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Abstract 

The application of mathematical modeling in understanding diseases such as HIV/AIDS, 

Malaria and Dengue fever represents a cornerstone in the synergy between the fields of 

Mathematics, Biology and Medicine. Expanding on the existing trajectory in mathematical 

biology, this research endeavors to push the boundaries by not only formulating diverse 

mathematical models but also unraveling intricate mechanisms that govern disease progression. 

By employing differential equations, partial differential equations, and difference equations, 

this study aims to delve deeper into the dynamics of disease transmission and discern the 

nuanced response to therapeutic interventions, thereby bolstering our arsenal against these 

afflictions. 

Furthermore, the integration of various mathematical approaches not only augments our 

comprehension of disease dynamics but also fosters the development of targeted strategies for 

disease control and management. The challenges inherent in deciphering the intricate biological 

complexities within the human system have prompted a reliance on computational techniques. 

The advent of high-speed computing has alleviated significant computational burdens, enabling 

the widespread application of these techniques to address physiological complexities that elude 

traditional analytical methods. 

Dedicated to constructing specific mathematical models tailored to the complexities of 

HIV/AIDS, Malaria and Dengue fever, this thesis is structured into six chapters. Beginning 

with a comprehensive ‘General Introduction’, the groundwork is laid by introducing 

fundamental concepts crucial for understanding the subsequent chapters. Each subsequent 

chapter delves deeply into individual diseases, presenting a synthesis of analytical discoveries 

validated through meticulous numerical simulations. These numerical results, meticulously 

encapsulated in tables and graphs, serve as robust validations substantiating the analytical 

outcomes expounded upon throughout the thesis. 

The comprehensive exploration of these diseases within this thesis transcends mere 

theoretical constructs, aiming to bridge the gap between mathematical abstraction and real-

world clinical applicability. By synthesizing intricate mathematical models with empirical data, 

this research endeavors to not only elucidate disease dynamics but also pave the way for the 

translation of these findings into actionable insights for healthcare practitioners and 

policymakers. Moreover, the integration of empirical observations with mathematical 

formulations serves as a pivotal step toward personalized medicine, potentially tailoring 

treatment strategies according to the nuanced variations observed in different patient cohorts. 
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Furthermore, the thesis extends its scope by exploring the potential implications of the 

derived mathematical models beyond disease dynamics. It delves into the realms of 

epidemiological forecasting, offering a glimpse into the potential trajectories of these diseases 

under varying conditions and interventions. This predictive aspect stands as a testament to the 

versatility of mathematical modeling in not only understanding the present state but also in 

projecting future scenarios, thereby aiding in the proactive design of public health policies and 

interventions. 

The intended research on disease dynamics will employ mathematical modeling to accomplish 

the following objectives: 

1. To develop mathematical models for the analysis of severe human physiological problems 

like HIV/AIDS, malaria and dengue fever.  

2. To find the solution of the developed models by using analytical as well as numerical 

techniques like Runge-Kutta method, finite difference method, etc. The soft computing 

techniques will also used to study complex models of severe human diseases.  

3. To investigate various parameters like reproduction number, rate of spread of an infection, 

epidemic trends, the effects of treatment and vaccination, etc., which play an important 

role in understanding the transmission dynamics of the above-mentioned human diseases. 

4. Validation of the solution of purposed models in the study with the previous published 

research work/literature. 

Chapter 1: General Introduction 

This chapter serves as a comprehensive introduction, covering fundamental concepts and 

mathematical models pertaining to severe human diseases like HIV/AIDS, Malaria and Dengue 

fever, supplemented by relevant literature. Within the realm of epidemiology, several 

successful applications of mathematical models are explored. 

The introduction driving this study is delineated in Section 1.1, outlining the specific 

objectives and purposes. A review of the literature is in Section 1.2 and the objectives of the 

proposed work are in Section 1.3. Moving forward, Section 1.4 focuses on fundamental models 

concerning population dynamics in infectious diseases such as HIV/AIDS. Section 1.5 delves 

into the modeling intricacies of Malaria. Highlighting the specifics of Dengue fever, Section 

1.6 delves into its modeling intricacies and Section 1.7 refers to the main terms used in the 

thesis. Mathematical preliminaries are discussed in Section 1.8. Some numerical methods have 

been elaborated on in Section 1.9. 
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Chapter 2: Stability Analysis of HIV/AIDS Transmission: A Mathematical Model for Sex 

Labourers 

In this particular chapter, we proceed to develop a nonlinear mathematical framework that 

elucidates the transmission dynamics pertaining to HIV/AIDS within the community of women 

engaged in sex work by categorizing the population into male, female, and sex worker 

compartments. The formulated model delineates four distinct groups: susceptible, slowly 

infectious, rapidly infectious, and full-blown AIDS categories. Our investigation focuses on the 

fundamental reproduction number  0R , which determines disease eradication. Moreover, we 

demonstrate that when  0R  falls below one, the disease ceases, whereas when  0R  surpasses 

one, the disease proliferates. Additionally, we conduct a stability analysis of both disease-free 

equilibrium (DFE) and endemic equilibrium (EE). 

Chapter 3: Study of HIV Transmission Dynamics using SEIRS Epidemic Model  

This chapter thoroughly explores disease transmission dynamics in two parts. The first 

Section-3(A) focuses on the intricate relationship between media awareness and HIV 

transmission, which is crucial for targeted prevention strategies. Section-3(B) examines the co-

infection dynamics of HIV/AIDS and TB, considering the influence of media awareness. The 

overall aim is to contribute to a holistic understanding of disease transmission and the impact of 

media awareness on tailored public health strategies for these critical health challenges. 

Section 3(A): Analyzing HIV Transmission Dynamics with Media Awareness 

In this section, an analysis of the transmission dynamics of an SEIRS epidemic model for 

HIV is conducted through the utilization of a mathematical model. The focus of this analysis is 

on the impact of media. The research involves the development of a system of differential 

equations for each population group, which includes the susceptible, exposed, infected, and 

recovered classes. By employing rigorous mathematical analysis, the study presents a 

comprehensive understanding of the dynamics involved in the spread of the disease. The 

fundamental reproduction number  0R  is performed and the examination of two equilibria, 

namely the endemic and disease-free states, offers valuable insights. Notably, it is established 

that the disease-free equilibrium is both locally and globally asymptotically stable. In order to 

verify the findings, numerical simulations are carried out using an innovative hybrid soft 

computing approach called the Adaptive Neuro-Fuzzy Inference System (ANFIS). 

 



Abstract 

vi 
 

 

Section 3(B): Analyzing the Co-infection Dynamics of HIV/AIDS-TB with Media 

Awareness 

This section extends the SEIRS epidemic framework to examine the specialized dynamics 

of co-infection among HIV and tuberculosis (TB). It emphasizes the nuanced understanding of 

this co-infection, focusing solely on HIV/AIDS and TB dynamics without the broader epidemic 

model structure. A literature review underscores the heightened vulnerability of HIV-infected 

individuals to TB, highlighting the critical role of treatment. The primary contribution lies in 

refining this specialized model and incrementally unraveling co-infection transmission and 

treatment outcomes. Future research directions emphasize exploring media awareness’s 

influence within this specialized framework, aiming to pave the way for targeted interventions 

and further investigations into this intricate health challenge among diverse populations. 

Chapter 4: Mathematical Analysis of Malaria Transmission: SEIRS Model with Mosquito 

Vector Dependency 

This chapter introduces a mathematical model SEIRS illustrating how malaria spreads. 

Mosquitoes as carriers depend on humans for survival. Environmental factors contribute to 

malaria’s spread. Managing and controlling malaria effectively reduces its transmission. The 

sensitivity analysis highlights that targeting pesticide use and improving drainage systems are 

crucial in combating the disease. 

Chapter 5: The Study of Dengue Transmission Dynamics through the SEIR Model 

This chapter introduces a mathematical model that delves into the transmission dynamics of 

dengue through an SEIR (Susceptible, Exposed, Infectious and Recovered) framework. Within 

this model, a logistic function is employed to depict the growth and persistence of the mosquito 

population, acting as the vector and relying on the human population for sustenance. The 

determination of the basic reproduction number 0R , serves to evaluate the disease transmission 

potential. Findings indicate that when 10 R , the disease-free equilibrium is locally stable, 

whereas instability arises when 0R  exceeds one. Additionally, the stability analysis extends to 

both endemic and disease-free equilibria. The outcomes of this study offer valuable insights 

into dengue transmission dynamics, contributing to the formulation of effective disease control 

and prevention strategies. 
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Chapter 6: Conclusion and Future Scope 

In this chapter, the culmination of this research unfolds as the conclusion encapsulates the 

key findings and implications of our mathematical modeling exploration into diseases like 

HIV/AIDS, Malaria and Dengue fever. Furthermore, the chapter outlines a compelling future 

scope, delineating avenues for continued research and the potential impact on public health 

strategies, limitations & areas for improvement. 

The thesis contains a comprehensive and up-to-date bibliography. 
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Chapter 1:                       General Introduction 

1.1. Introduction 

Severe diseases wield a profound influence on human populations, causing immense 

suffering and imposing significant social and economic burdens. These diseases are among the 

leading causes of mortality, affecting millions worldwide and straining healthcare systems, 

especially in developing nations. Mathematical modeling emerges as an invaluable tool for 

delving deep into the vitals of these ailments. The primary goals of mathematical modeling in the 

context of severe diseases, whether examined over time or across geographical regions, are 

twofold: to uncover the basic procedure of ailment transference and the most influential factors 

driving their spread, thus facilitating predictive capabilities; and to devise and assess strategies 

for their control.  Mathematical modeling of severe diseases has a rich history, resulting in a 

diverse array of models that shed light on the causes and patterns of epidemic outbreaks. 

The realm of mathematical modeling is not only vast but also awe-inspiring in its application 

across biology, genetics and the medical sciences. It has established itself as a critical instrument 

for analyzing how infectious diseases spread and is controlled. Mathematical models possess the 

unique power to translate complex real-world disease scenarios into manageable mathematical 

structures, allowing for theoretical and numerical analyses that yield valuable insights and 

practical applications. Model formulation plays a crucial role in clarifying assumptions, 

identifying variables and parameters, and deriving key metrics, including thresholds, basic 

reproduction numbers and contact numbers. 

The mathematical modeling process of human disease is depicted in Figure 1.1, 

demonstrating how mathematical modeling serves as a bridge between complex real-world 

scenarios and actionable insights. 

 

Figure 1.1: Human disease mathematical modeling procedure. 
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In the field of medical sciences, mathematical modeling, in conjunction with physiological 

fluid dynamics, plays a critical role. It has unraveled longstanding mysteries in biology, 

leveraging the computational power of computers to reveal insights previously hidden from 

researchers. Mathematical models and computer simulations play a crucial role as essential tools 

for experimentation, enabling the development and validation of theories, conducting sensitivity 

analyses and deriving key parameter estimates from empirical data. Carefully constructed 

mathematical models can be potent instruments for unraveling the intricate mechanisms 

underpinning various severe diseases. 

Gaining insights into the spread patterns of communicable diseases across communities, 

regions and nations is crucial in the field of biosciences. Mathematical models play a vital role in 

facilitating the comparison, planning, implementation, evaluation and optimization of diverse 

programs related to detection, prevention, therapy and control. Epidemiological modeling 

contributes to the planning and analysis of epidemiological surveys by identifying crucial data 

needs, recognizing trends, providing overarching predictions and quantifying uncertainties in 

forecasted outcomes. 

In this thesis, we focus on the spread dynamics of severe diseases, particularly employing 

ordinary differential equations (ODEs), compartmental models and related methodologies. Given 

the vast scope of mathematical modeling in the realm of diseases, it is impractical to undertake 

an exhaustive mathematical and computational analysis of all severe diseases and physiological 

challenges. Biological systems are intricate, making the construction of precise models a 

formidable task. This study aims to explore various facets of severe illnesses and physiological 

hurdles, focusing on developing models that elucidate the spread dynamics of diseases like 

HIV/AIDS, malaria and dengue fever. This thesis aims to provide a comprehensive exploration 

of fundamental concepts and modeling considerations relevant to our research. 

1.2. Review of Literature 

There are many serious diseases that spread globally through infections and sexual contact. 

One of the most severe and deadly diseases is HIV/AIDS, leading to millions of fatalities in both 

developed and developing countries. Researchers have used mathematical models to study 

HIV/AIDS, as over 35 million people worldwide live with this virus. In 2013, approximately 2.1 

million new infections were documented, reflecting a 38% reduction compared to 2001. 

Moreover, HIV infections in children have declined by 58% since 2001. However, tuberculosis 

remains a primary cause of death in HIV patients. Research on this topic has advanced over the 

last three decades. 
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AIDS mainly spreads through bodily fluids, such as blood transfusions, physical contact and 

the use of infected needles. Researchers like Cai et al., (2009) have used ordinary differential 

equations to create models for HIV/AIDS. Tan (1991) explored stochastic models to simulate 

AIDS and other infectious diseases. Ida et al., (2007) described HIV infection using non-linear 

differential equations, which were solved numerically. Mukandavire and Garira (2007) 

introduced a mathematical framework for HIV/AIDS, integrating a distinct incubation period in 

the structure of a system comprising discrete time delay differential equations. The related 

infection of the Hepatitis C Virus (HCV) and HIV is a notable public safety concern, especially 

focused on preventing transmission among high-risk populations like injecting drug users. 

Yovanna et al., (2013) reported an elevated risk of developing HCV-related liver disease, 

cirrhosis and liver cancer in individuals co-infected with both HIV and HCV. 

Various approaches have been proposed to model HIV/AIDS among intravenous drug users. 

For example, Haynatzki et al., (2000) suggested a new approach. Wu and Tan (2000) proposed a 

steady-state approach to modeling the HIV epidemic, assessing the quantities of AIDS cases and 

infectious individuals across various stages. Mathematical models were employed by Hyman 

and Stanley (1988) to comprehend the dynamics of the AIDS outbreak. Shen et al., (2015) 

scrutinized the model and conducted an extensive analysis of global dynamics. They utilized 

Lyapunov functionals to confirm the worldwide stability of both disease-free and endemic 

equilibria. The essential reproduction number represented as 0R , is instrumental in determining 

the potential for the disease to ultimately dissipate. 

Huo and Feng (2013) were instrumental in the development of a comprehensive model that 

integrates both slow and fast-latent sections. Simultaneously, Okosun et al., (2013) delved into 

the realm of HIV/AIDS treatment and the testing of unknowingly infected individuals within a 

homogeneous population. In another notable contribution, Defeng and Wang (2013) introduced 

a time consuming mathematical model, aiming to evaluate the impact of vaccination and 

Antiretroviral Therapy (ART) on HIV/AIDS. Their model accounted for two distinct groups: 

individuals cognizant of their infected status and those oblivious to it. 

Turning to the correlation between HIV/AIDS & the hepatitis C virus, Bhunu and 

Mushayabasa (2013) devised a meticulous mathematical model, while Cai et al., (2014) 

explored the intricacies of an HIV/AIDS cured model that encompassed numerous infection 

stages and incorporated density-dependent infection dynamics. Kaur et al., (2014) shifted the 

focus to a nonlinear model, investigating the transmission dynamics of the HIV/AIDS outbreaks 

with specific attention to the involvement of women hooker. 
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In the qualitative exploration of HIV dynamical models, Elaiw and Almuallem (2015) took 

on the challenge of understanding three models involving two sorts of co-circulating selected 

cells. Meanwhile, Wang et al., (2015) conducted an analysis of the global stability of an HIV 

viral infection model that featured a continuous age structure. Huo et al., (2016) contributed to 

the field by formulating a mathematical model of the HIV/AIDS epidemic that incorporated a 

treatment class. Notably, the fundamental reproduction number assumed a pivotal role in 

discovering the overarching global dynamics in their model. 

In the early stages, many researchers worldwide began focusing on HIV/AIDS care, 

prevention and treatment. This disease has become a global challenge, leading to increased 

funding for HIV/AIDS over the past 15 years. Smith and Wahl (2005) devised an SIR model to 

characterize the immunological aspects of HIV dynamics. This model not only considered the 

standard elements but also incorporated the impact of reverse transcriptase inhibitors and other 

drugs designed to impede cellular contaminated. Sani et al., (2007) developed various stochastic 

models to investigate HIV spread in a mobile heterosexual population, analyzing both 

deterministic and diffusion analogs of these models. Meanwhile, Naresh et al., (2009) introduced 

an arithmetical replica, delving into the influence of tuberculosis on the dissemination of HIV 

contaminated within a person’s inhabitants undergoing logistic growth. Addressing the broader 

spectrum of infectious diseases, Sing et al., (2013) investigated the transmission dynamics of 

malaria, tuberculosis, HIV/AIDS and their co-infection, shedding light on the intricate interplay 

of these health challenges. Song et al., (2010) scrutinized a classical arithmetical replica, 

incorporating a contrast reaction of the HIV-contaminated rate with a time hold-up, contributing 

to the refinement of our understanding. 

In a nonlinear approach, Biswas and Pal (2017) devised a comprehensive HIV/AIDS 

mathematical model, examining transmission dynamics across four population compartments, 

incorporating factors such as vaccination and antiretroviral therapy. Turning to the broader 

dynamics, Jia and Qin (2017) formulated a model that delved into the intricate facets of the 

HIV/AIDS epidemic. Their approach featured a generalized nonlinear incidence rate, accounting 

for treatment alternatives. Employing a geometric method, they conducted a thorough analysis of 

the firmness of both ailment-free & native parity within the framework of ordinary differential 

equations. 

In the tough of complex networks, Yuan et al., (2018) proposed an SIR model, introducing 

birth and death rates to categorize contaminated humans into categories based on their ulceration 

status. This comprehensive approach added valuable insights to our understanding of the 
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dynamics within complex networks. Zhang and Guo (2018) developed a multi-phase SEIR 

model designed for infectious diseases, incorporating a continuous age structure for each 

consecutive infectious stage over an extended infective duration. The model is capable of 

illustrating the advancement of diseases across various infectious stages, resembling conditions 

such as HIV, hepatitis B & C. In the year 2018, Huo et al., proposed a novel SEIS epidemic 

model that took into account the impact of media influence. The researchers employed the 

characteristic equation of equilibrium to derive the basic reproduction number, providing a 

quantitative measure of the disease’s potential for spread and further developing steady-state 

stability within the model. 

Malaria, caused by the Plasmodium parasite, remains a pressing global health challenge. The 

disease is primarily transmitted to humans through mosquito vectors, resulting in a spectrum of 

symptoms and complications. Mathematical models, such as the one initially presented by Ross 

in 1916, represented some of the earliest attempts to explore the dynamics of malaria 

transmission. Since then, numerous researchers, including Ngwa and Shu (2000) and Ngwa 

(2004), have formulated deterministic differential equation models to unravel the intricacies of 

endemic malaria, accounting for variations in both human and mosquito populations. Their work 

has been pivotal in identifying the primary drivers of disease transmission. Building on these 

foundations, Chitnis et al., (2012) introduced models that incorporated factors such as 

immigration and disease-induced mortality, shedding light on the influence of these variables in 

the context of infectious agents and malaria transmission. These models provided valuable 

insights into the multifaceted factors affecting disease spread. 

In the year 2017, Cai et al., broadened the scope of research by developing a malaria model 

that introduced an asymptomatic category within the human population. Notably, their model 

incorporated exposed classes in both human populations and vector populations. An innovative 

aspect of their work proposed the potential for asymptomatic individuals to experience 

reinfection and transition to symptomatic states, contributing to a more comprehensive 

understanding of malaria dynamics. Similarly in 2018, Bakary et al., contributed to the field by 

presenting a mathematical model that took into consideration the age distribution of the vector 

population and the periodic biting rate of female Anopheles mosquitoes. This approach added a 

layer of complexity, providing a more nuanced perspective on the intricate dynamics involved in 

the transmission of malaria. 

Sing et al., (2019) explored the stability of malaria transmission dynamics, with a specific 

focus on the mosquito-dependent coefficient for the human population. Their work shed light on 
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the complex interplay between human and vector factors. In 2020, Ibrahim et al., presented an 

innovative model that intricately divided the infected population into two distinct segments: 

individuals who were unaware of their infection and those who were cognizant of it. The model 

introduced a novel perspective by asserting that the rate of expansion of cognizance was 

intricately linked to the number of creatures who remained unmindful of their infection. This 

novel approach provided a fresh and insightful outlook on potential strategies for disease control. 

Al Basir et al., (2021) designed a comprehensive mathematical model that investigated 

malaria dynamics while considering the impact of interventions based on awareness levels. Their 

concept suggested that the level of awareness could significantly influence disease transmission 

rates between vectors and humans and vice versa. It also explored how control methods could 

enhance awareness. Subsequently, Ndii and Adi (2021) introduced an innovative mathematical 

framework that divided the susceptible population into two distinct sub-groups: those who 

possessed awareness and those who lacked awareness. The model included a consistent 

consciousness estimate, suggesting that a segment of the initially uninformed vulnerable persons 

would shift into the category of informed creatures over time. Additionally, the model 

incorporated practical optimal control theory for vector management, taking into consideration 

the expenses linked to awareness campaigns. 

In a recent advancement, Al Basir and Abraha (2023) introduced a foreordained arithmetical 

design to explore the vitals of malaria and assess the effects of interference like drift nets and 

germicides. Significantly, their model regarded awareness as a dynamic variable that undergoes 

changes over time, acknowledging the evolving nature of awareness campaigns and their impact. 

Lastly, Tchoumi et al., (2023) put forth an arithmetical design that specifically addressed the 

vitals of malaria transmission, taking into account host susceptibility and specifically addressing 

the partial immunity acquired after infection. Researchers have broadened the scope of their 

malaria models by incorporating additional elements. These include assessing the evaluation of 

jungle fever resistance to mepacrine medications and the investigation of approaches such as 

mass treatment and the utilization of insecticides. For example, researchers such as Forouzannia 

and Gumel (2015) have examined the impact of anti-malarial drugs on malaria transmission, 

further enriching the field of malaria modeling. 

Dengue Hemorrhagic Fever (DHF), first identified in the 1950s, poses a serious threat to 

children in the Americas and Asia. This virus, transmitted by female Aedes aegypti mosquitoes, 

leads to symptoms like bleeding and cardiovascular collapse. Unfortunately, there are currently 

no vaccines or targeted treatments available for dengue fever and it continue to spread globally, 
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with two of its four serotypes causing severe often fatal infections. Gubler (2002) highlighted the 

public health, social and economic issues related to dengue and DHF. Researchers like Augiar et 

al., (2013) have used mathematical modeling to distinguish between primary and secondary 

infections, with implications for disease management. Smith and Mercer (2014) have examined 

dengue models that account for factors like seasonal influences and various subclasses. 

The intricate connection between climate change and the transmission of dengue has 

attracted considerable attention. Bal and Sodoudi (2020) investigated how climate factors affect 

dengue occurrences in Kolkata, India, using modeling and prediction techniques. In contrast, 

Butterworth et al., (2017) examined the possible impacts of weather change on the transmission 

of dengue in the southeastern United States, underscoring the importance of acknowledging 

local variations in climate. Caldwell et al., (2021) broadened their scope to analyze mosquito-

borne disease dynamics across continents using climate data. Davis et al., (2021) presented a 

regional index for suitable situation to forecast the influence of weather change on the 

transmission of dengue. Ebi and Nealon (2016) underscored the need to adapt public health 

strategies to combat the increasing risks of dengue in a changing climate. Gutierrez et al., (2022) 

supplied information on the meteorological factors associated with dengue outbreaks in the non-

endemic area of Northwest Argentina. Huber et al., (2018) highlighted the seasonality of dengue 

risk in relation to seasonal temperature variation and climate suitability. Kakarla et al., (2020) 

evaluated the appropriateness and transmission capabilities of dengue in India under both current 

and anticipated climate change conditions, carrying implications for prevention and control. In a 

separate study, Mordecai et al., (2017) employed mechanistic models to investigate how 

temperature affects the transmission of various mosquito-borne diseases. Ngonghala et al., 

(2021) delved into the complex dynamics of vector-borne diseases in response to temperature 

changes. Nuraini et al., (2021) developed a climate-based dengue model for Semarang, 

Indonesia, highlighting the importance of localized models. Taghikhani and Gumel (2018) 

enriched the theoretical foundation of dengue modeling by considering vector vertical 

transmission and temperature fluctuations. Wang et al., (2022) provided insights into the 

vulnerability of dengue transmission to extreme weather conditions. Finally, Xu et al., (2020) 

forecasted the outlook of dengue within the context of climate change scenarios, emphasizing 

the necessity for continuous research to tackle the evolving dynamics of dengue in a changing 

climate. These studies collectively underscore the critical relationship between climate change 

and dengue transmission, emphasizing the need for region-specific models and strategies to 

address the increasing threat of dengue in the circumstances of a varying climate. 
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Mathematical models play a vital role in understanding diseases like malaria and dengue. 

These models rely on mathematical equations, often in the form of differential equations and 

partial differential equations. They assist us in comprehending the conditions necessary for 

disease transmission and the dynamics associated with the spread of diseases. These models 

offer estimates of disease transmission and incidence under various scenarios, aiding us in 

predicting and combating these infectious diseases. 

Incorporating factors like temperature fluctuations and vector parameters is crucial in these 

models. Research indicates that daily and seasonal temperature changes significantly impact the 

transmission of diseases such as dengue. These studies are essential for our improved 

comprehension and management of these diseases. Dengue in particular remains a global health 

concern and mathematical modeling can aid in exploring solutions to mitigate its impact. 

In conclusion, mathematical modeling has significantly advanced our understanding the 

transmission dynamics of diseases like Dengue fever, HIV/AIDS & malaria. Researchers utilize 

these models to investigate the various factors influencing disease spread, assess the impact of 

interventions and treatments, and enhance our ability to control and manage these diseases on a 

global scale. 

1.3. Objectives of the Proposed Work 

Objectives of research proposal are given below. 

1. To develop the mathematical models for the analysis of severe human physiological 

problems like HIV/AIDS, malaria and dengue fever.  

2. To find the solution of the developed models by using analytical as well as numerical 

techniques like Runge-Kutta method, finite difference method, etc. The soft computing 

techniques will also used to study complex models of severe human diseases.  

3. To investigate various parameters like reproduction number, rate of spread of an infection of 

epidemic trends, the effects of treatment and vaccination, etc., which play an important role 

in understanding the transmission dynamics of above mentioned human diseases. 

4. Validation of the solution of purposed models in the study with the previous published 

research work/literature. 

1.4. Modeling of HIV/AIDS  

 Even with advanced medicines and vaccines, some diseases remain deadly worldwide. 

Human Immunodeficiency Virus (HIV) is known for causing the dangerous Acquired Immune 

Deficiency Syndrome (AIDS). HIV primarily targets the immune system of the body, 

particularly CD cells that originate in the bone marrow. Within this group of cells, certain ones 



Chapter 1                 General Introduction 

 

9 
 

are specifically targeted by the virus and become infected. T-cells a subset of lymphocytes, 

which are a type of white blood cells (WBCs), are among the key components affected by HIV 

infection. These WBCs protect the body from infections and T-cells are the front-line soldiers 

that fight against infections. There are various types of T-cells, each with its own role in 

identifying, attacking and destroying harmful agents. Alongside other WBCs, they play a critical 

role in the immune system, safeguarding the body from infections. These cells mature and 

develop in an organ in the chest called the thymus because they are initially produced in the bone 

marrow. 

 The transmission of AIDS has been a subject of debate. It is now widely accepted that bodily 

fluids, like blood transfusions, close physical contact, the use of infected needles and childbirth, 

are the primary ways this deadly disease spreads. Jones and Perelson (2005) conducted 

experiments that showed that when awake antiretroviral therapy is consistently given to HIV-1 

contaminated patients for extended periods, almost all victim reach viral loads that standard tests 

cannot detect. 

 In their study, Cai et al., (2009) formulated an ODEs model related to HIV/AIDS, focusing 

on the transitions of infected individuals from the symptomatic to the asymptomatic stage while 

considering different treatment options. Meanwhile, the significance of systematic reviews and 

meta-analyses in identifying risk factors for infections is growing, exerting influence on global 

policy decisions (cf. Tacconelli and Cataldo, 2009; Smallbone and Simeonidis, 2009). 

1.4.1. Basic Model of HIV/AIDS 

Let the entire sexually active population be denoted as N , which is further classify into two 

class: the vulnerable (HIV-negative) denoted as S , and the infected denoted as I .   is 

commonly understood as the rate at which individuals join the sexually active population over a 

specific period, while the departure of individuals from this population is indicated by the rate  . 

Moreover,   represents the likelihood of contracting HIV in a single sexual partnership with an 

HIV-positive human and c  denotes the rate at which new partnerships are formed. It is 

hypothesized that individuals who contract HIV experience an increased probability rate equal to . 

 

Figure 1.2: Transition diagram illustrates the dynamics of HIV.  
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The rate of new infections is calculated by multiplying the estimate at which recently developed 

association are formed )(c , the rate at which the single sexual partnerships with an HIV-positive

)( , and the chance that the partner is HIV-positive 








N

I
. The following is an expression of the 

model in terms of differential equations: 

S
N

I
cSS  








         (1.1) 

 I
N

I
cSI  








          (1.2) 

Notations:                                                     

 : Individuals entering the sexually active population at rate of µ. 

 : Likelihood of contracting HIV from a single sexual partner. 

c : The rate at which new alliances are established. 

 : Rate of increase of HIV infected individuals. 

1.5. Modeling of Malaria 

The word malaria comes from the Latin word “malaria”. The Romans observed illness after 

night air walks. Dr. Ronald Ross, a British medical officer in Hyderabad, India, first identified 

mosquitoes as malaria transmitters about a century ago. His Nobel Prize-winning research in 

1902 discovered that the black pigment found in human disease also exists in mosquito bellies. 

He developed the traditional Ross model, a foreordained distinctive calculative replica for 

malaria that includes susceptible )( hS  and infected )( hI  compartments. Mosquitoes with 

compartments ),( mm IS  adhere to the SI structure due to their inability to recover from infection. 

Ross investigated the evolution of infected class fractions ),( mh II  using two differential 

equations, one for humans and one for mosquitoes. 

One in every five children in Africa dies before the age of five, with a malaria parasite taking 

a kid every 30 seconds and causing over a million deaths each year. Malaria impacts 300 million 

individuals’ worldwide, killing 1-1.5 million people each year. Malaria, which is caused by 

Plasmodium parasites and spread by female Anopheles mosquitoes, was mathematically 

modeled by Ross in 1911. Factors influencing infected vector movement effect disease 

transmission, which is shaped by parasite, vector and host interactions. The first models were 
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two-dimensional and represented humans and mosquitoes. Mathematics, notably in the SIR 

model plays a significant role in infectious diseases, categorizing states as susceptible, infectious 

and recovered. 

The model, which investigates malaria control through mass treatment and insecticides, takes 

into account sensitive and resistant parasite strains. Malaria-induced human mortality is linked to 

the backward bifurcation phenomena. Humans enter the system in a susceptible state at birth
1 , 

move to an infectious state when contracting the disease 
1  and can recover 

2  or exit via death 

d . Immigration and natural death occur at rates
2 , with the total population denoted as N 

(Forouzannia and Gumel, 2014; Erin et al., 2013). Mathematical modeling facilitates the 

examination of malaria indicators, translating measurable data into transmission measures, 

addressing concerns with traditional methods and allowing direct comparisons across 

transmission intensities and seasonal patterns. 

 

       Figure 1.3: Transition diagram of the SIR model of malaria. 

Figure 1.3 can be explained using the mass action law and a set of differential equations. 

 SS 211            (1.3) 

 IdSI  221          (1.4) 

RIR 22            (1.5) 

Ngwa and Shu (2000) adopt an immunity model wherein the total population fluctuates and a 

notably high disease-related death rate is taken into account. This model comprises four human 

compartments: (i) Susceptible )( hS , (ii) Exposed )( hE , (iii) Infected )( hI , and (iv) Immune 

)( hR . Additionally, the mosquito component includes three compartments: (i) Susceptible )( mS , 

(ii) Exposed )( mE and (iii) Infected )( mI . 

To investigate mosquito population dynamics, Parham and Michael propose a model 

incorporating the concurrent impacts of rainfall and temperature. The human component of the 

model comprises three compartments ),,( hhh RIS  with a fixed latency duration, while the 

mosquito component includes three compartments ),,( mmm RIS . Environmental elements are 
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incorporated into the model through parameters associated with mosquitoes. Adult mosquito 

birth rates are modeled as functions influenced by both rainfall and temperature. Additionally, 

various mosquito-related factors such as mortality rates, biting rates, sporogonic cycle duration 

and the likelihood of infected mosquitoes surviving during the parasite’s incubation time are all 

temperature-dependent. The significance of this model lies in its ability to demonstrate the 

variations in the patterns of rainfall not only impact vector abundance but also play a crucial role 

in governing malaria endemicity, invasion and extinction. Nevertheless, in situations where 

sufficient rainfall supports vector development and survival, temperature primarily influences the 

pathogen life cycle, exerting a more significant impact on the rate of disease spread. 

Describing the fundamental process of infectious agent transmission in the host population is 

essential in epidemiological compartment models. When a pathogen emerges within a host 

community, individuals are classified based on factors such as parasite density and infection 

type. Following the convention established by Kermack and McKendrick (1927), these 

categories are denoted by the standard notations S , E , I  and R . The susceptible group 

constitutes a fraction of the population vulnerable to infection, while the exposed E  class 

represents individuals infected but incapable of transmitting the infection during the latent 

period. The infectious I  class comprises individuals who propagate the infection through 

interactions with susceptible individuals. Lastly, those recovering from the infection constitute 

the R  class. 

1.6. Modeling of Dengue 

Dengue is acknowledged as a highly perilous illness with the potential for fatal outcomes. 

The disease results from one of four identified strains of the flavivirus, specifically DEN-1, 

DEN-2, DEN-3 and DEN-4. Transmission primarily occurs through female Aedes aegypti 

mosquitoes and in certain instances, Aedes albopictus can also be implicated in transmitting the 

disease. The modes of transmission include the transfer of the disease from adult female 

mosquitoes to their offspring, mechanical transmission from a non-infected human and passing 

on from a transmissible mosquito to a healthy person. 

1.6.1. Basic SIR Model for Dengue Fever 

A basic mathematical model for dengue fever can be constructed using the SIR (Susceptible-

Infectious-Recovered) framework. In this model, the citizenry is divided within three 

compartments: (i) susceptible )(tS , (ii) infectious )(tI  and (iii) recovered )(tR . Individuals 
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move from the susceptible to the infectious compartment upon infection and then to the 

recovered compartment after they have improved from the disease and gained invulnerability. 

 

Figure 1.4: Transition diagram of the SIR model of dengue fever. 

The framework comprises the subsequent set of differential equations: 

SIS            (1.6) 

ISII             (1.7) 

IR            (1.8) 

Notations: 

 : The rate at which transmission occurs from susceptible individuals to those who have 

become infected. 

 : The rate at which infected individuals recover and are classified as recovered individuals. 

The basic SIR model assumes constant population size and homogeneous mixing within the 

population. This model yields insights into the dynamics of the disease, such as the potential for 

outbreaks, the impact of different interventions (such as vaccination or vector control) and the 

eventual establishment of immunity in the population. The model’s parameters   and   can be 

estimated based on available data and can vary based on factors such as the mosquito population 

density, human behavior and climate conditions. 

1.7. Main Terms Used in the Thesis 

1.7.1. Stability Analysis 

Stability analysis is a fundamental aspect of understanding the behavior of mathematical 

models in epidemiology. It helps determine the conditions under which a disease-free or endemic 

equilibrium is stable or unstable, thus providing insights into the long-term behavior of the 

disease within a population. This section introduces the basic concepts and methodologies used 

in the stability analysis of epidemiological models. 

 Locally Asymptotically Stable 

A system is locally asymptotically stable if the following conditions are met: 

1. Equilibrium Point: There exists an equilibrium point 0x . 
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2. Local Stability: The equilibrium point is stable in the sense of Lyapunov, meaning for 

every small initial condition )0(x  close to 0x , the solution )(tx  remains close to 0x  

for all 0t . 

3. Asymptotic Stability: Additionally, )(tx  not only remains close to 0x  but also tends 

to 0x  as t . 

Mathematically, this means that for any given 0 , there exists a 0  such that if 

)0(x , then )(tx  for all 0t , and 0)(lim  txt . 

 Globally Asymptotically Stable 

A system is globally asymptotically stable if the following conditions are met: 

1. Equilibrium Point: There exists an equilibrium point 0x . 

2. Global Stability: The equilibrium point is stable in the sense of Lyapunov for any initial 

condition )0(x  in the entire state space, meaning the solution )(tx remains bounded and 

close to 0x  for all 0t regardless of the initial state. 

3. Asymptotic Stability: Additionally, )(tx tends to 0x as t for any initial condition 

)0(x  in the entire state space. 

Mathematically, this means that for any initial condition )0(x  in the entire state space, 

0)( tx as t . 

1.7.1.1. Equilibrium Points  

In the context of infectious disease modeling, equilibrium points (also known as steady states) 

are values of the state variables (e.g., susceptible, infected, and recovered individuals) where the 

system does not change over time. These can be classified into: 

 Disease Free Equilibrium (DFE) 

The disease-free equilibrium is a key concept in epidemiological modeling. It represents a 

situation where a population is entirely free from a specific infectious disease. In this state, 

no individuals in the population are infected with the disease, and the transmission of the 

disease has been effectively controlled or eradicated.  

Mathematically, the DFE happens when there is no new contamination in the inhabitants. In 

epidemiological models, this equilibrium is typically elaborated by a set of equations where 

the number of new infections is counterbalanced by factors like recovery, immunity, or other 

mechanisms preventing the disease from spreading.  
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The DFE is a critical concept because it sheds light on the conditions necessary to prevent or 

eliminate a disease from a population. It guides public health officials and policymakers in 

designing effective interventions such as vaccination campaigns and quarantine measures to 

establish and sustain a disease-free state in a population. 

 Endemic Equilibrium (EE) 

In epidemiology, endemic equilibrium describes a situation where an infectious disease 

maintains a stable and consistent presence within a population for an extended period. At this 

equilibrium, the disease persists at a relatively constant level, with new infections balanced 

by recoveries and other factors, resulting in steady disease prevalence.  

Mathematically, endemic equilibrium occurs when the number of new the capable of equals 

the number of recoveries or disease-related deaths. In epidemiological models, this 

equilibrium is represented by equations that balance the rates of infection and recovery, 

creating a stable state of disease prevalence.  

Importantly, endemic equilibrium doesn’t mean that every individual in the population is 

affected simultaneously; rather it signifies that the disease has become a predictable and 

stable part of the population’s health profile. Factors contributing to endemic equilibrium 

may include immunity, vaccination, and other interventions that influence disease 

transmission dynamics within the population. 

1.7.1.2. Methods of Stability Analysis 

 Linear Stability Analysis 

This method involves linearizing the nonlinear system around the equilibrium point and 

analyzing the eigenvalues of the resulting Jacobian matrix. 

1. Jacobian Matrix: The matrix of first-order partial derivatives of the system’s equations 

evaluated at the equilibrium point. 

2. Eigenvalues: The sign of the real part of the eigenvalues determines stability: 

 If all eigenvalues have negative real parts, the equilibrium is locally 

asymptotically stable. 

 If any eigenvalue has a positive real part, the equilibrium is unstable. 

 Reproduction Number 

The reproduction number is a fundamental concept in epidemiology used to measure the 

transmission potential of a disease within a population. 
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Basic Reproduction Number  0R  

The basic reproduction number 0R  is defined as the average number of secondary infections 

produced by a single infected individual in a completely susceptible population (i.e., where 

no one is immune). 

 If 10 R : Each infected individual, on average, infects more than one other person, 

leading to the potential for an outbreak or epidemic, as the disease can spread 

exponentially. 

 If 10 R : Each infected individual, on average, infects exactly one other person, leading 

to a steady state where the disease remains in the population at a constant level. 

 If 10 R : Each infected individual, on average, infects less than one other person, 

leading to the eventual decline and possible eradication of the disease. 

 Lyapunov’s Method of Stability 

Lyapunov’s method is a widely used technique in control theory to determine the stability of 

a dynamical system. The method involves constructing a Lyapunov function, a scalar 

function that provides a measure of the system’s energy or a generalized measure of distance 

from equilibrium.  

 Lyapunov’s Direct Method 

Basic Concepts: 

1. Lyapunov Function: A Lyapunov function )(xV  is a scalar function that is continuously 

differentiable and satisfies certain properties to help determine stability. 

2. Equilibrium Point: The equilibrium point 0x  is the state at which the system does not 

change, i.e., 0)(  xfx . 

Steps to Use Lyapunov’s Direct Method: 

1. Choose a Candidate Lyapunov Function )(xV : 

 )(xV  should be positive definite: 0)( xV for all 0x and 0)0( V . 

2. Compute the Time Derivative )(xV : 

 Calculate the derivative of )(xV  along the system trajectories: 

)().()( xfxV
dt

dV
xV  . 

3. Analyze the Sign of )(xV : 
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 If )(xV  is negative definite  xallforxV 0)(  , the equilibrium at 0x  is 

asymptotically stable. 

 If )(xV  is negative semi-definite  xallforxV 0)(  , the equilibrium at 0x  is 

stable in the sense of Lyapunov. 

 If )(xV  is positive definite or not negative semi-definite, the equilibrium is unstable. 

 Lyapunov’s Indirect Method (Linearization Method) 

This method is useful when finding a Lyapunov function is difficult, the indirect method (or 

linearization method) can be used. 

Steps to Use Lyapunov’s Indirect Method: 

1. Linearize the System Around the Equilibrium Point: 

 For a nonlinear system )(xfx  , linearize it around the equilibrium point 0x  to 

obtain Axx  , where 0| 



 x

x

f
A is the Jacobian matrix. 

2. Analyze the Eigenvalues of the Jacobian Matrix A : 

 If all eigenvalues of A  have negative real parts, the equilibrium point is 

asymptotically stable. 

 If any eigenvalue has a positive real part, the equilibrium point is unstable. 

 If eigenvalues have zero real parts or purely imaginary eigenvalues, further analysis is 

required (the system may be stable, asymptotically stable or unstable). 

1.7.2. Population Dynamics 

Population dynamics is the branch of ecology that investigates how populations evolve in 

terms of size, composition and distribution over time and space. It encompasses a wide range of 

species, from animals to plants and microorganisms, and is essential for comprehending 

ecological processes and interactions in ecosystems. This field delves into factors such as birth 

rates, death rates, immigration, and emigration patterns within a population. Environmental 

factors like resource availability, predation, disease and competition all play a role in population 

size. Through the study of population dynamics, ecologists and researchers uncover the 

underlying mechanisms that influence ecosystems, species relationships, and biodiversity. 

Mathematical models are commonly used to simulate and forecast population changes under 

different scenarios. These models help scientists grasp complex ecological systems and make 

predictions about the future dynamics of populations. As a result, population dynamics hold 
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great importance in fields like conservation biology, wildlife management and the evaluation of 

the effects of human activities on natural ecosystems. 

1.7.3. Latent Period 

The latent period in mathematical modeling, commonly employed in epidemiology and other 

disciplines refers to the time lapse between an initial event or exposure and the appearance of a 

specific effect or outcome. In epidemiological modeling, it denotes the duration between a 

person contracting a pathogen, such as a virus, and the point at which they become infectious or 

display symptoms. This period signifies the time during which the pathogen replicates within the 

host but has not yet reached a detectable or transmissible level. Represented mathematically as    

in equations, the choice of an appropriate latent period value is pivotal for accurately modeling 

the transference of communicable diseases, influencing the timing and scale of outbreaks in 

addition to the efficacy of the control plan. 

1.7.4. Prevention and Control Measure 

In mathematical modeling, a control measure refers to interventions, strategies, or actions 

implemented to manage a specific phenomenon, like infectious disease spread, environmental 

pollution or economic fluctuations. These measures manipulate mathematical model parameters 

to achieve goals, such as reducing transmission rates or stabilizing conditions. In infectious 

disease modeling, control measures include vaccinations, quarantine and social distancing, often 

altering parameters like transmission rates. Researchers use these adjustments to simulate and 

assess the effectiveness of different strategies in containing disease spread. Control measures aid 

policymakers and public health officials in making informed decisions during outbreaks or crises 

with mathematical models helping evaluate their impact and select efficient strategies to 

minimize adverse effects. 

1.7.5. Compartment Analysis 

Compartmental analysis in mathematical modeling involves breaking down a complex 

system into interconnected compartments, with each representing a specific subpopulation or 

state variable. This approach is widely used in fields like epidemiology, pharmacokinetics, 

ecology and economics to study various processes. Using differential equations, researchers 

describe how variables within each compartment change over time, capturing interactions and 

flows between them. By mathematically modeling these relationships, scientists gain insights 

into the system’s behavior, predict outcomes and explore different scenarios. Compartmental 



Chapter 1                 General Introduction 

 

19 
 

analysis simplifies the study of complex systems by dividing them into manageable parts, 

facilitating mathematical analysis of interactions and dynamics. 

1.7.6. Application to Specific Models 

 HIV/AIDS Model 

For the HIV/AIDS transmission model, we identify the equilibrium points by setting the 

differential equations to zero and solving for the state variables. We then perform linear 

stability analysis by evaluating the Jacobian matrix at these points. The basic reproduction 

number 0R  is derived, and its implications on stability are discussed. 

 Malaria Model 

In the malaria model, the stability of the DFE and EE is analyzed through similar procedures. 

The role of the mosquito population in transmission dynamics is considered and vector 

control measures are evaluated in terms of their impact on 0R  and equilibrium stability. 

 Dengue Fever Model 

For dengue fever, which often involves multiple serotypes the model’s complexity increases. 

Stability analysis includes evaluating the impact of cross-immunity and the role of vector 

control. The conditions for the stability of multiple equilibria are explored and 0R  is 

calculated for each serotype. 

1.8. Mathematical Preliminaries 

Mathematical modeling of infectious diseases relies on various analytical techniques to 

understand and predict the dynamics of disease spread. This section introduces three 

fundamental methods used in the stability analysis of epidemiological models: the Jacobian 

method, the next generation technique and the Routh-Hurwitz condition. These methods provide 

essential tools for determining the stability of equilibrium points and understanding the behavior 

of disease transmission within a population. 

1.8.1. Jacobian Method 

The Jacobian method is a crucial analytical tool used to study the local stability of equilibrium 

points in nonlinear differential equations, which are often used to model the transmission 

dynamics of infectious diseases. This method involves linearizing the system around the 

equilibrium points and analyzing the resulting linear system to determine stability. 

1. Formulation of the Model 
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Consider a general system of ordinary differential equations (ODEs) representing an 

epidemiological model: 

 XF
dt

dX
 , 

where  nxxxX ,.....,, 21 is a vector of state variables (e.g., susceptible, infected and recovered 

individuals) and         XFXFXFXF n,....,, 21  is a vector of nonlinear functions describing 

the rates of change of these state variables. 

2. Determination of Equilibrium Points 

Equilibrium points (or steady states) of the system are found by setting the time derivatives to 

zero:  

  0XF . 

Solving this system of equations provides the equilibrium points    321 ,.....,, xxxX . 

3. Linearization around the Equilibrium Point 

To analyze the stability of an equilibrium point
X , the system is linearized around

X  by 

computing the Jacobian matrix J of the system at
X . The Jacobian matrix, defined as the matrix 

of first-order partial derivatives of F evaluated at
X , is given by 



















XXj

i

x

F
J , where nji  ,1 .  

This matrix encapsulates the local behavior of the system around the equilibrium and is used to 

determine the stability of the equilibrium by analyzing its eigenvalues. 

1.8.2. Next Generation Techniques 

 This technique is utilized to calculate the fundamental reproduction number within the 

context of epidemiological models. To provide a brief explanation, consider an autonomous 

method with non-negative starting conditions represented as: 

     yVyFyfy jjjj   for mj .....3,2,1      (1.9) 

where   jjj VVV . 

Let Y be the collection of all the system’s equilibrium points that are free of sickness (1.9), 

defined as  0:0  jyy  for mj ,.....2,1 . Here,  tmyyyy ,......, 21 , with 0jy  indicating 

the total number of people in each infectious illness model segment. 
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The method involves the following conditions: 

a) If 0y , then 
jF , 

jV , and 

jV  are all greater than or equal to 0. 

b) If 0jy , it implies 0

jV , especially for Yy  where 0

jV  for mj ,....2,1 . 

c) 0jF  for mj  . 

d) For Yy , 0)( yF j
, and 0)( yV j

for all mj ,.....2,1 . 

e) If   0yF , then all the eigenvalues of  0yDf  have negative real parts, 

where )( yF j
 represents new infections in the jth partition, 

jV is the transition rate of individuals 

into the jth compartment, and 

jV  is the transition rate of individuals leaving the jth compartment. 

1.8.3. Routh-Hurwitz Conditions 

 The stability of systems of ordinary differential equations is assessed based on the roots of a 

polynomial. This analysis centers on a linear system of equations represented in vector form, 

given by  

 zA
dt

zd
                                                                                          (1.10)                                                             

where A  represents the coefficient matrix resulting from the linearization of nonlinear terms. 

Solutions are obtained by assuming  

 t
ezz 1

0




         
(1.11)                                                                                                                  

where 0z  is a constant vector, and the eigenvalues 1  can be identified as the solutions to the 

characteristic equation 

 01  IA                                                                                       (1.12)  

with I  being the identity matrix. The stability of the solution 0z  is determined by the location 

of roots 1  in the complex plane. If all the roots lie in the left hand complex plane 

  rootsallfore 01   , then the solution 0z  is stable and it decays exponentially as t  

approaches zero. This indicates stability to small perturbations. 

For a system of nth order, the characteristic polynomial can be represented as  

n

nn
kkP 


.......)(

1

1111                                                                     (1.13)                                              

where the coefficient nkkk ,...,, 21 are all real. It is crucial to establish conditions on these 

coefficients to ensure that the zeros of )( 1P  have   01  e . The Routh-Hurwitz conditions 
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provide essential and satisfactory criteria for stability and one of these conditions, in conjuction 

with 0nk , is 

011  kD , 0
1 2

31

2 
k

kk
D ,  0

0

1

31

42

531

3 

kk

kk

kkk

D ,  …… 

                            
.,.....,3,2,1,0

..000

......

...0

...1

...

31

42

531

ni

k

kk

kk

kkk

D

i

i 
  (1.14)  

1.9.  Numerical Methods 

 Analytically solving a set of differential equations might be difficult at times. To address this 

issue, numerical techniques are used, which provide solutions that, while not accurate, are close 

to the analytical solutions. In our computational research, we used the MATLAB software, 

which allows us to evaluate approximation results using a variety of numerical approaches. 

 Runge-Kutta Method 

In the field of numerical analysis, Runge-Kutta methods stand out as a crucial family of iterative 

methods, both implicit and explicit, utilized for temporal discretization in approximating 

solutions of ordinary differential equations (ODE). These methods are precisely designed to 

deliver increased accuracy and possess the benefit of necessitating only function values at 

specific points within subintervals. 

Researchers widely adopt the Runge-Kutta numerical technique to solve sets of differential 

equations and determine transient probabilities of system states due to its precision, reliability, 

and ease of programming. Among the frequently utilized Runge-Kutta methods in mathematical 

modeling, RK4 is particularly noteworthy. It combines simplicity with effectiveness. 

To calculate transient state probabilities using the fourth-order Runge-Kutta method, a MATLAB 

programme is developed employing the ode45 routine. This iterative procedure involves the following 

steps: 

 43211 22
6

1
VVVVii          (1.15) 

where 

 111 ,   iitcfV , 







  1112

2

1
,

2

1
, VhtcfV ii , 








  2113

2

1
,

2

1
, VhtcfV ii  , 

 3114 , VhtcfV ii   . 
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 Eigen Values and Eigen Vectors 

An eigenvalue   signifies a scalar factor by which an eigenvector v


 is scaled when the 

transformation matrix A  is applied to it.  

Mathematically, for a square matrix A , an eigenvalue   and its corresponding eigenvector v


 

satisfy the equation 

vvA


         (1.16) 

where v


 is a non-zero vector.  

 How Do We Calculate the Eigen Values and Eigen Vectors 

Determining eigenvalues involves solving the characteristic equation for a given square matrix 

A , which is obtained by subtracting  times the identity matrix from A . The characteristic 

equation is represented as  

  0det  IA          (1.17)  

where det  denotes the determinant,  represents the eigenvalue, and I  is the identity matrix. 

Solving this equation yields the eigenvalues for A . Once the eigenvalues are identified, 

eigenvectors can be found by substituting each eigenvalue back into the equation 

  0 vIA


         (1.18)  

where v


 is the eigenvector corresponding to the respective eigenvalue. This process allows us to 

calculate both the eigenvalues and eigenvectors, providing essential insights into the behavior of 

the matrix in linear transformations and system dynamics. 

 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that 

combines the learning capabilities of neural networks with the reasoning capabilities of fuzzy 

logic. This integration allows ANFIS to leverage the strengths of both techniques, making it a 

powerful tool for modeling complex systems and computing numerical results. 

 Overview of ANFIS 

ANFIS operates by constructing a fuzzy inference system within the framework of adaptive 

networks. The system consists of a set of fuzzy if-then rules with appropriate membership 

functions to generate the stipulated output. The key components of ANFIS include: 

Fuzzy Logic: Provides a way to represent uncertain and imprecise information through 

linguistic variables and fuzzy sets. 

Neural Networks: Utilized for learning from data and adjusting the membership functions 

and fuzzy rules to optimize the performance of the system. 
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 Structure of ANFIS 

In Figure 1.5, the architecture of ANFIS, which consists of five layers: the input, fuzzy, 

normalization, rule, and output layers, is depicted. This combined system integrates the 

advantages of both fuzzy logic and neural networks, making it suitable for various applications, 

including control systems, pattern recognition, and prediction. 

 

Figure 1.5: ANFIS Architecture 

The ANFIS architecture typically comprises five layers: 

Input Layer: Accepts the input variables. 

Fuzzy Layer: Converts crisp inputs into fuzzy sets using predefined membership functions. 

Normalization Layer: Normalizes the firing strengths of the rules. 

Rule Layer: Contains fuzzy if-then rules that describe the relationship between input and 

output variables. 

Output Layer: Converts the fuzzy outputs back into crisp values. 

 Application of ANFIS in This Thesis 

In this thesis, ANFIS is specifically employed to compute numerical results for the HIV 

transmission dynamics explored in Chapter 3. The use of ANFIS offers several advantages: 

Modeling Nonlinear Relationships: ANFIS is adept at capturing complex nonlinear 

relationships between variables, which is essential in epidemiological modeling. 

Data-Driven Approach: ANFIS can learn from data, making it possible to refine the models 

based on empirical observations and improve the accuracy of predictions. 

Flexibility: The system can adapt to various scenarios by adjusting the fuzzy rules and 

membership functions, thus accommodating the diverse nature of disease transmission dynamics. 
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Chapter 2: Stability Analysis of HIV/AIDS Transmission: A        

        Mathematical Model for Sex Labourers 

2.1. Introduction 

The exploration of epidemics and critical illnesses has been steeped in a profound historical 

context, punctuated by a diverse array of mathematical models crucial for comprehending the 

propagation and underlying causes of epidemic outbreaks. These models serve as indispensable 

tools in understanding the intricate dynamics of diseases that can be transmitted through 

various means, including infection or sexual contact between susceptible individuals and those 

already infected. Among these, Sexually Transmitted Diseases (STDs) stand as a pressing 

concern, with the Human Immunodeficiency Virus (HIV), capable of progressing to Acquired 

Immunodeficiency Syndrome (AIDS), emerging as one of the most perilous and widely spread 

diseases globally. 

This chapter embarks on a nuanced exploration into the dynamics of HIV/AIDS 

transmission with a specific lens trained on female sex workers, an inherently vulnerable 

population segment. It intricately dissects the multifaceted compartments within populations, 

unraveling the complexities and subtleties of disease spread within this context. Beyond mere 

observation, this analysis delves into the underlying mechanisms governing the interplay 

between different population strata, shedding light on the unique challenges and dynamics 

inherent in the transmission and persistence of HIV/AIDS within this specific demographic. 

Understanding the transmission dynamics of HIV/AIDS among female sex workers 

necessitates a multidimensional approach that transcends conventional epidemiological models. 

It demands an acute awareness of socio-cultural determinants, healthcare access disparities, 

behavioral patterns and economic factors influencing the spread and persistence of this disease 

within this vulnerable cohort. By contextualizing mathematical modeling within the intricate 

web of socio-economic and behavioral determinants, this chapter seeks to unravel not only the 

quantitative aspects of disease spread but also the qualitative facets that underpin its 

persistence.  

Furthermore, this analysis seeks to examine the efficacy of various intervention strategies 

within the realm of mathematical modeling. By simulating scenarios and interventions through 

mathematical models, the chapter aims to forecast the potential impact of preventive measures, 

healthcare access improvements, and behavioral interventions on curbing HIV/AIDS 

transmission among female sex workers. This predictive aspect of mathematical modeling 

stands as a testament to its applicability not only in understanding the present state but also in 
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projecting potential trajectories and outcomes based on hypothetical interventions, thereby 

guiding policymakers and healthcare professionals in formulating evidence-based strategies. 

This approach goes beyond traditional epidemiological studies, aiming to merge 

mathematical rigor with an understanding of the multifaceted realities faced by female sex 

workers. It endeavors to provide a holistic framework that integrates mathematical modeling 

with socio-economic and behavioral insights, not only to comprehend the transmission 

dynamics but also to devise targeted interventions that address the specific needs and 

challenges faced by this marginalized population, fostering a more inclusive and effective 

approach in combating the spread of HIV/AIDS. 

In this chapter, we introduce a mathematical model that explores the active nature of 

HIV/AIDS transmission within the realm of female sex workers, taking into account various 

distinct population compartments. The subsequent sections are structured as follows: Section 

2.2 provides a detailed literature and Section 2.3 provides a comprehensive overview of the 

assumptions, notations and model description. Moving on to Section 2.4, we delve into the 

analysis of the model. Section 2.5 showcases numerical illustrations and finally in Section 2.6, 

we draw a summary and conclusion based on our findings. 

2.2. Literature Review 

Building on the rich history of epidemic modeling, various researchers have made 

significant contributions to our understanding of HIV/AIDS transmission dynamics. 

Mukandavire and Garira (2007) crafted a sex-structured mathematical model tailored to 

examine HIV/AIDS transmission within heterosexual populations, offering insights into the 

complexity of such transmission dynamics. Wu and Tan (2000) took a steady-state approach, 

enabling the estimation of AIDS cases and the number of infectious individuals across various 

stages, employing Kalman recursion to enhance our grasp of the epidemic. Cai et al., (2009) 

delved into an HIV/AIDS outbreak mock-up incorporating treatment options, shedding light on 

the potential impact of medical care on sickness dynamics. Jain et al., (2010) provided a 

detailed analysis of the active way of behaving of T-lymphocyte cells in the surroundings of 

Human Immunodeficiency Virus type 1 (HIV-1) contamination. Additionally, Singh et al., 

(2013) observed the intricate transmission dynamics of malaria, tuberculosis (mTB), 

HIV/AIDS, and their co-infections. Singh et al., (2016) performed an extensive examination of 

a mathematical model, specifically centering on the influence of treatment within the 

framework of the HIV/AIDS epidemic. In a distinct study, Kaur et al., (2014) explored a 

nonlinear model, underscoring the pivotal involvement of female intercourse workers in the 
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transmission dynamics of the HIV/AIDS epidemic. Huo and Feng (2013) advanced our 

understanding by constructing an HIV/AIDS epidemic model that accounts for various latent 

stages and treatment possibilities. Ali et al., (2019) developed a nonlinear compartmental 

model, investigating the influence of media coverage on infectious disease control and 

prevention. 

Continuing to expand our understanding of HIV/AIDS transmission dynamics, several 

researchers have introduced novel epidemic models with unique compartments and factors. 

Huo et al., (2016) innovatively incorporated a modern compartment, known as the treatment 

compartment (T), into their HIV/AIDS epidemic model, providing valuable insights into the 

dynamics of treatment interventions. Furthermore, Huo et al., (2018) formulated an SEIS 

outbreak version, taking into consideration the effect of means of communication and 

emphasizing its role in shaping public perception and response to the epidemic. Jia and Qin 

(2017) described an HIV/AIDS epidemic model with a standard nonlinear prevalence rate and 

treatment, contributing to the exploration of diverse transmission dynamics. Biswas and Pal 

(2017) introduced a comprehensive nonlinear mathematical model that considers vaccination 

and antiretroviral treatment, aiming to elucidate the model’s insights and analyze the 

boundedness of its solutions. Their research extended our knowledge about intervention 

strategies. Moreover, Wu and Zhao (2021) collected data to investigate the worldwide 

dimensions of the HIV/AIDS epidemic and to scrutinize its transmission within the 

demographic of men who engage in sexual activity with other men.  Lastly, Kumar et al., 

(2021) ventured into creating a numerical model of HIV/AIDS transference dynamics, 

incorporating the impact of mindfulness and analyzing the model with three distinct singular & 

non-singular fractional operators, thus expanding the range of factors considered in 

understanding epidemic spread. 

In recent years, several significant contributions have been made to the field of HIV/AIDS 

modeling and epidemiology. Wattanasirikosone and Modnak (2022) presented an innovative 

mathematical model employing a distinctive approach that specifically addressed two separate 

categories: individuals with HIV and those with AIDS. Notably, they introduced a controlled 

class involving treated patients under monitoring, some of whom could potentially transmit the 

disease. Most recently, Izadi et al., (2023) conducted a cross-sectional survey among female 

sex workers in various cities in Iran to estimate HIV infection prevalence and high-risk 

behaviors. Subsequently, Das et al., (2023) developed a mathematical model that considers 

time delays and co-infection dynamics within the context of TB, HIV, and AIDS. Moreover, 

Gurski and Hoffman (2023) introduced an autonomous population model that accounts for the 
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possibility of infection from casual or long-term partners, whether initially infected or newly 

infected since the partnership began. In that identical year, Zhai et al., (2023) developed a 

stochastic HIV/AIDS model that incorporated protection awareness among susceptible 

individuals within a total population. These studies collectively contribute to our understanding 

of HIV/AIDS epidemiology and modeling. 

2.3. Mathematical Model 

In this model, we assume that individuals enter the susceptible class, comprising males, 

females, and female sex workers, primarily through processes like birth. Initially, the 

transmission dynamics involve susceptible males getting infected at a rate determined by the 

infective classes of females and female sex workers. Similarly, susceptible females and female 

sex workers acquire infections through the transmission rate associated with infected males. 

Subsequently, individuals in the HIV-infected classes of males, females and female sex 

workers progress to their respective AIDS classes. The total population engaged in sexual 

activity at a given time t , denoted as )(tN , is categorized into twelve distinct and non-

overlapping groups. These groups include the HIV-susceptible class of males, females and 

female sex workers ),,( wfm SSS , HIV slow-infective classes of males, females and female sex 

workers ),,( 111 wfm III , HIV fast-infective classes of males, females and female sex workers 

),,( 222 wfm III , and the full-blown AIDS class of males, females and female sex workers 

),,( wfm AAA . Recruitment rates for the male, female and female sex-worker populations are 

denoted as 21,
 
and 3 , respectively. Transmission rates from infective groups of females 

and female sex workers to susceptible groups of males, respectively, are represented by 

2,1;, imwimfi  . The current evaluation is focused on determining the transmission rate from 

infected males to susceptible females, and female sex workers are denoted as 2,1;, iwmifmi  . 

Rates of progression from the HIV slow-infective category in males, females and female sex 

workers to the fast-infective HIV category, respectively, are denoted as 11 , fm  and 1w . 

Progression rates from HIV-infected individuals of male, female, and female sex workers to the 

respective AIDS classes are denoted as fimi  , and 2,1; iwi . The natural death rate constant 

is denoted as  , while fm,  and w  denote the disease-induced mortality rate in AIDS classes, 

respectively. The transition diagram depicting the developed model is illustrated in Figure 2.1. 

These specified variables, parameters and assumptions lead to a deterministic system of non-

linear differential equations describing the model. 
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Figure 2.1: Effective model of HIV/AIDS transmission. 

Table 2.1: Definition of state parameters use in the model 

Symbols Description 

321 ,,   Birth rates in different susceptible classes of males, females and  

female sex workers, respectively. 

2,1;, imwimfi   
The speed at which infection spreads from infectious groups of 

females and female sex workers to the vulnerable group of males, 

correspondingly. 

2,1;, iwmifmi   
The current evaluation is focused on determining the transmission 

rate from infected males to susceptible females and female sex 

workers. 

111 ,, wfm   
Rates of progression from the HIV slow-infective category in 

males, females and female sex workers to the fast-infective HIV 

category, respectively. 

2,1;,, iwifimi   Progression rates from HIV-infected groups of men, women and 

female sex workers to their corresponding stages of AIDS. 

  Constant mortality rates over time. 

wfm ,,  The mortality rate resulting from the disease in the AIDS classes,  

respectively. 

2.3.1. Model Equations 

The relevant model equations are given as following: 

I. Male compartment 

mwmmwwmmwfmmffmmfm SISISISISS   221122111   (2.1) 

11111111 )( mmmwmmwfmmfm IISISI        (2.2) 
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221122222 )( mmmmwmmwfmmfm IIISISI       (2.3) 

mmmmmm AmIIA )(2211          (2.4) 

II. Female compartment 

fmffmmffmf SISISS   22112       (2.5) 

111111 )( fffmffmf IISI         (2.6) 

2211222 )( ffffmffmf IIISI         (2.7) 

ffffff AfIIA )(2211          (2.8) 

III. Female sex-worker compartment 

wmwwmmwwmw SISISS   22113       (2.9) 

111111 )( wwwmwwmw IISI         (2.10) 

2211222 )( wwwwmwwmw IIISI         (2.11) 

wwwwww AwIIA )(2211          (2.12) 

To simplify the system of equations, let’s consider the following substitutions: 

  111 mmv ,   22 mv ,   113 ffv ,   24 fv ,   115 wwv ,

  26 wv , mv 7 , fv 8 and .9 wv   

In a manner that facilitates the rewriting of equations (2.1)-(2.12),

 

mwmmwwmmwfmmffmmfm SISISISISS   221122111   (2.13) 

1111111 mwmmwfmmfm IvISISI         (2.14) 

231122222 mmmwmmwfmmfm IvIISISI        (2.15) 

mmmmmm AvIIA 72211          (2.16) 

fmffmmffmf SISISS   22112       (2.17) 

13111 fmffmf IvISI           (2.18) 

2411222 fffmffmf IvIISI          (2.19) 
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ffffff AvIIA 82211          (2.20) 

wmwwmmwwmw SISISS   22113       (2.21) 

15111 wmwwmw IvISI           (2.22) 

2611222 wwwmwwmw IvIISI          (2.23) 

wwwwww AvIIA 92211           (2.24) 

The overall population at any given moment is symbolized as N . 

2.3.2. Positivity of the Solutions 

Lemma 2.3.1: For ,0t  all configurations of the framework (2.13)-(2.24) are ultimately 

constrained within the compact subset. 

.:)(),(),(),(),(),(),(),(),(),(),(),( 12

212121







 

 


NtAtAtAtItItItItItItStStS wfmwwffmmwfm

Proof: Consider the solution  ),(),(),(),(),(),(),(),(),( 212121 tItItItItItItStStS wwffmmwfm  

)(),(),( tAtAtA wfm  
with positive initial conditions. Consequently, we obtain: 

wfmwwffmmwfm AAAIIIIIISSSN  212121   (2.25) 

Adding the framework of conditions (2.13)-(2.24), we have 

NwAfAmAN
dt

dN
wfm   )()( 321     (2.26) 

Here, ,321  signify the whole birth rate of the population under consideration. It is 

mentioned that 

tt eNetN 






 0)1()(         (2.27) 

where )0(N  represents the initial values of the entire population. Therefore, as 




 )(suplim tNt . It becomes evident that all the arrangement of framework (2.13)-(2.24) 

that initiate in 
12

  are confined within the specified region . 

2.4. Analysis of the Model 

2.4.1. Disease-Free Equilibrium (DFE) and the Basic Reproduction Number 
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Assuming the right-hand side of the system of equations (2.13)-(2.24) is zero, then we get, 
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   (2.28) 

If we set 0212121  wfmwwffmm AAAIIIIII  in equation (2.28), it is evident 

that the model reaches a state of disease-free equilibrium, defined as: 

 0000
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1
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000

0 ,,,,,,,,,,, wfmwwffmmwfm AAAIIIIIISSSE  






 
 0,0,0,0,0,0,0,0,0,,, 321

  

As per the findings of Van den Driessche and Watmough (2002), the model reproduction 

number can be computed using the next-generation technique. This approach involves 

delineating the frameworks *F  and *V , which individually characterize the introduction of new 

infections and the transfer of individuals out of infective compartments. 
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Now, computing partial derivatives of *F and *V  we have 
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and then we have 
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(2.31) 



Chapter 2               Stability Analysis of HIV/AIDS Transmission: A Mathematical Model for Sex Labourers 

 

34 
 

The reproductive number of the model, represented as 0R , is derived as 

654321
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(2.32)  

Theorem 2.4.1: The local asymptotic stability of the disease-free equilibrium 0E  in the system 

(2.13)-(2.24) is established when 10 R , and it becomes unstable otherwise. 

Proof: The Jacobian matrix of the presented system at the disease-free equilibrium is expressed 

as: 
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12

0  R .10  R  

Therefore, the local asymptotic stability of the disease-free equilibrium 0E  in the system 

(2.13)-(2.24) is established when 10 R , and it becomes unstable otherwise. 

2.4.2. Global Stability of the Disease Free Equilibrium 

In Theorem 2.4.1, we have established the local asymptotic stability of the fixed point 0E  when 

.10 R  In this segment, we enumerate conditions that ensure the global asymptotic stability of 

the disease-free state. The set of conditions for the framework (2.13)-(2.24) can be formulated 

as: 

),( NMA
dt

dM
 , ),( NMB

dt

dN
 , 0)0,( YB      (2.34)

 
 

where
T

wfm SSSSM ),,( , 
3

M and ,),,,,,,,,,( 212121
T

wfmwwffmm AAAIIIIIIN   

9

N  denotes the number of susceptible and HIV/AIDS-infected people. The disease-free 

equilibrium is determined by: 

.0,0,0,0,0,0,0,0,0,,,)0,( 321*

0 






 



ME  

To confirmation the world wide stability, the subsequent situations should be satisfied 

(i) For 
*),0,( MMA

dt

dM
  is globally asymptotically stable, 

(ii) 0),(),,(),(  NMBNMBCNNMB


for ),( NM  

In this context, designate )0,( *MBDC Z
 as an M-matrix and   as the domain where the 

model holds biological significance. If the conditions (i) and (ii) are met by the system (2.34), 

the subsequent theorem is applicable. 

Theorem 2.4.2: The equilibrium point )0,(0

 ME demonstrates global asymptotic stability 

within the system described by equations (2.13)-(2.24) when  10 R
 

and the conditions 

specified in (2.34) are met.  

Proof: Considering equations (2.13)-(2.24) along with the conditions in (2.34), we obtain: 

,)0,( SMA   

),(),( NMBNCNMB


         (2.35) 
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Here T),,( 321  and 
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Theorem 2.4.3: The global asymptotic stability of the endemic equilibrium 
*E  in the system 

(2.13)-(2.24) is affirmed for 10 R . 

 
Proof: To demonstrate the global stability of the endemic equilibrium, consider the Lyapunov 
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Substituting all these values in (2.38), we get 
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Therefore, 0Y  for 0,,,,,,,, 212121321 zzyyxxuuu  in .  The equality 0Y  holds if and 

only if 1321  uuu  and .212121 zzyyxx   Applying LaSalle’s invariance principle 

(1976), we can deduce that the endemic equilibrium 
*E of the system (2.13)-(2.24) achieves global 

asymptotic stability when .10 R  
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2.5. Numerical Simulation 

To validate the analytical findings, a program is created using MATLAB software. The default 

parameters selected for this purpose are as follows: 

901  , 402  , 303  , 00005.01 mf , 00002.02 mf , 00001.01 mw , 

00003.02 mw , 00002.01 fm , 00002.02 fm , 00003.01 wm , 00004.02 wm , 

0745.0 , 500.01 m , 09.02 m , 25.01 f , 57.02 f , 30.01 w , 54.02 w , 

123.0 wfm , 03.01 m , 04.01 f , 01.01 w . 

Figures 2.2, 2.3 and 2.4 depict the variants of susceptible classes, infective classes and full-blown AIDS 

classes of populations with time t . It is located that during all of the figures, the population of 

susceptible classes increases and then it goes to the equilibrium point, where the infective classes and 

full-blown AIDS classes of males, females and female sex workers, respectively, decreases and then it 

goes to be stable for a fixed value of ,11086.00 R  while in any other case, instability is observed. 

  

Figure 2.2: Disease free equilibrium of 

susceptible, infective and the full-blown AIDS 

classes for males. 

Figure 2.3: Disease free equilibrium of 

susceptible, infective and the full-blown AIDS 

classes for females. 

 

Figure 2.4: Disease free equilibrium of susceptible, infective and the full- blown AIDS classes for 

female sex workers. 

For Figures 2.5, 2.6 and 2.7, the default set of parameters chosen is as follows: 
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801  , 602  , 503  , 00005.01 mf , 0002.02 mf , 0001.01 mw , 0003.02 mw , 

0002.01 fm , 0002.02 fm , 0003.01 wm , 0004.02 wm , 0743.0 , 107261.01 m , 

0924.02 m , 25.01 f , 27.02 f , 30.01 w , 24.02 w , 123.0 wfm , 

03.01 m , 05.01 f , 02.01 w . 

Figures 2.5, 2.6 and 2.7 depict the variants of susceptible classes, infective classes and full-

blown AIDS classes of populations with time. It is located that during all of the figures, the 

population of susceptible classes increases, and then it goes to the equilibrium point, where the 

infective classes and full-blown AIDS classes of males, females and female sex workers, 

respectively, decreases and then it goes to be stable for a fixed value of ,16235.10 R  while 

in any other case, instability is observed. 

  

Figure 2.5: Endemic equilibrium of susceptible, 

infective and the full-blown AIDS classes for 

males. 

Figure 2.6: Endemic equilibrium of susceptible, 

infective and the full-blown AIDS classes for 

females. 

 

Figure 2.7: Endemic equilibrium of susceptible, infective and the full- blown AIDS classes for female 

sex workers. 

2.6. Summary and Concluding Remarks 

In this chapter, we have conducted an in-depth examination of a nonlinear mathematical 

model describing the transmission dynamics of HIV/AIDS, placing particular emphasis on its 

effects within the community of female sex workers. Our model has enabled us to delve into 
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the dynamics of this complex epidemic, examining two critical equilibria: the disease-free 

equilibrium and the endemic equilibrium. 

Our mathematical analysis reveals that the stability of the disease-free equilibrium is 

contingent upon the value of the reproduction number, denoted as 0R . Our findings 

demonstrate that when 10 R , both local and global asymptotic stability characterize the 

disease-free equilibrium. Conversely, when 0R
 
exceeds unity, the disease-free equilibrium 

becomes unstable, signifying the potential for the disease to persist and spread within the 

population. 

Furthermore, we have employed the Lyapunov characteristic to investigate the worldwide 

stability of the endemic equilibrium. Our findings reveal that the endemic equilibrium is stable 

when 0R
 
exceeds unity, reinforcing the significance of this threshold value in understanding 

the persistence of the epidemic. 

In our numerical simulations, a significant correlation has been identified between the 

infection rate originating from infective classes of females and female sex workers and the 

population of susceptible males. Specifically, as the rate of infection increases, the number of 

susceptible males decreases, underscoring the importance of intervention strategies targeting 

these specific populations. 

Additionally, to visually illustrate our findings, we have provided several key figures: 

 Figure 2.2: Disease-Free Equilibrium of Males 

 Figure 2.3: Disease-Free Equilibrium of Females 

 Figure 2.4: Disease-Free Equilibrium of Female Sex-Workers 

 Figure 2.5: Endemic Equilibrium of Males 

 Figure 2.6: Endemic Equilibrium of Females 

 Figure 2.7: Endemic Equilibrium of Female Sex-Workers 

These figures serve as valuable visual aids, providing a graphical representation of the 

equilibria and dynamics discussed in this research. 

In conclusion, our study provides valuable insights into the dynamics of HIV/AIDS 

transmission among female sex workers, emphasizing the role of mathematical modeling in 

understanding and mitigating the epidemic. By exploring the equilibria and stability conditions 

of our model and examining numerical results, we contribute to the body of knowledge 

essential for formulating effective prevention and control measures. 
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Chapter 3: Study of HIV Transmission Dynamics using SEIRS 

      Epidemic Model  

This chapter presents a comprehensive examination of disease transmission dynamics in two 

distinct sections. The first section scrutinizes the intricate dynamics of HIV transmission, 

specifically exploring the influence of media awareness on its spread within populations. 

Understanding the interplay between media awareness and HIV transmission is crucial to 

formulating targeted strategies for prevention and intervention. The second section shifts focus 

to the complex co-infection dynamics of HIV/AIDS & TB, considering the influence of media 

awareness on disease dynamics. Investigating the intersection of media influence and co-

infection dynamics sheds light on the nuanced interactions between these diseases, offering 

insights essential for tailored intervention approaches. Both sections aim to provide an integral 

comprehension of disease transmission and the impact of media awareness on public health 

strategies, significantly contributing to the discourse on controlling and managing these critical 

health challenges. 

Section 3A: Analyzing HIV Transmission Dynamics with Media Awareness 

3A.1. Introduction 

HIV is an acronym for Human Immunodeficiency Virus, which causes HIV infection. In 

many cases HIV can go unnoticed for about a decade before it is detected and by that time the 

person is more likely to develop Acquired Immunodeficiency Syndrome (AIDS). Unlike other 

viruses, HIV is difficult to eliminate from the human system partly due to its complex nature. 

Treatment for HIV can only attempt to make life more comfortable for the patient as there is no 

cure for it yet making it an epidemic. As per the World Health Organization (WHO), HIV 

attacks a human innate immunity system by weakening it thus failing to fight contamination of 

any kind. 

Consequently, the human body is highly infected with viruses, various infections and 

tumours eventually leading to AIDS and death. Since HIV is a virus, it needs a host cell to 

carry out its toxic operations in the immune system. The origin of HIV has been traced back to 

a chimpanzee in Central Africa, where humans came into contact with the infected blood of 

these chimpanzees when they hunted them for meat. Several studies suggest that HIV likely 

spread from apes to humans in the late 1800s. Over time, the virus spread across Africa and 

subsequently to other parts of the world, including the US, where it has been known to exist 

since at least the mid-1970s. 
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When an infectious disease such as AIDS or HIV starts to spread in a region, it becomes the 

responsibility of the disease control department to prevent the disease from happening at all 

costs. The first step is to provide relevant knowledge through the media so that people know 

how to protect themselves from coming into contact with the disease and what steps to take if 

they are infected. The more preventive knowledge people have the more likely it is to prevent 

the disease from spreading across towns or states. Media coverage, such as news channels, 

newspapers, online social media platforms and educational enlightenment provided in schools 

and colleges, participates in the huge responsibility of spreading consciousness about the 

disease as per a recent statistical analysis on HIV and AIDS awareness strategies. One of the 

critical factors in preventing the AIDS epidemic is public awareness. The chances of people 

being aware of AIDS increased by 4.67 and 77.73 times for educated men and women 

respectively rather than uneducated individuals. This proves that providing substantial 

knowledge about the disease in educational institutions is critical to spreading awareness. 

Moreover, individuals who engage in daily television (T.V) viewing exhibit an 8.6 times higher 

likelihood of being informed regarding AIDS compared to those who never view television. 

These findings underscore the importance of investigating how disease spread dynamics are 

influenced by media coverage and educational efforts. 

The spread of probably the most severe and highly contagious Severe Acute Respiratory 

Syndrome (SARS) in 2003 in Beijing, China, stimulated an emergency response globally. This 

emergency highlighted the need for an effective and efficient emergency response to reduce the 

impacts of such an infectious disease outbreak. The lack of understanding of SARS led to panic 

in the population. So when the disease control department and government officials announced 

and shared information about SARS, people responded positively by wearing masks on the 

streets, reducing close contact with others, reposting new cases to hospitals, etc. Mass 

Communication Media and education play vital roles in risk communication. These results 

indicated that releasing prevention knowledge had changed people’s health habits. 

In this section, we propose a novel approach based on the ANFIS to model the transmission 

dynamics of HIV using a SEIRS epidemic model. The ANFIS is a hybrid computational model 

that combines the advantages of artificial neural networks and fuzzy logic and has been 

successfully applied in a wide range of fields, including engineering, finance, medicine and 

crisis management (Keshavarz & Torkian, 2018; Perveen et al., 2019; Tan et al., 2011; 

Yadollahpour et al., 2018; Lakovic, 2020). Our proposed ANFIS-based SEIRS model aims to 

capture the complex nonlinear interactions among different compartments of the HIV epidemic 

and predict future trends under different scenarios. The decision to employ the SEIRS model in 
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studying HIV transmission is motivated by the necessity to comprehensively represent the 

disease’s multifaceted dynamics, including its prolonged incubation period and the potential for 

reinfection post-recovery, which are often overlooked in existing models. By incorporating the 

recovered class, our proposed model uniquely addresses these facets of HIV dynamics. 

Additionally, integrating media influence allows us to provide a holistic understanding of 

disease transmission, shedding light on previously unexplored dimensions that impact spread 

and inform more effective control strategies. 

This section is structured as follows: Section 3A.2 provides detailed literature on the 

transmission dynamics of HIV with an SEIRS epidemic model. The mathematical model is 

covered in section 3A.3. The subsequent sections cover the analysis of the model (Section 

3A.4) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) in section 3A.5. A numerical 

illustration is given in section 3A.6. Finally, summary and concluding remarks are drawn 

within the last section, 3A.7. 

3A.2. Literature Review 

Mathematical modeling studies have been conducted to examine how media coverage and 

psychology can influence the transference and command of infectious diseases in specific 

populations or regions. In a study conducted by Liu et al., in 2007, a three-partition model, 

which included individuals exposed (E), infectious (I) and hospitalized (H), was employed to 

survey the psychological mechanisms associated with various instances of emerging infectious 

disease outbreaks. The simplification of the imitation involved the supposition that the overall 

dimensions of the inhabitants remained constant during the spread of the disease. Another study 

by Cui et al., (2006) extended the classical SEI model by incorporating a new incidence 

function that considers media coverage’s impact on disease transmission and control. 

Cai et al., (2009) conducted an investigation into an HIV/AIDS outbreak replica 

incorporating cure. Jain et al., (2010) studied the dynamics behavior of T-lymphocyte cells 

with a human immunodeficiency virus type 1 (HIV-I) infection. Huo and Feng (2013) develop 

an HIV/AIDS outbreak system incorporating various target phases and therapy options. Yang et 

al., (2023) investigate an edge-based SEIR epidemic model that accounts for both sexual and 

non-sexual transmission routes. 

Huo et al., (2016) introduce a novel HIV/AIDS epidemic model that incorporates a modern 

section, namely the treatment section (T). Sing et al., (2016) undertake a study using a 

arithmetical replica to evaluate the transmission dynamics of the HIV/AIDS outbreak, 

including treatment. Sing et al., (2019) propose an SEIR mathematical model to elucidate the 
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transmission dynamics of malaria. Ali et al., (2019) devise a nonlinear compartment model to 

evaluate the impact of media reporting on the control and prevention of infectious diseases. 

Huo et al., (2018) expand a SEIS outbreak representation that is more realistic by incorporating 

the influence of media, fundamental reproductive number, and illustrating the firmness of both 

ailment-free and native symmetry states. Jia and Qin (2017) define an HIV/AIDS epidemic 

model with a standard nonlinear prevalence rate and treatment. Biswas and Pal (2017) develop 

a nonlinear mathematical model for HIV/AIDS transmission dynamics, considering vaccination 

and antiretroviral treatment and demonstrating the existence and boundedness of its solutions. 

Wu and Zhao (2021) collected data to examine the worldwide dimensions of the HIV/AIDS 

epidemic and to scrutinize its transmission within the demographic of men who engage in 

sexual activity with other men. Kumar et al., (2021) present a numerical simulation of 

HIV/AIDS transference dynamics in the presence of cognizance campaigns, employing a copy 

with three distinct operators. According to a study by Luxi et al., (2021) on the global impact of 

the COVID-19 vaccine within the initial year, the vaccination significantly changed the path of 

the pandemic. It saved tens of millions of lives worldwide. However, the benefit was limited in 

these situations because of limited vaccine accessibility in low-income countries, underscoring 

the importance of global vaccine equity and comprehensive coverage. A mathematical study 

was conducted by Riyapan et al., (2021) to comprehensively examine the dynamics of COVID-

19 transmission during the pandemic in Bangkok, Thailand. The study looked at the use of 

masks as one of the ways of slowing the COVID-19 spread. Modification of the SEIR model to 

include the symptomatically infected, asymptomatically infected, and quarantined was made in 

this study. 

In the latest, there has been an increase in using ANFIS to model various diseases. Many 

studies have investigated the effectiveness of this approach in understanding disease spread and 

developing intervention strategies. Deif et al., (2021) propose an ANFIS approach to rapidly 

detect COVID-19 cases using commonly available laboratory blood tests. Rise and Ershadi 

(2022) propose an uncertain SEIAR model to analyze the socioeconomic impacts of infectious 

diseases based on uncertain behaviours of social and practical subsystems in countries. The 

proposed model considers different subsystems, including healthcare systems, transportation, 

contacts, and capacities of food and pharmaceutical networks for sensitivity analysis. An 

ANFIS model is also designed to predict countries gross domestic product (GDP) and 

determine the economic impacts of infectious diseases. A COVID-19 forecasting system using 

ANFIS was discussed by Ly Kim Tien (2021). 
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In recent times, there has been an increase in utilizing the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) to model various diseases and understand disease spread, leading to the 

development of effective intervention strategies. However, few studies specifically address the 

SEIRS Epidemic Model with software support considering social media’s role in the spread of 

HIV/AIDS.  It is crucial to provide a mathematical model examining the transmission dynamics 

of a SEIRS epidemic model for HIV, emphasizing the influence of media. In light of the 

analysis gap, the purpose of the current article is to fill the void by presenting an arithmetical 

copy to examine the transmission dynamics of a SEIRS outbreak model for HIV, with a 

specific emphasis on the impact of media. Moreover, this study focuses on employing ANFIS 

to address the SEIRS epidemic model for HIV, which has not been extensively explored in the 

existing literature. By developing an SEIRS epidemic model for HIV with incorporated 

features, this research aimed to regulate the fundamental reproduction number and look into the 

ailment-free and native equilibria. The contributions of this study, along with relevant articles 

in the literature, are summarized in Table 3A.1. The present studies formulates a structure of 

distinct calculations for each population group, including the susceptible, uncover, 

contaminated and convalesce classes, utilizing the Runge-Kutta IV order method. The 

calculation of the fundamental reproduction number is performed, and the examination of the 

ailment-free and native states is established. 

Table 3A.1: Comparative Analysis of HIV Transmission Dynamics: Unveiling Gaps and 

Innovations via an SEIRS Epidemic Model with ANFIS Validation. 

 

Author 
 

Specific features considered 
 

 
Epidemic 

Model 
HIV 

Reproduction 
Number 

Disease-Free 
Equilibrium 

Endemic 
Equilibrium 

Stability 
Analysis 

ANFIS 

Cai et al., (2009)        

Huo & Feng (2013)        

Kaur et al., (2014)        

Biswas &Pal (2017)        

Jia & Qin (2017)        

Huo et al., (2018)        

Singh et al., (2019)        

Ali et al., (2019)        

Wu & Zhao (2021)        

Meng & Zhu (2022)        
Proposed Model        
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3A.3. Mathematical Model 

3A.3.1. System Description 

In the proposed model it is going to be analyzed the population dynamics for transmission of 

HIV through SEIR model applying ANFIS techniques. It is assumed in the model that the four 

compartments are used to divide the total population i.e. )(tS , )(tE , )(tI  and )(tR . )(tS  

denotes the count of capable of humans; )(tE  signifies the count of person reveal to the 

contaminated but incapable of transmitting it; )(tI  signifies the count of infected persons 

suspect able of transference of the ailment; and )(tR  appear for the count of person who have 

convalesce due to the impact of media. Additionally, the variable )(tM  signifies the number of 

messages provided by all individuals regarding the epidemic disease at a time t . To account for 

natural and disease-related mortality, the model considers the long-term outbreak of the 

disease. The susceptible individuals are assumed to have a recruitment rate .   

 

Figure 3A.1: SEIRS epidemic model dynamics with the added control of the media. 

The SEIRS epidemic model with media effect incorporates various frame work that influence 

the transmission vital of the ailment. These parameters include the natural death rate  and 

disease-related death rate 1 of the respective population groups. During an epidemic season, 

individuals can also send messages about the disease at rates represented by parameters ,1 ,2

3  
and 4 . The transference estimate   in the middle of the capable of and contaminated 

humans is affected by changes in public behavior after reading messages, resulting in a 

reduction factor Me  . A parameter determines the effectiveness of ailment associated news on 

the transference estimate  , while a parameter appear for the transference coefficient from 
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exposure to contaminated humans .  The parameter captures the transference estimate from 

contaminated individuals to capable of individuals  . Finally, the estimate at which news 

become out of date is represented by a parameter  . A parameter defines the transmission rate 

of the infected class  , and the rate at which the recovered class forms the susceptible class is 

captured by a parameter  . The mortality rate within the recovered class is denoted as  . 

Collectively, these parameters serve as the foundation for the SEIRS epidemic model with 

media influence, providing insights into the intricate dynamics of disease transmission. 

The diagram in Figure 3A.1 gives rise to a set of ODEs, outlined as follows: 

 










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
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









MRIESM

RRIR

IIIEI

EEeISE

RSeISIS

M

M














4321

1       (3A.1) 

3A.3.2. Basic Properties 

We will illustrate that all variables in the system of equations (3A.1) remain non-negative 

for every .0t  This demonstration is crucial to establish the epidemiological significance of 

the system of equations (3A.1). Consequently, the following lemmas are derived. 

3A.3.3. Positivity of the Solutions 

Lemma 3A.3.1: States that the attracting region  , defined by 

 
 

,
)(

0,,,,0:,,,, 43215















 









 RMNRIESMRIES with 

beginning situation   ,00 S   ,00 E   ,00 I   00 R and   ,00 M  is positive 

invariant for system (3A.1). This region attracts all solutions that begin within the interior of 

the positive values for t  .  

Proof: By summing the first four equations in the system (3A.1), we obtain: 

NINN   1
 

Thus, it follows 

  ,00 teNN 





  

where the first population is indicated by  0N . 

Therefore, .suplim



 Nt  
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Moreover, the fifth equation in the system (3A.1) leads us to the conclusion that, 

 
,4321 MM 







  

and then, 

 
,)0(0 4321 teMM 



 


  

where the initial value of the media message is indicated by  0M . 

Thus, 
 

.suplim 4321



 
 Mt

 

3A.4. Analysis of the Model 

To analyze the model mathematically, the following disease-free equilibrium points were 

derived. 

3A.4.1. Disease-Free Equilibrium (DFE) and Basic Reproductive Number 

If we assume that R.H.S of the system of equation (3A.1) is zero, then we get, 
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






       (3A.2) 

If we substitute 0 RIE  into equation (3A.2), it becomes evident that the model exhibits 

a disease-free equilibrium, represented by: 

  .,0,0,0,,0,0,0, 1
000 







 







MSE       (3A.3) 

Continuing our analysis, we aim to determine a key parameter, the fundamental reproductive 

number  0R , for the structure (3A.1) utilizing the next-generation method. In this context, we 

define the new infection matrix  xF  and the transfer matrix  xV . Consider the state vector as 

 MRIESx ,,,,  and the representation of the structure (3A.1) can be expressed as: 

)()( xVxFx   

where, 
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At the disease-free equilibrium 0E , the respective Jacobian matrices of  xF  and  xV  are, 
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Therefore, the reproductive number 0R is given as 

    ,)()(;max)()( 1
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  EDVEDFEDVEDFR     (3A.4) 

where  .  and  .  represents the spectral radius and largest eigenvalues, respectively. 

Then, the fundamental reproductive number  0R  is given by 
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where, 

  )()())(( 312111 



  (3A.8) 

Remark: Clearly, can be checked that: 0001 R , 0001 R , .0001 R
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3A.4.2. Stability Analysis of Disease-Free Equilibrium 

Theorem 3A.4.1: Disease-free equilibrium 0E
 
of the above system of equation (3A.1) is 

globally asymptotically stable if 10 R , and is unstable if 10 R .
 

Proof: At the DFE point 0E , the Jacobian matrix of the above system of equation (3A.1) is 
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then, 
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(3A.9) 

Thus, the three eigenvalues of the equation (3A.9) are   21 , and )(3   and 

the others are determined by 
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Then we have 
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Hence, in the case where 10 R , the ailment-free symmetry point 0E  demonstrates local 

asymptotic stability, while it becomes unstable if 0R  exceeds 1. 

Next, a Lyapunov function is presented 
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Using the expression for 0R  in (3A.5) and differentiating (3A.10), we have 
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Thus, 10 R
 

guarantees that 00),,,,(  tMRIES
dt

dV
, therefore ),,,,( MRIESV  is 

bounded and decreasing. Therefore ),,,,(lim MRIESVt   
exists. By LaSalle’s Invariance 

principle (1976), the global asymptotic stability of DFE 0E  can be guaranteed when .10 R
 

3A.4.3. Endemic Equilibrium (EE) 

Theorem 3A.4.2: States that the set of equations in system (3A.1) exhibits 

(i) Endemic equilibrium point 

1E  is positive; when  ;,1max 010 RR   

(ii) Endemic equilibrium point 

2E  is positive; when  ;,1min 010 RRRp   

(iii) Two separate positive endemic equilibrium points, denoted  as 

3E
 
and 

4E , occur 

when pR  0R  ;,1min 01R
 

where ,0R ,01R
pR
 

and  are defined by equations 

(3A.5)-(3A.8) and 

  5,4,3,2,1;,,,,   iMRIESE iiiiii  
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Proof: Suppose that  ****** ,,,, MRIESP   represents a solution to equation (3A.2), 

wherein, 
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In this context, we assume ***** ,,,, MRIES can be represented as linear function of 
*I

respectively, 
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Combining equations (3A.12)-(3A.15) with the first equation (3A.11), we obtain: 
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Now, by equations (3A.6) and (3A.16), we have 

0
01

0
0 

 IeI
R

R
R                   (3A.17) 

Here we denote,
 IeI

R

R
RIH

01

0
0)(                   (3A.18)

 

By equation (3A.18), we get, 

,)(,1)0( 0  HRH ,)(
01

0'  IeI
R

R
IH

 

,)0(
01

0 
R

R
H ,)( 2 IeIH   

(i) While ,01)0(,1 00  RHR
 
and ,0,0)(  ifH  

,0)( 2   IeIH obtain. 
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),0()( HIH   specifically ,  Ie  
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when ,010 RR   then the single positive result for 0)( IH  exists.   

If ,0  by equation (3A.16), we get 
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Similarly, when .0,10  IR Thus, the endemic equilibrium  *

1

*

1

*

1

*

1

*

1

*

1 ,,,, MRIESE    can be 

obtained. 

(ii) When ,01)0(,1 00  RHR
 

and .0)( H  We assume that 0)(  IH  then

.ln
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
  

When IRR ,010  takes on positive values. Additionally, I  serves as a positive solution to 

0)( IH  .0 pRR   Consequently, the endemic equilibrium  *

2

*

2

*

2

*

2

*

2

*

2 ,,,, MRIESE  . 

(iii) Building upon the findings in (ii), when ,0 pRR  and 0)( IH  two outcomes arise. 

Therefore, the endemic equilibria  ;,,,, ******

iiiiii MRIESE   5,4,3,2,1i  can be 

derived. 

3A.5. Adaptive Neuro-Fuzzy Inference System 

In Figure 3A.2, the architecture of ANFIS, which consists of five layers: the input, fuzzy, 

normalization, rule and output layers, is depicted. This combined system integrates the 

advantages of both fuzzy logic and neural networks, making it suitable for various applications, 

including control systems, pattern recognition, and prediction. 

Input Layer: The input layer of ANFIS consists of the input variables that are fed into the 

system. These input variables can be continuous or discrete, and membership functions 

represent them.  

Fuzzy Layer: The ANFIS fuzzy layer performs the computation of membership degrees for 

each input variable within each fuzzy set. This layer utilizes fuzzy logic rules on the input 

variables, which are expressed through fuzzy sets. These fuzzy sets are characterized by 

membership functions, detailing the extent of membership for each input variable in each 

respective fuzzy set.  
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Normalization Layer: The normalization layer of ANFIS is responsible for normalizing the 

firing strengths of the fuzzy sets. This layer ensures that the total of the firing strengths of all 

the fuzzy sets equals one.  

Rule Layer: The rule layer of ANFIS is responsible for computing the degree of activation 

of each rule. The rules are defined by combining the fuzzy sets in the antecedent part and the 

output variable in the consequent part. The degree of activation of each rule is computed by 

multiplying the firing strengths of the fuzzy sets in the antecedent part.  

Output Layer: The output layer of ANFIS is responsible for computing the final output of 

the system. This layer computes the weighted average of the output values of all the rules. 

The weight of each rule is proportional to the degree of activation of that rule.  

In summary, ANFIS is a hybrid system that combines fuzzy logic and neural networks. Its 

architecture consists of five layers: the input, fuzzy, normalization, rule and output layer. 

ANFIS can be used for various applications, such as control systems, pattern recognition and 

prediction. The choice of employing the ANFIS for numerical simulation in this section is 

founded on its prowess in capturing the intricate nonlinear dynamics inherent in HIV 

transmission within the SEIRS model. The complexity of HIV transmission, characterized by 

multifaceted interactions and behavioural nuances, demands a modeling approach capable of 

handling nonlinear systems effectively. ANFIS stands out for its adaptability, adeptness in 

modeling nonlinearities and capacity to capture the intricate relationships among variables such 

as media impact and disease spread dynamics. Furthermore, ANFIS’s robust validation process 

ensures the reliability and accuracy of simulation outcomes, establishing it as an optimal choice 

for comprehensively addressing the complexities within HIV transmission dynamics. 

 

Figure 3A.2: ANFIS Architecture. 
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3A.6. Numerical Simulation 

To verify the logical result obtained in the preceding segment, arithmetical simulations were 

performed. To perform numerical computations, the governing equations of the system are answered by 

making use of the 4th-order Runge-Kutta method within the MATLAB software. The ‘ode45’ function, 

a built-in feature in MATLAB, is used for this purpose. In order to evaluate the feasibility of the FI-

based controller and validate the data, we employ the ANFIS approach within MATLAB’s fuzzy logic 

toolbox. The ANFIS results are obtained by using a Gaussian membership function for five linguistic 

variables: ‘very low’, ‘low’, ‘moderate’, ‘high’ and ‘very high’. The membership function for x  is 

displayed in Figure 3A.3.  

 
Figure 3A.3: Degree of membership function for input variable “Days”. 

 

For Figure 3A.4, the default set of parameters is fixed as: 

,8.0 ,08.0 ,0001.0 ,4.0 ,002.01  ,99.01  ,4.02  ,8.03  ,12.04 

,4.0 ,7.0 ,1.0 ,5.0 ,0004.0 0006.0 .
 

Figure 3A.4 illustrates how the different categories of individuals and messages vary over time. The 

graph shows that the numbers of susceptible, exposed, infected and recovered individuals and messages 

remain constant for a fixed value of ,12381.00 R  but become unstable otherwise. 

 

Figure 3A.4: Stability analysis: Disease-free equilibrium under 12381.00 R .  
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For Figure 3A.5, the default parameter values are set as follows: 

,8.0 ,072.0 ,2.0 ,2.0 ,02.01  ,6.01  ,8.02  ,8.03  ,12.04  ,9

,006.0 ,4.0 ,5.0 ,4.0 8.0 . 

Here Figure 3A.5 illustrates how the different categories of individuals and messages vary over 

time. The graph shows that the numbers of susceptible, exposed, infected and recovered 

individuals and messages remain constant for a fixed value of ,15917.10 R   but become 

unstable otherwise. 

 

Figure 3A.5: Stability analysis: Endemic equilibrium under 15917.10 R .  

3A.A. Summary and Concluding Remarks 

In conclusion, this study has successfully developed a mathematical model to analyze the 

transmission dynamics of an SEIRS epidemic model for HIV, with a specific focus on the 

influence of media. Through the formulation of a structure of distinctive calculations of elected 

by the susceptible, exposed, infected and recovered population groups, a comprehensive 

understanding of the disease spread dynamics has been achieved. The computation of the 

fundamental reproductive number has yielded significant understandings regarding the gravity 

and scope of the epidemic, whereas the analysis of the equilibrium states in which the disease is 

present and absent has illuminated the system’s long-term dynamics. 

Furthermore, the stability analysis has demonstrated that the disease-free equilibrium is 

both locally and globally asymptotically stable, indicating the potential for effective disease 

control measures. To validate the findings, numerical simulations were conducted utilizing the 

innovative Adaptive Neuro-Fuzzy Inference System (ANFIS), showcasing the practical 

applicability of the proposed model. 
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The outcomes of this study contribute to the presented body of understanding on SEIRS 

epidemic models and provide valuable insights for HIV transmission dynamics. The results 

underscore the significance of media influence and the necessity for comprehensive 

intervention strategies. By understanding the underlying mechanisms governing disease spread, 

policymakers and healthcare professionals can make informed decisions to mitigate the impact 

of HIV. 

Moreover, the inclusion of visual representations adds clarity to the results. Figure 3A.3 

illustrates the Degree of membership function for the input variable “Days” assisting in 

visualizing the credit of time on the vital of the ailment. Additionally, Figure 3A.4 

demonstrates that the ailment-free symmetry  0E  is firm when  0R  is below the critical 

threshold  12381.00 R , highlighting the potential for disease control. Figure 3A.5 shows 

that the native symmetry  *E  is firm when  0R  exceeds this threshold  15917.10 R , 

emphasizing the importance of maintaining  0R  below this level for effective prevention. 

Overall, this research serves as a stepping stone for further investigations into the modeling 

and analysis of complex epidemic systems. Future studies may consider additional factors and 

refine the mathematical models to enhance the accuracy and applicability of the findings. The 

ultimate goal is to develop effective strategies for disease prevention, control, and management, 

using insights gained from this study as a foundation for informed decision-making.  
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Chapter 3: Study of HIV Transmission Dynamics using SEIRS 

      Epidemic Model  

Section 3B: Analyzing the Co-infection Dynamics of HIV/AIDS-TB with Media 

  Awareness 

3B.1. Introduction 

HIV/AIDS and TB co-infection represent a complex and intertwined health challenge, 

intertwining their impacts on global morbidity and mortality rates, particularly in resource-

constrained regions. The synergistic relationship between these two diseases amplifies their 

severity, underscoring the critical need to comprehend their interactions for effective 

prevention, management, and control strategies. 

This section endeavors to construct a comprehensive model that captures the dynamics of 

HIV/AIDS and TB co-infection. The model incorporates distinct classes representing different 

disease states and interventions: susceptible individuals, those infected with TB, individuals 

undergoing treatment for TB infection, the recovered population, HIV-infected individuals, and 

those progressing to AIDS. 

The global burden of HIV/AIDS and tuberculosis co-infection is substantial, especially in 

regions where both diseases coexist, exacerbating challenges faced by healthcare systems and 

communities. Notably, the World Health Organization (WHO) highlights a significant 

proportion of TB cases occurring in individuals living with HIV/AIDS, substantially increasing 

the risk of TB infection progressing to active disease. Conversely, TB infection significantly 

impacts the progression and severity of HIV/AIDS, complicating treatment outcomes and long-

term health for co-infected individuals. 

Despite advancements in medical science and public health interventions targeting each 

disease independently, the intricate behaviour of Tuberculosis and HIV/AIDS co-infection 

persists as a formidable obstacle. This necessitates a comprehensive modeling approach that 

integrates epidemiological observations, immunological insights, and computational 

simulations to capture the nuanced interactions between these diseases and their impact on 

diverse populations. 

The proposed model encompasses distinct classes representing various disease states and 

interventions, including susceptibility to both HIV/AIDS and TB, active TB infection, 

treatment for infected individuals, the recovered population, HIV-infected individuals, and 

those progressing to AIDS. By incorporating these classes, the model aims to simulate the 
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intricate dynamics of co-infection, elucidating critical factors influencing disease propagation 

and evaluating potential strategies for mitigating their combined impact. 

The subsequent sections will delineate the conceptual framework of this model, detailing 

the parameters, methodologies, and interactions characterizing the different disease states and 

interventions. Moreover, this section will discuss the implications of the model in informing 

public health policies, clinical interventions, and future research directions aimed at addressing 

this pressing global health challenge. 

This section is structured as follows: Section 3B.2 provides detailed literature on the 

transmission dynamics of HIV/AIDS-TB co-infection model. The model description is covered 

in section 3B.3. The subsequent sections cover the mathematical analysis of equilibrium points 

(Section 3B.4). Finally, summary and concluding remarks are drawn within the last section, 

3B.5. 

3B.2. Literature Review 

HIV/AIDS and TB co-infection create a lethal synergy, exacerbating the progression and 

severity of each disease. Individuals living with HIV face a significantly heightened risk, being 

16 times extra probable to develop TB compared to those without HIV. This co-infection 

presents a critical public health concern, with TB emerging as the primary reason of death 

among people existing with HIV. Without proper treatment, mortality rates are strikingly high, 

affecting nearly all HIV-positive individuals with TB and approximately 60% of HIV-negative 

individuals diagnosed with TB. 

The World Health Organization’s (WHO) 2022 report highlighted the devastating impact of 

TB, attributing 1.3 million deaths to this disease, of which 167,000 were associated with HIV-

TB co-infection. Efforts to combat this dual burden of disease have led to significant 

advancements in understanding transmission dynamics, treatment strategies, and the role of 

various interventions. 

Several studies have explored the multifaceted aspects of infectious disease dynamics and 

intervention strategies. Greenhalagh and Das (1995) formulated SIR mathematical models for 

epidemics, considering population density’s influence on contact rates and background death 

rates. Bhunu et al., (2008) delved into the effects of chemoprophylaxis in TB treatment, 

advocating a holistic approach to intervention strategies. 

Media’s role in raising awareness and its impact on disease dynamics has also garnered 

attention. Khan et al., (1997) conducted a statistical analysis of media and the importance of 

education in raising AIDS awareness amongst Bangladeshi married people, emphasizing the 



Chapter 3                                                  Study of HIV Transmission Dynamics using SEIRS Epidemic Model  

 

64 
 

influence of media coverage on disease understanding. Cui et al., (2008) examined the 

influence of media coverage on the transmission and management of infectious diseases such 

as SARS. 

In the realm of HIV-TB co-infection modeling, various approaches have been undertaken. 

Kirschner (1999) constructed a model elucidating HIV-1 and TB coinfection within a host. Huo 

et al., (2016) introduced the treatment class in an HIV-AIDS co-infection model. Building upon 

this, Bhunu et al., (2009) comprehensively considered TB and HIV transmission dynamics, 

incorporating treatment aspects for both diseases. Roeger et al., (2009) assumed sexually 

inactive TB-infected persons in the phase of activity of the disease in their co-infection model. 

Silva and Torres (2014) integrated TB and AIDS treatments in their model for individuals 

afflicted with either or both diseases. 

However, despite these advancements, gaps persist in understanding the influence of media 

awareness on disease dynamics, treatment outcomes, and overall public health strategies in the 

context of HIV/AIDS and TB co-infection. 

3B.3. Model Description 

To investigate the impact of awareness on the control and prevention of HIV/AIDS-TB co-

infection, we examine a population denoted by )(tN  at time t , with a constant recruitment rate 

represented by  . This entire population is categorized into six sub-classes: susceptible )(tS , 

tuberculosis-infected )(tT , individuals undergoing treatment for tuberculosis )(tM , those who 

have recovered post-treatment )(tR , HIV-infected  H t , and AIDS-infected  A t . The 

transition from susceptible to tuberculosis-infected occurs at a rate denoted by 1 , representing 

the contact rate before media alert. The term   











Tm

T
T 11   signifies the reduced 

value of the tuberculosis transmission rate after media alert, measuring the spread of TB 

infection from infected to susceptible individuals. When 0m , the transmission rate remains 

constant. The potential of the disease to spread and the population’s awareness of each 

susceptible member are both related to the contact transmission rate. The effect of publicity on 

the transmission of contact is reflected in the parameter m . The transition from susceptible to 

HIV-infected takes place at a rate denoted by 2  before media alert. The reduced value of the 

HIV transmission rate after media awareness is given by   











Hn

H
H 22  . The effect 

of publicity on HIV infection spread through contact is reflected in parameter n . The TB class 
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population is infected by HIV at a rate 3 . Since TB is a curable disease, individuals in the TB 

class undergo treatment at a rate  , followed by recovery at a rate  . Fully recovered 

individuals re-enter the susceptible class at a rate  . It is assumed that no effective anti-HIV 

treatment is available within the population, resulting in some members of the HIV class 

progressing to full-blown AIDS at a rate  . Once AIDS develops in an individual, no 

awareness can contribute to a cure. The population is assumed to experience a constant death 

rate represented by , where   denotes the disease-induced death rate. Figure 3B.1 shows the 

model flow of this biological structure. 

 

Figure 3B.1: Epidemiological modeling of HIV-TB co-infection. 

The mathematical model is expressed through this system of nonlinear differential equations. 
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Since              tAtRtMtHtTtStN  , the above set of equations (3B.1)-(3B.6) can be 

modified as: 

ANN                                                                                         (3B.7) 
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  MTM                     (3B.10) 

 RMR            (3B.11) 

 AHA            (3B.12) 

Lemma 3B.3.1: The viable range   is delineated by 
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Proof: Adding the equations of system (3B.1)-(3B.6), we obtain 
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On solving equation (3B.13), we have  
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3B.4. Analysis of the Model 

The examination of the model has been done by evaluating the equilibrium points.  

3B.4.1. Equilibrium Points 

To obtain the equilibrium points, we set left-hand sides of all equations (3B.7)-(3B.12) to zeros, 

so that we get 
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Using equations (3B.14)-(3B.19), the four possible equilibrium points are obtained as follows: 
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3B.5. Summary and Concluding Remarks 

This section marks an extension from the preceding SEIRS epidemic model established in 

Section 3A, specifically centered on the nuanced exploration of the co-infection dynamics 

between HIV & TB. Departing from the SEIRS framework, this extension delves into the 

specialized context of HIV/AIDS & TB co-infection. 

While the literature review emphasizes the crucial interplay between HIV & TB, 

recognizing the pivotal role of treatment in mitigating mortality rates, this section’s primary 

focus lies in advancing our understanding solely within the framework of HIV/AIDS & TB co-

infection. Limited alterations and extensions within this specialized context contribute 

incrementally to unraveling the complexities of co-infection transmission and treatment 

outcomes. 

Nevertheless, this section underscores the imperative for future research to explore 

uncharted territories, such as the influence of media awareness on disease dynamics within the 

specialized framework of HIV/AIDS & TB co-infection. By extending and refining this 

specialized model, it lays the foundation for more targeted interventions and further 

investigations into this intricate health challenge within diverse populations. 
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Chapter 4: Mathematical Analysis of Malaria Transmission: SEIRS 

   Model with Mosquito Vector Dependency 

4.1. Introduction 

Malaria, a profoundly impactful infection, stands as a formidable global challenge affecting 

countries predominantly in Africa and Asia. Its far-reaching impact encompasses nearly 3 

billion individuals across 109 countries. This disease, with its staggering toll, annually accounts 

for approximately 250 million documented cases, tragically resulting in the loss of 1 million 

lives, a substantial portion of whom are children under the age of five. Central to the complexity 

of malaria is the microscopic parasite, plasmodium, which operates exclusively through the 

transmission by female mosquitoes of the Anopheles genus.  

The transference of the malaria parasite occurs through the bite of an infected female 

Anopheline mosquito, introducing the pathogen into the human bloodstream. Notably, among 

the numerous plasmodium species including Plasmodium malariae, Plasmodium vivax, 

Plasmodium ovale, Plasmodium falciparum and Plasmodium knowlesi, the latter two especially 

P. falciparum stand out for their severe clinical outcomes and prevalence in certain regions. The 

World Health Organization (WHO) records a staggering toll of 627,000 deaths attributed to 

malaria in 2013, with nearly 207 million cases officially registered, disproportionately affecting 

African children, emphasizing the gravity of this disease burden within vulnerable populations. 

The battle against malaria extends beyond the epidemiological landscape, intertwining with 

socio-economic and environmental factors that intricately shape its prevalence and impact. 

Factors such as inadequate access to healthcare, socio-economic disparities, climate variations 

affecting mosquito habitats and the emergence of drug-resistant parasite strains significantly 

contribute to the disease’s persistence and exacerbate its impact on vulnerable communities. 

Understanding these multifaceted influences becomes pivotal in devising comprehensive 

strategies to combat the spread of malaria. 

Moreover, this chapter endeavors to bridge the gap between theoretical models and real-

world applicability by exploring the potential implications of the SEIRS model with mosquito 

vector dependency. Beyond theoretical constructs, the analysis aims to simulate and predict the 

impact of various intervention strategies, including vector control measures, anti-malarial drug 

distribution, and socio-economic interventions, within the framework of the mathematical 

model. By projecting potential outcomes and evaluating the effectiveness of interventions, this 

approach seeks to offer actionable insights for policymakers, health organizations, and 

researchers striving to mitigate the burden of malaria. This integrated approach, amalgamating 
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mathematical rigor with an understanding of ecological, socio-economic and healthcare access 

factors aims to pave the way for more targeted and impactful interventions, ultimately steering 

the global fight against malaria towards a path of sustained progress and control. 

In this chapter, the authors construct a SEIRS model for humans and a SEI model for 

mosquitoes, ultimately asserting that the primary defense against such a disease lies within the 

human immune system. The subsequent structure of the chapter unfolds as follows: Section 4.2 

provides a detailed literature and Section 4.3 furnishes a portrayal of the model. The subsequent 

sections, 4.4 and 4.5, undertake the analysis and numerical simulation, respectively. The chapter 

concludes with a comprehensive summary and concluding remarks in Section 4.6. 

4.2. Literature Review 

Various epidemic models have undergone mathematical analysis and have been applied to 

specific diseases (cf. Gupta et al., 1994; Hethcote, 2000). Ross (1916) was the first to introduce 

the formulation of an initial arithmetical copy for the transference of jungle fever. Since then, a 

multitude of models have been devised to examine the intricacies of malaria transmission 

dynamics. (cf. Chitnis et al., 2006 & 2012; Chamchod and Britton, 2011; Ruan et al., 2008; 

Xiao and Zou, 2013; Li, 2011).  

Ngwa and Shu (2000) conducted an examination on a deterministic differential equation 

model regarding the prevalence of malaria, considering the fluctuating populations of both 

humans and mosquitoes. This avenue of research has seen extensive exploration, with biologists 

and mathematicians working collaboratively to gain insights into the primary causes of 

epidemic spread. Ngwa (2004) addressed the issue by employing a mathematical model, 

utilizing perturbation analysis and determining that the death rate is nonzero, small and 

significant.  

Chitnis et al., (2006 & 2012) presented a model for infection agents taking into account the 

influence of immigration and death rates induced by the disease. Exploring the dynamics of 

malaria transference through arithmetical modeling is an extensive and captivating field of 

study, where developed models depend on various factors including death rates and 

environmental considerations. Despite considerable progress, certain areas still require research, 

such as optimizing malaria cure costs, assessing the role of awareness and examining follow-up 

cases. Among these areas is the coefficient of the human population, which is dependent on 

density and warrants further exploration. 

 Anderson and May (1991) examined mathematical models of infectious agent transmission 

in human groups. Ghosh et al., (2014) introduce an arithmetical model to study the transmission 
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of malaria among birds, incorporating alterations in vector behavior. Meanwhile, Forouzannia 

and Gumel (2015) developed and qualitatively analyzed a novel age-structured deterministic 

copy in sequence to evaluate the effect of anti-malaria medication on jungle fever transmission. 

Wang et al., (2016) examined a stage-structured mosquito model to investigate the factors 

behind the significant mosquito abundance in 2014 and its implications for disease outbreaks. 

The exploration of malaria transmission dynamics through mathematical modeling has been 

an engaging area of research (cf. Chaves et al., 2008; Erin et al., 2013). Previous models have 

taken into account factors such as density-dependent death rates and environmental variables. 

However, these studies have not extensively investigated the influence of the transmission 

coefficient on humans, considering the density of mosquitoes. 

Mathematical modeling has proven to be a valuable tool for understanding the transmission 

dynamics of malaria. It not only enhances our comprehension of the disease’s dissemination and 

impact but also aids in devising informed policies to combat malaria (cf. Romero-Leiton and 

Ibarguen-Mondragon, 2019; Abioye et al., 2020; Misra et al., 2023). Several notable 

arithmetical models, such as the SIR model and its derivatives have been applied to malaria 

transference. These models have been consistently extended and adapted by researchers by 

incorporating nuanced insights related to malaria dynamics and disease control strategies (cf. 

Romero-Leiton and Ibarguen-Mondragon, 2019; Ndii and Adi, 2021; Nwankwo and Daniel, 

2019; Noeiaghdam and Micula, 2021; Kobe, 2020; Handari et al., 2019). 

Ibrahim et al., (2020) introduced a unique conceptual framework that divides the population 

affected by the ailment into two distinct subgroups: those who lack awareness of their infection 

and those who have awareness of it. This framework suggests that the rate of expansion for the 

campaign aimed at increasing awareness is directly linked to the number of individuals who are 

unaware of their infection. Building on this concept, Al Basir et al., (2021) formulate a 

comprehensive arithmetical design to investigate jungle fever dynamics, incorporating the 

impact of interventions based on awareness. Their framework suggests that the level of 

awareness influences disease transmission rates between vectors and humans, as well as 

between humans and vectors with control methods capable of elevating this level. 

The susceptible population is divided in two groups according to a novel mathematical 

framework developed by Ndii and Adi (2021): the informed and the uninformed. According to 

this model, which presents a steady awareness rate, some susceptible individuals who are 

currently uninformed will eventually become conscious and join the informed group.  
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Al Basir and Abraha (2023) put forth a deterministic mathematical framework in order to 

scrutinize the intricacies of malaria and assess the efficacy of interventions involving the use of 

mosquito nets and insecticides. It is worth mentioning that their framework regards awareness 

as a dynamic variable that evolves over time. Finally, Tchoumi et al., (2023) formulated a 

mathematical framework that provides insight into the vitals of jungle fever transmission, 

considering the susceptibility of hosts and acknowledging the acquisition of partial immunity 

after infection. 

This comprehensive array of mathematical models contributes significantly to our 

understanding of malaria transmission and the potential strategies to control its spread. These 

models consider awareness as a pivotal factor in intervention strategies and provide essential 

comprehension of the complex dynamics of an illness. 

4.3. Model Description 

In this model, we consider two distinct population categories: Human and Vector (mosquito) 

population. The overall population size of the human population is represented by hN , and it is 

distant divided into four sub-classes: Susceptible human )( hS , Exposed human )( hE , Infected 

humans )( hI  and Recovered human )( hR .  

It’s believed that individuals come into the susceptible class through processes such as birth. 

Following a bite from an infected mosquito, a susceptible human may first become exposed and 

subsequently may experience infection at varying rates. Infected people recover and join the 

recovered class after a set amount of time. They eventually regain their susceptibility and revert 

to the susceptible class.  

Likewise, the overall vector population is represented by vN  and categorized into three 

classes: Susceptible mosquito )( vS , Exposed mosquito )( vE  and Infected mosquito )( vI . 

Susceptible mosquitoes are added to the population at a rate 2 . The mosquito initially 

transitions to the exposed class, and subsequently, there is a progression of individuals from the 

exposed class to the infected class over time. The malaria transmission diagram is illustrated in 

Figure 4.1. 
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Figure 4.1: Epidemiological modeling of malaria transmission.
 

Table 4.1: Explanation of state parameters utilized in the model 

Symbols Description 

1   Recruitment rate i.e.,  human population 

2  The entry rate of the mosquito population, encompassing newly generated 

vectors 

A  The rate of immigration for the human population 

1  Transmission rate of probability from susceptible humans to exposed vectors 

(mosquitoes) 

2  Transmission rate of probability from susceptible humans to infected vectors 

(mosquitoes) 

3  The speed at which vulnerable mosquitoes are likely to spread their infection to 

people who are exposed 

4  The speed at which virus-carrying mosquitoes are likely to spread their infection 

to humans 

h  Rate at which people become sick after being exposed 

v  Rate at which a vector becomes infected after being exposed 

  The speed at which members of the human population heal completely and 

become vulnerable once more 

  The pace of recovery for people within the human population 

)( 21 dd  Mortality rate due to natural causes in the human population (mosquito 

population), respectively 
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Two distinct scenarios have been considered in formulating the mathematical model. We will 

analyze the model in both of the mentioned cases: 

Case 1: The transmission probability, denoted as
1 , representing the estimate at which 

contaminated mosquitoes bite vulnerable humans, is presumed to remain continuous. 

Case 2: The likelihood of transmission, denoted as
1 , depends on the solidity of the mosquito 

inhabitants. It is expressed as vNbb 101  , where 0b  and 
1b  are constructive 

continuous. 

4.3.1. Governing Equations 

The behavior of the model is elucidated by the subsequent set of divergence 
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hhh RdIR )( 1 
 

hh NdAN 11           (4.1) 
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vv NdN 22 
 

4.4. Mathematical Analysis 
The formulated mathematical model can be examined under two distinct cases: 

Case 1: When 001 ;  is a constant. 

Considering hhhhh RIESN  and vvvv IESN  , the system of equations (4.1) 

can be reformulated in the following manner: 

hhhhhhvvh EdRIENIEE )())()(( 120    

hhhh IdEI )( 1   

hhh RdIR )( 1 
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hh NdAN 11           (4.2) 

vvvvvhhv EdIENIEE )())()(( 243    

vvvv IdEI 2   

vv NdN 22 
 

The above system’s attractive region is 

}0,0:),,,,,,{(1 vvvvhhhhhvvvhhhh NNIENNRIENIENRIE 

where 
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A
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



 and 

2

2suplim
d

NN v
t

v





. 

4.4.1. Equilibrium Points and Stability Analysis 

Given that, at equilibrium all derivatives become zero, 

i.e., 
0 vvvhhhh NIENRIE

, 

then the system of equations (4.2) becomes 

0)())()(( 120  hhhhhhvv EdRIENIE   

0)( 1  hhh IdE   

0)( 1  hh RdI 
 

011  hNdA          (4.3) 

0)())()(( 243  vvvvvhh EdIENIE   

02  vvv IdE  

022  vNd
 

Three equilibrium points that hold both physical and biological relevance are as follows: 

(i) Equilibrium 1E  signifies the disease-free state exclusive to the human population and is 

denoted by 






 
0,0,0,,0,0,0

1

1

d

A
.  
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(ii) Equilibrium 
2E  represents the disease-free state for both human & mosquito populations, 

expressed as 






 

2

2

1

1 ,0,0,,0,0,0
dd

A
.  

(iii) Equilibrium 3E  designates the endemic equilibrium point and is defined as 

 vvvhhhh NIENRIE
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Theorem 4.4.1: The equilibrium point 1E  is stable if all latent roots are negative. The 

equilibrium 2E is stable if 0)4,2,1( ipi and ,)( 4

2

13213 pppppp 
 
otherwise unstable and 

the equilibrium 3E
 

is stable if 0)5,4,3,1( iqi  
and  ))(( 4
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3
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.)( 2
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Proof: In accordance with framework (4.2), the overall variational matrix J  is 
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At the equilibrium 






 
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E , the jacobian matrix 0J is provided as: 




















































 







 




2

2

2

1

1

1

1

1
2

1

1
01

0

000000

00000

00)(0000

000000

0000)(0

00000)(

0000)(

d

d

d

d

d

d

d

A

d

A
d

J

v

v

h

h











 

The derivation of the Jacobian matrix’s characteristic polynomial: 

0 IJ   
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Therefore, all of these roots exhibit negativity. Consequently, the equilibrium point 1E  is 

deemed stable. 
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The derivation of the Jacobian matrix’s characteristic polynomial: 
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0 IJ 
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where 
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and 

)(),(),(),( 24131211 vh dadadada   . 

The polynomial provided by equation (4.8) yields three negative roots and the coefficients of a 

bi-quadratic equation ensure every root contains a true unfavorable portion. Therefore, the 

Routh-Hurwitz conditions, 0)4,2,1( ipi and 4

2

13213 )( pppppp  are satisfied. In these 

circumstances, the equilibrium point 2E exhibits local asymptotic stability. 
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The derivation of the Jacobian matrix’s characteristic polynomial: 

0 IJ   
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))((7 hhhh RIENa  , ))((8 vvv IENa  .

 
With two negative roots and coefficients ensuring every root contains a true unfavorable 

portion, the Routh-Hurwitz conditions, 0)5,4,3,1( iqi  
and )( 541 qqq 

 )( 4

2
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1321 qqqqqqq
2
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2

3215 )( qqqqqq   are met. In these circumstances, the 

equilibrium point 3E exhibits local asymptotic stability. 

Case 2: When vNbb 101  ; 0b and 1b  is a constant.  

Since vvvvhhhhh IESNRIESN  and  the system of equations (4.1) can be: 

hhhhhhvvhhhhvh EdRIENIERIENNbbE )())(())()(( 1210    

hhhh IdEI )( 1   

hhh RdIR )( 1 
 

hh NdAN 11           (4.10) 
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vv NdN 22 
 

The system’s attractive region, as provided by (4.10), is  
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4.4.2. Equilibrium Points and Stability Analysis 

Given that, at equilibrium all derivatives become zero, 

i.e., 
0 vvvhhhh NIENRIE

,   

then the system of equations (4.10) becomes 
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Three equilibrium points that hold both physical and biological relevance are as follows: 

(i) When the open to person inhabitants is contaminated, then the sickness free parity only for the 

human inhabitants is 

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
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(ii) When the open to person inhabitants is only contaminated, then the sickness free parity for 

both human and mosquito inhabitants is 
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Theorem 4.4.2: The equilibrium point 1P  is stable if all latent roots are negative. The 
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The derivation of the Jacobian matrix’s characteristic polynomial: 
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With two negative roots and coefficients ensuring every root contains a true unfavorable 

portion, the Routh-Hurwitz conditions, 0)5,4,3,1( isi  
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3215 )( ssssss   are met. In these circumstances, the 

equilibrium point 3P  exhibits local asymptotic stability. 

4.5. Numerical Simulation 

Numerical simulations supporting the analytical results stated in Section 4.4 are presented in 

this section. For this purpose, the Runge-Kutta fourth-order method is used to perform the 

sensitivity analysis. The data set for case 1 was as follows: 

0.00000029 =1 , 0.00000021 = 2 , 0.00000015 =3 , 0.00000009 =4 , 0.00012 =1d , 

0.0085 = 2d , 0.00012 =1 , 0.0085 = 2 , 0.00146 =  , 0.0085= , 0.012 =h , 0.015 =v , 

12 =A  and initial values are: 

500 =hE , 4181.8 =hI , 209.2 = hR , 20000 =hN , 14000 = vE , 30000 =vI , 963400 =vN  

which draw inspiration from Hazarika and Bhattacharjee (2011) as well as Ghosh et al., (2005). 
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In a similar vein, the parameter values for case 2 are determined as follows: 

0.00012  =0b , 0.00000006 1 b , 0.00000021  = 2 , 0.000024  =3 , 000000009 =4 ,

0.00012 =1d , 0.0085 = 2d , 0.00012 =1 , 0.00085 = 2 , 0.000146 =  , 0.012= , 

0.012 =h , 0.015 =v , 10 =A  and initial values are: 

50 =hE , 101.5 =hI , 10.9 = hR , 402.8 =hN , 300 = vE , 602.3 =vI , 1188.8=vN  

  

Figure 4.2: Variant in the proportion of hI
 

for different progression rates h .  

Figure 4.3: Variant in the proportion of hI
  

for different recovery rates .  

 

Figure 4.4: Variant in the proportion of hI
 
for different immigration constant A .  

The impact of the progression rate, denoted as h , on the infected human population hI  is 

illustrated in Figure 4.2. Firstly, when h  is lower, the corresponding infected human 

inhabitants is also lower. However, with the passage of time the influence of h  on hI  under 

goes a reversal. Figure 4.3 demonstrates that an increase in the recovery rate   leads to a 

decrease in hI . 

Figure 4.4 illustrates the influence of the immigration constant A  on the contaminated human 

inhabitants hI . As A  increases, hI  also shows an increase. Additionally, hI  rises with a higher 
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rate of immunity loss among recovered humans, represented by the parameter   as depicted in 

Figure 4.5. 

  

Figure 4.5: Variant in the proportion of hI  

for different immunity loss .  

Figure 4.6: Variant in the proportion of hI  

for different interaction coefficient 1 .  

Figure 4.6 displays the plot of hI
 
against different values of 1 , indicating the degree to which 

exposed mosquitoes and susceptible humans interact. The trend indicates that an augmentation 

in 1  results in an increase in hI . Similarly, in Figure 4.7, hI is graphed against various values 

of 2 , indicating the degree to which infected mosquitoes and susceptible humans interact. 

Notably, 2  follows a comparable trend to 1  concerning its impact on hI . 

 

Figure 4.7: Variant in the proportion of hI  for different interaction coefficient 2 .  

The Figure 4.8 illustrates the dynamic changes in infection and immunity over time. Initially, 

the infected human population undergoes an increase, followed by a gradual decrease as time 

progresses. This pattern is attributed to the non-linear terms incorporated into the model. 

Conversely, the proportion of recovered humans shows an upward trend. This is attributed to 

the significant raise in the recovery rate when medicinal care is administered to infected 

individuals. 
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Figure 4.8: Variant in the infective and recovered human population. 

The exploration of case 2, wherein 1  is defined as vNbb 101  , is depicted in Figures 4.9 to 

4.12. Figure 4.9 demonstrates that a reduction in v  
leads to an augmentation in hI .  

  

Figure 4.9: Variant in the proportion of hI
 

for different progression rate v .  

Figure 4.10: Variant in the proportion of 

hI  for different values 0b .  
 

  

Figure 4.11: Variant in the proportion of hI  

for different values 1b .  

Figure 4.12: Variant in the proportion of 

hI
 
for different values vN . 
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Figures 4.10 and 4.11 portray the changes in hI  concerning 0b  and 
1b . These figures illustrate 

that the infected human population rises with an increase in both 0b  and 
1b . The relationship is 

further presented in Figure 4.12 for two different values of  tN v  (888.8, 1188.8). It is observed 

that when vN  is high, hI  is also high, which is intuitively evident. 

4.6. Summary and Concluding Remarks 

The dynamics of a malaria epidemic, accounting for human beings and vector populations, 

were simulated using the SEIRS model that we introduced in this chapter. Our model included 

an exposed class for both human and mosquito populations, allowing us to gain a more 

comprehensive understanding of the disease’s dynamics. 

One of the critical determinants of malaria spread is the transmission coefficient between the 

human population and infected mosquitoes. Through our numerical analysis, we have uncovered 

significant insights. We observed that as the immigration constant A and the human population 

with impunity dropping increase, the number of contaminated persons also rises. These findings 

are vividly depicted in Figures 4.4 and 4.5, emphasizing the urgency of addressing these factors 

in malaria control efforts. 

In conclusion, our study underscores the essential need for effective control strategies 

against the malaria vector, which plays a pivotal role in disease outbreaks. Implementing 

measures such as a robust drainage system and the strategic use of insecticides can substantially 

contribute to the diminution and control of the mosquito population, thereby curbing the 

transmission of malaria. These strategies are vital steps towards minimizing the effect of this 

devastating ailment on human inhabitants. 
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Chapter 5: The Study of Dengue Transmission Dynamics through 

     the SEIR Model  

5.1. Introduction 

Dengue, a viral disease transmitted primarily by mosquitoes, stands as a significant global 

public health concern. This pervasive illness affects over 50% of the global population and 

poses a substantial threat, potentially leading to severe symptoms and, in rare instances, 

fatalities. Understanding the complex dynamics of dengue transmission becomes imperative in 

combating its spread and devising effective control measures. Mathematical models emerge as 

indispensable tools in unraveling the intricate transmission patterns of dengue, serving as the 

cornerstone for devising comprehensive strategies aimed at disease containment and 

prevention. Within the landscape of mathematical modeling, the SEIR (Susceptible-Exposed-

Infectious-Recovered) model stands as a pivotal framework for exploring the transmission 

dynamics of dengue. This chapter extensively delves into the intricacies of the SEIR model, 

specifically tailored to dissect the transmission patterns of dengue. Emphasizing the 

multifaceted nature of disease propagation, this model incorporates a logistic function, 

shedding light on the growth and stability of mosquito populations-an essential factor in the 

dissemination of the disease. Moreover, the computation of the fundamental reproduction 

number within this model serves as a critical indicator, elucidating the potential for disease 

spread within populations. 

Beyond the immediate quantification of disease spread, this analysis extends its purview to 

evaluate the stability of both endemic and disease-free equilibria, offering a glimpse into the 

long-term behavior of the dengue transmission system. By unraveling the intricate interplay 

between susceptible, exposed, infectious and recovered individuals within populations, this 

examination aims to provide not only a snapshot of disease transmission but also valuable 

insights into the underlying dynamics dictating the ebb and flow of dengue spread. 

The significance of these findings lies in their potential to inform and guide the formulation 

of effective strategies aimed at controlling and preventing the spread of dengue. By 

synthesizing mathematical rigor with epidemiological insights, this chapter endeavors to offer 

actionable perspectives that can be instrumental in guiding policymakers, healthcare 

practitioners, and public health organizations towards implementing targeted interventions and 

surveillance measures. Ultimately, the overarching goal remains the mitigation of dengue’s 

burden on global health and the enhancement of strategies to protect vulnerable communities 

from the perils of this viral disease. 
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In this chapter, we introduce a mathematical model to examine the transmission dynamics 

of dengue fever. The chapter is structured as follows: Section 5.2 provides a detailed literature 

and Section 5.3 outlines the model description, system equations, and fundamental properties. 

Section 5.4 conducts stability analysis, while Section 5.5 presents numerical results to support 

our model. In Section 5.6, we summarize key findings and highlight future research directions. 

5.2. Literature Review 

A substantial body of work in disease transmission modeling has yielded valuable insights 

into various aspects of disease dynamics and the influence of climate factors. Notable among 

these contributions are the works of J. P. LaSalle (1976), whose comprehensive exploration of 

stability analysis for dynamical systems serves as a fundamental reference for researchers and 

practitioners. Singh et al., (2019) present an arithmetical framework that embraces the 

influence of the mosquito inhabitants in the transmission of malaria, contributing to a greater 

insight into jungle fever vitals and the effectiveness of vector control strategies. Similarly, 

Singh et al., (2016) put forward an outbreak representation that examined the transference vital 

of HIV/AIDS, incorporating various latent stages. The study specifically concentrated on 

assessing the consequences of treatment, thereby making a valuable contribution to our 

comprehension of the influence of treatment interventions on the dissemination of the disease.  

Additionally, Van den Driessche and Watmough (2002) delved into the implications of 

reproduction numbers for disease transmission models, examining sub-threshold endemic 

equilibria and offering insights into the stability of endemic & disease-free states within 

compartmental models. 

Building upon this substantial body of work in disease transmission modeling, several 

researchers have furthered our understanding of the complex interplay between disease 

dynamics and climate factors. Bal and Sodoudi (2020), in their study focused on dengue 

occurrences in Kolkata, India and skillfully integrated climate variables into their model, 

enabling an enhanced grasp of the transmission dynamics of dengue and thus enhancing our 

knowledge of the intricate relationship between climate and disease spread. In a similar vein, 

Baylis (2017) investigated the possible effects of weather change on various diseases spread by 

vectors, emphasizing the critical need to account for climate change effects when assessing the 

risks and emergence of infectious diseases. Benedum et al., (2018) delved into the statistical 

modeling of rainfall’s effect on dengue transmission in Singapore. Their in-depth analysis of 

the relationship between rainfall patterns and dengue transmission provided critical insights 

into the role of environmental variables play in this disease’s epidemiology. 



Chapter 5                                             The Study of Dengue Transmission Dynamics through the SEIR Model 

 

91 
 

In addition, Bhatt et al., (2013) conducted a comprehensive analysis of the worldwide 

dispersal and load of dengue fever, offering a comprehensive overview of the geographic 

distribution, incidence and public health impact of dengue, thereby contributing to our 

understanding of the global epidemiology of the disease. Moreover, Butterworth et al., (2017) 

investigated the potential implications of varying atmospheric conditions on the transference of 

dandy fever in the southeastern United States, projecting future changes in transmission 

dynamics through climate modeling. This work illuminated the vulnerability of the region to 

climate-driven shifts in disease risk. In a similar vein, Caldwell et al., (2021) investigated the 

intricate interactions between two continent’s worth of mosquito-borne disease dynamics and 

climate. Their comprehensive analysis of climate variables aimed to unravel the geographic and 

temporal variations in disease transmission, underscoring the crucial role of climate in 

influencing disease patterns. Davis et al., (2021) developed a topical index for assessing 

favorable circumstances, seeking to predict how the dengue virus may adapt to changing 

climatic conditions. Their innovative modeling approach incorporated climate variables to 

assess potential changes in vector-borne disease transmission, providing crucial insights into 

the future implications of weather change on dengue dynamics. Moreover, Ebi and Nealon 

(2016) conducted a comprehensive review to examine the multifaceted effect of weather swaps 

on dandy fever. Their study explored the intricate interactions between climate factors and 

dengue transmission, underscoring the necessity of considering climate change effects when 

developing strategies for disease prevention and control. 

Moreover, Gutierrez et al., (2022) focused their investigation on meteorological indicators 

associated with dengue epidemics in non-endemic Northwest Argentina. Their study delved 

into the intricate relationship between meteorological factors and dengue outbreaks, providing 

valuable insights into the role of weather conditions in dandy fever transference dynamics 

within a non-endemic region. Huber et al., (2018) undertook an exploration of the impact of 

periodic weather condition disparity on the suitability of climate for the transference vital of 

Chikungunya, Zika, & Dengue fever. The study underscored the paramount importance of 

temperature as a key factor in determining the appropriateness of the transmission of diseases 

spread by vectors. Similarly, Kakarla et al., (2020) focused on the dengue condition in India 

and created a model that could be used to determine appropriateness and potential for 

transmission under both the existing and anticipated scenarios of climate change. Their 

research yielded priceless insights into how weather change can influence the complex 

dynamics of dengue transmission in India.  In addition, Liu-Helmersson et al., (2016) engaged 
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in the critical task of projecting dengue transmission in Europe under climate change situations, 

bringing to the forefront the potential future risks of dengue transmission in Europe, driven by 

changing climatic conditions and the expansion of Aedes vectors. Marino et al., (2008) 

concentrated mostly on sensitivity analysis and global uncertainty in systems biology, their 

methodology although not directly related to dengue offers a valuable approach to 

understanding and quantifying uncertainties within dengue transmission models. Furthermore 

using mechanistic models, Mordecai et al., (2017) investigated the consequence of the Kelvin 

scale on the increase of Chikungunya, Zika, & Dengue fever. Their research deepened our 

understanding of the association between climate and illness by offering profound insights into 

the complex interactions between temperature, vector dynamics, and disease transmission. 

Morin et al., (2013) took an in-depth look at the evidence and implications of climate on 

dengue transmission, providing a complete analysis of the existing literature on the intricate 

relationship among weather and dengue and highlighting the pivotal role of climate factors in 

influencing disease transmission dynamics. Furthermore, Ngonghala et al., (2021) explored the 

impacts of temperature changes on zika dynamics and control, shedding light on the 

significance of considering temperature variations when assessing the effectiveness of control 

strategies for zika and other vector-borne diseases. Collectively, the aforementioned studies 

have significantly contributed to the advancement of our understanding of the complex 

mechanisms of disease transmission within the framework of climate change. 

Continuing our exploration of the intricate connection among climate and disease 

transmission, Nuraini et al., (2021) introduced a dengue model based on climate in Indonesia, 

Semarang, focusing on predicting and analyzing dengue transmission dynamics using climate 

data. Their findings provided critical insights into the connection between climate variables and 

dengue occurrences in the study area, contributing to our understanding and prediction of 

dengue outbreaks in Indonesia. In a broader context, Okais et al., (2010) discussed the 

methodology of sensitivity analysis for modeling infectious diseases, underscoring the 

importance of sensitivity analysis in evaluating the robustness and reliability of disease models. 

This work presented methods and approaches valuable for understanding and quantifying 

uncertainties in dengue transmission models. Similarly, Okuneye and Gumel (2017) explored a 

model for malaria transmission dynamics that considered temperature and rainfall 

dependencies. Their study provided valuable insights into the mathematical modeling of 

temperature and rainfall effects on disease transmission, contributing to our understanding of 

climate-driven dynamics in vector-borne diseases, including dengue. The zika virus outbreak in 
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Brazil was examined by Sadeghieh et al., (2021) in light of both the present and the future 

environment, offering insights into how the dynamics of disease transmission are contaminated 

by climate crises. Their research contributes to the expansion of our grip regarding the possible 

consequences of weather pattern variation on the dissemination and propagation of illnesses 

facilitated by vectors, such as dengue. Wang et al., (2022) explore the ramifications of severe 

meteorological phenomena on the occurrence of dengue fever in four nations of the Asian 

continent, providing valuable perspectives on the association between extraordinary 

atmospheric events and the prevalence of dengue infection. Williams et al., (2016) provided 

predictions indicating both heightened and reduced occurrences of dengue under diverse 

weather transformation scenarios. Finally, Xu et al., (2020) projected future dengue under 

climate change scenarios, addressing existing knowledge and uncertainties regarding the effect 

of weather transformation on dengue dynamics. This literature review highlights various 

studies contributions, covering stability analysis, disease spread models, co-infection dynamics, 

environmental factors, climate change impacts and mathematical modeling. Collectively, these 

studies offer a thorough comprehension of the intricate interactions between climate, vectors, 

and disease dynamics in dengue transmission. Further research is crucial to address remaining 

uncertainties, enhance modeling approaches, and create efficient plans for controlling and 

preventing dengue. 

5.3. Model Description 

In the proposed work, it is going to be analyzed the population dynamics for the spread of 

dengue disease using the SEIR model. The overall population is categorized into two distinct 

groups: the human population and the vector population. The total human population is 

represented by  tN h  and is further subdivided into four classes: susceptible humans  hS , 

exposed humans  hE , infected humans  hI  and recovered humans  hR . Also, the overall 

vector population at time t  is represented by  tN v  and subdivided into three classes, namely, 

the susceptible vector  vS , exposed vector  vE  and infected vector  vI . 

 In this model, we assume that individuals enter the susceptible human class through 

processes like birth. Upon being bitten by an infected vector, a susceptible human undergoes 

the stages of exposure and subsequent infection at variable rates. Recovered individuals emerge 

from the infected class after a specified duration.  
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Similarly, susceptible vectors are introduced into the population at a certain rate. The vector 

initially shifts to the exposed class, and over time, individuals progress from the exposed class 

to the infected class. 

Susceptible human populations are recruited at a rate
h

h N
k

N












 
, where   is the birth 

rate,   is the growth rate and k  is the carrying capacity of the human population. Susceptible 

humans get the virus from an infected vector following an effective constant at the rate 

h

hv

N

SIb 1 . It is likely that the dengue virus will infect humans through its vector population, 

represented by number
1 .  

Susceptible mosquitoes recruited at rate A  and become infectious at rate 
h

vh

N

SIb 2 after 

being contacted by infected humans. The likelihood that the dengue virus will spread through 

humans into the mosquito population is shown by
2 . h  represents a development rate from 

exposed class hE to contaminated class 
hI  and v  

represents a development rate from exposed 

class vE to contaminated class 
vI . The improvement rate for the human population is h . h  

denotes the inherent death estimate within the person inhabitants and v represents the inherent 

death estimate within the vector population. Figure 5.1 illustrates the transmission diagram for 

the dengue fever model. 

 

Figure 5.1: Transmission dynamic diagram. 
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5.3.1. Governing Equations 

The model’s governing differential equations are formulated by taking into account the relevant 

inflow and outflow rates for each compartment. 
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with initial conditions; 
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The system of equations (5.1) and (5.2) can be simplified by letting 

1 hhh NSs ,
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1 hhh NIi ,
1 hhh NRr ,
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.1 vvv NIi           (5.3) 

Differentiating the above system of equations (5.3), w.r.t. time 
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Hence, the simplified system of equations becomes  
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5.3.2. Basic Properties 

In this portion, we explore essential principles that are pivotal for the subsequent 

mathematical examination of the provided model. 

5.3.2.1. Invariant Region 

Considering the replica tracking of swap in the person inhabitants, we assume all variables 

are changeable and constructive for .0t   Thus, the structure of calculations (5.4) is analyzed 

within a biologically relevant and feasible region denoted as  . The following lemma outlines 

the feasible region for the system (5.4). 

Lemma 5.3.1: The solution of the simplified model structure (5.4) is contained in the region 

34

  vh .   

Proof: To demonstrate that in a proper subset of 
34

  , all possible solutions are 

uniformly bounded. Splitting the system into a human component hn  and a vector component 

vn such that  1 hhhhh riesn  and 1 vvvv iesn     (5.5) 

Consider any solution hhhh ries ,,,  in 4

  with non negative initial conditions. By applying 

Birkhoff and Rota’s theorem (1989) to differential inequalities, it can be inferred that  

1)(lim  tSht          (5.6) 

It is also similar for the solution of the vector population.   3,, vvv ies that 

1)(lim  tSvt          (5.7) 

From the system of equation (4), we have: 

 hhhhh riesn  ,
 

0hn
 

Integrating, we get 1knh  , where 1k  constant. But, from 1 hhhhh riesn , it 

follows that 11 k . 

Hence;   1:,,, 4   hhhhhhhhh riesries . 

Similarly: vvvv iesn  , 0vn .
 

Integrating, we get 2knv  . Also, from 1 vvvv iesn , it follows that 12 k . 

Hence;   1:,, 3   vvvvvvv iesies . 

As a result, we can affirm that the region   remains positively invariant, confirming that 
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the model is well-defined and holds biological significance. Consequently, we can focus on the 

dynamics produced by the simplified model (5.4) within the   region. 

5.3.2.2. Positivity of Solutions 

Lemma 5.3.2: With the initial conditions proposed in the model to lie in  , where 

  0,0,0,0,0,0,0:,,,,,, 7   vvvhhhhvvvhhhh iesriesiesries .  

Then the solution set               titetstrtitets vvvhhhh ,,,,,, of the simplified model system (4) 

is positive for all time .0t  

Proof: By using the simplified model structure (5.4), from the first equation we have 
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The second equation of the simplified model system (5.4), we have  
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Similarly, the remaining equations of the simplified system (5.4) are also positive  .0t  

Thus if we consider the third equation  
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Now we consider the fourth equation 
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Therefore the solution set               titetstrtitets vvvhhhh ,,,,,,
 

of the simplified model 

system (5.4) is positive for all time .0t  

5.4. Analysis of the Model 

This segment is dedicated to computing the symmetry states, particularly the disease-free 

equilibrium (DFE) and the endemic equilibrium (EE). Additionally, we conduct a firmness 

examination by calculating the fundamental reproduction number. 
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5.4.1. Disease Free Equilibrium (DFE) and Basic Reproduction Number 

The simplified system of equation (5.4) has a disease free equilibrium given by 

   0,0,1,0,0,0,1,,,,,, 0000000
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The assessment of the direct firmness of the ailment-free symmetry state relies on the 

procreation figure, following the methodology outlined in Anderson and May (1988). To delve 

into the regional firmness of this symmetry, we employ the next-generation concept, as 

elucidated by Alexander et al., (2005) and Mushayabasa et al., (2011). To facilitate this, we 

introduce matrices *F  and *V , designed to introduction recently developed infections and the 

transition of persons out of contaminated sections. The derivations proceed as follows: 
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Once the partial derivatives of 
*F  and *V  at 0E  are calculated, the corresponding matrices are 
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Thus the reproduction number 0R , is obtained as

     
.

)()(1)(1

21

2

0

vvvhhhh

vhbn
R








   

(5.8) 

5.4.2. Local Stability of Disease-Free Equilibrium 

In this segment, we consider the local stability of the DFE. They are presented in Theorem 

5.4.1. 

Theorem 5.4.1: The local asymptotic stability of the disease-free equilibrium 0E  in the system 

(5.4) is established when 10 R , and it becomes unstable otherwise.
 

Proof: The Jacobian matrix of the model system (5.4) at 0E
 
is given by 
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This shows that the disease free equilibrium point 0E  is locally asymptotically stable if ,10 R

otherwise unstable.  
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5.4.3. Global Stability of Disease-Free Equilibrium 

In this segment, we assess worldwide firmness by applying a comparison theorem outlined in 

Lakshmikantham et al., (1989) and Mushayabasa et al., (2011). 

Theorem 5.4.2: The global asymptotic stability of the ailment-free symmetry 0E  in the order 

(5.4) is established when 10 R , and it becomes unsteady or else.
 

Proof: The behavior of the varying signifying the contaminated part in the order (5.4) can be 

stated as follows: 
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Given that every eigenvalue of the matrix VF   possesses a negative real component, the 

stability of the linearized differential inequality (5.10) is ensured when 0R   is less than 1. 

Therefore    0,0,0,0,,, vvhh ieie
 

as t .
 

Substituting 0 vvhh ieie , in (5.4) 

gives )0()( hh sts  as t and )0()( vv sts 
 
as t . Hence, the DFE )( 0E  is globally 

asymptotically stable for 10 R  and unstable if .10 R  

5.4.4. Endemic Equilibrium (EE) 

The system (5.4) attains an endemic equilibrium point, which is given by:
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and 
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Equating equations (5.18) and (5.25), we get 
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Put the value of 
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Put the value of 

hs in equation (5.22), we get 
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5.4.5. Global Stability of Endemic Equilibrium 

We discuss the overall firmness of the native symmetry in this sub-section. 

Theorem 5.4.3: The world wide tangent firmness of the native symmetry 
*E in the system 

(5.4) is established when 10 R , and it becomes unstable otherwise.
 

Proof: Consider a Lyapunov function V  as a means of demonstrating the global stability of 

endemic equilibrium. 
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The derivation of V is 
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Separate positive and negative terms such that 
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If G < H then V will be negative it means that .0V  It follows that 0V  
 hh ss ,

 hh ee ,  hh ii ,  hh rr ,  vv ss ,  vv ee  and  vv ii . The maximum invariant set of system 

(5.4) on the set   0:,,,,,,  Viesries vvvhhhh  is the singleton )( E . Thus for system (5.4), 

the endemic equilibrium 
*E is globally asymptotically stable if HG 

 
by LaSalle’s invariance 

principle (1976). 

5.5. Numerical Simulation 

Applying the technique of Runge-Kutta to a simplified structure of the model (5.4) and using 

the estimated parameter values given in Table 5.1, the numerical simulations of the study are 

demonstrated. 

Table 5.1: Presents the estimated parameters for the mathematical model of dengue fever. 

Parameters  Values Source 

  0.00002 Chen and Hsieh (2012) 

  0.000004 Pande J. (2013) 

B 0.33 Adams and Boots (2010) 

1  0.375 KMTL (2006) 

2  0.75 KMTL (2006) 

h  0.197 Assumed 

v  0.183 Assumed 

h  0.000016 Chen and Hsieh (2012) 
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v  0.331 Chen and Hsieh (2012) 

h  0.142 Adams and Boots (2010) 

n  12 Assumed 

  0.637 Pande J. (2013) 

 

Figure 5.2 depicts how the population is distributed across various demographic categories over 

time. 

 

Figure 5.2: Variation of proportion of population at different classes. 

The portion of the sensitive human inhabitants declines with time when it comes to the 

equilibrium point, as shown in Figure 5.2. This decline is primarily attributed to many 

individuals becoming infected, often due to a lack of awareness about dengue, and also because 

of a decrease or shortage in human carrying capacity. The exposed human population, as well 

as the infective human population, initially increases with time but eventually declines due to 

disease-induced deaths and other natural causes as some individuals recover and transition to 

the recovery class. As a result, the percentage of the recovered human population rises. 

Meanwhile, the proportion of sensitive vector populations increases while that of exposed and 

infective vector populations decreases over time.  

Figures 5.3 to 5.9 depict the variations in terms of proportions susceptible humans, exposed 

humans, infected humans, recovered humans, susceptible vectors, exposed vector and infective 

vectors for various biting rates denoted as b . 
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Figure 5.3: Variation in the susceptible 

human population for varying biting ratesb . 

Figure 5.4: Variation in the exposed human 

population for varying biting ratesb . 

  

Figure 5.5: Variation in the infected human 

population for varying biting ratesb . 

 

Figure 5.6: Variation in the recovered 

human population for varying biting ratesb . 

  

Figure 5.7: Variation in the susceptible 

vector population for varying biting rates b . 

Figure 5.8: Variation in the exposed vector 

population for varying biting ratesb .  
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Figure 5.9: Variation in the infected vector population for varying biting rates b . 

In Figure 5.3, a notable trend is the decline in the susceptible human population as the biting 

rate rises. In contrast, as we observe in Figures 5.4, 5.5 and 5.6, a rise in the biting rate 

corresponds to a rise in the part of the exposed, infected and recuperated human population. 

Furthermore, when the rate of biting rises, there is a noticeable reduction in the proportion of 

susceptible vector populations. Conversely, a rise in the biting rate is associated with a rise in 

the proportions of exposed vector populations and infected vector populations, which is evident 

in Figures 5.8 and 5.9, correspondingly. 

Figures 5.10 to 5.16 illustrate the changes in terms of proportions of susceptible, exposed, 

infected, and recovered human inhabitants in relation to susceptible, exposed, and infected 

vector populations. These variations are observed for different virtues of the transference 

likelihood from vectors to the person population, denoted as 1 .  

  

Figure 5.10: Variation in the proportion of 

susceptible human for different transmission 

probability rates 1 .

Figure 5.11: Variation in the proportion 

of exposed human for different 

transmission probability rates 1 .  
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Figure 5.12: Variation in the proportion of 

infected human for different transmission 

probability rates
1 .  

Figure 5.14: Variation in the proportion of 

susceptible vector population for different 

transmission probability rates 1 .  

Figure 5.13: Variation in the proportion of 

recovered human for different transmission 

probability rates
1 . 

 
Figure 5.15: Variation in the proportion 

of exposed vector population for different 

transmission probability rates 1 . 

 

Figure 5.16: Variation in the proportion of infected vector population for different 

transmission probability rates 1 . 

In Figures 5.10, 5.11, 5.12 and 5.13, it is clear that an augmentation in the transference 

likelihood of the toxic from the bearing to the human population results in observable patterns. 
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significantly as more individuals become infected. Simultaneously, the sum of uncovering and 

contaminating individuals in the personage inhabitant increases. Furthermore, the proportion of 

the recovered human population also rises as individuals successfully recover from the disease. 

In Figure 5.14, it is evident that the proportion of susceptible vectors decreases as the 

transference of likeliness viruses from vectors to person populations gets larger. 

Simultaneously, the ratio of exposed as well as infected vector populations increases with the 

rising transmission probability of viruses from vectors to human populations. These trends are 

further illustrated in Figures 5.15 and 5.16, correspondingly. 

Figures 5.17 to 5.23 display the variations in the portion of susceptible human, exposed human, 

infected human, and recovered human inhabitants in relation to susceptible vector, exposed 

vector and infected vector inhabitants. These visual representations are generated for a range of 

different values of the transference probability from the human to the vector population, 

denoted as 2 . 

  

Figure 5.17: Variation in the proportion of 

susceptible human population for different 

transmission probability rates 2 .  

Figure 5.18: Variation in the proportion 

of exposed human population for different 

transmission probability rates 2 .  

  
Figure 5.19: Variation in the proportion of 

infected human population for different 

transmission probability rates 2 .  

Figure 5.20: Variation in the proportion 

of recovered human population for 

different transmission probability rates 2 .  
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Figure 5.21: Variation in the proportion of 

susceptible vector population for different 

transmission probability rates
2 .  

Figure 5.22: Variation in the proportion of 

exposed vector population for different 

transmission probability rates
2 . 

  

Figure 5.23: Variation in the proportion of infected vector population for different transmission 

probability rates 2 .  

In Figures 5.17, 5.18, 5.19, and 5.20, it is noticeable that as the transference likelihood of the virus from 

the human to the vector population rises, discernible trends emerge. As this probability rises, the amount 

of sensitive individuals in the human population decreases significantly, as more individuals become 

infected. Simultaneously, the number of uncovered and contaminated individuals in the population 

increases, and the proportion of the recovered human population also rise as individuals successfully 

recover from the disease. 

A similar pattern can be observed in Figure 5.21. The proportion of vectors that are susceptible 

decreases as the likelihood of the virus being transmitted from human to vector population increases. At 

the same time, the percentages of vector populations that are exposed and infected increase as the 

likelihood of the virus being transmitted from the human to the bearing inhabitants rises, as shown in 

numbers 5.22 and 5.23, respectively. 

Figures 5.24 and 5.25 illustrate the variations in the portion of uncovered and contaminated person 

populations, respectively. These figures display these variations for a range of different values of the 

progression rate denoted as h . 
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Figure 5.24: Variation in the proportion of 

exposed human population for different 

progression rates h .  

 

Figure 5.25: Variation in the proportion of 

infected human population for different 

progression rates h .  

In Figure 5.24, it is observed that the exposed human population decreases as the progression 

rate denoted as )( h , increases, whereas with an increase in the progression rate )( h , the 

proportion of the infected human population also increases, as indicated in Figure 5.25. 

Furthermore, Figures 5.26 and 5.27 present the variations in the proportions of exposed vector 

and infected vector populations. These figures demonstrate these variations for a range of 

different values of the progression rate, referred to as v . 

  
Figure 5.26: Variation in the proportion of 

exposed vector population for different progression 

rates v .  

Figure 5.27: Variation in the proportion of 
infected vector population for different 

progression rates v .  

In Figure 5.26, it is observed that the exposed vector population decreases as the progression 

rate )( v  increases while the increase of progression rate )( v  the proportion of infected vector 

population increases as it is indicated in Figure 5.27. 
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5.6. Summary and Concluding Remarks 

In this chapter, an arithmetical replica has been constructed that effectively represents the 

transmission of dengue through the utilization of a SEIR framework. By incorporating a logistic 

function to represent the extension and survival of the mosquito inhabitants, which relies on the human 

inhabitants for sustenance, our model offers a comprehensive understanding of the complex interplay 

between the vector and human populations in the spread of dengue. 

Through our analysis, we determined the basic reproduction number, denoted by 0R , which serves 

as a critical indicator of disease transmission potential. Our findings revealed that the disease free 

equilibrium is regionally firm when 10 R , indicating that the disease can be effectively controlled and 

eliminated under certain conditions. Conversely, when it exceeds one, the disease-free equilibrium 

becomes unstable, suggesting the potential for sustained transmission within the population. 

Moreover, we performed stability assessment for both the states of the system in which there is no 

disease and the states in which the disease is present. This examination enabled us to investigate the 

long-term dynamics of the system and determine the circumstances under which the disease can endure 

or diminish. These observations are crucial for guiding the enhancement of a focused strategy for the 

management and prevention of the disease. 

Overall, our research provides valuable contributions to the understanding of dengue transmission 

dynamics. By employing mathematical modeling techniques and considering the logistical human 

population and exposed class, we have shed light on the complex interplay between the mosquito vector 

and human host. These insights can assist policymakers, healthcare professionals, and researchers in 

formulating effective measures to combat dengue, mitigate its impact, and ultimately reduce its burden 

on affected communities. 

However, it is crucial to recognize that our model, like any mathematical representation, simplifies 

the complexity of real-world dynamics. Further research and data collection are necessary to refine and 

validate the model, incorporating additional factors such as spatial heterogeneity, environmental 

influences, and intervention strategies. The implementation of these extensions would significantly 

contribute to a more comprehensive understanding of the transmission of dengue fever and assist in the 

development of targeted interventions to manage and prevent this significant public health concern. 

In conclusion, our study demonstrates the potential of arithmetical design to elucidate the 

transmission vitals of dengue. By providing insights into the role of human population and the 

interaction with the mosquito vector, our findings contribute to the broader body of knowledge 

aimed at controlling and mitigating the impact of dengue, ultimately working towards a future 

with reduced disease prevalence and improved public health outcomes. 
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Chapter 6:          Conclusion and Future Scope 

In the forthcoming chapter, a concise overview of significant findings that align with the 

proposed objectives has been provided. Furthermore, deliberations on potential avenues for 

future investigation, suggestions, and recommendations within the realm of the research 

conducted in this thesis are presented. 

6.1. Conclusion 

In conclusion, this thesis has embarked on a journey to unravel the intricate dynamics of 

HIV/AIDS, Malaria, and Dengue fever through the lens of mathematical modeling. By 

developing and analyzing various mathematical models, we have delved into the transmission 

dynamics of these diseases, providing valuable insights that bridge the gap between theoretical 

constructs and real-world clinical applicability. 

The stability analysis conducted in Chapter 2, focusing on HIV/AIDS transmission among 

sex workers, highlighted the pivotal role of the reproduction number in determining disease 

eradication. The stability analysis of both disease-free equilibrium and endemic equilibrium 

offered a comprehensive understanding of the system’s dynamics. 

Chapter 3 extended the exploration, considering the impact of media awareness on HIV 

transmission dynamics. The findings not only established the asymptotic stability of the 

disease-free equilibrium but also introduced an innovative hybrid soft computing approach for 

numerical simulations, enhancing the robustness of our analysis. 

In Chapter 4, the SEIRS model with mosquito vector dependency sheds light on the 

transmission dynamics of malaria. The sensitivity analysis emphasized crucial factors in 

combating the disease, such as targeting pesticide use and improving drainage systems. 

Lastly, Chapter 5 explored the transmission dynamics of dengue through an SEIR model, 

providing insights into the disease’s potential for transmission and contributing to the 

formulation of effective control and prevention strategies. 

6.2. Future Scope 
The comprehensive exploration of disease dynamics within this thesis opens avenues for 

future research and development. The derived mathematical models serve as a foundation for 

further refinement and extension. The following directions could be pursued in future studies: 

Refinement of Models: Further refinement and validation of the existing models, 

incorporating additional parameters and complexities, to enhance the accuracy of predictions 

and broaden the applicability of the models. 
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Exploration of Additional Factors: Investigate new factors influencing disease dynamics, 

such as socio-economic conditions, geographical variations, and evolving treatment strategies. 

Dynamic Media Impact: Extend the analysis of media awareness impact on disease 

transmission, exploring dynamic changes in media influence over time and its implications for 

public health interventions. 

Incorporation of Treatment Dynamics: Expand the models to incorporate detailed treatment 

dynamics, considering evolving medical interventions, drug resistance patterns, and the impact 

of vaccination programs. 

Comparative Analysis: Conduct comparative analyses between different regions or 

populations, accounting for diverse demographics and healthcare infrastructures, to tailor 

intervention strategies according to specific contexts. 

Collaborative Research: Foster collaboration between mathematicians, biologists, healthcare 

professionals, and policymakers to ensure a multidisciplinary approach in addressing the 

complexities of disease dynamics. 

By venturing into these avenues, future research can build upon the foundation laid by this 

thesis, advancing our understanding of disease dynamics and contributing to the development 

of targeted strategies for disease control and management on a global scale. 

6.3. Limitations and Areas for Improvement 

In reflecting on the research presented in this thesis, several limitations and areas for 

improvement can be identified: 

Simplifying Assumptions: The models developed often rely on simplifying assumptions about 

disease transmission dynamics and population interactions, which may not fully capture the 

complexities observed in real-world scenarios. 

Parameter Uncertainty: The parameter values used in the models are largely derived from 

existing literature or assumed due to lack of empirical data in certain contexts. This uncertainty 

could affect the accuracy and generalizability of the findings. 

Model Validation: While the models undergo rigorous mathematical analysis, there is limited 

validation against real-world data. More empirical validation and sensitivity analysis would 

strengthen the robustness of the results. 

Scope and Generalizability: The focus on specific populations and diseases (e.g., sex workers 

in HIV/AIDS transmission) may limit the generalizability of the findings to broader 

populations or different epidemiological contexts. 
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Dynamic Factors: The models do not fully incorporate dynamic factors such as behavioral 

changes, migration patterns, or evolving treatment strategies, which are crucial in shaping 

disease transmission dynamics over time. 

Data Availability: Limited availability of local epidemiological data in some regions restricts 

the ability to tailor models to specific geographical contexts, potentially overlooking region-

specific nuances. 

Technological Assumptions: The use of specific numerical methods and modeling 

frameworks may introduce inherent biases or limitations that influence the outcomes and 

interpretations of the study. 

Communication of Findings: The thesis could benefit from clearer articulation of the practical 

implications and actionable insights derived from the mathematical models for public health 

policies and interventions. 
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