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Abstract

The application of mathematical modeling in understanding diseases such as HIV/AIDS,
Malaria and Dengue fever represents a cornerstone in the synergy between the fields of
Mathematics, Biology and Medicine. Expanding on the existing trajectory in mathematical
biology, this research endeavors to push the boundaries by not only formulating diverse
mathematical models but also unraveling intricate mechanisms that govern disease progression.
By employing differential equations, partial differential equations, and difference equations,
this study aims to delve deeper into the dynamics of disease transmission and discern the
nuanced response to therapeutic interventions, thereby bolstering our arsenal against these
afflictions.

Furthermore, the integration of various mathematical approaches not only augments our
comprehension of disease dynamics but also fosters the development of targeted strategies for
disease control and management. The challenges inherent in deciphering the intricate biological
complexities within the human system have prompted a reliance on computational techniques.
The advent of high-speed computing has alleviated significant computational burdens, enabling
the widespread application of these techniques to address physiological complexities that elude
traditional analytical methods.

Dedicated to constructing specific mathematical models tailored to the complexities of
HIV/AIDS, Malaria and Dengue fever, this thesis is structured into six chapters. Beginning
with a comprehensive ‘General Introduction’, the groundwork is laid by introducing
fundamental concepts crucial for understanding the subsequent chapters. Each subsequent
chapter delves deeply into individual diseases, presenting a synthesis of analytical discoveries
validated through meticulous numerical simulations. These numerical results, meticulously
encapsulated in tables and graphs, serve as robust validations substantiating the analytical
outcomes expounded upon throughout the thesis.

The comprehensive exploration of these diseases within this thesis transcends mere
theoretical constructs, aiming to bridge the gap between mathematical abstraction and real-
world clinical applicability. By synthesizing intricate mathematical models with empirical data,
this research endeavors to not only elucidate disease dynamics but also pave the way for the
translation of these findings into actionable insights for healthcare practitioners and
policymakers. Moreover, the integration of empirical observations with mathematical
formulations serves as a pivotal step toward personalized medicine, potentially tailoring

treatment strategies according to the nuanced variations observed in different patient cohorts.
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Furthermore, the thesis extends its scope by exploring the potential implications of the
derived mathematical models beyond disease dynamics. It delves into the realms of
epidemiological forecasting, offering a glimpse into the potential trajectories of these diseases
under varying conditions and interventions. This predictive aspect stands as a testament to the
versatility of mathematical modeling in not only understanding the present state but also in
projecting future scenarios, thereby aiding in the proactive design of public health policies and

interventions.

The intended research on disease dynamics will employ mathematical modeling to accomplish

the following objectives:

1. To develop mathematical models for the analysis of severe human physiological problems
like HIV/AIDS, malaria and dengue fever.

2. To find the solution of the developed models by using analytical as well as numerical
techniques like Runge-Kutta method, finite difference method, etc. The soft computing
techniques will also used to study complex models of severe human diseases.

3. To investigate various parameters like reproduction number, rate of spread of an infection,
epidemic trends, the effects of treatment and vaccination, etc., which play an important
role in understanding the transmission dynamics of the above-mentioned human diseases.

4. Validation of the solution of purposed models in the study with the previous published
research work/literature.

Chapter 1: General Introduction
This chapter serves as a comprehensive introduction, covering fundamental concepts and

mathematical models pertaining to severe human diseases like HIV/AIDS, Malaria and Dengue
fever, supplemented by relevant literature. Within the realm of epidemiology, several
successful applications of mathematical models are explored.

The introduction driving this study is delineated in Section 1.1, outlining the specific
objectives and purposes. A review of the literature is in Section 1.2 and the objectives of the
proposed work are in Section 1.3. Moving forward, Section 1.4 focuses on fundamental models
concerning population dynamics in infectious diseases such as HIV/AIDS. Section 1.5 delves
into the modeling intricacies of Malaria. Highlighting the specifics of Dengue fever, Section
1.6 delves into its modeling intricacies and Section 1.7 refers to the main terms used in the
thesis. Mathematical preliminaries are discussed in Section 1.8. Some numerical methods have

been elaborated on in Section 1.9.
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Chapter 2: Stability Analysis of HIV/AIDS Transmission: A Mathematical Model for Sex

Labourers

In this particular chapter, we proceed to develop a nonlinear mathematical framework that
elucidates the transmission dynamics pertaining to HIVV/AIDS within the community of women
engaged in sex work by categorizing the population into male, female, and sex worker
compartments. The formulated model delineates four distinct groups: susceptible, slowly
infectious, rapidly infectious, and full-blown AIDS categories. Our investigation focuses on the

fundamental reproduction number (R, ), which determines disease eradication. Moreover, we
demonstrate that when (R,) falls below one, the disease ceases, whereas when (R, ) surpasses

one, the disease proliferates. Additionally, we conduct a stability analysis of both disease-free

equilibrium (DFE) and endemic equilibrium (EE).

Chapter 3: Study of HIV Transmission Dynamics using SEIRS Epidemic Model

This chapter thoroughly explores disease transmission dynamics in two parts. The first
Section-3(A) focuses on the intricate relationship between media awareness and HIV
transmission, which is crucial for targeted prevention strategies. Section-3(B) examines the co-
infection dynamics of HIV/AIDS and TB, considering the influence of media awareness. The
overall aim is to contribute to a holistic understanding of disease transmission and the impact of

media awareness on tailored public health strategies for these critical health challenges.

Section 3(A): Analyzing HIV Transmission Dynamics with Media Awareness

In this section, an analysis of the transmission dynamics of an SEIRS epidemic model for
HIV is conducted through the utilization of a mathematical model. The focus of this analysis is
on the impact of media. The research involves the development of a system of differential
equations for each population group, which includes the susceptible, exposed, infected, and
recovered classes. By employing rigorous mathematical analysis, the study presents a
comprehensive understanding of the dynamics involved in the spread of the disease. The

fundamental reproduction number (RO) is performed and the examination of two equilibria,

namely the endemic and disease-free states, offers valuable insights. Notably, it is established
that the disease-free equilibrium is both locally and globally asymptotically stable. In order to
verify the findings, numerical simulations are carried out using an innovative hybrid soft

computing approach called the Adaptive Neuro-Fuzzy Inference System (ANFIS).
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Section 3(B): Analyzing the Co-infection Dynamics of HIV/AIDS-TB with Media

Awareness

This section extends the SEIRS epidemic framework to examine the specialized dynamics
of co-infection among HIV and tuberculosis (TB). It emphasizes the nuanced understanding of
this co-infection, focusing solely on HIVV/AIDS and TB dynamics without the broader epidemic
model structure. A literature review underscores the heightened vulnerability of HIV-infected
individuals to TB, highlighting the critical role of treatment. The primary contribution lies in
refining this specialized model and incrementally unraveling co-infection transmission and
treatment outcomes. Future research directions emphasize exploring media awareness’s
influence within this specialized framework, aiming to pave the way for targeted interventions

and further investigations into this intricate health challenge among diverse populations.

Chapter 4: Mathematical Analysis of Malaria Transmission: SEIRS Model with Mosquito
Vector Dependency

This chapter introduces a mathematical model SEIRS illustrating how malaria spreads.
Mosquitoes as carriers depend on humans for survival. Environmental factors contribute to
malaria’s spread. Managing and controlling malaria effectively reduces its transmission. The
sensitivity analysis highlights that targeting pesticide use and improving drainage systems are

crucial in combating the disease.

Chapter 5: The Study of Dengue Transmission Dynamics through the SEIR Model

This chapter introduces a mathematical model that delves into the transmission dynamics of
dengue through an SEIR (Susceptible, Exposed, Infectious and Recovered) framework. Within
this model, a logistic function is employed to depict the growth and persistence of the mosquito
population, acting as the vector and relying on the human population for sustenance. The

determination of the basic reproduction number R,, serves to evaluate the disease transmission
potential. Findings indicate that when R, <1, the disease-free equilibrium is locally stable,
whereas instability arises when R, exceeds one. Additionally, the stability analysis extends to

both endemic and disease-free equilibria. The outcomes of this study offer valuable insights
into dengue transmission dynamics, contributing to the formulation of effective disease control

and prevention strategies.

Vi
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Chapter 6: Conclusion and Future Scope

In this chapter, the culmination of this research unfolds as the conclusion encapsulates the
key findings and implications of our mathematical modeling exploration into diseases like
HIV/AIDS, Malaria and Dengue fever. Furthermore, the chapter outlines a compelling future
scope, delineating avenues for continued research and the potential impact on public health

strategies, limitations & areas for improvement.

The thesis contains a comprehensive and up-to-date bibliography.

Vii
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Chapter 1: General Introduction

1.1. Introduction

Severe diseases wield a profound influence on human populations, causing immense
suffering and imposing significant social and economic burdens. These diseases are among the
leading causes of mortality, affecting millions worldwide and straining healthcare systems,
especially in developing nations. Mathematical modeling emerges as an invaluable tool for
delving deep into the vitals of these ailments. The primary goals of mathematical modeling in the
context of severe diseases, whether examined over time or across geographical regions, are
twofold: to uncover the basic procedure of ailment transference and the most influential factors
driving their spread, thus facilitating predictive capabilities; and to devise and assess strategies
for their control. Mathematical modeling of severe diseases has a rich history, resulting in a
diverse array of models that shed light on the causes and patterns of epidemic outbreaks.

The realm of mathematical modeling is not only vast but also awe-inspiring in its application
across biology, genetics and the medical sciences. It has established itself as a critical instrument
for analyzing how infectious diseases spread and is controlled. Mathematical models possess the
unique power to translate complex real-world disease scenarios into manageable mathematical
structures, allowing for theoretical and numerical analyses that yield valuable insights and
practical applications. Model formulation plays a crucial role in clarifying assumptions,
identifying variables and parameters, and deriving key metrics, including thresholds, basic
reproduction numbers and contact numbers.

The mathematical modeling process of human disease is depicted in Figure 1.1,
demonstrating how mathematical modeling serves as a bridge between complex real-world

scenarios and actionable insights.

Stage 2
Make Assumptions

Stage 4
Mathematical
Analysis

Figure 1.1: Human disease mathematical modeling procedure.
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Chapter 1 General Introduction

In the field of medical sciences, mathematical modeling, in conjunction with physiological

fluid dynamics, plays a critical role. It has unraveled longstanding mysteries in biology,
leveraging the computational power of computers to reveal insights previously hidden from
researchers. Mathematical models and computer simulations play a crucial role as essential tools
for experimentation, enabling the development and validation of theories, conducting sensitivity
analyses and deriving key parameter estimates from empirical data. Carefully constructed
mathematical models can be potent instruments for unraveling the intricate mechanisms
underpinning various severe diseases.

Gaining insights into the spread patterns of communicable diseases across communities,
regions and nations is crucial in the field of biosciences. Mathematical models play a vital role in
facilitating the comparison, planning, implementation, evaluation and optimization of diverse
programs related to detection, prevention, therapy and control. Epidemiological modeling
contributes to the planning and analysis of epidemiological surveys by identifying crucial data
needs, recognizing trends, providing overarching predictions and quantifying uncertainties in
forecasted outcomes.

In this thesis, we focus on the spread dynamics of severe diseases, particularly employing
ordinary differential equations (ODEs), compartmental models and related methodologies. Given
the vast scope of mathematical modeling in the realm of diseases, it is impractical to undertake
an exhaustive mathematical and computational analysis of all severe diseases and physiological
challenges. Biological systems are intricate, making the construction of precise models a
formidable task. This study aims to explore various facets of severe illnesses and physiological
hurdles, focusing on developing models that elucidate the spread dynamics of diseases like
HIV/AIDS, malaria and dengue fever. This thesis aims to provide a comprehensive exploration

of fundamental concepts and modeling considerations relevant to our research.

1.2. Review of Literature

There are many serious diseases that spread globally through infections and sexual contact.
One of the most severe and deadly diseases is HIV/AIDS, leading to millions of fatalities in both
developed and developing countries. Researchers have used mathematical models to study
HIV/AIDS, as over 35 million people worldwide live with this virus. In 2013, approximately 2.1
million new infections were documented, reflecting a 38% reduction compared to 2001.
Moreover, HIV infections in children have declined by 58% since 2001. However, tuberculosis
remains a primary cause of death in HIV patients. Research on this topic has advanced over the

last three decades.




Chapter 1 General Introduction

AIDS mainly spreads through bodily fluids, such as blood transfusions, physical contact and

the use of infected needles. Researchers like Cai et al., (2009) have used ordinary differential
equations to create models for HIV/AIDS. Tan (1991) explored stochastic models to simulate
AIDS and other infectious diseases. Ida et al., (2007) described HIV infection using non-linear
differential equations, which were solved numerically. Mukandavire and Garira (2007)
introduced a mathematical framework for HIV/AIDS, integrating a distinct incubation period in
the structure of a system comprising discrete time delay differential equations. The related
infection of the Hepatitis C Virus (HCV) and HIV is a notable public safety concern, especially
focused on preventing transmission among high-risk populations like injecting drug users.
Yovanna et al., (2013) reported an elevated risk of developing HCV-related liver disease,
cirrhosis and liver cancer in individuals co-infected with both HIV and HCV.

Various approaches have been proposed to model HIVV/AIDS among intravenous drug users.
For example, Haynatzki et al., (2000) suggested a new approach. Wu and Tan (2000) proposed a
steady-state approach to modeling the HIV epidemic, assessing the quantities of AIDS cases and
infectious individuals across various stages. Mathematical models were employed by Hyman
and Stanley (1988) to comprehend the dynamics of the AIDS outbreak. Shen et al., (2015)
scrutinized the model and conducted an extensive analysis of global dynamics. They utilized

Lyapunov functionals to confirm the worldwide stability of both disease-free and endemic

equilibria. The essential reproduction number represented as R, is instrumental in determining

the potential for the disease to ultimately dissipate.

Huo and Feng (2013) were instrumental in the development of a comprehensive model that
integrates both slow and fast-latent sections. Simultaneously, Okosun et al., (2013) delved into
the realm of HIV/AIDS treatment and the testing of unknowingly infected individuals within a
homogeneous population. In another notable contribution, Defeng and Wang (2013) introduced
a time consuming mathematical model, aiming to evaluate the impact of vaccination and
Antiretroviral Therapy (ART) on HIV/AIDS. Their model accounted for two distinct groups:
individuals cognizant of their infected status and those oblivious to it.

Turning to the correlation between HIV/AIDS & the hepatitis C virus, Bhunu and
Mushayabasa (2013) devised a meticulous mathematical model, while Cai et al., (2014)
explored the intricacies of an HIV/AIDS cured model that encompassed numerous infection
stages and incorporated density-dependent infection dynamics. Kaur et al., (2014) shifted the
focus to a nonlinear model, investigating the transmission dynamics of the HIVV/AIDS outbreaks

with specific attention to the involvement of women hooker.
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In the qualitative exploration of HIV dynamical models, Elaiw and Almuallem (2015) took

on the challenge of understanding three models involving two sorts of co-circulating selected
cells. Meanwhile, Wang et al., (2015) conducted an analysis of the global stability of an HIV
viral infection model that featured a continuous age structure. Huo et al., (2016) contributed to
the field by formulating a mathematical model of the HIVV/AIDS epidemic that incorporated a
treatment class. Notably, the fundamental reproduction number assumed a pivotal role in
discovering the overarching global dynamics in their model.

In the early stages, many researchers worldwide began focusing on HIV/AIDS care,
prevention and treatment. This disease has become a global challenge, leading to increased
funding for HIVV/AIDS over the past 15 years. Smith and Wahl (2005) devised an SIR model to
characterize the immunological aspects of HIV dynamics. This model not only considered the
standard elements but also incorporated the impact of reverse transcriptase inhibitors and other
drugs designed to impede cellular contaminated. Sani et al., (2007) developed various stochastic
models to investigate HIV spread in a mobile heterosexual population, analyzing both
deterministic and diffusion analogs of these models. Meanwhile, Naresh et al., (2009) introduced
an arithmetical replica, delving into the influence of tuberculosis on the dissemination of HIV
contaminated within a person’s inhabitants undergoing logistic growth. Addressing the broader
spectrum of infectious diseases, Sing et al., (2013) investigated the transmission dynamics of
malaria, tuberculosis, HIV/AIDS and their co-infection, shedding light on the intricate interplay
of these health challenges. Song et al., (2010) scrutinized a classical arithmetical replica,
incorporating a contrast reaction of the HIV-contaminated rate with a time hold-up, contributing
to the refinement of our understanding.

In a nonlinear approach, Biswas and Pal (2017) devised a comprehensive HIV/AIDS
mathematical model, examining transmission dynamics across four population compartments,
incorporating factors such as vaccination and antiretroviral therapy. Turning to the broader
dynamics, Jia and Qin (2017) formulated a model that delved into the intricate facets of the
HIV/AIDS epidemic. Their approach featured a generalized nonlinear incidence rate, accounting
for treatment alternatives. Employing a geometric method, they conducted a thorough analysis of
the firmness of both ailment-free & native parity within the framework of ordinary differential
equations.

In the tough of complex networks, Yuan et al., (2018) proposed an SIR model, introducing
birth and death rates to categorize contaminated humans into categories based on their ulceration

status. This comprehensive approach added valuable insights to our understanding of the
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dynamics within complex networks. Zhang and Guo (2018) developed a multi-phase SEIR

model designed for infectious diseases, incorporating a continuous age structure for each
consecutive infectious stage over an extended infective duration. The model is capable of
illustrating the advancement of diseases across various infectious stages, resembling conditions
such as HIV, hepatitis B & C. In the year 2018, Huo et al., proposed a novel SEIS epidemic
model that took into account the impact of media influence. The researchers employed the
characteristic equation of equilibrium to derive the basic reproduction number, providing a
quantitative measure of the disease’s potential for spread and further developing steady-state
stability within the model.

Malaria, caused by the Plasmodium parasite, remains a pressing global health challenge. The
disease is primarily transmitted to humans through mosquito vectors, resulting in a spectrum of
symptoms and complications. Mathematical models, such as the one initially presented by Ross
in 1916, represented some of the earliest attempts to explore the dynamics of malaria
transmission. Since then, numerous researchers, including Ngwa and Shu (2000) and Ngwa
(2004), have formulated deterministic differential equation models to unravel the intricacies of
endemic malaria, accounting for variations in both human and mosquito populations. Their work
has been pivotal in identifying the primary drivers of disease transmission. Building on these
foundations, Chitnis et al., (2012) introduced models that incorporated factors such as
immigration and disease-induced mortality, shedding light on the influence of these variables in
the context of infectious agents and malaria transmission. These models provided valuable
insights into the multifaceted factors affecting disease spread.

In the year 2017, Cai et al., broadened the scope of research by developing a malaria model
that introduced an asymptomatic category within the human population. Notably, their model
incorporated exposed classes in both human populations and vector populations. An innovative
aspect of their work proposed the potential for asymptomatic individuals to experience
reinfection and transition to symptomatic states, contributing to a more comprehensive
understanding of malaria dynamics. Similarly in 2018, Bakary et al., contributed to the field by
presenting a mathematical model that took into consideration the age distribution of the vector
population and the periodic biting rate of female Anopheles mosquitoes. This approach added a
layer of complexity, providing a more nuanced perspective on the intricate dynamics involved in
the transmission of malaria.

Sing et al., (2019) explored the stability of malaria transmission dynamics, with a specific

focus on the mosquito-dependent coefficient for the human population. Their work shed light on
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the complex interplay between human and vector factors. In 2020, Ibrahim et al., presented an

innovative model that intricately divided the infected population into two distinct segments:
individuals who were unaware of their infection and those who were cognizant of it. The model
introduced a novel perspective by asserting that the rate of expansion of cognizance was
intricately linked to the number of creatures who remained unmindful of their infection. This
novel approach provided a fresh and insightful outlook on potential strategies for disease control.

Al Basir et al., (2021) designed a comprehensive mathematical model that investigated
malaria dynamics while considering the impact of interventions based on awareness levels. Their
concept suggested that the level of awareness could significantly influence disease transmission
rates between vectors and humans and vice versa. It also explored how control methods could
enhance awareness. Subsequently, Ndii and Adi (2021) introduced an innovative mathematical
framework that divided the susceptible population into two distinct sub-groups: those who
possessed awareness and those who lacked awareness. The model included a consistent
consciousness estimate, suggesting that a segment of the initially uninformed vulnerable persons
would shift into the category of informed creatures over time. Additionally, the model
incorporated practical optimal control theory for vector management, taking into consideration
the expenses linked to awareness campaigns.

In a recent advancement, Al Basir and Abraha (2023) introduced a foreordained arithmetical
design to explore the vitals of malaria and assess the effects of interference like drift nets and
germicides. Significantly, their model regarded awareness as a dynamic variable that undergoes
changes over time, acknowledging the evolving nature of awareness campaigns and their impact.
Lastly, Tchoumi et al., (2023) put forth an arithmetical design that specifically addressed the
vitals of malaria transmission, taking into account host susceptibility and specifically addressing
the partial immunity acquired after infection. Researchers have broadened the scope of their
malaria models by incorporating additional elements. These include assessing the evaluation of
jungle fever resistance to mepacrine medications and the investigation of approaches such as
mass treatment and the utilization of insecticides. For example, researchers such as Forouzannia
and Gumel (2015) have examined the impact of anti-malarial drugs on malaria transmission,
further enriching the field of malaria modeling.

Dengue Hemorrhagic Fever (DHF), first identified in the 1950s, poses a serious threat to
children in the Americas and Asia. This virus, transmitted by female Aedes aegypti mosquitoes,
leads to symptoms like bleeding and cardiovascular collapse. Unfortunately, there are currently

no vaccines or targeted treatments available for dengue fever and it continue to spread globally,
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with two of its four serotypes causing severe often fatal infections. Gubler (2002) highlighted the

public health, social and economic issues related to dengue and DHF. Researchers like Augiar et
al., (2013) have used mathematical modeling to distinguish between primary and secondary
infections, with implications for disease management. Smith and Mercer (2014) have examined
dengue models that account for factors like seasonal influences and various subclasses.

The intricate connection between climate change and the transmission of dengue has
attracted considerable attention. Bal and Sodoudi (2020) investigated how climate factors affect
dengue occurrences in Kolkata, India, using modeling and prediction techniques. In contrast,
Butterworth et al., (2017) examined the possible impacts of weather change on the transmission
of dengue in the southeastern United States, underscoring the importance of acknowledging
local variations in climate. Caldwell et al., (2021) broadened their scope to analyze mosquito-
borne disease dynamics across continents using climate data. Davis et al., (2021) presented a
regional index for suitable situation to forecast the influence of weather change on the
transmission of dengue. Ebi and Nealon (2016) underscored the need to adapt public health
strategies to combat the increasing risks of dengue in a changing climate. Gutierrez et al., (2022)
supplied information on the meteorological factors associated with dengue outbreaks in the non-
endemic area of Northwest Argentina. Huber et al., (2018) highlighted the seasonality of dengue
risk in relation to seasonal temperature variation and climate suitability. Kakarla et al., (2020)
evaluated the appropriateness and transmission capabilities of dengue in India under both current
and anticipated climate change conditions, carrying implications for prevention and control. In a
separate study, Mordecai et al., (2017) employed mechanistic models to investigate how
temperature affects the transmission of various mosquito-borne diseases. Ngonghala et al.,
(2021) delved into the complex dynamics of vector-borne diseases in response to temperature
changes. Nuraini et al., (2021) developed a climate-based dengue model for Semarang,
Indonesia, highlighting the importance of localized models. Taghikhani and Gumel (2018)
enriched the theoretical foundation of dengue modeling by considering vector vertical
transmission and temperature fluctuations. Wang et al., (2022) provided insights into the
vulnerability of dengue transmission to extreme weather conditions. Finally, Xu et al., (2020)
forecasted the outlook of dengue within the context of climate change scenarios, emphasizing
the necessity for continuous research to tackle the evolving dynamics of dengue in a changing
climate. These studies collectively underscore the critical relationship between climate change
and dengue transmission, emphasizing the need for region-specific models and strategies to

address the increasing threat of dengue in the circumstances of a varying climate.
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Mathematical models play a vital role in understanding diseases like malaria and dengue.

These models rely on mathematical equations, often in the form of differential equations and
partial differential equations. They assist us in comprehending the conditions necessary for
disease transmission and the dynamics associated with the spread of diseases. These models
offer estimates of disease transmission and incidence under various scenarios, aiding us in
predicting and combating these infectious diseases.

Incorporating factors like temperature fluctuations and vector parameters is crucial in these
models. Research indicates that daily and seasonal temperature changes significantly impact the
transmission of diseases such as dengue. These studies are essential for our improved
comprehension and management of these diseases. Dengue in particular remains a global health
concern and mathematical modeling can aid in exploring solutions to mitigate its impact.

In conclusion, mathematical modeling has significantly advanced our understanding the
transmission dynamics of diseases like Dengue fever, HIV/AIDS & malaria. Researchers utilize
these models to investigate the various factors influencing disease spread, assess the impact of
interventions and treatments, and enhance our ability to control and manage these diseases on a

global scale.

1.3. Objectives of the Proposed Work

Obijectives of research proposal are given below.

1. To develop the mathematical models for the analysis of severe human physiological
problems like HIV/AIDS, malaria and dengue fever.

2. To find the solution of the developed models by using analytical as well as numerical
techniques like Runge-Kutta method, finite difference method, etc. The soft computing
techniques will also used to study complex models of severe human diseases.

3. Toinvestigate various parameters like reproduction number, rate of spread of an infection of
epidemic trends, the effects of treatment and vaccination, etc., which play an important role
in understanding the transmission dynamics of above mentioned human diseases.

4. Validation of the solution of purposed models in the study with the previous published
research work/literature.

1.4. Modeling of HIV/AIDS
Even with advanced medicines and vaccines, some diseases remain deadly worldwide.

Human Immunodeficiency Virus (HIV) is known for causing the dangerous Acquired Immune
Deficiency Syndrome (AIDS). HIV primarily targets the immune system of the body,

particularly CD cells that originate in the bone marrow. Within this group of cells, certain ones
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are specifically targeted by the virus and become infected. T-cells a subset of lymphocytes,

which are a type of white blood cells (WBCs), are among the key components affected by HIV
infection. These WBCs protect the body from infections and T-cells are the front-line soldiers
that fight against infections. There are various types of T-cells, each with its own role in
identifying, attacking and destroying harmful agents. Alongside other WBCs, they play a critical
role in the immune system, safeguarding the body from infections. These cells mature and
develop in an organ in the chest called the thymus because they are initially produced in the bone
marrow.

The transmission of AIDS has been a subject of debate. It is now widely accepted that bodily
fluids, like blood transfusions, close physical contact, the use of infected needles and childbirth,
are the primary ways this deadly disease spreads. Jones and Perelson (2005) conducted
experiments that showed that when awake antiretroviral therapy is consistently given to HIV-1
contaminated patients for extended periods, almost all victim reach viral loads that standard tests
cannot detect.

In their study, Cai et al., (2009) formulated an ODEs model related to HIV/AIDS, focusing
on the transitions of infected individuals from the symptomatic to the asymptomatic stage while
considering different treatment options. Meanwhile, the significance of systematic reviews and
meta-analyses in identifying risk factors for infections is growing, exerting influence on global

policy decisions (cf. Tacconelli and Cataldo, 2009; Smallbone and Simeonidis, 2009).

1.4.1. Basic Model of HIV/AIDS

Let the entire sexually active population be denoted as N , which is further classify into two
class: the vulnerable (HIV-negative) denoted as S, and the infected denoted as |. A is
commonly understood as the rate at which individuals join the sexually active population over a
specific period, while the departure of individuals from this population is indicated by the rate x .
Moreover, S represents the likelihood of contracting HIV in a single sexual partnership with an
HIV-positive human and ¢ denotes the rate at which new partnerships are formed. It is

hypothesized that individuals who contract HIV experience an increased probability rate equal to ¢ .

A [ spe(#)

B B+ o

Figure 1.2: Transition diagram illustrates the dynamics of HIV.
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The rate of new infections is calculated by multiplying the estimate at which recently developed

association are formed (c), the rate at which the single sexual partnerships with an HIVV-positive
(), and the chance that the partner is HIV-positive (lil_j The following is an expression of the

model in terms of differential equations:

S':A—Sﬂc(ﬁj—ys (1.1)
I’:Sﬂc(ﬁj—(yﬂx)l (1.2)
Notations:

A Individuals entering the sexually active population at rate of .

g Likelihood of contracting HIV from a single sexual partner.

C: The rate at which new alliances are established.

o Rate of increase of HIV infected individuals.

1.5. Modeling of Malaria

The word malaria comes from the Latin word “malaria”. The Romans observed illness after
night air walks. Dr. Ronald Ross, a British medical officer in Hyderabad, India, first identified
mosquitoes as malaria transmitters about a century ago. His Nobel Prize-winning research in
1902 discovered that the black pigment found in human disease also exists in mosquito bellies.

He developed the traditional Ross model, a foreordained distinctive calculative replica for

malaria that includes susceptible (S,) and infected (I,) compartments. Mosquitoes with

compartments (S ) adhere to the Sl structure due to their inability to recover from infection.

m’lm
Ross investigated the evolution of infected class fractions (I,,1.) using two differential

equations, one for humans and one for mosquitoes.

One in every five children in Africa dies before the age of five, with a malaria parasite taking
a kid every 30 seconds and causing over a million deaths each year. Malaria impacts 300 million
individuals’ worldwide, killing 1-1.5 million people each year. Malaria, which is caused by
Plasmodium parasites and spread by female Anopheles mosquitoes, was mathematically
modeled by Ross in 1911. Factors influencing infected vector movement effect disease

transmission, which is shaped by parasite, vector and host interactions. The first models were
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two-dimensional and represented humans and mosquitoes. Mathematics, notably in the SIR

model plays a significant role in infectious diseases, categorizing states as susceptible, infectious

and recovered.
The model, which investigates malaria control through mass treatment and insecticides, takes
into account sensitive and resistant parasite strains. Malaria-induced human mortality is linked to

the backward bifurcation phenomena. Humans enter the system in a susceptible state at birth g, ,
move to an infectious state when contracting the disease «, and can recover ¢, or exit via death

d. Immigration and natural death occur at rates f3,, with the total population denoted as N
(Forouzannia and Gumel, 2014; Erin et al., 2013). Mathematical modeling facilitates the
examination of malaria indicators, translating measurable data into transmission measures,
addressing concerns with traditional methods and allowing direct comparisons across

transmission intensities and seasonal patterns.

51 s aq as R

B2 B2 +d B2

Figure 1.3: Transition diagram of the SIR model of malaria.

Figure 1.3 can be explained using the mass action law and a set of differential equations.

S'=p,—(a,+3,)S (1.3)
I'=0,S —(a, + B, +d)I (1.4)
R'=a,l - R (1.5)

Ngwa and Shu (2000) adopt an immunity model wherein the total population fluctuates and a

notably high disease-related death rate is taken into account. This model comprises four human
compartments: (i) Susceptible (S,), (ii) Exposed (E,), (iii) Infected (l,), and (iv) Immune
(R,) . Additionally, the mosquito component includes three compartments: (i) Susceptible (S, ),
(i) Exposed (E,,)and (iii) Infected (1,).

To investigate mosquito population dynamics, Parham and Michael propose a model

incorporating the concurrent impacts of rainfall and temperature. The human component of the

model comprises three compartments (S,,l,,R,) with a fixed latency duration, while the

mosquito component includes three compartments (S,,1,.,R,,). Environmental elements are
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incorporated into the model through parameters associated with mosquitoes. Adult mosquito

birth rates are modeled as functions influenced by both rainfall and temperature. Additionally,
various mosquito-related factors such as mortality rates, biting rates, sporogonic cycle duration
and the likelihood of infected mosquitoes surviving during the parasite’s incubation time are all
temperature-dependent. The significance of this model lies in its ability to demonstrate the
variations in the patterns of rainfall not only impact vector abundance but also play a crucial role
in governing malaria endemicity, invasion and extinction. Nevertheless, in situations where
sufficient rainfall supports vector development and survival, temperature primarily influences the
pathogen life cycle, exerting a more significant impact on the rate of disease spread.

Describing the fundamental process of infectious agent transmission in the host population is
essential in epidemiological compartment models. When a pathogen emerges within a host
community, individuals are classified based on factors such as parasite density and infection
type. Following the convention established by Kermack and McKendrick (1927), these
categories are denoted by the standard notations S, E, | and R. The susceptible group
constitutes a fraction of the population vulnerable to infection, while the exposed E class
represents individuals infected but incapable of transmitting the infection during the latent
period. The infectious | class comprises individuals who propagate the infection through
interactions with susceptible individuals. Lastly, those recovering from the infection constitute

the R class.

1.6. Modeling of Dengue

Dengue is acknowledged as a highly perilous illness with the potential for fatal outcomes.
The disease results from one of four identified strains of the flavivirus, specifically DEN-1,
DEN-2, DEN-3 and DEN-4. Transmission primarily occurs through female Aedes aegypti
mosquitoes and in certain instances, Aedes albopictus can also be implicated in transmitting the
disease. The modes of transmission include the transfer of the disease from adult female
mosquitoes to their offspring, mechanical transmission from a non-infected human and passing

on from a transmissible mosquito to a healthy person.

1.6.1. Basic SIR Model for Dengue Fever
A basic mathematical model for dengue fever can be constructed using the SIR (Susceptible-
Infectious-Recovered) framework. In this model, the citizenry is divided within three

compartments: (i) susceptible S(t), (ii) infectious I(t) and (iii) recovered R(t). Individuals
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move from the susceptible to the infectious compartment upon infection and then to the

recovered compartment after they have improved from the disease and gained invulnerability.

N

Figure 1.4: Transition diagram of the SIR model of dengue fever.

The framework comprises the subsequent set of differential equations:

S = -/l (1.6)
I'= /Sl -y (1.7)
R' =yl (1.8)
Notations:

£ The rate at which transmission occurs from susceptible individuals to those who have
become infected.

y: The rate at which infected individuals recover and are classified as recovered individuals.

The basic SIR model assumes constant population size and homogeneous mixing within the
population. This model yields insights into the dynamics of the disease, such as the potential for
outbreaks, the impact of different interventions (such as vaccination or vector control) and the

eventual establishment of immunity in the population. The model’s parameters # and y can be

estimated based on available data and can vary based on factors such as the mosquito population

density, human behavior and climate conditions.

1.7.  Main Terms Used in the Thesis
1.7.1. Stability Analysis

Stability analysis is a fundamental aspect of understanding the behavior of mathematical
models in epidemiology. It helps determine the conditions under which a disease-free or endemic
equilibrium is stable or unstable, thus providing insights into the long-term behavior of the
disease within a population. This section introduces the basic concepts and methodologies used

in the stability analysis of epidemiological models.

% Locally Asymptotically Stable
A system is locally asymptotically stable if the following conditions are met:

1. Equilibrium Point: There exists an equilibrium point x=0.
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2. Local Stability: The equilibrium point is stable in the sense of Lyapunov, meaning for

every small initial condition x(0) close to x =0, the solution x(t) remains close to x =0

forall t>0.
3. Asymptotic Stability: Additionally, x(t) not only remains close to x =0 but also tends

to x=0ast—ow.
Mathematically, this means that for any given >0, there exists a 6 >0 such that if

X(0)| < &, then |x(t)| <€ forall t >0, and lim ., x(t) =0.

t—oo

% Globally Asymptotically Stable
A system is globally asymptotically stable if the following conditions are met:
1. Equilibrium Point: There exists an equilibrium point x =0.
2. Global Stability: The equilibrium point is stable in the sense of Lyapunov for any initial

condition x(0) in the entire state space, meaning the solution x(t) remains bounded and

close to x =0 for all t >0regardless of the initial state.

3. Asymptotic Stability: Additionally, x(t)tends to x =0as t — oo for any initial condition
x(0) in the entire state space.

Mathematically, this means that for any initial condition x(0) in the entire state space,

[x(t)| > 0as t > .

1.7.1.1. Equilibrium Points
In the context of infectious disease modeling, equilibrium points (also known as steady states)
are values of the state variables (e.g., susceptible, infected, and recovered individuals) where the

system does not change over time. These can be classified into:

% Disease Free Equilibrium (DFE)

The disease-free equilibrium is a key concept in epidemiological modeling. It represents a
situation where a population is entirely free from a specific infectious disease. In this state,
no individuals in the population are infected with the disease, and the transmission of the
disease has been effectively controlled or eradicated.

Mathematically, the DFE happens when there is no new contamination in the inhabitants. In
epidemiological models, this equilibrium is typically elaborated by a set of equations where
the number of new infections is counterbalanced by factors like recovery, immunity, or other

mechanisms preventing the disease from spreading.
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The DFE is a critical concept because it sheds light on the conditions necessary to prevent or

eliminate a disease from a population. It guides public health officials and policymakers in
designing effective interventions such as vaccination campaigns and gquarantine measures to

establish and sustain a disease-free state in a population.

% Endemic Equilibrium (EE)

In epidemiology, endemic equilibrium describes a situation where an infectious disease
maintains a stable and consistent presence within a population for an extended period. At this
equilibrium, the disease persists at a relatively constant level, with new infections balanced
by recoveries and other factors, resulting in steady disease prevalence.

Mathematically, endemic equilibrium occurs when the number of new the capable of equals
the number of recoveries or disease-related deaths. In epidemiological models, this
equilibrium is represented by equations that balance the rates of infection and recovery,
creating a stable state of disease prevalence.

Importantly, endemic equilibrium doesn’t mean that every individual in the population is
affected simultaneously; rather it signifies that the disease has become a predictable and
stable part of the population’s health profile. Factors contributing to endemic equilibrium
may include immunity, vaccination, and other interventions that influence disease

transmission dynamics within the population.
1.7.1.2. Methods of Stability Analysis

% Linear Stability Analysis
This method involves linearizing the nonlinear system around the equilibrium point and

analyzing the eigenvalues of the resulting Jacobian matrix.

1. Jacobian Matrix: The matrix of first-order partial derivatives of the system’s equations
evaluated at the equilibrium point.
2. Eigenvalues: The sign of the real part of the eigenvalues determines stability:
e |If all eigenvalues have negative real parts, the equilibrium is locally
asymptotically stable.

e Ifany eigenvalue has a positive real part, the equilibrium is unstable.

% Reproduction Number
The reproduction number is a fundamental concept in epidemiology used to measure the

transmission potential of a disease within a population.
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Basic Reproduction Number (R, )
The basic reproduction number R, is defined as the average number of secondary infections

produced by a single infected individual in a completely susceptible population (i.e., where

no one is immune).

o If R, >1: Each infected individual, on average, infects more than one other person,
leading to the potential for an outbreak or epidemic, as the disease can spread
exponentially.

o If R, =1: Each infected individual, on average, infects exactly one other person, leading
to a steady state where the disease remains in the population at a constant level.

e If R, <1: Each infected individual, on average, infects less than one other person,

leading to the eventual decline and possible eradication of the disease.

% Lyapunov’s Method of Stability

Lyapunov’s method is a widely used technique in control theory to determine the stability of
a dynamical system. The method involves constructing a Lyapunov function, a scalar
function that provides a measure of the system’s energy or a generalized measure of distance
from equilibrium.

¢ Lyapunov’s Direct Method

Basic Concepts:

1. Lyapunov Function: A Lyapunov function V (x) is a scalar function that is continuously

differentiable and satisfies certain properties to help determine stability.

2. Equilibrium Point: The equilibrium point x =0 is the state at which the system does not

change, i.e., x= f(x) =0.

Steps to Use Lyapunov’s Direct Method:
1. Choose a Candidate Lyapunov Function V (x):

e V(x) should be positive definite: V(x) >0forall x=0and V(0)=0.
2. Compute the Time Derivative V (x):
e Calculate the derivative of V(x) along the system trajectories:

\/(x):%—Y:VV(x).f(x).

3. Analyze the Sign of V (x):
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.
« If V(x) is negative definite (V(x)<O forallx), the equilibrium at x=0 is

asymptotically stable.
e If V(x) is negative semi-definite (V(x)<0 forall x), the equilibrium at x=0 is
stable in the sense of Lyapunov.

« If V(x) is positive definite or not negative semi-definite, the equilibrium is unstable.

¢ Lyapunov’s Indirect Method (Linearization Method)

This method is useful when finding a Lyapunov function is difficult, the indirect method (or
linearization method) can be used.

Steps to Use Lyapunov’s Indirect Method:

1. Linearize the System Around the Equilibrium Point:

e For a nonlinear system x = f(x), linearize it around the equilibrium point x=0 to
obtain X = Ax, where A= v o IS the Jacobian matrix.
X

2. Analyze the Eigenvalues of the Jacobian Matrix A:
o If all eigenvalues of A have negative real parts, the equilibrium point is
asymptotically stable.
« Ifany eigenvalue has a positive real part, the equilibrium point is unstable.
o If eigenvalues have zero real parts or purely imaginary eigenvalues, further analysis is

required (the system may be stable, asymptotically stable or unstable).

1.7.2. Population Dynamics

Population dynamics is the branch of ecology that investigates how populations evolve in
terms of size, composition and distribution over time and space. It encompasses a wide range of
species, from animals to plants and microorganisms, and is essential for comprehending
ecological processes and interactions in ecosystems. This field delves into factors such as birth
rates, death rates, immigration, and emigration patterns within a population. Environmental
factors like resource availability, predation, disease and competition all play a role in population
size. Through the study of population dynamics, ecologists and researchers uncover the
underlying mechanisms that influence ecosystems, species relationships, and biodiversity.
Mathematical models are commonly used to simulate and forecast population changes under
different scenarios. These models help scientists grasp complex ecological systems and make

predictions about the future dynamics of populations. As a result, population dynamics hold
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great importance in fields like conservation biology, wildlife management and the evaluation of

the effects of human activities on natural ecosystems.

1.7.3. Latent Period

The latent period in mathematical modeling, commonly employed in epidemiology and other
disciplines refers to the time lapse between an initial event or exposure and the appearance of a
specific effect or outcome. In epidemiological modeling, it denotes the duration between a
person contracting a pathogen, such as a virus, and the point at which they become infectious or
display symptoms. This period signifies the time during which the pathogen replicates within the
host but has not yet reached a detectable or transmissible level. Represented mathematically as
in equations, the choice of an appropriate latent period value is pivotal for accurately modeling
the transference of communicable diseases, influencing the timing and scale of outbreaks in

addition to the efficacy of the control plan.

1.7.4. Prevention and Control Measure

In mathematical modeling, a control measure refers to interventions, strategies, or actions
implemented to manage a specific phenomenon, like infectious disease spread, environmental
pollution or economic fluctuations. These measures manipulate mathematical model parameters
to achieve goals, such as reducing transmission rates or stabilizing conditions. In infectious
disease modeling, control measures include vaccinations, quarantine and social distancing, often
altering parameters like transmission rates. Researchers use these adjustments to simulate and
assess the effectiveness of different strategies in containing disease spread. Control measures aid
policymakers and public health officials in making informed decisions during outbreaks or crises
with mathematical models helping evaluate their impact and select efficient strategies to

minimize adverse effects.

1.7.5. Compartment Analysis

Compartmental analysis in mathematical modeling involves breaking down a complex
system into interconnected compartments, with each representing a specific subpopulation or
state variable. This approach is widely used in fields like epidemiology, pharmacokinetics,
ecology and economics to study various processes. Using differential equations, researchers
describe how variables within each compartment change over time, capturing interactions and
flows between them. By mathematically modeling these relationships, scientists gain insights

into the system’s behavior, predict outcomes and explore different scenarios. Compartmental
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analysis simplifies the study of complex systems by dividing them into manageable parts,

facilitating mathematical analysis of interactions and dynamics.

1.7.6. Application to Specific Models

¢ HIV/AIDS Model
For the HIV/AIDS transmission model, we identify the equilibrium points by setting the
differential equations to zero and solving for the state variables. We then perform linear
stability analysis by evaluating the Jacobian matrix at these points. The basic reproduction

number R, is derived, and its implications on stability are discussed.

¢ Malaria Model
In the malaria model, the stability of the DFE and EE is analyzed through similar procedures.
The role of the mosquito population in transmission dynamics is considered and vector

control measures are evaluated in terms of their impact on R, and equilibrium stability.

¢ Dengue Fever Model
For dengue fever, which often involves multiple serotypes the model’s complexity increases.

Stability analysis includes evaluating the impact of cross-immunity and the role of vector

control. The conditions for the stability of multiple equilibria are explored and R, is

calculated for each serotype.

1.8. Mathematical Preliminaries

Mathematical modeling of infectious diseases relies on various analytical techniques to
understand and predict the dynamics of disease spread. This section introduces three
fundamental methods used in the stability analysis of epidemiological models: the Jacobian
method, the next generation technique and the Routh-Hurwitz condition. These methods provide
essential tools for determining the stability of equilibrium points and understanding the behavior

of disease transmission within a population.

1.8.1. Jacobian Method

The Jacobian method is a crucial analytical tool used to study the local stability of equilibrium
points in nonlinear differential equations, which are often used to model the transmission
dynamics of infectious diseases. This method involves linearizing the system around the

equilibrium points and analyzing the resulting linear system to determine stability.

1. Formulation of the Model
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Consider a general system of ordinary differential equations (ODES) representing an

epidemiological model:
X _
dt

where X = (X,, X,,....., X, )is a vector of state variables (e.g., susceptible, infected and recovered

F(X),

individuals) and F(X)=(F,(X),F,(X),...,F,(X)) is a vector of nonlinear functions describing

ey g

the rates of change of these state variables.

2. Determination of Equilibrium Points
Equilibrium points (or steady states) of the system are found by setting the time derivatives to

Zero:
F(X)=0.

Solving this system of equations provides the equilibrium points X * = (x* X5 yereens x;‘).

3. Linearization around the Equilibrium Point
To analyze the stability of an equilibrium point X*, the system is linearized around X" by
computing the Jacobian matrix J of the system at X *. The Jacobian matrix, defined as the matrix
of first-order partial derivatives of F evaluated at X *, is given by
J=ﬁ , Where 1<i,j<n.

X=X
This matrix encapsulates the local behavior of the system around the equilibrium and is used to

determine the stability of the equilibrium by analyzing its eigenvalues.

1.8.2. Next Generation Techniques
This technique is utilized to calculate the fundamental reproduction number within the
context of epidemiological models. To provide a brief explanation, consider an autonomous

method with non-negative starting conditions represented as:
yi=1f, (y)=F (y)-V, (y) for j=1,2,3...m (1.9)

where V, =V —VJ.*.

Let Y be the collection of all the system’s equilibrium points that are free of sickness (1.9),
defined as {y>0:y, =0 for j=12,...m. Here,y =(y,,¥,,.....y, ), with y, >0 indicating

the total number of people in each infectious illness model segment.
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The method involves the following conditions:

a) Ify=0,then F;, V;,and V; are all greater than or equal to 0.
b) Ify; =0, itimplies V; =0, especially for y €Y where V; =0 for j=12,..m.
¢) F,=0forj>m.
d) ForyeY, F,(y)=0,and V,(y)=0forall j=12,..m.
e) If F(y)=0, then all the eigenvalues of Df (y, ) have negative real parts,
where F,(y) represents new infections in the ji" partition, V" is the transition rate of individuals

into the j™ compartment, and V ; Is the transition rate of individuals leaving the j™ compartment.

1.8.3. Routh-Hurwitz Conditions

The stability of systems of ordinary differential equations is assessed based on the roots of a
polynomial. This analysis centers on a linear system of equations represented in vector form,
given by

dz
iV 1.10
p” (1.10)

where A represents the coefficient matrix resulting from the linearization of nonlinear terms.

Solutions are obtained by assuming

Z=1z,"" (1.11)
where z, is a constant vector, and the eigenvalues A, can be identified as the solutions to the
characteristic equation

|A=41|=0 (1.12)
with | being the identity matrix. The stability of the solution z =0 is determined by the location
of roots A, in the complex plane. If all the roots lie in the left hand complex plane

(Re(4,) <0 forall roots), then the solution z=0 is stable and it decays exponentially as t

approaches zero. This indicates stability to small perturbations.

For a system of n'" order, the characteristic polynomial can be represented as

P(A4)=A" +k A"+ +k, (1.13)

where the coefficient ki,k,,....,k, are all real. It is crucial to establish conditions on these

coefficients to ensure that the zeros of P(4,) have Re(4,)<0. The Routh-Hurwitz conditions
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provide essential and satisfactory criteria for stability and one of these conditions, in conjuction

with k, >0, is
k
kl k3 1 3 5
D, =k >0, D, = L >0, D,=|1 , k, [>0, ......
? O 1 3
1 k3 k5
L Ko 1.14
D=0 k Kk, . . . |>0 i=123...n (1.14)
0 0 0 K;

1.9. Numerical Methods

Analytically solving a set of differential equations might be difficult at times. To address this
issue, numerical techniques are used, which provide solutions that, while not accurate, are close
to the analytical solutions. In our computational research, we used the MATLAB software,

which allows us to evaluate approximation results using a variety of numerical approaches.

¢ Runge-Kutta Method

In the field of numerical analysis, Runge-Kutta methods stand out as a crucial family of iterative
methods, both implicit and explicit, utilized for temporal discretization in approximating
solutions of ordinary differential equations (ODE). These methods are precisely designed to
deliver increased accuracy and possess the benefit of necessitating only function values at
specific points within subintervals.

Researchers widely adopt the Runge-Kutta numerical technique to solve sets of differential
equations and determine transient probabilities of system states due to its precision, reliability,
and ease of programming. Among the frequently utilized Runge-Kutta methods in mathematical
modeling, RK4 is particularly noteworthy. It combines simplicity with effectiveness.

To calculate transient state probabilities using the fourth-order Runge-Kutta method, a MATLAB

programme is developed employing the ode45 routine. This iterative procedure involves the following

steps:

I, =11, +%(v1 + 2V, +2V, +V,) (1.15)
where

V, =cf (t,_,,I1,,), V, =cf (ti_l,%h,l_[i_l+%vlj, V, =cf (ti_l,%h,l'[i_l +%v2j :

V, =cf(t,_, +h I, +V,).
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¢ Eigen Values and Eigen Vectors

An eigenvalue A signifies a scalar factor by which an eigenvector v is scaled when the
transformation matrix A is applied to it.

Mathematically, for a square matrix A, an eigenvalue A and its corresponding eigenvector v
satisfy the equation

AV = AV (1.16)

where V is a non-zero vector.

e How Do We Calculate the Eigen Values and Eigen Vectors

Determining eigenvalues involves solving the characteristic equation for a given square matrix
A, which is obtained by subtracting Atimes the identity matrix from A. The characteristic
equation is represented as

det(A—A1)=0 (1.17)

where det denotes the determinant, Arepresents the eigenvalue, and | is the identity matrix.
Solving this equation yields the eigenvalues for A. Once the eigenvalues are identified,
eigenvectors can be found by substituting each eigenvalue back into the equation

(A-AN =0 (1.18)

where V is the eigenvector corresponding to the respective eigenvalue. This process allows us to
calculate both the eigenvalues and eigenvectors, providing essential insights into the behavior of

the matrix in linear transformations and system dynamics.

¢ Adaptive Neuro-Fuzzy Inference System (ANFIS)
The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that
combines the learning capabilities of neural networks with the reasoning capabilities of fuzzy
logic. This integration allows ANFIS to leverage the strengths of both techniques, making it a
powerful tool for modeling complex systems and computing numerical results.
e Overview of ANFIS
ANFIS operates by constructing a fuzzy inference system within the framework of adaptive
networks. The system consists of a set of fuzzy if-then rules with appropriate membership
functions to generate the stipulated output. The key components of ANFIS include:
Fuzzy Logic: Provides a way to represent uncertain and imprecise information through
linguistic variables and fuzzy sets.
Neural Networks: Utilized for learning from data and adjusting the membership functions

and fuzzy rules to optimize the performance of the system.
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e Structure of ANFIS

In Figure 1.5, the architecture of ANFIS, which consists of five layers: the input, fuzzy,
normalization, rule, and output layers, is depicted. This combined system integrates the
advantages of both fuzzy logic and neural networks, making it suitable for various applications,

including control systems, pattern recognition, and prediction.

Layer 1 Layer 2 Layer 3 Layer 4

@ (%) ontpuet

I:I adaptive node

O fixed node

IF-Part THEN-Part

Figure 1.5: ANFIS Architecture

The ANFIS architecture typically comprises five layers:
Input Layer: Accepts the input variables.
Fuzzy Layer: Converts crisp inputs into fuzzy sets using predefined membership functions.
Normalization Layer: Normalizes the firing strengths of the rules.
Rule Layer: Contains fuzzy if-then rules that describe the relationship between input and
output variables.
Output Layer: Converts the fuzzy outputs back into crisp values.
e Application of ANFIS in This Thesis
In this thesis, ANFIS is specifically employed to compute numerical results for the HIV
transmission dynamics explored in Chapter 3. The use of ANFIS offers several advantages:
Modeling Nonlinear Relationships: ANFIS is adept at capturing complex nonlinear
relationships between variables, which is essential in epidemiological modeling.
Data-Driven Approach: ANFIS can learn from data, making it possible to refine the models
based on empirical observations and improve the accuracy of predictions.
Flexibility: The system can adapt to various scenarios by adjusting the fuzzy rules and

membership functions, thus accommodating the diverse nature of disease transmission dynamics.
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Chapter 2: Stability Analysis of HIV/AIDS Transmission: A
Mathematical Model for Sex Labourers

2.1. Introduction

The exploration of epidemics and critical illnesses has been steeped in a profound historical
context, punctuated by a diverse array of mathematical models crucial for comprehending the
propagation and underlying causes of epidemic outbreaks. These models serve as indispensable
tools in understanding the intricate dynamics of diseases that can be transmitted through
various means, including infection or sexual contact between susceptible individuals and those
already infected. Among these, Sexually Transmitted Diseases (STDs) stand as a pressing
concern, with the Human Immunodeficiency Virus (HIV), capable of progressing to Acquired
Immunodeficiency Syndrome (AIDS), emerging as one of the most perilous and widely spread
diseases globally.

This chapter embarks on a nuanced exploration into the dynamics of HIV/AIDS
transmission with a specific lens trained on female sex workers, an inherently vulnerable
population segment. It intricately dissects the multifaceted compartments within populations,
unraveling the complexities and subtleties of disease spread within this context. Beyond mere
observation, this analysis delves into the underlying mechanisms governing the interplay
between different population strata, shedding light on the unique challenges and dynamics
inherent in the transmission and persistence of HIV/AIDS within this specific demographic.

Understanding the transmission dynamics of HIV/AIDS among female sex workers
necessitates a multidimensional approach that transcends conventional epidemiological models.
It demands an acute awareness of socio-cultural determinants, healthcare access disparities,
behavioral patterns and economic factors influencing the spread and persistence of this disease
within this vulnerable cohort. By contextualizing mathematical modeling within the intricate
web of socio-economic and behavioral determinants, this chapter seeks to unravel not only the
quantitative aspects of disease spread but also the qualitative facets that underpin its
persistence.

Furthermore, this analysis seeks to examine the efficacy of various intervention strategies
within the realm of mathematical modeling. By simulating scenarios and interventions through
mathematical models, the chapter aims to forecast the potential impact of preventive measures,
healthcare access improvements, and behavioral interventions on curbing HIV/AIDS
transmission among female sex workers. This predictive aspect of mathematical modeling

stands as a testament to its applicability not only in understanding the present state but also in
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projecting potential trajectories and outcomes based on hypothetical interventions, thereby
guiding policymakers and healthcare professionals in formulating evidence-based strategies.

This approach goes beyond traditional epidemiological studies, aiming to merge
mathematical rigor with an understanding of the multifaceted realities faced by female sex
workers. It endeavors to provide a holistic framework that integrates mathematical modeling
with socio-economic and behavioral insights, not only to comprehend the transmission
dynamics but also to devise targeted interventions that address the specific needs and
challenges faced by this marginalized population, fostering a more inclusive and effective
approach in combating the spread of HIV/AIDS.

In this chapter, we introduce a mathematical model that explores the active nature of
HIV/AIDS transmission within the realm of female sex workers, taking into account various
distinct population compartments. The subsequent sections are structured as follows: Section
2.2 provides a detailed literature and Section 2.3 provides a comprehensive overview of the
assumptions, notations and model description. Moving on to Section 2.4, we delve into the
analysis of the model. Section 2.5 showcases numerical illustrations and finally in Section 2.6,

we draw a summary and conclusion based on our findings.

2.2. Literature Review

Building on the rich history of epidemic modeling, various researchers have made
significant contributions to our understanding of HIV/AIDS transmission dynamics.
Mukandavire and Garira (2007) crafted a sex-structured mathematical model tailored to
examine HIV/AIDS transmission within heterosexual populations, offering insights into the
complexity of such transmission dynamics. Wu and Tan (2000) took a steady-state approach,
enabling the estimation of AIDS cases and the number of infectious individuals across various
stages, employing Kalman recursion to enhance our grasp of the epidemic. Cai et al., (2009)
delved into an HIV/AIDS outbreak mock-up incorporating treatment options, shedding light on
the potential impact of medical care on sickness dynamics. Jain et al., (2010) provided a
detailed analysis of the active way of behaving of T-lymphocyte cells in the surroundings of
Human Immunodeficiency Virus type 1 (HIV-1) contamination. Additionally, Singh et al.,
(2013) observed the intricate transmission dynamics of malaria, tuberculosis (MmTB),
HIV/AIDS, and their co-infections. Singh et al., (2016) performed an extensive examination of
a mathematical model, specifically centering on the influence of treatment within the
framework of the HIV/AIDS epidemic. In a distinct study, Kaur et al., (2014) explored a

nonlinear model, underscoring the pivotal involvement of female intercourse workers in the
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transmission dynamics of the HIV/AIDS epidemic. Huo and Feng (2013) advanced our
understanding by constructing an HIV/AIDS epidemic model that accounts for various latent
stages and treatment possibilities. Ali et al., (2019) developed a nonlinear compartmental
model, investigating the influence of media coverage on infectious disease control and
prevention.

Continuing to expand our understanding of HIV/AIDS transmission dynamics, several
researchers have introduced novel epidemic models with unique compartments and factors.
Huo et al., (2016) innovatively incorporated a modern compartment, known as the treatment
compartment (T), into their HIV/AIDS epidemic model, providing valuable insights into the
dynamics of treatment interventions. Furthermore, Huo et al., (2018) formulated an SEIS
outbreak version, taking into consideration the effect of means of communication and
emphasizing its role in shaping public perception and response to the epidemic. Jia and Qin
(2017) described an HIV/AIDS epidemic model with a standard nonlinear prevalence rate and
treatment, contributing to the exploration of diverse transmission dynamics. Biswas and Pal
(2017) introduced a comprehensive nonlinear mathematical model that considers vaccination
and antiretroviral treatment, aiming to elucidate the model’s insights and analyze the
boundedness of its solutions. Their research extended our knowledge about intervention
strategies. Moreover, Wu and Zhao (2021) collected data to investigate the worldwide
dimensions of the HIV/AIDS epidemic and to scrutinize its transmission within the
demographic of men who engage in sexual activity with other men. Lastly, Kumar et al.,
(2021) ventured into creating a numerical model of HIV/AIDS transference dynamics,
incorporating the impact of mindfulness and analyzing the model with three distinct singular &
non-singular fractional operators, thus expanding the range of factors considered in
understanding epidemic spread.

In recent years, several significant contributions have been made to the field of HIV/AIDS
modeling and epidemiology. Wattanasirikosone and Modnak (2022) presented an innovative
mathematical model employing a distinctive approach that specifically addressed two separate
categories: individuals with HIV and those with AIDS. Notably, they introduced a controlled
class involving treated patients under monitoring, some of whom could potentially transmit the
disease. Most recently, Izadi et al., (2023) conducted a cross-sectional survey among female
sex workers in various cities in Iran to estimate HIV infection prevalence and high-risk
behaviors. Subsequently, Das et al., (2023) developed a mathematical model that considers
time delays and co-infection dynamics within the context of TB, HIV, and AIDS. Moreover,

Gurski and Hoffman (2023) introduced an autonomous population model that accounts for the
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possibility of infection from casual or long-term partners, whether initially infected or newly
infected since the partnership began. In that identical year, Zhai et al., (2023) developed a
stochastic HIV/AIDS model that incorporated protection awareness among susceptible
individuals within a total population. These studies collectively contribute to our understanding

of HIV/AIDS epidemiology and modeling.

2.3. Mathematical Model

In this model, we assume that individuals enter the susceptible class, comprising males,
females, and female sex workers, primarily through processes like birth. Initially, the
transmission dynamics involve susceptible males getting infected at a rate determined by the
infective classes of females and female sex workers. Similarly, susceptible females and female
sex workers acquire infections through the transmission rate associated with infected males.
Subsequently, individuals in the HIV-infected classes of males, females and female sex
workers progress to their respective AIDS classes. The total population engaged in sexual
activity at a given time t, denoted as N(t), is categorized into twelve distinct and non-
overlapping groups. These groups include the HIV-susceptible class of males, females and

female sex workers (S,,,S;,S,,), HIV slow-infective classes of males, females and female sex
workers (I,.,,1;,,1,,), HIV fast-infective classes of males, females and female sex workers
(1,0, 1,,1,,), and the full-blown AIDS class of males, females and female sex workers
(A, A, A,). Recruitment rates for the male, female and female sex-worker populations are

denoted as A,,A, and A,, respectively. Transmission rates from infective groups of females

and female sex workers to susceptible groups of males, respectively, are represented by

a0, @i s 1 =12 The current evaluation is focused on determining the transmission rate from

mfi?

infected males to susceptible females, and female sex workers are denoted as &, @,mi; i =12.

Rates of progression from the HIV slow-infective category in males, females and female sex

workers to the fast-infective HIV category, respectively, are denoted as &,,,0,,and J,, .
Progression rates from HIV-infected individuals of male, female, and female sex workers to the
respective AIDS classes are denoted as p,,, o and p,;; 1=12. The natural death rate constant
is denoted as o, while m, f and w denote the disease-induced mortality rate in AIDS classes,

respectively. The transition diagram depicting the developed model is illustrated in Figure 2.1.
These specified variables, parameters and assumptions lead to a deterministic system of non-

linear differential equations describing the model.
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Figure 2.1: Effective model of HIV/AIDS transmission.

Table 2.1: Definition of state parameters use in the model

Symbols Description ‘

AL A, A, Birth rates in different susceptible classes of males, females and
female sex workers, respectively.
The speed at which infection spreads from infectious groups of
females and female sex workers to the vulnerable group of males,
correspondingly.
The current evaluation is focused on determining the transmission
rate from infected males to susceptible females and female sex
workers.

Rates of progression from the HIV slow-infective category in
O Ot1 O males, females and female sex workers to the fast-infective HIV
category, respectively.
12 |Progression rates from HIV-infected groups of men, women and
" | female sex workers to their corresponding stages of AIDS.

amfi ’ amwi ’ I :1'2

O s Oy 1=1,2

wmi ?

Prir P Puis 1=

o Constant mortality rates over time.

m. f.w The mortality rate resulting from the disease in the AIDS classes,
respectively.

2.3.1. Model Equations
The relevant model equations are given as following:

I. Male compartment

St =A1—amf1Sml 1 —Amf2Sm! 12 —@maSmlwe — @mw2Smlwz = Sm (2.1)

It =&mi1Sml 1 + @mwaSmlwa — (Pm1 + Om1 + ) Im (2.2)
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Im2 =am2Sml 2 + 2mw2Smlwz +Omilmi — (Pm2 + ) Im2 (2.3)

Am = pPmilm + Pm2lm2 — (0 + M) An (2.4)

Il. Female compartment

St =AMy —amStlm —am2StIm2 —0S¢ (2.9)
lf1=amStlm —(Pr1+s1+0) 11 (2.6)
lt2 =ameStlme + 011l 11— (pr2+0)l 2 (2.7)
At =psil 1+ pral2 —(o+ F)A; (2.8)

I11. Female sex-worker compartment

Sw =423 —ymSw!mi — @wm2Sw!m2 — o Sw (2.9)
log = 2wmiSwlmi — (P + 0w + ) lwa (2.10)
lw2 =wm2Swlm2 +Swilws — (Pw2 + 0)lw2 (2.11)
Ay =Pttt + w2 lwe — (0 + W) A, (2.12)

To simplify the system of equations, let’s consider the following substitutions:

Vi =P+ 0+ 0 Vo =Py +0 Vg =P +01 0V, =P, +0,V5 =Py +0,,+0,

Vo =Py t0,V,=0c+Mm,Vy=0+Ffand v, =c+W.

In a manner that facilitates the rewriting of equations (2.1)-(2.12),

St =A1 — mi1Sml 11— @mf2Sm! 2 — ZmuaSmlwt — Zmuw2Smlwz = Sm (2.13)
Im1=amf1Sm! f1+ &mwSmlwg —Vilm (2.14)
Im2 = amf2Sm! £2 + Zmw2Smlwz + Omilm —Valm2 (2.15)
An = Pmilmi + Pm2m2 —V7Am (2.16)
St =Ap —amStlm —am2StIm2 — 0S¢ (2.17)
Ity =amStlIm —Vsl 1 (2.18)
I, =, Se 1, +0¢, i —V, 1y (2.19)
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Al =polag+po0, -V A (2.20)
Sw =A3 —ymSw!mi — @wm2Sw!m2 — o Sw (2.21)
Tt = @wmiSwlmi — Vs lw (2.22)
lwe =2wm2Swlm2 +Swalwi — Velwe (2.23)
Ay =powlwt + Pw2 w2 — Vo Ay (2.24)

The overall population at any given moment is symbolized as N .

2.3.2. Positivity of the Solutions
Lemma 2.3.1: For t>0, all configurations of the framework (2.13)-(2.24) are ultimately

constrained within the compact subset.

I ={5m(t), S (), Sy (1), g (0, 1p (0, 1 (), 1, (0), 1,g (1), 1,0 (1), AL (), A (1), A, (1) e REEN SA}-
Y7,
Proof: Consider the solution (S, (t),S; (t), S, (), Loy (t), Top (0, 1 rp (), 1o (), 1oy (), 1,0 ),

A, (1), A (1), AN(t)) with positive initial conditions. Consequently, we obtain:
N=S,+S;+S,+ 1+l ,+l g+, +1,+1,+A, +A +A, (2.25)

Adding the framework of conditions (2.13)-(2.24), we have

Z—Tz(A1+A2+A3)—o-N—(mAm+fAf FWA,)<A—o N (2.26)

Here, A=A, + A, + A3 , Signify the whole birth rate of the population under consideration. It is

mentioned that
A ot -ot
N({)<— (1-e?")+N,e (2.27)
o
where N(0) represents the initial values of the entire population. Therefore, as
lim, . sup N(t) < é. It becomes evident that all the arrangement of framework (2.13)-(2.24)
O

that initiate in lef are confined within the specified regionTT .

2.4. Analysis of the Model
2.4.1. Disease-Free Equilibrium (DFE) and the Basic Reproduction Number
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Assuming the right-hand side of the system of equations (2.13)-(2.24) is zero, then we get,

A1 _amflsml f1 _amfZSmI f2 _amv\rlsmlwl _amWZSmIWZ _O_Sm =0

amflsml f1 +OCleSm|W1 _Vllml =0

amf28m|f2+a Sm|w2+5m1|m1_v3|m2:O

mw2
Pl + Pmalnz =V A, =0
Ay =@iSilyy —@Silp, —0S =0

Aty Sl =Vl =0

(2.28)
A iS¢l + 04111 —Vyly, =0
Pili+Pial i —VeAr =0
Ay = Uy Syl g = Az Syl e =05, =0
A1 S lms = Vsl =0
ALym2Swlma FOulus —Veluwz =0
Pulus + Puzlue =VeA, =0
Ifweset I, =1,=1,=1,=1,=1,,=A,=A; =A, =0 inequation (2.28), it is evident

that the model reaches a state of disease-free equilibrium, defined as:
E, =(S2,52,58,1%,1%,,1%,1%,.12, |;32,Ag,As,Ag):(ﬁ,A_z,ﬁ,o,o,o,o,o,o,o,o,oJ

o o o
As per the findings of Van den Driessche and Watmough (2002), the model reproduction

number can be computed using the next-generation technique. This approach involves

delineating the frameworks F~ and V", which individually characterize the introduction of new

infections and the transfer of individuals out of infective compartments.

amflsm |f1+O(leSm le V1Im1
amfzsmlfz—i_amwzsmlwz V2|m2_5m1|m1
Ay S iy Valgy
Ay St 1y Vol =04 1y

F = Ayt Swlml and Vo= V5IW1
Xym2 Sw Im2 V6 IW2_5wl|w1
0 vy Am_pmllml_meImZ
0 Vo Ar =pr i —pia Iy,
0 V9AW_leIWl_pW2IW2

Now, computing partial derivatives of F and V" we have
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I
0 0 amflﬁ 0 amwlﬁ 0 000
(o2 O
0 0 0 amfzﬁ 0 amwzﬁ 000
O O
a, Bz 0 0 0 0 000
O
A
0 =2 0 0 0 0 000
= & tma ™ (2.29)
A
a, =2 0 0 0 0 0 000
(o2
0 awmzﬁ 0 0 0 0 000
o
0 0 0 0 0 0 000
0 0 0 0 0 0 000
0 0 0 0 0 0 000
v, 0 0 0 0 0 0 0 O
—5.,. v, 0 0 0 0 0 0 O
0 0 A 0 0 0 0 0 0
0 0 -5, v, 0 0 0 0 O
V=l 0 0 0 0 Ve 0 0 0 O (2.30)
0 0 0 0 -6, Vv, 0 0 0
~Pm —Pm O 0 0 0 v, 0 O
0 0 “Pin TP 0 0 0 vz O
0 0 0 0 “Pw —Pw 0 0 V9
and then we have
0 o  (dmA 5 Zmd 5 5 g
V, O Vo O
0 amfzé‘mﬁ Uiz Ay Owzbus Ay Oz Ay 00 0
VvV, © vV, & (A Vo O
Fim Ay 0 0 0 0 0 000
v, o
A 2Oy A, Ay A,
22 22 0 0 0 0 000
V= w, ¢ v, o (2.31)
omt Ag 0 0 0 0 0 000
v, ©
awmzé‘mlﬁ awmzﬁ 0 0 0 0 0 00
W, o Vv, o
0 0 0 0 0 0 000
0 0 0 0 0 0 000
0 0 0 0 0 0 000
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The reproductive number of the model, represented asR,, is derived as

R = \/ AL (0 110 VoV = Uiy 21 20 V3 VeV + A3 ( Qi Py VoV = Cnaa B2 ViV )VaVa} (2.32)
0 - .

A AATATAATA
Theorem 2.4.1: The local asymptotic stability of the disease-free equilibrium E, in the system
(2.13)-(2.24) is established when R, <1, and it becomes unstable otherwise.

Proof: The Jacobian matrix of the presented system at the disease-free equilibrium is expressed

as.
A A
-0 0 0 0 0 —ozm“ﬁ —oszzﬂ 0 0 -a,—+ -a,— 0
o o o o
0 -V 0 0 0 oszlﬁ 0 0 0 ocmmﬁ 0 0
o o
A
0 0y -V, 0 0 0 A ﬁ 0 0 0 ap,— 0
o o
0 P Pz v, 0 0 0 0 0 0 0 0
AZ AZ
0 -ay -y 0 -0 0 0 0 0 0 0 0
o
A2
JE,)- 0 am; 0 0 0 -V, 0 0 0 0 0 0 (233)
0 0 V. 4 0 0 0 -V, 0 0 0 0 0
0 0 0 0 0 i P, Vg 0 0 0 0
0 -a., 4 s g 0 0 0 0 0 -0 0 0 0
o o
0 awmlﬁ 0 0 0 0 0 0 0 -V 0 0
o
AS
0 0 dm— 0 0 0 0 0 0 0o -V, 0
0 0 0 0 0 0 0 0 0 Pt Pz -V,
Trace [J(E))]=—(Bo +Vv, +V, +V, +V, +V, +V, +V, +Vg +V,) <0
A A A A
Det[J(E,)] = O'SV7V8V9 (Vsamna fm1 % + Vo X ym % - V1V3V5j
AN, AjA,
X| Vet oW imy — 5 T Vg lppQymy — 5 —VoVuVg | > 0
(o2 (o2
AA, A1A3 AA, AjA,
VSamfla fml 2 + V3amvvlawml 2 Vﬁamf Zafmz 2 + V4amw20{wm2 2
= g 9 <1lor g o <1
ATATA V,V,V,
AA, AjA, AA, AjA,
VSamflafml 2 + V3amw1awml 2 Vﬁamf Zafmz 2 + V4amw2awm2 2
=3 o A o o <«
TATATA V,V,V,
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>R <1l=R, <Ll

Therefore, the local asymptotic stability of the disease-free equilibrium E, in the system

(2.13)-(2.24) is established when R, <1, and it becomes unstable otherwise.

2.4.2. Global Stability of the Disease Free Equilibrium
In Theorem 2.4.1, we have established the local asymptotic stability of the fixed point E, when

R, <1. In this segment, we enumerate conditions that ensure the global asymptotic stability of

the disease-free state. The set of conditions for the framework (2.13)-(2.24) can be formulated

as:
dM dN ~
¢ =AML N), = =B(M, N),B(Y, 0) =0 (2.34)

whereM =S =(S;,S¢,Sw) s M eR¥and N = (g, Timas P e Do Twzs A Ag s Aus) T

N eR’® denotes the number of susceptible and HIV/AIDS-infected people. The disease-free

equilibrium is determined by:

E, =(M",0)= [ﬁ,ﬁ,ﬁ,o,o,o,o,o,o,o,o,o) .
(e (o2 O

To confirmation the world wide stability, the subsequent situations should be satisfied

() For dd—'\:l = A(M,0), M~ is globally asymptotically stable,

(i) B(M,N)=CN —B(M,N),B(M,N)>o0for (M,N) eIl
In this context, designate C =D, B(M™,0) as an M-matrix and IT as the domain where the

model holds biological significance. If the conditions (i) and (ii) are met by the system (2.34),

the subsequent theorem is applicable.

Theorem 2.4.2: The equilibrium point E, = (M *,0) demonstrates global asymptotic stability

within the system described by equations (2.13)-(2.24) when R, <1 and the conditions

specified in (2.34) are met.
Proof: Considering equations (2.13)-(2.24) along with the conditions in (2.34), we obtain:
AM,0)=T-0c5S,

B(M, N)=CN -B(M, N) (2.35)
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|
Here ' =(A,, A,, A;)"and
-V, 0 a,,S? 0 a,,,SS 0 0 0 0
Om —V, 0 Ui Sn 0 UzSn 0 0 0
a.,S? 0 -V, 0 0 0 0 0 0
0 a S, Oy -V, 0 0 0 0 0
C=|a,,S’ 0 0 0 -V, 0 0 0 0
0 QynSo 0 0 01 -V, 0 0 0
P Pz 0 0 0 0 -v, O 0
0 0 P P2 0 0 0 —Vy 0
0 0 0 0 Pu Puwz 0 0  -vy
Then
él(M,N) amfl(sr(r)m_Sm)lfl"'amm(sr?]_sm)lwl
B,(M,N) Uiz (S =S ) 12 + Ao (S =S Lz
B,(M,N) P CHE T |
B,(M,N) N CHE Py ]
B(M,N) =| Bs(M,N) | =| &,y (S = Su) 1 m (2.36)
éa(MaN) U (S = Su) 1o
B,(M,N)| |0
Bs(M,N) | |0
B,(M,N)) |©

Here, S0 >5,,59>S; and S{ >S5, ,hence it is clear that B(M,N)>0V (M,N)eR’.

Furthermore, it is evident that the matrix C qualifies as an M-matrix due to the non-negativity
of all its diagonal elements. Consequently, this establishes the global stability of the disease-

free equilibrium point (E,).

2.4.3. Endemic Equilibrium (EE)

The framework (2.13)-(2.24) encompasses a distinctive endemic equilibrium point

* *

E’ :(S;!S:’S\;! I;l’I;Z’Ifl'IfZ’I\T\/l'I\TVZ'A:ﬂ’A:'A\:/) given by:

sz * * * * ’Sf = * * 1
Amirl 11+ izl f2 A lva + e lwe +0 Al + & malm2 +o

A,
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S* Ag o OmlmSt  « @malmeSt +0ml
= * * ’ fl = ! f2 = !
Aymilmy + Aumz2 I m2 +0 V3 Vq
I* _awmllmlsw I* _ame mZS +5Wl wl *_pmllml+pm2|m2
wl v tw2 T ’ Am - ’
V5 V6 V7

- pfl|:1+pf2|:2 * pw1|:v1+pw2|:v2
A = , A, = )

Vg Vg

Theorem 2.4.3: The global asymptotic stability of the endemic equilibrium E” in the system
(2.13)-(2.24) is affirmed for R, >1.

Proof: To demonstrate the global stability of the endemic equilibrium, consider the Lyapunov
function Y as

Y=P(S, S IS )+Q(S, -S; |nsf)+R(sW-s;|nsW)+S(|ml Nl )+T(1,,-15,I1,)

+U (I -1y nh l)+V (i, — If2)+W(IW1_I\:fl In IW1)+X(Iw2_ w2 N l,) (2.37)
The derivative of Y is

* S* * I* I*
v —p[1-2n S! +Q[1-—|S! +R 12w S! +S|1—-m " 4T m2
Sm Sf SW Im1 |m2
15, It ), Loa )y Loz )y
FUL= 1 V=2 W 1= 1+ X 1= |1
Ifl If2 IW’.I. IW2

ZP[l_z_m](A _amflsmlfl_amfzsmlfz o Smlwl amwzs I O-Sm)

m’ w2

St N Ay =y Sl g — XumaSulm
+Q1 < afmlsflml afmzsflmz_o-sf)+R 1—S—W wm1 1 2 2
° S, \-cS,

f

| mi29ml o ¥ Ao Suly,
+S£1 JamflS ls + @Sl — P m1)+T[l_ Imzj[ § b ’ i

+0 1

ml®ml p2 I m2

*

. I
+U(1_I_fJafmlelml p3|f1)+v(1 Ifz](afmzsf|m2+5f1|f1 p4|f2)

f2

+W[1_:_W1J(awmlswl mL p5|wl>|\:vl + X( _:lzj(awmzswl m2 T 5W1IW1 Ps I WZ) (238)
w2

wl
The framework of conditions (2.13)-(2.24) satisfies the subsequent relation on the equilibrium

point

* * * * * * * * *
A =amnpuSmlii+@ni2Sml 12 + @muSmlw + mueSmlwz +0 Sy,
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* * * * * * * * * *
Ay=atmSilm+@imaStlm 0S¢, Ag=aymSylmi + um2Swlmz +0 Sy,

Ami1Sml 1+ XmuSmlm Amt2Sml 12 + AmueSmlwg +Omilm
V]_: * y Vo = * '
Iml Im2
* * * * * * * * * *
Aim1Stlm Aim2Stlme +0¢1l11 Aym1Swlm1 Aym2Swlm2 + 0w lw
V3=——F—, V4 = * y Vg = * y Vg = > )
I'41 I'so lwa lw2

Substituting all these values in (2.38), we get

1-m
S _(amflsml f1 +amf28m| f2 +aleSm|w1 + amWZSmIWZ + Gsm)

m

Y P( S ]amflS Ifl—'_OKmfZS If2+am\/\/lsm|wl+amwzsmlw2+O_Sm

.
+Q 1_8f [am | +a.,S:1.,+05S; (ocfmlsfIml+afm25flm2+asf)]
f

S
Rl 1—2 o Silly + umg Sl iy + 6 S = (Clamy Sl ot + FumaSulma + Sy )]
1 I s S | amflsmlfl_'_amvﬂsmlv\rl |
| amfl fl T A Om i — | * mil
ml
TI1 |m2 S I S I S amf28m|f2+amw28 2+§m1 m1I
+ _I A9l i2 Aoy T Ol — I* m2
m2 m2
I s o [ Fm2Silmy 0l
a
fl fml~ f "ml f2 * o * *
+U|1- Ay Sty — 5 Iy |+V] 1= afmzsf|m2+5f1|f1|
fl fl f2 - * f2

If2

N o N Dum2Sulm2 T 0wl
I wl S awmlsw I ml I w2
+W 1-—"= | oSyl — —I I, [+ X l——I awmzs |m2+5w1|w1|

wl wl w2 |
w2
Using the following variable substitutions
S S S I I | | | |
Uy, = Uy, Y = Uy, =X, =Xy = Y, =y, =7, W27,

Sm Sf Sw Iml Im2 Ifl |f2 Iv\rl Iw2
the derivative of Y reduces to

. (L-u, ) L (1-u,) 1-u,)
Y'=—P0'Sm—( 1) —QO'Sf—( ) -RoS, —( )

ul u2 u3

+P(1_ J[amflsmlfll UYo )+ oSl 1o (L= Y, )+ 2, Smle(l_ulzl)+amwzsmIwz(l_ulZZ)]
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S 1T (1-
( —uij[afmlsflml1 U,X )+, S 1, LUy, )]+ R[1—iJ{“Wml olml-U3%) }

2 Us meSWImZ(l_u X )

(

"
[ _Zilj[awm 1 ]+x(1——j[a 1ol -2+ 6,00 -2

2

. amfzsm f2( u,y, - Xz)
J[amflsm f1\Ur Yy — )+a Smlwl( Xl)]""T(l__ +amw28mlwz(u122_xz)

i +5m1|m1( 1_X2)

1 - N
y_j[afmzsf Imz(uzxz - y2)+5f1| fl(yl - Y, )]

2

.2<||—‘

[afmlsf Iml 1—y1)]+V(1—

__pos; & u“) Qos; LmU) pog U)o

n.,Nn,,N,, N, N, NG, N, NG, Ny ) (2.39)
1 u2 u3

where

Z= Pamfls If1+Pamf28 |f2+PaleS IM—I—PaszS |w2+Qafmlsf|m1+Qafm28flm2

SN

mw2~'m " w2

+Rat,,Sul g + Rty Sul o + SQis S If1+SaleS Iy + TSl , + T
+T5ml i +Uocfm18f Iml +Vafm28f Imz +V5fl i tWea,,, SWIml + Xa, 5W|m2 + X5Wl i
+ ulyl(_ Pamflsml f1F Samflsml f1>+ uy, (_ Pamfzsm Iy f2 +Tamf28m| f2)

U2, (= Pty Sl iy + Spn Sl iy )+ Uy 2, (= Pty Sl oy + TSl s )
+u2x1(_QafmlS: I:wl +Uafmls: I;l)"‘uzxz(_Qafsz: I;Z +Vafm28: I:nz)
+UX, (- Rty Sl iy + Wty Sl )+ UsXy (= Rty Sil 2 + Xty Sl s )
+ X Qg S 1y + Rty Sl iy = S@uis Sl i1 — S Sl iy + TS0 17y )

+X2(Qafm28:lm2+Ra Sw|m2 TamfZSr:Ifz TameSmIWZ T5ml|:n1)

+ Y1(Pamf18;|:1 _Uafmls:l;l +Voyl :1)+ yz(Pamfzs;l:z _Vafmzs: I;z —V&, 1 )

flI f1

z (Pa Smlwl Wawmlswlml + X6W1I\:/1)+ z ( mWZSmIWZ wm28w|m2 - Xé‘wll\:d)
= (a1, 817, ) = Ty 817 ) =2 (St Silin) -2 (Tt Sy 1)
1 2 1 2
L% (Uafmls: Ir:u) Uo7 (Vafmzsf Imz) - (Vvawmls:vlr:ll)_ 1%, (Xawmzs\jvl;z)
Y1 Y, Z; 2
Vi . 1(PouSal i+ Pay,Sylt,
To Vo, Xd. -
X, o) Y, Vanti)- z, - xsuts)- L Pa, ,So10 + Pamwzsmle
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|
1 ( * * * * ) 1 ( * * * * )
- Qafmlsf Iml +Qafm28f Im2 _U_ Rawmlswl m t Rawmzswlmz (240)

2 3

In arrange to decide the values of P,Q,R,S,T,U,V,W, and X, by making the coefficient
u,,u,Y,,u,z,,u,2,,U,X,U,X,,u; X, and u,X, identical to zero, we get P=S=T, Q=U =V

and R=W =X
Advance by choosing P=Q=R=S=T =U =V =W = X =1 in (2.40), we get

- uy, 1 .y uy 1
Z=a .S 1. |2+y —x -2~ |+ .S 1. |24y, —x, ——22_—
mf1~m fl( yl 1 Xl Ul J mf2~m fz( y2 2 Xg ul

- uz, 1 - u,z 1
+amv\ﬂ.sm|w1[2+ Z,—x——=* ——J+amWZSmIW2[2+ Z,— X, ——2 ——j
Xl ul X2 ul

+afmlsf|ml(2+xl_yl_ y _u_ F St 2+ X, =Y, — i
1 2

- ux, 1 M- ux, 1
+awmlsw|ml[2+xl_zl_ —— |+ A2 Syl | 2+ %X, =2, — -
Z U, Z, u,

+5m1|;{1+ X, — X, —ﬁjﬂsfll ’;1[1+ Vi~ Y, —ﬁjwml;{u 7~ 1, —ﬁJ
X2 y2 22

Since the arithmetic imply is more than or identical to the geometric imply, we have

2+y1—x1—M—iso for u;,x,y; >0and 2+y1—xl—M—i:0,if and only if

X U X1 U

u; =1, x; = y;. Also the expressions

u uz; 1 u,z
24y, =Xy — 2 1) 242 X ——2 = | | 242, - X, _Wz 1)
X2 U X U X2 U
UsX
2+xl—yl—u2X1 _1) 2+x2—y2—u2X2 _1) 2+X1—Zl—£—i ,
1 U Y2 Uz Z; U
usx, 1 X z
24Xy — 2y ——2 ——j, (1+ X; — Xy ——1} (1+yl—y2 —ﬁ]and(u 2, -1, ——1}
Z; Us X2 Y2 Z7

are less than or equal to zero if and only if u;=u,=u;=1 and x; =%, =y, =Yy, =2; = Z,.
Therefore, Y'<0 for u;,u,,us,X;, X, Y1, Y2,21,2, >0 in 11. The equality Y’'=0 holds if and
only if uy=u, =us=1and x, =x, =y; =y, =2; =2,. Applying LaSalle’s invariance principle
(1976), we can deduce that the endemic equilibrium E”of the system (2.13)-(2.24) achieves global

asymptotic stability when Ry >1.

40



Chapter 2 Stability Analysis of HIV/AIDS Transmission: A Mathematical Model for Sex Labourers

2.5. Numerical Simulation

To validate the analytical findings, a program is created using MATLAB software. The default

parameters selected for this purpose are as follows:
A =90, A,=40, A,=30, a, =0.00005, «,,=0.00002, e, =0.00001,

a,., =0.00003, a,, =000002, a,,=000002, e, =0.00003, a,,=0.00004,
o=00745, p,, =0500, p, =009, p,, =025 p,,=057, p,=030, p,,=054,
m=f=w=0.123, 5,,=0.03, §,, =0.04, 5,, = 0.01.

Figures 2.2, 2.3 and 2.4 depict the variants of susceptible classes, infective classes and full-blown AIDS
classes of populations with time t. It is located that during all of the figures, the population of
susceptible classes increases and then it goes to the equilibrium point, where the infective classes and

full-blown AIDS classes of males, females and female sex workers, respectively, decreases and then it

goes to be stable for a fixed value of R, =0.1086 <1, while in any other case, instability is observed.

1400 T T T 600
1200 500-
_Sf
1000 —Sm 400 _lfl
§ 80 _:ml S 300 — >
£ 600 T m2 2 —A
2 —Am g 200
o 400 o
200 | 100\
0 0
-200 : : : : : -100 . : . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time
Figure 2.2: Disease free equilibrium of Figure 2.3: Disease free equilibrium of
susceptible, infective and the full-blown AIDS susceptible, infective and the full-blown AIDS
classes for males. classes for females.
500
400
—_—S
300 w

200 —_—

Population

100

-100

0 50 100 150 200 250 300
Time

Figure 2.4: Disease free equilibrium of susceptible, infective and the full- blown AIDS classes for
female sex workers.

For Figures 2.5, 2.6 and 2.7, the default set of parameters chosen is as follows:
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]
A, =80, A,=60, A,=50, a,,, =0.00005, &,,, =0.0002, a,,, =0.0001, a,,, =0.0003,

., =0.0002, a,, =0.0002, a,,, =0.0003, , ,=0.0004, o=0.0743, p,, =0.107261,
p., =00924, p, =025 p, =027, p,=030, p,=024, m=f=w=0.123,
S.,=003, 5,=005, 5, =0.02.

Figures 2.5, 2.6 and 2.7 depict the variants of susceptible classes, infective classes and full-
blown AIDS classes of populations with time. It is located that during all of the figures, the
population of susceptible classes increases, and then it goes to the equilibrium point, where the
infective classes and full-blown AIDS classes of males, females and female sex workers,

respectively, decreases and then it goes to be stable for a fixed value of R, =1.6235>1, while

in any other case, instability is observed.

1000 T T T T T 600
800 500 —5S
—_—
—5 400 f1
600 m - — iz
S — 1 S 300 — A
£ 400 —_, H
E _Am 8 200 K
200 100
0 0
-200 . L . . : -100 . - - - -
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time
Figure 2.5: Endemic equilibrium of susceptible, Figure 2.6: Endemic equilibrium of susceptible,
infective and the full-blown AIDS classes for infective and the full-blown AIDS classes for
males. females.
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5 —
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3 200 —l,
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Figure 2.7: Endemic equilibrium of susceptible, infective and the full- blown AIDS classes for female
sex workers.

2.6. Summary and Concluding Remarks
In this chapter, we have conducted an in-depth examination of a nonlinear mathematical
model describing the transmission dynamics of HIV/AIDS, placing particular emphasis on its

effects within the community of female sex workers. Our model has enabled us to delve into
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the dynamics of this complex epidemic, examining two critical equilibria: the disease-free
equilibrium and the endemic equilibrium.
Our mathematical analysis reveals that the stability of the disease-free equilibrium is

contingent upon the value of the reproduction number, denoted as R,. Our findings
demonstrate that whenR, <1, both local and global asymptotic stability characterize the
disease-free equilibrium. Conversely, when R, exceeds unity, the disease-free equilibrium

becomes unstable, signifying the potential for the disease to persist and spread within the
population.

Furthermore, we have employed the Lyapunov characteristic to investigate the worldwide
stability of the endemic equilibrium. Our findings reveal that the endemic equilibrium is stable

when R, exceeds unity, reinforcing the significance of this threshold value in understanding

the persistence of the epidemic.

In our numerical simulations, a significant correlation has been identified between the
infection rate originating from infective classes of females and female sex workers and the
population of susceptible males. Specifically, as the rate of infection increases, the number of
susceptible males decreases, underscoring the importance of intervention strategies targeting
these specific populations.

Additionally, to visually illustrate our findings, we have provided several key figures:

= Figure 2.2: Disease-Free Equilibrium of Males

= Figure 2.3: Disease-Free Equilibrium of Females

= Figure 2.4: Disease-Free Equilibrium of Female Sex-Workers

= Figure 2.5: Endemic Equilibrium of Males

= Figure 2.6: Endemic Equilibrium of Females

= Figure 2.7: Endemic Equilibrium of Female Sex-Workers
These figures serve as valuable visual aids, providing a graphical representation of the
equilibria and dynamics discussed in this research.

In conclusion, our study provides valuable insights into the dynamics of HIV/AIDS
transmission among female sex workers, emphasizing the role of mathematical modeling in
understanding and mitigating the epidemic. By exploring the equilibria and stability conditions
of our model and examining numerical results, we contribute to the body of knowledge

essential for formulating effective prevention and control measures.
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Chapter 3: Study of HIV Transmission Dynamics using SEIRS
Epidemic Model

This chapter presents a comprehensive examination of disease transmission dynamics in two
distinct sections. The first section scrutinizes the intricate dynamics of HIV transmission,
specifically exploring the influence of media awareness on its spread within populations.
Understanding the interplay between media awareness and HIV transmission is crucial to
formulating targeted strategies for prevention and intervention. The second section shifts focus
to the complex co-infection dynamics of HIV/AIDS & TB, considering the influence of media
awareness on disease dynamics. Investigating the intersection of media influence and co-
infection dynamics sheds light on the nuanced interactions between these diseases, offering
insights essential for tailored intervention approaches. Both sections aim to provide an integral
comprehension of disease transmission and the impact of media awareness on public health
strategies, significantly contributing to the discourse on controlling and managing these critical

health challenges.

Section 3A: Analyzing HIV Transmission Dynamics with Media Awareness

3A.1. Introduction

HIV is an acronym for Human Immunodeficiency Virus, which causes HIV infection. In
many cases HIV can go unnoticed for about a decade before it is detected and by that time the
person is more likely to develop Acquired Immunodeficiency Syndrome (AIDS). Unlike other
viruses, HIV is difficult to eliminate from the human system partly due to its complex nature.
Treatment for HIV can only attempt to make life more comfortable for the patient as there is no
cure for it yet making it an epidemic. As per the World Health Organization (WHO), HIV
attacks a human innate immunity system by weakening it thus failing to fight contamination of
any kind.

Consequently, the human body is highly infected with viruses, various infections and
tumours eventually leading to AIDS and death. Since HIV is a virus, it needs a host cell to
carry out its toxic operations in the immune system. The origin of HIV has been traced back to
a chimpanzee in Central Africa, where humans came into contact with the infected blood of
these chimpanzees when they hunted them for meat. Several studies suggest that HIV likely
spread from apes to humans in the late 1800s. Over time, the virus spread across Africa and
subsequently to other parts of the world, including the US, where it has been known to exist

since at least the mid-1970s.
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When an infectious disease such as AIDS or HIV starts to spread in a region, it becomes the
responsibility of the disease control department to prevent the disease from happening at all
costs. The first step is to provide relevant knowledge through the media so that people know
how to protect themselves from coming into contact with the disease and what steps to take if
they are infected. The more preventive knowledge people have the more likely it is to prevent
the disease from spreading across towns or states. Media coverage, such as news channels,
newspapers, online social media platforms and educational enlightenment provided in schools
and colleges, participates in the huge responsibility of spreading consciousness about the
disease as per a recent statistical analysis on HIV and AIDS awareness strategies. One of the
critical factors in preventing the AIDS epidemic is public awareness. The chances of people
being aware of AIDS increased by 4.67 and 77.73 times for educated men and women
respectively rather than uneducated individuals. This proves that providing substantial
knowledge about the disease in educational institutions is critical to spreading awareness.
Moreover, individuals who engage in daily television (T.V) viewing exhibit an 8.6 times higher
likelihood of being informed regarding AIDS compared to those who never view television.
These findings underscore the importance of investigating how disease spread dynamics are
influenced by media coverage and educational efforts.

The spread of probably the most severe and highly contagious Severe Acute Respiratory
Syndrome (SARS) in 2003 in Beijing, China, stimulated an emergency response globally. This
emergency highlighted the need for an effective and efficient emergency response to reduce the
impacts of such an infectious disease outbreak. The lack of understanding of SARS led to panic
in the population. So when the disease control department and government officials announced
and shared information about SARS, people responded positively by wearing masks on the
streets, reducing close contact with others, reposting new cases to hospitals, etc. Mass
Communication Media and education play vital roles in risk communication. These results
indicated that releasing prevention knowledge had changed people’s health habits.

In this section, we propose a novel approach based on the ANFIS to model the transmission
dynamics of HIV using a SEIRS epidemic model. The ANFIS is a hybrid computational model
that combines the advantages of artificial neural networks and fuzzy logic and has been
successfully applied in a wide range of fields, including engineering, finance, medicine and
crisis management (Keshavarz & Torkian, 2018; Perveen et al., 2019; Tan et al., 2011,
Yadollahpour et al., 2018; Lakovic, 2020). Our proposed ANFIS-based SEIRS model aims to
capture the complex nonlinear interactions among different compartments of the HIV epidemic

and predict future trends under different scenarios. The decision to employ the SEIRS model in
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studying HIV transmission is motivated by the necessity to comprehensively represent the
disease’s multifaceted dynamics, including its prolonged incubation period and the potential for
reinfection post-recovery, which are often overlooked in existing models. By incorporating the
recovered class, our proposed model uniquely addresses these facets of HIV dynamics.
Additionally, integrating media influence allows us to provide a holistic understanding of
disease transmission, shedding light on previously unexplored dimensions that impact spread
and inform more effective control strategies.

This section is structured as follows: Section 3A.2 provides detailed literature on the
transmission dynamics of HIV with an SEIRS epidemic model. The mathematical model is
covered in section 3A.3. The subsequent sections cover the analysis of the model (Section
3A.4) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) in section 3A.5. A numerical
illustration is given in section 3A.6. Finally, summary and concluding remarks are drawn

within the last section, 3A.7.

3A.2. Literature Review

Mathematical modeling studies have been conducted to examine how media coverage and
psychology can influence the transference and command of infectious diseases in specific
populations or regions. In a study conducted by Liu et al., in 2007, a three-partition model,
which included individuals exposed (E), infectious (1) and hospitalized (H), was employed to
survey the psychological mechanisms associated with various instances of emerging infectious
disease outbreaks. The simplification of the imitation involved the supposition that the overall
dimensions of the inhabitants remained constant during the spread of the disease. Another study
by Cui et al., (2006) extended the classical SEI model by incorporating a new incidence
function that considers media coverage’s impact on disease transmission and control.

Cai et al., (2009) conducted an investigation into an HIV/AIDS outbreak replica
incorporating cure. Jain et al., (2010) studied the dynamics behavior of T-lymphocyte cells
with a human immunodeficiency virus type 1 (HIV-I) infection. Huo and Feng (2013) develop
an HIV/AIDS outbreak system incorporating various target phases and therapy options. Yang et
al., (2023) investigate an edge-based SEIR epidemic model that accounts for both sexual and
non-sexual transmission routes.

Huo et al., (2016) introduce a novel HIVV/AIDS epidemic model that incorporates a modern
section, namely the treatment section (T). Sing et al., (2016) undertake a study using a
arithmetical replica to evaluate the transmission dynamics of the HIV/AIDS outbreak,

including treatment. Sing et al., (2019) propose an SEIR mathematical model to elucidate the

46



Chapter 3 Study of HIV Transmission Dynamics using SEIRS Epidemic Model

transmission dynamics of malaria. Ali et al., (2019) devise a nonlinear compartment model to
evaluate the impact of media reporting on the control and prevention of infectious diseases.
Huo et al., (2018) expand a SEIS outbreak representation that is more realistic by incorporating
the influence of media, fundamental reproductive number, and illustrating the firmness of both
ailment-free and native symmetry states. Jia and Qin (2017) define an HIV/AIDS epidemic
model with a standard nonlinear prevalence rate and treatment. Biswas and Pal (2017) develop
a nonlinear mathematical model for HIVV/AIDS transmission dynamics, considering vaccination
and antiretroviral treatment and demonstrating the existence and boundedness of its solutions.
Wu and Zhao (2021) collected data to examine the worldwide dimensions of the HIV/AIDS
epidemic and to scrutinize its transmission within the demographic of men who engage in
sexual activity with other men. Kumar et al., (2021) present a numerical simulation of
HIV/AIDS transference dynamics in the presence of cognizance campaigns, employing a copy
with three distinct operators. According to a study by Luxi et al., (2021) on the global impact of
the COVID-19 vaccine within the initial year, the vaccination significantly changed the path of
the pandemic. It saved tens of millions of lives worldwide. However, the benefit was limited in
these situations because of limited vaccine accessibility in low-income countries, underscoring
the importance of global vaccine equity and comprehensive coverage. A mathematical study
was conducted by Riyapan et al., (2021) to comprehensively examine the dynamics of COVID-
19 transmission during the pandemic in Bangkok, Thailand. The study looked at the use of
masks as one of the ways of slowing the COVID-19 spread. Modification of the SEIR model to
include the symptomatically infected, asymptomatically infected, and quarantined was made in
this study.

In the latest, there has been an increase in using ANFIS to model various diseases. Many
studies have investigated the effectiveness of this approach in understanding disease spread and
developing intervention strategies. Deif et al., (2021) propose an ANFIS approach to rapidly
detect COVID-19 cases using commonly available laboratory blood tests. Rise and Ershadi
(2022) propose an uncertain SEIAR model to analyze the socioeconomic impacts of infectious
diseases based on uncertain behaviours of social and practical subsystems in countries. The
proposed model considers different subsystems, including healthcare systems, transportation,
contacts, and capacities of food and pharmaceutical networks for sensitivity analysis. An
ANFIS model is also designed to predict countries gross domestic product (GDP) and
determine the economic impacts of infectious diseases. A COVID-19 forecasting system using
ANFIS was discussed by Ly Kim Tien (2021).
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In recent times, there has been an increase in utilizing the Adaptive Neuro-Fuzzy Inference
System (ANFIS) to model various diseases and understand disease spread, leading to the
development of effective intervention strategies. However, few studies specifically address the
SEIRS Epidemic Model with software support considering social media’s role in the spread of
HIV/AIDS. It is crucial to provide a mathematical model examining the transmission dynamics
of a SEIRS epidemic model for HIV, emphasizing the influence of media. In light of the
analysis gap, the purpose of the current article is to fill the void by presenting an arithmetical
copy to examine the transmission dynamics of a SEIRS outbreak model for HIV, with a
specific emphasis on the impact of media. Moreover, this study focuses on employing ANFIS
to address the SEIRS epidemic model for HIV, which has not been extensively explored in the
existing literature. By developing an SEIRS epidemic model for HIV with incorporated
features, this research aimed to regulate the fundamental reproduction number and look into the
ailment-free and native equilibria. The contributions of this study, along with relevant articles
in the literature, are summarized in Table 3A.1. The present studies formulates a structure of
distinct calculations for each population group, including the susceptible, uncover,
contaminated and convalesce classes, utilizing the Runge-Kutta IV order method. The
calculation of the fundamental reproduction number is performed, and the examination of the

ailment-free and native states is established.

Table 3A.1: Comparative Analysis of HIV Transmission Dynamics: Unveiling Gaps and
Innovations via an SEIRS Epidemic Model with ANFIS Validation.

Author Specific features considered
ey Pk D Edeme  Subh e

Cai et al., (2009) v v v v 4 v X
Huo & Feng (2013) v v v v v v x
Kaur et al., (2014) X v v v v v X
Biswas &Pal (2017) v v v v x v x
Jia & Qin (2017) v v v v v v x
Huo et al., (2018) v v v v v v x
Singh et al., (2019) x x X v v v X
Ali et al., (2019) x v v v x v x
Wu & Zhao (2021) v v v v x v x
Meng & Zhu (2022) v x v v x v x
Proposed Model v v v v v v v
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3A.3. Mathematical Model
3A.3.1. System Description

In the proposed model it is going to be analyzed the population dynamics for transmission of
HIV through SEIR model applying ANFIS techniques. It is assumed in the model that the four
compartments are used to divide the total population i.e.S(t), E(t),1(t) and R(t).S(t)

denotes the count of capable of humans; E(t) signifies the count of person reveal to the
contaminated but incapable of transmitting it; 1(t) signifies the count of infected persons
suspect able of transference of the ailment; and R(t) appear for the count of person who have
convalesce due to the impact of media. Additionally, the variable M (t) signifies the number of

messages provided by all individuals regarding the epidemic disease at a time t. To account for
natural and disease-related mortality, the model considers the long-term outbreak of the

disease. The susceptible individuals are assumed to have a recruitment rate A.

E [

B+ oy

Figure 3A.1: SEIRS epidemic model dynamics with the added control of the media.

The SEIRS epidemic model with media effect incorporates various frame work that influence

the transmission vital of the ailment. These parameters include the natural death rate # and
disease-related death rate o of the respective population groups. During an epidemic season,
individuals can also send messages about the disease at rates represented by parameters &, &,,
&, and &,. The transference estimate £ in the middle of the capable of and contaminated
humans is affected by changes in public behavior after reading messages, resulting in a

reduction factor e ™™ . A parameter determines the effectiveness of ailment associated news on

the transference estimate «, while a parameter appear for the transference coefficient from
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exposure to contaminated humans y. The parameter captures the transference estimate from
contaminated individuals to capable of individuals p . Finally, the estimate at which news

become out of date is represented by a parameter o . A parameter defines the transmission rate
of the infected class &, and the rate at which the recovered class forms the susceptible class is

captured by a parameter 7. The mortality rate within the recovered class is denoted as ¢.

Collectively, these parameters serve as the foundation for the SEIRS epidemic model with
media influence, providing insights into the intricate dynamics of disease transmission.

The diagram in Figure 3A.1 gives rise to a set of ODEs, outlined as follows:
S'=A+pl-BSle™ —4S+7R
E'=BSle™ —yE—uE
lI'=yE-pl—(u+a)l =51 (3A.1)
R'=6l-nR-¢R
M'=&S+EE+ET+E,R-0M

3A.3.2. Basic Properties
We will illustrate that all variables in the system of equations (3A.1) remain non-negative
for every t >0. This demonstration is crucial to establish the epidemiological significance of

the system of equations (3A.1). Consequently, the following lemmas are derived.

3A.3.3. Positivity of the Solutions
Lemma 3A.3.1: States that the attracting region  , defined by

z//:{(S,E,I,R,M)eiRi:OSS,E,I,RSN <A o<m sA(§l+§2+§3+§4)sRsi},with
U o(u) ne

beginning situation  S(0)> 0, E(0)>0, 1(0)>0, R(0)>0and M(0)>0, is positive
invariant for system (3A.1). This region attracts all solutions that begin within the interior of
the positive values for t .

Proof: By summing the first four equations in the system (3A.1), we obtain:

N'=A— N -l <A—iN

Thus, it follows

o<N=<24 N(0)e ™,
y7;

where the first population is indicated by N(0).

. A
Therefore, limsup, ., N <—.
U
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Moreover, the fifth equation in the system (3A.1) leads us to the conclusion that,

M <G+E+EFEIN
Y2

and then,

0=m <G +rEHEHEIN U g)e
o

where the initial value of the media message is indicated by M (0).

(G+&+&+EIN
)2

Thus, limsup, ,, M <

3A.4. Analysis of the Model

To analyze the model mathematically, the following disease-free equilibrium points were

derived.

3A.4.1. Disease-Free Equilibrium (DFE) and Basic Reproductive Number
If we assume that R.H.S of the system of equation (3A.1) is zero, then we get,
A+pl—pSle™ —uS+nR=0
SSle™ —yE-uE=0
yE—pl—(u+a)l=51=0 (3A.2)
ol-nR-¢R=0
ES+EE+EI+ER-0M =0

If we substitute E =1 =R =0 into equation (3A.2), it becomes evident that the model exhibits
a disease-free equilibrium, represented by:
E, =(S,,0,0,0,M, )= (A,o,o,o,é—’\) (3A.3)

U uHo

Continuing our analysis, we aim to determine a key parameter, the fundamental reproductive

number (RO), for the structure (3A.1) utilizing the next-generation method. In this context, we
define the new infection matrix F(x) and the transfer matrix V(x). Consider the state vector as

X= (S, E, I, R, M) and the representation of the structure (3A.1) can be expressed as:
X'=F(x) -V (x)

where,
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o0 ] BSle™ + uS—A-pl-nR]
BSle™ yE+uE
F)=[ 0 |, V)= pl+(u+ey)l+51-yE
0 nR+&R-01
- 0 - _O_M_éls_sz_ésl_éR_

At the disease-free equilibrium E,, the respective Jacobian matrices of F(x) and V(x) are,

00 0 00
00 BS,e™ 0 0
DF(E,)=/0 0 0 0 0,
00 0 00
00 0 0 0]
u 0 pSe™-p -p O]
0 wu+y 0 0 0
DV(E,)=| O -y pHu+o+o 0 0
0 0 -0 n+e 0O
__§1 -&, —&, -& O]
g 0 pBSe™-p - 0
0 wu+y 0 0 0
(E))l=| 0 -y p+u+toa+6 0 O
0 0 ) n+e O
_fl _52 _4:3 _4:4 O
(Eo)| = (uo )y + u)p+u+a, +3) (n+e)
1 n
ﬂ p12 pl3 ﬂ(n+g
0 1 0 0
y+u L
DV(E, )" =| O 0
( 0) Paz (p+,u+al+5)
1
O p42 p43 (77+g
-¢
—= Py, Pss Psa
Uo
where,
-7 —aM 775
= S,e M —p)-
P u(y+u)(p+u+al+5){<ﬂ ’ 0) n+e

Q| o
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]
1 775 —-aM
= — S 0 __
Pis u(p+u+a1+5){ﬂ+8 (#5:e p)}
0. = y
2 (yrufp+uta+0)
P, = i
Y (y+ufp+utay+S)n+e)
~ 5
p43_(p+,u+a1+5)(77+g)
o = (7+ )&, (p+ m+ay +8)+ plug, - BSoe™ & |+ yolng, + pé.)
* oly+up+pu+a,+5)n+e)
_ u&; 1+ )+ 8(né, + pg, ) uéim
P uo(p+p+a+ SNy +ufn+e)
D :_(5177+§4/J)
" woln+e)
0 0 0 0 0]
o BSe ™) BSe ™) o 4
B y+ulp+u+a,+0) (p+u+oa,+90
DF(EO)DV(Eo)lZO ( )( 0 ' ) ( 0 ' ) 00
0 0 0 00
0 0 0 0 0]
Therefore, the reproductive number R, is given as
R, = 7(DF (E,)DV (E,)*)= mex(|1]; 2 € #(DF (E,) DV (E,) ), (3A.4)

where 7/() and ¢() represents the spectral radius and largest eigenvalues, respectively.

Then, the fundamental reproductive number (RO) is given by

—a g A
uo
R, = Prae (3A5)
,u(yx+al)(p+,u+al +5+5g+775)
Ry = 470 (3A6)
(u+yNp+u+a)-yp
R, = R,e" " (3A.7)

where,
- _ﬁ(é]ﬁ— E(u+ )0 +p+ay)+pé,(S+pu+ay)+uéy)+S@m+e)  (3A8)

Remark: Clearly, can be checked that: R;, >0«<®>0,R,, <00<0,R;, =0 0=0.
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3A.4.2. Stability Analysis of Disease-Free Equilibrium

Theorem 3A.4.1: Disease-free equilibrium E, of the above system of equation (3A.1) is
globally asymptotically stable if Ry <1, and is unstable if R, >1.

Proof: At the DFE point E,, the Jacobian matrix of the above system of equation (3A.1) is

A —agA
A+u 0 ﬂ;e 7 —p -n 0
A —-agA

0 A+(y+p) —p—e *° 0 0 |_g

0 —y A+(p+p+a, +95) 0 0

0 0 -0 A+(n+¢e) O

-& - & — &3 - &, A+o
then,

—aé A

(ﬂ+u)(z+a)(z+(nw))[(z+(y+u»(z+(p+u+al+5»—yﬁﬁe 7 1=039)
p .

Thus, the three eigenvalues of the equation (3A.9) are 4, =—u, A, =—o and 4, =—(n+¢) and

the others are determined by

A —agA

(ﬂ+(;/+,u))(/”t+(p+,u+al+5))_%Bze “e _ 0
—aghA

A +(p+,u+al+5)ﬂ,+(]/+,u)2,+(]/+,u)(p+,u+al+5)—}/ﬂ;e #7 =0

Hly +)(pt+p+a +9)Ry _
Y7,

Py +p+d+2u+a)i+(+u)p+u+o +08)-

SA+(+p+o+2u+a)A+y+u)p+u+a +5)(1-R,)=0

Then we have

L+ =+p+o+2u+a,)<0

s = (y + 1)(p+ p+a, +6)1-R,)

Hence, in the case where R, <1, the ailment-free symmetry point E, demonstrates local
asymptotic stability, while it becomes unstable if R, exceeds 1.

Next, a Lyapunov function is presented

—a&A

V(S,E,1,R,M)=¢ “7 yE@)+ (7 + 1)1 (t) + (17 + &)R() (3A.10)
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Using the expression for R, in (3A.5) and differentiating (3A.10), we have
—aah

V'(S,E, 1,R,M) =e “7 yE'(t)+ (7 + u)l'(t) + (1 + £)R'(1)

—a&A

=e “7 y(BSle™™ —yE—uE)+(y + W)()E—pl —(o + u+ )1 )+ (7 + )51 -nR-&R)

—ag A —ag 1A —ag A
=e “7 yBSle™ —e “° Y’ E+wE—-e " ik —pupl — u’l — ua | — uS\ + y’E - py|
—yul —ya | —yS 1+ —n*R-neR + 51 —neR — £°R

—aé A —-aé A —-aé A

S%e “C yBle™ —e #7 yPE+ wE —e “° yE — upl — p®l — pol — us 1+ y*E - pyl

—yl —ya | —yS1+161 —n°R-2neR+ 51 —&°R

—agiA —agiA —agA

<De gl e w7 2B —e 7y — ppl — Pl — ) — S| + 7 %E - py | —
7,

-yl —yo 1l +nol —-n’R-2neR +&51 —¢°R

—aéA

<—e " yB1l - pupl — p?l — pal — pyl —us | —yul —ya | + 1781 —y51 —n*R-2neR
U

+&0l —&°R
—abA

=—e " Pl —(p+o,+u+9) (y+u) 1 +(no+de¢) |
Y7
=(y+u)p+u+a +90+oe+n0)l(R,-1).
Thus, R, <1 guarantees that Z—\:(S,E,I,R,M)SOVt>O, therefore V(S,E,I,R,M) s

bounded and decreasing. Therefore lim. _V(S,E,I,R,M) exists. By LaSalle’s Invariance

t—o0

principle (1976), the global asymptotic stability of DFE E can be guaranteed whenR, <1.

3A.4.3. Endemic Equilibrium (EE)
Theorem 3A.4.2: States that the set of equations in system (3A.1) exhibits

(i)  Endemic equilibrium point E;" is positive; when R, > max (1, R,, )

(i) Endemic equilibrium point E; is positive; when R, = R, < min LRy, );

(ilf)  Two separate positive endemic equilibrium points, denoted as E; and E;, occur
whenR, <Ry < min (LR, ), where Rj, Ry, R, and @are defined by equations

(3A.5)-(3A.8) and
E =(S;,E/,1],R,M;}i=12345
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I
Proof: Suppose that P*=(S", E*, 1", R", M") represents a solution to equation (3A.2),

wherein,

A+pl —BST'e+nR —uS =0
pAS1e™ —yE" —uE =0

yE —pl"—(u+a)l" =517 =0 (3A.11)
S1"-nR —¢R =0

ES HEE +&E1T+ER —oMT =0

In this context, we assume S™, E", 1", R", M "can be represented as linear function of |~

respectively,

. :ﬁ{_ (u+7)(ﬂ+a1+5)j|* (3A.12)
U My

E* :Mr (3A.13)

v
R*=5+,u+al+5g+775|* (3A.14)
gy
M*:égl_A_'_ 1" (5175_681(/1"'051"'7)(5"'051"'5) J (3A.15)
po - poy\+ pé, (e +ay + p+6) + u& (6 +y) + u&ymd
Combining equations (3A.12)-(3A.15) with the first equation (3A.11), we obtain:
((1_ (IU+}/)(5+,U+6¥1) _éJl*jRo :e—®l* (3A16)
Ay A
Now, by equations (3A.6) and (3A.16), we have
. _Rogi_eo o (3A.17)

R01

Here we denote, H(l) =R, —%@I —e™o (3A.18)

01
By equation (3A.18), we get,
H(0) =R, —1 H () = —o, H'(I) Z_FF:_OG)I P

01

R
H'(0) = —R—°®+ ®, H"(1)=-0%",

01
() While R, >LH(0)=R,—~1>0, and H(:0) <0,if © 0,

H"(1) =-©%® <0, obtain.
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H'(1) < H'(0), specifically ®e ® <©,

R R
H'(1)=-—20+0e™ <0|1- -~
R

01 01

when R, > R,,, then the single positive result for H(l) =0 exists.

If ®=0, by equation (3A.16), we get

1" = Ay [1—ij (3A.19)
(u+y)S+u+a)-6r\_ R,

Similarly, when R, >1, I > 0. Thus, the endemic equilibrium E; =(Sl*,Ef, Il*,Rf,Ml*) can be
obtained.

(i) When R,<LH(@0)=R,-1<0, and H(x)<0. We assume that H'(I)=0 then

I _ L n ﬁ
® R,

When R, <R,,| takes on positive values. Additionally, | serves as a positive solution to
H(1)=0 < R, =R,. Consequently, the endemic equilibrium E; =(S;’, E,, I;,R;,M;).

(iif)  Building upon the findings in (i), when R, > R, ,and H(l)=0 two outcomes arise.

Therefore, the endemic equilibria E; =(Si*,E.*,|i*,R.* Mi*); i=1234,5 can be

derived.

3A.5. Adaptive Neuro-Fuzzy Inference System
In Figure 3A.2, the architecture of ANFIS, which consists of five layers: the input, fuzzy,
normalization, rule and output layers, is depicted. This combined system integrates the
advantages of both fuzzy logic and neural networks, making it suitable for various applications,
including control systems, pattern recognition, and prediction.
Input Layer: The input layer of ANFIS consists of the input variables that are fed into the
system. These input variables can be continuous or discrete, and membership functions
represent them.
Fuzzy Layer: The ANFIS fuzzy layer performs the computation of membership degrees for
each input variable within each fuzzy set. This layer utilizes fuzzy logic rules on the input
variables, which are expressed through fuzzy sets. These fuzzy sets are characterized by
membership functions, detailing the extent of membership for each input variable in each

respective fuzzy set.
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Normalization Layer: The normalization layer of ANFIS is responsible for normalizing the
firing strengths of the fuzzy sets. This layer ensures that the total of the firing strengths of all
the fuzzy sets equals one.
Rule Layer: The rule layer of ANFIS is responsible for computing the degree of activation
of each rule. The rules are defined by combining the fuzzy sets in the antecedent part and the
output variable in the consequent part. The degree of activation of each rule is computed by
multiplying the firing strengths of the fuzzy sets in the antecedent part.
Output Layer: The output layer of ANFIS is responsible for computing the final output of
the system. This layer computes the weighted average of the output values of all the rules.
The weight of each rule is proportional to the degree of activation of that rule.
In summary, ANFIS is a hybrid system that combines fuzzy logic and neural networks. Its
architecture consists of five layers: the input, fuzzy, normalization, rule and output layer.
ANFIS can be used for various applications, such as control systems, pattern recognition and
prediction. The choice of employing the ANFIS for numerical simulation in this section is
founded on its prowess in capturing the intricate nonlinear dynamics inherent in HIV
transmission within the SEIRS model. The complexity of HIV transmission, characterized by
multifaceted interactions and behavioural nuances, demands a modeling approach capable of
handling nonlinear systems effectively. ANFIS stands out for its adaptability, adeptness in
modeling nonlinearities and capacity to capture the intricate relationships among variables such
as media impact and disease spread dynamics. Furthermore, ANFIS’s robust validation process
ensures the reliability and accuracy of simulation outcomes, establishing it as an optimal choice

for comprehensively addressing the complexities within HIV transmission dynamics.

Layer 1 Layer 2 Layer 3 Layer 4

@ -3 ) ovet prat

I:I adaptive node

O fixed node

IF-Part THEN-Part

Figure 3A.2: ANFIS Architecture.
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3A.6. Numerical Simulation

To verify the logical result obtained in the preceding segment, arithmetical simulations were
performed. To perform numerical computations, the governing equations of the system are answered by
making use of the 4th-order Runge-Kutta method within the MATLAB software. The ‘ode45” function,
a built-in feature in MATLAB, is used for this purpose. In order to evaluate the feasibility of the FI-
based controller and validate the data, we employ the ANFIS approach within MATLAB’s fuzzy logic
toolbox. The ANFIS results are obtained by using a Gaussian membership function for five linguistic
variables: ‘very low’, ‘low’, ‘moderate’, ‘high’ and ‘very high’. The membership function for X is

displayed in Figure 3A.3.

Moderate High Very High

Degree of membership

10 20 30 40 50 60 70 80 90 100
Days

Figure 3A.3: Degree of membership function for input variable “Days”.

For Figure 3A.4, the default set of parameters is fixed as:

A=0.8, a=0.08, £ =0.0001 £ =04, o, =0.002, & =099, & =04, & =08, & =0.12,
B=04, p=07, y=0.1, =05, 5 = 0.0004, &= 0.0006.

Figure 3A.4 illustrates how the different categories of individuals and messages vary over time. The

graph shows that the numbers of susceptible, exposed, infected and recovered individuals and messages

remain constant for a fixed value of R, =0.2381 <1, but become unstable otherwise.

7

— () « ANFIS S(t)
6

—E(t) x ANFIS E(t)
s

— ) ® ANFISI(t)
4 —mMm(t) u ANFIS M(t)
3 —R(1) & ANFIS R(t)

Number of people/message

1 " 21 3 41 51 61 mn 81 L] 101

Days

Figure 3A.4: Stability analysis: Disease-free equilibrium under R, = 0.2381<1.
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For Figure 3A.5, the default parameter values are set as follows:

A=08,a=0072, £=0.2,6=02, 0, =002 & =06, & =08, & =08, & =012, f=9,
p=0.006, y =04, §=05,7=04, c=08.

Here Figure 3A.5 illustrates how the different categories of individuals and messages vary over

time. The graph shows that the numbers of susceptible, exposed, infected and recovered
individuals and messages remain constant for a fixed value of R, =1.5917 >1, but become

unstable otherwise.

—s() + ANFIS S(t)
—E(t) x ANFIS E(t)
5 — ) * ANFIS I(t)

— M) = ANFIS M(t)

) —R(t) A ANFIS R(t)

Number of people/message

1 11 21 31 41 51 61 71 81 91 101

Days

Figure 3A.5: Stability analysis: Endemic equilibrium under R, =1.5917 >1.

3A.A. Summary and Concluding Remarks

In conclusion, this study has successfully developed a mathematical model to analyze the
transmission dynamics of an SEIRS epidemic model for HIV, with a specific focus on the
influence of media. Through the formulation of a structure of distinctive calculations of elected
by the susceptible, exposed, infected and recovered population groups, a comprehensive
understanding of the disease spread dynamics has been achieved. The computation of the
fundamental reproductive number has yielded significant understandings regarding the gravity
and scope of the epidemic, whereas the analysis of the equilibrium states in which the disease is
present and absent has illuminated the system’s long-term dynamics.

Furthermore, the stability analysis has demonstrated that the disease-free equilibrium is
both locally and globally asymptotically stable, indicating the potential for effective disease
control measures. To validate the findings, numerical simulations were conducted utilizing the
innovative Adaptive Neuro-Fuzzy Inference System (ANFIS), showcasing the practical

applicability of the proposed model.
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The outcomes of this study contribute to the presented body of understanding on SEIRS
epidemic models and provide valuable insights for HIV transmission dynamics. The results
underscore the significance of media influence and the necessity for comprehensive
intervention strategies. By understanding the underlying mechanisms governing disease spread,
policymakers and healthcare professionals can make informed decisions to mitigate the impact
of HIV.

Moreover, the inclusion of visual representations adds clarity to the results. Figure 3A.3
illustrates the Degree of membership function for the input variable “Days” assisting in
visualizing the credit of time on the vital of the ailment. Additionally, Figure 3A.4

demonstrates that the ailment-free symmetry (E,) is firm when (R,) is below the critical
threshold (R, =0.2381<1), highlighting the potential for disease control. Figure 3A.5 shows
that the native symmetry (E”) is firm when (R,) exceeds this threshold (R, =1.5917 >1),
emphasizing the importance of maintaining (RO) below this level for effective prevention.

Overall, this research serves as a stepping stone for further investigations into the modeling
and analysis of complex epidemic systems. Future studies may consider additional factors and
refine the mathematical models to enhance the accuracy and applicability of the findings. The
ultimate goal is to develop effective strategies for disease prevention, control, and management,

using insights gained from this study as a foundation for informed decision-making.
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Chapter 3: Study of HIV Transmission Dynamics using SEIRS
Epidemic Model

Section 3B: Analyzing the Co-infection Dynamics of HIV/AIDS-TB with Media
Awareness

3B.1. Introduction

HIV/AIDS and TB co-infection represent a complex and intertwined health challenge,
intertwining their impacts on global morbidity and mortality rates, particularly in resource-
constrained regions. The synergistic relationship between these two diseases amplifies their
severity, underscoring the critical need to comprehend their interactions for effective
prevention, management, and control strategies.

This section endeavors to construct a comprehensive model that captures the dynamics of
HIV/AIDS and TB co-infection. The model incorporates distinct classes representing different
disease states and interventions: susceptible individuals, those infected with TB, individuals
undergoing treatment for TB infection, the recovered population, HIV-infected individuals, and
those progressing to AIDS.

The global burden of HIV/AIDS and tuberculosis co-infection is substantial, especially in
regions where both diseases coexist, exacerbating challenges faced by healthcare systems and
communities. Notably, the World Health Organization (WHO) highlights a significant
proportion of TB cases occurring in individuals living with HIV/AIDS, substantially increasing
the risk of TB infection progressing to active disease. Conversely, TB infection significantly
impacts the progression and severity of HIV/AIDS, complicating treatment outcomes and long-
term health for co-infected individuals.

Despite advancements in medical science and public health interventions targeting each
disease independently, the intricate behaviour of Tuberculosis and HIV/AIDS co-infection
persists as a formidable obstacle. This necessitates a comprehensive modeling approach that
integrates epidemiological observations, immunological insights, and computational
simulations to capture the nuanced interactions between these diseases and their impact on
diverse populations.

The proposed model encompasses distinct classes representing various disease states and
interventions, including susceptibility to both HIV/AIDS and TB, active TB infection,
treatment for infected individuals, the recovered population, HIV-infected individuals, and

those progressing to AIDS. By incorporating these classes, the model aims to simulate the
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intricate dynamics of co-infection, elucidating critical factors influencing disease propagation

and evaluating potential strategies for mitigating their combined impact.

The subsequent sections will delineate the conceptual framework of this model, detailing
the parameters, methodologies, and interactions characterizing the different disease states and
interventions. Moreover, this section will discuss the implications of the model in informing
public health policies, clinical interventions, and future research directions aimed at addressing
this pressing global health challenge.

This section is structured as follows: Section 3B.2 provides detailed literature on the
transmission dynamics of HIVV/AIDS-TB co-infection model. The model description is covered
in section 3B.3. The subsequent sections cover the mathematical analysis of equilibrium points
(Section 3B.4). Finally, summary and concluding remarks are drawn within the last section,
3B.5.

3B.2. Literature Review

HIV/AIDS and TB co-infection create a lethal synergy, exacerbating the progression and
severity of each disease. Individuals living with HIV face a significantly heightened risk, being
16 times extra probable to develop TB compared to those without HIV. This co-infection
presents a critical public health concern, with TB emerging as the primary reason of death
among people existing with HIV. Without proper treatment, mortality rates are strikingly high,
affecting nearly all HIV-positive individuals with TB and approximately 60% of HIVV-negative
individuals diagnosed with TB.

The World Health Organization’s (WHO) 2022 report highlighted the devastating impact of
TB, attributing 1.3 million deaths to this disease, of which 167,000 were associated with HIV-
TB co-infection. Efforts to combat this dual burden of disease have led to significant
advancements in understanding transmission dynamics, treatment strategies, and the role of
various interventions.

Several studies have explored the multifaceted aspects of infectious disease dynamics and
intervention strategies. Greenhalagh and Das (1995) formulated SIR mathematical models for
epidemics, considering population density’s influence on contact rates and background death
rates. Bhunu et al., (2008) delved into the effects of chemoprophylaxis in TB treatment,
advocating a holistic approach to intervention strategies.

Media’s role in raising awareness and its impact on disease dynamics has also garnered
attention. Khan et al., (1997) conducted a statistical analysis of media and the importance of

education in raising AIDS awareness amongst Bangladeshi married people, emphasizing the
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influence of media coverage on disease understanding. Cui et al., (2008) examined the
influence of media coverage on the transmission and management of infectious diseases such
as SARS.

In the realm of HIV-TB co-infection modeling, various approaches have been undertaken.
Kirschner (1999) constructed a model elucidating HIV-1 and TB coinfection within a host. Huo
et al., (2016) introduced the treatment class in an HIV-AIDS co-infection model. Building upon
this, Bhunu et al., (2009) comprehensively considered TB and HIV transmission dynamics,
incorporating treatment aspects for both diseases. Roeger et al., (2009) assumed sexually
inactive TB-infected persons in the phase of activity of the disease in their co-infection model.
Silva and Torres (2014) integrated TB and AIDS treatments in their model for individuals
afflicted with either or both diseases.

However, despite these advancements, gaps persist in understanding the influence of media
awareness on disease dynamics, treatment outcomes, and overall public health strategies in the
context of HIV/AIDS and TB co-infection.

3B.3. Model Description
To investigate the impact of awareness on the control and prevention of HIV/AIDS-TB co-

infection, we examine a population denoted by N (t) at time t, with a constant recruitment rate
represented by A . This entire population is categorized into six sub-classes: susceptible S(t),
tuberculosis-infected T (t), individuals undergoing treatment for tuberculosis M (t), those who

have recovered post-treatment R(t), HIV-infected H(t), and AIDS-infected A(t). The

transition from susceptible to tuberculosis-infected occurs at a rate denoted by &, representing
. T N
the contact rate before media alert. The term §(T):(§1 —51'—_'_) signifies the reduced
m -+

value of the tuberculosis transmission rate after media alert, measuring the spread of TB
infection from infected to susceptible individuals. When m=0, the transmission rate remains
constant. The potential of the disease to spread and the population’s awareness of each
susceptible member are both related to the contact transmission rate. The effect of publicity on

the transmission of contact is reflected in the parameter m. The transition from susceptible to

HIV-infected takes place at a rate denoted by &, before media alert. The reduced value of the
HIV transmission rate after media awareness is given by é(H)=(§2 -£, ﬁ] The effect
+

of publicity on HIV infection spread through contact is reflected in parameter n. The TB class
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population is infected by HIV at a rate &;. Since TB is a curable disease, individuals in the TB

class undergo treatment at a rate y, followed by recovery at a rate &. Fully recovered

individuals re-enter the susceptible class at a rate A. It is assumed that no effective anti-HIV
treatment is available within the population, resulting in some members of the HIV class
progressing to full-blown AIDS at a rate p. Once AIDS develops in an individual, no
awareness can contribute to a cure. The population is assumed to experience a constant death

rate represented by «, where o denotes the disease-induced death rate. Figure 3B.1 shows the

model flow of this biological structure.

A
S
§(H)
¢r) M
73
A T &3
I}
Y P
B N
9 (n+ )

Figure 3B.1: Epidemiological modeling of HIV-TB co-infection.

The mathematical model is expressed through this system of nonlinear differential equations.

ronfe g T VST (oo H JSH n
S'=A (681 S m +Tj N (52 2 n+H j N + AR — 45 (3B.1)
r_ -4 T S_T_ m_
T —(51 & m+Tj R A (3B.2)
, (. . H \sH TH
H —(52 & Nt H} N + &, N (,O+,u)H (3B.3)
M'=,T —(5+uM (3B.4)
R'=M —(1+ u)R (3B.5)
A=pH—(u+a)A (3B.6)
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e
Since N(t)=S(t)+ T(t)+ H(t)+ M(t)+ R(t)+ At), the above set of equations (3B.1)-(3B.6) can be

modified as:

N'=A - uN — A (3B.7)
v [+ o T YIN+T+H+M+R+A)_ _TH
T —(51 eﬂm”J v L CR POl (38.8)
, (. o H YN+T+H+M+R+A) TH
H —(éz ézmHj N H+ &=+ pH (38.9)
M'=,T —(5+uM (3B.10)
R'=M —(4+u)R (3B.11)
A=pH—(u+a)A (3B.12)

Lemma 3B.3.1: The viable range Q is delineated by
Q= {(S(t),T(t), H(t),M(t),R(t), A(t)) e RS :N(t) < A}
Y7,

with initial conditions S(0) >0, T(0) >0, H(0) >0, M(0) >0, R(0) > 0, A(0) > Ois positively

invariant for system of equations (3B.1)-(3B.6).

Proof: Adding the equations of system (3B.1)-(3B.6), we obtain

d—NzA—,u(S+T+H+M +R+A)—cA

dt

Z—TSA—;{N. (3B.13)

On solving equation (3B.13), we have
A ut
0 < N(t) <—+ N(0) e ™,
U
where the preliminary values of the entire population are denoted by N(0). Thus

Ilm t—>+0

sup N(t) < A. It implies that the region
7]

Q= {(S(t),T(t), H (1), M (t), R(t), A(t)) e R® : N(t) < A} is a positively invariant set for system
U

(3B.1)-(3B.6).
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3B.4. Analysis of the Model
The examination of the model has been done by evaluating the equilibrium points.

3B.4.1. Equilibrium Points
To obtain the equilibrium points, we set left-hand sides of all equations (3B.7)-(3B.12) to zeros,
so that we get

A—uN-aA=0 (3B.14)
. T Y(N+T+H+M+R+A)_ _ TH ~

(51 flm Tj N T-& N (y+uJT =0 (3B.15)
. H Y(N+T+H+M+R+A) TH ~

(52 ézmHj N H+& (p+uH=0 (3B.16)

T —(5+uM =0 (3B.17)

M —(A+u)R=0 (3B.18)

oH—(u+a)A=0 (3B.19)

Using equations (3B.14)-(3B.19), the four possible equilibrium points are obtained as follows:

(i) The diseases free equilibrium point EO(W, 0,0, 0,0,0) exists for all parameter values as

N="T-0H=0M=0R=0A=0
y7]
(ii) The HIV/AIDS infection-free equilibrium point El(N *,T%,0,0,0, O) is given by
N* =§, M*"=0,R"=0,H"=0, A"=0,K,T?+K,T" +K, =0
y7;
where, K, ==(& &), Ky ==2om(& = &)=+ ), Ky =ml&, =7+ )

we know that K, >0, if 51—(7/+y)>0, the hence system has unique HIV/AIDS free
equilibrium point.

(iii) The TB infection-free equilibrium point EZ(N,O,O,O, H, A) is

NZE(A—“’)H]vf:o,M ~0,R=0,A=2 pHZ 1P H+P, =0
U+a

P =&, —é;)( 2 (“—”}LM}

plp+ax)
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P, =_n§_2p(l+_,u)_n§2 +(&, _§£)A+w,
pral u po ulp+a)

P =" (g~ (u+ o)+ 2t p).
7 7

Clearly P, >0, if & >(u+p), then the system has unique TB infection-free equilibrium
point.

) 2[(§1—§l’pT) (u+7)] { glpT)(ﬂ+a+pj+§3+ap{(§1—§;;?;l—;;/+u)Hﬁ
T= (& -&pr)

i 2{{(@—&@4) (u+ 7))+ ( (( éii';“)]{(él Elpr)- (mo}}

H =

53(,u+0£+p)+ 53_(52_§2pl-|) L epr {(é:l &ip ) 7+/U)}
Hta 53( (fl_égllpT) J (OHUU){ {( fsz) (7/+ﬂ)}:|

3B.5. Summary and Concluding Remarks

This section marks an extension from the preceding SEIRS epidemic model established in
Section 3A, specifically centered on the nuanced exploration of the co-infection dynamics
between HIV & TB. Departing from the SEIRS framework, this extension delves into the
specialized context of HIV/AIDS & TB co-infection.

While the literature review emphasizes the crucial interplay between HIV & TB,
recognizing the pivotal role of treatment in mitigating mortality rates, this section’s primary
focus lies in advancing our understanding solely within the framework of HIV/AIDS & TB co-
infection. Limited alterations and extensions within this specialized context contribute
incrementally to unraveling the complexities of co-infection transmission and treatment
outcomes.

Nevertheless, this section underscores the imperative for future research to explore
uncharted territories, such as the influence of media awareness on disease dynamics within the
specialized framework of HIV/AIDS & TB co-infection. By extending and refining this
specialized model, it lays the foundation for more targeted interventions and further

investigations into this intricate health challenge within diverse populations.
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Chapter 4: Mathematical Analysis of Malaria Transmission: SEIRS
Model with Mosquito Vector Dependency

4.1. Introduction

Malaria, a profoundly impactful infection, stands as a formidable global challenge affecting
countries predominantly in Africa and Asia. Its far-reaching impact encompasses nearly 3
billion individuals across 109 countries. This disease, with its staggering toll, annually accounts
for approximately 250 million documented cases, tragically resulting in the loss of 1 million
lives, a substantial portion of whom are children under the age of five. Central to the complexity
of malaria is the microscopic parasite, plasmodium, which operates exclusively through the
transmission by female mosquitoes of the Anopheles genus.

The transference of the malaria parasite occurs through the bite of an infected female
Anopheline mosquito, introducing the pathogen into the human bloodstream. Notably, among
the numerous plasmodium species including Plasmodium malariae, Plasmodium vivax,
Plasmodium ovale, Plasmodium falciparum and Plasmodium knowlesi, the latter two especially
P. falciparum stand out for their severe clinical outcomes and prevalence in certain regions. The
World Health Organization (WHO) records a staggering toll of 627,000 deaths attributed to
malaria in 2013, with nearly 207 million cases officially registered, disproportionately affecting
African children, emphasizing the gravity of this disease burden within vulnerable populations.

The battle against malaria extends beyond the epidemiological landscape, intertwining with
socio-economic and environmental factors that intricately shape its prevalence and impact.
Factors such as inadequate access to healthcare, socio-economic disparities, climate variations
affecting mosquito habitats and the emergence of drug-resistant parasite strains significantly
contribute to the disease’s persistence and exacerbate its impact on vulnerable communities.
Understanding these multifaceted influences becomes pivotal in devising comprehensive
strategies to combat the spread of malaria.

Moreover, this chapter endeavors to bridge the gap between theoretical models and real-
world applicability by exploring the potential implications of the SEIRS model with mosquito
vector dependency. Beyond theoretical constructs, the analysis aims to simulate and predict the
impact of various intervention strategies, including vector control measures, anti-malarial drug
distribution, and socio-economic interventions, within the framework of the mathematical
model. By projecting potential outcomes and evaluating the effectiveness of interventions, this
approach seeks to offer actionable insights for policymakers, health organizations, and

researchers striving to mitigate the burden of malaria. This integrated approach, amalgamating
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mathematical rigor with an understanding of ecological, socio-economic and healthcare access

factors aims to pave the way for more targeted and impactful interventions, ultimately steering
the global fight against malaria towards a path of sustained progress and control.

In this chapter, the authors construct a SEIRS model for humans and a SEI model for
mosquitoes, ultimately asserting that the primary defense against such a disease lies within the
human immune system. The subsequent structure of the chapter unfolds as follows: Section 4.2
provides a detailed literature and Section 4.3 furnishes a portrayal of the model. The subsequent
sections, 4.4 and 4.5, undertake the analysis and numerical simulation, respectively. The chapter

concludes with a comprehensive summary and concluding remarks in Section 4.6.

4.2. Literature Review

Various epidemic models have undergone mathematical analysis and have been applied to
specific diseases (cf. Gupta et al., 1994; Hethcote, 2000). Ross (1916) was the first to introduce
the formulation of an initial arithmetical copy for the transference of jungle fever. Since then, a
multitude of models have been devised to examine the intricacies of malaria transmission
dynamics. (cf. Chitnis et al., 2006 & 2012; Chamchod and Britton, 2011; Ruan et al., 2008;
Xiao and Zou, 2013; Li, 2011).

Ngwa and Shu (2000) conducted an examination on a deterministic differential equation
model regarding the prevalence of malaria, considering the fluctuating populations of both
humans and mosquitoes. This avenue of research has seen extensive exploration, with biologists
and mathematicians working collaboratively to gain insights into the primary causes of
epidemic spread. Ngwa (2004) addressed the issue by employing a mathematical model,
utilizing perturbation analysis and determining that the death rate is nonzero, small and
significant.

Chitnis et al., (2006 & 2012) presented a model for infection agents taking into account the
influence of immigration and death rates induced by the disease. Exploring the dynamics of
malaria transference through arithmetical modeling is an extensive and captivating field of
study, where developed models depend on various factors including death rates and
environmental considerations. Despite considerable progress, certain areas still require research,
such as optimizing malaria cure costs, assessing the role of awareness and examining follow-up
cases. Among these areas is the coefficient of the human population, which is dependent on
density and warrants further exploration.

Anderson and May (1991) examined mathematical models of infectious agent transmission

in human groups. Ghosh et al., (2014) introduce an arithmetical model to study the transmission
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of malaria among birds, incorporating alterations in vector behavior. Meanwhile, Forouzannia

and Gumel (2015) developed and qualitatively analyzed a novel age-structured deterministic
copy in sequence to evaluate the effect of anti-malaria medication on jungle fever transmission.
Wang et al., (2016) examined a stage-structured mosquito model to investigate the factors
behind the significant mosquito abundance in 2014 and its implications for disease outbreaks.

The exploration of malaria transmission dynamics through mathematical modeling has been
an engaging area of research (cf. Chaves et al., 2008; Erin et al., 2013). Previous models have
taken into account factors such as density-dependent death rates and environmental variables.
However, these studies have not extensively investigated the influence of the transmission
coefficient on humans, considering the density of mosquitoes.

Mathematical modeling has proven to be a valuable tool for understanding the transmission
dynamics of malaria. It not only enhances our comprehension of the disease’s dissemination and
impact but also aids in devising informed policies to combat malaria (cf. Romero-Leiton and
Ibarguen-Mondragon, 2019; Abioye et al., 2020; Misra et al., 2023). Several notable
arithmetical models, such as the SIR model and its derivatives have been applied to malaria
transference. These models have been consistently extended and adapted by researchers by
incorporating nuanced insights related to malaria dynamics and disease control strategies (cf.
Romero-Leiton and Ibarguen-Mondragon, 2019; Ndii and Adi, 2021; Nwankwo and Daniel,
2019; Noeiaghdam and Micula, 2021; Kobe, 2020; Handari et al., 2019).

Ibrahim et al., (2020) introduced a unique conceptual framework that divides the population
affected by the ailment into two distinct subgroups: those who lack awareness of their infection
and those who have awareness of it. This framework suggests that the rate of expansion for the
campaign aimed at increasing awareness is directly linked to the number of individuals who are
unaware of their infection. Building on this concept, Al Basir et al., (2021) formulate a
comprehensive arithmetical design to investigate jungle fever dynamics, incorporating the
impact of interventions based on awareness. Their framework suggests that the level of
awareness influences disease transmission rates between vectors and humans, as well as
between humans and vectors with control methods capable of elevating this level.

The susceptible population is divided in two groups according to a novel mathematical
framework developed by Ndii and Adi (2021): the informed and the uninformed. According to
this model, which presents a steady awareness rate, some susceptible individuals who are

currently uninformed will eventually become conscious and join the informed group.
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Al Basir and Abraha (2023) put forth a deterministic mathematical framework in order to

scrutinize the intricacies of malaria and assess the efficacy of interventions involving the use of
mosquito nets and insecticides. It is worth mentioning that their framework regards awareness
as a dynamic variable that evolves over time. Finally, Tchoumi et al., (2023) formulated a
mathematical framework that provides insight into the vitals of jungle fever transmission,
considering the susceptibility of hosts and acknowledging the acquisition of partial immunity
after infection.

This comprehensive array of mathematical models contributes significantly to our
understanding of malaria transmission and the potential strategies to control its spread. These
models consider awareness as a pivotal factor in intervention strategies and provide essential

comprehension of the complex dynamics of an illness.

4.3.  Model Description
In this model, we consider two distinct population categories: Human and Vector (mosquito)

population. The overall population size of the human population is represented by N, , and it is
distant divided into four sub-classes: Susceptible human (S, ), Exposed human(E, ), Infected
humans (I,,) and Recovered human (R,).

It’s believed that individuals come into the susceptible class through processes such as birth.
Following a bite from an infected mosquito, a susceptible human may first become exposed and
subsequently may experience infection at varying rates. Infected people recover and join the
recovered class after a set amount of time. They eventually regain their susceptibility and revert
to the susceptible class.

Likewise, the overall vector population is represented by N, and categorized into three
classes: Susceptible mosquito(S,), Exposed mosquito(E,) and Infected mosquito (I,).

Susceptible mosquitoes are added to the population at a rate A,. The mosquito initially

transitions to the exposed class, and subsequently, there is a progression of individuals from the
exposed class to the infected class over time. The malaria transmission diagram is illustrated in

Figure 4.1.
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Figure 4.1: Epidemiological modeling of malaria transmission.

Table 4.1: Explanation of state parameters utilized in the model

Symbols Description

A, Recruitment rate i.e., human population

A, The entry rate of the mosquito population, encompassing newly generated
vectors

A The rate of immigration for the human population

B Transmission rate of probability from susceptible humans to exposed vectors
(mosquitoes)

B, Transmission rate of probability from susceptible humans to infected vectors
(mosquitoes)

s The speed at which vulnerable mosquitoes are likely to spread their infection to
people who are exposed

B, The speed at which virus-carrying mosquitoes are likely to spread their infection
to humans

Yh Rate at which people become sick after being exposed

7, Rate at which a vector becomes infected after being exposed

) The speed at which members of the human population heal completely and
become vulnerable once more

& The pace of recovery for people within the human population

d,(d,) | Mortality rate due to natural causes in the human population (mosquito

population), respectively
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Two distinct scenarios have been considered in formulating the mathematical model. We will

analyze the model in both of the mentioned cases:
Case 1: The transmission probability, denoted asf,, representing the estimate at which
contaminated mosquitoes bite vulnerable humans, is presumed to remain continuous.

Case 2: The likelihood of transmission, denoted as £, , depends on the solidity of the mosquito

inhabitants. It is expressed as g, =b, +b,N, , where b, and b, are constructive

continuous.
4.3.1. Governing Equations

The behavior of the model is elucidated by the subsequent set of divergence
Sh=(A,+A)+R, —(BE, +5,1,)S, —d,S,

Ey =(BE +5,1,)S, —(ry +d))E,

Iy =7nEy (S +d)I,

Ry =&1,—(5+d)R,

Ny =A, +A-d,N, (4.1)
Sy =AM, —(BE, +B,1,)8, —d,S,

E, = (BB, + Bu11)S, = (7, +d,)E,

I\; :7VE _d2|v

\'

N/ =A,—d,N,

\

4.4. Mathematical Analysis
The formulated mathematical model can be examined under two distinct cases:
Case 1: When g, = f3,; 5, is aconstant.

Considering N, =S, + E, +1, + R, and N, =S, + E, + |, the system of equations (4.1)
can be reformulated in the following manner:
Ef =(BE, + Bl )N, —(E, + 1, +R,)) — (¥, +d})E,

Iy =7.E, = (&E+d)I,

Ry =&, —(6+d)R,
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I
N/ =A, +A—d,N, (4.2)

E\; = (ﬂSEh +:B4Ih)(Nv _(Ev + Iv))_(yv +d2)Ev

I\: :7VE _d2 Iv

'

N/ =A,—d,N,

\

The above system’s attractive region is

®, ={(E,, I,, R, N,, E,, I,,N,):0<E, +1,+ R, <N, <N, 0<E,+1,<N, <N}

where N, = lim sup N, = Ald? A and N, = lim sup N, :A—ZZ.

4.4.1. Equilibrium Points and Stability Analysis

Given that, at equilibrium all derivatives become zero,

e, EN=li=Ri=N;=E/=1;=N; =0

then the system of equations (4.2) becomes

(B,E, + B,1, )N, —(E, +1,+R,))—(y, +d,)E, =0

7wE, —(£+d)I, =0

&l —(0+d)R, =0

A +A-d,N, =0 (4.3)

(BB, + Buln )N, —(E, +1,)) = (7, +d,)E, =0

7,E,—d,l, =0

A,—-d,N, =0

Three equilibrium points that hold both physical and biological relevance are as follows:

(i) Equilibrium E; signifies the disease-free state exclusive to the human population and is

denoted by (o, 0,0, Ald—+A, 0,0, o].

1
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I
(i) Equilibrium E, represents the disease-free state for both human & mosquito populations,

expressed as [0, 0, 0, A1—+A 0, 0, &j
d d,

(i) Equilibrium E, designates the endemic equilibrium point and is defined as

hy=vi1 Ty

(’E‘h,i‘h,ﬁh,ﬁ E,.I NV),Where

(ﬂo_'_ﬂévaEth
E, = 5 — , (44)
2 Yy Vn Vn -
ol e b e
'I”hzﬂ/h E, R — S7n En N _AFA (4.5)

d+&" " (d+8)(d +&)" " d ]

(ﬂg ﬂAJ/h jé
E —

, (4.6)
(ﬂa 20 j( ] +(d,47)

== N :%. 4.7)

Theorem 4.4.1: The equilibrium point E, is stable if all latent roots are negative. The
equilibrium E, is stable if p;(i=12,4)>0and p,(p,p,— Ps)> P/ p,, otherwise unstable and
the equilibrium E, is stable if g (i=13,45)>0 and (q,q, —ds)(%,0,9; — 4 —d; —qg/q,) >

05 (9,9, —d3)% + 0,07,

Proof: In accordance with framework (4.2), the overall variational matrix J is

(BB A BN ) = +d) = (BE, +51)  —(BE, +51) (BE, +5.1,)
Vh —d,-¢ 0 0
0 & -d, -6 0
J= 0 0 0 ~d,
Bs(N, = (E, +1,)) BN, =B, (E, +1,) 0 0
0 0 0 0
0 0 0 0
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I
Bo(Ny —(Ey +1,+R)) S (N, — (B + 1, +Ry)) 0
0 0 0
0 0 0
0 0 0
—(BE, + Bu1) = (7, +dy) — (BB + Bi14) (B:Ep + Baly)
7y -d, 0
0 0 —-d,

At the equilibrium E; = (O 0,0,—— d A ,0,0 Oj the jacobian matrix J, is provided as:
1

A+ A A+ A
_(7h +d1) 0 0 0 ﬂo[ ld j ﬂz[ 1d J 0
1 1

7h —(d, +¢) 0 0 0 0

. 0 & —(d,+8) 0 0 0 0
o 0 0 0 —d, 0 0 0
0 0 0 0 —(dy;+7,) 0 0

0 0 0 0 7, —d, 0

0 0 0 0 0 0 —d

The derivation of the Jacobian matrix’s characteristic polynomial:
J-A1|=0
= (d, + 2)(d, + 2)°(d, + 5 + A)(d, + E+ A)(d, +y, +A)(d, +y, +A) =0
Therefore, all of these roots exhibit negativity. Consequently, the equilibrium point E,

deemed stable.

At the equilibrium E, = (O 0,0,—— d A ,0,0, 5 j the Jacobian matrix J, is provided as:
1

2

A+ A A+ A
_(7h +d1) 0 0 0 ﬂo( 1d J ﬂz( 1d j 0
1 1
”r —(d, + &) 0 0 0 0 0
0 & —(d,+8) 0 0 0 0
J, = 0 0 0 —d, 0 0 0
ple ple g 0 4dy) 0 0
d, d,
0 0 0 0 7, —d, 0
0 0 0 0 0 0 —d

The derivation of the Jacobian matrix’s characteristic polynomial:
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J-A1|=0

= (d, + A)(d, + A)(a, + A){ + APp, + A p, + Ap, + p,}=0 (4.8)
where

p,=a,+a,+a, +d,,

p, =a,a; +a,a, +a,a, +(a, +a, +a,)d, — 5, 4NN,

p; =a,a,a, +(a,a, +a,a, +a,a,)d, — B, L,7.N.N, - 5. 5;(a, +d, )N, N, — B, B,7,N,N,,

p, =a,8;,3,d, +(a,a;, +a,a, +a;a,)d, —(B.4,7.d, + B, 8,707, + B0, + B, farv.a, )N N,
and

a=(0d;+9),a,=00,+&),a,=0,+7,),a,=(0d,+7,).

The polynomial provided by equation (4.8) yields three negative roots and the coefficients of a
bi-quadratic equation ensure every root contains a true unfavorable portion. Therefore, the

Routh-Hurwitz conditions, p,(i=12,4)>0 and p,(p,p, — P;) > P, p, are satisfied. In these

circumstances, the equilibrium point E, exhibits local asymptotic stability.

At the equilibrium E, = (€, T, R,, N, E,, T, N, ), the Jacobian matrix J, is provided as:

v v

~(BE, + B1) ~(ry +dy)  —(BE, +B,1,)  —(BE, +51,) (BE, +5,1,)

7 _(dl +§) 0 0
0 £ —(d, +6) 0
J, = 0 0 0 ~d,
ﬂ3(Nv_(Ev+|v)) ﬂ4(Nv_(Ev+|v)) 0 0
0 0 0 0
0 0 0 0
By(N,—(E, + T, +R)) BN, -B,(E, + 1, +R,) 0
0 0 0
0 0 0
0 0 0
_(ﬂSEh+ﬂ4|h)_(7v+d2) _(ﬂSEh+ﬂ4|h) (ﬂaEh+ﬂ4|h)
7y _d2 0
0 0 —-d,
The derivation of the Jacobian matrix’s characteristic polynomial:
J-21|=0
= (d, + A)(d, + ){P + A'q, + 2’q, + 1’9, + Aq, + 9, }=0 (4.9)
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where
g, =a +a,+a,+a,+a, +a, +d,,

q, =((a, +ag)d, +a7,) +(a, +a, +a; +a;)(a, +a; +d,) + (8,8, +a,8; + 3,85 +a,3,
+8,85) + 8,858, 8; — V48s,

q, = (&, +a, +a; +a5)((a, +a)d, +a:7,) + (&,a,8; + &,8,a5) + (a3, + a,a; +a,a;
+a,a; +3,35)(a, +85 +d,) +3,8,8,(d, +a B, +a,b, + B,1,) + 3,8, .8, + rnas
-7as(a, +a, +a,+d,),

q, = (a8, +8,3; +a,a; +,a; +8,3;)((a, +a5)d, +a57,) + (a,a,a; +,8,35)(a, +a; +d,)
+rnéas(a, +as +d,) +a,8,8,(8d, +a. b+ B,r,) + 3,85 (a fd, +a,4d, +a,.a,5
+a By, +3,5r,) - mas(a(a, +ag+d,) +(a, +a5)d, +a.7,)

05 = (,2,8; +a,3,a5)((a, +a5)d, +3,7,) + rpéas((a, +ag)d, +a.7,) + 3,8, 8,(Fad,
+Bay,)+a,8.5(a,8,4d, +a,8,8,7,) - rhas((a, +a5)a,d, +a,aq7,)

and
a,=(d,+0),a,=(d, +&),a,=(d, +7,) 8, =(d, +7,) .8 = (KE, + B,1,) &, = (B,E, + B,1,.),

Y :(Nh _(Eh +1y, +Rh)) 1 8g =(Nv _(Ev + Iv)) :
With two negative roots and coefficients ensuring every root contains a true unfavorable

portion, the Routh-Hurwitz ~ conditions, g, (i=134,5)>0 and (0,9, —95)
(0,9,9, — 97 =02 —a7q,) > 95 (9,0, —0;)> +,0> are met. In these circumstances, the
equilibrium point E,exhibits local asymptotic stability.

Case 2: When g, =b, +bN,; byand b, is a constant.

Since N, =S, +E, + 1, +R, and N, =S, + E, + |, the system of equations (4.1) can be:
Ef = (0, +B,N(N, — (B, + 1, + RDIE, + B, (N, —(E, + 1, + R,)) — (7, +d))E,
Ih =7.En — (S +d)I,

Ry =&l —(6+d)R,
N/ =A, +A-d,N, (4.10)

E\; = (ﬂSEh +:B4Ih)(Nv _(Ev + Iv))_(?/v +dZ)Ev

I\; :7VEV _d2|v
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I
N\i :Az_dsz
The system’s attractive region, as provided by (4.10), is
®, ={(E,, I,,R,, N,, E,, I,,N,):0<E, +1,+R, <N, <N, 0<E, +I, <N, <N}

o . A, +A —
where, N, =!lm sup N, = 1d and N, :!lm sup N, :%.
—w L NS ,

4.4.2. Equilibrium Points and Stability Analysis
Given that, at equilibrium all derivatives become zero,
ie En=li =R =N =E/=1,=N;=0

then the system of equations (4.10) becomes

(by +b,N, )N, —(E, + 1, +R))E, + 5, I, (N, —(E, + 1, +R,))—(», +d,)E, =0
7.E, —(&+d)I, =0

&l —(0+d)R, =0

A, +A—d,N, =0 (4.11)
(BB, + Buln)IN, —(E, +1,)) = (7, +d,)E, =0

r,E, —d,l, =0

A,—d,N, =0

Three equilibrium points that hold both physical and biological relevance are as follows:

(i) When the open to person inhabitants is contaminated, then the sickness free parity only for the

1

human inhabitants is P, = (E; ,o,o,Ald—M,o,o,oj.

(if) When the open to person inhabitants is only contaminated, then the sickness free parity for
o : : A+ A A
both human and mosquito inhabitants is P, = (E,; ,O,O,1d—+,0,0,d—2].
1 2

~ o~ o~ ~ ~ o~

(iii) Endemic equilibrium point isP, = (E,, T, R,, N,, E,, T, N, ), where

v?! Tv!?

80



Chapter 4 Mathematical Analysis of Malaria............SEIRS Model with Mosquito Vector Dependency
I
(bo +b 02 ﬂéyvjév At s
El = 2?2 : (4.12)
(bo+b1/\2+’327/")(1+ Iy Vns }Ev+(dl+7h)
d, d, d+&  (dy+8)(d;+96)
((bo +b1Nv)+ ﬂévaEth
E, = ; 2 ; (4.13)
(b, +bN,) + 27/VJ(1+ (- /h jEV+(d +7,)
( LAY RN NS L
| = 7nEn ’ ﬁh: SnEs ’“‘h=A1+A, (4.14)
d+¢ (d, +&)(d, +6) d,
[ﬂs + fd/h jéh I\Alv
E, - v 1to | (4.15)
47h 7v —
1 E d
(ﬂ3+dl+§](+dl+§J pt(dy+7,)
(AT LY (4.16)
d, d,

Theorem 4.4.2: The equilibrium point B, is stable if all latent roots are negative. The

equilibrium P, is stable if m,(i=12,4)>0 and m,(m;m, —m,)>m’m,,otherwise unstable

and  the  equilibrium P, Is

2

stable if

2 .2 2 2
(8,5,8; —S; =S5 —8;8,) > S5(5,S, —S3)” +5,5;.

s;(1=1345)>0and (s;S,—Ss)

Proof: In accordance with framework (4.2), the overall variational matrix M is

7h
0

M = 0

IB3NV _ﬂs(Ev + Iv)
0
0

_(bo +ble)Ev _ﬁzlv _(7h +dl) _(bo +b1Nv)Ev _ﬂzlv

_(dl +§)
S
0
ﬂ4Nv _ﬁ4(Ev + Iv)
0
0

_(bo +b1Nv)Ev _ﬂZIV

0
_(dl +5)
0

0
0
0
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I
(o, +b,N,)E, +B,1, (b +b,N,)(Ny —(E; + 1.+ R)) B (N, —(Ey+ 1+ Ry)) 0
0 0 0 0
0 0 0 0
—d, 0 0 0
0 — (BB + Bly) = (r, +d,) —(B:En + Bul) (B:En + Baulh)
0 7y —-d, 0
0 0 0 ~d,
_— . , A +A i . L
At the equilibrium point P, =(Eh,0,0,d—,0,0,oj , the variational matrix M, is given by
1
“(hed) 000 b{A”A—E;j ﬁz[A”A—E;j 0
d, d,
a ~d,-¢ 0 0 0 0 0
0 & -0-d, O 0 0 0
M, =
0 0 0 -d, 0 0 0
0 0 0 0 —(BE +d,+7) - BsE; B:E;
0 0 0 0 7, —d, 0
0 0 0 0 0 0 —d,

The derivation of the Jacobian matrix’s characteristic polynomial:
J-A1|=0

= (d; + A)(d, + A)(d; + 5+ A)(d, + S+ A)(d, + 7, + DI(BE; +7, +dy) +A)(d, +4)
+ B:Enr,1=0
= (d, + A)(d, + A)(d, + 5+ A)(d, + E+ A)(d, + 7, + )[A +{(B,E| + 7y, +d,)+d,I1
+(B:Ef +y, +d,)d, + BBy, ]1=0
Clearly, the negative nature of the five roots in the aforementioned equation is evident and the

remaining two roots are derived through quadratic equations.

MEA g, %} the Jacobian matrix M, is provided as:

1 2

At the equilibrium P, =(Er’], 0,0,

G, +d) 0 0 0 [pupieMtA g pIMEA gl g
d, \ d; d;

A —(d, +&) 0 0 0 0 0

0 & —(d,+8) O 0 0 0

M, = 0 0 0 —d, 0 0 0
AZ AZ ! ' !

'BSd_ :B4d_ 0 0 —(B:E, +y, +d3) - BsEy BsE,

2 2
0 0 0 0 7 ~d, 0
0 0 0 0 0 0 ~d,
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I
The derivation of the Jacobian matrix’s characteristic polynomial:
|J —/1I| =0
= (d, + A)(d, + A)(a, + DA + Am, +22m, + am, +m, }=0 (4.17)

where,

m=a+a,+a;+a,+d,,

m, =a,a, +a,a, +a,a, +a,d, +a,d, +a,d, +(a, +a, +a,)d, +,L;E;
_/Bst(bo +b1Nv)(Nh - Er;)l

m; = a,a,3, + (3,3, +a,a, +a;3,)d, + (a, +a;) By, E| + BN, (a, +d,)(b, + BN, )(N, — E/)
— BBy N, (N, —Ep) = B, 7N, (b + BN, )(N, — Ep),

m4 = azasa4d2 +a2a3,83;/VE; +a2dzﬁst(bo +ble)(Nh - Er:) +ﬁ2ﬂ37va2Nv(Nh - Er:)
= Brnd,N, (b +b N (N, — E)) - By N, (N, —Ep),

and

Q= (d1 +5)1 a, :(dl +§)’ a; = (dl +7/h)! a, :(ﬁsEr: + 7y +d2)-

The polynomial provided by equation (4.17) yields three negative roots and the coefficients of a

bi-quadratic equation ensure every root contains a true unfavorable portion. Therefore, the

Routh-Hurwitz conditions, m.(i=12,4) >0 and m,(mm,—-m,)>m’m, are satisfied. In these

circumstances, the equilibrium point P, exhibits local asymptotic stability.

~ o~

At the equilibrium P, =(Eh, I, ﬁh, Nh, E,. I, NV), the Jacobian matrix M, is provided as:

~ o~ ~

~ (b +BNE, ~ B, — (7, +d) — (B +BN)E, = B,1, — (b, +BN,)E, — 1,

Vh —(d, +<) 0
0 E —(d, +9)
M, = 0 0 0
B:(N, —(E, +1,)) Bi(N, —(E, +1,)) 0
0 0 0
0 0 0
(B +BN)E, + B0, (0 +BN)(N, = (B, +1,+R)) B (N, —(E,+ 1,+R.) 0
0 0 0 0
0 0 0 0
—d, 0 0 0
0 _(ﬂséh+ﬂ4rh)_(7v+d2) _(ﬁ3Eh+ﬁ4rh) (ﬂ3Eh+ﬂ4rh)
0 Yy -d, 0
0 0 0 -d,

The derivation of the Jacobian matrix’s characteristic polynomial:
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J-A1|=0

= (d, + A)(d, + {2 + A's, + s, + A’s, + A5, +5.3=0 (4.18)

where

s, =a, +a,+a;+a, +a, +a, +d,,

s, =((a, +a,)d, +ag7,) +(a, +a, +a; +a;)(a, +a; +d,) +(a,a, +a,a, +a,a; +a,3,
+8,85) + 2,353, 5; — 74,35,

s, =(a, +a, +a; +a;)((a, +34)d, +a57,) +(q,a,a; +a,a,a;) + (,@, + 3, +a,3,
+3,3; +3,35)(a, +a +d,) +2,8,5,(a,d, +a,a, +3,3, + B,7,) + 8,853, , + 7,525
—7nas(ay +a, +a5 +d,),

s, =(a,a, +a,a; +a,a; +a,a, +3,3;)((a, +a,)d, +a,7,) +(,2,8; +2,2,3;)(a, +a, +d,)
+7,685(a, +a5 +d,) +a,8,5,(a,d, +a,a, + B,7,) + 3,3, 55(2,8,d, +a,8,d, +a,a,3,
+a By, ta,Br,) - ras(a(a, +a; +d,) +(a, +a5)d, +agy,),

ss = (q,a,a; +a,a,a;)((a, +a,)d, +agy,) +7,485((a, +a,)d, +a,7,) +a,3,8,(a,a,d,

+ frayy,) +23,8,55(,8,8,d, +a,a,5,7,) — rnas (8, +a5)a,d, +a,a.7,),

and

a, =(d, +9)a, =(d, +&).a; =(d, +7,).a, =(d, +7,). a5 = (b, +b,N,)E, + ,1,,

a; = (B:E, + Bl ) a; = (N, — (B + 1, +R)), a5 = (N, —(E, +1,)),a, =b, +b,N,.

With two negative roots and coefficients ensuring every root contains a true unfavorable

portion, the Routh-Hurwitz conditions, s (1=1345)>0 and
(84S, —S5)(S,5,8; —S2 —s5 —s’s,) > s.(s,S,—S;)>+5,5- are met. In these circumstances, the

equilibrium point P, exhibits local asymptotic stability.

4.5. Numerical Simulation

Numerical simulations supporting the analytical results stated in Section 4.4 are presented in
this section. For this purpose, the Runge-Kutta fourth-order method is used to perform the
sensitivity analysis. The data set for case 1 was as follows:

A, =0.00000029, g, =0.00000021, g, =0.00000015, ,, =0.00000009, d,=0.00012,
d, =0.0085, A,=0.00012, A,=0.0085, 6=0.00146, &£=0.0085, y, =0.012, y, =0.015,
A =12 and initial values are:

E, =500, I, =4181.8, R, =209.2, N, =20000, E, =14000, I, =30000, N, =963400

which draw inspiration from Hazarika and Bhattacharjee (2011) as well as Ghosh et al., (2005).
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In a similar vein, the parameter values for case 2 are determined as follows:

b, = 0.00012, b, =0.00000006, 4, = 0.00000021, g, = 0.000024, £, =000000009,
d, =0.00012, d, =0.0085, A, =0.00012, A, =0.00085, ¢ =0.000146, & =0.012,
7, =0.012, », =0.015, A =10 and initial values are:

E, =50, I, =101.5, R, =10.9, N, =402.8, E, =300, |, =602.3, N, =1188.8

150 T T T 7000

——y, = 0.012 " [ ===z =0.0085
—, = 0.008 6000 m— =0.0135
£=0.0185
y,_=0.004 1
% 100 h é 5000
§ E 4000
I T
f 3
,8. g 3000
= = 2000t
\ 1000+
0 r r O N N . A
0 200 400 600 800 1000 0 200 400 600 800 1000
Time t Time t
Figure 4.2: Variant in the proportion of I, Figure 4.3: Variant in the proportion of 1,
for different progression rates 7, . for different recovery rates ¢ .

8000

—A=9

0 200 400 600 800 1000
Time t

Figure 4.4: Variant in the proportion of I, for different immigration constant A .
The impact of the progression rate, denoted as y,, on the infected human population 1, is
illustrated in Figure 4.2. Firstly, when y, is lower, the corresponding infected human
inhabitants is also lower. However, with the passage of time the influence of y, on I, under
goes a reversal. Figure 4.3 demonstrates that an increase in the recovery rate £ leads to a
decrease in 1, .

Figure 4.4 illustrates the influence of the immigration constant A on the contaminated human

inhabitants I, . As A increases, |, also shows an increase. Additionally, I, rises with a higher
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rate of immunity loss among recovered humans, represented by the parameter ¢ as depicted in

Figure 4.5.

7000 . T T 8000
=5 = 0.00085 — [31 = 0.00000025
60001- 5 = 0.00135 | —_n =
5 = 0.00185 7000 [31 0.0000008

» 5000 =— 5 = 0.00235 9 f, = 0.0000004
8 $ 6000+
E 4000 E
S < 5000+
2 3000 2
g g 4000
= 2000} =

1000+ 3000¢

0 : ; i ; 2000 : : : :
0 200 400 600 800 1000 0 100 200 300 400 500
Time t Time t

Figure 4.5: Variant in the proportion of I, Figure 4.6: Variant in the proportion of I,
for different immunity loss & . for different interaction coefficient £, .

Figure 4.6 displays the plot of I, against different values of g, indicating the degree to which
exposed mosquitoes and susceptible humans interact. The trend indicates that an augmentation

in B, results in an increase in |, . Similarly, in Figure 4.7, 1, is graphed against various values
of g,, indicating the degree to which infected mosquitoes and susceptible humans interact.

Notably, g, follows a comparable trend to S, concerning its impacton I, .

9000
— [32 = 0.00000025

— [32 = 0.0000008
B2 = 0.0000004

8000

70001

Infected Humans

0 100 200 300 400 500
Time t

Figure 4.7: Variant in the proportion of |, for different interaction coefficient 3,.

The Figure 4.8 illustrates the dynamic changes in infection and immunity over time. Initially,
the infected human population undergoes an increase, followed by a gradual decrease as time
progresses. This pattern is attributed to the non-linear terms incorporated into the model.
Conversely, the proportion of recovered humans shows an upward trend. This is attributed to

the significant raise in the recovery rate when medicinal care is administered to infected

individuals.
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15000
—_— (1)

10000 —R (1)
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5000+ 1
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Figure 4.8: Variant in the infective and recovered human population.

The exploration of case 2, wherein g, is defined as g, =b, +b,N,, is depicted in Figures 4.9 to

4.12. Figure 4.9 demonstrates that a reduction in y, leads to an augmentation in 1, .

500
—, = 0.025
400+ —_—, = 0.015
o ¥, = 0.005
& 300r
1S
T
> 200
Q
5
€ 100
0 L
_100 r r r r r
0 500 1000 1500 2000 2500 3000
Time t

Figure 4.9: Variant in the proportion of I,
for different progression rate y, .

400 T
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300r 1 B
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@
g 200
I
=]
]
S 100
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5
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-100 r r r r r
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Figure 4.11: Variant in the proportion of |,
for different values b,.
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Figure 4.10: Variant in the proportion of

I, for different values b, .
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Figure 4.12: Variant in the proportion of

I, for different values N, .
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Figures 4.10 and 4.11 portray the changes in I, concerning b, and b,. These figures illustrate

that the infected human population rises with an increase in both b, and b,. The relationship is
further presented in Figure 4.12 for two different values of Nv(t) (888.8, 1188.8). It is observed

that when N, is high, |, is also high, which is intuitively evident.

4.6. Summary and Concluding Remarks

The dynamics of a malaria epidemic, accounting for human beings and vector populations,
were simulated using the SEIRS model that we introduced in this chapter. Our model included
an exposed class for both human and mosquito populations, allowing us to gain a more
comprehensive understanding of the disease’s dynamics.

One of the critical determinants of malaria spread is the transmission coefficient between the
human population and infected mosquitoes. Through our numerical analysis, we have uncovered
significant insights. We observed that as the immigration constant A and the human population
with impunity dropping increase, the number of contaminated persons also rises. These findings
are vividly depicted in Figures 4.4 and 4.5, emphasizing the urgency of addressing these factors
in malaria control efforts.

In conclusion, our study underscores the essential need for effective control strategies
against the malaria vector, which plays a pivotal role in disease outbreaks. Implementing
measures such as a robust drainage system and the strategic use of insecticides can substantially
contribute to the diminution and control of the mosquito population, thereby curbing the
transmission of malaria. These strategies are vital steps towards minimizing the effect of this

devastating ailment on human inhabitants.
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Chapter 5: The Study of Dengue Transmission Dynamics through
the SEIR Model

5.1. Introduction

Dengue, a viral disease transmitted primarily by mosquitoes, stands as a significant global
public health concern. This pervasive illness affects over 50% of the global population and
poses a substantial threat, potentially leading to severe symptoms and, in rare instances,
fatalities. Understanding the complex dynamics of dengue transmission becomes imperative in
combating its spread and devising effective control measures. Mathematical models emerge as
indispensable tools in unraveling the intricate transmission patterns of dengue, serving as the
cornerstone for devising comprehensive strategies aimed at disease containment and
prevention. Within the landscape of mathematical modeling, the SEIR (Susceptible-Exposed-
Infectious-Recovered) model stands as a pivotal framework for exploring the transmission
dynamics of dengue. This chapter extensively delves into the intricacies of the SEIR model,
specifically tailored to dissect the transmission patterns of dengue. Emphasizing the
multifaceted nature of disease propagation, this model incorporates a logistic function,
shedding light on the growth and stability of mosquito populations-an essential factor in the
dissemination of the disease. Moreover, the computation of the fundamental reproduction
number within this model serves as a critical indicator, elucidating the potential for disease
spread within populations.

Beyond the immediate quantification of disease spread, this analysis extends its purview to
evaluate the stability of both endemic and disease-free equilibria, offering a glimpse into the
long-term behavior of the dengue transmission system. By unraveling the intricate interplay
between susceptible, exposed, infectious and recovered individuals within populations, this
examination aims to provide not only a snapshot of disease transmission but also valuable
insights into the underlying dynamics dictating the ebb and flow of dengue spread.

The significance of these findings lies in their potential to inform and guide the formulation
of effective strategies aimed at controlling and preventing the spread of dengue. By
synthesizing mathematical rigor with epidemiological insights, this chapter endeavors to offer
actionable perspectives that can be instrumental in guiding policymakers, healthcare
practitioners, and public health organizations towards implementing targeted interventions and
surveillance measures. Ultimately, the overarching goal remains the mitigation of dengue’s
burden on global health and the enhancement of strategies to protect vulnerable communities

from the perils of this viral disease.

89



Chapter 5 The Study of Dengue Transmission Dynamics through the SEIR Model

In this chapter, we introduce a mathematical model to examine the transmission dynamics

of dengue fever. The chapter is structured as follows: Section 5.2 provides a detailed literature
and Section 5.3 outlines the model description, system equations, and fundamental properties.
Section 5.4 conducts stability analysis, while Section 5.5 presents numerical results to support

our model. In Section 5.6, we summarize key findings and highlight future research directions.

5.2. Literature Review

A substantial body of work in disease transmission modeling has yielded valuable insights
into various aspects of disease dynamics and the influence of climate factors. Notable among
these contributions are the works of J. P. LaSalle (1976), whose comprehensive exploration of
stability analysis for dynamical systems serves as a fundamental reference for researchers and
practitioners. Singh et al., (2019) present an arithmetical framework that embraces the
influence of the mosquito inhabitants in the transmission of malaria, contributing to a greater
insight into jungle fever vitals and the effectiveness of vector control strategies. Similarly,
Singh et al., (2016) put forward an outbreak representation that examined the transference vital
of HIV/AIDS, incorporating various latent stages. The study specifically concentrated on
assessing the consequences of treatment, thereby making a valuable contribution to our
comprehension of the influence of treatment interventions on the dissemination of the disease.
Additionally, Van den Driessche and Watmough (2002) delved into the implications of
reproduction numbers for disease transmission models, examining sub-threshold endemic
equilibria and offering insights into the stability of endemic & disease-free states within
compartmental models.

Building upon this substantial body of work in disease transmission modeling, several
researchers have furthered our understanding of the complex interplay between disease
dynamics and climate factors. Bal and Sodoudi (2020), in their study focused on dengue
occurrences in Kolkata, India and skillfully integrated climate variables into their model,
enabling an enhanced grasp of the transmission dynamics of dengue and thus enhancing our
knowledge of the intricate relationship between climate and disease spread. In a similar vein,
Baylis (2017) investigated the possible effects of weather change on various diseases spread by
vectors, emphasizing the critical need to account for climate change effects when assessing the
risks and emergence of infectious diseases. Benedum et al., (2018) delved into the statistical
modeling of rainfall’s effect on dengue transmission in Singapore. Their in-depth analysis of
the relationship between rainfall patterns and dengue transmission provided critical insights

into the role of environmental variables play in this disease’s epidemiology.
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In addition, Bhatt et al., (2013) conducted a comprehensive analysis of the worldwide

dispersal and load of dengue fever, offering a comprehensive overview of the geographic
distribution, incidence and public health impact of dengue, thereby contributing to our
understanding of the global epidemiology of the disease. Moreover, Butterworth et al., (2017)
investigated the potential implications of varying atmospheric conditions on the transference of
dandy fever in the southeastern United States, projecting future changes in transmission
dynamics through climate modeling. This work illuminated the vulnerability of the region to
climate-driven shifts in disease risk. In a similar vein, Caldwell et al., (2021) investigated the
intricate interactions between two continent’s worth of mosquito-borne disease dynamics and
climate. Their comprehensive analysis of climate variables aimed to unravel the geographic and
temporal variations in disease transmission, underscoring the crucial role of climate in
influencing disease patterns. Davis et al., (2021) developed a topical index for assessing
favorable circumstances, seeking to predict how the dengue virus may adapt to changing
climatic conditions. Their innovative modeling approach incorporated climate variables to
assess potential changes in vector-borne disease transmission, providing crucial insights into
the future implications of weather change on dengue dynamics. Moreover, Ebi and Nealon
(2016) conducted a comprehensive review to examine the multifaceted effect of weather swaps
on dandy fever. Their study explored the intricate interactions between climate factors and
dengue transmission, underscoring the necessity of considering climate change effects when
developing strategies for disease prevention and control.

Moreover, Gutierrez et al., (2022) focused their investigation on meteorological indicators
associated with dengue epidemics in non-endemic Northwest Argentina. Their study delved
into the intricate relationship between meteorological factors and dengue outbreaks, providing
valuable insights into the role of weather conditions in dandy fever transference dynamics
within a non-endemic region. Huber et al., (2018) undertook an exploration of the impact of
periodic weather condition disparity on the suitability of climate for the transference vital of
Chikungunya, Zika, & Dengue fever. The study underscored the paramount importance of
temperature as a key factor in determining the appropriateness of the transmission of diseases
spread by vectors. Similarly, Kakarla et al., (2020) focused on the dengue condition in India
and created a model that could be used to determine appropriateness and potential for
transmission under both the existing and anticipated scenarios of climate change. Their
research yielded priceless insights into how weather change can influence the complex

dynamics of dengue transmission in India. In addition, Liu-Helmersson et al., (2016) engaged
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in the critical task of projecting dengue transmission in Europe under climate change situations,

bringing to the forefront the potential future risks of dengue transmission in Europe, driven by
changing climatic conditions and the expansion of Aedes vectors. Marino et al., (2008)
concentrated mostly on sensitivity analysis and global uncertainty in systems biology, their
methodology although not directly related to dengue offers a valuable approach to
understanding and quantifying uncertainties within dengue transmission models. Furthermore
using mechanistic models, Mordecai et al., (2017) investigated the consequence of the Kelvin
scale on the increase of Chikungunya, Zika, & Dengue fever. Their research deepened our
understanding of the association between climate and illness by offering profound insights into
the complex interactions between temperature, vector dynamics, and disease transmission.
Morin et al., (2013) took an in-depth look at the evidence and implications of climate on
dengue transmission, providing a complete analysis of the existing literature on the intricate
relationship among weather and dengue and highlighting the pivotal role of climate factors in
influencing disease transmission dynamics. Furthermore, Ngonghala et al., (2021) explored the
impacts of temperature changes on zika dynamics and control, shedding light on the
significance of considering temperature variations when assessing the effectiveness of control
strategies for zika and other vector-borne diseases. Collectively, the aforementioned studies
have significantly contributed to the advancement of our understanding of the complex
mechanisms of disease transmission within the framework of climate change.

Continuing our exploration of the intricate connection among climate and disease
transmission, Nuraini et al., (2021) introduced a dengue model based on climate in Indonesia,
Semarang, focusing on predicting and analyzing dengue transmission dynamics using climate
data. Their findings provided critical insights into the connection between climate variables and
dengue occurrences in the study area, contributing to our understanding and prediction of
dengue outbreaks in Indonesia. In a broader context, Okais et al., (2010) discussed the
methodology of sensitivity analysis for modeling infectious diseases, underscoring the
importance of sensitivity analysis in evaluating the robustness and reliability of disease models.
This work presented methods and approaches valuable for understanding and quantifying
uncertainties in dengue transmission models. Similarly, Okuneye and Gumel (2017) explored a
model for malaria transmission dynamics that considered temperature and rainfall
dependencies. Their study provided valuable insights into the mathematical modeling of
temperature and rainfall effects on disease transmission, contributing to our understanding of

climate-driven dynamics in vector-borne diseases, including dengue. The zika virus outbreak in
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I
Brazil was examined by Sadeghieh et al., (2021) in light of both the present and the future

environment, offering insights into how the dynamics of disease transmission are contaminated
by climate crises. Their research contributes to the expansion of our grip regarding the possible
consequences of weather pattern variation on the dissemination and propagation of illnesses
facilitated by vectors, such as dengue. Wang et al., (2022) explore the ramifications of severe
meteorological phenomena on the occurrence of dengue fever in four nations of the Asian
continent, providing valuable perspectives on the association between extraordinary
atmospheric events and the prevalence of dengue infection. Williams et al., (2016) provided
predictions indicating both heightened and reduced occurrences of dengue under diverse
weather transformation scenarios. Finally, Xu et al., (2020) projected future dengue under
climate change scenarios, addressing existing knowledge and uncertainties regarding the effect
of weather transformation on dengue dynamics. This literature review highlights various
studies contributions, covering stability analysis, disease spread models, co-infection dynamics,
environmental factors, climate change impacts and mathematical modeling. Collectively, these
studies offer a thorough comprehension of the intricate interactions between climate, vectors,
and disease dynamics in dengue transmission. Further research is crucial to address remaining
uncertainties, enhance modeling approaches, and create efficient plans for controlling and

preventing dengue.

5.3. Model Description

In the proposed work, it is going to be analyzed the population dynamics for the spread of
dengue disease using the SEIR model. The overall population is categorized into two distinct
groups: the human population and the vector population. The total human population is

represented by N, (t) and is further subdivided into four classes: susceptible humans (S, ),
exposed humans(E, ), infected humans(l,) and recovered humans(R,). Also, the overall
vector population at time t is represented by Nv(t) and subdivided into three classes, namely,
the susceptible vector (S, ), exposed vector (E, ) and infected vector (I, ).

In this model, we assume that individuals enter the susceptible human class through
processes like birth. Upon being bitten by an infected vector, a susceptible human undergoes
the stages of exposure and subsequent infection at variable rates. Recovered individuals emerge

from the infected class after a specified duration.
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Similarly, susceptible vectors are introduced into the population at a certain rate. The vector

initially shifts to the exposed class, and over time, individuals progress from the exposed class

to the infected class.

Susceptible human populations are recruited at a rate(/l—%jNh , Where A is the birth

rate, y is the growth rate and k is the carrying capacity of the human population. Susceptible

humans get the virus from an infected vector following an effective constant at the rate
bA 1S,

h

. It is likely that the dengue virus will infect humans through its vector population,

represented by number g, .

bﬂZIhSV

h

Susceptible mosquitoes recruited at rate A and become infectious at rate after

being contacted by infected humans. The likelihood that the dengue virus will spread through

humans into the mosquito population is shown by g,. & represents a development rate from
exposed class E, to contaminated class 1, and &, represents a development rate from exposed
class E,to contaminated class 1,. The improvement rate for the human population is &, . u,

denotes the inherent death estimate within the person inhabitants and ., represents the inherent

death estimate within the vector population. Figure 5.1 illustrates the transmission diagram for

the dengue fever model.

Figure 5.1: Transmission dynamic diagram.
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5.3.1. Governing Equations

The model’s governing differential equations are formulated by taking into account the relevant
inflow and outflow rates for each compartment.

(1) Human population

' 7Nh) (bﬁllv ]
S :[i— N, —| —+u, |S
h K h N, h [2h

, _bpI,
E, = ﬁl Sy — (&, +u4,) Ey (5.1)
h

Iy =& By = (6, + 1) 1,
Ry =6 ln — 14 Ry

(I1)Vector population

S/ = A—[,uv +bﬁ|—2'hJsv

h

E\i :bﬂ—ZIth _(é:v +/uv)Ev (52)
Nh
I\i :éva_:uvlv

with initial conditions;
S,(t)>0,E,(t)>0,1,(t)>0,R,(t)>0,S,(t)>0,E,(t)>0,1,(t)>0.
Therefore the total human population and vector population is given by
N,=S,+E, +1,+R, =R, =N, -5, —-E, -1, and

N,=S,+E, +1, =A:>SV =A—EV—IV.
Hy Hy
The system of equations (5.1) and (5.2) can be simplified by letting
s, =S,N;*,e, =E,N,*,i, =1, N *,r, =R, N,*,s, =S, N * e =E N ‘and

h v v 1Yy

i, =1,N;% (5.3)

Differentiating the above system of equations (5.3), w.r.t. time

ds, 1 (dS, dN, N, ] N,
e A it R =A-h_nbBs.i, —y|1-—" |s, — 1,
dt Nh( dt Sh at j K Bisil, — 7 K ) HnSh
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|
de, 1 (dE, dN, . N,
=t _e —"i=nbgs.i, —(u, +&)e, -y 1-——— e
dt N\ dt Tt ) Bisul, — (e, + &1 )8y 7( K )
di, 1 (dl, . dN, . N, ).
—A=—]—l- =&e, —(u, +o), —y|1——— i
at N, (dt h gt ] Snen — (uy + S, 7/( K )"
dr, 1 (dR, thj : [ hj
— =— —-T =00, — .1, —7| 1-——1r,
dt N, dt h gt nh — Halh =7 h
ds 1(dS dN )
L= — | —Y—s —Y|=pu, —bp,s,i, — 1S
dt NV dt % dt j Hy ﬂZ v'h HySy
de 1 (dE dN .
L=——| —Y—e —X|=bg,s,i —(u, +&)e
dt Nv(dt thj Pasidn = (aty + &)y
div_i dl"—i dN, —fe —
dt N, \{dt "V dt T A
Hence, the simplified system of equations becomes
ds, :
E:ﬂ’_ya_nbﬂlshlv_y(l_a)sh_:uhsh
de, .
— - =nbBsyi, — (u, +&,)ey, _7(1_a)eh
di, . .
at = &8, — (1, + ), _7(1_a)|h
dr, :
ot Sy — u, ¥, —y(L—a)r, (5.4)
ds, .
dt =H, _bﬁ2sv|h — H,S,
de, .
d = bﬁZSvlh _(/uv +§v)ev
t
di :
L=Ce, —ui
dt é:v Vv ILlV \
where, o = —1
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5.3.2. Basic Properties
In this portion, we explore essential principles that are pivotal for the subsequent

mathematical examination of the provided model.

5.3.2.1. Invariant Region

Considering the replica tracking of swap in the person inhabitants, we assume all variables
are changeable and constructive for t >0. Thus, the structure of calculations (5.4) is analyzed
within a biologically relevant and feasible region denoted as €2. The following lemma outlines

the feasible region for the system (5.4).

Lemma 5.3.1: The solution of the simplified model structure (5.4) is contained in the region
Q=0,uUQ, cR xR,

Proof: To demonstrate that in a proper subset of Qc R! xR*

+ 1

all possible solutions are
uniformly bounded. Splitting the system into a human component n, and a vector component
n,suchthat n,=s, +e, +i,+r,=1and n,=s,+e, +i, =1 (5.5)

Consider any solution{sh,eh,ih,rh} in ®? with non negative initial conditions. By applying

Birkhoff and Rota’s theorem (1989) to differential inequalities, it can be inferred that

im, S, (t)<1 (5.6)

t—oo

It is also similar for the solution of the vector population. {s,,e,,i, } € %° that

im, S, (t)<1 (5.7)

t—owo

From the system of equation (4), we have:
n,=s,+e,+i,+r,,n =0

Integrating, we get = n, =k,, where k;, constant. But, from n, =s, +e, +i, +r, =1, it
follows that k, =1.

Hence; Q, = {(s,.e,.iy. 1, ) e R* &5, +e, +i, +1, =1}.
Similarly: n) =s/ +e/ +1i,, n =0.
Integrating, we get = n, =k, . Also, from n, =s, +e, +i, =1, it follows that k, =1.

Hence; Q, = {(s,.e,.i,)e R* :s, +e, +i, =1}.

As a result, we can affirm that the region 2 remains positively invariant, confirming that
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the model is well-defined and holds biological significance. Consequently, we can focus on the

dynamics produced by the simplified model (5.4) within the Q region.

5.3.2.2. Positivity of Solutions

Lemma 5.3.2: With the initial conditions proposed in the model to lie in Q, where
Q={s,.e,.i,.1,.5,.8,.i,)e R :s, 20,e, >0,i, 20,1, >0,s, >0,e, >0,i, >0}.

Then the solution set {s, (t).e, (t),i, (t)r, (t).s, (t).e, ()i, (t)}of the simplified model system (4)
is positive for all time t > 0.

Proof: By using the simplified model structure (5.4), from the first equation we have

ds .

d—thzﬁ,—;/a—nbﬂlshlv—;/(l—a)sh — HnSp
=A—ya—nbps i, — s, —yos, — u,8,
> —(y + 14y ),

Integration with initial condition, we have
t=0,s(0) =s,
s, (t)>s, (0)e ) >0

The second equation of the simplified model system (5.4), we have

de :
d_th =nbAis,i, — (uy +&,)e, —r(L-ale,

=nbpBs,i, — 1,8, — &8, — 18, — yo’,

2_(7+ﬂh "“:Zh)eh

Integrating with initial condition, we have
t=0e(0)=¢g,
e, (t)>e,(0) 4k >0

Similarly, the remaining equations of the simplified system (5.4) are also positive V t >0.

Thus if we consider the third equation

di ) .
d_th = &8, — (1, + )i, _7(1_0‘)|h
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= &8y — Myl — Oyl — Ny, —ady
_(7+ﬂh +§h)ih

The integration will gives i, (t)> i, (0)e )" > 0.

Now we consider the fourth equation

dr,

=0, r—yr.+yar,
dt hh —pty =7y Tyl

— (y+ ),

The integration will gives r, (t)>r, (0} )" >

Also

ds,
dt

=H, _bﬂZSvlh M,S, = —H,S,

The integration will gives s, (t)>s,(0)e ™' >0.

and

de,
dt

bﬁZSvlh (:uv + év)ev 2 —(,le + é:v)ev

The integration will gives e, (t)>e, (0} " >0,

Lastly;
di,
dt

=&.6, — = —pu i,

The integration will gives i, (t)>i,(0) ™ >0.

Therefore the solution set {s,(t).e,(t).i,(t).r,(t).s,{)e,(t)i, ()} of the simplified model

system (5.4) is positive for all time t > 0.

5.4. Analysis of the Model
This segment is dedicated to computing the symmetry states, particularly the disease-free
equilibrium (DFE) and the endemic equilibrium (EE). Additionally, we conduct a firmness

examination by calculating the fundamental reproduction number.
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5.4.1. Disease Free Equilibrium (DFE) and Basic Reproduction Number
The simplified system of equation (5.4) has a disease free equilibrium given by

E, =(s¢,e2,i¢,r°,s°,e’,i¢)=(1,0,0,0,10,0)

vIFvity

The assessment of the direct firmness of the ailment-free symmetry state relies on the
procreation figure, following the methodology outlined in Anderson and May (1988). To delve
into the regional firmness of this symmetry, we employ the next-generation concept, as
elucidated by Alexander et al., (2005) and Mushayabasa et al., (2011). To facilitate this, we
introduce matrices F~ and V", designed to introduction recently developed infections and the

transition of persons out of contaminated sections. The derivations proceed as follows:

nbgs, i, 7(1_a)eh +(&n + 1y )8y
. e . 1-ai, +(0, + )i
£ Sh n and V= 7( )h (0, + )i,
bﬁzsvlh (é:v +1uv)ev
&8, A,

Once the partial derivatives of F~ and V™ at E, are calculated, the corresponding matrices are

0 0 0 nbg
& 0 0 0

"=lo bs, o o |
0 0 & O
7(1_a)+(§h + 4y) 0 0 0
V- 0 yd—a)+ (5, +u,) 0 0
0 0 (& +m,) O
0 0 0 i,

Consider the following matrix

0 0 0 nb A,
7(1_a)+(§h + 4t,)
o 0 0 0
Fv—l — 7(1_a)+(§h +:uh)
0 bi 0 0
(& + 1)
0 0 (’E—" 0
H,
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I
Thus the reproduction number R, , is obtained as
n J nb*&, &5, A, | 5.9)
’ ((1_0‘)7/"‘ (0 + /Uh))((l_a)7+ (S + ﬂh))(fv + 4, ) K,

5.4.2. Local Stability of Disease-Free Equilibrium

In this segment, we consider the local stability of the DFE. They are presented in Theorem
5.4.1.

Theorem 5.4.1: The local asymptotic stability of the disease-free equilibrium E, in the system
(5.4) is established when R, <1, and it becomes unstable otherwise.

Proof: The Jacobian matrix of the model system (5.4) at E, is given by

—y(l-a)-p, 0 0 0 0 0 -nbg,
0 -7 (-a)= (5 +m) 0 0 0 0 nbj,
0 Sh —y(A-a)-(6,+ m) 0 0 0 0
J(Ey) = 0 0 Oy -rl-a)-p O 0 0
0 0 -bp, 0 -, 0 0
0 0 hg, 0 0 —(&+u) O
0 0 0 0 0 ¢, — 1,

Trace [J(E,)]=—-(21, +a, +a,+a,+a, +a;) <0
where, a =—[y(1-a)+ ], &, =-{yd-a)+(u +&)] a; =-{rd—a)+(u +6,)],
a4 = —[;/(l—a) +/uh]1 and a5 :_(:uv +§v) :

) (rA—a)+ (u, + &)+ ANyA—a) + (uy, +6,) + )
Det[J(E)] = (- y(l—a) — u, = A1) (~ 11, — A , :
D)) = (- rA-a) = = A) (- ){((ﬂv+§v)+/1)(ﬂv+/1)—nb B,

For Det[J(E,)] > 0,

= [(@-a) + (u, + &)+ ANr@=a)+ (uy +5,)+ AN, +E) + AN, +2)-1b2 B BEE, >0,

— nbzghévﬂlﬂZ <1
(r@—a) + (&, + 1) +ANrd—a) + (O, + 1) + ANE, + 1) + ANA+p,)

=>RI<1=R, <1

This shows that the disease free equilibrium point E, is locally asymptotically stable if R, <1,

otherwise unstable.
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5.4.3. Global Stability of Disease-Free Equilibrium

In this segment, we assess worldwide firmness by applying a comparison theorem outlined in

Lakshmikantham et al., (1989) and Mushayabasa et al., (2011).

Theorem 5.4.2: The global asymptotic stability of the ailment-free symmetry E, in the order

(5.4) is established when R, <1, and it becomes unsteady or else.

Proof: The behavior of the varying signifying the contaminated part in the order (5.4) can be

stated as follows:

de,
dt
di,
E :(F—V Iy _E Iy
de, e, e,
dt i i,
di,
dt

where

de,

dt
di, _(ﬂh+§h)_7(1_a)+nbﬂ1 €h

dt _(:uh+5h)_7/(1_a)+'§h _E Iy
de, ~(u,+&,)+bp, e
dt é:v —H, iv
di,
dt

Thus

de,
dt
di, €h
dt | (Fov) "
de e,
dt i

dt

(5.9)

(5.10)
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Given that every eigenvalue of the matrix F -V possesses a negative real component, the

stability of the linearized differential inequality (5.10) is ensured when R, is less than 1.
Therefore (e, i,,€,,i,)—(0,0,0,0) as t—o. Substituting e, =i, =e, =i, =0, in (5.4)
gives s, (t) > s,(0)as t >oand s, (t) »>s,(0) as t —oo. Hence, the DFE (E;) is globally

asymptotically stable for R, <1 and unstable if R, >1.

5.4.4. Endemic Equilibrium (EE)
The system (5.4) attains an endemic equilibrium point, which is given by:

A—yoa—nbgsii —y(l—a)s; —u,s; =0 (5.11)
nbA.syi; — (uy + &)y —r(L-ale, =0 (5.12)
goen—(u, +6,)ir —y(l-ali; =0 (5.13)
Spir =t —y(l—a) =0 (5.14)
My —0B,s iy — u,s, =0 (5.15)
bB,s iy —(u, +&,)e, =0 (5.16)
&, — i, =0 (5.17)
Adding (5.11) and (5.12), we get

=

(ﬂ—ya+5h)i;

From (5.13), e, = (5.19)
S
From (5.14), r." = Ol (5.20)
R ) |
From (5.15), it = Al (5.21)
From (5.11), i; = (-7 “)(1:Sh) (5.22)
nbAs,
. Myl
From (5.17), e, = —+~ (5.23)
Put the value of i; and i, inequation (5.21) and (5.19), we get
Therefore, i = ’UV(/I_W)(l_S“) (5.24)

nb?B,4,s; —bp, (1 —70!)(1— 5;)
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]
(5.25)

(A-ya+& u,(2-ra)i-s;)
b2, B,E,51 —bB,&, (A —ya)i-s;)

Equating equations (5.18) and (5.25), we get

and e, =

(-si)2-re) _ o (A-ya+5,)(2-ya)l-s;)
(A-ya+&)  nb2%, B B, s -bp, & (A-yal-s;)

= b2, B B, siL-s A —ra)-b g, & L-s. f (- ra) = (2+6, - ya)A+&, - ra)
X L, (1— S, X/i —ya)
= [nb%&, B, B, 51 —b &8, (L—51 ) (A - ya)| = (2 + &, —ya) (A + 6, - ra)u,

= [nb%, B, B, +b B, & (A-ra)lsi —bB, & (A—ya) = (A+ &, —ya)(A+6, - ra)u,

_ o _0BA-ra)E + 1, (A4 &~ ya)(A+ 6, —ya)
“ b 3, & [nbj3, + (2~ yar)]

Put the value of s, in equation (5.18), we get

i* = (2 -ya) _1_bﬂzé:h(/1_7a)+(/1+‘§h_Va)ﬂv(;t‘*'é‘h_?’a)}
" (A+& -ya)| b 3, [nbs, + (4 - ya)l&,

_ (2*_70‘) _bﬂzgh[nbﬁl+(/1_7a)]_bﬁ2§h(1_705)_(/1"‘@_705)(}“"5}1_705)/“\/}
" (/1+§h_705)_ bﬂth[nbﬁ1+(/1_7a)]

i (A-ra) {bﬁth[nbﬂl+2(/1—7a)]—(/1+(§h—7a)(/1+5h—m)ﬂv}

h (;H‘gh_?/a) bﬂz[nbﬁ1+(;t_7a)]§h

o (A-ya) {nbzﬁhﬁlﬂz+2(ﬂ—ya)bﬂzéh—(ﬂ+f;h—m)(z+6h—m)uv}

" (/1+§h _70‘) nbzgh B B, +bﬁ2(ﬂ“—7a)§h

Put the value of i, in equation (5.19) and (5.20), we get

e — A+, _7a)x
" &,
(A—ya) |ND*& BB, +2& (A-ya)b B, —(A+& —ya)u, (A+6, —ya)
(A+¢& —ra) nb’&, B, B, +b B, (A - ya)&,
and
b, {nbzéh Pi o+ 25, (2= ya)b f, = (A+ 8, — ye)u, (A +5, —m)}
" (ﬂ’-’_gh _7’0‘) nbzé:h BB, +bﬂ2(/1_7a)§h
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Put the value of s; in equation (5.22), we get

(/1_7a){1_bﬂz Sh (/1_7/0‘)"'(1"‘@1 _70‘),“\/ (/1+5h _7a)}
b 5, [nbﬂ1+(/1_70‘)]§h
b, & (A—ya)+(A+& —ya)u, (A +3, —706)}
b3, [nb B, + (2 - ya)l¢,

\

nbﬂ{

(ﬂ—;/a)[bﬁz [nb B, +(/1—705)]§h —bp, (A —ya)&, +(A+ & —ya)u, (A+6, —ya)}
bﬁz[nbﬁl"'(ﬁ_?’a)]éfh

=1, =

ab | 22 &(A—ya)+(A+ & —ya)u,(A+5, - ya)
1 b §,[nb g, +(2 -y )¢,
—i = (ﬂ_Va){bﬂz[nbﬂl +(ﬂ’_7/a)]§h _bﬂz(ﬂ'—7a) h +(ﬂ'+§h —}/0() v(/1+5h _705)}
! nb, bﬂz(/i_ya)éh+(}“+§h_7a)ﬂv(/l+5h_7a)

Put the value of i in equation (5.23), we get

e — (/1_70‘) v {bﬂz[nbﬂl +(/1—]/05)] ¢ _bﬂz(ﬂ'_7a)§h +(ﬂ’+é:h _7/05)#\/ (/7'+5h _7/05)}
" nbpé, b B, &, (A—ya)+(A+&, - ya)u, (A+6, —ya)

o _ 0B, (2+ &, —ya)(A+ 8, —ya)+ p,6 (A—rya)’ —p,(A-ye)A+ &, —yai+s, - ya)
' nbB, (bB,&, (A —ya)+ (A + &, — ya)A+6, - ya))

5.4.5. Global Stability of Endemic Equilibrium

We discuss the overall firmness of the native symmetry in this sub-section.
Theorem 5.4.3: The world wide tangent firmness of the native symmetry E’in the system

(5.4) is established when R, >1, and it becomes unstable otherwise.

Proof: Consider a Lyapunov function V as a means of demonstrating the global stability of

endemic equilibrium.

V= {sh —sh[1+ In j} +{s -s (1+ In S—ZJ} +{eh —e;(1+ In e—ﬂ} +{ev —e:[1+ In e—i}
h Sv eh ev
+{ —i; 1+In— }+{| —i, 1+In :—i]} +{rh —rh*(1+ln :—EJ} (5.26)

The derivation of V is

sh sV eh e, I Iy i
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|

Since,
s, =A—ya—nbgs,i, —(1-ya)s,
e, =nbgs,i, —(A—-ya+& )e,
ii =&e, —(A—ya+3,)i,
r=3o,i, —(A-ya)r,
= 1, —bB,s,iy — 8,
e, =bBs i, —(u, +<,) €,
I, =88, —

Then

& (S*‘S;SEJ(& ya—nbﬁlshiv—(/1—}/Ot)Sh)ﬁLlehe_e;](nbﬁﬁhiv_(i_7a+§h)eh)

(e |

B A L R Ot s T S

h v

(Se
jbﬂz (a2 )e) (i I‘“J(fvev—uviv)

v

-, i)+ u—m)}(sh—s;)]{ﬁﬁnbﬂl(sh—s::)(iv—i:) }

e, —(ﬂ—ya+§h)(eh—e;)

I
TN
[
=
[
=
(n
o
;/

X ih_—i;J{gh(eh & )-(2—ya+s, iy i 1+ [r;ﬂ{%(h )Gy, -}

SV—S:J[M_{bﬂZ(ih—i;)+ﬂv}(3 >+(
(L)1)

v

J{bﬂz(h in)s, —s) ) (i +&)e, —€)))

=—(/1—7a)(5“_8;)2+(s“_8;)[(/1—7a —nbg, —i; s, -5, |- (2- 7a+§h)( e

S Sh h

YA OB = ALY Y

h h Ih
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PN e[ ) RO L Y i A

Ty y

RN LT 1Y ) IR RELTE O

Vv Vv \ v

558 1 ) (2 ) o, - Yo%)

h h h

=—(1-7ra)

_(ﬁ“ —ya+g, ) (eh ;e;)z + (eh _e;)(nbﬁlshiv —nb/;s,i, —nb;s;i, + nbﬂls;i;)

h eh

_(/1_705+5h)(ih :I;) + (ih ._i:)(égheh _fhe;)_(;t—7a)(rh _r;) + (rh _rh*)(é‘hih _5hi:)

h h rh r-h

_,UV(SV_—SV)‘F,UV u,— bﬂl ( ) bﬁz ( ) _(ﬂv+§v)<ev_ev)
S S S e

S

\ \ v \ v

(e —€ ){bﬂz( —s,ir +s.ir )} 4, (iv_.iV)z (I - )(fvev—fvev)

€ |

\ \ V

* \2 * * * \2
=) +(2=ya)-(2-ya) 2 ~nbgi, < ;Sh)z +nbA, =)

Sh Sh h Sh

=—(1-7ra)

* 2 *
(- ya+§h)(eh ;eh) b i, —nbAs.i —nbBsi, +nbBsii —nbfs,i,

h h

e e e i .
+nb,Blshve +nbﬁlshve nbﬂlshve——(/i 7a+5)(|—)2+§heh ~Ze

h h h h

- . . <2
_é:heh +§heh|__(ﬂ“ ya )M+5hih_5hlh — iy - "‘5h'hr _,UV(SV_SV)

h rh h h Sv

* *\2 *\2 *2
+uv—uV§—V—bﬂ2ih(SV;sv) +bﬂ2i;<sv;—sv)—(uv 2= s bsis:

v \ \ V

* * * - -k 2
-k *oak - e - e I _I
_b/BZSvlh +bﬂ25v|h _bIBZIthe_V—l_bﬁZIhsv e +bﬂ28v|h e bﬁZSvlh e —Hy (v . V)

\ \ \ v \

+ é:vev - gvev - é:vev ii—i_ évev IL =0

v \

Separate positive and negative terms such that
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|
* * 2 * *
-k S _S .k S _S - *ak -k e *a e
G =nbgi, M+bﬁ2|h (VS—V)+ nbA;s,i, + NbAs,i, +nbss,i, e—h+ nbA;s,i, —*
h % h h

.k *

. . I . . .e . €
+§heh +{§heh i_+5hlh +5h|h r_+:uv +bﬂ2|hsv +bﬂ28v|h +bﬂ2|hsv e_v+bﬂ23v|h e_v+§vev
h h v v

.*

+&e -+ (A-7a)
=) &S] gy s sl o)

Sh Sv Sv

Sh

“G-rar )88 1) hil o oi ] gy oe)

h h h v

- -k 2 * * * * *
i, i s e s, e
—H, ( p ) _(A_7a)_h_nbﬂ15h|v o nbﬂlshlv é:heh i 5h|h —Hy S__bﬁzlhsve_

Iv h h h h v v

- e, i . A . . .
bﬂZ v h _é:v v | nbﬂlsh v nbﬂlshlv _gheh _5h|h _bﬁZIth _bﬂZSvlh _gvev

v

If G < H then V'will be negative it means that V' <0. It follows that V' =0 < s, =5/,

s

e, =¢e, i, =i, r=r,s, =s,,¢e =e, and i, =i,. The maximum invariant set of system
(5.4) on the set {( Sy, €y dpy Iy Sy €, V) V' = 0} is the singleton (E™) . Thus for system (5.4),

the endemic equilibrium E’ is globally asymptotically stable if G < H by LaSalle’s invariance

principle (1976).

5.5.  Numerical Simulation
Applying the technique of Runge-Kutta to a simplified structure of the model (5.4) and using

the estimated parameter values given in Table 5.1, the numerical simulations of the study are

demonstrated.
Table 5.1: Presents the estimated parameters for the mathematical model of dengue fever.

Parameters Values Source
A 0.00002 Chen and Hsieh (2012)
4 0.000004 Pande J. (2013)
B 0.33 Adams and Boots (2010)
B, 0.375 KMTL (2006)
B, 0.75 KMTL (2006)
& 0.197 Assumed
£, 0.183 Assumed
m 0.000016 Chen and Hsieh (2012)
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I
i, 0.331 Chen and Hsieh (2012)
S, 0.142 Adams and Boots (2010)
n 12 Assumed
a 0.637 Pande J. (2013)

Figure 5.2 depicts how the population is distributed across various demographic categories over

time.
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Figure 5.2: Variation of proportion of population at different classes.

The portion of the sensitive human inhabitants declines with time when it comes to the
equilibrium point, as shown in Figure 5.2. This decline is primarily attributed to many
individuals becoming infected, often due to a lack of awareness about dengue, and also because
of a decrease or shortage in human carrying capacity. The exposed human population, as well
as the infective human population, initially increases with time but eventually declines due to
disease-induced deaths and other natural causes as some individuals recover and transition to
the recovery class. As a result, the percentage of the recovered human population rises.
Meanwhile, the proportion of sensitive vector populations increases while that of exposed and
infective vector populations decreases over time.

Figures 5.3 to 5.9 depict the variations in terms of proportions susceptible humans, exposed
humans, infected humans, recovered humans, susceptible vectors, exposed vector and infective

vectors for various biting rates denoted as b .
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Figure 5.4: Variation in the exposed human
population for varying biting ratesb .
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Figure 5.9: Variation in the infected vector population for varying biting ratesb .

In Figure 5.3, a notable trend is the decline in the susceptible human population as the biting
rate rises. In contrast, as we observe in Figures 5.4, 5.5 and 5.6, a rise in the biting rate
corresponds to a rise in the part of the exposed, infected and recuperated human population.
Furthermore, when the rate of biting rises, there is a noticeable reduction in the proportion of
susceptible vector populations. Conversely, a rise in the biting rate is associated with a rise in
the proportions of exposed vector populations and infected vector populations, which is evident
in Figures 5.8 and 5.9, correspondingly.

Figures 5.10 to 5.16 illustrate the changes in terms of proportions of susceptible, exposed,
infected, and recovered human inhabitants in relation to susceptible, exposed, and infected

vector populations. These variations are observed for different virtues of the transference

likelihood from vectors to the person population, denoted as 5, .
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Figure 5.10: Variation in the proportion of Figure 5.11: Variation in the proportion
susceptible human for different transmission of exposed human for different
probability rates £, . transmission probability rates 3, .
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In Figures 5.10, 5.11, 5.12 and 5.13, it is clear that an augmentation in the transference

likelihood of the toxic from the bearing to the human population results in observable patterns.

As this probability rises, the amount of sensitive individuals in the human population decreases
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significantly as more individuals become infected. Simultaneously, the sum of uncovering and

contaminating individuals in the personage inhabitant increases. Furthermore, the proportion of
the recovered human population also rises as individuals successfully recover from the disease.
In Figure 5.14, it is evident that the proportion of susceptible vectors decreases as the
transference of likeliness viruses from vectors to person populations gets larger.
Simultaneously, the ratio of exposed as well as infected vector populations increases with the
rising transmission probability of viruses from vectors to human populations. These trends are
further illustrated in Figures 5.15 and 5.16, correspondingly.

Figures 5.17 to 5.23 display the variations in the portion of susceptible human, exposed human,
infected human, and recovered human inhabitants in relation to susceptible vector, exposed
vector and infected vector inhabitants. These visual representations are generated for a range of

different values of the transference probability from the human to the vector population,

denoted as f3,.
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probability rates 3, .

In Figures 5.17, 5.18, 5.19, and 5.20, it is noticeable that as the transference likelihood of the virus from
the human to the vector population rises, discernible trends emerge. As this probability rises, the amount
of sensitive individuals in the human population decreases significantly, as more individuals become
infected. Simultaneously, the number of uncovered and contaminated individuals in the population
increases, and the proportion of the recovered human population also rise as individuals successfully
recover from the disease.

A similar pattern can be observed in Figure 5.21. The proportion of vectors that are susceptible
decreases as the likelihood of the virus being transmitted from human to vector population increases. At
the same time, the percentages of vector populations that are exposed and infected increase as the
likelihood of the virus being transmitted from the human to the bearing inhabitants rises, as shown in
numbers 5.22 and 5.23, respectively.

Figures 5.24 and 5.25 illustrate the variations in the portion of uncovered and contaminated person

populations, respectively. These figures display these variations for a range of different values of the

progression rate denoted as ¢, .
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Figure 5.24: Variation in the proportion of Figure 5.25: Variation in the proportion of
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In Figure 5.24, it is observed that the exposed human population decreases as the progression
rate denoted as (&, ), increases, whereas with an increase in the progression rate (&), the
proportion of the infected human population also increases, as indicated in Figure 5.25.

Furthermore, Figures 5.26 and 5.27 present the variations in the proportions of exposed vector

and infected vector populations. These figures demonstrate these variations for a range of

different values of the progression rate, referred to as ¢, .
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-

In Figure 5.26, it is observed that the exposed vector population decreases as the progression

rate (&,) increases while the increase of progression rate (£,) the proportion of infected vector

population increases as it is indicated in Figure 5.27.
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5.6. Summary and Concluding Remarks

In this chapter, an arithmetical replica has been constructed that effectively represents the
transmission of dengue through the utilization of a SEIR framework. By incorporating a logistic
function to represent the extension and survival of the mosquito inhabitants, which relies on the human
inhabitants for sustenance, our model offers a comprehensive understanding of the complex interplay
between the vector and human populations in the spread of dengue.

Through our analysis, we determined the basic reproduction number, denoted by R, which serves

as a critical indicator of disease transmission potential. Our findings revealed that the disease free
equilibrium is regionally firm when R, <1, indicating that the disease can be effectively controlled and

eliminated under certain conditions. Conversely, when it exceeds one, the disease-free equilibrium
becomes unstable, suggesting the potential for sustained transmission within the population.

Moreover, we performed stability assessment for both the states of the system in which there is no
disease and the states in which the disease is present. This examination enabled us to investigate the
long-term dynamics of the system and determine the circumstances under which the disease can endure
or diminish. These observations are crucial for guiding the enhancement of a focused strategy for the
management and prevention of the disease.

Overall, our research provides valuable contributions to the understanding of dengue transmission
dynamics. By employing mathematical modeling techniques and considering the logistical human
population and exposed class, we have shed light on the complex interplay between the mosquito vector
and human host. These insights can assist policymakers, healthcare professionals, and researchers in
formulating effective measures to combat dengue, mitigate its impact, and ultimately reduce its burden
on affected communities.

However, it is crucial to recognize that our model, like any mathematical representation, simplifies
the complexity of real-world dynamics. Further research and data collection are necessary to refine and
validate the model, incorporating additional factors such as spatial heterogeneity, environmental
influences, and intervention strategies. The implementation of these extensions would significantly
contribute to a more comprehensive understanding of the transmission of dengue fever and assist in the
development of targeted interventions to manage and prevent this significant public health concern.

In conclusion, our study demonstrates the potential of arithmetical design to elucidate the
transmission vitals of dengue. By providing insights into the role of human population and the
interaction with the mosquito vector, our findings contribute to the broader body of knowledge
aimed at controlling and mitigating the impact of dengue, ultimately working towards a future

with reduced disease prevalence and improved public health outcomes.
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Chapter 6: Conclusion and Future Scope

In the forthcoming chapter, a concise overview of significant findings that align with the
proposed objectives has been provided. Furthermore, deliberations on potential avenues for
future investigation, suggestions, and recommendations within the realm of the research

conducted in this thesis are presented.

6.1. Conclusion

In conclusion, this thesis has embarked on a journey to unravel the intricate dynamics of
HIV/AIDS, Malaria, and Dengue fever through the lens of mathematical modeling. By
developing and analyzing various mathematical models, we have delved into the transmission
dynamics of these diseases, providing valuable insights that bridge the gap between theoretical
constructs and real-world clinical applicability.

The stability analysis conducted in Chapter 2, focusing on HIV/AIDS transmission among
sex workers, highlighted the pivotal role of the reproduction number in determining disease
eradication. The stability analysis of both disease-free equilibrium and endemic equilibrium
offered a comprehensive understanding of the system’s dynamics.

Chapter 3 extended the exploration, considering the impact of media awareness on HIV
transmission dynamics. The findings not only established the asymptotic stability of the
disease-free equilibrium but also introduced an innovative hybrid soft computing approach for
numerical simulations, enhancing the robustness of our analysis.

In Chapter 4, the SEIRS model with mosquito vector dependency sheds light on the
transmission dynamics of malaria. The sensitivity analysis emphasized crucial factors in
combating the disease, such as targeting pesticide use and improving drainage systems.

Lastly, Chapter 5 explored the transmission dynamics of dengue through an SEIR model,
providing insights into the disease’s potential for transmission and contributing to the

formulation of effective control and prevention strategies.

6.2. Future Scope
The comprehensive exploration of disease dynamics within this thesis opens avenues for

future research and development. The derived mathematical models serve as a foundation for
further refinement and extension. The following directions could be pursued in future studies:

Refinement of Models: Further refinement and validation of the existing models,
incorporating additional parameters and complexities, to enhance the accuracy of predictions

and broaden the applicability of the models.
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Chapter 6 Conclusion and Future Scope

Exploration of Additional Factors: Investigate new factors influencing disease dynamics,

such as socio-economic conditions, geographical variations, and evolving treatment strategies.
Dynamic Media Impact: Extend the analysis of media awareness impact on disease
transmission, exploring dynamic changes in media influence over time and its implications for
public health interventions.
Incorporation of Treatment Dynamics: Expand the models to incorporate detailed treatment
dynamics, considering evolving medical interventions, drug resistance patterns, and the impact
of vaccination programs.
Comparative Analysis: Conduct comparative analyses between different regions or
populations, accounting for diverse demographics and healthcare infrastructures, to tailor
intervention strategies according to specific contexts.
Collaborative Research: Foster collaboration between mathematicians, biologists, healthcare
professionals, and policymakers to ensure a multidisciplinary approach in addressing the
complexities of disease dynamics.

By venturing into these avenues, future research can build upon the foundation laid by this
thesis, advancing our understanding of disease dynamics and contributing to the development

of targeted strategies for disease control and management on a global scale.

6.3. Limitations and Areas for Improvement

In reflecting on the research presented in this thesis, several limitations and areas for
improvement can be identified:
Simplifying Assumptions: The models developed often rely on simplifying assumptions about
disease transmission dynamics and population interactions, which may not fully capture the
complexities observed in real-world scenarios.
Parameter Uncertainty: The parameter values used in the models are largely derived from
existing literature or assumed due to lack of empirical data in certain contexts. This uncertainty
could affect the accuracy and generalizability of the findings.
Model Validation: While the models undergo rigorous mathematical analysis, there is limited
validation against real-world data. More empirical validation and sensitivity analysis would
strengthen the robustness of the results.
Scope and Generalizability: The focus on specific populations and diseases (e.g., sex workers
in HIV/AIDS transmission) may limit the generalizability of the findings to broader

populations or different epidemiological contexts.
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Chapter 6 Conclusion and Future Scope

Dynamic Factors: The models do not fully incorporate dynamic factors such as behavioral

changes, migration patterns, or evolving treatment strategies, which are crucial in shaping
disease transmission dynamics over time.

Data Availability: Limited availability of local epidemiological data in some regions restricts
the ability to tailor models to specific geographical contexts, potentially overlooking region-
specific nuances.

Technological Assumptions: The use of specific numerical methods and modeling
frameworks may introduce inherent biases or limitations that influence the outcomes and
interpretations of the study.

Communication of Findings: The thesis could benefit from clearer articulation of the practical
implications and actionable insights derived from the mathematical models for public health

policies and interventions.
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