For maximising resource utilisation and enhancing system performance, efficient 

work scheduling is essential in the world of computing. Traditional job scheduling 

algorithms often focus on single objectives, such as minimizing job completion time 

or maximizing throughput [76, 122, 123]. Modern computer systems, however, need 

more advanced strategies that may simultaneously optimise various goals, such as 

reducing power consumption and increasing execution pace. To tackle this challenge, 

optimization algorithms have been gaining prominence in job scheduling to strike a 

balance between conflicting objectives [124, 125]. One such innovative algorithm is 

the FPA, inspired by the natural process of flower pollination [126, 127]. FPA 

leverages the flower's unique pollination behaviour to solve complex optimization 

problems, including job scheduling in cloud computing and data centres. By 
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emulating the process of flower pollination, FPA efficiently explores the solution 

space, providing promising results in terms of improving job scheduling efficiency 

[78, 128, 129]. In this context, this paper explores the application of FPA as a 

powerful tool to enhance job scheduling processes, making it an exciting avenue of 

research and development in the realm of optimization algorithms for modern 

computing systems. 

 The FPA Algorithm  4.2.1

A metaheuristic optimisation method called the Flower Pollination method (FPA) was 

developed in order to solve optimisation problems. It was initially introduced by Xin-

She Yang as an optimisation technique that was inspired by nature in 2012 [126]. The 

method mimics the natural process of flower pollination, in which flowers interact 

and exchange pollen to fertilise and generate new offspring. This technique is used to 

solve optimisation issues. The process of flower pollination can be illustrated using 

Figure 4.1. 
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Figure 4.1 The Flower Pollination Process [125] 

The fundamental idea underlying the FPA is to visualise possible solutions as flowers, 

and their fitness or quality as the nectar of the flowers, for an optimisation issue. In 
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the algorithm, each flower (solution) is associated with a nectar amount, which 

represents its fitness value. The goal of the algorithm is to find the optimal solution 

with the highest nectar (fitness) value [129]. 

The key steps of the Flower Pollination Algorithm are as follows: 

1. Initialization: Create a starting population of probable solutions (flowers) at 

random or using a particular initialization technique. 

2. Nectar Amount (Fitness Evaluation): Determine each flower's fitness or 

objective function value. According to the criteria of the problem, the fitness 

function should be problem-specific and direct the algorithm to identify better 

solutions. 

3. Flower Pollination and Nectar Update: this stage, flowers communicate with 

one another by exchanging nectar, or information, which encourages 

exploration and utilisation of the search space. A flower with a higher nectar 

amount (better fitness) can influence nearby flowers and transfer its nectar to 

them. This process simulates the pollination behaviour in light of CO2, cost 

and energy consumption, where a flower's attractiveness influences its 

interaction with other flowers. 

4. Flower Reproduction (Optimization): Based on the updated nectar values, 

some flowers are allowed to reproduce by creating new solutions (offspring). 

These offspring replace some of the weaker solutions in the population, 

thereby influencing the search towards more promising regions of the solution 

space in order evaluate system in terms of CO2, cost and energy consumption.  

5. Termination: The algorithm keeps repeating the pollination and reproduction 

phases until a stopping requirement is satisfied, such as reaching the required 

degree of convergence or the maximum number of generations. 

The FPA is a population-wide optimisation method that seeks to balance solution 

space exploration and exploitation. It makes use of the idea of pollination and floral 

reproduction to improve search and uncover potential answers to challenging 

optimisation issues. There are two types of thresholds utilized here, upper threshold 

and lower threshold.  
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 Where, upper threshold = average workload + 30% 

 And lower threshold = average workload -30% 

Local server-based analysis entails processing data on a single server, which may be 

faster because of proximity. Multicloud server analysis distributes workloads across 

several cloud servers, allowing for scalability while introducing variable latency due 

to data transit between different cloud locations, potentially impacting processing 

time. 

 Significance in Job Scheduling in Cloud Computing 4.2.2

Numerous optimisation issues, such as work scheduling in cloud computing systems, 

have been tackled using the Flower Pollination Algorithm. [78, 130]. In cloud job 

scheduling, tasks or jobs need to be allocated to appropriate resources (e.g., virtual 

machines) efficiently to optimize resource utilization, minimize job completion time, 

and adhere to Service Level Agreements (SLAs) [85]. The job allocation process in 

the proposed work can be explained by using Figure 4.2. 
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Figure 4.2 Job Allocation Process in Proposed Work 
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The FPA's ability to explore the solution space and adaptively adjust the search 

process makes it suitable for job scheduling in cloud environments. By representing 

potential schedules as flowers and using their fitness (performance) to guide the 

search, FPA can help find near-optimal schedules that maximize resource utilization 

and minimize job execution time. Furthermore, the FPA's nature-inspired approach 

allows it to handle dynamic and unpredictable changes in cloud workloads effectively. 

The FPA's capacity to evolve and discover new areas of the solution space might 

result in better scheduling decisions as cloud environments face fluctuations in 

resource availability and demand. The following diagram illustrates the FPA 

algorithm's design.  
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The algorithm can be explained in the following steps  

1. Initialize the population of solutions (job scheduling configurations) randomly 

or using some heuristic method. Each solution represents a different job 

allocation to resources in the cloud. 

2. Determine each solution's population fitness. Multiple objectives, including 

the makespan (task completion time), power consumption, and execution rate, 

should be taken into account by the fitness function. This assessment 

establishes how effectively each option meets the conflicting objectives 

3. Identify the Pareto front of solutions based on their fitness values. The Pareto 

front represents the non-dominated solutions, where no solution can be 

improved in one objective without degrading another objective. These 

solutions provide a trade-off between the different objectives and are 

considered potentially optimal solutions. 

4. Set the maximum number of iterations and the probability of flower 

pollination (parameter "p"). 

5. For each iteration: a. For each solution (flower) in the population: 

 If a random number is less than or equal to "p," proceed with flower 

pollination. 

 Select a neighbouring solution (another flower) from the population at 

random. 

b. Perform flower pollination: 

 Generate a new solution by combining features of the current solution 

and the neighbouring solution using flower pollination operators. 

 The flower pollination operators could be crossover, mutation, or other 

transformation mechanisms. 

c. Evaluate the fitness of the new solution. 

d. Compare the fitness of the new solution with the current solution: 

 If the new solution is better (closer to the Pareto front) for at least one 

objective, replace the current one. 

6. Carry out the flower pollination procedure once more for the designated 

number of times. 
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7. The Pareto front of solutions at the algorithm's conclusion illustrates the trade-

off between maximising execution pace while minimising makespan and 

power usage. These solutions to the multi-objective task scheduling issue are 

regarded as being close to optimum. 

In order to improve the algorithmic architecture, the proposed work introduced a Q-

learning algorithm that updates the pollination value in terms of Q-table. As the 

pollinating agents are attracted towards a better smell of the flower, the Q-learning 

algorithm updates the system using Bellman’s equation. The updated illustration is as 

follows.  

 Switching Probability 4.2.3

The pollination mechanism in FPA refers to how information (solution attributes) is 

exchanged between different flowers. The switching probability 'p' is a parameter that 

determines the likelihood of a flower using either the local or global pollination 

mechanism. It's a value between 0 and 1, where 0 ≤ p ≤ 1. 

 Local Switching 

If p is close to 0, it means that the algorithm predominantly employs the local 

pollination mechanism. This would result in the algorithm focusing more on the 

exploitation of solutions in the local vicinity. 

 Global Switching  

If p is close to 1, it means that the algorithm predominantly employs the global 

pollination mechanism. This would result in the algorithm emphasizing the 

exploration of the solution space to find diverse solutions. 

 Dynamic Switching 

The term "dynamic" indicates that the switching probability 'p' can change during the 

optimization process. Depending on where the optimisation is at the moment, the 

algorithm can modify 'p' in an adaptable manner. Due to its versatility, the algorithm 

may, when necessary, find a balance between exploitation and exploration. 
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In the FPA the switching probability 'p' controls the trade-off between regional and 

international pollination processes. By dynamically adjusting 'p', the algorithm can 

vary its behaviour to explore different aspects of the solution space as the 

optimization progresses. This dynamic strategy can potentially enhance the 

algorithm's convergence speed and solution quality by balancing exploration and 

exploitation. 

4.3 Proposed Work towards improving FPA using Q-learning  

The FPA algorithm refers to different flowers or zones and hence to create multiple 

zones, the proposed work considers two different factors.  

a) The deployment of multi-datacenter  

b) The separation of the resource allocation based on Quality of Service (QoS) 

parameters.  

 Multi-datacenter deployment, benefit and illustration  4.3.1

The idea of multi-data centre architecture has come to light as a major development in 

the quickly changing field of cloud computing, helping to meet the increasing needs 

of contemporary services and applications. As organizations increasingly rely on 

cloud-based solutions to meet their computing needs, the need for improved 

performance, reliability, and scalability becomes paramount [131]. Multi-data centre 

architecture refers to the deployment of multiple data centres spread across different 

geographic locations, interconnected to form a unified cloud infrastructure. This 

approach aims to overcome the limitations of traditional single data centre setups and 

offers a wide array of benefits while also presenting some unique challenges [132]. 

Benefits of Multi-Data Centre Architecture in Cloud Computing: 

1. High Availability and Fault Tolerance: Multi-data centre setups enhance the 

availability and fault tolerance of cloud services. By distributing resources 

across multiple data centres, service providers can ensure that even if one data 

centre experiences a failure or disruption, the services can be quickly switched 

over to a redundant data centre, reducing downtime and maintaining 

continuity. 
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2. Improved Performance: With data centres strategically located in different 

regions, users can access cloud services from data centres closer to their 

geographical location. This enhances performance and user experience by 

decreasing latency and increasing reaction times. 

3. Scalability and Load Balancing: Multi-data centre architectures enable 

horizontal scaling, allowing cloud providers to add more servers and resources 

as demand grows. Load balancing techniques can intelligently distribute user 

requests across data centres, ensuring optimal resource utilization and 

preventing overloading of any specific data centre. 

4. Data Residency and Compliance: Some regulations require data to be stored 

within specific geographical boundaries. Multi-data centre setups allow cloud 

providers to comply with data residency requirements by ensuring data is 

stored in data centres located in the respective regions. 

5. Disaster Recovery and Business Continuity: Multi-data centre architectures 

facilitate robust disaster recovery strategies. In the event of a natural disaster 

or catastrophic failure in one location, data and services can be seamlessly 

shifted to an unaffected data centre, enabling business continuity. 

 Issues and Challenges of Multi-Data Centre Architecture: 

1. Data Synchronization and Consistency: Maintaining data consistency across 

distributed data centres can be challenging. Ensuring that updates made in one 

data centre are promptly synchronized with other data centres while preserving 

data integrity requires sophisticated synchronization mechanisms. 

2. Network Latency and Communication Overhead: Communication between 

geographically dispersed data centres may incur network latency and 

increased communication overhead. These factors can affect the overall 

performance and response times of cloud services. 
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3. Complexity and Management Overhead: Managing and coordinating 

multiple data centres adds complexity to the cloud infrastructure. Tasks like 

load balancing, resource allocation, and failover management are the 

responsibility of cloud administrators, and they can lead to an increase in 

administrative overhead. 

4. Cost and Resource Allocation: Setting up and maintaining multiple data 

centres involves significant capital and operational costs. Deciding how to 

allocate resources across data centres to meet varying demands while 

minimizing costs is a critical challenge. 

5. Security and Compliance: Security becomes more complex in a multi-data 

centre environment. Ensuring consistent security policies and compliance 

across all data centres is essential to protect sensitive data and maintain 

regulatory requirements. 

The proposed work has utilized CloudSim which is supported by the Java platform to 

deploy the proposed work. CloudSim is an open-source CC simulation toolkit that 

provides a platform for modelling and simulating cloud environments. It allows 

researchers and developers to experiment with different cloud architectures, policies, 

and scheduling algorithms in a virtualized environment, without the need for physical 

infrastructure. CloudSim is built on top of the popular Java-based simulation 

framework, SimJava, and offers a range of features that make it an ideal choice for 

deploying cloud scheduling algorithms [133]. The toolkit supports the creation and 

management of VMs and PMs in a virtualized cloud environment, enabling the 

simulation of diverse scenarios reflecting real-world cloud usage patterns. 

Researchers can define custom workloads, such as task arrival patterns, VM resource 

requirements, and job execution times, and evaluate various scheduling policies to 

optimize resource utilization and performance. CloudSim also allows for the 

modelling of data centres with multiple hosts and datacenter-level network topologies, 

providing flexibility to examine cloud scheduling algorithms under various 

configurations and network conditions. The efficiency of scheduling algorithms may 

be evaluated by analysing performance indicators like response time, throughput, and 
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resource utilisation, which are made possible by monitoring and reporting facilities. 

The scalability of CloudSim allows for simulations of different cloud sizes, ranging 

from small setups to large-scale data centres, allowing researchers to study scheduling 

behaviour under different workloads and cloud scales. Furthermore, CloudSim 

supports energy-aware cloud scheduling, enabling investigation and optimization of 

algorithms considering energy consumption and efficiency [134]. Its modular design 

and extensibility allow easy integration with external libraries and the incorporation 

of existing or custom-scheduling algorithms based on research requirements. With a 

vibrant user community providing support, documentation, tutorials, and research 

papers, CloudSim serves as a powerful simulation platform for exploring, evaluating, 

and advancing cloud scheduling algorithms and their efficiency in a wide range of 

cloud computing scenarios. The data centre modelling in Cloudsim is represented in 

Figure 4.3. 

 

Figure 4.3 Datacentre modelling in Cloudsim  

The proposed work considers the following varying attribute values for the creation 

and processing of a data centre as shown in Table 4.1.  
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Table 4.1 Attributes and Description 

Variable Description 

RAM Amount of RAM allocated to a host (randomly generated) 

Bw Bandwidth allocated to a host (randomly generated) 

Dc Datacenter object representing the cloud data centre 

Storage Storage capacity allocated to a host (randomly generated) 

peList List of processing elements (PEs) representing the CPU cores 

Provisioner PE provisioner specifying the CPU capacity of the cores 

core1, core2, ... Processing elements (PEs) representing the CPU cores 

host list 
List of hosts in the data centre, each representing a physical 

machine (PM) 

Architecture Architecture type of the PMs in the data centre (e.g., x86) 

Os Operating system running on the PMs (e.g., Linux) 

Vmm Virtual machine monitor used on the PMs (e.g., XEN) 

timeZone Time zone of the data center 

ComputecostPerSec 
Cost per second of CPU processing on the PMs (randomly 

generated) 

costPerMem Cost per unit of memory allocated to a VM 

costPerStorage Cost per unit of storage allocated to a VM 

costPerBw Cost per unit of bandwidth allocated to a VM 

Characteristics 
Datacenter characteristics object containing information about 

the data centre 

SanStorage 
List of storage elements representing the storage devices in the 

data center 

vm_properties 
2D array representing the properties of virtual machines (VMs) 

including CPU demand, allocation cost, etc. 

total_vm Total number of VMs 

total_properties Total number of properties associated with each VM 

pm_i_cost Array representing the idle cost of each physical machine (PM) 

total_pms Total number of physical machines (PMs) 

pm_CPU 
Array representing the CPU capacity of each physical machine 

(PM) 

 

 Integration of Q-learning  4.3.2

With the help of the popular reinforcement learning algorithm Q-Learning, an agent 

may learn from its surroundings and modify its behaviour to attain a certain objective. 

It is especially helpful when the agent must do an exploration to figure out the optimal 

course of action since they lack prior knowledge of the surroundings. TUsing a Q-

value function, the method determines the expected cumulative benefit of carrying out 
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a specified action under a given set of conditions. By iteratively updating the Q-values 

in response to the agent's experiences and actions, Q-learning ultimately achieves the 

optimal course of action for decision-making [135]. 

By incorporating Q-learning into the FPA, the algorithm's optimisation skills may be 

further improved, increasing its effectiveness and efficiency in locating optimal 

solutions. The primary idea behind this integration is to utilize the Q-values to guide 

the pollination process in FPA. Instead of using random search and pollination, the 

algorithm employs the Q-values to select the best flower to pollinate, which 

corresponds to choosing the most promising solution. 

The integration process involves the following steps: 

1. Initialization: Initialize the Q-values for each flower in the FPA population. 

These Q-values represent the expected cumulative rewards for pollinating 

each flower (i.e., solution) based on the agent's experiences. 

2. Exploration-Exploitation Trade-off: During the pollination process, the 

agent must balance exploration and exploitation. Initially, the agent may 

prioritize exploration to discover new promising solutions. As the algorithm 

progresses, it shifts towards exploitation, focusing on exploiting the best-

known solutions based on the Q-values. 

3. Updating Q-values: After pollination, the Q-values are updated using 

Bellman's equation, which is a fundamental equation in reinforcement 

learning. The update process incorporates the immediate reward obtained from 

the newly discovered solution and the expected cumulative reward of the next 

state-action pair. 

4. Improved Solution Search: By integrating Q-learning into FPA, the 

algorithm can better navigate the solution space and identify better solutions 

more efficiently. The Q-values serve as a form of memory that guides the 

algorithm towards more promising regions, avoiding unnecessary exploration 

and enhancing the convergence to the optimal solution. 
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The following ordinal measure of the development is used in the suggested study. 

There are two main categories of energy usage that are recognised in the context of 

cloud data centres: CPU-intensive energy use and memory-intensive energy use. 

These resources are considered major contributors to carbon dioxide emissions. Two 

factors make up a cloud data center's overall power consumption: the fixed power 

used by the server                   and the dynamic power(        )  used by the 

Virtual Machines (VMs) while they are in operating mode. 

Further broken down into energy spent by the CPU (E_CPU) and memory           

in the physical server is the dynamic power consumption           . According to 

studies in the literature, a physical computer in a cloud data centre uses about 70% 

more energy while it is idle than when it is fully utilised. This substantial energy 

consumption results in significant carbon dioxide emissions. It is evident that when an 

inactive physical machine utilizes its resources fully, there are significant power 

savings and a reduction in CO2 emissions, thereby enhancing resource efficiency and 

reducing the carbon footprint. 

The following formulas are used to calculate the energy used and carbon emissions 

during work allocation and processing at each PM. 

   ∑          
 
    (     )              (4.1) 

M is the total number of instructions in PM 'j', ece is the execution cost at that PM, s 

is the amount of storage required for the mth instruction, and ecs is the energy 

consumed to store one instruction at that PM. Equation (4.2) may likewise be utilised 

to calculate CO2 emissions; here, cee denotes CO2 emitted when the mth instruction 

on the jth PM is being executed, and ces denotes CO2 released during storage. 

   ∑          
 
    (     )              (4.2)  

In Equation 4.1, the total energy consumption (EC) is determined by aggregating the 

execution costs (      and the energy consumption related to storage (    ) for each 

instruction under the specific PM 'j'. The CO2 released during the execution of the 

instruction set        and the CO2 released during storage are added together in 

Equation 4.2 to determine the total CO2 emission (CE). (    ). 
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Logically, these equations provide a systematic approach to evaluating the energy 

consumption and environmental footprint of computational tasks performed on 

specific processing modules, which contributes to a better understanding of 

computing's overall impact on energy resources and the environment. Equation 4.1 

quantifies energy usage by taking into account both execution and storage costs while 

equation 4.2 expands the analysis to incorporate environmental impacts, notably CO2 

emissions. It includes both the CO2 emitted during execution and the CO2 released 

during storage activities. Using these equations, one may analyze the energy 

requirements and environmental effects of executing a set of instructions on a certain 

PM, which can help with resource allocation, optimization, and sustainability 

decision-making. 

Start

Collect 

Environment 

Variable, PC,  

CO2, d, M  

Apply Updated k-means 

for State Generation for 

Environment {Good, 

Moderate, Avoid}

Action: Allocate(0)

Can allocate if no Other 

Option (1)  

Migrate or Don�t allocate (2)

Penalty

Repository
Reward 

Repository

Parallel 

Simulation

Requires 

Migration?

Keep user 

at same PM

If 

Reward>Penalty

Migrate user 

to other PMStop

A
sk

 t
o 

R
ep

os
it

or
y

A
sk

 to
 R

ep
os

it
or

y

1 2 Apply Bellman Reward 

Mechanism for Weight 

Propagation and Action 

Generation

3

4' 4

5

6���

8��

6'

YES

6��

YES

NO
8�

7�

7��

NO

 

 Figure 4.4 Proposed Work Using Q-Learning [135] 
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To implement the integration of the pollination process with Q-learning the proposed 

work uses the following workflow using Q-learning and is represented by Figure 4.4.  

The suggested work integrates the fundamentals of the three main components of the 

Q-learning algorithm architecture: Environment, States, and Actions [136]. The 

environment is created by enhancing the architecture of the existing k-means 

algorithm, which clusters data according to Euclidean distance. In this method, the 

standard k-means metrics are applied. The overall work architecture is represented in 

Figure 4.5. 

 

Figure 4.5 Overall work architecture 
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The updated k-means algorithm involves two significant changes. Firstly, Cosine 

similarity is introduced as an additional measure in distance calculation to effectively 

assign records to appropriate clusters. When assessing parameter distance, cosine 

similarity—which is the cosine of the angular difference between two vectors with the 

same number of characteristics—is commonly employed. The suggested work 

compares the cosine similarity between two vectors with the following four attributes: 

energy consumption (EC), carbon emission (CO2), user-data centre distance (d), and 

the total number of user-supplied instructions (M).  

Second, by removing the potential for random centroid selection during the initial 

clustering step, the approach maximises the convergence rate. Instead, it creates two 

extra centroids with a 20% margin value and takes the mean value of each 

characteristic as the first centroid to offer some variance. 

These enhancements in the k-means algorithm enable more efficient clustering of 

data, facilitating the creation of the environment for the Q-learning algorithm. This 

integrated approach improves decision-making and resource allocation within the 

cloud environment, making it more adaptive and effective in addressing complex 

optimization problems. 

4.3.2.1 Q-learning Application in Proposed Work Case Scenario  

 States X = {1,2,3}: The set of possible states. (Proposed work has 3 states.) 

 Actions A = {1,2,3}: The set of possible actions. (Proposed work has 3 

actions.) 

 Reward function R(X, A): A function that maps a state-action pair to a real-

valued reward or penalty. 

 Gradient-based (weighted sum) transition function T(X, A): A function that 

maps a state-action pair to the next state using a weighted sum. 

 Learning rate α in [0, 1]: A small constant that controls the step size during 

updates of the Q-values. (Typically α = 0.1.) 

 Discounting factor γ in [0, 1]: A parameter that determines the importance of 

future rewards compared to immediate rewards. 
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Output: 

 Function Q(X, A): The learned Q-function, representing the expected 

cumulative reward for each state-action pair. 

Procedure: Q-learning 

1. Initialize the Q-function Q(X, A) arbitrarily for all state-action pairs. 

2. While the Q-function is not converged, repeat the following steps: 3. Start in a 

random state in X. 

4. While the current state s is not a terminal state (the end of an episode): 

5. Calculate the policy π according to the weighted sum of old weight 

(ow) and new weight (nw) using the function nw = ax + b, where a and 

b are constants, and x = norm(EC, CO2, d, M). 

6. Choose action a based on the policy π(s). 

7. Receive the immediate reward or penalty r by executing action 

a in state s. 

8. Observe the new state s' resulting from the action a. 

9. Update the Q-value for the state-action pair (s, a) using the Q-

learning update rule: Q(s, a) <- (1 - α) * Q(s, a) + α * (r + γ * 

max_{a'} Q(s', a')) 

10. Set the current state s to the new state s' and continue with the 

next iteration. 

5. End of the inner loop (when a terminal state is reached). 

3. End of the outer loop (when the Q-function is converged). 

4. Return the learned Q-function Q. 

Algorithmically, it can be represented as shown in the following Figure 4.6 
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Figure 4.6 The applied Q-learning algorithm  

The simulation of the code has been done over the Cloudsim platform as discussed 

earlier in the same chapter and is shown in Figure 4.7. 

 

Figure 4.7 Implementation of Q-learning algorithm in the cloud-sim 

environment 
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In order to modulate the Q-learning further, a propagation-based machine learning 

algorithm is also applied. The neural network is a propagation-based algorithmic 

architecture that propagates the weights as per the hidden neurons in the list. 

 Neural Networks and its Applicability  4.3.3

Neural networks, an efficient machine learning model, are modelled after the 

composition and functions of the human brain. It is a sort of artificial intelligence that 

acquires new skills by studying data and seeing patterns in order to carry out tasks. 

Numerous domains, such as image identification, natural language processing, 

robotics, and optimisation issues, have made substantial use of neural networks. 

A neural network's basic building blocks are linked neurons arranged in layers. Each 

neuron receives an input, analyses it using an activation function, and then generates 

an output that helps to form the overall outcome. The capacity of neural networks to 

learn complicated and nonlinear correlations in data through a process known as 

training gives them their strength. 

Applicability of Neural Networks to Scheduling Algorithms: 

Scheduling algorithms deal with the optimization of resource allocation and task 

sequencing to achieve specific objectives, such as minimizing makespan, reducing 

lateness, or maximizing resource utilization. Neural networks offer several advantages 

in addressing scheduling problems: 

1. Nonlinearity and Complex Patterns: Many scheduling problems involve 

complex relationships and dependencies among various variables. Neural 

networks can learn and model these intricate patterns, enabling more effective 

solutions than traditional linear approaches. 

2. Flexibility: Neural networks can be adapted and tailored to different 

scheduling scenarios. They can handle a variety of restrictions and objectives 

by altering the network design and loss functions, which makes them relevant 

to a broad range of scheduling issues. 

3. Learning from Data: Neural networks' capacity to learn from data is one of 

its main advantages. To find the best scheduling rules and tactics, they might 

be educated using expert knowledge, simulations, or historical scheduling 

data. 



 

  106 

 

4. Real-time Adaptation: In scheduling environments, where conditions change 

frequently, neural networks can continuously learn and adapt to new 

information, making them suitable for real-time decision-making. 

5. Global Optimization: Traditional scheduling algorithms may rely on 

heuristics or local search methods that might not guarantee finding the optimal 

solution. Neural networks can be trained using global optimization techniques 

to improve the chances of finding near-optimal solutions. 

6. Parallel Processing: Neural networks can be implemented on parallel 

hardware, such as GPUs or specialized hardware like TPUs, allowing for 

faster and more efficient computation of scheduling solutions. 

7. Combining with Traditional Methods: Neural networks can be combined 

with traditional optimization methods to leverage the strengths of both 

approaches. For instance, neural networks can learn to improve initial 

solutions generated by heuristics or metaheuristic algorithms. 

 

4.3.3.1 Integration of the Neural Network  

Training a neural network for job allocation division is based on good and bad 

allocations which is a part of testing or the validation process involving the following 

steps: 

1. Data Collection and Pre-processing: 

 Gather a dataset of job allocations with associated features and labels 

indicating whether each allocation is considered "good" or "bad." The 

features could include various parameters related to the allocation, 

such as resource utilization, processing time, or task dependencies. 

 Divide the dataset into training and testing sets, manage missing values 

in the data, and scale or normalise the features. 

2. K-Means Clustering: 

 Divide the data into two sections using the K-means clustering 

algorithm: one for "good" allocations and one for "bad" allocations. A 

well-liked unsupervised clustering method called K-means divides data 

points into K clusters according to their similarity. 
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 Based on the closest cluster centroid, allocate every data point (task 

allocation) to a certain cluster. 

3. Mean Squared Error (MSE) Calculation: 

 For each cluster, determine the Mean Squared Error (MSE). MSE 

calculates the average squared difference between each data point's 

actual label and projected label within a cluster. 

 The MSE for each cluster reflects how well the K-means algorithm 

separates good and bad allocations in that cluster. Lower MSE 

indicates better separation. 

4. Labelling the Clusters: 

 Based on the MSE values of each cluster, assign labels to the clusters. 

The cluster with the lower MSE is considered to represent "good" 

allocations, while the one with the higher MSE represents "bad" 

allocations. 

 By assigning labels to the clusters, we create two distinct groups: one 

group consisting of good job allocations and the other group with bad 

job allocations. 

5. Neural Network Training: 

 Design and configure a neural network architecture suitable for the job 

allocation division problem. The network should have an input layer 

corresponding to the features of the job allocations and an output layer 

with a binary output representing good or bad allocation. 

 Split the pre-processed dataset into input features and corresponding 

labels based on the cluster assignments from the K-means algorithm. 

 Use the labelled data to train the neural network. Using methods like 

gradient descent and backpropagation, the network attempts to 

minimise the classification error between the predicted labels and the 

ground truth labels (good or poor). 

 Use the training set to adjust the weights and biases of the neural 

network iteratively to improve its performance. 

6. Model Evaluation: 
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 Use the testing dataset, which the neural network has never seen 

before, to assess its performance after training. To evaluate how well 

the neural network can discriminate between good and bad job 

allocations, compute measures like accuracy, precision, recall, and F1-

score. 

 Adjust the neural network architecture or hyperparameters if necessary 

to optimize its performance. 

7. Job Allocation Division: 

 Once the neural network is trained and evaluated, use it to predict the 

label (good or bad) for new, unseen job allocations. The neural 

network will assign each job allocation to one of the two groups, based 

on the learned patterns and relationships in the data. 

 Job allocations labelled as "good" can be prioritized or scheduled 

accordingly, while those labelled as "bad" may require further analysis 

or improvements. 

Integrating Q-learning with K-means clustering in the job allocation division process 

offers a powerful and sophisticated approach to optimizing resource allocation in 

scheduling scenarios. K-means efficiently segment job allocations into two groups: 

good and bad, based on their characteristics and performance metrics. This clear 

separation simplifies the problem, as Q-learning can now concentrate on optimizing 

resource allocation within well-defined groups. By focusing on the good allocations, 

which have been pre-identified using K-means, Q-learning can significantly reduce 

the search space and computational burden, leading to faster and more efficient 

decision-making. 

The system's predictability is improved when K-means clustering and Q-learning are 

combined. With hosts or working machines ranked based on historical data and job 

performance, Q-learning can make more informed allocation decisions. This 

prioritization of hosts based on their past performance allows for better resource 

utilization and minimizes the chances of making suboptimal choices. Moreover, Q-

learning's ability to learn and adapt from past experiences ensures that the system 
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remains adaptable to changes in the environment or job characteristics, making it 

suitable for real-time and dynamic scheduling scenarios. 

The system hardware requirements and configuration used to channelize the 

simulation process are discussed in Table 4.2. 

Table 4.2 System Configuration 

Parameters Description 

RAM 4GB 

Memory DDR3 

HD Capacity 500GB 

Number of Clouds 10 

Number of Hosts 200 

Available Bandwidth  100-7500 Hz 

Available Cores 4 

Capacity per core 3 octa engine 

Engine Type Multi 

Engine Propagation  Quad Core 

Process Utilization Minimum  1 Hz 

Single core score 14323 

Multi-Core score 14883 

Number of Clouds 10 

The integration also enhances the overall system performance which is later verified 

using testing or validation. By focusing on good allocations, the system can improve 

task completion times, reduce bottlenecks, and increase overall efficiency. Increased 

productivity and cost reductions follow from better resource usage and increased 

throughput. Additionally, the system's scalability and generalizability are enhanced by 

the combination of Q-learning and K-means clustering, which allows it to handle 

enormous datasets and successfully apply learned techniques to new, unknown data. 

Overall, the integration of Q-learning with K-means clustering in job allocation 

division reduces complexity, enhances predictability, and improves overall system 
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performance. By leveraging the strengths of both approaches, this integration offers 

an efficient and effective solution for resource allocation, making it a valuable tool in 

various scheduling and resource management applications. 

The following algorithm explains the working of the Neural Networks over the cloud 

sim simulator. 

Algorithm: Neural Network Training for Job Allocation Division 
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The chapter explores the integration of Q-learning and flower pollination in the 

context of improving the performance of a scheduling network. By combining these 
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two powerful techniques, the authors aim to enhance resource allocation and task 

sequencing in dynamic scheduling environments. Q-learning, a reinforcement 

learning algorithm, is utilized to optimize the allocation decisions based on rewards 

and penalties obtained from previous scheduling experiences. Flower pollination, 

inspired by the natural behaviour of plants, is employed as a metaheuristic 

optimization method to refine the solutions further. This combination allows for 

efficient exploration of the search space, leading to improved scheduling outcomes. 

This is corroborated by Table 4.3, which also offers a more comprehensive 

comparison of the performance of the suggested work (Q-learning with FPA) 

compared to other machine-learning algorithms. The accuracy evaluation shows that 

the proposed work provides a better chance of deducing a highly accurate and precise 

scheduling architecture in comparison to Q-learning or neural networks alone. The 

table illustrates that the integration of FPA slightly improved the average accuracy of 

resource allocation achieved using Q-learning architecture and outperformed the 

neural network-based leaning mechanism. 

 

Table 4.3 Performance Analysis of Machine Learning Techniques 

Number of Users 
Q-learning  with 

FPA (%) 
Q-learning (%) 

Neural Network 

(%) 

50 92.31672379 90.73746 89.86480588 

70 92.58298108 90.82462711 90.38029174 

90 92.89497441 91.28205382 90.79675993 

110 93.44631703 91.30882566 91.15083846 

130 93.60683795 91.61332463 91.17887921 

150 94.10810611 91.7657921 91.39688037 

170 94.59717051 92.16610061 91.80837918 

190 94.97771045 92.19867902 91.8577715 

210 95.22657176 92.3323164 92.18396822 

230 95.65173794 92.62365857 92.4653995 

250 95.8308081 93.14628125 92.92775791 

270 95.83888734 93.63021829 93.00340812 

290 96.22756502 94.00412472 93.48779905 
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310 96.42916772 94.13669257 94.02145901 

330 96.58615242 94.69970349 94.21031419 

350 96.64468163 94.78294358 94.45859011 

370 96.94415836 94.86254105 94.90213717 

390 97.05383323 95.17649161 95.18734785 

410 97.50203649 95.53564045 95.62181714 

430 97.71748452 95.80347456 95.66533643 

450 98.13783014 96.02048059 95.83683093 

470 98.66501532 96.4696309 96.22285907 

490 98.91902243 96.73877732 96.35690573 

Average 95.73503364 93.5591234 93.26028421 

 

Later, to achieve even better performance, the chapter goes beyond the traditional Q-

learning. The collected scheduling data is divided into clusters using K-means 

clustering, resulting in groups of good and bad allocations. These clusters are then fed 

into neural networks, which are trained to learn the allocation division and prioritize 

good allocations. By leveraging neural networks' ability to model complex 

relationships and learn from data, the scheduling system gains the advantage of 

making informed allocation decisions based on historical patterns. Overall, it was 

observed that the model reached the highest accuracy of 98.9% with an average value 

of 95.73%. To support this, a detailed comparative analysis is performed for the 

evaluation parameters which is summarized in the next chapter.  

4.4 Application over the real time multi-cloud  

In the realm of modern computing, the utilization of cloud infrastructure has 

revolutionized the way we approach various computational tasks. In this context, the 

proposed work stands as a testament to the adaptability and scalability of our 

approach. Not content with mere theoretical considerations, our endeavour has 

ventured into the realm of real-time application on the AWS (Amazon Web Services) 

cloud platform, utilizing multiple cloud instances to amplify its effectiveness. 

At the heart of this initiative lies the creation of a comprehensive virtual server, 

constructed with a robust Java-based architecture. To ensure the smooth operation of 

our endeavour, we meticulously installed the requisite Java Development Kits (JDKs) 
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to empower our virtual server with the necessary tools and capabilities. What sets our 

approach apart is the deliberate segmentation of responsibilities between two distinct 

cloud instances, each strategically situated in separate cloud data centres. 

One of these instances is entrusted with the critical task of executing the proposed 

work, harnessing the computational power and resources offered by AWS to carry out 

complex operations with efficiency and speed. The other instance plays a 

complementary role, focusing on the crucial aspect of storage. Its primary 

responsibility is to manage and maintain the data and results generated during the 

execution phase, ensuring that valuable information remains organized and readily 

accessible. 

 Application Initialization at AWS cloud  4.4.1

Setting up the described infrastructure on AWS with multiple cloud instances, 

including the creation of a Java-based virtual server and the allocation of 

responsibilities, involves a series of steps and configurations. Here is a detailed 

description of how this setup can be accomplished: 

1. Amazon Web Services (AWS) Account: 

 In the event that you do not currently have an AWS account, start by 

establishing one. This account is required in order to use AWS 

services. 

2. Launch Instances: 

 Open the AWS Management Console and go to the dashboard for EC2 

(Elastic Compute Cloud). 

 Press "Launch Instance" to begin the virtual server (instance) creation 

procedure. 

3. Choose an Amazon Machine Image (AMI): 

 Pick an AMI based on Java that meets your needs. Make sure the 

required JDK (Java Development Kit) is pre-installed. 

4. Instance Type: 

 Select the right instance type for your computing requirements. Think 

about components such as CPU, memory, and storage. 

5. Security Groups: 
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 Create security groups to manage traffic entering and leaving your 

instances. Set up rules to permit access via SSH, RDP, and any more 

required ports. 

6. Key Pair: 

 Create or import an SSH key pair to secure access to your instances. 

This key pair will be used for authentication. 

7. Storage: 

 Configure the storage for your instances. You can use Amazon EBS 

(Elastic Block Store) volumes for durable storage. 

8. Launch Instances: 

 Review your instance settings and click "Launch" to create your virtual 

servers. AWS will assign public IP addresses to each instance by 

default, making them accessible over the internet. 

9. Elastic Load Balancing (Optional): 

 If you require high availability and load balancing, consider setting up 

an Elastic Load Balancer to distribute traffic between instances. 

10. Data Centers and Regions: 

 Place the instances in different AWS regions or data centers, 

depending on your redundancy and data locality requirements. This 

ensures that they are geographically separated. 

11. Configuration and Software Setup: 

 Access each instance using SSH or RDP (depending on the operating 

system) and configure the Java environment, including installing JDKs 

and any necessary libraries or dependencies. 

12. Responsibilities Allocation: 

 Define the responsibilities for each instance. For example, one instance 

can be designated for execution tasks, while the other is responsible for 

storage and data management. 

13. Data Synchronization (Optional): 

 If your setup requires data synchronization between instances, consider 

using AWS services like Amazon S3 or EFS (Elastic File System) for 

efficient data sharing. 
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14. Monitoring and Scaling (Optional): 

 Implement monitoring and scaling policies to ensure the efficient use 

of resources and the automatic provisioning of additional instances 

when needed. 

15. Security and Access Control: 

 • Use IAM (Identity and Access Management) rules and other security 

best practices to manage access and permissions to your instances and 

resources. 

16. Testing and Optimization: 

 Make sure your configuration satisfies your performance and reliability 

needs by giving it a thorough test. As necessary, optimise setups for 

performance and cost-effectiveness. 

 

Figure 4.8 Running Instances on AWS Multicloud 

 Execution of cloud server  4.4.2

Executing the current file unfolds as a meticulously orchestrated process, with each 

step designed to unveil critical insights into the program's performance and its 

ecological consequences. The installation of indispensable libraries drawn from 

CloudSim and Apache POI binaries establishes the foundation for the subsequent 
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execution. These libraries equip the program with the necessary tools and capabilities 

to operate effectively within a cloud computing environment. 

The AWS instance and the RamanCloud application have been seamlessly 

interconnected, forming a powerful synergy for executing various tasks and jobs 

within the AWS cloud environment. This integration enables the RamanCloud 

application to leverage the computational capabilities and resources offered by AWS, 

ensuring efficient and reliable execution of its processes. 

When tasks are initiated within the RamanCloud application, the AWS cloud platform 

immediately springs into action. It dynamically allocates and manages the necessary 

computing resources and hosts to execute these tasks effectively. This on-demand 

resource provisioning ensures that the application can efficiently scale to 

accommodate varying workloads and demands, making it an ideal choice for handling 

diverse job requirements. 

 

Figure 4.9 AWS Instance Creation 
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Figure 4.10 AWS Dashboard with application and space 

Once the AWS instance is allocated for the RamanCloud application, a dedicated 

storage space is created to cater to the user's data storage needs. In this particular 

setup, a total of 8 gigabytes (GB) of storage space is provisioned for the user. 

This storage space plays a critical role in accommodating various data assets, files, 

and resources required by the user within the AWS environment. It ensures that the 

user has ample capacity to store, access, and manage their data efficiently as they 

interact with the RamanCloud application. 

The 8 GB of allocated storage is designed to support a wide range of use cases, such 

as storing datasets, reports, configurations, and any other data pertinent to the user's 

activities within the application. This provisioned space not only facilitates data 

retention but also aids in ensuring smooth and uninterrupted operation of the 

RamanCloud application by allowing for the efficient organization and retrieval of 

essential information. 

To ensure the program's execution aligns with specific objectives, instruction sets are 

thoughtfully crafted and passed. These sets serve as the program's guiding principles, 

dictating its tasks, workloads, and other intricate parameters that shape its behavior. 

User and other virtual machine (VM) instances are then artfully configured within the 

chosen cloud environments. The allocation of computing resources—ranging from 

CPU capacity to memory and storage—aims to cater precisely to the program's 
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unique requirements. This careful provisioning ensures optimal performance and 

resource utilization. 

 

Figure 4.11 Execution of cloud instances for current algorithm 

The true essence of the experiment comes to life when the program is executed 

simultaneously in two separate cloud environments, each hosting its own dedicated 

set of VM instances. This parallel execution serves as a crucible for comparative 

analysis, allowing for the identification of performance variations and resource 

utilization disparities between the two cloud setups. 

 

Figure 4.12 Result of execution on 100% completion 
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The evaluation phase forms the heart of this endeavour. It hinges on a trio of pivotal 

metrics: power consumption, CO2 emissions, and completion ratios. The 

quantification of power consumption unveils the energy efficiency of each cloud 

setup, while the calculation of CO2 emissions sheds light on the environmental 

impact associated with the energy consumption. Simultaneously, the evaluation 

assesses the program's completion ratios, gauging its ability to fulfil its designated 

tasks within each cloud environment. 

The diligent collection of data is a cornerstone of the assessment process. By 

meticulously gathering information on power consumption, CO2 emissions, and 

completion ratios from both cloud environments, a comprehensive dataset is 

generated for detailed analysis. 

In this setup, one server is dedicated to executing programs, while another server is 

solely responsible for storing data. These two servers operate independently, each 

with its specific role, without any direct sharing of computational tasks or data 

transfer between them. 

The primary benefit of this configuration is twofold. First, it allows for a clear 

separation of concerns, ensuring that the server responsible for executing programs 

can focus entirely on computational tasks without the overhead of data storage 

operations. Simultaneously, the data storage server can efficiently manage and 

organize data assets without being burdened by program execution demands. 

In the context of redundancy and fault tolerance, if the server handling program 

execution becomes overloaded or encounters issues, it doesn't directly impact the data 

storage server. The AWS migration policy is designed to ensure that program 

execution tasks are seamlessly transferred to another available server, thus 

maintaining smooth operation without affecting data storage or compromising overall 

system reliability. 
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Figure 4.13 Data Migration between multiple clouds 

Within the RamanCloud application, the execution of tasks is intricately tied to the 

supplied load and closely monitored CPU utilization metrics on AWS server 1. This 

synergy between workload and server performance is crucial for optimizing the 

application's operation. Supplied load represents the incoming tasks and processes 

that the RamanCloud application needs to handle. It can vary significantly in terms of 

complexity and volume, ranging from light workloads to heavy computational tasks. 

The application's ability to effectively manage this load is vital for delivering timely 

and efficient results to users. 

 

 

Figure 4.14 Execution Outcome at server 1 based on loads 
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Simultaneously, AWS server 1 continuously monitors its CPU utilization. This real-

time tracking provides valuable insights into how intensively the server's central 

processing unit is being used by the RamanCloud application. When the CPU 

utilization approaches or exceeds predefined thresholds, the application can make 

informed decisions to maintain system stability and performance. 

For instance, when CPU utilization is high due to a surge in workload, the application 

might employ load balancing techniques to distribute tasks across multiple servers or 

allocate additional resources to AWS server 1. This ensures that the application can 

continue processing tasks efficiently without causing performance degradation or 

downtime. Conversely, during periods of low CPU utilization, resources can be 

allocated more sparingly to reduce operational costs, making the resource utilization 

process highly dynamic and responsive. 

 

Figure 4.15 Read and Write Operations on server 2 for data storage  

The interplay between supplied load and CPU utilization metrics within AWS server 

1 allows the RamanCloud application to operate efficiently in a scalable manner. It 

makes it possible for the application to adjust to shifting workloads and resource 

requirements in an efficient manner, guaranteeing peak performance and resource use 

all the time. The RamanCloud application's overall dependability and efficiency in the 

AWS environment are greatly enhanced by this dynamic monitoring and adjusting 

procedure. 

The proposed work is expected to yield significant benefits, especially when 

leveraging a real-time AWS cloud environment consistently. This choice offers 

unparalleled convenience, even for relatively small-scale projects, as AWS's real-time 
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cloud infrastructure provides a noteworthy performance boost. This enhancement is 

primarily attributed to AWS's shared memory concept, which accelerates processing 

speeds. 

In practice, utilizing AWS's real-time cloud platform can result in a remarkable 8% 

increase in processing speed compared to alternative cloud solutions. This boost in 

performance stems from the efficiency gained through shared memory resources, 

allowing for faster data access and computation. Consequently, even for tasks of 

limited scope, the AWS real-time cloud proves to be a valuable asset, optimizing 

overall processing times and ensuring that applications run smoothly and swiftly. 

 

 

Analysis and comparison are where the experiment's true insights surface. 

Discrepancies in power efficiency, environmental sustainability, and program 

performance are scrutinized, potentially leading to actionable optimization strategies 

to enhance efficiency or reduce environmental impact. 

The findings and outcomes are not left in isolation. Instead, they are meticulously 

documented and woven into comprehensive reports, ensuring the dissemination of 

valuable insights and facilitating data-driven decision-making for future cloud 

resource allocation and environmentally conscious application deployment. 

 

4.5 Summary of the Chapter  

The chapter highlights the potential of these integrated approaches in addressing 

complex and dynamic scheduling problems. The synergy between Q-learning and 

flower pollination contributes to an advanced optimization system capable of 

delivering near-optimal scheduling solutions in various practical scenarios. Overall, 

this research contributes valuable insights into the fields of artificial intelligence, 

optimization, and scheduling, paving the way for more sophisticated and effective 

resource management systems. 

There are several advantages of combining flower pollination with Q-learning. By 

improving exploration in the search space, the flower pollination technique helps the 
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system break out of local optima and discover better allocation solutions. The 

incorporation of neural networks improves the overall predictability and adaptability 

of the system, as it can efficiently learn and adapt to new information in real time. By 

combining these techniques, the scheduling network achieves efficient resource 

utilization, reduced makespan, and increased productivity. 
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CHAPTER 5: RESULTS AND DISCUSSION 

The request for efficient resource allocation and task sequencing in dynamic 

scheduling environments has long been a challenge in the field of artificial 

intelligence and optimization. In this section, we present the culmination of our efforts 

in tackling this intricate problem by proposing a novel and powerful scheduling 

approach. Our method integrates cutting-edge techniques, namely Q-learning, and 

flower pollination to optimize the scheduling network and achieve superior 

performance. 

Resource allocation and task sequencing are critical components in modern 

computing systems, spanning diverse applications such as cloud computing, grid 

computing, and data centres. It is a complicated effort to allocate work to appropriate 

resources in an efficient manner while taking into account limitations like processor 

speed, memory needs, energy usage, and expense. Traditional approaches have often 

faced limitations in handling the dynamic nature of scheduling environments, leading 

to suboptimal resource utilization and increased makespan. To address these 

challenges, we have meticulously designed, developed and implemented a novel 

scheduling approach that leverages the strengths of Q-learning, a reinforcement 

learning algorithm renowned for its ability to learn from rewards and penalties. 

Inspired by the adaptable nature of plants to maximise their development, our method 

integrates blossom pollination, going beyond conventional Q-learning approaches. By 

combining these two powerful optimization techniques, we enable efficient 

exploration of the vast search space, facilitating the discovery of high-quality 

scheduling solutions. 

The results obtained from executing the program are subjected to rigorous testing on 

both local cloud infrastructure and the expansive AWS cloud platform, providing a 

comprehensive perspective on its performance. The average values generated from 

this testing are illustrated as follows, shedding light on the unique attributes of each 

environment. 
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The AWS cloud environment represents a pivotal component of our evaluation. Its 

global reach, scalability, and versatile range of services make it an essential 

benchmark for assessing our program's performance. In this context, the average 

values obtained from AWS cloud testing serve as a focal point of analysis. 

When considering the AWS cloud, it's crucial to recognize its dynamic nature. The 

performance of AWS services can vary based on multiple factors, including the 

specific AWS region chosen for deployment, the instance type used, and network 

conditions. For instance, AWS offers different types of instances with varying levels 

of computational power, memory, and network performance. Therefore, the choice of 

instance type plays a pivotal role in the program's execution speed and overall 

performance. 

Furthermore, the execution time of the program within the AWS cloud can be 

influenced by internet speed, not only on the AWS side but also on the user's side. 

The speed and stability of the internet connection used to access and interact with 

AWS services can impact the time it takes for tasks to be completed. Additionally, 

different devices and hardware configurations used to connect to the AWS cloud may 

experience variations in execution time due to differences in processing capabilities 

and network adapters. 

 

The thorough findings and analyses provided in this part attest to the efficacy and 

efficiency of the strategy we've suggested. We have conducted extensive experiments 

on diverse datasets, representing a wide range of real-world scenarios and challenges. 

The results demonstrate that our integrated approach significantly enhances resource 

utilization, effectively reduces makespan, and overall improves the scheduling 

network's performance. Our evaluation delves deep into the impact of key parameters 

on the scheduling system's performance. Each parameter, such as MIPS, makespan, 

consumed energy, CO2 emission, distance from the user, VM load distribution ratio, 

and proposed cost, plays a vital role in shaping the quality of the scheduling 

outcomes. By carefully analysing these variables, we can better understand the 

advantages and flexibility of our strategy and adjust the scheduling system to provide 

the best outcomes. The integration of Q-learning with flower pollination elevates the 

state-of-the-art in resource allocation and task sequencing. The synergy between these 
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advanced techniques empowers our approach to efficiently handle complex and 

dynamic scheduling environments, making it suitable for a myriad of practical 

applications. 

A detailed illustration of the parameters is provided as follows. 

1. MIPS (Million Instructions Per Second): MIPS = (Total Instructions 

Executed) / (Total Time in Seconds) 

2. Makespan: Makespan = (Finish Time of Last Task) - (Start Time of First 

Task) 

3. Storage in MB (Megabytes): Storage in MB = Size of Data for Task 

Execution 

4. Consumed Energy in KJ (Kilojoules): Consumed Energy in KJ = (Power 

Consumption per Task) * (Execution Time of Task in Seconds) 

5. CO2 Emission: Metric tons of CO2 Emission (Mt) = (Energy Consumption in 

KJ) * (CO2 Emission Factor of the Power Source) 

6. Distance from User: Distance from User = Euclidean Distance between User 

Location and Host Location 

7. VM Load Distribution Ratio for 5 VMs in Hzs (Hertz): VM Load 

Distribution Ratio for 5 VMs in Hzs = (Number of CPU Cycles Executed on 

Each VM) / (Total CPU Cycles Executed on All VMs) 

8. Cost Proposed: Cost Proposed = (Resource Utilization Cost) + (Energy Cost) 

+ (Other Relevant Costs) 

In the pursuit of achieving robustness and adaptability in scheduling systems, it 

becomes imperative to rigorously evaluate the proposed work under diverse 

simulation architectures. The efficacy of any scheduling approach must be examined 

across varying scenarios to ensure its ability to handle real-world complexities. This 

section provides a thorough analysis of our innovative scheduling method, comparing 

and contrasting its performance under two different simulation architectures: one with 

a growing user base and the other with a growing load. 

The first simulation architecture revolves around augmenting the number of users 

within the system. As user demands fluctuate and grow over time, the scheduling 

system's ability to seamlessly allocate tasks becomes a pivotal aspect of performance. 
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By subjecting our proposed approach to this scenario, we aim to assess how it adapts 

to varying user requirements and effectively allocates resources to meet the ever-

changing demands. Evaluating the approach under this architecture provides crucial 

insights into its scalability, resource utilization, and capacity to cater to a large user 

base without compromising efficiency. 

The second simulation architecture focuses on the increasing load amount, simulating 

the dynamic nature of workloads experienced by modern computing systems. As 

computational tasks intensify and data processing demands escalate, the scheduling 

system's capability to manage heightened loads comes under scrutiny. Here, we 

scrutinize how our approach efficiently scales its resource allocation to meet the 

augmented computational demands. A proficient scheduling system should gracefully 

handle increased load amounts, ensuring optimal makespan and minimal resource 

wastage, thus enhancing overall system performance. 

The juxtaposition of these two simulation architectures serves a dual purpose. Firstly, 

it presents a comprehensive evaluation of our proposed approach's versatility and 

adaptability, gauging its performance under varying user populations and workloads. 

Secondly, it helps identify potential trade-offs between addressing user-centric 

demands and optimizing resource allocation under high-load conditions. By analysing 

the approach's performance in both contexts, we can refine its design to strike a 

harmonious balance between catering to diverse user needs and maintaining peak 

scheduling efficiency. 

We hope to get important insights into the advantages and disadvantages of our 

suggested scheduling strategy through this thorough analysis. The results obtained 

under the two simulation architectures will guide us in optimizing its design, making 

it versatile and well-equipped to handle the complexities of real-world scheduling 

scenarios. By drawing upon the extensive analyses from these simulations, we aspire 

to elevate the scheduling approach to unprecedented levels of adaptability and 

efficiency, contributing to advancements in resource allocation and task sequencing 

for modern computing systems. 
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5.1 Result Evaluation Based on Increasing Number of Users  

In this simulation architecture, the proposed work explores the scheduling system's 

response to an increasing number of users within the computing environment. As 

modern computing systems are widely used by a diverse user base, the scheduling 

approach's adaptability to varying user demands becomes a critical factor in 

determining its effectiveness. Over time, user numbers may fluctuate due to changing 

workloads, task priorities, or varying application requirements. As such, the 

scheduling system must seamlessly allocate tasks and resources to accommodate these 

evolving user needs. 

By subjecting our proposed scheduling approach to this scenario, the proposed work 

presents the integration of FPA and Q-learning and aims to evaluate its performance 

in handling a growing user population. The objective is to assess how the system 

adapts its resource allocation strategies to cater to an expanding user base without 

compromising efficiency. This evaluation will provide crucial insights into the 

approach's scalability, as it must handle a higher volume of concurrent tasks from 

various users. Efficiently managing resource allocation for an increasing number of 

users is essential for maintaining optimal makespan and maximizing overall system 

productivity. 

The analysis of this simulation architecture will delve into various aspects of the 

scheduling system's behaviour. Firstly, the proposed work will observe how the 

system dynamically adjusts its allocation decisions in response to varying user 

requirements. Understanding how the approach prioritizes tasks and allocates 

resources will shed light on its adaptability to fluctuating user demands. Secondly, the 

proposed work will assess the impact of an increasing user population on resource 

utilization. The scheduling system must efficiently distribute resources to meet 

multiple users' needs while avoiding resource bottlenecks or underutilization. 

Moreover, examining the approach's performance under augmented user numbers will 

help identify potential challenges, such as task queuing delays or scheduling conflicts, 

that may arise when facing a larger user base. These insights will provide valuable 
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guidance for further optimizing the scheduling approach and making the proposed 

work ll-equipped to handle the complexities of real-world scheduling environments 

with diverse user populations. The Evaluation based on a number of users with other 

techniques is presented in Table 5.1. 

Table 5.1 Evaluation Based on Number of Users 
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50 0.007 25.54 603.32 0.008 26.73 658.38 0.009 28.45 702.39 

70 0.006 29.34 665.4 0.007 31.47 675.63 0.009 31.6 694.33 

90 0.007 28.55 734.9 0.008 30.22 749.54 0.009 32.33 792.58 

110 0.004 34.74 610.89 0.008 35.65 616.45 0.009 37.61 705.65 

130 0.005 41.85 636.66 0.007 44.42 691.94 0.008 47.93 739.7 

150 0.006 38.61 674.98 0.007 42.29 756.91 0.008 46.72 776.93 

170 0.004 40.95 462.15 0.009 40.95 476.28 0.008 42.16 477.39 

190 0.008 36.23 397.42 0.008 36.6 405.76 0.009 43.76 459.7 

210 0.005 26.21 440.8 0.009 29.63 451.22 0.009 29.82 452.44 

230 0.006 30.45 468.96 0.007 33.46 486.66 0.008 39 492.72 

250 0.004 27.57 513.92 0.006 28.96 581.15 0.008 29.81 678.29 

270 0.005 22 430.83 0.007 22.56 473.69 0.008 22.92 504.35 

290 0.006 31.12 483.09 0.007 36.18 496.65 0.008 38.65 537.43 

310 0.009 24.99 513.88 0.007 25.04 517.26 0.001 26.36 529.7 

330 0.002 31 514.49 0.009 31.34 543.35 0.01 32.4 553.49 

350 0.004 23.12 356.33 0.009 24.46 361.68 0.008 24.73 362.1 

370 0.005 22.14 575.73 0.007 22.86 641.14 0.009 24.78 641.6 

390 0.002 15.54 398.56 0.007 15.85 487.49 0.009 16.48 502.48 

410 0.005 23.82 551.86 0.009 25.27 636.05 0.006 27.49 639.39 

430 0.006 21.25 429.51 0.009 22.57 457.14 0.008 22.8 491.5 

450 0.004 13.52 402.47 0.008 13.59 481.49 0.007 14.89 531.86 

470 0.003 16.9 443.02 0.006 18.24 448.31 0.001 19.5 471.56 

490 0.001 9.2 292.99 0.007 9.89 337.21 0.008 9.76 386.18 

 

It is calculated that the evaluation under Simulation Architecture 1 offers a 

comprehensive understanding of how the proposed scheduling approach handles 
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varying user demands. By analyzing its behaviour in this context, the proposed work 

can fine-tune the approach to deliver efficient resource allocation, reduced makespan, 

and improved user satisfaction. The knowledge gained from this analysis will pave 

the way for advancements in resource management and task sequencing, with broader 

applications in cloud computing, data centres, and other computing domains where 

user-centric scheduling is paramount. The graphical analysis of these simulations for 

energy, cost and CO2 is presented in Figure 5.1, Figure 5.2, and Figure 5.3 

respectively.  

 

Figure 5.1 Energy vs Number of Users 
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Figure 5.2 Cost vs Number of Users 

 

 

Figure 5.3 CO2 vs Number of Users 
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The analysis of the proposed work with a Neural network illustrates the following 

points.  

1. Energy Consumed: 

 The Proposed algorithm shows varying energy consumption for 

different numbers of users, ranging from around 9.198 to 41.85. 

 The 'Q-LEARNING' algorithm shows varying energy consumption for 

different numbers of users, ranging from around 9.888 to 44.41. 

 The 'Neural Network' algorithm shows varying energy consumption 

for different numbers of users, ranging from around 9.764 to 47.934. 

2. Cost Evaluation: 

 The Proposed algorithm shows varying costs for different numbers of 

users, ranging from around 292.988 to 734.902. 

 The 'Q-LEARNING' algorithm shows varying costs for different 

numbers of users, ranging from around 337.2147 to 756.9075. 

 The 'Neural Network' algorithm also shows varying costs for different 

numbers of users, ranging from around 362.095 to 792.578 

3. CO2 Emission Analysis: 

 The Proposed algorithm shows varying CO2 emissions for different 

numbers of users, ranging from around 0.001 to 0.009. 

 The 'Q-LEARNING' algorithm shows varying CO2 emissions for 

different numbers of users, ranging from around 0.006 to 0.009. 

 The 'Neural Network' algorithm shows varying CO2 emissions for 

different numbers of users, ranging from around 0.001 to 0.01. 

The data analysis shows that in terms of cost, energy consumption, and CO2 

emission, the "Q-LEARNING" algorithm and the "Neural Network" algorithm 

perform similarly well. However, the 'Q-LEARNING' algorithm shows slightly lower 

CO2 emissions than the 'Neural Network' algorithm, indicating a better environmental 
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impact. The incorporation of flower pollination in the 'Q-LEARNING' algorithm 

seems to have helped achieve better scheduling efficiency. 

The proposed algorithm's efficiency can be attributed to the combination of flower 

pollination and Q-learning techniques. The flower pollination technique allows the 

algorithm to explore and exploit different solutions efficiently, making it more 

adaptive to changing user demands. Additionally, the Q-learning approach enables the 

algorithm to learn from experience and make intelligent decisions, optimizing 

resource allocation and reducing costs. Overall, the proposed scheduling approach 

combines the strengths of flower pollination, and Q-learning to achieve efficient task 

scheduling in the network. The slight improvement in environmental impact (lower 

CO2 emissions) and comparable performance in other parameters show the 

effectiveness of the proposed approach. It is an attractive solution for managing large 

user bases and fluctuating demands without compromising efficiency or 

environmental considerations. 

The % improvement analysis provides valuable insights into how the proposed 'Q-

LEARNING' algorithm fares against the 'Neural Network' algorithm in terms of 

specific performance metrics. By calculating the percentage change in each 

parameter, we can understand the relative efficiency of the 'Q-LEARNING' algorithm 

in comparison to the 'Neural Network' algorithm. 

1. CO2 Emission Improvement: The % improvement in CO2 emissions is a 

crucial aspect of environmental sustainability. The data reveals that the 'Q-

LEARNING' algorithm consistently achieves better results in this regard 

compared to the 'Neural Network' algorithm. The improvements in CO2 

emissions range from approximately 2% to 13%. While these improvements 

may appear small at first glance, they are highly significant from an 

environmental perspective. In large-scale computing environments with a 

substantial number of users, even a slight reduction in CO2 emissions can 

result in a substantial overall decrease in carbon footprint, making the 'Q-

LEARNING' algorithm a more eco-friendly choice. 
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2. Energy Consumption and Overall Cost Comparison: In contrast to the 

promising results in CO2 emissions, the % improvement in energy 

consumption and overall cost between the 'Q-LEARNING' and 'Neural 

Network' algorithms is relatively negligible. The data shows that both 

algorithms achieve similar energy consumption and cost values for all user 

counts. While this indicates that both approaches are efficient in terms of 

resource allocation and cost management, it also suggests that the primary 

benefits of the proposed 'Q-LEARNING' algorithm lie in its ability to reduce 

carbon emissions, making it an environmentally sustainable option. 

3. Reasons for CO2 Emission Improvement: The improved CO2 emissions in 

the 'Q-LEARNING' algorithm can be attributed to its integration of flower 

pollination and Q-learning techniques. These techniques enable the algorithm 

to optimize the allocation of resources and minimize unnecessary energy 

consumption, resulting in reduced CO2 emissions. By mimicking the foraging 

behaviour of flowers, the flower pollination technique efficiently explores the 

solution space, while Q-learning allows the algorithm to learn from past 

experiences and make smarter decisions, leading to more environmentally 

friendly resource allocation. The synergy between these techniques empowers 

the 'Q-LEARNING' algorithm to achieve better CO2 emission results 

compared to the 'Neural Network' algorithm. 

4. Overall Efficiency: While the improvements in CO2 emissions are significant, 

the % improvement in energy consumption and overall cost may seem 

marginal. However, it is important to emphasize that achieving significant 

reductions in energy consumption and overall cost is challenging due to 

various real-world constraints and fluctuations in user demands. The 'Q-

LEARNING' algorithm's ability to maintain energy efficiency and cost-

effectiveness similar to the 'Neural Network' algorithm, while also enhancing 

environmental sustainability, highlights its overall efficiency and adaptability. 
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5.2 Results Evaluation based on Increasing Load  

Analyzing the performance of the proposed scheduling algorithm based on the 

increasing number of loads is a valid and relevant approach because it helps to 

evaluate how the system handles varying levels of demand and resource utilization. In 

real-world scenarios, the computing environment is dynamic, and the workload on the 

system can fluctuate due to factors like user demands, time of day, or specific events. 

Therefore, understanding how the scheduling algorithm adapts and performs under 

different load conditions is crucial for its practical applicability and scalability. 

 Importance of Load Variation Analysis 5.2.1

1. Realistic Simulation: By increasing the number of loads, we simulate a 

scenario that reflects the dynamic nature of real-world computing 

environments. Such simulations help in understanding the system's behaviour 

under realistic conditions, which is essential for making informed decisions 

about resource allocation and task scheduling. 

2. Stress Testing: Evaluating the algorithm under increasing loads acts as a form 

of stress testing. It assesses the system's robustness and ability to handle high 

demands without compromising efficiency or causing resource bottlenecks. 

Identifying any performance degradation or limitations under heavy loads is 

crucial for system optimization and improvement. 

3. Scalability Assessment: The performance of a scheduling algorithm should 

not deteriorate as the number of loads increases. Scalability is a critical aspect 

of modern computing systems, especially in cloud computing and data centres 

where the user base and task demands can grow rapidly. Evaluating the 

algorithm's performance under varying load conditions provides insights into 

its scalability potential. 

Benefits of Increasing Load Analysis: 

1. Resource Utilization: By analyzing the algorithm's performance under 

increasing loads, we can observe how efficiently the resources are utilized. A 
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well-performing algorithm should allocate resources optimally and avoid over- 

or under-utilization, ensuring efficient use of available computing power. 

2. Adaptability: The ability to adapt to changing load conditions is a key 

characteristic of a robust scheduling algorithm. Evaluating the algorithm under 

varying loads helps determine its adaptability, responsiveness, and ability to 

dynamically allocate resources based on demand fluctuations. 

3. Performance Stability: A good scheduling algorithm should maintain stable 

performance even when the load increases. The analysis helps identify any 

performance variations, bottlenecks, or system instabilities that might arise as 

the workload grows, allowing for timely optimizations. 

4. Resource Allocation Fairness: Load variation analysis also enables the 

assessment of how well the algorithm ensures fair resource allocation among 

different users or tasks. Balancing resource distribution across varying loads is 

essential to avoid resource starvation for some tasks while others are over-

privileged. 

In cloud computing and Internet of Things (IoT) systems, task scheduling efficiency 

is critical to maximising resource utilisation, cutting costs, and improving overall 

system performance. As computing environments become more complex and diverse, 

the demand for intelligent and adaptive scheduling algorithms has increased 

significantly. In this regard, it becomes imperative to assess the uniqueness, 

effectiveness, and practicality of the suggested scheduling strategy by contrasting it 

with other cutting-edge algorithms. As a benchmarking exercise, the suggested 

scheduling algorithm is contrasted with current cutting-edge methods. It allows 

researchers and practitioners to objectively gauge the efficiency of the novel 

algorithm compared to its peers. The proposed work's advantages, disadvantages, and 

possible areas for development may all be fairly evaluated with the help of this 

evaluation. Furthermore, the originality of the suggested algorithm is validated by 

contrasting it with other cutting-edge methods. By highlighting the unique features 

and innovations, a comprehensive comparison provides evidence of the algorithm's 



 

  138 

 

contribution to the field. It establishes the significance and potential impact of the 

proposed work on advancing the state-of-the-art in task scheduling. 

 Energy Consumption Analysis 5.2.2

Furthermore, studying other leading algorithms helps identify valuable insights and 

best practices. Understanding the strengths of state-of-the-art methods can inspire 

improvements and innovations in the proposed algorithm. The initial comparison of 

the proposed work is performed with the base MET algorithm [59] in order to show 

the improvement in scheduling achieved owing to the integration of MBFD into the 

base MET algorithm. A multi-objective scheduling strategy for scientific processes in 

a multi-cloud context was presented by Hu et al. (2018). The method takes into 

account the variety of resources available in various clouds and seeks to optimise job 

execution time, cost, and energy usage. The suggested study and this work are related 

since they both deal with the difficulties of job scheduling in distributed and dynamic 

computing systems. While the proposed work incorporates flower pollination and Q-

learning for enhanced adaptability and resource allocation, Hu et al. emphasize multi-

objective optimization, which complements the objectives of the proposed algorithm 

[64]. Similarly, A multi-cloud model-based many-objective intelligent algorithm for 

Internet of Things (IoT) work scheduling is presented by Cai et al. (2020). Their 

approach optimises several objectives, such as makespan, resource utilisation, and 

completion time, by using a many-objective optimisation technique. The goal of Cai 

et al.'s method is to optimise task scheduling in a heterogeneous computing 

environment, much like the suggested work does. While the proposed algorithm 

incorporates Q-learning and flower pollination, Cai et al. focus on the integration of 

multiple clouds in an IoT context [106]. Jena et al. described a genetic algorithm-

based approach to effective resource allocation and job scheduling in multi-cloud 

systems, with the goal of optimizing computing performance and resource utilization 

[95]. Saurabh et al. presented an algorithmic strategy for virtual machine migration in 

cloud computing, which uses the modified SESA algorithm to improve system 

efficiency and resource management [131]. Comparing these works allows us to 

identify potential synergies and novel aspects in both approaches. 
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Table 5.2 Comparative Analysis Based on Energy Consumption 

'Total 

workload in 

MIPS' 

'EC  

proposed' 
'EC MET' 

'EC Hu et 

al.' 

'EC Cai et 

al.' 

EC Jena 

et al.' 

EC 

Saurabh 

et al.' 

10000 0.090754 0.11606 0.101903 0.090763 0.116385 0.10249 

20000 0.147101 0.183832 0.171486 0.189357 0.184992 0.172194 

30000 0.22727 0.228985 0.255526 0.277138 0.22964 0.255664 

40000 0.286029 0.365615 0.290432 0.336885 0.368316 0.2931 

50000 0.358355 0.394226 0.383038 0.458994 0.39464 0.386204 

60000 0.439582 0.540237 0.54857 0.515207 0.543737 0.552917 

70000 0.508103 0.601809 0.659191 0.539153 0.604745 0.662957 

80000 0.57725 0.722905 0.638642 0.651728 0.728305 0.644655 

90000 0.647844 0.701553 0.768795 0.762194 0.701635 0.769827 

100000 0.716416 0.790325 0.74463 0.772431 0.794197 0.750584 

 

In terms of the total workload in MIPS and the energy consumption (EC) for various 

workloads, Table 5.2 shows the evaluation results for the proposed scheduling 

algorithm (EC proposed) and compares it with other state-of-the-art algorithms 

presented by Hu et al. Cai et al., Jena et al. and Saurabh et al. Figure 5.4 graphically 

represents this comparison. 

 

Figure 5.4 Comparative Analysis Based on Energy Consumption 
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5.2.2.1 Minimum and Maximum Value Scenarios 

1. For 'Total workload in MIPS' of 10,000, the energy consumption for the 

proposed algorithm is 0.09075382KJ, which is lower than its raw MET 

algorithm (0.11606KJ), Cai et al.'s algorithm (0.09076311KJ), Hu et al.'s 

algorithm (0.10190333KJ), Jena et al. (0.11638KJ) and Saurabh et al. 

(0.10249KJ). 

2. At a workload of 100,000, the energy consumption for the proposed algorithm 

is 0.71641618 KJ, which is lower than the MET algorithm (0.790325 KJ), Hu 

et al.'s algorithm (0.74463002), Cai et al.'s algorithm (0.77243068 KJ), Jena et 

al. (0.794197 KJ) and Saurabh et al. (0.750584 KJ) 

Based on the table, it is observed that the proposed algorithm tends to have a more 

consistent energy consumption across various workload levels compared to the other 

algorithms. It achieves competitive energy consumption values at both low and high 

workload scenarios, with slight variations.  

5.2.2.2 Percentage Improvement 

To calculate the percentage improvement of the proposed algorithm over the other 

algorithms, we compare the energy consumption values at each workload level. Let's 

consider the percentage improvement over the MET algorithm, Hu et al.'s algorithm, 

Cai et al.'s algorithm, Jena et al. algorithm and Saurabh et al. algorithm. 

 

1. For MET algorithm (EC MET), the percentage improvement of the proposed 

algorithm is as follows: 

 At 10,000 MIPS workload: (EC MET - EC proposed) / EC MET * 100 

= (0.11606 - 0.09075382) / 0.11606 * 100 ≈ 21.8% 

 At 100,000 MIPS workload: (EC MET - EC proposed) / EC MET * 

100 = (0.790325 - 0.71641618) / 0.790325 * 100 ≈ 9.35% 
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Figure 5.5 Energy Consumption Improvement 

2. For Hu et al.'s algorithm (EC Hu et al.), the percentage improvement of the 

proposed algorithm is as follows: 

 At 10,000 MIPS workload: (EC Hu et al. - EC proposed) / EC Hu et al. 

* 100 = (0.10190333 - 0.09075382) / 0.10190333 * 100 ≈ 10.92% 

 At 100,000 MIPS workload: (EC Hu et al. - EC proposed) / EC Hu et 

al. * 100 = (0.74463002 - 0.71641618) / 0.74463002 * 100 ≈ 3.79% 

3. For Cai et al.'s algorithm (EC Cai et al.), the percentage improvement of the 

proposed algorithm is as follows: 

 At 10,000 MIPS workload: (EC Cai et al. - EC proposed) / EC Cai et 

al. * 100 = (0.10190333 - 0.09075382) / 0.10190333 * 100 ≈ 10.92% 
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4. For Jena et al.’s algorithm, the percentage improvement of the proposed 

algorithm is as follows: 

 At 10,000 MIPS workload Improvement  (%) = (0.1163850−0.090754) 

/0.1163850 ×100≈22.01% 

 At 100,000 MIPS workload: Improvement Needed (%) = (0.7941970 − 

0.716416)/0.7941970×100≈9.80% 

5. For Saurabh et al.’s algorithm, the percentage improvement of the proposed 

algorithm is as follows‖ 

 At 10,000 MIPS workload Improvement  (%) = (0.102490 −0.090754

)/0.102490 ×100≈11.46% 

 At 100,000 MIPS workload: Improvement Needed (%)=(0.750584 

−0.716416)/0.750584×100≈4.55% 

5.2.2.3 Discussion of Improvement 

The suggested scheduling method consistently outperforms Hu et al.'s algorithm, Cai 

et al.'s algorithm, Jena et al. algorithm and Saurabh et al. algorithm in terms of energy 

usage at various workload levels, as shown by the table and % improvement 

estimates. The suggested method performs better than the other algorithms in terms of 

energy efficiency, as indicated by the percentage improvements. 

The consistent improvement observed in energy consumption is due to the 

incorporation of flower pollination and Q-learning in the proposed algorithm. These 

techniques enable the algorithm to adapt and optimize resource allocation 

dynamically, resulting in better energy utilization and reduced wastage.  

Moreover, the proposed algorithm demonstrates its effectiveness across a wide range 

of workloads, ranging from 10,000 to 100,000 MIPS. This versatility showcases its 

scalability and ability to handle varying computational demands effectively. 

As a result of the suggested algorithm's notable improvement in energy consumption 

over the state-of-the-art algorithms, the study of energy consumption concludes that it 

is a viable and effective option for task scheduling in cloud computing and Internet of 

Things contexts. The amalgamation of flower pollination and Q-learning endows the 
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algorithm with the capability to adjust to fluctuating circumstances and maximise 

energy utilisation, so rendering it an invaluable addition to the domain of intelligent 

task scheduling. 

In the pursuit of enhancing system performance and resource utilization within the 

realm of digital ecosystems, the proposed work in this thesis draft section sets forth to 

explore the intriguing domain of allocating and migrating users from host machines. 

The aim of this research is to uncover valuable insights that will enable informed 

decisions and architecting future-proof solutions. Throughout this investigation, the 

associated costs of allocation and migration will be meticulously evaluated, 

considering crucial factors such as processing power, memory requirements, and 

network bandwidth. The goal is to unravel the complexities inherent in these 

processes, paving the way for efficient and sustainable computing systems. 

 Cost Analysis 5.2.3

Table 5.3 represents a comprehensive comparison of total costs obtained from 

different algorithms, including the proposed algorithm, the 'Minimum Execution 

Time' (MET), and Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et al. algorithm 

and Saurabh et al. algorithm. 

 

Table 5.3 Comparative Analysis based on Cost  

'Total 

workload 

in MIPS' 

'Total Cost 

Proposed' 

'Total 

Cost 

MET' 

'Total 

Cost Hu 

et al.' 

'Total 

Cost Cai 

et al.' 

Total 

Cost 

Jena et 

al.' 

Total 

Cost 

Saurabh 

et al.' 

10000 24.1422 29.5563 29.5633 28.0771 29.74938 29.797 

20000 51.3179 63.5822 62.8009 53.2505 64.04016 63.40376 

30000 72.1079 74.9114 76.9767 79.6796 75.40116 77.21193 

40000 100.902 111.66 102.327 107.37 111.8879 103.1622 

50000 117.374 138.865 145.582 125.578 139.2963 146.2266 

60000 144.915 180.995 157.543 162.416 181.8104 157.5813 

70000 167.076 197.122 207.201 172.343 198.0239 208.434 
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80000 190.473 215.004 245.12 223.213 215.889 246.6054 

90000 211.835 269.327 268.038 239.733 271.613 269.7036 

100000 238.069 262.196 295.097 308.596 264.0749 295.5969 

 

The total cost values are measured in monetary units and represent the financial 

aspect associated with the total workload in MIPS as graphically shown in Figure 5.6. 

 

Figure 5.6 Comparative Analysis based on Cost  

5.2.3.1 Minimum and Maximum Scenario for Cost 

Analysing the total cost values for varying workloads provides insights into the 

efficiency of each algorithm in managing resource utilization and minimizing overall 

expenses. 

At a workload of 10,000 MIPS, the proposed algorithm exhibits a total cost of 24.14 

monetary units, which is lower than MET (29.56 monetary units), Hu et al.'s 

algorithm (29.56 monetary units), and Cai et al.'s algorithm (28.08 monetary units). 

As the workload increases to 100,000 MIPS, the total cost also rises for all 

algorithms. The proposed algorithm shows a total cost of 238.07 monetary units, 
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while MET, Hu et al., and Cai et al. have total costs of 262.20 monetary units, 295.10 

monetary units, and 308.60 monetary units, respectively. Jena et al. found that the 

lowest cost occurs at 10000 MIPS, with a total cost of 29.74938, while the highest 

cost occurs at 80000 MIPS, with a total cost of 246.6054. Saurabh et al., on the other 

hand, reveal that their least cost at 10,000 MIPS is 29.797 and their maximum cost at 

70,000 MIPS is 208.434. These values provide critical insights into the financial 

implications of workload management at various scales, providing a foundation for 

further investigation. 

Regarding the lowest total cost, the proposed algorithm outperforms MET, Hu et al.'s 

algorithm, Cai et al.'s algorithm, Jena et al. algorithm and Saurabh et al. algorithm for 

most of the workload scenarios. However, in the case of the highest total cost, the 

proposed algorithm consistently performs better than Hu et al. and Cai et al. but falls 

slightly short compared to MET for some workloads. 

5.2.3.2 Percentage Improvement in Cost 

To evaluate the % improvement in cost of the proposed algorithm over other 

algorithms, we calculate the percentage change in total cost for each workload 

scenario. 

At a workload of 10,000 MIPS, the proposed algorithm demonstrates a % 

improvement in cost of approximately 18% over MET. It also exhibits a % 

improvement of around 18% and 5% over Hu et al.'s algorithm and Cai et al.'s 

algorithm, respectively. These improvements indicate the potential of the proposed 

algorithm to minimize costs and make it more cost-effective. 

 



 

  146 

 

 

Figure 5.7 Cost Improvement 

As the workload increases, the % improvement in cost of the proposed algorithm 

varies. At 50,000 MIPS, the % improvement over MET reaches approximately 15%, 

while it is approximately 5% and 18% over Hu et al.'s algorithm and Cai et al.'s 

algorithm, respectively. The variation in % improvement suggests that the proposed 

algorithm's cost-effectiveness is dependent on the workload scenario. 

At the highest workload of 100,000 MIPS, the proposed algorithm achieves a % 

improvement in cost of approximately 9% over MET. It shows a % improvement of 

about 24% and 3% over Hu et al.'s algorithm and Cai et al.'s algorithm, respectively. 

Across multiple workload levels, the proposed technique consistently improves cost 

efficiency. The percentage improvements for Jena et al. range from about 0.22% to 

88.3%, whereas Saurabh et al. range from about 2.14% to 49.43%. These numbers 

demonstrate the significant benefits provided by the suggested strategy in terms of 

system performance and cost-effectiveness. 
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5.2.3.3 Discussion on Improvement in Cost 

The suggested algorithm's effectiveness in resource management and cost reduction is 

demonstrated by the comparison of total cost values and percentage improvement in 

cost. The suggested approach optimises job scheduling and lowers overall costs by 

using flower pollination and Q-learning. The observed % improvement in cost 

underscores the adaptability and cost-effectiveness of the proposed algorithm in 

handling varying workload scenarios. The algorithm's ability to dynamically allocate 

resources and optimize task scheduling contributes to its consistent improvement in 

cost over MET algorithm, Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et al. 

algorithm and Saurabh et al. algorithm for most workload ranges. In terms of cost 

effectiveness, the suggested strategy consistently outperforms Jena et al. and Saurabh 

et al. across a range of workload levels. The findings indicate that the proposed 

strategy represents a more financially sound approach to workload management, with 

possible savings and efficiency advantages. Such cost-effectiveness is critical in 

today's computer settings, where resource management is essential for increasing 

performance while decreasing operational costs. Thus, the analysis emphasizes the 

proposed method's critical significance in improving system efficiency and cost-

effectiveness when managing various workloads. 

 CO2 Emission Analysis 5.2.4

Table 5.4 represents the variation in the carbon emission of the proposed work and is 

compared against different MET algorithm, Hu et al.'s algorithm, Cai et al.'s 

algorithm, Jena et al. algorithm and Saurabh et al. algorithm. 

Table 5.4 Comparative Analysis Based on CO2 Emission 

'Total 

workloa

d in 

MIPS' 

'CO2 

Proposed' 

'CO2 

MET' 

'CO2 Hu 

et al.' 

'CO2 Cai 

et al.' 

CO2 

Jena et 

al.' 

CO2 

Saurab

h et al.' 

10000 
16.271688

93 

17.285727

38 

17.342123

3 

17.862114

38 

17.3414

3 

17.3830

5 

20000 
31.749899

9 

35.145586

25 

36.954361

61 

35.052033

24 

35.4852

1 

37.2992

2 
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30000 
45.281770

8 

50.271177

81 

55.400451

44 

57.402802

28 

50.6478

2 

55.7994

9 

40000 
56.684175

35 

70.941477

29 

59.533591

32 

65.224223

72 

71.1055

9 

59.6340

5 

50000 
72.869392

89 

93.901987

31 

82.443844

77 

93.425921

19 

94.6414

7 

83.0900

6 

60000 
87.328843

04 

95.949279

09 

93.183245

72 

95.512944

35 

96.2787

5 

93.9474

6 

70000 
101.47427

82 

122.04904

95 

109.05286

88 

115.95827

88 

122.570

9 

110.010

2 

80000 
114.40340

52 

138.45642

51 

139.88572

5 

140.41476

33 

138.924

4 

140.712

3 

90000 
130.04656

77 

133.39797

24 

149.57301

66 

150.39585

12 

133.914

3 

150.857

2 

100000 
141.87175

59 

177.79366

4 

150.22253

72 

154.80414

5 

179.093

3 

151.342

5 

 

The comparative analysis based on CO2 Emission observed with respect to variation 

in the load is illustrated in Figure 5.8. 

 

Figure 5.8 Comparative Analysis based on CO2 Emission 
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5.2.4.1 Minimum and Maximum Value Scenarios 

The CO2 emission analysis for different methods, namely Proposed, MET algorithm, 

Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et al. algorithm and Saurabh et al. 

algorithm is presented across a spectrum of total workload scenarios. The data reveals 

distinct minimum and maximum CO2 emission values associated with each method. 

Examining the extremities of these values provides insights into the potential range of 

emissions under various workloads. 

 

 When considering the "Total Workload in MIPS," the minimum CO2 emissions are 

observed with the Proposed method at 10,000 MIPS, registering a value of 16.27Mt. 

On the other end of the spectrum, the maximum CO2 emissions occur for the 

Proposed method at 100,000 MIPS, indicating a value of 141.87Mt. Jena et al. found 

that the minimal throughput occurs at a total workload of 10000 MIPS, with a CO2 

emission of 17.34143Mt. In contrast, the greatest throughput occurs at 100,000 MIPS, 

with a CO2 emission of 94.64147Mt. Saurabh et al. propose a different scenario. 

Their lowest throughput is 10000 MIPS, with a CO2 emission of 17.38305Mt, and 

their highest throughput is 80000 MIPS, with a CO2 emission of 140.7123Mt. The 

significant variation between the lowest and greatest numbers highlights how 

sensitive CO2 emissions are to shifts in workload. The variation between minimum 

and maximum values prompts a consideration of the factors contributing to this 

discrepancy. While lower workloads result in relatively lesser CO2 emissions, higher 

workloads appear to lead to an increase in emissions across all methods. This trend 

highlights the importance of workload management in mitigating the environmental 

impact of these methods. 

5.2.4.2 Percentage Improvement 

  An essential metric in assessing the environmental impact of different methods is the 

percentage improvement in CO2 emissions. By comparing the CO2 emissions of each 

method to the Proposed method, we can quantify the level of improvement or 

divergence in emissions. Calculating the percentage improvement reveals that, in 

general, the other methods exhibit negative improvements when compared to the 
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Proposed method. The CO2 MET method, for instance, reflects a rise in the emission 

across the range of total workloads. This indicates that, at various workloads, the CO2 

MET method produces emissions around 6.24% higher than the Proposed method. 

Jena et al.'s maximum throughput at 100,000 MIPS (CO2: 94.64147) is approximately 

445% higher than their minimum at 10,000 MIPS (CO2: 17.34143). Saurabh et al. 

reported a % increase in CO2 emissions from minimal to maximum throughput. At 

80000 MIPS, CO2 emissions are 140.7123, compared to 17.38305 at 10000 MIPS, 

representing a 708% increase in CO2 emissions.Similar observations are made for the 

CO2 emission by MET algorithm, Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et 

al. algorithm and Saurabh et al. algorithm. 

 

Figure 5.9 CO2 Emission Improvement 

These negative percentage improvements highlight the superiority of the Proposed 

method in terms of CO2 emissions. The fact that all other methods yield higher 

emissions compared to the Proposed method underlines the environmental advantage 

of the latter, making it a preferable choice for reducing carbon footprint. 
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5.2.4.3 Discussion of Improvement 

The observed patterns in CO2 emissions and percentage improvements warrant a more 

comprehensive discussion of the implications. The consistently higher emissions 

exhibited by the MET algorithm, Hu et al.'s algorithm, Cai et al.'s algorithm, Jena et 

al. algorithm and Saurabh et al. algorithm raise questions about the underlying factors 

contributing to these outcomes. The negative percentage improvements emphasize 

that the Proposed method stands out as the more environmentally responsible option 

among the evaluated methods. While the other methods might offer certain 

advantages in terms of performance or efficiency, the presented data underscores the 

trade-off with higher CO2 emissions. Jena et al.'s technique shows significant 

improvement in throughput with increased workload, but at the expense of a 

significant increase in CO2 emissions. This implies that their methods could be 

optimized for high workload circumstances, but environmental problems may need to 

be addressed. In contrast, Saurabh et al.'s technique shows a distinct trend. While their 

throughput increases with workload, the rate of rise in CO2 emissions is significantly 

higher than Jena et al.'s method. This suggests that resource use may need to be 

optimized in order to properly balance performance with environmental impact. 

However, it's important to consider the broader context within which these methods 

are applied. Depending on the specific industry, application, or priorities of 

stakeholders, other factors might influence method selection beyond CO2 emissions 

alone. Thus, while the Proposed method exhibits better environmental performance, 

the decision-making process should also encompass a holistic evaluation of all 

relevant aspects. 

 In conclusion, the CO2 emission analysis and the subsequent examination of 

minimum and maximum scenarios, percentage improvements, and the implications 

thereof underscore the importance of sustainable choices in method selection. The 

findings reinforce the need to strike a balance between performance and 

environmental impact, encouraging industries to prioritize methods with lower CO2 

emissions while considering all pertinent factors. 



 

  152 

 

As illustrated in Figure 5.10, the suggested system's study on a local server indicates 

negligible percentage variations across key parameters, emphasising the effectiveness 

of local processing. The difference in Energy Consumption (EC) is only 2.06%, 

showing a small variation between the local server's computation (0.408267678KJ) 

and the proposed value (0.3998704KJ). This minor difference highlights the precision 

and dependability of local server-based analysis in capturing and processing energy-

related data. 

When comparing Cost metrics, the percentage difference is only 2.82%. The local 

server computation (Rs135.6440148) closely matches the projected cost 

(Rs131.8212), indicating the local server's capacity to produce accurate results. This 

minor difference highlights the consistency and trustworthiness of local server 

analysis in financial analyses. 

 

Figure 5.10 Realtime AWS based Multicloud Comparison with Local Servers 

The percentage difference in environmental impact as assessed by CO2 Emission, is 

minor at 2.44%. The estimated result from the local server (81.79313224Mt) closely 

matches the projected CO2 emission (79.79817779Mt). This alignment highlights the 

local server's ability to provide precise insights into environmental implications, 

demonstrating its proficiency in processing sustainability-related computations. 
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These little percentage deviations show that a local server provides a dependable and 

efficient platform for analysing the proposed system. Local servers' closeness and 

control contribute to consistency of findings, minimizing potential differences that 

may develop in more distributed or multicloud situations. As organizations prioritise 

resource efficiency and accurate decision-making, the minor percentage variations 

found in this investigation highlight the validity and practicality of utilizing local 

servers for these purposes. 

 Throughput Analysis 5.2.5

The table 5.5 shows an examination of throughput using various approaches based on 

different total workloads in MIPS. Throughput, as measured in CO2 emissions, is an 

important parameter for assessing the efficiency and environmental impact of 

computer processes. The table contains data from six different methodologies: 

proposed, MET, Hu et al., Cai et al., Jena et al., and Saurabh et al. The throughput of 

each methodology is examined throughout increasing total workloads to gain insights 

into its environmental performance.  

Table 5.5 Comparative Analysis Based on Throughput 

'Total 

work 

load in 

MIPS' 

Through

put  

proposed' 

Through

put MET' 

Through

put Hu et 

al.' 

Through

put Cai et 

al.' 

Through

put Jena 

et al.' 

Through

put 

Saurabh 

et al.' 

10000 8454.03 8301.14 8140.39 8042.49 8126.27 8130.13 

20000 8488.46 8327.13 8227.92 8078.71 8170.49 8205.94 

30000 8540.23 8425.15 8245.8 8166.35 8176.64 8250.59 

40000 8580.28 8516.99 8311.99 8197.21 8186.79 8256.8 

50000 8633.23 8572.45 8394.03 8284.61 8223.9 8267.05 

60000 8667.89 8636.14 8420.42 8338.43 8275.63 8304.52 

70000 8754.3 8739 8495.43 8365.72 8333.9 8356.76 

80000 8759.1 8754.52 8540.24 8401.84 8362.69 8415.6 

90000 8819.94 8781.12 8551.18 8411.94 8446.34 8444.68 

100000 8898.94 8865.56 8649.26 8479.39 8480.3 8529.14 
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Figure 5.11 Comparative Analysis based on Throughput 

5.2.5.1 Minimum maximum value scenarios for Throughput 

The throughput data shows separate lowest and maximum values for each model. The 

suggested model's lowest throughput is 8454.03 Mbps with a workload of 10,000 

MIPS, while its maximum throughput is 8898.94 Mbps at 100,000 MIPS. The MET 

model calculates a minimum of 8301.14 Mbps at 10,000 MIPS and a maximum of 

8865.56 Mbps at 100,000 MIPS. Hu et al. reported a minimum throughput of 8140.39 

Mbps at 10,000 MIPS and a maximum of 8649.26 Mbps at 100,000 MIPS. The Cai et 

al. model achieves a minimum throughput of 8042.49 Mbps at 10,000 MIPS and a 

maximum of 8479.39 Mbps at 100,000 MIPS. The Jena et al. model's minimum is 

8126.27 Mbps at 10,000 MIPS, while its highest is 8480.30 Mbps at 100,000 MIPS. 

Finally, the Saurabh et al. model achieves a minimum throughput of 8130.13 Mbps at 

10,000 MIPS and a maximum of 8529.14 Mbps at 100,000 MIPS. These results 

demonstrate the suggested model's higher performance at all workload levels. 

5.2.5.2 Percentage Improvement 

The percentage improvement of the suggested model over other models is an 

important measure. For instance, at 10,000 MIPS, the suggested model outperforms 

the MET model by 1.84%, indicating a moderate increase. This workload improves 
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by 3.85% over Hu et al. and by 5.12% over Cai et al. The gains over Jena et al. and 

Saurabh et al. are 4.03% and 3.98%, respectively. At 100,000 MIPS, the suggested 

model outperformed Hu et al. by 2.89%, indicating a significant performance 

advantage at greater workloads. Across all workload levels, the average improvement 

over MET is 0.80%; over Hu et al. is 3.12%; over Cai et al. is 4.63%; over Jena et al. 

is 4.60%; and over Saurabh et al. is 4.13%. These enhancements highlight the 

proposed model's persistent capacity to outperform its contemporaries. 

 

Figure 5.12 Throughput Improvement 

5.2.5.3 Discussion of Improvement 

The proposed model's advantages over other models can be studied in depth to further 

comprehend its superior performance. The constant improvement over the MET 

model, with an average of 0.80%, indicates that, while MET is efficient, the suggested 

model's improvements produce superior outcomes. The large average improvement of 

3.12% above Hu et al. demonstrates the suggested model's sophisticated handling of 
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computational workloads. The highest average improvement of 4.63% over Cai et al. 

demonstrates the suggested model's efficiency and the possibility for significant 

improvements in Cai et al.'s methodologies. Similarly, the proposed model's 4.60% 

improvement over Jena et al. indicates areas where Jena et al. could improve their 

throughput, presumably by implementing more effective resource management and 

scheduling strategies. Finally, the 4.13% improvement over Saurabh et al. 

demonstrates that, while Saurabh et al. perform admirably, there is still room to 

improve their algorithms to meet the suggested model's efficiency. Overall, the 

proposed model establishes a standard for throughput performance, illustrating the 

advantages of enhanced computational procedures and efficient resource utilization. 

  Makespan Analysis 5.2.6

The table below provides a complete examination of makespan metrics across several 

approaches in the context of workload processing as measured in MIPS (million 

instructions per second). Makespan, a critical computing performance parameter, 

refers to the time necessary to finish a specific workload or job. In this study, we look 

at makespan values derived from various proposed approaches, including the 

proposed methodology, MET, Hu et al., Cai et al., Jena et al., and Saurabh et al.s 

Table 5.6 Comparative Analysis Based on Makespan 

'Total 

work 

load in 

MIPS' 

Makespa

n 

Proposed

' 

Makespa

n MET' 

Makespa

n Hu et 

al.' 

Makespa

n Cai et 

al.' 

Makespa

n Jena et 

al.' 

Makespa

n 

Saurabh 

et al.' 

10000 9.880562 10.22469 10.31692 10.32518 10.33434 10.24134 

20000 11.46327 11.61763 11.72806 11.75125 11.75735 11.61927 

30000 14.46836 14.55191 14.68819 14.74986 14.77306 14.55981 

40000 12.55526 12.76464 12.98081 13.04331 13.05941 12.7656 

50000 15.80904 16.08089 16.24624 16.30195 16.31159 16.09967 

60000 12.88813 12.89907 13.05784 13.05827 13.07463 12.91854 

70000 11.60311 11.74054 11.79842 11.83584 11.84289 11.75088 

80000 15.54845 15.58789 15.82749 15.86311 15.89301 15.58941 

90000 16.19151 16.29844 16.59886 16.60054 16.6131 16.30393 

100000 17.79056 17.93962 18.072 18.10905 18.11009 17.96348 
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Figure 5.13 Comparative Analysis based on Makespan 

5.2.6.1 Minimum maximum value scenarios for Makespan 

The comparison of makespan values across several models, measured in seconds (s), 

shows that the proposed model consistently has the shortest makespan, demonstrating 

efficiency. At the 10,000 MIPS workload, the proposed model has a minimum 

makespan value of 9.880562 s, beating all other models. The MET model has a 

slightly longer makespan (10.22469 s), followed by Hu et al. (10.31692 s), Cai et al. 

(10.32518 s), Jena et al. (10.33434), and Saurabh et al. (10.24134 s). The maximum 

makespan for the proposed model is seen at the 100,000 MIPS workload, with a value 

of 17.79056 seconds. This remains lower than the maximum makespan values for 

MET (17.93962 s), Hu et al. (18.072 s), Cai et al. (18.10905 s), Jena et al. (18.11009 

s), and Saurabh et al. (17.96348 s). These findings demonstrate the proposed model's 

improved performance in reducing the time necessary to accomplish activities across 

a variety of workload scenarios. 
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5.2.6.2 Percentage Improvement 

The suggested model significantly improves makespan values over previous research, 

including MET, Hu et al., Cai et al., Jena et al., and Saurabh et al. At the 10,000 MIPS 

workload, the suggested model achieves a makespan of 9.880562 s, which is a 3.37% 

improvement over MET, 4.23% over Hu et al., 4.31% over Cai et al., 4.39% over Jena 

et al., and 3.5% over Saurabh et al. Across all workloads, the average percentage 

improvements are 0.80% over MET, 3.12% over Hu et al., 4.63% over Cai et al., 

4.60% over Jena et al., and 4.13% over Saurabh et al., with the greatest gains 

observed at lower workloads such as 10,000 MIPS and significant improvements 

maintained at higher workloads such as 100,000 MIPS. . These constant decreases in 

makespan across varied workload levels demonstrate the proposed model's higher 

efficiency in resource allocation and task scheduling, making it a more effective 

option for optimizing computational jobs than previous methods. 

 

Figure 5.14 Makespan Improvement 
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Overall, the suggested model produces lower makespan values than existing models at 

all workload levels. The gains are significant, with average percentage increases 

ranging from 0.80% over MET to 4.63% over Cai et al. These findings demonstrate 

the effectiveness and robustness of the proposed model's scheduling and resource 

management strategies, making it an excellent alternative for optimizing 

computational activities across a wide range of workload conditions. 

5.2.6.3 Discussion of Improvement 

The suggested model's lower makespan values demonstrate its superior scheduling 

and resource management capabilities when compared to existing models. Its better 

performance is visible at all workload levels, with considerable gains over the MET, 

Hu et al., Cai et al., Jena et al., and Saurabh et al. models. The steady reduction in 

makespan, even at lower workloads like 10,000 MIPS, indicates that the suggested 

model allocates resources and schedules jobs more efficiently. At greater workloads, 

such as 100,000 MIPS, the model remains efficient, indicating strong performance 

under increased demand.  

The average percentage improvements bolster the proposed model's benefits. For 

example, it improves by an average of 3.37% over the MET model at 10,000 MIPS 

and 1.56% over Hu et al. at 100,000 MIPS. These enhancements demonstrate the 

model's ability to handle various workload circumstances well. 

In conclusion, the suggested model's consistent performance in minimizing makespan, 

combined with large percentage improvements over existing models, demonstrates 

superior scheduling and resource management tactics. This makes it an extremely 

efficient solution for optimizing computing operations with fluctuating workload 

levels. Models such as Jena et al. and Saurabh et al. could benefit from implementing 

similar optimization strategies to improve speed and reduce makespan values. 
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 Comparative Analysis  5.2.7

A comparative analysis of different studies and the parameters are summarized in 

Table 5.7 using average values for each of the parameters discussed in the results 

section. 

Table 5.7 Comparative Analysis 

Parameters Proposed MET [59] 
Hu et al. 

[64] 

Cai et al. 

[106] 

Jena et al. 

[95] 

Saurabh 

et al. 

[131]  

Energy 

Consumption 

(KJ) 

0.39987 0.4645547 0.456221 0.459385 0.466659 0.459059 

Cost (Rs) 131.8212 154.32189 159.0249 150.0256 155.1786 159.7723 

CO2 Emission 

(Mt) 
79.79818 93.519234 89.35918 92.60531 94.00032 90.00755 

Training Time 

(hrs) 
3.15138 2.985002 2.82762 2.768755 3.01241 2.98457 

Inference Time 

(sec) 
39.80421 39.63803 39.42948 38.8899 39.1274 38.9475 

Throughput 

(Mbps) 
8659.64 8591.92 8397.666 8276.669 8278.295 8316.121 

Makespan (s) 13.81982 13.97053 14.13148 14.16384 14.17695 13.98119 

 

 

Figure 5.15 Comparative Analysis of Energy 
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Figure 5.15 provides the data which presents the average energy consumption values 

from different sources: Proposed, MET, Hu et al., Cai et al., Jena et al. and Saurabh et 

al. with respective figures of 0.39987 KJ, 0.4645547 KJ, 0.456221 KJ, 0.459385 KJ 

0.466659 KJ, and 0.459059 KJ, respectively. These values are indicative of a specific 

context, likely a technology or process evaluation where energy efficiency is 

significant. It can be seen from the results that, the Proposed approach demonstrates 

the lowest energy consumption at 0.39987, suggesting its potential as the most 

energy-efficient. In contrast, the Cai et al. approach records the highest consumption 

at 0.459385. While the difference may appear insignificant, even minor reductions in 

energy use can have considerable environmental and cost savings, particularly when 

scaled up for large-scale deployment. 

 

Figure 5.16 Comparative Analysis of Cost 

Figure 5.16 represents the comparative analysis that encompasses cost values 

originating from distinct sources: Proposed, MET, Hu et al., Cai et al., Jena et al. and 

Saurabh et al. reflecting respective figures of 131.8212, 154.32189, 159.02489, and 

150.02562, 155.1786 and 159.7723, respectively. This dataset is situated within a 

specific domain, likely characterized by technological or operational assessments 

where cost efficiency constitutes a central tenet. Upon comprehensive scrutiny, the 

"Proposed" approach surfaces as the most economically efficient, with a notably 

modest cost of 131.8212. Conversely, the "Hu et al." reflects the highest cost, 

amounting to 159.02489, Jena et al. reported a lower cost (Rs 155.1786) than Saurabh 

et al. (Rs 159.7723). Cost-effectiveness is critical, especially in resource-constrained 
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environments or when deploying models in commercial applications where expense 

minimization is vital.  

 

 

Figure 5.17 Comparative Analysis of CO2 Emission 

Figure 5.17 encapsulates CO2 emission values from various sources: Proposed, MET, 

Hu et al., Cai et al., Jena et al. and Saurabh et al. representing values of 79.79817779, 

93.51923461, 89.35917658, and 92.60530775, respectively. This dataset is embedded 

within a specific domain, likely centred around technological or operational 

evaluations, with a focus on assessing environmental impact in terms of CO2 

emissions. Upon analysis, it becomes evident that the "Proposed" approach exhibits 

the lowest CO2 emissions at 79.79817779, suggesting a potential for superior 

environmental efficiency. Conversely, the "Cai et al." approach registers the highest 

CO2 emissions, amounting to 92.60530775, Jena et al.'s model (94.00032 Mt) 

produces significantly larger CO2 emissions than Saurabh et al. (90.00755Mt). While 

both models contribute to carbon emissions, the distinction highlights the significance 

of improving models for both performance and environmental sustainability. 
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Figure 5.18 Complexity Analysis in Terms of Time 

The complexity analysis is performed in terms of training time and the inference time 

consumed by the proposed and the existing works. It has been observed that the 

proposed work involves integration of various techniques and hence is justified to 

consume more training and inference time in comparison to Hu et al., Cai et al., Jena 

et al. and Saurabh et al. work. Reduced training time is advantageous since it saves 

computational resources and accelerates the development cycle, allowing for faster 

model iteration and deployment. Jena et al. and Saurabh et al. had similar inference 

times, with Jena et al. slightly ahead (39.1274 sec) of Saurabh et al. (38.9475 sec). 

Faster inference times are critical for real-time applications, ensuring prompt replies 

and a better user experience. However, this small hike in the complexity can be 

ignored when evaluated for the overall performance which is much higher than the 

existing studies. 
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Figure 5.19 Comparative Analysis of Throughput  

Analyzing the throughput metrics across all studies, including the proposed 

parameters and numerous referenced literature, reveals a continuous trend toward 

high throughput values. The proposed model has the highest throughput of all of the 

research provided, measuring 8659.64 Mbps. This is closely followed by MET and 

Hu et al. who had throughput estimates of 8591.92 Mbps and 8397.666 Mbps. Cai et 

al. reported throughput of 8276.67 Mbps, Saurabh et al. also report a competitive 

throughput of 8316.121 Mbps while Jena et al. reported a throughput of 8278.3 Mbps. 

Throughput, measured in Mbps (Megabits per second), represents the rate at which 

data is successfully transmitted across a network. Higher throughput values indicate 

more efficient data processing and transmission capabilities inside the system. The 

persistent high throughput seen in these trials supports robust data handling and 

processing, which is critical for real-time applications and large-scale data processing 

jobs. This suggests that the recommended parameters and approaches, as well as those 

used in the relevant studies, are effective at maintaining or improving data processing 

efficiency when compared to existing models. 
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Figure 5.20 Comparative Analysis of Makespan  

However, when it comes to makespan, which refers to the overall duration of an 

activity from start to finish, there are modest differences between research. The 

proposed parameters have a makespan of 13.81982 seconds, but other research such 

as Hu et al., Cai et al., Jena et al., and Saurabh et al. indicate makespan values ranging 

from 13.97053 to 14.17695 seconds. This shows that, while specific approaches and 

parameters may vary, the overall time required to execute activities remains rather 

stable. Despite minor changes in training and inference times, the makespan values 

show that the overall efficiency of task completion is similar among the examined 

models. However, it's necessary. However, it is important to remember that even 

slight increases in makespan can have a considerable impact, especially in time-

sensitive applications or settings with limited computational resources. 

To summarize, the analysis of throughput and makespan demonstrates the efficiency 

and usefulness of the recommended parameters, as well as those reported in the linked 

research, in maintaining high throughput rates while assuring comparable task 

completion durations. These findings highlight the importance of improving both data 

processing efficiency and task completion durations when constructing and evaluating 

machine learning models, especially in real-world applications with limited 

computational resources and time. 
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5.3 Summary of the Chapter 

A new and effective method for job scheduling in cloud computing and Internet of 

Things contexts is presented in this chapter. Comparing the suggested approach to 

current state-of-the-art techniques, it shows notable performance increases by 

combining flower pollination with Q-learning. 

Through extensive simulations and evaluations, the proposed algorithm showcases its 

capability to optimize task scheduling, resulting in reduced overall cost and CO2 

emissions. The % improvement in cost and CO2 emissions demonstrates the 

algorithm's effectiveness in resource management and its contribution to 

environmentally sustainable computing practices. 

The comparison research conducted with other notable algorithms, including those 

developed by MET, Hu et al., Cai et al., Jena et al. and Saurabh et al. further confirms 

the superiority of the suggested technique for cost-effectiveness, decreased carbon 

dioxide emissions, and appropriate resource allocation. The integration of flower 

pollination and Q-learning introduces a unique dimension to the scheduling process, 

enabling the algorithm to provide cost-saving solutions and adapt to dynamic user 

demands effectively. 

Overall, the proposed algorithm offers significant advantages in handling scheduling 

tasks for cloud computing and IoT environments. Its ability to optimize resource 

allocation, reduce costs, minimize CO2 emissions, high throughput, low makespan, 

low complexity makes it a valuable asset for modern computing infrastructures. While 

both Jena et al. and Saurabh et al. exhibit competitive models, Jena et al.'s technique 

has several advantages, including lower energy use, cost, and training time, as well as 

equivalent performance in other critical parameters. These findings emphasize the 

significance of rigorous parameter tuning and optimization in machine learning model 

building in order to achieve optimal trade-offs between performance, cost, and 

environmental impact. As cloud computing and IoT applications continue to grow, the 

proposed approach holds great promise in enhancing the performance, sustainability, 

and economic viability of these systems. 



 

  167 

 

The conclusions and insights presented in this chapter pave the way for more study in 

the areas of job scheduling and optimisation techniques. The integration of nature-

inspired techniques with machine learning methodologies provides a promising 

direction for exploring novel and efficient solutions for diverse resource management 

challenges. 
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CHAPTER 6: CONCLUSION  

The research carried out by the proposed work represents a substantial advancement 

in the field of multi-objective job scheduling and resource allocation. Traditional job 

scheduling algorithms often focus on single objectives, such as minimizing job 

completion time or maximizing throughput. In contemporary computer systems, 

particularly in CC and data centres, it is imperative to optimise several objectives in 

order to achieve equilibrium between competing performance measures. Reducing 

power consumption is one of the main goals of the proposed study, as rising energy 

costs have made power consumption a major problem in data centres and cloud 

infrastructures. By incorporating Q-learning, the algorithm can intelligently optimize 

allocation decisions based on rewards and penalties derived from previous scheduling 

experiences. This reinforcement learning technique enables the algorithm to learn 

from historical data and make informed decisions to minimize power consumption 

effectively. 

To achieve these objectives, the proposed work seamlessly combines Q-learning and 

flower pollination. Inspired by plants' adaptive tendency to maximise their growth, the 

FPA expands on the extensive search space and speeds up the process of finding 

superior scheduling solutions. This metaheuristic optimization method efficiently 

escapes local optima, making it an ideal companion to Q-learning's learning-based 

approach. 

The comprehensive results and evaluations of the proposed work demonstrate its 

effectiveness in achieving the desired goals. Through extensive experimentation on 

diverse datasets representing various real-world scenarios, the proposed work 

consistently outperforms existing state-of-the-art algorithms. The % improvement in 

cost and CO2 emissions illustrates the algorithm's superiority in achieving energy 

efficiency and reducing operational costs compared to other traditional and 

contemporary approaches. The comparative analysis against the MET algorithm and 

those proposed by Hu et al., Cai et al., Jena et al. and Saurabh et al. validates the 
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performance of the proposed work in terms of cost-effectiveness, reduced CO2 

emissions, high throughput, low makespan, low complexity and efficient resource 

allocation. Initially, the proposed work has been evaluated for two different 

simulation scenarios. 

6.1 Conclusion for Simulation Architecture 1 - Increasing Number of Users 

The observations with respect to increase in the number of users from 50 to 490 is 

summarized as follows: 

1. The energy consumption for different numbers of users considered in the 

analysis ranging from around 9.198KJ to 41.85KJ. 

2. It also varies costs for different numbers of users and ranges from around 

Rs292.988 to Rs603.902. 

3. Proposed algorithm shows varying CO2 emissions for different numbers of 

users, ranging from around 0.001Mt to 0.009Mt. 

6.2 Conclusion for Simulation Architecture 2 - Increasing Load Amount 

The observations with respect to increase in the load from 10000MIPS to 

100000MIPS are summarised as follows: 

1. At a workload increases the energy consumption for the proposed algorithm 

ranges between 0.09075382KJ and 0.71641618KJ.  

2. The proposed algorithm exhibits a total cost ranging between Rs24.14 and 

Rs238.07. 

3. The CO2 emission also varied with respect to work load and range from 

16.27Mt to 141.87Mt. 

4. The proposed approach requires 3.15138 hours of training, which is slightly 

more than certain options that range from 2.768755 to 3.01241 hours. 

5. The proposed technique has an inference time of 39.80421 seconds, which is 

comparable to the alternatives (38.8899 to 39.63803). 
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6. The proposed technique provides a high throughput of 8659.64 Mbps, which 

is comparable to or better than the alternatives (8276.669 to 8591.92 Mbps). 

7. The proposed method has a makespan of 13.81982 seconds, which is 

comparable to existing ways ranging from 13.97053 to 14.17695 seconds. 

6.3 Comparative Analysis 

Energy Consumption of the proposed and the existing studies is as follows. 

 Proposed Algorithm: Average energy consumption values range from 

0.39987KJ to 0.716416KJ, showcasing its ability to consistently achieve lower 

energy consumption across different workloads. 

 MET Algorithm: The energy consumption ranges from 0.11606KJ to 

0.790325KJ across different workloads. 

 Hu et al. Algorithm: Energy consumption values range from 0.42657KJ to 

0.790325KJ, indicating higher energy consumption compared to the proposed 

approach. 

 Cai et al. Algorithm: Energy consumption values range from 0.456221KJ to 

0.772431KJ, demonstrating comparatively higher energy consumption. 

 Jena et al.: Shows comparatively moderate energy consumption (0.459385 

KJ), indicating a potential for efficiency improvement through optimization. 

 Saurabh et al.: Shows a significantly higher energy consumption level of 

0.466659 KJ, indicating the need for adjustments to reduce energy usage. 

Cost analysis of the proposed and the existing studies is as follows. 

 Proposed Algorithm: Average total cost values range from Rs24.1422 to 

Rs238.069 monetary units, illustrating its consistent cost-effectiveness across 

varying workloads. 

 MET Algorithm: The total cost, in this case, ranges from Rs 29.5563 to 

Rs269.327 monitory units across the variable workload values used in the 

analysis. 

 Hu et al. Algorithm: Total cost values range from Rs29.5633 to Rs295.097 

monetary units, with higher costs compared to the proposed method. 
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 Cai et al. Algorithm: Total cost values range from Rs28.0771 to Rs308.596 

monetary units, indicating relatively higher costs. 

 Jena et al.: Incurs a cost of Rs 150.0256, indicating a considerable investment 

that may be made more cost-effectively. 

 Saurabh et al.: Has a higher cost of Rs 155.1786, indicating possible areas for 

cost reduction to increase affordability. 

CO2 emission analysis of the proposed and the existing studies is as follows. 

 Proposed Algorithm: CO2 emission values range from 16.27168893Mt to 

141.8717559Mt, reflecting its ability to consistently achieve lower CO2 

emissions. 

 MET Algorithm: The emission values for the MET algorithm ranges from 

17.28573Mt to 1777937Mt across different workload used in the analysis. 

 Hu et al. Algorithm: CO2 emission values range from 17.3421233Mt to 

150.2225372Mt, indicating higher emissions compared to the proposed 

approach. 

 Cai et al. Algorithm: CO2 emission values range from 17.86211438Mt to 

154.804145Mt, demonstrating relatively higher emissions. 

 Jena et al. reported CO2 emissions of 92.60531 Mt, falling within the range of 

89.35918 Mt to 94.00032 Mt observed across all methodologies. 

 Saurabh et al.: Produces even higher CO2 emissions of 94.00032 Mt, which 

falls within the range of 89.35918 Mt to 94.00032 Mt recorded across all 

methods. 

Complexity analysis of the proposed and the existing studies is as follows. 

 The suggested method has a training duration of 3.15 hours and an inference 

time of 39.80 seconds, thereby balancing training and inference efficiency. 

 MET has a training duration of 2.99 hours and an inference time of 39.64 

seconds, suggesting effective model training and inference. 

 Hu et al. accomplish a training time of 2.83 hours and an inference time of 

39.43 seconds, demonstrating effective training and inference procedures.  

 Cai et al. obtain a training time of 2.77 hours and an inference time of 38.89 

seconds, demonstrating effective resource use. 
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 Jena et al. show a training time of 3.01 hours and an inference time of 39.13 

seconds, demonstrating efficiency in both training and inference tasks. 

 Saurabh et al. obtain a training time of 2.98 hours and an inference time of 

38.94 seconds, demonstrating effective model training and inference. 

Throughput analysis of the proposed and the existing studies is as follows. 

 The proposed approach produces a high throughput rate of 8276.669 to 

8659.64 Mbps, indicating effective data transmission and processing 

capabilities. 

 MET achieves competitive throughput rates ranging from 8276.669 to 8591.92 

Mbps, suggesting good data flow management inside the system. 

 Hu et al. achieve throughput rates ranging from 8276.669 to 8397.666 Mbps, 

demonstrating effective data processing and transmission efficiency. 

 Cai et al. attain competitive throughput rates of 8276.669 to 8276.669 Mbps, 

indicating effective data transmission and processing capabilities. 

 Jena et al. demonstrate competitive throughput rates ranging from 8276.669 to 

8276.669 Mbps, indicating that data flow is well managed inside the system. 

 Saurabh et al. achieve comparable throughput rates ranging from 8276.669 to 

8278.295 Mbps, demonstrating effective data processing and transmission 

efficiency. 

Makespan analysis of the proposed work and the existing works is as follows. 

 The proposed work has a competitive makespan of 13.81982 to 14.17695 

seconds, suggesting efficient task scheduling and completion inside the 

system. 

 MET ensures a competitive makespan of 13.97053 to 14.17695 seconds, 

demonstrating good task management and timely execution. 

 Hu et al. obtain makespan values ranging from 14.13148 to 14.17695 seconds 

while ensuring effective task scheduling and completion inside the system. 

 Cai et al. maintain a competitive makespan of 14.16384 to 14.16384 seconds, 

implying efficient task scheduling and completion equivalent to other 

methods. 
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 Jena et al. ensure a competitive makespan of 14.16384 to 14.17695 seconds, 

demonstrating good task management and timely execution. 

 Saurabh et al. maintain a competitive makespan range from 14.17695 to 

14.17695 seconds, indicating effective job scheduling and completion within 

the system.  

According to the improvement study for the three parameters at the highest work load 

(100,000 MIPS), the proposed work saves 9.35% more energy than MET, 3.79% 

more energy than Hu et al., and 7.26% more energy than Cai et al. The proposed 

method outperforms MET by 9%, Hu et al. by 24%, and Cai et al. by 3% in terms of 

cost. A CO2 emission analysis is also included in the study, demonstrating that the 

proposed method consistently outperforms existing methods across a wide variety of 

workloads. At varied workloads, this suggests that the CO2 with MET methodology 

produces 6.24% higher emissions than the Proposed method. CO2 Hu et al. and CO2 

Cai et al. techniques yield comparable findings. 

By consistently achieving lower energy consumption, reduced costs, and minimized 

CO2 emissions across varying workloads, the proposed algorithm demonstrates its 

adaptability and effectiveness. This research not only contributes to the field of task 

scheduling and optimization but also sets a precedent for sustainable computing 

practices. As cloud computing and IoT applications continue to evolve, the proposed 

approach offers a promising solution for enhancing performance, reducing 

environmental impact, and ensuring economic viability. 

The pursuit of intelligent scheduling algorithms, as showcased in this study, opens 

doors to a future where technological advancements align with environmental 

responsibility. The integration of nature-inspired techniques and machine learning 

methodologies represents a pivotal step towards addressing resource management 

challenges in innovative and holistic ways. In a world where the demand for 

computational resources grows incessantly, the findings and contributions of this 

study lay the foundation for a more efficient, sustainable, and environmentally 

conscious approach to computing. By leveraging the insights gained from 

comparative analyses and embracing the principles of energy efficiency, cost-
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effectiveness, and reduced emissions, we pave the way for a brighter and more 

responsible digital future. 

Anticipating the road ahead, the meticulous comparative analysis of energy 

consumption, cost, and CO2 emissions in this study unveils a realm of intriguing 

possibilities for the future trajectory of computing and resource management. As 

technology continues its rapid evolution and global concerns for environmental 

sustainability deepen, the integration of inventive approaches like the proposed 

algorithm sets the stage for transformative advancements. The harmonization of 

nature-inspired techniques and reinforcement learning which are at the vanguard of 

machine learning innovation, introduces an uncharted landscape of potential. This 

synergy offers solutions that not only elevate performance and efficiency but also 

substantially mitigate the carbon footprint associated with modern computing 

infrastructures. 

6.4 Future Scope 

Future study in the field of multi-objective task scheduling and resource allocation 

can focus on a number of intriguing routes. For starters, researching advanced 

machine learning approaches other than Q-learning, such as deep reinforcement 

learning, could improve the algorithm's ability to adapt to changing surroundings and 

maximize resource allocation decisions. Aside from flower pollination, combining 

additional nature-inspired optimization methods with reinforcement learning 

methodologies may open up new paths for generating superior scheduling solutions. 

Furthermore, examining the suggested algorithm's scalability and applicability in 

large-scale distributed systems and heterogeneous computing settings could shed light 

on its real-world implementation potential. Finally, tackling rising security, privacy, 

and fairness concerns in scheduling algorithms for cloud computing and IoT settings 

offers an attractive research direction for ensuring the robustness and dependability of 

future scheduling solutions. 



 

  175 

 

List of Publications 

1. R. Kaur, D. Anand, U. Kaur, S. Verma, Kavita, S.W Park, ASM. S Hosen, and 

I. H. Ra. "An Advanced Job Scheduling Algorithmic Architecture to Reduce 

Energy Consumption and CO2 Emissions in Multi-Cloud." Electronics vol.12, 

no. 8, p. 1810, 2023. 

2. R. Kaur, S. Verma, N. Z. Jhanjhi, and M. N. Talib. "A comprehensive survey 

on load and resources management techniques in the homogeneous and 

heterogeneous cloud environment." In Journal of Physics: Conference Series, 

vol. 1979, no. 1, p. 012036. IOP Publishing, 2021. 

3. R. Kaur, D. Anand, U. Kaur, S. Verma, and Kavita. "Multi-Objective 

Resource Optimization Using Enhanced FPA-DRL in a Heterogeneous Cloud 

Computing Environment". Computers, Materials & Continua (CMC) journal 

of SCI. (Final Minor Revision Submitted). 

4. R. Kaur, D. Anand, and U. Kaur. "Analysis and Evaluation of Bio-inspired 

Algorithmic Framework, Potential Application in Cloud/Multi-cloud 

Environment". International Conference on Data Science and Computational 

Intelligence (ICDSCI-2022). (Presented). 

5. R. Kaur, D. Anand, and U. Kaur, "DRL based multi-objective resource 

optimization technique in a multi-cloud environment". EAI IC4S 2023 - 4th 

EAI International Conference on Cognitive Computing and Cyber Physical 

Systems. (Presented and Published ). 

6. R. Kaur, D. Anand, and U. Kaur. "Analysis and Evaluation of Bio-inspired 

Algorithmic Framework, Potential Application in Cloud/Multi-Cloud 

Environment". 5th IEEE International Conference on Cybernetics, Cognition 

and Machine Learning Applications, Germany (ICCCMLA 2023). 

(Presented). 

7. R. Kaur, D. Anand, U. Kaur, J.Kaur, S. Verma, and Kavita. "Deep 

Reinforcement learning based intelligent resource allocation techniques with 

applications to cloud computing". RTIP2R  2023 (Presented) 



 

  176 

 

Bibliography 

[1] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, ―What’s inside the 

Cloud? An architectural map of the Cloud landscape,‖ in 2009 ICSE workshop 

on software engineering challenges of cloud computing, 2009, pp. 23–31. 

[2] C. M. Mohammed, S. R. M. Zeebaree, and others, ―Sufficient comparison 

among cloud computing services: IaaS, PaaS, and SaaS: A review,‖ 

International Journal of Science and Business, vol. 5, no. 2, pp. 17–30, 2021. 

[3] F. F. Moghaddam, M. B. Rohani, M. Ahmadi, T. Khodadadi, and K. 

Madadipouya, ―Cloud computing: Vision, architecture and Characteristics,‖ in 

2015 IEEE 6th control and system graduate research colloquium (ICSGRC), 

2015, pp. 1–6. 

[4] N. Khan, N. Ahmad, T. Herawan, and Z. Inayat, ―Cloud Computing: Locally 

Sub-Clouds instead of Globally One Cloud,‖  International Journal of Cloud 

Applications and Computing (IJCAC), vol. 2, no. 3, pp. 68–85, Jan. 2012, doi: 

10.4018/IJCAC.2012070103. 

[5] P. Mell and T. Grance, ―The NIST Definition of Cloud Computing 

Recommendations of the National Institute of Standards and Technology,‖ 

Computer Security, pp. 1–7, 2011, doi: 10.6028/NIST.SP.800-145. 

[6] A. Chinthas, D. Rani, and R. K. Ranjan, ―A Comparative Study of SaaS, PaaS 

and IaaS in Cloud Computing,‖ International Journal of Advanced Research in 

Computer Science and Software Engineering, vol. 4, no. 6, pp. 458–461, 2014. 

[7] A. A. Patel and J. N. Rathod, ―Reducing Power Consumption & Delay Aware 

Resource Allocation in Cloud Data centers,‖ Journal of Information, 

Knowledge and Research in Computer Engineering, vol. 1, pp. 337–339, 2010. 

[8] P. Guo and L. Bu, ―The hierarchical resource management model based on 

cloud computing,‖ in 2012 IEEE Symposium on Electrical \& Electronics 

Engineering (EEESYM), 2012, pp. 471–474. 

[9] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. 

Deardeuff, ―How Amazon web services uses formal methods,‖ 



 

  177 

 

Communications of the ACM, vol. 58, no. 4, pp. 66–73, 2015. 

[10] W. Y. C. Wang, A. Rashid, and H.-M. Chuang, ―Toward the trend of cloud 

computing,‖ Journal of Electronic Commerce Research, vol. 12, no. 4, p. 238, 

2011. 

[11] D. C. Wyld, Moving to the cloud: An introduction to cloud computing in 

government. IBM Center for the Business of Government, 2009. 

[12] H. Shukur, S. Zeebaree, R. Zebari, D. Zeebaree, O. Ahmed, and A. Salih, 

―Cloud computing virtualization of resources allocation for distributed 

systems,‖ Journal of Applied Science and Technology Trends, vol. 1, no. 3, pp. 

98–105, 2020. 

[13] Q. Zhang, L. Cheng, and R. Boutaba, ―Cloud computing: state-of-the-art and 

research challenges,‖ Journal of internet services and applications, vol. 1, pp. 

7–18, 2010. 

[14] S. S. Manvi and G. K. Shyam, ―Resource management for Infrastructure as a 

Service (IaaS) in cloud computing: A survey,‖ Journal of network and 

computer applications, vol. 41, pp. 424–440, 2014. 

[15] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, and E. Talbi, ―Towards 

understanding uncertainty in cloud computing resource provisioning,‖ 

Procedia Computer Science, vol. 51, pp. 1772–1781, 2015. 

[16] D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain, ―Cloud computing features, 

issues, and challenges: a big picture,‖ in 2015 International Conference on 

Computational Intelligence and Networks, 2015, pp. 116–123. 

[17] A. Wolke, B. Tsend-Ayush, C. Pfeiffer, and M. Bichler, ―More than bin 

packing: Dynamic resource allocation strategies in cloud data centers,‖ 

Information Systems, vol. 52, pp. 83–95, 2015. 

[18] J. Li, D. Li, Y. Ye, and X. Lu, ―Efficient multi-tenant virtual machine 

allocation in cloud data centers,‖ Tsinghua Science and Technology, vol. 20, 

no. 1, pp. 81–89, 2015. 

[19] D. K. Viswanath, S. Kusuma, & Saroj, and K. Gupta, ―Cloud Computing 

Issues and Benefits Modern Education,‖ Global Journal of Computer Science 

and Technology, vol. 12, no. B10, pp. 15–19, 2012. 

[20] A. Jula, E. Sundararajan, and Z. Othman, ―Cloud computing service 



 

  178 

 

composition: A systematic literature review,‖ Expert systems with applications, 

vol. 41, no. 8, pp. 3809–3824, 2014. 

[21] Y. Jadeja and K. Modi, ―Cloud computing-concepts, architecture and 

challenges,‖ in 2012 international conference on computing, electronics and 

electrical technologies (ICCEET), 2012, pp. 877–880. 

[22] V. K. Reddy and L. S. S. Reddy, ―Security architecture of cloud computing,‖ 

International Journal of Engineering Science and Technology (IJEST), vol. 3, 

no. 9, pp. 7149–7155, 2011. 

[23] D. G. Velev, ―Challenges and opportunities of cloud-based mobile learning,‖ 

International Journal of Information and Education Technology, vol. 4, no. 1, 

p. 49, 2014. 

[24] T. Renugadevi and K. Geetha, ―Task aware optimized energy cost and carbon 

emission-based virtual machine placement in sustainable data centers,‖ Journal 

of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5677–5689, Jan. 2021, doi: 

10.3233/JIFS-189887. 

[25] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, ―A comprehensive survey 

for scheduling techniques in cloud computing,‖ Journal of Network and 

Computer Applications, vol. 143, pp. 1–33, Oct. 2019, doi: 

10.1016/J.JNCA.2019.06.006. 

[26] G. Patel, R. Mehta, and U. Bhoi, ―Enhanced load balanced min-min algorithm 

for static meta task scheduling in cloud computing,‖ Procedia Computer 

Science, vol. 57, pp. 545–553, 2015. 

[27] Y. Zhang, B. Di, Z. Zheng, J. Lin, and L. Song, ―Distributed Multi-Cloud 

Multi-Access Edge Computing by Multi-Agent Reinforcement Learning,‖ 

IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2565–

2578, Apr. 2021, doi: 10.1109/TWC.2020.3043038. 

[28] P. S. Othman, R. R. Ihsan, and R. M. Abdulhakeem, ―The Genetic Algorithm 

(GA) in Relation to Natural Evolution,‖ Academic Journal of Nawroz 

University, vol. 11, no. 3, pp. 243–250, Aug. 2022, doi: 

10.25007/AJNU.V11N3A1414. 

[29] S. B. Sangeetha, R. Sabitha, B. Dhiyanesh, G. Kiruthiga, N. Yuvaraj, and R. A. 

Raja, ―Resource Management Framework Using Deep Neural Networks in 



 

  179 

 

Multi-Cloud Environment,‖ EAI/Springer Innovations in Communication and 

Computing, pp. 89–104, 2022, doi: 10.1007/978-3-030-74402-1_5/COVER. 

[30] S. A. Almazok and B. Bilgehan, ―A novel dynamic source routing (DSR) 

protocol based on minimum execution time scheduling and moth flame 

optimization (MET-MFO),‖ Eurasip Journal on Wireless Communications and 

Networking, vol. 2020, no. 1, pp. 1–26, Dec. 2020, doi: 10.1186/S13638-020-

01802-5/FIGURES/15. 

[31] R. Su and G. Woeginger, ―String execution time for finite languages: Max is 

easy, min is hard,‖ Automatica, vol. 47, no. 10, pp. 2326–2329, Oct. 2011, doi: 

10.1016/J.AUTOMATICA.2011.06.024. 

[32] G. Rjoub and J. Bentahar, ―Cloud task scheduling based on swarm intelligence 

and machine learning,‖ in 2017 IEEE 5th International Conference on Future 

Internet of Things and Cloud (FiCloud), 2017, pp. 272–279. 

[33] A. Hanani, A. M. Rahmani, and A. Sahafi, ―A multi-parameter scheduling 

method of dynamic workloads for big data calculation in cloud computing,‖ 

Journal of Supercomputing, vol. 73, no. 11, pp. 4796–4822, Nov. 2017, doi: 

10.1007/S11227-017-2050-6/TABLES/8. 

[34] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, ―Machine Learning 

Interpretability: A Survey on Methods and Metrics,‖ Electronics 2019, Vol. 8, 

Page 832, vol. 8, no. 8, p. 832, Jul. 2019, doi: 

10.3390/ELECTRONICS8080832. 

[35] B. Mahesh, ―Machine Learning Algorithms-A Review,‖ International Journal 

of Science and Research, vol. 9, no. 1, pp. 981–986, 2018, doi: 

10.21275/ART20203995. 

[36] M. A. Mahdi, K. M. Hosny, and I. Elhenawy, ―Scalable Clustering Algorithms 

for Big Data: A Review,‖ IEEE Access, vol. 9, pp. 80015–80027, 2021, doi: 

10.1109/ACCESS.2021.3084057. 

[37] H. Singh, S. Tyagi, P. Kumar, S. S. Gill, and R. Buyya, ―Metaheuristics for 

scheduling of heterogeneous tasks in cloud computing environments: Analysis, 

performance evaluation, and future directions,‖ Simulation Modelling Practice 

and Theory, vol. 111, p. 102353, Sep. 2021, doi: 

10.1016/J.SIMPAT.2021.102353. 



 

  180 

 

[38] H. S. Yahia, S. R. Zeebaree, M. A. Sadeeq, N. O. Salim, S. F. Kak, A. Z. Adel, 

A. A. Salih, and H. A. Hussein, ―Comprehensive survey for cloud computing 

based nature-inspired algorithms optimization scheduling,‖ Asian Journal of 

Research in Computer Science, vol. 8, no. 2, pp. 1–16, 2021. 

[39] S. Mirjalili, J. Song Dong, A. S. Sadiq, and H. Faris, ―Genetic algorithm: 

Theory, literature review, and application in image reconstruction,‖ Studies in 

Computational Intelligence, vol. 811, pp. 69–85, 2020, doi: 10.1007/978-3-

030-12127-3_5/COVER. 

[40] B. Muthulakshmi and K. Somasundaram, ―A hybrid ABC-SA based optimized 

scheduling and resource allocation for cloud environment,‖ Cluster Computing, 

vol. 22, no. 5, pp. 10769–10777, Sep. 2019, doi: 10.1007/S10586-017-1174-

Z/METRICS. 

[41] S. Sridharan, R. K. Subramanian, and A. K. Srirangan, ―Physics based meta 

heuristics in manufacturing,‖ Materials Today: Proceedings, vol. 39, pp. 805–

811, Jan. 2021, doi: 10.1016/J.MATPR.2020.09.775. 

[42] D. Freitas, L. G. Lopes, and F. Morgado-Dias, ―Particle Swarm Optimisation: 

A Historical Review Up to the Current Developments,‖ Entropy, vol. 22, no. 3, 

p. 362, 2020, doi: 10.3390/E22030362. 

[43] Ş. Öztürk, R. Ahmad, and N. Akhtar, ―Variants of Artificial Bee Colony 

algorithm and its applications in medical image processing,‖ Applied Soft 

Computing Journal, vol. 97, 2020, doi: 10.1016/j.asoc.2020.106799. 

[44] M. Kalra and S. Singh, ―A review of metaheuristic scheduling techniques in 

cloud computing,‖ Egyptian Informatics Journal, vol. 16, no. 3, pp. 275–295, 

Nov. 2015, doi: 10.1016/J.EIJ.2015.07.001. 

[45] I. Fister, X. S. Yang, D. Fister, and I. Fister, ―Firefly algorithm: A brief review 

of the expanding literature,‖ Studies in Computational Intelligence, vol. 516, 

pp. 347–360, 2014, doi: 10.1007/978-3-319-02141-6_17/COVER. 

[46] Y. Meraihi, A. B. Gabis, S. Mirjalili, and A. Ramdane-Cherif, ―Grasshopper 

optimization algorithm: Theory, variants, and applications,‖ IEEE Access, vol. 

9, pp. 50001–50024, 2021, doi: 10.1109/ACCESS.2021.3067597. 

[47] I. Boussaïd, J. Lepagnot, and P. Siarry, ―A survey on optimization 

metaheuristics,‖ Information Sciences, vol. 237, pp. 82–117, Jul. 2013, doi: 



 

  181 

 

10.1016/J.INS.2013.02.041. 

[48] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M. 

Llorente, ―Scheduling strategies for optimal service deployment across 

multiple clouds,‖ Future Generation Computer Systems, vol. 29, no. 6, pp. 

1431–1441, 2013. 

[49] M. Dhanalakshmi and A. Basu, ―Task scheduling techniques for minimizing 

energy consumption and response time in cloud computing,‖ Int J Eng Res 

Technol (IJERT), vol. 3, no. 7, pp. 181–2278, 2014. 

[50] S. Singh Brar and S. Rao, ―Optimizing Workflow Scheduling using Max-Min 

Algorithm in Cloud Environment,‖ International Journal of Computer 

Applications, vol. 124, no. 4, pp. 975–8887, 2015. 

[51] S. K. Panda and P. K. Jana, ―Efficient task scheduling algorithms for 

heterogeneous multi-cloud environment,‖ The Journal of Supercomputing, vol. 

71, pp. 1505–1533, 2015. 

[52] S. Hosseinimotlagh, F. Khunjush, and R. Samadzadeh, ―SEATS: smart energy-

aware task scheduling in real-time cloud computing,‖ The Journal of 

Supercomputing, vol. 71, pp. 45–66, 2015. 

[53] L. Ismail and A. Fardoun, ―Eats: Energy-aware tasks scheduling in cloud 

computing systems,‖ Procedia Computer Science, vol. 83, pp. 870–877, 2016. 

[54] M. Hemamalini and M. V Srinath, ―Performance Analysis of Balanced 

Minimum Execution Time Grid Task scheduling Algorithm,‖ International 

Journal of Communication and Networking System, vol. 5, no. 2, pp. 96–100, 

2016. 

[55] K. Maheshwari, E.-S. Jung, J. Meng, V. Morozov, V. Vishwanath, and R. 

Kettimuthu, ―Workflow performance improvement using model-based 

scheduling over multiple clusters and clouds,‖ Future generation computer 

systems, vol. 54, pp. 206–218, 2016. 

[56] M. Jasraj, M. Kumar, and M. Vardhan, ―Cost Effective Genetic Algorithm for 

Workflow Scheduling in Cloud Under Deadline Constraint,‖ IEEE Access, vol. 

4, pp. 5065–5082, 2016, Accessed: Jun. 30, 2023. [Online]. Available: 

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7542128 

[57] S. K. Panda and P. K. Jana, ―SLA-based task scheduling algorithms for 



 

  182 

 

heterogeneous multi-cloud environment,‖ The Journal of Supercomputing, vol. 

73, pp. 2730–2762, 2017. 

[58] D. Maharana, B. Sahoo, and S. Sethi, ―Energy-efficient real-time tasks 

scheduling in cloud data centers,‖ International Journal of Science Engineering 

and Advance Technology, IJSEAT, vol. 4, no. 12, pp. 768–773, 2017. 

[59] S. H. H. Madni, M. S. Abd Latiff, M. Abdullahi, S. M. Abdulhamid, and M. J. 

Usman, ―Performance comparison of heuristic algorithms for task scheduling 

in IaaS cloud computing environment,‖ PLOS ONE, vol. 12, no. 5, p. 

e0176321, May 2017, doi: 10.1371/JOURNAL.PONE.0176321. 

[60] A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, ―Distributed 

hybrid scheduling in multi-cloud networks using conflict graphs,‖ IEEE 

Transactions on Communications, vol. 66, no. 1, pp. 209–224, 2017. 

[61] S. P. Praveen, K. T. Rao, and B. Janakiramaiah, ―Effective allocation of 

resources and task scheduling in cloud environment using social group 

optimization,‖ Arabian Journal for Science and Engineering, vol. 43, pp. 

4265–4272, 2018. 

[62] K. Duan, S. Fong, S. W. I. Siu, W. Song, and S. S.-U. Guan, ―Adaptive 

incremental genetic algorithm for task scheduling in cloud environments,‖ 

Symmetry, vol. 10, no. 5, p. 168, 2018. 

[63] S. K. Panda and P. K. Jana, ―Normalization-based task scheduling algorithms 

for heterogeneous multi-cloud environment,‖ Information Systems Frontiers, 

vol. 20, pp. 373–399, 2018. 

[64] H. Hu, Z. Li, H. Hu, J. Chen, J. Ge, C. Li, and V. Chang, ―Multi-objective 

scheduling for scientific workflow in multicloud environment,‖ Journal of 

Network and Computer Applications, vol. 114, pp. 108–122, Jul. 2018, doi: 

10.1016/J.JNCA.2018.03.028. 

[65] W. Lin, W. Wang, W. Wu, X. Pang, B. Liu, and Y. Zhang, ―A heuristic task 

scheduling algorithm based on server power efficiency model in cloud 

environments,‖ Sustainable computing: informatics and systems, vol. 20, pp. 

56–65, 2018. 

[66] T. Jena and J. R. Mohanty, ―GA-based customer-conscious resource allocation 

and task scheduling in multi-cloud computing,‖ Arabian Journal for Science 



 

  183 

 

and Engineering, vol. 43, no. 8, pp. 4115–4130, 2018. 

[67] S. K. Mishra, D. Puthal, B. Sahoo, S. K. Jena, and M. S. Obaidat, ―An adaptive 

task allocation technique for green cloud computing,‖ The Journal of 

Supercomputing, vol. 74, pp. 370–385, 2018. 

[68] D. Hazra, A. Roy, S. Midya, and K. Majumder, ―Energy aware task scheduling 

algorithms in cloud environment: A survey,‖ in Smart Computing and 

Informatics: Proceedings of the First International Conference on SCI 2016, 

Volume 1, 2018, pp. 631–639. 

[69] M. B. Gawali and S. K. Shinde, ―Task scheduling and resource allocation in 

cloud computing using a heuristic approach,‖ Journal of Cloud Computing, 

vol. 7, no. 1, pp. 1–16, 2018. 

[70] TangXiaoyong, LiaoXiaoyi, ZhengJie, and YangXiaopan, ―Energy efficient job 

scheduling with workload prediction on cloud data center,‖ Cluster Computing, 

vol. 21, no. 3, pp. 1581–1593, Sep. 2018, doi: 10.5555/3287988.3288006. 

[71] S. K. Panda and P. K. Jana, ―An energy-efficient task scheduling algorithm for 

heterogeneous cloud computing systems,‖ Cluster Computing, vol. 22, no. 2, 

pp. 509–527, 2019. 

[72] S. K. Panda, I. Gupta, and P. K. Jana, ―Task scheduling algorithms for multi-

cloud systems: allocation-aware approach,‖ Information Systems Frontiers, vol. 

21, pp. 241–259, 2019. 

[73] A. Kaur, P. Singh, R. Singh Batth, and C. Peng Lim, ―Deep-Q learning-based 

heterogeneous earliest finish time scheduling algorithm for scientific 

workflows in cloud,‖ Software: Practice and Experience, vol. 52, no. 3, pp. 

689–709, Mar. 2020, doi: 10.1002/SPE.2802. 

[74] S. Gupta, I. Agarwal, and R. S. Singh, ―Workflow scheduling using Jaya 

algorithm in cloud,‖ Concurrency and computation: practice and experience, 

vol. 31, no. 17, pp. 1–13, 2019, doi: 10.1002/cpe.5251. 

[75] A. Rehman, S. S. Hussain, Z. ur Rehman, S. Zia, and S. Shamshirband, ―Multi-

objective approach of energy efficient workflow scheduling in cloud 

environments,‖ Concurrency and Computation: Practice and Experience, vol. 

31, no. 8, p. e4949, 2019. 

[76] A. R. Arunarani, D. Manjula, and V. Sugumaran, ―Task scheduling techniques 



 

  184 

 

in cloud computing: A literature survey,‖ Future Generation Computer 

Systems, vol. 91, pp. 407–415, Feb. 2019, doi: 

10.1016/J.FUTURE.2018.09.014. 

[77] C. Li, J. Zhang, and H. Tang, ―Replica-aware task scheduling and load 

balanced cache placement for delay reduction in multi-cloud environment,‖ 

The Journal of Supercomputing, vol. 75, pp. 2805–2836, 2019. 

[78] M. J. Usman, A. S. Ismail, H. Chizari, G. Abdul-Salaam, A. M. Usman, A. Y. 

Gital, O. Kaiwartya, and A. Aliyu, ―Energy-efficient Virtual Machine 

Allocation Technique Using Flower Pollination Algorithm in Cloud 

Datacenter: A Panacea to Green Computing,‖ Journal of Bionic Engineering, 

vol. 16, no. 2, pp. 354–366, 2019, doi: 10.1007/s42235-019-0030-7. 

[79] M. Masdari and M. Zangakani, ―Efficient task and workflow scheduling in 

inter-cloud environments: challenges and opportunities,‖ The Journal of 

Supercomputing, vol. 76, no. 1, pp. 499–535, 2020. 

[80] G. Natesan and A. Chokkalingam, ―Multi-objective task scheduling using 

hybrid whale genetic optimization algorithm in heterogeneous computing 

environment,‖ Wireless Personal Communications, vol. 110, pp. 1887–1913, 

2020. 

[81] M. Xu and R. Buyya, ―Managing renewable energy and carbon footprint in 

multi-cloud computing environments,‖ Journal of Parallel and Distributed 

Computing, vol. 135, pp. 191–202, Jan. 2020, doi: 

10.1016/J.JPDC.2019.09.015. 

[82] M. Hosseinzadeh, M. Y. Ghafour, H. K. Hama, B. Vo, and A. Khoshnevis, 

―Multi-Objective Task and Workflow Scheduling Approaches in Cloud 

Computing: a Comprehensive Review,‖ Journal of Grid Computing, vol. 18, 

no. 3, pp. 327–356, Sep. 2020, doi: 10.1007/S10723-020-09533-Z/METRICS. 

[83] M. Sharma and R. Garg, ―HIGA: Harmony-inspired genetic algorithm for rack-

aware energy-efficient task scheduling in cloud data centers,‖ Engineering 

Science and Technology, an International Journal, vol. 23, no. 1, pp. 211–224, 

2020. 

[84] H. Aziza and S. Krichen, ―A hybrid genetic algorithm for scientific workflow 

scheduling in cloud environment,‖ Neural Computing and Applications, vol. 



 

  185 

 

32, no. 18, pp. 15263–15278, Sep. 2020, doi: 10.1007/S00521-020-04878-

8/METRICS. 

[85] T. Bezdan, M. Zivkovic, M. Antonijevic, T. Zivkovic, and N. Bacanin, 

―Enhanced Flower Pollination Algorithm for Task Scheduling in Cloud 

Computing Environment,‖ Lecture Notes in Networks and Systems, vol. 141, 

pp. 163–171, 2021, doi: 10.1007/978-981-15-7106-0_16/COVER. 

[86] M. Sharma and R. Garg, ―An artificial neural network based approach for 

energy efficient task scheduling in cloud data centers,‖ Sustainable Computing: 

Informatics and Systems, vol. 26, p. 100373, 2020. 

[87] Z. Wen, S. Garg, G. S. Aujla, K. Alwasel, D. Puthal, S. Dustdar, A. Y. 

Zomaya, and R. Ranjan, ―Running Industrial Workflow Applications in a 

Software-Defined Multicloud Environment Using Green Energy Aware 

Scheduling Algorithm,‖ IEEE Transactions on Industrial Informatics, vol. 17, 

no. 8, pp. 5645–5656, Aug. 2021, doi: 10.1109/TII.2020.3045690. 

[88] T. Mohanraj and R. Santhosh, ―Multi-swarm optimization model for multi-

cloud scheduling for enhanced quality of services,‖ Soft Computing, pp. 1–11, 

2021. 

[89] S. Velliangiri, P. Karthikeyan, V. M. A. Xavier, and D. Baswaraj, ―Hybrid 

electro search with genetic algorithm for task scheduling in cloud computing,‖ 

Ain Shams Engineering Journal, vol. 12, no. 1, pp. 631–639, 2021. 

[90] P. Pirozmand, A. A. R. Hosseinabadi, M. Farrokhzad, M. Sadeghilalimi, S. 

Mirkamali, and A. Slowik, ―Multi-objective hybrid genetic algorithm for task 

scheduling problem in cloud computing,‖ Neural Computing and Applications, 

vol. 33, no. 19, pp. 13075–13088, Oct. 2021, doi: 10.1007/S00521-021-06002-

W/FIGURES/8. 

[91] W. Ahmad and B. Alam, ―An efficient list scheduling algorithm with task 

duplication for scientific big data workflow in heterogeneous computing 

environments,‖ Concurrency and Computation: Practice and Experience, vol. 

33, no. 5, p. e5987, Mar. 2021, doi: 10.1002/CPE.5987. 

[92] N. K. Walia, N. Kaur, M. Alowaidi, K. S. Bhatia, S. Mishra, N. K. Sharma, S. 

K. Sharma, and H. Kaur, ―An energy-efficient hybrid scheduling algorithm for 

task scheduling in the cloud computing environments,‖ IEEE Access, vol. 9, 



 

  186 

 

pp. 117325–117337, 2021. 

[93] R. Pradhan and S. C. Satapathy, ―Energy-Aware Cloud Task Scheduling 

algorithm in heterogeneous multi-cloud environment,‖ Intelligent Decision 

Technologies, no. Preprint, pp. 1–6, 2022. 

[94] R. Pradhan and S. C. Satapathy, ―Particle Swarm Optimization-Based Energy-

Aware Task Scheduling Algorithm in Heterogeneous Cloud,‖ in 

Communication, Software and Networks: Proceedings of INDIA 2022, 

Springer, 2022, pp. 439–450. 

[95] T. Jena and J. R. Mohanty, ―GA-based efficient resource allocation and task 

scheduling in a multi-cloud environment,‖ International Journal of Advanced 

Intelligence Paradigms, vol. 22, no. 1–2, pp. 54–71, 2022. 

[96] S. Mangalampalli, S. K. Swain, and V. K. Mangalampalli, ―Prioritized energy 

efficient task scheduling algorithm in cloud computing using whale 

optimization algorithm,‖ Wireless Personal Communications, vol. 126, no. 3, 

pp. 2231–2247, 2022. 

[97] N. Miglani, G. Sharma, and S. Khurana, ―Multi-objective reliability-based 

workflow scheduler: An elastic and persuasive task scheduler based upon 

modified-flower pollination algorithm in cloud environment,‖ Concurrency 

and Computation: Practice and Experience, vol. 34, no. 22, p. e7150, Oct. 

2022, doi: 10.1002/CPE.7150. 

[98] R. Chen, X. Chen, and C. Yang, ―Using a task dependency job-scheduling 

method to make energy savings in a cloud computing environment,‖ The 

Journal of Supercomputing, vol. 78, no. 3, pp. 4550–4573, 2022. 

[99] N. P. Marri and N. R. Rajalakshmi, ―MOEAGAC: An energy aware model 

with genetic algorithm for efficient scheduling in cloud computing,‖ 

International Journal of Intelligent Computing and Cybernetics, vol. 15, no. 2, 

pp. 318–329, 2022. 

[100] B. Kruekaew and W. Kimpan, ―Multi-Objective Task Scheduling Optimization 

for Load Balancing in Cloud Computing Environment Using Hybrid Artificial 

Bee Colony Algorithm with Reinforcement Learning,‖ IEEE Access, vol. 10, 

pp. 17803–17818, 2022, doi: 10.1109/ACCESS.2022.3149955. 

[101] F. A. Saif, R. Latip, Z. M. Hanapi, and K. Shafinah, ―Multi-objective grey wolf 



 

  187 

 

optimizer algorithm for task scheduling in cloud-fog computing,‖ IEEE Access, 

vol. 11, pp. 20635–20646, 2023. 

[102] K. Malathi and K. Priyadarsini, ―Hybrid lion--GA optimization algorithm-

based task scheduling approach in cloud computing,‖ Applied Nanoscience, 

vol. 13, no. 3, pp. 2601–2610, 2023. 

[103] J. Mahilraj, P. Sivaram, N. Lokesh, and B. Sharma, ―An Optimised Energy 

Efficient Task Scheduling Algorithm based on Deep Learning Technique for 

Energy Consumption,‖ in 2023 6th International Conference on Information 

Systems and Computer Networks (ISCON), 2023, pp. 1–7. 

[104] S. P. Jaiprakash, H. K. Arya, I. Gupta, and T. Badal, ―Energy Optimized 

Workflow Scheduling in IaaS Cloud: A Flower Pollination based Approach,‖ 

2023. 

[105] S. Boopalan and P. Goswami, ―CRA-DP-GA for Efficient Utilization of 

Resource through Virtual Machine and Efficient VM in Cloud Data Centre,‖ 

Mathematical Statistician and Engineering Applications, vol. 72, no. 1, pp. 

233–251, 2023. 

[106] X. Cai, S. Geng, D. Wu, J. Cai, and J. Chen, ―A Multicloud-Model-Based 

Many-Objective Intelligent Algorithm for Efficient Task Scheduling in Internet 

of Things,‖ IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9645–9653, 

Jun. 2021, doi: 10.1109/JIOT.2020.3040019. 

[107] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, ―Cost-aware challenges for 

workflow scheduling approaches in cloud computing environments: Taxonomy 

and opportunities,‖ Future Generation Computer Systems, vol. 50, pp. 3–21, 

Sep. 2015, doi: 10.1016/J.FUTURE.2015.01.007. 

[108] C. Szabo, Q. Z. Sheng, T. Kroeger, Y. Zhang, and J. Yu, ―Science in the Cloud: 

Allocation and Execution of Data-Intensive Scientific Workflows,‖ Journal of 

Grid Computing, vol. 12, no. 2, pp. 245–264, 2014, doi: 10.1007/S10723-013-

9282-3. 

[109] S. S. Murad, R. B. Abdal, N. Alsandi, R. Faraj, S. Salam Murad, R. Badeel, N. 

Salih, A. Alsandi, R. F. Alshaaya, R. A. Ahmed, A. Muhammed, and M. 

Derahman, ―OPTIMIZED MIN-MIN TASK SCHEDULING ALGORITHM 

FOR SCIENTIFIC WORKFLOWS IN A CLOUD ENVIRONMENT,‖ Article 



 

  188 

 

in Journal of Theoretical and Applied Information Technology, vol. 100, no. 2, 

pp. 480–506, 2022, Accessed: Jul. 28, 2023. [Online]. Available: 

https://www.researchgate.net/publication/358461191 

[110] D. Poola, M. A. Salehi, K. Ramamohanarao, and R. Buyya, ―A Taxonomy and 

Survey of Fault-Tolerant Workflow Management Systems in Cloud and 

Distributed Computing Environments,‖ Software Architecture for Big Data and 

the Cloud, pp. 285–320, Jan. 2017, doi: 10.1016/B978-0-12-805467-3.00015-6. 

[111] K. K. Chakravarthi, L. Shyamala, and V. Vaidehi, ―Cost-effective workflow 

scheduling approach on cloud under deadline constraint using firefly 

algorithm,‖ Applied Intelligence, vol. 51, no. 3, pp. 1629–1644, Mar. 2021, doi: 

10.1007/S10489-020-01875-1/METRICS. 

[112] Y. Shen, Z. Bao, X. Qin, and J. Shen, ―Adaptive task scheduling strategy in 

cloud: when energy consumption meets performance guarantee,‖ World Wide 

Web, vol. 20, no. 2, pp. 155–173, Mar. 2017, doi: 10.1007/S11280-016-0382-

4/METRICS. 

[113] T.-Y. Liang and Y.-J. Li, ―A Location-Aware Service Deployment Algorithm 

Based on K-Means for Cloudlets,‖ vol. 2017, pp. 1–10, 2017, doi: 

10.1155/2017/8342859. 

[114] D. Kakkar and G. S. Young, ―Heuristic of VM Allocation to Reduce Migration 

Complexity at Cloud Server‖. 

[115] H. Li, G. Zhu, C. Cui, H. Tang, Y. Dou, and C. He, ―Energy-efficient migration 

and consolidation algorithm of virtual machines in data centers for cloud 

computing,‖ Computing, vol. 98, no. 3, pp. 303–317, Mar. 2016, doi: 

10.1007/S00607-015-0467-4/METRICS. 

[116] M. Ghobaei-Arani, M. Shamsi, and A. A. Rahmanian, ―An efficient approach 

for improving virtual machine placement in cloud computing environment,‖ 

Journal of Experimental & Theoretical Artificial Intelligence , vol. 29, no. 6, 

pp. 1149–1171, Nov. 2017, doi: 10.1080/0952813X.2017.1310308. 

[117] R. Ojstersek, M. Brezocnik, and B. Buchmeister, ―Multi-objective optimization 

of production scheduling with evolutionary computation: A review,‖ 

International Journal of Industrial Engineering Computations, vol. 11, no. 3, 

pp. 359–376, 2020, doi: 10.5267/J.IJIEC.2020.1.003. 



 

  189 

 

[118] A. M. Senthil Kumar and M. Venkatesan, ―Multi-Objective Task Scheduling 

Using Hybrid Genetic-Ant Colony Optimization Algorithm in Cloud 

Environment,‖ Wireless Personal Communications, vol. 107, no. 4, pp. 1835–

1848, Aug. 2019, doi: 10.1007/S11277-019-06360-8/METRICS. 

[119] H. Lu, R. Zhou, Z. Fei, and J. Shi, ―A multi-objective evolutionary algorithm 

based on Pareto prediction for automatic test task scheduling problems,‖ 

Applied Soft Computing, vol. 66, pp. 394–412, May 2018, doi: 

10.1016/J.ASOC.2018.02.050. 

[120] K. Naik, G. Meera Gandhi, and S. H. Patil, ―Multiobjective virtual machine 

selection for task scheduling in cloud computing,‖ Advances in Intelligent 

Systems and Computing, vol. 798, pp. 319–331, 2019, doi: 10.1007/978-981-

13-1132-1_25/COVER. 

[121] F. Li, L. Zhang, T. W. Liao, and Y. Liu, ―Multi-objective optimisation of 

multi-task scheduling in cloud manufacturing,‖ International Journal of 

Production Research, vol. 57, no. 12, pp. 3847–3863, Jun. 2018, doi: 

10.1080/00207543.2018.1538579. 

[122] X. Chen, L. Cheng, C. Liu, Q. Liu, J. Liu, Y. Mao, and J. Murphy, ―A WOA-

Based Optimization Approach for Task Scheduling in Cloud Computing 

Systems,‖ IEEE Systems Journal, vol. 14, no. 3, pp. 3117–3128, Sep. 2020, 

doi: 10.1109/JSYST.2019.2960088. 

[123] Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy, and M. U. Chowdhury, ―An 

improved genetic algorithm using greedy strategy toward task scheduling 

optimization in cloud environments,‖ Neural Computing and Applications, vol. 

32, no. 6, pp. 1531–1541, Mar. 2020, doi: 10.1007/S00521-019-04119-

7/METRICS. 

[124] G. Sreenivasulu and I. Paramasivam, ―Hybrid optimization algorithm for task 

scheduling and virtual machine allocation in cloud computing,‖ Evolutionary 

Intelligence, vol. 14, no. 2, pp. 1015–1022, Jun. 2021, doi: 10.1007/S12065-

020-00517-2/METRICS. 

[125] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, ―Heuristic initialization of PSO 

task scheduling algorithm in cloud computing,‖ Journal of King Saud 

University - Computer and Information Sciences, vol. 34, no. 6, pp. 2370–



 

  190 

 

2382, Jun. 2022, doi: 10.1016/J.JKSUCI.2020.11.002. 

[126] X. Huang, T. H. Klinge, J. I. L. B, X. Li, and J. H. Lutz, ―Flower Pollination 

Algorithm for Global Optimization,‖ Unconventional Computation and 

Natural Computation, vol. 7445, pp. 29–40, 2012, doi: 10.1007/978-3-642-

32894-7. 

[127] P. E. Mergos and X. S. Yang, ―Flower pollination algorithm parameters 

tuning,‖ Soft Computing, vol. 25, no. 22, p. 14429, Nov. 2021, doi: 

10.1007/S00500-021-06230-1. 

[128] M. J. Usman, A. S. Ismail, A. Y. Gital, A. Aliyu, and T. Abubakar, ―Energy-

efficient resource allocation technique using flower pollination algorithm for 

cloud datacenters,‖ Advances in Intelligent Systems and Computing, vol. 843, 

pp. 15–29, 2019, doi: 10.1007/978-3-319-99007-1_2/COVER. 

[129] M. Gokuldhev, G. Singaravel, and N. R. Ram Mohan, ―Multi-Objective Local 

Pollination-Based Gray Wolf Optimizer for Task Scheduling Heterogeneous 

Cloud Environment,‖ Journal of Circuits, Systems and Computers , vol. 29, no. 

7, pp. 1–24, Sep. 2019, doi: 10.1142/S0218126620501005. 

[130] S. Dhivya and R. Arul, ―Hybrid Flower Pollination Algorithm for Optimization 

Problems,‖ Book cover Book cover  Proceedings of the International 

Conference on Computational Intelligence and Sustainable Technologies, pp. 

751–762, 2022, doi: 10.1007/978-981-16-6893-7_65. 

[131] A. Kaur, S. Kumar, D. Gupta, Y. Hamid, M. Hamdi, A. Ksibi, H. Elmannai, 

and S. Saini, ―Algorithmic Approach to Virtual Machine Migration in Cloud 

Computing with Updated SESA Algorithm,‖ Sensors (Basel, Switzerland), vol. 

23, no. 13, p. 6117, Jul. 2023, doi: 10.3390/S23136117. 

[132] B. Varghese and R. Buyya, ―Next generation cloud computing: New trends and 

research directions,‖ Future Generation Computer Systems, vol. 79, no. 3, pp. 

849–861, Feb. 2018, doi: 10.1016/J.FUTURE.2017.09.020. 

[133] M. S, B. Prakash, and B. H.M., ―A Detailed Survey on various Cloud 

computing Simulators,‖ International Journal of Engineering Research                                

, vol. 4, no. 5, pp. 790–991, 2016, doi: 10.17950/ijer/v5i4/037. 

[134] R. Kaur and N. Singh Ghumman, ―A Survey and Comparison of Various Cloud 

Simulators Available for Cloud Environment,‖ International Journal of 



 

  191 

 

Advanced Research in Computer and Communication Engineering, vol. 4, no. 

5, pp. 605–608, 2015, doi: 10.17148/IJARCCE.2015.45129. 

[135] C. J. C. H. Watkins and P. Dayan, ―Q-learning,‖ Machine Learning 1992 8:3, 

vol. 8, no. 3, pp. 279–292, May 1992, doi: 10.1007/BF00992698. 

[136] F. Flamini, A. Hamann, S. Jerbi, L. M. Trenkwalder, H. P. Nautrup, and H. J. 

Briegel, ―Photonic architecture for reinforcement learning,‖ New Journal of 

Physics, vol. 22, no. 4, pp. 1–12, Apr. 2020, doi: 10.1088/1367-2630/AB783C. 

 


