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ABSTRACT 

 

In the rapidly evolving field of computing, Edge computing emerges as a ground breaking 

solution, offering real-time data processing capabilities directly at the data source, thus 

addressing the limitations associated with cloud computing, such as high latency, increased 

cost, and energy consumption. In this study, we have designed a smart framework that can 

identify the challenges with real time energy management solution in relation to edge 

computing-based health monitoring system. By leveraging edge computing, the system enables 

immediate, on-site analysis of vital patient data—blood pressure, heart rate variability, sugar 

level, oxygen saturation (SpO2), positional data, in close proximity to the monitoring module—

thereby significantly enhancing the speed and efficiency of medical response to various patient 

conditions, including fall detection. In this study, we have collected more than 40,000 patient 

scenarios from Guru Nanak Charitable Trust, Jalandhar (Pb), subsequently used to train a 

sophisticated classification algorithm. This algorithm integrates machine learning techniques 

to categorize patient states into three distinct conditions: no fall detected, slip detected, and 

definite fall, based on the analysis of six key physiological parameters. The effectiveness of 

the model was assessed through comprehensive data validation techniques, including box plots, 

histograms, correlation matrices, and rank graphs, to evaluate the predictive importance of each 

parameter. As per results it has been observed that the performance of random forest and 

decision tree algorithms are better than SVM classifier in terms of computational efficiency in 

association with energy efficiency, which also translates into substantial energy savings and its 

management. The implementation of a smart energy management framework further optimizes 

sensor node activation, extending battery life and ensuring sustainable operation throughout 

the modules.  For energy optimisation, a frame work in relation to Energy Efficient Job 

Scheduling (E2JS) has been developed and observed. From the results it has been estimated 

that the E2JS saves approximately 30% energy consumption in comparison to regular task 

scheduling. For wireless transmission, the LoRA module was found to be the best alternate to 

WiFi and other wireless modules in terms of range, cost, and energy management. This 

research contributes to the field by demonstrating the practical application of edge computing 

in healthcare, where it can significantly reduce patient casualties by enabling prompt, accurate 

medical interventions. With an impressive accuracy rate of up to 95% in real-time patient 

condition prediction. The study not only showcases the potential of edge computing in 
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enhancing patient monitoring but also sets a benchmark for future research in the domain, 

particularly in the development of energy-efficient, real-time health monitoring systems. 
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Chapter 1  

Introduction 

1.1 Introduction 

 

In the “early days” of the Internet of Things (IoT), the processing and most of the storage 

were predominantly performed in cloud data centers because only the cloud had the 

computational resources needed to perform complex analysis. However, with an increasing 

deployment of connected applications in this field, the challenges and constraints of cloud 

processing also got magnified[1]. Consequently, the cloud has experienced a significant 

surge in workload, resulting in numerous implications that have been observed by the 

research community[2]. 

 

One of the major limitations was latency- the time required for the data generated by sensors 

at the source to traverse the path to the cloud for processing and then back to deliver actionable 

results. It is pertinent to note that the significance of latency varies in different systems[3]. On 

one hand, where milliseconds of  might not be that important in a thermostat, on the other, it 

is highly imperative for industrial robots and other real-time systems, as they require very 

less time to operate, to guarantee safety and productivity[4]. For the sensor-based safety 

features on modern vehicles, latency can be a matter of life and death. It has been observed 

in the literature that the responsible applications can be executed with respect to high speed 

of data extraction. 

 

As per the modern architecture of an IoT based scenario, even a modest application with 

sensors can create an enormous amount of data that consumes costly bandwidth that is 

provided by the network[5]. 

 

Today, security has become one of the most critical aspects of the IoT. The applications and 

users are seeking a very prominent level of security for the databases as the adoption of cloud- 

based approach may potentially expose sensitive information, including intellectual property 

(IP), that must be protected[6]. 

 

Based on the findings derived from the literature survey, it can be said that a better solution 

to overcome these challenges is to divide the processing tasks between the cloud-based 

servers and processors operating at data generation sites, commonly referred to as the 
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edge[7]. More precisely, it is the edge of the network, or, from a data center’s perspective, 

it is referred to as the ‘far edge’. Note that some processing has always been performed at 

the edge, principally in gateways that aggregate the data produced by sensors into a standard 

format and then send it outward[8]. 

 

The Edge computing model is a paradigm that reimagines how computational resources are 

distributed within a networked environment, with the primary goal of reducing latency, 

improving real-time data processing, and enhancing the overall efficiency of applications[9]. 

In this model, computation and data processing are moved closer to the data source, which is 

often referred to as the "edge" of the network. This stands in contrast to traditional cloud 

computing, where data is sent to centralized data centers for processing. The Edge computing 

model is designed to address the limitations and challenges associated with centralized cloud 

architectures, particularly in scenarios involving data-intensive applications and emerging 

technologies like the Internet of Things (IoT) and real-time analytics[10], [11]. Here the rely 

on concepts related to edge computing have been discussed: 

 

Key Concepts of the Edge Computing Model 

 

1.1.1 Latency Reduction: One of the key driving factors for the adoption of the edge 

computing model is the reduction of latency. In the context of computing and data 

transmission, sometimes, there may be a delay between the client's request and the server's 

response[3], [12]. Especially in real-time applications like video streaming, online gaming, 

autonomous vehicles, and other Internet of Things (IoT) applications, high latency is totally 

undesirable as it can result in delay, lag, or poor user experience on the cloud. Here it is very 

important to understand the difference between traditional cloud computing and edge 

computing[13]. In a traditional cloud computing model, all data which was generated by 

devices, sensors, or users is sent to centralized data centers for processing and analysis. These 

data centers may be located far away from the source of the data, leading to increased latency 

due to the long round-trip time for data to travel[14]. Edge computing, on the other hand, 

places smaller, localized computing resources (like micro data centers or edge servers) closer 

to the source of data generation. This can be       within an IoT device itself or in a local gateway 

or even at a nearby facility[15]. By doing this, computing enables the data to be processed 

locally, thereby reducing the need for  it to traverse extensive distances to centralized data 

centers[16]. Edge computing is one of the proven methods to reduce latency. Figure 1.1 shows 

the key aspects that are associated with an improvement in the latency factor of edge 
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computing: 

 

 
 

Figure 1.1: Key aspects in improvement of Latency rate in relation to edge computing 

There are aspects by which latency has been improved, which are explained as below: 

 

 Proximity to Data Source: There is a recognized need for data processing units to be 

situated in close proximity to the sources from which the data originates. By this method, the 

commutation time will be shortened, thereby resulting in a significant improvement in 

latency[17]. 

 

 Localized Processing: Edge computing allows for some data to be processed locally 

rather than being sent to a centralized data center as it is better to install the processing units 

in the local territory rather than molding the data to cloud[18]. This localized processing can 

significantly enhance speed, thereby reducing latency up to a certain extent. 

 

 Selective Transmission: It has been observed that the installation of smart data filters 

at the user end can improve the latency. Edge computing has the ability to filter and send 

only the necessary data to the centralized cloud, reducing the amount of data that needs to 

travel back and forth[19]. This saves bandwidth and reduces latency. For applications that 

require real-time decision-making, such as autonomous vehicles or industrial automation systems, 

edge computing allows for quicker data processing and decision-making[20]. 
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 Network Optimization- By performing computation at the edge, there is less strain 

on the central data centers, allowing them to perform more efficiently, which can also help 

reduce latency. The main benefit of edge computing methods is that it optimizes the network 

use with respect to the resources available in the IoT architecture[21]. 

 

 Load Distribution- When we talk about load distribution in edge computing, it refers 

to the equitable and even distribution of workload over all the available edge nodes[22]. This 

not only minimizes the total latency but also ensures that no single node becomes a bottleneck 

subsequently facilitating timely decision making[23]. 

 

 Real Time analysis- The presence of low latency expediate the processing and 

analysis of data, enabling systems to take immediate actions based on the findings derived 

from the examined data[24]. In systems such as autonomous vehicles or medical devices, 

where real-time responses are crucial for safety, reduced latency enables prompt data 

processing and execution of actions, thereby mitigating potential incidents[25]. 

 

Improving latency is one of the key attributes of edge computing thereby rendering edge 

computing a highly suitable solution for a diverse array of applications and industries that  

necessitate instantaneous data processing and decision-making capabilities[26]. 

 

1.1.2 Real-Time Processing: Real-time processing is another fundamental concept in edge 

computing that serves as a crucial enabler for applications requiring immediate or near- 

instantaneous data processing and feedback[27]. Unlike batch processing, which collects and 

processes data at predetermined intervals, real-time processing involves continuously 

handling of incoming data and delivering outputs with minimal delay[28]. The demand for 

real-time processing capabilities is driven by various applications and industries that require 

immediate analysis and action. This includes autonomous vehicles, health monitoring 

systems, industrial automation, and smart cities, among others [29]. Traditional cloud 

computing architectures are not always adequate for these types of applications due to the 

latency involved in transmitting data to and from a centralized data center. Real time 

processing can be easily formed in an edge computing architecture. The factors associated 

with real time processing are shown in figure 1.2. 
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Figure 1.2: Factors associated with real time processing of data in edge computing. 

 

 Localized Decision-Making: It has been observed in the literature that edge 

computing has much more optimized and proven power of computation than any other 

method in this problem statement[30]. Due to proximity of computing power to the data 

source, edge computing allows immediate analysis and prompt action, thereby 

eliminating the necessity of transmitting data to a central cloud for processing[31]. This is 

crucial for applications like autonomous vehicles, where even a slight delay can have 

significant consequences. 

 

 Data Stream Analysis: Edge computing can analyze data streams in real-time, 

thereby facilitating the implementation of applications such as real-time video analytics, real- 

time analysis of sensor data in industrial environments, and real-time monitoring of financial 

transactions[32]. The proximity of data sources reduces the time taken for data to travel, 

enabling quicker decision-making and implementation. Additionally, the localization of data 

processing at the edge not only minimizes the volume of data that needs to be transmitted 

over the network, but also reduces network congestion and latency[33]. 
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 Temporal Relevance: Some data loses its relevance quickly. For example, sensor 

data in a manufacturing process may only be relevant at that moment and loses its importance 

over time[34]. To overcome this challenge, edge computing ensures prompt execution of 

time-critical tasks based on the most up-to-date information available and enables real-time 

data processing. Edge computing can perform data filtering, aggregation, and pre-processing, 

ensuring that only necessary data is sent to the cloud[35]. This makes efficient use of 

bandwidth and storage resources, which is essential for real- time applications that generates a 

large volume of data. 

 

 Real time feedback loops- The real-time feedback loops allows the applications to 

require continuous monitoring and adjustment, such as process control systems in 

manufacturing or energy grids[36]. These applications can derive advantages from the real- 

time feedback loops made possible by edge computing. 

 

 Reduced Network traffic- One of the important features of edge computing is that it 

enables the analysis of data in close proximity to its source[37]. Because of this, the necessity 

of transmitting the data to a centralized point gets reduced. Real-time processing in edge 

computing, hence, significantly reduces network traffic[38]. 

 

 Scalability- Edge computing allows for decentralized processing, which makes it 

easier to scale real-time applications[39]. As new edge nodes can be added with localized 

computational resources, real-time processing capabilities can be scaled horizontally without 

overloading a central server. 

 

 Resource Efficiency- The localization of data processing decreases the amount of 

data that needs to be transferred to a centralized source, resulting in a reduction of energy 

consumption and resource utilization associated with data transmission across networks 

along with the associated costs[40]. 

 

 Lower Latency- Real-time processing in edge computing is inherently meant to 

reduce latency, which pertains to the time delay between a system's response to input or 

stimulus[41]. Instead of sending data to a centralized data center for analysis and processing, 

edge computing enables data to be processed locally, further reducing delay[13]. This is 

significantly important for those applications that necessitate immediate and instantaneous 

feedback, such as, industrial automation, and various Internet of Things (IoT) 
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applications[14]. 

 

So, the real-time processing is integral to the edge computing paradigm and serves as a key 

enabler for various applications that require immediate or near-instantaneous decision-

making and action[15]. By moving computation closer to data sources and enabling real-time 

analysis and feedback, edge computing opens the door to new possibilities in IoT, industrial 

automation, healthcare, transportation, and many other sectors. 

 

1.1.3 Bandwidth Optimization: Bandwidth optimization is another critical aspect of edge 

computing that addresses the limitations and costs associated with data transmission over 

networks[42]. Bandwidth refers to the maximum rate of data transfer across a network path 

and optimizes both performance and cost-effectiveness. One of the primary objectives of a 

smart edge computing approach is to use the bandwidth in an effective way[43]. Transmitting 

large volumes of data to centralized cloud data centers can strain network bandwidth and lead 

to congestion. Edge computing decreases the necessity of transmitting data over a network 

by performing processing and analysis near the data source[44]. This effectively optimizes 

bandwidth usage and mitigates network congestion. Figure 1.3 shows the bandwidth 

management factors in relation to edge computing methods: 

 

 Local Processing- As IoT and other data-intensive applications grow, so does the 

volume of data generate. And transmitting this data over long distances to centralized data 

centers can be expensive, especially for organizations that pay based on the amount of data 

they transmit. Efficient use of bandwidth is crucial for these applications to scale without 

overwhelming the network[44]. The storage of locally processed and filtered data can 

effectively minimize the requirement for massive data transfers and improve the management 

of data at the local level[43]. 
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Figure 1.3: Factors associated with Bandwidth management in edge computing 

 

 Load balancing- In order to avoid network congestion and optimize bandwidth, Load 

balancing evenly distribute workloads across multiple computer resources. It also assures 

smooth and uninterrupted operations[45]. Bandwidth optimizing aids in rapid transfer of data 

between nodes. It plays a crucial role in maintaining optimal performance by minimizing 

latency and enhancing the speed of data retrieval and processing[46]. 

 

 Adaptive streaming- Bandwidth optimization enables adaptive streaming algorithms 

to dynamically modify the streaming content's quality in response to the prevailing 

bandwidth conditions[47]. This ensures a smooth streaming experience with little buffering 

and streams high-quality content whenever sufficient bandwidth is accessible. Inadequate 

bandwidth, on the other hand, can degrade the quality of services like video streaming, online 

gaming, and real-time analytics, leading to poor user experience[43]. 

 

 Protocol Optimization- Edge devices can use more efficient data transmission 

protocols that are tailored for local network conditions, further optimizing bandwidth 

usage[48]. In multimedia applications, edge computing can dynamically adjust the quality of 

video or audio streams based on current network conditions. The main reason of edge 

computing technology is to distribute workload across multiple edge servers which can 

reduce bottlenecks and make more efficient use of network resources[49]. With real-time 
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analytics, edge computing can adapt to network conditions dynamically, ensuring that 

bandwidth is utilized as efficiently as possible[50]. 

 

 Caching- Caching plays a pivotal role in optimizing bandwidth as it effectively 

reduces the volume of data that needs to be transmitted between the edge device and the 

cloud[51]. As a result of which, the overall data traffic that traverses the network decreases. 

By locally delivering requests using cached data, the network's overall burden is diminished, 

resulting in reduced congestion and optimal utilization of the available bandwidth[52]. This 

is particularly useful for content delivery networks (CDNs) to improve user experience while 

conserving bandwidth[53]. 

 

 Data Aggregation and filtering- By implementing edge computing, a significant 

portion of the data can be analyzed without the need for transmission to a central server[35]. 

Edge computing devices can aggregate raw data and filter out irrelevant information before 

sending it to the central cloud, which reduces the volume of data that needs to be transmitted 

over the network. 

 

 Off-peak data transfer- In edge computing methodologies, it is possible to 

strategically schedule data transfers during periods of non-real-time workloads, such as off-

peak hours[54]. This approach allows for the efficient utilization of network resources, hence 

optimizing their usage. 

 

Edge computing allows for local peer-to-peer data sharing, eliminating the need to transmit 

data over long distances. By optimizing bandwidth usage, edge computing not only improves 

application performance and user experience but also helps in reducing the operational 

costs[55]. This makes it a key enabler for applications that generate large volumes of data, 

require low latency, or need to operate in bandwidth-constrained environments. 

 

1.1.4 Privacy and Security: Privacy and security are critical aspects that must be 

considered in any computing architecture, including edge computing[56]. Applications, 

especially those involving sensitive data, are getting benefitted from edge computing's ability 

to process data locally, which in turn enhances data privacy and security by minimizing the 

exposure of sensitive information to potential threats during transit[57]. While edge 

computing offers several advantages in terms of latency reduction, real-time processing, and 

bandwidth optimization, it also introduces new challenges and opportunities for privacy and 
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security[58]. Figure 1.4 shows the strategies for enhancing privacy and security in edge 

computing architecture: 

 

 
 

Figure 1.4: Strategies for Enhancing Privacy and Security in Edge Computing 

 

 Encryption- Just like real-time data processing, edge computing can also enable real- 

time security monitoring, allowing for quicker detection of and response to security incidents. 

Data can be encrypted both at rest and in transit to safeguard against unauthorized access[59]. 

Robust mechanisms can be implemented to ensure that only authorized devices and users can 

access the edge nodes and the data stored or processed on them[60]. 

 

 Zero trust architecture (ZTA)- The concept of Zero Trust Architecture (ZTA) 

revolves around the principle of "never trust, always verify." This implies that trust is not 

automatically assumed, instead, verification process is obligatory for any organization 

seeking access to network resources, irrespective of their location[61]. Adopting a zero- trust 

approach, which assumes that no devices within the network are secure, can provide an 

additional layer of security. This concept is significantly important in edge computing, 

wherein devices, data, and services are distributed across different geographical locations 

and network environments, potentially exposing them to various vulnerabilities[62]. 

 

 Compliance and auditing- In sectors such as healthcare and finance, which often 

operate under stringent laws pertaining to the storage of data, it is important for edge 
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computing to align with the data sovereignty regulations which mandate that data must be 

stored and processed within specific geographic limits[63]. With capabilities to process data 

locally, only necessary information may be sent to the central cloud. This selective 

transmission can reduce the amount of sensitive or personal data from getting exposed to 

potential risks during data transfer[64]. Edge computing allows for more granular control 

over what data is sent back to central servers, potentially providing users with more control 

over their personal data. 

 

 Intrusion detection system (IDS)- The decentralized nature of edge computing can 

expand the attack surface. Each edge node becomes a potential entry point for attackers, 

making the overall system more vulnerable to attacks like data tampering or unauthorized 

access[65]. Localized processing means that data might not always be sent to a central server. 

Keeping the software up to date is crucial for mitigating these known vulnerabilities. This is 

particularly challenging but essential for edge devices. Employing IDS (Intrusion detection 

system) on edge devices can monitor and alert potentially malicious activity, allowing for 

quicker remedial actions. This approach can be advantageous as far as privacy is concerned, 

but at the same time, it can also present problems in terms of upholding a unified and 

authoritative information repository, consequently leading to data integrity issues[66]. 

However, to some extent, Edge nodes can be isolated from each other and from the central 

system, which can contain attacks or vulnerabilities to a smaller part of the network. 

 

 Regular updates- Regular updates in edge computing plays a crucial role in 

maintaining a secure environment. These updates serve to address vulnerabilities, improve, 

and optimize security features, protect data privacy, and equip the system with the ability to 

counter emerging threats[56]. The implementation of a structured, reliable, and uniform 

updating approach is crucial in maintaining privacy and security of edge computing 

deployments. 

 

 Authentication and authorization- Authentication and authorization plays a very 

important role in ensuring privacy and security in edge computing. Authentication is the 

process of verifying the legitimacy of a person, device, or service in order to establish their 

true identity[67]. Typically, the process of authentication is accomplished by employing 

usernames, passwords, tokens, biometrics, or other forms of verification. The 

implementation of robust authentication measures is crucial in order to restrict data access 
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solely to authorized entities, thereby mitigating the risk of unauthorized access that may 

result in data breaches[68]. Once authentication of an entity is done, authorization comes into 

picture which involves the determination of the activities or resources that the authenticated 

entity is permitted to access or alter. This determination is made based on specified policies. 

In short, both authentication and authorization function as gatekeepers that govern the access 

to data and services within a network, subsequently exerting a direct influence on privacy 

and security[69]. 

 

 Privacy preserving algorithms- For cases like data analytics, employing algorithms  

that can process data without revealing sensitive information can help in maintaining user 

privacy[68]. By taking a comprehensive approach to privacy and security, edge computing 

can be made both robust and resilient, offering a viable solution for various applications that 

demand low latency, real-time processing, and bandwidth optimization, all while keeping 

data secure and private[58]. Edge devices may be constrained in terms of computational 

resources, limiting the types of security measures that can be implemented directly on the 

devices. Ensuring that edge computing architectures meet relevant industry regulations and 

standards is crucial for both privacy and security[70]. 

 

1.1.5 Scalability: Scalability is a critical factor for the long-term viability and success of 

any computing architecture, which includes edge computing as well. Edge computing 

supports a distributed architecture that can be easily scaled by adding more edge nodes or 

servers as needed[39], [71]. Figure 1.5 shows the modular approach in improvement of 

scalability in relation to Edge computing. 

 

 Network Efficiency- Edge computing offers flexibility that allows the network to 

adapt to changing demands without relying solely on centralized data centers[72]. As 

applications and systems grow, it becomes imperative for the underlying infrastructure to 

effectively accommodate this expansion. This may involve managing larger volumes of data, 

enhancing data processing speed, or supporting a greater number of users[73]. 
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Figure 1.5: Key aspects to improve the scalability in Edge computing architecture. 

 

 Dynamic Resource Allocation- New applications are continually emerging that 

require real-time processing, machine learning, and complex analytics. A scalable 

architecture is needed to meet these varying computational demands[74]. As applications 

grow, maintaining a high level of service is crucial. Scalability ensures that performance 

doesn't degrade as the user base expands. A scalable architecture allows resources to be 

allocated more efficiently, which can result in cost savings over time[75]. 

 

 Localized Upgrades and Maintenance- As networks expand, it becomes highly 

imperative to upgrade or substitute certain nodes in order to support emerging technologies 

or meet new and ever-changing demands. Here, localized maintenance fulfills this 

requirement by providing the ability to upgrade, repair, or replace certain edge nodes or 

devices without causing any disruptions to the overall network functionality. It also ensures 

data consistency and dependability among several nodes. Not only this, it also limits the 

consequences of failure, if any, to a specific node or portion[76]. 

 

 Distributed data storage- Edge computing is a distributed computing paradigm that 

involves the storage of data at several edge nodes, resulting in enhanced efficiency and faster 
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data retrieval as the demands of the system increase[77]. In an edge computing environment, 

individual nodes can often be upgraded or maintained without affecting the entire network, 

thereby offering another layer of flexibility in scaling the system. Advanced edge computing 

solutions can allocate resources dynamically based on the current computational and storage 

demands, thus providing highly efficient, scalable operations[78]. 

 

 Modular Deployment- Edge computing allows for modular deployments where 

additional resources can be deployed only where and when they are needed. This simplifies 

the process of scaling operations in a manner that is both efficient and economical[79]. 

 

 Load distribution- The implementation of an effective load distribution system 

among edge nodes prevents the occurrence of node overload, hence assure stability and 

optimal performance of activities[80]. Also, the distribution of workloads facilitates the 

localization of data processing in close proximity to data sources, resulting in decreased 

latency and improved user experience[45]. 

 

 Decentralized Architecture- The decentralized nature of edge computing means that 

new edge nodes (devices, servers, etc.) can be added to the network as needed, without 

causing a bottleneck at a central server[81]. Distributing computing tasks across multiple 

edge locations can balance the load, reducing the risk of failure at any single point and 

enabling more efficient resource utilization[77]. 

 

 Data Aggregation and Pre-processing- Edge devices can aggregate and preprocess 

data locally. This not only conserves network bandwidth but also enables the transmission of 

more significant and condensed information to centralized data centers, consequently, 

optimizing the utilization of resources within these data centers[35]. 

 

 Horizontal scalability- Edge computing offers several advantages and strategies to 

improve scalability, which is particularly crucial for IoT, real-time analytics, and other 

emerging technologies that are generating unprecedented volumes of data. With billions of 

IoT devices and sensors deployed worldwide, the volume of data being generated is 

staggering. Scalability is crucial to handle this massive influx of data efficiently[71]. Unlike 

traditional centralized systems that often rely on scaling up (adding more power to a single 

machine), edge computing naturally lends itself to horizontal scaling—adding more 

machines into the network. This is especially effective for handling increased data volume 
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and computational load[82]. 

 

The concept of scalability plays a crucial role in edge computing. It allows the architecture 

to successfully adapt to the increasing and unpredictable demands effectively. By minimizing 

the distance that data needs to travel, edge computing makes the better use of network 

resources, thus supporting scalability in terms of both data transmission and processing 

speed[39]. By leveraging edge computing's innate ability to scale horizontally, distribute 

load, and dynamically allocate resources, organizations can build robust, efficient, and 

future-proof systems[83]. 

 

1.1.6 Offline Operation: Offline operation is a significant advantage of edge computing, 

particularly for applications and environments where continuous connectivity to a central 

cloud or data center is not guaranteed. Systems that can operate offline are less susceptible 

to network outages and can continue functioning even when central services are unavailable, 

thereby enhancing the system's overall resilience[84]. Offline operation can also reduce the 

costs associated with data transmission, especially over cellular or other metered 

networks[85]. The ability to function without an internet connection is advantageous 

especially for applications that necessitate real-time data processing, since it mitigates the 

latency that would otherwise arise from transmitting data to and from a central server. Offline 

operation at the edge is also beneficial for ensuring compliance with data governance 

standards that mandate the confinement of data within specific geographic borders[12]. In 

consumer applications, it ensures that users have access to essential features even when they 

are temporarily disconnected from the internet. Figure 1.6 shows the association of offline 

operations with edge computing methods for improvement in services: 

 



16  

 

 

Figure 1.6: Association of offline operations with edge computing methods 

 

 Local failover- Many edge computing applications are in remote or challenging 

environments like offshore oil rigs, rural agricultural settings, or isolated industrial sites 

where connectivity can be sporadic. Unlike traditional cloud computing models, that rely on 

uninterrupted internet access for data processing and storage, edge computing allows for 

localized processing and decision-making, enabling operations to continue even when a 

device is disconnected from the network[10]. 

 

 Task Queuing- Operations that require central server interaction can be queued for 

execution once connectivity is restored, thereby preventing data loss or operational hiccups. 

Even in the absence of an internet connection, devices can gather and retain data in a local 

storage system. In more complex edge architectures, if one edge device fails or loses 

connectivity, other nearby edge devices can take over its tasks, providing a level of 

redundancy[32]. After getting reconnected to the internet, the queued tasks are executed, and 

the data can be synced with central data centers or cloud resources, thereby ensuring the 

maintenance of data consistency. The ability to queue tasks allows the system to effectively 

manage variations in network availability without compromising operational 

functionality[33]. Systems can adjust dynamically when the network conditions are poor and 

subsequently synchronize when the connectivity re- establishes. 
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 State Management- In edge computing, the term "state" pertains to the stored data 

that encompasses the information characterizing the condition or state of a system or process 

at a specific moment in time. Advanced edge computing solutions can manage the state of 

an application locally, ensuring that it remains consistent even when transitioning between 

online and offline operations[29]. An effective state management guarantees that when a 

device regains the lost internet connectivity, the process of data synchronization takes place 

in such a manner that maintains data consistency and integrity, assuring a seamless user 

experience. 

 

 Synchronization- After getting re-connected with the connection, edge devices have 

the ability to synchronize with central servers, facilitating the transfer of newly acquired data 

to the central servers, along with the retrieval of updates or new settings from the central 

servers to the edge devices. 

 

 Data Caching- Edge devices can cache essential data locally, providing the necessary 

information for operations to continue even when the device is disconnected. The concept of 

data caching in edge computing refers to the practice of storing data in a cache, which is 

basically a layer of high-speed data storage. This approach aims to minimize latency and 

optimize bandwidth use when fulfilling data requests[12]. The utilization of cached data 

guarantees the continued accessibility of essential information to users, even in situations 

where online connectivity is unavailable, contributing to a smooth and uninterrupted user 

experience. 

 

 Resource Allocation- Resource allocation is a process that involves the prioritization 

and scheduling of tasks to effectively maintain the smooth operation of important functions 

during offline operations. Not only this, effective allocation of resources also assures the 

maintenance of operational continuity, data integrity, and enhanced user experience[3]. It 

also helps in maintenance of fault tolerance along with the efficient management of network 

communications following its reconnection. 

 

 Localized Processing- Since, data is not sent to the centralized data centers, Localized 

processing enables edge devices to operate autonomously without any dependence on cloud 

connectivity. Even if the connection to a central server is lost, the edge device retains the 

capability to process data and provide services independently[18]. The optimization of data 
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processing and local accessibility facilitates offline operations by supplying essential data 

inputs for local applications and services. 

 

Edge devices can be equipped with computational power, storage, and memory to operate 

independently, ensuring they have the resources to continue functioning offline. Offline 

operation is particularly valuable for applications that require high availability, low latency, 

or operation in remote or challenging environments[10]. By enabling devices to act 

intelligently on their own, edge computing creates more robust, resilient systems that can 

continue to operate effectively, even when disconnected from the central cloud or data center. 

 

Components of the Edge computing model 

 

The edge computing has basically four components which are given below: 

 

1. Edge Nodes: These are the devices or servers located at the edge of the network, such 

as routers, switches, gateways, and IoT devices. Edge nodes are equipped with computational 

capabilities and storage resources, enabling them to perform processing tasks and store data 

locally. 

 

2. Fog Computing: This term is sometimes used interchangeably with edge computing. 

It refers to a network architecture where computational tasks are offloaded from end devices 

to intermediate nodes, like routers and switches[86]. These intermediate nodes, known as 

"fog nodes," provide additional processing power and storage capacity. 

 

3. Mobile Edge Computing (MEC): MEC specifically focuses on leveraging resources 

available at cellular base stations to offload computation from mobile devices. This approach 

enhances mobile application performance by reducing latency and optimizing data 

processing[87]. 

 

4. Edge Servers: These are dedicated computing nodes placed strategically at the edge 

of the network. They provide more substantial processing power and storage compared to 

edge nodes, making them suitable for handling more complex tasks and applications[11]. 

The architecture of edge computing is shown in figure 1.7. 
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Figure 1.7: Edge computing architecture 

 

1.2 Emerging Applications Requirement 
 

Emerging applications, driven by technological advancements and changing user demands, 

often require specific capabilities that traditional computing paradigms struggle to fulfill. 

Edge computing has emerged as a solution to meet the unique requirements of these 

applications, offering advantages in terms of reduced latency, real-time processing, and 

efficient data management[88]. As shown in figure 1.8, there are of various emerging 

applications: 

 

1.2.1 Augmented Reality (AR) and Virtual Reality (VR) 

 

It has been observed that the AR and VR applications demand ultra-low latency to provide 

seamless and immersive user experiences. Delays in rendering virtual objects or 

environments can lead to motion sickness and break the illusion of immersion. Edge 

computing is a technological approach that aims to minimize latency by executing rendering 

and interaction duties in proximity to the user's device. This minimizes the round-trip time 
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between the user's device and a remote cloud server, guaranteeing prompt delivery and real-

time updating of virtual content. This is critical to maintaining the fluidity and realism of AR 

and VR experiences[86]. 

 

 
 

Figure 1.8. Emerging applications of Edge Computing 

 

1.2.2 Internet of Things (IoT) and Smart devices 

 

IoT devices generate substantial amounts of data, and many of them require real-time 

responses for efficient control and automation. The transmission of all IoT data to a 

centralized cloud can enhance latency and result in the formation of bottlenecks and elevate 

the cost. Edge computing allows IoT data to be processed and analyzed at the edge nodes, 

reducing the need to transmit all data to the cloud. Local processing also supports immediate 

actions, such as adjusting equipment settings or triggering alerts, based on real-time data. 

This technique not only mitigates latency but also facilitates data filtration and prioritization, 

selectively transmitting pertinent information to the cloud for subsequent analysis. 
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1.2.3 Autonomous Vehicles 

 

Autonomous vehicles require split-second decision-making based on sensor data, such as 

lidar, radar, and camera feeds. Delays in processing can even have life-threatening 

consequences in critical situations. Edge computing enables on-board processing of sensor 

data, allowing vehicles to make instantaneous decisions without relying on distant cloud 

servers[89]. This rapid response time not only reduces the latency but also enhances the 

safety within autonomous driving systems. 

 

1.2.4 Smart Transportation 

 

Smart transportation systems enhance traffic management, improve infrastructure use, 

provide better transportation services, and also increase users' traffic safety and efficiency. 

To optimize traffic flow, energy consumption, and public services, real-time data processing 

is essential. Immediate processing of traffic data allows the system to identify and respond 

to traffic congestion promptly, potentially rerouting vehicles to avoid heavy traffic. It also 

provides smart parking solutions. Not only this, by processing data from various sensors[90], 

it helps to predict when parts of vehicles or infrastructure require maintenance. 

 

1.2.5 Healthcare and remote monitoring 

 

Telemedicine applications and remote patient monitoring require real-time analysis of patient 

data to provide timely medical interventions and diagnostics. Edge computing allows 

wearable medical devices to process and analyze patient data locally. This approach mitigates 

the necessity of transmitting sensitive health data to remote servers, thereby augmenting 

patient confidentiality and facilitating expedited medical interventions[63]. At present, 

robotic manipulator-based surgery from remote locations is the prime demand of edge 

computing architecture. The demand of edge computing-based application is very high in the 

field of telemedicine primarily driven by the need to replicate the competence of an expert in 

a remote place for the purpose of treating patients[64]. 

 

1.2.6 Industrial Automation and Industry 4.0 

 

With the evolution of industry from Industry 1.0 to Industry 4.0, the need for rapid response 

time in industrial automation applications has also increased, for process control, quality 

assurance and predictive maintenance. Edge computing supports real-time data analysis 

within manufacturing environments. Sensors can collect data on machine performance and 
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product quality, thereby enabling instant adjustments and preventing costly downtimes[91]. 

The server communication establishment on edge computing model paves the way to new 

era in the industrial advancements. In future, the involvement of Edge computing may begin 

the era of industry 5.0[92]. 

 

1.2.7 Smart Homes 

 

Edge computing allows for the processing of data locally, ensuring quick responses from 

smart home devices, which is crucial for functionalities like security systems and timely 

dissemination of emergency alerts. Edge computing enables devices to communicate with 

each other in real-time, enhancing automation scenarios like lighting adjustments, heating, 

or cooling based on occupancy data. 

 

1.2.8 Smart Sea Monitoring 

 

Edge computing plays a crucial role in making instant navigational decision-making by 

processing data from sensors onboard. It allows autonomous vessels to swiftly respond to 

obstacles, ensuring safe navigation. Swift processing of meteorological data allows for rapid 

broadcasts and alerts related to storms, high waves, or other hazardous conditions. It can also 

track marine life and biodiversity in real-time by processing data from sensors and 

cameras[93]. Furthermore, Edge computing can optimize shipping routes based on current 

sea conditions, traffic, and other relevant factors. 

1.3 Edge Computing Approaches 
 

Edge computing encompasses various architectural approaches that distribute computational 

resources and data processing closer to the edge of the network. These approaches address 

the challenges posed by latency, bandwidth constraints, and real-time processing 

requirements in different ways. Here, two primary edge computing approaches are discussed: 

Fog Computing and Mobile Edge Computing (MEC). 

 

1.3.1 Fog Computing 

 

Fog computing extends the cloud computing paradigm to the edge of the network. It 

leverages intermediate nodes, such as routers, switches, and gateways, as fog nodes to 

provide computational resources and storage capabilities. Fog nodes are strategically placed 

between end devices and centralized cloud servers, forming a hierarchical architecture. Fog 

nodes process data locally, reducing the need to transmit all the data to distant cloud data 
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centers[86]. They can perform tasks such as data filtering, aggregation, and pre-processing, 

as well as hosting applications closer to the data source. 

Benefits: 

• Reduced Latency: By processing data closer to the source, fog computing 

minimizes communication delays and improves response times. 

• Bandwidth Optimization: Only relevant or summarized data is sent to the cloud, 

optimizing network bandwidth, and reducing congestion. 

• Scalability: Fog nodes can be easily added or removed to adapt to changing 

network demands. 

• Real-Time Analysis: Fog nodes support real-time data analytics and decision-

making, enhancing the capabilities of applications that require immediate responses. 

 

1.3.2 Mobile Edge Computing (MEC) 

 

Mobile Edge Computing (MEC) focuses on utilizing resources available at cellular base 

stations or access points to offload computation from mobile devices. It is particularly 

relevant in mobile networks and addresses latency concerns for mobile applications. MEC 

enables mobile devices to offload processing tasks to nearby edge servers located at base 

stations. These edge servers provide computational power and storage for applications 

running on mobile devices[87]. 

Benefits: 

• Latency Reduction: By processing data locally at base stations, MEC minimizes 

latency for mobile applications. 

• Improved Mobile Application Performance: MEC enables resource-intensive 

tasks, like video processing and real-time analytics, to be offloaded from mobile devices, 

improving their performance. 

• Network Efficiency: Offloading computation to edge servers reduces the load on the 

core network and improves overall network efficiency. 

• Location-Aware Services: MEC leverages location information to provide context-

aware services to mobile users. 

 

1.3.3 Hybrid Approach 

 

There is no one-size-fits-all solution in edge computing, and hybrid approach, combining 

elements of both the fog computing and MEC are also explored. This approach seeks to 
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optimize edge resources based on specific requirements of applications and network 

architectures[39]. While edge computing offers benefits, it also presents challenges such as 

managing heterogeneity among edge devices, orchestrating tasks across distributed nodes, 

ensuring data consistency, and maintaining security and privacy in a decentralized 

environment. Addressing these challenges requires careful architectural design, efficient 

resource allocation, and robust communication protocols[81]. 

 

1.4 Edge Computing in Health care 
 

Edge computing has revolutionized various industries, and healthcare is no exception. As per 

reports by scientific groups, edge computing plays a pivotal role in health care and patient 

treatment processes. There are various crucial stages in the health care model where there is 

a need for a fast and trusted communication architecture for the care of patients in an 

emergency situation[63]. In the healthcare sector, where timely access to data and real-time 

decision-making are crucial, edge computing offers transformative solutions. From remote 

patient monitoring to personalized treatment plans, edge computing enhances patient care, 

improves operational efficiency, and addresses critical challenges faced by the healthcare 

industry[64]. The most popular domains are mentioned below: 

 

1.4.1 Remote Patient Monitoring 

 

Remote patient monitoring is crucial for healthcare practitioners, especially in cases of 

chronic illness or post-operative care, while minimizing delays in data collection and 

analysis. Edge devices, such as wearable health trackers and smart medical devices, can 

process and analyze patient data locally[58]. This reduces the need to send large amounts of 

sensitive health information to remote servers, improving patient privacy and minimizing 

latency. Real-time analysis also enables immediate intervention if a patient's vital signs 

indicate an emergency[57]. 

 

1.4.2 Real-Time Diagnostics 

 

Rapid and accurate diagnosis is essential in critical healthcare scenarios. Edge devices 

equipped with advanced sensors and machine learning algorithms can analyze medical 

images, such as X-rays or MRI scans, locally. This will speed up the diagnostic process by 

providing preliminary assessments in real-time. This enables the healthcare professionals to 

take quicker decisions, especially in emergency situations[34].  
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1.4.3 Personalized Treatment 

 

Real-time processing and prompt analysis of data play a crucial role in situations where 

treatments are to be customized to suit the specific requirements of individual patients. Edge 

devices can aggregate and analyze patient data, including medical history, genetics, and real- 

time monitoring data[63]. The data obtained is subsequently utilized to create personalized 

treatment strategies, thereby enhancing the overall outcomes for patients. Also, the 

implementation of local processing within healthcare facilities ensures the privacy and 

security of sensitive patient data by confining it within the premises. Handheld and non-

invasive devices are adopting the edge computing facility for continuous monitoring of 

biological signals at a remote location[64]. 

 

1.4.4 Telemedicine and Remote Consultations 

 

Telemedicine consultations require seamless video conferencing and real-time data sharing 

between patients and healthcare providers. Edge servers deployed at healthcare facilities can 

facilitate telemedicine consultations by ensuring high-quality video streaming, low-latency 

communication, and secure data transmission[94]. Furthermore, edge devices located at the 

residences of patients have the capability to gather and transmit data while engaging in virtual 

consultations, thereby furnishing healthcare professionals with precise and up-to-date 

information. 

 

1.4.5 Emergency Response 

 

In emergency situations, immediate access to patient information and real-time 

communication among healthcare professionals is of utmost importance. Edge devices can 

provide instant access to patient records, allergies, medications, and medical history during 

emergencies. Edge-enabled communication tools facilitate rapid collaboration between 

healthcare teams, ensuring quick decisions and responses[58]. 

 

1.4.6 Predictive Maintenance of Medical Equipment 

 

Medical equipment maintenance is essential to prevent operational disruptions and ensure 

patient safety. Edge-enabled sensors installed on medical devices can monitor their 

performance in real-time. This data is processed locally to predict potential malfunctions, 

enabling timely maintenance, and reducing the risk of equipment failures during critical 

procedures[57]. 



26  

1.4.7 Data Privacy and Compliance 

 

Healthcare data is highly sensitive and subject to strict privacy regulations. The localization 

of sensitive patient data on edge devices mitigates the necessity of transmitting such data to 

distant servers, thereby augmenting the level of data privacy[95]. Edge computing also 

enables healthcare facilities to maintain compliance with regulations like HIPAA (Health 

Insurance Portability and Accountability Act) by keeping patient information within 

controlled environments. 

 

1.5 Edge Computing Service 
 

Edge computing services encompass a range of functionalities and offerings that enable 

efficient deployment, management, and optimization of computational tasks, data storage, 

and applications at the edge of the network. These services play a crucial role in leveraging 

the benefits of edge computing while addressing the challenges of latency, bandwidth 

constraints, and real-time processing requirements. The key aspects of edge computing 

services are given below: 

 

1.5.1 Task Deployment 

 

Task deployment involves distributing computational tasks to appropriate edge nodes based 

on factors such as task requirements, resource availability, and network conditions. 

Benefits: 

• Latency Reduction: Task deployment ensures that tasks are executed closer to the 

data source, minimizing latency. 

• Resource Efficiency: Tasks are allocated to edge nodes with available resources, 

optimizing resource utilization. 

• Load Balancing: Task deployment services balance the computational load across 

edge nodes, preventing resource bottlenecks. 

 

1.5.2. Storage 

 

Edge storage services involve managing and optimizing data storage at edge nodes[96]. 

 

Benefits 

• Data Caching: Frequently accessed data can be cached at edge nodes, reducing the 

need to retrieve data from remote servers. 

• Reduced Bandwidth Usage: Storing data locally minimizes the need to transmit 
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large volumes of data over the network. 

• Faster Access: Local data storage ensures faster access to critical information, 

enhancing application performance. 

 

1.5.3. Application Placement 

 

Application placement services involve determining the optimal edge nodes to deploy 

applications based on factors like data locality, processing requirements, and user location. 

Benefits: 
• Enhanced Performance: Applications are placed on edge nodes that are closest  

to the data source, reducing the time taken for data transmission. 

• Efficient Resource Utilization: Applications are deployed on edge nodes with  

suitable resources, ensuring efficient execution. 

• Geographical Considerations: Application placement can be optimized  

based on the geographical distribution of users and data sources. 

 

1.5.4. Real-Time Analytics 

 

Real-time analytics services involve processing and analyzing data at the edge in real-time, 

enabling immediate insights and decision-making. 

Benefits: 

 Instant Insights: Real-time analytics provide immediate insights from data  

streams, supporting real-time decision-making. 

 Immediate Responses: Applications can trigger immediate actions based on  

analyzed data, enhancing efficiency and responsiveness. 

 Reduced Data Transmission: Only relevant insights are transmitted to remote  

servers, minimizing network traffic. 

 

1.5.5. Security and Privacy 

 

Edge computing services offer security and privacy solutions specific to edge 

environments, safeguarding data and applications[56]. 

 

Benefits 
• Local Data Processing: Processing data locally reduces the exposure of  

sensitive information during transmission. 

• Data Encryption: Edge services ensure data encryption, protecting it from  

unauthorized access. 
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• Isolation and Segmentation: Edge environments can isolate applications and  

data, limiting the impact of breaches. 

 

1.5.6. Low-Latency Communication 

 

Edge computing services facilitate low-latency communication between edge nodes and 

devices, enabling real-time interactions. 

Benefits: 

• Quick Response Times: Low-latency communication ensures rapid responses  

for interactive applications. 

• Enhanced User Experiences: Real-time communication supports applications like  

gaming, AR, VR, and telemedicine. 

• Immediate Updates: Edge services enable instant updates and notifications for users. 
 

1.6 Energy Management in Edge Computing 

1.6.1 Definition of Energy Management 

Energy management involves the systematic oversight, regulation, and preservation of 

energy within an organisation or system. It encompasses a methodical approach to enhancing 

energy efficiency by utilising technical advancements and optimisation techniques. The goal 

is to decrease operational expenses, improve energy reliability, and mitigate environmental 

consequences. 

1.6.2 Relevance to Edge Computing 

Energy management plays a vital role in Edge Computing, given the decentralised nature of 

edge devices. Edge computing greatly lowers the energy used in transmitting data to central 

data centres by handling data locally, either at or close to where it is generated. This move 

not only reduces energy usage but also lowers latency, thereby enhancing the energy 

efficiency of real-time processing and decision-making. 

1.6.3 Benefits 

Integrating energy management with edge computing offers several benefits: 

Reduced Energy Costs: By processing data locally, the requirement for constant data 

transfer between edge devices and central servers is minimised, resulting in reduced energy 

consumption related to data transmission. 

Lower Carbon Footprint: Edge computing helps minimise greenhouse gas emissions by 

optimising energy consumption, hence promoting sustainable operational practices. 

Enhanced System Reliability: Edge computing decreases dependence on remote data 
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centres by implementing localised processing, hence mitigating the effects of central system 

failures on energy management systems. 

Improved Operational Efficiency: Processing data in real-time at the edge allows for faster 

reactions to fluctuations in energy demand and supply, ensuring optimal energy utilisation 

and minimising waste. 

1.6.4 Practical Examples 

Smart Grids: Smart grids leverage edge computing to rapidly adapt to fluctuations in 

electrical demand and supply, thereby enhancing the efficiency and stability of energy 

distribution. 

Smart Buildings: Smart buildings utilise edge devices to optimise real-time energy 

consumption for various systems, including lighting, heating, and air conditioning. This 

results in a large reduction in energy usage without compromising comfort. 

Industrial Automation: Edge computing facilitates real-time monitoring and optimisation 

of energy usage in industrial facilities, resulting in significant energy savings and decreased 

operational expenses. 

Renewable Energy Management: Edge devices have the capability to efficiently control 

and stabilise the irregularity of renewable energy sources like wind and solar. They achieve 

this by promptly analysing environmental data and making necessary adjustments to system 

outputs. 

1.6.5 Future Outlook 

The convergence of AI and machine learning with edge computing is poised to significantly 

transform energy management as technology progresses. These technologies have the ability 

to forecast energy consumption patterns and make automatic adjustments to systems without 

the need for human involvement. This enables the development of energy management 

systems that are more self-governing, efficient, and environmentally friendly. Furthermore, 

current investigations into novel energy-efficient computing paradigms and the persistent 

advancement of compact, high-performance edge devices hold the potential to augment the 

scalability and efficacy of energy management tactics on a worldwide scale. 

 

1.7 Conclusion 

 

The integration of Energy Optimization Techniques (EoT) within energy-efficient 

frameworks represents a transformative approach in managing and reducing energy 

consumption across various sectors. By employing advanced algorithms and methodologies 
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that prioritize energy savings without compromising performance, such frameworks are 

pivotal in addressing the global challenge of sustainable energy use. They not only enable 

the optimal utilization of resources but also pave the way for innovations in energy efficiency, 

contributing to environmental sustainability. The strategic implementation of EoT within 

these frameworks underscores a commitment to a greener future, demonstrating how 

technology can be harnessed to achieve significant energy reductions, cost savings, and a 

lower carbon footprint. As the world continues to move towards more sustainable energy 

solutions, the role of energy-efficient frameworks, enhanced by EoT, will undoubtedly 

become increasingly crucial in shaping a sustainable and energy-efficient global landscape. 

 

Further, the chapters are framed out to explain the concepts of edge computing model in 

relation to health care. The thesis contains five chapters. Chapter two presents a 

comprehensive literature survey on edge computing applications in respect of the adoption 

of tools, the development of architecture and algorithms, model creation, and the 

implementation of strategies. There are numerous aspects that are strengthening edge 

computing implementation in complex processes and tasks and need to be reviewed for 

research gaps and challenge identification. All such parameters are discussed in chapter two. 

Chapter three will explain the problem statement and the concerned models in association 

with edge computing. Subsequently, a comprehensive discussion on the approach will be 

presented to address the identified gaps. In this chapter, the framework and architecture will 

be discussed to clear the strategy for improvement in the research gaps in relation to current 

adopted techniques. The results and discussion part will be discussed further in chapter four. 

The section wise outcomes and performance of algorithms and methods will be discussed to 

observe the improvement in the existing parameter of concern. The fifth chapter will provide 

a conclusion to the study on edge computing and outline the potential future directions for 

the research community to explore. This will involve examining the ongoing challenges 

related to advancements in hardware and software. 
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Chapter 2  

Literature Survey 

2.1 Introduction 
 

The Wide Area Network (WAN) is a network that facilitates the inter-connection and linking 

of several Local Area Networks (LANs), providing extensive communication across diverse 

geographical locations, thereby enabling the long-distance transmission of data, voice, 

images, and videos, connecting cities, states or even countries. Advanced technologies such 

as Multiprotocol Label Switching (MPLS), Frame Relay, or Asynchronous Transfer Mode 

(ATM) networks are used to establish such connections among different LANs situated at 

different locations. These connections facilitate the transmission of data between different 

LANs, ensuring that communication is maintained, and data can be accessed in real-time 

regardless of the geographic distance involved. The primary function of a WAN, in fact, is 

to allow data to be efficiently shared and accessible by geographically dispersed branches of 

corporations and institutions. Its transmission speed can vary widely from 1.5Mbps (T1) to 

10 Gbps (Ethernet) or can go even higher[97]. This speed depends on the transmission media, 

distance between the connected LANs, and the technology employed. WANs also have 

robust security measures such as encryption and firewalls to protect data during transmission. 

They also ensure that a single point of failure do not lead to complete network failure, thereby 

ensuring continuous network   reliability and availability. As far as energy management 

system is concerned, WANs play an important role in establishing links between various 

components in a smart framework, particularly in Edge-of-Things (EoT) environments. 

WAN Technologies in Edge of Things : The adoption of WAN with edge of things 

technology helps the originated technologies to boost the performance in saving power and 

improving latency[3]. The current WAN technologies such as 5G, WiFi, LoRA and LTE 

methods are discussed in relation to edge of things technology, which are explained as below: 

1. 5G: In edge computing, 5G enables high-speed, low-latency connections, critical for real-

time data processing and analysis, supporting applications like autonomous vehicles and 

smart cities[98]. 

2. 4G: provides reliable, high-speed wireless communication, supporting remote data 

processing and the deployment of edge computing solutions in areas lacking 5G 

infrastructure[99]. 
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3. Wi-Fi 6: This technology model enables faster data transfer and supports a higher density 

of connected devices, facilitating efficient local data processing in edge computing 

environments like offices and industrial settings[100]. 

4. LoRa WAN: is essential for edge computing in low-power, long-range IoT applications, 

allowing remote sensors and devices to communicate and process data locally in areas like 

agriculture and environmental monitoring. 

5. Bluetooth/BLE: supports short-range communication between devices, enabling local 

data processing and analysis in edge computing applications such as healthcare monitoring 

and personal fitness. 

6. Zigbee: creates low-power, close-proximity networks ideal for smart home applications 

in edge computing, supporting communication between smart devices and aiding in home 

automation and energy management. 

7. NB-IoT: supports low-power, wide-area connectivity, enabling edge computing 

solutions in remote areas and wide-area applications like smart metering and environmental 

monitoring. 

8. Sigfox: provides connectivity for low-power, small-data devices, aiding in the 

deployment of edge computing solutions in applications like asset tracking and monitoring. 

9. Satellite networks: ensure connectivity in remote and isolated areas, allowing the 

deployment of edge computing solutions in aerospace, maritime, and other remote terrestrial 

locations. 

10. Mesh Networks: are critical for establishing resilient and robust connections in edge 

computing, enabling local communication and data processing in applications like disaster 

recovery and field operations. 

11. mmWave technology provides high-capacity, low-latency communication in edge 

computing, supporting high-speed data transfer and applications like virtual reality in dense 

urban areas. 

12. RFID: In edge computing, this framework supports asset tracking and inventory 

management by enabling quick identification, localization, and real-time data analysis in 

logistics and retail environments. 

13. DSRC (Dedicated Short-Range Communications): is pivotal for vehicle-to-everything 

(V2X) communication in edge computing, enabling real-time data exchange and processing 

between vehicles and infrastructure, enhancing road safety and traffic management. The 

comparative analysis of these technologies is given below in table 2.1 to understand the need 

of an hour in relation to Edge of things implementation[101]. 
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Table 2.1: Comparative analysis of WAN networks in relation to edge of things 

technology 

 

Wireless 

Network 
Range Bandwidth Latency 

Power 

Consumption Use Cases 

Standardization 

Body 

5G Networks Long High Low High 
Autonomous 

Vehicles, AR/VR 
3GPP 

4G LTE Long 
Medium- 

High 
Medium Medium-High 

Mobile Internet, 

Video Streaming 
3GPP 

Wi-Fi 6 

(802.11ax) 

Short- 

Medium 
High Low Medium 

High-Density 

Environments, IoT 
IEEE 

LoRaWAN Long Low High Low 
Remote IoT 
Sensors, Agriculture 

LoRa Alliance 

Bluetooth/BLE Short Medium Low Low (BLE) 

Personal Area 

Networks, 

Wearables 

Bluetooth SIG 

Zigbee Short Low Medium Low 
Home Automation, 

Industrial Control 
Zigbee Alliance 

NB-IoT Long Low 
Medium- 

High 
Low 

Smart Metering, 

Asset Tracking 
3GPP 

Sigfox Long Very Low High Very Low 
Wide-Area IoT 

Applications 
Sigfox 

Satellite 

Networks 

Very 

Long 
Varies High High 

Remote Areas, 

Maritime 
Various 

Mesh Networks Varies Varies Varies Varies 
Disaster Recovery, 

Sensor Networks 
Various 

mmWave Short Very High Low High 
Fixed Wireless 
Access, Backhaul 

IEEE, 3GPP 

RFID Very Short Very Low Low Very Low 

Asset Tracking, 

Inventory 

Management 

ISO, IEC 

DSRC 
Short- 

Medium 
Medium Low Medium 

V2X 

Communications 
IEEE, ASTM 

 

In fact, cloud computing, Internet of things, and Edge of things, in recent years, have 

enormously amplified the significance of WANs in ensuring the seamless operations of 

technology because of their heavy dependence on data transfers and communications across 

extensive distances. The advancement of technology, however, has necessitated continuous 

innovations in this field to enhance speed, reliability, and security. 
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2.1.1 WAN integration with Smart Grids 

 

One such innovation was the integration of Wide Area Networks (WAN) with Energy 

Management. Smart grids, being integral to energy management systems, have significantly 

evolved with this integration. WANs facilitate the optimization of smart grid operations by 

enabling data analytics and decision-making processes to be executed centrally, drawing 

upon data aggregated from diverse grid components[40]. This centralized approach enhances 

grid reliability by allowing for prompt detection and rectification of faults, efficient load 

balancing, and optimized energy distribution based on real-time demand and supply 

conditions. The burgeoning demands of modern power systems are being addressed, thereby 

enhancing operational resilience, and facilitating optimal energy utilization and distribution. 

Along with the facilitation of real-time monitoring and control of energy resources scattered 

across vast geographical areas, they also ensure an increase in the reliability and efficiency 

of the power system under this approach. 

 

 Not just this, they also safeguard the grid against malicious attacks and unauthorized access 

and protect the integrity and confidentiality of communicated data. WAN integration in smart 

grids has also led to further advancement in metering infrastructure. They transmit real-time 

consumption data from smart meters to central systems, subsequently allowing for more 

accurate billing, demand response management, and enabling consumers to monitor and 

manage their energy consumption efficiently[102].  

 

WANs allow for seamless exchange of information between various grid components, such 

as substations, distributed generation systems, and energy storage systems, providing a strong 

communication backbone for smart grids. This integrated communication capability is 

fundamental in ensuring the coherence and stability of smart grid operations, especially in 

managing distributed energy resources and mitigating potential disruptions. The integration 

of WANs in smart grids is also crucial in managing renewable sources of energy like solar 

and wind power. The real-time data communication facilitated by WANs enables efficient 

balancing of supply and demand, ensuring optimal utilization of renewable energy and 

enhancing the sustainability of the power system. Thus, this WAN integration in smart grids 

also evolved energy management practices to an extent, advancing the capabilities and 

resilience of modern power systems. 
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Zhiqiang et al. (2023) developed a very sensible method for accessing the terminal 

information to a remote location where the monitoring system was installed to measure the 

health-related parameters. This model was very well versed in processing complex data forms 

in a very limited number of job scheduling task lines. For transmission of data, an E- model 

was proposed for lower-end data communication between the modules. This developed 

methodology promotes remote location accessibility for the establishment of low-power 

communication gates between transceiver modules[103]. 

 

2.1.2 WAN integration with Edge of Things 
 

Apart from smart grids, WAN can also be combined with edge computing devices. This 

amalgamation ensures that the data must be processed seamlessly across vast geographical 

locations, subsequently leading to more responsive, efficient, and reliable energy 

management solutions. On one hand, where Edge-of-Things (EoT) allows for decentralized 

data processing, on the other, WANs ensure seamless connectivity among various edge 

devices and the central system, enabling prompt decision-making and real-time data analysis. 

The integration of EoT and WAN fosters energy efficiency by enabling smart energy 

management solutions at the edge of the network[104]. These solutions can monitor and 

control energy consumption in real-time, optimizing the usage of energy resources and 

reducing operational costs. This integration also offers enhanced scalability and flexibility in 

energy management along with increased reliability and responsiveness in the system. WANs 

ensure uninterrupted connectivity between edge devices and central systems, while EoT 

facilitates rapid data processing and decision-making at the network edge, reducing response 

times in energy management operations. Even though the integration of EoT and WAN is 

revolutionizing energy management system and offers plethora of benefits, but at the same 

time it also necessitates rigorous cybersecurity and data privacy measures because of 

increased vulnerability due to its extensive connectivity and decentralized nature of data 

processing[10]. 

2.1.3 WAN Technologies in Renewable Energy 

 

The deployment of WAN in renewable energy sources have also gained popularity in recent 

years. WAN technologies enhance the scalability and accessibility of renewable energy 

systems, allowing for improved management and distribution of energy resources. The 

integration of Wide Area Networks (WAN) technologies in renewable energy systems is 
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instrumental in ensuring the optimal, resilient, and efficient management of diverse energy 

sources[105]. WAN technologies are central in addressing the complexities and demands 

inherent to renewable energy systems, fostering advanced energy solutions, and contributing 

to the sustainability of energy ecosystems. WAN technologies enable the real-time 

monitoring and control of renewable energy sources, such as solar and wind power, dispersed 

over vast geographical areas. This real-time capacity not just optimizes the overall energy 

production but also mitigates the energy losses and ensures a reliable and stable renewable 

energy system.  

 

WAN technologies empower renewable energy systems with advanced data analytics 

capabilities[106]. They allow for the centralized processing of diverse and extensive datasets, 

enabling energy providers to make informed and optimized decisions regarding energy 

production, distribution, and consumption. It also provides accurate and real-time energy 

consumption data, which is crucial in energy forecasting, precise billing, and demand 

response management. This integration of WAN technologies helps in connecting renewable 

energy systems to the grid, which enables smooth, efficient, and uninterrupted 

communications between them, which in turn allows for an efficient energy balancing and 

distribution system.  

They facilitate the interconnection of diverse energy systems, allowing for the adaptive and 

scalable expansion of renewable energy infrastructures, thereby providing for an essential 

backbone to the system. Taking the extensive and interconnected nature of WAN-integrated 

renewable energy systems into consideration, it becomes highly important to provide robust 

cyber security measures in order to protect the integrity, availability and confidentiality of 

data and systems[78]. This WAN integration is paramount in addressing the challenges posed 

by the intermittent and diversified nature of renewable energy sources and is crucial in 

advancing the capabilities, resilience, and sustainability of modern renewable energy 

systems. 

2.1.4 WAN and Smart Healthcare 

 

Khanh et al. (2023) observed that the modern era is totally lying on edge computing-based 

modules for caring the health of human subjects. The E- health care strategy is one of the 

leading research areas now a days for development of new applications with local processing 

for decision taking ability of machine itself. The team identified certain issues in relation to 
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cloud computing such as slow rate of processing, decision taking capability or high level of 

responsiveness time for execution of target nodes. In this regard they proposed a queue-based 

network model for bridging the gap between said issues to improve the response time with 

high level of accuracy and power management in the edge devices[107]. 

 

Chakraborty et al. (2023) did research on cyber security and the protection of data on edge 

devices. It was observed that the cloud has an open source for data manipulation and that 

attackers can malpractice with the transmitted data in certain ways. So, a Multi-Source 

Transfer Learning system that was operated centrally to protect the transmission of data on 

edge devices was developed along with an AI-based framework for the protection of data in 

the middle of paths to prevent attackers and hackers from doing anything with the data on 

edge devices and applications. When the developed model was tested with the EMNIST, X- 

IIoTID, and Federated TON_IoT data sets, the framework latency improved[108]. 

 

Singh et al. (2023) also proposed a framework to protect the data between edge devices. It 

was found that the Edge of Things is a middle layer between the end user and the cloud, and 

the EoT is the only tool to reduce the processing time between the nodes and modules for 

improvement in the overall system. A very secure framework was developed with attribute- 

based encryption and cluster-based processing of data to improve the quality of data on edge 

devices. During testing, more than 90% accuracy was achieved on the edge systems[109]. 

 

Upadhyaya et al. (2023) did a healthy research survey and presented very relevant issues that 

persist in edge of things communication. In health care systems, architecture development is 

one of the key research areas to focus on for the establishment of efficient and energy-saving 

applications. Real-time data collection methods and analysis tools for power-saving in edge 

device communication were also stressed upon in the study. The importance of edge AI tools 

was also highlighted for solving many problems in this regard[110]. 

2.1.5 IoT and WAN for Energy Management 

 

WANs are also integrated with IoT devices to facilitate an uninterrupted exchange of 

information, ensuring interoperability among the connected devices, contributing to smarter 

and more efficient energy management[97]. The integration of Internet of Things (IoT) with 

Wide Area Networks (WAN) is at the forefront of transforming energy management 
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solutions, providing a new pathway to more efficient, sustainable, and intelligent energy 

systems. This union enables the harmonization and streamlining of vast and diverse data from 

IoT devices, leveraging WAN's extensive connectivity to offer advanced energy management 

capabilities. Combining IoT and WAN provides unparalleled monitoring and control 

capabilities to energy systems, which allows real-time data processing, acquisition, and 

response. This integration contributes to the overall sustainability of the system by providing 

enhanced consumption, optimizing energy efficiency, and reducing energy wastage[111].  

This also balances the energy supply and demand by preventing energy shortages and 

excesses, thereby optimizing overall energy distribution and pricing system. This also 

enables energy demand forecasting and adaptive energy supply modulation. The fusion of 

IoT and WAN technologies contributes significantly to optimizing grid operations and 

enhancing grid reliability. It seamlessly communicates and coordinates between various 

energy sources, storage systems, and loads, ensuring the stability and reliability of the energy 

grid. IoT devices, when connected through WAN, can also offer high maintenance for energy 

systems by constantly monitoring the equipment and predicting potential failures even before 

they occur. Not just does it reduce the downtime, but also lowers the maintenance cost 

thereby extending the overall lifespan of the equipment. It can further aid in identifying 

energy inefficiencies and implementing corrective measures, leading to energy conservation 

and cost reduction[112].  

This combination of IoT and WAN allows for the detailed analysis of energy consumption 

patterns and facilitates the development of strategies to optimize energy usage. Thus, it can 

be said that the combination of IoT and WAN in energy management is revolutionizing the 

way energy is monitored, controlled, and optimized. This integration promises enhanced 

energy efficiency, improved grid reliability, advanced demand response management, and 

optimized energy consumption, while also emphasizing the importance of implementing 

robust security measures to protect data and privacy in interconnected energy systems[113]. 

2.1.6 Security concerns and WAN 

 

There are numerous benefits being offered by the integration of WAN in energy management 

systems, however, security remains one of the most significant concerns. Due to their 

extensive reach and connectivity, WAN technologies are prone to network intrusions and 

attacks such as DDoS attacks, which can incapacitate energy management systems, disrupt 

energy supply, and compromise the stability of energy grids[114]. With the vast amounts of 
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sensitive data transmitted over WAN, energy management systems are susceptible to data 

breaches and information leaks. Also, Unauthorized access and extraction of energy data can 

have severe repercussions, compromising user privacy and system reliability.  

 

Robust security measures are important to protect sensitive data and maintain the integrity of 

energy management systems. Moreover, the deployment of WAN technologies in energy 

management systems exposes them to malware and ransomware threats. This malicious 

software can corrupt system data, damage critical infrastructure, and extort organizations for 

financial gains. In relation to EoT based safeguard methods, the extensive and interconnected 

energy management systems, a few comprehensive security measures can be adopted. One 

of them is ensuring robust authentication and authorization to protect unauthorized access 

and malicious software. WAN integration also necessitates to encrypt data and secure 

communication channels in order to protect confidentiality and integrity of information 

transmitted. Regulatory standards here plays a vital role while integrating WAN technologies 

in energy management, the non-compliance of which can lead to legal repercussions, 

financial penalties, and can compromise the trust and reliability placed in energy 

management systems[78], [115]. 

 

Gai et al. (2021) observed that cyber-attacks can be of two types, virtual and physical. In the 

era of IoT, data is passing on from various remote devices at a time, and in this regard, 

physical attacks on the data cannot be tracked for identification of source and impact 

intensity. So, they proposed a framework with true random number generators for the 

prevention of these attacks. This cluster-based method was very efficient in protecting the 

data from technical glitches[116]. 

 

Saheed et al. (2022) observed that the classification of data is one of the prime tools to make 

efficient and fast-edge applications. In this regard, they proposed and improved classification 

methods, such as component analysis and gradient-based boosting algorithms, to improve the 

quality of the system in power-saving mode. As per verification of results, more than 92% 

efficiency was observed in the system[117]. 

 

Edge computing (EC) is a computing methodology that is distributed in nature that brings 

data storage and computation closer to the place where it is to be used to accelerate response 

time and the bandwidth savings. The Internet of Things (IoT) refers to the collection of all 
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those devices that could connect to the internet to collect and share data[118]. It is a serious 

problem to safeguard the IoT environment using a traditional intrusion detection system 

(IDS) due to the diverse types and huge number of IoT devices. The architectural change in 

the Edge of Things (EoT) causes privacy and security problems to migrate to dissimilar layers 

of the edge architecture[119], [120]. Therefore, detecting intrusion attacks in a distributed 

environment as such is problematic. In this situation, an IDS is required. This research group 

proposed improved IDS models for the classification of attacks on IoT and EoT. To protect 

EoT and IoT appliances and devices, an improved IDS-IoT was developed by implementing 

nine different machine learning models. The normalization technique was performed using 

the minimum-maximum (min-max) method[121]. Subsequently, dimensionality reduction 

was performed with Principal Component Analysis (PCA). The light gradient boosting 

machine, decision tree, gradient boosting machine, k-nearest neighbor, and extreme gradient 

boosting algorithms were used for classification. 

2.1.7 Network Optimization in Energy Management 

In contemporary energy management systems, network optimization thus plays a pivotal role 

in enhancing the efficiency, reliability, and sustainability of energy distribution and 

consumption. Optimal network configurations significantly reduce energy consumption and 

operational costs. Through dynamic routing and bandwidth allocation, WANs can be 

customized to meet the specific needs of energy management systems. This helps in 

achieving an effective load balance by evenly distributing energy loads across different 

pathways. By optimizing energy distribution and reducing energy losses, network 

optimization contributes to significant cost savings for energy providers and consumers[21]. 

It allows for dynamic pricing models, encouraging energy conservation and enabling 

consumers to manage their energy consumption cost-effectively.  

 

Network optimization also ensures that the available energy resources should be optimally 

used in such a way that all the varying demands across different locations and times are 

efficiently met. They can analyze energy consumption patterns and forecast future demand 

accurately which allows energy providers to modulate energy supply proactively, ensuring 

that energy production is aligned with consumption needs. Network optimization seamlessly 

integrates renewable energy sources like solar and wind energy with the energy grid to reduce 

heavy dependency on non-renewable sources and to promote environmental 

sustainability[122]. Along with enhancing the stability and reliability of energy grids, it also 
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reduces the risk of outages and disruptions. Furthermore, the optimization of network 

protocols enables real-time monitoring of energy systems, which helps in detecting 

anomalies and managing efficient energy flows, ultimately contributing to the advancement 

of intelligent and sustainable energy management solutions. 

2.1.8 Challenges in WAN-Integrated Energy Management 

 

Despite its numerous benefits, the integration of WANs in energy management systems is 

fraught with a lot of challenges. These challenges revolve around the complexities of network 

architecture, security concerns, data management, latency, and resource allocation and can 

impact the overall performance and reliability of energy management systems. The vast 

geographical spread of networks can highly impact the real-time-monitoring and control of 

energy systems, thereby causing latency and network delays. These delays, in turn, can 

compromise the reliability and responsiveness of energy management applications. The 

extensive connectivity of WAN also elevates the risk of unauthorized access, data breaches, 

and cyber-attacks, necessitating advanced security mechanisms and protocols to safeguard 

sensitive information and maintain user trust thereon[123]. Handling enormous volumes of 

data effectively is another challenge. The need to process, analyze, and store vast amounts of 

energy data generated from diverse sources demands robust and scalable data management 

solutions, absence of which can lead to information overload and compromise decision- 

making processes. Any network downtime or unavailability can disrupt energy distribution 

and monitoring services, affecting both energy providers and consumers adversely.  

 

Thus, it becomes highly important to ensure consistent network availability for uninterrupted 

energy management operations. WAN integration also offers inherent complexity in 

integrating diverse and incompatible systems. This needs sophisticated strategies and 

solutions to ensure seamless operation and optimization of energy management system. 

Allocating efficient network resources and optimizing energy distribution are another set of 

challenges that may lead to energy wastage, reduced system performance, and increased 

operational costs[124]. Thus, it becomes highly imperative to have innovative solutions and 

continuous advancements in technology to overcome these challenges in WAN-integrated 

energy management and addressing these challenges is crucial for realizing the full potential 

of WAN-integrated energy management systems and achieving sustainable energy 

solutions[125]. 
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2.2 Energy Management 
 

Energy management systems (EMS) in the Edge-of-Things (EoT) paradigm is another 

approach which aims to optimize the efficiency, reliability, and sustainability of energy 

resources by leveraging the edge computing model. The EoT allows for real-time data 

processing at the network edge, closer to the location where it is needed, reducing the latency, 

and allowing faster responses. Several studies have been conducted focusing on the 

implementation of EoT for optimizing energy resources. Integrating EoT in Energy 

Management Systems (EMS) enables enhanced monitoring and control of energy resources, 

improving efficiency and reducing energy consumption[112]. EoT also enables real-time 

processing of data from various energy resources, allowing for instantaneous analysis and 

decision-making. This is crucial for not only optimizing energy consumption but also 

responding swiftly to changes in energy demand or supply, to meet the fluctuating needs of 

energy. Energy Management Systems helps in redistributing energy loads and adjusting 

energy supply based on real-time demand, thereby achieving optimal load balancing and 

effective demand response. This not only stabilizes the energy grid but also enhances energy 

efficiency and reduces overall operational costs. EoT helps in reducing reliance on non- 

renewable energy and promoting sustainability by facilitating seamless integration of 

renewable energy sources into the energy grid. The implementation of Edge of Things (EoT) 

enables Energy Management Systems (EMS) to effectively improve energy efficiency by 

employing intelligent routing and control mechanisms, hence optimizing energy distribution, 

and minimizing energy losses[126]. This phenomenon leads to substantial reductions in 

energy use and additionally contributes to the preservation of the environment. In fact, the 

implementation of Edge of Things (EoT) empowers Energy Management Systems (EMS) to 

anticipate prospective equipment malfunctions and proactively arrange maintenance 

activities thereon. This not only reduces the amount of time that energy equipment is not in 

operation, but also prolongs its overall life span and guarantees a reliable and uninterrupted 

energy supply. Thus, by addressing various aspects of EoT integration with EMS, more 

resilient, sustainable, and efficient energy management solutions can be developed[106]. 

2.2.1 Real-Time Data Processing and Analytics 

 

The incorporation of Edge of Things (EoT) in Energy Management Systems (EMS) has 

significantly enhanced the capabilities of real-time data processing and analytics. This 

advancement has pivotal implications for real-time management, allocation, and 
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conservation of energy resources. EoT also provides advanced analytics capabilities to EMS, 

allowing for the extraction of meaningful insights from complex energy data sets. These 

insights enable energy providers to make informed decisions, optimize energy usage, and 

enhance service delivery[127]. Through the utilization of real-time data analytics provided 

by EoT, EMS can optimize energy consumption patterns, identify inefficiencies, and 

implement corrective measures instantaneously. This result is helpful in enhanced energy 

efficiency and substantial cost savings. Employing EoT enables the proactive identification 

of possible faults and the enhancement of maintenance schedules. This helps in the reduction 

of operational downtime and the maintenance of a continuous and uninterrupted energy 

supply. Real-time monitoring and control of energy systems are established by EoT, thereby 

allowing for immediate response to changes in energy demand or supply. This helps in 

maintaining grid stability, optimizing energy distribution, and preventing energy wastage. 

The EoT platform provides EMS (Energy Management Systems) with scalable and adaptable 

solutions that can effectively adjust to different energy demands and operational conditions. 

The capacity to do data processing at the edge facilitates the incorporation of various energy 

sources and facilitates the scalability of energy networks[112]. The integration of EoT in 

Energy Management Systems for real-time data processing and analytics has resulted in 

substantial advancements in energy management. 

2.2.2 Renewable Energy Sources and EoT 

 

In order to effectively and sustainably address the changing requirements of energy 

consumption, the integration of renewable energy sources into Energy Management Systems 

(EMS) is becoming increasingly crucial, with Edge of Things (EoT) playing a significant 

part in this endeavor. The integration of Edge of Things (EoT) with renewable energy sources 

facilitates the development of intelligent and autonomous energy management solutions. It 

adjusts the storage of energy generated from renewable sources based on consumption 

patterns and demand forecasts[128]. The utilization of advanced analytics capabilities by the 

Edge of Things (EoT) facilitates the precise prediction of energy generation derived from 

renewable sources. Accurate forecasting plays a pivotal role in facilitating efficient energy 

management by enabling the optimization of energy supply to align with demand and 

mitigate energy inefficiencies. It seamlessly integrates with diverse renewable resources such 

as solar, wind, and hydropower, into the energy grid, allowing for optimized and balanced 

energy supply. This ensures the availability of stored energy during peak demand periods and 

mitigates the impact of renewable energy intermittency. EoT also facilitates the management 
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and optimization of Distributed Energy Resources (DERs), enabling decentralized energy 

production and consumption, which contributes to the reduction of energy transmission 

losses and enhances grid reliability[129]. Thus, by leveraging EoT in the management of 

renewable energy sources, EMS can attain heightened sustainability by diminishing the 

release of   greenhouse gas emissions, enhancing energy efficiency, and advocating for the 

overall preservation of energy[23]. 

 

Popli et al. (2021) observed that the energy transmission models consume a huge amount of 

power in EoT-based modes for processing and execution of target nodes in relation to 

decision-making situations. In this regard, emphasis was placed on 5G-based communication 

models for power saving. They proposed a 5G-based framework for the establishment of EoT 

applications. They found that their model was faster than primitive models but saved only 

20% more energy than the existing models[130]. 

 

Singh et al. (2023) observed that AI is one of the best tools to manage the database on the 

EoT device network to improve the performance of the model. Machine learning and deep 

learning-based algorithms are two of the main tools in data management, and these tools also 

help sort the data for processing and stacking. The AI-based tools help sort the data based on 

various features, and as per the rank of the features, the training of the data has been done to 

map the concerned output for processing and the decision of the machine itself[131]. 

 

Cao et al. (2023) observed that the multi-objective grey wolf-based optimization algorithm 

in relation to Unmanned Aerial Vehicles (UAVs) is one of the powerful tools to improve the 

quality of EoT-based devices in terrestrial IoT network applications. Their optimization 

method was very efficient in improving the overall performance of the system[132]. 

2.2.3 Machine Learning in EoT-based EMS 

 

The incorporation of Machine Learning (ML) into the Edge of Things (EoT) has further 

advanced a transformative approach to improve energy efficiency, decision-making 

processes, and resource optimization. The integration of machine learning techniques in EoT- 

based EMS showcases how predictive analytics and intelligent algorithms can optimize 

energy consumption and reduce operational costs. It enables predictive maintenance by 

analyzing real-time data to anticipate equipment failures and schedule timely maintenance, 

thus reducing downtime and operational costs[133]. Not just this, when deployed at the edge, 
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ML algorithms empower EMS with the ability to predict accurate energy consumptions for 

optimal energy distribution. The integration of machine learning (ML) with the Edge of 

Things (EoT) enables an efficient balance of supply and demand. It facilitates the 

optimization of demand response methods through the analysis of consumption patterns and 

the real-time adjustment of energy supply. It also facilitates the detection of anomalies in 

energy consumption patterns, enabling the identification of energy inefficiencies and 

unauthorized energy usage, thus improving energy security and efficiency[134]. 

Furthermore, EoT- based EMS can minimize reliance on non-renewable sources by applying 

ML to analyze weather conditions and other relevant factors, thereby maximizing the energy 

harvest. Thus, this renewable energy optimization, ML in EoT-based EMS contributes 

significantly to the sustainable and efficient use of energy resources. 

 

2.2.4 Challenges and opportunities in EoT-based EMS 

 

While EoT brings forth significant advancements and numerous opportunities, the aspects of 

scalability and security in EoT-based EMS continue to pose substantial challenges. EoT-

based Energy Management Systems (EMS) are critically essential for intelligent energy 

management and optimal resource utilization, contributing to environmental sustainability 

(Table 2.2). 

Table 2.2: Issues associated with EoT-based  EMS 

S No. 
Current 

Issues 
Opportunities Challenges 

1. 
Scalability 

Issues 

Scalability issues have ignited the 

development of novel scalable 

architectures and algorithms, which can 

manage large volumes of data 

efficiently, thereby ensuring the 

seamless expansion of EoT-based 

EMS. 

With the rapid expansion 

and deployment of IoT 

devices, ensuring the 

scalability of EoT-based 

EMS is daunting. Managing 

extensive data generated 

from myriad sources 

requires robust and 

scalable solutions. 
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While scalability and security issues in EoT-based EMS pose significant challenges, they 

concurrently act as catalysts for innovations and advancements in scalable solutions, security 

protocols, data integrity verification methods, and resource optimization techniques, 

enhancing the overall efficacy and reliability of EoT-based EMS[112], [135]. 

2.2.5 Emerging Trends and future Directions 

 

Furthermore, emerging trends such as the incorporation of Artificial Intelligence (AI) and the 

Internet of Things (IoT) in EoT-based EMS offer promising prospects. EoT-based Energy 

Management Systems (EMS) are at the forefront of technological innovation, playing a 

pivotal role in fostering energy efficiency and sustainability. The integration of cutting-edge 

technologies and methodologies is paving the way for a myriad of emerging trends and future 

directions, each posing its unique set of challenges and opportunities as given below (Table 

2.3). 

  

2. 
Security 

Concerns 

The prevalent security challenges 

necessitate the advent of innovative 

security protocols and encryption 

methods, ensuring the confidentiality, 

integrity, and availability of the 

information in EoT-based EMS. 

The integration of multiple 

devices and the vast amount 

of data generated expose 

EoT-based EMS to various 

security threats, including 

data breaches and 

unauthorized access. 

3. 

Data 

Integrity and 

Privacy 

The challenges related to data integrity 

and privacy are driving the research 

and development of advanced data 

integrity verification     methods     and     

privacy-preserving techniques in EoT-

based EMS. 

Maintaining the integrity of 

data and ensuring the 

privacy of user information 

in EoT-based EMS are 

significant hurdles due to 

the diverse nature of data 

sources. 

4. 

Resource 

Constraint 

Issues 

This limitation has paved the way for 

optimization techniques and 

lightweight algorithms to maximize the 

resource utilization efficiency of EoT 

devices, ensuring optimal performance. 

EoT devices usually operate 

under constrained 

resources, which restrict 

their processing capabilities 

and affect the overall 

performance of the EoT-

based EMS. 
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Table 2.3: Emerging Trends Opportunities and Challenges 

 

S No. Emerging 

Trends 

Opportunities Challenges 

1. 

Integration of 

5G 

Technologies 

5G technologies facilitate 

enhanced connectivity and low-

latency communication, 

fostering the development of 

advanced, responsive, and 

real-time energy management 

solutions. 

However, the integration of 5G 

brings forth challenges related to 

network security, interoperability, 

and standardization, necessitating 

the development of robust 

security protocols and interoperable 

solutions. 

2. 

Blockchain for

 Secure 

Transactions 

The decentralized nature of 

blockchain enhances security 

and trust, enabling secure 

energy trading and transparent 

energy transactions. 

However, scalability and energy 

consumption of blockchain 

networks pose substantial 

challenges, driving the need for 

optimized and energy-efficient 

blockchain solutions. 

3. 

AI and 

Machine 

Learning for 

Advanced 

Analytics 

The incorporation of AI and 

ML offers unparalleled 

opportunities for predictive 

maintenance, demand 

forecasting, and optimization, 

enhancing the efficiency and 

reliability of energy 

management systems. 

The implementation of AI and ML 

necessitates addressing challenges 

related to data privacy, model 

transparency, and ethical 

considerations, emphasizing the 

importance of ethical AI 

development and deployment. 

 

The convergence of 5G, blockchain, and AI/ML in EoT-based EMS signifies a transformative 

phase, driving the development of innovative and advanced energy management solutions. While 

each trend holds immense promise, addressing the inherent challenges related to security, 

scalability, energy consumption, data privacy, and ethics is paramount to realizing the full 

potential of these emerging technologies in energy management[136], [137], [138]. 

 

Gadekallu et al. (2021) conducted a research survey to integrate IoT and EoT devices using 

blockchain methods. They surveyed the literature to explore the new dimensions for convergence 

in application-based modules for enabling the end user to reach the maximum area-specific 

modules for sharing the data and processing the node-based data for quick and accurate 

decisions[139]. 

 

Akhunzada et al. (2023) presented various leading-edge computing-based frameworks to improve 



48  

the efficiency of networks with limited use of power. In this regard, they tested and compared 

various wireless transmission modules for energy efficiency and network security. They also 

worked on the utilization of power for AI-based optimization frameworks to manage the data and 

reduce the real-time delay in processing. In hardcore industrial applications and military-based 

tasks, their analysis helped to set the benchmark for the adoption of power-saving modules[140]. 

2.3 Job Scheduling and Resource Allocation 

 

Another important aspect in the realm of computing and information and technology is job 

scheduling and resource allocation, significantly impacting the performance, efficiency, and 

functioning of systems. They play an important role in optimizing the utilization of resources, 

ensuring timely execution of tasks, and maintaining the balance in workloads. Efficient 

allocation and scheduling are crucial to manage the finite resources in EoT environments 

effectively. 

 

 Job scheduling refers to the practice of assigning processes and tasks to processors or 

computing resources in an optimal manner, with the overall aim of improving performance, 

minimizing delay, and optimizing resource usage. The system integrates a variety of 

algorithms and methods, including First Come First Serve (FCFS), Shortest Job First (SJF), 

and Round Robin (RR), each with distinct advantages and applications. The evolving nature 

of job scheduling is accentuated by advancements in AI, allowing the development of 

intelligent and adaptive scheduling algorithms, capable of learning and evolving with 

changing system dynamics and workloads[141], [142]. 

 

 Resource allocation on the other hand, is pivotal for enhancing the efficacy and 

efficiency of computing systems, focusing on the optimal distribution of available resources 

such as CPU, memory, and bandwidth among competing tasks and processes. It’s a 

multifaceted process involving the determination of resources to be allocated, decision-

making on resource distribution, and the implementation of allocation policies. Resource 

allocation in cloud and edge computing environments is particularly challenging, demanding 

meticulous strategies to balance the trade-off between resource availability and task 

requirements[143]. 

The amalgamation of job scheduling and resource allocation is important in order to fulfill 

the escalating requirements for enhanced performance and efficiency in modern computing 
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settings. Through, the process of synergizing these many components, systems may 

effectively guarantee the optimal allocation of resources. Additionally, systems can assure 

efficient utilization of these resources by aligning the scheduling of jobs with the available 

resources. Apart from opening up new opportunities, the continuous evolution of computing 

paradigms, including cloud, edge, and fog computing, is posing new challenges in job 

scheduling and resource allocation. The emergence of technologies like IoT and Edge-of- 

Things (EoT) necessitates the development of advanced strategies to address the complexities 

and dynamics of these environments[144]. Here, advanced optimization and machine 

learning techniques are playing a pivotal role in addressing these challenges by enabling 

adaptive and intelligent resource allocation and job scheduling strategies. Thus, Job 

scheduling and resource allocation serve as the backbone of computing systems, playing a 

crucial role in achieving optimal performance and efficient utilization of resources. The 

advancements in technology and the integration of AI and machine learning are shaping the 

future of these domains, promising enhanced adaptability, efficiency, and intelligence in 

managing resources and scheduling jobs in diverse computing environments[145]. 

 

2.3.1 Integration in EoT-based EMS 

 

The integration of Edge-of-Things (EoT) in Energy Management Systems (EMS) has 

witnessed the incorporation of advanced optimization strategies to address the multifaceted 

challenges of energy conservation, distribution, and consumption in real-time. Optimization 

strategies in EoT-based EMS revolve around the efficient management and allocation of 

energy resources, exploiting the capabilities of edge computing to process data closer to the 

source, thereby reducing latency and improving response times. The implementation of real- 

time optimization algorithms is crucial in order to fully use the capabilities of Edge of Things 

(EoT)-based Energy Management Systems (EMS). These facilitate real-time data processing 

and decision-making, enabling dynamic adjustments to energy consumption and distribution 

in response to fluctuating demand and supply, thereby ensuring efficient application of 

energy resources. Another set of optimization strategy includes machine learning and 

artificial intelligence (AI), which play an important role in allowing the EMS to learn from 

historical data, predict future trends, and make intelligent decisions. These technologies 

empower EoT- based EMS to adapt to changing environments, optimize energy consumption 

patterns, and enhance overall system efficiency[78].  

 



50  

Demand response optimization is another strategy for effective demand response allowing 

for the modulation of energy consumption based on real- time supply and demand conditions. 

This not only aids in balancing the load but also in mitigating the risks of energy shortages 

and ensuring uninterrupted power supply. These optimization strategies also focus on the 

seamless integration of renewable energy sources, like solar and wind, into the energy mix. 

The advanced optimization strategies in EoT-based EMS are shaping the future of energy 

management by ensuring real-time, intelligent, and efficient energy resource allocation and 

utilization. The integration of AI and machine learning with real-time processing capabilities 

of EoT offers unprecedented opportunities for optimizing energy consumption, integrating 

renewable energy sources, and enhancing the overall sustainability of energy 

ecosystems[115]. 

2.3.2 Distributed Computing Environments 
 

The amalgamation of distributed computing environments and EoT-based EMS is another 

approach which provides several advantages including enhanced scalability, reliability, and 

efficiency in energy management. Adaptive scheduling algorithms can efficiently allocate 

resources in real-time, catering to the dynamic needs of EoT-based EMS. Distributed 

computing environments are fundamental for the integration in Edge-of-Things (EoT)-based 

Energy Management Systems (EMS) as they empower these systems to process and analyze 

data in real-time at different locations, enabling prompt and intelligent decision-making. 

Distributed data processing reduces the time taken to transmit data to a centralized location 

for processing as it processes data at various points in the network[146]. This localized 

processing enables faster response times and more efficient energy utilization. Distributed 

computing environments also provide EoT-based EMS with the scalability and flexibility 

required to adapt to varying workloads and energy demands. They facilitate the addition of 

new resources and devices to the system with minimal disruption, allowing for seamless 

expansion and contraction of computing resources in response to changing energy 

requirements. Moreover, the inherent redundancy within distributed computing 

environments serves to improve the dependability and fault tolerance of EoT-based EMS. In 

the event of a node failure, the system has the capability to maintain regular operation by 

redirecting tasks to other operational nodes, hence guaranteeing continued provision of 

energy management services.  

 

Apart from this, effective load balancing also serves as a key attribute to distributed 



51  

computing in EoT-based EMS. It ensures an equitable distribution of tasks and workloads 

across multiple nodes, preventing over burdening of individual nodes and optimizing overall 

system performance and energy efficiency[112]. The incorporation of distributed computing 

environments in EoT-based EMS plays a crucial role in attaining effective, scalable, and 

dependable energy management. The decentralized character of these environments 

facilitates the processing of data in specific locations, which is essential for the timely 

management of energy and decision-making. Additionally, their ability to scale and tolerate 

faults allows for smooth adjustment to fluctuating energy requirements and uninterrupted 

operation in the event of system failures[135]. 

 

Zhong et al. (2020) observed that the heuristic approach is one of the best approaches to 

managing the database to optimize the use of data centers for data storage and scheduled 

maintenance. It was observed that a huge amount of money is spent on making data centers 

and installing hardware models for data storage. They found that the Containerized Task Co-

Location (CTCL) scheduler is one of the best optimizers to manage the data[147]. 

 

Khatua et al. (2023) found that the wireless modules are facing internet connectivity issues 

while synchronizing the modules for data sharing and passing on the decisions to the end 

user. It has been observed that 65% of end users were able to make the final decision due to 

poor connectivity with remote operators. As such, the files were sent back to the cloud server, 

creating a heavy rush to transmit packets. With the adoption of novel dew-caching 

architecture under the cloud using the Internet of vehicular things (IoVs), the issue is resolved 

to some extent and saves resources[148].  

 

2.3.3 Machine Learning Approaches 

 

Recent studies have shown the convergence of Machine Learning (ML) and Edge-of-Things 

(EoT) in Energy Management Systems (EMS) is another approach which represents a 

progressive step towards the creation of intelligent, adaptable, and predictive energy 

management solutions. ML approaches within EoT-based EMS focus on leveraging the 

abundance of data generated by IoT devices to make informed decisions related to energy 

consumption, distribution, and conservation. The utilization of ML in EoT-based EMS 

enables the development of predictive models that forecast energy consumption patterns and 

demand based on historical data[134]. This predictive analytics capability allows for 
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proactive energy management strategies, reducing energy wastage and optimizing resource 

allocation. Machine learning (ML) methodologies play a crucial role in Edge-of-Things 

(EoT)-based Energy Management Systems (EMS) by facilitating the detection of anomalies 

and enabling effective system monitoring. 

 

 Real-time monitoring systems enable the prompt detection of irregularities and potential 

problems in the energy infrastructure, so enabling urgent corrective measures to be taken. 

This ensures the dependability and stability of energy distribution networks. ML techniques 

also optimize the integration and utilization of renewable energy sources by predicting their 

availability and output, based on environmental conditions and historical data. This enables 

the effective balancing of energy supply from renewable and non-renewable sources, 

promoting sustainability and reducing dependency on fossil fuels[146]. Not just this, ML 

approaches also facilitate advanced demand response management in EoT-based EMS, 

allowing for real-time adjustments to energy consumption, external factors, and pricing 

models, ensuring efficient energy utilization and cost- effectiveness. Thus, Machine Learning 

approaches in EoT-based EMS symbolize a new era of intelligent energy management, 

thereby contributing to the sustainability and efficiency of energy ecosystems in the context 

of distributed and edge computing environments. 

 

Le Nguyen et al. (2023) adopted a machine learning-based Shapley additive feature selection 

method to improve the efficiency of EoT applications. They also segregated the data based 

on rank of feature using ANN-based methods and then tested the energy efficiency model for 

predicting the shear strength of RC deep beams with the edge processing method. They used 

seven AI features and classification methods such as linear regression, artificial neural 

networks (ANN), support vector machines, decision trees, ensembles of trees, extreme 

gradient boosting, and gaussian process regression, and they found that the gaussian process 

regression had the best response among the other methods[149]. 

 

Xu et al. (2023) observed that the Synthetic Minority Oversampling Technique (SMOTE) 

algorithm and mutual information sharing are among the best optimization methods to 

calculate the hyperparameters for EoT devices. This classification method was observed to 

be helpful in solving multi-class classification problems with an accuracy of more than 90%, 

which results in outperforming the existing algorithms by a decent margin[150]. 
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2.3.4 Challenges and solutions in Job Scheduling and Resource Allocation 

 

2.3.4.1 Complexity and Scalability Issues 

 

Despite the advancements in implementing effective scheduling and allocation strategies, 

significant challenges persist. One significant challenge is managing the complexity and 

ensuring scalability to accommodate the growing demand and the heterogeneous nature of 

resources available at the edge of the network. The author proposed solutions to address these 

challenges, focusing on the development of scalable algorithms and frameworks to manage 

these growing complexities in EoT-based EMS[112]. The presence of diverse task needs, 

resource limits, and the dynamic nature of the environment generally gives rise to complexity 

in work scheduling and resource allocation. The effective utilization of resources and work 

scheduling in EoT necessitates the implementation of advanced algorithms that can 

effectively handle the complexities arising from various conflicting objectives and 

limitations. Modern solutions incorporate advanced optimization techniques to navigate 

through the complexities, ensuring that the right resources are allocated to the right tasks at 

the right time.  

 

Ensuring Scalability is another challenge and a crucial aspect of addressing the expansion of 

EoT-based EMS. It is imperative to design systems capable of adapting to increasing loads, 

diverse task types, and the continuous addition of new resources. And for that, Strategies 

such as decentralized scheduling and hierarchical resource allocation have been proposed to 

enhance scalability, enabling the system to manage larger sets of heterogeneous resources 

efficiently[151]. To counter complexity and scalability issues, several solutions have been 

proposed, which includes adaptive scheduling algorithms that possess the capability to 

adaptively modify their behavior in accordance with the evolving environment and the 

availability of resources. Furthermore, the integration of machine learning and artificial 

intelligence has been implemented to properly forecast resource requirements and make 

educated decisions regarding scheduling, hence optimizing the utilization of resources and 

enhancing the overall performance of the system. Hence, Complexity and scalability are 

paramount concerns in job scheduling and resource allocation in EoT-based EMS. The 

solutions to these concerns lie in the development of advanced, adaptive, and intelligent 

algorithms and strategies that can efficiently navigate through the complexities and scale 

according to the growing and diverse demands of the EoT environment[135]. 
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2.3.4.2 Dynamic and Heterogeneous Environment 
 

The amalgamation of Edge-of-Things (EoT) in Energy Management Systems (EMS) creates 

environments that are dynamically evolving and extremely heterogeneous, imposing 

substantial challenges to job scheduling and resource allocation. As the intricacy and 

diversity of tasks and resources intensify, it becomes imperative to develop solutions that are 

adaptive, robust, and efficient. Dynamic environments in EoT-based EMS are characterized 

by frequent changes in resource availability, task requirements, and workload conditions. 

Traditional scheduling and allocation models often struggle to adapt to these variations, 

leading to suboptimal resource utilization and decreased system performance. Adding to this, 

Heterogeneity poses another significant challenge, stemming from the diversity in resource 

types, capabilities, and constraints[152].  

 

Efficiently managing heterogeneous resources necessitates intelligent and flexible algorithms 

capable of considering the unique attributes and requirements of each resource and task. 

Here, to address the challenges posed by dynamic and heterogeneous environments, 

researchers have put forth adaptive scheduling and allocation solutions, which utilize real-

time data and advanced analytics to dynamically adapt resource allocation and work 

scheduling in accordance with environmental fluctuations, thereby guaranteeing optimal 

system performance and resource usage. Apart from these, Machine Learning (ML) and 

Artificial Intelligence (AI) techniques are also being increasingly incorporated to address the 

complexities arising from dynamic and heterogeneous EoT environments[29]. These 

techniques enable predictive analytics, intelligent decision-making, and automated 

adaptation to the changing conditions and requirements, thereby enhancing the efficiency and 

robustness of the EMS. 

 

2.3.5 Emerging Trends and Technologies 

 

2.3.5.1 AI-Driven Scheduling and Allocation 

 

Artificial Intelligence (AI) is revolutionizing the domain of scheduling and allocation within 

the Edge-of-Things (EoT) in Energy Management Systems (EMS) to overcome the 

substantial challenges imposed because of complexity of the dynamic and heterogeneous 

EoT environments. It brings about enhanced automation, efficiency, and intelligence, which 

are pivotal in optimizing the intricate and dynamically changing environments inherent to 
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EoT- based systems. AI-driven scheduling and allocation leverage sophisticated algorithms 

and models, such as Machine Learning (ML), enables systems to learn and adapt 

continuously to changing conditions, optimizing resource utilization and reducing 

operational costs. One of the prime benefits of incorporating AI is the provision of predictive 

analytics, which can forecast future demands, resource availability, and potential system 

failures[153]. Predictive analytics aid in proactive decision-making, allowing for the 

anticipation of changes and adjustment of schedules and allocations beforehand to avoid 

disruptions and maintain optimal performance. Not only this, AI-driven solutions can rapidly 

and accurately respond to dynamic changes in the environment, workload, and resource 

availability.  

Such heightened responsiveness is crucial for maintaining system stability and efficiency in 

the fast-paced and volatile landscapes of EoT-based systems. AI reduces the need for human 

intervention and probability of errors thereon, by making the system to make autonomous 

decisions regarding job scheduling and resource allocation. Autonomous decision-making is 

invaluable in sustaining system resilience and ensuring uninterrupted service delivery in 

EoT-based EMS. AI-driven approaches, therefore, not only ensure optimal resource 

utilization and cost reduction but also empower systems with predictive analytics and 

autonomous decision- making capabilities, paving the way for more resilient and efficient 

energy management solutions[88]. 

 

2.3.5.2 IoT and EoT Synergy 

 

The next emerging trend to focus on is the synergy between IoT and EoT, with new studies 

exploring the integration of these technologies for advanced job scheduling and resource 

allocation. This enormously contributes to advancements in efficiency, adaptability, and real- 

time data processing. IoT and EoT work in conjunction to enhance real-time data processing, 

allowing for quicker response times and more informed decision-making processes in energy 

management. The implementation of IoT devices in tandem with EoT solutions facilitates 

immediate data analysis at the edge of the network, reducing latency and ensuring timely 

actions. The amalgamation of IoT and EoT plays a crucial role in optimizing energy 

consumption. IoT devices, coupled with EoT, enable the monitoring and control of energy 

usage in real-time, thus aiding in the development of energy-efficient solutions and the 

reduction of operational costs[86]. Moreover, this integration allows for the extraction of 

insightful information and patterns from vast data sets, empowering energy management 
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systems to make more accurate and informed decisions. The integration of Internet of Things 

(IoT) and Edge of Things (EoT) in the field of energy management facilitates the creation of 

scalable and adaptable solutions that can effectively accommodate diverse workloads and 

environments. This ability to adapt is of utmost importance when it comes to effectively 

handling the diverse and evolving needs of modern energy infrastructures. Another major 

benefit being offered by this integration is that it enables the implementation of robust 

security measures and privacy-preserving techniques, safeguarding sensitive information and 

ensuring the integrity and confidentiality of data. In fact, this integration is a steppingstone 

in the advancement of intelligent, adaptable, and secure energy management solutions, 

addressing the ever-evolving demands of modern energy landscapes[74]. 

 

Thus, the literature reveals that job scheduling and resource allocation are fundamental 

components in the development of EoT-based EMS. While significant advancements have 

been made through optimization strategies, machine learning approaches, and the integration 

of emerging technologies, challenges such as complexity, scalability, and the dynamic nature 

of EoT environments necessitate continual research and innovation. 

2.4 Optimization Techniques 
 

Optimization techniques play a very important role in the further improvement of the 

effectiveness and efficiency of Energy Management Systems (EMS) in Edge-of-Things 

(EoT) environments. Optimization in Energy Management Systems (EMS) within the Edge-

of- Things (EoT) environment is reliable for enhancing operational efficiency, reducing 

energy consumption, and improving sustainability[154]. Here are several optimization 

techniques that are prominently used in such settings: 

2.4.1 Linear Programming (LP) 

 

The first and the foremost technique to optimize the allocation of limited resources is Linear 

Programming (LP). By formulating linear equations, LP optimizes energy distribution 

and allocation in energy management systems, addressing problems related to energy 

scheduling and consumption. This method helps in achieving the best outcome in a 

mathematical model whose requirements are represented by linear relationships. The 

presented pseudocode provides a high-level outline of solving Linear Programming problems 

in Edge of Things, focusing on feasibility and optimality of the solutions. Specific 

implementations might involve variations of simplex method, Interior Point Methods, or 
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other numerical optimization techniques, and could leverage distributed computing 

capabilities of Edge of Things for improvement in systems. It has been observed that adapting 

the methodology according to specific constraints, objective functions, and requirements 

inherent to the Edge of Things application in question is necessary for improvement[155]. 

2.4.2 Non-Linear Programming (NLP) 

 

The presence of nonlinearity is a significant barrier as far as controlling the parameters in 

external environment are concerned. To deal with this, NLP has been identified as the most 

effective choice for controlling nonlinear systems, contributing to the improvement of system 

dependability and efficiency. NLP is used for optimizing the management and operation of 

renewable energy resources and is critical in handling energy conservation issues in non- 

linear energy systems. The specific method used to update the solution in the update solution 

function, and the way constraints are handled in the check feasibility function, should be 

meticulously designed, considering the specific problem context, available computational 

resources, and the requirement for real-time operation in the EoT environment. And thus, 

NLP becomes very useful for optimizing these complex systems where the objective function 

or the constraints are nonlinear[156]. 

2.4.3 Dynamic Programming (DP) 

 
In addition to the previously employed methodologies, the Dynamic Programming (DP) also 

provides solutions to problems by breaking them into simpler subproblems, rendering it 

effectively for multi-stage decision-making in energy management. Dynamic Programming 

is implemented to determine optimal control strategies for energy storage systems, aiding 

decision-making processes in energy conservation. The purpose of this approach is to address 

the problems by breaking them into smaller and more manageable subproblems, and 

thereafter solving each subproblem only once while retaining their solutions. Dynamic 

Programming optimization could benefit from parallel computation for independent 

subproblems and efficient memory use for storing intermediate results and accommodating 

the resource-constrained nature of edge devices[157]. 

2.4.4 Genetic Algorithms (GA) 

 
Genetic Algorithms (GA) find solutions to optimization problems based on the process of 

natural selection which is beneficial for optimizing complex systems in energy management. 

GA optimize energy consumption patterns and are instrumental in creating energy-efficient 
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scheduling in smart grids. It contains search heuristics to find the exact or approximate 

solutions to optimization and search problems by mimicking the process of natural 

evolution[158]. 

2.4.5 Particle Swarm Optimization (PSO) 

 
Particle Swarm Optimization (PSO) is another important optimization technique which is 

used for numerical optimization of problems in energy management systems, aiding in the 

optimization of power consumption and efficiency. As per facts, this method is developed by 

the social behavior patterns of organisms and is used for solving numeric optimization 

problems. Also, it is important to adapt and modify according to specific requirements and 

constraints of your Edge of Things environment[159]. 

2.4.6 Ant Colony Optimization (ACO) 

 
Based on the foraging behavior of ants, an optimization technique called, Ant Colony 

Optimization (ACO) is applied to find the optimal paths in graph-based problems in energy 

systems. ACO is implemented to optimize routing paths and is able to improve the efficiency 

and reliability of energy distribution networks. Just like PSO, this technique also requires the 

need to adapt and modify the situation according to the specific requirements and constraints 

of your Edge of Things environment, taking the real-time and computational constraints into 

consideration[160]. 

 

2.4.7 Simulated Annealing (SA) 

 

Simulated Annealing (SA) is a crucial technique employed for solving optimization problems 

in energy allocation and scheduling by exploring the solution space efficiently. It is a 

probabilistic technique used for approximating the global optimum of a given function, often 

used when the search space is discrete. SA is crucial for solving optimization problems in 

energy allocation and scheduling by exploring the solution space efficiently[161]. 

2.4.8 Greedy Algorithms 
 

Greedy algorithms are also very popular as heuristic approaches for making locally optimal 

choices at each step in the hope of finding the global optimum in energy management 

systems. These algorithms are instrumental in solving problems related to resource allocation 

and energy distribution by making choices that seem the best at each step. The actual 
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implementation and adaptation may vary based on specific use cases, system requirements, 

and constraints within the Edge of Things environment. So, it should be meticulously 

designed to consider the system’s resource limitations and real-time processing needs. Also, 

a proper check of feasibility is important to ensure the efficiency and effectiveness of the 

algorithm in practical applications[162]. 

2.4.9 Constraint Programming (CP) 

 
Constraint Programming (CP) is a technique implemented to optimize the scheduling and 

allocation of energy resources by resolving constraints effectively. The actual 

implementation may vary, and developers should consider the specific requirements and 

constraints of their Edge of Things environment. As per literature survey and application-

based projects, constraint programming solves combinatorial problems by defining 

constraints and is pivotal in managing and optimizing energy systems. However, there is a 

need to focus on certain parameters such as timely and efficient processing of constraints 

when applying this optimization technique[163]. 

2.4.10 Machine Learning (ML) Based Optimization 

 
Machine Learning (ML) based optimization models are the techniques used for data-driven 

decision-making processes and predictive analytics in energy management. ML models can 

not only predict energy consumption but can also optimize energy allocation by learning 

patterns and making informed decisions. As per the survey, machine learning models like 

neural networks, decision trees, and support vector machines are used for optimizing energy 

consumption and distribution in EMS. However, as per reports, there is a need for proper 

consideration of the resource constraints and real-time requirements of Edge of Things 

applications when applying ML-based optimization techniques[164]. 

2.4.11 Multi-Objective Optimization 

 
This technique optimizes multiple conflicting objectives, offering solutions that balance 

different kinds of needs in energy management systems. It is applied to find trade-offs 

between conflicting objectives like cost, energy consumption, and emissions in energy 

system. This technique focuses on optimizing two or more conflicting objectives at a time, 

which is useful when there are trade-offs between different objectives[165]. 
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2.4.12 Reinforcement Learning (RL) 

 
Reinforcement Learning (RL) is a computational approach employed in decision-making 

processes, wherein an autonomous agent acquires knowledge through interactions with its 

environment. This technique holds particular relevance in the context of energy optimization, 

aiming to enhance the efficiency of energy consumption. RL agents optimize energy usage 

and allocation in real-time by learning the best actions to take in various states. An area of 

machine learning where an agent learns by interacting with its environment to achieve 

maximum cumulative reward is useful for making a sequence of decisions over time in EMS. 

This method is a basic representation of a Q-Learning approach in Reinforcement Learning 

and should be adapted according to the specific requirements, constraints, objectives, and 

environmental dynamics in Edge of Things systems[166]. 

2.4.13 Stochastic Optimization 

 
Stochastic Optimization is a technique used to optimize decision-making under uncertainty, 

dealing with random fluctuations in energy supply and demand. This method has a very 

generic structure of a stochastic optimization algorithm in EoT. The algorithm should be 

adapted depending on the specific problem at hand (e.g., the objective function G, the feasible 

set X, the known distribution of work, etc.) and should be refined accordingly to ensure 

efficacy and reliability in the stochastic optimization process within the EoT 

environment[167]. 

2.4.14 Metaheuristic Algorithms 

 

Metaheuristic algorithm provides high-quality solutions for optimization problems in energy 

management systems by exploring and exploiting the search space. These algorithms 

facilitate the optimization of energy scheduling and allocation by efficiently navigating 

through the solution space, ultimately leading to the identification of near-optimal solutions. 

High-level procedures are designed to find, generate, or select a heuristic that may provide a 

sufficiently good solution to an optimization problem. Metaheuristic algorithms are generally 

problem-independent, meaning they can be applied to a wide variety of optimization 

problems. However, the specific operations used to modify solutions (e.g., mutation and 

crossover in genetic algorithms) often need to be tailored to the specific problem being 

solved. This optimization method needs to be adapted based on the problem domain and the 

metaheuristic algorithm being utilized. This method always refers to specific algorithm 

guidelines and problem characteristics to refine the metaheuristic algorithm[168]. 
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2.4.15 Cloud Computing-Based Optimization 

 

Cloud Computing-Based Optimization enables scalable, flexible, and efficient solutions in 

energy management by handling large datasets and complex computations. It leverages the 

computational power of the cloud to perform optimization tasks, enabling more scalable and 

flexible solutions in EMS. Cloud computing offers scalable and powerful computational 

resources which can enhance the capability of EoT to solve complex problems, especially 

those that require significant computational power. The specific implementation details, 

including the structure of the solution “S” and the task “T”, and how they are processed in 

the cloud, would depend on the specific problem and optimization technique being used. It 

becomes highly important to ensure to comply with data privacy and security standards while 

offloading any task to the cloud, especially in EoT environments where data can be 

sensitive[169]. 

 

2.4.16 Distributed Optimization Algorithms 

 

These algorithms enable optimization across distributed networks and are instrumental in 

scalable and flexible solutions in decentralized energy systems (Table 2.4). They optimize 

energy consumption across a network of devices and systems, facilitating coordination and 

management of distributed energy resources. These algorithms run on a network of 

computers, making them suitable especially for EoT environments where a central 

computational unit may not be available. This algorithm facilitates distributed optimization 

across multiple edge devices, emphasizing parallel local optimizations and collective 

decision-making based on the locally optimized solutions. The actual optimization strategy 

needs how solutions are represented, evaluated, and communicated and will depend heavily 

on the specific use case, optimization problem, and EoT environment characteristics[170]. 
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Table 2.4: Various Optimization Algorithms 
 

 

It must be ensured by the user that the optimization strategy adheres to the constraints and 

requirements of the EoT system and respects privacy and security guidelines for data 

communication across devices[171]. 

From the literature survey, it has been observed that each of these optimization techniques 

has its own unique advantages in addressing specific challenges and requirements in Energy 

Optimization 

Technique 

Application 

Suitability 
Complexity Scalability Flexibility 

Adaptability to 

Changes 

Linear Programming 
(LP) 

High for 
linear systems 

Low High Medium Low 

Nonlinear Programming 

(NLP) 

High for 

nonlinear 
systems 

High Medium High Medium 

Dynamic Programming 
(DP) 

High for 

multi-stage 

problems 

Medium High High Medium 

Genetic Algorithms (GA) 

High for 
complex, 

multi-modal 

problems 

High High High High 

Particle Swarm 
Optimization (PSO) 

High for 

numerical 
optimization 

problems 

Medium High High High 

Ant Colony Optimization 

(ACO) 

High for 

discrete 
optimization 

Medium High High High 

Simulated Annealing (SA) 

High for 

discrete search 

space 

Medium Medium High High 

Greedy Algorithms 

Medium for 
problems with 

optimal 

substructure 

Low Medium Low Low 
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Management Systems within Edge-of-Things environments. So, depending on the context 

and the problem at hand, one or a combination of these techniques can be deployed to enhance 

the efficiency and effectiveness of energy management strategies in EoT scenarios. The 

comparative table shows the role and responsibility of various optimization techniques in 

energy management systems. The optimal selection is context-dependent and may vary based 

on specific requirements, constraints, and objectives of the application. Based on the 

comparative study conducted, it is suggested that the most suitable algorithm be 

recommended for addressing application-specific requirements and challenges inside the 

workspace (Table 2.5). 

Table 2.5: Comparative analysis of Optimization methods in relation to EoT-based EMS 
 

Constraint 
Programming (CP) 

High for 

constraint 
satisfaction 

problems 

High Medium High Medium 

Machine Learning 

Based 

High for data- 
driven 

problems 

Varies High High High 

Multi-Objective 

Optimization 

High for 
problems with 

conflicting 

objectives 

High High High High 

Reinforcement 
Learning (RL) 

High for 
sequential 

decision- 

making 
problems 

High High High High 

Stochastic 
Optimization 

High for 

problems with 

uncertainty 

High Medium High High 

Metaheuristic 

Algorithms 

High for a 

broad range 
of 

optimization 

problems 

Varies High High High 

Cloud Computing- 
Based 

High for 

scalable and 
flexible 

solutions 

Varies Very High Very High High 
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Distributed 

Optimization 

Algorithms 

High for 

decentralized 

systems 

High Very High High Very High 

 

Thus, it can be concluded that as far as Scalability and Flexibility are concerned, Distributed 

Optimization Algorithms and Cloud Computing-Based Optimization can be considered as 

the best as they can manage many variables and constraints and adapt to various problem 

structures. For Adaptability to Changes, Machine Learning-Based Optimization, Genetic 

Algorithms, and Reinforcement Learning are among the best as they can easily adapt to 

changes and uncertainties in the system. And for Complexity and Suitability, Linear 

Programming and Greedy Algorithms are simpler and more suitable for problems with a clear 

and optimal substructure. 

The selection of the optimal technique should be dictated by the specific characteristics of 

the problem at hand, including the nature of the objective function, the type of constraints, 

the required level of accuracy, and the available computational resources. In many real-world 

applications, a hybrid approach combining the strengths of multiple techniques may yield the 

most effective and robust solution. 

2.5 Algorithm for Classification 
 

Classification of algorithms are integral in creating intelligent and efficient Energy 

Management Systems (EMS) within Edge-of-Things (EoT) environments. They are crucial 

for predicting and analyzing energy consumption patterns, leading to optimized energy use. 

When deploying classification algorithms on edge devices, it is crucial to consider the 

constraints of these devices, such as limited computational power, memory, and energy 

availability. As a result, lightweight and efficient algorithms are preferred for edge 

computing. There are key classification methods which are discussed below: 
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Figure 2.1 Classification Methods 
 

2.5.1 Decision Trees 

 

A decision tree is a versatile machine learning algorithm used for both classification and 

regression tasks. It mirrors our decision-making process, and its visual representation can be 

likened to an inverted tree, with the root at the top and branches expanding downwards, 

ending in leaves. It has been observed that the decision tree is built by partitioning data into 

subsets. Each internal node of the tree represents a “test” or “decision” on an attribute or 

feature of the data, each branch represents the outcome of that test, and each leaf node 

represents a class label. The process of learning a decision tree from data is recursive[172]. 

The dataset is continually split based on the best feature available, determined by a certain 

criterion. This process continues until one of the stopping conditions is met, such as the depth 

of the tree reaching a pre-defined limit. 
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2.5.2 Bayesian Classifiers 

 
In the basket of classification methods, the Bayesian classifiers, particularly the Naive Bayes 

classifier, stand out due to their probabilistic foundation, simplicity, and surprisingly efficient 

performance in various tasks. Rooted in the Bayes' theorem, these classifiers offer a robust 

method to predict class membership probabilities. At the heart of Bayesian classifiers is 

Bayes' theorem, a principle in probability theory and statistics that describes the probability 

of an event based on prior knowledge. The theorem relates the conditional and marginal 

probabilities of events. The classifier calculates the posterior probability of a class given a 

set of features and then classifies the instance by picking the class with the highest posterior 

probability[173]. In practice, it involves computing the product of the individual probabilities 

of each feature occurring in a specific class and then scaling this by the prior probability of 

that class. 

2.5.3 k-Nearest Neighbor’s (k-NN) 

 

The k-Nearest Neighbor’s algorithm, commonly referred to as k-NN, is an essential example 

of instance-based and non-parametric learning in the domain of machine learning. Its core 

principle is rooted in the intuitive notion that similar data points, in each feature space, will 

often have similar outputs or labels. k-NN capitalizes on fast and reliable response to make 

predictions for new, unseen instances based on the labels of their neighboring data 

points[174]. 

2.5.4 Support Vector Machines (SVM) 

 

Support Vector Machines (SVM) occupy a central position in the world of machine learning 

algorithms. Originally developed for binary classification, SVMs have been extended to 

handle multi-class classification, regression, and even outlier detection. At their core, SVMs 

aim to find the optimal hyperplane that best divides a dataset into classes. The underlying 

principle of SVM is to maximize the margin between two classes. In a two-dimensional 

space, this hyperplane can be thought of as a line, but in higher dimensions, it becomes a 

plane or even a hyperplane. The "support vectors" are the data points that are closest to this 

hyperplane, and they "support" or define the hyperplane, hence the name "Support Vector 

Machines”[175]. 

2.5.5 Logistic Regression 

 

Logistic Regression, despite its name, is a foundational algorithm primarily used for binary 
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classification tasks in the machine learning landscape. It estimates the probability that a given 

instance belongs to a particular category, thus making it a probabilistic statistical model. 

Stemming from linear regression, logistic regression's unique attribute is its utilization of the 

logistic function to squeeze the output of a linear equation between 0 and 1, making it suitable 

for estimating probabilities. The crux of logistic regression lies in its namesake: the logistic 

function, also known as the sigmoid function. 

2.5.6 Ensemble Methods 

 

Ensemble methods, a pivotal paradigm in the realm of machine learning, embody the 

principle that 'many heads are better than one.' Rather than relying on a single model's 

predictions, ensemble techniques leverage the collective power of multiple models to 

improve overall performance and reduce the chances of an erroneous prediction[176]. The 

central idea is that by combining multiple models, one can harness their individual strengths, 

offset their weaknesses, and, in the process, achieve better generalization and robustness. At 

a high level, ensemble methods involve training multiple models (often referred to as "base 

learners" or "weak learners") on a dataset and then devising a strategy to combine their 

predictions. The combination can be achieved either by using some form of averaging or 

voting for regression and classification problems, respectively. 

2.5.7 Neural Networks 

 

As per current research survey, modern artificial intelligence and deep learning lies the neural 

network, a computational model inspired by the way biological neural systems process 

information. Over the past decades, neural networks have significantly evolved, propelling 

advancements in diverse fields ranging from image recognition and natural language 

processing to game playing and medical diagnosis. A neural network consists of layers of 

interconnected nodes or "neurons." Each neuron receives inputs, processes them, and 

produces an output. The processing usually involves multiplying each input by a weight, 

summing up the weighted inputs, adding a bias, and then passing the result through a 

nonlinear activation function[177]. 

2.5.8 Linear Discriminant Analysis (LDA) 

 

Linear Discriminant Analysis (LDA) is a dimensionality reduction technique used primarily 

in the realms of statistics and machine learning. LDA's primary goal is to maximize the 

separability among known categories. Often used as a preprocessing step in machine learning 
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pipelines, LDA can also function as a linear classifier. LDA operates under the assumption 

that the input variables are normally distributed and that each class has the same covariance 

matrix. The primary intuition behind LDA is to project data points from the original feature 

space into a lower-dimensional space in such a way that data points from different classes 

are as far apart as possible, while data points from the same class are as close as possible[178]. 

2.5.9 Quadratic Discriminant Analysis (QDA) 

 

Quadratic Discriminant Analysis (QDA) is a classification technique that extends the 

principles of Linear Discriminant Analysis (LDA) while dropping some of its linear 

constraints. QDA is used for classifying instances into predefined groups or classes, but the 

decision boundary between these groups is quadratic rather than linear. The foundation of 

QDA, much like LDA, is grounded in Bayes' theorem. While LDA assumes that all classes 

share a common covariance matrix, QDA allows each class to have its own covariance 

matrix. This fundamental difference results in quadratic decision boundaries, making QDA 

more flexible than LDA in capturing relationships within data. 

2.5.10 Anomaly Detection Based Classifiers 

 

Anomaly detection, commonly known as outlier detection, is a technique used to identify 

patterns in data that do not conform to expected behavior. Such anomalies or outliers could 

be indicative of errors, fraud, system malfunctions, or even a new underlying pattern. When 

applied to classification tasks, anomaly detection-based classifiers often function by treating 

one class, typically the minority class, as the anomaly. Traditional classifiers operate under 

the premise that they have adequate examples from each class to learn the distinguishing 

characteristics. Conventional classifiers may struggle to recognize the minority class due to 

the vast imbalance in representation[179]. 

2.5.11 Rule-Based Classifiers 

 

As per research communities, rule-based classifiers are a breed apart, relying not on complex 

mathematical models, but on a set of if-then rules to make classifications (Table 2.6). These 

rules are often interpretable and transparent, lending an intuitive feel to an otherwise complex 

decision-making process. A rule-based classifier makes decisions based on a set of rules. A 

rule is typically framed as "IF (condition) THEN (conclusion)." The "condition" part, often 

referred to as the antecedent or precondition, comprises one or more attributes or features. 

The "conclusion" part, known as the consequent, indicates the class label. 
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Table 2.6: Various Classification methods 

 

2.5.12 Nearest Centroid Classifier 
 

The Nearest Centroid Classifier (NCC) is a simple yet effective classification technique that 

is conceptually related to k-Nearest Neighbor’s (k-NN) and Centroid-based clustering 

methods, such as k-Means. NCC focuses on the central point, or centroid, of each class in the 

training data to make its predictions. The foundational idea behind the Nearest Centroid 

Classifier is straightforward: compute the centroid for each class based on the training data, 

and for a new instance, predict the class whose centroid is closest to it. The centroid of a class 

is calculated as the average of all instances in that class. The comparative analysis of 

classification methods is given in Table 2.7. 

  

Algorithm Advantages Limitations Applications 

Decision 

Trees 

1. Simple to 

understand & 

interpret. 

2. Can handle both 

numerical & 

categorical data. 

3. Requires little data 

preparation. 

1. Prone to overfitting. 

2. Can be unstable due 

to small variations in 

data. 

3. Often biased to 

classes with more 

levels. 

1. Energy consumption 

prediction. 

2. Fault detection in 

systems. 

3. User behavior 

prediction. 

4. Device management. 

5. Network intrusion 

detection. 

Bayesian 

Classifiers 

1. Handles missing 

values. 

2. Fast training. 

3. Probabilistic 

approach offers 

confidence level. 

1. Assumes 

independence of 

features. 

2. Performance can be 

affected by irrelevant 

features. 

3. Can be biased with 

imbalanced data. 

1. Spam email filtering. 

2. Sentiment analysis. 

3. Predictive 

maintenance. 

4. Weather forecasting. 

5. Health monitoring. 

   k-NN 

1. Simple & intuitive. 

2. No training phase. 

3. Adapts easily to 

changes. 

1. Computationally 

intensive. 

2. Sensitive to irrelevant 

features. 

3. Requires meaningful  

3. distance function. 

1. Activity recognition. 

2. Image recognition on 

edge devices. 

3. Recommendation 

systems. 

4. Gesture recognition. 

5. Anomaly detection in 

networks. 
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Table 2.7: Comparative analysis of classification methods for energy management in 

relation to EoT 

 

SVM 

1. Effective in high 

dimensional spaces. 

2. Uses a subset of 

training points. 

3. Robust against 

overfitting. 

1. Not suitable for large 

datasets. 

2. Sensitive to noise. 

3. Choice of kernel can 

be critical. 

1. Image classification. 

2. Handwriting 

recognition. 

3. Bioinformatics 

applications. 

4. Video surveillance. 

5. Fault diagnosis. 

Logistic 

Regression 

1. Fast training and 

prediction. 

2. Probabilistic results. 

3. Can be regularized 

to avoid overfitting. 

1. Assumes linearity 

between variables. 

2. Can struggle with 

non-linear boundaries. 

3. Sensitive to high 

correlation variables. 

1. Predicting equipment 

failure. 

2. User preference 

predictions. 

3. Financial forecasting. 

4. Traffic analysis. 

5. Environmental 

monitoring. 

Ensemble 

Methods 

1. Boosts 

performance. 

2. Reduces overfitting. 

3. Handles missing 

data. 

1. Can be 

computationally 

intensive. 

2. More complex than 

individual models. 

3. Choice of base 

models can impact 

performance. 

1. Critical system 

monitoring. 

2. Enhanced image 

recognition. 

3. Data fusion from 

multiple sensors. 

4. Robust speech 

recognition. 

5. Advanced anomaly 

detection. 

Neural 

Networks 

1. Can model non- 

linear boundaries. 

2. Adaptable to 

different tasks. 

3. Can learn from raw 

data. 

1. Requires large 

datasets. 

2. Black-box nature. 

3. Computationally 

intensive. 

1. On-device speech 

recognition. 

2. Real-time video 

analysis.  

3. Smart home 

automation. 

4. On-device language 

translation. 

5. Advanced health 

monitoring. 
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LDA 

1. Reduces 

dimensionality. 

2. Assumes equal 

covariance for all 

classes. 

3. Optimal for 

Gaussian distributed 

data. 

1. Assumes linear 

boundaries. 

2. Sensitive to outliers. 

3. Assumes features are 

statistically independent. 

1. Face recognition. 

2. Biometric 

verification. 

3. Pattern classification 

in signals. 

4. Real-time motion 

sensing. 

5. Environment pattern 

detection. 

QDA 

1. Can model 

quadratic boundaries. 

2. More flexible than 

LDA. 

3. Good for non-linear 

separable classes. 

1. Requires estimation 

of more parameters than 

LDA. 

2. Can overfit in high 

dimensions. 

3. Assumes features are 

statistically independent. 

1. Non-linear pattern 

recognition. 

2. Advanced bio-signal 

classification. 

3. Complex motion 

detection. 

4. Adaptive user- 

interface designs. 

5. Sound pattern 

analysis. 

Anomaly 

Detection 

Based 

Classifiers 

1. Detects new unseen 

patterns. 

2. Works without 

labeled data. 

3. Adaptable to 

changes in data 

patterns. 

1. High false-alarm rate. 

2. Requires good 

feature engineering. 

3. Sensitive to data 

scaling. 

1. Intrusion detection 

systems. 

2. Fraud detection. 

3. System health 

monitoring. 

4. Fault detection in 

machinery. 

5. Quality control in 

 manufacturing. 
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Rule-Based 1. Highly 1. Can become very 1. Expert systems in 

Classifiers interpretable. complex. critical operations. 

 2. Can encode expert 2. Can be sensitive to 2. Customizable user 

 knowledge. noise in data. preferences. 

 3. Adaptable to 3. Might not capture all 3. Automated 

 changing complexities. troubleshooting. 

 environments.  4. Personalized content 

   delivery. 

   5. Environment-aware 

   device management. 

Nearest 1. Computationally 1. Assumes 1. Quick initial 

Centroid efficient. homogeneous class classifications. 

Classifier 2. Simple and distributions. 2. Scalable user 

 intuitive. 2. Sensitive to outliers. segmentation. 

 3. Scales well with 3. Assumes linear class 3. Resource allocation 

 large datasets. boundaries. based on device types. 

   4. Efficient initial 

image 

   categorization.  

5. Fast 

   text classification for 

   commands. 

 

Hence, the literature survey has been done keeping all the associated factors into mind for 

understanding the gap in the concerned issue and for identification of tools and technology. 

Based on literature, there are certain Research Gaps which are given below. 

 

1. Sending enormous measure of information to the virtual computing platform causes 

huge overhead in terms of time, throughput, energy utilization, and cost 

 

2. The cloud genuinely situated as extremely far away, so it is hard to achieve desired QoS 

as latency and throughput. 

 

3. Data centers are over-burdened to deal with huge amount of enormous information 

continuously and prompt confronting difficulties, i.e., capacity, security, and investigation 
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4. Distributed computing is difficult to oblige analytic engines for proficient preparation of 

enormous information. 

2.6 Objectives 
 

Keeping in mind the research gaps in the literature, the objectives of the study is given below: 

1. To study and analyse the existing Energy efficient techniques in Edge-of things Ecosystem. 

 
2. To design a framework for smart Energy Management system in Edge of things. 

 
3. To develop an efficient energy scheduling algorithm using distributed learning for the 

proposed framework. 

 

4. To validate and compare the proposed work with the existing techniques in the 

simulation environment 

2.7 Conclusion 

 

Edge of Things (EoT) technology with a focus on energy efficiency highlights the critical 

intersection of cutting-edge IoT developments and the imperative for sustainable energy use. 

This body of research underlines the importance of integrating energy-efficient practices into 

the fabric of EoT technology to not only enhance its operational efficiency but also to 

mitigate its environmental impact. By examining various methodologies, frameworks, and 

case studies, the survey sheds light on the innovative strategies being employed to optimize 

energy consumption without sacrificing performance. It reveals a growing recognition of the 

need for EoT devices and systems to be both technologically advanced and energy-conscious, 

pointing towards a future where energy efficiency is a cornerstone of technological 

development. This synthesis of EoT and energy efficiency research serves as a beacon for 

future investigations, urging continued exploration into how these technologies can evolve 

in harmony with environmental sustainability goals. 

Further, in relation to objectives of the study, the research methodology is proposed in the 

third chapter and then the results and discussion will be given in chapter four. In chapter five, 

the conclusion and future scope of study will be discussed for further extension of the 

research work to be carried out by research communities and organizations for betterment in 

the EoT modules. 
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Chapter 3  

Methodology 

 
3.1 Introduction 

As per recent reports, there has been a significant surge in the burden placed on cloud systems 

for data management and processing. As a result of which, users are facing considerable 

challenges in accessing services within the required time frames, particularly in relation to 

critical projects such as healthcare and monitoring. There are certain application areas, such 

as energy generation and distribution units, nuclear reactor control, Industrial tolls and 

process management, health care etc. where the users cannot tolerate the latency and 

processing of information. Also, it ensures zero tolerance for decision making by the experts 

in order to maintain strict control over the system. The existing literature indicates that 

technological advancements have made the edge of things slightly more advanced in 

addressing problems at local levels. However, there still a dearth in the development of 

strategies and planning for utilizing the edge of things module to facilitate prompt decision- 

making at this level. As per experts, there is need to understand the methodology for 

realization of edge of things concept in real-life scenario. The application area, situation and 

their interlinking of parameters is very important to build the logic for solution.  

 

In the era of the internet of things, health care is such sector where there is need for quick 

monitoring decisions to save the life of human subjects, considering various drastic situations 

such as heart attacks, sudden spikes in heart rate, blood pressure, and abnormalities in other 

anthropogenic parameters[63]. It is very important to understand the EoT on local level for 

advanced research. Edge of Things (EoT) is one of the advanced level processing in relation 

to IoT. The term "Edge of Things" does not have a widely recognized or standardized 

technical meaning in the field of technology or IoT (Internet of Things). However, it is 

possible to interpret the term based on the components "Edge" and "Things" as they relate to 

IoT[180]. 

 

Edge: In IoT, "edge" often refers to edge computing. Edge computing involves processing  

 

and analyzing data on or near the IoT devices or sensors themselves, rather than sending data 
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to a centralized cloud server. This is done to reduce latency, improve real-time decision- 

making, save on bandwidth, enhance data privacy, and provide more efficient data 

processing[140]. 

 

Things: "Things" in IoT typically represent the various interconnected devices and sensors 

that make up the IoT ecosystem. These can include sensors, actuators, cameras, smart 

appliances, industrial machines, and more. 

So, "Edge of Things" could conceptually refer to the intersection or integration of edge 

computing with the diverse array of IoT devices and sensors. It might imply a focus on how 

data is processed and managed at the edge of an IoT network, where devices interact with the 

physical world. 

 

This study aims to highlight a significant medical concern related to patients/ senior citizens. 

It becomes highly imperative to closely observe the physical condition of human subjects to 

provide necessary care and rapid treatment to save their lives. In relation to the well-being of 

patients, there exists three primary tasks, such as: 

1.  Monitoring and observation of physiological signals 

2. Making decisions for treatment 

3. Cure ness of situation. 
 

 

 

Figure 3.1: IoT-based Framework for Healthcare Monitoring 
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The figure 3.1 presents a hierarchical structure of an Internet of Things (IoT) framework 

designed for healthcare monitoring. The layers are organized in a vertical arrangement to 

represent the flow of data from the bottom to the top and the sequence of processing.  

The data from the sensors was acquired at the fundamental level, where numerous health-

related data points are gathered by IoT sensors.  

 

i) Sampling layer is a critical concept in data analysis, focusing on the strategic 

selection of data points either at predetermined intervals or based on specific conditions. This 

method is pivotal in managing vast datasets, especially in scenarios like environmental 

monitoring or real-time analytics, where continuous data collection may not be feasible[181]. 

By collecting data at regular intervals, the approach ensures a manageable yet representative 

dataset over time. Alternatively, condition-based sampling targets specific events, 

significantly reducing unnecessary data accumulation. Once collected, this data undergoes 

further processing for various applications, including predictive analytics or anomaly 

detection. This selective data collection strategy optimizes resource use, balancing the need 

for comprehensive analysis with the constraints of processing capabilities and storage, 

thereby enhancing efficiency and sustainability in data-driven operations[182]. 

 

ii) Data Preprocessing layer encompasses the preliminary procedures involved in 

managing data, including the cleansing, normalization, and preparation of raw data for 

subsequent analysis.  

 

iii) Edge Computing layer refers to the computational operations that occur near the 

data sources, with the aim of minimizing latency and alleviating the burden on central 

servers[183].  

 

iv) Data Integration layer refers to the consolidation of data from several sources into 

a unified dataset, ensuring that all pertinent information is considered during analysis.  

 

v) Machine Learning and AI layer involves the utilization of sophisticated algorithms 

and analytical models to analyze data, potentially offering predicted insights and assisting in 

decision-making.  

 

vi) Scheduling layer is where the system's energy management strategy starts to 
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demonstrate its effectiveness. The system functions conditionally, activating only the 

required sensors to collect further data when an abnormal health reading is detected, while 

keeping the remaining sensors inactive[184]. When all readings are within the usual range, 

most sensors transition into a sleep mode, resulting in a substantial decrease in energy 

consumption. The HRV sensor is the sole exception, as it remains operational to consistently 

observe the patient's condition. It offers crucial data on the autonomic nervous system, which 

is essential for promptly identifying potential health problems[185].  

 

vii) Transmission layer, a protocol for managing energy is implemented. The primary 

function of this layer is to facilitate the seamless transmission of data, while also improving 

communication protocols to minimize energy consumption. The system gives precedence to 

time-sensitive data for quick transmission, while less critical information is transmitted less 

frequently[186]. The communication protocol adjusts according to the system's present 

power state and the importance of the information, guaranteeing minimal energy usage while 

maintaining the promptness and precision of vital health data[185]. 

 

viii) Notification layer facilitates the system's interaction with users, healthcare 

professionals, or automated systems by informing them about important events or necessary 

activities[187].  

 

ix) Report/Analysis layer, involves the creation of reports, visualizations, and in-depth 

analysis that offer meaningful information to healthcare professionals and stakeholders, 

enabling them to act. The stacked picture underscores the significance of every layer in 

converting unprocessed sensor data into significant and actionable insights. 

Keeping in mind the scenario, we have proposed a walking stick or band with Edge of Things 

capability including three primary tasks for advanced level care. This walking stick is one of 

the necessary amenities for an elderly person to freely move here and there. Based on the 

available studies, it has been observed that old-aged people may encounter significant 

challenges while engaging in walking activities, including instances of sudden falling, 

unexpected fluctuations in heart rate variability, and abrupt cessation of cardiac chamber 

function.  

 

To tackle this situation, a very smart and diligent strategy is framed for the solution. A 

wireless module is proposed with thinking capability for real-time processing and 
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observation of data and on the spot decision-making capabilities. This can be possible with 

use of artificial intelligence technology which can be readily integrated to sensor modules for 

critical thinking. Artificial Intelligence (AI) is one of the powerful tools for implementation 

of critical and logical thinking in machines for governing the desired tasks[188]. The artificial 

intelligence system is mimicking the human critical thinking approach to devise solutions to 

complex situations. Earlier, the AI tools were embedded on a central workstation for 

processing of data. For the data to reach the server, clouds were used, but due to enormous 

challenges such as latency, large data packet size, cost, and other factors, it gave boost to 

local level processing of data rather than central or remote area locations[86]. The AI tools 

are now readily available in the comfortable packages in the sensors and processing units for 

perfect decisions in relation to real time data processing. As per application and situation, 

effective planning and strategic implementation are essential so that the machine can do the 

needful with resource utilization. 
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Figure 3.2: Flow chart for development of smart EoT based Waking stick for old age human subjects 

 



80  

The selection of workbench and modules needs rigorous analysis of available modules and 

tools for developing the smart application tools. The flow chart of proposed methodology is 

given in figure 3.2. The modules associated in the flow chart are explained below: 

 

3.2 Sensor Array and database: Sensor is an electronic module that contains a 

transducer mechanism followed by a processing unit for generation of data with respect to 

the stimulation of the parameters to be measured. The fundamental objective of a transducer 

mechanism is to facilitate the conversion of energy from one form to another (preferably an 

electrical signal). The processing unit is one of the key sections where the signal is pre- 

processed to produce the desired data[189]. After transduction in a sensor, the signal typically 

undergoes several pre-processing steps to prepare it for further analysis. The heterogeneous 

process of sensing module is very important to understand and is given below: 

 

1. Buffering and Amplification: Transducers, which convert one form of energy to 

another, often generate signals that are very weak for direct processing by subsequent 

sections. Buffering, provides an intermediary stage, which is liable for effectively preventing 

the weakening of these signals due to the input characteristics of later stages[190]. 

Subsequently, the amplification circuitry increases the amplitude of this signal, making it 

more conducive for further processing. These two steps are fundamental in ensuring the 

integrity and usability of the sensor's output. 

 

2. Filtering: It has been observed that the real-world signals are often contaminated with 

unwanted frequencies or noise. So, the process of filtering refines these signals either by 

removing or attenuating the amplitude of the undesired components. Low- frequency drifts 

have the potential to induce a baseline shift, thereby masking the true signals. High-frequency 

noise can obscure details and cause false triggers in digital systems[191]. 

 

3. Analog-to-Digital Conversion (ADC): As per demand of digital processing, if the 

sensor's output is analog, it needs to be converted into digital form. The ADC performs this 

operation through a two-step process. First is the process of sampling, which involves 

capturing the amplitude of an analog signal at specified intervals of time, and second is the 

process of quantization, which assigns a digital value to each sampled amplitude in the binary 

form of zero and one[192]. 
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4. Normalization: Signals can vary in amplitude based on the conditions and the sensor's 

characteristics. Normalization scales the signal to a consistent range (often between 0 and 1), 

making it easier to compare and analyze, especially in digital systems. 

 

5. Baseline Correction: Under different conditions, sensors might introduce an offset or 

drift in the signal. Baseline correction is a technique used to mitigate the influence of baseline 

shifts in a signal, thereby, ensuring that the signal remains centered around a 'zero' or baseline 

value. 

 

6. Calibration: To ensure that a sensor's output truly represents the real-world value its 

measuring, regular calibration is necessary. The sensor's output may deviate from accurate 

values due to several factors such as environmental changes, sensor age, or other changes. 

Calibration thus aligns the sensor's output with known and recognized standards[193]. 

 

7. Denoising, Rectification, and Feature Extraction: In some advanced applications, 

further refinement of the signal is required. Denoising techniques aim to enhance the quality 

of a signal by effectively minimizing any residual noise[194]. Further, rectification (making 

all values positive) is often used in applications like electromyography, where the focus is on 

signal power or magnitude rather than its polarity. Feature extraction is essential in 

applications like machine learning, where specific characteristics or patterns in the signal are 

more important than the complete signal itself. So, the pre-processing of signals after 

transduction in sensors ensures that the raw data is refined, standardized, and made suitable 

for subsequent stages of processing or analysis[195]. Each of these phases plays a significant 

role in improving the quality, accuracy, and usefulness of the sensor's output. 

 

In this study, the health parameters of human subjects, such as Pulse Rate, Heart Rate 

Variability (HRV), Blood Sugar level, Oxygen blood saturation (SpO2), Blood pressure 

level, were collected from Guru Nanak Charitable Trust, Jalandhar (Pb) for preparation of 

multi entity-based database. In conjunction with biomedical signals, the data of 

distance, Accelerometer data and body temperature was also measured with the use of 

concerned sensors. From the period of April 2022 to December 2023, the data set of more 

than 40,000 entities for each parameter was prepared for machine learning and testing of 

algorithms. It is mandatory to understand the signal types and ranges for development of 

control checks. The various biomedical signals in relation to patients under observation are 

discussed below: 
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3.2.1 Heart Rate measurement 

 

Heart rate is the frequency at which the heart beats per minute (bpm). As per medical experts, 

it is a significant determinant of health in human subjects, especially old people. Measuring 

the pulse rate can provide valuable information about a person's cardiovascular health. The 

normal resting heart rate for older person varies from 60 to 100 bpm. Heart rate can be 

influenced by a multitude of factors, including activity level, fitness level, air temperature, 

body position, emotions, body size, and medication use. It is important to acknowledge that 

although the conventional range for a typical resting heart rate falls between 60 and 100 beats 

per minute (bpm), many healthy individuals have a resting heart rate outside of this range. If 

someone is concerned about their heart rate or if they notice sudden, unexplained changes, 

they should immediately seek medical advice[94]. As per research, there are various factors 

that are responsible for Pulse Rate variability in patients or old age, such as 

 Physical Activity: Exercise or any physical exertion can increase the pulse rate. 

 
 Body Temperature: Fever can elevate the heart rate. 

 
 Emotions: Stress, anxiety, and excitement can raise the pulse rate. 

 
 Medications: Some drugs can either elevate or lower the heart rate. 

 
 Age: Typically, younger people have a faster resting heart rate than older individuals 

 
 Body Size: Body size can influence heart rate, but the relationship is not straightforward. 

 Health Conditions: Conditions like anemia, hyperthyroidism, and others can influence 

pulse rate. 

Pulse rate is measured by an Optical Infrared sensor. The primary mechanism of a tiny pulse 

meter sensor is photoplethysmography (PPG). PPG sensors operate by emitting light (usually 

green LEDs, but other wavelengths can also be used) onto the skin. The amount of light that 

the blood absorbs changes as it circulates through the vessels. The light that is not absorbed 

is reflected by the photodetectors in the sensor. By measuring these changes in reflected light, 

the sensor can determine the pulsatile variations caused by the heart's pumping action, 

allowing it to calculate heart rate[109]. Figure 3.3 shows the MIR’s multifunctional Pulse 

oximeter with SpO2 measuring device: 
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Figure 3.3: MIR’s Pulse oximeter with SpO2 measuring sensor 
 

3.2.2 Blood sugar level measurement 

 

Blood sugar levels in patients under observation can be influenced by a range of factors that 

differ from those affecting younger individuals. Sometimes, the medical disbalance can lead 

to changes in glucose metabolism, and patients may have a higher prevalence of type 2 

diabetes or other metabolic disorders. Understanding and managing blood sugar levels in this 

population is crucial for their overall health and well-being. It has been observed that the 

insulin resistance can increase in patients, even in those without diabetes. This implies that 

the human body may exhibit reduced responsiveness to insulin, resulting in elevated levels 

of glucose in the bloodstream[196]. The risk of developing type 2 diabetes thus increases 

with medical condition/ age. 

Factors affecting blood sugar levels in older adults: 

 

 Medications: Patients often take multiple medications for various conditions. Some of 

these medications might impact blood glucose levels, either increasing or decreasing them. 

 Coexisting Health Conditions: Conditions like kidney disease, thyroid disorders, or 

liver issues can also influence blood sugar control. Additionally, cognitive decline or 
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dementia can impact an individual's ability to manage their diabetes effectively. 

 Decreased Physical Activity: Reduced mobility or physical activity can lead to 

increased insulin resistance, making it harder to control blood sugar levels. 

 Dietary Changes: Patients might have altered diets due to difficulties in chewing, 

digestion issues, or other age-related factors, which can influence blood sugar levels. 

 Weight Changes: Unintended weight loss can be common in patients, which might 

impact blood sugar levels and medication requirements. 

Glucose, commonly referred to as blood sugar, plays a vital role in numerous cellular 

processes, with the brain being particularly reliant on glucose as its principal source of 

energy. Hypoglycemia, characterized by abnormally low blood sugar levels, poses a 

significant risk to an individual's life if not properly addressed. The specific threshold for 

hypoglycemia can vary among different health organizations and can be influenced by 

contextual factors such as the treatment of diabetes[109]. However, hypoglycemia is 

generally defined as a blood sugar level below 70 mg/dL (3.9 mmol/L). The symptoms and 

severity of hypoglycemia can vary based on how low the glucose level drops. Mild 

Hypoglycemia typically starts at blood sugar levels slightly below 70 mg/dL (3.9 mmol/L). 

The Symptoms includes Trembling or shaking, Sweating, Hunger or Palpitations. In the care 

of moderate Hypoglycemia, the levels continue to drop, additional symptoms might manifest 

such as Mood changes, like irritability, Fatigue, Blurred vision, Difficulty concentrating at 

work. The case is severe hypoglycemia in which the level of blood sugar falls below 40 

mg/dL (2.2 mmol/L) but can vary among individuals. At this stage, neurological symptoms 

become pronounced due to the brain's decreased glucose supply, which includes confusion 

or disorientation, Seizures, Loss of consciousness or coma[196]. As per medical 

practitioners, severe hypoglycemia in the absence of prompt treatment can lead to permanent 

brain damage or death. So, it is essential to understand that, while these are general 

thresholds, the exact level at which someone might experience symptoms can vary. Some 

individuals, especially those with a history of recurrent hypoglycemia or long-standing 

diabetes, may have "hypoglycemia unawareness" where typical symptoms are blunted, and 

severe symptoms can arise without much warning. 

3.2.3  Oxygen blood saturation (SpO2) 

 

SpO2 represents the percentage of hemoglobin binding sites in the bloodstream occupied by 
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oxygen. It is an essential metric in assessing the oxygenation status of patients. In a healthy 

individual, normal oxygen saturation levels usually range from 95% to 100%. The optical 

pulse oximeter is used to measure the oxygen blood level[63]. In patients, several factors and 

age-related physiological changes can impact oxygen saturation such as 

 Respiratory System Changes: As per condition of patients, there will be a decrement 

in lung elasticity, diaphragmatic strength, and thoracic cage flexibility. Additionally, the 

number of functional alveoli, the tiny air sacs are responsible for gas exchange, decreases. 

These changes can reduce overall lung function and oxygen exchange efficiency. 

 Decreased Cardiac Efficiency: It has been observed by the medical practitioners that 

the age-related changes in the cardiovascular system, such as reduced cardiac output, can 

impact the ability to circulate oxygen-rich blood efficiently throughout the body[187]. 

 Diseases and Co-morbidities: Sometimes, the patients are more susceptible to 

chronic diseases like Chronic Obstructive Pulmonary Disease (COPD), heart failure, 

pneumonia, and other respiratory infections, which can compromise oxygen saturation levels. 

 Decreased Activity Levels: Reduced mobility and activity can lead to decreased 

respiratory muscle strength and overall respiratory function. 

 Medications: Some medications are common in patients under medical observation, 

like certain sedatives can suppress respiratory drive and impact oxygenation. 

 Sleep Disorders: Conditions like sleep apnea, more prevalent in older adults, can lead 

to intermittent drops in oxygen levels during sleep. 

 Sarcopenia: This refers to the loss of muscle mass with aging, which can also involve 

respiratory muscles, further affecting breathing and oxygenation. 

It is imperative to acknowledge that age-related physiological changes may have an impact 

on respiratory function and oxygen saturation levels. However, it is crucial to seek medical 

assessment if an individual consistently exhibits a SpO2 reading below 95%. Hypoxemia, a 

condition characterized by reduced oxygen saturation, can lead to symptoms like shortness 

of breath, confusion, cyanosis (bluish discoloration of the skin), and increased heart rate. 

Chronic hypoxemia can have detrimental effects on organs and overall health. Regular check- 

ups, pulmonary function tests, and other diagnostic evaluations can help in the early detection 

and management of respiratory issues[196]. Proper management of chronic diseases, 

avoiding smoking, staying active, and getting vaccinations (like the flu and pneumonia 
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vaccines) are strategies to help maintain better lung health in old age. 

 

3.2.4  Blood pressure level 

 

Blood pressure (BP) is a critical vital sign that measures the force of blood against the walls 

of the arteries as the heart pumps it around the body. As per medical condition, the arterial 

walls tend to become stiffer, which can lead to increased blood pressure. Nevertheless, it is 

worth noting that patients’ individuals are also susceptible to low blood pressure, particularly 

a condition known as postural hypotension[63]. This condition entails a decline in blood 

pressure especially when standing up from a sitting or lying position. Here are general blood 

pressure categories as outlined by the American College of Cardiology (ACC) and the 

American Heart Association (AHA). The range of normal blood pressure varies from Systolic 

(upper number): Less than 120 mm Hg to Diastolic (lower number): Less than 80 mm Hg. In 

case of elevated blood pressure, the range varies from Systolic: 120-129 mm Hg to Diastolic: 

Less than 80 mm Hg. Similarly, in the case of Hypertension Stage, the range of blood 

pressure varies from Systolic: 130-139 mm Hg to Diastolic: 80-89 mm Hg. In worst 

conditions, such as Hypertensive Crisis, the range of blood pressure varies from Systolic: 

Over 180 mm Hg to Diastolic: Over 120 mm Hg. 

From the research findings, it has been observed that patients who have hypertension and are 

at a paramount risk of cardiovascular disease, as determined by other risk factors or pre-

existing disorders, are typically advised to maintain a blood pressure target below 130/80 

mm Hg. Likewise, those who fall within the age group of 65 years and beyond, and who 

possess a lower risk profile or have concerns about the tolerability of medication, may find 

it suitable to choose a more conservative blood pressure target, such as maintaining levels 

below 140/90 mm Hg. It is essential to recognize that these are general guidelines, and 

individual targets should be set in collaboration with a healthcare provider. Factors that might 

influence the ideal blood pressure target in patients include overall health status, the presence 

of other medical conditions, the risk of side effects from antihypertensive medications, and 

life expectancy[110]. It has been observed from the patients, that the indications of 

hypotension, such as vertigo or a sensation of faintness, particularly upon standing. The 

presence of postural (or orthostatic) hypotension, necessitating the implementation of an 

appropriate therapeutic strategy. 
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3.2.5  Distance Sensor 

 

The distance sensor, which is also known as a range sensor or proximity sensor, is a device 

that measures the distance or proximity to an object without making physical contact with it. 

These sensors can operate over various ranges, from a few millimeters to several meters, and 

their applications span a wide variety of domains, from industrial automation to robotics, 

automotive safety systems, and everyday consumer electronics. There are various physical 

mechanisms by which the distance sensor works. Each method has various parameters in 

terms of instrumentation, cost, and power consumption (depending on the project)[197]. 

Electronic distance sensors are widely used to measure the distance to an object using 

electronic principles such as reflection and refraction of light. Different types of electronic 

distance sensors employ different techniques and principles to gauge distances. The methods 

are discussed below. 

 

1. Ultrasonic Distance Sensor 

 

These sensors work based on the reflection of ultrasonic sound waves. The sensor is equipped 

with both a transmitting component and a receiving component. The transmitter emits an 

ultrasonic sound wave. This sound wave travels through the air and hits an object. After 

striking the object, the sound wave is reflected and captured by the receiver[110]. The time 

taken for the wave to propagate to the object and return is computed to obtain the 

measurement. 

2. Infrared (IR) Proximity Sensor 

 

These sensors operate using infrared light, relying on either reflection or interruption of the 

light. An IR LED emits infrared light. When employing a reflection-based technique, the 

incident light undergoes reflection when encountering an object, subsequently gets detected 

by an infrared (IR) photodiode or phototransistor[198]. The magnitude of the received light 

can serve as an indicator of distance, as objects in closer proximity tend to exhibit a higher 

degree of light reflection. 

3. Laser Distance Sensor (Time-of-Flight) 

 
In this sensor module, a laser is used to measure the time taken by light to travel to an object, 

its subsequent reflection, and then its subsequent return. A laser diode emits a beam of light 
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towards the target. The light hits the target and thereafter reflects on the receiver of the sensor. 

The photodetector is responsible for capturing the light that has been reflected. By measuring 

the time, it takes for the light to travel and return (the "time of flight"), the sensor can 

determine the distance. This is because light travels at a constant speed[199]. 

4. Capacitive Proximity Sensor 

 
The presence of an object can change the capacitance of a sensor's electric field. An 

oscillating circuit generates an electric field. When an object approaches or contacts the 

sensor, it modifies the capacitance of the field[187]. This change is identified and 

subsequently analyzed to ascertain the object’s presence and its potential distance. 

5. Inductive Proximity Sensor 

 
This sensor detects metallic objects based on changes in an electromagnetic field. The sensor 

has a coil that generates an electromagnetic field. When a metallic object approaches the 

sensor, it induces eddy currents in the object. These eddy currents alter the sensor's original 

electromagnetic field. The change in the field can be detected, signaling the presence of the 

metallic object. The unprocessed and raw data obtained from various sensors is often 

subjected to internal electronic circuitry for the purpose of converting it into a more practical 

and meaningful format[63]. This can be a digital signal, an analog voltage proportional to the 

distance, or even a specific value read out on a display. The exact nature of the output depends 

on the sensor's design and its intended application. The distance sensor used in this study is 

HC-SR04 ultra-low power ultrasonic sensor shown in figure 3.4. This sensor has three 

consecutive steps to measure the distance reading in meter. The range of this sensor varies 

from 80 to 90 meters. 

i) Emission & Reception: Most distance sensors work on a simple principle where they 

emit some form of energy (e.g., sound waves, light, or electromagnetic fields) and then 

measure the energy that is reflected or the interruption of this energy. 

ii) Distance Calculation: Once the reflected energy is received, the sensor processes this 

data to calculate the distance. This is often done by measuring the time between emission and 

reception (as in ultrasonic or laser time-of-flight sensors) or by gauging the intensity of the 

returned signal[196]. 

iii) Output: Once the distance is calculated, the sensor outputs this data in a form that can 

be read by other devices or controllers, such as a voltage, current, digital signal, or even a 
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direct readout. 

 

Figure 3.4: The ultrasonic sensor for distance measurement in meters 

 

3.2.6 Accelerometer 

 
An accelerometer is an electronic device that measures proper acceleration, which is the 

acceleration experienced relative to free fall. An electronic accelerometer translates 

mechanical motion into an electronic signal that systems other electronic systems can process 

and understand. It can directly measure any accelerative forces applied to the object (it is 

attached). Accelerometers are commonly utilized in electronic systems, particularly in the 

form of microelectromechanical systems (MEMS). These devices have gained extensive 

popularity and are extensively employed in a range of applications such as smartphones, 

fitness trackers, automotive systems, and several other domains[109]. Most MEMS 

accelerometers are made using silicon micro-machining technology. They have a mass (or 

"proof mass") suspended by tiny beams inside a small chip. This mass is free to move (to a 

certain extent) within the chip when accelerative forces act upon it. When the accelerometer 

experiences an acceleration, due to Newton's second law, the proof mass inside exhibits a 

tendency to maintain its position while the rest of the chip moves causing the mass to displace 

relative to its immediate surroundings. This displacement due to external acceleration causes 

stresses in the tiny beams that suspend the mass[94]. There are various electronic mechanisms 

to measure acceleration: 

i) Capacitive Sensing 

 
This is the most common method used in MEMS accelerometers. The proof mass and its 

surrounding structure form a set of capacitors. As the mass moves due to acceleration, the 
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distance between the plates of these capacitors’ changes, causing a change in capacitance. 

By measuring this change in capacitance, the displacement (and therefore the acceleration) 

can be determined[63]. 

ii) Piezoresistive Sensing 

 
The small beams or structures that suspend the proof mass have piezoresistive properties, 

meaning their resistance changes when they are mechanically deformed. As the mass moves 

and causes stress in these beams, the change in their resistance is measured, which can then 

be correlated to the acceleration. There are other, less common sensing mechanisms like 

piezoelectric or thermal bubble-based accelerometers. The raw signals obtained from the 

sensing mechanisms, such as variations in capacitance or resistance, tend to be rather low in 

magnitude. Therefore, to enhance their strength and facilitate further analysis, these signals 

are amplified and subjected to processing either through on-chip or external circuitry. This 

processing can involve analog-to-digital conversion, noise filtering, and other signal 

conditioning to produce a usable output. Most basic accelerometers can measure acceleration 

in one direction or axis. However, many modern devices combine multiple accelerometers to 

measure acceleration in two (X and Y) or three (X, Y, and Z) axes. The application includes 

certain areas such as Motion Detection, Gesture Recognition, Vehicle Dynamics, Fitness 

Tracking, wearable devices to track steps and other activities[187]. 

 

Figure 3.5: ADXL345 3-Axis Digital Accelerometer Sensor 

 



91  

In this study, ADXL345 3-Axis Digital Accelerometer Sensor (Figure 3.5) is used to measure 

the data. 

 
3.2.7 Wireless Module (LoRA based Transmitter and Receiver) 

 
LoRa (Long Range) is a modulation technique and a protocol for wireless communication 

that allows long-range data transmission with low power consumption. It is particularly 

popular for Internet of Things (IoT) applications due to its ability to support long-range 

communications while using minimal power. LoRa technology operates within the sub- 

gigahertz frequency range, exhibiting a distinctive modulation technique that confers 

resistance to interference and enables long-range transmission capabilities[198]. 

 

LoRa Transmitter 

 

A LoRa transmitter is a device or module that sends out data using the LoRa modulation 

technique. It encodes and transmits the data over the radio frequency (RF) spectrum using 

LoRa's unique spread spectrum modulation. This modulation spreads the information across 

a wide frequency bandwidth, which makes the transmission more resistant to noise, 

interference, and fading. Its functionality includes Encoding the data for transmission, 

Modulating the data using the LoRa spread spectrum technique, Transmitting the modulated 

data over the RF spectrum[200]. 

 

LoRa Receiver 

 
A LoRa receiver is a device or module designed to detect and decode data transmitted by a 

LoRa transmitter. The demodulation process of the LoRa receiver is essential for precisely 

retrieving the data, as it operates within the same frequency bandwidth utilized during the 

transmission, owing to the spread spectrum characteristics of LoRa. Its functionality involves 

the process of capturing RF signals from the surrounding environment, demodulating the 

LoRa spread spectrum signal to extract the original data, and subsequently decoding and 

transmitting this retrieved data to subsequent systems or applications[201]. In this study, 

LoRA 915MHz Shield-TTGO T-SIM7000G Module is used for establishment of Transceiver 

communication (Figure 3.6). The specification of LoRA module is given below: 

1. Modulation Technique 
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TTGO T-SIM7000G LoRa uses a modulation technique called Chirp Spread Spectrum 

(CSS), which is a derivative of spread spectrum modulation. CSS improves signal robustness 

by reducing the impact of interference, hence facilitating more accurate detection, even in 

the presence of noise on the communication channels. This modulation technique allows 

LoRa to provide a trade-off between range and data rate. The LoRa technology has the 

capability to dynamically adjust its data rates by changing the spreading factor (SF), which 

serves as a key component inside the CSS modulation[198]. Higher spreading factors 

increase the time on air and range but reduce the data rate, and vice versa. 

 

2. Frequency Bands 

 

LoRa typically operates in license-free sub-gigahertz frequency bands, like 868 MHz in 

Europe and 915 MHz in North America. These bands are less crowded than the 2.4 GHz 

band, which is widely used by Wi-Fi, Bluetooth. 

3. Long Range 

 

LoRa can achieve extremely long ranges, often several kilometers in urban areas and tens of 

kilometer’s in less dense areas. The long range is achieved by its robust modulation technique 

and the ability to detect very weak signals. 

 

 
Figure 3.6: LoRA Transceiver module 
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4. Low Power 

 
TTGO T-SIM7000G LoRa devices have been specifically designed to optimize energy 

efficiency. Depending on the specific application and frequency of usage, these devices have 

the capability to operate on small batteries for extended periods of time. This makes them 

ideal for remote sensors or devices that are challenging to access and service regularly 

. 

5. Adaptive Data Rates 

 
LoRa devices can adjust their data rates based on the signal quality and range. This 

adaptability ensures a balance between communication speed and range, optimizing for the 

current conditions. 

 

6. Network Structure 

 
In TTGO T-SIM7000G-Lora module, a typical Lora WAN network is used which supports 

multiple end-node devices to communicate with gateways. These gateways are connected to 

a network server that manages the network[202]. The data collected by devices is aggregated 

by the gateway and transmitted to a centralized system, such as a cloud server, for the purpose 

of analysis and computation. 

7. Security: 

 

Lora WAN includes built-in encryption. It uses AES-128 encryption to ensure data security, 

device identity, and network integrity. 

8. Collaborative Channels 

 

LoRa can use multiple channels simultaneously, increasing the system's capacity. If a channel 

becomes congested or noisy, LoRa devices can switch to a cleaner channel. So, the 

combination of the Chirp Spread Spectrum modulation, adaptive data rates, low power 

design, and multi-channel capability allows LoRa to offer long-range, energy-efficient 

wireless communication for various IoT applications[198]. Whether its agricultural sensors 

spread across vast farms, water meters in city infrastructure, or tracking devices on wildlife, 

LoRa offers a compelling solution for situations where range and battery life are paramount. 
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3.3  Machine Learning based Algorithms 

 
As shown in figure 3.1, the data of sensors is communicated by Lora transceivers to load the 

data on local processing units. The local processing unit contains data validation and machine 

learning based algorithms to effectively process the information according to conditionals 

traps and then generates output based on the hierarchy and rank of classified parametric 

information. Figure 3.7 depicts the flowchart illustrating the process of machine learning 

based processing. Machine learning (ML) is a subfield of artificial intelligence (AI) focused 

on the development of algorithms that allow computers to learn from and make decisions or 

predictions based on data. Instead of being explicitly programmed to perform a task, a 

machine learning model uses patterns in data to make informed decisions[133]. Research 

reports have indicated various classification methods. However, upon comparison, it has 

been found that the random forest, decision tree and Support Vector Machine algorithms are 

the methods which are widely and extensively employed due to their distinct qualities and as 

per nature of data collected in this study. 

 

A Decision Tree is a flowchart-like structure where each internal node represents a feature, 

the branch signifies a decision rule, and each leaf node indicates an outcome. Decision Trees, 

although conceptually clear and visually intuitive, frequently exhibit a tendency to overfit, 

particularly when they possess a significant depth thereby leading to poor generalization on 

new data[164]. 

 

On the other hand, a Random Forest is an ensemble method that generates a 'forest' of 

multiple decision trees. Instead of relying on a single tree, it aggregates the predictions of 

numerous trees, each trained on a random subset of the data[203]. This process typically 

makes Random Forests more accurate and less susceptible to overfitting compared to a single 

Decision Tree.  

 

A Support Vector Machine (SVM) is a powerful and versatile supervised learning algorithm 

used for classification and regression tasks. It works by finding the hyperplane that best 

divides a dataset into classes. The core principle of SVM is to identify the optimal separating 

hyperplane which maximizes the margin between different classes. Data points closest to the 

hyperplane on either side, known as support vectors, are crucial in defining the hyperplane 

and thus the decision boundary. SVMs are particularly effective in high-dimensional spaces 
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and are versatile as they can accommodate different types of kernel functions to handle non-

linearly separable data[175]. However, choosing the right kernel and tuning parameters like 

the penalty parameter C and the kernel-specific parameters can be complex, and SVMs can 

become less effective if the data is very noisy or the number of features far exceeds the 

number of samples, potentially leading to overfitting. 

 

However, the trade-off is increased complexity, as visualizing or interpreting the entire forest 

becomes impractical. Furthermore, it should be noted that Decision Trees exhibit 

determinism, since they consistently generate the same structure when applied to a specific 

dataset. On the other hand, Random Forests and SVM possess an inherent unpredictability 

that can lead to variations in their structure, unless the random seed is set to a fixed value. 

Despite their added complexity, the robustness and superior performance, Random Forests 

are often preferred choice in various applications over Decision Trees algorithm and SVM 

due to best space time complexity than other algorithms[203]. 
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Figure 3.7: Flow chart of Machine learning based algorithm 

for task scheduling and execution 

 

In this study the following algorithm steps are adopted to initialize the energy efficient 

EoT application in relation to local server-based computing. 
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The received data is further processed by random forest, decision tree and SVM classification 

methods. The algorithm of these classification methods is implemented on local server. The 

algorithm works by building many decision trees, each of which is trained on a different 

subset of the data using a random subset of features. During training, each decision tree learns 

to make a prediction by recursively splitting the data into smaller subsets based on the 

selected features and their values. The process of splitting persists until a predetermined 

stopping criterion is met, which may include reaching the maximum depth of the tree or 

having a minimum number of samples necessary to perform a split[204]. Once, the 

algorithms were trained, the processing time and accuracy will be calculated. After that based 

on the threshold of accuracy and relative time consumption conditions, the best algorithms 

will be selected to make predictions on new data. The decision tree algorithm predicts the 

output value based on the input features, and the final output is determined by taking the 

majority vote of all the predictions.  

 

As per literature, one of the benefits associated with employing a random forest model is its 

reduced susceptibility to overfitting in comparison to a other classifiers. The reason for this 

is that the model averages the predictions of multiple trees, which serves to mitigate the 

variability in the predictions, thereby enhancing the model's overall performance. 
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Furthermore, the utilization of random feature selection throughout the training process 

enhances the model's resilience to noise present in the input data. Random forest models are 

widely used in a variety of machine learning tasks, such as predicting customer churn, 

detecting fraudulent transactions, and classifying images. They are a powerful and versatile 

algorithm that can handle both numerical and categorical data and can be easily parallelized 

to handle large datasets. The max_depth parameter controls the maximum depth of each 

decision tree in the random forest. It helps to prevent overfitting by limiting the number of 

splits each tree can make. A higher max_depth may result in a more complex model, but it 

may also increase the risk of overfitting. The parameter of the estimator determines the 

quantity of decision trees to be included in the random forest[203].  

 

A higher number of trees may improve the accuracy of the model, but it may also increase 

the computational cost and slow down the training process. Both hyperparameters should be 

chosen carefully to balance model complexity, accuracy, and computational resources. In 

general, increasing max_depth and estimators may lead to better performance, but it is 

important to avoid overfitting and to consider the trade-off between accuracy and 

computational cost. A decision tree model is a type of supervised learning algorithm that is 

used for classification and regression tasks. It works by dividing the input data into smaller 

subsets based on the values of selected features. The decision tree consists of nodes that 

represent features, branches that represent decisions, and leaves that represent the outcome 

or class label.  

 

During training, the algorithm selects the best feature to split the data based on a criterion 

such as information gain. The chosen attribute is employed to generate a new node inside the 

tree, wherein the dataset is divided into smaller subsets based on the values associated with 

said attribute[203]. This process is repeated recursively for each subset until a stopping 

criterion is met, such as a maximum depth or a minimum number of samples per leaf. At this 

point, the tree is complete, and the final class label is assigned to each leaf based on the 

majority vote of the samples in that leaf. During prediction, the input data is passed down the 

tree, and each decision node makes a binary decision based on the value of the corresponding 

feature. The prediction is made at the leaf node based on the majority class label of the 

samples in that leaf. Decision trees have gained wide popularity due to their interpretability 

and ability to handle both categorical and numerical data. Nevertheless, the decision tree 

model is susceptible to overfitting when the tree depth is excessive or when the halting 



99  

condition is inadequately defined.  

 

To overcome this problem, ensemble methods such as random forest or gradient boosting 

can be used to combine multiple decision trees and improve the performance of the model. 

The max_depth parameter is a hyperparameter that controls the maximum depth of a decision 

tree. The depth of a decision tree refers to the length of the longest path from the root node 

to a leaf node. Setting the max_depth parameter to a high value in a decision tree model can 

result in overfitting, where the model becomes excessively tailored to the training data. This 

can lead to the inclusion of noise and outliers that are unique to the training data but do not 

generalize well to new and unseen data[205]. On the other hand, if the max_depth is set too 

low, the decision tree may be too simple and perhaps leading to an inadequate representation 

of crucial patterns within the dataset. Hence, it is very important to be extremely careful while 

determining the max_depth parameter, to strike a balance between underfitting and 

overfitting. Overall, the max_depth hyperparameter controls the complexity of a decision tree 

and can be used to balance bias and variance in the model. The training and testing of these 

algorithms has been done in various steps. The methods are explained below: 

 

1. Out-of-Bag (OOB) Error Estimation: An interesting aspect of Random Forest is its 

built-in method for testing called OOB error estimation. Since each tree is trained on a 

bootstrap sample, only about two-thirds of the training data is used for any given tree. The 

remaining one-third, which is not used during training, can serve as a test set. These left-out 

data points are called "out-of-bag" samples. By running these OOB samples through each 

tree and aggregating predictions, we can get an estimate of the test error without a separate 

validation set. 

 

2. Validation/Test Set: Like any other machine learning model, you can split your dataset 

into training and test (or validation) sets. Once the Random Forest model has been trained 

using the training set, it is possible to assess its performance by evaluating its predictions on 

the test set, which consists of data that the model has not been exposed to during the training 

phase[133]. Common metrics for evaluation in classification tasks include accuracy, 

precision, recall, F1-score, ROC-AUC, etc. 

 

3. Feature Importance: After training, Random Forest can provide a measure of feature 
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importance. This indicates which features are the most influential in making accurate 

predictions[164]. This can prove to be particularly advantageous for comprehending the 

model and for feature selection in datasets with a high number of dimensions. 

 

4. Interpretation: While individual decision trees are interpretable, a Random Forest, 

being an ensemble of many trees, is harder to interpret directly[172]. However, tools and 

methods like SHAP (Shapley Additive explanation) and partial dependence plots can help 

provide insights into the model's decision-making process. Figure 3.8 shows the algorithm 

where the conditional sets are performed on piece of data received from the sensors. 

For energy savings, the sensor data has been prioritized according to importance and integrity 

in relation to health of elderly people[199]. In a consecutive way, the iterations are performed 

to detect and execute the alarm of necessary information to be passed to a remote location. 

The information, as soon as received, thus enables the doctor/receiver to take immediate 

action as per the demand of the situation[197]. 
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 Figure 3.8: Algorithm for execution of result nodes as per conditions sets 

 

3.4 Energy Efficiency Measurements 

 
In this study, the LoRA based wireless module is used for data transmission and the machine 

learning algorithms are used for processing of data on edge scale for smart decision taking 

capability. Here, energy management and its scaling are observed as key factors for 

estimation and for job scheduling. Edge computing devices often operate in remote or 
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decentralized locations[206]. Efficient energy use can significantly reduce operational costs, 

especially in environments where power sources are limited or expensive. It has been 

observed that the reduction in energy usage is closely correlated with a reduction in carbon 

footprint and subsequent environmental impact. This has significant importance, especially 

in the escalating worldwide efforts to address climate change. Energy-efficient devices 

typically generates less heat and may have longer lifespans[115]. This can improve the 

reliability and performance of edge computing devices, which is essential for critical 

applications like healthcare monitoring or autonomous vehicles.  

As edge computing network grows, the cumulative energy demand can become substantial. 

Energy efficiency allows for more sustainable scaling of these networks. In many regions, 

there are increasing regulatory pressures to adopt energy-efficient technologies. Efficient 

edge computing solutions can help organizations comply with these regulations. Battery life 

and its maintenance are the key aims of edge computing applications. Energy efficiency 

metrics can help in better resource allocation and management. Understanding the energy 

profile of edge computing devices allows for optimizing workloads and network 

configurations for minimal energy use[207]. Measuring energy efficiency in edge computing 

can involve various factors, including the amount of computational work done, the energy 

consumed, and possibly other considerations like network latency or data throughput. Figure 

3.9 shows the algorithmic process to measure the energy efficiency in relation to the modules 

in this study. 
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Figure 3.9: Algorithm for energy efficiency measurement in edge computing 

modules 
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Based on the above-mentioned algorithm, the following equations are used to calculate the 

energy efficiency of the system. 

The overall efficiency ( ) of edge computing application is given in equation 3.1: 

 

                                    ----------------------------------------(3.1) 

The   is the computational work accomplished in the edge module. This can be 

measured in terms of operations per second, tasks completed, or any relevant unit of 

computational work whereas    is the energy consumed to perform job scheduling 

and throughput of data while transmission and processing, The energy consumption is 



105  

basically measured in watt-hours (Wh) or joules (J). There are also some very important 

aspects such as network efficiency ( ) and data processing efficiency ( ) which needs 

to be integrated in the calculation of energy efficiency[72]. Equation 3.2 shows the relation: 

-----------------------------------------(3.2) 

It is mandatory to compute the above parameters in relation to certain key processes which are going in 

procession for edge computing-based application governance and provision of decision taking sorts. 

Basically  is computational work in a computing system which is represented by various 

metrics, depending on the specific context and the nature of the tasks being performed 

(equation 3.3). It has been observed that there is a need to quantify computational work with 

the involvement of certain factors like the number of operations performed, the complexity 

of these operations and the time taken to complete them. 

--------------------------------(3.3) 

Here C is the complexity of each operation including factors representing the average 

computational complexity of the operations. O represents the number of operations 

performed in the form of a number of the computational instructions executed. Here, T is the 

time taken to complete these operations[208]. 

The computation work can also be defined in terms of data processing scenario, it might 

involve the amount of data processed per unit time. Equation 3.4 shows the extended format 

of : 

----------------------------------------(3.4) 

During the calculation of computation power, it has been observed that the amount of data 

and processing time in relation to various complex situations and scenarios varied from a 

very minute to an exceeding level[209]. As per edge computing model complexity, such as 

size of training data, number of iteration cycles, execution of nodes etc. are also some 

associated parameters for measuring the energy efficiency of edge models as compared to 

other models. Similarly, the network efficiency ( ) has been measured by observing 

various contributing aspects such as throughput, bandwidth utilization, error rate, and 

latency[210]. Equation 3.5 shows the relation of network efficiency and other parameters: 

-------------------------------(3.5) 
 

Here, Th represents the effective throughput, which is the amount of useful data transmitted 
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over the network in each period such as megabits per second. O is the overhead, which 

includes all additional data like headers, acknowledgments, and retransmissions due to errors 

that are necessary for transmission but are not part of the actual data. L is the latency, which 

is the delay in data transmission which is measured in milliseconds[211]. These aspects are 

playing a very important role in balancing the useful data transmission against the total data 

sent (including overhead) and the time delays experienced. Data processing efficiency (

) is used to measure the effectiveness of the system to process the data relative to the resources 

consumed like time and computing power. A common way to conceptualize this is by 

considering the volume of data processed in each timeframe and the computational resources 

used for data realization[73]. Equation 3.6 represents the relation of network efficiency with 

various processing parameters: 

-------------------------------------(3.6) 

Where  represents the volume of data processed as per the capacity of edge network 

and   is the computational resources consumed depending on the CPU cycles, 

memory usage, or energy consumption such as CPU hours. T is the time taken to process the 

data in terms of seconds or hours. In local computing modules, such as edge computing 

devices and servers, the energy consumption ( ) is measured in the form of 

communication between all the devices. Equation (3.7) helps to sums up the energy 

consumed by each device or server for both computing and communication tasks. 

---------------(3.7) 

 
Here    is the power consumption of the    edge computing device/server during 

computation.    is the time duration for which the   device/server is involved in 

computation.    is   the   power   consumption   of   the      device/server during 

communication activities.   is the time duration for which the    device/server is 

involved in communication activities. N is the total number of devices/servers involved in 

computation and m is the total number of devices/servers involved in communication. In 

relation to edge computing, equation (7) helps to expand the relations between the LoRA and 

machine learning algorithms for better estimation and optimization[212]. Equations 3.8, 3.9 

and 3.10 shows the overall energy consumption ( ) relations in edge devices. 
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                              -------------------------------------------------------------(3.8) 
 

                     =  ------------------------------------------------------------(3.9) 
 

                       =  ------------------------------------------------------(3.10) 

 

Here  and   represent the average power consumption of the machine learning 

computation steps and LoRa communication[72]. Whereas  and  show the time 

duration over which the computation and communication happened in the edge devices. The 

accumulative power consumption of Edge network is given in equation 3.11. 

------------------------------(3.11) 

 

Overall, various important variables such as throughput, network efficiency, search algorithm 

iteration time and latency rate are considered for the calculation of energy efficiency. In edge 

computing modules, efficiency represents the optimal use of energy resources for device 

sustainability and long-lasting performance in relation to applications[213]. It has been 

observed that the energy consumption of modules somehow depends on the sample of data 

to be processed, the history of decisions and the communication of the information to the end 

user without excessive latency.  

3.5 Conclusion 

The edge computing modules are very well equipped with such algorithm(s) which play(s) a 

pivotal role in managing energy usage. In these modules, the energy is consumed as per load 

demand optimization. The size of sample data and range of modules are the main load 

parameters in edge devices which are optimized as per the current and past scenarios of end 

user. Machine learning algorithms are very well versed to optimize the solution with a smaller 

number of iterative, which results in energy savings, and LoRA based low power modules 

are helpful in establishment of discrete communication over a long range with accuracy and 

precision. This is ultimately the aim of edge computing devices to adopt methods for 

improvement in energy efficiency in the application specific area. Further, the results are 

discussed in chapter 4. In results section, different situations were formulated and tested on 

the workbench. The results are presented to show the prediction accuracy, and certain cases 

were evaluated using classification methods. The correlation of actual and predicted variables 

was compared to scale out the achievement of adopted methods. 
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Chapter 4  

Results and Discussion 

 
4.1 Introduction 

In edge computing devices, there are various modules which are responsible for efficient 

performance of system with strong capability of decisions and accurate execution of nodes 

in relation to outer environment data aspects. Machine learning tools are one of the key 

sections of modern decision taking machines for performance and integrity in outer 

environment with the help of sensors and actuators. The training, validation and testing is the 

key procedure of machine learning algorithms for accuracy in decisions in terms of activation 

or deactivation of functions, enabling or disabling the processes etc. In machine learning, the 

algorithmic approach is somewhere depending on the training data and its significant 

correlation with class of decision. The decision of a machine depends on various factors 

which are also called as features.  

 

It has been observed in studies that the nature and trend of feature is very important. It is 

mandatory for a researcher to explore the features in terms of elements, dimensions, and 

trends so that the better control strategy many be designed and executed. In research studies, 

the type of features and number of features plays a pivotal role. As per features of data, 

advanced level of control strategies can be planned.  

 

There are various fields such as health monitoring where the feature selection may improve 

the performance of AI model construction with other parameters such as interpretability, 

curse of dimensionality, quality of system, aids in future engineering. On the same verge, in 

this study, to design an edge computing powered energy efficient stick for patients under 

monitoring, six features were observed to be relevant and suitable for decision taking 

capability as desired. The features such as Heart Rate Variability, Sugar level, Oxygen 

saturation level (SpO2), Distance, Blood Pressure level and Axis based accelerometer 

decision were selected and combination of more than 40,000 situations were collected from 

real world for preparation of decision matric and training of machine learning algorithms.  

It is very important to understand the features for further understanding of decision taking 

capability of device in real world situation. It has been observed that the trends in features 
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leads to understand various situations and decisions by the machine so that the best 

interpolation/extrapolation has been formulated and then the comparative analysis will 

perform for necessary decisions by the machine. It is also very significant to understand the 

range of data in terms of its normal and abnormal range so that the machine can compute the 

right decision for accurate activation of output nodes. Further the features are explained to 

understand the class wise distribution of data for its purity and genuinely to train the model.  

 

4.2 Feature selection and data distribution 

In this study, the data of primarily six features such as Heart Rate Variability, Sugar level, 

Oxygen saturation level (SpO2), Distance, Blood Pressure level and Axis based 

accelerometer were collected from the patients to train the model. More than 40,000 

combinational readings were measured for model training with robust scenario. The detail of 

each feature is given below to understand the statistical and temporal behaviors. 

 

4.2.1 Heart Rate Variability 

Heart Rate Variability (HRV) is basically a measure of the variation in time between each 

heartbeat.  This variation is controlled by the autonomic nervous system (ANS) which is 

directly influenced by certain activities such as exercise, hormonal reactions, and stress 

levels[200]. HRV is an indicator of the balance between the sympathetic and parasympathetic 

branches of the ANS. Generally, the unit of HRV is number of Heart Beats Per Minute 

(BPM). As per studies, the HRV is categorized into two classes such as Normal and 

Abnormal range. 
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Figure 4.1: Box plot distribution of Heart Rate Variability Feature 

For elder persons or patients, the normal range is varied from 60 to 90 BPM and above 90 

BPM leads to abnormal condition. In this study, more than 21000 readings represented the 

normal HRV class under certain circumstances and more than 19000 readings presented 

abnormal HRV of persons under observation. The box plot of HRV data is shown in Figure 

4.1. From figure, it has been observed that the box spans from the 25th percentile (Q1) to the 

75th percentile (Q3) having 25th percentile (Q1) is 82.407, Median (Q2) is 97.238, the 75th 

Percentile (Q3) is 10 9.7025 with Interquartile Range (IQR) varied from 27.29 to 28.70. The 

overall data ranged from 60 BPM to 131 BPM having uniformity in both normal and 

abnormal class. There was no outlier data observed outside the range of the whiskers. The 

Histogram plot of HRV is shown in Figure 4.2. 
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Figure 4.2: Histogram of Heart Rate Variability Feature 

The histogram presents the frequency or distribution of collected data in certain ranges of 

HRV. It has been observed that from 60 to 90 BPM (Normal range), the frequency of data 

varied from 1300 to 1400 readings with cyclic increment of 10 BPM from 60 BPM. Whereas 

above 90 (Abnormal Range) the frequency of data varied from 1400 to 1550. The number of 

cyclic increments were bit more in normal range but the frequency of data is more in 

abnormal range. Hence the HRV data is uniformly distributed and have no value under outlier 

range. 

4.2.2 Sugar Level 

 
The sugar level or blood glucose level is one of the dynamic physiological parameters of 

human body. In patient monitoring and treatment process, this feature needs rigorous 

attention to prevent the emergency condition in relation to elder persons and patients[199]. 

The sugar level in the human body, typically measured in terms of blood glucose level. These 

levels are essential for diagnosing and managing conditions like diabetes. The sudden fall 

and rise in sugar level can cause some serious health issues in a short interval of time and can 
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cause death. The sugar level is categorized into three main levels: low (less than 70 mg/dL), 

normal (70 to 100 mg/dL) and high (more than 100 mg/dL). In this study, the sugar level data 

have more than 40,000 combinational readings ranging from 10 to 180 mg/dL to cover the 

three main categories of sugar level. The Box plot of sugar level data is shown in figure 4.3. 

 

 

Figure 4.3: Box plot distribution of Sugar level feature 

 

It has been observed from the box plot figure of sugar level that the data is varied from 50 to 

300 mg/dL having 25th Percentile (Q1): 113.11, Median (Q2): 176.02, 75th Percentile (Q3): 

237.92 and Interquartile Range (IQR): 124.81. The Histogram of sugar level data is presented 

in figure 4.4. The distribution of data in cyclic interval of range of sugar level shows the 

uniformity in categories of this feature. 
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Figure 4.4: Histogram of sugar level feature 

 
In the normal range of sugar level, more than 13000 reading lies. Similarly in low and high 

sugar   level (Abnormal situation), the data is unilaterally distributed. By the histogram of 

sugar level, it may be observed that the low and high sugar level data has enough amount to 

satisfy the AI model building. 

 

4.2.3 Oxygen blood saturation (SpO2) level 

 
Oxygen saturation or SpO2, is a feature which is used to measure the amount of oxygen- 

carrying hemoglobin in the blood relative to the amount of hemoglobin not carrying oxygen. 

It is an important indicator of respiratory function and is often used in clinical settings to 

assess a person's oxygenation status[214]. This feature is also considered as one the 

integrated parameter of human physiology. This parameter is categorized into two classes 

normal and abnormal. The normal range of SpO2 varied from 85% to 100% whereas the level 

below 85% is considered as abnormal level. In this study, the box plot (figure 4.5) presents 

the quartile wise central tendency of data. 
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Figure 4.5: Box plot distribution of Oxygen blood saturation (SpO2) level 

 

The SpO2 data was observed to be measured from 60% to 100% in the observing candidates. 

The 25th Percentile (Q1) of observed data is 75.2775, Median (Q2) is 85.28, 75th Percentile 

(Q3): 92.6963 and Interquartile Range (IQR) is varied from 17.41 to 18.05. In the observed 

data there was no outlier data. The spread of data has median over 75% of normal range 

which is 15% lesser than the normal level. SpO2 parameter is a very stable parameter which 

shows less deviation from its consecutive values but under crucial stages, it may down due 

to respiration loss in the patients under monitoring. The Histogram of Oxygen blood 

saturation (SpO2) level is shown in figure 4.6. It has been observed from the figure that the 

data is ranged from 10000 to 23000 which covers almost both normal and abnormal range of 

data. The frequency distribution in abnormal category is 1000 with increment is cyclic 

increment up to normal range. Similarly, in the normal range, the frequency of data varied 

from 1500 to 2000 with increment in range by 5 values. By histogram, it has been observed 

that the data is uniformly distributed which helps the AI model to prepared the data base for 

prefect decision and preventing the confounding situation. 
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Figure 4.6: Histogram of Oxygen blood saturation (SpO2) level 

 
4.2.4 Blood Pressure (BP) level 

 
In relation to human health, blood pressure is a crucial physiological signal that provides 

essential information about the health and functioning of the cardiovascular system. It is an 

indicator of the force exerted by circulating blood on the walls of blood vessels. The 

importance of monitoring blood pressure lies in its ability to indicate various health 

conditions and risks such as Hypertension, Heart attack etc. Like Heart rate variability and 

sugar level, the blood pressure signal is also an integrated signal of body that helps to indicate 

the chronic or normal situation of a patient or elder person[215]. As per reports, the blood 

pressure has three categories (Normal, Moderate and High) which are elaborated in term of 

systolic and diastolic blood pressure having unit’s mm Hg (SP to DP mm Hg).  
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Figure 4.7: BP level wise number of samples 

 

The range of normal blood pressure is >120 to >80 mm Hg and moderate blood pressure is 

120-130 to 80-90 mm Hg. The high blood pressure is varying from above 140 - 90 mm Hg. 

In this study, like other features, the data of blood pressure is more than 40,000 and the levels 

of blood pressure was further re-categories in three numeric numbers as per the used sensor. 

As per sensor output, the normal blood pressure was indicated as 0, moderate blood pressure 

was indicated as 1 and high level of blood pressure was indicated as 2. So, the categories of 

blood pressures were recorded in the form of digits. The category wise data frequency is 

shown in figure 4.7. In normal range, there was more than 14000 entries and 15000 entries 

were recorded in the moderate level of BP. Under High blood pressure condition, there were 

also more than 16000 entries recorded for training and testing of AI models. As per numeric 

presentation of blood pressure, the data is somewhere normalized, which has various 

statistical benefits such as reduced computation time, improves latency, fast response and 

easy to interpret the information. Data is almost equally distributed in the three categories 
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due to which the model overfitting will be reduced[215]. 

4.2.5 Accelerometer signal data and its category wise distribution 

 
Accelerometer is an electronic sensor that measures acceleration forces in various forms. 

These forces can be static, like the constant pull of gravity or dynamic (caused by moving or 

vibration in the accelerometer). 

 

 
 

Figure 4.8: Category wise distribution of accelerometer sensor data 

 

The accelerometer detects different patterns of acceleration corresponding to the person's 

movements. When the person is standing still, the accelerometer experiences gravitational 

force in a steady, unchanging manner, which is interpreted as a '0' reading. It indicates no 

significant motion or change in orientation. Conversely, a fall is a dynamic event 

characterized by a sudden change in acceleration and orientation. During a fall, the 

accelerometer detects a rapid shift in acceleration parameters, significantly different from the 

readings taken during standing[216]. This abrupt change triggers the sensor to record a '1', 
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signaling a fall. This kind of detection is crucial for systems designed to provide immediate 

assistance or alert staff in cases where the person might be incapacitated or injured after a 

fall. The use of accelerometers for fall detection is particularly valuable in healthcare settings, 

especially for monitoring the elderly or individuals with conditions that increase their risk of 

falls. This electronic sensor is integrated into wearable technology or mobile devices, allow 

for continuous monitoring and potentially reducing the risk of severe injuries associated with 

falls. The binary system (0 for standing, 1 for falling) simplifies the data processing, enabling 

quick and efficient interpretation of the sensor's readings. In this study, an accelerometer data 

was also recorded from the same persons under observation and installed in the stick for real 

time measurement of data. The data distribution of standing and falling situation is shown in 

figure 4.8. In falling category (presented as 1) more than 28,000 readings and in standing 

category (presented as 0), more than 13000 readings were observed and recorded. In 

combination with other physiological features (which were recorded from the human subjects 

under monitoring), this feature was also measured and observed to be one of the key 

indicators of severe health situations of a person. The data of accelerometer is considered as 

addon feature for strengthen the decision results by the machine learning algorithms. This 

data is also free from any kind of outlier data which leads to true or positive computation 

abilities of an AI model. 

 

4.2.6 Decision Indication and its correlation with measured features 

 

Overall, for this study, total six features were recorded from the patients and more than 

40,000 situations / readings were recorded to prepare the database. Based on the features, the 

medical practitioner also recorded the decision as outcome of the combinational features. The 

decision feature was categorized into three classes as per real scenario (no fall detected: 0, 

slip detected: 1 and fall: 2). Figure 4.9 is showing the data distribution of reported decisions 

with respect to other measured features such as Heart Rate Variability, Sugar level, Oxygen 

saturation level (SpO2), Distance, Blood Pressure level and Axis based accelerometer. It has 

been observed from the figure that in each category, more than 13,000 cases were reported. 

Based on measured features, the cases of abnormality were twice than the normal cases in 

which the person was still standing irrespective of minor changes in the physiological signals. 

But on the other side, the cases of slip and fall were more due to uncomfortableness in the 

patient’s health. There may be certain reasons such as abnormal rise or fall in HRV, blood 

pressure or sugar level or vice versa integrity in the features. As per reports, the physiological 
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indicators are tied to each other in direct or indirect way. For instance, sudden rise in sugar 

level may cause over burden on blood pressure rate and heart rate variability of patients. 

 

 

Figure 4.9: Data distribution of decision matric based on measured features 

 

Here, it is very necessary to understand the impact of features in terms of rank and their 

correlation matrix with each other for estimations and preparation of control strategies. 

Figure 4.10 is showing the correlation heatmap between the decision and measured features. 

Slip detected Definite fall No Fall detected
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Figure 4.10: Correlation Heatmap matrix of measured features 
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It has been observed from the figure 4.10 that the blood pressure signal has a significant 

positive correlation with Heart rate variability feature (0.952) and accelerometer signal 

(0.8669) and the correlation between blood pressure data and decision is also very strong. It 

is confirmed from the correlation values that the blood pressure is contributing a pivotal role 

in the right decision observation. Heart rate variability has also positive and strong correlation 

with blood pressure parameter and accelerometer data which leads to a strong bond with 

decision parameter of respective samples. As per heat map, the elevated sugar level has 

positive correlation with raised heart rate variability in the human subjects. It has been 

observed that the sugar level of patients has direct impact on heart beat counts due to which 

the HRV and BP parameters varied. Similarly, Oxygen saturation level (SpO2) has very 

strong negative correlation with BP and Heart rate variability which means that an abnormal 

condition may be reflected in the SpO2 level of human subjects. 

 

 
 

Figure 4.11: Rank wise relation of measured physiological features with decision parameter 

 

From the matrix it has been observed that the measured accelerometer data has very positive 

correlation with physiological features such as BP and HRV and it is positively contributing 

in decision parameter. So, it is very clear from the heatmap correlation matrix that the 

measured physiological features have very strong correlation information of decision 

parameter and have integrated impact on each other for indication of normal and abnormal 
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condition of an observant. 

Further, figure 4.11 is showing the rank of features in relation to decision parameter of data 

base. It has been observed from the figure that the blood pressure is ranked first with very 

strong contribution in decision parameter. Consecutively, the Heart rate variability (Pulse 

rate) has positive correlation (0.9) with decision parameter. The HRV and blood pressure has 

very less difference in their rank. The accelerometer data has also ranked third with 

correlation of 0.8 with respect to decision parameter. In next to the order, the sugar level is 

ranked fourth having correlation with decision parameter. It has been observed from the 

figure 4.10 and 4.11 that the decision parameter has very strong correlation with measured 

features reported in the database. The correction matrix and rank of features helps to decide 

the priority of sensors to scan the condition of a patient and helps to save the energy of 

complete module. Figure 4.12 is  showing the priority of sensors to monitor and activate the 

consecutive loop of sensors for saving the energy of module. 

As per rank of features, the Pulse rate sensor is prioritized as sensor 1 which needs to be 

active and monitor the abnormality in the patient under observation keeping rest sensors 

under sleep mode. As per detection of abnormality in the pulse rate it will further activate the 

sensor 2 and sensor 3 for observation of concerned parameters such as bloop pressure of 

patient and then the accelerometer for detection of abnormality. Further, in sequence, the 

SpO2 and other sensors will get activated as per situation of a patient under observation. This 

activation sequence will also save energy and time consumption. Further this data will be 

shared with prediction modules for judgement. In this way, the sensor loop will get activated 

as per conditional priority of a patient due to which the health situation of patient will be 

monitored properly. Figure 4.12 is one of the best methodologies to adopt the sensors in the 

scanning loop for job Scheduling with the management of energy consumption. 

Also, due to this correlation factors, it can be strongly hypothesized that the measured 

features have genuine relations to decision parameter and further the data can be used to train 

the machine learning modules for training, validation and testing and further prediction of 

decisions on real time measured feature values from deputed sensors. Based on the database, 

the control strategy is further discussed in relation to implementation of edge computing 

modules with the help of machine learning tools. 
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Figure 4.12: Patient monitoring strategy as per rank of input features 
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4.3 Training and testing of machine learning classification algorithms 

 
Machine learning tools are sophisticated and robust algorithm that falls under the category 

of ensemble learning techniques. They are best working in supervised mode for prediction 

and outlining the decisions. It has been observed that these tools need the training data with 

specified attributes with its outcome parameters for training, validation, and testing, so that 

they can predict the outcome based on the history of cases. As per initial experimental trails, 

various algorithmic approaches were applied to train and test the data in relation to trade off 

based on time space complexity. As per observation, the random forest, decision tree and 

SVM classifiers were performed well due to their high level of accuracy and energy 

management during computation. In this study, these algorithms were combined and trained 

accordingly (Figure 3.1). 

 

4.3.1 Training and testing of Decision Tree Algorithm 

 

A Decision Tree Classifier is also a popular supervised machine learning algorithm used for 

classification tasks. It operates by splitting a dataset into smaller and more homogeneous 

subsets based on differentiating features, forming a tree-like model of decisions. The process 

starts at the root node and involves evaluating attributes to make binary or multi-way splits 

at each node. These splits form branches leading to further nodes or to leaf nodes, which 

represent the final classification outcomes. Decision trees are favored for their simplicity and 

interpretability, as they mimic human decision-making processes and can be visualized 

easily. However, they are prone to overfitting, especially in cases of complex trees or noisy 

data. To counter this, techniques like pruning (removing sections of the tree that provide little 

predictive power) or using ensemble methods such as Random Forests are often employed. 

Decision trees can handle both numerical and categorical data, making them versatile for 

various applications. Figure 4.13 is showing the algorithm of decision tree classification 

method. Table 4.1 is showing the values of performance evaluation parameter. 
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Table 4.1: Performance parameters of decision tree algorithm 

 

 

The collected data was processed through decision tree algorithm for achievement of best 

performance parameters. The Fitctree model was selected with prediction of best depth level 

having highest accuracy. After training and testing it has been observed that the best depth 

level was 2 having 94.3% F1 score and the Recall was also 96.2%. 

S. No. Parameter Value 

1 Number of Input parameter 6 

2 Number of Output parameter 1 

3 Sample number in each parameter 43000 

4 Hold out data for testing 30% 

5 Model name fitctree 

6 Best Depth 2 

7 Precision 96% 

8 Recall 96.2% 

9 F1 Score 94.3% 

10 AUC-ROC: 95.7% 
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Figure 4.13: Decision tree classification algorithm for EoT based energy efficient decisions 
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The Table 4.2 is showing the achievement of accuracy in prediction of right decision by the 

decision tree machine learning classification algorithm. 

 

Table 4.2: Prediction accuracy of Decision tree algorithm for real time sensor data 

 
S. No. Distance BP HRV SL SpO2 Accelerometer Predicted Actual 

1 28 1 123.24 45.89 96.45 1 
Slip 

detected 

Slip 

detected 

2 45 0 82.61 45.6 98.05 0 
No Fall 

detected 

No Fall 

detected 

3 28 1 120.57 200 84.6 1 
Definite 

fall 

Definite 

fall 

4 20 2 78.87 23.44 83.2 0 
Definite 

fall 

Slip 

detected 

5 80 1 23.24 175.8 91 1 
Definite 

fall 

Slip 

detected 

6 63 0 13.24 60.46 91.3 0 
Definite 

fall 

Definite 

fall 

 

Out of total six cases, in two cases, the decision tree has given wrong prediction. Overall, the 

accuracy of this classifier varied from 85% to 90%. 

4.3.2 Training and testing of Support Vector Machine Algorithm 

 

A Support Vector Machine (SVM) classifier is one of the supervised machine learning 

algorithms used for classification tasks. It operates by splitting a dataset into smaller and 

more homogeneous subsets based on differentiating features, forming a tree-like model of 

decisions. The process starts at the root node and involves evaluating attributes to make 

binary or multi-way splits at each node. These splits form branches leading to further nodes 

or to leaf nodes, which represent the final classification outcomes. Figure 4.14 is showing 

the algorithm of SVM classification method. Table 4.3 is showing the values of performance 

evaluation parameter. 
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Table 4.3: Performance parameters of Support Vector Machine algorithm 

 

 

The gathered data was processed using the Support Vector Machine (SVM) algorithm to 

achieve optimal performance parameters. The fitcsvm model was chosen, focusing on the 

appropriate kernel and regularization parameter (C) to ensure the highest accuracy. Upon 

training and testing, it was observed that with the fine-tuned parameters, the SVM model 

achieved a high level of precision. The F1 score reached an impressive 96.69%, and the 

model also demonstrated a Recall of 96%, indicating its robustness and effectiveness in 

classification tasks. 

S. No. Parameter Value 

1 Number of Input parameter 6 

2 Number of Output parameter 1 

3 Sample number in each parameter 43000 

4 Hold out data for testing 30% 

5 Model name fitcsvm 

6 Kernel Type Linear 

 Regularization Parameter (C) 95% 

7 Precision 97.22% 

8 Recall 96% 

9 F1 Score 96.69% 
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Figure 4.14: Support Vector Machine classification algorithm  

for EoT based energy efficient decisions 
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The Table 4.4 is showing the achievement of accuracy in prediction of right decision by the 

Support Vector Machine learning classification algorithm. 

Table 4.4: Prediction accuracy of Support Vector Machine algorithm for real time sensor data 

 
S. No. Distance BP HRV SL SpO2 Accelerometer Predicted Actual 

1 28 1 123.24 45.89 96.45 1 
Slip 

detected 

Slip 

detected 

2 45 0 82.61 45.6 98.05 0 
No Fall 

detected 

Slip 

detected 

3 28 1 120.57 200 84.6 1 
Definite 

fall 

Definite 

fall 

4 20 2 78.87 23.44 83.2 0 
Definite 

fall 

Definite 

fall 

5 80 1 23.24 175.8 91 1 
Definite 

fall 

Slip 

detected 

6 63 0 13.24 60.46 91.3 0 
Definite 

fall 

Definite 

fall 

 

Out of total six cases, in two cases, the Support Vector Machine has given wrong prediction. 

Overall, the accuracy of this classifier varied from 96% to 96.89%. 

 

4.3.3 Training and testing of Random Forest Algorithm 

 
Random Forest algorithm belongs to an ensemble machine learning algorithm that can builds 

multiple decision trees and merges them together to get a more accurate and stable prediction. 

It is particularly useful for classification and regression tasks and known for its effectiveness 

in handling large datasets with higher dimensionality, robustness against overfitting and its 

ability to improve accuracy by averaging the results of individual trees. Essentially, it 

constructs a 'forest' of decision trees during training and its output is determined by the 

collective output of these trees, which makes it highly effective and accurate for classification 

and regression tasks. 



131  

Table 4.5: Performance parameters of random forest algorithm 

 

S. No. Parameter Value 

1 Number of Input parameter 6 

2 Number of Output parameter 1 

3 Sample number in each parameter 43000 

4 Hold out data for testing 30% 

5 Model name Tree Bagger 

6 Number of trees 30 to 200 

7 Best number of trees for best accuracy 50 

8 Accuracy achieved 97.89% 

9 Precision 96.35% 

10 Recall 97% 

11 F1 Score 97.4% 

12 AUC-ROC 96.97% 

 

The core principle of Random Forest involves constructing multiple decision trees during the 

training phase. Each tree is built from a randomly selected subset of the training data, a 

method known as bootstrap aggregating, or bagging. This randomness ensures that the trees 

are diverse, reducing the risk of overfitting and improving the model's generalization 

capabilities. In building each tree, Random Forest randomly selects a set of features at each 

decision point (node). This random selection of features contributes further to the diversity 

among the trees in the forest. Unlike some algorithms that prune trees to avoid over-

complexity, trees in a Random Forest are typically grown to their full depth, allowing the 

model to capture complex patterns in the data. During prediction, the Random Forest 

algorithm takes an elaborative approach (each tree in the forest makes a prediction, and the 

final output is determined by combining these predictions). In classification tasks, this 

algorithm considers majority voting system, where the most common prediction among all 

trees is chosen as the final output. This ensemble approach significantly boosts the model's 

accuracy and reliability, as it mitigates the errors of individual trees. Figure 4.15 is showing 

the algorithmic approach to train the random forest model. The table 4.5 is showing the 

achievement of performance evaluation parameters. 
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Figure 4.15: Random Forest classification algorithm for EoT based energy efficient decisions 
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As per collected data, the tree bagger function of random forest was selected with initial 

number of 30 trees and randomly increased to up to 200 for observation of best accuracy with 

prevention of overfitting of model. As per results, the 97% accuracy and relative F1 score 

was achieved at 50 trees. After training and testing, the real time sensor data was given to 

algorithm to test is prediction capability. The table 4.6 is showing the achievement of 

accuracy in prediction of right decision. 

Table 4.6: Prediction accuracy of Random Forest algorithm for real time sensor data 

 

S. 

No. 
Distance BP HRV 

Sugar 

Level 
SpO2 Accelerometer Predicted Actual 

1 28 1 123.24 45.89 96.45 1 
Slip 

detected 

Slip 

detected 

2 45 0 82.61 45.6 98.05 0 
No Fall 

detected 

Slip 

detected 

3 28 1 120.57 200 84.6 1 
Definite 

fall 

Definite 

fall 

4 20 2 78.87 23.44 83.2 0 
Definite 

fall 

Definite 

fall 

5 80 1 23.24 175.8 91 1 
Definite 

fall 

Definite 

fall 

6 63 0 13.24 60.46 91.3 0 
Definite 

fall 

Definite 

fall 

 

The accuracy of random forest algorithm was varied from 97% to 97.89% for real situation 

data. Which is observed to be better than decision tree algorithm and SVM. As per training 

and testing of random forest, decision tree and SVM, all the selected algorithms were deputed 

for generation of decision. The data was floated to algorithms at a time for training, validation 

and testing and then based on highest accuracy in association with time consumption during 

training and execution of result, the decision of that algorithm was executed (Figure 4.12). 

During the selection of machine leaning algorithm, some key aspects were taken into 

consideration such as processing or computation time to reduce the latency. The decision tree 

and random forest algorithms are deputed due to their less computation time than other 

algorithms and have multicategory decision characterization property than Support Vector 
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Machine. 

4.4 Measurement of Energy consumption by the wireless models and 

their comparative analysis in relation to edge computing 
 

In this study, the main purpose of wireless communication models was to establish a long 

range, energy efficient and latency free communication between the data collection module 

and local edge computing module for real time decision taking capability to save the life of 

a human subject. The data collection from sensor module was initiated as per level of 

conditional emergency flag (Figure 3.9). Here the WiFi and LoRA module was used for 

establishment of communication and compared for best performance. The transmission time, 

energy consumption etc. in Long Range communication system for a given amount of data 

depends on several factors. Here various parameters are observed for energy management in 

terms of edge computing[78]. 

i) Spreading Factor (SF): This parameter is one of the leading factors in relation to 

energy management. As per reports. higher spreading factors increase transmission time but 

also enhance range and robustness. 

ii) Bandwidth: It has been observed that the narrower bandwidths result in longer 

transmission times, but can also increase the receiver's sensitivity. 

iii) Coding Rate: As per sensor data, a higher coding rate adds more redundancy to the 

data for error correction, which increases transmission time. 

Based on above mentioned factors, the WiFi and LoRA modules are compared. Table 4.7 is 

showing the comparison. 
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Table 4.7: Comparative analysis of WiFi and LoRA modules 

 
 

Based on the comparative analysis, the LoRA module was found to be best alternate due to 

its less power consumption. The technical specification of LoRA is given in table 4.8. 

 

Table 4.8 LoRA Module parameters and transmission time observations 
 

S. No. Feature Value 

1 Spreading Factor (SF) 7 

2 Bandwidth 125 kHz 

3 Payload Size 10 bytes 

4 Preamble length 8 symbols 

5 Coding Rate 4/5 

6 Explicit Header Mode Enabled 

7 Approximate Transmission Time Less than 51 milliseconds 

 

The figure 4.16 is showing the comparison of WiFi and LoRA Module in terms of annual energy 

consumption. It has been observed from the figure that the annual consumption of WiFi module 

Feature’s LoRa WiFi 

Range Long (up to 15-20 km) Short (typically 100m indoors) 

Data Rate Low (0.3-27 kbps) High (up to 1-7 Gbps) 

Frequency Band Sub-GHz (868/915 MHz) 2.4 GHz, 5 GHz 

Power 

Consumption 
Very low Higher 

Network Topology Star, star-of-stars Point-to-point, multipoint 

Interference 
Less prone due to Sub-GHz 

band 
More prone due to crowded bands 

Complexity/Cost Low complexity, cost-effective More complex, higher cos 

Latency Higher (due to low data rate) Lower 

Security 
Basic, suitable for low-risk 
applications 

Advanced (WPA3, etc.), suitable 
for high-risk applications 
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is more than 2500 Joules. Whereas in LoRA it is up to 500 Jouals. It is further reduced with 200 

Joules only with the association of conditional flag-based machine learning algorithm.  Further, the 

energy efficiency is directly related with the processing time of machine learning algorithms to 

save energy. As per figure 4.17, the processing time of decision tree is 3.77 Second having 

accuracy 96% and the random forest consumes 7.58 second with accuracy level of 97%.  

 

 

Figure 4.16: Comparison of annual energy consumption by wireless modules (LoRA 

and    WiFi) 

 

The SVM have also achieved 96.89% accuracy by consuming 4 minutes to train himself for 

classification. As per results the Random Forest algorithm was found best as per requirement 

of energy saving parameters. The LoRA module is taking very less amount of energy 

annually to transmit the data from the modules. The Edge computing technique is observed 

as one of the key factors in achievement of such a huge difference.
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Figure 4.17: Processing time of different classifiers in relation to energy consumption 

 

4.4.1 Comparative analysis of energy efficiency improvement in relation to Job 

scheduling framework 

 

The growing prominence of Edge of Things (EoT) applications, which represent a 

convergence of edge computing and Internet of Things (IoT) technologies, has made energy 

efficiency and consumption critically important. In these applications, numerous sensors 

having limited power resources, are deployed in various environments to collect, process, 

and transmit data. The energy demands of these devices can be substantial, especially in 

scenarios where they are expected to operate continuously over extended periods, often in 

remote or hard-to-reach locations[115]. Efficient energy use in EoT applications is not just a 

matter of prolonging battery life but it is also about reducing operational costs, minimizing 

maintenance needs, and enhancing the sustainability of the technology. For instance, a sensor 

network monitoring environmental parameters in a remote area must be energy efficient to 

reduce the frequency of battery replacements, which could be logistically challenging and 

costly. Similarly, in urban settings, EoT devices that optimize energy consumption contribute 
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to reducing the overall energy footprint of smart city infrastructure. Energy efficiency in EoT 

applications has a direct impact on the scalability and feasibility of these technologies. As 

the number of connected devices continues to soar, the cumulative energy demand could 

become significant. Efficient energy use helps in mitigating this demand, thus supporting the 

sustainable growth of EoT networks[207]. The focus on energy efficiency is crucial for 

ensuring the practicality, cost-effectiveness, and environmental friendliness of Edge of 

Things applications, making it a key consideration in their design and deployment. In this 

study, we performed two experiments to observe the energy consumption over time and 

implement efficient job scheduling framework to sustain it for longer time[140].  

 

Table 4.9: Energy consumption of sensors and other modules over the time 

S. No Name of Component Voltage Current Rating Power (Watt) 

1 Heart Rate Sensor (MIR 910610) 5 Volt 2mA 0.01 W 

2 Blood Pressure sensor (HEM 

7600T) 

3 Volt 2mA 0.006 W 

3 SpO2 Sensor (Nellcor DS100A)  3 Volt 2mA 0.006 W 

4 Blood Sugar Level Sensor (Free 

Style Libre_ 2040011304) 

1.5 Volt 0.5 mA 0.0007 W 

5 Accelerometer (ADXL345 3-Axis 

Digital Accelerometer) 
2.5 Volt 10µA 0.000025 W 

6 Distance Sensor (HC-SR04) 3 Volt 5mA 0.015 W 

7 Microcontroller Module 

(Raspberry Pi Zero) 

5 Volt 0.5 mA 0.0025 W 

8 LoRA (915MHz Shield-TTGO 

T-SIM7000G) 

3.3 Volt 2 mA 0.006 W 

  

The specification of components in relation to their power consumption is given below with 

reference to a 9 Volt battery source having 19440 J capacity to deliver the required power to 

the components. With reference to equations 3.1 to 3.11, Table 4.9 is showing the 

specification of components in terms of their demand of voltage and current consumption to 

measure the specific health related parameter. The energy consumption of module is 

depending on the amount of energy in form of joules provide by the battery in respect to 

power consumption by the components over the time. Here the active mode and sleep mode 

of modules varies with the probability of events to happen over the span of time[72]. The 

energy efficiency is related to battery discharge over the time which is calculated by equation 

4.1. 
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     Discharge time = 
Capacity of Battery (Joules)

Accumulative power of components and modules over the time (Watt)
   (4.1) 

 

Here, the time is considering the activation period, sleep period, processing time, clock cycles 

to execute the result in microcontroller, transmission time of LoRA module. As per the 

accumulated power consumption of the components the two experiments were conducted. In 

the first experiment, the general energy efficiency in terms of battery discharge is calculated 

and then experiment two was conducted as per Job scheduling framework. 

 

Experiment 1: Standard Job Scheduling (SJS) 

Energy Efficiency without Job Scheduling" is a concept that emphasizes the importance of 

optimizing energy consumption in various systems and processes, but without the reliance on 

job scheduling techniques. Job scheduling, often used in computing and industrial contexts, 

involves organizing and prioritizing tasks to optimize resource utilization and operational 

efficiency.  

 

 

Figure 4.18: Energy efficiency of battery without Job scheduling Framework in IoT 

based health care monitoring system  
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However, this approach can sometimes be complex, requiring advanced algorithms and 

significant management overhead. In this experiment, without job scheduling, the array of 

sensors was active for n number of time to continually monitor the health parameters from a 

person under monitoring and then with the observant process of embedded system and LoRA 

module it will transmit the decision to usen end node. During this process, it has been observed 

that the LoRa and other modules will consume the power but with the training of AI algorithms 

it will consume the bunch of power. Figure 4.18 is showing the discharge time of battery over 

the time without Job scheduling. From the figure 4.18, it can be observed that the sensor 

modules and AI based training and execution of algorithms continually consumes the bunch 

of energy over the time.  

 

The battery will take 78 to 82 hours to sustain in the working arena. There is seamless demand 

of re boosting the energy consumption over the time to sustain the battery even for longer time. 

The embedded system and wireless transmission consume more power than other sensor 

modules. As per studies, the LoRA module consumes approximately 10 mA of current to send 

10 bytes of packet of data to the designated network and in sleep mode it takes only few micro 

amperes current to be in the working mode. Keeping in mind the scenario of the nodes, the 

experiment 2 has been performed to improve the efficiency of connected battery. 
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Experiment 2: Energy Efficient Job Scheduling (E2 JS) 

 

 

 

Figure 4.19: Energy efficiency of battery with Job scheduling Framework in IoT based 

health care monitoring system 

As per collected data from the medical experts, the six vital parameters of patients were 

measured by concerned sensors. The rank of these sensor data was determined to see the 

importance of these vital parameters to feature the Job scheduling as per rank of parameters. 

As per results in Figure 4.11, the blood pressure sensor was set to higher priority to observe 

the condition of a patient as per rank the Heart Rate variability sensor was ranked second to 

simulate the condition to the user end and then in a consequence, if the abnormality will be 

detected in the health parameters then the array of sensor will activate and then further activate 

the connected embedded system to wake up and start working in active mode for indication of 

health condition to medical expert. As per the probability of detection of abnormality in the 

concerned patient, figure 4.19 is showing the energy efficiency of battery in relation to job 

scheduling framework. 
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Figure 4.20: Comparative analysis of experiment 1 and 2 in terms of improvement in energy 

efficiency improvement 

The data depicted in Figure 4.19 demonstrates the efficacy of prioritizing sensor activation 

according to the detection of anomalies. This strategic method effectively preserves battery 

life by activating only the appropriate nodes in the sensor array network when abnormal 

conditions are detected. By limiting the duration of sensor operation under regular monitoring 

settings, the energy consumption is significantly decreased, resulting in a longer battery life. 

Significantly, in Experiment 2, the implementation of this focused activation approach resulted 

in the battery's endurance exceeding 115 hours, a considerable improvement compared to 

Experiment 1. This can be attributable to the improved task scheduling algorithm, which 

increases energy efficiency by up to 30%. It ensures that devices that require a lot of energy, 

such as embedded systems and LoRA transmission modules, are only active when there is an 

aberrant patient condition. This conditional activation has the potential to result in energy 

savings ranging from 10% to 20% compared to situations where these systems would 

otherwise remain engaged without any need.  

Figure 4.20 presents a detailed comparison of the energy efficiencies obtained in both studies, 

thereby offering a clearer understanding of these findings. This graphic representation 

emphasizes the substantial enhancements achieved by optimizing task scheduling and 
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deploying sensors strategically. It highlights the practical advantages of this technique in 

improving the sustainability and operational lifespan of patient monitoring systems. 

Table 4.10: Comparative energy consumption of SJS and E2JS Systems over various 

time intervals 

Time Hours) 6 12 24 48 96 125 

SJS (Joules) 14000 11000 6000 2000 0 0 

E2JS (Joules) 17000 14500 10000 6000 2000 900 

 

As per table 4.10, in the first six hours of time, the battery energy was at level of 14000 Joules 

with respect to SJS but in case of E2JS, the battery was sustained at 17000 Joules. In the next 

couples of hours (after 24 Hours) the battery drainage level decreased to 6000 Joules due to 

SJS but in case of E2JS, the battery level was at 10000 Joules. In consecutive time intervals, 

due to SJS the battery was full drained to 0 (at 125 Hours from beginning), but in case of 

E2JS, the battery still contains, 900 Joules. So, overall, the E2JS framework helps to reduce 

the energy consumption of battery while maintaining the system to monitor the health of a 

patient. 

 

As per Ham G et al., (2023) the edge computing is one of the leading research areas where 

there is need of such algorithms who can directly improve the energy management of module 

with maintaining the performance of other parameters such as range and processing speed 

(latency). In this study, a very smart and sophisticated strategy was planned to provide care 

to patients under medical observation. Varies studies used the expensive and continuous 

processing modules for patient care but they had certain drawbacks[217].  

 

According to study of Zhang J et al., (2023) it has been observed that there is always a 

compromising tradeoff between the range, power consumption and latency parameters while 

establishment of data monitoring applications. As per reports, it was clearly observed that 

annual consumption of energy by the wireless modules somehow a challenging task for 

research communities to manage for long-term battery- operated tasks[41]. 

In this study, various wireless modules were explored with respect to their specifications but 
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LoRA module was used for establishment of communication between sensor data module 

and data processing module in a remote situation. From the figure 4.16 to 4.20, it is very clear 

that the energy saving framework helps to enhance 30% of energy usage than the experiment 

1.  

 

The activation of concerned sensors and modules as per rank of parameter supports the 

decisions take by machine learning algorithms. As per study of Truong V et. al., (2021) it has 

been observed that the WiFi module is not able to operate for long time due to its high 

capacity of power consumption than other wireless modules such as Zigbee and LoRA. 

However, a tradeoff between speed and latency is always matter of concern in these wireless 

modules. LoRA module can cover a long range of distance and have capability of sufficient 

transmission time capability to overcome the problem of latency in real time processing[218]. 

In this study, the LoRA module takes 45 to 55 milliseconds of time to transceiver the data. 

As per results, the latency effect was null and the LoRA module consumes very less amount 

of energy than WiFi (Figure: 4.16).  

 

From the results it has been observed that the adoption of AI based smart control strategy is 

also successfully reduced the power consumption. The adoption of machine learning 

algorithms can prioritize the tasks such as whether to do or not. In this study, the data 

collection module was switched to on and off mode based on flag. As the decision tree and 

random forest algorithms were trained with six ensemble-based attributes and based on them 

the situation was also trained and tested during training period. The machine learning 

algorithms were able to categorize the decision based on normal and abnormal situation of a 

patient. Both algorithms were governing the LoRA receiver to send the signal to LoRA 

transmitted to whether there is need to collect the data or not. The periodic signaling related 

to situation and activation of real time data collection process, reduces the demand of power 

up to some extent. As per real time scenario, the classification methods performed with more 

than 95% accuracy and the F1 score was also more than 95.5 %.  

 

It has been observed from the studies that algorithms are very competitive to classify the 

situation in respect of energy consumption with very short span of time such as in millisecond 

to microlevel once get trained by the data. It has been observed from the studies that the 

random forest has better computation power in terms of overfitting than the decision tree and 

SVM for prediction of situation. The probabilistic distance between them is varied from 0.05 
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to 0.08. This is also depending on the measured data and the decision based on measured 

attributes. From the results, it has been observed that out of 10 real time input situations given 

at a time to both trained algorithms, the random forest has 97% success rate success rate in 

the prediction of outcomes in relation to true values. In support to other studies, it is very 

clear that the number of inputs and their correlation with each other supports the decision 

classifier to categories the final decision.  

4.5 Conclusion 

For patient monitoring under certain situations, it is very important to measure the data with 

inter relatively for building a relative decision according to the situation. In this study, the 

data of more than 40,000 reading from selected human subjects (under medical monitoring) 

were collected and processed for training of machine learning algorithms. As per reports, the 

amount of data was enough in each attribute for learning of AI algorithms. Hence, the more 

than 96% accuracy was achieved in this study. As per results, the LoRA with energy efficient 

algorithms plays a very important role in development of edge based medical applications 

such as from monitoring to treatment of patients. By these methods, the real time processing 

and decision taking capability of machines can be improved on local servers and need of very 

powerful infrastructures may be reduced. Our study is very well supported by the results of 

similar kind of research reports.
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Chapter 5  

Conclusion and future scope 

5.1 Conclusion 

In the era of computing, edge computing is one of the revolutionary techniques through which 

the solution of the situation can be estimated within fraction of seconds at the spot. Earlier, 

the information was first collected and then it was loaded to cloud for observation of decision 

to be given as per condition from a remote server. During this process various issues were 

observed related to cost, computation power, latency, energy consumption etc. The research 

communities also looking this challenge as opportunity to solve such issues. The edge 

computing is one of the efficient alternate to solve the challenges. In edge computing 

hierarchy, the data has been collected at the end user node and the decision will be calculated 

at the node itself rather than sending it to far clouds. By this way, various key parameters 

improved. As per literature survey, the edge computing plays a key role in accelerating the 

development of new applications in diverse fields. As per current scenario, there are various 

fields such as agriculture, automation industry, automotive industry, and health sector where 

there is need of an hour to identify the challenges and propose the solution to end user. The 

health sector has his own importance in relation to mankind. According to medical experts, 

75% of casualties can be prevented if the information of vital organs can be measured, 

diagnosed, and cured at the spot. In hospitals, it is one of the challenges to monitor the patient 

continually for his or her care. There are various physiological parameters such as heart rate, 

blood pressure, sugar level etc. which needs rigorous monitoring to observe the condition of 

a patient under various positions.  

 

In this study, a smart edge computing-based health monitoring system has been developed to 

facilitate the medical team and patient under observation. In the initial stage of this study, the 

data of patients under medical observation was collected from the medical expert. The 

medical expert observed six key parameters from the patients such as blood pressure, Heart 

Rate Variability, Sugar level, Oxygen Saturation level (SpO2), Position in form of 

acceleration and his distance from the observation module and then based on the observation 

they noted the situation of patient in three categories such as No Fall detected, Slip detected, 

Definite fall. In this study, more than 40,000 situations were used to train the classification 

algorithm. The measured features were observed to validate the data. From the box plot and 
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histogram, the treads in features were observed. Afterwords, the correlation matrix, and rank 

graphs were plotted to understand the significance and contribution of features in relation to 

classification of decision. From the results, it has been observed that the blood pressure and 

heart rate variability is ranked highest to observe the immediate situation of a patient under 

medical surveillance followed by rest features. As per the objective of this study, a smart 

monitoring strategy has been prepared to measure the prime features and then as per 

observation of abnormality, the subsequent sensors were activated to measure other features. 

As per situation the node will decide to capture the data and then with the help of machine 

learning, the information will be passed to medical team for necessary action. In this study, 

as per aim of saving the energy, a smart energy management framework is developed who is 

supported by rank wise activation and deactivation of sensor nodes and other integrated 

modules.  

 

The LoRA module was adopted to establish the wireless communication between the end 

node and master node. The LoRA module takes 45 to 55 milliseconds of time to transceiver 

the data. In this study, various classification methods were tested but random forest and 

decision tree classification methods were found to be suitable for prediction of situation due 

to their response time and accuracy with the amount of data compared to SVM classifier. As 

per computation /processing time based comparative analysis of these algorithms, the 

Decision tree and random forest algorithms took only few seconds to train whereas the SVM 

took couple of minutes to generate the decision on the situation. Hence the energy 

consumption is more in SVM than Random Forest and decision tree algorithm. In this study, 

classifiers were trained and tested with the collected data and then tested with real time data. 

From the comparative results, it has been observed that the 90% to 95% accuracy was 

achieved in relation to actual and predicted situation of a patient. In terms of energy saving 

process, the job scheduling algorithm helps to save energy in terms of sustainability of battery 

for 30 % more hours than in experiment 1 (Figure 4.20). In chapter four, the results are very 

well justified with previous studies.  

 

5.2 Future Scope 

Our research provides new opportunities for the academic and research community to 

investigate and improve the processing of features for decision-making in categorized 

challenges. Despite technological progress, there is still a significant lack of intelligence in 
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the design of job scheduling frameworks that aim to optimize energy efficiency. The 

utilization of machine learning techniques in this particular situation showcases notable 

adaptability, enabling seamless incorporation into various procedures for both regression and 

classification tasks. 

 

In the future, it is important to determine certain situations where the ranking of algorithms, 

considering their effectiveness and applicability to the current task, can be flexibly applied 

using edge computing technologies. Implementing this strategic deployment will allow for 

more advanced and situation-sensitive processing, resulting in a decrease in the overall 

expenses and resources needed. Future research should prioritize the development of adaptive 

and intelligent systems capable of leveraging real-time data to autonomously enhance 

efficiency and performance. 

 

In addition, utilizing edge computing can enhance the decentralized processing of data, which 

is especially advantageous for real-time applications that necessitate prompt computational 

replies. By incorporating more intelligent algorithms and machine learning models that can 

function efficiently in the periphery of the network, these systems can achieve greater 

autonomy, minimizing the need for central processing units and thereby saving energy and 

bandwidth. This method offers not only improvements in operational efficiency but also 

enables the implementation of more sustainable and cost-effective solutions in many 

industries. 
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