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Abstract
A Study on 3-equitable and Divisor 3-equitable Labeling of Graphs

by SANGEETA

Many structures involving real world situations can be conveniently represented on paper by

means of a diagram consisting of a set of points together with the lines (curves) joining some

or all pairs of these points. As used in graph theory, the term Graph does not refer to data

charts, such as line graphs or bar graphs instead, it refers to a set of vertices (points or nodes)

and of edges (lines or links) that connect the vertices. A graph is denoted by G(V,E) where V

represents a non-empty set of vertices (nodes) and E denotes a set of edges. “A graph labeling

is an assignment of integers to the vertices or the edges, or both, subject to certain conditions.

If the domain is the set of vertices, then the labeling is called the vertex labeling. If the domain

is the set of edges, then the labeling is called the edge labeling. If the labels are assigned to

the vertices and also to the edges of a graph, such a labeling is called total. An enormous

body of literature has grown around graph labeling in the last four decades. Labeled graphs

provide mathematical models for a broad range of applications. The qualitative labeling of a

graph elements has been used in diverse fields such as conflict resolutions in social psychology,

energy crises etc. Quantitative labeling of graph elements has been used in missile guidance

codes, radar location codes, coding theory, x-ray crystallography, astronomy, circuit design,

communication network etc. For any graph G(V,E) and k > 0, assign vertex labels from

{0, 1, ..., k − 1} such that when the edge labels induced by the absolute value of the difference

of the vertex labels, the number of vertices labeled with i and the number of vertices labeled with

j differ by at most one and the number of edges labeled with i and the number of edges labeled

with j differ by at most one. A graph G with such an assignment of labels is called k-equitable”.

When k = 3, it becomes a 3-equitable labeling. In 2019, Sweta Srivastav et al. introduced the

notion of divisor 3-equitable labeling of graphs. “A bijection f : V (G) → {1, 2, . . . , n} induces

a function f ′ : E(G) → {0, 1, 2} defined by for each edge e = xy, (i) f ′(e) = 1 if f(x)|f(y)
or f(y)|f(x), (ii) f ′(e) = 2 if f(x)/f(y) = 2 or f(y)/f(x) = 2, and (iii) f ′(e) = 0 otherwise

such that |ef ′(i)− ef ′(j)| ≤ 1 for all 0 ≤ i, j ≤ 2. A graph which admits a divisor 3- equitable
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labeling is called a divisor 3-equitable graph”. Thus, the thesis titled: “A Study on 3-equitable

and Divisor 3-equitable Labeling of Graphs” includes the following objectives:

1. Establishing the 3-equitable labeling of some new classes of graphs.

2. Deriving the 3-equitable labeling of total graph, middle graph, central graph, degree split-

ting graph, and Mycielskian graphs of some graphs.

3. Obtaining the divisor 3-equitable labeling of some new graphs.

4. Deriving the divisor 3-equitable labeling of total graph, middle graph, central graph, de-

gree splitting graph, and Mycielskian graphs of various graphs.

The present thesis is made up to analyze mainly 3-equitable labeling and divisor 3-equitable

labeling of various graphs. Some new graph families have been discovered for 3-equitable la-

beling and divisor 3-equitable labeling. Some existing results on 3-equitable labeling and divisor

3-equitable labeling are extended by using graph operations like total graph, middle graph, cen-

tral graph, degree splitting graph, and Mycielskian graph. A characterization result is introduced

for the graphs satisfying the condition of 3-equitable labeling. Using both labeling with specific

properties, finding the results on a particular graph labeling technique involving the conditions

based on the characteristic of such specific labeling, has a good scope of research in the field of

graph theory.

The thesis “A Study on 3-equitable and Divisor 3-equitable Labeling of Graphs” has been di-

vided into five chapters of which the first chapter, gives introduction to graph theory and graph

labeling along with a review of literature of graph labeling. Also, some basic preliminaries,

graph operations, and applications are provided.

In chapter 2, ‘3-equitable Labeling of Various Graphs’ the 3-equitable labeling has been estab-

lished for some new graphs under two graph operations. The non-existence of 3-equitable for

some graphs are also investigated by the method of contradiction.

In chapter 3, ‘3-equitable Labeling of Some Special Classes of Graphs’ the 3-equitable labeling

of total graph, middle graph, central graph, degree splitting graph, and Mycielskian graph of

some graphs have been derived. The existence and non-existence of 3-equitable labeling for

some families of graphs have also been investigated.

In chapter 4, ‘Divisor 3-Equitable Labeling of Various Graphs’ several results on divisor 3-

equitable labeling have been presented with proof in detail and sufficient number of illustrations
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with figures of some famous named graphs. “The existence and non-existence of divisor 3-

equitable labeling” for several families of graphs have also been investigated.

In chapter 5, ‘Divisor 3-Equitable Labeling of Some Classes of Graphs’ different new results on

divisor 3-equitable labeling have been attained. Several families of graphs are considered and

categorized on the basis of acceptance or non-acceptance of divisor 3-equitable labeling by the

technique called method of contradiction.

List of publications arise from this thesis and bibliography have been put at the end of this

thesis.
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Chapter 1

Introduction

In this chapter, a brief and concise introduction to graph theory and graph labeling along with

a few notable applications are given. Basic definitions and terminologies are also presented to

understand the study undertaken. The main theme of the thesis is introduced with a broad review

of literature.

1.1 Graph Theory

Graph theory is discovered by the Swiss mathematician Leonhard Euler during the course of

finding a solution to the famous Konigsberg bridge problem in 1736. In 1878, English math-

ematician James Joseph Sylvester had published a paper and introduced the term ‘Graph’ first

time in it. Hungarian mathematician Denes Konig wrote the first textbook in the area of Graph

theory in 1936. American mathematics expert Frank Harary authored a significant book on

Graph theory which was published in 1969, which acts as the most important study tool of

Graph theory [10, 17].

1
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FIGURE 1.1: Konigsberg bridge

“It is possible to pinpoint the beginning of graph theory to 1735, when Swiss mathematician

Leonhard Euler found an answer to the Konigsberg bridge puzzle.

An historical conundrum, known as the Königsberg Bridge Problem, included finding a way

over each of the seven bridges that span a branched river that flows past an island without having

to traverse any of them more than once. Such a road does not exist, according to Euler. He

essentially proved the first graph theory theorem with only references to the actual arrangement

of the bridges in his demonstration.” [29, 33].

“Nothing more was done in the field over the following 100 years. For use in electrical networks,

G. R. Kirchhoff (1824–1887) established the idea of trees in 1847. Ten years later, A. Cayley

(1821-1895), while attempting to list the isomers of saturated hydrocarbons CnH2n+2, made

the discovery of trees. Two more important pillars of graph theory were established during the

period of Kirchhoff and Cayley. One was the Four-Color Conjecture, which postulates that four

colours are more than enough to colour an atlas so that the nations with shared borders are given

separate hues. The Four-Color Problem is thought to have been introduced for the first time by

A. F. Mobius (1790-1868) in one of his lectures in 1840. A. De Morgan (1806-1871) examined

this issue with his colleagues about ten years later.” [54, 89].
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1.1.1 Preliminaries

“The fundamental definitions, results and concepts discussed in this subsection are very essential

for the study undertaken and are mainly given by Harary [33] and Bondy and Murthy [37]”.

“A diagram made up of a set of points and the lines (curves) connecting some or all of these

points can be used to conveniently describe many structures involving real-world events. In

terms of graph theory, a graph is a collection of nodes (points or vertices) and lines (edges or

links) that connect the nodes. It does not refer to data charts like line graphs or bar graphs. A

graph is represented by the symbol G(V,E), where V stands for a set of non-empty nodes and

E stands for a set of lines. The number of nodes in G determines its order, while the number of

lines determines its size. Two or more lines that join the same pair of distinct nodes are called

parallel lines [? ]”.

Definition 1.1.1. “A caterpillar is a tree in which a single path (the spine) is incident to (or

contains) every edge”.

FIGURE 1.2: Caterpillar graph

Definition 1.1.2. “The cartesian product of Hα(Vα, Eα) and Hβ(Vβ, Eβ) denoted by Hα × Hβ

is the graph with node set V =Vα × Vβ consisting of nodes x = (xα, xβ), y = (yα, yβ) (xα,

yα ∈ Vα , xβ , yβ ∈ Vβ ) such that x and y are adjacent in Hα × Hβ wherever (xα= yα and xβ

is adjacent to yβ) or (xβ = yβ and xα is adjacent to yα)”.
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FIGURE 1.3: P3 × P2

Definition 1.1.3. “If S and T are two graphs such that V (S)∩ V (T ) = ∅, then join of S and T

is denoted by S + T with V (S + T ) = V (S) ∪ V (T ), E(S + T ) = E(S) ∪ E(T ) ∪ J , where

J = {uv/u ∈ V (S), v ∈ V (T )}”.

FIGURE 1.4: G+H

Definition 1.1.4. “A graph S is a subgraph of T if V (S) ⊆ V (T ), E(S) ⊆ E(T ) and one can

write S ⊆ T . When S ⊆ T but S ̸= T , written by S ⊂ T and S is called a proper subgraph of

T ”.

Definition 1.1.5. “A spanning subgraph is a subgraph containing all the vertices of G. A span-

ning subgraph need not contain all the edges in G”.
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Definition 1.1.6. “The subgraph of G whose vertex set is H and whose edge set is the set of

those edges of G that have both ends in H is known as the subgraph of G induced by H and is

denoted by G[H], we say that G[H] is an induced subgraph of G”.

FIGURE 1.5: (a) Subgraph (b) Spanning subgraph (c) Induced subgraph

c
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1.2 GRAPH LABELING

One of the intriguing subfields of graph theory with a broad range of applications is graph

labelling. The 1960s saw the invention of graph labelling. Graph labeling techniques trace

their origin to labeling presented by Rosa [17] in 1967. Graph labeling provides mathematical

models for a wide range of applications. Over 2500 studies published over the past 50 years

have examined more than 200 graph labelling strategies. [43]. “An assignment of integers to the

nodes or lines or both in a graph is called labelling, provided that certain requirements are met.

If the domain is the set of nodes, then its about the nodes labeling. The labelling is referred to

as edge labelling if the domain is a collection of lines. Total labelling occurs when labels are

assigned to both the nodes and the lines of G.

1.2.1 3-EQUITABLE LABELING

Cahit [18] first suggested dispersing the nodes and edge labels in 1990. “For G = (V, E), a

map g from V (G) to {0, 1, 2} with an induced function g* from E(G) to {0, 1, 2} given by

g∗(e = xy) = |g(x) – g(y)| is 3-equitable labeling if the number of nodes with label s and t

differ by at most 1 and in the same way the number of lines with label s and t differ by at most 1,

0 ≤ s, t ≤ 2, s ̸= t. Also |vg(s) – vg(t)| < 1 and |eg (s) – eg (t)| < 1; 0 ≤ s, t ≤ 2”.

A graph which admits 3-equitable labeling is called a 3-equitable graph.

1.2.2 D3EL

In 2019, Sweta Srivastav et al. introduced the notion of D3EL of graphs. “A bijection f :

V (G) → {1, 2, . . . , n} induces a function f ′ : E (G) → {0, 1, 2} defined by for each

edge e = xy, (i) f ′(e) = 1 if f(x)|f (y) or f (y) |f(x), (ii) f ′(e) = 2 if f (x) /f (y) = 2 or

f (y) /f (x) = 2, and (iii) f ′ (e) = 0 otherwise such that |ef ′ (i) − ef ′ (j) | ≤ 1 for all 0 ≤

i, j ≤ 2”. A graph which admits D3EL is called D3EG [72].
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1.3 LITERATURE REVIEW

Only non-trivial, simple, finite, connected, and undirected graph G = (V (G), E(G)) with p

nodes and q lines are considered. In this section, a summary of the results concerning the 3-

equitable and D3EL of graphs are given. Further, a few relevant definitions and other necessary

results which are important for the present investigations are also given.

Definition 1.3.1. [8] “A chord of Cnis an edge joining two non-adjacent nodes of Cn”.

Definition 1.3.2. [20] “If a divide b then there is a positive integer k such that b = ka. It is

denoted by a | b. If a does not divide b, then it is denoted by a ∤ b”.

Definition 1.3.3. [20] “The divisor function of an integer d(n) is defined by d(n) = Σ1.

Definition 1.3.4. [20] “Let n be an integer and x be a real number. The divisor summability

function is defined as D(x) = Σd(n).

Definition 1.3.5. [21] “A ternary node labeling of G is called a 3-equitable labeling if |vf (i)−

vf (j)| ≤ 1 and |ef (i) − ef (j)| ≤ 1 for all 0 ≤ i, j ≤ 2. G is 3-equitable if it admits

3-equitable labeling”.

Definition 1.3.6. [36] “The middle graph of G,M(G) is the graph whose nodes set is V (G) ∪

E(G), and two nodes are adjacent if

(i) They are adjacent lines of G or

(ii) One is a node of G and the other is an edge incident with it”.

FIGURE 1.6: M(C4)
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Definition 1.3.7. [78] “The central graph of G, C(G) is obtained by subdividing each edge of

G exactly once and joining all the non-adjacent nodes of G in C(G).

FIGURE 1.7: C(C6)

Definition 1.3.8. [83] “For G, the splitting graph S′(G) of G is obtained by adding new nodes

v′ corresponding to each nodes v of G such that N(v) = N(v′)”.

Definition 1.3.9. [83] “Let H be with V = S1 ∪ S2 ∪ . . .∪Si ∪ T , where each Si is a set of

nodes having minimum of 2 nodes of same degree and T = V \∪Si. The degree splitting

graph of H , DSG(H), is obtained from H by adding nodes w1, w2, . . . , wt and joining each

node of Si for 1 ≤ i ≤ t ”.

Definition 1.3.10. [23] “The jelly fish graph J(m,n) is obtained from C4: v1, v2, v3, v4 by

joining v1 and v3 with an edge and appending m pendent lines to v2 and n pendent lines to v4”.

Definition 1.3.11. [6] “The total graph T (G) of G is a graph with nodes set V (G) ∪E(G) and

two nodes x, y in T (G) are adjacent if either

(i) x, y ∈ V (G) and x is adjacent to y in G or
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(ii) x, y ∈ E(G) and x, y are adjacent in G or

(iii) x ∈ V (G), y ∈ E(G) and x, y are incidents in G”.

Definition 1.3.12. [34] “Let G be on v1, v2, v3, . . . , vn. The Mycielski graph, (G), is obtained

by adding to each node vi a new node ui such that ui is adjacent to the neighbors of vi. Finally,

add a new node w such that w is adjacent to each and every ui”.

Definition 1.3.13. [86] “The ladder Ln with 2n nodes and 3n − 2 lines, obtained as Ln =

Pn × P2”.

FIGURE 1.8: L3

Definition 1.3.14. [1] “The triangular snake graph TSn with n (odd) nodes is defined by starting

with Pn−1 and adding lines (2i− 1, 2i+ 1) for i = 1, 2, ...n− 1. Then TSn is obtained from a

path u1, u2, . . . , un by joining ui and ui+1 to a new node wi for 1 ≤ i ≤ n− 1”.

FIGURE 1.9: TS7
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Definition 1.3.15. [27] “The lollipop graph Lm,n is a special type of graph consisting of Km

and Pn, connected with a bridge”.

FIGURE 1.10: L4,5

Definition 1.3.16. [23] “The fan F1,n (n ≥ 2) is obtained as F1,n = Pn +K1”.

FIGURE 1.11: F1,4

Definition 1.3.17. [23] “A friendship graph Fn consists of n triangles with a common node”.
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FIGURE 1.12: F4

‘

Definition 1.3.18. [45] “For any integers s > 2, t > 1, an Umbrella graph U(s, t) is obtained

by identifying the end nodes of Pt with a central node of F1,s”.
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FIGURE 1.13: Um,n

Definition 1.3.19. [69] “A wheel Wn is defined as Wn = Cn−1 ∧K1”.

FIGURE 1.14: W7
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1.3.1 SOME KNOWN RESULTS ON 3-EQUITABLE LABELING

In this section, a few important results proved by different authors concerning the 3-Equitable

Labeling of graphs are highlighted.

Cahit [14] proved the following results.

(i) Cn is 3-equitable if and only if Cn ̸= 3 (mod 6).

(ii) An Eulerian graph with q ≡ 3 (mod 6) is not 3-equitable where q is the number of lines

of G.

(iii) All caterpillars are 3-Equitable.

(iv) Every tree with fewer than five end nodes have a 3-equitable labeling.

Seoud and Abdel Maqsoud [67] proved the following results.

(i) A graph with p nodes and q lines in which every node has odd degree is not 3-equitable if

p ≡ 0 (mod 3) and q ≡ 3 (mod 6).

(ii) All fans except F1,2 are 3-Equitable.

(iii) P 2
n is 3-Equitable for all n except 3.

(iv) Km,n (where 3 ≤ m ≤ n) is 3-Equitable if and only if (m,n) = (4, 4).

Bapat and Limaye [9] proved the following results on 3EL.

(i) Hn (n ≥ 4) are 3EGs.

(ii) Flower graph admits 3EL.

(iii) The one-point union of any number of Hn is 3EG.

(iv) The one-point union of any number of copies of K4 is a 3EG.
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Youssef gave the following result in [92].

(i) Wn is 3-equitable ∀ n ≥ 4.

Vaidya et al. [82] have proved the following results.

(i) SG(Cn) is 3EG except for n = 3 and 5.

(ii) SG(Pn) is 3EG except for n = 3.

(iii) MG(Pn) is 3EG.

(iv) MG(Cn) is 3EG for n even and not 3-E for n odd.

Vaidya et al. have also discussed the 3EL of wheel related graphs in [80], some shell related

graphs in [81], and some star related graphs in [84].

(i) All caterpillars are 3-equitable.

(ii) S′(K1,n) is 3EG.

Illustration: 3EL of S′(K1,7)

FIGURE 1.15: S′(K1,7)
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(iii) < S
(1)
n : S(2)

n : S(3)
n : . . .: S(n)

n > is 3-E.

(iv) <W
(1)
n : W (2)

n : W (3)
n : . . .: W (k)

n > is 3-E.

(v) < K
(1)
1,n : K(2)

1,n : K(3)
1,n : ...: K(k)

1,n > is 3-E.

(vi) S′(Bn,n) is 3EG.

Illustration: 3EL of S
′
(B6,6) .

FIGURE 1.16: S
′
(B6,6)

(vii) D2(Bn,n) is 3EG.

Illustration: 3EL of D2(B5,5).

FIGURE 1.17: D2(B5,5)
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(viii) B2
n,n is 3EG for n ≡ 0 (mod 3) and n ≡ 1 (mod 3).

Illustration: 3EL of B2
7,7

FIGURE 1.18: B2
7,7

(ix) For n ≥ 6, Cn +Kn is 3− E if and only if n is even.

(x) C2
n is 3− E if and only if n ≥ 8.

Cahit [14] proved that Cn is 3-E, n ̸= 3 (mod 6). M. V. Bapat and N. B. Limaye in [9]

proved that Helms Hn, (n ≥ 4) are 3-E. S.K. Vaidya and N.H. Shah in [83] have shown

that Bn,n is 3EG.

(i) Nodes switching of any rim nodes of Wn (except for n ≡ 1, 3, 5 (mod 6)) is 3-E.

(ii) Gn ⊕K1,n is 3-E ∀n.

(iii) G⊕K1,n is 3-E ∀n, where G is cycle having twin chords Cn,3.

(iv) The extended duplicate graph of TSm, m ≥ 1 admits 3EL.
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(v) The extended duplicate graph of splitting path graph of Pm, m ≥ 2 admits 3EL.

I. Jadav, G. V. Ghodasara [35] gave the following results:

(i) The barycentric subdivision of armed crown, ACn is 3-E.

(ii) The barycentric subdivision of crown Cn
⊙

K1 is 3-E.

(iii) The barycentric subdivision of double crown Cn
⊙

2K1 is 3-E.

(iv) The barycentric subdivision of C
′
n is 3-E.

Ghodasara G V and Sonchhatra S G [31] proved the following results on 3EL.

(i) “H formed by connecting two copies of Fn by Pn of any length is 3-E”.

FIGURE 1.19: 3EL of H obtained by joining two copies of F7 by P9.

(ii) “H formed by connecting two copies of Wn by Pn of any length is 3-E”.

FIGURE 1.20: 3EL of H obtained by joining two copies of W8 by P6.

(iii) “H formed by connecting two copies of Gn by Pn of arbitrary length is 3-E”.
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FIGURE 1.21: 3EL of H obtained by joining two copies of G6 by P6.

(iv) “H formed by connecting two copies of Hn by Pn of any length is 3-E”.

FIGURE 1.22: 3EL of H obtained by joining two copies of H6 by P6.

(v) “H formed by connecting two copies of Cn with one pendant edge by Pn of any length is

3-E”.

FIGURE 1.23: 3EL of H obtained by joining two copies of C6 with one pendant edge by P6.

S. Murugesan, & J. Shiama [64] proved the following results.

(i) Cn ⊕K1,n is 3-E ∀n.

(ii) Sn ⊕K1,n is 3-E ∀n .
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Sweta Srivastav and Sangeeta Gupta [72] proved the following results on D3EL.

(i) Pn is D3EG.

Illustrations: For n = 3

FIGURE 1.24: D3EG of P3

For n = 4

FIGURE 1.25: D3EG of P4

For n = 9

FIGURE 1.26: D3EG of P9

For n = 17

FIGURE 1.27: D3EG of P17
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(ii) Cn is a D3EG.

Illustrations: For n = 12

FIGURE 1.28: D3EG of C12

For n = 24
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FIGURE 1.29: D3EG of C24

1.3.2 Research Gap

Though a significant work has been done concerning 3-equitable and divisor 3-equitable labeling

of graphs, still there are many open problems to work on. The complete characterization of 3-

equitable and divisor 3-equitable labeling is still open. The divisor 3-equitable labeling of graphs

in the context of graph operations such as join, subdivision, vertex duplication, vertex switching,

edge duplication etc. are still open. Also the divisor 3-equitable labeling of total graph, middle

graph, central graph, Mycielskian, and degree splitting graphs of various classes of graphs are

also still unsolved.

1.3.3 Motivation

The study of graph labeling, particularly 3-equitable and divisor 3-equitable labeling, has gar-

nered significant interest due to its numerous applications in various fields such as network
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theory, chemistry, and coding theory. Despite the progress made in understanding these con-

cepts, there remain several open problems and unexplored areas that present both challenges

and opportunities for further research. A complete characterization of 3-equitable and divisor

3-equitable labeling has not yet been achieved, leaving gaps in the existing literature. This gap

underscores the need for a deeper investigation into the labeling of different classes of graphs and

their operations, such as join, subdivision, vertex duplication, and edge switching. Additionally,

the labeling of specific types of graphs, including total graphs, middle graphs, central graphs,

and Mycielskians, as well as degree splitting graphs, remains largely unresolved. The motivation

for this thesis stems from the desire to fill these gaps and contribute to the body of knowledge

in graph theory. By establishing new families of graphs that can be labeled 3-equitably and by

exploring the divisor 3-equitable labeling of various graph operations, this research aims to pro-

vide a comprehensive understanding of these labeling techniques. The outcomes of this study

have the potential to advance theoretical insights and offer practical solutions to problems in

related disciplines.

1.3.4 Contributions in the Thesis

Based on the research gap and motivation given above, the contribution of the thesis is classified

into the following 3 objectives.

OBJECTIVES

1. Establishing the 3-equitable labeling of certain new classes of graphs.

2. Obtaining the divisor 3-equitable labeling of some new families of graphs.

3. Encountering the divisor 3-equitable labeling of total graph, middle graph, central graph,

degree splitting graph, and Mycielskian graphs of various classes of graphs.

1.3.5 Organization of the Thesis

This thesis is organized into five sections where this chapter 1 gives a short and precise intro-

duction to graph theory along with literature review followed by research gap and motivation of
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the thesis. Chapter 2 details the 3-equitable labeling of various graphs, including the Jellyfish

and Umbrella graphs. Chapter 3 discusses the 3-equitable labeling of the CG of Lollipop, TG

of Fan, MG of Ladder, DSG of Friendship, and Mycielski graphs of a path graphs. Chapter

4 presents the divisor 3-equitable labeling of several graphs. Chapter 5 introduces new results

on the divisor 3-equitable labeling for specific classes of graphs. Further, the conclusion of the

thesis is given, followed by sections on publications, presentations, and related references.

1.4 Conclusion

In summary, this chapter provided a foundational overview of graph theory and graph labeling,

highlighting their essential definitions and key terminologies. The discussion also encompassed

3EL and the results related to D3EL. Notable applications were presented to underscore the

relevance and utility of these concepts. This groundwork sets the stage for the more detailed

explorations and analyses presented in the subsequent chapters, ensuring a clear understanding

of the study’s scope and objectives.



Chapter 2

3-equitable Labeling of Some Special

Graphs

2.1 Introduction

The concept of 3-equitable labeling (3EL) is given by Cahit [14]. In this chapter, 3EL of some

special graphs are discussed and new results are found.

2.2 Some New Results on 3EL

This section is devoted for proving the 3EL of jellyfish graph and umbrella graph.

2.2.1 3EL of Jellyfish Graph

Definition 2.2.1. “The jelly fish graph J(m,n) is obtained from a Cn : v1, v2, v3, v4 by joining

v1 and v3 with an edge and appending m pendent lines to v2 and n pendent lines to v4”.

24
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One can obtain 3EL of J1,2 One such example is given in Figure 2.1. So, consider J1,n for n ≥

3.

Example 2.2.1. 3EL for J1,2 is shown in the figure 2.1.

FIGURE 2.1: 3EL of J1,2

Theorem 2.2.1. J1,m does not permit 3EL ∀m ≥ 3.

Proof. Take m = 3 for the sake of discussion and so |V (J1,m)| = 8 and |E(J1,m)| = 9. The

proof is by the method of contradiction. Assume that J1,3 has 3EL f with the property that

number of nodes with label s and t differ by at most 1 and in the same way the number of lines

with label s and t differ by at most 1, 0 ≤ s, t ≤ 2, s ̸= t. Also if |vf (s) − vf (t)| ≤

1 and |ef (s) − ef (t)| ≤ 1 for all 0 ≤ s, t ≤ 2. Observe that the number of lines labeled

0, 1, and 2 must be exactly 3 and that the number of nodes labeled 0, 1, and 2 must be at least

2 and at most 3 to satisfy the required 3EL property |ef (s)− ef (t) |≤ 1 for all 0 ≤ s, t ≤ 2.

But in case of lines 3 lines with label 0, there are four lines with label 2, two lines with label

1, a contradiction (see Figure 2.2). Similar argument holds good for J1,m,m > 3. Therefore,

J1,m, m ≥ 3, does not admit 3EL.
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FIGURE 2.2: The non-existence of 3EL for J1,3

2.2.2 3EL of Umbrella Graph

Definition 2.2.2. “For s > 2; t > 1 an umbrella graph U(s, t) is obtained by identifying the end

nodes of Pt with a central node of Fs”.

One can obtain the 3EL of U3,t; 2 ≤ t ≤ 16 One such example is given in Figure 2.3. So,

consider U3,t, for t ≥ 17.

Example 2.2.2. 3EL for U3,16 is shown in the figure 2.3.

FIGURE 2.3: 3EL for U3,16

Theorem 2.2.2. U3,n does not permit 3EL ∀ n ≥ 17.

Proof. Take n = 17 for the ”sake of discussion” and so |V (U3,17)| = 20 and |E(U3,17)| = 21.

The proof is by the method of contradiction. Assume that U3,17 has 3EL f with the property

that number of nodes with label s and t differ by at most 1 and in the same way the number of
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lines with label s and t differ by at most 1, 0 ≤ s, t ≤ 2, s ̸= t. Also if |vf (s)− vf (t)| ≤

1 and |ef (s) − ef (t)| ≤ 1 for all 0 ≤ s, t ≤ 2. One can observe that the number of lines

labeled 0, 1, and 2 must be exactly 7 and that the number of nodes labeled 0, 1, and 2 must be

at least 6 and at most 7 to satisfy the required 3EL property |ef (s)− ef (t) |≤ 1 for all 0 ≤

s, t ≤ 2. But in case of lines there are 7 lines with label 0, six lines with label 2, eight lines

with label 1, a contradiction (See Figure 2.4. Similar argument holds good for U3,n n> 17.

Therefore, U3,n n ≥ 17, does not admit 3EL.

FIGURE 2.4: The non-existence of 3EL for U3,17

2.3 Conclusion

The 3EL of some special graphs such as jelly fish graph and umbrella graph are derived.



Chapter 3

3EL of Some Special Classes of Graphs

3.1 Introduction

The aim of the present chapter is to discuss new results on deriving the 3EL of TG, MG, CG,

DSG, and Mycielskian graphs of some classes of graphs.

3.2 More Results on 3EL

This section is devoted for proving 3EL of CG of lollipop graph, TG of fan graph, MG of ladder

graph, DSG of friendship graph, Mycielski graph of path graph.

3.2.1 3EL of CG of Lollipop Graph

Definition 3.2.1. “The lollipop graph Lm,n consists Km and Pn, connected with a bridge”.

One can obtain the 3EG of C( L3,n). One such example is given in Figure 3.1. So, consider C(

L3,n), for n ≥ 2.

28
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FIGURE 3.1: 3EL for C(L3,1)

Theorem 3.2.1. C(L3,n) does not permit 3EL ∀ n ≥ 2.

Proof. Take n = 2 for the ”sake of discussion” so |V (C (L3,2))| = 10 and |E(C(L3,2))| = 15.

Obtain C (L3,n). “The proof is by the method of contradiction. Assume that C(L3,2) has 3EL,

f with the property that number of nodes with label i and j differ by at most 1 and in the same

way the number of lines with label k and l differ by at most 1, 0 ≤ k, l ≤ 2, k ̸= l.

Also if |vf (k) − vf (l)| ≤ 1 and |ef (k) − ef (l)| ≤ 1 for all 0 ≤ k, l ≤ 2”. Ob-

serve that the number of lines labeled 0, 1, and 2 must be exactly 5 and that the number of

nodes labeled 0, 1, and 2 must be at least 3 and at most 4 to satisfy the required 3EL property

|ef (k)− ef (l) |≤ 1 for all 0 ≤ k, l ≤ 2. But in case of lines there are 6 lines with label 0,

five lines with label 2, four lines with label 1, a contradiction (See Figure 3.2). Similar argument

holds good for C(L3,n), n > 2. Therefore, C(L3,n) n ≥ 2 does not admit 3EL.

FIGURE 3.2: The non-existence of 3EL for C(L3,2)
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3.2.2 3EL of Total Graph of Fan Graph

Definition 3.2.2. [23] “The fan F1,n (n ≥ 2) is obtained by joining all nodes of Pn (Path

of n nodes) to a further node called the center and contains n+ 1 nodes and 2n-1 lines. i.e

F1,n = Pn +K1”.

Theorem 3.2.2. T (F1,n) does not permit 3EL ∀ n ≥ 2.

Proof. Take n = 2 for the “sake of discussion” and so |V (T (F1,2))| = 6 and |E(T (F 1,2))| =

12. Obtain (TF1,n). “The proof is by the method of contradiction. Assume that T (F1,2) has

3EL f with the property that number of nodes with label i and j differ by at most 1 and in the

same way the number of lines with label u and v differ by at most 1,0 ≤ u, v ≤ 2, u ̸= v.

Alsoif |vf (u) − vf (v)| ≤ 1 and |ef (u) − ef (v)| ≤ 1 for all 0 ≤ u, v ≤ 2.” Note that the

number of lines labeled 0, 1, and 2 must be exactly 4 and that the number of nodes labeled 0, 1,

and 2 must be exactly 2 to satisfy the required 3EL property |ef (u)− ef (v) |≤ 1 for all 0 ≤ u, v ≤

2. But in case of lines three lines with label 0, there are three lines with label 2, six lines with

label 1, a contradiction (See Figure 3.3). Similar argument holds good for T (F 1,n) n> 2.

Therefore, T (F1,n) n ≥ 2, does not admit 3EL.
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FIGURE 3.3: The non-existence of 3EL for T(F1,2)

3.2.3 3EL of Middle Graph of Ladder Graph

Definition 3.2.3. “The ladder Ln is a planar graph with 2n nodes and 3n-2 lines. The lad-

der is obtained as the Cartesian product of two path graphs, one of which has only one line:

Ln,1 = Pn × P2. The n-ladder graph can be defined Ln = P2□Pn where Pn a path”.

One can easily obtain the 3EL of M(L1),M(L2),M(L3). An example of this type is provided

in Figure 3.4. So, consider M(Ln), for n ≥ 4 .
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FIGURE 3.4: 3EL forM(L3)

Theorem 3.2.3. M(Ln) does not permit 3EL ∀ n ≥ 4.

Proof. Let Ln be the given ladder graph on n ≥ 4 . “Take n = 4 for the sake of discussion

and so |V (M (L4))| = 18 and |E(M(L4))| = 36. Obtain M(L4). The proof is by the method

of contradiction. Assume that M(L4) has a 3EL f with the property that number of nodes with

label s and t differ by at most 1 and in the same way the number of lines with label s and t differ

by at most 1,0 ≤ s, t ≤ 2, s ̸= t. Also if |vf (s) − vf (t)| ≤ 1 and |ef (s) − ef (t)| ≤

1 for all 0 ≤ s, t ≤ 2”. Note that the number of lines labeled 0, 1, and 2 must be exactly 12

and that the number of nodes labeled 0, 1, and 2 must be exactly 6 to satisfy the required 3EL

property |ef (s)− ef (t) |≤ 1 for all 0 ≤ s, t ≤ 2. But in case of lines, there are eleven lines

with label 0, eleven lines with label 2, fourteen lines with label 1, a contradiction (See Figure

3.5). Similar argument holds good for M(Ln), n > 4. Therefore, M(Ln) n ≥ 4, does not

admit 3EL.
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FIGURE 3.5: The non-existence of 3EL for M(L4)

3.2.4 3EL of DSG of Friendship Graph

Definition 3.2.4. “A friendship graph Fn is a graph which consists of n triangles with a common

node”.

One can easily obtain the 3EL of DS(F1), DS(F2). Figure 3.6 is one illustration of this. So,

consider DS(Fn), for n ≥ 3.
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FIGURE 3.6: 3EL for DS(F2)

Theorem 3.2.4. DS(Fn) does not permit 3EL ∀ n ≥ 3.

Proof. Take n =3 for the “sake of discussion”. Obtain DS(F3) and so |V (DS (F3))| = 8 and

|E(DS(F 3))| = 15. “The proof is by the method of contradiction. Assume that DS(F3) has a

3EL f with the property that number of nodes with label k and l differ by at most 1 and in the

same way the number of lines with label k and l differ by at most 1, 0 ≤ k, l ≤ 2, k ̸= l.

Also if |vf (k) − vf (l)| ≤ 1 and |ef (k) − ef (l)| ≤ 1 for all 0 ≤ k, l ≤ 2”. One can

note that the number of lines labeled 0, 1, and 2 must be exactly 5 and that the number of

nodes labeled 0, 1, and 2 must be at least 2 and at most 3 to satisfy the required 3EL property

|ef (k)− ef (l) |≤ 1 for all 0 ≤ k, l ≤ 2. But in case of lines, there are four lines with label 0,

five lines with label 2, six lines with label 1, a contradiction (See Figure 3.7). Similar argument

holds good for DS(Fn), n > 4. Therefore, DS(Fn) n ≥ 4, does not admit 3EL.
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FIGURE 3.7: The non-existence of 3EL for DS(F3)

3.2.5 3EL of Mycielski Graph of Path

One can easily obtain the 3EL of µ(Pn);2 ≤ n ≤ 7. Figure 3.8 provides one such instance. So,

consider µ(Pn), for n ≥ 8.

FIGURE 3.8: 3EL for µ(P7)
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Theorem 3.2.5. µ(Pn) does not permit 3EL ∀ n ≥ 8.

Proof. Let Pn be the given Path on n ≥ 8. “Take n =8 for the sake of discussion. Obtain µ(P8)

and so |V ( (P8)) | = 17 and |(Eµ (P8) | = 29. The proof is by the method of contradiction.

Assume that µ(P8) has a 3EL f with the property that number of nodes with label r and s differ

by at most 1 and the number of lines with label r and s differ by at most 1, 0 ≤ r, s ≤ 2, r ̸=

s. Also if |vf (r)− vf (s)| ≤ 1 and |ef (r)− ef (s)| ≤ 1 for all 0 ≤ r, s ≤ 2”. Observe that

the number of lines labeled 0, 1, and 2 must be at least 9 and at most 10 and that the number of

nodes labeled 0, 1, and 2 must be at least 5 and at most 6 to satisfy the required 3EL property

|ef (r)− ef (s) |≤ 1 for all 0 ≤ r, s ≤ 2. But in case of lines, there are nine lines with label

0, eleven lines with label 2, nine lines with label 1, a contradiction (See Figure 3.9). Similar

argument holds good for µ(Pn) n> 8. Therefore, µ(Pn) n ≥ 8, does not admit 3EL.

FIGURE 3.9: The non-existence of 3EL for µ (P8)
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3.3 Conclusion

The “existence and non-existence” of 3EL of the CG of lollipop graph, TG of fan graph, MG of

ladder graph, DSG of friendship graph and Mycielski graph of path are established.



Chapter 4

Divisor 3-Equitable Labeling of

Various Graphs

4.1 Introduction

“In 2019, Sweta Srivastav et al. introduced the approach of divisor 3-equitable labeling (D3EL)

of graphs [72]. In this chapter, D3EL of various graphs are discussed and some new results are

found”.

4.2 D3EL

Definition 4.2.1. [72] “A D3EL is a bijective d : V (G) → {1, 2 . . . ., n} such that the

induced map d∗ defined on the edges of G by, for any edge xy with d(x) < d(y),

38
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d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)
such that |ed∗ (i)− ed∗ (j) |≤ 1 for all 0 ≤ i, j ≤ 2, where ed∗ (i) is the number of lines la-

beled with label i under d∗. A graph that permits D3EL is called divisor 3-equitable graph

(D3EG)”.

4.3 Some Known Results on D3EL of Some Graphs

Sweta Srivastav and Sangeeta Gupta [72] proved the following results on D3EL.

(i) Pn is D3EG.

(ii) Cn is a D3EG.

4.4 Some New Results on D3EL

Few new families of D3EL of graphs are discussed in this section.

4.4.1 D3EL of Wn

Definition 4.4.1. [69] Wn is defined as Wn = Cn−1 ∧K1.

One can obtain the “D3EL of Wn, 1 ≤ n ≤ 6.” One such example is given in Figure 4.1.
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FIGURE 4.1: D3EL of W6

Theorem 4.4.1. Wn does not permit D3EL ∀ n ≥ 7.

Proof. Let Wn = {v0, v1, v2, . . . , vn } be the given wheel graph on n ≥ 7. For the sake of

discussion, take n = 7. One can clearly observe that there are n − 1 nodes of degree 3 on the

rim and a vertex v0 of degree 6 at the centre of a wheel as the central vertex. “Define a bijection

d : V (W7) → {1, 2, ..., 7} such that the induced d∗ : E(W7) → {0, 1, 2}, for any edge xy with

d(x) < d(y), d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by a method of contradiction”. Suppose that W7 has D3EL d and d∗ such that

“|ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2, where ed∗ (i) denotes the number of edges labeled

with label i under d∗”. Note that |V (W7)| = 7 and |E(W7)| = 12. So as per the definition of a

D3EL, the number of lines labeled with either 0 or 1 or 2 in W7 is at most 4. In fact, the number

of lines with label 0, 1, and 2 is exactly 4. One can also see that the central vertex v0 can take

any value between 1 and 7.

The seven cases listed below now occur.

Case 1: When d(v0) = 1



Chapter 4. D3EL of Various Graphs 41

FIGURE 4.2: d(v0) = 1 in W7

“As the central vertex is adjacent to all other vertices and the label 1 divides all other labels,

d∗(v0v1) = 1 ∀ 1 ≤ i ≤ 6 except for the edge whose end vertex, say v2, is labeled with 2 gives

d∗(v0v2) = 2. So, the number of edges labeled with 1 is at least 5, a contradiction”.

Case 2: When d(v0) = 2

FIGURE 4.3: d(v0) = 2 in W7

One can note there are three at least five edges (with all possible assignments of numbers 1, 3,

4, 5, 6, 7 on the rim vertices) with label 0, a contradiction.

Case 3: When d(v0) = 3
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FIGURE 4.4: d(v0) = 3 in W7

“Interestingly there are more than 4 edges with label 0, and just three edges with label 2, a

contradiction”.

Case 4: When d(v0) = 4

FIGURE 4.5: d(v0) = 4 in W7
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The number of edges with label 2 is again 3 and the number of edges with label 0 is more than

4, a contradiction.

Case 5: When d(v0) = 5

FIGURE 4.6: d(v0) = 5 in W7

Observe that the edges incident with the central vertex get the label 0 “except the one edge

whose end vertex is labelled with 1, a contradiction”. This is because there are at least 5 edges

with label 0.

Case 6: When d(v0) = 6
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FIGURE 4.7: d(v0) = 6 in W7

“Now again there are only three edges with label 2 and more than four edges with label 0, a

contradiction”.

Case 7: When d(v0) = 7

FIGURE 4.8: d(v0) = 7 in W7

This case is also rejected in a similar fashion that is of case 5.

One can also explore all other possible cases and subcases of assignment of numbers (1 to 7)

to the vertices of W7 in any possible ways (permutation and combination). These cases and
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subcases are treated and rejected in a similar fashion. Hence Wn, n = 7 does not admit D3EL.

A similar argument holds good for Wn, n ≥ 8 too.

4.4.2 D3EL of Complete Graphs

“This section is devoted for proving the non-existence of the D3EL of complete graphs”

Definition 4.4.2. The “complete graph Kn is a graph in which any two vertices are adjacent”.

One can obtain the D3EL of K1,K2,K3 and K4. “One such example is given in Figure 4.9. So,

consider Kn, for n ≥ 5”.

FIGURE 4.9: D3EL of K4

Theorem 4.4.2. Kn does not permit D3EL ∀n ≥ 5.

Proof. “Let Kn = {v1, v2, . . . , vn} be the given complete graph on n ≥ 5 vertices. One can

clearly observe that any two nodes in Kn are adjacent. In other words, a vertex v ∈ Kn is

adjacent to all other vertices of Kn”. Now define a bijection d : V (Kn) → {1, 2, ..., n} that
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induces d∗ : E(Kn) → {0, 1, 2} for any edge xy with d(x) < d(y),and defined by d∗ (e =

xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0 if d(x) ∤ d(y)

The proof by a method of contradiction.Assume that Kn, n ≥ 5 has a D3EL d and induced d∗

such that “|ed∗ (i)− ed∗ (j) |≤ 1∀ 0 ≤ i, j ≤ 2, where ed∗ (i) is the number of lines labeled

with label i under d∗. Note that a vertex labeled with 1 in Kn, say d(v1) = 1, is adjacent

to all other vertices, vi : 2 ≤ i ≤ n labeled with 2, 3, ..., n in any possible permutation. So

as per the definition of a D3EL, if the label of a vertex v1, say d(v1), divides the label of the

adjacent vertex v2, say d(v2), then the edge v1v2 must be given the label 1. As the vertex v1 is

adjacent to all other vertices in Kn, it gives 1 as the edge label to all other edges except the edge

whose end vertex is labeled with 2, say v2, (in which case the edge label is 2) in Kn which‘

are incident on v1 . That is., d∗(v1vi) = 1for all 3 ≤ i ≤ n, a contradiction to the fact that

|ed∗ (i)− ed∗ (j) |≤ 1 ∀ 0 ≤ i, j ≤ 2”. Therefore, Kn does not permit D3EL for all n ≥ 5.

4.4.3 D3EL of Star Graphs

This section is devoted to prove “the non-existence of a D3EL of the star graphs”.

Definition 4.4.3. “A star graph Sn+1 is a K1,n”.

One can clearly obtain the “D3EL of K1,n, 1 ≤ n ≤ 5. One such example is given in Figure

4.10”.

FIGURE 4.10: A D3EL of K1,5 and K1,4
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Theorem 4.4.3. K1,n does not permit D3EL ∀ n ≥ 6.

Proof. “Let K1,n be the given star graph on n ≥ 6 vertices. n = 6 for the sake of discussion

and so |V (K1,6 )| = 7 and |E(K1,6 )| = 6. One can note that there are six vertices of degree

one and a vertex of degree 6 in K1,6”. Label the central vertex as v0 and pendant vertices

as v1, v2, . . . , v6. Now define a bijective function d : V (K1,6) → {1, 2, ..., 7} that induces

d∗ : E(K1, n) → {0, 1, 2} for any edge xy with d(x) < d(y),and defined by d∗ (e = xy) =
1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof by the method of contradiction. Assume that K1,6 has a D3EL d and induced “d∗ with

the property that |ed∗ (i)− ed∗ (j) |≤ 1 for all 0 ≤ i, j ≤ 2. One can also observe that the

number of edges labeled with label either 0 or 1 or 2 can be at most 2 (as there are exactly seven

vertices in K1,6) to satisfy the required divisor 3-equitble property|ed∗ (i)− ed∗ (j) |≤ 1 for all 0 ≤

i, j ≤ 2. Now arises the following seven cases”.

Case 1: When d(v0) = 1

FIGURE 4.11: d(v0) = 1 in K1, n

“As v0 is adjacent to all other vertices and the label 1 divides all other labels, d∗(v0vi) = 1 for

all 2 ≤ i ≤ 6 and d∗(v0v1) = 2. So, the number of edges labeled with 1 is 5, a contradiction”.

Case 2: When d(v0) = 2
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FIGURE 4.12: d(v0) = 2 in K1, n

“One can note that there are three edges with label 0, two edges with label 2, and only one vertex

with label 1, a contradiction. This is because |ed∗ (0) - ed∗ (2) | ≤ 1 but |ed∗ (0) - ed∗ (1) | = 2”.

Case 3: When d(v0) = 3

FIGURE 4.13: d(v0) = 3 in K1,n
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“Interestingly there are four edges with label 0, one edge with label 1, and an edge with label 2,

a contradiction as the number of edges labeled with 0 is more than 2”.

Case 4: When d(v0) = 4

FIGURE 4.14: d(v0) = 4 in K1,n

“This is a similar case as Case 3”.

Case 5: When d(v0) = 5

FIGURE 4.15: d(v0) = 5 in K1,n
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“Interestingly there are five edges with label 0 and an edge with label 1, a contradiction”.

Case 6: When d(v0) = 6

FIGURE 4.16: d(v0) = 6 in K1,n

“Now there are three edges with label 0, two edges with label 1, and an edge with label 2, again

a contradiction because |ed∗ (0) - ed∗ (1) | ≤ 1 but |ed∗ (0) - ed∗ (2) | = 2”.

Case 7: When d(v0) = 7
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FIGURE 4.17: d(v0) = 7 in K1,n

“Here there are five edges of label 0 and an edge of label 1, a clear contradiction.

Hence K1.n, when n = 6 does not admit D3EL”. A similar argument holds good for K(1, n) ,

n ≥ 7.

4.4.4 D3EL of Jelly Fish Graph

“This section is devoted to prove the non-existence of a D3EL of J.F.G”.

Definition 4.4.4. [23] “Jelly Fish J(s, t) with order s + t + 4 and sizes s + t + 5 and formed

from a 4-cycle x1, x2, x3, x4 by connecting x1 and x3 with a line and appending s pendent lines

to x2 and t pendent edges to x4”.

Theorem 4.4.4. J(m,n) does not admit D3EL for m,n ≥ 4.

Proof. One can establish the D3EL of J (0,0), J (1,1), J (2,2), J (3,3). One such example is given

in Fig. 4.18. So, consider J (4,4) for m,n > 4.
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FIGURE 4.18: D3EL ofJ(0, 0),J(1, 1),J(2, 2),J(3, 3)

Without loss of generality,consider J(4, 4) for the sake of discussion. One can easily see that

there are 12 vertices and 13 edges. As per the definition of D3EL one must have 4 edges with

label 0, 4 edges with label 1, and 5 edges with label 2 (or 4 edges with label 1, 4 edges with 2,

and 5 edges with 0 or 4 edges with label 2, 4 edges with 1, and 5 edges with 0). An easy check

shows that such combination and labeling is not possible. If J(m,n), m,n = 4 does not admit

D3EL, then J(m,n), m,n > 4 also does not admit D3EL. Hence the proof.
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4.5 D3EL OF SOME NAMED GRAPHS

In this section, D3EL of some special named graphs are given

4.5.1 The Cricket Graph permit D3EL

Definition 4.5.1. The cricket graph is the 5 vertex graph. “It has two nodes of degree one, two

nodes of degree two” and one node of degree four.

FIGURE 4.19: D3EL of Cricket graph

4.5.2 The paw Graph permit D3EL

Definition 4.5.2. The paw graph is the 3-pan graph, which is also isomorphic to the (3, 1)

tadpole graph.

FIGURE 4.20: D3EL of Paw graph
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4.5.3 The bull Graph permit D3EL

Definition 4.5.3. “The bull graph is a planar undirected graph with 5 vertices and 5 edges in

the form of a triangle with two disjoint pendent edges”.

FIGURE 4.21: D3EL of Bull graph

4.5.4 The Net Graph permit D3EL

Definition 4.5.4. The net graph is the graph on 6 nodes. It has three nodes of degree one, two

nodes of degree three and one node of degree two.
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FIGURE 4.22: D3EL of Net graph

4.5.5 The House Graph permit D3EL

Definition 4.5.5. The house graph is a simple graph on 5 nodes and 6 edges. “It has three

vertices of degree two, two vertices of degree three”.
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FIGURE 4.23: D3EL of House graph

4.5.6 The House X- Graph permit D3EL

Definition 4.5.6. The house X-graph is the house graph plus the two edges connecting diago-

nally opposite vertices of the square base.
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FIGURE 4.24: D3EL of House X-graph

4.5.7 The R Graph permit D3EL

Definition 4.5.7. The R graph is the graph on 6 nodes. It has three nodes of degree two, two

nodes of degree one & one node of degree three.

FIGURE 4.25: D3EL R-graph
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4.5.8 The A Graph permit D3EL

Definition 4.5.8. The A graph is the graph on 6 nodes. “It has two nodes of degree two, two

nodes of degree three & two nodes of degree one”.

FIGURE 4.26: D3EL of A -graph

4.5.9 The Banner Graph permit D3EL

Definition 4.5.9. The banner graph consists of a hole on four vertices and a single vertex with

precisely one neighbor on the hole.
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FIGURE 4.27: D3EL of the Banner graph

4.5.10 The Cross Graph permit D3EL

Definition 4.5.10. The cross graph is the 6 vertex tree and it has 5 edges. “It has four vertices

of degree one, one vertex of degree four and one vertex of degree two”.
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FIGURE 4.28: D3EL of Cross graph

4.5.11 The H Graph permit D3EL

Definition 4.5.11. The H graph is the 6 vertices tree and it has 5 edges. It has four vertices of

degree one and two vertices of degree three.
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FIGURE 4.29: D3EL of H-graph

4.5.12 The Fork Graph permit D3EL.

Definition 4.5.12. The fork graph is the 5 vertices tree and it has 4 edges. “It has three vertices

of degree one, one vertex of degree three and one vertex degree two”.
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FIGURE 4.30: D3EL of Fork graph

4.5.13 Claw Permit D3EL

Definition 4.5.13. K1, 3 is known as the “claw.”

FIGURE 4.31: D3EL of Claw
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4.5.14 The Dart Graph permit D3EL

Definition 4.5.14. The dart graph is the 5 nodes tree and it has 6 lines. “It has two nodes of

degree two, one node of degree four, one node of degree one and one node of degree three”.

FIGURE 4.32: D3EL of Dart graph

4.5.15 The Kite Graph permit D3EL

Definition 4.5.15. The kite graph is the 5 vertices tree and it has 6 edges. “It has three vertices

of degree three, one vertex of degree one and one vertex of degree two”.

FIGURE 4.33: D3EL of Kite graph

4.5.16 The Diamond Graph permit D3EL

Definition 4.5.16. “The diamond graph is a planar undirected graph with 4 vertices and 5

edges. It has four vertices of degree two and two vertices of degree three”.
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FIGURE 4.34: D3EL of Diamond graph

4.6 Conclusion

“The existence and non-existence” of D3EL of wheel graphs, complete graphs, and star graphs

are established. The D3EL of jelly fish graph are also derived besides exhibiting the D3EL for

other graphs such as the diamond graph, kite graph, dart graph, claw graph, fork graph etc.
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D3EL of Some Classes of Graphs

5.1 Introduction

In this chapter,the D3EL of TG, MG, CG, DSG, and Mycielskian graphs of various graphs

are derived

5.1.1 D3EL OF TG OF UMBRELLA GRAPH

Definition 5.1.1. [45] “For any integers s > 2; t > 1, an umbrella graph U (s, t) is obtained by

identifying the end node of Pt with a central node of a Fs”.

Theorem 5.1.1. T (U3,n) does not permit D3EL ∀ n ≥ 2.

Proof. Let U3,n be the given Umbrella graph on n ≥ 2 nodes. Take n = 2 and so |V(U3,2)| = 5

and |E(U3,2)| = 6. Obtain the TG of U3,n, T (U3,n) with |V(T (U3,n))| = 11 and |E(T (U3,n))|

=29. Now define a bijection “d : V (T (U3,n)) → {1, 2, . . . , n} that induces d∗ :

E(T (U3,n)) → {0, 1, 2} for any edge xy with d(x) < d(y),as follows:

65
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d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction. Assume that T(U3,2) has a D3EL d and induced

d∗ with “the property that |ed∗ (i)− ed∗ (j) |≤ 1,∀ 0 ≤ i, j ≤ 2”,. One can observe that “the

number of lines labeled 0, 1, and 2 must be at least 9 and at most 10 to satisfy the required divisor

3-equitable property |ed∗ (i)− ed∗ (j) |≤ 1,∀ 0 ≤ i, j ≤ 2”,. “But there are only 5 lines with

label 2, a contradiction” (See Figure 5.1). A similar argument holds good for T (U3,n), n > 2.

Therefore, T (U3,n), n ≥ 2, does not admit D3EL.

FIGURE 5.1: The non-existence of D3EL for T (U3,2)

5.1.2 D3EL OF TG OF TRIANGULAR SNAKE GRAPH

Definition 5.1.2. [1] “The triangular snake graph TSn with n (odd) nodes is defined by starting

with Pn−1 and adding lines (2i− 1, 2i+1) for i = 1, 2, ..., n− 1. A triangular snake TSn is

obtained from a path u1, u2, . . . , un by joining ui and ui+1 to a new node wi for 1 ≤ i ≤ n−1”.

Theorem 5.1.2. T (TSn) does not permit D3EL ∀ positive n.
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Proof. Let TSn be the given triangular snake graph on n ≥ 1 node. Obtain T (TSn) and take

n = 1 and so |V (T (TS1))| = 6 and |E (T (TS1))| = 12. Now define a bijection “d : V

(T (TSn)) � {1, 2, . . . , n} that induces d∗ : E(T (TSn)) → {0, 1, 2} for any edge xy with

d(x) < d(y),as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction. Assume that T (TS1) has D3EL d and “induced

d∗ with the property that |ed∗ (i)− ed∗ (j) |≤ 1,∀ 0 ≤ i, j ≤ 2. Observe that the number of

lines labeled with label either 0 or 1 or 2 must be exactly 4 to satisfy the required divisor 3-

equitable property |ed∗ (i)− ed∗ (j) |≤ 1,∀ 0 ≤ i, j ≤ 2. But there are only three lines with

label 2, a contradiction” (See Figure 5.2). Moreover, if T (TS1), does not admit D3EL, then

T (TSn), n > 1, too does not admit D3EL.

FIGURE 5.2: The non-existence of D3EL of T (TS1)
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5.1.3 D3EL OF TOTAL GRAPH OF Wn

Theorem 5.1.3. T (Wn) does not permit D3EL ∀ n ≥ 3.

Proof. Let Wn be the wheel on n ≥ 3 nodes. Obtain T (W 3) and so |V (T(W3))| =10 and

|E (T(W3))| = 30. Now define a bijection “d : V (T (W3)) → {1, 2, . . . , n} that induces

d∗ : E(T (W3)) → {0, 1, 2} for any edge xy with d(x) < d(y) as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction”. Assume that T (W3) has D3EL d with the property

that |ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2. One can observe that the number of lines labeled

with label either 0 or 1 or 2 must be exactly 10 to satisfy the required divisor 3-equitable property

|ed∗ (i)− ed∗ (j) |≤ 1,∀ 0 ≤ i, j ≤ 2. But there are only five lines with label 2, a contradiction

(see Figure 5.3). Moreover, if T (W3), does not admit D3EL, then T (Wn), n > 3 too does not

admit D3EL.

FIGURE 5.3: The non-existence of D3EL of T (W3, )
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5.1.4 D3EL OF MYCIELSKI’S GRAPH OF Wn

Theorem 5.1.4. µ(Wn) does not permit D3EL ∀ n ≥ 3.

Proof. Let W3 be wheel on n ≥ 3 nodes. Obtain µ(W 3 ) and so |V (µ(W3))| =9 and |E

(µ(W3))| = 22. Now define a bijection “d : V (µ (W3)) → {1, 2, . . . , n} that induces

d∗ : E(µ(W3)) → {0, 1, 2} for any edge xy with d(x) < d(y),as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction”. Assume that

µ(W3) has D3EL d and induces d∗ with “the property that |ed∗(i)−ed∗(j)| ≤ 1, ∀ 0 ≤ i, j ≤ 2.

One can observe that the number of lines labeled with label either 0 or 1 or 2 must be at least

7 and at most 8 to satisfy the required divisor 3-equitable property |ed∗(i) − ed∗(j)| ≤ 1,

∀ 0 ≤ i, j ≤ 2”. But there are only four lines with label 2, a contradiction (see Figure 5.4).

Moreover, if µ(W3), does not admit D3EL, then µ(Wn), n > 3, too does not admit D3EL.

FIGURE 5.4: The non-existence of D3EL of µ(W3)
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5.1.5 D3EL OF MIDDLE GRAPH OF LOLLIPOP GRAPH

Definition 5.1.3. [27] “The lollipop graph L3,n consisting of K3 and Pn, connected with a bridge”

One can obtain the D3EL of One M(L3,i):1 ≤ i ≤ 7. such example is given in Figure 5.5. So,

consider M(L3,n), for n ≥ 8.

FIGURE 5.5: D3EL of the M(L3,7)

Theorem 5.1.5. M(L3,n) does not permit D3EL ∀ n ≥ 8.

Proof. Let L3,n be the lollipop graph on n ≥ 8 nodes. Take n = 8 and so |V(L3,8)| =11 and

|E(L3,8)| = 11. Obtain, M(L3,n) with |V(M(L3,8))| = 22 and |E(M(L3,8))| = 34. Now define

a bijection ”d : V (M(L3,n)) → {1, 2, . . . , n} that induces d∗ : E(M(L3,n)) → {0, 1, 2}

for any edge xy with d(x) < d(y),“as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction”. Assume that M(L3,n) has a D3EL “dand induced

d∗ with the property that|ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2. One can observe that the num-

ber of lines labeled 0, 1, and 2 must be at least 11 and at most 12 to satisfy the required divisor

3-equitable property |ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2. But there are 11 lines with label

2, 9 lines with label 9, and 14 lines with label 0, a contradiction (See Figure 5.6). A similar

argument holds good for M (L3,n), n> 8. Therefore, M(L3,n), n ≥ 8, does not admit D3EL”.
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FIGURE 5.6: The non-existence of D3EL for M(L3,8)

5.1.6 D3EL OF CENTRAL GRAPH OF LOLLIPOP GRAPH

One can obtain the D3EL of C(L3,1), C(L3,2). So, consider C(L3,n), for n ≥ 3.(see figure)

FIGURE 5.7: D3EL of C(L3,1)
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FIGURE 5.8: D3EL of C(L3,2)

Theorem 5.1.6. C(L3,n) does not permit D3EL ∀ n ≥ 3.

Proof. Let L3,n be the lollipop graph on n ≥ 3 nodes. Take n = 3 and so |V (L3,3)| = 6 and

|E(L3,3)| = 6. Obtain the CG of L3,n, C(L3,n) with |V(C(L3,3))| = 12 and |E(C(L3,3))| = 21.

Now define a bijection ”d : V (C(L3,3)) → {1, 2, . . . , n} that induces d∗ : E(C(L3,3)) →

{0, 1, 2} for any edge xy with d(x) < d(y),as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction. Assume that C(L3,3) has D3EL d and induced

d∗ with “the property that |ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2. One can observe that the

number of lines labeled with label either 0 or 1 or 2 must be exactly 7 to satisfy the required

divisor 3-equitable property |ed∗ (i)− ed∗ (j) |≤ 1,∀ 0 ≤ i, j ≤ 2”. But there are only six

lines with label 2, a contradiction (see Figure 5.9). Moreover, if C(L3,3), does not admit D3EL,

then C(L3,n), n > 3, too does not admit D3EL.
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FIGURE 5.9: The non-existence of D3EL of C(L3,3)

5.1.7 D3EL of Degree Splitting Graph of Ladder Graph

Definition 5.1.4. [86] “The ladder Ln = Pn × P ′′
2 .

The D3EL of DSG (L1) , DSG (L2) , and DSG(L3) are derived easily (see Fig.5.10). So, con-

sider DSG(Ln), ∀ n ≥ 4.

FIGURE 5.10: D3EL of DSG(L3)

Theorem 5.1.7. DSG(Ln) does not allow D3EL ∀ n ≥ 4.
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Proof. Take L4 for the sake of discussion with |V (Ln)| = 8 and |E(Ln)| = 10. Obtain DSG(Ln)

with |V (DSG(Ln))| = 10 and |E(DSG(Ln))| = 18. Now define a bijective map d :

V (DSG(Ln)) → {1, 2, . . . , n} that induces d∗ : E(DSG(Ln)) → {0, 1, 2} for any edge

xy with d(x) < d(y) “as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction. Assume that DSG(L4) has D3EL d and induced

d∗ with condition that|ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2”. Note that the number of lines

labeled 0, 1, and 2 must be 6, respectively “in order to meet the desired divisor 3-equitable

property |ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2. But there are only 5 lines with 2, a contra-

diction (see Fig.5.11). The same argument holds good for DSG(Ln), n > 4. Therefore,

DSG(Ln), n ≥ 4, does not admit D3EL.

FIGURE 5.11: The non-existence of D3EL for DSG(L4)
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5.1.8 D3EL of DSG of Triangular Snake Graph

Definition 5.1.5. [1] graph TSn with n (odd) nodes is defined by starting with Pn−1 and adding

lines (2i− 1, 2i+ 1) for i = 1, 2, ..., n− 1”.

One can derive the D3EL of DSG(TSn), n ≤ 5. One such example is given in Fig. 5.12.

FIGURE 5.12: D3EL of DSG(TS1), DSG(TS3), and DSG(TS5)

Theorem 5.1.8. DSG(TSn) does not allow D3EL ∀ n (odd) ≥ 7.
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Proof. Take TSn on n ≥ 7 nodes and obtain DSG(TSn). Consider “n = 7 for the discussion

purpose” and so |V (DSG(TS7))| = 9 and |E (DSG(TS7))| = 16. Now define a bijective

map d : V (DSG(TSn)) → {1, 2, . . . , n} that induces d∗ : E(DSG(TSn)) → {0, 1, 2}

for any edge xy with d(x) < d(y) “as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction. Assume that DSG(TS7) has D3EL d and induced

d∗ with condition that |ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2. Note that the count of lines

labeled with either 0 or 1 or 2 must be at least 5 and at most 6 to meet the desired divisor

3-equitable property |ed∗ (i)− ed∗ (j) |≤ 1, ∀ 0 ≤ i, j ≤ 2. But there are only four lines with

label 2, a contradiction”. Moreover, if DSG(TS7) does not admit D3EL, then DSG(TSn),n >

7 too does not admit D3EL.

FIGURE 5.13: The non-existence of D3EL of DSG(TS7)
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5.1.9 D3EL of DSG of Lollipop Graph

One can establish the D3EL of DSG(L3,i);1 ≤ i ≤ 6, Fig. 5.14 provides one such instance.

So, consider DSG(L3,n), for n ≥ 7.

FIGURE 5.14: D3EL of DSG(L3,6)

Theorem 5.1.9. DSG(L3,n) does not accept D3EL ∀ n ≥ 7.

Proof. “Take L3,n on n ≥ 7 nodes and obtain DS(L3,n). Take n = 7 for the sake of dis-

cussion, so |V (DSG(L3,7))| = 11 and |E (DSG(L3,7))| = 18. Define a bijective map

d : V (DSG(L3,7)) → {1, 2, . . . , n} that induces d∗ : E(DSG(L3,7)) → {0, 1, 2} for any

edge xy with d(x) < d(y) as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

Assume that DSG(L3,7) has D3EL d and induced d∗ with the condition that |ed∗(i)−ed∗(j)| ≤

1, ∀ 0 ≤ i, j ≤ 2 . Note that the count of lines labeled with either 0 or 1 or 2 must be exactly

6 to meet the desired divisor 3-equitable property |ed∗(i) − ed∗(j)| ≤ 1, ∀ 0 ≤ i, j ≤ 2. But

there are only five lines with label 2, a contradiction (see Fig. 5.15). Moreover, if DSG(L3,7),

does not permit D3EL, then DSG(L3,n), n > 7, too does not permit D3EL”.



Chapter 5. Divisor 3-equitable labeling of Some Classes of Graphs 78

FIGURE 5.15: Non-existence of D3EL of DSG(L3,7)

5.1.10 D3EL of Degree Splitting Graph of Cn

The D3EL of DSG(Ci);1 ≤ i ≤ 5 are derived easily (see Fig. 5.16). So, consider DSG(Cn),

∀ n ≥ 6.

FIGURE 5.16: D3EL of DSG(C5)

Theorem 5.1.10. DSG(Cn) does not allow D3EL ∀ n ≥ 6.
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Proof. Take C6 for the sake of discussion with |V (Cn)| = 6 and |E(Cn)| = 6. Obtain DSG(Cn)

with |V (DSG(Cn))| = 7 and |E(DSG(Cn))| = 12. Now define a bijective map d :

V (DSG(Cn)) → {1, 2, . . . , n} that induces d∗ : E(DSG(Cn)) → {0, 1, 2} for any edge

xy with d(x) < d(y) “as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

Assume that DSG(C6) has D3EL d and induced d∗ with condition that |ed∗(i) − ed∗(j)| ≤

1,∀ 0 ≤ i, j ≤ 2. Note that the number of lines labeled 0, 1, and 2 must be 4, respectively in

order to meet the desired divisor 3-equitable property |ed∗(i) − ed∗(j)| ≤ 1, ∀ 0 ≤ i, j ≤ 2.

But there are only 3 lines with 2, a contradiction” (see Fig.5.17). The same argument holds good

for DSG(Cn), n > 6. Therefore, DSG(Cn), n ≥ 6, does not admit D3EL.

FIGURE 5.17: Non-existence of D3EL of DSG(C6)

5.1.11 D3EL of Degree Splitting Graph of Friendship Graph

One can derive the D3EL of DSG(Fn), n ≤ 2. “One such example is given in Fig. 5.18 &

5.19”.
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FIGURE 5.18: D3EL of DSG(F1)

FIGURE 5.19: D3EL of DSG(F2)

Theorem 5.1.11. DSG(Fn) does not allow D3EL ∀ n ≥ 3.

Proof. Take Fn on n ≥ 3 nodes and obtain DSG(Fn). Consider n = 3 for the discussion

purpose and so |V (DSG(F3))| = 8 and |E (DSG(F3))| = 15. Now define a bijective map
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d : V (DSG(Fn)) → {1, 2, . . . , n} that induces d∗ : E(DSG(Fn)) → {0, 1, 2} for any

edge xy with d(x) < d(y) as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

The proof is by the method of contradiction. Assume that DSG(F3) has D3EL d and induced

“d∗ with condition that |ed∗(i) − ed∗(j)| ≤ 1, ∀ 0 ≤ i, j ≤ 2. Note that the count of lines

labeled with either 0 or 1 or 2 must be exactly 5 to meet the desired divisor 3-equitable property

|ed∗(i)−ed∗(j)| ≤ 1,∀ 0 ≤ i, j ≤ 2. But there are only four lines with label 2, a contradiction”

(see Fig. 5.20). Moreover, if DSG(F3), does not admit D3EL, then DSG(Fn), n > 3, too

does not admit D3EL.

FIGURE 5.20: Non-existence of D3EL of DSG(F3)

5.1.12 D3EL of Degree Splitting Graph of Path

One can establish the D3EL of DSG(Pi);1 ≤ i ≤ 10. “One such example is given in Fig.

5.21”.So, consider DSG(Pn), for n ≥ 11.
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FIGURE 5.21: D3EL of DSG(P10)

Theorem 5.1.12. DSG(Pn) does not accept D3EL ∀ n ≥ 11.

Proof. Take Pn on n ≥ 11 nodes and obtain DS(Pn). “Take n = 11 for the sake of dis-

cussion, so |V (DSG(P11))| = 13 and |E (DSG(P11))| = 21”. Define a bijective map

d : V (DSG(P11)) → {1, 2, . . . , n} that induces d∗ : E(DSG(P11)) → {0, 1, 2} for any

edge xy with d(x) < d(y) as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

Assume that DSG(P11) has D3EL d and induced “d∗ with the condition that |ed∗(i)−ed∗(j)| ≤

1, ∀ 0 ≤ i, j ≤ 2. Note that the count of lines labeled with either 0 or 1 or 2 must be exactly

7 to meet the desired divisor 3-equitable property |ed∗(i) − ed∗(j)| ≤ 1, ∀ 0 ≤ i, j ≤ 2. But
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there are only six lines with label 2, a contradiction (see Fig.5.22). Moreover, if DSG(P11),

does not permit D3EL, then DSG(Pn), n > 11, too does not permit D3EL”.

FIGURE 5.22: Non-existence of D3EL of DSG(P11)

5.1.13 D3EL of MG of Path

One can establish the D3EL of MG(Pi);1 ≤ i ≤ 8. “One such example is given in Fig. 5.23”.

So, consider MG(Pn), for n ≥ 9.
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FIGURE 5.23: D3EL of MG(P8)

Theorem 5.1.13. MG(Pn) does not accept D3EL ∀ n ≥ 9.

Proof. Take Pn on n ≥ 9 nodes and obtain M(Pn). “We take n = 9 for the sake of dis-

cussion”, so |V (MG(P9))| = 17 and |E (MG(P9))| = 23. Define a bijective map

d : V (MG(P9)) → {1, 2, . . . , n} that induces d∗ : E(MG(P9)) → {0, 1, 2} for

any edge xy with d(x) < d(y) as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

Assume that MG(P9) has D3EL d and induced “d∗ with the condition that |ed∗(i)−ed∗(j)| ≤

1, ∀ 0 ≤ i, j ≤ 2. Note that the count of lines labeled with either 0 or 1 or 2 must be at least 7 and

at most 8 to meet the desired divisor 3-equitable property |ed∗ (i)− ed∗ (j) |≤ 1,∀ 0 ≤ i, j ≤

2. But there are ten lines with label 0, seven lines with label 2 and seven lines with la-

bel 1, a contradiction” (see Fig. 5.24). Moreover, if MG(P9), does not permit D3EL, then

MG(Pn), n > 9, too does not permit D3EL.

FIGURE 5.24: Non-existence of D3EL of MG(P9)
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5.1.14 D3EL of MG of Cn

The D3EL of MG(Ci);1 ≤ i ≤ 6 are derived easily (see Fig.5.25). So, consider MG(Cn),

∀ n ≥ 7.

FIGURE 5.25: D3EL of MG(C6)

Theorem 5.1.14. MG(Cn) does not allow D3EL ∀ n ≥ 7.

Proof. Take C7 for the sake of discussion with |V (Cn)| = 7 and |E(Cn)| = 7. Obtain MG(Cn)

with |V (MG(Cn))| = 14 and |E(MG(Cn))| = 21. Now define a bijective map d :

V (MG(Cn)) → {1, 2, . . . , n} that induces d∗ : E(MG(Cn)) → {0, 1, 2} for any edge xy

with d(x) < d(y) as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

Assume that MG(C7) has D3EL d and induced “d∗ with condition that |ed∗(i) − ed∗(j)| ≤

1,∀ 0 ≤ i, j ≤ 2. Note that the number of lines labeled 0, 1, and 2 must be exactly 7, respec-

tively in order to meet the desired divisor 3-equitable property |ed∗(i) − ed∗(j)| ≤ 1,∀ 0 ≤
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i, j ≤ 2. But there are eight lines with label 0, seven lines with label 2 and six lines with la-

bel 1, a contradiction” (see Fig.5.26). The same argument holds good for MG(Cn), n > 7.

Therefore, MG(Cn), n ≥ 7, does not admit D3EL.

FIGURE 5.26: Non-existence of D3EL of MG(C7)

5.1.15 D3EL of Central Graph of Ladder Graph

One can establish the D3EL of CG (L1) and CG(L2). “One such example is given in Fig.

5.27”. So, consider CG(Ln), for n ≥ 3.
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FIGURE 5.27: D3EL of CG(L2)

Theorem 5.1.15. CG(Ln) does not accept D3EL ∀ n ≥ 3.

Proof. Take Ln on n ≥ 3 nodes and obtain C(Ln). “Take n = 3 for the sake of discussion”,

so |V (CG(L3))| = 13 and |E (CG(L3))| = 22. Define a bijective map d : V (CG(L3)) →

{1, 2, . . . , n} that induces d∗ : E(CG(L3)) → {0, 1, 2} for any edge xy with d(x) < d(y) as

follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

Assume that CG(L3) has D3EL d and induced “d∗ with the condition that |ed∗(i)− ed∗(j)| ≤

1, ∀ 0 ≤ i, j ≤ 2. Note that the count of lines labeled with either 0 or 1 or 2 must be at least

7 and at most 8 to meet the desired divisor 3-equitable property |ed∗(i) − ed∗(j)| ≤ 1, ∀ 0 ≤

i, j ≤ 2. But there are ten lines with label 0, six lines with label 2 and six lines with label

1, a contradiction” (see Fig. 5.28). Moreover, if CG(Ln), does not permit D3EL, n >3, then

CG(Ln), n ≥ 3, too does not permit D3EL.
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FIGURE 5.28: Non-existence of D3EL of CG(L3)

5.1.16 D3EL of Central Graph of TSn

One can establish the D3EL of CG (TS3) . “One such example is given in Fig. 5.29”. So,

consider CG(TSn), for n ≥ 5.
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FIGURE 5.29: D3EL of CG(TS3)

Theorem 5.1.16. CG(TSn) does not accept D3EL ∀ n ≥ 5.

Proof. Take TSn on n ≥ 5 nodes and obtain C(TSn). “Take n = 5 for the sake of dis-

cussion”, so |V (CG(TS5))| = 11 and |E (CG(TS5))| = 16. Define a bijective map

d : V (CG(TS5)) → {1, 2, . . . , n} that induces d∗ : E(CG(TS5)) → {0, 1, 2} for any

edge xy with d(x) < d(y) as follows:

d∗ (e = xy) =


1, if d (x) |d(y)

2, if d(y)
d(x) = 2

0, if d(x) ∤ d(y)

Assume that CG(TS5) has D3EL d and induced “d∗ with the condition that |ed∗(i)−ed∗(j)| ≤

1,∀ 0 ≤ i, j ≤ 2. Note that the count of lines labeled with either 0 or 1 or 2 must be at least 5 and

at most 6 to meet the desired divisor 3-equitable property |ed∗(i)−ed∗(j)| ≤ 1,∀ 0 ≤ i, j ≤ 2.

But there are seven lines with label 0, five lines with label 2 and four lines with label 1, a

contradiction ”(see Fig. 5.30). Moreover, if CG(TSn), does not permit D3EL, n >5, then

CG(TSn), n ≥ 5, too does not permit D3EL.
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FIGURE 5.30: Non-existence of D3EL of CG(TS5)

5.2 APPLICATIONS

“The concept of graph labeling in graph theory also plays a vital role in computer science and

communication networks. Due to the demand for high-quality multimedia service, the Inter-

national Telecommunication Union (ITU) recently gave an integrated MSS system and hybrid

satellite and terrestrial system to provide broadband service. In this system, the satellite radio

technique needs to match the terrestrial wireless network as much as possible in order to reduce

the cost. However, if the frequency reuse factor is 1, it might cause serious inter-beam interfer-

ence (IBI) because of the usage of the same subcarrier between user equipment (UE) in adjacent

beams. At the same time, the bandwidth assigned to MSS is very limited, so channel using

efficiency is still a prime factor.

In channel borrowing, the acceptor cell which has no more unused nominal channels can borrow

free channels from donor cells. For the above channel borrowing schemes, the tasks are majorly

focused on which channel to borrow and the borrowing order. The channel borrowing technique
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in mobile satellite communication is given in [44] and it focused on the channel borrowing be-

tween different satellites. Moreover, the schemes listed above all obey a condition: the acceptor

cell can only borrow channels that are not being used in the neighboring cells. A channel from

the donor cell can be borrowed only if none of the cells belonging to the same group as the donor

cell is using this channel. This might lead to a great reduction in borrowable channels. If not, it

may lead to severe IBI. For more applications of graph theory in communication networks and

satellite communication”, see [2, 17, 44]. Similarly, one can explore the exclusive applications

of D3EL in the aforementioned fields which would be an interesting open problem for the future

work.

5.3 Conclusion

The existence and non-existence of D3EL of the TG of umbrella graphs, triangular snake, wheel

graphs, Mycielski’s graph of wheel graph, MG, and CG of lollipop graph are established. “The

existence and non-existence of D3EL of the DSG of the ladder, triangular snake, and lollipop

graphs are also derived”.

Future Scope

The findings presented in this thesis open up several avenues for future research and potential

applications in the field of graph theory and labeling. Below are some of the promising directions

and scopes for further investigation:

1. Exploration of Additional Graph Classes: Future research could focus on applying the 3EL

and D3EL to other classes of graphs not covered in this thesis. This includes but is not limited

to product graphs, bipartite graphs, and various derived graph structures.
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2. Algorithm Development: Developing efficient algorithms for determining 3EL and D3EL for

large and complex graphs could significantly advance practical applications. This includes op-

timizing computational techniques for labeling and leveraging parallel computing for handling

extensive datasets.

5. Mathematical Extensions: Extending the theoretical framework of 3EL and D3EL to higher

dimensions and other mathematical structures such as hypergraphs and simplicial complexes.

This could lead to new discoveries in combinatorial optimization and topology.

6. Software Tool Development: Creating software tools and visualization platforms to aid re-

searchers in applying 3EL and D3EL to various types of graphs. These tools could include

features for automatic labeling, visualization, and analysis of labeled graphs.

7. Educational Integration: Incorporating the concepts of 3EL and D3EL into educational cur-

ricula for graph theory and discrete mathematics. Developing teaching modules and resources

to help students and educators understand and apply these labeling techniques effectively.

8. Experimental Validation: Conducting experimental studies to validate the theoretical findings

and explore their practical implications in real-world scenarios. This includes collaborations

with industry partners and researchers from other disciplines.

In conclusion, the potential applications and extensions of 3EL and D3EL are vast and var-

ied. Future research in this domain promises to uncover new insights and applications, further

enriching the field of graph theory and its interdisciplinary connections.



Conclusion

In this thesis, various new classes of graphs concerning 3EL and D3EL are established. We

hope that it will be very much helpful to all researchers to add more results in to the area of

labeling of graph. From the above study it can be concluded that a graph can be labeled by the

3-equitable labeling and divisor 3-equitable labeling of total graph, middle graph, central graph,

degree splitting graph, and Mycielskian graphs of some graphs and also some new classes of

graphs. Different classes of graph of 3-equitable and divisor 3-equitable labeling have been

analyzed throughout the thesis. It is very interesting to investigate graphs satisfies the various

conditions of 3-equitable and divisor 3-equitable labeling and it is discussed in this thesis. It

will provide a new horizon to the researchers in the area of graph labeling and graph theory

for further advancements in the corresponding field. Exploring the existence and non-existence

of DEL and D3EL for other other classes of graphs are the future scope of this thesis besides

discovering the exclusive applications of these two labeling in various domains.
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