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Abstract 

“Chebyshev polynomials” have a rich historical background associated with the 

contributions of the Russian mathematician Pafnuty Chebyshev (1821-1894). Pafnuty 

Chebyshev extensively studied and introduced them in the mid of 19th century between 

1854 to 1859, with a primary focus on their properties and their application in 

approximation theory. Notably, Chebyshev aimed to develop methods for minimizing 

the maximum error in polynomial approximation, a concept now known as Chebyshev 

approximation. One of Chebyshev's significant contributions was demonstrating the 

orthogonality property of his polynomials in 1864. Beyond his work on “Chebyshev 

polynomials”, Pafnuty Chebyshev continued to make substantial contributions to 

various mathematical problems. His interests spanned areas such as continued fractions, 

the theory of congruences, the theory of integration, and the distribution of prime 

numbers. “Chebyshev polynomials” found applications in control theory and signal 

processing during the mid-20th century. Their unique properties, including equi-

oscillation, made them valuable tools in designing filters and addressing problems in 

engineering fields. Their diverse properties make them essential not only in 

approximation theory but also in numerical analysis, optimization, and computational 

mathematics. Chebyshev's pioneering efforts laid the groundwork for the development 

and application of these polynomials. The continued relevance underscores their 

importance in various mathematical and engineering disciplines today. 

Fibonacci numbers, a remarkable sequence attributed to Leonardo of Pisa, stand out as 

a noteworthy mathematical phenomenon. They hold a special place in our world and 

have profound implications for various aspects of our daily existence. The genesis of 

these numbers can be traced back to Leonardo of Pisa's renowned “rabbit problem”. 

Beyond their intrinsic connection to our everyday experiences, Fibonacci numbers find 

diverse applications in nature, music, and numerous other fields a richness that cannot 

be succinctly encapsulated.  

The Lucas numbers constitute a sequence of integers that bears similarities to the 

Fibonacci numbers. These numbers are named after Édouard Lucas, a French 
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mathematician who introduced them during the 19th century. Similar to the Fibonacci 

numbers, the Lucas numbers exhibit various interesting properties and hold connections 

in number theory, algebra, and geometry. Édouard Lucas introduced these numbers 

while exploring the properties of the Fibonacci sequence, originally discovered by 

Leonardo Fibonacci. Lucas expanded upon Fibonacci's work and generalized the 

concept, leading to the Lucas sequence and the Lucas numbers. The Pell numbers derive 

their name from John Pell, a mathematician who contributed to the understanding of 

these equations. The term “Pell numbers” was later coined to acknowledge his 

contributions to this mathematical field. 

This thesis is dedicated to exploring the profound significance of the “Chebyshev 

polynomials”, Pell numbers, Fibonacci numbers, Lucas numbers and the accompanying 

polynomials that envelop them. Comprising five chapters, this work aims to provide an 

in-depth understanding of these divinely endowed numbers. The core of the subject 

matter of the manuscript grows from a series of our research papers that are cited at the 

end. The following overview summarizes the thesis:  

The first chapter serves as an introduction, offering a concise overview of “Chebyshev 

polynomials” delving into their historical roots, elucidating their applications, and their 

polynomial expansions are presented. Additionally, here's a concise overview of 

definitions and well-known results related to Chebyshev polynomials, Fibonacci 

numbers, Fibonacci polynomials, Lucas numbers, Lucas’s polynomials, Pell numbers, 

and Pell polynomials, which meet the minimal requirements for the evolution of the 

emerging chapters. It also outlines key concepts and well-established results concerning 

“Chebyshev polynomials” and their associated polynomials. This chapter includes a 

section of literature review that specifically examines the research conducted by 

different researchers in the field of the “Chebyshev polynomials” and their polynomial 

generalizations through the all four kinds of Chebyshev and similar polynomials. This 

review identifies a research gap, which becomes a focal point for the thesis. 

Additionally, the chapter outlines the objectives and methods to be employed in 

addressing and bridging these identified gaps. Throughout our exploration, the 

geogebra software has been extensively utilized for graphical representations of various 

sequences. This approach enhances the visual understanding of the intricate 

relationships between these polynomials, numbers and their associated polynomials. 
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The remainder of this thesis is dedicated to exploring the behavior and distinct 

properties of polynomials sequences analogous to “Chebyshev polynomials”, Lucas 

numbers, Fibonacci numbers, and Pell numbers particularly focusing on their 

interconnections. 

The primary sequences in the chapter 2, include matrix representation of “Chebyshev 

polynomials” of both 3rd and 4th kind. We will deal with matrix representation via 

determinant representation.  Additionally, attention is given to several identities related 

to matrix representation with practical applications. At the end of this chapter, we 

deduce some identities involving the generating matrices and their determinants. 

Several results are developed based on their properties and interrelationships, 

employing diverse methodologies and techniques. We have discussed properties related 

to the matrix representation of both third and fourth kind, like matrix power and trace 

of the matrix of the Chebyshev polynomials. 

In the chapter 3, we developed the concepts of generalized Chebyshev-like polynomials 

and discussed their properties. The thesis aims to derive explicit formulas for these 

generalized polynomials, accompanied by intriguing identities related to their 

generating matrices and corresponding determinants. The characteristic equation, 

characteristic roots are obtained for the generalized “Chebyshev polynomials”. The 

sum, product, subtraction, and sum of squares of roots are discussed for the generalized 

version. We deduced the generating matrices and their determinants for generalized 

“Chebyshev polynomials”, along with some identities. The generating matrix for 

generalized “Chebyshev polynomials” is generated with the help of the matrix algebra 

and deduced some related determinantal properties.  

In chapter 4, we will consider the interaction between the 3rd and 4th kind of Chebyshev 

polynomials with the Lucas, Fibonacci numbers. Analogous results are obtained for the 

3rd and 4th kind of “Chebyshev polynomials”, including specific cases of these 

identities. We develop certain identities involving sums of their finite products. We also 

discussed some specific cases of these summation identities that result from different 

values of 𝑟 = 1, 2. Several identities connecting summation of definite products of 

Lucas, Fibonacci numbers, and Chebyshev polynomials of both 3rd and 4th kind are 

investigated. The thesis then progresses to the development of identities concerning the 

summations of definite products of Lucas and Fibonacci numbers, presented in the form 
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of 3rd and 4th kind “Chebyshev polynomials” and their derivatives. 

 The focus is particularly on summation representations of finite products involving 

diverse sequences of numbers and polynomials. Explicit formulas for these “Chebyshev 

polynomials” and their derivatives are obtained at certain variables along with their 

connections to Fibonacci, Lucas numbers.  

At the end, in the chapter 5, the focus shifts to the sequence of connecting definite 

products of 3rd kind of Chebyshev polynomials. New results derived on representations 

of definite products of the Chebyshev polynomials, Lucas, Fibonacci numbers, and Pell 

polynomials. The explicit formulae for 3rd kind of Chebyshev polynomials and their 

derivatives with Pell, Fibonacci, and Lucas numbers are established. Further, their links 

with Fibonacci polynomials, Pell numbers, and Lucas numbers are also obtained. In 

this section some works on summations of definite products of 3rd kind Chebyshev 

polynomials, Lucas numbers, Fibonacci numbers, and Pell polynomials are considered. 

Additional identities are explored, using computational methods. The thesis utilizes 

recursive methodology to establish summation representations for sequences of Lucas, 

Pell, Fibonacci numbers, and Chebyshev polynomials. The thesis establishes linkages 

between these “Chebyshev polynomials, Lucas numbers, Pell numbers, and Fibonacci 

numbers” including sums of finite products through elementary computations. 

Future work includes the study of generalized Chebyshev polynomials, exploring their 

basic properties and interconnections based on the observed patterns. Finally, we lay 

out the brief mapping of the future research possibilities based on the content of this 

thesis. Further exploration involves the extension of Chebyshev polynomials, unveiling 

their basic properties.  
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PREFACE 

  

The present thesis entitled “A STUDY OF CHEBYSHEV POLYNOMIALS THEIR 

PROPERTIES AND APPLICATIONS” is the outcome of investigation carried by 

author towards the fulfillment for the award of the degree Doctor of Philosophy under 

the supervision of Dr. Pankaj Pandey (Associate Professor), Department of 

Mathematics, School of Chemical Engineering and Physical Sciences, Lovely 

Professional University, Phagwara (Punjab). 

The present thesis is divided into five chapters and each chapter is sub-divided into 

different sections. 

Chapter 1: The first chapter is introductory and contains a brief history of Chebyshev 

polynomials and some basic definitions. 

Chapter 2: This chapter is bifurcated into two main components. Firstly, it establishes 

the matrix representation of third-kind Chebyshev polynomials and derives their 

characteristic equations. The theorem outlined in this segment establishes a significant 

connection between the trace of matrix power and third-kind Chebyshev polynomials, 

illustrated through a practical example that validates the presented theorems. The 

second segment focuses on the matrix representation of fourth-kind Chebyshev 

polynomials and deduces their characteristic equations. It delves into the exploration of 

interrelated identities involving matrix power and Chebyshev polynomials. The chapter 

further explores the relationship between the second and fourth kinds of Chebyshev 

polynomials and matrix power. Practical applications of these findings are discussed, 

underscoring the significance of the work presented in this chapter. 

The whole content of this part is In Press (For Publication) in “Contempory 

Mathematics” (Scopus Indexed).  

Chapter 3: This chapter presents a novel advancement in the form of a generalized 

version of Chebyshev-like polynomials. Additionally, the chapter explores the 

derivation of the Binet Formula for these Chebyshev-like polynomials. The discussion 

extends to the representation of generalized Chebyshev's polynomials through a matrix 

framework. The chapter delves into the characteristic equations associated with these 
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generalized polynomials and their practical applications. Moreover, it emphasizes the 

importance and relevance of the work undertaken in this chapter. The whole content of 

this part is In Press (For Publication) in South East Journal of Mathematics and 

Mathematical Sciences (Scopus Indexed). 

Chapter 4: Within this chapter, several straightforward lemmas are derived, 

accompanied by their proofs, serving as foundational steps toward attaining the main 

results. The chapter explores the connection between the fourth kind of Chebyshev 

polynomials, Fibonacci numbers, and Lucas numbers. Additionally, it examines the 

relationship between the third kind of Chebyshev polynomials and Lucas numbers. The 

practical applications are discussed, emphasizing their relevance. The chapter 

concludes by summarizing the findings and highlighting the significance of the work 

undertaken in this research endeavor. 

The whole content of this part is published in IAENG Journal of Applied 

Mathematics, 53(4), 2023, 1222-1229, (Scopus Indexed). 

Chapter 5: This chapter unfolds through the derivation of several lemmas, forged by 

connecting identities at specific variables. These connections yield a meaningful 

relationship among the third-kind Chebyshev polynomials, Fibonacci numbers, Lucas 

numbers, and Pell numbers. The rigorous proofs of the derived lemmas and overarching 

theorems are presented, offering a comprehensive understanding of the established 

connections. Furthermore, the chapter includes corollaries, logically deduced from 

theorems, contributing additional insights. The chapter concludes with a concise 

summary and conclusive remarks, highlighting the significance and implications of the 

established relations. 

 

Finally, we encapsulated the research endeavor by providing a comprehensive summary 

and conclusion. Additionally, we delineated the potential avenues for future exploration 

and development in our work, identifying the future scope of our research. 

The whole content of this part is In Press (For Publication) in “AIP Conference 

Proceedings” (Scopus Indexed).  

***** 
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Symbols and Notations 

 

𝑛         Natural number 

𝑥            Variable 

𝑇𝑛(𝑥)    First Kind of Chebyshev Polynomials 

𝑈𝑛(𝑥)   Second Kind of Chebyshev Polynomials 

𝑉𝑛(𝑥)    Third Kind of Chebyshev Polynomials 

𝑊𝑛(𝑥)   Fourth Kind of Chebyshev Polynomials 

                                   𝐿𝑛          Lucas Numbers 

                               𝐹𝑛          Fibonacci Numbers 

                               𝑃𝑛          Pell Numbers 

                                   𝐿𝑛(𝑥)    Lucas Polynomials 

                               𝐹𝑛(𝑥)     Fibonacci Polynomials 

                               𝑃𝑛(𝑥)     Pell polynomials 

𝑛, 𝑞       Integers with 𝑛 ≥ 0, 𝑞 ≥ 1 

                       𝑉𝑛
𝑞(𝑥)   𝑞𝑡ℎ derivative of 𝑉𝑛(𝑥) 

                                 𝑊𝑛
𝑞(𝑥)    𝑞𝑡ℎ derivative of 𝑊𝑛(𝑥) 

                                  𝛺𝑛(𝑥)         𝑛𝑡ℎ Vieta-Lucas Polynomial 

                                  𝑍𝑛(𝑥)        𝑛𝑡ℎ Vieta-Fibonacci Polynomial 

                              C. P.        Chebyshev Polynomials 

C. E.       Characteristic Equation 

𝜆             Eigen Value 

𝐺(𝑥)        Generating Function 

𝛴           Summation 

∏             Product 

𝐴              Non-Singular 2 × 2 Matrix 

𝐼               Identity Matrix 

𝑎1            Trace of Matrix 
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𝑎2            Determinant of Matrix 

L. H. S.    Left Hand Side 

R. H. S.    Right Hand Side 

𝑅𝑛(𝑥)       Generalized Chebyshev-like Polynomials 
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Chapter 1 

Introduction 

1.1 A Brief Background of Chebyshev Polynomials 

Pafnuty Chebyshev, an exceptional Russian mathematician born in the small town of 

Okatovo in western Russia, demonstrated a distinctive perspective on the intersection of 

mathematical theory and its practical applications, particularly in number theory. 

Chebyshev is best remembered as a trailblazer in the realm of polynomials, making him a 

pioneering figure in the field. His insights into these polynomials, which are integral in 

various mathematical and scientific applications, set him apart in the history of 

mathematics. Born in Okatovo and leaving an indelible mark on mathematics, Chebyshev's 

legacy extends beyond his time, influencing subsequent generations of mathematicians and 

scientists who continue to draw inspiration from his unconventional and innovative 

thinking. Chebyshev's work not only laid the groundwork for a general theory of 

orthogonal polynomials but also demonstrated their vital role in solving real-world 

problems, leaving an enduring impact on the fields of mathematics and applied sciences. 

Chebyshev, with an extensive body of work comprising around 80 publications, made 

significant contributions across diverse mathematical domains. His research spanned 

various problems in analysis and practical mathematics. His influence is particularly 

notable in the realm of numerical analysis, where Chebyshev polynomials have gained 

importance with perspectives. “Chebyshev polynomials” family encompasses four kinds. 

While a considerable amount of literature emphasizes 1st and 2nd kinds of “Chebyshev 

polynomials” and their myriad applications, there is a notable scarcity of resources on the 

3rd and 4th kinds. Limited attention has been given to these later types, both in terms of 

theoretical exploration and practical applications. This gap in literature suggests a potential 

avenue for further research and exploration of the 3rd and 4th kinds Chebyshev polynomials. 

which may unveil additional insights and applications in the broader landscape of 

mathematics and numerical analysis. We have proposed a new generalized version of the 
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Chebyshev kinds of polynomials. We have addressed the determinant representation of this 

generalized version with its characteristic equation, as well as the Binet-like formulas and 

the practical applications of generalized polynomials in the approximation of the functions. 

1.2 Basic Terminologies and Preliminaries 

𝟏. 𝟐. 𝟏 Polynomial 

A polynomial denoted as 𝑃(𝑥), is a mathematical function defined in the following way: 

                                     𝑃(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+  𝑎𝑛 𝑥

𝑛.                        (1.2.1) 

Here,  𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛  are real numbers, and 𝑥 represents real variable. The condition 

for 𝑎𝑛 ≠ 0 indicates that 𝑃(𝑥) represents degree 𝑛 polynomial. This definition 

characterizes polynomials and establishes their structure in terms of the coefficients 𝑎𝑜 ,

𝑎1, 𝑎2, … ,  𝑎𝑛 and the variable 𝑥. 

𝟏. 𝟐. 𝟐 Classical Orthogonal Polynomials 

The most widely used classical orthogonal polynomials: Hermite polynomials, Laguerre 

polynomials, Jacobi polynomials (including as a special case the Gegenbauer polynomials, 

Chebyshev polynomials, and Legendre polynomials.  

𝟏. 𝟐. 𝟑 Chebyshev Polynomials  

 

One method of defining these polynomials involves starting with trigonometric functions. 

Another approach employs recurrence relations, which express each polynomial in terms 

of its predecessors, establishing a recursive formula for their computation. This 

multifaceted definition allows for a comprehensive understanding and application of these 

Chebyshev polynomials in various mathematical contexts. Two sets of orthogonal 

polynomials that are related to De Moivre’s formula associated with sine and cosine 

functions are represented as 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥), constituting the 1st and 2nd kinds of 
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“Chebyshev polynomials”. Additionally, there are polynomials denoted as 𝑉𝑛(𝑥) and 

𝑊𝑛(𝑥), cited as the “Chebyshev polynomials” of the 3rd and 4th kinds.  

𝟏. 𝟐. 𝟒 Chebyshev Polynomials of the 1st Kind 

“Chebyshev polynomials” (see [69]) were initially introduced by Pafnuty Chebyshev in 

1853 in a paper discussing hinge mechanisms. They can be defined in several equivalent 

ways, one of which starts with trigonometric functions. Chebyshev polynomials 𝑇𝑛(𝑥) of 

the 1st kind, elucidate as a polynomial of degree 𝑛 in 𝑥 and stated in terms of cosine function 

as: 

                                                            𝑇𝑛(𝑥) = 𝑐𝑜𝑠𝑛𝜃,  where 𝑥 = 𝑐𝑜𝑠𝜃.                    (1.2.2)       

An alternative way to generate “Chebyshev polynomials of the 1st kind” is through 

recurrence relation: 

                                                              𝑇0(𝑥) = 1,  𝑇1(𝑥) = 𝑥.                                      (1.2.3)       

For  𝑛 ≥ 2,  

                                                       𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥).                             (1.2.4)     

This recursive formula provides a systematic method for computing 1st kind Chebyshev 

polynomials based on their previous terms. The combination of the trigonometric definition 

and the recurrence relation offers a comprehensive understanding of these polynomials and 

their properties. 

The graphical representation of the 1st kind Chebyshev polynomials (see fig 1.2.1) 
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                     “Figure 1.2.1 Graph of Chebyshev Polynomials of 1st Kind” 

𝟏. 𝟐. 𝟓 Chebyshev Polynomials of the 2nd Kind 

“Chebyshev polynomials” 𝑈𝑛(𝑥) of the 2nd kind [69] is a degree 𝑛 polynomial in 𝑥 stated 

as: 

                                              𝑈𝑛(𝑥) =
sin (𝑛+1)𝜃

𝑠𝑖𝑛𝜃
 , where 𝑥 = 𝑐𝑜𝑠𝜃.                              (1.2.5)       

Additionally, “Chebyshev polynomials” of the 2nd kind can be originated through 

recurrence relation:                                       

                                       𝑈0(𝑥) = 1, 𝑈1(𝑥) = 2𝑥.                                                       (1.2.6)       

For 𝑛 ≥ 2, 

                                           𝑈𝑛(𝑥) = 2𝑥 𝑈𝑛−1(𝑥) −𝑈𝑛−2(𝑥).                                        (1.2.7)     

The graphical representation of the 2nd kind Chebyshev polynomials (see fig 1.2.2) 
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“Figure 1.2.2: Graph of Chebyshev Polynomials of 2nd Kind” 

𝟏. 𝟐. 𝟔  “Chebyshev Polynomials of the 3rd Kind” 

Chebyshev polynomials of the third kind are another sequence of orthogonal polynomials. 

They are also defined using trigonometric functions.  “Chebyshev polynomials” of the 3rd 

kind [69], a set of degree 𝑛 polynomial, described using following expression: 

                                            𝑉𝑛(𝑥) =
cos (𝑛+

1

2
)𝜃

𝑐𝑜𝑠𝜃

2

, where 𝑥 = 𝑐𝑜𝑠𝜃.                           (1.2.8)       

The Chebyshev polynomials 𝑉𝑛(𝑥) of the 3rd kind share identical recurrence relations with 

“Chebyshev polynomials” of the 1st and 2nd kinds. The only distinction in their generation 

lies in the specification of initial conditions for 𝑛 = 1, consequently we can express this 

relationship as: 
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                                          𝑉0(𝑥) = 1, 𝑉1(𝑥) = 2𝑥 − 1,                                                 (1.2.9)       

 For 𝑛 ≥ 2, 

                                          𝑉𝑛  (𝑥) = 2𝑥 𝑉𝑛−1(𝑥) − 𝑉𝑛−2(𝑥).                                        (1.2.10)    

  The graphical representation of the 3rd kind Chebyshev polynomials (see fig 1.2.3) 

                   “Figure 1.2.3: Graph of Chebyshev Polynomials of 3rd Kind” 

𝟏. 𝟐. 𝟕 “The Chebyshev Polynomials of the 4th Kind” 

Chebyshev polynomials of the fourth kind are another sequence of orthogonal polynomials 

Chebyshev polynomials of the fourth kind are less commonly discussed compared to the 

other kinds but they have their own unique properties and applications. They are also 

defined using trigonometric functions. Chebyshev polynomials 𝑊𝑛(𝑥) of the 4th kind [69], 

each of degree 𝑛 in 𝑥 can be described using following expression:     
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                                           𝑊𝑛(𝑥) = 
sin(𝑛+

1

2
)𝜃

𝑠𝑖𝑛𝜃/2
,  where 𝑥 = 𝑐𝑜𝑠𝜃.                             (1.2.11)       

The recurrence relation provides a systematic way to compute 𝑊𝑛(𝑥) based on its previous 

terms, similar to the recurrence relations for the 1st, 2nd, and 3rd kinds of the Chebyshev 

polynomials: 

                                       𝑊0(𝑥) = 1, 𝑊1(𝑥) = 2𝑥 + 1,                                              (1.2.12)        

 For 𝑛 ≥ 2, 

                                     𝑊𝑛(𝑥) = 2𝑥 𝑊𝑛−1(𝑥) − 𝑊𝑛−2(𝑥).                                       (1.2.13)      

The graphical representation of the 4th kind Chebyshev polynomials (see fig 1.2.4) 

                     Figure 1.2.4: Graph of Chebyshev Polynomials of 4th Kind 
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𝟏. 𝟐. 𝟖 Orthogonal Polynomials 

 Orthogonal polynomials emerged in the 19th century, originating from P.L. Chebyshev’s 

work on continued fractions. This field was further advanced by A.A. Markov and T.J. 

Stieltjes. An orthogonal polynomial sequence is a family of polynomials such that any two 

different polynomials in the sequence are orthogonal to each other under some inner 

product. 

Two functions 𝑓(𝑥) and 𝑔(𝑥) are said to be orthogonal on the interval [𝑎, 𝑏] with respect to 

a given continuous and non-negative weight function 𝑤(𝑥) if 

                                                 ∫ 𝑤(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 0
𝑏

𝑎
                                              (1.2.14)      

If, for convenience, use the inner product notation 

                                            < 𝑓, 𝑔 >= ∫ 𝑤(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 0
𝑏

𝑎
                                   (1.2.15)      

Where 𝑓, 𝑔 are functions of 𝑥 on[𝑎, 𝑏], then the orthogonality conditions of the above 

equations are equivalent to saying that 𝑓 is orthogonal to 𝑔 if  

                                          < 𝑓, 𝑔 >= 0                                                                             (1.2.16) 

𝟏. 𝟐. 𝟗 Chebyshev Polynomials of First kind as Orthogonal Polynomials  

The polynomial of the first kind is orthogonal with respect to the weight function; 

1

√1 − 𝑥2
 

 On the interval [𝑎, 𝑏] = [−1,1] i.e. we have: 
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            ∫ 𝑇𝑛(𝑥)𝑇𝑚(𝑥)
1

−1

𝑑𝑥

√1 − 𝑥2
= {

0    ,       𝑛 ≠ 𝑚        

 
𝜋

2
,        𝑛 = 𝑚 ≠ 0

 𝜋, 𝑛 = 𝑚 = 0  

                               (1.2.17) 

𝟏. 𝟐. 𝟏𝟎 Chebyshev Polynomials of Second kind as Orthogonal 

Polynomials 

The polynomials 𝑈𝑛(𝑥) are orthogonal on the interval [−1,1] with respect to the weight 

function; 

√1 − 𝑥2 

         ∫ 𝑈𝑛(𝑥)𝑈𝑚(𝑥)
1

−1

𝑑𝑥

√1 − 𝑥2
= {

0    ,       𝑛 ≠ 𝑚        

 
𝜋

2
,         𝑛 = 𝑚 ≠ 0

 0, 𝑛 = 𝑚 = 0  

                        (1.2.18) 

𝟏. 𝟐. 𝟏𝟏 Chebyshev Polynomials of Third kind as Orthogonal Polynomials 

The polynomials 𝑉𝑛(𝑥) are orthogonal on the interval[−1,1] with respect to the weight 

function: 

√1 + 𝑥

√1 − 𝑥
 

      ∫ 𝑉𝑛(𝑥)𝑉𝑚(𝑥)
1

−1

√1 + 𝑥

√1 − 𝑥
= {

0,                        𝑛 ≠ 𝑚
𝜋,                      𝑛 = 𝑚
 0,               𝑛 = 𝑚 = 0

                      (1.2.19) 

𝟏. 𝟐. 𝟏𝟐 Chebyshev Polynomials of Fourth kind as Orthogonal Polynomials 

The polynomials 𝑊𝑛(𝑥) are orthogonal on the interval[−1,1] with respect to the weight 

function: 
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√1 − 𝑥

√1 + 𝑥
 

  ∫ 𝑊𝑛(𝑥)𝑊𝑚(𝑥)
1

−1

√1 − 𝑥

√1 + 𝑥
= {

0,                        𝑛 ≠ 𝑚
𝜋,                        𝑛 = 𝑚
0,               𝑛 = 𝑚 = 0

                          (1.2.20) 

𝟏. 𝟐. 𝟏𝟑 Orthogonal Series of Chebyshev Polynomials  

An arbitrary function 𝑓(𝑥) which is continuous and single-valued, defined over the 

interval−1 ≤ 𝑥 ≤ 1, can be expanded as a series of Chebyshev polynomials: 

                                                           𝑓(𝑥) = 𝐴0 𝑇0 (𝑥)+𝐴1𝑇1 (𝑥)+𝐴2 𝑇2 (𝑥) +⋯ 

                                         𝑓(𝑥) = ∑𝐴𝑛𝑇𝑛(𝑥)

∞

𝑛=0

                                              (1.2.21) 

Where the coefficients of 𝐴𝑛 are given by; 

  𝐴0 =
1

𝜋
∫
𝑓(𝑥 )𝑑𝑥

√1 − 𝑥2

1

−1

 ,    𝐴𝑛 =
2

𝜋
∫
𝑓(𝑥 )𝑇𝑛(𝑥)𝑑𝑥

√1 − 𝑥2

1

−1

 , 𝑛 =  1, 2, 3…                   (1.2.22)   

𝟏. 𝟐. 𝟏𝟒 Rodrigues Formula  

The Rodrigues formula applies exclusively to orthogonal polynomials. It was introduced by 

Olinde Rodrigues, James Ivory (1824), and Carl Gustav Jacobi (1827).  

𝟏. 𝟐. 𝟏𝟓 Chebyshev Polynomials 𝑻𝒏(𝒙), 𝑼𝒏(𝒙) , 𝑽𝒏(𝒙) ,𝑾𝒏(𝒙) can be 

obtained by means of Rodrigues’s formula  

𝑇𝑛(𝑥) =
(−2)𝑛𝑛! √1 − 𝑥2

(2𝑛)!

𝑑𝑛

𝑑𝑥𝑛
  ( 1 − 𝑥2 )  𝑛−

1
2, 𝑛 = 0,1, 2, 3…                          (1.2.23)  
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  𝑈𝑛(𝑥) =
(−1)𝑛(𝑛+1)

1.3.5.7……(2𝑛+1)

1

√1−𝑥2

𝑑𝑛

𝑑𝑥𝑛
{ 1 − 𝑥2) n√1 − 𝑥2}   , 𝑛 = 0,1, 2, 3…              (1.2.24)    

   𝑉𝑛(𝑥) =
(−1)𝑛

1.3.5……..(2𝑛−1)
√
1−𝑥

1+𝑋

𝑑𝑛

𝑑𝑥𝑛
{(1 − 𝑥)

𝑛−1
2⁄ ((1 + 𝑥)

𝑛+1
2⁄ , 𝑛 = 0,1, 2, 3..       (1.2.25)   

   𝑊𝑛(𝑥) =
(−1)𝑛

3.5……..(2𝑛−1)
√
1+𝑥

1−𝑋

𝑑𝑛

𝑑𝑥𝑛
 {(1 − 𝑥)

𝑛+1
2⁄ ((1 + 𝑥)

𝑛−1
2⁄ , 𝑛 = 0,1, 2, 3…      (1.2.26)   

𝟏. 𝟐. 𝟏𝟔 Matrix Representation of “Chebyshev Polynomials of 1st Kind” 

Matrix represtation provides an alternative way to generate and express “Chebyshev 

polynomials of the 1st kind” using determinants of matrices, offering a matrix-based 

perspective on their properties and relationships: 

                     𝑇0 = 1, 𝑇1  = 𝑥, 𝑇𝑛  = 2𝑥𝑇𝑛−1 − 𝑇𝑛−2, for 𝑛 ≥ 2.                                 (1.2.27)       

This also can be generated as the determinant of Chebyshev matrices 𝑇𝑛(𝑥); 

                                                   𝑇2(𝑥) = |
𝑥 1
1 2𝑥

|,                                                               (1.2.28)    

                                                   𝑇3(𝑥) = |
𝑥 1 0
1 2𝑥 1
0 1 2𝑥

|,                                                     (1.2.29)  

In general, 

                                                𝑇𝑛(𝑥) =   
|

|

𝑥 1 0 . . . . . . 0
1 2𝑥 1 . . . . . . 0
0 1 2𝑥 . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2𝑥 1
0 0 . . . . . . 1 2𝑥

|

|
.                         (1.2.30)       
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𝟏. 𝟐. 𝟏𝟕  Matrix Representation of “Chebyshev Polynomials of the 2nd 

Kind” 

The 2nd kind 𝑈𝑛(𝑥) Chebyshev polynomials represented by using a matrix approach, 

specifically through the determinant of Chebyshev matrices. Here, we consider recurrence 

relation for 2nd kind Chebyshev polynomials;  

𝑈0(𝑥) = 1, 𝑈1(𝑥) = 2𝑥, 𝑈𝑛(𝑥) = 2𝑥𝑈𝑛−1(𝑥) − 𝑈𝑛−2(𝑥), 𝑛 ≥ 2.                      (1.2.31)       

The above recurrence relation represented in matrix form as: 

                                                           𝑈2(𝑥) = |
2𝑥 1
1 2𝑥

|,                                                 (1.2.32)      

                                                    𝑈3(𝑥) =  |
2𝑥 1 0
1 2𝑥 1
0 1 2𝑥

|,                                       (1.2.33)        

 In general;                             

                                                       𝑈𝑛(𝑥)   =   
|

|

2𝑥 1 0 . . . . . . 0
1 2𝑥 1 . . . . . . 0
0 1 2𝑥 . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2𝑥 1
0 0 . . . . . . 1 2𝑥

|

|
.           (1.2.34)       

𝟏. 𝟐. 𝟏𝟖 Generating Function 

In 1730, Abraham De Moivre initially introduced generating functions, were devised to 

address the problem of the general linear recurrence. They represent a closed form of an 

infinite series and are instrumental in solving a variety of mathematical problems. The 

general form of a generating function is given by: 

                                                 𝐺(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +…                                 (1.2.35)       
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  where 𝑎0, 𝑎1, 𝑎2, …  are real numbers. This can also be voiced as: 

                                                𝐺(𝑥) = ∑𝑎𝑛𝑥
𝑛.                                                            (1.2.36)       

In this context, 𝐺(𝑥)  is referred to as the generating function of the series  {𝑎𝑛}. Generating 

functions provide a powerful tool for manipulating sequences and solving recurrence 

relations, allowing for a more compact representation of mathematical objects and 

relationships. 

𝟏. 𝟐. 𝟏𝟗  Generating Function for Chebyshev Polynomials  

The four kinds of Chebyshev polynomials derived using a generating function. The 

generating function for  𝑇𝑛(𝑥) is given by: 

                                      ∑ 𝑇𝑛(𝑥)𝑡
𝑛∞

𝑛=0 =
1−𝑡𝑥

1−2𝑡𝑥+𝑡2
 .                                                   (1.2.37)   

The generating function for 𝑈𝑛(𝑥) is given by: 

                                       ∑ 𝑈𝑛(𝑥)𝑡
𝑛∞

𝑛=0 =
1

1−2𝑡𝑥+𝑡2
 .                                                (1.2.38)    

The generating function for 𝑉𝓃(𝑥) is given by: 

                                               ∑ 𝑉𝑛(𝑥)𝑡
𝑛∞

𝑛=0 =
1−𝑡

1−2𝑡𝑥+𝑡2
 .                                              (1.2.39)       

The generating function for 𝑊𝑛(𝑥) is given by: 

                                               ∑ 𝑊𝑛(𝑥)𝑡
𝑛∞

𝑛=0 =
1+𝑡

1−2𝑡𝑥+𝑡2
 .                                            (1.2.40)       

This expression provided 𝑛𝑡ℎ term for the Chebyshev polynomials of all kinds through 

their generating function, facilitating the efficient computation of these polynomials and 

their application in various mathematical contexts. 
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𝟏. 𝟐. 𝟐𝟎 Fibonacci Numbers  

The Fibonacci sequence is named after the Italian mathematician Leonardo of Pisa, who is 

more commonly known as Fibonacci. Fibonacci numbers commence with 0, followed by 

1, and each subsequent term is obtained by adding the two preceding terms, as specified 

by the recurrence relation: 

                                        𝐹𝑛 = {

0,  𝑖𝑓 𝑛 = 0
1,  𝑖𝑓 𝑛 = 1

𝐹𝑛−1 + 𝐹𝑛−2 ,  𝑖𝑓 𝑛 ≥ 2.
                                           (1.2.41)         

                                 Figure 1.2.5: Fibonacci Numbers in Nature 
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                                           Figure 1.2.6: Graph of Fibonacci Numbers 

𝟏. 𝟐. 𝟐𝟏 Fibonacci Polynomials 

In mathematics, the Fibonacci polynomials constitute a polynomial sequence that serves as 

a broader conceptualization of the Fibonacci numbers. Fibonacci polynomials are a 

generalization of the Fibonacci numbers, defined by a recurrence relation similar to the one 

for Fibonacci numbers. 

                                    𝐹𝑛(𝑥) = {

0 ,  𝑖𝑓 𝑛 = 0
1,  𝑖𝑓 𝑛 = 1

𝑥𝐹𝑛−1(𝑥) + 𝐹𝑛−2(𝑥) ,  𝑖𝑓 𝑛 ≥ 2.
                                  (1.2.42)  
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                            Figure 1.2.7: Graph of Fibonacci Polynomials 

𝟏. 𝟐. 𝟐𝟐 Lucas Numbers 

It's an integer sequence attributed to the mathematician François Édouard Anatole Lucas. 

Lucas numbers are similar to the Fibonacci sequence, but with different initial values, 

defined as follows: 

                         𝐿𝑛 = {

2 ,  𝑖𝑓 𝑛 = 0
1,  𝑖𝑓 𝑛 = 1

𝐿𝑛−1 + 𝐿𝑛−2 ,  𝑖𝑓 𝑛 ≥ 2.
                                                        (1.2.43)   
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                                    Figure 1.2.8: Graph of Lucas Numbers 

𝟏. 𝟐. 𝟐𝟑 Lucas Polynomials 

The Lucas polynomials are the polynomials sequences which can be considered as a 

generalization of the Lucas numbers in a similar way that Fibonacci polynomials generalize 

Fibonacci numbers. Lucas polynomials are related to Fibonacci polynomials. They are 

defined by the recurrence relation: 

                                    𝐿𝑛(𝑥) = {

2 ,  𝑖𝑓 𝑛 = 0
𝑥,  𝑖𝑓 𝑛 = 1

𝑥𝐿𝑛−1(𝑥) + 𝐿𝑛−2(𝑥) , 𝑖𝑓 𝑛 ≥ 2.
                                 (1.2.44)       

The graphical representation is as under;                         
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                                 Figure 1.2.9: Graph of Lucas Polynomials 

𝟏. 𝟐. 𝟐𝟒 Pell Numbers 

The Pell numbers are an infinite sequence of integer. The Pell numbers are the numbers 

that are similar to Fibonacci numbers and are generated by a recurrence relation. The Pell 

numbers are the sum of twice preceding “Pell number” with the Pell number immediately 

before it, defined as: 

                                  𝑃𝑛 =  

{
 
 

 
 

 0                           ,   𝑖𝑓 𝑛 = 0
     1                            ,  𝑖𝑓 𝑛 = 1   
2𝑃𝑛−1 + 𝑃𝑛−2           , 𝑖𝑓 𝑛 ≥ 2.

 
      

                                    (1.2.45)                                     
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                                   Figure 1.2.10: The Graph of Pell Numbers 

𝟏. 𝟐. 𝟐𝟓 Pell Polynomials 

The Pell polynomials are a sequence of polynomials that generalize the Pell numbers. 

They are defined by the recurrence relation. Pell polynomials are related to Fibonacci 

polynomials. The Pell polynomials denoted by  𝑃𝑛(𝑥) are generated by the recurrence 

relation: 

                     𝑃𝑛(𝑥) =  

{
 
 

 
 

0                       , 𝑖𝑓 𝑛 = 0
    1                        , 𝑖𝑓 𝑛 = 1   

2𝑥𝑃𝑛−1 + 𝑃𝑛−2          , 𝑖𝑓 𝑛 ≥ 2.         
 

      

                                      (1.2.46)                                 
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                                  Figure 1.2.11: Graph of Pell Polynomials 

𝟏. 𝟐. 𝟐𝟔  Binet Formula 

Binet's formula, recognized as Binet's closed-form expression for the Fibonacci sequence, 

was indeed developed by the French mathematician Jacques Philippe Marie Binet. He 

made this discovery in 1843. This formula offers a direct method for computing the 𝑛𝑡ℎ 

term of the Fibonacci sequence without resorting to iterative recurrence relations, 

providing a more straightforward and efficient approach to calculate Fibonacci numbers.  

The C. E.  for the Fibonacci sequence is: 

                                                       𝑡2 − 𝑡 − 1 = 0,                                               (1.2.47)      

 its roots are denoted as 𝑎 and 𝑏. 

                             𝑎 =
1 + √5

2
, 𝑏 =  

1 − √5

2
,                                           (1.2.48) 

                                                     𝐹𝑛 =
𝑎𝑛−𝑏𝑛

𝑎−𝑏
, where  𝑛 ≥ 0.                                     (1.2.49)       
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𝟏. 𝟐. 𝟐𝟕 Binet Formula for Chebyshev polynomials of the 1st Kind 

 

Binet formula allows for the direct calculation of 1st kind “Chebyshev polynomials” 

without relying on iterative methods. It provides an elegant and efficient way to compute 

these polynomials for a given 𝑛. 

The C. E. of the Chebyshev recurrence for the 1st kind is indeed; 

                                                   𝑡2 − 2𝑥𝑡 + 1 = 0,                                                  (1.2.50) 

and the character roots of above equation are; 

                                                     𝑎 = 𝑥+√𝑥2 − 1,  𝑏 = 𝑥 − √𝑥2 − 1.                       (1.2.51) 

The Binet's formula 𝑇𝑛(𝑥) can be formulated as: 

                                               𝑇𝑛(𝑥) =
 𝑎𝑛+𝑏𝑛

2
, where 𝑛 ≥ 0 .                             (1.2.52)     

     

𝟏. 𝟐. 𝟐𝟖 Binet Formula for “Chebyshev polynomials” of the 2nd Kind 

 

The C. E. of the Chebyshev recurrence for the 2nd kind is indeed; 

                                                       𝑡2 − 2𝑥𝑡 + 1 = 0,                                                      (1.2.53)     

   and the characteristic roots of the above equation are; 

                                  𝑎 = 𝑥+√𝑥2 − 1, 𝑏 = 𝑥-√𝑥2 − 1.                                             (1.2.54)      

      

The Binet's formula 𝑈𝑛(𝑥) can be formulated as: 

                              𝑈𝑛(𝑥) =
 𝑎𝑛+1−𝑏𝑛+1

 𝑎−𝑏
, where 𝑛 ≥ 0.                                             (1.2.55)       
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𝟏. 𝟐. 𝟐𝟗 Binet Formula for Chebyshev Polynomials of the 3rd Kind 

The characteristic equation of the Chebyshev recurrence for the 3rd kind is indeed;  

                                   𝑡2 − 2𝑥𝑡 + 1 = 0,                                                                             (1.2.56) 

and the characteristic roots of the above equation are; 

                           𝑎 = 𝑥+√𝑥2 − 1, 𝑏 = 𝑥-√𝑥2 − 1.                                                        (1.2.57) 

The Binet's formula for 𝑉𝑛(𝑥) can be formulated as; 

                                 𝑉𝑛(𝑥) =
 𝑎𝑛+1−𝑏𝑛+1− 𝑎𝑛+𝑏𝑛

 𝑎−𝑏
, where 𝑛 ≥ 0.                                      (1.2.58)       

𝟏. 𝟐. 𝟑𝟎 Binet Formula for Chebyshev Polynomials of the 4th Kind 

The characteristic equation of the Chebyshev recurrence for the 4th kind is indeed;  

                              𝑡2 − 2𝑥𝑡 + 1 = 0,                                                                               (1.2.59) 

and the characteristic roots of the above equation are; 

                           𝑎 =  𝑥+√𝑥2 − 1, 𝑏 = 𝑥-√𝑥2 − 1.                                                   (1.2.60) 

The Binet's formula for  𝑊𝑛(𝑥) can be formulated as: 

                                        𝑊𝑛(𝑥) =
 𝑎𝑛+1−𝑏𝑛+1+ 𝑎𝑛+𝑏𝑛

  𝑎−𝑏
, where 𝑛 ≥ 0.                           (1.2.61)       

𝟏. 𝟐. 𝟑𝟏 Chebyshev Differential Equations  

The term “Chebyshev differential equations” typically refer to a family of differential 

equations associated with Chebyshev polynomials. These differential equations yield 

solutions correspond all four kinds of “Chebyshev polynomials”. 
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The Chebyshev differential equation of the 1st kind is given by: 

                    (1 − 𝑥2)𝑦" − 𝑥𝑦′ + 𝑛2𝑦 = 0.                                                                 (1.2.62)                                                                                    

The Chebyshev differential equation of 2nd kind is given by: 

                   (1 − 𝑥2)𝑦" − 3𝑥𝑦′ + 𝑛(𝑛 + 2)𝑦 = 0.                                                   (1.2.63)    

The Chebyshev differential equation of the 3rd kind is given by: 

                   (1 − 𝑥2)𝑦" + (1 − 2𝑥)𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0.                                       (1.2.64) 

The Chebyshev differential equation of the 4th kind is given by: 

                   (1 − 𝑥2)𝑦" + (1 + 2𝑥)𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0.                                       (1.2.65)                                                              

𝟏. 𝟐. 𝟑𝟐 Shifted “Chebyshev Polynomials” of 1st, 2nd, 3rd, and 4th Kind 

The shifted version of all four kind of Chebyshev polynomials can be derived through the 

transformations given by equation: 

                                                  𝑠 = 2𝑥 − 1.                                                             (1.2.66) 

This transformation results in shifted version of “Chebyshev polynomials”. The 1st kind of 

shifted Chebyshev polynomials denoted as 𝑇∗𝑛(𝑥): 

                                                𝑇∗𝑛(𝑥) = 𝑇𝑛(𝑠) = 𝑇𝑛(2𝑥 − 1).                                  (1.2.67)                                                 

     Thus, 

                      𝑇∗0(𝑥) = 1,    𝑇
∗
1(𝑥) = 2𝑥 − 1,   𝑇

∗
2(𝑥) = 8𝑥

2 − 8𝑥 + 1,…     (1.2.68)    

Similarly shifted Chebyshev polynomials 𝑈∗𝑛 , 𝑉
∗
𝑛, 𝑊∗

𝑛 of 2nd, 3rd, and 4th kinds defined 

in precisely analogous ways: 
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         𝑈∗𝑛(𝑥) = 𝑈(2𝑥 − 1), 𝑉
∗
𝑛(𝑥) = 𝑉𝑛(2𝑥 − 1),  𝑊

∗
𝑛(𝑥) = 𝑊𝑛(2𝑥 − 1).     (1.2.69)         

𝟏. 𝟐. 𝟑𝟑. Generalized Chebyshev Polynomials  

𝛺𝑛(𝑥), denotes the 𝑛𝑡ℎ modified Chebyshev polynomials of the first kind (called also  𝑛𝑡ℎ 

Vieta–Lucas’s polynomial) 

               𝛺𝑛(𝑥) = 2𝑇𝑛(𝑥
2),    𝑛 ∈ 𝑁.                                                                     (1.2.70)    

 𝛺1(𝑥) = 𝑥 ,𝛺2(𝑥) = 𝑥2 − 2, 𝛺𝑛+2(𝑥) = 𝑥𝛺𝑛+1(𝑥) − 𝛺𝑛(𝑥), 𝑛 ∈ 𝑁.       (1.2.71)    

 𝑍𝑛(𝑥) denotes the 𝑛𝑡ℎ  modified Chebyshev polynomials of the second kind (called also 

𝑛𝑡ℎ  Vieta–Fibonacci polynomial) 

                                         𝑍𝑛(𝑥) = 𝑍𝑛(𝑥
2), 𝑛 ∈ 𝑁.                                                (1.2.72)    

     𝑍1(𝑥) = 𝑥, 𝑍2(𝑥) = 𝑥
2 − 1,     𝑍𝑛+2(𝑥) = 𝑥𝑍𝑛+1 − 𝑍𝑛(𝑥),𝑛 ∈ 𝑁.                      (1.2.73)    

1.3 Literature Review 

During the latter part of the 19th century, Chebyshev instigate sets of polynomials now 

recognized as the 1st - 2nd kinds Chebyshev polynomials. Chebyshev polynomials come 

under the class of classical orthogonal polynomials. The class that encompasses various 

types of polynomials found in literature. This class includes multiple distinct sets of 

orthogonal polynomials i.e. Laguerre polynomials, Jacobi polynomials, and Hermite 

polynomials with specific properties and applications. Many authors have studied and 

defined Chebyshev polynomials in the form of recurrence relations and trigonometric 

formulae. Chebyshev polynomials share similar properties and patterns with the Lucas and 

Fibonacci numbers. The foundational definitions of Chebyshev polynomials were drawn 

from a seminal scholarly work authored by B. G. S. Doman [30], and J. C. Manson [ 69]. 
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 Paul Butzer and François Jongmans (1999) aimed to provide a comprehensive overview 

of the life and contributions of Chebyshev, the founder of the largest pre-revolutionary 

mathematics school in Russia, based in St. Petersburg. With 80 publications to his name, 

Chebyshev's work spanned various domains, including, probability theory, number theory, 

approximation theory, and practical mathematics. Notably, he took pride in constructing 

diverse mechanisms, including those related to arithmetic. While the paper caters to an 

audience interested in approximation theory, it strives to offer a balanced exploration of 

Chebyshev's wide-ranging accomplishments, with particular attention to their historical 

context [22]. 

The proposition by Mason and Handscomb (2003) regarding the existence of four kinds of 

these polynomials significantly broadens their range of applications. It was commonly 

acknowledged that there are four variations of Chebyshev polynomials, each being a 

specific instance within the broader category of Jacobi polynomials [69]. J. C. Manson 

(1993) provided a comprehensive overview of the fundamental properties of all four kinds 

of Chebyshev polynomials. Additionally, Manson demonstrated how certain established 

properties of the 1st kind polynomials could be extended to encompass the 2nd, 3rd, and 4th 

kind polynomials [68].  

Wenpeng Zhang et al. (2018) discovered many properties related to the derivatives of 

Chebyshev polynomials and gives the correspondence between them, and their derivatives 

[104, 105, 106, 107, 108]. Yang and Sai-nan Zheng (2013) used the Riordan array to give 

the determinant representation of Chebyshev polynomials, Fibonacci numbers, and Pell 

numbers [101]. Shannon et al. (2021) provided the connection between the Fibonacci 𝑝- 

numbers and Pell numbers [88]. Virender Singh et al. (2023) examined properties related 

to extension with two variables of the 2nd kind of Chebyshev polynomials matrix, also 

obtained a generalized Chebyshev matrix of the 2nd kind [91]. 

Brandi et al. (2020) initiated their work to identified a connection between 1st and 2nd kind 

Chebyshev polynomials and trace of successive powers of matrix through this 

representation. The non-singular 2 × 2 matrices were demonstrated to straightforwardly 
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derive composition identities for both first and second kind Chebyshev polynomials. They 

employed the matrix's power, trace, and determinant, yielding the following result [20]. 

Let 𝐴 be a non-singular 2 × 2 matrix. The integral power of 𝐴, for 𝑛 ≥ 2,                        

                𝐴𝑛 = 𝑎2
(𝑛−1)

2 𝑈𝑛−1 (
𝑎1

2𝑎2
1
2

)𝐴 − 𝑎2
𝑛

2𝑈𝑛−2 (
𝑎1

2𝑎2
1
2

) 𝐼,                                        (1.3.1)                  

where 𝑎1 = trace of 𝐴, 𝑎2 = determinant of 𝐴 ≠ 0, 𝐼 denotes the identity matrix, 

 and 𝑈𝑛(𝑥) are the 2nd kind of Chebyshev polynomials. 

 For any integer 𝑛 ≥ 0,  

                                           trace 𝐴𝑛 = 2𝑎2
𝑛

2𝑇𝑛 (
𝑎1

2𝑎2
1
2

),                                                 (1.3.2)  

where  𝑇𝑛(𝑥) are the 1st kind of Chebyshev polynomials. 

Clemente Cesarano and Sandra Pinelas (2019) elucidated the fundamental characteristics 

exhibited by all four kinds pseudo-Chebyshev polynomials with half-integer degrees. 

These polynomials, constituting irrational functions, were explored for their noteworthy 

properties and graphical representations. Notably, Chebyshev polynomials of the 3rd and 

4th kinds, in contrast to the more familiar 1st and 2nd kinds polynomials, are relatively less 

recognized [25]. Max A. Alekseyev (2018) studied the properties related to intersection of 

Lucas, Pell numbers and Fibonacci numbers [10]. Ugur Duran et al. (2018) studied Hermite 

polynomials, (𝑃, 𝑄)– Bernstein polynomials with their modifications and W. A. Khan et 

al. (2018) investigated the properties related to Laguerre polynomials. These polynomials 

were closely related to Chebyshev polynomials [32, 49].  

Pei-Yuan Zhao et al. (2023) discussed the coupling system for electron–phonon via the 

product of the Chebyshev matrix [103].  Amelia Bucur et al. (2007) demonstrated that the 

characteristic equation of the Chebyshev matrix discloses the presence of associated 

polynomials of Chebyshev and provides an explicit expression for them. While the 

literature typically considers 𝑇𝑛(𝑥) as the determinant of the Chebyshev matrix and their 
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study revealed that this matrix contains valuable hidden information that can be unveiled 

by examining its characteristic equation, consequently highlighting the existence of 

associated polynomials of Chebyshev [21].  

Di Han and Xingxing Lv (2020) introduced novel identities for Chebyshev polynomials, 

aimed to Fibonacci polynomials and Chebyshev polynomials. They also used elementary 

methods, the results delved into the computational challenges of these sums, offering fresh 

and intriguing identities as outcomes. Additionally, the methodologies employed in this 

research may serve as valuable references for further investigations of general linear 

recursive sequences of the 2nd order [44]. Feng Qi et al. (2019) linked tridiagonal 

determinant with Fibonacci polynomials, Fibonacci numbers, and Chebyshev polynomials. 

They also presented two formulae to calculate tridiagonal determinant [81]. 

Titu Andreescu and Oleg Mushkarov (2018) discussed the quadratic form and determinant 

representation of the Chebyshev polynomials matrix. The following result holds for all 

integers 𝑛 ≥ 3, [14] 

                                   𝐴𝑛(2𝑥) = 2𝑇𝑛(𝑥) + 2(−1)
𝑛 .                                                       (1.3.3) 

 Matrix 𝐴 have the following eigenvalues; 

                                         𝜆𝑘 = 𝑐𝑜𝑠 (
(2𝑘−1)𝛱

𝑛
) , 1 ⩽ 𝑘 ⩽ 𝑛.                                         (1.3.4)  

 Minimal and maximal eigenvalues of 𝐴: 

                                        𝜆𝑚𝑖𝑛 = {
−2𝑐𝑜𝑠 (

𝛱

𝑛
) , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

−2           , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.
                                    (1.3.5) 

                                               𝜆𝑚𝑎𝑥 = 2𝑐𝑜𝑠 (
𝛱

𝑛
).                                                           (1.3.6) 
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E. H. Doha (2015) introduced algorithms centered on the utilization of both 3rd and 4th 

kinds of Chebyshev polynomials. The key concept behind the development of these 

numerical algorithms of the 3rd and 4th kinds as shifted Chebyshev polynomials [29]. 

Mahdy and Shwayyea (2016) presented an effective computational method to work out on 

a non-linear fractional diffusion equation. The methodology involved a combination of 

their proposed scheme, utilizing the 3rd kind shifted Chebyshev polynomials [66]. E. H. 

Doha et al. (2014), Nigam et al. (2020) emphasized the growing significance of 3rd kind 

𝑉𝑛(𝑥) of Chebyshev polynomials in numerical analysis. They pointed out that most 

literature on Chebyshev polynomials tends to focus on results related to the 1st and 2nd 

kinds [28, 75].  

N. Gogin and M. Hirvonsalo (2017) provided a concise generating function expression for 

discrete Chebyshev polynomials. They achieved this by employing MacWilliams 

transforms of Jacobi polynomials, complemented by a binomial multiplicative factor [40]. 

Y. Zhang et al. (2018) obtained identities using combinatorial method connected to the 

Chebyshev polynomials of the 2nd kind [104]. Aghigh et al. (2008) take a look at 3rd and 4th 

kinds of Chebyshev polynomials, which were orthogonal functions. These sequences 

represented special class of Jacobi polynomials [6]. Wenpeng Zhang (2020) initiated 

numerous properties concerning the derivatives of Chebyshev polynomials and elucidated 

their interrelations;[108] 

“Let 𝑛, 𝑞 be integers [see 59] with 𝑛 ≥ 0, 𝑞 ≥ 1, 

∑  

               𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

∏𝑈𝑏𝑘(𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑈𝑛+𝑞
(𝑞)(𝑥). "                                       (1.3.7)  

Tom Cuchta et al. (2020) introduced and explored a novel set of difference equations 

associated with the classical Chebyshev differential equations of the 1st and 2nd kinds. This 

led to the formulation of similar properties to their continuous counterparts. These 

properties included representation by recurrence relations and their derivative relations 

[26]. Anna Tatarczak (2016) explored specifically the generalized version of Chebyshev 
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polynomials of the 2nd kind, written as 𝑈𝑛(𝑝, 𝑞, ℯ
𝑖𝜃), and those of the 1st kind, denoted by 

𝑇𝑛(𝑝, 𝑞, ℯ
𝑖𝜃). These polynomials hold particular utility in applications for distinct reasons. 

The second kind of generalized Chebyshev polynomials were noteworthy for their 

connections with generalized typically real functions and resembling the classical case 

[94].  

Yixue Zhang and Zhuoyu Chen (2018) introduced a second-order nonlinear recursive 

sequence in their paper. They utilized this sequence along with combinatorial methods to 

conduct an in-depth investigation into computational problems related to a specific type of 

sums, including the Chebyshev polynomials. Their approach enabled the simplification of 

complex computations involving the second type Chebyshev polynomials, reducing them 

to a much simpler problem [104]. 

Xingxing Lv and Shimeng Shen (2017) aimed to utilized the characteristics of Chebyshev 

polynomials to explore power sum glitches related to the functions sin(𝑥) and cos(𝑥). 

Their study focused on deriving computational formulas and explicit formulas for 

trigonometric power sums. There was no prior study on these specific problems. The 

authors utilized the properties of first kind Chebyshev polynomials to obtain results [65]. 

Abd-Elhameed and Al-Harbi (2023)  primarily concerned with the generalization of 

Chebyshev's 3rd kind polynomials, with contributions from different perspectives. 

Additionally, some new formulas were discussed [3].  

 In order to gain new insights into the properties of Lucas-polynomials, Abd-Elhameed and 

Napoli (2023) explored different approaches to obtaining results. Matrix representation 

was also discussed in order to identify certain properties of the polynomials [2]. S. H. Aziz 

et al. (2020) in their study 2nd kind of Chebyshev polynomials was used to solve differential 

equation with their higher order. The authors presented very promising results with the 

examples of this generalization. The authors reduced the actual differential equation to the 

solution of algebraic equation with computing programs [17].  

https://sciprofiles.com/profile/1901937
https://sciprofiles.com/profile/author/ZDNIdXVqaGZnUEhiUTdNV1dxcG80MWEvVGdkenI2NTMrNjBwQ3gwK3UrWT0=
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Kizilates et al. (2019) instigates (𝑝, 𝑞)1st and 2nd kinds of Chebyshev polynomials in to 

Fibonacci, Luca’s polynomials. For any integer 𝑛 ≥ 2 and 0 < 𝑞 < 𝑝 ≤ 1, the (𝑝, 𝑞) − the 

1st kind of Chebyshev polynomials defined as [59]; 

𝑇𝑛(𝑥, 𝑠, 𝑝, 𝑞) = (𝑝
𝑛−1 + 𝑞𝑛−1)𝑥 𝑇𝑛−1(𝑥, 𝑠, 𝑝, 𝑞) + (𝑝𝑞)

𝑛−1𝑠𝑇𝑛−2(𝑥, 𝑠, 𝑝, 𝑞),         (1.3.8) 

  where 𝑥, 𝑠 are real variables, 𝑇0(𝑥, 𝑠, 𝑝, 𝑞) = 1, 𝑇1(𝑥, 𝑠, 𝑝, 𝑞) = 𝑥.                              (1.3.9) 

O.  A. Taiwo et al. (2012) conducted a study on Chebyshev polynomials to solve differential 

equation of 4th order [95]. B. E. Kashem (2019) the primary objective of investigation was 

to address boundary value problems (BVPs). The approach involved transforming the 

infinite interval into a sufficiently large finite interval and employed the finite difference 

method to approximate the variable, wherein the unknowns were the shifted third kind 

Chebyshev coefficients [48].  

Xiaoxue Li (2015) pursued the primary objective of utilized combinatorial methods to 

investigate sums of powers of Chebyshev polynomials, originated intriguing properties and 

aimed to establish divisibility properties related to Chebyshev polynomials by applying the 

obtained results. The significance of these identities lies in their ability to transform 

complex sums of powers of Chebyshev polynomials into more straightforward linear sums, 

thereby simplifying calculations associated with such sums [61]. M. S. Metwally et al. 

(2019) investigated matrix polynomials associated with the 2nd kind of polynomials of 

Chebyshev matrix. They found many results related to the associated Chebyshev matrix 

polynomials [71]. 

Jugal Kishore et al. (2023) presented a paper where the focus was on introducing identities 

related to summation of definite products of 3rd and 4th kinds of Chebyshev polynomials, 

Lucas, and Fibonacci numbers [50].  

Z. Fan and W. Chu (2022) generating function approach was employed to establish various 

convolution formulae involving Chebyshev polynomials and other prominent numbers. 

Specifically, include relationships with numbers and polynomials of Bernoulli and Euler, 
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as well as Fibonacci and Lucas numbers [35]. Milica et al. (2021) found a two-determinant 

generalized formula situated on the 2nd kind of Chebyshev polynomials. For this purpose, 

they utilized a tridiagonal matrix [72]. Ahmet Oteles et al. (2014) worked on a family of 

tridiagonal matrices relating to the 1st kind of Chebyshev polynomials and obtained eigen 

vectors and eigen values [78]. H. M. Ahmed (2022) derived an algorithm to solve a specific 

equation by employing shifted Chebyshev polynomials of the 1st kind. The algorithm 

provided a well approximate solution [7]. 

 Aiyub et al. (2019) presented a binomial matrix connected to Fibonacci. They specified 

some results of statistical convergence and also deduced that approximation theory 

consolidated the statistical convergence [8]. Zoran Pucanovic and Marko Pesovic (2023) 

used the properties of matrices and Chebyshev polynomials. They connected matrices and 

Chebyshev polynomials [80]. S. Foud (2019) studied 3rd kind shifted Chebyshev 

polynomials for operational matrices [39]. 

T. Kim et al. (2018) explored the summation involving finite products of both the 3rd and 

4th kinds of Chebyshev polynomials. They derived a relationship among the 4th kind of 

Chebyshev polynomials and their derivatives as follows: [55] 

Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1,  

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

 𝑊𝑏1
(𝑥) 𝑊𝑏2

(𝑥)…𝑊𝑏𝑞+1
(𝑥)

=
1

2𝑞𝑞!
𝑊𝑛+𝑞

(𝑞)(𝑥),                                                                                (1.3.10)    

∑ ∑ (
𝑞 − 1+ 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

 𝑉𝑏1(𝑥) 𝑉𝑏2(𝑥)…𝑉𝑏𝓆+1(𝑥)

=
1

2𝑞𝑞!
𝑉𝑛+𝑞

(𝑞)(𝑥),                                                                                (1.3.11)    

Where 𝑏1, 𝑏2, … , 𝑏𝑞+1 with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙 & 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥

1. 
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The work by T. He and S. Shiue (2009) a novel method was introduced for constructing 

explicit formulas for polynomials and numbers produced by a second-order recursive 

relation. The presented approach serves as a general method for establishing identities 

within linear recurrence relations [46]. In the research conducted by R. K. Graves et al. 

(2016) matrix methods are employed to derive a range of binomial summation formulas 

for various recursive 2nd and 3rd order sequences. The study extended several familiar 

summation identities to encompass formulations with negative subscripts [41]. 

Waleed Abd-Elhameed (2016) the primary objective was to address connectivity issues 

between the Chebyshev polynomials of the 3rd and 4th kinds and (𝑝, 𝑞)- Fibonacci 

polynomials. The article also provided inversion connection formulae for these relations 

[1]. Sana Krioui et al. (2023) a new approach was presented for constructing the generating 

functions. The focus of the paper was on introducing innovative generating functions for 

products of 𝑡 - Pell numbers, ℎ - Fibonacci numbers, 𝑠 - Jacobsthal numbers [60].  

Samundra Regmi et al. (2023) discussed the application of Chebyshev polynomials for 

nonlinear equations [83]. F. Chishti et al. (2021) studied a shifted 4th kind of Chebyshev 

polynomials for operational matrices [27]. K. Erdmanna and S. Schroll (2011) derived the 

results on the 2nd kind Chebyshev polynomials by using symmetric matrices [33]. 

M. C.  Akmak and K. Uslu (2019) developed a generalized version Chebyshev polynomial 

of all four-kinds. Additionally, they demonstrated a Binet-style formula and demonstrated 

the relation between Chebyshev polynomials of all four-kinds and the generalized version 

of the Chebyshev polynomials [9].  

T. Kim et al. (2018, 2020) studied summation of finite products of 1st kind Chebyshev with 

Lucas’s polynomials and Chebyshev polynomials of 2nd, 3rd, and 4th kinds. [52, 53]. 

Clemente Cesarano (2014) introduced generalizations for the 1st kind Chebyshev 

polynomials and used Hermite polynomials, which served as integral representations for 

the generalized Chebyshev polynomials, and also applied the results obtained for the 

Gegenbauer polynomials to them [24]. 
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 Roman Wituła and Damian Słota (2006) presented a variation of the Chebyshev 

polynomials with novel outcomes and applications related to the Morgan-Voyce 

polynomials [98]. S. Uygun et al. (2020) the authors proposed a generalized version of 

some of the polynomial names; Pell, Pell Lucas, and Vieta. They identified properties like 

Binet-like formula, sum formula, generating function, and differentiation, as well as 

generating a matrix whose values were extracted from a generalized version of the Vieta- 

Pell -Lucas’s polynomials [96].  

Abdullah Altın et al. (2012) presented recurrence relations for Chebyshev matrix 

polynomials, especially for the 2nd kind. They also found generating matrix functions and 

several identities for 2nd kind of Chebyshev polynomials [13]. G. B. Djordjevi´c (2009) 

conducted a series of studies on the various categories of polynomials associated with 

Chebyshev's polynomials and the derived results associated with them [31]. A. A. Salih 

and S. Shihab (2020) primary objective of the research was to identify a variant of 

Chebyshev polynomials. Furthermore, the authors discussed their integration, derivative 

operational matrix [85].  

M. A. Alqudah (2015) came up with a new way to look at Chebyshev’s 2nd kind 

polynomials and used obtained results in the approximation of functions [12]. C. Kizilates 

et al. (2019) instigates (𝑝, 𝑞) 1st and 2nd kinds of Chebyshev polynomials in to Fibonacci, 

Luca’s polynomials. They also talked about 𝑛𝑡ℎ generalizations and properties of 

derivatives, which were represented by determinants of the polynomials [59]. G. S. Abed 

(2021) modified the 1st kind Chebyshev polynomials and employed the variable separation 

approach to solve the partial differential equation [5].  

M. R. Eslachi et al. (2012) utilized the unique characteristics of the third, fourth kinds of 

Chebyshev polynomials. Their focus was specifically on determining approximations for 

the best uniform polynomials derived from these specific types of polynomials [34]. 

Mohammed Abdulhadi Sarhan et al. (2021) came up with a new way to solve Pell's 

polynomials problem using two variables. A significant observation was made in two 

variables to resolve partial differential equations. These techniques were employed to 
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resolve the underlying issue with error-free calculations. This paper also provided 

examples demonstrating the rationale of the strategy [87].  

Yüksel Soykan (2023) delved into a generalized form of the Fibonacci numbers and 

presented Simson's generating function formulas derived from matrix results, as well as 

calculating the infinitesimal sums of these polynomials [92]. Sarita Nemaniy et al. (2022) 

in their study, established the sophisticated properties of the Fibonacci sequence. Their 

findings concerned the divisibility of Fibonacci sequences and the representation of 

matrices by determinants including sequence terms [74]. B. S. Bychkov and G. B. Shabat 

(2021) their research focused on the generalizations of Catalan numbers and 

generalizations of Chebyshev polynomials [23]. 

 Khalid K. Ali1 et al. (2022) explained the partial differential equation of space fractional 

using the 5th kind of shifted Chebyshev polynomials [11].  Adem and Sahin (2022) utilized 

a generalized form of the Fibonacci numbers to yield remarkable results with a recurrence 

relationship for square pyramids numbers [18]. V. Verma and Priyanka (2019) used first-

order derivatives to derive a generalized version of Fibonacci polynomials. Additionally, 

they discussed Fibonacci polynomials with dual variables [98]. 

Using the Dilcher-Stolarsky approach for their study, Seon-Hong Kim (2021) modified the 

2nd kind Chebyshev polynomials in various ways to determine the property of irreducibility. 

[51]. Sanjay Harne et al. (2014) delved into identities concerning Chebyshev polynomials, 

Lucas numbers, and Fibonacci numbers at specific variables, along with their derivatives 

[45]:  

∑ 𝐹4(2𝑏1+1)
𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝐹4(2𝑏2+1)…𝐹4(2𝑏𝑞+1+1) =
3𝑞+1

2𝑞𝑞!
𝑈𝑛+𝑞

𝑞 (
7

2
).            (1.3.12) 

∑ 𝐹6(2𝑏1+1)
𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝐹6(2𝑏2+1)…𝐹6(2𝑏𝑞+1+1) =
22𝑞+3

𝑞!
𝑈𝑛+𝑞

𝑞(9).            (1.3.13) 
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Kamal et al. (2022) discussed the Fredholm –Volterra integrodifferential equations with the 

first kind of shifted Chebyshev polynomials contingent on the operational matrix [47]. 

Shoukralla (2021) devised a numerical approach to solve the first kind of Fredholm integral 

equation by utilizing the matrix representation involving the second kind of Chebyshev 

polynomials [89]. T. Korkiatsakul et al. (2018) explored a novel method involving the 

Chebyshev operational matrix to address the solution of problems involving integrals of 

non-linear Caputo fractions [58].  

Kim et al. (2021) obtained the summation of Chebyshev polynomials definite products of 

two different types, each one of them represented a linear combination of all other types 

[54]. M. Musraini et al. (2023) various modifications have been made to the Fibonacci 

sequence and the Lucas sequence, in some cases by maintaining the original conditions 

and in other cases by maintaining the recurrence relationship [73].  

J. Gultekin and B. Sakiroglu (2017) introduced a method to derive generalized Chebyshev 

polynomials using matrices. The study establishes a novel recurrence relation for the 

derivatives of these polynomials and provides combinatorial expressions for these 

derivatives. Furthermore, tables for derivative polynomials were constructed using the 

derived combinatorial forms [43]. Jonny Griffiths (2016) presented many results which 

connected all four kinds of Chebyshev polynomials [42].  

Connor M. Sanford Louisiana (2018) presented the solution to a problem from the 

American mathematical journal's problem section. The Chebyshev polynomial of the 

second kind with matrix representations was central to the problem [86]. M.  Arya and V.  

Verma (2022) gave identities for Fibonacci polynomials and generalized Fibonacci 

numbers. They also obtained an exceptional representation in the form of a matrix by using 

obtained identities [16]. M. Arya et al. (2019) discovered a unique form of representation 

for Chebyshev polynomials [15].  

Fonseca (2020) discussed the relationship of the Fibonacci numbers and 2nd kind of 

Chebyshev polynomials. To obtain the result, he used a tridiagonal matrix determinant [37]. 
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Fonseca (2021) provided inverses for tridiagonal-matrices using the 2nd kind of Chebyshev 

polynomials. They used an invertible matrix to find results related to tridiagonal matrices 

[38]. Waleed Mohamed Abd-Elhameed et al. (2022) objective of the research was to evolve 

the connection between generalized types of Lucas and Fibonacci polynomials. 

Hypergeometric functions were employed to link the polynomials, such as Lucas, Fermat, 

Pell, and Fermat Lucas [4]. Kamal Aghigh et al. [6], M. R. Eslahchi et al. [34], and Taekyun 

Kim et al. [53] provided numerous identities associated with both the 3rd and 4th kinds of 

Chebyshev polynomials. 

Wenpeng Zhang (2004) introduced the fundamental concept for solving the summation of 

recurrence relations and also investigated several identities pertaining to Fibonacci 

sequences. Chebyshev polynomials have been extensively examined by researchers and 

are defined through various formulations such as recurrence relations and trigonometric 

expressions. Moreover, there exists a significant connection between Fibonacci and Lucas 

numbers with Chebyshev polynomials. These recursive relationships find applications in 

combinatorial counting [107]. 

Li et al. (2022) used the Chebyshev polynomials matrices to obtain numerical solutions 

with examples for boundary value condition of the differential equation of 4th order [64]. 

Yang Li (2014) determined the connection between derivatives of the Chebyshev and 

Fibonacci polynomials [62]. In addition, Yang Li (2015) analysed the Chebyshev 

polynomials of both 1st and 2nd kinds and applied elementary method to find the relationship 

between both kinds of Chebyshev polynomials connected to Fibonacci polynomials and 

finally found some results related to the Fibonacci and the Lucas numbers [63].  

L. Zhang (2017) and W. Zhan (1997) used mathematical induction, to solve the problem 

of Chebyshev polynomials sums of powers and obtained many other properties related to 

Chebyshev polynomials [102, 105]. Zhang and Han (2020) provided identities for 

reciprocal sums of the Chebyshev polynomials through mathematical induction and 

leveraging identities of symmetrical polynomials [108]. J. Kishore and V. Verma (2022) 
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used a computational method to give identities concerning products of finite sums of the 

Lucas, Fibonacci, and complex Fibonacci numbers [56].  

Frontczak and Goy (2021) obtained the generating function of Chebyshev-Fibonacci 

polynomials. They explored the properties related to these polynomials, through the use of 

generating functions, they established novel connections and identified combinatorial 

identities [36]. Jerzy Kocik (2021) found a matrix representation of the Chebyshev 

polynomials, Fibonacci series, and Luca’s polynomials by using the symmetric tensor and 

power of a matrix [57].  

Olagunju and J. Folake (2013) proposed a problem utilizing 3rd kind Chebyshev 

polynomials. Despite the simplicity of the computational process, the method proves to be 

highly effective and appealing. The results demonstrate the applicability of this approach 

through numerical examples, showcasing its efficiency and simplicity. The keywords 

associated with this study include the collocation method, equally spaced points, and 3rd 

kind Chebyshev polynomials [76].  

S. D. Marchi et al. (2023) familiarize themselves with the generalizations of the 1st kind 

Chebyshev polynomials and identify a number of properties associated with orthogonal 

polynomials [67]. Goksal Bilgici (2014) research on generalizing new generalized 

Fibonacci and Lucas sequences 𝐹𝑛 and 𝐿𝑛 based on the relationship between the recurrence 

relation with the basic conditions; 

                                        𝐹𝑛 = 2𝑎𝐹𝑛−1 + (𝑏
2 − 𝑎)𝐹𝑛−2, 𝑛 ≥ 2,                              (1.3.14 )  

            and  

                                         𝐿𝑛 = 2𝑎𝐿𝑛−1 + (𝑏
2 − 𝑎)𝐿𝑛−2, 𝑛 ≥ 2.                             (1.3.15)   

Where 𝑎 and 𝑏 are any non-zero real numbers. They were able to demonstrated Binet's 

formula and the generating function for these sequences [19]. M. S. Metwally et al. (2014) 

provide a description and examination of the 2nd kind of Chebyshev matrix polynomials. 

They delved into the analysis of three term recurrence relation associated with these matrix 
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polynomials [70]. A. Patra and G. K. Panda (2022) an exploration conducted on sums 

involving finite products of Pell polynomials, with an emphasis on expressing these sums 

in relation to specific orthogonal polynomials. Additionally, each derived expression is 

presented as a linear combination of well-known classical polynomials [79].  

A. Rababah and E. Hijazi (2019) explored the transformation among the Chebyshev 

polynomials basis of the 4th kind and also includes illustrative examples to demonstrate 

these transformations [82]. L. T. Spelina and I. Wloch (2019) presented and examined a 

novel one-parameter generalization of Pell numbers. The study delves into detailing their 

unique properties, along with an exploration of their connections to matrix representation 

[93].  

F. Yang and Y. Li (2021) investigated the reciprocals of infinite sums leads to the discovery 

of novel and intriguing identities involving Chebyshev polynomials [100].  W. A. Abd-

Elhameed (2022) derived formulae encompass several well-known polynomials, including 

Pell, Lucas, Fibonacci, Fermat, Fermat-Lucas’s polynomials, and Pell-Lucas offering new 

insights and generalizations beyond existing literature [4].  

1.4 Research Gap 

The thorough review of the cited literature leads to the following inferences regarding the 

research gap which is proposed to be bridged during tenure of our research work. This 

review has identified the research gap that the many researchers have worked on 

Chebyshev polynomial of 1st and 2nd kinds and very limited study on the 3rd and 4th kinds 

of the Chebyshev polynomials. The properties and applications on Chebyshev polynomial 

of 3rd and 4th kinds to be studied and new relation are to be established. The relations 

between third and fourth kinds Chebyshev polynomials connected to Lucas, Fibonacci, and 

Pell numbers are to be derived. Matrix representation of 3rd and 4th kinds and properties 

related to matrix represtation via matrix algebra are to be explored and similar concepts 

can be extended to the Chebyshev-like polynomials also. Their properties have been 

established so for, generalizations of Chebyshev polynomials are to be explored for this we 
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may extend the recurrence relation, or the recurrence relation is preserved but the 

coefficients of polynomial are replaced by some new coefficients with more variables or 

by changing the initial conditions and established their properties. This gap in knowledge 

remains unaddressed in existing literature. 

1.5 Objectives of the Research Work 

1. To obtain matrix representation of Chebyshev polynomials of the third and fourth kinds 

and prove some properties relating to matrix representation.  

2. To develop a new generalization of Chebyshev-like polynomials and to study their 

properties.   

3. To establish relations between different Chebyshev polynomials and Fibonacci numbers, 

Lucas numbers, Pell numbers. 

 1.6 Methodology of the Research Work 

 There are two directions of generalizing recurrence relations namely either the recurrence 

relation can be generalized and extended, or the recurrence relation is preserved but the 

coefficients of polynomials are replaced by some other coefficients with more variables. 

We have combined these two techniques. 

 The same approach for Chebyshev third and fourth kinds polynomials. 

 To express matrix representation of Chebyshev third and fourth kinds polynomials by 

applying matrix algebra properties. 

 

1.7 Motivation of the Work  

Many authors worked on the 1st and 2nd kinds of Chebyshev polynomials and also 

discovered many lemmas, identities related to these polynomials and presented many 

theorems with their applications [77, 80, 84, 90]. Our work is motivated by the earlier work 

of Wenpeng Zhag, Taekyun Kim, and the earlier work of Primo Brandi et al. The authors 

derived the many identities attributed to the Chebyshev polynomial of the 1st and 2nd kinds 
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via non-singular matrix. Another motivation for our passion in establishing the presented 

results is the research of Amelia Bucur et al. The authors obtained the characteristic 

equations for 1st and 2nd kinds of Chebyshev polynomials. Gultekin, Betul Sakiroglu 

conducted a study on the analysis of Chebyshev generalized polynomials forms using 

matrixes and combination forms. We have prior studied S. L. Yang, S. N. Zheng, and A. 

Altın, B. Cekim research to generate matrix representation and characteristic equations of 

Chebyshev polynomials of the 3rd and 4th kinds. Chebyshev polynomials occupy prominent 

attention because of their substantial use in mathematics. This study is very useful in the 

practical and theoretical aspects of mathematics like in approximation theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

***** 
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Chapter 2 

Characteristic Equations of Chebyshev Polynomials and Their 

Generating Matrices 

The core goal of the chapter is to obtain matrix representation for the Chebyshev’s 3rd and 

4th kinds of polynomials through the utilization of a tridiagonal matrix. We present a 

connection between Chebyshev polynomials of the 2nd kind, 3rd kind, and 4th kind through 

the concept of matrix power. We present a determinant representation by using tridiagonal 

matrix for both 3rd and 4th kinds of Chebyshev polynomials. We present the characteristic 

equations for the 3rd and 4th kinds of the Chebyshev polynomials up to degree three. We 

also prove some properties related to matrix representation. We elaborate the theorem and 

validate it through examples. The utilization of Chebyshev polynomials is explored, 

including a detailed discussion on the practical application of 3rd kind Chebyshev 

polynomials in approximation theory.  

2.1 Introduction 

C.M. Da Fonseca [37, 38] provided explicit inverse for tridiagonal matrices using the 

second kind of Chebyshev polynomials. They used an invertible matrix to find results 

related to tridiagonal matrices. Amelia Bucur et al. [21] gave the C. E. of the Chebyshev 

matrix of the first kind, found associated polynomials of Chebyshev, and presented an 

explicit formula from them. Primo Brandi et al. [20] obtained many identities for the 1st 

and 2nd kind of Chebyshev polynomials with a non-singular complex matrix. They 

employed the matrix's power, trace, and determinant to yielding the given result.   

Let 𝐴  denoted 2 × 2 (non-singular) matrix. The integral power of 𝐴, for  𝑛 ≥ 2;                        

                         𝐴𝑛 = 𝑎2
(𝑛−1)

2 𝑈𝑛−1 (
𝑎1

2𝑎2
1
2

)𝐴 − 𝑎2
𝑛

2𝑈𝑛−2 (
𝑎1

2𝑎2
1
2

) 𝐼,  
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where 𝐼 represents the identity matrix and 𝑈𝑛(𝑥) are the 2nd kind of Chebyshev 

polynomials [20]. 

Let 𝐴  denotes the 2 × 2 (non-singular) matrix. For any integer  𝑛 ≥ 0;  

                                     trace 𝐴𝑛 = 2𝑎2
𝑛

2𝑇𝑛 (
𝑎1

2𝑎2
1
2

),  

where, 𝑇𝑛(𝑥) are the 1st kind of Chebyshev polynomials [20]. 

Sheng-Liang Yang and Sai-nan Zheng [101] used the Riordan array to give the determinant 

representation of Chebyshev polynomials, Fibonacci numbers, and Pell numbers. Virender 

Singh et al. [91] examined properties related to extension with two variables of the 

Chebyshev’s 2nd kind polynomials matrix. Metwally et al. [71] explored matrix 

polynomials linked to the Chebyshev’s 2nd kind matrix polynomials. They found many 

results related to the associated Chebyshev polynomials matrix. 

Feng Qi et al. [81] linked tridiagonal determinants with Fibonacci polynomials, Fibonacci 

numbers, and Chebyshev polynomials. They also presented two formulae to calculate 

tridiagonal determinant. Titu Andreescu and Oleg Mushkarov [14] discussed the quadratic 

form and determinant representation of the Chebyshev polynomials matrix for first type of 

Chebyshev polynomials, obtained the following identity connected to the first kind of 

Chebyshev polynomials matrix. 

The given result holds for integers 𝑛 ≥ 3; 

                                             𝐴𝑛(2𝑥) = 2𝑇𝑛(𝑥) + 2(−1)
𝑛. 

 Matrix 𝐴 have the following eigen values; 

                                       𝜆𝑘 = 𝑐𝑜𝑠 (
(2𝑘−1)𝛱

𝑛
) , 1 ⩽ 𝑘 ⩽ 𝑛.  

 Minimal and maximal eigenvalues of 𝐴; 
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𝜆𝑚𝑖𝑛 = {
−2𝑐𝑜𝑠 (

𝛱

𝑛
) , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

−2 , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.
 

                                           𝜆𝑚𝑎𝑥 = 2𝑐𝑜𝑠 (
𝛱

𝑛
). 

Jerzy Kocik [57] found a matrix representation of the Chebyshev polynomials, Fibonacci 

series, and Luca’s polynomial by using power of a particular matrix.  Milica et al. [72] 

found determinant generalized formula situated on the second kind of Chebyshev 

polynomials. For this purpose, they utilized a tridiagonal matrix and a Heisenberg matrix.  

 Ahmet Oteles et al. [78] worked on a family of tridiagonal matrices related to the first kind 

of Chebyshev polynomials and obtained eigen vectors and eigen values. Abdullah Altın et 

al. [13] presented recursive equations for the polynomials of Chebyshev matrix, especially 

for the second kind. They also found generating matrix functions and several identities for 

this second kind of Chebyshev polynomials. Zoran Pucanovic and Marko Pesovic [80] 

used the properties of circulant matrices and Chebyshev polynomials. They connected 

circulant matrices and Chebyshev polynomials. 

 S. Foud [39] studied a 3rd kind shifted Chebyshev polynomials for operational matrices. F. 

Chishti et al. [27] studied 4th kind shifted Chebyshev polynomials for operational matrices. 

Our work is motivated by the earlier work of Primo Brandi et al. [20]. The authors derived 

the theorems and many identities correlated toward the Chebyshev 1st and 2nd kinds 

polynomials via 2 × 2  matrix.  

The outline of this chapter is as follows:   

The chapter is mainly divided in to four segments. In the 𝐼𝑠𝑡 segment, we look back at the 

introduction. In the next segment, we present the determinant representation for the 3rd and 

4th kinds and discover characteristic equations up to degree three. In the next segment, we 

formulated theorems delineating the connections between matrix power, 2nd, 3rd, and 4th 
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kinds Chebyshev polynomials. The concluding part focuses on applications associated with 

Chebyshev polynomials, particularly their practical utility in approximation theory.  

2.2 Matrix Representation of Chebyshev Polynomials of Third Kind 

We now introduce determinant representation and characteristic equations for the third kind 

of Chebyshev polynomials: 

𝑉0(𝑥) = 1, 𝑉1(𝑥) = 2𝑥 − 1, 𝑉𝑛(𝑥) = 2𝑥𝑉𝑛−1(𝑥) − 𝑉𝑛−2(𝑥), for 𝑛 ≥ 2, 3, … 

 

Tri-diagonal matrix, [𝑏𝑞,𝑟] represents a matrix sequence for the third kind Chebyshev 

polynomials: 

[𝑏𝑞,𝑟] =

{
 
 

 
 𝑏𝑞,𝑟 = 𝑎𝑥 − 1     , 𝑖𝑓 𝑞 = 𝑟 = 1

𝑏𝑞,𝑟 = 𝑎𝑥            , 𝑖𝑓 𝑞 = 𝑟 ≥ 2

𝑏𝑞,𝑟 = 1     , 𝑖𝑓  𝑞 = 𝑟 + 1, 𝑞 = 𝑟 − 1

𝑏𝑞,𝑟 = 0         , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If |𝑋(𝑛)| denote the determinant of Chebyshev matrices 𝑉𝑛(𝑥) then we have: 

|𝑋(𝑛)| =
|

|

𝑎𝑥 − 1 1 0 . . . . . . 0
1 𝑎𝑥 1 . . . . . . 0
0 1 𝑎𝑥 . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 𝑎𝑥 1
0 0 . . . . . . 1 𝑎𝑥

|

|
. 

When 𝑎 = 2;

 
|X(𝑛)| =

|

|

2𝑥 − 1 1 0 . . . . . . 0
1 2𝑥 1 . . . . . . 0
0 1 2𝑥 . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2𝑥 1
0 0 . . . . . . 1 2𝑥

|

|
.

 
For 𝑛 = 1, 2, 3, 4, 5 etc. the determinant reduces as: 

                                    |𝑋(1)| = 𝑏1,1 = 2𝑥 − 1 = 𝑉1(𝑥). 
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                                         |𝑋(2)| = 𝑏1,1𝑏2,2 − 𝑏2,1𝑏1,2 = |
2𝑥 − 1 1
1 2𝑥

| 

                                                     =  4𝑥2 − 2𝑥 − 1 =  𝑉2(𝑥). 

 

|𝑋(3)| = 𝑏3,3|𝑋(2)| − 𝑏3,2𝑏2,3|𝑋(1)| 

= 8𝑥3 − 4𝑥2 − 4𝑥 + 1 

              = |
2𝑥 − 1 1 0
1 2𝑥 1
0 1 2𝑥

| = 𝑉3(𝑥). 

 

      |𝑋(4)| = 𝑏4,4|𝑋(3)| − 𝑏4,3𝑏3,4|𝑋(2)| 

 

            = |

2𝑥 − 1 1 0 0
1 2𝑥 1 0
0 1 2𝑥 1
0 0 1 2𝑥

| 

 

                                      = 16𝑥4 − 8𝑥3 − 12𝑥2 + 4𝑥 + 1 = 𝑉4(𝑥). 

|𝑋(5)| = 𝑏5,5|𝑋(4)| − 𝑏5,4𝑏4,5|𝑋(3)| 

 

               = |
|

2𝑥 − 1 1 0 0 0
1 2𝑥 1 0 0
0 1 2𝑥 1 0
0 0 1 2𝑥 1
0 0 0 1 2𝑥

|
| 

 

                           

                       = 32𝑥5 − 16𝑥4 − 32𝑥3 + 12𝑥2 + 6𝑥 − 1 = 𝑉5(𝑥), so on. 

In general, 

 

                   |𝑋(𝑛)| = 𝑏𝑛,𝑛|𝑋(𝑛 − 1)| − 𝑏𝑛,𝑛−1𝑏𝑛−1,𝑛|𝑋(𝑛 − 2)|, 
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=
|

|

2𝑥 − 1 1 0 … … 0
1 2𝑥 1 … … 0
0 1 2𝑥 … … …
… … … … … …
… … … … 2𝑥 1
0 0 … … 1 2𝑥

|

|
  = 𝑉𝑛(𝑥). 

 

2.3 Characteristic Equations of Third Kind Chebyshev Polynomials   

Here we obtain characteristic equations of third kind Chebyshev polynomials up to degree 

three. 

1. 𝜆 − 𝑉1 = 0. 

2. 𝜆2 − (4𝑥 − 1)𝜆 + 𝑉2 = 0. 

3. 𝜆3 − (6𝑥 − 1)𝜆2 + (12𝑥2 − 4𝑥 − 2)𝜆 − 𝑉3 = 0. 

2.4 Matrix Representation for the Chebyshev Polynomials of Fourth kind 

Now we present determinant representations and characteristic equations for the 

Chebyshev’s fourth kind polynomials. The Chebyshev’s fourth kind polynomials are 

defined by a recursive relationship; 

   𝑊0(𝑥) = 1,   𝑊1(𝑥) = 2𝑥 + 1,   

                                               𝑊𝑛(𝑥) = 2𝑥𝑊𝑛−1(𝑥) −𝑊𝑛−2(𝑥), for 𝑛 ≥ 2, 3, … 

 

Tri-diagonal matrix, [𝑑𝑞,𝑟] represents a matrix sequence for the fourth kind Chebyshev 

polynomials: 

[𝑑𝑞,𝑟] =

{
 
 

 
 𝑑𝑞,𝑟 = 𝑎𝑥 + 1     , 𝑖𝑓 𝑞 = 𝑟 = 1

𝑑𝑞,𝑟 = 𝑎𝑥            , 𝑖𝑓 𝑞 = 𝑟 ≥ 2

𝑑𝑞,𝑟 = 1  , 𝑖𝑓 𝑞 = 𝑟 + 1 , 𝑞 = 𝑟 − 1

𝑑𝑞,𝑟 = 0            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

If |𝑌(𝑛)| denote the determinant of Chebyshev matrices 𝑊𝑛(𝑥) then we have; 
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    |𝑌(𝑛)| =
|

|

𝑎𝑥 + 1 1 0 . . . . . . 0
1 𝑎𝑥 1 . . . . . . 0
0 1 𝑎𝑥 . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 𝑎𝑥 1
0 0 . . . . . . 1 𝑎𝑥

|

|

 
      When 𝑎 = 2;             

                                             |𝑌(𝑛)| = 
|

|

2𝑥 + 1 1 0 . . . . . . 0
1 2𝑥 1 . . . . . . 0
0 1 2𝑥 . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2𝑥 1
0 0 . . . . . . 1 2𝑥

|

|
. 

For 𝑛 = 1, 2, 3, 4, 5 etc. the determinant reduces as: 

|𝑌(1)| = 𝑑1,1 = 2𝑥 + 1 = 𝑊1(𝑥). 

      |𝑌(2)| = 𝑑1,1𝑑2,2 − 𝑑2,1𝑑1,2 = |
2𝑥 + 1 1
1 2𝑥

|, 

                                                  = 4𝑥2 + 2𝑥 − 1 =  𝑊2(𝑥). 

 

|𝑌(3)|  = 𝑑3,3|𝑌(2)| − 𝑑3,2𝑑2,3|𝑌(1)| 

= |
2𝑥 + 1 1 0
1 2𝑥 1
0 1 2𝑥

| 

                                                       = 8𝑥3 + 4𝑥2 − 4𝑥 − 1 =   𝑊3(𝑥). 

|𝑌(4)| = 𝑑4,4|𝑌(3)| − 𝑑4,3𝑑3,4|𝑌(2)| 

       = |

2𝑥 + 1 1 0 0
1 2𝑥 1 0
0 1 2𝑥 1
0 0 1 2𝑥

| 

                                    = 16𝑥4 + 8𝑥3 − 12𝑥2 − 4𝑥 + 1 =  𝑊4(𝑥). 

|𝑌(5)| = 𝑑5,5|𝑌(4)| − 𝑑5,4𝑑4,5|𝑌(3)| 
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                 = |
|

2𝑥 + 1 1 0 0 0
1 2𝑥 1 0 0
0 1 2𝑥 1 0
0 0 1 2𝑥 1
0 0 0 1 2𝑥

|
| 

                                                = 32𝑥5 + 16𝑥4 − 32𝑥3 − 12𝑥2 + 6𝑥 + 1=   𝑊5(𝑥), so on. 

 

In general,  

                              |𝑌(𝑛)| = 𝑑𝑛,𝑛|𝑌(𝑛 − 1)| − 𝑑𝑛,𝑛−1𝑑𝑛−1,𝑛|𝑌(𝑛 − 2)|, 

 

                                                  =
|

|

2𝑥 + 1 1 0 … … 0
1 2𝑥 1 … … 0
0 1 2𝑥 … … …
… … … … … …
… … … … 2𝑝 1
0 0 … … 1 2𝑝

|

|
 =   𝑊𝑛(𝑥). 

 

2.5 Characteristic Equations of Chebyshev Polynomials Fourth kind  

Now we determine the characteristic equations up to degree three for the fourth kind 

Chebyshev polynomials. 

1. 𝜆 − 𝑊1 = 0. 

2. 𝜆2 − (4𝑥 + 1)𝜆 +𝑊2 = 0. 

3. 𝜆3 − (6𝑥 + 1)𝜆2 + (12𝑥2 + 4𝑥 − 2)𝜆 −𝑊3 = 0. 

2.6 Matrix Power and Chebyshev Polynomials: Exploring Interrelated 

Identities.  

Here, we prove theorems involving matrix power with Chebyshev’s second kind, third 

kind, and fourth kind polynomials. 

Let 𝐴  be a 2 × 2 non-singular matrix; 

                                        𝑎1 = trace 𝐴,  𝑎2 = determinant 𝐴 ≠ 0, 
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𝑢 = (
𝑎1

2𝑎2
1
2

) = √
1 + 𝑥

2
, 

and the characteristic equation is; 

𝜆2 − 𝑎1λ + a2 = 0. 

Here 𝛌 denotes the eigen values of  𝐴. 

2.7 Relation Between Matrix Power and Third kind Chebyshev 

Polynomials  

In this section, we examine the outcome linking the trace of matrix powers to the first and 

second kinds, as demonstrated in [20]. We also used the identity that gave a relationship 

between the first kind and third kind of Chebyshev polynomials. 

Theorem 1: For any integer 𝑛 ≥ 0, it follows: 

trace 𝐴2𝑛+1 = 2𝑢𝑎2
2𝑛+1
2 𝑉𝑛(𝑥). 

      𝑉𝑛(𝑥) denotes the 𝑛𝑡ℎdegree for the third kind Chebyshev polynomials; 

𝑉0(𝑥) = 1, 𝑉1(𝑥) = 2𝑥 − 1, 

                                                       𝑉2(𝑥) = 4𝑥2 − 2𝑥 − 1, 

      𝑉3(𝑥) = 8𝑥
3 − 4𝑥2 − 4𝑥 + 1,… 

Proof. Since trace 𝐴 = 𝑎1, trace A
2 = a1

2 − 2a2. Using the formulas given by Newton–

Girard, we can find the following;  

trace 𝐴𝑛 = 𝑎1(trace 𝐴
𝑛−1) − 𝑎2(trace 𝐴

𝑛−2). 

 Now we used the result obtained in [7], 
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trace 𝐴𝑛 = 2𝑎2
𝑛
2𝑇𝑛 (

𝑎1

2𝑎2
1
2

). 

Put 𝑛 = 2𝑛 + 1 in the above equation, 

                                               trace 𝐴2𝑛+1 = 2𝑎2
2𝑛+1

2 𝑇2𝑛+1 (
𝑎1

2𝑎2
1
2

). 

Using the identity in the above equation; 

"𝑉𝑛(𝑥) = 𝑢
−1𝑇2𝑛+1(𝑢), " 

where 𝑢 = (
𝑎1

2𝑎2
1
2

) = √
1+𝑥

2
. 

We get, 

                 trace 𝐴2𝑛+1 = 2𝑢𝑎2
2𝑛+1
2 𝑉𝑛(𝑥). 

 

Put  𝑛 = 0, 

trace 𝐴1 = 2𝑢𝑎2
1
2𝑉0(𝑥). 

Put  𝑛 = 1, 

trace 𝐴3 = 2𝑢𝑎2
3
2𝑉1(𝑥). 

Put  𝑛 = 2, 

trace 𝐴5 = 2𝑢𝑎2
5
2𝑉2(𝑥). 

Example 2: To verify the result stated in theorem 1: 

trace 𝐴2𝑛+1 = 2𝑢𝑎2
2𝑛+1

2 𝑉𝑛(𝑥). 
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Proof: The theorem presents the connection between trace of matrix and Chebyshev third 

kind polynomials. 𝑉𝑛(𝑥), represents 𝑛𝑡ℎdegree Chebyshev third kind polynomials. We 

demonstrated our theorem using a randomly chosen non-singular 2 × 2 matrix for values 

of 𝑛 = 0, 1, 2, … 

 Let 𝐴 = [
1 2
3 8

] be a 2 × 2 nonsingular matrix. 

                                                            trace of matrix 𝐴  = 𝑎1 = 9, 

                                                             determinant of matrix 𝐴  = 𝑎2 = 2, 

                𝑢 = (
𝑎1

2𝑎2
1
2

) =
9

2√2
  , 

Hence, 

                                                                     𝑥 =
77

4
. 

Put  𝑛 = 0, 

                                               trace 𝐴1 = 2𝑢𝑎2
1

2𝑉0(𝑥), 

L. H. S. = trace 𝐴1 = 𝑎1 = 9. 

                                              R. H. S. = 2𝑢𝑎2
1

2𝑉0(𝑥) = 2 ×
9

2√2
× 2

1

2 × 1 = 9. 

Hence result is true for 𝑛 = 0. 

Put  𝑛 = 1, 

trace 𝐴3 = 2𝑢𝑎2
3

2𝑉1(𝑥). 

𝐴3 = [
61 158
237 614

]. 

                                                        L. H. S. =trace  𝐴3 = 675. 
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R. H. S.= 2𝑢𝑎2
3

2𝑉1(𝑥) = 2 ×
9

2√2
× 2

3

2 ×
75

2
= 675. 

Hence result is true for 𝑛 = 1. 

Put  𝑛 = 2, 

                                                   trace 𝐴5 = 2𝑢𝑎2
5

2𝑉2(𝑥). 

𝐴5 = [
4693 12158
18237 47246

]. 

                                                  L. H. S.=  trace  𝐴5 = 51939. 

R. H. S.= 2𝑢𝑎2
5

2𝑉2(𝑥) = 2 ×
9

2√2
× 2

5

2 ×
5771

4
= 51939. 

Hence result is true for 𝑛 = 2. 

This example verified the above result for 𝑛 = 0, 1, 2. 

Similarly, we can prove our result for 𝑛 = 3, 4, 5,… 

Hence, this result is hold for any non-singular matrix  𝐴 i.e. 

trace 𝐴2𝑛+1 = 2𝑢𝑎2
2𝑛+1
2 𝑉𝑛(𝑥). 

2.8 Relation Between Second, Fourth Kind of Chebyshev Polynomials 

and Matrix Power 

In this context, we start by establishing a connection, as outlined in [20], between the matrix 

exponent and the Chebyshev polynomials of the 2nd kind. Furthermore, here we utilize an 

identity that elucidates the relationship allying Chebyshev 2nd and 4th kinds polynomials 

i.e. 

𝐴𝑛 = 𝑎2
(𝑛−1)

2 𝑈𝑛−1 (
𝑎1

2𝑎2
1
2

)𝐴 − 𝑎2
𝑛

2𝑈𝑛−2 (
𝑎1

2𝑎2
1
2

) 𝐼. 
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Now use the identity that connects the second and fourth kinds Chebyshev polynomials 

with each other i.e. 

                                         𝑈2𝑛(𝑢) = 𝑊𝑛(𝑥), where 𝑢 = √
1+𝑥

2
 .   

Theorem 3: Let 𝑛 ≥ 2,  the integral power of 𝐴 is given by: 

                                           𝐴2𝑛+1 = 𝑎2
𝑛𝑊𝑛(𝑥)𝐴 − 𝑎2

2𝑛+1

2 𝑈2𝑛−1 (
𝑎1

2𝑎2
1
2

) 𝐼 ,  

where 𝐼 denotes the identity matrix, 𝑈𝑛(𝑥) and 𝑊𝑛(𝑥) are the 𝑛𝑡ℎ degree second and fourth 

kinds Chebyshev polynomials. 

            𝑈0(𝑥) = 1, 𝑈1(𝑥) = 2𝑥,  𝑈2(𝑥) = 4𝑥
2 − 1, 𝑈3(𝑥) = 8𝑥2 − 4𝑥,… 

  𝑊0(𝑥) = 1, 𝑊1(𝑥) = 2𝑥 + 1,  𝑊2(𝑥) = 4𝑥
2 + 2𝑥 − 1,  𝑊3(𝑥) = 8𝑥

3 + 4𝑥2 − 4𝑥 −

1,… 

Proof: By using the above-mentioned results, we obtain, 

                                      𝐴2𝑛+1 = 𝑎2
𝑛𝑈2𝑛 (

𝑎1

2𝑎2
1
2

)𝐴 − 𝑎2
2𝑛+1
2 𝑈2𝑛−1 (

𝑎1

2𝑎2
1
2

)𝐼, 

                           𝐴2𝑛+1 = 𝑎2
𝑛𝑊𝑛(𝑥)𝐴 − 𝑎2

2𝑛+1
2 𝑈2𝑛−1 (

𝑎1

2𝑎2
1
2

) 𝐼. 

For 𝑛 = 1, 

    𝐴3 = 𝑎2𝑊1(𝑥)𝐴 − 𝑎2
3
2𝑈1 (

𝑎1

2𝑎2
1
2

)𝐼. 

For 𝑛 = 2, 
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   𝐴5 = 𝑎2
2𝑊2(𝑥)𝐴 − 𝑎2

5
2𝑈3 (

𝑎1

2𝑎2
1
2

) 𝐼. 

For 𝑛 = 3, 

𝐴7 = 𝑎2
3𝑊3(𝑥)𝐴 − 𝑎2

7
2𝑈5 (

𝑎1

2𝑎2
1
2

)𝐼. 

Example 4: To verify the result stated in theorem 3: 

 𝐴2𝑛+1 = 𝑎2
𝑛𝑊𝑛(𝑥)𝐴 − 𝑎2

2𝑛+1

2 𝑈2𝑛−1 (
𝑎1

2𝑎2
1
2

) 𝐼. 

Proof: The theorem presents the connection between matrix power, 2nd and 4th kind 

Chebyshev polynomials. The 𝑈𝑛(𝑥), 𝑊𝑛(𝑥) represents the 𝑛𝑡ℎ degree Chebyshev 2nd kind 

and 4th kinds polynomials respectively. We have proved our theorem with a random non-

singular 2 × 2 matrix for 𝑛 = 0, 1, 2, … 

Let 𝐴 = [
1 2
3 8

] be a 2 × 2 non-singular matrix. 

                                                    trace = 𝑎1 = 9. 

                                                    determinant = 𝑎2 = 2. 

𝑢 = (
𝑎1

2𝑎2
1
2

) = √
1+𝑥

2
=

9

2√2
  . 

Hence, 

𝑥 =
77

4
. 

Put 𝑛 = 1, we get 

            𝐴3 = 𝑎2𝑊1(𝑥)𝐴 − 𝑎2
3

2𝑈1 (
𝑎1

2𝑎2
1
2

) 𝐼. 
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    L. H. S. = 𝐴3 = [
61 158
237 614

]. 

R. H. S. = 𝑎2𝑊1(𝑥)𝐴 − 𝑎2
3

2𝑈1 (
𝑎1

2𝑎2
1
2

) 𝐼, 

= 2 ×
79

2
× [
1 2
3 8

] − 2
3
2 × 𝑈1 (

9

2√2
)× [

1 0
0 1

] 

= [ 79 158
237 632

] − 18 [
1 0
0 1

] 

= [
61 158
237 614

]. 

Hence result is true for 𝑛 = 1. 

Put 𝑛 = 2, we get 

   𝐴5 = 𝑎2
2𝑊2(𝑥)𝐴 − 𝑎2

5
2𝑈3 (

𝑎1

2𝑎2
1
2

) 𝐼. 

                                     L. H. S. = 𝐴5 = [
4693 12158
18237 47246

]. 

R. H. S.= 𝑎2
2𝑊2(𝑥)𝐴 − 𝑎2

5
2𝑈3 (

𝑎1

2𝑎2
1
2

)𝐼, 

= 4 ×
6079

4
× [
1 2
3 8

] − 2
5
2 × 𝑈3 (

9

2√2
) × [

1 0
0 1

] 

= [ 6079 12158
18237 48632

] − 1386 [
1 0
0 1

] 

= [
4693 12158
18237 47246

]. 

Hence result is true for 𝑛 = 2. 

This example verified the above result for 𝑛 = 1, 2. 
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Similarly, we can prove our result for 𝑛 = 3, 4, 5,… 

Hence, this result is hold for any nonsingular matrix  𝐴 i.e. 

 𝐴2𝑛+1 = 𝑎2
𝑛𝑊𝑛(𝑥)𝐴 − 𝑎2

2𝑛+1

2 𝑈2𝑛−1 (
𝑎1

2𝑎2
1
2

) 𝐼. 

This example verified the above result. 

2.9 Applications  

The Chebyshev polynomials are widely used to enhance the advanced technique for 

counting and to study the integer function. These polynomials play a vital role to  solve 

other polynomials that are used to obtain new trigonometric identities. The approximate 

solution of the second order differential equations can be obtained with the help of these 

polynomials and the large data can be interpolated in the numerical and approximation 

theory. The approximate numerical solution can be derived for both differential and integral 

equations. These polynomials play a crucial role in computer science to obtain signal 

processing, where they are prominently employed in designing filters referred to as 

Chebyshev filters. Chebyshev polynomials are extensively utilized in computer graphics 

for generating various shapes, surfaces, and curves due to their versatility and 

effectiveness.  

                                                                     . 

We can approximate every polynomial through the use of Chebyshev polynomials. In this 

context, we represent a polynomial using third kind Chebyshev polynomials, 

Approximation 
Theory

Numerical  
Analysis

Physics
Computer 
Graphics

Signal  
Processings
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demonstrating the practical utility in approximation theory. The primary benefit of the 

given methods is the high accuracy of the approximation solution. 

Practical Application 

Express: 𝑓(𝑥) = 𝑥4 + 2𝑥3 − 3𝑥 − 2 through the use of Chebyshev polynomials of 3rd 

kind and approximate the function by a cubic polynomial 𝑝(𝑥) ∈ 𝑃3 using economization.  

Solution: First four terms of third kind Chebyshev polynomials are; 

𝑉0(𝑥) = 1 ,           𝑉1(𝑥) = 2𝑥 − 1,                  𝑉2(𝑥) = 4𝑥
2 − 2𝑥 − 1, 

𝑉3(𝑥) = 8𝑥
3 − 4𝑥2 − 4𝑥 + 1,                     𝑉4(𝑥) = 16𝑥

4 − 8𝑥3 − 12𝑥2 + 4𝑥 + 1. 

From above equations: 

𝑥 =
1

2
[𝑉0(𝑥) + 𝑉1(𝑥)]. 

                 𝑥2 =
1

4
[2𝑉0(𝑥) + 𝑉1(𝑥) + 𝑉2(𝑥)]. 

                                  𝑥3 =
1

8
[𝑉3(𝑥) + 𝑉2(𝑥) + 3𝑉1(𝑥) + 3𝑉0(𝑥)]. 

                                                  𝑥4 =
1

16
[𝑉4(𝑥) + 𝑉3(𝑥) + 4𝑉2(𝑥) − 4𝑉1(𝑥) + 6𝑉0(𝑥)]. 

Put above values in 𝑓(𝑥) = 𝑥4 + 2𝑥3 − 3𝑥 − 2, we get 

𝑥4 + 2𝑥3 − 3𝑥 − 2 =
1

16
[𝑉4(𝑥) + 𝑉3(𝑥) + 4𝑉2(𝑥) − 4𝑉1(𝑥) + 6𝑉0(𝑥)] +

2

8
[𝑉3(𝑥) + 𝑉2(𝑥) + 3𝑉1(𝑥) + 3𝑉0(𝑥)] −

3

2
[𝑉0(𝑥) + 𝑉1(𝑥)] − 2𝑉0(𝑥). 

Hence, 

=
1

16
𝑉4(𝑥) +

5

16
𝑉3(𝑥) +

1

2
𝑉2(𝑥) − 𝑉1(𝑥) −

19

8
𝑉0(𝑥). 
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Here we want a cubic approximation, so we drop the 𝑉4 term. This gives an error at most 

1

16
 . The best approximated polynomial is; 

                                    𝑝(𝑥) =
5

2
𝑥3 +

3

4
𝑥2 − 3𝑥 −

35

16
 .  

If we do simple approximation, we get 

                                     𝑟(𝑥) = 2𝑥3 − 3𝑥 − 2,  

we would get a maximum error equal to 1. 

2.10 Significance of the Work 

Here we recapitulate the significance of the present chapter in the following points: 

 Introducing matrix representation of Chebyshev polynomials of the 3rd kind and 4th 

kind. 

 Obtaining characteristic equations of 3rd kind, and 4th kind Chebyshev polynomials. 

 Identities associated to matrix power and Chebyshev polynomials. 

 Obtaining relation between the trace of matrix and 3rd kind Chebyshev polynomials 

with example. 

 Establishing relationships involving the 2nd and 4th kind of Chebyshev polynomials 

through matrix exponentiation. 

 Approximate a polynomial by using the Chebyshev 3rd kind polynomials. 

It has to be noted here that the above-obtained results and discussions are helpful. A few 

of their presumed uses are given below: 

 The matrix representation helps to solve and acquiring algebraic outcomes for both 

linear and non-linear differential equations. 

 The characteristic equations of Chebyshev polynomials are helpful to obtaining 

eigen values and eigen vectors. 

 The connections between 2nd, 3rd, and 4th kind of Chebyshev polynomials with 

matrix power are very fruitful to obtaining identities related to them.  
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  The Chebyshev polynomials have a notable significance in the field of 

approximation theory. 

2.11 Conclusion 

It is observed that characteristic equations for Chebyshev polynomials of 3rd and 4th kind 

can be extended up to 𝑛𝑡ℎ  degree. Further, by using matrix power, we can describe more 

identities that connect Chebyshev polynomials. To obtain our result, we used the non-

singular 2 × 2 matrix and utilized the trace and determinant of the matrix. The numerical 

examples authenticate the theoretical results. 

2.12 Open problems 

 The problems concerning invertibility, designation of eigenvalues and 

determinants, and other issues on -circulant matrices involving the Chebyshev 

polynomials will remain open for further research.  

 Another open problem is the calculation of the inverse of a matrix formed by 

Chebyshev polynomials.  

 The calculation of eigenvalues of a matrix formed by Chebyshev polynomials is 

also an open problem, and it is crucial for understanding the properties of these 

matrices.  

 

 

 

 

 

*****
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Chapter 3 

New Generalization of Chebyshev-Like Polynomials and Their 

Applications 

The study of this chapter focused on the development of a new generalized version of four 

known kinds of Chebyshev polynomials. Our investigation involves the development of a 

novel generalization encompassing four widely recognized types of Chebyshev 

polynomials. We have introduced distinct generalized Chebyshev polynomials by 

employing a modified recursive relationship with diverse initial conditions. We also get 

Binet's formula for generalized Chebyshev’s polynomials. The Binet formula is obtained 

by mathematical induction. The matrix representation and the characteristic equation are 

presented using matrix algebra properties for these polynomials. We also talked about the 

sum, products, and subtraction of roots pertaining of the C.E. of generalized Chebyshev 

polynomials. Plus, we showed how Chebyshev-like polynomials can be used in practice 

with examples. 

 

3.1 Introduction  

Chebyshev polynomials occupy prominent attention because of their substantial use in 

mathematics. The authors Gultekin and Betul Sakiroglu, conducted a study on the analysis 

of Chebyshev generalized polynomials forms using matrixes and combination forms [ 43]. 

M. C. Akmak and K. Uslu, developed a generalized version of all four Chebyshev 

polynomials, demonstrated a Binet-style formula [9]. Generalized sequences 𝐹𝑛 and 𝐿𝑛 by 

Goksal Bilgici on generalizing new sequences was based on the relationship between the 

recurrence relation with the basic conditions; 

                                          𝐹𝑛 = 2𝑥𝐹𝑛−1 + (𝑏
2 − 𝑎)𝐹𝑛−2, 𝑛 ≥ 2  and                

                                         𝐿𝑛 = 2𝑥𝐿𝑛−1 + (𝑏
2 − 𝑎)𝐿𝑛−2, 𝑛 ≥ 2.   
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They successfully derived Binet's formula and the generating function for these sequences 

[19].  Abd-Elhameed and Al-Harbi,  primarily concerned with the generalization of 

Chebyshev's third-kind polynomials, with contributions from different perspectives. 

Additionally, some new formulas were discussed [3]. In order to gain new insights into the 

properties of Lucas-polynomials, W. Mohamed Abd-Elhameed and A. Napoli explored 

different approaches to obtaining results. Matrix representation was also discussed in order 

to identify certain properties of the polynomials [2].  

S. Uygun et al. the authors proposed a generalized version of some of the polynomial 

names; Pell Lucas and Pell, Vieta and Vieta. They identified properties including a sum 

formula, generating function, differentiation, and Binet like formula as well as generating 

a matrix whose values were extracted from a generalized version of the Vieta- Pell -Lucas’s 

polynomials [96]. Gospava B. Djordjevi´c, conducted a series of studies on the various 

categories of polynomials associated with Chebyshev's polynomials and the derived results 

associated with them [31].  

Kizilates et al. instigates (𝑔, 𝑓) Chebyshev polynomials in to Fibonacci, Luca’s 

polynomials. For any integer 𝑙 ≥ 2 and 0 < 𝑔 < 𝑓 ≤ 1: 

𝑇𝑙(𝑛, 𝑑, 𝑔, 𝑓) = (𝑔
𝑙−1 + 𝑓𝑙−1)𝑛𝑇𝑙−1(𝑛, 𝑑, 𝑔, 𝑓) + (𝑒𝑓)

𝑙−1𝑑𝑇𝑙−2(𝑛, 𝑑, 𝑔, 𝑓), 

where 𝑛, 𝑑 are real variables, (𝑛, 𝑑, 𝑔, 𝑓) = 1, 𝑇1(𝑛, 𝑑, 𝑔, 𝑓) = 𝑛. They also talked about 

𝑛𝑡ℎ generalizations and properties of derivatives, which were represented by determinants 

of the polynomials [59]. Waleed Mohamed Abd-Elhameed et al. objective of the paper was 

to evolve the connection between generalized types of Lucas and Fibonacci polynomials. 

[4]. Stefano De Marchi et al. familiarize themselves with the generalizations of the first 

kind Chebyshev polynomials and identify a number of properties associated with 

orthogonal polynomials [67].  

Sarita Nemaniy et al. in their study, established the sophisticated properties of the Fibonacci 

sequence. Their findings concerned the divisibility of Fibonacci sequences and the 

representation of matrices by determinants including sequence terms [74]. The main 

https://sciprofiles.com/profile/1901937
https://sciprofiles.com/profile/author/ZDNIdXVqaGZnUEhiUTdNV1dxcG80MWEvVGdkenI2NTMrNjBwQ3gwK3UrWT0=
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intension of Anna Tatarczak study was to generalize the Chebyshev polynomials of two 

distinct types and to presented some prominent results demonstrating the relationship 

between these two types [94]. Anam Alwan Salih and Suha Shihab, primary objective of 

the research was to identify a variant of Chebyshev polynomials. 𝑁𝑛(𝑥) presented the 𝑛𝑡ℎ 

modified version of Chebyshev polynomials. 

𝑁𝑛(𝑥) = 2𝑇𝑛 (
𝑥

2
) , 𝑛 ∈ 𝑁. 

 Furthermore, authors discussed their integration, derivative operational matrix, and 

estimation techniques to address the issue of optimal control [85]. Various modifications 

have been made to the Fibonacci sequence and the Lucas sequence, in some cases by 

maintaining the original conditions and in other cases by maintaining the recurrence 

relationship by M. Musraini et al. [73]. The main goals of the chapter outlined is below: 

 We have introduced an innovative extension of the Chebyshev polynomials, broadening 

their applicability and characteristics. We have addressed the determinant representation of 

this generalized version with its characteristic equations, as well as the Binet-like formulas 

and the practical application of generalized polynomials in the approximation of the 

functions. 

3.2 New Generalization of Chebyshev-Like Polynomials 

 For 𝑛 ≥ 2,   

𝑅𝑛(𝑥) = 𝑢𝑥𝑅𝑛−1(𝑥) + 𝑣𝑥𝑅𝑛−2(𝑥). 

with initial condition; 

𝑅0(𝑥) = 1, 𝑅1(𝑥) = 𝑟𝑥 − 𝑠. 

where 𝑟, 𝑣, 𝑢, 𝑠 are integers. 

The following are the few terms of 𝑅𝑛(𝑥) for 𝑛 = 2, 3, 4, 5,… 

𝑅2(𝑥) = 𝑢𝑥(𝑟𝑥 − 𝑠) + 𝑣𝑥 = 𝑢𝑟𝑥
2 − 𝑢𝑥𝑠 + 𝑣𝑥. 
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𝑅3(𝑥) = 𝑢𝑥[𝑢𝑥(𝑟𝑥 − 𝑠) + 𝑣𝑥] + 𝑣𝑥[𝑟𝑥 − 𝑠] 

= 𝑢2𝑟𝑥3 − 𝑢2𝑠𝑥2 + 𝑢𝑣𝑥2 + 𝑣𝑟𝑥2 − 𝑣𝑠𝑥. 

𝑅4(𝑥) = 𝑢𝑥[𝑢
2𝑟𝑥3 − 𝑢2𝑠𝑥2 + 𝑢𝑣𝑥2 + 𝑣𝑟𝑥2 − 𝑣𝑠𝑥] + 𝑣𝑥[𝑢𝑟𝑥2 − 𝑢𝑥𝑠 + 𝑣𝑥] 

= 𝑢3𝑟𝑥4 − 𝑢3𝑠𝑥3 + 𝑢2𝑣𝑥3 + 𝑢𝑣𝑟𝑥3 − 𝑢𝑣𝑠𝑥2 + 𝑢𝑣𝑟𝑥3 − 𝑢𝑣𝑠𝑥2 + 𝑣2𝑥2. 

𝑅5(𝑥) = 𝑢𝑥[𝑢
3𝑟𝑥4 − 𝑢3𝑠𝑥3 + 𝑢2𝑣𝑥3 + 𝑢𝑣𝑟𝑥3 − 𝑢𝑣𝑠𝑥2 + 𝑢𝑣𝑟𝑥3 − 𝑢𝑣𝑠𝑥2 + 𝑣2𝑥2]

+ 𝑣𝑥[𝑢2𝑟𝑥3 − 𝑢2𝑠𝑥2 + 𝑢𝑣𝑥2 + 𝑣𝑟𝑥2 − 𝑣𝑠𝑥] 

= 𝑢4𝑟𝑥5 − 𝑢4𝑠𝑥4 + 𝑢3𝑣𝑥4 + 𝑢2𝑣𝑟𝑥4 − 𝑢2𝑣𝑠𝑥3 + 𝑢2𝑣𝑟𝑥4 − 𝑢2𝑣𝑠𝑥3 + 𝑢𝑣2𝑥3

+ 𝑢2𝑣𝑟𝑥4 − 𝑢2𝑣𝑠𝑥3 + 𝑢𝑣2𝑥3 + 𝑣2𝑟𝑥3 − 𝑣2𝑠𝑥2,  

 and so on … 

Characteristic equation of the generalized Chebyshev polynomials is: 

𝐸𝑛 = 𝑢𝑥𝐸𝑛−1 + 𝑣𝑥𝐸𝑛−2, 

𝐸2 = 𝑢𝑥𝐸 + 𝑣𝑥, 

𝐸2 − 𝑢𝑥𝐸 − 𝑣𝑥 = 0. 

𝐼1(𝑥), 𝐼2(𝑥) denote the roots of the above equation; 

𝐼1(𝑥) =
𝑢𝑥 + √𝑢2𝑥2 + 4𝑣𝑥

2
,                     𝐼2(𝑥) =

𝑢𝑥 − √𝑢2𝑥2 + 4𝑣𝑥

2
. 

Sum of the roots is; 

𝐼1(𝑥) +  𝐼2(𝑥) = 𝑢𝑥. 

Product of roots is; 

 𝐼1(𝑥) 𝐼2(𝑥) = −𝑣𝑥. 

Subtraction of roots is; 

 𝐼1(𝑥) −  𝐼2(𝑥) = √𝑢2𝑥2 + 4𝑣𝑥. 
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Sum of the squares of the roots is; 

𝐼1
2(𝑥) + 𝐼2

2(𝑥) = 𝑢2𝑥2 + 2𝑣𝑥. 

3.3 Binet Formula for Chebyshev-like Polynomials 

To derive the Binet formula for Chebyshev-like polynomials, we start by solving the 

characteristic equation to find its roots. These roots are crucial for constructing the Binet 

formula, which provides an explicit expression for generalized Chebyshev-like 

polynomial. 

Let general solution of above equation is; 

                                         𝑅𝑛(𝑥) = 𝑍1𝐼1
𝑛+1(𝑥) + 𝑍2𝐼2

𝑛+1(𝑥),                                         (3.1.1) 

To find 𝑍1,  𝑍2; 

                                                            1 = 𝐼1(𝑥), 

  𝑟𝑥 − 𝑠 = 𝐼2(𝑥), 

                                                                  1 = 𝑍1𝐼1(𝑥) + 𝑍2𝐼2(𝑥),                                      (3.1.2) 

                                                                 𝑟𝑥 − 𝑠 = 𝑍1𝐼1
2(𝑥) + 𝑍2𝐼2

2(𝑥).                         (3.1.3) 

Multiply equation (3.1.2) by 𝐼1(𝑥), 

                                                𝐼1(𝑥) = 𝑍1𝐼1(𝑥)𝐼1(𝑥) + 𝑍2𝐼1(𝑥)𝐼2(𝑥).                              (3.1.4) 

Now subtract from (3.1.4) to (3.1.3), we have 

𝐼1(𝑥) − (𝑟𝑥 − 𝑠) = 𝑍2[𝐼1(𝑥)𝐼2(𝑥) − 𝐼2
2(𝑥)], 

𝑍2 =
𝐼1(𝑥) − (𝑟𝑥 − 𝑠)

[𝐼1(𝑥)𝐼2(𝑥) − 𝐼2
2(𝑥)]

, 

𝑍2 =
𝐼1(𝑥) − (𝑟𝑥 − 𝑠)

𝐼2(𝑥)[𝐼1(𝑥) − 𝐼2(𝑥)]
. 
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Now use the value of 𝑍2 in eq (3.1.2), we get 

1 = 𝑍1𝐼1(𝑥) +
𝐼1(𝑥) − (𝑟𝑥 − 𝑠)

𝐼2(𝑥)[𝐼1(𝑥) − 𝐼2(𝑥)]
𝐼2(𝑥),      

1 =  𝑍1𝐼1(𝑥) +
𝐼1(𝑥) − (𝑟𝑥 − 𝑠)

[𝐼1(𝑥) − 𝐼2(𝑥)]
 , 

𝑍1𝐼1(𝑥) = 1 −
𝐼1(𝑥) − (𝑟𝑥 − 𝑠)

[𝐼1(𝑥) − 𝐼2(𝑥)]
, 

𝑍1 =
(𝑟𝑥 − 𝑠)−𝐼2(𝑥)

𝐼1(𝑥)[𝐼1(𝑥) − 𝐼2(𝑥)]
 . 

Now use the values of 𝑍1, 𝑍2 in (3.1.1), we get; 

  𝑅𝑛(𝑥) =
(𝑟𝑥 − 𝑠)−𝐼2(𝑥)

𝐼1(𝑥)[𝐼1(𝑥) − 𝐼2(𝑥)]
𝐼1
𝑛+1(𝑥) +

𝐼1(𝑥) − (𝑟𝑥 − 𝑠)

𝐼2(𝑥)[𝐼1(𝑥) − 𝐼2(𝑥)]
𝐼2
𝑛+1(𝑥).  

Now further its solutions can be modified; 

  𝑅𝑛(𝑥) =
(𝑟𝑥 − 𝑠)−𝐼2(𝑥)

[𝐼1(𝑥) − 𝐼2(𝑥)]
𝐼1
𝑛(𝑥) +

𝐼1(𝑥) − (𝑟𝑥 − 𝑠)

[𝐼1(𝑥) − 𝐼2(𝑥)]
𝐼2
𝑛(𝑥),  

(𝑟𝑥 − 𝑠)−𝐼2(𝑥) =
2𝑟𝑥 − 2𝑠 − 𝑢𝑥 + √𝑢2𝑥2 + 4𝑣𝑥 ,

2
 

𝐼1(𝑥) − 𝐼2(𝑥) = √𝑢2𝑥2 + 4𝑣𝑥 , 

𝐼1(𝑥) − (𝑟𝑥 − 𝑠) =
𝑢𝑥 − 2𝑟𝑥 + 2𝑠 + √𝑢2𝑥2 + 4𝑣𝑥 

2
, 

Hence,  

𝑅𝑛(𝑥) =

2𝑟𝑥 − 2𝑠 − 𝑢𝑥 + √𝑢2𝑥2 + 4𝑣𝑥 
2

√𝑢2𝑥2 + 4𝑣𝑥 ,
𝐼1
𝑛(𝑥)

+

𝑢𝑥 − 2𝑟𝑥 + 2𝑠 + √𝑢2𝑥2 + 4𝑣𝑥 
2

√𝑢2𝑥2 + 4𝑣𝑥 
𝐼2
𝑛(𝑥),  



66 
 

𝑅𝑛(𝑥) =
1

2√𝑢2𝑥2 + 4𝑣𝑥 
[(2𝑟𝑥 − 2𝑠 − 𝑢𝑥 + √𝑢2𝑥2 + 4𝑣𝑥 ) 𝐼1

𝑛(𝑥)

+ ( 𝑢𝑥 − 2𝑟𝑥 + 2𝑠 + √𝑢2𝑥2 + 4𝑣𝑥 ) 𝐼2
𝑛(𝑥)]. 

  If we put 𝐻 = √𝑢2𝑥2 + 4𝑣𝑥 , we get 

𝑅𝑛(𝑥) =
1

2𝐻
[(2𝑟𝑥 − 2𝑠 − 𝑢𝑥 + 𝐻)𝐼1

𝑛(𝑥) + ( 𝑢𝑥 − 2𝑟𝑥 + 2𝑠 + 𝐻)𝐼2
𝑛(𝑥)]. 

Which is the required Binet formula of Chebyshev - like polynomials. Binet formula is an 

explicit formula used to find the 𝑛𝑡ℎ  term of Chebyshev polynomials; provide a closed 

form expression for Chebyshev polynomials. The recurrence relation for Chebyshev 

polynomials can be derived by utilizing Binet formula.   

3.4 Generalized Chebyshev's Polynomials Through Matrix 

Representation 

In this section, we delve in to matrix-oriented methodology for generalized Chebyshev 

polynomials (GCPs). The definition of these polynomials is established through a recursive 

relation, 

𝑅0(𝑥) = 1, 𝑅1(𝑥) = 𝑟𝑥 − 𝑠, 𝑅𝑛(𝑥) = 𝑢𝑥𝑅𝑛−1(𝑥) + 𝑣𝑥𝑅𝑛−2(𝑥), for 𝑛 ≥ 2. 

[ob,c] defined tri-diagonal matrix succession for the generalized Chebyshev polynomials; 

 

[𝑜𝑏,𝑐] =

{
 
 

 
 
𝑜𝑏,𝑐 = 𝑟𝑥 − 𝑠     𝑖𝑓 𝑏 = 𝑐 = 1

𝑜𝑏,𝑐 = 𝑢𝑥            𝑖𝑓 𝑏 = 𝑐 ≥ 2

𝑜𝑏,𝑐 = −𝑣𝑥         𝑖𝑓  𝑏 = 𝑐 + 1

𝑜𝑏,𝑐 = 1              𝑖𝑓  𝑏 = 𝑐 − 1

𝑜𝑏,𝑐 = 0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

In general, determinant representation is given by; 
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                                            |𝐾(𝑛)| =
|

|

𝑟𝑥 − 𝑠 1 0 . . . . . . 0
−𝑣𝑥 𝑢𝑥 1 . . . . . . 0
0 −𝑣𝑥 𝑢𝑥 . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 𝑢𝑥 1
0 0 . . . . . . −𝑣𝑥 𝑢𝑥

|

|
, 

𝐾(𝑛) = determinant of Chebyshev matrices 𝑅𝑛(𝑥). 

        |𝐾(1)| = 𝑜1,1 = 𝑟𝑥 − 𝑠 = 𝑅1(𝑥). 

|𝐾(2)| = 𝑜1,1𝑜2,2 − 𝑜2,1𝑜1,2 

     = |
𝑟𝑥 − 𝑠 1
−𝑣𝑥 𝑢𝑥

|  

                                                              =  𝑢𝑟𝑥2 − 𝑢𝑥𝑠 + 𝑣𝑥 =  𝑅2(𝑥). 

                  |𝐾(3)| = 𝑜3,3|𝐾(2)| − 𝑜3,2𝑜2,3|𝐾(1)|, 

                   = |
𝑟𝑥 − 𝑠 1 0
−𝑣𝑥 𝑢𝑥 1
0 −𝑣𝑥 𝑢𝑥

|, 

 

𝑟𝑢2𝑥3 + 𝑟𝑣𝑥2 + 𝑢𝑣𝑥2 − 𝑢2𝑥2𝑠 − 𝑠𝑣𝑥 = 𝑅3(𝑥). 

  |𝐾(4)| = 𝑜4,4|𝐾(3)| − 𝑜4,3𝑜3,4|𝐾(2)|, 

= |

𝑟𝑥 − 𝑠 1 0 0
−𝑣𝑥 𝑢𝑥 1 0
0 −𝑣𝑥 𝑢𝑥 1
0 0 −𝑣𝑥 𝑢𝑥

|, 

= 𝑢3𝑟𝑥4 − 𝑢3𝑠𝑥3 + 𝑢2𝑣𝑥3 + 𝑢𝑣𝑟𝑥3 − 𝑢𝑣𝑠𝑥2 + 𝑢𝑣𝑟𝑥3 − 𝑢𝑣𝑠𝑥2 + 𝑣2𝑥2 = 𝑅4(𝑥). 

|𝐾(5)| = 𝑜5,5|𝐾(4)| − 𝑜5,4𝑜4,5|𝐾(3)|, 
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= |
|

𝑟𝑥 − 𝑠 1 0 0 0
−𝑣𝑥 𝑢𝑥 1 0 0
0 −𝑣𝑥 𝑢𝑥 1 0
0 0 −𝑣𝑥 𝑢𝑥 1
0 0 0 −𝑣𝑥 𝑢𝑥

|
| 

= 𝑢4𝑟𝑥5 − 𝑢4𝑠𝑥4 + 𝑢3𝑣𝑥4 + 𝑢2𝑣𝑟𝑥4 − 𝑢2𝑣𝑠𝑥3 + 𝑢2𝑣𝑟𝑥4 − 𝑢2𝑣𝑠𝑥3 + 𝑢𝑣2𝑥3

+ 𝑢2𝑣𝑟𝑥4 − 𝑢2𝑣𝑠𝑥3 + 𝑢𝑣2𝑥3 + 𝑣2𝑟𝑥3 − 𝑣2𝑠𝑥2 = 𝑅5(𝑥). 

and so on. 

In general, 

|𝐾(𝑛)| = 𝑜𝑛,𝑛|𝐾(𝑛 − 1)| − 𝑜𝑛,𝑛−1𝑜𝑛−1,𝑛|𝑘(𝑛 − 2)|, 

 

=
|

|

𝑟𝑥 − 𝑠 1 0 … … 0
−𝑣𝑥 𝑢𝑥 1 … … 0
0 −𝑣𝑥 𝑢𝑥 … … …
… … … … … …
… … … … 𝑢𝑥 1
0 0 … … −𝑣𝑥 𝑢𝑥

|

|
  = 𝑅𝑛(𝑥). 

 

3.5 Characteristic Equations of the Generalized Chebyshev Polynomials 

Here we obtain the characteristic equations for the generalized Chebyshev polynomials up 

to fifth degree. 

1. 𝜆 − 𝑅1 = 0.  

2. 𝜆2 − (𝑟𝑥 + 𝑢𝑥)𝜆 + 𝑅2 = 0.  

3. 𝜆3 − (𝑟𝑥 − 𝑠 + 2𝑢𝑥)𝜆2 − (𝑟𝑢𝑥2 + 2𝑠𝑢𝑥 − 𝑢2𝑥2 − 2𝑣𝑥)𝜆 − 𝑅3 = 0.  

4. 𝜆4 + 𝜆3(−𝑟𝑥 + 𝑠 − 3𝑢𝑥) + 𝜆2(3𝑢𝑥2𝑟 − 3𝑠𝑢𝑥 + 2𝑢𝑥2 + 𝑢2𝑥2 + 2𝑣𝑥 + 𝑢𝑥) +

𝜆(−3𝑢2𝑥3𝑟 + 3𝑢2𝑥3𝑠 + 𝑣𝑥𝑠 + 𝑢𝑥𝑠 − 𝑢3𝑥3 − 4𝑢𝑣𝑥2 − 𝑟𝑣𝑥2 − 𝑢𝑥2𝑟) + 𝑅4 = 0. 

5. 𝜆5+𝜆4(4𝑢𝑥 + 𝑟𝑥 − 𝑠) − 𝜆3(−4𝑢𝑠𝑥2 + 4𝑣𝑥𝑠 − 6𝑥2𝑢2 − 𝑣𝑠 − 2𝑣𝑥 − 𝑢𝑥) −

𝜆2(6𝑢2𝑥3𝑟 + 2𝑣𝑥2𝑟 − 6𝑢2𝑥2𝑠 − 2𝑣𝑥𝑠 + 4𝑢3𝑥3 + 8𝑢𝑣𝑥2 + 𝑢2𝑥2 + 𝑢𝑥2𝑟 −

𝑢𝑥𝑠) − 𝜆(−4𝑢3𝑥4𝑟 − 4𝑢𝑣𝑥3𝑟 − 𝑢2𝑥3𝑟 + 3𝑢3𝑥3𝑠 + 5𝑢𝑣𝑥2𝑠 + 𝑢2𝑥2𝑠 − 𝑢4𝑥4 −

4𝑣𝑢2𝑥3 − 3𝑣2𝑥2 − 𝑢𝑣𝑥4 + 𝑢3𝑥3 − 𝑢2𝑥2𝑣) − 𝑅5 = 0. 
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3.6 Practical Applications 

Express: 𝑥3 − 3𝑥2 + 2𝑥 + 3 in to generalized Chebyshev polynomials and approximate 

this function with a quadratic polynomial by using economization.  

Sol: Generalized Chebyshev polynomials are well-defined by; 

𝑅𝑛(𝑥) = 𝑢𝑥𝑅𝑛−1(𝑥) + 𝑣𝑥𝑅𝑛−2(𝑥), 𝑛 ≥ 2. 

with initial conditions, 

𝑅0(𝑥) = 1, 𝑅1(𝑥) = 𝑟𝑥 − 𝑠. 

Now from above generalized recurrence relation, we get  

𝑅0(𝑥) = 1.   

𝑅1(𝑥) = 𝑟𝑥 − 𝑠. 

𝑅2(𝑥) = 𝑢𝑟𝑥
2 − 𝑢𝑥𝑠 + 𝑣𝑥. 

𝑅3(𝑥) = 𝑢
2𝑟𝑥3 − 𝑢2𝑠𝑥2 + 𝑢𝑣𝑥2 + 𝑣𝑟𝑥2 − 𝑣𝑠𝑥. 

Where 𝑟, 𝑠, 𝑢, 𝑣 are integers. 

From above series we have to find out the 𝑥, 𝑥2, 𝑥3. 

𝑥 =
1

𝑟
[𝑅1(𝑥) + 𝑠]. 

𝑥2 =
1

𝑢𝑟2
[𝑅2(𝑥)𝑟 + 𝑠𝑢𝑅1(𝑥) + 𝑢𝑠

2 − 𝑣𝑅1(𝑥) − 𝑣𝑠]. 

𝑥3 =
1

𝑢3𝑟3
[𝑟2𝑢𝑅3(𝑥) + 𝑢

2𝑟𝑠𝑅2(𝑥) + 𝑢
3𝑠2𝑅1(𝑥)𝑟 + 𝑢

3𝑠2 − 𝑢2𝑣𝑠𝑅1(𝑥) − 𝑢
2𝑣𝑠2 −

𝑢𝑣𝑟𝑅2(𝑥) − 𝑢
2𝑣𝑠𝑅1(𝑥) − 𝑢

2𝑣𝑠2 + 𝑢𝑣2𝑅1(𝑥) + 𝑢𝑣
2𝑠 − 𝑣𝑅2(𝑥)𝑟

2 − 𝑢𝑣𝑠𝑟𝑅1(𝑥) −

𝑣𝑟𝑢𝑠2 + 𝑣2𝑟𝑅1(𝑥) + 𝑣
2𝑟𝑠 + 𝑢𝑣𝑠𝑟𝑅1(𝑥) + 𝑢𝑣𝑟𝑠

2]. 

Put the above values of 𝑥, 𝑥2, 𝑥3 in the given polynomial, we get 
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1

𝑢3𝑟3
[𝑟2𝑢𝑅3(𝑥) + 𝑢

2𝑟𝑠𝑅2(𝑥) + 𝑢
3𝑠2𝑅1(𝑥)𝑟 + 𝑢

3𝑠2 − 𝑢2𝑣𝑠𝑅1(𝑥) − 𝑢
2𝑣𝑠2

− 𝑢𝑣𝑟𝑅2(𝑥) − 𝑢
2𝑣𝑠𝑅1(𝑥) − 𝑢

2𝑣𝑠2 + 𝑢𝑣2𝑅1(𝑥) + 𝑢𝑣
2𝑠 − 𝑣𝑅2(𝑥)𝑟

2

− 𝑢𝑣𝑠𝑟𝑅1(𝑥) − 𝑣𝑟𝑢𝑠
2 + 𝑣2𝑟𝑅1(𝑥) + 𝑣

2𝑟𝑠 + 𝑢𝑣𝑠𝑟𝑅1(𝑥) + 𝑢𝑣𝑟𝑠
2]

−
3

𝑢𝑟2
[𝑅2(𝑥)𝑟 + 𝑠𝑢𝑅1(𝑥) + 𝑢𝑠

2 − 𝑣𝑅1(𝑥) − 𝑣𝑠] +
2

𝑟
[𝑅1(𝑥) + 𝑠]

+ 3𝑅0(𝑥). 

Here we drop the 𝑅3 term we get a maximum approximation error at most   
1

𝑢2𝑟
.  

If 𝑟 = 2, 𝑠 = 1, 𝑢 = 2, 𝑣 = 1, 𝐸 =
1

𝑢2𝑟
=

1

8
. if we do simple approximation, we would get 

a maximum error equal to 1. The best approximated polynomial through generalized 

Chebyshev like polynomial is:  

𝑞(𝑥) =  
19

4
−
5

8
𝑥 − 6𝑥2. 

 If we do simple approximation, we get 

                                                          𝑟(𝑥) =  3 + 2𝑥 − 3𝑥2. 

Express: 7𝑥3 − 2𝑥2 + 1 in to generalized Chebyshev polynomials and approximate with 

a quadratic polynomial by using economization.  

Solution: We know that, 

𝑅0(𝑥) = 1.   

𝑅1(𝑥) = 𝑟𝑥 − 𝑠. 

𝑅2(𝑥) = 𝑢𝑟𝑥
2 − 𝑢𝑥𝑠 + 𝑣𝑥. 

𝑅3(𝑥) = 𝑢
2𝑟𝑥3 − 𝑢2𝑠𝑥2 + 𝑢𝑣𝑥2 + 𝑣𝑟𝑥2 − 𝑣𝑠𝑥. 

Where 𝑟, 𝑠, 𝑢, 𝑣 are integers. 

From above, we get the values of  𝑥, 𝑥2, 𝑥3 𝑖. 𝑒., 
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𝑥 =
1

𝑟
[𝑅1(𝑥) + 𝑠]. 

𝑥2 = 
1

𝑢𝑟2
[𝑅2(𝑥)𝑟 + 𝑠𝑢𝑅1(𝑥) + 𝑢𝑠

2 − 𝑣𝑅1(𝑥) − 𝑣𝑠]. 

𝑥3 = 
1

𝑢3𝑟3
[𝑟2𝑢𝑅3(𝑥) + 𝑢

2𝑟𝑠𝑅2(𝑥) + 𝑢
3𝑠2𝑅1(𝑥)𝑟 + 𝑢

3𝑠2 − 𝑢2𝑣𝑠𝑅1(𝑥) − 𝑢
2𝑣𝑠2

− 𝑢𝑣𝑟𝑅2(𝑥) − 𝑢
2𝑣𝑠𝑅1(𝑥) − 𝑢

2𝑣𝑠2 + 𝑢𝑣2𝑅1(𝑥) + 𝑢𝑣
2𝑠 − 𝑣𝑅2(𝑥)𝑟

2

− 𝑢𝑣𝑠𝑟𝑅1(𝑥) − 𝑣𝑟𝑢𝑠
2 + 𝑣2𝑟𝑅1(𝑥) + 𝑣

2𝑟𝑠 + 𝑢𝑣𝑠𝑟𝑅1(𝑥) + 𝑢𝑣𝑟𝑠
2]. 

Put the above values of 𝑥, 𝑥2, 𝑥3 in the given polynomial, we get 

7

𝑢3𝑟3
[𝑟2𝑢𝑅3(𝑥) + 𝑢

2𝑟𝑠𝑅2(𝑥) + 𝑢
3𝑠2𝑅1(𝑥)𝑟 + 𝑢

3𝑠2 − 𝑢2𝑣𝑠𝑅1(𝑥) − 𝑢
2𝑣𝑠2

− 𝑢𝑣𝑟𝑅2(𝑥) − 𝑢
2𝑣𝑠𝑅1(𝑥) − 𝑢

2𝑣𝑠2 + 𝑢𝑣2𝑅1(𝑥) + 𝑢𝑣
2𝑠 − 𝑣𝑅2(𝑥)𝑟

2

− 𝑢𝑣𝑠𝑟𝑅1(𝑥) − 𝑣𝑟𝑢𝑠
2 + 𝑣2𝑟𝑅1(𝑥) + 𝑣

2𝑟𝑠 + 𝑢𝑣𝑠𝑟𝑅1(𝑥) + 𝑢𝑣𝑟𝑠
2]

− 
2

𝑢𝑟2
[𝑅2(𝑥)𝑟 + 𝑠𝑢𝑅1(𝑥) + 𝑢𝑠

2 − 𝑣𝑅1(𝑥) − 𝑣𝑠] + 𝑅0(𝑥) 

Here we drop the 𝑅3 term, we get a maximum approximation error at most   
7

𝑢2𝑟
. 

If 𝑟 = 2, 𝑠 = 1, 𝑢 = 2, 𝑣 = 1, 𝐸 =
7

𝑢2𝑟
=

7

8
= 0.875.  if we do simple approximation, we 

would get a maximum error equal to 7. 

The best approximated polynomial through generalized Chebyshev like polynomial is: 

                                                               𝑞(𝑥) =  1 +
7

8
𝑥 − 2𝑥2.   

If we do simple approximation, we get  

𝑟(𝑥) = 1 − 2𝑥2. 
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3.7 Conclusion 

We've come up with a new way of looking at Chebyshev-like polynomials that have three 

term recurrence relations. We've already looked at the generalized version using matrix 

algebra. In the future, we'll be looking at different types of modified and generalized 

Chebyshev types. We'll be looking at them from a different angle, and we'll be using matrix 

algebra for some basic properties. 

3.8 Significance of the work 

Following are some key points that summarize the importance of the current research: 

 To obtain the generalized version of Chebyshev polynomials helps to know more about 

the hidden factors of Chebyshev polynomials.  

 The Binet formula for the generalized version of Chebyshev polynomials presented the 

explicit form the current version. 

 To discuss the general nature of generalized Chebyshev polynomials with characteristic 

equation and its roots; like sum, products, subtraction, and sum of square of roots. 

 Via Matrix representation of generalized Chebyshev polynomials, we can apply matrix 

algebra to obtain more properties. 

 Characteristic values and vectors can be obtained by utilizing the characteristic 

equations of generalized Chebyshev polynomials. 

 In approximation theory, generalized Chebyshev polynomials helpful for 

approximating other polynomials.  

 These polynomials can be used to calculate lower order approximations. 

3.9 Future Scope of the work 

Future work on generalized Chebyshev polynomials can be explored: 

Multivariate extensions: Generalized Chebyshev polynomials to higher- dimensional 

spaces and explore their properties and applications. 
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Numerical methods: Improve computational efficiency and accuracy for evaluating and 

manipulating generalized Chebyshev polynomials.  

Interdisciplinary collaborations: Combine expertise from mathematics, computer 

science, engineering, and other fields to tackle complex problems and develop innovative 

solutions. 

New applications: Discover novel uses in the fields like data analysis, and computation. 

Connections to other areas: Explore relationship with other mathematical structures, such 

as orthogonal polynomials, special functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       ***** 
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Chapter 4 

Relationships Involving Chebyshev Polynomials, Fibonacci      

Numbers and Lucas Numbers 

In this chapter, we demonstrate certain identities involving both third and fourth kinds of 

the Chebyshev polynomials taking into account the Fibonacci and Lucas numbers. This 

study brings to light some significant results and defines the relationship between these 

polynomials. We have used mathematical induction to establish the relation between these 

polynomials and numbers. We also used the Binet formula and the second-order differential 

equation to establish their relationship. We also present some results for Fibonacci and 

Lucas numbers, particularly by using the second-order derivative of third kind Chebyshev 

polynomials. We prove some results that connect the fourth kind of Chebyshev 

polynomials with Fibonacci and Lucas numbers. These findings will pave the way for 

further exploration of these polynomials. In addition, we look at the practical application 

of Chebyshev's polynomials in approximation theory. 

These findings will definitely enrich and strengthen the existing literature on Chebyshev 

polynomials and their relationship with the Fibonacci and other similar and related 

orthogonal polynomials. This study is expected to add more depth to our understanding of 

the combinatorial and analytic properties of these Chebyshev polynomials and be 

instrumental in studying some general summation problems arising in both pure and 

applied mathematics involving these polynomials. 

 

4.1 Introduction 

This chapter comprises three primary sections. The initial section provides an introduction 

and definition of Chebyshev polynomials, which comprehensively cover all four kinds, 

including the Fibonacci and Lucas numbers. The second section encompasses the research 

conducted and work done on deriving six theorems and six corollaries related to Chebyshev 
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polynomials, Lucas, and Fibonacci numbers. In the concluding sections, we have 

deliberated on the importance and implications of this research and delved into the vast 

range of applications that Chebyshev polynomials have to offer. The analysis of the initial 

and subsequent Chebyshev polynomials was conducted by Mason and Wenpeng Zhang, 

who also presented several interesting identities [68, 69,105,106,107].  

Zhang [106] found a number of properties related to the Chebyshev polynomials' 

derivatives and showed the relationship between them as follows: 

“Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, we have: 

∑  

               𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

∏𝑈𝑏𝑘(𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑈𝑛+𝑞
(𝑞)(𝑥). "                                  (4.1.1)  

inside sum covers all non-negative integers 𝑏1,, 𝑏2, … , 𝑏𝑞+1 with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙. 

Jonny Griffiths [42] presented many results which connected all four kinds of Chebyshev 

polynomials. Kamal Aghigh et al. [6], M.R. Eslahchi et al. [34], and Taekyun Kim et al. 

[52, 53, 54, 55] gave many identities attributed to both the third and fourth kinds of 

Chebyshev polynomials.  

Wenpeng Zhang [107] gave the foundational idea to solve the summation of recurrence 

relations and also studied some identities related to Fibonacci sequences. Chebyshev 

polynomials are widely studied by researchers and defined in various forms like recurrence 

relations and trigonometric formulae. The Fibonacci and Lucas numbers share a close 

relationship with Chebyshev polynomials. These recursive relationships are employed in 

counting.  

Sanjay Harne et al. [45] found identities related to the Chebyshev polynomials, Lucas and 

Fibonacci numbers at certain variables with their derivatives as follows: 

“Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, we have: 
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" ∑ 𝐹4(2𝑏1+1)
𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝐹4(2𝑏2+1)…𝐹4(2𝑏𝑞+1+1) =
3𝑞+1

2𝑞𝑞!
𝑈𝑛+𝑞

𝑞 (
7

2
) , "          (4.1.2) 

∑ 𝐹6(2𝑏1+1)
𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝐹6(2𝑏2+1)…𝐹6(2𝑏𝑞+1+1) =
22𝑞+3

𝑞!
𝑈𝑛+𝑞

𝑞(9). "             (4.1.3) 

inside sum covers all non-negative integers 𝑏1,, 𝑏2, … , 𝑏𝑞+1 with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙 

 Kamal et al. [6] examined Chebyshev polynomials of both third and fourth kinds with their 

applications and obtained highly advantageous outcomes. Yang Li [62,63] determined the 

connection between derivatives of the Lucas, Chebyshev, and Fibonacci polynomials both 

first-second kinds of Chebyshev polynomials and applied the elementary method to find 

the relationship. T. Kim et al. [52] studied sums of finite products involving first kind 

Chebyshev and Lucas’s polynomials represented each one in terms of various types of 

Chebyshev polynomials. 

Zhang and Han [108] provided identities for reciprocal sums of the Chebyshev polynomials 

through mathematical induction and the characteristic of symmetrical polynomial 

sequences. T. Kim et al. [55] investigated the summation involving finite products of both 

third and fourth kinds of Chebyshev polynomials. They derived the subsequent relation 

involving the fourth kind of Chebyshev polynomials and their derivatives as:  

Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1,  

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

 𝑊𝑏1
(𝑥) 𝑊𝑏2

(𝑥)…𝑊𝑏𝑞+1
(𝑥) 

                                                                       =
1

2𝑞𝑞!
𝑊𝑛+𝑞

(𝑞)(𝑥)                                 (4.1.4) 
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inside sum covers all non-negative integers 𝑏1,, 𝑏2, … , 𝑏𝑞+1 with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 =

𝑙.  𝑊𝑛
𝑞(𝑥) denoted the 𝑞𝑡ℎ derivative of  𝑊𝑛(𝑥).  

To establish the connection between the third kind of Chebyshev polynomials and Lucas 

numbers, we pursued the following approach obtained by Kim et. al. [55] and W. Zhang 

[105]: Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1;   

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

 𝑉𝑏1(𝑥) 𝑉𝑏2(𝑥)…𝑉𝑏𝑞+1(𝑥) 

                                                               =
1

2𝑞𝑞!
𝑉𝑛+𝑞

(𝑞)(𝑥),                                                 (4.1.5) 

inside sum covers all non-negative integers 𝑏1,, 𝑏2, … , 𝑏𝑞+1 with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 =

𝑙.  𝑉𝑛
𝑞(𝑥) denoted the 𝑞𝑡ℎ derivative of 𝑉𝑛(𝑥).  

Our work is motivated by the earlier research of Zhang and Kim, and their team. They have 

made significant contributions to the study of the first and second kinds of Chebyshev 

polynomials, Fibonacci numbers, and Lucas numbers [55, 105, 107]. In our investigation, 

we uncover unexpected relationships specifically combining Fibonacci and Lucas numbers 

in terms of derivatives of the third and fourth kinds of Chebyshev polynomials. 

There are mainly four kinds of Chebyshev polynomials, each defined with distinct 

characteristics; 

   𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥), For 𝑛 ≥ 2, 3,…                (4.1.6) 

𝑈0(𝑥) = 1, 𝑈1(𝑥) = 2𝑥,  𝑈𝑛(𝑥) = 2𝑥𝑈𝑛−1(𝑥) − 𝑈𝑛−2(𝑥), For  𝑛 ≥ 2, 3,…    (4.1.7) 

 𝑉0(𝑥) = 1,  𝑉1(𝑥) = 2𝑥 − 1,  𝑉𝑛(𝑥) = 2𝑥𝑉𝑛−1(𝑥) − 𝑉𝑛−2(𝑥), For  𝑛 ≥

  2, 3, …                                                                                                                                        (4.1.8)    
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  𝑊0(𝑥) = 1, 𝑊1(𝑥) = 2𝑥 + 1,  𝑊𝑛(𝑥) = 2𝑥𝑊𝑛−1(𝑥) −𝑊𝑛−2(𝑥), For 𝑛 ≥

   2, 3, …                                                                                                                                       (4.1.9)      

Fibonacci Numbers; 

                                𝐹0 = 0,𝐹1 = 1,& 𝐹𝑛  = 𝐹𝑛−1 + 𝐹𝑛−2, 𝑛 ≥ 2.                          (4.1.10) 

Lucas Numbers; 

                                𝐿0 = 2, 𝐿1 = 1,& 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2, 𝑛 ≥ 2.                               (4.1.11)                                          

4.2 Some Simple Lemmas 

To prove our primary outcome, we require numerous lemmas. 

 For  𝑛 ≥ 0, we have following results: 

1. 𝑊𝑛(161) =
1

8
𝐹6(2𝑛+1).  

2. 𝑊𝑛 (
47

2
) =

1

3
𝐹4(2𝑛+1).    

3.  𝑊𝑛 (
123

2
) =

1

11
𝐿5(2𝑛+1).                     

4.  𝑉𝑛 (
47

2
) = 𝑢−1

1

2
𝐿4(2𝑛+1) .         

5. 𝑉𝑛(161) = 𝑢
−1 1

2
𝐿6(2𝑛+1).                

6.   𝑉𝑛(−9) = 𝑢
−1 (−𝑖)

2𝑛+1

2
𝐿3(2𝑛+1).      

4.3 Proof of Lemmas 

Lemma 1: The following result holds for all  𝑛 ≥ 0: 
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                                                  𝑊𝑛(161) =
1

8
𝐹6(2𝑛+1).  

Proof: To prove lemma 1, take 𝑥 = 161,𝑢 = √
1+𝑥

2
. 

Utilizing the identity, 

"𝑈𝑛(𝑢) =
1

8
𝐹6(𝑛+1)," 

⇛ 𝑈2𝑛(𝑢) =
1

8
𝐹6(2𝑛+1). 

We also utilizing, 

                                                         "𝑈2𝑛(𝑢) = 𝑊𝑛(𝑥)", to get  

                                                   𝑊𝑛(161) =
1

8
𝐹6(2𝑛+1). 

This demonstrates lemma 1. 

Lemma 2: The following result holds true for all  𝑛 ≥ 0: 

       𝑊𝑛 (
47

2
) =

1

3
𝐹4(2𝑛+1).      

Proof: To prove lemma 2, take 𝑥 =
47

2
, 𝑢 = √

1+𝑥

2
. 

We utilize the identity, 

"𝑈𝑛(𝑢) =
1

3
𝐹4(𝑛+1)," 

⇛ 𝑈2𝑛(𝑢) =
1

3
𝐹4(2𝑛+1). 

Also utilizing, 

                                                          "𝑈2𝑛(𝑢) = 𝑊𝑛(𝑥), " to get      

                                                       𝑊𝑛 (
47

2
) =

1

3
𝐹4(2𝑛+1).    

This demonstrates lemma 2. 

Lemma 3: The following result holds true for all  𝑛 ≥ 0: 

 

                   𝑊𝑛 (
123

2
) =

1

11
𝐿5(2𝑛+1).                     
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Proof: To prove lemma 3, take 𝑥 =
123

2
, 𝑢 = √

1+𝑥

2
. 

Utilizing the identity, 

"𝑈𝑛(𝑢) =
1

11
𝐿5(𝑛+1)," 

⇛ 𝑈2𝑛(𝑢) =
1

11
𝐿5(2𝑛+1). 

We also utilizing, 

                                                         "𝑈2𝑛(𝑢) = 𝑊𝑛(𝑥),” to get 

          𝑊𝑛 (
123

2
) =

1

11
𝐿5(2𝑛+1).                      

This demonstrates lemma 3. 

Lemma 4: The following result holds true for all  𝑛 ≥ 0: 

 

   𝑉𝑛 (
47

2
) = 𝑢−1

1

2
𝐿4(2𝑛+1).      

Proof: To prove lemma 4, take 𝑥 =
47

2
, 𝑢 = √

1+𝑥

2
. 

 Using the identity, 

"𝑇𝑛(𝑢) =
1

2
𝐿4𝑛 , " 

⇛ 𝑇2𝑛+1(𝑢) =
1

2
𝐿4(2𝑛+1). 

We also use, 

                                                      "𝑉𝑛(𝑥) = 𝑢
−1𝑇2𝑛+1(𝑢), "  to get 

                                                     𝑉𝑛 (
47

2
) = 𝑢−1

1

2
𝐿4(2𝑛+1).   

This demonstrates lemma 4. 

Lemma 5: The following result holds true for all 𝑛 ≥ 0: 

 

𝑉𝑛(161) = 𝑢
−1
1

2
𝐿6(2𝑛+1).   
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Proof: To prove lemma 5, take 𝑥 = 161,𝑢 = √
1+𝑥

2
. 

             We utilizing the identity, 

"𝑇𝑛(𝑢) =
1

2
𝐿6ℎ , " 

⇛ 𝑇2𝑛+1(𝑢) =
1

2
𝐿6(2𝑛+1). 

We also using, 

                                                        "𝑉𝑛(𝑥) = 𝑢
−1𝑇2𝑛+1(𝑢), " to get 

                                                       𝑉𝑛(161) = 𝑢
−1 1

2
𝐿6(2𝑛+1). 

This demonstrates lemma 5. 

 

Lemma 6: The following result holds true for all  𝑛 ≥ 0: 

 

  𝑉𝑛(−9) = 𝑢−1
(−𝑖)2𝑛+1

2
𝐿3(2𝑛+1).     

Proof: To prove lemma 6, take 𝑥 = −9 , 𝑢 = √
1+𝑥

2
, 

We utilizing the identity, 

"𝑇𝑛(−2𝑖) =
(−𝑖)𝑛

2
𝐿3𝑛 , " 

⇛ 𝑇2𝑛+1(−2𝑖) =
(−𝑖)2𝑛+1

2
𝐿3(2𝑛+1), 

We also utilizing, 

                                                "𝑉𝑛(𝑥) = 𝑢
−1𝑇2𝑛+1(𝑢),” to get 

                                         

                                            𝑉𝑛(−9) = 𝑢
−1 (−𝑖)

2𝑛+1

2
𝐿3(2𝑛+1) .   

  This demonstrates lemma 6. 

  Thus, all six lemmas have been demonstrated here. 
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4.4 Main Results 

4.4.1 Relation Between Fourth Kinds of the Chebyshev Polynomials, 

Fibonacci Numbers and Lucas Numbers. 

Theorem 1 and theorem 2 present the relation among Fibonacci numbers and Chebyshev 

polynomials of fourth kind. While theorem 3 elucidated the relationship between Lucas 

numbers and fourth kind Chebyshev polynomials.  

  

Theorem 1. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, 𝐹𝑛  be the 𝑛𝑡ℎ Fibonacci number, we 

have:  

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐹6(2𝑏1+1)𝐹6(2𝑏2+1) …𝐹6(2𝑏𝑞+1+1)

=
22𝑞+3

𝑞!
𝑊𝑛+𝑞

(𝑞)(161), 

inside sum covers all non-negative integers 𝑏1,, 𝑏2, … , 𝑏𝑞+1 with 𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙. 

Theorem 2. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, and  𝐹𝑛  be the 𝑛𝑡ℎ Fibonacci number, 

we have: 

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐹4(2𝑏1+1)𝐹4(2𝑏2+1) …𝐹4(2𝑏𝑞+1+1) 

=
3𝑞+1

2𝑞𝑞!
𝑊𝑛+𝑞

(𝑞) (
47

2
), 

inside sum covers all non-negative integers 𝑏1,, 𝑏2, … , 𝑏𝑞+1 with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙.      

Theorem 3. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, 𝐿𝑛  be the 𝑛𝑡ℎ Lucas number, we 

have: 

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐿5(2𝑏1+1)𝐿5(2𝑏2+1)…𝐿5(2𝑏𝑞+1+1) 

                                                   =
11𝑞+1

2𝑞𝑞!
𝑊𝑛+𝑞

(𝑞) (
123

2
), 
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inside sum covers all non-negative integers 𝑏1, 𝑏2, … , 𝑏𝑞+1 with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙. 

4.4.2 Relation Between the Third Kind Chebyshev Polynomials and 

Lucas Numbers.   

Here, we have obtained three theorems. We present the relationship between Lucas 

numbers and third kind Chebyshev polynomials at certain points. 

Theorem 4. Let 𝑛, 𝑞 be integer with 𝑛 ≥ 0, 𝑞 ≥ 1 , 𝐿𝑛  be the 𝑛𝑡ℎ Lucas number, we 

have:  

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐿4(2𝑏1+1)𝐿4(2𝑏2+1) …𝐿4(2𝑏𝑞+1+1) 

                                                              =
2

𝑞!
𝑢𝑞+1𝑉𝑛+𝑞

(𝑞)
(
47

2
). 

Inside sum covers all non-negative integer,  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙, 𝑢 = √
1+𝑥

2
. 

Theorem 5. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1,  𝐿𝑛  be the 𝑛𝑡ℎ Lucas number, we 

have:  

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐿6(2𝑏1+1)𝐿6(2𝑏2+1) …𝐿6(2𝑏𝑞+1+1)

=
2

𝑞!
𝑢𝑞+1𝑉𝑛+𝑞

(𝑞)
(161). 

Inside sum covers all non-negative integers,   𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙, 𝑢 = √
1+𝑥

2
. 

Theorem 6. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, 𝐿𝑛  be the 𝑛𝑡ℎ Lucas number, we 

have:  

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) (−𝑖)2𝑏1+1

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐿3(2𝑏1+1)(−𝑖)
2𝑏2+1𝐿3(2𝑏2+1) …(−𝑖)

2𝑏𝑞+1+1𝐿3(2𝑏𝑞+1+1) 

  

=
2

𝑞!
𝑢𝑞+1𝑉𝑛+𝑞

(𝑞)
(−9). 
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Inside sum covers all non-negative integers, 𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙,  𝑢 = √
1+𝑥

2
. 

We can draw the following six Corollary from the above six theorems: 

Corollary 1. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, the resulting output is as follows: 

For 𝑞 = 2, 

∑ ∑ (−1)𝑛−𝑙 (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐹6(2𝑏1+1)𝐹6(2𝑏2+1)𝐹6(2𝑏3+1) = 

 

[646(2𝑛 + 5){𝐹6(2𝑛+3) − 𝐹6(2𝑛+7)} + 209304𝐹6(2𝑛+5) + 207360(𝑛 + 2)(𝑛 + 3)𝐹6(2𝑛+5)]

(25920)2
. 

Corollary 2. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, the resulting output is as follows: 

For 𝑞 = 2, 

∑ ∑ (−1)𝑛−𝑙 (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐹4(2𝑏1+1)𝐹4(2𝑏2+1)𝐹4(2𝑏3+1) = 

 

[216(2𝑛 + 5){𝐹4(2𝑛+3) − 𝐹4(2𝑛+7)} + 10584𝐹4(2𝑛+5) +
19845
2

(𝑛 + 2)(𝑛 + 3)𝐹4(2𝑛+5)]

(2205)2
. 

Corollary 3. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, the resulting output is as follows: 

 

For 𝑞 = 2, 

∑ ∑ (−1)𝑛−𝑙 (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐿5(2𝑏1+1)𝐿5(2𝑏2+1)𝐿5(2𝑏3+1) = 

[7502(2𝑛 + 5){𝐿5(2𝑛+3) − 𝐿5(2𝑛+7)} + 937750𝐿5(2𝑛+5) +
20131375

22
(𝑛 + 2)(𝑛 + 3)𝐿5(2𝑛+5)] .

(15125)2
 

Corollary 4. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, the resulting output is as follows: 
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For 𝑞 = 2, 

        ∑ ∑ (
1+ 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐿4(2𝑏1+1)𝐿4(2𝑏2+1)𝐿4(2𝑏3+1) = 

[𝑢2[92(2𝑛 + 5){𝐿4(2𝑛+3) − 𝐿4(2𝑛+7)} + 4140𝐿4(2𝑛+5) + 4410(𝑛 + 2)(𝑛 + 3)𝐿4(2𝑛+5)].

(2205)2
 

Corollary 5. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, the resulting output is as follows: 

 

For 𝑞 = 2, 

 

∑ ∑ (
1+ 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐿6(2𝑏1+1)𝐿6(2𝑏2+1)𝐿6(2𝑏3+1) = 

𝑢2

(25920)2
[
321

8
(2𝑛 + 5){𝐿6(2𝑛+3) − 𝐿6(2𝑛+7)} + 12840𝐿6(2𝑛+5)

+ 12960(𝑛 + 2)(𝑛 + 3)𝐿6(2𝑛+5)]. 

Corollary 6. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, the resulting output is as follows: 

 For 𝑞 = 2, 

∑ ∑ (
1+ 𝑛 − 𝑙

1
) (−𝑖)2𝑏1+1

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐿3(2𝑏1+1)(−𝑖)
2𝑏2+1𝐿3(2𝑏2+1)(−𝑖)

2𝑏3+1𝐿3(2𝑏3+1) 

 

=
𝑢−1

6400
[

−19

8
(2𝑛 + 5){(−𝑖)2𝑛+3𝐿3(2𝑛+3) − (−𝑖)

2𝑛+7𝐿3(2𝑛+7)} +
95

2
(−𝑖)2𝑛+5

𝐿3(2𝑛+5) + 800(𝑛 + 2)(𝑛 + 3)(−𝑖)
2𝑛+5𝐿3(2𝑛+5)

]. 

 

 Proof of Theorems 

Theorem 1: Proof. Let 𝑊𝑛(𝑥) be defined by (4.1.9), then for any 𝑛, 𝑞 be integers with 

𝑛 ≥ 0, 𝑞 ≥ 1 by  (4.1.4); 
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∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) 

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑊𝑏𝑘
(𝑥)

𝑞+1

𝑘=1

=
1

2𝑞𝑞!
𝑊𝑛+𝑞

(𝑞)(𝑥),                                                                                  (4.4.2.1) 

From lemma 1, the identity connected Chebyshev polynomials of fourth kind and 

Fibonacci numbers; 

                                                  𝑊𝑛(161) =
1

8
𝐹6(2𝑛+1).                                                    (4.4.2.2) 

From (4.4.2.2), we have 

                                                    𝑊𝑏1
(161) =

1

8
𝐹6(2𝑏1+1), 

𝑊𝑏2
(161) =

1

8
𝐹6(2𝑏2+1),        

………………………………… 

………………………………… 

   𝑊𝑏𝑘+1
(161) =

1

8
𝐹6(2𝑏𝑘+1+1).        

Using above equations in (4.4.2.1), we get 

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐹6(2𝑏1+1)𝐹6(2𝑏2+1) …𝐹6(2𝑏𝑞+1+1) 

                                                          =
22𝑞+3

𝑞!
𝑊𝑛+𝑞

(𝑞)(161).                                        (4.4.2.3) 

Hence theorem 1 is formulated in this manner. 

Theorem 2: Proof. Let 𝑊𝑛(𝑥) be defined by (4.1.9), then for any 𝑛, 𝑞 be integers with 

𝑛 ≥ 0, 𝑞 ≥ 1, by  (4.14)  yields; 

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) 

𝑏1+𝑏2+⋯𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑊𝑏𝑘
(𝑥)     =

1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑊𝑛+𝑞
(𝑞)(𝑥).   (4.4.2.4) 

From lemma 2, the identity connected Chebyshev polynomials of fourth kind and 

Fibonacci numbers i.e. 

                                                                 𝑊𝑛 (
47

2
) =

1

3
𝐹4(2𝑛+1).                                       (4.4.2.5)    
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 From (4.4.2.5), we have 

                                                          𝑊𝑏1 (
47

2
) =

1

3
𝐹4(2𝑏1+1),        

          𝑊𝑏2 (
47

2
) =

1

3
𝐹4(2𝑏2+1),        

………………………………………… 

………………………………………… 

          𝑊𝑏𝑘+1
(
47

2
) =

1

3
𝐹4(2𝑏𝑘+1+1).        

  Using above equations in (4.4.2.4), we get 

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐹4(2𝑏1+1)𝐹4(2𝑏2+1) …𝐹4(2𝑏𝑞+1+1) 

                                                                     =
3𝑞+1

2𝑞𝑞!
𝑊𝑛+𝑞

(𝑞) (
47

2
).                                    (4.4.2.6) 

Thus theorem 2 established through proof. 

Theorem 3: Proof. Let 𝑊𝑛(𝑥) be defined by (4.1.9), then for any 𝑛, 𝑞 be integers with 

𝑛 ≥ 0, 𝑞 ≥ 1, by using (4.1.4); 

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) 

𝑏1+𝑏2+⋯+𝑏𝑞+𝑙=𝑙

𝑛

𝑙=0

∏𝑊𝑏𝑘
(𝑥)   =

1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑊𝑛+𝑞
(𝑞)(𝑥).   (4.4.2.7) 

From lemma 3, identity between Chebyshev polynomials of fourth kind and Lucas 

numbers, i.e.  

                                                  𝑊𝑛 (
123

2
) =

1

11
𝐿5(2𝑛+1).                                                                      (4.4.2.8)  

 From (4.4.2.8), we have 

                                                𝑊𝑏1 (
123

2
) =

1

11
𝐿5(2𝑏1+1),        

𝑊𝑏2 (
123

2
) =

1

11
𝐿5(2𝑏2+1),        

………………………………………… 

………………………………………… 

𝑊𝑏𝑘+1
(
123

2
) =

1

11
𝐿5(2𝑏𝑘+1+1).        
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 Using above equations in (4.4.2.7), we get 

∑ ∑ (−1)𝑛−𝑙 (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐿5(2𝑏1+1)𝐿5(2𝑏2+1)…𝐿5(2𝑏𝑞+1+1) 

                                                                  =
11𝑞+1

2𝑞𝑞!
𝑊𝑛+𝑞

(𝑞) (
123

2
).                                          (4.4.2.9) 

Hence, proof is established for theorem 3. 

 

Theorem 4: Proof. Let 𝑉𝑛(𝑥) be defined by (4.1.8), then for any 𝑛, 𝑞 be integers with 

𝑛 ≥ 0, 𝑞 ≥ 1, by using (4.1.5); 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) 

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑉𝑏𝑘(𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑉𝑛+𝑞
(𝑞)(𝑥).                    (4.4.2.10) 

 

From lemma 4,  identity between Chebyshev polynomials of third kind and Lucas numbers, 

i.e. 

                                                       𝑉𝑛 (
47

2
) = 𝑢−1

1

2
𝐿4(2𝑛+1).                                          (4.4.2.11) 

   From (4.4.2.11), we have 

                                                    𝑉𝑏1 (
47

2
) = 𝑢−1

1

2
𝐿4(2𝑏1+1),  

  𝑉𝑏2 (
47

2
) = 𝑢−1

1

2
𝐿4(2𝑏2+1),     

………………………………………… 

………………………………………… 

  𝑉𝑏𝑘+1 (
47

2
) = 𝑢−1

1

2
𝐿4(2𝑏𝑘+1+1).  

 Using above equations in (4.4.2.10), we get 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐿4(2𝑏1+1)𝐿4(2𝑏2+1) …𝐿4(2𝑏𝑞+1+1) 

                                             =
2

𝑞!
𝑢𝑞+1𝑉𝑛+𝑞

(𝑞)
(
47

2
).                                                      (4.4.2.12) 
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Hence, theorem 4proof is now complete. 

Theorem 5: Proof. Let 𝑉𝑛(𝑥) be defined by (4.1.8), then for any 𝑛, 𝑞 be integers with 

𝑛 ≥ 0, 𝑞 ≥ 1, by (4.1.5); 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) 

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑉𝑏𝑘(𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑉𝑛+𝑞
(𝑞)(𝑥).                    (4.4.2.13) 

From lemma 5, identity between Chebyshev polynomials of third kind and Lucas numbers, 

i.e. 

                                                    𝑉𝑛(161) = 𝑢
−1 1

2
𝐿6(2𝑛+1).                                         (4.4.2.14) 

From (4.4.2.14), we have 

                                                   𝑉𝑏1(161) = 𝑢
−1 1

2
𝐿6(2𝑏1+1),  

𝑉𝑏2(161) = 𝑢−1
1

2
𝐿6(2𝑏2+1),  

………………………………………… 

………………………………………… 

𝑉𝑏𝑘+1(161) = 𝑢
−1
1

2
𝐿6(2𝑏𝑘+1+1). 

Using above equation in (4.4.2.13), we get 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐿6(2𝑏1+1)𝐿6(2𝑏2+1) …𝐿6(2𝑏𝑞+1+1) 

                                   =
2

𝑞!
𝑢𝑞+1𝑉𝑛+𝑞

(𝑞)
(161).                                                              (4.4.2.15) 

 The 5 theorem proof is now complete. 

Theorem 6: Proof. Let 𝑉𝑛(𝑥) be defined by (4.1.8), then for any 𝑛, 𝑞 be integers with 

 𝑛 ≥ 0, 𝑞 ≥ 1, by (4.1.5) yields; 

 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) 

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑉𝑏𝑘(𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑉𝑛+𝑞
(𝑞)(𝑥).                    (4.4.2.16) 
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From lemma 6, identity between Chebyshev polynomials of third kind and Lucas numbers, 

i.e. 

                                                        𝑉𝑛(−9) = 𝑢
−1 (−𝑖)

2𝑛+1

2
𝐿3(2𝑛+1).                           (4.4.2.17) 

From (4.4.2.17), we have 

                                                       𝑉𝑏1(−9) = 𝑢
−1 (−𝑖)

2𝑏1+1

2
𝐿3(2𝑏1+1),        

                                                  𝑉𝑏2(−9) = 𝑢
−1 (−𝑖)

2𝑏2+1

2
𝐿3(2𝑏2+1), 

          ………………………………………… 

        ………………………………………… 

                                                  𝑉𝑏𝑘+1(−9) = 𝑢
−1 (−𝑖)

2𝑏𝑘+1+1

2
𝐿3(2𝑏𝑘+1+1), 

Using above equation in (4.4.2.16), we get 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) (−𝑖)2𝑏1+1

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝐿3(2𝑏1+1)(−𝑖)
2𝑏2+1𝐿3(2𝑏2+1)…  

                                 (−𝑖)2𝑏𝑞+1+1𝐿3(2𝑏𝑞+1+1) =
2

𝑞!
𝑢𝑞+1𝑉𝑛+𝑞

(𝑞)
(−9),                      (4.4.2.18) 

 All of our theorem now has through proof. 

Proof of the Corollaries 

Proof of Corollary 1:   

(1 − 𝑥2)𝑊𝑛
′(𝑥) =

1

2
(𝑛 +

1

2
) (𝑊𝑛−1(𝑥) − 𝑊𝑛+1(𝑥)) +

1

2
(1 + 𝑥)𝑊𝑛(𝑥).          (4.4.2.19) 

 

(1 − 𝑥2)𝑊𝑛
′′(𝑥) = (1 + 2𝑥)𝑊𝑛

′(𝑥) − 𝑛(𝑛 + 1)𝑊𝑛(𝑥).                                       (4.4.2.20) 

 

Putting 𝑞 = 2 in (4.4.2.3),  by (4.1.10), (4.4.2.19), (4.4.2.20), we get, 

∑ ∑ (−1)𝑛−𝑙 (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐹6(2𝑏1+1)𝐹6(2𝑏2+1)𝐹6(2𝑏3+1) = 
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64 [
323

(25920)2
{
(2𝑛 + 5)

4
(
1

8
𝐹6(2𝑛+3) −

1

8
𝐹6(2𝑛+7)) + 81(

1

8
𝐹6(2𝑛+5)}

+
(𝑛 + 2)(𝑛 + 3)

1
8𝐹6(2𝑛+5)

25920
] 

 

=
646(2𝑛 + 5){𝐹6(2𝑛+3) − 𝐹6(2𝑛+7)} + 209304𝐹6(2𝑛+5) + 207360(𝑛 + 2)(𝑛 + 3)𝐹6(2𝑛+5)

(25920)2
. 

 

Proof of Corollary 2:     

Put 𝑞 = 2 in (4.4.2.6), and by (4.1.10), (4.4.2.19), (4.4.2.20), we get, 

∑ ∑ (−1)𝑛−𝑙 (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐹4(2𝑏1+1)𝐹4(2𝑏2+1)𝐹4(2𝑏3+1)

=
27

8
[
192

(2205)2
{(2𝑛 + 5) (

1

3
𝐹4(2𝑛+3) −

1

3
𝐹4(2𝑛+7)) + 49 (

1

3
𝐹4(2𝑛+5))}

+
4(𝑛 + 2)(𝑛 + 3)

1
3𝐹4(2𝑛+5)

2205
] 

=
[216(2𝑛 + 5){𝐹4(2𝑛+3) − 𝐹4(2𝑛+7)} + 10584𝐹4(2𝑛+5) +

19845
2

(𝑛 + 2)(𝑛 + 3)𝐹4(2𝑛+5)] .

(2205)2
 

Proof of Corollary 3: 

 Put 𝑞 = 2 in (4.4.2.9) and by  (4.1.11), (4.4.2.19), (4.4.2.20), we get 

∑ ∑ (−1)𝑛−𝑙 (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

 𝑙=0

𝐿5(2𝑏1+1)𝐿5(2𝑏2+1)𝐿5(2𝑏3+1) = 
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1331

8
[

496

(15125)2
{(2𝑛 + 5)(

1

11
𝐿5(2𝑛+3) −

1

11
𝐿5(2𝑛+7)) + 125(

1

11
𝐿5(2𝑛+5)}

+
4

15125
(𝑛 + 2)(𝑛 + 3)

1

11
𝐿5(2𝑛+5)] = 

[7502(2𝑛 + 5){𝐿5(2𝑛+3) − 𝐿5(2𝑛+7)} + 937750𝐿5(2𝑛+5) +
20131375

22
(𝑛 + 2)(𝑛 + 3)𝐿5(2𝑛+5)] .

(15125)2
 

 Proof of Corollary 4: 

(1 − 𝑥2)𝑉𝑛
′(𝑥) =

1

2
(𝑛 +

1

2
)( 𝑉𝑛−1(𝑥) − 𝑉𝑛+1(𝑥)) −

1

2
(1 − 𝑥)𝑉𝑛(𝑥).             (4.4.2.21) 

 

(1 − 𝑥2)𝑉𝑛
′′(𝑥) = −(1 − 2𝑥)𝑉𝑛

′(𝑥) − 𝑛(𝑛 + 1)𝑉𝑛(𝑥).                                         (4.4.2.22) 

 

Put 𝑞 = 2 in (4.4.2.12), and by  (4.1.11), (4.4.2.21), (4.4.2.22), we get, 

 

∑ ∑ (
1+ 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐿4(2𝑏1+1)𝐿4(2𝑏2+1)𝐿4(2𝑏3+1) = 

 

[𝑢2[92(2𝑛 + 5){𝐿4(2𝑛+3) − 𝐿4(2𝑛+7)} + 4140𝐿4(2𝑛+5) + 4410(𝑛 + 2)(𝑛 + 3)𝐿4(2𝑛+5)]

(2205)2
. 

Proof of Corollary 5: 

Put 𝑞 = 2 in (4.4.2.15), and by  (4.1.11), (4.4.2.21), (4.4.2.22), we get 

 

∑ ∑ (
1+ 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐿6(2𝑏1+1)𝐿6(2𝑏2+1)𝐿6(2𝑏3+1) = 

 

𝑢2 [
321
8
(2𝑛 + 5){𝐿6(2𝑛+3) − 𝐿6(2𝑛+7)} + 12840𝐿6(2𝑛+5) + 12960(𝑛 + 2)(𝑛 + 3)𝐿6(2𝑛+5)]

(25920)2
. 
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Proof of Corollary 6: 

Put 𝑞 = 2 in (4.4.2.18), and by  (4.1.11), (4.4.2.21), (4.4.2.22), we get 

 

∑ ∑ (
1+ 𝑛 − 𝑙

1
) (−𝑖)2𝑏1+1

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

𝐿3(2𝑏1+1)(−𝑖)
2𝑏2+1𝐿3(2𝑏2+1)(−𝑖)

2𝑏3+1𝐿3(2𝑏3+1) = 

 

𝑢−1

6400
[
𝑢−1[

−19

8
(2𝑛 + 5){(−𝑖)2𝑛+3𝐿3(2𝑛+3) − (−𝑖)

2𝑛+7𝐿3(2𝑛+7)} +
95

2
(−𝑖)2𝑛+5𝐿3(2𝑛+5)

+800(𝑛 + 2)(𝑛 + 3)(−𝑖)2𝑛+5𝐿3(2𝑛+5)]
]. 

 

 

4.5 Applications 

Chebyshev polynomials fall under the category of recurrence relations and are extensively 

used to improve the advanced techniques for counting. These polynomials are used to study 

the integer function that allows us to establish new relationships among other polynomials. 

Chebyshev polynomials are of significant importance when it comes to solving other 

polynomials for obtaining novel trigonometric identities, finding the solutions to second-

order differential equations, interpolating large data and in approximation theory.  With the 

help of Chebyshev polynomials, approximate numerical solutions can be obtained for 

differential and integral equations. Chebyshev polynomials play a key role in signal 

processing, primarily in the design of filters known as Chebyshev filters. They are in high 

demand in the field of computer graphics to generate a variety of shapes, surfaces, and 

curves. 
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 4.6 Practical Applications 

Express: 𝑥4 − 4𝑥3 − 2𝑥2 + 3𝑥 − 1 in terms of third kind of the Chebyshev polynomials 

and approximated this function with a cubic polynomial using economization. 

Solution: The first four terms of third kinds Chebyshev polynomials are: 

𝑉0(𝑥) = 1 , 

                                                                 𝑉1(𝑥) = 2𝑥 − 1, 

   𝑉2(𝑥) = 4𝑥
2 − 2𝑥 − 1, 

             𝑉3(𝑥) = 8𝑥3 − 4𝑥2 − 4𝑥 + 1, 

                        𝑉4(𝑥) = 16𝑥
4 − 8𝑥3 − 12𝑥2 + 4𝑥 + 1, 

From above equations, we get 

                                                 𝑥 =
1

2
[𝑉0(𝑥) + 𝑉1(𝑥)], 
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                                                 𝑥2 =
1

4
[2𝑉0(𝑥) + 𝑉1(𝑥) + 𝑉2(𝑥)], 

                                                     𝑥3 =
1

8
[3𝑉0(𝑥) + 3𝑉1(𝑥) + 𝑉2(𝑥) + 𝑉3(𝑥)], 

                                              𝑥4 =
1

16
[6𝑉0(𝑥) − 4𝑉1(𝑥) + 4𝑉2(𝑥) + 𝑉3(𝑥)+𝑉4(𝑥)]. 

Putting above values in 𝑥4 − 4𝑥3 − 2𝑥2 + 3𝑥 − 1, we get, 

1

16
[6𝑉0(𝑥) − 4𝑉1(𝑥) + 4𝑉2(𝑥) + 𝑉3(𝑥)+𝑉4(𝑥)] −

1

2
[3𝑉0(𝑥) + 3𝑉1(𝑥) + 𝑉2(𝑥) + 𝑉3] −

1

2
[2𝑉0(𝑥) + 𝑉1(𝑥) + 𝑉2(𝑥)] +

3

2
[𝑉0(𝑥) + 𝑉1(𝑥)] − 𝑉0(𝑥). 

Hence, 

−
13

8
𝑉0(𝑥) −

3

4
𝑉1(𝑥) −

3

4
𝑉2(𝑥) −

7

16
𝑉3(𝑥) +

1

16
𝑉4(𝑥). 

Here we want a cubic approximation, so we drop the 𝑉4 term. The best approximated 

polynomial is: 

                                            𝑝(𝑥) =
9

16
+

7

4
𝑥 −

5

4
𝑥2 −

7

2
𝑥3 .  

This gives an error at most 
1

16
 . If we do simple approximation i.e.  

𝑟(𝑥) = − 4𝑥3 − 2𝑥2 + 3𝑥 − 1,  

Here we would get a maximum error equal to 1. 

4.7 Conclusion 

In relation to both the 3rd and 4th kinds of Chebyshev polynomials with Fibonacci numbers 

and Lucas numbers, we have discovered six theorems and six corollaries. The first two 

theorems present the relationship between fourth kind Chebyshev polynomials and 

Fibonacci numbers. Theorem 3 clearly demonstrates the strong correlation between the 

Lucas numbers and fourth kind Chebyshev polynomials, emphasizing the significance of 

the relationship. Theorems 4, 5, and 6 provided the link between Lucas numbers and third 

kind Chebyshev polynomials at certain points. The six corollaries are merely particular 

cases associated with our six theorems. These findings are useful for understanding the 

properties and identities of Chebyshev polynomials with Fibonacci and Lucas numbers.  
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4.8 Significance of the Work  

Here, we illustrate the significance of the present work in the following elements: 

 Obtaining connections among fourth kind of the Chebyshev polynomials and Fibonacci 

numbers with some variables: 𝑥 = 161,
47

2
. 

 Establishing relationships between the fourth-kind Chebyshev polynomials and Lucas 

numbers at a specific variable is a key aspect of our investigation: 𝑥 =
123

2
. 

 Obtaining connections among third kind of the Chebyshev polynomials and Lucas 

numbers with some variables:  

𝑥 = 161,
47

2
, −9. 

It is worth mentioning here that the above-achieved results and analysis are fruitful. Some 

of their presumed uses are given below: 

 These results strengthen the correlation of Chebyshev polynomials to Fibonacci and 

Lucas. 

 They are also beneficial in studying problems connected to calculating general 

summations. 

 They help study integer sequences. 

 These polynomials are fruitful in solving convolution sum problems. 

 These polynomials can be used to solve differential equations, whether they are linear 

or non-linear. 

 To acquire numerical answers to differential equations, whether linear or nonlinear. 

 The interconnections among Chebyshev polynomials, Fibonacci numbers, and Lucas 

numbers play a crucial role in deriving meaningful identities related to these 

mathematical concepts. 

 The Chebyshev polynomials are fruitful in approximation theory; 

In this example we approximate the polynomial 𝑝(𝑥) = 𝑥4 + 𝑥3 − 𝑥2 + 𝑥 by a cubic 

polynomial. For this we have to use the technique of economization i.e.  write each power 

of 𝑥 in terms of Chebyshev polynomials. Here we use Chebyshev polynomial of third kind;  
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𝑥4 + 𝑥3 − 𝑥2 + 𝑥 = 
1

16
[6𝑉0(𝑥) − 4𝑉1(𝑥) + 4𝑉2(𝑥) + 𝑉3(𝑥)+𝑉4(𝑥)]+

1

8
[3𝑉0(𝑥) +

3𝑉1(𝑥) + 𝑉2(𝑥) + 𝑉3(𝑥)] −
1

4
[2𝑉0(𝑥) + 𝑉1(𝑥) + 𝑉2(𝑥)] +

1

2
[𝑉0(𝑥) + 𝑉1(𝑥)] 

=
3

4
𝑉0 +

3

8
𝑉1 +

1

8
𝑉2 +

3

16
𝑉3 +

1

16
𝑉4. 

Now we drop the 𝑉4 terms for cubic approximation. Hence the best approximating 

polynomial is;  

                                                  𝑓(𝑥) =  
7

16
+ 

1

4
𝑥 −

1

4
𝑥2 +

3

2
𝑥3, and at most error is 

1

16
 by 

Chebyshev approximation otherwise by ordinary cubic approximation i. e.  

                                                 𝑞(𝑥) = 𝑥3 − 𝑥2 + 𝑥, we would get error equal to 1.  

 

  

                                        

 

 

 

                                         

 

 

 

 

 

                                      ***** 
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 Chapter 5 

Relation of Chebyshev Polynomials to the Fibonacci, Pell, and 

Lucas Numbers 

The primary intent of this chapter is to demonstrate various identities that involve 

Chebyshev polynomials of the 3rd kind in context of Fibonacci and Lucas numbers. We 

have successfully established a connection between Pell numbers and Fibonacci numbers. 

We utilize the Binet formula, method of mathematical induction and second order 

differential equations to obtain the results. We find a relation between 3rd kind of 

Chebyshev polynomials and Lucas numbers as well as with the Fibonacci numbers. 

Additionally, we derive several identities involving Pell and Fibonacci numbers.  

5.1 Introduction 

Zhang discovered many properties affiliated to the derivatives of Chebyshev polynomials 

and gives the correspondence among them, and their derivatives [105, 106, 107]. Y. Zhang 

and Z. Chen gave some results on Chebyshev polynomials [104]. Max A. Alekseyev 

studied the properties related to intersection of Lucas, Pell numbers, and Fibonacci 

numbers [1]. Han and Lv provided some new identities for Chebyshev polynomials [10]. 

Anthony G. Shannon et al. provide the connection between the Fibonacci 𝑝 − numbers and 

Pell numbers [88].  A. Patra and G.K. Panda studied Pell polynomials and also obtained 

some results on sums of finite products [79]. To substantiate the result presented in this 

chapter, a brief overview of fundamental definitions is required. Specifically, the 

Chebyshev polynomials of the third kind is essential.   

(3rd kind of Chebyshev polynomials) The  𝑛𝑡ℎ degree of Chebyshev polynomials of third 

kind are denoted as:      

𝑉𝑛(𝑥) = 2𝑥𝑉𝑛−1(𝑥) − 𝑉𝑛−2(𝑥) , 𝑉0(𝑥) = 1 and 𝑉1(𝑥) = 2𝑥 − 1.                                (5.1.1) 
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(Fibonacci sequence) The 𝑛𝑡ℎ Fibonacci sequence of numbers is denoted as: 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 ,  𝐹0 = 0 and   𝐹1 = 1 .                                                                 (5.1.2) 

 (Lucas’s sequence) The 𝑛𝑡ℎ Lucas’s sequence of numbers is denoted as: 

𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 , 𝐿0 = 2 and 𝐿1 = 1.                                                                   (5.1.3) 

 (Pell sequence) The 𝑛𝑡ℎ Pell sequence of numbers is denoted as: 

𝑃𝑛 = 2𝑃𝑛−1 + 𝑃𝑛−2,        𝑃0 = 0 and 𝑃1 = 1 .                                                                   (5.1.4) 

(Pell polynomials) The 𝑛𝑡ℎ Pell polynomials is denoted as: 

𝑃𝑛(𝑥) = 2𝑥𝑃𝑛−1(𝑥) + 𝑃𝑛−2 (𝑥),          𝑃0 = 0 and 𝑃1 = 1 .                                            (5.1.5) 

In this chapter, we combine the ideas of Taekyun Kim and Wenpeng Zhang to prove our 

theorems. We used following result to obtain the relationship between these polynomials. 

Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, then the identities from [53, 105]: 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

𝑉𝑏1(𝑥)𝑉𝑏2(𝑥)…𝑉𝑏𝑞+1(𝑥)

=
1

2𝑞𝑞!
𝑉𝑛+𝑞

(𝑞)(𝑥).                                                                                   (5.1.6) 

the inner sum rounds concluded non-negative integers 𝑏1,  𝑏2, … , 𝑏𝑞+1 with  

                                   𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙 [104].  

The aforementioned outcome establishes a connection between the 3rd kind Chebyshev 

polynomials, Lucas numbers, and Fibonacci numbers. We also used the following result to 

obtain the relationship between Fibonacci and Pell polynomials. Let 𝑛, 𝑞 be integers with 

𝑛 ≥ 0, 𝑞 ≥ 1, 

∑ ∑ 𝑃𝑏1+1(𝑥)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑃𝑏2+1(𝑥)…𝑃𝑏𝑞+1(𝑥) =

𝑛

𝑙=0

1

2𝑞𝑞!
𝑃𝑛+𝑞+1

(𝑞)(𝑥) ,                 (5.1.7)  
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   with  𝑏1,  𝑏2, … ,  𝑏𝑞+1 = 𝑙 [79]. 

Our work is motivated by the earlier work of Harne et al. [45] Zhag and Kim [53, 105].  

The authors derived the many identities attributed to the Chebyshev polynomials of the 1st 

and 2nd kinds, Fibonacci and Lucas numbers.  By exploring these identities i.e. combining 

Fibonacci, Lucas, and Pell numbers with Chebyshev polynomials of third kind reveals 

unexpected relationship.  

5.2. Main Results  

5.2.1 Some Lemmas 

These lemmas serve as essential building blocks, each contributing a specific and 

foundational aspect to the overall demonstration of our major consequence. Let 𝑛 be 

integers with 𝑛 ≥ 0, we have these lemmas: 

1.     𝑉𝑛 (
−3

2
) = 𝑢−1

𝑖2𝑛+1

2
𝐿(2𝑛+1). 

2.   (−1)𝑛𝑉𝑛 (−
123

2
) =

1

11
𝐿5(2𝑛+1) .                                                   

3.   (−1)𝑛𝑉𝑛(−161) =
1

8
𝐹6(2𝑛+1) . 

4.   (−1)𝑛𝑉𝑛 (−
47

2
) =

1

3
𝐹4(2𝑛+1). 

5.    𝑃𝑛+1 (
1

2
) = 𝐹𝑛+1.   

5.2.2 Relation Between Third Kind of the Chebyshev Polynomials, 

Fibonacci Numbers, Lucas Numbers, and Pell Numbers. 

Theorem 1: Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1,  𝐿𝑛 be the 𝑛𝑡ℎ Lucas number, then 

the following result holds;  

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

(𝑖)2𝑏1+1𝐿(2𝑏1+1)(𝑖)
2𝑏2+1𝐿(2𝑏2+1) … 
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(𝑖)2𝑏𝑞+1+1𝐿(2𝑏𝑞+1+1) =
2

𝑞!
𝑢𝑞+1𝑉𝑛+𝑞

(𝑞)
(
−3

2
), 

with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙   and 𝑢 = √
1+𝑥

2
, 𝑖 = √−1. 

Theorem 2: Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1then the following result holds: 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐿5(2𝑏1+1)(−1)
𝑏2𝐿5(2𝑏2+1)…(−1)

𝑏𝑞+1𝐿5(2𝑏𝑞+1+1)

=
11𝑞+1

2𝑞𝑞!
𝑉𝑛+𝑞

(𝑞) (−
123

2
). 

with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙   and 𝑢 = √
1+𝑥

2
. 

Theorem 3: Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1then the following result holds: 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐹6(2𝑏1+1)(−1)
𝑏2𝐹6(2𝑏2+1)…(−1)

𝑏𝑞+1𝐹6(2𝑏𝑞+1+1)                    

=
22𝑞+3

𝑞!
𝑉𝑛+𝑞

(𝑞)(−161). 

with  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙   and 𝑢 = √
1+x

2
. 

Theorem 4: Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1then the following result holds: 

∑ ∑ (
1+ 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐹4(2𝑏1+1)(−1)
𝑏2𝐹4(2𝑏2+1)…(−1)

𝑏𝑞+1𝐹4(2𝑏𝑞+1+1)

=
1

2𝑞𝑞!
𝑉𝑛+𝑞

(𝑞) (−
47

2
). 

                            With  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙   and 𝑢 = √
1+𝑥

2
. 
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Theorem 5: Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, then the following result holds: 

∑ ∑ 𝐹𝑏1+1
𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝐹𝑏2+1…𝐹𝑏𝑞+1 =

𝑛

𝑙=0

1

2𝑞𝑞!
𝑃𝑛+𝑞+1

(𝑞) (
1

2
) .   

                      With  𝑏1 + 𝑏2 +⋯+ 𝑏𝑞+1 = 𝑙.                            

Now we draw the following five corollary from above five theorems. 

Corollary 1. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, then the following result holds:  

For 𝑞 = 2, 

∑ ∑ (
1+ 𝑛 − 𝑙

1
) (𝑖)2𝑏1+1𝐿(2𝑏1+1)(𝑖)

2𝑏2+1𝐿(2𝑏2+1)(𝑖)
2𝑏3+1𝐿(2𝑏3+1)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

 

 

=
16𝑢−1

50
[
−(2𝑛 + 5){𝑖2𝑛+3𝐿2𝑛+3 − 𝑖

2𝑛+7𝐿2𝑛+7} + 5𝑖
2𝑛+5𝐿2𝑛+5 +

5

4
(𝑛 + 2)

(𝑛 + 3)𝑖2𝑛+5𝐿2𝑛+5

]. 

Corollary 2. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, then the following result holds:  

For 𝑞 = 2, 

∑ ∑ (
1+ 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐿5(2𝑏1+1)(−1)
𝑏2𝐿5(2𝑏2+1)(−1)

𝑏3𝐿5(2𝑏3+1) = 

 

1

(15125)2
[
7502(2𝑛 + 5){−(−1)(𝑛+1)𝐿5(2𝑛+3)+(−1)

(𝑛+3)𝐿5(2𝑛+7)} + 937750

(−1)(𝑛+2)𝐿5(2𝑛+5) +
20131375

22
(𝑛 + 2)(𝑛 + 3)(−1)(𝑛+2)𝐿5(2𝑛+5)

]. 
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Corollary 3. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, then the following result holds:  

For 𝑞 = 2, 

∑ ∑ (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐹6(2𝑏1+1)(−1)
𝑏2𝐹6(2𝑏2+1)(−1)

𝑏3𝐹6(2𝑏3+1) = 

1

(25920)2
[
646(2𝑛 + 5){−(−1)(𝑛+1)𝐹6(2𝑛+3)+(−1)

(𝑛+3)𝐹6(2𝑛+7)} + 209304

(−1)(𝑛+2)𝐹6(2𝑛+5) + 207360(𝑛 + 2)(𝑛 + 3)(−1)
(𝑛+2)𝐹6(2𝑛+5)

]. 

Corollary 4. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, then the following result holds:  

For 𝑞 = 2, 

∑ ∑ (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐹4(2𝑏1+1)(−1)
𝑏2𝐹4(2𝑏2+1)(−1)

𝑏3𝐹4(2𝑏3+1) = 

1

(2205)2
[
216(2𝑛 + 5){−(−1)(𝑛+1)𝐹4(2𝑛+3)+(−1)

(𝑛+3)𝐹4(2𝑛+7)} + 10584

(−1)(𝑛+2)𝐹4(2𝑛+5) +
19845

2
(𝑛 + 2)(𝑛 + 3)(−1)(𝑛+2)𝐹4(2𝑛+5)

]. 

Corollary 5. Let 𝑛, 𝑞 be integers with 𝑛 ≥ 0, 𝑞 ≥ 1, then the following result holds:  

For 𝑞 = 2 

∑ ∑ 𝐹𝑏1+1
𝑏1+𝑏2+𝑏3=𝑙

𝐹𝑏2+1𝐹𝑏3+1 =

𝑛

𝑙=0

1

8
𝑃𝑛+3

" (
1

2
). 

∑ ∑ 𝐹𝑏1+1
𝑏1+𝑏2+𝑏3=𝑙

𝐹𝑏2+1𝐹𝑏3+1 =

𝑛

𝑙=0

𝐹𝑛+1 + 2𝐹𝑛 + 5. 

5.2.3 Proof of Lemmas   

Lemma1: The following result holds true for all 𝑛 be integers with 𝑛 ≥ 0, 
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          𝑉𝑛 (
−3

2
) = 𝑢−1

𝑖2𝑛+1

2
𝐿(2𝑛+1).     

 Proof: For proving lemma 1, take  𝑥 =
−3

2
, 𝑢 = √

1+𝑥

2
. 

Utilizing the identity, 

 

 𝑉𝑛(𝑥) = 𝑢−1 𝑇2𝑛+1(𝑢) 

We also utilizing, 

 𝑇𝑛 (
𝑖

2
) =

𝑖𝑛

2
 𝐿𝑛 , 

             𝑇2𝑛+1 (
𝑖

2
) =

𝑖2𝑛+1

2
 𝐿2𝑛+1 

        𝑇2𝑛+1 (
𝑖

2
) =   𝑇2𝑛+1(𝑢) =

𝑖2𝑛+1

2
𝐿2𝑛+1 

  𝑉𝑛 (
−3

2
) = 𝑢−1

𝑖2𝑛+1

2
𝐿(2𝑛+1). 

This validates lemma 1. 

Lemma 2: The following result holds true for all 𝑛 be integers with 𝑛 ≥ 0, 

                                     (−1)𝑛𝑉𝑛 (−
123

2
) =

1

11
𝐿5(2𝑛+1) .                                                   

Proof: For proving lemma 2, take  𝑥 = (−
123

2
), 𝑢 = √

1+𝑥

2
, 

Utilizing the identity, 

𝑈2𝑛(𝑢) =
1

11
𝐿5(2𝑛+1). 

We also utilizing, 

                                                 𝑈2𝑛(𝑢) = (−1)𝑛𝑉𝑛(−𝑥), to get  

                             (−1)𝑛𝑉𝑛 (−
123

2
) =

1

11
𝐿5(2𝑛+1) .                                                   

This validates lemma 2. 

Lemma 3: The following result holds true for all 𝑛 be integers with 𝑛 ≥ 0, 
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                                                    (−1)𝑛𝑉𝑛(−161) =
1

8
𝐹6(2𝑛+1) . 

Proof: For proving lemma 3, take  𝑥 = (−161), 𝑢 = √
1+𝑥

2
. 

Utilizing the identity, 

𝑈2𝑛(𝑢) =
1

8
𝐹6(2𝑛+1) . 

We also utilizing, 

                                                 𝑈2𝑛(𝑢) = (−1)𝑛𝑉𝑛(−𝑥), to get  

                                    

                                            (−1)𝑛𝑉𝑛(−𝑥) =  
1

8
𝐹6(2𝑛+1).  

This validates lemma 3. 

Lemma 4: The following result holds true for all 𝑛 be integers with 𝑛 ≥ 0, 

(−1)𝑛𝑉𝑛 (−
47

2
) =

1

3
𝐹4(2𝑛+1). 

Proof: For proving lemma 4, take  𝑥 = (−
47

2
), and 𝑢 = √

1+𝑥

2
. 

Utilizing the identity, 

⇛ 𝑈2𝑛(𝑢) =
1

3
𝐹4(2𝑛+1). 

Also utilizing, 

                                                    𝑈2𝑛(𝑢) = (−1)
𝑛𝑉𝑛(−𝑥), to get 

                                                     (−1)𝑛𝑉𝑛 (−
47

2
) =

1

3
𝐹4(2𝑛+1). 

 This demonstrates lemma 4. 

Lemma 5: The following result holds true for all 𝑛 be integers with 𝑛 ≥ 0, 

                                                        𝑃𝑛+1 (
1

2
) = 𝐹𝑛+1.    

Proof: For proving lemma 5, take  𝑥 = (
1

2
), 𝑢 = √

1+𝑥

2
. 
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Utilizing the identity, 

𝑈𝑛 (
𝑖 × 1

2
) = 𝑖𝑛𝐹𝑛+1. 

We also utilizing, 

1

(𝑖)𝑛
𝑈𝑛(𝑖𝑥) = 𝑃𝑛+1( 𝑥) 

 

                                                        𝑃𝑛+1 (
1

2
) = 𝐹𝑛+1.    

This validates lemma 5. 

5.2.4 Proof of Theorems  

Proof of Theorem1:  Let 𝑉𝑛(𝑥) be defined as in equation (5.1.1), by (5.1.6); 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑉𝑏𝑘(𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑉𝑛+𝑞
(𝑞) (

−3

2
).                  (5.2.4.1) 

                                        Taking 𝑥 =
−3

2
 

                                     𝑉𝑛 (
−3

2
) = 𝑢−1

𝑖2𝑛+1

2
𝐿(2𝑛+1).                                                       (5.2.4.2) 

From equation  (5.2.4.1), (5.2.4.2) we get, 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
) (𝑖)2𝑏1+1𝐿(2𝑏1+1)(𝑖)

2𝑏2+1𝐿(2𝑏2+1) …(𝑖)
2𝑏𝑞+1+1𝐿(2𝑏𝑞+1+1)       

𝑏1+𝑏2+⋯+𝑏𝑞+1=𝑙

𝑛

𝑙=0

=
2

𝑞!
𝑢𝑞+1𝑉𝑛+𝑞

(𝑞)
(
−3

2
).                                                                                                         (5.2.4.3) 

Proof of Theorem 2: Let 𝑉𝑛(𝑥) be defined as in equation (5.1.1), by (5.1.6); 
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∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑉𝑏𝑘(−𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑉𝑛+𝑞
(𝑞)(−𝑥).                  (5.2.4.4) 

Taking 𝑥 =
123

2
 

                                   (−1)𝑛𝑉𝑛 (−
123

2
) =

1

11
𝐿5(2𝑛+1) .                                                                (5.2.4.5) 

From equation  (5.2.4.4), (5.2.4.5), we get 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐿5(2𝑏1+1)(−1)
𝑏2𝐿5(2𝑏2+1)…(−1)

𝑏𝑞+1𝐿5(2𝑏𝑞+1+1)        

=
11𝑞+1

2𝑞𝑞!
𝑉𝑛+𝑞

(𝑞) (−
123

2
).                                                                                                 (5.2.4.6) 

Proof of Theorem 3: Let 𝑉𝑛(𝑥) be defined as in (5.1.1), by (5.1.6); 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑉𝑏𝑘(−𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑉𝑛+𝑞
(𝑞)(−𝑥).                   (5.2.4.7) 

Taking 𝑥 = 161 

     (−1)𝑛𝑉𝑛(−161) =
1

8
𝐹6(2𝑛+1) 

                                                  ⟹ 𝑉𝑛(−161) = (−1)
−𝑛
1

8
𝐹6(2𝑛+1).                               (5.2.4.8) 

By equation (5.2.4.7), (5.2.4.8), we get 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐹6(2𝑏1+1)(−1)
𝑏2𝐹6(2𝑏2+1)…(−1)

𝑏𝑞+1𝐹6(2𝑏𝑞+1+1)

=
22𝑞+3

𝑞!
𝑉𝑛+𝑞

(𝑞)(−161).                                                                                                  (5.2.4.9) 
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Proof of Theorem 4: Let 𝑉𝑛(𝑥) be defined as in equation (5.1.1), by (5.1.6); 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

∏𝑉𝑏𝑘(−𝑥) =
1

2𝑞𝑞!

𝑞+1

𝑘=1

𝑉𝑛+𝑞
(𝑞)(−𝑥).                (5.2.4.10) 

     Taking 𝑥 =
47

2
 

                                 (−1)𝑛𝑉𝑛 (−
47

2
) =

1

3
𝐹4(2𝑛+1).                                                   (5.2.4.11) 

By equation (5.2.4.10), (5.2.4.11), we get 

∑ ∑ (
𝑞 − 1 + 𝑛 − 𝑙

𝑞 − 1
)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐹4(2𝑏1+1)(−1)
𝑏2𝐹4(2𝑏2+1)…(−1)

𝑏𝑞+1𝐹4(2𝑏𝑞+1+1)

=
1

2𝑞𝑞!
𝑉𝑛+𝑞

(𝑞) (−
47

2
).                                                                                                  (5.2.4.12) 

Proof of Theorem 5: Let  𝑃𝑛(𝑥) be defined as in equation (5.1.5), by (5.1.7) 

∑ ∑ 𝑃𝑏1+1(𝑥)

𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝑃𝑏2+1(𝑥)…𝑃𝑏𝑞+1(𝑥) =

𝑛

𝑙=0

1

2𝑞𝑞!
𝑃𝑛+𝑞+1

(𝑞)(𝑥) .            (5.2.4.13)  

                               Taking 𝑥 =
1

2
 

                               𝑃𝑛+1 (
1

2
) = 𝐹𝑛+1                                                                           (5.2.4.14) 

    By equation (5.2.4.13), (5.2.4.14), we get 

∑ ∑ 𝐹𝑏1+1
𝑏1+𝑏2+…+𝑏𝑞+1=𝑙

𝐹𝑏2+1…𝐹𝑏𝑞+1+1 =

𝑛

𝑙=0

1

2𝑞𝑞!
𝑃𝑛+𝑞+1

(𝑞) (
1

2
) .                           (5.2.4.15)  
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5.2.5 Proof of Corollaries 

Proof of Corollary 1: 

(1 − 𝑥2)𝑉𝑛
′(𝑥) =

1

2
(𝑛 +

1

2
) (𝑉𝑛−1(𝑥) − 𝑉𝑛+1(𝑥)) −

1

2
(1 − 𝑥)𝑉𝑛(𝑥).                 (5.2.4.16) 

(1 − 𝑥2)𝑉𝑛
′′(𝑥) + (1 − 2𝑥)𝑉𝑛

′(𝑥) + 𝑛(𝑛 + 1)𝑉𝑛(𝑥) = 0.                                      (5.2.4.17) 

  Put 𝑞 = 2 in (5.2.4.3) and by (5.1.3), (5.2.4.16), (5.2.4.17), we get 

  

∑ ∑ (
1+ 𝑛 − 𝑙

𝑞 − 1
) (𝑖)2𝑏1+1𝐿(2𝑏1+1)(𝑖)

2𝑏2+1𝐿(2𝑏2+1)(𝑖)
2𝑏3+1𝐿(2𝑏3+1)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

 

 

=
16𝑢−1

50
[
−(2𝑛 + 5){𝑖2𝑛+3𝐿2𝑛+3 − 𝑖

2𝑛+7𝐿2𝑛+7} + 5𝑖
2𝑛+5𝐿2𝑛+5 +

5

4
(𝑛 + 2)

(𝑛 + 3)𝑖2𝑛+5𝐿2𝑛+5

]. 

Proof of Corollary 2: 

Put 𝑞 = 2 in (5.2.4.6) , by (5.1.3), (5.2.4.16), (5.2.4.17), we get, 

∑ ∑ (
1+ 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐿5(2𝑏1+1)(−1)
𝑏2𝐿5(2𝑏2+1)(−1)

𝑏3𝐿5(2𝑏3+1)

=
1331

8
[

496

(15125)2
{(2𝑛 + 5) (−(−1)(𝑛+1)

1

11
𝐿5(2𝑛+3)

+ (−1)(𝑛+3)
1

11
𝐿5(2𝑛+7)) + 125(−1)

(𝑛+2)
1

11
𝐿5(2𝑛+5)}

+
4(𝑛 + 2)(𝑛 + 3)(−1)(𝑛+2)

1
11 𝐿5(2𝑛+5)

15125
] 
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=
1

(15125)2
[
7502(2𝑛 + 5){−(−1)(𝑛+1)𝐿5(2𝑛+3)+(−1)

(𝑛+3)𝐿5(2𝑛+7)} + 937750

(−1)(𝑛+2)𝐿5(2𝑛+5) +
20131375

22
(𝑛 + 2)(𝑛 + 3)(−1)(𝑛+2)𝐿5(2𝑛+5)

]. 

Proof of Corollary 3: 

Put 𝑞 = 2 in (5.2.4.9) and by (5.1.2), (5.2.4.16), (5.2.4.17), we get 

We have 

∑ ∑ (
1+ 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐹6(2𝑏1+1)(−1)
𝑏2𝐹6(2𝑏2+1)(−1)

𝑏3𝐹6(2𝑏3+1) 

 

= 64 [
323

(25920)2
{
(2𝑛 + 5)

4
(−(−1)(𝑛+1)

1

8
𝐹6(2𝑛+3) + (−1)

(𝑛+3)
1

8
𝐹6(2𝑛+7))

+ 81(−1)(𝑛+2)
1

8
𝐹6(2𝑛+5)} +

(𝑛 + 2)(𝑛 + 3)

25920
(−1)(𝑛+2)

1

8
𝐹6(2𝑛+5)] 

=
1

(25920)2
[
646(2𝑛 + 5){−(−1)(𝑛+1)𝐹6(2𝑛+3)+(−1)

(𝑛+3)𝐹6(2𝑛+7)} + 209304

(−1)(𝑛+2)𝐹6(2𝑛+5) + 207360(𝑛 + 2)(𝑛 + 3)(−1)
(𝑛+2)𝐹6(2𝑛+5)

]. 

Proof of Corollary 4: 

Put 𝑞 = 2 in (5.2.4.12) and by (5.1.2), (5.2.4.16), (5.2.4.17) we get, 

∑ ∑ (
1 + 𝑛 − 𝑙

1
)

𝑏1+𝑏2+𝑏3=𝑙

𝑛

𝑙=0

(−1)𝑏1𝐹4(2𝑏1+1)(−1)
𝑏2𝐹4(2𝑏2+1)(−1)

𝑏3𝐹4(2𝑏3+1) = 

  
27

8
[
768

(2205)2
{
2𝑛 + 5

4
(−(−1)(𝑛+1)

1

3
𝐹4(2𝑛+3) + (−1)

(𝑛+3)
1

3
(𝐹4(2𝑛+7))

+
49

4
(−1)𝑛+2

1

3
𝐹4(2𝑛+5)} +

4(𝑛 + 2)(𝑛 + 3)(−1)(𝑛+2)
1
3𝐹4(2𝑛+5)

2205
] 
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=
1

(2205)2
[
216(2𝑛 + 5){−(−1)(𝑛+1)𝐹4(2𝑛+3)+(−1)

(𝑛+3)𝐹4(2𝑛+7)} + 10584

(−1)(𝑛+2)𝐹4(2𝑛+5) +
19845

2
(𝑛 + 2)(𝑛 + 3)(−1)(𝑛+2)𝐹4(2𝑛+5)

]. 

   Proof of Corollary 5: 

    Put 𝑞 = 2 in  (5.2.4.15), we get   

∑ ∑ 𝐹𝑏1+1
𝑏1+𝑏2+𝑏3=𝑙

𝐹𝑏2+1𝐹𝑏3+1 =

𝑛

𝑙=0

1

8
𝑃𝑛+3

(𝑞)(
1

2
) 

∑ ∑ 𝐹𝑏1+1
𝑏1+𝑏2+𝑏3=𝑙

𝐹𝑏2+1𝐹𝑏3+1 =

𝑛

𝑙=0

𝐹𝑛+1 + 2𝐹𝑛 + 5. 

5.3 Conclusion 

In this chapter, we obtain five theorems associated third kind Chebyshev polynomials, 

Fibonacci numbers, Pell numbers, and Lucas’s sequence. We also discuss applications of 

Chebyshev polynomials. Theorems 1 and 2 relate the third kind Chebyshev polynomials 

with Lucas numbers, whereas theorems 3 and 4 connect the third kind Chebyshev 

polynomials with Fibonacci numbers. Theorem 5 connects the Fibonacci numbers with 

Pell polynomials. 

To prove theorems 1 and 2, we first discover the identity between the third kind Chebyshev 

polynomials and Lucas numbers at certain variables. Then we used that identity to obtain 

our theorem, which gave the relationship between the third kind of Chebyshev polynomial 

and Lucas numbers. Similarly, to prove theorems 3 and 4, we obtain the identity that 

connected the 3rd kind Chebyshev polynomials with Fibonacci numbers at some variables. 

We used that identity to obtain our theorem that gave a relationship between the Chebyshev 

polynomial of third the kind with Fibonacci numbers. To prove theorem 5 firstly we obtain 

an identity between Fibonacci and Pell polynomials for a certain variable. Then we used 

that identity to obtain a relationship between Pell polynomials and Fibonacci numbers. 
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5.4 Utility of the work 

The 𝑞𝑡ℎ derivatives of Chebyshev polynomials to solve some calculating problems of the 

general summations, presented many formulas and relations between polynomials and their 

derivatives. This fact allows them to present a family of integer sequences in a new and 

direct way. These results strengthen the connections of two kinds of polynomials. They are 

also helpful in dealing with some calculating problems of the general summations or 

studying some integer sequences. The identities on sums of finite products in terms of Pell 

polynomials, however, have not been investigated, so identities primarily in terms of Pell 

polynomials are obtained. 

 

                                                

 

 

                                                                 

 

 

 

 

 

                                                                 ***** 
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Summary and Conclusion of the Work 

In this thesis, we studied the Chebyshev polynomials their properties and applications. We 

first looked at the matrix representation of Chebyshev polynomials of both third and fourth 

kinds. We then looked at generalized version of Chebyshev polynomials and identities 

connecting Chebyshev polynomials, with Fibonacci, Lucas, and Pell numbers. The first 

chapter serves as an introduction. 

In the second chapter, we formulated a matrix representation for both the 3rd and 4th kinds 

of Chebyshev polynomials. The motivation behind extending the matrix representation to 

third and fourth kind Chebyshev polynomials is to generalize the existing theory and lead 

to a deeper understanding of their behavior. The initial section focused on deriving the 

matrix representation for the Chebyshev polynomials of the 3rd kind and establishing up to 

3rd degree characteristic equations. The subsequent section extended this analysis to the 4th 

kind, deducing characteristic equations for degrees up to three as well. Notably, analogous 

identities were discovered for both the 3rd and 4th kinds of Chebyshev polynomials. 

Furthermore, we established a relationship between the trace and matrix power specifically 

pertaining to various types of Chebyshev polynomials. The practical applications and 

significance of these findings were also discussed. 

In the third chapter, we introduced the notion of generalized Chebyshev polynomials and 

explored their inherent characteristics. The motivation for studying the generalized version 

of Chebyshev polynomials is to uncover new results in this area and provide a more 

comprehensive framework. Leveraging these properties, we formulated an explicit 

expression for generalized Chebyshev polynomials and derived specific outcomes 

regarding the generating matrices and their determinants. The determination of the 

characteristic equation was extended up to the fifth degree for generalized Chebyshev 

polynomials. Additionally, we delved into the practical implications and applications of 

these generalized Chebyshev polynomials. 
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In the fourth chapter, we established findings concerning the summation of definite 

products involving the third and fourth kinds of “Chebyshev polynomials, Fibonacci 

numbers, and Lucas numbers”, articulated in terms of Chebyshev polynomials and their 

derivatives. The motivations behind obtaining these identities are to broadens our 

understanding and provide new insights. Additionally, we explored specific instances of 

these results through corollaries, considering various values of  𝑟 such as 𝑟 = 1 and 𝑟 = 2. 

Through elementary methods, we identified a relationship connecting the third and fourth 

kinds of Chebyshev polynomials with Lucas and Fibonacci numbers. We also explored the 

importance and relevance of our findings. 

Concluding in Chapter 5, we obtained identities that articulate sums of finite products 

involving Fibonacci (𝐹𝑛) Lucas (𝐿𝑛), and Pell numbers (𝑃𝑛) with derivatives of the 3rd kind 

of Chebyshev polynomials 𝑉𝑛(𝑥) through straightforward computations. The motivation to 

study these identities is to uncover new connections and new properties of these 

polynomials. We presented additional results, expressing summations of finite products of 

Lucas, Pell, and Fibonacci numbers as linear combinations of their derivatives, utilizing 

their fundamental properties via elementary calculations. We talked about the utility of 

Chebyshev polynomials in various field. We discussed the versatility of Chebyshev 

polynomials across multiple fields. 

                                       

                                        

                                         

 

                                           ***** 
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Future Scope of the Work 

The future scope of Chebyshev polynomials is promising and encompasses various 

avenues of research and application. The results concerning the sums of finite products of 

Chebyshev polynomials of both the third and fourth kind express each of them in terms of 

other polynomials. In future research, we can explore congruences involving Chebyshev 

polynomials, Fibonacci numbers, and Lucas numbers. Chebyshev polynomials have been 

used to study the power sum problem involving Fibonacci and Lucas polynomials, as well 

as to prove new divisible properties related to these polynomials. Some other potential 

areas of exploration include: 

Advanced Generalizations: 

Further extending and generalizing Chebyshev polynomials to create new families of 

orthogonal polynomials with unique properties and applications. 

Matrix Representation: 

Exploring and refining matrix representations of Chebyshev polynomials for applications 

in linear algebra, numerical analysis, and related fields. 

Higher-Order Matrices: 

Investigating the use of higher-order matrices in the context of Chebyshev polynomials to 

derive more sophisticated results, particularly in terms of matrix powers and traces. 
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Trace and Matrix Power Results: 

Developing advanced results and theorems related to traces and matrix powers of 

Chebyshev polynomials, potentially leading to practical applications in signal processing, 

quantum computing, and control theory.  

Relations with Numbers Sequences: 

Establishing and exploring deeper connections between Chebyshev polynomials and 

various number sequences, such as Pell, Lucas, and Fibonacci numbers. This could lead to 

novel insights into the interplay between polynomial theory and number theory. 

Hybrid polynomial Systems: 

Integrating Chebyshev polynomials into hybrid polynomial systems, combining them with 

other families of polynomials to create versatile mathematical frameworks with 

applications in diverse scientific and engineering disciplines. 

In conclusion, there is potential for exploring a novel class of Chebyshev polynomials, 

involving generalizations and innovative matrix representations. By extending the scope to 

higher order matrices, we can derive insightful results related to traces and matrix powers. 

Additionally, there is an opportunity to establish deeper connections between various 

Chebyshev polynomials and sequences such as Pell, Lucas, and Fibonacci numbers, 

unveiling new relationships. Overall, the future of Chebyshev polynomials holds great 

potential for both theoretical advancements and practical applications across multiple 

scientific and engineering domains. 

 

***** 
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