
DCAP605

Advanced Data Structure and 
Algorithms



 

ADVANCED DATA STRUCTURE
AND ALGORITHMS



Copyright © 2011 Anindita Hazra
All rights reserved

Produced & Printed by
EXCEL BOOKS PRIVATE LIMITED

A-45, Naraina, Phase-I,
New Delhi-110028

for
Lovely Professional University

Phagwara



SYLLABUS

Advanced Data Structure and Algorithms
Objectives: To equip the students with the skills to analyze, design, program, and select the appropriate advanced data
structures required to solve real world problems.

 

Sr. No. Topics 

1. List: Abstract data types, list adts:array implementation, linked list ,common errors, doubly 

linked list, circularly linked list, cursor implementation of linked list. 

2. Stack: Stack model, implementation of stacks, applications; queues: queue model, array 

implementation, applications. 

3. Trees: Binary trees, binary search trees, avl trees. 

4. Splay trees, b-trees. 

5. Hashing: Hash functions, open hashing, closed hashing, rehashing. 

6. Heaps: Binary heaps, applications, d-heaps. 

7. Leftist heaps, skew heaps, binomial queues 

8. Sorting: insertion sort, shell sort, heap sort , Merge sort, quick sort, bucket sort, external sort 

9. Graphs: Shortest path algorithms. 

10 Network flow problem, minimum spanning tree 



CONTENTS

Unit 1: Introduction to Data Structure and Arrays 1

Unit 2: Linked Lists 24

Unit 3: Stacks 58

Unit 4: Queues 82

Unit 5: Trees 97

Unit 6: Binary Search Tree and AVL Trees 116

Unit 7: Splay Trees 159

Unit 8: B-trees 170

Unit 9: Hashing 188

Unit 10: Heaps 199

Unit 11: Leftist Heaps and Binomial Queues 219

Unit 12: Sorting 233

Unit 13: Graphs 264

Unit 14: Network Flows 277



6 LOVELY PROFESSIONAL UNIVERSITY

Corporate and Business Law



Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 1

Unit 1: Introduction to Data Structure and Arrays

CONTENTS

Objectives

Introduction

1.1 Abstract Data Type (ADT)

1.2 Defi nition of Data Structure

1.3 Data Structure Operations

1.4 Implementation of Data Structure

1.5 List ADT’s

 1.5.1 ADT of Singly Linked Lists

 1.5.2 Implementation

1.6 Arrays Implementation

 1.6.1 Array

 1.6.2 Index or Subscript

 1.6.3 Dimensions of an Array

1.7 Summary

1.8 Keywords

1.9 Self Assessment

1.10 Review Questions

1.11 Further Readings

Objectives

After studying this unit, you will be able to:

 Realise basic concept of data

 Describe Abstract Data Type (ADT)

 Defi ne data structure 

 Know data structure types

Introduction

As Static representation of linear ordered list through Array leads to wastage of memory and in 
some cases overfl ows. Now we don’t want to assign memory to any linear list in advance instead 
we want to allocate memory to elements as they are inserted in list. This requires Dynamic 
Allocation of memory.

Semantically data can exist in either of the two forms – atomic or structured. In most of the 
programming problems data to be read, processed and written are often related to each other. 
Data items are related in a variety of different ways. Whereas the basic data types such as 
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integers, characters etc. can be directly created and manipulated in a programming language, 
the responsibility of creating the structured type data items remains with the programmers 
themselves. Accordingly, programming languages provide mechanism to create and manipulate 
structured data items.

1.1 Abstract Data Type (ADT)

Before we move to abstract data type let us understand what data type is. Most of the languages 
support basic data types viz. integer, real, character etc. At machine level, the data is stored as 
strings containing 1’s and 0’s. Every data type interprets the string of bits in different ways and 
gives different results. In short, data type is a method of interpreting bit patterns.

Every data type has a fi xed type and range of values it can operate on. For example, an integer 
variable can hold values between the min and max values allowed and carry out operations like 
addition, subtraction etc. For character data type, the valid values are defi ned in the character 
set and the operations performed are like comparison, conversion from one case to another etc. 
There are fi xed operations, which can be carried out on them. We can formally defi ne data types 
as a formal description of the set of values and operations that a variable of a given type may 
take. That was about the inbuilt data types. One can also create user defi ned data types, decide 
the range of values as well as operations to be performed on them. The fi rst step towards creating 
a user defi ned data type or a data structure is to defi ne the logical properties. A tool to specify the 
logical properties of a data type is Abstract Data Type.

Data abstraction can be defi ned as separation of the logical properties of the organization of 
programs’ data from its implementation. This means that it states what the data should be like. 
It does not consider the implementation details. ADT is the logical picture of a data type; in 
addition, the specifi cations of the operations required to create and manipulate objects of this 
data type.

While defi ning an ADT, we are not concerned with time and space effi ciency or any other 
implementation details of the data structure. ADT is just a useful guideline to use and implement 
the data type.

An ADT has two parts:

1. Value defi nition

2. Operation defi nition.

Value defi nition is again divided into two parts:

1. Defi nition clause

2. Condition clause

As the name suggests the defi nition clause states the contents of the data type and condition 
clause defi nes any condition that applies to the data type. Defi nition clause is mandatory while 
condition clause is optional.

 Example: An integer variable can contain only integer values while a character variable 
can contain only a valid character value.

To understand the above clauses let us consider the ADT representation of integer data type. 
In the value defi nition the defi nition clause will state that it can contain any number between 
minimum integer value and the maximum integer value allowed by the computer while the 
condition clause will impose a restriction saying none of the values will have a decimal point.
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In operation defi nition, there are three parts:

1. Function

2. Precondition

3. Postcondition

The function clause defi nes the role of the operation. If we consider the addition operation in 
integers the function clause will state that two integers can be added using this function. In 
general, precondition specifi es any restrictions that must be satisfi ed before the operation can 
be applied. This clause is optional. If we consider the division operation on integers then the 
precondition will state that the divisor should not be zero. So any call for divide operation, which 
does not satisfy this condition, will not give the desired output.

Precondition specifi es any condition that may apply as a pre-requisite for the operation defi nition. 
There are certain operations that can be carried out if certain conditions are satisfi ed. For example, 
in case of division operation the divisor should never be equal to zero. Only if this condition is 
satisfi ed the division operation is carried out. Hence, this becomes a precondition. In that case & 
(ampersand) should be mentioned in the operation defi nition.

Postcondition specifi es what the operation does. One can say that it specifi es the state after the 
operation is performed. In the addition operation, the post condition will give the addition of the 
two integers.

ADT

Value Definition Operation Definition

Definition Clause Condition Clause Function Precondition Postcondition

Figure 1.1: Components of ADT

As an example, let us consider the representation of integer data type as an ADT. We will consider 
only two operations addition and division.

Value Defi nition

1. Defi nition clause: The values must be in between the minimum and maximum values 
specifi ed for the particular computer.

2. Condition clause: Values should not include decimal point.

Operations

1. add (a, b)

Function: add the two integers a and b.

Precondition: no precondition.

Postcondition: output = a + b
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2. Div (a, b)

Function: Divide a by b.

Precondition: b != 0

Postcondition: output = a/b.

There are two ways of implementing a data structure viz. static and dynamic. In static 
implementation, the memory is allocated at the compile time. If there are more elements than 
the specifi ed memory then the program crashes. In dynamic implementation, the memory is 
allocated as and when required during run time.

Any type of data structure will have certain basic operations to be performed on its data like 
insert, delete, modify, sort, search etc depending on the requirement. These are the entities that 
decide the representation of data and distinguish data structures from each other.

Let us see why user defi ned data structures are essential. Consider a problem where we need to 
create a list of elements. Any new element added to the list must be added at the end of the list 
and whenever an element is retrieved, it should be the last element of the list. One can compare 
this to a pile of plates kept on a table. Whenever one needs a plate, the last one on the pile is taken 
and if a plate is to be added on the pile, it will be kept on the top. The description wants us to 
implement a stack. Let us try to solve this problem using arrays.

We will have to keep track of the index of the last element entered in the list. Initially, it will be 
set to –1. Whenever we insert an element into the list we will increment the index and insert the 
value into the new index position. To remove an element, the value of current index will be the 
output and the index will be decremented by one. In the above representation, we have satisfi ed 
the insertion and deletion conditions.

Using arrays we could handle our data properly, but arrays do allow access to other values in 
addition to the top most one. We can insert an element at the end of the list but there is no way to 
ensure that insertion will be done only at the end. This is because array as a data structure allows 
access to any of its values. At this point we can think of another representation, a list of elements 
where one can add at the end, remove from the end and elements other than the top one are not 
accessible. As already discussed this data structure is called as STACK. The insertion operation is 
known as push and removal as pop. You can try to write an ADT for stacks.

Another situation where we would like to create a data structure is while working with complex 
numbers. The operations add, subtract division and multiplication will have to be created as per 
the rules of complex numbers. The ADT for complex numbers is given below. Only addition and 
multiplication operations are considered here, you can try to write the remaining operations.

The ADT for complex numbers is as follows:

Value Defi nition

1. Defi nition Clause: This data type has values a +ib where a and b are integers and i is equal 
to under root of –1.

2. Condition Clause: i term should be present.

Operations

1. add:

Function: add, add two complex numbers a1 + ib1 and a2 + ib2.

Precondition: no Precondition.

Post condition: (a1 + a2) + i(b1 + b2).
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2, multiply:

Function: multiply two complex numbers a1 + ib1 and a2 + ib2.

Precondition: no Precondition.

Post condition: a1a2 + ia1b2 + ib1a2 + i2b1b2.

i.e. a1a2 + ia1b2 + ib1a2 – b1b2.

Abstract data type (ADT) is a mathematical model with a collection of operations defi ned on that 
model. Sets of integers, together with the operations of union, intersection and set difference, form 
a simple example of an ADT. The ADT encapsulates a data type in the sense that the defi nition 
of the type and all operations on the type can be localized and are not visible to the users of the 
ADT. To the users, just the declaration of the ADT and its operations are important.

Abstract Data Type  (ADT)

1. A framework for an object interface

2. What kind of stuff it’d be made of (no details)?

3. What kind of messages it would receive and kind of action it’ll perform when properly 
triggered?

Do_this (p1, p2, p3)

Also_this (p1, p2, p3)

Do_that (p1, p2, p3)

Object

Conceptualization phase

From this we fi gure out

1. Object make-up (in terms of data)

2. Object interface (what sort of messages it would handle?)

3. How and when it should act when triggered from outside (public trigger) and by another 
object friendly to it?

These concerns lead to an ADT – a defi nition for the object.

An Abstract Data Type (ADT) is a set of data items and the methods that work on them.

An implementation of an ADT is a translation into statements of a programming language, of the 
declaration that defi nes a variable to be of that ADT, plus a procedure in that language for each 
operation of the ADT. An implementation chooses a data structure to represent the ADT; each 
data structure is built up from the basic data types of the underlying programming language. 
Thus, if we wish to change the implementation of an ADT, only the procedures implementing the 
operations would change. This change would not affect the users of the ADT.

Although the terms ‘data type’, ‘data structure’ and ‘abstract data type’ sound alike, they have 
different meanings. In a programming language, the data type of a variable is the set of values 
that the variable may assume. For example, a variable of type boolean can assume either the 
value true or the value false, but no other value. An abstract data type is a mathematical model, 
together with various operations defi ned on the model. As we have indicated, we shall design 
algorithms in terms of ADTs, but to implement an algorithm in a given programming language 
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we must fi nd some way of representing the ADTs in terms of the data types and operators 
supported by the programming language itself. To represent the mathematical model underlying 
an ADT, we use data structures, which are a collection of variables, possibly of several data types, 
connected in various ways.

The cell is the basic building block of data structures. We can picture a cell as a box that is capable 
of holding a value drawn from some basic or composite data type. Data structures are created 
by giving names to aggregates of cells and (optionally) interpreting the values of some cells as 
representing relationships or connections (e.g., pointers) among cells.

Task  Value defi nition is a one part of ADT the second one is 

1.2 Defi nition of Data Structure

A data structure is a set of data values along with the relationship between the data values. Since, 
the operations that can be performed on the data values depend on what kind of relationships 
exists among them, we can specify the relationship amongst the data values by specifying the 
operations permitted on the data values. Therefore, we can say that a data structure is a set 
of values along with the set of operations permitted on them. It is also required to specify the 
semantics of the operations permitted on the data values, and this is done by using a set of 
axioms, which describes how these operations work, and therefore a data structure is made of:

1. A set of data values.

2. A set of functions specifying the operations permitted on the data values.

3. A set of axioms describing how these operations work.

Hence, we conclude that a data structure is a triple (D,F,A), where

1. D is a set of data values 

2. F is a set of functions

3. A is a set of axioms

A triple (D, F, A) is referred to as an abstract data structure because it does not tell anything about 
its actual implementation. It does not tell anything about how these values will be physically 
represented in the computer memory and these functions will be actually implemented. 
Therefore every abstract data structure is required to be implemented, and the implementation 
of an abstract data structure requires mapping of the abstract data structure to be implemented 
into the data structure supported by the computer. For example, if the abstract data structure 
to be implemented is integer, then it can be implemented by mapping into bits which is a data 
structure supported by hardware. This requires that every integer data value is to be represented 
using suitable bit patterns and expressing the operations on integer data values in terms of 
operations for manipulating bits.

Data Structure mainly two types:

1. Linear type data structure 

2. Non-linear type data structure

Linear data structure: A linear data structure traverses the data elements sequentially, in which 
only one data element can directly be reached. Ex: Arrays, Linked Lists.
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Non-linear data structure: Every data item is attached to several other data items in a way that 
is specifi c for refl ecting relationships. The data items are not arranged in a sequential structure. 
Ex: Trees, Graphs.

Basic Concept of Data

The memory (also called storage or core) of a computer is simply a group of bits (switches). At 
any instant of the computer’s operation any particular bit in memory is either 0 or 1 (off or on). 
The setting or state of a bit is called its value and that is the smallest unit of information. A set of 
bit values form data.

Some logical properties can be imposed on the data. According to the logical properties data can 
be segregated into different categories. Each category having unique set of logical properties is 
known as data type.

Data type are of two types:

1. Simple data type or elementary item like integer, character.

2. Composite data type or group item like array, structure, union.

Data structures are of two types:

1. Primitive Data Structures: Data can be structured at the most primitive level, where 
they are directly operated upon by machine-level instructions. At this level, data may be 
character or numeric, and numeric data may consist of integers or real numbers.

2. Non-primitive Data Structures: Non-primitive data structures can be classifi ed as arrays, 
lists, and fi les. 

An array is an ordered set which contains a fi xed number of objects. No deletions or insertions 
are performed on arrays i.e. the size of the array cannot be changed. At best, elements may be 
changed.

A list, by contrast, is an ordered set consisting of a variable number of elements to which 
insertions and deletions can be made, and on which other operations can be performed. When a 
list displays the relationship of adjacency between elements, it is said to be linear; otherwise it is 
said to be non-linear.

A fi le is typically a large list that is stored in the external memory of a computer. Additionally, a 
fi le may be used as a repository for list items (records) that are accessed infrequently.

From a real world perspective, very often we have to deal with structured data items which 
are related to each other. For instance, let us consider the address of an employee. We can take 
address to be one variable of character type or structured into various fi elds, as shown below:

Address: Characters (56)

House No.: char (5)

City: char(20)

Street: char(5)

State: char(20) PIN: char(6)

Address1

Address2

As shown above Address1 is unstructured address data. In this form you cannot access individual 
items from it. You can at best refer to the entire address at one time. While in the second from, i.e., 
Address2, you can access and manipulate individual fi elds of the address – House No., Street, 
PIN etc. Given hereunder are two instances of the address1 and address2 variables.
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Let A1, A2 be two Address1 type variables and B1, B2 be two address2 type variables. The data 
can now be stored in the following way:

N 59, Sriniwaspuri, New Delhi 1100065

House No.: N 59

City: Sriniwaspuri

Street:

State: Delhi PIN: 110065

A1

A2

One can access different fi elds of A2 as shown below:

A 2.HouseNo = N 59

A 2.Street = “ ”

A 2.City = “Sriniwaspuri”

A 2.State = “New Delhi”

A 2.PIN = “110065”

Data structure is a combination of one or more basic data types to form a single addressable data 
type along with operations defi ned on it.

Note  It is a data type and hence one can create variables of that type in a computer 
program. Just as each basic data type allows programmers to perform certain operations, 
data structures also let programmers operate on them.

Data Abstraction: Data abstraction is a tool that allows each data structure to be developed in 
relative isolation from the rest of the solution. The study of data structure is organized around a 
collection of abstract data types that includes lists, trees, sets, graphs, and dictionaries.

1.3 Data Structure Operations

The data appearing in our data structure is processed by means of certain operations. The 
particular data structure that one chooses for a given situation depends largely on the frequency 
with which specifi c operations are performed. The following four operations play a major role:

1. Transversing: Accessing each record exactly once so that certain items in the record may be 
processed. (This accessing or processing is sometimes called ‘visiting” the records.)

2. Searching: Finding the location of the record with a given key value, or fi nding the locations 
of all records, which satisfy one or more conditions.

3. Inserting: Adding new records to the structure.

4. Deleting: Removing a record from the structure.

Sometimes two or more data structure of operations may be used in a given situation; e.g., we 
may want to delete the record with a given key, which may mean we fi rst need to search for the 
location of the record.
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1.4 Implementation of Data Structure

In this unit, we will discuss the distinguish between the usage and the implementation of a data 
structure. This difference is crucial in understanding the concept of the separation, defi nition and 
use that should be practiced for designing good software. We then present the implementation 
of a few data structures.

Our main purpose of this course is to describe important data structures and to develop algorithms 
for the various operations on such data structures.

While presenting a data structure we shall discuss ways to represent it in the computer memory. 
In many cases, we shall assume array to be the primitive structure to house other data structures. 
In this context, we use the term array to mean a one-dimensional array having elements of a 
particular type. Every high level programming language includes facilities to handle arrays and 
as such implementation of a data structure housed in an array does not offer any problem. Even 
in assembly or machine languages, a block of contiguous storage locations can be conveniently 
considered to be an array for the said purpose. Borrowing the notation of C language, we shall 
denote an array type as follows:

<base type> <array name>[<number of elements>];

Thus,

int A[50];

will denote an array of 50 elements where A is the name of the array. An individual element of 
this array will be denoted by 
A[i] where 0<i<50. 

In general, an element will be shown as
<array name>[<index>]

where <0> <= <index> < <number of elements>

In many cases, the relations among the elements of a data structure need not be explicitly 
represented because these are implicitly known. When the relations need to be explicitly 
represented, there are two possible approaches. Either the relations are represented separately 
(possible as another data structure) or the elements are augmented to include additional fi elds 
that represent structural information. Later, we shall see many examples of both these approaches 
and as such, we do not consider any example at this stage.

It is clear from the above discussion that sometimes an element will also include structural 
information. In such cases, we shall call it a node to make a minor distinction between the two. 
Thus the distinction between a node and an element (or a component) is that a node is an element 
(or a component) plus the structural information (if any) carried into it.

Task  Every high level programming language includes facilities to handle arrays 
 what about machine level and assembly level languages.

1.5 List ADT’s

An array is an example of list. Arrays have fi xed size, which is declared and fi xed at the start of 
the program, and therefore cannot be changed while it is running. 

 Example: Suppose an array of size 5 has been declared at the start of the program.
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Now, this size cannot be changed while running the program. This we all know is static allocation. 
When writing the program, we have to decide on the maximum amount of memory that would 
be needed. If we run the program on a small collection of data, then much of the space will 
go waste. If program is run on bigger collection of data, then we may exhaust the space and 
encounter an overfl ow. Consider the following example:

 Example: Suppose, we defi ne an array of size 5. If we store 5 elements in it, it is said to 
be full and no space is left in it. On the contrary, if we store 2 elements in it, then 3 positions are 
empty and virtually useless, resulting in wastage of memory.

1

2

3

4

5

1

2

A full array An array with more than half
locations empty

Dynamic data structures can avoid these diffi culties. The idea is to use dynamic memory 
allocation. We allocate memory for individual elements as and when they are required. Each 
memory location contains a pointer to the location where the successive element is stored. A 
pointer or a link or a reference is a variable, which stores the memory address of some other 
variable. If we use pointers to locate the data in which we are interested, then we need not worry 
about where the data is actually stored, since by using a pointer, we can let the computer system 
itself locate the data when required.

Linked lists use the concept of dynamic memory allocation. In this respect they are different than 
arrays. Every node in a linked list contains a ‘link’ to the next node as shown below. This link is 
achieved by using pointers.

item item item

Next end
Start

Structure 1 Structure 2 Structure 3

Figure 1.2: A Linked List

This type of list is called a linked list because it is a list where order is given by links from one 
item to the next.

1.5.1 ADT of Singly Linked Lists

There are various operations, which can be performed on lists. The list Abstract Data Type 
defi nition given here contains a small collection of basic operations, which can be performed on 
lists:
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List ADT Specifi cation

Value Defi nition: The value defi nition of a linked list contains a data type for storing the value 
of the node along with the pointer to the next node. The value can be represented using a simple 
data type or a collection of basic data types. However, it must necessarily contain at least one 
pointer to the next structure. This can be shown as follows:

struct datatype

{

int item;

struct datatype *next;

}

or,

struct datatype

{

int item;

float info;

char str;

struct datatype *next;

}

Defi nition clause: The nodes of the list are all of the same type, and have a key fi eld called key. 
The list is logically ordered from smallest unique element of key to the largest value i.e. at any 
position the key of the element is greater than its predecessor and smaller than its successor.

Operations

1. crlist:

 Function: creates a list and initializes it as empty.

 Preconditions: none.

 Postconditions: list is created and is initialized as empty.

2. insert:

 Function: inserts new element into the list either at the beginning, in the middle or at the 
end.

 Preconditions: a list already exists.

 Postconditions: list is returned with the new element inserted in it.

3. delete:

 Function: searches a list for the element and removes the element from the list.

 Preconditions: the list already exists.

 Postconditions: the list is returned with the element removed from it.

4. print:

 Function: traverses the list and prints each element.

 Preconditions: the list already exists.
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 Postconditions: list elements are printed in the order they are present in the list. List remains 
unchanged.

5. modify:

 Function: searches for an element and replaces it with a new value.

 Preconditions: the list already exists.

 Postconditions: the element if present is modifi ed by a new value.

These are the basic set of operations that might be needed to create and maintain a list of elements. 
Other operations, which can be performed on linked lists, are:

1. Counting the elements in a list.

2. Concatenating two lists.

Users can think of more operations like comparing two lists, adding the elements of two lists, etc. 
depending on a specifi c problem and try building ADT’s of their own.

1.5.2 Implementation

Each element of the list is called a node and consists of two or more members. Some members can 
contain the information pertaining to that node and the others may be pointers to other nodes. 
In case of a singly linked list, one member consists of such a pointer. A linked list is therefore a 
collection of structures ordered not by their physical placement in memory but by logical links 
that are stored as part of data in the structure itself. The link is in form of a pointer to another 
structure of the same type.

Such a structure is represented in ‘C/C++’ as follows:

struct node

{

int item;

struct node *next;

};

The fi rst member is an integer item and the second a pointer to the next node in the list as shown. 
The item can be any complex data type. That is it can contain a collection of basic data types. 
Further, as we will study doubly linked lists later, we can have more than two pointers. One, 
pointing to the successor node and the other to the predecessor. The pointer type is the type of 
the node itself. This node can be shown as follows:
struct node

{

int item;

float info;

char str;

struct node *next;

};

Right now, we will limit our discussion to singly linked lists with only two members, i.e. one 
containing the data and the other a pointer to the next node.
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node

item next

Figure 1.3: Node

Such structures, which contain a member fi eld that points to the same structure type, are called 
self-referential structures. A node may be represented in general form as follows:

        struct label-name

        {

         type   member1;

         type   member2;

         type   member3;

         .   .   .     .

         .   .   .     .

         struct   label-name *next;

        };

Figure 1.4: Structure Declaration for the Node

The node may contain more than one item with different data types. However, one of the items 
must be a pointer of the type label-name. The above node with all its members can be depicted 
as follows:

member1 member2 membern next

node

Consider a simple example to understand the concept of linking. Suppose we defi ne a structure 
as follows:

struct list

{

int value;

struct list *next;

};

Assume that the list contains two node viz. node1 and node2. They are of type struct list and are 
defi ned as follows:

struct list node1,node2;
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This statement creates space for two nodes each containing two empty fi elds as shown below:

Node1.value
Node1.next

node1

Node2.value
Node2.next

node2

Figure 1.5: Creation of the two Nodes

The next pointer of node1 can be made to point to node2 by the statement

node1.next=&node2;

This statement stores the address of node2 into the fi eld node1.next and thus establishes a “link” 
between node1 and node2 as shown below:

node1

node1.value

node1

node1.value

Address of node2

node2

node2.value
node2.next

link

Figure 1.6: Node 1 Pointing to Node 2

Now we can assign values to the fi eld value.
node1.value=30;

node2.value=40;

The result is as follows:

node2

40
node2.next

node1

30
871800

link

Figure 1.7: The Complete List of two Nodes

Assume that the address of node2 is 871800. As you can see, that address is now stored in the 
next fi eld of node1.
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We may continue this process to create a linked list of any number of values. Each time you need 
to store a value allocate the node and use it in the list. For example,

node2.next=&node3;

would add another link.

Also every list must have an end. This is necessary for processing the list. C has a special pointer 
value called NULL that can be stored in the next fi eld of the last node.

In the above two-node list, the end of the list is marked as follows:
node2.next=NULL;

The value of the value member of node2 can be accessed using the next member of node1 as 
follows:
cout<<”\n”<<node1.next->value;

Task  Write a syntax to represent a node.

1.6 Arrays Implementation

1.6.1 Array

A group of fi nite number of identical type of elements accessible by a common name. An array 
has a name which is also the name of each of its elements. For example, let there be an array abc 
of integers having 6 elements. The same is shown below.

The names of different elements are shown below.

abc[0] abc[1] abc[2] abc[3] abc[4] abc[5]

1.6.2 Index or Subscript

The integral value that corresponds to the ordinal position of an array element is called index or 
subscript.

1.6.3 Dimensions of an Array

On the basis of the number of indices required to access a member element in an array, an array 
can be classifi ed into the following categories:

1. Single-dimensional Arrays

2. Multi-dimensional Arrays

Each type of Array has different kind of memory representation.

Memory Allocation to Arrays

Member elements of an array are provided contiguous memory locations. When a program 
requests the operating system that it intends to create an array the operating system computes 
the size of one element and multiplies the same with the number of elements requested to obtain 
the total number of memory cells required. The operating system then allocates those many 
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memory locations to the program for array. In case the required number of memory cells exceeds 
the available memory the operating system returns an error code to the program that made the 
request.

Memory Allocation to One-dimensional Array

A one dimensional array is a list of fi nite number n of Homogeneous data elements (i.e. data 
elements of the same type) such that:

1. The elements of the Array are referenced respectively by an index set consisting of n 
consecutive numbers.

2. The elements of the Array are stored respectively in successive memory locations.

The number n of elements is called the length or size of the Array.

If not explicitly stated, we will assume the index set consists of the integers 1, 2, ...n. In general, 
the length or the number of data elements of the Array can be obtained from the index set by the 
formula

 Length = UB – LB + 1 …(1)

where,

 UB is the largest index, called the upper bound and

 LB is the smallest index, called the lower bound, of the Array.

Note  Note that length = UB when LB = 1.

The elements of an Array A may be denoted by the subscript notation A[1], A[2], A[3],... A[n].

In general a linear Array A with a subscript lower bound of “one” can be represented pictorially 
as in fi gure given below.

.

.

.
A[1]

LB

If s words are allocated for each element or node (i.e. size of data types of elements of Array is s), 
then total memory space allocated to array is given by:

 Memory Space Request (UB – LB + 1)*s …(2)

If we want to calculate the memory space required for fi rst i-1 elements of an Array then slight 
modifi cation in formula (2) will be needed. i.e. 

 Space Required = (i – 1 - LB + 1)*s
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or  Space Required = (i – LB)*s …(3)

If the Address of A[LB] is _ then the Address of ith element of Array will be given by:

 Address of A[i] = _+(i – LB)*s …(4)

Now, we can write a Program for addressing the ith element of a single dimensional Array. We 
can take _, i, LB and s as input from user and output the address of A[i]. 

Consider a One-dimensional Array of fi gure given below. It has fi ve elements. Each element 
takes 4 bytes to store.

Suppose Address of a[0]=1000, and we want to calculate the address of a4 then from the formula 
(4) we have,

 _ = 1000,

 i = 4,

 LB = 1,

 s = 4

Address of a4 = 1000 + (4 – 1)*4

Address of a4 = 1012.

a5

a4

a3

a2

a1

Memory Representation of Two-dimensional Array

Even though Multidimensional Arrays are provided as a standard data object in most of the 
high level languages, it is interesting to see how they are represented in memory. Memory may 
be regarded as one dimensional with words numbered from 1 to m. So we are concerned with 
representing n dimensional Array in a one dimensional memory.

A two dimensional ‘m x n’ Array A is a collection of m.n data elements such that each element is 
specifi ed by a pair of integers (such as j, k), called subscripts, with property that

1 × j × m and 1 × k × n.

The element of A with fi rst subscript j and second subscript k will be denoted by AJ,K or A[J, K]. 
Two dimensional arrays are called matrices in mathematics and tables in Business Applications.

Consider the following example of a 3 × 3 array.

    Columns

1. A [1, 1]  A [1, 2]  A [1, 3]

2. A [2, 1]  A [2, 2]  A [2, 3]

3. A [3, 1]  A [3, 2]  A [3, 3]

Two-dimensional 3 × 3 Array A
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Programming language stores the array in either of the two way:

1. Row Major Order

2. Column Major Order

In Row Major Order elements of 1st Row are stored fi rst in linear order and then comes elements 
of next Row and so on.

In Column Major Order elements of 1st column are stored fi rst linearly and then comes elements 
of next column. When Above Matrix is stored in memory using Row Major Order form then the 
representation will be as shown in fi gure.

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

Row 1

Row 2

Row 3

Representation with Column Major form will be:

(1, 1)

(2, 1)

(3, 1)

(1, 2)

(2, 2)

(3, 2)

(1, 3)

(2, 3)

(3, 3)

Column 1

Column 2

Column 3

Number of elements in any two-dimensional Array can be given by:

 No. of elements = (UB1 – LB1 + 1) * (UB2 – LB2 + 1) …(5)

where,

  UB1 is upper bound of 1st dimension

  LB1 is lower bound of 1st dimension UB2 and LB2

are upper and lower bounds of 2nd dimensions
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LB2 UB2

LB1

A(i, LB2) A(l, j).......

UB1

Rowith

If we want to calculate the number of elements till Ist Row then.

 No. of elements = (UB2 – LB2 + 1) * (1 – 1 + 1)

or No. of elements = UB2 – LB2 + 1 …(6)

No. of elements in (j – 1) Rows = (j – 1) (UB2 – LB2 + 1). If s be the size of data types of Array 
elements then memory space required for storing i-1 Rows will be.

 Space Required = (UB2 – LB2 + 1) (i – 1)*s …(7)

If x be the address of A[LB1, LB2] then Address of A(i, LB2) will be:

 Add = x + (UB2 – LB2 + 1) (i-1)*s …(8)

Address of A[i, j] will be

 Address of A[i, j] = x + [(UB2 – LB2 + 1) (i – 1) + (j – 1)]*s …(9) 

This is Address Scheme for Row Major form. For Column Major form

 Address of A[i, j] = x + [(UB1 – LB1 + 1) (j – 1) + (i – 1)]*s …(10)

1 2 3 4

1

2

3

4

A =

Consider a two-dimensional matrix of fi gure. Suppose address of A11 is 2000 and this two 
dimensional array contains elements of 4-bytes each we want to calculate the address of A23, 
then by the formula (9) we have

 _ = 2000,

 UB2 = 4, LB2 = 1

 i = 2, j = 3,

and s = 4

then

 add. of A23 = 2000 + [(4 – 1 + 1) (2 – 1) + (3 – 1)]*4 = 2024
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Memory Allocation to Three-dimensional Array

Suppose we want to Calculate Address of A(i1, i2, i3). i.e. Address of i1th window, i2th Row and 
i3th Column.

LB2

UB2

LB3 UB3

LB2

LB3 i3

i2

A(i1, i2, i3) UB1

:
:
:

… … … …

… … …

:
:
:
:

:
:
:
:

Then, for Row Major Order Form:

Address of A(i1, i2, i3)

 = _+((i3*(UB2 – LB2 + 1) + i2)*(UB1 – LB1 + 1) + i1)*s …(11)

Memory Allocation to Multi-dimensional Array

Now if we generalize the formulae (11) for the n dimensions of Array then

For Row Major form

Let, Add. of A(LB1, LB2, LB3...LBn) = x

 Add. of A [i1, i2, i3, ...n3]

 = x [(i1 – LB1) (UB2 – LB2 + 1)

  .....(UBn – LBn + 1) + (i3 – LB3)(LB4 – LB4 + 1)....(UBn – LBn + 1)+...

 .......(in – 1 – LBn – 1)(UBn – LBn + 1) + (in – LBn)]*s …(12)

Now Program for Address Calculation can be made by taking number of dimensions, lower and 
upper Bounds of each dimensions, address of A[LB1, LB2....LBn] and size as input from user and 
give Address of A[i1, i2...in] as output.
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1.7 Summary

 Data structure is a combination of one or more basic data types to form a single addressable 
data type. 

 An algorithm is a fi nite set of instructions which, when followed, accomplishes a particular 
task, the termination of which is guaranteed under all cases, i.e. the termination is 
guaranteed for every input. 

 The instructions must be unambiguous and the algorithm must produce the output within 
a fi nite number of executions of its instructions. 

 Associated with each data structure, there are some algorithms to perform the basic 
operations on the elements. 

 Abstract data type (ADT) is a mathematical model with a collection of operations defi ned 
on that model. Although the terms ‘data type’, ‘data structure’ and ‘abstract data type’ 
sound alike, they have different meanings.

1.8 Keywords

Linear Data Structure: A linear data structure traverses the data elements sequentially, in which 
only one data element can directly be reached. 

Non-linear Data Structure: Every data item is attached to several other data items in a way that 
is specifi c for refl ecting relationships. The data items are not arranged in a sequential structure.

Searching: Finding the location of the record with a given key value, or fi nding the locations of 
all records, which satisfy one or more conditions.

Transversing: Accessing each record exactly once so that certain items in the record may be 
processed.

1.9 Self Assessment

Fill in the blanks:

1. The memory of a computer is simply a group of ..................................

2. A .................................. is typically a large list that is stored in the external memory of a 
computer.

3. An .................................. is an ordered set which contains a fi xed number of objects.

4. .................................. is a combination of one or more basic data types to form a single 
addressable data type along with operations defi ned on it.

5. Adding new records to the structure is known as ..................................

State whether the following statements are true or false:

6. An array is an example of list.

7. Linked lists can not use the concept of dynamic memory allocation.

8. Each element of the list is called a node and consists of two or more members.

9. At machine level, the data is stored as strings containing 1’s and 0’s. 

10. A tool to specify the logical properties of a data type is Abstract Data Type.
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1.10 Review Questions

1. Explain operations of data structure.

2. Distinguish between linear and non-linear type of data structure.

3. Write short note on ADT.

4. “ADT is the logical picture of a data type”. Explain 

5. “Data abstraction is a tool that allows each data structure to be developed in relative 
isolation from the rest of the solution”. Discuss 

6. How will you implement data structure? Explain 

7. What do you mean by ADT of singly lists? Discuss

8. “The list is logically ordered from smallest unique element of key to the largest value”. 
Explain 

9. “A pointer or a link or a reference is a variable, which stores the memory address of some 
other variable”. Discuss 

10. How will you remove a record from the structure? Explain 

Answers: Self Assessment

1. bits  2. fi le

3. array 4. Data structure

5. Inserting  6. True

7. False 8. True

9. True 10. True
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 Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann, 
Springer.

 Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi

 Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition. 
Addison-Wesley publishing
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 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c

 Sorenson and Tremblay: An Introduction to Data Structure with Algorithms. 
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 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.
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Unit 2: Linked Lists

CONTENTS
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2.1 Concept of Linked Lists

2.2 Representation of Linked List

2.3 Inserting a Node using Recursive Programs

2.4 Deleting the Specifi ed Node in Singly Linked List

2.5 Inserting a Node after the Specifi ed Node in a Singly Linked List

2.6 Linked List Common Errors

2.7 Doubly Linked Lists

2.8 Circular Linked List

2.9 Sorting and Reversing a Linked List

2.10 Merging two Sorted Lists

2.11 Merging of two Circular Lists

2.12 Application of Linked List

2.13 Summary

2.14 Keywords

2.15 Self Assessment

2.16 Review Questions

2.17 Further Readings

Objectives

After studying this unit, you will be able to:

 Defi ne linked lists

 Describe linked lists representation

 Know doubly linked lists

 Explain circular linked lists

Introduction

There are many other operations that are also useful to apply to sequences of elements. Thus we 
can form a wide variety of similar ADTs by utilizing different packages of operations. Any one of 
these related ADTs could reasonably go by the name of list. However, we fi x our attention on one 
particular list ADT whose operations give a representative sampling of the ideas and problems 
that arise in working with lists.
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The standard template library provides a rather different data structure called a list. The STL 
(Standard Template Library) list provides only those operations that can be implemented 
effi ciently in a List implementation known as doubly linked, which we shall study shortly. In 
particular, the STL list does not allow random access to an arbitrary list position, as provided 
by our List operations for insertion, removal, retrieval, and replacement. Another STL template 
class, called a vector, does provide some random access to a sequence of data values. An STL 
vector bears some similarity to our List ADT, in particular, it provides the operations that can be 
implemented effi ciently in the List implementation that we shall call contiguous. In this way, our 
study of the List ADT provides an introduction to the STL classes list and vector.

2.1 Concept of Linked Lists

An array is represented in memory using sequential mapping, which has the property that 
elements are fi xed distance apart. But this has the following disadvantage. It makes insertion 
or deletion at any arbitrary position in an array a costly operation, because this involves the 
movement of some of the existing elements.

When we want to represent several lists by using arrays of varying size, either we have to 
represent each list using a separate array of maximum size or we have to represent each of the 
lists using one single array. The fi rst one will lead to wastage of storage, and the second will 
involve a lot of data movement.

So we have to use an alternative representation to overcome these disadvantages. One alternative 
is a linked representation. In a linked representation, it is not necessary that the elements be at a 
fi xed distance apart. Instead, we can place elements anywhere in memory, but to make it a part 
of the same list, an element is required to be linked with a previous element of the list. This can 
be done by storing the address of the next element in the previous element itself. This requires 
that every element be capable of holding the data as well as the address of the next element. Thus 
every element must be a structure with a minimum of two fi elds, one for holding the data value, 
which we call a data fi eld, and the other for holding the address of the next element, which we 
call link fi eld.

Therefore, a linked list is a list of elements in which the elements of the list can be placed anywhere 
in memory, and these elements are linked with each other using an explicit link fi eld, that is, by 
storing the address of the next element in the link fi eld of the previous element.

This program uses a strategy of inserting a node in an existing list to get the list created. An 
insert function is used for this. The insert function takes a pointer to an existing list as the fi rst 
parameter, and a data value with which the new node is to be created as a second parameter, 
creates a new node by using the data value, appends it to the end of the list, and returns a pointer 
to the fi rst node of the list. Initially the list is empty, so the pointer to the starting node is NULL. 
Therefore, when insert is called fi rst time, the new node created by the insert becomes the start 
node. Subsequently, the insert traverses the list to get the pointer to the last node of the existing 
list, and puts the address of the newly created node in the link fi eld of the last node, thereby 
appending the new node to the existing list. The main function reads the value of the number of 
nodes in the list. Calls iterate that many times by going in a while loop to create the links with the 
specifi ed number of nodes.

2.2 Representation of Linked List

Because each node of an element contains two parts, we have to represent each node through a 
structure.
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While defi ning linked list we must have recursive defi nitions:

struct node

{

 int data;

 struct node * link;

}

Here, link is a pointer of struct node type i.e. it can hold the address of variable of struct node type. 
Pointers permit the referencing of structures in a uniform way, regardless of the organization 
of the structure being referenced. Pointers are capable of representing a much more complex 
relationship between elements of a structure than a linear order.

Initialization:

main()

{

  struct node *p, *list, *temp;

 list = p = temp = NULL;

 .

 .

 .

}

Lab Exercise  Program:

    # include <stdio.h>

       # include <stdlib.h>

       struct node

       {

       int data;

       struct node *link;

       };

       struct node *insert(struct node *p, int n)

       {

       struct node *temp;

          /* if the existing list is empty then insert a new node as the 
starting node */

       if(p==NULL)

      {

         p=(struct node *)malloc(sizeof(struct node)); /* creates new 
node data value passes

      as parameter */

           if(p==NULL)

           {

        printf(“Error\n”);
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               exit(0);

           }

          p-> data = n;

          p-> link = p; /* makes the pointer pointing to itself because 
it is a circular list*/

        }

        else

        {

        temp = p;

     /* traverses the existing list to get the pointer to the last node 
of it */

        while (temp-> link != p)

           temp = temp-> link;

            temp-> link = (struct node *)malloc(sizeof(struct node)); /*

    creates new node using

             data value passes as

               parameter and puts its

             address in the link field

             of last node of the

             existing list*/

           if(temp -> link == NULL)

           {

         printf(“Error\n”);

              exit(0);

           }

           temp = temp-> link;

           temp-> data = n;

           temp-> link = p;

          }

          return (p);

   }

   void printlist ( struct node *p )

   {

   struct node *temp;

    temp = p;

   printf(“The data values in the list are\n”);

      if(p!= NULL)

      {

      do

            {

            printf(“%d\t”,temp->data);
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            temp=temp->link;

            } while (temp!= p);

      }

      else

         printf(“The list is empty\n”);

   }

   void main()

   {

      int n;

      int x;

      struct node *start = NULL ;

      printf(“Enter the nodes to be created \n”);

      scanf(“%d”,&n);

      while ( n -- > 0 )

      {

   printf( “Enter the data values to be placed in a node\n”);

         scanf(“%d”,&x);

         start = insert ( start, x );

      }

      printf(“The created list is\n”);

      printlist ( start );

   }

2.3 Inserting a Node using Recursive Programs

A linked list is a recursive data structure. A recursive data structure is a data structure that has 
the same form regardless of the size of the data. You can easily write recursive programs for such 
data structures.

Lab Exercise  Program

# include <stdio.h>

   # include <stdlib.h>

   struct node

   {

   int data;

   struct node *link;

   };

   struct node *insert(struct node *p, int n)

   {

      struct node *temp;

      if(p==NULL)

      {



Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 29

         p=(struct node *)malloc(sizeof(struct node));

         if(p==NULL)

         {

      printf(“Error\n”);

             exit(0);

      }

      p-> data = n;

      p-> link = NULL;

   }

   else

         p->link = insert(p->link,n);/* the while loop replaced by

recursive call */

      return (p);

   }

   void printlist ( struct node *p )

   {

         printf(“The data values in the list are\n”);

         while (p!= NULL)

         {

      printf(“%d\t”,p-> data);

            p = p-> link;

         }

   }

   void main()

   {

         int n;

         int x;

         struct node *start = NULL ;

         printf(“Enter the nodes to be created \n”);

         scanf(“%d”,&n);

         while ( n- > 0 )

         {

      printf( “Enter the data values to be placed in a node\n”);

            scanf(“%d”,&x);

            start = insert ( start, x );

         }

         printf(“The created list is\n”);

         printlist ( start );

   }
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This recursive version also uses a strategy of inserting a node in an existing list to create the list. 
An insert function is used to create the list. The insert function takes a pointer to an existing list 
as the fi rst parameter, and a data value with which the new node is to be created as the second 
parameter. It creates the new node by using the data value, then appends it to the end of the list. 
It then returns a pointer to the fi rst node of the list. Initially, the list is empty, so the pointer to the 
starting node is NULL. Therefore, when insert is called the fi rst time, the new node created by 
the insert function becomes the start node. Subsequently, the insert function traverses the list by 
recursively calling itself.  The recursion terminates when it creates a new node with the supplied 
data value and appends it to the end of the list.

2.4 Deleting the Specifi ed Node in Singly Linked List

To delete a node, fi rst we determine the node number to be deleted (this is based on the assumption 
that the nodes of the list are numbered serially from 1 to n). The list is then traversed to get a 
pointer to the node whose number is given, as well as a pointer to a node that appears before the 
node to be deleted. Then the link fi eld of the node that appears before the node to be deleted is 
made to point to the node that appears after the node to be deleted, and the node to be deleted is 
freed. Figures 2.1 and 2.2 show the list before and after deletion, respectively.

Lab Exercise  Program

# include <stdio.h>

# include <stdlib.h>

struct node *delet ( struct node *, int );

int length ( struct node * );

struct node

{

   int data;

   struct node *link;

};

struct node *insert(struct node *p, int n)

{

   struct node *temp;

   if(p==NULL)

   {

      p=(struct node *)malloc(sizeof(struct node));

      if(p==NULL)

      {

            printf(“Error\n”);

         exit(0);

      }

      p-> data = n;

      p-> link = NULL;

   }



Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 31

   else

   {

      temp = p;

      while (temp-> link != NULL)

       temp = temp-> link;

       temp-> link = (struct node *)malloc(sizeof(struct node));

      if(temp -> link == NULL)

      {

            printf(“Error\n”);

         exit(0);

      }

      temp = temp-> link;

      temp-> data = n;

      temp-> link = NULL;

      }

      return (p);

}

void printlist ( struct node *p )

{

      printf(“The data values in the list are\n”);

      while (p!= NULL)

      {

            printf(“%d\t”,p-> data);

         p = p-> link;

      }

}

void main()

{

   int n;

   int x;

   struct node *start = NULL;

   printf(“Enter the nodes to be created \n”);

   scanf(“%d”,&n);

   while ( n- > 0 )

   {

       printf( “Enter the data values to be placed in a node\n”);

      scanf(“%d”,&x);

      start = insert ( start, x );

   }
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   printf(“ The list before deletion id\n”);

   printlist ( start );

   printf(“% \n Enter the node no \n”);

   scanf ( “ %d”,&n);

   start = delet (start , n );

   printf(“ The list after deletion is\n”);

   printlist ( start );

}

   /* a function to delete the specified node*/

struct node *delet ( struct node *p, int node_no )

{

   struct node *prev, *curr ;

   int i;

   if (p == NULL )

   {

      printf(“There is no node to be deleted \n”);

   }

   else

   {

      if ( node_no > length (p))

      {

            printf(“Error\n”);

      }

      else

      {

            prev = NULL;

            curr = p;

            i = 1 ;

            while ( i < node_no )

            {

                  prev = curr;

                  curr = curr-> link;

                  i = i+1;

            }

            if ( prev == NULL )

            {

                  p = curr -> link;

                  free ( curr );

            }

            else
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            {

               prev -> link = curr -> link ;

               free ( curr );

            }

      }

   }

   return(p);

}

/* a function to compute the length of a linked list */

int length ( struct node *p )

{

   int count = 0 ;

   while ( p != NULL )

   {

      count++;

      p = p->link;

   }

   return ( count ) ;

}

node to be deleted

pointer X

Figure 2.1: Before Deletion

pointer X

Figure 2.2: After Deletion

2.5 Inserting a Node after the Specifi ed Node in a Singly Linked List
To insert a new node after the specifi ed node, fi rst we get the number of the node in an existing 
list after which the new node is to be inserted. This is based on the assumption that the nodes of 
the list are numbered serially from 1 to n. The list is then traversed to get a pointer to the node, 
whose number is given. If this pointer is x, then the link fi eld of the new node is made to point to 
the node pointed to by x, and the link fi eld of the node pointed to by x is made to point to the new 
node. Figures 2.3 and 2.4 show the list before and after the insertion of the node, respectively.
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Lab Exercise  Program

# include <stdio.h>

   # include <stdlib.h>

   int length ( struct node * );

   struct node

   {

      int data;

      struct node *link;

   };

   /* a function which appends a new node to an existing list used for

building a list */

   struct node *insert(struct node *p, int n)

   {

      struct node *temp;

      if(p==NULL)

      {

          p=(struct node *)malloc(sizeof(struct node));

         if(p==NULL)

         {

                 printf(“Error\n”);

            exit(0);

         }

         p-> data = n;

         p-> link = NULL;

      }

      else

      {

         temp = p;

         while (temp-> link != NULL)

                temp = temp-> link;

         temp-> link = (struct node *)malloc(sizeof(struct node));

        if(temp -> link == NULL)

         {

                 printf(“Error\n”);

            exit(0);

         }

         temp = temp-> link;
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         temp-> data = n;

         temp-> link= NULL;

      }

      return (p);

   }

   /* a function which inserts a newly created node after the specified

node */

   struct node * newinsert ( struct node *p, int node_no, int value )

   {

      struct node *temp, * temp1;

      int i;

      if ( node_no <= 0 || node_no > length (p))

      {

              printf(“Error! the specified node does not exist\n”);

         exit(0);

      }

      if ( node_no == 0)

      {

         temp = ( struct node * )malloc ( sizeof ( struct node ));

         if ( temp == NULL )

         {

                 printf( “ Cannot allocate \n”);

                 exit (0);

         }

         temp -> data = value;

         temp -> link = p;

         p = temp ;

   }

   else

   {

       temp = p ;

      i = 1;

      while ( i < node_no )

      {

            i = i+1;

            temp = temp-> link ;

      }

      temp1 = ( struct node * )malloc ( sizeof(struct node));

      if ( temp == NULL )

      {

            printf (“Cannot allocate \n”);
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            exit(0)

      }

      temp1 -> data = value ;

      temp1 -> link = temp -> link;

      temp -> link = temp1;

   }

   return (p);

   }

   void printlist ( struct node *p )

   {

      printf(“The data values in the list are\n”);

      while (p!= NULL)

      {

         printf(“%d\t”,p-> data);

         p = p-> link;

      }

   }

   void main ()

   {

      int n;

      int x;

      struct node *start = NULL;

      printf(“Enter the nodes to be created \n”);

      scanf(“%d”,&n);

      while ( n- > 0 )

      {

         printf( “Enter the data values to be placed in a node\n”);

         scanf(“%d”,&x);

         start = insert ( start, x );

      }

      printf(“ The list before deletion is\n”);

      printlist ( start );

      printf(“ \n Enter the node no after which the insertion is to be

done\n”);

      scanf ( “ %d”,&n);

      printf(“Enter the value of the node\n”);

      scanf(“%d”,&x);

      start = newinsert(start,n,x);

      printf(“The list after insertion is \n”);

      printlist(start);

   }
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pointer x

node to be inserted

Figure 2.3: Before Insertion

pointer x

Figure 2.4: After Insertion

Task  Write a program to insert a node in singly linked list

2.6 Linked List Common Errors

Here is summary of common errors of linked lists. Read these carefully, and read them again 
when you have problem that you need to solve.

1. Allocating a new node to step through the linked list; only a pointer variable is needed.

2. Confusing the and the -> operators.

3. Not setting the pointer from the last node to 0 (null).

4. Not considering special cases of inserting/removing at the beginning or the end of the 
linked list.

5. Applying the delete operator to a node (calling the operator on a pointer to the node) 
before it is removed. Delete should be done after all pointer manipulations are completed.

6. Pointer manipulations that are out of order. These can ruin the structure of the linked list.

Task  Draw a diagram to illustrate the confi guration of linked nodes that is created by 
the following statements.

Node *p0 = new Node(000);

Node *p1 = p0->next = new Node(010);

Node *p2 = p1->next = new Node(020, p1);



Advanced Data Structure and Algorithms

Notes

38 LOVELY PROFESSIONAL UNIVERSITY

2.7 Doubly Linked Lists

In the single linked list each node provides information about where the next node is in the list. 
It faces diffi culty if we are pointing to a specifi c node, then we can move only in the direction 
of the links. It has no idea about where the previous node lies in memory. The only way to fi nd 
the node which precedes that specifi c node is to start back at the beginning of the list. The same 
problem arises when one wishes to delete an arbitrary node from a single linked list. Since in 
order to easily delete an arbitrary node one must know the preceding node. This problem can 
be avoided by using Doubly Linked List, we can store in each node not only the address of next 
node  but also the address of the previous node in the linked list. A node in Doubly Linked List 
has three fi elds (Figure 2.5).

1. Data

2. Left Link

3. Right Link

L LINK DATA R LINK

Figure 2.5: Node of Doubly Linked List

Left link keeps the address of previous node and Right Link keeps the address of next node. 
Doubly Linked List has following property.

 p=p->llink->rlink=p->rlink->llink.

L LINK R LINK

p

This formula refl ects the essential virtue of this structure, namely, that one can go back and forth 
with equal ease.

Implementation of Doubly Linked List

Structure of a node of Doubly Linked List can be defi ned as:

 struct node

 {

  int data;

  struct node *llink;

  struct node *rlink;   

}

Lab Exercise  Program

   # include <stdio.h>

   # include <stdlib.h>

   struct dnode
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   {

   int data;

   struct node *left, *right;

   };

   struct dnode *insert(struct dnode *p, struct dnode **q, int n)

   {

   struct dnode *temp;

   /* if the existing list is empty then insert a new node as the

starting node */

   if(p==NULL)

     {

         p=(struct dnode *)malloc(sizeof(struct dnode)); /* creates new

node data value

      passed as parameter */

         if(p==NULL)

         {

      printf(“Error\n”);

             exit(0);

         }

         p-> data = n;

         p-> left = p->right =NULL;

         *q =p

      }

      else

      {

         temp = (struct dnode *)malloc(sizeof(struct dnode)); /* creates

new node using

         data value passed as

         parameter and puts its

        address in the temp

   */

      if(temp == NULL)

      {

   printf(“Error\n”);

          exit(0);

      }

      temp-> data = n;

      temp->left = (*q);

      temp->right = NULL;

      (*q) = temp;
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    }

      return (p);

   }

   void printfor( struct dnode *p )

   {

      printf(“The data values in the list in the forward order are:\n”);

      while (p!= NULL)

         {

            printf(“%d\t”,p-> data);

            p = p-> right;

         }

   }

   /* A function to count the number of nodes in a doubly linked list */

   int nodecount (struct dnode *p )

   {

      int count=0;

      while (p != NULL)

      {

         count ++;

         p = p->right;

      }

         return(count);

   }

   /* a function which inserts a newly created node after the specified

node in a doubly linked list */

struct node * newinsert ( struct dnode *p, int node_no, int value )

      {

      struct dnode *temp, * temp1;

      int i;

      if ( node_no <= 0 || node_no > nodecount (p))

      {

      printf(“Error! the specified node does not exist\n”);

      exit(0);

      }

      if ( node_no == 0)

      {

      temp = ( struct dnode * )malloc ( sizeof ( struct dnode ));

      if ( temp == NULL )

      {
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      printf( “ Cannot allocate \n”);

      exit (0);

      }

      temp -> data = value;

      temp -> right = p;

      temp->left = NULL

      p = temp ;

      }

      else

      {

      temp = p ;

      i = 1;

      while ( i < node_no )

      {

      i = i+1;

      temp = temp-> right ;

      }

      temp1 = ( struct dnode * )malloc ( sizeof(struct dnode));

      if ( temp == NULL )

      {

      printf(“Cannot allocate \n”);

      exit(0);

      }

      temp1 -> data = value ;

      temp1 -> right = temp -> right;

      temp1 -> left = temp;

      temp1->right->left = temp1;

      temp1->left->right = temp1

      }

      return (p);

   }

   void main()

   {

         int n;

         int x;

         struct dnode *start = NULL ;

         struct dnode *end = NULL;

         printf(“Enter the nodes to be created \n”);

         scanf(“%d”,&n);

         while ( n- > 0 )

         {
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      printf( “Enter the data values to be placed in a node\n”);

            scanf(“%d”,&x);

            start = insert ( start, &end,x );

         }

         printf(“The created list is\n”);

         printfor ( start );

         printf(“enter the node number after which the new node is to be

inserted\n”);

         scanf(“%d”,&n);

         printf(“enter the data value to be placed in the new node\n”);

         scanf(“%d”,&x);

         start=newinsert(start,n,x);

         printfor(start);

   }

Explanation

1. To insert a new node in a doubly linked chain, it is required to obtain a pointer to the node 
in the existing list after which a new node is to be inserted.

2. To obtain this pointer, the node number after which the new node is to be inserted is given 
as input. The nodes are assumed to be numbered as 1,2,3,…, etc., starting from the fi rst 
node.

3. The list is then traversed starting from the start node to obtain the pointer to the specifi ed 
node. Let this pointer be x. A new node is then created with the required data value, and 
the right link of this node is made to point to the node to the right of the node pointed to by 
x. And the left link of the newly created node is made to point to the node pointed to by x. 
The left link of the node which was to the right of the node pointed to by x is made to point 
to the newly created node. The right link of the node pointed to by x is made to point to the 
newly created node.

Question

Write a program to delete a specifi c node from the linked list.

2.8 Circular Linked List

Circular Linked List is another remedy for the drawbacks of the Single Linked List besides 
Doubly Linked List. A slight change to the structure of a linear list is made to convert it to circular 
linked list; link fi eld in the last node contains a pointer back to the fi rst node rather than a Null. 
(See Figure 2.6).

Figure 2.6: Circular Linked List

From any point in such a list it is possible to reach any other point in the list. If we begin at a given 
node and traverse the entire list, we ultimately end up at the starting point.
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Lab Exercise  Program: Here is a program for building and printing the elements of the 
circular linked list.

# include <stdio.h>

# include <stdlib.h>

struct node

{

   int data;

   struct node *link;

};

struct node *insert(struct node *p, int n)

{

   struct node *temp;

   /* if the existing list is empty then insert a new node as the

starting node */

       if(p==NULL)

       {

         p=(struct node *)malloc(sizeof(struct node)); /* creates new

node data value passes

   as parameter */

        if(p==NULL)

        {

                 printf(“Error\n”);

                 exit(0);

         }

         p-> data = n;

          p-> link = p; /* makes the pointer pointing to itself because it

is a circular list*/

      }

      else

      {

         temp = p;

   /* traverses the existing list to get the pointer to the last node of

it */

         while (temp-> link != p)

                temp = temp-> link;

         temp-> link = (struct node *)malloc(sizeof(struct node)); /*

creates new node using

         data value passes as

         parameter and puts its

         address in the link field

         of last node of the

         existing list*/
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         if(temp -> link == NULL)

         {

                  printf(“Error\n”);

         }

            exit(0);

            temp = temp-> link;

            temp-> data = n;

            temp-> link = p;

         }

         return (p);

   }

   void printlist ( struct node *p )

   {

      struct node *temp;

      temp = p;

      printf(“The data values in the list are\n”);

      if(p!= NULL)

      {

      do

      {

                printf(%d\t”,temp->data);

                temp=temp->link;

      } while (temp!= p)

   }

   else

      printf(“The list is empty\n”);

   }

   void main()

   {

      int n;

      int x;

      struct node *start = NULL ;

      printf(“Enter the nodes to be created \n”);

      scanf(“%d”,&n);

      while ( n- > 0 )

      {

              printf( “Enter the data values to be placed in a

node\n”);

         scanf(“%d”,&x);

         start = insert ( start, x );

      }

      printf(“The created list is\n”);

      printlist ( start );

   }



Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 45

This program appends a new node to the existing list (that is, it inserts a new node in the existing 
list at the end), and it makes the link fi eld of the newly inserted node point to the start or fi rst 
node of the list. This ensures that the link fi eld of the last node always points to the starting node 
of the list.

2.9 Sorting and Reversing a Linked List

To sort a linked list, fi rst we traverse the list searching for the node with a minimum data value. 
Then we remove that node and append it to another list which is initially empty. We repeat this 
process with the remaining list until the list becomes empty, and at the end, we return a pointer 
to the beginning of the list to which all the nodes are moved, as shown in Figure 2.7.

5 10

5 10

3 7
NULL

7
NULL

start

start

q NULL

List to be sorted

3

After the first pass

Figure 2.7: Sorting of a Linked List

To reverse a list, we maintain a pointer each to the previous and the next node, then we make the 
link fi eld of the current node point to the previous, make the previous equal to the current, and 
the current equal to the next, as shown in Figure 2.8.

NULL

prev curr next

Figure 2.8: A Linked List Showing the Previous, Current, and Next Nodes at 
some Point during Reversal Process

Therefore, the code needed to reverse the list is:

Prev = NULL;

While (curr != NULL)

{

   Next = curr->link;

   Curr -> link = prev;

   Prev = curr;

   Curr = next;

}

2.10 Merging two Sorted Lists

Merging of two sorted lists involves traversing the given lists and comparing the data values 
stored in the nodes in the process of traversing.
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If p and q are the pointers to the sorted lists to be merged, then we compare the data value stored 
in the fi rst node of the list pointed to by p with the data value stored in the fi rst node of the list 
pointed to by q. And, if the data value in the fi rst node of the list pointed to by p is less than the 
data value in the fi rst node of the list pointed to by q, make the fi rst node of the resultant/merged 
list to be the fi rst node of the list pointed to by p, and advance the pointer p to make it point to 
the next node in the same list.

If the data value in the fi rst node of the list pointed to by p is greater than the data value in the 
fi rst node of the list pointed to by q, make the fi rst node of the resultant/merged list to be the 
fi rst node of the list pointed to by q, and advance the pointer q to make it point to the next node 
in the same list.

Repeat this procedure until either p or q becomes NULL. When one of the two lists becomes 
empty, append the remaining nodes in the non-empty list to the resultant list.

NULL10 20 30 40

p

NULL15 25 27 28

q

Two sorted lists before merging

If the above lists given as input, what would be the output of the program after each pass?

NULL10 20 30 40

r p

NULL15 25 27 28

q

After the first pass

NULL

temp

After the second pass
NULL

NULL10 20 30 40

r p

NULL15 25 27 28

temp q

After the third pass

NULL10 20 30 40

r temp p

NULL15 25 27 28

q NULL

Contd...
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NULL

r p

NULL

temp q

NULL

NULL

r p

NULL

temp q

NULL

After the fourth pass

After the sixth pass

After the fifth pass

NULL

r p

temp

NULL

q

Final merged list

NULL

r p

temp

10

15

20

25

30

27

40

28

2.11 Merging of two Circular Lists

In order to merge or concatenate the two non-empty circular lists pointed to by p and q, it is 
required to make the start of the resultant list p. Then the list pointed to by p is required to be 
traversed until its end, and the link fi eld of the last node must become the pointer q. After that, 
the list pointed to by q is required to be traversed until its end, and the link fi eld of the last node 
is required to be made p.
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p

q

r

The given lists

The resultant list

You can merge two lists into one list. The following program merges two circular lists.

Lab Exercise  Program:

# include <stdio.h>

# include <stdlib.h>

   struct node

   {

   int data;

   struct node *link;

   };

   struct node *insert(struct node *p, int n)

   {

   struct node *temp;

   /* if the existing list is empty then insert a new node as the

starting node */

   if(p==NULL)

   {

      p=(struct node *)malloc(sizeof(struct node)); /* creates new node

data value passes

   as parameter */

        if(p==NULL)
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        {

     printf(“Error\n”);

            exit(0);

        }

         p-> data = n;

         p-> link = p; /* makes the pointer pointing to itself because it

is a circular list*/

      }

      else

      {

         temp = p;

   /* traverses the existing list to get the pointer to the last node of

it */

   while (temp-> link != p)

      temp = temp-> link;

       temp-> link = (struct node *)malloc(sizeof(struct node)); /*

creates new node using

          data value passes as

            parameter and puts its

           address in the link field

           of last node of the

            existing list*/

           if(temp -> link == NULL)

           {

        printf(“Error\n”);

             exit(0);

           }

           temp = temp-> link;

           temp-> data = n;

           temp-> link = p;

         }

         return (p);

   }

   void printlist ( struct node *p )

   {

    struct node *temp;

     temp = p;

    printf(“The data values in the list are\n”);

       if(p!= NULL)

       {



Advanced Data Structure and Algorithms

Notes

50 LOVELY PROFESSIONAL UNIVERSITY

         do

               {

               printf(“%d\t”,temp->data);

               temp=temp->link;

               } while (temp!= p);

       }

   else

         printf(“The list is empty\n”);

    }

   struct node *merge(struct node *p, struct node *q)

        {

          struct node *temp=NULL;

          struct node *r=NULL;

          r = p;

          temp = p;

          while(temp->link != p)

               temp = temp->link;

          temp->link = q;

          temp = q;

          while( temp->link != q)

              temp = temp->link;

          temp->link = r;

         return(r);

   }

   void main()

   {

         int n;

         int x;

         struct node *start1=NULL ;

         struct node *start2=NULL;

         struct node *start3=NULL;

        /* this will create the first circular list nodes*/

         printf(“Enter the number of nodes in the first list \n”);

         scanf(“%d”,&n);

         while ( n-- > 0 )

         {

      printf( “Enter the data value to be placed in a node\n”);

              scanf(“%d”,&x);

              start1 = insert ( start1, x );

         }

         printf(“The first list is\n”);
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         printlist ( start1 );

         /* this will create the second circular list nodes*/

         printf(“Enter the number of nodes in the second list \n”);

         scanf(“%d”,&n);

         while ( n-- > 0 )

         {

      printf( “Enter the data value to be placed in a node\n”);

             scanf(“%d”,&x);

             start2 = insert ( start2, x );

         }

         printf(“The second list is:\n”);

         printlist ( start2 );

         start3 = merge(start1,start2);

         printf(“The resultant list is:\n”);

         printlist(start3);

   }

Task  Write a program to reverse a linked list

2.12 Application of Linked List

Polynomials in general are represented by the following equation:

 f(x) = cixei + ci – 1xei – 1 +....+c1xe1

where Ci are non zero coeffi cients of variable x and ei are exponents such that

 ei > ei – 1 > ei – 2 >.........> e1 > 0.

 Example:

 F1(x) = 3x7 – 7x5 + 3x2 + 1

 F2(x) = 5x8 + 6x5 + 4x2 +13

These Polynomials can be added to form another Polynomial

Let f3(x) = f1(x) +f2(x)

 f3(x) = 5x8 + 3x7 – x5 + 7x2 + 14

This is achieved by adding coeffi cients of variables with same exponent value.

These Polynomials can be maintained using a Linked List. To achieve this each term will be 
represented by a node and each node should consist of three elements namely coeffi cients, 
exponents and a link to the next term (represented by another node).

Struct poly   Coef. Exp. Link

    {

     float coef;
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     int exp;

     struct poly link;

    }

For instance, the polynomial

f(x)= 4x11 – 3x9 + 2x3 + 1 will be stored as:

4 11 –3 9 2 3 1 0 NULL

f(x)

While maintaining the polynomial it is assumed that the exponent of each successive term is less 
than that of the previous term. We can use these linked Lists to add two polynomials. To add two 
polynomials together we examine their terms starting at the nodes pointed to by p and q (two 
pointers used to move along the terms of two polynomials). If the exponents of two terms are 
equal, then the coeffi cients are added and a new term created for the result. If the exponents of 
the current term in p is less than the exponent of current term of q, then a duplicate of the term 
q is created and attached to z. The pointers q and z (pointer to result term) are advanced. Similar 
action is taken if Exp(p) >Exp(q).

1. 
2 8 9 3 7 2 NULLp

3 8 4 5 2 1 NULLq

5 8 For the 2nd Term Exp. < (p) Exp (q) Hencez

2. 
5 8 –4 5 Now exp. (p) > exp. (q) Hencez

3. 
5 8 –4 5 9 3z

4. 
5z 8 –4 5 9 3 7 2

Now p exhorted Hence.

5. 
5z 8 –4 5 9 3 7 2 2 1

The function for Adding two polynomials is given below:

 polyadd (struct poly* p, struct poly*q)

 {

  struct poly *z1;

  z= malloc(sizeof(struct poly));

  if (p== NULL && q==NULL) return;

  while (p!=Null && q!=NULL)

  {

   if (p-> exp > q->exp)

   {
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    z->exp=p->exp; z1->coef=p->coef;

    p=p-> link;

   }

   if (p->exp<q->exp)

   {

    z->exp=q->exp; z1->coef=q->coef;

   } q=q->link;

   if(p-> exp=q->exp)!=0)

   {

    z->exp=p->exp;

    z->coef=p->exp;

    p=p->link;

    q=q->link;

   }

    z->link = malloc(sizeof(struct poly));

    z=z1-> link;

   while (p!=NULL)

   {

    z->exp=p->exp;

    z->coef=p->coef;

    z->link= malloc(sizeof(struct poly));

    z=z->link; p=p->link;

   }

   while (q!=NULL)

   {

    z->exp=q->exp;

    z->coef=q->coef;

    z->link=malloe(sizeof(struct poly));

    z=z->link;

   } q=q->link;

  }

 }

Cursor Implementation of Linked Lists

Consider a case where we have two Linked Lists pointed to by two different pointers, say p and 
q respectively, and we want to concatenate 2nd list at the end of the fi rst list. We can do it by 
traversing fi rst list till the end and then store the address of fi rst node in the second list, in the 
link fi eld of last node of fi rst list. Suppose we are traversing fi rst list by pointer temp, then we can 
concatenate the list by the statement (Figure 2.9)

temp -> link = q;
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p NULL

q NULL

(a)

p

q
NULL

(b)

Temp

Figure 2.9: (a) Lists before Concatenation and (b) List after Concatenation

The function to achieve this is given below:
 Concatenate (struct node *p, struct node *q)

 {

  struct node *temp;

  temp = p;

  if (p == NULL)// If first list is NULL then Concatenated

      p = q; // List will be only Second List and will be

  else  //pointed by p;

  {

     temp = p;

     while (temp -> link ! = NULL)

     temp = temp -> link;

     temp -> link = q;

  }

 }

2.13 Summary

 The foremost advantage of linked lists in dynamic storage is fl exibility advantages 
Overfl ow is no problem until the computer memory is actually exhausted. Especially when 
the individual entries are quite large, it may be diffi cult to determine the overfl ow amount 
of contiguous static storage that might be needed for the required arrays while keeping 
enough free for other needs. With dynamic allocation, there is no need to attempt to make 
such decisions in advance.

 Changes, especially insertions and deletions, can be made in the middle of a changes linked 
list more quickly than in the middle of a contiguous list. If the structures are large, then it is 
much quicker to change the values of a few pointers than to copy the structures themselves 
from one location to another disadvantages. 

 The fi rst drawback of linked lists is that the links themselves take space that might otherwise 
be needed for additional data. In most systems, a pointer requires the same amount of 
storage (one word) as does an integer. Thus a list of integers will require double the space 
in linked storage that it would require in contiguous storage.
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2.14 Keywords

Circular Linked List: A linear linked list in which the last element points to the fi rst element, thus, 
forming a circle.

Doubly Linked List: A linear linked list in which each element is connected to the two nearest 
elements through pointers.

Linear List: A one-dimensional list of items.

Linked List: A dynamic list in which the elements are connected by a pointer to another 
element.

NULL: A constant value that indicates the end of a list.

2.15 Self Assessment

Choose the appropriate answer:

1. Pointers permit the referencing of structures in a

(a) Normal way (b) Uniform way

(c) Common way (d) None 

2. A recursive data structure is a data structure that has the same form regardless of the

(a) Size of the data (b) Shape of the data

(c) Origin of the data (d) Form of the data

3. The insert function takes a pointer to an existing list as the

(a) Second parameter (b) Third parameter

(c) First parameter (d) None

4. A Circular Linked List has no

(a) Beginning and no mid point (b) End and last 

(c) Beginning and beginning (d) Beginning and no end

Fill in the blanks:

5. Memory allocation in Linked Lists is ................................

6. Linked list stores two items of information: ..................... and ...........................

7. An ............................. function is used to create the list.

8. A ....................... is a list of elements in which the elements of the list can be placed anywhere 
in memory.

State whether the following statements are true or false:

9. We cannot insert a node after any specifi c node.

10. In the single linked list each node provides information about where the previous node is 
in the list.

11. A linked list is not a recursive data structure.



Advanced Data Structure and Algorithms

Notes

56 LOVELY PROFESSIONAL UNIVERSITY

2.16 Review Questions

1. Write a C program to sort the elements of a linked list.

2. Why are linked list better than arrays? Compare giving examples.

3. Create a linked list and write programs to:

(a) Insert a node at the nth position where n is accepted as an input from the keyboard.

(b) Delete a node from the nth position where n is accepted as an input from the 
keyboard.

(c) Shift the node at the nth position to the position p where n and p are accepted as 
inputs from the keyboard.

4. Write a program for building of an element of the circular linked list.

5. Describe the method of inserting a node using recursive program.

6. Write a C program to merge two given lists A and B to form C in the following manner:

 The fi rst element of C is the fi rst element of A and the second element of C is the fi rst 
element of B. The second elements of A and B become the third and fourth elements of C, 
and so on. If either A or B gets exhausted, the remaining elements of the other are to be 
copied to C.

7. Write a C program to transform a circular list into a chain.

8. Describe ADT of singly linked lists. 

9. Write remove for the (second) implementation of simply linked lists that remembers the 
last-used position.

10. Prepare a collection of fi les containing the declarations for a contiguous list and all the 
functions for list processing.

Answers: Self Assessment

1. (b) 2. (a)

3. (c) 4. (d)

5. Dynamic

6. An element of the list, A link or address of another node

7. Insert 8. Linked list

9. False 10. False

11. False

2.17 Further Readings

Books  Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice 
Hall, 1988.

 Data Structures and Algorithms; Shi-Kuo Chang; World Scientifi c.
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 Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann, 
Springer.

 Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi

 Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition. 
Addison-Wesley publishing

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c

 Sorenson and Tremblay: An Introduction to Data Structure with Algorithms. 

 Thomas H. Cormen, Charles E, Leiserson & Ronald L. Rivest: Introduction to 
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi 

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links  www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com
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Objectives

After studying this unit, you will be able to:

 Describe the stack model

 Explain the implementation and applications of stacks

Introduction

Stack is another linear data structure having a very interesting property. Unlike arrays and link 
lists, an element can be inserted and deleted not at any arbitrary position but only at one end. 
Thus, one end of a stack is sealed for insertion and deletion while the other end allows both the 
operations.

3.1 Stack Model

A stack is a linear data structure in as much as its member elements are ordered as 1st, 2nd,…. 
and last. However, an element can be inserted in and deleted from only one end. The other end 
remains sealed. This open end to which elements can be inserted and deleted from is called stack 
top or top of the stack. Consequently, the elements are removed from a stack in the reverse order 
of insertion. A stack is said to possess LIFO (Last In First Out) property. A data structure has 
LIFO property if the element that can be retrieved fi rst is the one that was inserted last.
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We come across several such structures in our day-to-day life. Consider a pile of plates as shown 
below.

Push Po

Stack of plates

Clearly, an element can be inserted in a stack only on the top and can be retrieved only from the 
top.

The following are the operations on a stack S:

 Push(S, e) : This inserts an element e into the stack S.

 pop(S) Æ e : This deletes an element from the stack S and stores it in e. 

 Isempty(S) Æ true/false : This checks if the stack S is empty.

 Isfull(S) Æ true/false : This checks if the stack S is full or not.

A point to remember is that the above three operations are the only ones permitted with which 
a stack could be operated on. Consider the following stack of integers to understand the stack 
operations.

To 3

67

–5

11

89

1111

3

To

To

To

To

To 3 3 3 3

8

Empty After Push After Push After Push Stack fullAfter Pop

Stack operations in pseudo-code:

STACK-EMPTY(S)

if top[S] = 0

return true

else return false

PUSH(S, x)

top[S] <- top[S] + 1

S[top[S]] <- x

POP(S)
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if STACK-EMPTY(S)

then error “underfl ow”

else top[S] <- top[S] – 1

return S[top[S] + 1]

The running time for the operations is O(1) (constant time).

3.2 Implementation of Stacks

There are two basic methods for the implementation of stacks – one where the memory is used 
statically and the other where the memory is used dynamically.

3.2.1 Array-based Implementation

In this scheme, an array of certain maximum size is allocated memory statically (i.e. once for all). 
The stack and its operations are implemented using this array.

The following pseudo-code shows the array-based implementation of a stack. In this, the elements 
of the stack are of type T.

    struct stk

{ T array[max_size];

/* max_size is the maximum size */

int top = -1;    

/* stack top initially given value -1 */

} stack;

void push(T e)

/*inserts an element e into the stack s*/

{

 if (stack.top == max_size) 

  printf(“Stack is full-insertion not possible”);

 else

 {

  stack.top = stack.top + 1;

  stack.array[stack.top] = e;

 }

}

T pop()

/*Returns the top element from the stack */

{

 T x;

 if(stack.top == -1)

  printf(“Stack is empty”);

 else

  {

  x = stack.array[stack.top];

  stack.top = stack.top - l;
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  return(x);

  }

}

boolean empty() 

/* checks if the stack is empty * /

{

 boolean empty = false;

 if(stack.top == -1)

  empty = true else empty = false;

return(empty);

}

void initialise()

/* This procedure initializes the stack s * / 

{

 stack.top = -1;

}

The above implementation strategy is easy and fast since it does not have run-time overheads. 
At the same time it is not fl exible since it cannot handle a situation when the number of elements 
exceeds max_size. Also, let us say, if max_size is derided statically to 100 and a stack actually has 
only 10 elements, then memory space for the rest of the 90 elements would be wasted.

Task  Write a syntax to declare array in a program.

3.2.2 Pointer-based Implementation

Here the memory is used dynamically. For every push operation, the memory space for one 
element is allocated at run-time and the element is inserted into the stack. For every pop 
operation, the memory space for the deleted element is de-allocated and returned to the free 
space pool. Hence the shortcomings of the array-based implementation are overcome. But since, 
this allocates memory dynamically, the execution is slowed down.

The stack is implemented as a linked list as shown in Figure 3.1.

Top
23 45 –98

Nil

Figure 3.1: Implementation of a Stack using a Linked List

The following pseudo-code is for the pointer-based implementation of a stack. Each element of 
the stack is of type T.

struct stk

{

 T element;
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 struct stk *next;

};

struct stk *stack;

void push(struct stk *p, T e) 

{

 struct stk *x;

 x = new(stk); 

 x.element = e; 

 x.next = NULL;

 p = x;

}

Here the stack full condition is checked by the call to new which would give an error if no memory 
space could be allocated.

T pop(struct stk *p)

{

 struct stk *x;

 if (p == NULL) 

  printf(“Stack is empty”); 

 else

 {  x = p;

   x = x.next;

   return(p.element);

 }

boolean empty(sstruct stk *p) 

{

 if (p == NULL)  

  return(true); 

 else 

  return(false);

}

void initialize(struct stk *p) 

{

 p = NULL;

 }

3.3 Applications of Stacks

There are numerous applications of the stack data structure in computer algorithms. It is used to 
store return information in the case of function/procedure/subroutine calls. Hence, one would 
fi nd a stack in architecture of any Central Processing Unit (CPU). In this section, we would just 
illustrate a few of them.
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3.3.1 Maze Problem

In a classical experimentation in psychology, a rat is placed through the door of a large box in 
which walls are set up to restrict movements in most directions. The rat’s movement is observed 
as it fi nds out, through the obstacles, a way to escape from the box. A two-dimensional version 
of this problem is easy to formulate where a rectangular maze is conceived as consisting of a 
number of unit square rooms such that movement from one square to another is restricted.

An m by n maze can be represented by an array maze of size [1..m, 1..n] where each maze[i,j] 
represents a unit room. If maze[i,j] is 0 the room may be entered into but it cannot be entered if 
maze[i,j] is 1. The entrance is at maze[1,1] and the exit is at maze[m,n].

Evaluation of Expressions

One of the biggest technical hurdles faced when conceiving the idea of higher level Programming 
Languages, is to generate machine language instructions, which would properly evaluate any 
arithmetic expression. A complex assignment statement such as:  

 z ->  x / y  * *  a + b * c – x * a

might have several meanings; even if it were uniquely defi ned, by the full use of parenthesis.

An expression is made up of operands, operators and delimiters. The above expression has fi ve 
operands x, y, a, b and c. The fi rst problem with understanding the meaning of an expression 
is to decide in what order the operations are carried out. This means that every language must 
uniquely defi ne such an order. To fi x the order of evaluation we assign to each operator a priority. 
A set of sample priorities are as follows:

Operator Priority Associativity
( ) 8 Left to Right
^ or **, unary -, unary+, ![not] 7 Right to Left
*, /, % 6 Left to Right
+, - 5 Left to Right
<, <=, >, >= 4 Left to Right
= =, != 3 Left to Right
&& 2 Left to Right
¦¦|| 1 Left to Right

But by using parenthesis we can override these rules and such expressions are always evaluated 
with the inner most parenthesized expression fi rst.

The above notation of any expression is called Infi x Notation (in which operators come in 
between the operands). The notation is a traditional notation, which needs operator’s priorities 
and associativities. But how can a compiler accept such an expression and produce correct 
Polish Notation or Prefi x form (in which operators come before operands) Polish Notation has 
several advantages over Infi x Notation such as: there is no need for considering priorities while 
evaluating them, there is no need of introducing parenthesis for maintaining order of execution 
of operators.

Similarly, Reverse Polish Notation or Postfi x Form also has same advantages over Infi x Notation, 
in this notation operators come after the operands.

Consider the following examples.

Infi x Prefi x Postfi x
x + y + x y x y +

x + y * z + x + y z x y z * +

x + y - z - + x y z x y z * + -
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Stacks are frequently used for converting INFIX form into equivalent PREFIX and POSTFIX 
forms.

The whole logic is same as for Infi x to Postfi x except, before traversing the string reverse it by 
strrev() function and then process as before, but instead of printing the expression take output in 
another stack and then print the stack, at last reverses the string.

Process of
ConversionStrrev (str) Prefix Expressionstr

Consider the following example.

Infi x expression -> a + b * c + d

After reversing it -> d + c * b + a

Now apply the logic of Infi x to Postfi x conversion and store the output in another stack.

*

+ +

OPERATOR
STACK

OUTPUT
STACK

+

+
a

b
c
d

*

Now on printing the stack we have, + a + * b c d which is a prefi x expression. Here is a C 
implementation for converting infi x into postfi x.

/* Convert infix expression into corresponding postfix expression */

/* Maximum length of the input expression allowed is 20 characters */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

typedef struct

{

     char data[20];   /* array to hold stack contents */

     int top;          /* top of the stack pointer */

}stk;

/* function prototypes */

void initStack(stk *stack);

void get_infix(char infix[]);

void convertToPostfix(char infix[], char postfix[]);

int isOperator(char c);

int precedence(char operator1, char operator2);

int pred_level(char ch);

void push(stk *stack, char value);
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char pop(stk *stack);

char stackTop(stk *stack);

int isEmpty(stk *stack);

int isFull(stk *stack);

void printResult(char infix[], char postfix[]);

/*void print_msg(void);*/

/* program entry point */

int main(void)

{

     char infix[20], postfix[20]=””;

     /* convert from infix to postfix main function */

     convertToPostfix(infix, postfix);

     /* display the postfix equivalent */

     infix[strlen(infix)-2] = ‘\0’;

     printResult(infix, postfix);

     return(1);

}

void initStack(stk *stack) /* initalise the stack */

{

     stack->top = -1;    /* stack is initially empty */

}

void get_infix(char infix[]) /* get infix expression from user */

{

     int i;

printf(“Enter infix expression below (max 18 characters excluding spaces) :  \n”);

     fflush(stdin);

     for ( i=0; i<18; ) /* to read in only 18 characters excluding spaces */

     {

          if ( (infix[i] = getchar()) == ‘\n’ )

          {

               i++; break;

          }

          else if ( !(isspace(infix[i])) )

               i++;

     }

     infix[i] = ‘\0’;

}

void convertToPostfix(char infix[], char postfix[]) /* convert the infix expression 
to postfix notation */

{

     int i, length, j=0;
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     char top_ch;

     stk stack;

     initStack(&stack);    /* initialise stack */

     get_infix(infix);     /* get infix expression from user */

     length = strlen(infix);

     if ( length )    /* if strlen if infix is more than zero */

     {

          push(&stack, ‘(‘);

          strcat(infix, “)”);

          length++;

          for ( i=0; i<length; i++ )

          {

           if ( isdigit(infix[i]) ) /* if current operator in infix is digit */

               {

                    postfix[j++] = infix[i];

               }

               else if ( infix[i] == ‘(‘ ) /* if current operator in infix is 
left  parenthesis */

            {

                  push(&stack, ‘(‘);

            }

            else if ( isOperator(infix[i]) ) /* if current operator is operator */

               {

                    while(1)

                    {

                         top_ch = stackTop(&stack);  /* get tos */

            if ( top_ch == ‘\0’ )   /* no stack left */

                         {

                              printf(“\nInvalid infix expression\n”);

                              exit(1);

                         }

                         else

                         {

                            if ( isOperator(top_ch) )

                            {

                              if ( pred_level(top_ch) >= pred_level(infix[i]) )

                                        postfix[j++] = pop(&stack);

                                   else

                                        break;

                              }

                              else
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                                   break;

                         }

                    }

                    push(&stack, infix[i]);

             }

             else if (infix[i] == ‘)’)  /* if current operator is right parenthesis */

               {

                    while (1)

                    {

                         top_ch = stackTop(&stack); /* get tos */

     if ( top_ch == ‘\0’ )  /* no stack left */

                         {

                              printf(“\nInvalid infix expression\n”);

         /*print_msg();*/

                              exit(1);

                         }

                         else

                         {

         if ( top_ch != ‘(‘ )

                              {

       postfix[j++] = top_ch;

                                   pop(&stack);

                              }

                              else

                              {

                                   pop(&stack);

                                   break;

                              }

                         }

                    }

                    continue;

               }

          }

     }

     postfix[j] = ‘\0’;

}

int isOperator(char c)  /* determine if c is an operator */

{

     if ( c == ‘+’ || c == ‘-’ || c == ‘*’ || c == ‘/’ || c == ‘%’ || c == ‘^’ )

          return 1;
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     else

          return 0;

}

int pred_level(char ch)  /* determine precedence level */

{

     if ( ch == ‘+’ || ch == ‘-’ ) return 1;

     else if ( ch == ‘^’ )

          return 3;

     else

          return 2;

}

int precedence(char operator1, char operator2) /* determine if the 
precedence of operator1 is less than, equal to, greater than the precedence of 
operator2 */

{

     if ( pred_level(operator1) > pred_level(operator2) )

          return 1;

     else if ( pred_level(operator1) < pred_level(operator2) )

          return -1;

     else

          return 0;

}

void push(stk *stack, char value) /* push a value on the stack */

{

     if ( !(isFull(stack)) )

     {

          (stack->top)++;

          stack->data[stack->top] = value;

     }

}

char pop(stk *stack)   /* pop a value off the stack */

{

     char ch;

     if ( !(isEmpty(stack)) )

     {

          ch = stack->data[stack->top];

          (stack->top)--;

          return ch;

     }

     else

          return ‘\0’;
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}

char stackTop(stk *stack) /* return the top value of the stack without popping 
the stack */

{

     if ( !(isEmpty(stack)) )

          return stack->data[stack->top];

     else

          return ‘\0’;

}

int isEmpty(stk *stack)  /* determine if stack is empty */

{

     if ( stack->top == -1 )  /* empty */

          return 1;

     else    /* not empty */

          return 0;

}

int isFull(stk *stack)  /* determine if stack is full */

{

     if ( stack->top == 19 )  /* full */

          return 1;

     else    /* not full */

          return 0;

}

void printResult(char infix[], char postfix[]) /* display the result postfix 
expression */

{

     printf(“\n\n”);    /*system(“cls”);*/

     printf(“Infix notation  : %s\n”, infix);

     printf(“Postfix notation: %s\n\n”, postfix);

}

Here are some results of the test run.

Infi x Postfi x
(1+2)-(3*4/5)+6 12+34*5/-6+
1-2*3/(4-5) 123*45-/-
(1*2^3)-(4%3-5)^6 123^*43%5-6^-

Evaluating Postfi x Expression

An expression may be evaluated by making a left to right scan, stacking operands and evaluating 
operators using the correct number of operands from the stack and fi nally placing back the result 
on to the stack.
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 Example: To evaluate a Postfi x Expression:

 ABC**/DE *+AC*-

The following steps will be executed:

C
B

A

B ** C

A

**
D
E

A/(B**C)

E*D

A/(B**C)

*
+

I. op.

II. op.

I. op.
Top

II. op.

A/(B**C) + (D + E)

A

C

A/(B**C) + ( D + E)

A + C
+

= A/(B**C) + (D*E) – (A*C)

Lab Exercise Here is a program that implements the above idea into a program.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define MAXC  80

double eva1(charl[]);

double pop(struct stack *);

void push(struct stack *, double);

int empty(struct stack *);

int isdigit(char);

double oper(intn double, double);

void main()

{

char expr[MAXC];

int position = 0;

whi1e((expr[position++] = getchar()) != ‘\’) ;

expr[--position] = ‘\0’;

printf(“%s%s”,  “the original postfix expression is”,  expr);

printf(“\n%f”, eval(expr));

} 

struct stack

{

int top;

double data[MAXC];

}
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double eval (char exp[])

{

int c, position;

double opnd1, opnd2, value;

struct stack opndstk;

opndstk.top = -1;

for (position = 0; (c = expr[position) != ‘\0’; posit1on+ +)

if (isdigit(c))

push(&opndstk, (double) (c –‘0’));

else {

opnd2 = pop(&opndstk);

opnd1 = pop(&opndstk);

value = oper(c, opnd1, opnd2);

push(&opndstk, value);

  }

return(pop(&pndstk));

}

int isdigit(char symb)

{

return (symb >= ‘0’ && symb <= ‘9’);

}

double oper(int symb, double op1, double op2)

{

switch(symb)

{

case ‘+’ :  return (opl + op2);

case ‘-’ :  return (opl + op2);

case ‘*’ :  return (opl + op2);

case ‘/’ :  return (opl + op2);

case ‘^’ :  return (opl + op2);

  default  : printf(“%s”, “illegal operation”);

 }

}

double pop(struct stack *s)

{

 int x;

 if(s.top == -1)

return(0);

else

{
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x = s.top;

  s.top = x-1;

return (s.data[x]);

  }

}

void push(struct stack *s, double e)

{

 if(s.top == MAXC)

  printf(“Stack full!”);

 else

  {

   s.top = s.top + 1;

   s.data[s.top] = e;

  }

}

int empty(struct stack *p)

{

 if(s.top == -1)

  return 1;

 else

  return 0;

}

3.3.2 Simulating Recursive Function using Stack

A recursive solution to a problem is often more expensive than a non-recursive solution, both in 
terms of time and space. Frequently, this expense is a small price to pay for the logical simplicity 
and self-documentation of the recursive solution. However, in a production program (such as 
a compiler, for example) that may be run thousands of times, the recurrent expense is a heavy 
burden on the system’s limited resources.

Thus, a program may be designed to incorporate a recursive solution in order to reduce the expense 
of design and certifi cation, and then carefully converted to a non-recursive version to be put into 
actual day-to-day use. As we shall see, in performing such as conversion it is often possible to 
identify parts of the implementation of recursion that are superfl uous in a particular application 
and thereby signifi cantly reduce the amount of work that the program must perform.

Suppose that we have the statement

rout (x); where route is defi ned as a function by the header

rout(a); x is referred to as an argument (of the calling function), and a is referred to as a parameter 
(of the called function).

What happens when a function is called? The action of calling a function may be divided into 
three parts:

1. Passing Arguments

2. Allocating and initializing local variables

3. Transferring control to the function.
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Let us examine each of these three steps in turn.

1. Passing arguments: For a parameter in C, a copy of the argument is made locally within the 
function, and any changes to the parameter are made to that local copy. The effect to this 
scheme is that the original input argument cannot be altered. In this method, storage for 
the argument is allocated within the data area of the function.

2. Allocating and initializing local variables: After arguments have been passed, the local 
variables of the function are allocated. These local variables include all those declared 
directly in the function and any temporaries that must be created during the course of 
execution.

3. Transferring control to the function: At this point control may still not be passed  to 
the function because provision has not yet been made for saving the return address. If 
a function is given control, it must eventually restore control to the calling routine by 
means of a branch. However, it cannot execute that branch unless it knows the location 
to which it must return. Since this location is within the calling routine and not within the 
function, the only way that the function can know this address is to have it passed as an 
argument. This is exactly what happens. Aside from the explicit arguments specifi ed by the 
programmer, there is also a set of implicit arguments that contain information necessary 
for the function to execute and return correctly. Chief among these implicit arguments is 
the return address. The function stores this address within its own data area. When it is 
ready to return control to the calling program, the function retrieves the return address and 
branches to that location. Once the arguments and the return address have been passed, 
control may be transferred to the function, since everything required has been done to 
ensure that the function can operate on the appropriate data and then return to the calling 
routine safely.

Return from a Function

When a function returns, three actions are performed. First, the return address is retrieved and 
stored in a safe location. Second, the function’s data area is freed. This data area contains all local 
variables (including local copies of arguments), temporaries, and the return address. Finally, a 
branch is taken to the return address, which had been previously saved. This restores control to 
the calling routine at the point immediately following the instruction that initiated the call. In 
addition, if the function returns a value, that value is placed in a secure location from which the 
calling program may retrieve it. Usually this location is a hardware register that is set-aside for 
this purpose.

Task  Discuss maze problem.

3.3.3 Simulation of Factorial

Let us look at the factorial function as a recursion example. We present the code for that function, 
including temporary variables explicitly and omitting the test for negative input, as follows:
int fact(int n)

{

int x, y;

if (n == 0)  return(l);

x = n-l;

y = fact(x);
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return (n * y);

}

How are we to defi ne the data area for this function? It must contain the parameter n and the 
local variables x and y. As we shall see, no temporary variables are needed. The data area must 
also contain a return address. In this case, there are two possible points to which we might want 
to return: the assignment of fact(x) to y, and the main program that called fact. Suppose that we 
had two labels and that we let the label label2 be the label of a section of code.

Label 2: y = result;

within the simulating program. Let the label 1 be the label of a statement

Label 1: return(result);

This refl ects a convention that the variable to result contains the value to be returned by an 
invocation of the fact function. The return address will be stored as an integer i (equal to either 1 
or 2). To effect a return from a recursive call the statement 

switch(i) {

case 1: goto label1;

case 2: goto 1abe12;

}

is executed. Thus, if i  = =  1. a return is executed to the main program that called fact, and if 
i == 2, a return is simulated to the assignment of the returned value to the variable y in the 
previous execution of fact.

Proving Correctness of Parenthesis in an Expression

Lab Exercise This program takes one mathematical expression and checks whether the 
opening and closing parenthesis match or not.

#define LEFTBRACKET ‘{‘

#define RIGHTBRACKET ‘}‘

#include <stdio.h>

main()

{

char t, *p, expr[100];

printf(“Enter an expression :”);

scanf(“%s”,expr);

p=expr;

while(p != ‘\0’)

{

 if( *p == LEFTBRACKET) push(p);

 if(*p == RIGHTBRACKET) t=pop();

 if(t < 0) (printf(“ERROR:”));

 p++;

}
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if(Isempty()) print(“statement is parenthetically balanced”);

else print(“statement is parenthetically unbalanced”);

}

Lab Exercise 

1. The program given below implements the stack data structure using an array. In this 
program the elements are pushed into array stack[ ] through push( ) function. The 
parameters passed to push( ) are the base address of the array, the position in the 
stack at which the element is to be placed and the element itself. Care is taken by the 
push( ) function that the user does not try to place the element beyond the bounds of 
the stack. This is done by checking the value stored in pos. pop( ) function pops out 
the last element stored in the stack[ ], because, pos holds the position which has the 
last element in the stack. 

/* To pop and push items in a stack */

#define MAX 10

void push ( int ) ;

int pop( ) ;

int stack[MAX] ;

int pos ;

void main( )

{

int n ;

 clrscr( ) ;

pos = -1 ; /* stack is empty */

push ( 10 ) ;

push ( 20 ) ;

push ( 30 ) ;

push ( 40 ) ;

n = pop( ) ;

printf ( “\nitem popped out is : %d”, n ) ;

n = pop( ) ;

printf ( “\nitem popped out is : %d”, n ) ;

} 

/* pushes item on the stack */

void push ( int data )

{

if ( pos == MAX - 1 )

printf ( “\nStack is full” ) ;

else

{

pos++ ; 

stack[ pos ] = data ;

}
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}

/* pops off the items from the stack */ 

int pop( )

{

int data ;

if ( pos == -1 ) 

{

printf ( “\nStack is empty” ) ;

return ( -1 ) ;

}

else

{

data = stack[ pos ] ; 

pos-- ; 

return ( data ) ;

}

}

2. In this program stack is implemented and maintained using linked list. This 
implementation is more sophisticated compared to the one that uses an array, the 
added advantage being we can push as many elements as we want. A new node 
is created by push( ) (using malloc( )) every time an element is pushed in the stack. 
Each node in the linked list contains two members, data holding the data and link 
holding the address of the next node. The end of the stack is identifi ed by the node 
holding NULL in its link part. The pop( ) function pops out the last element inserted 
in the stack and frees the memory allocated to hold it. stack_display( ) displays all 
the elements that stack holds. count( ) counts and returns the number of elements 
present in the stack.
#include “alloc.h”

struct node

{

int data ; 

struct node *link ; 

} ;

push ( struct node **, int ) ; 

pop ( struct node ** ) ;

main( ) 

{ 

struct node *top ;  /* top will always point to top of a stack */ 

int item;

top = NULL ;  /* empty stack */

push ( &top, 11 ) ;

push ( &top, 12 ) ;

push ( &top, 13 ) ;

push ( &top, 14 ) ;

push ( &top, 15 ) ;
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push ( &top, 16 ) ;

push ( &top, 17 ) ;

clrscr( ) ;

stack_display ( top ) ; 

printf ( “No. of items in stack = %d” , count ( top ) ) ;

printf ( “\nItems extracted from stack : “ ) ; 

item = pop ( &top ) ;

printf ( “%d “, item ) ; 

item = pop ( &top ) ; 

printf ( “%d “, item ) ; 

item = pop ( &top ) ; 

printf ( “%d “, item ) ;

stack_display ( top ) ; 

printf ( “No. of items in stack = %d” , count ( top ) ) ; 

}

/* adds a new element on the top of stack */ 

push ( struct node **s, int item ) 

{ 

struct node *q ; 

q = malloc ( sizeof ( struct node ) ) ; 

q -> data = item ; 

q -> link = *s ; 

*s = q ;

}

/* removes an element from top of stack */

pop ( struct node **s )

{ 

int item ; 

struct node *q ;

/* if stack is empty */ 

if ( *s == NULL ) 

printf ( “ stack is empty” ) ;

else 

{ 

q = *s ;

item = q -> data ;

*s = q -> link ;

free ( q ) ; 

return ( item ) ;

} 

}

/* displays whole of the stack */ 

stack_display ( struct node *q ) 
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{ 

printf ( “\n” ) ; 

/* traverse the entire linked list */ 

while ( q != NULL ) 

{ 

printf ( “%2d “, q -> data ) ; 

q = q -> link ; 

} 

printf ( “\n” ) ; 

}

/* counts the number of nodes present in the linked list representing 
a stack */ 

count ( struct node * q ) 

{ 

int c = 0 ;

/* traverse the entire linked list */ 

while ( q != NULL ) 

{ 

q = q -> link ; 

c++ ; 

} 

return c ; 

}

3.4 Summary

 Stack is a linear data structure having a very interesting property that an element can be 
inserted and deleted not at any arbitrary position but only at one end. One en d of a stack 
remains sealed for insertion and deletion while the other end allows both the operations. 

 A stack possesses LIFO (Last In First Out) property. There are two basic methods for the 
implementation of stacks – one where the memory is used statically and the other where 
the memory is used dynamically. 

 Push is a stack operation in which an element is added to a stack. 

 Pop is a stack operation that removes an element from the stack. 

 Stack is used to store return information in the case of function/procedure/subroutine 
calls. Hence, one would fi nd a stack in architecture of any Central Processing Unit (CPU). 
In infi x notation operators come in between the operands. An expression can be evaluated 
using stack data structure.

3.5 Keywords

Infi x: Notation of an arithmetic expression in which operators come in between their operands.

LIFO: (Last In First Out) The property of a list such as stack in which the element which can be 
retrieved is the last element to enter it.

Pop: Stack operation retrieves a value form the stack.
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Postfi x: Notation of an arithmetic expression in which operators come after their operands.

Prefi x: Notation of an arithmetic expression in which operators come before their operands.

Push: Stack operation which puts a value on the stack.

Stack: A linear data structure where insertion and deletion of elements can take place only at 
one end.

3.6 Self Assessment

Choose the appropriate answers:

1. Basic method of implementation of stack are:

(a) Where the memory is used statically

(b) Where the memory is used dynamically

(c) Both of the above

(d) None of the above

2. A stack operation that removes an element from the stack

(a) Pop (b) Push

(c) LIFO (d) FIFO

3. The infi x of a particular element is x + y what is the prefi x of this

(a) x + y+ (b) +xy

(c) xy+ (d) None of the above

4. The hardware component known as an input device is:

(a) RAM (b) Hard-disk

(c) Monitor (d) Processor 

(e) Keyboard

5. The hardware component known as an output device is:

(a) Keyboard (b) Monitor

(c) RAM (d) Hard-disk

(e) Processor

6. CPU stands for

(a) Control processing unit (b) Central processing unit

(c) Central programming unit (d) None of these

Fill in the blanks:

7. Stack is said to possess ..................................property.

8. .................................. is used to implement stacks where the memory is used statically.

9. Pointers help in .................................. implementation of stacks.

10. In .................................. the operators come before operands.
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3.7 Review Questions

1. Write an algorithm to reverse an input string of characters using a stack.

2. Explain how function calls may be implemented using stacks for return values.

3. What are the advantages of implementing a stack using dynamic memory allocation 
method?

4. Trace the execution of infi x-to-postfi x algorithm on the following expression.

3 + (23 * 9 / 3 - 67 - (2 * 7) /9)

5. One way to determine if a string of characters is a palindrome is to use one stack and one 
queue and to apply the following algorithm strategy:

(a) Put the input string on the stack and the queue simultaneously.

(b) Thus, popping the string from the stack is equivalent to reading it backwards while 
deleting the string from the queue is reading it forwards.

6. Write a C program to implement a stack of characters.

7. Explain why we cannot use the following implementation for the method push in our 
linked Stack.

 Error_code Stack :: push(Stack_entry item)

 {

  Node new_top(item, top_node);

  top_node = new_top;

  return success;

 }

8. What is wrong with the following attempt to use the copy constructor to implement the 
overloaded assignment operator for a linked Stack?

 void Stack :: operator = (const Stack &original)

 {

  Stack new_copy(original);

  top_node = new_copy.top_node;

 }

 How can we modify this code to give a correct implementation?

Answers: Self Assessment

1. (c) 2. (a)

3. (b) 4. (e)

5. (b) 6. (b)

7. LIFO (Last In First Out) 8. Array

9. Dynamic 10. Polish Notation
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Unit 4: Queues

CONTENTS

Objectives

Introduction

4.1 Queue Model

4.2 Array Implementation

 4.2.1 Array-based Implementation

 4.2.2 Pointer-based Implementation

4.3 Applications of Queues

4.4 Summary

4.5 Keywords

4.6 Self Assessment

4.7 Review Questions

4.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Describe queue model 

 Know array implementation 

 Describe various applications of queues

Introduction

The queue abstract data type is also a widely used one with applications very common in real 
life. An example comes from the operating system software where the scheduler picks up the 
next process to be executed on the system from a queue data structure. In this unit, we would 
study the various properties of queues, their operations and implementation strategies.

4.1 Queue Model

A queue is a list of elements in which insertions are made at one end-called the rear and deletions 
are made from the other end-called the front. This means, in particular, that elements are removed 
from a queue in the same order as that in which they were inserted into the queue. Thus, a queue 
exhibits the FIFO (First In First Out) property.

The following are the allowed operations on a queue Q:

1. insert(Q, e): This inserts an element e into the queue Q.

2. delete(Q) Æ e: This deletes an element from the queue Q and stores it into e.

3. empty(Q) Æ true/false: This checks whether a queue is empty or not.
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Queue operations in pseudo-code:
ENQUEUE(Q, x)

Q[tail[Q]] <- x

if tail[Q] = length[Q]

then tail[Q] <- 1

else tail[Q] <- tail[Q] + 1

DEQUEUE(Q)

x <- Q[head[Q]]

if head[Q] = length[Q]

then head[Q] <- 1

else head[Q] <- head[Q] + 1

return x

These are also O(1) time operations.

Figure 4.1 shows the operations on a queue.

front rear

A

front, rear (a) Empty queue

(b) A inserted

(c) B, C inserted
front rear

A B C

front rear

C D

(f) D inserted

B C

C

front rear

front rear

(d) A deleted

(e) B deleted

Figure 4.1: Operations on a Queue
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4.2 Array Implementation

Here too, there are two possible implementation strategies – one where the memory is used 
statically and the other where memory is used dynamically.

4.2.1 Array-based Implementation

To represent a queue we require a one-dimensional array of some maximum size say n to hold 
the data items and two other variables front and rear to point to the beginning and the end of the 
queue. Hence a queue data type may be defi ned in C as follows:

 struct queue

 {

  T data[n];

  int front, rear;

 }

During the initialization of a queue q, its front and rear are made to 0. At each insertion to the 
queue, which takes place at the rear end, ‘rear’ is incremented by 1. At each deletion, ‘front’ is 
incremented by 1. The following procedures show the implementation of the queue operations:

void insert(queue q[], T x)

/* This function inserts an element x into the queue q */

{

 if(q.rear == n) printf(‘Queue is full!”);

 else 

  { 

  q.rear = q.rear + 1;

  q.data[q.rear] = x;

  }

}

void delete(queue q[], T x)

    /*deletes an element from the queue and stores in x*/ 

{

 if(q.front == q.rear) 

 {

  printf(“queue is empty!”) 

  q.front = 0;

  q.rear = 0;

 }

 else 

      {

  q.front= q.front + 1; 

  x =q.data[q.front];

 }

boolean empty(queue q[])
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/* This function checks if the queue q is empty or not * / 

{

 if(q.front == q.rear)

  return(true)

 else 

  return(false);

}

void initialize(queue q[])

/* This procedure initializes a queue q * / 

{

 q.front = 0;

 q.rear = 0;

}

An important point to be noticed in the above implementation is that the queue has a tendency to 
move to the right unless occasionally ‘front’ catches up with ‘rear’ and both are reset to 0 again (in 
the delete procedure). As a result it is possible that a considerable portion of the elements array 
is free but the queue full signal is on. To get rid of this problem, we may shift the elements array 
towards left by 1 whenever a deletion is made. Such a shifting is time consuming since it has to 
be done for each deletion operation.

A more effi cient queue representation is obtained by regarding the array of elements of a queue to 
be circular. For easier algebraic manipulation we consider the array subscript ranging from 0 .. n-1; 
As before, rear will point to the element which is at the end of the queue. The front points to one 
position anticlockwise to the beginning of the queue. Initially, front = rear = 1 and front = rear only 
if the queue is empty. Every insertion implies that the rear of the queue increases by 1 except when 
rear = n -1. In that case, the rear is made zero if the queue is not full yet.

Figure 4.2 shows a circular queue with 3 elements where n = 9 front=2 and rear=5.

2

1
0

8

7

6

rear

5

4

3

AA

BB
CC

front

Figure 4.2: A Circular Queue
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An implementation of the circular queue is shown below:

struct Cqueue

 {

 T data[n];    

 int front, rear;

  }

void insert(queue q[], T x)

/* This procedure inserts an element x into the queue q */

{

 q.rear = (q.rear + 1) % n;

 if(q.rear == q.front) 

  printf(“Queue full”); 

 else 

  q.data[q.rear] = x;

}

void delete(queue q, T x)

/* deletes an element & stores it in x */

{

 if(q.front == q.rear) 

  printf(“queue empty”);

 else 

 {

  x = q.data[q.front];

  q.front =(q.front+ l) % n;

 }

}

boolean empty(queue q[])

/* This function checks if the queue q is empty or not */

{

 if(q.front == q.rear) return(true);

 else return(false);

}

void initialize(queue q[])

/* This procedure initializes a queue q * /

{

 q.front = 0; 

 q.rear = 0;

}

In this implementation, we are using only n-1 entries of the ‘elements’ array. To use all the 
elements, a special fl ag has to be maintained to distinguish between the queue_full and queue_
empty situations.
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4.2.2 Pointer-based Implementation

As in stacks, a queue could be implemented using a linked list.

A queue can be implemented by the following declarations and algorithms:

struct queueNode

 {

  T item;

  queueNode *next;

 };

struct queueNode, *front, *rear;

void insert(queueNode *front, queueNode *rear, T e)

{

 struct queueNode *x;

 x = new(queueNode);

 x->item = e;

 if(front == NULL) front = x;

 else rear->next = x;

 rear = x;

}

void delete(queueNode *front, T e, queueNode *front)

/*This procedure deletes the element from the front of the queue & stores it in 
e */

{

 if(front == NULL) printf(“Queue is empty”);

 else 

 {

  e = front->item;

  front = front->next;

  if(front == NULL) rear = NULL;

 }

}

boolean empty(queueNode *q) /* check if queue is empty* /

{

 if(q == NULL) return(true) else return(false);

}

void initialize(queueNode *front, queueNode *rear)

{

 front = NULL; rear = NULL;

}

Task  Write a program to implement a circular queue.
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4.3 Applications of Queues

One major application of the queue data structure is in the computer simulation of a real-world 
situation. Queues are also used in many ways by the operating system, the program that schedules 
and allocates the resources of a computer system. One of these resources is the CPU (Central 
Processing Unit) itself. If you are working on a multi-user system and you tell the computer 
to run a particular program, the operating system adds your request to its “job queue”. When 
your request gets to the front of the queue, the program you requested is executed. Similarly, the 
various users for the system must share the I/O devices (printers, disks etc.). Each device has its 
own queue of requests to print, read or write to these devices. The following subsection discusses 
one application of the queues – the priority queue. It is used in time-sharing multi-user systems 
where programs of high priority are processed fi rst arid programs with the same priority form 
a standard queue.

Priority Queues

A priority queue is a collection of elements such that each element has been assigned a priority 
and such that the order in which elements are deleted and processed is defi ned by the following 
rules:

An element of higher priority is processed before any element of lower priority. Two elements 
with the same priority are processed according to the order in which they were inserted into the 
queue.

We would use a singly linked list to implement the priority queue. Each node of the linked list 
would have a type defi nition as follows:

 struct qElement

 {

  T item;

  int priority;

  qElement *next;

 } *Pqueue, *front, *rear;

The algorithm for the insertion would change now. Insertion would insert the new element at 
the correct position according to the priority of the element. The elements of the priority queue 
would be sorted in a non-descending order of the priority with the front of the queue having the 
element with the highest priority. The deletion procedure need not change since the element at 
the front is the one with the highest priority and that is the one that should be deleted.

void insert(Pqueue *front, Pqueue *rear, T e, int p)

/* this inserts an element having data e and priority p into the priority queue 
*/ 

/*the insertion maintains the sorted order of the priority queue */

{

 Pqueue *f, *r;

 Pqueue *x;

 int pr; 

 {

  x = new(Pqueue);

  x->item = e; x->priority = p;
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  if(front == NULL)

  {

   front = x; 

   x->next = NULL;

   rear = x; 

  }

 /* x is the first node being added to the priority queue*/

 elseif(front->priority < p)

 {

  x->next = front;

  front = x;

 }

 /* x has the highest priority hence should be at the front*/

 elseif(rear->priority > p)

 {

  x->next = NULL;

  rear->next = x;

  rear = x;

 }

 /* x has the least priority hence should be at the rear*/

 else

  {

  /* x has to be inserted in between according to its priority*/

  f = front; 

  pr = f->pri; r = NULL;

 while(pr > p) /* Advance through the queue till the proper position is 
reached */

  {

   f = f->next; r = f; pr = f->priority;

  }

  /* f now points to the node before which x has to be inserted and r points 
to the node which should be before x*/

  r->next = x; x->next = f;

  }

}

Task  Write an implementation of the Extended_queue method full. In light of the 
simplicity of this method in the linked implementation, why is it still important to include 
it in the linked class Extended_queue?
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Case Study  Convert an infi x expression to prefi x form.

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#define N 80

typedef enum {FALSE, TRUE} bool;

#include “stack.h”

#include “queue.h”

#define NOPS 7

char operators [] = “()^/*+-”;

int priorities[] = {4,4,3,2,2,1,1};

char associates[] = “ RLLLL”;

char t[N]; char *tptr = t; // this is where prefix will be saved.

int getIndex( char op ) {

    /*

     * returns index of op in operators.

     */

    int i;

    for( i=0; i<NOPS; ++i )

        if( operators[i] == op )

               return i;

    return -1;

}

int getPriority( char op ) {

    /*

     * returns priority of op.

     */

    return priorities[ getIndex(op) ];

}

char getAssociativity( char op ) {

    /*

     * returns associativity of op.

     */

    return associates[ getIndex(op) ];

}

void processOp( char op, queue *q, stack *s ) {

    /*

Contd...
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     * performs processing of op.

     */

    switch(op) {

       case ‘)’:

              printf( “\t S pushing )...\n” );

              sPush( s, op );

              break;

       case ‘(‘:

              while( !qEmpty(q) ) {

                     *tptr++ = qPop(q);

                     printf( “\tQ popping %c...\n”, *(tptr-1) );

              }

              while( !sEmpty(s) ) {

                     char popop = sPop(s);

                     printf( “\tS popping %c...\n”, popop );

                     if( popop == ‘)’ )

                            break;

                     *tptr++ = popop;

              }

              break;

       default: {

              int priop;    // priority of op.

              char topop;   // operator on stack top.

              int pritop;   // priority of topop.

              char asstop;  // associativity of topop.

              while( !sEmpty(s) ) {

                     priop = getPriority(op);

                     topop = sTop(s);

                     pritop = getPriority(topop);

                     asstop = getAssociativity(topop);

if( pritop < priop || (pritop == priop && asstop == ‘L’)

    || topop == ‘)’ ) // IMP.

                      break;

                 while( !qEmpty(q) ) {

                        *tptr++ = qPop(q);

                 printf( “\tQ popping %c...\n”, *(tptr-1) );

                 }

                 *tptr++ = sPop(s);

                 printf( “\tS popping %c...\n”, *(tptr-1) );

Contd...
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         }

         printf( “\tS pushing %c...\n”, op );

         sPush( s, op );

         break;

      }

   }

}

bool isop( char op ) {

    /*

     * is op an operator?

     */

    return (getIndex(op) != -1);

}

char *in2pre( char *str ) { /*

     * returns valid infix expr in str to prefix.

     */

    char *sptr;

    queue q = {NULL};

    stack s = NULL;

    char *res = (char *)malloc( N*sizeof(char) );

    char *resptr = res;

    tptr = t;

    for( sptr=str+strlen(str)-1; sptr!=str-1; -sptr ) {

       printf( “processing %c tptr-t=%d...\n”, *sptr, tptr-t );

       if( isalpha(*sptr) ) // if operand.

              qPush( &q, *sptr );

       else if( isop(*sptr) )      // if valid operator.

              processOp( *sptr, &q, &s );

       else if( isspace(*sptr) )    // if whitespace.

              ;

       else {

              fprintf( stderr, “ERROR:invalid char %c.\n”, *sptr );

              return “”;

       }

   }

   while( !qEmpty(&q) ) {

       *tptr++ = qPop(&q);

       printf( “\tQ popping %c...\n”, *(tptr-1) );

   }

   while( !sEmpty(&s) ) {

       *tptr++ = sPop(&s);

       printf( “\tS popping %c...\n”, *(tptr-1) );

   }
Contd...
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   *tptr = 0;

   printf( “t=%s.\n”, t );

   for( -tptr; tptr!=t-1; -tptr ) {

      *resptr++ = *tptr;

   }

   *resptr = 0;

   return res;

}

int main() {

    char s[N];

    puts( “enter infix freespaces max 80.” );

    gets(s);

    while(*s) {

       puts( in2pre(s) );

       gets(s);

    }

   return 0;

}

Explanation

1. In an infi x expression, a binary operator separates its operands (a unary operator 
precedes its operand). In a postfi x expression, the operands of an operator precede 
the operator. In a prefi x expression, the operator precedes its operands. Like postfi x, a 
prefi x expression is parenthesis-free, that is, any infi x expression can be unambiguously 
written in its prefi x equivalent without the need for parentheses.

2. To convert an infi x expression to reverse-prefi x, it is scanned from right to left. A 
queue of operands is maintained noting that the order of operands in infi x and prefi x 
remains the same. Thus, while scanning the infi x expression, whenever an operand is 
encountered, it is pushed in a queue. If the scanned element is a right parenthesis (‘)’), 
it is pushed in a stack of operators. If the scanned element is a left parenthesis (‘(‘), the 
queue of operands is emptied to the prefi x output, followed by the popping of all the 
operators up to, but excluding, a right parenthesis in the operator stack.

3. If the scanned element is an arbitrary operator o, then the stack of operators is checked 
for operators with a greater priority then o. Such operators are popped and written to 
the prefi x output after emptying the operand queue. The operator o is fi nally pushed 
to the stack.

4. When the scanning of the infi x expression is complete, fi rst the operand queue, and 
then the operator stack, are emptied to the prefi x output. Any whitespace in the infi x 
input is ignored. Thus the prefi x output can be reversed to get the required prefi x 
expression of the infi x input.

Question

Write a C program to implement a queue by using an array.
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4.4 Summary

 A queue is a list of elements in which insertions are made at one end – called the rear and 
deletions are made from the other end - called the front. 

 A queue exhibits the FIFO (First In First Out) property. To represent a queue we require a 
one-dimensional array of some maximum size say n to hold the data items and two other 
variables front and rear to point to the beginning and the end of the queue. 

 As in stacks, a queue could be implemented using a linked list. One major application of 
the queue data structure is in the computer simulation of a real-world situation. 

 Queues are also used in many ways by the operating system, the program that schedules 
and allocates the resources of a computer system. Each device has its own queue of requests 
to print, read or write to these devices. 

 A priority queue is a collection of elements such that each element has been assigned a 
priority. An element of higher priority is processed before any element of lower priority. 

 Two elements with the same priority are processed according to the order in which they 
were inserted into the queue.

4.5 Keywords

FIFO: (First In First Out) The property of a linear data structure which ensures that the element 
retrieved from it is the fi rst element that went into it.

Front: The end of a queue from where elements are retrieved.

Queue: A linear data structure in which the element is inserted at one end while retrieved from 
another end.

Rear: The end of a queue where new elements are inserted.

4.6 Self Assessment

Choose the appropriate answer:

1. Priority queue is a 

(a) Collection of elements such that each element has been assigned a priority.

(b) Collection of I/O devices

(c) Collection of FIFO

(d) None of the above

2. Every insertion implies that the rear of the queue increases by 1 except when rear =.

(a) n-2

(b) n-1

(c) n-0

(d) n-3

Fill in the blanks:

3. During the initialization of a queue q, its front and rear are made to .................................
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4. A more effi cient queue representation is obtained by regarding the array of elements of a 
queue to be ..............................

5. A queue could be implemented using a .................................

6. Reverse Polish Notation is also called ................................

7. ................................ is used in time-sharing multi-user systems where programs of high 
priority are processed fi rst amid programs with the same priority form a standard queue.

8. A queue exhibits the ............................... property.

9. A queue could be implemented using ...................... and ...........................

10. A ............................. is a collection of elements such that each element has been assigned a 
priority.

4.7 Review Questions

1. Write a segment of code to create a copy of a given queue. Let q1 be the given queue and q2 
be the copy. All the elements of q2 must be equal to q1. Do not assume any implementation 
of a queue.

2. Describe the application of queue.

3. How will you insert and delete an element in queue?

4. Write a C program to implement a double-ended queue, which is a queue in which 
insertions and deletions may be performed at either end. Use a linked representation.

5. Write the following methods for linked queues:

(a) The method empty,

(b) The method retrieve,

(c) The destructor,

(d) The copy constructor,

(e) The overloaded assignment operator.

6. Assemble specifi cation and method fi les, called queue.h and queue.c, for linked queues, 
suitable for use by an application program.

7. For a linked Extended_queue, the function size requires a loop that moves through the 
entire queue to count the entries, since the number of entries in the queue is not kept as a 
separate member in the class. Consider modifying the declaration of a linked Extended_
queue to add a count data member to the class. What changes will need to be made to all the 
other methods of the class? Discuss the advantages and disadvantages of this modifi cation 
compared to the original implementation.

8. Write an implementation of the Extended_queue method full. In light of the simplicity 
of this method in the linked implementation, why is it still important to include it in the 
linked class Extended_queue?

9. Give a formal defi nition of the term deque, using the defi nitions given for stack and queue 
as models. Recall that entries may be added to or deleted from either end of a deque, but 
nowhere except at its ends.

10. Give two reasons why dynamic memory allocation is valuable.
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Answers: Self Assessment

1. (a) 2. (b)

3. 0 4. circular

5. linked list 6. Postfi x Notation

7. Priority Queue 8. FIFO (First In First Out)

9. Array, Linked List 10. Priority queue

4.8 Further Readings
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Springer.
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Objectives

After studying this unit, you will be able to:

 Discuss the concept of tree

 Explain concept of binary tree 

 Know binary tree traversal

Introduction

While dealing with many problems in computer science, engineering and many other disciplines, 
it is needed to impose a hierarchical structure on a collection of data items. For example, we need 
to impose a hierarchical structure on a collection of data items while preparing organizational 
charts and genealogies, to represent the syntactic structure of source programs in compilers. A 
tree is a data structure that is used to model such a hierarchical structure on data items, hence 
the study of tree as one of the data structures is important. This module discusses tree as a data 
structure.
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5.1 Concept of Tree

A tree is a set of one or more nodes T such that:

1. There is a specially designated node called root, and

2. Remaining nodes are partitioned into n >= 0 disjoint set of nodes T1, T2,…,Tn each of which 
is a tree.

Shown below in Figure 5.1 is a structure, which is tree.

A

B C D

G H I E F

Figure 5.1: A Tree Structure

This is a tree because it is a set of nodes {A, B, C, D, E, F, G, H, I}, with node A as a root node, 
and the remaining nodes are partitioned into three disjoint sets: {B, G, H, I}, {C, E, F} AND {D} 
respectively. Each of these sets is a tree individually because each of these sets satisfi es the above 
properties. Shown below in Figure 5.2 is a structure, which is not a tree:

A

B C D

G H I E F

Figure 5.2: A Non-tree Structure

This is not a tree because it is a set of nodes {A, B, C, D, E, F, G, H, I}, with node A as a root node, 
but the remaining nodes cannot be partitioned into disjoint sets, because the node I is shared.

Given below are some of the important defi nitions, which are used in connection with trees.

1. Degree of Node of a Tree: The degree of a node of a tree is the number of sub-trees having 
this node as a root, or it is a number of decedents of a node. If degree is zero then it is called 
terminal node or leaf node of a tree.

2. Degree of a Tree: It is defi ned as the maximum of degree of the nodes of the tree, i.e. degree 
of tree = max (degree (node i) for i = 1 to n).

3. Level of a Node: We defi ne the level of the node by taking the level of the root node to be 1, 
and incrementing it by 1 as we move from the root towards the sub-trees i.e. the level of all 
the descendents of the root nodes will be 2. The level of their descendents will be 3 and so 
on. We then defi ne depth of the tree to be the maximum value of level for node of a tree.
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Consider the tree given in Figure 5.3:

A

B C D

G H I E F

Figure 5.3

The degree of each node of the tree:
Node Degree

A 3
B 3
C 2
D 0
E 0
F 0
G 0
H 0
I 0

The degree of the tree: Maximum (Degree of all the nodes) = 3

The level of nodes of the tree:

Node Level
A 1
B 2
C 2
D 2
E 3
F 3
G 3
H 3
I 3

Task  In fi gure 5.1 calculate the degree of a true.

5.2 Binary Tree

A binary tree is a special tree where each non-leaf node can have atmost two child nodes. Most 
important types of trees which are used to model yes/no, on/off, higher/lower, i.e., binary 
decisions are binary trees.

Recursive Defi nition: “A binary tree is either empty or a node that has left and right sub-trees that are 
binary trees. Empty trees are represented as boxes (but we will almost always omit the boxes)”.
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In a formal way, we can defi ne a binary tree as a fi nite set of nodes which is either empty or 
partitioned in to sets of T0, Tl, Tr, where T0 is the root and Tl and Tr are left and right binary trees, 
respectively.

A

B

D

E F

H I

C

G

Figure 5.4: Binary Tree Structure

So, for a binary tree we fi nd that:

1. The maximum number of nodes at level i will be 2i−1

2. If k is the depth of the tree then the maximum number of nodes that the tree can have is

 2k − 1 = 2k−1 + 2k−2 + … + 20 

5.2.1 Types of Binary Tree

There are two main binary tree and these are:

1. Full binary tree

2. Complete binary tree

Full Binary Tree

A full binary tree is a binary of depth k having 2k − 1 nodes. If it has < 2k − 1, it is not a full binary 
tree.

 Example: For k = 3, the number of nodes = 2k − 1 = 23 − 1 = 8 − 1 = 7. A full binary tree with 
depth k = 3 is shown in fi gure.

1

2 3

4 5 6 7

A Full Binary Tree

We use numbers from 1 to 2k − 1 as labels of the nodes of the tree.

If a binary tree is full, then we can number its nodes sequentially fom 1 to 2k−1, starting from the 
root node, and at every level numbering the nodes from left to right.
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Complete Binary Tree

A complete binary tree of depth k is a tree with n nodes in which these n nodes can be numbered 
sequentially from 1 to n, as if it would have been the fi rst n nodes in a full binary tree of depth k.

A complete binary tree with depth k = 3 is shown in Figure 5.5.

A

B

ED

C

Figure 5.5: A Complete Binary Tree

5.2.2 Properties of a Binary Tree

Main properties of binary tree are:

1. If a binary tree contains n nodes, then it contains exactly n – 1 edges;

2. A Binary tree of height h has 2h – 1 nodes or less.

3. If we have a binary tree containing n nodes, then the height of the tree is at most n and at 
least ceiling log

2
(n + 1). 

4. If a binary tree has n nodes at a level l then, it has at most 2n nodes at a level l + 1 

5. The total number of nodes in a binary tree with depth k (root has depth zero) is N = 20 + 21 
+ 22 + …….+ 2k = 2k+1 – 1.

Task  In fi gure 5.4 total no. of node present.

5.3 Binary Representation

If a binary tree is a complete binary tree, it can be represented using an array capable of holding 
n elements where n is the number of nodes in a complete binary tree. If the tree is an array of n 
elements, we can store the data values of the ith node of a complete binary tree with n nodes at an 
index i in an array tree. That means we can map node i to the ith index in the array, and the parent 
of node i will get mapped at an index i/2, whereas the left child of node i gets mapped at an index 
2i and the right child gets mapped at an index 2i + 1. 

 Example: A complete binary tree with depth k = 3, having the number of nodes n = 5, can 
be represented using an array of 5 as shown in fi gure.
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A

B

ED

C

1

2 3

554

A

B
C

D

E

1

2
3

4

5

Array Tree

An Array representation of a Complete Binary Tree having 5 Nodes and Depth 3

Shown in fi gure is another example of an array representation of a complete binary tree with 
depth k = 3, with the number of nodes n = 4.

A

B C

D

1

2

4

3

A

B
C

D

1

2
3

4
Array Tree

An Array representation of a Complete Binary Tree with 4 Nodes and Depth 3

In general, any binary tree can be represented using an array. We see that an array representation 
of a complete binary tree does not lead to the waste of any storage. But if you want to represent 
a binary tree that is not a complete binary tree using an array representation, then it leads to the 
waste of storage as shown in Figure 5.6.

A

B
C

D
E
F

G

HH

I

1

2
3

4
5

6
7

8

9

10
11

Array Tree

A

B C

D E F G

H I

1

2

6 75

10 11

4

3

Figure 5.6: An Array representation of a Binary Tree

An array representation of a binary tree is not suitable for frequent insertions and deletions, 
even though no storage is wasted if the binary tree is a complete binary tree. It makes insertion 
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and deletion in a tree costly. Therefore, instead of using an array representation, we can use a 
linked representation, in which every node is represented as a structure with three fi elds: one for 
holding data, one for linking it with the left subtree, and the third for linking it with right subtree 
as shown here:

leftchild data rightchild

We can create such a structure using the following C declaration:
struct tnode

{

   int data

   struct tnode *lchild,*rchild;

};

A tree representation that uses this node structure is shown in Figure 5.7.

A

B C

D

NULL NULL NULL

NULLNULL

Figure 5.7: Linked representation of a Binary Tree

5.4 Implementation of a Binary Tree

Like general tree, binary trees are implemented through linked lists. A typical node in a Binary 
tree has a structure as follows (refer to Figure 5.8):

struct NODE

{ 

 struct NODE *leftchild; 

 int nodevalue; /* this can be of any data type */ 

 struct NODE *rightchild;

};

left child value right child
The ‘left child’and ‘right child’ 
are pointers to another 
tree-node. The “leaf node” (not 
shown) here will have NULL 
values for these pointers.

Figure 5.8: Node Structure of a Binary Tree

The binary tree creation follows a very simple principle. For the new element to be added, 
compare it with the current element in the tree. If its value is less than the current element in the 
tree, then move towards the left side of that element or else to its right. If there is no sub tree on 
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the left, then make your new element as the left child of that current element or else compare it 
with the existing left child and follow the same rule. Exactly, the same has to done for the case 
when your new element is greater than the current element in the tree but this time with the right 
child. Though this logic is followed for the creation of a Binary tree, this logic is often suitable to 
search for a key value in the binary tree.

Algorithm for the Implementation of a Binary Tree

1. Step-1: If value of new element < current element, then go to step-2 or else step-3.

2. Step-2: If the current element does not have a left sub-tree, then make your new element the 
left child of the current element; else make the existing left child as your current element 
and go to step-1.

3. Step-3: If the current element does not have a right sub-tree, then make your new element 
the right child of the current element; else make the existing right child as your current 
element and go to step-1.

Task  “If a binary tree is a complete binary tree, it can be represented using an array 
capable of holding n elements where n is the number of nodes in a complete binary tree.” 
Discuss.

Lab Exercise Program: Depicts the segment of code for the creation of a binary tree.

struct NODE

{ 

struct NODE *left; 

int value; 

struct NODE *right; 

}; 

create_tree(struct NODE *curr, struct NODE *new )

{ 

if(new->value <= curr->value)

{ 

if(curr->left != NULL) 

create_tree(curr->left, new); 

else 

curr->left = new; 

} 

else 

{ 

if(curr->right != NULL) 

create_tree(curr->right, new); 

else 
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curr->right = new; 

} 

}

Program: Binary tree creation

Array-based representation of a Binary Tree 

Consider a complete binary tree T having n nodes where each node contains an item (value). 
Label the nodes of the complete binary tree T from top to bottom and from left to right 0, 1, ..., 
n-1. Associate with T the array A where the i

th 
entry of A is the item in the node labelled i of T, i = 

0, 1, ..., n-1. Figure 5.8 depicts the array representation of a Binary tree of fi gure. 

Given the index i of a node, we can easily and effi ciently compute the index of its parent and left 
and right children: 

Index of Parent: (i – 1)/2, Index of Left Child: 2i + 1, Index of Right Child: 2i + 2.

Table 5.1: Array representation of a Binary Tree

Node Item Left child Right child 
0 A 1 2
1 B 3 4
2 C –1 –1
3 D 5 6
4 E 7 8
5 G –1 –1
6 H –1 –1
7 I –1 –1
8 J –1 –1
9 ? ? ? 

First column represents index of node, second column consist of the item stored in the node and 
third and fourth columns indicate the positions of left and right children (–1 indicates that there 
is no child to that particular node.)

5.5 Binary Tree Traversal

This section discusses different orders in which a binary tree can be traversed. The algorithms 
for some commonly used orders of traversal are also presented. It also discusses the issue of 
construction of a unique binary tree given the orders of traversal.

5.5.1 Order of Traversal of Binary Tree

The following are the possible orders in which a binary tree can be traversed:

1. LDR

2. LRD

3. DLR

4. RDL

5. RLD

6. DRL
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where,

 L stands for traversing the left sub-tree,

 R stands for traversing the right sub-tree, and

 D stands for processing the data of the node.

Therefore, the order LDR is the order of traversal in which we start with the root node, visit the 
left sub-tree fi rst, then process the data of the root node, and then go for visiting the right sub-
tree. Since the left, as well as right sub-trees are also the binary trees, the same procedure is used 
recursively while visiting the left and right sub-trees.

The order LDR is called inorder, the order LRD is called postorder, and the order DLR is called 
preorder. The remaining three orders are not used. If the processing that we do with the data in 
the node of tree during the traversal is simply printing the data value, then the output generated 
for a tree given below in Figure 5.9, using the inorder, preorder and postorder is the one shown 
below in Figure 5.9 itself.

A

B C

D E F G

H I

Figure 5.9: A Binary Tree along with its Inorder, Preorder and Postorder

Different order path in Figure 5.9 are:

Inorder: DBHEIAFCG

preorder: ABDEHICFG 

postorder: DHIEBFGCA

If an expression is represented as a binary tree then the inorder traversal of the tree gives us an 
infi x expression, whereas the postorder traversal gives us posfi x expression as shown below in 
Figure 5.10.

b c

*a d e

*+

+

Figure 5.10: A Binary Tree of an Expression along with its Inorder and Postorder
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Different order path in Figure 5.10 are:
Inorder : a + b * c + d * e

postorder: abc*+de*+

Given an order of traversal of a tree it is possible to construct a tree.

 Example: Consider the following order: Inorder = DBEAC

We can construct the binary trees shown below in fi gure using this order of traversal:

A

B C

ED C

A

E

B

D

E

B C

D A

Binary Trees Constructed using given Inorder

Therefore we conclude that given only one order of traversal of a tree it is possible to construct 
a number of binary trees, a unique binary tree is not possible to be constructed. For construction 
of a unique binary tree we require two orders in which one has to be inorder, the other can be 
preorder or postorder.

 Example: Consider the following orders:

lnorder = DBEAC

Postorder = DEBCA

We can construct a unique binary tree shown in Figure using these orders of traversal.
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A

CB

ED

A Unique Binary Constructed using the Inorder and Postorder

5.5.2 Procedure for Inorder Traversal

void inorder(tnode *p)

{

 if(p != NULL) 

 {

  inorder(p->lchild); 

  printf(p->data); 

  inorder(p->rchild);

 }

}

A non-recursive/iterative procedure for traversing a binary tree in inorder is given below for the 
purpose of doing the analysis.

void inorder(tnode *p)

{

 tnode *stack[100]; 

 int top;

 {

 top = 0;

 if(p != NULL)  

 {

  top = top + 1; 

  stack[top] = p; 

  p = p->lchild; 

  while(top > 0)  

  {

   while(p != NULL) 

   /*push the left child onto the stack*/ 

   {

    top = top + 1;

    stack[top] = p;

    p = p->lchild;
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   }

   p = stack[top]; 

   top = top-l; 

   printf(p->data); 

   p = p->rchild;

   if(p != NULL)  

   /*push right child*/ 

    {

    top = top+1;

    stack[top] = p; 

    p = p->lchild;

   }

  }

 }

}

Analysis

Consider the iterative version of the inorder given above. If the binary tree to be traversed is 
having n nodes, then the number of nil links is n + 1. Since every node is placed on the stack 
once, the statements stack[top] := p and p := stack[top] are executed n times. The test for nil links 
will be done exactly n+ 1 times. So every step will be executed no more than some small constant 
times n, hence the order of algorithm O(n). Similar analysis can be done to obtain the estimate of 
the computation time for preorder and post order.

Preorder Traversal

void preorder(tnode *p) 

{

 if(p != NULL)  

 {

  printf(p->data); 

  preorder(p->lchild); 

  preorder(p->rchild);

 }

}

Postorder Traversal

void postorder(tnode *p) 

{

 if(!p) 

 {

  postorder(p->lchild); 

  postorder(p->rchild); 

  printf(p->data);
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 }

}

Consider the following example.

Given the preorder and inorder traversal of a binary tree. Draw the tree and write down its 
postorder traversal.

 Inorder: Z, A, Q, P, Y, X, C, B

 Preorder: Q, A, Z, Y, P, C, X, B

To obtain the binary tree take the fi rst node in preorder, it is a root node, we then search for this 
node in the inorder traversal, all the nodes to the left of this node in the inorder traversal will be 
the part of the left sub-tree, and all the nodes to the right of this node in the inorder traversal will 
be the part of the right sub-tree. We then consider the next node in the preoder, if it is a part of 
the left sub-tree, then we make it as left child of the root, otherwise if it is part of the right sub-tree 
then we make it as part of right sub-tree. This procedure is repeated recursively to get the tree 
shown below in Figure 5.11:

Q

A Y

PZ C

X B

Figure 5.11: A Unique Binary Tree Constructed using the Inorder and Postorder

The post order for this tree is:

 Z, A, P, X, B, C, Y, Q

The following function counts the number of leaf node in a binary tree.

int count(tnode *p)

{

 if(p == NULL) 

  count = 0;

 else

 if((p->1child == NULL) && (p->rchild == NULL))

  count = 1;

 else

  count = count(p->1child) + count(p->rchild);

}

The following procedure swaps the left and the right child of every node of a given binary tree.

void swaptree(tnode *p)

{
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 tnode *temp;

 if(p != NULL) 

 {

  swaptree(p->1child); 

  swaptree(p->rchild); 

  temp = p->1child; 

  p->1child = p->rchild; 

  p->rchild = temp;

 }

}

The following function checks whether the two binary trees are equal or not.

boolean equal(tnode *p1, tnode *p2)

{

 boolean ans;

 if((p1 == NULL) && (p2 == NULL))

  ans = true;

 else

 if(((p1==NULL)&&(p2!=NULL))||((p1!=NULL)&&(p2==NULL)))   ans = false;

 else

  while((p1 != NULL) && (p2 != NULL))

  {

    if(p1 != NULL) && (p2 != NULL)) 

    if((equal(p1->1child,p2->1child))

    ans = equal(p1->rchild,p2->rchild); 

    else

     ans = false;

    else

     ans = false;

  }

 return(ans);

 }

The following function creates exact copy of a given binary trees.

Tnode *copytree(tnode *p) 

 {

  tnode *q;

  {

  if(p == NULL) 

   return(NULL);

  else 

   {
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   q = new(tnode);

   q->data = p->data;

   q->lchild = copytree(p->lchild); 

   q->rchild = copytree(p->rchild); 

   return(q);

   }

 }

}

d

5.6 Summary

 A tree is a set of one or more nodes T such that there is a specially designated node called 
root, and remaining nodes are partitioned into disjoint set of nodes. 

 The degree of a node of a tree is the number of sub-trees having this node as a root, or it is a 
number of decedents of a node. If degree is zero then it is called terminal node or leaf node 
of a tree.

 Degree of a tree is defi ned as the maximum of degree of the nodes of the tree. 

 A tree non of whose nodes has more than N children is known as N-ary tree. In other 
words, an N-ary tree is a tree whose degree is at the most N. Binary tree is a special type of 
tree having degree 2. 

 A binary tree of depth k can have maximum 2k-1 number of nodes. If a binary tree has 
fewer than 2k-1 nodes, it is not a full binary tree.

5.7 Keywords

Degree of a tree: The highest degree of a node appearing in the tree.

Inorder: A tree traversing method in which the tree is traversed in the order of left-tree, node and 
then right-tree.

Level of a node: The number of nodes that must be traversed to reach the node from the root.

Node: A data structure that holds information and links to other nodes.

Postorder: A tree traversing method in which the tree is traversed in the order of left-tree, right-
tree and then node. 

Preorder: A tree traversing method in which the tree is traversed in the order of node, left-tree 
and then right-tree.

Root node: The node in a tree which does not have a parent node.

Tree: A two-dimensional data structure comprising of nodes where one node is the root and rest 
of the nodes form two disjoint sets each of which is a tree.
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5.8 Self Assessment

In the context of the fi gure given below give the answers of self assessment.

A

B C D

G H I E F

1. What is the degree of node E 

(a) 3 (b) 2

(c) 1 (d) 0

2. What is the degree of node C

(a) 4 (b) 2

(c) 1 (d) 3

3. What is the level of node A

(a) 1 (b) 0

(c) 3 (d) 4

4. What is the level of node H

(a) 2 (b) 3

(c) 4 (d) 0

Fill in the blanks:

5. To delete a node from a binary search tree the method to be used depends on ......................

6. The order LDR is called ............................., the order LRD is called ...................... and the 
order DLR is called ....................................

7. Binary tree is a special type of tree having degree ..............................

8. A degree three tree is called a ................................ tree.

9. A node with degree zero is called a ............................... node.

State the following statements are true or false:

10. A binary tree of depth k can have maximum 2k-1 number of nodes.

11. For a binary tree, maximum number of nodes at level i is 2*i-1.

12. A full binary tree is a binary of depth k having 2k − 1 nodes. If it has < 2k − 1, it is not a full 
binary tree.

5.9 Review Questions

1. Give the array representation of a complete binary tree with depth k = 3, having the number 
of nodes n = 7.
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2. How many binary trees are possible with three nodes?

3. Construct a binary tree whose in-order and pre-order traversal is given below.

 In-order: 5,1,3,11,6,8,4,2,7

 Pre-order: 6,1,5,11,3,4,8,7,2

4. What do you mean by binary tree? Also explain the various properties of binary tree.

5. Consider the tree given below:

(a) Find the degree of each mode of the tree.

(b) The degree of the tree.

(c) The level of each nodes of the tree.

50

35

3024

12 18 22 37 39 43

27 40 45

49

6. Determine the order in which the vertices of the binary tree given in question No. 1 will be 
visited under:

(a) Inorder

(b) Preorder

(c) Postorder

7. Write a C program to delete all the leaf nodes of a binary tree.

8. Write a method and the corresponding recursive function to count the leaves (i.e., the 
nodes with both subtrees empty) of a linked binary tree.

9. Write a method and the corresponding recursive function to insert an Entry, passed as a 
parameter, into a linked binary tree. If the root is empty, the new entry should be inserted 
into the root, otherwise it should be inserted into the shorter of the two subtrees of the root 
(or into the left subtree if both subtrees have the same height).

10. Write a function to perform a double-order traversal of a binary tree, meaning that at each 
node of the tree, the function fi rst visits the node, then traverses its left subtree (in double 
order), then visits the node again, then traverses its right subtree (in double order).

Answers: Self Assessment

1. (d) 2. (b)

3. (a) 4. (b)

5. number of children for the node to be deleted
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6. inorder, postorder, preorder 7. 2

8. ternary 9. terminal/leaf

10. True 11. True

12. True

5.10 Further Readings

Books  Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice 
Hall, 1988.

 Data Structures and Algorithms; Shi-Kuo Chang; World Scientifi c.

 Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann, 
Springer.

 Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi

 Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition. 
Addison-Wesley publishing

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c

 Sorenson and Tremblay: An Introduction to Data Structure with Algorithms

 Thomas H. Cormen, Charles E, Leiserson & Ronald L. Rivest: Introduction to 
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links  www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com
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Unit 6: Binary Search Tree and AVL Trees
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Objectives

After studying this unit, you will be able to:

 Describe binary search tree

 Explain deletion of node with two child and with single child

 Describe applications of BST

Introduction

Consider the problem of searching a linked list for some target key. There is no way to move 
through the list other than one node at a time, and hence searching through the list must always 
reduce to a sequential search. As you know, sequential search is usually very slow in comparison 
with binary search. Hence, assuming we can keep the keys in order, searching becomes much 
faster if we use a contiguous list and binary search. Suppose we also frequently need to make 
changes in the list, inserting new entries or deleting old entries.

6.1 Binary Search Tree

A binary search tree is a binary tree which may be empty, and every node contains an identifi er 
and

1. Identifi er of any node in the left sub-tree is less than the identifi er of the root 

2. Identifi er of any node in the right sub-tree is greater than the identifi er of the root and the 
left sub-tree as well as right sub-tree both are binary search trees.
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A tree shown below in Figure 6.1 is a binary search tree:

50

30 60

25 40 70

35 65

Figure 6.1: A Binary Search Tree

A binary search tree is basically a binary tree, and therefore it can be traversed is inorder, preorder, 
and postorder. If we traverse a binary search tree in inorder and print the identifi ers contained in 
the nodes of the tree, we get a sorted list of identifi ers in the ascending order.

A binary search tree is an important search structure. For example, consider the problem of 
searching a list. If a list is an ordered then searching becomes faster, if we use a contiguous 
list and binary search, but if we need to make changes in the list like inserting new entries and 
deleting old entries. Then it is much slower to use a contiguous list because insertion and deletion 
in a contiguous list requires moving many of the entries every time. So we may think of using 
a linked list because it permits insertions and deletions to be carried out by adjusting only few 
pointers, but in a linked list there is no way to move through the list other than one node at a 
time hence permitting only sequential access. Binary trees provide an excellent solution to this 
problem. By making the entries of an ordered list into the nodes of a binary search tree, we fi nd 
that we can search for a key in O(n log n) steps.

Creating a Binary Search Tree

We assume that every node a binary search tree is capable of holding an integer data item and 
the links which can be made pointing to the root of the left and the right sub-tree respectively. 
Therefore the structure of the node can be defi ned using the following declaration:

struct tnode

{

 int data;

 tnode *lchid;

 tnode *rchild;

}

To create a binary search tree we use a procedure named insert which creates a new node with 
the data value supplied as a parameter to it, and inserts into an already existing tree whose root 
pointer is also passed as a parameter. The procedure accomplishes this by checking whether the 
tree whose root pointer is passed as a parameter is empty. If it is empty then the newly created 
node is inserted as a root node. If it is not empty then it copies the root pointer into a variable 
temp1, it then stores value of temp1 in another variable temp2, compares the data value of the 
node pointed to by temp1 with the data value supplied as a parameter, if the data value supplied 
as a parameter is smaller than the data value of the node pointed to by temp1 then it copies the 
left link of the node pointed by temp1 into temp1 (goes to the left), otherwise it copies the right 
link of the node pointed by temp1 into temp1(goes to the right). It repeats this process till temp1 
becomes nil.



Advanced Data Structure and Algorithms

Notes

118 LOVELY PROFESSIONAL UNIVERSITY

When temp1 becomes nil, the new node is inserted as a left child of the node pointed to by temp2 
if data value of the node pointed to by temp2 is greater than data value supplied as parameter. 
Otherwise the new node is inserted as a right child of node pointed to by temp2. Therefore the 
insert procedure is
void insert(tnode *p, int val)

{

 tnode *temp1, *temp2;

 if (p == NULL)

 {

  p = new(tnode);

  p->data = val;

  p->1child = NULL; 

  p->rchild = NULL;

 }

 else 

 {

  temp1 = p;

  while(temp1 != NULL) 

  {

   temp2 = temp1;

   if(temp1->data > val) 

   temp1 = temp1->1eft;

   else

   temp1 = temp1->right;

  }

  if(temp2->data > val) 

  {

   temp2->left = new(tnode);

   temp2 = temp2->left;

   temp2->data = val;

   temp2->left = NULL;

   temp2->right= NULL;

  } 

  else 

  {

   temp2->right = new(tnode);

   temp2 = temp2->right;

   temp2->data = val;

   temp2->left = NULL;

   temp2->right = NULL;

  }

 }

}
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6.2 Counting the Number of Nodes in a Binary Search Tree

Counting the number of nodes in a given binary tree, the tree is required to be traversed 
recursively until a leaf node is encountered. When a leaf node is encountered, a count of 1 is 
returned to its previous activation (which is an activation for its parent), which takes the count 
returned from both the children’s activation, adds 1 to it, and returns this value to the activation 
of its parent. This way, when the activation for the root of the tree returns, it returns the count of 
the total number of the nodes in the tree.

Lab Exercise Program: A complete C program to count the number of nodes is as follows:

#include <stdio.h>

#include <stdlib.h>

struct tnode

{

   int data;

   struct tnode *lchild, *rchild;

};

int count(struct tnode *p)

    {

               if( p == NULL)

      return(0);

              else

      if( p->lchild == NULL && p->rchild == NULL)

                return(1);

      else

                return(1 + (count(p->lchild) + count(p->rchild)));

    }

struct tnode *insert(struct tnode *p,int val)

   {

      struct tnode *temp1,*temp2;

      if(p == NULL)

      {

         p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the 
new node as root node*/

            if(p == NULL)

              {

          printf(“Cannot allocate\n”);

          exit(0);

               }

           p->data = val;

           p->lchild=p->rchild=NULL;
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      }

     else

     {

      temp1 = p;

      /* traverse the tree to get a pointer to that node whose child will 
be the newly created node*/

     while(temp1 != NULL)

     {

       temp2 = temp1;

       if( temp1 ->data > val)

            temp1 = temp1->lchild;

       else

            temp1 = temp1->rchild;

     }

     if( temp2->data > val)

     {

        temp2->lchild = (struct tnode*)malloc(sizeof(struct tnode)); /

*inserts the newly created node

      as left child*/

         temp2 = temp2->lchild;

         if(temp2 == NULL)

              {

         printf(“Cannot allocate\n”);

         exit(0);

             }

        temp2->data = val;

        temp2->lchild=temp2->rchild = NULL;

   }

   else

   {

      temp2->rchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts 
the newly created node

  as left child*/

     temp2 = temp2->rchild;

     if(temp2 == NULL)

          {

     printf(“Cannot allocate\n”);

     exit(0);

         }

     temp2->data = val;

     temp2->lchild=temp2->rchild = NULL;
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  }

  }

  return(p);

  }

  /* a function to binary tree in inorder */

  void inorder(struct tnode *p)

      {

         if(p != NULL)

           {

             inorder(p->lchild);

            printf(“%d\t”,p->data);

           inorder(p->rchild);

           }

      }

void main()

{

   struct tnode *root = NULL;

   int n,x;

   printf(“Enter the number of nodes\n”);

   scanf(“%d”,&n);

   while( n --- > 0)

      {

         printf(“Enter the data value\n”);

         scanf(“%d”,&x);

         root = insert(root,x);

     }

      inorder(root);

     printf(“\nThe number of nodes in tree are :%d\n”,count(root));

}

Input

1. The number of nodes the created tree should have = 5

2. The data values of the nodes in the tree to be created are: 10, 20, 5, 9, 8

Output

1. 5 8 9 10 20

2. The number of nodes in the tree is 5

6.3 Searching for a Target Key in a Binary Search Tree

Searching for the key in the given binary search tree, start with the root node and compare the 
key with the data value of the root node. If they match, return the root pointer. If the key is less 
than the data value of the root node, repeat the process by using the left subtree. Otherwise, 
repeat the same process with the right subtree until either a match is found or the subtree under 
consideration becomes an empty tree.
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boolean search(tnode *p, int val)

{

 boolean ans;

 tnode *temp;

 temp = p;

 ans = false;

 while ((temp != NULL) && (!ans))  

 {

  if(temp->data == val)

  ans = true;

  else

   if(temp->data > val)

   temp = temp->left;

  else

   temp = temp->right;

 }

}

6.4 Deletion of a Node from a Binary Search Tree

There is another simple situation: suppose the node we’re deleting has only one subtree. In the 
following example, ‘3’ has only 1 subtree.

6

3 9

1 8 11

0 2

L

To delete a node with 1 subtree, we just `link past’ the node, i.e. connect the parent of the node 
directly to the node’s only subtree. This always works, whether the one subtree is on the left or 
on the right. Deleting `3’ gives us: 

6

9

1 8 11

0 2

L
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which we normally draw:

6

9

8 110 2

L

1

Finally, let us consider the only remaining case: how to delete a node having two subtrees. For 
example, how to delete `6’? We’d like to do this with minimum amount of work and disruption 
to the structure of the tree. 

The standard solution is based on this idea: we leave the node containing `6’ exactly where it is, 
but we get rid of the value 6 and fi nd another value to store in the `6’ node. This value is taken 
from a node below the `6’s node, and it is that node that is actually removed from the tree.

So, here is the plan. Starting with:

6

3 9

1 8 11

0 2

L

Erase 6, but keep its node:

?

3 9

1 8 11

0 2

L

Now, what value can we move into the vacated node and have a binary search tree? Well, here’s 
how to fi gure it out. If we choose value X, then:

1. Everything in the left subtree must be smaller than X. 

2. Everything in the right subtree must be bigger than X. 

Let’s suppose we’re going to get X from the left subtree. (2) is guaranteed because everything in 
the left subtree is smaller than everything in the right subtree. What about (1)? If X is coming from 
the left subtree, (1) says that there is a unique choice for X - we must choose X to be the largest 
value in the left subtree. In our example, 3 is the largest value in the left subtree. So if we put 3 in 
the vacated node and delete it from its current position we will have a BST with 6 deleted. 
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Here it is:

3

9

1 8 11

0 2

L

So our general algorithm is: to delete N, if it has two subtrees, replace the value in N with the 
largest value in its left subtree and then delete the node with the largest value from its left 
subtree.

Note  The largest value in the left subtree will never have two subtrees. Why? Because if 
it’s the largest value it cannot have a right subtree.

Finally, there is nothing special about the left subtree. We could do the same thing with the right 
subtree: just use the smallest value in the right subtree.

To delete a node from a binary search tree the method to be used depends on whether a node to 
be deleted has one child, two children, or has no child.

6.4.1 Deletion of a Node with Two Children

If the node to be deleted has two children; then the value is replaced by the smallest value in 
the right sub tree or the largest key value in the left sub tree; subsequently the empty node is 
recursively deleted. Consider the BST in Figure 6.2.

10

6 12

1195

4 7

8

Figure 6.2 Binary search tree

If the node 6 is to be deleted then fi rst its value is replaced by smallest value in its right subtree 
i.e. by 7. So we will have Figure 6.3.
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10

6 12

1195

4

8

Figure 6.3: Deletion of a Nod having Left and Right Child

Now we need to, delete this empty node shown in Figure 6.3.

Therefore, the fi nal structure would be Figure 6.4.

10

7
12

11

95

4 8

Figure 6.4: Tree alter a Deletion of a Node having Left and Right Child

6.4.2 Deletion of a Node with one Child

Consider the binary search tree shown below in Figure 6.5.

50

60
30

35

15

25

65
52

55

53 57

56 58

Nil

x

y

Figure 6.5: A Binary Tree before Deletion of a Node Pointed to by x
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If we want to delete a node pointed to by x, then we can do it as follows: Let y be a pointer to the 
node which is the root of the node pointed to by x. Make the left child of the node pointed by y 
to be the right child of the node pointed by x, and dispose the node pointed by x as shown below 
in Figure 6.6:

50

60
30

35

15

25

65
52

55

53 57

56 58

Nil

x

y

Figure 6.6: A Binary Tree after Deletion of a Node Pointed to by x

y->lchild = x->rchild;

x->rchild = NULL;

delete(x);

6.4.3 Deletion of a Node with no Child

Consider the binary search tree shown below in Figure 6.7:

50

60
30

65
52

Nil

x

y

Nil

Figure 6.7: A Binary Tree before Deletion of a Node Pointed to by x

Let the left child of the node pointed by y be nil, and dispose node pointed by x as shown in 
Figure 6.8.
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50

60
30

65
52

Nil

x

y

Nil Nil

Figure 6.8: A Binary Tree after Deletion of a Node Pointed to by x

Search for a key in a BST

To search the binary tree for a particular node, we use procedures similar to those we used when 
adding to it. Beginning at the root node, the current node and the entered key are compared. If 
the values are equal success is output. If the entered value is less than the value in the node, then 
it must be in the left-child sub tree. If there is no left-child sub tree, the value is not in the tree i.e. 
a failure is reported. If there is a left-child subtree, then it is examined the same way. Similarly, 
it the entered value is greater than the value in the current node, the right child is. searched. 
Figure 18 shows the path through the tree followed in the search for the key H.

E

B

A D

C

F

G

I

H J

Figure 6.9: Search for a Key In BST

find-key (key value, node) 

{ 

if (two values are same)

{

print value stored in node; 

return (SUCCESS);

} 

else if (key value value stored in current node) 

{

if (left child exists) 

{ 

find-key (key-value, left hand); 

} 
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else 

{ 

there is no left subtree.,

return (string not found) }

} 

else if (key-value value stored in current node) 

{

if (right child exists)

{

find-key (key-value, rot child);

} 

else 

{

there is no right subtree; 

return (string not found)

}

}

}

Lab Exercise Program: C program to delete a node, where the data value of the node to be 
deleted is known, is as follows:

#include <stdio.h>

#include <stdlib.h>

struct tnode

{

  int data;

  struct tnode *lchild, *rchild;

};

/* A function to get a pointer to the node whose data value is given

    as well as the pointer to its root */

struct tnode *getptr(struct tnode *p, int key, struct tnode **y)

{

  struct tnode *temp;

     if( p == NULL)

       return(NULL);

     temp = p;

     *y = NULL;

      while( temp != NULL)

       {

         if(temp->data == key)

             return(temp);
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         else

     {

             *y = temp; /*store this pointer as root */

     if(temp->data > key)

        temp = temp->lchild;

     else

        temp = temp->rchild;

        }

       }

      return(NULL);

}

/* A function to delete the node whose data value is given */

struct tnode *delete(struct tnode *p,int val)

  {

    struct tnode *x, *y, *temp;

    x = getptr(p,val,&y);

    if( x == NULL)

    {

      printf(“The node does not exists\n”);

      return(p);

    }

    else

    {

    /* this code is for deleting root node*/

    if( x == p)

      {

        temp = x->lchild;

        y = x->rchild;

        p = temp;

        while(temp->rchild != NULL)

      temp = temp->rchild;

      temp->rchild=y;

      free(x);

      return(p);

    }

/* this code is for deleting node having both children */

  if( x->lchild != NULL && x->rchild != NULL)

     {

       if(y->lchild == x)

       {
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temp = x->lchild;

y->lchild = x->lchild;

while(temp->rchild != NULL)

    temp = temp->rchild;

temp->rchild=x->rchild;

x->lchild=NULL;

x->rchild=NULL;

        }

        else

        {

          temp = x->rchild;

          y->rchild = x->rchild;

           while(temp->lchild != NULL)

      temp = temp->lchild;

    temp->lchild=x->lchild;

x->lchild=NULL;

 x->rchild=NULL;

         }

free(x);

   return(p);

  }

   /* this code is for deleting a node with on child*/

   if(x->lchild == NULL && x->rchild !== NULL)

     {

       if(y->lchild == x)

  y->lchild = x->rchild;

          else

            y->rchild = x->rchild;

          x->rchild; = NULL;

          free(x);

          return(p);

       }

       if( x->lchild != NULL && x->rchild == NULL)

         {

           if(y->lchild == x)

              y->lchild = x->lchild ;

           else

              y->rchild = x->lchild;

           x->lchild = NULL;

           free(x);
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           return(p);

         }

       /* this code is for deleting a node with no child*/

       if(x->lchild == NULL && x->rchild == NULL)

        {

           if(y->lchild == x)

              y->lchild = NULL ;

           else

              y->rchild = NULL;

           free(x);

           return(p);

        }

    }

}

/*an iterative function to print the binary tree in inorder*/

void inorder1(struct tnode *p)

{

 struct tnode *stack[100];

 int top;

 top = −1;

if(p != NULL)

 {

    top++;

    stack[top] = p;

    p = p->lchild;

    while(top >= 0)

       {

          while ( p!= NULL)/* push the left child onto stack*/

           {

                       top++;

                 stack[top] =p;

                 p = p->lchild;

 }

      p = stack[top];

      top-;

      printf(“%d\t”,p->data);

      p = p->rchild;

      if ( p != NULL) /* push right child*/

         {

             top++;

         stack[top] = p;

             p = p->lchild;
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      }

   }

     }

   }

   /* A function to insert a new node in binary search tree to get a tree 
created*/

  struct tnode *insert(struct tnode *p,int val)

  {

     struct tnode *temp1,*temp2;

     if(p == NULL)

     {

        p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the new 
node as root node*/

        if(p == NULL)

          {

     printf(“Cannot allocate\n”);

     exit(0);

          }

       p->data = val;

       p->lchild=p->rchild=NULL;

  }

  else

  {

    temp1 = p;

   /* traverse the tree to get a pointer to that node whose child will be 
the newly created node*/

  while(temp1 != NULL)

  {

    temp2 = temp1;

    if( temp1 ->data > val)

         temp1 = temp1->lchild;

    else

         temp1 = temp1->rchild;

  }

  if( temp2->data > val)

  {

     temp2->lchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts 
the newly created node

  as left child*/

     temp2 = temp2->lchild;

     if(temp2 == NULL)

          {

     printf(“Cannot allocate\n”);
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     exit(0);

         }

    temp2->data = val;

    temp2->lchild=temp2->rchild = NULL;

  }

  else

  {

      temp2->rchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts 
the newly created node

  as left child*/

     temp2 = temp2->rchild;

     if(temp2 == NULL)

          {

     printf(“Cannot allocate\n”);

     exit(0);

         }

    temp2->data = val;

    temp2->lchild=temp2->rchild = NULL;

  }

  }

  return(p);

  }

  void main()

  {

    struct tnode *root = NULL;

    int n,x;

    printf(“Enter the number of nodes in the tree\n”);

    scanf(“%d”,&n);

    while( n - > 0)

        {

          printf(“Enter the data value\n”);

          scanf(“%d”,&x);

          root = insert(root,x);

        }

       printf(“The created tree is :\n”);

       inorder1(root);

       printf(“\n Enter the value of the node to be deleted\n”);

       scanf(“%d”,&n);

       root=delete(root,n);

       printf(“The tree after deletion is \n”);

       inorder1(root);

}
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Explanation

This program fi rst creates a binary tree with a specifi ed number of nodes with their 
respective data values. It then takes the data value of the node to be deleted, obtains a 
pointer to the node containing that data value, and obtains another pointer to the root of 
the node to be deleted. Depending on whether the node to be deleted is a root node, a node 
with two children a node with only one child, or a node with no children, it carries out the 
manipulations as discussed in the section on deleting a node. After deleting the specifi ed 
node, it returns the pointer to the root of the tree.

Input:

1. The number of nodes that the tree to be created should have

2. The data values of each node in the tree to be created

3. The data value in the node to be deleted

Output:

1. The data values of the nodes in the tree in inorder before deletion

2. The data values of the nodes in the tree in inorder after deletion

Question

Write a C program to count the number of non-leaf nodes of a binary tree.

6.5 Application of a Binary Search Tree

1. A prominent data structure used in many systems programming applications for 
representing and managing dynamic sets. 

2. Average case complexity of Search, Insert, and Delete Operations is O(log n), where n is the 
number of nodes in the tree.

One of the applications of a binary search tree is the implementation of a dynamic dictionary. 
A dictionary is an ordered list which is required to be searched frequently, and is also required 
to be updated (insertions and deletions) frequently. Hence can be very well implemented using 
a binary search tree, by making the entries of dictionary into the nodes of binary search tree. 
A more effi cient implementation of a dynamic dictionary involves considering a key to be a 
sequence of characters, and instead of searching by comparison of entire keys, we use these 
characters to determine a multi-way branch at each step, this will allow us to make a 26-way 
branching according the fi rst letter, followed by another branch according to the second letter 
and so on.

A program to create a binary search tree, given a list of identifi ers is given below:

char key[MAXLEN];

struct tnode

{

 key name;

 tnode *lchild;

 tnode *rchild;

}

void btree() 

{
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 tnode *root; 

 key item; 

 int n;

 root = NULL;

printf(“Number of data values:”);

 scanf(“%d”, &n);

 while( n > 0)  

 {

  printf(“Enter the data value”); 

  scanf(“%s”, item);

  insert(root, item);

  n = n-1;

 }

 printtree(root); 

}

Task  Discuss how will you delete a node with one child.

6.6 AVL Tree

An AVL tree is another balanced binary search tree. It takes its name from the initials of its 
inventors – Adelson, Velskii and Landis. An AVL tree has the following properties:

1. The sub-trees of every node differ in height by at most one level.

2. Every sub-tree is an AVL tree.

h 
- 2

h 
- 1

h

Here, the height of the tree is h. Height of one subtree is h–1 while that of another subtree of the 
same node is h–2, differing from each other by just 1. Therefore, it is an AVL tree.

Inserting a Node into AVL Tree

Inserting a node is somewhat complex and involves a number of cases. Implementations of AVL 
tree insertion rely on adding an extra attribute – the balance factor – to each node. This factor 
indicates whether the tree is left-heavy (the height of the left sub-tree is 1 greater than the right 
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sub-tree), balanced (both sub-trees are the same height) or right-heavy (the height of the right 
sub-tree is 1 greater than the left sub-tree). If the balance would be destroyed by an insertion, a 
rotation is performed to correct the balance.

Let us consider the following AVL tree in which a node has been inserted in the left subtree of 
node 1.

1

2

This insertion causes its height to become 2 greater than node-2’s right sub-tree. A right-rotation 
is performed to correct the imbalance, as shown below.

1

1

AVL Rotation: A tree rotation can be an intimidating concept at fi rst.  You end up in a situation 
where you’re juggling nodes, and these nodes have trees attached to them, and it can all become 
confusing very fast.  I fi nd it helps to block out what’s going on with any of the subtrees which 
are attached to the nodes you’re fumbling with, but that can be hard.

Left Rotation (LL)

Imagine we have this situation:

a

 \

  b

   \

    c
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To fi x this, we must perform a left rotation, rooted at A.  This is done in the following steps:

b becomes the new root.

a takes ownership of b’s left child as its right child, or in this case, null.

b takes ownership of a as its left child.

The tree now looks like this:

  b

 / \

a   c

Right Rotation (RR)

A right rotation is a mirror of the left rotation operation described above.  Imagine we have this 
situation:

    c

   /

  b

 /

a

To fi x this, we will perform a single right rotation, rooted at C.  This is done in the following 
steps:

b becomes the new root.

c takes ownership of b’s right child, as its left child. In this case, that value is null.

b takes ownership of c, as it’s right child.

The resulting tree:

  b

 / \

a   c

Left-Right Rotation (LR) or “Double left”

Sometimes a single left rotation is not suffi cient to balance an unbalanced tree.  Take this 
situation:

a

 \

  c

Perfect. It’s balanced.  Let’s insert ‘b’.

a
 \
  c
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 / 

b

Our initial reaction here is to do a single left rotation.  Let’s try that.

  c

 /

a

 \

  b

Our left rotation has completed, and we’re stuck in the same situation. If we were to do a single 
right rotation in this situation, we would be right back where we started.  What’s causing this?  
The answer is that this is a result of the right subtree having a negative balance. In other words, 
because the right subtree was left heavy, our rotation was not suffi cient.  What can we do?  The 
answer is to perform a right rotation on the right subtree. Read that again. We will perform a 
right rotation on the right subtree.  We are not rotating on our current root. We are rotating on 
our right child.  Think of our right subtree, isolated from our main tree, and perform a right 
rotation on it:

Before:

  c

 /

b

After:

b

 \

  c

After performing a rotation on our right subtree, we have prepared our root to be rotated left.  
Here is our tree now:

a

 \

  b

   \

    c

Looks like we’re ready for a left rotation.  Let’s do that:

  b

 / \

a   c

Voila. Problem solved.
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Right-Left Rotiation (RL) or “Double right”

A double right rotation, or right-left rotation, or simply RL, is a rotation that must be performed 
when attempting to balance a tree which has a left subtree, that is right heavy.  This is a mirror 
operation of what was illustrated in the section on Left-Right Rotations, or double left rotations. 
Let’s look at an example of a situation where we need to perform a Right-Left rotation.

  c

 /

a

 \

  b

In this situation, we have a tree that is unbalanced.  The left subtree has a height of 2, and the right 
subtree has a height of 0. This makes the balance factor of our root node, c, equal to -2.  What do 
we do? Some kind of right rotation is clearly necessary, but a single right rotation will not solve 
our problem. Let’s try it:

a

 \

  c

 /

b

Looks like that didn’t work.  Now we have a tree that has a balance of 2. It would appear that we 
did not accomplish much.  That is true. What do we do?  Well, let’s go back to the original tree, 
before we did our pointless right rotation:

  c

 /

a

 \

  b

The reason our right rotation did not work, is because the left subtree, or ‘a’, has a positive 
balance factor, and is thus right heavy.  Performing a right rotation on a tree that has a left subtree 
that is right heavy will result in the problem we just witnessed.  What do we do?  The answer is to 
make our left subtree left-heavy.  We do this by performing a left rotation our left subtree.  Doing 
so leaves us with this situation:

    c

   /

  b

 /

a
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This is a tree which can now be balanced using a single right rotation.  We can now perform our 
right rotation rooted at C. The result:

b

/ \

a   c

Balance at last.

AVL Operation

Insertion into AVL Trees

To implement AVL trees, you need to maintain the height of each node. You insert into an AVL 
tree by performing a standard binary tree insertion. When you’re done, you check each node 
on the path from the new node to the root. If that node’s height hasn’t changed because of the 
insertion, then you are done. If the node’s height has changed, but it does not violate the balance 
property, then you continue checking the next node in the path. If the node’s height has changed 
and it now violates the balance property, then you need to perform one or two rotations to fi x the 
problem, and then you are done. 

Let’s try some examples. Suppose I have the following AVL tree -- I now annotate the nodes with 
their heights: 

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Fred

Luther
0

0

0 1

1

If I insert Ahmad, take a look at the resulting tree:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Fred

Luther
0

0

1 1

1

Ahmed
0

The new node Ahmad has a height of zero, and when I travel the path up to the root, I change 
Baby Daisy’s height to one. However, her node is not imbalanced, since the height of her subtrees 
are 0 and -1. Moving on, Binky’s height is unchanged, so we can stop – the resulting tree is indeed 
an AVL tree.
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However, suppose I now try to insert Waluigi. I get the following tree:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Fred

Luther
0

0

1 1

1

Ahmed
0

Waluigi
0

Traveling from the new node to the root, I see that Fred violates the balance condition. It’s left 
child has a height of -1 and its right child has a height of 1. I have to rebalance the tree. 

Rebalancing

When I rebalance, I have a node whose height is h, that has two children of differing heights. One 
child has a height of h-1 and the other has a height of h-3. The one whose height is h-1 contains 
the new node. We have to consider two cases, which I’ll name zig-zig and zig-zag. You’ll see the 
reasons for the names pretty clearly. Here is the Zig-Zig case: 

B
h

D
h-1

F
h-2

A

C

E G

h-3 or h-4 h-3 or h-4

h-3

h-2

Either F is the 
newly added
node, or it is a 
node E or G.

In this case, the path from the imbalanced node (B) to the newly added node starts with two right 
children. To rebalance the tree, you perform a rotation about node D:

D
h-1

FB
h-2

E G

h-3 or h-4 h-3 or h-4

h-2

A C

h-3h-3
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Node D is the new root of the subtree. Before the insertion, node B’s height was h-1, so the height 
of the subtree has not changed because of the rotation. Thus, insertion is over, and you are left 
with a valid AVL tree.

If the path from the imbalanced node to the newly added node starts with two left children, then 
you have another Zig-Zig case (the mirror image). You treat it in the same way: rotate about the 
imbalanced node’s left child.

Before going on, take a look at our example above where Fred was imbalanced. That is a Zig-Zig 
case, so we can fi x it by rotating about Luther:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Fred

Luther
1

0

1 1

2

Ahmed
0

Waluigi
0

Rotate about Luther

Eunice
3

2

Binky

Daisy Fred
Baby
Daisy

Calista

Luther

0

0

1 1

1

Ahmed
0

Waluigi

The other rebalancing case is the Zig-Zag case, pictured below:

B
h

F
h-1

D
h-2

A

C E

h-3 or h-4 h-3 or h-4

h-3 Either D is the 
newly added
node, or it is a 
node in C or E.

G

h-3

To fi x this, you perform two rotations. You rotate about node D, and then you rotate about node 
D again. This is called a double rotation about node D. Here are the two rotations:

B
h

D
h-1

A

C

G

h-3 or h-4

h-3 or h-4

h-3

h-3

E

F
h-2

First rotation about D.
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D

F
h-2

B

C

h-3 or h-4

h-2

A G

h-3 or h-4

E

Second rotation about D.

h-1

h-3

Once again, the height of the subtree before deletion was h-1, so when you’re done with the 
double rotation, you are done – your tree is balanced. Again, the mirror image case is treated in 
the exact same manner.

Here’s an example. Suppose our tree is the following, rather large tree:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Luther

Fred
0

0

1 1

1

Ahmed
0

Dontonio

Waluigi

0

0

And suppose we insert Boo into the tree:

Eunice
4

2

Binky

DaisyBaby
Daisy

Calista

Luther

Fred
0

0

1 2

1

Ahmed
0

Dontonio

Waluigi

0

0

Boo
0

Checking for balancing, we have to increment every height up to the root, and the root node 
Eunice is imbalanced. Since the path to the new node starts with a left child and a right child, 
this is a Zig-Zag case, and we need to perform a double rotation about the grandchild of the 
imbalanced node -- Daisy. Below is the result. We have a nicely balanced AVL tree!
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Daisy
3

2

Binky

CalistaBaby
Daisy

Eunice

Fred
0

1 1

2

Ahmed
0

Waluigi

0

Boo

0
Luther

Dontonio 1

0

Deletion

When you delete a node, there are three things that can happen to the parent:

1. Its height is decremented by one. An example of this is if Boo is deleted from the above 
tree – Baby Daisy’s height is decremented by one. 

2. Its height doesn’t change and it stays balanced. An example of this is if Fred is deleted -- 
Luther’s height is unchanged and it is balanced.

3. Its height doesn’t change, but it becomes imbalanced. An example of this is if Dontonio is 
deleted – Eunice’s height is unchanged, but she is imbalanced. 

You handle these three cases in different ways: 

1. The parent’s height is decremented by one. When this happens, you check the parent’s 
parent: you keep doing this until you return or you reach the root of the tree. 

2. The parent’s height doesn’t change and it stays balanced. When this happens you may 
return – deletion is over. 

3. The parent’s height doesn’t change, but it becomes imbalanced. When this happens, you 
have to rebalance the subtree rooted at the parent. After rebalancing, the subtree’s height 
may be one smaller than it was originally. If so, you must continue checking the parent’s 
parent.

To rebalance, you need to identify whether you are in a zig-zig situation or a zig-zag situation 
and rebalance accordingly. How do you do this? Look at the following picture:

B

h-1

A

E

h-3 or h-4

h-2 or h-3 h-2 or h-3

C

D

Imbalanced Identification Picture

h-3

h
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The imbalanced node is B. If the height of subtree C is h-3, then the height of E will be h-2 and the 
tree is a Zig-Zig – you can rebalance by rotating about node D. If the height of subtree E is h-3, 
then the height of C is h-2 and the tree is a Zig-Zag – you rebalance by doing a double rotation 
about the root of C. If both C and E have heights of h-2, then you treat it as either a Zig-Zig or a 
Zig-Zag. Both work. For the purposes of your lab, treat this case like a Zig-Zig.

The mirror image works the same way. 

Let’s look at some examples. First, suppose we delete Calista from the following tree:

Binky
2

1
Baby
Daisy

Calista
0

Ahmed
0

You’re left with:   
Binky

2

1
Baby
Daisy

Ahmed
0

You check Calista’s old parent – Binky and although Binky’s height hasn’t changed, the node 
is imbalanced. It’s clearly a Zig-Zig tree, so you rotate about Baby Daisy to yield the following 
tree:

1
Baby
Daisy

Ahmed Binky
0 0

Since Baby Daisy is the root, we’re done.

Let’s try a more complex example -- deleting Eunice from the following tree:

Daisy
3

2

Binky

CalistaBaby
Daisy

Eunice

Fred

1 1

2

Ahmed
0

0

Boo

0
Luther

Dontonio 1

0
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First, Eunice has two children. So, we fi nd the child with the greatest key in Eunice’s left subtree, 
which is Dontonio, delete it, and replace Eunice with Dontonio. We start by deleting Dontonio:

Daisy
3

2

Binky

CalistaBaby
Daisy

Eunice

Fred

1 1

2

Ahmed
0

Boo

0
Luther

1

0

And we start checking at Eunice. It is imbalanced. Looking at it, we see that it’s a Zig-Zag, so we 
have to double-rotate about Fred:

Daisy
3

2

Binky

CalistaBaby
Daisy

Fred

1 1

1

Ahmed
0

Boo

0
Luther

0
Eunice
0

Now, the subtree rooted by Fred is balanced, but the subtree’s height is one less than it used to 
be, so we need to move to it’s parent and check it. Its height is unchanged, and it is balanced, so 
we’re done – as a last step, we replace Eunice with Dontonio:

AVL Tree Algorithms

#ifndef AVL_TREE_H

#define AVL_TREE_H

#include “dsexceptions.h”

#include <iostream>    // For NULL

using namespace std;

// AvlTree class

//

// CONSTRUCTION: with ITEM_NOT_FOUND object used to signal failed finds

//

// ******************PUBLIC OPERATIONS*********************

// void insert( x )       --> Insert x

// void remove( x )       --> Remove x (unimplemented)

// bool contains( x )     --> Return true if x is present

// Comparable findMin( )  --> Return smallest item

// Comparable findMax( )  --> Return largest item

// boolean isEmpty( )     --> Return true if empty; else false

// void makeEmpty( )      --> Remove all items



Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 147

// void printTree( )      --> Print tree in sorted order

// ******************ERRORS********************************

// Throws UnderflowException as warranted

template <typename Comparable>

class AvlTree

{

  public:

    AvlTree( ) : root( NULL )

      { }

    AvlTree( const AvlTree & rhs ) : root( NULL )

    {

        *this = rhs;

    }

    ~AvlTree( )

    {

        makeEmpty( );

    }

    /**

     * Find the smallest item in the tree.

     * Throw UnderflowException if empty.

     */

    const Comparable & findMin( ) const

    {

        if( isEmpty( ) )

            throw UnderflowException( );

        return findMin( root )->element;

    }

    /**

     * Find the largest item in the tree.

     * Throw UnderflowException if empty.

     */

    const Comparable & findMax( ) const

    {

        if( isEmpty( ) )

            throw UnderflowException( );

        return findMax( root )->element;

    }
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    /**

     * Returns true if x is found in the tree.

     */

    bool contains( const Comparable & x, int &comps ) const

      {

 return contains( x, root, comps);

      }

    /**

     * Test if the tree is logically empty.

     * Return true if empty, false otherwise.

     */

    bool isEmpty( ) const

    {

        return root == NULL;

    }

    /**

     * Print the tree contents in sorted order.

     */

    void printTree( ) const

    {

        if( isEmpty( ) )

            cout << “Empty tree” << endl;

        else

            printTree( root );

    }

    /**

     * Make the tree logically empty.

     */

    void makeEmpty( )

    {

        makeEmpty( root );

    }

    /**

     * Insert x into the tree; duplicates are ignored.

     */
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    void insert( const Comparable & x )

    {

        insert( x, root );

    }

     

    /**

     * Remove x from the tree. Nothing is done if x is not found.

     */

    void remove( const Comparable & x )

    {

        cout << “Sorry, remove unimplemented; “ << x <<

                “ still present” << endl;

    }

    /**

     * Deep copy.

     */

    const AvlTree & operator=( const AvlTree & rhs )

    {

        if( this != &rhs )

        {

            makeEmpty( );

            root = clone( rhs.root );

        }

        return *this;

    }

  private:

    struct AvlNode

    {

        Comparable element;

        AvlNode   *left;

        AvlNode   *right;

        int       height;

        AvlNode( const Comparable & theElement, AvlNode *lt,

                                                AvlNode *rt, int h = 0 )

          : element( theElement ), left( lt ), right( rt ), height( h ) { }

    };
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    AvlNode *root;

    /**

     * Internal method to insert into a subtree.

     * x is the item to insert.

     * t is the node that roots the subtree.

     * Set the new root of the subtree.

     */

    void insert( const Comparable & x, AvlNode * & t )

    {

        if( t == NULL )

            t = new AvlNode( x, NULL, NULL );

        else if( x < t->element )

        {

            insert( x, t->left );

            if( height( t->left ) - height( t->right ) == 2 )

                if( x < t->left->element )

                    rotateWithLeftChild( t );

                else

                    doubleWithLeftChild( t );

        }

        else if( t->element < x )

        {

            insert( x, t->right );

            if( height( t->right ) - height( t->left ) == 2 )

                if( t->right->element < x )

                    rotateWithRightChild( t );

                else

                    doubleWithRightChild( t );

        }

        else

            ;  // Duplicate; do nothing

        t->height = max( height( t->left ), height( t->right ) ) + 1;

    }

    /**

     * Internal method to find the smallest item in a subtree t.

     * Return node containing the smallest item.

     */

    AvlNode * findMin( AvlNode *t ) const



Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 151

    {

        if( t == NULL )

            return NULL;

        if( t->left == NULL )

            return t;

        return findMin( t->left );

    }

    /**

     * Internal method to find the largest item in a subtree t.

     * Return node containing the largest item.

     */

    AvlNode * findMax( AvlNode *t ) const

    {

        if( t != NULL )

            while( t->right != NULL )

                t = t->right;

        return t;

    }

    /**

     * Internal method to test if an item is in a subtree.

     * x is item to search for.

     * t is the node that roots the tree.

     */

    bool contains( const Comparable & x, AvlNode *t, int &comps ) const

    {

      if( t == NULL )

 return false;

      else if( x < t->element )

 return contains( x, t->left, ++comps);

      else if( t->element < x )  

 return contains( x, t->right, ++comps);

      else

 return true;    // Match

    }

/****** NONRECURSIVE VERSION*************************

    bool contains( const Comparable & x, AvlNode *t ) const

    {

        while( t != NULL )
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            if( x < t->element )

                t = t->left;

            else if( t->element < x )

                t = t->right;

            else

                return true;    // Match

        return false;   // No match

    }

*****************************************************/

    /**

     * Internal method to make subtree empty.

     */

    void makeEmpty( AvlNode * & t )

    {

        if( t != NULL )

        {

            makeEmpty( t->left );

            makeEmpty( t->right );

            delete t;

        }

        t = NULL;

    }

    /**

     * Internal method to print a subtree rooted at t in sorted order.

     */

    void printTree( AvlNode *t ) const

    {

        if( t != NULL )

        {

            printTree( t->left );

            cout << t->element << endl;

            printTree( t->right );

        }

    }

    /**

     * Internal method to clone subtree.
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     */

    AvlNode * clone( AvlNode *t ) const

    {

        if( t == NULL )

            return NULL;

        else

            return new AvlNode( t->element, clone( t->left ), clone( t->right ), 
t->height );

    }

        // Avl manipulations

    /**

     * Return the height of node t or -1 if NULL.

     */

    int height( AvlNode *t ) const

    {

        return t == NULL ? -1 : t->height;

    }

    int max( int lhs, int rhs ) const

    {

        return lhs > rhs ? lhs : rhs;

    }

    /**

     * Rotate binary tree node with left child.

     * For AVL trees, this is a single rotation for case 1.

     * Update heights, then set new root.

     */

    void rotateWithLeftChild( AvlNode * & k2 )

    {

        AvlNode *k1 = k2->left;

        k2->left = k1->right;

        k1->right = k2;

        k2->height = max( height( k2->left ), height( k2->right ) ) + 1;

        k1->height = max( height( k1->left ), k2->height ) + 1;

        k2 = k1;

    }

    /**

     * Rotate binary tree node with right child.

     * For AVL trees, this is a single rotation for case 4.
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     * Update heights, then set new root.

     */

    void rotateWithRightChild( AvlNode * & k1 )

    {

        AvlNode *k2 = k1->right;

        k1->right = k2->left;

        k2->left = k1;

        k1->height = max( height( k1->left ), height( k1->right ) ) + 1;

        k2->height = max( height( k2->right ), k1->height ) + 1;

        k1 = k2;

    }

    /**

     * Double rotate binary tree node: first left child.

     * with its right child; then node k3 with new left child.

     * For AVL trees, this is a double rotation for case 2.

     * Update heights, then set new root.

     */

    void doubleWithLeftChild( AvlNode * & k3 )

    {

        rotateWithRightChild( k3->left );

        rotateWithLeftChild( k3 );

    }

    /**

     * Double rotate binary tree node: first right child.

     * with its left child; then node k1 with new right child.

     * For AVL trees, this is a double rotation for case 3.

     * Update heights, then set new root.

     */

    void doubleWithRightChild( AvlNode * & k1 )

    {

        rotateWithLeftChild( k1->right );

        rotateWithRightChild( k1 );

    }

};

#endif
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Applications of AVL Trees

AVL trees are applied in the following situations:

1. There are few insertion and deletion operations

2. Short search time is needed

3. Input data is sorted or nearly sorted

AVL tree structures can be used in situations which require fast searching. But, the large cost of 
rebalancing may limit the usefulness.

Consider the following:

1. A classic problem in computer science is how to store information dynamically so as to 
allow for quick look up. This searching problem arises often in dictionaries, telephone 
directory, symbol tables for compilers and while storing business records etc. The records 
are stored in a balanced binary tree, based on the keys (alphabetical or numerical) order. 
The balanced nature of the tree limits its height to O (log n), where n is the number of 
inserted records.

2. AVL trees are very fast on searches and replacements. But, have a moderately high cost 
for addition and deletion. If application does a lot more searches and replacements than 
it does addition and deletions, the balanced (AVL) binary tree is a good choice for a data 
structure.

3. AVL tree also has applications in fi le systems.

6.7 Summary

 Binary trees provide an excellent solution to this problem. By making the entries of an 
ordered list into the nodes of a binary tree, we shall fi nd that we can search for a target key 
in O(log n) steps, just as with binary search, and we shall obtain algorithms for inserting 
and deleting entries also in time O(log n)

 When we studied binary search, we drew comparison trees showing the progress of binary 
search by moving either left (if the target key is smaller than the one in the current node of 
the tree) or right (if the target key is larger).

 We can regard binary search trees as a new abstract data type with its own defi nition and 
its own methods;

 Since binary search trees are special kinds of binary trees, we may consider their methods 
as special kinds of binary tree methods;

 Since the entries in binary search trees contain keys, and since they are applied for 
information retrieval in the same way as ordered lists, we may study binary search trees as 
a new implementation of the abstract data type ordered list.

6.8 Keywords

Binary Search Tree: A binary search tree is a binary tree which may be empty, and every node 
contains an identifi er.

Searching: Searching for the key in the given binary search tree, start with the root node and 
compare the key with the data value of the root node.
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6.9 Self Assessment

State whether the following statements are true or false:

1. A binary search tree is not a binary tree which may be full, and every node contains an 
identifi er.

2. A dictionary is an ordered list which is required to be searched frequently, and is also 
required to be updated frequently.

3. AVL Tree invented by Adelson, Velskii and Landis.

4. Implementations of AVL tree insertion rely on deleting an extra attribute – the balance 
factor – to each node.

5. Identifi er of any node in the right sub-tree is greater than the identifi er of the root and the 
left sub-tree as well as right sub-tree both are binary search trees.

Fill in the blanks:

6. A binary search tree is basically a binary tree, and therefore it can be traversed is inorder, 
preorder, and .................................

7. To create a .................................. we use a procedure named insert which creates a new node 
with the data value supplied as a parameter to it, and inserts into an already existing tree 
whose root pointer is also passed as a parameter.

8. To ................................... from a binary search tree the method to be used depends on 
whether a node to be deleted has one child, two children, or has no child.

9. To search the binary tree for a particular node, we use procedures similar to those we used 
when ....................................  to it.

10. A more effi cient implementation of a dynamic dictionary involves considering a key to be 
a sequence of .....................................

6.10 Review Questions

1. Describe binary search tree. Also explain how will you create binary search tree.

2. How will counting the number of nodes in a binary search tree? Explain 

3. Describe deletion of a node with one child.

Question 4-6 are based on the following binary search tree. Answer each question independently, 
using the original tree as the basis for each part.
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4. Show the keys with which each of the following targets will be compared in a search of the 
preceding binary search tree.

a. c b. s c. k

d. a e. d f. m

g. f h. b i. t 

5. Insert each of the following keys into the preceding binary search tree. Show the comparisons 
of keys that will be made in each case. Do each part independently, inserting the key into 
the original tree.

a. m b. f c. b

d. t e. c f. s

6. Delete each of the following keys from the preceding binary search tree, using the algorithm 
developed in this section. Do each part independently, deleting the key from the original 
tree.

a. a b. p c. n

d. s e. e f. k

7. Draw the binary search trees that function insert will construct for the list of 14 names 
presented in each of the following orders and inserted into a previously empty binary 
search tree.

a. Jan Guy Jon Ann Jim Eva Amy Tim Ron Kim Tom Roy Kay Dot

b. Amy Tom Tim Ann Roy Dot Eva Ron Kim Kay Guy Jon Jan Jim

c. Jan Jon Tim Ron Guy Ann Jim Tom Amy Eva Roy Kim Dot Kay

d. Jon Roy Tom Eva Tim Kim Ann Ron Jan Amy Dot Guy Jim Kay

8. Consider building two binary search trees containing the integer keys 1 to 63, inclusive, 
received in the orders

a. All the odd integers in order (1, 3, 5, : : : , 63), then 32, 16, 48, then the remaining even 
integers in order (2, 4, 6, : : : ).

b. 32, 16, 48, then all the odd integers in order (1, 3, 5, : : : , 63), then the remaining even 
integers in order (2, 4, 6, : : : ).

 Which of these trees will be quicker to build? Explain why. [Try to answer this question 
without actually drawing the trees.]

9. Prepare a package containing the declarations for a binary search tree and the functions 
developed in this section. The package should be suitable for inclusion in any application 
program.

10. In each of the following, insert the keys, in the order shown, to build them into an AVL 
tree.

a. A, Z, B, Y, C, X.

b. A, B, C, D, E, F.

c. M, T, E, A, Z, G, P.

d. A, Z, B, Y, C, X, D, W, E, V, F.

e. A, B, C, D, E, F, G, H, I, J, K, L.

f. A, V, L, T, R, E, I, S, O, K.
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Answers: Self Assessment

1. False  2. True

3. True  4. False

5. True 6. postorder

7. binary search tree 8. delete a node

9. adding 10. characters
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Objectives

After studying this unit, you will be able to:

 Describe splay trees 

 Explain splay tree operation

Introduction

Splay trees are binary search trees that achieve our goals by being self-adjusting in a quite 
remarkable way: Every time we access a node of the tree, whether for insertion or retrieval, we 
perform radical surgery on the tree, lifting the newly accessed node all the way up, so that it 
becomes the root of the modifi ed tree. Other nodes are pushed out of the way as necessary to 
make room for this new root. Nodes that are frequently accessed will frequently be lifted up to 
become the root, and they will never drift too far from the top position. Inactive nodes, on the 
other hand, will slowly be pushed farther and farther from the root.

It is possible that splay trees can become highly unbalanced, so that a single access to a node of 
the tree can be quite expensive. Later in this section, however, we shall prove that, over a long 
sequence of accesses, splay trees are not at all expensive and are guaranteed to require not many 
more operations even than AVL trees. The analytical tool used is called amortized algorithm 
analysis, since, like insurance calculations, the few expensive cases are averaged in with many 
less expensive cases to obtain excellent performance over a long sequence of operations.

7.1 Splay Trees

Splay Trees were invented by Sleator and Tarjan. This data structure is essentially a binary tree 
with special update and access rules. It has the property to adapt optimally to a sequence of tree 
operations. More precisely, a sequence of m operations on a tree with initially n nodes takes time 
O (n ln (n) + m ln (n)).
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7.2 Operations

Splay trees support the following operations. We write S for sets, x for elements and k for key 
values.

splay(S, k) returns an access to an element x with key k in the set S. In case no such element 
exists, we return an access to the next smaller or larger element.

split(S, k) returns (S_1,S_2), where for each x in S_1 holds: key[x] <= k , and for each y in S_2 
holds: k < key[y].

join(S_1,S_2) returns the union S = S_1 + S_2. Condition: for each x in S_1 and each y in S_2: x 
<= y. 

insert(S,x) augments S by x. 

delete(S,x) removes x from S.

Each split, join, delete and insert operation can be reduced to splay operations and modifi cations 
of the tree at the root which take only constant time. Thus, the run time for each operation is 
essentially the same as for a splay operation. 

7.3 Splay Operation

The most important tree operation is splay(x), which moves an element x to the root of the tree. In 
case x is not present in the tree, the last element on the search path for x is moved instead.

The run time for a splay(x) operation is proportional to the length of the search path for x. While 
searching for x we traverse the search path top-down. Let y be the last node on that path. In a 
second step, we move y along that path by applying rotations as described later. 

The time complexity of maintaining a splay tree is analyzed using an Amortized Analysis. 
Consider a sequence of operations op_1, op_2, ..., op_m. Assume that our data structure has a 
potential. One can think of the potential as a bank account. Each tree operation op_i has actual 
costs proportional to its running time. We’re paying for the costs c_i of op_i with its amortized 
costs a_i. The difference between concrete and amortized costs is charged against the potential 
of the data structure. This means that we’re investing in the potential if the amortized costs are 
higher that the actual costs, otherwise we’re decreasing the potential. 

Thus, we’re paying for the sequence op_1, op_2, ..., op_m no more than the initial potential plus 
the sum of the amortized costs a_1 + a_2 + ... + a_m. 

The trick of the analysis is to defi ne a potential function and to show that each splay operation 
has amortized costs O (ln (n)). It follows that the sequence has costs O (m ln (n) + n ln (n)) 

7.4 Rotations

The splay operation moves the accessed element x to the root of the tree T. This is done using 
rotations on x and parent y and grandparent z. 

There are two kinds of double rotations and one single rotation. Due to symmetry, we need 
mirror-image versions of each rotation. 

Type 1: x < y < z ,   or    z < y < x   respectively

Type 2: y < x < z ,   or    z < x < y   respectively.

Type 3: The last case deals with the situation that the splay node x is a child of the root. Thus, we 
need a single rotation. 

   x < y ,   or    y < x   respectively. 
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7.5 Splay Tree Application

The application is Lexicographic Search Tree (LST).

b
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s

Figure 7.1: An example of LST

In a LST all the circles and squares are the nodes of the tree. Each node will contain a character. 
And the square nodes are terminal nodes of the strings. There are two kinds of edges, solid 
line edges and dashed line edges in LST. Solid line edges forms the splay tree and the nodes 
connected by a solid line represent different strings. The dashed line edges are used to represent 
a single string therefore the order of the nodes connected by a dashed line cannot be changed. 

Figure 7.1 shows an example of a LST. Form the Figure 7.1, it stores different words: “at”, “as”, 
“bat”, “bats”, “bog”, “boy”, “day” and “he”.

When a string is requested you just splay the character in the string one by one. Figure 7.2 shows 
how to splay a character ‘a’ in a LST.

As you can see, the character ‘a’ will not be splayed to the root because ‘h’ and ‘d’ are the prefi x 
of ‘a’ but it will move to the position most near the root. In LST, after the string is accessed, the 
fi rst character of the string will become the root as a result the most frequent accessed string 
will be near the root. And LST store the prefi x for different strings this reduce the redundancy 
for storing the strings. Besides LST, the splay tree can also be used for data compression, e.g. 
dynamic Huffman coding.
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Splay at ‘a’

Figure 7.2: Splay character ‘a’ in a LST

Rules for Splaying

Here are the rules for splaying. Denote the node being accessed as X, the  parent of X as P and 
the grandparent of X as G:

Zig: In this case, P is the root of the tree. 

1. Zig_Left( X ) if X is a left child. 

2. Zig_Right( X ) if X is a right child.
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(a): Zig_Left
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(b): Zig_Right

Figure 7.3: Splay Tree Zig Rotations of Node X

ZigZag: P is not the root of the tree. X and P are opposite types of children (left or right). The path 
from X to G is “crooked”.

1. Zig_Right_Zag_Left if X is a right child and P is a left child. 

2. Zig_Left_Zag_Right if X is a left child and P is a right child.
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(a): Zig_Right_Zag_Left

(b): Zig_Left_Zag_Right

Figure 7.4: Splay Tree Zig_Zag Rotations of Node X

ZigZig: P is not the root of the tree. X and P are the same type of children (left or right). X, P and 
G are in a straight line.

1. Zig_Zig_Left if X and P are both right children. 

2. Zig_Zig_Right if X and P are both left children.

(a) Zig_Zig_Left

Figure 7.5: Splay Tree Zig_Zig Rotations of Node X

Contd....
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(b) Zig_Zag_Right

Splay Tree Algorithms

To show that splay trees deliver the promised amortized performance, we defi ne a potential 
function Φ(T) to keep track of the extra time that can be consumed by later operations on the tree 
T. As before, we defi ne the amortized time taken by a single tree operation that changes the tree 
from T to T’ as the actual time t, plus the change in potential Φ(T’)-Φ(T). Now consider a sequence 
of M operations on a tree, taking actual times t1, t2, t3, ..., tM and producing trees T1, T2, ... TM. The 
amortized time taken by the operations is the sum of the actual times for each operation plus the 
sum of the changes in potential: t1 + t2 + ... tM + (Φ(T2) − Φ(T1)) + (Φ(T3) − Φ(T2)) + ... + (Φ(TM) − 
Φ(TM-1)) = t1 + t2 + ... tM + Φ(TM) − Φ(T1). Therefore the amortized time for a sequence of operations 
underestimates the actual time by at most the maximum drop in potential Φ(TM) − Φ(T1) seen 
over the whole sequence of operations.

The key to amortized analysis is to defi ne the right potential function. Given a node x in a binary 
tree, let size(x) be the number of nodes below x (including x). Let rank(x) be the log base 2 of 
size(x). Then the potential Φ(T) of a tree T is the sum of the ranks of all of the nodes in the tree. 
Note that if a tree has n nodes in it, the maximum rank of any node is lg n, and therefore the 
maximum potential of a tree is n lg n. This means that over a sequence of operations on the tree, 
its potential can decrease by at most n lg n. So the correction factor to amortized time is at most 
lg n, which is good. 

Now, let us consider the amortized time of an operation. The basic operation of splay trees is 
splaying; it turns out that for a tree t, any splaying operation on a node x takes at most amortized 
time 3*rank(t) + 1. Since the rank of the tree is at most lg(n), the splaying operation takes O(lg n) 
amortized time. Therefore, the actual time taken by a sequence of n operations on a tree of size n 
is at most O(lg n) per operation.

To obtain the amortized time bound for splaying, we consider each of the possible rotation 
operations, which take a node x and move it to a new location. We consider that the rotation 
operation itself takes time t = 1. Let r(x) be the rank of x before the rotation, and r’(x) the rank of 
node x after the rotation. We will show that simple rotation takes amortized time at most 3(r’(x) 
− r(x))) + 1, and that the other two rotations take amortized time 3(r’(x) − r(x)). There can be 
only one simple rotation (at the top of the tree), so when the amortized time of all the rotations 
performed during one splaying is added, all the intermediate terms r(x) and r’(x) cancel out and 
we are left with 3(r(t) − r(x)) + 1. In the worst case where x is a leaf and has rank 0, this is equal 
to 3*r(t) + 1.
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Simple Rotation

The only two nodes that change rank are x and y. So the cost is 1 + r’(x) − r(x) + r’(y) − r(y). Since 
y decreases in rank, this is at most 1 + r’(x) − r(x). Since x increases in rank, r’(x) − r(x) is positive 
and this is bounded by 1  + 3(r’(x) − r(x)). 

Zig-Zig Rotation

Only the nodes x, y, and z change in rank. Since this is a double rotation, we assume it has actual 
cost 2 and the amortized time is 

2 + r’(x) − r(x) + r’(y) − r(y) + r’(z) − r(z) 

Since the new rank of x is the same as the old rank of z, this is equal to 

2 − r(x) + r’(y) − r(y) + r’(z) 

The new rank of x is greater than the new rank of y, and the old rank of x is less than the old rank 
y, so this is at most 

2 − r(x) + r’(x) − r(x) + r’(z) = 2 + r’(x) − 2r(x) + r’(z) 

Now, let s(x) be the old size of x and let s’(x) be the new size of x. Consider the term 2r’(x) − r(x) − 
r’(z). This must be at least 2 because it is equal to lg(s’(x)/s(x)) + lg(s’(x)/s’(z)). Notice that this is 
the sum of two ratios where s’(x) is on top. Now, because s’(x) ≥ s(x) + s’(z), the way to make the 
sum of the two logarithms as small as possible is to choose s(x) = s(z) = s’(x)/2. But in this case the 
sum of the logs is 1 + 1 = 2. Therefore the term 2r’(x) − r(x) − r’(z) must be at least 2. Substituting 
it for the red 2 above, we see that the amortized time is at most 

(2r’(x) − r(x) − r’(z)) + r’(x) − 2r(x) + r’(z)   =   3(r’(x) − r(x)) as required.

Zig-Zag Rotation

Again, the amortized time is

2 + r’(x) − r(x) + r’(y) − r(y) + r’(z) − r(z) 

Because the new rank of x is the same as the old rank of z, and the old rank of x is less than the 
old rank of y, this is 

2 − r(x) + r’(y) − r(y) + r’(z)

≤   2 − 2 r(x) + r’(y) + r’(z) 

Now consider the term 2r’(x) − r’(y) − r’(z). By the same argument as before, this must be at least 
2, so we can replace the constant 2 above while maintaining a bound on amortized time:

≤   (2r’(x) − r’(y) − r’(z)) − 2 r(x) + r’(y) + r’(z)   =   2(r’(x) − r(x)) 

Therefore amortized run time in this case too is bounded by 3(r’(x) − r(x)), and this completes the 
proof of the amortized complexity of splay tree operations.

7.6 Summary

 Splay trees are self-adjusting binary search trees in which every access for insertion or 
retrieval of a node, lifts that node all the way up to become the root, pushing the other 
nodes out of the way to make room for this new root of the modifi ed tree. Hence, the 
frequently accessed nodes will frequently be lifted up and remain around the root position; 
while the most infrequently accessed nodes would move farther and farther away from the 
root.
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7.7 Keywords

Access Time: The time required to access and retrieve a word from high-speed memory is a few 
microseconds at most.

Splay Trees: Splay trees are binary search trees which are self adjusting.

7.8 Self Assessment

Choose the appropriate answer:

1. Splay Trees were invented by

(a) Sleator

(b) Tarjan

(c) Newton

(d) Both (a) and (b)

2. The run time for each operation is essentially the same as for a ...................................

(a) Splay operation.

(b) Zero operation 

(c) Play operation 

(d) None of the above 

State whether the following statements are True or False:

3. The time complexity of maintaining a splay tree is analyzed using an Amortized 
Analysis.

4. Each node does not contain a character.

Fill in the blanks:

5. The ............................ of maintaining a splay tree is analyzed using an Amortized Analysis.

6. The trick of the analysis is to defi ne a potential function and to show that each splay 
operation has ...............................

7. The key to ................................ is to defi ne the right potential function.

8. There are two kinds of .......................... rotations and one single rotation.

7.9 Review Questions

1. Explain splay operation in splay trees.

2. “The time complexity of maintaining a splay tree is analyzed using an Amortized Analysis.” 
Explain 

3. “A splay tree does not keep track of heights and does not use any balance factors like an 
AVL tree”. Explain 
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4. Consider the following binary search tree:

 Splay this tree at each of the following keys in turn:

 d  b  g  f  a  d  b  d

 Each part builds on the previous; that is, use the fi nal tree of each solution as the starting 
tree for the next part.

5. “Splay trees are binary search trees that achieve our goals by being self-adjusting in a quite 
remarkable way”. Discuss 

6. “It is possible that splay trees can become highly unbalanced, so that a single access to a 
node of the tree can be quite expensive”. Explain

Answers: Self Assessment
1. (d) 2. (a)

3. True 4. True 

5. time complexity 6. amortized costs O (ln (n))

7. amortized analysis 8. double

7.10 Further Readings
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 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann, 
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.
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Objectives

After studying this unit, you will be able to:

 Explain the concept of B-trees

 Describe B-trees algorithms

Introduction

The key factors which have been discussed in this unit about the b-trees in data structures. While 
dealing with many problems in computer science, engineering and many other disciplines, it is 
needed to impose a hierarchical structure on a collection of data items. For example, we need 
to impose a hierarchical structure on a collection of data items while preparing organizational 
charts and genealogies, to represent the syntactic structure of source programs in compilers.

A B-tree is a tree data structure that keeps data sorted and allows insertions and deletions that is 
logarithmically proportional to fi le size. It is commonly used in databases and fi le systems.

8.1 B-trees

In B-trees, internal nodes can have a variable number of child nodes within some pre-defi ned 
range. When data is inserted or removed from a node, its number of child nodes changes. In 
order to maintain the pre-defi ned range, internal nodes may be joined or split. Because a range 
of child nodes is permitted, B-trees do not need re-balancing as frequently as other self balancing 
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search trees, but may waste some space, since nodes are not entirely full. The lower and upper 
bounds on the number of child nodes are typically fi xed for a particular implementation.

A B-tree is kept balanced by requiring that all leaf nodes are at the same depth. This depth will 
increase slowly as elements are added to the tree, but an increase in the overall depth is infrequent, 
and results in all leaf nodes being one more hop further removed from the root.

k1

k1 k2 k3

r.c1

k1 k2

r.c2

C2C1 C3
C4

k1 k2
k1 k2

k1 k2
k1 k2

k1 k2
k1 k2 k3

k1 k2 k3 k4

C1 C2
C3

C1 C2

r

Figure 8.1: Schema showing the B-tree Structure

B-trees are balanced trees that are optimized for situations when part or the entire tree must be 
maintained in secondary storage such as a magnetic disk. Since disk accesses are expensive (time 
consuming) operations, a b-tree tries to minimize the number of disk accesses.

 Example: A b-tree with a height of 2 and a branching factor of 1001 can store over one 
billion keys but requires at most two disk accesses to search for any node.

8.2 Structure of B-trees

Unlike a binary-tree, each node of a b-tree may have a variable number of keys and children. 
The keys are stored in non-decreasing order. Each key has an associated child that is the root of a 
subtree containing all nodes with keys less than or equal to the key but greater than the preceding 
key. A node also has an additional rightmost child that is the root for a subtree containing all keys 
greater than any keys in the node.

A b-tree has a minimum number of allowable children for each node known as the minimization 
factor. If t is this minimization factor, every node must have at least t – 1 keys. Under certain 
circumstances, the root node is allowed to violate this property by having fewer than t – 1 keys. 
Every node may have at most 2t – 1 keys or, equivalently, 2t children.

Since each node tends to have a large branching factor (a large number of children), it is typically 
necessary to traverse relatively few nodes before locating the desired key. If access to each 
node requires a disk access, then a b-tree will minimize the number of disk accesses required. 
The minimization factor is usually chosen so that the total size of each node corresponds to a 
multiple of the block size of the underlying storage device. This choice simplifi es and optimizes 
disk access. Consequently, a b-tree is an ideal data structure for situations where all data cannot 
reside in primary storage and accesses to secondary storage are comparatively expensive (or time 
consuming).
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8.3 Height of B-trees

For n greater than or equal to one, the height of an n-key b-tree T of height h with a minimum 
degree t greater than or equal to 2,

t
1log  

2
nh +≤

The worst case height is O(log n). Since the “branchiness” of a b-tree can be large compared 
to many other balanced tree structures, the base of the logarithm tends to be large; therefore, 
the number of nodes visited during a search tends to be smaller than required by other tree 
structures. Although this does not affect the asymptotic worst case height, b-trees tend to have 
smaller heights than other trees with the same asymptotic height.

8.4 Operations on B-trees

The algorithms for the search, create, and insert operations are shown below. Note that these 
algorithms are single pass; in other words, they do not traverse back up the tree. Since b-trees 
strive to minimize disk accesses and the nodes are usually stored on disk, this single-pass 
approach will reduce the number of node visits and thus the number of disk accesses. Simpler 
double-pass approaches that move back up the tree to fi x violations are possible.

Since all nodes are assumed to be stored in secondary storage (disk) rather than primary storage 
(memory), all references to a given node be be preceeded by a read operation denoted by Disk-
Read. Similarly, once a node is modifi ed and it is no longer needed, it must be written out to 
secondary storage with a write operation denoted by Disk-Write. The algorithms below assume 
that all nodes referenced in parameters have already had a corresponding Disk-Read operation. 
New nodes are created and assigned storage with the Allocate-Node call. The implementation 
details of the Disk-Read, Disk-Write, and Allocate-Node functions are operating system and 
implementation dependent.

B-Tree-Search(x, k)

i <- 1

while i <= n[x] and k > keyi[x]

     do i <- i + 1

if i <= n[x] and k = keyi[x]

     then return (x, i)

if leaf[x]

     then return NIL

else Disk-Read(ci[x])

return B-Tree-Search(ci[x], k)

The search operation on a b-tree is analogous to a search on a binary tree. Instead of choosing 
between a left and a right child as in a binary tree, a b-tree search must make an n-way choice. 
The correct child is chosen by performing a linear search of the values in the node. After fi nding 
the value greater than or equal to the desired value, the child pointer to the immediate left of 
that value is followed. If all values are less than the desired value, the rightmost child pointer 
is followed. Of course, the search can be terminated as soon as the desired node is found. Since 
the running time of the search operation depends upon the height of the tree, B-Tree-Search is 
O(logt n).

B-Tree-Create(T)

x <- Allocate-Node()
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leaf[x] <- TRUE

n[x] <- 0

Disk-Write(x)

root[T] <- x

The B-Tree-Create operation creates an empty b-tree by allocating a new root node that has no 
keys and is a leaf node. Only the root node is permitted to have these properties; all other nodes 
must meet the criteria outlined previously. The B-Tree-Create operation runs in time O(1).

B-Tree-Split-Child(x, i, y)

z <- Allocate-Node()

leaf[z] <- leaf[y]

n[z] <- t - 1

for j <- 1 to t - 1

     do keyj[z] <- keyj+t[y]

if not leaf[y]

     then for j <- 1 to t

          do cj[z] <- cj+t[y]

n[y] <- t - 1

for j <- n[x] + 1 downto i + 1

     do cj+1[x] <- cj[x]

ci+1 <- z

for j <- n[x] downto i

     do keyj+1[x] <- keyj[x]

keyi[x] <- keyt[y]

n[x] <- n[x] + 1

Disk-Write(y)

Disk-Write(z)

Disk-Write(x)

If is node becomes “too full,” it is necessary to perform a split operation. The split operation 
moves the median key of node x into its parent y where x is the ith child of y. A new node, z, is 
allocated, and all keys in x right of the median key are moved to z. The keys left of the median 
key remain in the original node x. The new node, z, becomes the child immediately to the right 
of the median key that was moved to the parent y, and the original node, x, becomes the child 
immediately to the left of the median key that was moved into the parent y.

The split operation transforms a full node with 2t – 1 keys into two nodes with t - 1 keys each.

Note  One key is moved into the parent node. The B-Tree-Split-Child algorithm will run 
in time O(t) where t is constant.

B-Tree-Insert(T, k)

r <- root[T]

if n[r] = 2t - 1



Advanced Data Structure and Algorithms

Notes

174 LOVELY PROFESSIONAL UNIVERSITY

     then s <- Allocate-Node()

          root[T] <- s

   leaf[s] <- FALSE

   n[s] <- 0

   c1 <- r

   B-Tree-Split-Child(s, 1, r)

   B-Tree-Insert-Nonfull(s, k)

     else B-Tree-Insert-Nonfull(r, k)

B-Tree-Insert-Nonfull(x, k)

i <- n[x]

if leaf[x]

     then while i >= 1 and k < keyi[x]

            do keyi+1[x] <- keyi[x]

        i <- i - 1

          keyi+1[x] <- k

   n[x] <- n[x] + 1

   Disk-Write(x)

     else while i >= and k < keyi[x]

            do i <- i - 1

   i <- i + 1

   Disk-Read(ci[x])

   if n[ci[x]] = 2t - 1

        then B-Tree-Split-Child(x, i, ci[x])

             if k > keyi[x]

           then i <- i + 1

          B-Tree-Insert-Nonfull(ci[x], k)

To perform an insertion on a b-tree, the appropriate node for the key must be located using an 
algorithm similiar to B-Tree-Search. Next, the key must be inserted into the node. If the node 
is not full prior to the insertion, no special action is required; however, if the node is full, the 
node must be split to make room for the new key. Since splitting the node results in moving one 
key to the parent node, the parent node must not be full or another split operation is required. 
This process may repeat all the way up to the root and may require splitting the root node. This 
approach requires two passes. The fi rst pass locates the node where the key should be inserted; 
the second pass performs any required splits on the ancestor nodes.

Since each access to a node may correspond to a costly disk access, it is desirable to avoid the 
second pass by ensuring that the parent node is never full. To accomplish this, the presented 
algorithm splits any full nodes encountered while descending the tree. Although this approach 
may result in unecessary split operations, it guarantees that the parent never needs to be split and 
eliminates the need for a second pass up the tree.

Task  In twenty words or less, explain how treesort works.



Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 175

8.5 Inserting a New Item

When inserting an item, fi rst do a search for it in the B-tree. If the item is not already in the B-tree, 
this unsuccessful search will end at a leaf. If there is room in this leaf, just insert the new item 
here. Note that this may require that some existing keys be moved one to the right to make room 
for the new item. If instead this leaf node is full so that there is no room to add the new item, then 
the node must be “split” with about half of the keys going into a new node to the right of this 
one. The median (middle) key is moved up into the parent node. (Of course, if that node has no 
room, then it may have to be split as well.) Note that when adding to an internal node, not only 
might we have to move some keys one position to the right, but the associated pointers have to 
be moved right as well. If the root node is ever split, the median key moves up into a new root 
node, thus causing the tree to increase in height by one. 

Insert the following letters into what is originally an empty B-tree of order 5: C N G A H E K Q M 
F W L T Z D P R X Y S Order 5 means that a node can have a maximum of 5 children and 4 keys. 
All nodes other than the root must have a minimum of 2 keys. The fi rst 4 letters get inserted into 
the same node, resulting in this picture: 

A C G N

When we try to insert the H, we fi nd no room in this node, so we split it into 2 nodes, moving 
the median item G up into a new root node. Note that in practice we just leave the A and C in the 
current node and place the H and N into a new node to the right of the old one.

G

A C H N

Inserting E, K, and Q proceeds without requiring any splits:

G

A C E H K N Q

Inserting M requires a split. Note that M happens to be the median key and so is moved up into 
the parent node.
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A C E H K N Q

G M

The letters F, W, L, and T are then added without needing any split.

H K LCA E F QN T W

G M

When Z is added, the rightmost leaf must be split. The median item T is moved up into the parent 
node. Note that by moving up the median key, the tree is kept fairly balanced, with 2 keys in each 
of the resulting nodes.

H K L N Q W Z

G M T

CA E F

The insertion of D causes the leftmost leaf to be split. D happens to be the median key and so is 
the one moved up into the parent node. The letters P, R, X, and Y are then added without any 
need of splitting:

Finally, when S is added, the node with N, P, Q, and R splits, sending the median Q up to the 
parent. However, the parent node is full, so it splits, sending the median M up to form a new root 
node. Note how the 3 pointers from the old parent node stay in the revised node that contains 
D and G.
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H K LA C E F N P R S GW Y Z

D G Q T

M

8.6 B-tree-Deleting an Item

Deletion of a key from a b-tree is possible; however, special care must be taken to ensure that the 
properties of a b-tree are maintained. Several cases must be considered. If the deletion reduces 
the number of keys in a node below the minimum degree of the tree, this violation must be 
corrected by combining several nodes and possibly reducing the height of the tree. If the key has 
children, the children must be rearranged.

In the B-tree as we left it at the end of the last section, delete H. Of course, we fi rst do a lookup to 
fi nd H. Since H is in a leaf and the leaf has more than the minimum number of keys, this is easy. 
We move the K over where the H had been and the L over where the K had been.

This gives:

.

Next, delete the T. Since T is not in a leaf, we fi nd its successor (the next item in ascending order), 
which happens to be W, and move W up to replace the T. That way, what we really have to do 
is to delete W from the leaf, which we already know how to do, since this leaf has extra keys. In 
ALL cases we reduce deletion to a deletion in a leaf, by using this method.
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Next, delete R. Although R is in a leaf, this leaf does not have an extra key; the deletion results 
in a node with only one key, which is not acceptable for a B-tree of order 5. If the sibling node to 
the immediate left or right has an extra key, we can then borrow a key from the parent and move 
a key up from this sibling. In our specifi c case, the sibling to the right has an extra key. So, the 
successor W of S (the last key in the node where the deletion occurred), is moved down from the 
parent, and the X is moved up. (Of course, the S is moved over so that the W can be inserted in 
its proper place.)

Finally, let’s delete E. This one causes lots of problems. Although E is in a leaf, the leaf has no 
extra keys, nor do the siblings to the immediate right or left. In such a case the leaf has to be 
combined with one of these two siblings. This includes moving down the parent’s key that was 
between those of these two leaves. In our example, let’s combine the leaf containing F with the 
leaf containing A C. We also move down the D. 
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Of course, you immediately see that the parent node now contains only one key, G. This is not 
acceptable. If this problem node had a sibling to its immediate left or right that had a spare key, 
then we would again “borrow” a key. Suppose for the moment that the right sibling (the node 
with Q X) had one more key in it somewhere to the right of Q. We would then move M down 
to the node with too few keys and move the Q up where the M had been. However, the old left 
subtree of Q would then have to become the right subtree of M. In other words, the N P node 
would be attached via the pointer fi eld to the right of M’s new location. Since in our example we 
have no way to borrow a key from a sibling, we must again combine with the sibling, and move 
down the M from the parent. In this case, the tree shrinks in height by one.

8.7 B-tree Algorithms

A B-tree is a data structure that maintains an ordered set of data and allows effi cient operations 
to fi nd, delete, insert, and browse the data. In this discussion, each piece of data stored in a 
B-tree will be called a “key”, because each key is unique and can occur in the B-tree in only one 
location. 

A B-tree consists of “node” records containing the keys, and pointers that link the nodes of the 
B-tree together. 

Every B-tree is of some “order n”, meaning nodes contain from n to 2n keys, and nodes are thereby 
always at least half full of keys. Keys are kept in sorted order within each node. A corresponding 
list of pointers are effectively interspersed between keys to indicate where to search for a key if it 
isn’t in the current node. A node containing k keys always also contains k+1 pointers.
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 Example: Here is a portion of a B-tree with order 2 (nodes have at least 2 keys and 3 
pointers). Nodes are delimited with [square brackets]. The keys are city names, and are kept 
sorted in each node. On either side of every key are pointers linking the key to subsequent 
nodes:
           Start here
           | 
           v 
           [ Chicago Hoboken ]  
            |       |       | 
+-----------+       |       +------------+
|                   |                    |
v                   v                    v
[ Aptos Boston ]    [ Denver Detroit ]   [ San-Jose Seattle ]
 |     |      |      |      |       |     |        |       |
 v     v      v      v      v       v     v        v       v
                     X

To fi nd the key “Dallas”, we begin searching at the top “root” node. “Dallas” is not in the node 
but sorts between “Chicago” and “Hoboken”, so we follow the middle pointer to the next node. 
Again, “Dallas” is not in the node but sorts before “Denver”, so we follow that node’s fi rst 
pointer down to the next node (marked with an “X”). Eventually, we will either locate the key, or 
encounter a “leaf” node at the bottom level of the B-tree with no pointers to any lower nodes and 
without the key we want, indicating the key is nowhere in the B-tree.

Below is another fragment of an order 1 B-tree (nodes have at least 1 key and 2 pointers). Searching 
for the key “Chicago” begins at “Marin”, follows the fi rst pointer to “Aptos” (since Chicago sorts 
before Marin), then follows that node’s second pointer down to the next level (since Chicago sorts 
after Aptos), as marked with an “X”.
          | 
          v 
      [ Marin ]  
       |     |
    +--+     +---+
    |            |
    v            v
[ Aptos ]   [ Seattle ]
 |     |     |       |
 v     v     v       v 
       X

Searching a B-tree for a key always begins at the root node and follows pointers from node to 
node until either the key is located or the search fails because a leaf node is reached and there are 
no more pointers to follow.

B-trees grow when new keys are inserted. Since the root node initially begins with just one key, 
the root node is a special exception and the only node allowed to have less than n keys in an order 
n B-tree. 

Here is an order 2 B-tree with integer keys. Except for the special root node, order 2 requires 
every node to have from 2 to 4 keys and 3 to 5 pointers. Empty slots are marked with “.”, 
showing where future keys have not yet been stored in the nodes:
                       [ 57 . . .]
                        |  |
        +---------------+  +---------------------+
        |                                        |
        v                                        v
        [ 14 40 . .]                             [ 72 84 . .]
         |  |  |                                  |  |  |
+--------+  |  +----------+            +----------+  |  +-----------+
|           |             |            |             |              |
v           v             v            v             v              v
[01 12 . .] [15 16 17 .]  [47 56 . .]  [58 60 61 .]  [74 75 76 78] [85 86 99 .]
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To insert the key “59”, we fi rst simply search for that key. If 59 is found, the key is already in the 
tree and the insertion is superfl uous. Otherwise, we must end up at a leaf node at the bottom 
level of the tree where 59 would be stored. In the above case, the leaf node contains 58, 60, 61, and 
room for a fourth key, so 59 is simply inserted in the leaf node in sorted order: 

[58 59 60 61]

Now you’ll insert the key “77”. The initial search leads us to the leaf node where 77 would be 
inserted, but the node is already full with 4 keys: 74, 75, 76, and 78. Adding another key would 
violate the rule that order 2 B-trees can’t have more than 4 keys. Because of this “overfl ow” 
condition, the leaf node is split into two leaf nodes. The leftmost 2 keys are put in the left node, 
the rightmost 2 keys are put in the right node, and the middle key is “promoted” by inserting it 
into the parent node above the leaf. Here, inserting 77 causes the 74-75-76-78 node to be split into 
two nodes, and 76 is moved up to the parent node that contained 72 and 84: 

Before inserting 77           After inserting 77
[ 72 84 . .]                    [ 72 76 84 .]
 |  |  |                         |  |  |  |
-+  |  +-                      --+  |  |  +--
    |                               |  |
    |                          +----+  +------+
    |                          |              |
    v                          v              v
    [74 75 76 78]              [74 75 . .]    [77 78 . .]

In this case, the parent node contained only 2 keys (72 and 84), leaving room for 76 to be promoted 
and inserted. But if the parent node was also already full with 4 keys, then it too would have to 
split. Indeed, splitting may propagate all the way up to the root node. When the root splits, the 
B-tree grows in height by one level, and a new root with a single promoted key is formed. (A 
situation when an order n root node sometimes has fewer than n keys, just like the situation 
described earlier when the root node stores the very fi rst key placed in the B-tree.) 

B-trees shrink when keys are deleted. To delete a key, fi rst perform the usual search operation 
to locate the node containing the key. (If the key isn’t found, it isn’t in the tree and can’t be 
deleted.)

If the found key is not in a leaf, move it to a leaf by swapping the key with the logical “next” key. 
In a B-tree, the “next” key is always the fi rst key in the leftmost leaf of the right subtree.

 Example: In this B-tree we want to delete “37”, which is not in a leaf. “xx” indicates key 
values that don’t matter: 
[ xx 37 xx xx ]
       |
       |
       +->[ xx xx xx xx ]
           |
           |
           +->[ xx xx xx xx ]
               |
               |
               +->[41 43 . .]

You follow the pointer immediately to the right of 37 to fi nd 37’s right subtree, then follow the 
leftmost pointers in each subnode until we reach a leaf. The fi rst key in the leaf is “41”, the logical 
“next” key after 37 in the list of all keys in the tree. By swapping 37 and 41, we can move 37 to 
a leaf node to set up a deletion without violating the key order or pointer order of the overall 
B-tree.

Once the key we want is in a leaf, we can delete it. If at least n keys remain in the node, we’re 
done, otherwise it is an “underfl ow”, since every node (except the root) must have at least n 
keys.
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If a node underfl ows, we may be able to “redistribute” keys by borrowing some from a neighboring 
node. For example, in the order 3 B-tree below, the key 67 is being deleted, which causes a node to 
underfl ow since it only has keys 66 and 88 left. So keys from the neighbor on the left are “shifted 
through” the parent node and redistributed so both leaf nodes end up with 4 keys: 

   Before deleting 67                         After deleting 67

     [ xx 55 xx ]                               [ xx 33 xx ]
         |  |                                       |  |
+--------+  +--------+                     +--------+  +------+
|                    |                     |                  |
v                    v                     v                  v
[22 24 26 28 33 44]  [66 67 88 . . .]      [22 24 26 28 . .]  [44 55 66 88 . .]

But if the underfl ow node and the neighbor node have less than 2n keys to redistribute, the two 
nodes will have to be combined. For example, here key 52 is being deleted from the B-tree below, 
causing an underfl ow, and the neighbor node can’t afford to give up any keys for redistribution. 
So one node is discarded, and the parent key moves down with the other keys to fi ll up a single 
node: 

Before deleting 52          After deleting 52

  [ 35 45 55 . ]              [ 35 55 . . ]
   |  |  |  |                  |  |  |
  -+  |  |  +-                -+  |  +-
      |  |                        |
+-----+  +---+                    |
|            |                    |
v            v                    v
[40 42 . .]  [50 52 . .]          [40 42 45 50]

In the above case, moving the key 45 out of the parent node left two keys (35 and 55) remaining. 
But if the parent node only had n keys to begin with, then the parent node also would underfl ow 
when the parent key was moved down to combine with the leaf key. Indeed, underfl ow and the 
combining of nodes may propagate all the way up to the root node. When the root underfl ows, 
the B-tree shrinks in height by one level, and the nodes under the old root combine to form a new 
root. 

The payoff of the B-tree insert and delete rules are that B-trees are always “balanced”. Searching 
an unbalanced tree may require traversing an arbitrary and unpredictable number of nodes and 
pointers. 

An unbalanced tree of 4 nodes              A balanced tree of 4 nodes

[ x x ]                                             [ x x ]
    |                                                | | |
    [ x x ]                                   +------+ | +------+
        |                                     |        |        |
        [ x x ]                               [ x x ]  [ x x ]  [ x x ]
            |
            [ x x ]

Searching a balanced tree means that all leaves are at the same depth. There is no runaway pointer 
overhead. Indeed, even very large B-trees can guarantee only a small number of nodes must be 
retrieved to fi nd a given key. For example, a B-tree of 10,000,000 keys with 50 keys per node never 
needs to retrieve more than 4 nodes to fi nd any key.
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Task  Consider the following binary search tree:

a

b

g

f

c

e

d

Splay this tree at each of the following keys in turn:

d b g f a d b d

8.8 Applications

1. Databases: A database is a collection of data organized in a fashion that facilitates updating, 
retrieving, and managing the data. The data can consist of anything, including, but not 
limited to names, addresses, pictures, and numbers. Databases are commonplace and are 
used everyday. For example, an airline reservation system might maintain a database of 
available fl ights, customers, and tickets issued. A teacher might maintain a database of 
student names and grades.

 Because computers excel at quickly and accurately manipulating, storing, and retrieving 
data, databases are often maintained electronically using a database management system. 
Database management systems are essential components of many everyday business 
operations. Database serve as a foundation for accounting systems, inventory systems, 
medical recordkeeping sytems, airline reservation systems, and countless other important 
aspects of modern businesses.

 It is not uncommon for a database to contain millions of records requiring many gigabytes 
of storage. In order for a database to be useful and usable, it must support the desired 
operations, such as retrieval and storage, quickly. Because databases cannot typically be 
maintained entirely in memory, b-trees are often used to index the data and to provide 
fast access. For example, searching an unindexed and unsorted database containing n key 
values will have a worst case running time of O(n); if the same data is indexed with a b-tree, 
the same search operation will run in O(log n). To perform a search for a single key on a set 
of one million keys (1,000,000), a linear search will require at most 1,000,000 comparisons. 
If the same data is indexed with a b-tree of minimum degree 10, 114 comparisons will 
be required in the worst case. Clearly, indexing large amounts of data can signifi cantly 
improve search performance. Although other balanced tree structures can be used, a b-tree 
also optimizes costly disk accesses that are of concern when dealing with large data sets.
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2. Concurrent Access to B-trees: Databases typically run in multiuser environments where 
many users can concurrently perform operations on the database.

 Unfortunately, this common scenario introduces complications.

  Example: Imagine a database storing bank account balances. Now assume that 
someone attempts to withdraw `40 from an account containing `60. First, the current 
balance is checked to ensure suffi cient funds. After funds are disbursed, the balance of 
the account is reduced. This approach works fl awlessly until concurrent transactions are 
considered. Suppose that another person simultaneously attempts to withdraw `30 from 
the same account. At the same time the account balance is checked by the fi rst person, the 
account balance is also retrieved for the second person. Since neither person is requesting 
more funds than are currently available, both requests are satisfi ed for a total of `70. After 
the fi rst person’s transaction, ̀ 20 should remain (`60 - ̀ 40), so the new balance is recorded 
as `20. Next, the account balance after the second person’s transaction, `30 (`60 – `30), is 
recorded overwriting the `20 balance. Unfortunately, `70 have been disbursed, but the 
account balance has only been decreased by `30. Clearly, this behavior is undesirable, and 
special precautions must be taken.

 A b-tree suffers from similar problems in a multiuser environment. If two or more processes 
are manipulating the same tree, it is possible for the tree to become corrupt and result in 
data loss or errors.

The simplest solution is to serialize access to the data structure. In other words, if another process 
is using the tree, all other processes must wait.

Although this is feasible in many cases, it can place a unnecessary and costly limit on 
performance because many operations actually can be performed concurrently without risk. 
Locking, introduced by Gray and refi ned by many others, provides a mechanism for controlling 
concurrent operations on data structures in order to prevent undesirable side effects and to 
ensure consistency.

8.9 Summary

 B-trees are balanced trees that are optimized for situations when part or the entire tree 
must be maintained in secondary storage such as a magnetic disk.

 A B-tree is a specialized multiway tree designed especially for use on disk. In a B-tree each 
node may contain a large number of keys. The number of subtrees of each node, then, may 
also be large.

 A B-tree is designed to branch out in this large number of directions and to contain a lot of 
keys in each node so that the height of the tree is relatively small.

 This means that only a small number of nodes must be read from disk to retrieve an item.

 The goal is to get fast access to the data, and with disk drives this means reading a very 
small number of records. Note that a large node size (with lots of keys in the node) also fi ts 
with the fact that with a disk drive one can usually read a fair amount of data at once.

8.10 Keywords

B-Tree Algorithms: A B-tree is a data structure that maintains an ordered set of data and allows 
effi cient operations to fi nd, delete, insert, and browse the data.
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B-trees: B-trees are balanced trees that are optimized for situations when part or the entire tree 
must be maintained in secondary storage such as a magnetic disk.

8.11 Self Assessment

Choose the appropriate answers:

1. A b-tree has a minimum number of allowable children for each node known as the ............
..............................................

(a) Minimization factor

(b) Maximization factor

(c) Operational factor

(d) Situational factor

2. Binary tree is a special type of tree having degree.

(a) 3

(b) 1

(c) 2

(d) 4

Fill in the blanks:

3. The search operation on a b-tree is ................................. to a search on a binary tree.

4. A ................................. is a collection of data organized in a fashion that facilitates updating, 
retrieving, and managing the data.

5. A B-tree is kept balanced by requiring that all leaf nodes are at the same ............................

6. The .............................. operation creates an empty b-tree by allocating a new root node that 
has no keys and is a leaf node.

State whether the following statements are True or False:

7. Deletion of a key from a b-tree is possible.

8. B-trees do not shrink when keys are deleted.

9. The lower and upper bounds on the number of child nodes are typically fi xed for a 
particular implementation.

10. To perform an insertion on a b-tree, the appropriate node for the key must be located using 
an algorithm similiar to B-Tree-Search.

8.12 Review Questions

1. Generalize the amortized analysis given in the text for incrementing four-digit binary 
integers to n-digit binary integers.

2. Describe the deletion of an item from b-trees.

3. Describe of structure of B-tree. Also explain the operation of B-tree.

4. Explain how will you insert an item in b-trees.
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5. You have a B-tree of order 5 in fi gure given below. Explain to delete C from it.

6. There are 24 = 4! possible ordered sequences of the four keys 1, 2, 3, 4, but only 14 distinct 
binary trees with four nodes. Therefore, these binary trees are not equally likely to occur 
as search trees. Find which one of the 14 binary search trees corresponds to each of the 
24 possible ordered sequences of 1, 2, 3, 4. Thereby fi nd the probability for building each of 
the binary search trees from randomly ordered input.

7. “A node containing k keys always also contains k+1 pointers.” Discuss.

8. “The split operation transforms a full node with 2t – 1 keys into two nodes with t - 1 keys 
each”. Explain 

9. Explain the process of deletion of key from b-tree with the help of suitable example. 

10. Binary trees are defi ned recursively; algorithms for manipulating binary trees are usually 
best written recursively. In programming with binary trees, be aware of the problems 
generally associated with recursive algorithms. Be sure that your algorithm terminates 
under any condition and that it correctly treats the trivial case of an empty tree.

Answers: Self Assessment
1. (a) 2. (c)

3. analogous  4. database

5. depth  6. B-Tree-Create

7. True  8. False 

9. True  10. True 
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Objectives

After studying this unit, you will be able to:

 Explain the concept of hashing 

 Know of hash functions

 Realise open hashing and closed hashing 

 Describe rehashing

Introduction

The search time of each algorithm depend on the number n of elements of the collection S of the 
data. A searching technique called Hashing or Hash addressing which is essentially independent 
of the number n.

Hashing is the transformation of a string of characters into a usually shorter fi xed-length value or 
key that represents the original string. Hashing is used to index and retrieve items in a database 
because it is faster to fi nd the item using the shorter hashed key than to fi nd it using the original 
value. It is also used in many encryption algorithms.

A Hash Function is a Unary Function that is used by Hashed Associative Containers: it maps its 
argument to a result of type size_t. A Hash Function must be deterministic and stateless. That 
is, the return value must depend only on the argument, and equal arguments must yield equal 
results.
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9.1 Hashing

In many applications we require to use a data object called symbol table. A symbol table is nothing 
but a set of pairs (name, value). Where value represents collection of attributes associated with the 
name, and this collection of attributes depends upon the program element identifi ed by the name. 
For example, if a name x is used to identify an array in a program, then the attributes associated 
with x are the number of dimensions, lower bound and upper bound of each dimension, and the 
element type. Therefore a symbol table can be thought of as a linear list of pairs (name, value), 
and hence you can use a list of data object for realizing a symbol table. A symbol table is referred 
to or accessed frequently either for adding the name, or for storing the attributes of the name, or 
for retrieving the attributes of the name. Therefore accessing effi ciency is a prime concern while 
designing a symbol table. Hence the most common way of getting a symbol table implemented 
is to use a hash table. Hashing is a method of directly computing the index of the table by using 
some suitable mathematical function called hash function. The hash function operates on the 
name to be stored in the symbol table, or whose attributes are to be retrieved from the symbol 
table. If h is a hash function and x is a name, then h(x) gives the index of the table where x along 
with its attributes can be stored. If x is already stored in the table, then h(x) gives the index of the 
table where it is stored to retrieve the attributes of x from the table. There are various methods of 
defi ning a hash function like a division method. In this method, you take the sum of the values of 
the characters, divide it by the size of the table, and take the remainder. This gives us an integer 
value lying in the range of 0 to (n – 1) if the size of the table is n. The other method is a mid 
square method. In this method, the identifi er is fi rst squared and then the appropriate number 
of bits from the middle of square is used as the hash value. Since the middle bits of the square 
usually depend on all the characters in the identifi er, it is expected that different identifi ers will 
result into different values. The number of middle bits that you select depends on the table size. 
Therefore if r is the number of middle bits that you use to form hash value, then the table size 
will be 2r. Hence when you use this method the table size is required to be power of 2. Another 
method is folding in which the identifi er is partitioned into several parts, all but the last part 
being of the same length. These parts are then added together to obtain the hash value.

To store the name or to add attributes of the name, you compute hash value of the name, and 
place the name or attributes as the case may be, at that place in the table whose index is the hash 
value of the name. For retrieving the attribute values of the name kept in the symbol table, I apply 
the hash function to the name to obtain index of the table where you get the attributes of the 
name. Hence you fi nd that no comparisons are required to be done. Hence the time required for 
the retrieval is independent of the table size. Therefore retrieval is possible in a constant amount 
of time, which will be the time taken for computing the hash function. Therefore hash table seems 
to be the best for realization, of the symbol table, but there is one problem associated with the 
hashing, and it is of collisions. Hash collision occurs when the two identifi ers are mapped into 
the same hash value. This happens because a hash function defi nes a mapping from a set of valid 
identifi ers to the set of those integers, which are used as indices of the table. Therefore you see 
that the domain of the mapping defi ned by the hash function is much larger than the range of the 
mapping, and hence the mapping is of many to one nature. Therefore when I implement a hash 
table a suitable collision handling mechanism is to be provided which will be activated when 
there is a collision.

Collision handling involve fi nding out an alternative location for one of the two colliding 
symbols. For example, if x and y are the different identifi ers and if h(x) = h(y), x and y are the 
colliding symbols. If x is encountered before y, then the ith entry of the table will be used for 
accommodating symbol x, but later on when y comes there is a hash collision, and therefore 
you have to fi nd out an alternative location either for x or y. This means you fi nd out a suitable 
alternative location and either accommodate y in that location, or you can move x to that location 
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and place y in the ith location of the table. There are various methods available to obtain an 
alternative location to handle the collision. They differ from each other in the way search is made 
for an alternative location. The following are the commonly used collision handling techniques:

9.1.1 Linear Probing or Linear Open Addressing

In this method, if for an identifi er x, h(x) = i, and if the ith location is already occupied then you 
search for a location close to the ith location by doing a linear search starting from the (i+1)th 
location to accommodate x. This means you start from the (i+1)th location and do the linear search 
till you get an empty location, and once you get an empty location I accommodate x there.

9.1.2 Overfl ow Chaining

This is a method of implementing a hash table, in which collisions gets handled automatically. In 
this method you use two tables, a symbol table to accommodate identifi ers and their attributes, 
and a hash table which is an array of pointers pointing to symbol table entries. Each symbol table 
entry is made of three fi elds, fi rst for holding the identifi er, second for holing the attributes, and 
the third for holding the link or pointer which can be made pointing to any symbol table entry. 
The insertions into the symbol table are done as follows:

If x is symbol to be inserted, then it will be added to the next available -entry of the symbol table. 
The hash value of x is then computed, if h(x) = i, then the ith hash table pointer is made pointing 
to the symbol table entry in which x is stored if the ith hash table pointer is not pointing to any 
symbol table entry. If the ith hash table pointer is already pointing to some symbol table entry, 
then the link fi eld of symbol table entry containing x is made pointing to that symbol table entry 
to which ith hash table pointer is pointing to, and make the ith hash table pointer pointing the 
symbol entry containing x. This is equivalent to building a linked list on the ith index of the hash 
table. The retrieval of attributes is done as follows:

If x is a symbol, then you obtain h(x), and use this value as the index of the hash table, and traverse 
the list built on this index to get that entry which contains x. A typical hash table implemented 
using this technique is shown below:

Let the symbols to be stored are x1, y1, z1, x2, y2, z2. The hash function that you use:

 h(symbol) = (value of fi rst letter of the symbol) mod n,

Where n is the size of table.

if h(x1) = i

 h(y1) = j

 h(z1) = k

then

 h(x2) = i

 h(y2) = j

 h(z2) = k

Therefore, the contents of the symbol table will be the one shown in Figure 9.1.
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Figure 9.1: Hash Table Implementation using Overfl ow Chaining for Collision Handling

Consider using division method of hashing store the following values in the hash table of 
size 11:

25, 45, 96, 101, 102, 162, 197, 201

Use sequential method for resolving the collisions.

Since division method of hashing is to be used the hash function his:

h(key) = key mode 11, where key is the value to be stored.

I start with the value 25, and compute the hash value using 25 as key. The hash value is h(25) = 
25 mod 11 = 3. Therefore store 25 at the index 3 in the table.

For 45, h(45) = 45 mod 11 = 1, hence place 45 at the index 1.

For 96, h(96) = 96 mod 11 = 8,

 ∴ store 96 at index 8.

For 101,h(101) = 101 mod 11 = 2,

 ∴ store 101 at index 2.

For 102, h(102) = 102 mod 11 = 3, there is a collision, therefore you fi nd a location closer to location 
at index 3 which is empty to accommodate 102, you see that the location at index 4 is empty.

∴ store 102 at index 4.

For 162, h(162) = 162 mod 11 = 8, again there is a collision, therefore you fi nd a location closer 
to location at index 8 which is empty to accommodate 162, you see that location at index 9 is 
empty.

∴ store 162 at index 9.

For 197, h(197) = 197 mod 11 = 10,   store 197 at index 10.

For 201, h(20 1) = 201 mod 11 = 3, again there is a collision, therefore you fi nd a location closer 
to location at index 3, which is empty to accommodate 201, you see that location at index 5 is 
empty.

∴ store 201 at index 5.
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The hash table therefore is the one shown below:

0  

1 45 

2 101 

3 25 

4 102 

5 201 

6  

7  

8 96 

9 162 

10 197 

Task  ”A Hash Function must be deterministic and stateless.” Discuss.

9.2 Hash Functions

Some of the methods of defi ning hash function are discussed below:

1. Modular arithmetic: In this method, fi rst the key is converted to integer, then it is divided 
by the size of index range, and the remainder is taken to be the hash value. The spread 
achieved depends very much on the modulus. If modulus is power of small integers like 2 
or 10, then many keys tend to map into the same index, while other indices remain unused. 
The best choice for modulus is often but not always is a prime number, which usually has 
the effect of spreading the keys quite uniformly.

2. Truncation: This method ignores part of key, and use the remainder part directly as hash 
value. (considering non-numeric fi elds as their numerical code) If the keys for example 
are eight digit numbers and the hash table has 1000 entries, then the fi rst, second, and fi fth 
digit from right might make hash value. So 62538194 maps to 394. It is a fast method, but 
often fails to distribute keys evenly.

3. Folding: In this method, the identifi er is partitioned into several parts all but the last part 
being of the same length. These parts are then added together to obtain the hash value. 
For example an eight digit integer can be divided into groups of three, three, and two 
digits. The groups are the added together, and truncated if necessary to be in the proper 
range of indices. Hence 62538149 maps to, 625 + 381 + 94 = 1100, truncated to 100. Since all 
information in the key can affect the value of the function, folding often achieves a better 
spread of indices than truncation.

4. Mid square method: In this method, the identifi er is squared (considering non-numeric 
fi elds as their numerical code), and then the appropriate number of bits from the middle 
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of the square are used to get the hash value. Since the middle bits of the square usually 
depend on all the characters in the identifi er, it is expected that different identifi ers will 
result in different values. The number of middle bits that we select depends on table size. 
Therefore if r is the number of middle bits used to form hash value, then the table size will 
be 2r, hence when you use mid square method the table size should be a power of 2.

9.3 Open Hashing

The simplest form of open hashing defi nes each slot in the hash table to be the head of a linked 
list. All records that hash to a particular slot are placed on that slot’s linked list. The fi gure below 
illustrates a hash table where each slot stores one record and a link pointer to the rest of the list.

Records within a slot’s list can be ordered in several ways: by insertion order, by key value order, 
or by frequency-of-access order. Ordering the list by key value provides an advantage in the case 
of an unsuccessful search, because I know to stop searching the list once you encounter a key 
that is greater than the one being searched for. If records on the list are unordered or ordered by 
frequency, then an unsuccessful search will need to visit every record on the list. 

Given a table of size M storing N records, the hash function will (ideally) spread the records evenly 
among the M positions in the table, yielding on average N/M records for each list. Assuming 
that the table has more slots than there are records to be stored, you can hope that few slots will 
contain more than one record. In the case where a list is empty or has only one record, a search 
requires only one access to the list. Thus, the average cost for hashing should be Θ(1). However, 
if clustering causes many records to hash to only a few of the slots, then the cost to access a record 
will be much higher because many elements on the linked list must be searched. 

Open hashing is most appropriate when the hash table is kept in main memory, with the lists 
implemented by a standard in-memory linked list. Storing an open hash table on disk in an 
effi cient way is diffi cult, because members of a given linked list might be stored on different disk 
blocks. This would result in multiple disk accesses when searching for a particular key value, 
which defeats the purpose of using hashing.

Let:

1. U be the universe of keys:

(a) Integers 

(b) Character strings 

(c) Complex bit patterns 
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2. B the set of hash values (also called the buckets or bins). Let B = {0, 1,..., m - 1}where m > 0 
is a positive integer. 

 A hash function h: U → B associates buckets (hash values) to keys.

Two main issues:

Collisions

If x1 and x2 are two different keys, it is possible that h(x1) = h(x2). This is called a collision. Collision 
resolution is the most important issue in hash table implementations. 

Hash Functions

Choosing a hash function that minimizes the number of collisions and also hashes uniformly is 
another critical issue. 

9.4 Closed Hashing

1. All elements are stored in the hash table itself 

2. Avoids pointers; only computes the sequence of slots to be examined. 

3. Collisions are handled by generating a sequence of rehash values.

h: 
universe of primary keys

U  × 
probe number

U  → {0, 1, 2,..., m - 1}

4. Given a key x, it has a hash value h(x,0) and a set of rehash values 

h(x, 1), h(x,2), . . . , h(x, m-1) 

5. I require that for every key x, the probe sequence 

 < h(x,0), h(x, 1), h(x,2), . . . , h(x, m-1)> 

 be a permutation of <0, 1, ..., m-1>. 

This ensures that every hash table position is eventually considered as a slot for storing a 
record with a key value x.

Search (x, T)

Search will continue until you fi nd the element x (successful search) or an empty slot (unsuccessful 
search). 

Delete (x, T)

1. No delete if the search is unsuccessful. 

2. If the search is successful, then put the label DELETED (different from an empty slot). 

Insert (x, T)

1. No need to insert if the search is successful.

2. If the search is unsuccessful, insert at the fi rst position with a DELETED tag.
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Task  “Open hashing is most appropriate when the hash table is kept in main memory, 
with the lists implemented by a standard in-memory linked list.” Explain.

9.5 Rehashing

This is another method of collision handling. In this method you fi nd an alternative empty 
location by modifying the hash function, and applying the modifi ed hash function to the colliding 
symbol. For example, if x is symbol and h(x) = i, and if the ith location is already occupied, then 
I modify the hash function h to h1, and fi nd out h1(x), if h1(x) =j, and jth location is empty, then 
I accommodate x in the jth location. Otherwise you once again modify h1 to some h2 and repeat 
the process till the collision gets handled. Once the collision gets handled we revert back to the 
original hash function before considering the next symbol.

Denote h(x, 0) by simply h(x).

Linear Probing

                    h(x, i) = (h(x) + i) mod m 

Quadratic Probing

                h(x, i) = (h(x) + C1i + C2i2) mod m 

 where C1 and C2 are constants. 

Double Hashing

h(x, i) = (h(x) + i }
another hash function

 mod m 

A Comparison of Rehashing Methods

Linear Probing m distinct probe sequences Primary clustering

Quadratic Probing m distinct probe sequences No primary clustering; but secondary clustering

Double Probing m2 distinct probe sequences No primary clustering
No secondary clustering

9.6 Summary

 Hash functions are mostly used in hash tables, to quickly locate a data record (for example, 
a dictionary defi nition) given its search key (the headword). 

 Specifi cally, the hash function is used to map the search key to the index of a slot in the 
table where the corresponding record is supposedly stored. 

 Rehashing schemes use a second hashing operation when there is a collision.
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9.7 Keywords

Folding: In folding the identifi er is partitioned into several parts all but the last part being of the 
same length.

Hash Function: A Hash Function is a Unary Function that is used by Hashed Associative 
Containers.

Hashing: Hashing is the transformation of a string of characters into a usually shorter 
fi xed-length value or key that represents the original string.

Rehashing: In rehashing fi nd an alternative empty location by modifying the hash function, and 
applying the modifi ed hash function to the colliding symbol.

9.8 Self Assessment

Fill in the blanks:

1. The simplest form of open hashing defi nes each slot in the hash table to be the head of a 
.............................. .

2. .............................. is most appropriate when the hash table is kept in main memory, with 
the lists implemented by a standard in-memory linked list.

3. .............................. resolution is the most important issue in hash table implementations.

4. A Hash Function must be .............................. and stateless.

5. A .............................. is referred to or accessed frequently either for adding the name, or for 
storing the attributes of the name, or for retrieving the attributes of the name.

6. Hashing is a method of directly computing the index of the table by using some suitable 
mathematical function called .............................. .

7. Collision handling involve fi nding out an alternative location for one of the two colliding 
.............................. .

8. .............................. method ignores part of key, and use the remainder part directly as hash 
value.

9.9 Review Questions

1. Describe overfl ow chaining.

2. Describe various hash functions in detail.

3. Describe rehashing.

4. Devise a simple, easy to calculate hash function for mapping three-letter words to integers 
between 0 and n−1, inclusive. Find the values of your function on the words

 PAL  LAP  PAM  MAP  PAT  PET  SET  SAT  TAT  BAT

 for n = 11, 13, 17, 19. Try for as few collisions as possible.

5. Suppose that a hash table contains hash_size = 13 entries indexed from 0 through 12 and 
that the following keys are to be mapped into the table:

 10  100  32  45  58  126 3 29 200 400  0

(a) Determine the hash addresses and fi nd how many collisions occur when these keys 
are reduced by applying the operation % hash_size.
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(b) Determine the hash addresses and fi nd how many collisions occur when these keys 
are fi rst folded by adding their digits together (in ordinary decimal representation) 
and then applying % hash_size.

(c) Find a hash function that will produce no collisions for these keys. (A hash function 
that has no collisions for a fi xed set of keys is called perfect.)

(d) Repeat the previous parts of this exercise for hash_size = 11. (A hash function that 
produces no collision for a fi xed set of keys that completely fi ll the hash table is called 
minimal perfect.)

6. Another method for resolving collisions with open addressing is to keep a separate array 
called the overfl ow table, into which are put all entries that collide with an occupied 
location. They can either be inserted with another hash function or simply inserted in 
order, with sequential search used for retrieval. Discuss the advantages and disadvantages 
of this method.

7. With linear probing, it is possible to delete an entry without using a second special key, as 
follows. Mark the deleted entry empty. Search until another empty position is found. If the 
search fi nds a key whose hash address is at or before the just-emptied position, then move 
it back there, make its previous position empty, and continue from the new empty position. 
Write an algorithm to implement this method. Do the retrieval and insertion algorithms 
need modifi cation?

8. In a chained hash table, suppose that it makes sense to speak of an order for the keys, 
and suppose that the nodes in each chain are kept in order by key. Then a search can 
be terminated as soon as it passes the place where the key should be, if present. How 
many fewer probes will be done, on average, in an unsuccessful search? In a successful 
search? How many probes are needed, on average, to insert a new node in the right place? 
Compare your answers with the corresponding numbers derived in the text for the case of 
unordered chains.

9. The hash table itself contained only lists, one for each of the chains. One variant method 
is to place the fi rst actual entry of each chain in the hash table itself. (An empty position 
is indicated by an impossible key, as with open addressing.) With a given load factor, 
calculate the effect on space of this method, as a function of the number of words (except 
links) in each entry. (A link takes one word.)

10. Distinguish between linear and quadratic probing.

11. Consider using division method of hashing store the following values in the hash table of 
size 13:

 29,  45, 106, 136, 162, 172, 297, 301

Answers: Self Assessment

1. linked list 2. Open hashing  3. Collision

4. deterministic 5. symbol table 6. hash function

7. symbols 8. Truncation
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Objectives

After studying this unit, you will be able to:

 Describe heaps

 State the concept of binary heaps

 Discuss applications of heaps

 Defi ne d-heaps

Introduction

A heap is a specialized tree-based data structure that satisfi es the heap property: if B is a child 
node of A, then key(A) ≥ key(B). This implies that an element with the greatest key is always in the 
root node, and so such a heap is sometimes called a max-heap. (Alternatively, if the comparison 
is reversed, the smallest element is always in the root node, which results in a min-heap.) The 
heap is one maximally-effi cient implementation of an abstract data type called a priority queue. 
Heaps are crucial in several effi cient graph algorithms.

10.1 Heaps

A heap is a storage pool in which regions of memory are dynamically allocated. For example, 
in C++ the space for a variable is allocated essentially in one of three possible places: Global 
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variables are allocated in the space of initialized static variables; the local variables of a procedure 
are allocated in the procedure’s activation record, which is typically found in the processor stack; 
and dynamically allocated variables are allocated in the heap. In this unit, the term heap is taken 
to mean the storage pool for dynamically allocated variables.

I consider heaps and heap-ordered trees in the context of priority queue implementations. While 
it may be possible to use a heap to manage a dynamic storage pool, typical implementations do 
not. In this context, the technical meaning of the term heap is closer to its dictionary defi nition–”a 
pile of many things.”

A binary tree has the heap property iff

1. It is empty or 

2. The key in the root is larger than that in either child and both subtrees have the heap 
property. 

A heap can be used as a priority queue: the highest priority item is at the root and is trivially 
extracted. But if the root is deleted, you are left with two sub-trees and you must effi ciently 
re-create a single tree with the heap property. 

The value of the heap structure is that you can both extract the highest priority item and insert a 
new one in O(logn) time. 

10.2 Binary Heaps

A binary heap is a heap-ordered binary tree which has a very special shape called a complete 
tree. As a result of its special shape, a binary heap can be implemented using an array as the 
underlying foundational data structure. Array subscript calculations are used to fi nd the parent 
and the children of a given node in the tree. And since an array is used, the storage overhead 
associated with the subtree fi elds contained in the nodes of the trees is eliminated.

10.2.1 Complete Trees

Complete trees and perfect trees are closely related, yet quite distinct. As pointed out in the 
preceding unit, a perfect binary tree of height h has exactly n = 2h+1 – 1 internal nodes. Since, the 
only permissible values of n are

0, 1, 3, 7, 15, 31, ..., 2h+1 – 1,... ,

there is no perfect binary tree which contains, say 2, 4, 5, or 6 nodes. 

However, you want a data structure that can hold an arbitrary number of objects so you cannot 
use a perfect binary tree. Instead, you use a complete binary tree, which is defi ned as follows: 

Defi nition (Complete Binary Tree)

A complete binary tree of height h ≥ 0, is a binary tree {R, TL, TR} with the following properties.

1. If h = 0, TL = l and TR = l. 

2. For h > 0 there are two possibilities: 

(a) TL is a perfect binary tree of height h-1 and TR is a complete binary tree of height h-1; 
or

(b) TL is a complete binary tree of height h-1 and TR is a perfect binary tree of height h-2. 

Figure 10.1 shows an example of a complete binary tree of height four. Notice that the left subtree 
of node 1 is a complete binary tree of height three; and the right subtree is a perfect binary tree 
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of height two. Similarly, the left subtree of node 2 is a perfect binary tree of height two; and the 
right subtree is a complete binary tree of height two.

Figure 10.1: A Complete Binary Tree

Does there exist an complete binary with exactly n nodes for every integer n>0? The following 
theorem addresses this question indirectly by defi ning the relationship between the height of a 
complete tree and the number of nodes it contains.

Task  Discuss how complete and perfect trees are closely related.

Theorem-10.1

A complete binary tree of height h ≥ 0 contains at least 2h and at most 2h+1 – 1 nodes.

extbfProof First, you prove the lower bound by induction. Let mh be the minimum number of 
nodes in a complete binary tree of height h. To prove the lower bound you must show that 
mh = 2h.

Base Case There is exactly one node in a tree of height zero. Therefore, m0 = 1 = 20. 

Inductive Hypothesis Assume that mh = 2h for h = 0, 1, 2, ..., k, for some k ≥ 0. Consider the 
complete binary tree of height k+1 which has the smallest number of nodes. Its left subtree is a 
complete tree of height k having the smallest number of nodes and its right subtree is a perfect 
tree of height k-1.

From the inductive hypothesis, there are 2k nodes in the left subtree and there are exactly 
2(k–1)+1 – 1 nodes in the perfect right subtree. Thus,

 mk + 1 = 1 + 2k + 2(k–1)+1 – 1

 = 2k+1

Therefore, by induction mh = 2h for all h ≥ 0, which proves the lower bound. 

Next, I prove the upper bound by induction. Let Mh be the maximum number of nodes in a 
complete binary tree of height h. To prove the upper bound I must show that Mh = 2h+1 – 1. 

Base Case There is exactly one node in a tree of height zero. Therefore, M0 = 1 = 21 – 1.

Inductive Hypothesis Assume that Mh = 2h+1 – 1 for h = 0, 1, 2,..., k, for some k ≥ 0. Consider 
the complete binary tree of height k+1 which has the largest number of nodes. Its left subtree 
is a perfect tree of height k and its right subtree is a complete tree of height k having the largest 
number of nodes.
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There are exactly 2k+1 – 1 nodes in the perfect left subtree. From the inductive hypothesis, there 
are 2k+1 – 1 nodes in the right subtree. Thus,

 mk + 1 = 1 + 2k+1 – 1 + 2k+1 – 1

 = 2(k+1)+1 – 1.

Therefore, by induction Mh = 2h+1 – 1 for all h ≥ 0, which proves the upper bound. 

It follows from Theorem 10.1 that there exists exactly one complete binary tree that contains 
exactly n internal nodes for every integer n ≥ 0. It also follows from 

Theorem 10.1 that the height of a complete binary tree containing n internal nodes is h = [log2 
n].

Why are interested in complete trees? As it turns out, complete trees have some useful 
characteristics. For example, in the preceding chapter you saw that the internal path length of a 
tree, i.e., the sum of the depths of all the internal nodes, determines the average time for various 
operations. A complete binary tree has the nice property that it has the smallest possible internal 
path length:

Theorem 10.2

The internal path length of a binary tree with n nodes is at least as big as the internal path length 
of a complete binary tree with n nodes. 

extbfProof Consider a binary tree with n nodes that has the smallest possible internal path length. 
Clearly, there can only be one node at depth zero--the root. Similarly, at most two nodes can be at 
depth one; at most four nodes can be at depth two; and so on. Therefore, the internal path length 
of a tree with n nodes is always at least as large as the sum of the fi rst n terms in the series

 

But this summation is precisely the internal path length of a complete binary tree! 

Since the depth of the average node in a tree is obtained by dividing the internal path length of 
the tree by n, Theorem 10.1 tells us that complete trees are the best possible in the sense that the 
average depth of a node in a complete tree is the smallest possible. But how small is small? That 
is, is does the average depth grow logarithmically with n. The following theorem addresses this 
question:

Theorem 10.3

The internal path length of a complete binary tree with n nodes is
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extbfProof The proof of Theorem 10.3 is left as an exercise for the reader. From Theorem 10.3 you 
may conclude that the internal path length of a complete tree is O(n log n). Consequently, the 
depth of the average node in a complete tree is O(log n).

10.2.2 Implementation

A binary heap is a heap-ordered complete binary tree which is implemented using an array. In a 
heap the smallest key is found at the root and since the root is always found in the fi rst position 
of the array, fi nding the smallest key is a trivial operation in a binary heap. 

In this section we will describe the implementation of a priority queue as a binary heap. As 
shown in Figure 10.2, I defi ne a concrete class called BinaryHeap for this purpose.
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Comparable Abstract Object

Container Abstract Container

PriorityQueue

MergeablePriorityQueue

BinaryHeap

BinomialQueue

AbstractTree BinaryTree

GeneralTree

LeflistHeap

BinomialTree

Tree

Figure 10.2: Object Class Hierarchy

Program-10.1 Introduces the BinaryHeap class. The BinaryHeap class extends the 
AbstractContainer class introduced in Program 10.1 and it implements the PriorityQueue 
interface defi ned in Program 10.1.
public class BinaryHeap

 extends AbstractContainer

 implements PriorityQueue

{

 protected Comparable [] array;

 // ...

}

Program 10.1: BinaryHeap Fields

10.2.3 Putting items into a Binary Heap

There are two requirements which must be satisfi ed when an item is inserted in a binary heap. 
First, the resulting tree must have the correct shape. Second, the tree must remain heap-ordered. 
Figure 10.3 illustrates the way in which this is done. 

Since the resulting tree must be a complete tree, there is only one place in the tree where a node can 
be added. That is, since the bottom level must be fi lled from left to right, the node node must be 
added at the next available position in the bottom level of the tree as shown in Figure 10.3 (a). 

Figure 10.3: Inserting an item into a Binary Heap
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In this example, the new item to be inserted has the key 2. Note that you cannot simply drop the 
new item into the next position in the complete tree because the resulting tree is no longer heap 
ordered. Instead, the hole in the heap is moved toward the root by moving items down in the 
heap as shown in Figure 10.3 (b) and (c). The process of moving items down terminates either 
when you reach the root of the tree or when the hole has been moved up to a position in which 
when the new item is inserted the result is a heap. 

Program 10.2 gives the code for inserting an item in a binary heap. The enqueue method of the 
BinaryHeap class takes as its argument the item to be inserted in the heap. If the priority queue is 
full an exception is thrown. Otherwise, the item is inserted as described above.

public class BinaryHeap

 extends AbstractContainer

 implements PriorityQueue

{

 protected Comparable[] array;

 public void enqueue (Comparable object)

{

  if (count == array. length - 1)

   throw new ContainerFullException ();

  ++count;

  int i == count;

  while (i > 1 && array [i/2].isGT (object))

  {

   array [i] = array [i/2];

   i/=2;

  }

  array [i] = object;

 }

 //...

}

Program 10.2: BinaryHeap class enqueue Method

The implementation of the algorithm is actually remarkably simple. Lines 13-17 move the hole in 
the heap up by moving items down. When the loop terminates, the new item can be inserted at 
position i. Therefore, the loop terminates either at the root, i=1, or when the key in the parent of 
i, which is found at position ⎣i/2⎦, is smaller than the item to be inserted.

Notice too that a good optimizing compiler will recognize that the subscript calculations involve 
only division by two. Therefore, the divisions can be replaced by bitwise right shifts which 
usually run much more quickly. 

Since the depth of a complete binary tree with n nodes is ⎣log2 n⎦, the worst case running time for 
the enqueue operation is

⎣log2 n⎦, τ(isGT) + O(log n),

where τ(isGT) is the time required to compare to objects. If τ(isGT) = O(1), the enqueue operation 
is simply O(log n) in the worst case.
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10.2.4 Removing items from a Binary Heap

The dequeueMin method removes from a priority queue the item having the smallest key. In order 
to remove the smallest item, it needs fi rst to be located. Therefore, the dequeueMin operation is 
closely related to fi ndMin. 

The smallest item is always at the root of a min heap. Therefore, the fi ndMin operation is trivial. 
Program 10.3 gives the code for the fi ndMin method of the BinaryHeap class. Assuming that no 
exception is thrown, the running time of fi ndMin is clearly O(1).
public class BinaryHeap

 extends AbstractContainer

 implements PriorityQueue

{

 protected Comparable [] array;

 public Comparable findMin ()

 {

  if (count == 0)

   throw new ContainerEmptyException ();

  return array [1];

 }

 // ...

}

Program 10.3: BinaryHeap class fi ndMin Method

Since the bottom row of a complete tree is fi lled from left to right as items are added, it follows 
that the bottom row must be emptied from right to left as items are removed. So, you have a 
problem: The datum to be removed from the heap by dequeueMin is in the root, but the node to 
be removed from the heap is in the bottom row.

Figure 10.4: Removing an item from a Binary Heap
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Figure 10.4 (a) illustrates the problem. The dequeueMin operation removes the key 2 from the 
heap, but it is the node containing key 6 that must be removed from the tree to make it into a 
complete tree again. When key 2 is removed from the root, a hole is created in the tree as shown 
in Figure 10.4 (b).

The trick is to move the hole down in the tree to a point where the left-over key, in this case the 
key 6, can be reinserted into the tree. To move a hole down in the tree, you consider the children 
of the empty node and move up the smallest key. Moving up the smallest key ensures that the 
result will be a min heap.

The process of moving up continues until either the hole has been pushed down to a leaf node, 
or until the hole has been pushed to a point where the left over key can be inserted into the heap. 
In the example shown in Figure 10.4 (b)-(c), the hole is pushed from the root node to a leaf node 
where the key 6 is ultimately placed is shown in Figure 10.4 (d). 

Program 10.4 gives the code for the dequeueMin method of the BinaryHeap class. This method 
implements the deletion algorithm described above. The main loop (lines 15-25) moves the hole 
in the tree down by moving up the child with the smallest key until either a leaf node is reached 
or until the hole has been moved down to a point where the last element of the array can be 
reinserted.

public class BinaryHeap

 extends AbstractContainer

 implements PriorityQueue

{

 protected Comparable [] array;

 public Comparable dequeueMin()

 {

  if (count == 0)

   throw new ContainerEmptyException ();

  Comparable result = array [1];

  Comparable last = array [count];

  --count;

   int i = 1;

  while (2 * i < count + 1)

  {

   int child = 2 * i;

   if (child + 1 < count + 1

    && array [child + 1].isLT (array [child]))

    child += 1;

   if (last.isLE (array [child]))

    break;

   array [i] = array [child];

   i = child;

  }

  array [i] = last;

  return result;

 }

 // ...

}

Program 10.4: BinaryHeap class dequeueMin Method
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In the worst case, the hole must be pushed from the root to a leaf node. Each iteration of the loop 
makes at most two object comparisons and moves the hole down one level. 

Therefore, the running time of the dequeueMin operation is

⎣log2 n⎦(τ〈isLT〉 + τ〈isLE〉) + O(log n),

where  n = count is the number of items in the heap. If τ〈isLT〉 = O(1) and τ〈isLE〉 = O(1), the 
dequeueMin operation is simply O(log n) in the worst case.

Task  Discuss the uses of binary heaps.

10.3 Applications of Heaps

The main applications of heaps are:

1. Discrete Event Simulation

2. Implementation

10.3.1 Discrete Event Simulation

One of the most important applications of priority queues is in discrete event simulation. Simulation 
is a tool which is used to study the behavior of complex systems. The fi rst step in simulation is 
modeling. You construct a mathematical model of the system I wish to study. Then you write a 
computer program to evaluate the model.

The systems studied using discrete event simulation  have the following characteristics: The system 
has a state  which evolves or changes with time. Changes in state occur at distinct points in 
simulation time. A state change moves the system from one state to another instantaneously. 
State changes are called events.

 Example: Suppose I wish to study the service received by customers in a bank. Suppose 
a single teller is serving customers. If the teller is not busy when a customer arrives at the bank, 
the that customer is immediately served. On the other hand, if the teller is busy when another 
customer arrives, that customer joins a queue and waits to be served. 

You can model this system as a discrete event process as shown in Figure 10.5. The state of the 
system is characterized by the state of the server (the teller), which is either busy or idle, and by 
the number of customers in the queue. The events which cause state changes are the arrival of a 
customer and the departure of a customer.

arriving customer

customers

queue server

departing customer

Figure 10.5: A Simple Queueing System

If the server is idle when a customer arrives, the server immediately begins to serve the customer 
and therefore changes its state to busy. If the server is busy when a customer arrives, that customer 
joins the queue.
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When the server fi nishes serving the customer, that customer departs. If the queue is not empty, 
the server immediately commences serving the next customer. Otherwise, the server becomes 
idle. 

How do you keep track of which event to simulate next? Each event (arrival or departure) occurs 
at a discrete point in simulation time. In order to ensure that the simulation program is correct, 
it must compute the events in order. This is called the causality constraint–events cannot change 
the past.

In our model, when the server begins to serve a customer you can compute the departure time of 
that customer. So, when a customer arrives at the server I schedule an event in the future which 
corresponds to the departure of that customer. In order to ensure that events are processed in 
order, you keep them in a priority queue in which the time of the event is its priority. Since you 
always process the pending event with the smallest time next and since an event can schedule 
new events only in the future, the causality constraint will not be violated. 

10.3.2 Implementation

This section presents the simulation of a system comprised of a single queue and server as shown 
in Figure 10.5. Program 10.5 defi nes the class Event which represents events in the simulation. 
There are two parts to an event, a type (either arrival or departure), and a time.
public class Simulation

{

 static class Event

  extends Association

 {

  public static final int arrival = 0;

  public static final int departure = 1;

  Event (int type, double time)

   {super (new Db1 (time), new Int (type)); }

  double getTime ()

   {return ((Db1) getKey ()).doubleValue ();}

  int getType ()

   {return ((Int) getValue ()).intValue ();}

 }

 // ...

}

Program 10.5: Event Class

An association is an ordered pair comprised of a key and a value. In the case of the Event class, 
the key is the time of the event and the value is the type of the event. Therefore, the events in a 
priority queue are prioritized by their times. 

Program 10.6 defi nes the run method which implements the discrete event simulation. This method 
takes one argument, timeLimit, which specifi es the total amount of time to be simulated. 

The Simulation class contains a single fi eld, called eventList, which is a priority queue. This 
priority queue is used to hold the events during the course of the simulation.
public class Simulation

{

 PriorityQueue eventList = new LeftistHeap ();

 public void run (double timeLimit)
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 {

  boolean serverBusy = false;

  int numberInQueue = 0;

  RandomVariable serviceTime = new ExponentialRV (100.);

  RandomVariable interArrivalTime =

   new ExponentialRV (100.);

  eventList. enqueue (new Event.arrival, 0));

  while (!eventList. isEmpty ())

  {

   Event event = (Event) eventList.dequeueMin ();

   double t = event.getTime ();

   if (t > timeLimit)

    {eventList.purge (); break; }

   switch (event.getType ())

   {

   case Event.arrival:

    if (!severBusy)

    {

     serverBusy = true;

     eventList.enqueue (new Event(Event.departure,

      t + serviceTime.nextdouble ()));

    }

    else

     ++numberInQueue;

    eventList.enqueue (new Event (Event.arrival,

     t + interArrivalTime.nextDouble ()));

    break;

   case Event.departure:

    if (numberInQueue == 0)

     serverBusy = false;

    else

    {

     --numberInQueue;

     eventList.enqueue (new Event(Event.departure,

      t + serviceTime.nextDouble ()));

    }

    break;

   }

  }

   }

 // ...

}

Program 10.6: Application of Priority Queues – discrete Event Simulation
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The state of the system being simulated is represented by the two variables serverBusy and 
numberInQueue. The fi rst is a boolean value which indicates whether the server is busy. The 
second keeps track of the number of customers in the queue. 

In addition to the state variables, there are two instances of the class ExponentialRV. It implements 
the RandomVariable interface defi ned in Program 10.6. This interface defi nes a method called 
nextDouble which is used to sample the random number generator. Every time nextDouble is 
called, a different (random) result is returned. The random values are exponentially distributed 
around a mean value which is specifi ed in the constructor. For example, in this case both 
serviceTime and interArrivalTime produce random distributions with the mean value of 100 
(lines 9-11). 

It is assumed that the eventList priority queue is initially empty. The simulation begins by 
enqueueing a customer arrival at time zero (line 12). The while loop (lines 13-44) constitutes the 
main simulation loop. This loop continues as long as the eventList is not empty, i.e., as long as 
there is an event to be simulated.

Each iteration of the simulation loop begins by dequeuing the next event in the event list (line 15). 
If the time of that event exceeds timeLimit, the event is discarded, the eventList is purged, and 
the simulation is terminated. Otherwise, the simulation proceeds. 

The simulation of an event depends on the type of that event. The switch statement (line 19) 
invokes the appropriate code for the given event. If the event is a customer arrival and the 
server is not busy, serverBusy is set to true and the serviceTime random number generator is 
sampled to determine the amount of time required to service the customer. A customer departure 
is scheduled at the appropriate time in the future (lines 24-26). On the other hand, if the server is 
already busy when the customer arrives, I add one to the numberInQueue variable (line 29). 

Another customer arrival is scheduled after every customer arrival. The interArrivalTime 
random number generator is sampled, and the arrival is scheduled at the appropriate time in the 
future (lines 30-31). 

If the event is a customer departure and the queue is empty, the server becomes idle (lines 34-35). 
When a customer departs and there are still customers in the queue, the next customer in the 
queue is served. Therefore, numberInQueue is decreased by one and the serviceTime random 
number generator is sampled to determine the amount of time required to service the next 
customer. A customer departure is scheduled at the appropriate time in the future (lines 38-40). 

Clearly the execution of the Simulation method given in Program 10.6 mimics the modeled 
system. Of course, the program given produces no output. For it to be of any practical value, the 
simulation program should be instrumented to allow the user to study its behavior.

 Example: The user may be interested in knowing statistics such as the average queue 
length and the average waiting time that a customer waits for service. And such instrumentation 
can be easily incorporated into the given framework. 

10.4 d-Heaps

The d-ary heap or d-heap is a priority queue data structure, a generalization of the binary heap in 
which the nodes have d children instead of 2. Thus, a binary heap is a 2-heap. 

The d-ary heap consists of an array of n items, each of which has a priority associated with it. 
These items may be viewed as the nodes in a complete d-ary tree, listed in breadth fi rst traversal 
order: the item at position 0 of the array forms the root of the tree, the items at positions 1–d are 
its children, the next d2 items are its grandchildren, etc. Thus, the parent of the item at position 
i (for any i > 0) is the item at position ceiling((i − 1)/d) and its children are the items at positions 
di + 1 through di + d. According to the heap property, in a min-heap, each item has a priority 
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that is at least as large as its parent; in a max-heap, each item has a priority that is no larger than 
its parent.

The minimum priority item in a min-heap (or the maximum priority item in a max-heap) may 
always be found at position 0 of the array. To remove this item from the priority queue, the last 
item x in the array is moved into its place, and the length of the array is decreased by one. Then, 
while item x and its children do not satisfy the heap property, item x is swapped with one of its 
children (the one with the smallest priority in a min-heap, or the one with the largest priority in 
a max-heap), moving it downward in the tree and later in the array, until eventually the heap 
property is satisfi ed. The same downward swapping procedure may be used to increase the 
priority of an item in a min-heap, or to decrease the priority of an item in a max-heap.

To insert a new item into the heap, the item is appended to the end of the array, and then while 
the heap property is violated it is swapped with its parent, moving it upward in the tree and 
earlier in the array, until eventually the heap property is satisfi ed. The same upward-swapping 
procedure may be used to decrease the priority of an item in a min-heap, or to increase the 
priority of an item in a max-heap.

To create a new heap from an array of n items, one may loop over the items in reverse order, 
starting from the item at position n − 1 and ending at the item at position 0, applying the 
downward-swapping procedure for each item.

To implement Prim’s algorithm effi ciently, we need a data structure that will store the vertices of 
S in a way that allows the vertex joined by the minimum cost edge to be selected quickly.

A heap is a data structure consisting of a collection of items, each having a key. The basic 
operations on a heap are:

1. insert(i,k,h). Add item i to heap h using k as the key value.

2. deletemin(h). Delete and return an item of minimum key from h.

3. changekey(i,k,h). Change the key of item i in heap h to k.

4. key(i,h). Return the key value for item i.

The heap is among the most widely applicable non-elementary data structure.

Heaps can be implemented effi ciently, using a heap-ordered tree.

1. each tree node contains one item and each item has a real-valued key

2. the key of each node is at least as large the key of its parent (excepting the root)

For integer d >1, a d-heap is a heap-ordered d-ary tree that is “heapshaped.”

1. let T be an infi nite d-ary tree, with vertices numbered in breadth-fi rst order

2. a subtree of T is heap-shaped if its vertices have consecutive numbers 1, 2, ..., n

10 111

8

7 5 6 3

4 2 7

4 4

9 10

key

item number

5 6 8 15 11 12 13

The depth of a d-heap with n nodes is ≤ [logdn].
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Implementing d-Heaps as Arrays

1. The nodes of a d-heap can be stored in an array in breadth-fi rst order.

(a) allows indices for parents and children to calculated directly, eliminating the need 
for pointers

10 111

8

7 5 6 3

4 2 7

4 4

9 10

5 6 8 15 11 12 13

4 8 2 9 10 1 11 7 5 6 3

6 7 13 4 11 12 15 4 10 5 8

1 2 3 4 5 6 7 8 9 10 11

h:

key:

2. If i is the index of an item x, then [(i−1)/d] is the index of p(x) and the indices of the children 
of x are in the range [d(i−1) + 2 .. di + 1].

3. When the key of an item is decreased, we can restore heap-order, by repeatedly swapping 
the item with its parent.

4. Similarly, for increasing an item’s key.

d-Heap Operations

item function fi ndmin(heap h);

return if h = {} [] null; ! h ≠ {} ®h(1) fi;

end;

procedure siftup(item i, integer x, modifies heap h);

integer p;

p := ⎝(x−1)/d⎤;

do p ≠ 0 and key(h(p)) > key(i) =>

h(x) := h(p); x := p; p := (p−1)/d⎤ ;

od;

h(x) := i;

end;

procedure insert(item i; modifies heap h);

siftup(i,|h| + 1,h);

end;

integer function minchild(integer x, heap h);

integer i, minc;

minc := d(x–1) + 2;

if minc > |h| =>return 0; fi;

i := minc + 1;

do i ≤ min {|h|,dx + 1} =>

if key(h(i)) < key(h(minc)) => minc := i; fi;

i := i + 1;
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od;

return minc;

end;

procedure siftdown(item i, integer x, modifies heap h);

integer c;

c := minchild(x,h);

do c ≠≠0 and key(h(c)) < key(i) =>

h(x) := h(c); x := c; c := minchild(x,h);

od;

h(x) := i;

end;

procedure delete(item i, modified heap h);

item j; j := h(|h|); h(|h|) := null;

if i ≠ j and key(j) ≤ key(i) =>siftup(j,h–1(i),h);

| i ≠ j and key(j) > key(i) =>siftdown(j,h-1(i),h);

fi;

end;

item function deletemin(modifies heap h);

item i;

if h = {} => return null; fi;

i := h(1); delete(h(1),h);

return i;

end;

procedure changekey(item i, keytype k, modified heap h);

item ki; ki := key(i); key(i) := k;

if k < ki=>siftup(i,h-1(i),h);

| k > ki =>siftdown(j,h-1(i),h);

fi;

end;

D-Heap Algorithms

A d-heap is a tree with the property that a parent’s value is smaller than (or equal to) the value of 
any of its d children. For example, the min heap we have seen in class is a 2-heap.

Given N the number of elements in the d-heap, in terms of d and N what is the time cost in the 
worst case (big Oh notation) of each of the following operations.

1. buildHeap: Builds a d-heap from a list of nautrals read from standard input.

2. insertHeap: Inserts a new element into the d-heap.

3. decreasKey (p, Δ): lowers the value of the item at position p by a positive amount Δ.

4. increaseKey (p, Δ): increases the value of the item at position p by a positive amount Δ.

5. remove: removes the node at position p from the d-heap. This is done by performing 
decreaseKey (p, ∞) and then performing deleteMin ().
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Best example of D-Heap is “DJIKSTRA’S ALGORITHM”

Djikstra’s algorithm (named after its discover, Dutch computer scientist E.W. Dijkstra) solves the 
problem of fi nding the shortest path from a point in a graph (the source) to a destination with 
non-negative weight edge.

It turns out that one can fi nd the shortest paths from a given source to all vertices (points) in 
a graph in the same time. Hence, this problem is sometimes called the single-source shortest 
paths problem. Dijkstra’s algorithm is a greedy algorithm, which fi nds shortest path between all 
pairs of vertices in the graph. Before describing the algorithms formally, let us study the method 
through an example.

1 2

3 4

5

3

6 6

6 1

8

9

Figure 10.6: A Directed Graph with no negative edge(s)

Dijkstra’s algorithm keeps two sets of vertices:

S is the set of vertices whose shortest paths from the source have already   been determined

Q = V-S is the set of remaining vertices.

The other data structures needed are:

d array of best estimates of shortest path to each vertex from the source pi an array of predecessors 
for each vertex. predecessor is an array of vertices to which shortest path has already been 
determined.

The basic operation of Dijkstra’s algorithm is edge relaxation. If there is an edge from u to v, then 
the shortest known path from s to u can be extended to a path from s to v by adding edge (u,v) 
at the end. This path will have length d[u]+w(u,v). If this is less than d[v], we can replace the 
current value of d[v] with the new value.

The predecessor list is an array of indices, one for each vertex of a graph. Each vertex entry 
contains the index of its predecessor in a path through the graph.

Operation of Algorithm

The following sequence of diagrams illustrate the operation of Dijkstra’s Algorithm. The bold 
vertices indicate the vertex to which shortest path has been determined.

 Initialize the graph, all the vertices have infi nite costs 
except the source vertex which has zero cost
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 From all the adjacent vertices, choose the closest vertex 
to the source s.

 As we initialized d[s] to 0, it’s s. (shown in bold circle)

 Add it to S

 Relax all vertices adjacent to s, i.e u and x

 Update vertices u and x by 10 and 5 as the distance from 
s.

 Choose the nearest vertex, x.

  Relax all vertices adjacent to x

 Update predecessors for u, v and y. 

 Predecessor of x = s 

 Predecessor of v = x ,s 

 Predecessor of y = x ,s 

 add x to S

  Now y is the closest vertex. Add it to S.

  Relax v and adjust its predecessor.

u is now closest, add it to S and adjust its 
adjacent vertex, v.
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 Finally, add v to S.

 The predecessor list now defi nes the shortest path from 
each node to s.

Dijkstra’s algorithm

* Initialise d and pi* for each vertex v in V( g )

g.d[v] := infinity

g.pi[v] := nil 

g.d[s] := 0; 

* Set S to empty * 

S := { 0 } 

Q := V(g) 

* While (V-S) is not null* 

while not Empty(Q)

1. Sort the vertices in V-S according to the current best estimate of their distance from the 

 source u := Extract-Min ( Q );

2. Add vertex u, the closest vertex in V-S, to S, AddNode( S, 

 u );

3. Relax all the vertices still in V-S connected to u relax( Node u, 

 Node v, double w[][] ) 

 if d[v] > d[u] + w[u]v] then 

 d[v] := d[u] + w[u][v] 

 pi[v] := u

In summary, this algorithm starts by assigning a weight of infi nity to all vertices, and then 
selecting a source and assigning a weight of zero to it. Vertices are added to the set for which 
shortest paths are known. When a vertex is selected, the weights of its adjacent vertices are 
relaxed. Once all vertices are relaxed, their predecessor’s vertices are updated (pi). The cycle 
of selection, weight relaxation and predecessor update is repeated until the shortest path to all 
vertices has been found.

10.5 Summary

 a heap is a partially sorted binary tree. Although a heap is not completely in order, it 
conforms to a sorting principle: every node has a value less (for the sake of simplicity, I will 
assume that all orderings are from least to greatest) than either of its children.
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 Additionally, a heap is a “complete tree” -- a complete tree is one in which there are no 
gaps between leaves. 

 For instance, a tree with a root node that has only one child must have its child as the left 
node. 

 More precisely, a complete tree is one that has every level fi lled in before adding a node to 
the next level, and one that has the nodes in a given level fi lled in from left to right, with no 
breaks.

10.6 Keywords

Binary Heap: A binary heap is a heap-ordered binary tree which has a very special shape called 
a complete tree.

Discrete Event Simulation: One of the most important applications of priority queues is in discrete 
event simulation.

d-Heap: d-heap is a priority queue data structure, a generalization of the binary heap in which 
the nodes have d children instead of 2.

Heap: A heap is a specialized tree-based data structure that satisfi es the heap property: if B is a 
child node of A, then key(A) ≥ key(B).

10.7 Self Assessment

Fill in the blanks:

1. A heap is a partially sorted ......................... .

2. Complete trees and perfect trees are ......................... .

3. In a heap the ......................... is found at the root.

4. The ......................... method removes from a priority queue the item having the smallest 
key.

5. The ......................... of an event depends on the type of that event.

6. The minimum priority item in a min-heap may always be found at ......................... of the 
array.

7. The heap is one maximally-effi cient implementation of an abstract data type called a 
......................... .

8. ......................... calculations are used to fi nd the parent and the children of a given node in 
the tree.

10.8 Review Questions

1. What do you mean by heaps?

2. Explain complete binary tree.

3. Prove that “A complete binary tree of height h ≥ 0 contains at least 2h and at most 2h+1 – 1 
nodes.“

4. Prove that “The internal path length of a binary tree with n nodes is at least as big as the 
internal path length of a complete binary tree with n nodes.”

5. Explain the implementation of binary heap.

6. Describe how will you put items into binary heaps.
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7. Write a method and the corresponding recursive function to traverse a binary tree (in 
whatever order you fi nd convenient) and dispose of all its nodes. Use this method to 
implement a Binary_tree destructor.

8. Consider a heap of n keys, with xk being the key in position k (in the contiguous 
representation) for 0 ≤ k < n. Prove that the height of the subtree rooted at xk is the greatest 
integer not exceeding lg(n/(k+ 1)), for all k satisfying 0 ≤ k < n.

9. “A heap can be used as a priority queue: the highest priority item is at the root and is 
trivially extracted.” Discuss.

10. “The enqueue method of the BinaryHeap class takes as its argument the item to be inserted 
in the heap.” Explain.

Answers: Self Assessment

1. binary tree 2. closely related 3. smallest key

4. dequeueMin 5. simulation 6. position 0

7. priority queue 8. Array subscript
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Objectives

After studying this unit, you will be able to:

 State the concept leftist heaps

 Realise skew heaps

 Explain the binomial queues

Introduction

Numerous data structures have been developed that can support effi cient implementations of 
all the priority-queue operations. Most of them are based on direct linked representation of 
heap-ordered trees. Two links are needed for moving down the tree (either to both children in a 
binary tree or to the fi rst child and next sibling in a binary tree representation of a general tree) 
and one link to the parent is needed for moving up the tree. Developing implementations of 
the heap-ordering operations that work for any (heap-ordered) tree shape with explicit nodes 
and links or other representation is generally straightforward. The diffi culty lies in dynamic 
operations such as insert, remove, and join, which require us to modify the tree structure. 
Different data structures are based on different strategies for modifying the tree structure while 
still maintaining balance in the tree.

11.1 Leftist Heaps

A leftist heap is a heap-ordered binary tree which has a very special shape called a leftist tree. 
One of the nice properties of leftist heaps is that is possible to merge two leftist heaps effi ciently. 
As a result, leftist heaps are suited for the implementation of mergeable priority queues.
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11.1.1 Leftist Trees

A leftist tree is a tree which tends to ``lean’’ to the left. The tendency to lean to the left is defi ned 
in terms of the shortest path from the root to an external node. In a leftist tree, the shortest path 
to an external node is always found on the right. 

Every node in binary tree has associated with it a quantity called its null path length which is 
defi ned as follows: 

Null Path and Null Path Length

Consider an arbitrary node x in some binary tree T. The null path of node x is the shortest path in 
T from x to an external node of T. 

The null path length  of node x is the length of its null path. 

Sometimes it is convenient to talk about the null path length of an entire tree rather than of a 
node: 

Null Path Length of a Tree

The null path length  of an empty tree is zero and the null path length of a non-empty binary tree 
T = {R, TL, TR} is the null path length its root R.

When a new node or subtree is attached to a given tree, it is usually attached in place of an 
external node. Since the null path length of a tree is the length of the shortest path from the root 
of the tree to an external node, the null path length gives a lower bound on the cost of insertion. 

 Example: The running time for insertion in a binary search tree, is at least

dτ(compare) + Ω(d)

where d is the null path length of the tree.

A leftist tree is a tree in which the shortest path to an external node is always on the right. This 
informal idea is defi ned more precisely in terms of the null path lengths as follows: 

Defi nition (Leftist Tree)

A leftist tree is a binary tree T with the following properties:

1. Either T = l; or

2. T = {R, TL, TR}, where both TL and TR are leftist trees which have null path lengths dL and dR, 
respectively, such that dL ≥ dR.

Figure 11.1 shows an example of a leftist heap. A leftist heap is simply a heap-ordered leftist 
tree. The external depth of the node is shown to the right of each node in Figure 11.1. The fi gure 
clearly shows that it is not necessarily the case in a leftist tree that the number of nodes to the left 
of a given node is greater than the number to the right. However, it is always the case that the 
null path length on the left is greater than or equal to the null path length on the right for every 
node in the tree.
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Figure 11.1: A Leftist Heap

The reason for our interest in leftist trees is illustrated by the following theorems: 

Theorem-11.1

Consider a leftist tree T which contains n internal nodes. The path leading from the root of T 
downwards to the rightmost external node contains at most ⎣log2(n + 1)⎦ nodes.

extbfProof Assume that T has null path length d. Then T must contain at least 2d–1 leaves. 
Otherwise, there would be a shorter path than d from the root of T to an external node.

A binary tree with exactly l leaves has exactly l-1 non-leaf internal nodes. Since T has at least 2d–1 
leaves, it must contain at least n ≥ 2d – 1 internal nodes altogether. Therefore, d ≤ log2(n + 1). 

Since T is a leftist tree, the shortest path to an external node must be the path on the right. Thus, 
the length of the path to the rightmost external is at most ⎣log2(n + 1)⎦.

There is an interesting dichotomy between AVL balanced trees and leftist trees. The shape of an 
AVL tree satisfi es the AVL balance condition which stipulates that the difference in the heights of 
the left and right subtrees of every node may differ by at most one. The effect of AVL balancing 
is to ensure that the height of the tree is O(log n).

On the other hand, leftist trees have an ``imbalance condition’’ which requires the null path 
length of the left subtree to be greater than or equal to that of the right subtree. The effect of the 
condition is to ensure that the length of the right path in a leftist tree is O(log n).

Therefore, by devising algorithms for manipulating leftist heaps which only follow the right path 
of the heap, you can achieve running times which are logarithmic in the number of nodes.

The dichotomy also extends to the structure of the algorithms. For example, an imbalance 
sometimes results from an insertion in an AVL tree. The imbalance is rectifi ed by doing rotations. 
Similarly, an insertion into a leftist tree may result in a violation of the ``imbalance condition.’’ 
That is, the null path length of the right subtree of a node my become greater than that of the left 
subtree. Fortunately, it is possible to restore the proper condition simply by swapping the left 
and right subtrees of that node.

11.1.2 Implementation

This section presents an implementation of leftist heaps that is based on the binary tree 
implementation. Program 11.1 introduces the LeftistHeap class. The LeftistHeap class extends 
the BinaryTree class introduced in Program 11.1 and it implements the MergeablePriorityQueue 
interface defi ned in Program 11.1.
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public class LeftistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

//...

}

Program 11.1: LeftistHeap Fields

11.1.3 Merging Leftist Heaps

In order to merge two leftist heaps, say h1 and h2, declared as follows

MergeablePriorityQueue h1 = new LeftistHeap ();

MergeablePriorityQueue h2 = new LeftistHeap ();

I invoke the merge method like this: 

h1.merge (h2);

The effect of the merge method is to take all the nodes from h2 and to attach them to h1, thus 
leaving h2 as the empty heap.

In order to achieve a logarithmic running time, it is important for the merge method to do all its 
work on the right sides of h1 and h2. It turns out that the algorithm for merging leftist heaps is 
actually quite simple. 

To begin with, if h1 is the empty heap, then you can simply swap the contents of h1 and h2. 
Otherwise, let us assume that the root of h2 is larger than the root of h1. Then you can merge the 
two heaps by recursively merging h2 with the right subheap of h1. After doing so, it may turn 
out that the right subheap of h1 now has a larger null path length than the left subheap. This you 
rectify by swapping the left and right subheaps so that the result is again leftist. On the other 
hand, if h2 initially has the smaller root, I simply exchange the roles of h1 and h2 and proceed as 
above.

Figure 11.2 illustrates the merge operation. In this example, I wish to merge the two trees T1 and 
T2 shown in Figure 11.2 (a). Since T2 has the larger root, it is recursively merged with the right 
subtree of T1. The result of that merge replaces the right subtree of T1 as shown in Figure 11.2 (b). 
Since the null path length of the right subtree is now greater than the left, the subtrees of T1 are 
swapped giving the leftist heap shown in Figure 11.2 (c).
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Figure 11.2: Merging Leftist Heaps

Program 11.2 gives the code for the merge method of the LeftistHeap class. The merge method 
makes use of two other methods, swapContents and swapSubtrees. The swapContents method 
takes as its argument a leftist heap, and exchanges all the contents (key and subtrees) of this 
heap with the given one. The swapSubtrees method exchanges the left and right subtrees of this 
node. The implementation of these routines is trivial and is left as a project for the reader. Clearly, 
the worst-case running time for each of these routines is O(1).

The merge method only visits nodes on the rightmost paths of the trees being merged. Suppose 
you are merging two trees, say T1 and T2, with null path lengths d1 and d2, respectively. Then the 
running time of the merge method is

(d1 – 1 + d2 – 1)τ(isGT) + O(d1 + d2)
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where τ(isGT) is time required to compare two keys. If you assume that the time to compare two 
keys is a constant, then you get O(log n1 + log n2), where n1 and n2 are the number of internal 
nodes in trees T1 and T2, respectively.

public class LeftistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

 public void merge (MergeablePriorityQueue queue)

 {

  LeflistHeap arg = (LeftistHeap) queue;

  if (isEmpty ())

   swapContents (arg);

  else if (!arg.isEmpty ())

  {
   if (((Comparable) getKey ()).isGT (

     ((Comparable) arg.getKey ())) )

    swapContents (arg);

   getRightHeap ().merge (arg);

   if (getLeftHeap ().nullPathLength <

     getRightHeap ().nullPathLength)

    swapSubtrees ();

   nullPathLength = 1 + Math.min (

    getLeftHeap ().nullPathLength,

    getRightHeap ().nullPathLength);

  }

 }

 // ...

}

Program 11.2: LeftistHeap Class merge Method

11.1.4 Putting items into a Leftist Heap

The enqueue method of the LeftistHeap class is used to put items into the heap. enqueue is 
easily implemented using the merge operation. That is, to enqueue an item in a given heap, I 
simply create a new heap containing the one item to be enqueued and merge it with the given 
heap. The algorithm to do this is shown in Program 11.3.

public class LeflistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

 public void enqueue (Comparable object)

  { merge (new LeflistHeap (object)); }

// ...

}

Program 11.3: LeftistHeap Class enqueue Method
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The expression for the running time for the insert operation follows directly from that of the 
merge operation. That is, the time required for the insert operation in the worst case is

(d – 1)τ(isGT) + O(d),

where d is the null path length of the heap into which the item is inserted. If you assume that two 
keys can be compared in constant time, the running time for insert becomes simply O(log n), 
where n is the number of nodes in the tree into which the item is inserted.

Task  Discuss the use of enqueue method.

11.1.5 Removing items from a Leftist Heap

The fi ndMin method locates the item with the smallest key in a given priority queue and the 
dequeueMin method removes it from the queue. Since the smallest item in a heap is found at the 
root, the fi ndMin operation is easy to implement. Program 11.4 shows how it can be done. Clearly, 
the running time of the fi ndMin operation is O(1).
public class LeftistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

 public Comparable findMin ()

 {

  if (isEmpty ())

   throw new ContainerEmptyExeception ();

  return (Comparable) getKey ();

 }

 // ...

}

Program 11.4: LeftistHeap Class fi ndMin Method

Since the smallest item in a heap is at the root, the dequeueMin operation must delete the root 
node. Since a leftist heap is a binary heap, the root has at most two children. In general when the 
root is deleted, you are left with two non-empty leftist heaps. Since you already have an effi cient 
way to merge leftist heaps, the solution is to simply merge the two children of the root to obtain a 
single heap again! Program 11.5 shows how the dequeueMin operation of the LeftistHeap class 
can be implemented.
public class LeflistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

 public Comparable dequeueMin ()

{

  if (isEmpty ())



Advanced Data Structure and Algorithms

Notes

226 LOVELY PROFESSIONAL UNIVERSITY

   throw new ContainerEmptyException ();

  Comparable result = (Comparable) getKey ();

  LeftistHeap oldLeft = getLeftHeap ();

  LeftistHeap oldRight = getRightHeap ();

  purge ();

  swapContents (oldLeft);

  merge (oldRight);

  return result;

 }

 // ...

}

Program 11.5: LeftistHeap Class dequeueMin Method

The running time of Program 11.5 is determined by the time required to merge the two children of 
the root (line 17) since the rest of the work in dequeueMin can be done in constant time. Consider 
the running time to delete the root of a leftist heap T with n internal nodes. The running time to 
merge the left and right subtrees of T

(dL – 1 + dR – 1)τ(isGT) + O(dL + dR),

where dL and dR are the null path lengths of the left and right subtrees T, respectively. In the worst 
case, dR = 0 and dL = ⎣log2 n⎦.

11.2 Skew Heaps

There are several ways to implement heaps in a self-adjusting fashion. The one I shall discuss is 
called skew heaps as proposed by Sleator and Tarjan, and is analogous to leftist heaps. A skew 
heap is a heap-ordered binary tree. That is, it is a binary tree with one key in each node so that 
for each node x other that the root, the key at node x is no less than the key at the parent of x. To 
represent such a tree you store in each node x its associated key, denoted key(x) and two pointers 
left(x) and right(x), to its left child and right child, respectively. If x has no left child I defi ne 
left(x) =L; if x has no right child I defi ne right(x) =L. Access to the tree is by a pointer to its root; 
you represent an empty tree by a pointer to L.

With this representation you can carry out the various heap operations as follows. I perform 
makeheap(h) in O(1) time by initializing h to L. Since heap order implies that the root is a 
minimum key in the tree, you can carry out fi ndmin(h) in O(1) time by returning the key at the 
root; returning null if the heap is empty. You perform insert and deletemin using union. To carry 
out insert(k , h), I make k into a one-node heap and Union it with h. To carry out deletemin(h), 
if h is not empty I replace h by the Union of its left and right subtrees and return the key at the 
original root. (If h is originally empty you return null.)

To perform union( h1 , h2), you form a single tree by traversing down the right paths of h1 and 
h2, merging them into a single right path with keys in nondecreasing order. First assume the left 
subtrees of nodes along the merge path do not change. (Figure 11.3(a).) The time for the Union 
operation is bounded by a constant times the length of the merge path. To make Union effi cient, 
you must keep right paths short. In leftist heaps this is done by maintaining the invariant that, 
for any node x, the right path descending from x is a shortest path down to a missing node. 
Maintaining this invariant requires storing at every node the length of a shortest path down 
to a missing node; after the merge you walk back up the merge path, updating the shortest 
path lengths and swapping left and right children as necessary to maintain the leftist property. 
The length of the right path in a leftist heap of n nodes is at most log n, implying an O( log n) 
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worst-case time bound for each of the heap operations, where n is the number of nodes in the 
heap or heaps involved.
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Figure 11.3: A Union of two Skew Heaps 
(a) Merge of the Right Paths (b) Swapping of Children along the Path formed by the Merge

In our self-adjusting version of this data structure, I perform the Union operation by merging the 
right paths of the two trees and then swapping the left and right children of every node on the 
merge path except the lowest. (Figure 11.3(b)) This makes the potentially long right path formed 
by the merge into a left path you call the resulting data structure a skew heap.

Task  “A skew heap is a heap-ordered binary tree.” Explain.

11.3 Binomial Queues

A binomial queue is a priority queue that is implemented not as a single tree but as a collection 
of heap-ordered trees. A collection of trees is called a fores.. Each of the trees in a binomial queue 
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has a very special shape called a binomial tree. Binomial trees are general trees. i.e., the maximum 
degree of a node is not fi xed.

The remarkable characteristic of binomial queues is that the merge operation is similar in structure 
to binary addition, i.e., the collection of binomial trees that make up the binomial queue is like 
the set of bits that make up the binary representation of a non-negative integer. Furthermore, the 
merging of two binomial queues is done by adding the binomial trees that make up that queue in 
the same way that the bits are combined when adding two binary numbers. 

Binomial Trees

A binomial tree is a general tree with a very special shape:

Defi nition (Binomial Tree)

The binomial tree of order k ≥ 0 with root R is the tree Bk defi ned as follows

1. If k = 0, Bk = B0 = {R} i.e., the binomial tree of order zero consists of a single node, R. 

2. If k > 0, Bk = {R, B0, B1, ..., Bk–1} i.e., the binomial tree of order k>0 comprises the root R, and 
k binomial subtrees, B0, B1, ..., Bk–1.

Figure 11.4 shows the fi rst fi ve binomial trees, B0 – B4. It follows directly from the root of Bk, the 
binomial tree of order k, has degree k. Since k may arbitrarily large, so too can the degree of the 
root. Furthermore, the root of a binomial tree has the largest fanout of any of the nodes in that 
tree.

B0 B1 B2 B3

B4

Figure 11.4: Binomial Trees B0, B1, ..., B4
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The number of nodes in a binomial tree of order k is a function of k:

Theorem-11.3

The binomial tree of order k, Bk, contains 2k nodes. 

extbfProof (By induction). Let nk be the number of nodes in Bk, a binomial tree of order k. 

Base Case: By defi nition, B0 consists a single node. Therefore n0 = 1 = 20.

Inductive Hypothesis: Assume that nk = 2k for k = 0, 1, 2, ..., l, for some l ≥ 0. Consider the binomial 
tree of order l + 1:

Bl + 1 = {R, B0, B1, B2, ..., Bl}.

Therefore the number of nodes in Bl+1 is given by

 nl+1 = 
0

1
l

i
i

n
=

+ ∑

 = 
0

1 2
l

i

i=

+ ∑

 = 
12 – 11

2 – 1

l+

+

 = 2l+1

Therefore, by induction on l, nk = 2k for all k ≥ 0.

It follows from Theorem 11.3 that binomial trees only come in sizes that are a power of two. i.e., 
nk ∈ {1, 2, 4, 8, 16, ...}. Furthermore, for a given power of two, there is exactly one shape of 
binomial tree.

Theorem-11.4

The height of Bk, the binomial tree of order k, is k.

extbfProof (By induction). Let hk be the height of Bk, a binomial tree of order k. 

Base Case: By defi nition, B0 consists a single node. Therefore h0 = 0.

Inductive Hypothesis: Assume that hk = k for k = 0, 1, 2, ..., l, for some l ≥ 0. Consider the binomial 
tree of order l + 1:

Bl+1 = {R, B0, B1, B2, ..., Bl}.

Therefore the height Bl+1 is given by

 hl+1 = 
0

1 max ii l
h

≤ ≤
+

 = 
0

1 max
i l

i
≤ ≤

+

 = l + 1.

Therefore, by induction on l, hk = k for all k ≥ 0.

Theorem 11.4 tells us that the height of a binomial tree of order k is k and tells us that the number 
of nodes is nk = 2k. Therefore, the height of Bk is exactly O(log n).

Figure 11.5 shows that there are two ways to think about the construction of binomial trees, i.e., 
binomial Bk consists of a root node to which the k binomial trees B0, B1, ..., Bk–1 are attached as 
shown in Figure 11.5 (a).
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B0

B1

B2

B3

B3

B3

(a)

(b)

Figure 11.5: Two Views of Binomial Tree B4

Alternatively, you can think of Bk as being comprised of two binomial trees of order k-1.

 Example: Figure 11.5 (b) shows that B4 is made up of two instances of B3. In general, 
suppose you have two trees of order k-1, say B1

k–1 and B2
k–1, where B1

k–1 = {R1, B1
0, B1

1, B1
2, ..., B1

k–2}. 
Then you can construct a binomial tree of order k by combining the trees to get

  Bk = {R1, B1
0, B1

1, B1
2, ..., B1

k–2, B2
k–1}.

Why do you call Bk a binomial tree? It is because the number of nodes at a given depth in the tree 
is determined by the binomial coeffi cient. And the binomial coeffi cient derives its name from the 
binomial theorem. And the binomial theorem tells us how to compute the nth power of a binomial . 
And a binomial is an expression which consists of two terms, such as x+y. That is why it is called 
a binomial tree!

Task  “Binomial tree is a general true with a very special shape” Discuss.
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11.4 Summary

 A power-of-2 heap is a left-heap-ordered tree consisting of a root node with an empty right 
subtree and a complete left subtree. 

 The tree corresponding to a power-of-2 heap by the left-child, right-sibling correspondence 
is called a binomial tree.

 Binomial trees and power-of-2 heaps are equivalent. I work with both representations 
because binomial trees are slightly easier to visualize, whereas the simple representation of 
power-of-2 heaps leads to simpler implementations.

11.5 Keywords

Binomial Queue: A binomial queue is a priority queue that is implemented not as a single tree 
but as a collection of heap-ordered trees.

Leftist Heap: A leftist heap is a heap-ordered binary tree which has a very special shape called 
a leftist tree.

Leftist Tree: A leftist tree is a tree which tends to ``lean’’ to the left. The tendency to lean to the left 
is defi ned in terms of the shortest path from the root to an external node.

Skew Heap: A skew heap is a heap-ordered binary tree.

11.6 Self Assessment

Fill in the blanks:

1. A collection of trees is called a ........................ .

2. Every node in binary tree has associated with it a quantity called its ........................ .

3. The null path length of an empty tree is ........................ .

4. A leftist tree is a tree in which the shortest path to an external node is always on the 
........................ .

5. The ........................ method of the LeftistHeap class is used to put items into the heap.

6. The ........................ method locates the item with the smallest key in a given priority 
queue.

7. Skew heaps as proposed by ........................ .

8. Each of the trees in a binomial queue has a very special shape called a ........................ .

11.7 Review Questions

1. What do you mean by leftist heaps?

2. Describe null path and null path length.

3. Write the methods to implement queues by the simple but slow technique of keeping the 
front of the queue always in the fi rst position of a linear array.

4. Prove that “Consider a leftist tree T which contains n internal nodes. The path leading 
from the root of T downwards to the rightmost external node contains at most ⎣log2(n + 1)⎦ 
nodes.”
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5. Write methods to implement queues in a circular array with one unused entry in the array. 
That is, we consider that the array is full when the rear is two positions before the front; 
when the rear is one position before, it will always indicate an empty queue.

6. Prove that “The binomial tree of order k, Bk, contains 2k nodes. extbfProof (By induction). 
Let nk be the number of nodes in Bk, a binomial tree of order k.”

7. Write a menu driven demonstration program for manipulating a deque of characters, 
similar to the Extended_queue demonstration program.

8. Write the class defi nition and the method implementations needed to implement a deque 
in a linear array.

9. Write the methods needed to implement a deque in a circular array. Consider the class 
Deque as derived from the class Queue.

10. Write a method to implement queues, where the implementation does not keep a count of 
the entries in the queue but instead uses the special conditions

 rear = −1 and front = 0

 to indicate an empty queue.

Answers: Self Assessment

1. fores 2. null path length 3. zero 4. right

5. enqueue 6. fi ndMin 7. Sleator and Tarjan

8. binomial tree
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Objectives

After studying this unit, you will be able to:

 Discuss internal sorting

 Explain heap sort, merge sort and quick sort

 Describe external sorting

 Discuss the implementation of heaps

Introduction

Retrieval of information is made easier when it is stored in some predefi ned order. Sorting is, 
therefore, a very important computer application activity. Many sorting algorithms are available. 
Different environments require different sorting methods. Sorting algorithms can be characterised 
in the following two ways:

1. Simple algorithms which require the order of n2 (written as O(n2))comparisons to sort n 
items.

2. Sophisticated algorithms that require the O(nlog
2
n) comparisons to sort n items.
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The difference lies in the fact that the fi rst method moves data only over small distances in the 
process of sorting, whereas the second method moves data over large distances, so that items 
settle into the proper order sooner, thus resulting in fewer comparisons. Performance of a sorting 
algorithm can also depend on the degree of order already present in the data.

There are two basic categories of sorting methods: Internal Sorting and External Sorting. Internal 
sorting is applied when the entire collection of data to be sorted is small enough so that the sorting 
can take place within the main memory. The time required to read or write is not considered to be 
signifi cant in evaluating the performance of internal sorting methods. External sorting methods 
are applied to larger collection of data which reside on secondary devices. Read and write access 
times are a major concern in determining sorting performances of such methods.

Searching is the process of looking for something: Finding one piece of data that has been stored 
within a whole group of data. It is often the most time-consuming part of many computer 
programs. There are a variety of methods, or algorithms, used to search for a data item, depending 
on how much data there is to look through, what kind of data it is, what type of structure the data 
is stored in, and even where the data is stored - inside computer memory or on some external 
medium.

Till now, we have studied a variety of data structures, their types, their use and so on. In this 
chapter, we will concentrate on some techniques to search a particular data or piece of information 
from a large amount of data. There are basically two types of searching techniques, Linear or 
Sequential Search and Binary Search.

Searching is very common task in day-to-day life, where we are involved some or other time, in 
searching either for some needful at home or offi ce or market, or searching a word in dictionary. 
In this chapter, we see that if the things are organised in some manner, then search becomes 
effi cient and fast.

All the above facts apply to our computer programs also. Suppose we have a telephone directory 
stored in the memory in an array which contains Name and Numbers. Now, what happens if we 
have to fi nd a number? The answer is search that number in the array according to name (given). 
If the names were organised in some order, searching would have been fast.

12.1 Internal Sorting

The function of sorting or ordering a list of objects according to some linear order is so fundamental 
that it is ubiquitous in engineering applications in all disciplines. There are two broad categories of 
sorting methods: Internal sorting takes place in the main memory, where we can take advantage 
of the random access nature of the main memory; external sorting is necessary when the number 
and size of objects are prohibitive to be accommodated in the main memory.

Problem

1. Given records r1, r2,..., rn, with key values k1, k2,..., kn, produce the records in the order

  ri1, ri2,..., rin, 

 such that

  ki1 ≤ ki2 ≤ ... ≤ kin

2. The complexity of a sorting algorithm can be measured in terms of

(a) number of algorithm steps to sort n records 

(b) number of comparisons between keys (appropriate when the keys are long character 
strings) 

(c) number of times records must be moved (appropriate when record size is large)
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Any sorting algorithm that uses comparisons of keys needs at least O(n log n) time to accomplish 
the sorting.

Sorting Methods

Internal External
(In memory)

quick sort
heap sort

bubble sort
insertion sort
selection sort

shell sort

(Appropriate for secondary storage)

merge sort
radix sort

poly-phase sort

12.2 Insertion Sort

This is a naturally occurring sorting method exemplifi ed by a card player arranging the cards 
dealt to him. He picks up the cards as they are dealt and inserts them into the required position. 
Thus at every step, we insert an item into its proper place in an already ordered list.

We will illustrate insertion sort with an example (refer to Figure 9.1) before presenting the formal 
algorithm.

 Example: Sort the following list using the insertion sort method:

(1) 4

4, 1, 3, 2, 5

1 < 4, Therefore insert before 4

(2) 1 4

3 > 1, 3 Insert between 1 & 4

(3) 1 3 4

2 > 1, 2 Insert between 1 & 3

(4) 1 2 3 4

(5) 1 2 3 4 5

5 > 1, 2, 3, 4 Insert after 4

Insertion Sort

Thus to fi nd the correct position search the list till an item just greater than the target is found. 
Shift all the items from this point one down the list. Insert the target in the vacated slot. Repeat 
this process for all the elements in the list. This results in sorted list.

12.2.1 Algorithm of Insertion Sort

Insertion sort algorithm somewhat resembles selection sort. Array is imaginary divided into 
two parts - sorted one and unsorted one. At the beginning, sorted part contains fi rst element of 
the array and unsorted one contains the rest. At every step, algorithm takes fi rst element in the 
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unsorted part and inserts it to the right place of the sorted one. When unsorted part becomes 
empty, algorithm stops. Sketchy, insertion sort algorithm step looks like this:

Sorted partitial result Unsorted data

< X > X X . . .

becomes

Sorted partitial result Unsorted data

< X X > X . . .

 Example: Sort {7, -5, 2, 16, 4} using insertion sort.

unsorted7 2 16 4–5

–5 to be inserted7 2 16 4–5

7 > –5, shift? 2 16 47

reached left boundary, insert-5–5 2 16 47

2 to be inserted–5 2 16 47

7 > 2, shift–5 7 16 4?

–5 < 2, insert 2–5 7 16 42

16 to be inserted–5 7 16 42

7 < 16, insert 16–5 7 16 42

4 to be inserted–5 7 16 42

16 > 4, shift–5 7 ? 162

7 > 4, shift–5 ? 7 162

2 < 4, insert 4–5 4 7 162

sorted–5 4 7 162

The Ideas of Insertion

The main operation of the algorithm is insertion. The task is to insert a value into the sorted part 
of the array. Let us see the variants of how we can do it.

“Sifting down” using Swaps

The simplest way to insert next element into the sorted part is to sift it down, until it occupies 
correct position. Initially the element stays right after the sorted part. At each step algorithm 
compares the element with one before it and, if they stay in reversed order, swap them. Let us 
see an illustration.
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16 > 5, swap1 7 9 163

9 > 5, swap1 7 9 53

7 > 5, swap1 7 5 93

3 < 5 < 7, sifting is done1 5 7 9

5

16

16

163

This approach writes sifted element to temporary position many times. Next implementation 
eliminates those unnecessary writes.

Shifting Instead of Swapping

We can modify previous algorithm, so it will write sifted element only to the fi nal correct position. 
Let us see an illustration.

16 > 5, swap1 7 9 163

9 > 5, swap1 7 9 ?3

7 > 5, swap1 7 ? 93

3 < 5 < 7, sifting is done

insert 5 to final position

1 5 7 9

5

16

16

163

It is the most commonly used modifi cation of the insertion sort.

Using Binary Search

It is reasonable to use binary search algorithm to fi nd a proper place for insertion. This variant of 
the insertion sort is called binary insertion sort. After position for insertion is found, algorithm 
shifts the part of the array and inserts the element. This version has lower number of comparisons, 
but overall average complexity remains O(n2). From a practical point of view this improvement is 
not very important, because insertion sort is used on quite small data sets.

12.2.2 Complexity Analysis

Insertion sort’s overall complexity is O(n2) on average, regardless of the method of insertion. On 
the almost sorted arrays insertion sort shows better performance, up to O(n) in case of applying 
insertion sort to a sorted array. Number of writes is O(n2) on average, but number of comparisons 
may vary depending on the insertion algorithm. It is O(n2) when shifting or swapping methods 
are used and O(n log n) for binary insertion sort.

From the point of view of practical application, an average complexity of the insertion sort is not 
so important. As it was mentioned above, insertion sort is applied to quite small data sets (from 
8 to 12 elements).

12.3 Shell Sort

Most of the sorting algorithms seen so far such as insertion sort and selection sort have a run time 
complexity of O(N2). We also know that no sorting algorithm can have time complexity less than 
O(N), since we need to scan the list at least once. For example, insertion sort best case complexity 
is O(N). Can we get a better performance and get run time complexity between O(N2) and O(N)? 
The answer is Yes and there are many algorithms with a complexity in this range, with varying 
tradeoffs. In this note, we describe one approach: Shell Sort. Shell Sort has evolved as a trial and 
error algorithm. Analytical results are not available but empirically it has been found that the 
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Shell Sort improves the effi ciency and decreases the run time complexity to O(N1.25). Donald Shell 
discovered the Shell sort and thence it is known as Shell Sort.

Algorithm

The algorithms for shell sort can be defi ned in two steps:

Step 1: Divide the original list into smaller lists.

Step 2: Sort individual sub lists using any known sorting algorithm (like bubble sort, insertion 
sort, selection sort, etc).

void shellsort (int[] a, int n)

{

    int i, j, k, h, v;

    int[] cols = {1391376, 463792, 198768, 86961, 33936, 13776, 4592,

                    1968, 861, 336, 112, 48, 21, 7, 3, 1}

    for (k=0; k<16; k++)

    {

        h=cols[k];

        for (i=h; i<n; i++)

        {

            v=a[i];

            j=i;

            while (j>=h && a[j-h]>v)

            {

                a[j]=a[j-h];

                j=j-h;

            }

            a[j]=v;

        }

    }

}

Many questions arise

1. How should I divide the list? 

2. Which sorting algorithm to use?

3. How many times I will have to execute steps 1 and 2?

4. And the most puzzling question if I am anyway using bubble, insertion or selection sort 
then how I can achieve improvement in effi ciency? I shall discuss each of these questions 
one by one.

For dividing the original list into smaller lists, we choose a value K, which is known as increment. 
Based on the value of K, we split the list into K sub lists. For example, if our original list is 
x[0], x[1], x[2], x[3], x[4]….x[99] and we choose 5 as the value for increment, K then we get the 
following sub lists.

 fi rst_list  = x[0], x[5], x[10], x[15]…….x[95]
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 second_list  = x[1], x[6], x[11], x[16]…….x[96]

 third_list  = x[2], x[7], x[12], x[17]…….x[97]

 forth_list  = x[3], x[8], x[13], x[18]…….x[98]

 fi fth_list  = x[4], x[9], x[14], x[19] …….x[99]

So the ith sub list will contain every Kth element of the original list starting from index i-1.

According to the algorithm mentioned above, for each iteration, the list is divided and then 
sorted. If we use the same value of K, we will get the same sub lists and every time we will sort 
the same sub lists, which will not result in the ordered fi nal list. Note that sorting the fi ve sub 
lists independently do not ensure that the full list is sorted! So we need to change the value of 
K (increase or decrease?) for every iteration. To know whether the array is sorted, we need to 
scan the full list. We also know that number of sub lists we get are equal to the value of K. So if 
we decide to reduce the value of K after every iteration we will reduce the number of sub lists 
also in every iteration. Eventually, when K will be set to 1, we will have only one sub list. Hence 
we know the termination condition for our algorithm is K = 1. Since for every iteration we are 
decreasing the value of the increment (K) the algorithm is also known as “diminishing increment 
sort”.

Any sorting algorithm or a combination of algorithms can be used for sorting the sub lists, e.g. 
some shell sort implementation use bubble sort for the last iteration and insertion sort for other 
iterations. We use insertion sort in this tutorial. How does shell sort give better performance if 
the sorting is ultimately done by algorithms like insertion sort and bubble sort? The rationale is 
as follows.

If the list is either small or almost sorted then insertion sort is effi cient since less number of 
elements will be shifting. In Shell Sort as we have already seen, the original list is divided into 
smaller lists based on the value of increment and sorted.

Initially value of K is fairly large giving a large number of small sub lists. We know that simple 
sorting algorithms like insertion sort are effective for small lists, since the data movements are 
over short distances. As K reduces in value, the length of the sub lists increases. But since the 
earlier sub lists have been sorted, we except the full list to look more and more sorted. Again note 
that algorithms such as insertion sort are fairly effi cient when they work with nearly sorted lists. 
Thus the ineffi ciency arising out of working with larger lists is partly compensated by lists being 
increasingly sorted. This is the intuitive explanation for the performance of shell sort. 

How to choose the value of increment K?

Till date there is no convincing answer to what should be the optimal sequence for the increment, 
K. But it has been empirically found that larger number of increments gives more effi cient results. 
Also it is advisable not to use empirical sequences like 1,2,4,8… or 1,3,6,9… if we do so, for 
different iteration, we may get almost the same elements in the sub lists to compare and sort 
which will not result in better performance. For example, consider a list X= 12 6 2 5 8 10 1 15 31 
23 and increment sequences 6 and 3.

When the increment is 6, you will get the following sub lists

(12,1)

(6,15)

(2,31)

(5,23)

( 8)

(10)
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After fi rst iteration

X=1 6 2 5 8 10 12 15 31 23

When the increment reduces to 3, you will get the following lists

(1, 5, 12, 23)

(6, 8, 15)

(2, 10, 31)

Now if we analyse the fi rst sub lists where increment was 6 and then second sub lists where 
increment was 3, we can see that in the second set of lists, we are comparing and sorting 1, 12 
again which we had already sorted before in the previous sub list. So, we should choose the 
value of K in such a way that in every iterations we get almost different elements in the sub lists 
to compare and sort.

There are proven and recommended ways for generating the increment sequences.

Some of them have been discussed below.

Donald Shell has suggested

Ht = N/2

Hk= hk+1 /2

Which give the increment series as: N/2, N/4, …….1

Hibbard suggested the sequence of increment as 1, 3, 7, …….2K-1.

Another way for calculating increment K suggested by Knuth and we have used this method for 
generating the increments in this tutorial.

hi = 1

hi = hi* 3 +1 and stops at ht, When ht+2 >= N.

Which gives the increment series as 1, 4, 13….. ht.

Task  Discuss insertion sorting techniques.

Other than these, there are many series which have been empirically found and perform well.

 Example:  We will take an example to illustrate Shell sort. Let the list be 8 2 84 6 12 5 
76 9 13 67 54 0 43 20 -4 78 32 62 75 106 16 4 77 45 23 31 92 7 18 and the increment values using 
Knuth formula we get are 13, 4, 1.

When increment is 13, we get the following 13 sub lists and the elements are divided among the 
sub lists in the following ways i.e. every Kth element of the list starting with the index i will be in 
the sub list i.
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After sorting the sub lists, the resulting list we get is as follows.

8 -4 18 6 12 5 76 9 4 67 45 0 31 20 2 78 32 62 75 106 16 13 77 54 23 43 92 7 84

You now, reduce the increment value to 4 and get the following 4 sub lists.

After sorting these sub lists, the resulting list is as follows:

4 -4 2 0 8 5 18 6 12 13 45 7 16 20 75 9 23 43 76 54 31 62 77 78 32 67 92 106 84

You further reduce increment value to 1, which is our last increment value. Now there is only one 
list, which after sorting, we get:

–4 0 2 4 5 6 7 8 9 12 13 16 18 20 23 31 32 43 45 54 62 67 75 76 77 78 84 92 106

Now try to understand and analyse what is happening? How the elements are moved? We can 
see, after the fi rst iteration when the increment was 13, the element –4 of the list, which was 
at 15th position in the original list has reached to the 2nd position. The element 18 was at 29th 
position and has reached the 3rd position. Using insertion sort on the whole list, we know that 
if –4 has to reach from the 15th position to the 2nd position, the required number of movements 
of the elements in the list will be very high. Shell Sort performs better than insertion sort by 
reducing the number of movements of elements in the lists. This is achieved by large strides the 
element take in the beginning cycle.

Upper Bound

Theorem: With the h-sequence 1, 3, 7, 15, 31, 63, 127, ..., 2k – 1, ... Shellsort needs O(n• n) steps for 
sorting a sequence of length n (Papernov/Stasevic [PS 65]).

Proof: Let ht be the h closest to  n. We analyze the behavior of Shellsort separately for the elements 
hk with k ≤ t and with k > t.

Let k ≤ t. Since hk = 2k – 1 we have the conditions mentioned above that hk+1 and hk+2 are relatively 
prime and in O(hk). Therefore, O(n⋅hk) sorting steps suffi ce for hk-sorting the data sequence. Since 
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the hk form a geometric series, the sum of all hk with k = 1, ..., t is in O(ht) = O( n). Thus O(n⋅n) 
sorting steps are needed for this part where k t. 

Now let k > t. When the sequence is arranged as an array with hk columns there are n/hk elements 
in each column. Thus, O((n/hk)2) sorting steps are needed to sort each column, since Insertion 
Sort has quadratic complexity. There are hk columns, therefore the number of sorting steps for hk-
sorting the entire data sequence is in O((n/hk)2⋅hk) = O(n⋅n/hk). Again, the n/hk form a geometric 
series whose sum is in O(n/ht) = O( n). Therefore, again O(n⋅n) steps are needed for this part 
where k > t.

It can be shown that for this h-sequence the upper bound is tight. But there is another h-sequence 
that leads to a more effi cient behavior of Shellsort.

Theorem:  With the h-sequence 1, 2, 3, 4, 6, 8, 9, 12, 16, ..., 2p3q, ... Shellsort needs O(n⋅log(n)2) 
steps for sorting a sequence of length n  (Pratt [Pra 79]). 

Proof:  If g = 2 and h = 3, then γ(g, h)  =  (g-1)⋅(h-1) – 1  =  1, i.e. in a 2,3-sorted sequence to the right 
of each element only the next element can be smaller. Therefore, O(n) sorting steps suffi ce to sort 
the sequence with Insertion Sort. Considering elements with odd and with even index separately, 
it becomes clear that again O(n) sorting steps suffi ce to make a 4,6-sorted sequence 2-sorted. 
Similarly, O(n) sorting steps suffi ce to make a 6,9-sorted sequence 3-sorted and so on. 

The above h-sequence has the property that for each hk also 2hk and 3hk occurs, so O(n) sorting 
steps suffi ce for each hk. Altogether there are log(n)2 elements in the h-sequence; thus the 
complexity of Shellsort with this h-sequence is in O(n⋅log(n)2).

The h-sequence of Pratt performs best asymptotically, but it consists of log(n)2 elements. 
Particularly, if the data sequence is presorted, a h-sequence with less elements is better, since the 
data sequence has to be scanned (by the for-i-loop in the program) for each hk, even if only a few 
sorting steps are performed. 

By combining the arguments of these two theorems h-sequences with O(log(n)) elements can be 
derived that lead to a very good performance in practice, as for instance the h-sequence of the 
program. But unfortunately, there seems to be no h-sequence that gives Shellsort a worst case 
performance of O(n⋅log(n)). It is an open question whether possibly the average complexity is in 
O(n⋅log(n)).

12.4 Heap Sort

Heapsort is a sorting technique which sorts a contiguous list of length n with O(nlog2(n) 
comparisons and movement of entries, even in the worst case. Hence it achieves worst-case 
bounds better than those of quicksort, and for contiguous list it is better than mergesort, since it 
needs only a small and constant amount of space apart from the list being sorted.

Heapsort proceeds in two phases. First, all the entries in the list are arranged to satisfy heap 
property, and then top of the heap is removed and another entry is promoted to take its place 
repeatedly. Therefore we need a procedure which builds an initial heap to arrange all the entries 
in the list to satisfy heap property. The procedure which builds an initial heap uses a procedure 
which adjust the ith entry in the list whose entries at 2i and 2i + 1 positions already satisfy heap 
property in such a manner entry at ith position in the list will also satisfy heap property.

The following C code implements the algorithm.

void adjust(list x, int i, int n) 

{

 int j, k;

 Boolean flag;
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 k = list[i];

 flag = true;

 j = 2 * i;

 while(j <= n && flag)

 {

  if((j < n) && (list[j] < list[j+ 1]))

   j = j + 1 ;

  if(k >= list[j]) 

   flag = false;

  else 

  {

   list[j div 2] = list[j]; 

   j = j * 2;

  }

 }

 list[j div 2] = k;

}

void build_initial_heap(list x, int n) 

{

 int i;

 for(i = n div 2; i >= 1; i--) 

 adjust(x, i, n);

}

void heapsort(list x, int n) 

{

 int i;

 build_initial_heap(x, n); 

 for(i = n-l; i >= 1; i--)

 {

  exchange(list[1], list[i+1]);

  adjust(x, l, i);

 }

 }

void exchange(int &a, int &b)

{

 int t;

 t = *a;

    *a = *b;

 *b = t;

 }
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void adjust(int x[], int i, int n) 

{

 int j, k; 

 int flag;

 k = x[i];

 flag = 1;

 j = 2 * i;

 while(j <= n && flag == 1)

 {

  if((j < n) && (x[j] < x[j+ 1])) 

   j++;

  if(k >= x[j])

   flag = 0;

  else 

   {

    x[j / 2] = x[j];

    j = j * 2;

   }

 }

 x[j / 2] = k;

}

void build_initial_heap(int x[], int n) 

{

 int i;

 for(i = n / 2; i >= 1; i--) 

 adjust(x, i, n);

}

void heapsort(int x[], int n) 

{

 int i;

 build_initial_heap(x, n); 

 for(i = n-l; i >= 1; i--) 

 {

  exchange(x[1], x[i+ 1]); 

  adjust(x,l,i);

}

Analysis of Heapsort

In each pass of while loop in procedure adjust( x,i,n), the position i is doubled, hence the number 
of passes cannot exceed (loge n div i). Therefore the computation time of adjust is O(log n div 
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i). The procedure build-initial-heap calls the adjust procedure for values of i ranging from n/2 
down to 1. Hence the total number of iterations will be:

/2

1
log( ) log( /2) .....log( / /2) log( / ) /2log( ) – log(! /2)

n

i
n n n n n i n n n

=

+ + = =∑
This comes out to be some constant times n. Hence the computation time of build_initial_heap is 
O(n). The heapsort procedure calls adjust (x, 1, i) (n-1) times, hence the total number of iterations 
made in the heap sort will be:

1

1
log( /1)

n

i
i

−

=
∑
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1
log( ) log(1) log(2) ..... log( – 1)

n

i
i n

−

=
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which comes out to be approx. n log(n). Hence the computing time of heapsort is O(n log(n)) + 
O(n).

The only additional space needed by heap sort is space for one record to carry out exchange.

Consider a list given below when heapsort is applied to it we get following:

 42 97

 32 58

 48 75

 20 53

 58 42

 53 53

 75 48

 53 32

 97 20

 list to be sorted initial heap

Output after each pass of heapsort

75 58 53 53 48 42 32 20

58 53 48 48 42 32 20 32

53 53 53 20 20 20 42 42

53 32 32 32 32 48 48 48

42 42 42 42 53 53 53 53

20 20 20 53 53 53 53 53

48 48 58 58 58 58 58 58

32 75 75 75 75 75 75 75

97 97 97 97 97 97 97 97

12.5 Merge Sort

This is another sorting technique having the same average and worst case time complexity, 
requiring an additional list of size n. The technique that we use is the merging of the two sorted 
lists of size m and n respectively to form a single sorted list of size (m+n). Given a list of size n to 
be sorted, instead of viewing it to be one single list of size n, we start by viewing it to be n lists 
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each of size 1, and merge the fi rst list with the second list to form a single sorted list of size 2. 
Similarly we merge the third and the fourth lists to form a second single sorted list of size 2, and 
so on this completes the one pass. We then consider the fi rst sorted list of size 2 and second sorted 
list of size 2, and merge them to form a single sorted list of size 4. Similarly we merge the third 
and the fourth sorted lists each of size 2 to form the second single sorted list of size 4, and so on; 
this completes the second pass. In the third pass we merge these adjacent sorted lists each of size 
4 to form sorted lists of size 8. We continue this process till fi nally we end up with a single sorted 
list of size n as shown in fi gure.

  10 5 1 20 25 6 7 3 

        [5,10] [1,20] [6,25] [3,7] 

[1,5,10,20] [3,6,7,25] 

[1,3,5,6,7,10,20,25] 

To carry out the above task, we require a procedure to merge the two sorted lists of size m and 
n respectively to form a single sorted list of size (m+n), we also require a procedure to carry out 
one pass of the list merging the adjacent sorted lists of the specifi ed size. This is because we have 
to carry out the repeated passes of the given list. In the fi rst pass, we merge the adjacent lists of 
size 1. In the second pass, we merge the adjacent lists of size 2, and so on. Therefore, we will call 
this procedure by varying the size of the lists to be merged.

Here is a C implementation of the same.

void merge(int s[], int y[], int l, int m, int n) 

{

 int i,j,k;

 i =1;

 j = m+1;

 k= 1;

 while ((i <= m) && (j <= n)) 

 {

  if(x[i] <= x[j])  

  {
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   y[k] =x[i]; 

   i++ ; 

   k++;

  }

  else

  {

   y[k] = x[j]; 

   j++;; 

   k++;

  }

 }

 while (i <= m)

 {

  y[k] =x[i]; 

  i++; 

  k++;

 }

 while (j <= n)  

 {

  y[k] = x[j];

  j++;

  k++;

 }

}

void mpass(int x[],int y[],int 1, int n)

{

 int i,j;

 i = 1;

 whi1e(i <= n - 2 * 1 + 1)  

 {

  merge(x, y, i, i+l-1, i+ 2 * 1-1); 

  i = i + 2 * 1;

 }

 if((i+1-1) < n)  

  merge(x, y, i, i+1-1, n); 

 else

  while (i <= n ) 

  {

   y[i] =x[i]; 

   i++;
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  }

}

void msort(int x[], int n) 

{

 int 1; 

 int y[];

 1 = 1;

 while(1 < n) 

 {

  mpass(x, y, l, n); 

  1 = 1 * 2; 

  mpass(y, x, l, n); 

  1 = 1 * 2;

 }

 }

The merging of two sub-lists, the fi rst running from the index 1 to m, and the second running 
from the index (m+1) to n requires no more than (n-1+1) iterations. Hence if 1 = 1, then no more 
than n iterations, where n is the size of the list to be sorted. Therefore if n is the size of the list to be 
sorted, every pass that a merge routine performs requires a time proportional to O(n), and since 
the number of passes required to be performed are log2n. The time complexity of the algorithm is 
O(nlog2(n)), both average and worst case. The merge sort requires an additional list of size n.

Multi-way Merge Sort

The two-phase, multiway merge-sort algorithm is similar to the external-memory merge-sort 
algorithm presented in the previous section. Phase 1 is the same, but, in phase 2, the main loop is 
performed only once merging all [N/M] runs into one run in one go. To achieve this, multiway 
merging is performed instead of using the TWOWAY-MERGE algorithm.

The idea of multiway merging is the same as for the two-way merging, but instead of having 2 
input buffers (Bf1 and Bf2) of B elements, we have [N/M] input buffers, each B elements long. 
Each buffer corresponds to one unfi nished (or active) run. Initially, all runs are active. Each buffer 
has a pointer to the fi rst unchosen element in that buffer (analogous to p1 and p2 in TWOWAY-
MERGE).

The multiway merging is performed by repeating these steps:

1. Find the smallest element among the unchosen elements of all the input buffers. Linear 
search is suffi cient, but if the CPU cost is also important, minimum priority queue can be 
used to store pointers to all the unchosen elements in input buffers. In such a case, fi nding 
the smallest element is logarithmic in the number of the active runs.

2. Move the smallest element to the fi rst available position of the output buffer.

3. If the output buffer is full, write it to the disk and reinitialize the buffer to hold the next 
output page.

4. If the buffer, from which the smallest element was just taken is now exhausted of elements, 
read the next page from the corresponding run. If no pages remain in that run, consider the 
run fi nished (no longer active).
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When only one active run remains the algorithm fi nishes up as shown in lines 30 and 32 of 
TWOWAY-MERGE-it just copies all the remaining elements to the end of fi le X. Figure 12.1 
visualizes multiway merging.

Input buffers, one for 
each unfinished run 

Pointers to first 
unchosen elements 

Select smallest 
unchosen 
element for 
output 

P0 

……….. 

Bf0 

Figure 12.1: Main-memory Organization for Multiway Merging

It is easy to see that phase 2 of the two-phase, multiway merge-sort algorithm performs only θ 
(n) I/O operations and this is also the running time of the whole algorithm. In spite of this, the 
algorithm has a limitation-it can not sort very large fi les.

If phase 1 of the algorithm produces more than m – 1 runs (N/M > m – 1), all runs can not be 
merged in one go in phase 2, because each run requires a one-page input buffer in main-memory 
and one page of main-memory is reserved for the output buffer. How large should the fi le be for 
this to happen?

Multiway Merge Sort of Very Large Files

Sometimes there may be a need to sort extremely large fi les or there is only a small amount of 
available main memory. As described in the previous section, two-phase, multiway merge sort 
may not work in such situations.

A natural way to extend the two-phase, multiway merge sort for fi les of any size is to do not 
one but many iterations in phase 2 of the algorithm. That is, we employ the external memory 
merge-sort algorithm from Section 3, but instead of using TWOWAY-MERGE, we use the 
multiway merging (as described in the previous section) to merge m – 1 runs from fi le Y into one 
run in fi le X. Then, in each iteration of the main loop of phase 2, we reduce the number of runs 
by a factor of m – 1.

What is the running time of this algorithm, which we call simply multiway merge sort. Phase 1 
and each iteration of the main loop of phase 2 takes θ(n) I/O operations. After phase 1, we start 
up with [N/M] = [n/m] runs, each iteration of the main loop of phase 2 reduces the number of 
runs by a factor of m – 1, and we stop when we have just one run. Thus, there are logm–1(n/m) 
iterations of the main loop of phase 2. Therefore, the total running time of the algorithm is 
θ(n logm–1(n/m)) = θ (n logm n – n logmm) = θ (n logm n – n) = θ (n logm n).

Remember that the cost of the external-memory merge-sort algorithm from Section 3 is 
θ(n log2(n/m)). Thus, multiway merge sort is faster by a factor of  (1 – 1 /logmn)log2m). Actually,  
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θ(n logmn) is a lower bound for the problem of external-memory sorting. That is, multiway merge 
sort is an asymptotically optimal algorithm.

12.6 Merging of two Sorted Lists

Assume that two lists to be merged are sorted in descending order. Compare the fi rst element of 
the fi rst list with the fi rst element of the second list. If the element of the fi rst list is greater, then 
place it in the resultant list. Advance the index of the fi rst list and the index of the resultant list 
so that they will point to the next term. If the element of the fi rst list is smaller, place the element 
of the second list in the resultant list. Advance the index of the second list and the index of the 
resultant list so that they will point to the next term.

Repeat this process until all the elements of either the fi rst list or the second list are compared. If 
some elements remain to be compared in the fi rst list or in the second list, place those elements in 
the resultant list and advance the corresponding index of that list and the index of the resultant 
list.

Suppose the fi rst list is 10 20 25 50 63, and the second list is 12 16 62 68 80. The sorted lists are 63 
50 25 20 10 and 80 68 62 16 12.

The fi rst element of the fi rst list is 63, which is smaller than 80, so the fi rst element of the resultant 
list is 80. Now, 63 is compared with 68; again it is smaller, so the second element in the resultant 
list is 68. Next, 63 is compared with 50. In this case it is greater, so the third element of the 
resultant list is 63.

Repeat this process for all the elements of the fi rst list and the second list. The resultant list is 80 
68 63 62 50 25 20 16 12 10.

Lab Exercise Program:

#include<stdio.h>

#include<conio.h>

void main()

{

   void read(int *,int);

   void dis(int *,int);

   void sort(int *,int);

   void merge(int *,int *,int *,int);

   int a[5],b[5],c[10];

   clrscr();

   printf(“Enter the elements of first list \n”);

   read(a,5);      /*read the list*/

   printf(“The elements of first list are \n”);

   dis(a,5);  /*Display the first list*/

   printf(“Enter the elements of second list \n”);

   read(b,5);   /*read the list*/

   printf(“The elements of second list are \n”);

   dis(b,5);  /*Display the second list*/
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   sort(a,5);

   printf(“The sorted list a is:\n”);

   dis(a,5);

   sort(b,5);

   printf(“The sorted list b is:\n”);

   dis(b,5);

   merge(a,b,c,5);

   printf(“The elements of merged list are \n”);

   dis(c,10);  /*Display the merged list*/

   getch();

}

void read(int c[],int i)

{

   int j;

   for(j=0;j<i;j++)

      scanf(“%d”,&c[j]);

   fflush(stdin);

}

void dis(int d[],int i)

{

   int j;

   for(j=0;j<i;j++)

      printf(“%d “,d[j]);

   printf(“\n”);

}

void sort(int arr[] ,int k)

{

   int temp;

   int i,j;

   for(i=0;i<k;i++)

   {

      for(j=0;j<k-i-1;j++)

      {

         if(arr[j]<arr[j+1])

         {

            temp=arr[j];

            arr[j]=arr[j+1];

            arr[j+1]=temp;

         }

      }
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   }

}

void merge(int a[],int b[],int c[],int k)

{

   int ptra=0,ptrb=0,ptrc=0;

   while(ptra<k && ptrb<k)

   {

      if(a[ptra] < b[ptrb])

      {

            c[ptrc]=a[ptra];

         ptra++;

      }

      else

      {

            c[ptrc]=b[ptrb];

         ptrb++;

      }

      ptrc++;

   }

   while(ptra<k)

   {

      c[ptrc]=a[ptra];

      ptra++;ptrc++;

   }

   while(ptrb<k)

   {

      c[ptrc]=b[ptrb];

      ptrb++;  ptrc++;

   }

}

Input: Enter the elements of the fi rst list

10 20 25 50 63

Output: The elements of fi rst list are

20 25 50 63

Input: Enter the elements of the second list

16 62 68 80

Output: The elements of second list are

12 16 62 68 80

The sorted list a is

63 50 25 20 10
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The sorted list b is

80 68 62 16 12

The elements of the merged list are

80 68 63 62 50 25 20 16 12 10

Task  Write a C program for merge sort.

12.7 Quick Sort

In this method an array a[1],.....,a[n] is sorted by picking some value in the array as a key element, 
we then swap the fi rst element of the list with the key element so that the key will come in the 
fi rst position, we then fi nd out the proper place of key in the list. The proper place is that position 
in the list where if key is placed then all elements to the left of it are smaller than the key, and all 
the elements to the right of it are greater than the key. To obtain the proper position of the key we 
traverse the list in both the directions using the indices i and j respectively. We initialize i to that 
index which is one more than the index of the key element, i.e. if the list to be sorted is having 
the indices running from m to n, then the key element is the at index m, hence we initialize i to 
(m+1). The index i is incremented till we get an element at the ith position greater than the key 
value. Similarly we initialize j to n and go on decrementing j till we get an element having the 
value less than the key value. We then check whet her i and j have crossed each other. If not then 
we interchange the elements at the ith and jth position, and continue the process of incrementing 
i and decrementing j till i and j crosses each other. When i and j crosses each other we interchange 
the elements at the key position(i.e. at mth position) and the elements at the jth position. This 
brings the key element at the jth position, and we fi nd that the elements to left are less than and 
the elements to the right of it are greater than it. Therefore we can split the given list into two 
sub-lists. The fi rst one made of elements from mth position to the (j-1)th position, and the second 
one made of elements from the (j+1)th position to nth position, and repeat the same procedure 
with each of the sub-lists separately.

Here is a C implementation.

void qsort(int x[], int m, int n) 

{

 int key,i,j,k;

 if(m < n)

 {

  k = getkeyposition(x, m, n);

  interchange(&x[m], &x[k]);

  key = x[m];

  i = m + 1;

  j =n;

  while(i < j)

  {

   while((i <= n) && (x[i] <= key))

    i++;

   while(j >= m) && (x[i] > key)) 
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    j++;

   if( i < j)

    interchange(&x[i], &x[j]);

  }

 interchange(&x[m], &x[j]); 

 qsort(x, m, j-l); 

 qsort(x, j+1, n);

 }

}

void interchange(int *i, int *j)

{

 int temp;

 temp = *i;

 *i = *j;

 *j = temp;

}

Choice of the Key

We can choose any entry in the list as the key. The choice of fi rst entry is often a poor choice for 
key, since if the list is already sorted, then there will be no element less than the fi rst element 
selected as key, and so one of the sub-lists will be empty. Hence we choose a key near the center 
of the list, in the hope that our choice will partition the list in such a manner that about half comes 
on each side of key.

Therefore the function getkeyposition is:

int getkeyposition(int i, int j) 

{

 return(i+j mod 2);

}

The choice of the key near the center is also arbitrary, and hence it is not necessary that it will 
always divide the list nicely in to half, it may also happen that one sub-list is much larger than 
other. Hence some other method of selecting a key should be used. A good way to choose a key 
is to use a random number generator to choose the position of next key in each activation of 
quicksort.

Therefore the function getkeyposition is:

int getkeyposition(int i, int j)

{

 return a random number in the range of i to j.

}

Consider the following list:

  1 2 3 4 5 6 7 

30 20 50 10 27 70 05 

Indices 
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When qsort is activated fi rst time key = 30, and i =2, and j =7, i is incremented till it becomes 3, 
because at position 3, the value is greater than key, j is not decremented, because at position 7, 
the value that we have is less than the key. Since i<j, we interchange the 3rd element and 7th 
element. Then i is incremented till it becomes 6, and j is decremented till it becomes 5. Since i > j, 
we interchange the key element that is the element at position 1, with the element at position 5, 
and call qsort recursively with the left sub-list made of elements from position 1 to 4, and right 
sub-list made of elements from position 6 to 7 as shown below:

27 20 05 10 30 70 50

1 2 3 4 5 6 7 Indices

Right sub-listLeft sub-list

By continuing in this fashion, we fi nally get the sorted list.

The average case time complexity of the quick sort algorithm can be decided as follows:

We assume that every time the list gets splitted into two approximately equal sized sub-lists. If 
the size of a given list is n, then it gets splitted into two sub lists of size approximately n/2. Each 
of these sub -lists further gets splitted into two sub-lists of size n/4, and this is continued till the 
size becomes 1. When the quick sort works with a list of size n it places the key element (which 
we take the fi rst element of the list under consideration) at its proper position in the list. This 
requires no more than n iterations. After placing the key element at its proper position in the list 
of size n, quick sort activates itself two times to work with left and right sub-lists, each assumed 
to be of size n/2. Therefore if T(n) is a time required to sort a list of size n. Since the time required 
to sort the list of size n is equal to the sum of the time required to place the key element at its 
proper position in the list of size n and the time required to sort the left and right sub-lists each 
assumed to be of size n/2, T(n) comes out to be:

T(n) = c*n + 2*T(n/2)

Where c is a constant and T(n/2) is the time required to sort the list of size n/2.

Similarly the time required to sort the list of size n/2 is equal to the sum of the time required to 
place the key element at its proper positions in the list of size n/ 2 and the time required to sort 
the left and right sub-lists each assumed to be of size n/4. T(n/2) comes out to be:

T(n/2) = c*n/2 + 2*T(n/4)

Where T(n/4) is the time required to sort the list of size n/4.

T(n/4) = c*n/4 + 2*T(n/8), and so on and fi nally we get T(1) = 1.

T(n) = c*n + 2(c*n(n/2) + 2T(n/4))

T(n) = c*n + c*n + 4T(n/4)) = 2*c*n + 4T(n/4) = 2*c*n + 4( c*(n/4) + 2T(n/8))

T(n) = 2*c*n + c*n + 8T(n/8) = 3*c*n + 8T(n/8)

T(n) = (log n)*c*n + nT(n/n)= (log n)*c*n + nT(1) = n + n*(log n) *c 

T(n)  nlog(n)

Therefore we conclude that the average time complexity of the quick sort algorithm is O(nlog D). 
But the worst case time complexity is of the O(n2).

The reason for this is in the worst case one of the two sub-lists will always be empty, and the 
other will be of the size (n-1). Where n is the size of the original list. Therefore in the worst case 
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T(n) comes out to be:

 T(n) = c*n +T(n-1)

  = c*n + c*(n-1) + T(n-2)

  = 2*c*n - c + T(n-2)

  = 2*c*n - c + c*(n-2) + T(n-3)

  = 3*c*n - 3*c + T(n-3)

  = n*c*n-n*c + T(1)

  = n2c-nc+1

Therefore T(n)  n2, hence the order is O(n2).

Space Complexity

The average case space complexity is log2n, because the space complexity depends on the 
maximum number of activations that can exist. We fi nd that if we assume that every time the list 
gets splitted into approximately two lists of equal size then the maximum number of activations 
that will exist simultaneously will be log2n.

In the worst case, there exist n activations because the depth of the recursion is n. Hence, the 
worst case space complexity is O(n).

Algorithms of Quick Sort

The divide-and-conquer strategy is used in quicksort. Below the recursion step is described: 

1. Choose a pivot value. We take the value of the middle element as pivot value, but it can be 
any value, which is in range of sorted values, even if it doesn’t present in the array. 

2. Partition. Rearrange elements in such a way, that all elements which are lesser than the 
pivot go to the left part of the array and all elements greater than the pivot, go to the right 
part of the array. Values equal to the pivot can stay in any part of the array. Notice, that 
array may be divided in non-equal parts. 

3. Sort both parts. Apply quicksort algorithm recursively to the left and the right parts. 

Partition Algorithm in Detail

There are two indices i and j and at the very beginning of the partition algorithm i points to the 
fi rst element in the array and j points to the last one. Then algorithm moves i forward, until an 
element with value greater or equal to the pivot is found. Index j is moved backward, until an 
element with value lesser or equal to the pivot is found. If i ≤ j then they are swapped and i steps 
to the next position (i + 1), j steps to the previous one (j - 1). Algorithm stops, when i becomes 
greater than j.

After partition, all values before i-th element are less or equal than the pivot and all values after 
j-th element are greater or equal to the pivot.
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 Example: Sort {1, 12, 5, 26, 7, 14, 3, 7, 2} using quicksort.

16 > 5, swap1 5 26 712 14 3 7 2

pivot value = 71 5 26 712 14 3 7 2

12 > 7 > 2, swap 12 and 21 5 26 712 14 3 7 2

pivot valuei j

i j

26 > 7 > 7, swap 26 and 71 5 26 72 14 3 7 12

i j
7 > 7 > 3, swap 7 and 31 5 7 72 14 3 7 12

i j

i > j > 3, stop partition1 5 7 32 14 7 26 12

i j

sorted1 5 7 72 3 12 14 26

run quick sort recursively1 5 72 14 7 26 12

. . .

Notice, that we show here only the fi rst recursion step, in order not to make example too long. 
But, in fact, {1, 2, 5, 7, 3} and {14, 7, 26, 12} are sorted then recursively.

Why does it work?

On the partition step algorithm divides the array into two parts and every element a from the 
left part is less or equal than every element b from the right part. Also a and b satisfy a ≤ pivot ≤ 
b inequality. After completion of the recursion calls both of the parts become sorted and, taking 
into account arguments stated above, the whole array is sorted.

 Example: Consider the following list to be sorted in ascending order. ‘ADD YOUR MAN’. 
(Ignore blanks) N = 10

0 1 2 3 4 5 6 7 8 9
A[] = A D D Y O U R M A N

Quicksort (A, 0, 9)

1. 9 > 0

2. V = [ 9] = ‘N’

 L = 1-1 = 0

 R = I= 9

4. A[ 3] = ‘Y’ > V; There fore, L = 3

5.  A [8] = ‘A’ > V; There fore, R = 8
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6. L < R

7. SWAP (A,3,8) to get

0 1 2 3 4 5 6 7 8 9
A[] = A D D A O U R M Y N

8  A [4] = ‘O’ > V, There fore, L = 4

9.  A[7] = ‘M’ < V, There fore, R = 7

10.  L < R

11.  SWAP (A,4,7) to get

0 1 2 3 4 5 6 7 8 9
A[] = A D D A M U R O Y N

12. A [5] = ‘U’ > V;.. L = 5

13. A[4] = ‘M’ < V;R = 4

14. L < R ,.. break

15. SWAP (A,5,9) to get.

0 1 2 3 4 5 6 7 8 9
A[] = A D D A M N R O Y U

 at this point ‘N’ is in its correct place.

 A[5], A[0] to A[4] constitutes sub list 1.

 A[6] to A[9] constitutes sublist2. Now

16. Quick sort (A, 0, 4)

17. Quick sort (A, 5, 9)

The Quick sort algorithm uses the O(N Log2N) comparisons on average. The performance can be 
improved by keeping in mind the following points. 

1. Switch to a faster sorting scheme like insertion sort when the sublist size becomes 
comparatively small.

2. Use a better dividing element I in the implementations. We have always used A[N] as the 
dividing element. A useful method for the selection of a dividing element is the Median-of 
three method.

Select any 3 elements from the list. Use the median of these as the dividing element.

12.8 Bucket Sort

Bucket sort runs in linear time on the average. It assumes that the input is generated by a random 
process that distributes elements uniformly over the interval [0, 1].

The idea of Bucket sort is to divide the interval [0, 1] into n equal-sized subintervals, or buckets, 
and then distribute the n input numbers into the buckets. Since the inputs are uniformly 
distributed over (0, 1), we don’t expect many numbers to fall into each bucket. To produce the 
output, simply sort the numbers in each bucket and then go through the bucket in order, listing 
the elements in each.

The code assumes that input is in n-element array A and each element in A satisfi es 0 ≤ A[i] ≤ 1. 
We also need an auxiliary array B[0 . . n -1] for linked-lists (buckets).
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BUCKET_SORT (A)

1. n ← length [A]

2. For i = 1 to n do

3. Insert A[i] into list B[nA[i]] 

4. For i = 0 to n-1 do 

5. Sort list B with Insertion sort 

6. Concatenate the lists B[0], B[1], . . B[n-1] together in order. 

 Example: Given input array A[1..10]. The array B[0..9] of sorted lists or buckets after line 5. 
Bucket i holds values in the interval [i/10, (i +1)/10]. The sorted output consists of a concatenation 
in order of the lists fi rst B[0] then B[1] then B[2] ... and the last one is B[9].

.78
A

1

2
3

4
5

6
7

8

9

10

.17

.39

.26

.72

.94

.21

.12

.23

.68

B

1

0

2
3

4
5

6
7

8

9 .94

.72

.68

.39

.78

.21 .23

.12 .17

.26

Analysis

All lines except line 5 take O(n) time in the worst case. We can see inspection that total time to 
examine all buckets in line 5 is O(n-1) i.e., O(n).

The only interesting part of the analysis is the time taken by Insertion sort in line 5. Let ni be the 
random variable denoting the number of elements in the bucket B[i]. Since the expected time to 
sort by INSERTION_SORT is O(n2), the expected time to sort the elements in bucket B[i] is

E[O(2ni)] = O(E[2ni]]

Therefore, the total expected time to sort all elements in all buckets is

 n-1∑i=0 O(E[2ni]) = O n-1∑i=0 (E[2ni]) ...(1)

In order to evaluate this summation, we must determine the distribution of each random variable 
n.

We have n elements and n buckets. The probability that a given element falls in a bucket B[i] is 
1/n i.e., Probability = p = 1/n.

Note  This problem is the same as that of “Balls-and-Bin” problem.
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Therefore, the probability follows the binomial distribution, which has

Mean:       E[ni] = np = 1

Variance:  Var[ni] = np(1 – p) = 1 – 1/n

For any random variable, we have

 E[2ni] = Var[ni] +  E2[ni]

 = 1 – 1/n + 12

 = 2 – 1n

 = Θ(1)

Putting this value in equation A above, (do some tweaking) and we have a expected time for 
INSERTION_SORT, O(n).

Now back to our original problem

In the above Bucket sort algorithm, we observe

T(n) = [Time to insert n elements in array A] + [Time to go through auxiliary array B[0 . . n-1] * 
(Sort by INSERTION_SORT)

= O(n) + (n-1)  (n)

= O(n)

Therefore, the entire Bucket sort algorithm runs in linear expected time.

Task  Discuss bubble sort with suitable example.

12.9 External Sorting

External sorting refers to the sorting of a fi le that is on disk (or tape). Internal sorting refers to the 
sorting of an array of data that is in RAM. The main concern with external sorting is to minimize 
disk access since reading a disk block takes about a million times longer than accessing an item 
in RAM (according to Shaffer – see the reference at the end of this document).

Perhaps the simplest form of external sorting is to use a fast internal sort with good locality of 
reference (which means that it tends to reference nearby items, not widely scattered items) and 
hope that your operating system’s virtual memory can handle it. (Quicksort is one sort algorithm 
that is generally very fast and has good locality of reference.) If the fi le is too huge, however, even 
virtual memory might be unable to fi t it. Also, the performance may not be too great due to the 
large amount of time it takes to access data on disk.

Methods

Most external sort routines are based on mergesort. They typically break a large data fi le into 
a number of shorter, sorted “runs”. These can be produced by repeatedly reading a section of 
the data fi le into RAM, sorting it with ordinary quicksort, and writing the sorted data to disk. 
After the sorted runs have been generated, a merge algorithm is used to combine sorted fi les into 
longer sorted fi les. The simplest scheme is to use a 2-way merge: merge 2 sorted fi les into one 
sorted fi le, then merge 2 more, and so on until there is just one large sorted fi le. A better scheme 
is a multiway merge algorithm: it might merge perhaps 128 shorter runs together.
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12.10 Summary

 Arranging objects in a specifi ed order is called sorting.

 Bubble sort, insertion sort, selection sort, quick sort, heap sort, radix sort are some of very 
common search algorithms. 

 The comparison starts with the fi rst element (or at the last element) and continues 
sequentially till either we fi nd a match or the end of the list is encountered. Linear search 
makes as many comparisons as there are elements in the array. Even if the array is sorted 
(either in ascending or descending order) the number of comparisons remains the same.

12.11 Keywords

Bubble sort: A sorting technique in which the largest element of the remaining list bubbles up to 
its proper ordering position in each pass through the list.

Heap sort: A sorting technique in which all the entries in the list are arranged to satisfy heap 
property, and then top of the heap is removed and another entry is promoted to take its place 
repeatedly.

Merge sort: A sorting technique in which the given list is broken down into smaller lists repeatedly 
until the list become easy to sort, then the sorted lists are merged to obtain the fi nal sorted list.

Quick sort: A sorting technique in which an array is sorted by picking some value in the array 
as a key element, then swapping the fi rst element of the list with the key element so that the key 
comes in the fi rst position. The proper place of key in the list is found out repeatedly.  

Sorting: A technique to arrange the elements of a list in some pre-specifi ed order.

12.12 Self Assessment

Choose the appropriate answers:

1. Which one is not the method of internal sorting?

(a) Heap sort

(b) Merge sort

(c) Quick sort

(d) Bubble sort

2. Polyphase sort is a 

(a) Internal sort

(b) External sort

(c) Both of the above

(d) None

3. ........................ is a sorting technique which sorts a contiguous list of length n with O(nlog2(n) 
comparisons and movement of entries, even in the worst case.

(a) Heap sort

(b) Merge sort

(c) Quick sort
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(d) Bubble sort

4. Heap sort proceeds in

(a) Five phase

(b) Three phases

(c) One phase

(d) Two phase

Fill in the blanks:

5. Arranging objects in a specifi ed order is called ..................... .

6. The average time complexity of the quick sort algorithm is ..................... .

7. The computing time of heapsort is ..................... .

8. The time complexity of the algorithm is ..................... both average and worst case.

State whether the following statements are true or false:

9. The order of linear search in worst case is O(n/2).

10. Linear search is more effi cient than Binary search.

11. For Binary search, the array has to be sorted in ascending order only.

12. A fi le is a collection of records and a record is in turn a collection of fi elds.

12.13 Review Questions

1. What is sorting? Explain insertion sorting in details.

2. Distinguish between quick and heap sort.

3. Explain 2-way merge sort.

4. Distinguish between linear and binary search.

5. Explain the application of searching.

6. Consider the list given below whose elements are arranged in an ascending order. Assume 
that a binary search technique is used. Find out the number of probes required to fi nd each 
entry in the list.

 16

 22

 48

 53

 55 

 71 

 80

7. Sort the list given below by applying the heapsort method.

 81 

 52 

 53 



Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 263

 96 

 22 

 53 

 83 

 04

8. Consider an unsorted array A[n] of integer elements that may have many elements present 
more than once. It is required to store only the distinct elements of the array A in a separate 
array B. The information about the number of times each element is replicated is maintained 
in a third array C. For example, C[0] would indicate the number of times the element B[0] 
occurs in array A. Write a C program to generate the arrays B and C, given an array A.

9. Write a C program that fi nds the largest and the second largest elements in an unsorted 
array A. The program should make just a single scan of the array.

10. Distinguish between internal and external method of sorting. 

Answers: Self Assessment

1. (b) 2. (b) 3. (a) 4. (d)

5. sorting 6. O(nlog D) 7. O(n log(n)) + O(n)

8. O(nlog2(n)) 9. False 10. False 11. False

12. True

12.14 Further Readings

Books  Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice 
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann, 
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to 
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links  www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com
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Objectives

After studying this unit, you will be able to:

 Defi ne graph

 Realise basic graph terminology

 Explain representation of graphs

 Discuss shortest path algorithms

Introduction

In this unit, we introduce you to an important mathematical structure called Graph. Graphs have 
found applications in subjects as diverse as Sociology, Chemistry, Geography and Engineering 
Sciences. They are also widely used in solving games and puzzles. In computer science, graphs 
are used in many areas one of which is computer design. In day-to-day applications, graphs fi nd 
their importance as representations of many kinds of physical structure.

We use graphs as models of practical situations involving routes: the vertices represent the cities 
and edges represent the roads or some other links, specially in transportation management, 
Assignment problems and many more optimization problems. Electric circuits are another 
obvious example where interconnections between objects play a central role. Circuits elements 
like transistors, resistors, and capacitors are intricately wired together. Such circuits can be 
represented and processed within a computer in order to answer simple questions like “Is 
everything connected together?” as well as complicated questions like “If this circuit is built, will 
it work?”
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13.1 Defi ning Graph

A Graph G consists of a set V of vertice (nodes) and a set E of edges (arcs). We write G=(V,E). V 
is a fi nite and non empty set of vertices. E is a set of pairs of vertices; these pairs are called edges. 
Therefore

V(G), read as V of G, is set of vertices,

and E(G), read as E of G, is set of edges.

An edge e = (v,w), is a pair of vertices v and w, and is said to be incident with v and w.

A graph may be pictorically represented as given in Figure 13.1.

1

3

2 5

4

Figure 13.1: A Graph

We have numbered the nodes as 1,2,3,4 and 5. Therefore

V(G) = (1, 2, 3, 4, 5)

and E(G) = {(1, 2), (2, 3), (3, 4), (4, 5), (1, 5), (1, 3), (3, 5)}

You may notice that the edge incident with node 1 and node 5 is written as (1,5); we could also 
have written (5,1) instead of (1,5). The same applies to all the other edges. Therefore, we may say 
that ordering of vertices is not signifi cant here. This is true for an undirected graph.

In an undirected graph, pair of vertices representing any edge is unordered. Thus (v,w) and (w,v) 
represent the same edge. In a directed graph each edge is an ordered pair of vertices, i.e. each 
edge is represented by a directed pair. If e = (v,w), then v is tail or initial vertex and w is head or 
fi nal vertex. Subsequently (v,w) and (w,v) represent two different edges.

A directed graph may be pictorically represented as given in Figure 13.2.
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1

3

2 5

4

Figure 13.2: A Directed Graph

The direction is indicated by an arrow. The set of vertices for this graph remains the same as that 
of the graph in the earlier example, i.e.

V(G) = (1,2,3,4,5}

However the set of edges would be

E(G) = {(1,2), (2,3), (3,4), (5,4), (5,1), (1,3), (5,3)}

Do you notice the difference?

Note  Arrow is always from tail vertex to head vertex. In our further discussion on 
graphs, we would refer to directed graph as digraph and undirected graph as graph.

13.2 Basic Graph Terminology

A good deal of nomenclature is associated with graphs. Most of the terms have straight foward 
defi nitions, and it is convenient to put them in one place even though we would not be using 
some of them until later.

Adjacent Vertices

Vertex v1 is said to be adjacent to a vertex v2 if there is an edge

(v1, v2) or (v2, v1)

1

3

65 4 7

2

Figure 13.3

Vertices adjacent to node 3 are 1,5,6 and 4 and that to node 2 are 1 and 7.
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Find out the vertices adjacent to remaining nodes of the graph.

Path: A path from vertex v to vertex w is a sequence of vertices, each adjacent to the next.

Consider the above example again. 1,3,4 is a path

1,3,6 is a path

1,2,7 is a path,

Is 1,4,7 a path?

How many paths are there from vertex 1 to vertex 7?

You may notice that there is a path existing in the above example which starts at vertex 1 and 
fi nishes at vertex 1, i.e. path 1,3,4,7,2,1. Such a path is called a cycle.

A cycle is a path in which fi rst and last vertices are the same.

DO we have a path from any vertex to any other vertex in the above example? If you see it 
carefully, you may fi nd the answer to the above question as YES. Such a graph is said to be 
connected graph. A graph is called connected if there exists a path from any vertex to any other 
vertex. There are graphs which are unconnected. Consider the graph in Figure 13.4.

2

1

3

4

5

7

6

8

Figure 13.4: An Unconnected Graph

It is an unconnected graph. You may say that these are two graphs and not one. Look at the fi gure 
in its totality and apply the defi nition of graph. Does it satisfy the defi nition of a graph? It does. 
Therefore, it is one graph having two unconnected components. Since there are unconnected 
components, it is an unconnected graph.

So far we have talked of paths, cycles and connectivity of undirected graph. In a Digraph the path 
is called a directed path and a cycle as directed cycle.

1 4 6

5 72 3

Figure 13.5: A Digraph
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In Figure 13.4, 5 1,2 is a directed path; 1, 3, 5, 7, 6 is a directed path 1, 4, 5 is not a directed path. 
There is no directed cycle in the above graph. You may verify the above statement. A digraph is 
called strongly connected if there is a directed path from any vertex to any other vertex.

Consider the digraph given in Figure 13.6.

1

2

3

4 5

Figure 13.6: A Weakly Connected Graph

There does not exist a directed path from vertex 1 to vertex 4; also from vertex 5 to other vertices; 
and so on. Therefore, it is a weakly connected graph. Let us make is strongly connected.

1

2

3

4 5

Figure 13.7: A Strongly Connected Graph

The, graph in Figure 13.7 a strongly connected graph. You may notice that we have added just 
one arc from vertex 5 to vertex 3.
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An alternative could be as given in Figure 13.8.

1

2

3

4 5

Figure 13.8: A Strongly Connected Graph

There may exist more alternate structures. Make at least one more alternate structure for the 
same diagraph. 

You must have observed that there is no limitation of number of edges incident on one vertex. It 
could be none, one, or more. The number of edges incident on a vertex determines its degree. 

In a digraph we attach an indegree and an outdegree to each of the vertice. In Figure 13.8, the 
indegree of vertex 5 is 2 and outdegree is 1. Indegree of a vertex v is the number of edges for 
which vertex v is a head and outdegree is the number of edges for which vertex is a tail.

1 2

7 5 6 3 4

9 108

Figure 13.9: A Tree

Let us defi ne a special type of graph called Tree. A graph is a tree if it has two properties:

It is connected, and there are no cycles in the graph.
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Graph depicted in Figure 13.9 is a tree and so are the ones depicted in Figure 13.10(a) to 
13.10(e).

A

B

C

D

E

A

2

1

4 5

3

6 7

8 9 10

1

2

3

4

1

3

6

7

8

(a) (b) (c)

(d) (e)

Figure 13.10: Tree Structure

Because of their special structure and properties, trees occur in many different applications in 
computer science.

?
Did u know? In Figure 13.8 how many outdegree present in vertex 4.

13.3 Representations of Graphs

Graph is a mathematical structure and fi nds its application in many areas of interest in which 
problems need to be solved using computers. Thus, this mathematical structure must be 
represented as some kind of data structures. Two such representations are, commonly used. 
These are: 

1. Adjacent Matrix

2. Adjacency List representation. 

The choice of representation depends on the application and function to be performed on the 
graph. 

13.3.1 Adjacent Matrix

The adjacency matrix A for a graph G = (V,E) with n vertices, is an n × n matrix of bits, such 
that A

A
ij 
= 1, iff there is an edge from vi to vj and 

A
ij 
= 0, if there is no such edge.
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Table 13.1(a) shows the adjacency matrix for the graph given in Figure 13.1.

Table 13.1: Adjacency Matrix for the Graph in Figure 13.1

Vertice 1 2 3 4 5
1 0 1 1 0 1
2 1 0 1 0 0
3 1 1 - 1 1
4 0 0 1 0 1
5 1 0 1 1 0

You may observe that the adjacency matrix for an undirected graph is symmetric, as the lower 
and upper triangles are same. Also all the diagonal elements are zero., since we consider graphs 
without any self loops. Let us fi nd adjacency matrix for a digraph given in Figure 13.5.

Table 13.2: Adjacency Matrix for Digraph in Figure 13.5

Vertice 1 2 3 4 5 6 7
1 0 1 1 1 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0
4 0 0 0 0 0 1 0
5 0 0 0 1 0 0 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0

The total number of 1’s account for the number of edges in the digraph. The number of 1’s in each 
row tells the outdegree of the corresponding vertex.

13.3.2 Adjacency List Representation

In this representation, we store a graph as a linked structure. We store all the vertices in a list 
and then for each vertex, we have a linked list of its adjacent vertices. Let us see it through an 
example. Consider the graph given in Figure 13.11.

v1

v2

v3

v4

v5

v6

Figure 13.11

The adjacency list representation needs a list of all of its nodes, i.e.

v1

v2

v3

v4

v5

And for each node a linked list of its adjacent nodes.
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Therefore we shall have:

v1

v2

v3

v4

v5

v6

v2

v3

v4

v5

v4

v3

v6 v1

Table 13.3: Adjacency List Structure for Graph in Figure 13.11

Note  That adjacent vertices may appear in the adjacency list in arbitrary order. Also 
an arrow from v2 to v3 in the list linked to v1 does not mean that V2 and V3 are adjacent.

The adjacency list representation is better for sparse graphs because the space required is 
O(V + E), as contrasted with the O(V2) required by the adjacency matrix representation.

13.4 Shortest Path Algorithms

E.W. Dijkstra developed an algorithm to determine the shorted path between two nodes in a 
graph. It is also possible to fi nd the shortest paths from a given source node to all nodes in a 
graph at the same time, hence this problem is sometimes called the single-source shortest paths 
problem.

The shortest path problem may be expressed as follows:

Given a connected graph G = (V, E), with weighted edges and a fi xed vertex s in V, to fi nd a 
shortest path from s to each vertex v in V. The weights assigned to the edges may represent 
distance, cost, effort or any other attribute that needs to be minimized in the graph.

A solution to this problem could be found by fi nding a spanning tree of the graph. The graph 
representing all the paths from one vertex to all the others must be a spanning tree - it must 
include all vertices. There will also be no cycles as a cycle would defi ne more than one path from 
the selected vertex to at least one other vertex.

The algorithm fi nds the routes, by cost precedence. Let’s assume that every cost is a positive 
number. The algorithm is equally applicable to a graph, a digraph, or even to a mixed graph 
with only some of its sides directed. If we consider a digraph, then every other case is fully 
covered as well since a no directed side can be considered a 2 directed sides of equal cost for 
every direction.

The algorithm is based on the fact that every minimal path containing more than one side is the 
expansion of another minimal path containing a side less. This happens because all costs are 
considered as positive numbers. In this way the fi rst route D(1) found by the algorithm will be 
one arc route, that is from the starting point to one of the sides directly connected to this starting 
point. The next route D(2) will be a one arc route itself, or a two arc route, but in this case will be 
an expansion of D(1).
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Here is the algorithm.

1. Let V be the set of all the vertices of the graph and S be the set of all the vertices considered 
for the determination of the minimal path.

2. Set S ={}.

3. While there are still vertices in V – S.

(a) Sort the vertices in V – S according to the current best estimate of their distance from 
the source.

(b) Add u, the closest vertex in V – S, to S.

(c) Re-compute the distances for the vertices in V – S

(d) Consider the following example for illustration. Find the shortest path from node X 
to node Y in the following graph. A label on an edge indicates the distance between 
the two nodes the edge connects.

A

B E

D

C
YX

2

1
4

4

3
3

5

8 5

7

Applying Dijkstra algorithm:

1. S = {X}

 Distances of all the nodes from  the nodes in the S:

 XA = 8  XB = 3  XC = ∞

 XD = ∞  XE = ∞  XY = ∞

2. Since, minimum distance from S to V-S is 3 (XB), S = {X, B} and E = {XB}

3. Distances of all the nodes from the nodes in the S:

 XA = 8 XC = ∞ XD = ∞  XE = ∞ XY = ∞ 

 XBA = ∞ XBC = 7 XBD = ∞ XBE = 8 XBY = 6

4. Since, minimum distance from S to V – S is 6 (XBY), S = {X, B, Y} and E = {XBY}.

5. Distances of all the nodes from the nodes in the S:

 XA = 8 XC = ∞ XD = ∞ XE = ∞

 XBA = ∞ XBC = 7 XBD = ∞ XBE = 8

 XBYA = ∞ XBYC = ∞ XBYD = ∞ XBYE = ∞

Continuing in similar manner, we fi nd that the shortest path between nodes X and Y is XBY with 
cost value 6.
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13.5 Summary

 Graphs provide in excellent way to describe the essential features of many applications. 

 Graphs are mathematical structures and are found to be useful in problem solving. They 
may be implemented in many ways by the use of different kinds of data structures. 

 Graph traversals, Depth First as well as Breadth First, are also required in many 
applications. 

 Existence of cycles makes graph traversal challenging, and this leads to fi nding some 
kind of acyclic subgraph of a graph. That is we actually reach at the problems of fi nding a 
shortest path and of fi nding a minimum cost spanning tree problems.

13.6 Keywords

Adjacent: Two vertices in an undirected graph are called adjacent

Edges: A graph G consists of a set V, whose members are called the vertices of G, together with a 
set E of pairs of distinct vertices from V. These pairs are called the edges of G.

Free Tree: A free tree is defi ned as a connected undirected graph with no cycles.

Graph: Graph is a mathematical structure and fi nds its application in many areas of interest in 
which problems need to be solved using computers.

Undirected Graph: If the pairs are unordered, then G is called an undirected graph

13.7 Self Assessment

Fill in the blanks:

1. A graph may have many ...............................

2. The weight of a tree is just the sum of weights of its .............................

3. The ............................. ends when no more paths are found.

4. In an undirected graph, pair of vertices representing any edge is .............................

5. In a Digraph the path is called a directed path and a cycle as ...............................

State whether the following statements are true or false:

6. E.W. Dijkstra developed an algorithm to determine the shorted path between two nodes in 
a graph.

7. The algorithm is not equally applicable to a graph, a digraph, or even to a mixed graph 
with only some of its sides directed.

8. A cycle is not a path in which fi rst and last vertices are the same.

9. A good deal of nomenclature is associated with graphs.

10. In a Digraph the path is called a directed path and a cycle as directed cycle.

13.8 Review Questions

1. What do you mean by shortest path?

2. Find out the minimum number of edges in a strongly connected diagraph on n vertices.
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3. Test the program for obtaining the depth fi rst spanning tree for the following graph:

4. “A graph may have many spanning trees; for instance the complete graph on four vertices 
has sixteen spanning trees”. Explain  

5. Defi ne vertices of a graph. 

6. A graph is regular if every vertex has the same valence (that is, if it is adjacent to the 
same number of other vertices). For a regular graph, a good implementation is to keep the 
vertices in a linked list and the adjacency lists contiguous. The length of all the adjacency 
lists is called the degree of the graph.

7. The topological sorting functions as presented in the text are defi cient in error checking. 
Modify the (a) depth-fi rst and (b) breadth-fi rst functions so that they will detect any 
(directed) cycles in the graph and indicate what vertices cannot be placed in any topological 
order because they lie on a cycle.

8. How can we determine a maximal spanning tree in a network?

9. Write Digraph methods called write that will write pertinent information specifying a 
graph to the terminal. The graph is to be implemented with

a. An adjacency table;

b. A linked vertex list with linked adjacency lists;

c. A contiguous vertex list of linked adjacency lists.

10. Implement and test the method for determining shortest distances in directed graphs with 
weights.

Answers: Self Assessment

1. spanning trees 2. edges

3. algorithm 4. unordered

5. directed cycle 6. True 

7. False  8. False

9. True 10. True 
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13.9 Further Readings

Books  Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice 
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann, 
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to 
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links  www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com
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Objectives

After studying this unit, you will be able to:

 Explain network fl ow

 Describe problem of network fl ow

 Know minimum spanning tree

Introduction
We use graphs as models of practical situations involving routes: the vertices represent the cities 
and edges represent the roads or some other links, specially in transportation management, 
Assignment problems and many more optimization problems. Electric circuits are another 
obvious example where interconnections between objects play a central role. Circuits elements 
like transistors, resistors, and capacitors are intricately wired together. Such circuits can be 
represented and processed within a computer in order to answer simple questions like “Is 
everything connected together?” as well as complicated questions like “If this circuit is built, will 
it work?”

14.1 Network Flow

Network fl ow is an advanced branch of graph theory. The problem resolves around a special 
type of weighted directed graph with two special vertices: the source vertex, which has no 
incoming edge, and the sink vertex, which has no outgoing edge. By convention, the source 
vertex is usually labelled s and the sink vertex labelled t.
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There are a bunch of junctions (nodes in the graph) and a bunch of pipes (edges in the graph) 
connecting the junction. The pipe will only allow water to fl ow one way (the graph is directed). 
Each pipe has also has a capacity (the weight of the edge), representing the maximum amount of 
water that can fl ow through the pipe. Finally, we pour an infi nite amount of water into the source 
vertex. The problem is to fi nd the maximum fl ow of the graph - the maximum amount of water 
that will fl ow to the sink. Below is an example of a network fl ow graph.

0/2 0/4

a

0/3 t

0/20/4

b

s

Figure 14.1: A Simple Network Flow Graph. There are currently no water fl owing

It is fairly easy to see that the maximum fl ow in the Figure 14.1 is 6. We can fl ow 2 units of 
water from s → a → t, 2 units of water from s → b → a → t, and 2 units of water from s → b → 
t. This gives a fl ow of 6 and since all incoming edge to the sink are saturated, this is indeed the 
maximum fl ow.

Note  In the example, not all pipe are saturated with water.

14.1.1 Ford Fulkerson Method

It was easy to see the solution in the above example, but how do we fi nd the solution in general? 
One idea is to keep fi nding path from s to t along pipes which still has some capacities remaining 
and push as much fl ow from s to t as possible. We will then terminate once we can’t fi nd any 
more path. This idea seem to work since it is exactly how we found the maximum fl ow in the 
example. However, there is one problem - we cannot guarantee which path we’ll fi nd fi rst. In fact, 
if we picked the wrong path, the whole algorithm will go wrong. For example, what happens if 
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the fi rst path we found was s → b → a → t. If we push as much fl ow as possible, then we end up 
with the following:

0/2

a

s

b

t3/3

3/4

0/2
3/4

Figure 14.2: We have Pushed 3 Flow along the Path s → b → a → t

Now we have run into a problem: our only options left are to push 1 unit of water along the path 
s → a → t and 1 unit of water along s → b → t. After that, we won’t be able to fi nd any more path 
from s to t! Yet, we have only found 5 fl ow, which is not he maximum fl ow. Thus, the idea is not 
optimal since it depends on how we picked our path. While we can try to fi nd a ”good” path-
picking algorithm, it would be nice if the algorithm is not dependent on the paths we chose.

A crucial observation is that there is actually another path from s to t other than the two that we 
mentioned above! Suppose we redirect 2 units of water from b → a → t to b → t, this will decrease 
the amount of water running through the pipe (a; t) to 0. Now we have a path from s → a → t in 
which we can fl ow 2 units of water! The graph now looks as follows:

2/2

a

s

b

t1/3

3/4

2/2
3/4

Figure 14.3: The Bolded Edge indicate which Pipe has their Flow Adjusted

It is now easy to see that we can push 1 unit of water along s → b → a → t to obtain the maximum 
fl ow of 6. If we carefully study in the Figure 14.3, what we have essentially done is to fl ow 2 unit 
of water along s → a, and then push back 2 unit of water from a → b, and fi nally redirect the 
pushed back fl ow along b → t to the sink. So the key to completing the algorithm is the idea of 
pushing back fl ow - if we have x units of water fl owing in the pipe (u; v), then we can pretend 
there is a pipe (v; u) with capacity x when we are trying to fi nd a path from s to t.

This is the concept of residual graph. The residual graph of a network fl ow is essentially the 
network graph except that for every edge (u; v) that currently carries x unit of water, there is 
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an edge (v; u) with capacity x in the residual graph. Figure 14.4 shows the residual graph after 
fi nding our fi rst path:

t

0/2

3/3

3/4

3/4

0/2

a

s

s

Figure 14.4: The Dashed Edges are the Edges we added in the Residual Graph

The capacity of the dashed edge is the same as the amount of water carried by the solid edge in 
the opposite direction.

So here is an algorithm to fi nd the maximum fl ow: First construct the residual graph (in the 
beginning, the residual graph is the same as the network graph). While there exists a path from s 
to t in the residual graph, we fl ow water through one of the path (a path in the a residual graph 
is called an augmenting path). We then adjust the residual graph accordingly. Once we can no 
longer fi nd any more path in the residual graph, we have found the maximum fl ow.

14.1.2 Comparison Networks

Suppose we have a directed network G = (V, E) defi ned by a set V of nodes (or vertexes) and 
a set E of arcs (or edges). Each arc (i,j) in E has an associated nonnegative capacity uij. Also we 
distinguish two special nodes in G: a source node s and a sink node t. For each i in V we denote by 
E(i) all the arcs emanating from node i. Let U = max uij by (i,j) in E. Let us also denote the number 
of vertexes by n and the number of edges by m.

We wish to fi nd the maximum fl ow from the source node s to the sink node t that satisfi es the arc 
capacities and mass balance constraints at all nodes. Representing the fl ow on arc (i,j) in E by xij 
we can obtain the optimization model for the maximum fl ow problem:

 Maximize f(x) = 
( , ) ( )

ij
i j E s

x
∈

∑
subject to

 
( :( , ) } { :( , ) }

–ij ij
j i j E j j i E

x x
∈ ∈

∑ ∑  = 0 ∀i ∈ V\{s, t}

 0 ≤ xij ≤ uij (i, j) ∀(i, j) ∈ E

Vector (xij) which satisfi es all constraints is called a feasible solution or, a fl ow (it is not necessary 
maximal). Given a fl ow x we are able to construct the residual network with respect to this fl ow 
according to the following intuitive idea. Suppose that an edge (i,j) in E carries xij units of fl ow. 
We defi ne the residual capacity of the edge (i,j) as rij = uij - xij. This means that we can send an 
additional rij units of fl ow from vertex i to vertex j. We can also cancel the existing fl ow xij on the 
arc if we send up xij units of fl ow from j to i over the arc (i,j).

So, given a feasible fl ow x we defi ne the residual network with respect to the fl ow x as follows. 
Suppose we have a network G = (V, E). A feasible solution x engenders a new (residual) network, 
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which we defi ne by Gx = (V, Ex), where Ex is a set of residual edges corresponding to the feasible 
solution x.

What is Ex? We replace each arc (i,j) in E by two arcs (i,j), (j,i): the arc (i,j) has (residual) capacity rij 
= uij - xij, and the arc (j,i) has (residual) capacity rji=xij. Then we construct the set Ex from the new 
edges with a positive residual capacity. 

In the worst case both improved and unimproved algorithms will perform O(n3) augmentations, 
if m ~ n2. Norman Zadeh developed some examples on which this running time is based. Using 
his ideas we compose a somewhat simpler network on which the algorithms have to perform 
O(n3) augmentations and which is not dependent on a choice of next path.

s3 t3

s2 t2

s1 t1

u1 v1

u2 v2

u3 v3

u4 v4

s t

k

2p

Figure 14.5: Worst Case Example for the Shortest Augmenting Path Algorithm

All vertexes except s and t are divided into four subsets: S={s1,...,sk}, T={t1,...,tk}, U={u1,...,u2p} and 
V={v1,...,v2p}. Both sets S and T contain k nodes while both sets U and V contain 2p nodes. k and 
p are fi xed integers. Each bold arc (connecting S and T) has unit capacity. Each dotted arc has an 
infi nite capacity. Other arcs (which are solid and not straight) have capacity k.

First, the shortest augmenting path algorithm has to augment fl ow k2 time along paths (s, S, T, 
t) which have length equal to 3. The capacities of these paths are unit. After that the residual 
network will contain reversal arcs (T, S) and the algorithm will chose another k2 augmenting 
paths (s, u1, u2, T, S, v2, v1, t) of length 7. Then the algorithm will have to choose paths (s, u1, u2, u3, 
u4, S, T, v4, v3, v2, v1, t) of length 11 and so on...

Now let’s calculate the parameters of our network. The number of vertexes is n = 2k + 4p + 2. The 
number of edges is m = k2 + 2pk + 2k + 4p. As it easy to see, the number of augmentations is a = 
k2(p + 1).
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Consider that p = k – 1. In this case n = 6k – 2 and a = k3. So, one can verify that a ~ n3/216. In Zadeh 
presents examples of networks that require n3/27 and n3/12 augmentations, but these examples 
are dependent on a choice of the shortest path.

We made 5 worst-case tests with 100, 148, 202, 250 and 298 vertexes and compared the running 
times of the improved version of the algorithm against the unimproved one. As you can see on 
Figure 14.6, the improved algorithm is much faster. On the network with 298 nodes it works 
23 times faster. Practice analysis shows us that, in general, the improved algorithm works 
n/14 times faster.

109 15 63 156562

2391

359 688

18000

16000

14000

12000

10000

8000

6000

4000

2000

0
100 148 202 250 298

Figure 14.6. X-axis is the Number of Nodes. Y-axis is Working time in Milliseconds

Blue colour indicates the shortest augmenting path algorithm and red does it improved version.

However, our comparison in not defi nitive, because we used only one kind of networks. We just 
wanted to justify that the O(n2m) algorithm works O(n) times faster than the O(nm2) on a dense 
network.

 “Network fl ow is an advanced branch of graph theory.” Discuss.

14.2 Network Flow Problem

Let G = (V, E) be a directed network defi ned by a set V of vertexes (nodes) and set E of edges 
(arcs). For each edge (i, j) ∈ E we associate a capacity uij that denotes the maximum amount that 
can fl ow on the edge. Each edge (i, j) ∈ E  also has an associated cost cij that denotes the cost per 
unit fl ow on that edge.

We associate with each vertex i ∈ V a number bi. This value represents supply/demand of the 
vertex. If bi > 0, node i is a supply node; if bi < 0, node i is a demand node (its demand is equal to 
-bi). We call vertex i a transshipment if bi is zero.

For simplifi cation, let’s call G a transportation network and write G = (V, E, u, c, b) in case we 
want to show all the network parameters explicitly.
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i j
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Figure: 14.7: An example of the transportation network. In this we have 2supply vertexes (with 
supply values 5 and 2), 3 demand vertexes (with demand values 1, 4 and 2), and 1 transshipment 

node. Each edge has two numbers, capacity and cost, divided by comma

Representing the fl ow on arc (i, j) ∈ E by xij, we can obtain the optimization model for the 
minimum cost fl ow problem:

 Minimize z(x) = 
( , )

ij ij
i j E

c x
∈

∑
subject to

 
{ :( , ) } { :( , ) }

–ij ij
j i j E j j i E

x x
∈ ∈

∑ ∑  = bi  for all i ∈ V,

 0 ≤ xij ≤ uij    for all (i, j) ∈ E.

The fi rst constraint states that the total outfl ow of a node minus the total infl ow of the node must 
be equal to mass balance (supply/demand value) of this node. This is known as the mass balance 
constraints. Next, the fl ow bound constraints model physical capacities or restrictions imposed 
on the fl ow’s range. As you can see, this optimization model describes a typical relationship 
between warehouses and shops, for example, in a case where we have only one kind of product. 
We need to satisfy the demand of each shop by transferring goods from the subset of warehouses, 
while minimizing the expenses on transportation.

This problem could be solved using simplex-method, but in this article we concentrate on some 
other ideas related to network fl ow theory. Before we move on to the three basic algorithms used 
to solve the minimum cost fl ow problem, let’s review the necessary theoretical base.

Finding a Solution

When does the minimum cost fl ow problem have a feasible (though not necessarily optimal) 
solution? How do we determine whether it is possible to translate the goods or not?

If δdef = Σi∈V bi ≠ 0 then the problem has no solution, because either the supply or the demand 
dominates in the network and the mass balance constraints come into play.
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We can easily avoid this situation, however, if we add a special node r with the supply/demand 
value br = –δ. Now we have two options: If δ > 0 (supply dominates) then for each node i ∈ V with 
bi > 0 we add an arc (i, r) with infi nite capacity and zero cost; otherwise (demand dominates), for 
each node i ∈ V with bi < 0, we add an arc (r, i) with the same properties. Now we have a new 
network with Σi∈V∪{r}bi = 0 – and it is easy to prove that this network has the same optimal value 
as the objective function.

Consider the vertex r as a rubbish or scrap dump. If the shops demand is less than what the 
warehouse supplies, then we have to eject the useless goods as rubbish. Otherwise, we take the 
missing goods from the dump. This would be considered shady in real life, of course, but for our 
purposes it is very convenient. Keep in mind that, in this case, we cannot say what exactly the 
“solution” of the corrected (with scrap) problem is. And it is up to the reader how to classify the 
emergency uses of the “dump.” For example, we can suggest that goods remain in the warehouses 
or some of the shop’s demands remain unsatisfi ed.

Even if we have δ = 0 we are not sure that the edge’s capacities allow us to transfer enough fl ow 
from supply vertexes to demand ones. To determine if the network has a feasible fl ow, we want 
to fi nd any transfer way what will satisfy all the problem’s constraints. Of course, this feasible 
solution is not necessarily optimal, but if it is absent we cannot solve the problem.

Let us introduce a source node s and a sink node t. For each node i ∈ V with bi > 0, we add a 
source arc (s, i) to G with capacity bi and cost 0. For each node i ∈ V with bi < 0, we add a sink arc 
(i, t) to G with capacity –bi and cost 0.

i j
bi bjxij,uij

1

s
3

2
4

5

6
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2
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3/3
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4/7

1/1

4/7

1/1

4/4

0/3

2/5 2/2

Figure 14.8: Maximum Flow in the Transformed Network. For simplicity we are ignoring the costs

The new network is called a transformed network. Next, we solve a maximum fl ow problem 
from s to t. If the maximum fl ow saturates all the source and sink arcs, then the problem has a 
feasible solution; otherwise, it is infeasible. As for why this approach works, we’ll leave its proof 
to the reader.

Having found a maximum fl ow, we can now remove source, sink, and all adjacent arcs and 
obtain a feasible fl ow in G. How do we detect whether the fl ow is optimal or not? Does this 
fl ow minimize costs of the objective function z? We usually verify “optimality conditions” for 
the answer to these questions, but let us put them on hold for a moment and discuss some 
assumptions.

Now, suppose that we have a network that has a feasible solution. Does it have an optimal 
solution? If our network contains the negative cost cycle of infi nite capacity then the objective 
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function will be unbounded. However, in some tasks, we are able to assign fi nite capacity to each 
uncapacitated edge escaping such a situation.

14.3 Minimum Spanning Tree

A minimum spanning tree or minimum weight spanning tree is then a spanning tree with weight 
less than or equal to the weight of every other spanning tree. More generally, any undirected 
graph (not necessarily connected) has a minimum spanning forest, which is a union of minimum 
spanning trees for its connected components. 

One example would be a cable TV company laying cable to a new neighborhood. If it is constrained 
to bury the cable only along certain paths, then there would be a graph representing which points 
are connected by those paths. Some of those paths might be more expensive, because they are 
longer, or require the cable to be buried deeper; these paths would be represented by edges with 
larger weights. 

A spanning tree for that graph would be a subset of those paths that has no cycles but still 
connects to every house. 

There might be several spanning trees possible. A minimum spanning tree would be one with 
the lowest total cost.

0 12

4 3
1

1 16 2

5

3

0 1

4 3
1

1 1 2

3

Graph G A Minimum Spanning Tree
Tree for G
(Total cost = 6)

Figure 14.9: Minimum Spanning Tree

A graph may have many spanning trees; for instance the complete graph on four vertices has 
sixteen spanning trees:

0 0

0 0

X

Figure 14.10: A Complete Graph with four Vertices
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x x x x

Figure 14.11: Sixteen Spanning Trees of a Complete Graph on four Vertices

Now suppose the edges of the graph have weights or lengths. The weight of a tree is just the sum 
of weights of its edges. Obviously, different trees have different lengths. The problem: how to 
fi nd the minimum length spanning tree? 

This problem can be solved by many different algorithms. It is the topic of some very recent 
research. There are several “best” algorithms, depending on the assumptions you make:

A randomized algorithm can solve it in linear expected time.

It can be solved in linear worst case time if the weights are small integers. Otherwise, the best 
solution is very close to linear but not exactly linear. The exact bound is O(m log beta(m,n)) where 
the beta function has a complicated defi nition: the smallest i such that log(log(log(...log(n)...))) is 
less than m/n, where the logs are nested i times. 

These algorithms are all quite complicated, and probably not that great in practice unless you’re 
looking at really huge graphs. Here we’ll go through two simple classical algorithms.

14.3.1 Kruskal’s Algorithm

We’ll start with Kruskal’s algorithm, which is easiest to understand and probably the best one for 
solving problems by hand. 

Kruskal’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree for 
a connected weighted graph. This means it fi nds a subset of the edges that forms a tree that 
includes every vertex, where the total weight of all the edges in the tree is minimized. If the graph 
is not connected, then it fi nds a minimum spanning forest (a minimum spanning tree for each 
connected component). 

Kruskal’s algorithm is an example of a greedy algorithm. This algorithm fi rst appeared in 
Proceedings of the American Mathematical Society in 1956, and was written by Joseph Kruskal.
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Algorithm 

Let G = (V, E) which is represented by an adjacency list Adj. Some support data structures:

1. F is the forest — a set of all (partial) trees. 

2. MST is the minimum spanning tree, represented by a set of edges. 

3. Q is a priority queue of edges.

Kruskal(G)

1. Let F be a set of singleton set of all vertices in G.

2. MST <- {}

3. Q <- E

4. while Q not empty do

5. (u, v) <- ExtractMin(Q) // Q is modifi ed

6. if FIND-SET(u) != FIND-SET(v) then // FIND-SET(i) returns the set in F

                         // which vertex i belongs to.

            // This effectively does cycle check.

                      // If ACCEPTED,

7. begin

8. merge(FIND-SET(u),FIND-SET(v)) in F

9. MST <- MST Union {(u, v)}

10. end

11. return MST.

Proof of Correctness

Let P be a connected, weighted graph and let Y be the subgraph of P produced by the algorithm. 
Y cannot have a cycle, since the last edge added to that cycle would have been within one subtree 
and not between two different trees. Y cannot be disconnected, since the fi rst encountered edge 
that joins two components of Y would have been added by the algorithm. Thus, Y is a spanning 
tree of P.

It remains to show that the spanning tree Y is minimal:

Let Y1 be a minimum spanning tree. If Y = Y1 then Y is a minimum spanning tree. Otherwise, let e 
be the fi rst edge considered by the algorithm that is in Y but not in Y1. Y1 U e has a cycle, because 
you cannot add an edge to a spanning tree and still have a tree. This cycle contains another edge 
f which at the stage of the algorithm where e is added to Y, has not been considered. This is 
because otherwise e would not connect different trees but two branches of the same tree. Then Y2 
=  Y1 U e/f is also a spanning tree.

Its total weight is less than or equal to the total weight of Y1. This is because the algorithm visits 
e before f and therefore w(e) £ w(f) . If the weights are equal, we consider the next edge e which 
is in Y but not in Y1. If there is no edge left, the weight of Y is equal to the weight of Y1 although 
they consist of a different edge set and Y is also a minimum spanning tree. 
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In the case where the weight of Y2 is less than the weight of Y1 we can conclude that Y1 is not 
a minimum spanning tree, and the assumption that there exist edges e,f with w(e) < w(f) is 
incorrect. And therefore Y is a minimum spanning tree (equal to Y1 or with a different edge set, 
but with same weight).
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 6. The algorithm continues until Q becomes empty, but since the forest has become one tree, all 
remaining edges in Q will be rejected and no change will happen to MST.

Figure 14.12: Step by Step Representation of kruskal’s Algorithm
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14.3.2 Prim’s Algorithm

Prim’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree for a 
connected weighted graph. This means it fi nds a subset of the edges that forms a tree that includes 
every vertex, where the total weight of all the edges in the tree is minimized. 

The algorithm was discovered in 1930 by mathematician Vojtìch Jarník and later independently by 
computer scientist Robert C. Prim in 1957 and rediscovered by Edsger Dijkstra in 1959. Therefore 
it is sometimes called the DJP algorithm, the Jarník algorithm, or the Prim-Jarník algorithm.
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Figure 14.13: Diagrammatic Representation of Prim’s Algorithm

Algorithm

Let G = (V, E) which is represented by an adjacency list Adj. Some support data structures:

1. d is an array of size |V|.  Each d[i] contains the shortest distance for vertex i 

2. Q is a priority queue of UNKNOWN vertices. 

3. p is an array of size |V|.  Each P[i] contains the parent of vertex i. 

4. s is the source vertex.

PRIM(G, s)

1. Initialize d[s] with 0, P[s] with 0, and

     all other d[i] (i!=s) with a positive infi nity and

              p[i] (i!=s) with 0.

2. Q <- V  // initialize Q with all vertices as UNKNOWN

3. while Q not empty do

4. begin

5. u <- ExtractMin(Q)  // Q is modifi ed

6. Mark u as KNOWN  // Dequeing u is the same as marking it as KNOWN

7. for each vertex v in Adj[u] do

8. begin

9. if v is UNKNOWN and d[v] > weight(u, v), then do

10. begin

11. d[v] = weight(u, v)  // update with shorter weight

12. p[v] = u             // update v’s parent as v
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13. end

14. end

15. end

Proof of Correctness

Let P be a connected, weighted graph. At every iteration of Prim’s algorithm, an edge must be 
found that connects a vertex in a subgraph to a vertex outside the subgraph. Since P is connected, 
there will always be a path to every vertex. The output Y of Prim’s algorithm is a tree, because the 
edge and vertex added to Y are connected. Let Y1 be a minimum spanning tree of P. If Y1 = Y then 
Y is a minimum spanning tree. Otherwise, let e be the fi rst edge added during the construction 
of Y that is not in Y1, and V be the set of vertices connected by the edges added before e. Then 
one endpoint of e is in V and the other is not. Since Y1 is a spanning tree of P, there is a path in Y1 
joining the two endpoints. As one travels along the path, one must encounter an edge f joining 
a vertex in V to one that is not in V. Now, at the iteration when e was added to Y, f could also 
have been added and it would be added instead of e if its weight was less than e. Since f was not 
added, we conclude that

 w(f)24
12w(e).

Let Y2 be the graph obtained by removing f and adding e from Y1. It is easy to show that Y2 is 
connected, has the same number of edges as Y1, and the total weights of its edges is not larger 
than that of Y1, therefore it is also a minimum spanning tree of P and it contains e and all the 
edges added before it during the construction of V. Repeat the steps above and we will eventually 
obtain a minimum spanning tree of P that is identical to Y1. This shows Y is a minimum spanning 
tree.
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Figure 14.14: Step-by-Step Representation of Prim’s Algorithm

Contd...
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Note  v0 is the source vertex, and d[i] for each vertex i is also indicated in its circle:

14.4 Summary

 Perhaps the best safeguard in the use of powerful tools is to insist on regularity; that is, 
to use the powerful tools only in carefully defi ned and well-understood ways. Because 
of the generality of graphs, it is not always easy to impose this discipline on their use. In 
this world, nonetheless, irregularities will always creep in, no matter how hard we try 
to avoid them. It is the bane of the systems analyst and programmer to accommodate 
these irregularities while trying to maintain the integrity of the underlying system design. 
Irregularity even occurs in the very systems that we use as models for the data structures 
we devise, models such as the family trees whose terminology we have always used.

14.5 Keywords

Network Flow: Network fl ow is an advanced branch of graph theory.

Zero-One Principle: If a sorting network sorts every sequence of 0’s and 1’s, then it sorts every 
arbitrary sequence of values.

Prim’s algorithm: Prim’s algorithm is an algorithm in graph theory that fi nds a minimum 
spanning tree for a connected weighted graph.
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Minimum Spanning Tree: A minimum spanning tree or minimum weight spanning tree is then a 
spanning tree with weight less than or equal to the weight of every other spanning tree.

Kruskal’s algorithm: Kruskal’s algorithm is an algorithm in graph theory that fi nds a minimum 
spanning tree for a connected weighted graph.

14.6 Self Assessment

State whether the following statements are true or false:

1. Network fl ow is an advanced branch of graph theory.

2. Kruskal’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree 
for a connected weighted graph.

3. Kruskal’s algorithm is not an example of a greedy algorithm. 

4. Prim’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree for a 
connected weighted graph.

5. A graph may not have many spanning trees.

Fill in the blanks:

6. Prism algorithm was discovered in 1930 by mathematician .....................

7. ......................... developed some examples on which the running time is based.

8. A ......................... can solve it in linear expected time.

9. Kruskal’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree 
for a connected ..................... graph.

10. Prism’s algorithms sometimes called the ............................

14.7 Review Questions

1. What do you mean by network fl ow?

2. Explain Ford Fulkerson’s method of network fl ow.

3. What do you mean by minimum spanning tree?

4. Describe proof of correctness of Kruskal’s algorithm

5. Explain prim’s algorithm

6. Dijkstra’s algorithm to compute a minimal spanning tree in a network works by considering 
all edges in any convenient order. As in Kruskal’s algorithm, we select edges for a spanning 
tree, by adding edges to an initially empty set. However, each edge is now selected as 
it is considered, but if it creates a cycle together with the previously selected edges, the 
most expensive edge in this cycle is deselected. Prove that the edges chosen by Dijkstra’s 
algorithm also form a minimal spanning tree of a connected network.

7. Kruskal’s algorithm to compute a minimal spanning tree in a network works by considering 
all edges in increasing order of weight. We select edges for a spanning tree, by adding 
edges to an initially empty set. An edge is selected if together with the previously selected 
edges it creates no cycle. Prove that the edges chosen by Kruskal’s algorithm do form a 
minimal spanning tree of a connected network.

8. Explain how Prim’s algorithm for minimal spanning trees differs from Kruskal’s 
algorithm.
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9. Graphs may be implemented in many ways by the use of different kinds of data structures. 
Postpone implementation decisions until the applications of graphs in the problem-solving 
and algorithm-development phases are well understood.

10. How can we determine a maximal spanning tree in a network?

Answers: Self Assessment

1. True 2. True

3. False 4. True

5. False 6. Vojtìch Jarník

7. Norman Zadeh 8. randomized algorithm

9. weighted 10. DJP algorithm

14.8 Further Readings

Books  Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice 
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann, 
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to 
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links  www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com
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