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ABSTRACT 

Flood is the major cause of fatalities associated with natural disasters in the world. 

In India especially in the state of Bihar, where about half of the area (North Bihar) face 

severe flood frequently due to overflow of major rivers during monsoon. The Kosi River 

flood is known for its devastation in north Bihar and frequent changes in its course. 

Therefore, overall objective of this study is to investigate the impact of floods on cropping 

patterns, production, and productivity in north Bihar using geospatial technology. 

 

Floods in Bihar have a significant impact on the agricultural sector, especially on 

planting patterns and the state's crop production. The floods affect the cropping patterns in 

various ways. Firstly, the flood submerges the standing crops in water, causing to damage 

or complete loss. Secondly, it can delay the showing season by making fields too wet, 

thereby shortening the growing season. Farmers may have to wait until the water has 

drained out from their fields and the soil has dried before planting their crops. Because, 

waterlogging after floods may create unfavourable conditions for crop growing, leading to 

changes in cropping patterns. However, flooding has many positive effects on agricultural 

land such as supplying nutrients needed for plant growth. When floods occur, they bring 

with them large amounts of sediment that is rich in organic matter and nutrients like 

nitrogen, phosphorus and potassium, which are essential for plant growth. These nutrients 

help in improving soil fertility and increasing crop yields (specially for rabi crops) in North 

Bihar, which is beneficial for agriculture dependent farmers. 

 

Therefore, it is observed that a rapid and robust flood extent demarcation and 

affected area mapping system is needed for early warning systems and to prioritise the 

relief, rescue and subsidy. Nowadays, the Remotely Sensed Earth Observation (RSEO) 

datasets are being commonly used for monitoring and mapping of flood events, which is 

freely available for researchers. However, the unavailability of resources to download, store 

and process satellite data is a challenging task for the users. In this context, JavaScript code 

for processing huge (big data) datasets hosted on cloud computing platforms (CCP) such 



XVI 
 
 

 

as Google Earth Engine (GEE) is edited, tested and developed in the present study. This 

JavaScript code is capable to robust flood mapping and monitoring using microwave 

synthetic aperture radar (SAR) remotely sensed satellite datasets at large scale within a 

short time of period. In this study, we observed that about ~ 12.63% (701967 ha) areas are 

flooded in 2020. About ~ 17.20% (955897 ha) areas are also flooded in 2021. In the floods 

of 2021, about 4% more area of North Bihar has been flooded as compared to the floods of 

2020.  

 

Apart from this, the agricultural sector is facing multiple challenges that threaten 

sustainable food production. Factors such as climate change, soil degradation, water 

scarcity, and the overuse of chemicals and fertilizers are posing a threat to the agriculture 

sector. Achieving the SDG 2030 goal of Zero Hunger status requires a holistic and adaptive 

food ecosystem that addresses these challenges. Therefore, there is a need for a system that 

can enable monitoring of the agricultural sector on a near real-time basis. In this regard, 

estimation of crop acreage, yield and production are necessary to address these challenges. 

 

Acreage Estimation: Image classification is an essential factor for crop mapping 

and identification. In recent years, many researchers focused on improving data 

mining/machine learning algorithms to more accurately deal with image classification and 

predictive problems. The publicly availability of geospatial datasets and free access to 

cloud-based geo-computing platforms such as GEE are widely being used for mapping and 

monitoring of crop phenology, acreage estimation and crop yield forecasting. In the present 

study, the maize (Zea mays L.) crop has been identified and acreage estimated using ground 

truth (GT)/samples data collected from study area, machine learning algorithms and 

integrated Sentinel-2A/B and PlanetScope satellite data. In which, the study assessed and 

compared the performance of Classification and Regression Trees (CART), Support Vector 

Machine (SVM) and Random Forest (RF) algorithms of Machine Learning (ML) for 

acreage estimation of maize crops using Google’s GEE cloud computing platform. 

Wherein, we found that RF outperforms CART and SVM algorithms in the GEE platform 
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with PlanetScope data (90.17 % Overall Accuracy (OA) with Kappa 0.89) and also with 

the integration of PlanetScope and Sentinel-2A/B data (OA=95.53%, Kappa 0.91). But, 

CART outperforms RF and SVM algorithms with Sentiel-2A/B data (OA=88.59 %, Kappa 

0.85). Based on these approaches, it is found that approximately 321252 hectares of land 

are devoted to maize cultivation during 2021-22 and about 329504 hectares during 2022-

23 in North Bihar, India, which is about 2.5% higher as compared to 2021-22.  

 

Yield Estimation: Timely information about crop conditions is essential for 

decision-makers to make real-time decisions to maximize yield and production, import and 

export decisions, ensuring food security, crop insurance, maintaining the development of 

sustainable agriculture and the prompt construction of appropriate warehouses. Traditional 

methods of crop yield estimation are time-consuming, costly and have low efficiency. 

Although various spectral indices were developed using remotely sensed satellite data for 

mapping and monitoring of vegetation health and productivity such as Normalized 

Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index 

(GNDVI), Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI). These 

spectral indices intensely evaluated the relationship with maize crop yield using a 

regression model and demonstrated the methodology for maize crop yield estimation. The 

obtained result was also validated with Crop cutting experiment (CCE) data of study area. 

In the present study, a new index 'REI (Red Edge Index)' has been evolved for the 

estimation of maize crop yield, which was found to be performing well in terms of 

prediction accuracy than previously developed indices. Wherein, the obtained correlation 

with maize yield was R² = 0.84 with REI, R² = 0.79 with NDVI, R² = 0.76, with EVI, R² = 

0.70, with GNDVI and R² = 0.50 with LSWI.  

 

Here, it was estimated that about 24,90,242 tonnes of maize has been produced in 

2021-22 and 22,66,837 tonnes in 2022-23. The total production in 2021-22 was higher by 

about 9.85% as compared to 2022-23 due to positive post-flood effect on agricultural land 

(nutritional soil accumulation). The estimated yield was found to be aligned with the maize 
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crop yield production report of the Bihar state government. However, the accuracy of the 

methodology can be further validated by using it in different locations and crops with large 

to small datasets of CCE.   

 

It is expected that this tested algorithms and developed web-based JavaScript code 

can be applied anywhere in the world for flood extent demarcation, precisely crop mapping 

and impact of flood on acreage and yield within a short time of period. In addition, crop 

yield predictive model has been developed for district/field-wise maize crop yield and 

production estimation, which is simple and cost-effective for developing countries like 

India and will improve accuracy by using them in different crops and locations with large-

scale datasets.  

 

It is crucial for policymakers and farmers to develop strategies to mitigate the floods 

impact on agriculture and promote crop diversification to reduce the risk of crop loss due 

to floods. It is also expected that this study will be helpful for crop cultivation management, 

precision agriculture, crop insurance and for making a decision support system to prioritise 

the input subsidy for farmers.   

 

 

 

 

 

 

 

 

 



1 |          Introduction 

CHAPTER-1      INTRODUCTION 

 

1.1 General  

Maize is among most vital cereal crops of the world, which is termed the ‘Queen 

of Cereals’. It has the highest genetic yield potential among the cereals crops, which 

offers raw material for industrial products, an essential food, and livelihood for most of 

the population in developing countries. This crop is adaptable to a wide range of 

elevations, up to 3000 m from mean sea level (MSL) under different agro-climatic 

conditions (iimr.icar.gov.in; farmer.gov.in). Methods of maize processing and 

consumption significantly differs geographically. Among the many maize products; 

maize flour and meal are the mostly consumed products (USAID,2013; Ranum et al., 

2014). It is a principal carbohydrate sources of human nourishments in developing 

nations. In developed world maize is used for animal feed (Ranum et al., 2014). The 

largest maize production (nearly 35% of the world) is reported in the USA followed by 

China, Brazil, India, Argentina and Ukraine. Maize is an important cereal crop in India 

too, which ranks third after rice and wheat.  

 

In India, leading maize producing states are “Karnataka, Madhya Pradesh, 

Maharashtra, Rajasthan, Bihar, Uttar Pradesh” (Singh et al., 2018). It is a vital crop that 

engages 15 million Indian farmers in cultivation. Maize crop has potential to double the 

income of Indian farmers. It has been realised for creating improved income to farmers 

and enabling profitable employment. India possess great possibility in growth of Maize 

value chain. 

 

Bihar is the 6th largest maize producer among states in India. Its geographical 

area is about 93.60 lakh hectares. Total sown area in the state is 78.82 lakh hectares, 

while net sown area is 57.12 lakh hectares. Bihar is divided by Ganges River into North 

Bihar (area: 53.3 thousand km2) and South Bihar (area: 40.9 thousand km2). North 

Bihar is highest producer of maize crop in comparison of South Bihar (Singh et al., 

2018). Which gets submerged almost every year by floods. Yet it still positioned itself 

among top maize producing state. In recent years, Bihar is leading in high-yielding  

maize crop that envisages high possibility in agricultural force ( http://krishi.bih.nic.in). 



2 |          Introduction 

In the present study, the northern part of Bihar (North Bihar) has been chosen 

as a study area because about 76% population is dependent on agriculture in the region 

that are severely affected by concurrent flooding (Anonymous, 2020). This study is 

intended to contribute to the existing knowledge about the impact of floods on 

agriculture by providing a detailed assessment of the impact of floods on maize crop’s 

production and productivity in North Bihar. Wherein, production focuses on total 

output of goods during a specific period, productivity emphasizes the efficiency of 

producing that output. The findings of the study will be of interest to policymakers, 

farmers and other stakeholders working to reduce the impact of floods on agriculture. 

 

1.2 Brief description of Flood 

1.2.1 Global Flood Scenario  

According to Centre for Research on the Epidemiology of Disasters (CRED) 

2023 report, globally 387 catastrophic events are observed in 2022, which is slightly 

higher than the average number of catastrophic events between 2002 and 2021(370). 

Which caused the deaths of 30,704 lives, an economic loss of US$223.8 billion, and 

affected 185 million people (Fig. 1.1). Wherein, an average of 176 flood events per year 

occurred worldwide between 2002 and 2022, causing property damage of 

approximately 44.9 billion United States dollars (US$) (Fig. 1.2).  

 

In 2022, a total of 7954 people will die due to flood disasters, which is 53% 

more than the average from 2002 to 2021(CRED 2023). Pakistan was deeply affected 

by the floods that occurred between June and September, affecting about 33 million 

people and resulting in 1,739 lives. The economic damage caused by these floods was 

a staggering $15 billion (Fig. 1.3). Similarly, flash floods wreaked havoc in India as 

well, claiming 2,035 lives and an economic loss of $4.2 billion. About 7.2 million 

people were affected by floods in Bangladesh, while an economic loss of $5 billion was 

reported in China. 

 

Nigeria also experienced devastating flooding, causing 603 deaths and an 

economic cost of $4.2 billion. In South Africa, 544 people lost their lives due to flood-

related incidents. In Brazil, floods in February killed 272 people.  
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Figure 1.1: Number of deaths by flood disaster: 2022 compared to the 2002-2021 

annual average (Source: CRED. 2022 Disasters in numbers. Brussels: CRED; 2023) 

 

 

Figure 1.2: Occurrence by Flood disaster: 2022 compared to the 2002-2021 annual 

average (Source: CRED. 2022 Disasters in numbers. Brussels: CRED; 2023) 

 

In addition, the floods in eastern Australia during February and March caused 

massive economic damage with an estimated economic cost of A$6.6 billion. These 

catastrophic flood events in various regions highlight the urgent need for 

comprehensive strategies and investments in disaster risk reduction and management 

to minimize the devastating impacts on human life, the economy and infrastructure. 
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Figure 1.3: Top 5 countries in economic losses and mortality by flood (Source: CRED. 2022 Disasters in numbers. 

Brussels: CRED; 2023) 
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Figure 1.4: FAO Hunger Map (Source: FAO, IFAD, UNICEF, WFP and WHO. 2022) 
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The FAO of the United Nations disclosed that floods constituted the second 

most significant agricultural calamity, following droughts, with a detrimental impact 

amounting to $21 billion (Fig. 1.4 & 1.5) in terms of crop and livestock losses across 

the developing countries between 2008 and 2018 (FAO 2021). This amount is 19% of 

total loss. In Asia, agricultural production has experienced significant losses, especially 

in 2015. “This spike in losses was due to several major disasters in the region, including 

the Nepal earthquake, monsoon flooding in Myanmar, Bangladesh, and India, and 

widespread flooding in Chennai, India” according to (FAO 2021). 

 

Flooding is a major threat to achieving the SDG goals (Fig. 1.6), especially "no 

poverty (Goal 1) and zero hunger (Goal 2)" (https://sdgs.un.org; Kim et al., 2023). They 

can destroy crops, homes and infrastructure, lead to food shortages and price increases, 

which can have a significant impact on farmers and other rural communities. 

 

 

Figure 1.5: Year wise (2008–2018) total loss in crop and livestock production 

(Source: FAO, 2021) 
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Figure 1.6: Impact of flood on SDG Goal-1&2 (After; https://sdgs.un.org/goals) 

 

1.2.2 Flood Scenario of India 

In India, floods are a major natural disaster. The main reason for this is heavy 

rains, which overflow the rivers and the surrounding areas get submerged. India 

receives mostly rainfall during the monsoon season, from June to September. However, 

the distribution of rainfall is irregular, with some areas receiving much more rain than 

others. This variation can lead to floods in areas that are not traditionally prone to them.  

The Ganga-Yamuna basin states “Haryana, Himachal Pradesh, Uttar Pradesh, Bihar, 

and West Bengal” are prone to floods. Flood-prone areas in India include Assam, where 

the Brahmaputra River causes frequent floods, and Odisha, which is at risk from the 

Mahanadi River. In Andhra Pradesh, the Godavari, Krishna, and Pennar rivers pose 

flood threats. Gujarat experiences floods in the basins of the Narmada, Sabarmati, and 

Tapti rivers. In recent years, the Krishna and Godavari river basins have also caused 

severe floods in Karnataka and Maharashtra. 

 

The map labelled as figure 1.6 provides a visual representation of the flood-

prone and liable-to-flood areas in India. The map depicts the regions across the country 

that are susceptible to flooding due to various factors such as heavy rainfall, proximity 
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to rivers, and topographical features. This map is included here to enable the viewer to 

quickly understand the extent and distribution of flood-prone areas in India (Fig. 1.7). 

 

Figure 1.7: Flood prone areas in India (Source: NITI Aayog (2021)/ 

https://ndma.gov.in/Natural-Hazards/Floods) 
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1.2.3 Flood Scenario of Bihar  

Bihar is characterized by a diverse topography which includes many perennial 

and non-perennial rivers (Fig. 1.8). These rivers, which originate from Nepal, carry a 

large amount of silt, which eventually gets deposited in the plains of Bihar. The region 

experiences most of its rainfall during the monsoon season, usually lasting 3 to 4 

months. The flow of the river increases significantly, sometimes up to 50 times its 

normal rate, causing frequent floods in Bihar. About 73% of the total land of Bihar is 

vulnerable to floods. The state bears a significant burden of flood damages in India, 

contributing about 30–40% of the country's annual flood-related losses. This region is 

home to 22.1% of India's flood-affected population, with 28 districts falling in the 

category of most flood-prone areas (http://bsdma.org). 

 

Flood is a major natural disaster in Bihar and has a severe impact in the form of 

loss of life, property, infrastructure and agriculture every year. Climate change is 

increasing the intensity and frequency of floods around the globe (Sadiq et al., 2022). 

 

Figure 1.8: Flood hazard map of Bihar (Source: BMTPC) 
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Many houses, roads, bridges and public facilities are washed away during floods. This 

damage disrupts the normal life of the affected population, as many people are forced 

to flee their homes and seek temporary shelter in relief camps. The floods also cause 

significant damage to crops and agricultural land, leading to a loss of livelihood for 

farmers (Table 1.1). Rapid growth of urban, deforestation, unplanned development and 

erratic rainfall are the main causes of frequent floods in north part of Bihar (North 

Bihar). Bihar is a state in India where about 76 percent of the population (Table 1.1) is 

dependent on agriculture, which is severely affected by frequent floods (Anonymous, 

2023a, b, c).  

 Table-1.1: Flood related damage in Bihar in last 5 decades 

 

(Source: Disaster Management Department, Govt. of Bihar; Flood Hazard Atlas of 

Bihar, 2019) 
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However, floods are considered a regular concern in North Bihar during the monsoon 

season. Due to overflow of rivers in neighboring country Nepal, North Bihar has 

experienced severe floods during the last three decades (Flood Hazard Atlas of Bihar, 

2019 and Kumar et al., 2022). During COVID-19 pandemic, it has worsened the 

situation, where natural disasters and other factors have disrupted the economic and 

social stability of communities. Floods created significant impact on agricultural sector, 

which is a major source of livelihood for many people in Bihar. When floods occur, 

crops are completely destroyed or damaged, making it difficult for farmers to earn a 

living. Additionally, floods have damaged homes and other infrastructure, making it 

unsafe or impossible for people to stay in their communities. As a result, many people 

in North Bihar are forced to migrate to other areas in search of work and income during 

floods to sustain their lives. It is a difficult and often traumatic experience, as families 

are separated and individuals are forced to leave their homes and communities behind. 

Efforts to address the root causes of migration during floods, such as investing in flood-

resistant infrastructure and promoting economic diversification, can help to reduce the 

need for people to leave their homes in search of livelihoods during times of crisis in 

north Bihar. 

 

To mitigate the impact of floods, an early warning system is also highly needed. 

Because timely monitoring of flood extents helps authorities identify the severity and 

plan relief operations. But, there is a lack of an effective flood monitoring and early 

warning system due to the poor availability of resources in developing countries like 

India (Wu et al., 2012). Flood intensity has been increasing over the last three decades 

(Freer et al., 2013), therefore the role of remote sensing (RS) is crucial for flood 

mapping, monitoring and model development to monitor the impact of floods.  

 

1.3 Application of Remote Sensing and Geospatial Technology in Flood 

Management: 

Over the years, remote sensing satellite data has been capable of monitoring 

flood extent, intensity, progression and deterioration on a real-time basis. Remote 

Sensing satellite has capability to view earth surface in synoptic way from space based 

of aerial satellite sensors. Aerial or satellite imagery can be used to estimate surface 
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water extent (Groeve et al., 2010). Hence, the role of remote sensing and geospatial 

technologies for flood extent mapping and monitoring are important for mitigating the 

impact of floods. This technology is capable to monitor the flood extent and to provide 

real-time information of flood impact. Because, it allows for the collection of data on 

rainfall, water levels, and soil moisture, which can provide valuable information to 

farmers and local authorities to prepare for floods and make decisions about when to 

plant, harvest, and evacuate the population in the event of a flood. For flood-related 

mapping, synthetic aperture radar (SAR) data having upper edge than multispectral 

optical data, because of its all-weather and day-night sensing capability. The European 

Space Agency (ESA) has launched “Sentinel-1A satellite on 3 April 2014 and Sentinel-

1B was on 25 April 2016”. Its revisit time is six days at equator with two satellites 

(Sentinel-1A/B) (Torres et al., 2012). It is the first-ever global SAR mission, whose 

datasets are open access for the global public and researchers. 

 

Nowadays, the Remotely Sensed Earth Observation (EO) datasets are being 

commonly used for disaster management purposes (Schumann et al., 2018), which is 

freely available for researchers. Due to spatial and temporal characteristics of remote 

sensing data, it can be used to acquire the essential information from geomorphological 

features of rivers. This information can be beneficial for mitigation measures in the 

time of disaster. For different analysis, multiple sources of satellite data are freely 

available. However, due to resource unavailability, downloading, storing and 

processing of satellite datasets are big task for users. 

 

Hence to overcome these problems, Google launched the most advanced cloud-

based geospatial processing platform “Google Earth Engine (GEE)”. “It enables to 

access high-performance computational resources to process satellite data without the 

requirement of local storage, in addition to allowing up-to-date remote sensing 

databases for scientific and academic purposes” stated (Gorelick et al., 2017; Schumann 

et al., 2018). It enables to share the developed codes of different analysis to multiple 

users and researchers. The GEE, introduced by Google, Inc., as a new computing 

platform for large-scale data processing such as the time series data analysis of Landsat 

archive (Gorelick et al., 2017). GEE platform hosted a complete, up-to-date and ready  

SAR data archive of Sentinel-1A/B Ground Range Detected (GRD) data.  
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In the present study, Sentinel-2 MSI and PLANET-NICFI (PlanetScope) 

datasets have been utilized for LU/LC mapping and Sentinel-1 for flood extent mapping 

and monitoring. The ability of SAR sensors to detect the extent of flooding depends on 

different scattering mechanisms. For the identification of inundated pixels, several 

SAR-based flood identification methods have been used scattering mechanisms by 

applying backscatter thresholds to satellite imagery (Chini et al., 2017). Usually, the 

change detection technique is being utilize for the identification of flooded pixels using 

SAR datasets. Likewise, various methods and indices exist for the extraction of 

waterbodies using optical and microwave satellite datasets. 

 

The Normalized Difference Water Index (NDWI) was first proposed by 

McFeeters in 1996 and was shown to be a robust index for detecting waterbodies, 

especially in areas with high vegetation cover. The Modified Normalized Difference 

Water Index (MNDWI) was proposed by Xu in 2006 as a modification of NDWI, 

specifically designed for urban areas. It is known to be effective for extracting 

waterbodies in urban areas with high reflectance from built-up structures. Recently, the 

Automated Water Extraction Index (AWEI) was developed by Feyisa et al. in 2014 and 

is designed to overcome the limitations of NDWI and MNDWI in areas with mixed 

pixels, such as rivers or wetlands. AWEI is based on a combination of the green, blue, 

and red bands, as well as the shortwave infrared and thermal infrared bands, which 

allows for more accurate detection of waterbodies. These indices have been widely used 

and validated for detecting waterbodies and assessing the impact of floods. 

 

Apart from this, thresholding technique are also being used for identification of 

flood extent using JavaScript code. Therefore, it is always necessary to have accurate 

data of flooded areas to make an accurate assessment of the damage to make a viable 

decision on prioritizing relief. Numerous research have been undertaken over the years 

to reduce the consequences of frequent floods in Bihar, India, using optical and SAR 

satellite datasets. In the present work, a cloud computing platform (CCP) has been 

utilized to rapidly demarcate the flood-affected region during flood events and develop 

an algorithm for tracking flood procession of North Bihar. 
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1.4 Study area 

The present work is carried out for North Bihar, which is located between 

24.33611 to 27.52083 N latitude and 83.33055 to 88.29444 E longitude as shown in 

Figure 1.9. As per census 2011, Bihar has total 10.41 crores populations. Bihar gets 

about 1205 mm of rain falls in a year on average and has the World's most fertile alluvial 

plains of Gangetic Valley. Its soil distribution is loam, clay, clay loam and sandy loam 

(DAC&FW, GoI, 2020). The main agricultural products of Bihar include maize, wheat, 

and rice. North Bihar is highest producer of maize crop in comparison of South Bihar 

(Singh et al., 2018).  

 

The present work is consisting 22 districts (North Bihar) of Bihar state of India. 

North Bihar is home to several rivers that have been responsible for recurrent flooding 

in the region. The major rivers in Bihar include the Kosi, Gandak, Budhi Gandak, 

Bagmati, and Mahananda. These rivers have caused devastating floods in the state in 

the past, with north Bihar being the worst affected.  

 

Figure 1.9: Location map of study area 
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The Kosi River, which runs through Bihar, is known as the "Sorrow of Bihar" 

owing to its unpredictable and destructive floods. The study area experiences frequent 

floods due to riverine floods induced by excessive rainfall, and some of the major flood 

events in the study area have occurred in 1987, 1998, 2000, 2001, 2003, 2004, 2007, 

2008, 2010, 2013, 2017, 2018 and 2020 (Flood Hazard Atlas of Bihar, 2019; Kumar et 

al., 2022).  

 

In this region, maize, wheat and rice are the major crops grown, which provide 

food, fodder and industrial raw material (Ethanol Industry) to the state and contribute 

significantly to the economy of the state.The region has the most fertile land and 76 per 

cent of the population is dependent on agriculture (Kumar et al., 2022; Spera et al., 

2016). Agricultural land is degrading and shrinking day by day due to rapid 

urbanization and the growing population (Singh et al., 2014). There are two main 

agricultural operations seasons in the region; viz. In the monsoon (Kharif) season 

mostly rice crops are grown, and in the winter (Rabi) season (November to April) 

mostly maize and wheat crops are grown. Because there is a less uncertain climate in 

Rabi season as compared to Kharif.  

 

Hence, it is easier and less risky to grow maize crops in Rabi as compared to 

the Kharif season in Bihar (Bihar Study Report:2016). Most of the farmers in this region 

are smallholder farms. Therefore, this region is ideal for investigating how well micro-

satellites such as PlanetScope can be able to map the field levels crop (Jain et al., 2016) 

and impact of flood on crop too.  

 

1.5 Motivation 

Maize (Zea mays L.) is globally recognized as one of the most important cereal 

crops with significant economic and nutritional importance. Its versatile nature and 

adaptability to different agro-climatic conditions make it a staple crop for many 

smallholding farmers in developing countries like India. This crop provides both food 

and fodder for millions of people and animals, thus playing an important role in global 

food security (FAOSTAT, accessed on 10/May/2023).  
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In India, maize has a double yield potential compared to other cereal crops like 

wheat and rice. This yield potential has been made possible by the adoption of improved 

technologies, such as hybrid varieties, which have resulted in significant yield gains in 

maize cultivation. As a result, maize has become a highly productive and profitable 

crop for farmers in India, contributing significantly to the agricultural and economic 

development of the country. Bihar is the sixth largest producer of maize among the 

states of India, with about 76% of its population dependent on agriculture. Which gets 

submerged almost every year by floods. Yet it still positioned itself among top maize 

producing state. 

 

With the development of remote sensing technology, it is now possible to track 

the extent and intensity of floods in near real-time basis using satellite and aerial 

photographs. This approach will enable the authorities to take timely and appropriate 

decisions to minimize the potential impact of flood on life, property and agriculture 

sector. With the increasing availability of freely accessible remotely sensed satellite 

data such as Landsat, Sentinel-1, Sentinel-2, and NIFCI-Planet, crop acreage and yield 

estimation has become more accurate and efficient. This technology enables monitoring 

of crop phenology and damage due to natural calamities (flood, drought, heat wave etc.) 

on near real-time basis, by improving the accuracy of yield forecasts and facilitating 

quick and effective decision-making. The use of remote sensing technology for crop 

monitoring has also significantly reduced the cost and time associated with traditional 

methods such as ground surveys. 

 

Nowadays, various techniques are being used for flood extent demarcation, crop 

mapping and monitoring such as thresholding method, classification, change detection 

and data fusion. Research is still needed to develop more effective algorithms for flood 

extent mapping and classifiers for crop area and yield estimation. 

 

1.6 Research Objectives 

The aim of this study is to assess the impact of flood on cropping pattern and 

Production of maize using geospatial technology in north Bihar. Hence, the study is 

divided into three objectives to accomplish the desired outcome. 
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Thus, the major objectives are as follows: 

(i) To estimate the flood extent and its impact on maize productivity 

(ii) To discriminate maize from other crops  

(iii) To estimate the acreage and yield of maize. 

 

1.7 Brief Overview of Adopted Methodology 

In the present study, remotely sensed satellite datasets and the Otsu model on 

GEE platform are employed for flood extent mapping. Ground Truth (GT) data and 

machine learning approach are utilized to discriminate maize crops from other crops 

and estimate acreage. The evolved spectral indices, machine learning algorithms, semi-

physical models and climate datasets has been used for maize crop yield and production 

estimation. 

 

1.8 Organization of Thesis 

The thesis is organized into eight chapters. The summary of the chapters is provided 

as follows: 

 

Chapter 1: Introduction 

This chapter is focused as an introductory section of the thesis, providing a 

broad overview of the research topic, definition of the problem, selected site, motivation 

and objectives of the research. The main focus of this thesis is to assess the impact of 

flood on maize crops in North Bihar, India using remote sensing satellite imagery. 

 

Chapter 2: Review of literature 

It provides a brief overview of technology implementation for crop mapping 

and monitoring, techniques for image classification, a comparison of methods for flood 

extent mapping and assessing its impact on crops, and the identification of research 

gaps. Additionally, the review highlights areas where further research is needed to 

address current gaps in knowledge and methodology. 

 

Chapter 3: Methodology and Data used 

This section introduces advanced methods and techniques employed to achieve 
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the desired results of the study. It begins by providing a brief overview of the data used 

and the processing approaches adopted for handling large datasets, such as SAR data 

from Sentinel-1 for flood mapping and Optical datasets from Sentinel-2 and 

PlanetScope for crop acreage, yield, and production estimation. Furthermore, the 

section outlines the methodology for acquiring Ground Truth (GT) data and conducting 

Crop Cutting Experiments (CCEs) to accomplish the study's objectives. These 

processes play a vital role in validating and refining the results obtained through remote 

sensing techniques. 

 

Moreover, this section delves into the complexity of data processing and 

emphasizes the utilization of the cloud computing platform GEE. By incorporating 

these methods, the study aims to comprehend the intricacies involved in data processing 

and harness their potential for successful implementation in achieving the study's 

objectives. 

 

Chapter 4: Flood Extent and Flood-Affected Area Mapping  

This section provides a comprehensive description of the application of remote 

sensing techniques for flood-affected area mapping, monitoring and managing in North 

Bihar. It specifically focuses on two key methods: the use of the random forest 

algorithm for land use classification and thresholding techniques for rapid flood extent 

mapping, both implemented on the GEE’s cloud computing platform. 

 

Chapter 5: Maize crop identification/ discrimination and acreage estimation using 

remote sensing satellite data, machine learning algorithms and cloud computing 

platform.  

It offers a detailed explanation of how remote sensing satellite data, machine 

learning algorithms, and cloud computing platforms are employed for crop 

identification, discrimination, and acreage estimation. The chapter further discusses the 

significance of cloud computing platforms, like GEE, which offer the computational 

infrastructure and resources required to process large-scale remote sensing datasets. 

These platforms enable efficient data processing, allowing for crop identification and 

estimation of crop acreage at various scales. 
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Chapter 6: Model development for maize (Zea mays L) crop yield and production 

estimation using machine learning algorithm, evolved spectral indices and cloud 

computing platform. 

This chapter focuses on the methodology of estimating maize crop yield and 

production using machine learning algorithms and cloud computing platforms. It 

outlines how these techniques/methods are employed to analyse relevant data and make 

accurate predictions for maize crop yield and production. Additionally, the chapter 

introduces a newly developed spectral index that has been evolved as part of the present 

study. This spectral index is designed to capture specific characteristics and parameters 

related to crops, enhancing the accuracy and effectiveness of yield and production 

estimation. 

 

Chapter 7: Conclusion and recommendations  

In this section, the study concludes by addressing the research questions and 

presenting the key research findings. It provides clear and concise answers to the 

research inquiries, consolidating the knowledge gained throughout the study. 

Additionally, the present study summarizes the most effective techniques utilized, 

highlighting their significance in addressing real-world challenges. It also underscores 

the societal relevance of these techniques and their potential impact on future directions, 

emphasizing their value in advancing agricultural practices, disaster management, and 

decision-making processes. 
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CHAPTER-2         REVIEW OF LITERATURE 

 

Maize cultivation has emerged as an important source of income and 

employment for millions of Indian farmers. It has several advantages over other crops, 

including its high productivity, low input requirement and ability to adapt to different 

agro-climatic conditions. The crop is being used for both food and non-food purposes, 

such as animal feed, industrial applications, and biofuel production. It has the potential 

to make a significant contribution to India's efforts to double farmers' income. 

 

Therefore, innovative agricultural research and better management practices are 

essential to increase productivity and reduce food insecurity. As the global population 

continues to grow, the demand for food is also increasing. To meet this demand, we 

need to produce more food with fewer resources, including land, water, and energy. 

Agricultural research and development can help us achieve this goal by developing new 

crop varieties that are more resistant to pests and diseases, more tolerant to 

environmental stresses, and more efficient in nutrient uptake and utilization. 

 

In addition to research, better management practices are also crucial to increase 

agricultural productivity. This includes the adoption of modern technologies, such as 

precision agriculture, smart irrigation, and integrated pest management, which can help 

farmers optimize the use of resources and minimize waste. Effective management 

practices also involve better farm planning, soil and water conservation, and climate-

smart agriculture, which can help mitigate the negative impacts of climate change on 

crop yields and production. 

 

In this regard, accurate and timely information on crop type, acreage, and yield 

is crucial for effective agricultural planning, policy-making, and resource allocation 

(Jamal et al., 2023). This information can be helpful for farmers, policymakers, and 

other stakeholders to make quick decisions about agricultural investments, crop 

management, and market opportunities (Niftiyev et al., 2023). Farmers and other 

stakeholders can anticipate market trends and adjust their production and marketing 

strategies accordingly. Concerned authorities and stakeholders can also allocate 
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resources more effectively and efficiently to promote sustainable development and 

profitable agricultural systems. 

 

2.1 Crop Mapping Method 

Crop mapping is a technique/method used to identify and classify the different 

types of crops in a target area (Table 2.1). It provides valuable information for 

agricultural planning, resource allocation and monitoring of crop health. Nowadays, 

several methods are being employed for crop mapping such as remote sensing (Deb et 

al., 2021), machine learning (Han et al., 2019; Rukhovich et al., 2021), ground-based 

surveys and crop inventory data (Darji et al., 2023). 

Table 2.1: The advantages and disadvantages of crop mapping method 

Method Advantages Disadvantages 

Remote 

sensing 

Cost-effective, efficient, can 

cover large areas 

Less accurate than ground-

based surveys or crop 

inventory data 

Machine 

learning 

Can be more accurate than 

remote sensing, can be used 

to identify crops that are not 

easily visible in remote 

sensing imagery 

Requires a large amount of 

training data, can be 

expensive to develop and 

deploy 

Ground-

based 

surveys 

Most accurate, can collect 

data on other factors such as 

crop health and pest 

infestation 

Time-consuming and 

expensive, can only cover 

small areas 

Crop 

inventory 

data 

Very accurate, can be used to 

track crop production over 

time 

May not be available for 

all areas, can be outdated 
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2.1.1 Ground-based surveys  

Ground-based surveys involve physically field visiting and inspecting the crops in 

a specific area. Agronomists and field experts collect data on crop characteristics such 

as height, leaf shape, color, and growth stage. This information is used to identify and 

map different crop types. While this method is more time-consuming and labour-

intensive, it can provide accurate results when combined with other techniques. 

 

2.1.2 Crop inventory data  

This method provides detailed information about the crop types grown in specific 

regions and their acreage and yield. Which can be collected by governments, 

agricultural organizations, or private companies. 

 

2.1.3 Remote sensing 

Remote sensing is a valuable technique that involves the use of satellite or aerial 

imagery to assess and monitor agricultural land and its associated crops. It allows for 

identification, classification, and mapping of different types of crops over large areas. 

In this process, the imagery is typically analyzed using computer algorithms to identify 

the spectral signatures of different crops. 

 

2.1.3.1 Steps /Overview of crop mapping using remotely sensed satellite data 

a) Satellite or Aerial Imagery Acquisition: Remote sensing data is collected using 

satellites or airborne platforms equipped with sensors such as multi-spectral or 

hyperspectral cameras. These sensors capture images of the Earth's surface in 

different wavelengths of the electromagnetic spectrum. 

b) Pre-processing: The acquired imagery undergoes preprocessing steps to correct for 

atmospheric interference, geometric distortions, and other image artifacts. This 

ensures that the data is in a usable form for subsequent analysis. 

c) Image Classification: The preprocessed imagery is subjected to image 

classification techniques. This involves assigning each pixel or group of pixels in 

the image to specific land cover/crop types. Several classification algorithms can be 

employed, including supervised and unsupervised methods. 
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I. Supervised Classification: In supervised classification, training samples of 

known land cover types are selected on the image, and the algorithm learns to 

classify the rest of the pixels based on their spectral properties. It requires the 

user to identify representative training areas for different crop types. 

II. Unsupervised Classification: It involves grouping pixels with similar spectral 

characteristics without prior knowledge of the land cover types. The algorithm 

automatically identifies clusters in the image based on statistical properties, and 

the user assigns land cover labels to the resulting clusters. 

 

d) Crop Mapping and Analysis: Once the classification is completed and validated, 

the resulting maps can be used to extract relevant information about the crops. This 

may include the distribution, extent, and spatial patterns of different crop types 

within the study area. Crop mapping can assist in monitoring changes in land use, 

estimating crop yield, identifying areas of crop stress or disease, and supporting 

decision-making in agriculture, such as resource allocation and crop management 

strategies. 

 

e) Accuracy Assessment: To ensure the reliability of classification results, accuracy 

evaluation is necessary. This approach comparing the classified results with GT 

dataset, which may include field surveys or high-resolution imagery. It also helps in 

evaluating the performance of classification algorithm and provides the overall 

classification accuracy. It's worth noting that the accuracy of crop mapping using RS 

technology depends on various factors, including image quality, classification 

methods, availability of ground truth data, and the expertise of the analyst. Advances 

in remote sensing technologies and machine learning algorithms continue to enhance 

the accuracy and efficiency of crop mapping, making it essential tool for precision 

agriculture and land management. 

 

2.1.4 Machine learning  

Machine learning (ML) is a powerful method for crop mapping that utilizes 

algorithms to analyze data and classify different crop types. In this method, models are 

trained by RS imagery and ground-based survey data to identify patterns and 
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relationships between features and crop types. With accurate labeling and pre-

processing of the data, the model can make predictions on unlabeled data to map and 

classify crops in a given area. Continuous monitoring and evaluation of the model's 

performance ensure reliable and up-to-date results for crop mapping.  

 

Nowadays, Machine learning algorithms, such as Random forest, Support 

vector machine, deep learning and convolutional neural networks, are used to process 

and analyze remote sensing data for crop mapping (Lary et al., 2016; Inglada et al., 

2015; Prins et al., 2021). These algorithms are designed to learn from large datasets 

(collected from study area such as ground truth data) and can automatically identify 

patterns and features in satellite images that correspond to different crop types. Machine 

learning approach can also be used to integrate other data sources, such as weather data, 

soil data (Cravero et al., 2022), and farm management practices, to improve the 

accuracy of crop mapping and monitoring (Goldstein et al., 2018; Filippi et al., 2019).  

 

2.2 Concluding remarks for best method/ suitable method for crop mapping  

Remote sensing is often the most cost-effective and efficient method for large-

area mapping, but it can be less accurate than ground-based surveys or crop inventory 

data. Ground-based surveys are more accurate, but they can be more time-consuming 

and expensive. Crop inventory data can be very accurate, but it may not be available 

for all areas.  

 

Nowadays, remote sensing satellite data and machine learning algorithms have 

become powerful tools for crop mapping and monitoring (Abdi et al., 2020). But, 

accurate crop-type mapping over a large area is still a challenging task (Weiss et al., 

2020). The quality of RS images, including their spatial, spectral, radiometric and 

temporal resolutions, is the main constraint (Gomez et al., 2016). To improve the 

accuracy of crop type mapping using remote sensing, it is necessary to focus on 

improving data quality and developing more sophisticated image interpretation and 

information extraction algorithms (Wang et al., 2023). In this context, ML algorithms 

provide a powerful and emerging toolset for satellite data/imageries interpretation and 

information extraction for large-area mapping, facilitating accurate and efficient 
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analysis of vast geographic areas. One of the reasons for the emergence of ML is the 

availability of large and diverse datasets, which allow algorithms to be trained more 

effectively. Additionally, advancements in computing power, such as the use of cloud 

computing platform (CCP) and powerful GPUs (Graphics Processing Units) have 

accelerated the training and deployment of ML models. 

 

In addition, the advent of high-resolution satellite imagery, such as Sentinel-

1&2, Landsat-8 and NICFI-PlanetScope has revolutionized the way of crop mapping 

and monitoring. The availability of these free and open-source remote sensing satellite 

datasets has facilitated the use of these tools for agriculture and food security 

monitoring. These satellites capture images with high spatial and temporal resolutions, 

allowing detailed observations of land surface features and changes (Panjala et al., 

2022). Optical sensors and Synthetic Aperture Radar (SAR) are two different types of 

remote sensing technologies that provide unique capabilities for data acquisition and 

analysis. 

 

2.2.1 Use of Optical datasets 

Optical sensors collect information in the visible and near-infrared (NIR) 

portions of the electromagnetic spectrum. This means that they can see the Earth's 

surface in the same way that human eye does, which makes them good for applications 

such as land cover mapping, agriculture monitoring, and disaster response. However, 

optical sensors are not able to see through clouds or darkness, so they cannot be used 

in all conditions. Landsat-8 is a long-standing optical satellite sensor with a legacy of 

providing multispectral imagery for more than 40 years. It captures images with a 

resolution of 30 meters and has a revisit time of 16 days. The data from Landsat-8 can 

be used for various applications, including land cover classification, forest monitoring, 

and agriculture management.   

Sentinel-2 is also an ESA satellite that provides high-resolution multispectral 

data for monitoring land use and land cover (LULC) changes, including crop mapping. 

Sentinel-2 has a 10-meter spatial resolution, which allows for the identification of 

individual crops and the detection of subtle changes in vegetation growth and health.  
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NICFI-PlanetScope is a satellite imagery program that provides global, high-

resolution satellite imagery for environmental monitoring, disaster response, and 

agricultural management. NICFI-PlanetScope offers daily imagery coverage of entire 

planet at spatial resolution of 3 to 5 meters, making it an ideal tool for crop monitoring 

and mapping. These remote sensing satellite data provide high spatial and temporal 

resolution imagery that can capture detailed information on crop type, growth stage, 

and health status. This information is valuable for crop mapping, which is the process 

of identifying and delineating the extent and location of different crops in the study 

area. It can be helpful in improving farm management practices, monitoring crop 

productivity and predicting crop yields. 

 

2.2.2 Use of Synthetic Aperture Radar (SAR) datasets 

Synthetic Aperture Radar (SAR) sensors emit microwave signals towards the 

target area and then receive and measure the backscattered signals, which can penetrate 

through various atmospheric conditions, including clouds, fog, and haze. SAR datasets 

can be used effectively in all weather conditions and at any time of day or night. 

Nowadays, Sentinel-1 SAR satellite of the European Space Agency (ESA) that 

provides high-resolution images regardless of weather and light conditions, which is 

being utilized to detect changes in land use, such as deforestation, urbanization, and 

agricultural practices.  

 

2.2.3 Combining satellite data and Data fusion techniques 

SAR and optical data capture different aspects of the Earth's surface. Optical 

sensors capture reflected sunlight and provide information about the spectral properties 

of crops, such as their color and vegetation indices. On the other hand, SAR sensors 

transmit microwave signals, which offer valuable data for analysis with capability to 

operate regardless of weather conditions or time of day. By fusing SAR and optical 

data, the strengths of both datasets can be leveraged to improve crop mapping accuracy. 

Various fusion techniques, such as data fusion algorithms or machine learning 

approaches, can be applied to integrate SAR and optical information effectively. 
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These days, combining satellite data from multiple sensors is an effective 

approach to improve the accuracy of crop mapping. Different sensors have different 

spatial and spectral resolutions, which can complement each other and provide more 

comprehensive and accurate information on crop distribution, growth, and health status. 

 

Data fusion techniques are an approach to combining satellite data from 

multiple sensors. This technique involves integrating data from different sensors to 

produce a single composite image that combines the advantages of each sensor. The 

fused image can provide more detailed and accurate information on crop type, growth, 

and crop health status than each individual sensor alone. A study conducted by Q. 

Wang et al., (2017), presented a method for data fusion of Landsat-8 and Sentinel-2 

satellites for crop mapping and monitoring. Which is more accurate in terms of 

accuracy in comparison with individual satellites. The study concluded that the fusion 

of multispectral data from Sentinel-2 and Landsat-8 can improve the accuracy and 

reliability of crop mapping (Xiong et al., 2017; Blickensdorfer et al., 2022). The 

development of these methods has led to significant improvements in the quality of 

satellite data. Due to the emergence of complementary satellite sensors, such as 

Sentinel-1, Sentinel-2, and PlanetScope, has allowed for better data coverage and 

reduced the issues of data quality. The combination of these sensors provides a more 

comprehensive view of the Earth's surface, enabling more accurate and reliable data for 

various applications, including LULC mapping, urban planning, disaster management 

and crop mapping (Yan et al., 2021).  

 

2.2.3.1 Approaches/methods used for combining multi-sensor datasets 

There are several methods commonly used for combining multi-sensor datasets, 

enabling the integration of information from different sensors. Here are some widely 

employed approaches: 

 Statistical Fusion: This method utilizes statistical techniques such as regression 

models, principal component analysis (PCA), or multivariate analysis to combine 

data from multiple sensors. The statistical models help in identifying correlations 

and dependencies among the datasets, allowing for the creation of a unified 

representation. 
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 Sensor-specific Fusion: This method takes into account the characteristics and 

limitations of each sensor. It involves applying sensor-specific algorithms or 

calibration techniques to harmonize the datasets and reduce inconsistencies or biases 

between them. This ensures compatibility and improves the accuracy of the 

combined information. 

 Fusion at Feature Level: This approach involves extracting relevant features from 

each sensor's data and combining them to create a feature vector that represents the 

combined information. Feature extraction techniques, such as wavelet transforms or 

Fourier analysis, are commonly used for this purpose. 

 Data-driven Fusion: This method utilizes machine learning algorithms to integrate 

multi-sensor datasets. Techniques like ensemble methods, neural networks, or deep 

learning models can learn patterns and relationships in the data and produce fused 

outputs that leverage the strengths of each sensor (Table 2.2). 

 

Nowadays, the use of ML algorithms to combine data from multi-source 

satellite data for crop mapping is becoming increasingly common. Several ML 

algorithms were applied on “multi-spectral and multi-temporal satellite images to 

derive crop classification models” (Viskovic et al., 2019). Recently, LiDAR, Sentinel-

2 and aerial imageries used to map crop types using machine learning, where “the 

combination of all three datasets proved to be the most effective at differentiating 

between the crop types, with RF algorithm providing the highest overall accuracy of 

94.4%” stated Viskovic et al., 2019. Moumni et al., (2021) used “high spatiotemporal 

resolution Sentinel-1 and Sentinel-2 satellite images and three machine learning 

classifier algorithms artificial neural network (ANN), support vector machine (SVM), 

and maximum likelihood (ML)” to overcome the challenges of heterogeneity for crop 

types mapping. The results showed that combining images from different sensors 

improved crop-type classification performance (accuracy) compared to using optical or 

SAR data alone, with an overall accuracy of 89% and Kappa of 0.85. Another study 

proposed a method for large-scale crop mapping using discrete grids and machine 

learning to integrate GaoFen-1 and Sentinel-2 imagery. That method achieved good 

performance with high accuracy, and discrete grid technology can improve processing 

efficiency for large-scale remote sensing data (Yan et al., 2021).  



29 |                      Review of Literature 

 

 

Now, it is observed that machine learning algorithms are an innovative approach 

to combining satellite data from multiple sensors, which can be used to analyze and 

integrate data from different sensors and extract features that are relevant to crop 

mapping.  

 

Table 2.2: Different studies on crop mapping and approach used 

Author Paper title Approaches 
Satellite 

image 
Location Accuracy 

Tufail et al., 

2021 

“A machine 

learning 

approach for 

accurate crop 

type mapping 

using 

combined 

SAR and 

optical time 

series data” 

Random 

forest 

algorithm 

Sentinel-1 

and Sentinel-

2 

Punjab, 
Pakistan 

97% overall 

accuracy 

Fathololou

mi et al., 

2022 

“An 

Innovative 

Fusion-Based 

Scenario for 

Improving 

Land Crop 

Mapping 

Accuracy” 

RF, SVM 

and ANN 

algorithm 

with fusion 

techniques 

Sentinel 1, 

Sentinel 2, 

and Landsat-

8 imagery 

Ontario, 

Canada 

91% overall 

accuracy 

Lin, Chenxi, 

et al., 2022 

“Early- and 

in-season 

crop type 

mapping 

without 

current-year 

ground truth: 

Generating 

labels from 

historical 

information 

via a 

RF classifier 

Landsat-8 

and Sentinel-

2 data 

NE 

China 

85% overall 

accuracy 
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Author Paper title Approaches 
Satellite 

image 
Location Accuracy 

topology-

based 

approach” 

Feng Gao 

and 

Xiaoyang 

Zhang 2021 

“Mapping 

Crop 

Phenology in 

Near Real-

Time Using 

Satellite 

Remote 

Sensing: 

Challenges 

and 

Opportunities

” 

Curve-based 

and trend-

based 

methods 

Harmonized 

Landsat and 

Sentinel-2 

(HLS) 

Global Not reported 

Yan et al., 

2021 

“Large-scale 

crop mapping 

from multi-

source 

optical 

satellite 

imageries 

using 

machine 

learning with 

discrete 

grids” 

RF and SVM 

algorithm  

Sentinel-

2A/B MSI 

(10 m 

resolution), 

Gaofen-1 

WFV (16 m 

resolution), 

Gaofen-6 

WFV (16 m 

resolution), 

Ziyuan-3A 

MUX (5.8 m 

resolution), 

Ziyuan-3B 

MUX (5.8 m 

resolution) 

Sanjian

g Plain 

in 

China 

Overall 

accuracy 

achieved- 86 

% in 2017 

and 88 % in 

2018 

Moumni et 

al., 2021 

“Machine 

Learning-

Based 

Classification 

for Crop-

Type 

Mapping 

Using the  

Artificial 

Neural 

Network 

(ANN), 

Support 

Vector 

Machine 

(SVM), and  

Fusion of 

high 

spatiotempor

al resolution 

Sentinel-1 

and Sentinel-

2 satellite 

images 

semiari

d area 

of 

Morocc

o 

Overall 

accuracy of 

89% 
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Author Paper title Approaches 
Satellite 

image 
Location Accuracy 

 

Fusion of 

High-

Resolution 

Satellite 

Imagery in a 

Semiarid 

Area” 

 

 

 

Maximum 

Likelihood 

(ML) 

Meng et al., 

2021 

“Deep 

learning-

based crop 

mapping in 

the cloudy 

season using 

one-shot 

hyperspectral 

satellite 

imagery” 

Three 

Convolution

al Neural 

Network 

(CNN) 

Model 

hyperspectral 

data, cloud-

free S2 

images 

Hubei 

provinc

e of 

China 

Convolution

al neural 

network 

algorithms 

with one-

shot hypers-

pectral 

imaging and 

data 

augment-

tation 

techniques 

achieved an 

accuracy of 

more than 

94% 

 

 

2.3 Image Classification 

Remotely sensed satellite image classification is the process of assigning land 

cover categories (or classes) to image pixels based on their spectral, spatial and 

temporal properties. Remote sensing images are acquired by sensors mounted on 

satellites, aircrafts or drones that capture the electromagnetic radiation reflected or 

emitted by the Earth’s surface and atmosphere. It is useful for various applications such 

as LULC mapping, environmental monitoring, disaster management, urban planning, 

resource exploration and crop mapping. 
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2.3.1 Types of Image Classification Techniques 

There are two main types of image classification techniques of RS technology 

such as unsupervised and supervised. 

 

a) Unsupervised Classification 

Unsupervised classification is a technique that does not require any prior 

knowledge or training samples from the user. It groups pixels into clusters based on 

their spectral similarity using algorithms such as K-means or ISODATA (Kumar et al., 

2022). The user then assigns meaningful labels to each cluster based on their visual 

interpretation or ancillary data. Unsupervised classification is an easy and fast way to 

segment an image, but it may not produce accurate or consistent results due to the 

variability of spectral signatures within and between classes (Yan et al., 2021). 

 

b) Supervised Classification 

Supervised classification is a technique that requires the user to provide 

representative samples (or training areas) for each LULC class of interest. The 

algorithm then uses these samples to learn the spectral signatures of each class and 

applies them to the entire image using a classifier such as maximum likelihood, 

minimum distance or ANN, RF, SVM etc. Supervised classification can produce more 

accurate and reliable results than unsupervised classification, but it requires more user 

input and may be affected by the quality and quantity of training samples (Gao & Liu, 

2014). 

 

2.3.2 Two different ways of Classification 

A. Pixel Based Classification 

B. Object Based Classification 

 

A. Pixel Based Classification 

Pixel based classification is a technique that uses only the spectral information 

of each pixel, such as the intensity or color, to assign it to a class. It does not consider 

the spatial relationship between pixels or the shape and size of the objects. Pixel based 

classification is simple and fast, but it may produce noisy or inaccurate results due to 
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mixed pixels, spectral variability and spatial heterogeneity (Whiteside & Ahmad, 2005; 

Duro et al., 2012). 

 

Pixel based classification can be performed using various algorithms, such as 

maximum likelihood, minimum distance, SVM and ANN. These algorithms use 

different criteria to measure the similarity or distance between pixels and classes. Pixel 

based classification can be applied to any type of remote sensing images, regardless of 

their spatial resolution or number of bands. However, pixel based classification may 

not be able to capture the semantic meaning or context of the land cover classes, 

especially for high resolution images that contain complex and diverse features (Yan et 

al., 2021). 

 

B. Object Based Classification 

Object based classification is a technique that uses both the spectral and spatial 

information of a group of pixels, called objects or image objects, to assign them to a 

class. It considers the shape, size, texture and context of the objects, as well as their 

spectral characteristics. Object based classification is more complex and time-

consuming, but it may produce more accurate and consistent results by overcoming 

some of the limitations of pixel based classification (Duro et al., 2012; Kotaridis & 

Lazaridou, 2021). 

 

Object based classification can be performed using various algorithms, such as 

segmentation, watershed or convolutional neural networks. These algorithms use 

different criteria to group pixels into objects based on their homogeneity or 

heterogeneity. Object based classification can also use different features to describe the 

objects, such as mean, standard deviation, compactness or entropy.  

 

Object based classification can be applied to high-resolution images that contain 

rich spatial information and require more detailed analysis. However, object based 

classification may not be suitable for low resolution images that have poor spatial 

information and require more general analysis (Gao & Liu, 2014). 
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2.3.3 Comparison and Applications methods 

Pixel and object based classification have different advantages and limitations 

depending on the characteristics of the remote sensing images and the objectives of the 

analysis. Pixel based classification is more suitable for low-resolution images that have 

simple and homogeneous features and require less user input and processing time. 

Object based classification is more suitable for high-resolution images that have 

complex and heterogeneous features and require more user input and processing time. 

 

Pixel and object based classification have different applications depending on 

the type and scale of the land cover classes. Pixel based classification is more suitable 

for mapping broad-scale classes that have distinct spectral signatures, such as water, 

vegetation or urban areas. Object based classification is more suitable for mapping fine-

scale classes that have similar spectral signatures but different spatial patterns, such as 

crops, forests or buildings. 

 

2.3.4 Challenges and Opportunities 

Remote sensing image classification faces several challenges due to the 

complexity and diversity of the Earth’s surface and atmosphere, as well as the 

limitations and variations of the sensors and platforms. Some of the common challenges 

are: 

 

 The presence of noise, clouds, shadows, haze and atmospheric effects that 

degrade the quality and consistency of the images. 

 The high dimensionality, redundancy and correlation of the spectral bands that 

increase the computational cost and complexity of the classification algorithms. 

 The lack of ground truth data or reference maps that are necessary to train and 

validate the classification results. 

 The dynamic nature of the land cover classes that changes over time due to 

natural or human-induced factors. 

 The scale mismatch between the spatial resolution of the images and the size of 

the land cover objects or phenomena. 

 



35 |                      Review of Literature 

 

To address these challenges, remote sensing image classification can benefit 

from some of the recent advances and opportunities in the field, such as: 

 

 The development of new sensors and platforms that provide higher spatial, 

spectral and temporal resolution, as well as wider coverage and accessibility of 

the images. 

 The application of machine and deep learning techniques that can learn complex 

and nonlinear features from large amounts of data without requiring much user 

intervention or domain knowledge. 

 The integration of multisource and multitemporal data can capture 

complementary and dynamic information from different sensors and periods. 

 The use of semantic web technologies and ontologies can facilitate the 

interoperability and standardization of the data and metadata across different 

sources and domains. 

 The involvement of crowdsourcing and citizen science can leverage the 

collective intelligence and participation of the public for data collection, 

annotation and validation. 

 

Several studies have compared pixel and object based classification for crop 

mapping using various types of remote sensing images. For example, Castillejo-

Gonzalez et al. (2009) found that “an object-based method out-performed five pixel-

based supervised classification algorithms (parallelepiped, minimum distance, 

Mahanalobis Distance Classifier, Spectral Angle Mapper, and MLC) for mapping crops 

and agro-environmental associated measures using Landsat TM images”.  

 

Belgiu et al. (2018) compared “pixel-based and object-based time-weighted 

dynamic time warping analysis for mapping crops using Sentinel-2 images”. They 

concluded that object-based analysis achieved higher accuracy than pixel-based 

analysis by exploiting both spectral and spatial information. 
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2.4 Area/ Acreage Estimation 

Crop yield and production estimation is an essential component of economic 

planning in agricultural sector (Gallego et al., 2014). It involves two main branches: 

crop area and yield estimation. Whereas crop area estimation is considered relatively 

easier than crop yield estimation (Craig and Atkinson, 2013). Many factors create 

complications in crop area computation such as small scattered and diversified cropping 

patterns, complex physiography, extended sowing process, field size, changes in 

cropping pattern, mixed cropping system with phenological differences, and short-

duration crops. 

 

A detailed review about the techniques that are used for the calculation of crop 

area was carried out by Craig and Atkinson (2013). Crop area estimation is 

conventionally carried out by comprehensively recording all farms or using samples 

that are collecting in the field. Following sampling methods namely, Area Frame 

Sampling (AFS), farm list sampling and multiple frame sampling is combination of first 

two sampling methods. In few instances, area estimation can be done based on 

professional judgement which results in qualitative/ voluntary crop reporters. Among 

other sources, “crop area estimate can be learnt from administrative surveys, crop 

processing units (for example, cotton or jute mills) and markets” (Ray, S. & Neetu. 

2017). 

 

Since conventional method uses professional expertise, it may induce human 

bias in final area estimate. Further, conventional area estimation methods are also time-

consuming, costly and tedious. For mountainous terrains, conventional method have 

proven many difficulty.   

 

Remote sensing tools can be used to negate many issues that are arising in 

conventional area estimation techniques. Since last few decades, crop area estimate 

using remote sensing tools have either been carried out directly or indirectly utilizing 

offering support to area sampling schemes. Some of the important advantages of remote 

sensing includes temporal capability, synoptic coverage, multispectral and 

multiresolution imageries pertaining to LULC in addition to crop differentiation. 
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Crop area estimation using remotely sensed satellite data began in the early 

1970s. In 1971, “the Corn Blight Watch Experiment was jointly carried out by the U.S. 

Department of Agriculture (USDA), the National Aeronautics and Space 

Administration (NASA), and several universities” (Sharples, 1973; Ray, S. & Neetu. 

2017). The objective of this experiment was to develop a method for detection and 

monitoring crop using satellite datasets. The experiment involved the use of Landsat 

satellite imagery to monitor the growth and health of crops in the United States. Some 

studies conducted in the 19th century to assess the capabilities of remotely sensed 

satellite datasets for crops inventory (MacDonald, 1984) such as the “Crop 

Identification Technology Assessment for Remote Sensing (CITARS) and the Large 

Area Crop Inventory Experiment (LACIE)” (MacDonald, 1984; Ray, S. & Neetu. 

2017). The LACIE experiment helped pave the way for further research and 

development in use of RS data for a variety of applications in agriculture. 

 

In recent years, advancements in remote sensing technology have led to the 

development of new sensors and platforms like unmanned aerial vehicles (UAVs) and 

hyperspectral sensors. These new technologies have further improved the accuracy and 

resolution of RS dataset for crop area estimation. 

 

Accurate crop area estimation is an essential first step in determining crop 

yields. Several methods are used to estimate crop area, including remote sensing, 

ground surveys, and statistical sampling. Remote sensing has emerged as a powerful 

approach for crop area estimation, with satellite-based platforms providing valuable 

information on LULC. 

 

Land cover area estimation is essential for monitoring and managing natural 

resources, understanding environmental changes, and assessing the impacts of human 

activities on ecosystems. Traditionally, land cover areas have been estimated/obtained 

through design-based approaches that use probability or random reference sampling. 

However, this method can be costly and requires an effective sampling design to ensure 

that the estimates are representative of entire study area (Zhang et al., 2019; Pengra et 

al., 2020). 
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In recent years, Earth-Observation-based mapping approaches have become 

increasingly popular for land cover area estimation. These approaches use remote 

sensing data, such as satellite imagery, to classify land cover types and estimate their 

areas. This approach does not require a huge reference sample, which can save time 

and resources too. Although, the lack of a reference sample can lead to bias in the 

estimates, particularly if the remote sensing data do not capture all the land cover types 

or if they are affected by atmospheric conditions or other factors that affect the accuracy 

of the classification (Kleinewillinghöfer et al., 2022). However, there are limitations to 

using remote sensing for crop area estimation. These include issues related to cloud 

cover, sensor resolution, and data processing. In addition, differences in crop 

phenology, planting practices, and cultural practices can lead to difficulties in 

accurately identifying and mapping crop types (Kumar et al., 2022). 

 

To overcome these limitations, the use of remote sensing products in 

combination with reference samples is becoming popular nowadays (Stehman & 

Foody, 2019; Centre et al., 2011). These hybrid methods can reduce sampling efforts 

and provide a more effective method to estimate land cover areas. The reference 

samples can be also used to calibrate the RS data, to validate the classification results, 

and estimate the accuracy of the estimates (Singh et al., 2020). This hybrid method can 

use different types of reference samples, including ground-based surveys, aerial 

photography, or other remote sensing data with higher spatial resolution. 

 

Nowadays, land cover is often extracted from remotely sensed data using a 

classification analysis, which involves grouping pixels or image segments with similar 

spectral characteristics into distinct land cover classes (Stehman & Foody, 2019). The 

resulting land cover map is a thematic map that shows the spatial distribution of LULC 

in the study area. This approach is widely used for land cover mapping and has been 

applied in various applications. 

 

Several studies have been conducted to map and estimate crop acreage using 

remotely sensed data at varying spatial resolutions (coarse to fine spatial resolution 

data). The Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat, 
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Sentinel-1, and Sentinel-2 satellites have been widely used in these studies (Mondal et 

al., 2014; Peng et al., 2011). In some studies, the MODIS data have been used to 

estimate crop acreage at a regional scale, while Landsat data have been used to estimate 

crop acreage at a field scale. Sentinel-1 and Sentinel-2 data have been used to estimate 

crop acreage at a regional to field scale. These studies have demonstrated the utility of 

RS dataset for crop mapping and acreage estimation. 

 

In India, the FASAL (Forecasting Agricultural output using Space, Agro-

meteorology and Land-based observations) program is a joint initiative by the Indian 

Space Research Organization (ISRO) and the Ministry of Agriculture and Farmers 

Welfare. The program aims to provide timely and accurate information on crop area, 

crop production, and yield estimation using remote sensing, satellite-based 

observations, and ground-based data. The program uses a combination of remote 

sensing data from satellites such as MODIS, Landsat, and Sentinel-2, as well as ground-

based weather data, to provide crop forecasts and yield estimations. The FASAL 

program has been implemented in several states in India and has been successful in 

improving crop planning and management (Arumugam et al., 2021; Latwal et al., 

2019). 

 

Nowadays, remote sensing satellite data-based studies have become gradually 

popular for crop studies to provide accurate and timely information on crop area, yields, 

and other crop-related parameters. However, studies that use both remote sensing and 

machine learning approaches for crop area estimation and mapping are still limited. 

 

2.5 Crop Yield and Production Estimation 

Crop yield estimation is a challenging task, due to complexity of factors (climate 

variability, soil conditions, pests and diseases, and cultural practices) that affect crop 

health, growth and production. Consequently, it requires a combination of field 

measurements, crop modeling and remote sensing data. Crop models can be used to 

simulate the impacts of different climatic variables on crop production, while field 

measurements such as crop biomass and leaf area index provide crucial information on 

crop health, growth and production.  
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The increasing demand for crop insurance at the plot-level is increasing the 

demand for crop area and yield estimation too. But traditional methods such as field 

surveys and crop cutting experiments (CCE) are still extensively used to estimate crop 

area and yield, which are costly and time-consuming. Field surveys require significant 

resources, including personnel, equipment, and transportation, while crop-cutting 

experiments can only provide estimates for small, localized areas. Therefore, there is a 

need for more efficient and accurate methods of estimating crop acreage and yield, 

which can be provided by advancements in remote sensing technology (Hudait & Patel, 

2022). 

 

Nowadays, remote sensing technology has emerged as a valuable tool, which is 

commonly used to track changes in crop growth and development, as well as to identify 

stress factors that may impact yield. Over the years, advancements in remote sensing 

technology have enabled more accurate and periodic data collection on crop area and 

yield. These technologies allow us to timely monitor crop health, growth and 

production and identify patterns and trends that may not be possible with other methods.  

 

The method of crop yield estimation based on the analysis of the relationship 

between the vegetation index value obtained from RS data and the actual crop yield 

(CCE data) on the ground is becoming popular nowadays (Mehdaoui & Anane, 2020; 

Iniyan et al.,2022). Vegetation indices are popular tools for monitoring the vegetation, 

greenness, productivity and health of crops. 

 

Some previous studies suggest that various spectral indices have been 

developed using remotely sensed satellite data to estimate vegetation properties such as 

NDVI (Rouse Jr et al., 1973), GNDVI (Gitelson et al., 1996), LSWI (Xiao et al.,2002), 

EVI (Huete et. al., 2002), which have been utilized in many studies for crop mapping 

and yield estimation. Among these indices, NDVI is the most popular vegetation index, 

which is widely used in empirical regression models to predict crop yields (Franch et 

al., 2019). Prasad et al. (2006) conducted a study to assess and predict crop yields using 

a piecewise linear regression method with breakpoint. In their analysis, they considered 

several important factors including NDVI, soil moisture, surface temperature, and 
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rainfall data. Ferencz et al. (2010) used “two methods for yield estimation of different 

crops in this study using remote sensing satellite data. Wherein, first method was 

developed for field-level estimation and involved the selection of reference crop fields 

using Landsat Thematic Mapper (TM) data for classification.  

 

The second method presented used only NOAA - AVHRR and officially 

reported county-level yield data. The results showed that the developed method was 

stable and accurate for operational use in county-level yield estimation.” Ren et al. 

(2011) demonstrate the potential of using remote sensing approaches for monitoring 

agricultural systems and assessing their vulnerability to drought. The results of study 

indicate a significant negative correlation between agricultural production and 

occurrence of meteorological droughts, highlighting the impact of drought as a stressor 

to agricultural production systems. 

 

A semi-automated approach has been developed using Indian Remote Sensing 

(IRS) satellite data and vegetation indices to identify and monitor annual cropping 

patterns (Mondal et al., 2014). Recently, Rao et al. (2021) demonstrated the potential 

of high-resolution satellite imagery and SVM for identifying major crops in eastern 

India, achieving 85% classification accuracy. A study examines the relationship 

between satellite data from various sensors, soil/relief parameters and crop yield data. 

Wherein, the correlation is higher when the crop and field are spatially heterogeneous 

and delineated at the correct phenological timing. They suggest that the higher 

resolution and additional red edge spectral band are advantages (Vallentin et al., 2022). 

 

Remote sensing based modern yield estimation techniques offer the advantages 

of accuracy, efficiency and dynamic estimation compared to the traditional manual field 

survey method. With the development of Internet, cloud computing platform, big data, 

high resolution remotely sensed satellite imageries, and geospatial datasets, it has been 

widely utilized for crop yield estimation (Wei et al., 2018). Over the years, multiple 

techniques have been devised to estimate crop yield using remotely sensed satellite data 

(Jiang et al., 2014 and Singh et al., 2020). However, some methods have encountered 
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challenges in accurately predicting crop yields due to the unavailability of satellite 

datasets caused by climatic conditions like cloud cover (Awad et al., 2019). 

 

2.6 Flood 

Floods are a recurrent phenomenon in many parts of the world (Jain et al., 

2023). India is a country which is prone to frequent floods, causing massive socio-

economic and loss of lives. Despite significant investment and continued flood control 

efforts, the problem of flooding remains a major challenge for the country, especially 

for the Indian state of Bihar. Where, nearly half of the region (North Bihar) gets flooded 

every year due to the overflow of major rivers during the rainy season. This region is 

prone to severe flooding during the monsoon season due to the overflow of several 

rivers that pass through the region. These rivers are Mahananda River, Koshi River, 

Bagmati River, Budhi Gandak River and Gandak River, which all originate in Nepal. 

which makes it highly susceptible to flooding every year. The region receives heavy 

rainfall during the monsoon season, which causes the rivers to overflow and inundate 

the surrounding areas. The Kosi, Gandak, and Bagmati rivers are the major rivers that 

cause flooding in the state. Floods have significant socio-economic impacts in the 

region.  

 

This region (North Bihar) faces severe devastation in the form of crops, 

livestock, and infrastructure, which leads to significant economic losses. Moreover, 

floods result in the displacement of people, loss of property, and loss of life. According 

to the National Crime Records Bureau (NCRB) report 2021, Bihar has recorded the 

highest number of flood-related deaths in the country in past decade. In 2021, the state 

witnessed 351 fatalities, which is the highest among all Indian states. To address the 

problem of floods in Bihar, there is a need for comprehensive and integrated approach 

that incorporates climate change adaptation strategies, improved early warning 

systems, modern technology and effective community participation.  

 

2.6.1 Remote Sensing Technology for flood management  

In this context, Remote sensing satellite-based approaches can provide critical 

information to help authorities take preventive measures during flood events. Remote 
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sensing technology can be used to monitor the water levels of rivers and reservoirs, 

detect the extent of floods, and identify areas that are at the highest risk of flooding. 

This information can help prioritize relief and rescue operations and ensure that 

resources are directed to the areas that need them the most. 

 

Determining the extent of flooding is crucial for effective disaster management. 

In-situ and remote sensing methods are being widely used for flood mapping, In-situ 

method involves collecting data directly from the flood water level on the ground. This 

can be done using water level gauges, measurement tapes and other instruments. In this 

context, remote sensing methods rely on data obtained from aerial or satellite sensors, 

which can cover larger areas (synaptic view) in a shorter amount of time. 

 

According to Jensen (2013), remote sensing is a valuable tool for flood mapping 

because it allows for data collection in a timely and cost-effective manner. Remote 

sensing data can be used to detect and monitor floodwater levels, as well as identify 

flood-prone areas. The data can also be used to estimate the volume of water in flooded 

areas and track changes over time. Satellite imagery is capable of estimating the extent 

of flooding over vast geographic areas, including areas that are difficult to access. 

Additionally, it allows continuous monitoring of flood events at regular intervals, as 

noted by Bhatt and Rao (2016). Tanguy et al. (2017) have also highlighted that satellite-

based imagery is the ideal approach for determining the extent of flood-affected regions 

due to its synoptic view. But, it may not be possible to avoid flood risks or prevent their 

occurrence. However, it is entirely possible to limit their impact and minimize the 

damage (Elkhrachy, 2015). 

 

2.7 Research Gap 

In recent years, several studies have been conducted for crop mapping. Wherein, 

remote sensing satellite data, geospatial technology, and machine learning approaches 

have transformed the agricultural sector, which provides new opportunities for 

sustainable and efficient crop area, yield and production mapping and monitoring. 

Moreover, some of the major gaps are as follows; 
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 There is no any specific study conducted to identify the maize (🌽) crop acreage 

with integration of high-resolution satellite (🛰) data (Sentinel-2 and Planet-

NICFI) in Bihar.  

 
 Traditional methods of crop yield estimation are costly and time-consuming. 

Therefore, there is a need of modern approaches for maize crop yield estimation, 

which require remote sensing satellite data, CCE data, statistical and machine 

learning approaches. 

 
 Recurring flood is a common phenomenon in Bihar, which damage people's 

lives, infrastructure and agriculture sector every year. Despite this, limited 

studies have been conducted on flood’s impact on agriculture. 

 
 Synthetic aperture radar (SAR) data have more potential than optical datasets 

for flood mapping because of their all-weather sensing capability. However, 

timely processing of large amounts of SAR datasets is a major challenge for 

flood mapping and monitoring. 

 
 Numerous studies have been carried out on flood disasters in Bihar, which 

require high-end computer infrastructure such as local storage and commercial 

GIS software to analyse the complex data sets (optical and SAR remote sensing 

satellite datasets) involved in flood studies. But, no any robust model has been 

developed to identify the flooded area within a short time of period. 

 
 In recent years, several studies have been carried out to studies crop phenology 

by using satellite data. But, no specific studies have been conducted in India to 

assess the impact of floods on crop acreage, yield, pattern and production.  
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CHAPTER-3 DATA USED AND METHODOLOGY 

 

Floods are a major cause of huge damage in the form of loss of life, property, 

agriculture and other required natural resources all over the world. In India, about half 

of Bihar (North Bihar) face severe flood frequently due to overflow of major rivers 

during monsoon season. The Kosi river flood is well known for devastating and 

frequent changes in its course. On the other hand, it is also providing nutrients for the 

agricultural land (specially for rabi crops). Therefore, a rapid and robust flood extent 

demarcation and affected area mapping system is needed in North Bihar, India to 

prioritise the relief and subsidy.  

 

In this context, JavaScript code has been edited, tested and developed for the 

processing of enormous (big data) datasets hosted on the GEE cloud computer platform. 

This JavaScript code is capable to robust flood mapping and monitoring using 

Microwave (SAR) satellite datasets at large scale within a short time of period. 

Integrated satellite imagery of Sentinel-2 & PlanetScope, and Machine learning (ML) 

approaches have been used for maize crop mapping and acreage estimation in North 

Bihar, India.  

 

In this study, crop yield predictive model has been also developed using Crop 

Cutting Experiment (CEE) & remotely sensed datasets and district-wise maize crop 

yield and production have been estimated. We expected that this tested algorithms, 

edited and developed web-based JavaScript code can be applied anywhere in the world 

for flood extent demarcation, precisely crop mapping and the impact of flood on 

acreage and yield within a short time of period. In addition, crop yield predictive model 

has been also developed for district/field-wise maize crop yield and production 

estimation. 

 

3.1 Data Used 

In this study, the major emphasis is on north Bihar which is severely affected by flood 

during the monsoon season. Therefore, various datasets were required to perform the 

analysis as shown in Table 3.1.  
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Table 3.1: Datasets used in the study 

Note: MSI- Multispectral Instrument, NICFI- Norway's International Climate and Forests Initiative, and  

ESA- European Space Agency 

Data Resolution Source 

 

Duration Aim 

Sentinel-1 

SAR  

5 x 20  
Metres   

ESA 

 

June to October (2020 & 2021) 
 Flood Extent mapping 

Sentinel-2 

(MSI) 

Optical 

10 Metres 

March (2020 & 2021)  Land Use Mapping 

 

 

January to May (2022 & 2023) 

 Extract REI, NDVI, GNDVI, LSWI and EVI 

for Yield estimation Crop Yield estimation  

PLANET-

NICFI 

(PlanetScope) 

4.77 Metres 
NICFI 

 
 Maize Crop Acreage estimation 

Handheld 

GPS/ GPS 

enabled 

Smart Phone 

Ground Truth 

(GT) data 

collection 

Field 

Survey 

 

February to March (2022 & 

2023) 

Sample/ input/ training data for 

 crop differentiation 

 acreage estimation and validation 

Handheld 

GPS/ GPS 

enabled 

Smart Phone 

Crop Cutting 

Experiment 

(CCE) 

Field 

Survey 

 

April to May (2022 & 2023) 
Input data or training data for 

 yield estimation  

 predictive model development 

Shuttle Radar 

Topography 

Mission 

(SRTM) 

30 Metres 

NGA 

and 

NASA 

 

2000 
 Terrain correction 
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3.1.1 Sentinel-1 SAR  

SENTINEL-1 (S-1) is a radar imaging mission developed by the European 

Space Agency (ESA) as part of the Copernicus programme. Launched in 2014, S-1 is 

equipped with a C-band (instrument at 5.405GHz) Synthetic Aperture Radar (SAR) that 

offers high-resolution imagery of the Earth's surface in all-weather (can penetrate 

clouds), day and night conditions with a wide swath of 250 km. The mission consists 

of two identical satellites that orbit the Earth, covering the entire planet. Its revisit 

period is twelve days with single satellite and six days with double satellite. 

SENTINEL-1's capabilities have proved particularly useful in monitoring and 

responding to natural disasters such as floods, forest fires, and oil spills, as well as in 

mapping sea ice, tracking shipping, and monitoring crop phenology. The data collected 

by SENTINEL-1 is freely available to scientists, researchers, and the public, enabling 

a better understanding of our planet and its changing environment. 

 

The four unique modes of Sentinel-1 are as follows; 

i. Interferometric Wide Swath (IW), provides a broad coverage of the Earth's 

surface with a swath width of up to 250 km and having 5 x 20 m spatial 

resolution. 

ii. Extra Wide Swath (EW), provides an even wider coverage with a swath width 

of up to 400 km and 25 x 100 m spatial resolution (3-looks). 

iii. Stripmap (SM), provides high-resolution imagery with a swath width of up to 

80 km and 5x5 m spatial resolution. 

iv. Wave mode (WV) is designed specifically for monitoring ocean waves, 

currents, and wind direction, and has a swath width of up to 20 km and 5 x 20 

m spatial resolution.  

 

The combination of these four modes allows Sentinel-1 to capture a wide range 

of imagery for variety of applications, including disaster response, land and ocean 

monitoring, and scientific research (Access ESA Website/ SciHub; 

https://scihub.copernicus.eu). 
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Sentinel-1 data products  

 Raw Level-0 data: It is the original unprocessed data, and are primarily 

intended for specialized scientific usage.  

 Level-1 Single Look Complex (SLC) data: It comprises complex imagery 

with amplitude and phase information and is systematically distributed but 

limited to specific relevant areas.  

 The Ground Range Detected (GRD) Level-1 data: It is systematically 

distributed and includes multi-looked intensity-only data, making it suitable for 

various applications like land cover mapping, disaster management, and forest 

monitoring. 

 Level-2 Ocean (OCN) data: It provides geophysical parameters of the ocean, 

such as ocean currents and wind speed. The OCN data products are 

systematically distributed and are used for a variety of applications, including 

coastal monitoring and maritime traffic management. 

 

In the present study, GRD data is used to map flood extent, which consists of 

four band combinations. Depending on the instrument's polarization settings, each 

scene contains either one or two of the four possible polarization bands. In which, the 

Interferometric Wide swath (IW) mode has been used due to its conflict-free nature and 

the availability of both vertical transmit, vertical receive (VV) and vertical transmit, 

horizontal receive (VH) polarization. The four possible combinations are single band 

VV or HH, and dual-band VV+VH or HH+HV. SAR is a powerful imaging technology 

that uses microwave signals to create high-resolution images of the Earth's surface, 

even in adverse weather and lighting conditions. The IW mode of Sentinel-1 SAR 

provides a wide swath, which enables large area coverage with high temporal 

resolution. Additionally, combination of VV and VH polarization enhances the 

interpretation of the radar signals, especially in detecting changes in the target's surface.  

 

3.1.2 Sentinel-2 Optical 

Sentinel-2 is a satellite mission developed by the European Space Agency 

(ESA) as part of the European Union's Copernicus Programme. The primary aim of this 
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mission is to provide high-resolution, multispectral imagery of Earth's land and coastal 

regions. These satellites are equipped with multispectral imager (MSI) that can capture 

images in 13 spectral bands ranging from visible to shortwave infrared with a resolution 

of 10, 20, or 60 meters, depending on the band (Fig. 3.1). 

 

Figure 3.1: Wavelengths and spatial resolutions of Sentinel-2 satellite (MSI 

instruments) (Source: https://sentinels.copernicus.eu) 

 

This enables the satellites to observe the Earth's surface in high detail, making 

them useful for wide range of applications, including agriculture, forestry, and land-use 

monitoring. The revisit frequency of this satellite is ten days with each single satellite 

and five days with combined/dual satellites. This frequent coverage is particularly 

useful for monitoring changes over time, such as crop growth and land-use changes. 

 

The Sentinel-2 mission currently consists of two satellites in orbit, Sentinel-2A 

and Sentinel-2B. Both were launched in 2015 and 2017, respectively. The mission is 

expected to continue until at least 2027. The data from the mission are freely available 

to the public through the Copernicus Open Access Hub. Its swath is 290 kilometres and 
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its orbit is sun-synchronous at an altitude of 786 km with worldwide coverage. This 

satellite has 10 m spatial resolution (band: 2, 3, 4 and 8), 20 m (band: 5, 6, 7, 8a, 11 and 

12) and 60 m (band: 1, 9 and 10). Which is currently being used for land use mapping, 

crop area, yield and production estimation. 

 

3.1.3 PLANET-NICFI (PlanetScope) 

PLANET-NICFI is a collaboration between Planet and Norway's International 

Climate and Forest Initiative (NICFI) that aims to improve monitoring of tropical 

forests to combat deforestation and reduce greenhouse gas emissions.  

Table 3.2: Band-wise resolution scale and description 

Band Min Max Scale Resolution Description 

B 0 10000 0.0001 4.77 meters Blue 

G 0 10000 0.0001 4.77 meters Green 

R 0 10000 0.0001 4.77 meters Red 

N 0 10000 0.0001 4.77 meters Near-infrared 

(Source: https://developers.google.com) 

The initiative provides high-resolution satellite imagery or visual basemaps to 

support NICFI's forest monitoring efforts. It is a constellation of small satellites that 

offer high-resolution remotely sensed satellite data of Earth's surface. These datasets 

have spatial resolution of about 5 (4.77m) metres, which can be used to monitor land 

use change and deforestation in tropical regions (Gorelick et al., 2017). In addition, it 

is an 8-bit time series mosaic dataset, optimized to reduce the effects of clouds, haze, 

and other image variability, providing a clear and consistent view of Earth's surface.  

 

This dataset can be freely accessed for non-commercial purposes by researchers 

and scientists through the GEE, a cloud computing platform. In collaboration with 

Google and the Norway’s International Climate and Forest Initiative (NICFI), 

PlanetScope's high-resolution composite basemaps for tropical regions have recently 

become accessible within GEE (Vizzari, 2022). In GEE platform, it is available in four 

bands viz. Blue, Green, Red, and Near-infrared. Each band has a spatial resolution of 

https://developers.google.com/
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4.77 meters, which is the same as the original imagery captured by Planet's satellites 

(Planet Team, 2017). This dataset is available as a monthly composite since September 

2020. Now, users can access it by signing up and accepting the terms at 

planet.com/nicfi. In the present study, PlanetScope's monthly mosaic basemaps from 

January to April of 2022 & 2023 have been used. Presently, the PlanetScope dataset 

has been used for accurately acreage, yield and production estimation of study area. 

 

3.1.4 Shuttle Radar Topography Mission (SRTM) 

The Shuttle Radar Topography Mission (SRTM) data is a high-resolution digital 

elevation model (DEM) generated from radar data collected by Space Shuttle 

Endeavour in February 2000. The data provides a highly accurate and detailed 

representation of the Earth's surface topography, including features such as mountains, 

valleys, and rivers. The SRTM data has a spatial resolution of approximately 30 meters 

and covers most of Earth's surface between 60◦N and 56◦S latitude. The data is available 

in two versions: the original SRTM dataset, which has a resolution of 1 arcsecond 

(approximately 30 meters), and the SRTM-3 dataset, which has a coarser resolution of 

3 arcseconds (approximately 90 meters). The SRTM data is freely available to the 

public through a number of online sources, including the United States Geological 

Survey (USGS) EarthExplorer website (http://earthexplorer.usgs.gov/), NASA's 

Earthdata website, and the CGIAR-CSI SRTM website. The data can be downloaded 

in a variety of formats, including GeoTIFF, ASCII, and DEM. 

 

3.1.5 Other Datasets 

The study have also used IMD (IMD, 2020/2021)/India-WRIS (2020/2021) data 

for rainfall observations, Population data from Census of India (Census of India, 2011), 

Global Human Settlement Layer (GHSL) by European Commission (JRC, 2015) and 

Fatalities data from State Disaster Management Department, Bihar (Anonymous, 

2020b). 

 

3.1.6 Ground Truth (GT) data / Reference data Collection  

Ground truth data collection is an essential aspect of remote sensing-based 

research, as it provides accurate and reliable reference data for image analysis. Road 
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network and LULC images of the study area are prepared before going to the field for 

ground truth collections, which speeds up the data collection process and helps in 

saving time. GT data were collected randomly via handheld GPS and smartphone-based 

applications for identification of crop types and specific crops such as maize, wheat etc. 

in the study area (Table 3.3; Fig. 3.2 & 3.3; Appendix-A). About 1451 GT points in 

2022 and 1327 in 2023 were collected from the study area (Fig. 3.2), which included 

information like crop name, district name, farm size, geographical location, field 

photographs and names of adjacent crops. After the collection of GT data, these points 

(GT) were used to train machine learning algorithms and validate the data during 

classification/ identification and accuracy validation. About 25 per cent of GT data has 

been used for accuracy assessment. 

 

Figure 3.2: GT data collection for crop identification 
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Ground Truth (GT) Data Collection  

Figure 3.3: Sample of GT data collection  

3.1.6.1 Field photographs:  

Field photographs were also taken in the study area (Fig. 3.4 & 3.5). This 

photograph helps in visual documentation, capturing the physical characteristics of the 

study area such as the surrounding environment, land use patterns and other notable 

observations. It can also be used as visual evidence that can support the findings of the 

study. Researchers can record and preserve its current status for future comparison, 

analysis and better understanding of the study area.
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Figure 3.4: Field photographs of study area (3A) 

GT FP-1 GT FP-2 

GT FP-3 GT FP-4 
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Figure 3.5: Field photographs of study area (3B) 

GT FP-5 GT FP-6 

GT FP-7 GT FP-8 
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3.1.7 Crop Cutting Experiment (CCE) Data 

The crop cutting experiment (CCE) data is widely used in agriculture for crop 

yield estimation, which is a traditional and accurate method to assess crop yields. It is 

based on the principle of random stratified sampling (so-called smart sampling), where 

the total area under study is divided into strata, and a sample of plots is randomly 

selected from each stratum (MNCFC,2020; Chaudhari et al. 2019; Tripathy et al., 

2022). Wherein, randomly selecting a sample of fields from a large area and physically 

harvesting the crops from the selected fields to determine the average yield and the total 

production. The data collected from CCE was used to calculate total crop yield over a 

large area. Hence, the CCE was perfomed in the experimental site (Fig. 3.6). Wherein, 

about 110 to 122 locations of the CCE plots for each year were randomly selected based 

on vegetation condition (NDVI values), length of growing period and maize acreage 

extent map of North Bihar.  

 

 

Figure 3.6: Crop Cutting Experiment 

The CCE data is often used to validate and calibrate remote sensing datasets for 

crop yield estimation. It is also used to ground truthing the remote sensing data, which 

helps in improving the accuracy of the estimation. Apart from that, this CCE dataset 
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has been utilized as training data for the development of a yield predictive model, 

average maize crop yield estimation and accuracy testing or model validation. This 

dataset can be used for various purposes, such as monitoring the productivity of crops, 

estimating the supply and demand of crops, and making informed decisions about 

farming practices. 

 

3.1.7.1 Field Photograph of Crop Cutting Experiment 

The field photographs of CCEs were taken from the study area, as depicted in 

Figures 3.7 and 3.8. The CCE involved gathering data on crop yield and productivity 

by physically measuring and harvesting samples of crops from a selected area within 

the study site. The collected field photograph can be used as visual evidence of the 

experiment, showcasing the specific crops, their growth stage, and the sampling process 

such as experiment's setup and execution. It adds transparency, credibility, and a visual 

context to the findings and conclusions drawn from the study.  

 

Therefore, some field photographs of the study area have been included in the 

thesis to clearly understand the geographical context and ground reality of the study 

site. Figure - CCE FP-1 and CCE FP-2 represent the mature or harvesting stage of maize 

crops, which is the ideal stage for CCE data collection from the field (Fig. 3.7 & 3.8). 

Whereas, Figures – YW FP-1, YW FP-2 and YW FP-3 represent the maize crop yield, 

which is being weighed to estimate the total yield of the entire field (Fig. 3.9).
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Figure 3.7: Field Photograph of Crop Cutting Experiment (FP-1) 

 

CCE FP-1 
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Figure 3.8: Field Photograph of Crop Cutting Experiment (FP-2) 

 

CCE FP-2 



60 |                                                  Data Used and Methodology 
 

 

 

Figure 3.9: The yield of the extracted crop is being weighed to estimate the total yield of the entire area. 

 

 

YW FP-1 YW FP-2 YW FP-3 
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Here, CCE was done by randomly selecting several plots. Once the plots were 

selected, the crops were harvested (Fig. 3.6). After this the crops were extracted, dried 

and weighed (Ray et. al., 2021). The average yield of the crops harvested was then used 

to estimate yield of entire field. In the present study, remote sensing satellite was also 

used to select representative samples for CCEs. By using satellite data to identify areas 

with similar crop conditions, it is possible to select samples that are more likely to be 

representative of the overall crop population. This can help to improve the accuracy of 

CCEs. 

 

Nowadays, CCE is a valuable approach for estimating crop yields. It is being 

used by governments, farmers, and businesses to make decisions about crop production 

and marketing. CCE is also used to track changes in crop yields over time. 

 

Here are some of the benefits of using CCE; 

 It is a relatively accurate method of estimating crop yields. 

 It is a cost-effective method of estimating crop yields. 

 It is a quick and easy method of estimating crop yields. 

 It can be used to estimate yield of any crop. 

CCE is a valuable tool for anyone who needs to estimate crop yields. It is an accurate, 

reliable and cost-effective method of estimating crop yields. 

 

3.2 Software Used 

GIS software allowed for the effective management and integration of spatial 

data, including maps, satellite imagery, and aerial photographs. It facilitated the 

creation of detailed and accurate geospatial datasets, which were essential for mapping 

and visualization purposes. By overlaying various layers of datasets, researchers can be 

able to identify patterns, relationships, and trends in the geographic context. 

 

In the present study, GIS and digital image processing software have been used 

to collect, analyze and interpret geographic data and images. The use of the software is 

as follows. 
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3.2.1 ArcGIS 10.5  

It is a highly used commercial GIS software, which is widely used in both 

academic and industry. Its wide range of capabilities for data management, analysis and 

visualization make it a popular choice among professionals in various fields. One of the 

key strengths of ArcGIS is its robust data management capabilities. It allows users to 

efficiently organize, store, and manipulate diverse types of geographic data, including 

maps, satellite imagery, and multi-sensor data. The software provides tools for data 

integration, cleansing, and quality assurance, ensuring that the information utilized is 

accurate and reliable. Hence, the software has been used to complete the necessary 

process and prepare the map layout for the study. 

 

3.2.2 QGIS (Quantum GIS) 

The QGIS is an open-source GIS software that is gaining popularity due to its 

free and open-source license. It offers many of the same features as ArcGIS, but with a 

different user interface. This software is widely used in various fields, including 

academia, industry, and government agencies. It can be customized and extended by 

the user community as per their choice. This fosters innovation and allows for the 

incorporation of new functionalities and plugins to enhance the software's capabilities. 

In the present study, this software has been used for data accessing and map preparation 

purposes.   

 

3.2.3 Google Earth Engine 

Google Earth Engine is a cloud-based platform and geospatial analysis tool 

developed by Google that enables users to access and analyze vast amounts of satellite 

imagery and geospatial data. It offers a range of features and capabilities that make it a 

valuable resource for research, monitoring, and analysis. It offers vast collection of 

satellite imagery and geospatial datasets. Users can access a diverse array of high-

resolution imagery from various satellite missions, including Landsat, Sentinel, and 

MODIS. Additionally, the platform provides access to climate, environmental, and 

socioeconomic datasets, allowing for comprehensive analysis. It utilizes Google's cloud 

computing platform to handle large datasets and complex analytical tasks efficiently 

without the requirement of local storage. 
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Nowadays, GEE platform is being commonly used for explore the Earth 

surface, track changes over time, map trends and identify patterns. User can build 

custom applications using GEE's API to visualize data, analyze trends and share their 

findings with others. Here, the GEE platform was used to access SAR and optical data 

and estimate flood extent, land use/land cover mapping and acreage estimation. 

 

3.3 General Methodology 

In the present study, a three-step methodology is employed to achieve the 

objectives of the study. The first step is specifically designed for flood extent mapping 

and monitoring, while the second step is intended to discriminate maize from other 

crops and estimate the acreage of maize. The third step focuses on the estimation of 

maize crop yield and production. A flowchart of the methodology is shown in Fig. 3.10. 

 

1st Steps  

Sentinel-1 SAR data has been utilised for flood extent mapping. The LULC map 

has prepared using sentinel-2 MSI and PlanetScope datasets for extracting flooded 

agriculture land. All the necessary analysis, such as the pre-processing of Sentinel-1 

SAR datasets, was carried out on the GEE cloud platform using the SNAP software 

package. The GEE platform provides a robust and efficient way to manage and process 

massive amounts of remotely sensed dataset, while the SNAP software package offers 

numerous features for SAR data processing and analysis.  

 

The combination of GEE and SNAP allowed for the seamless execution of pre-

processing steps and the generation of high-quality SAR images for accurate flood 

extent mapping. Wherein, thresholding technique has been utilised for identification of 

inundated pixels. An automated thresholding approaches can automatically detects 

threshold value to distinguish the water pixels from other pixels without having any 

training sample datasets (Liang, J et. al., 2020). After that, the pre-flood layer of water 

bodies was deducted from the obtained flood extent to get the final result. The detailed 

methodology is given in Chapter-4. 
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2nd Steps  

Remotely sensed satellite datasets have been used to differentiate maize from 

other crops and estimate the acreage of maize. Here, we used various classification 

Machine learning algorithms such as CART, RF and SVM classifiers to classify maize 

from other crops using GT data. Then, the performance of utilized approaches was 

compared and analysed in terms of overall classification accuracy. This work has been 

done to provide accurate and timely information on maize acreage and its distribution, 

which can be useful for crop management and food security planning. The detailed 

methodology is given in Chapter-5. 

 

3rd Steps 

For crop yield estimation, a freely accessible Google’s GEE platform has been 

used to process voluminous dataset of multiple dates NICFI-PlanetScope and Sentinel-

2 remote sensing satellite imagery. Because, this platform has the capability to analyse, 

visualize and access massive datasets such as Landsat, Sentinel, MODIS, PlanetScope 

etc. achieve without the requirement of a local storage system (Amani et al., 2020) and 

GIS Software. The Sentinel-2 imagery was harmonized and resampled to the exact 

resolution as PlanetScope (4.77 m) using the bicubic interpolation function (Keys, 

1981) in the GEE platform. A fusion algorithm have also applied to merge Sentinel-2 

and NICFI data using Web-based GEE JavaScript code ‘var fusion = 

ee.Image.cat(sentinel2, nicfi);’ . The detailed methodology is given in Chapter-6. 

 

Here, the cumulative flowchart of step-1, 2 and 3 is given for clear 

understanding of the present study (Fig. 3.10). Wherein, Step-1 has been developed for 

estimating the extent of flood and its impact, Step-2 for crop acreage estimation and 

Step-3 for district-wise crop yield and production estimation. In the flowchart, different 

colors have been used to represent various processing steps. Yellow indicates the 

processing steps involving GT and CCE data collected using handheld GPS devices. 

Blue is used for processing steps carried out on the GEE platform, specifically for SAR 

data processing used in flood extent mapping. Violet represents processing steps related 

to optical data used for crop acreage and yield estimation. Finally, green is used to 

denote the final output generated by the adopted method. 
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Figure 3.10: Overall flowchart of research methodology 
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3.4 Concluding Remarks 

This chapter explains the dataset used and the methodology adopted for the 

study. Wherein, A cumulative flowchart of step 1, 2 and 3 is given for a clear 

understanding of the present study. Here, step 1 is developed for estimating the extent 

of flood and its impact, step 2 for crop acreage estimation and step 3 for district wise 

crop yield and production estimation. In the next chapter, flood extent and affected area 

mapping of the study area is explained in detail.
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CHAPTER-4 FLOOD EXTENT AND AFFECTED AREA 

MAPPING 

 

4.1 Introduction  

Flood is a major natural disaster in the Indian state of Bihar. Which has a severe 

impact on the loss of properties, infrastructures and agriculture every year. Rapid 

Growth of urban, deforestation, unplanned development and erratic rainfall are the main 

causes of frequent floods in North Bihar. Bihar is a state in India where about 76 percent 

of the population is dependent on agriculture, which is severely affected by frequent 

floods (Kumar et al., 2022). However, floods are considered a regular concern mostly 

in North Bihar during the monsoon season. Due to overflow of rivers in neighbouring 

country Nepal, North Bihar has experienced severe floods during the three decades 

(Freer et al., 2013 and Kumar et al., 2022). But the current COVID-19 pandemic has 

worsened the situation, where natural disasters and other factors have disrupted the 

economic and social stability of communities. Floods created significant impact on 

agricultural sector, which is a major source of livelihood in Bihar. When floods occur, 

crops are completely destroyed or damaged, making it difficult for farmers to earn a 

living. Additionally, floods have damaged homes and other infrastructure, making it 

unsafe or impossible for people to stay in their communities. As a result, many people 

in North Bihar are forced to migrate to other areas in search of work and income during 

floods to sustain their lives. It is a difficult and often traumatic experience, as families 

are separated and individuals are forced to leave their homes and communities behind. 

Efforts to address the root causes of migration during floods, such as investing in flood-

resistant infrastructure and promoting economic diversification, can help to reduce the 

need for people to leave their homes in search of livelihoods during times of crisis in 

north Bihar. 

 

To mitigate the impact of floods, an early warning system for floods in Bihar is 

also highly needed. Hence, the role of geospatial technology for flood extent mapping 

and monitoring is important for mitigating the impact of floods in Bihar. This 

technology is capable to monitor the flood extent and to provide real-time information 

of flood impact. Because, it allows for the collection of data on rainfall, water levels, 
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and soil moisture, which can provide valuable information to farmers and local 

authorities to prepare for floods and make decisions about when to plant, harvest, and 

evacuate the population in the event of a flood. Synthetic aperture radar (SAR) data has 

an upper edge than multi-spectral optical datasets for flood mapping and monitoring 

due to its all-weather sensing capability (in cloud conditions). 

 

The European Space Agency (ESA) has launched “Sentinel-1A satellite on 3 

April 2014 and Sentinel-1B was on 25 April 2016”. Its revisit time is six days at equator 

with two satellite (Torres et al., 2012). This satellite is openly available to all.  

Nowadays, the Remotely Sensed Earth Observation (EO) datasets are being commonly 

used for disaster management purposes (Schumann et al., 2018), which is freely 

available for researchers. However, due to unavailability of resources to download, 

store and process satellite data is a huge task for the users. 

 

Hence to resolve these complications, Google launched the most advanced 

cloud-based geo-computing platform “GEE”. This platform enables to processing of 

huge satellite datasets without requiring local storage (Ghosh et al., 2022).  

In the present study, Sentinel-2 MSI and PLANET-NICFI (PlanetScope) datasets have 

been utilized for LU/LC mapping and Sentinel-1 for flood extent mapping and 

monitoring.  

 

The ability of SAR sensors to detect extent of flooding depends on different 

scattering mechanisms. “For the identification of inundated pixels, several SAR-based 

flood identification methods being used scattering mechanism by applying backscatter 

thresholds to satellite imagery” (Chini et al., 2017). Usually, the change detection 

technique is being utilized for the identification of flooded pixels using SAR datasets. 

 

Likewise, various methods and indices exist for the extraction of waterbodies 

using optical and microwave satellite datasets. The NDWI was proposed by McFeeters 

in 1996 and was shown to be a robust index for detecting waterbodies, especially in 

areas with high vegetation cover. The MNDWI was proposed by Xu in 2006 as a 

modification of NDWI, specifically designed for urban areas. It is known to be effective 
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for extracting waterbodies in urban areas with high reflectance from built-up structures. 

Recently, the AWEI was developed by Feyisa et al. in 2014 and is designed to 

overcome the limitations of NDWI and MNDWI in areas with mixed pixels, such as 

rivers or wetlands. AWEI is based on a combination of the green, blue, and red bands, 

as well as the shortwave infrared and thermal infrared bands, which allows for more 

accurate detection of waterbodies. These indices have been widely used and validated 

for detecting waterbodies and assessing the impact of floods. 

 

Apart from this, thresholding techniques are also being used for identification 

of flood extent using JavaScript code. Therefore, it is always necessary to have accurate 

data of flooded areas to make an accurate assessment of the damage to make a viable 

decision on prioritizing relief. 

 

Many research has been undertaken over the years to reduce the consequences 

of frequent floods in Bihar, India, using optical and SAR satellite datasets. But limited 

studies have been conducted, that focus on the effects of floods on agriculture that 

utilizing cutting-edge technologies like machine learning algorithms, high-resolution 

satellite data (such as Sentinel-1&2 and PlanetScope) and cloud computing platforms 

like GEE.  

 

The present study aims to address the existing research gap by incorporating 

these advanced approaches, which offer faster flood extent demarcation and map 

generation capabilities. Additionally, this study leverages the combined power (data 

fusion) of Sentinel-2 and PlanetScope satellite datasets for precise land use 

classification using machine learning approaches. 

 

4.2 Materials and Methods 

In this study, the major emphases on the states Bihar which is severely affected 

during the monsoon season. Therefore, various datasets were required to perform the 

analysis such as Sentinel-1 SAR dataset for flood extent mapping (Table 3.1). Wherein, 

the GEE cloud computing platform has been used to process the Sentinel-1 dataset, 

which enables access to Sentinel-1 data with the SNAP software tool package. This 
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SNAP package is helpful to process SAR satellite data such as Noise remove, 

radiometric, orbital and terrain corrections by SRTM datasets and converted 

backscatter intensity to decibels (dB) according to (i) 

     Eq. σ°=10*log10σ°                                                                 (i) 

In the work, all the accessible Sentinel-1 SAR datasets have been utilized for mapping 

and monitoring purposes of flood.  

 

In the present work, bands: Blue, Green, Red, and NIR utilised of NICFI 

(PlanetScope) and Sentinel-2 satellite datasets for Land Use mapping. The least cloud-

covered (< 10%) imageries of March 2020 and March 2021 have been used with the 

help of available GEE Tools like “CLOUDY_PIXEL_PERCENTAGE”. Moreover, the 

QA band of Sentinel-2A/B has been utilized to eliminate the cloud cover (Singha et al., 

2020; Kumar et al., 2022). 

 

4.2.1 Methodology 

4.2.1.1 Harmonization of PlanetScope and Sentinel-2A/B MSI 

Bilinear interpolation is a widely used method for resampling images (Xia et 

al., 2023; Otsu, 1979). In this study, bilinear interpolation method has been applied in 

the GEE platform to adjust the resolution of Sentinel-2 datasets and match it to the 4.77-

meter resolution of PlanetScope (Script-I). We utilised band: Blue, Green, Red, and 

NIR of PlanetScope and Sentinel-2A/B MSI for land use mapping. The land use map 

has been prepared using harmonized sentinel-2 MSI and PlanetScope datasets for 

extracting flooded agriculture land of 2020 and 2021.  

 

In the present work, Sentinel-1 SAR data has been utilised for the identification 

flood extent. Wherein, Otsu automatic thresholding technique has been utilised for 

identification of inundated pixels (Kordelas et al., 2018; Moharrami et al., 2021). An 

automated thresholding approaches can detects threshold value to distinguish the water 

pixels from other pixels without having any training sample datasets. Presently, the 

threshold value is equal to or less than -3 dB used as flood. The pre-flood layer of water 

https://www.sciencedirect.com/science/article/pii/S003442572030033X?via%3Dihub#fo0005
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bodies was deducted from the obtained flood extent to get the final result. Figure 4.1 

shows the flowchart of the method that was used in this study. 

Script-I 

 

 

Figure 4.1: Methodology for flood mapping 

 

4.2.1.2 Google Earth Engine (GEE) 

             Synthetic Aperture Radar (SAR) data processing is a complex task that requires 

separate computational systems and storage space along with specialized software. 

 

Resample the Sentinel-2 10m bands to PlanetScope 4.77m using bilinear 

interpolation method 

 

var resampled 

=image.select(bands).resample('bilinear').reproject(proj4.77m); 
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SAR data is acquired through the use of radar instruments that transmit microwave 

signals to Earth surface and then record reflected signals. This data can be used to 

generate images of the Earth surface, but the processing of SAR data is complicated by 

its large size, complexity, and the need for specialized software and hardware. 

              

            However, the GEE platform provides a unique solution to these challenges by 

providing a CCP that allows users; “to process different types of datasets through 

improved algorithms and JavaScript codes without requiring local storage or 

downloading raw imagery” (Gorelick et al., 2017).  

 

 

Figure 4.2: The Interface of GEE’s Cloud Computing Platform 

 

The GEE platform provides access to a vast array of satellite imagery, including SAR 

data, which can be processed in real-time or near-real-time.  

 

           The GEE cloud computing platform have used for the entire analysis work and 

a web-based IDE code was developed (https://code.earthengine.google.com) for 

estimation of flood extents and impacted agricultural lands (Fig. 4.2). 
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4.2.1.3 Random Forest Classifier 

              Random Forest Classifier (RFC) is a machine learning algorithm that is 

commonly used for image classification tasks, including land use map preparation using 

remote sensing data (Fig. 4.3). In this context, Sentinel-2 and PlanetScope data are often 

used as inputs to the algorithm. RFC works by creating multiple decision trees, each of 

which predicts the land use class of a pixel based on its spectral properties. The 

algorithm then combines the results of these decision trees to produce a final 

classification map. This classifier is commonly used due to its capability to handle 

complex spectral interactions and nonlinear relationships between the spectral bands 

and land use classes, making it a powerful tool for image classification. 

                         

 

Figure 4.3: Random forest classifier flowchart for land use map preparation 

 

             In the present study, Sentinel-2 and PlanetScope data are used together for land 

use mapping that allows a more comprehensive view of the Earth's surface. Sentinel-2 

data provides broad spectral coverage, allowing for identification of a wide range of 
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land cover types. While, PlanetScope data provides high-resolution imagery, which 

allows for the identification of smaller features on the Earth's surface. The land use map 

generated by RFC was utilized in present study for flood impact assessment. 

 

4.3 Results and Discussion 

4.3.1 Backscatter intensity of Flooded Pixels 

The intensity of backscatter pattern of the processed microwave (SAR) sentinel-

1 dataset is influenced by several factors, such as the roughness, slope, moisture 

content, and vegetation cover of the surface. For instance, a smooth surface like water 

reflects less radar energy and produces a dark backscatter pattern, while a rough surface 

like mountainous terrain reflects more radar energy and produces a bright backscatter 

pattern. Thus, the intensity of the backscatter pattern can give an inference about the 

types of features present on the Earth's surface, such as water bodies, forests, urban 

areas, and agricultural land.  

 

In the present study, “the pixels having low grayscale intensity represents 

waterbodies features while high-intensity pixels resemble man-made or non-water 

features” (Ghosh et al., 2022). VV polarization has used in this work (Fig. 4.4). The 

backscatter intensity has been measured in the dB (decibel) scales as shown in figure 

5. This information can be used to monitor changes in the land surface to plan and 

implement appropriate management and conservation strategies. 

 

4.3.2 Flood Impact Analysis 

           An analysis was conducted to assess the impact of floods in North Bihar. For 

this analysis, satellite images from March 2020 were used to identify pre-flood 

conditions, while images from June to October in both 2020 and 2021 were used to 

identify peak flood events. By subtracting the pre-flood layer from the peak-flood layer, 

the actual flood extent was derived. To calculate the affected area and population in the 

region (Table 4.1), the boundaries of villages, blocks, and districts provided by the 

Survey of India (having population data in the attribute table) were overlaid on the 

actual flood extent map.  
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           Wherein, it is found that about 22 districts of Bihar were on high alert in 

monsoon season every year (CWC, 2020; CWC, 2021). Because, these districts are 

situated in the basins of Kosi, Ganga, Gandak and Mahanadi, which overflow every 

year due to heavy rainfall. The analysis indicates that almost 701942 hectares (about 21 

districts) area in 2020 and 955897.00 hectares (About 22 districts) in 2021 of North 

Bihar was flooded (Table 4.1). The worst affected districts in 2020 are Darbhanga, 

Muzaffarpur, West Champaran, Saran and Siwan. In 2021, Bhagalpur, Darbhanga, 

Muzaffarpur, West Champaran, Katihar, Vaishali, and Khagaria are severely affected 

by flood (Fig. 4.5). 
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Figure 4.4: Backscatter intensity of pixel
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Table 4.1: District-wise flood affected area was extracted using Sentinel-2 and PlanetScope data

Sl.No 
Flooded 

districts 

Geographic 

area in ha. 

Total Flood affected 

area (ha-1) 

Flood 

affected area 

in %  
Change 

% 

Total Flood affected 

Agricultural land (ha-

1) 
Total 

Population 

Flood affected 

Population 

2020 2021 2020 2021 2020 2021 2020 2021 

1 Arariya 279704.17 3947.74 44483.00 1.41 15.90 14.49 3441.74 43340.00 2806200.00 39607 446287 

2 Begusarai 193309.07 25.00 40811.00 1.29 21.11 19.82 0.00 37915.00 2954367.00 38111 623720 

3 Bhagalpur 255331.10 42244.77 86790.00 16.55 33.99 17.45 34112.77 76829.00 3032226.00 501685 1030689 

4 Darbhanga 250777.93 88383.58 78003.00 35.24 31.10 -4.14 84302.58 73628.00 3921971.00 1382250 1219906 

5 Gopalganj 204110.19 26793.86 11290.00 13.13 5.53 -7.60 22462.86 8867.00 2558037.00 335798 141493 

6 Katihar 303561.68 48795.21 81420.00 16.07 26.82 10.75 40255.21 68816.00 3068149.00 493181 822926 

7 Khagaria 149187.39 37009.35 51667.00 24.81 34.63 9.82 35361.35 49774.00 1657599.00 411205 574064 

8 Kishanganj 198830.24 3597.59 21873.00 1.81 11.00 9.19 2903.59 20594.00 1690948.00 30596 186019 

9 Madhepura 180027.66 27470.43 29620.00 15.26 16.45 1.19 23587.43 26133.00 1994618.00 304359 328175 

10 Madubani 350145.84 31718.79 49118.00 9.06 14.03 4.97 30583.79 48013.00 4476044.00 405473 627894 

11 Muzaffarpur 317792.18 70620.01 68351.00 22.22 21.51 -0.71 62583.01 60480.00 4778610.00 1061906 1027787 

12 

Pachim 

Champaran 523841.15 35093.54 28461.00 6.70 5.43 -1.27 26583.54 19256.00 3922780.00 262798 213130 

13 

Purba 

Champaran 397076.47 76045.16 56278.00 19.15 14.17 -4.98 67483.16 49819.00 5082868.00 973433 720399 

14 Purnia 321126.64 24183.87 57396.00 7.53 17.87 10.34 20368.87 51827.00 3273127.00 246497 585017 

15 Saharsa 166419.72 38150.54 29208.00 22.92 17.55 -5.37 33951.54 25706.00 1897102.00 434897 332957 

16 Samastipur 268545.22 25867.16 61176.00 9.63 22.78 13.15 23895.16 58048.00 4254782.00 409835 969262 

17 Saran 267895.35 32303.37 40353.00 12.06 15.06 3.00 27047.37 34639.00 3943098.00 475467 593948 

18 Sheohar 44185.79 4845.21 2970.00 10.97 6.72 -4.24 4770.21 2903.00 656916.00 72034 44155 

19 Sitamarhi 218858.48 32173.55 23434.00 14.70 10.71 -3.99 30813.55 22306.00 3419622.00 502705 366152 

20 Siwan 221989.66 31425.75 8163.00 14.16 3.68 -10.48 26767.75 5312.00 3318176.00 469734 122016 

21 Supaul 241658.20 8536.27 35178.00 3.53 14.56 11.02 5149.27 28788.00 2228397.00 78715 324386 

22 Vaishali 202102.12 12736.51 49854.00 6.30 24.67 18.37 8281.51 38670.00 3495249.00 220271 862198 

  5556476.26 701967.26 955897.00 12.63 17.20 4.57 614706.26 851663.00 68430886.00 9150559 11772367 
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Figure 4.5: District wise flood statistics 

 

         In 2020, 614706.26 hectares and in 2021 851663.00 hectares of agricultural lands 

were submerged due to floods. In respect to submerged area; The floods of 2020 have 

submerged more than 70,000 hectares in 3 districts, around 40,000 to 50,000 hectares 

in 2 districts, 30,000 to 40,000 hectares in 7 districts, 20,000 - 30,000 hectares in 4 

districts and less than 13,000 hectares in 5 districts (Fig. 4.5). 

            

        The floods of 2021; More than 70,000 hectares in three districts, 50000 to 6000 

hectares in five districts, 30000 to 40000 hectares in six districts, 20000 to 30000 

hectares in five districts and about 3000 to 11000 hectares in 3 districts have been 

submerged. The majority of Bihar's population relies on agriculture for their livelihood, 

which is the sector that suffers the most damage from the recurrent floods. In detailed 

affected areas and affected population are shown in Table 4.2.   

 

4.3.2.1 Flood Progression evaluation using Sentinel-1 SAR Data 

           Presently, VV polarization has been utilized for flood extent mapping. Wherein, 

backscatter response of VV ranges between − 8 and − 16 dB (Fig. 4.6). In this study, 

we found that high values of VV represent non-water features and water bodies shown 

by a low value of backscatter response. 
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Figure 4.6: Backscatter response of VV polarization in 2020 and 2021 
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4.3.2.2 Pre Flood Land Use Map 

           Land use mapping involves using remote sensing data to identify and classify 

the different types of land cover such as forests, croplands, urban areas, and water 

bodies. This information is often used by environmental managers, urban planners, and 

policymakers to make quick decisions about how to use and manage the land. Remote 

sensing is very important tool for land use mapping, as it provides a comprehensive and 

accurate view of the Earth surface from distance. 

 

           In this study, Sentinel-2A/B (< 10 % clouded data) and PlanetScope images were 

used to extract landuse maps using Random forest methods on GEE cloud computing 

platform. A pre-flood land use map (Fig. 4.7) has been used and the flood extent has 

been overlaid on it to find the land use impacted by floods 2020 and 2021.  

 

 

Figure 4.7: Land use map of pre-flood area 
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4.3.2.3 Flood Progression Assessment (2020) 

 

Flood progression in North Bihar based on Sentinel-1 SAR data from June to 

October 2020 were shown in Figure 10. We used VH and VV polarization for flood 

delineation. The backscatter response of VV polarization falls within the range of -8 to 

-16 dB, whereas for HV polarization, it ranges from -16 to -23 dB. This variation in 

backscatter response between VV and HV polarizations indicates the different 

scattering properties of the target features being observed by the radar system (Fig. 4.8). 

 

Severe rainfall was started from June to till September and developed flood-like 

conditions for North Bihar in 2020. The extent of the flood shows the effects of rain-

induced flooding in Fig. 4.9. Major areas were submerged from 07th to 29th July 2020. 

And again some parts of North Bihar were inundated during 21st to 30th September due 

to heavy rain in the river basin of North Bihar (Fig. 4.9). 

 

 

Figure 4.8: Backscatter response of different polarization 
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Figure 4.9: Flood Progression of 2020 
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 Flood 2020 

           More than 8000 hectares of croplands have been affected by the 2020 floods in 

Darbhanga, Purbi Champaran and Muzaffarpur districts of Bihar and between 30,000 

to 40,000 hectares of cropland in Katihar, Khagaria, Bhagalpur, Saharsa, Sitamarhi and 

Madubani districts. Around 20,000 to 30,000 hectares of crop land has been submerged 

in the districts of Saran, Siwan, Pachim Champaran, Samastipur, Madhepura, 

Gopalganj and Purnia due to the 2020 floods. In Bihar's Saran, Siwan, Paschim 

Champaran, Samastipur, Madhepura, Gopalganj and Purnia districts, 20,000 to 30,000 

hectares of crop land has been submerged. About 8000 hectares of crops have been 

affected in Vaishali district and 2000 to 5000 hectares in Supaul, Sheohar, Arariya, 

Kishanganj and Begusarai districts (Fig. 4.10). 

 

 

Figure 4.10:  Flood affected Land Use Map of 2020 
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4.3.2.4 Flood Progression Assessment (2021) 

In 2021, Sentinel-1 SAR datasets and VH and VV polarization have been used 

for Flood progression assessment in North Bihar, which is prolonged from June to 

October 2021 as representation in Figure 4.11. Flood 2021 was analysed to compare 

the severity between floods 2020 and 2021. The comparison of the floods of 2021 to 

the floods of 2020 can help to identify factors that contributed to severity of floods. 

This information can be used to develop strategies to mitigate the effects of future 

floods. 

 

 Flood 2021 

          The Analysis shows that flood 2021 events arisen in four phases. The first phase 

comes in the last week of June 2021, the second phase in the first week of July 2021, 

the third phase in the first week of August 2021 and the fourth phase in the last week 

of August 2021. The second phase of flood has had more impact on the region. 

 

          Wherein, more than 60,000 hectares cropland in four districts (Bhagalpur, 

Darbhanga, Katihar, Muzaffarpur ), 40000 to 6000 hectares cropland in six districts 

(Samastipur, Purnia, Purba Champaran, Khagaria, Madubani, and Arariya ), 30,000 to 

40,000 hectares in four districts (Vaishali, Begusarai, Saran and Supaul ), 20,000 to 

25,000 hectares in five districts (Madhepura, Saharsa, Sitamarhi, Kishanganj and 

Pachim Champaran) and about 3000 to 9000 hectares in 3 districts (Gopalganj, Siwan 

and Sheohar ) have been submerged (Fig. 4.12). 

 

        Agricultural lands have been most affected by floods in Bhagalpur, Darbhanga, 

Katihar and Muzaffarpur districts of Bihar. These districts are vulnerable to floods due 

to their geographical location and proximity to major rivers like Ganga, Gandak and 

Kosi.  



 

86 |                 Flood Extent and Affected Area Mapping 
 

 

Figure 4.11: Flood Progression of 2021 
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Figure 4.12: Flood affected Land Use Map of 2021 

4.4 Accuracy Assessment and Result Validation 

The accuracy of the extracted flood extent areas was validated independently 

using datasets that included high-resolution satellite images from Google Earth and the 

Flood extent layer of NRSC (Report NRSC, 2019). Validation points were carefully 

selected to ensure representation across the entire images. Approximately 260 

validation points were chosen within the study area. Subsequently, confusion matrices 

were generated to assess the classification performance, commonly employed method 

for multi-class classification evaluations (Olofsson et al., 2014). The overall accuracies 

obtained exceeded 89%, thereby confirming the suitability of the Otsu automatic 

thresholding method for rapidly and efficient flood mapping (Kordelas et al., 2018). In 

addition to the aforementioned validation datasets, advisory from State Disaster 

Management Authority (SDMA), the Flood Management Information System (FMIS) 

Bihar and Crop area affected report of NRSC (Report NRSC, 2020) were employed to 

further validate the study. This comprehensive validation approach, which involved  

multiple independent sources, strengthens the credibility of the study's results. 
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4.5 Impact of Flood on Maize 

Flooding has a significant impact on the agricultural sector of Bihar as well as 

many other flood-prone regions around the world, especially on cropping patterns, 

productivity and production. Here are some findings on how floods are affecting crop 

patterns, productivity and production in Bihar. Firstly, the standing crops get 

submerged due to flood water, leading to their damage or complete loss. Paddy is the 

main crop of rainy season and is cultivated in almost all the districts of Bihar, which is 

usually destroyed due to severe floods or long-time submergence (Anonymous, 2020a, 

b, c). Secondly, fields may remain waterlogged for several months or even years. This 

renders them uncultivable and unsuitable for growing crops. Farmers cannot plant their 

usual crops on such land until it has been properly drained, dried, and rehabilitated. 

Which lead to shift in cropping patterns in some places, with farmers choosing to grow 

less flood-prone crops, such as maize and pulses, instead of paddy. 

 

However, floods have many positive impacts on agricultural land such as supply 

of essential nutrients that are necessary for plant growth. When floods occur, they carry 

with them a large amount of sediment that is rich in organic matter and nutrients such 

as nitrogen, phosphorus, and potassium, which are necessary for plant growth. These 

nutrients help to improve soil fertility and increase crop yield (specially for rabi crops 

viz; maize) in North Bihar, which is beneficial for farmers who depend on agriculture 

for their livelihood.  

 

In the present study, it is observed that area under maize is approximately 2.5% 

higher in 2022-23 (Non-flooded years) as compared to 2021-22 (flooded years), but 

there is approximately 10.50% lower yield and 8.97% lower production in 2022-23 as 

compared to 2021-22 (Table 4.2). Hence, the study shows that when there is flood, the 

yield of maize crop is higher than in non-flood years (Fig. 4.13). Due to unavailability 

of current data, estimated acreage, yield and production have been compared with 

already available government-reported data (Table 4.3), where a positive correlation 

has been found.
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Table 4.2: Districts wise maize crop acreage, yield and production estimation during 2021-22 and 2022-23 

Sl. 

No. 
District 

2021-22 2022-23 

Flooded Year Non-Flooded Year 

Acreage Yield  Production Acreage Yield  Production 

(ha) 
('000 

ha) 

  

(Kg/ha)  
 (Kg) 

('000 

tonnes) 
(ha) 

('000 

ha) 

 

(Kg/ha) 
 (Kg) 

('000 

tonnes) 

1 Arariya 30784 30.78 9987.74 307458916 307.46 31205 31.21 8839.15 275827266 275.83 

2 Begusarai 40052 40.05 7463.73 298938807 298.94 41613 41.61 6881.56 286362442 286.36 

3 Bhagalpur 17050 17.05 6508.76 110973577 110.97 17373 17.37 5740.73 99733124 99.73 

4 Darbhanga 5425 5.42 4407.44 23908731 23.91 5610 5.61 4019.59 22549437 22.55 

5 Gopalganj 3907 3.91 4332.24 16925239 16.93 3974 3.97 3691.07 14670126 14.67 

6 Katihar 38141 38.14 9949.47 379480991 379.48 38335 38.33 8805.28 337546300 337.55 

7 Khagaria 33754 33.75 7171.20 242055466 242.06 35601 35.60 6540.13 232835379 232.84 

8 Kishanganj 1118 1.12 9133.85 10215566 10.22 1180 1.18 7809.44 9211613 9.21 

9 Madhepura 17734 17.73 8846.16 156879040 156.88 17868 17.87 8005.77 143048369 143.05 

10 Madubani 43 0.04 3968.00 170068 0.17 45 0.05 3579.14 161256 0.16 

11 Muzaffarpur 10537 10.54 5383.30 56724801 56.72 10902 10.90 5340.23 58218353 58.22 

12 W. Champaran 1811 1.81 5501.88 9966491 9.97 1830 1.83 5402.85 9889631 9.89 

13 E. Champaran 4946 4.95 3811.50 18852632 18.85 5139 5.14 3895.35 20016496 20.02 
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Sl. 

No. 
District 

2021-22 2022-23 

Flooded Year Non-Flooded Year 

Acreage Yield  Production Acreage Yield  Production 

(ha) 
('000 

ha) 

  

(Kg/ha)  
 (Kg) 

('000 

tonnes) 
(ha) 

('000 

ha) 

 

(Kg/ha) 
 (Kg) 

('000 

tonnes) 

14 Purnia 47939 47.94 9597.42 460086686 460.09 49514 49.51 8109.82 401549894 401.55 

15 Saharsa 12425 12.43 6904.32 85786659 85.79 12540 12.54 6089.61 76364715 76.36 

16 Samastipur 28005 28.01 5740.58 160765804 160.77 28771 28.77 4890.97 140716613 140.72 

17 Saran 5644 5.64 5047.92 28490208 28.49 5734 5.73 4674.37 26802406 26.80 

18 Sheohar 1502 1.50 5437.40 8169150 8.17 1530 1.53 4600.04 7037718 7.04 

19 Sitamarhi 3144 3.14 5829.30 18325221 18.33 3109 3.11 4698.42 14605795 14.61 

20 Siwan 5277 5.28 3690.00 19472204 19.47 5388 5.39 3623.58 19525580 19.53 

21 Supaul 4711 4.71 9804.45 46191290 46.19 4703 4.70 8363.19 39336174 39.34 

22 Vaishali 7303 7.30 4163.39 30404862 30.40 7540 7.54 4088.45 30828940 30.83 

Total (AOI) 321252 321.25 7751.68 2490242408 2490.24 329504 329.50 6879.54 2266837629 2266.84 

Note: AOI (Area of Interest), ha (Hectare), ‘000 (Thousand), Kg (Kilometre), Sl (Serial), No (Number)  
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Table 4.3: Districts wise maize crop acreage, yield and production as per GoB Report 

District 

GoB report 2020-21 (Rabi Maize) GoB report 2019-20 (Rabi Maize) GoB report 2018-19 (Rabi Maize) 

Area (ha)  
Yield  

(Kg/ha) 

Production 

(tonne) 
Area (ha)  

Yield  

(Kg/ha) 

Production 

(tonne) 
Area (ha)  

Yield  

(Kg/ha) 

Production 

(tonne) 

Arariya 27543.00 9740 268269 28265.00 9242 261225 26499.00 9932 263188 

Begusarai 36309.00 7110 258157 29516.00 7928 234003 19881.00 6869 136563 

Bhagalpur 17324.00 6124 106092 15686.00 7306 114602 15629.00 8133 127111 

Darbhanga 5611.00 3364 18875 5478.00 4438 24311 6175.00 6185 38192 

Gopalganj 3689.00 4687 17290 4120.00 4782 19702 3242.00 3831 12420 

Katihar 36011.00 9642 347218 30965.00 10243 317174 29745.00 10074 299651 

Khagaria 32871.00 7573 248932 32942.00 7021 231286 32965.00 6530 215261 

Kishanganj 1124.00 8956 10067 1299.00 10243 13306 1268.00 8744 11087 

Madhepura 16307.00 8342 136033 18757.00 8994 168700 18713.00 9258 173245 

Madubani 0.00 0 0 0.00 0 0 53.00 5484 291 

Muzaffarpur 10201.00 5105 52076 10091.00 5043 50889 9838.00 4566 44920 

West Champaran 1707.00 5558 9488 1834.00 5767 10577 1873.00 4596 8608 

East Champaran 4484.00 4297 19268 4457.00 4100 18274 4544.00 3830 17404 

Purnia 47464.00 9269 439944 45267.00 8834 399889 35786.00 9434 337605 

Saharsa 12264.00 6551 80341 11733.00 6117 71771 11471.00 6826 78301 

Samastipur 27207.00 5681 154563 27385.00 5984 163872 31389.00 5346 167806 

Saran 5472.00 4998 27349 5318.00 4476 23803 4543.00 4502 20453 

Sheohar 1459.00 4775 6967 1427.00 5036 7186 1314.00 4837 6356 

Sitamarhi 3155.00 6240 19687 3335.00 5583 18619 3464.00 4788 16586 

Siwan 4970.00 3761 18692 4970.00 3560 17693 4970.00 3456 17176 

Supaul 4604.00 8922 41077 4599.00 11139 51228 4595.00 1009 46364 

Vaishali 7030.00 3795 26679 6960.00 4060 28258 7046.00 3695 26035 

Total (AOI) 306806.00 7520 2307064 294404.00 7630 2246368 275003.00 7508 2064623 

Note: AOI (Area of Interest), GoB (Government of Bihar) ha (Hectare), Kg (Kilometre) 
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Figure 4.13: Comparison of average yield of flood and non- flooded years 
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4.6 Conclusion 

In this study, the Impact of flood on agriculture for North Bihar has been 

assessed. Optical remote sensing data; Sentinel-2 and PlanetScope hosted on GEE 

cloud platform have been used to delineate pre and post-flood land use maps for the 

year 2020 and 2021. Sentinel-1 SAR data has been used to identify flood pixels using 

automated thresholding technique on GEE. A JavaScript code has been developed for 

the processing of enormous datasets hosted on the GEE cloud computer platform within 

a short time of period. This JavaScript code is capable to robust flood mapping and 

monitoring using microwave (SAR) satellite datasets at large scale. It has been observed 

that about ~ 12.63% (701967 ha) of study area were flooded in 2020. For 2021 floods, 

about ~ 17.20% (955897 ha) of study area were found to be flooded. Districts most 

affected by floods were Bhagalpur, Darbhanga, Katihar, Muzaffarpur and Gopalganj in 

2021. In the floods of 2021, about 4% more area of North Bihar was flooded as 

compared to the floods of 2020. Results were validated using flood extent layer 

generated by NRSC and advisory document of State Disaster Management Authority 

of Bihar. It is expected that the generated maps and its area of statistics of flood extents 

and flooded agriculture land will be beneficial for policy makers for future planning. 

Furthermore, the next chapter elaborates on maize crop identification and acreage 

estimation to assess the impact of flood on the crop. 

 

 

 

 

 

 

 

 

 

 

 



 

94 |       Maize (Zea Mays L.) Crop Identification/ Discrimination And Acreage Estimation 
 

CHAPTER-5   MAIZE (ZEA MAYS L.) CROP IDENTIFICATION/ 

DISCRIMINATION AND ACREAGE ESTIMATION 

 

5.1 Introduction  

The 21st century is facing many challenges like climate change, rapid 

urbanization, population growth, food shortage, poverty and hunger (Mondal et al., 

2014; FAO. 2021). The world population is expected to grow from 7 billion (1.2% 

growth per year) to around 10 billion by 2050 (UNFPA, 2012, FAO. 2017), which will 

accelerate the high demand for food consumption such as meat, fruits and vegetables, 

and increase pressure on natural resources. According to FAO. 2021, “it is projected 

that between 720 to 811 million people in the world faced hunger in 2020 and around 

118 million more people were facing hunger in 2020 as compared to 2019. More than 

half of the world’s undernourished are found in Asia (418 million) and more than one-

third in Africa (282 million)”.  

 

Therefore, innovative agricultural research and better management practices are 

necessary to increase productivity to reduce food insecurity. In this context, Accurate 

and timely information on crop type, acreage and yield is essential for estimating crop 

production to reduce food insecurity, loss assessment for crop insurance schemes and 

developing adaptation strategies at local, national and global levels (Arumugam et al., 

2021a; Kumar et al., 2022). Hence, an innovative agriculture management plan for 

better agriculture practices is urgently needed for countries like India, where about 58% 

of the population is engaged in the agriculture sector for their livelihood, and more than 

75% of the country's farmers are smallholders (Gulati et al., 2018; Rai et al., 2019; 

Arumugam et al., 2021). 

 

In this context, Maize (Zea mays) crop has the potential to reduce food 

insecurity, generate better income for the farmers and also qualifies as the potential of 

doubling the farmer's income (Maize Vision 2022). “Maize is the 2nd most important 

cereal crop in the world in terms of acreage. Global maize production touched approx. 

1040 million MT in 2016-17, wherein, the US has been the leading producer, followed 

by China, accounting for about 38% and 23% respectively” stated (Singh et al., 2018). 
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Among the maize growing countries, “India ranks 4th in the area and 7th in production, 

representing around 4% of the world maize area and 2% of total (Global) production 

with a quantum of 26 million MT in 2016-17, with about 15 million Indian farmers are 

engaged in Maize cultivation” (DACNET, 2020; Maize Vision 2022). This crop is the 

3rd most important food crop after rice and wheat, grown in the Indian states of 

Karnataka, Madhya Pradesh, Maharashtra, Rajasthan, Bihar and Uttar Pradesh 

(https://farmer.gov.in/m_cropstaticsmaize.aspx , accessed dated 

21.06.2022). Bihar is a leading producer of Rabi maize in India, contributing about 

10% of India’s total production (Maize Vision 2022).  

 

Nowadays, remote sensing satellite and ML approach-based crop mapping is 

growing and expanding from small to large scale due to the free accessibility of high-

resolution satellite dataset, which is a cost-effective solution for farm-level mapping 

(Chlingaryan et al., 2018; Griffiths et al., 2019; Htitiou et al., 2022; Pande, 2022). In 

this regard, several studies have been carried out for crop mapping using coarse to fine 

spatial resolution data based on MODIS, Landsat, Sentinel-1 and Sentinel-2 at regional 

to global levels (Mondal et al., 2014; Peng et al., 2011). The FASAL program is going 

on for crop forecasting, acreage estimation and crop yields prediction at the national 

scale in India. In the FASAL program, various approaches such as weather-yield 

models, crop simulation models and remote sensing-driven statistical models have been 

used (Arumugam et al., 2021b; Latwal et al., 2019). But, remote sensing satellite and 

machine learning approach-based crop studies are very limited (Arumugam et al., 

2021a). Therefore, remote sensing and machine learning approach has been employed 

for the estimation of maize crop in North Bihar in the present study.   

 

These days, combining satellite data from multi-sensor source is a common 

approach to improve the accuracy of crop mapping (Costa et al., 2021; Mizuochi et al., 

2021). Several studies have combined multi-sensors source satellite data such as 

MODIS with Sentinel-2A/B (Zhu et al., 2018), Sentinel-1A/B with Sentinel-2A/B 

(Costa et al., 2021; Luca et al., 2022; Tavares et al., 2019), and Sentinel-1A/B, 

Sentinel-2A/B with Landsat to improve accuracy of the classification and crop type 

mapping. Yan et al. (2021) have evaluated the performance of a combination of 

https://farmer.gov.in/m_cropstaticsmaize.aspx
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GaoFen-1 and Sentinel-2A/B data for crop mapping. Recently, high-resolution satellite 

imagery of PlanetScope combine Sentinel-1 with Sentinel-2 for LULC Classification 

of Central Brazil (Vizzari, 2022) and crop type mapping of Smallholder Farms using 

the SVM algorithm in eastern India (Rao et al., 2021). 

 

However, the integration of Sentinel-2A/B and PlanetScope data will 

significantly increase classification accuracy. But, it requires enormous volumes of 

computing space to combine multi-source satellite data (data fusion), download, store 

and process the multi-source satellite imagery for large-scale crop classification is a 

challenging task. The GEE platform provides a high-performance computational cloud 

platform for big data analysis like satellite imagery without need for local storage 

(Gorelick et al., 2017). Furthermore, this platform offers up-to-date and ready-to-use 

remotely sensed (Landsat, Sentinel-1, Sentinel-2 and PlanetScope archives) geospatial 

and ancillary datasets for researchers and academicians. It also allows to share the 

developed JavaScript codes of various analyses within many users. 

 

The GEE platform is being widely used due to supporting some of the most 

popular machine learning classifiers; CART (Breiman et al., 1984; Mather & Tso, 

2016) is “a binary decision tree classifier that employs a predetermined threshold, RF 

is an ensemble classifier that uses multiple CART” (Breiman, 2001) and SVM is also 

an excellent classifier that uses input parameters as the kernel type (Burges, 1998; 

Mountrakis et al., 2011). But, the RF algorithm of machine learning is being extensively 

used for the classification of remotely sensed datasets in the GEE Platform, due to its 

non-parametric nature (Amani et al., 2020; Praticò et al., 2021).  

 

Therefore, integrated Sentinel-2A/B and PlanetScope data and machine 

learning approach have been employed for the estimation of maize crop in North Bihar, 

India and the performance of various machine learning algorithms are compared and 

analysed in present study. In this study, overall objective was to develop a web-based 

IDE code by JavaScript API for robust mapping of crops using satellite imagery and 

machine learning algorithms. In addition, the performance of multiple classifiers of 

machine learning was to be assessed. This study will be helpful for crop cultivation 



 

97 |       Maize (Zea Mays L.) Crop Identification/ Discrimination And Acreage Estimation 
 

management, crop insurance and for making a decision support system to prioritise the 

input subsidy to farmers. The developed JavaScript code will also be helpful for the 

application of crop monitoring tools.  

 

5.2 Materials and Method 

The present study is conducted in North Bihar, India for the winter crop growing 

season of 2022 and 2023. Wherein, PlanetScope, Sentinel-2 satellite data from January 

to April of 2022 & 2023 and GT data (Table 3.1 & Fig. 3.2) were used for maize crop 

identification and acreage estimation. In this process, the Sentinel-2 imagery was 

harmonized and rescaled to the exact resolution as PlanetScope (4.77 m) using the 

bicubic interpolation function (Keys, 1981) in the GEE cloud platform (Fig. 5.1). After 

each processing step, Normalized Differential Vegetation Index (NDVI) was calculated 

from the harmonized imagery. 

 

 

Figure 5.1: Harmonization, rescaling and fusion of PlanetScope and Sentinel-2A/B 

MSI data (1B) 
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5.2.1 NDVI Generation 

NDVI is commonly utilized for crop mapping and vegetation indices (Rouse Jr 

et al., 1973). Because the value of NDVI for each pixel varies with different stages of 

crop growth (Fig. 5.2). “These values remain low at the time of sowing, rise by maturity 

and fall again at the time of harvesting. These variations help to discriminate the maize 

crop from other crops” (Kumar et al., 2022).  

Figure 5.2: NDVI Profile presenting the growth profile of Maize and Wheat. 

 

NDVI for four dates (January, February, March and April ) has been generated 

from each satellite data i.e. Sentinel-2A/B and PlanetScope. So, a total of 8 band images 

were generated for each year (2022 & 2023). In North Bihar, maize and wheat are the 

major crops grown in the Rabi season (November to April). Its growth profile is 

depicted in figure 5.2 using NDVI values. 

 

5.2.2 Methodology 

            In the present study, an integrated Sentinel-2 and PlanetScope data, machine 

learning approach and GEE cloud computing platform are employed to improve crop 

classification, prediction and mapping efficiency and accuracy of various ML models. 

CART, RF and SVM models have been used for identification and mapping of maize 

crops using GT data as collected from the study area. Then, the performance of utilized 
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approaches was compared and analysed in terms of overall classification accuracy. A 

flowchart of the methodology is shown in Fig. 5.3. 

 

 

Figure 5.3: Methodology for crop acreage estimation 

                    

5.2.2.1 Google Earth Engine (GEE) 

Satellite data processing is a challenging task due to the requirement of separate 

computational systems, storage and local space along with the software. To overcome 

this, Google launched the efficient and advanced cloud computing platform "Google 

Earth Engine " in 2010.   

 

It provides a unique cloud computing platform to process different types of big 

datasets through improved algorithms and JavaScript codes without requiring local 

storage or downloading raw imagery, especially on a nearly real-time basis (Kumar et 

al., 2022). It also allows to share the developed JavaScript codes of various analyses 

within many users. 
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Figure 5.4:  Crop mapping through GEE platform. 

            The GEE cloud computing platform has used for the entire analysis work and 

JavaScript codes have been developed (https://code.earthengine.google.com/users 

%2Fhimpria%2Fconference%3ACropland_Extent) for robust mapping and monitoring 

of maize crop (Fig. 5.4). 

 

5.2.2.2 Machine Learning Algorithm Used for Crop mapping 

A.  Random Forest  

Random Forest (RF) algorithm of machine learning is a popular supervised 

classification classifier technique, which includes multiple decision trees and takes 

averages to improve the accuracy of predictions of any datasets (Breiman, 2001) (Fig. 

5.5). This classifier can learn the characteristics of the target features based on the 

training dataset and identify these learned features in the unclassified data. (Belgiu & 

Drăguţ, 2016). So, it is commonly used by the remote sensing and GIS community 

(Shelestov et al., 2017a).  

 

Hence, the random forest algorithm has been utilized in this study for maize 

identification and mapping using the GEE cloud-based geo-computing platform 

(Oliphant et al., 2019). Whereas, we found that the RF algorithm performed better with 

PlanetScope data and also with the integration of PlanetScope and Sentinel-2A/B data. 

Their overall accuracy is 84.31% (kappa 0.79) with Sentinel-2 data, 90.17% (kappa 

https://code.earthengine.google.com/
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0.89) with PlanetScope data, and 95.53% (Kappa 0.91) with the integration of 

PlanetScope and Sentinel-2A/B data.  

 

In addition, it is observed that the integration of PlanetScope and Sentinel-2A/B 

data is increasing the accuracy of classification and prediction. In the GEE platform, 

this classifier is relatively fast and capable of handling big data such as the entire 

satellite data of the present study. 

 

 

Figure 5.5: Random Forest classifier based maize identification  

 

B. Support Vector Machine (SVM) 

          SVM classifier is popular a non-parametric supervised method to use for 

classification problems, regression problems, and uniqueness detection (Shelestov et 

al., 2017a). It works on the concept of margin, this margin is the shortest distance 

between the decision boundary and the training dataset. It has also the capability to fit 

an optimal hyperplane to separate the dataset into separate number of pre-defined 
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classes using a training sample (Fig. 5.6). Which helps in getting a good classification 

result from complex datasets. So, this algorithm is being commonly used for crop type 

classification, mapping and monitoring. In the present study, SVM classifier has been 

used for maize crop mapping using the GEE cloud computing platform. Whereas, we 

found that the SVM classifier performed well with big datasets. Their overall accuracy 

is 76.99% (kappa 0.69) with PlanetScope data, 77.48% (kappa 0.69) with Sentinel-2 

data, and 83.13% (Kappa 0.77) with the integration of PlanetScope and Sentinel-2A/B 

data.  

 

 

Figure 5.6: Support Vector Machines Classifier based maize identification 

C. Classification and Regression Tree (CART) 

The CART is a non-parametric decision tree (DT) classifier that employs a 

predetermined threshold (Breiman et al., 1984). This algorithm builds regression trees 

using Gini's impurity index and “entropy” to obtain the information that can be 

expressed mathematically as equations (ii & iii) 

Gini(𝐸) = 1 − ∑ 𝑝𝑖

𝑐

𝑖=1

2                                                (ii)    
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦: 𝐻(𝑥) = 1 − ∑ 𝑝(𝑥𝑖)

𝑛

𝑖=1

 log2 𝑝(𝑥𝑖)        (iii) 

 

“At each internal node, the tree’s leaf nodes in corresponding division regions are 

decided by related splitting rules” (Luo et al., 2022). Which is sorting down the tree 

from the root to leaf nodes, as depicted in Fig. 5.7. So, this classifier can be used for 

classification, regression and predictive modelling problems. 

 

 

Figure 5.7: Classification and Regression Tree Classifier based maize identification 

            

              In this study, the CART classifier was used for maize crop mapping using the 

GEE cloud computing platform. Whereas, we observed that the CART classifier 

performed well with big data such as time-series datasets of remote sensing. Their 

overall accuracy is 78.06% (kappa 0.71) with PlanetScope data, 88.59% (kappa 0.85) 
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with Sentinel-2 data, and 90.54% (Kappa 0.87) with the integration of PlanetScope and 

Sentinel-2A/B data.  

 

5.3 Results and discussion 

5.3.1 Crop Identification  

In the present study, about 1016 GT data were used to train the ML algorithms 

(SVM, CART and RF) for classification and identification of maize crop using the GEE 

platform. In addition, training accuracy has been also assessed and observed that the 

training accuracy of CART, RF and SVM is 99%, 98% and 83% respectively (Fig. 5.8).  

 

Figure 5.8: Training accuracy in the present study 

  

Then SVM, CART and RF algorithms have been applied to each dataset such 

as Sentinel-2, PlanetScope, and the combined satellite datasets (Sentinel-2 and 

PlanetScope) to extracted the pixels of maize crop. The satellite data and ML 

algorithms-wise extracted pixels/ patches of maize crop have been represented in the 

Fig. 5.9. The red polygons (Fig. 5.9) have been used on the classified images to identify 

differences in detection according to satellite data and ML algorithms. 
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Figure 5.9: Maize crop mapping from Sentinel-2A/B, PlanetScope and integration of Sentinel-2A/B and PlanetScope sensors  

using SVM, CART and RF Classifiers. 
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In this study, it is observed that the 10-meter spatial resolution data from the 

Sentinel-2 satellite sensor makes it easier to depict large patches of maize crops. The 

PlanetScope sensor can more accurately extract the small patches of maize crops (≥ 

about 5 m2), which will be helpful for mapping small-holding farms as the size of land 

holdings is small in most areas of South Asia (<2 ha) (Jain et al., 2016). 

 

In addition, we found that the integration of PlanetScope and Sentinel-2A/B 

data yielded better performance and helped in the accurate demarcation of maize crops 

from other crops. Hence, the combination of PlanetScope and Sentinel-2A/B data is a 

feasible and accurate approach for crop identification. 

 

5.3.2 Acreage Estimation of Maize Crop 

A combination of PlanetScope and Sentinel-2A/B satellite imageries have been 

used for maize crop area estimation. The district-wise (Table 5.1) area was calculated 

based on identified pixels of the maize crop using the JavaScript code 

(ee.Geometry.Polygon.area) in the GEE platform. In this study, the analysis shows that 

about 321252 ha in 2021-22 and 329504 ha in 2022-23 of land are devoted to the 

cultivation of maize in North Bihar, India. Finally, a maize crop map has been generated 

using the GEE platform and QGIS Software for pictorial/ synaptic representation (Fig. 

5.10 & 5.11). 
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Figure 5.10: Maize crop map of 2022. 

 

 

Figure 5.11: Maize crop map of 2023. 

 

 

2022 

2023 
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Table 5.1: District-wise acreage estimation  

Sl. No. District 

2021-22 2022-23 

Acreage Acreage 

(ha) ('000 ha) (ha) ('000 ha) 

1 Arariya 30783.62 30.78 31205.17 31.21 

2 Begusarai 40052.20 40.05 41613.02 41.61 

3 Bhagalpur 17049.88 17.05 17372.91 17.37 

4 Darbhanga 5424.63 5.42 5609.89 5.61 

5 Gopalganj 3906.81 3.91 3974.49 3.97 

6 Katihar 38140.84 38.14 38334.54 38.33 

7 Khagaria 33753.83 33.75 35601.01 35.60 

8 Kishanganj 1118.43 1.12 1179.55 1.18 

9 Madhepura 17734.14 17.73 17868.15 17.87 

10 Madubani 42.86 0.04 45.05 0.05 

11 Muzaffarpur 10537.18 10.54 10901.84 10.90 

12 W. Champaran 1811.47 1.81 1830.45 1.83 

13 E. Champaran 4946.25 4.95 5138.56 5.14 

14 Purnia 47938.58 47.94 49514.03 49.51 

15 Saharsa 12425.07 12.43 12540.16 12.54 

16 Samastipur 28005.15 28.01 28770.67 28.77 

17 Saran 5643.95 5.64 5733.90 5.73 

18 Sheohar 1502.40 1.50 1529.93 1.53 

19 Sitamarhi 3143.64 3.14 3108.66 3.11 

20 Siwan 5277.02 5.28 5388.48 5.39 

21 Supaul 4711.26 4.71 4703.49 4.70 

22 Vaishali 7302.91 7.30 7540.50 7.54 

Total (AOI) 321252.12 321.25 329504.45 329.50 

Note: ha- hectare, AOI- Area of Interest, '000- Thousand 
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5.3.3 Performance of Machine Classifiers with various datasets  

In the present study, the performance of machine classifiers has been evaluated 

within the GEE cloud computing platform with different datasets. Wherein, it is 

observed that RF outperforms CART and SVM algorithms in the GEE platform with 

PlanetScope data and also with the integration of PlanetScope and Sentinel-2A/B data 

(Fig. 5.11). With the integration of Sentinel-2A/B and PlanetScope data, the overall 

accuracy of crop mapping improved by about 6%, indicating that the integration of 

Sentinel-2A/B and PlanetScope data is more suitable for crop identification. 

 

Although, CART outperforms RF and SVM algorithms with Sentinel-2A/B 

data. In the GEE platform, RF and CART classifiers are relatively overfitted, fast and 

capable of handling big data such as the entire satellite data of the present study (Fig. 

5.12). But, the performance of the SVM classifier in the GEE platform was not fast, 

well and adequate (Shelestov et al., 2017b). 

 

 

 

Figure 5.12: Performance of Classifiers in the GEE Cloud Computing Platform 
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5.3.4. Prediction Accuracy 

The GT dataset is randomly split into two sections; viz. 70% for classifier 

training and 30% for accuracy and validation purposes. In the GEE platform, the 

Confusion Matrix method (Stehman, 1997) is commonly used for accuracy assessment, 

which has also been used in the present study.  

 

Whereas, we found that RF outperforms CART and SVM algorithms in the GEE 

platform with PlanetScope data (OA = 90.17 %, Kappa 0.89) and also with the 

integration of PlanetScope and Sentinel-2A/B data (OA = 95.53%, Kappa 0.91). But, 

CART outperforms RF and SVM algorithms with Sentinel-2A/B data (OA = 88.59 %, 

Kappa 0.85). In addition, it is observed that the integration of PlanetScope and Sentinel-

2A/B data is increasing the accuracy of classification and prediction (Table 5.2).  

 

Table 5.2: Performance of classifiers in terms of accuracy  

 Performance of Machine Learning Classifiers 

Classifier 

Sentinel-2 PlanetScope Sentinel-2 + PlanetScope 

OA Kappa OA Kappa OA Kappa 

RF 84.31% 0.79 90.17% 0.89 95.53% 0.91 

CART 88.59% 0.85 78.06% 0.71 90.54% 0.87 

SVM 77.48% 0.69 76.99% 0.69 83.13% 0.77 

Note: RF- Random Forest, CART- Classification and Regression Trees, SVM- 

Support Vector Machine, and OA- Overall Accuracy 
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Table 5.3: Year-wise available acreage data of rabi/winter maize crop as per the report 

of Directorate of Economics and Statistics, Government of Bihar. 

District 

Rabi Maize 

(2020-21) 

Rabi Maize 

(2019-20) 

Rabi Maize 

(2018-19) 

Area (ha)  Area (ha)  Area (ha)  

Arariya 27543 28265 26499 

Begusarai 36309 29516 19881 

Bhagalpur 17324 15686 15629 

Darbhanga 5611 5478 6175 

Gopalganj 3689 4120 3242 

Katihar 36011 30965 29745 

Khagaria 32871 32942 32965 

Kishanganj 1124 1299 1268 

Madhepura 16307 18757 18713 

Madubani 0 0 53 

Muzaffarpur 10201 10091 9838 

Pashchim Champaran 1707 1834 1873 

Purbi Champaran 4484 4457 4544 

Purnia 47464 45267 35786 

Saharsa 12264 11733 11471 

Samastipur 27207 27385 31389 

Saran 5472 5318 4543 

Sheohar 1459 1427 1314 

Sitamarhi 3155 3335 3464 

Siwan 4970 4970 4970 

Supaul 4604 4599 4595 

Vaishali 7030 6960 7046 

Total (AOI) 306806 294404 275003 

 

 

5.3.5 Validation 

Due to the unavailability of the latest data, a direct comparison between the 

estimated crop area and the latest data is not feasible (Hudait et al.,2022). However, we 

present the rabi maize acreage of different years from 2018-19 to 2020-21 (Table 5.3), 



 

112 |       Maize (Zea Mays L.) Crop Identification/ Discrimination And Acreage Estimation 
 

as reported by the Directorate of Economics and Statistics, Government of Bihar. The 

analysis shows that some districts are relatively close match between the extracted area 

and the government data of 2020-21, such as Bhagalpur, Darbhanga, Gopalganj, 

Kishanganj, Madhepura, Pashchim Champaran, Saharsa, Samastipur, Sheohar, and 

Siwan (Table 5.3). However, a few districts show a difference between the extracted 

area and the government data. For example, Arariya, Begusarai, Katihar, Khagaria, 

Muzaffarpur, Purnia, Supaul, and Vaishali have higher extracted areas (about 1 to 10 

%) compared to the government data of 2020-21. Furthermore, the obtained results 

have been validated with GT data, which is collected in the form of polygons of the 

plot of the study area. 

 

5.4 Discussion  

Recently, high-resolution PlanetScope data (4.77m) has become available in the 

GEE platform in collaboration with the NICFI program, which can be utilized for crop 

identification, mapping and monitoring in tropical regions. But, ESA's Sentinel-2 (10m) 

data can be used on a global scale. Hence, this is an excellent opportunity for 

researchers and the scientific community to improve accuracy of crop mapping and 

monitoring. Which can be helpful in precision agriculture.  

 

Nowadays, some recent literature is suggesting that multi-source satellite data 

is more reliable for crop mapping with state-of-art ML algorithms (Prins & Niekerk, 

2021; Vizzari, 2022; Yan et al., 2021a). Hence, the present study is conducted using 

multi-source data, which demonstrated that maize crops can be accurately mapped 

using machine learning and a combination of PlanetScope and Sentinel-2A/B data. In 

which, it is necessary to integrate multisource satellite data to accurately map the crop. 

Thus, it requires a powerful computing system, large storage and GIS software.   

 

To overcome this, The freely available GEE cloud computing platform used to 

access and integrate multi-source remote sensing satellite data. Because the GEE 

platform offers powerful computing capabilities to handle big datasets of remote 

sensing that can be utilized for crop mapping from small to large scales. It can also deal 
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with weather phenomena like clouds and shadows with the help of GEE's tool 

'CLOUDY PIXEL PERCENTAGE' (Kumar et al., 2022; Shelestov et al., 2017a).  

 

To integrate the satellite data, the Sentinel-2 imagery was re-projected, 

harmonized and rescaled to the same resolution with PlanetScope (4.77 m) using the 

bicubic interpolation function (Keys, 1981) in the GEE platform. Then, the PlanetScope 

and Sentinel-2A/B data are integrated with the help of available tools in the GEE 

platform. This approach is a novel and cost-effective approach that can automatically 

demarcate maize crop extent using machine learning and integrated satellite data. 

Which can be applied anywhere for large-scale precision agriculture. 

 

In the present study, it is observed that the 10-meter spatial resolution data from 

the Sentinel-2 satellite sensor makes it easier to depict large patches of maize crops. 

The PlanetScope sensor can more accurately extract the small patches of maize crops 

(≥ about 5 m2), which will be helpful for mapping small-holding farms as the size of 

land holdings is small in most areas of South Asia (<2 ha) (Jain et al., 2016). In addition, 

we found that the integration of PlanetScope and Sentinel-2A/B data yielded better 

performance and helped in the accurate demarcation of maize crops from other crops 

(Fig. 5.10). Hence, the combination of PlanetScope and Sentinel-2 data is a feasible and 

accurate approach for crop identification. 

 

Furthermore, this study also assessed the performance of machine classifiers for 

the precise mapping of maize crops. Whereas, it is observed that RF outperforms CART 

and SVM algorithms in the GEE platform with PlanetScope data and also with the 

integration of PlanetScope and Sentinel-2A/B data. Although, CART outperforms RF 

and SVM algorithms with Sentinel-2A/B data. It is also observed that RF and CART 

algorithms are overfitted for accurate mapping of crops. Likewise, the performance of 

the SVM algorithm within the GEE platform was not good enough for crop mapping. 

After extensive analysis, i have extracted the acreage of each district of North Bihar of 

2022 and 2023. This is made possible through the use of a sophisticated JavaScript 

code, ML classifier and integrated dataset from PlanetScope and Sentinel-2A/B 

satellites. 
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5.5 Conclusion 

In the present study, Integrated satellite imagery of Sentinel-2 and PlanetScope, 

and Machine learning approaches have been used for maize crop mapping in North 

Bihar, India. In addition, the Performance of CART, Random Forest and SVM 

Algorithms of Machine Learning has been evaluated for crop mapping using the GEE 

Cloud Computing Platform. Whereas, we found that RF outperforms CART and SVM 

algorithms with PlanetScope data and also with the integration of PlanetScope and 

Sentinel-2A/B data. The use of integrated satellite imagery and RF algorithms 

improved the accuracy of crop mapping by about 6%. This shows that the integration 

of Sentinel-2A/B and PlanetScope imagery is more suitable for crop identification. But, 

CART outperforms RF and SVM algorithms with Sentinel-2A/B data. Hence, the 

CART algorithm can be implemented for accurately crop mapping with Sentinel-2 data. 

In this study, a maize crop map has been generated using the GEE platform and QGIS 

software, and their overall accuracy is 95.53%. It is also found that approximately 

321252 ha in 2021-22 and 329504 ha in 2022-23 are devoted to maize cultivation in 

North Bihar, India. This tested algorithms, edited and developed web-based JavaScript 

code can be applied anywhere in the world for crop mapping. This study is expected to 

be helpful in making decision support systems for crop cultivation management, crop 

insurance and prioritizing input subsidies to farmers. In addition, the maize crop area 

map/maize extent layer will be used for crop yield and production estimation, which is 

explained in the next chapter. 
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CHAPTER-6  CROP YIELD AND PRODUCTION ESTIMATION 

 

6.1 Introduction  

The rise of greenhouse gas emissions, deforestation, rapid urbanization and 

environmental degradation has led to global warming and weather pattern changes. This 

has altered the growing season, soil moisture levels and availability of crops, it 

especially affects developing countries. These changes have severe consequences on 

agriculture, food security, economics and human health globally. Addressing these 

issues is vital for ensuring a sustainable future for agriculture and those dependent on 

it. 

 

Therefore, crop acreage estimation and determining their yield is crucial in 

monitoring and managing agriculture at a field level. This will help in making quick 

decisions in case of crop failure and obtaining crop insurance. The increasing demand 

of crop insurance in agriculture has led to a demand for plot-level acreage and yield 

estimation data. This requires detailed information, but traditional methods like field 

surveys and crop cutting experiment are costly and time-consuming (Hudait and Patel, 

2022). So, there is a requirement of a systems or methods for cost-effective, time-

efficient and precise crop statistics. which will be able to support micro-level 

agricultural planning and ensure accurate crop insurance coverage. 

 

However, accurately mapping and monitoring of smallholding agricultural plots 

are challenging due to the diversity in crops, farming systems and limited plot size 

(Lowder et al., 2016; Paliwal and Jain, 2020). In this context, remote sensing (RS) is a 

technology that allows us to gather information about the Earth's surface and 

atmosphere from a distance, typically from satellites or aircraft at regional and global 

scales (Paliwal and Jain, 2020). In recent years, advancements in remote sensing 

technology have enabled us to make more accurate, recurrent and timely estimation of 

crop acreage and yield, making it an essential tool for supporting agricultural decision-

support systems.  
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Nowadays, remotely sensed Earth observation satellite data based precisely 

mapping and monitoring of agricultural land (Singh et al., 2020) is being widely used 

due to publicly accessible high-resolution Sentinel-2 and PlanetScope satellite data 

(Kumar et al., 2022). These datasets are being extensively used by researchers, 

government agencies and agricultural companies for crop area/ acreage estimation, crop 

type delineation, crop conditions and growth patterns mapping, crop insurance and 

yield prediction to provide farmers with valuable insights to improve crop productivity 

and efficiency (Neetu and Ray, 2019; Paliwal and Jain, 2020). In addition, the 

integration of remote sensing techniques and machine learning approaches has 

revolutionized the agriculture sector, which is now commonly used for crop type 

mapping, distribution and acreage estimation (Prins et al., 2020; Mizuochi et al., 2021; 

Hudait and Patel, 2022). Several studies have been conducted for crop acrege 

estimation using remote sensing and machine learning approaches. Wherein, multi-

sensor data and ML algorithms were utilized to estimate crop area and high accuracy 

was demonstrated in mapping and monitoring different types of crops (Costa et al., 

2021; Yan et al., 2021; Veerabhadraswamy et al., 2021; Kumar et al., 2023). 

 

Traditional methods of crop yield estimation are biophysical crop-simulation 

models, agronomic techniques, crop-growth models and agrometeorological statistical 

techniques, which are time-consuming and costly (Betbeder et al., 2016). The statistical 

regression method (Rembold et al. 2013) is a widely used method for crop yield 

estimation because it has fewer requirements for input data compared to other methods 

such as machine learning and artificial intelligence. This method is based on “empirical 

relationships between measured in-situ crop yield and vegetation indices values” 

(Mehdaoui and Anane, 2020). The vegetation indices used in this method provide 

information about the greenness, productivity, and health of crops. 

 

According to previous studies, various spectral indices were developed using 

remotely sensed satellite data such as NDVI (Rouse Jr et al. in 1973), GNDVI (Gitelson 

et al., 1996), LSWI (Xiao et al. 2002), EVI (Huete et. al., 2002), which have been 

utilized in many studies for crop mapping and yield estimation. Among these indices, 
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NDVI is the most popular vegetation index, which is widely used in empirical 

regression models to predict crop yields (Franch et al. 2019).  

 

Some previous studies have shown that extensive crop simulation (Jin et al., 

2019) and crop-cutting experiment datasets were used for crop yield estimation, which 

is an accurate and reliable method. However, this method is time-consuming and 

expensive, which limit the scope of remote sensing models. Because there is 

challenging to obtain reliable input data from agricultural fields for calibrating and 

validating remote sensing models for crop yield estimation. 

 

Nowadays, remote sensing technology has emerged as a promising alternative 

to traditional methods of crop yield assessment (Awad al., 2019). The use of remotely 

sensed satellite dataset is a cost-effective, less time consumption and efficient way to 

collect input data for crop yield estimation. With the use of remote sensing satellites, 

aircraft, or unmanned aerial vehicles (UAVs) can provide wide coverage of agricultural 

lands and gather information about crop health, growth, and yield potential (Wang et 

al., 2020). 

 

In recent years, MODIS, Landsat, LISS-3&4, Sentinel and PlanetScope datasets 

are increasingly being used for crop yield forecasting and monitoring (Mehdaoui and 

Anane, 2020). These datasets have wide area coverage, and near real-time information, 

allowing for better prediction of future yields. The use of satellite data has significantly 

improved accuracy and efficiency of yield forecasting. “Despite its increasing 

importance, remote sensing faces several significant technical challenges in its 

operational application such as low spatial resolution” (Imanni et al., 2022).  

 

Low spatial resolution means that small features, such as individual crops or 

trees, may not be visible in the image. In north Bihar, most farmers have an average 

landholding size of less than 2 hectares, which can result in significant errors in crop 

production estimation (Jain et al., 2016). The publicly accessibility of Sentinel-2 (10m 

spatial resolution) of the European Space Agency (ESA) and PlanetScope (4.77m 

spatial resolution) through the NICFI program provides high spatial and temporal 
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resolution satellite data (Planet, 2017), which have minimized the drawbacks and 

improved its capabilities to identify the crop in small holding size plot too. Apart from 

high-resolution imagery, the sentinel-2 satellite has specific spectral 3 red-edge bands 

(704, 740 and 783 nm), which is more sensitive to monitoring the vegetation conditions 

(Dong et al. 2019) and yield estimation (Cao et al. 2017) than red-infrared indices 

(Delegido et al. 2013). 

 

In many parts of the world, the reliance on traditional statistical methods for estimating 

agricultural production often results in unreliable and delayed reports regarding 

expected crop yields and production (Ali et al. 2022). However, the advent of remote 

sensing techniques and machine learning approaches provide a remarkable alternative 

for the estimation of crop production (Khaki et al. 2021). 

 

Presently, the overall object of the study is to develp the model/ algorithms for 

yield and production estimation of maize crop using remotely sensed satellite data, an 

evolved spectral index and machine learning algorithm. Wherein, a combination 

PlanetScope and Sentinel-2 data has been utilized for maize crop acreage estimation 

and Sentinel-2 satellite data used to extract the spectral indices such as REI, NDVI, 

GNDVI, LSWI and EVI for maize crop yield estimation of north Bihar, India. The 

production is determined by combining information on the amount of land (acreage) 

dedicated to the maize crop and the average yield data. 

 

6.2 Materials and Method 

6.2.1 Experimental Site Selection 

Agriculture is a significant contributor to the economy of India. However, it is 

facing various challenges such as flood, climate change, long-term droughts, and 

rainfall variability. Which have significant implications for crop production and food 

security. Therefore, the development of a monitoring system for agricultural production 

in India has become essential to plan and predict crop yields accurately. The northern 

part of Bihar is chosen for the experimental site (Fig. 1.9) and model validation in the 

present study due to its unique position as a major contributor to rabi maize production 

in India (Singh et al., 2018).
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A reliable and comprehensive satellite datasets (PlanetScope and Sentinel-2A/B) and 

CCE data (Fig. 3.6) are required for the estimation of maize crop yield and production. 

In this study, Integrated satellite datasets of PlanetScope and Sentinel-2A/B were used 

for crop classification and identification. Wherein, Sentinel-2A/B satellite data was 

used to extract the spectral indices such as REI, NDVI, GNDVI, LSWI and EVI for 

maize crop yield estimation. 

 

6.2.2 Methodology  

In the present study, a freely accessible Google’s GEE cloud computing 

platform (CCP) has been used to process voluminous dataset of multiple dates NICFI-

Planet Scope remote sensing satellite imagery. Because, this platform has the capability 

to analyse, visualize and access massive datasets such as Landsat, Sentinel, MODIS, 

PlanetScope etc. achieve without the requirement of local storage system (Amani et al., 

2020) and GIS Software. In the present study, a visual representation of the 

methodology is presented in Figure 6.1. 
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Figure 6.1: Flowchart illustrating the steps of acreage and yield estimation 
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6.2.3 Cloud Computing Platform for data processing 

Satellite data processing is essential for crop mapping, monitoring and many 

other applications. However, processing satellite data requires vast amounts of 

computational resources, storage capacity, and specialized software. This could be 

prohibitively expensive, time-consuming and challenging for researchers and 

organizations working with satellite data, especially those who do not have access to 

expensive hardware and software.  

 

In the present study, the GEE cloud geo-computing platform have been used to 

provide solutions to these challenges. Hence, this platform has been used for satellite 

data processing and analysis. The JavaScript codes have been also developed 

(https://code.earthengine.google.com/?scriptPath) for maize crop acreage estimation 

(Fig. 6.2). to prepared the input data of yield estimation model. 

 

Figure 6.2: The GEE based maize acreage estimation for input parameter for yield 

estimation 

 

6.2.4 Acreage Estimation 

The Sentinel-2 imagery was harmonized and resampled (Script-1) to the exact 

resolution as PlanetScope (4.77 m) using the bicubic interpolation function (Keys, 

1981) in the GEE platform. Fusion algorithm have also applied a to merge Sentinel-2 

and NICFI data using Web-based GEE JavaScript code “ var fusion = ee.Image.cat 

(sentinel2, nicfi);” . 
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Script-1 

 

 

After each processing step, Multi-date NDVI was generated from the 

harmonized imagery and stacked in a single image (Fig. 6.3). Then, Agricultural land 

was extracted using Random Forest (RF) algorithms   

(ee.Classifier.smileRandomForest). Again, Random Forest (RF) algorithms of machine 

learning was used in the present study for crop classification, prediction and mapping 

of maize crops using GT datasets. Accuracy assessment has been also performed for 

classified datasets to validate the output/result.  

 

6.2.4.1 Multi-date NDVI Extraction 

The NDVI is being widely used as a tool for measuring vegetation, mapping 

crops, and monitoring changes in vegetation growth over time (Rouse Jr et al. in 1973). 

The NDVI is working based on the principle that healthy plants absorb light in the 

visible spectrum for photosynthesis, and reflect light in near-infrared (NIR) spectrum. 

However, stressed or unhealthy plants reflect less NIR light, resulting in a lower NDVI 

value. 

The NDVI can calculate by the formula: 

 

NDVI = (NIR - Red) / (NIR + Red) 

 

where NIR is the reflectance in the near-infrared spectrum, and Red is the reflectance 

in the red spectrum. The resulting NDVI values range from -1 to +1. 

 

var sentinel2_resampled = filteredSentinel2.map(function(image){ 

  return image.resample('bilinear').reproject({ 

    crs: nicfiBasemap.projection(), 

    scale: 4.77 

 }); 

}); 
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Figure 6.3: Multi-date stacked NDVI from experiment site. 

 

Figure 6.4: NDVI values are depicting the growth profile of maize, wheat, forest and 

water. 

 

In crop mapping, NDVI is extensively used to distinguish between different 

crop types, estimate crop acreage, yield, and monitor crop health. For instance, 

researchers have used this index to know the impact of drought on corn and soybean 
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yields in the United States (Wang et al., 2019). In vegetation mapping, NDVI has been 

used to monitor vegetation extent in the Amazon rainforest (Asner et al., 2005).  

In this work, five dates (January to May 2022) NDVIs were obtained from each satellite 

i.e. Sentinel-2 and Planet Scope of North Bihar and stacked (Fig. 6.3) it for estimation 

of maize crop. It observed that NDVI values of maize crops remain low at the time of 

sowing, rise by maturity and fall again at the time of harvesting (Fig. 6.4). Maize and 

wheat are the main crops grown in the Rabi season in North Bihar. 

 

In the present study, a supervised classification approach has been used, which 

involves the use of training samples to classify an image into various land cover classes, 

including different crop types. This method works on training samples, which can be 

collected from ground truth data or existing land cover maps, and then used to train a 

classification algorithm, such as RF to classify the image. 

 

6.2.4.2 Use of Random Forest Algorithms for Acreage Estimation 

Random Forest (RF) is a popular ML algorithm that is widely used in supervised 

classification problems. It is a type of ensemble learning method that combines multiple 

decision trees to make more accurate and robust predictions. The RF algorithm was 

first introduced by Leo Breiman and Adele Cutler in 2001 and has since become one of 

the most widely used ML algorithms in various fields viz; finance, healthcare, 

agriculture and remote sensing. 

 

In the RF algorithm, multiple decision trees are built using randomly selected 

subsets of the training data and features. The trees are then combined through a process 

called bagging, which averages their predictions to produce the final output. The use of 

multiple trees and feature subsets helps to reduce overfitting and improve the accuracy 

and generalization of the model (Fig. 6.5). 

 

One of the key advantages of the RF algorithm is its ability to handle high-

dimensional data and complex interactions between features. It can also handle missing 

values and noisy data, making it a robust and versatile method for various applications. 

Several studies have shown the effectiveness of the RF algorithm in various  
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classification tasks. Cutler et al. (2007) demonstrated that “the RF algorithm 

outperformed other popular machine learning algorithms such as SVM and ANN” in 

classifying remote sensing data.  

 

Figure 6.5: Flowchart of RF algorithms to estimate acreage for input parameter for 

yield estimation  

In another study, RF algorithm achieved high accuracy in predicting cancer prognosis 

based on gene expression data (Chen et al. (2014). In crop mapping, RF can be used to 

classify remote sensing data into different crop types. Nowadays, the RF approach is 

being employed to map crops in various regions around the world, including North 

America, Europe, Africa, and Asia. Zhang et al. (2018) used this approach to map major 

crop types in China using Landsat and MODIS data. In another study by Yu et al. 

(2020), RF was used to map soybean fields in the United States using Landsat data. 

 

Nowadays, RF and GEE platform is being commonly used for crop mapping 

and monitoring using high-resolution Sentinel-1 & 2 datasets and ML algorithms 

(Richards et al.,2021; Mandal et al., 2021). Hence, the RF algorithm has been used to 
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map the acreage of maize crops of 2022 & 2023 using the GEE platform. Wherein, 

agricultural land was extracted from multi-date NDVI using Random Forest (RF) 

algorithm (ee.Classifier.smileRandomForest).  

 

6.2.5 Yield Estimation 

6.2.5.1 Input datasets for Model 

 Insolation and Fraction of absorbed photosynthetically active radiation 

(FPAR) data:  

Daily insolation datasets were obtained from the MOSDAC portal and 

converted to 8-day products. Eight-day FPAR datasets are also obtained from the 

NASA LP DAAC. Both datasets have been resampled to 10 m spatial resolution. 

 Radiation-use efficiency (RUE): 

RUE (ɛ0) is the process of quantifying the photosynthetic conversion of solar 

radiation into plant biomass, which is a key parameter in agricultural science to assess 

the productivity of plants and crops (Kiniry et al.1989; Shi et al. 2022) . The formula 

for calculating RUE is expressed as: 

RUE =  
𝐁𝐢𝐨𝐦𝐚𝐬𝐬 𝐩𝐫𝐨𝐝𝐮𝐜𝐞𝐝 (𝐠 𝐨𝐫 𝐤𝐠)

𝐒𝐨𝐥𝐚𝐫 𝐫𝐚𝐝𝐢𝐚𝐭𝐢𝐨𝐧 𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭𝐞𝐝 (𝐌𝐉 𝐨𝐫 
𝐌𝐉

𝒎𝟐 )
 

In the present study, the RUE of maize crop is taken from the literature, which is 

3.5±0.7 g MJ−1 (Kiniry et al. 1989; Hatfield 2014; Torres et al. 2017). 

 

 Indices Extraction and Evolution 

Nowadays, NDVI, GNDVI, EVI and LSWI etc. spectral indices are commonly 

used in Earth observation applications (Zeng et al., 2022). Wherein NDVI, GNDVI, 

and EVI are vegetation indices that are used to monitor vegetation health and changes, 

LSWI is used to detect the presence of water on land surfaces (Chandrasekar et al., 

2010; Pan et al., 2021). The choice of the index to use depends on the specific 

application and the environmental conditions being monitored. I have used the GEE 

cloud computing platform to reduce processing time, generate and export the required 

indices, and re-projected them to the World Geodetic System 84 (WGS-84) for further 

analysis. 
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In the present study, five date’s (January to May ) NDVI, GNDVI, LSWI, EVI 

and REI were obtained from Sentinel-2 satellite data of each year (2022 & 2023) for 

maize crop yield estimation. I have used the GEE cloud computing platform to reduce 

processing time, generate and export the required indices, and re-projected them to the 

World Geodetic System 84 (WGS-84) for further analysis. Recently developed "Red 

Edge Index (REI)" index performed well when estimating crop production. REI is 

calculated as the ratio between the top-of-atmosphere (TOA) reflectance of a red band 

around 665 nm and a Vegetation Red Edge (RE) band around 704-785 nm. In other 

words, REI computes vegetation status or photosynthetic activity by measuring the 

difference between RE (vegetation strongly reflects) and Red reflectance (absorption 

of vegetation). Its value varies from -1 to +1 and its formula is (RE - Red)/ (RE + Red).  

REI = (RE - Red) / (RE + Red) 

It can be calculated by band-4 (Red) and band-6&7 (RE) of Sentinel-2 satellite 

imagery. Densely vegetated areas will typically have positive or higher values, while 

water, urban, and non-vegetated (moisture-stressed vegetation) areas will have values 

that are close to zero or negative. Healthy vegetation (chlorophyll) reflects more RE 

and green reflectance compared to other wavelengths. In the present study, five date’s 

(January to May) REI were obtained from Sentinel-2 satellite data of North Bihar.  

 

 

6.2.5.2 Semi Physical Model for Yield Estimation 

Presently, semi-physical model has been used for computation of maize crop 

biomass using Vegetation Index, RUE, PAR, FPAR, Rainfall and Temperature 

(Tripathy et al. 2021). The biomass of maize crop was calculated using equation (iv). 

Biomass Index = Indices*ɛ0*PAR*FPAR*Rain*Temp                           (iv) 

 

6.2.5.3 Relationship between maize crop yield/CCE data and indices values 

In the present study, a regression analysis was carried out (Fig. 6.9) and 

correlated the sum of multi-date biomass indices with CCE data averaged at district 

level. The relationship between crop yield and various vegetation indices is represented 

by the respective R-squared (R2) values. R2 is a statistical measure that indicates the 
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strength of the relationship between two variables, with a value of 1 indicating a perfect 

relationship and 0 indicating no relationship. 

 

 

 

Here, Red Edge Index has been used for cluster/district-wise maize crop yield 

estimation, as it is performing well for maize crop yield estimation. The formula for 

yield biomass (YB) estimation/Prediction based on REI index is as follows:                               

YB = (𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 ∗ Intercept) + Coefficients)                          (v) 

Or 

REI YB = (𝐵𝑖𝑜𝑚𝑎𝑠𝑠 ∗ 𝑅𝐸𝐼 ∗ 7001) + 0.36050) 

 

This is cost-effective, efficient and less time-consuming method for yield 

estimation and predictions. 

 

6.2.5.4 Production Estimation 

The production of maize is determined by a combination of two key factors: the 

area of land (acreage) dedicated to growing maize and the average yield data. By 

integrating these two information, total maize production has been estimated of the 

study, which is vital for assessing supply, market trends, and planning agricultural 

strategies. 

 

6.3 Result and Discussion  

This study aimed to develop a method to estimate maize yield and production 

using remotely sensed satellite datasets such as Sentinel-2 and PlanetScope and the 

GEE cloud computing platform. This study has evaluated five vegetation indices 

(NDVI, EVI, GNDVI, LSWI, and REI) to develop the model. The results showed that 
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the GEE cloud computing platform is capable to fastly processing the data, 

demonstrating the potential for rapid and efficient processing of large remote sensing 

datasets. On the other hand, this developed red edge index performed well in terms of 

accurate estimation of maize crop yield. 

 

6.3.1 Crop Acreage Estimation 

Crop identification, discrimination, and acreage estimation using remote 

sensing satellite data can be achieved through several methods, including supervised 

and unsupervised classification, object-based image analysis, and machine learning 

algorithms.  

 

In the present study, supervised classification approach has been used, which 

involves the use of training samples to classify an image into various land cover classes, 

including different crop types. This method works on training samples, which can be 

collected from ground truth data or existing land cover maps, and then used to train a 

classification algorithm, such as maximum likelihood, SVM, RF and CNN, to classify 

the image. 

 

The PlanetScope provides high-resolution imageries at a spatial resolution of 

4.77 meters, while Sentinel-2 offers imagery at 10 meters. The combination of 

PlanetScope and Sentinel-2 satellite imagery has proven to be an effective method for 

crop mapping (Rao et al., 2021). Hence, the integrated satellite data of PlanetScope and 

Sentinel-2A/B were used for maize crop mapping and identification in North Bihar 

using RF algorithms of machine learning (ML) and the GEE platform, which is an 

effective and efficient method for crop mapping and monitoring (Fig. 6.6). Where, the 

study achieved overall 84 percent of accuracy (kappa 0.79) with Sentinel-2A/B 

datasets, 90 percent (kappa 0.89) with NICFI-PlanetScope datasets, and 95 percent 

(Kappa 0.91) with the combination of PlanetScope and Sentinel-2A/B datasets (Fig. 

6.7). The area of target crop was estimated by identifying and mapping its spatial extent 

and then calculating the area using the scale and resolution of the image (Fig. 6.6). 
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Acreage map of maize crops has been also generated of North Bihar using the 

GEE platform and QGIS Software. Furthermore, cluster/district-wise maize crop area 

of 2022 and 2023 were estimated by using identified pixels of the maize crop (Table 

6.1). 

 

 

 

Figure 6.6: Map showing maize crop extent of study area. 

 

 

Figure 6.7: Sensor wise classification accuracy 

 

Wherein, analysis shows that the district with the largest area under maize crop 

is Purnia with an area of 47,938 ha in 2021-22 and 49, 514 ha in 2022-23. Begusarai is 

the second-largest district in both estimation years, with an area of 40,052 ha in 2021-

22 and 41,613 ha in 2022-23. Katihar follows in third place with an area of 38,140 ha 

in 2021-22 and 38,335 ha in 2022-23. Khagaria and Arariya complete the list of the top 
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five largest districts, with areas of 33,753 and 30,783 ha, respectively. The remaining 

districts have areas ranging from 43 to 28,005 ha.  

 

 

Figure 6.8: District wise maize crop area of study area. 

In which, Saran, Siwan, Supaul, Gopalganj, Darbhanga, Purbi Champaran, 

Sitamarhi, Kishanganj, Sheohar and Madhubani are the smallest districts in terms of 

maize growing, each with an area of less than 6,000 hectares in both estimation years. 

The bottom 5 districts with the smallest area are Sitamarhi, Kishanganj, Sheohar, 

Madubani, and Pashchim Champaran (Fig. 6.8).  

 

6.3.2 Crop Yield Estimation 

Remote sensing satellite data with high spatial resolution is a powerful tool for 

crop monitoring and assessment of crop yield and production. This technique allows 

for frequent and rapid assessment of crop growth and yields over large areas, which is 

critical for decision-making in agriculture. The accuracy of crop classification and the 

use of appropriate vegetation indices are essential for accurate yield and production 

estimation. 

 

In the present work, we found that the relationship between CCE yield and index 

is R2 = 0.84 of REI, R2 = 0.79 of NDVI, R2 = 0.76 of EVI, R2 = 0.70 of GNDVI and  
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R2 = 0.50 of LSWI (Fig. 6.9). REI shows highly positive correlation with maize crop 

yield, higher REI values represent higher crop yield and lower REI values represent 

lower crop yield and NDVI is the second highest correlated index with maize crop yield. 

The EVI index is indicating a moderate relationship. The GNDVI index and LSWI 

index have indicated a weak relationship between this index and crop yield. 

 

 

 

Figure 6.9: Indices-wise relationship between CCE maize yield and Indices values. 

In the present study, district-wise average yield of maize crop was estimated of 

2021-22 and 2022-23 using evolved REI index based formula (i). Overall highest yield 

was observed in 2021-22. Wherein, the highest yield is observed in Arariya district, 

with 9.98 tonnes per hectare, while the lowest yield is in Siwan district, with 3.69 tonnes 

per hectare (Fig. 6.10). It is interesting to note that there is a substantial difference in 

yield among the districts, with a difference of more than 5 tonnes per hectare between 

Begusarai and Samastipur. This variation may be attributed to various factors, including 

soil quality, weather conditions, and agricultural practices in each district. 
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The top five districts in terms of yield, Arariya, Katihar, Supaul, Purnia and 

Kishanganj are all located in the north-eastern part of Bihar (Simanchal Area), near the 

border with Nepal in both estimation years. These districts have a favourable climatic 

conditions, fertile soil and sufficient rainfall, which helps in higher yield. On the other 

hand, the districts with lower yields are mostly located in the western and central parts 

of north Bihar, such as Muzaffarpur, Gopalganj, Saran, and Vaishali in both estimation 

years. 

 

 

Figure 6.10: District wise maize crop yield (Kg/ha-1) of study area  

 

In addition, choropleth map of maize crop yield has been also prepared for better 

representation (Fig. 6.11 A & B). In which, red colour indicates higher yield and light 

orange colour indicates lower yield. 

 

 

 

 

 

 

3000

4000

5000

6000

7000

8000

9000

10000

A
ra

ri
ya

K
at

ih
ar

P
u

rn
ia

K
is

h
an

ga
n

j

Su
p

au
l

M
ad

h
ep

u
ra

K
h

ag
ar

ia

B
eg

u
sa

ra
i

Sa
h

ar
sa

Si
ta

m
ar

h
i

B
h

ag
al

p
u

r

Sa
m

as
ti

p
u

r

W
es

t 
C

h
am

p
ar

an

M
u

za
ff

ar
p

u
r

Sa
ra

n

Sh
eo

h
ar

G
o

p
al

ga
n

j

Ea
st

 C
h

am
p

ar
an

V
ai

sh
al

i

D
ar

b
h

an
ga

M
ad

u
b

an
i

Si
w

an

Y
ie

ld
 (

K
g/

h
a)

District

2021-22 2022-23



 

134 |                                              Maize (Zea Mays L.) Crop Yield and Production Estimation 
 

 

 

Figure 6.11 Choropleth map of maize crop’s yield: (A) 2021-22  & (B) 2022-23

Average Yield of Maize Crop (2021-22) 

A 

B 

Average Yield of Maize Crop (2022-23) 
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Table 6.1: Districts wise maize crop acreage, yield and production during 2021-22 and 2022-23 

Sl. 

No. 
District 

2021-22 2022-23 

Acreage Yield  Production Acreage Yield  Production 

(ha) 
('000 

ha) 

  

(Kg/ha)  
 (Kg) 

('000 

tonnes) 
(ha) 

('000 

ha) 

 

(Kg/ha) 
 (Kg) 

('000 

tonnes) 

1 Arariya 30784 30.78 9987.74 307458916 307.46 31205 31.21 8839.15 275827266 275.83 

2 Begusarai 40052 40.05 7463.73 298938807 298.94 41613 41.61 6881.56 286362442 286.36 

3 Bhagalpur 17050 17.05 6508.76 110973577 110.97 17373 17.37 5740.73 99733124 99.73 

4 Darbhanga 5425 5.42 4407.44 23908731 23.91 5610 5.61 4019.59 22549437 22.55 

5 Gopalganj 3907 3.91 4332.24 16925239 16.93 3974 3.97 3691.07 14670126 14.67 

6 Katihar 38141 38.14 9949.47 379480991 379.48 38335 38.33 8805.28 337546300 337.55 

7 Khagaria 33754 33.75 7171.20 242055466 242.06 35601 35.60 6540.13 232835379 232.84 

8 Kishanganj 1118 1.12 9133.85 10215566 10.22 1180 1.18 7809.44 9211613 9.21 

9 Madhepura 17734 17.73 8846.16 156879040 156.88 17868 17.87 8005.77 143048369 143.05 

10 Madubani 43 0.04 3968.00 170068 0.17 45 0.05 3579.14 161256 0.16 

11 Muzaffarpur 10537 10.54 5383.30 56724801 56.72 10902 10.90 5340.23 58218353 58.22 

12 W. Champaran 1811 1.81 5501.88 9966491 9.97 1830 1.83 5402.85 9889631 9.89 

13 E. Champaran 4946 4.95 3811.50 18852632 18.85 5139 5.14 3895.35 20016496 20.02 
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Sl. 

No. 
District 

2021-22 2022-23 

Acreage Yield  Production Acreage Yield  Production 

(ha) 
('000 

ha) 

  

(Kg/ha)  
 (Kg) 

('000 

tonnes) 
(ha) 

('000 

ha) 

 

(Kg/ha) 
 (Kg) 

('000 

tonnes) 

14 Purnia 47939 47.94 9597.42 460086686 460.09 49514 49.51 8109.82 401549894 401.55 

15 Saharsa 12425 12.43 6904.32 85786659 85.79 12540 12.54 6089.61 76364715 76.36 

16 Samastipur 28005 28.01 5740.58 160765804 160.77 28771 28.77 4890.97 140716613 140.72 

17 Saran 5644 5.64 5047.92 28490208 28.49 5734 5.73 4674.37 26802406 26.80 

18 Sheohar 1502 1.50 5437.40 8169150 8.17 1530 1.53 4600.04 7037718 7.04 

19 Sitamarhi 3144 3.14 5829.30 18325221 18.33 3109 3.11 4698.42 14605795 14.61 

20 Siwan 5277 5.28 3690.00 19472204 19.47 5388 5.39 3623.58 19525580 19.53 

21 Supaul 4711 4.71 9804.45 46191290 46.19 4703 4.70 8363.19 39336174 39.34 

22 Vaishali 7303 7.30 4163.39 30404862 30.40 7540 7.54 4088.45 30828940 30.83 

Total (AOI) 321252 321.25 7751.68 2490242408 2490.24 329504 329.50 6879.54 2266837629 2266.84 

 

Note: AOI (Area of Interest), ha (Hectare), ‘000 (Thousand), Kg (Kilometre), Sl (Serial), No (Number)  
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6.3.3 Maize crop production estimation 

The highest maize production was recorded in Purnia district in both estimation 

years, which produced about 460 thousand tonnes in 2021-22 and about 401 thousand 

tonnes in 2022-23. Katihar followed closely with a production of 379 thousand tonnes 

in 2021-22 and 337 thousand tonnes in 2022-23, while Arariya and Begusarai came in 

third with 307 thousand tonnes in 2021-22 and 286 thousand tonnes in 2022-23 

respectively. The fourth and fifth-highest producing districts were Begusarai in 2021-

22 and Khagaria in 2021-22, respectively, producing about 299 and 242 thousand 

tonnes. In 2022-23 estimation years, Arariya and Khagaria come at fourth and fifth 

position in production.  

 

Furthermore, we observed that Samastipur district produced 160.77 thousand 

tonnes of maize, while Madhepura and Bhagalpur produced about 157 and 111 

thousand tonnes of maize in 2021-22 respectively. The remaining districts produced 

maize in smaller quantities, with Madubani producing the lowest at only 170 tonnes in 

2021-22. Whereas, Madhubani, Sheohar, Kishanganj and West Champaran districts 

recorded the lowest production in the year 2022-23 (Fig. 6.11). 

 

6.3.4 Validation of estimated yield with CCE and Government Report 

Presently, i have used 25% CCEs data for validation of extracted yield from the 

study area. In this context, i have plotted the data on a scatter plot to visualize the 

relationship between actual yield and predicted yield. Wherein, it is observed that there 

is a general positive correlation between the two variables, but there are some samples 

that deviate significantly from the general trend. The correlation coefficient between 

the Actual/CCE Yield and the Predicted Yield is 0.79, indicating a strong positive 

correlation. Wherein, about 15% difference is observed in estimated yield (Fig. 6.12).   

 

In addition, i have also verified and compared the estimated yield with the 

reported data from the Government of Bihar. Where we found that a variation of around 

18% is observed in the expected/estimated yield. It is expected that the accuracy of 

estimation can be improved with the use of high-resolution spatial and temporal satellite 

datasets (Tripathy et al., 2021).  
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Figure 6.12: District-wise maize crop production 
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Figure 6.13: Graph showing variation between actual and predicted yield 

 

6.4 Conclusion  

The study was carried out for the development of accurate maize crop acreage 

and yield estimation model using remote sensing satellite imagery, GT and CCE data. 

For acreage estimation, i have achieved overall 84 percent of accuracy (kappa 0.79) 

with Sentinel-2A/B datasets, 90 percent (kappa 0.89) with NICFI-PlanetScope datasets, 

and 95 percent (Kappa 0.91) with the combination of PlanetScope and Sentinel-2A/B 

datasets.  

 

All five spectral indices intensely evaluated the relationship with maize crop 

yield using a regression model and demonstrated the methodology for maize crop yield 

estimation. The obtained result was also validated with CCE data of study area. 

Wherein, newly developed Red Edge index is performing well (R2 = 0.84) in terms of 

correlation between vegetation indices and yield than previously developed indices. 

Therefore, it is expected that demonstrated method will be helpful for precisely crop 

growth, phenology, stress, yield estimation and prediction.  
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This approach relies on publicly accessible Sentinel-2, PlanetScope datasets and 

the GEE Platform for data processing, which minimizes financial constraints and 

maximizes the replicability of the used approach. However, the accuracy of the 

methodology can be further validated by using it in different locations and crops with 

large to small datasets of CCE. All data processing JavaScript GEE code and datasets 

utilized in the study will be made available as per user request for further use. 
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CHAPTER-7      SUMMARY AND CONCLUSION 

 

In recent years, several studies were conducted to study crop phenology. 

Wherein, advanced computation and geospatial technologies were used for crop area, 

yield and production mapping and monitoring. But frequent floods are common 

phenomena in the study area (North Bihar), which damage to people's lives, 

infrastructure and agricultural sector every year in Bihar. Despite this, no specific 

studies have been conducted in North Bihar, India to assess the impact of flood on crop 

acreage, yield and production.  

 

To address this gap, a systematic approach has been employed. Firstly, the flood 

extent has been precisely delineated by harnessing Sentinel-1 SAR remote sensing 

satellite data. The processing of SAR datasets was efficiently executed through the GEE 

cloud computing platform, which reduce processing time and expedited the 

identification and mapping of flood-affected regions. This initial step laid the 

groundwork for comprehending the spatial dimensions of the issue. 

 

Moreover, the estimation of maize crop acreage has been precisely conducted 

through the amalgamation of various data sources. The combination of PlanetScope 

and Sentinel-2 remote sensing satellite data has used for a detailed assessment of maize 

crop. Wherein, GT data of the study area has been collected to train the ML algorithms 

such as RF, SVM, CART, and Naive Bayes for acreage estimation. These algorithms 

have ability to understand complex patterns and relationships within the satellite data, 

which enhanced the precision of maize crop acreage estimation.  

 

Traditional methods of crop yield and production estimation are costly and time 

consuming. Therefore, modern approaches have been used for maize crop yield and 

production estimation, using remote sensing satellite data, CCE data, statistical and 

machine learning approaches. 
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By combining these multi-source datasets and harnessing the capabilities of 

advanced machine learning techniques, a comprehensive and meticulous evaluation of 

flood impact on maize crops has been assessed. It is expected that this study will be 

helpful for disaster management, agriculture policy, and food security in the region. 

 

In this work, the North Bihar which includes 22 districts; has been chosen as a 

study area because about 76% of the population (number) is dependent on agriculture 

in the region that are severely affected by flood every year. This study is intended to 

contribute to the existing knowledge about the impact of floods on agriculture by 

providing a detailed assessment of the impact of floods on maize crops acreage, yield 

and production through integration of state-of-the-art techniques such as remote sensing 

and machine learning. 

 

7.1 Findings 

In Chapter 4, flood extents and flood-affected areas of North Bihar for the year 

2020 and 2021 using all accessible Sentinel-1 SAR, Sentinel-2 MSI and PlanetScope 

images with additional supporting datasets available on the GEE cloud computing 

platform have been demarcated. In addition, i have developed JavaScript code for 

processing the massive dataset hosted on the GEE cloud computer platform for robust 

flood mapping and monitoring at large scale using Microwave (SAR) satellite dataset 

within a short time of period. 

 

Here, the present study showed that floods severely impacted a large portion of 

North Bihar during the monsoon season of 2020 and 2021. About 701967 hectares 

(614706 ha agricultural) land in 2020 and 955897 hectares (851663 ha agricultural) in 

2021 have been severely flooded. It is observed that about ~ 12.63% (701967 ha) in 

2020 and about ~ 17.20% (955897 ha) of study area were flooded in 2021. In the floods 

of 2021, about 4% more area of North Bihar were flooded as compared to the floods of 

2020. 

District-wise flood-affected areas were extracted and it was found that the most 

flood-affected districts in 2021 were Bhagalpur, Darbhanga, Katihar, Muzaffarpur and 
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Gopalganj. Results were validated using flood extent layer generated by NRSC and 

advisory document of State Disaster Management Authority of Bihar. 

 

In Chapter 5, i have proposed a method to discriminate /identify the maize crop 

from other crops using machine learning algorithms (RF, SVM and CART), publicly 

available remote sensing satellite datasets and cloud computing platforms such as GEE. 

In the present study, Integrated satellite imagery of Sentinel-2 and PlanetScope, and 

Machine learning approaches have been used for maize crop mapping of 2022 and 2023 

in North Bihar, India.   

 

In addition, i have assessed and compared the Performance of CART, Random 

Forest and SVM Algorithms of ML for crop identification and mapping using the GEE 

Cloud Computing Platform. Wherein, we found that RF outperforms CART and SVM 

algorithms in the GEE platform with PlanetScope data (90.17 % Overall Accuracy 

(OA) with Kappa 0.89) and also with the integration of PlanetScope and Sentinel-2A/B 

data (OA = 95.53%, Kappa 0.91). But, CART outperforms RF and SVM algorithms 

with Sentiel-2A/B data (OA = 88.59 %, Kappa 0.85). The use of integrated satellite 

imagery with RF algorithms improved the accuracy of crop mapping by about 6%. 

Which shows that the integration of Sentinel-2A/B and PlanetScope imagery is more 

suitable for crop identification with RF algorithm. But, the CART algorithm can be 

suitable for accurately crop mapping with Sentinel-2 data. 

 

In this study, a maize crop map has been generated using the GEE platform and 

QGIS software, and their overall accuracy is 95.53%. It is also found that approximately 

321252 hectares of land in 2021-22 and 329504 hectares of land in 2022-23 are devoted 

to maize cultivation in North Bihar, India. I have also developed a web-based JavaScript 

code that can be tested anywhere in the world for robust mapping of crops under various 

climatic conditions. We expected that this study will be helpful for crop cultivation 

management, precision agriculture, crop insurance and for making a decision support 

system to prioritise the input subsidy for farmers.   
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In Chapter 6, we intended to develop a method to timely monitor crop growth, 

estimate acreage, yield and production using the publicly accessible high-resolution 

remotely sensed satellite data (Sentinel-2 and PlanetScope) and cloud-based geo-

computing platforms such as GEE. Traditional methods of crop yield estimation are 

time-consuming, costly and having low efficiency. But, the remote sensing technology 

based approach is cost effective as compared to the traditional method. With the 

development of RS technology, various spectral indices such as NDVI, GNDVI, EVI 

and LSWI were developed using remotely sensed satellite data for mapping and 

monitoring vegetation health and productivity. 

 

In the present study, the newly developed 'REI (Red Edge Index)' has been used 

for the estimation of maize crop yield, which is performing well in terms of prediction 

accuracy than previously developed indices. Wherein, the obtained correlation with 

maize yield was R² = 0.84 with REI, R² = 0.79 with NDVI, R² = 0.76, with EVI, R² = 

0.70, with GNDVI and R² = 0.50 with LSWI. Acreage has also been estimated using 

high-resolution satellite imagery and a random forest machine learning algorithm as 

input parameters for the yield model and cluster/district-wise production estimation. It 

is expected that newly developed crop yield estimation model is simple and cost-

effective for developing countries like India and will improve accuracy by using them 

in different crops and locations with large-scale datasets.  

 

In short, by employing advanced geo-computation approaches and geospatial 

technologies, the study was conducted to analyze the spatial extent of flood affected 

areas to assess the impact of flood on maize productivity. Wherein, it was estimated 

that about 24,90,242 tonnes of maize has been produced in 2021-22 and 22,66,837 

tonnes in 2022-23. The total production in 2021-22 was higher by about 9.85% as 

compared to 2022-23 due to positive post-flood effect on agricultural land (nutritional 

soil accumulation).  
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7.2 Recommendation and Future perspectives 

In recent years, geospatial technology has gained significant attention due to 

publicly availability of high-resolution remotely sensed satellite data, the advancements 

in computational methods and machine learning algorithms. While these approaches 

have yielded satisfactory results for assessment of flood extent and its impact on crop 

acreage, yield and production. There is still scope for further refinement and 

improvement. 

 

1. Despite advancements in technology, data quality and availability still remains a 

challenge, especially in developing regions. Low resolution geospatial data can 

hinder the accuracy of analyses. 

 

2. The Scalability of geospatial datasets and technologies remains a concern, especially 

when working with large datasets. Geospatial applications require large 

computational storage (high end computer) to handle big data. 

 

3. Machine learning algorithms have robustness in crop mapping and require further 

development to handle various large and complex datasets. In this context, deep 

learning approaches can be adaptable and reliable. 

 

4. Many applications require geospatial data analysis on a real-time basis, such as 

disaster management, forest fire mapping and monitoring. Developing real-time 

processing capabilities for geospatial data remains a challenge. This can be improved 

by the development of cloud computing platforms with public accessibility. 

 

5. This developed, edited and tested JavaScript code can be used for processing 

voluminous datasets. It can be tested at other locations for its robustness for 

demarcating flood extents. 

 

6. The methodology adopted in the present study for crop mapping can be used to test 

it on large scale to establish its utility and robustness.
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APPENDIX - A 

GT Data collection form sample 

 

Sl No. Information collection 
 

Detail 

1.  Date of Observation   

2.  Crop Name  

3.  Field iD  

4.  Size of Crop Field  

5.  Date of Sowing  

6.  Place with District Name  

7.  Latitude   

8.  Longitude   

9.  Altitude   

10.  Accuracy   

11.  Field Photograph No.  

12.  Data Collector  

13.  Remarks 
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