
DCAP605

Advanced Data Structure and
Algorithms

ADVANCED DATA STRUCTURE
AND ALGORITHMS

Copyright © 2011 Anindita Hazra
All rights reserved

Produced & Printed by
EXCEL BOOKS PRIVATE LIMITED

A-45, Naraina, Phase-I,
New Delhi-110028

for
Lovely Professional University

Phagwara

SYLLABUS

Advanced Data Structure and Algorithms
Objectives: To equip the students with the skills to analyze, design, program, and select the appropriate advanced data
structures required to solve real world problems.

Sr. No. Topics

1. List: Abstract data types, list adts:array implementation, linked list ,common errors, doubly

linked list, circularly linked list, cursor implementation of linked list.

2. Stack: Stack model, implementation of stacks, applications; queues: queue model, array

implementation, applications.

3. Trees: Binary trees, binary search trees, avl trees.

4. Splay trees, b-trees.

5. Hashing: Hash functions, open hashing, closed hashing, rehashing.

6. Heaps: Binary heaps, applications, d-heaps.

7. Leftist heaps, skew heaps, binomial queues

8. Sorting: insertion sort, shell sort, heap sort , Merge sort, quick sort, bucket sort, external sort

9. Graphs: Shortest path algorithms.

10 Network flow problem, minimum spanning tree

CONTENTS

Unit 1: Introduction to Data Structure and Arrays 1

Unit 2: Linked Lists 24

Unit 3: Stacks 58

Unit 4: Queues 82

Unit 5: Trees 97

Unit 6: Binary Search Tree and AVL Trees 116

Unit 7: Splay Trees 159

Unit 8: B-trees 170

Unit 9: Hashing 188

Unit 10: Heaps 199

Unit 11: Leftist Heaps and Binomial Queues 219

Unit 12: Sorting 233

Unit 13: Graphs 264

Unit 14: Network Flows 277

6 LOVELY PROFESSIONAL UNIVERSITY

Corporate and Business Law

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 1

Unit 1: Introduction to Data Structure and Arrays

CONTENTS

Objectives

Introduction

1.1 Abstract Data Type (ADT)

1.2 Defi nition of Data Structure

1.3 Data Structure Operations

1.4 Implementation of Data Structure

1.5 List ADT’s

 1.5.1 ADT of Singly Linked Lists

 1.5.2 Implementation

1.6 Arrays Implementation

 1.6.1 Array

 1.6.2 Index or Subscript

 1.6.3 Dimensions of an Array

1.7 Summary

1.8 Keywords

1.9 Self Assessment

1.10 Review Questions

1.11 Further Readings

Objectives

After studying this unit, you will be able to:

 Realise basic concept of data

 Describe Abstract Data Type (ADT)

 Defi ne data structure

 Know data structure types

Introduction

As Static representation of linear ordered list through Array leads to wastage of memory and in
some cases overfl ows. Now we don’t want to assign memory to any linear list in advance instead
we want to allocate memory to elements as they are inserted in list. This requires Dynamic
Allocation of memory.

Semantically data can exist in either of the two forms – atomic or structured. In most of the
programming problems data to be read, processed and written are often related to each other.
Data items are related in a variety of different ways. Whereas the basic data types such as

Advanced Data Structure and Algorithms

Notes

2 LOVELY PROFESSIONAL UNIVERSITY

integers, characters etc. can be directly created and manipulated in a programming language,
the responsibility of creating the structured type data items remains with the programmers
themselves. Accordingly, programming languages provide mechanism to create and manipulate
structured data items.

1.1 Abstract Data Type (ADT)

Before we move to abstract data type let us understand what data type is. Most of the languages
support basic data types viz. integer, real, character etc. At machine level, the data is stored as
strings containing 1’s and 0’s. Every data type interprets the string of bits in different ways and
gives different results. In short, data type is a method of interpreting bit patterns.

Every data type has a fi xed type and range of values it can operate on. For example, an integer
variable can hold values between the min and max values allowed and carry out operations like
addition, subtraction etc. For character data type, the valid values are defi ned in the character
set and the operations performed are like comparison, conversion from one case to another etc.
There are fi xed operations, which can be carried out on them. We can formally defi ne data types
as a formal description of the set of values and operations that a variable of a given type may
take. That was about the inbuilt data types. One can also create user defi ned data types, decide
the range of values as well as operations to be performed on them. The fi rst step towards creating
a user defi ned data type or a data structure is to defi ne the logical properties. A tool to specify the
logical properties of a data type is Abstract Data Type.

Data abstraction can be defi ned as separation of the logical properties of the organization of
programs’ data from its implementation. This means that it states what the data should be like.
It does not consider the implementation details. ADT is the logical picture of a data type; in
addition, the specifi cations of the operations required to create and manipulate objects of this
data type.

While defi ning an ADT, we are not concerned with time and space effi ciency or any other
implementation details of the data structure. ADT is just a useful guideline to use and implement
the data type.

An ADT has two parts:

1. Value defi nition

2. Operation defi nition.

Value defi nition is again divided into two parts:

1. Defi nition clause

2. Condition clause

As the name suggests the defi nition clause states the contents of the data type and condition
clause defi nes any condition that applies to the data type. Defi nition clause is mandatory while
condition clause is optional.

 Example: An integer variable can contain only integer values while a character variable
can contain only a valid character value.

To understand the above clauses let us consider the ADT representation of integer data type.
In the value defi nition the defi nition clause will state that it can contain any number between
minimum integer value and the maximum integer value allowed by the computer while the
condition clause will impose a restriction saying none of the values will have a decimal point.

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 3

In operation defi nition, there are three parts:

1. Function

2. Precondition

3. Postcondition

The function clause defi nes the role of the operation. If we consider the addition operation in
integers the function clause will state that two integers can be added using this function. In
general, precondition specifi es any restrictions that must be satisfi ed before the operation can
be applied. This clause is optional. If we consider the division operation on integers then the
precondition will state that the divisor should not be zero. So any call for divide operation, which
does not satisfy this condition, will not give the desired output.

Precondition specifi es any condition that may apply as a pre-requisite for the operation defi nition.
There are certain operations that can be carried out if certain conditions are satisfi ed. For example,
in case of division operation the divisor should never be equal to zero. Only if this condition is
satisfi ed the division operation is carried out. Hence, this becomes a precondition. In that case &
(ampersand) should be mentioned in the operation defi nition.

Postcondition specifi es what the operation does. One can say that it specifi es the state after the
operation is performed. In the addition operation, the post condition will give the addition of the
two integers.

ADT

Value Definition Operation Definition

Definition Clause Condition Clause Function Precondition Postcondition

Figure 1.1: Components of ADT

As an example, let us consider the representation of integer data type as an ADT. We will consider
only two operations addition and division.

Value Defi nition

1. Defi nition clause: The values must be in between the minimum and maximum values
specifi ed for the particular computer.

2. Condition clause: Values should not include decimal point.

Operations

1. add (a, b)

Function: add the two integers a and b.

Precondition: no precondition.

Postcondition: output = a + b

Advanced Data Structure and Algorithms

Notes

4 LOVELY PROFESSIONAL UNIVERSITY

2. Div (a, b)

Function: Divide a by b.

Precondition: b != 0

Postcondition: output = a/b.

There are two ways of implementing a data structure viz. static and dynamic. In static
implementation, the memory is allocated at the compile time. If there are more elements than
the specifi ed memory then the program crashes. In dynamic implementation, the memory is
allocated as and when required during run time.

Any type of data structure will have certain basic operations to be performed on its data like
insert, delete, modify, sort, search etc depending on the requirement. These are the entities that
decide the representation of data and distinguish data structures from each other.

Let us see why user defi ned data structures are essential. Consider a problem where we need to
create a list of elements. Any new element added to the list must be added at the end of the list
and whenever an element is retrieved, it should be the last element of the list. One can compare
this to a pile of plates kept on a table. Whenever one needs a plate, the last one on the pile is taken
and if a plate is to be added on the pile, it will be kept on the top. The description wants us to
implement a stack. Let us try to solve this problem using arrays.

We will have to keep track of the index of the last element entered in the list. Initially, it will be
set to –1. Whenever we insert an element into the list we will increment the index and insert the
value into the new index position. To remove an element, the value of current index will be the
output and the index will be decremented by one. In the above representation, we have satisfi ed
the insertion and deletion conditions.

Using arrays we could handle our data properly, but arrays do allow access to other values in
addition to the top most one. We can insert an element at the end of the list but there is no way to
ensure that insertion will be done only at the end. This is because array as a data structure allows
access to any of its values. At this point we can think of another representation, a list of elements
where one can add at the end, remove from the end and elements other than the top one are not
accessible. As already discussed this data structure is called as STACK. The insertion operation is
known as push and removal as pop. You can try to write an ADT for stacks.

Another situation where we would like to create a data structure is while working with complex
numbers. The operations add, subtract division and multiplication will have to be created as per
the rules of complex numbers. The ADT for complex numbers is given below. Only addition and
multiplication operations are considered here, you can try to write the remaining operations.

The ADT for complex numbers is as follows:

Value Defi nition

1. Defi nition Clause: This data type has values a +ib where a and b are integers and i is equal
to under root of –1.

2. Condition Clause: i term should be present.

Operations

1. add:

Function: add, add two complex numbers a1 + ib1 and a2 + ib2.

Precondition: no Precondition.

Post condition: (a1 + a2) + i(b1 + b2).

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 5

2, multiply:

Function: multiply two complex numbers a1 + ib1 and a2 + ib2.

Precondition: no Precondition.

Post condition: a1a2 + ia1b2 + ib1a2 + i2b1b2.

i.e. a1a2 + ia1b2 + ib1a2 – b1b2.

Abstract data type (ADT) is a mathematical model with a collection of operations defi ned on that
model. Sets of integers, together with the operations of union, intersection and set difference, form
a simple example of an ADT. The ADT encapsulates a data type in the sense that the defi nition
of the type and all operations on the type can be localized and are not visible to the users of the
ADT. To the users, just the declaration of the ADT and its operations are important.

Abstract Data Type (ADT)

1. A framework for an object interface

2. What kind of stuff it’d be made of (no details)?

3. What kind of messages it would receive and kind of action it’ll perform when properly
triggered?

Do_this (p1, p2, p3)

Also_this (p1, p2, p3)

Do_that (p1, p2, p3)

Object

Conceptualization phase

From this we fi gure out

1. Object make-up (in terms of data)

2. Object interface (what sort of messages it would handle?)

3. How and when it should act when triggered from outside (public trigger) and by another
object friendly to it?

These concerns lead to an ADT – a defi nition for the object.

An Abstract Data Type (ADT) is a set of data items and the methods that work on them.

An implementation of an ADT is a translation into statements of a programming language, of the
declaration that defi nes a variable to be of that ADT, plus a procedure in that language for each
operation of the ADT. An implementation chooses a data structure to represent the ADT; each
data structure is built up from the basic data types of the underlying programming language.
Thus, if we wish to change the implementation of an ADT, only the procedures implementing the
operations would change. This change would not affect the users of the ADT.

Although the terms ‘data type’, ‘data structure’ and ‘abstract data type’ sound alike, they have
different meanings. In a programming language, the data type of a variable is the set of values
that the variable may assume. For example, a variable of type boolean can assume either the
value true or the value false, but no other value. An abstract data type is a mathematical model,
together with various operations defi ned on the model. As we have indicated, we shall design
algorithms in terms of ADTs, but to implement an algorithm in a given programming language

Advanced Data Structure and Algorithms

Notes

6 LOVELY PROFESSIONAL UNIVERSITY

we must fi nd some way of representing the ADTs in terms of the data types and operators
supported by the programming language itself. To represent the mathematical model underlying
an ADT, we use data structures, which are a collection of variables, possibly of several data types,
connected in various ways.

The cell is the basic building block of data structures. We can picture a cell as a box that is capable
of holding a value drawn from some basic or composite data type. Data structures are created
by giving names to aggregates of cells and (optionally) interpreting the values of some cells as
representing relationships or connections (e.g., pointers) among cells.

Task Value defi nition is a one part of ADT the second one is

1.2 Defi nition of Data Structure

A data structure is a set of data values along with the relationship between the data values. Since,
the operations that can be performed on the data values depend on what kind of relationships
exists among them, we can specify the relationship amongst the data values by specifying the
operations permitted on the data values. Therefore, we can say that a data structure is a set
of values along with the set of operations permitted on them. It is also required to specify the
semantics of the operations permitted on the data values, and this is done by using a set of
axioms, which describes how these operations work, and therefore a data structure is made of:

1. A set of data values.

2. A set of functions specifying the operations permitted on the data values.

3. A set of axioms describing how these operations work.

Hence, we conclude that a data structure is a triple (D,F,A), where

1. D is a set of data values

2. F is a set of functions

3. A is a set of axioms

A triple (D, F, A) is referred to as an abstract data structure because it does not tell anything about
its actual implementation. It does not tell anything about how these values will be physically
represented in the computer memory and these functions will be actually implemented.
Therefore every abstract data structure is required to be implemented, and the implementation
of an abstract data structure requires mapping of the abstract data structure to be implemented
into the data structure supported by the computer. For example, if the abstract data structure
to be implemented is integer, then it can be implemented by mapping into bits which is a data
structure supported by hardware. This requires that every integer data value is to be represented
using suitable bit patterns and expressing the operations on integer data values in terms of
operations for manipulating bits.

Data Structure mainly two types:

1. Linear type data structure

2. Non-linear type data structure

Linear data structure: A linear data structure traverses the data elements sequentially, in which
only one data element can directly be reached. Ex: Arrays, Linked Lists.

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 7

Non-linear data structure: Every data item is attached to several other data items in a way that
is specifi c for refl ecting relationships. The data items are not arranged in a sequential structure.
Ex: Trees, Graphs.

Basic Concept of Data

The memory (also called storage or core) of a computer is simply a group of bits (switches). At
any instant of the computer’s operation any particular bit in memory is either 0 or 1 (off or on).
The setting or state of a bit is called its value and that is the smallest unit of information. A set of
bit values form data.

Some logical properties can be imposed on the data. According to the logical properties data can
be segregated into different categories. Each category having unique set of logical properties is
known as data type.

Data type are of two types:

1. Simple data type or elementary item like integer, character.

2. Composite data type or group item like array, structure, union.

Data structures are of two types:

1. Primitive Data Structures: Data can be structured at the most primitive level, where
they are directly operated upon by machine-level instructions. At this level, data may be
character or numeric, and numeric data may consist of integers or real numbers.

2. Non-primitive Data Structures: Non-primitive data structures can be classifi ed as arrays,
lists, and fi les.

An array is an ordered set which contains a fi xed number of objects. No deletions or insertions
are performed on arrays i.e. the size of the array cannot be changed. At best, elements may be
changed.

A list, by contrast, is an ordered set consisting of a variable number of elements to which
insertions and deletions can be made, and on which other operations can be performed. When a
list displays the relationship of adjacency between elements, it is said to be linear; otherwise it is
said to be non-linear.

A fi le is typically a large list that is stored in the external memory of a computer. Additionally, a
fi le may be used as a repository for list items (records) that are accessed infrequently.

From a real world perspective, very often we have to deal with structured data items which
are related to each other. For instance, let us consider the address of an employee. We can take
address to be one variable of character type or structured into various fi elds, as shown below:

Address: Characters (56)

House No.: char (5)

City: char(20)

Street: char(5)

State: char(20) PIN: char(6)

Address1

Address2

As shown above Address1 is unstructured address data. In this form you cannot access individual
items from it. You can at best refer to the entire address at one time. While in the second from, i.e.,
Address2, you can access and manipulate individual fi elds of the address – House No., Street,
PIN etc. Given hereunder are two instances of the address1 and address2 variables.

Advanced Data Structure and Algorithms

Notes

8 LOVELY PROFESSIONAL UNIVERSITY

Let A1, A2 be two Address1 type variables and B1, B2 be two address2 type variables. The data
can now be stored in the following way:

N 59, Sriniwaspuri, New Delhi 1100065

House No.: N 59

City: Sriniwaspuri

Street:

State: Delhi PIN: 110065

A1

A2

One can access different fi elds of A2 as shown below:

A 2.HouseNo = N 59

A 2.Street = “ ”

A 2.City = “Sriniwaspuri”

A 2.State = “New Delhi”

A 2.PIN = “110065”

Data structure is a combination of one or more basic data types to form a single addressable data
type along with operations defi ned on it.

Note It is a data type and hence one can create variables of that type in a computer
program. Just as each basic data type allows programmers to perform certain operations,
data structures also let programmers operate on them.

Data Abstraction: Data abstraction is a tool that allows each data structure to be developed in
relative isolation from the rest of the solution. The study of data structure is organized around a
collection of abstract data types that includes lists, trees, sets, graphs, and dictionaries.

1.3 Data Structure Operations

The data appearing in our data structure is processed by means of certain operations. The
particular data structure that one chooses for a given situation depends largely on the frequency
with which specifi c operations are performed. The following four operations play a major role:

1. Transversing: Accessing each record exactly once so that certain items in the record may be
processed. (This accessing or processing is sometimes called ‘visiting” the records.)

2. Searching: Finding the location of the record with a given key value, or fi nding the locations
of all records, which satisfy one or more conditions.

3. Inserting: Adding new records to the structure.

4. Deleting: Removing a record from the structure.

Sometimes two or more data structure of operations may be used in a given situation; e.g., we
may want to delete the record with a given key, which may mean we fi rst need to search for the
location of the record.

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 9

1.4 Implementation of Data Structure

In this unit, we will discuss the distinguish between the usage and the implementation of a data
structure. This difference is crucial in understanding the concept of the separation, defi nition and
use that should be practiced for designing good software. We then present the implementation
of a few data structures.

Our main purpose of this course is to describe important data structures and to develop algorithms
for the various operations on such data structures.

While presenting a data structure we shall discuss ways to represent it in the computer memory.
In many cases, we shall assume array to be the primitive structure to house other data structures.
In this context, we use the term array to mean a one-dimensional array having elements of a
particular type. Every high level programming language includes facilities to handle arrays and
as such implementation of a data structure housed in an array does not offer any problem. Even
in assembly or machine languages, a block of contiguous storage locations can be conveniently
considered to be an array for the said purpose. Borrowing the notation of C language, we shall
denote an array type as follows:

<base type> <array name>[<number of elements>];

Thus,

int A[50];

will denote an array of 50 elements where A is the name of the array. An individual element of
this array will be denoted by
A[i] where 0<i<50.

In general, an element will be shown as
<array name>[<index>]

where <0> <= <index> < <number of elements>

In many cases, the relations among the elements of a data structure need not be explicitly
represented because these are implicitly known. When the relations need to be explicitly
represented, there are two possible approaches. Either the relations are represented separately
(possible as another data structure) or the elements are augmented to include additional fi elds
that represent structural information. Later, we shall see many examples of both these approaches
and as such, we do not consider any example at this stage.

It is clear from the above discussion that sometimes an element will also include structural
information. In such cases, we shall call it a node to make a minor distinction between the two.
Thus the distinction between a node and an element (or a component) is that a node is an element
(or a component) plus the structural information (if any) carried into it.

Task Every high level programming language includes facilities to handle arrays
 what about machine level and assembly level languages.

1.5 List ADT’s

An array is an example of list. Arrays have fi xed size, which is declared and fi xed at the start of
the program, and therefore cannot be changed while it is running.

 Example: Suppose an array of size 5 has been declared at the start of the program.

Advanced Data Structure and Algorithms

Notes

10 LOVELY PROFESSIONAL UNIVERSITY

Now, this size cannot be changed while running the program. This we all know is static allocation.
When writing the program, we have to decide on the maximum amount of memory that would
be needed. If we run the program on a small collection of data, then much of the space will
go waste. If program is run on bigger collection of data, then we may exhaust the space and
encounter an overfl ow. Consider the following example:

 Example: Suppose, we defi ne an array of size 5. If we store 5 elements in it, it is said to
be full and no space is left in it. On the contrary, if we store 2 elements in it, then 3 positions are
empty and virtually useless, resulting in wastage of memory.

1

2

3

4

5

1

2

A full array An array with more than half
locations empty

Dynamic data structures can avoid these diffi culties. The idea is to use dynamic memory
allocation. We allocate memory for individual elements as and when they are required. Each
memory location contains a pointer to the location where the successive element is stored. A
pointer or a link or a reference is a variable, which stores the memory address of some other
variable. If we use pointers to locate the data in which we are interested, then we need not worry
about where the data is actually stored, since by using a pointer, we can let the computer system
itself locate the data when required.

Linked lists use the concept of dynamic memory allocation. In this respect they are different than
arrays. Every node in a linked list contains a ‘link’ to the next node as shown below. This link is
achieved by using pointers.

item item item

Next end
Start

Structure 1 Structure 2 Structure 3

Figure 1.2: A Linked List

This type of list is called a linked list because it is a list where order is given by links from one
item to the next.

1.5.1 ADT of Singly Linked Lists

There are various operations, which can be performed on lists. The list Abstract Data Type
defi nition given here contains a small collection of basic operations, which can be performed on
lists:

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 11

List ADT Specifi cation

Value Defi nition: The value defi nition of a linked list contains a data type for storing the value
of the node along with the pointer to the next node. The value can be represented using a simple
data type or a collection of basic data types. However, it must necessarily contain at least one
pointer to the next structure. This can be shown as follows:

struct datatype

{

int item;

struct datatype *next;

}

or,

struct datatype

{

int item;

float info;

char str;

struct datatype *next;

}

Defi nition clause: The nodes of the list are all of the same type, and have a key fi eld called key.
The list is logically ordered from smallest unique element of key to the largest value i.e. at any
position the key of the element is greater than its predecessor and smaller than its successor.

Operations

1. crlist:

 Function: creates a list and initializes it as empty.

 Preconditions: none.

 Postconditions: list is created and is initialized as empty.

2. insert:

 Function: inserts new element into the list either at the beginning, in the middle or at the
end.

 Preconditions: a list already exists.

 Postconditions: list is returned with the new element inserted in it.

3. delete:

 Function: searches a list for the element and removes the element from the list.

 Preconditions: the list already exists.

 Postconditions: the list is returned with the element removed from it.

4. print:

 Function: traverses the list and prints each element.

 Preconditions: the list already exists.

Advanced Data Structure and Algorithms

Notes

12 LOVELY PROFESSIONAL UNIVERSITY

 Postconditions: list elements are printed in the order they are present in the list. List remains
unchanged.

5. modify:

 Function: searches for an element and replaces it with a new value.

 Preconditions: the list already exists.

 Postconditions: the element if present is modifi ed by a new value.

These are the basic set of operations that might be needed to create and maintain a list of elements.
Other operations, which can be performed on linked lists, are:

1. Counting the elements in a list.

2. Concatenating two lists.

Users can think of more operations like comparing two lists, adding the elements of two lists, etc.
depending on a specifi c problem and try building ADT’s of their own.

1.5.2 Implementation

Each element of the list is called a node and consists of two or more members. Some members can
contain the information pertaining to that node and the others may be pointers to other nodes.
In case of a singly linked list, one member consists of such a pointer. A linked list is therefore a
collection of structures ordered not by their physical placement in memory but by logical links
that are stored as part of data in the structure itself. The link is in form of a pointer to another
structure of the same type.

Such a structure is represented in ‘C/C++’ as follows:

struct node

{

int item;

struct node *next;

};

The fi rst member is an integer item and the second a pointer to the next node in the list as shown.
The item can be any complex data type. That is it can contain a collection of basic data types.
Further, as we will study doubly linked lists later, we can have more than two pointers. One,
pointing to the successor node and the other to the predecessor. The pointer type is the type of
the node itself. This node can be shown as follows:
struct node

{

int item;

float info;

char str;

struct node *next;

};

Right now, we will limit our discussion to singly linked lists with only two members, i.e. one
containing the data and the other a pointer to the next node.

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 13

node

item next

Figure 1.3: Node

Such structures, which contain a member fi eld that points to the same structure type, are called
self-referential structures. A node may be represented in general form as follows:

 struct label-name

 {

 type member1;

 type member2;

 type member3;

 struct label-name *next;

 };

Figure 1.4: Structure Declaration for the Node

The node may contain more than one item with different data types. However, one of the items
must be a pointer of the type label-name. The above node with all its members can be depicted
as follows:

member1 member2 membern next

node

Consider a simple example to understand the concept of linking. Suppose we defi ne a structure
as follows:

struct list

{

int value;

struct list *next;

};

Assume that the list contains two node viz. node1 and node2. They are of type struct list and are
defi ned as follows:

struct list node1,node2;

Advanced Data Structure and Algorithms

Notes

14 LOVELY PROFESSIONAL UNIVERSITY

This statement creates space for two nodes each containing two empty fi elds as shown below:

Node1.value
Node1.next

node1

Node2.value
Node2.next

node2

Figure 1.5: Creation of the two Nodes

The next pointer of node1 can be made to point to node2 by the statement

node1.next=&node2;

This statement stores the address of node2 into the fi eld node1.next and thus establishes a “link”
between node1 and node2 as shown below:

node1

node1.value

node1

node1.value

Address of node2

node2

node2.value
node2.next

link

Figure 1.6: Node 1 Pointing to Node 2

Now we can assign values to the fi eld value.
node1.value=30;

node2.value=40;

The result is as follows:

node2

40
node2.next

node1

30
871800

link

Figure 1.7: The Complete List of two Nodes

Assume that the address of node2 is 871800. As you can see, that address is now stored in the
next fi eld of node1.

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 15

We may continue this process to create a linked list of any number of values. Each time you need
to store a value allocate the node and use it in the list. For example,

node2.next=&node3;

would add another link.

Also every list must have an end. This is necessary for processing the list. C has a special pointer
value called NULL that can be stored in the next fi eld of the last node.

In the above two-node list, the end of the list is marked as follows:
node2.next=NULL;

The value of the value member of node2 can be accessed using the next member of node1 as
follows:
cout<<”\n”<<node1.next->value;

Task Write a syntax to represent a node.

1.6 Arrays Implementation

1.6.1 Array

A group of fi nite number of identical type of elements accessible by a common name. An array
has a name which is also the name of each of its elements. For example, let there be an array abc
of integers having 6 elements. The same is shown below.

The names of different elements are shown below.

abc[0] abc[1] abc[2] abc[3] abc[4] abc[5]

1.6.2 Index or Subscript

The integral value that corresponds to the ordinal position of an array element is called index or
subscript.

1.6.3 Dimensions of an Array

On the basis of the number of indices required to access a member element in an array, an array
can be classifi ed into the following categories:

1. Single-dimensional Arrays

2. Multi-dimensional Arrays

Each type of Array has different kind of memory representation.

Memory Allocation to Arrays

Member elements of an array are provided contiguous memory locations. When a program
requests the operating system that it intends to create an array the operating system computes
the size of one element and multiplies the same with the number of elements requested to obtain
the total number of memory cells required. The operating system then allocates those many

Advanced Data Structure and Algorithms

Notes

16 LOVELY PROFESSIONAL UNIVERSITY

memory locations to the program for array. In case the required number of memory cells exceeds
the available memory the operating system returns an error code to the program that made the
request.

Memory Allocation to One-dimensional Array

A one dimensional array is a list of fi nite number n of Homogeneous data elements (i.e. data
elements of the same type) such that:

1. The elements of the Array are referenced respectively by an index set consisting of n
consecutive numbers.

2. The elements of the Array are stored respectively in successive memory locations.

The number n of elements is called the length or size of the Array.

If not explicitly stated, we will assume the index set consists of the integers 1, 2, ...n. In general,
the length or the number of data elements of the Array can be obtained from the index set by the
formula

 Length = UB – LB + 1 …(1)

where,

 UB is the largest index, called the upper bound and

 LB is the smallest index, called the lower bound, of the Array.

Note Note that length = UB when LB = 1.

The elements of an Array A may be denoted by the subscript notation A[1], A[2], A[3],... A[n].

In general a linear Array A with a subscript lower bound of “one” can be represented pictorially
as in fi gure given below.

.

.

.
A[1]

LB

If s words are allocated for each element or node (i.e. size of data types of elements of Array is s),
then total memory space allocated to array is given by:

 Memory Space Request (UB – LB + 1)*s …(2)

If we want to calculate the memory space required for fi rst i-1 elements of an Array then slight
modifi cation in formula (2) will be needed. i.e.

 Space Required = (i – 1 - LB + 1)*s

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 17

or Space Required = (i – LB)*s …(3)

If the Address of A[LB] is _ then the Address of ith element of Array will be given by:

 Address of A[i] = _+(i – LB)*s …(4)

Now, we can write a Program for addressing the ith element of a single dimensional Array. We
can take _, i, LB and s as input from user and output the address of A[i].

Consider a One-dimensional Array of fi gure given below. It has fi ve elements. Each element
takes 4 bytes to store.

Suppose Address of a[0]=1000, and we want to calculate the address of a4 then from the formula
(4) we have,

 _ = 1000,

 i = 4,

 LB = 1,

 s = 4

Address of a4 = 1000 + (4 – 1)*4

Address of a4 = 1012.

a5

a4

a3

a2

a1

Memory Representation of Two-dimensional Array

Even though Multidimensional Arrays are provided as a standard data object in most of the
high level languages, it is interesting to see how they are represented in memory. Memory may
be regarded as one dimensional with words numbered from 1 to m. So we are concerned with
representing n dimensional Array in a one dimensional memory.

A two dimensional ‘m x n’ Array A is a collection of m.n data elements such that each element is
specifi ed by a pair of integers (such as j, k), called subscripts, with property that

1 × j × m and 1 × k × n.

The element of A with fi rst subscript j and second subscript k will be denoted by AJ,K or A[J, K].
Two dimensional arrays are called matrices in mathematics and tables in Business Applications.

Consider the following example of a 3 × 3 array.

 Columns

1. A [1, 1] A [1, 2] A [1, 3]

2. A [2, 1] A [2, 2] A [2, 3]

3. A [3, 1] A [3, 2] A [3, 3]

Two-dimensional 3 × 3 Array A

Advanced Data Structure and Algorithms

Notes

18 LOVELY PROFESSIONAL UNIVERSITY

Programming language stores the array in either of the two way:

1. Row Major Order

2. Column Major Order

In Row Major Order elements of 1st Row are stored fi rst in linear order and then comes elements
of next Row and so on.

In Column Major Order elements of 1st column are stored fi rst linearly and then comes elements
of next column. When Above Matrix is stored in memory using Row Major Order form then the
representation will be as shown in fi gure.

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

Row 1

Row 2

Row 3

Representation with Column Major form will be:

(1, 1)

(2, 1)

(3, 1)

(1, 2)

(2, 2)

(3, 2)

(1, 3)

(2, 3)

(3, 3)

Column 1

Column 2

Column 3

Number of elements in any two-dimensional Array can be given by:

 No. of elements = (UB1 – LB1 + 1) * (UB2 – LB2 + 1) …(5)

where,

 UB1 is upper bound of 1st dimension

 LB1 is lower bound of 1st dimension UB2 and LB2

are upper and lower bounds of 2nd dimensions

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 19

LB2 UB2

LB1

A(i, LB2) A(l, j).......

UB1

Rowith

If we want to calculate the number of elements till Ist Row then.

 No. of elements = (UB2 – LB2 + 1) * (1 – 1 + 1)

or No. of elements = UB2 – LB2 + 1 …(6)

No. of elements in (j – 1) Rows = (j – 1) (UB2 – LB2 + 1). If s be the size of data types of Array
elements then memory space required for storing i-1 Rows will be.

 Space Required = (UB2 – LB2 + 1) (i – 1)*s …(7)

If x be the address of A[LB1, LB2] then Address of A(i, LB2) will be:

 Add = x + (UB2 – LB2 + 1) (i-1)*s …(8)

Address of A[i, j] will be

 Address of A[i, j] = x + [(UB2 – LB2 + 1) (i – 1) + (j – 1)]*s …(9)

This is Address Scheme for Row Major form. For Column Major form

 Address of A[i, j] = x + [(UB1 – LB1 + 1) (j – 1) + (i – 1)]*s …(10)

1 2 3 4

1

2

3

4

A =

Consider a two-dimensional matrix of fi gure. Suppose address of A11 is 2000 and this two
dimensional array contains elements of 4-bytes each we want to calculate the address of A23,
then by the formula (9) we have

 _ = 2000,

 UB2 = 4, LB2 = 1

 i = 2, j = 3,

and s = 4

then

 add. of A23 = 2000 + [(4 – 1 + 1) (2 – 1) + (3 – 1)]*4 = 2024

Advanced Data Structure and Algorithms

Notes

20 LOVELY PROFESSIONAL UNIVERSITY

Memory Allocation to Three-dimensional Array

Suppose we want to Calculate Address of A(i1, i2, i3). i.e. Address of i1th window, i2th Row and
i3th Column.

LB2

UB2

LB3 UB3

LB2

LB3 i3

i2

A(i1, i2, i3) UB1

:
:
:

… … … …

… … …

:
:
:
:

:
:
:
:

Then, for Row Major Order Form:

Address of A(i1, i2, i3)

 = _+((i3*(UB2 – LB2 + 1) + i2)*(UB1 – LB1 + 1) + i1)*s …(11)

Memory Allocation to Multi-dimensional Array

Now if we generalize the formulae (11) for the n dimensions of Array then

For Row Major form

Let, Add. of A(LB1, LB2, LB3...LBn) = x

 Add. of A [i1, i2, i3, ...n3]

 = x [(i1 – LB1) (UB2 – LB2 + 1)

 (UBn – LBn + 1) + (i3 – LB3)(LB4 – LB4 + 1)....(UBn – LBn + 1)+...

(in – 1 – LBn – 1)(UBn – LBn + 1) + (in – LBn)]*s …(12)

Now Program for Address Calculation can be made by taking number of dimensions, lower and
upper Bounds of each dimensions, address of A[LB1, LB2....LBn] and size as input from user and
give Address of A[i1, i2...in] as output.

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 21

1.7 Summary

 Data structure is a combination of one or more basic data types to form a single addressable
data type.

 An algorithm is a fi nite set of instructions which, when followed, accomplishes a particular
task, the termination of which is guaranteed under all cases, i.e. the termination is
guaranteed for every input.

 The instructions must be unambiguous and the algorithm must produce the output within
a fi nite number of executions of its instructions.

 Associated with each data structure, there are some algorithms to perform the basic
operations on the elements.

 Abstract data type (ADT) is a mathematical model with a collection of operations defi ned
on that model. Although the terms ‘data type’, ‘data structure’ and ‘abstract data type’
sound alike, they have different meanings.

1.8 Keywords

Linear Data Structure: A linear data structure traverses the data elements sequentially, in which
only one data element can directly be reached.

Non-linear Data Structure: Every data item is attached to several other data items in a way that
is specifi c for refl ecting relationships. The data items are not arranged in a sequential structure.

Searching: Finding the location of the record with a given key value, or fi nding the locations of
all records, which satisfy one or more conditions.

Transversing: Accessing each record exactly once so that certain items in the record may be
processed.

1.9 Self Assessment

Fill in the blanks:

1. The memory of a computer is simply a group of

2. A is typically a large list that is stored in the external memory of a
computer.

3. An is an ordered set which contains a fi xed number of objects.

4. is a combination of one or more basic data types to form a single
addressable data type along with operations defi ned on it.

5. Adding new records to the structure is known as

State whether the following statements are true or false:

6. An array is an example of list.

7. Linked lists can not use the concept of dynamic memory allocation.

8. Each element of the list is called a node and consists of two or more members.

9. At machine level, the data is stored as strings containing 1’s and 0’s.

10. A tool to specify the logical properties of a data type is Abstract Data Type.

Advanced Data Structure and Algorithms

Notes

22 LOVELY PROFESSIONAL UNIVERSITY

1.10 Review Questions

1. Explain operations of data structure.

2. Distinguish between linear and non-linear type of data structure.

3. Write short note on ADT.

4. “ADT is the logical picture of a data type”. Explain

5. “Data abstraction is a tool that allows each data structure to be developed in relative
isolation from the rest of the solution”. Discuss

6. How will you implement data structure? Explain

7. What do you mean by ADT of singly lists? Discuss

8. “The list is logically ordered from smallest unique element of key to the largest value”.
Explain

9. “A pointer or a link or a reference is a variable, which stores the memory address of some
other variable”. Discuss

10. How will you remove a record from the structure? Explain

Answers: Self Assessment

1. bits 2. fi le

3. array 4. Data structure

5. Inserting 6. True

7. False 8. True

9. True 10. True

1.11 Further Readings

 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Data Structures and Algorithms; Shi-Kuo Chang; World Scientifi c.

 Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann,
Springer.

 Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi

 Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition.
Addison-Wesley publishing

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c

 Sorenson and Tremblay: An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L. Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Unit 1: Introduction to Data Structure and Arrays

Notes

 LOVELY PROFESSIONAL UNIVERSITY 23

 www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Advanced Data Structure and Algorithms

Notes

24 LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Linked Lists

CONTENTS

Objectives

Introduction

2.1 Concept of Linked Lists

2.2 Representation of Linked List

2.3 Inserting a Node using Recursive Programs

2.4 Deleting the Specifi ed Node in Singly Linked List

2.5 Inserting a Node after the Specifi ed Node in a Singly Linked List

2.6 Linked List Common Errors

2.7 Doubly Linked Lists

2.8 Circular Linked List

2.9 Sorting and Reversing a Linked List

2.10 Merging two Sorted Lists

2.11 Merging of two Circular Lists

2.12 Application of Linked List

2.13 Summary

2.14 Keywords

2.15 Self Assessment

2.16 Review Questions

2.17 Further Readings

Objectives

After studying this unit, you will be able to:

 Defi ne linked lists

 Describe linked lists representation

 Know doubly linked lists

 Explain circular linked lists

Introduction

There are many other operations that are also useful to apply to sequences of elements. Thus we
can form a wide variety of similar ADTs by utilizing different packages of operations. Any one of
these related ADTs could reasonably go by the name of list. However, we fi x our attention on one
particular list ADT whose operations give a representative sampling of the ideas and problems
that arise in working with lists.

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 25

The standard template library provides a rather different data structure called a list. The STL
(Standard Template Library) list provides only those operations that can be implemented
effi ciently in a List implementation known as doubly linked, which we shall study shortly. In
particular, the STL list does not allow random access to an arbitrary list position, as provided
by our List operations for insertion, removal, retrieval, and replacement. Another STL template
class, called a vector, does provide some random access to a sequence of data values. An STL
vector bears some similarity to our List ADT, in particular, it provides the operations that can be
implemented effi ciently in the List implementation that we shall call contiguous. In this way, our
study of the List ADT provides an introduction to the STL classes list and vector.

2.1 Concept of Linked Lists

An array is represented in memory using sequential mapping, which has the property that
elements are fi xed distance apart. But this has the following disadvantage. It makes insertion
or deletion at any arbitrary position in an array a costly operation, because this involves the
movement of some of the existing elements.

When we want to represent several lists by using arrays of varying size, either we have to
represent each list using a separate array of maximum size or we have to represent each of the
lists using one single array. The fi rst one will lead to wastage of storage, and the second will
involve a lot of data movement.

So we have to use an alternative representation to overcome these disadvantages. One alternative
is a linked representation. In a linked representation, it is not necessary that the elements be at a
fi xed distance apart. Instead, we can place elements anywhere in memory, but to make it a part
of the same list, an element is required to be linked with a previous element of the list. This can
be done by storing the address of the next element in the previous element itself. This requires
that every element be capable of holding the data as well as the address of the next element. Thus
every element must be a structure with a minimum of two fi elds, one for holding the data value,
which we call a data fi eld, and the other for holding the address of the next element, which we
call link fi eld.

Therefore, a linked list is a list of elements in which the elements of the list can be placed anywhere
in memory, and these elements are linked with each other using an explicit link fi eld, that is, by
storing the address of the next element in the link fi eld of the previous element.

This program uses a strategy of inserting a node in an existing list to get the list created. An
insert function is used for this. The insert function takes a pointer to an existing list as the fi rst
parameter, and a data value with which the new node is to be created as a second parameter,
creates a new node by using the data value, appends it to the end of the list, and returns a pointer
to the fi rst node of the list. Initially the list is empty, so the pointer to the starting node is NULL.
Therefore, when insert is called fi rst time, the new node created by the insert becomes the start
node. Subsequently, the insert traverses the list to get the pointer to the last node of the existing
list, and puts the address of the newly created node in the link fi eld of the last node, thereby
appending the new node to the existing list. The main function reads the value of the number of
nodes in the list. Calls iterate that many times by going in a while loop to create the links with the
specifi ed number of nodes.

2.2 Representation of Linked List

Because each node of an element contains two parts, we have to represent each node through a
structure.

Advanced Data Structure and Algorithms

Notes

26 LOVELY PROFESSIONAL UNIVERSITY

While defi ning linked list we must have recursive defi nitions:

struct node

{

 int data;

 struct node * link;

}

Here, link is a pointer of struct node type i.e. it can hold the address of variable of struct node type.
Pointers permit the referencing of structures in a uniform way, regardless of the organization
of the structure being referenced. Pointers are capable of representing a much more complex
relationship between elements of a structure than a linear order.

Initialization:

main()

{

 struct node *p, *list, *temp;

 list = p = temp = NULL;

 .

 .

 .

}

Lab Exercise Program:

 # include <stdio.h>

 # include <stdlib.h>

 struct node

 {

 int data;

 struct node *link;

 };

 struct node *insert(struct node *p, int n)

 {

 struct node *temp;

 /* if the existing list is empty then insert a new node as the
starting node */

 if(p==NULL)

 {

 p=(struct node *)malloc(sizeof(struct node)); /* creates new
node data value passes

 as parameter */

 if(p==NULL)

 {

 printf(“Error\n”);

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 27

 exit(0);

 }

 p-> data = n;

 p-> link = p; /* makes the pointer pointing to itself because
it is a circular list*/

 }

 else

 {

 temp = p;

 /* traverses the existing list to get the pointer to the last node
of it */

 while (temp-> link != p)

 temp = temp-> link;

 temp-> link = (struct node *)malloc(sizeof(struct node)); /*

 creates new node using

 data value passes as

 parameter and puts its

 address in the link field

 of last node of the

 existing list*/

 if(temp -> link == NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 temp = temp-> link;

 temp-> data = n;

 temp-> link = p;

 }

 return (p);

 }

 void printlist (struct node *p)

 {

 struct node *temp;

 temp = p;

 printf(“The data values in the list are\n”);

 if(p!= NULL)

 {

 do

 {

 printf(“%d\t”,temp->data);

Advanced Data Structure and Algorithms

Notes

28 LOVELY PROFESSIONAL UNIVERSITY

 temp=temp->link;

 } while (temp!= p);

 }

 else

 printf(“The list is empty\n”);

 }

 void main()

 {

 int n;

 int x;

 struct node *start = NULL ;

 printf(“Enter the nodes to be created \n”);

 scanf(“%d”,&n);

 while (n -- > 0)

 {

 printf(“Enter the data values to be placed in a node\n”);

 scanf(“%d”,&x);

 start = insert (start, x);

 }

 printf(“The created list is\n”);

 printlist (start);

 }

2.3 Inserting a Node using Recursive Programs

A linked list is a recursive data structure. A recursive data structure is a data structure that has
the same form regardless of the size of the data. You can easily write recursive programs for such
data structures.

Lab Exercise Program

include <stdio.h>

 # include <stdlib.h>

 struct node

 {

 int data;

 struct node *link;

 };

 struct node *insert(struct node *p, int n)

 {

 struct node *temp;

 if(p==NULL)

 {

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 29

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 p-> data = n;

 p-> link = NULL;

 }

 else

 p->link = insert(p->link,n);/* the while loop replaced by

recursive call */

 return (p);

 }

 void printlist (struct node *p)

 {

 printf(“The data values in the list are\n”);

 while (p!= NULL)

 {

 printf(“%d\t”,p-> data);

 p = p-> link;

 }

 }

 void main()

 {

 int n;

 int x;

 struct node *start = NULL ;

 printf(“Enter the nodes to be created \n”);

 scanf(“%d”,&n);

 while (n- > 0)

 {

 printf(“Enter the data values to be placed in a node\n”);

 scanf(“%d”,&x);

 start = insert (start, x);

 }

 printf(“The created list is\n”);

 printlist (start);

 }

Advanced Data Structure and Algorithms

Notes

30 LOVELY PROFESSIONAL UNIVERSITY

This recursive version also uses a strategy of inserting a node in an existing list to create the list.
An insert function is used to create the list. The insert function takes a pointer to an existing list
as the fi rst parameter, and a data value with which the new node is to be created as the second
parameter. It creates the new node by using the data value, then appends it to the end of the list.
It then returns a pointer to the fi rst node of the list. Initially, the list is empty, so the pointer to the
starting node is NULL. Therefore, when insert is called the fi rst time, the new node created by
the insert function becomes the start node. Subsequently, the insert function traverses the list by
recursively calling itself. The recursion terminates when it creates a new node with the supplied
data value and appends it to the end of the list.

2.4 Deleting the Specifi ed Node in Singly Linked List

To delete a node, fi rst we determine the node number to be deleted (this is based on the assumption
that the nodes of the list are numbered serially from 1 to n). The list is then traversed to get a
pointer to the node whose number is given, as well as a pointer to a node that appears before the
node to be deleted. Then the link fi eld of the node that appears before the node to be deleted is
made to point to the node that appears after the node to be deleted, and the node to be deleted is
freed. Figures 2.1 and 2.2 show the list before and after deletion, respectively.

Lab Exercise Program

include <stdio.h>

include <stdlib.h>

struct node *delet (struct node *, int);

int length (struct node *);

struct node

{

 int data;

 struct node *link;

};

struct node *insert(struct node *p, int n)

{

 struct node *temp;

 if(p==NULL)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 p-> data = n;

 p-> link = NULL;

 }

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 31

 else

 {

 temp = p;

 while (temp-> link != NULL)

 temp = temp-> link;

 temp-> link = (struct node *)malloc(sizeof(struct node));

 if(temp -> link == NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 temp = temp-> link;

 temp-> data = n;

 temp-> link = NULL;

 }

 return (p);

}

void printlist (struct node *p)

{

 printf(“The data values in the list are\n”);

 while (p!= NULL)

 {

 printf(“%d\t”,p-> data);

 p = p-> link;

 }

}

void main()

{

 int n;

 int x;

 struct node *start = NULL;

 printf(“Enter the nodes to be created \n”);

 scanf(“%d”,&n);

 while (n- > 0)

 {

 printf(“Enter the data values to be placed in a node\n”);

 scanf(“%d”,&x);

 start = insert (start, x);

 }

Advanced Data Structure and Algorithms

Notes

32 LOVELY PROFESSIONAL UNIVERSITY

 printf(“ The list before deletion id\n”);

 printlist (start);

 printf(“% \n Enter the node no \n”);

 scanf (“ %d”,&n);

 start = delet (start , n);

 printf(“ The list after deletion is\n”);

 printlist (start);

}

 /* a function to delete the specified node*/

struct node *delet (struct node *p, int node_no)

{

 struct node *prev, *curr ;

 int i;

 if (p == NULL)

 {

 printf(“There is no node to be deleted \n”);

 }

 else

 {

 if (node_no > length (p))

 {

 printf(“Error\n”);

 }

 else

 {

 prev = NULL;

 curr = p;

 i = 1 ;

 while (i < node_no)

 {

 prev = curr;

 curr = curr-> link;

 i = i+1;

 }

 if (prev == NULL)

 {

 p = curr -> link;

 free (curr);

 }

 else

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 33

 {

 prev -> link = curr -> link ;

 free (curr);

 }

 }

 }

 return(p);

}

/* a function to compute the length of a linked list */

int length (struct node *p)

{

 int count = 0 ;

 while (p != NULL)

 {

 count++;

 p = p->link;

 }

 return (count) ;

}

node to be deleted

pointer X

Figure 2.1: Before Deletion

pointer X

Figure 2.2: After Deletion

2.5 Inserting a Node after the Specifi ed Node in a Singly Linked List
To insert a new node after the specifi ed node, fi rst we get the number of the node in an existing
list after which the new node is to be inserted. This is based on the assumption that the nodes of
the list are numbered serially from 1 to n. The list is then traversed to get a pointer to the node,
whose number is given. If this pointer is x, then the link fi eld of the new node is made to point to
the node pointed to by x, and the link fi eld of the node pointed to by x is made to point to the new
node. Figures 2.3 and 2.4 show the list before and after the insertion of the node, respectively.

Advanced Data Structure and Algorithms

Notes

34 LOVELY PROFESSIONAL UNIVERSITY

Lab Exercise Program

include <stdio.h>

 # include <stdlib.h>

 int length (struct node *);

 struct node

 {

 int data;

 struct node *link;

 };

 /* a function which appends a new node to an existing list used for

building a list */

 struct node *insert(struct node *p, int n)

 {

 struct node *temp;

 if(p==NULL)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 p-> data = n;

 p-> link = NULL;

 }

 else

 {

 temp = p;

 while (temp-> link != NULL)

 temp = temp-> link;

 temp-> link = (struct node *)malloc(sizeof(struct node));

 if(temp -> link == NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 temp = temp-> link;

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 35

 temp-> data = n;

 temp-> link= NULL;

 }

 return (p);

 }

 /* a function which inserts a newly created node after the specified

node */

 struct node * newinsert (struct node *p, int node_no, int value)

 {

 struct node *temp, * temp1;

 int i;

 if (node_no <= 0 || node_no > length (p))

 {

 printf(“Error! the specified node does not exist\n”);

 exit(0);

 }

 if (node_no == 0)

 {

 temp = (struct node *)malloc (sizeof (struct node));

 if (temp == NULL)

 {

 printf(“ Cannot allocate \n”);

 exit (0);

 }

 temp -> data = value;

 temp -> link = p;

 p = temp ;

 }

 else

 {

 temp = p ;

 i = 1;

 while (i < node_no)

 {

 i = i+1;

 temp = temp-> link ;

 }

 temp1 = (struct node *)malloc (sizeof(struct node));

 if (temp == NULL)

 {

 printf (“Cannot allocate \n”);

Advanced Data Structure and Algorithms

Notes

36 LOVELY PROFESSIONAL UNIVERSITY

 exit(0)

 }

 temp1 -> data = value ;

 temp1 -> link = temp -> link;

 temp -> link = temp1;

 }

 return (p);

 }

 void printlist (struct node *p)

 {

 printf(“The data values in the list are\n”);

 while (p!= NULL)

 {

 printf(“%d\t”,p-> data);

 p = p-> link;

 }

 }

 void main ()

 {

 int n;

 int x;

 struct node *start = NULL;

 printf(“Enter the nodes to be created \n”);

 scanf(“%d”,&n);

 while (n- > 0)

 {

 printf(“Enter the data values to be placed in a node\n”);

 scanf(“%d”,&x);

 start = insert (start, x);

 }

 printf(“ The list before deletion is\n”);

 printlist (start);

 printf(“ \n Enter the node no after which the insertion is to be

done\n”);

 scanf (“ %d”,&n);

 printf(“Enter the value of the node\n”);

 scanf(“%d”,&x);

 start = newinsert(start,n,x);

 printf(“The list after insertion is \n”);

 printlist(start);

 }

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 37

pointer x

node to be inserted

Figure 2.3: Before Insertion

pointer x

Figure 2.4: After Insertion

Task Write a program to insert a node in singly linked list

2.6 Linked List Common Errors

Here is summary of common errors of linked lists. Read these carefully, and read them again
when you have problem that you need to solve.

1. Allocating a new node to step through the linked list; only a pointer variable is needed.

2. Confusing the and the -> operators.

3. Not setting the pointer from the last node to 0 (null).

4. Not considering special cases of inserting/removing at the beginning or the end of the
linked list.

5. Applying the delete operator to a node (calling the operator on a pointer to the node)
before it is removed. Delete should be done after all pointer manipulations are completed.

6. Pointer manipulations that are out of order. These can ruin the structure of the linked list.

Task Draw a diagram to illustrate the confi guration of linked nodes that is created by
the following statements.

Node *p0 = new Node(000);

Node *p1 = p0->next = new Node(010);

Node *p2 = p1->next = new Node(020, p1);

Advanced Data Structure and Algorithms

Notes

38 LOVELY PROFESSIONAL UNIVERSITY

2.7 Doubly Linked Lists

In the single linked list each node provides information about where the next node is in the list.
It faces diffi culty if we are pointing to a specifi c node, then we can move only in the direction
of the links. It has no idea about where the previous node lies in memory. The only way to fi nd
the node which precedes that specifi c node is to start back at the beginning of the list. The same
problem arises when one wishes to delete an arbitrary node from a single linked list. Since in
order to easily delete an arbitrary node one must know the preceding node. This problem can
be avoided by using Doubly Linked List, we can store in each node not only the address of next
node but also the address of the previous node in the linked list. A node in Doubly Linked List
has three fi elds (Figure 2.5).

1. Data

2. Left Link

3. Right Link

L LINK DATA R LINK

Figure 2.5: Node of Doubly Linked List

Left link keeps the address of previous node and Right Link keeps the address of next node.
Doubly Linked List has following property.

 p=p->llink->rlink=p->rlink->llink.

L LINK R LINK

p

This formula refl ects the essential virtue of this structure, namely, that one can go back and forth
with equal ease.

Implementation of Doubly Linked List

Structure of a node of Doubly Linked List can be defi ned as:

 struct node

 {

 int data;

 struct node *llink;

 struct node *rlink;

}

Lab Exercise Program

 # include <stdio.h>

 # include <stdlib.h>

 struct dnode

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 39

 {

 int data;

 struct node *left, *right;

 };

 struct dnode *insert(struct dnode *p, struct dnode **q, int n)

 {

 struct dnode *temp;

 /* if the existing list is empty then insert a new node as the

starting node */

 if(p==NULL)

 {

 p=(struct dnode *)malloc(sizeof(struct dnode)); /* creates new

node data value

 passed as parameter */

 if(p==NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 p-> data = n;

 p-> left = p->right =NULL;

 *q =p

 }

 else

 {

 temp = (struct dnode *)malloc(sizeof(struct dnode)); /* creates

new node using

 data value passed as

 parameter and puts its

 address in the temp

 */

 if(temp == NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 temp-> data = n;

 temp->left = (*q);

 temp->right = NULL;

 (*q) = temp;

Advanced Data Structure and Algorithms

Notes

40 LOVELY PROFESSIONAL UNIVERSITY

 }

 return (p);

 }

 void printfor(struct dnode *p)

 {

 printf(“The data values in the list in the forward order are:\n”);

 while (p!= NULL)

 {

 printf(“%d\t”,p-> data);

 p = p-> right;

 }

 }

 /* A function to count the number of nodes in a doubly linked list */

 int nodecount (struct dnode *p)

 {

 int count=0;

 while (p != NULL)

 {

 count ++;

 p = p->right;

 }

 return(count);

 }

 /* a function which inserts a newly created node after the specified

node in a doubly linked list */

struct node * newinsert (struct dnode *p, int node_no, int value)

 {

 struct dnode *temp, * temp1;

 int i;

 if (node_no <= 0 || node_no > nodecount (p))

 {

 printf(“Error! the specified node does not exist\n”);

 exit(0);

 }

 if (node_no == 0)

 {

 temp = (struct dnode *)malloc (sizeof (struct dnode));

 if (temp == NULL)

 {

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 41

 printf(“ Cannot allocate \n”);

 exit (0);

 }

 temp -> data = value;

 temp -> right = p;

 temp->left = NULL

 p = temp ;

 }

 else

 {

 temp = p ;

 i = 1;

 while (i < node_no)

 {

 i = i+1;

 temp = temp-> right ;

 }

 temp1 = (struct dnode *)malloc (sizeof(struct dnode));

 if (temp == NULL)

 {

 printf(“Cannot allocate \n”);

 exit(0);

 }

 temp1 -> data = value ;

 temp1 -> right = temp -> right;

 temp1 -> left = temp;

 temp1->right->left = temp1;

 temp1->left->right = temp1

 }

 return (p);

 }

 void main()

 {

 int n;

 int x;

 struct dnode *start = NULL ;

 struct dnode *end = NULL;

 printf(“Enter the nodes to be created \n”);

 scanf(“%d”,&n);

 while (n- > 0)

 {

Advanced Data Structure and Algorithms

Notes

42 LOVELY PROFESSIONAL UNIVERSITY

 printf(“Enter the data values to be placed in a node\n”);

 scanf(“%d”,&x);

 start = insert (start, &end,x);

 }

 printf(“The created list is\n”);

 printfor (start);

 printf(“enter the node number after which the new node is to be

inserted\n”);

 scanf(“%d”,&n);

 printf(“enter the data value to be placed in the new node\n”);

 scanf(“%d”,&x);

 start=newinsert(start,n,x);

 printfor(start);

 }

Explanation

1. To insert a new node in a doubly linked chain, it is required to obtain a pointer to the node
in the existing list after which a new node is to be inserted.

2. To obtain this pointer, the node number after which the new node is to be inserted is given
as input. The nodes are assumed to be numbered as 1,2,3,…, etc., starting from the fi rst
node.

3. The list is then traversed starting from the start node to obtain the pointer to the specifi ed
node. Let this pointer be x. A new node is then created with the required data value, and
the right link of this node is made to point to the node to the right of the node pointed to by
x. And the left link of the newly created node is made to point to the node pointed to by x.
The left link of the node which was to the right of the node pointed to by x is made to point
to the newly created node. The right link of the node pointed to by x is made to point to the
newly created node.

Question

Write a program to delete a specifi c node from the linked list.

2.8 Circular Linked List

Circular Linked List is another remedy for the drawbacks of the Single Linked List besides
Doubly Linked List. A slight change to the structure of a linear list is made to convert it to circular
linked list; link fi eld in the last node contains a pointer back to the fi rst node rather than a Null.
(See Figure 2.6).

Figure 2.6: Circular Linked List

From any point in such a list it is possible to reach any other point in the list. If we begin at a given
node and traverse the entire list, we ultimately end up at the starting point.

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 43

Lab Exercise Program: Here is a program for building and printing the elements of the
circular linked list.

include <stdio.h>

include <stdlib.h>

struct node

{

 int data;

 struct node *link;

};

struct node *insert(struct node *p, int n)

{

 struct node *temp;

 /* if the existing list is empty then insert a new node as the

starting node */

 if(p==NULL)

 {

 p=(struct node *)malloc(sizeof(struct node)); /* creates new

node data value passes

 as parameter */

 if(p==NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 p-> data = n;

 p-> link = p; /* makes the pointer pointing to itself because it

is a circular list*/

 }

 else

 {

 temp = p;

 /* traverses the existing list to get the pointer to the last node of

it */

 while (temp-> link != p)

 temp = temp-> link;

 temp-> link = (struct node *)malloc(sizeof(struct node)); /*

creates new node using

 data value passes as

 parameter and puts its

 address in the link field

 of last node of the

 existing list*/

Advanced Data Structure and Algorithms

Notes

44 LOVELY PROFESSIONAL UNIVERSITY

 if(temp -> link == NULL)

 {

 printf(“Error\n”);

 }

 exit(0);

 temp = temp-> link;

 temp-> data = n;

 temp-> link = p;

 }

 return (p);

 }

 void printlist (struct node *p)

 {

 struct node *temp;

 temp = p;

 printf(“The data values in the list are\n”);

 if(p!= NULL)

 {

 do

 {

 printf(%d\t”,temp->data);

 temp=temp->link;

 } while (temp!= p)

 }

 else

 printf(“The list is empty\n”);

 }

 void main()

 {

 int n;

 int x;

 struct node *start = NULL ;

 printf(“Enter the nodes to be created \n”);

 scanf(“%d”,&n);

 while (n- > 0)

 {

 printf(“Enter the data values to be placed in a

node\n”);

 scanf(“%d”,&x);

 start = insert (start, x);

 }

 printf(“The created list is\n”);

 printlist (start);

 }

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 45

This program appends a new node to the existing list (that is, it inserts a new node in the existing
list at the end), and it makes the link fi eld of the newly inserted node point to the start or fi rst
node of the list. This ensures that the link fi eld of the last node always points to the starting node
of the list.

2.9 Sorting and Reversing a Linked List

To sort a linked list, fi rst we traverse the list searching for the node with a minimum data value.
Then we remove that node and append it to another list which is initially empty. We repeat this
process with the remaining list until the list becomes empty, and at the end, we return a pointer
to the beginning of the list to which all the nodes are moved, as shown in Figure 2.7.

5 10

5 10

3 7
NULL

7
NULL

start

start

q NULL

List to be sorted

3

After the first pass

Figure 2.7: Sorting of a Linked List

To reverse a list, we maintain a pointer each to the previous and the next node, then we make the
link fi eld of the current node point to the previous, make the previous equal to the current, and
the current equal to the next, as shown in Figure 2.8.

NULL

prev curr next

Figure 2.8: A Linked List Showing the Previous, Current, and Next Nodes at
some Point during Reversal Process

Therefore, the code needed to reverse the list is:

Prev = NULL;

While (curr != NULL)

{

 Next = curr->link;

 Curr -> link = prev;

 Prev = curr;

 Curr = next;

}

2.10 Merging two Sorted Lists

Merging of two sorted lists involves traversing the given lists and comparing the data values
stored in the nodes in the process of traversing.

Advanced Data Structure and Algorithms

Notes

46 LOVELY PROFESSIONAL UNIVERSITY

If p and q are the pointers to the sorted lists to be merged, then we compare the data value stored
in the fi rst node of the list pointed to by p with the data value stored in the fi rst node of the list
pointed to by q. And, if the data value in the fi rst node of the list pointed to by p is less than the
data value in the fi rst node of the list pointed to by q, make the fi rst node of the resultant/merged
list to be the fi rst node of the list pointed to by p, and advance the pointer p to make it point to
the next node in the same list.

If the data value in the fi rst node of the list pointed to by p is greater than the data value in the
fi rst node of the list pointed to by q, make the fi rst node of the resultant/merged list to be the
fi rst node of the list pointed to by q, and advance the pointer q to make it point to the next node
in the same list.

Repeat this procedure until either p or q becomes NULL. When one of the two lists becomes
empty, append the remaining nodes in the non-empty list to the resultant list.

NULL10 20 30 40

p

NULL15 25 27 28

q

Two sorted lists before merging

If the above lists given as input, what would be the output of the program after each pass?

NULL10 20 30 40

r p

NULL15 25 27 28

q

After the first pass

NULL

temp

After the second pass
NULL

NULL10 20 30 40

r p

NULL15 25 27 28

temp q

After the third pass

NULL10 20 30 40

r temp p

NULL15 25 27 28

q NULL

Contd...

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 47

NULL

r p

NULL

temp q

NULL

NULL

r p

NULL

temp q

NULL

After the fourth pass

After the sixth pass

After the fifth pass

NULL

r p

temp

NULL

q

Final merged list

NULL

r p

temp

10

15

20

25

30

27

40

28

2.11 Merging of two Circular Lists

In order to merge or concatenate the two non-empty circular lists pointed to by p and q, it is
required to make the start of the resultant list p. Then the list pointed to by p is required to be
traversed until its end, and the link fi eld of the last node must become the pointer q. After that,
the list pointed to by q is required to be traversed until its end, and the link fi eld of the last node
is required to be made p.

Advanced Data Structure and Algorithms

Notes

48 LOVELY PROFESSIONAL UNIVERSITY

p

q

r

The given lists

The resultant list

You can merge two lists into one list. The following program merges two circular lists.

Lab Exercise Program:

include <stdio.h>

include <stdlib.h>

 struct node

 {

 int data;

 struct node *link;

 };

 struct node *insert(struct node *p, int n)

 {

 struct node *temp;

 /* if the existing list is empty then insert a new node as the

starting node */

 if(p==NULL)

 {

 p=(struct node *)malloc(sizeof(struct node)); /* creates new node

data value passes

 as parameter */

 if(p==NULL)

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 49

 {

 printf(“Error\n”);

 exit(0);

 }

 p-> data = n;

 p-> link = p; /* makes the pointer pointing to itself because it

is a circular list*/

 }

 else

 {

 temp = p;

 /* traverses the existing list to get the pointer to the last node of

it */

 while (temp-> link != p)

 temp = temp-> link;

 temp-> link = (struct node *)malloc(sizeof(struct node)); /*

creates new node using

 data value passes as

 parameter and puts its

 address in the link field

 of last node of the

 existing list*/

 if(temp -> link == NULL)

 {

 printf(“Error\n”);

 exit(0);

 }

 temp = temp-> link;

 temp-> data = n;

 temp-> link = p;

 }

 return (p);

 }

 void printlist (struct node *p)

 {

 struct node *temp;

 temp = p;

 printf(“The data values in the list are\n”);

 if(p!= NULL)

 {

Advanced Data Structure and Algorithms

Notes

50 LOVELY PROFESSIONAL UNIVERSITY

 do

 {

 printf(“%d\t”,temp->data);

 temp=temp->link;

 } while (temp!= p);

 }

 else

 printf(“The list is empty\n”);

 }

 struct node *merge(struct node *p, struct node *q)

 {

 struct node *temp=NULL;

 struct node *r=NULL;

 r = p;

 temp = p;

 while(temp->link != p)

 temp = temp->link;

 temp->link = q;

 temp = q;

 while(temp->link != q)

 temp = temp->link;

 temp->link = r;

 return(r);

 }

 void main()

 {

 int n;

 int x;

 struct node *start1=NULL ;

 struct node *start2=NULL;

 struct node *start3=NULL;

 /* this will create the first circular list nodes*/

 printf(“Enter the number of nodes in the first list \n”);

 scanf(“%d”,&n);

 while (n-- > 0)

 {

 printf(“Enter the data value to be placed in a node\n”);

 scanf(“%d”,&x);

 start1 = insert (start1, x);

 }

 printf(“The first list is\n”);

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 51

 printlist (start1);

 /* this will create the second circular list nodes*/

 printf(“Enter the number of nodes in the second list \n”);

 scanf(“%d”,&n);

 while (n-- > 0)

 {

 printf(“Enter the data value to be placed in a node\n”);

 scanf(“%d”,&x);

 start2 = insert (start2, x);

 }

 printf(“The second list is:\n”);

 printlist (start2);

 start3 = merge(start1,start2);

 printf(“The resultant list is:\n”);

 printlist(start3);

 }

Task Write a program to reverse a linked list

2.12 Application of Linked List

Polynomials in general are represented by the following equation:

 f(x) = cixei + ci – 1xei – 1 +....+c1xe1

where Ci are non zero coeffi cients of variable x and ei are exponents such that

 ei > ei – 1 > ei – 2 >.........> e1 > 0.

 Example:

 F1(x) = 3x7 – 7x5 + 3x2 + 1

 F2(x) = 5x8 + 6x5 + 4x2 +13

These Polynomials can be added to form another Polynomial

Let f3(x) = f1(x) +f2(x)

 f3(x) = 5x8 + 3x7 – x5 + 7x2 + 14

This is achieved by adding coeffi cients of variables with same exponent value.

These Polynomials can be maintained using a Linked List. To achieve this each term will be
represented by a node and each node should consist of three elements namely coeffi cients,
exponents and a link to the next term (represented by another node).

Struct poly Coef. Exp. Link

 {

 float coef;

Advanced Data Structure and Algorithms

Notes

52 LOVELY PROFESSIONAL UNIVERSITY

 int exp;

 struct poly link;

 }

For instance, the polynomial

f(x)= 4x11 – 3x9 + 2x3 + 1 will be stored as:

4 11 –3 9 2 3 1 0 NULL

f(x)

While maintaining the polynomial it is assumed that the exponent of each successive term is less
than that of the previous term. We can use these linked Lists to add two polynomials. To add two
polynomials together we examine their terms starting at the nodes pointed to by p and q (two
pointers used to move along the terms of two polynomials). If the exponents of two terms are
equal, then the coeffi cients are added and a new term created for the result. If the exponents of
the current term in p is less than the exponent of current term of q, then a duplicate of the term
q is created and attached to z. The pointers q and z (pointer to result term) are advanced. Similar
action is taken if Exp(p) >Exp(q).

1.
2 8 9 3 7 2 NULLp

3 8 4 5 2 1 NULLq

5 8 For the 2nd Term Exp. < (p) Exp (q) Hencez

2.
5 8 –4 5 Now exp. (p) > exp. (q) Hencez

3.
5 8 –4 5 9 3z

4.
5z 8 –4 5 9 3 7 2

Now p exhorted Hence.

5.
5z 8 –4 5 9 3 7 2 2 1

The function for Adding two polynomials is given below:

 polyadd (struct poly* p, struct poly*q)

 {

 struct poly *z1;

 z= malloc(sizeof(struct poly));

 if (p== NULL && q==NULL) return;

 while (p!=Null && q!=NULL)

 {

 if (p-> exp > q->exp)

 {

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 53

 z->exp=p->exp; z1->coef=p->coef;

 p=p-> link;

 }

 if (p->exp<q->exp)

 {

 z->exp=q->exp; z1->coef=q->coef;

 } q=q->link;

 if(p-> exp=q->exp)!=0)

 {

 z->exp=p->exp;

 z->coef=p->exp;

 p=p->link;

 q=q->link;

 }

 z->link = malloc(sizeof(struct poly));

 z=z1-> link;

 while (p!=NULL)

 {

 z->exp=p->exp;

 z->coef=p->coef;

 z->link= malloc(sizeof(struct poly));

 z=z->link; p=p->link;

 }

 while (q!=NULL)

 {

 z->exp=q->exp;

 z->coef=q->coef;

 z->link=malloe(sizeof(struct poly));

 z=z->link;

 } q=q->link;

 }

 }

Cursor Implementation of Linked Lists

Consider a case where we have two Linked Lists pointed to by two different pointers, say p and
q respectively, and we want to concatenate 2nd list at the end of the fi rst list. We can do it by
traversing fi rst list till the end and then store the address of fi rst node in the second list, in the
link fi eld of last node of fi rst list. Suppose we are traversing fi rst list by pointer temp, then we can
concatenate the list by the statement (Figure 2.9)

temp -> link = q;

Advanced Data Structure and Algorithms

Notes

54 LOVELY PROFESSIONAL UNIVERSITY

p NULL

q NULL

(a)

p

q
NULL

(b)

Temp

Figure 2.9: (a) Lists before Concatenation and (b) List after Concatenation

The function to achieve this is given below:
 Concatenate (struct node *p, struct node *q)

 {

 struct node *temp;

 temp = p;

 if (p == NULL)// If first list is NULL then Concatenated

 p = q; // List will be only Second List and will be

 else //pointed by p;

 {

 temp = p;

 while (temp -> link ! = NULL)

 temp = temp -> link;

 temp -> link = q;

 }

 }

2.13 Summary

 The foremost advantage of linked lists in dynamic storage is fl exibility advantages
Overfl ow is no problem until the computer memory is actually exhausted. Especially when
the individual entries are quite large, it may be diffi cult to determine the overfl ow amount
of contiguous static storage that might be needed for the required arrays while keeping
enough free for other needs. With dynamic allocation, there is no need to attempt to make
such decisions in advance.

 Changes, especially insertions and deletions, can be made in the middle of a changes linked
list more quickly than in the middle of a contiguous list. If the structures are large, then it is
much quicker to change the values of a few pointers than to copy the structures themselves
from one location to another disadvantages.

 The fi rst drawback of linked lists is that the links themselves take space that might otherwise
be needed for additional data. In most systems, a pointer requires the same amount of
storage (one word) as does an integer. Thus a list of integers will require double the space
in linked storage that it would require in contiguous storage.

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 55

2.14 Keywords

Circular Linked List: A linear linked list in which the last element points to the fi rst element, thus,
forming a circle.

Doubly Linked List: A linear linked list in which each element is connected to the two nearest
elements through pointers.

Linear List: A one-dimensional list of items.

Linked List: A dynamic list in which the elements are connected by a pointer to another
element.

NULL: A constant value that indicates the end of a list.

2.15 Self Assessment

Choose the appropriate answer:

1. Pointers permit the referencing of structures in a

(a) Normal way (b) Uniform way

(c) Common way (d) None

2. A recursive data structure is a data structure that has the same form regardless of the

(a) Size of the data (b) Shape of the data

(c) Origin of the data (d) Form of the data

3. The insert function takes a pointer to an existing list as the

(a) Second parameter (b) Third parameter

(c) First parameter (d) None

4. A Circular Linked List has no

(a) Beginning and no mid point (b) End and last

(c) Beginning and beginning (d) Beginning and no end

Fill in the blanks:

5. Memory allocation in Linked Lists is

6. Linked list stores two items of information: and

7. An function is used to create the list.

8. A is a list of elements in which the elements of the list can be placed anywhere
in memory.

State whether the following statements are true or false:

9. We cannot insert a node after any specifi c node.

10. In the single linked list each node provides information about where the previous node is
in the list.

11. A linked list is not a recursive data structure.

Advanced Data Structure and Algorithms

Notes

56 LOVELY PROFESSIONAL UNIVERSITY

2.16 Review Questions

1. Write a C program to sort the elements of a linked list.

2. Why are linked list better than arrays? Compare giving examples.

3. Create a linked list and write programs to:

(a) Insert a node at the nth position where n is accepted as an input from the keyboard.

(b) Delete a node from the nth position where n is accepted as an input from the
keyboard.

(c) Shift the node at the nth position to the position p where n and p are accepted as
inputs from the keyboard.

4. Write a program for building of an element of the circular linked list.

5. Describe the method of inserting a node using recursive program.

6. Write a C program to merge two given lists A and B to form C in the following manner:

 The fi rst element of C is the fi rst element of A and the second element of C is the fi rst
element of B. The second elements of A and B become the third and fourth elements of C,
and so on. If either A or B gets exhausted, the remaining elements of the other are to be
copied to C.

7. Write a C program to transform a circular list into a chain.

8. Describe ADT of singly linked lists.

9. Write remove for the (second) implementation of simply linked lists that remembers the
last-used position.

10. Prepare a collection of fi les containing the declarations for a contiguous list and all the
functions for list processing.

Answers: Self Assessment

1. (b) 2. (a)

3. (c) 4. (d)

5. Dynamic

6. An element of the list, A link or address of another node

7. Insert 8. Linked list

9. False 10. False

11. False

2.17 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Data Structures and Algorithms; Shi-Kuo Chang; World Scientifi c.

Unit 2: Linked Lists

Notes

 LOVELY PROFESSIONAL UNIVERSITY 57

 Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann,
Springer.

 Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi

 Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition.
Addison-Wesley publishing

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c

 Sorenson and Tremblay: An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L. Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Advanced Data Structure and Algorithms

Notes

58 LOVELY PROFESSIONAL UNIVERSITY

Unit 3: Stacks

CONTENTS

Objectives

Introduction

3.1 Stack Model

3.2 Implementation of Stacks

 3.2.1 Array-based Implementation

 3.2.2 Pointer-based Implementation

3.3 Applications of Stacks

 3.3.1 Maze Problem

 3.3.2 Simulating Recursive Function using Stack

 3.3.3 Simulation of Factorial

3.4 Summary

3.5 Keywords

3.6 Self Assessment

3.7 Review Questions

3.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Describe the stack model

 Explain the implementation and applications of stacks

Introduction

Stack is another linear data structure having a very interesting property. Unlike arrays and link
lists, an element can be inserted and deleted not at any arbitrary position but only at one end.
Thus, one end of a stack is sealed for insertion and deletion while the other end allows both the
operations.

3.1 Stack Model

A stack is a linear data structure in as much as its member elements are ordered as 1st, 2nd,….
and last. However, an element can be inserted in and deleted from only one end. The other end
remains sealed. This open end to which elements can be inserted and deleted from is called stack
top or top of the stack. Consequently, the elements are removed from a stack in the reverse order
of insertion. A stack is said to possess LIFO (Last In First Out) property. A data structure has
LIFO property if the element that can be retrieved fi rst is the one that was inserted last.

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 59

We come across several such structures in our day-to-day life. Consider a pile of plates as shown
below.

Push Po

Stack of plates

Clearly, an element can be inserted in a stack only on the top and can be retrieved only from the
top.

The following are the operations on a stack S:

 Push(S, e) : This inserts an element e into the stack S.

 pop(S) Æ e : This deletes an element from the stack S and stores it in e.

 Isempty(S) Æ true/false : This checks if the stack S is empty.

 Isfull(S) Æ true/false : This checks if the stack S is full or not.

A point to remember is that the above three operations are the only ones permitted with which
a stack could be operated on. Consider the following stack of integers to understand the stack
operations.

To 3

67

–5

11

89

1111

3

To

To

To

To

To 3 3 3 3

8

Empty After Push After Push After Push Stack fullAfter Pop

Stack operations in pseudo-code:

STACK-EMPTY(S)

if top[S] = 0

return true

else return false

PUSH(S, x)

top[S] <- top[S] + 1

S[top[S]] <- x

POP(S)

Advanced Data Structure and Algorithms

Notes

60 LOVELY PROFESSIONAL UNIVERSITY

if STACK-EMPTY(S)

then error “underfl ow”

else top[S] <- top[S] – 1

return S[top[S] + 1]

The running time for the operations is O(1) (constant time).

3.2 Implementation of Stacks

There are two basic methods for the implementation of stacks – one where the memory is used
statically and the other where the memory is used dynamically.

3.2.1 Array-based Implementation

In this scheme, an array of certain maximum size is allocated memory statically (i.e. once for all).
The stack and its operations are implemented using this array.

The following pseudo-code shows the array-based implementation of a stack. In this, the elements
of the stack are of type T.

 struct stk

{ T array[max_size];

/* max_size is the maximum size */

int top = -1;

/* stack top initially given value -1 */

} stack;

void push(T e)

/*inserts an element e into the stack s*/

{

 if (stack.top == max_size)

 printf(“Stack is full-insertion not possible”);

 else

 {

 stack.top = stack.top + 1;

 stack.array[stack.top] = e;

 }

}

T pop()

/*Returns the top element from the stack */

{

 T x;

 if(stack.top == -1)

 printf(“Stack is empty”);

 else

 {

 x = stack.array[stack.top];

 stack.top = stack.top - l;

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 61

 return(x);

 }

}

boolean empty()

/* checks if the stack is empty * /

{

 boolean empty = false;

 if(stack.top == -1)

 empty = true else empty = false;

return(empty);

}

void initialise()

/* This procedure initializes the stack s * /

{

 stack.top = -1;

}

The above implementation strategy is easy and fast since it does not have run-time overheads.
At the same time it is not fl exible since it cannot handle a situation when the number of elements
exceeds max_size. Also, let us say, if max_size is derided statically to 100 and a stack actually has
only 10 elements, then memory space for the rest of the 90 elements would be wasted.

Task Write a syntax to declare array in a program.

3.2.2 Pointer-based Implementation

Here the memory is used dynamically. For every push operation, the memory space for one
element is allocated at run-time and the element is inserted into the stack. For every pop
operation, the memory space for the deleted element is de-allocated and returned to the free
space pool. Hence the shortcomings of the array-based implementation are overcome. But since,
this allocates memory dynamically, the execution is slowed down.

The stack is implemented as a linked list as shown in Figure 3.1.

Top
23 45 –98

Nil

Figure 3.1: Implementation of a Stack using a Linked List

The following pseudo-code is for the pointer-based implementation of a stack. Each element of
the stack is of type T.

struct stk

{

 T element;

Advanced Data Structure and Algorithms

Notes

62 LOVELY PROFESSIONAL UNIVERSITY

 struct stk *next;

};

struct stk *stack;

void push(struct stk *p, T e)

{

 struct stk *x;

 x = new(stk);

 x.element = e;

 x.next = NULL;

 p = x;

}

Here the stack full condition is checked by the call to new which would give an error if no memory
space could be allocated.

T pop(struct stk *p)

{

 struct stk *x;

 if (p == NULL)

 printf(“Stack is empty”);

 else

 { x = p;

 x = x.next;

 return(p.element);

 }

boolean empty(sstruct stk *p)

{

 if (p == NULL)

 return(true);

 else

 return(false);

}

void initialize(struct stk *p)

{

 p = NULL;

 }

3.3 Applications of Stacks

There are numerous applications of the stack data structure in computer algorithms. It is used to
store return information in the case of function/procedure/subroutine calls. Hence, one would
fi nd a stack in architecture of any Central Processing Unit (CPU). In this section, we would just
illustrate a few of them.

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 63

3.3.1 Maze Problem

In a classical experimentation in psychology, a rat is placed through the door of a large box in
which walls are set up to restrict movements in most directions. The rat’s movement is observed
as it fi nds out, through the obstacles, a way to escape from the box. A two-dimensional version
of this problem is easy to formulate where a rectangular maze is conceived as consisting of a
number of unit square rooms such that movement from one square to another is restricted.

An m by n maze can be represented by an array maze of size [1..m, 1..n] where each maze[i,j]
represents a unit room. If maze[i,j] is 0 the room may be entered into but it cannot be entered if
maze[i,j] is 1. The entrance is at maze[1,1] and the exit is at maze[m,n].

Evaluation of Expressions

One of the biggest technical hurdles faced when conceiving the idea of higher level Programming
Languages, is to generate machine language instructions, which would properly evaluate any
arithmetic expression. A complex assignment statement such as:

 z -> x / y * * a + b * c – x * a

might have several meanings; even if it were uniquely defi ned, by the full use of parenthesis.

An expression is made up of operands, operators and delimiters. The above expression has fi ve
operands x, y, a, b and c. The fi rst problem with understanding the meaning of an expression
is to decide in what order the operations are carried out. This means that every language must
uniquely defi ne such an order. To fi x the order of evaluation we assign to each operator a priority.
A set of sample priorities are as follows:

Operator Priority Associativity
() 8 Left to Right
^ or **, unary -, unary+, ![not] 7 Right to Left
*, /, % 6 Left to Right
+, - 5 Left to Right
<, <=, >, >= 4 Left to Right
= =, != 3 Left to Right
&& 2 Left to Right
¦¦|| 1 Left to Right

But by using parenthesis we can override these rules and such expressions are always evaluated
with the inner most parenthesized expression fi rst.

The above notation of any expression is called Infi x Notation (in which operators come in
between the operands). The notation is a traditional notation, which needs operator’s priorities
and associativities. But how can a compiler accept such an expression and produce correct
Polish Notation or Prefi x form (in which operators come before operands) Polish Notation has
several advantages over Infi x Notation such as: there is no need for considering priorities while
evaluating them, there is no need of introducing parenthesis for maintaining order of execution
of operators.

Similarly, Reverse Polish Notation or Postfi x Form also has same advantages over Infi x Notation,
in this notation operators come after the operands.

Consider the following examples.

Infi x Prefi x Postfi x
x + y + x y x y +

x + y * z + x + y z x y z * +

x + y - z - + x y z x y z * + -

Advanced Data Structure and Algorithms

Notes

64 LOVELY PROFESSIONAL UNIVERSITY

Stacks are frequently used for converting INFIX form into equivalent PREFIX and POSTFIX
forms.

The whole logic is same as for Infi x to Postfi x except, before traversing the string reverse it by
strrev() function and then process as before, but instead of printing the expression take output in
another stack and then print the stack, at last reverses the string.

Process of
ConversionStrrev (str) Prefix Expressionstr

Consider the following example.

Infi x expression -> a + b * c + d

After reversing it -> d + c * b + a

Now apply the logic of Infi x to Postfi x conversion and store the output in another stack.

*

+ +

OPERATOR
STACK

OUTPUT
STACK

+

+
a

b
c
d

*

Now on printing the stack we have, + a + * b c d which is a prefi x expression. Here is a C
implementation for converting infi x into postfi x.

/* Convert infix expression into corresponding postfix expression */

/* Maximum length of the input expression allowed is 20 characters */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

typedef struct

{

 char data[20]; /* array to hold stack contents */

 int top; /* top of the stack pointer */

}stk;

/* function prototypes */

void initStack(stk *stack);

void get_infix(char infix[]);

void convertToPostfix(char infix[], char postfix[]);

int isOperator(char c);

int precedence(char operator1, char operator2);

int pred_level(char ch);

void push(stk *stack, char value);

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 65

char pop(stk *stack);

char stackTop(stk *stack);

int isEmpty(stk *stack);

int isFull(stk *stack);

void printResult(char infix[], char postfix[]);

/*void print_msg(void);*/

/* program entry point */

int main(void)

{

 char infix[20], postfix[20]=””;

 /* convert from infix to postfix main function */

 convertToPostfix(infix, postfix);

 /* display the postfix equivalent */

 infix[strlen(infix)-2] = ‘\0’;

 printResult(infix, postfix);

 return(1);

}

void initStack(stk *stack) /* initalise the stack */

{

 stack->top = -1; /* stack is initially empty */

}

void get_infix(char infix[]) /* get infix expression from user */

{

 int i;

printf(“Enter infix expression below (max 18 characters excluding spaces) : \n”);

 fflush(stdin);

 for (i=0; i<18;) /* to read in only 18 characters excluding spaces */

 {

 if ((infix[i] = getchar()) == ‘\n’)

 {

 i++; break;

 }

 else if (!(isspace(infix[i])))

 i++;

 }

 infix[i] = ‘\0’;

}

void convertToPostfix(char infix[], char postfix[]) /* convert the infix expression
to postfix notation */

{

 int i, length, j=0;

Advanced Data Structure and Algorithms

Notes

66 LOVELY PROFESSIONAL UNIVERSITY

 char top_ch;

 stk stack;

 initStack(&stack); /* initialise stack */

 get_infix(infix); /* get infix expression from user */

 length = strlen(infix);

 if (length) /* if strlen if infix is more than zero */

 {

 push(&stack, ‘(‘);

 strcat(infix, “)”);

 length++;

 for (i=0; i<length; i++)

 {

 if (isdigit(infix[i])) /* if current operator in infix is digit */

 {

 postfix[j++] = infix[i];

 }

 else if (infix[i] == ‘(‘) /* if current operator in infix is
left parenthesis */

 {

 push(&stack, ‘(‘);

 }

 else if (isOperator(infix[i])) /* if current operator is operator */

 {

 while(1)

 {

 top_ch = stackTop(&stack); /* get tos */

 if (top_ch == ‘\0’) /* no stack left */

 {

 printf(“\nInvalid infix expression\n”);

 exit(1);

 }

 else

 {

 if (isOperator(top_ch))

 {

 if (pred_level(top_ch) >= pred_level(infix[i]))

 postfix[j++] = pop(&stack);

 else

 break;

 }

 else

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 67

 break;

 }

 }

 push(&stack, infix[i]);

 }

 else if (infix[i] == ‘)’) /* if current operator is right parenthesis */

 {

 while (1)

 {

 top_ch = stackTop(&stack); /* get tos */

 if (top_ch == ‘\0’) /* no stack left */

 {

 printf(“\nInvalid infix expression\n”);

 /*print_msg();*/

 exit(1);

 }

 else

 {

 if (top_ch != ‘(‘)

 {

 postfix[j++] = top_ch;

 pop(&stack);

 }

 else

 {

 pop(&stack);

 break;

 }

 }

 }

 continue;

 }

 }

 }

 postfix[j] = ‘\0’;

}

int isOperator(char c) /* determine if c is an operator */

{

 if (c == ‘+’ || c == ‘-’ || c == ‘*’ || c == ‘/’ || c == ‘%’ || c == ‘^’)

 return 1;

Advanced Data Structure and Algorithms

Notes

68 LOVELY PROFESSIONAL UNIVERSITY

 else

 return 0;

}

int pred_level(char ch) /* determine precedence level */

{

 if (ch == ‘+’ || ch == ‘-’) return 1;

 else if (ch == ‘^’)

 return 3;

 else

 return 2;

}

int precedence(char operator1, char operator2) /* determine if the
precedence of operator1 is less than, equal to, greater than the precedence of
operator2 */

{

 if (pred_level(operator1) > pred_level(operator2))

 return 1;

 else if (pred_level(operator1) < pred_level(operator2))

 return -1;

 else

 return 0;

}

void push(stk *stack, char value) /* push a value on the stack */

{

 if (!(isFull(stack)))

 {

 (stack->top)++;

 stack->data[stack->top] = value;

 }

}

char pop(stk *stack) /* pop a value off the stack */

{

 char ch;

 if (!(isEmpty(stack)))

 {

 ch = stack->data[stack->top];

 (stack->top)--;

 return ch;

 }

 else

 return ‘\0’;

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 69

}

char stackTop(stk *stack) /* return the top value of the stack without popping
the stack */

{

 if (!(isEmpty(stack)))

 return stack->data[stack->top];

 else

 return ‘\0’;

}

int isEmpty(stk *stack) /* determine if stack is empty */

{

 if (stack->top == -1) /* empty */

 return 1;

 else /* not empty */

 return 0;

}

int isFull(stk *stack) /* determine if stack is full */

{

 if (stack->top == 19) /* full */

 return 1;

 else /* not full */

 return 0;

}

void printResult(char infix[], char postfix[]) /* display the result postfix
expression */

{

 printf(“\n\n”); /*system(“cls”);*/

 printf(“Infix notation : %s\n”, infix);

 printf(“Postfix notation: %s\n\n”, postfix);

}

Here are some results of the test run.

Infi x Postfi x
(1+2)-(3*4/5)+6 12+34*5/-6+
1-2*3/(4-5) 123*45-/-
(1*2^3)-(4%3-5)^6 123^*43%5-6^-

Evaluating Postfi x Expression

An expression may be evaluated by making a left to right scan, stacking operands and evaluating
operators using the correct number of operands from the stack and fi nally placing back the result
on to the stack.

Advanced Data Structure and Algorithms

Notes

70 LOVELY PROFESSIONAL UNIVERSITY

 Example: To evaluate a Postfi x Expression:

 ABC**/DE *+AC*-

The following steps will be executed:

C
B

A

B ** C

A

**
D
E

A/(B**C)

E*D

A/(B**C)

*
+

I. op.

II. op.

I. op.
Top

II. op.

A/(B**C) + (D + E)

A

C

A/(B**C) + (D + E)

A + C
+

= A/(B**C) + (D*E) – (A*C)

Lab Exercise Here is a program that implements the above idea into a program.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define MAXC 80

double eva1(charl[]);

double pop(struct stack *);

void push(struct stack *, double);

int empty(struct stack *);

int isdigit(char);

double oper(intn double, double);

void main()

{

char expr[MAXC];

int position = 0;

whi1e((expr[position++] = getchar()) != ‘\’) ;

expr[--position] = ‘\0’;

printf(“%s%s”, “the original postfix expression is”, expr);

printf(“\n%f”, eval(expr));

}

struct stack

{

int top;

double data[MAXC];

}

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 71

double eval (char exp[])

{

int c, position;

double opnd1, opnd2, value;

struct stack opndstk;

opndstk.top = -1;

for (position = 0; (c = expr[position) != ‘\0’; posit1on+ +)

if (isdigit(c))

push(&opndstk, (double) (c –‘0’));

else {

opnd2 = pop(&opndstk);

opnd1 = pop(&opndstk);

value = oper(c, opnd1, opnd2);

push(&opndstk, value);

 }

return(pop(&pndstk));

}

int isdigit(char symb)

{

return (symb >= ‘0’ && symb <= ‘9’);

}

double oper(int symb, double op1, double op2)

{

switch(symb)

{

case ‘+’ : return (opl + op2);

case ‘-’ : return (opl + op2);

case ‘*’ : return (opl + op2);

case ‘/’ : return (opl + op2);

case ‘^’ : return (opl + op2);

 default : printf(“%s”, “illegal operation”);

 }

}

double pop(struct stack *s)

{

 int x;

 if(s.top == -1)

return(0);

else

{

Advanced Data Structure and Algorithms

Notes

72 LOVELY PROFESSIONAL UNIVERSITY

x = s.top;

 s.top = x-1;

return (s.data[x]);

 }

}

void push(struct stack *s, double e)

{

 if(s.top == MAXC)

 printf(“Stack full!”);

 else

 {

 s.top = s.top + 1;

 s.data[s.top] = e;

 }

}

int empty(struct stack *p)

{

 if(s.top == -1)

 return 1;

 else

 return 0;

}

3.3.2 Simulating Recursive Function using Stack

A recursive solution to a problem is often more expensive than a non-recursive solution, both in
terms of time and space. Frequently, this expense is a small price to pay for the logical simplicity
and self-documentation of the recursive solution. However, in a production program (such as
a compiler, for example) that may be run thousands of times, the recurrent expense is a heavy
burden on the system’s limited resources.

Thus, a program may be designed to incorporate a recursive solution in order to reduce the expense
of design and certifi cation, and then carefully converted to a non-recursive version to be put into
actual day-to-day use. As we shall see, in performing such as conversion it is often possible to
identify parts of the implementation of recursion that are superfl uous in a particular application
and thereby signifi cantly reduce the amount of work that the program must perform.

Suppose that we have the statement

rout (x); where route is defi ned as a function by the header

rout(a); x is referred to as an argument (of the calling function), and a is referred to as a parameter
(of the called function).

What happens when a function is called? The action of calling a function may be divided into
three parts:

1. Passing Arguments

2. Allocating and initializing local variables

3. Transferring control to the function.

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 73

Let us examine each of these three steps in turn.

1. Passing arguments: For a parameter in C, a copy of the argument is made locally within the
function, and any changes to the parameter are made to that local copy. The effect to this
scheme is that the original input argument cannot be altered. In this method, storage for
the argument is allocated within the data area of the function.

2. Allocating and initializing local variables: After arguments have been passed, the local
variables of the function are allocated. These local variables include all those declared
directly in the function and any temporaries that must be created during the course of
execution.

3. Transferring control to the function: At this point control may still not be passed to
the function because provision has not yet been made for saving the return address. If
a function is given control, it must eventually restore control to the calling routine by
means of a branch. However, it cannot execute that branch unless it knows the location
to which it must return. Since this location is within the calling routine and not within the
function, the only way that the function can know this address is to have it passed as an
argument. This is exactly what happens. Aside from the explicit arguments specifi ed by the
programmer, there is also a set of implicit arguments that contain information necessary
for the function to execute and return correctly. Chief among these implicit arguments is
the return address. The function stores this address within its own data area. When it is
ready to return control to the calling program, the function retrieves the return address and
branches to that location. Once the arguments and the return address have been passed,
control may be transferred to the function, since everything required has been done to
ensure that the function can operate on the appropriate data and then return to the calling
routine safely.

Return from a Function

When a function returns, three actions are performed. First, the return address is retrieved and
stored in a safe location. Second, the function’s data area is freed. This data area contains all local
variables (including local copies of arguments), temporaries, and the return address. Finally, a
branch is taken to the return address, which had been previously saved. This restores control to
the calling routine at the point immediately following the instruction that initiated the call. In
addition, if the function returns a value, that value is placed in a secure location from which the
calling program may retrieve it. Usually this location is a hardware register that is set-aside for
this purpose.

Task Discuss maze problem.

3.3.3 Simulation of Factorial

Let us look at the factorial function as a recursion example. We present the code for that function,
including temporary variables explicitly and omitting the test for negative input, as follows:
int fact(int n)

{

int x, y;

if (n == 0) return(l);

x = n-l;

y = fact(x);

Advanced Data Structure and Algorithms

Notes

74 LOVELY PROFESSIONAL UNIVERSITY

return (n * y);

}

How are we to defi ne the data area for this function? It must contain the parameter n and the
local variables x and y. As we shall see, no temporary variables are needed. The data area must
also contain a return address. In this case, there are two possible points to which we might want
to return: the assignment of fact(x) to y, and the main program that called fact. Suppose that we
had two labels and that we let the label label2 be the label of a section of code.

Label 2: y = result;

within the simulating program. Let the label 1 be the label of a statement

Label 1: return(result);

This refl ects a convention that the variable to result contains the value to be returned by an
invocation of the fact function. The return address will be stored as an integer i (equal to either 1
or 2). To effect a return from a recursive call the statement

switch(i) {

case 1: goto label1;

case 2: goto 1abe12;

}

is executed. Thus, if i = = 1. a return is executed to the main program that called fact, and if
i == 2, a return is simulated to the assignment of the returned value to the variable y in the
previous execution of fact.

Proving Correctness of Parenthesis in an Expression

Lab Exercise This program takes one mathematical expression and checks whether the
opening and closing parenthesis match or not.

#define LEFTBRACKET ‘{‘

#define RIGHTBRACKET ‘}‘

#include <stdio.h>

main()

{

char t, *p, expr[100];

printf(“Enter an expression :”);

scanf(“%s”,expr);

p=expr;

while(p != ‘\0’)

{

 if(*p == LEFTBRACKET) push(p);

 if(*p == RIGHTBRACKET) t=pop();

 if(t < 0) (printf(“ERROR:”));

 p++;

}

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 75

if(Isempty()) print(“statement is parenthetically balanced”);

else print(“statement is parenthetically unbalanced”);

}

Lab Exercise

1. The program given below implements the stack data structure using an array. In this
program the elements are pushed into array stack[] through push() function. The
parameters passed to push() are the base address of the array, the position in the
stack at which the element is to be placed and the element itself. Care is taken by the
push() function that the user does not try to place the element beyond the bounds of
the stack. This is done by checking the value stored in pos. pop() function pops out
the last element stored in the stack[], because, pos holds the position which has the
last element in the stack.

/* To pop and push items in a stack */

#define MAX 10

void push (int) ;

int pop() ;

int stack[MAX] ;

int pos ;

void main()

{

int n ;

 clrscr() ;

pos = -1 ; /* stack is empty */

push (10) ;

push (20) ;

push (30) ;

push (40) ;

n = pop() ;

printf (“\nitem popped out is : %d”, n) ;

n = pop() ;

printf (“\nitem popped out is : %d”, n) ;

}

/* pushes item on the stack */

void push (int data)

{

if (pos == MAX - 1)

printf (“\nStack is full”) ;

else

{

pos++ ;

stack[pos] = data ;

}

Advanced Data Structure and Algorithms

Notes

76 LOVELY PROFESSIONAL UNIVERSITY

}

/* pops off the items from the stack */

int pop()

{

int data ;

if (pos == -1)

{

printf (“\nStack is empty”) ;

return (-1) ;

}

else

{

data = stack[pos] ;

pos-- ;

return (data) ;

}

}

2. In this program stack is implemented and maintained using linked list. This
implementation is more sophisticated compared to the one that uses an array, the
added advantage being we can push as many elements as we want. A new node
is created by push() (using malloc()) every time an element is pushed in the stack.
Each node in the linked list contains two members, data holding the data and link
holding the address of the next node. The end of the stack is identifi ed by the node
holding NULL in its link part. The pop() function pops out the last element inserted
in the stack and frees the memory allocated to hold it. stack_display() displays all
the elements that stack holds. count() counts and returns the number of elements
present in the stack.
#include “alloc.h”

struct node

{

int data ;

struct node *link ;

} ;

push (struct node **, int) ;

pop (struct node **) ;

main()

{

struct node *top ; /* top will always point to top of a stack */

int item;

top = NULL ; /* empty stack */

push (&top, 11) ;

push (&top, 12) ;

push (&top, 13) ;

push (&top, 14) ;

push (&top, 15) ;

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 77

push (&top, 16) ;

push (&top, 17) ;

clrscr() ;

stack_display (top) ;

printf (“No. of items in stack = %d” , count (top)) ;

printf (“\nItems extracted from stack : “) ;

item = pop (&top) ;

printf (“%d “, item) ;

item = pop (&top) ;

printf (“%d “, item) ;

item = pop (&top) ;

printf (“%d “, item) ;

stack_display (top) ;

printf (“No. of items in stack = %d” , count (top)) ;

}

/* adds a new element on the top of stack */

push (struct node **s, int item)

{

struct node *q ;

q = malloc (sizeof (struct node)) ;

q -> data = item ;

q -> link = *s ;

*s = q ;

}

/* removes an element from top of stack */

pop (struct node **s)

{

int item ;

struct node *q ;

/* if stack is empty */

if (*s == NULL)

printf (“ stack is empty”) ;

else

{

q = *s ;

item = q -> data ;

*s = q -> link ;

free (q) ;

return (item) ;

}

}

/* displays whole of the stack */

stack_display (struct node *q)

Advanced Data Structure and Algorithms

Notes

78 LOVELY PROFESSIONAL UNIVERSITY

{

printf (“\n”) ;

/* traverse the entire linked list */

while (q != NULL)

{

printf (“%2d “, q -> data) ;

q = q -> link ;

}

printf (“\n”) ;

}

/* counts the number of nodes present in the linked list representing
a stack */

count (struct node * q)

{

int c = 0 ;

/* traverse the entire linked list */

while (q != NULL)

{

q = q -> link ;

c++ ;

}

return c ;

}

3.4 Summary

 Stack is a linear data structure having a very interesting property that an element can be
inserted and deleted not at any arbitrary position but only at one end. One en d of a stack
remains sealed for insertion and deletion while the other end allows both the operations.

 A stack possesses LIFO (Last In First Out) property. There are two basic methods for the
implementation of stacks – one where the memory is used statically and the other where
the memory is used dynamically.

 Push is a stack operation in which an element is added to a stack.

 Pop is a stack operation that removes an element from the stack.

 Stack is used to store return information in the case of function/procedure/subroutine
calls. Hence, one would fi nd a stack in architecture of any Central Processing Unit (CPU).
In infi x notation operators come in between the operands. An expression can be evaluated
using stack data structure.

3.5 Keywords

Infi x: Notation of an arithmetic expression in which operators come in between their operands.

LIFO: (Last In First Out) The property of a list such as stack in which the element which can be
retrieved is the last element to enter it.

Pop: Stack operation retrieves a value form the stack.

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 79

Postfi x: Notation of an arithmetic expression in which operators come after their operands.

Prefi x: Notation of an arithmetic expression in which operators come before their operands.

Push: Stack operation which puts a value on the stack.

Stack: A linear data structure where insertion and deletion of elements can take place only at
one end.

3.6 Self Assessment

Choose the appropriate answers:

1. Basic method of implementation of stack are:

(a) Where the memory is used statically

(b) Where the memory is used dynamically

(c) Both of the above

(d) None of the above

2. A stack operation that removes an element from the stack

(a) Pop (b) Push

(c) LIFO (d) FIFO

3. The infi x of a particular element is x + y what is the prefi x of this

(a) x + y+ (b) +xy

(c) xy+ (d) None of the above

4. The hardware component known as an input device is:

(a) RAM (b) Hard-disk

(c) Monitor (d) Processor

(e) Keyboard

5. The hardware component known as an output device is:

(a) Keyboard (b) Monitor

(c) RAM (d) Hard-disk

(e) Processor

6. CPU stands for

(a) Control processing unit (b) Central processing unit

(c) Central programming unit (d) None of these

Fill in the blanks:

7. Stack is said to possessproperty.

8. is used to implement stacks where the memory is used statically.

9. Pointers help in implementation of stacks.

10. In the operators come before operands.

Advanced Data Structure and Algorithms

Notes

80 LOVELY PROFESSIONAL UNIVERSITY

3.7 Review Questions

1. Write an algorithm to reverse an input string of characters using a stack.

2. Explain how function calls may be implemented using stacks for return values.

3. What are the advantages of implementing a stack using dynamic memory allocation
method?

4. Trace the execution of infi x-to-postfi x algorithm on the following expression.

3 + (23 * 9 / 3 - 67 - (2 * 7) /9)

5. One way to determine if a string of characters is a palindrome is to use one stack and one
queue and to apply the following algorithm strategy:

(a) Put the input string on the stack and the queue simultaneously.

(b) Thus, popping the string from the stack is equivalent to reading it backwards while
deleting the string from the queue is reading it forwards.

6. Write a C program to implement a stack of characters.

7. Explain why we cannot use the following implementation for the method push in our
linked Stack.

 Error_code Stack :: push(Stack_entry item)

 {

 Node new_top(item, top_node);

 top_node = new_top;

 return success;

 }

8. What is wrong with the following attempt to use the copy constructor to implement the
overloaded assignment operator for a linked Stack?

 void Stack :: operator = (const Stack &original)

 {

 Stack new_copy(original);

 top_node = new_copy.top_node;

 }

 How can we modify this code to give a correct implementation?

Answers: Self Assessment

1. (c) 2. (a)

3. (b) 4. (e)

5. (b) 6. (b)

7. LIFO (Last In First Out) 8. Array

9. Dynamic 10. Polish Notation

Unit 3: Stacks

Notes

 LOVELY PROFESSIONAL UNIVERSITY 81

3.8 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Data Structures and Algorithms; Shi-Kuo Chang; World Scientifi c.

 Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann,
Springer.

 Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi

 Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition.
Addison-Wesley publishing

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c

 Sorenson and Tremblay: An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L. Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Advanced Data Structure and Algorithms

Notes

82 LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Queues

CONTENTS

Objectives

Introduction

4.1 Queue Model

4.2 Array Implementation

 4.2.1 Array-based Implementation

 4.2.2 Pointer-based Implementation

4.3 Applications of Queues

4.4 Summary

4.5 Keywords

4.6 Self Assessment

4.7 Review Questions

4.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Describe queue model

 Know array implementation

 Describe various applications of queues

Introduction

The queue abstract data type is also a widely used one with applications very common in real
life. An example comes from the operating system software where the scheduler picks up the
next process to be executed on the system from a queue data structure. In this unit, we would
study the various properties of queues, their operations and implementation strategies.

4.1 Queue Model

A queue is a list of elements in which insertions are made at one end-called the rear and deletions
are made from the other end-called the front. This means, in particular, that elements are removed
from a queue in the same order as that in which they were inserted into the queue. Thus, a queue
exhibits the FIFO (First In First Out) property.

The following are the allowed operations on a queue Q:

1. insert(Q, e): This inserts an element e into the queue Q.

2. delete(Q) Æ e: This deletes an element from the queue Q and stores it into e.

3. empty(Q) Æ true/false: This checks whether a queue is empty or not.

Unit 4: Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 83

Queue operations in pseudo-code:
ENQUEUE(Q, x)

Q[tail[Q]] <- x

if tail[Q] = length[Q]

then tail[Q] <- 1

else tail[Q] <- tail[Q] + 1

DEQUEUE(Q)

x <- Q[head[Q]]

if head[Q] = length[Q]

then head[Q] <- 1

else head[Q] <- head[Q] + 1

return x

These are also O(1) time operations.

Figure 4.1 shows the operations on a queue.

front rear

A

front, rear (a) Empty queue

(b) A inserted

(c) B, C inserted
front rear

A B C

front rear

C D

(f) D inserted

B C

C

front rear

front rear

(d) A deleted

(e) B deleted

Figure 4.1: Operations on a Queue

Advanced Data Structure and Algorithms

Notes

84 LOVELY PROFESSIONAL UNIVERSITY

4.2 Array Implementation

Here too, there are two possible implementation strategies – one where the memory is used
statically and the other where memory is used dynamically.

4.2.1 Array-based Implementation

To represent a queue we require a one-dimensional array of some maximum size say n to hold
the data items and two other variables front and rear to point to the beginning and the end of the
queue. Hence a queue data type may be defi ned in C as follows:

 struct queue

 {

 T data[n];

 int front, rear;

 }

During the initialization of a queue q, its front and rear are made to 0. At each insertion to the
queue, which takes place at the rear end, ‘rear’ is incremented by 1. At each deletion, ‘front’ is
incremented by 1. The following procedures show the implementation of the queue operations:

void insert(queue q[], T x)

/* This function inserts an element x into the queue q */

{

 if(q.rear == n) printf(‘Queue is full!”);

 else

 {

 q.rear = q.rear + 1;

 q.data[q.rear] = x;

 }

}

void delete(queue q[], T x)

 /*deletes an element from the queue and stores in x*/

{

 if(q.front == q.rear)

 {

 printf(“queue is empty!”)

 q.front = 0;

 q.rear = 0;

 }

 else

 {

 q.front= q.front + 1;

 x =q.data[q.front];

 }

boolean empty(queue q[])

Unit 4: Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 85

/* This function checks if the queue q is empty or not * /

{

 if(q.front == q.rear)

 return(true)

 else

 return(false);

}

void initialize(queue q[])

/* This procedure initializes a queue q * /

{

 q.front = 0;

 q.rear = 0;

}

An important point to be noticed in the above implementation is that the queue has a tendency to
move to the right unless occasionally ‘front’ catches up with ‘rear’ and both are reset to 0 again (in
the delete procedure). As a result it is possible that a considerable portion of the elements array
is free but the queue full signal is on. To get rid of this problem, we may shift the elements array
towards left by 1 whenever a deletion is made. Such a shifting is time consuming since it has to
be done for each deletion operation.

A more effi cient queue representation is obtained by regarding the array of elements of a queue to
be circular. For easier algebraic manipulation we consider the array subscript ranging from 0 .. n-1;
As before, rear will point to the element which is at the end of the queue. The front points to one
position anticlockwise to the beginning of the queue. Initially, front = rear = 1 and front = rear only
if the queue is empty. Every insertion implies that the rear of the queue increases by 1 except when
rear = n -1. In that case, the rear is made zero if the queue is not full yet.

Figure 4.2 shows a circular queue with 3 elements where n = 9 front=2 and rear=5.

2

1
0

8

7

6

rear

5

4

3

AA

BB
CC

front

Figure 4.2: A Circular Queue

Advanced Data Structure and Algorithms

Notes

86 LOVELY PROFESSIONAL UNIVERSITY

An implementation of the circular queue is shown below:

struct Cqueue

 {

 T data[n];

 int front, rear;

 }

void insert(queue q[], T x)

/* This procedure inserts an element x into the queue q */

{

 q.rear = (q.rear + 1) % n;

 if(q.rear == q.front)

 printf(“Queue full”);

 else

 q.data[q.rear] = x;

}

void delete(queue q, T x)

/* deletes an element & stores it in x */

{

 if(q.front == q.rear)

 printf(“queue empty”);

 else

 {

 x = q.data[q.front];

 q.front =(q.front+ l) % n;

 }

}

boolean empty(queue q[])

/* This function checks if the queue q is empty or not */

{

 if(q.front == q.rear) return(true);

 else return(false);

}

void initialize(queue q[])

/* This procedure initializes a queue q * /

{

 q.front = 0;

 q.rear = 0;

}

In this implementation, we are using only n-1 entries of the ‘elements’ array. To use all the
elements, a special fl ag has to be maintained to distinguish between the queue_full and queue_
empty situations.

Unit 4: Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 87

4.2.2 Pointer-based Implementation

As in stacks, a queue could be implemented using a linked list.

A queue can be implemented by the following declarations and algorithms:

struct queueNode

 {

 T item;

 queueNode *next;

 };

struct queueNode, *front, *rear;

void insert(queueNode *front, queueNode *rear, T e)

{

 struct queueNode *x;

 x = new(queueNode);

 x->item = e;

 if(front == NULL) front = x;

 else rear->next = x;

 rear = x;

}

void delete(queueNode *front, T e, queueNode *front)

/*This procedure deletes the element from the front of the queue & stores it in
e */

{

 if(front == NULL) printf(“Queue is empty”);

 else

 {

 e = front->item;

 front = front->next;

 if(front == NULL) rear = NULL;

 }

}

boolean empty(queueNode *q) /* check if queue is empty* /

{

 if(q == NULL) return(true) else return(false);

}

void initialize(queueNode *front, queueNode *rear)

{

 front = NULL; rear = NULL;

}

Task Write a program to implement a circular queue.

Advanced Data Structure and Algorithms

Notes

88 LOVELY PROFESSIONAL UNIVERSITY

4.3 Applications of Queues

One major application of the queue data structure is in the computer simulation of a real-world
situation. Queues are also used in many ways by the operating system, the program that schedules
and allocates the resources of a computer system. One of these resources is the CPU (Central
Processing Unit) itself. If you are working on a multi-user system and you tell the computer
to run a particular program, the operating system adds your request to its “job queue”. When
your request gets to the front of the queue, the program you requested is executed. Similarly, the
various users for the system must share the I/O devices (printers, disks etc.). Each device has its
own queue of requests to print, read or write to these devices. The following subsection discusses
one application of the queues – the priority queue. It is used in time-sharing multi-user systems
where programs of high priority are processed fi rst arid programs with the same priority form
a standard queue.

Priority Queues

A priority queue is a collection of elements such that each element has been assigned a priority
and such that the order in which elements are deleted and processed is defi ned by the following
rules:

An element of higher priority is processed before any element of lower priority. Two elements
with the same priority are processed according to the order in which they were inserted into the
queue.

We would use a singly linked list to implement the priority queue. Each node of the linked list
would have a type defi nition as follows:

 struct qElement

 {

 T item;

 int priority;

 qElement *next;

 } *Pqueue, *front, *rear;

The algorithm for the insertion would change now. Insertion would insert the new element at
the correct position according to the priority of the element. The elements of the priority queue
would be sorted in a non-descending order of the priority with the front of the queue having the
element with the highest priority. The deletion procedure need not change since the element at
the front is the one with the highest priority and that is the one that should be deleted.

void insert(Pqueue *front, Pqueue *rear, T e, int p)

/* this inserts an element having data e and priority p into the priority queue
*/

/*the insertion maintains the sorted order of the priority queue */

{

 Pqueue *f, *r;

 Pqueue *x;

 int pr;

 {

 x = new(Pqueue);

 x->item = e; x->priority = p;

Unit 4: Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 89

 if(front == NULL)

 {

 front = x;

 x->next = NULL;

 rear = x;

 }

 /* x is the first node being added to the priority queue*/

 elseif(front->priority < p)

 {

 x->next = front;

 front = x;

 }

 /* x has the highest priority hence should be at the front*/

 elseif(rear->priority > p)

 {

 x->next = NULL;

 rear->next = x;

 rear = x;

 }

 /* x has the least priority hence should be at the rear*/

 else

 {

 /* x has to be inserted in between according to its priority*/

 f = front;

 pr = f->pri; r = NULL;

 while(pr > p) /* Advance through the queue till the proper position is
reached */

 {

 f = f->next; r = f; pr = f->priority;

 }

 /* f now points to the node before which x has to be inserted and r points
to the node which should be before x*/

 r->next = x; x->next = f;

 }

}

Task Write an implementation of the Extended_queue method full. In light of the
simplicity of this method in the linked implementation, why is it still important to include
it in the linked class Extended_queue?

Advanced Data Structure and Algorithms

Notes

90 LOVELY PROFESSIONAL UNIVERSITY

Case Study Convert an infi x expression to prefi x form.

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#define N 80

typedef enum {FALSE, TRUE} bool;

#include “stack.h”

#include “queue.h”

#define NOPS 7

char operators [] = “()^/*+-”;

int priorities[] = {4,4,3,2,2,1,1};

char associates[] = “ RLLLL”;

char t[N]; char *tptr = t; // this is where prefix will be saved.

int getIndex(char op) {

 /*

 * returns index of op in operators.

 */

 int i;

 for(i=0; i<NOPS; ++i)

 if(operators[i] == op)

 return i;

 return -1;

}

int getPriority(char op) {

 /*

 * returns priority of op.

 */

 return priorities[getIndex(op)];

}

char getAssociativity(char op) {

 /*

 * returns associativity of op.

 */

 return associates[getIndex(op)];

}

void processOp(char op, queue *q, stack *s) {

 /*

Contd...

Unit 4: Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 91

 * performs processing of op.

 */

 switch(op) {

 case ‘)’:

 printf(“\t S pushing)...\n”);

 sPush(s, op);

 break;

 case ‘(‘:

 while(!qEmpty(q)) {

 *tptr++ = qPop(q);

 printf(“\tQ popping %c...\n”, *(tptr-1));

 }

 while(!sEmpty(s)) {

 char popop = sPop(s);

 printf(“\tS popping %c...\n”, popop);

 if(popop == ‘)’)

 break;

 *tptr++ = popop;

 }

 break;

 default: {

 int priop; // priority of op.

 char topop; // operator on stack top.

 int pritop; // priority of topop.

 char asstop; // associativity of topop.

 while(!sEmpty(s)) {

 priop = getPriority(op);

 topop = sTop(s);

 pritop = getPriority(topop);

 asstop = getAssociativity(topop);

if(pritop < priop || (pritop == priop && asstop == ‘L’)

 || topop == ‘)’) // IMP.

 break;

 while(!qEmpty(q)) {

 *tptr++ = qPop(q);

 printf(“\tQ popping %c...\n”, *(tptr-1));

 }

 *tptr++ = sPop(s);

 printf(“\tS popping %c...\n”, *(tptr-1));

Contd...

Advanced Data Structure and Algorithms

Notes

92 LOVELY PROFESSIONAL UNIVERSITY

 }

 printf(“\tS pushing %c...\n”, op);

 sPush(s, op);

 break;

 }

 }

}

bool isop(char op) {

 /*

 * is op an operator?

 */

 return (getIndex(op) != -1);

}

char *in2pre(char *str) { /*

 * returns valid infix expr in str to prefix.

 */

 char *sptr;

 queue q = {NULL};

 stack s = NULL;

 char *res = (char *)malloc(N*sizeof(char));

 char *resptr = res;

 tptr = t;

 for(sptr=str+strlen(str)-1; sptr!=str-1; -sptr) {

 printf(“processing %c tptr-t=%d...\n”, *sptr, tptr-t);

 if(isalpha(*sptr)) // if operand.

 qPush(&q, *sptr);

 else if(isop(*sptr)) // if valid operator.

 processOp(*sptr, &q, &s);

 else if(isspace(*sptr)) // if whitespace.

 ;

 else {

 fprintf(stderr, “ERROR:invalid char %c.\n”, *sptr);

 return “”;

 }

 }

 while(!qEmpty(&q)) {

 *tptr++ = qPop(&q);

 printf(“\tQ popping %c...\n”, *(tptr-1));

 }

 while(!sEmpty(&s)) {

 *tptr++ = sPop(&s);

 printf(“\tS popping %c...\n”, *(tptr-1));

 }
Contd...

Unit 4: Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 93

 *tptr = 0;

 printf(“t=%s.\n”, t);

 for(-tptr; tptr!=t-1; -tptr) {

 *resptr++ = *tptr;

 }

 *resptr = 0;

 return res;

}

int main() {

 char s[N];

 puts(“enter infix freespaces max 80.”);

 gets(s);

 while(*s) {

 puts(in2pre(s));

 gets(s);

 }

 return 0;

}

Explanation

1. In an infi x expression, a binary operator separates its operands (a unary operator
precedes its operand). In a postfi x expression, the operands of an operator precede
the operator. In a prefi x expression, the operator precedes its operands. Like postfi x, a
prefi x expression is parenthesis-free, that is, any infi x expression can be unambiguously
written in its prefi x equivalent without the need for parentheses.

2. To convert an infi x expression to reverse-prefi x, it is scanned from right to left. A
queue of operands is maintained noting that the order of operands in infi x and prefi x
remains the same. Thus, while scanning the infi x expression, whenever an operand is
encountered, it is pushed in a queue. If the scanned element is a right parenthesis (‘)’),
it is pushed in a stack of operators. If the scanned element is a left parenthesis (‘(‘), the
queue of operands is emptied to the prefi x output, followed by the popping of all the
operators up to, but excluding, a right parenthesis in the operator stack.

3. If the scanned element is an arbitrary operator o, then the stack of operators is checked
for operators with a greater priority then o. Such operators are popped and written to
the prefi x output after emptying the operand queue. The operator o is fi nally pushed
to the stack.

4. When the scanning of the infi x expression is complete, fi rst the operand queue, and
then the operator stack, are emptied to the prefi x output. Any whitespace in the infi x
input is ignored. Thus the prefi x output can be reversed to get the required prefi x
expression of the infi x input.

Question

Write a C program to implement a queue by using an array.

Advanced Data Structure and Algorithms

Notes

94 LOVELY PROFESSIONAL UNIVERSITY

4.4 Summary

 A queue is a list of elements in which insertions are made at one end – called the rear and
deletions are made from the other end - called the front.

 A queue exhibits the FIFO (First In First Out) property. To represent a queue we require a
one-dimensional array of some maximum size say n to hold the data items and two other
variables front and rear to point to the beginning and the end of the queue.

 As in stacks, a queue could be implemented using a linked list. One major application of
the queue data structure is in the computer simulation of a real-world situation.

 Queues are also used in many ways by the operating system, the program that schedules
and allocates the resources of a computer system. Each device has its own queue of requests
to print, read or write to these devices.

 A priority queue is a collection of elements such that each element has been assigned a
priority. An element of higher priority is processed before any element of lower priority.

 Two elements with the same priority are processed according to the order in which they
were inserted into the queue.

4.5 Keywords

FIFO: (First In First Out) The property of a linear data structure which ensures that the element
retrieved from it is the fi rst element that went into it.

Front: The end of a queue from where elements are retrieved.

Queue: A linear data structure in which the element is inserted at one end while retrieved from
another end.

Rear: The end of a queue where new elements are inserted.

4.6 Self Assessment

Choose the appropriate answer:

1. Priority queue is a

(a) Collection of elements such that each element has been assigned a priority.

(b) Collection of I/O devices

(c) Collection of FIFO

(d) None of the above

2. Every insertion implies that the rear of the queue increases by 1 except when rear =.

(a) n-2

(b) n-1

(c) n-0

(d) n-3

Fill in the blanks:

3. During the initialization of a queue q, its front and rear are made to

Unit 4: Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 95

4. A more effi cient queue representation is obtained by regarding the array of elements of a
queue to be

5. A queue could be implemented using a

6. Reverse Polish Notation is also called

7. is used in time-sharing multi-user systems where programs of high
priority are processed fi rst amid programs with the same priority form a standard queue.

8. A queue exhibits the property.

9. A queue could be implemented using and

10. A is a collection of elements such that each element has been assigned a
priority.

4.7 Review Questions

1. Write a segment of code to create a copy of a given queue. Let q1 be the given queue and q2
be the copy. All the elements of q2 must be equal to q1. Do not assume any implementation
of a queue.

2. Describe the application of queue.

3. How will you insert and delete an element in queue?

4. Write a C program to implement a double-ended queue, which is a queue in which
insertions and deletions may be performed at either end. Use a linked representation.

5. Write the following methods for linked queues:

(a) The method empty,

(b) The method retrieve,

(c) The destructor,

(d) The copy constructor,

(e) The overloaded assignment operator.

6. Assemble specifi cation and method fi les, called queue.h and queue.c, for linked queues,
suitable for use by an application program.

7. For a linked Extended_queue, the function size requires a loop that moves through the
entire queue to count the entries, since the number of entries in the queue is not kept as a
separate member in the class. Consider modifying the declaration of a linked Extended_
queue to add a count data member to the class. What changes will need to be made to all the
other methods of the class? Discuss the advantages and disadvantages of this modifi cation
compared to the original implementation.

8. Write an implementation of the Extended_queue method full. In light of the simplicity
of this method in the linked implementation, why is it still important to include it in the
linked class Extended_queue?

9. Give a formal defi nition of the term deque, using the defi nitions given for stack and queue
as models. Recall that entries may be added to or deleted from either end of a deque, but
nowhere except at its ends.

10. Give two reasons why dynamic memory allocation is valuable.

Advanced Data Structure and Algorithms

Notes

96 LOVELY PROFESSIONAL UNIVERSITY

Answers: Self Assessment

1. (a) 2. (b)

3. 0 4. circular

5. linked list 6. Postfi x Notation

7. Priority Queue 8. FIFO (First In First Out)

9. Array, Linked List 10. Priority queue

4.8 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Data Structures and Algorithms; Shi-Kuo Chang; World Scientifi c.

 Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann,
Springer.

 Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi

 Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition.
Addison-Wesley publishing

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c

 Sorenson and Tremblay: An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L. Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 97

Unit 5: Trees

CONTENTS

Objectives

Introduction

5.1 Concept of Tree

5.2 Binary Tree

 5.2.1 Types of Binary Tree

 5.2.2 Properties of a Binary Tree

5.3 Binary Representation

5.4 Implementation of a Binary Tree

5.5 Binary Tree Traversal

 5.5.1 Order of Traversal of Binary Tree

 5.5.2 Procedure for Inorder Traversal

5.6 Summary

5.7 Keywords

5.8 Self Assessment

5.9 Review Questions

5.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the concept of tree

 Explain concept of binary tree

 Know binary tree traversal

Introduction

While dealing with many problems in computer science, engineering and many other disciplines,
it is needed to impose a hierarchical structure on a collection of data items. For example, we need
to impose a hierarchical structure on a collection of data items while preparing organizational
charts and genealogies, to represent the syntactic structure of source programs in compilers. A
tree is a data structure that is used to model such a hierarchical structure on data items, hence
the study of tree as one of the data structures is important. This module discusses tree as a data
structure.

Advanced Data Structure and Algorithms

Notes

98 LOVELY PROFESSIONAL UNIVERSITY

5.1 Concept of Tree

A tree is a set of one or more nodes T such that:

1. There is a specially designated node called root, and

2. Remaining nodes are partitioned into n >= 0 disjoint set of nodes T1, T2,…,Tn each of which
is a tree.

Shown below in Figure 5.1 is a structure, which is tree.

A

B C D

G H I E F

Figure 5.1: A Tree Structure

This is a tree because it is a set of nodes {A, B, C, D, E, F, G, H, I}, with node A as a root node,
and the remaining nodes are partitioned into three disjoint sets: {B, G, H, I}, {C, E, F} AND {D}
respectively. Each of these sets is a tree individually because each of these sets satisfi es the above
properties. Shown below in Figure 5.2 is a structure, which is not a tree:

A

B C D

G H I E F

Figure 5.2: A Non-tree Structure

This is not a tree because it is a set of nodes {A, B, C, D, E, F, G, H, I}, with node A as a root node,
but the remaining nodes cannot be partitioned into disjoint sets, because the node I is shared.

Given below are some of the important defi nitions, which are used in connection with trees.

1. Degree of Node of a Tree: The degree of a node of a tree is the number of sub-trees having
this node as a root, or it is a number of decedents of a node. If degree is zero then it is called
terminal node or leaf node of a tree.

2. Degree of a Tree: It is defi ned as the maximum of degree of the nodes of the tree, i.e. degree
of tree = max (degree (node i) for i = 1 to n).

3. Level of a Node: We defi ne the level of the node by taking the level of the root node to be 1,
and incrementing it by 1 as we move from the root towards the sub-trees i.e. the level of all
the descendents of the root nodes will be 2. The level of their descendents will be 3 and so
on. We then defi ne depth of the tree to be the maximum value of level for node of a tree.

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 99

Consider the tree given in Figure 5.3:

A

B C D

G H I E F

Figure 5.3

The degree of each node of the tree:
Node Degree

A 3
B 3
C 2
D 0
E 0
F 0
G 0
H 0
I 0

The degree of the tree: Maximum (Degree of all the nodes) = 3

The level of nodes of the tree:

Node Level
A 1
B 2
C 2
D 2
E 3
F 3
G 3
H 3
I 3

Task In fi gure 5.1 calculate the degree of a true.

5.2 Binary Tree

A binary tree is a special tree where each non-leaf node can have atmost two child nodes. Most
important types of trees which are used to model yes/no, on/off, higher/lower, i.e., binary
decisions are binary trees.

Recursive Defi nition: “A binary tree is either empty or a node that has left and right sub-trees that are
binary trees. Empty trees are represented as boxes (but we will almost always omit the boxes)”.

Advanced Data Structure and Algorithms

Notes

100 LOVELY PROFESSIONAL UNIVERSITY

In a formal way, we can defi ne a binary tree as a fi nite set of nodes which is either empty or
partitioned in to sets of T0, Tl, Tr, where T0 is the root and Tl and Tr are left and right binary trees,
respectively.

A

B

D

E F

H I

C

G

Figure 5.4: Binary Tree Structure

So, for a binary tree we fi nd that:

1. The maximum number of nodes at level i will be 2i−1

2. If k is the depth of the tree then the maximum number of nodes that the tree can have is

 2k − 1 = 2k−1 + 2k−2 + … + 20

5.2.1 Types of Binary Tree

There are two main binary tree and these are:

1. Full binary tree

2. Complete binary tree

Full Binary Tree

A full binary tree is a binary of depth k having 2k − 1 nodes. If it has < 2k − 1, it is not a full binary
tree.

 Example: For k = 3, the number of nodes = 2k − 1 = 23 − 1 = 8 − 1 = 7. A full binary tree with
depth k = 3 is shown in fi gure.

1

2 3

4 5 6 7

A Full Binary Tree

We use numbers from 1 to 2k − 1 as labels of the nodes of the tree.

If a binary tree is full, then we can number its nodes sequentially fom 1 to 2k−1, starting from the
root node, and at every level numbering the nodes from left to right.

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 101

Complete Binary Tree

A complete binary tree of depth k is a tree with n nodes in which these n nodes can be numbered
sequentially from 1 to n, as if it would have been the fi rst n nodes in a full binary tree of depth k.

A complete binary tree with depth k = 3 is shown in Figure 5.5.

A

B

ED

C

Figure 5.5: A Complete Binary Tree

5.2.2 Properties of a Binary Tree

Main properties of binary tree are:

1. If a binary tree contains n nodes, then it contains exactly n – 1 edges;

2. A Binary tree of height h has 2h – 1 nodes or less.

3. If we have a binary tree containing n nodes, then the height of the tree is at most n and at
least ceiling log

2
(n + 1).

4. If a binary tree has n nodes at a level l then, it has at most 2n nodes at a level l + 1

5. The total number of nodes in a binary tree with depth k (root has depth zero) is N = 20 + 21
+ 22 + …….+ 2k = 2k+1 – 1.

Task In fi gure 5.4 total no. of node present.

5.3 Binary Representation

If a binary tree is a complete binary tree, it can be represented using an array capable of holding
n elements where n is the number of nodes in a complete binary tree. If the tree is an array of n
elements, we can store the data values of the ith node of a complete binary tree with n nodes at an
index i in an array tree. That means we can map node i to the ith index in the array, and the parent
of node i will get mapped at an index i/2, whereas the left child of node i gets mapped at an index
2i and the right child gets mapped at an index 2i + 1.

 Example: A complete binary tree with depth k = 3, having the number of nodes n = 5, can
be represented using an array of 5 as shown in fi gure.

Advanced Data Structure and Algorithms

Notes

102 LOVELY PROFESSIONAL UNIVERSITY

A

B

ED

C

1

2 3

554

A

B
C

D

E

1

2
3

4

5

Array Tree

An Array representation of a Complete Binary Tree having 5 Nodes and Depth 3

Shown in fi gure is another example of an array representation of a complete binary tree with
depth k = 3, with the number of nodes n = 4.

A

B C

D

1

2

4

3

A

B
C

D

1

2
3

4
Array Tree

An Array representation of a Complete Binary Tree with 4 Nodes and Depth 3

In general, any binary tree can be represented using an array. We see that an array representation
of a complete binary tree does not lead to the waste of any storage. But if you want to represent
a binary tree that is not a complete binary tree using an array representation, then it leads to the
waste of storage as shown in Figure 5.6.

A

B
C

D
E
F

G

HH

I

1

2
3

4
5

6
7

8

9

10
11

Array Tree

A

B C

D E F G

H I

1

2

6 75

10 11

4

3

Figure 5.6: An Array representation of a Binary Tree

An array representation of a binary tree is not suitable for frequent insertions and deletions,
even though no storage is wasted if the binary tree is a complete binary tree. It makes insertion

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 103

and deletion in a tree costly. Therefore, instead of using an array representation, we can use a
linked representation, in which every node is represented as a structure with three fi elds: one for
holding data, one for linking it with the left subtree, and the third for linking it with right subtree
as shown here:

leftchild data rightchild

We can create such a structure using the following C declaration:
struct tnode

{

 int data

 struct tnode *lchild,*rchild;

};

A tree representation that uses this node structure is shown in Figure 5.7.

A

B C

D

NULL NULL NULL

NULLNULL

Figure 5.7: Linked representation of a Binary Tree

5.4 Implementation of a Binary Tree

Like general tree, binary trees are implemented through linked lists. A typical node in a Binary
tree has a structure as follows (refer to Figure 5.8):

struct NODE

{

 struct NODE *leftchild;

 int nodevalue; /* this can be of any data type */

 struct NODE *rightchild;

};

left child value right child
The ‘left child’and ‘right child’
are pointers to another
tree-node. The “leaf node” (not
shown) here will have NULL
values for these pointers.

Figure 5.8: Node Structure of a Binary Tree

The binary tree creation follows a very simple principle. For the new element to be added,
compare it with the current element in the tree. If its value is less than the current element in the
tree, then move towards the left side of that element or else to its right. If there is no sub tree on

Advanced Data Structure and Algorithms

Notes

104 LOVELY PROFESSIONAL UNIVERSITY

the left, then make your new element as the left child of that current element or else compare it
with the existing left child and follow the same rule. Exactly, the same has to done for the case
when your new element is greater than the current element in the tree but this time with the right
child. Though this logic is followed for the creation of a Binary tree, this logic is often suitable to
search for a key value in the binary tree.

Algorithm for the Implementation of a Binary Tree

1. Step-1: If value of new element < current element, then go to step-2 or else step-3.

2. Step-2: If the current element does not have a left sub-tree, then make your new element the
left child of the current element; else make the existing left child as your current element
and go to step-1.

3. Step-3: If the current element does not have a right sub-tree, then make your new element
the right child of the current element; else make the existing right child as your current
element and go to step-1.

Task “If a binary tree is a complete binary tree, it can be represented using an array
capable of holding n elements where n is the number of nodes in a complete binary tree.”
Discuss.

Lab Exercise Program: Depicts the segment of code for the creation of a binary tree.

struct NODE

{

struct NODE *left;

int value;

struct NODE *right;

};

create_tree(struct NODE *curr, struct NODE *new)

{

if(new->value <= curr->value)

{

if(curr->left != NULL)

create_tree(curr->left, new);

else

curr->left = new;

}

else

{

if(curr->right != NULL)

create_tree(curr->right, new);

else

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 105

curr->right = new;

}

}

Program: Binary tree creation

Array-based representation of a Binary Tree

Consider a complete binary tree T having n nodes where each node contains an item (value).
Label the nodes of the complete binary tree T from top to bottom and from left to right 0, 1, ...,
n-1. Associate with T the array A where the i

th
entry of A is the item in the node labelled i of T, i =

0, 1, ..., n-1. Figure 5.8 depicts the array representation of a Binary tree of fi gure.

Given the index i of a node, we can easily and effi ciently compute the index of its parent and left
and right children:

Index of Parent: (i – 1)/2, Index of Left Child: 2i + 1, Index of Right Child: 2i + 2.

Table 5.1: Array representation of a Binary Tree

Node Item Left child Right child
0 A 1 2
1 B 3 4
2 C –1 –1
3 D 5 6
4 E 7 8
5 G –1 –1
6 H –1 –1
7 I –1 –1
8 J –1 –1
9 ? ? ?

First column represents index of node, second column consist of the item stored in the node and
third and fourth columns indicate the positions of left and right children (–1 indicates that there
is no child to that particular node.)

5.5 Binary Tree Traversal

This section discusses different orders in which a binary tree can be traversed. The algorithms
for some commonly used orders of traversal are also presented. It also discusses the issue of
construction of a unique binary tree given the orders of traversal.

5.5.1 Order of Traversal of Binary Tree

The following are the possible orders in which a binary tree can be traversed:

1. LDR

2. LRD

3. DLR

4. RDL

5. RLD

6. DRL

Advanced Data Structure and Algorithms

Notes

106 LOVELY PROFESSIONAL UNIVERSITY

where,

 L stands for traversing the left sub-tree,

 R stands for traversing the right sub-tree, and

 D stands for processing the data of the node.

Therefore, the order LDR is the order of traversal in which we start with the root node, visit the
left sub-tree fi rst, then process the data of the root node, and then go for visiting the right sub-
tree. Since the left, as well as right sub-trees are also the binary trees, the same procedure is used
recursively while visiting the left and right sub-trees.

The order LDR is called inorder, the order LRD is called postorder, and the order DLR is called
preorder. The remaining three orders are not used. If the processing that we do with the data in
the node of tree during the traversal is simply printing the data value, then the output generated
for a tree given below in Figure 5.9, using the inorder, preorder and postorder is the one shown
below in Figure 5.9 itself.

A

B C

D E F G

H I

Figure 5.9: A Binary Tree along with its Inorder, Preorder and Postorder

Different order path in Figure 5.9 are:

Inorder: DBHEIAFCG

preorder: ABDEHICFG

postorder: DHIEBFGCA

If an expression is represented as a binary tree then the inorder traversal of the tree gives us an
infi x expression, whereas the postorder traversal gives us posfi x expression as shown below in
Figure 5.10.

b c

*a d e

*+

+

Figure 5.10: A Binary Tree of an Expression along with its Inorder and Postorder

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 107

Different order path in Figure 5.10 are:
Inorder : a + b * c + d * e

postorder: abc*+de*+

Given an order of traversal of a tree it is possible to construct a tree.

 Example: Consider the following order: Inorder = DBEAC

We can construct the binary trees shown below in fi gure using this order of traversal:

A

B C

ED C

A

E

B

D

E

B C

D A

Binary Trees Constructed using given Inorder

Therefore we conclude that given only one order of traversal of a tree it is possible to construct
a number of binary trees, a unique binary tree is not possible to be constructed. For construction
of a unique binary tree we require two orders in which one has to be inorder, the other can be
preorder or postorder.

 Example: Consider the following orders:

lnorder = DBEAC

Postorder = DEBCA

We can construct a unique binary tree shown in Figure using these orders of traversal.

Advanced Data Structure and Algorithms

Notes

108 LOVELY PROFESSIONAL UNIVERSITY

A

CB

ED

A Unique Binary Constructed using the Inorder and Postorder

5.5.2 Procedure for Inorder Traversal

void inorder(tnode *p)

{

 if(p != NULL)

 {

 inorder(p->lchild);

 printf(p->data);

 inorder(p->rchild);

 }

}

A non-recursive/iterative procedure for traversing a binary tree in inorder is given below for the
purpose of doing the analysis.

void inorder(tnode *p)

{

 tnode *stack[100];

 int top;

 {

 top = 0;

 if(p != NULL)

 {

 top = top + 1;

 stack[top] = p;

 p = p->lchild;

 while(top > 0)

 {

 while(p != NULL)

 /*push the left child onto the stack*/

 {

 top = top + 1;

 stack[top] = p;

 p = p->lchild;

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 109

 }

 p = stack[top];

 top = top-l;

 printf(p->data);

 p = p->rchild;

 if(p != NULL)

 /*push right child*/

 {

 top = top+1;

 stack[top] = p;

 p = p->lchild;

 }

 }

 }

}

Analysis

Consider the iterative version of the inorder given above. If the binary tree to be traversed is
having n nodes, then the number of nil links is n + 1. Since every node is placed on the stack
once, the statements stack[top] := p and p := stack[top] are executed n times. The test for nil links
will be done exactly n+ 1 times. So every step will be executed no more than some small constant
times n, hence the order of algorithm O(n). Similar analysis can be done to obtain the estimate of
the computation time for preorder and post order.

Preorder Traversal

void preorder(tnode *p)

{

 if(p != NULL)

 {

 printf(p->data);

 preorder(p->lchild);

 preorder(p->rchild);

 }

}

Postorder Traversal

void postorder(tnode *p)

{

 if(!p)

 {

 postorder(p->lchild);

 postorder(p->rchild);

 printf(p->data);

Advanced Data Structure and Algorithms

Notes

110 LOVELY PROFESSIONAL UNIVERSITY

 }

}

Consider the following example.

Given the preorder and inorder traversal of a binary tree. Draw the tree and write down its
postorder traversal.

 Inorder: Z, A, Q, P, Y, X, C, B

 Preorder: Q, A, Z, Y, P, C, X, B

To obtain the binary tree take the fi rst node in preorder, it is a root node, we then search for this
node in the inorder traversal, all the nodes to the left of this node in the inorder traversal will be
the part of the left sub-tree, and all the nodes to the right of this node in the inorder traversal will
be the part of the right sub-tree. We then consider the next node in the preoder, if it is a part of
the left sub-tree, then we make it as left child of the root, otherwise if it is part of the right sub-tree
then we make it as part of right sub-tree. This procedure is repeated recursively to get the tree
shown below in Figure 5.11:

Q

A Y

PZ C

X B

Figure 5.11: A Unique Binary Tree Constructed using the Inorder and Postorder

The post order for this tree is:

 Z, A, P, X, B, C, Y, Q

The following function counts the number of leaf node in a binary tree.

int count(tnode *p)

{

 if(p == NULL)

 count = 0;

 else

 if((p->1child == NULL) && (p->rchild == NULL))

 count = 1;

 else

 count = count(p->1child) + count(p->rchild);

}

The following procedure swaps the left and the right child of every node of a given binary tree.

void swaptree(tnode *p)

{

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 111

 tnode *temp;

 if(p != NULL)

 {

 swaptree(p->1child);

 swaptree(p->rchild);

 temp = p->1child;

 p->1child = p->rchild;

 p->rchild = temp;

 }

}

The following function checks whether the two binary trees are equal or not.

boolean equal(tnode *p1, tnode *p2)

{

 boolean ans;

 if((p1 == NULL) && (p2 == NULL))

 ans = true;

 else

 if(((p1==NULL)&&(p2!=NULL))||((p1!=NULL)&&(p2==NULL))) ans = false;

 else

 while((p1 != NULL) && (p2 != NULL))

 {

 if(p1 != NULL) && (p2 != NULL))

 if((equal(p1->1child,p2->1child))

 ans = equal(p1->rchild,p2->rchild);

 else

 ans = false;

 else

 ans = false;

 }

 return(ans);

 }

The following function creates exact copy of a given binary trees.

Tnode *copytree(tnode *p)

 {

 tnode *q;

 {

 if(p == NULL)

 return(NULL);

 else

 {

Advanced Data Structure and Algorithms

Notes

112 LOVELY PROFESSIONAL UNIVERSITY

 q = new(tnode);

 q->data = p->data;

 q->lchild = copytree(p->lchild);

 q->rchild = copytree(p->rchild);

 return(q);

 }

 }

}

d

5.6 Summary

 A tree is a set of one or more nodes T such that there is a specially designated node called
root, and remaining nodes are partitioned into disjoint set of nodes.

 The degree of a node of a tree is the number of sub-trees having this node as a root, or it is a
number of decedents of a node. If degree is zero then it is called terminal node or leaf node
of a tree.

 Degree of a tree is defi ned as the maximum of degree of the nodes of the tree.

 A tree non of whose nodes has more than N children is known as N-ary tree. In other
words, an N-ary tree is a tree whose degree is at the most N. Binary tree is a special type of
tree having degree 2.

 A binary tree of depth k can have maximum 2k-1 number of nodes. If a binary tree has
fewer than 2k-1 nodes, it is not a full binary tree.

5.7 Keywords

Degree of a tree: The highest degree of a node appearing in the tree.

Inorder: A tree traversing method in which the tree is traversed in the order of left-tree, node and
then right-tree.

Level of a node: The number of nodes that must be traversed to reach the node from the root.

Node: A data structure that holds information and links to other nodes.

Postorder: A tree traversing method in which the tree is traversed in the order of left-tree, right-
tree and then node.

Preorder: A tree traversing method in which the tree is traversed in the order of node, left-tree
and then right-tree.

Root node: The node in a tree which does not have a parent node.

Tree: A two-dimensional data structure comprising of nodes where one node is the root and rest
of the nodes form two disjoint sets each of which is a tree.

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 113

5.8 Self Assessment

In the context of the fi gure given below give the answers of self assessment.

A

B C D

G H I E F

1. What is the degree of node E

(a) 3 (b) 2

(c) 1 (d) 0

2. What is the degree of node C

(a) 4 (b) 2

(c) 1 (d) 3

3. What is the level of node A

(a) 1 (b) 0

(c) 3 (d) 4

4. What is the level of node H

(a) 2 (b) 3

(c) 4 (d) 0

Fill in the blanks:

5. To delete a node from a binary search tree the method to be used depends on

6. The order LDR is called, the order LRD is called and the
order DLR is called

7. Binary tree is a special type of tree having degree

8. A degree three tree is called a tree.

9. A node with degree zero is called a node.

State the following statements are true or false:

10. A binary tree of depth k can have maximum 2k-1 number of nodes.

11. For a binary tree, maximum number of nodes at level i is 2*i-1.

12. A full binary tree is a binary of depth k having 2k − 1 nodes. If it has < 2k − 1, it is not a full
binary tree.

5.9 Review Questions

1. Give the array representation of a complete binary tree with depth k = 3, having the number
of nodes n = 7.

Advanced Data Structure and Algorithms

Notes

114 LOVELY PROFESSIONAL UNIVERSITY

2. How many binary trees are possible with three nodes?

3. Construct a binary tree whose in-order and pre-order traversal is given below.

 In-order: 5,1,3,11,6,8,4,2,7

 Pre-order: 6,1,5,11,3,4,8,7,2

4. What do you mean by binary tree? Also explain the various properties of binary tree.

5. Consider the tree given below:

(a) Find the degree of each mode of the tree.

(b) The degree of the tree.

(c) The level of each nodes of the tree.

50

35

3024

12 18 22 37 39 43

27 40 45

49

6. Determine the order in which the vertices of the binary tree given in question No. 1 will be
visited under:

(a) Inorder

(b) Preorder

(c) Postorder

7. Write a C program to delete all the leaf nodes of a binary tree.

8. Write a method and the corresponding recursive function to count the leaves (i.e., the
nodes with both subtrees empty) of a linked binary tree.

9. Write a method and the corresponding recursive function to insert an Entry, passed as a
parameter, into a linked binary tree. If the root is empty, the new entry should be inserted
into the root, otherwise it should be inserted into the shorter of the two subtrees of the root
(or into the left subtree if both subtrees have the same height).

10. Write a function to perform a double-order traversal of a binary tree, meaning that at each
node of the tree, the function fi rst visits the node, then traverses its left subtree (in double
order), then visits the node again, then traverses its right subtree (in double order).

Answers: Self Assessment

1. (d) 2. (b)

3. (a) 4. (b)

5. number of children for the node to be deleted

Unit 5: Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 115

6. inorder, postorder, preorder 7. 2

8. ternary 9. terminal/leaf

10. True 11. True

12. True

5.10 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Data Structures and Algorithms; Shi-Kuo Chang; World Scientifi c.

 Data Structures and Effi cient Algorithms, Burkhard Monien, Thomas Ottmann,
Springer.

 Kruse Data Structure & Program Design, Prentice Hall of India, New Delhi

 Mark Allen Weles: Data Structure & Algorithm Analysis in C Second Adition.
Addison-Wesley publishing

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c

 Sorenson and Tremblay: An Introduction to Data Structure with Algorithms

 Thomas H. Cormen, Charles E, Leiserson & Ronald L. Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Advanced Data Structure and Algorithms

Notes

116 LOVELY PROFESSIONAL UNIVERSITY

Unit 6: Binary Search Tree and AVL Trees

CONTENTS

Objectives

Introduction

6.1 Binary Search Tree

6.2 Counting the Number of Nodes in a Binary Search Tree

6.3 Searching for a Target Key in a Binary Search Tree

6.4 Deletion of a Node from a Binary Search Tree

 6.4.1 Deletion of a Node with Two Children

 6.4.2 Deletion of a Node with one Child

 6.4.3 Deletion of a Node with no Child

6.5 Application of a Binary Search Tree

6.6 AVL Tree

6.7 Summary

6.8 Keywords

6.9 Self Assessment

6.10 Review Questions

6.11 Further Readings

Objectives

After studying this unit, you will be able to:

 Describe binary search tree

 Explain deletion of node with two child and with single child

 Describe applications of BST

Introduction

Consider the problem of searching a linked list for some target key. There is no way to move
through the list other than one node at a time, and hence searching through the list must always
reduce to a sequential search. As you know, sequential search is usually very slow in comparison
with binary search. Hence, assuming we can keep the keys in order, searching becomes much
faster if we use a contiguous list and binary search. Suppose we also frequently need to make
changes in the list, inserting new entries or deleting old entries.

6.1 Binary Search Tree

A binary search tree is a binary tree which may be empty, and every node contains an identifi er
and

1. Identifi er of any node in the left sub-tree is less than the identifi er of the root

2. Identifi er of any node in the right sub-tree is greater than the identifi er of the root and the
left sub-tree as well as right sub-tree both are binary search trees.

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 117

A tree shown below in Figure 6.1 is a binary search tree:

50

30 60

25 40 70

35 65

Figure 6.1: A Binary Search Tree

A binary search tree is basically a binary tree, and therefore it can be traversed is inorder, preorder,
and postorder. If we traverse a binary search tree in inorder and print the identifi ers contained in
the nodes of the tree, we get a sorted list of identifi ers in the ascending order.

A binary search tree is an important search structure. For example, consider the problem of
searching a list. If a list is an ordered then searching becomes faster, if we use a contiguous
list and binary search, but if we need to make changes in the list like inserting new entries and
deleting old entries. Then it is much slower to use a contiguous list because insertion and deletion
in a contiguous list requires moving many of the entries every time. So we may think of using
a linked list because it permits insertions and deletions to be carried out by adjusting only few
pointers, but in a linked list there is no way to move through the list other than one node at a
time hence permitting only sequential access. Binary trees provide an excellent solution to this
problem. By making the entries of an ordered list into the nodes of a binary search tree, we fi nd
that we can search for a key in O(n log n) steps.

Creating a Binary Search Tree

We assume that every node a binary search tree is capable of holding an integer data item and
the links which can be made pointing to the root of the left and the right sub-tree respectively.
Therefore the structure of the node can be defi ned using the following declaration:

struct tnode

{

 int data;

 tnode *lchid;

 tnode *rchild;

}

To create a binary search tree we use a procedure named insert which creates a new node with
the data value supplied as a parameter to it, and inserts into an already existing tree whose root
pointer is also passed as a parameter. The procedure accomplishes this by checking whether the
tree whose root pointer is passed as a parameter is empty. If it is empty then the newly created
node is inserted as a root node. If it is not empty then it copies the root pointer into a variable
temp1, it then stores value of temp1 in another variable temp2, compares the data value of the
node pointed to by temp1 with the data value supplied as a parameter, if the data value supplied
as a parameter is smaller than the data value of the node pointed to by temp1 then it copies the
left link of the node pointed by temp1 into temp1 (goes to the left), otherwise it copies the right
link of the node pointed by temp1 into temp1(goes to the right). It repeats this process till temp1
becomes nil.

Advanced Data Structure and Algorithms

Notes

118 LOVELY PROFESSIONAL UNIVERSITY

When temp1 becomes nil, the new node is inserted as a left child of the node pointed to by temp2
if data value of the node pointed to by temp2 is greater than data value supplied as parameter.
Otherwise the new node is inserted as a right child of node pointed to by temp2. Therefore the
insert procedure is
void insert(tnode *p, int val)

{

 tnode *temp1, *temp2;

 if (p == NULL)

 {

 p = new(tnode);

 p->data = val;

 p->1child = NULL;

 p->rchild = NULL;

 }

 else

 {

 temp1 = p;

 while(temp1 != NULL)

 {

 temp2 = temp1;

 if(temp1->data > val)

 temp1 = temp1->1eft;

 else

 temp1 = temp1->right;

 }

 if(temp2->data > val)

 {

 temp2->left = new(tnode);

 temp2 = temp2->left;

 temp2->data = val;

 temp2->left = NULL;

 temp2->right= NULL;

 }

 else

 {

 temp2->right = new(tnode);

 temp2 = temp2->right;

 temp2->data = val;

 temp2->left = NULL;

 temp2->right = NULL;

 }

 }

}

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 119

6.2 Counting the Number of Nodes in a Binary Search Tree

Counting the number of nodes in a given binary tree, the tree is required to be traversed
recursively until a leaf node is encountered. When a leaf node is encountered, a count of 1 is
returned to its previous activation (which is an activation for its parent), which takes the count
returned from both the children’s activation, adds 1 to it, and returns this value to the activation
of its parent. This way, when the activation for the root of the tree returns, it returns the count of
the total number of the nodes in the tree.

Lab Exercise Program: A complete C program to count the number of nodes is as follows:

#include <stdio.h>

#include <stdlib.h>

struct tnode

{

 int data;

 struct tnode *lchild, *rchild;

};

int count(struct tnode *p)

 {

 if(p == NULL)

 return(0);

 else

 if(p->lchild == NULL && p->rchild == NULL)

 return(1);

 else

 return(1 + (count(p->lchild) + count(p->rchild)));

 }

struct tnode *insert(struct tnode *p,int val)

 {

 struct tnode *temp1,*temp2;

 if(p == NULL)

 {

 p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the
new node as root node*/

 if(p == NULL)

 {

 printf(“Cannot allocate\n”);

 exit(0);

 }

 p->data = val;

 p->lchild=p->rchild=NULL;

Advanced Data Structure and Algorithms

Notes

120 LOVELY PROFESSIONAL UNIVERSITY

 }

 else

 {

 temp1 = p;

 /* traverse the tree to get a pointer to that node whose child will
be the newly created node*/

 while(temp1 != NULL)

 {

 temp2 = temp1;

 if(temp1 ->data > val)

 temp1 = temp1->lchild;

 else

 temp1 = temp1->rchild;

 }

 if(temp2->data > val)

 {

 temp2->lchild = (struct tnode*)malloc(sizeof(struct tnode)); /

*inserts the newly created node

 as left child*/

 temp2 = temp2->lchild;

 if(temp2 == NULL)

 {

 printf(“Cannot allocate\n”);

 exit(0);

 }

 temp2->data = val;

 temp2->lchild=temp2->rchild = NULL;

 }

 else

 {

 temp2->rchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts
the newly created node

 as left child*/

 temp2 = temp2->rchild;

 if(temp2 == NULL)

 {

 printf(“Cannot allocate\n”);

 exit(0);

 }

 temp2->data = val;

 temp2->lchild=temp2->rchild = NULL;

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 121

 }

 }

 return(p);

 }

 /* a function to binary tree in inorder */

 void inorder(struct tnode *p)

 {

 if(p != NULL)

 {

 inorder(p->lchild);

 printf(“%d\t”,p->data);

 inorder(p->rchild);

 }

 }

void main()

{

 struct tnode *root = NULL;

 int n,x;

 printf(“Enter the number of nodes\n”);

 scanf(“%d”,&n);

 while(n --- > 0)

 {

 printf(“Enter the data value\n”);

 scanf(“%d”,&x);

 root = insert(root,x);

 }

 inorder(root);

 printf(“\nThe number of nodes in tree are :%d\n”,count(root));

}

Input

1. The number of nodes the created tree should have = 5

2. The data values of the nodes in the tree to be created are: 10, 20, 5, 9, 8

Output

1. 5 8 9 10 20

2. The number of nodes in the tree is 5

6.3 Searching for a Target Key in a Binary Search Tree

Searching for the key in the given binary search tree, start with the root node and compare the
key with the data value of the root node. If they match, return the root pointer. If the key is less
than the data value of the root node, repeat the process by using the left subtree. Otherwise,
repeat the same process with the right subtree until either a match is found or the subtree under
consideration becomes an empty tree.

Advanced Data Structure and Algorithms

Notes

122 LOVELY PROFESSIONAL UNIVERSITY

boolean search(tnode *p, int val)

{

 boolean ans;

 tnode *temp;

 temp = p;

 ans = false;

 while ((temp != NULL) && (!ans))

 {

 if(temp->data == val)

 ans = true;

 else

 if(temp->data > val)

 temp = temp->left;

 else

 temp = temp->right;

 }

}

6.4 Deletion of a Node from a Binary Search Tree

There is another simple situation: suppose the node we’re deleting has only one subtree. In the
following example, ‘3’ has only 1 subtree.

6

3 9

1 8 11

0 2

L

To delete a node with 1 subtree, we just `link past’ the node, i.e. connect the parent of the node
directly to the node’s only subtree. This always works, whether the one subtree is on the left or
on the right. Deleting `3’ gives us:

6

9

1 8 11

0 2

L

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 123

which we normally draw:

6

9

8 110 2

L

1

Finally, let us consider the only remaining case: how to delete a node having two subtrees. For
example, how to delete `6’? We’d like to do this with minimum amount of work and disruption
to the structure of the tree.

The standard solution is based on this idea: we leave the node containing `6’ exactly where it is,
but we get rid of the value 6 and fi nd another value to store in the `6’ node. This value is taken
from a node below the `6’s node, and it is that node that is actually removed from the tree.

So, here is the plan. Starting with:

6

3 9

1 8 11

0 2

L

Erase 6, but keep its node:

?

3 9

1 8 11

0 2

L

Now, what value can we move into the vacated node and have a binary search tree? Well, here’s
how to fi gure it out. If we choose value X, then:

1. Everything in the left subtree must be smaller than X.

2. Everything in the right subtree must be bigger than X.

Let’s suppose we’re going to get X from the left subtree. (2) is guaranteed because everything in
the left subtree is smaller than everything in the right subtree. What about (1)? If X is coming from
the left subtree, (1) says that there is a unique choice for X - we must choose X to be the largest
value in the left subtree. In our example, 3 is the largest value in the left subtree. So if we put 3 in
the vacated node and delete it from its current position we will have a BST with 6 deleted.

Advanced Data Structure and Algorithms

Notes

124 LOVELY PROFESSIONAL UNIVERSITY

Here it is:

3

9

1 8 11

0 2

L

So our general algorithm is: to delete N, if it has two subtrees, replace the value in N with the
largest value in its left subtree and then delete the node with the largest value from its left
subtree.

Note The largest value in the left subtree will never have two subtrees. Why? Because if
it’s the largest value it cannot have a right subtree.

Finally, there is nothing special about the left subtree. We could do the same thing with the right
subtree: just use the smallest value in the right subtree.

To delete a node from a binary search tree the method to be used depends on whether a node to
be deleted has one child, two children, or has no child.

6.4.1 Deletion of a Node with Two Children

If the node to be deleted has two children; then the value is replaced by the smallest value in
the right sub tree or the largest key value in the left sub tree; subsequently the empty node is
recursively deleted. Consider the BST in Figure 6.2.

10

6 12

1195

4 7

8

Figure 6.2 Binary search tree

If the node 6 is to be deleted then fi rst its value is replaced by smallest value in its right subtree
i.e. by 7. So we will have Figure 6.3.

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 125

10

6 12

1195

4

8

Figure 6.3: Deletion of a Nod having Left and Right Child

Now we need to, delete this empty node shown in Figure 6.3.

Therefore, the fi nal structure would be Figure 6.4.

10

7
12

11

95

4 8

Figure 6.4: Tree alter a Deletion of a Node having Left and Right Child

6.4.2 Deletion of a Node with one Child

Consider the binary search tree shown below in Figure 6.5.

50

60
30

35

15

25

65
52

55

53 57

56 58

Nil

x

y

Figure 6.5: A Binary Tree before Deletion of a Node Pointed to by x

Advanced Data Structure and Algorithms

Notes

126 LOVELY PROFESSIONAL UNIVERSITY

If we want to delete a node pointed to by x, then we can do it as follows: Let y be a pointer to the
node which is the root of the node pointed to by x. Make the left child of the node pointed by y
to be the right child of the node pointed by x, and dispose the node pointed by x as shown below
in Figure 6.6:

50

60
30

35

15

25

65
52

55

53 57

56 58

Nil

x

y

Figure 6.6: A Binary Tree after Deletion of a Node Pointed to by x

y->lchild = x->rchild;

x->rchild = NULL;

delete(x);

6.4.3 Deletion of a Node with no Child

Consider the binary search tree shown below in Figure 6.7:

50

60
30

65
52

Nil

x

y

Nil

Figure 6.7: A Binary Tree before Deletion of a Node Pointed to by x

Let the left child of the node pointed by y be nil, and dispose node pointed by x as shown in
Figure 6.8.

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 127

50

60
30

65
52

Nil

x

y

Nil Nil

Figure 6.8: A Binary Tree after Deletion of a Node Pointed to by x

Search for a key in a BST

To search the binary tree for a particular node, we use procedures similar to those we used when
adding to it. Beginning at the root node, the current node and the entered key are compared. If
the values are equal success is output. If the entered value is less than the value in the node, then
it must be in the left-child sub tree. If there is no left-child sub tree, the value is not in the tree i.e.
a failure is reported. If there is a left-child subtree, then it is examined the same way. Similarly,
it the entered value is greater than the value in the current node, the right child is. searched.
Figure 18 shows the path through the tree followed in the search for the key H.

E

B

A D

C

F

G

I

H J

Figure 6.9: Search for a Key In BST

find-key (key value, node)

{

if (two values are same)

{

print value stored in node;

return (SUCCESS);

}

else if (key value value stored in current node)

{

if (left child exists)

{

find-key (key-value, left hand);

}

Advanced Data Structure and Algorithms

Notes

128 LOVELY PROFESSIONAL UNIVERSITY

else

{

there is no left subtree.,

return (string not found) }

}

else if (key-value value stored in current node)

{

if (right child exists)

{

find-key (key-value, rot child);

}

else

{

there is no right subtree;

return (string not found)

}

}

}

Lab Exercise Program: C program to delete a node, where the data value of the node to be
deleted is known, is as follows:

#include <stdio.h>

#include <stdlib.h>

struct tnode

{

 int data;

 struct tnode *lchild, *rchild;

};

/* A function to get a pointer to the node whose data value is given

 as well as the pointer to its root */

struct tnode *getptr(struct tnode *p, int key, struct tnode **y)

{

 struct tnode *temp;

 if(p == NULL)

 return(NULL);

 temp = p;

 *y = NULL;

 while(temp != NULL)

 {

 if(temp->data == key)

 return(temp);

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 129

 else

 {

 *y = temp; /*store this pointer as root */

 if(temp->data > key)

 temp = temp->lchild;

 else

 temp = temp->rchild;

 }

 }

 return(NULL);

}

/* A function to delete the node whose data value is given */

struct tnode *delete(struct tnode *p,int val)

 {

 struct tnode *x, *y, *temp;

 x = getptr(p,val,&y);

 if(x == NULL)

 {

 printf(“The node does not exists\n”);

 return(p);

 }

 else

 {

 /* this code is for deleting root node*/

 if(x == p)

 {

 temp = x->lchild;

 y = x->rchild;

 p = temp;

 while(temp->rchild != NULL)

 temp = temp->rchild;

 temp->rchild=y;

 free(x);

 return(p);

 }

/* this code is for deleting node having both children */

 if(x->lchild != NULL && x->rchild != NULL)

 {

 if(y->lchild == x)

 {

Advanced Data Structure and Algorithms

Notes

130 LOVELY PROFESSIONAL UNIVERSITY

temp = x->lchild;

y->lchild = x->lchild;

while(temp->rchild != NULL)

 temp = temp->rchild;

temp->rchild=x->rchild;

x->lchild=NULL;

x->rchild=NULL;

 }

 else

 {

 temp = x->rchild;

 y->rchild = x->rchild;

 while(temp->lchild != NULL)

 temp = temp->lchild;

 temp->lchild=x->lchild;

x->lchild=NULL;

 x->rchild=NULL;

 }

free(x);

 return(p);

 }

 /* this code is for deleting a node with on child*/

 if(x->lchild == NULL && x->rchild !== NULL)

 {

 if(y->lchild == x)

 y->lchild = x->rchild;

 else

 y->rchild = x->rchild;

 x->rchild; = NULL;

 free(x);

 return(p);

 }

 if(x->lchild != NULL && x->rchild == NULL)

 {

 if(y->lchild == x)

 y->lchild = x->lchild ;

 else

 y->rchild = x->lchild;

 x->lchild = NULL;

 free(x);

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 131

 return(p);

 }

 /* this code is for deleting a node with no child*/

 if(x->lchild == NULL && x->rchild == NULL)

 {

 if(y->lchild == x)

 y->lchild = NULL ;

 else

 y->rchild = NULL;

 free(x);

 return(p);

 }

 }

}

/*an iterative function to print the binary tree in inorder*/

void inorder1(struct tnode *p)

{

 struct tnode *stack[100];

 int top;

 top = −1;

if(p != NULL)

 {

 top++;

 stack[top] = p;

 p = p->lchild;

 while(top >= 0)

 {

 while (p!= NULL)/* push the left child onto stack*/

 {

 top++;

 stack[top] =p;

 p = p->lchild;

 }

 p = stack[top];

 top-;

 printf(“%d\t”,p->data);

 p = p->rchild;

 if (p != NULL) /* push right child*/

 {

 top++;

 stack[top] = p;

 p = p->lchild;

Advanced Data Structure and Algorithms

Notes

132 LOVELY PROFESSIONAL UNIVERSITY

 }

 }

 }

 }

 /* A function to insert a new node in binary search tree to get a tree
created*/

 struct tnode *insert(struct tnode *p,int val)

 {

 struct tnode *temp1,*temp2;

 if(p == NULL)

 {

 p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the new
node as root node*/

 if(p == NULL)

 {

 printf(“Cannot allocate\n”);

 exit(0);

 }

 p->data = val;

 p->lchild=p->rchild=NULL;

 }

 else

 {

 temp1 = p;

 /* traverse the tree to get a pointer to that node whose child will be
the newly created node*/

 while(temp1 != NULL)

 {

 temp2 = temp1;

 if(temp1 ->data > val)

 temp1 = temp1->lchild;

 else

 temp1 = temp1->rchild;

 }

 if(temp2->data > val)

 {

 temp2->lchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts
the newly created node

 as left child*/

 temp2 = temp2->lchild;

 if(temp2 == NULL)

 {

 printf(“Cannot allocate\n”);

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 133

 exit(0);

 }

 temp2->data = val;

 temp2->lchild=temp2->rchild = NULL;

 }

 else

 {

 temp2->rchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts
the newly created node

 as left child*/

 temp2 = temp2->rchild;

 if(temp2 == NULL)

 {

 printf(“Cannot allocate\n”);

 exit(0);

 }

 temp2->data = val;

 temp2->lchild=temp2->rchild = NULL;

 }

 }

 return(p);

 }

 void main()

 {

 struct tnode *root = NULL;

 int n,x;

 printf(“Enter the number of nodes in the tree\n”);

 scanf(“%d”,&n);

 while(n - > 0)

 {

 printf(“Enter the data value\n”);

 scanf(“%d”,&x);

 root = insert(root,x);

 }

 printf(“The created tree is :\n”);

 inorder1(root);

 printf(“\n Enter the value of the node to be deleted\n”);

 scanf(“%d”,&n);

 root=delete(root,n);

 printf(“The tree after deletion is \n”);

 inorder1(root);

}

Advanced Data Structure and Algorithms

Notes

134 LOVELY PROFESSIONAL UNIVERSITY

Explanation

This program fi rst creates a binary tree with a specifi ed number of nodes with their
respective data values. It then takes the data value of the node to be deleted, obtains a
pointer to the node containing that data value, and obtains another pointer to the root of
the node to be deleted. Depending on whether the node to be deleted is a root node, a node
with two children a node with only one child, or a node with no children, it carries out the
manipulations as discussed in the section on deleting a node. After deleting the specifi ed
node, it returns the pointer to the root of the tree.

Input:

1. The number of nodes that the tree to be created should have

2. The data values of each node in the tree to be created

3. The data value in the node to be deleted

Output:

1. The data values of the nodes in the tree in inorder before deletion

2. The data values of the nodes in the tree in inorder after deletion

Question

Write a C program to count the number of non-leaf nodes of a binary tree.

6.5 Application of a Binary Search Tree

1. A prominent data structure used in many systems programming applications for
representing and managing dynamic sets.

2. Average case complexity of Search, Insert, and Delete Operations is O(log n), where n is the
number of nodes in the tree.

One of the applications of a binary search tree is the implementation of a dynamic dictionary.
A dictionary is an ordered list which is required to be searched frequently, and is also required
to be updated (insertions and deletions) frequently. Hence can be very well implemented using
a binary search tree, by making the entries of dictionary into the nodes of binary search tree.
A more effi cient implementation of a dynamic dictionary involves considering a key to be a
sequence of characters, and instead of searching by comparison of entire keys, we use these
characters to determine a multi-way branch at each step, this will allow us to make a 26-way
branching according the fi rst letter, followed by another branch according to the second letter
and so on.

A program to create a binary search tree, given a list of identifi ers is given below:

char key[MAXLEN];

struct tnode

{

 key name;

 tnode *lchild;

 tnode *rchild;

}

void btree()

{

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 135

 tnode *root;

 key item;

 int n;

 root = NULL;

printf(“Number of data values:”);

 scanf(“%d”, &n);

 while(n > 0)

 {

 printf(“Enter the data value”);

 scanf(“%s”, item);

 insert(root, item);

 n = n-1;

 }

 printtree(root);

}

Task Discuss how will you delete a node with one child.

6.6 AVL Tree

An AVL tree is another balanced binary search tree. It takes its name from the initials of its
inventors – Adelson, Velskii and Landis. An AVL tree has the following properties:

1. The sub-trees of every node differ in height by at most one level.

2. Every sub-tree is an AVL tree.

h
- 2

h
- 1

h

Here, the height of the tree is h. Height of one subtree is h–1 while that of another subtree of the
same node is h–2, differing from each other by just 1. Therefore, it is an AVL tree.

Inserting a Node into AVL Tree

Inserting a node is somewhat complex and involves a number of cases. Implementations of AVL
tree insertion rely on adding an extra attribute – the balance factor – to each node. This factor
indicates whether the tree is left-heavy (the height of the left sub-tree is 1 greater than the right

Advanced Data Structure and Algorithms

Notes

136 LOVELY PROFESSIONAL UNIVERSITY

sub-tree), balanced (both sub-trees are the same height) or right-heavy (the height of the right
sub-tree is 1 greater than the left sub-tree). If the balance would be destroyed by an insertion, a
rotation is performed to correct the balance.

Let us consider the following AVL tree in which a node has been inserted in the left subtree of
node 1.

1

2

This insertion causes its height to become 2 greater than node-2’s right sub-tree. A right-rotation
is performed to correct the imbalance, as shown below.

1

1

AVL Rotation: A tree rotation can be an intimidating concept at fi rst. You end up in a situation
where you’re juggling nodes, and these nodes have trees attached to them, and it can all become
confusing very fast. I fi nd it helps to block out what’s going on with any of the subtrees which
are attached to the nodes you’re fumbling with, but that can be hard.

Left Rotation (LL)

Imagine we have this situation:

a

 \

 b

 \

 c

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 137

To fi x this, we must perform a left rotation, rooted at A. This is done in the following steps:

b becomes the new root.

a takes ownership of b’s left child as its right child, or in this case, null.

b takes ownership of a as its left child.

The tree now looks like this:

 b

 / \

a c

Right Rotation (RR)

A right rotation is a mirror of the left rotation operation described above. Imagine we have this
situation:

 c

 /

 b

 /

a

To fi x this, we will perform a single right rotation, rooted at C. This is done in the following
steps:

b becomes the new root.

c takes ownership of b’s right child, as its left child. In this case, that value is null.

b takes ownership of c, as it’s right child.

The resulting tree:

 b

 / \

a c

Left-Right Rotation (LR) or “Double left”

Sometimes a single left rotation is not suffi cient to balance an unbalanced tree. Take this
situation:

a

 \

 c

Perfect. It’s balanced. Let’s insert ‘b’.

a
 \
 c

Advanced Data Structure and Algorithms

Notes

138 LOVELY PROFESSIONAL UNIVERSITY

 /

b

Our initial reaction here is to do a single left rotation. Let’s try that.

 c

 /

a

 \

 b

Our left rotation has completed, and we’re stuck in the same situation. If we were to do a single
right rotation in this situation, we would be right back where we started. What’s causing this?
The answer is that this is a result of the right subtree having a negative balance. In other words,
because the right subtree was left heavy, our rotation was not suffi cient. What can we do? The
answer is to perform a right rotation on the right subtree. Read that again. We will perform a
right rotation on the right subtree. We are not rotating on our current root. We are rotating on
our right child. Think of our right subtree, isolated from our main tree, and perform a right
rotation on it:

Before:

 c

 /

b

After:

b

 \

 c

After performing a rotation on our right subtree, we have prepared our root to be rotated left.
Here is our tree now:

a

 \

 b

 \

 c

Looks like we’re ready for a left rotation. Let’s do that:

 b

 / \

a c

Voila. Problem solved.

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 139

Right-Left Rotiation (RL) or “Double right”

A double right rotation, or right-left rotation, or simply RL, is a rotation that must be performed
when attempting to balance a tree which has a left subtree, that is right heavy. This is a mirror
operation of what was illustrated in the section on Left-Right Rotations, or double left rotations.
Let’s look at an example of a situation where we need to perform a Right-Left rotation.

 c

 /

a

 \

 b

In this situation, we have a tree that is unbalanced. The left subtree has a height of 2, and the right
subtree has a height of 0. This makes the balance factor of our root node, c, equal to -2. What do
we do? Some kind of right rotation is clearly necessary, but a single right rotation will not solve
our problem. Let’s try it:

a

 \

 c

 /

b

Looks like that didn’t work. Now we have a tree that has a balance of 2. It would appear that we
did not accomplish much. That is true. What do we do? Well, let’s go back to the original tree,
before we did our pointless right rotation:

 c

 /

a

 \

 b

The reason our right rotation did not work, is because the left subtree, or ‘a’, has a positive
balance factor, and is thus right heavy. Performing a right rotation on a tree that has a left subtree
that is right heavy will result in the problem we just witnessed. What do we do? The answer is to
make our left subtree left-heavy. We do this by performing a left rotation our left subtree. Doing
so leaves us with this situation:

 c

 /

 b

 /

a

Advanced Data Structure and Algorithms

Notes

140 LOVELY PROFESSIONAL UNIVERSITY

This is a tree which can now be balanced using a single right rotation. We can now perform our
right rotation rooted at C. The result:

b

/ \

a c

Balance at last.

AVL Operation

Insertion into AVL Trees

To implement AVL trees, you need to maintain the height of each node. You insert into an AVL
tree by performing a standard binary tree insertion. When you’re done, you check each node
on the path from the new node to the root. If that node’s height hasn’t changed because of the
insertion, then you are done. If the node’s height has changed, but it does not violate the balance
property, then you continue checking the next node in the path. If the node’s height has changed
and it now violates the balance property, then you need to perform one or two rotations to fi x the
problem, and then you are done.

Let’s try some examples. Suppose I have the following AVL tree -- I now annotate the nodes with
their heights:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Fred

Luther
0

0

0 1

1

If I insert Ahmad, take a look at the resulting tree:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Fred

Luther
0

0

1 1

1

Ahmed
0

The new node Ahmad has a height of zero, and when I travel the path up to the root, I change
Baby Daisy’s height to one. However, her node is not imbalanced, since the height of her subtrees
are 0 and -1. Moving on, Binky’s height is unchanged, so we can stop – the resulting tree is indeed
an AVL tree.

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 141

However, suppose I now try to insert Waluigi. I get the following tree:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Fred

Luther
0

0

1 1

1

Ahmed
0

Waluigi
0

Traveling from the new node to the root, I see that Fred violates the balance condition. It’s left
child has a height of -1 and its right child has a height of 1. I have to rebalance the tree.

Rebalancing

When I rebalance, I have a node whose height is h, that has two children of differing heights. One
child has a height of h-1 and the other has a height of h-3. The one whose height is h-1 contains
the new node. We have to consider two cases, which I’ll name zig-zig and zig-zag. You’ll see the
reasons for the names pretty clearly. Here is the Zig-Zig case:

B
h

D
h-1

F
h-2

A

C

E G

h-3 or h-4 h-3 or h-4

h-3

h-2

Either F is the
newly added
node, or it is a
node E or G.

In this case, the path from the imbalanced node (B) to the newly added node starts with two right
children. To rebalance the tree, you perform a rotation about node D:

D
h-1

FB
h-2

E G

h-3 or h-4 h-3 or h-4

h-2

A C

h-3h-3

Advanced Data Structure and Algorithms

Notes

142 LOVELY PROFESSIONAL UNIVERSITY

Node D is the new root of the subtree. Before the insertion, node B’s height was h-1, so the height
of the subtree has not changed because of the rotation. Thus, insertion is over, and you are left
with a valid AVL tree.

If the path from the imbalanced node to the newly added node starts with two left children, then
you have another Zig-Zig case (the mirror image). You treat it in the same way: rotate about the
imbalanced node’s left child.

Before going on, take a look at our example above where Fred was imbalanced. That is a Zig-Zig
case, so we can fi x it by rotating about Luther:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Fred

Luther
1

0

1 1

2

Ahmed
0

Waluigi
0

Rotate about Luther

Eunice
3

2

Binky

Daisy Fred
Baby
Daisy

Calista

Luther

0

0

1 1

1

Ahmed
0

Waluigi

The other rebalancing case is the Zig-Zag case, pictured below:

B
h

F
h-1

D
h-2

A

C E

h-3 or h-4 h-3 or h-4

h-3 Either D is the
newly added
node, or it is a
node in C or E.

G

h-3

To fi x this, you perform two rotations. You rotate about node D, and then you rotate about node
D again. This is called a double rotation about node D. Here are the two rotations:

B
h

D
h-1

A

C

G

h-3 or h-4

h-3 or h-4

h-3

h-3

E

F
h-2

First rotation about D.

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 143

D

F
h-2

B

C

h-3 or h-4

h-2

A G

h-3 or h-4

E

Second rotation about D.

h-1

h-3

Once again, the height of the subtree before deletion was h-1, so when you’re done with the
double rotation, you are done – your tree is balanced. Again, the mirror image case is treated in
the exact same manner.

Here’s an example. Suppose our tree is the following, rather large tree:

Eunice
3

2

Binky

DaisyBaby
Daisy

Calista

Luther

Fred
0

0

1 1

1

Ahmed
0

Dontonio

Waluigi

0

0

And suppose we insert Boo into the tree:

Eunice
4

2

Binky

DaisyBaby
Daisy

Calista

Luther

Fred
0

0

1 2

1

Ahmed
0

Dontonio

Waluigi

0

0

Boo
0

Checking for balancing, we have to increment every height up to the root, and the root node
Eunice is imbalanced. Since the path to the new node starts with a left child and a right child,
this is a Zig-Zag case, and we need to perform a double rotation about the grandchild of the
imbalanced node -- Daisy. Below is the result. We have a nicely balanced AVL tree!

Advanced Data Structure and Algorithms

Notes

144 LOVELY PROFESSIONAL UNIVERSITY

Daisy
3

2

Binky

CalistaBaby
Daisy

Eunice

Fred
0

1 1

2

Ahmed
0

Waluigi

0

Boo

0
Luther

Dontonio 1

0

Deletion

When you delete a node, there are three things that can happen to the parent:

1. Its height is decremented by one. An example of this is if Boo is deleted from the above
tree – Baby Daisy’s height is decremented by one.

2. Its height doesn’t change and it stays balanced. An example of this is if Fred is deleted --
Luther’s height is unchanged and it is balanced.

3. Its height doesn’t change, but it becomes imbalanced. An example of this is if Dontonio is
deleted – Eunice’s height is unchanged, but she is imbalanced.

You handle these three cases in different ways:

1. The parent’s height is decremented by one. When this happens, you check the parent’s
parent: you keep doing this until you return or you reach the root of the tree.

2. The parent’s height doesn’t change and it stays balanced. When this happens you may
return – deletion is over.

3. The parent’s height doesn’t change, but it becomes imbalanced. When this happens, you
have to rebalance the subtree rooted at the parent. After rebalancing, the subtree’s height
may be one smaller than it was originally. If so, you must continue checking the parent’s
parent.

To rebalance, you need to identify whether you are in a zig-zig situation or a zig-zag situation
and rebalance accordingly. How do you do this? Look at the following picture:

B

h-1

A

E

h-3 or h-4

h-2 or h-3 h-2 or h-3

C

D

Imbalanced Identification Picture

h-3

h

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 145

The imbalanced node is B. If the height of subtree C is h-3, then the height of E will be h-2 and the
tree is a Zig-Zig – you can rebalance by rotating about node D. If the height of subtree E is h-3,
then the height of C is h-2 and the tree is a Zig-Zag – you rebalance by doing a double rotation
about the root of C. If both C and E have heights of h-2, then you treat it as either a Zig-Zig or a
Zig-Zag. Both work. For the purposes of your lab, treat this case like a Zig-Zig.

The mirror image works the same way.

Let’s look at some examples. First, suppose we delete Calista from the following tree:

Binky
2

1
Baby
Daisy

Calista
0

Ahmed
0

You’re left with:
Binky

2

1
Baby
Daisy

Ahmed
0

You check Calista’s old parent – Binky and although Binky’s height hasn’t changed, the node
is imbalanced. It’s clearly a Zig-Zig tree, so you rotate about Baby Daisy to yield the following
tree:

1
Baby
Daisy

Ahmed Binky
0 0

Since Baby Daisy is the root, we’re done.

Let’s try a more complex example -- deleting Eunice from the following tree:

Daisy
3

2

Binky

CalistaBaby
Daisy

Eunice

Fred

1 1

2

Ahmed
0

0

Boo

0
Luther

Dontonio 1

0

Advanced Data Structure and Algorithms

Notes

146 LOVELY PROFESSIONAL UNIVERSITY

First, Eunice has two children. So, we fi nd the child with the greatest key in Eunice’s left subtree,
which is Dontonio, delete it, and replace Eunice with Dontonio. We start by deleting Dontonio:

Daisy
3

2

Binky

CalistaBaby
Daisy

Eunice

Fred

1 1

2

Ahmed
0

Boo

0
Luther

1

0

And we start checking at Eunice. It is imbalanced. Looking at it, we see that it’s a Zig-Zag, so we
have to double-rotate about Fred:

Daisy
3

2

Binky

CalistaBaby
Daisy

Fred

1 1

1

Ahmed
0

Boo

0
Luther

0
Eunice
0

Now, the subtree rooted by Fred is balanced, but the subtree’s height is one less than it used to
be, so we need to move to it’s parent and check it. Its height is unchanged, and it is balanced, so
we’re done – as a last step, we replace Eunice with Dontonio:

AVL Tree Algorithms

#ifndef AVL_TREE_H

#define AVL_TREE_H

#include “dsexceptions.h”

#include <iostream> // For NULL

using namespace std;

// AvlTree class

//

// CONSTRUCTION: with ITEM_NOT_FOUND object used to signal failed finds

//

// ******************PUBLIC OPERATIONS*********************

// void insert(x) --> Insert x

// void remove(x) --> Remove x (unimplemented)

// bool contains(x) --> Return true if x is present

// Comparable findMin() --> Return smallest item

// Comparable findMax() --> Return largest item

// boolean isEmpty() --> Return true if empty; else false

// void makeEmpty() --> Remove all items

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 147

// void printTree() --> Print tree in sorted order

// ******************ERRORS********************************

// Throws UnderflowException as warranted

template <typename Comparable>

class AvlTree

{

 public:

 AvlTree() : root(NULL)

 { }

 AvlTree(const AvlTree & rhs) : root(NULL)

 {

 *this = rhs;

 }

 ~AvlTree()

 {

 makeEmpty();

 }

 /**

 * Find the smallest item in the tree.

 * Throw UnderflowException if empty.

 */

 const Comparable & findMin() const

 {

 if(isEmpty())

 throw UnderflowException();

 return findMin(root)->element;

 }

 /**

 * Find the largest item in the tree.

 * Throw UnderflowException if empty.

 */

 const Comparable & findMax() const

 {

 if(isEmpty())

 throw UnderflowException();

 return findMax(root)->element;

 }

Advanced Data Structure and Algorithms

Notes

148 LOVELY PROFESSIONAL UNIVERSITY

 /**

 * Returns true if x is found in the tree.

 */

 bool contains(const Comparable & x, int &comps) const

 {

 return contains(x, root, comps);

 }

 /**

 * Test if the tree is logically empty.

 * Return true if empty, false otherwise.

 */

 bool isEmpty() const

 {

 return root == NULL;

 }

 /**

 * Print the tree contents in sorted order.

 */

 void printTree() const

 {

 if(isEmpty())

 cout << “Empty tree” << endl;

 else

 printTree(root);

 }

 /**

 * Make the tree logically empty.

 */

 void makeEmpty()

 {

 makeEmpty(root);

 }

 /**

 * Insert x into the tree; duplicates are ignored.

 */

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 149

 void insert(const Comparable & x)

 {

 insert(x, root);

 }

 /**

 * Remove x from the tree. Nothing is done if x is not found.

 */

 void remove(const Comparable & x)

 {

 cout << “Sorry, remove unimplemented; “ << x <<

 “ still present” << endl;

 }

 /**

 * Deep copy.

 */

 const AvlTree & operator=(const AvlTree & rhs)

 {

 if(this != &rhs)

 {

 makeEmpty();

 root = clone(rhs.root);

 }

 return *this;

 }

 private:

 struct AvlNode

 {

 Comparable element;

 AvlNode *left;

 AvlNode *right;

 int height;

 AvlNode(const Comparable & theElement, AvlNode *lt,

 AvlNode *rt, int h = 0)

 : element(theElement), left(lt), right(rt), height(h) { }

 };

Advanced Data Structure and Algorithms

Notes

150 LOVELY PROFESSIONAL UNIVERSITY

 AvlNode *root;

 /**

 * Internal method to insert into a subtree.

 * x is the item to insert.

 * t is the node that roots the subtree.

 * Set the new root of the subtree.

 */

 void insert(const Comparable & x, AvlNode * & t)

 {

 if(t == NULL)

 t = new AvlNode(x, NULL, NULL);

 else if(x < t->element)

 {

 insert(x, t->left);

 if(height(t->left) - height(t->right) == 2)

 if(x < t->left->element)

 rotateWithLeftChild(t);

 else

 doubleWithLeftChild(t);

 }

 else if(t->element < x)

 {

 insert(x, t->right);

 if(height(t->right) - height(t->left) == 2)

 if(t->right->element < x)

 rotateWithRightChild(t);

 else

 doubleWithRightChild(t);

 }

 else

 ; // Duplicate; do nothing

 t->height = max(height(t->left), height(t->right)) + 1;

 }

 /**

 * Internal method to find the smallest item in a subtree t.

 * Return node containing the smallest item.

 */

 AvlNode * findMin(AvlNode *t) const

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 151

 {

 if(t == NULL)

 return NULL;

 if(t->left == NULL)

 return t;

 return findMin(t->left);

 }

 /**

 * Internal method to find the largest item in a subtree t.

 * Return node containing the largest item.

 */

 AvlNode * findMax(AvlNode *t) const

 {

 if(t != NULL)

 while(t->right != NULL)

 t = t->right;

 return t;

 }

 /**

 * Internal method to test if an item is in a subtree.

 * x is item to search for.

 * t is the node that roots the tree.

 */

 bool contains(const Comparable & x, AvlNode *t, int &comps) const

 {

 if(t == NULL)

 return false;

 else if(x < t->element)

 return contains(x, t->left, ++comps);

 else if(t->element < x)

 return contains(x, t->right, ++comps);

 else

 return true; // Match

 }

/****** NONRECURSIVE VERSION*************************

 bool contains(const Comparable & x, AvlNode *t) const

 {

 while(t != NULL)

Advanced Data Structure and Algorithms

Notes

152 LOVELY PROFESSIONAL UNIVERSITY

 if(x < t->element)

 t = t->left;

 else if(t->element < x)

 t = t->right;

 else

 return true; // Match

 return false; // No match

 }

***/

 /**

 * Internal method to make subtree empty.

 */

 void makeEmpty(AvlNode * & t)

 {

 if(t != NULL)

 {

 makeEmpty(t->left);

 makeEmpty(t->right);

 delete t;

 }

 t = NULL;

 }

 /**

 * Internal method to print a subtree rooted at t in sorted order.

 */

 void printTree(AvlNode *t) const

 {

 if(t != NULL)

 {

 printTree(t->left);

 cout << t->element << endl;

 printTree(t->right);

 }

 }

 /**

 * Internal method to clone subtree.

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 153

 */

 AvlNode * clone(AvlNode *t) const

 {

 if(t == NULL)

 return NULL;

 else

 return new AvlNode(t->element, clone(t->left), clone(t->right),
t->height);

 }

 // Avl manipulations

 /**

 * Return the height of node t or -1 if NULL.

 */

 int height(AvlNode *t) const

 {

 return t == NULL ? -1 : t->height;

 }

 int max(int lhs, int rhs) const

 {

 return lhs > rhs ? lhs : rhs;

 }

 /**

 * Rotate binary tree node with left child.

 * For AVL trees, this is a single rotation for case 1.

 * Update heights, then set new root.

 */

 void rotateWithLeftChild(AvlNode * & k2)

 {

 AvlNode *k1 = k2->left;

 k2->left = k1->right;

 k1->right = k2;

 k2->height = max(height(k2->left), height(k2->right)) + 1;

 k1->height = max(height(k1->left), k2->height) + 1;

 k2 = k1;

 }

 /**

 * Rotate binary tree node with right child.

 * For AVL trees, this is a single rotation for case 4.

Advanced Data Structure and Algorithms

Notes

154 LOVELY PROFESSIONAL UNIVERSITY

 * Update heights, then set new root.

 */

 void rotateWithRightChild(AvlNode * & k1)

 {

 AvlNode *k2 = k1->right;

 k1->right = k2->left;

 k2->left = k1;

 k1->height = max(height(k1->left), height(k1->right)) + 1;

 k2->height = max(height(k2->right), k1->height) + 1;

 k1 = k2;

 }

 /**

 * Double rotate binary tree node: first left child.

 * with its right child; then node k3 with new left child.

 * For AVL trees, this is a double rotation for case 2.

 * Update heights, then set new root.

 */

 void doubleWithLeftChild(AvlNode * & k3)

 {

 rotateWithRightChild(k3->left);

 rotateWithLeftChild(k3);

 }

 /**

 * Double rotate binary tree node: first right child.

 * with its left child; then node k1 with new right child.

 * For AVL trees, this is a double rotation for case 3.

 * Update heights, then set new root.

 */

 void doubleWithRightChild(AvlNode * & k1)

 {

 rotateWithLeftChild(k1->right);

 rotateWithRightChild(k1);

 }

};

#endif

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 155

Applications of AVL Trees

AVL trees are applied in the following situations:

1. There are few insertion and deletion operations

2. Short search time is needed

3. Input data is sorted or nearly sorted

AVL tree structures can be used in situations which require fast searching. But, the large cost of
rebalancing may limit the usefulness.

Consider the following:

1. A classic problem in computer science is how to store information dynamically so as to
allow for quick look up. This searching problem arises often in dictionaries, telephone
directory, symbol tables for compilers and while storing business records etc. The records
are stored in a balanced binary tree, based on the keys (alphabetical or numerical) order.
The balanced nature of the tree limits its height to O (log n), where n is the number of
inserted records.

2. AVL trees are very fast on searches and replacements. But, have a moderately high cost
for addition and deletion. If application does a lot more searches and replacements than
it does addition and deletions, the balanced (AVL) binary tree is a good choice for a data
structure.

3. AVL tree also has applications in fi le systems.

6.7 Summary

 Binary trees provide an excellent solution to this problem. By making the entries of an
ordered list into the nodes of a binary tree, we shall fi nd that we can search for a target key
in O(log n) steps, just as with binary search, and we shall obtain algorithms for inserting
and deleting entries also in time O(log n)

 When we studied binary search, we drew comparison trees showing the progress of binary
search by moving either left (if the target key is smaller than the one in the current node of
the tree) or right (if the target key is larger).

 We can regard binary search trees as a new abstract data type with its own defi nition and
its own methods;

 Since binary search trees are special kinds of binary trees, we may consider their methods
as special kinds of binary tree methods;

 Since the entries in binary search trees contain keys, and since they are applied for
information retrieval in the same way as ordered lists, we may study binary search trees as
a new implementation of the abstract data type ordered list.

6.8 Keywords

Binary Search Tree: A binary search tree is a binary tree which may be empty, and every node
contains an identifi er.

Searching: Searching for the key in the given binary search tree, start with the root node and
compare the key with the data value of the root node.

Advanced Data Structure and Algorithms

Notes

156 LOVELY PROFESSIONAL UNIVERSITY

6.9 Self Assessment

State whether the following statements are true or false:

1. A binary search tree is not a binary tree which may be full, and every node contains an
identifi er.

2. A dictionary is an ordered list which is required to be searched frequently, and is also
required to be updated frequently.

3. AVL Tree invented by Adelson, Velskii and Landis.

4. Implementations of AVL tree insertion rely on deleting an extra attribute – the balance
factor – to each node.

5. Identifi er of any node in the right sub-tree is greater than the identifi er of the root and the
left sub-tree as well as right sub-tree both are binary search trees.

Fill in the blanks:

6. A binary search tree is basically a binary tree, and therefore it can be traversed is inorder,
preorder, and

7. To create a we use a procedure named insert which creates a new node
with the data value supplied as a parameter to it, and inserts into an already existing tree
whose root pointer is also passed as a parameter.

8. To from a binary search tree the method to be used depends on
whether a node to be deleted has one child, two children, or has no child.

9. To search the binary tree for a particular node, we use procedures similar to those we used
when to it.

10. A more effi cient implementation of a dynamic dictionary involves considering a key to be
a sequence of

6.10 Review Questions

1. Describe binary search tree. Also explain how will you create binary search tree.

2. How will counting the number of nodes in a binary search tree? Explain

3. Describe deletion of a node with one child.

Question 4-6 are based on the following binary search tree. Answer each question independently,
using the original tree as the basis for each part.

Unit 6: Binary Search Tree and AVL Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 157

4. Show the keys with which each of the following targets will be compared in a search of the
preceding binary search tree.

a. c b. s c. k

d. a e. d f. m

g. f h. b i. t

5. Insert each of the following keys into the preceding binary search tree. Show the comparisons
of keys that will be made in each case. Do each part independently, inserting the key into
the original tree.

a. m b. f c. b

d. t e. c f. s

6. Delete each of the following keys from the preceding binary search tree, using the algorithm
developed in this section. Do each part independently, deleting the key from the original
tree.

a. a b. p c. n

d. s e. e f. k

7. Draw the binary search trees that function insert will construct for the list of 14 names
presented in each of the following orders and inserted into a previously empty binary
search tree.

a. Jan Guy Jon Ann Jim Eva Amy Tim Ron Kim Tom Roy Kay Dot

b. Amy Tom Tim Ann Roy Dot Eva Ron Kim Kay Guy Jon Jan Jim

c. Jan Jon Tim Ron Guy Ann Jim Tom Amy Eva Roy Kim Dot Kay

d. Jon Roy Tom Eva Tim Kim Ann Ron Jan Amy Dot Guy Jim Kay

8. Consider building two binary search trees containing the integer keys 1 to 63, inclusive,
received in the orders

a. All the odd integers in order (1, 3, 5, : : : , 63), then 32, 16, 48, then the remaining even
integers in order (2, 4, 6, : : :).

b. 32, 16, 48, then all the odd integers in order (1, 3, 5, : : : , 63), then the remaining even
integers in order (2, 4, 6, : : :).

 Which of these trees will be quicker to build? Explain why. [Try to answer this question
without actually drawing the trees.]

9. Prepare a package containing the declarations for a binary search tree and the functions
developed in this section. The package should be suitable for inclusion in any application
program.

10. In each of the following, insert the keys, in the order shown, to build them into an AVL
tree.

a. A, Z, B, Y, C, X.

b. A, B, C, D, E, F.

c. M, T, E, A, Z, G, P.

d. A, Z, B, Y, C, X, D, W, E, V, F.

e. A, B, C, D, E, F, G, H, I, J, K, L.

f. A, V, L, T, R, E, I, S, O, K.

Advanced Data Structure and Algorithms

Notes

158 LOVELY PROFESSIONAL UNIVERSITY

Answers: Self Assessment

1. False 2. True

3. True 4. False

5. True 6. postorder

7. binary search tree 8. delete a node

9. adding 10. characters

6.11 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms, Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 7: Splay Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 159

Unit 7: Splay Trees

CONTENTS

Objectives

Introduction

7.1 Splay Trees

7.2 Operations

7.3 Splay Operation

7.4 Rotations

7.5 Splay Tree Application

7.6 Summary

7.7 Keywords

7.8 Self Assessment

7.9 Review Questions

7.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Describe splay trees

 Explain splay tree operation

Introduction

Splay trees are binary search trees that achieve our goals by being self-adjusting in a quite
remarkable way: Every time we access a node of the tree, whether for insertion or retrieval, we
perform radical surgery on the tree, lifting the newly accessed node all the way up, so that it
becomes the root of the modifi ed tree. Other nodes are pushed out of the way as necessary to
make room for this new root. Nodes that are frequently accessed will frequently be lifted up to
become the root, and they will never drift too far from the top position. Inactive nodes, on the
other hand, will slowly be pushed farther and farther from the root.

It is possible that splay trees can become highly unbalanced, so that a single access to a node of
the tree can be quite expensive. Later in this section, however, we shall prove that, over a long
sequence of accesses, splay trees are not at all expensive and are guaranteed to require not many
more operations even than AVL trees. The analytical tool used is called amortized algorithm
analysis, since, like insurance calculations, the few expensive cases are averaged in with many
less expensive cases to obtain excellent performance over a long sequence of operations.

7.1 Splay Trees

Splay Trees were invented by Sleator and Tarjan. This data structure is essentially a binary tree
with special update and access rules. It has the property to adapt optimally to a sequence of tree
operations. More precisely, a sequence of m operations on a tree with initially n nodes takes time
O (n ln (n) + m ln (n)).

Advanced Data Structure and Algorithms

Notes

160 LOVELY PROFESSIONAL UNIVERSITY

7.2 Operations

Splay trees support the following operations. We write S for sets, x for elements and k for key
values.

splay(S, k) returns an access to an element x with key k in the set S. In case no such element
exists, we return an access to the next smaller or larger element.

split(S, k) returns (S_1,S_2), where for each x in S_1 holds: key[x] <= k , and for each y in S_2
holds: k < key[y].

join(S_1,S_2) returns the union S = S_1 + S_2. Condition: for each x in S_1 and each y in S_2: x
<= y.

insert(S,x) augments S by x.

delete(S,x) removes x from S.

Each split, join, delete and insert operation can be reduced to splay operations and modifi cations
of the tree at the root which take only constant time. Thus, the run time for each operation is
essentially the same as for a splay operation.

7.3 Splay Operation

The most important tree operation is splay(x), which moves an element x to the root of the tree. In
case x is not present in the tree, the last element on the search path for x is moved instead.

The run time for a splay(x) operation is proportional to the length of the search path for x. While
searching for x we traverse the search path top-down. Let y be the last node on that path. In a
second step, we move y along that path by applying rotations as described later.

The time complexity of maintaining a splay tree is analyzed using an Amortized Analysis.
Consider a sequence of operations op_1, op_2, ..., op_m. Assume that our data structure has a
potential. One can think of the potential as a bank account. Each tree operation op_i has actual
costs proportional to its running time. We’re paying for the costs c_i of op_i with its amortized
costs a_i. The difference between concrete and amortized costs is charged against the potential
of the data structure. This means that we’re investing in the potential if the amortized costs are
higher that the actual costs, otherwise we’re decreasing the potential.

Thus, we’re paying for the sequence op_1, op_2, ..., op_m no more than the initial potential plus
the sum of the amortized costs a_1 + a_2 + ... + a_m.

The trick of the analysis is to defi ne a potential function and to show that each splay operation
has amortized costs O (ln (n)). It follows that the sequence has costs O (m ln (n) + n ln (n))

7.4 Rotations

The splay operation moves the accessed element x to the root of the tree T. This is done using
rotations on x and parent y and grandparent z.

There are two kinds of double rotations and one single rotation. Due to symmetry, we need
mirror-image versions of each rotation.

Type 1: x < y < z , or z < y < x respectively

Type 2: y < x < z , or z < x < y respectively.

Type 3: The last case deals with the situation that the splay node x is a child of the root. Thus, we
need a single rotation.

 x < y , or y < x respectively.

Unit 7: Splay Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 161

7.5 Splay Tree Application

The application is Lexicographic Search Tree (LST).

b

a

0

a

a

h

d

t

g

y

y

e
s

t

s

Figure 7.1: An example of LST

In a LST all the circles and squares are the nodes of the tree. Each node will contain a character.
And the square nodes are terminal nodes of the strings. There are two kinds of edges, solid
line edges and dashed line edges in LST. Solid line edges forms the splay tree and the nodes
connected by a solid line represent different strings. The dashed line edges are used to represent
a single string therefore the order of the nodes connected by a dashed line cannot be changed.

Figure 7.1 shows an example of a LST. Form the Figure 7.1, it stores different words: “at”, “as”,
“bat”, “bats”, “bog”, “boy”, “day” and “he”.

When a string is requested you just splay the character in the string one by one. Figure 7.2 shows
how to splay a character ‘a’ in a LST.

As you can see, the character ‘a’ will not be splayed to the root because ‘h’ and ‘d’ are the prefi x
of ‘a’ but it will move to the position most near the root. In LST, after the string is accessed, the
fi rst character of the string will become the root as a result the most frequent accessed string
will be near the root. And LST store the prefi x for different strings this reduce the redundancy
for storing the strings. Besides LST, the splay tree can also be used for data compression, e.g.
dynamic Huffman coding.

Advanced Data Structure and Algorithms

Notes

162 LOVELY PROFESSIONAL UNIVERSITY

h

g

r

e

d

c

b

a

h

d

a

b

e g

f

c

Splay at ‘a’

Figure 7.2: Splay character ‘a’ in a LST

Rules for Splaying

Here are the rules for splaying. Denote the node being accessed as X, the parent of X as P and
the grandparent of X as G:

Zig: In this case, P is the root of the tree.

1. Zig_Left(X) if X is a left child.

2. Zig_Right(X) if X is a right child.

Unit 7: Splay Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 163

P

X C

BA

P

PA

CB

(a): Zig_Left

P

XA

CB

X

P C

BA

(b): Zig_Right

Figure 7.3: Splay Tree Zig Rotations of Node X

ZigZag: P is not the root of the tree. X and P are opposite types of children (left or right). The path
from X to G is “crooked”.

1. Zig_Right_Zag_Left if X is a right child and P is a left child.

2. Zig_Left_Zag_Right if X is a left child and P is a right child.

Advanced Data Structure and Algorithms

Notes

164 LOVELY PROFESSIONAL UNIVERSITY

(a): Zig_Right_Zag_Left

(b): Zig_Left_Zag_Right

Figure 7.4: Splay Tree Zig_Zag Rotations of Node X

ZigZig: P is not the root of the tree. X and P are the same type of children (left or right). X, P and
G are in a straight line.

1. Zig_Zig_Left if X and P are both right children.

2. Zig_Zig_Right if X and P are both left children.

(a) Zig_Zig_Left

Figure 7.5: Splay Tree Zig_Zig Rotations of Node X

Contd....

Unit 7: Splay Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 165

(b) Zig_Zag_Right

Splay Tree Algorithms

To show that splay trees deliver the promised amortized performance, we defi ne a potential
function Φ(T) to keep track of the extra time that can be consumed by later operations on the tree
T. As before, we defi ne the amortized time taken by a single tree operation that changes the tree
from T to T’ as the actual time t, plus the change in potential Φ(T’)-Φ(T). Now consider a sequence
of M operations on a tree, taking actual times t1, t2, t3, ..., tM and producing trees T1, T2, ... TM. The
amortized time taken by the operations is the sum of the actual times for each operation plus the
sum of the changes in potential: t1 + t2 + ... tM + (Φ(T2) − Φ(T1)) + (Φ(T3) − Φ(T2)) + ... + (Φ(TM) −
Φ(TM-1)) = t1 + t2 + ... tM + Φ(TM) − Φ(T1). Therefore the amortized time for a sequence of operations
underestimates the actual time by at most the maximum drop in potential Φ(TM) − Φ(T1) seen
over the whole sequence of operations.

The key to amortized analysis is to defi ne the right potential function. Given a node x in a binary
tree, let size(x) be the number of nodes below x (including x). Let rank(x) be the log base 2 of
size(x). Then the potential Φ(T) of a tree T is the sum of the ranks of all of the nodes in the tree.
Note that if a tree has n nodes in it, the maximum rank of any node is lg n, and therefore the
maximum potential of a tree is n lg n. This means that over a sequence of operations on the tree,
its potential can decrease by at most n lg n. So the correction factor to amortized time is at most
lg n, which is good.

Now, let us consider the amortized time of an operation. The basic operation of splay trees is
splaying; it turns out that for a tree t, any splaying operation on a node x takes at most amortized
time 3*rank(t) + 1. Since the rank of the tree is at most lg(n), the splaying operation takes O(lg n)
amortized time. Therefore, the actual time taken by a sequence of n operations on a tree of size n
is at most O(lg n) per operation.

To obtain the amortized time bound for splaying, we consider each of the possible rotation
operations, which take a node x and move it to a new location. We consider that the rotation
operation itself takes time t = 1. Let r(x) be the rank of x before the rotation, and r’(x) the rank of
node x after the rotation. We will show that simple rotation takes amortized time at most 3(r’(x)
− r(x))) + 1, and that the other two rotations take amortized time 3(r’(x) − r(x)). There can be
only one simple rotation (at the top of the tree), so when the amortized time of all the rotations
performed during one splaying is added, all the intermediate terms r(x) and r’(x) cancel out and
we are left with 3(r(t) − r(x)) + 1. In the worst case where x is a leaf and has rank 0, this is equal
to 3*r(t) + 1.

Advanced Data Structure and Algorithms

Notes

166 LOVELY PROFESSIONAL UNIVERSITY

Simple Rotation

The only two nodes that change rank are x and y. So the cost is 1 + r’(x) − r(x) + r’(y) − r(y). Since
y decreases in rank, this is at most 1 + r’(x) − r(x). Since x increases in rank, r’(x) − r(x) is positive
and this is bounded by 1 + 3(r’(x) − r(x)).

Zig-Zig Rotation

Only the nodes x, y, and z change in rank. Since this is a double rotation, we assume it has actual
cost 2 and the amortized time is

2 + r’(x) − r(x) + r’(y) − r(y) + r’(z) − r(z)

Since the new rank of x is the same as the old rank of z, this is equal to

2 − r(x) + r’(y) − r(y) + r’(z)

The new rank of x is greater than the new rank of y, and the old rank of x is less than the old rank
y, so this is at most

2 − r(x) + r’(x) − r(x) + r’(z) = 2 + r’(x) − 2r(x) + r’(z)

Now, let s(x) be the old size of x and let s’(x) be the new size of x. Consider the term 2r’(x) − r(x) −
r’(z). This must be at least 2 because it is equal to lg(s’(x)/s(x)) + lg(s’(x)/s’(z)). Notice that this is
the sum of two ratios where s’(x) is on top. Now, because s’(x) ≥ s(x) + s’(z), the way to make the
sum of the two logarithms as small as possible is to choose s(x) = s(z) = s’(x)/2. But in this case the
sum of the logs is 1 + 1 = 2. Therefore the term 2r’(x) − r(x) − r’(z) must be at least 2. Substituting
it for the red 2 above, we see that the amortized time is at most

(2r’(x) − r(x) − r’(z)) + r’(x) − 2r(x) + r’(z) = 3(r’(x) − r(x)) as required.

Zig-Zag Rotation

Again, the amortized time is

2 + r’(x) − r(x) + r’(y) − r(y) + r’(z) − r(z)

Because the new rank of x is the same as the old rank of z, and the old rank of x is less than the
old rank of y, this is

2 − r(x) + r’(y) − r(y) + r’(z)

≤ 2 − 2 r(x) + r’(y) + r’(z)

Now consider the term 2r’(x) − r’(y) − r’(z). By the same argument as before, this must be at least
2, so we can replace the constant 2 above while maintaining a bound on amortized time:

≤ (2r’(x) − r’(y) − r’(z)) − 2 r(x) + r’(y) + r’(z) = 2(r’(x) − r(x))

Therefore amortized run time in this case too is bounded by 3(r’(x) − r(x)), and this completes the
proof of the amortized complexity of splay tree operations.

7.6 Summary

 Splay trees are self-adjusting binary search trees in which every access for insertion or
retrieval of a node, lifts that node all the way up to become the root, pushing the other
nodes out of the way to make room for this new root of the modifi ed tree. Hence, the
frequently accessed nodes will frequently be lifted up and remain around the root position;
while the most infrequently accessed nodes would move farther and farther away from the
root.

Unit 7: Splay Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 167

7.7 Keywords

Access Time: The time required to access and retrieve a word from high-speed memory is a few
microseconds at most.

Splay Trees: Splay trees are binary search trees which are self adjusting.

7.8 Self Assessment

Choose the appropriate answer:

1. Splay Trees were invented by

(a) Sleator

(b) Tarjan

(c) Newton

(d) Both (a) and (b)

2. The run time for each operation is essentially the same as for a

(a) Splay operation.

(b) Zero operation

(c) Play operation

(d) None of the above

State whether the following statements are True or False:

3. The time complexity of maintaining a splay tree is analyzed using an Amortized
Analysis.

4. Each node does not contain a character.

Fill in the blanks:

5. The of maintaining a splay tree is analyzed using an Amortized Analysis.

6. The trick of the analysis is to defi ne a potential function and to show that each splay
operation has

7. The key to is to defi ne the right potential function.

8. There are two kinds of rotations and one single rotation.

7.9 Review Questions

1. Explain splay operation in splay trees.

2. “The time complexity of maintaining a splay tree is analyzed using an Amortized Analysis.”
Explain

3. “A splay tree does not keep track of heights and does not use any balance factors like an
AVL tree”. Explain

Advanced Data Structure and Algorithms

Notes

168 LOVELY PROFESSIONAL UNIVERSITY

4. Consider the following binary search tree:

 Splay this tree at each of the following keys in turn:

 d b g f a d b d

 Each part builds on the previous; that is, use the fi nal tree of each solution as the starting
tree for the next part.

5. “Splay trees are binary search trees that achieve our goals by being self-adjusting in a quite
remarkable way”. Discuss

6. “It is possible that splay trees can become highly unbalanced, so that a single access to a
node of the tree can be quite expensive”. Explain

Answers: Self Assessment
1. (d) 2. (a)

3. True 4. True

5. time complexity 6. amortized costs O (ln (n))

7. amortized analysis 8. double

7.10 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

Unit 7: Splay Trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 169

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms, Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Advanced Data Structure and Algorithms

Notes

170 LOVELY PROFESSIONAL UNIVERSITY

Unit 8: B-trees

CONTENTS

Objectives

Introduction

8.1 B-trees

8.2 Structure of B-trees

8.3 Height of B-trees

8.4 Operations on B-trees

8.5 Inserting a New Item

8.6 B-tree-Deleting an Item

8.7 B-tree Algorithms

8.8 Applications

8. 9 Summary

8.10 Keywords

8.11 Self Assessment

8.12 Review Questions

8.13 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain the concept of B-trees

 Describe B-trees algorithms

Introduction

The key factors which have been discussed in this unit about the b-trees in data structures. While
dealing with many problems in computer science, engineering and many other disciplines, it is
needed to impose a hierarchical structure on a collection of data items. For example, we need
to impose a hierarchical structure on a collection of data items while preparing organizational
charts and genealogies, to represent the syntactic structure of source programs in compilers.

A B-tree is a tree data structure that keeps data sorted and allows insertions and deletions that is
logarithmically proportional to fi le size. It is commonly used in databases and fi le systems.

8.1 B-trees

In B-trees, internal nodes can have a variable number of child nodes within some pre-defi ned
range. When data is inserted or removed from a node, its number of child nodes changes. In
order to maintain the pre-defi ned range, internal nodes may be joined or split. Because a range
of child nodes is permitted, B-trees do not need re-balancing as frequently as other self balancing

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 171

search trees, but may waste some space, since nodes are not entirely full. The lower and upper
bounds on the number of child nodes are typically fi xed for a particular implementation.

A B-tree is kept balanced by requiring that all leaf nodes are at the same depth. This depth will
increase slowly as elements are added to the tree, but an increase in the overall depth is infrequent,
and results in all leaf nodes being one more hop further removed from the root.

k1

k1 k2 k3

r.c1

k1 k2

r.c2

C2C1 C3
C4

k1 k2
k1 k2

k1 k2
k1 k2

k1 k2
k1 k2 k3

k1 k2 k3 k4

C1 C2
C3

C1 C2

r

Figure 8.1: Schema showing the B-tree Structure

B-trees are balanced trees that are optimized for situations when part or the entire tree must be
maintained in secondary storage such as a magnetic disk. Since disk accesses are expensive (time
consuming) operations, a b-tree tries to minimize the number of disk accesses.

 Example: A b-tree with a height of 2 and a branching factor of 1001 can store over one
billion keys but requires at most two disk accesses to search for any node.

8.2 Structure of B-trees

Unlike a binary-tree, each node of a b-tree may have a variable number of keys and children.
The keys are stored in non-decreasing order. Each key has an associated child that is the root of a
subtree containing all nodes with keys less than or equal to the key but greater than the preceding
key. A node also has an additional rightmost child that is the root for a subtree containing all keys
greater than any keys in the node.

A b-tree has a minimum number of allowable children for each node known as the minimization
factor. If t is this minimization factor, every node must have at least t – 1 keys. Under certain
circumstances, the root node is allowed to violate this property by having fewer than t – 1 keys.
Every node may have at most 2t – 1 keys or, equivalently, 2t children.

Since each node tends to have a large branching factor (a large number of children), it is typically
necessary to traverse relatively few nodes before locating the desired key. If access to each
node requires a disk access, then a b-tree will minimize the number of disk accesses required.
The minimization factor is usually chosen so that the total size of each node corresponds to a
multiple of the block size of the underlying storage device. This choice simplifi es and optimizes
disk access. Consequently, a b-tree is an ideal data structure for situations where all data cannot
reside in primary storage and accesses to secondary storage are comparatively expensive (or time
consuming).

Advanced Data Structure and Algorithms

Notes

172 LOVELY PROFESSIONAL UNIVERSITY

8.3 Height of B-trees

For n greater than or equal to one, the height of an n-key b-tree T of height h with a minimum
degree t greater than or equal to 2,

t
1log

2
nh +≤

The worst case height is O(log n). Since the “branchiness” of a b-tree can be large compared
to many other balanced tree structures, the base of the logarithm tends to be large; therefore,
the number of nodes visited during a search tends to be smaller than required by other tree
structures. Although this does not affect the asymptotic worst case height, b-trees tend to have
smaller heights than other trees with the same asymptotic height.

8.4 Operations on B-trees

The algorithms for the search, create, and insert operations are shown below. Note that these
algorithms are single pass; in other words, they do not traverse back up the tree. Since b-trees
strive to minimize disk accesses and the nodes are usually stored on disk, this single-pass
approach will reduce the number of node visits and thus the number of disk accesses. Simpler
double-pass approaches that move back up the tree to fi x violations are possible.

Since all nodes are assumed to be stored in secondary storage (disk) rather than primary storage
(memory), all references to a given node be be preceeded by a read operation denoted by Disk-
Read. Similarly, once a node is modifi ed and it is no longer needed, it must be written out to
secondary storage with a write operation denoted by Disk-Write. The algorithms below assume
that all nodes referenced in parameters have already had a corresponding Disk-Read operation.
New nodes are created and assigned storage with the Allocate-Node call. The implementation
details of the Disk-Read, Disk-Write, and Allocate-Node functions are operating system and
implementation dependent.

B-Tree-Search(x, k)

i <- 1

while i <= n[x] and k > keyi[x]

 do i <- i + 1

if i <= n[x] and k = keyi[x]

 then return (x, i)

if leaf[x]

 then return NIL

else Disk-Read(ci[x])

return B-Tree-Search(ci[x], k)

The search operation on a b-tree is analogous to a search on a binary tree. Instead of choosing
between a left and a right child as in a binary tree, a b-tree search must make an n-way choice.
The correct child is chosen by performing a linear search of the values in the node. After fi nding
the value greater than or equal to the desired value, the child pointer to the immediate left of
that value is followed. If all values are less than the desired value, the rightmost child pointer
is followed. Of course, the search can be terminated as soon as the desired node is found. Since
the running time of the search operation depends upon the height of the tree, B-Tree-Search is
O(logt n).

B-Tree-Create(T)

x <- Allocate-Node()

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 173

leaf[x] <- TRUE

n[x] <- 0

Disk-Write(x)

root[T] <- x

The B-Tree-Create operation creates an empty b-tree by allocating a new root node that has no
keys and is a leaf node. Only the root node is permitted to have these properties; all other nodes
must meet the criteria outlined previously. The B-Tree-Create operation runs in time O(1).

B-Tree-Split-Child(x, i, y)

z <- Allocate-Node()

leaf[z] <- leaf[y]

n[z] <- t - 1

for j <- 1 to t - 1

 do keyj[z] <- keyj+t[y]

if not leaf[y]

 then for j <- 1 to t

 do cj[z] <- cj+t[y]

n[y] <- t - 1

for j <- n[x] + 1 downto i + 1

 do cj+1[x] <- cj[x]

ci+1 <- z

for j <- n[x] downto i

 do keyj+1[x] <- keyj[x]

keyi[x] <- keyt[y]

n[x] <- n[x] + 1

Disk-Write(y)

Disk-Write(z)

Disk-Write(x)

If is node becomes “too full,” it is necessary to perform a split operation. The split operation
moves the median key of node x into its parent y where x is the ith child of y. A new node, z, is
allocated, and all keys in x right of the median key are moved to z. The keys left of the median
key remain in the original node x. The new node, z, becomes the child immediately to the right
of the median key that was moved to the parent y, and the original node, x, becomes the child
immediately to the left of the median key that was moved into the parent y.

The split operation transforms a full node with 2t – 1 keys into two nodes with t - 1 keys each.

Note One key is moved into the parent node. The B-Tree-Split-Child algorithm will run
in time O(t) where t is constant.

B-Tree-Insert(T, k)

r <- root[T]

if n[r] = 2t - 1

Advanced Data Structure and Algorithms

Notes

174 LOVELY PROFESSIONAL UNIVERSITY

 then s <- Allocate-Node()

 root[T] <- s

 leaf[s] <- FALSE

 n[s] <- 0

 c1 <- r

 B-Tree-Split-Child(s, 1, r)

 B-Tree-Insert-Nonfull(s, k)

 else B-Tree-Insert-Nonfull(r, k)

B-Tree-Insert-Nonfull(x, k)

i <- n[x]

if leaf[x]

 then while i >= 1 and k < keyi[x]

 do keyi+1[x] <- keyi[x]

 i <- i - 1

 keyi+1[x] <- k

 n[x] <- n[x] + 1

 Disk-Write(x)

 else while i >= and k < keyi[x]

 do i <- i - 1

 i <- i + 1

 Disk-Read(ci[x])

 if n[ci[x]] = 2t - 1

 then B-Tree-Split-Child(x, i, ci[x])

 if k > keyi[x]

 then i <- i + 1

 B-Tree-Insert-Nonfull(ci[x], k)

To perform an insertion on a b-tree, the appropriate node for the key must be located using an
algorithm similiar to B-Tree-Search. Next, the key must be inserted into the node. If the node
is not full prior to the insertion, no special action is required; however, if the node is full, the
node must be split to make room for the new key. Since splitting the node results in moving one
key to the parent node, the parent node must not be full or another split operation is required.
This process may repeat all the way up to the root and may require splitting the root node. This
approach requires two passes. The fi rst pass locates the node where the key should be inserted;
the second pass performs any required splits on the ancestor nodes.

Since each access to a node may correspond to a costly disk access, it is desirable to avoid the
second pass by ensuring that the parent node is never full. To accomplish this, the presented
algorithm splits any full nodes encountered while descending the tree. Although this approach
may result in unecessary split operations, it guarantees that the parent never needs to be split and
eliminates the need for a second pass up the tree.

Task In twenty words or less, explain how treesort works.

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 175

8.5 Inserting a New Item

When inserting an item, fi rst do a search for it in the B-tree. If the item is not already in the B-tree,
this unsuccessful search will end at a leaf. If there is room in this leaf, just insert the new item
here. Note that this may require that some existing keys be moved one to the right to make room
for the new item. If instead this leaf node is full so that there is no room to add the new item, then
the node must be “split” with about half of the keys going into a new node to the right of this
one. The median (middle) key is moved up into the parent node. (Of course, if that node has no
room, then it may have to be split as well.) Note that when adding to an internal node, not only
might we have to move some keys one position to the right, but the associated pointers have to
be moved right as well. If the root node is ever split, the median key moves up into a new root
node, thus causing the tree to increase in height by one.

Insert the following letters into what is originally an empty B-tree of order 5: C N G A H E K Q M
F W L T Z D P R X Y S Order 5 means that a node can have a maximum of 5 children and 4 keys.
All nodes other than the root must have a minimum of 2 keys. The fi rst 4 letters get inserted into
the same node, resulting in this picture:

A C G N

When we try to insert the H, we fi nd no room in this node, so we split it into 2 nodes, moving
the median item G up into a new root node. Note that in practice we just leave the A and C in the
current node and place the H and N into a new node to the right of the old one.

G

A C H N

Inserting E, K, and Q proceeds without requiring any splits:

G

A C E H K N Q

Inserting M requires a split. Note that M happens to be the median key and so is moved up into
the parent node.

Advanced Data Structure and Algorithms

Notes

176 LOVELY PROFESSIONAL UNIVERSITY

A C E H K N Q

G M

The letters F, W, L, and T are then added without needing any split.

H K LCA E F QN T W

G M

When Z is added, the rightmost leaf must be split. The median item T is moved up into the parent
node. Note that by moving up the median key, the tree is kept fairly balanced, with 2 keys in each
of the resulting nodes.

H K L N Q W Z

G M T

CA E F

The insertion of D causes the leftmost leaf to be split. D happens to be the median key and so is
the one moved up into the parent node. The letters P, R, X, and Y are then added without any
need of splitting:

Finally, when S is added, the node with N, P, Q, and R splits, sending the median Q up to the
parent. However, the parent node is full, so it splits, sending the median M up to form a new root
node. Note how the 3 pointers from the old parent node stay in the revised node that contains
D and G.

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 177

H K LA C E F N P R S GW Y Z

D G Q T

M

8.6 B-tree-Deleting an Item

Deletion of a key from a b-tree is possible; however, special care must be taken to ensure that the
properties of a b-tree are maintained. Several cases must be considered. If the deletion reduces
the number of keys in a node below the minimum degree of the tree, this violation must be
corrected by combining several nodes and possibly reducing the height of the tree. If the key has
children, the children must be rearranged.

In the B-tree as we left it at the end of the last section, delete H. Of course, we fi rst do a lookup to
fi nd H. Since H is in a leaf and the leaf has more than the minimum number of keys, this is easy.
We move the K over where the H had been and the L over where the K had been.

This gives:

.

Next, delete the T. Since T is not in a leaf, we fi nd its successor (the next item in ascending order),
which happens to be W, and move W up to replace the T. That way, what we really have to do
is to delete W from the leaf, which we already know how to do, since this leaf has extra keys. In
ALL cases we reduce deletion to a deletion in a leaf, by using this method.

Advanced Data Structure and Algorithms

Notes

178 LOVELY PROFESSIONAL UNIVERSITY

Next, delete R. Although R is in a leaf, this leaf does not have an extra key; the deletion results
in a node with only one key, which is not acceptable for a B-tree of order 5. If the sibling node to
the immediate left or right has an extra key, we can then borrow a key from the parent and move
a key up from this sibling. In our specifi c case, the sibling to the right has an extra key. So, the
successor W of S (the last key in the node where the deletion occurred), is moved down from the
parent, and the X is moved up. (Of course, the S is moved over so that the W can be inserted in
its proper place.)

Finally, let’s delete E. This one causes lots of problems. Although E is in a leaf, the leaf has no
extra keys, nor do the siblings to the immediate right or left. In such a case the leaf has to be
combined with one of these two siblings. This includes moving down the parent’s key that was
between those of these two leaves. In our example, let’s combine the leaf containing F with the
leaf containing A C. We also move down the D.

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 179

Of course, you immediately see that the parent node now contains only one key, G. This is not
acceptable. If this problem node had a sibling to its immediate left or right that had a spare key,
then we would again “borrow” a key. Suppose for the moment that the right sibling (the node
with Q X) had one more key in it somewhere to the right of Q. We would then move M down
to the node with too few keys and move the Q up where the M had been. However, the old left
subtree of Q would then have to become the right subtree of M. In other words, the N P node
would be attached via the pointer fi eld to the right of M’s new location. Since in our example we
have no way to borrow a key from a sibling, we must again combine with the sibling, and move
down the M from the parent. In this case, the tree shrinks in height by one.

8.7 B-tree Algorithms

A B-tree is a data structure that maintains an ordered set of data and allows effi cient operations
to fi nd, delete, insert, and browse the data. In this discussion, each piece of data stored in a
B-tree will be called a “key”, because each key is unique and can occur in the B-tree in only one
location.

A B-tree consists of “node” records containing the keys, and pointers that link the nodes of the
B-tree together.

Every B-tree is of some “order n”, meaning nodes contain from n to 2n keys, and nodes are thereby
always at least half full of keys. Keys are kept in sorted order within each node. A corresponding
list of pointers are effectively interspersed between keys to indicate where to search for a key if it
isn’t in the current node. A node containing k keys always also contains k+1 pointers.

Advanced Data Structure and Algorithms

Notes

180 LOVELY PROFESSIONAL UNIVERSITY

 Example: Here is a portion of a B-tree with order 2 (nodes have at least 2 keys and 3
pointers). Nodes are delimited with [square brackets]. The keys are city names, and are kept
sorted in each node. On either side of every key are pointers linking the key to subsequent
nodes:
 Start here
 |
 v
 [Chicago Hoboken]
 | | |
+-----------+ | +------------+
| | |
v v v
[Aptos Boston] [Denver Detroit] [San-Jose Seattle]
 | | | | | | | | |
 v v v v v v v v v
 X

To fi nd the key “Dallas”, we begin searching at the top “root” node. “Dallas” is not in the node
but sorts between “Chicago” and “Hoboken”, so we follow the middle pointer to the next node.
Again, “Dallas” is not in the node but sorts before “Denver”, so we follow that node’s fi rst
pointer down to the next node (marked with an “X”). Eventually, we will either locate the key, or
encounter a “leaf” node at the bottom level of the B-tree with no pointers to any lower nodes and
without the key we want, indicating the key is nowhere in the B-tree.

Below is another fragment of an order 1 B-tree (nodes have at least 1 key and 2 pointers). Searching
for the key “Chicago” begins at “Marin”, follows the fi rst pointer to “Aptos” (since Chicago sorts
before Marin), then follows that node’s second pointer down to the next level (since Chicago sorts
after Aptos), as marked with an “X”.
 |
 v
 [Marin]
 | |
 +--+ +---+
 | |
 v v
[Aptos] [Seattle]
 | | | |
 v v v v
 X

Searching a B-tree for a key always begins at the root node and follows pointers from node to
node until either the key is located or the search fails because a leaf node is reached and there are
no more pointers to follow.

B-trees grow when new keys are inserted. Since the root node initially begins with just one key,
the root node is a special exception and the only node allowed to have less than n keys in an order
n B-tree.

Here is an order 2 B-tree with integer keys. Except for the special root node, order 2 requires
every node to have from 2 to 4 keys and 3 to 5 pointers. Empty slots are marked with “.”,
showing where future keys have not yet been stored in the nodes:
 [57 . . .]
 | |
 +---------------+ +---------------------+
 | |
 v v
 [14 40 . .] [72 84 . .]
 | | | | | |
+--------+ | +----------+ +----------+ | +-----------+
| | | | | |
v v v v v v
[01 12 . .] [15 16 17 .] [47 56 . .] [58 60 61 .] [74 75 76 78] [85 86 99 .]

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 181

To insert the key “59”, we fi rst simply search for that key. If 59 is found, the key is already in the
tree and the insertion is superfl uous. Otherwise, we must end up at a leaf node at the bottom
level of the tree where 59 would be stored. In the above case, the leaf node contains 58, 60, 61, and
room for a fourth key, so 59 is simply inserted in the leaf node in sorted order:

[58 59 60 61]

Now you’ll insert the key “77”. The initial search leads us to the leaf node where 77 would be
inserted, but the node is already full with 4 keys: 74, 75, 76, and 78. Adding another key would
violate the rule that order 2 B-trees can’t have more than 4 keys. Because of this “overfl ow”
condition, the leaf node is split into two leaf nodes. The leftmost 2 keys are put in the left node,
the rightmost 2 keys are put in the right node, and the middle key is “promoted” by inserting it
into the parent node above the leaf. Here, inserting 77 causes the 74-75-76-78 node to be split into
two nodes, and 76 is moved up to the parent node that contained 72 and 84:

Before inserting 77 After inserting 77
[72 84 . .] [72 76 84 .]
 | | | | | | |
-+ | +- --+ | | +--
 | | |
 | +----+ +------+
 | | |
 v v v
 [74 75 76 78] [74 75 . .] [77 78 . .]

In this case, the parent node contained only 2 keys (72 and 84), leaving room for 76 to be promoted
and inserted. But if the parent node was also already full with 4 keys, then it too would have to
split. Indeed, splitting may propagate all the way up to the root node. When the root splits, the
B-tree grows in height by one level, and a new root with a single promoted key is formed. (A
situation when an order n root node sometimes has fewer than n keys, just like the situation
described earlier when the root node stores the very fi rst key placed in the B-tree.)

B-trees shrink when keys are deleted. To delete a key, fi rst perform the usual search operation
to locate the node containing the key. (If the key isn’t found, it isn’t in the tree and can’t be
deleted.)

If the found key is not in a leaf, move it to a leaf by swapping the key with the logical “next” key.
In a B-tree, the “next” key is always the fi rst key in the leftmost leaf of the right subtree.

 Example: In this B-tree we want to delete “37”, which is not in a leaf. “xx” indicates key
values that don’t matter:
[xx 37 xx xx]
 |
 |
 +->[xx xx xx xx]
 |
 |
 +->[xx xx xx xx]
 |
 |
 +->[41 43 . .]

You follow the pointer immediately to the right of 37 to fi nd 37’s right subtree, then follow the
leftmost pointers in each subnode until we reach a leaf. The fi rst key in the leaf is “41”, the logical
“next” key after 37 in the list of all keys in the tree. By swapping 37 and 41, we can move 37 to
a leaf node to set up a deletion without violating the key order or pointer order of the overall
B-tree.

Once the key we want is in a leaf, we can delete it. If at least n keys remain in the node, we’re
done, otherwise it is an “underfl ow”, since every node (except the root) must have at least n
keys.

Advanced Data Structure and Algorithms

Notes

182 LOVELY PROFESSIONAL UNIVERSITY

If a node underfl ows, we may be able to “redistribute” keys by borrowing some from a neighboring
node. For example, in the order 3 B-tree below, the key 67 is being deleted, which causes a node to
underfl ow since it only has keys 66 and 88 left. So keys from the neighbor on the left are “shifted
through” the parent node and redistributed so both leaf nodes end up with 4 keys:

 Before deleting 67 After deleting 67

 [xx 55 xx] [xx 33 xx]
 | | | |
+--------+ +--------+ +--------+ +------+
| | | |
v v v v
[22 24 26 28 33 44] [66 67 88 . . .] [22 24 26 28 . .] [44 55 66 88 . .]

But if the underfl ow node and the neighbor node have less than 2n keys to redistribute, the two
nodes will have to be combined. For example, here key 52 is being deleted from the B-tree below,
causing an underfl ow, and the neighbor node can’t afford to give up any keys for redistribution.
So one node is discarded, and the parent key moves down with the other keys to fi ll up a single
node:

Before deleting 52 After deleting 52

 [35 45 55 .] [35 55 . .]
 | | | | | | |
 -+ | | +- -+ | +-
 | | |
+-----+ +---+ |
| | |
v v v
[40 42 . .] [50 52 . .] [40 42 45 50]

In the above case, moving the key 45 out of the parent node left two keys (35 and 55) remaining.
But if the parent node only had n keys to begin with, then the parent node also would underfl ow
when the parent key was moved down to combine with the leaf key. Indeed, underfl ow and the
combining of nodes may propagate all the way up to the root node. When the root underfl ows,
the B-tree shrinks in height by one level, and the nodes under the old root combine to form a new
root.

The payoff of the B-tree insert and delete rules are that B-trees are always “balanced”. Searching
an unbalanced tree may require traversing an arbitrary and unpredictable number of nodes and
pointers.

An unbalanced tree of 4 nodes A balanced tree of 4 nodes

[x x] [x x]
 | | | |
 [x x] +------+ | +------+
 | | | |
 [x x] [x x] [x x] [x x]
 |
 [x x]

Searching a balanced tree means that all leaves are at the same depth. There is no runaway pointer
overhead. Indeed, even very large B-trees can guarantee only a small number of nodes must be
retrieved to fi nd a given key. For example, a B-tree of 10,000,000 keys with 50 keys per node never
needs to retrieve more than 4 nodes to fi nd any key.

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 183

Task Consider the following binary search tree:

a

b

g

f

c

e

d

Splay this tree at each of the following keys in turn:

d b g f a d b d

8.8 Applications

1. Databases: A database is a collection of data organized in a fashion that facilitates updating,
retrieving, and managing the data. The data can consist of anything, including, but not
limited to names, addresses, pictures, and numbers. Databases are commonplace and are
used everyday. For example, an airline reservation system might maintain a database of
available fl ights, customers, and tickets issued. A teacher might maintain a database of
student names and grades.

 Because computers excel at quickly and accurately manipulating, storing, and retrieving
data, databases are often maintained electronically using a database management system.
Database management systems are essential components of many everyday business
operations. Database serve as a foundation for accounting systems, inventory systems,
medical recordkeeping sytems, airline reservation systems, and countless other important
aspects of modern businesses.

 It is not uncommon for a database to contain millions of records requiring many gigabytes
of storage. In order for a database to be useful and usable, it must support the desired
operations, such as retrieval and storage, quickly. Because databases cannot typically be
maintained entirely in memory, b-trees are often used to index the data and to provide
fast access. For example, searching an unindexed and unsorted database containing n key
values will have a worst case running time of O(n); if the same data is indexed with a b-tree,
the same search operation will run in O(log n). To perform a search for a single key on a set
of one million keys (1,000,000), a linear search will require at most 1,000,000 comparisons.
If the same data is indexed with a b-tree of minimum degree 10, 114 comparisons will
be required in the worst case. Clearly, indexing large amounts of data can signifi cantly
improve search performance. Although other balanced tree structures can be used, a b-tree
also optimizes costly disk accesses that are of concern when dealing with large data sets.

Advanced Data Structure and Algorithms

Notes

184 LOVELY PROFESSIONAL UNIVERSITY

2. Concurrent Access to B-trees: Databases typically run in multiuser environments where
many users can concurrently perform operations on the database.

 Unfortunately, this common scenario introduces complications.

 Example: Imagine a database storing bank account balances. Now assume that
someone attempts to withdraw `40 from an account containing `60. First, the current
balance is checked to ensure suffi cient funds. After funds are disbursed, the balance of
the account is reduced. This approach works fl awlessly until concurrent transactions are
considered. Suppose that another person simultaneously attempts to withdraw `30 from
the same account. At the same time the account balance is checked by the fi rst person, the
account balance is also retrieved for the second person. Since neither person is requesting
more funds than are currently available, both requests are satisfi ed for a total of `70. After
the fi rst person’s transaction, ̀ 20 should remain (`60 - ̀ 40), so the new balance is recorded
as `20. Next, the account balance after the second person’s transaction, `30 (`60 – `30), is
recorded overwriting the `20 balance. Unfortunately, `70 have been disbursed, but the
account balance has only been decreased by `30. Clearly, this behavior is undesirable, and
special precautions must be taken.

 A b-tree suffers from similar problems in a multiuser environment. If two or more processes
are manipulating the same tree, it is possible for the tree to become corrupt and result in
data loss or errors.

The simplest solution is to serialize access to the data structure. In other words, if another process
is using the tree, all other processes must wait.

Although this is feasible in many cases, it can place a unnecessary and costly limit on
performance because many operations actually can be performed concurrently without risk.
Locking, introduced by Gray and refi ned by many others, provides a mechanism for controlling
concurrent operations on data structures in order to prevent undesirable side effects and to
ensure consistency.

8.9 Summary

 B-trees are balanced trees that are optimized for situations when part or the entire tree
must be maintained in secondary storage such as a magnetic disk.

 A B-tree is a specialized multiway tree designed especially for use on disk. In a B-tree each
node may contain a large number of keys. The number of subtrees of each node, then, may
also be large.

 A B-tree is designed to branch out in this large number of directions and to contain a lot of
keys in each node so that the height of the tree is relatively small.

 This means that only a small number of nodes must be read from disk to retrieve an item.

 The goal is to get fast access to the data, and with disk drives this means reading a very
small number of records. Note that a large node size (with lots of keys in the node) also fi ts
with the fact that with a disk drive one can usually read a fair amount of data at once.

8.10 Keywords

B-Tree Algorithms: A B-tree is a data structure that maintains an ordered set of data and allows
effi cient operations to fi nd, delete, insert, and browse the data.

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 185

B-trees: B-trees are balanced trees that are optimized for situations when part or the entire tree
must be maintained in secondary storage such as a magnetic disk.

8.11 Self Assessment

Choose the appropriate answers:

1. A b-tree has a minimum number of allowable children for each node known as the
..

(a) Minimization factor

(b) Maximization factor

(c) Operational factor

(d) Situational factor

2. Binary tree is a special type of tree having degree.

(a) 3

(b) 1

(c) 2

(d) 4

Fill in the blanks:

3. The search operation on a b-tree is to a search on a binary tree.

4. A is a collection of data organized in a fashion that facilitates updating,
retrieving, and managing the data.

5. A B-tree is kept balanced by requiring that all leaf nodes are at the same

6. The operation creates an empty b-tree by allocating a new root node that
has no keys and is a leaf node.

State whether the following statements are True or False:

7. Deletion of a key from a b-tree is possible.

8. B-trees do not shrink when keys are deleted.

9. The lower and upper bounds on the number of child nodes are typically fi xed for a
particular implementation.

10. To perform an insertion on a b-tree, the appropriate node for the key must be located using
an algorithm similiar to B-Tree-Search.

8.12 Review Questions

1. Generalize the amortized analysis given in the text for incrementing four-digit binary
integers to n-digit binary integers.

2. Describe the deletion of an item from b-trees.

3. Describe of structure of B-tree. Also explain the operation of B-tree.

4. Explain how will you insert an item in b-trees.

Advanced Data Structure and Algorithms

Notes

186 LOVELY PROFESSIONAL UNIVERSITY

5. You have a B-tree of order 5 in fi gure given below. Explain to delete C from it.

6. There are 24 = 4! possible ordered sequences of the four keys 1, 2, 3, 4, but only 14 distinct
binary trees with four nodes. Therefore, these binary trees are not equally likely to occur
as search trees. Find which one of the 14 binary search trees corresponds to each of the
24 possible ordered sequences of 1, 2, 3, 4. Thereby fi nd the probability for building each of
the binary search trees from randomly ordered input.

7. “A node containing k keys always also contains k+1 pointers.” Discuss.

8. “The split operation transforms a full node with 2t – 1 keys into two nodes with t - 1 keys
each”. Explain

9. Explain the process of deletion of key from b-tree with the help of suitable example.

10. Binary trees are defi ned recursively; algorithms for manipulating binary trees are usually
best written recursively. In programming with binary trees, be aware of the problems
generally associated with recursive algorithms. Be sure that your algorithm terminates
under any condition and that it correctly treats the trivial case of an empty tree.

Answers: Self Assessment
1. (a) 2. (c)

3. analogous 4. database

5. depth 6. B-Tree-Create

7. True 8. False

9. True 10. True

8.13 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

Unit 8: B-trees

Notes

 LOVELY PROFESSIONAL UNIVERSITY 187

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms, Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Advanced Data Structure and Algorithms

Notes

188 LOVELY PROFESSIONAL UNIVERSITY

Unit 9: Hashing

CONTENTS

Objectives

Introduction

9.1 Hashing

 9.1.1 Linear Probing or Linear Open Addressing

 9.1.2 Rehashing

 9.1.3 Overfl ow Chaining

9.2 Hash Functions

9.3 Open Hashing

9.4 Closed Hashing

9.5 Rehashing

9.6 Summary

9.7 Keywords

9.8 Self Assessment

9.9 Review Questions

9.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain the concept of hashing

 Know of hash functions

 Realise open hashing and closed hashing

 Describe rehashing

Introduction

The search time of each algorithm depend on the number n of elements of the collection S of the
data. A searching technique called Hashing or Hash addressing which is essentially independent
of the number n.

Hashing is the transformation of a string of characters into a usually shorter fi xed-length value or
key that represents the original string. Hashing is used to index and retrieve items in a database
because it is faster to fi nd the item using the shorter hashed key than to fi nd it using the original
value. It is also used in many encryption algorithms.

A Hash Function is a Unary Function that is used by Hashed Associative Containers: it maps its
argument to a result of type size_t. A Hash Function must be deterministic and stateless. That
is, the return value must depend only on the argument, and equal arguments must yield equal
results.

Unit 9: Hashing

Notes

 LOVELY PROFESSIONAL UNIVERSITY 189

9.1 Hashing

In many applications we require to use a data object called symbol table. A symbol table is nothing
but a set of pairs (name, value). Where value represents collection of attributes associated with the
name, and this collection of attributes depends upon the program element identifi ed by the name.
For example, if a name x is used to identify an array in a program, then the attributes associated
with x are the number of dimensions, lower bound and upper bound of each dimension, and the
element type. Therefore a symbol table can be thought of as a linear list of pairs (name, value),
and hence you can use a list of data object for realizing a symbol table. A symbol table is referred
to or accessed frequently either for adding the name, or for storing the attributes of the name, or
for retrieving the attributes of the name. Therefore accessing effi ciency is a prime concern while
designing a symbol table. Hence the most common way of getting a symbol table implemented
is to use a hash table. Hashing is a method of directly computing the index of the table by using
some suitable mathematical function called hash function. The hash function operates on the
name to be stored in the symbol table, or whose attributes are to be retrieved from the symbol
table. If h is a hash function and x is a name, then h(x) gives the index of the table where x along
with its attributes can be stored. If x is already stored in the table, then h(x) gives the index of the
table where it is stored to retrieve the attributes of x from the table. There are various methods of
defi ning a hash function like a division method. In this method, you take the sum of the values of
the characters, divide it by the size of the table, and take the remainder. This gives us an integer
value lying in the range of 0 to (n – 1) if the size of the table is n. The other method is a mid
square method. In this method, the identifi er is fi rst squared and then the appropriate number
of bits from the middle of square is used as the hash value. Since the middle bits of the square
usually depend on all the characters in the identifi er, it is expected that different identifi ers will
result into different values. The number of middle bits that you select depends on the table size.
Therefore if r is the number of middle bits that you use to form hash value, then the table size
will be 2r. Hence when you use this method the table size is required to be power of 2. Another
method is folding in which the identifi er is partitioned into several parts, all but the last part
being of the same length. These parts are then added together to obtain the hash value.

To store the name or to add attributes of the name, you compute hash value of the name, and
place the name or attributes as the case may be, at that place in the table whose index is the hash
value of the name. For retrieving the attribute values of the name kept in the symbol table, I apply
the hash function to the name to obtain index of the table where you get the attributes of the
name. Hence you fi nd that no comparisons are required to be done. Hence the time required for
the retrieval is independent of the table size. Therefore retrieval is possible in a constant amount
of time, which will be the time taken for computing the hash function. Therefore hash table seems
to be the best for realization, of the symbol table, but there is one problem associated with the
hashing, and it is of collisions. Hash collision occurs when the two identifi ers are mapped into
the same hash value. This happens because a hash function defi nes a mapping from a set of valid
identifi ers to the set of those integers, which are used as indices of the table. Therefore you see
that the domain of the mapping defi ned by the hash function is much larger than the range of the
mapping, and hence the mapping is of many to one nature. Therefore when I implement a hash
table a suitable collision handling mechanism is to be provided which will be activated when
there is a collision.

Collision handling involve fi nding out an alternative location for one of the two colliding
symbols. For example, if x and y are the different identifi ers and if h(x) = h(y), x and y are the
colliding symbols. If x is encountered before y, then the ith entry of the table will be used for
accommodating symbol x, but later on when y comes there is a hash collision, and therefore
you have to fi nd out an alternative location either for x or y. This means you fi nd out a suitable
alternative location and either accommodate y in that location, or you can move x to that location

Advanced Data Structure and Algorithms

Notes

190 LOVELY PROFESSIONAL UNIVERSITY

and place y in the ith location of the table. There are various methods available to obtain an
alternative location to handle the collision. They differ from each other in the way search is made
for an alternative location. The following are the commonly used collision handling techniques:

9.1.1 Linear Probing or Linear Open Addressing

In this method, if for an identifi er x, h(x) = i, and if the ith location is already occupied then you
search for a location close to the ith location by doing a linear search starting from the (i+1)th
location to accommodate x. This means you start from the (i+1)th location and do the linear search
till you get an empty location, and once you get an empty location I accommodate x there.

9.1.2 Overfl ow Chaining

This is a method of implementing a hash table, in which collisions gets handled automatically. In
this method you use two tables, a symbol table to accommodate identifi ers and their attributes,
and a hash table which is an array of pointers pointing to symbol table entries. Each symbol table
entry is made of three fi elds, fi rst for holding the identifi er, second for holing the attributes, and
the third for holding the link or pointer which can be made pointing to any symbol table entry.
The insertions into the symbol table are done as follows:

If x is symbol to be inserted, then it will be added to the next available -entry of the symbol table.
The hash value of x is then computed, if h(x) = i, then the ith hash table pointer is made pointing
to the symbol table entry in which x is stored if the ith hash table pointer is not pointing to any
symbol table entry. If the ith hash table pointer is already pointing to some symbol table entry,
then the link fi eld of symbol table entry containing x is made pointing to that symbol table entry
to which ith hash table pointer is pointing to, and make the ith hash table pointer pointing the
symbol entry containing x. This is equivalent to building a linked list on the ith index of the hash
table. The retrieval of attributes is done as follows:

If x is a symbol, then you obtain h(x), and use this value as the index of the hash table, and traverse
the list built on this index to get that entry which contains x. A typical hash table implemented
using this technique is shown below:

Let the symbols to be stored are x1, y1, z1, x2, y2, z2. The hash function that you use:

 h(symbol) = (value of fi rst letter of the symbol) mod n,

Where n is the size of table.

if h(x1) = i

 h(y1) = j

 h(z1) = k

then

 h(x2) = i

 h(y2) = j

 h(z2) = k

Therefore, the contents of the symbol table will be the one shown in Figure 9.1.

Unit 9: Hashing

Notes

 LOVELY PROFESSIONAL UNIVERSITY 191

Figure 9.1: Hash Table Implementation using Overfl ow Chaining for Collision Handling

Consider using division method of hashing store the following values in the hash table of
size 11:

25, 45, 96, 101, 102, 162, 197, 201

Use sequential method for resolving the collisions.

Since division method of hashing is to be used the hash function his:

h(key) = key mode 11, where key is the value to be stored.

I start with the value 25, and compute the hash value using 25 as key. The hash value is h(25) =
25 mod 11 = 3. Therefore store 25 at the index 3 in the table.

For 45, h(45) = 45 mod 11 = 1, hence place 45 at the index 1.

For 96, h(96) = 96 mod 11 = 8,

 ∴ store 96 at index 8.

For 101,h(101) = 101 mod 11 = 2,

 ∴ store 101 at index 2.

For 102, h(102) = 102 mod 11 = 3, there is a collision, therefore you fi nd a location closer to location
at index 3 which is empty to accommodate 102, you see that the location at index 4 is empty.

∴ store 102 at index 4.

For 162, h(162) = 162 mod 11 = 8, again there is a collision, therefore you fi nd a location closer
to location at index 8 which is empty to accommodate 162, you see that location at index 9 is
empty.

∴ store 162 at index 9.

For 197, h(197) = 197 mod 11 = 10, store 197 at index 10.

For 201, h(20 1) = 201 mod 11 = 3, again there is a collision, therefore you fi nd a location closer
to location at index 3, which is empty to accommodate 201, you see that location at index 5 is
empty.

∴ store 201 at index 5.

Advanced Data Structure and Algorithms

Notes

192 LOVELY PROFESSIONAL UNIVERSITY

The hash table therefore is the one shown below:

0

1 45

2 101

3 25

4 102

5 201

6

7

8 96

9 162

10 197

Task ”A Hash Function must be deterministic and stateless.” Discuss.

9.2 Hash Functions

Some of the methods of defi ning hash function are discussed below:

1. Modular arithmetic: In this method, fi rst the key is converted to integer, then it is divided
by the size of index range, and the remainder is taken to be the hash value. The spread
achieved depends very much on the modulus. If modulus is power of small integers like 2
or 10, then many keys tend to map into the same index, while other indices remain unused.
The best choice for modulus is often but not always is a prime number, which usually has
the effect of spreading the keys quite uniformly.

2. Truncation: This method ignores part of key, and use the remainder part directly as hash
value. (considering non-numeric fi elds as their numerical code) If the keys for example
are eight digit numbers and the hash table has 1000 entries, then the fi rst, second, and fi fth
digit from right might make hash value. So 62538194 maps to 394. It is a fast method, but
often fails to distribute keys evenly.

3. Folding: In this method, the identifi er is partitioned into several parts all but the last part
being of the same length. These parts are then added together to obtain the hash value.
For example an eight digit integer can be divided into groups of three, three, and two
digits. The groups are the added together, and truncated if necessary to be in the proper
range of indices. Hence 62538149 maps to, 625 + 381 + 94 = 1100, truncated to 100. Since all
information in the key can affect the value of the function, folding often achieves a better
spread of indices than truncation.

4. Mid square method: In this method, the identifi er is squared (considering non-numeric
fi elds as their numerical code), and then the appropriate number of bits from the middle

Unit 9: Hashing

Notes

 LOVELY PROFESSIONAL UNIVERSITY 193

of the square are used to get the hash value. Since the middle bits of the square usually
depend on all the characters in the identifi er, it is expected that different identifi ers will
result in different values. The number of middle bits that we select depends on table size.
Therefore if r is the number of middle bits used to form hash value, then the table size will
be 2r, hence when you use mid square method the table size should be a power of 2.

9.3 Open Hashing

The simplest form of open hashing defi nes each slot in the hash table to be the head of a linked
list. All records that hash to a particular slot are placed on that slot’s linked list. The fi gure below
illustrates a hash table where each slot stores one record and a link pointer to the rest of the list.

Records within a slot’s list can be ordered in several ways: by insertion order, by key value order,
or by frequency-of-access order. Ordering the list by key value provides an advantage in the case
of an unsuccessful search, because I know to stop searching the list once you encounter a key
that is greater than the one being searched for. If records on the list are unordered or ordered by
frequency, then an unsuccessful search will need to visit every record on the list.

Given a table of size M storing N records, the hash function will (ideally) spread the records evenly
among the M positions in the table, yielding on average N/M records for each list. Assuming
that the table has more slots than there are records to be stored, you can hope that few slots will
contain more than one record. In the case where a list is empty or has only one record, a search
requires only one access to the list. Thus, the average cost for hashing should be Θ(1). However,
if clustering causes many records to hash to only a few of the slots, then the cost to access a record
will be much higher because many elements on the linked list must be searched.

Open hashing is most appropriate when the hash table is kept in main memory, with the lists
implemented by a standard in-memory linked list. Storing an open hash table on disk in an
effi cient way is diffi cult, because members of a given linked list might be stored on different disk
blocks. This would result in multiple disk accesses when searching for a particular key value,
which defeats the purpose of using hashing.

Let:

1. U be the universe of keys:

(a) Integers

(b) Character strings

(c) Complex bit patterns

Advanced Data Structure and Algorithms

Notes

194 LOVELY PROFESSIONAL UNIVERSITY

2. B the set of hash values (also called the buckets or bins). Let B = {0, 1,..., m - 1}where m > 0
is a positive integer.

 A hash function h: U → B associates buckets (hash values) to keys.

Two main issues:

Collisions

If x1 and x2 are two different keys, it is possible that h(x1) = h(x2). This is called a collision. Collision
resolution is the most important issue in hash table implementations.

Hash Functions

Choosing a hash function that minimizes the number of collisions and also hashes uniformly is
another critical issue.

9.4 Closed Hashing

1. All elements are stored in the hash table itself

2. Avoids pointers; only computes the sequence of slots to be examined.

3. Collisions are handled by generating a sequence of rehash values.

h:
universe of primary keys

U ×
probe number

U → {0, 1, 2,..., m - 1}

4. Given a key x, it has a hash value h(x,0) and a set of rehash values

h(x, 1), h(x,2), . . . , h(x, m-1)

5. I require that for every key x, the probe sequence

 < h(x,0), h(x, 1), h(x,2), . . . , h(x, m-1)>

 be a permutation of <0, 1, ..., m-1>.

This ensures that every hash table position is eventually considered as a slot for storing a
record with a key value x.

Search (x, T)

Search will continue until you fi nd the element x (successful search) or an empty slot (unsuccessful
search).

Delete (x, T)

1. No delete if the search is unsuccessful.

2. If the search is successful, then put the label DELETED (different from an empty slot).

Insert (x, T)

1. No need to insert if the search is successful.

2. If the search is unsuccessful, insert at the fi rst position with a DELETED tag.

Unit 9: Hashing

Notes

 LOVELY PROFESSIONAL UNIVERSITY 195

Task “Open hashing is most appropriate when the hash table is kept in main memory,
with the lists implemented by a standard in-memory linked list.” Explain.

9.5 Rehashing

This is another method of collision handling. In this method you fi nd an alternative empty
location by modifying the hash function, and applying the modifi ed hash function to the colliding
symbol. For example, if x is symbol and h(x) = i, and if the ith location is already occupied, then
I modify the hash function h to h1, and fi nd out h1(x), if h1(x) =j, and jth location is empty, then
I accommodate x in the jth location. Otherwise you once again modify h1 to some h2 and repeat
the process till the collision gets handled. Once the collision gets handled we revert back to the
original hash function before considering the next symbol.

Denote h(x, 0) by simply h(x).

Linear Probing

 h(x, i) = (h(x) + i) mod m

Quadratic Probing

 h(x, i) = (h(x) + C1i + C2i2) mod m

 where C1 and C2 are constants.

Double Hashing

h(x, i) = (h(x) + i }
another hash function

 mod m

A Comparison of Rehashing Methods

Linear Probing m distinct probe sequences Primary clustering

Quadratic Probing m distinct probe sequences No primary clustering; but secondary clustering

Double Probing m2 distinct probe sequences No primary clustering
No secondary clustering

9.6 Summary

 Hash functions are mostly used in hash tables, to quickly locate a data record (for example,
a dictionary defi nition) given its search key (the headword).

 Specifi cally, the hash function is used to map the search key to the index of a slot in the
table where the corresponding record is supposedly stored.

 Rehashing schemes use a second hashing operation when there is a collision.

Advanced Data Structure and Algorithms

Notes

196 LOVELY PROFESSIONAL UNIVERSITY

9.7 Keywords

Folding: In folding the identifi er is partitioned into several parts all but the last part being of the
same length.

Hash Function: A Hash Function is a Unary Function that is used by Hashed Associative
Containers.

Hashing: Hashing is the transformation of a string of characters into a usually shorter
fi xed-length value or key that represents the original string.

Rehashing: In rehashing fi nd an alternative empty location by modifying the hash function, and
applying the modifi ed hash function to the colliding symbol.

9.8 Self Assessment

Fill in the blanks:

1. The simplest form of open hashing defi nes each slot in the hash table to be the head of a
.............................. .

2. is most appropriate when the hash table is kept in main memory, with
the lists implemented by a standard in-memory linked list.

3. resolution is the most important issue in hash table implementations.

4. A Hash Function must be and stateless.

5. A is referred to or accessed frequently either for adding the name, or for
storing the attributes of the name, or for retrieving the attributes of the name.

6. Hashing is a method of directly computing the index of the table by using some suitable
mathematical function called

7. Collision handling involve fi nding out an alternative location for one of the two colliding
.............................. .

8. method ignores part of key, and use the remainder part directly as hash
value.

9.9 Review Questions

1. Describe overfl ow chaining.

2. Describe various hash functions in detail.

3. Describe rehashing.

4. Devise a simple, easy to calculate hash function for mapping three-letter words to integers
between 0 and n−1, inclusive. Find the values of your function on the words

 PAL LAP PAM MAP PAT PET SET SAT TAT BAT

 for n = 11, 13, 17, 19. Try for as few collisions as possible.

5. Suppose that a hash table contains hash_size = 13 entries indexed from 0 through 12 and
that the following keys are to be mapped into the table:

 10 100 32 45 58 126 3 29 200 400 0

(a) Determine the hash addresses and fi nd how many collisions occur when these keys
are reduced by applying the operation % hash_size.

Unit 9: Hashing

Notes

 LOVELY PROFESSIONAL UNIVERSITY 197

(b) Determine the hash addresses and fi nd how many collisions occur when these keys
are fi rst folded by adding their digits together (in ordinary decimal representation)
and then applying % hash_size.

(c) Find a hash function that will produce no collisions for these keys. (A hash function
that has no collisions for a fi xed set of keys is called perfect.)

(d) Repeat the previous parts of this exercise for hash_size = 11. (A hash function that
produces no collision for a fi xed set of keys that completely fi ll the hash table is called
minimal perfect.)

6. Another method for resolving collisions with open addressing is to keep a separate array
called the overfl ow table, into which are put all entries that collide with an occupied
location. They can either be inserted with another hash function or simply inserted in
order, with sequential search used for retrieval. Discuss the advantages and disadvantages
of this method.

7. With linear probing, it is possible to delete an entry without using a second special key, as
follows. Mark the deleted entry empty. Search until another empty position is found. If the
search fi nds a key whose hash address is at or before the just-emptied position, then move
it back there, make its previous position empty, and continue from the new empty position.
Write an algorithm to implement this method. Do the retrieval and insertion algorithms
need modifi cation?

8. In a chained hash table, suppose that it makes sense to speak of an order for the keys,
and suppose that the nodes in each chain are kept in order by key. Then a search can
be terminated as soon as it passes the place where the key should be, if present. How
many fewer probes will be done, on average, in an unsuccessful search? In a successful
search? How many probes are needed, on average, to insert a new node in the right place?
Compare your answers with the corresponding numbers derived in the text for the case of
unordered chains.

9. The hash table itself contained only lists, one for each of the chains. One variant method
is to place the fi rst actual entry of each chain in the hash table itself. (An empty position
is indicated by an impossible key, as with open addressing.) With a given load factor,
calculate the effect on space of this method, as a function of the number of words (except
links) in each entry. (A link takes one word.)

10. Distinguish between linear and quadratic probing.

11. Consider using division method of hashing store the following values in the hash table of
size 13:

 29, 45, 106, 136, 162, 172, 297, 301

Answers: Self Assessment

1. linked list 2. Open hashing 3. Collision

4. deterministic 5. symbol table 6. hash function

7. symbols 8. Truncation

Advanced Data Structure and Algorithms

Notes

198 LOVELY PROFESSIONAL UNIVERSITY

9.10 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms, Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 199

Unit 10: Heaps

CONTENTS

Objectives

Introduction

10.1 Heaps

10.2 Binary Heaps

 10.2.1 Complete Trees

 10.2.2 Implementation

 10.2.3 Putting items into a Binary Heap

 10.2.4 Removing items from a Binary Heap

10.3 Applications of Heaps

 10.3.1 Discrete Event Simulation

 10.3.2 Implementation

10.4 d-Heaps

10.5 Summary

10.6 Keywords

10.7 Self Assessment

10.8 Review Questions

10.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Describe heaps

 State the concept of binary heaps

 Discuss applications of heaps

 Defi ne d-heaps

Introduction

A heap is a specialized tree-based data structure that satisfi es the heap property: if B is a child
node of A, then key(A) ≥ key(B). This implies that an element with the greatest key is always in the
root node, and so such a heap is sometimes called a max-heap. (Alternatively, if the comparison
is reversed, the smallest element is always in the root node, which results in a min-heap.) The
heap is one maximally-effi cient implementation of an abstract data type called a priority queue.
Heaps are crucial in several effi cient graph algorithms.

10.1 Heaps

A heap is a storage pool in which regions of memory are dynamically allocated. For example,
in C++ the space for a variable is allocated essentially in one of three possible places: Global

Advanced Data Structure and Algorithms

Notes

200 LOVELY PROFESSIONAL UNIVERSITY

variables are allocated in the space of initialized static variables; the local variables of a procedure
are allocated in the procedure’s activation record, which is typically found in the processor stack;
and dynamically allocated variables are allocated in the heap. In this unit, the term heap is taken
to mean the storage pool for dynamically allocated variables.

I consider heaps and heap-ordered trees in the context of priority queue implementations. While
it may be possible to use a heap to manage a dynamic storage pool, typical implementations do
not. In this context, the technical meaning of the term heap is closer to its dictionary defi nition–”a
pile of many things.”

A binary tree has the heap property iff

1. It is empty or

2. The key in the root is larger than that in either child and both subtrees have the heap
property.

A heap can be used as a priority queue: the highest priority item is at the root and is trivially
extracted. But if the root is deleted, you are left with two sub-trees and you must effi ciently
re-create a single tree with the heap property.

The value of the heap structure is that you can both extract the highest priority item and insert a
new one in O(logn) time.

10.2 Binary Heaps

A binary heap is a heap-ordered binary tree which has a very special shape called a complete
tree. As a result of its special shape, a binary heap can be implemented using an array as the
underlying foundational data structure. Array subscript calculations are used to fi nd the parent
and the children of a given node in the tree. And since an array is used, the storage overhead
associated with the subtree fi elds contained in the nodes of the trees is eliminated.

10.2.1 Complete Trees

Complete trees and perfect trees are closely related, yet quite distinct. As pointed out in the
preceding unit, a perfect binary tree of height h has exactly n = 2h+1 – 1 internal nodes. Since, the
only permissible values of n are

0, 1, 3, 7, 15, 31, ..., 2h+1 – 1,... ,

there is no perfect binary tree which contains, say 2, 4, 5, or 6 nodes.

However, you want a data structure that can hold an arbitrary number of objects so you cannot
use a perfect binary tree. Instead, you use a complete binary tree, which is defi ned as follows:

Defi nition (Complete Binary Tree)

A complete binary tree of height h ≥ 0, is a binary tree {R, TL, TR} with the following properties.

1. If h = 0, TL = l and TR = l.

2. For h > 0 there are two possibilities:

(a) TL is a perfect binary tree of height h-1 and TR is a complete binary tree of height h-1;
or

(b) TL is a complete binary tree of height h-1 and TR is a perfect binary tree of height h-2.

Figure 10.1 shows an example of a complete binary tree of height four. Notice that the left subtree
of node 1 is a complete binary tree of height three; and the right subtree is a perfect binary tree

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 201

of height two. Similarly, the left subtree of node 2 is a perfect binary tree of height two; and the
right subtree is a complete binary tree of height two.

Figure 10.1: A Complete Binary Tree

Does there exist an complete binary with exactly n nodes for every integer n>0? The following
theorem addresses this question indirectly by defi ning the relationship between the height of a
complete tree and the number of nodes it contains.

Task Discuss how complete and perfect trees are closely related.

Theorem-10.1

A complete binary tree of height h ≥ 0 contains at least 2h and at most 2h+1 – 1 nodes.

extbfProof First, you prove the lower bound by induction. Let mh be the minimum number of
nodes in a complete binary tree of height h. To prove the lower bound you must show that
mh = 2h.

Base Case There is exactly one node in a tree of height zero. Therefore, m0 = 1 = 20.

Inductive Hypothesis Assume that mh = 2h for h = 0, 1, 2, ..., k, for some k ≥ 0. Consider the
complete binary tree of height k+1 which has the smallest number of nodes. Its left subtree is a
complete tree of height k having the smallest number of nodes and its right subtree is a perfect
tree of height k-1.

From the inductive hypothesis, there are 2k nodes in the left subtree and there are exactly
2(k–1)+1 – 1 nodes in the perfect right subtree. Thus,

 mk + 1 = 1 + 2k + 2(k–1)+1 – 1

 = 2k+1

Therefore, by induction mh = 2h for all h ≥ 0, which proves the lower bound.

Next, I prove the upper bound by induction. Let Mh be the maximum number of nodes in a
complete binary tree of height h. To prove the upper bound I must show that Mh = 2h+1 – 1.

Base Case There is exactly one node in a tree of height zero. Therefore, M0 = 1 = 21 – 1.

Inductive Hypothesis Assume that Mh = 2h+1 – 1 for h = 0, 1, 2,..., k, for some k ≥ 0. Consider
the complete binary tree of height k+1 which has the largest number of nodes. Its left subtree
is a perfect tree of height k and its right subtree is a complete tree of height k having the largest
number of nodes.

Advanced Data Structure and Algorithms

Notes

202 LOVELY PROFESSIONAL UNIVERSITY

There are exactly 2k+1 – 1 nodes in the perfect left subtree. From the inductive hypothesis, there
are 2k+1 – 1 nodes in the right subtree. Thus,

 mk + 1 = 1 + 2k+1 – 1 + 2k+1 – 1

 = 2(k+1)+1 – 1.

Therefore, by induction Mh = 2h+1 – 1 for all h ≥ 0, which proves the upper bound.

It follows from Theorem 10.1 that there exists exactly one complete binary tree that contains
exactly n internal nodes for every integer n ≥ 0. It also follows from

Theorem 10.1 that the height of a complete binary tree containing n internal nodes is h = [log2
n].

Why are interested in complete trees? As it turns out, complete trees have some useful
characteristics. For example, in the preceding chapter you saw that the internal path length of a
tree, i.e., the sum of the depths of all the internal nodes, determines the average time for various
operations. A complete binary tree has the nice property that it has the smallest possible internal
path length:

Theorem 10.2

The internal path length of a binary tree with n nodes is at least as big as the internal path length
of a complete binary tree with n nodes.

extbfProof Consider a binary tree with n nodes that has the smallest possible internal path length.
Clearly, there can only be one node at depth zero--the root. Similarly, at most two nodes can be at
depth one; at most four nodes can be at depth two; and so on. Therefore, the internal path length
of a tree with n nodes is always at least as large as the sum of the fi rst n terms in the series

But this summation is precisely the internal path length of a complete binary tree!

Since the depth of the average node in a tree is obtained by dividing the internal path length of
the tree by n, Theorem 10.1 tells us that complete trees are the best possible in the sense that the
average depth of a node in a complete tree is the smallest possible. But how small is small? That
is, is does the average depth grow logarithmically with n. The following theorem addresses this
question:

Theorem 10.3

The internal path length of a complete binary tree with n nodes is

+ +⎢ ⎥⎣ ⎦

=

= + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑ 2log (1) 1
2 2

1
log (1) log (1) – 2 2.

n
n

i
i n n

extbfProof The proof of Theorem 10.3 is left as an exercise for the reader. From Theorem 10.3 you
may conclude that the internal path length of a complete tree is O(n log n). Consequently, the
depth of the average node in a complete tree is O(log n).

10.2.2 Implementation

A binary heap is a heap-ordered complete binary tree which is implemented using an array. In a
heap the smallest key is found at the root and since the root is always found in the fi rst position
of the array, fi nding the smallest key is a trivial operation in a binary heap.

In this section we will describe the implementation of a priority queue as a binary heap. As
shown in Figure 10.2, I defi ne a concrete class called BinaryHeap for this purpose.

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 203

Comparable Abstract Object

Container Abstract Container

PriorityQueue

MergeablePriorityQueue

BinaryHeap

BinomialQueue

AbstractTree BinaryTree

GeneralTree

LeflistHeap

BinomialTree

Tree

Figure 10.2: Object Class Hierarchy

Program-10.1 Introduces the BinaryHeap class. The BinaryHeap class extends the
AbstractContainer class introduced in Program 10.1 and it implements the PriorityQueue
interface defi ned in Program 10.1.
public class BinaryHeap

 extends AbstractContainer

 implements PriorityQueue

{

 protected Comparable [] array;

 // ...

}

Program 10.1: BinaryHeap Fields

10.2.3 Putting items into a Binary Heap

There are two requirements which must be satisfi ed when an item is inserted in a binary heap.
First, the resulting tree must have the correct shape. Second, the tree must remain heap-ordered.
Figure 10.3 illustrates the way in which this is done.

Since the resulting tree must be a complete tree, there is only one place in the tree where a node can
be added. That is, since the bottom level must be fi lled from left to right, the node node must be
added at the next available position in the bottom level of the tree as shown in Figure 10.3 (a).

Figure 10.3: Inserting an item into a Binary Heap

Advanced Data Structure and Algorithms

Notes

204 LOVELY PROFESSIONAL UNIVERSITY

In this example, the new item to be inserted has the key 2. Note that you cannot simply drop the
new item into the next position in the complete tree because the resulting tree is no longer heap
ordered. Instead, the hole in the heap is moved toward the root by moving items down in the
heap as shown in Figure 10.3 (b) and (c). The process of moving items down terminates either
when you reach the root of the tree or when the hole has been moved up to a position in which
when the new item is inserted the result is a heap.

Program 10.2 gives the code for inserting an item in a binary heap. The enqueue method of the
BinaryHeap class takes as its argument the item to be inserted in the heap. If the priority queue is
full an exception is thrown. Otherwise, the item is inserted as described above.

public class BinaryHeap

 extends AbstractContainer

 implements PriorityQueue

{

 protected Comparable[] array;

 public void enqueue (Comparable object)

{

 if (count == array. length - 1)

 throw new ContainerFullException ();

 ++count;

 int i == count;

 while (i > 1 && array [i/2].isGT (object))

 {

 array [i] = array [i/2];

 i/=2;

 }

 array [i] = object;

 }

 //...

}

Program 10.2: BinaryHeap class enqueue Method

The implementation of the algorithm is actually remarkably simple. Lines 13-17 move the hole in
the heap up by moving items down. When the loop terminates, the new item can be inserted at
position i. Therefore, the loop terminates either at the root, i=1, or when the key in the parent of
i, which is found at position ⎣i/2⎦, is smaller than the item to be inserted.

Notice too that a good optimizing compiler will recognize that the subscript calculations involve
only division by two. Therefore, the divisions can be replaced by bitwise right shifts which
usually run much more quickly.

Since the depth of a complete binary tree with n nodes is ⎣log2 n⎦, the worst case running time for
the enqueue operation is

⎣log2 n⎦, τ(isGT) + O(log n),

where τ(isGT) is the time required to compare to objects. If τ(isGT) = O(1), the enqueue operation
is simply O(log n) in the worst case.

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 205

10.2.4 Removing items from a Binary Heap

The dequeueMin method removes from a priority queue the item having the smallest key. In order
to remove the smallest item, it needs fi rst to be located. Therefore, the dequeueMin operation is
closely related to fi ndMin.

The smallest item is always at the root of a min heap. Therefore, the fi ndMin operation is trivial.
Program 10.3 gives the code for the fi ndMin method of the BinaryHeap class. Assuming that no
exception is thrown, the running time of fi ndMin is clearly O(1).
public class BinaryHeap

 extends AbstractContainer

 implements PriorityQueue

{

 protected Comparable [] array;

 public Comparable findMin ()

 {

 if (count == 0)

 throw new ContainerEmptyException ();

 return array [1];

 }

 // ...

}

Program 10.3: BinaryHeap class fi ndMin Method

Since the bottom row of a complete tree is fi lled from left to right as items are added, it follows
that the bottom row must be emptied from right to left as items are removed. So, you have a
problem: The datum to be removed from the heap by dequeueMin is in the root, but the node to
be removed from the heap is in the bottom row.

Figure 10.4: Removing an item from a Binary Heap

Advanced Data Structure and Algorithms

Notes

206 LOVELY PROFESSIONAL UNIVERSITY

Figure 10.4 (a) illustrates the problem. The dequeueMin operation removes the key 2 from the
heap, but it is the node containing key 6 that must be removed from the tree to make it into a
complete tree again. When key 2 is removed from the root, a hole is created in the tree as shown
in Figure 10.4 (b).

The trick is to move the hole down in the tree to a point where the left-over key, in this case the
key 6, can be reinserted into the tree. To move a hole down in the tree, you consider the children
of the empty node and move up the smallest key. Moving up the smallest key ensures that the
result will be a min heap.

The process of moving up continues until either the hole has been pushed down to a leaf node,
or until the hole has been pushed to a point where the left over key can be inserted into the heap.
In the example shown in Figure 10.4 (b)-(c), the hole is pushed from the root node to a leaf node
where the key 6 is ultimately placed is shown in Figure 10.4 (d).

Program 10.4 gives the code for the dequeueMin method of the BinaryHeap class. This method
implements the deletion algorithm described above. The main loop (lines 15-25) moves the hole
in the tree down by moving up the child with the smallest key until either a leaf node is reached
or until the hole has been moved down to a point where the last element of the array can be
reinserted.

public class BinaryHeap

 extends AbstractContainer

 implements PriorityQueue

{

 protected Comparable [] array;

 public Comparable dequeueMin()

 {

 if (count == 0)

 throw new ContainerEmptyException ();

 Comparable result = array [1];

 Comparable last = array [count];

 --count;

 int i = 1;

 while (2 * i < count + 1)

 {

 int child = 2 * i;

 if (child + 1 < count + 1

 && array [child + 1].isLT (array [child]))

 child += 1;

 if (last.isLE (array [child]))

 break;

 array [i] = array [child];

 i = child;

 }

 array [i] = last;

 return result;

 }

 // ...

}

Program 10.4: BinaryHeap class dequeueMin Method

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 207

In the worst case, the hole must be pushed from the root to a leaf node. Each iteration of the loop
makes at most two object comparisons and moves the hole down one level.

Therefore, the running time of the dequeueMin operation is

⎣log2 n⎦(τ〈isLT〉 + τ〈isLE〉) + O(log n),

where n = count is the number of items in the heap. If τ〈isLT〉 = O(1) and τ〈isLE〉 = O(1), the
dequeueMin operation is simply O(log n) in the worst case.

Task Discuss the uses of binary heaps.

10.3 Applications of Heaps

The main applications of heaps are:

1. Discrete Event Simulation

2. Implementation

10.3.1 Discrete Event Simulation

One of the most important applications of priority queues is in discrete event simulation. Simulation
is a tool which is used to study the behavior of complex systems. The fi rst step in simulation is
modeling. You construct a mathematical model of the system I wish to study. Then you write a
computer program to evaluate the model.

The systems studied using discrete event simulation have the following characteristics: The system
has a state which evolves or changes with time. Changes in state occur at distinct points in
simulation time. A state change moves the system from one state to another instantaneously.
State changes are called events.

 Example: Suppose I wish to study the service received by customers in a bank. Suppose
a single teller is serving customers. If the teller is not busy when a customer arrives at the bank,
the that customer is immediately served. On the other hand, if the teller is busy when another
customer arrives, that customer joins a queue and waits to be served.

You can model this system as a discrete event process as shown in Figure 10.5. The state of the
system is characterized by the state of the server (the teller), which is either busy or idle, and by
the number of customers in the queue. The events which cause state changes are the arrival of a
customer and the departure of a customer.

arriving customer

customers

queue server

departing customer

Figure 10.5: A Simple Queueing System

If the server is idle when a customer arrives, the server immediately begins to serve the customer
and therefore changes its state to busy. If the server is busy when a customer arrives, that customer
joins the queue.

Advanced Data Structure and Algorithms

Notes

208 LOVELY PROFESSIONAL UNIVERSITY

When the server fi nishes serving the customer, that customer departs. If the queue is not empty,
the server immediately commences serving the next customer. Otherwise, the server becomes
idle.

How do you keep track of which event to simulate next? Each event (arrival or departure) occurs
at a discrete point in simulation time. In order to ensure that the simulation program is correct,
it must compute the events in order. This is called the causality constraint–events cannot change
the past.

In our model, when the server begins to serve a customer you can compute the departure time of
that customer. So, when a customer arrives at the server I schedule an event in the future which
corresponds to the departure of that customer. In order to ensure that events are processed in
order, you keep them in a priority queue in which the time of the event is its priority. Since you
always process the pending event with the smallest time next and since an event can schedule
new events only in the future, the causality constraint will not be violated.

10.3.2 Implementation

This section presents the simulation of a system comprised of a single queue and server as shown
in Figure 10.5. Program 10.5 defi nes the class Event which represents events in the simulation.
There are two parts to an event, a type (either arrival or departure), and a time.
public class Simulation

{

 static class Event

 extends Association

 {

 public static final int arrival = 0;

 public static final int departure = 1;

 Event (int type, double time)

 {super (new Db1 (time), new Int (type)); }

 double getTime ()

 {return ((Db1) getKey ()).doubleValue ();}

 int getType ()

 {return ((Int) getValue ()).intValue ();}

 }

 // ...

}

Program 10.5: Event Class

An association is an ordered pair comprised of a key and a value. In the case of the Event class,
the key is the time of the event and the value is the type of the event. Therefore, the events in a
priority queue are prioritized by their times.

Program 10.6 defi nes the run method which implements the discrete event simulation. This method
takes one argument, timeLimit, which specifi es the total amount of time to be simulated.

The Simulation class contains a single fi eld, called eventList, which is a priority queue. This
priority queue is used to hold the events during the course of the simulation.
public class Simulation

{

 PriorityQueue eventList = new LeftistHeap ();

 public void run (double timeLimit)

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 209

 {

 boolean serverBusy = false;

 int numberInQueue = 0;

 RandomVariable serviceTime = new ExponentialRV (100.);

 RandomVariable interArrivalTime =

 new ExponentialRV (100.);

 eventList. enqueue (new Event.arrival, 0));

 while (!eventList. isEmpty ())

 {

 Event event = (Event) eventList.dequeueMin ();

 double t = event.getTime ();

 if (t > timeLimit)

 {eventList.purge (); break; }

 switch (event.getType ())

 {

 case Event.arrival:

 if (!severBusy)

 {

 serverBusy = true;

 eventList.enqueue (new Event(Event.departure,

 t + serviceTime.nextdouble ()));

 }

 else

 ++numberInQueue;

 eventList.enqueue (new Event (Event.arrival,

 t + interArrivalTime.nextDouble ()));

 break;

 case Event.departure:

 if (numberInQueue == 0)

 serverBusy = false;

 else

 {

 --numberInQueue;

 eventList.enqueue (new Event(Event.departure,

 t + serviceTime.nextDouble ()));

 }

 break;

 }

 }

 }

 // ...

}

Program 10.6: Application of Priority Queues – discrete Event Simulation

Advanced Data Structure and Algorithms

Notes

210 LOVELY PROFESSIONAL UNIVERSITY

The state of the system being simulated is represented by the two variables serverBusy and
numberInQueue. The fi rst is a boolean value which indicates whether the server is busy. The
second keeps track of the number of customers in the queue.

In addition to the state variables, there are two instances of the class ExponentialRV. It implements
the RandomVariable interface defi ned in Program 10.6. This interface defi nes a method called
nextDouble which is used to sample the random number generator. Every time nextDouble is
called, a different (random) result is returned. The random values are exponentially distributed
around a mean value which is specifi ed in the constructor. For example, in this case both
serviceTime and interArrivalTime produce random distributions with the mean value of 100
(lines 9-11).

It is assumed that the eventList priority queue is initially empty. The simulation begins by
enqueueing a customer arrival at time zero (line 12). The while loop (lines 13-44) constitutes the
main simulation loop. This loop continues as long as the eventList is not empty, i.e., as long as
there is an event to be simulated.

Each iteration of the simulation loop begins by dequeuing the next event in the event list (line 15).
If the time of that event exceeds timeLimit, the event is discarded, the eventList is purged, and
the simulation is terminated. Otherwise, the simulation proceeds.

The simulation of an event depends on the type of that event. The switch statement (line 19)
invokes the appropriate code for the given event. If the event is a customer arrival and the
server is not busy, serverBusy is set to true and the serviceTime random number generator is
sampled to determine the amount of time required to service the customer. A customer departure
is scheduled at the appropriate time in the future (lines 24-26). On the other hand, if the server is
already busy when the customer arrives, I add one to the numberInQueue variable (line 29).

Another customer arrival is scheduled after every customer arrival. The interArrivalTime
random number generator is sampled, and the arrival is scheduled at the appropriate time in the
future (lines 30-31).

If the event is a customer departure and the queue is empty, the server becomes idle (lines 34-35).
When a customer departs and there are still customers in the queue, the next customer in the
queue is served. Therefore, numberInQueue is decreased by one and the serviceTime random
number generator is sampled to determine the amount of time required to service the next
customer. A customer departure is scheduled at the appropriate time in the future (lines 38-40).

Clearly the execution of the Simulation method given in Program 10.6 mimics the modeled
system. Of course, the program given produces no output. For it to be of any practical value, the
simulation program should be instrumented to allow the user to study its behavior.

 Example: The user may be interested in knowing statistics such as the average queue
length and the average waiting time that a customer waits for service. And such instrumentation
can be easily incorporated into the given framework.

10.4 d-Heaps

The d-ary heap or d-heap is a priority queue data structure, a generalization of the binary heap in
which the nodes have d children instead of 2. Thus, a binary heap is a 2-heap.

The d-ary heap consists of an array of n items, each of which has a priority associated with it.
These items may be viewed as the nodes in a complete d-ary tree, listed in breadth fi rst traversal
order: the item at position 0 of the array forms the root of the tree, the items at positions 1–d are
its children, the next d2 items are its grandchildren, etc. Thus, the parent of the item at position
i (for any i > 0) is the item at position ceiling((i − 1)/d) and its children are the items at positions
di + 1 through di + d. According to the heap property, in a min-heap, each item has a priority

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 211

that is at least as large as its parent; in a max-heap, each item has a priority that is no larger than
its parent.

The minimum priority item in a min-heap (or the maximum priority item in a max-heap) may
always be found at position 0 of the array. To remove this item from the priority queue, the last
item x in the array is moved into its place, and the length of the array is decreased by one. Then,
while item x and its children do not satisfy the heap property, item x is swapped with one of its
children (the one with the smallest priority in a min-heap, or the one with the largest priority in
a max-heap), moving it downward in the tree and later in the array, until eventually the heap
property is satisfi ed. The same downward swapping procedure may be used to increase the
priority of an item in a min-heap, or to decrease the priority of an item in a max-heap.

To insert a new item into the heap, the item is appended to the end of the array, and then while
the heap property is violated it is swapped with its parent, moving it upward in the tree and
earlier in the array, until eventually the heap property is satisfi ed. The same upward-swapping
procedure may be used to decrease the priority of an item in a min-heap, or to increase the
priority of an item in a max-heap.

To create a new heap from an array of n items, one may loop over the items in reverse order,
starting from the item at position n − 1 and ending at the item at position 0, applying the
downward-swapping procedure for each item.

To implement Prim’s algorithm effi ciently, we need a data structure that will store the vertices of
S in a way that allows the vertex joined by the minimum cost edge to be selected quickly.

A heap is a data structure consisting of a collection of items, each having a key. The basic
operations on a heap are:

1. insert(i,k,h). Add item i to heap h using k as the key value.

2. deletemin(h). Delete and return an item of minimum key from h.

3. changekey(i,k,h). Change the key of item i in heap h to k.

4. key(i,h). Return the key value for item i.

The heap is among the most widely applicable non-elementary data structure.

Heaps can be implemented effi ciently, using a heap-ordered tree.

1. each tree node contains one item and each item has a real-valued key

2. the key of each node is at least as large the key of its parent (excepting the root)

For integer d >1, a d-heap is a heap-ordered d-ary tree that is “heapshaped.”

1. let T be an infi nite d-ary tree, with vertices numbered in breadth-fi rst order

2. a subtree of T is heap-shaped if its vertices have consecutive numbers 1, 2, ..., n

10 111

8

7 5 6 3

4 2 7

4 4

9 10

key

item number

5 6 8 15 11 12 13

The depth of a d-heap with n nodes is ≤ [logdn].

Advanced Data Structure and Algorithms

Notes

212 LOVELY PROFESSIONAL UNIVERSITY

Implementing d-Heaps as Arrays

1. The nodes of a d-heap can be stored in an array in breadth-fi rst order.

(a) allows indices for parents and children to calculated directly, eliminating the need
for pointers

10 111

8

7 5 6 3

4 2 7

4 4

9 10

5 6 8 15 11 12 13

4 8 2 9 10 1 11 7 5 6 3

6 7 13 4 11 12 15 4 10 5 8

1 2 3 4 5 6 7 8 9 10 11

h:

key:

2. If i is the index of an item x, then [(i−1)/d] is the index of p(x) and the indices of the children
of x are in the range [d(i−1) + 2 .. di + 1].

3. When the key of an item is decreased, we can restore heap-order, by repeatedly swapping
the item with its parent.

4. Similarly, for increasing an item’s key.

d-Heap Operations

item function fi ndmin(heap h);

return if h = {} [] null; ! h ≠ {} ®h(1) fi;

end;

procedure siftup(item i, integer x, modifies heap h);

integer p;

p := ⎝(x−1)/d⎤;

do p ≠ 0 and key(h(p)) > key(i) =>

h(x) := h(p); x := p; p := (p−1)/d⎤ ;

od;

h(x) := i;

end;

procedure insert(item i; modifies heap h);

siftup(i,|h| + 1,h);

end;

integer function minchild(integer x, heap h);

integer i, minc;

minc := d(x–1) + 2;

if minc > |h| =>return 0; fi;

i := minc + 1;

do i ≤ min {|h|,dx + 1} =>

if key(h(i)) < key(h(minc)) => minc := i; fi;

i := i + 1;

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 213

od;

return minc;

end;

procedure siftdown(item i, integer x, modifies heap h);

integer c;

c := minchild(x,h);

do c ≠≠0 and key(h(c)) < key(i) =>

h(x) := h(c); x := c; c := minchild(x,h);

od;

h(x) := i;

end;

procedure delete(item i, modified heap h);

item j; j := h(|h|); h(|h|) := null;

if i ≠ j and key(j) ≤ key(i) =>siftup(j,h–1(i),h);

| i ≠ j and key(j) > key(i) =>siftdown(j,h-1(i),h);

fi;

end;

item function deletemin(modifies heap h);

item i;

if h = {} => return null; fi;

i := h(1); delete(h(1),h);

return i;

end;

procedure changekey(item i, keytype k, modified heap h);

item ki; ki := key(i); key(i) := k;

if k < ki=>siftup(i,h-1(i),h);

| k > ki =>siftdown(j,h-1(i),h);

fi;

end;

D-Heap Algorithms

A d-heap is a tree with the property that a parent’s value is smaller than (or equal to) the value of
any of its d children. For example, the min heap we have seen in class is a 2-heap.

Given N the number of elements in the d-heap, in terms of d and N what is the time cost in the
worst case (big Oh notation) of each of the following operations.

1. buildHeap: Builds a d-heap from a list of nautrals read from standard input.

2. insertHeap: Inserts a new element into the d-heap.

3. decreasKey (p, Δ): lowers the value of the item at position p by a positive amount Δ.

4. increaseKey (p, Δ): increases the value of the item at position p by a positive amount Δ.

5. remove: removes the node at position p from the d-heap. This is done by performing
decreaseKey (p, ∞) and then performing deleteMin ().

Advanced Data Structure and Algorithms

Notes

214 LOVELY PROFESSIONAL UNIVERSITY

Best example of D-Heap is “DJIKSTRA’S ALGORITHM”

Djikstra’s algorithm (named after its discover, Dutch computer scientist E.W. Dijkstra) solves the
problem of fi nding the shortest path from a point in a graph (the source) to a destination with
non-negative weight edge.

It turns out that one can fi nd the shortest paths from a given source to all vertices (points) in
a graph in the same time. Hence, this problem is sometimes called the single-source shortest
paths problem. Dijkstra’s algorithm is a greedy algorithm, which fi nds shortest path between all
pairs of vertices in the graph. Before describing the algorithms formally, let us study the method
through an example.

1 2

3 4

5

3

6 6

6 1

8

9

Figure 10.6: A Directed Graph with no negative edge(s)

Dijkstra’s algorithm keeps two sets of vertices:

S is the set of vertices whose shortest paths from the source have already been determined

Q = V-S is the set of remaining vertices.

The other data structures needed are:

d array of best estimates of shortest path to each vertex from the source pi an array of predecessors
for each vertex. predecessor is an array of vertices to which shortest path has already been
determined.

The basic operation of Dijkstra’s algorithm is edge relaxation. If there is an edge from u to v, then
the shortest known path from s to u can be extended to a path from s to v by adding edge (u,v)
at the end. This path will have length d[u]+w(u,v). If this is less than d[v], we can replace the
current value of d[v] with the new value.

The predecessor list is an array of indices, one for each vertex of a graph. Each vertex entry
contains the index of its predecessor in a path through the graph.

Operation of Algorithm

The following sequence of diagrams illustrate the operation of Dijkstra’s Algorithm. The bold
vertices indicate the vertex to which shortest path has been determined.

 Initialize the graph, all the vertices have infi nite costs
except the source vertex which has zero cost

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 215

 From all the adjacent vertices, choose the closest vertex
to the source s.

 As we initialized d[s] to 0, it’s s. (shown in bold circle)

 Add it to S

 Relax all vertices adjacent to s, i.e u and x

 Update vertices u and x by 10 and 5 as the distance from
s.

 Choose the nearest vertex, x.

 Relax all vertices adjacent to x

 Update predecessors for u, v and y.

 Predecessor of x = s

 Predecessor of v = x ,s

 Predecessor of y = x ,s

 add x to S

 Now y is the closest vertex. Add it to S.

 Relax v and adjust its predecessor.

u is now closest, add it to S and adjust its
adjacent vertex, v.

Advanced Data Structure and Algorithms

Notes

216 LOVELY PROFESSIONAL UNIVERSITY

 Finally, add v to S.

 The predecessor list now defi nes the shortest path from
each node to s.

Dijkstra’s algorithm

* Initialise d and pi* for each vertex v in V(g)

g.d[v] := infinity

g.pi[v] := nil

g.d[s] := 0;

* Set S to empty *

S := { 0 }

Q := V(g)

* While (V-S) is not null*

while not Empty(Q)

1. Sort the vertices in V-S according to the current best estimate of their distance from the

 source u := Extract-Min (Q);

2. Add vertex u, the closest vertex in V-S, to S, AddNode(S,

 u);

3. Relax all the vertices still in V-S connected to u relax(Node u,

 Node v, double w[][])

 if d[v] > d[u] + w[u]v] then

 d[v] := d[u] + w[u][v]

 pi[v] := u

In summary, this algorithm starts by assigning a weight of infi nity to all vertices, and then
selecting a source and assigning a weight of zero to it. Vertices are added to the set for which
shortest paths are known. When a vertex is selected, the weights of its adjacent vertices are
relaxed. Once all vertices are relaxed, their predecessor’s vertices are updated (pi). The cycle
of selection, weight relaxation and predecessor update is repeated until the shortest path to all
vertices has been found.

10.5 Summary

 a heap is a partially sorted binary tree. Although a heap is not completely in order, it
conforms to a sorting principle: every node has a value less (for the sake of simplicity, I will
assume that all orderings are from least to greatest) than either of its children.

Unit 10: Heaps

Notes

 LOVELY PROFESSIONAL UNIVERSITY 217

 Additionally, a heap is a “complete tree” -- a complete tree is one in which there are no
gaps between leaves.

 For instance, a tree with a root node that has only one child must have its child as the left
node.

 More precisely, a complete tree is one that has every level fi lled in before adding a node to
the next level, and one that has the nodes in a given level fi lled in from left to right, with no
breaks.

10.6 Keywords

Binary Heap: A binary heap is a heap-ordered binary tree which has a very special shape called
a complete tree.

Discrete Event Simulation: One of the most important applications of priority queues is in discrete
event simulation.

d-Heap: d-heap is a priority queue data structure, a generalization of the binary heap in which
the nodes have d children instead of 2.

Heap: A heap is a specialized tree-based data structure that satisfi es the heap property: if B is a
child node of A, then key(A) ≥ key(B).

10.7 Self Assessment

Fill in the blanks:

1. A heap is a partially sorted

2. Complete trees and perfect trees are

3. In a heap the is found at the root.

4. The method removes from a priority queue the item having the smallest
key.

5. The of an event depends on the type of that event.

6. The minimum priority item in a min-heap may always be found at of the
array.

7. The heap is one maximally-effi cient implementation of an abstract data type called a
......................... .

8. calculations are used to fi nd the parent and the children of a given node in
the tree.

10.8 Review Questions

1. What do you mean by heaps?

2. Explain complete binary tree.

3. Prove that “A complete binary tree of height h ≥ 0 contains at least 2h and at most 2h+1 – 1
nodes.“

4. Prove that “The internal path length of a binary tree with n nodes is at least as big as the
internal path length of a complete binary tree with n nodes.”

5. Explain the implementation of binary heap.

6. Describe how will you put items into binary heaps.

Advanced Data Structure and Algorithms

Notes

218 LOVELY PROFESSIONAL UNIVERSITY

7. Write a method and the corresponding recursive function to traverse a binary tree (in
whatever order you fi nd convenient) and dispose of all its nodes. Use this method to
implement a Binary_tree destructor.

8. Consider a heap of n keys, with xk being the key in position k (in the contiguous
representation) for 0 ≤ k < n. Prove that the height of the subtree rooted at xk is the greatest
integer not exceeding lg(n/(k+ 1)), for all k satisfying 0 ≤ k < n.

9. “A heap can be used as a priority queue: the highest priority item is at the root and is
trivially extracted.” Discuss.

10. “The enqueue method of the BinaryHeap class takes as its argument the item to be inserted
in the heap.” Explain.

Answers: Self Assessment

1. binary tree 2. closely related 3. smallest key

4. dequeueMin 5. simulation 6. position 0

7. priority queue 8. Array subscript

10.9 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 11: Leftist Heaps and Binomial Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 219

Unit 11: Leftist Heaps and Binomial Queues

CONTENTS

Objectives

Introduction

11.1 Leftist Heaps

 11.1.1 Leftist Trees

 11.1.2 Implementation

 11.1.3 Merging Leftist Heaps

 11.1.4 Putting items into a Leftist Heap

 11.1.5 Removing items from a Leftist Heap

11.2 Skew Heaps

11.3 Binomial Queues

11.4 Summary

11.5 Keywords

11.6 Self Assessment

11.7 Review Questions

11.8 Further Readings

Objectives

After studying this unit, you will be able to:

 State the concept leftist heaps

 Realise skew heaps

 Explain the binomial queues

Introduction

Numerous data structures have been developed that can support effi cient implementations of
all the priority-queue operations. Most of them are based on direct linked representation of
heap-ordered trees. Two links are needed for moving down the tree (either to both children in a
binary tree or to the fi rst child and next sibling in a binary tree representation of a general tree)
and one link to the parent is needed for moving up the tree. Developing implementations of
the heap-ordering operations that work for any (heap-ordered) tree shape with explicit nodes
and links or other representation is generally straightforward. The diffi culty lies in dynamic
operations such as insert, remove, and join, which require us to modify the tree structure.
Different data structures are based on different strategies for modifying the tree structure while
still maintaining balance in the tree.

11.1 Leftist Heaps

A leftist heap is a heap-ordered binary tree which has a very special shape called a leftist tree.
One of the nice properties of leftist heaps is that is possible to merge two leftist heaps effi ciently.
As a result, leftist heaps are suited for the implementation of mergeable priority queues.

Advanced Data Structure and Algorithms

Notes

220 LOVELY PROFESSIONAL UNIVERSITY

11.1.1 Leftist Trees

A leftist tree is a tree which tends to ``lean’’ to the left. The tendency to lean to the left is defi ned
in terms of the shortest path from the root to an external node. In a leftist tree, the shortest path
to an external node is always found on the right.

Every node in binary tree has associated with it a quantity called its null path length which is
defi ned as follows:

Null Path and Null Path Length

Consider an arbitrary node x in some binary tree T. The null path of node x is the shortest path in
T from x to an external node of T.

The null path length of node x is the length of its null path.

Sometimes it is convenient to talk about the null path length of an entire tree rather than of a
node:

Null Path Length of a Tree

The null path length of an empty tree is zero and the null path length of a non-empty binary tree
T = {R, TL, TR} is the null path length its root R.

When a new node or subtree is attached to a given tree, it is usually attached in place of an
external node. Since the null path length of a tree is the length of the shortest path from the root
of the tree to an external node, the null path length gives a lower bound on the cost of insertion.

 Example: The running time for insertion in a binary search tree, is at least

dτ(compare) + Ω(d)

where d is the null path length of the tree.

A leftist tree is a tree in which the shortest path to an external node is always on the right. This
informal idea is defi ned more precisely in terms of the null path lengths as follows:

Defi nition (Leftist Tree)

A leftist tree is a binary tree T with the following properties:

1. Either T = l; or

2. T = {R, TL, TR}, where both TL and TR are leftist trees which have null path lengths dL and dR,
respectively, such that dL ≥ dR.

Figure 11.1 shows an example of a leftist heap. A leftist heap is simply a heap-ordered leftist
tree. The external depth of the node is shown to the right of each node in Figure 11.1. The fi gure
clearly shows that it is not necessarily the case in a leftist tree that the number of nodes to the left
of a given node is greater than the number to the right. However, it is always the case that the
null path length on the left is greater than or equal to the null path length on the right for every
node in the tree.

Unit 11: Leftist Heaps and Binomial Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 221

Figure 11.1: A Leftist Heap

The reason for our interest in leftist trees is illustrated by the following theorems:

Theorem-11.1

Consider a leftist tree T which contains n internal nodes. The path leading from the root of T
downwards to the rightmost external node contains at most ⎣log2(n + 1)⎦ nodes.

extbfProof Assume that T has null path length d. Then T must contain at least 2d–1 leaves.
Otherwise, there would be a shorter path than d from the root of T to an external node.

A binary tree with exactly l leaves has exactly l-1 non-leaf internal nodes. Since T has at least 2d–1
leaves, it must contain at least n ≥ 2d – 1 internal nodes altogether. Therefore, d ≤ log2(n + 1).

Since T is a leftist tree, the shortest path to an external node must be the path on the right. Thus,
the length of the path to the rightmost external is at most ⎣log2(n + 1)⎦.

There is an interesting dichotomy between AVL balanced trees and leftist trees. The shape of an
AVL tree satisfi es the AVL balance condition which stipulates that the difference in the heights of
the left and right subtrees of every node may differ by at most one. The effect of AVL balancing
is to ensure that the height of the tree is O(log n).

On the other hand, leftist trees have an ``imbalance condition’’ which requires the null path
length of the left subtree to be greater than or equal to that of the right subtree. The effect of the
condition is to ensure that the length of the right path in a leftist tree is O(log n).

Therefore, by devising algorithms for manipulating leftist heaps which only follow the right path
of the heap, you can achieve running times which are logarithmic in the number of nodes.

The dichotomy also extends to the structure of the algorithms. For example, an imbalance
sometimes results from an insertion in an AVL tree. The imbalance is rectifi ed by doing rotations.
Similarly, an insertion into a leftist tree may result in a violation of the ``imbalance condition.’’
That is, the null path length of the right subtree of a node my become greater than that of the left
subtree. Fortunately, it is possible to restore the proper condition simply by swapping the left
and right subtrees of that node.

11.1.2 Implementation

This section presents an implementation of leftist heaps that is based on the binary tree
implementation. Program 11.1 introduces the LeftistHeap class. The LeftistHeap class extends
the BinaryTree class introduced in Program 11.1 and it implements the MergeablePriorityQueue
interface defi ned in Program 11.1.

Advanced Data Structure and Algorithms

Notes

222 LOVELY PROFESSIONAL UNIVERSITY

public class LeftistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

//...

}

Program 11.1: LeftistHeap Fields

11.1.3 Merging Leftist Heaps

In order to merge two leftist heaps, say h1 and h2, declared as follows

MergeablePriorityQueue h1 = new LeftistHeap ();

MergeablePriorityQueue h2 = new LeftistHeap ();

I invoke the merge method like this:

h1.merge (h2);

The effect of the merge method is to take all the nodes from h2 and to attach them to h1, thus
leaving h2 as the empty heap.

In order to achieve a logarithmic running time, it is important for the merge method to do all its
work on the right sides of h1 and h2. It turns out that the algorithm for merging leftist heaps is
actually quite simple.

To begin with, if h1 is the empty heap, then you can simply swap the contents of h1 and h2.
Otherwise, let us assume that the root of h2 is larger than the root of h1. Then you can merge the
two heaps by recursively merging h2 with the right subheap of h1. After doing so, it may turn
out that the right subheap of h1 now has a larger null path length than the left subheap. This you
rectify by swapping the left and right subheaps so that the result is again leftist. On the other
hand, if h2 initially has the smaller root, I simply exchange the roles of h1 and h2 and proceed as
above.

Figure 11.2 illustrates the merge operation. In this example, I wish to merge the two trees T1 and
T2 shown in Figure 11.2 (a). Since T2 has the larger root, it is recursively merged with the right
subtree of T1. The result of that merge replaces the right subtree of T1 as shown in Figure 11.2 (b).
Since the null path length of the right subtree is now greater than the left, the subtrees of T1 are
swapped giving the leftist heap shown in Figure 11.2 (c).

Unit 11: Leftist Heaps and Binomial Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 223

Figure 11.2: Merging Leftist Heaps

Program 11.2 gives the code for the merge method of the LeftistHeap class. The merge method
makes use of two other methods, swapContents and swapSubtrees. The swapContents method
takes as its argument a leftist heap, and exchanges all the contents (key and subtrees) of this
heap with the given one. The swapSubtrees method exchanges the left and right subtrees of this
node. The implementation of these routines is trivial and is left as a project for the reader. Clearly,
the worst-case running time for each of these routines is O(1).

The merge method only visits nodes on the rightmost paths of the trees being merged. Suppose
you are merging two trees, say T1 and T2, with null path lengths d1 and d2, respectively. Then the
running time of the merge method is

(d1 – 1 + d2 – 1)τ(isGT) + O(d1 + d2)

Advanced Data Structure and Algorithms

Notes

224 LOVELY PROFESSIONAL UNIVERSITY

where τ(isGT) is time required to compare two keys. If you assume that the time to compare two
keys is a constant, then you get O(log n1 + log n2), where n1 and n2 are the number of internal
nodes in trees T1 and T2, respectively.

public class LeftistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

 public void merge (MergeablePriorityQueue queue)

 {

 LeflistHeap arg = (LeftistHeap) queue;

 if (isEmpty ())

 swapContents (arg);

 else if (!arg.isEmpty ())

 {
 if (((Comparable) getKey ()).isGT (

 ((Comparable) arg.getKey ())))

 swapContents (arg);

 getRightHeap ().merge (arg);

 if (getLeftHeap ().nullPathLength <

 getRightHeap ().nullPathLength)

 swapSubtrees ();

 nullPathLength = 1 + Math.min (

 getLeftHeap ().nullPathLength,

 getRightHeap ().nullPathLength);

 }

 }

 // ...

}

Program 11.2: LeftistHeap Class merge Method

11.1.4 Putting items into a Leftist Heap

The enqueue method of the LeftistHeap class is used to put items into the heap. enqueue is
easily implemented using the merge operation. That is, to enqueue an item in a given heap, I
simply create a new heap containing the one item to be enqueued and merge it with the given
heap. The algorithm to do this is shown in Program 11.3.

public class LeflistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

 public void enqueue (Comparable object)

 { merge (new LeflistHeap (object)); }

// ...

}

Program 11.3: LeftistHeap Class enqueue Method

Unit 11: Leftist Heaps and Binomial Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 225

The expression for the running time for the insert operation follows directly from that of the
merge operation. That is, the time required for the insert operation in the worst case is

(d – 1)τ(isGT) + O(d),

where d is the null path length of the heap into which the item is inserted. If you assume that two
keys can be compared in constant time, the running time for insert becomes simply O(log n),
where n is the number of nodes in the tree into which the item is inserted.

Task Discuss the use of enqueue method.

11.1.5 Removing items from a Leftist Heap

The fi ndMin method locates the item with the smallest key in a given priority queue and the
dequeueMin method removes it from the queue. Since the smallest item in a heap is found at the
root, the fi ndMin operation is easy to implement. Program 11.4 shows how it can be done. Clearly,
the running time of the fi ndMin operation is O(1).
public class LeftistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

 public Comparable findMin ()

 {

 if (isEmpty ())

 throw new ContainerEmptyExeception ();

 return (Comparable) getKey ();

 }

 // ...

}

Program 11.4: LeftistHeap Class fi ndMin Method

Since the smallest item in a heap is at the root, the dequeueMin operation must delete the root
node. Since a leftist heap is a binary heap, the root has at most two children. In general when the
root is deleted, you are left with two non-empty leftist heaps. Since you already have an effi cient
way to merge leftist heaps, the solution is to simply merge the two children of the root to obtain a
single heap again! Program 11.5 shows how the dequeueMin operation of the LeftistHeap class
can be implemented.
public class LeflistHeap

 extends BinaryTree

 implements MergeablePriorityQueue

{

 protected int nullPathLength;

 public Comparable dequeueMin ()

{

 if (isEmpty ())

Advanced Data Structure and Algorithms

Notes

226 LOVELY PROFESSIONAL UNIVERSITY

 throw new ContainerEmptyException ();

 Comparable result = (Comparable) getKey ();

 LeftistHeap oldLeft = getLeftHeap ();

 LeftistHeap oldRight = getRightHeap ();

 purge ();

 swapContents (oldLeft);

 merge (oldRight);

 return result;

 }

 // ...

}

Program 11.5: LeftistHeap Class dequeueMin Method

The running time of Program 11.5 is determined by the time required to merge the two children of
the root (line 17) since the rest of the work in dequeueMin can be done in constant time. Consider
the running time to delete the root of a leftist heap T with n internal nodes. The running time to
merge the left and right subtrees of T

(dL – 1 + dR – 1)τ(isGT) + O(dL + dR),

where dL and dR are the null path lengths of the left and right subtrees T, respectively. In the worst
case, dR = 0 and dL = ⎣log2 n⎦.

11.2 Skew Heaps

There are several ways to implement heaps in a self-adjusting fashion. The one I shall discuss is
called skew heaps as proposed by Sleator and Tarjan, and is analogous to leftist heaps. A skew
heap is a heap-ordered binary tree. That is, it is a binary tree with one key in each node so that
for each node x other that the root, the key at node x is no less than the key at the parent of x. To
represent such a tree you store in each node x its associated key, denoted key(x) and two pointers
left(x) and right(x), to its left child and right child, respectively. If x has no left child I defi ne
left(x) =L; if x has no right child I defi ne right(x) =L. Access to the tree is by a pointer to its root;
you represent an empty tree by a pointer to L.

With this representation you can carry out the various heap operations as follows. I perform
makeheap(h) in O(1) time by initializing h to L. Since heap order implies that the root is a
minimum key in the tree, you can carry out fi ndmin(h) in O(1) time by returning the key at the
root; returning null if the heap is empty. You perform insert and deletemin using union. To carry
out insert(k , h), I make k into a one-node heap and Union it with h. To carry out deletemin(h),
if h is not empty I replace h by the Union of its left and right subtrees and return the key at the
original root. (If h is originally empty you return null.)

To perform union(h1 , h2), you form a single tree by traversing down the right paths of h1 and
h2, merging them into a single right path with keys in nondecreasing order. First assume the left
subtrees of nodes along the merge path do not change. (Figure 11.3(a).) The time for the Union
operation is bounded by a constant times the length of the merge path. To make Union effi cient,
you must keep right paths short. In leftist heaps this is done by maintaining the invariant that,
for any node x, the right path descending from x is a shortest path down to a missing node.
Maintaining this invariant requires storing at every node the length of a shortest path down
to a missing node; after the merge you walk back up the merge path, updating the shortest
path lengths and swapping left and right children as necessary to maintain the leftist property.
The length of the right path in a leftist heap of n nodes is at most log n, implying an O(log n)

Unit 11: Leftist Heaps and Binomial Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 227

worst-case time bound for each of the heap operations, where n is the number of nodes in the
heap or heaps involved.

51

1

9

13 21

2515

6

18

40 30

12

14

51

1

6

918

40
13

15 30

12

14

21

25

51

1

6

9 18

40

15

13

30

12

14

21

25

(b)

(a)

Figure 11.3: A Union of two Skew Heaps
(a) Merge of the Right Paths (b) Swapping of Children along the Path formed by the Merge

In our self-adjusting version of this data structure, I perform the Union operation by merging the
right paths of the two trees and then swapping the left and right children of every node on the
merge path except the lowest. (Figure 11.3(b)) This makes the potentially long right path formed
by the merge into a left path you call the resulting data structure a skew heap.

Task “A skew heap is a heap-ordered binary tree.” Explain.

11.3 Binomial Queues

A binomial queue is a priority queue that is implemented not as a single tree but as a collection
of heap-ordered trees. A collection of trees is called a fores.. Each of the trees in a binomial queue

Advanced Data Structure and Algorithms

Notes

228 LOVELY PROFESSIONAL UNIVERSITY

has a very special shape called a binomial tree. Binomial trees are general trees. i.e., the maximum
degree of a node is not fi xed.

The remarkable characteristic of binomial queues is that the merge operation is similar in structure
to binary addition, i.e., the collection of binomial trees that make up the binomial queue is like
the set of bits that make up the binary representation of a non-negative integer. Furthermore, the
merging of two binomial queues is done by adding the binomial trees that make up that queue in
the same way that the bits are combined when adding two binary numbers.

Binomial Trees

A binomial tree is a general tree with a very special shape:

Defi nition (Binomial Tree)

The binomial tree of order k ≥ 0 with root R is the tree Bk defi ned as follows

1. If k = 0, Bk = B0 = {R} i.e., the binomial tree of order zero consists of a single node, R.

2. If k > 0, Bk = {R, B0, B1, ..., Bk–1} i.e., the binomial tree of order k>0 comprises the root R, and
k binomial subtrees, B0, B1, ..., Bk–1.

Figure 11.4 shows the fi rst fi ve binomial trees, B0 – B4. It follows directly from the root of Bk, the
binomial tree of order k, has degree k. Since k may arbitrarily large, so too can the degree of the
root. Furthermore, the root of a binomial tree has the largest fanout of any of the nodes in that
tree.

B0 B1 B2 B3

B4

Figure 11.4: Binomial Trees B0, B1, ..., B4

Unit 11: Leftist Heaps and Binomial Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 229

The number of nodes in a binomial tree of order k is a function of k:

Theorem-11.3

The binomial tree of order k, Bk, contains 2k nodes.

extbfProof (By induction). Let nk be the number of nodes in Bk, a binomial tree of order k.

Base Case: By defi nition, B0 consists a single node. Therefore n0 = 1 = 20.

Inductive Hypothesis: Assume that nk = 2k for k = 0, 1, 2, ..., l, for some l ≥ 0. Consider the binomial
tree of order l + 1:

Bl + 1 = {R, B0, B1, B2, ..., Bl}.

Therefore the number of nodes in Bl+1 is given by

 nl+1 =
0

1
l

i
i

n
=

+ ∑

 =
0

1 2
l

i

i=

+ ∑

 =
12 – 11

2 – 1

l+

+

 = 2l+1

Therefore, by induction on l, nk = 2k for all k ≥ 0.

It follows from Theorem 11.3 that binomial trees only come in sizes that are a power of two. i.e.,
nk ∈ {1, 2, 4, 8, 16, ...}. Furthermore, for a given power of two, there is exactly one shape of
binomial tree.

Theorem-11.4

The height of Bk, the binomial tree of order k, is k.

extbfProof (By induction). Let hk be the height of Bk, a binomial tree of order k.

Base Case: By defi nition, B0 consists a single node. Therefore h0 = 0.

Inductive Hypothesis: Assume that hk = k for k = 0, 1, 2, ..., l, for some l ≥ 0. Consider the binomial
tree of order l + 1:

Bl+1 = {R, B0, B1, B2, ..., Bl}.

Therefore the height Bl+1 is given by

 hl+1 =
0

1 max ii l
h

≤ ≤
+

 =
0

1 max
i l

i
≤ ≤

+

 = l + 1.

Therefore, by induction on l, hk = k for all k ≥ 0.

Theorem 11.4 tells us that the height of a binomial tree of order k is k and tells us that the number
of nodes is nk = 2k. Therefore, the height of Bk is exactly O(log n).

Figure 11.5 shows that there are two ways to think about the construction of binomial trees, i.e.,
binomial Bk consists of a root node to which the k binomial trees B0, B1, ..., Bk–1 are attached as
shown in Figure 11.5 (a).

Advanced Data Structure and Algorithms

Notes

230 LOVELY PROFESSIONAL UNIVERSITY

B0

B1

B2

B3

B3

B3

(a)

(b)

Figure 11.5: Two Views of Binomial Tree B4

Alternatively, you can think of Bk as being comprised of two binomial trees of order k-1.

 Example: Figure 11.5 (b) shows that B4 is made up of two instances of B3. In general,
suppose you have two trees of order k-1, say B1

k–1 and B2
k–1, where B1

k–1 = {R1, B1
0, B1

1, B1
2, ..., B1

k–2}.
Then you can construct a binomial tree of order k by combining the trees to get

 Bk = {R1, B1
0, B1

1, B1
2, ..., B1

k–2, B2
k–1}.

Why do you call Bk a binomial tree? It is because the number of nodes at a given depth in the tree
is determined by the binomial coeffi cient. And the binomial coeffi cient derives its name from the
binomial theorem. And the binomial theorem tells us how to compute the nth power of a binomial .
And a binomial is an expression which consists of two terms, such as x+y. That is why it is called
a binomial tree!

Task “Binomial tree is a general true with a very special shape” Discuss.

Unit 11: Leftist Heaps and Binomial Queues

Notes

 LOVELY PROFESSIONAL UNIVERSITY 231

11.4 Summary

 A power-of-2 heap is a left-heap-ordered tree consisting of a root node with an empty right
subtree and a complete left subtree.

 The tree corresponding to a power-of-2 heap by the left-child, right-sibling correspondence
is called a binomial tree.

 Binomial trees and power-of-2 heaps are equivalent. I work with both representations
because binomial trees are slightly easier to visualize, whereas the simple representation of
power-of-2 heaps leads to simpler implementations.

11.5 Keywords

Binomial Queue: A binomial queue is a priority queue that is implemented not as a single tree
but as a collection of heap-ordered trees.

Leftist Heap: A leftist heap is a heap-ordered binary tree which has a very special shape called
a leftist tree.

Leftist Tree: A leftist tree is a tree which tends to ``lean’’ to the left. The tendency to lean to the left
is defi ned in terms of the shortest path from the root to an external node.

Skew Heap: A skew heap is a heap-ordered binary tree.

11.6 Self Assessment

Fill in the blanks:

1. A collection of trees is called a

2. Every node in binary tree has associated with it a quantity called its

3. The null path length of an empty tree is

4. A leftist tree is a tree in which the shortest path to an external node is always on the
........................ .

5. The method of the LeftistHeap class is used to put items into the heap.

6. The method locates the item with the smallest key in a given priority
queue.

7. Skew heaps as proposed by

8. Each of the trees in a binomial queue has a very special shape called a

11.7 Review Questions

1. What do you mean by leftist heaps?

2. Describe null path and null path length.

3. Write the methods to implement queues by the simple but slow technique of keeping the
front of the queue always in the fi rst position of a linear array.

4. Prove that “Consider a leftist tree T which contains n internal nodes. The path leading
from the root of T downwards to the rightmost external node contains at most ⎣log2(n + 1)⎦
nodes.”

Advanced Data Structure and Algorithms

Notes

232 LOVELY PROFESSIONAL UNIVERSITY

5. Write methods to implement queues in a circular array with one unused entry in the array.
That is, we consider that the array is full when the rear is two positions before the front;
when the rear is one position before, it will always indicate an empty queue.

6. Prove that “The binomial tree of order k, Bk, contains 2k nodes. extbfProof (By induction).
Let nk be the number of nodes in Bk, a binomial tree of order k.”

7. Write a menu driven demonstration program for manipulating a deque of characters,
similar to the Extended_queue demonstration program.

8. Write the class defi nition and the method implementations needed to implement a deque
in a linear array.

9. Write the methods needed to implement a deque in a circular array. Consider the class
Deque as derived from the class Queue.

10. Write a method to implement queues, where the implementation does not keep a count of
the entries in the queue but instead uses the special conditions

 rear = −1 and front = 0

 to indicate an empty queue.

Answers: Self Assessment

1. fores 2. null path length 3. zero 4. right

5. enqueue 6. fi ndMin 7. Sleator and Tarjan

8. binomial tree

11.8 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms, Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 233

Unit 12: Sorting

CONTENTS

Objectives

Introduction

12.1 Internal Sorting

12.2 Insertion Sort

 12.2.1 Algorithm of Insertion Sort

 12.2.2 Complexity Analysis

12.3 Shell Sort

12.4 Heap Sort

12.5 Merge Sort

12.6 Merging of two Sorted Lists

12.7 Quick Sort

12.8 Bucket Sort

12.9 External Sorting

12.10 Summary

12.11 Keywords

12.12 Self Assessment

12.13 Review Questions

12.14 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss internal sorting

 Explain heap sort, merge sort and quick sort

 Describe external sorting

 Discuss the implementation of heaps

Introduction

Retrieval of information is made easier when it is stored in some predefi ned order. Sorting is,
therefore, a very important computer application activity. Many sorting algorithms are available.
Different environments require different sorting methods. Sorting algorithms can be characterised
in the following two ways:

1. Simple algorithms which require the order of n2 (written as O(n2))comparisons to sort n
items.

2. Sophisticated algorithms that require the O(nlog
2
n) comparisons to sort n items.

Advanced Data Structure and Algorithms

Notes

234 LOVELY PROFESSIONAL UNIVERSITY

The difference lies in the fact that the fi rst method moves data only over small distances in the
process of sorting, whereas the second method moves data over large distances, so that items
settle into the proper order sooner, thus resulting in fewer comparisons. Performance of a sorting
algorithm can also depend on the degree of order already present in the data.

There are two basic categories of sorting methods: Internal Sorting and External Sorting. Internal
sorting is applied when the entire collection of data to be sorted is small enough so that the sorting
can take place within the main memory. The time required to read or write is not considered to be
signifi cant in evaluating the performance of internal sorting methods. External sorting methods
are applied to larger collection of data which reside on secondary devices. Read and write access
times are a major concern in determining sorting performances of such methods.

Searching is the process of looking for something: Finding one piece of data that has been stored
within a whole group of data. It is often the most time-consuming part of many computer
programs. There are a variety of methods, or algorithms, used to search for a data item, depending
on how much data there is to look through, what kind of data it is, what type of structure the data
is stored in, and even where the data is stored - inside computer memory or on some external
medium.

Till now, we have studied a variety of data structures, their types, their use and so on. In this
chapter, we will concentrate on some techniques to search a particular data or piece of information
from a large amount of data. There are basically two types of searching techniques, Linear or
Sequential Search and Binary Search.

Searching is very common task in day-to-day life, where we are involved some or other time, in
searching either for some needful at home or offi ce or market, or searching a word in dictionary.
In this chapter, we see that if the things are organised in some manner, then search becomes
effi cient and fast.

All the above facts apply to our computer programs also. Suppose we have a telephone directory
stored in the memory in an array which contains Name and Numbers. Now, what happens if we
have to fi nd a number? The answer is search that number in the array according to name (given).
If the names were organised in some order, searching would have been fast.

12.1 Internal Sorting

The function of sorting or ordering a list of objects according to some linear order is so fundamental
that it is ubiquitous in engineering applications in all disciplines. There are two broad categories of
sorting methods: Internal sorting takes place in the main memory, where we can take advantage
of the random access nature of the main memory; external sorting is necessary when the number
and size of objects are prohibitive to be accommodated in the main memory.

Problem

1. Given records r1, r2,..., rn, with key values k1, k2,..., kn, produce the records in the order

 ri1, ri2,..., rin,

 such that

 ki1 ≤ ki2 ≤ ... ≤ kin

2. The complexity of a sorting algorithm can be measured in terms of

(a) number of algorithm steps to sort n records

(b) number of comparisons between keys (appropriate when the keys are long character
strings)

(c) number of times records must be moved (appropriate when record size is large)

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 235

Any sorting algorithm that uses comparisons of keys needs at least O(n log n) time to accomplish
the sorting.

Sorting Methods

Internal External
(In memory)

quick sort
heap sort

bubble sort
insertion sort
selection sort

shell sort

(Appropriate for secondary storage)

merge sort
radix sort

poly-phase sort

12.2 Insertion Sort

This is a naturally occurring sorting method exemplifi ed by a card player arranging the cards
dealt to him. He picks up the cards as they are dealt and inserts them into the required position.
Thus at every step, we insert an item into its proper place in an already ordered list.

We will illustrate insertion sort with an example (refer to Figure 9.1) before presenting the formal
algorithm.

 Example: Sort the following list using the insertion sort method:

(1) 4

4, 1, 3, 2, 5

1 < 4, Therefore insert before 4

(2) 1 4

3 > 1, 3 Insert between 1 & 4

(3) 1 3 4

2 > 1, 2 Insert between 1 & 3

(4) 1 2 3 4

(5) 1 2 3 4 5

5 > 1, 2, 3, 4 Insert after 4

Insertion Sort

Thus to fi nd the correct position search the list till an item just greater than the target is found.
Shift all the items from this point one down the list. Insert the target in the vacated slot. Repeat
this process for all the elements in the list. This results in sorted list.

12.2.1 Algorithm of Insertion Sort

Insertion sort algorithm somewhat resembles selection sort. Array is imaginary divided into
two parts - sorted one and unsorted one. At the beginning, sorted part contains fi rst element of
the array and unsorted one contains the rest. At every step, algorithm takes fi rst element in the

Advanced Data Structure and Algorithms

Notes

236 LOVELY PROFESSIONAL UNIVERSITY

unsorted part and inserts it to the right place of the sorted one. When unsorted part becomes
empty, algorithm stops. Sketchy, insertion sort algorithm step looks like this:

Sorted partitial result Unsorted data

< X > X X . . .

becomes

Sorted partitial result Unsorted data

< X X > X . . .

 Example: Sort {7, -5, 2, 16, 4} using insertion sort.

unsorted7 2 16 4–5

–5 to be inserted7 2 16 4–5

7 > –5, shift? 2 16 47

reached left boundary, insert-5–5 2 16 47

2 to be inserted–5 2 16 47

7 > 2, shift–5 7 16 4?

–5 < 2, insert 2–5 7 16 42

16 to be inserted–5 7 16 42

7 < 16, insert 16–5 7 16 42

4 to be inserted–5 7 16 42

16 > 4, shift–5 7 ? 162

7 > 4, shift–5 ? 7 162

2 < 4, insert 4–5 4 7 162

sorted–5 4 7 162

The Ideas of Insertion

The main operation of the algorithm is insertion. The task is to insert a value into the sorted part
of the array. Let us see the variants of how we can do it.

“Sifting down” using Swaps

The simplest way to insert next element into the sorted part is to sift it down, until it occupies
correct position. Initially the element stays right after the sorted part. At each step algorithm
compares the element with one before it and, if they stay in reversed order, swap them. Let us
see an illustration.

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 237

16 > 5, swap1 7 9 163

9 > 5, swap1 7 9 53

7 > 5, swap1 7 5 93

3 < 5 < 7, sifting is done1 5 7 9

5

16

16

163

This approach writes sifted element to temporary position many times. Next implementation
eliminates those unnecessary writes.

Shifting Instead of Swapping

We can modify previous algorithm, so it will write sifted element only to the fi nal correct position.
Let us see an illustration.

16 > 5, swap1 7 9 163

9 > 5, swap1 7 9 ?3

7 > 5, swap1 7 ? 93

3 < 5 < 7, sifting is done

insert 5 to final position

1 5 7 9

5

16

16

163

It is the most commonly used modifi cation of the insertion sort.

Using Binary Search

It is reasonable to use binary search algorithm to fi nd a proper place for insertion. This variant of
the insertion sort is called binary insertion sort. After position for insertion is found, algorithm
shifts the part of the array and inserts the element. This version has lower number of comparisons,
but overall average complexity remains O(n2). From a practical point of view this improvement is
not very important, because insertion sort is used on quite small data sets.

12.2.2 Complexity Analysis

Insertion sort’s overall complexity is O(n2) on average, regardless of the method of insertion. On
the almost sorted arrays insertion sort shows better performance, up to O(n) in case of applying
insertion sort to a sorted array. Number of writes is O(n2) on average, but number of comparisons
may vary depending on the insertion algorithm. It is O(n2) when shifting or swapping methods
are used and O(n log n) for binary insertion sort.

From the point of view of practical application, an average complexity of the insertion sort is not
so important. As it was mentioned above, insertion sort is applied to quite small data sets (from
8 to 12 elements).

12.3 Shell Sort

Most of the sorting algorithms seen so far such as insertion sort and selection sort have a run time
complexity of O(N2). We also know that no sorting algorithm can have time complexity less than
O(N), since we need to scan the list at least once. For example, insertion sort best case complexity
is O(N). Can we get a better performance and get run time complexity between O(N2) and O(N)?
The answer is Yes and there are many algorithms with a complexity in this range, with varying
tradeoffs. In this note, we describe one approach: Shell Sort. Shell Sort has evolved as a trial and
error algorithm. Analytical results are not available but empirically it has been found that the

Advanced Data Structure and Algorithms

Notes

238 LOVELY PROFESSIONAL UNIVERSITY

Shell Sort improves the effi ciency and decreases the run time complexity to O(N1.25). Donald Shell
discovered the Shell sort and thence it is known as Shell Sort.

Algorithm

The algorithms for shell sort can be defi ned in two steps:

Step 1: Divide the original list into smaller lists.

Step 2: Sort individual sub lists using any known sorting algorithm (like bubble sort, insertion
sort, selection sort, etc).

void shellsort (int[] a, int n)

{

 int i, j, k, h, v;

 int[] cols = {1391376, 463792, 198768, 86961, 33936, 13776, 4592,

 1968, 861, 336, 112, 48, 21, 7, 3, 1}

 for (k=0; k<16; k++)

 {

 h=cols[k];

 for (i=h; i<n; i++)

 {

 v=a[i];

 j=i;

 while (j>=h && a[j-h]>v)

 {

 a[j]=a[j-h];

 j=j-h;

 }

 a[j]=v;

 }

 }

}

Many questions arise

1. How should I divide the list?

2. Which sorting algorithm to use?

3. How many times I will have to execute steps 1 and 2?

4. And the most puzzling question if I am anyway using bubble, insertion or selection sort
then how I can achieve improvement in effi ciency? I shall discuss each of these questions
one by one.

For dividing the original list into smaller lists, we choose a value K, which is known as increment.
Based on the value of K, we split the list into K sub lists. For example, if our original list is
x[0], x[1], x[2], x[3], x[4]….x[99] and we choose 5 as the value for increment, K then we get the
following sub lists.

 fi rst_list = x[0], x[5], x[10], x[15]…….x[95]

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 239

 second_list = x[1], x[6], x[11], x[16]…….x[96]

 third_list = x[2], x[7], x[12], x[17]…….x[97]

 forth_list = x[3], x[8], x[13], x[18]…….x[98]

 fi fth_list = x[4], x[9], x[14], x[19] …….x[99]

So the ith sub list will contain every Kth element of the original list starting from index i-1.

According to the algorithm mentioned above, for each iteration, the list is divided and then
sorted. If we use the same value of K, we will get the same sub lists and every time we will sort
the same sub lists, which will not result in the ordered fi nal list. Note that sorting the fi ve sub
lists independently do not ensure that the full list is sorted! So we need to change the value of
K (increase or decrease?) for every iteration. To know whether the array is sorted, we need to
scan the full list. We also know that number of sub lists we get are equal to the value of K. So if
we decide to reduce the value of K after every iteration we will reduce the number of sub lists
also in every iteration. Eventually, when K will be set to 1, we will have only one sub list. Hence
we know the termination condition for our algorithm is K = 1. Since for every iteration we are
decreasing the value of the increment (K) the algorithm is also known as “diminishing increment
sort”.

Any sorting algorithm or a combination of algorithms can be used for sorting the sub lists, e.g.
some shell sort implementation use bubble sort for the last iteration and insertion sort for other
iterations. We use insertion sort in this tutorial. How does shell sort give better performance if
the sorting is ultimately done by algorithms like insertion sort and bubble sort? The rationale is
as follows.

If the list is either small or almost sorted then insertion sort is effi cient since less number of
elements will be shifting. In Shell Sort as we have already seen, the original list is divided into
smaller lists based on the value of increment and sorted.

Initially value of K is fairly large giving a large number of small sub lists. We know that simple
sorting algorithms like insertion sort are effective for small lists, since the data movements are
over short distances. As K reduces in value, the length of the sub lists increases. But since the
earlier sub lists have been sorted, we except the full list to look more and more sorted. Again note
that algorithms such as insertion sort are fairly effi cient when they work with nearly sorted lists.
Thus the ineffi ciency arising out of working with larger lists is partly compensated by lists being
increasingly sorted. This is the intuitive explanation for the performance of shell sort.

How to choose the value of increment K?

Till date there is no convincing answer to what should be the optimal sequence for the increment,
K. But it has been empirically found that larger number of increments gives more effi cient results.
Also it is advisable not to use empirical sequences like 1,2,4,8… or 1,3,6,9… if we do so, for
different iteration, we may get almost the same elements in the sub lists to compare and sort
which will not result in better performance. For example, consider a list X= 12 6 2 5 8 10 1 15 31
23 and increment sequences 6 and 3.

When the increment is 6, you will get the following sub lists

(12,1)

(6,15)

(2,31)

(5,23)

(8)

(10)

Advanced Data Structure and Algorithms

Notes

240 LOVELY PROFESSIONAL UNIVERSITY

After fi rst iteration

X=1 6 2 5 8 10 12 15 31 23

When the increment reduces to 3, you will get the following lists

(1, 5, 12, 23)

(6, 8, 15)

(2, 10, 31)

Now if we analyse the fi rst sub lists where increment was 6 and then second sub lists where
increment was 3, we can see that in the second set of lists, we are comparing and sorting 1, 12
again which we had already sorted before in the previous sub list. So, we should choose the
value of K in such a way that in every iterations we get almost different elements in the sub lists
to compare and sort.

There are proven and recommended ways for generating the increment sequences.

Some of them have been discussed below.

Donald Shell has suggested

Ht = N/2

Hk= hk+1 /2

Which give the increment series as: N/2, N/4, …….1

Hibbard suggested the sequence of increment as 1, 3, 7, …….2K-1.

Another way for calculating increment K suggested by Knuth and we have used this method for
generating the increments in this tutorial.

hi = 1

hi = hi* 3 +1 and stops at ht, When ht+2 >= N.

Which gives the increment series as 1, 4, 13….. ht.

Task Discuss insertion sorting techniques.

Other than these, there are many series which have been empirically found and perform well.

 Example: We will take an example to illustrate Shell sort. Let the list be 8 2 84 6 12 5
76 9 13 67 54 0 43 20 -4 78 32 62 75 106 16 4 77 45 23 31 92 7 18 and the increment values using
Knuth formula we get are 13, 4, 1.

When increment is 13, we get the following 13 sub lists and the elements are divided among the
sub lists in the following ways i.e. every Kth element of the list starting with the index i will be in
the sub list i.

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 241

After sorting the sub lists, the resulting list we get is as follows.

8 -4 18 6 12 5 76 9 4 67 45 0 31 20 2 78 32 62 75 106 16 13 77 54 23 43 92 7 84

You now, reduce the increment value to 4 and get the following 4 sub lists.

After sorting these sub lists, the resulting list is as follows:

4 -4 2 0 8 5 18 6 12 13 45 7 16 20 75 9 23 43 76 54 31 62 77 78 32 67 92 106 84

You further reduce increment value to 1, which is our last increment value. Now there is only one
list, which after sorting, we get:

–4 0 2 4 5 6 7 8 9 12 13 16 18 20 23 31 32 43 45 54 62 67 75 76 77 78 84 92 106

Now try to understand and analyse what is happening? How the elements are moved? We can
see, after the fi rst iteration when the increment was 13, the element –4 of the list, which was
at 15th position in the original list has reached to the 2nd position. The element 18 was at 29th
position and has reached the 3rd position. Using insertion sort on the whole list, we know that
if –4 has to reach from the 15th position to the 2nd position, the required number of movements
of the elements in the list will be very high. Shell Sort performs better than insertion sort by
reducing the number of movements of elements in the lists. This is achieved by large strides the
element take in the beginning cycle.

Upper Bound

Theorem: With the h-sequence 1, 3, 7, 15, 31, 63, 127, ..., 2k – 1, ... Shellsort needs O(n• n) steps for
sorting a sequence of length n (Papernov/Stasevic [PS 65]).

Proof: Let ht be the h closest to n. We analyze the behavior of Shellsort separately for the elements
hk with k ≤ t and with k > t.

Let k ≤ t. Since hk = 2k – 1 we have the conditions mentioned above that hk+1 and hk+2 are relatively
prime and in O(hk). Therefore, O(n⋅hk) sorting steps suffi ce for hk-sorting the data sequence. Since

Advanced Data Structure and Algorithms

Notes

242 LOVELY PROFESSIONAL UNIVERSITY

the hk form a geometric series, the sum of all hk with k = 1, ..., t is in O(ht) = O(n). Thus O(n⋅n)
sorting steps are needed for this part where k t.

Now let k > t. When the sequence is arranged as an array with hk columns there are n/hk elements
in each column. Thus, O((n/hk)2) sorting steps are needed to sort each column, since Insertion
Sort has quadratic complexity. There are hk columns, therefore the number of sorting steps for hk-
sorting the entire data sequence is in O((n/hk)2⋅hk) = O(n⋅n/hk). Again, the n/hk form a geometric
series whose sum is in O(n/ht) = O(n). Therefore, again O(n⋅n) steps are needed for this part
where k > t.

It can be shown that for this h-sequence the upper bound is tight. But there is another h-sequence
that leads to a more effi cient behavior of Shellsort.

Theorem: With the h-sequence 1, 2, 3, 4, 6, 8, 9, 12, 16, ..., 2p3q, ... Shellsort needs O(n⋅log(n)2)
steps for sorting a sequence of length n (Pratt [Pra 79]).

Proof: If g = 2 and h = 3, then γ(g, h) = (g-1)⋅(h-1) – 1 = 1, i.e. in a 2,3-sorted sequence to the right
of each element only the next element can be smaller. Therefore, O(n) sorting steps suffi ce to sort
the sequence with Insertion Sort. Considering elements with odd and with even index separately,
it becomes clear that again O(n) sorting steps suffi ce to make a 4,6-sorted sequence 2-sorted.
Similarly, O(n) sorting steps suffi ce to make a 6,9-sorted sequence 3-sorted and so on.

The above h-sequence has the property that for each hk also 2hk and 3hk occurs, so O(n) sorting
steps suffi ce for each hk. Altogether there are log(n)2 elements in the h-sequence; thus the
complexity of Shellsort with this h-sequence is in O(n⋅log(n)2).

The h-sequence of Pratt performs best asymptotically, but it consists of log(n)2 elements.
Particularly, if the data sequence is presorted, a h-sequence with less elements is better, since the
data sequence has to be scanned (by the for-i-loop in the program) for each hk, even if only a few
sorting steps are performed.

By combining the arguments of these two theorems h-sequences with O(log(n)) elements can be
derived that lead to a very good performance in practice, as for instance the h-sequence of the
program. But unfortunately, there seems to be no h-sequence that gives Shellsort a worst case
performance of O(n⋅log(n)). It is an open question whether possibly the average complexity is in
O(n⋅log(n)).

12.4 Heap Sort

Heapsort is a sorting technique which sorts a contiguous list of length n with O(nlog2(n)
comparisons and movement of entries, even in the worst case. Hence it achieves worst-case
bounds better than those of quicksort, and for contiguous list it is better than mergesort, since it
needs only a small and constant amount of space apart from the list being sorted.

Heapsort proceeds in two phases. First, all the entries in the list are arranged to satisfy heap
property, and then top of the heap is removed and another entry is promoted to take its place
repeatedly. Therefore we need a procedure which builds an initial heap to arrange all the entries
in the list to satisfy heap property. The procedure which builds an initial heap uses a procedure
which adjust the ith entry in the list whose entries at 2i and 2i + 1 positions already satisfy heap
property in such a manner entry at ith position in the list will also satisfy heap property.

The following C code implements the algorithm.

void adjust(list x, int i, int n)

{

 int j, k;

 Boolean flag;

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 243

 k = list[i];

 flag = true;

 j = 2 * i;

 while(j <= n && flag)

 {

 if((j < n) && (list[j] < list[j+ 1]))

 j = j + 1 ;

 if(k >= list[j])

 flag = false;

 else

 {

 list[j div 2] = list[j];

 j = j * 2;

 }

 }

 list[j div 2] = k;

}

void build_initial_heap(list x, int n)

{

 int i;

 for(i = n div 2; i >= 1; i--)

 adjust(x, i, n);

}

void heapsort(list x, int n)

{

 int i;

 build_initial_heap(x, n);

 for(i = n-l; i >= 1; i--)

 {

 exchange(list[1], list[i+1]);

 adjust(x, l, i);

 }

 }

void exchange(int &a, int &b)

{

 int t;

 t = *a;

 *a = *b;

 *b = t;

 }

Advanced Data Structure and Algorithms

Notes

244 LOVELY PROFESSIONAL UNIVERSITY

void adjust(int x[], int i, int n)

{

 int j, k;

 int flag;

 k = x[i];

 flag = 1;

 j = 2 * i;

 while(j <= n && flag == 1)

 {

 if((j < n) && (x[j] < x[j+ 1]))

 j++;

 if(k >= x[j])

 flag = 0;

 else

 {

 x[j / 2] = x[j];

 j = j * 2;

 }

 }

 x[j / 2] = k;

}

void build_initial_heap(int x[], int n)

{

 int i;

 for(i = n / 2; i >= 1; i--)

 adjust(x, i, n);

}

void heapsort(int x[], int n)

{

 int i;

 build_initial_heap(x, n);

 for(i = n-l; i >= 1; i--)

 {

 exchange(x[1], x[i+ 1]);

 adjust(x,l,i);

}

Analysis of Heapsort

In each pass of while loop in procedure adjust(x,i,n), the position i is doubled, hence the number
of passes cannot exceed (loge n div i). Therefore the computation time of adjust is O(log n div

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 245

i). The procedure build-initial-heap calls the adjust procedure for values of i ranging from n/2
down to 1. Hence the total number of iterations will be:

/2

1
log() log(/2)log(/ /2) log(/) /2log() – log(! /2)

n

i
n n n n n i n n n

=

+ + = =∑
This comes out to be some constant times n. Hence the computation time of build_initial_heap is
O(n). The heapsort procedure calls adjust (x, 1, i) (n-1) times, hence the total number of iterations
made in the heap sort will be:

1

1
log(/1)

n

i
i

−

=
∑

1

1
log() log(1) log(2) log(– 1)

n

i
i n

−

=

= + + +∑
which comes out to be approx. n log(n). Hence the computing time of heapsort is O(n log(n)) +
O(n).

The only additional space needed by heap sort is space for one record to carry out exchange.

Consider a list given below when heapsort is applied to it we get following:

 42 97

 32 58

 48 75

 20 53

 58 42

 53 53

 75 48

 53 32

 97 20

 list to be sorted initial heap

Output after each pass of heapsort

75 58 53 53 48 42 32 20

58 53 48 48 42 32 20 32

53 53 53 20 20 20 42 42

53 32 32 32 32 48 48 48

42 42 42 42 53 53 53 53

20 20 20 53 53 53 53 53

48 48 58 58 58 58 58 58

32 75 75 75 75 75 75 75

97 97 97 97 97 97 97 97

12.5 Merge Sort

This is another sorting technique having the same average and worst case time complexity,
requiring an additional list of size n. The technique that we use is the merging of the two sorted
lists of size m and n respectively to form a single sorted list of size (m+n). Given a list of size n to
be sorted, instead of viewing it to be one single list of size n, we start by viewing it to be n lists

Advanced Data Structure and Algorithms

Notes

246 LOVELY PROFESSIONAL UNIVERSITY

each of size 1, and merge the fi rst list with the second list to form a single sorted list of size 2.
Similarly we merge the third and the fourth lists to form a second single sorted list of size 2, and
so on this completes the one pass. We then consider the fi rst sorted list of size 2 and second sorted
list of size 2, and merge them to form a single sorted list of size 4. Similarly we merge the third
and the fourth sorted lists each of size 2 to form the second single sorted list of size 4, and so on;
this completes the second pass. In the third pass we merge these adjacent sorted lists each of size
4 to form sorted lists of size 8. We continue this process till fi nally we end up with a single sorted
list of size n as shown in fi gure.

 10 5 1 20 25 6 7 3

 [5,10] [1,20] [6,25] [3,7]

[1,5,10,20] [3,6,7,25]

[1,3,5,6,7,10,20,25]

To carry out the above task, we require a procedure to merge the two sorted lists of size m and
n respectively to form a single sorted list of size (m+n), we also require a procedure to carry out
one pass of the list merging the adjacent sorted lists of the specifi ed size. This is because we have
to carry out the repeated passes of the given list. In the fi rst pass, we merge the adjacent lists of
size 1. In the second pass, we merge the adjacent lists of size 2, and so on. Therefore, we will call
this procedure by varying the size of the lists to be merged.

Here is a C implementation of the same.

void merge(int s[], int y[], int l, int m, int n)

{

 int i,j,k;

 i =1;

 j = m+1;

 k= 1;

 while ((i <= m) && (j <= n))

 {

 if(x[i] <= x[j])

 {

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 247

 y[k] =x[i];

 i++ ;

 k++;

 }

 else

 {

 y[k] = x[j];

 j++;;

 k++;

 }

 }

 while (i <= m)

 {

 y[k] =x[i];

 i++;

 k++;

 }

 while (j <= n)

 {

 y[k] = x[j];

 j++;

 k++;

 }

}

void mpass(int x[],int y[],int 1, int n)

{

 int i,j;

 i = 1;

 whi1e(i <= n - 2 * 1 + 1)

 {

 merge(x, y, i, i+l-1, i+ 2 * 1-1);

 i = i + 2 * 1;

 }

 if((i+1-1) < n)

 merge(x, y, i, i+1-1, n);

 else

 while (i <= n)

 {

 y[i] =x[i];

 i++;

Advanced Data Structure and Algorithms

Notes

248 LOVELY PROFESSIONAL UNIVERSITY

 }

}

void msort(int x[], int n)

{

 int 1;

 int y[];

 1 = 1;

 while(1 < n)

 {

 mpass(x, y, l, n);

 1 = 1 * 2;

 mpass(y, x, l, n);

 1 = 1 * 2;

 }

 }

The merging of two sub-lists, the fi rst running from the index 1 to m, and the second running
from the index (m+1) to n requires no more than (n-1+1) iterations. Hence if 1 = 1, then no more
than n iterations, where n is the size of the list to be sorted. Therefore if n is the size of the list to be
sorted, every pass that a merge routine performs requires a time proportional to O(n), and since
the number of passes required to be performed are log2n. The time complexity of the algorithm is
O(nlog2(n)), both average and worst case. The merge sort requires an additional list of size n.

Multi-way Merge Sort

The two-phase, multiway merge-sort algorithm is similar to the external-memory merge-sort
algorithm presented in the previous section. Phase 1 is the same, but, in phase 2, the main loop is
performed only once merging all [N/M] runs into one run in one go. To achieve this, multiway
merging is performed instead of using the TWOWAY-MERGE algorithm.

The idea of multiway merging is the same as for the two-way merging, but instead of having 2
input buffers (Bf1 and Bf2) of B elements, we have [N/M] input buffers, each B elements long.
Each buffer corresponds to one unfi nished (or active) run. Initially, all runs are active. Each buffer
has a pointer to the fi rst unchosen element in that buffer (analogous to p1 and p2 in TWOWAY-
MERGE).

The multiway merging is performed by repeating these steps:

1. Find the smallest element among the unchosen elements of all the input buffers. Linear
search is suffi cient, but if the CPU cost is also important, minimum priority queue can be
used to store pointers to all the unchosen elements in input buffers. In such a case, fi nding
the smallest element is logarithmic in the number of the active runs.

2. Move the smallest element to the fi rst available position of the output buffer.

3. If the output buffer is full, write it to the disk and reinitialize the buffer to hold the next
output page.

4. If the buffer, from which the smallest element was just taken is now exhausted of elements,
read the next page from the corresponding run. If no pages remain in that run, consider the
run fi nished (no longer active).

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 249

When only one active run remains the algorithm fi nishes up as shown in lines 30 and 32 of
TWOWAY-MERGE-it just copies all the remaining elements to the end of fi le X. Figure 12.1
visualizes multiway merging.

Input buffers, one for
each unfinished run

Pointers to first
unchosen elements

Select smallest
unchosen
element for
output

P0

………..

Bf0

Figure 12.1: Main-memory Organization for Multiway Merging

It is easy to see that phase 2 of the two-phase, multiway merge-sort algorithm performs only θ
(n) I/O operations and this is also the running time of the whole algorithm. In spite of this, the
algorithm has a limitation-it can not sort very large fi les.

If phase 1 of the algorithm produces more than m – 1 runs (N/M > m – 1), all runs can not be
merged in one go in phase 2, because each run requires a one-page input buffer in main-memory
and one page of main-memory is reserved for the output buffer. How large should the fi le be for
this to happen?

Multiway Merge Sort of Very Large Files

Sometimes there may be a need to sort extremely large fi les or there is only a small amount of
available main memory. As described in the previous section, two-phase, multiway merge sort
may not work in such situations.

A natural way to extend the two-phase, multiway merge sort for fi les of any size is to do not
one but many iterations in phase 2 of the algorithm. That is, we employ the external memory
merge-sort algorithm from Section 3, but instead of using TWOWAY-MERGE, we use the
multiway merging (as described in the previous section) to merge m – 1 runs from fi le Y into one
run in fi le X. Then, in each iteration of the main loop of phase 2, we reduce the number of runs
by a factor of m – 1.

What is the running time of this algorithm, which we call simply multiway merge sort. Phase 1
and each iteration of the main loop of phase 2 takes θ(n) I/O operations. After phase 1, we start
up with [N/M] = [n/m] runs, each iteration of the main loop of phase 2 reduces the number of
runs by a factor of m – 1, and we stop when we have just one run. Thus, there are logm–1(n/m)
iterations of the main loop of phase 2. Therefore, the total running time of the algorithm is
θ(n logm–1(n/m)) = θ (n logm n – n logmm) = θ (n logm n – n) = θ (n logm n).

Remember that the cost of the external-memory merge-sort algorithm from Section 3 is
θ(n log2(n/m)). Thus, multiway merge sort is faster by a factor of (1 – 1 /logmn)log2m). Actually,

Advanced Data Structure and Algorithms

Notes

250 LOVELY PROFESSIONAL UNIVERSITY

θ(n logmn) is a lower bound for the problem of external-memory sorting. That is, multiway merge
sort is an asymptotically optimal algorithm.

12.6 Merging of two Sorted Lists

Assume that two lists to be merged are sorted in descending order. Compare the fi rst element of
the fi rst list with the fi rst element of the second list. If the element of the fi rst list is greater, then
place it in the resultant list. Advance the index of the fi rst list and the index of the resultant list
so that they will point to the next term. If the element of the fi rst list is smaller, place the element
of the second list in the resultant list. Advance the index of the second list and the index of the
resultant list so that they will point to the next term.

Repeat this process until all the elements of either the fi rst list or the second list are compared. If
some elements remain to be compared in the fi rst list or in the second list, place those elements in
the resultant list and advance the corresponding index of that list and the index of the resultant
list.

Suppose the fi rst list is 10 20 25 50 63, and the second list is 12 16 62 68 80. The sorted lists are 63
50 25 20 10 and 80 68 62 16 12.

The fi rst element of the fi rst list is 63, which is smaller than 80, so the fi rst element of the resultant
list is 80. Now, 63 is compared with 68; again it is smaller, so the second element in the resultant
list is 68. Next, 63 is compared with 50. In this case it is greater, so the third element of the
resultant list is 63.

Repeat this process for all the elements of the fi rst list and the second list. The resultant list is 80
68 63 62 50 25 20 16 12 10.

Lab Exercise Program:

#include<stdio.h>

#include<conio.h>

void main()

{

 void read(int *,int);

 void dis(int *,int);

 void sort(int *,int);

 void merge(int *,int *,int *,int);

 int a[5],b[5],c[10];

 clrscr();

 printf(“Enter the elements of first list \n”);

 read(a,5); /*read the list*/

 printf(“The elements of first list are \n”);

 dis(a,5); /*Display the first list*/

 printf(“Enter the elements of second list \n”);

 read(b,5); /*read the list*/

 printf(“The elements of second list are \n”);

 dis(b,5); /*Display the second list*/

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 251

 sort(a,5);

 printf(“The sorted list a is:\n”);

 dis(a,5);

 sort(b,5);

 printf(“The sorted list b is:\n”);

 dis(b,5);

 merge(a,b,c,5);

 printf(“The elements of merged list are \n”);

 dis(c,10); /*Display the merged list*/

 getch();

}

void read(int c[],int i)

{

 int j;

 for(j=0;j<i;j++)

 scanf(“%d”,&c[j]);

 fflush(stdin);

}

void dis(int d[],int i)

{

 int j;

 for(j=0;j<i;j++)

 printf(“%d “,d[j]);

 printf(“\n”);

}

void sort(int arr[] ,int k)

{

 int temp;

 int i,j;

 for(i=0;i<k;i++)

 {

 for(j=0;j<k-i-1;j++)

 {

 if(arr[j]<arr[j+1])

 {

 temp=arr[j];

 arr[j]=arr[j+1];

 arr[j+1]=temp;

 }

 }

Advanced Data Structure and Algorithms

Notes

252 LOVELY PROFESSIONAL UNIVERSITY

 }

}

void merge(int a[],int b[],int c[],int k)

{

 int ptra=0,ptrb=0,ptrc=0;

 while(ptra<k && ptrb<k)

 {

 if(a[ptra] < b[ptrb])

 {

 c[ptrc]=a[ptra];

 ptra++;

 }

 else

 {

 c[ptrc]=b[ptrb];

 ptrb++;

 }

 ptrc++;

 }

 while(ptra<k)

 {

 c[ptrc]=a[ptra];

 ptra++;ptrc++;

 }

 while(ptrb<k)

 {

 c[ptrc]=b[ptrb];

 ptrb++; ptrc++;

 }

}

Input: Enter the elements of the fi rst list

10 20 25 50 63

Output: The elements of fi rst list are

20 25 50 63

Input: Enter the elements of the second list

16 62 68 80

Output: The elements of second list are

12 16 62 68 80

The sorted list a is

63 50 25 20 10

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 253

The sorted list b is

80 68 62 16 12

The elements of the merged list are

80 68 63 62 50 25 20 16 12 10

Task Write a C program for merge sort.

12.7 Quick Sort

In this method an array a[1],.....,a[n] is sorted by picking some value in the array as a key element,
we then swap the fi rst element of the list with the key element so that the key will come in the
fi rst position, we then fi nd out the proper place of key in the list. The proper place is that position
in the list where if key is placed then all elements to the left of it are smaller than the key, and all
the elements to the right of it are greater than the key. To obtain the proper position of the key we
traverse the list in both the directions using the indices i and j respectively. We initialize i to that
index which is one more than the index of the key element, i.e. if the list to be sorted is having
the indices running from m to n, then the key element is the at index m, hence we initialize i to
(m+1). The index i is incremented till we get an element at the ith position greater than the key
value. Similarly we initialize j to n and go on decrementing j till we get an element having the
value less than the key value. We then check whet her i and j have crossed each other. If not then
we interchange the elements at the ith and jth position, and continue the process of incrementing
i and decrementing j till i and j crosses each other. When i and j crosses each other we interchange
the elements at the key position(i.e. at mth position) and the elements at the jth position. This
brings the key element at the jth position, and we fi nd that the elements to left are less than and
the elements to the right of it are greater than it. Therefore we can split the given list into two
sub-lists. The fi rst one made of elements from mth position to the (j-1)th position, and the second
one made of elements from the (j+1)th position to nth position, and repeat the same procedure
with each of the sub-lists separately.

Here is a C implementation.

void qsort(int x[], int m, int n)

{

 int key,i,j,k;

 if(m < n)

 {

 k = getkeyposition(x, m, n);

 interchange(&x[m], &x[k]);

 key = x[m];

 i = m + 1;

 j =n;

 while(i < j)

 {

 while((i <= n) && (x[i] <= key))

 i++;

 while(j >= m) && (x[i] > key))

Advanced Data Structure and Algorithms

Notes

254 LOVELY PROFESSIONAL UNIVERSITY

 j++;

 if(i < j)

 interchange(&x[i], &x[j]);

 }

 interchange(&x[m], &x[j]);

 qsort(x, m, j-l);

 qsort(x, j+1, n);

 }

}

void interchange(int *i, int *j)

{

 int temp;

 temp = *i;

 *i = *j;

 *j = temp;

}

Choice of the Key

We can choose any entry in the list as the key. The choice of fi rst entry is often a poor choice for
key, since if the list is already sorted, then there will be no element less than the fi rst element
selected as key, and so one of the sub-lists will be empty. Hence we choose a key near the center
of the list, in the hope that our choice will partition the list in such a manner that about half comes
on each side of key.

Therefore the function getkeyposition is:

int getkeyposition(int i, int j)

{

 return(i+j mod 2);

}

The choice of the key near the center is also arbitrary, and hence it is not necessary that it will
always divide the list nicely in to half, it may also happen that one sub-list is much larger than
other. Hence some other method of selecting a key should be used. A good way to choose a key
is to use a random number generator to choose the position of next key in each activation of
quicksort.

Therefore the function getkeyposition is:

int getkeyposition(int i, int j)

{

 return a random number in the range of i to j.

}

Consider the following list:

 1 2 3 4 5 6 7

30 20 50 10 27 70 05

Indices

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 255

When qsort is activated fi rst time key = 30, and i =2, and j =7, i is incremented till it becomes 3,
because at position 3, the value is greater than key, j is not decremented, because at position 7,
the value that we have is less than the key. Since i<j, we interchange the 3rd element and 7th
element. Then i is incremented till it becomes 6, and j is decremented till it becomes 5. Since i > j,
we interchange the key element that is the element at position 1, with the element at position 5,
and call qsort recursively with the left sub-list made of elements from position 1 to 4, and right
sub-list made of elements from position 6 to 7 as shown below:

27 20 05 10 30 70 50

1 2 3 4 5 6 7 Indices

Right sub-listLeft sub-list

By continuing in this fashion, we fi nally get the sorted list.

The average case time complexity of the quick sort algorithm can be decided as follows:

We assume that every time the list gets splitted into two approximately equal sized sub-lists. If
the size of a given list is n, then it gets splitted into two sub lists of size approximately n/2. Each
of these sub -lists further gets splitted into two sub-lists of size n/4, and this is continued till the
size becomes 1. When the quick sort works with a list of size n it places the key element (which
we take the fi rst element of the list under consideration) at its proper position in the list. This
requires no more than n iterations. After placing the key element at its proper position in the list
of size n, quick sort activates itself two times to work with left and right sub-lists, each assumed
to be of size n/2. Therefore if T(n) is a time required to sort a list of size n. Since the time required
to sort the list of size n is equal to the sum of the time required to place the key element at its
proper position in the list of size n and the time required to sort the left and right sub-lists each
assumed to be of size n/2, T(n) comes out to be:

T(n) = c*n + 2*T(n/2)

Where c is a constant and T(n/2) is the time required to sort the list of size n/2.

Similarly the time required to sort the list of size n/2 is equal to the sum of the time required to
place the key element at its proper positions in the list of size n/ 2 and the time required to sort
the left and right sub-lists each assumed to be of size n/4. T(n/2) comes out to be:

T(n/2) = c*n/2 + 2*T(n/4)

Where T(n/4) is the time required to sort the list of size n/4.

T(n/4) = c*n/4 + 2*T(n/8), and so on and fi nally we get T(1) = 1.

T(n) = c*n + 2(c*n(n/2) + 2T(n/4))

T(n) = c*n + c*n + 4T(n/4)) = 2*c*n + 4T(n/4) = 2*c*n + 4(c*(n/4) + 2T(n/8))

T(n) = 2*c*n + c*n + 8T(n/8) = 3*c*n + 8T(n/8)

T(n) = (log n)*c*n + nT(n/n)= (log n)*c*n + nT(1) = n + n*(log n) *c

T(n) nlog(n)

Therefore we conclude that the average time complexity of the quick sort algorithm is O(nlog D).
But the worst case time complexity is of the O(n2).

The reason for this is in the worst case one of the two sub-lists will always be empty, and the
other will be of the size (n-1). Where n is the size of the original list. Therefore in the worst case

Advanced Data Structure and Algorithms

Notes

256 LOVELY PROFESSIONAL UNIVERSITY

T(n) comes out to be:

 T(n) = c*n +T(n-1)

 = c*n + c*(n-1) + T(n-2)

 = 2*c*n - c + T(n-2)

 = 2*c*n - c + c*(n-2) + T(n-3)

 = 3*c*n - 3*c + T(n-3)

 = n*c*n-n*c + T(1)

 = n2c-nc+1

Therefore T(n) n2, hence the order is O(n2).

Space Complexity

The average case space complexity is log2n, because the space complexity depends on the
maximum number of activations that can exist. We fi nd that if we assume that every time the list
gets splitted into approximately two lists of equal size then the maximum number of activations
that will exist simultaneously will be log2n.

In the worst case, there exist n activations because the depth of the recursion is n. Hence, the
worst case space complexity is O(n).

Algorithms of Quick Sort

The divide-and-conquer strategy is used in quicksort. Below the recursion step is described:

1. Choose a pivot value. We take the value of the middle element as pivot value, but it can be
any value, which is in range of sorted values, even if it doesn’t present in the array.

2. Partition. Rearrange elements in such a way, that all elements which are lesser than the
pivot go to the left part of the array and all elements greater than the pivot, go to the right
part of the array. Values equal to the pivot can stay in any part of the array. Notice, that
array may be divided in non-equal parts.

3. Sort both parts. Apply quicksort algorithm recursively to the left and the right parts.

Partition Algorithm in Detail

There are two indices i and j and at the very beginning of the partition algorithm i points to the
fi rst element in the array and j points to the last one. Then algorithm moves i forward, until an
element with value greater or equal to the pivot is found. Index j is moved backward, until an
element with value lesser or equal to the pivot is found. If i ≤ j then they are swapped and i steps
to the next position (i + 1), j steps to the previous one (j - 1). Algorithm stops, when i becomes
greater than j.

After partition, all values before i-th element are less or equal than the pivot and all values after
j-th element are greater or equal to the pivot.

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 257

 Example: Sort {1, 12, 5, 26, 7, 14, 3, 7, 2} using quicksort.

16 > 5, swap1 5 26 712 14 3 7 2

pivot value = 71 5 26 712 14 3 7 2

12 > 7 > 2, swap 12 and 21 5 26 712 14 3 7 2

pivot valuei j

i j

26 > 7 > 7, swap 26 and 71 5 26 72 14 3 7 12

i j
7 > 7 > 3, swap 7 and 31 5 7 72 14 3 7 12

i j

i > j > 3, stop partition1 5 7 32 14 7 26 12

i j

sorted1 5 7 72 3 12 14 26

run quick sort recursively1 5 72 14 7 26 12

. . .

Notice, that we show here only the fi rst recursion step, in order not to make example too long.
But, in fact, {1, 2, 5, 7, 3} and {14, 7, 26, 12} are sorted then recursively.

Why does it work?

On the partition step algorithm divides the array into two parts and every element a from the
left part is less or equal than every element b from the right part. Also a and b satisfy a ≤ pivot ≤
b inequality. After completion of the recursion calls both of the parts become sorted and, taking
into account arguments stated above, the whole array is sorted.

 Example: Consider the following list to be sorted in ascending order. ‘ADD YOUR MAN’.
(Ignore blanks) N = 10

0 1 2 3 4 5 6 7 8 9
A[] = A D D Y O U R M A N

Quicksort (A, 0, 9)

1. 9 > 0

2. V = [9] = ‘N’

 L = 1-1 = 0

 R = I= 9

4. A[3] = ‘Y’ > V; There fore, L = 3

5. A [8] = ‘A’ > V; There fore, R = 8

Advanced Data Structure and Algorithms

Notes

258 LOVELY PROFESSIONAL UNIVERSITY

6. L < R

7. SWAP (A,3,8) to get

0 1 2 3 4 5 6 7 8 9
A[] = A D D A O U R M Y N

8 A [4] = ‘O’ > V, There fore, L = 4

9. A[7] = ‘M’ < V, There fore, R = 7

10. L < R

11. SWAP (A,4,7) to get

0 1 2 3 4 5 6 7 8 9
A[] = A D D A M U R O Y N

12. A [5] = ‘U’ > V;.. L = 5

13. A[4] = ‘M’ < V;R = 4

14. L < R ,.. break

15. SWAP (A,5,9) to get.

0 1 2 3 4 5 6 7 8 9
A[] = A D D A M N R O Y U

 at this point ‘N’ is in its correct place.

 A[5], A[0] to A[4] constitutes sub list 1.

 A[6] to A[9] constitutes sublist2. Now

16. Quick sort (A, 0, 4)

17. Quick sort (A, 5, 9)

The Quick sort algorithm uses the O(N Log2N) comparisons on average. The performance can be
improved by keeping in mind the following points.

1. Switch to a faster sorting scheme like insertion sort when the sublist size becomes
comparatively small.

2. Use a better dividing element I in the implementations. We have always used A[N] as the
dividing element. A useful method for the selection of a dividing element is the Median-of
three method.

Select any 3 elements from the list. Use the median of these as the dividing element.

12.8 Bucket Sort

Bucket sort runs in linear time on the average. It assumes that the input is generated by a random
process that distributes elements uniformly over the interval [0, 1].

The idea of Bucket sort is to divide the interval [0, 1] into n equal-sized subintervals, or buckets,
and then distribute the n input numbers into the buckets. Since the inputs are uniformly
distributed over (0, 1), we don’t expect many numbers to fall into each bucket. To produce the
output, simply sort the numbers in each bucket and then go through the bucket in order, listing
the elements in each.

The code assumes that input is in n-element array A and each element in A satisfi es 0 ≤ A[i] ≤ 1.
We also need an auxiliary array B[0 . . n -1] for linked-lists (buckets).

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 259

BUCKET_SORT (A)

1. n ← length [A]

2. For i = 1 to n do

3. Insert A[i] into list B[nA[i]]

4. For i = 0 to n-1 do

5. Sort list B with Insertion sort

6. Concatenate the lists B[0], B[1], . . B[n-1] together in order.

 Example: Given input array A[1..10]. The array B[0..9] of sorted lists or buckets after line 5.
Bucket i holds values in the interval [i/10, (i +1)/10]. The sorted output consists of a concatenation
in order of the lists fi rst B[0] then B[1] then B[2] ... and the last one is B[9].

.78
A

1

2
3

4
5

6
7

8

9

10

.17

.39

.26

.72

.94

.21

.12

.23

.68

B

1

0

2
3

4
5

6
7

8

9 .94

.72

.68

.39

.78

.21 .23

.12 .17

.26

Analysis

All lines except line 5 take O(n) time in the worst case. We can see inspection that total time to
examine all buckets in line 5 is O(n-1) i.e., O(n).

The only interesting part of the analysis is the time taken by Insertion sort in line 5. Let ni be the
random variable denoting the number of elements in the bucket B[i]. Since the expected time to
sort by INSERTION_SORT is O(n2), the expected time to sort the elements in bucket B[i] is

E[O(2ni)] = O(E[2ni]]

Therefore, the total expected time to sort all elements in all buckets is

 n-1∑i=0 O(E[2ni]) = O n-1∑i=0 (E[2ni]) ...(1)

In order to evaluate this summation, we must determine the distribution of each random variable
n.

We have n elements and n buckets. The probability that a given element falls in a bucket B[i] is
1/n i.e., Probability = p = 1/n.

Note This problem is the same as that of “Balls-and-Bin” problem.

Advanced Data Structure and Algorithms

Notes

260 LOVELY PROFESSIONAL UNIVERSITY

Therefore, the probability follows the binomial distribution, which has

Mean: E[ni] = np = 1

Variance: Var[ni] = np(1 – p) = 1 – 1/n

For any random variable, we have

 E[2ni] = Var[ni] + E2[ni]

 = 1 – 1/n + 12

 = 2 – 1n

 = Θ(1)

Putting this value in equation A above, (do some tweaking) and we have a expected time for
INSERTION_SORT, O(n).

Now back to our original problem

In the above Bucket sort algorithm, we observe

T(n) = [Time to insert n elements in array A] + [Time to go through auxiliary array B[0 . . n-1] *
(Sort by INSERTION_SORT)

= O(n) + (n-1) (n)

= O(n)

Therefore, the entire Bucket sort algorithm runs in linear expected time.

Task Discuss bubble sort with suitable example.

12.9 External Sorting

External sorting refers to the sorting of a fi le that is on disk (or tape). Internal sorting refers to the
sorting of an array of data that is in RAM. The main concern with external sorting is to minimize
disk access since reading a disk block takes about a million times longer than accessing an item
in RAM (according to Shaffer – see the reference at the end of this document).

Perhaps the simplest form of external sorting is to use a fast internal sort with good locality of
reference (which means that it tends to reference nearby items, not widely scattered items) and
hope that your operating system’s virtual memory can handle it. (Quicksort is one sort algorithm
that is generally very fast and has good locality of reference.) If the fi le is too huge, however, even
virtual memory might be unable to fi t it. Also, the performance may not be too great due to the
large amount of time it takes to access data on disk.

Methods

Most external sort routines are based on mergesort. They typically break a large data fi le into
a number of shorter, sorted “runs”. These can be produced by repeatedly reading a section of
the data fi le into RAM, sorting it with ordinary quicksort, and writing the sorted data to disk.
After the sorted runs have been generated, a merge algorithm is used to combine sorted fi les into
longer sorted fi les. The simplest scheme is to use a 2-way merge: merge 2 sorted fi les into one
sorted fi le, then merge 2 more, and so on until there is just one large sorted fi le. A better scheme
is a multiway merge algorithm: it might merge perhaps 128 shorter runs together.

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 261

12.10 Summary

 Arranging objects in a specifi ed order is called sorting.

 Bubble sort, insertion sort, selection sort, quick sort, heap sort, radix sort are some of very
common search algorithms.

 The comparison starts with the fi rst element (or at the last element) and continues
sequentially till either we fi nd a match or the end of the list is encountered. Linear search
makes as many comparisons as there are elements in the array. Even if the array is sorted
(either in ascending or descending order) the number of comparisons remains the same.

12.11 Keywords

Bubble sort: A sorting technique in which the largest element of the remaining list bubbles up to
its proper ordering position in each pass through the list.

Heap sort: A sorting technique in which all the entries in the list are arranged to satisfy heap
property, and then top of the heap is removed and another entry is promoted to take its place
repeatedly.

Merge sort: A sorting technique in which the given list is broken down into smaller lists repeatedly
until the list become easy to sort, then the sorted lists are merged to obtain the fi nal sorted list.

Quick sort: A sorting technique in which an array is sorted by picking some value in the array
as a key element, then swapping the fi rst element of the list with the key element so that the key
comes in the fi rst position. The proper place of key in the list is found out repeatedly.

Sorting: A technique to arrange the elements of a list in some pre-specifi ed order.

12.12 Self Assessment

Choose the appropriate answers:

1. Which one is not the method of internal sorting?

(a) Heap sort

(b) Merge sort

(c) Quick sort

(d) Bubble sort

2. Polyphase sort is a

(a) Internal sort

(b) External sort

(c) Both of the above

(d) None

3. is a sorting technique which sorts a contiguous list of length n with O(nlog2(n)
comparisons and movement of entries, even in the worst case.

(a) Heap sort

(b) Merge sort

(c) Quick sort

Advanced Data Structure and Algorithms

Notes

262 LOVELY PROFESSIONAL UNIVERSITY

(d) Bubble sort

4. Heap sort proceeds in

(a) Five phase

(b) Three phases

(c) One phase

(d) Two phase

Fill in the blanks:

5. Arranging objects in a specifi ed order is called

6. The average time complexity of the quick sort algorithm is

7. The computing time of heapsort is

8. The time complexity of the algorithm is both average and worst case.

State whether the following statements are true or false:

9. The order of linear search in worst case is O(n/2).

10. Linear search is more effi cient than Binary search.

11. For Binary search, the array has to be sorted in ascending order only.

12. A fi le is a collection of records and a record is in turn a collection of fi elds.

12.13 Review Questions

1. What is sorting? Explain insertion sorting in details.

2. Distinguish between quick and heap sort.

3. Explain 2-way merge sort.

4. Distinguish between linear and binary search.

5. Explain the application of searching.

6. Consider the list given below whose elements are arranged in an ascending order. Assume
that a binary search technique is used. Find out the number of probes required to fi nd each
entry in the list.

 16

 22

 48

 53

 55

 71

 80

7. Sort the list given below by applying the heapsort method.

 81

 52

 53

Unit 12: Sorting

Notes

 LOVELY PROFESSIONAL UNIVERSITY 263

 96

 22

 53

 83

 04

8. Consider an unsorted array A[n] of integer elements that may have many elements present
more than once. It is required to store only the distinct elements of the array A in a separate
array B. The information about the number of times each element is replicated is maintained
in a third array C. For example, C[0] would indicate the number of times the element B[0]
occurs in array A. Write a C program to generate the arrays B and C, given an array A.

9. Write a C program that fi nds the largest and the second largest elements in an unsorted
array A. The program should make just a single scan of the array.

10. Distinguish between internal and external method of sorting.

Answers: Self Assessment

1. (b) 2. (b) 3. (a) 4. (d)

5. sorting 6. O(nlog D) 7. O(n log(n)) + O(n)

8. O(nlog2(n)) 9. False 10. False 11. False

12. True

12.14 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C, Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Advanced Data Structure and Algorithms

Notes

264 LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Graphs

CONTENTS

Objectives

Introduction

13.1 Defi ning Graph

13.2 Basic Graph Terminology

13.3 Representations of Graphs

 13.3.1 Adjacent Matrix

 13.3.2 Adjacency List Representation

13.4 Shortest Path Algorithms

13.5 Summary

13.6 Keywords

13.7 Self Assessment

13.8 Review Questions

13.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Defi ne graph

 Realise basic graph terminology

 Explain representation of graphs

 Discuss shortest path algorithms

Introduction

In this unit, we introduce you to an important mathematical structure called Graph. Graphs have
found applications in subjects as diverse as Sociology, Chemistry, Geography and Engineering
Sciences. They are also widely used in solving games and puzzles. In computer science, graphs
are used in many areas one of which is computer design. In day-to-day applications, graphs fi nd
their importance as representations of many kinds of physical structure.

We use graphs as models of practical situations involving routes: the vertices represent the cities
and edges represent the roads or some other links, specially in transportation management,
Assignment problems and many more optimization problems. Electric circuits are another
obvious example where interconnections between objects play a central role. Circuits elements
like transistors, resistors, and capacitors are intricately wired together. Such circuits can be
represented and processed within a computer in order to answer simple questions like “Is
everything connected together?” as well as complicated questions like “If this circuit is built, will
it work?”

Unit 13: Graphs

Notes

 LOVELY PROFESSIONAL UNIVERSITY 265

13.1 Defi ning Graph

A Graph G consists of a set V of vertice (nodes) and a set E of edges (arcs). We write G=(V,E). V
is a fi nite and non empty set of vertices. E is a set of pairs of vertices; these pairs are called edges.
Therefore

V(G), read as V of G, is set of vertices,

and E(G), read as E of G, is set of edges.

An edge e = (v,w), is a pair of vertices v and w, and is said to be incident with v and w.

A graph may be pictorically represented as given in Figure 13.1.

1

3

2 5

4

Figure 13.1: A Graph

We have numbered the nodes as 1,2,3,4 and 5. Therefore

V(G) = (1, 2, 3, 4, 5)

and E(G) = {(1, 2), (2, 3), (3, 4), (4, 5), (1, 5), (1, 3), (3, 5)}

You may notice that the edge incident with node 1 and node 5 is written as (1,5); we could also
have written (5,1) instead of (1,5). The same applies to all the other edges. Therefore, we may say
that ordering of vertices is not signifi cant here. This is true for an undirected graph.

In an undirected graph, pair of vertices representing any edge is unordered. Thus (v,w) and (w,v)
represent the same edge. In a directed graph each edge is an ordered pair of vertices, i.e. each
edge is represented by a directed pair. If e = (v,w), then v is tail or initial vertex and w is head or
fi nal vertex. Subsequently (v,w) and (w,v) represent two different edges.

A directed graph may be pictorically represented as given in Figure 13.2.

Advanced Data Structure and Algorithms

Notes

266 LOVELY PROFESSIONAL UNIVERSITY

1

3

2 5

4

Figure 13.2: A Directed Graph

The direction is indicated by an arrow. The set of vertices for this graph remains the same as that
of the graph in the earlier example, i.e.

V(G) = (1,2,3,4,5}

However the set of edges would be

E(G) = {(1,2), (2,3), (3,4), (5,4), (5,1), (1,3), (5,3)}

Do you notice the difference?

Note Arrow is always from tail vertex to head vertex. In our further discussion on
graphs, we would refer to directed graph as digraph and undirected graph as graph.

13.2 Basic Graph Terminology

A good deal of nomenclature is associated with graphs. Most of the terms have straight foward
defi nitions, and it is convenient to put them in one place even though we would not be using
some of them until later.

Adjacent Vertices

Vertex v1 is said to be adjacent to a vertex v2 if there is an edge

(v1, v2) or (v2, v1)

1

3

65 4 7

2

Figure 13.3

Vertices adjacent to node 3 are 1,5,6 and 4 and that to node 2 are 1 and 7.

Unit 13: Graphs

Notes

 LOVELY PROFESSIONAL UNIVERSITY 267

Find out the vertices adjacent to remaining nodes of the graph.

Path: A path from vertex v to vertex w is a sequence of vertices, each adjacent to the next.

Consider the above example again. 1,3,4 is a path

1,3,6 is a path

1,2,7 is a path,

Is 1,4,7 a path?

How many paths are there from vertex 1 to vertex 7?

You may notice that there is a path existing in the above example which starts at vertex 1 and
fi nishes at vertex 1, i.e. path 1,3,4,7,2,1. Such a path is called a cycle.

A cycle is a path in which fi rst and last vertices are the same.

DO we have a path from any vertex to any other vertex in the above example? If you see it
carefully, you may fi nd the answer to the above question as YES. Such a graph is said to be
connected graph. A graph is called connected if there exists a path from any vertex to any other
vertex. There are graphs which are unconnected. Consider the graph in Figure 13.4.

2

1

3

4

5

7

6

8

Figure 13.4: An Unconnected Graph

It is an unconnected graph. You may say that these are two graphs and not one. Look at the fi gure
in its totality and apply the defi nition of graph. Does it satisfy the defi nition of a graph? It does.
Therefore, it is one graph having two unconnected components. Since there are unconnected
components, it is an unconnected graph.

So far we have talked of paths, cycles and connectivity of undirected graph. In a Digraph the path
is called a directed path and a cycle as directed cycle.

1 4 6

5 72 3

Figure 13.5: A Digraph

Advanced Data Structure and Algorithms

Notes

268 LOVELY PROFESSIONAL UNIVERSITY

In Figure 13.4, 5 1,2 is a directed path; 1, 3, 5, 7, 6 is a directed path 1, 4, 5 is not a directed path.
There is no directed cycle in the above graph. You may verify the above statement. A digraph is
called strongly connected if there is a directed path from any vertex to any other vertex.

Consider the digraph given in Figure 13.6.

1

2

3

4 5

Figure 13.6: A Weakly Connected Graph

There does not exist a directed path from vertex 1 to vertex 4; also from vertex 5 to other vertices;
and so on. Therefore, it is a weakly connected graph. Let us make is strongly connected.

1

2

3

4 5

Figure 13.7: A Strongly Connected Graph

The, graph in Figure 13.7 a strongly connected graph. You may notice that we have added just
one arc from vertex 5 to vertex 3.

Unit 13: Graphs

Notes

 LOVELY PROFESSIONAL UNIVERSITY 269

An alternative could be as given in Figure 13.8.

1

2

3

4 5

Figure 13.8: A Strongly Connected Graph

There may exist more alternate structures. Make at least one more alternate structure for the
same diagraph.

You must have observed that there is no limitation of number of edges incident on one vertex. It
could be none, one, or more. The number of edges incident on a vertex determines its degree.

In a digraph we attach an indegree and an outdegree to each of the vertice. In Figure 13.8, the
indegree of vertex 5 is 2 and outdegree is 1. Indegree of a vertex v is the number of edges for
which vertex v is a head and outdegree is the number of edges for which vertex is a tail.

1 2

7 5 6 3 4

9 108

Figure 13.9: A Tree

Let us defi ne a special type of graph called Tree. A graph is a tree if it has two properties:

It is connected, and there are no cycles in the graph.

Advanced Data Structure and Algorithms

Notes

270 LOVELY PROFESSIONAL UNIVERSITY

Graph depicted in Figure 13.9 is a tree and so are the ones depicted in Figure 13.10(a) to
13.10(e).

A

B

C

D

E

A

2

1

4 5

3

6 7

8 9 10

1

2

3

4

1

3

6

7

8

(a) (b) (c)

(d) (e)

Figure 13.10: Tree Structure

Because of their special structure and properties, trees occur in many different applications in
computer science.

?
Did u know? In Figure 13.8 how many outdegree present in vertex 4.

13.3 Representations of Graphs

Graph is a mathematical structure and fi nds its application in many areas of interest in which
problems need to be solved using computers. Thus, this mathematical structure must be
represented as some kind of data structures. Two such representations are, commonly used.
These are:

1. Adjacent Matrix

2. Adjacency List representation.

The choice of representation depends on the application and function to be performed on the
graph.

13.3.1 Adjacent Matrix

The adjacency matrix A for a graph G = (V,E) with n vertices, is an n × n matrix of bits, such
that A

A
ij
= 1, iff there is an edge from vi to vj and

A
ij
= 0, if there is no such edge.

Unit 13: Graphs

Notes

 LOVELY PROFESSIONAL UNIVERSITY 271

Table 13.1(a) shows the adjacency matrix for the graph given in Figure 13.1.

Table 13.1: Adjacency Matrix for the Graph in Figure 13.1

Vertice 1 2 3 4 5
1 0 1 1 0 1
2 1 0 1 0 0
3 1 1 - 1 1
4 0 0 1 0 1
5 1 0 1 1 0

You may observe that the adjacency matrix for an undirected graph is symmetric, as the lower
and upper triangles are same. Also all the diagonal elements are zero., since we consider graphs
without any self loops. Let us fi nd adjacency matrix for a digraph given in Figure 13.5.

Table 13.2: Adjacency Matrix for Digraph in Figure 13.5

Vertice 1 2 3 4 5 6 7
1 0 1 1 1 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0
4 0 0 0 0 0 1 0
5 0 0 0 1 0 0 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0

The total number of 1’s account for the number of edges in the digraph. The number of 1’s in each
row tells the outdegree of the corresponding vertex.

13.3.2 Adjacency List Representation

In this representation, we store a graph as a linked structure. We store all the vertices in a list
and then for each vertex, we have a linked list of its adjacent vertices. Let us see it through an
example. Consider the graph given in Figure 13.11.

v1

v2

v3

v4

v5

v6

Figure 13.11

The adjacency list representation needs a list of all of its nodes, i.e.

v1

v2

v3

v4

v5

And for each node a linked list of its adjacent nodes.

Advanced Data Structure and Algorithms

Notes

272 LOVELY PROFESSIONAL UNIVERSITY

Therefore we shall have:

v1

v2

v3

v4

v5

v6

v2

v3

v4

v5

v4

v3

v6 v1

Table 13.3: Adjacency List Structure for Graph in Figure 13.11

Note That adjacent vertices may appear in the adjacency list in arbitrary order. Also
an arrow from v2 to v3 in the list linked to v1 does not mean that V2 and V3 are adjacent.

The adjacency list representation is better for sparse graphs because the space required is
O(V + E), as contrasted with the O(V2) required by the adjacency matrix representation.

13.4 Shortest Path Algorithms

E.W. Dijkstra developed an algorithm to determine the shorted path between two nodes in a
graph. It is also possible to fi nd the shortest paths from a given source node to all nodes in a
graph at the same time, hence this problem is sometimes called the single-source shortest paths
problem.

The shortest path problem may be expressed as follows:

Given a connected graph G = (V, E), with weighted edges and a fi xed vertex s in V, to fi nd a
shortest path from s to each vertex v in V. The weights assigned to the edges may represent
distance, cost, effort or any other attribute that needs to be minimized in the graph.

A solution to this problem could be found by fi nding a spanning tree of the graph. The graph
representing all the paths from one vertex to all the others must be a spanning tree - it must
include all vertices. There will also be no cycles as a cycle would defi ne more than one path from
the selected vertex to at least one other vertex.

The algorithm fi nds the routes, by cost precedence. Let’s assume that every cost is a positive
number. The algorithm is equally applicable to a graph, a digraph, or even to a mixed graph
with only some of its sides directed. If we consider a digraph, then every other case is fully
covered as well since a no directed side can be considered a 2 directed sides of equal cost for
every direction.

The algorithm is based on the fact that every minimal path containing more than one side is the
expansion of another minimal path containing a side less. This happens because all costs are
considered as positive numbers. In this way the fi rst route D(1) found by the algorithm will be
one arc route, that is from the starting point to one of the sides directly connected to this starting
point. The next route D(2) will be a one arc route itself, or a two arc route, but in this case will be
an expansion of D(1).

Unit 13: Graphs

Notes

 LOVELY PROFESSIONAL UNIVERSITY 273

Here is the algorithm.

1. Let V be the set of all the vertices of the graph and S be the set of all the vertices considered
for the determination of the minimal path.

2. Set S ={}.

3. While there are still vertices in V – S.

(a) Sort the vertices in V – S according to the current best estimate of their distance from
the source.

(b) Add u, the closest vertex in V – S, to S.

(c) Re-compute the distances for the vertices in V – S

(d) Consider the following example for illustration. Find the shortest path from node X
to node Y in the following graph. A label on an edge indicates the distance between
the two nodes the edge connects.

A

B E

D

C
YX

2

1
4

4

3
3

5

8 5

7

Applying Dijkstra algorithm:

1. S = {X}

 Distances of all the nodes from the nodes in the S:

 XA = 8 XB = 3 XC = ∞

 XD = ∞ XE = ∞ XY = ∞

2. Since, minimum distance from S to V-S is 3 (XB), S = {X, B} and E = {XB}

3. Distances of all the nodes from the nodes in the S:

 XA = 8 XC = ∞ XD = ∞ XE = ∞ XY = ∞

 XBA = ∞ XBC = 7 XBD = ∞ XBE = 8 XBY = 6

4. Since, minimum distance from S to V – S is 6 (XBY), S = {X, B, Y} and E = {XBY}.

5. Distances of all the nodes from the nodes in the S:

 XA = 8 XC = ∞ XD = ∞ XE = ∞

 XBA = ∞ XBC = 7 XBD = ∞ XBE = 8

 XBYA = ∞ XBYC = ∞ XBYD = ∞ XBYE = ∞

Continuing in similar manner, we fi nd that the shortest path between nodes X and Y is XBY with
cost value 6.

Advanced Data Structure and Algorithms

Notes

274 LOVELY PROFESSIONAL UNIVERSITY

13.5 Summary

 Graphs provide in excellent way to describe the essential features of many applications.

 Graphs are mathematical structures and are found to be useful in problem solving. They
may be implemented in many ways by the use of different kinds of data structures.

 Graph traversals, Depth First as well as Breadth First, are also required in many
applications.

 Existence of cycles makes graph traversal challenging, and this leads to fi nding some
kind of acyclic subgraph of a graph. That is we actually reach at the problems of fi nding a
shortest path and of fi nding a minimum cost spanning tree problems.

13.6 Keywords

Adjacent: Two vertices in an undirected graph are called adjacent

Edges: A graph G consists of a set V, whose members are called the vertices of G, together with a
set E of pairs of distinct vertices from V. These pairs are called the edges of G.

Free Tree: A free tree is defi ned as a connected undirected graph with no cycles.

Graph: Graph is a mathematical structure and fi nds its application in many areas of interest in
which problems need to be solved using computers.

Undirected Graph: If the pairs are unordered, then G is called an undirected graph

13.7 Self Assessment

Fill in the blanks:

1. A graph may have many

2. The weight of a tree is just the sum of weights of its

3. The ends when no more paths are found.

4. In an undirected graph, pair of vertices representing any edge is

5. In a Digraph the path is called a directed path and a cycle as

State whether the following statements are true or false:

6. E.W. Dijkstra developed an algorithm to determine the shorted path between two nodes in
a graph.

7. The algorithm is not equally applicable to a graph, a digraph, or even to a mixed graph
with only some of its sides directed.

8. A cycle is not a path in which fi rst and last vertices are the same.

9. A good deal of nomenclature is associated with graphs.

10. In a Digraph the path is called a directed path and a cycle as directed cycle.

13.8 Review Questions

1. What do you mean by shortest path?

2. Find out the minimum number of edges in a strongly connected diagraph on n vertices.

Unit 13: Graphs

Notes

 LOVELY PROFESSIONAL UNIVERSITY 275

3. Test the program for obtaining the depth fi rst spanning tree for the following graph:

4. “A graph may have many spanning trees; for instance the complete graph on four vertices
has sixteen spanning trees”. Explain

5. Defi ne vertices of a graph.

6. A graph is regular if every vertex has the same valence (that is, if it is adjacent to the
same number of other vertices). For a regular graph, a good implementation is to keep the
vertices in a linked list and the adjacency lists contiguous. The length of all the adjacency
lists is called the degree of the graph.

7. The topological sorting functions as presented in the text are defi cient in error checking.
Modify the (a) depth-fi rst and (b) breadth-fi rst functions so that they will detect any
(directed) cycles in the graph and indicate what vertices cannot be placed in any topological
order because they lie on a cycle.

8. How can we determine a maximal spanning tree in a network?

9. Write Digraph methods called write that will write pertinent information specifying a
graph to the terminal. The graph is to be implemented with

a. An adjacency table;

b. A linked vertex list with linked adjacency lists;

c. A contiguous vertex list of linked adjacency lists.

10. Implement and test the method for determining shortest distances in directed graphs with
weights.

Answers: Self Assessment

1. spanning trees 2. edges

3. algorithm 4. unordered

5. directed cycle 6. True

7. False 8. False

9. True 10. True

Advanced Data Structure and Algorithms

Notes

276 LOVELY PROFESSIONAL UNIVERSITY

13.9 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 277

Unit 14: Network Flows

CONTENTS

Objectives

Introduction

14.1 Network Flow

 14.1.1 Ford Fulkerson Method

 14.1.2 Comparison Networks

14.2 Network Flow Problem

14.3 Minimum Spanning Tree

 14.3.1 Kruskal’s Algorithm

 14.3.2 Prim’s Algorithm

14.4 Summary

14.5 Keywords

14.6 Self Assessment

14.7 Review Questions

14.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain network fl ow

 Describe problem of network fl ow

 Know minimum spanning tree

Introduction
We use graphs as models of practical situations involving routes: the vertices represent the cities
and edges represent the roads or some other links, specially in transportation management,
Assignment problems and many more optimization problems. Electric circuits are another
obvious example where interconnections between objects play a central role. Circuits elements
like transistors, resistors, and capacitors are intricately wired together. Such circuits can be
represented and processed within a computer in order to answer simple questions like “Is
everything connected together?” as well as complicated questions like “If this circuit is built, will
it work?”

14.1 Network Flow

Network fl ow is an advanced branch of graph theory. The problem resolves around a special
type of weighted directed graph with two special vertices: the source vertex, which has no
incoming edge, and the sink vertex, which has no outgoing edge. By convention, the source
vertex is usually labelled s and the sink vertex labelled t.

Advanced Data Structure and Algorithms

Notes

278 LOVELY PROFESSIONAL UNIVERSITY

There are a bunch of junctions (nodes in the graph) and a bunch of pipes (edges in the graph)
connecting the junction. The pipe will only allow water to fl ow one way (the graph is directed).
Each pipe has also has a capacity (the weight of the edge), representing the maximum amount of
water that can fl ow through the pipe. Finally, we pour an infi nite amount of water into the source
vertex. The problem is to fi nd the maximum fl ow of the graph - the maximum amount of water
that will fl ow to the sink. Below is an example of a network fl ow graph.

0/2 0/4

a

0/3 t

0/20/4

b

s

Figure 14.1: A Simple Network Flow Graph. There are currently no water fl owing

It is fairly easy to see that the maximum fl ow in the Figure 14.1 is 6. We can fl ow 2 units of
water from s → a → t, 2 units of water from s → b → a → t, and 2 units of water from s → b →
t. This gives a fl ow of 6 and since all incoming edge to the sink are saturated, this is indeed the
maximum fl ow.

Note In the example, not all pipe are saturated with water.

14.1.1 Ford Fulkerson Method

It was easy to see the solution in the above example, but how do we fi nd the solution in general?
One idea is to keep fi nding path from s to t along pipes which still has some capacities remaining
and push as much fl ow from s to t as possible. We will then terminate once we can’t fi nd any
more path. This idea seem to work since it is exactly how we found the maximum fl ow in the
example. However, there is one problem - we cannot guarantee which path we’ll fi nd fi rst. In fact,
if we picked the wrong path, the whole algorithm will go wrong. For example, what happens if

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 279

the fi rst path we found was s → b → a → t. If we push as much fl ow as possible, then we end up
with the following:

0/2

a

s

b

t3/3

3/4

0/2
3/4

Figure 14.2: We have Pushed 3 Flow along the Path s → b → a → t

Now we have run into a problem: our only options left are to push 1 unit of water along the path
s → a → t and 1 unit of water along s → b → t. After that, we won’t be able to fi nd any more path
from s to t! Yet, we have only found 5 fl ow, which is not he maximum fl ow. Thus, the idea is not
optimal since it depends on how we picked our path. While we can try to fi nd a ”good” path-
picking algorithm, it would be nice if the algorithm is not dependent on the paths we chose.

A crucial observation is that there is actually another path from s to t other than the two that we
mentioned above! Suppose we redirect 2 units of water from b → a → t to b → t, this will decrease
the amount of water running through the pipe (a; t) to 0. Now we have a path from s → a → t in
which we can fl ow 2 units of water! The graph now looks as follows:

2/2

a

s

b

t1/3

3/4

2/2
3/4

Figure 14.3: The Bolded Edge indicate which Pipe has their Flow Adjusted

It is now easy to see that we can push 1 unit of water along s → b → a → t to obtain the maximum
fl ow of 6. If we carefully study in the Figure 14.3, what we have essentially done is to fl ow 2 unit
of water along s → a, and then push back 2 unit of water from a → b, and fi nally redirect the
pushed back fl ow along b → t to the sink. So the key to completing the algorithm is the idea of
pushing back fl ow - if we have x units of water fl owing in the pipe (u; v), then we can pretend
there is a pipe (v; u) with capacity x when we are trying to fi nd a path from s to t.

This is the concept of residual graph. The residual graph of a network fl ow is essentially the
network graph except that for every edge (u; v) that currently carries x unit of water, there is

Advanced Data Structure and Algorithms

Notes

280 LOVELY PROFESSIONAL UNIVERSITY

an edge (v; u) with capacity x in the residual graph. Figure 14.4 shows the residual graph after
fi nding our fi rst path:

t

0/2

3/3

3/4

3/4

0/2

a

s

s

Figure 14.4: The Dashed Edges are the Edges we added in the Residual Graph

The capacity of the dashed edge is the same as the amount of water carried by the solid edge in
the opposite direction.

So here is an algorithm to fi nd the maximum fl ow: First construct the residual graph (in the
beginning, the residual graph is the same as the network graph). While there exists a path from s
to t in the residual graph, we fl ow water through one of the path (a path in the a residual graph
is called an augmenting path). We then adjust the residual graph accordingly. Once we can no
longer fi nd any more path in the residual graph, we have found the maximum fl ow.

14.1.2 Comparison Networks

Suppose we have a directed network G = (V, E) defi ned by a set V of nodes (or vertexes) and
a set E of arcs (or edges). Each arc (i,j) in E has an associated nonnegative capacity uij. Also we
distinguish two special nodes in G: a source node s and a sink node t. For each i in V we denote by
E(i) all the arcs emanating from node i. Let U = max uij by (i,j) in E. Let us also denote the number
of vertexes by n and the number of edges by m.

We wish to fi nd the maximum fl ow from the source node s to the sink node t that satisfi es the arc
capacities and mass balance constraints at all nodes. Representing the fl ow on arc (i,j) in E by xij
we can obtain the optimization model for the maximum fl ow problem:

 Maximize f(x) =
(,) ()

ij
i j E s

x
∈

∑
subject to

(:(,) } { :(,) }

–ij ij
j i j E j j i E

x x
∈ ∈

∑ ∑ = 0 ∀i ∈ V\{s, t}

 0 ≤ xij ≤ uij (i, j) ∀(i, j) ∈ E

Vector (xij) which satisfi es all constraints is called a feasible solution or, a fl ow (it is not necessary
maximal). Given a fl ow x we are able to construct the residual network with respect to this fl ow
according to the following intuitive idea. Suppose that an edge (i,j) in E carries xij units of fl ow.
We defi ne the residual capacity of the edge (i,j) as rij = uij - xij. This means that we can send an
additional rij units of fl ow from vertex i to vertex j. We can also cancel the existing fl ow xij on the
arc if we send up xij units of fl ow from j to i over the arc (i,j).

So, given a feasible fl ow x we defi ne the residual network with respect to the fl ow x as follows.
Suppose we have a network G = (V, E). A feasible solution x engenders a new (residual) network,

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 281

which we defi ne by Gx = (V, Ex), where Ex is a set of residual edges corresponding to the feasible
solution x.

What is Ex? We replace each arc (i,j) in E by two arcs (i,j), (j,i): the arc (i,j) has (residual) capacity rij
= uij - xij, and the arc (j,i) has (residual) capacity rji=xij. Then we construct the set Ex from the new
edges with a positive residual capacity.

In the worst case both improved and unimproved algorithms will perform O(n3) augmentations,
if m ~ n2. Norman Zadeh developed some examples on which this running time is based. Using
his ideas we compose a somewhat simpler network on which the algorithms have to perform
O(n3) augmentations and which is not dependent on a choice of next path.

s3 t3

s2 t2

s1 t1

u1 v1

u2 v2

u3 v3

u4 v4

s t

k

2p

Figure 14.5: Worst Case Example for the Shortest Augmenting Path Algorithm

All vertexes except s and t are divided into four subsets: S={s1,...,sk}, T={t1,...,tk}, U={u1,...,u2p} and
V={v1,...,v2p}. Both sets S and T contain k nodes while both sets U and V contain 2p nodes. k and
p are fi xed integers. Each bold arc (connecting S and T) has unit capacity. Each dotted arc has an
infi nite capacity. Other arcs (which are solid and not straight) have capacity k.

First, the shortest augmenting path algorithm has to augment fl ow k2 time along paths (s, S, T,
t) which have length equal to 3. The capacities of these paths are unit. After that the residual
network will contain reversal arcs (T, S) and the algorithm will chose another k2 augmenting
paths (s, u1, u2, T, S, v2, v1, t) of length 7. Then the algorithm will have to choose paths (s, u1, u2, u3,
u4, S, T, v4, v3, v2, v1, t) of length 11 and so on...

Now let’s calculate the parameters of our network. The number of vertexes is n = 2k + 4p + 2. The
number of edges is m = k2 + 2pk + 2k + 4p. As it easy to see, the number of augmentations is a =
k2(p + 1).

Advanced Data Structure and Algorithms

Notes

282 LOVELY PROFESSIONAL UNIVERSITY

Consider that p = k – 1. In this case n = 6k – 2 and a = k3. So, one can verify that a ~ n3/216. In Zadeh
presents examples of networks that require n3/27 and n3/12 augmentations, but these examples
are dependent on a choice of the shortest path.

We made 5 worst-case tests with 100, 148, 202, 250 and 298 vertexes and compared the running
times of the improved version of the algorithm against the unimproved one. As you can see on
Figure 14.6, the improved algorithm is much faster. On the network with 298 nodes it works
23 times faster. Practice analysis shows us that, in general, the improved algorithm works
n/14 times faster.

109 15 63 156562

2391

359 688

18000

16000

14000

12000

10000

8000

6000

4000

2000

0
100 148 202 250 298

Figure 14.6. X-axis is the Number of Nodes. Y-axis is Working time in Milliseconds

Blue colour indicates the shortest augmenting path algorithm and red does it improved version.

However, our comparison in not defi nitive, because we used only one kind of networks. We just
wanted to justify that the O(n2m) algorithm works O(n) times faster than the O(nm2) on a dense
network.

 “Network fl ow is an advanced branch of graph theory.” Discuss.

14.2 Network Flow Problem

Let G = (V, E) be a directed network defi ned by a set V of vertexes (nodes) and set E of edges
(arcs). For each edge (i, j) ∈ E we associate a capacity uij that denotes the maximum amount that
can fl ow on the edge. Each edge (i, j) ∈ E also has an associated cost cij that denotes the cost per
unit fl ow on that edge.

We associate with each vertex i ∈ V a number bi. This value represents supply/demand of the
vertex. If bi > 0, node i is a supply node; if bi < 0, node i is a demand node (its demand is equal to
-bi). We call vertex i a transshipment if bi is zero.

For simplifi cation, let’s call G a transportation network and write G = (V, E, u, c, b) in case we
want to show all the network parameters explicitly.

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 283

i j

bi bj

1

5

0

3

2

2
4

–2

5

–4

–1

6

uij,cij

3, 4 1, 8

7, 5

3, 1

7, 2

5, 2

3, 1

Figure: 14.7: An example of the transportation network. In this we have 2supply vertexes (with
supply values 5 and 2), 3 demand vertexes (with demand values 1, 4 and 2), and 1 transshipment

node. Each edge has two numbers, capacity and cost, divided by comma

Representing the fl ow on arc (i, j) ∈ E by xij, we can obtain the optimization model for the
minimum cost fl ow problem:

 Minimize z(x) =
(,)

ij ij
i j E

c x
∈

∑
subject to

{ :(,) } { :(,) }

–ij ij
j i j E j j i E

x x
∈ ∈

∑ ∑ = bi for all i ∈ V,

 0 ≤ xij ≤ uij for all (i, j) ∈ E.

The fi rst constraint states that the total outfl ow of a node minus the total infl ow of the node must
be equal to mass balance (supply/demand value) of this node. This is known as the mass balance
constraints. Next, the fl ow bound constraints model physical capacities or restrictions imposed
on the fl ow’s range. As you can see, this optimization model describes a typical relationship
between warehouses and shops, for example, in a case where we have only one kind of product.
We need to satisfy the demand of each shop by transferring goods from the subset of warehouses,
while minimizing the expenses on transportation.

This problem could be solved using simplex-method, but in this article we concentrate on some
other ideas related to network fl ow theory. Before we move on to the three basic algorithms used
to solve the minimum cost fl ow problem, let’s review the necessary theoretical base.

Finding a Solution

When does the minimum cost fl ow problem have a feasible (though not necessarily optimal)
solution? How do we determine whether it is possible to translate the goods or not?

If δdef = Σi∈V bi ≠ 0 then the problem has no solution, because either the supply or the demand
dominates in the network and the mass balance constraints come into play.

Advanced Data Structure and Algorithms

Notes

284 LOVELY PROFESSIONAL UNIVERSITY

We can easily avoid this situation, however, if we add a special node r with the supply/demand
value br = –δ. Now we have two options: If δ > 0 (supply dominates) then for each node i ∈ V with
bi > 0 we add an arc (i, r) with infi nite capacity and zero cost; otherwise (demand dominates), for
each node i ∈ V with bi < 0, we add an arc (r, i) with the same properties. Now we have a new
network with Σi∈V∪{r}bi = 0 – and it is easy to prove that this network has the same optimal value
as the objective function.

Consider the vertex r as a rubbish or scrap dump. If the shops demand is less than what the
warehouse supplies, then we have to eject the useless goods as rubbish. Otherwise, we take the
missing goods from the dump. This would be considered shady in real life, of course, but for our
purposes it is very convenient. Keep in mind that, in this case, we cannot say what exactly the
“solution” of the corrected (with scrap) problem is. And it is up to the reader how to classify the
emergency uses of the “dump.” For example, we can suggest that goods remain in the warehouses
or some of the shop’s demands remain unsatisfi ed.

Even if we have δ = 0 we are not sure that the edge’s capacities allow us to transfer enough fl ow
from supply vertexes to demand ones. To determine if the network has a feasible fl ow, we want
to fi nd any transfer way what will satisfy all the problem’s constraints. Of course, this feasible
solution is not necessarily optimal, but if it is absent we cannot solve the problem.

Let us introduce a source node s and a sink node t. For each node i ∈ V with bi > 0, we add a
source arc (s, i) to G with capacity bi and cost 0. For each node i ∈ V with bi < 0, we add a sink arc
(i, t) to G with capacity –bi and cost 0.

i j
bi bjxij,uij

1

s
3

2
4

5

6

t

5

2

0

–1

–4

–2

3/3
5/5

2/3

2/2

4/7

1/1

4/7

1/1

4/4

0/3

2/5 2/2

Figure 14.8: Maximum Flow in the Transformed Network. For simplicity we are ignoring the costs

The new network is called a transformed network. Next, we solve a maximum fl ow problem
from s to t. If the maximum fl ow saturates all the source and sink arcs, then the problem has a
feasible solution; otherwise, it is infeasible. As for why this approach works, we’ll leave its proof
to the reader.

Having found a maximum fl ow, we can now remove source, sink, and all adjacent arcs and
obtain a feasible fl ow in G. How do we detect whether the fl ow is optimal or not? Does this
fl ow minimize costs of the objective function z? We usually verify “optimality conditions” for
the answer to these questions, but let us put them on hold for a moment and discuss some
assumptions.

Now, suppose that we have a network that has a feasible solution. Does it have an optimal
solution? If our network contains the negative cost cycle of infi nite capacity then the objective

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 285

function will be unbounded. However, in some tasks, we are able to assign fi nite capacity to each
uncapacitated edge escaping such a situation.

14.3 Minimum Spanning Tree

A minimum spanning tree or minimum weight spanning tree is then a spanning tree with weight
less than or equal to the weight of every other spanning tree. More generally, any undirected
graph (not necessarily connected) has a minimum spanning forest, which is a union of minimum
spanning trees for its connected components.

One example would be a cable TV company laying cable to a new neighborhood. If it is constrained
to bury the cable only along certain paths, then there would be a graph representing which points
are connected by those paths. Some of those paths might be more expensive, because they are
longer, or require the cable to be buried deeper; these paths would be represented by edges with
larger weights.

A spanning tree for that graph would be a subset of those paths that has no cycles but still
connects to every house.

There might be several spanning trees possible. A minimum spanning tree would be one with
the lowest total cost.

0 12

4 3
1

1 16 2

5

3

0 1

4 3
1

1 1 2

3

Graph G A Minimum Spanning Tree
Tree for G
(Total cost = 6)

Figure 14.9: Minimum Spanning Tree

A graph may have many spanning trees; for instance the complete graph on four vertices has
sixteen spanning trees:

0 0

0 0

X

Figure 14.10: A Complete Graph with four Vertices

Advanced Data Structure and Algorithms

Notes

286 LOVELY PROFESSIONAL UNIVERSITY

x x x x

Figure 14.11: Sixteen Spanning Trees of a Complete Graph on four Vertices

Now suppose the edges of the graph have weights or lengths. The weight of a tree is just the sum
of weights of its edges. Obviously, different trees have different lengths. The problem: how to
fi nd the minimum length spanning tree?

This problem can be solved by many different algorithms. It is the topic of some very recent
research. There are several “best” algorithms, depending on the assumptions you make:

A randomized algorithm can solve it in linear expected time.

It can be solved in linear worst case time if the weights are small integers. Otherwise, the best
solution is very close to linear but not exactly linear. The exact bound is O(m log beta(m,n)) where
the beta function has a complicated defi nition: the smallest i such that log(log(log(...log(n)...))) is
less than m/n, where the logs are nested i times.

These algorithms are all quite complicated, and probably not that great in practice unless you’re
looking at really huge graphs. Here we’ll go through two simple classical algorithms.

14.3.1 Kruskal’s Algorithm

We’ll start with Kruskal’s algorithm, which is easiest to understand and probably the best one for
solving problems by hand.

Kruskal’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree for
a connected weighted graph. This means it fi nds a subset of the edges that forms a tree that
includes every vertex, where the total weight of all the edges in the tree is minimized. If the graph
is not connected, then it fi nds a minimum spanning forest (a minimum spanning tree for each
connected component).

Kruskal’s algorithm is an example of a greedy algorithm. This algorithm fi rst appeared in
Proceedings of the American Mathematical Society in 1956, and was written by Joseph Kruskal.

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 287

Algorithm

Let G = (V, E) which is represented by an adjacency list Adj. Some support data structures:

1. F is the forest — a set of all (partial) trees.

2. MST is the minimum spanning tree, represented by a set of edges.

3. Q is a priority queue of edges.

Kruskal(G)

1. Let F be a set of singleton set of all vertices in G.

2. MST <- {}

3. Q <- E

4. while Q not empty do

5. (u, v) <- ExtractMin(Q) // Q is modifi ed

6. if FIND-SET(u) != FIND-SET(v) then // FIND-SET(i) returns the set in F

 // which vertex i belongs to.

 // This effectively does cycle check.

 // If ACCEPTED,

7. begin

8. merge(FIND-SET(u),FIND-SET(v)) in F

9. MST <- MST Union {(u, v)}

10. end

11. return MST.

Proof of Correctness

Let P be a connected, weighted graph and let Y be the subgraph of P produced by the algorithm.
Y cannot have a cycle, since the last edge added to that cycle would have been within one subtree
and not between two different trees. Y cannot be disconnected, since the fi rst encountered edge
that joins two components of Y would have been added by the algorithm. Thus, Y is a spanning
tree of P.

It remains to show that the spanning tree Y is minimal:

Let Y1 be a minimum spanning tree. If Y = Y1 then Y is a minimum spanning tree. Otherwise, let e
be the fi rst edge considered by the algorithm that is in Y but not in Y1. Y1 U e has a cycle, because
you cannot add an edge to a spanning tree and still have a tree. This cycle contains another edge
f which at the stage of the algorithm where e is added to Y, has not been considered. This is
because otherwise e would not connect different trees but two branches of the same tree. Then Y2
= Y1 U e/f is also a spanning tree.

Its total weight is less than or equal to the total weight of Y1. This is because the algorithm visits
e before f and therefore w(e) £ w(f) . If the weights are equal, we consider the next edge e which
is in Y but not in Y1. If there is no edge left, the weight of Y is equal to the weight of Y1 although
they consist of a different edge set and Y is also a minimum spanning tree.

Advanced Data Structure and Algorithms

Notes

288 LOVELY PROFESSIONAL UNIVERSITY

In the case where the weight of Y2 is less than the weight of Y1 we can conclude that Y1 is not
a minimum spanning tree, and the assumption that there exist edges e,f with w(e) < w(f) is
incorrect. And therefore Y is a minimum spanning tree (equal to Y1 or with a different edge set,
but with same weight).

2

1

1 16

5

3

v1v0

v3v4

v2

(0)
F = {{V0), (V1), {V3}, (V4))
MST = {}
Q = {{V0, V4), (V1, V3), (V3, V4),

{V0, V1), {V2, V3), {V1, V2), {V1, V4)

2

1

1 16

5

3

v1v0

v3v4

v2

(1) (V0, V4) = ExtractMin
(Q) – ACCEPTED
F = {(V0, V4), (V1), (V2), {V3)}
MST = {(V0, V4)}
Q = {(V1, V3), (V3, V4),
(V0, V1), (V2, V3), (V1, V2), (V1, V4)

2

1

1 16

5

3

v1v0

v3v4

v2

(2) (V1, V3) = ExtractMin (Q)-Accepted
F= {(V0, V4), {V1, V3}, {V2}}
MST = {(V0, V4), (V1, V3)}
Q = {(V3, V4),
(V0, V1), (V2, V3), (V1, V2)
(V1, V4)

2

1

1 16

5

3

v1v0

v3v4

v2

(3)
(V3, V4) = ExtractMin (Q)-Accepted
F= {(V0, V1, V3, V4}, {V2}}
MST = {(V0, V4), (V1, V3), (V3, V4)}
Q = {(V0, V1), (V2, V3), (V1, V2) , (V1, V4)}

2

1

1 16

5

3

v1v0

v3v4

v2

(4)
(V0, V1) = ExtractMin (Q)--Rejected
F= {{V0, V1, V3, V4}, {V2}}
MST = {(V0, V4), (V1, V3), (V3, V4)}
Q = {(V2, V3), (V1, V2), (V1, V4)

2

1

1 16

5

3

v1v0

v3v4

v2

(5) (V2, V3) = ExtractMin (Q)--Accepted
F= {{V0, V1, V2, V3, V4},
MST = {(V0, V4), (V1, V3), (V3, V4)
(V2, V3)}
Q = {(V1, V2), (V1, V4)},

 6. The algorithm continues until Q becomes empty, but since the forest has become one tree, all
remaining edges in Q will be rejected and no change will happen to MST.

Figure 14.12: Step by Step Representation of kruskal’s Algorithm

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 289

14.3.2 Prim’s Algorithm

Prim’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree for a
connected weighted graph. This means it fi nds a subset of the edges that forms a tree that includes
every vertex, where the total weight of all the edges in the tree is minimized.

The algorithm was discovered in 1930 by mathematician Vojtìch Jarník and later independently by
computer scientist Robert C. Prim in 1957 and rediscovered by Edsger Dijkstra in 1959. Therefore
it is sometimes called the DJP algorithm, the Jarník algorithm, or the Prim-Jarník algorithm.

0 2

1 1

1 1

1

2

6

3

5

v4 v3

v2

v1v0

0

1

1 1

1

2

6

3

5

v4 v3

v2

v1v0

1

1

3

Figure 14.13: Diagrammatic Representation of Prim’s Algorithm

Algorithm

Let G = (V, E) which is represented by an adjacency list Adj. Some support data structures:

1. d is an array of size |V|. Each d[i] contains the shortest distance for vertex i

2. Q is a priority queue of UNKNOWN vertices.

3. p is an array of size |V|. Each P[i] contains the parent of vertex i.

4. s is the source vertex.

PRIM(G, s)

1. Initialize d[s] with 0, P[s] with 0, and

 all other d[i] (i!=s) with a positive infi nity and

 p[i] (i!=s) with 0.

2. Q <- V // initialize Q with all vertices as UNKNOWN

3. while Q not empty do

4. begin

5. u <- ExtractMin(Q) // Q is modifi ed

6. Mark u as KNOWN // Dequeing u is the same as marking it as KNOWN

7. for each vertex v in Adj[u] do

8. begin

9. if v is UNKNOWN and d[v] > weight(u, v), then do

10. begin

11. d[v] = weight(u, v) // update with shorter weight

12. p[v] = u // update v’s parent as v

Advanced Data Structure and Algorithms

Notes

290 LOVELY PROFESSIONAL UNIVERSITY

13. end

14. end

15. end

Proof of Correctness

Let P be a connected, weighted graph. At every iteration of Prim’s algorithm, an edge must be
found that connects a vertex in a subgraph to a vertex outside the subgraph. Since P is connected,
there will always be a path to every vertex. The output Y of Prim’s algorithm is a tree, because the
edge and vertex added to Y are connected. Let Y1 be a minimum spanning tree of P. If Y1 = Y then
Y is a minimum spanning tree. Otherwise, let e be the fi rst edge added during the construction
of Y that is not in Y1, and V be the set of vertices connected by the edges added before e. Then
one endpoint of e is in V and the other is not. Since Y1 is a spanning tree of P, there is a path in Y1
joining the two endpoints. As one travels along the path, one must encounter an edge f joining
a vertex in V to one that is not in V. Now, at the iteration when e was added to Y, f could also
have been added and it would be added instead of e if its weight was less than e. Since f was not
added, we conclude that

 w(f)24
12w(e).

Let Y2 be the graph obtained by removing f and adding e from Y1. It is easy to show that Y2 is
connected, has the same number of edges as Y1, and the total weights of its edges is not larger
than that of Y1, therefore it is also a minimum spanning tree of P and it contains e and all the
edges added before it during the construction of V. Repeat the steps above and we will eventually
obtain a minimum spanning tree of P that is identical to Y1. This shows Y is a minimum spanning
tree.

2

1

1 16

5

3

v1v0

v3v4

(0)
0

v2

 v known dv pv

 v0 F 0 0
 v1 F 0
 v2 F 0
 v3 F 0
 v4 F 0

Q = {v0, v1, v2, v3, v4}

2

1

1 16

5

3

v1v0

v3v4

(1)
0

1

v2

 v known dv pv

 v0 T 0 0
 v1 F 2 v0
 v2 F 0
 v3 F 0
 v4 F 1 v0

Q = {v4, v1, v2, v3, v4}

2

2

1

1 16

5

3

v1v0

v3v4

(2)
0 2

1 1

v2

 v known dv pv

 v0 T 0 0
 v1 F 2 v0
 v2 F 0
 v3 F 1 v4
 v4 T 1 v0

Q = {v3, v1, v2}

Figure 14.14: Step-by-Step Representation of Prim’s Algorithm

Contd...

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 291

2

1

1 16

5

3

v1v0

v3v4

(3)
0 1

1 1

v2

 v known dv pv

 v0 T 0 0
 v1 F 1 v3
 v2 F 3 v3
 v3 T 1 v4
 v4 T 1 v0

Q = {v1, v2}

3

2

1

1 16

5

3

v1v0

v3v4

(4)
0 1

1 1

v2

 v known dv pv

 v0 T 0 0
 v1 T 1 v3
 v2 F 3 v3
 v3 T 1 v4
 v4 T 1 v0

Q = {v2}

2

1

1 16

5

3

v1v0

v3v4

(5)
0 1

1 1

v2

 v known dv pv

 v0 T 0 0
 v1 F 1 v3
 v2 F 3 v3
 v3 T 1 v4
 v4 T 1 v0

Q = { }

3

3

Note v0 is the source vertex, and d[i] for each vertex i is also indicated in its circle:

14.4 Summary

 Perhaps the best safeguard in the use of powerful tools is to insist on regularity; that is,
to use the powerful tools only in carefully defi ned and well-understood ways. Because
of the generality of graphs, it is not always easy to impose this discipline on their use. In
this world, nonetheless, irregularities will always creep in, no matter how hard we try
to avoid them. It is the bane of the systems analyst and programmer to accommodate
these irregularities while trying to maintain the integrity of the underlying system design.
Irregularity even occurs in the very systems that we use as models for the data structures
we devise, models such as the family trees whose terminology we have always used.

14.5 Keywords

Network Flow: Network fl ow is an advanced branch of graph theory.

Zero-One Principle: If a sorting network sorts every sequence of 0’s and 1’s, then it sorts every
arbitrary sequence of values.

Prim’s algorithm: Prim’s algorithm is an algorithm in graph theory that fi nds a minimum
spanning tree for a connected weighted graph.

Advanced Data Structure and Algorithms

Notes

292 LOVELY PROFESSIONAL UNIVERSITY

Minimum Spanning Tree: A minimum spanning tree or minimum weight spanning tree is then a
spanning tree with weight less than or equal to the weight of every other spanning tree.

Kruskal’s algorithm: Kruskal’s algorithm is an algorithm in graph theory that fi nds a minimum
spanning tree for a connected weighted graph.

14.6 Self Assessment

State whether the following statements are true or false:

1. Network fl ow is an advanced branch of graph theory.

2. Kruskal’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree
for a connected weighted graph.

3. Kruskal’s algorithm is not an example of a greedy algorithm.

4. Prim’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree for a
connected weighted graph.

5. A graph may not have many spanning trees.

Fill in the blanks:

6. Prism algorithm was discovered in 1930 by mathematician

7. developed some examples on which the running time is based.

8. A can solve it in linear expected time.

9. Kruskal’s algorithm is an algorithm in graph theory that fi nds a minimum spanning tree
for a connected graph.

10. Prism’s algorithms sometimes called the

14.7 Review Questions

1. What do you mean by network fl ow?

2. Explain Ford Fulkerson’s method of network fl ow.

3. What do you mean by minimum spanning tree?

4. Describe proof of correctness of Kruskal’s algorithm

5. Explain prim’s algorithm

6. Dijkstra’s algorithm to compute a minimal spanning tree in a network works by considering
all edges in any convenient order. As in Kruskal’s algorithm, we select edges for a spanning
tree, by adding edges to an initially empty set. However, each edge is now selected as
it is considered, but if it creates a cycle together with the previously selected edges, the
most expensive edge in this cycle is deselected. Prove that the edges chosen by Dijkstra’s
algorithm also form a minimal spanning tree of a connected network.

7. Kruskal’s algorithm to compute a minimal spanning tree in a network works by considering
all edges in increasing order of weight. We select edges for a spanning tree, by adding
edges to an initially empty set. An edge is selected if together with the previously selected
edges it creates no cycle. Prove that the edges chosen by Kruskal’s algorithm do form a
minimal spanning tree of a connected network.

8. Explain how Prim’s algorithm for minimal spanning trees differs from Kruskal’s
algorithm.

Unit 14: Network Flows

Notes

 LOVELY PROFESSIONAL UNIVERSITY 293

9. Graphs may be implemented in many ways by the use of different kinds of data structures.
Postpone implementation decisions until the applications of graphs in the problem-solving
and algorithm-development phases are well understood.

10. How can we determine a maximal spanning tree in a network?

Answers: Self Assessment

1. True 2. True

3. False 4. True

5. False 6. Vojtìch Jarník

7. Norman Zadeh 8. randomized algorithm

9. weighted 10. DJP algorithm

14.8 Further Readings

Books Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, 1988.

 Burkhard Monien, Data Structures and Effi cient Algorithms, Thomas Ottmann,
Springer.

 Kruse, Data Structure & Program Design, Prentice Hall of India, New Delhi.

 Mark Allen Weles, Data Structure & Algorithm Analysis in C Second Ed., Addison-
Wesley Publishing.

 RG Dromey, How to Solve it by Computer, Cambridge University Press.

 Shi-Kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Shi-kuo Chang, Data Structures and Algorithms, World Scientifi c.

 Sorenson and Tremblay, An Introduction to Data Structure with Algorithms.

 Thomas H. Cormen, Charles E, Leiserson & Ronald L., Rivest: Introduction to
Algorithms. Prentice-Hall of India Pvt. Limited, New Delhi.

 Timothy A. Budd, Classic Data Structures in C++, Addison Wesley.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-300360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

