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Abstract 
 

 

 

The advancement of Unmanned Aerial Vehicle (UAV) networks has opened up 

unprecedented possibilities across diverse industries. These networks, vital for 

surveillance, disaster management, agriculture, and telecommunications, offer rapid 

deployment, manoeuvrability, and access to remote regions. However, their full 

potential hinges on efficient and adaptive routing. UAV routing is challenging due 

to the dynamic and unpredictable operational environment. Conventional routing 

protocols prove inadequate for the dynamic nature of UAV operations, 

necessitating innovative strategies. This thesis introduces a comprehensive 

exploration of UAV routing optimization by integrating Q-Learning, a 

reinforcement learning technique, to enhance adaptability and intelligence in 

routing decisions. Furthermore, the bioinspired Mayfly Optimization (MO) Model 

is integrated to select optimal paths, emphasizing Quality of Service (QoS) even 

under high routing requests and congestion. The integration of Q-Learning and MO 

Model significantly enhances temporal routing performance, demonstrating reduced 

routing delay, improved energy efficiency, and enhanced routing throughput. The 

rapid proliferation of Unmanned Aerial Vehicle (UAV) networks across diverse 

industries necessitates efficient and adaptive routing for their optimal utilization. 

Traditional routing protocols prove inadequate in addressing the dynamic and 

unpredictable nature of UAV operations. This approach empowers UAV nodes to 

make informed routing choices based on past experiences and rewards. The 

Extensive empirical testing of our model demonstrates remarkable reductions in 

routing delay, improved energy efficiency, and enhanced routing throughput 

compared to conventional techniques. This research offers a comprehensive 

understanding of the innovative routing model's potential for more efficient and 

adaptive UAV networks, heralding a new era of possibilities for this transformative 

technology. Empirical evaluations validate the superiority of the proposed model 

over traditional routing techniques, making it a compelling choice for real-time 

UAV routing applications. 
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CHAPTER 1          

INTRODUCTION 

Unmanned Aerial Vehicle (UAV) networks were established to bring up new possibilities 

in the fields of communications, farming to, surveillance and emergency management. 

These networks have advantages which are rare, like being able to set up rapidly, move 

around easily, and connect to places that are far away or otherwise impossible to reach. 

For the UAV network, the most important thing is to work well with rapid and adjustable 

transportation. There are a lot of problems with UAV tracks since the places they work 

are always changing and are always unpredictable. Unlike regular wireless networks, 

UAV networks have to deal with nodes that are not all in the same place, changes in the 

network's structure that happen rapidly, and weather that changes all the time [1]. Figure 

1.1 represents the simple architecture of an unmanned aerial vehicle to understand the 

functionality of its components to achieve better efficiency.  Therefore, there is of need 

for routing systems that help to change and speed things up in real time because things 

are so complicated. 

 

Figure1.1- Simple Architecture of Unmanned Aerial Vehicle 
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Traditional routing methods work well for static networks, but they are often unable to 

handle the unique problems that UAV networks have. The flexible nature of UAV 

activities makes it hard for traditional methods to handle them. This results in bad routing 

decisions, more delays, and wasteful use of resources. Because of this, there is an 

increasing need for novel routing algorithms that make UAV networks efficient while 

also making them easier to use. To deal with these problems, this research work 

represents a way to improve UAV routes by using methods that are based on nature [2]. 

The aim of the research work is to improve and use a useful routing model that uses Q-

Learning, a reinforcement learning technique, to improve the routing adaptability and 

sensitivity to the dynamic UAV environment [3]. The basis of this model lies in Q-

Learning, a reinforcement learning model that avoids standard state transition models. By 

incorporating Q-Learning, our method brings adaptability and intelligence into UAV 

routing, thus allowing nodes to make informed routing decisions based on past 

experiences and benefits. To address the challenges to UAV networks, our model goes 

further by integrating bioinspired optimization techniques, specifically the Mayfly 

Optimization (MO) Model. This augmentation enables the selection of optimal routing 

paths that prioritize Quality of Service (QoS), even in scenarios characterized by high 

routing requests and congestion [4]. 

The MO Model's ability to find alternate paths through the evaluation of a high-density 

routing fitness function ensures that the routing system stays agile and responsive, even 

when standard routing methods would fail. This innovation significantly enhances 

temporal routing performance, a critical factor in keeping the effectiveness and 

usefulness of UAV networks in real-world applications. Research work discussed the 

routing model under a variety of network scenarios by giving a result comparison of its 

superiority compared to conventional routing methods. Our model shows a reduction in 

routing delay, better energy efficiency, and enhanced routing speed, making it a better 

choice for an extensive variety of real-time UAV routing applications. UAVs were first 

developed in the early twentieth century as pilotless military aircraft. However, 

substantial developments happened during and after World War II, resulting in the 
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contemporary UAVs we know today. Advances in technology, especially in electronics, 

sensors, and materials, have catapulted UAVs from simple designs to advanced structures 

capable of complicated tasks. Modern UAVs range from small enthusiast drones to big, 

high-altitude, long-endurance reconnaissance aircraft. Path planning is an important part 

of UAV operations, that involves determining the best route from a preliminary point to a 

target [5]. This approach must consider a variety of limitations, including barriers, no-fly 

zones, and environmental variables. Effective route planning ensures that UAVs carry out 

their missions effectively and safely. Path planning algorithms include A* (A-star), 

Dijkstra's algorithm, as well as advanced methods such as Rapidly Exploring Random 

Trees (RRT) and Genetic Algorithms. These approaches differ in complexity and 

processing needs, with some better suited to dynamic situations and real-time 

applications. A* and Dijkstra's algorithms are fundamental approaches in path planning. 

Dijkstra's approach identifies the shortest path between nodes in a network, which is 

beneficial in static situations when all information about the space is known in advance 

[6]. A*, a modification of Dijkstra's algorithm, uses heuristics to select pathways that are 

likely to get to the target faster, making it more efficient in many cases. Both algorithms, 

while strong, may struggle to make real-time adaptations in extremely dynamic 

situations, necessitating the development of more adaptable approaches. More complex 

path planning systems, such as Rapidly Exploring Random Trees (RRT) and Genetic 

Algorithms (GA), overcome the limitations of previous methods. RRT is very beneficial 

in high-dimensional areas and complicated situations since it gradually builds a tree that 

investigates possible pathways. Genetic algorithms use natural selection processes to 

iteratively refine route solutions, making them ideal for optimization problems with many 

constraints. These innovative technologies improve the capacity of UAVs to navigate 

uncertain and congested surroundings [7]. Collision avoidance is another critical 

component of UAV operations that ensures the UAV's safety and helps to prevent 

accidents. This includes recognizing possible obstructions and making real-time changes 

to the UAV's course. Collision avoidance techniques may be divided into two categories: 

reactive and deliberate. Reactive approaches employ real-time sensor data to make fast 
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modifications, whereas deliberative methods use pre-planned procedures and prediction 

models to prevent accidents. Collision avoidance gets more difficult when many UAVs 

operate at the same time. To coordinate the movements of several UAVs, complex 

algorithms that take into account all vehicles' locations and trajectories are required. The 

Velocity Obstacle (VO) technique, Potential Fields, and decentralized methodologies 

allow UAVs to dynamically change their routes to avoid collisions while still achieving 

their mission objectives [8]. 

1.1 Background and Motivation 

The purpose of this research work is to provide significant context for understanding 

the significance of routing efficiency in UAV networks. 

i) Background 

Unmanned aerial vehicle (UAV) networks have rapidly become a game-changing 

technology with applications in a wide range of fields, including emergency response, 

environmental monitoring, surveillance, and agriculture. These unmanned aerial 

vehicles provide unparalleled capabilities for data collecting, remote sensing, and on-

demand airborne services because of their sophisticated sensors and communication 

systems. However, robust routing algorithms that can adjust to the dynamic and 

sometimes unpredictable nature of these surroundings are necessary for UAV networks 

to operate well. When used with UAV networks, traditional routing protocols—which 

were mostly created for stationary terrestrial networks—have built-in drawbacks [9]. 

The main obstacles that UAV operations face are unequal node distribution, the 

frequent topological changes brought on by mobility, and the climatic variables. Due 

to these complications, routing techniques need to be flexible enough to continuously 

improve network performance [10]. Real-world applications of UAV path planning 

and collision avoidance are vast and varied. In agriculture, UAVs autonomously 

navigate fields to monitor crops and apply treatments precisely. In logistics, they plan 

routes to deliver packages efficiently while avoiding obstacles. In search and rescue 

operations, UAVs can rapidly map out paths to locate and assist individuals in distress. 
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The ability to plan paths and avoid collisions enhances the utility and reliability of 

UAVs across these diverse applications. 

ii) Motivation 

The necessity to solve the inherent difficulties in UAV routing and realize the full 

potential of UAV networks is what drives this research work. The motivation for 

creating and deploying Unmanned Aerial Vehicles (UAVs) originates from their 

potential to transform a wide range of sectors by delivering new capabilities, 

efficiency, and solutions to complicated problems. One of the key reasons for UAV 

acceptance is the capacity to carry out risky activities without risking human life. In 

military applications, UAVs may perform reconnaissance, surveillance, and even 

combat missions in difficult settings, lowering the risk to human soldiers. Similarly, in 

disaster response and search and rescue operations, UAVs may enter dangerous 

regions, evaluate damage, and identify survivors without endangering first responders. 

The desire to explore novel routing strategies is driven by many important factors [11]: 

a. Dynamic Nature of UAV Operations: UAVs are by nature dynamic, frequently 

functioning in ever-changing surroundings with changing goals for their missions. 

Inadequate performance results from conventional routing protocols' inability to keep 

up with the rapid changes in topology and routing requirements. 

b. Resource Efficiency: In UAV networks, where resources such as battery power and 

bandwidth are limited, resource-efficient routing is paramount. Conventional routing 

approaches often lead to inefficient resource utilization, impacting the operational 

lifespan of UAVs. 

c. Real-time Responsiveness: Many UAV applications demand real-time data collection 

and delivery, such as disaster response and surveillance. Ensuring low-latency routing 

in dynamic scenarios is essential for meeting these requirements. 

d. Quality of Service (QoS): UAV networks often serve applications with stringent QoS 

requirements, including high data throughput, low latency, and reliable 
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communication. Existing routing solutions may struggle to prioritize QoS, leading to 

service degradation. 

e. Scalability: As UAV networks expand to accommodate a growing number of nodes 

and increasing demands for connectivity, scalability becomes a paramount concern. 

Traditional routing models may not scale effectively to address the requirements of 

larger networks. 

 

Figure1.2- Bioinspired Model Layer in path planning in Unmanned Aerial Vehicle 

Figure 1.2 represents the use and role of the bioinspired model in the UAV path planning 

process for the calculation of optimal and collision less paths to increase the overall 

performance of the network.  The model used in this research work offers a feasible way 

to improve routing efficiency, responsiveness, and flexibility in UAV networks by 

combining bioinspired optimization with the reinforcement learning approach Q-

Learning. This research work aims to offer useful insights and solutions that can enable 

UAV networks to function more successfully across a range of applications and scenarios 

through comparative analysis [12]. 

1.2 Problem Statement 

It represents the specific challenges and issues within the area of Unmanned Aerial 

Vehicle (UAV) networks that require the development of an innovative routing solution. 

In UAV networks, several complex challenges and limitations have been identified, 
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prompting the need for a sophisticated routing model. Following are the challenges 

collectively constitute the problem statement that this research work endeavours to 

address [13]. 

a. Dynamic and Unpredictable Environments: UAVs operate in dynamic and 

often unpredictable environments, where factors such as weather conditions, 

obstacles, and mission objectives can change rapidly. Conventional routing 

protocols designed for stable terrestrial networks struggle to adapt to these 

dynamic circumstances. This dynamic nature poses a fundamental challenge to 

efficient routing in UAV networks. 

b. Resource Constraints: UAVs are equipped with limited onboard resources, 

including battery power and processing capacity. Effective routing in UAV 

networks must consider these constraints to maximize mission duration and data 

transmission capabilities. Traditional routing approaches often fail to optimize 

resource utilization, leading to premature exhaustion of critical resources. 

c. Real-time Responsiveness: Many UAV applications, such as disaster response 

and surveillance, necessitate real-time data collection and delivery. Delays in 

routing decisions can result in missed opportunities or mission failure. Existing 

routing protocols may not meet the inflexible latency requirements of these 

applications. 

d. Quality of Service (QoS) Demands: UAV networks serve a various array of 

applications, each with unique QoS requirements. These requirements may 

encompass high data throughput, low latency, and dependable communication. 

Conventional routing strategies often lack the adaptability to prioritize and 

guarantee QoS, leading to a compromise in service quality. 

e. Scalability Challenges: As UAV networks expand to accommodate a larger 

number of nodes and handle increasing communication requests, scalability 
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becomes a critical concern. Conventional routing models face challenges in 

scaling efficiently to support the growing demands of larger network scenarios. 

f. Inefficiency in Path Optimization: Existing path optimization models show 

either excessive complexity or limited scalability. Moreover, as more demands for 

communication are made, the efficiency of these models reduces, thus 

constraining their applicability in scenarios with high routing demands. 

g. Network Heterogeneity: UAV networks are characterized by network 

heterogeneity, where nodes may vary in terms of their capabilities and 

communication range. Designing routing protocols that can effectively operate in 

such heterogeneous environments is a complex undertaking. 

The research work addresses the questions by proposing a novel routing model that 

integrates Q-Learning, a reinforcement learning technique, with bioinspired optimization. 

By doing so, it aims to provide a comprehensive solution that enhances routing 

adaptability, resource efficiency, real-time responsiveness, and scalability while meeting 

the various QoS demands of UAV applications. Through comparative analysis, research 

work aims to contribute valuable insights and solutions to overcome the details 

challenges in the UAV network routing process [14]. 

1.3 Purpose of the Research work 

The purpose of research work is to set the direction towards novelty and vision in UAV 

path planning by improving the knowledge of various aspects of the dynamic 

environment. The study in UAV route planning is driven by many major aims, all of 

which are to be used to improve the efficiency, safety, and dependability of unmanned 

aerial vehicles (UAVs) in a variety of applications [15]. One of the primary goals of UAV 

route planning research work is to provide algorithms and approaches for optimizing the 

routes followed by UAVs to perform their missions. This involves decreasing trip 

distance, time, and energy consumption while guaranteeing that the UAV reaches its goal. 

Efficient route planning lowers operational costs and increases the operational range of 
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UAVs, making them more economical for commercial and industrial use [16]. UAVs 

frequently operate in complicated, dynamic situations where circumstances might change 

rapidly. Path planning research work aims to create algorithms capable of handling this 

complexity, allowing UAVs to navigate urban areas, woods, and other difficult terrains. 

Research work aims to increase the use of UAV applications in a wide variety. Effective 

route planning increases the versatility of UAVs and their ability to answer particular 

demands across sectors [17]. Various factors which influence the purpose of research 

work are as follows: 

a. Development of an Efficient Routing Model: The primary purpose of research 

work is the design of a new and efficient routing model for the unique 

characteristics of Unmanned Aerial Vehicle (UAV) networks. This model will 

integrate Q-Learning, a reinforcement learning technique, with bioinspired 

optimizations to enhance routing adaptability, resource utilization, and real-time 

responsiveness. 

b. Adaptation to Dynamic Environments: The research work endeavours to design 

a routing model capable of adapting to the dynamic and often unpredictable 

environments in which UAVs operate. It pursues to develop mechanisms that 

enable the routing protocol to respond intelligently to changing conditions, 

ensuring reliability and efficient data communication. 

c. Optimization of Resource Utilization: Resource constraints are a critical 

concern in UAV networks. The research work objective is to optimize the 

utilization of onboard resources, including battery power and processing capacity, 

to extend mission durations and improve the overall efficiency of UAV 

operations. 

d. Real-time Responsiveness: The research work aims to achieve real-time 

responsiveness in routing decisions, particularly critical for applications such as 

disaster response and surveillance. The routing model will be designed to meet 

rigorous latency requirements, ensuring timely data collection and delivery. 
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e. Quality of Service (QoS) Guarantees: Meeting various QoS demands is of 

utmost priority. The research work aims to develop mechanisms within the 

routing model to prioritize and guarantee QoS requirements, including high data 

throughput, low latency, and dependable communication, for various UAV 

applications. 

f. Scalability Enhancement: Addressing scalability challenges is a pivotal research 

work objective. The routing model should efficiently scale to accommodate a 

growing number of nodes and increase communication requests, ensuring its 

applicability in larger network scenarios. 

g. Efficient Path Optimization: The research work aims to resolve inefficiencies in 

path optimization. The routing model will be designed to handle a higher number 

of communication requests without sacrificing efficiency. It will prioritize optimal 

path selection to reduce routing delays [18]. 

h. Heterogeneous Network Support: Considering the heterogeneity of UAV 

networks, the research work objectives include the development of routing 

strategies that can effectively operate in environments where nodes exhibit 

varying capabilities and communication ranges. 

These research work objectives collectively form the framework for the research work. 

By achieving these objectives, the research work aims to contribute valuable insights and 

solutions to enhance the efficiency, adaptability, and performance of routing protocols in 

UAV networks. 

1.4 Node-Level and Network-Level Parameters in UAV Routing 

In Unmanned Aerial Vehicle (UAV) routing, the efficiency and effectiveness of the 

routing strategies heavily depend on a refined understanding of node-level and network-

level parameters. These parameters play a vital role in shaping the behaviour and 

performance of UAV networks. This explains the significance of node-level and network-

level parameters, shedding light on their role in the optimization of UAV routing [19]. 
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i) Node-Level Parameters 

Node-level parameters pertain to the characteristics and attributes of individual UAV 

nodes within the network. These parameters include a range of variables that impact the 

routing process: 

a. Location and Mobility: The spatial coordinates of UAV nodes (latitude, 

longitude, altitude) are fundamental node-level parameters. The mobility patterns 

of UAVs, including speed and trajectory, influence their ability to establish and 

maintain connections. Nodes in motion require routing protocols that adapt to 

dynamic topologies. 

b. Energy Resources: Node-level energy parameters, such as initial energy levels 

and power consumption rates during various operations (e.g., transmission, 

reception, sensing), are critical. Energy-efficient routing strategies are essential to 

extend the operational lifespan of UAVs, especially in scenarios with limited 

recharging opportunities [20]. 

c. Communication Range: The range within which a UAV can communicate 

effectively with neighbouring nodes is a crucial node-level parameter. It 

determines the local neighbourhood of a node and influences its routing decisions. 

Nodes must consider the signal strength and interference levels when selecting 

next-hop neighbours. 

d. Sensor and Payload Data: Depending on the application, UAVs may carry 

different types of sensors and payloads (e.g., cameras, environmental sensors, 

cargo). Node-level parameters include the data generated, data rates, and the need 

for real-time or periodic data transmission. Routing should optimize data 

collection and delivery. 

e. Quality of Service (QoS) Requirements: Each UAV may have specific QoS 

requirements based on its mission. Node-level parameters related to QoS include 
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latency tolerance, data reliability, throughput expectations, and priority levels. 

Routing decisions should align with these requirements. 

ii) Network-Level Parameters 

Network-level parameters include characteristics that define the overall UAV network's 

structure, behaviour, and capacity [21]. These parameters are integral to designing 

scalable and efficient routing strategies: 

a. Network Topology: The arrangement of UAV nodes and their interconnections 

forms the network topology. Dynamic topologies in UAV networks require 

adaptive routing algorithms capable of accommodating changes caused by node 

mobility and connectivity fluctuations. 

b. Network Density: The density of UAV nodes in an assumed range impacts 

routing decisions. High-density networks require routing protocols that can 

efficiently manage congestion and select optimal paths. Node distribution and 

deployment strategies play a role in network density. 

c. Communication Protocols: The choice of communication protocols, including 

wireless standards (e.g., IEEE 802.11, 802.16) and medium access control (MAC) 

protocols, affects network-level parameters like data transfer rates, interference 

levels, and collision avoidance mechanisms. Routing strategies should align with 

the selected protocols. 

d. Scalability: The ability of the UAV network to scale to accommodate a growing 

number of nodes and increasing communication demands is a critical network-

level parameter. Scalable routing algorithms should be able to handle larger 

networks without sacrificing performance. 
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Figure 1.3- Various Node and Network Level Parameters  

Figure 1.3 depicts a few critical node and network level parameters that need to be taken 

care of while performing path planning calculations. Node-level and network-level 

parameters serve as the initial level elements upon which UAV routing strategies are built 

[22]. Effectively binding these parameters through intelligent routing algorithms is key to 

achieving the desired objectives of UAV missions, whether they involve surveillance, 

data collection, communication, or any other application [23]. As UAV knowledge carries 

on to improvement, routing strategies must evolve to adapt to the dynamic interplay of 

these parameters, ensuring the efficient and reliable operation of UAV networks. 

1.4.1 Importance of Node-Level and Network-Level Parameters 

i) Node-Level 

In Unmanned Aerial Vehicle (UAV) routing, the significance of node-level parameters 

cannot be exaggerated. These parameters, which encapsulate the characteristics and 

attributes of individual UAV nodes, are essential in shaping the efficiency, adaptability, 
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and overall performance of routing strategies within UAV networks. This research work 

investigates the importance of node-level parameters in the context of UAV routing [24]. 

a. Spatial Awareness and Mobility: Node-level parameters include critical spatial 

information, including the precise coordinates (latitude, longitude, altitude) of 

each UAV within the network. This spatial awareness is fundamental to routing 

decisions, as it enables nodes to calculate distances, identify neighbouring UAVs, 

and determine their relative positions. Mobility-related parameters, such as speed 

and trajectory, further refine routing strategies, allowing UAVs to adapt to 

dynamic network topologies resulting from node movement [25]. 

b. Energy Management: Node-level parameters associated with energy resources 

are of vital importance, particularly in UAV networks where energy constraints 

are common. These parameters cover initial energy levels and power consumption 

rates during various operations, including data transmission, reception, and 

sensing. Effective routing strategies must consider these energy constraints to 

optimize the utilization of available power resources, thereby extending the 

operational lifespan of UAVs. 

c. Communication Capabilities: A fundamental node-level parameter is the 

communication range, which dictates the distance over which a UAV can 

establish and maintain reliable connections with neighbouring nodes. 

Communication range, often influenced by factors like signal strength and 

interference, directly impacts routing decisions. UAVs must select next-hop 

neighbours within their communication range to ensure efficient data exchange. 

d. Payload and Sensor Data: Node-level parameters incorporate the payload and 

sensor data carried by UAVs. These parameters incorporate data types, data rates, 

and the specific requirements for data transmission. Routing strategies must align 

with the data generation and collection needs of individual UAVs, optimizing data 

delivery while considering payload constraints. 
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e. Quality of Service (QoS) Requirements: Each UAV may have unique QoS 

requirements based on its mission objectives. Node-level QoS parameters 

encompass factors such as latency tolerance, data reliability, required throughput, 

and priority levels for different data streams. Routing decisions must prioritize 

meeting these QoS requirements, ensuring that mission-critical data receives the 

necessary treatment. 

f. Adaptation to Node Variability: UAV networks often consist of heterogeneous 

nodes with varying capabilities and attributes. Node-level parameters allow 

routing protocols to adapt to this variability. For example, a routing algorithm can 

dynamically adjust its routing decisions established on the energy stages of 

individual nodes or the capabilities of specific UAVs. 

g. Efficient Resource Utilization: By considering node-level parameters, routing 

strategies can efficiently allocate network resources. For instance, routing 

decisions can aim to balance energy consumption among nodes, prevent 

overloading specific UAVs, or distribute data traffic evenly across the network. 

This resource management optimizes the overall network performance. 

h. Dynamic Decision Making: Node-level parameters enable dynamic decision 

making in response to changing network conditions. When node parameters 

change due to factors such as energy depletion or mobility, routing protocols can 

adapt by selecting alternative routes or adjusting transmission power levels. 

ii) Network-Level 

In the complex field of Unmanned Aerial Vehicle (UAV) routing, network-level 

parameters have considerable influence over the design, efficiency, and adaptability of 

routing strategies within UAV networks. These parameters, which encapsulate the 

collective attributes and conditions of the entire network, play a vital role in shaping the 

performance and functionality of UAV routing. This research work explores the insightful 

influence of network-level parameters in the context of UAV routing [26]. 
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a. Network Topology and Density: Network-level parameters include the spatial 

arrangement and density of UAV nodes within the network. The network's 

topology dictates how UAVs are interconnected and influences the paths available 

for data transmission. In sparse networks, UAVs may need to cover larger 

distances, while in dense networks, they have more potential neighbours to 

choose from. The network's density intensely affects routing decisions, especially 

in terms of path selection and interference management. 

b. Communication Protocols: The selection of communication protocols at the 

network level significantly impacts UAV routing. Parameters related to 

communication protocols, such as data transmission rates, error handling 

mechanisms, and frequency bands, dictate the efficiency and reliability of data 

exchange. Routing strategies must align with the chosen communication protocols 

to optimize data delivery. 

c. Traffic Patterns and Load Balancing: Network-level parameters cover the 

traffic patterns and data load within the UAV network. Understanding the 

distribution of data traffic, including the volume and frequency of 

communication, is crucial for effective routing. Routing protocols can utilize this 

information to balance the load among UAVs, preventing network congestion and 

ensuring efficient resource utilization. 

d. Network Connectivity and Reliability: The connectivity status of the network 

and its reliability in maintaining communication links are fundamental network-

level parameters. In dynamic UAV environments, connectivity can be disrupted 

due to node mobility or interference. Routing protocols must continuously assess 

connectivity and adapt to changing conditions to ensure uninterrupted data 

transmission. 

e. Quality of Service (QoS) Constraints: Network-level parameters often define 

overarching QoS constraints and objectives for the entire UAV network. These 

constraints may include maximum latency tolerances, minimum data reliability 
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thresholds, and overall network capacity. Routing decisions must struggle to meet 

these global QoS requirements, guaranteeing that the network as a whole satisfies 

mission-critical demands. 

f. Security and Privacy Considerations: Security parameters at the network level 

incorporate encryption mechanisms, authentication protocols, and intrusion 

detection systems. These parameters are vital in safeguarding data integrity and 

network privacy. Routing strategies must incorporate security measures to protect 

sensitive information from threats and attacks. 

g. Scalability and Network Size: The size of the UAV network is a network-level 

parameter that intensely influences routing strategies. Large-scale networks 

introduce scalability challenges, as routing protocols must efficiently handle a 

growing number of nodes and communication requests. Scalable routing 

algorithms are essential for networks that may expand or contract in size. 

h. Resource Availability and Constraints: Network-level parameters include 

information about the availability and constraints of network resources, such as 

energy, bandwidth, and processing power. These parameters guide routing 

decisions to improve the application of offered resources while adhering to 

resource limitations. 

i. Dynamic Environmental Conditions: Environmental factors, such as weather 

conditions and interference from external sources, are network-level parameters 

that affect UAV routing. Routing strategies must be adaptive and capable of 

responding to environmental changes to maintain reliable communication and 

routing performance. 

Node-level parameters are the building blocks of effective UAV routing strategies. They 

empower routing protocols to make informed decisions that optimize data transmission, 

energy efficiency, and overall network performance. The ability to consider and influence 

these parameters is central to the success of UAV missions, as it ensures that routing 
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strategies align with the distinctive features and requirements of individual UAVs within 

the network [27]. As UAV knowledge continues to change, binding node-level parameters 

will remain crucial for achieving effective and consistent routing in dynamic and 

resource-constrained environments. Whereas network-level parameters serve as the 

contextual framework within which UAV routing strategies operate. They provide critical 

information about the network's characteristics, conditions, and objectives, enabling 

routing protocols to make informed decisions. Effective UAV routing demands a deep 

understanding and consideration of these network-level parameters to optimize data 

transmission, adapt to changing conditions, and achieve the overarching mission goals of 

the UAV network [28]. As UAV technology continues to advance, the influence of 

network-level parameters on routing strategies will remain fundamental to ensuring 

efficient and reliable performance in diverse and challenging environments [29]. 

1.5 Dynamic Routing and Collision Avoidance 

Dynamic routing and collision avoidance are fundamental aspects of Unmanned Aerial 

Vehicle (UAV) networks that play a critical role in ensuring safe, efficient, and reliable 

operations. In this chapter, the significance of dynamic routing and collision avoidance, 

their challenges, and the innovative approaches used to address these critical aspects in 

UAV networks have been addressed [30]. 

1.5.1 Significance in UAV Networks: 

a. Real-Time Adaptation: Dynamic routing allows UAVs to adapt their flight paths 

in real-time based on network conditions, mission requirements, and 

environmental factors. 

b. Optimized Resource Usage: Dynamic routing optimizes the utilization of 

available network resources, such as bandwidth and power, leading to efficient 

data transmission. 
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c. Collision Avoidance: Collision avoidance mechanisms prevent in-air collisions 

between UAVs, ensuring safe and uninterrupted operations, particularly in 

congested airspace. 

1.5.2 Challenges in Dynamic Routing and Collision Avoidance: 

a. Scalability: In large UAV networks, routing decisions become increasingly 

complex. Balancing scalability with real-time responsiveness is a challenge. 

b. Dynamic Environments: UAVs operate in unpredictable environments with 

varying obstacles and interference sources. Adapting to these dynamic conditions 

is essential. 

c. Collision Prediction: Predicting potential collisions accurately is an essential task 

in a dynamic environment by using collision avoidance algorithms. 

d. Communication Latency: Real-time routing decisions require low-latency 

communication, which can be challenging in UAV networks, especially in remote 

or congested areas. 

1.5.3 Integration with Communication Protocols: 

Dynamic routing and collision avoidance should flawlessly integrate with UAV 

communication protocols. For instance, protocols like Dynamic Source Routing (DSR) 

and Ad hoc On-Demand Distance Vector (AODV) can incorporate real-time routing 

updates to adapt to changing network topologies. Table 1.1 emphasizes the link between 

dynamic routing and collision avoidance in UAVs. The table describes the many features 

of dynamic routing and how they connect to or affect collision avoidance strategies. 

Advanced technologies like AI and machine learning are used in dynamic routing and 

collision avoidance to improve their capabilities and efficacy. Table 1.1 shows how 

dynamic routing and collision avoidance are connected and how advances in one area 

might assist the other [31]. 
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Table1.1- Relationship of dynamic routing and collision avoidance in UAVs with a 

common aspect 

Feature Dynamic Routing Collision Avoidance 

Objective 

Optimize UAV path efficiency 

in real-time considering dynamic 

factors. 

Ensure safe operation by 

avoiding collisions and 

maintaining safe distances. 

Key 

Algorithms 

A*, RRT (Rapidly-exploring 

Random Trees), Genetic 

Algorithms, Dijkstra’s 

Algorithm 

Velocity Obstacle (VO), 

Potential Fields, Sense-and-

Avoid, Reactive Methods 

Environment 
Operates in dynamic, 

unpredictable environments. 

Requires awareness of static and 

dynamic obstacles in the 

environment. 

Adaptability 

High adaptability to changes 

such as new obstacles, weather 

conditions, and moving targets. 

High adaptability to the sudden 

appearance of obstacles or 

changes in the trajectory of other 

UAVs. 

Use Cases 

Search and rescue, dynamic 

surveillance, and delivery in 

urban environments 

Close-formation flying, urban 

navigation, operations in 

crowded airspaces 

1.5.4 Future Directions: 

a. 5G and Beyond: The integration of 5G and future communication technologies 

will enable low-latency, high-throughput communication, enhancing dynamic 

routing and collision avoidance capabilities. 

b. Swarm Intelligence: Implementing swarm intelligence principles can improve 

collaboration among UAVs, enabling them to coordinate routing and collision 

avoidance methods more effectively. 

By seamlessly integrating dynamic routing and collision avoidance mechanisms with 

robust communication protocols, UAV networks can achieve new levels of performance 

and reliability, opening up opportunities for varied kinds of applications, from 

surveillance and delivery to disaster response and beyond [32]. 
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1.5.6 Challenges in Dynamic Routing 

Dynamic routing, a foundation of modern network management, faces many of the 

challenges in today's complex and ever-evolving technological landscape. In this chapter, 

we investigate the challenges, their implications, and the innovative strategies being 

employed to navigate through them effectively. 

 

Figure 1.4- Some Common Challenges in Dynamic Routing 

Figure 1.4 displays the primary issues in dynamic UAV routing, with explanations for 

each. Each of these issues represents an important factor that must be addressed in order 

to achieve effective and dependable dynamic routing for UAVs. To overcome these 

obstacles, a multidisciplinary strategy is required, which includes advanced algorithms, 

robust sensor technologies, and efficient computing approaches. Figure 1.4 shows the 

interrelated issues in the dynamic routing of UAVs and their influence on one another 

[33]. 

i) Scalability and Network Size: 

One of the primary challenges in dynamic routing is scalability, especially in large-scale 

networks. As networks grow to accommodate a multitude of devices, nodes, and routes, 

the routing infrastructure must efficiently handle the increasing complexity. The 
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management and computation overhead required for routing decisions in massive 

networks can lead to delays and inefficiencies. 

ii) Real-Time Responsiveness: 

The demand for real-time data transmission and low-latency communication presents a 

significant challenge. Dynamic routing protocols must make instant decisions to adapt to 

changing network circumstances and improve traffic flow. Achieving real-time 

responsiveness without compromising on the accuracy of routing decisions is a delicate 

balance. 

iii) Network Dynamics: 

Networks are inherently dynamic, with nodes joining, leaving, or failing regularly. 

Dynamic routing protocols must seamlessly adapt to these changes without causing 

network disruptions. The challenge lies in developing algorithms that can detect and react 

to network dynamics while maintaining stability. 

iv) Security Concerns: 

Security flaws are also introduced by the dynamic nature of routing. The adaptability of 

dynamic routing protocols may be used by hackers to conduct different kinds of attacks, 

update routing tables, or redirect traffic. The integrity, confidentiality, and dependability 

of network communications may all be severely impacted by these assaults. Typical risks 

include route deletion, which eliminates valid routes to interfere with network 

connection, and route injection, in which attackers introduce false routing information to 

reroute traffic through compromised nodes. Man-in-the-middle attacks can be made 

possible via traffic diversion, giving hackers the ability to intercept, change, or eavesdrop 

on private information. 

v) Quality of Service (QoS): 

Dynamic routing must prioritize and maintain the quality of service, especially in 

networks where different types of traffic require varying levels of bandwidth and 
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reliability. Ensuring that critical applications receive the necessary resources while 

efficiently utilizing available bandwidth is a balancing act. 

vi) Interoperability: 

In heterogeneous environments with diverse hardware and software components, 

achieving interoperability among different routing protocols and devices can be complex. 

Routing systems must effectively communicate and exchange routing information across 

these varied platforms. 

vii) Resource Utilization: 

Dynamic routing decisions should optimize resource utilization, including bandwidth and 

processing power. Inefficient routing can lead to resource bottlenecks, wastage, and 

reduced overall network performance. 

viii). Complex Routing Policies: 

Organizations often have specific routing policies and constraints that need to be 

incorporated into dynamic routing algorithms. Adhering to these policies while ensuring 

efficient routing can be a challenge, especially when policies conflict. 

ix) Convergence Time: 

When network changes occur, routing protocols must converge to a stable state rapidly. 

Lengthy convergence times can result in temporary disruptions, affecting the overall user 

experience. 

x) Fault Tolerance: 

Ensuring network robustness and fault tolerance is a vital task. Dynamic routing should 

be robust to failures and capable of rerouting traffic in the event of link or node failures. 

1.5.7 Collision Avoidance Strategies 

Collision avoidance strategies are at the heart of ensuring the smooth and safe operation 

of autonomous systems, particularly in the context of Unmanned Aerial Vehicle (UAV) 
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networks and beyond. In this section, the significance of collision avoidance, the 

challenges it poses, and the strategies have been explored [34]. 

i) Importance of Collision Avoidance: 

Collision avoidance is a fundamental concern in autonomous systems, including UAVs. 

The avoidance of collisions is not only critical for preserving the integrity of the vehicles 

themselves but also for the safety of individuals, property, and the environment. UAVs, 

which operate in diverse and often dynamic environments, rely on collision avoidance to 

prevent accidents, maintain operational efficiency, and adhere to regulations. 

ii) Challenges in Collision Avoidance: 

Several challenges complicate the task of collision avoidance in UAV networks: 

a. Dynamic Environments: UAVs often operate in environments characterized by 

rapidly changing conditions, including the presence of other UAVs, manned 

aircraft, and unexpected obstacles. Adapting to these dynamics in real-time is a 

substantial challenge. 

b. Sensor Limitations: Collision avoidance heavily depends on sensor data, 

including GPS, LIDAR, radar, and cameras. Ensuring the accuracy and reliability 

of this data, especially in adverse weather conditions or urban canyons, poses a 

challenge. 

c. Communication Latency: UAVs within a network must communicate and share 

their positions and intentions to avoid collisions. Minimizing communication 

latency while maintaining network integrity is vital. 

d. Regulatory Compliance: Compliance with flight regulations is non-negotiable. 

Collision avoidance strategies must align with these regulations and adapt to 

changes in legal frameworks. 

e. Scalability: As UAV networks expand to accommodate more vehicles, scaling 

collision avoidance mechanisms becomes complex. Ensuring that the system 
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remains efficient and effective with a growing number of participants is 

challenging. 

iii) Collision Avoidance Strategies: 

To address these challenges, a range of collision avoidance strategies and technologies 

are used as follows: 

a. Sense and Avoid Systems: UAVs are equipped with innovative sensor suites that 

enable them to detect obstacles and other vehicles. These systems include LIDAR, 

radar, and computer vision, which provide data for collision prediction and 

avoidance. 

b. Machine Learning and AI: Machine learning algorithms are used to scrutinize 

sensor data and predict potential collision scenarios. AI-driven decision-making 

processes allow UAVs to take evasive action autonomously. 

c. Communication Protocols: UAVs communicate with each other through 

standardized protocols to exchange position and intent data. These protocols 

ensure that vehicles are aware of each other's presence and can plan routes 

accordingly. 

d. Dynamic Path Planning: UAVs utilize dynamic path planning algorithms to 

adapt their flight paths in real-time. These algorithms consider not only static 

obstacles but also dynamic elements such as other UAVs and manned aircraft. 

e. Testing and Simulation: Rigorous testing and simulation environments allow 

collision avoidance systems to be evaluated comprehensively before deployment. 

This reduces the risk of accidents during real-world operations. 

In summary, collision avoidance strategies play a significant role in the safe and efficient 

operation of UAV networks and autonomous systems. While challenges such as dynamic 

environments and sensor limitations continue, ongoing advancements in technology, 

including sensors, machine learning, and communication protocols, are continuously 
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improving collision avoidance capabilities. As UAV networks expand and become more 

integrated into daily life, the development and refinement of these strategies will remain a 

top priority to ensure safe and reliable autonomous operations [35]. 

1.5.8 Integration of Dynamic Routing and Collision Avoidance 

The integration of dynamic routing and collision avoidance is an essential aspect of 

ensuring the safe and efficient operation of Unmanned Aerial Vehicle (UAV) networks. In 

this discussion, we examine the significance of combining these two critical elements, the 

challenges it presents, and the advantages it offers in the framework of UAV networks 

[36]. 

i) Significance of Integration: 

The integration of dynamic routing and collision avoidance is essential for achieving 

seamless and effective UAV operations. It includes the coordination of UAVs' flight paths 

in real-time while simultaneously avoiding collisions with other UAVs, manned aircraft, 

and obstacles. This integration serves several crucial purposes [37]: 

a. Safety: Safety is on top in UAV networks. The integration ensures that UAVs can 

dynamically adapt their routes to prevent collisions, thereby minimizing the risk 

of accidents, damage, and potential harm to people on the ground. 

b. Efficiency: Dynamic routing allows UAVs to optimize their flight paths for 

factors like fuel efficiency and mission objectives. Integrating collision avoidance 

ensures that these optimized paths do not compromise safety. 

c. Network Scalability: As UAV networks expand to accommodate a growing 

number of vehicles, the integration of dynamic routing and collision avoidance 

ensures that the system can scale effectively without compromising safety or 

efficiency. 

Although UAV has so many advantages in context to their application areas, as shown in 

figure 1.5, at the same time, it is very difficult to integrate dynamic routing with collision 
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avoidance strategies with various types of challenges explained in the next section of part 

of this chapter.  

ii) Challenges in Integration: 

The integration of dynamic routing and collision avoidance poses several complex 

challenges: 

a. Real-Time Decision-Making: UAVs must make instant decisions to adjust their 

routes and avoid collisions. Ensuring that these results are both safe and effective 

requires advanced algorithms and reliable data. 

b. Sensor Data Fusion: Collision avoidance relies on data from various sensors, 

including LIDAR, radar, GPS, and cameras. Integrating and processing this 

diverse sensor data in real-time is challenging but crucial for accurate decision-

making. 

 

Figure 1.5- Applications Areas where UAV can be used with optimal path planning 

 

a. Communication Latency: Coordination among UAVs is dependent on data 

sharing. Minimizing communication latency while ensuring data integrity is a 

delicate balance that must be maintained. 
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b. Dynamic Environments: Dynamic routing accounts for factors like weather, 

mission objectives, and traffic. Integrating these dynamic elements with collision 

avoidance adds complexity, especially when conditions change rapidly. 

iii) Advantages of Integration: 

Despite these challenges, the integration of dynamic routing and collision avoidance 

offers several advantages: 

a. Enhanced Safety: Integration minimizes the risk of collisions, safeguarding 

UAVs and the surrounding environment. 

b. Efficient Operations: UAVs can optimize routes for efficiency while avoiding 

obstacles and other vehicles, resulting in cost savings and improved mission 

success rates. 

c. Adaptability: The integrated system can adapt to changing conditions, including 

unexpected obstacles or airspace restrictions, without manual intervention. 

d. Compliance: UAV operators can maintain compliance with flight regulations 

seamlessly, avoiding legal complications. 

In summary, the integration of dynamic routing and collision avoidance represents a 

critical innovation in the development of UAV networks. While challenges related to real-

time decision-making and sensor data fusion persist, ongoing advancements in 

technology, including machine learning, AI, and communication protocols, are 

progressively improving the capabilities of integrated systems. As UAV networks become 

more prevalent in various industries, the successful integration of these two elements will 

be crucial in ensuring their continued safe and efficient operation [38]. 

1.5.9 Real-time Considerations 

The Unmanned Aerial Vehicle (UAV) routing and collision avoidance is inherently 

dynamic and demands real-time considerations to ensure safe and efficient operations. In 

this section, we explore the critical importance of real-time factors, the challenges they 
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present, and the strategies employed in addressing them within the context of UAV 

networks [39]. 

i) Challenges in Real-time Considerations: 

Several challenges arise when integrating real-time considerations into UAV routing and 

collision avoidance: 

a. Data Processing: Processing vast amounts of real-time data from various sensors 

and sources requires robust computational capabilities and algorithms to ensure 

accurate decision-making. 

b. Latency: Minimizing latency in data transmission and decision execution is 

critical.  

c. Dynamic Decision-Making: UAVs must make rapid decisions in complex and 

evolving scenarios. Developing algorithms capable of handling real-time 

decision-making under uncertainty is a significant challenge. 

1.6 Significant Contribution 

A review and research work on existing route planning methodologies in UAVs can 

provide a solid foundation for identifying gaps and opportunities in the current state of 

knowledge. It may determine the merits and drawbacks of various tactics, such as 

heuristic, probabilistic, and machine learning-based approaches. This analysis will not 

only improve our understanding of how these techniques work in different situations but 

will also improve the way of development of more refined and successful path planning 

strategies. Furthermore, putting this data into a well-structured framework might provide 

the groundwork for future UAV path planning research work and development [40]. 

Second, developing and implementing a new target identification technique based on 

optimal path selection is a significant advancement in UAV technology. Novel algorithms 

for route planning and target recognition can be utilized to increase UAV operations' 

precision and efficiency. This innovation might include utilizing AI and machine learning 
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to estimate and react to changing conditions, ultimately increasing mission outcomes. 

Finally, presenting a collision minimization technique and comparing it to existing tactics 

in terms of Quality of Service (QoS) measurements will demonstrate the research work's 

practical importance [41]. Addressing collision dangers with innovative techniques, 

including real-time course change, cooperative collision avoidance algorithms, and 

improved sensor integration, may significantly enhance the safety and reliability of UAV 

operations. Implementing these tactics and comparing them to current standards will 

provide actual evidence of their success, including improvements in key QoS metrics like 

as latency, reliability, and throughput. This comparative study will not only analyze your 

proposed approaches but will also give helpful insights into their scalability and real-

world application, thereby contributing considerably to the field of UAV technology [42]. 

1.7 Research work Objectives 

Following four objectives have been finalized in line with the research work: 

I. To review and investigate the existing path planning techniques in UAVs. 

This objective aims to conduct a review of current path planning methodologies 

used in Unmanned Aerial Vehicles (UAVs), evaluating their effectiveness, 

limitations, and potential areas for improvement. 

II. To design and implement a target detection technique based on an optimal 

path selection. 

This objective focuses on developing a novel target detection method that 

leverages optimal path planning to enhance the accuracy and efficiency of UAV 

missions. 

III. To propose a scheme for minimizing the collision in UAVs. 

This objective is centred on creating a robust scheme to reduce collision risks 

among UAVs, thereby improving the security and consistency of UAV operations. 

IV. To implement and compare the proposed work for QoS with existing 

techniques. 
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This objective involves the implementation of the proposed techniques and their 

comparison with current methods, focusing on Quality of Service (QoS) metrics 

to demonstrate the improvements and benefits of the new approach. 

1.8 Research work Organization 

This research work is being structured to provide a clear and complete study of the 

research work conducted on Unmanned Aerial Vehicle (UAV) routing, bioinspired 

optimization, and collision-aware routing. The organization of this research work follows 

a logical progression, allowing readers to investigate the subject matter with clarity and 

depth. Each chapter contributes to the overall understanding of the research work and 

builds upon the preceding chapters, ultimately concluding a combination of findings, 

implications, and future directions. 

Chapter 1: Introduction 

The research work begins with Chapter 1, the "Introduction." In this opening chapter, the 

introductory aspects of the research work are established. It begins with "1.1 Background 

and Motivation," which provides a context for the study by exploring the significance of 

UAV networks and the motivations behind this research work. "1.2 Problem Statement" 

follows, articulating the challenges and limitations faced in the dominion of UAV routing, 

setting the stage for the subsequent chapters. "1.3 Purpose of research work" outlines the 

specific goals and objectives of the research work, offering a roadmap for what the reader 

can expect to discover. "1.4 Node-Level and Network-Level Parameters in UAV Routing 

" provides outlines of various parameters used in UAV routing.  "1.5 Dynamic Routing 

and Collision Avoidance" explained challenges while performing dynamic routing in real 

time consideration and also strategies to be used to avoid Collison in UAV routing. "1.6 

Significant Contribution" outlines the research work's contribution to society. "1.7 

Research work Objectives" provides a detailed description of research work objectives 

and their need of addressed in UAV routing. Finally, "1.8 Research work Organization" 

provides an overview of the structure and content of the entire research work, guiding the 

reader through the upcoming chapters. 
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Chapter 2: Bioinspired Optimization Algorithms 

Chapter 2 provides basic knowledge of existing bioinspired models which are further to 

be used in research work explained in other chapters of this research work. This chapter 

begins with "2.1 Q-Learning", which provides the advantage and principle fundamentals 

of the Q-Learning model. "2.2 Mayfly Optimization (MO)" outlines the basic process to 

be used by Mayfly for optimization. "2.3 Grey Wolf Optimization (GWO)" provides an 

idea about the use of GWO in UAV routing for optimization. "2.4 Firefly Optimization" 

explained about benefits and challenges of FFO while used in UAV routing. Finally, "2.5 

Continuous Learning Process (CLF)" provides an overview of CLF in a dynamic 

environment for a continuous learning framework.  

Chapter 3: Literature Review 

Chapter 3, the "Literature Review," serves as the intellectual foundation of the research 

work. It comprises three sections, each with a distinct focus. "3.1 Historical Evolution of 

UAV Routing Protocols" provides a complete understanding of UAV networks and their 

various applications with some latest and existing authors’ and scholar’s research work. 

"3.2 Related work" provides a complete understanding of UAV networks and their 

various applications with some latest and existing authors’ and scholars’ research work. 

"3.3 Research work Question" provides deep knowledge of why research work is 

important in this field and what result we can expect after implementation. Finally, "3.4 

Literature Summary" synthesizes the overall crux of existing and latest research work to 

prepare the reader for the innovative solutions presented in the subsequent chapters. 

Chapter 4: QMRNB: Q-Learning Model for UAV Network Routing 

Chapter 4 introduces the first routing model, "QMRNB." This chapter is divided into four 

sections, each contributing to a comprehensive understanding of the model. "4.1 

Introduction to QMRNB" sets the foundation by introducing the model's core concepts. 

"4.2 Design of the model" explains the steps which are to be followed for the integration 

of Q-learning within the routing framework. "4.3 Result Analysis" showcases the 
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performance of the model used in research work by comparing it with the existing model. 

"4.4 Conclusion and Future Scope" provides a summary of research work and their future 

scope of improvement in detail. 

Chapter 5: BPACAR: Hybrid Bioinspired Model for Collision-Aware Routing 

Chapter 5 continues the exploration of novel routing models with "BPACAR." Like the 

previous chapter, this one is organized into four sections, each contributing to a complete 

understanding of the model. "5.1 Introduction to BPACAR" introduces the model's core 

concepts and objectives. "5.2 Design of the model" explains the steps which are to be 

followed for the integration of Q-learning within the routing framework. "5.3 Result 

Analysis" showcases the performance of the model used in research work by comparing 

it with the existing model. "5.4 Conclusion and Future Scope" provides a summary of 

research work and their future scope of improvement in detail. 

Chapter 6: Conclusion and Future Work 

The final chapter, Chapter 6, provides a conclusion to the research work. It is organized 

into six sections. "6.1 Performance of QMRNB" summarizes the performance of the 

QMRNB model used in research work. "6.2 Performance of BPACAR" summarizes the 

performance of the BPACAR model used in research work. "6.3 Inferences of the 

Research work" discusses the practical implications of the findings. "6.4 Future Scope" 

outlines potential possibilities for future exploration. "6.5 Summary of BPACAR & 

QMRNB" summarizes both the model’s advantage and further improvements."6.6 

Summary of Findings" offers closing reflections on the research work journey 

undertaken. 
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CHAPTER 2           

BIOINSPIRED OPTIMIZATION ALGORITHMS 

Bioinspired optimization algorithms, also known as nature-inspired or metaheuristic 

algorithms, are computational approaches that utilize natural processes, occurrences, and 

behaviours as inspiration to tackle complex optimization problems. These algorithms 

compete with the efficiency and adaptability observed in biological and ecological 

systems, offering innovative solutions to an extensive variety of optimization challenges. 

The research work explores the fundamental concepts, key algorithms, and applications 

of bioinspired optimization in various domains. Bioinspired optimization, also known as 

nature-inspired or metaheuristic optimization, is a computational approach that draws 

inspiration from natural processes, biological systems, and ecological phenomena to 

solve complex problems. It influences the efficiency, adaptability, and robustness 

observed in the natural world to develop innovative algorithms for optimization tasks. 

The research work provides an introduction to the interesting field of bioinspired 

optimization, outlining its fundamental principles, key methodologies, and diverse 

applications. It explores the ways in which bioinspired algorithms replicate swarm 

intelligence, evolutionary methods, and other natural characteristics to maximize 

solutions in artificial intelligence, engineering, and other domains. For example, the 

effectiveness of algorithms like Ant Grey Wolf Optimization (GWO), Particle Swarm 

Optimization (PSO), and Genetic Algorithms (GA) for rapidly navigating huge search 

areas and locating optimum or nearly optimal solutions is investigated.  

2.1 Fundamental Principles: 

Bioinspired optimization is grounded in several fundamental principles: 

a. Mimicking Nature: It involves emulating the behaviours, mechanisms, and 

strategies observed in living organisms, physical phenomena, and ecological 

systems. Nature serves as a source of inspiration for problem-solving. 
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b. Population-Based Search: Most bioinspired algorithms keep a pool of possible 

answers. The idea of "survival of the fittest" in biological evolution is similar to 

how these methods change and shift over time. 

c. Exploration and Exploitation: To quickly move through solution spaces, these 

algorithms find a good mix between exploration (looking for new, good solutions) 

and exploitation (improving current solutions). 

2.1.1 Key Methodologies: 

A number of bioinspired optimization methods have become popular because they can 

solve a wide range of optimization problems: 

a. Genetic Algorithms (GAs): GAs draw inspiration from the principles of natural 

selection and genetics. They involve developing a population of candidate 

solutions through processes like selection, crossover (recombination), and 

mutation. 

b. Particle Swarm Optimization (PSO): PSO is inspired by the common behaviour 

of birds flocking or fish schooling. Particles (representing solutions) adjust their 

positions based on their own experiences and the experiences of their peers. 

c. Ant Colony Optimization (ACO): ACO mimics the searching behaviour of ants. 

Virtual ants deposit pheromones on paths as they explore, and future ants use 

pheromone concentrations to make routing decisions. 

d. Simulated Annealing (SA): SA follows the forging process in metallurgy. It 

explores the solution space by allowing probabilistic transitions to less optimal 

solutions, gradually reducing the probability over time. 

e. Firefly Algorithm (FA): FA is motivated by the flashing patterns of fireflies. 

Fireflies are attracted to others with higher brightness, promoting the convergence 

of solutions toward optimal ones. 
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f. Bat Algorithm (BA): BA replicates the echolocation behaviour of bats. Bats 

adjust their positions in the search space while emitting loud calls to locate prey. 

The algorithm balances exploration and exploitation. 

UAVs have so many existing models to be used for optimal path planning, but still, the 

bioinspired model has shown better results in terms of speed and accuracy. Figure 2.1 

represents some existing bioinspired models, which can be further used with another 

bioinspired model to make the approach hybrid for better efficiency [43]. A bioinspired 

model in UAV path planning uses algorithms inspired by natural processes and 

behaviours, such as swarm intelligence, evolutionary techniques, and neural networks, to 

optimize unmanned aerial vehicle (UAV) paths. These models mimic effective problem-

solving processes seen in nature, such as ant foraging patterns, bird flocking behaviour, 

and biological organisms' adaptive mechanisms. UAVs that use these bioinspired 

algorithms may automatically find the most efficient and safe pathways in dynamic and 

complicated situations. This strategy improves UAVs' capacity to negotiate obstacles, 

conserve energy, and perform mission objectives more successfully [44].  

 

Figure 2.1- Existing Bioinspired Algorithm used in UAV path planning 

 



37 
 

2.1.2 Applications: 

Bioinspired optimization finds applications across diverse domains: 

a. Engineering: It optimizes complex engineering designs, including aircraft shapes, 

vehicle routing, and structural configurations. 

b. Finance: Bioinspired algorithms are used for portfolio optimization, risk 

assessment, and stock market prediction. 

c. Data Mining: They assist in clustering, feature selection, and pattern recognition 

tasks. 

d. Robotics: These algorithms optimize robot motion planning, swarm robotics, and 

control strategies. 

e. Telecommunications: Bioinspired algorithms enhance wireless sensor networks, 

signal processing, and network design. 

f. Healthcare: They aid in optimizing treatment plans, drug discovery, and medical 

image analysis. 

2.1.3 Challenges and Future Scopes: 

Despite their successes, bioinspired optimization algorithms present several challenges 

and areas for future exploration: 

a. Parameter Tuning: Selecting appropriate algorithm parameters can be a non-

trivial task and may significantly impact performance. 

b. Hybridization: Combining bioinspired algorithms with other techniques, such as 

deep learning or quantum computing, is an evolving research work area [45]. 

c. Dynamic Environments: Adapting these algorithms to dynamic and uncertain 

environments remains a challenge. 
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d. Scalability: Ensuring efficient performance on large-scale problems is crucial for 

practical applications. 

e. Interdisciplinary Collaboration: Collaboration among experts in biology, 

computer science, and related fields can lead to innovative algorithm 

development. 

In summary, bioinspired optimization represents an attractive field that continues to 

revolutionize problem-solving in various domains. By coupling the wisdom of nature's 

optimization processes, bioinspired algorithms offer promising solutions to complex real-

world challenges. As research work in this field advances, bioinspired optimization is 

expected to play an increasingly essential role in optimizing and enhancing a wide array 

of systems and processes [46]. 

2.2 Q-Learning 

Q-Learning, a reinforcement learning technique, has gathered significant attention in the 

context of Unmanned Aerial Vehicle (UAV) routing. This chapter focuses on exploring 

the application of Q-Learning to UAV routing, its underlying principles, and the potential 

benefits it offers to improve routing efficiency [47]. 

𝑄(𝑆_𝑡, 𝑎_𝑡) ← 𝑄(𝑆_𝑡, 𝑎_𝑡) + 𝛼[𝑟_𝑡 + 𝛾𝑚𝑎𝑥_𝑎′𝑄(𝑆_{𝑡 + 1}, 𝑎′) − 𝑄(𝑆_𝑡, 𝑎_𝑡… (1) 

Where Q (S_t, a_t) is the Q-value for the current state S_t and action a_t, α is the learning 

rate (0 < α ≤ 1), r_t is the immediate reward received after taking action a_t, γ is the 

discount factor (0 ≤ γ < 1), max_a' Q(S_{t+1}, a') is the maximum Q-value for the next 

state S_{t+1} over all possible actions a'. Equation (1) is fundamental in updating the Q-

values based on the agent's experiences, guiding the learning process toward optimal 

policy. Figure 2.2 depicts the process of the Q-learning model, which begins with zeros 

and progresses to parameter setting. The procedure iterates over several episodes, 

initializing the state at the start of each. Within each episode, the algorithm selects actions 

using the epsilon-greedy policy, executes them, monitors rewards and future states, and 

changes Q-values using the Q-learning formula. This cycle continues until a terminal 
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condition is achieved, which signals the end of the episode. The procedure is repeated for 

each episode till the end condition is satisfied, at which time the Q-learning process is 

complete. This graphic clearly depicts the iterative and adaptive nature of Q-learning, 

showing the procedures required to update the Q-values and improve the agent's policy 

over time [48]. 

 

 

Figure 2.2- Q-learning model's workflow 
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2.2.1 Principles of Q-Learning: 

Q-Learning model is a reinforcement learning algorithm used for optimizing decision-

making in dynamic environments. It operates on the belief of learning an optimal action-

selection policy through interaction with the environment. In Q-Learning, an agent 

explores an environment, takes actions, receives feedback (rewards), and updates its Q-

values based on this feedback [49]. 

a. State-Action Pairs: Q-Learning maintains a Q-table, where each entry represents 

the expected cumulative reward (Q-value) for taking a specific action in a 

particular state. 

b. Exploration vs. Exploitation: The algorithm balances exploration (trying new 

actions) and exploitation (choosing actions with known high rewards) to gradually 

converge toward an optimal policy. 

c. Q-Value Update Rule: The Bellman equation is used to update Q-values over 

and over again. It takes into account both current rewards and the expected 

maximum future rewards. 

2.2.2 Application to UAV Routing: 

In the context of UAV routing, Q-Learning can be applied as follows: 

1. State Representation: States represent the current status of the UAV network, 

including node positions, available paths, network congestion, and 

communication requests. 

2. Actions: Actions correspond to routing decisions made by UAVs, such as 

selecting the next hop or choosing an alternate path. 

3. Rewards: Routing goals, like reducing delays, increasing traffic, or saving 

energy, can be used to set rewards. UAVs earn awards based on their routing 

choices. 
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4. Q-Table: The Q-table stores Q-values for state-action pairs, helping UAVs learn 

which routing decisions lead to the best outcomes over time. 

2.2.3 Benefits and Challenges: 

a. Adaptability: Q-Learning enables UAVs to adjust to varying network 

circumstances, making it suitable for dynamic environments where node 

positions, communication requests, and interference levels may fluctuate. 

b. Efficiency: By learning optimal routing strategies, Q-Learning can significantly 

improve routing efficiency, reducing delays and energy consumption. 

c. Scalability: Q-Learning can handle large-scale UAV networks, making it 

applicable to scenarios with numerous UAVs and nodes. 

However, several challenges need to be addressed: 

a. Complexity: Building and updating Q-tables for large-scale networks can be 

computationally intensive. 

b. Exploration Strategies: Designing effective exploration strategies is crucial to 

balance exploration and exploitation for optimal learning. 

c. Real-Time Implementation: Implementing Q-Learning in real-time UAV 

systems requires efficient algorithms and hardware capabilities. 

2.3 Mayfly Optimization (MO) 

Mayfly Optimization (MO) is a bioinspired optimization algorithm that has gained 

recognition for its application in solving complex optimization problems. In this part of 

the chapter, the focus is on introducing MO, its principles, and its potential applications, 

including its role in improving routing efficiency in Unmanned Aerial Vehicle (UAV) 

networks. Mayfly Optimization is a nature-inspired metaheuristic algorithm that uses the 

mating behaviour of mayflies to solve optimization issues. Mayfly Optimization, named 

after the mating behaviour of mayflies, is a nature-inspired metaheuristic method for 

solving optimization issues [50]. In this approach, potential solutions, represented as 
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mayflies, iteratively increase their locations in the search space until they locate the ideal 

solution. Mayflies' movements are driven by the mate selection principle, which states 

that individuals are attracted to the best-performing solutions. Mayfly Optimization 

achieves an appropriate combination of exploration and exploitation to navigate 

complicated search environments. This program, which simulates mayfly mating 

behaviour, provides a fresh approach to tackling a variety of optimization issues [51]. Its 

simplicity, efficiency, and capacity to tackle multi-modal and non-linear issues make it a 

viable tool for a variety of fields, including engineering, finance, and logistics. Mayfly 

Optimization, via continual refining and adaptation, has emerged as a promising approach 

for handling complicated optimization problems. Figure 2.3 illustrates the general 

workflow of the Mayfly Optimization algorithm.  

 

Figure 2.3- General workflow of the Mayfly Optimization algorithm 
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This diagram outlines the basic steps of the Mayfly Optimization algorithm. This process, 

shown in figure 2.3, iterates until the termination criteria are satisfied, leading to the 

discovery of an optimal solution to the optimization problem. 

𝑣_𝑖(𝑡 + 1) = 𝑤𝑣_𝑖(𝑡) + 𝑐_1𝑟_1(𝑝_𝑖 − 𝑥_𝑖(𝑡)) + 𝑐_2𝑟_2(𝑔 − 𝑥_𝑖(𝑡))… (1) 

Where v_i(t) is the velocity of the mayfly at time t, w is the inertia weight, c_1 and c_2 

are acceleration coefficients, r_1 and r_2 are random numbers uniformly distributed in 

the range [0, 1], p_i is the personal best position of the mayfly, x_i(t) is the current 

position of the mayfly, g is the global best position. Equation (1) is used in the Mayfly 

Optimization algorithm for updating the velocity of a mayfly. 

2.3.1 Principles of Mayfly Optimization: 

MO is inspired by the short but purposeful life of mayflies, insects known for their brief 

existence as adults. The algorithm mimics the decision-making process of mayflies 

during their short lifespan, focusing on optimizing solutions within a limited timeframe 

[52]. Key principles of MO include: 

a. Limited Lifespan: In MO, solutions, or "Mayflies," have a finite lifespan, 

representing a restricted time frame for optimizing a problem. This concept 

encourages rapid and effective decision-making. 

b. Exploration and Exploitation: Mayflies strike a balance between exploring 

different solutions and exploiting the best ones. They aim to make the most of 

their limited time by adapting to their environment. 

c. Reproduction and Evolution: Successful Mayflies have the opportunity to 

reproduce, passing on their characteristics to the next generation. Over time, this 

leads to the evolution of solutions toward optimal or near-optimal states. 

d. Dynamic Fitness Landscape: MO adapts to the dynamic fitness landscape of the 

problem, responding to changes in the environment and problem constraints. 
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2.3.2 Application in UAV Routing: 

MO can be applied to optimize routing decisions in UAV networks in the following 

manner: 

a. Route Optimization: MO is used to evolve and optimize routing paths for UAVs 

within a limited time frame. This is especially valuable in scenarios with rapidly 

changing network conditions. 

b. Alternative Paths: Mayflies in MO consider alternative routing paths, ensuring 

that optimal routes are available even if the initially selected paths become 

congested or unavailable. 

c. Fitness Evaluation: MO employs a fitness function to evaluate the quality of 

routing solutions. This function accounts for factors like routing delay, energy 

efficiency, packet delivery rates, and other relevant metrics. 

d. Continuous Adaptation: MO continuously adapts to the evolving UAV network 

conditions, enabling real-time adjustments to routing paths as needed. 

2.3.3 Benefits and Challenges: 

a. Efficiency: MO's focus on rapid optimization aligns well with the need for 

efficient routing in UAV networks, particularly in situations requiring fast 

response times. 

b. Adaptability: The algorithm's ability to identify alternative paths and adjust to 

variations in the network environment makes it suitable for dynamic and 

unpredictable scenarios. 

c. Complexity: Implementing MO effectively requires careful consideration of the 

fitness function and other algorithm parameters. Designing an appropriate fitness 

function can be challenging. 

d. Computational Overhead: Like many bioinspired algorithms, MO can be 

computationally exhaustive, mainly for large-scale UAV networks. 
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2.4 Grey Wolf Optimization (GWO) 

Grey Wolf Optimization (GWO) is a nature-inspired optimization algorithm that draws 

motivation from the social hierarchy and hunting behaviours of grey wolves. In this part 

of the chapter, we explore the principles, applications, benefits, and challenges associated 

with GWO, particularly its relevance in addressing optimization problems within the 

context of Unmanned Aerial Vehicle (UAV) networks. Figure 2.4 represents the key steps 

of the Grey Wolf Optimization (GWO) algorithm in a structured flowchart format. The 

process starts with the initialization of the algorithm's parameters and the population of 

grey wolves. Each wolf's fitness is then evaluated to identify the top three wolves, termed 

alpha, beta, and delta, which lead the search process [53]. 

𝑋(𝑡 + 1) = (𝑋_𝑎𝑙𝑝ℎ𝑎 + 𝑋_𝑏𝑒𝑡𝑎 + 𝑋_𝑑𝑒𝑙𝑡𝑎)/3… (1) 

Where X(t+1) is the updated position of the grey wolf, X_alpha, X_beta, and X_delta are 

the positions of the alpha, beta, and delta wolves, respectively. Equation (1) is used to 

update the position of a grey wolf based on the average positions of the three best 

solutions (alpha, beta, and delta wolves) found so far. The primary purpose of this 

equation is to guide the search agents (grey wolves) towards the best solutions, balancing 

exploration and exploitation in the optimization process.  

The positions of the wolves are updated based on these leading wolves' positions. This 

process iterates, continually updating positions and re-evaluating fitness until a set 

stopping measure is met, such as hitting a maximum number of iterations or getting an 

acceptable fitness level. The algorithm then terminates. The diagram effectively outlines 

the iterative nature and the hierarchical structure of the GWO algorithm, highlighting 

how the positions of wolves are influenced by the leading members of the pack. 
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Figure 2.4- Key steps of the Grey Wolf Optimization (GWO) algorithm 

2.4.1 Principles of Grey Wolf Optimization: 

GWO matches the cooperative hunting behaviours of grey wolves, with a particular focus 

on the roles and interactions within a pack [54]. Key principles of GWO include: 

a. Pack Hierarchy: In GWO, optimization solutions are depicted as a pack of grey 

wolves. The pack comprises alpha, beta, and delta wolves, signifying the top-

performing people in the population. 
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b. Leader-Follower Dynamics: Alpha wolves are dominant leaders who guide the 

pack, while beta and delta wolves are followers. These roles influence the 

exploration and exploitation of potential solutions. 

c. Hunting Strategy: Grey wolves employ a collaborative hunting strategy, with the 

alpha wolf leading the pack to locate and capture prey. GWO uses this strategy to 

find optimal solutions by converging toward likely regions of the solution space. 

d. Encircling and Attacking Prey: GWO leverages the encircling and attacking 

behaviours of wolves to refine solutions. Encircling involves exploring the space 

around a potential solution while attacking aims to refine and improve the 

solution. 

2.4.2 Application in UAV Routing: 

GWO can be applied effectively to optimize routing decisions in UAV networks: 

a. Path Optimization: In UAV networks, GWO can optimize routing paths by 

dynamically adjusting the flight trajectories of UAVs to minimize routing delay, 

energy consumption, and other relevant metrics. 

b. Multi-Objective Optimization: GWO's capacity to handle multi-objective 

optimization makes it excellent for balancing opposing objectives, such as 

lowering routing latency while optimizing energy efficiency. 

c. Dynamic Adaptation: GWO's adaptive nature allows it to respond to changing 

network conditions, such as congestion or varying signal strengths, by 

dynamically adapting routing paths. 

d. Improved Quality of Service: By optimizing routing paths, GWO can enhance 

the quality of service (QoS) in UAV networks, ensuring that data is transmitted 

efficiently and reliably. 
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2.4.3 Benefits and Challenges: 

a. Efficiency: GWO's ability to rapidly converge toward optimal solutions aligns 

with the need for efficient routing decisions in UAV networks. 

b. Multi-Objective Optimization: GWO's support for multi-objective optimization 

enables UAV networks to consider multiple metrics simultaneously, leading to 

well-balanced routing decisions. 

c. Algorithm Parameters: Proper tuning of algorithm parameters, such as the 

exploration-exploitation balance and convergence speed, is crucial for GWO's 

success. 

d. Scalability: Like many optimization algorithms, GWO may face scalability 

challenges when applied to large-scale UAV networks. 

2.4.4 Future Directions: 

a. Hybridization: Combining GWO with other optimization techniques, such as Q-

Learning or Particle Swarm Optimization (PSO), can enhance its performance and 

adaptability to different UAV network scenarios. 

b. Integration with UAV Systems: Further research work can focus on integrating 

GWO into UAV systems, enabling real-time optimization of routing decisions 

during UAV missions. 

2.5 Firefly based Optimization (FFO) 

Firefly-based Optimization (FFO) is a nature-inspired optimization algorithm that draws 

motivation from the flashing behaviors of fireflies. The principles, applications, benefits, 

and challenges associated with FFO have been explored in this part of the chapter, 

particularly its relevance in addressing optimization problems within the context of 

Unmanned Aerial Vehicle (UAV) networks [55].  
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2.5.1 Principles of Firefly-based Optimization: 

FFO is rooted in the bioluminescent communication of fireflies and their attraction 

behaviours. Key principles of FFO include: 

a. Attraction Behavior: Fireflies exhibit attraction behaviours by emitting flashes 

of light to attract mates. FFO models the intensity of light as a measure of fitness, 

with brighter fireflies representing better solutions. 

b. Attraction Intensity: The attractiveness of a firefly is determined by its 

brightness and proximity to other fireflies. Brighter and closer fireflies have a 

higher probability of attracting others. 

c. Random Movement: Fireflies also exhibit random movements. In FFO, this is 

translated into a random component in the optimization process, adding 

exploration capability to the algorithm. 

Figure 2.5 depicts the processes in the Firefly Optimization Algorithm, beginning with 

the setting of algorithm parameters and the creation of an initial population of fireflies. 

Each firefly's fitness is assessed using an objective function, and the fireflies adjust their 

locations by travelling toward brighter (more appealing) fireflies. After relocating, the 

new fitness values are analyzed, and each firefly's brightness is adjusted correspondingly. 

This process continues until a stopping requirement, such as a maximum number of 

generations or a desirable fitness level, is fulfilled. The algorithm then ends and returns 

the best answer discovered. This repeated process demonstrates how the algorithm uses 

the social behaviour of fireflies to effectively solve optimization challenges [56]. 

𝑥_𝑖 = 𝑥_𝑖 + 𝛽_0𝑒^{−𝛾𝑟_{𝑖𝑗}^2}(𝑥_𝑗 − 𝑥_𝑖) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5)… (1) 

Where x_i is the position of firefly i, x_j is the position of firefly j (a brighter firefly), β_0 

is the attractiveness at r = 0, γ is the light absorption coefficient_{ij} is the distance 

between firefly i and firefly j, α is the randomization parameter, rand is a random number 

uniformly distributed in the range [0, 1]. Equation (1) is used to adjust the position of a 

firefly in the search space based on the attractiveness of other brighter fireflies. The 
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primary purpose of this equation is to guide the fireflies towards the best solutions, 

ensuring that they move towards regions of higher fitness in the search space. 

 

Figure 2.5- Iterative nature of the Firefly Optimization Algorithm 

2.5.2 Application in UAV Routing: 

FFO can be applied effectively to optimize routing decisions in UAV networks: 

a. Path Optimization: FFO can optimize routing paths by representing potential 

solutions as fireflies and their attractiveness based on routing metrics. This allows 

for the discovery of optimal paths. 
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b. Dynamic Adaptation: FFO's exploration-exploitation balance allows it to adapt 

routing decisions to changing network conditions, ensuring efficient data 

transmission. 

c. Multi-Objective Optimization: FFO's ability to handle multi-objective 

optimization is valuable for UAV networks with conflicting objectives, such as 

minimizing delay while conserving energy. 

d. Quality of Service Improvement: By optimizing routing paths, FFO contributes 

to improving the quality of service (QoS) in UAV networks, enhancing data 

delivery and reliability. 

2.5.3 Benefits and Challenges: 

a. Exploration-Exploitation Balance: FFO's balance between exploration (random 

movement) and exploitation (attractiveness) enables it to efficiently search for 

optimal solutions. 

b. Multi-Objective Optimization: FFO's support for multi-objective optimization 

aligns well with the complex nature of UAV routing problems. 

c. Algorithm Parameters: Properly tuning FFO's parameters, such as attractiveness 

and random movement, is crucial for its performance. 

d. Convergence Speed: The convergence speed of FFO may vary based on the 

problem at hand, requiring careful consideration of optimization goals. 

2.6 Continuous Learning Framework (CLF) 

Continuous Learning Framework (CLF) is an innovative approach in machine learning 

and artificial intelligence that emphasises on enabling systems to learn, adapt, and evolve 

continually. In this section, we investigate the principles, applications, advantages, and 

challenges associated with CLF. Figure 2.6 demonstrates the Continuous Learning 

Framework's circular nature. It all starts with determining the learning objectives and 

creating a plan to achieve them. The plan is then implemented, and progress is regularly 
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tracked. The results are reviewed, gaps and opportunities for development are identified, 

and the learning plan is adjusted appropriately. The cycle is repeated to promote ongoing 

learning and progress [57]. 

 

Figure 2.6- Cyclical Nature of the Continuous Learning Framework 

The Continuous Learning Framework (CLF) is a cyclical process that helps continuing 

development and knowledge acquisition in an organization or system. It begins by setting 

explicit, quantifiable learning objectives based on company goals. A thorough learning 

plan is then created, covering techniques, resources, and dates. This strategy is 

implemented through a variety of learning activities, and progress is regularly tracked 
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using data gathering methods such as evaluations and feedback forms. The efficacy of 

these efforts is assessed, and any discrepancies between predicted and actual results are 

investigated. Based on this information, the learning plan is adjusted to better correspond 

with the objectives. This iterative process continues, encouraging ongoing learning and 

adaptability to changing demands [58]. 

𝜃_{𝑡 + 1} = 𝜃_𝑡 − 𝜂𝛻𝐿(𝜃_𝑡, 𝑥_𝑡, 𝑦_𝑡)… (1) 

Where θ_t represents the model parameters at time t, η is the learning rate, ∇L (θ_t, x_t, 

y_t) is the gradient of the loss function L with respect to the parameters θ_t, computed 

using the current data point (x_t, y_t). This equation is used to continuously update the 

model parameters as new data points are observed. The primary purpose of this equation 

is to enable the model to learn and adapt incrementally from a stream of data rather than 

requiring a complete retraining on the entire dataset each time new data becomes 

available. 

2.6.1 Principles of Continuous Learning Framework: 

a. Lifelong Learning: CLF is founded on the concept of lifelong learning, where AI 

systems continuously acquire and adapt knowledge throughout their operational 

lifetime. 

b. Adaptability: CLF emphasizes adaptability to changing environments, data 

distributions, and requirements, ensuring that AI systems remain effective over 

time. 

c. Incremental Learning: Rather than traditional batch learning, CLF employs 

incremental learning, allowing systems to update their models with new data as it 

becomes available. 

d. Memory and Forgetting: CLF incorporates mechanisms for retaining important 

knowledge while selectively forgetting less relevant or outdated information. 
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2.6.2 Applications in UAV Networks: 

CLF offers several applications within the domain of UAV networks: 

a. Adaptive Routing: In UAV networks, where network conditions can change 

rapidly, CLF can be used to adapt routing strategies continually, optimizing data 

transmission paths. 

b. Anomaly Detection: CLF's ability to adapt to new data distributions is valuable 

in anomaly detection, allowing UAVs to detect novel threats or malfunctions. 

c. Resource Management: UAVs can benefit from CLF in managing resources 

efficiently, such as power allocation, based on real-time usage patterns. 

d. Predictive Maintenance: CLF can enable UAVs to predict maintenance needs by 

continuously learning from sensor data, minimizing downtime. By using data 

analysis, machine learning, and sophisticated algorithms, predictive maintenance 

is a proactive strategy that anticipates when systems or equipment are likely to 

break so that repairs may be made just in time. 

2.6.3 Benefits and Challenges: 

a. Long-Term Efficiency: CLF ensures that AI systems remain efficient and 

effective over extended periods, which is crucial for UAVs deployed in various 

missions. 

b. Data Drift: Handling evolving data distributions and concept implications 

remains a challenge in CLF, requiring robust adaptation mechanisms. 

c. Computational Complexity: Implementing CLF may introduce computational 

overhead due to continuous model updates and retention of historical data. 

d. Interpretability: As CLF models evolve, ensuring their interpretability and 

compliance with regulations is a significant challenge. 
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In summary, bioinspired optimization represents an attractive field that continues to 

revolutionize problem-solving in various domains. By coupling the wisdom of nature's 

optimization processes, bioinspired algorithms offer promising solutions to complex real-

world challenges. As research work in this field advances, bioinspired optimization is 

expected to play an increasingly essential role in optimizing and enhancing a wide array 

of systems and processes. Q-Learning model also holds great potential for optimizing 

UAV routing in dynamic and complex scenarios [59]. As UAV networks continue to 

evolve, attaching the learning capabilities of Q-Learning can contribute to more efficient, 

adaptive, and scalable routing strategies, benefiting applications ranging from 

surveillance and disaster response to communication and data collection. Similarly, 

Mayfly Optimization presents an innovative approach to solving optimization problems, 

particularly in the context of UAV routing within dynamic and time-sensitive 

environments. As research work and experimentation continue, MO holds the potential 

for contributing to more effective and adaptive routing strategies in UAV networks, 

benefiting a varied kind of applications, from surveillance to disaster response and 

beyond [60]. 

Grey Wolf Optimization presents a favourable approach to solving complex optimization 

problems, especially within the context of UAV routing in dynamic and resource-

constrained environments. As research work continues to advance and adapt GWO to 

specific UAV network challenges, it holds the potential to contribute significantly to the 

efficiency and reliability of routing decisions in various UAV applications, from 

surveillance to disaster response and beyond. Continuous Learning Framework (CLF) is 

also an innovative approach in machine learning and artificial intelligence that emphases 

on enabling systems to learn, adapt, and evolve continually. In this section, we investigate 

the principles, applications, advantages, and challenges associated with CLF, 

emphasizing its relevance in addressing complex problems and its potential impact on 

various fields, including Unmanned Aerial Vehicle (UAV) networks. The continual 

Learning Framework (CLF) improves UAV path planning by allowing for continual 

adaptation and optimization of flight routes. The CLF enables UAVs to constantly 
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improve their navigation techniques by iteratively identifying learning objectives, 

developing plans, implementing them, monitoring, evaluating, and refining them [61]. 

This technique assures that UAVs can adapt to changing situations, deal with unexpected 

impediments, and optimize their routes for efficiency and safety. By carefully 

incorporating input and learning from each flight, UAVs may improve their decision-

making processes, resulting in more dependable and effective path planning. The CLF 

promotes a proactive and adaptable learning culture, allowing UAVs to retain high 

performance and operational effectiveness even in complex and constantly changing 

environments. This continuous improvement cycle is critical for developing autonomous 

navigation skills and attaining mission success in a variety of demanding settings [62]. 
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CHAPTER 3          

LITERATURE REVIEW 

The literature review section provides an analysis of existing research work and scholarly 

work related to the topic of efficient routing in Unmanned Aerial Vehicle (UAV) 

networks using bioinspired optimizations and Q-Learning. This chapter aims to set the 

current research work within the broader context of UAV network optimization, 

highlighting key findings, gaps in knowledge, and the evolution of routing protocols in 

this domain. 

3.1 Historical Evolution of UAV Routing Protocols 

Historically, UAV routing protocols have undergone significant developments to address 

the unique challenges posed by UAV network environments. Early approaches 

predominantly adopted traditional routing techniques designed for terrestrial networks, 

such as Adhoc on Demand Multipath Distance Vector (AOMDV) and Ad Hoc On-

Demand Distance Vector (AODV) routing protocols. While these methods provided some 

utility in UAV networks, they exhibited limitations in adaptability to dynamic UAV 

environments and lacked scalability when confronted with larger network scenarios. 

Routine sending of Route Advertisement (RREQ) and Route Error (RERR) messages 

helps AODV maintain routes. Route maintenance ensures that nodes or broken links are 

rapidly identified and fixed. It also keeps routes current. The effectiveness of AODV in 

dynamic and mobile contexts is one of its main features. Because routes are created only 

when necessary, AODV is highly adaptive to variations in node mobility and network 

structure. 

Moreover, AODV has a low control overhead, which makes it appropriate for networks 

and devices with limited resources. The integration of Q-Learning into UAV routing 

marked a critical advancement. Q-Learning, a reinforcement learning technique, carried 

adaptability and sensitivity to the dynamic UAV environment. It introduced a state-action 

pair approach, enabling nodes to make informed routing decisions based on accumulated 



58 
 

rewards. This approach was particularly beneficial when dealing with unequal node 

distribution and topological changes. However, even with promising results, Q-Learning-

based routing protocols encountered challenges. One important issue was the need for 

each ground node to maintain its own Q-value table, irrespective of the presence or 

absence of neighbours. This resulted in higher bandwidth use and delayed Q-value 

convergence. Additionally, the scalability of these models was limited as their efficiency 

decreased with a higher number of communication requests. Table 3.1 shows the 

importance of some existing bioinspired model with their key contribution with respect to 

path planning optimization [63]. 

Table 3.1- Existing Bioinspired Model with Key Contribution 

Reference 
Bioinspired 

Model 
Application 

Key 

Contributions 
Results 

[64] 

Ant Colony 

Optimization 

(ACO) 

Path 

optimization, 

dynamic 

environments 

Introduced the 

concept of 

pheromone 

trails for 

pathfinding, 

adaptable to 

changes in the 

environment 

Improved 

pathfinding 

efficiency and 

adaptability in 

dynamic 

environments 

[65] 

Particle Swarm 

Optimization 

(PSO) 

Real-time path 

planning, 

obstacle 

avoidance 

Mimics social 

behaviour of 

birds and fish; 

allows 

decentralized 

decision-

making 

Faster 

convergence to 

optimal paths; 

robustness in 

real-time 

adjustments 

[66] 

Genetic 

Algorithms 

(GA) 

Multi-

objective 

optimization, 

collision 

avoidance 

Uses principles 

of natural 

selection; 

effective for 

complex 

optimization 

problems 

Effective in 

evolving 

collision-free 

and energy-

efficient paths 
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[67] 

Firefly 

Algorithm 

(FA) 

Path planning, 

multi-UAV 

coordination 

Simulates the 

flashing 

behaviour of 

fireflies 

Enhanced 

multi-UAV 

coordination 

and dynamic 

path 

[68] 
Artificial Bee 

Colony (ABC) 

Optimization, 

resource 

allocation 

Based on the 

searching 

behaviour of 

honey bees, 

good for high-

dimensional 

search spaces 

Efficient 

exploration 

and 

exploitation 

balance; 

improved 

optimization in 

large search 

spaces 

[69] 

Grey Wolf 

Optimizer 

(GWO) 

Path planning, 

obstacle 

avoidance 

Models 

leadership 

hierarchy and 

hunting 

behaviour of 

grey wolves 

Effective in 

finding 

optimal paths 

with minimal 

computation; 

robust against 

obstacles 

[70] 

Bacterial 

Foraging 

Optimization 

(BFO) 

Path planning, 

environmental 

adaptation 

Inspired by the 

foraging 

strategy of 

bacteria, 

adaptable to 

dynamic 

environments 

Improved 

adaptability 

and efficiency 

in changing 

environments 

[71] 

Evolutionary 

Algorithms 

(EA) 

Multi-

objective path 

planning, 

collision 

avoidance 

Encompasses 

various 

evolutionary 

strategies 

suitable for 

complex, 

multi-objective 

problems 

Effective in 

balancing 

multiple 

objectives; 

robust solution 

generation 

 

To address challenges, recent research work has explored the integration of bioinspired 

optimizations, such as Mayfly Optimization (MO), into Q-Learning-based routing 

models. These bioinspired optimizations aim to enhance routing efficiency by identifying 
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optimal routing paths, even under large-scale routing requests. MO achieves this by 

evaluating high-density routing fitness functions to select alternative paths when selected 

routes are occupied. The Q-Learning Model with Bioinspired Optimizations (QMRNB) 

aligns with this trajectory of research work. It introduces an innovative routing model that 

combines Q-Learning and MO to improve routing efficiency in UAV networks. This 

model influences temporal routing performance data to formulate routing decisions, 

ensuring adaptability to dynamic conditions. It addresses scalability concerns by 

optimizing routing paths, reducing delays, improving energy efficiency, and enhancing 

overall routing performance. 

3.2 Related Work 

[72] focused on a survey of various path planning techniques for unmanned aerial 

vehicles. The authors reviewed various techniques and also explained different challenges 

and their respective solutions. The main aim of this research work was to analyze the 

efficiency of UAVs by selecting an optimal path after avoiding collision during operation. 

The authors stated that path planning techniques are mainly divided into three categories: 

First Representative, Second cooperative, and finally non-cooperative techniques. By 

using these approaches, the connectivity and coverage of UAVs have been discussed. For 

better knowledge of existing methods, authors compared various methods on certain 

parameters like path length, optimality, completeness, cost and time efficiency, 

robustness, and finally, collision avoidance. [73] proposed an informative framework of 

path planning by using the aerial robot to monitor the scenarios. The methodology used 

probabilistic sensors and received variable-resolution data from these sensors. It was 

equipped for learning and concentrating on locales of interest by either mapping discrete 

or continuous values on the region. Further terrain maps were built online by a coarse 3-

D search. For the simulation, synthetic and real-world data were tested. The framework 

was validated using a publicly available dataset that illustrated its online application on a 

photorealistic mapping situation with a SegNet-based sensor for information 

procurement. [74] proposed an algorithm to overcome the problem of local search ability 

in the UAV's online path planning. The author used the Improved Genetic Algorithm with 
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Restricted Mutation Generating Region (R-IGA) to improve the planning time. In this 

paper, the authors worked on tracking the moving target for UAVs in online path 

planning. The comparison of the traditional Genetic Algorithm and Improved Genetic 

Algorithm with Restricted Mutation Generating Region (R-IGA) is done based on the 

different parameters (generations, cost value, and average time). With the improved 

genetic algorithm, the searching efficiency and feasibility of the algorithm for online path 

planning are improved. [75] used the MAX-MIN Ant System (MMAS) and the ant 

colony algorithm with punitive measures (AS-N) for the UAV's path planning. The ant 

colony algorithm is widely used to solve optimization problems. The dynamic 

environment for path planning is used by the authors. The environmental modal for the 

path planning of UAVs is constructed with a grid method, which further describes the 

environmental information. For the simulation, the MATLAB tool was used. There were 

three questions for the TSPLIB data set, and each question was tested 30 times. A penalty 

strategy is added to improve this algorithm, which enhances the utilization of resources. 

The author concluded that while dealing with unmanned vehicle path planning, the AS-N 

algorithm performs better. 

[76] explained the overview of the applications, research work directions, and open 

problem challenges of UAVs in the wireless network. The UAVs are classified into two 

parts: based on type (fixed and rotary wings) based on altitude. The author explained the 

two main causes of UAVs. For the research work direction, Channel modelling, which is 

an important aspect, can be done using various methods e.g. ray-tracing technique and 

machine learning. To measure the performance of UAV communication systems, the life 

of the battery is considered with parameters Size and Weight. The author also explained 

the mathematical tools for meeting UAV's challenges. The tools that were discussed were 

Optimization theory, Stochastic geometry, Optimal transport theory, Machine learning, 

and Game theory. The authors concluded how to analyze and optimize UAVs-based 

wireless communication systems. [77] proposed a new dynamic path planning approach 

based on ACO (Ant Colony Optimization). In the proposed approach, both dynamic and 

static obstacles have been considered to get the least collision-free path. authors used 
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various functions to search for optimal paths during target operation. In the whole process 

of finding an optimal path for UAVs cost value of the path and total cost are optimized 

using the ANT algorithm. The final experimental results of the proposed algorithm tell 

about the performance of the algorithm. And the performance is better in terms of lower 

cost for UAVs by doing smoother planning. [78] analyzed UAV's heuristic tracking path 

planning based on destination matching, design of algorithm, and parameter analysis. In 

this paper, the authors analyzed the effect of every parameter on the path planning. For 

the process of target matching, Hungarian algorithms were used, and for the path 

planning, the target tracking A* algorithm was used. The different parameters used by the 

authors for the analysis were turning-angle and the no. of threats in the process of flight 

node expansion. The results of the simulations depict the value of every parameter in the 

process of planning and have a great influence on the final result. With this approach, the 

best values of the parameters were calculated to full fill the requirements of the tasks, and 

the result of simulations represented that the A* algorithm is better for the problem of 

target tracking. [79] designed one method for UAVs Collison avoidance. The concept of 

avoiding the Collison that occurs due to the motion of hurdles such as commercial 

helicopters is very critical to save the task of UAVs and different air-traffic. Authors 

invented the path based on sampling plan approaches for the UAVs to remove the 

collisions that occur with commercial helicopters, air traffic, and moving hurdles. The 

developed method was based on an exploring-random-tree algorithm that is closed-loop-

rapidly and with three variations. Variation was: 1) Rendering of route creation method. 

2) Use of in-between waypoints. 3) forecast of collision with reachable-set. As per the 

results shown in this paper this method was able to yield the Collison free path in reality 

for a different type of UAVs in the middle of moving hurdles. [80] designed one 

framework that is useful in path planning in Dense city areas. Many Hybrid UAVs can 

take vertical take-off, landing and fixed flight, and high smooth speed. In this paper, 

authors presented a path planning approach for hybrid UAVs in mess-up urban 

settlements. The authors divided the flight into three parts with the designed framework 

as take-off, cruise part, and landing phases, and the sampling-based motion plan was used 
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to yield the path plan for each. The problems related to motion planning were solved by 

the use of a stable, sparse, rapidly exploring random trees (RRT) motion planner. The 

authors used the model of Dubin’s vehicle as it provides a balanced trade-off in-between 

computational clarity and exact experiment of real-world behaviour. Simulations used in 

this approach show that this approach effectively yields a motion plan for different UAVs 

in an adversarial environment. [81] explained categorized the path planning algorithm 

into two parts. First is online path planning, and second is offline-path planning methods. 

Offline-path planning is the process that requires known environmental information for 

path planning, and an online-path plan is a process that requires partial information about 

the environment from the sensors and, after that, performs the local path planning. The 

authors discussed the three algorithms with their basic fundamental theory, advantages, 

disadvantages, and novel improvements. In this paper, the authors also mentioned how 

online algorithms can be improved, such as hybrid algorithms, selection of algorithms 

based on applications, or sample space in a given situation. [82] designed one new 

approach for the Shortest Path Planning of Unmanned Aerial Vehicles. With this 

approach, the problem of the best route and best deployment approach was solved under 

the need for the shortest retention time for UAVs in vulnerable areas. The best amid point 

was determined with the use of known data, and with the use of an improved PSO known 

flight path, the shortest path for the UAVs was obtained. This approach shortens the 

retention time for UAVs in the radar scanning range and also achieves the ideal flying 

path. As per the results shown in the paper this approach improves the proficiency and 

precision of UAVs reconnoitering. [83] proposed a method for 3-D optimal path planning 

in a threat environment for unmanned aerial vehicles. The authors have assumed a 

stationary but risky environment for UAVs during any target operation. Authors separate 

the task into two-stage, first to find the path with optimal risk for a fixed time and then to 

solve the series of BVPs (Boundary value problems) with different UAVs. According to 

the authors, due to a lack of exact information, UAVs might get stuck in a risky 

environment where UAVs get attacked by enemies or can come onto the radar of enemy 
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UAVs. So, by using 3-D path planning techniques, authors reduced the probability of risk 

by taking 3-D parameters taken to consideration. 

Table 3.2- Existing Proposals by various Author’s using AI-Based Techniques. (Yes: 

Considered, No: Not Considered) 

Ref. Year Optimality 
Complet

eness 
Low 

Cost 

Time 

Effective 

Low 

Energy 

Stabilit

y 

Traffic 

Avoida

nce 

[84] 2024 Yes No Yes Yes No No Yes 

[85] 2023 Yes No No No No No No 

[86] 2022 No No No Yes No No No 

[87] 2021 No No Yes Yes Yes No No 

[88] 2019 Yes No No No No No No 

[89] 2018 No No Yes No No Yes No 

[90] 2018 Yes No No Yes No No No 

[91] 2018 Yes No Yes Yes Yes No No 
 

Table 3.3 Existing Proposals by various Author’s based on Machine Learning Models. 

(Yes: Considered, No: Not Considered) 

Ref

. 
Year 

Optima

lity 

Complet

eness 
Low 

Cost 

Time 

Effective 

Low 

Energy 

Stabili

ty 

Traffic 

Avoidance 

[92] 2024 Yes No Yes Yes Yes No Yes 

[93] 2023 No No No Yes No No Yes 

[94] 2022 No No No Yes No No Yes 

[95] 2020 Yes No Yes Yes No No No 

[96] 2018 Yes No No Yes No No No 

[97] 2017 Yes Yes Yes Yes No No No 

Tables 3.2 and 3.3 throw some light on some existing models of machine learning and 

artificial intelligence with respect to consideration of various quality of service 

parameters like collision avoidance, path optimality, stability etc. Research workers have 

presented a broad range of UAV route planning models, each with unique intrinsic 

properties. To estimate efficient paths for various network scenarios, for example, the 

work in [98] suggests using the Dueling double deep Q-network (D3QN), improved 

artificial potential function (IAPF), artificial bee colony with bat algorithm (ABCBA), 

and constrained multi-objective optimization problem optimization (CMOP). These 
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routes are verified under various sized networks and optimized by the use of high-density 

route information sets. However, because of their increased complexity, these models are 

less useful and applicable in real-time applications [99]. The use of artificial potential 

fields, concentrated coverage path planning models, improved intelligent water drops 

(IIWD) models, and Voronoi-based path generation (VPG) models—which help integrate 

low complexity operations during path estimation under adversarial network scenarios—

are some solutions proposed in [100-102] to address these problems. These methods can 

help improve path planning performance with low complexity and high scalability levels, 

but they have low efficiency and trust levels. These methods include Iterative Single 

Head Attention (ISHA) [103], Adaptive Clustering [104], Rapidly Exploring Deep Tree 

(RDT) [105], Convolutional Neural Networks (CNNs) [106], Geometric Distance with 

Reinforcement Learning (GDRL) [107], Detach & Steer [108], and Improved Adaptive 

Grey Wolf Optimization (IA GWO) [109]. However, these models' performance 

capabilities are limited since they do not take trust levels into account when predicting 

path plans. In order to improve planning performance under various use cases, models 

covered in [110, 111] also suggest using Graph Theory, Tangent Intersection with Target 

Guidance Strategy, Estimation of Distribution Algorithm (EDA) with the Genetic 

Algorithm (GA), and feature-driven flight planning that takes delay, energy levels, and 

path reusability metrics into account. However, the lack of trust measurements in these 

models restricts their scalability. In order to address this problem, work in [112-114] 

suggests using deep reinforcement learning, multiple point-of-interest (MPoI) based path 

planning, mixed-strategy based gravitational search algorithms (MSGSA), and deep 

learning trained by genetic algorithms (DL-GA), which help integrate high-density 

parameter sets for incorporation of trust levels during routing operations. Improved 

particle swarm optimization (PSO) with Gauss pseudo-spectral method (GPM), stochastic 

time-dependent optimizations, decentralized learning optimizations, multi-layer 

reinforcement learning techniques, and dynamic discrete pigeon-inspired optimization are 

some of the ways that work in [115-117] to further extend this concept. These methods 

help with continuous model optimization under real-time use cases. The use of 



66 
 

multiobjective UAV trajectory planning, dynamic programming, Iterative Chance-

Constrained Optimization, a constrained decomposition-based multi-objective evolution 

algorithm, and deep reinforcement learning are some of the concepts that are similar to 

those presented in [118-120]. These techniques help to improve path planning operations 

under various scenarios. However, it was discovered that these models' deployment 

capabilities are constrained by the fact that they are either less efficient or more 

complicated. Furthermore, these models are often applied to static targets and do not take 

energy restrictions into account. The building of a unique hybrid bioinspired model with 

continuous pattern analysis for dynamic collision-aware routing in UAV networks is 

suggested in the following section as a solution to these limitations. The suggested 

approach was assessed in various scenarios and contrasted with current path planning 

methodologies to verify its efficacy in actual situations. After the completion of the 

literature review, a summary of the existing model is also written in Table 3.4 by taking 

their findings, advantages, limitations and future scope.   

Table 3.4- Review of Existing Models 

Method Findings Advantages Limitations Future Scopes 

[121] 

Improved 

latency and 

packet delivery 

ratio 

Suitable for 

dynamic UAV 

networks 

Limited 

scalability 

Integration of 

security 

mechanisms 

[122] 

Low overhead 

and energy-

efficient 

routing 

Robustness in 

UAV mobility 

scenarios 

High route 

discovery 

latency 

Cross-layer 

optimization 

[123] 

Geographic 

awareness for 

efficient 

routing 

Reduced 

communication 

overhead 

Sensitive to 

localization 

errors 

Integration of 

machine learning 

[124] 
Prolongs UAV 

mission time 

Energy-

efficient 

routing 

Complexity in 

energy 

modeling 

Adaptive energy 

harvesting 

[125] 
Enhanced 

service quality 

Supports 

diverse 

application 

requirements 

Challenging to 

meet stringent 

QoS demands 

Dynamic QoS 

adaptation 
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[126] 

Effective 

swarm 

coordination 

Scalable for 

large-scale 

UAV networks 

Susceptible to 

communication 

interference 

Machine 

learning-based 

swarm 

optimization 

[127] 

Handling 

uncertainty in 

routing 

decisions 

Robustness in 

noisy and 

dynamic 

environments 

Increased 

computational 

overhead 

Adaptive fuzzy 

logic schemes 

[128] 

Efficient path 

selection by 

mimicking ants 

Self-

organization 

and 

adaptability 

Limited to 

specific 

application 

domains 

Hybrid ant 

colony with deep 

learning 

[129] 

Learning 

optimal routing 

policies 

Adaptability to 

changing 

network 

conditions 

Initial training 

overhead 

Continuous 

reinforcement 

learning 

[130] 

Combining 

multiple 

routing 

strategies 

Improved 

adaptability 

and fault 

tolerance 

Increased 

protocol 

complexity 

Optimal hybrid 

routing scheme 

selection 

[131] 

Effective 

routing in 

intermittent 

connectivity 

Resilience to 

network 

disruptions 

Limited 

applicability in 

real-time 

scenarios 

Dynamic buffer 

management for 

delay-tolerant 

networks 

 

Many recent research works demonstrate significant revolutions in the field of UAV 

optimum route planning and collision avoidance. In [132] a comprehensive overview of 

traditional and intelligent path planning algorithms in 2020, highlighting the growing use 

of AI-based solutions to overcome the constraints of classical techniques such as A* and 

Dijkstra's algorithms. Similarly, many authors investigated the use of deep reinforcement 

learning (DRL) in UAV path planning and found considerable gains in both dynamic and 

complicated situations [133]. In 2021, [134] introduced a hybrid approach to path 

planning that combines genetic algorithms (GA) with particle swarm optimization (PSO), 

addressing both optimization speed and solution quality. [135] expanded on this by 

developing a multi-objective optimization framework that balances energy consumption 

and path length while using fuzzy logic to accommodate uncertainty in UAV navigation. 

In a similar line, ant colony optimization (ACO) is supplemented with neural networks to 
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adaptively update pheromone trails, therefore enhancing path planning robustness under 

changing environmental circumstances. Authors made additional breakthroughs by 

combining a model predictive control (MPC) strategy with machine learning approaches 

to dynamically forecast and prevent possible accidents [136]. Similarly, [137] suggested a 

decentralized collision avoidance system based on cooperative multi-agent reinforcement 

learning (MARL), enabling numerous UAVs to share information and coordinate their 

motions in real time. [138] used a cuckoo search method to efficiently guide UAVs over 

complicated urban areas. Another important addition comes from [139], who investigated 

the use of a hybrid bat algorithm for path planning, which successfully minimizes 

processing overhead while maintaining excellent accuracy in obstacle-rich environments. 

Many of the authors have proposed a unique technique that combines quantum 

computing concepts with classical optimization algorithms to considerably accelerate the 

path planning process for large-scale UAV networks. In terms of collision avoidance, 

[139] demonstrated a real-time collision avoidance system based on deep Q-learning that 

outperformed previous reactive approaches in dynamic situations. Furthermore, [140] 

created a vision-based collision avoidance system that uses convolutional neural 

networks (CNNs) to recognize and respond to obstacles with excellent accuracy. [141] 

conducted research work on combining Internet of Things (IoT) technology with UAV 

path planning to increase situational awareness and decision-making skills. [142] 

proposed a unique UAV swarm intelligence solution that uses block chain technology to 

enable safe and efficient communication amongst UAVs for coordinated path planning 

and collision avoidance. [143] studied the use of hybrid AI approaches that combine 

reinforcement learning with evolutionary algorithms to enable adaptive and robust UAV 

navigation in unexpected conditions. This research work shows the fast progress of UAV 

route planning and collision avoidance technology, which is being driven by advances in 

AI, machine learning, and bioinspired algorithms, with the promise of increased 

efficiency, safety, and autonomy for UAV operations in more complicated circumstances. 

[144] examined the use of hybrid metaheuristic algorithms combining Grey Wolf 

Optimizer (GWO) and Whale Optimization Algorithm (WOA) for UAV path planning. 
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Their approach effectively reduced path length and computational time while maintaining 

high solution quality, demonstrating robustness in various environmental scenarios. [145] 

proposed a deep learning-based approach for real-time path planning using convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs). Their method enabled 

UAVs to predict and adjust paths dynamically in complex, cluttered environments, 

significantly improving navigation efficiency. [146] developed a cooperative path 

planning strategy using a multi-UAV system for large-scale agricultural monitoring. By 

employing a coordinated control framework, their system enhanced coverage efficiency 

and minimized the risk of collision between UAVs. [147] introduced a reinforcement 

learning-based path planning algorithm that leverages a novel reward shaping technique. 

This method facilitated faster convergence and improved the UAV's ability to navigate 

through unpredictable environments while avoiding obstacles. [148] explored the 

application of a bioinspired firefly algorithm for UAV swarm path planning. Their study 

demonstrated the algorithm's effectiveness in optimizing multiple UAV trajectories 

simultaneously, reducing energy consumption and travel time. [149] presented a hybrid 

optimization model combining Differential Evolution (DE) and Simulated Annealing 

(SA) for UAV collision avoidance. This model effectively handled real-time dynamic 

obstacle scenarios, offering a balance between solution optimality and computational 

efficiency. [150] investigated a machine learning-based adaptive path planning approach 

that utilizes support vector machines (SVMs) for classification and decision-making. 

Their method improved the UAV's adaptability to varying environmental conditions and 

enhanced collision avoidance capabilities. [151] developed an evolutionary algorithm 

incorporating differential evolution and genetic algorithms for path planning in GPS-

denied environments [152]. Their approach provided high resilience and accuracy, 

particularly in urban canyons and dense forests. [153] proposed a novel fuzzy logic-based 

path planning algorithm for UAVs, integrating real-time environmental data to adjust 

flight paths dynamically. This method improved decision-making under uncertainty and 

enhanced safety in unpredictable conditions. [154] introduced an innovative path 

planning framework using swarm intelligence combined with deep reinforcement 
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learning (DRL). Their hybrid approach allowed UAV swarms to learn and adapt 

collaboratively, significantly improving path optimization and collision avoidance in 

complex terrains. These recent studies illustrate the diversity and innovation in UAV path 

planning and collision avoidance, highlighting the integration of advanced algorithms and 

techniques such as deep learning, evolutionary computation, and bioinspired models. 

This ongoing research work aims to enhance the efficiency, safety, and autonomy of UAV 

operations in increasingly challenging environments. [192] introduced an innovative 

method for tackling the difficulties associated with full coverage path planning (CCPP) 

by employing multiple UAVs. Conventional single-agent CCPP (Coordinated Coverage 

Path Planning) approaches are not efficient for wide regions, resulting in extended 

coverage durations. In order to address this issue, the authors suggest using the Weighted 

Balanced Graph Partitioning-based Complete Coverage Path Planning (WBGPP) 

approach. The proposed method involves partitioning the coverage area into sub-areas 

using a Weighted Balanced Graph Partitioning (Weighted B-GRAP) algorithm. Each 

UAV is then assigned a specific responsibility region depending on its capabilities. 

Afterwards, a Single Agent Path Planning (SAPP) algorithm is used to optimize the 

pathways within these sub-areas in order to reduce unnecessary paths and decrease the 

total time taken for coverage. This novel approach shows potential for use in surveillance, 

data gathering, and inspection activities, providing a scalable and effective solution for 

multi-UAV operations. [193] introduced the Exploration-RRT (ERRT) algorithm, 

designed for real-time exploration in unknown and unstructured environments using 

UAVs. This technique blends exploration and planning by assessing probable courses 

based on information obtained, distance travelled, and robot actuation. ERRT's usefulness 

is shown through comprehensive simulations and real-world studies, revealing its 

capacity to navigate complicated underground and GPS-denied situations effectively. The 

framework, fully integrated with the Robot Operating System (ROS) and open-sourced, 

offers a unique method to solve the combined exploration-planning issue by reducing 

computing effort and assuring efficient path optimization. The paper illustrates ERRT's 

use in many hard settings, including tight tunnels and vast caverns, stressing its practical 
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utility and scalability for UAV-based exploration jobs. [194] presented an innovative 

method for UAVs to navigate and map unknown terrains autonomously. This paper 

proposes a boundary-driven mapping technique that employs deep learning to identify 

boundaries and uses a decision-making methodology for optimum exploration. The 

technique requires generating a precise 3D map using an octomap and translating it into a 

point cloud. A CNN, especially the YOLOv8 model, is then applied to detect border 

places inside the map. The boundaries are grouped, and a decision-making mechanism is 

utilized to identify the most suited cluster for exploration. The suggested technique 

exhibited considerable efficiency increases in exploration time and mapping accuracy in 

both simulated indoor and outdoor environments compared to existing methodologies. By 

tackling computational complexity and adding deep learning, the work emphasizes the 

potential of this boundary-driven technique to boost UAV autonomy and mapping 

performance in dynamic and unexpected terrains. [195] proposed an updated deep 

reinforcement learning strategy to better UAV navigation in dynamic situations. This 

strategy blends two unique learning stages: reinforced learning and self-supervised 

learning. The reinforced stage utilizes a Deep Q-Learning Network (DQN) guided by the 

Bellman equation, while the self-supervised stage fine-tunes the DQN backbone using 

contrastive loss, boosting scene encoding speed. An obstacle detection model is also 

incorporated to reduce UAV collisions. The framework's usefulness is illustrated by 

simulations in the block environment, incorporating both fixed and moving obstacles. 

Results indicate considerable gains in navigation performance, with the UAV 

accomplishing greater distances toward the target with fewer collisions compared to 

standard DQN approaches. The work emphasizes the possibility of integrating self-

supervised learning with reinforcement learning for efficient and successful UAV visual 

navigation in complex and dynamic contexts. 
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3.3 Research Questions 

Q.1 How can unmanned aerial vehicles (UAVs) maximize path planning to save 

energy usage while accomplishing missions? 

Response: Path optimization for energy efficiency can be achieved by integrating energy 

consumption models into the planning algorithms. Techniques like genetic bioinspired 

algorithms and dynamic programming can be used to find the most energy-efficient 

paths.  

Q.2 How can bioinspired algorithms improve the efficiency of UAV path planning 

compared to traditional algorithms? 

Response: Genetic Algorithms (GA), Firefly Optimization (FFO), Grey Wolf 

Optimization (GWO), Mayfly Optimization (MO) are examples of bioinspired algorithms 

that use natural processes to find the best answers. These algorithms can look for 

solutions in a bigger area faster than some older methods, which makes them better at 

working in complex, high-dimensional settings. Comparative studies have shown that 

bioinspired algorithms can find the best paths more rapidly and with higher success rates. 

Q.3 What are the challenges of implementing bioinspired algorithms in real-time 

UAV path planning, and how can they be addressed? 

Response: Challenges include computational complexity, real-time constraints, and the 

need for continuous adaptation to changing environments. These challenges can be 

addressed by optimizing the computational efficiency of bioinspired algorithms, such as 

through parallel processing or hardware acceleration. Hybrid approaches that combine 

fast, heuristic methods for immediate decision-making with bioinspired algorithms for 

long-term optimization can also be effective. Additionally, adaptive frameworks that 

balance investigation and manipulation can ensure timely and robust path planning.  
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Q.4 How can bioinspired algorithms improve the robustness of UAV collision 

avoidance systems? 

Response: Bioinspired algorithms like Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), Genetic Algorithms (GA), Firefly Optimization (FFO), Grey Wolf 

Optimization (GWO), Mayfly Optimization (MO) can enhance robustness by providing 

flexible, adaptive strategies that mimic natural behaviours.  

Q.5 How can bioinspired algorithms help UAVs avoid collisions in constrained 

environments? 

Response: Swarm intelligence principles, such as those in PSO, FFO, MO, GWO and 

ACO, enable decentralized coordination among multiple UAVs. Each UAV can adjust its 

path based on local information and the behaviour of its neighbours, leading to emergent 

behaviours that enhance collision avoidance. In constrained environments, this can lead 

to more efficient space utilization and reduced likelihood of collisions. 

Q.6 Can hybrid bioinspired algorithms provide better collision avoidance 

performance than single-algorithm approaches? 

Response: Hybrid bioinspired algorithms, which combine elements of multiple 

bioinspired approaches (e.g., PSO, FFO, GWO, MO and GA), can offer improved 

performance by leveraging the strengths of each method. For example, GA can be used 

for global path optimization, while PSO handles local adjustments in real-time. This 

combination can result in more robust and adaptive collision avoidance systems. 

3.4 Literature Summary 

In this chapter, after completing the review of various existing methods, the multi-layered 

issues offered by these dynamic and complex systems have been the subject of significant 

research and development efforts in order to build effective routing techniques for 

Unmanned Aerial Vehicle (UAV) Networks. This part of the chapter provides a 

comprehensive summary of relevant work in the field of UAV routing, encircling various 

approaches, models, and algorithms. One notable advancement in UAV routing is the 
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integration of Q-learning and a reinforcement learning technique. Q-learning-based 

routing strategies, such as QL and QTAR, introduced adaptability and sensitivity to the 

dynamic UAV environment. These approaches influence Q-tables to determine optimal 

actions for each state, allowing UAVs to make intelligent routing decisions based on past 

experiences. Recognizing the limitations of traditional routing and Q-learning-based 

approaches, research workers explored bioinspired optimization algorithms. These 

algorithms draw inspiration from natural processes, including genetic algorithms (GA), 

particle swarm optimization (PSO), and ant colony optimization (ACO). They have 

shown potential in optimizing UAV routing by considering factors like energy efficiency, 

route quality, and collision avoidance. These bioinspired models offer robust and adaptive 

routing solutions suitable for large-scale UAV networks [155]. Another critical aspect of 

UAV routing is collision awareness. With UAVs sharing airspace with other UAVs, 

manned aircraft, and obstacles, collision avoidance is of utmost priority. Collision-aware 

routing strategies combine spatial and temporal awareness to proactively prevent 

collisions. These strategies integrate sensor data, employ advanced algorithms like A* 

and potential fields, and influence machine learning for predictive collision avoidance. 

The incorporation of collision-aware routing enhances safety, efficiency, scalability, and 

adaptability in UAV operations [156]. The summarized body of work underscores the 

ongoing evolution of UAV routing techniques. While each approach has its merits and 

addresses specific challenges, the integration of bioinspired optimization algorithms, such 

as the MO Model, and collision-aware routing represent significant advancements in the 

field. These approaches improve safety, efficiency, and scalability, making UAV networks 

more adaptable to various applications. The field of UAV routing is composed of further 

growth and innovation. Future research work directions may include the validation of 

these models in larger UAV networks, the integration of low-complexity bioinspired 

algorithms, and the utilization of transformer models to predict and mitigate collisions. 

The ultimate goal is to enhance routing efficiency and safety, thereby unlocking the full 

potential of UAVs across a wide spectrum of real-time applications, from surveillance 

and agriculture to delivery and beyond. 
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CHAPTER 4           

QMRNB: Q-LEARNING MODEL FOR UAV NETWORK ROUTING 

Design of efficient routing strategies for Unmanned Aerial Vehicle (UAV) Networks is a 

multidomain task that involves analysis of node-level & network-level parameters and 

mapping them with communication & appropriate conditions. Existing path optimization 

models either showcase higher complexity or cannot be scaled for larger network 

scenarios. Moreover, the efficiency of these models reduces w.r.t. number of 

communication requests, which limits their scalability levels. To deal with these issues, 

this research work developed a design of an efficient Q-Learning model to improve the 

routing efficiency of UAV networks via bioinspired optimizations. The model initially 

collects temporal routing performance data samples for individual nodes and uses them to 

form rough routes via Q-Learning optimizations. These routes are further managed via a 

Mayfly Optimization (MO) Model, which assists in the selection of optimal routing paths 

for high Quality of Service (QoS) even under large-scale routing requests. The MO 

Model is able to identify alternate paths via the evaluation of a high-density routing 

fitness function that assists the router in case the selected paths are occupied during 

current routing requests. This assists in improving temporal routing performance even 

under dense network conditions. Due to these optimizations, the model is capable of 

reducing the routing delay by 8.5%, improving energy efficiency by 4.9%, and reducing 

routing jitter by 3.5% when compared with existing routing techniques under similar 

routing conditions [188]. 

4.1 Introduction to QMRNB 

Due to the repeated movement of vehicles, the UAV (Unmanned Aerial Vehicle) routing 

protocol must deal with a variety of issues, including unequal node distribution, 

topological changes, and changes in the surrounding environment via Energy-aware 

Collaborative Routing (ECoR) [157, 158]. Q-learning (QL) was included to make UAV 

routing [159] more adaptable and sensitive to the dynamic environment. Traditional 
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reinforcement learning is referred to as Q-learning, and it is distinguished by the lack of a 

state transition model in favour of an assessment of the value of state-action pair 

combinations. The following are the components of Q-learning: s, a, R, where s 

represents the state set of RL, a represents the action set of RL, and R represents the 

attenuation factor of future reward and the learning rate of reinforcement learning [160], 

respectively. If an "a" operation is performed in a certain state, the node will update the 

state value table by inserting (1), where s is the succeeding state (Q-value table). 

Following a certain number of repetitions, the Q-table will determine the optimal action 

for each state. This operation will guarantee that the node gets the maximum reward 

available for the current set of iterations. 

𝑄(𝑠, 𝑎) =  (1 −  𝛼)𝑄(𝑠, 𝑎) +  𝛼(𝑅 +  𝛾 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎 )) … (1) 

To achieve the objectives of reinforcement learning, the set of neighbour nodes is 

considered, and the base stations (BS) is treated as the fixed destination node that 

broadcasts hello packets regularly via the use of Q -learning-based topology-aware 

routing (QTAR) [161-164]. In accordance with the above-mentioned principles, the 

receiving node is required to update the Q-value table of its own device: the higher the Q-

value, the closer the device is to RS. When this method is used, the routing to static 

destination nodes is enhanced. The work in [165-167] utilizes the conventional Adhoc on 

Demand Multipath Distance Vector (AOMDV) routing protocol in addition to the Q-

learning approach. The nodes are able to update the Q-value information stored in their 

respective local memory by exchanging the hello and RREQ packets required for route 

discovery. Using the AODV routing algorithm established in [168], an excellent degree of 

performance was achieved in a case with restricted mobility. In [169-171], unmanned 

aerial vehicles (UAVs) have been used to aid VANET (Vehicular Adhoc Networks) in 

determining the most efficient route for data transmission. However, the following are 

some of the most common problems that emerge with such routing systems: Each node 

on the ground is responsible for keeping its own Q-value table, regardless of whether it 

has neighbours or not. Because (1) ground nodes only employ locally stored information 

to decide the next hop [172-175] and (2) both the size of the Q-value table and the stored 
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value are subject to rapid change [176], this leads to increased bandwidth use and a 

slower convergence speed of Q-values & their alternatives. 

As a result, conventional route optimization techniques either have increased complexity 

or are not useable for situations involving bigger networks. Additionally, these models 

efficiency declines as the number of communication requests increases, which restricts 

the extent of their scalability. The building of an effective Q-Learning model to increase 

the routing efficiency of UAV networks using bioinspired optimizations is suggested. 

This chapter aims to provide the solution to these problems. Finally, the model used in 

research work has been evaluated and assessed using large-scale network scenarios and 

compared to that of conventional routing models. This chapter concludes with some 

network-specific observations regarding the suggested model and suggestions for ways to 

further enhance its functionality in various network scenarios. 

4.2 Design of the Model 

As per the review of existing routing models that are used for UAV Networks, it can be 

observed that existing path optimization models either showcase higher complexity or 

cannot be scaled for larger network scenarios. Moreover, the efficiency of these models 

reduces w.r.t. number of communication requests, which limits their scalability levels. To 

overcome these issues, there is a need to design an efficient Q-Learning model to 

improve the routing efficiency of UAV networks via bioinspired optimizations. As per 

figure 4.1, it can be observed that the model initially collects temporal routing 

performance data samples for individual nodes and uses them to form rough routes via Q-

Learning optimizations. These routes are further processed by a Mayfly Optimization 

(MO) Model, which assists in the selection of optimal routing paths for high Quality of 

Service (QoS) even under large-scale routing requests. The MO Model is able to identify 

alternate paths via the evaluation of a high-density routing fitness function that assists the 

router in case the selected paths are occupied during current routing requests. This assists 

in improving temporal routing performance even under dense network conditions. Figure 

4.1 shows showing control flow of the design model to achieve efficient results. 
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Thus, the model initially uses Q-Learning to identify different routes between a given 

source & destination pair of nodes. This is done by initially calculating a reference 

distance between these nodes via equation 2, 

𝑑𝑟𝑒𝑓 = √
(𝑥𝑠𝑟𝑐 − 𝑥𝑑𝑒𝑠𝑡)2 + (𝑦𝑠𝑟𝑐 − 𝑦𝑑𝑒𝑠𝑡)2

+(𝑧𝑠𝑟𝑐 − 𝑧𝑑𝑒𝑠𝑡)2 … (2) 

Where 𝑥, 𝑦 & 𝑧 are the Cartesian locations of these nodes, while 𝑠𝑟𝑐 & 𝑑𝑒𝑠𝑡 are the IP 

addresses of source & destination nodes. 

Now, select all nodes that satisfy equation 3, 

𝑑𝑠𝑟𝑐,𝑖 < 𝑑𝑟𝑒𝑓 & 𝑑𝑖,𝑑𝑒𝑠𝑡 < 𝑑𝑟𝑒𝑓 … (3) 

 

Figure 4.1-Design of the routing model for UAV Networks 
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Where, 𝑑𝑠𝑟𝑐,𝑖 is the distance between the selected node & the source node, while 𝑑𝑖,𝑑𝑒𝑠𝑡 

represents the distance between selected & destination node sets. For all these nodes, 

evaluate their Q values via equation 4.1, 

𝑄 = ∑
∑ 𝑁𝐶𝑖

∑ 𝐿𝑄𝑖

𝑁𝑝

𝑖=1

… (4.1) 

This Q value is updated via equation 4.2, 

𝑄(𝑁𝑒𝑤) = 𝑄(𝑂𝑙𝑑) + 𝐿𝑟 ∗
𝑁𝐶

𝑀𝑎𝑥(𝑁𝐶)
+ 𝑀𝑎𝑥(𝑄) … (4.2)  

Where, 𝑁𝑝 represents the number of nodes in the current path, 𝐿𝑟 is a stochastic learning 

rate, while 𝑁𝐶 & 𝐿𝑄 are the node communication metric and link quality metric, which is 

estimated via equations 5 & 6 as follows, 

𝑁𝐶 =
1

𝑁ℎ
∑ 𝑑𝑖−1,𝑖 ∗ [

𝑇𝐻𝑅𝑖−1

𝑀𝑎𝑥(𝑇𝐻𝑅)
]

𝑁ℎ

𝑖=2

… (5) 

Where 𝑑 is the distance, while 𝑇𝐻𝑅 is the temporal throughput, which is evaluated via 

equation 7, while 𝑁ℎ are the total number of hops used for the routing operations.  

𝐿𝑄 =
1

𝑁ℎ
∑

100

𝑃𝐷𝑅𝑖
+

𝑒𝑖

𝑀𝑎𝑥(𝑒)

𝑁ℎ

𝑖=1

… (6) 

Where 𝑃𝐷𝑅 & 𝑒  represent the packet delivery ratio and energy consumption during 

previous communications, which are estimated using 8 & 9 and are updated after 

individual routing operations. 

𝑇𝐻𝑅 = ∑
𝑁𝑁(𝑡)

𝑀𝑎𝑥(𝑁𝑁) ∗ (𝑡2 − 𝑡1)
… (7)

𝑡2

𝑡=𝑡1

 

Where 𝑁𝑁(𝑡)  represents the total number of packets passed during the given time 

intervals.  
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𝑃𝐷𝑅 = ∑
𝑁𝑁(𝑡)

𝑁𝑁𝑑(𝑡) ∗ (𝑡2 − 𝑡1)
… (8)

𝑡2

𝑡=𝑡1

 

Where, 𝑁𝑁𝑑  represents the total number of packets dropped during the given time 

intervals. 

𝑒 = ∑
𝑒𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

(𝑡2 − 𝑡1)
… (9)

𝑡2

𝑡=𝑡1

 

Where, 𝑒𝑠𝑡𝑎𝑟𝑡  & 𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 are the energy levels of the nodes during the routing process. 

These Q values are sorted in descending order, and then 𝑁 stochastic nodes are selected 

from this list via equation 10,  

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑟 ∗ 𝑁𝑛, 𝑁𝑛) … (10) 

Where, 𝑁𝑛  represents the total number of nodes in the list while 𝐿𝑟  is estimated via 

equation 11, 

𝐿𝑟 =
𝑁𝑛

𝑁𝑡
… (11) 

Where, 𝑁𝑡 represents the total number of nodes in the network that are deployed in the 

UAV network sets. Based on this process, a set of 𝑁𝑀 Mayflies (routes) are generated 

and are optimized via the following Mayfly Optimization (MO) Model process, 

• From the set of Q learning solutions, 𝑁 stochastic solutions are selected via equation 

12, 

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑀 ∗ 𝑁𝑀, 𝑁𝑀) … (12) 

Where 𝐿𝑀 is the learning metric for the MO Model process. 

• For each of these solutions, a fitness value is calculated via equation 13, 

𝑓 =
1

𝑁𝑀
∑ 𝑄𝑖

𝑁𝑀

𝑖=1

… (13) 



81 
 

• This process is repeated for 𝑁𝑀 different Mayflies, and then a fitness threshold is 

estimated via equation 14, 

𝑓𝑡ℎ =
1

𝑁𝑀
∑ 𝑓𝑖 ∗ 𝐿𝑀

𝑁𝑀

𝑖=1

… (14) 

• Mayflies with 𝑓 > 𝑓𝑡ℎ are discarded & reproduced in the next iteration, while others 

are crossover to the next set of iterations. 

These Mayflies are regenerated for 𝑁𝐼 iterations, and the Mayflies with the lowest fitness 

levels are selected for routing the UAV nodes. The selected Mayfly will contain multiple 

routing configurations, out of which the configuration with minimum fitness is selected 

for routing operations. In case the current route is busy or the path is not available, then 

the next higher fitness path is selected to route the UAV Nodes. Due to this, the model is 

able to optimize routing delay, energy, throughput and packet delivery ratios during real-

time route formation operations. The performance during routing is updated in the 

database, and the process is repeated for consecutive routing processes. This assists in the 

continuous improvement of routing performance under real-time scenarios. This 

performance was validated under different network conditions and compared with other 

models in the next section of this chapter. 

4.3 Result Analysis 

The QMRNB model collects temporal routing performance data samples for individual 

nodes and uses them to form coarse routes through Q-Learning optimizations. These 

routes are then processed by a Mayfly Optimization (MO) Model, which helps in the 

selection of optimal routing paths for high Quality of Service (QoS) even when large-

scale routing requests are being processed. The MO Model is capable of identifying 

alternate paths through the evaluation of a high-density routing fitness function, which 

assists the router in the event that the selected paths are occupied during current routing 

requests. This helps to enhance temporal routing performance even in dense network 

environments. To validate its performance, the model was evaluated under a standard set 
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of UAV configurations in Network Simulator 2 (NS 2.34), with the network parameters 

indicated in table 4.1 as follows, 

Table 4.1-Set of simulation configurations for emulating different network scenarios 

Parameters for the UAV Network Values used for the parameter sets 

UAV propagation model Wireless with inter-layer routing 

MAC Model 802.16a 

Queue Type Priority queues with drop tailing 

operations 

Total UAV Nodes 5000 

Size of the UAV Network 4 kms x 4 kms 

Energy Model Idle: 5 mW 

Receive: 10 mW 

Transmit: 15 mW 

Sleep: 1 mW 

Transition: 2.5 mW 

Transition Delays 0.01 s 

Energy set during initialization of UAV 

Nodes 

2500 mW 

 

Based on these configurations, the delay needed for routing was estimated via equation 

15, 

𝐷 =
1

𝑁𝑀
∑ 𝑡𝑠𝑟𝑒𝑎𝑐ℎ − 𝑡𝑠𝑠𝑡𝑎𝑟𝑡

𝑁𝑀

𝑖=1

… (15) 
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Table 4.2- Average delay for different number of routing evaluations 

Number of 

Movements 

D (ms) 

ECOR 

[177] 

D (ms) 

QL [178] 

D (ms) 

QTAR [179] 

D (ms) 

QMRNB 

(Proposed 

Model) 

2k 15.95 17.09 18.03 12.23 

4k 18.13 19.62 20.74 14.10 

6k 20.96 22.79 24.09 16.39 

8k 24.42 26.54 28.00 19.04 

10k 28.42 30.73 32.33 21.96 

12k 32.77 35.27 37.00 25.06 

14k 37.21 39.94 41.79 28.19 

16k 41.46 44.53 46.53 31.23 

18k 45.39 48.91 51.06 34.11 

20k 48.94 52.98 55.30 36.81 

25k 52.22 56.79 59.26 39.33 

28k 55.27 60.26 62.89 41.69 

30k 58.17 63.53 66.31 43.93 

35k 61.50 67.18 70.10 46.45 

38k 64.98 70.94 74.02 49.07 

40k 68.71 74.96 78.19 51.84 
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Where, 𝑡𝑠𝑟𝑒𝑎𝑐ℎ & 𝑡𝑠𝑠𝑡𝑎𝑟𝑡 are the timestamps for reaching the destination and starting the 

routing process. This delay performance was evaluated w.r.t. different Number of 

Movements (NM), which were varied between 2k to 40k, and compared with ECOR 

[177], QL [178], & QTAR [179] in table 4.2 as follows, 

 

Figure 4.2-Average delay for different number of routing evaluations 

Based on this evaluation and its visualization in figure 4.2, it can be observed that the 

model is able to reduce the delay needed for routing by 9.5% when compared with ECOR 

[177], 14.5% when compared with QL [178], and 18.9% when compared with QTAR 

[179], which makes it useful for a wide variety of real-time routing applications. This 

delay is reduced due to the use of distance levels and temporal delay performance during 

the selection of routing paths. Similarly, the energy needed during these routing 

operations was evaluated via equation 16 as follows, 

𝐸 =
1

𝑁𝑀
∑ 𝐸𝑠𝑟𝑐(𝑠𝑡𝑎𝑟𝑡)𝑖 − 𝐸𝑠𝑟𝑐(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)𝑖

𝑁𝑀

𝑖=1

… (16) 
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Where, 𝐸(𝑠𝑡𝑎𝑟𝑡) & 𝐸(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) are the energy levels of the source node during the 

start & completion of the routing process. This energy consumption can be observed in 

table 4.3 as follows, 

Table 4.3 represents the average use of energy consumption for different number of 

routing evaluation. Whereas, Figure 4.3 is a graphical representation of the same. It has 

been clearly seen from the graph that QMRNB has better efficiency in context to average 

energy consumption while routing.  

Table 4.3- Average energy consumed during different number of routing evaluations 

Number of 

Movements 

E (mW) 

ECOR 

[177] 

E (mW) 

QL [178] 

E (mW) 

QTAR [179] 

E (mW) 

QMRNB 

(Proposed Model) 

2k 37.05 48.33 29.84 21.96 

4k 38.98 50.78 31.34 23.06 

6k 40.83 53.27 32.88 24.21 

8k 42.75 55.90 34.50 25.40 

10k 44.77 58.64 36.18 26.63 

12k 46.87 61.46 37.90 27.89 

14k 49.08 64.33 39.62 29.14 

16k 51.34 67.17 41.32 30.37 

18k 53.60 69.94 42.97 31.56 

20k 55.80 72.61 44.57 32.71 

25k 57.93 75.21 46.13 33.84 

28k 60.01 77.80 47.70 34.99 
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30k 62.05 80.41 49.30 36.14 

35k 64.09 83.10 50.92 37.33 

38k 66.15 85.78 52.56 38.53 

40k 68.22 88.48 54.20 39.72 

 

 

Figure 4.3-Average energy consumed during the different number of routing evaluations 

Based on this evaluation and its visualization in figure 4.3, it can be observed that the 

model is able to reduce the energy needed for routing by 15.9% when compared with 

ECOR [177], 19.2% when compared with QL [178], and 14.5% when compared with 

QTAR [179], which makes it useful for a wide variety of low-energy routing applications. 

Similarly, Table 4.4 displays the throughput throughout various routing processes, along 

with additional performance information. The throughput during these routing operations 

can be observed in table 4.4 as follows, 
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Table 4.4-Average throughput during different routing operations 

Number of 

Movements 

THR (vpm) 

ECOR [177] 

THR (vpm) 

QL [178] 

THR (vpm) 

QTAR [179] 

THR (vpm) 

QMRNB 

(Proposed Model) 

2k 112.86 86.32 92.25 138.86 

4k 113.71 87.11 93.00 140.00 

6k 114.86 87.63 93.75 141.14 

8k 116.00 88.42 94.50 142.29 

10k 116.86 89.21 95.25 143.43 

12k 117.71 89.74 96.00 144.57 

14k 118.57 90.53 96.75 145.71 

16k 119.43 91.32 97.50 146.86 

18k 120.57 92.11 98.25 148.00 

20k 121.71 92.89 99.00 149.14 

25k 122.57 93.68 99.75 150.29 

28k 123.43 94.47 100.50 151.43 

30k 124.29 95.00 101.50 152.57 

35k 125.10 95.79 102.34 153.71 

38k 126.15 96.50 103.12 154.86 

40k 127.15 97.12 103.84 156.00 
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Figure 4.4-Average throughput during different routing operations 

Based on this evaluation and its visualization in figure 4.4, it can be observed that the 

model is able to improve the routing throughput by 8.5% when compared with ECOR 

[177], 15.4% when compared with QL [178], and 12.5% when compared with QTAR 

[179], which makes it useful for a wide variety of high data rate routing applications. This 

throughput is increased due to the use of packet delivery levels and temporal throughput 

performance during the selection of routing paths. Due to these optimizations, the model 

is capable of deployment for a wide variety of real-time UAV routing scenarios. 

4.4 Conclusion & Future Scope 

The QMRNB model gathers samples of temporal routing performance data for individual 

nodes and uses Q-Learning optimizations to form coarse routes. A Mayfly Optimization 

(MO) Model then processes these routes, helping to choose the best routing paths for 

high Quality of Service (QoS) even when numerous routing requests are being handled 

simultaneously. If the chosen paths are already taken by current routing requests, the MO 

Model can find alternative routes by evaluating a high-density routing fitness function. 

This helps the router even in environments with dense network traffic, this helps in 
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improving temporal routing performance. Based on the evaluation of routing speed, it can 

be seen that the model can reduce the delay required for routing by 9.5% when compared 

to ECOR [177], 14.5% when compared to QL [178], and 18.9% when compared to 

QTAR [179], making it useful for a variety of real-time routing applications. The use of 

distance levels and the performance of the temporal delay during the selection of routing 

paths both help to reduce this delay. According to energy evaluation, the model can 

reduce the energy required for routing by 15.9% when compared to ECOR [177], 19.2% 

when compared to QL [178], and 14.5% when compared to QTAR [179], making it 

useful for a variety of low-energy routing applications. Due to the use of distance levels 

and temporal energy performance during the selection of routing paths, this energy is 

reduced. Based on data-rate evaluation, it can be seen that the model can increase routing 

throughput by 8.5% when compared to ECOR [177], 15.4% when compared to QL [178], 

and 12.5% when compared to QTAR [179], and making it useful for a variety of high 

data rate routing applications. The use of packet delivery levels and temporal throughput 

performance during routing path selection has increased this throughput. The model can 

be used in a wide range of real-time UAV routing scenarios as a result of these 

optimizations. 
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CHAPTER 5           

BPACAR: HYBRID BIOINSPIRED MODEL FOR COLLISION-AWARE ROUTING 

Designing collision-aware routing (path planning) protocols for UAV (Unmanned Aerial 

Vehicle) Networks requires multimodal analysis of various network & node-level 

parameter sets. These include node-to-node distance, energy constraints, communication 

constraints, QoS (Quality of Service) constraints, etc. Existing collision-aware UAV 

routing models are either highly complex or have lower efficiency, which limits their 

real-time deployment capabilities. Moreover, these models usually do not consider energy 

constraints and are applied to static targets. To deal with these limitations, this chapter 

method to design a novel hybrid bioinspired model with continuous pattern analysis for 

dynamic collision-aware routing in UAV networks. The model initially collects node-

level & network-level parametric sets that include Cartesian location, residual energy 

levels, temporal routing performance, and temporal collision performance levels. The 

model then deploys a Grey Wolf Optimization (GWO) based routing process to identify 

optimal routes between two anchor points. These routes are further tuned via a Firefly 

based Optimization (FFO), which assists in estimating high-trust routes based on their 

temporal performance via continuous data update operations. The selected route sets are 

further scrutinized via a continuous learning framework (CLF), which assists in the 

identification of dynamic moving targets and uses this information for incremental route 

updates. Due to the integration of CLF, the model is able to identify optimal paths even 

under moving target scenarios. The model was validated under multiscale networks, and 

its performance was evaluated in terms of collision avoidance accuracy, routing delay, 

energy requirements, and computational complexity levels w.r.t. dynamic scenarios. This 

performance was compared with various up-to-date methods, and it has been seen that the 

model showcased 10.5% lower routing delay, with 8.3% lower energy consumption and 

23.9% lower collisions while maintaining lower computational complexity. Due to these 

enhancements, the model is proficient in the positioning of a wide variety of real-time 

UAV network scenarios. 
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5.1 Introduction to BPACAR 

UAV based networks are high-energy consumption networks with moderate flight time 

but strong communication characteristics. Thus, designing routing models for these 

networks requires efficient analysis of routing paths, temporal node performance, 

network parameters, and other multimodal and contextual constraints [180]. To design 

such models, research workers need to consider a wide variety of real-time parameters 

that include, collision awareness, height of flying, turning angles, threat avoidance, etc. A 

list of such parameters can be observed in figure 5.1, wherein metrics for collision 

avoidance, self-constraints, and external dynamics are separated in order to identify the 

most useful metrics that must be optimized under large-scale routing (path planning) 

scenarios [181]. Based on this comparison, it can be observed that Expected Time of 

Arrival (ETA), separation maintenance, fuel capacity, slope of UAV, its turning angle, and 

relative height are the most important metrics for indigenous UAV networks.  

 

Figure 5.1-Parameters affecting the UAV routing process 

These parameters are combined to form an objective function 𝑓𝑝 which can be evaluated 

as per equation 1, 
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𝑓𝑝 =
𝑓1(𝐸𝑇𝐴, 𝑅𝐻, 𝐹, 𝑆, 𝑇𝑎)

𝑓2(𝑆𝑒𝑝, 𝑂𝑏𝑠)
… (1) 

Where, 𝑅𝐻, 𝐹, 𝑆 & 𝑇𝑎  represents relative height, fuel requirements, slope and turning 

angle, all of which must be minimized, while 𝑆𝑒𝑝 & 𝑂𝑏𝑠 represent separation distance & 

obstacle avoidance probability, which must be maximized for the optimization process 

[182]. The functions 𝑓1 & 𝑓2 are decided as per the context of the network and used for 

continuous planning operations. A survey of models [183] that perform these operations 

is discussed in the next part of this chapter, based on which it has been found that existing 

path planning models with collision-awareness are either highly complex or have lower 

efficiency, which limits their real-time deployment capabilities. Moreover, these models 

usually do not consider energy constraints and are applied to static targets. To overcome 

these limitations, this research work designs a novel hybrid bioinspired model with 

continuous pattern analysis for dynamic collision-aware routing in UAV networks. The 

model was evaluated under various network conditions, and its performance was 

compared w.r.t. standard UAV routing methods under different scenarios [184]. Finally, 

this chapter concludes with some context-specific & network-specific observations about 

the model and endorses approaches to further optimize its performance under unlike real-

time scenarios. 

5.2 Design of the model 

Based on the review of existing collision-aware routing models, it has been found that 

these models are either highly complex or have lower efficiency, which limits their real-

time deployment capabilities. Moreover, these models usually do not consider energy 

constraints and are applied to static targets. To overcome these limitations, a novel hybrid 

bioinspired model with continuous pattern analysis for dynamic collision-aware routing 

in UAV networks is used. The flow of the model is depicted in figure 4.2, where it can be 

observed that the model initially collects node-level & network-level parametric sets that 

include Cartesian location, residual energy levels, temporal routing performance, and 

temporal collision performance levels. The model then deploys a Grey Wolf Optimization 
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(GWO) based routing process to identify optimal routes between two anchor points. 

These routes are further tuned via a Firefly based Optimization (FFO), which assists in 

estimating high-trust routes based on their temporal performance via continuous data 

update operations.  

The selected route sets are further scrutinized via a continuous learning framework 

(CLF), which assists in the identification of dynamic moving targets and uses this 

information for incremental route updates. Due to the integration of CLF, the model is 

able to identify optimal paths even under moving target scenarios. In addition, the model 

includes adaptive learning mechanisms to improve the accuracy of decision-making and 

dynamically optimizes resource allocation to prolong the lifespan of the network. The 

incorporation of these sophisticated functionalities enhances the effectiveness and 

flexibility of the suggested architecture in conducting real-time operations inside a UAV 

network. 

The selected route sets undergo a comprehensive examination using a continuous 

learning framework (CLF), which allows for the detection of targets that are in motion. 

Subsequently, this data is utilized to make gradual modifications to the route and adjust to 

the most efficient pathways, even in situations involving mobile objectives. The model 

initially collects temporal information about different node & network configurations and 

uses them to form initial routes. These routes are formed via a Grey Wolf Optimization 

(GWO) based model, which works via the following process, 

• To initialize the optimizer, set up the following GWO constants, 

• Total Wolf configurations to be generated for optimization (𝑁𝑤) 

• Total iterations for which these Wolves will be evaluated (𝑁𝑖) 

• A constant rate of learning for these Wolves (𝐿𝑤) 

• Current node locations and qualitative parameters 
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• While performing GWO based routing, a set of nodes consisting of source (𝑠𝑟𝑐) & 

destination (𝑑𝑒𝑠𝑡) nodes are selected, which will assist in the identification of optimal 

travelling paths between these nodes 

 

Figure 5.2-Overall flow of the routing process with collision aware operations 

• For each pair of source & destination nodes, evaluate the reference distance 𝑑𝑟𝑒𝑓 via 

equation 2, 
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𝑑𝑟𝑒𝑓 = √
(𝑥𝑠𝑟𝑐 − 𝑥𝑑𝑒𝑠𝑡)2 + (𝑦𝑠𝑟𝑐 − 𝑦𝑑𝑒𝑠𝑡)2

+(𝑧𝑠𝑟𝑐 − 𝑧𝑑𝑒𝑠𝑡)2 … (2) 

Where 𝑥, 𝑦, & 𝑧 represents the Cartesian locations of the nodes. 

• Based on this reference, distance is generated. 𝑁𝑤  Wolf configurations as per the 

following process, 

• Identify all other UAV nodes that are in the route of the current source-

destination pair by checking all nodes that satisfy equation 3, 

𝑑𝑠𝑟𝑐,𝑖 < 𝑑𝑟𝑒𝑓 & 𝑑𝑖,𝑑𝑒𝑠𝑡 < 𝑑𝑟𝑒𝑓 … (3) 

Where 𝑖 represents respective node numbers. 

• Out of these nodes, identify 𝑁 routing nodes via equation 4, 

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑤 ∗ 𝑁𝑛, 𝑁𝑛) … (4) 

Where, 𝑁𝑛 represents the total number of nodes that are present in the network scenario, 

and 𝑆𝑇𝑂𝐶𝐻 represents a stochastic Markovian process that is used for the generation of 

different number sets. 

• For each of these node sets, identify their ∅ & 𝜃 values via equations 5 & 6 as 

follows, 

𝜃 = tan−1 (
√𝑥2 + 𝑦2

𝑍
) … (5) 

∅ = tan−1 (
𝑦

𝑥
) … (6) 

• Now, rotate the angles by stochastic shifts of ∅′ & 𝜃′ via equations 7 & 8, 

∅′ = ∅ + 𝑆𝑇𝑂𝐶𝐻 (−
𝜋

2
∗ 𝐿𝑟 ,

𝜋

2
∗ 𝐿𝑟) … (7) 

𝜃′ = 𝜃 + 𝑆𝑇𝑂𝐶𝐻(−𝜋 ∗ 𝐿𝑟 , 𝜋 ∗ 𝐿𝑟) … (8) 
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Where, 𝐿𝑟 is the learning rate, which is initially setup as 𝐿𝑟 = 1, and then modified via 

the optimization process. 

• Add source to the initial location and destination to the final location, and also 

add these updated coordinates to the route lists. Based on these update co-

ordinates estimate the final route distance as per equation 9, 

𝑑 = ∑ 𝑑𝑖−1,𝑖

𝑁

𝑖=2

… (9) 

• As per the distance metrics, estimate Wolf fitness via equation 10, 

𝑓𝑤 = 𝑑 ∗ ∑ 𝐸𝑖

𝑁−1

𝑖=1

… (10) 

Where 𝐸 represents the energy needed to move from a given location to the next location 

under real-time conditions.  

• This process is repeated for all Wolves and 𝑁𝑤  Wolf configurations are 

generated, each of which represents different routing paths. 

• Estimate Wolf fitness threshold via equation 11, 

𝑓𝑡ℎ = ∑ 𝑓𝑤

𝑁𝑤

𝑖=1

∗
𝐿𝑤

𝑁𝑤
… (11) 

• Based on this threshold, mark the Wolves as follows, 

• A Wolf is marked as ‘Delta’ when 𝑓𝑤 > 𝑓𝑡ℎ … (12) 

• Else, the Wolf is marked as ‘Alpha’ when 𝑓𝑤 < 𝑓𝑡ℎ ∗
𝐿𝑤

2
… (13) 

• Else, Wolf is marked as ‘Beta’ when 𝑓𝑤 < 𝑓𝑡ℎ ∗ 𝐿𝑤 … (14) 

• Otherwise, Wolf is marked as ‘Gamma’ for further optimizations 
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• Once all Wolves are marked, then scan each of them and modify their internal 

configurations for 𝑁𝑖 iterations as per the following process, 

• Regenerate all ‘Delta’ Wolves via equations 4, 5, 6, 7, 8 and 9 

• For ‘Beta’ & ‘Gamma’ Wolves, modify 𝐿𝑟 via equation 15, 

𝐿𝑟 = 𝐿𝑟 (1 ±
1

𝑆𝑇𝑂𝐶𝐻 (
𝑁𝑤

2 , 𝑁𝑤)
) … (15) 

• Use this new 𝐿𝑟 to generate their new configurations. 

• At the end of each iteration, identify the fitness threshold and recheck the 

fitness levels for each of the Wolves, which will assist in the identification of 

optimal routing paths. 

Once all iterations are completed, select ‘Alpha’ Wolves as initial routing configurations 

and modify these configurations via a Firefly based optimization process. This process 

reiterates all the ‘Alpha’ solutions and identifies high-trust paths, which will assist in 

achieving better QoS levels. This model works as per the following process, 

• To initialize the optimizations, set up the following FF constants, 

• The total number of fireflies used for optimization (𝑁𝑓𝑓) 

• The total number of iterations used during the optimization process (𝑁𝑖) 

• The rate at which the fireflies will learn from each other (𝐿𝑓𝑓) 

• Temporal routing parameters on each path, including throughput, collisions, 

and link quality on the given path sets. 

• Scan all ‘Alpha’ Wolves for 𝑁𝑖 iterations, as per the following process, 

• Generate current path brightness via equation 16, 
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𝑝𝑏 = ∑ 𝑑𝑖−1,𝑖 ∗ [
𝑇𝐻𝑅𝑖−1

𝑀𝑎𝑥(𝑇𝐻𝑅)
] ∗ 𝑁𝐶𝑖,𝑖+1 ∗

1

𝐿𝑄𝑖,𝑖+1

𝑁ℎ

𝑖=2

… (16) 

Where, 𝑁ℎ  represents the number of hops decided by the GWO process, while 

𝑇𝐻𝑅, 𝑁𝐶 & 𝐿𝑄 represents the throughput of nodes on the given path, which is evaluated 

via equation 17, the number of temporal collisions on the path which is evaluated via 

equation 18, and temporal link quality of the given paths which is evaluated via equation 

19 as follows, 

𝑇𝐻𝑅 = ∑
𝑁𝑁(𝑡)

𝑀𝑎𝑥(𝑁𝑁) ∗ (𝑡2 − 𝑡1)
… (17)

𝑡2

𝑡=𝑡1

 

Where 𝑁𝑁(𝑡) represents the number of nodes that have used this path between the time 

interval of 𝑡1 & 𝑡2, which is recorded by the router nodes. 

𝑁𝐶 = ∑
𝑉𝐶𝑡

∑ 𝑉𝐶

𝑡2

𝑡=𝑡1

… (18) 

Where, 𝑉𝐶𝑡  represents the number of vehicles that collided during the given time 

intervals. 

𝐿𝑄 = ∑
1

𝑉𝐹𝑡
… (19)

𝑡2

𝑡=𝑡1

 

Where, 𝑉𝐹𝑡  represents the total number of vehicles that became faulty after using the 

given path between the given time intervals. 

• Now, incrementally modify values of ∅ & 𝜃 via equation 20, 

(∅, 𝜃) = (∅, 𝜃)𝑜𝑙𝑑 ±

𝜋 ∗ 𝑆𝑇𝑂𝐶𝐻 (
1

𝐿𝑓𝑓
, 𝐿𝑓𝑓)

𝐿𝑓𝑓 + 1
… (20) 
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• Use these new values to estimate new paths and estimate their path brightness 

levels via equation 16, and based on this new level, accept this path if 

𝑝𝑏(𝑁𝑒𝑤) < 𝑝𝑏(𝑂𝑙𝑑) 

• This process is continued for 𝑁𝑓𝑓  fireflies and new configurations are 

generated for each of the ‘Alpha’ Wolf paths. 

• Once all iterations are completed, then path with maximum brightness levels is 

selected as the final solution for routing operations. 

The selected path is used for routing operations, and new levels of throughput, number of 

collisions, and link quality are updated for continuous optimization operations. These 

paths are stored on the database via an Incremental Learning Layer (IL), which 

correlation between the QoS (Quality of Service) levels of the current path, and existing 

stored paths. This QoS level is estimated for each path as per equation 21, 

𝑄 = ∑
∑ 𝑁𝐶𝑖

∑ 𝐿𝑄𝑖

𝑁𝑝

𝑖=1

… (21) 

Where, 𝑁𝑝 are the number of ‘Alpha’ Wolf configurations selected by the GWO process. 

Based on this Q value, the reward function is estimated via equation 22, 

𝑟 =
𝑄(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝑄(𝑑𝑏)

𝐿𝑓𝑓
+ 𝐿𝑟(𝑄(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝑀𝑎𝑥(𝑄)) … (22) 

The current path sets are updated in the database if 𝑟 > 1, which indicates that the current 

path sets have a lower number of collisions with higher link quality, while other paths are 

discarded from the optimization operations. Using this process, path caches are 

generated, and if GWO selects similar paths, then they are directly used without the need 

for FFO based validation operations. Due to the use of these path caches, the speed of 

operation for the model is improved, while the energy needed for the routing process is 

reduced when compared to real-time scenarios. This performance is validated via 

comparison with standard routing techniques in the next part of the chapter. 
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5.3 Result Analysis 

The BPACAR Model initially uses GWO to estimate low congestion routes, which are re-

evaluated via FFO by utilization of temporal node & network parameter sets. The 

selected paths are cached and later used for continuous optimizations via an incremental 

learning process. Due to these optimizations, it is expected that the model must showcase 

lower energy consumption, lower routing delay, and minimize the number of collisions. 

The model was tested on standard UAV configurations, which were taken from NTNU 

Open Research work Dataset (available at 

https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/L41IGQ). The UAV 

configurations were tested on the following network configuration parameter sets as 

listed in table 5.1, 

Table 5.1-UAV Configuration used during routing operations 

UAV Network Set Parameter Parametric Value Sets 

Used model for propagation of UAVs Sky propagation with dual rays 

Protocol used by the MAC layers 802.16a 

Type of queues Drop tail queue with packet priorities. 

Model for the connected radio antennas 
Dual ray model with omnidirectional 

antennas 

Total UAV Nodes 1000 

Network dimensions 2 kms x 2 kms 

UAV Idle Power Levels 10 mW 

UAV Reception Power Levels 15 mW 

UAV Transmission Power Levels 18 mW 

UAV Sleep Mode Power Levels 0.01 mW 

https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/L41IGQ
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UAV Movement Power Levels 10 mW 

Delay needed for one unit of movement 0.18 s 

Initial Power Levels 5000 mW 

As per these configuration parameters, a large number of movements (NMs) were done 

for the UAV network, and these movements were varied between 250 to 5000 in order to 

estimate the true value of different parameter sets. For each of these movements, routing 

delay (D) was estimated via equation 23 as follows, 

𝐷 =
1

𝑁𝑀
∑ 𝑡𝑠𝑟𝑒𝑎𝑐ℎ − 𝑡𝑠𝑠𝑡𝑎𝑟𝑡

𝑁𝑀

𝑖=1

… (23) 

Where, 𝑡𝑠𝑟𝑒𝑎𝑐ℎ & 𝑡𝑠𝑠𝑡𝑎𝑟𝑡  represents the timestamps at which the nodes reach the 

destination location and start from the source locations. The delay performance was 

compared with IIWD [185], IA GWO [186], and MS GSA [187] in table 5.2 as follows, 

Table 5.2-Delay needed for routing UAVs between different locations 

Number of 

Movements 

D (ms) 

IIWD [185] 

D (ms) 

IA GWO [186] 

D (ms) 

MS GSA 

[187] 

D (ms) 

BPACAR 

(Proposed Model) 

250 11.94 13.46 14.80 8.72 

500 12.84 14.80 16.44 9.76 

750 14.38 16.92 18.86 11.22 

1000 16.66 19.76 22.00 13.10 

1250 19.56 23.08 25.66 15.28 

1500 22.76 26.86 29.84 17.76 
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1750 26.50 31.16 34.48 20.50 

2000 30.64 35.68 39.34 23.32 

2250 34.78 40.34 44.34 26.12 

2500 38.30 44.58 49.00 28.72 

3125 41.38 48.62 53.42 31.14 

3500 44.39 52.32 57.46 33.42 

3750 47.22 55.80 61.31 35.57 

4375 49.78 59.05 64.84 37.54 

4750 52.05 61.82 67.93 39.37 

5000 54.55 64.75 71.15 41.28 

 

As per this evaluation & figure 5.3, it was observed that the model was 23.5% faster than 

IIWD [185], 34.2% faster than IA GWO [186], and 38.5% faster than MS GSA [187] 

under real-time scenarios.  

 

Figure 5.3. Delay needed for routing UAVs between different locations 
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This is possible due to the dual filtering of routes via GWO & FFO Models, which assists 

in the identification of low delay route sets. Due to this, the model is capable of 

deployment for high-speed routing use cases. Similar performance was estimated for 

energy consumption via equation 24 and tabulated in table 5.3 as follows, 

𝐸 =
1

𝑁𝑀
∑ 𝐸𝑠𝑟𝑐(𝑠𝑡𝑎𝑟𝑡)𝑖 − 𝐸𝑠𝑟𝑐(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)𝑖

𝑁𝑀

𝑖=1

… (24) 

Where, 𝐸(𝑠𝑡𝑎𝑟𝑡) & 𝐸(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) represents energy levels of the source node during the 

start & completion of routing operations. 

Table 5.3-Energy needed for routing UAVs between different locations 

Number of 

Movements 

E (mW) 

IIWD [185] 

E (mW) 

IA GWO [186] 

E (mW) 

MS GSA 

[187] 

E (mW) 

BPACAR (Proposed 

Model) 

250 29.76 42.45 27.64 17.82 

500 31.74 44.88 29.15 18.75 

750 33.30 47.04 30.55 19.67 

1000 34.88 49.29 32.02 20.63 

1250 36.50 51.76 33.63 21.66 

1500 38.22 54.34 35.31 22.76 

1750 40.04 57.04 37.03 23.85 

2000 41.92 59.70 38.74 24.95 

2250 43.88 62.47 40.50 26.06 

2500 45.94 65.25 42.22 27.14 
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3125 47.94 67.81 43.82 28.14 

3500 49.83 70.24 45.34 29.11 

3750 51.60 72.61 46.88 30.09 

4375 53.40 75.14 48.49 31.11 

4750 55.19 77.65 50.10 32.14 

5000 56.97 80.17 51.71 33.16 

 

It has been seen from table 5.3 and figure 5.4 that the model showcased 16.5% lower 

energy consumption than IIWD [185], 24.3% lower energy consumption than IA GWO 

[186], and 14.2% lower energy consumption than MS GSA [187], which makes the 

model useful for low energy & high lifetime scenarios. 

 

Figure 5.4-Energy needed for routing UAVs between different locations 
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This is possible due to the inclusion of residual energy levels during the formation of 

routes via the FFO process. Similar performance for the number of average collisions 

(NAC) can be observed in table 5.4 as follows, 

Table 5.4-Total number of collisions for routing UAVs between different locations 

Number of 

Movements 

NAC 

IIWD [185] 

NAC 

IA GWO 

[186] 

NAC 

MS GSA 

[187] 

NAC 

BPACAR 

(Proposed Model) 

250 33 35 40 27 

500 34 35 41 27 

750 34 35 41 27 

1000 34 36 41 27 

1250 35 36 42 28 

1500 35 36 42 28 

1750 35 37 42 28 

2000 35 37 43 28 

2250 36 37 43 28 

2500 36 38 43 29 

3125 36 38 44 29 

3500 37 38 44 29 

3750 37 38 44 29 

4375 37 39 45 30 

4750 37 39 45 30 
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5000 38 39 45 30 

 

As per this evaluation & figure 5.4, it was observed that the model achieved 10.4% lower 

collisions than IIWD [185], 10.5% lower collisions than IA GWO [186], and 18.3% 

lower collisions than MS GSA [187] under real-time scenarios. This is possible due to the 

initial filtering of routes via GWO & then using trust-based routing via FFO Models, 

which assists in the identification of low delay & low congestion route sets. 

 

Figure 5.5-Total number of collisions for routing UAVs between different locations 

Similarly, the throughput performance in terms of vehicles crossing on routes per minute 

(vpm) can be observed from table 5.5 as follows, 

Table 5.5-Total throughput for routing UAVs between different locations 

Number of 

Movements 

THR (vpm) 

IIWD [185] 

THR (vpm) 

IA GWO 

[186] 

THR (vpm) 

MS GSA 

[187] 

THR (vpm) 

BPACAR 

(Proposed Model) 

250 98 81 91 120 
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500 98 82 92 121 

750 99 82 93 122 

1000 100 83 93 123 

1250 101 84 94 124 

1500 102 84 95 125 

1750 103 85 96 126 

2000 103 86 96 127 

2250 104 86 97 128 

2500 105 87 98 129 

3125 106 88 99 130 

3500 107 89 99 131 

3750 108 89 100 132 

4375 108 90 101 133 

4750 109 91 102 134 

5000 110 91 103 135 

As per this evaluation and figure 5.6, it was observed that the model is capable of better 

path reusability due to path caching mechanisms, which assist in improving its 

throughput levels.  
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Figure 5.6-Total throughput for routing UAVs between different locations 

The model showcased 15.4% better throughput than IIWD [185], 25.3% higher 

throughput than IA GWO [186], and 18.5% better throughput than MS GSA [187], which 

makes it useful for a wide variety of path reusability scenarios. This is possible due to the 

inclusion of throughput during path optimizations. Due to these operations, the model 

was observed to be better than standard path planning models and can be used for low 

energy, high speed, low congestion, and high throughput use cases. 

5.4 Conclusion & Future Scope 

The BPACAR Model first estimates low congestion routes with GWO, and these 

estimates are then updated with FFO by using temporal node & network parameter sets. 

The chosen paths are cached and subsequently used for ongoing optimizations through 

incremental learning. The model is expected to demonstrate lower energy consumption, 

lower routing delay, and a minimum number of collisions as a result of these 

optimizations. The model was found to be 38.5% faster than MS GSA [185] under real-

time scenarios, 23.5% faster than IIWD [186], 34.2% faster than IA GWO [187], and 

33.5% faster than MS GSA [185]. Dual route filtering using GWO and FFO models, 

which aids in the identification of low delay route sets, makes this possible. As a result, 
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the model can be used for high-speed routing use cases. The suggested model also 

showed 16.5%, 24.3%, and 14.2% lower energy consumption than IIWD [185], IA GWO 

[186], and MS GSA [187], respectively, which makes the model useful for low energy & 

high lifetime scenarios. This is possible because residual energy levels are taken into 

account when routes are formed using the FFO process. 

Additionally, it was noted that in real-time scenarios, the model produced collision rates 

that were 10.4%, 10.5%, and 18.3% lower than those of IIWD [185], IA GWO [186] and 

MS GSA [187]. This is made possible by first filtering routes using GWO, followed by 

trust-based routing using FFO Models, which helps identify low delay and low 

congestion route sets. The model can, therefore, be used for low-collision routing use 

cases. It was found that the model has better path reusability thanks to path caching 

mechanisms, which helps to increase its throughput levels. The model demonstrated 

throughput improvements of 15.4%, 25.3%, and 18.5% over IIWD [185], IA GWO [186], 

and MS GSA [187], respectively, making it useful for a variety of path reusability 

scenarios. This is possible because path optimizations take throughput into account. The 

model was found to be superior to traditional path planning models as a result of these 

operations, and it can be applied to use cases involving low energy consumption, high 

speed, minimal congestion, and high throughput. Future performance testing of the model 

on large-scale networks is necessary, and it can be enhanced by incorporating simple bio-

inspired techniques.  
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CHAPTER 6           

CONCLUSION AND FUTURE SCOPE 

The research work presented in this research work has concluded with the development 

and validation of the BPACAR (Bio-inspired Path-Planning Algorithm with Collision 

Avoidance and Continuous Learning for UAV Routing) model—an innovative solution 

for Unmanned Aerial Vehicle (UAV) routing network. The journey of this research work 

has been marked by insightful discoveries and substantial contributions to the field. The 

results and their subsequent analysis directly address the research work objectives set 

forth in the research work. Each result contributes to a deeper understanding of how the 

bioinspired optimization model impacts routing efficiency in UAV networks. The 

analysis provides the context and interpretation needed to derive meaningful conclusions 

from the data. The comparative assessment against existing routing techniques is 

especially relevant, as it validates the model's uniqueness and its potential to outperform 

conventional approaches. 

Additionally, the results shed light on how the model's performance scales with network 

size, making it possible to draw recommendations for its deployment in various UAV 

network scenarios. BPACAR's most important achievement lies in its innovative 

approach to collision avoidance within UAV networks. By seamlessly integrating bio-

inspired optimization algorithms and a continuous learning framework, the model has 

demonstrated a significant ability to mitigate collision incidents, thereby significantly 

enhancing safety and reliability. This outcome is of utmost importance, particularly in 

scenarios where UAVs operate in dynamic and densely populated environments [189]. 

Moreover, BPACAR has proven its courage in routing efficiency and overall network 

performance. The research work findings have showcased tangible reductions in routing 

delay, energy consumption, jitter, and improvements in packet delivery ratios. These 

enhancements translate into faster data delivery, reduced energy overhead, and 

heightened network stability. BPACAR's continuous learning capabilities have emerged 

as a driving force behind these efficiency gains, allowing it to adapt to varying network 
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conditions and optimize routing paths over time. In the comparative analysis with 

existing routing models, BPACAR has consistently performed well. Its unique 

combination of collision avoidance, routing efficiency, and continuous learning 

capabilities has positioned it as a cutting-edge solution for UAV routing challenges.  

6.1 Performance of QMRNB 

The performance evaluation of the QMRNB (Q-Learning Model for Routing in UAV 

Networks with Bioinspired Optimizations) model is a critical aspect of this research 

work. This section discusses the performance of QMRNB, shedding light on how this 

innovative model fares in terms of enhancing routing efficiency in Unmanned Aerial 

Vehicle (UAV) networks. 

6.1.1 Efficiency Enhancement: 

QMRNB has shown remarkable ability in significantly enhancing routing efficiency 

within UAV networks. This efficiency is characterized by a reduction in routing delay, 

improved energy efficiency, and enhanced routing jitter management, all of which are top 

parameters for the seamless operation of UAV networks. 

a. Routing Delay Reduction: One of the primary performance metrics, routing 

delay, has seen a substantial reduction through the implementation of QMRNB. 

This model optimizes routing paths through Q-learning and bioinspired Mayfly 

Optimization (MO). The results demonstrate an impressive 8.5% reduction in 

routing delay compared to conventional routing techniques under similar 

conditions. 

b. Energy Efficiency Improvement: The efficient utilization of energy resources is 

critical for UAVs, which often operate in resource-constrained environments. 

QMRNB excels in this aspect, showcasing a 4.9% improvement in energy 

efficiency. By optimizing routing patterns intelligently, the model decreases 

energy consumption during data transmission and reception, hence prolonging the 

operational lifespan of UAVs. 
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c. Routing Jitter Management: Consistency in data delivery is vital for UAV 

applications. QMRNB addresses routing jitter effectively, reducing it by 3.5% 

compared to existing routing techniques. This improvement ensures a more stable 

and predictable data transfer process, which is essential for applications such as 

surveillance, monitoring, and data collection. 

6.1.2 Scalability and Versatility: 

One of the important attributes of QMRNB is its scalability and versatility. Unlike some 

existing path optimization models that struggle with larger network scenarios or 

experience fading efficiency as the number of communication requests increases, 

QMRNB maintains its performance integrity. 

a. Scalability: QMRNB is capable of scaling seamlessly to larger network 

scenarios. Whether the UAV network comprises an uncertain number of nodes or 

extends to thousands, the model consistently delivers improved routing efficiency. 

This scalability is essential as it ensures that the model remains applicable to a 

wide range of UAV deployment scenarios, from small-scale operations to 

extensive surveillance networks. 

b. Robust Performance: QMRNB's robustness is evident in its ability to handle a 

high volume of communication requests without sacrificing efficiency. As the 

number of routing requests increases, the model retains its effectiveness, making 

it suitable for dynamic UAV networks with fluctuating communication demands. 

6.1.3 Comparative Advantages: 

Comparative analysis against established routing techniques, including Energy-aware 

Collaborative Routing (ECoR), Q-learning (QL), and Q-learning-based topology-aware 

routing (QTAR), highlights the distinct advantages of QMRNB. 

a. Outperformance: QMRNB consistently outperforms these conventional 

techniques across various performance metrics. It reduces routing delay more 

effectively than ECoR, QL, and QTAR. Additionally, its energy efficiency 
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surpasses these methods, making it a superior choice for energy-constrained UAV 

applications. 

b. Unique Routing Paths: The model's use of bioinspired optimization, particularly 

the Mayfly Optimization (MO), enables it to identify alternative routing paths 

efficiently. This capability ensures uninterrupted data transmission even in 

scenarios where selected paths are occupied, setting it apart from traditional 

routing models. 

The performance evaluation of QMRNB underscores its effectiveness in optimizing 

routing efficiency within UAV networks. Through a combination of Q-learning and 

bioinspired optimizations, this model excels in reducing routing delays, enhancing energy 

efficiency, and managing routing jitter. Its scalability and versatility make it adaptable to 

diverse network sizes and communication demands. Comparative analysis repeats 

QMRNB's superiority over existing routing techniques, strengthening its position as a 

valuable solution for real-time UAV routing applications. Overall, the performance of 

QMRNB signifies substantial progress in the area of UAV network optimization. 

6.2 Performance of BPACAR 

The evaluation of the BPACAR (Bio-inspired Path-Planning Algorithm with Collision 

Avoidance and Continuous Learning for UAV Routing) model is a critical component of 

this research work, shedding light on how this innovative algorithm performs in the 

context of UAV (Unmanned Aerial Vehicle) routing with a focus on collision avoidance 

and continuous learning. This section discusses the performance of BPACAR, 

emphasizing its contributions and effectiveness. 

6.2.1 Collision Avoidance and Path Planning 

BPACAR showcases significant performance in the domain of collision avoidance and 

path planning. These capabilities are essential for ensuring the safe and efficient 

operation of UAVs, particularly in scenarios where multiple UAVs are deployed 

simultaneously. 
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a. Collision Avoidance: BPACAR effectively prevents collisions among UAVs by 

employing bio-inspired optimization techniques. Through continuous learning and 

real-time monitoring of the UAV environment, the algorithm dynamically adjusts 

the flight paths to avoid potential collisions. The results of performance 

evaluations demonstrate a significant reduction in collision incidents, ensuring the 

safety of UAV operations. 

b. Path Planning: The model excels in path planning by autonomously selecting 

optimal routes for UAVs. By considering both static and dynamic obstacles, such 

as other UAVs and environmental hazards, BPACAR ensures that UAVs navigate 

through complex scenarios seamlessly. This capability is crucial for applications 

like surveillance, search and rescue, and package delivery, where precision and 

safety are paramount. 

6.2.2 Continuous Learning Framework: 

BPACAR's incorporation of a continuous learning framework is a distinctive feature that 

sets it apart from traditional routing algorithms. This framework enables the algorithm to 

adapt and improve its performance over time based on real-world experiences and 

changing environmental conditions. 

a. Adaptability: The continuous learning framework allows BPACAR to adapt to 

evolving scenarios. As it encounters new challenges or dynamic changes in the 

UAV network, the algorithm learns from these experiences and adjusts its 

collision avoidance and routing strategies accordingly. This adaptability ensures 

that the algorithm remains effective even in dynamic and unpredictable 

environments. 

b. Improved Performance: Over time, the continuous learning framework enhances 

the algorithm's performance. By accumulating knowledge about optimal routing 

paths, obstacle avoidance strategies, and UAV behaviour, BPACAR becomes 
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increasingly proficient in optimizing routing efficiency and collision avoidance. 

This leads to improved overall performance and safety in UAV operations. 

6.2.3 Comparative Advantages: 

Comparative analysis against traditional routing algorithms and collision avoidance 

approaches highlights the distinct advantages of BPACAR in terms of both safety and 

efficiency. 

a. Enhanced Safety: BPACAR outperforms conventional routing algorithms by 

significantly reducing collision incidents. Its ability to adapt and learn from past 

experiences makes it a safer choice for UAV operations in complex and dynamic 

environments. 

b. Routing Efficiency: The continuous learning framework within BPACAR 

contributes to improved routing efficiency. By optimizing routes based on real-

time data and environmental conditions, the algorithm ensures that UAVs reach 

their destinations faster and with greater precision. 

6.2.4 Conclusion of BPACAR: 

In conclusion, the performance evaluation of BPACAR underscores its effectiveness in 

collision avoidance, path planning, and continuous learning for UAV routing. This bio-

inspired algorithm excels in ensuring the safety of UAV operations by dynamically 

avoiding collisions and optimizing routing paths. The continuous learning framework 

enhances its adaptability and overall performance over time. Comparative analysis 

reaffirms BPACAR's superiority in terms of safety and efficiency when compared to 

traditional routing and collision avoidance approaches. As a result, BPACAR signifies a 

substantial development in the field of UAV routing, particularly in scenarios where 

safety and adaptability are critical considerations. Its performance sets a new standard for 

collision-aware routing in UAV networks, making it a valuable asset for real-world 

applications in various domains. The comparative analysis conducted in this research 

work plays an essential role in assessing and evaluating the effectiveness and 
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performance of various routing models, including BPACAR (Bio-inspired Path-Planning 

Algorithm with Collision Avoidance and Continuous Learning for UAV Routing). This 

section presents a discussion of the comparative analysis, emphasizing its significance 

and findings. 

6.2.5 Evaluation Criteria: 

To ensure a comprehensive assessment, the research work employs a set of well-defined 

evaluation criteria: 

a. Collision Avoidance: The comparative analysis scrutinizes each routing model's 

ability to prevent collisions among UAVs during their operations. This criterion is 

of vital importance in ensuring the safety and reliability of UAV networks. 

b. Routing Efficiency: The efficiency of routing is another critical aspect under 

examination. It includes factors such as routing delay, energy consumption, 

throughput, and packet delivery ratios. Efficient routing is essential for timely and 

effective UAV mission execution. 

c. Adaptability and Continuous Learning: The comparative analysis evaluates the 

extent to which each model can adapt to changing network conditions and learn 

from past experiences. The ability to continuously improve routing strategies is a 

distinguishing feature. 

6.2.6 Performance Findings: 

The comparative analysis produces valuable insights into the performance of BPACAR in 

relation to other routing models: 

a. Collision Avoidance: BPACAR demonstrates a significant reduction in collision 

incidents compared to traditional routing algorithms. Its bio-inspired collision 

avoidance strategies, coupled with continuous learning, provide a strong defence 

against mid-air collisions. 
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b. Routing Efficiency: BPACAR excels in routing efficiency. It significantly 

reduces routing delay, energy consumption, and jitter when compared to existing 

models. This translates to faster data delivery, reduced energy expenditure, and 

enhanced network stability. 

c. Continuous Learning Advantage: The continuous learning framework within 

BPACAR sets it apart from other models. Over time, BPACAR becomes more 

adept at optimizing routing paths and avoiding collisions based on real-world 

experiences. This adaptability contributes to its superior performance. 

d. Safety: BPACAR's collision avoidance mechanisms, informed by bio-inspired 

optimization, result in a significantly safer UAV network. The comparative 

analysis highlights its effectiveness in minimizing collision incidents. 

e. Efficiency: BPACAR's continuous learning and optimization capabilities translate 

into enhanced routing efficiency. The algorithm optimizes routes for minimal 

delay, energy consumption, and jitter, thereby improving overall network 

performance. 

The comparative analysis reinforces BPACAR's position as an innovative and high-

performing routing model for UAV networks. Its unique combination of collision 

avoidance, routing efficiency, and continuous learning distinguishes it from conventional 

routing approaches. The findings of the analysis confirm that BPACAR signifies 

substantial progress in the field of UAV routing, offering a safer and more efficient 

solution for complex and dynamic environments. Its performance sets a new standard for 

collision-aware routing in UAV networks, making it a valuable asset for real-world 

applications across various domains. 

6.2.7 Future Work: 

While the research work has produced significant results, the journey is still far: 

a. Scaling to Larger UAV Networks: Future research work can examine the 

scalability of BPACAR to accommodate larger UAV networks. The model's 
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effectiveness in more extensive and complex scenarios warrants thorough 

investigation. 

b. Transformer Models for Collision Prediction: Integrating transformer models 

capable of predicting collisions during routing could contribute to even greater 

efficiency and safety in large-scale network scenarios. 

c. Real-world Deployment and Validation: Extensive real-world deployment and 

validation of BPACAR in various UAV applications and environments will be 

essential to assess its practical utility comprehensively. 

d. Enhanced Performance Metrics: Future work can explore the development of 

more nuanced performance metrics to capture finer aspects of UAV routing, such 

as adaptability to weather conditions and terrain. 

e. User-Friendly Interfaces: The creation of user-friendly interfaces and tools for 

operators to interact with BPACAR and monitor its performance will be 

instrumental in its practical adoption. 

f. Interdisciplinary Collaboration: Collaboration with experts in fields such as 

artificial intelligence, robotics, and aerospace engineering can further enrich the 

capabilities of BPACAR and expand its applicability. 

In essence, the conclusion of this research work marks a significant milestone in the 

journey toward safer, more efficient, and adaptive UAV routing. As research workers and 

innovators continue to push the boundaries of UAV technology, the legacy of this 

research work will undoubtedly play a vital role in determining the future of unmanned 

aerial vehicle operations. 

6.3 Inferences of the Research work 

The implications of the research work conducted in this research work extend across 

various dimensions, encompassing both theoretical advancements and practical 

applications. These implications underscore the significance and relevance of the findings 
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to the broader academic and operational communities. In this section, we provide a 

comprehensive discussion of these implications. 

i) Advancements in UAV Routing Technology: 

The primary implication of this research work is the significant advancement in the field 

of Unmanned Aerial Vehicle (UAV) routing technology. The development and validation 

of the BPACAR (Bio-inspired Path-Planning Algorithm with Collision Avoidance and 

Continuous Learning for UAV Routing) model represent a prototype change in how 

UAVs navigate and communicate in complex and dynamic environments. BPACAR's 

incorporation of bioinspired optimization, continuous learning, and collision avoidance 

strategies sets a new standard for UAV routing systems. 

ii) Enhanced Safety and Reliability: 

One of the most immediate implications of this research work is the enhancement of 

safety and reliability in UAV operations. BPACAR's unparalleled ability to predict and 

prevent collisions in real-time significantly reduces the risk of accidents and improves the 

overall reliability of UAV networks. This is of vital importance in applications such as 

aerial surveillance, search and rescue missions, and autonomous deliveries. 

iii) Efficiency and Resource Optimization: 

The research work findings have thoughtful implications for optimizing the efficiency 

and resource utilization of UAV networks. BPACAR consistently demonstrates 

reductions in routing delay, energy consumption, and jitter while improving packet 

delivery ratios. These efficiency gains translate into faster data delivery, reduced energy 

overhead, and improved network stability. Such optimizations are crucial for applications 

like environmental monitoring and precision agriculture. 

iv) Practical Deployment in Diverse Scenarios: 

The adaptability and versatility of BPACAR make it suitable for deployment in a wide 

array of real-world scenarios. Its collision avoidance capabilities make it invaluable for 
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applications where multiple UAVs need to operate in close proximity, such as disaster 

response missions or urban surveillance.  

v) Academic and Research Work Significance: 

The research work conducted here holds significant academic importance by contributing 

to the body of knowledge in the fields of UAV routing, bioinspired optimization, and 

continuous learning. It provides a foundation upon which future research workers can 

build, offering insights into the intricacies of dynamic routing in UAV networks. 

vi) Covering the Way for Future Innovations: 

By showcasing the capabilities of BPACAR, this research work covers the way for future 

innovations and developments in UAV routing technology. It highlights the potential for 

integrating additional bioinspired algorithms, scaling the model for larger networks, and 

exploring the integration of transformer models for even more accurate collision 

prediction. 

vii) Industry and Practical Applications: 

Beyond the academic sphere, the research work has direct implications for various 

industries and practical applications. Industries involved in UAV manufacturing, 

deployment, and services can influence the insights and methodologies developed in this 

research work to enhance the capabilities and safety of their UAV systems. The BPACAR 

model, at the heart of this research work, represents a significant contribution with the 

capacity to make a lasting impact on the field of UAV routing and beyond. 

6.4 Future Scope 

The research work conducted in this research work has shown several favorable 

opportunities for future exploration and expansion in the domain of Unmanned Aerial 

Vehicle (UAV) routing and bioinspired optimization. These potential research work 

scopes extend across both theoretical and practical dimensions, offering opportunities to 

further enhance the field.  
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i) Hybrid Bioinspired Models: 

Future research work can investigate the development of hybrid bioinspired optimization 

models that combine the strengths of multiple algorithms. Integrating genetic algorithms, 

particle swarm optimization or ant colony optimization with BPACAR produces even 

more robust and adaptable routing solutions. 

ii) Machine Learning for Adaptive Routing: 

Machine learning techniques, particularly reinforcement learning, can be coupled to 

create adaptive UAV routing strategies. Developing models that can continuously learn 

from network dynamics and adapt routing decisions accordingly is a challenging but 

rewarding research work area. These models could enhance routing adaptability in 

rapidly changing environments. 

iii) Human-UAV Interaction: 

With the increasing integration of UAVs into various industries, research work on human-

UAV interaction and collaboration is essential. Exploring how humans can interact with 

UAVs for routing decisions, mission planning, and emergency interventions is a human-

centered research work direction. 

6.5 Summary of BPACAR & QMRNB: 

The research work has made substantial contributions to the field of Unmanned Aerial 

Vehicle (UAV) routing and optimization. These contributions cover a wide spectrum of 

innovations and advancements, each of which has significantly enhanced the state-of-the-

art in UAV network management. In this section, we provide an overview of the key 

contributions made during this research work. 

i) Development of BPACAR Model: 

The central achievement of this research work is the creation of the BPACAR (Bio-

inspired Path-Planning Algorithm with Collision Avoidance and Continuous Learning for 

UAV Routing) model. This innovative model represents an innovative solution to the 
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complex challenges associated with UAV routing in dynamic and densely populated 

environments. BPACAR integrates bio-inspired optimization algorithms, a continuous 

learning framework, and collision avoidance strategies into a cohesive and adaptive 

routing system. 

ii) Collision Avoidance Excellence: 

BPACAR has emerged as a frontrunner in the domain of collision avoidance for UAVs. 

By leveraging bioinspired optimization algorithms, it has demonstrated a significant 

ability to predict and prevent collisions in real-time. This contribution is of utmost 

significance, as it enhances safety and reliability in UAV operations, particularly in 

scenarios where UAVs operate in close proximity to each other. 

iii) Routing Efficiency Enhancements: 

The research work findings have established BPACAR as an effective tool for optimizing 

routing efficiency. It has consistently exhibited reductions in routing delay, energy 

consumption, and jitter, and improvements in packet delivery ratios. These improvements 

translate into faster data delivery, reduced energy overhead, and heightened network 

stability. BPACAR's continuous learning capabilities have played a critical role in 

achieving these efficiency gains. 

 

iv) Comparative Analysis Supremacy: 

In comparative analyses with existing UAV routing models, BPACAR has consistently 

performed well. Its unique combination of collision avoidance, routing efficiency, and 

continuous learning has positioned it as a cutting-edge solution for UAV routing 

challenges. This accomplishment underscores BPACAR's innovative nature and its 

capacity to elevate UAV routing performance. 
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v) Potential for Real-world Impact: 

The research work outcomes have tangible implications for the real-world deployment of 

UAVs in various applications. BPACAR's adaptability, efficiency, and safety 

enhancements make it a capable candidate for widespread adoption in scenarios ranging 

from surveillance and monitoring to disaster response and autonomous deliveries. 

vi) Pathways for Future Exploration: 

The research work has illuminated several paths for future exploration. These include 

scaling BPACAR to larger UAV networks, integrating additional bioinspired optimization 

algorithms, exploring the deployment of transformer models for collision prediction, and 

conducting extensive real-world validation. In summary, the contributions made through 

this research work represent a significant step forward in the quest for safer, more 

efficient, and adaptive UAV routing. BPACAR, with its innovative amalgamation of 

technologies, is poised to make a lasting impact on the field of UAV operations. Its 

contributions are not only of academic importance but also hold substantial promise for 

addressing the demanding challenges faced by UAV networks in the practical world. 

6.6 Summary of Findings 

In the conclusion of the research work, uncountable insights and advancements in the 

area of Unmanned Aerial Vehicle (UAV) routing, bioinspired optimization, and collision-

aware routing have been presented. These findings highlight the consequence of robust 

and adaptable routing strategies in ensuring the competence, consistency, and safety of 

UAV networks across various applications. The research work journey boarded upon in 

this research work began with an exploration of the existing challenges and limitations 

faced by traditional UAV routing techniques. These challenges, including the need for 

adaptability in dynamic environments and the avoidance of collisions, served as the 

primary motivation for the development of novel routing models like QMRNB (Q-

Learning Model for Routing in UAV Networks via Bioinspired Optimizations) and 

BPACAR (Bio-inspired Path-Planning Algorithm with Collision Avoidance and 
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Continuous Learning for UAV Routing). Through an extensive review of relevant 

literature, the research work demonstrated the evolution of UAV routing strategies, the 

emergence of bioinspired optimization algorithms, and the integration of continuous 

learning frameworks. This research work review provided a solid foundation for 

understanding the landscape in which the used routing models operate. 

The introduction to UAV networks explained the critical role that these networks play in 

diverse domains, from surveillance and precision agriculture to disaster management and 

delivery services. It emphasized the need for efficient routing solutions that can adapt to 

dynamic conditions and optimize various performance metrics [190]. A detailed 

exploration of bioinspired optimization algorithms, including Q-Learning, Mayfly 

Optimization (MO), Grey Wolf Optimization (GWO), and Firefly-based Optimization 

(FFO), shed light on their principles and applications in UAV routing. These algorithms 

connect nature-inspired mechanisms to enhance routing efficiency and adaptability. This 

research work research worked on the deep details of collision-aware routing in UAV 

networks, emphasizing the challenges posed by dynamic environments and the strategies 

employed to mitigate collision risks. Its innovative approaches, i.e. continuous learning 

frameworks, are used to enhance collision avoidance and routing adaptability [191]. The 

experimental design and methodology section provided insights into the evaluation of the 

routing models. It detailed the data collection process, simulation environment, 

performance metrics, and experimental scenarios used to assess the models' capabilities 

comprehensively. The results and analysis section presented proof of the superior 

performance of QMRNB and BPACAR compared to existing routing techniques. These 

models demonstrated significant reductions in routing delay, energy consumption, and 

improvements in throughput, making them valuable assets for real-time UAV routing 

applications. A comparative analysis further underscored the advantages of the used 

models, highlighting their potential to revolutionize UAV routing in terms of efficiency 

and adaptability. In the discussion of key findings, the research work emphasized the 

transformative impact of bioinspired optimization and collision-aware routing in UAV 

networks. It highlighted the potential for these innovations to unlock new possibilities in 
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industries ranging from logistics to emergency response. The complexity of the algorithm 

used in chapter 4 has begins with the collection of network, node, and performance 

metadata sets, which involves gathering and aggregating data from various sources. This 

initial data collection phase generally has a complexity of O(N), where N is the number 

of nodes or data points involved. Following this, the algorithm employs Q-learning to 

determine initial routes. The complexity of the Q-learning process is O(t⋅s⋅a), where t 

represents the number of episodes, s the number of states, and a represent the number of 

actions. After establishing the initial routes, the Mayfly Optimization Model Process is 

used to refine these routes through fitness optimizations, elimination operations, and 

reproduction operations. Evaluating the fitness of the routes typically has a complexity of 

O(R), where R is the number of routes. The elimination process, which involves sorting 

and selecting the best routes, has a complexity of O(R log R), and the reproduction of 

new routes based on the best ones is O(R). Finally, the deployment of the optimized 

routes and the collection of feedback for further optimization are carried out, with 

deployment being O(1), but collecting feedback can be O(N). Considering all these steps, 

the overall complexity of the algorithm is dominated by the Q-learning phase and the 

elimination operations in the Mayfly optimization, resulting in a combined complexity of 

O(t⋅s⋅a + R log R). This complexity reflects the substantial computational effort required 

during both the learning and optimization phases of the algorithm. Where as in chapter 5, 

algorithm complexity begins with the collection of network and node configurations, 

which includes gathering data on node locations, energy levels, and network performance 

metrics. This data collection phase generally has a complexity of O(N), where N is the 

number of nodes or data points involved. Following this, the algorithm utilizes a Grey 

Wolf Optimization (GWO) based initial routing process. This process involves 

configuring the network and nodes, and categorizing routes into Alpha, Beta, Gamma, 

and Delta wolves to optimize for Quality of Service (QoS) and network/node 

performance. The complexity of GWO can be approximated as O(t⋅N⋅D), where t is the 

number of iterations, N is the number of wolves, and D is the dimensionality of the 

problem. After establishing the initial routes, the algorithm proceeds with Firefly 
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Optimization (FFO) based trust optimizations. This phase involves estimating collisions, 

performing temporal optimizations, and conducting fitness estimations to produce final 

collision-aware routes. The complexity of FFO can be estimated as O(t⋅n2), where t is the 

number of iterations and n is the number of fireflies. Finally, the algorithm incorporates a 

continuous learning process that aggregates routes and filters them based on high QoS 

and high trust metrics. The complexity of this continuous learning and route filtering 

process is dependent on the number of routes and can be considered O(R), where R is the 

number of routes. Considering all these steps, the overall complexity of the algorithm is 

influenced by the GWO and FFO processes. Therefore, the combined complexity can be 

summarized as O(t⋅N⋅D+t⋅n2), reflecting the computational effort required during both 

the initial routing and trust optimization phases of the algorithm. In conclusion, this 

research work leaves a permanent mark on the field of UAV routing and bioinspired 

optimization. It showcases the potential of QMRNB and BPACAR to address critical 

challenges and raise the efficiency and safety of UAV networks. The research work 

contributions are not confined to academia but extend to practical applications, where 

UAVs are becoming essential tools. As the world continues to witness the production of 

UAVs across various sectors, the research work presented herein provides a timely and 

invaluable resource for research workers, practitioners, and policymakers. It opens doors 

to new horizons in routing strategies and excellence in the ever-evolving UAV networks. 

The journey of exploration, discovery, and innovation continues, guided by the principles 

of efficiency, adaptability, and safety, as illuminated in this research work. 

6.7 Real-World Challenges of Proposed Work 

Implementing UAV route planning and collision avoidance systems in the real world 

involves various obstacles. Here are four crucial points: 

1. Environmental Uncertainty  

(i) Dynamic surroundings: Real-world surroundings are typically unpredictable, with 

moving impediments like automobiles, people, and animals. This requires UAVs to 
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continually alter their trajectories and avoid collisions in real-time, which may be difficult 

and computationally intensive. 

(ii) Weather Conditions: Weather conditions such as wind, rain, and fog can greatly 

impact UAV performance. These variables can disturb sensor readings and GPS signals, 

making reliable course planning and collision avoidance more challenging. 

2. Sensor Limitations 

(i) Sensor Accuracy and Reliability: UAVs rely extensively on sensors (e.g., LIDAR, 

cameras, GPS) for navigation and obstacle identification. Sensor errors, malfunctions, or 

interference can lead to inaccurate data, limiting the UAV's ability to operate safely and 

effectively. 

(ii) Sensor Fusion: Integrating data from various sensors to produce a cohesive 

knowledge of the environment is tough. It takes complex algorithms to evaluate and 

combine sensor data in real-time to enable correct decision-making. 

3. Computational Constraints 

(i) Real-time Processing: Implementing sophisticated path planning and collision 

avoidance algorithms demands large processing resources. Ensuring that these algorithms 

function in real-time on the UAV's onboard computer, which has limited processing 

power and memory, is a huge difficulty. 

4. Regulatory and Safety Issues 

(i) Regulatory Compliance: UAV operations are subject to severe rules about airspace 

usage, safety, and privacy. Ensuring that the UAV conforms to these standards while 

incorporating sophisticated route planning and collision avoidance is tough. 

(ii) Safety and dependability: Ensuring the safety and dependability of UAV operations 

in real-world circumstances is crucial. This involves thorough testing and validation of 

the path planning and collision avoidance algorithms to prevent mishaps and guarantee 

the UAV can handle unforeseen scenarios efficiently.  
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