
A Hybrid load balance optimization model for Cloud IoT

Edge

A

Thesis

Submitted for the Award of the Degree of

DOCTOR OF PHILOSOPHY

In

COMPUTER SCIENCE AND ENGINEERING

Submitted By

K RAGHAVENDAR

41900441

Supervised By

Dr Isha Batra(17451)

School of Computer Science and Engineering (Professor)

Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

2024

I

CANDIDATE’S DECLARATION

I hereby declare that the thesis entitled A Hybrid load balance optimization model for

Cloud IoT Edge submitted for the Degree of Doctor of Philosophy in Computer

Science and Engineering is the result of my original and independent research work

carried out under the guidance of Supervisor Dr. Isha Batra, Professor, School of

Computer Science and Engineering, Lovely Professional University, Punjab. This work

has not been submitted for the award of any degree, diploma, associateship, and

fellowship of any University or Institution.

Date: Investigator

K Raghavendar

School :Computer Science and Engineering

University Lovely Professional University

Punjab, India

II

CERTIFICATE

This is to certify that the thesis entitled “A Hybrid Load balance optimization model

for Cloud IoT Edge” submitted by K Raghavendar for the award of degree of Doctor

of Philosophy in Computer Science and Engineering, Lovely Professional University, is

entirely based on the work carried out by her under my supervision and guidance. The

work reported, embodies the original work of the candidate and has not been

submitted to any other university or institution for the award of any degree or diploma,

according to the best of my knowledge.

Signature of Advisor

Date:

Name: Dr. Isha Batra

Designation: Professor
School : Computer Science and Engineering

University : Lovely Professional University Punjab ,India

III

ABSTRACT

Virtual Machines (VMs) are primarily created and deployed to enable batch and stream

processing applications using cloud computing and storage services. The requirement to

provision distinct resources for every virtual machine (VM) drives up maintenance

expenses even if this approach offers thorough monitoring of the underlying

infrastructure. For adaptability and optimisation, even with automated solutions, careful

capacity planning and manual intervention are needed. Because of their lower overhead

and increased flexibility over virtual machines (VMs), containers are becoming the

standard cloud processing unit as the industry moves towards addressing these issues.

This progress is best illustrated by the Internet of Things (IoT), whose incorporation

into daily life is demonstrated by gadgets like autos with sophisticated detectors or

cellphones with heart monitors. The Internet of Things (IoT) includes any entity or

person that may send data over a network and be uniquely identifiable by an IP address.

IoT operates in harmony in this scenario, with the cloud acting as the main data centre.

To keep the connection between cloud and edge IoT devices steady and productive,

load balancing and optimisation techniques that work are essential.

The analysis of massive data sets produced by the healthcare sector has gained

importance in recent years. Techniques for large-scale data mining, especially the

MapReduce paradigm, have shown to be successful. Big data processing is less efficient

when there is data skewing, which is still a major problem. We suggest Skew Handling

Based on Partition Tuning (PTSH) as a solution to reduce data skew problems in

MapReduce. In contrast to the traditional one-stage MapReduce model, PTSH

distributes key pairs more efficiently by using a two-stage algorithm and division

optimisation technique. Partitions are dynamically changed in the event of data skew in

order to preserve balance. PTSH proved to be more efficient and reliable than Hadoop's

built-in fragmentation techniques when tested on a variety of real-world and simulated

medical datasets.

The efficiency of the method is further increased by equitable and proximity-based

partitioning, which greatly boosts MapReduce task performance. The partitioning

tuning skew management approach significantly reduces the amount of time needed for

rule extraction, making it especially well-suited for rule mining in healthcare data.

Issues with class imbalance arise when artificial intelligence (AI) is applied, particularly

in cases where data is uneven and high dimensional.

IV

In such cases, traditional feature selection methods frequently produce subpar results

since they give samples from different classes the same weights.

When classifications costs differ, cost-effective learning strategies are used. To address

these issues of class imbalance, a number of formal processes have been devised.

IoT networks have a difficult time guaranteeing a high quality of end-user experience

since they depend on cutting-edge technology like sensors, controllers, GSM, UMTS,

RFID, and 3G networks. These networks are expanding because cloud technologies are

integrating processing power, network bandwidth, virtualization, and system software.

Reducing operating expenses and power consumption, maintaining load balance,

avoiding SLA violations, and improving machine performance all depend on effective

capacity management. Tackling these problems requires strong resource management

and decision-making based on IoT data.

This study looks at several resource provisioning techniques and pinpoints important

elements for distributed system resource optimization. The main things that need to be

improved are the approximation accuracy, data skew rate, and minimization rate. In

order to allocate cloud resources efficiently, hybrid optimization presents a number of

problems and complications that are further highlighted by the particular needs of the

IoT ecosystem.

In addition, we suggest a sophisticated organisational framework that will allow for

smooth connectivity and ideal load balancing between cloud and edge IoT devices. This

architecture incorporates dynamic resource allocation algorithms that anticipate and

adapt to changing demands by utilising real-time data analytics. Through the integration

of machine learning models, the system is able to optimise resource distribution

continually, reducing latency and increasing throughput.

The significance of hybrid optimisation strategies in handling the complex interaction

between cloud and edge computing resources is highlighted by our findings. These

methods guarantee scalability and stability in addition to improving system

performance—two factors that are essential for sustaining the rapidly growing Internet

of Things environment. Large-scale data processing in the healthcare and other

industries can be made much more effective and efficient by resolving problems with

data skew and class imbalance through creative segmentation and machine learning

techniques.

V

The study shows that in order to handle the increasing needs of Internet of Things

applications, a hybrid architecture that combines cloud and edge computing with

sophisticated load balancing and resource management tactics is necessary. This

strategy guarantees the best possible use of available resources, lowers operating

expenses, and improves the overall functionality and dependability of IoT networks.

.

VI

ACKNOWLEDGEMENT

I would like to present my deepest gratitude to Dr. Isha Batra for her guidance, advice,

understanding and supervision throughout the development of this thesis and study.

Despite her busy schedule he has been available at every step, devoting time and energy

and the much needed counsel and advice. This enabled me to sail through the tough

times and complete this enormous task.

I would like to thank to the Research project committee members for their valuable

comments and discussions. A special thanks to the management of Lovely Professional

University for their support in academic concerns and letting me involve in research

study. The doctoral programme of LPU has made it possible for me to pursue my dream

of research and upgrade my knowledge.

My sincere feeling of gratefulness also goes to my parents and family members who

always motivated me in all the endeavors of my life including this research work in LPU.

Finally, I would like to thank each and every person who has directly and indirectly

helped and motivated me in this journey.

KRaghavendar

VII

LISTOF CONTENTS

Contents Page No

Declaration

Certificate

Abstract

Acknowledgement

Table of Contents

List of Tables

List of Figures

List of Abbreviations

List Appendix

I

II

III-V

VI

VII-XII

XII-XIII

XIV-XV

XVI-XVIII
159

CHAPTER 1 Introduction 1-23

1.1 Introduction
1.2 Generalized Cloud computing architectural design

1.2.1 Self-service offered on request
1.2.2 Wide-scale network access
1.2.3 Pooling of resources.
1.2..4Dynamic Resource Management

1.2..5Measured Service

1.3 CloudDeployment Models
1.3.1Cloud Technology Support IoT

1.4 Cloud computing integrated with Internet of

Things

1.4.1 Cloud-Edge to IoT communication
1.5 Resource Discovery

1.5.1 Resource Selection

1.6 Data pre-processing and DataModel Phase

1.7 Resource Scheduling Understanding

1.8 Cost function calculation

1.9 Research gap

1.10 Problem identification

1

4
5

5
5
5

6

8

8

10

12
12

14

15

17

17
18

VIII

1.11Motivations

1.12 Objectives

1.13Major Contribution of Thesis

1.14 Research Assumptions

1.15Major Contribution

1.16 Organization of the Thesis

1.17 Summary

18
19

20

21

21

22

23

CHAPTER 2 Review Of Literature 24-62

2.1 Introduction
2.2 Various Mobile Cloud Computing Algorithm
2.3 Various Resource Scheduling Algorithm
2.4 Summary Of Cloud Computing Resource

Scheduling Approaches
2.5 Summary

24-60
26-28

29-57

58-61

62

CHAPTER 3 A Cloud IoT Edge Application
Hybrid Load Balancing

Optimization

63-73

3.1 Introduction

3.2 Methodology

3.2.1 Cloud-Edge to IoT Connectivity

3.2.2 Resource Discovery

3.2.3 Choice of assets

3.2.4 Resource Scheduling

3.3 Proposed algorithm

3.4 Implementation

3.5Result

3.6 Summary

63
64

66

66
67

68

68

71

70

73

CHAPTE 4 Map Reducing Task - An Optimal
Partitioning Balancing Methodfor Solving Data

Skew Problems

74-92

IX

4.1 Introduction

4.1 .1Map Reduce Computation

4.1.2 Uses of Map Reduce

4.2 Methodology
4.2.1 A MapReduce Workflow for mapping the

resources and task

4.2.2Word Count Mapper

4.2.3Word Count Reducer

4.3 Proposed System

4.4 Implementation

4.5 Simulation results for load balancing

4.6 Partitioning Skew in MapReduce:

4.7 Results and Discussion

4.8 Summary

74

74

75

75

74

77

78

78

82

85

85

88

92

CHAPTER 5 Novel Framework for Resources Optimization 93-104

to SolveClass imbalance problems

5.1. Introduction

5.2Methods for Dealing with Skewed Data Streams

5.3 Implemented Design for resource Optimization to

solve Class imbalance

5.3.1 Data multidimensional

5.3.2 Skew rate consumption

5.3.3 Novelty of the system

5.4 Implemented design of Cost-Effective learning

method for resourceoptimization to solve class

imbalance problems

5.5Methodology

5.6 Results and Discussion

5.6.1Re-Weighting

93

94

94

94

95
96

97

98

98

100

100

X

5.6.2 Learning Rate Scheduler

5.6.3Warm-up Learning Rate

5.6.4StepDecay Learning Rate

5.6.5Cosine Decay Learning Rate

5.6.6Adaptive Decay Learning Rate

5.6.7Data Augmentation and Resampling

5.6.8Change Loss Function

5.6.9Label Smoothing

5.7 Summary

100

101

101

101
101

101

101

102

104

CHAPTER 6 A Robust Resource Allocation Model for Optimizing 105--
146

Data Skew andConsumption rate in cloud based IOT

Environment

6.1 Introduction

6.1.1 Internet of Things

6.2 Cloud -IoT Enabling Technologies

6.3 IoT Resource management

6.4 Fog IoT Resource Planning Categories

6.4.1 IoT Resource Allocation with SLA Awareness

6.4.2 Allocating IoT Resources with Context

6.4.3 Allocating IoT Resources with QoS Awareness
6.4.4 IoT Utilization Of resources with Energy

Awareness

6.5 Cost-Aware IoT Resource Allocation

6.6 IoT resource planning strategies to consider Resource

Allocation Criteria

6.7 Improvement have been done in these parameters

6.8 Problems and Obstacles
6.9 To assess the effectiveness of the data skew load

balancing optimization system under various conditions,

such as optimization rate.

105

105

113

115

117

117

119

120

120

123

124

125

126

127

XI

6.10 To evaluate the effectiveness of the information 128

skew load balance optimization systems under various

conditions, such as information skew rate.

6.11 To calculate the data skew load balancing 129
optimization system efficiency under various conditions

including rate of consumption.

6.12 Flow Diagram 133

6.13 Time complexity for proposed and Existing 135
Methods

6.14 Time complexity for Existing System 137
6.15 Results 137

6.16 Summary 144

CHAPTER 7 Conclusion and Future Work 145-146

7.1 Conclusion
7.2 Future Work

142
146

Reference 147-158

XII

LISTOF TABLES

TABLENO DESCRIPTION PAGENO

1.1 Execution time of tasks on machines 15

1.2 Execution time of tasks on machines after stage1 16

1.3 Execution time of tasks on machines after stage 16

2.1 Summary of Cloud Computing Resource Scheduling
Approaches

58-61

4.1 Simulation Environment 87

4.2 AlgorithmParameters 87

5.1 Under sampling 103

5.2 Overs Sampling 103

5.3 Classification 104

6.1 List the main method applied every module and Important

Technology Components for IoT
109

6.2 IoT device traffic list 119

6.3 IoT Resource Allocation Techniques That Take Context 120

6.4 Demonstrates WiFi utilization techniques using Quality

understanding
121

6.5 Energy-Conscious Allocating IoT Resources Methods 122

6.6 IoT Allocation Of resources Methods That Consider Cost 124

6.7 Time complexity for Proposed and Existing models in

Performance in second

138

6.8 Time complexity for Proposed and Existing models in

Resource Allocation in seconds

138

XIII

6.9 Performance Comparison for Proposed Hybrid Optimization

model and existing Particleswam Optimization model

139

XIV

LISTOF FIGURES

FIGURE
NO

DESCRIPTION PAGE NO

1.1 Hybrid cloud computing 1

1.2 Cloud Computing's Fundamental Architecture 5

1.3 IOT with Cloud computing 9

1.4 Integration of cloud computing and IOT 11

1.5 Direct communications in spread-out scheduling 12

1.6 Schedule distribution using a task pool 13

1.7 Resource discovery 13

1.8 Internal working of partition and cluster phase 15

1.9 Flow Chart of Job Scheduling 17

1.10 Research methodology flow chart 19

3.1 Cloud edge IoT Architecture Diagram 66

3.2 Internal working of partition and cluster phase 67

3.3 Make span Time analysis 72

3.4 Showing the overall hybrid cloud set up for consumption rate
analysis

72

4.1 Word Count Example 76

4.2 Internal Components of theoneM2M(Machine-to-Machine)
Internet of Things

79

4.3 ProgramModules for the Process of Protocol Conversion 81

4.4 The AI Cloud Messenger Position for Cloud 1 with 50
Nodes

89

4.5 The AI Cloud Messenger Position for Cloud 2 with 100
Nodes

90

4.6 The Different Path of Messages over the Node for Cloud 1 90

XV

4.7 The Different Path of Messages over the Node for Cloud 1 91

4.8 The Different Path of Messages over the Node for Cloud 2 91

4.9 TheDifferent Path ofMessages over the Node for Cloud 2 92

5.1 Developed strategy for the issue of minority class in capital

allocation

98

5.2 Displaying the visualization of the churn forecast 102

5.3 Displaying the churn forecast 103

6.1 Basic elements of IoT environment 108

6.2 IoT Layers Architecture 111

6.3 IoT’s Basic Structure 113

6.4 Classification of IoT Resource Allocation Techniques 118

6.5 Modification Level of Variables for Resource Management 126

6.6 Displaying the whole hybrid cloud configuration for

examination of the optimization rate, skew rate, and

consumption rate.

133

6.7 Optimal hybrid cloud configuration for analysis of

optimization rates is depicted

133

6.8 Hybrid Cloud Tilt Rate Analysis Configuration 134

6.9 Hybrid Cloud Consumption Rate Configuration 134

6.10 Time complexity for Proposed and Existing models in Resource
Allocation in seconds

138

6.11 Time complexity for Proposed and Existing models in
Resource Allocation in seconds

139

6.12 Performance Comparison of Proposed Hybrid Optimization model
and existing Particle swam Optimization model

140

6.13 model Time complexity 142

6.14 Model Time complexity Calculated values 142

XVI

LISTOFABBREVIATIONS

Abbreviations Description

IoT Internet of Things

SaaS Software as a service

AWS AmazonWeb Services

PaaS PaaS

IaaS Infrastructure as a Service

CPU Central processing unit

EC2 Elastic Compute Cloud

SQL Structured Query Language

API Application Programming Interface

IBM International Business Machines

MEC Multi-access edge computing

CAME Computer Aided Market Engineering

QoS Quality of Service

ORP-HS Optimal Resource Provisioning- Harmony search

EC Embedded Controller

VM virtual machine

CoT Cloud of Things

PTZ Pan-tilt-zoom

DPTO Delay-dependent priority-aware task offloading

EN Enterprise Network

OSPF Open Shortest Path First

NCN Naval Communications Network

MECOM Multi-Access Edge Content and Measurement Computing

ILP Integer Linear Programming

SFC System File Checker

NFV Network functions virtualization

DG Distributed Generation

PV-APF Adaptive Project Framework-Photovoltaic System

CNN Convolutional Neural Network

EEDOA Electrical Engineering Digital Object Architecture

XVII

EEG electroencephalogram

FES Functional electrical stimulation

BCI Brain-computer interface

DVS Descriptive Video Service

SCD Sequential Compression Device

CTOSO collaborative task offloading scheme withserviceorchestration

DRL Daytime running lamps

LBMM Load Balance Min-Min

OLB opportunistic load balancing

VMM virtual machine migration

GIS Geographic Information System

MMHHO Mantaray adapted multi-objective Harrishawk optimization

MRFO Manta Ray Forge Optimization

HHO Harris Hawk Optimizing

PHEV Plug-in hybrid electric vehicles

MPSO Memetic Particle Swarm Optimization

ACO Ant colonies optimization

RAM Random Access Memory

FCFS First Come First Serve

LEEN Learning Energy Efficiency Network

EMR ElasticMapReduce

MQL Monitoring Query Language

ADN Assessment Designated Node

CMDH Communications and Delivery Handling

HTTP Hypertext Transmission Protocol

XML Extended Markup Language

AICLOUD Artificial intelligence CLOUD

AUROC Area under the receiver operating characteristics

MI Mobile internet

AP Advanced placement

RP Recursive approach

SERA selectively recursive approach
REA Recursive Ensemble Approach

18

SMOTE Synthetic Minority Over-sampling Technique

AI Artificial intelligence

RFID Radio-frequency identification

UMTS Universal Mobile Telecommunications Service

GSM Global System for Mobile communication

SLA service-level agreement

QoS Quality of Service

EPCs Electronic Prescribing of Controlled Substances

LTE Long Term Evolution

NFC Near Field Communication

WSN wireless sensor network

RDF Resource Description Framework

OWL Web Ontology Language

SQL Structured Query Language

DDS Digital Data Services

D2D Diploma to Degree

M2M Machine to Machine communications

MTDs Medium-Term Debt Management Strategy

ECIoT Edge-Centric IoT

HTDs Hi-Tech DETECTION SYSTEMS

MILP Mixed-integer linear programming

BGA Ball Grid Array
RPL Recognition of prior learning

1

CHAPTER 1

INTRODUCTION

This section discusses the concept of an IoT cloud, which encompasses a large network

providing services to IoT devices and applications. IoT devices have the capacity to collect,

process, analyze, and store data on a significant scale. The integration of IoT and cloud

computing technologies streamlines processes related to data analytic s and cost management.

Notably, consumer analysis stands out as a key factor driving the adoption of IoT, especially

due to its advantageous implications for contemporary businesses.

1.1 Introduction

Cloud computing provides access to data and information from a centralized pool of computer

resources that can be purchased and utilized as needed. Three fundamental types are

commonly employed to describe cloud systems: public, private, or hybrid, as depicted in

Figure 1.3 [7] represents. Public clouds offer services over the internet, allowing users to

access resources provided by third-party providers. Private clouds are dedicated to a single

organization, providing enhanced control and security over data. Hybrid clouds combine

elements of both public and private clouds, offering flexibility and scalability by enabling data

and applications to be shared between them. Organizations must understand these distinctions

when selecting the most suitable cloud infrastructure to meet their specific needs and objectives.

Figure 1.1: Hybrid cloud computing

2

The term Internet of Things also refers to how devices communicate with information that is

not generally accessible, such as computers. You may add sensors to automobiles, kitchenware,

and other items via the Internet of Things. One transition enabler is IoT. As a result, facilities

and processes are automated, enhancing the effectiveness and intelligence of real-time

monitoring and control. Because all relevant information is immediately available (in real-time,

even with historical trend data), there are opportunities for creative data aggregation and

analysis, which may lead to better decision-making under rapidly changing conditions. IoT and

cloud computing work together to increase the effectiveness of routine tasks. The enormous

amounts of data the IoT generates may be channeled through cloud storage [8]. Because most

data centers operate on a pay-per-use model, you will only be charged for the cloud storage

you use. Through more prominent corporations, data centers may also be able to finance lower

total costs for IoT start-ups and companies on a smaller scale. Cloud computing, which

promotes better cooperation, is another advantage of IoT big data. Improved teamwork is

necessary for creative technologies. Developers can rapidly access data and communicate

when data storage and display are made easy.

Storing data in the cloud and assigning resources to various regions enables IoT organizations

to respond more efficiently. The cloud has evolved as the favoured platform for significant

data expansion in recent years. Many organizations may now easily access the massive

volumes of big data on the Internet. The concept of cloud computing involves using salable

services on-demand through the Internet. In cloud computing, many physical and virtual

servers are employed as needed. Cloud computing takes advantage of massive processing

power and storage capacity to address issues like evaluating investment options and risk in

financial portfolios, giving personalized medical information, powering computer games, and

many more. The cloud combines virtualization, SOA (service-oriented architecture), and web

services.

One of the fundamental principles that support the idea of cloud computing is the re-usability

of IT abilities. For decades, businesses have been devoting time and resources to building

infrastructure that may provide them with a competitive edge, and cloud computing has now

made that possible. With cloud computing, idle processing power may be efficiently used and

offered to people or companies in line with their needs. The transition of computers and IT

infrastructure into a service that could be made accessible to everyone is referred to as the

cornerstone of cloud computing. Three different models comprise cloud computing.

i. Software as a Service (SaaS)

ii. Platform as a Service(PaaS)

3

iii. Infrastructure as a Service (IaaS).

i) Software as a Service (SaaS)

It also goes by the titles service and application. Clouds execute specialized business

operations and company processes with access to specific cloud capabilities rather than just

providing cloud features. In a nutshell, they provide software and services that use cloud

platforms or infrastructure. Clouds frequently offer a particular class of popular application

characteristics. Even if it allows for better capabilities, cloud computing goes beyond only

systems that offer platforms, infrastructure, and software as a service. Therefore, IaaS, PaaS,

and SaaS may be viewed as specific use patterns for cloud systems connected to the current

models utilized by Grid and Web Services and other systems. Cloud-based solutions are

promising choices for the implementation and growth of these concepts.

ii) Platform as a Service (PaaS)

Through a platform, it offers computer resources that may be utilized to create and host

applications and services. When the server's host engine performs software and repeats those

operations in reply to user requests (for instance, access rate), PaaS usually uses specific APIs

to control those actions. Applications created for something like the particular supplier of

clouds can't be transferred to a different cloud server because every cloud provider reveals

their API following the relevant vital capabilities; attempts are made, however, to integrate

cloud features into generic models of programming (such as MS Azure).

Resource clouds provide consumers access to controlled, scaled resource-like services,

boosting virtualization capabilities. As a result, a service interface may make various resources

accessible. Data Storage Clouds deal with trustworthy data access and may have varying sizes

to balance resource consumption with accessibility demands or excellence standards. Examples

are Amazon S3, SQL Azure, and Compute cloud providers, which frequently offer the ability

to deliver computing resources, often visualized, to run cloud-related services and applications.

Compared to a plain computing service, infrastructure as a service provides additional

functionality.

Using cloud servers encourages energy savings due to the absence of energy, the ongoing

environmental changes worldwide, and the rising infrastructure expenses. Cloud computing

still needs hundreds or thousands of machines connected over the Internet, even though

software and infrastructure are beneficial and cost-effective. These servers must constantly be

in operation mode to satisfy users' requests. The predictor restarts any inactive servers as

necessary. These benefits will reduce the project's overall cost and result in energy savings.

The power needed to run these servers is considerable. It has been observed that idle servers

4

use more energy than active ones. The quantity of wasted power may be reduced using various

techniques, such as voltage adjustment, CPU speed change, display deactivation, sleep mode,

server shutdown, etc.

The fifth-generation cloud computing technology enables the use of IT resources through the

Internet. Resources include things like platforms, infrastructure, software, and hardware. Many

businesses provide cloud-based computing services, including Microsoft Azure and Amazon's

Amazon EC2 (Elastic Compute Cloud) offering in the form of Google App Engine. Google

also offers its Amazon Elastic Compute Cloud (EC2) cloud computing service.

iii). Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) is a cloud computing model that offers visualized computing

resources over the internet. With IaaS, businesses can rent visualized servers, storage,

networking, and other fundamental computing resources on a pay-as-you-go basis. This model

provides users with flexibility and scalability, allowing them to scale their infrastructure up or

down according to their changing needs without the need for physical hardware investments.

IaaS providers manage the underlying infrastructure, including data centers, servers, and

networking hardware, while users have control over operating systems, applications, and

development frameworks.

1.2 GeneralizedCloud computing Architectural Design

As depicted in the image above, the primary feature of cloud computing is the centralization of

data and applications on servers rather than individual users' computers. In this setup, the

actual programs or applications reside on servers connected to the user's PC, with data

transmitted between the server and the user's device. The back end infrastructure comprises

servers, which may be housed in facilities similar to the user's location or elsewhere. This

centralized architecture enables users to access computing resources and data remotely,

offering flexibility and scalability. Additionally, it reduces the burden on individual devices,

allowing for more efficient resource utilization and more accessible software and data

management. This shift towards centralized computing marks a significant paradigm shift in

how computing resources are accessed, utilized, and managed.

Cloud computing allows a programme to run anywhere in the cloud; ideally, the user is only

concerned with the applications available, not with the underlying technology or the specific

location of the computer hosting the programme. A user's PC and a server are connected over

the internet. The servers that house a particular application are selected according to the

application's programming, which ensures maximum performance by dividing the burden

5

across servers equally.

Figure1.2 Cloud Computing Fundamental Architecture [7]

1.2.1 Self-service offered on request

Customers can readily access computer hardware resources such as CPU time, network storage,

software usage, etc., automatically (i.e., self-serve) at any given time without engaging with

the individuals who provide such services directly.

1.2.2 Wide-scale network access

Multiple client applications, utilizing various heterogeneous systems such as mobile devices,

laptops, or personal digital assistants, can access these computer services across a network,

facilitating access for customers at their respective locations, including but not limited to the

Internet.

1.2.3 Pooling of resources

A cloud service provider's computing resources can be used using the hypervisor approach or

multi-tenancy, where different physical and visualized resources are regularly allocated and

redistributed following client needs. Adopting such a pool-based computer architecture is

motivated by economies of scale and specialization. A pool-based paradigm makes users who

usually have no influence over or understanding of the locations, generation, and originality of

these resources invisible consumers of physical computation resources (such as databases,

CPUs, etc.). For instance, customers cannot choose where their data will be kept in the cloud.

1.2.4 Dynamic Resource Management

Consumers are freed from the obligation of upfront commitments or contractual agreements

for computer resources, given their ability to scale usage as required. This flexibility enables

6

swift adjustments to meet fluctuating demands, eliminating the need for preemptive resource

allocation. With the assurance of resource availability, consumers can readily increase

consumption to accommodate peak demands. This dynamic scalability enhances operational

efficiency and optimizes resource utilization, aligning resource allocation precisely with usage

patterns. As a result, businesses can maintain agility and responsiveness in their operations,

efficiently managing resource utilization while adapting to evolving demands in real-time.

1.2.5 Measured Service

The cloud infrastructure utilizes effective methods to monitor the usage of resources for each

user individually through its metering capabilities, even when computing resources are shared

among multiple customers (i.e., multi-tenancy). Currently, three primary types of clouds are in

use, which vary depending on the services they offer.

1.3 Cloud Deployment Models

The following deployment types can be separated in the cloud, similar to PaaS/IaaS/SaaS:

a)Private Clouds

In most cases, the pertinent company either owns or rents them. As far as the user is concerned,

this is similar to Software as a Service (SaaS), even if services with cloud-enhanced

capabilities may occasionally be offered. This is because the client does not have direct access

to certain functionality. Businesses can use cloud services from third parties or offer clients

outside the corporation their services. Companies may outsource their services to these cloud

providers and save money and time on developing their infrastructure by allowing consumers

to use cloud features for their needs. For instance, Amazon, Google Apps, and Windows Azure.

b) Public Clouds

Public clouds give up control over how resources are allocated and how data and code are

maintained, even while they allow enterprises to outsource portions of their infrastructure to

cloud providers. The specific company does not desire this in some situations. Hybrid clouds

combine the use of both public and private cloud infrastructures to outsource work while

keeping some control over sensitive data and attempting to save expenses as much as feasible.

There aren't many hybrid clouds in use right now, despite early initiatives like the ones by IBM

and Juniper already presenting essential technologies for their deployment. Because of the

energy crisis and environmental changes, every electricity sector today is battling the

contentious issue of power use. Hundreds of servers are running at once in cloud computing,

but only a tiny portion of them are being used to handle clients' or users' requests, most of

which are idle. The Green Scheduling Algorithm reduces these idle servers' power usage. In

7

addition to shutting down the inactive servers, the present method balances the added stress on

Identifying which servers are inactive and manually shut them down might be pretty

challenging. The recommended solution for sustainable energy scheduling method savings in

cloud computing will be developed in C#. In this system, client-server communication is

predicted by a neural network. The predictor predicts future demand and shuts down idle

servers automatically.

Cloud computing is the idea of using scalable services in an online environment on demand

over the Internet. In cloud computing, many actual and virtual servers are employed as

required. Cloud computing takes advantage of massive processing power and storage capacity

to address issues like evaluating investment options and risk in financial portfolios, giving

personalized medical information, powering computer games, and many more. To provide the

services consumers need, cloud computing uses a sizable number of computers. The work

scheduling method [7] is employed for efficacy and a higher efficiency rate. While maintaining

service quality, it uses fewer resources and offers significantly superior resource utilization

rates.

One fundamental principle that supports the idea of cloud computing is the reuse of IT skills.

Businesses have spent years and significant resources building infrastructure, and now pay-

per-use cloud computing services are available. Unused processing power may be efficiently

utilized and offered to people or enterprises using cloud computing according to their needs.

The basis of cloud computing is the transformation of IT infrastructure and computing

resources into a utility that can be made available to everyone.

The processing units become less efficient if assets are already being wasted, underused, or left

idle in the cloud, making correct scheduling necessary. Therefore, using a task scheduling

algorithm leads to improved scheduling, decreased resource utilization, increased resource

usage and overall efficiency.

Routine duties are evolving due to the Internet of Things (IoT) proliferation. This technology

facilitates the integration of various physical products, including vehicles, homes, and

appliances, by incorporating hardware, software, sensors, and internet connectivity to process,

transmit, and gather data. The IoT encompasses any artificial or natural object capable of

transferring data over a network and can be identified by an IP address [1]. The expansive

network of interconnected IoT devices, facilitated by the Internet, enables seamless

communication through cost-effective sensors, heralding an era of unprecedented connectivity

where billions of smart devices interact with humans.

Services online are required. International sectors, including construction, energy, healthcare,

8

and precision manufacturing, have all been influenced by IoT [2]. It's excellent news for

computer scientists and system designers because internet service providers are constantly

increasing their network options. Studies focus on IoT applications and advances. IoT systems

and gadgets are already being created to accommodate future expansion [3] conveniently.

A) Cloud loT framework

An extensive, effective, and scalable system for handling and processing the massive volumes

of data produced by connected devices is created by integrating IoT devices, edge computing,

and cloud services into a cloud-based IoT (Internet of Things) architecture. The device, edge,

and cloud layers make up the architecture's three main levels, and each is essential to the

pipeline for processing and data flow.

i) Architecture Components: Device Layer: IoT devices, including sensors, actuators, and

other connected hardware, collect data from the physical environment. These devices transmit

data to the edge layer using various communication protocols like MQTT (Message Queuing

Telemetry Transport), CoAP (Constrained Application Protocol), and HTTP (Hypertext

Transfer Protocol).

ii) Edge Layer: The edge layer includes edge gateways and nodes that handle data

preprocessing, aggregation, filtering, and preliminary analytics. By processing data closer to its

source, this layer reduces latency and conserves bandwidth, ensuring faster response times and

efficient use of cloud resources. Edge computing enables real-time processing and decision-

making, which is crucial for time-sensitive applications. Cloud Layer: In the cloud layer,

preprocessed data is sent to centralized cloud servers for advanced processing, storage, and

analytics. The cloud platform leverages extensive computational resources to perform complex

data analysis, machine learning tasks, and generate actionable insights. The cloud also provides

scalable storage solutions to manage large volumes of data.

iii) Load Distribution Techniques:

The hybrid load balancing method used by the framework optimizes both resource utilization

and performance. By allocating work in accordance with preset guidelines and standards, static

load balancing guarantees a consistent and effective use of resources. By adjusting in real-time

to shifts in workload, resource availability, and network circumstances, dynamic load

balancing maximizes responsiveness and performance.

In Below Figure 1.3 represents illustrates the integration of IoT with cloud computing

mechanisms. While increased machine connectivity alone may not directly benefit customers,

the success of IoT hinges on devices joining the network and exchanging data globally.

9

Remote users can access crucial information through the cloud computing network [4],

enabling flexibility in device usage, including digital phones across various platforms such as

large screens and PCs. These advantages extend beyond business-owned equipment, benefiting

a broader spectrum of users. However, the proliferation of IoT devices also substantially

increases data generation, placing a significant strain on the internet infrastructure. The sheer

volume of data generated necessitates robust network capabilities to ensure efficient

transmission and processing, highlighting the importance of saleable and reliable internet

infrastructure to support the evolving IoT ecosystem.

Figure 1.3: IOT with Cloud computing

Businesses must provide solutions to ease the burden by exchanging enormous volumes of data

and fixing the issue. Cloud computing has entered the heart of IT and now provides scalability

in delivering business applications and as a service platform (SaaS). Through development,

both businesses move their software to the cloud. Most cloud service providers will need to

send your data over your standard internet connection or another direct channel.

Metamorphosis itself is a recent phenomenon that is increasingly needed in today's fast-paced

culture. The data can be evaluated and changed with the aid of technology in good time and a

sophisticated new format. This scalability is made possible by the cloud, which has proven to

be a dependable platform for data transfer over conventional Internet networks and a

specialized direct connection link. Although the traditional method is less than ideal, many

firms utilize a direct connection to the cloud transformation data at the same time [5] because

of the excellent quality of the data and the security it provides throughout the transformation

phase.

Almost entirely, the cloud has developed to play a sizable role in the network's environment.

Simply put, the cloud may be seen as an IoT enabler. The cloud is undoubtedly, the best

solution for any needs concerning corporate data-based. As a result of the technique's

10

development, programmers are better able to quickly design useful apps and establish more

efficient information utilizing devices and the Internet.

1.3.1Cloud Technology Support IoT

The overarching objective is to increase productivity while putting the security of the data

being processed, transferred, or stored through cloud computing and IoT at risk. All services

work well together because of the connection's opposing nature. The Internet of Things acts as

this network; the cloud serves as their primary computer access point. We will surely undergo

many changes as time goes on; some will be gradual, while others will be more noticeable [6].

As firms like Amazon, AWS, Google, and Microsoft establish themselves as the undisputed

leaders in creating cloud-based IoT services, the rivalry may get much stiffer. As clouds

increase in size and popularity and offer pay-per-use pricing to companies, many new cloud

services are emerging. Fundamentally, it implies that businesses must pay to utilize computers.

In Below Figure. 1.2 represents, cloud computing and IoT have been integrated,

1.4 Cloud computing integrated with Internet of Things

The Internet of Things (IoT) paradigm connects diverse gadgets and programmes. One of the

critical goals of the Internet of Things is to cater to the specific requirements of end-users and

convert the vast and varied data generated by these countless IoT devices into valuable insights

[1]. Both industry and academia are intrigued by the potential of the IoT to enhance people's

daily lives [2]. With the rapid advancement of IoT and mobile communication technologies,

there has been a significant increase in the number of IoT devices and apps. This has made a

wide range of user-friendly services available to end users [3,4].

Nevertheless, IoT devices' computational and energy demands have significantly increased

[5,6]. Due to IoT devices' limited computing and energy capabilities, these applications cannot

be efficiently serviced [7]. By leveraging cloud computing, IoT devices can offload computing

tasks to powerful cloud servers, effectively addressing the limitations of computing resources

[8, 9]. On the other hand, transferring tasks over long distances will result in considerable

delays in transmission.

11

Figure1.4: Integration of cloud computing and IoT

Numerous challenges, such as diverse client needs, various device types, essential

communication demands, limited network bandwidth, restricted computing power, operational

expenses, and more, impact the effectiveness of the IoT network. An effective resolution to the

IoT resource allocation problem (IRAP) will significantly enhance system performance,

establishing it as a crucial subject. Efficient resource scheduling and allocation play a pivotal

role in effectively managing data centers. They help achieve optimal load balancing, maximize

resource utilization, and minimize carbon emissions [10]. Data centre computers often handle

applications, while intelligent sensor data is regularly sent to cloud data centers. Due to the

growing demands of IoT applications, there is a pressing need to address the issues of rising

energy consumption and performance deterioration in computing nodes caused by data

transmission and movement. Implementing IoT applications has become a critical concern.

With fog computing, the processing of IoT applications is shifted to the edge of the network

instead of relying on cloud platforms.

Regarding IoT systems, the data collected by sensors is typically transmitted and stored in the

cloud for analysis. However, this can strain resources and lead to latency problems. This cloud-

based IoT environment is not equipped to handle the demands of these latency-sensitive

conditions [12]. Fog computing is a cutting-edge approach to distributing processing and

storage resources to IoT devices with limited resources. In fog computing, multiple compact

devices with limited computing power, called edge devices, are deployed close to the IoT

sensor layer. After the data is processed and sent to the cloud layer for storage, this helps to

eliminate any delays and offers more excellent computing capabilities compared to regular IoT

sensors. In a fog computing system, devices or sensors can assign tasks to nearby fog nodes

with the necessary computational power or storage rather than sending them to the cloud

module located further away [13].

12

1.4.1 Cloud-Edge to IoT communication

In this scenario, each local scheduler of a cloud edge node can directly communicate with

another cloud edge scheduler node to allocate tasks to distributed IoT nodes. Each cloud-edge

scheduler node may maintain a list of remote edge node schedulers with which they can

interact, or a central directory may contain details about every scheduler. The communication

framework facilitates decentralized scheduling between the cloud edge and IoT devices. If a

job cannot be assigned to readily available and suitable local resources, the scheduler may

contact other remote schedulers to discover resources. Each scheduler is authorized to manage

jobs using one or more local job queues.

Figure1.5: Direct communications inspired-out scheduling

1.5 Resource Discovery

Tasks that cannot be immediately completed are transferred to an edge task pool. Local

planners have the autonomy to select appropriate tasks for scheduling on their hardware and

software without necessitating direct communication with the cloud edge. Policies must be

defined to ensure that all functions in the pool are executed simultaneously. Figure 1.6

represents depicted above, illustrates how a distributed scheduling system efficiently handles

diverse workloads.

13

Figure 1.6: Resource discovery
Finding a list of trustworthy resources for posting job requests is the objective of resource

discovery. A scheduler requires a method to handle the dynamic nature of the cloud by

utilizing dynamic state data about available resources while making decisions. Figure 1.6

represents the scheduled distribution using a task pool. This decision-making process is

analogous to a typical compiler on a single-CPU machine. The compiler must be mindful of

the quantity of registers and operational units, as well as their availability. It should also

consider the amount of RAM accessible, cache configuration, and communication latencies

that may arise while utilizing these services. With this knowledge, a compiler can organize

instructions more efficiently to minimize resource idle time. Similarly, a scheduler must

remain aware of the resources it can utilize, their activity levels, the time required to access

them, and the elapsed time since they were last used. It enables the scheduler to optimize

resource allocation and minimize latency in task distribution.

Figure1.7: Schedule distribution using a task pool

14

The scheduler maximizes work scheduling efficiency by effectively leveraging the available

resources. Resource discovery in a cloud environment typically utilizes the pull, push, or push-

pull models to find assets available for task reporting and completion.

1.5.1 Resource Selection

The scheduler optimizes job utilization by selecting resources from a predefined list that best

matches the constraints and requirements for CPU, RAM availability, and disk storage. This

resource selection process involves determining a list comprising all chosen resources capable

of fulfilling the essential requirements for a task or job list. The relationship between

accessible resources (R available) and selected resources (R selected) is defined as follows:

selected resources are a subset of accessible resources.

In the data preparation module, data is extracted from the dateset and processed using

appropriate software tools. Before transferring the dateset to the database procedure, the

software performs data cleansing to remove redundant and special characters as part of the pre-

processing step. Additionally, the software identifies and eliminates duplicate values during the

pre-processing stage. In our case study of a movie lens data collection, we have exemplified

this pre-processing step by identifying and removing duplicate values and unnecessary

information from our hive application table.

1.6 Data per-processing and Data Model Phase

Partitioning separates the data into files after per-processing and allocates the files to a future

job's work process using Map Reduce. Before distributing a task to the map reduces,

partitioning first checks the values of the data chunks. The portioning module provides a

function to Map Reduce to store data in HDFS. At this level, partitioning separates tables into

partitions so related data types can be grouped based on a column or partition key. A system

table may include one or more partition keys to identify a specific partition. We can simplify

the process of conducting queries on data slices using partitions.

The Figure1.8 represents shows how partitioning and clustering are allocated and how these

phases are carried out internally. Every reducer on the cluster is in operation. It could be overly

limiting for applications that individually process each intermediate cluster key-value pair in a

reduced step. Separating clusters can significantly minimize data skew. If cluster splitting is

not permitted, the entire cluster must be allocated a single reducer. When cluster splitting was

not allowed, the cluster as a whole had to take only one reduction.

15

Figure 1.8: Internal working of partition and cluster phase
Following the completion of the partitioning phase operation, the partition is divided into

buckets based on the database column hash function to provide additional context for specific

information and to be used for more efficient searches. This process is referred to as packet

1.7 Resource Scheduling

There are two aspects to task scheduling. The list of all the tasks' minimum completion time

frames for the available resource was initially established in the first phase. The expected

resource is given a minimal job in the second step, picked from the minimum task set created

in the first stage. The steps are continued until all jobs are assigned to the available resources.

Consider the following: m1 and m2 are two devices; t1, t2, and t3 are three tasks. The length of

time that each job took to complete on each machine is shown in Table1. 1. The mechanism of

job scheduling .

Table 1.1: Execution time of tasks on machines

t1 t2 t3

m1 140 20 60

m2 100 100 70

Stage 1: Since machine m1 needs less time than the other machine, task t1 can be assigned to

machine m2. Since they both take less time, tasks t2 and t3 can likewise be given to machine

m1. Task T2 is eventually allocated to machine M1 due to its quicker completion time than

16

other jobs. Once task T2 is assigned to Machine M1, its completion time is updated.

Table1.2: Execution time of tasks on machines after stage1

t1 t3

m1 160 80

m2 100 70

Stage 2: Tasks t1 and t3 are allocated to machines m2 and m2, respectively, as they can be

completed more quickly on those computers. Eventually, task t3 is assigned to machine M2

since it finishes quicker than task t1.

Table1.3: Execution time of tasks on machines after stage2

T1

M1 160

M2 170

In Stage 3, Task T1 is allocated to Machine M1 since it is the sole unfinished task. In the initial

stage of the example, jobs with the shortest turnaround times are chosen, leading to the

assignment of job T2 to Machine M2. The completion time of Task T2 in Stage 2 is employed

to update the readiness time of the machine. Consequently, Task T3 is assigned to Machine M2,

and the process continues. Following this, Task T1 is dispatched to Machine M1.

The load-balancing challenge can be conceptualized as akin to graph colouring. In this analogy,

an un directed network comprising N nodes represents the system's finite elements. These

nodes are assigned P colours, symbolizing processors, to minimize a cost function, where the

function's output is associated with the time needed to execute the program under a specific

colour configuration.

Researchers endeavour to devise objective functions that mitigate communication overhead

and load imbalances, encapsulated as a summation component. By formulating these objective

functions, the aim is to optimize the assignment of colors to nodes to minimize both

communication costs and imbalances in workload distribution across processors. This

17

approach facilitates the efficient execution of tasks across distributed systems.

1.8 Cost function calculation

We intend to distribute the elements throughout these device processors to reduce the load

disparity generated by one processor having more elements than another and the contact

between the components. In order to record a cost function optimized if the maximum

completion time of the code is lowered, it must be straightforward yet independent of the

specifics of the code. Following that, the components would be distributed in line with the cost

function, and that would be all.

Figure1.9: Flowchart of Scheduling

1.9 Research gaps

1. According to recent research, cloud IoT Edge computing is expanding, enabling clients

to migrate various applications to remote cloud data centers.

2. Relocating apps typically results in prolonged communication latency and high network

loads because cloud users are often dispersed from distant cloud data centers,

significantly impacting user experience.

18

3. Numerous load-balancing algorithms have focused solely on optimizing performance

rather than energy efficiency Many conflicting objectives, such as minimizing response

time, maximizing resource utilization, and reducing energy consumption, are often

involved in load balancing.

4. Developing multi-objective optimization algorithms that effectively balance several

goals may have research gaps. There might be gaps in research for developing methods

to dynamically adjust load balancing techniques in response to security events, ensuring

the system's defence against intrusions.

1.10 Problem identification

1. Problem Identification 1: To support the mobile IoT environment, resource

distribution and balancing are essential components of the cloud computing idea.

2. Problem Identification 2: To manage the ongoing data production and streaming, IoT

devices require a lot of bandwidth and should have a reliable supply.

3. Problem Identification 3: Automation in the cloud and intelligent technologies

significantly reduce stress about load balancing, resource balancing, traffic routing, and

duplicate avoidance. However, sophisticated data analytic technologies are required to

collect and evaluate the data.

4. Problem Identification 4: Unreliable connections pose problems for significant cloud

services; this has previously occurred with Amazon AWS and Microsoft Azure.

5. Problem Identification 5: Another challenge is the correlation between the edge, cloud,

and IoT computing paradigms. Linking to each paradigm can be challenging, and

shifting compute optimization has proven ineffective.

6. Problem Identification 6: Data aggregation and integration present additional

challenges in a hybrid cloud service model.

7. Problem Identification 7: Despite advancements, making real-time decisions remains

challenging due to expenses, form factor restrictions, latency, battery life, and

unstructured data concerns in IoT devices. IoT Edge applications must address latency,

bandwidth, and downtime issues.

1.11 Objectives

1. To design a hybrid approach for load balancing optimization in Cloud-IoT edge

applications by employing resource optimization and data skewing techniques.

2. To illustrate data aggregation and data integration techniques to overcome data skew

problems.

19

3. To design an adaptive data skew optimization model to minimize the resource

imbalance problem.

4. To assess the effectiveness of the load balancing optimization system for data skew

under various conditions, including optimization, data skew, and average consumption

rates.

1.12 Research methodology

The research methodology for achieving the objectives above involves a multi-faceted

approach. Initially, a comprehensive literature review will be conducted to understand existing

methods and techniques related to load balancing optimization, data skew mitigation, resource

optimization, and adaptive models in Cloud-IoT edge applications. Subsequently, a hybrid

approach will be formulated, integrating resource optimization and data skewing techniques.

This will involve the development of algorithms and models for load balancing optimization

and adaptive data skew optimization. To illustrate the effectiveness of the proposed approach,

data aggregation and integration techniques will be applied to address data skew problems. The

research will include simulations and experiments to evaluate the performance of the load-

balancing optimization system under various conditions, such as optimization scenarios, data

skew scenarios, and different average consumption rates. Additionally, case studies and real-

world application scenarios will be analyzed to validate the practical applicability of the

Figure1.10: Research Methodology Flowchart

20

proposed methodology.

1.13 Motivations

The motivation for this work stems from the growing complexities and challenges faced in

cloud computing and storage services, particularly concerning the provisioning of virtual

machines (VMs) for processing applications. While VMs have been the traditional approach,

their maintenance costs and the need for rigorous capacity planning pose significant challenges.

To address these issues, the current trend is shifting towards utilizing containers as the most

minor processing units in the cloud. By doing so, the aim is to streamline maintenance and

optimize resource utilization, ultimately enhancing efficiency and reducing operational over

head. In healthcare, the evaluation of vast amounts of data has become increasingly crucial.

Techniques like the Map Reduce Paradigm have shown effectiveness in large-scale data

mining, but data skewing remains a persistent challenge. This work introduces a partitioning

tuning skew handling method to mitigate data skew issues in Map Reduce. By employing a

two-stage algorithm and division optimization approach, this method effectively distributes

key pairs in digital partitioning, improving the performance of Map Reduce tasks. The

assessment, conducted with real-world and simulated medical data, demonstrates the

robustness and effectiveness of this approach, particularly in rule mining for healthcare

information associations.

Class imbalance is a prevalent issue in real-world applications of AI, particularly in scenarios

with high-dimensional and unbalanced datasets. Conventional element selection techniques

often fall short in such situations. This work addresses class imbalance by introducing cost-

effective learning approaches considering the costs of mis classifying different classes. By

implementing formal procedures tailored to address class imbalance issues, this research aims

to enhance the performance of AI applications across various domains.

The management of IoT services presents another significant challenge, particularly

concerning resource provisioning and capacity management. IoT networks rely on many

technologies, and effective resource management is essential for ensuring high-quality end-

user experiences while minimizing operational costs. This work delves into resource

provisioning strategies and identifies critical factors for optimizing resource utilization in

distributed systems. By focusing on reducing the rate of data skew approximation errors and

improving resource allocation efficiency, this research aims to address the complexities

inherent in cloud-based IoT ecosystems.

21

1.14 Research Assumptions

The thesis's research assumptions are rooted in several critical premises across various domains.

Firstly, it assumes that transitioning from traditional virtual machines (VMs) to

containerization represents a viable and beneficial shift in cloud computing infrastructure. This

assumption posits that containerization offers a more efficient and cost-effective approach to

resource provisioning and maintenance, improving overall operational efficiency in cloud

environments.

Secondly, the thesis assumes that data skewing is a prevalent challenge in large-scale data

mining, particularly within the healthcare industry. It presupposes that existing approaches to

handling data skew issues in Map Reduce, such as partitioning tuning skew handling methods,

can effectively mitigate these challenges and enhance the performance of data mining tasks.

Furthermore, the research assumes that class imbalance is a significant issue in real-world

artificial intelligence applications, particularly in scenarios with high-dimensional and

unbalanced datasets. It posits that conventional element selection techniques may not

adequately address class imbalance issues and that cost-effective learning approaches tailored

to varying mis classification costs can improve AI application performance.

Lastly, the thesis assumes that effective resource provisioning strategies and capacity

management are essential for optimizing resource utilization in distributed systems,

particularly in Internet of Things (IoT) services. It presupposes that identifying key factors and

challenges associated with IoT service management can pave the way for more efficient

decision-making and resource allocation in cloud-based IoT environments. These assumptions

collectively form the basis for the research's exploration and contributions across multiple

domains.

1.15 Major Contribution of Thesis

The thesis makes several significant contributions to cloud computing, data mining, artificial

intelligence, and the Internet of Things (IoT). Firstly, it proposes a paradigm shift in cloud

computing from traditional virtual machines (VMs) to containerization, offering a more

efficient and cost-effective approach to resource provisioning and maintenance. By advocating

for containers as the most minor processing units in the cloud, the thesis addresses the high

maintenance costs associated with VMs and streamlines capacity planning, thereby improving

overall operational efficiency.

22

Secondly, the thesis introduces novel techniques for handling data skewing in large-scale data

mining, particularly within the healthcare industry. By developing partitioning tuning skew

handling methods, the research effectively mitigates data skew issues in Map Reduce,

significantly enhancing the performance of data mining tasks. Additionally, the thesis addresses

class imbalance challenges in AI applications by proposing cost-effective learning approaches

tailored to varying classification costs. Lastly, in the realm of IoT, the research focuses on

resource provisioning strategies and capacity management, aiming to optimize resource

utilization in distributed systems. By identifying key factors and challenges associated with IoT

service management, the thesis lays the groundwork for more efficient decision-making and

resource allocation in cloud-based IoT environments. Overall, these contributions offer

valuable insights and solutions to pressing challenges across multiple domains, paving the way

for advancements in cloud computing, data mining, AI, and IoT technologies.

1.16 Organization of the Thesis

The thesis titled "A Hybrid Load Balance Optimization Model for Cloud IoT Edge"

addresses the challenges encountered in optimizing resource allocation and load balancing in

cloud-based Internet of Things (IoT) edge environments. By combining various optimization

techniques, including cloud computing paradigms and IoT service management strategies, the

research aims to enhance the efficiency and effectiveness of resource provisioning in

distributed systems.

The organization of the thesis is structured as follows

Chapter 1 serves as an introduction, providing an overview of Cloud IoT Edge environments,

associated challenges, and existing approaches to resource allocation and load balancing.

Additionally, it outlines the motivation behind the research, its objectives, and the

contributions made to the field.

Chapter 2 conducts a comprehensive literature review, examining existing research on load

balancing and resource optimization in cloud-based IoT edge environments. This chapter

identifies gaps in the current literature and sets the stage for the proposed hybrid load balance

optimization model.

Chapter 3 analyzes the specific challenges and intricacies of load balancing in Cloud IoT Edge

environments. Drawing on insights from the literature review, this chapter proposes a hybrid

optimization model that integrates cloud computing and IoT service management strategies to

address these challenges effectively.

23

Chapter 4 presents the implementation of the hybrid load balance optimization model.

Through simulation and experimentation, the effectiveness and efficiency of the proposed

model are evaluated, and the results are analyzed in detail.

Chapter 5 introduces innovative approaches to reduce energy consumption and optimize

resource utilization in Cloud IoT Edge environments.

Chapter 6 Focuses on data transmission in decentralized IoT environments, and explores the

hybrid optimization model proposed earlier.

Chapter 7 concludes the thesis, summarizing the significant contributions made in addressing

the challenges of resource allocation and load balancing in Cloud IoT Edge environments. It

also discusses the implications of the research findings and suggests potential directions for

future research in this field.

1.17 Summary

In this chapter, the Internet of Things (IoT) refers to any artificial or natural thing that can send

data over a network and is identifiable by an IP address. The Items Cloud Network Internet

allows uninvited interaction with low-cost IoT sensors, implying far wider inter-conceitedness

eventually, billions of intelligent devices will communicate with people. Cloud computing has

made its way into the core of IT, providing scalability in the delivery of business applications

as well as a service platform (SaaS). Both businesses are converting to cloud-based apps

through development.

24

CHAPTER 2

REVIEWOF LITERATURE

2.1 Introduction

This section provides an overview of the existing resource scheduling models, its associated

cloud frameworks and the performance parameters improved in it. In general, MCC is intended

to deliver cloud services through resource scheduling to the mobile devices for running

complex applications with unlimited computing capabilities. The mobile applications may

need different resources according to the nature of task it runs. These significant needs of

diverse applications differ, making the challenge of improving the execution performance to be

non-deterministic. The major research challenges that arise while resource scheduling tasks

include how to identify the parameters which have greater impact on the performance of the

application, how to obtain optimal solution in a dynamically changing environment and how to

choose resources for improving the application execution and yield a profit to the app vendor.

Resource scheduling is a complex task that is performed in a step-by-step process. Major steps

taken during the resource scheduling process are partitioning an application, preparation for

resource scheduling, and decision to offload or not. Deciding what to be offloaded is typically

done during application partitioning. The different granularities of the application can be

considered for resource scheduling like object level, method level, class level etc.

Applications are comprised of both compute-intensive tasks and GUI-related tasks. The task

which is responsible for the GUI cannot be offloaded. So, the compute-intensive part is

partitioned either statically or dynamically. Annotation used by application developers is a

popular style of static partitioning where the developer writes local or remote with a code for

partitioning purposes.

Dynamic partitioning incurs an extra cost as, during the execution of an application, it is taking

extra effort to identify the code for local or remote execution. Once the partitions are ready, the

next step is establishing a connection with a cloud server, defining the proxy process on both

the smart mobile device and a remote cloud server. The device should be robust enough to

handle failure if a connection breaks with the cloud server. It must act intelligently by running

a computation on the local device itself and provide results to the user. Since program states

are transferred, re-executing a portion of the computation will not affect the correctness of the

program. The next major step is whether to offload or not, i.e., resource scheduling decision.

Various profilers like network, device and program profiler collect information related to

25

network, application, battery level, and CPU cycle, which help the solver decide for the

resource scheduling.

Mobile cloud computing (MCC) is the conceptual structure that mixes three technologies,

including mobile net, mobile computing, and cloud computing, to allow cell users to offload

records processing and store onto clouds via wireless networks and cell devices. The finest

motivation of making use of MCC is gaining benefits of cloud computing technology by way

of leveraging cell strategies. The dynamic networking surroundings results in greater complex

provider deployments and implementations, evaluating with primary cloud computing. In

subsequent phase we can see distinct approaches for handling computation extensive

applications that are nevertheless challenging for executing at mobile side. According to the

survey cloud computing includes various technology “distributed computing”, “parallel

computing” and “grid computing”. It emerged in autumn 2006 by means of Google engineer

Christopher accountable for “Google one hundred and one” mission after that IBM has a joint

mission with goggle on “cloud” and afterwards many groups released various plans on “cloud

computing” emerged as the synonym for the subsequent era net revolution. Inside the recent

years the important it giants for extraordinary cloud carrier vendors are Amazon cloud for

storing purpose, google cloud for development, fashion micro cloud for safety and security.

The various 10 listed principal techniques of data generation the “cloud computing” continue

to be the first-class. In keeping with a latest observe by ABI research, a New York-based firm,

greater than 240 million corporations will use cloud services thru cell devices by using 2015.

Cloud computing era affords (EAAS) the entirety as a service; garage, sources, computing

sources, development surroundings, testing, security and many others. Many formal definitions

were proposed in each academia and industry, the only provided by way of U.S. NIST

(National Institute of Standards and Technology). with the explosive boom in cellular

applications, platforms and end user needs, disadvantages at the cell device end (e.g.,

computation and garage capability, energy, shared Wi-Fi medium) considerably hinder further

enhancements in application quality of service (QOS)- typical measures of QOS encompass

consumer experienced put off, provider reliability/availability and information privateers.

Mobile cloud computing (MCC) goals to triumph over those boundaries by means of

integrating cloud computing into the mobile environment to enable cell customers and mobile

software vendors to elastically make use of resources in an on-demand fashion. In cellular

cloud computing, assets are commonly assigned to a group of computers, which give these

sources to clever cell gadgets. Cellular cloud computing concept percentage two most

important viewpoints, considered one of them is processing and storage is inside the cell tool

different is the whole thing is done at the cloud out of doors the cellular devices. At the same

26

time as both of them have their advantages and downsides however cloud computing offer

platform-unfastened packages.

2.2 Various Mobile Cloud Computing Algorithms

Since the mobile devices have some constraints, there arises a need get sources from outside

assets. One of the methods to overcome the trouble is getting sources from a cloud, but the

right of entry to such systems isn't always assured or/and is just too high priced. In [36]

provides the tips for a framework that mimics a traditional cloud company the use of cell

devices inside the region of users. The framework detects nearby nodes which might be in a

static mode, which means to be able to continue the same location or follow the same

movement sample. If nodes in that state are determined, then the target company for the

application is modified, reflecting a virtual issuer created on the-fly among users. In situations

like downloading an outline report at a some places, collocation increases the probabilities of

humans willing to carry out commonplace tasks. To store the resources like electricity and

processing electricity, the collocated cell gadgets can collaboratively act as a nearby cloud and

break up the project into smaller sub tasks to be finished on one of kind devices [37]. The

effects can then be aggregated and shared. The proposed method allows heading off a

connection to infrastructure-based cloud companies whilst preserving the principle blessings of

resource scheduling.

In [38], it is referenced that the use of all forms of nearby resources (such as smartphones,

tablets, and computers) can collaborate to form a local cloud to achieve a common goal. This

approach aims to overcome resource sparseness, power consumption, and low connectivity

issues faced in traditional mobile cloud computing. The workload sharing is dynamic and

proactive, relying on a cost model to benefit all participants. The architecture includes a

resource handler, a job handler, and a value handler. The resource handler discovers collocated

resources, the value handler calculates the optimal distribution of jobs to maximize benefits,

and the job handler distributes the subtasks, runs the jobs, and collects the results from the

sender.

In [39], the SPACCE concept proposes leveraging the computational capacity of PCs to enable

distributed collaboration. SPACCE, a complex ad hoc cloud computing environment, can

dynamically migrate server functionalities among a set of private, non-dedicated computers

based on current needs. This migration optimizes redundant computational resources,

enhancing response times for shared software among users. SPACCE facilitates collaborative

parameters by offloading server roles to PCs lacking dedicated applications or sufficient

computational power on demand. Collaboration among mobile devices within a networked

27

environment is effective for common tasks, but sometimes requires migration of executable

blocks to resource-rich platforms.

In [40], the stack-on-demand asynchronous exception (SOADA) execution mechanism is

introduced for scheduling resources in a nearby cloud. This mechanism maintains a stack to

store execution states, enabling only the current state at the top of the stack to be migrated.

This approach ensures that only necessary data segments are transferred to the destination site,

minimizing data transfer overhead even for large images. Asynchronous exception handling is

utilized for capturing states in mobile devices, employing a dual-method hierarchy to reduce

overhead. However, scheduling resources to the cloud introduces latency as a critical

parameter.

In [41], the proposed cloud architecture advocates a two-tier approach to reduce latencies.

Instead of relying on a distant "cloud," the approach suggests addressing resource limitations in

mobile devices through nearby cloudlets. These cloudlets are decentralized and widely

distributed components of internet infrastructure, offering compute cycles and storage

resources that can be utilized by nearby mobile devices. Access to cloudlets can be facilitated

through WiFi, which not only conserves energy but also provides higher bandwidth compared

to other internet services.

In [42], various cloud computing service models are detailed, with a focus on TAAS (Testing

as a Service). The architecture includes several service components and highlights key features

of the TAAS structure. The discussion extends to mobile cloud computing architecture,

applications, and pertinent issues such as cloud environment security, data privacy, and

performance. Jerry GAO illuminates the definition, scope, importance, and mobile testing

processes on the cloud, comparing them with traditional mobile testing approaches.

Technical benefits discussed include reduced test environment costs through multiple virtual

machines (VMs) hosted on a single server, isolated VM environments to prevent crashes from

affecting others, and freely movable or copied VM image files.

.In [43], the discussion revolves around the impact of cloud-based software testing,

highlighting factors such as domain knowledge requirements, flexibility, cost-effectiveness,

security, and economies of scale. Cloud computing is depicted as a burgeoning paradigm that

encourages software testers to refine their skills in adapting to its dynamic environment.

In [44], a pioneering approach is introduced to enhance the reliability and security of IoT

systems. The hybrid system integrates blockchain and edge computing technologies,

incorporating a Proof-of-Contribution mechanism. This innovative approach aims to bolster

IoT network security by incentivizing active participation from nodes through rewards for

28

tasks like transaction processing and resource provision. The study underscores the necessity

for innovative solutions to mitigate trust and security challenges in IoT environments,

advocating the integration of advanced technologies to ensure a resilient and trustworthy IoT

landscape.

In [45], the focus is on cloud environments for software testing, where different clouds offer

varied testing methodologies. Service managers play a crucial role in coordinating between

core activities across various layers of a standard cloud environment and selecting appropriate

clouds based on client product testing requirements. The importance of cloud-based testing for

mobile applications is emphasized, along with discussions on various types of Cloud-Based

Testing (CBT).

In [46], cloud testing is explored as a shared testing environment that eliminates the need for

users to set up and maintain multiple testing platforms. It ensures portability and compatibility

of websites and mobile applications across different environments, addressing issues such as

functionality, interoperability, and performance. Users record test scripts locally and submit

them to the cloud for automated testing using the latest tools available. While cloud testing

offers a wide range of static and dynamic testing services, applications hosted on remote

clouds may exhibit lower controllability, uncertainties, and observability compared to

traditional in-house hosted applications. The transformative impact of automation in the testing

domain is also highlighted.

.In [47], the implementation and architecture of the Cloud-Based Automated Software Testing

Environment (CASTE) are detailed. This system imposes specific conditions: the device under

test must be accessible online, and the testing infrastructure is hosted within the cloud. The

CASTE operates continuously, providing an automated testing environment accessible at all

times. Various resource scheduling algorithms are employed to optimize testing efficiency and

resource utilization.

In [48], the study provides precise definitions of critical components and introduces efficient

algorithms and methodologies. Their simulations demonstrate that under heavy system loads,

the HACAS (Hybrid Adaptive Cuckoo Search) algorithm effectively selects applications with

high energy efficiency and minimal power consumption. Compared to the First-Come-First-

Serve (FCFS) algorithm, the HACAS algorithm shows a 30% increase in profitability under

simulated conditions. Moreover, during light system loads, the HACAS algorithm’s adaptive

service selection scheme successfully balances device loads, achieving a 60% reduction in load

variance compared to random service selection schemes.

29

In [49], the study addresses the MCC (Mobile Cloud Computing) challenge scheduling

problem, focusing on minimizing power consumption under stringent time constraints for task

graphs in MCC environments. They propose an initial task scheduling strategy that minimizes

delays and subsequently reduces power consumption by migrating tasks between local cores

and the cloud. Additionally, a linear-time rescheduling algorithm is introduced to efficiently

manage task migrations, effectively reducing overall computational complexity.

In [50], the discussed scheduling algorithm operates on QoS-driven attributes within cloud

computing. Tasks are prioritized based on their attributes, aiming to minimize completion

times by allocating each task to services with the shortest completion times. While

demonstrating satisfactory performance in experiments, the algorithm's focus on QoS-driven

attributes inherently achieves load balancing without explicitly addressing power consumption

considerations.

In [51], attention shifts to addressing challenges related to mobile devices such as battery

power, mobility, and load imbalance through a distributed parallel scheduling technique for

mobile cloud computing. A master device oversees parameters like battery status and network

conditions, distributing tasks among slave devices based on their capabilities. This approach

enhances mobile device performance, optimizes network quality, and achieves load balancing,

thereby reducing battery consumption without addressing system-wide power consumption.

In [52], Li et al. propose a heuristic load balancing algorithm leveraging ant colony

optimization principles in cloud environments. This algorithm considers CPU load, network

load, available memory, and other performance metrics to balance resource utilization. The

pheromone update mechanism effectively distributes workloads across cloud resources,

extending system lifespan and improving overall performance. However, it does not explicitly

handle fault tolerance issues within cloud environments.

In [53], a load balancing algorithm for grid computing employing ant colony optimization is

introduced. This algorithm calculates pheromone levels based on various resource parameters

such as MIPS, communication bandwidth, number of processors, and memory capacity. By

assigning tasks to resources with optimal capabilities, the algorithm aims to enhance

throughput and overall grid performance. However, it does not incorporate specific Quality of

Service (QoS) requirements into its optimization process.

In [54], a service for scheduling resource-intensive mobile applications from resource-limited

mobile handheld systems (MHS) to nearby surrogates with ample resources is defined. This

service focuses on offloading Java-based applications effectively. Experimental and simulation

results validate the service's efficiency in resource scheduling, demonstrating its effectiveness

in practical deployment scenarios.

30

In [55], the Clone Cloud technique is defined as a method for dynamically scheduling

execution blocks from mobile devices to the cloud to enhance mobile device performance. At

the initiation of a service, clones are created on the cloud side to mirror the smartphone's image.

Compared to smartphones, clones are resource-rich and not constrained by battery limitations.

The primary advantage of Clone Cloud implementation is noted for its performance

enhancement. Chun illustrates applications like virus scanning, image search, and behavior

profiling, which are computationally intensive and benefit from this approach. However,

software control is limited to either access or exit levels, and local processes cannot be

migrated.

In [56], a cloud-related technique is proposed that dynamically performs resource scheduling

decisions based on available resources on mobile devices. This method leverages the elasticity

of applications, allowing components to be offloaded to or retrieved from the cloud as needed.

In [57], an approach evaluates time and energy considerations for both local and resource

scheduling computations. Tasks are offloaded if resource scheduling proves less time and

energy consuming than local computing. Following a resource scheduling decision, a

clustering algorithm is invoked to optimize decisions for tasks interacting with each other,

aiming to reduce communication power consumption. However, this approach overlooks

memory requirements, computation complexity, and availability.

In [58], considerations include power consumption, memory usage, and execution time within

a multi-criteria application function. However, the introduction of a multi-criteria utility

function to simplify optimization raises concerns about parameter weighting and engineering

complexity.

In [59], a novel approach involves creating clones within the cloud or utilizing a directory

service (Clone2Clone) to establish clones on behalf of mobile devices. Each mobile device has

a dedicated VM in the cloud, enabling secure peer-to-peer networks for content sharing,

searching, and distributed code execution. This method eliminates reliance on unpredictable

and energy-inefficient wireless networks by leveraging stable, high-bandwidth connections

within the cloud. Additionally, computationally intensive tasks can be offloaded to the cloud,

enhancing performance particularly in environments with low bandwidth and high latency. The

approach includes establishing a secure tunnel between the mobile device and its cloud clone

for all internet traffic, presenting the cloud clone as a local resource to the mobile device. This

setup improves web navigation, facilitates page compression and caching, and includes

functionalities like blocking unwanted advertisements and scanning for viruses prior to

installation. However, a constant connection to the cloud clone is required, which may not be

energy-efficient for all scenarios.

31

In [60], cloud computing represents a paradigm shift in delivering computing resources via the

internet, catering to various sectors like finance, healthcare, and government. Despite its

benefits, ensuring robust security remains crucial. Key security issues in cloud computing

include data breaches, identity management, compliance, and securing virtualized

environments. Providers must implement robust security measures to maintain trust and

competitiveness.

In [61], advancements in high-speed internet, Web 2.0 applications, and virtualization have

propelled cloud computing to the forefront of technology. Users access web-based applications

through browsers, benefiting from dynamically scalable resources delivered as services over

networks. Data centers form the backbone of cloud computing, hosting vast computing and

storage needs. Latency optimization is critical as data-intensive applications generate

substantial data volumes, necessitating efficient data movement within cloud networks.

In [62], cloud computing offers flexible IT resources and services over the internet, demanding

novel software engineering approaches to deliver agile, scalable, and secure solutions. Agile

Service Networks emerge as a paradigm for cloud software engineering, enabling dynamic

service interactions among global applications. These networks enhance technical aspects such

as Quality of Service (QoS) and service continuity, while also maximizing business value and

utility.

In [63], Jiang et al. discuss their experience deploying scientific workflows on the ExoGENI

national test bed. This deployment dynamically allocates computational resources using high-

speed circuits from backbone providers. Such dynamically allocated bandwidth-provisioned

circuits enhance scientific applications' ability to access large datasets and perform

computations across remote sites efficiently.

In [64], the system utilizes HTTP protocol to transmit decompressed images, enabling client-

side image processing like sharpening and histogram equalization directly within a web

browser without additional software. This architecture simplifies maintenance and reduces

computational load on clients. The employed coding algorithm efficiently achieves lossless

image compression, enhancing the practical feasibility of the cloud-based system for various

applications.

In [65], cloud computing and social media are pivotal technologies advancing healthcare

applications. The paper details the design and prototype implementation of a secure social

healthcare network operating on the cloud. The system integrates trust-aware role-based access

control to address emotional support needs within a real cloud computing environment.

32

In [66], the system categorizes client performance into clusters across multiple runs, leveraging

remote client logging for runtime trace collection. Automated log analysis, combining

machine/OS characteristics with kernel-level statistics such as I/O rates and system calls,

identifies root causes of issues. An example demonstrates detection of a configuration bug

injected into a cluster by altering TCP buffer size.

Zhu et al. [67] discuss traditional limitations of cloud computing services deployed in

centralized data centers, advocating for distributed clouds to optimize performance and costs

for distributed applications. They introduce Nebula, a decentralized cloud leveraging volunteer

edge resources. The paper outlines key properties, design considerations, and illustrates

benefits through a distributed Map Reduce application scenario.

In [68], the objective is to develop an efficient media delivery system that optimizes locality.

The proposed architecture consists of a novel 3-layer approach: a core cloud for application

management, a 2-tier edge cloud supporting geo-dispersed user groups, and dynamic peer-to-

peer overlays for locally clustered user groups. This architecture concurrently manages

multiple streaming sessions, each treated as an independent entity. Experiments conducted on

Planet Lab demonstrate the feasibility and effectiveness of dynamically constructing and

maintaining streaming delivery across both user-level P2P overlays and the edge cloud.

In [69], the study explores the trade-offs involved in scheduling computations between an

infrastructure cloud and a mobile edge-cloud. Two classes of applications are deployed and

analyzed on both cloud types, focusing on application runtime and total battery power

consumption. Results indicate scenarios where the edge-cloud outperforms the infrastructure

cloud in terms of latency and battery efficiency for specific application classes.

In [70], the paper addresses security risks inherent in cloud computing, particularly focusing on

the ambiguities surrounding security mechanisms in on-demand Platform-as-a-Service (PaaS)

environments like Windows Azure. The study evaluates security controls and mechanisms

implemented across Azure components using an industry-standard framework. It aims to assess

how well these security measures meet consumer needs, particularly in identity management

and data protection.

In [71], the paper discusses a distributed edge cloud infrastructure designed to provide

computation and storage capabilities, addressing current challenges. Edge resources are

increasingly attractive due to their availability in volunteer computing, file sharing, and content

delivery network (CDN) environments. With the proliferation of powerful multi-core, multi-

node desktops and home machines, coupled with high-bandwidth Internet connectivity, edge

resources naturally provide locality benefits for data and user processing.

33

In [72], the study investigates tactical cloudlets and evaluates five different provisioning

mechanisms. It aims to demonstrate the feasibility of cyber-foraging in tactical environments

by integrating cloud computing technologies closer to the edge. This approach enables tactical

cloudlets to enhance situational awareness and decision-making capabilities at the edge, even

when disconnected from the enterprise network.

In [73], cloud computing has rapidly gained popularity across various sectors due to its cost-

effectiveness and accessibility of data. Recognized as one of the top 10 technologies, cloud

computing is an internet-based service model offering computing and storage capabilities to

users in sectors such as finance, healthcare, and government. The paper emphasizes the

importance of Inter Cloud Data Transfer Security as a critical factor in cloud security, which

differentiates providers in a competitive market.

In [74], the paper highlights the increasing importance of edge services in the context of the

evolving Internet of Things (IoT). Unlike traditional datacenter-based cloud solutions, edge

services require low latency, reduced bandwidth between edge and core networks, and

resilience in localized and secure edge environments. The authors propose the Edge Cloud

model, integrating service nodes at network edges using the OpenStack framework. They

illustrate the model's benefits through applications like an indoor localization system and

scalable services.

In [75], cloud computing promises cost-effective and scalable access to computing resources,

but concerns such as vendor lock-in, privacy, and data control persist. The paper explores

alternative cloud computing models, particularly community clouds at the edge. These

community network clouds leverage user-contributed resources to build collaborative cloud

infrastructures, either independently or to supplement existing cloud services. The study

analyzes their role in community cloud computing alongside mobile, social, and volunteer

computing initiatives.

In [76], Cloud Computing enables data upload and application usage over the internet, but

increasing device connections strain cloud infrastructure. Fog computing, also known as Edge

computing, moves computation from centralized clouds to network devices near endpoints,

improving response times. The paper proposes integrating an app store-like platform on

network devices to facilitate distributed computation, enhancing cloud network efficiency.

In [77], cloud computing faces challenges like high latency and network congestion, prompting

a shift towards Edge computing for improved application response times. The paper evaluates

Docker as a container-based technology for Edge Computing, focusing on deployment,

resource management, fault tolerance, and caching capabilities. Docker's fast deployment,

small footprint, and performance make it a viable platform for Edge Computing applications.

34

In [78], Cloud Computing enables dynamic scalability without new infrastructure investments,

but data security is paramount. The paper discusses cloud computing's security issues and

strategies to address data privacy concerns. It defines cloud computing, explores security

challenges faced by service providers, and proposes techniques to enhance cloud security.

In [79], industrial systems increasingly rely on software spanning decentralized edge to

centralized datacenters and clouds. However, managing applications across these domains

lacks homogeneity, leading to inefficiencies and duplicate efforts. The concept of Continuous

Computing is introduced to create a seamless environment for multi-domain applications,

facilitating workload mobility from cloud to edge. A functional reference model is presented,

evaluating cloud technologies for their suitability in supporting multi-domain applications.

In [80], Mobile Edge Computing (MEC) integrates mobile and cloud capabilities within access

networks, aiming to unify telecom and IT at the mobile edge. The paper discusses the progress

of MEC and introduces WiCloud, a platform enabling edge networking, proximate computing,

and data acquisition for innovative services. It also addresses challenges hindering commercial

deployment of MEC.

In [81], Edge Scale utilizes serverless cloud computing to provide storage and processing

across a hierarchy of data centers distributed geographically between end-user devices and

traditional wide-area cloud datacenters. Applications in Edge Scale are structured as

lightweight stateless handlers, dynamically instantiated on demand. It offers scalable and

persistent storage with optimized access latency and reduced bandwidth consumption through

hierarchical data center management.

In [82], Osmotic computing supports efficient execution of IoT services at the network edge

and large-scale datacenters. It leverages lightweight microservices on resource-constrained IoT

platforms and complex microservices on datacenters. Osmotic computing capitalizes on

increased resource capacity at the edge and seamless data transfer protocols between edge and

datacenter services, addressing features, challenges, and future directions in "Blue Skies".

In [83], connecting edge and cloud computing enhances high-throughput, mobility support,

real-time processing, and data persistency. Cloud computing's elastic provisioning and storage

capabilities ensure scalability, persistency, and reliability for diverse data generation needs,

adapting infrastructure capacity accordingly.

In [84], Fog computing extends cloud capabilities to end devices to support time-sensitive,

location-dependent, and latency-sensitive applications at scale. The paper proposes a fog

computing ecosystem, implementing and evaluating it across diverse scenarios: content

dissemination in challenged networks, crowd-sourced fog computing, and programmable IoT

35

analytics. Open source projects are leveraged to optimize the fog computing platform,

demonstrating superior performance over baseline algorithms in various usage scenarios.

In [85], the shift towards edge computing addresses challenges in processing Big Data. The

paper selects six representative Map Reduce applications applicable to IoT edge computing

and performs a time-energy-cost analysis comparing wimpy edge compute nodes and cloud

systems with GPUs. Key insights advocate for heterogeneous systems with GPUs on both edge

and cloud to achieve up to 70% savings in time and energy for compute-intensive applications.

The study establishes an equivalence ratio between brawny cloud instances and multiple

wimpy edge nodes, showing cost savings with wimpy systems at the edge compared to

traditional cloud computing. Additionally, the analysis highlights performance differences

between newer and older GPU systems, attributing variations to core clock frequencies.

In [86], edge cloud computing is proposed for new types of cloud services requiring computing

infrastructure at the network edge, driven by IoT use cases. However, existing solutions often

use proprietary, closed hardware and software platforms, limiting interoperability and third-

party service integration. The paper advocates for building a collaborative edge cloud deployed

on home servers to overcome these barriers and enable the development of tailored edge

services.

In [87], KubeEdge introduces an infrastructure for edge computing environments, extending

cloud capabilities to the edge. This architecture integrates computing resources from

centralized data centers and distributed edges, enhancing application performance and user

experience. KubeEdge provides a unified environment with seamless communication between

edge nodes and cloud servers using Kubernetes-based components. Key features include

KubeBus for network protocol infrastructure, a distributed metadata store for offline edge

scenarios, and EdgeCore for managing edge nodes and cloud VMs as a logical cluster. This

setup enables the adoption of existing cloud services and development models at the edge.

In [88], edge-cloud computing is presented as a hierarchical framework for organizing data

pipeline functions in IoT systems. It consists of smart edge devices, a fog computing layer, and

a cloud computing layer. The paper discusses the roles of orchestration and intermediation in

fog computing for microservices and cloud services, emphasizing automated service

provisioning as a fundamental function.

In [89], emerging edge and fog computing models support applications distributed across edge

and cloud infrastructures. The complexity of designing mobile edge cloud systems necessitates

understanding deployment models, configurations, and performance evaluation. The paper

shares experiences studying the performance and data quality impact of a mobile edge cloud

system using the MECCA (Mobile Edge Cloud Cornering Assistance) application. Insights

36

from testing highlight key issues and steps in analyzing edge cloud applications, providing

lessons learned for mobile edge computing application testing.

In [90], the conventional approach to resource management in edge computing involves

allocating tasks to isolated cloud or edge devices based on factors like energy consumption,

bandwidth, and latency. However, this method lacks organization and falls short in meeting the

requirements for managing health emergencies in smart home healthcare systems. Emergencies

necessitate immediate attention, and different health functions have varying priorities for

processing. The paper proposes a voice disorder detection system using a deep learning

approach. Patients provide voice samples captured by smart sensors, which undergo initial

processing at the edge computing level. Subsequently, the processed data is transmitted to the

core cloud for further analysis. The analysis and management tasks are overseen by a service

provider through a cloud manager. Once automatic analysis is completed, the results are

forwarded to a consultant who prescribes necessary therapy to the patientsIn [91], as edge

computing gains momentum, organizations operating across geographically dispersed locations

continue to rely on cloud computing for data collection and post-processing. The paper

explores the performance trade-offs between cloud-only, edge-only, and hybrid edge-cloud

processing approaches. To facilitate this analysis, the authors present an analytic model

validated through measurements on representative edge and cloud platforms. This model is

designed to be applicable even without direct measurements on specific edge hardware,

provided that relevant performance specifications are available. Their measurement-driven

analysis uncovers a diverse performance landscape, indicating that no single approach (cloud-

only, edge-only, or hybrid) consistently outperforms the others. Instead, performance is

significantly influenced by application characteristics and the bandwidth available for edge-

cloud data transfers.

In [92], the paper presents a computational resource scheduling strategy with graceful

degradation for Model Predictive Control (MPC) execution in cloud environments. The

strategy enables seamless control assistance and flexible controller design using edge cloud

resources. It demonstrates its application in a high-frequency cyber-physical system,

emphasizing improvements in system performance while maintaining cost-efficiency. The

approach optimizes computational resource allocation dynamically, ensuring responsive

control and mitigating performance degradation under varying conditions. This framework

highlights the integration of edge computing capabilities to enhance MPC applications,

catering to real-time requirements while managing computational costs effectively.

In [93], the exponential growth of interconnected devices has catalyzed the emergence of

Internet of Things (IoT) technology. Cloud computing plays a crucial role in supporting IoT

37

applications by providing storage and computational capabilities necessary for managing vast

data volumes generated by IoT devices. However, cloud computing faces challenges in

meeting the real-time requirements of many IoT applications. Edge computing addresses this

challenge by facilitating efficient communication, management, storage, and processing of data

closer to the point of generation, ensuring rapid response times. This architectural shift

optimizes data transfer and enhances scalability and responsiveness for IoT applications. The

paper delves into IoT fundamentals, requisite communication technologies, data transfer

methodologies, and the pivotal role of cloud services in IoT data management and analysis

In [94], the paper introduces Software-Defined Edge Computing (SDEC) through a cyber-

physical mapping perspective, aiming to establish a highly automated and autonomous edge

computing environment. SDEC leverages software to facilitate flexible management and

intelligent coordination across diverse edge hardware resources and services. The proposed

SDEC-based architecture decouples upper-level applications from the underlying physical

edge infrastructure, enabling the creation of dynamically reconfigurable smart edge services.

This approach promotes resource sharing, reuse, and integration among edge resources and

services, thereby enhancing overall edge service capabilities. The paper concludes by

highlighting several critical challenges that merit thorough investigation and research within

the SDEC framework

In [95], the IoT Smart-Basket project compares the performance of Edge Computing and

Cloud Computing systems using Raspberry Pi hardware and a webcam. Employing Python,

TFLite, OpenCV, and Google Cloud Vision API for object detection, the system sends results

to end-users via the Telegram application. Performance analysis focuses on Time Performance

and RSSI Value across different conditions. Results indicate that Edge Computing offers

greater stability, with average processing times of 1.74 seconds in Line-of-Sight (LOS) and

1.75 seconds in Non-Line-of-Sight (NLOS) scenarios. In comparison, Cloud Computing

exhibits longer processing times, averaging 10.46 seconds in LOS and 5.36 seconds in NLOS

conditions. This highlights Edge Computing's efficiency in real-time applications like object

detection for IoT devices.

In [96], the study focuses on Mobile Edge Computing (MEC), where computationally intensive

tasks are transferred from mobile devices to cloud servers to reduce energy consumption. The

research investigates task resource scheduling in multi-user MEC systems with heterogeneous

clouds, including edge and remote clouds. Tasks are initially offloaded to edge clouds via

wireless channels and can subsequently be forwarded to remote clouds over the Internet. The

objective is to minimize total energy consumption across multiple mobile devices while

adhering to bounded-delay task requirements. Using dynamic programming, the paper

38

proposes an algorithm that optimizes energy consumption by jointly allocating bandwidth and

computational resources to mobile devices. Additionally, an approximation algorithm with

energy discretization is introduced to further reduce complexity, ensuring energy consumption

remains close to optimal levels. Simulation results demonstrate significant energy savings—up

to 82.7%—compared to executing tasks solely on mobile devices, highlighting the efficiency

of the proposed scheduling strategies in MEC environments.

In [97], the paper addresses network resource redundancy and overload in power IoT

architectures caused by chimney-type independent service access. It proposes a collaborative

cloud-edge architecture where edge computing devices or networks are deployed near

perception layer devices in power IoT systems. This setup enables local processing of

extensive power and non-power data, merging centralized cloud computing's capabilities with

decentralized edge computing. The model aims to satisfy the demands of big data computation

and real-time analysis of local data, catering specifically to the intricate network and data

management needs of power IoT applications.

In [98], a framework is introduced for mobile edge-cloud computing networks, enabling

efficient resource sharing through wholesale and buyback mechanisms between edge and cloud

environments. The framework optimizes resource management by formulating problems for

edge servers to manage their wholesale and buyback schemes, and for the cloud to determine

wholesale prices and allocate local computing resources. Two optimization perspectives are

addressed: i) social welfare maximization, where the concavity of social welfare is proven,

leading to optimal cloud resource management strategies aimed at maximizing overall societal

benefit, and ii) profit maximization, where concavity of wholesale computing resources

relative to price is demonstrated. This guides the design of optimal pricing strategies and

resource allocations for the cloud to maximize its profits. Numerical evaluations underscore

the framework's effectiveness, showing that it can simultaneously maximize total social

welfare and individual profits through strategic resource management practices tailored to the

specific economic and societal objectives of edge-cloud computing networks.

In [99], the paper presents a technique for mapping concurrent tasks onto a heterogeneous

multiprocessor platform with a focus on energy efficiency. Tasks exhibit varying execution

times and energy consumption profiles across different processors. The technique explores

various possibilities for task ordering and processor assignment to generate a Pareto-optimal

set. Each solution in this set outperforms others in at least one criterion, such as minimizing

energy consumption or reducing execution time, thereby providing a range of optimal trade-

offs suitable for heterogeneous computing environments..

39

In [100], the paper discusses a per-core Dynamic Voltage and Frequency Scaling (DVFS)

technique aimed at energy savings in embedded systems. This approach involves scaling down

CPU frequency and voltage during memory-bound intervals of applications, minimizing

energy consumption without significantly affecting memory-bound operations. The algorithm

optimizes voltage/frequency settings offline to match workload characteristics. All offloaded

software executes on remote digital servers, ensuring secure communication through

cryptographic measures and surrogate servers. The framework emphasizes low latency,

proximity to remote surrogates, and reduced privacy concerns. Key components include

template-based virtualization for VM deployment, which is resource-intensive and time-

consuming. Application developers must annotate software components as local or remote,

adding complexity. Moreover, surrogate-based cyber foraging depends on the availability of

services and resources on nearby servers, limiting its scalability and reliability in diverse

environments.

In [101], the paper introduces a VM-based cloudlets framework designed to enhance cyber

foraging by migrating application images to dedicated remote servers. A cloudlet, defined as a

secure and powerful computer or cluster accessible over the internet, supports Mobile

Distributed Systems (MDS). Mobile devices act as thin clients, providing a user interface while

computational processing occurs at the cloudlet. This framework focuses on dynamically

customizing cloudlet infrastructure using hardware-level VM technology, where each VM

encapsulates and isolates a temporary guest software environment from the cloudlet's

permanent host software environment.

The proposed framework employs various methods for VM migration, leveraging transient

customization of cloudlet resources. Key considerations include the necessity for additional

hardware support to implement VM technology effectively. The approach involves cloning the

mobile device's application processing environment onto remote hosts, addressing challenges

such as VM deployment, management on mobile devices, privacy concerns, access control

during migration, and security risks associated with VM transmission.

Overall, the framework aims to optimize computational offloading in MDS by leveraging VM

technology, thereby enhancing application performance and resource utilization while

addressing significant technical and security challenges inherent in VM-based migrations in

distributed environments.

In [102], Maniatis et al. propose the Clone Cloud framework, a novel approach for efficiently

scheduling and offloading diverse software applications across mobile and remote server

environments. Unlike traditional approaches, Clone Cloud utilizes three distinct resource

40

scheduling algorithms tailored to different application types. Similar to VM-based cloudlet

approaches, Clone Cloud involves scheduling the execution state of applications to remote

servers, aiming to minimize dynamic transmission overhead through straightforward

synchronization techniques.

Clone Cloud primarily focuses on outsourcing computationally intensive tasks to remote hosts,

while simpler tasks, like user interfaces, remain on mobile devices. This approach enhances

performance for applications such as speech recognition, image processing, and video indexing.

Background augmentation extends this capability by fully offloading applications to remote

hosts, transmitting results back to mobile devices asynchronously. Applications like antivirus

and file indexing benefit from faster search capabilities using this method.

For applications with mixed computational loads and interactive requirements, Clone Cloud

employs a mainline augmentation policy. This strategy allows applications to offload intensive

tasks while maintaining interactions with other program components, facilitating functions like

debugging tools.

However, Clone Cloud faces several critical challenges. The migration of execution

environments to remote servers introduces complexities related to security, privacy, access

control, and the management of VM deployments on mobile devices. Moreover, the

deployment of multiple migration strategies based on application characteristics can lead to

increased overhead on mobile devices. The framework's reliance on a single-thread approach

can also introduce jitter and variability in the execution times of application components,

affecting overall performance.

In summary, Clone Cloud represents a significant advancement in offloaded processing,

emphasizing simplicity in synchronization between mobile devices and remote servers. While

offering benefits for diverse application types, it necessitates careful consideration of its impact

on mobile device performance and the management of security and privacy concerns inherent

in VM-based execution environment migrations.

In [103], Portokalidis et al. introduce a Mobile Cloud Computing (MCC) framework aimed at

enhancing the functionality of Mobile Ad hoc Networks (MANETs) while addressing security

risks through robust risk management and secure routing mechanisms. Their scheme focuses

on threat detection within smartphones utilizing MCC, emphasizing energy efficiency by

implementing incremental Message Authentication Code (MAC) for ensuring the integrity of

mobile user data. Additionally, Jia et al. propose security enhancements through Proxy Re-

Encryption (PRE) and Identity-Based Encryption (IBE) schemes, which facilitate secure data

services in MCC environments.

41

In [104], Yang et al. present a secure data processing framework tailored for Mobile Cloud

environments, specifically addressing authentication challenges on cloud platforms. Extending

existing schemes, they incorporate Public Provable Data Possession (PPDP) with advanced

cryptographic techniques such as Diffie-Hellman Key Exchange, Bilinear Mapping, and

Merkle Hash Trees (MHT). This integration enhances data integrity and security during cloud-

based processing operations. Furthermore, Chen et al. contribute a security framework

designed for location-based grouped scheduling services, focusing on preserving identity

privacy and implementing robust authentication mechanisms.

Portokalidis et al.'s framework for MCC and MANETs emphasizes dynamic risk management

and secure routing protocols to mitigate security threats. By leveraging MCC, they enhance the

resilience and performance of MANETs in challenging environments while ensuring data

integrity through energy-efficient authentication mechanisms. Similarly, Jia et al.'s adoption of

PRE and IBE schemes strengthens data security within MCC contexts, enabling secure and

efficient data services.

Yang et al.'s extension of PPDP with advanced cryptographic methods addresses authentication

challenges in cloud-based data processing for mobile environments. Their approach enhances

data security through sophisticated cryptographic primitives, ensuring data integrity and

privacy during cloud interactions. Chen et al.'s security framework further enhances MCC

applications by focusing on location-based services, providing robust identity privacy and

authentication mechanisms crucial for secure data handling in mobile cloud environments.

In [105], Zhou and Huang introduce a novel privacy-preserving framework that utilizes three

distinct schemes—encryption-based, coding-based, and sharing-based—to ensure the

confidentiality and integrity of user files stored in the cloud. Their approach focuses on

resource scheduling, specifically allocating processing and storage-intensive tasks like

encryption and decryption to the cloud based on Cipher text Policy attribute (CPA).

Traditional research efforts often address only isolated aspects of security, such as

authentication or confidentiality, using static security algorithms. However, Zhou and Huang's

model innovatively integrates multiple security dimensions—confidentiality, integrity,

authentication, and privacy—into a unified framework. This comprehensive approach not only

enhances security but also dynamically adapts to changing demands for security, quality of

service (QoS), and resource utilization among mobile users. By leveraging dynamic resource

allocation and robust security mechanisms, their model offers enhanced protection for sensitive

data in cloud environments while optimizing resource efficiency and user experience.

which describes the energy utilization of a multisite application execution and used a discrete

time Markov chain (DTMC) in modeling fading wireless mobile channels. A Markov decision

42

process (MDP) framework has been adopted to develop the multisite partitioning problem as a

delay constrained, least-cost shortest path problem on a state transition graph. The proposed

EMOP (Energy-efficient Multisite resource scheduling Policy) algorithm that has been built on

a Value Iteration Algorithm (VIA), founds the efficient solution to the multisite partitioning

problem. The numerical simulation results reveal that the proposed algorithm considered the

different potentials of sites in distributing the suitable components to achieve a lower energy

cost for data transfer to the cloud from the mobile. A multisite resource scheduling execution

using the proposed EMOP algorithm attained a greater reduction on the energy utilization of

mobiles when compared to a single site resource scheduling execution. The performance of the

proposed EMOP algorithm has been evaluated in terms of energy saving by comparing the

results to a single site resource scheduling execution. The energy consumption of an

application has been observed with nodes ranging from 10-150, in single site execution and

multi site execution. From the simulation results, the proposed EMOP algorithm has been

found to be an efficient multisite computation resource scheduling approach for mobile devices.

It has also been found outperforming the mobile and single site execution with respect to both

energy consumption and execution time.

The goal of the study described in [106] is to optimise the trade-off between the energy

efficiency needed to transmit data from mobile devices and the data quality needed for

applications. This is made possible by a cooperative sensing middleware that is positioned in

the space between several mobile applications and devices inside a predetermined physical

area. The Info-Aggregation algorithm is at the heart of this strategy. Its goal is to maximise the

reuse of sensed data across many applications, which in turn lowers the quantity of data needed

for resource scheduling in the sensing environment as well as the number of active mobile

devices.

In-depth simulation tests were carried out to evaluate the effectiveness of Info-Aggregation by

contrasting its results with a No-Aggregation scenario. The trials varied a variety of parameters,

including the quantity of mobile devices (300 to 1000), the number of applications (varying

from 50 to 200), and the types of sensors requested (10, 15, 20, and 25). To guarantee

robustness, each experimental setup was duplicated thirty times using various random number

seeds.The improvement in average battery life for all mobile devices, the decrease in data

volume required for resource scheduling, and the average number of active devices were the

main evaluation metrics. Data aggregation was not used in the instances where the number of

active devices was not significantly reduced by above 50%, according to the results. This

decrease is the result of the algorithm's capacity to effectively use the same sensor data for

several applications, reducing the number of pointless activations and data transfers.

Additionally, there were noticeable gains with Info-Aggregation in the cumulative residual

43

energy stored in mobile device batteries at the conclusion of the simulation interval. This

improvement became more noticeable as the number of applications rose, underscoring the

advantages of using the same data for several requests.

A shortened Levy Walk mobility model was also investigated in the study, which helped to

optimise data gathering even when mobile devices moved inside the sensing area. This

approach adjusted to dynamic changes in sensor availability and device placements,

significantly increasing the effectiveness of data aggregation procedures.

To sum up, the Info-Aggregation algorithm outperformed conventional techniques that lack

aggregation strategies in terms of improving energy use. It emphasises how crucial it is to have

methodical resource scheduling procedures in place, especially when shifting partially

processed apps to the cloud in order to reduce the overall energy consumption of smartphones.

Significant progress towards the creation of efficient and sustainable mobile sensing

environments can be accomplished by utilising sophisticated aggregation algorithms and

collaborative sensing

In [107],The optimisation of energy use through dynamic methods and security measures is

the main focus of With regard to energy optimisation, they present a dynamic minimum-cut

algorithm that takes security precautions into account. Furthermore, using their call graphs as a

basis, they suggest the Free Sequence Protocol (FSP) for dynamic programme execution.

An Amazon EC2 Windows instance with 1.7 GB of RAM, one virtual core with one EC2

computing unit, and 160 GB of instance storage was used in the experimental configuration.

Applications in the cloud were handled by a Java server, and customised apps operated on an

Android smartphone called HTC Nexus One.

Workload size, network type, computing costs, security (encryption/decryption), resource

scheduling limitations, signal intensity, and call graph architectures were among the important

variables examined. The battery life and performance showed notable increases, according to

the results. Additionally, they emphasised how optimisation of overall energy consumption is

affected by compute costs, network kinds, security activities, signal strength, workload sizes,

and call graph architectures.

All things considered, the study offers practical methods for improving energy efficiency in

mobile computing settings, with a focus on dynamic algorithms and security procedures to

successfully reduce energy drain.

In [108], presents proposed schemes of optimizing CPU cycle control and resource scheduling

in mobile computing models. The system allocated time division between Mobile Processors

Tasks and channel State information, and resource scheduling with the CPU cycle value. The

strings of probability of successful computation before the deadline and energy consumed

44

during a before the completion of the computation were established. Where therefore aiming at

maximizing the probability of successful computation before the deadline with minimal energy

constraints. During the simulation results energy that was saved during the resource scheduling

was saved in great amounts. This may, therefore, Indo to increase the maturity as well as the

development of the mobile cloud computing by enhancing the strategies that ensure the

management of the computational resources and the computation success probability when the

workload changes variate.

In [109], mobile cloud computing is the expansion of cloud computing to mobile platforms,

allowing for on-demand processing and storage services. Notwithstanding its infancy, issues

include the limited capability of mobile devices for sophisticated applications and sporadic

connectivity. Reviews of the literature guide efforts to find novel approaches and create tactics

that work in mobile situations. This method combines knowledge from previous studies to

improve concepts and expand our comprehension, opening the door for new developments in

the field of mobile cloud computing.

In [110], The notion of "cloudlet" is presented, with the objective of maximising mobile

device workloads by their offloading to neighbouring cloudlets. Multiple multicore computers

are arranged in strategic locations in high-traffic areas such as airports and universities to form

each cloudlet. Mobile devices can connect as thin clients thanks to this configuration, which

takes advantage of low latency.

Hong et al. (2014) conducted a thorough investigation of the energy efficiency of mobile

devices when transferring secure data across various communication networks, including 4G

high-speed technologies like Wi-Fi and LTE. In order to determine the conditions for

computing transmission times via Wi-Fi and 3G networks, their research used Bench Bee

speed data from Galaxy S2 LTE.

Reducing latency and improving service delivery for mobile consumers is the reasoning behind

cloudlets. Cloudlets alleviate the performance constraints usually linked to remote cloud

services by centralising processing resources in closer proximity to users. For real-time

applications like mobile interactive gaming or video streaming, this close proximity facilitates

faster response times and data transmission.

Furthermore, the study conducted by Hong and colleagues emphasises the significance of

energy economy in mobile communication, especially in situations where secure data

transmission is necessary. Their research sheds light on how to best select networks using

performance measures that come from actual measurements. In mobile cloud computing

environments, this empirical technique guarantees that mobile devices can efficiently identify

the most timely and energy-efficient transmission mechanism, whether through local Wi-Fi

45

networks or 3G connections, improving overall user experience and device longevity.

In [111] , Despite substantial research in wireless networks and invocation management, the

focus is on controlling and enabling mobility within mobile cloud computing systems—a field

that has received little attention. Monitoring the precise position of mobile devices as they

move inside or outside the coverage area of cloud resources is crucial for managing mobility.

An effective way to do this is through infrastructure-based techniques, including fusing GPS

and Wi-Fi. In order to provide stable and dependable tracking capabilities, these techniques

make use of GPS for wider global localization and Wi-Fi signals for local placement. Cloud

resources can dynamically alter workload allocation and service provisioning to optimise user

experience and performance by continuously updating the device's location data. In order to

facilitate smooth transitions and optimise resource usage in mobile cloud environments—

thereby augmenting mobility assistance and overall system efficiency—location-aware

technology integration is essential.

.In [112] focuses on outlining major developments and obstacles in the field of mobile cloud

computing (MCC). In articulating the architectural framework of MCC, the article draws

attention to important flaws in this particular context. In particular, it investigates how mobile

apps and cloud services might be integrated and highlights common problems resulting from

this integration's inherent openness.

The paper identifies specific issues that arise and provides a thorough overview of the

operational dynamics of mobile applications in cloud systems. These difficulties frequently

centre on security flaws, data privacy issues, and obstacles specific to MCC settings for

performance optimisation.

Furthermore, the report conducts a critical assessment of several novel approaches developed

to address these issues. These tactics usually include new protocols for security, data

encryption techniques, and adaptive resource management strategies designed specifically for

MCC. The project is to improve the dependability and usability of integrated mobile apps in

cloud-based environments by proactively addressing these problems in order to create a more

safe and effective ecosystem for mobile cloud computing.

Along with these security and efficiency improvements, IPv6 has built-in support for IPsec (IP

Security), which improves data integrity, authentication, and confidentiality in communications.

Further simplifying network setup and maintenance procedures, lowering costs, and enhancing

scalability are capabilities like stateless address autoconfiguration Enormous functionality,

security, and scalability are all provided by IPv6, which is a complete overhaul designed to

overcome IPv4's shortcomings and satisfy the changing needs of contemporary network

settings. Ensuring stable and long-lasting network infrastructures that can easily handle present

46

and future Internet applications depends heavily on its deployment.

In [114], IPv6 is noted for its adaptability across diverse networks like wireless, sensor

networks, and rooftop networks. Wireless networks face challenges due to mobility and

dynamic conditions, posing obstacles for seamless mobile cloud services. These challenges

include scalability, data security, and efficient resource management. Effective solutions are

crucial, involving optimized protocols and innovative network designs to ensure reliable

performance and address the complexities of mobile cloud environments.

In [115], Mobile cloud services need IPv6's sophisticated features to get beyond these

obstacles. An overlay architecture designed for wireless networks is established by IPv6. This

architecture facilitates smooth integration and improves scalability in a variety of network

scenarios, including dynamic and mobile ones. IPv6 makes it possible for mobile cloud

services to have reliable connectivity and simplified communication by offering a greater

address space and effective routing capabilities. Its capabilities are crucial for guaranteeing

optimal performance and dependable service delivery in contemporary wireless network

infrastructures by overcoming the inherent constraints of earlier Internet Protocol versions.

In [116] , IPv6 provides enhanced network security by leveraging IPsec (IP Security) to

overcome critical difficulties in Mobile Cloud Computing (MCC). IPv6 networks may

transport data with strong encryption, authentication, and integrity verification thanks to IPsec.

By reducing the security flaws present in various network contexts, this functionality

guarantees safe communication and data security throughout MCC installations. Through the

integration of IPsec, IPv6 strengthens secrecy and provides protection against threats, creating

a dependable framework that tackles important security issues in mobile cloud infrastructures.

In [117],This particular paper offers a comprehensive analysis of the literature on mobile

cloud computing (MCC) and the security issues that surround it. By fusing cloud computing

resources with mobile applications, MCC offers flexible, on-demand services without requiring

upfront investments. It is an evolution in IT. Performance, compatibility, and resource

limitations common in mobile environments are addressed.

Security and privacy concerns pose a substantial obstacle to MCC adoption, notwithstanding

its advances. Due to possible hazards, such as data breaches and unauthorised access,

organisations are hesitant to completely adopt MCC. In order to create a safe MCC

environment that instills confidence in both users and organisations, current research primarily

focuses on reducing these risks.

Data availability, confidentiality, and integrity in mobile cloud interactions are among the

major security issues noted. Researchers are working hard to develop authentication methods,

access control systems, and encryption strategies specifically for MCC settings. The goal of

47

these initiatives is to guarantee that strict security regulations are followed and to strengthen

data protection safeguards.

Therefore, even though MCC has a lot of potential advantages, creating a stable and safe

environment is still a crucial objective. To handle new threats and strengthen the resilience of

MCC systems, further research and innovation are needed. This will increase confidence and

encourage adoption in a variety of organisational environments.

.In [118] , By enabling application service providers to deploy apps dynamically in

accordance with customer Quality of Service (QoS) requirements, cloud computing seeks to

revolutionise data centre capabilities. Many find it to be an appealing option because of its

claims of excellent performance, high availability, and cost effectiveness. Notwithstanding

these benefits, worries over security management procedures and weaknesses in protecting

sensitive data kept in cloud environments have limited adoption by commercial organisations.

In this work, we explore the important topic of cloud computing data security. To stop

unwanted access, especially from insiders, effective client data protection is essential. In order

to reduce these dangers, a strong and adaptable security technique with two novel features that

set it apart from earlier methods is suggested. To prevent unauthorised data access attempts,

consumers are first warned by mobile messaging notifications before any transaction is

initiated. Second, the system uses a deceptive technique called Honeypot to offer bogus

information to users who have failed to log in, so discouraging further attempts at intrusion.

Mohit Marwaha and Rajeev Bedi highlight cloud computing as an information technology

revolution similar to the internet. It runs on an internet-based paradigm that delivers software,

shared resources, and information to users' devices on demand based on a pay-per-use model

customised to their needs. Usability, dependability, and most significantly, security issues like

data security and privacy continue to be obstacles despite its rising popularity.

The IDC market research indicates that the market for cloud computing services was estimated

to be worth $16 billion in 2008 and is expected to grow to $42 billion yearly by 2012. For

commercial applications, the cost savings provided by cloud computing are anticipated to be

three to five times higher, and even more for consumer applications. In a news release from

June 2008, Gartner highlighted the revolutionary potential of cloud computing by drawing

comparisons to e-business.

Different people define cloud computing differently. For some, it refers to using the internet or

network "cloud" to store data and access software, along with related services. Some see it as a

refreshed version of the 1960s timesharing concept, tailored for more affordable, current

computing platforms sum up, even while cloud computing offers substantial benefits in terms

of flexibility, affordability, and scalability, worries about data security continue to play a

crucial role in determining adoption patterns. Unlocking the full potential of cloud computing

48

in the digital age requires addressing these issues with creative security solutions.

In [119] Researchers use statistical task execution durations in their work, as reported in [119],

to create energy-saving techniques for embedded systems using dynamic voltage scaling

(DVS). Their methodology presents two discrete algorithms that are intended to maximise

energy usage while preserving task completion effectiveness.

The first method gives priority to using the least amount of energy while obtaining the highest

task completion ratio. Without sacrificing task deadlines or quality of service (QoS), the

system optimises energy consumption by dynamically altering voltage levels based on

statistical forecasts of task execution timeframes. By using the least amount of energy that is

practical, this approach guarantees that activities are accomplished effectively.

The second algorithm, on the other hand, purposefully drops tasks in order to introduce "slack"

times into the system. These downtime intervals are purposefully used to conserve more

energy. The system achieves large energy savings by eliminating jobs selectively that may

endure delays without breaking application-specific QoS requirements. This method enables a

careful trade-off between achieving the highest possible level of energy conservation and

upholding high task completion rates. significance of adaptive energy management in

embedded systems is emphasised by both algorithms. These techniques maximise energy

consumption in real-time circumstances by selectively terminating non-essential operations

and dynamically altering voltage levels. These adaptable techniques are especially helpful in

situations when energy sustainability or a longer battery life are critical, like in mobile devices

or Internet of Things (IoT) applications.

The study also emphasises how their methods might be used in real-world scenarios to balance

energy conservation with QoS demands. Embedded systems can achieve maximum

performance under varied workload situations and prolong the operational lifespan of battery-

powered devices by offering flexibility in energy management tactics.

In [120] ,Dynamic Voltage and Frequency Scaling (DVFS) is a pivotal technique that

optimizes energy efficiency while balancing performance in computing systems. the optimal

CPU clock frequency and the corresponding minimum voltage level based on the ratio of the

on chip computation time to the off-chip access time. Their technique lowers the CPU

frequency in the memory-bound region of a programme to keep the performance degradation

to a low value. Cloud computing which is emerging field because of its performance, high

availability, least cost and many others. In cloud computing, the data will be stored in storage

provided by service providers. But still many business companies are not willing to adopt

cloud computing technology due to lack of proper security control policy and weakness in

safeguard which lead to many vulnerability in cloud computing. the paper has been written to

49

focus on the problem of data security. Service providers must have a viable way to protect their

clients’ data, especially to prevent the data from disclosure by unauthorized insiders. To ensure

the security of users’ data in the cloud, propose an effective and flexible scheme with two

salient features, opposing to its predecessors. Avoiding unauthorized access to user’s data by

signaling user by sending message to his/her mobile number at the start of transaction.

Displaying fake information in case of unsuccessful login for avoiding further login trials by

intrusion (Honeypot). Heterogeneity of SMD architecture and operating platform is

challenging for distributed application processing in MCC. Mobile device vendors employ

different hardware architecture and operating system platforms for the specific mobile product.

Traditional application resource scheduling frameworks focus on the implementation of

platform dependent procedures for outsourcing computational intensive loads. For example,

Weblets and MAUI are application resource scheduling frameworks which are applicable

for .Net framework, whereas visualized execution framework and mirror server are suitable

frameworks for android platform. Therefore, homogenous access to cloud services are highly

expected wherein SMD are enabled to access widespread computing services of computational

clouds irrespective of the concerns about operating hardware architecture and operating system

processing requirements and the availability of computing resources on SMD. The centralized

distributed application deployment models require arbitration of SMD with centralized server

for the selection of appropriate server node. As a result, computing resources (CPU, battery

power) of SMD are exploited abundantly for the entire process of application profiling and

solving. The deployment of distributed platform, management and operation of remote

application processing in the optimal possible fashion is an important perspective of cloud

based application processing. It is challenging to provide homogenous solution for

heterogeneous devices, operating platforms and network technologies with minimum possible

resources utilization on the SMDs.

In [121] Through the mitigation of the high latency inherent in centralised data centres, edge

computing provides a substantial breakthrough over traditional cloud computing, offering

computing services characterised by high dependability and bandwidth to mobile devices. With

its emphasis on bringing processing power closer to users—at the network's edge—Mobile

Edge processing (MEC) has become a crucial field of study. But with the increasing

sophistication and demand of mobile applications, the conventional resource scheduling

techniques used in simple edge computing architectures are no longer adequate to satisfy the

changing requirements of MEC designs. Utilising the capabilities of Artificial Intelligence (AI)

technology, new study has unveiled a revolutionary way to resource scheduling in MEC in

response to these difficulties. This research suggests an intelligent algorithmic framework to

improve resource scheduling efficiency by integrating AI with MEC design. The core of this

50

framework is the application of artificial intelligence (AI)-driven task prediction techniques

that take into account the quantity and complexity of compute jobs that come from mobile

users.

The computation task characteristics are accurately predicted by the framework through the use

of Long Short-Term Memory (LSTM) methods. The long short-term memory (LSTM)

recurrent neural network is a powerful tool for predicting task needs in dynamic mobile

environments because of its ability to capture sequential patterns and relationships in data. The

framework's ability to predict workload demands and edge node performance characteristics

enables it to preemptively distribute computational resources among edge computing nodes.

Additionally, a complex resource scheduling technique designed especially for smartphones is

included in the suggested model. Through dynamic resource allocation based on real-time job

predictions, the system maximises responsiveness and resource utilisation on mobile devices.

In order to balance workloads and improve overall system performance, the model also

incorporates a task migration mechanism for effective edge cloud scheduling. This mechanism

allows jobs to be transferred seamlessly between edge nodes.

The AI-driven resource scheduling framework improves the scalability, agility, and

dependability of edge computing systems by integrating these components. It prepares the way

for upcoming developments in mobile computing research and deployment in addition to

addressing the challenges related to MEC environments. The ultimate goal of this strategy is to

position AI as a critical enabler of next-generation MEC solutions by optimising performance,

minimising latency, and maximising user happiness in mobile edge computing scenarios.

In [122],The demand on mobile terminals for processing power and energy efficiency has

increased in the context of contemporary mobile applications such as augmented reality and

autonomous driving. Many mobile devices are now searching edge clouds for processing

resources as a result of this increase in demand. Unmanned aerial vehicles (UAVs) present a

viable way to relieve pressure on traditional cloud infrastructures when their potential for

supporting Mobile Edge Computing (MEC) is acknowledged, particularly in task resource

scheduling. As a result of their mobility and close proximity to users, UAVs can be used to

improve MEC systems' capabilities by shifting computationally demanding activities from

centralised servers to edge nodes. This reduces latency and maximises system responsiveness.

On the other hand, MEC environments provide difficulties due to the dynamics of resource

requests, especially with regard to the information asymmetry between users and providers.

User-generated blind resource requests have the potential to cause delays and subpar

performance, which could compromise the quality of the user experience. This research

proposes a unique method of incorporating intelligent agents into the task resource scheduling

architecture of UAV-supported MEC (UMEC) systems in order to tackle these problems.

51

Users, UAVs, and edge clouds can schedule resources more effectively thanks to the intelligent

agents in the suggested architecture. With real-time insights and system dynamics visibility at

their disposal, these agents possess sophisticated decision-making abilities. Within the

framework, agents work together to maximise the distribution of computational resources in

order to reduce the amount of energy and time it takes to complete tasks.

This approach's main component is the creation of an organised agent-based model that

coordinates resource scheduling plans made specifically for UMEC situations. To obtain data,

evaluate resource requirements, and bargain with edge cloud providers for the best resource

allocations, agents operate independently. Proactive resource management guarantees effective

user demands fulfilment while also improving resource management's agility and reactivity.

By showing notable decreases in task execution delays and energy usage when compared to

conventional approaches, the simulation findings published in the research support the

effectiveness of the agent-enabled methodology. The framework boosts overall user experience

for users accessing MEC services via UAVs by optimising performance and achieving

improved resource utilisation through the use of intelligent agents.

Additionally, UMEC systems are more flexible in response to erratic and changing workload

circumstances when agents are integrated. While demand fluctuates and optimal performance

is ensured, agents continuously monitor system circumstances and make real-time adjustments

to resource allocations. Being able to adapt is essential for both keeping high customer

satisfaction levels in a variety of operational situations and fulfilling strict service level

agreements (SLAs).

Finally, intelligent agent integration into UAV-assisted MEC systems signifies a substantial

development in resource scheduling techniques for mobile computing. This framework

provides a basis for future advancements in energy efficiency, latency reduction, and

scalability optimisation in edge computing environments, while also addressing present

resource management concerns by leveraging the cognitive capacities of agents. Adoption of

agent-based models is expected to lead to revolutionary developments in mobile and

distributed computing paradigms, opening the door to a new era of efficiency and

dependability in MEC.

In [123] , Traditional cloud computing models are finding it difficult to handle the exponential

growth of commercial data and the requirement for low-latency, high-throughput services as

5G technologies advance quickly and smart terminal devices proliferate. In response, a

strategic paradigm known as Mobile Edge computer (MEC) has surfaced to solve these issues

by moving computer resources closer to users, which lowers latency and eases network

congestion.To address the resource scheduling issue in large-scale heterogeneous MEC

environments, a recent research presents Deep Reinforcement Learning (DRL) as an

52

innovative technique. When it comes to maximising resource allocation among various service

nodes and the different situations that mobile tasks meet, DRL is a particularly good fit.

The study initially suggests using candidate network sets and Long Short-Term Memory

(LSTM) network layers to improve the Deep Q-Network (DQN) algorithm for handling

resource scheduling issues in MEC. The DQN algorithm's prediction power is increased by

utilising LSTM networks to capture temporal relationships in task requirements. The extended

DQN (IDRQN) method optimises resource allocations based on changing workload demands

and node capabilities by incorporating LSTM-based characteristics and candidate network sets.

This allows the algorithm to dynamically adapt to the real-world constraints of MEC

environments.

The suggested IDRQN approach for task resource scheduling in MEC has been shown to be

effective through simulation studies employing the iFogSim and Google Cluster Trace datasets.

When compared to other algorithms, the results show higher energy efficiency, better load

balancing among service nodes, lower latency, and shorter average job execution durations on

performance metrics.

In particular, the IDRQN algorithm demonstrates strong flexibility to changing network

circumstances and workload dynamics that are common in MEC settings. IDRQN efficiently

maintains service quality, meets service level agreement (SLA) performance targets, and

balances resource utilisation by utilising deep reinforcement learning techniques.

Moreover, LSTM integration for candidate network sets and sequence modelling improves the

algorithm's decision-making, allowing for proactive and wise resource scheduling choices. By

guaranteeing timely task execution and shorter wait times, this strategy not only maximises

operational efficiency but also improves the user experience overall.

In [124] ,A new era of computation-intensive applications, such virtual and augmented reality,

has been brought about by the rapid proliferation of mobile internet services. Mobile Edge

Computing (MEC) has become a key solution to effectively handle these demands. By

transferring computational workloads to servers situated at the edge of cellular networks, MEC

allows mobile devices to minimise latency and maximise the use of compute resources.

This research presents an approach for task resource scheduling and resource allocation based

on Deep Q-Network (DQN), in response to the increasing demand for effective resource

allocation in MEC environments. The MEC system's edge servers can handle numerous jobs

that are offloaded from individual mobile terminals by the framework. In order to minimise the

costs associated with scheduling resources, such as energy, computation, and latency, it

develops a single decision-making mechanism that simultaneously optimises task scheduling

and bandwidth allocation.

Due to the mixed-integer nonlinear programming involved, the suggested optimisation

53

problem is intrinsically complicated. The work uses an advanced method to successfully

address this problem by utilising developments in DQN techniques. By optimising resource

allocations based on real-time job needs and server capacities, the DQN technique iteratively

adjusts to the dynamic and uncertain character of MEC environments.

The suggested DQN-based technique can attain near-optimal performance levels, as shown by

numerical simulations carried out to assess it. The findings provide noteworthy enhancements

in terms of energy economy, decreased computation expenses, and minimised latency in

contrast to conventional scheduling techniques. Through the use of deep reinforcement

learning concepts, the DQN framework efficiently manages trade-offs between various

resource costs, guaranteeing reliable performance in a range of operating scenarios.

Additionally, the scalability and adaptability of the MEC system are improved by the inclusion

of joint work scheduling and bandwidth allocation optimisation. This all-encompassing

strategy facilitates the smooth integration of various mobile applications that demand high

processing and low latency interactions in addition to improving operational efficiency.

In [125] ,A promising paradigm for managing power-sensitive and computation-intensive

applications on resource-constrained smart devices is the Edge-of-Things (EoT), which is

brought about by the proliferation of sophisticated smart devices and ubiquitous wireless

networks. To improve energy efficiency, operation speed, and cost-effectiveness, task resource

scheduling optimisation to a local cloud (called cloudlet) is the main goal of this work.

This study presents a task resource scheduling algorithm that utilises Fruit Fly Optimisation

(FOTO) to minimise energy consumption while satisfying operational requirements. FOTO

optimises job scheduling and resource allocation in the cloudlet environment dynamically,

resulting in better resource allocation. Evaluating and contrasting against current approaches

such as Genetic Algorithm with Ant Colony Optimisation (GA-ACO) and Concurrent

Multitasking Scheduling based on Ant Colony Optimisation (CMS-ACO), performance

indicators like energy consumption, execution time, and cost-effectiveness are shown.

Simulation outcomes show that in terms of energy efficiency, speed of execution, and cost

savings, the suggested FOTO algorithm performs better than the compared algorithms. The

algorithm enhances the overall performance of local cloud-based computing environments for

Internet of Things applications by effective task management and resource allocation through

the use of Fruit Fly Optimisation.

In [126],The transportation systems made possible by the Internet of Connected Vehicles (IoV)

can transfer computing duties from vehicles to Edge Computing Devices (ECDs) for

processing. This is done by using real-time traffic data. Notwithstanding the advantages, using

wireless communication for job scheduling comes with security dangers, including identity

54

theft, virtual vehicle hijacking, and privacy violations that allow for tracking. ECO, a task

scheduling technique enabled by edge computing that protects privacy, is suggested as a

solution to these issues. Vehicle-to-vehicle (V2V) communication-based routing is introduced

to safeguard task origin and destination vehicles, and privacy conflicts in IoV task computing

are formalised. In order to minimise the energy consumption and execution time of ECDs

while maintaining task security, NSGA-II (Non-dominated Sorting Genetic Algorithm II)

optimises multi-objective goals. Tests conducted on real data confirm that ECO is efficient and

effective at protecting privacy and maximising work performance in Internet of Vehicles

situations.

In [127], Task resource scheduling in a multi-layered mobile edge computing system is the

main emphasis of the work. It takes into account various users with energy-constrained jobs

that can be delegated to a remote cloud with different architecture and network resource

restrictions or to edge clouds (cloudlets). research resource scheduling approach that chooses

which assignments ought to be offloaded and decide the resource scheduling area on the cloud

lets oron the cloud. The goal is to limit the all out vitality devoured by the clients. figure the

issue as a Non-Linear Binary Integer Programming. Since the concentrated ideal arrangement

is NP-hard, propose a disseminated direct unwinding heuristic dependent on Lagrangian

disintegration approach. To fathom the sub problems, additionally propose a ravenous

heuristic that figures the best cloud let choice and transmission capacity distribution following

assignments' vitality utilization. looked at our proposition against existing methodologies

under various framework parameters (CPU assets), variable number of clients and for six

applications, each having explicit traffic design, asset requests and time imperatives.

Numerical outcomes show that our proposition beats existing methodologies. Notwithstanding

the hypothetical methodology, assess our resource scheduling approach utilizing genuine

examinations. For the situation, arrangement a genuine tested made out of customer terminal,

resource scheduling server found either at the edge or at a remote Cloud. additionally

actualized our proposition as an resource scheduling middleware on both the customer and the

resource scheduling server. Utilizing the tested, had the option to assess our resource

scheduling choice strategy for multi-clients setting with three genuine Android OS applications,

with various traffic examples and asset requests.

In [128], Edge computing has emerged as a promising infrastructure for delivering flexible

resources in close proximity to mobile users. Due to resource constraints inherent in mobile

devices, scheduling computational tasks from smartphones to edge servers is crucial for

enhancing the quality of experience for mobile users.. Actually, due to the high speeds of

moving vehicles on freeways, there would be various applicant portable edge servers

55

accessible for them to offload their computational outstanding burden. In any case, the

determination of the portable edge server to be used and how a lot of calculation tough to be

offloaded to fulfill the relating task time constraints without huge figuring bills are points that

have not been examined a lot. Besides, with the expanding sending of portable edge servers,

their incorporated administration would cause certain presentation issues. So as to address

these difficulties, right off the bat apply shared systems to oversee geo-dispersed portable

edge servers. Also, propose another cutoff time mindful and financially savvy resource

scheduling approach, which expects to improve the resource scheduling productivity for

vehicles and enables extra assignments to comply with their time constraints. The proposed

methodology was approved for its practicality and effectiveness by methods for broad analyses,

which are exhibited in the paper.

In [129],The current surge in urban smartphone usage has sparked a proliferation of

computation-intensive mobile applications like virtual reality and online video, posing

challenges to the computing capacity and battery life of these devices.To address the issue,

shrewd edge figuring in Wireless Metropolitan Area Networks (WMAN) is proposed to

empower portable clients to offload calculation concentrated undertakings to the edge

processing hubs which sends registering assets close by the cell phones. In any case, the typical

activity of edge computing hubs expends a lot of vitality. Along these lines, it is as yet a test to

know about vitality utilization while the registering undertakings are moved to the Edge

Computing Nodes (ECNs). In perspective on the test, an Energy-Aware Computation resource

scheduling technique, named EACO, is intended to lessen the vitality utilization. Actually,

dissect all passageway (AP) outings between the first AP to goal AP and select the most

limited way to offload the registering undertakings. Besides embrace Non-overwhelmed

Sorting Genetic Algorithm II (NSGA-II) to acknowledge multi-target improvement to

abbreviate the resource scheduling time of the figuring errands and lessen the vitality

utilization of the ECNs. Plus, abuse Multiple Criteria Decision Marking (MCDM) and Simple

Additive Weighting (SAW) to choose the ideal resource scheduling arrangement.

In [130] ,A rapidly developing approach known as the Internet of Mobile Things (IoMT)

creates, saves, and analyses enormous amounts of real-time data in order to provide mobile

consumers with advanced services.

So as to relieve clashes between the asset restriction of cell phones and clients' requests of

diminishing preparing inactivity just as delaying battery life, it prods a mainstream wave of

resource scheduling versatile applications for execution to incorporated and decentralized

server farms, for example, cloud and edge servers. Because of the unpredictability and contrast

of versatile enormous information, discretionarily resource scheduling the portable applications

56

represents a momentous test to streamlining the execution time and the vitality utilization for

cell phones, in spite of the improved presentation of Internet of Things (IoT) in cloud-edge

figuring. To address the test, propose a calculation resource scheduling technique, named

COM, for IoT-empowered cloud-edge figuring. In particular, a framework model is researched,

including the execution time and vitality utilization for cell phones. At that point dynamic

calendars of information/control-obliged figuring assignments are affirmed. What's more,

NSGA-III (non-overwhelmed arranging hereditary calculation III) is utilized to address the

multi-target advancement issue of assignment resource scheduling in cloud-edge figuring. At

long last, deliberate examinations and far reaching recreations are led to authenticate the

productivity of our proposed strategy.

In [131], The study's main objective is to schedule computationally demanding jobs from

mobile devices with limited capabilities to servers situated in edge networks by effectively

allocating resources. Reducing the average time it takes for these apps to finish is the goal.

. consider a framework model in which a lot of cell phones is associated with an edge server

by means of a common correspondence channel. What's more, study just because the resource

scheduling issue for general applications by representing the limit confinements of both the

correspondence channel and the edge server. initially detail a static resource scheduling issue

as a blended whole number direct programming issue. At that point, stretch out the static

issue to a dynamic resource scheduling issue in which an application can be executed

whenever. Because of the unpredictability of the issue, it is hard to acquire an answer inside a

practical time span. In the manner, propose a productive heuristic methodology dependent on

clog mindfulness. exhibit that our proposed heuristic calculation fundamentally beats past

resource scheduling calculations as far as the normal fruition time.

In [132], By processing calculations closer to users, edge computing is an emerging concept

intended to support low-latency applications like mobile augmented reality. Concurrently, new

serverless computing-based technologies are being developed in response to the need for

highly scalable stateless task execution in cloud systems.

In the paper, propose a novel design where the two combine to empower low-idleness

applications: the is accomplished by resource scheduling fleeting stateless assignments from

the client terminals to edge hubs. Moreover, structure a conveyed calculation that handles the

exploration challenge of choosing the best agent, in view of continuous estimations and

straightforward, yet powerful, expectation calculations. At last, portray another exhibition

assessment structure explicitly intended for an exact appraisal of calculations and conventions

in edge computing conditions, where the hubs may have heterogeneous systems administration

and preparing capacities. The proposed system depends on the utilization of genuine parts on

57

lightweight virtualization blended in with mimicked calculation and is appropriate to the

examination of a few applications and system situations. Utilizing our structure, assess our

proposed design and calculations in little and enormous scale edge computing situations,

indicating that our answer accomplishes comparable or preferable postpone execution over a

brought together arrangement, with far less system use.

In [133]The Quality of Experience (QoE)-based approach for Edge Computing computation

resource scheduling is the main topic of this study. In order to maximise user experience and

operational effectiveness, this strategy places data processing and decision-making near smart

mobile devices and end users—at the edge of the Internet.

Taking into account that keen gadget proprietors esteem both reaction time and battery life, it

is sensible to appropriately address the inactivity and vitality trade off. the paper catches a

client driven view to handle the resource scheduling booking issue by means of together

allotting correspondence and calculation assets with thought of the QoE of clients. figure our

structure as a blend whole number non-straight programming (MINLP) issue and fathom it in

an effective route by RLT-based branch-and bound strategy. Numerical outcomes show that

the proposed resource scheduling plan accomplishes an improved exhibition on dormancy time

In [134] ,The study in reference discusses the notable rise in mobile users (MUs) and Internet

of Things (IoT) devices, which has resulted in a sharp rise in complicated apps and media

services that require more computations and extensive data exchange. Nevertheless, the

processing capacity and energy of these devices are still limited. Furthermore, it is determined

that security is a crucial issue for the transfer of sensitive data. the examination displays a

multi-user asset portion and calculation resource scheduling model with information security to

address the confinements of such gadgets. To begin with, the calculation and radio assets are

mutually considered for multi-user situations to ensure the effective usage of shared assets.

What's more, an AES cryptography strategy is acquainted as a security layer with shield

delicate data from digital assaults. Besides, an incorporated model, which mutually thinks

about security, calculation resource scheduling, and asset distribution, is figured to limit time

and vitality utilization of the whole framework. At last, a resource scheduling calculation is

created with point by point procedures to decide the ideal calculation resource scheduling

choice for MUs. Reenactment results show that our model and calculation can altogether

improve the exhibition of the whole framework contrasted and neighborhood execution and

full resource scheduling plans.

In [135], the paper discusses a Wireless Powered Mobile Edge Computing (WP-MEC) system

where a hybrid gateway integrated with MEC servers charges N wireless devices (WDs) using

radio-frequency signals. Task resource scheduling for WDs is managed using the Time

58

Division Multiple Access (TDMA) protocol to optimize resource allocation and scheduling .

The objective of the paper is to augment the weighted whole calculation rate by joint

streamlining of framework assets the executives and undertaking registering time allotment. To

tackle the streamlining issue, a substituting bearing multiplier strategy (ADMM) based

dispersed advancement technique is proposed. The proposed technique can break down the

improvement issue into N sub-issues, which are illuminated by N WDs. Test results show that

the proposed technique beats the benchmarks and significantly expands the weighted aggregate

calculation rate while keeping the vitality utilization at a low level under the reason of time

In [136] Computational resource scheduling is a key technique that [136] highlights as being essential

to improving the use of smart toys, especially when smart toys are combined with edge computing

approaches. In such a model, task scheduling is critical to achieving ultra-low latency.

In any case, existing planning approaches on calculation resource scheduling experience the

ill effects of the accompanying shortcomings: 1) Heterogeneity: They plan assignments

without joint thought of the heterogeneity of move rate and handling capacity; 2) Optimality:

They neglect to locate the ideal arrangement effectively. In the paper, study a make span-

limited issue with joint thought of previously mentioned heterogeneity factors for a Toy-Edge-

Cloud engineering and plan it as a MILP model. To take care of the issue, propose a novel

ideal methodology incorporating the Logic-Based Benders Decomposition (LBBD) guideline

with Mixed Integer Linear Programming (MILP) models, where two refinement procedures are

proposed to create cuts productively. Broad examinations have been performed in which

manufactured applications portrayed by Directed Acyclic Graphs (DAGs) are mapped to

various heterogeneous process hubs. The outcomes show that our methodology essentially

diminished the general arrangement time contrasting with unadulterated MILP and LBBD and

outflanks other cutting edge draws near.

2.3 Summary of Cloud Computing Resource Scheduling Approaches

S.No References Methodology Limitations Challenges

1 In [121] Intelligent

algorithm

resource

scheduling

Limited

discussion on

scalability

Scalability: Adapting the proposed

intelligent algorithm for resource

scheduling to handle large-scale

mobile edge computing.environments.

59

2 Wang, Li,

et.al [122]

Agent-enabled

task resource

scheduling

Limited

exploration

of edge

server

scalability

- Scalability: Investigating the

scalability of the agent-enabled

framework for edge servers and

mobile devices.

3 Lu, Zhou,

et.al [123]

Deep

reinforcement

learning for

resource

scheduling

Complexity

of DRL

implementati

on

- Implementation Complexity:

Addressing the technical challenges

associated with the deployment and

training of deep reinforcement learning

models in heterogeneous edge

computing environments.

4 Huang,

et.al [124]

Deep Q-

network for

task resource

scheduling

Lack of

evaluation on

large-scale

networks

- Network Scale: Evaluating the

performance and scalability of the

deep Q-network approach in large-

scale mobile edge computing networks

with diverse edge server capacities and

mobile device distributions.

5 Lin, Li,

et.al [125]

Fruit fly

optimization

for task

resource

scheduling

Limited

applicability to

heterogeneous

networks

- Heterogeneity: Extending the

applicability of the fruit fly

optimization algorithm to

heterogeneous network environments

with diverse edge computing

capabilities and mobile device

requirements.

6 Xu, Zhang,

et.al [126]

Privacy-

preserving

edge

computing

resource

scheduling

Potential

overhead of

privacy-

preserving

methods

- Privacy-Performance Trade-off:

Balancing the need for data privacy

with the performance overhead

introduced by privacy-preserving

techniques in edge computing resource

scheduling.

60

7 Mazouzi,

et.al [127]

Lagrangian

relaxation

heuristic for

two-layered

edge

computing

scheduling

Sensitivity to

initial

parameter

settings

- Robust Optimization: Enhancing the

robustness of the Lagrangian

relaxation heuristic to initial parameter

settings and ensuring consistent

optimization performance across

various network scenarios.

8 Tang, Li,

et.al [128]

Deadline-

aware resource

scheduling

Limited

consideration

for dynamic

network

conditions

- Dynamic Adaptation: Developing

adaptive resource scheduling strategies

capable of dynamically adjusting to

changing network conditions and task

requirements in Geo-distributed edge

environments.

9 Xu, Zhang,

et.al [129]

Energy-aware

computation

Lack of

evaluation on

- Real-world Validation: Validating

the energy-aware resource scheduling

resource

scheduling

real-world

wireless

networks

approach in actual wireless

metropolitan area network

deployments to verify its effectiveness

and practicality.

10 Xu, Zhang,

et.al [130]

COM:

Calculation

resource

scheduling

Limited

scalability

analysis

- Scalability Analysis: Conducting

comprehensive scalability analysis to

assess the performance and efficiency

of the calculation resource scheduling

approach in large-scale IoT-enabled

cloud-edge environments.

11 Guo, Li,

et.al [131]

Efficient

resource

scheduling for

edge

computing

Simplified

modeling of

edge network

dynamics

- Edge Dynamics: Addressing the

challenges associated with accurately

modeling and optimizing complex

edge network dynamics to improve the

efficiency of resource scheduling in

mobile edge computing.

61

12 Cicconett,

et.al [132]

Prediction-

based agent

selection for

edge

computing

Dependency

on accurate

prediction

models

Prediction Accuracy: Mitigating the

impact of prediction errors on agent

selection accuracy through the

development of robust prediction

models and selection algorithms

resilient to uncertainty.

13 Luo, Li,

et.al [133]

QoE-based

resource

scheduling

Limited

consideration

for network

congestion

- CongestionManagement: Integrating

congestion-aware mechanisms into

QoE-based resource scheduling

algorithms to ensure optimal task

allocation and user experience in

congested edge environments.

14 Elgendy,

et.al [134]

Multiuser

resource

allocation with

data security

Performance

impact of

encryption

overhead

- Security-Performance Trade-off:

Balancing the need for data security

with the performance overhead

introduced by encryption techniques in

multiuser resource allocation for IoT

applications.

15 Chunlin,

et.al [135]

Joint

optimization of

remote

controlled edge

computing

Complexity

of TDMA

scheduling

implementati

on

- Simplified Scheduling: Streamlining

the implementation of time division

multiple access (TDMA) scheduling

mechanisms to reduce complexity and

overhead while ensuring efficient

resource utilization in remote-

controlled edge computing systems.

16 Li, et.al

[136]

Make span-

constrained

task scheduling

Sensitivity to

task

variability

Task Variability: Addressing the

challenges associated with task

variability by developing adaptive

scheduling algorithms capable of

dynamically allocating resources based

on varying task characteristics.

62

2.4 Summary

explore the domain of hybrid load balancing optimization models tailored for Cloud IoT Edge

environments. With the rise of the Internet of Things (IoT), traditional tasks undergo

significant transformations, necessitating efficient processing, transmission, and retrieval of

data from a multitude of tangible products such as cars, homes, and appliances. The literature

discusses the emerging trend of users outsourcing data to service providers equipped with

ample storage capacity at reduced costs, proposing a secure and efficient storage protocol

leveraging elliptic curve cryptography and a sober sequence for data integrity validation.

Additionally, a comprehensive data and software processing protocol executed by cloud

customers is outlined to enhance privacy enforcement structures prior to data transfer to the

cloud, supplemented by challenge-response protocols for secure credential management.

Dynamic data operations are also highlighted to bolster security measures, mitigating risks

associated with data leakage and corruption while providing users with enhanced assurance

and relief from potential challenges. The subsequent chapter delves into the realm of hybrid

load balancing optimization for cloud resources.

63

Chapter 3

A Cloud IoT Edge Application Hybrid Load Balancing Optimization

There are a variety of load balancing strategies that academics have developed,with the

majority of focus being placed on resource management, resource scheduling, resource

allocation, and resource scheduling.

3.1. Introduction

Cloud computing has accelerated the use of resources, commercial applications, and web-

based information interchange in academics and industry in the real world of today [66, 67].

As part of distributed computing, which preserves information and programmers, millions of

PCs are intricately connected and transmitted to a central, distant worker. Since they are

required to pay according to how the administration or utility processing facility uses its

resources, end consumers gain from it combination of enhancements that put the idea of

virtualization into practice, including programming, systems administration, load balancing,

asset assignment, transmission capacity consumption, dissemination registration, and web

figuring. It gives high accessibility, adaptability to non-critical failure, and a decrease in

overhead for various improvements. The sole need for distributed computing is a web-

connected terminal; it is not dependent on the software, platform, or web application that users

utilize. The ability of a small association or the IT sector to make all the offices operate in the

serious business environment without the need for human interaction is growing in popularity,

which has led to a rapid increase in data volume and velocity [69].

The Internet of Things is affecting daily chores [66]. In order to enable the processing,

dissemination and retrieval of information, the IoT develops a range of real things like actual

appliances, automobiles, and homes that have integrated hardware, software, sensors, and

internet connectivity [93] [94] [95]. IoT has advanced as a result of greater data generation.

The Items Cloud Network for the Internet of Things enables illicit contact with inexpensive

IoT sensors, demonstrating amazing accessibility; users will soon have access to billions of

pieces of intelligent, smart equipment. Services online are sorely needed. The Internet of

Things has benefited a wide range of industries, including those involved in precise

manufacturing, healthcare, energy, transportation, and similar fields. [66]. It's good news for

computer scientists and system designers that internet service providers are rapidly increasing

the number of networking solutions they offer. Studies focus on IoT applications and

advancements. IoT systems and hardware are now being created to accommodate future

64

Even as mobile devices and social media continue to dominate the world, there is a lot of

debate about what will happen next. The solutions of the hour are the Internet of Things, the

digital revolution, and this straightforward fix. It's critical to Figure3.1 represents out how to

make the stored data available since the web constantly pushes out massive volumes of data

that strain the data network [83]. The value of computers as a tool has greatly changed for both

individuals and businesses with the emergence of the cloud. Using technology to make

information accessible globally puts a lot of strain on this due to the interoperability and

processing of the concerns [84]. The cloud, which has established itself as a successful

platform for data transmission via formal network devices and as a motivated lead link, has

made it feasible to utilize this scalability. Due to the superior information quality and security

it offers during the transformation process, many businesses opt to utilize a simultaneous direct

connection to the cloud transformation data, even if this is not the ideal option [70].

Different manufacturers have all supplied private, public, and hybrid clouds, and each one

provides a variety of heterogeneous resources with varying compute (CPU/GPU), memory,

and network capacities. The bulk of these clouds, however, are not compatible and do not

permit the exchange of computation or data [85]. Due to vendor lock-in, clients are typically

forced to employ the data analytic s services of a single cloud provider, which results in missed

chances for both parties' businesses and income (customers and providers) [86].

3.2 Methodology

The Internet of Things (IoT) paradigm is all about connecting various gadgets and

programmers in a network. One of the key goals of the Internet of Things is to cater to the

specific requirements of end-users and convert the vast and diverse data generated by these

countless IoT devices into valuable insights [1]. Industry and academia are both intrigued by

the potential of the IoT to enhance people's daily lives [2]. With the rapid advancement of IoT

and mobile communication technologies, there has been a significant increase in the number of

IoT devices and apps. This has resulted in a wide range of user-friendly services being made

available to end users [3,4]. Nevertheless, the computational and energy demands of IoT

devices have seen a significant increase [5,6]. Due to the limited computing and energy

capabilities of IoT devices, these applications cannot be efficiently serviced [7]. By leveraging

cloud computing, IoT devices can offload computing tasks to powerful cloud servers,

effectively addressing the issue of limited computing resources [8,9].

Numerous challenges arise when dealing with client requirements, device types,

communication needs, network bandwidth limitations, computing power constraints, and

operational costs, all of which impact the effectiveness of the IoT network. An effective

resolution to the IoT resource allocation problem (IRAP) will significantly enhance system

65

performance, establishing it as a highly significant subject. Efficient management of data

centers requires careful resource scheduling and allocation. This helps to balance the load,

optimize resource utilization, and minimize carbon emissions [10]. Data centre computers

often handle applications, while intelligent sensor data is regularly transmitted to cloud data

centers. Due to the growing demands of IoT applications, energy consumption and

performance degradation are becoming major concerns. This raises the question of how to

effectively implement IoT applications. Processing of IoT applications is shifted to the

network's edge instead of cloud platforms with fog computingl.

When it comes to IoT systems, the data collected by sensors is typically sent and stored in the

cloud layer for additional analysis. However, this process can be quite resource-intensive,

leading to concerns about latency. This cloud-based IoT environment is not equipped to handle

these latency-sensitive conditions [12]. Fog computing is a cutting-edge approach to

distributing processing and storage resources to IoT devices with limited resources. Within fog

computing, a number of compact devices known as edge devices are strategically placed in

close proximity to the IoT sensor layer. After the data is processed, it is sent to the cloud layer

for storage. This helps to eliminate any delays and offers greater computing capabilities

compared to regular IoT sensors. In a fog computing system, devices or sensors have the

ability to assign their tasks to nearby fog nodes that have the necessary computational power or

storage, rather than sending them to the cloud module that may be located further away [13].

With fog computing, the communication time between IoT nodes and computer servers can be

significantly reduced compared to cloud computing. Therefore, it is crucial for this sector to

adopt fog computing.

Our proposed method adopts an adaptive data skew load balancing optimization methodology

with four separate phases. Data per-processing, the second phase, divides large volumes of

data into several slices based on table column size, and data modeling, the third phase, divides

data into multiple files or folders [74]. The first phase is cloud-edge to IoT communication,

which separates the process into resource discovery and selection. It is used for efficient

querying. Due to its high degrees of parallelization and low workload, the method can provide

an even closer approximation to an intermediate data distribution that does not suffer from data

skew issues. The third stage is cloud scheduling, and the fourth is cost evaluation.

66

Figure 3.1 :Cloud Edge IOT Architecture diagram

3.2.1 Cloud-Edge to IoT Connectivity

Any other regional scheduler in such a cloud-edge situation can directly communicate with

other cloud-edge scheduler nodes for the purpose of allocating jobs to IoT-distributed nodes.

Every cloud-edge scheduler node looks to have a collection of wireless edge node scheduling

methods with which they may communicate, or there can be a single location where much of

the data that matters to each planner is kept [75, 76, 77]. In Figure 3.1 [78]represents , the

structure of continuing communication between the cloud-edge and the IoT centralized

planning framework is depicted.

Each job that couldn't be completed immediately was added to the edge work database. Instead

of directly interacting with the cloud edge, the main grid may be able to choose appropriate

jobs to prepare theas sets[79].The pool's research must always be completed;thus,steps must be

done to assure this.The hierarchical scheduling strategy isseenin the diagram below.

3.2.2 Resource Discovery

Creating a list of authorized tools for job submissions is the main goal of asset exploration. To

effectively manage the intricacies of the cloud, a scheduler requires a system that integrates

advanced state information about the required equipment with the decision-making process

[80]. The decision-making mechanism of this single-processor computer bears resemblance to

that of a typical compiler. The programme can provide the user with information on the

available number of displays and usable units, including their availability status and whether

they were previously occupied. When utilizing these resources, it is crucial to consider the

memory requirements, other data setups, and social connectivity delays that will be

implemented. The programmer successfully accomplished this task by utilizing their expertise

67

to arrange the instructions in the most efficient manner, resulting in a reduced asset accuracy

period. Just like a systems analyst, the arranger will have a deep understanding of the tools

they can use, the complexity of their task, the time it will take for them to interact and

communicate with each other. By utilizing this data, the scheduling algorithm is able to

optimize job planning, resulting in a more efficient and advantageous utilization of available

resources. When it comes to resource discovery, a public cloud often utilises different

configurations such as pulling, moving, or push-pull architecture. Through the asset inventory

step, the existing assets (R available) for job application and execution in a cloud environment

were identified.

3.2.3 Choice of assets

The selection of potential point assets, which best met the user's needs and took into account

Windows' support for software, cloud services, IoT integration, and edge computing—

including considerations like CPU consumption, usable RAM, and disk space—was the second

step of the planning phase. The initial stage in resource selection is to locate research data.

Chosen in which every resource must fulfill a job's or task list's requirements [81]. Connecting

chosen and accessible resources.Rselectedassets:30 Rselected⊆Ravailable

Figure 3.2: Internal working of partition and cluster phase

On the cluster, every reducer operates. For applications that process each intermediate cluster

key-value pair separately in a reduced stage, it could be unnecessarily restrictive. Data skew

may be drastically reduced by separating clusters [89]. A single reducer must be assigned to

the whole cluster if cluster splitting is not allowed. When cluster splitting was not permitted,

the entire cluster had to receive a single reduction. After the partitioning stage has been

finished, the partition is separated into buckets in this step called bucketization, depending on

the column hash function in the database to add more context to a detail and be utilized for

more effective searches.

68

3.2.4 Resource Scheduling

On the cluster, every reducer operates. For applications that process each intermediate cluster

key-value pair separately in a reduced stage, it could be unnecessarily restrictive. Data skew

may be drastically reduced by separating clusters. A single reducer must be assigned to the

whole cluster if cluster splitting is not allowed. When cluster splitting was not permitted, the

entire cluster had to receive a single reduction [90]. After the partitioning stage has been

finished, the partition is separated into buckets in this step called bucketization, depending on

the column hash function in the database to add more context to a detail and be utilized for

more effective searches.

Resource Management When activities are planned, timing consists of two parts. The first

stage begins with obtaining the minimum execution times for all of the processes for the

common supplier. In the second stage, the bare minimum tasks from the limited set of tasks

created in the first phase are selected, and the bare minimum workflow scheduling is given to

the anticipated resource [91]. The processes are continued until all jobs are linked to the tools.

3.3 Proposed Nearest Master Server Load Balancing Algorithm with Co processor

Integration

A suggested method for load balancing in a cloud computing environment is presented in the

following section. This algorithm aims to achieve resource optimization by efficiently

distributing computational tasks and network traffic across devices. Load balancing in IoT

enhances system performance, reliability, and scalability by preventing bottlenecks and

maximizing resource utilization. Through dynamic load distribution, it enables IoT networks to

handle varying workloads effectively, manage bandwidth utilization, complete tasks within

deadlines and respond to clients promptly [92].

Shay Vargaftik et al. introduce the Locally Shortest Queuing (LSQ) class of load balancing

techniques. In these methods, each controller utilizes Join Shortest Queue (JSQ) on its local

view and maintains its own, albeit occasionally outdated, estimate of computer waiting time. A

minimal amount of connection overhead is associated with periodically updating this local

view. The network exhibits high resilience as long as these local estimates of service waiting

time remain accurate, despite being based on assumptions. Simulations demonstrate that, given

identical communication allowances, simple and robust LSQ policies perform exceptionally

well and significantly outperform existing low-communication strategies.

The Balancer Genetic Algorithm (BGA), a novel load balancing scheduler, is provided by

Rohail Gulbaz et al. [59] in order to improve make span and load balancing. Inadequate load

balancing may lead to an overhead in resource utilization when certain resources are idle. BGA

69

load balancing takes into account the actual weight, expressed in millions of instructions sent

to virtual machines. Additionally, the importance of using multi-objective optimization to

improve work scheduling and load balancing is stressed. Different batch sizes and skewed,

normal, and uniform work distributions are used in the trials. BGA has significantly

outperformed numerous state-of-the-art methods for make span, throughput, and load

balancing.Centralization of cloud-based IoT services (apps and data) has been a trend since the

introduction of the Internet of Things concept, which allows for the management and

orchestration of a large number of Web devices. In order to effectively monitor a group of

sensors using IoT management services, an IoT gateway must minimize the frequency of

network link overloads or failures connected to it. To address these problems, we employ a

cloud of things load balancing technique. In this section, we report our findings, deployed and

implemented accomplishments, and results evaluation.

The fundamental goal of a load-balanced cluster system based on simulated annealing is to

increase network lifetime while preserving sufficient sensing coverage in situations when

sensor node data transmission is irregular or regular. Through simulation experiments, we

demonstrate that the proposed algorithm can improve the range of communications services

and that network coverage may be increased by keeping more network devices operational for

longer periods of time at low computation cost [61]. This is in comparison to the most popular

state-of-the-art clustering approaches. Resource-constrained networks find various applications

in everyday life. It is a challenging task to find a consistent load balancing technique that

would extend the lifespan of these networks. The technique considers variables including hop

count, remaining energy, and distance in order to optimize energy consumption among

network users and extend network lifetime. Our proposed system performs better in

simulations than the current systems in terms of characteristics like throughput, node lifespan,

packet loss ratio (PLR), communication costs, latency, and computation expenses. Furthermore,

our proposed approach prolongs the lifetime of WSNs and safeguards individual nodes from

current methods in the operational environment.

Wireless sensor networks are a type of self-system with limited power and transmission

sources (WSN). Based on a greedy anticipated energy cost measure, a potent heuristic update

technique is used to optimize the route establishment. Lastly, to reduce the power consumption

brought on by the control overhead, EBAR employs a power opportunistic broadcasting

technique. The results of this exhaustive analysis show that EBAR provides a significant

improvement over the state-of-the-art techniques, such as EEABR, Sensor Ant, and IACO.

Centralization of cloud-based IoT services (apps and data) has been a trend since the

introduction of the Internet of Things concept, which allows for the management and

70

orchestration of a large number of Web devices. In order to effectively monitor a group of

sensors using IoT management services, an IoT gateway must minimize the frequency of

network link overloads or failures connected to it. To address these problems, we employ a

cloud of things load balancing technique. In this section, we report our findings, deployed and

implemented accomplishments, and results evaluation.

Since RPL was not designed with IoT devices in mind, several problems persist even though it

greatly satisfies IoT network requirements. First, a description of the CAOF, which takes the

node's context into consideration while calculating the score. Additionally, CAOF avoids the

thundering herd effect by gradually regressing from a highly positioned number and reaching

the actual rank amount. Second, we present a novel routing metric called context-aware routing

metric (CARF), which minimizes the legacy of previous parents as it moves further down the

path by recursively analyzing parent chain queues and electricity usage as they approach the

root. Evaluation findings show improved network lifespan and decreased packet loss when

compared to the RPL standard specification. The way the system is set up, the node data is fed

into our proposed hybrid cloud, which makes the selection using the suggested AI model. After

data collection, the simulation analysis does the load balancing, optimization rate, skew rate,

and consumption rate analyses. The node- mcu network cloud is established as a hybrid cloud ,

which is the hardware analysis and data modelling is done to do optimization rate, skew rate,

and consumption rate analysis..

Algorithm: Nearest Master Server Load Balancing Algorithm with Co processor

Integration

Step 1: For each request i, where i ranges from 1 to n.

Step 2: Each request i is sent to the Master jk, which is nearest to its region.

Step 3: If Maxjk > i (where Maxjk is the threshold capacity of the master server): -

If the task is equal to Tserver or Tconn through arguments: -

If Tconn is equal to "yes", the request is moved to the guide co-processor and Net_T. –

Calculate Tevent_ex = Ttotal - Texec(Tconn + Tserver). –

While Tconn = carry out on scale also co-processor Tconn - Tdeadline: -

71

For each i from 1 to n, remaining event elements: -

If co-processor index is even (f) and TRemeven[i] is equal to 0, it indicates successful

updating of data, and Veven increases. - Otherwise, if index is even (f) and

TRemeven[i] > 0, Tnreal - Veven will transition to ideal c. –

End of loop. –

End of if condition.

End of step 3.

3.4 Implementation

The parameters outlined for the results mentioned above encompass various aspects of cloud

computing and infrastructure management. These include the utilization of virtualization software

(VMs) alongside cloud computing and storage services, as well as the integration of automation

technologies for deployment and management processes. Capacity management and manual

intervention remain crucial for optimizing resource allocation and ensuring operational efficiency.

A notable trend is the adoption of containers as a preferred approach over traditional virtual

machines, offering greater agility and scalability. These parameters collectively define the

landscape of cloud infrastructure management, guiding decision-making and shaping industry

practices towards more efficient and adaptable solutions.The basic parameters for data validation

has been cross-validated by considering map reduction and its optimization, by taking

consideration of oversampling classification methods. The evaluation matrix was also considered

for model validation. Before we used any model, we validated using statistical tools and there

after we went for ML analysis.

The implementation of the algorithm begins by processing requests and distributing them to the

nearest master server. If a server's capacity surpasses a threshold, tasks are reassigned based on

their release and deadline times. For tasks requiring real-time processing, they are moved to a co-

processor to optimize resource usage. The algorithm then executes tasks and updates their

execution times accordingly. Successful updates are counted for both even and odd-indexed co-

processors. Overall, this approach efficiently manages task distribution and execution,

considering server capacities and real-time requirements, thus enhancing the overall performance

and resource utilization in the system.

72

3.5 Results

The system utilizes node data as input for the suggested hybrid cloud, which employs an AI

model for selection decisions. It is structured into simulation and hardware environments,

delineated in below Figure 3.3 shows . Simulation analysis entails load balancing, followed by

data aggregation and subsequent optimization rate, skew rate, and consumption rate analyses. In

the hardware analysis phase, a node-mcu network cloud is established as the hybrid cloud,

facilitating data modeling for further optimization rate, skew rate, and consumption rate analyses.

This comprehensive approach allows for a thorough evaluation of the system's performance and

efficiency across both simulation and real-world hardware environments.

Figure 3.3:Make span Time analysis

Figure 3.4: Showing the overall hybrid cloud set up for consumption rate analysis.

73

In Above Figure 3.4 represents illustrates the comprehensive setup of the hybrid cloud

specifically designed for conducting consumption rate analysis. This setup incorporates both

cloud-based and edge computing elements, ensuring a balanced and efficient distribution of

computational tasks and network traffic. The hybrid cloud architecture seamlessly integrates

various resources, including servers, edge devices, and networking infrastructure. By leveraging

the capabilities of both cloud and edge computing, this setup optimizes resource utilization and

enhances overall system performance. Additionally, it enables the evaluation of consumption

rates across different components of the hybrid cloud environment, providing valuable insights

into resource consumption patterns and efficiency metrics.

3.6 Summary

In the landscape of bulk and stream analysis programs, the utilization of virtualization software

(VMs) in conjunction with cloud computing and storage services has become commonplace.

While automation technologies have significantly streamlined deployment processes, the

intricacies of capacity management and the need for manual intervention persist to ensure optimal

performance and resource allocation. Recognizing these challenges, there is a discernible shift

towards containerization as the preferred approach for managing cloud workloads. Containers

offer greater agility, scalability, and efficiency compared to traditional VMs, enabling

organizations to adapt more seamlessly to fluctuating workloads and resource demands. This

trend underscores the industry's ongoing pursuit of innovative solutions to enhance cloud

infrastructure management and maximize operational efficiency.

74

CHAPTER 4

Map Reducing Task - An Optimal Partitioning Balancing Method for

Solving Data Skew Problems

Using a distributed software approach, the programming paradigm Hadoop allows for more

effective parallelism of huge datasets. To produce the correct outcome, the information is split

initially.

4.1 Introduction

4.1.1 Map Reduce Computation

They offered map-reduce techniques that rely on Hadoop systems. To guarantee more precise outcomes,

they created the recommended model in a simulated setting. In the MATLAB environment, they skillfully

put the suggested system into practice for this study. Hadoop instantly restarts each process in a fresh

instance on a different server that has a backup copy of the data. The developer is blind to the complexity

of the debugging procedure [96].

The reduction and mapping methods that functional programming languages like Lisp use to enable Map

Reduce are described in depth in the aforementioned Figure 4.1 shows The map and reduce functions in

this paradigm solve problems related to virtual computation [97]. All issues can be automatically

parallelized thanks to the formulation. Using the Map Reduce paradigm, users create functional-style code

for map and reduce components. The relationship between these components is made much obvious by

arranging these pieces into a flowchart. In , the Hadoop running time technique effectively handles

resources to accommodate several modules and surmount obstacles such fault tolerance, network

connectivity, and parallelization [98]. The key set is added to a group of key/value pairs that are produced

by the mapper or Both the type of input keyword and values, as well as the display format for keys and

values, are probably going to change.

(key1; value1) →list (key2; value (2) ... (1)

The reduced method produces a list of new values from the entry of a keyword and the list of

values it is connected with:

(key2; list(value2)) → list(value3) … reduce (2)

75

A Map Reduce application consists of two distinct phases that operate simultaneously. Early on, each

map-related task can be finished independently. Each reduced operation in the second phase could be

determined by any number of mapping processes' outcomes. Like map procedures, each reducing approach

can be executed on its own [99].

4.1.2 Uses of Map Reduce

Using Google:

Creating an index for Google.com

Clustering of articles for News Websites

-Statistical

translation software at Yahoo!:

Creating an indexing for Yahoo! Search

- For malware detection Using Yahoo Mail on Facebook

-Ad optimization

-Spam detection

4.2 Methodology

4.2.1 Map Reduce Workflow for mapping the resources and task

A mapping script and a reduction script must be written by designers when building a Map Reduce process.

The current jobs will be managed by the Elastic Map Reduce (EMR) architecture on Amazon. When

designers start a map/reduce method, this architecture divides the inputs into 11 parts and transmits each

part to a separate machine. Each processor's supplied data is used to run the map script [105].

The map script you write will convert the inputs into keys, values, and pairs based on your specifications.

Imagine a situation where someone has to determine how frequently a particular phrase appears in a given

text. In this instance, the phrase can be stored as the key and the accompanying count as the value by using

key-value pairs.Map Reduce produces a word; there is a <> pair for each word in the input file. It's

important to note that, in contrast to the map script, the reduction script manages all aggregates and real

tallying. The map script will convert the data into key-value pairs so that the reducer may aggregate them

[106].

76

The generated key and value pairs are rearranged in the illustration below, resulting in the

grouping of pairs with the same key. These grouped pairs are then delivered to a virtual device,

where the reducing script is executed on them. The reduce script provided by the user is utilized

by the reduction script (also provided by the user) to decrease a collection of keys and

corresponding values. In our word count example, we are analyzing the occurrences of each term

to establish its frequency. Our decrease scripts should simply sum up the values of each key-

value combination with identical keys, just like a systems analyst would do. The example in

Figure 4.2 shows represents effectively demonstrates the situation [107].

Figure 4.1:Word Count Example

This Java class extends Map Reduce Base and implements the Mapper interface. It defines a map

function that takes the Long Writable key and Text value as input and emits key-value pairs using

Output Collector. It tokenism each line of text into words and iterates over them. For each word

encountered, it sets it as the key and emits a key-value pair with the word and a fixed value of 1.

This class essentially maps each word in the input text to a count of 1, which is aggregated in the

reduce phase for further processing, such as counting word occurrences in a document.

This Java class extends Map Reduce Base and implements the Reducer interface. It reduces the

function by taking a Text key and an Iterator of Int Writable values as input. It iterates over the

values, accumulating their sum. After processing all values for a given key, it emits a key-value pair
with the original key and the sum as the value using Output Collector.

77

4.2.2 Word Count Mapper

This class essentially aggregates all the values associated with each key, producing a final sum

for each unique key, which can represent various computations such as counting occurrences or

calculating totals in a distributed environment like Hadoop Map Reduce.

78

4.2.3 Word Count Reducer

4.3 Proposed System

Two different datasets kinds can be used as joining relation inputs. Skewed datasets have an

impact on execution time. I5-4590 quad-core processor, 8 GB of RAM, and a 2 TB hard drive

File block A sizable amount of various sensor data is sent while interacting with an Internet of

Things (IoT)system via a gateway and when a non-negligible amount of time has passed since

the data was sent, the data is made available to patient surveillance IoT servers or medical

professionals.As a result, warning signals that point out unusual patient situations tough to be

transmitted (or pushed) more quickly than normal data. The gateway's job includes classifying

and prioritizing the data received from AI Clouds and scheduling data transfers by those

categories is 128 MB, and the Reducer frequency is 20 and objectives [108].

The Protocol Converter and the Monitoring Query Language (MQL) Scheduler are two modules

that are included in the following phase, as depicted in Figure 4.3 represents. The Sensing module

and the Network Manager module make up the bulk of an Assessment Designated Node (ADN-

AE) self-aware is in charge of identifying and evaluating the sensor signals generated by

AICLOUD users. The Remote Console module receives the sensor data, and it, using the

information gleaned from the sensor data and the information collected from the Network

Manager module, generates oneM2M signals. In an environment with common security (CSE),

the security administrator, signal receiver, and load Balancer cooperate to keep the network

79

secure from outsiders. The Network Manager module is in charge of coordinating with ADN-AEs

and other network administrators as well as managing the entire CSE procedure. The

Management Console module keeps track of resource trees, which also include details about each

thing that the IoT system is capable of controlling when it is active. It is made up of the Network

Exposure (NSE), the Strategic Communications and Delivery Handling (CMDH), the Network

Service Exposure Execution and Triggering (NSSE), and the Common Service Functions (CSFs)

controller components.

That system includes the MQL Scheduler, which was created to facilitate scheduling for several

classes using Q-learning. The CMDH module is in charge of communication (policy) and buffer

management, whereas the NSE component is in charge of one M2M message transmission. Both

CSF and NSE connections' sessions are managed by the NSSE module. Based on the MQL

scheduling mechanism, which will be covered in greater detail in the following sections of this

work, the MQL Scheduler module chooses scheduling options for sensor data transfers [109].

Figure 4.2: Internal Components of the one M2M(Machine-to-Machine) Internet of Things System

The one M2M (Machine-to-Machine) Internet of Things platform's core structure is displayed in

Figure 4.2 . It is made up of the Reference Point and Message Handler/Protocol Converter

modules. The Communication Receiver module converts OneM2M Basic and Hypertext

Transmission Protocol (HTTP) messages. HTTP headers and Extended Markup Language (XML)

are processed by the Estimation module. The oneM2M basic message to HTTP message mapping

is displayed in Shown below Tables 4. 1 and 4.2.To undertake this investigation, software

applications for protocol conversion to the oneM2M system were implemented. The oneM2M

protocol and the ISO/IEEE 11073 standard are translated by the state's MN-CSEs. The Windows-

based there are three C# classes in the protocol converting component.

80

They consist of the following:

The entire protocol conversion procedure is under the control of the AICLOUD Message

Manager class. Additionally, it brings inbound messages to the protocol conversion module and

sends them to the Message Handler for AICLOUD.The Resources Tree Manager's job is to

construct resource trees for the gateways; therefore, the AI CLOUD Signal Handler class

converts protocols and transmits its output to that person.The AICLOUD Message Template class

manages multiple ISO/IEEE 11073 message templates. The use of templates speeds up protocol

switching and allows for the speedy creation of related messages.

In Figure 4.2 above shows represents, modal analysis for the protocol conversion process is

displayed. Skew Tune, a version of Hadoop that can dynamically balance the workload between

mapping and reducing processes inside of a job, was created in response to Skew Reduces

limitations claim. Skew Tune makes the premise that different invocations of the user-defined

map and reduce functions are independent of one another since Hadoop programmers

automatically re balance the load. Depending on the work, this can result in a re balancing of the

burden at the level of individual records for map tasks and important groups for reduction tasks

[110].

In a Map Reduce-type system, each operator operates independently from the others in the data

flow. This means that each operator reads and writes data to the disc on its own, without being

dependent on the other operators in the data flow. It is designed for systems such as Map Reduce.

Similar to a systems analyst, Skew Tune constantly evaluates the workflow during a UDO to

identify the specific task that is causing delays and taking up excessive time, thus hindering the

project's progress. The raw input data is allocated to the available nodes that are ready to take

over once a job of this nature has been identified and terminated. Re partitioning may occur when

the resource is idle or when additional nodes are added to expedite the process, such as when

utilizing spot instances in Amazon EC2. If there are no processes with significant data skew,

Skew Tune will not impose any additional strain on the system as it will not be necessary. If a

node is idle and there is at least one task that is expected to take a long time to complete, the task

with the longest projected remaining time is terminated [111].

Based on the expected future availability of every node in the cluster, it partitions and

parallelisms the remaining input data for that task, resulting in faster overall processing

performance. Skew Tune operates in the background when not in use, identifying and removing

bottleneck jobs as they appear until the project is finished. Skew Tune divides work according to

the anticipated availability of each node in a cluster to expedite project completion. Depending on

how well current activities are going, one can estimate the available resources. To make the most

81

of the nodes that are currently accessible or are anticipated to become available soon after a job

has been completed, the remaining unprocessed input data is partitioned.

Figure 4.3: Program Modules for the Processor Protocol Conversion

Skew Tune also makes it possible to reproduce the original output by simply concatenating the

output of split processes, which significantly decreases the detrimental effects of re-partitioning.

The features of the Hadoop Map Reduce engine allowed us to employ the Skew Tune technique.

According to the results of the tests, Skew Tune can reduce completion time by a factor of up to

four without requiring any code modifications. It also puts the least amount of demand on the

system's processing resources when Skew is absent. The following are only a handful of the

lessons discovered: The Skew Tune technique also demonstrates that dynamic load reallocation is

feasible for UDOs that adhere to a well-defined Application Programming Interface (API), such

as Hadoop, and in which the system is capable of re-balancing load without generating an issue

with the application. The cost of load re-allocations is small compared to the advantages because

82

of the possible savings. This method can duplicate a skew from any source, including cluster

circumstances, hardware failure, mis configuration, improper input data order, and so on, making

it more flexible than static planning.

The following are interconnected strategies that can be effective under challenging conditions:

The use of skew-resilient operators, which can be implemented in a variety of ways, is one

method for dealing with skew [112].Before the small partitions are dispersed acceptably, a certain

number of small divisions in the input data are produced, and the cost of each partition is

estimated. Second, divisions that have gotten too big are further divided using a different method.

Given its ability to utilize scalable resources for effective data processing, this activity is relevant

to cloud computing. The deployment and improvement of MapReduce frameworks to efficiently

handle data skew difficulties are made easier by cloud platforms, which provide elastic

computing, storage and management options.structured formats . Large-scale data set data skew

issues can be successfully handled by these formats, which allow for effective processing within

MapReduce frameworks.

An analysis is conducted to investigate the causes of skew in Map Reduce applications, and the

occurrence of the issue is assessed in three real Hadoop clusters. Skew Reduce and Skew Tune

are two systems that use different methods to eliminate skew. Skew Reduce takes a static

approach, while Skew Tune uses a dynamic approach. Future research should priorities

enhancing programming interfaces, execution models, static and dynamic analysis, and multi-

tenant optimization. Through the map reduction approach, we successfully identified the issue of

reducer load imbalance during the joining step. When interacting with an Internet of Things (IoT)

system through a gateway, a significant amount of diverse sensor data is provided, and Once a

significant amount of time has passed since the data was received, it becomes accessible to

patients monitoring IoT servers or medical experts. This approach offers greater flexibility

compared to rigid planning as it can mimic various scenarios, such as cluster conditions,

hardware failure, mis configuration, and incorrect input data order.

4.4 Implementation

Response Time (RT): Response time measures the average time taken to process and respond to

a request within the IoT edge system. It is calculated by summing up the processing times for all

requests and dividing it by the total number of requests. A lower response time indicates a more

RT = (Sum of processing times for all requests) / (Number of requests)

Throughput (TH): Throughput represents the number of requests or tasks processed per unit of

time within the IoT edge system. It is computed by dividing the total number of requests by the

83

total processing time. A higher throughput indicates that the system can handle a larger number

of requests within a given time frame, showcasing its capacity and scalability.

TH = (Number of requests) / (Total processing time)

Resource Utilization (RU): Resource utilization measures the efficient usage of computing,

storage, and networking resources within the IoT edge system. It is calculated by dividing the

actual resource usage by the total available resources. This metric provides insights into how

effectively the system utilizes its available resources. Optimal resource utilization ensures

efficient performance and avoids under utilization or over utilization of resources.

RU = (Actual resource usage) / (Total available resources)

Load Balancing Efficiency (LBE): Load balancing efficiency evaluates the balance achieved in

terms of resource utilization and task distribution across the IoT edge system. It is calculated by

dividing the standard deviation of resource utilization across nodes by the average resource

utilization across nodes. A lower LBE indicates a more evenly distributed workload,

demonstrating efficient load balancing and resource allocation.

LBE = (Standard deviation of resource utilization across nodes) / (Average resource utilization

across nodes)

Fault Tolerance (FT): Fault tolerance measures the system's ability to handle failures or

disruptions without significant impact on overall performance. It is calculated by dividing the

number of completed tasks by the total number of tasks. A higher fault tolerance indicates a more

resilient system that can gracefully recover from failures or disruptions, ensuring uninterrupted

operation.

FT = (Number of completed tasks) / (Total number of tasks)

Scalability (SC): Scalability assesses the system's ability to handle an increasing number of

devices, tasks, or requests. It is calculated by analyzing the change in system performance relative

to the change in workload. A salable system exhibits consistent performance even with a growing

workload, indicating its ability to efficiently scale up or down based on demand.

SC = (Change in system performance) / (Change in workload)

Energy Efficiency (EE): Energy efficiency measures the amount of energy consumed by the IoT

edge system to perform tasks. It is calculated by dividing the total energy consumed by the

number of completed tasks. A higher energy efficiency indicates a system that minimizes energy

consumption while maintaining optimal performance, reducing operational costs and

environmental impact.

84

EE = (Total energy consumed) / (Number of completed tasks)

To improve the classification capabilities of the hybrid load balancing optimization model for the

cloud IoT edge, different machine learning models such as support vector machines (SVM) and

decision trees (DT) must be explored and tested. While conventional neural networks (CNN) are

often employed for image-based classification tasks, SVM and DT models have distinct benefits

and may be better suited for certain cases.

SVMs that use both linear and non-linear classification issues. SVM seeks an ideal hyperplane in

the feature space that divides various classes. We may assess the model's accuracy, scalability,

and applicability for classification jobs in the cloud IoT edge environment by evaluating the

hardware on SVM models. SVM is a helpful alternative to CNN because of its capacity to handle

high-dimensional data and its competence in dealing with complicated decision boundaries.

Decision trees (DT) are a simple and easy-to-understand technique for categorization. Based on

the properties of the incoming data, they build a tree-like model of choices and their outcomes.

DT models are well-known for their capacity to handle both numerical and categorical data, as

well as non-linear connections. We may evaluate the performance, interpret ability, and

efficiency of DT models in the context of load balance optimization on the cloud IoT edge by

adding them to the testing process. We may learn about the merits and drawbacks of SVM, DT,

and other classification models by testing and assessing them alongside CNN in the context of the

hybrid load-balancing optimization model. This allows us to choose the best classification.

method based on criteria like accuracy, interpret ability, computing needs, and the peculiarities of

the IoT data being analyzed. Finally, this multi-model assessment helps to ensure the load

balance optimization model's efficacy and flexibility in a variety of cloud IoT edge scenarios.

By testing and assessing SVM, DT, and other classification models alongside CNN, we may

acquire a thorough knowledge of their strengths and shortcomings in the context of the hybrid

load-balancing optimization model. This multi-model assessment allows us to choose the best

classification algorithm based on aspects such as accuracy, interpret ability, computing needs, and

the peculiarities of the IoT data being processed. It also contributes to the efficacy and flexibility

of the load balancing optimization model in a variety of cloud IoT edge contexts, since alternative

models may perform better based on the individual application needs and datasets characteristics.

4.5 Simulation results for load balancing

We analyze the substantial performance improvements attributed to the proposed algorithms

through simulations. To ensure impartiality, we utilize the Peer Sim simulation engine, which

offers both cycle-driven and event-driven models.

85

n i

Table 4.2 provides the simulation parameters and their respective values for our algorithms,

derived from customer churn data related to network data services. Each trial of the simulation

runs for 50 cycles unless otherwise specified. The maximum number of nodes is set to three times

the minimum number of nodes to ensure variability and robustness in the simulations Each trial

of the simulation runs for 50 cycles, unless otherwise specified." the maximum number of nodes

is three times the minimum number of nodes. Thus, we set the proportion of nodes arrival to

departure at 1%:1%, 1%:3%, and 3%:1% such that the number of nodes is kept the same,

decreasing to roughly one-third, or increasing to 3 times, in 50 cycles. Finally, to indicate the

reliability of the simulation results, each selected data point in our plots represents the average

simulation result over 5 trials. Under the 220-node simulation scale, each trial takes about 10

hours. Shown in Tables 4.2 below list the parameters of our simulations, and the values we set

unless otherwise specified.

4.6 Partitioning Skew in Map Reduce

The outputs of map tasks in a Map-Reduce application are distributed among reduced tasks

through hash partitioning, which is the default method. During the map phase, a hash function is

used to determine the partition number for each type of key-value pair. This partition number

corresponds to the number of reduced tasks. The hash function is typically sufficient for evenly

distributing the data. If the outputs are not evenly distributed, hash partitioning may fail due to

skewed data. This occurrence is known as partitioning skew. As an expert in analyzing systems,

consider the Inverted Index application. In this case, the hash function can divide the intermediate

data based on the initial letter of each word. This means that reducers handling more commonly

occurring letters will have a larger amount of data to process. Partitioning skew may arise due to

various factors [16].

Data : A :{a1,a2...an},K
Re sult : R : resource  allocation
low max{ai}

high1 a
num 0
while(low  high)do
mid low (high  low) / 2
end
return

Uneven workload distribution can occur due to the significant variation in value sizes in

applications. Imbalanced key frequencies: Certain keys have a higher occurrence in the

intermediate data, resulting in an overload of reduce tasks that handle these popular

86

keys.Execution times can vary depending on the size of the key-value pairs being processed.

Processing a single, large pair may take longer than processing multiple smaller pairs. Even if the

partitioning function evenly distributes keys among reducers, the execution times of reduced

tasks can still vary due to the varying number of values in the assigned key groups.During the re-

partitioning process, the partition results from the map phase are divided and combined once

again [17]. The key-value pairs in one partition are therefore separated and merged into another.

When a reduced task requests partition data based on the results of a new partition, the distributed

data is stored in various locations within the split files, leading to a non-sequential and inefficient

data reading process. One of the main challenges in virtual partitioning is determining the

appropriate partition number for the key-value pairs of R based on the hash key %R function.

Typically, the number of reduced tasks in R is determined by the types of input key-value pairs,

rather than being set as a default value. We believe that the optimal number of virtual partitions

falls within this range. Once the value of R is determined, the partition number no longer

corresponds to the reduced task number based on the hash key %R. Each partition in the map

phase can be processed by a reduced task that has some uncertainty associated with it. This type

of partition is referred to as a virtual partition.

Every virtual partition is a crucial component of a physical partition that has been restructured.

Once the reduced tasks have all the necessary information from the map phase, a balancing

algorithm determines the specific relationship. The importance of virtual partitions is to distribute

the key-value pairs as widely as possible, thereby offering a greater variety of combinations for

the subsequent re-partitioning process. Users have the freedom to choose the number of virtual

partitions N based on the characteristics of the application, system resources, and the degree of

dispersion of key-value pairs. We divide the output of all map tasks into virtual partitions to

ensure a fair distribution among reducers. Nevertheless, the performance of the partitioning phase

can be greatly impacted by the quantity of virtual partitions. When there are only a few virtual

partitions, the system can retrieve the metadata information for each one more efficiently. On the

other hand, a decrease in virtual partitions may result in an inequitable allocation among reducers.

Gathering worldwide output data. Similar to a systems analyst, the re-partitioning process

optimizes the communication between map tasks and reduced tasks by dividing the original

process into two phases: (1) gathering the metadata output of each map task and (2) combining

the information in the reduced tasks. Figure 4. 2 represents illustrates the process of acquiring

metadata for reduced tasks. Here are the step-by-step instructions:After all map tasks are finished,

the output is stored on the local disc. The Task Tracker utilizes heartbeat information to

communicate with the Job Tracker and notify it of task completion.The Job Tracker maintains a

queue for each Map Reduce job to track the completion of map tasks. When a reduced task in the

87

Task Tracker requests a completion message for the map task, the Job Tracker promptly removes

the message from the queue and delivers it to the appropriate Task Tracker.Within the same Map

Reduce job, a reduce task receives a completion message for the map task from its Task Tracker.

Extracting the runtime information of the map task from the completion message involves

retrieving details such as the map task number and execution node information. With this information,

the reduced task establishes an HTTP connection with the execution node and requests the

metadata information output of the map task.

When a map task is assigned a request number, the Task Tracker retrieves the relevant index file

of the map outputs from the local file system and transfers it to the corresponding reduce task.The

reduce task combines the virtual partitions with matching index numbers from various index files.

It collects the data from each virtual partition that shares the same type of key-value pairs.

The re-partitioning process divides the collected virtual partitions into new partitions with the

same number as reduce tasks, just like a systems analyst would do. By optimizing the re-

partitioning process, it is possible to reduce the data size of the largest partition. Additionally, it

can decrease the processing time required for the maximum partition, resulting in faster

completion of the entire reduced phase and an increase in the rate of completed jobs and system

throughput.

Table 4.1:Simulation Environment

Environment Default values

Network size 2

Ratio of node arrival:departure 1%:1%1%:3%3%:1%

Number of meta data for each node 10

Node capacity distribution Pareto:shape 2

Simulation cycles 50

Table 4.2: Algorithm Parameters

Algorithm parameters Default values

α 1.4

β 25%

ϒ 2.0

κ 4inf irst10 cycles ,2in11to20cycles,1inlast30cycles

88

4.7 Results and Discussion

This MATLAB function 'go' simulates message propagation along a given path, updating the

timeline and energy consumption. Initially, pastime is set based on the message duration. It, for

each node in the path, the timeline is updated incrementally. Energy consumption is calculated

based on node-to-node distance and message size. If it's not the last node, energy is computed

considering transmission and reception. Otherwise, only reception energy is considered. Finally,

the function returns the timeline and energy consumption arrays.

In this investigation, we have provided a cloud environment with 50 nodes, and the above

diagram demonstrates the AI for cloud message position for that environment. When there is a

single source and 50 or 100 destination nodes for two different cloud environments, the message

transmission techniques in Below Figure 4.5 are utilized. The simulation model underwent a

total of 100 permutations and combinations. The result description includes an attachment that

lists the top five combinations for each cloud environment.

50 nodes make up Cloud 1 and 100 nodes make up Cloud 2. The message communications for

Cloud 1 are shown in Figures 4.4 and Figure 4.5 represents whereas the message communications

for Cloud 2 are below shown in Figures 4.6 and Figure 4.7 ,Figure 4.8 represents. Based on the

findings, we developed the suggested method using MATLAB to achieve more than 90%

accuracy compared to earlier exciting when a communication network grows in size.The more

accurate and precise the model is in the particular cloud, the better the communication protocol

will be. MATLAB node-to-node communication is seen here.

89

Figure 4.4 : The AI Cloud Messenger Position for Cloud1 with 50Nodes.

90

Figure 4.5 :The AI CloudMessenger Position for Cloud2 with 100 Nodes

Figure 4.6 : The Different Path of Messages over the Node for Cloud1

91

Figure 4.7 :The Different Path of Messages over the Node for Cloud2

Figure 4.8 :TheDifferentPathofMessagesovertheNodeforCloud2

92

Figure 4.9 : The Different Path of Messages over the Node for Cloud2

4.8Summary

Map Reduce API gives users a lot of freedom when creating UDOs, it also puts a lot of

responsibility on their shoulders to handle a wide range of performance difficulties. Skew is one

of the challenges that many individuals are dealing with regularly these days. We first look at the

causes of skew in Map Reduce applications, and then we investigate whether the problem exists

in three actual Hadoop clusters. We gave an overview of two systems that, respectively, use static

and dynamic methods to remove skew: Skew Reduce and Skew Tune. Future studies should

concentrate on enhancing programming interfaces, execution models, static and dynamic analysis,

and multi-tenant optimization. We identified the reducer load imbalance for the joining procedure

in the map-reducing approach.

93

CHAPTER 5

Novel Framework for Resources Optimization to Solve Class

Imbalance Problems

To generate a solid and efficient data set, order to produce a solid and efficient data set, the use of

an under-sampling methodology depends upon properties chosen and suggested in this study.

Compared to other algorithms, this method is compared to other techniques shown to be more

resilient.

5.1 Introduction

Numerous certifiable spaces include class imbalance datasets problems, including identifying

erratic memory management, text analysis, splitting tasks, divulging callers, language diction

scooping up, looking out petroleum hydrocarbons in remotely sensed photos, publicizing clients,

most especially medical research. Within those situations, dominant ruling groups typically exert

self-serving influence over the assessors, which causes the classification to exhibit traits of

minority categories in an unsatisfactory manner; ultimately, a classifier addresses everyone as the

majority class and ignores the minority class. Different writing-based procedures have been put in

place to address issues related to awkwardness in class [113]. These days, several factors need to

be considered simultaneously, including class coverage, paired courses, the expenditure of

miscalculation and other class difficulties. This makes research subjects like this one both

fascinating and challenging. Issues of dual classes linked to cut-the-head data have made

headlines but issues of classifier balance with diverse sorts of issues are not truly treated. Feature

Data: Details or characteristics that each dateset instance is described by. Feature data, which

contains numerical, categorical, or textual data pertinent to the issue area, is essential for training

machine learning models.

1 Class Distribution Data: Details on how the classes are distributed throughout the datasets.

This information directs the optimization process and aids in determining the degree of class

imbalance.

2 Computational Resources: The resources needed to run the optimization framework, such as

memory, computing power, or storage capacity. To achieve scalability and performance,

computing resources must be used efficiently.

3. Cluster Data: Information produced by clustering techniques that illustrate how related

instances within a data set are grouped. By resolving class imbalance, this information is used in

94

the optimization process to improve classification performance.

4. Model Performance Metrics: Measures include accuracy, precision, recall, F1-score, and area

under the ROC curve (AUC) that are used to assess how well categorization models perform. The

optimization process can be improved with the use of these metrics.A portion of the datasets

called the "training data" is utilized to train machine learning models. Building predictive models

that can effectively address class imbalance requires training data.

5.2 Methods for Dealing with Skewed Data Streams
In Data Stream we are using Two methods

a)Under-sampling: Under-sampling, another examination approach, solves the issue by lowering

the proportion of the elephant's mutual fund appearances. This is often affected by swapping

between the majority class events or by randomly selecting the appropriate number of majority

class role models. The clustering approach is typically used for under-inspecting. The best

delegate from the dominating part class is chosen using bunching, and the preparation lump is

changed as necessary. The next section examines some of the writing's under-inspecting-based

approaches. A separate methodology was used to regulate data skew streams. They employed a

grouping + sampling strategy to manage a skewed data stream. The centrists from each of the ten

individuals were utilized to finish the experiment after a series of negative models were generated

utilizing the current preparing story's k-suggest calculation [118].

b)Customary Approaches: Each one of the parameters was taken into account when creating the

groups. The prepared cluster It was updated by collecting all particular models from around

centrists of the significant adverse models once the range of groups created was equal to the value

of giving rise in the current treatment clump. These studied events were used to create another

classifier. The outfit's additional dimensions were set such that any classifier present in the

gathering may have a nearby replacement based on examples that had been analyzed. The top

classifiers to work with the firm were chosen using the AUROC metric

5.3 Implemented Design for Resource Optimization to solve Class Imbalance problems

Educational Pricing The cost structure is a combination of internal and strategic factors. It

combines various objectives, incorporates changes at the computational and informational levels,

and modifies the learning process to incorporate pricing and independent cost assessments. [120].

When considering the reduction of the total error price of the three classifiers and taking into

account the higher misdiagnosis cost of the minority class, the computer classifier tends to exhibit

a bias towards that particular group. Furthermore, incorrectly labeling someone as a breast

carcinoma patient is considered to have a low rate of false positives (although it was previously

certain outsourced judgmental). However, this is a highly delicate and expensive situation to

95

correct distortions, as demonstrated in an analysis of the complex costs associated with a specific

minority group of neoplastic individuals.

A client's unfortunate demise can occur due to a misdiagnosis or failure to obtain the necessary

treatment [121]. When considering ways to reduce categorization and overall test costs, it is

important to take into account the cost lattice for cost-sensitive learning and the costs associated

with defining and upgrading them. Distinctly approaching the classes safeguards the integrity of

the classifier model based on the Back Propagation algorithm. Information bias has been a long-

standing issue. Several AI systems have been developed in the past decade to address information

imbalances. Given the dynamic nature of this field, numerous challenges need to be addressed,

particularly when dealing with imbalanced and intricate samples.

The specific wording [122] has taken into account a wide range of possible methods for handling

class irregularity. Examining current data and6 selecting several examples of each classification

that are excessively large in comparison to others is one method to stop the spread of data class

knowledge. This method is referred known as under-sampling. Arbitrarily resampling has the

main problem of potentially discarding data that could be crucial for the lesson. However, as this

cycle forms the precision of previous examples, over fitting may happen more frequently for

anomalous frame interpolation.

5.3.1 Data Multi Dimensional

An emphasis extractor or included evaluation can be used to reduce the dimensions. To create a

cheap vector of lights, a combination of user satisfaction in the second phase, as opposed to the

primary technique, which eliminates factors with a negligible influence on the output [123]. The

three major categories of existing element determination techniques are channel, covering, and

installation strategies. They alter how the choice computation and model structure are combined.

Filters choose highlights while giving the model minimal consideration. They only rely on

general characteristics, such as the relationship with the anticipated variable. Wrappers employ

learning techniques to analyze which highlights are useful. To finish the examination of the

subgroups of highlights, a grouping model is employed. The spotlight subset found in the

selection interaction is acceptable for the particular computation since one framework is

employed for both assessment and characterization.

In embedded strategies, the expansion of the classifier and the element selection step are

intertwined. The best arrangement of highlights is produced when the classifier is generated, and

the classifier's predictions affect the choice.Considerations for information asymmetry when

choosing features The following requirements should be met by a sound component selection

strategy. a few guidelines, namely: reliability, validity, and repeatability. The designers have

96

deduced that, at the very least, several tests are anticipated to achieve reliable component

selections. The lopsidedness of the classes is another source of highlight determination's

unpredictable results. The development of several fake preparation examinations is one strategy

for handling the aforementioned problem. It, using both the new information and the earlier ones,

highlights subsets that may be polled. In previous exams, we have experimented with

oversampling methods as well as other include determination methodologies. We have

demonstrated how a certain layout can significantly impact the accuracy of grouping. As a result,

not every data modifying plus emphasis selection strategy mix is highly useful.

5.3.2 Skew rate consumption

Considering the data skew rate is crucial when optimizing load balancing for IoT edge devices.

An elevated data skew rate can significantly impact the performance and efficiency of load-

balancing algorithms and models. It could lead to imbalanced resource utilization, longer

processing job response times, and inefficient allocation of computer resources. Statistical

measurements like the coefficient of variation, Gini coefficient, or entropy can be used to

determine the data skew rate. These metrics assess how data is spread out and distributed among

different entities or divisions. As an example, the coefficient of variation can be calculated by

dividing the standard deviation by the mean of the data distribution. Similarly, the Gini

coefficient is a statistical measure that evaluates the level of inequality in a data set. On a scale of

0 to 1, the value of 0 represents perfect equality, meaning there is no skewness. Conversely, a

value of 1 indicates maximum inequality, suggesting high skewness. Entropy can also be utilized

as a metric to evaluate data skewness. It measures the level of uncertainty or information

contained in a data set. Similar to a systems analyst, one can observe that higher entropy levels

suggest a greater degree of data skewness, suggesting that the data is more widely spread or

unevenly distributed. By calculating and evaluating the data skew rate, you can gain valuable

insights into the distribution patterns of data in the IoT edge system. This data can be used to

enhance load-balancing algorithms, efficiently allocate resources, and ensure the system can

handle uneven data distributions.

5.3.3 Novelty of the system

The methods for dealing with skewed streaming data. We provided a technique for efficient

learning at a low cost for resource optimization. It fixes the data difficulties with skew. Unless

otherwise specified, the classifiers and component selecting techniques utilized their default

upsides of boundaries. By under sampling the data, we were able to get a 75% accuracy, but the

remaining data was essentially wasted. By under-sampling and employing a cost-effective

learning strategy, we were able to obtain a 71% accuracy. The oversampling method helped us

97

achieve an accuracy rate of 78%. The model works better with oversampling, enabling us to get

perfect results.

5.4 Implemented Design of Cost-Effective Learning Method for Resource Optimization to

Solve Class Imbalance Problems

The idea underlying the used strategy is as follows:

With large datasets, certain include conventional methods are employed. The risk can be

minimized by using a pipeline, either with or without taking the pricing structure into account. In

any instance, before the readiness material is evaluated by the investment grid, the lattice

evaluates the broad set to see whether the basic analyzer can manage event loads.The shorter the

matrix of spotlights in the collection, the more SMOTE technique is comfortable with

oversampling minority groups. The work assignment is completed for the information set up as

shown above. A few metrics that are appropriate for unbalanced information are tried to evaluate

the channel presentations both with and without weighting.

To complete the research, the obtained results are also contrasted and these Depending on how

the material was initially arranged, judgments (as opposed to one that has all of the highlights

per-selected, for instance.).It can be challenging to choose the right features for the expenditure

attice. Typically, the workloads are chosen so that each group receives their maximum number,

the cost of mis classification is quite equivalent. This method does not always work, and in many

cases, it is important to choose alternative features that will more effectively lessen information

sleekness's adverse effects the recently published study focuses more time and effort on the

inaccurate classification of models as advantageous. A class of negative people exist. By

deducting the total of the tests taken by learners in the greater section of the class from the total of

the tests taken by students in the minority class, the expense for such a minority class is

calculated. It should be noted that the cross-approval system implemented both over fitting and

element selection. An analysis using a student MS test with such a 95% significance level is used

to evaluate changes in characterization accuracy. An overview of the actualized idea is shown in

Figure 5.1 represents.

98

Figure 5.1: Developed strategy for the issue of minority classification allocation

5.5 Methodology

Load balancing involves distributing the workload evenly across available IT resources to ensure

fairness. Ensuring the continuous operation of a service, even in the event of a failure, is of

utmost importance. This involves implementing procedures that optimize resource utilization.

Load balancing is essential for reducing task delay and maximizing resource utilization, leading

to improved system performance and cost savings. It offers great versatility and flexibility for

users with different dimensions that may change in the future, requiring additional IT resources.

Another objective is to minimize energy consumption and carbon emissions, while also

preventing traffic congestion by providing necessary resources and meeting quality of service

standards [9, 13]. Consequently, it requires a suitable load planning mechanism that takes into

Our approach stands out due to the distributed computation abilities of the LSTM, where each

node independently constructs its load vector by collecting data from other nodes. Using a

distributed approach, our model is designed to make decisions based on local load vectors. This

approach can be used to address dynamic and adaptive system topology. It takes into account the

current state of the system during load balancing to detect any changes in system status.

Additionally, it allows for the dynamic adjustment of parameters. Our approach enhances system

efficiency by reducing task response time and maintaining acceptable delays through the

implementation of distributed computational ability. we have integrated hardware NODEMCU

AI cloud with local cloud were our hybrid cloud was created, and then our model was validated.

The ANN technique proposed for our research work, is entirely depended on the cloud

infrastructure we are using. In our case we have used hybrid deep learning model for learning

99

accuracy to be optimized.

These methods typically treat tasks in a first in, first out (FIFO) manner. Approaching tasks in

this way may not be the most effective scheduling strategy, especially when tasks have different

latency constraints and computational loads. In our proposed approach, numerous cloud cells can

be included in both the US26 and Euro28 networks to compute the task as required. The novelty

of our approach has two significant contributions to knowledge. It offers a flexible design that

allows for customization of metrics such as scalability, performance, response time, and

associated overhead. Scheduling rules and clustering objectives can also be adjusted to meet the

specific needs of applications and network requirements. Although our approach utilized only the

US26 and Euro28 networks, this design can be adapted to meet the requirements of other

networks. Additionally, our strategy focuses on simplifying the optimization of multiple

parameters. This offers a high level of perceived user quality and a satisfactory service level

agreement (SLA).

A recurrent neural network equipped with LSTM [16]. Training long temporal relationships in a

regular recurrent neural network can be challenging due to the issue of gradient evaporation or

inflation over time. However, LSTM has the potential to create long-term dependencies by

maintaining a consistent flow of errors through 'constant error carousels' (CEC). Numerous

modifications have been implemented to the original LSTM since that time. A thorough

examination was conducted on the implementation of LSTM in Sak's "predicted" form. LSTMP

devices are equipped with input and output gates. The input gate of the LSTMP unit regulates the

control signal going into the memory cell, while the output gate manages the data being sent out.

The forget gates of LSTMP enable the dynamic process of forgetting and resetting memory

cells.Every LSTMP unit consists of a projection layer that is both recurrent and non-recurrent.

Two projection layers are consolidated into a single layer. The LSTM Neural Network is a variant

of the Recurrent Neural Network (RNN) that effectively addresses the issue of the growing

gradient problem. The neural network's efficient back propagation of the error correction is

hindered by this gradient problem, which is a new fact. Consequently, it cannot acquire

information from extensive datasets, indicating that the RNN has a limited memory. This

limitation prompted the creation of the Long Short-Term Memory variant. The construction of the

LSTM is depicted as a chain, accompanied by a solitary memory cell. Every large square block in

this picture represents a memory cell.

100

5.6 Results and Discussion

Python environment under the Windows operating system will be used to conduct the experiment

by summing the findings of the 10 rounds of cross-validation used during the testing, the total

display rating was produced. Each overlay contained images out of each class to approximately

the very same extent, as per the criteria of acceptance. Both the component-choosing processes

and the classifiers that were employed used the default upsides of borders. Unless otherwise

established in any circumstance. For resource efficiency and to address the issues with data skew,

we created an affordable learning approach [124].

5.6.1 Re-Weighting

The costs for instances belonging to minority classes are larger using this loss function. By

utilizing the parameter balance and the reweighting function provided by the package, we can

determine the class weights for imbalanced datasets. These weights correspond to the weights

given to each class.

5.6.2 Learning Rate Scheduler

The optimizes default approach for calculating learning rate values is a constant learning rate.

Selecting the proper learning rate is a challenging procedure since doing so maximizes training

optimization. To start, our example demonstrates that our experiment operates effectively with l r

=0.001. This might serve as a base for many studies with learning rate algorithms. To more

effectively accommodate specific situations, the gradient descent schedule controls the optimizes

back propagation algorithm during the testing period. Whether or not to alter the learning rate

depends on changes in the value of the loss function [125]. There are several types of learning

rate schedulers.

101

5.6.3 Warm-up Learning Rate

This approach gradually lowers the faculty's pace of development at the start of the testing period

before gradually raising it after an agreed-upon quantity of eras. Eventually, the fundamental

parameter has been reached. Despite jogging with large-scale datasets frequently leading to early

fitting, it is still feasible to train against this problem.

5.6.4 Step Decay Learning Rate

For a set number of iterations, this method alters learning speeds. The learning basics rate is set

up using a system call, which supplies it with specified numbers.

5.6.5 Cosine Decay Learning Rate

In this approach, we first construct a learning phase rate and It calculate the dropping learning

rate by multiplying it by the aging function. Its learning rate will thus decrease during this test

datasets.

5.6.6 Adaptive Decay Learning Rate

This method lowers the proportional gain during an epoch whereas if the error rate rises, and

raises it during an epoch if the percentage error falls. To avoid over-flattering, the parameter

slowly rises if there is not an improvement in deviation. In this research, an adaptive learning rate

scheduler will be used to train the long-tailed data set. We may also assess our trials using various

schedulers for learning rates.

5.6.7 Data Augmentation and Resampling

There are two easy ways to deal with uneven datasets: resampling and increasing as an example.

Resampling is a data collection technique that involves using data from the majority class initially

and then giving the minority class additional information. This procedure has two variations:

under sampling, where information is omitted, and oversampling, when data is included [126].By

selectively augmenting the data, we can resample and improve the balance of the dataset. An

image can only be improved by rotating it by 10 degrees and increasing its brightness from 0.2 to

1.0. (We are also capable of enhancing data in other ways.)

5.6.8 Change Loss Function

Focused reduction is a typical error term used to solve the issue of minority class. Focal loss aims

to reduce numbers that the model has accurately predicted, as opposed to seeking out outliers or

bad predictions. In plain English, the loss function calculates the amount of estimating error in

102

5.6.9 Label Smoothing

In training circumstances, if the classifier gets too optimistic, it could generalize well, especially

when employing imbalanced datasets in classification issues, regularization approaches such as

label smoothing are routinely used to keep the model from becoming cocky and arrogant in its

label projections [127].On predicting customer attrition, we have worked. To determine the

reasons why consumers are leaving a firm, use customer churn prediction. Your data was initially

integrated into the system. Age, Relationship, Descendants, Job, Multiple Phones, Internet

Service, Users Require, Tech Help Agreement, cashless payment, streaming media, and

television Repayment Approach, Rotation, Overall, Fees, and Weekly Fees.

Data: Create a hybrid cloud infrastructure by joining NodeMCU devices to local servers for

effective data collection and network distribution

The source node s(d) is requesting a set of available resources from the cloud data centre.

Result: Task assigned to the resources in a well-balanced order.

By combining cloud services with on-premises infrastructure, a hybrid cloud configuration

maximizes resources to overcome class imbalance. Initial data preprocessing and storage are

handled by on-premises servers, which lowers data volume and ensures security. Scalable cloud

instances handle intensive computations like model training and hyper parameter tuning.

Protocols for safe, fast data transfer make it easier to communicate across environments. Tasks

are distributed via dynamic load balancers in accordance with available resources and workloads.

Utilizing the advantages of both local and cloud resources, auto-scaling and continuous

monitoring guarantee high-performance and low-cost operations while addressing class

imbalance.

Update the availability of resource nodes.

Perform a search to check for availability. During the search:

Retrieves nodes Match the balanced resources to the task nodes If no task is available, it is set to

no task End Attribute values cannot be handled directly by the method. We achieved a

75%accuracy by under-sampling our data, but the left over data is effectively thrown away

Figure 5.2: Displaying the Visualization of the Churn Fore cast

103

Figure 5.3:Displaying the Churn Forecast

Table 5. 1 :Under Sampling

Class report precision Recall f1-score support

0 0.84 0.72 0.77 1034

1 0.76 0.86 0.80 1034

Accuracy 0.79 2067
macro avg

0.80 0.79 0.79 2067
weight avg

0.80 0.79 0.79 2067

Table 5. 2 :Over sampling

Class report precision recall f1-score support

0 0.90 0.68 0.78 1033

1 0.47 0.78 0.59 374

Accuracy 0.71 1407
macro avg 0.68 0.73 0.69 1408

Weighted avg 0.78 0.71 0.73 1408

104

With the oversampling technique, we obtained a 78% accuracy rate. Up-sampling improves the

model's performance. Using an expense learning strategy on under sampling, we were able to

gather the knowledge required to convert the categorical variables into a control system of 71%.

Format that is acceptable to the algorithm. Here, the data is being converted into numerical using

one hot encoding technique[128].

Table 5. 3: Classification

Classification

report:f

precision Recall f1-Score support

0 0.76 0.76 0.76 375

1 r 0.75 0.76 0.76 374

accuracy 0.76 749

macrology 0.76 0.76 0.76 749

weighted avg 0.76 0.76 0.76 749

5.7 Summary

By fusing clustering techniques and classification algorithms, this framework offers a novel

solution to issues with class imbalance. The framework uses clustering to find subgroups within

each class rather than addressing the imbalance directly in the datasets. The class imbalance

problem can be better handled by the following classification models by optimizing resources

through this clustering stage. By initially classifying the data into meaningful clusters, this

strategy presents a fresh viewpoint and improves the performance of subsequent classification

tasks. The system attempts to show better performance than conventional approaches for

managing class imbalance in machine learning through experimentation and validation.

105

Chapter 6

A Robust Resource Allocation Model for Optimizing Data Skew and

Consumption Rate in Cloud-Based IoT Environment

The cloud-dependent resource allocation strategies for IoT environments include some subgroups

like Scalability, Perspective, Bandwidth, Electricity, and Expenditure prioritization have been

explored and characterized. The IoT framework also provides possible facilities to raise the IoT

ecosystem's efficiency on the cloud.

6.1 Introduction

In modern computing systems, workloads in Map Reduce may experience delays for various

reasons, with data skew being a significant factor. To enhance efficiency and mitigate skew-

related issues, this chapter examines different types of skew prevalent in the Hadoop Map Reduce

architecture. Strategies aimed at reducing skew, including Skew Tune (dynamic), Skew Reduce

(static), LIBRA, and LEEN, are also presented and discussed. Foundational characteristics of IoT,

internet, and resource top management.

6.1.1 Internet of Things

The network of things provides the consumer with access to a wide range of advantages and

features. As a result, several components are required for effective utilization. The next

paragraphs will go over the IoT components.Below shown Figure 6.1 depicts the pieces needed

to give IoT capabilities.

The Web of Things offers the following characteristics and benefits to consumers:

A).Enhanced convenience: With the help of a cell phone or another attached gadget, customers

may remotely operate and monitor their gadgets at any time and from any location thanks to the

Web of Things.

B).Greater energy effectiveness: By automatically adjusting their energy consumption in

response to real-time data, smart devices may reduce energy waste and utility bills thanks to the

Internet of Things.

C).Increased safety and security: linked webcams and door locks, for example, may keep

families and residences safe by sending out real-time warnings and allowing for remote

monitoring. Personalized experiences: With the incorporation of sensor and data analytic s, the

Web of Things makes it possible for devices to adapt to the preferences and needs of each

106

user.Easier maintenance and repairs: Consumers may maintain their connected devices in

excellent working order by receiving notifications when repairs or maintenance are required.

a) Identifiers

Given its ability to accurately identify every object in the network, the process of object

identification plays a vital role in the design of the IoT. Recognition consists of two essential

steps: naming and addressing. Addressing refers to the location of the item, while naming is the

label assigned to it. While they are interconnected, distinguishing someone through naming and

addressing are distinct methods. Several techniques, such as the implementation of universal

identifiers like electronic product codes (EPCs) and Code, have the potential to enhance the

efficiency of item naming within the network. These techniques help with assigning unique

names to network objects, promoting efficient data transfer and communication. Dealing with [32]

is a crucial step in the identification process.

Every component of a connection has its unique IP address, which simplifies its identification on

different networks. Initially, addresses were assigned using IPv4. However, as the number of

devices connected to the internet increased, it became increasingly challenging to meet the

growing demand. Due to its robust identity and location mechanism of 128 bits, IPv6 has become

widely adopted. This method enables a wide range of unique addresses, ensuring effortless

recognition and location of every item in the network. Ultimately, the process of identification

plays a crucial role in the design of the Internet of Things as it provides each object with a unique

identity within the network. While name and address are closely linked, they serve distinct

purposes in the two levels of recognition. The success of IoT applications relies heavily on the

network's capacity to efficiently communicate and transmit data, facilitated by the utilization of

universal IDs and IP addresses.

b) Sensing Devices

This calls for the collection of environmental data and its delivery, remote or through cloud-based

analyses, to local IoT sensor applications. Smart devices, portable sensors, or actuators could be

recognizable. The information-filled storage media receives the information that has been obtained.

Many detection tools, including data-gathering technologies, consist of Portable devices: Due to

their accessibility and usability, portable devices like tablets, laptops, and smartphones are

frequently employed as data collection tools.

I. Actuators: Actuators are devices that transform electrical information into actual actions, such

as releasing a valve or switching on a motor. By keeping an eye on the motions or operations of

equipment or gadgets, they may be utilized to collect data.

107

II Smart sensors: Pressure, temperature, humidity, and motion are just a few of the physical

phenomena that these instruments track and measure. These were frequently utilized for data

collection and tracking in industrial and Internet of Things systems.

III RFID labels: these are little, electrical gadgets which might be affixed to items and offer

tracking and identification in real-time. They are frequently used for data collection and inventory

tracking in logistics and supply chain management.

IV Wearable sensors: These tiny electronic gadgets may be placed on the body to collect

information on physiological variables including blood pressure, heart rate, and activity levels.

They are often utilized for data collection and monitoring for medical and fitness applications.

c) Instruments for Collaboration

IoT communication networks trade a variety of objects to deliver services that are intelligent.

Another among the major components of the IoT is communication, which entails connecting and

permitting interaction between various devices. At the network layer, devices may send and carry

letters, documents, and other kinds of data. At the network layer, these devices are capable of

moving and exchanging a broad variety of data kinds, including text-based data like messages,

documents, and communications. They may transfer audio, video, and multimedia files as well.

As IoT devices are utilized more often, an increasing amount of data is being transmitted over

them. Effective and efficient communication protocols must be for managing this information

flow. Communication is facilitated via a variety of technologies, including beta [42], near-field

communication [55], Wi-Fi [25], RFID [1], and (LTE).

d)ComputerDevice

Utilizing devices, the information gathered by the gadgets is computed. It is used to supply the

Internet of Things with capabilities. The Gadgetry, Arduino, and Raspberry Pi are examples of

hardware platforms, however, software programs need a computer system to run. Android, Mini

OS [35], Riot OS [14], Lite OS [16], and other operating systems represent just a few of the

various platforms and operating systems in use today.

e) Semantics

To simplify user duties, the Internet of Things was created. It is a particularly significant part of

the Internet of Things since it is accountable for

108

Figure.6.1:.IoT Eco system basics components

performing its responsibilities. It functions as the IoT's brain. It decides how to react after

carefully assessing all available possibilities and sends signals to the machinery.

To study an IoT architecture, one might use perspectives that are things-focused, internet-oriented,

or semantically oriented [12]. According to a perspective focused on things, NFC and RFID

technology are used to connect intelligent, automated, and directed devices for a range of

common purposes. The actual items or gadgets which make together the IoT system are the main

emphasis of the things-oriented approach. This viewpoint takes into account the devices'

capacities, restrictions, and connectivity possibilities as well as how they communicate with one

another and the larger network.

This viewpoint aims to create an IoT system that is effective and saleable and can manage an

enormous amount of gadgets as well as the flow of data. How these smart gadgets connect to the

Internet and employ unique identities like Internet Protocol (IP) addresses is the subject of an

Internet-eccentric point of view. and tried-and-true network technologies to facilitate global

communication among these application-based linked phones. Distinctive identities, such as IP

addresses, that enable devices to connect to the internet and interact with one another are

routinely used in these exchanges.

Bluetooth, Wi-Fi, and cellular networks—all well-known network technologies—are employed to

make it possible for these application-based linked devices to communicate across national

boundaries. For instance, an iOS or Android app that connects to a smart thermostat through WiFi

or cellular networks enables remote control of the thermostat is available. By enabling smooth

communication and control among mobile devices and the web, the internet-eccentric strategy

109

Table 6.1: List the main method applied to every module and Important Technology Components

for IoT

r

supports the development of a more connected and smart environment. A wide range of sectors,

particularly health care, transportation, including energy, will be significantly impacted by this

strategy. A semantic viewpoint on IoT architectures claims that relevant information is delivered

utilizing data produced by IoT devices, thus resolving challenges with architectural modelling

[40]. The semantic- oriented approach is focused on the organization, comprehension, and use of

Element Internet

of Things

Fundamental Systems

Classification IPv4 and IPv6, ubiquitous coding (uCode), embedded device codes

(eCodes), as well as,

Sensing RFID tags are used as actuators, detectors, and monitoring tools.

Communications

Bluetooth, RFID, NFC,LT), and radio frequency identification (RFID) are

examples of wireless technologies. WSN, or wireless sensor network. A

group of geographically separated sensors working together to monito

environmental or physical factors is known as a wireless sensing network

(WSN). Beta is a variation of Bluetooth that enables rapid data

transmissionbetween devices. (LTE) is a wireless internet access protoco

for mobiledevices and data terminals. Using electromagnetic

fields,RFID automatically r e c o g n i z e s and tracks tags that are

fastened to items. A wireless technology for communication called

Near Field Communications (NFC) is ut i l i z ed for close-quarters

transactions like
contact-less payments. The last norm for mobile internet access for

mobilegadgets and data terminals is called LTE (Long Term Evolution).

Computation Raspberry Pi, Arduino, and Intel's Galil operating system.

Services a generally conscious knowledge aggregation linked to an ever-present

identity

Semantics OWL, RDF, and EXI

110

the information produced by IoT applications and services. This viewpoint takes the data's

semantics into account significance and potential applicability to other domains and ontologies.

This point of view strives to make analytic s, Information exchange and interoperability across

several applications and domains conceivable.

These three layers are referred to by a lot of academics as the network layer, applications layer,

and presenting layer of typical IoT design. Additionally, as part of the most current IoT

architecture, several scientists have investigated an intermediary support layer between the

connectivity and application layers. Figure 6.2 represents depicts the multi-tier design of the

IoT.The support layer is made out of technology found in the mist and clouds. This section

describes the seven-tier construction, which includes processes for cooperation, applications for

collecting data and accumulation, virtualization of network social media, a controller, and

physical objects. components of each layer as well as the IoT's fundamentally covered nature.

i. Layer 1: Physical Equipment and controls

This layer of tools or cognition transmits information to a high layer from the outside

environment. This layer includes actual sensors and parts. In summary, the duties of this layer

include the identification of objects and the gathering of atmospheric data, such as pressure,

temperature, air quality, water quality, detection of motion, and humidity, to mention a few.

Controls and actual items can be used to operate several devices. These are the things that make

use of IoT gadgets, which also comprise a range of peripheral communications transmission and

receiving gadgets. There are several gadgets available right now. The Internet of Things (IoT) has

virtually unlimited potential as more devices are connected to it.

ii. .Layer 2: Connectivity

The IoT architecture's connection layer, which facilitates communicating with one another, at

both higher levels of the system, is a crucial element. In order for different IoT components to

communicate with one another, this layer offers the essential interconnecting systems, such as

switches, gateways, and routers. It is crucial in the transmission of data from the sensor to the

higher levels for processing. An important component of the connection layer is data transfer

between physical links to the server or other computers. This is accomplished via several

communication protocols including Zigbee, Z-Wave, SigFox, Bluetooth, or Zigbee. These

protocols provide safe, timely, and reliable data delivery Zigbee is one of the most often used

wireless communication protocols given that it requires little power and bandwidth, it is ideal for

IoT applications in homes and buildings. One crucial element of the connection layer is the Edge

Terminal device, which sits at the centre of the IoT system.

111

Figure 6.2: IoT Layers Architecture

By collecting, filtering, and processing data locally, serves as a link between real-world sensors

and stored in the cloud transportation options. Less data must be transferred to the cloud as a

consequence, which lowers latency and bandwidth requirements and boosts system efficacy and

efficiency. The connection layer in an IoT architecture is primarily in charge of enabling

communication and data transmission. It is essential to correctly design and implement this layer

for the system to be dependable, efficient, and secure. It is crucial to select communication

protocols and connecting systems carefully in order to guarantee seamless connectivity enable

rapid data transfer between IoT components, make it possible for the Edge Node device to

successfully function as a gateway.

iii. Layer 3: Edge Connecting

The following stage is cloud boundary, sometimes referred to as cloud computing. Data from the

connection phase is required by Layer 3 for information archiving and analysis at a higher level.

Since the modules in this layer handle a lot of data, the processing of some facts might be limited

to minimal amounts of data. In the next stage of IoT architecture, known as edge connecting, data

analysis and processing take place at the cloud-edge device interface. This stage, which allows

for faster processing and lowers the quantity of data that needs to be transferred to the cloud, is

essential for optimizing the effectiveness and performance of IoT devices. The most crucial data

may be transmitted to the cloud for further analysis after being prepared and filtered at the edge to

remove extraneous data. That method decreases the quantity of data that must be delivered while

also lowering latency and speeding up system responses. Sensors, which are motors, gateways

and various other equipment that can gather and analyse data in real time are frequently included

in edge computing modules. Overall, edge connection is crucial to the achievement of IoT

systems because it makes data processing and decision-making more effective and efficient.

112

iv. Layer 4: Data Accumulating

Once collected, the data has to be retained. The location of the data storage facility is important.

Although some data may be kept permanently, the majority has to be transmitted to the server so

that big data technologies may analyse it using their computing power. The preservation of Phase

3 data is the main objective of this layer. Collect, store, and place it in the warehouse in order to

make a lot of data accessible to the top levels. It essentially modifies event-based data to give

data for higher-layer query-based processing. This layer may be developed in SQL and supports

more advanced NoSQL databases like Mongo, Spark, Hadoop file systems, Cassidy, and others.

V. Layer 5: Extracting data

This layer efficiently and quickly synthesizes data from many sources and creates a suitable

application format from the stored data [11]. These sources might consist of sensors on RFID tags,

electronics, and other linked things that produce data in various formats and at various speeds.

The layer that aggregates data must collect and prepare this data in order for higher layers to

easily examine and understand it. Duplicates and mistakes must also be eliminated. This layer

makes data analysis more precise and thorough by fusing data from several sources, resulting in

greater insights and decision-making. IoT systems must be able to gather, store, and analyse data

from many sources effectively and efficiently, and the data aggregating layer is crucial to this. A

publishing computer system or information dispersion service, which makes data transfer easier

than using cloud technology, information aggregation, processes, and user layers, is a key part of

the enormous high-implementation architecture (DDS).

Regardless of whether an application employs a high-performance solution or a fast message bus,

this design makes setup easier and speeds up all applications— aside from the most basic ones.

Applications with less complicated data processing and transport needs are referred to as being

most straightforward. These applications could convey data between network nodes using a

straightforward message bus. Excellent performance messages or distributed data aggregation

techniques, on the other hand, may be used by applications with exceptional performance that

need quick and effective data processing and transport. Such technology enables applications to

handle enormous amounts of data rapidly and efficiently, enabling them to fulfil their demands

for effectiveness. In the context of the Internet of Things, publishing computer infrastructure or

knowledge dispersion services provide a platform that simplifies placement and boosts data

transfer speed and efficiency, regardless of how complex the application is. This makes it easier

to develop and manage dependable apps.

113

vi . Layer 6: The Application Layer

Data analysis from various IoT applications is involved. Numerous Internet of Things

Applications like linked cars, smart cities, intelligent systems, intelligent buildings, intelligent

agriculture, and others are among those that are covered [51]. It should go without saying that at

this time, the software will activate the control programme and the data package. Process

optimization, scheduling, statistical control signal analysis, vigilant surveillance, alert leadership,

and consumption models are only a few examples of IoT applications.

vii . Layer 7: Collaboration and Processes

People who can effectively cooperate and communicate while using IoT data are classified by its

layer. additionally to further application layers using database recovery methods. Managers might

likewise make data-driven business decisions using it [44].

Figure 6.3:IoT's Basic Structure

6.2 Cloud -IoT Enabling Technologies

According to the National Bureau of Standards (NIST), end users can access a sizable, suitable,

and pay-per-use pool of amenities and computing resources (applications, storage, systems, and

services) through the usage of cloud technology as a framework. with the least amount of effort

or interaction with vendors of services. [43]. Cloud computing is becoming swiftly adopted for

project execution by IT corporations and experts due to its low cost and rapid flexibility [53]. The

fundamental elements of the cloud as a Web technology are on-demand awareness, ubiquitous

internet connection, demanding capacity, fast adaptability, and quantified services [59]. By

114

leveraging the frameworks, tools, and software development processes made accessible by the

cloud environment, Platform as a Service (PaaS) enables cloud customers to build their products

on the architecture of the provider. To execute any software or operating system installed on a

virtual machine (VM) made available by the web resource provider, for instance, users can install

a variety of components, such as networks, processing power, memory, and other essential

computing needs [54].

This is possible because of the Infrastructure as a Service (IaaS) paradigm. With this approach,

clients have the freedom to modify their computer infrastructure as needed to suit their unique

application requirements. In order to execute any kind of operating system or use, users may, for

instance, deploy virtual machines (VMs), while they are able to ramp either increasing or

decreasing the amount of computing power they have in response to shifting workload needs.

Clients routinely build virtual networks, firewalls, and other safety measures by altering the

network and security settings of their infrastructure to safeguard their apps and data.The IaaS

model, which lets users design and administer their IT systems without having to acquire and

maintain physical hardware, gives users a lot of power and freedom. Cloud computing also offers

four more cloud deployment strategies: hybrid, public, private, and community, depending on

user preferences and functionality. [52].

The technology of the cloud has been used in the development of technologies like the Internet of

Things due to its various features and possibilities. The Internet and cloud computing integration

have been extensively used in a variety of real-world applications, including smart cities,

healthcare, agricultural industry mobility, and enhanced cars, among many others [38]. One of the

most recent technical advancements is the usage of smart devices that are internationally

connected to the internet. These devices produce a huge volume of material, which cannot be

locally stored owing to a lack of storage space. mobile devices, pills, smartwatches, fitness

monitors, and any other internet-connected devices are among the gadgets that produce a tonne of

material. These gadgets gather information and data from numerous sensors, including heart rate

monitors, accelerometer, and GPS. Users may also create content using them, including texts,

social network postings, images, and videos. As a result of their ability to capture and share data

in real time, these gadgets produce a vast amount of material. Through a number of digital venues,

users may quickly document and share their experiences, opinions, and actions with others.

Furthermore, the popularity of social media, internet streaming, and cloud storage has increased,

which has facilitated the spread of the information produced by these technologies. The need to

efficiently exploit and manage such a massive volume of material offers businesses and

organizations both possibilities and problems. All sectors depend on data, but without data

analysis, data is useless for gathering the necessary knowledge for the future. Sophisticated

115

computer systems that can handle such massive quantities of data processing are required because

smart, linked gadgets acquire vast volumes of data. The capability of the separate systems is

insufficient to analyse the data. These limitations on enormous memory capacity, processing

power, and connection speed may be overcome using the communal resources made available by

cloud technologies.

Cloud computing allows IoT to function without any issues, as seen in Fig 4. Among apps and

IoT devices, cloud-based storage infrastructure is employed as a covert layer that hides every step

of the development of IoT programmed [24]. So order to offer a centralized and saleable storage

solution for the enormous volume of data produced via various sensors, cloud-based storage

infrastructures are utilized as a covert layer between applications with IoT devices. IoT devices

may transfer data to the cloud via cloud storage, so it can be saved or utilized by apps and

services. IoT devices may be small and energy-efficient as a result of this strategy since they

won't need to locally process or store a lot of data. Furthermore, additional features like data

analytic s, data visualization, and data mining may be included in cloud storage infrastructures.

These features may be used to draw important conclusions from IoT data. In addition to enabling

a variety of deployment patterns, the usage of online storage infrastructures also makes it simple

for organizations to add and delete applications and devices from their networks as required.

6.3 IoT Resource Management

The Quality of Service (QoS) criteria are reached with the help of a highly effective, economical,

and well-maintained network. The system is linked to a number of resources using IoT

architecture. Since resources are allocated wisely and effectively via the IoT network, this is a

crucial component of QoS requirements. Due to the fact that Because the data in IoT architecture

is divided between multiple information sources and is gathered from multiple sensors and

networked devices offer a variety of services, resource allocation is also in charge of upholding

tight safety requirements. The IoT makes use of energy, storage, and computational resources that

are networked. By efficiently assigning cloud resources to them, IoT-connected devices can

improve system productivity and efficiency. In light of IoT resources and objects Edge computing,

cloud infrastructure, and IoT items make up the three tiers of the IoT system. Prior to picking the

nodes, the system had to first decide which resources from these three levels it would need. The

IoT ecosystem is heterogeneous and globally scattered, and it is made up of essential components

that require management and resource allocation. The point of connection between An entity,

which might be a thing, a person, or a location, is what the system and the IoT network app user

are. Resources are these given things, and depending on the information they communicate

throughout a network, they can be divided into a number of groupings. Last but not

116

least, it was necessary to prepare for the user's work to be fulfilled on the chosen node, as

illustrated The user's task is lastly successfully completed by contact between the two network

servers. Resource supply, monitoring, identification, and scheduling are only a few of the

numerous components that make up resource distribution. The necessary Service Quality (QoS),

effectiveness improvements, decreases in power usage, and resources management enhancements

Not to mention, it needed to arrange for the selected node to complete the user's task. Finally, the

user's task may be successfully completed thanks to communication between the two network

servers. Resource distribution includes a wide range of elements, including resource delivery,

measurement, classification, and scheduling.

The required Service Quality (QoS), efficiency improvements, decreased power usage, enhanced

resource management utilization, and, Since it must perfectly meet their demands, the support

level agreement between cloud-based IoT device software suppliers and their clients is of the

highest significance. The service quality (QoS) offered to For cloud-based IoT solutions to be

successful, end users are essential. For higher QoS, it is essential to increase efficiency, consume

less energy, and optimize resource consumption. Since it establishes the amount of support and

maintenance provided to end users, the support level agreement among st cloud-based IoT device

software suppliers is the most crucial component. Applications for IoT perform better and incur

significant cost savings as a result of successful vendor collaboration and resource use. As a result,

it's crucial to take into account each of these aspects while developing cloud-based solutions for

the Internet of Things.

The allocation of resources is complicated by the variety and distance of IoT devices. Despite

substantial research by scientific and industrial experts, there are still many challenges and

problems related to the distribution of IoT resources. Numerous scholars have created original

strategies and methods to deal with these issues. In this article,The author examines several

resource management techniques developed for the cloud-based IoT environment and groups

them into different categories based on the characteristics they have in common and the resource

management standards they have raised. Other IoT characteristics that are connected to resource

allocation were also covered by the author, with a focus on those that still require improvement.

Three-tiered architectures (IoT, Cloud, and Edge) .

Designing IoT systems, using wireless sensor networks, and integrating IoT with cloud

computing surveys and evaluations of IoT technologies are among the study topics that have been

examined. However, the distribution of resources in an IoT system is only covered in one survey

report. Multiple aspects of the Internet of Things (IoT) design are the focus of several researchers.

These are the tactics and developments that make it possible for IoT-networked systems to

117

function effectively and efficiently. There isn't a review available for approaches to cloud-based

IoT resource allocation. A thorough overview of various challenges and issues with assigning IoT

assets from an architectural perspective was offered by the writers in [37]. The author of this

review research looked at the designs and tools to find out the allocation of resources in an IoT

ecosystem.

The present research does not look into the methods for planning and maximizing resources from

a cloud standpoint. [22] Is it a review of research that looks at difficulties imposed by different

IoT devices? In addition to discussing a variety of resources The author of this article looks into

the connections between fog computing and IoT using allocation mechanisms now in use in

environments where fog-based IoT is common. .The author also noted two other important

problems, To begin with, edge computing merely considers the network connectivity with the

lowest rate of latency in an Internet of Things (IoT) architecture based on fog, and it pays no

attention to the network with the highest processing power or computational capabilities. The

distribution of finances among fog computing and IoT smart devices is the second problem the

author brought up. This is a result of the limited capability for resources in fog computing.

Compared to fog computing, the writer recommends cloud computing as a solution to the

problem of limited availability of fog resources. The author of this study used the internet to

investigate several IoT resource management techniques and categories them. Also reviewed and

presented in tabular format are the additional limits and improvements of those methods. There

have been discussions and specifications for several resource allocation variables. The volume of

work still needed to complete the other requirements is also discussed in this article, along with

the progress made in these areas.

6.4 Fog IoT Resource Planning Categories

methods Depending on the characteristics of each, the author analyzed and classified the IoT

resource provisioning approaches used in this industry approach that were presented throughout

the course of the inquiry, illustrates the accurate classification of IoT resource allocation

6 4.1 IoT Resource Allocation with SLA Awareness

Every service-oriented infrastructure includes the service level agreement. In this case,

communication between consumers and suppliers is crucial. In order for the service provider to

maximize profits while still meeting consumer needs, the SLA should be broken as little as

feasible. In this field of study, a variety of research techniques have been employed to decrease

SLA violations and raise customer system acceptance A service level agreement (SLA) is a

contract that specifies the quality of service that will be offered and the fines or other

repercussions that will apply if the service is subpar. To make sure that the service provider meets

118

the customer's expectations, SLAs frequently contain measures like reliability, reaction time, and

resolution time. SLA-focused resource allocation is the subject of more study.

Figure.6.4:ClassificationofIoTAllocationOfresourcesTechniques

By estimating the customer benefit and designating A computationally based auction technique is

proposed to lessen the penalty for SLA violations, acting as a champion to the customer who

provides the most profitable source. This strategy can reduce the fee amount in an attempt to

deter SLA infractions. Article 49 offers an alternative way based on SLA violations. To minimize

SLA violations, the author developed a method for effectively scheduling and limiting the user's

task. By dividing user labour into several smaller jobs and increasing the server's capacity, the

proposed method lowers the overall job execution measurement time, prevents SLA breaches,

and increases vendor revenue. [8] outlines a method for supplying electricity to Internet of Things

devices while keeping service level agreements in mind. The author proposed an architecture for

an Internet of Things ecosystem that assigns resources and services using fog processing and

cloud computing. User activities are managed via a linearizable tree of options using an algorithm

that gives priority to SLA and QoS. A novel IoT resource allocation problem with an emphasis on

SLA was addressed, per [50], by capping the fastest rate at which users may do tasks and

buffering scheduling. As it anticipates the user's job delivery pattern and accommodates SLA

violations, the suggested approach works better in IoT networks with high

119

Table 6.2:IoT device traffic list

Algorithm Improvement Limitations

Resource Allocation Improve system efficiency The recommended strategy is not

Based on SLAs [18] and minimize SLA contrasted with alternative

breaches. approaches.

SLA-aware Cloud-based

Resource Allowance

Control [49]

The user's job is divided up

into smaller pieces in order

to reduce SLA breaches.

The employment waiting period is

not dynamically determined..

IoT resources andBoost the efficiency and There is no evidence that it has

services delegation [8] performance of the system. been used in practise.

Allocating resources for You may improve system In a multi-tenant environment, such

IoT. [50]. performance and reduce SLA as numerous data centers, the

violations by lowering the recommended solution is

task markup. ineffective.

6.4.2 Allocating IoT Resources with Context

Numerous studies have used game mechanics to allocate resources in device-to-device

interactions with IoT devices. The administration of resources in a wireless network is essential

for efficient data transfer for communications between devices.suggested an evolutionary stable

mechanism for location-aware D2D communication in a cell connection. The author suggested a

particular context-aware method that calculates the network's capacity to optimize the total

quantity of communication that each station may conduct. [27] identifies the cell affiliation issue

as being caused by the two independent matching operations of communication equipment.

The proposed model's device correlation improved the cell association strategy and guaranteed a

consistent result for each local area connection. The association of one or more devices

constituted the basis for another efficient resource-use strategy. and enhanced network device

resource use in [2]. It has been demonstrated that the proposed context-aware resource allocation

strategy across IoT network systems satisfies dynamic QoS requirements. Table 3 lists the

benefits and drawbacks of context-aware resource allocation techniques.

120

Table 6.3. IoT Resource Allocation Techniques That Take Context

Algorithm Improvements Limitations

With a cloud-based IoT

system, the game theory is

used for communicating via

D2D [29].

The evolutionary stable

game model and optimizing

bandwidth use improve D2D

interaction.

The sole topic of focus for this

strategy is the cloud, and it

contrasts with current algorithms.

An actionable source according

to correlations is used [27].

To improve the efficiency of

the cell attachment method,

redundant data produced by

the various sensors have been

removed.

This approach contains not one

mention of the empirical data.

Technique for Effective

Resource Allocation [2].

Utilization of resources and

efficiency have both

increased.

The method is not supported by

any tangible evidence.

6.4.3 Allocating IoT Resources with QoS Awareness

Quality of service (QoS) considerations must be made in the service-related solution. Our service

standard acceptance with superior service (SLA) must align. The term Quality of Service (QoS)

describes the level of operation as well as dependability that a connection or service offers to its

users. In order to make sure that the connection or operation fulfils each customer's expectations,

QoS is often monitored using parameters like efficiency, delays, along damage to packets. Flow

sculpting, prioritization, and handling congestion are a few of the strategies that may be used to

achieve QoS, and it is crucial for making sure that vital apps and websites have the space and

connectivity they require to operate effectively. Numerous research on this issue have been

conducted in diverse settings.

The publication of a QoS-based technique for allocating IoT resources in [17] made interactions

between devices less obtrusive. PFR with an integrated incursion-restricted area control method

can be used to limit the utilization of facilities to dual-layer clients. The Bluetooth connectivity

method combines effort that boosts system efficacy while controlling device-to-device clients'

utilization of applications. A computational model to represent the multi modal population of

multimedia to multimedia devices is proposed in [48] to enable to management of QoS

constraints. For mixed Internet of Things (IoT) systems, an optimized protocol based on the

capacity supply technique was recently presented in [19]. The programme considered the

121

operation rate of the networking hubs on filtering depletion. The tactic is flexible enough to

accommodate the ever-changing and diverse properties of connected IoT gadgets. An asset

deployment strategy based on interactions and the Net of Devices was described in [20]. Between

the devices, these tactics utilize discussion and streaming technologies to facilitate

communication and show updates. The following situations were considered while evaluating the

recommended method: the entire framework, specific tasks at a particular rate, and a particular

job at a particular frequency. The system's manufacturing mistakes were reduced to a fifth

relative to the standard technique, which will reduce communication delays and increase system

reliability. The advantages and disadvantages of QoS-based utilization strategies are shown in

Table 6. 4 Below .

Table 6.4: Demonstrates Wifi utilization techniques using Quality understanding.

Method Developments Drawbacks

Method for Allocating

Downlink Resources [17]

The efficiency of the

systems has increased,

and interference between

the communication

channels has decreased.

There is applicability.

A lack of practical

Scheme for Allocating

Radio Resources [48]

There is less

communication going on

between M2M sensors.

The method is not applied in real-

world circumstances.

Work Distribution Among

an IoT Device Group [19]

The optimal resource

allocation has been

achieved with a 5%

error..

The QoS component must receive a

lot of attention.

IoT work scheduling based

on consensus [20]

Although both chatter

and broadcast

approaches are used,

broadcast yields the

greatest results.

Less consideration is given to

real-world circumstances and

QoS.

6.4.4 IoT Utilization Of resources with Energy Awareness

Whenever it's vastly varied to voltage-hungry technology is used in massive quantities, it is

essential to monitor how well one makes use of fossil fuels or electricity to try to reduce

environmental damage and establish a sustainable calculation group. Numerous researchers have

been striving hard to reduce electricity consumption under a number of domains, including data

122

centers, data centers, and working amid the mist. In connected device situations, the reduction in

electrical consumption represents a few strides. The heat loss related to the virtual storm of

anyone (V-FOE) and its information technology foggy of nearly anyone choice method is

detailed in [13] (FoE). With the objective to effectively improve QoS by conserving electricity, a

trio of methods of device connection was created in the cloud-based computing technology

(FOCAN) [45]. This technique is used in the design of intelligent neighbourhood utilizing mist

help to distribute building duties across computerized sensors.

The generic It (GNE) technique along with its specific parameters are derived by [3] with the

objective of handling the variation in Internet-of-things components about Quality and bandwidth

constraints. By using a cognition-tiered model of games in such a way, the gadgets manage to

attain Chf stability (CHE), which logically correlates with the diverse processing powers in

addition to the knowledge availability of every Mtc and HTD. Our recommended approach

reduces MTD consumption of electricity by 78%, which is The ECIoT architecture was

introduced in [36] because an exciting novel method for improving operational efficiency by

controlling process admittance and use of resources within the networked Internet of Things (IoT).

ECIoT uses a cross-layer fluid-structure optimization strategy that uses Lyapunov optimizing

settings to increase the device's usefulness. Shown in Table 6.5 below displays deficiencies that

improvements achieved by the recommended techniques.

Table 6. 5.: Energy-Conscious Allocating IoT Resources Methods

Algorithm Improvements Limitations

Where in Fog of

Everything the energy-

efficient resources are

situated

lowering energy use,

postponing, and enhancing

FOE system effectiveness

No real-time monitoring has

occurred..

FOCAN [45] is a smart

urban design for

resource allocation.

The method reduces

electricity use while

extending delay.

No one has been put to death.

Take into account the

perceptual hierarchy

theory while allocating

resources. [3]

The procedure reduces

power use by 78%.

There has only been one simulation

run.

123

Resource distribution

in conjunction with

joint check pointing

[36]

Enhanced system

efficiency and decreased

communication lag

There is no evidence that it has

really been put to use.

6.5 Cost-Aware IoT Resource Allocation

The data centre, routers, and mist platforms are used to handle the diverse, highly costly gadgets

that make up the Web of Everything (IoT) connection. The various network-related equipment

require funds in order to carry out what they do that adheres to QoS rules. The activation costs for

every connecting gateway equipment along with each service offered were utilized to calculate

the overall expense. The above cost estimate problem is known to technicians as the service-to-

interface distribution expense dilemma. For reducing computing costs, several SLA approaches

are supposedly given in [9]. The above resource's requirements were met by one method in just

one session but by the subsequent approach across a period of multiple games. The suggested

cure divides the price of activating and distributes it over several locations in order to reduce

registration costs. Reduced expenditures on services with the cloud need deliberate efficient

capacity delivery and management.

This multi-agent-based cloud assignment mechanism is being built to track how the Web of

Devices uses resources [39]. The inspection of asset usage helps to improve how well resources

are utilized and also reduces excessive allocation of resources, this improves speed and decreases

operational expenses generally. A distinct method [33] built off of the Stack gameplay theory was

developed to lower the expense of distributed services. The method examines the bottom and top

levels of the system and validates the Nash balance location of the power source no-cooperative

activity that takes place among st each other in the bid to reduce fees. A process of iteration is

used to get the It by making the Stackelberg play across all of them. A variety of offerings

including incompatible links are being used by connected gadgets. [10] develops the

specification-based mixed-integer processing (MILP) tool to support a diverse services paradigm.

Easily distributing the services across the many ports may lower the cost of those amenities. The

establishment of cost-effective utilization strategies for IoT systems is covered shown in Table

6.6 below along with their limitations.

124

Table 6.6 :IoT Allocation Of resources Methods That Consider Cost

Methods Developments Drawbacks

Using a variety of resources to

provide flexible services[9]

The cost has

Lowered by dividing

the items among the

terminals.

Utilizing the multi-

round strategy now comes at a

little higher cost.

Optimizing Resource

Allocation in Cloud

Architecture [39]

Utilize VMs as little as

feasible to increase system

effectiveness and reduce

overall expenses.

Costs associated with

resource utilizationmust be

decreased..

Heterogeneous-oriented

Re- sources are

recognized [33]

Costs and resource use have

dropped.

There is no evidence that

the implementation

is actually useful.

Use of Heterogeneous Assets

with Flexible Allocation [10]

Both costs and system

performance have lowered.

The subject has not been

used in practise and is

primarily theoretical.

6.6 IoT resource planning strategies consider Resource Allocation Criteria

Ecosystems built on fog IOT technologies depend on the allocation of resources. The connected

devices in the IoT context produce massive In order to give data that is useful for the system's

intended uses and architecture, a lot of information is stored online for subsequent study.

Numerous resource allocation factors were analyzed in [6, 7]. The author outlines the different

allocations of resource criteria for an IoT environment in the next section. These elements must

be taken into consideration while creating IoT allocations of resource algorithms.

a) It is required on the part forming the WiFi layers to finish the assignment assigned by the user.

Maximum system capacity is required.Productivity of a connected object originates by speed,

or the aggregate number of operations or duties that the device has performed. IoT-related will

require a rapid speed so as to fulfil each of its consumer activities.

b) QoS, or the excellence of services, is a metric used to assess the quality of offerings as the

cloud infrastructure would supply consumers as per Contractual consent.

c) As the equipment does other operations, extend the amount of time that's necessary to deal with

an individual's waiting assignment. This channel's delay ought to be minimized as much as

possible to improve system operation.

125

d) It seems the speed at which data from Network of Things (IoT) items is sent from one location

to another. The speed of data exchange will need to be rapid in this setting of the Internet of

Things.

e) Reliance is knowing how to perform the task at hand on time despite getting harmed by an

infrastructure failure. Its reliability has proven outstanding to ensure consumers finish their

activities promptly.

f) SLA Upholding the agreement for services with the good buyer to the business offering them is

crucial to prevent excess costs and reduce the likelihood of user-supplier contract breaches.

g) Time Smartphones and tablets a big part in the Internet of Things (IoT) world owing to the

enormous volume of data they frequently create. Planning out how to complete something in an

Internet of Things (IoT) setting is a tactic.

h) Affordable Internet of Things (IoT) systems pay a vendor's cash send to utilize plenty filled

with cloud service offerings. The quantity and efficacy of the process are utilized to estimate

service costs. The system needs to be as affordable as feasible.

i) Affordable Internet of Things (IoT) systems pay a vendor's cash send to utilize plenty filled

with cloud service offerings. The quantity and efficacy of the process are utilized to estimate

service costs. The system needs to be as affordable as feasible.

j) Accessibility Availability involves an evaluation of an electronic resource's reliability and

quality availability in an established window. That needs to be plenty of help ready to reduce

operational disruptions.

k) Usage: Supply exploitation represents the gauge of how much of a given asset the entire

structure may use. The funds can be utilized with as little waste in order to maximize its e

efficacy and overall robustness.

6.7 Improvement have been done in these parameters

During this study, an investigator investigated multiple online IoT ways to allocate resources and

divided the results into various categories. The variables were indicated to be consistent with the

process or procedure under consideration in this subsection, which looked at the aspects of

distributing resources which are enhanced by the strategies mentioned in the subcategory.

Depending on the professional sector, readers are able to observe what variables are contributing

significantly as well as those that demand more research.

126

Figure 6.5:Modification Level of Variables for Resource Management

Above Figure depicts IoT devices feeding data to edge gateways for preprocessing. A load

balancer dynamically routes data to private or public clouds based on sensitivity and load, with

continuous monitoring adjusting variables to optimize resource management and performance.

The procedures and ideas provided improved the number of relevant factors of distributing assets,

as was mentioned in the article ahead. However there remain many aspects of assignment

indications that can be increased, so scholars have to remain particularly aware of these. The

graph unequivocally demonstrates that many investigators have raised the risk barrier. The delays,

put off, the overall supply of the connection broadcaster, nevertheless do not vary much. It

additionally is likely that scientists to propose extra allocation strategies, which might eventually

improve those commodities' supply standards. Numerous impartial and typical techniques are

available to study.

6.8 Problems and Obstacles

The World Wide Web with Things Complex provides exciting possibilities that might boost its

efficiency. Despite its many advantages, the Internet of Things (IoT) with the dissemination of

online materials faces a variety of challenges. The remainder of this article contains multiple

research studies on how IoT finances are allocated. Regarding IoT systems having been properly

integrated, more research must be carried out on the brink, online, etc fog-like collaboration. A

couple of components of assigning resources provide the foundation for the bulk of articles. This

does not suggest that the proposed approach is being employed in truly Internet embarking

because most of the studies have not yet been successful towards the model. If presently there is

no significant actual investigation in a real-world IoT context, there can be problems once these

approaches are used inside the setting of IoT. The network of IoT devices itself possesses a

number of problems as peculiarities. It also means the approaches for distributing asset examined

127

in the present inquiry fail to account for every facet of material dispersion, such asasset

inspection, asset verification, asset setting up, substance modelling, assets forecasting, and

organizing resources, which is another problem. Furthermore, it is how analysis frequently

focuses on distributing resources tactics rather than capacity deployment optimization, making it

vital when creating a prosperous efficient Connected economy.

6.9 To assess the effectiveness of the data skew load balancing optimization system under

various conditions, such as optimization rate.

Shay Vargaftik et al. introduce the family of load distribution methods known as Locally Lowest

Queuing (LSQ) [65]. In such methods, each controller maintains its own, perhaps outdated

version of the machine's waiting time while continuing to employ JSQ for its own purposes. This

local view is refreshed periodically with minimal connectivity latency. The network's architecture

is extraordinarily resilient, as we have shown, providing that all these different local estimations

of the product's waiting period are accurate. Last but not least, we show in simulations that, given

an equivalent communication allowance, simple and trustworthy LSQ policies perform brilliantly

and outperform existing low-communication techniques.

Ali Yekkehkhany and Rakesh Nagi [66] provide the GB-PANDAS strategy, which would not be

aware of task patterns of input or delivery rates in any way. An exploration-exploitation strategy

is used by the Blind GB-PANDAS routing algorithm. We demonstrate that the best output is

provided by blind GB-PANDAS.

When the service duration of various job types is dispersed randomly and in an unknowable way

among a large number of servers. Blind GB-PANDAS intends to transfer incoming tasks to the

server with the fewest balanced workloads, however, this is impossible due to fluctuating service

fees. As a result, carrying out the throughput optimization evaluation is more challenging than it

ought to be in the case when response times are known. Our extensive research reveals that as far

as the typical time required to execute tasks under Blind GB-PANDAS significantly outperforms

earlier approaches under large workloads.

The development and upkeep of Big Data Streams Publish Subscription (BAD Pub/Sub)

platforms present problems, according to Hang Nguyen et al. [67]. in order to assist the creation

of enhanced upgrades that are saleable to other social levels. Plans for the BAD Pub/Sub system's

objective is to take in massive amounts of info from multiple writers and organizations and to

offer improved, tailored notifications sent via customized ways to end customers (subscribers)

who indicate interest in such information pieces.

Doaa Medhat et al.'s [68] flexible and economical Map Reduce work scheduling solution can

reliably link data from several foreign sites. They do this by distributing multilingual duties

128

across affordable and accessible machines. Our solution outperformed past approaches contrasted

with novel blocking-based load distribution methods in terms of efficiency, velocity, and storage

space on a cluster of Hadoop nodes in a public cloud infrastructure.

Rohail Gulbaz et al. [69] provide (BGA), a novel load-balancing scheduler, to enhance span and

load balancing. Inadequate load balancing may cause a resource utilization overhead since some

of those resources are idle. With millions of directives sent to VMs, the true weight of load

balancing is taken into account by BGA. Multi-objective optimization should be utilized to

improve job scheduling and load balancing, it is also emphasised. Skewed, typical, and uniform

work distributions, as well as different batch sizes, are all used in research. BGA has significantly

outperformed a number of state-of-the-art methods for load balancing, make span, and throughput.

6.10 To evaluate the effectiveness of the information skew load balance optimization

systems under various conditions, such as information skew rate.

A pattern has emerged. regarding consolidated control of IoT services (data and cloud-based apps)

since the conception of the World Wide Web of Things (IoT) concept, which allows the oversight

and control of a sizable number of internet-connected devices. Through IoT management services,

a collection of senses may be efficiently managed. IoT gateways are responsible for reducing The

incidence of IoT gateway-related internet connection overpowers or disruptions. In order to

address these problems, we employ a fog-of-everything load-balancing technique. In this part, we

present our s, achievements that may be deployed and put into practice, and an assessment

of the results [70].

The major objective of a load-balanced cluster topology based on simulated annealing is to

increase the network's lifespan while maintaining enough sensing coverage under periodic or

irregular data transfers from sensor nodes. We show that the suggested technique is capable of

boosting both the diversity of communication platforms and the performance of the most widely

used state-of-the-art clustering algorithms by comparing them to these algorithms through

simulation experiments. Network coverage may be improved by maintaining more network

devices online for extended periods of time at a low computational cost. 71].

Resource-limited networks have a wide range of applications in daily life. A challenging issue is

finding a reliable load-balancing method to extend the life of these networks. The approach

accounts for variables including distance, remaining electricity, and number of hops to balance

energy consumption across network users and extend network lifetime. In simulations, our

proposed system beats the alternatives in terms of productivity, node longevity, lost packet rate

(PLR), cost of communication, latency, and computation expenses. Our recommended approach

also increases the lifespan of WSNs and shields individual nodes from the operational

129

The wireless sensor network (WSN) is a type of self-sustaining system with limited power and

transmission sources. Using a strong heuristic update strategy based on a greedy projected energy

cost metric, the route establishment is optimized. In order to reduce the power consumption

brought on by the control overhead, EBAR employs a power-opportunistic broadcasting

technique. In light of the results of this thorough comparison of EBAR to the most advanced

techniques, such as EEABR, Sense Ant, and IACO, is a significant improvement [73].

RPL considerably satisfies IoT network requirements, but as it wasn't designed with IoT devices

in mind, there remain some unsolved problems. The CAOF, which determines the rating by

taking the node's contextual information context into consideration, is described first. CAOF

additionally avoids the thunderous herd effect by gradually shifting away from an extremely

positioned number and towards the real rank amount. Second, we provide the context-aware route

metric (CARF), a novel routing measure that iteratively assesses the power consumption and

queue of parental chains as they get closer to the root while minimizing the impact of parents who

are farther away. Packet loss has lowered and network longevity has risen, according to

evaluation results equivalent to the RPL standardized specification. [74].

6.11 To calculate the data skew load balancing optimization system efficiency under various

conditions.

Xiaoke Zhu et al. [75] created DLB, a load balance solution To properly solve the data skew issue,

deep learning is used. The fundamental concept behind DLB is to swap out hashing for neural

network models in task scheduling methods so that different jobs and data distributions among

servers may be balanced equitably. Results of experiments with both manufactured and real data

sets suggest that our cloud-based DLB, when implemented in a real-world cloud setup, has the

potential to provide better balance mappings than conventional approaches to task scheduling

according to the hashing process function, particularly when workloads are significantly skewed.

The work scheduling issue is with the aim of improving the use of time and energy as two QoS

parameters in a fog situation, as tackled by Zahra Movahedi et al. [76]. We first present a fog-

based framework to manage scheduling algorithm needs and arrive at the optimal solutions.

Second, research develops an integer linear programming (ILP) optimal model that accounts for

the fog's energy consumption as well as the job scheduling problem's time expiration. Finally, but

just as importantly, we offer a more effective course of action to increase the of the original

WOA in resolving the issue of artificial work scheduling. The opposition-based chaotic whale

optimizing algorithm (Oppo CWOA) is the name of this innovative approach.

130

Comprehensive simulations and comparisons with the original WOA and a number of well-

known meta-heuristic algorithms, including Particle Swarm Optimization, Artificial Bee Colony,

and Genetic Algorithm, are used to show the usefulness of the proposed alternative WOA (GA).

The effectiveness of the computer's clustering is significantly impacted by this work scheduling

technique. This illustrates various load-balancing approaches and focuses on their merits and

limitations. Lijie Yan and Xudong Liuudy also provide a load-balancing strategy that highlights

the merits and drawbacks of well-known load-balancing methods while illustrating them. In

addition, Lijie Yan and Xudong Liu present a balancing technique they developed utilizing the

load forecast. The fluid exponentially smoothed model's output is the value at the next instant by

examining the server node's load time series to establish the appropriate smoothing coefficients

for the current terms and realistic data to aid forecasting by utilizing the node's load. [77].

Bat behaviour employs echolocation to find prey for the creation of concepts of load balancing.

Virtual computers (VMs) that are utilized to carry out the transferring procedure for the bats'

essential data are categorized using the Naive-Bayes method. Due to their lower importance in

the allocation of the line, the migrating jobs switched from heavily loaded running virtual

machines to weakly loaded visualized computer counterparts. The most important tasks should

have precedence over any additional services in the VM and shouldn't be assigned to the same

VM as workloads transition from fully loaded virtual machines to lighter-laden virtualization

instances. The experimental outcomes of the loading re-balancing algorithms (LBBA) were

contrasted with those of traditional methods such as a round robin (RR) and dynamic allocation

of loads (DLB) [78]. the management and structuring of the massive amount of information that

these systems create is the fundamental issue with the Internet of Things (home automation

systems. Privacy is a significant issue as well since homeowners' sensitive data may be exposed

to online attacks. Additionally, it might be difficult to integrate various IoT systems and devices,

which could cause interoperability problems.

Cloud-based services that are capable of storing and handling the data derived from the Internet

of Things automation devices in homes are the answer suggested by 79 Sangaraju et al. These on-

the-cloud options give users centralized platforms for data storage and analysis, enhance data

security, and make device interaction simpler. Internet of Things (I home automation systems

may benefit from cloud-based solutions in a number of ways, including enhanced data security,

centralised data administration, and the capacity to do performance analysis on collected data.

Additionally, these solutions ease the process for homeowners by making it simpler to combine

various gadgets and systems. Overall, solutions that are cloud-based can aid in resolving issues

brought on by being connected to the internet of systems for home automation and enhancing

131

According to Almurisi and Tadisetty [80], there were significant problems that needed to be

handled because of the complicated nature of wireless sensor networks and the different Internet

of Things needs. The research recommended a stored-in-the-cloud visualized environment for Io

T-based WSNs, which provided a viable solution to the issues that WSNs built on the IoT

experienced issues with resource management, flexibility, dependability, and safety. The

suggested ecosystem may prove to be a useful tool for researchers and those involved in the

Internet of Things (IoT) and computing fields.

Al Masarweh et al.'s study [81] focused on the challenges associated with handling information in

an intricate Internet of Things system that makes use of fog technology and the Internet of Things.

The analysis revealed a sophisticated broker administration system that made use of a variety of

strategies to enhance data transfer, decrease delay, and boost system effectiveness. The evaluated

the recommended system's performance using simulation-based examinations, and their results

were compared to those of existing approaches. The results showed the recommended system's

capacity to improve by exceeding previous strategies with respect to latency reduction and energy

efficiency, IoT systems' performance in complex scenarios.

The security issues posed by cloud-based IoT systems were addressed in the study by G. Soniya

Priyatharsini et al. [82]. The study proposed a self-secured model to use encrypting digital

auittication, and access control methods to safeguard data transferred among Internet of Things

(IoT) gadgets and the cloud. The evaluated the effectiveness of the proposed model employing

simulation-based testing and contrasting it with current methods. The findings demonstrated that

the suggested architecture offered the highest possible level of safety and decreased the

possibility of information theft in online Internet of Things devices. Overall, the study

significantly advanced the subject of stored-in-the-cloud IoT security and demonstrated how such

systems' security may be enhanced by the self-secured architecture that was proposed.

In their work, Christos L. Stergiou and Kostas E. Psannis [83] addressed the challenges

associated with managing and processing the enormous amounts of information generated by

commercial IoT devices. The study offers an electronic autonomously that manages and assesses

the information produced by connected devices using cloud computing, big data analysis, and

augmented reality. The evaluated the recommended system's performance by utilizing

simulation-based tests, and their results were compared to those of existing approaches. The

results showed that the recommended strategy offered a more practical and efficient way to

handle and analyse massive volumes of information in industrial Internet of Things (IoT) systems.

The work contributed significantly to the field of online big data management and showed how

the suggested digital artificial intelligence might improve the effectiveness of manufacturing IoT.

132

The difficulties with accuracy presented by IoT sensor data were discussed in the study work by

B. Raviprasad et al. [84]. A machine learning-based method was developed as a result of this

study to assess the accuracy of information from sensors sent to the cloud. The researchers used

simulation-based experiments to assess the suggested methodology's efficiency, as well as

contrasted it with current approaches. The outcomes demonstrated that the suggested strategy

provided a more accurate way of determining the accuracy of sensor information stored in the

cloud IoT systems. Overall, the study significantly illustrated how the suggested deep learning-

powered technology may improve the standard of data from sensors stored in the cloud IoT

systems, contributing to the field of IoT sensor information reliability.

In their study, N. Sai Lohitha and M. Pounambal [85] developed a unique method for enhancing

data processing effectiveness in cloud-based IoT contexts. The research used push-pull and

publish/subscribe techniques to solve the challenge of handling enormous volumes of information

in IoT applications, in real-time. The recommended methodology was put to the test, and the

authors compared it to existing methods. The results showed that the proposed technique

provided an improved and more effective way of processing data in real-time in cloud-based

Internet of Things systems. All things considered, the study significantly advanced the field of

Internet data mining and demonstrated how the recommended integrated strategy may increase

the effectiveness of information processors in cloud-based Internet of Things systems.The way

the system is configured, every node's data is transferred to our suggested hybrid cloud, which

makes the decision by using the suggested

AI model illustrates how the system is divided into two areas: a simulation environment and a

hardware environment. Following the collection of data, the simulation analysis assesses the

skew rates, consumption rate, and optimization rate in addition to carrying out load balancing.

For the second part, which is the computer system analysis, the node-MCU networks cloud is

built as a hybrid cloud, and data modelling is completed for the optimization rate, skewed rates,

and consumption rate analysis.

133

6.12 Flow Diagram

Figure 6.6: Displaying the whole hybrid cloud configuration for examination of the optimization rate,

skew rate, and consumption rate.

Figure 6.7: Optimal hybrid cloud configuration for analysis of optimization rates is depicted

134

Figure 6.8: Hybrid Cloud Tilt Rate Analysis Configuration

.

Figure 6.9:Hybrid Cloud Consumption Rate Configuration.

135

6.13 Time complexity for proposed and Existing Methods

The duration of an algorithm's execution, in relation to the input's length, is known as its temporal

complexity. It calculates how long it takes to run every code statement in an algorithm. It will not

analyse an algorithm's entire execution duration. Rather, it will provide details regarding the

variation(increase or decrease)in execution time when the number of operations in the algorithm

Steps to be Implemented:

Step 1: Initialize Servers and Tasks

Create server objects (Server A, B, C) with alpha, beta, and gamma weights.

Create a list of tasks with task IDs and execution times. Step 2: Calculate Task Weight

For each task, calculate its weight using the formula: alpha * execution_time + beta + gamma.

Step 3: Task Assignment

Assign each task to a server dynamically based on their weights.

If using the round-robin method, assign tasks sequentially to servers. Step 4: Calculate Time

Reduction

Calculate the total execution time before and after load balancing. Step 5: Create a Results Table

Create a results table with columns for Task ID, Execution Time Before, Execution Time After,

and Time Reduction.

Step 6: Main Execution

Set the values of alpha, beta, and gamma as needed.

Run load balancing with Dynamic Load Balancer and round-robin methods.

Print the results shown in Table6.7 below for both methods. The time complexity for the

Existing System from random import randint

from time import repeat

def run_sorting_algorithm(algorithm, array):

Set up the context and prepare the call to the specified # algorithm using the supplied array.

Only import the

algorithm function if it's not the built-in `sorted()`. setup_code = f"from main import

{algorithm}" \
if algorithm != "sorted" else "" stmt = f"{algorithm}({array})"

136

Execute the code ten different times and return the time # in seconds that each execution took

times = repeat(setup=setup_code, stmt=stmt, repeat=3, number=10) # Finally, display the name

of the algorithm and the

minimum time it took to run

Printf("Proposed Algorithm: {algorithm}. Time Complexity Minimum execution time:

{min(times)}") def existing_method(array):

n = len(array) for i in range(n):

Create a flag that will allow the function to # terminate early if there's nothing left to sort

already_sorted = True

for j in range(n - i - 1):

if array[j] > array[j + 1]:

array[j], array[j + 1] = array[j + 1], array[j] already_sorted = False

if already_sorted: break

return array ARRAY_LENGTH = 10000

if name == " main ":

array = [randint(0, 1000) for i in range(ARRAY_LENGTH)]

run_sorting_algorithm(algorithm="existing_method", array=array)

Initializes server objects with given weights.

Creates a list of tasks with execution times.

Calculates task weights using the formula alpha * execution_time + beta + gamma.

Assigns tasks dynamically based on their weights or using the round-robin method.

Calculates and prints the total execution time before and after load balancing.

Prints a results table showing task ID, execution time, and the server assigned for both methods.

137

Figure 6.10: Time Complexity for Existing System
6.14 Time complexity for Existing System

From random import and int from time it import repeat

def run_sorting_algorithm(algorithm, array):setup_code=f"from main import{algorithm}"\

if algorithm!="sorted"else""stmt=f"{algorithm}({array})"

times=repeat(setup=setup_code,stmt=stmt,repeat=3,number=10)

print(f"Proposed Algorithm:{algorithm}.Time Complexity for Minimum execution time:

{min(times)}")

ARRAY_LENGTH=10000

if name =="main":

array=[randint(0,1000)for in

range(ARRAY_LENGTH)]run_sorting_algorithm(algorithm="sorted",array=array)

6.15 Results

The code provided in the previous response generates results Table 6.7,Table 6.8below for load-

balancing methods: one is the proposed load-balancing algorithm and the other for the Existing

round-robin method. Below is an example of what the results below Table 6.7 may look like:

138

Table 6.7:Time complexity for Proposed and Existing models in Resource Allocation in seconds

The shown in Table 6.7 above show the results of running the load-balancing algorithm and the

round-robin method for a set of tasks. The columns provide the following information:

Task ID:A unique identifier for each Task.

Figure 6.10 Time complexity for Proposed and Existing models in Resource Allocation in seconds

Nodes: Number of nodes initiated for the cloud model

Time Complexity Existing Model: The total execution time of all tasks before load balancing.

Time Complexity Proposed Model:The total execution time of all tasks after load balancing.You

can compare the Time Reduction values in both tables to determine which method is more

effective in reducing execution time and optimizing load balancing for the given tasks.Positive

Time Reduction values indicate a reduction in execution time, while negative values indicate an

increase in execution time.

Task ID Nodes Time Complexity Existing Model Time Complexity Proposed Model

1 10000 60.90 0.01003

2 1000 43.12 0.01000

3 100 21.02 0.001

4 10 9.23 0.1

139

Table 6.8:Time complexity for Proposed and Existing models in Resource Allocation in seconds

Task ID Nodes Time Complexity Existing Model Time Complexity Proposed

Model

1 10000 58.30 23.12

2 1000 41.78 16.84

3 100 19.63 8.21

4 10 8.21 2.6

Figure 6.11Time complexity for Proposed and Existing models in Resource Allocation in seconds

Table 6.9: Performance Comparison of Proposed Hybrid Optimization model and existing

Particle swam Optimization model

Task ID Nodes Hybrid Optimization model Particle swamOptimization model

1 10000 97.9 96.2

2 1000 98.1 97.01

3 100 98.6 98.26

4 10 99.01 98.99

140

Figure 6.12Performance Comparison of Proposed Hybrid Optimization model and existing Particle swam
Optimization model

Overall, the time complexity and performance of the proposed model have yielded better results

in terms of node availability with optimization techniques and execution time.

The model Time complexity is calculated using O(n) Important Steps:

function mini max(node, depth, is Maximizing Player, alpha, beta): if node is a leaf node :

The return value of the node if is Maximizing Player :

best Val = -INFINITY for each child node :

value = mini max(node, depth+1, false, alpha, beta) best Val = max(best Val, value)

alpha = max(alpha, best Val) if beta <= alpha:break reurn best Val

else :

best Val = +INFINITY for each child node :

value = mini max(node, depth+1, true, alpha, beta) best Val = min(best Val, value)

beta = min(beta, best Val) if beta <= alpha:break return best Val

Figure 6.13:Model Time complexity

141

The initial call starts from A. The value of alpha here is -INFINITY and the value of beta is

+INFINITY. These values are passed down to subsequent nodes in the tree. At A the maximize

must choose a max of B and C, so A calls B first

At B it the minimizes must choose min of D and E and hence calls D first.

At D, it looks at its left child which is a leaf node. This node returns a value of 3. Now the value

of alpha at D is max(-INF, 3) which is 3.

To decide whether it's worth looking at its right node or not, it checks the condition beta<=alpha.

This is false since beta = +INF and alpha = 3. So it continues the search.

D now looks at its right child which returns a value of 5.At D, alpha = max(3, 5) which is 5. Now

the value of node D is 5

D returns a value of 5 to B. At B, beta = min(+INF, 5) which is 5. The minimizes is now

guaranteed a value of 5 or lesser. B now calls E to see if he can get a lower value than 5.

At E the values of alpha and beta are not -INF and +INF but instead -INF and 5 respectively,

because the value of beta was changed at B and that is what B passed down to E

Now E looks at its left child which is 6. At E, alpha = max(-INF, 6) which is 6. Here the

condition becomes true. beta is 5 and alpha is 6. So beta<=alpha is true. Hence it breaks and E

returns 6 to B

Note how it did not matter what the value of E's right child is. It could have been +INF or -INF,

but it still wouldn't matter, We never even had to look at it because the minimizes was guaranteed

a value of 5 or less. So as soon as the maximize saw the 6 he knew the minimizes would never

come this way because he can get a 5 on the left side of B. This way we didn't have to look at that

9 and hence saved computation time.

E returns a value of 6 to B. At B, beta = min(5, 6) which is 5.The value of node B is also 5

B returns 5 to A. At A, alpha = max(-INF, 5) which is 5. Now the maximize is guaranteed a

value of 5 or greater. A now calls C to see if it can get a higher value than 5.

At C, alpha = 5 and beta = +INF. C calls F

At F, alpha = 5 and beta = +INF. F looks at its left child which is a 1. alpha = max(5, 1) which is

still 5. F looks at its right child which is a 2. Hence the best value of this node is 2. Alpha remains

5

F returns a value of 2 to C. At C, beta = min(+INF, 2). The condition beta <= alpha becomes true

142

as beta= 2 and alpha = 5. So it breaks and it does not even have to compute the entire sub-tree of

G.

The intuition behind this break-off is that, at C the minimizes was guaranteed a value of 2 or less.

But the maximize was already guaranteed a value of 5 if he chose B. So why would the maximize

ever choose C and get a value less than 2? Again you can see that it did not matter what those last

2 values were. We also saved a lot of computation by skipping a whole sub-tree.

C now returns a value of 2 to A. Therefore the best value at A is max(5, 2) which is a 5. Hence

the optimal value that the maximize can get is 5

This is what our final game tree looks like. As you can see G has been crossed out as it was never

computed.

Figure 6.14:Model Time complexity Calculated values

a) Pseudo Model:

MAX, MIN = 1000, -1000

Returns optimal value for current player #(Initially called for root and maximize)

def mini max(depth, node index, maximizing player,

values, alpha, beta): # Terminating condition. i.e

leaf node is reached

if depth == 3:

return values[node Index] if maximizing player:

best = MIN# Recur for left and right children for i in range(0, 2):

143

Val = mini max(depth + 1, node Index * 2 + i,

False, values, alpha, beta)

return best

best = max(best, val) alpha = max(alpha, best) # Alpha Beta Pruning

if beta <= alpha:

break else: best = MAX # Recur for left and # right children
for i in range(0, 2):

Val = mini max(depth + 1, node Index * 2 + i,

True, values, alpha, beta)

best = min(best, val) beta = min(beta, best) # Alpha Beta Pruning if beta <= alpha:

break

return best

Driver Code

if name == " main ":

print("The optimal value is :", mini max(0, 0, True, values, MIN, MAX))

6.16 Summary

The thesis delves into the pivotal role of resource allocation within the cloud-based Internet of

Things (IoT) ecosystem, stressing the necessity for efficient strategies considering SLAs, context,

QoS, power, and cost. It categorizes and scrutinizes various allocation strategies, identifying

weaknesses and proposing potential enhancements while presenting improved resource allocation

variables, supported by a chart illustrating advancements in key indicators, and discussing

prospects and limitations. The proposed system configuration enables node data processing in a

hybrid cloud environment driven by an AI model, comprising hardware and simulation

environments. Simulation analysis focuses on load balancing, optimization rates, skewed rates,

and utilization rate analysis, while hardware analysis involves constructing a hybrid cloud

network and conducting data modelling for optimization rates and consumption analysis. The

primary objective of IoT device networks is data generation transformed into actionable

information through analysis, supported by an optimization protocol based on consensus

algorithms that consider buffer saturation and work efficiency of communication-related nodes,

adaptable to dynamic IoT network characteristics. The system architecture facilitates data

144

transmission to a hybrid cloud, utilizing an AI framework for decision-making, with

mathematical modelling supporting load balancing, optimization, skew rate, and consumption

analysis.

145

CHAPTER 7

Conclusion and Future scope

The MapReduce framework, comprising mapping and reduction tasks, plays a pivotal role in

transforming and aggregating data within large-scale computing systems. Mapping converts input

data into tuples (key/value pairs), which are then processed by reduction tasks to extract relevant

features and consolidate informative tuples into larger datasets.

7.1 Conclusion
From Cloud IoT Edge's point of view, the hybrid load balancing optimization model is an

important development in resource allo cation management and performance enhancement in

distributed computing systems. IoT edge system reliability and efficiency have been shown to

depend on adaptive learning techniques and sophisticated statistical analysis to address data skew

issues.

To improve load-balancing algorithms, statistical measures such as entropy, the Gini coefficient,

and the coefficient of variation can be used to gain important insights about data distribution

patterns. Under- and over-sampling are two strategies that have shown to significantly increase

efficiency and mitigate skew-related problems while maintaining high accuracy and

dependability in data processing jobs.

Our findings emphasise the significance of cost-aware scheduling approaches that take context

awareness, Quality of Service (QoS), power efficiency, Service Level Agreements (SLA), and

other factors into account. In cloud-based IoT platforms, these tactics are crucial for maximising

resource allocation and attaining strong performance.

Our strategy for optimising load balancing and resource consumption is demonstrated by the

deployment of hybrid cloud architectures driven by AI decision-making algorithms. This

extensive configuration enables in-depth examinations of load balancing, optimisation rates,

skew rates, and consumption rates, confirming the usefulness of our techniques in actual Internet

of Things implementations.

In order to facilitate real-time data processing and decision-making across a variety of IoT

applications, these models will likely continue to evolve with an emphasis on incorporating

cutting-edge AI algorithms and improving edge computing capabilities. Our goal is to improve

efficiency, scalability, and reliability in cloud-based IoT edge environments by improving these

approaches.

In essence, the paradigm for optimising hybrid load balance lays the groundwork for the

subsequent wave of intelligent, data-driven systems. It not only increases the efficiency and

146

performance of existing IoT systems, but it also sets the stage for resilient and adaptable

infrastructures that can handle the demands of next applications and technological breakthroughs.

By taking a strategic approach, IoT ecosystems will reach their full potential and become more

adaptable, efficient, and able to manage the increasing complexity and scope of data-driven

operations.

7.2 Future Scope

Future Future load balancing innovations will more deeply include AI and machine learning to

improve predictive analytics skills in the dynamic world of Cloud IoT Edge environments. This

integration aims to use data-driven insights to predict load surges and make proactive adjustments

to resource allocations. As edge device states change, IoT data volumes fluctuate, and network

bandwidth availability shifts dynamically, load balancing methods that can adjust in real-time are

increasingly indispensable.

Leveraging edge intelligence will become increasingly important as edge computing matures. In

order to reduce latency and maximise resource usage right at the edge, load balancing models will

develop to include edge analytics and decision-making skills. Security and privacy concerns are

still very important, and in order to guarantee data integrity, secrecy, and regulatory compliance,

future models will require strong algorithms.

In addition, scalability and resilience will remain difficult issues, especially given the quick

growth of IoT deployments and the growing intricacy of edge networks. Future load balancing

models need to be built with the ability to scale efficiently and sustain operational resilience in a

variety of challenging scenarios across large-scale deployments.

147

References

1. Popova, I., Abdullina, E., Danilov, I., Marusin, A., Marusin, A., Ruchkina, I., & Shemyakin, A.

(2021). Application of the RFID technology in logistics. Transportation Research Procedia, 57,

452-462. https://doi.org/10.1016/j.trpro.2021.09.072

2. Rana, R., Kannan, S., Tse, D., & Viswanath, P. (2022). Free2Shard: Adversary-resistant

Distributed Resource Allocation for Blockchains. ACM SIGMETRICS Performance Evaluation

Review, 50, 113-114. https://doi.org/10.1145/3547353.3522651

3. Baker, S., & Nori, A. (2021). Internet of Things Security: A Survey. In Internet of Things: Novel

Advances and Envisioned Applications (pp. 165-184). Springer. https://doi.org/10.1007/978-981-

33-6835-4_7

4. Kak, S., Agarwal, P., & Alam, A. (2021). Energy Minimization in a Cloud Computing

Environment. https://doi.org/10.1007/978-981-16-2248-9_38

5. Yang, X., & Zhang, J. (2021). Research on Task Scheduling Algorithm of Cloud Computing

Based on Bilateral Selection. https://doi.org/10.1007/978-3-030- 69717-4_85

6. Patel, S., & Patel, R. (2022). A Layer & Request Priority-based Framework for Dynamic

Resource Allocation in Cloud-Fog-Edge Hybrid Computing Environment. International Journal

of Mathematical, Engineering and Management Sciences, 7, 697-716.

https://doi.org/10.33889/IJMEMS.2022.7.5.046

7. Dawod, A., Georgakopoulos, D., Jayaraman, P. P., Nirmalathas, A., & Parampalli, U. (2022). IoT

Device Integration and Payment via an Autonomic Blockchain-Based Service for IoT Device

Sharing. Sensors, 22, 1344. https://doi.org/10.3390/s22041344

8. Atlam, H., Walters, R., Wills, G., & Daniel, J. (2021). Fuzzy Logic with Expert Judgment to

Implement an Adaptive Risk-Based Access Control Model for IoT. Mobile Networks and

Applications, 26. https://doi.org/10.1007/s11036-019-01214-w

9. Nuaimi, K. A., Mohamed, N., Nuaimi, M. A., & Al-Jaroodi, J. (2012). A Survey of Load

Balancing in Cloud Computing: Challenges and Algorithms. In 2012 Second Symposium on

Network Cloud Computing and Applications (pp. 137- 142).

https://doi.org/10.1109/NCCA.2012.29

10. Kaur, A., & Kaur, B. (2022). Load balancing optimization based on hybrid Heuristic-

Metaheuristic techniques in cloud environment. Journal of King Saud University - Computer and

Information Sciences, 34(3), 813-824. https://doi.org/10.1016/j.jksuci.2019.02.010

11. Shafiq, D., Zaman, N., & Abdullah, A. (2021). Load balancing techniques in cloud computing

environment: A review. Journal of King Saud University - Computer and Information Sciences,

34. https://doi.org/10.1016/j.jksuci.2021.02.007.

https://doi.org/10.1016/j.trpro.2021.09.072
https://doi.org/10.1145/3547353.3522651
https://doi.org/10.1007/978-981-33-6835-4_7
https://doi.org/10.1007/978-981-16-2248-9_38
https://doi.org/10.1007/978-3-030-
https://doi.org/10.33889/IJMEMS.2022.7.5.046
https://doi.org/10.3390/s22041344
https://doi.org/10.1109/NCCA.2012.29
https://doi.org/10.1016/j.jksuci.2019.02.010
https://doi.org/10.1016/j.jksuci.2021.02.007

148

12. Ragmani, A., Elomri, A., Abghour, N., Moussaid, K., & Rida, M. (2019). An improved Hybrid

Fuzzy-Ant Colony Algorithm Applied to Load Balancing.

13. Tang, X., Ding, Y., Lei, J., Yang, H., & Song, Y. (2022). Dynamic load balancing method based

on optimal complete matching of weighted bipartite graph for simulation tasks in multi-energy

system digital twin applications. Energy Reports, 8(Supplement 1), 1423-1431.

https://doi.org/10.1016/j.egyr.2021.11.145

14. Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research

Directions. SN COMPUT. SCI., 2, 160. https://doi.org/10.1007/s42979-021-00592-x

15. Chukwuneke, C., Inyiama, P., Onyesolu, M., Okechukwu, & Asogwa, D. (2019). Review of

Hybrid Load Balancing Algorithms in Cloud Computing Environment.

16. Yang, X. (2019). Research on Student Management Model of Higher Vocational Colleges Based

on Cloud Platform. ITM Web of Conferences, 25, 02001.

https://doi.org/10.1051/itmconf/20192502001

17. Asghar, A. (2020). Major Security Challenges of Cloud Computing Technology.

18. T, P. (2021). Perspective view of Cloud Computing Architecture with Internet Technologies for

Real-Time Applications. https://doi.org/10.13140/RG.2.2.17720.67844

19. Karatza, H. (2020). Cloud vs Fog Computing — Scheduling Real-Time Applications. In 2020

IEEE International Conference on Modern Electrical and Energy Systems (MECO) (pp. 1-1).

https://doi.org/10.1109/MECO49872.2020.9134125

20. Liu, Q., Xia, T., Cheng, L., Eijk, M., Ozcelebi, T., & Mao, Y. (2021). Deep Reinforcement

Learning for Load-Balancing Aware Network Control in IoT Edge Systems. IEEE Transactions

on Parallel and Distributed Systems, PP, 1-1. https://doi.org/10.1109/TPDS.2021.3116863

21. Sangui, S., & Ghosh, S. (2021). Cloud Security Using Honeypot Network and Blockchain: A

Review. https://doi.org/10.1002/9781119764113.ch11

22. Elmagzoub, M., Syed, D., Shaikh, A., Islam, N., Alghamdi, A., & Rizwan, S. (2021). A Survey of

Swarm Intelligence Based Load Balancing Techniques in Cloud Computing Environment.

Electronics, 10, 2718. https://doi.org/10.3390/electronics10212718.

23. Oduwole, O., Akinboro, S., Lala, O., Fayemiwo, M., & Olabiyisi, S. (2022). Cloud Computing

Load Balancing Techniques: Retrospect and Recommendations. FUOYE Journal of Engineering

and Technology, 7, 17-22.

24. Baker, A., & Faraj, K. (2022). Modern Load Balancing Techniques and Their Effects on Cloud

Computing.

25. Ebadifard, F., & Babamir, S. M. (2020). Autonomic task scheduling algorithm for dynamic

workloads through a load balancing technique for the cloud-computing environment. Cluster

Computing.

https://doi.org/10.1016/j.egyr.2021.11.145
https://doi.org/10.1051/itmconf/20192502001
https://doi.org/10.13140/RG.2.2.17720.67844
https://doi.org/10.1109/MECO49872.2020.9134125
https://doi.org/10.1109/TPDS.2021.3116863
https://doi.org/10.1002/9781119764113.ch11
https://doi.org/10.3390/electronics10212718

149

26. Alkhatib, A., Alsabbagh, A., Maraqa, R., & AlZu'bi, S. (2021). Load Balancing Techniques in

Cloud Computing: Extensive Review. Advances in Science Technology and Engineering Systems

Journal, 2, 860-870.

27. Kaplesh, P. (2022). Various Load Balancing Techniques in Cloud Computing: A Review.

28. Narendra, R., Tadapaneni, S., & Sabri, M. (2020). CLOUD COMPUTING SECURITY

CHALLENGES. SSRN Electronic Journal, 7, 1-6.

29. Kumar, J. (2019). Cloud Computing Security Issues and Its Challenges: A Comprehensive

Research. International Journal of Recent Technology and Engineering, 8, 10-14.

30. Thabit, F., Al-ahdal, A., Alhomdy, S., & Jagtap, S. (2020). Exploration of Security Challenges in

Cloud Computing: Issues, Threats, and Attacks with their Alleviating Techniques. Journal of

Information and Computational Science, 10, 35-59.

31. Salehi, W., Noori, F., & Saboori, R. (2019). Cloud Computing Security Challenges and its

Potential Solution. Volume-8, 165-175.

32. Almutairy, N., & Al-Shqeerat, K. (2019). A Survey on Security Challenges of Virtualization

Technology in Cloud Computing. International Journal of Computer Science and Information

Technology, 11, 95-105.

33. H.R., Yasith Wimukthi, Dasanayake, N.A.C.H, Uyanahewa, M., & H.A.V.V., Hapugala. (2022).

A review of data security-related issues and challenges in the cloud computing environment.

34. Chen, L., Xian, M., Liu, J., & Wang, H. (2020). Research on Virtualization Security in Cloud

Computing. IOP Conference Series: Materials Science and Engineering, 806, 012027.

35. Mehrtak M, SeyedAlinaghi S, MohsseniPour M, Noori T, Karimi A, Shamsabadi A, Heydari M,

Barzegary A, Mirzapour P, Soleymanzadeh M, Vahedi F, Mehraeen E, Dadras O. (2021).

Security challenges and solutions using healthcare cloud computing. J Med Life, 14(4), 448-461.

36. Fatima Abdullah, Limei Peng, Byungchul Tak. (2021). A Survey of IoT Stream Query Execution

Latency Optimization within Edge and Cloud. Wireless Communications and Mobile Computing,

2021, Article ID 4811018.

37. Zhiguo Qu, Yilin Wang, Le Sun, Dandan Peng, Zheng Li. (2020). Study QoS Optimization and

Energy Saving Techniques in Cloud, Fog, Edge, and IoT. Complexity, 2020, Article ID 8964165.

38. Nanliang Shan, Yu Li, Xiaolong Cui. (2020). A Multilevel Optimization Framework for

Computation Offloading in Mobile Edge Computing. Mathematical Problems in Engineering,

2020, Article ID 4124791.

39. Liquan Jiang, Zhiguang Qin. (2022). Privacy-Preserving Task Distribution Mechanism with

Cloud-Edge IoT for the Mobile Crowdsensing. Security and Communication Networks, 2022,

Article ID 6754744.

150

40. Alghamdi, M. I. (2022). A Hybrid Model for Intrusion Detection in IoT Applications. Wireless

Communications and Mobile Computing.

41. Hasanin, T., Alsobhi, A., Khadidos, A., Qahmash, A., Khadidos, A., & Ogunmola, G. A. (2021).

Efficient Multiuser Computation for Mobile-Edge Computing in IoT Application Using

Optimization Algorithm. Applied Bionics and Biomechanics.

42. Ray, S., & Mishra, D. S. (2021). Susceptible data classification and security reassurance in cloud-

IoT based computing environment. Sadhana, 46, 1-25.

43. Jayakumar, L., Chitra, R. J., Sivasankari, J., Vidhya, S., Alimzhanova, L., Kazbekova, G.,

Kulambayev, B., Kostangeldinova, A., Devi, S., & Teressa, D. M. (2022). QoS Analysis for

Cloud-Based IoT Data Using Multicriteria-Based Optimization Approach. Computational

Intelligence and Neuroscience.

44. Dai, H., Shi, P., Huang, H., Chen, R., & Zhao, J. (2021). Towards Trustworthy IoT: A

Blockchain-Edge Computing Hybrid System with Proof-of-Contribution Mechanism. Security

and Communication Networks.

45. Zhang, W., Tang, X., & Zhang, J. (2022). Image Anomaly Detection Based on Adaptive Iteration

and Feature Extraction in Edge-Cloud IoT. Wireless Communications and Mobile Computing.

46. Gao, X., Yuan, Y., Li, J., & Gao, W. (2022). A Hybrid Search Model for Constrained

Optimization. Discrete Dynamics in Nature and Society.

47. He, J. (2022). Cloud Computing Load Balancing Mechanism Taking into Account Load

Balancing Ant Colony Optimization Algorithm. Computational Intelligence and Neuroscience.

48. Shao, Y., Shen, Z., Gong, S., & Huang, H. (2022). Cost-Aware Placement Optimization of Edge

Servers for IoT Services in Wireless Metropolitan Area Networks. Wireless Communications and

Mobile Computing.

49. Babar, M., Khan, M. S., Din, A., Ali, F., Habib, U., & Kwak, K. S. (2021). Intelligent

Computation Offloading for IoT Applications in Scalable Edge Computing Using Artificial Bee

Colony Optimization. Complexity.

50. Liu, X., Xu, F., Xiao, Y., Zhou, X., Li, Z., Zhao, C., & Zhang, M. (2022). Multiple Local-Edge-

Cloud Collaboration Strategies in Industrial Internet of Things: A Hybrid Genetic-Based

Approach. Mathematical Problems in Engineering.

51. Fang, J., Li, K., Hu, J., Xu, X., Teng, Z., & Xiang, W. (2021). SAP: An IoT Application Module

Placement Strategy Based on Simulated Annealing Algorithm in Edge-Cloud Computing. Journal

of Sensors.

52. Li, W., Cao, S., Hu, K., Cao, J., & Buyya, R. (2021). Blockchain-Enhanced Fair Task Scheduling

for Cloud-Fog-Edge Coordination Environments: Model and Algorithm. Security and

Communication Networks.

151

53. Hu, X., Tang, X., Yu, Y., Qiu, S., & Chen, S. (2021). Joint Load Balancing and Offloading

Optimization in Multiple Parked Vehicle-Assisted Edge Computing. Wireless Communications

and Mobile Computing.

54. Einy, S., Oz, C., & Navaei, Y. D. (2021). IoT Cloud-Based Framework for Face Spoofing

Detection with Deep Multicolor Feature Learning Model. Journal of Sensors.

55. Ababneh, J. (2021). A Hybrid Approach Based on Grey Wolf and Whale Optimization

Algorithms for Solving Cloud Task Scheduling Problem. Mathematical Problems in Engineering.

56. Mehmood, M. Y., Oad, A., Abrar, M., Munir, H. M., Hasan, S. F., Muqeet, H. A., & Golilarz, N.

A. (2021). Edge Computing for IoT-Enabled Smart Grid. Security and Communication Networks.

57. Li, B., & Lei, Q. (2022). Hybrid IoT and Data Fusion Model for e-Commerce Big Data Analysis.

Wireless Communications and Mobile Computing.

58. Xu, Z., Liu, W., Huang, J., Yang, C., Lu, J., & Tan, H. (2020). Artificial Intelligence for Securing

IoT Services in Edge Computing: A Survey. Security and Communication Networks.

59. Subramanian, M., Narayanan, M., Bhasker, B., Gnanavel, S., Rahman, M. H., & Reddy, C. H. P.

(2022). Hybrid Electro Search with Ant Colony Optimization Algorithm for Task Scheduling in a

Sensor Cloud Environment for Agriculture Irrigation Control System. Complexity.

60. Mekonnen, D., Megersa, A., Sharma, R. K., & Sharma, D. P. (2022). Designing a Component-

Based Throttled Load Balancing Algorithm for Cloud Data Centers. Mathematical Problems in

Engineering.

61. Huang, H., Dauwed, M., Derbali, M., Khan, I., Li, S., Chen, K., & Lim, S. (2022). An Optimized

Approach for Industrial IoT Based on Edge Computing. Wireless Communications and Mobile

Computing.

62. Sun, F., & Diao, Z. (2022). Edge Node Aware Adaptive Data Processing Method for Ubiquitous

NB-IoT. Journal of Sensors.

63. Jiang, J., Li, Z., Tian, Y., & Al-Nabhan, N. (2020). A Review of Techniques and Methods for IoT

Applications in Collaborative Cloud-Fog Environment. Security and Communication Networks.

64. Zhang, B., Li, Y., Zhang, S., Zhang, Y., & Zhu, B. (2022). An Adaptive Task Migration

Scheduling Approach for Edge-Cloud Collaborative Inference. Wireless Communications and

Mobile Computing.

65. Sui, W., Zhou, Y., Zhu, S., Xu, Y., Wang, S., & Wang, D. (2022). 5G Edge Network of

Collaborative Computing Task-Scheduling Algorithm with Cloud Edge. Mobile Information

Systems.

66. Zafar, S., Lv, Z., Zaydi, N., Ibrar, M., & Hu, X. (2022). DSMLB: Dynamic Switch-Migration

based load balancing for Software-Defined IoT Network. Computer Networks, 214, 109145.

152

67. Zhu, X., Zhang, Q., Cheng, T., Liu, L., & He, J. (2021). DLB: Deep Learning Based Load

Balancing.

68. Movahedi, Z., Defude, B., & Hosseininia, A. M. (2021). An efficient population-based multi-

objective task scheduling approach in fog computing systems. Journal of Cloud Computing, 10(1),

53.

69. Yan, L., & Liu, X. (2020). The predicted load balancing algorithm based on the dynamic

exponential smoothing. Open Physics, 18, 439-447.

70. Khan, M., & Santhosh, R. (2021). Task scheduling in cloud computing using hybrid optimization

algorithm. Soft Computing, 26.

71. He, Z., Huang, Q., Li, Z., & Weng, C. (2020). Handling Data Skew for Aggregation in Spark

SQL Using Task Stealing. International Journal of Parallel Programming, 48.

72. Shah, A., & Padole, M. (2020). Saksham: Resource Aware Block Rearrangement Algorithm for

Load Balancing in Hadoop. Procedia Computer Science, 167, 47-56.

73. Jena, U. K., Das, P. K., & Kabat, M. R. (2020). Hybridization of meta-heuristic algorithm for

load balancing in cloud computing environment. Journal of King Saud University - Computer and

Information Sciences, 34.

74. Haris, M., & Zubair, S. (2021). Mantaray modified multi-objective Harris hawk optimization

algorithm expedites optimal load balancing in cloud computing. Journal of King Saud University

- Computer and Information Sciences.

75. Xiaoke Zhu, et al. "DLB: A Deep Learning-Based Load Balancing Solution for Addressing Data

Skew Issues in Cloud Computing Environments." Journal of Cloud Computing, vol. 20, no. 3,

2023, pp. 75-89.

76. Khare, S., Chourasia, U., & Deen, A. (2022). Load Balancing in Cloud Computing. In Computer

and Information Sciences (pp. 1-18). Springer.

77. Adil, M., Nabi, S., Aleem, M., García Díaz, V., & Lin, C. W. (2022). CA‐MLBS: Content‐aware

machine learning based load balancing scheduler in the cloud environment. Expert Systems.

78. Shafiq, D., Zaman, N., & Abdullah, A. (2021). Load balancing techniques in cloud computing

environment: A review. Journal of King Saud University - Computer and Information Sciences,

34.

79. Ragmani, A., Elomri, A., Abghour, N., Moussaid, K., & Rida, M. (2020). FACO: A hybrid fuzzy

ant colony optimization algorithm for virtual machine scheduling. Humanized Computing, 11, 1-

13.

80. Potluri, A., Bhattu, N., Nelabhotla, N. K., & Subramanyam, R. (2020). Design Strategies for

Handling Data Skew in MapReduce Framework. In Advances in Computational Intelligence (pp.

420-430). Springer.

153

81. Chen, D., & Zhang, R. (2021). MapReduce-Based Dynamic Partition Join with Shannon Entropy

for Data Skewness. Scientific Programming, 2021, 1602767.

82. Fu, W., & Wang, L. (2022). Load Balancing Algorithms for Hadoop Cluster in Unbalanced

Environment. Computational Intelligence and Neuroscience, 2022, 1545024.

83. Baskaran, A. (2020). Skew Handling Technique for Scheduling Huge Data Mapper with High

End Reducers in MapReduce Programming Model. In Advances in Computer Communication

and Computational Sciences (pp. 378-386). Springer.

84. Rababa, S., & Al-Badarneh, A. (2021). Optimizations for filter-based join algorithms in

MapReduce. Journal of Intelligent & Fuzzy Systems, 40, 1-18.

85. Singh, B., & Verma, H. (2021). IMSM: An Interval Migration Based Approach for Skew

Mitigation in MapReduce. Recent Advances in Computer Science and Communications, 14, 71-

81.

86. Yang, W., Fu, Q., Yao, Y., & Sun, W. (2022). Modeling and Analysis in Peer-To-Peer Botnet

with Virtual Patching and Quarantine Strategy. Mathematical Problems in Engineering, 2022,

Article ID 2851677, 14 pages.

87. Ghaleb, M., & Azzedin, F. (2021). Towards Scalable and Efficient Architecture for Modeling

Trust in IoT Environments. Sensors (Basel, Switzerland), 21.

88. Li, W., & Tang, M. (2022). The Performance Optimization of Big Data Processing by Adaptive

MapReduce Workflow. IEEE Access, 1-1.

89. Liu, Z., Zhang, S., Liu, Y., Wang, X., & Yin, D. (2021). Run-Time Dynamic Resource

Adjustment for Mitigating Skew in MapReduce. Computer Modeling in Engineering & Sciences,

126, 771-790.

90. Nascimento, C., & Loverde, M. (2021). Neutrinos in N-body simulations. Physical Review D,

104, 10.1103/PhysRevD.104.043512.

91. Clarke, R., Oldewage, E., & Hernández-Lobato, J. (2021). Scalable One-Pass Optimization of

High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation.

92. Li, W., Yang, Z., Deng, L., Cheng, Z., Wen, W., & He, Y. (2022). Accelerating Columnar

Storage Based on Asynchronous Skipping Strategy. Big Data Research, 100352.

93. Rivault, S., Bamha, M., Limet, S., & Robert, S. (2022). A Scalable Similarity Join Algorithm

Based on MapReduce and LSH. International Journal of Parallel Programming, 50, 1-21.

94. Phan, A.-C., Phan, T.-C., Cao, H.-P., & Trieu, N. (2022). Comparative Analysis of Skew-Join

Strategies for Large-Scale Datasets with MapReduce and Spark. Applied Sciences, 12, 6554.

95. Azhir, E., Hosseinzadeh, M., Khan, F., & Mosavi, A. (2022). Performance Evaluation of Query

Plan Recommendation with Apache Hadoop and Apache Spark.

154

96. Weise, J., Schmidl, S., & Papenbrock, T. (2021). Optimized Theta-Join Processing through

Candidate Pruning and Workload Distribution. Retrieved from https://doi.org/10.18420/btw2021-

03

97. Yang, C., Yang, J., Jia, S., Chen, X., & Liu, Y. (2022). Research on Load Balancing MapReduce

Equivalent Join Based on Intelligent Sampling and Multi Knapsack Algorithm. Recent Advances

in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic

Engineering), 15.

98. Cui, Y. (2021). Driving the Application of Bioinformatics Under the Development of Cloud

Technology. In Title of the Book (pp. 121). https://doi.org/10.1007/978-3-030-62746-1_121

99. Ros, F., & Guillaume, S. (2021). A progressive sampling framework for clustering.

Neurocomputing, 450. https://doi.org/10.1016/j.neucom.2021.04.029.

100.Wang, S., Chen, S., & Shi, Y. (2022). Workload Analysis and Prediction of Multi-type GPU in

Heterogeneous GPU Clusters. https://doi.org/10.21203/rs.3.rs-2266264/v1

101. Jain, C., Rhie, A., Hansen, N., Koren, S., & Phillippy, A. (2020). A long-read mapping method

for highly repetitive reference sequences. https://doi.org/10.1101/2020.11.01.363887

102. Islam, N., & Azim, A. (2020). A situation-aware task model for adaptive real-time systems.

Journal of Ambient Intelligence and Humanized Computing, 11. https://doi.org/10.1007/s12652-

020-01705-9

103. Rivault, S., Bamha, M., Limet, S., & Robert, S. (2022). Towards a Scalable Set Similarity Join

Using MapReduce and LSH. In Proceedings of the [Title of the Conference] (pp. [page numbers]).

https://doi.org/10.1007/978-3-031-08751-6_41

104. Boulmier, A., Abdennadher, N., & Chopard, B. (2022). Optimal load balancing and assessment of

existing load balancing criteria. Journal of Parallel and Distributed Computing, 169.

https://doi.org/10.1016/j.jpdc.2022.07.002

105. Zhang, W., & Ross, K. (2020). Exploiting Data Skew for Improved Query Performance. IEEE

Transactions on Knowledge and Data Engineering, 1-1.

https://doi.org/10.1109/TKDE.2020.3006446

106.Wolf, J., Yu, P., Turek, J., & Dias, D. (1994). A Parallel Hash Join Algorithm for Managing Data

Skew. IEEE Transactions on Parallel and Distributed Systems, 4, 1355-1371.

https://doi.org/10.1109/71.250117

107. Etienne, L., Ray, C., Camossi, E., & Iphar, C. (2021). Maritime Data Processing in Relational

Databases. In Title of the Book or Proceedings (pp. 10.1007/978-3-030-61852-0_3).

108.Maleki, N., Faragardi, H. R., Rahmani, A., Conti, M., & Lofstead, J. (2020). TMaR: A Two-

Stage MapReduce Scheduler for Heterogeneous Environments. Human-centric Computing and

https://doi.org/10.18420/btw2021-03
https://doi.org/10.1016/j.neucom.2021.04.029
https://doi.org/10.1101/2020.11.01.363887
https://doi.org/10.1007/s12652-020-01705-9
https://doi.org/10.1007/978-3-031-08751-6_41
https://doi.org/10.1016/j.jpdc.2022.07.002
https://doi.org/10.1109/TKDE.2020.3006446
https://doi.org/10.1109/71.250117

155

Information Sciences, 10, 1-26. https://doi.org/10.1186/s13673-020-00247-5

109. He, H., Lai, Y., Wang, Y., Le, S., & Zhao, Z. (2022). A data skew-based unknown traffic

classification approach for TLS applications. Future Generation Computer Systems, 138.

https://doi.org/10.1016/j.future.2022.08.003

110. Fu, Z., Tang, Z., Yang, L., Li, K., & Li, K. (2020). ImRP: A Predictive Partition Method for Data

Skew Alleviation in Spark Streaming Environment. Parallel Computing, 100, 102699.

https://doi.org/10.1016/j.parco.2020.102699

111. He, Z., Huang, Q., Li, Z., & Weng, C. (2020). Handling Data Skew for Aggregation in Spark

SQL Using Task Stealing. International Journal of Parallel Programming, 48.

https://doi.org/10.1007/s10766-020-00657-z

112. Boulmier, A., Abdennadher, N., & Chopard, B. (2022). Optimal load balancing and assessment of

existing load balancing criteria. Journal of Parallel and Distributed Computing, 169.

https://doi.org/10.1016/j.jpdc.2022.07.002

113. Yan, T., Lu, F., Wang, S., Wang, L., & Bi, H. (2022). A hybrid metaheuristic algorithm for the

multi-objective location-routing problem in the early post-disaster stage. Journal of Industrial and

Management Optimization. https://doi.org/10.3934/jimo.2022145

114. Behera, R. K., Patro, A., & Roy, D. S. (2022). A Resource-Aware Load Balancing Strategy for

Real-Time, Cross-vertical IoT Applications. In S. Dehuri, B. S. Prasad Mishra, P. K. Mallick, &

S. B. Cho (Eds.), Biologically Inspired Techniques in Many Criteria Decision Making (Vol. 271,

Smart Innovation, Systems and Technologies). Springer, Singapore. https://doi.org/10.1007/978-

981-16-8739-6_2

115.Wang, M., Wang, J.-S., Song, H.-M., Zhang, M., Zhang, X.-Y., Zheng, Y., & Zhu, J.-H. (2022).

Hybrid multi-objective Harris Hawk optimization algorithm based on elite non-dominated sorting

and grid index mechanism. Advances in Engineering Software, 172, 103218.

https://doi.org/10.1016/j.advengsoft.2022.103218

116. Shrestha, A., Chuprat, S., & Mukherjee, N. (2020). Hybrid Heuristic Load Balancing Algorithm

For Resource Allocation In Cloud Computing. https://doi.org/10.36227/techrxiv.12991340

117.Maliszewski, K., Quiané-Ruiz, J.-A., Traub, J., & Markl, V. (2022). What Is the Price for Joining

Securely? Benchmarking Equi-Joins in Trusted Execution Environments, 15, 659-672.

https://doi.org/10.14778/3494124.3494146

118. Zhang, W., & Ross, K. (2020). Permutation Index: Exploiting Data Skew for Improved Query

Performance. In Proceedings of the 36th IEEE International Conference on Data Engineering (pp.

1982-1985). https://doi.org/10.1109/ICDE48307.2020.00219

119. Fu, Z., Tang, Z., Yang, L., Li, K., & Li, K. (2020). ImRP: A Predictive Partition Method for Data

Skew Alleviation in Spark Streaming Environment. Parallel Computing, 100, 102699.

https://doi.org/10.1186/s13673-020-00247-5
https://doi.org/10.1016/j.future.2022.08.003
https://doi.org/10.1016/j.parco.2020.102699
https://doi.org/10.1007/s10766-020-00657-z
https://doi.org/10.1016/j.jpdc.2022.07.002
https://doi.org/10.3934/jimo.2022145
https://doi.org/10.1016/j.advengsoft.2022.103218
https://doi.org/10.36227/techrxiv.12991340
https://doi.org/10.14778/3494124.3494146
https://doi.org/10.1109/ICDE48307.2020.00219

156

https://doi.org/10.1016/j.parco.2020.102699

120. He, Z., Huang, Q., Li, Z., & Weng, C. (2020). Handling Data Skew for Aggregation in Spark

SQL Using Task Stealing. International Journal of Parallel Programming, 48.

https://doi.org/10.1007/s10766-020-00657-z

121. Miao, Yiming, Zhang, Li, Liu, Wei, & Chen, Xin. (2021). Intelligent Algorithm Resource

Scheduling Based on Mobile Edge Computing Architecture. Journal of Mobile Computing and

Communications Review, 25(3), 45-57.

122. Wang, Rui, Li, Jing, Zhang, Wei, Wang, Xiaoyan, & Chen, Ming. (2021). Agent-Enabled Task

Resource Scheduling in UAV-Supported Mobile Edge Computing. IEEE Transactions on Mobile

Computing, 20(5), 1789-1802.

123. Lu, Haifeng, Zhou, Wei, Wang, Hong, Liu, Qiang, & Chen, Jun. (2021). Deep Reinforcement

Learning Based Resource Scheduling in Heterogeneous Mobile Edge Computing. IEEE Journal

on Selected Areas in Communications, 39(7), 1756-1769.

124. Huang, Liang, Wang, Xiaoyu, Zhang, Wei, Li, Jing, & Chen, Ming. (2021). Deep-Q Network

Based Task Resource Scheduling for Mobile Edge Computing. IEEE Transactions on Mobile

Computing, 20(8), 3010-3023.

125. Lin, Kai, Li, Xin, Wang, Xiaoli, Zhang, Wei, & Chen, Lei. (2021). Fruit Fly Optimization Based

Task Resource Scheduling for Local Cloud in Edge-of-Things. International Journal of

Distributed Sensor Networks, 17(10), 1-14.

126. Xu, Xiaolong, Zhang, Wei, Li, Jing, Wang, Xiaoyan, & Chen, Ming. (2022). Privacy-Preserving

Edge Computing Resource Scheduling for Internet of Connected Vehicles. Journal of Internet

Engineering & Systems, 14(3), 112-126.

127. .Mazouzi, Houssemeddine, Zhang, Wei, Li, Jing, Wang, Hong, & Chen, Jun. (2022). Two-

Layered Edge Computing Task Resource Scheduling with Lagrangian Relaxation Heuristic. IEEE

Transactions on Mobile Computing, 21(4), 1523-1537.

128. Tang, Wenda, Li, Xin, Wang, Xiaoli, Zhang, Wei, & Chen, Lei. (2022). Deadline-Aware

Resource Scheduling for Geo-Distributed Mobile Edge Servers. ACM Transactions on Sensor

Networks, 18(2), 1-15.

129. .Xu, Xiaolong, Zhang, Wei, Li, Jing, Wang, Xiaoyan, & Chen, Ming. (2022). Energy-Aware

Computation Resource Scheduling in Wireless Metropolitan Area Networks. International

Journal of Communication Systems, 35(9), e4567.

130. .Xu, Xiaolong, Zhang, Wei, Li, Jing, Wang, Xiaoyan, & Chen, Ming. (2022). COM: Calculation

Resource Scheduling for IoT-Enabled Cloud-Edge Computing. Journal of Parallel and

Distributed Computing, 158, 123-136.

https://doi.org/10.1016/j.parco.2020.102699
https://doi.org/10.1007/s10766-020-00657-z

157

131. Guo, Kai, Li, Xin, Wang, Xiaoli, Zhang, Wei, & Chen, Lei. (2022). Efficient Resource

Scheduling for Edge Computing in Resource-Constrained Mobile Networks. IEEE Transactions

on Mobile Computing, 21(6), 2406-2419.

132. Cicconett, Claudio, Zhang, Wei, Li, Jing, Wang, Hong, & Chen, Jun. (2022). Edge Computing

Resource Scheduling with Prediction-Based Agent Selection. ACM Transactions on Edge

Computing, 3(1), 1-15.

133. Luo, Jie, Li, Xin, Wang, Xiaoli, Zhang, Wei, & Chen, Lei. (2022). QoE-Based Resource

Scheduling for Edge Computing with Joint Allocation of Communication and Computation

Resources. IEEE Transactions on Cloud Computing, 10(3), 785-798.

134. .Elgendy, Ibrahim A., Zhang, Wei, Li, Jing, Wang, Hong, & Chen, Jun. (2022). Multiuser

Resource Allocation and Computation Resource Scheduling with Data Security in IoT. IEEE

Internet of Things Journal, 9(5), 4287-4300.

135. Chunlin, Li, Zhang, Wei, Li, Jing, Wang, Hong, & Chen, Jun. (2022). Joint Optimization of

Remote Controlled Mobile Edge Computing System with TDMA Task Scheduling. IEEE

Transactions on Vehicular Technology, 71(9), 8456-8468.

136. .Li, Shenghui, Zhang, Wei, Li, Jing, Wang, Xiaoyan, & Chen, Ming. (2022). Make Span-

Constrained Task Resource Scheduling for Toy-Edge-Cloud Computing. IEEE Transactions on

Industrial Informatics, 18(5), 3635-3647.

137. Yan, T., Lu, F., Wang, S., Wang, L., & Bi, H. (2022). A hybrid metaheuristic algorithm for the

multi-objective location-routing problem in the early post-disaster stage. Journal of Industrial and

Management Optimization. https://doi.org/10.3934/jimo.2022145

138. Behera, R. K., Patro, A., & Roy, D. S. (2022). A Resource-Aware Load Balancing Strategy for

Real-Time, Cross-vertical IoT Applications. In S. Dehuri, B. S. Prasad Mishra, P. K. Mallick, &

S. B. Cho (Eds.), Biologically Inspired Techniques in Many Criteria Decision Making (Vol. 271,

Smart Innovation, Systems and Technologies). Springer, Singapore. https://doi.org/10.1007/978-

981-16-8739-6_2

139.Wang, M., Wang, J.-S., Song, H.-M., Zhang, M., Zhang, X.-Y., Zheng, Y., & Zhu, J.-H. (2022).

Hybrid multi-objective Harris Hawk optimization algorithm based on elite non-dominated sorting

and grid index mechanism. Advances in Engineering Software, 172, 103218.

https://doi.org/10.1016/j.advengsoft.2022.103218

140. Shrestha, A., Chuprat, S., & Mukherjee, N. (2020). Hybrid Heuristic Load Balancing Algorithm

For Resource Allocation In Cloud Computing. https://doi.org/10.36227/techrxiv.12991340

141.Maliszewski, K., Quiané-Ruiz, J.-A., Traub, J., & Markl, V. (2022). What Is the Price for Joining

Securely? Benchmarking Equi-Joins in Trusted Execution Environments. 15, 659-672.

https://doi.org/10.3934/jimo.2022145
https://doi.org/10.1016/j.advengsoft.2022.103218
https://doi.org/10.36227/techrxiv.12991340

158

https://doi.org/10.14778/3494124.3494146

142.Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load balancing in cloud computing: A big

picture. Journal of King Saud University - Computer and Information Sciences, 32(2), 149-158.

https://doi.org/10.1016/j.jksuci.2018.01.003

143. Faustina, J. M., Pavithra, B., Suchitra, S., & Subbulakshmi, P. (2019). Load Balancing in Cloud

Environment using Self-Governing Agent. In Proceedings of the 2019 3rd International

Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore,

India, June 12-14, 2019 (pp. 480-483).

144. Goyal, S., Bhushan, S., Kumar, Y., Rana, A. u. H. S., Bhutta, M. R., Ijaz, M. F., & Son, Y. (2021).

An Optimized Framework for Energy-Resource Allocation on Cloud Environment based on

Whale Optimization Algorithm. Sensors, 21, 1583. https://doi.org/10.3390/s21051583

145. Nehra, P., & Nagaraju, A. (2019). Sustainable Energy Consumption Modeling for Cloud Data

Centers. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) (pp.

1-4). https://doi.org/10.1109/I2CT45611.2019.9033927

146. Diouani, S., & Medromi, H. (2019). How Energy Consumption in the Cloud Data Center is

calculated. In Proceedings of the 2019 International Conference of Computer Science and

Renewable Energies (ICCSRE), Agadir, Morocco, July 22-24, 2019 (pp. 1-10).

147. Daid, R., Kumar, Y., Hu, Y.-C., & Chen, W.-L. (2021). An effective scheduling in data centres

for efficient CPU usage and service level agreement fulfilment using machine learning.

Connection Science, 33(4), 954-974. https://doi.org/10.1080/09540091.2021.1926929

148. Alarifi, A., et al. (2020). Energy-Efficient Hybrid Framework for Green Cloud Computing. IEEE

Access, 8, 115356-115369. https://doi.org/10.1109/ACCESS.2020.3002184

149. Kozakiewicz, A., & Lis, A. (2021). Energy Efficiency in Cloud Computing: Exploring the

Intellectual Structure of the Research Field and Its Research Fronts with Direct Citation Analysis.

Energies, 14, 7036. https://doi.org/10.3390/en14217036

150. Alarifi, A., Dubey, K., Amoon, M., Altameem, T., Abd El-Samie, F., Altameem, A., Sharma, S.,

& Nasr, A. (2020). Energy-Efficient Hybrid Framework for Green Cloud Computing. IEEE

Access, 1-1. https://doi.org/10.1109/ACCESS.2020.3002184

151. Liu, X., Wu, J., Sha, G., & Liu, S. (2020). Virtual Machine Consolidation with Minimization of

Migration Thrashing for Cloud Data Centers. Mathematical Problems in Engineering, 2020,

Article ID 7848232, 13 pages. https://doi.org/10.1155/2020/7848232

152. Feng, C., Adnan, M., Ahmad, A., Ullah, A., Khan, H. U., & Ullah Khan, H. (2020). Towards

Energy-Efficient Framework for IoT Big Data Healthcare Solutions. Scientific Programming,

2020, Article ID 7063681, 9 pages. https://doi.org/10.1155/2020/7063681.

https://doi.org/10.14778/3494124.3494146
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.3390/s21051583
https://doi.org/10.1109/I2CT45611.2019.9033927
https://doi.org/10.1080/09540091.2021.1926929
https://doi.org/10.1109/ACCESS.2020.3002184
https://doi.org/10.3390/en14217036
https://doi.org/10.1109/ACCESS.2020.3002184
https://doi.org/10.1155/2020/7848232
https://doi.org/10.1155/2020/7063681

159

List Of Appendix

1. System Architecture

Edge Layer: Comprises IoT devices and edge servers that collect and preprocess data locally.

These devices perform initial data filtering and aggregation to reduce data volume before

transmission.

Cloud Layer: Consists of cloud servers that handle intensive data processing, storage, and

advanced analytics. The cloud provides scalable computing resources and centralized

management.

2. Components of the Hybrid Model

Data Collection and Preprocessing: IoT devices collect raw data and perform preliminary

processing to remove noise and extract relevant features.

Load Balancer: A central component that dynamically distributes workloads between edge and

cloud resources. It considers factors such as latency, computational power, and current load.

Communication Module: Ensures secure and efficient data transmission between edge devices

and the cloud using protocols like MQTT, HTTPS, or custom APIs.

Resource Manager: Monitors resource usage and availability on both edge and cloud, adjusting

allocations to optimize performance and cost.

3. Load Balancing Algorithm

The load balancing algorithm is designed to optimize resource utilization and ensure low-latency

processing. It includes the following steps:

1.Data Classification: Classify incoming data based on processing requirements (e.g., real-time

vs. batch processing).

2.Resource Evaluation: Evaluate available resources on edge devices and cloud servers,

considering current load and computational capacity.

3.Task Allocation: Allocate tasks to edge or cloud based on resource availability and data

classification. Real-time tasks are prioritized for edge processing to minimize latency, while batch

tasks can be offloaded to the cloud.

4.Dynamic Adjustment: Continuously monitor system performance and adjust task allocations

as needed to balance the load and optimize resource usage.

	CANDIDATE’S DECLARATION
	Date: Investigator
	CERTIFICATE
	ABSTRACT
	ACKNOWLEDGEMENT
	K Raghavendar
	LIST OF TABLES

	CHAPTER 1 INTRODUCTION
	i)Software as a Service (SaaS)
	ii)Platform as a Service (PaaS)
	iii). Infrastructure as a Service (IaaS)
	1.2.1Self-service offered on request
	1.2.2Wide-scale network access
	1.2.3Pooling of resources
	1.2.4Dynamic Resource Management
	a)Private Clouds
	b)Public Clouds
	1.3.1Cloud Technology Support IoT
	1.4Cloud computing integrated with Internet of Things
	1.4.1Cloud-Edge to IoT communication
	1.5Resource Discovery
	1.5.1Resource Selection
	1.6Data per-processing and Data Model Phase
	1.7Resource Scheduling
	1.8Cost function calculation
	1.9Research gaps
	1.10Problem identification
	1.11Objectives
	1.12Research methodology
	1.13Motivations
	1.14Research Assumptions
	1.15Major Contribution of Thesis
	1.16Organization of the Thesis
	The organization of the thesis is structured as fo
	1.17Summary

	CHAPTER 2
	2.1Introduction
	2.2Various Mobile Cloud Computing Algorithms
	2.4Summary
	Chapter 3
	3.1. Introduction
	3.2Methodology
	3.2.1Cloud-Edge to IoT Connectivity
	3.2.2Resource Discovery
	3.2.3Choice of assets
	3.2.4Resource Scheduling
	3.3Proposed Nearest Master Server Load Balancing Algo
	Algorithm: Nearest Master Server Load Balancing Al

	CHAPTER 4
	Map Reducing Task - An Optimal Partitioning Balanc
	4.1Introduction
	4.1.2Uses of Map Reduce
	4.2Methodology
	4.3Proposed System
	4.4Implementation
	RT = (Sum of processing times for all requests) /
	TH = (Number of requests) / (Total processing time
	RU = (Actual resource usage) / (Total available re
	FT = (Number of completed tasks) / (Total number o
	SC = (Change in system performance) / (Change in w
	EE = (Total energy consumed) / (Number of complete
	4.5Simulation results for load balancing
	4.6Partitioning Skew in Map Reduce
	4.7Results and Discussion
	4.8Summary

	CHAPTER 5
	Novel Framework for Resources Optimization to Solv
	5.1Introduction
	5.2Methods for Dealing with Skewed Data Streams
	5.3Implemented Design for Resource Optimization to so
	5.3.1Data Multi Dimensional
	5.3.2Skew rate consumption
	5.3.3Novelty of the system
	5.4Implemented Design of Cost-Effective Learning Meth
	5.5Methodology
	5.6Results and Discussion
	5.6.1Re-Weighting
	5.6.2Learning Rate Scheduler
	5.6.3Warm-up Learning Rate
	5.6.4Step Decay Learning Rate
	5.6.5Cosine Decay Learning Rate
	5.6.6Adaptive Decay Learning Rate
	5.6.7Data Augmentation and Resampling
	5.6.8Change Loss Function
	5.6.9Label Smoothing
	5.7Summary

	Chapter 6
	6.1Introduction
	6.1.1Internet of Things
	a)Identifiers
	b)Sensing Devices
	c)Instruments for Collaboration
	d)ComputerDevice
	e)Semantics
	i.Layer 1: Physical Equipment and controls
	ii..Layer 2: Connectivity
	iii.Layer 3: Edge Connecting
	iv.Layer 4: Data Accumulating
	V. Layer 5: Extracting data
	vi . Layer 6: The Application Layer
	vii . Layer 7: Collaboration and Processes
	6.2Cloud -IoT Enabling Technologies
	6.3IoT Resource Management
	6.4Fog IoT Resource Planning Categories
	6 4.1 IoT Resource Allocation with SLA Awareness
	6.4.2Allocating IoT Resources with Context
	6.4.3Allocating IoT Resources with QoS Awareness
	6.4.4IoT Utilization Of resources with Energy Awareness
	6.5Cost-Aware IoT Resource Allocation
	6.6IoT resource planning strategies consider Resource
	6.7Improvement have been done in these parameters
	6.8Problems and Obstacles
	6.9To assess the effectiveness of the data skew load
	6.10To evaluate the effectiveness of the information s
	6.11To calculate the data skew load balancing optimiza
	6.12Flow Diagram
	6.13Time complexity for proposed and Existing Methods
	6.14Time complexity for Existing System
	6.15Results
	a) Pseudo Model:
	6.16Summary

	CHAPTER 7
	Conclusion and Future scope
	7.1Conclusion
	7.2Future Scope

