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ABSTRACT 

In the modern era, the ubiquitous presence of IoT devices spans across all 

industries, facilitating remote data gathering and offering a myriad of services to users. 

Particularly within healthcare, the advent of IoMT (Internet of Medical Things) devices 

has emerged, dedicated to gathering and storing patient health data in databases. This 

information undergoes meticulous monitoring by medical professionals, who then 

provide personalized recommendations aimed at enhancing patient well-being. The 

exponential proliferation of IoT devices within networks has led to a strain on available 

spectrum resources, resulting in challenges in delivering uninterrupted services across 

the ISM band. Addressing the issue of spectrum scarcity involves leveraging cognitive 

radio technology, which allows for the dynamic utilization of spectral bands 

opportunistically. Additionally, battery-operated IoT devices contend with energy 

limitations due to constant data transmission and monitoring, thereby reducing network 

longevity. To mitigate these constraints, an Energy Harvesting model is proposed to 

prolong the network's lifespan. Given the dynamic and open nature of the network 

environment, there is a potential for malicious behaviour among network nodes, 

significantly impacting network performance. To tackle security concerns, a trust-

aware network model is introduced, incorporating trust value assignments to 

neighbouring nodes. The presence of nodes within the network also introduces the risk 

of disrupting communication dynamics if the ongoing trustworthiness of participating 

nodes is not rigorously upheld to ensure network security. The proposed model is 

developed and simulated for performance evaluation using MATLAB. 

The escalating demand for radio spectrum underscores the absolutely necessity 

for the development of more efficient technologies to exploit and manage this resource. 

Cognitive radio technology, with its inherent networking capabilities, not only explores 

available white spectrum resources across diverse locations and timeframes but also 

facilitates optimal utilization of currently assigned spectrum resources. Consequently, 

there has been substantial progress in research on cognitive radio and its networking 

technologies, aimed at enhancing flexibility in spectrum utilization and management. 

This study presents an innovative cognitive radio routing framework tailored for 
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efficient transmission of medical data within the Internet of Things (IoT). The 

framework introduces a pioneering hybrid optimization algorithm, SR-CHGWO 

(Spreading Rate based Corona Virus Herding Grey Wolf Optimization), specifically 

designed for optimal selection of cluster heads. This algorithm formulates multi-

objective functions, accommodating various network constraints to enhance 

performance. Inspired by the hybrid nature of metaheuristic algorithms, SR-CHGWO 

leverages the spreading rate of network nodes in the given dimension. Based on this 

spreading rate, it selects one of the two optimization algorithms to address premature 

convergence issues commonly encountered in conventional optimization methods. To 

evaluate effectiveness, a comprehensive comparative analysis is conducted against 

conventional optimization algorithms, such as PSO, JA, GWO, and CHIO, focusing on 

network throughput, outage probability, delay, and energy consumption. Findings 

demonstrate notable improvements of 42.50%, 27.18%, 33.16%, and 20.30%, 

respectively, compared to existing algorithms. Furthermore, simulation results 

underscore the algorithm's superior computational complexity relative to traditional 

optimization approaches. 

Moreover, an Energy Harvesting (EH) model based on Cognitive Radio is 

proposed, integrating a Hybrid Base Station (HBS) that captures energy through one 

antenna while concurrently transmitting data via another. In this simulation, a piecewise 

linear energy harvesting model is adopted. A routing strategy emphasizing energy 

efficiency is formulated, leveraging multi-objective optimization principles to select 

the optimal cluster head for data transmission across the EH-CRN (Energy Harvesting 

Cognitive Radio Network). This strategy employs the HCSEHO (Hybrid Cuckoo 

Search Elephant Herding Optimization) algorithm, which aims to maximize the Energy 

Harvesting rate from the surrounding network. The network's performance is 

exhaustively assessed, with experimental findings highlighting the superiority of the 

proposed optimization approach over conventional methods. Specifically, the 

HCSEHO algorithm surpasses PSO, ROA, CSO, and EHO by margins of 0.48%, 

79.29%, 10.90%, and 44.92%, respectively, in terms of Harvested Energy across 100 

nodes. 
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Ultimately, the study expands its purview to address the security challenges 

inherent in the evolved EH CR network. These concerns primarily centre around the 

potential presence of eavesdropping nodes, which have the capability to severely 

compromise the network's Quality of Service (QoS) metrics. To mitigate such risks, a 

meticulously crafted Trust-aware model is introduced. Within this model, the 

trustworthiness of neighbouring nodes is assessed based on their direct and indirect 

trust values, ensuring the reliability of the forwarding nodes. Only nodes with trust 

values meeting the set threshold level are permitted to participate in communication. 

The developed SA-LBOA (Self-Adaptive Ladybug Beetle Optimization Algorithm) 

selects the cluster head based on the optimal trusted node and other network parameters 

using multi-objective optimization techniques. The performance of the proposed 

optimization algorithm is compared against conventional algorithms like DHOA, SSO, 

and HLBO in terms of network QoS parameters such as Outage Probability, Hop Count, 

Throughput, and Trust value. Simulation results demonstrate the superior performance 

of the proposed algorithms compared to conventional ones. 
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CHAPTER 1 

INTRODUCTION 

1.1 Cognitive Radio Sensor Networks 

Wireless Sensor Networks (WSNs) are made up of several small, low-power devices known 

as nodes. They have a variety of uses in a variety of industries, from the military to the medical 

field. [1]. IoT has been used by researchers in healthcare applications recently to continually 

monitor patient temperature, heart rate, blood pressure, and sugar levels. The collected sensor 

data is often used for disease diagnosis and clinical care[2].Transmitting this large amount of 

clinical data over the wireless medium is a challenging task as the available spectrum is limited. 

These days, WSNs function in the ISM band (Industrial, Scientific, Medical), which is also 

used by other communication systems. Different technologies operating in the same ISM band 

have been shown in recent research to have an adverse effect on WSN performance as a whole. 

Data traffic is predicted to reach 4394 EB (Exa Bytes) by 2030 due to the rapidly growing 

number of wireless devices that are linked and the rising number of applications (Source: ITU). 

The use of WSNs is expected to increase dramatically, which will result in overcrowding 

in the radio frequency (RF) spectrum band. Researchers are searching for new spectral bands 

or alternate methods to overcome the issues associated with the crowded spectral bands. 

Remarkably, research found that the spectrum allotted for different uses is underused. A number 

of the shortcomings of traditional WSNs may be mitigated by integrating cognitive techniques 

into WSNs. A new network known as Cognitive Radio Sensor Networks (CRSN) is formed if 

cognitive techniques are included into WSN. More than 70% of the allotted radio spectrum 

remains inactive at certain times or places, according to a 2002 FCC analysis [3]. White spaces 

are the underused and unused frequency spectrum areas from a technological perspective 

(Webb, 2012). It may be possible to lessen spectrum shortages by making effective use of these 

white spaces. Cognitive Radio (CR) is a technology that enables the use of white spaces in the 

spectrum [4]. In a 1998 lecture at the KTH Royal Institute of Technology in Stockholm, Joseph 

Mitola III initially introduced the idea of cognitive radio. Mitola and Gerald Q. Maguire, Jr. 

then published an essay on the issue in 1999. An embedded cognitive engine found in cognitive 

Sensor Networks (CSN) is capable of monitoring network conditions, analyzing itself, drawing 

lessons from past experiences, and making decisions [5]. 
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In order to maximize spectrum usage, a cognitive radio node (SU-Secondary User) 

senses its surroundings and modifies its transmission settings in accordance with the 

knowledge it gathers [6]. Cognitive radio scans the spectrum, finds the empty bands, and uses 

these accessible bands opportunistically to increase total spectrum utilization by dynamically 

altering its operational settings. Upon initiating communication, the Primary User (PU) 

requires the cognitive radio user to perform three tasks: spectrum sensing, spectrum decision, 

and spectrum handoff, which involves adapting the transceiver to continue active 

communication on the new channel after identifying potentially vacant bands. This sequence 

of operation outlines a typical cognitive cycle in Fig.1.1. Wireless sensor networks (WSNs), 

which are often thought to use fixed spectrum allocation and are defined by the communication 

and processing resource limitations of low-end sensor nodes, may also benefit from cognitive 

radio capabilities [7]. 

 

Fig.1.1 Cognitive Radio Cycle 

Spectrum Sensing: In the cognitive radio network, the cognitive user will understand its radio 

environment and make decisions about the availability of the spectrum holes (Whi. This 

information will be sent to the central node or to the neighboring nodes based on the type of 

cognitive radio network.  

Spectrum Decision: Based on the attributes of the channel, including data rate, error rate, 

statistics of the main user, and QoS needs of the cognitive users, a selection of available 

channels is chosen to allocate cognitive users to. Based on the aforementioned features, this 
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module selects the optimal channel to be utilized by the cognitive user from those that are 

accessible. 

Spectrum Sharing: Users share channels during communication because wireless 

communication is shared. The spectrum sharing module is incorporated into the functional 

module of spectrum management for effective channel use and equitable distribution of 

network resources across cognitive users. CRSNs cannot be directly subjected to the classical 

wireless medium access control protocols (CSMA/CA, IEEE 802.11) due to the two distinct 

user types (licensed and unlicensed users). Cognitive users should not take precedence over 

licensed users. different spectrum allocation and access procedures are implemented by the 

Spectrum Sharing module to prevent interferences amongst distinct cognitive user broadcasts. 

Spectrum Mobility: Users are aware of the channels in a wireless network situation. However, 

users of the Cognitive Radio Ad-Hoc Network are unaware of the idle channel information. 

Channel status information is provided by the Spectrum Sensing module. Because of the 

actions of the primary user, a new kind of hand-off emerges. When the channel's primary user 

becomes active, cognitive users must stop transmitting.  The secondary user either finds a new, 

unoccupied channel or waits for the primary user to leave the band when the primary user 

becomes active. For dependable end-to-end communication, cognitive users need to alert the 

source node's application to changes in the network so that it may adjust and slow down 

transmitting until a connection is established again. Handoff of the spectrum takes place: When 

the main user is discovered; when the cognitive user loses connection because of the movement 

of intermediate users engaged in communication; or when the existing spectrum band is unable 

to provide the necessary quality of service. 

1.2 Routing techniques in CR Networks 

Cognitive Radio Sensor Networks (CRSNs) combine the principles of cognitive radio 

and wireless sensor networks to enable intelligent spectrum access and efficient 

communication in dynamic and often congested radio environments. The routing protocols 

intended for WSN are not suitable for CR networks because of the dynamic availability of the 

spectral resources in the CR environment. Sensing idle bands and quickly switching between 

the available spectrum is a difficult challenge since Cognitive Radio Network continuously 

monitors the licensed band. Routing in CRSNs is a critical aspect, and various routing protocols 

have been proposed to address the unique challenges posed by the combination of cognitive 

radio and sensor network characteristics. A detailed survey on CR routing protocols is given in 

[8]. 
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Some CR routing protocols include Cognitive Radio Aware Routing Protocol (CRP), 

Quality of Service (QoS)-Aware Routing Protocols, Cognitive Radio-based Energy-Efficient 

Routing (CR-EER), Spectrum-Aware Routing Protocol (SARP), Dynamic Spectrum Access 

(DSA)-Based Routing, Cooperative Spectrum Sensing Routing Protocols, Cross-Layered 

Routing Protocols, and Load-Balancing Routing Protocols. Clustering routing protocols are 

assumed to be efficient in terms of energy efficiency and other QoS perspectives. 

Optimum cluster head selection in CRSNs is crucial for efficient operation and resource 

management. Cluster-based approaches are commonly used in wireless sensor networks and 

cognitive radio networks to organize nodes into clusters, with each cluster having a designated 

cluster head. The cluster head plays a central role in managing communication within its 

cluster, coordinating spectrum access, and facilitating efficient data transmission. 

Cluster head rotation can prevent premature node depletion and enhance network 

resilience. Machine learning and artificial intelligence techniques can be applied to predict 

future node behavior and dynamically select the cluster head. Adaptive algorithms can 

dynamically adjust selection criteria based on real-time network conditions, ensuring that the 

Fig.1.2 Cognitive Radio Routing using Cluster Head 
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cluster head selection process remains responsive to changes in the cognitive radio 

environment. 

The process of choosing the best cluster head is difficult and involves juggling a number 

of variables and making adjustments for cognitive radio networks' dynamic structure. 

Researchers are still looking at new methods and algorithms to improve how well cluster heads 

are chosen in these networks. 

 

1.3 Multi Objective Optimization Algorithms for Cluster Head Selection 

Multi-objective optimization algorithms are employed when there are multiple 

conflicting objectives that need to be considered simultaneously in the decision-making 

process. In the context of cluster head selection in cognitive radio networks, where various 

factors such as energy efficiency, communication reliability, and spectrum utilization are 

important, multi-objective optimization techniques can be valuable.  

Multi-objective optimization algorithms are used to solve complex problems involving 

multiple conflicting objectives. These algorithms are particularly useful in cognitive radio 

networks, where factors like energy efficiency, communication reliability, and spectrum 

utilization are crucial. Commonly used algorithms include NSGA-II, MOEA/D, MOPSO, 

NSPSO, MOGWO, RVEA, GDE3, MOABC, SPEA2, and HypE. NSGA-II uses a non-

dominated sorting mechanism and elitism to efficiently evolve solutions. MOEA/D 

decomposes a multi-objective problem into scalar subproblems, optimizing each subproblem 

concurrently. MOPSO uses a population of particles to explore the solution space, while 

NSPSO combines PSO with non-dominated sorting to maintain diverse solutions. MOGWO 

uses a hierarchical structure to represent the population of wolves and aims to find Pareto-

optimal solutions. RVEA uses reference vectors to guide the search process, while GDE3 

employs differential evolution strategies. 

When applying these algorithms to cluster head selection in cognitive radio networks, 

objectives such as energy efficiency, communication reliability, and spectrum utilization can 

be defined, and the algorithms can be tailored to find a set of solutions that represent trade-offs 

between these objectives. The ultimate goal is to obtain a Pareto-optimal front that provides 

decision-makers with a range of feasible solutions based on their preferences and requirements. 

 

1.4 Energy Harvesting in Cognitive Radio Sensor Networks 

The act of absorbing and transforming minute quantities of ambient energy from the 

surrounding environment into useful electrical power is called energy harvesting, often referred 
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to as energy scavenging or power harvesting. With the use of this technology, gadgets may 

function or replenish their batteries independently of external power sources. 

Numerous energy harvesting methods may be used to capture energy from a range of sources.  

Photovoltaic cells are used in solar energy harvesting to transform sunlight into 

electrical energy. Kinetic energy is generated through piezoelectric devices, while 

electromagnetic induction converts kinetic energy into electrical energy. Thermal energy is 

generated through thermoelectric generators, while vibration energy is captured by vibration 

harvesters. Radio frequency energy is captured through RFID devices, while wind energy is 

generated by small wind turbines. These energy harvesting techniques are commonly used in 

low-power applications like wireless sensor networks and wearable devices, where traditional 

power sources may be impractical or unavailable. 

Radio Frequency (RF) energy harvesting in Cognitive Radio (CR) networks involves 

capturing and converting ambient RF signals into electrical energy to power devices within the 

cognitive radio ecosystem. Cognitive Radio is a technology that allows devices to intelligently 

and dynamically access available radio frequency spectrum bands, optimizing spectrum 

utilization. RF energy harvesting can be beneficial in cognitive radio networks for powering 

low-power devices, sensors, or even enhancing the energy efficiency of cognitive radio 

components. 

Fig.1.3 General Architecture of the Energy Harvester 

The proposed present work intended to integrate cognitive radio with IoT to transmit 

the medical data securely over the wireless networks using energy harvesting schemes which 

improves the lifetime of the sensing node. 
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1.5 IEEE Standard used for Cognitive Radio Networks:   

The IEEE 802.22 standard is used for to Cognitive Radio Sensor Networks (CRSN) 

deployed within the Internet of Medical Things (IoMT). It will make use of the underutilized 

TV spectrum, generally known as TV whitespace, to facilitate wireless communication. This 

adaptation makes it an ideal choice for IoT scenarios where spectrum availability might be 

constrained. IEEE 802.22 meticulously defines the Physical Layer (PHY) and Media Access 

Control (MAC) specifications used for Wireless Regional Area Networks (WRANs) operating 

within the TV whitespace spectrum. Here, we highlight some important radio specifications 

defined by this standard: 

Frequency Bands: IEEE 802.22 works in the VHF and UHF bands, using TV broadcasters' 

"whitespace" channels that aren't being used. Most of the time, these bands are between 54 

MHz and 862 MHz in the US, but they can be different in other places. 

Channel Bandwidth: The standard allows for variable channel bandwidths, which are usually 

between 6 MHz and 8 MHz, which is the same range of frequencies used for regular TV 

broadcasting. Regulations and available spectrum determine the actual channel bandwidth that 

is used. 

Modulation: IEEE 802.22 specification support different modulation schemes based on the 

requires data rates and the available channel conditions. Generally, OFDM and other broadband 

modulation techniques are suitable for dynamic and frequency selective environments. 

Transmission Power: The standard specifies maximum transmission power levels allowed for 

IEEE 802.22 devices to minimize interference with licensed users and ensure regulatory 

compliance. Power control mechanisms may also be employed to adjust transmission power 

based on proximity to other users and environmental conditions. 

Spectrum Sensing: IEEE 802.22 devices are equipped with spectrum sensing capabilities to 

detect the presence of primary users (e.g., TV broadcasters) and avoid interference with their 

transmissions. Spectrum sensing techniques may include energy detection, cyclostationary 

feature detection, and other methods to reliably identify vacant channels for operation. 

Antenna Requirements: The standard may include recommendations or requirements 

regarding antenna configurations and characteristics to optimize radio performance, coverage, 

and interference mitigation. Antenna diversity and beamforming techniques may be employed 

to improve signal reliability and range. 
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Channel Access Mechanisms: IEEE 802.22 employs dynamic spectrum access mechanisms 

to enable efficient and fair utilization of available spectrum. MAC protocols govern channel 

access, spectrum sensing, and coordination among WRAN devices to prevent interference and 

ensure coexistence with primary users and other secondary networks. 

 These specifications provide the foundation for IEEE 802.22-compliant devices to 

operate in TV whitespace spectrum, offering broadband connectivity over long distances in 

rural and underserved areas while minimizing interference with incumbent users. 

1.6 Motivation 

CRSN represents a specialized form of wireless sensor networks, where nodes are 

equipped with cognitive radio capabilities to adaptively access and utilize available radio 

frequency spectrum. The selection of Cluster Heads in CRSNs is a crucial task, and various 

conventional routing protocols have been proposed to enhance network lifetime and energy 

efficiency by considering single objective constraints. However, routing large data packets over 

the cognitive radio network presents challenges in terms of energy efficiency, throughput, 

delay, and network outage probability. To address these multiple constraints, there is a need for 

the development of multi-objective optimization algorithms. 

The proposed work aims to integrate cognitive radio with energy harvesting capability 

to securely transmit health information over the Medical IoT (IoMT). The goal is to increase 

the network's lifetime by developing multi-objective optimization algorithms. Single-objective 

optimization methods developed for cluster head selection in CRSNs have limitations in 

addressing multiple problems. They struggle to handle multiple conflicting objectives, leading 

to suboptimal solutions. These methods are not robust to objective function changes, making 

adaptability challenging in evolving problem formulations. Moreover, they face difficulties in 

handling constraints effectively, resulting in infeasible solutions. 

Single-objective optimization methods focus on finding a single optimal solution, 

potentially leading to premature convergence and neglecting diverse solutions. They are highly 

sensitive to initial conditions, making it difficult to obtain consistent results. Additionally, these 

methods face challenges in handling non-smooth or discontinuous objective functions, limiting 

their effectiveness for problems with discontinuities. Furthermore, they encounter 

computational complexity for large-scale problems and exhibit limited adaptability to dynamic 

environments. 

In contrast, multi-objective optimization methods provide a powerful framework for 

selecting the optimum cluster head in CRSNs. These methods balance multiple conflicting 
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objectives simultaneously, addressing concerns such as throughput maximization, minimizing 

hop count, and reducing outage probability. Integrating energy harvesting and security models 

into the optimization process enhances the overall performance and resilience of the cognitive 

radio network. 

 

1.7 Thesis Aim and Objectives 

In this section, we outline the main objectives and aim of the thesis based on the 

identified motivations. The primary goal is to design and integrate cognitive radio with energy 

harvesting (EH) to securely transmit health over IoMT, ultimately enhancing the lifetime of the 

Cognitive Radio (CR) Network. 

The major objectives of this thesis are: 

• To develop a cognitive radio framework for the transmission of medical data over the 

network using IoMT.  

• To develop an energy harvesting model to enhance the lifetime of the CRN node.  

• To develop a security model for the secure transmission of medical data over the 

cooperative EHCRN.  

The above objectives are implemented using various optimization algorithms as summarized 

below 

• Development of Cognitive Radio Routing Framework: The first objective involves the 

creation of a cognitive radio routing framework dedicated to transmitting medical data over 

the network utilizing IoMT. To assess the performance of the Cognitive Radio (CR) based 

IoMT, a novel hybrid multi-objective optimization algorithm, named SR-CHGWO 

(Spreading Rate based Corona virus Herding Gray Wolf Optimization), is proposed. This 

algorithm aims to optimize the routing process, considering multiple objectives 

simultaneously. 

• Implementation of Enhanced Energy Harvesting Scheme: The second objective aims 

to incorporate energy harvesting technique in CRSN to improve the network's lifespan. 

This involves the implementation of a hybrid optimization strategy called Hybrid CSO 

(Cuckoo Search Optimization) -EHO (Elephant Herding Optimization) Algorithm names 

as HCSEHO. The main goal is to select an optimal cluster head, facilitating effective data 

transmission from source to destination by minimizing interference and reducing 

information loss in the network. 
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• Develop Trusted EH-CRSN network for Secure data Transmission: The third objective 

involves the development of the SA-LBOA (Self Adaptive Ladybug Beetle Optimization 

Algorithm), an enhanced heuristic technique. This technique is designed to ensure 

trustworthy performance in the CR Network by optimally selecting the CH (Cluster Head) 

for efficient data transmission between source and destination nodes.   

Several QoS metrics which are commonly used to measure the performance of the network are 

outlined below: 

End-to-End Delay (Cumulative Delay): The elapsed time taken by a generated data packet 

to traverse from its source to the intended destination. This metric quantifies the total time it 

takes for data to travel through the network, measuring the delay experienced by packets in 

reaching their final destination. 

Throughput: The quantity of successfully received data packets within a specified timeframe. 

Throughput measures the efficiency of data transfer by assessing the rate at which packets are 

successfully delivered within a given time window. 

Hop Count: The number of intermediate hops a data packet traverses from its source node to 

the designated destination. This metric quantifies the number of intermediary nodes a packet 

encounters during its journey through the network, providing insight into the route complexity. 

Packet Delivery Ratio: The ratio of received data packets at the destination to the total number 

of generated data packets at the source. Packet delivery ratio assesses the effectiveness of the 

routing protocol by determining the proportion of successfully delivered packets compared to 

those initially generated. 

Network Lifetime: The operational time of the network until the occurrence of the first 

network partition. Network lifetime measures the duration of uninterrupted network operation, 

providing information on the system's resilience before the occurrence of a partition. 

Energy Consumption: The total amount of energy consumed by network nodes. Energy 

consumption quantifies the power usage of individual nodes within the network, offering 

insights into the sustainability and efficiency of the overall network infrastructure. 

By delineating these objectives, the thesis aims to make significant contributions to the 

fields of cognitive radio, energy harvesting, and secure medical data transmission over the 

IoMT. The proposed algorithms, CHGWO, HCSEHO, and SA-LBOA, are anticipated to play 

pivotal roles in achieving the stated goals, thereby advancing the state-of-the-art in CR 

Networks and their applications in healthcare. 
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1.8 Contributions of the Thesis 

The major contributions of the thesis as summarized as below 

IoT Devices in Healthcare: Highlighting the emergence of IoMT devices dedicated to 

gathering and storing patient health data, enabling personalized recommendations for 

enhancing patient well-being within the healthcare industry. 

Addressing Spectrum Scarcity: Discussing the challenges posed by the exponential 

growth of IoT devices on available spectrum resources and proposing the use of cognitive radio 

technology to dynamically utilize spectral bands for optimal resource management. 

Energy Harvesting Model: Introducing an Energy Harvesting model to prolong the 

lifespan of battery-operated IoT devices by addressing energy constraints through innovative 

approaches, such as integrating a Hybrid Base Station for simultaneous energy capture and data 

transmission. 

Optimization Algorithms: Presenting pioneering hybrid optimization algorithms, like 

SR-CHGWO and HCSEHO, tailored for efficient data transmission and cluster head selection 

within IoT networks. These algorithms aim to improve network performance and address 

convergence issues common in conventional optimization methods. 

Security Concerns and Trust-aware Model: Discussing security challenges in IoT 

networks, particularly the risk of eavesdropping nodes, and proposing a Trust-aware model that 

evaluates the trustworthiness of neighboring nodes to ensure reliable communication. The 

developed SA-LBOA algorithm selects optimal cluster heads based on trust values and network 

parameters to enhance security and performance. 

Comparative Analysis: Conducting a comprehensive comparative analysis against 

conventional optimization algorithms, demonstrating significant improvements in network 

throughput, outage probability, delay, energy consumption, and harvested energy, thereby 

showcasing the superiority of the proposed algorithms. 

 

1.9 Organization of the thesis:  

Chapter 1 explores the basic concepts of EH enabled Cognitive Radio Networks and 

routing methods using clustering approach along with Multi objective Optimization 

requirements to enhance the various metrics associated with CRN. Additionally, it also 

elucidates the research motivation, objectives, major contributions of the thesis and 

organization of thesis. 

The rest of the thesis is organized in the following manner:  
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Chapter 2 portrays the literature work of existing energy-efficient routing models in 

CRSN and EH-CRSN, which is represented in categorization of works. Research gaps and 

challenging problems are involved in stimulating the better process. 

Chapter 3 presents Intelligence based Optimum Routing strategy to improve the 

performance of the CR network for medical data transmission using IoMT 

Chapter 4 illustrates the development of Energy Harvesting model to improve the 

energy efficiency and thereby increasing the network lifetime. 

In chapter 5 we study various security attacks associated with EH based cognitive 

networks and proposes a trust aware routing strategy for secure data transmission by using 

Multi Objective Optimization Concepts. 

Finally, Chapter 6 concludes the thesis and Chapter 7 directs some future research 

topics. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Background 

The design of communication systems is a complex task that centers on the efficient 

utilization of two critical resources: bandwidth and power [9]. Communication system 

designers aim to optimize the use of these resources to meet specific requirements and ensure 

reliable and high-performance operation. In recent years, the rapid progress and increased 

potential of wireless communication technology have fueled a growing demand for spectrum 

resources [10]. One notable application of wireless communication is the deployment of 

Wireless Sensor Networks (WSNs). WSNs are composed of autonomous sensors distributed 

across a geographical area, collaborating to monitor physical or environmental conditions and 

transmitting collected data to a central location [11]. These sensor nodes, often compact and 

cost-effective, are equipped with various sensors to measure parameters such as temperature, 

humidity, light, and pressure, resembling Internet of Things (IoT) devices [12]. The nodes 

within a WSN are interconnected wirelessly, forming a self-configuring network with versatile 

deployment capabilities in applications ranging from environmental monitoring to industrial 

automation, healthcare, home automation, and military systems [13]. Given the diverse 

scenarios in which WSNs are applied, the effective use of bandwidth and power in their design 

is pivotal to ensuring reliability and optimal performance [12]. 

Cognitive Radio Sensor Networks (CRSNs) have emerged as a solution to address the 

significant challenges faced by traditional Wireless Sensor Networks (WSNs). WSNs 

encounter various limitations, including limited spectrum availability leading to congestion and 

interference, inefficient use of frequencies due to fixed spectrum allocation, degradation of 

communication reliability from interference by other devices or networks, energy constraints 

impacting network lifetime, unreliable communication due to environmental changes or 

network failures, a lack of effective mechanisms for ensuring Quality of Service (QoS) in data 

transmission, and suboptimal performance in dynamic environments with static routing 

strategies. To overcome these challenges, CRSNs integrate cognitive capabilities that facilitate 

dynamic spectrum access, interference mitigation, energy efficiency, reliability improvement, 

QoS enhancement, and adaptive routing. The incorporation of cognitive features contributes to 

a more resilient and efficient sensor network infrastructure. 

A Cognitive Radio Sensor Network is defined as an intelligent Wireless Sensor 

Network capable of perceiving, learning, reasoning, and acting through a distributed system 
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comprising sensors, actuators, computation, and communication. This definition underscores 

the advanced and intelligent nature of CRSNs, highlighting their ability to adapt to changing 

conditions and optimize performance in various environments. Moreover, the integration of 

cognitive radio technology allows for the exploitation of white spaces in the spectrum, enabling 

cognitive radio nodes to sense their environment and adjust transmission parameters [14]. This 

capability becomes crucial in the context of the Internet of Things (IoT), a computing paradigm 

that employs sensing devices, computer nodes, and communication instruments for data 

collection, sharing, and remote control. In healthcare applications, for instance, IoT is 

increasingly utilized to monitor patients' vital signs such as blood pressure, sugar levels, 

heartbeat, and temperature. However, the transmission of such data over the wireless medium 

faces’ challenges due to limited spectrum availability. Cognitive Radio technology addresses 

this issue by dynamically adapting to the available spectrum, ensuring efficient and reliable 

communication in IoT applications. Sensor nodes will utilize its battery power to sense the 

vacant channel statistics and send the data over the network. Over a period of time the node 

may lose its power leading to the failure of the nodes which break the communication link in 

the network. To overcome this dead node condition to dead various energy efficient resource 

allocation strategies were proposed but still there is requirement of power efficient node 

deployment and maintenance.  In recent days Wireless Energy Harvesting has shown 

tremendous growth in its technological advancements. In this research work RF energy 

Harvesting is embedded in to the cognitive Radio network to recharge the battery by utilizing 

the Harvested energy from the RF energy available in the environment leading to the 

improvement in the network lifetime.  

 

2.2 Cognitive Radio Routing Algorithms and their challenges 

In Cognitive Radio Sensor Networks (CRSNs), the routing mechanisms differ 

significantly from those in traditional Wireless Sensor Networks (WSNs). CRSNs, specifically 

the subset known as Cognitive Radio Wireless Sensor Networks (CR-WSNs), present a unique 

set of challenges and considerations that make routing more complex compared to traditional 

WSNs. Unlike traditional WSNs where routing decisions are primarily based on considerations 

such as energy efficiency, node proximity, or hop count, CRSNs introduce an additional layer 

of complexity. In CRSNs, routing must be intricately integrated with the process of sensing 

spectrum availability. Spectrum sensing is a fundamental capability in cognitive radio 

networks, allowing nodes to identify and adapt to available frequency bands dynamically. In 

the context of CR-WSNs, routing decisions need to be made not only based on traditional 
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factors but also considering the dynamic and opportunistic nature of the available spectrum. 

Nodes in CRSNs must assess the spectrum availability along potential routes and select paths 

that optimize both communication reliability and efficient use of the available frequency 

spectrum. 

An Energy-efficient dynamic clustering approach for IoT applications (BPNN) based on Back 

Propagation Neural Network was proposed by L. Manman et al. in In 2020 [15]. By using 

Copula theory and NN (Neural Networks) concepts, the collected information is processed 

based on the power requirements of the individual clusters. The optimization of overall power 

requirements of the clusters are carried out according to network requirements, such that 

efficient intra-cluster packets can be done. 

  Wang et al. [16], in 2020, Used optimal stopping theory concepts for developing 

efficient routing protocols which incorporating the network coding for secure data transmission 

among the trusted nodes. The proposed method/approach is also utilized for trusted channel 

allocations to achieve improved gain for the networks. The major improvements were found in 

the average delay in the network and routing cost.  

In 2021, Dhiman et al. [17] introduced a reconfigurable Cross Layered Routing 

Protocol based on Cognitive Radio Networks (CRN), aiming to enhance the network 

performance and optimize the data transfer rate in the adaptable networks. They used the 

Spotted Hyena Optimization (SHO) Algorithm to fine-tune the machine-learning model 

parameters efficiently. The model generates distributors encompassing various which include 

load balancing, developmental path of machine learning and quarter sensing. The developed 

technique exhibited sensitivity to factors such as traffic, charges, and a range of other QoS 

metrics. Testing was conducted using classic models to showcase the residual energy, 

resilience, scalability, and resource strength. In 2021, A. Mukherjeee et al. [18] introduced a 

zestful clustering model that relies on a crossbreed optimization approach combining neural 

networks (NN) and the Gaussian copula method. The adoption of this strategy resulted in 

notable reductions in both calculation time and energy consumption. 

To prolong the lifespan of Wireless Sensor Networks (WSNs), the authors in [19] used 

PSO algorithm for Clustering the randomly deployed nodes. Two factors, average cluster 

distance and life span of the gateway are taken into consideration for the formation of clusters 

in this approach. The cost-function method is employed to compute the fitness value of each 

particle, these values contribute to the overall quality of the system. Particles with a greater 

cost function value contribute to the efficient network establishment. 
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Researchers in [20] explored MIMO technology for the identification of Cluster Heads 

within a distributed WSN. This model employs an iterative method (in cooperative intra-cluster 

networks) based on the concepts of linear regression determine position of the CH in the 

intended cluster. The approach utilizes a distributed gradient method to accurately localize the 

CH and enhance the efficiency of the wireless sensor network.  

In [21], the challenge of identifying the locations of Cluster Heads (CHs) in MIMO 

sensor networks, specifically for Intelligent Transportation System (ITS) applications, was 

addressed. The authors utilized a combination of Back Propagation Neural Network (BPNN) 

and the distributed gradient drop approach to identify CHs in MIMO sensor networks, aiming 

to reduce the overall estimation error. Additionally, Gopi Krishnan et al. [22] suggested a new 

protocol for IoT applications in Cognitive Radio Sensor Networks (CRSNs). By addressing 

energy and delay issues, the proposed communication protocol was evaluated against existing 

methods, demonstrating improved performance in terms of energy utilization and delay. 

In 2020, Vimal et al. [23] introduced a pioneering heuristic algorithm titled "Multi-

objective Ant Colony Optimization (MOACO)" incorporating DL network. This algorithm 

integrates a clustering technique to optimize data utilization and improve inter cluster data 

aggregation. This method aims to prolong the networks lifespan, emphasizing green 

communication through artificial intelligence-based modeling. Validation results indicate 

improvements in throughput and jamming prediction with the proposed approach. 

In 2019, Ghose et al. [24] introduced ES (Early Sleep) and EDT (Early Data Transfer) 

routing schemes to minimize time delay and energy consumption while transmitting data 

packets in the network. The ES method involves Decoding and validation of addresses were 

taken care by ES method, leading non-destined devices to enter a sleep mode. The efficacy of 

these devised techniques was evaluated through simulations and theoretical analyses. 

In 2018, Anamalamudi et al. [25] created an integrated control channel employing a 

cognitive routing protocol to establish channel routes through directional antennas in CR 

networks. To maintain consistent communication and maintain synchronization with other 

nodes, in 2017, Qureshi FF et al. [26] designed a Cognitive Radio (CR) protocol to enhance 

the network throughput. The developed CR protocol exhibited faster computation times and 

achieved higher data transmission throughputs compared to alternative protocols. Furthermore, 

to address the practical issues in the Internet of Things (IoT), this is extended to make it more 

applicable and cost-effective.  

In 2019, Kumar et al. [27] introduced “Cognitive Data Transmission Method (CDTM)" 

designed for observing, storing, and transmitting patient clinical data. This method leverages 
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cognitive technology to efficiently observe and transmit clinical data to the medical experts for 

diagnosis purpose. Additionally, a stochastic process was employed to predict the future health 

status of patients based on their current health scenarios. The performance evaluation of the 

proposed routing protocol demonstrated accurate predictions with reduced time requirements, 

showcasing efficient bandwidth utilization. 

In 2016, Mukherjee et al. [28] tackled issues related to the Fusion Centre (FC) through 

HML clustering (Hierarchical Maximum1Likelihood) approach for cooperative CR networks. 

The FC positioning problems were also addressed in theis work. Pefkianakis et al. introduced 

SAMER for CR Networks in [29], introducing a trade-off between short-term opportunistic 

sharing and long-term route stability. Additionally, Chowdhury et al. introduced the distributed 

routing protocol SEARCH for mobile Cognitive Radio Networks in [30], which minimizes 

end-to-end latency by optimizing route and channel selection. While these methods notably 

enhance performance metrics without disrupting primary users' transmissions, they do not 

consider external interference or learning aspects. 

Huang et al. in [31] provide a novel routing system for a high mobility cognitive radio 

network that prioritizes node capacity and path stability. For ad hoc Cognitive Radio Networks, 

Chowdhury et al. introduced CRP in [32] to secure Primary User Receivers, provide several 

class routes for various networks, and enable scalable route selection. Talay et al. created the 

Self-Adapting Routing (SAR) algorithm in [33], which has the capacity to manage the 

transmission range in an adaptive manner for ad hoc cognitive networks. This method can only 

be applied to underlay approaches; it is not suitable for overlay or interwoven approaches. 

A multipath Quality of Service (QoS) routing system based on route stability was 

proposed by Sarma et al. in [34]; it improves throughput and decreases latency. On the other 

hand, Jin et al. presented TIGHT, a unique geographically based routing scheme, in [35] that 

enables cognitive users to utilize Primary Channels without interfering with Primary Users. 

Salameh has worked on the idea of minimizing interference to guarantee simultaneous 

transmission of narrowband and wideband data in [36]. An efficient routing strategy for low 

energy usage and decreased latency was studied and developed by Ji et al. in [37]. 

Therefore, routing in CRSNs involves the simultaneous consideration of traditional 

routing metrics, such as minimizing energy consumption and maximizing data delivery 

reliability, along with the added complexity of spectrum-aware routing. This introduces 

additional challenges in terms of designing routing protocols that can adapt to the dynamic 

spectrum environment, efficiently utilize available frequency bands, and ensure reliable and 

timely communication.  
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In summary, the distinctive feature of routing in CRSNs, particularly CR-WSNs, is the 

integration of spectrum sensing into the routing process. This integration introduces additional 

challenges that must be addressed to optimize the performance of the network in terms of both 

traditional routing metrics and spectrum-aware considerations. 

 

2.3 Energy Harvesting in Cognitive Radio Networks 

RF energy harvesting techniques in CRNs contribute to the development of self-

sustainable and adaptive cognitive radio systems, reducing reliance on external power sources 

and improving overall network efficiency. These techniques play a crucial role in extending the 

operational lifetime of cognitive radio devices in dynamic and resource-constrained 

environments. Various types of energy harvesting technologies have been developed to harness 

different forms of energy. Various energy harvesting methods harness different sources to 

generate electrical power. [38-39]. 

RF (Radio Frequency) energy harvesting techniques in Cognitive Radio Networks 

(CRNs) aim to capture and convert ambient RF signals into electrical power, enhancing the 

sustainability and autonomy of devices within cognitive radio systems. Here are some RF 

energy harvesting techniques specifically applicable to CRNs: 

Channel Sensing-Based Harvesting: It utilizes the energy received during the channel sensing 

process, where cognitive radios detect the availability of free spectrum bands. This energy 

powers the cognitive radio sensor battery during the spectrum sensing phase which will 

increasing energy efficiency.[40] 

Harvesting from Primary User Transmissions: In this method SU Captures energy from the 

transmissions of primary users in the spectrum. Hence it will provide supplementary power 

during periods of low secondary user activity.[41] 

Wideband Harvesting: It exploits wideband antennas to capture energy across a broad range of 

frequencies simultaneously which eventually increases the chances of harvesting energy in 

diverse RF environments [42]. 

Adaptive Harvesting Algorithms: SUs employs adaptive algorithms to dynamically adjust 

harvesting parameters based on the availability of RF energy and Optimizes energy harvesting 

based on real-time changes in the RF environment.[43] 

Multiple Antenna Harvesting: Uses multiple antennas to capture RF energy from different 

directions simultaneously. Enhances harvesting efficiency by increasing the likelihood of 

capturing energy from diverse sources [44]. 
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Energy Harvesting-Aware Routing: Integrates energy harvesting information into routing 

decisions, considering available RF energy during route selection. Optimizes energy usage and 

extends network lifetime by selecting routes with higher energy availability [45]. 

Energy harvesting networks (EHN) represent a dynamic field, currently facing 

significant challenges in technical design as highlighted in recent studies [38]. In some of the 

latest research efforts, EH-CRN is encountering substantial demands in terms of technical 

design [38]. Bhowmick et al. explored non-RF strength harvesting as a viable method for 

collecting energy from RF signals emitted by primary users (PU) [46-49], building upon 

previous work [38]. While static sources like TV and radio towers emit relatively consistent 

power over time, dynamic RF sources such as Wi-Fi networks and cell signals exhibit varying 

power levels. The energy harvesting component can be configured as either a single-stage or 

two-stage system, with the latter acting as a backup arrangement utilized when the energy 

stored in the initial stage is depleted. 

D. Zhang et al.2016 Proposed algorithms for handling resource distribution of CRNs 

for Energy Harvesting. It collects and optimizes stochastic energy collection and processes for 

consumption and stochastic continuum and access processes. The author used optimization 

from Lyapunov to break down the problem into three more easily-solved sub-problems, battery 

management, sampling rate control, data rate and channel assignment [50]. 

M. Zareei et al. 2019 A circulated power management mechanism for energy harvesting 

for the CR sensor network (EH-CRSN) is recommended. The key concept is to dynamically 

alter the transmitting ability of the nodes to retain network access based on their network status. 

In accordance with a variety of parameters such as the current power and the available power 

of the neighboring nodes each node chooses to dynamically upsurge or lessening its 

transmission power. In order to properly adjust the strength of the network, this dynamic power 

shift transforms the network's logical topology. The power control is managed by two 

situations: a flat and a clustered network [51]. 

Ahmed Sultan et.al. 2012 The secondary consumer is an energy power with a final 

battery. We consider a cognitive radio environment. The primary consumer functions in a time-

consuming way. The secondary consumer may remain idle or perform spectrum sensing at the 

beginning of each slot to optimize their output. The decision is based on the secondary opinion 

about primary operation and the quantity of energy retained. We describe this as a decision-

making process in Markov. We present the optimal strategy, compare it and evaluate the shift 

in throughput with different system parameters [52]. 
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Avik Banerjee et.al.2020 proposes a time-slotted method for the energy harvesting of 

cognitive radio (CR). The CR consumer simultaneously performs energy harvesting and 

spectrum sensing (SS) via power splitting mode. On next, the CR consumer gathers energy or 

conveys its own data depending on the outcome of SS decisions during the transfer time slot. 

To optimise the residual energy under the limitations of PU reliability and the spectrum 

efficiency (SE) target level of the CR an optimization issue is established. The concavity of the 

objective function shows that the problem is solved globally. Simulations are used to find 

shortened form expressions of sensing time and CR transmitting capacity [53]. 

G. Han et.al. 2016 The author considers that there is a cognitive radio network where a 

primary transmitter is located primarily on the channel and, if sensed idleness, a secondary 

transmitter fitted with an energizer would have access at any time to the primary channel. It is 

assumed here that the energy arrival process and the primary channel state are a random and 

two-state discreet Markov process. The authors use the optimize energy harvesting and 

spectrum sensing under restrictions of energy causality, collision and time correlation between 

likelihood of sensing idle / occupied cha instead of assuming successful access to the spectrum 

by time slot as a strategy criterion in current literature. In accordance with our extensive 

computer simulations, we obtain the corresponding optimal sensing and maximum reachable 

throughput [54]. 

S. Park et.al. (2012) The optimal method selection policy was developed by putting the 

decision-making problem on the exact Markov Decision Process model (POMDP). Numerical 

results indicate that the optimal strategy established balances the achievement of the immediate 

production with the collection of RF energy for future use [55]. 

Dinh Thai Hoang et.al. (2014) The author considers a network where a secondary user 

accesses the channel to pass the packet or receive RF power if the channel selected is idle or 

employed by the main user. In order for the secondary user to boost their flow, the author 

proposed an optimization framework. An online learning procedure was implemented that can 

observe the environment and adjust the channel access behavior without knowing the model 

parameters beforehand. The authors evaluated the efficiency and convergence of the study 

algorithm in this paper. The learning algorithm can achieve the results near the optimization 

result [56]. 

In 2020, the authors [57] suggested the “Dynamic Optimization Law over CR Networks 

(DOL-CRNs)”. In this method by incorporating the optimization method, they harvest the 

energy efficiently in CR networks. This approach has enhanced the performance of the network 
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in terms throughput, success ratio and lifespan of the network by decreasing the overall latency 

in the communication.  

Banerjee et al. [58] in 2018, have utilized a RF-EH scheme that is capable of transmitting 

the data in switching mode for route selection and joint power allocation in CR networks. The 

transmission of the data between the receiver as well as the transmitter was carried out with the 

aid of the relays utilizing a part of the obtained energy. By utilizing the optimization, they 

reduced the outage probability of the network. The constraints used for this problem 

formulation are corporative rate of the PU and the causality of the energy. By using Dijkstra's 

and Bellman-Ford's algorithms optimum routing path is attained. This enhanced the lifespan of 

the network and reduced the power consumption rate.  

 

2.4 Security Issues in Cognitive Radio Networks 

Energy harvesting is a technology that involves gathering energy from the surrounding 

environment, proving to be a valuable method for ensuring a reliable supply of power. This can 

be integrated with Cognitive Radio (CR) systems to prolog the lifespan of CRNs and decrease 

implementation costs [59]. Two commonly utilized energy harvesting architectures are "Time 

Switching (TS) and Power Splitting (PS)" [60]. In the Power Splitting model, the received 

signal power is divided into two segments: one for harvesting energy from the environment 

and the other for processing the received signal [61]. On the other hand, the Time Switching 

approach divides the transmission slot into two slots, with one slot dedicated to energy 

harvesting from nearby RF sources and the other for data transmission [62]. The dynamic 

nature of CR networks makes Secondary Users (SUs) susceptible to both internal and external 

attacks. Additionally, due to the broadcast nature of radio propagation, confidential messages 

transmitted over CRNs can incur overhead through malicious eavesdroppers [63]. Therefore, 

alongside managing consistent transmission, securing CRN transmission against the impacts 

of malicious eavesdropping is a crucial objective. The growing computational power and 

advancements in technology underscore the equal importance of highly secure communication 

to protect against adversary attacks [64]. 

Ensuring the security of Cognitive Radio Networks (CRN) is an essential state in which 

the network is accessible openly and susceptible to external attacks [65]. Eavesdroppers can 

lead to network infiltration [56] and result in energy loss in harvesting nodes, rendering them 

invalid and compromising security. In traditional CRNs, significant investments are made to 

enhance security, establishing a tradeoff between security improvement and the reliability of 

energy-harvesting-dependent CRNs [66]. To bolster network security, a cooperative jamming 
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method, coupled with artificial interference and noise, was introduced in [67]. Furthermore, 

[68] proposes energy harvesting methods based on appropriate relay selection to achieve an 

enhanced balance between the efficiency of secondary transmission and the security of primary 

transmission. 

In [69], an underlay Cognitive Radio Network (CRN) was explored, featuring a set of 

primary nodes and two secondary nodes, while assessing secrecy outage efficiency. However, 

achieving satisfactory network performance proved challenging. Consequently, an efficient 

heuristic algorithm was devised to enhance CRN performance in secure data transfer, 

incorporating energy harvesting and trust assurance considerations. In 2021, Tayel et al. [70] 

introduced an Artificial Noise (AN) approach to safeguard the transmission of Secondary Users 

(SU) against eavesdropper attacks in CR networks with energy harvesting and combined 

channel access. The initiation of the entire time slot presented challenges for SUs in terms of 

selecting transmission nodes and managing energy harvesting. To address these challenges, the 

Mixed Observable Markov Decision Process (MOMDP) was employed to design the decision 

process for SUs. Simulation results were then conducted to validate the effectiveness of the 

developed method, considering both throughput and secrecy rate. 

In 2021, Bennaceur et al. [71] introduced a hierarchical multi-game theory approach to 

bolster reputation and trust management in securing the data gathering process. This approach 

was initiated with spectrum distribution and concluded with data routing. A penalty strategy 

within the multi-game theory model was employed to identify malicious behavior among nodes 

through the security safeguard layer in Cognitive Radio Networks (CRN). Experimental 

evaluations were conducted to demonstrate improved resistance and stability under hostile 

scenarios. The framework exhibited enhanced efficiency in terms of decision-making, residual 

energy, and throughput ratio when compared to other benchmark models. 

In 2020, Wang et al. [72] introduced Opportunity Routing (OR) within the realm of 

"Cognitive Radio Social Internet of Things (CR-SIoT)," focusing on the integration of energy 

awareness and trust to enhance trust and social characteristics. The devised mechanism 

incorporated a unique routing metric for selecting forwarding candidates based on network 

coding and optimal stopping theory, facilitating data transmission over trusted nodes to 

generate diverse flows within the CR-IoT network. Simulation results indicated that the 

implemented secured OR protocols exhibited excellent performance when assessing factors 

such as throughput and average delay. 

In 2019, Ding et al. [73] devised two distinct user scheduling methods termed "Energy-

aware User Scheduling (EaUS) and Channel-aware User Scheduling (CaUS)." In the CaUS 
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approach, an Secondary User (SU) with the optimal SU-Small Base Station (SBS) link was 

selected for activation to establish communication with the SBS. Conversely, the EaUS method 

focused on energy harvesting through the Power Transfer (PT) and the quality of the SU-SBS 

link. The analytical findings affirmed that the EaUS approach exhibited improvements in 

secrecy and outage performance, while the CaUS approach resulted in a lower secrecy rate. 

In 2017, Zhang et al. [74] presented an enhanced solution for the resource allocation 

problem, aiming to achieve consistency across spectrum sensors and conserve the energy of 

data sensors. This solution was realized through two algorithms: the "Data Sensor Resource 

Allocation (DSRA) algorithm" and the "Spectrum Sensor Scheduling (SSS) algorithm." The 

implemented SSS algorithm estimated channels for the spectrum sensors, leading to higher 

average recognition time in the channels. Simultaneously, it observed Energy Harvesting (EH) 

dynamics and secured the transmissions of primary users. The DSRA algorithm managed 

channels, power, and time to minimize the energy consumption of data sensors. Comprehensive 

analysis demonstrated a reduction in energy consumption required for data sensors by 

effectively coordinating sustainability computations for the spectrum sensors. D. T. Hoang 

et.al. 2015 The authors first formulated the problem of the output optimization of a secondary 

consumer in a Markov decision process under attack by the jammer (MDP). Then a new 

solution was introduced based on the disappointing tactic to deal with intelligent jamming. 

Provide a secondary user learning algorithm to discover the best transmission policy and extend 

the case in the same environment to many secondary users. By simulating the analysis, the 

projected learning algorithms will effectively lessen the adverse effects of intelligent jammers 

even though they are using different attack strategies [75]. 

IoMT, CRN and Energy Harvesting research are very comprehensive and are facing 

numerous opportunities and challenges. These two critical approaches to continue improving 

wireless networks for the future generation still require further scrutiny and study. 

Literature review summary table 

Author Methodology Feature Challenges 

Wang et al. 

[16]  

 

TOT 

 

It enhances the performance 

of the data transmission and 

allows the relay packets to 

reach rapidly to the target at 

minimum cost.  

 

It is highly prone to 

various kinds of attacks 

owing to its dynamic 

spectrum availability  

 

Dhiman and 

Sharma [17]  

 

SHO 

 

It benefits in allowing 

optimum data transmission at 

the higher level of the 

network.  

It does not consider the 

channel imperfection 

effects as its constraint for 

updating the routing table.  
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Gopi 

Krishnan et 

al. [84]  

 

DEDC 

 

It minimizes energy 

consumption and enhances 

communication speed.  

 

It does not evaluate based 

on the hardware 

implementation and not 

addressed accuracy.  

 

Vimal et al. 

[85]  

 

MOACO  

 

It improves the lifetime 

parameters, residual energy, 

and network lifetime.  

 

Here, the analysis with the 

traditional models is not 

performed using the 

energy parameters in 

terms of jamming attacks.  

 

Ghose et al. 

[86]  

 

ES and EDT  

 

They strengthen the 

transmission and do not allow 

re-transmission.  

They also secure a slightly 

higher packet delivery ratio.  

They do not consider the 

effect of interference 

levels over the concurrent 

transmissions under the 

realistic channel 

scenarios.  

 

Anamalamudi 

et al. [87]  

 

CR-AODV  

 

It achieves satisfying 

throughput and network 

energy consumption and 

reduce nodes.  

 

It is limited in selecting 

the optimized energy-

efficient end-to-end 

channel route owing to 

the cognitive control 

channel saturation.  

 

Fayyaz et al. 

[88]  

 

CR-MAC  

 

It secures high throughput and 

transmission energy.  

 

It is prone to hacking and 

damage to the users.  

 

Kumar et al. 

[89]  

 

CDTM  

 

It ensures accurate prediction 

and reduces the CPU and 

bandwidth consumption 

decreasing the analysis time.  

 

It is not applicable in the 

actual healthcare field for 

examining the data.  

 

Abd El-

Malek et al. 

[94] 

Unconstrained 

PSO 

 It provides optimal energy 

transmitting power and 

ensures very less system 

outage performance 

 It does not focus on route 

selection and power 

allocation when operating 

in underlay nodes 

Joon and 

Tomar [113] 
EAQ-AODV 

It achieves less minimal time 

to transfer the data packet, and 

also it provides enhanced 

energy 

It reduces per-node 

capacity and also requires 

more energy for battery 

powered devices 

Jiang et al. 

[114] 

TCEM 

algorithm 

It is feasible and effective to 

attain high energy efficiency 

in the network for different 

destination nodes 

The transmission power 

gets varied to the entire 

node, and thus, it occurs 

the generality loss 

Banerjee and 

Maity [53] 

Fully EH 

enabled 

multi-hop 

CRN 

reduces the outage 

minimization problem with 

the consideration of relay 

It suffers from the outage 

secrecy minimization 

problem with the 
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power, source, and relay 

harvesting time. 

increasing of 

eavesdroppers 

Abu Diab et 

al. [116] 
ERCR 

It performs a very less number 

of forwarding nodes for route 

selection with a limited 

amount of energy 

It is limited while 

accessing the single 

wireless channel as the 

medium access strategy 

Cavdar and 

Güler [117] 
HyMPRo 

It provides enhanced 

performance regarding the 

throughput, end-to end 

packet delay, and packet 

delivery ratio 

It does not concentrate on 

involving the multi-path 

communication 

mechanism of the model 

to make it more flexible 

Yadav et al. 

[118] 
EACRP 

It solves both the dynamic 

spectrum and energy related 

challenges 

It faces challenges during 

the high frequency of re-

clustering owing to PU 

activities 

Feng et al. 

(2016) 
GSSD 

It successfully reduced the 

success ratio of SSDH attacks. 

It also reduces trust errors at 

the time of the low number of 

SSDH attackers. 

When the increasing 

number of misbehaving 

nodes is presented in the 

network, it also leads to an 

increase in the average 

delay. 

Nguyen et al. 

(2020) 
HSTCN 

It is effectively minimizing 

the performance gap between 

two users by modifying the 

coefficient of the power 

allocation. 

It is not evaluated the 

efficiency of the 

framework with many 

NOMA users. It suffers 

from certain factors like 

channel quality and power 

allocation ratios. 

Zhang et al. 

(2017) 

SSS and 

DSRA 

It lowers the energy 

consumption required for the 

energy sensors at the time of 

managing the sustainability of 

the spectrum sensors. 

It is not suitable for the 

environment with 

adaptive threshold 

sensors and time-varying 

energy harvesting in 

CRN. 

Ding et al. 

(2019) 

CaUS and 

EaUS 

It increases security 

performance even with the 

increasing number of primary 

and secondary users. 

It is limited to energy 

harvesting for secondary 

users. 

Tayel et al. 

(2021) 

Hierarchical 

multi-game 

scheme 

It is efficient in assuring better 

energy 

usage and also in providing 

superior 

security. 

It suffers from performing 

the beamforming and 

antenna selection. 
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CHAPTER 3 

INTELLIGENCE-BASED OPTIMIZED COGNITIVE RADIO NETWORK  

3.1 Introduction 

The Cognitive Radio (CR) structure for organizing and managing healthcare 

information transfer across the Internet of Medical Things (IoMT) network has been developed 

in this study. The proposed SR-CHGWO hybrid optimization technique aims to select cluster 

heads for the purpose of enhancing energy efficiency in cluster-based data transmission. When 

the proposed optimization algorithm is applied to the derived multi-objective function, it takes 

into account limitations like throughput, data rate, outage probability, delay, and other issues. 

This makes the IoT-based Cognitive Radio network last longer. Additionally, the computational 

complexity of the suggested algorithm is computed and contrasted with that of the traditional 

optimization algorithm across various medical datasets. 

The practical utility of IoT has garnered widespread interest among researchers. Recent 

technological progressions have resulted in a significant increase in the connectivity of devices 

to the Internet. Every day, there are a growing number of connectivity issues emerging as a 

result of the massive rise in the quantity of internet-connected devices (IoT devices). Internet 

of Things applications are currently deployed across various domains, including smart cities, 

intelligent transportation, healthcare, agriculture, and other industrial needs. Consequently, 

there will be large cost and income reductions when these IoT devices or systems are 

implemented across multiple industries. Because they are necessary for data collection, 

wireless sensor networks, or WSNs, are crucial to the Internet of Things. WSNs do, however, 

present several difficulties with regard to energy, spectrum congestion, localization, security, 

delay, and stability [76]. Because of its explosive growth, researchers are using a range of 

approaches to mitigate the problems that the Internet of Things is bringing about. One major 

issue with Internet of Things applications is spectrum band allocation. A great number of IoT 

devices need constant, everywhere communication, so the available spectrum is insufficient 

due to overcrowding in the spectral bands. To provide smooth communication between IoT 

devices, researchers are searching for new spectral bands or workable techniques. Recent IoT 

adaptations of Cognitive Radio Networks (CRN) have outperformed widely used technologies 

such as Wi-Fi, Wi-Max, Bluetooth, and others in terms of performance. These networks all use 

static techniques for allocating spectrum. 

Therefore, one of the main challenges is the emergence of opportunistic approaches for 

controlling and managing Wireless Spectrum Allocation to maximize the limited resources. 
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The sudden surge in wireless communication networks has limited spectrum resources for apps 

and their users, making it difficult to connect their interconnected products. Hence, there is a 

significant rise in demand for intelligent devices capable of adjusting their transmission 

parameters as per the spectrum availability in spatial and temporal dimensions [77]. A prime 

candidate for this purpose is Cognitive Radio (CR), characterized as an adaptive and intelligent 

radio and network technology. It autonomously scans the wireless spectrum to identify 

available channels and adjusts transmission parameters, enhancing radio operational 

performance and facilitating increased concurrent communications. On the other side, using 

unlicensed bands will make coexistence more problematic. Because of this, IoT devices needed 

additional features to get beyond interference from other apps and devices [78]. Health 

Information is prevalent in the medical business and has been growing correspondingly. For a 

more accurate diagnosis, these Health Information must be sent to medical professionals. 

Furthermore, because IoT nodes and spectrums are diverse and dynamic, designing a routing 

protocol in CR with their assistance is quite difficult. 

 

3.2 Motivation and Problem Statement 

Cognitive Radio technology has the potential to unify patient data within the healthcare 

sector, enabling its accessibility to global medical specialists. The integration of diverse health 

information from various sources not only enhances decision-making but also strengthens the 

overall medical system. Health professionals may now understand several types of Health 

Information pertaining to a patient's medical status thanks to technology [79]. Additionally, it 

gathers health information with the use of health observing equipment and transforms it into 

knowledge that medical professionals may utilize with great benefit [80]. In order to deliver 

better care, cognitive technology helps physicians make the right judgments by comparing their 

decisions with the available data. Accessing the opportunistic licensed channel in Cognitive 

Radio networks does not currently enable global control channels for broadcasting route 

control messages throughout the entire antenna beam [81]. Deafness and multi-channel 

concealed terminal issues will also result from the directed broadcast antenna beam over many 

non-overlapped legal channels. Due to the existence of large number of IoMT Devices there 

will be a spectrum congestion in the ISM band, this motivated us to search for the other 

alternate solution to go with the cognitive radio framework which utilize the spectrum 

efficiently. 
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3.3 Research contributions 

The primary objective of this research is to design and implement an energy-efficient 

cognitive radio network tailored for the efficient transmission of medical data. This involves 

the development of a hybrid optimization algorithm, with a focus on achieving optimal energy 

utilization within the network. 

To achieve efficient data transmission, the study proposes the application of the SR-

CHGWO algorithm to the cognitive radio network. The main aim is to identify and establish 

an optimum cluster head, which plays a crucial role in facilitating the effective transmission of 

health data across the network. The SR-CHGWO algorithm is expected to enhance the overall 

performance and reliability of data transmission in medical scenarios. Furthermore, the 

research aims to assess the effectiveness of the proposed algorithm by conducting a 

comprehensive comparison. Key performance metrics, including throughput, delay, energy 

consumption, outage probability, and computational complexity, will be evaluated. This 

comparative analysis will be conducted against other existing conventional optimization 

methods to gauge the superiority and efficiency of the proposed approach.  

A distributed database in the cloud contains an increasing amount of healthcare data that 

may be shared across medical professionals. Nevertheless, the massive volume of multiorgan 

zed healthcare data processing and analysis could not be supported by the current system. When 

relay packets are sent to their destination quickly and cheaply, ToT [82] improves data 

transmission performance. However, due to its fluctuating spectrum availability, it is extremely 

vulnerable to several types of assaults. Benefiting from optimal data transmission at the 

network's upper tier are explained in SHANN and SHO [83]. However, they fail to take into 

account the constraints imposed by channel imperfection while changing the routing List. 

DEDC [84] reduces energy usage and speeds up communication. Nevertheless, it ignores 

accuracy and does not assess depending on hardware implementation. The lifespan parameters, 

residual energy, and network lifetime are all improved by MOACO [85]. However, in terms of 

jamming assaults, the analysis with classic models does not use the energy parameters. By 

fortifying the transmission and preventing retransmission, ES and EDT [86] manage to achieve 

a somewhat improved packet delivery ratio. Nevertheless, they fail to take into account the 

impact of interference levels on simultaneous transmissions in practical channel settings. CR-

AODV [87] minimizes nodes while achieving acceptable performance and network energy 

usage. However, because of cognitive control channel saturation, it is constrained in choosing 

the most end-to-end energy-efficient channel path. High throughput and transmission energy 
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are secured by CR-MAC [88], yet user damage and hacking are possible. To shorten the 

analysis time, CDTM [89] guarantees precise prediction while consuming less CPU and 

bandwidth. Nevertheless, it is not useful for looking at the real-world data in the healthcare 

industry. A new model must be created taking into account these current difficulties in order 

to transmit health Information using cognitive routing protocols in the Internet of Things. 

 

3.4 IoT Cognitive Routing Framework: An Architectural Overview 

An Architectural Overview" refers to a comprehensive examination of the structural 

design and components of a cognitive routing system specifically tailored for the Internet of 

Things (IoT) environment. This framework is engineered to optimize the routing of data within 

IoT networks, considering the dynamic and diverse nature of IoT devices, applications, and 

communication patterns. 

Key components and features of the architectural overview may include: 

Cognitive Elements: Explanation of cognitive elements integrated into the routing framework, 

which may involve adaptive learning algorithms, decision-making processes, and awareness 

mechanisms. 

Routing Protocols: Overview of the routing protocols employed within the framework, 

discussing how they adapt to varying network conditions, device capabilities, and application 

requirements. 

Data Aggregation and Processing: Description of mechanisms for aggregating and 

processing IoT data efficiently, considering the distributed nature of IoT devices and the need 

for optimized information flow. 

Adaptability and Learning: Discussion on how the routing framework adapts to changes in 

the IoT environment, leveraging machine learning or cognitive computing to enhance decision-

making based on historical data and real-time conditions. 

Security Measures: Insight into the security features embedded in the architecture to 

safeguard IoT communication, addressing potential vulnerabilities and ensuring the integrity 

and confidentiality of transmitted data. 

Scalability and Flexibility: Examination of the framework's scalability to accommodate a 

growing number of IoT devices and its flexibility to support diverse IoT applications and use 

cases. 

Interoperability: Consideration of how the cognitive routing framework facilitates 

interoperability among different IoT devices, protocols, and communication standards. 
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Real-world Applications: Illustrative examples or case studies showcasing how the proposed 

cognitive routing framework can be applied in real-world IoT scenarios, with a focus on the 

medical sector or other relevant domains. 

Performance Metrics: Identification and discussion of key performance metrics used to 

evaluate the effectiveness of the cognitive routing framework, such as latency, throughput, 

energy efficiency, Hop count, Outage probability and reliability. 

Considerations such as node energy utilization, overall packet delays, and throughput 

of the network are essential for achieving this optimization. The "Common Control Channel 

(CCC)" proves valuable for robust route discovery and maintenance during packet 

transmission. The introduction of directional antennas enhances simultaneous non-interfering 

channel transmission in cognitive radio networks, minimizing node power consumption and 

improving overall throughput through spatial reuse in multi-hop communication. 

Conversely, directional antennas are crucial for reducing interference and enhancing 

throughput in IoT applications and directional cognitive control. Traditional routing protocols 

in cognitive-based IoT networks often use omnidirectional transmission for message exchange, 

leading to packet loss and route failures due to co-channel interference when handling both 

primary and secondary users. Secondary users, without licenses, access radio frequencies 

without interfering with networks, while primary users adhere to licensed frequency usage. To 

mitigate interference with primary networks, these users connect to a base station, which serves 

as a central hub for consolidating remarks and spectrum analysis findings from each CR user. 

The overall design of cognitive routing in the Internet of Things is depicted in Fig 3.1. 

The unlicensed group, representing secondary users, strategically utilizes the resources 

of licensed primary users in Fig 3.1. This strategic utilization occurs in the absence of primary 

users, ensuring efficient spectrum utilization for sensor nodes within the Internet of Things 

(IoT) network. Within this network, the cluster head plays a pivotal role in collecting sensor 

data and making use of the unused spectral bands from the primary network to transmit 

aggregated data to the base station. 

Each cluster head operates as a Cognitive Internet of Medical Things (IoMT) device, 

facilitating the transfer of data collected from sensor nodes to the central base station. This 

collective effort among cluster leaders contributes significantly to the establishment and 

operation of a cognitive radio network. In this configuration, primary users, depicted as 

licensed users, and secondary users, forming the unlicensed group, collaboratively shape the 

dynamic spectrum utilization within the IoT network. 
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Fig.3.1 Architectural Landscape of Cognitive Routing in IoT. 

 

3.5 Advanced CR Routing Solution for Efficient Health data Transmission  

The growing reliance on wireless devices has spurred an increased need for enhanced 

internet access via wireless networks. Nonetheless, challenges arise for Internet of Things (IoT) 

devices with limited battery life and applications that demand minimal delays. While some IoT 

applications can tolerate delays, there is acknowledgment that the technology holds potential 

for energy-aware cognitive radio routing protocols within multi-hop Cognitive Radio Networks 

(CRNs). Unlike battery-dependent devices, numerous IoT devices operate without energy 

restrictions, rendering them well-suited for sensitive applications like smart grids. This 

underscores the necessity for a CR routing system that effectively balances delay efficiency, 

particularly in applications of process automation, which may permit slightly longer time 

utilization. 

Recognizing the vulnerability of CRNs to network disruptions caused by a single 

device's energy depletion, Figure 2 emphasizes the imperative for an efficient cognitive routing 

protocol to address prevailing IoT-related challenges. To facilitate the streamlined transmission 

of Health Information across the network with minimal information loss or delay, a novel 

cognitive radio routing architecture for the Internet of Things has been conceived. This entails 

the application of a hybrid optimization technique for optimal cluster head selection, utilizing 

the developed SR-CHGWO. The selection process takes into account of multi-objective 

limitations, including throughput, energy consumption, data rate, outage probability, and delay. 
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This comprehensive approach contributes to the effective transfer of medical data, improving 

the performance of health data transmission by minimizing power and delay throughout the 

Internet of Medical Things (IoMT) network. Ultimately, this aids in extending the network's 

lifetime and mitigating transmission delays. 

 

3.5.1 Description of Health Information  

In order to transmit medical data, the suggested energy efficient routing method gathers 

health information from three distinct datasets and they are described below. 

The first medical dataset, referred to as 'Diabetes Dataset' (Dataset 1), consists of diabetic 

diagnosis data from female patients under the age of 21 years. It includes 768 instances and 

encompasses more than 8 classes, providing a detailed description of the patient's diabetic 

condition. 

The second dataset, named 'Heart Disease Dataset' (Dataset 2), comprises a total of 76 

properties, with only 14 of them utilized in published studies. The 'target' field indicates the 

patient's cardiac condition, with 0 denoting no illness and 1 denoting the presence of disease. 

The third dataset, titled 'Indian Liver Patient Records' (Dataset 3), is derived from 416 liver 

patient records and 167 records from individuals without liver disorders. The dataset 

categorizes them into 2 groups: non-liver patient’s, liver patients. 

 The links for the data sets are given as mentioned below. 

Dataset1: https://www.kaggle.com/datasets/mathchi/diabetes-data-set  

Dataset2: https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-models  

Dataset3: https://www.kaggle.com/datasets/uciml/indian-liver-patient-records  

  

https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.kaggle.com/code/vbmokin/heart-disease-automatic-adveda-fe-20-models
https://www.kaggle.com/datasets/uciml/indian-liver-patient-records
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Fig.3.2 Flow of CR Routing protocol within the IoT network. 

3.5.2 Cluster Head selection  

Utilizing the proposed SR-CHGWO algorithm, clustering emerges as a recognized 

technique for enhancing the longevity of wireless communication networks. This method 

involves organizing sensor nodes into clusters, with the algorithm determining the optimal 

cluster heads. Once formed, each cluster, under the direction of its cluster head, establishes a 

designated timeframe for receiving data packets from various nodes within the cluster. The 

primary responsibility of each cluster head is to collect data packets from every node within 

the cluster. 

Following data aggregation, if all nodes successfully receive all the data packets, CH 

node transmits the Health Information to the PU base station. This process undergoes several 

iterations of data transmission and re-clustering until all nodes are terminated. In cases where 

the cluster size falls below the expected threshold, clusters are merged with nearby clusters, 

effectively reducing the overall number of clusters. Simultaneously, as the number of nodes in 
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the physical realm decreases, there is a proportional reduction in the volume of transmitted 

information.  

 

3.5.3 Proposed Algorithm and its Description  

To achieve energy-efficient transmission of Health Information in the Internet of Things 

(IoT) through Cognitive Radio (CR), a hybrid version of the SR-CHGWO algorithm [90] is 

employed for cluster head selection. In this context, the Grey Wolf Optimizer (GWO) is chosen 

due to its ability to overcome local optima problems and minimize searching dimensions, 

enhancing convergence rates. However, GWO has limitations in addressing local searches and 

accuracy issues. To mitigate these concerns, the decision is made to integrate SR-CHGWO 

with the Comprehensive Harmony Search (CHIO) algorithm. CHIO is specifically applied to 

resolve the early convergence problems. The proposed SR-CHGWO demonstrates enhanced 

performance in Health Information transmission within CR based IoT applications. Calculation 

of the spreading rate in CHIO will be facilitated through the fitness-based methodology 

presented in Eq. (3.1) within the proposed SR-CHGWO, ensuring more effective and accurate 

results. 

  𝑆𝑝𝑟 =
𝑏𝑒𝑠𝑡𝑓𝑖𝑡

𝑚𝑒𝑎𝑛𝑓𝑖𝑡
                 (3.1) 

The parameters 'mean fit' and 'best fit' in the above equation denote the average of fitness and 

best value of the fitness for the solution, respectively. The Spr (spreading rate parameter) is 

employed to ascertain the update of the position. The position is updated using the CHIO 

algorithm if (Spr > 0.5); otherwise, it is updated using the GWO. 

 CHIO [91] draws inspiration from the observation of herd immunity, a mechanism 

known for halting the spread of the coronavirus pandemic. The CHIO process involves two 

distinct sets of parameters: control and algorithmic. Under control parameters, the spreading 

rate (basic reproduction rate) Spr, representing the rate of virus transmission from one 

individual to another, is calculated using Eq (3.1). The Maximum Age (MA) is simultaneously 

calculated to determine the status of an affected individual based on their infection age. 

Moving to algorithm variables, initially affected individuals are represented by A0 and 

maximum number of iterations is denoted as MXit, and the herd immunity population is 

denoted by Hps. In this context, optimum solution for CHIO is obtained by adhering to the 

following three rules outlined in Eq. (3.2) [21]. 
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  𝑥𝑥0
𝑏(𝑖𝑡 + 1) ←

{
 
 

 
 

𝑥𝑥0
𝑏(𝑖𝑡) 𝑟𝑟 ≥ 𝑆𝑝𝑟 ⬚

𝐴 (𝑥𝑥0
𝑏(𝑖𝑡)) 𝑟𝑟 <

1

3
× 𝑆𝑝𝑟 // 𝑖𝑛𝑓 𝑒 𝑐𝑡𝑒𝑑𝑐𝑎𝑠𝑒

𝑀 (𝑥𝑥0
𝑏(𝑖𝑡)) 𝑟𝑟 <

2

3
× 𝑆𝑝𝑟 //𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒𝑐𝑎𝑠𝑒

𝑄 (𝑥𝑥0
𝑏(𝑖𝑡)) 𝑟𝑟 < 𝑆𝑝𝑟 //𝑖𝑚𝑚𝑢𝑛𝑒𝑐𝑎𝑠𝑒

 3.2) 

 In this context, the term ' ( )itxxb

0  ' represents herd immunity solution, where the decision 

parameter is set to ‘0’ with solution 'b' at the present iteration. The Status vector Sv undergoes 

variation in these 3 cases. For the infected scenario, the Sv is assigned a value of 1, while it is 

set to 0 for susceptible cases. For the immune case, the Sv will be updated according to the 

fitness value. Subsequently, rate of fatality is examined to determine the number of deceased 

and immune persons. The iteration is concluded when the population under herd immunity 

exclusively comprises immune or susceptible cases, with no instances of infection. 

GWO [92] is formulated based on the hunting tactics observed in grey wolves, characterized 

by a four-tiered prevailing social order. The hunting habits of the grey wolf is delineated into 

three distinct phases: "tracking, chasing, and approaching the prey," followed by "pursuing, 

encircling, and harassing the prey until it stops moving," and ultimately culminating in "attacks 

towards the prey." The levels of wolves in the hierarchy, namely alpha, beta, omega, and delta, 

are respectively denoted by ,α ,β ,δ and ω . The encircling behavior of grey wolves as they 

pursue prey for sustenance is mathematically expressed in Eq. (3.3). 

  𝐸𝑝
→

= |�⃑�𝑖 ⋅ �⃑⃑�𝑢𝑝(𝑦) − �⃑⃑�𝑢(𝑦)|               (3.3) 

   �⃑⃑�𝑢(𝑦 + 1) = �⃑⃑�𝑢𝑝(𝑦) − �⃑� 𝑡 ⋅ 𝐸𝑝
→

              (3.4) 

In this scenario, the current iteration is symbolized by y , the grey wolf's location is denoted 

as uY


 , and the prey's location is identified as puY


 . Coefficient vectors, represented by iF


 and 

tB


 , are provided. The identification of the prey's location includes the utilization of three 

positions from the most effective search agents, subsequently used to update the grey wolf's 

position based on equation (3.5). 

  �⃑� 𝑢(𝑦 + 1) =
�⃑� 𝑢1+�⃑� 𝑢2+�⃑� 𝑢3

3
                                      (3.5) 

  �⃑� 𝑢1 = �⃑� 𝑢𝛼 − �⃑� 𝑝1 ⋅ (�⃑� 𝑝𝛼), �⃑� 𝑢2 = �⃑� 𝑢𝛽 − �⃑� 𝑝2 ⋅ (�⃑� 𝑝𝛽), 

  �⃑� 𝑢3 = �⃑� 𝑢𝛿 − �⃑� 𝑝3 ⋅ (�⃑� 𝑝𝛿)                            (3.6) 

Here, �⃑� 𝑢(𝑦 + 1) term  shows the updated location of the grey wolf. Thus, the optimal 

solution is obtained. The various steps involved in the  SR-CHGWO are summarized. 
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Fig.3.3 Flow chart of the proposed SR-CHGWO 
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Algorithm for SR-CHGWO 

 
 

3.5.4 Multi Objective Optimization function 

 

Multi-objective optimization (MOO) is a technique used to optimize two or more 

conflicting objectives simultaneously. It involves finding a set of solutions that optimize one 

objective without compromising the optimization of the other objectives. In MOO, these 

solutions are often represented as a set of non-dominated points in a high-dimensional space, 

known as the Pareto front. 

Once the Pareto front is generated, the decision-maker can choose the best solution based 

on their preferences and requirements. For example, if the company is willing to pay a higher 

cost for better performance, they can select a solution that lies on the Pareto front closer to the 

performance axis. Conversely, if the company wants to minimize the cost, they can select a 

solution that lies on the Pareto front closer to the cost axis. 

Multi-objective optimization is a powerful technique used to solve complex problems that 

involve multiple conflicting objectives. By finding the set of non-dominated solutions, MOO 

allows decision-makers to make informed trade-offs between the objectives and select the 

optimal solution that best meets their needs. 
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The suggested Health Information transmission approach in the Internet of Things (IoT), 

employing CR (Cognitive Radio), is executed through the devised SR-CHGWO. This method 

is employed to identify the most efficient route for sending the  data from source to the target 

nodes. The optimization process considers multiple objectives, encompassing " throughput 

energy consumption, Network delay , data rate and outage probability." The primary objective 

of the proposed routing protocol is formally defined in Eq.(3.7) 

  𝐵𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛
{𝐶𝐻𝑜}

(𝑓7)                (3.7) 

The designated cluster head in the context of Health Information transmission is denoted as 

CHo, facilitated by the innovative SR-CHGWO. The attainment of objective f7 is determined 

by the equations outlined below. These equations are derived from the reference [93] and are 

employed for the purpose of selecting the cluster head. The above function is a minimization 

function. Cluster Head is selected in such a way that it minimizes the objectives defined by 

equation 3.7. 

  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤 ∗ 𝑔1 + (𝑤 − 1) ∗ 𝑔2            0 < 𝑤 < 1 

Where 𝑔1 and 𝑔2 are the objective constraints, and w is the weighing factor distributed 

among two constraints 𝑔1and 𝑔2. 

  𝑓 = 𝑃 ∗ (
1

𝑑𝑖𝑠
) + (1 − 𝑃)*en                (3.8) 

  𝑓1 = 𝑄 ∗ 𝑓 + (1 − 𝑄) ∗ (
1

𝑑𝑖𝑠
)                (3.9) 

  𝑓2 = 𝑅 ∗ 𝑓1 + (1 − 𝑅) ∗ (𝑒𝑛)              (3.10) 

  𝑓3 = 𝑆 ∗ 𝑓2 + (1 − 𝑆) ∗ (𝑡ℎ𝑟)               (3.11) 

  𝑓4 = 𝑇 ∗ 𝑓3 + (1 − 𝑇) ∗ (𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒)             (3.12) 

  𝑓5 = 𝑈 ∗ 𝑓4 + (1 − 𝑈) ∗ (𝑃𝑤𝑟)             (3.13) 

  𝑓6 = 𝑄1 ∗ 𝑓5 + (1 − 𝑄1) ∗ (
1

𝑂𝑝𝑟
)             (3.14) 

  𝑓7 = 𝑄2 ∗ 𝑓6 + (1 − 𝑄2) ∗ (
1

𝑑𝑒𝑙𝑎𝑦
)             (3.15) 

  

 The preceding equations were deduced from the principles of multi-objective optimization, 

utilizing both minimization and maximization functions. In this context, the value (P) and the  

value (Q) are set to 0.2. Additional constraints, such as R, S, T, U, Q1, and Q2, are consistently 

established at fixed values of 0.1 each.  
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3.5.4.1 Description of Objective Constraints 

The following paragraph elucidates the specified limiting factors, such as " throughput 

energy consumption, Network delay , data rate and outage probability" that pertain to the stated 

objectives. 

Energy, denoted as 'en,' is obtained by calculating the average energy level present in a live 

node at the end of the experiment. As given in Eq. (3.16). 

  𝑒𝑛 = 𝑒𝑛𝑛𝑗 − (𝑒𝑖𝑛𝑗
𝑐𝑠 + 𝑒𝑖𝑛𝑗

𝑠ℎ)              (3.16) 

In this context, the energy utilized during data collection is represented as 𝑒𝑖𝑛𝑗
𝑐𝑠 , the energy 

of any node nj is denoted as ennj, the energy used for  the transmission of data is expressed as 

𝑒𝑖𝑛𝑗
𝑠ℎ. Equation (3.17) represents distance (dis) between the source and the target nodes. 

  𝑑𝑖𝑠 = √∑ (𝐴𝑖𝑎𝑛 − 𝐴𝑗𝑎𝑛)2
𝑀
𝑚=1              (3.17) 

Here, the Originating node is represented as 𝑛𝑑1 = (𝐴𝑖1, 𝐴𝑖2, … 𝐴𝑖𝑎𝑛) while the sink node is 

expressed as 𝑛𝑑2 = (𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗𝑎𝑛). 

Throughput (𝑡ℎ𝑟) refers to the rate of successful message delivery or data transfer over the 

network within a specified timeframe. It is a measure of the amount of data transmitted 

successfully from source to destination nodes.” which is indicated in Eq. (3.18). 

  𝑡ℎ𝑟 =
∑(𝑃𝑖𝑠𝑐∗𝑎𝑃𝑠𝑧)

𝑡𝑚𝑒
               (3.18) 

The term 𝑎𝑃𝑠𝑧 denotes the average packet size and 𝑃𝑖𝑠𝑐 indicates the successful packets count. 

Delay (𝑑𝑒𝑙𝑎𝑦) is computed by evaluating the propagation and transmission delay within the 

packets as indicated in Eq. (19). 

  𝑑𝑒𝑙𝑎𝑦 =
𝑚𝑎𝑥∑ 𝑆𝑃𝑘

𝐾
𝑘=1

𝑛𝑗
               (3.19) 

Term 𝑚𝑎𝑥∑ 𝑆𝑃𝑘
𝐾
𝑘=1  represents data sent between base station and sensor node; node count in 

the network is indicated as 𝑛𝑗. 

Data rate (𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒) is defined as “the amount of data sent during a specified time interval 

over a network. It is the speed at which data is transferred from one device to another”.  

Transmit power control Pwr, serves as a technical mechanism implemented in certain 

networking devices to mitigate excessive interference between distinct wireless networks, such 

as the owner's network and neighboring networks. This functionality is crucial, especially in 

the deployment of cognitive radio networks operating in a distributed fashion. 
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Outage probability Opr in cognitive radio networks refers to the probability of the 

communication link falling short of predefined thresholds. In the dynamic spectrum access 

environment of cognitive radio, outage probability is frequently associated with the chance of 

being unable to locate appropriate spectrum bands for communication due to issues like 

interference, limited spectrum availability, or environmental factors. This metric quantifies the 

likelihood of either a communication link experiencing difficulties in sustaining a dependable 

connection or achieving desired quality of service benchmarks within a specified timeframe. 

Table 3.1. Parameters and their description 

 

3.6 Results and discussions 

3.6.1 Experimental Configuration 

The CR-based Health Information transmission network, as outlined in this study, is 

deployed within a 100m × 100m environment using MATLAB 2021a. The experiment involves 

a population size of 10 individuals undergoing 100 iterations. To evaluate the effectiveness of 

the proposed SR-CHGWO method, a comparative analysis is conducted against established 

heuristic algorithms, including Particle Swarm Optimization (PSO) [94], Jaya Algorithm (JA) 

[95], Grey Wolf Optimizer (GWO) [92], and CHIO [91]. This comparison aims to assess the 

Parameter Description 

Spr Spreading Rate 

rr Basic Reproduction Rate 

A0 Initial Population 

A(xxb
o (it)) 

Herd immunity solution (infected case) 

First solution (status vector sv=0 or 1) 

it Iteration count (maximum =100) 

Q (xxb
o (it)) Immune case solution (2nd best solution) 

M(xxb
o (it)) Susceptible case solution (third best solution) 

en Average energy in the live node 

dis Distance among the source and destination 

thr Throughput 

Delay  Propagation delay 

Opr Outage Probability 

pwr Transmit power control 
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efficiency of the devised approach in facilitating reliable Health Information transmission. The 

simulation parameters of the cognitive radio network are summarize in table 3.2. 

Table 3.2 Simulation Parameters 

Parameter Value 

Network Dimension 100mX100m 

No of secondary Nodes 50,100,150 

Node Deployment Random 

Path loss exponent 2 

Initial Energy of the node 0.3 Joule 

 Transmitter/ receiver energy (ETx and ERx) 50 pJ 

Data Aggregation Energy 5pJ 

Population Size 10 

Number of Iterations 100 

 

3.6.2 Cost function Observations with Varied Node Counts 

Dataset-1: The evaluation of the IoMT-based Health Information transmission system 

incorporating CR technology involved an analysis with an increased iteration count, reaching 

up to 100, as depicted in Fig.3.4 Examining the cost function across three different node 

scenarios, the developed method demonstrated enhanced performance specifically at a node 

count of 50 compared to the other two node analyses. Notably, the minimum cost function was 

achieved at the 40th iteration and further reduced to the lowest value when compared to 

alternative algorithms at the 100th iteration. Consequently, it is affirmed that the proposed 

Health Information transmission approach for IoMT devices, utilizing cognitive routing 

strategies, exhibits effective performance without encountering interference. 
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Fig. 3.4(a) Convergence analysis (Dataset-1) with 50 Nodes 

 

Fig. 3.4(b) Convergence analysis (Dataset-1) with 100 Nodes 

 

 

Fig. 3.4(c) Convergence analysis (Dataset-1) with 150 Nodes 
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Dataset-2: The assessment of the devised CR routing protocol involves a comparison with 

traditional algorithms by varying the iterations using dataset 2, as illustrated in Fig.3.6. Notably, 

the devised SR-CHGWO exhibits superior performance against other algorithms such as PSO, 

JA, GWO, and CHIO, as evidenced by the analysis conducted with a node count of 50. 

Additionally, when evaluating the proposed model with 100 nodes, it demonstrates excellent 

performance within the iteration range of 80 to 100. This observation underscores the improved 

performance of the suggested method as the iteration count increases. 

 

Fig.3.5(a) Convergence analysis (Dataset-2) with 50 Nodes 

 

 

Fig.3.5(b) Convergence analysis (Dataset-2) with 100 Nodes 
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Fig. 3.5(c) Convergence analysis (Dataset-2) with 150 Nodes 

 

Dataset-3 :The suggested cognitive routing in IoMT for Health Information transmission is 

compared with the baseline algorithms like PSO, JA, GWO and CHIO for understanding the 

effectiveness of the proposed model that is described in Fig.3.7. The number of 50, 100, 150 

nodes are given into analysis that shows when the number of 100 nodes is provided into the 

network, efficient performance is observed, in which cost function minimization is attained 

through all the iterations. 

 

 

Fig.3.6 (a) Convergence analysis (Dataset-3) with 50 Nodes 
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Fig.3.6 (b) Convergence analysis (Dataset-3) with 100 Nodes 

 

 

Fig.3.6 (c) Convergence analysis (Dataset-3) with 150 Nodes 

 

3.6.3 Performance analysis of the proposed Algorithm  

Dataset-1: Utilizing the developed SR-CHGWO for Health Information transmission to ensure 

effective communication is depicted in Fig. 8. The analysis table presented unveils notable 

advantages in the proposed model, showcasing power consumption percentages that are 6.7%, 

4.50%, 7.13%, and 4.30% lesser than those of PSO, JA, GWO, and CHIO respectively. 
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Furthermore, in terms of time requirements, the proposed model demonstrates significantly 

reduced durations for Health Information transmission compared to alternative algorithms. The 

computation complexity of the proposed algorithm, evaluated in simulation time, is observed 

to be 7.88% lower than that of JAYA. Consequently, these findings affirm the greater 

performance of the suggested method against other algorithms. 
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(g) 

Fig. 3.7 Performance analysis of the algorithm (Dataset-2) in terms of “(a) throughput, (b) time delay, (c) data 

rate, (d) energy consumption, (e) node power, (f) outage probability and (g) Computational Complexity”  

 

Dataset-2: The cognitive routing in the IoMT network, based on the developed SR-CHGWO, 

undergoes analysis using dataset 2, addressing various parameters such as data rate, node 

power, time consumption, outage probability, and throughput, as illustrated in Fig.3.9. Notable 

improvements in throughput are evident, surpassing conventional techniques by 6.60%, 7.80%, 

5.30%, and 7.40% when compared to PSO, JA, GWO, and CHIO respectively. The 

computation complexity of the proposed algorithm is assessed and found to be 3.11% lower 

than that of GWO. Furthermore, across all analyses conducted on dataset 2, the performance 

of the proposed method demonstrates enhancement when contrasted with existing algorithms. 
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(g) 

Fig. 3.8 Performance analysis of the algorithm (Dataset-2) in terms of “(a) throughput, (b) time delay, (c) data 

rate, (d) energy consumption, (e) node power, (f) outage probability and (g) Computational Complexity”  

 

Dataset-3: The evaluation of the SR-CHGWO for Health Information transmission involves a 

comparative analysis with established algorithms, including PSO, JA, GWO, and CHIO, based 
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on dataset 3, as depicted in Fig.3.10. The assessment aims to showcase the efficiency of the 

developed routing technique by conducting node analyses at 50, 100, and 150. In this 

comparison between the proposed and conventional algorithms, SR-CHGWO consistently 

demonstrates proficient performance in transmitting Health Information through IoMT 

devices, proving to be more effective than the established algorithms. 
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(g) 

Fig. 3.9 Performance analysis of the proposed algorithm (Dataset-3) in terms of “(a) throughput, (b) time delay, 

(c) data rate, (d) energy consumption, (e) node power, (f) outage probability, and (g) Computational 

Complexity”  

 

Comparative analysis of various parameters on the proposed algorithm (Dataset-1) 
 

 Data Rate Energy Cons. Throughput OutP Sim.T. 

50 nodes 4.8 Mbps 4.0x10-4 J 0.76 b/s/Hz 0.177 45.82 

100 nodes 9.6 Mbps 3.6 x10-4 J 0.63 b/s/Hz 0.161 175.89 

150 nodes 14.4 Mbps 2.9 x10-4 J 0.72 b/s/Hz 0.133 435.82 

 

 

Fig. 3.10 Comparative analysis of the proposed algorithm in terms of (a) Data rate (b)Throughput and (c) 

Simulation Time 

 

3.7 Conclusion 

Implemented in this study is a cognitive routing protocol within IoT, utilizing the 

suggested SR-CHGWO for efficient Health Information transmission. The selection of cluster 

heads, crucial for effective data transmission, is conducted with the proposed SR-CHGWO, 

considering multi-objective constraints such as "distance, energy, throughput, data rate, outage 
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probability, and delay." These constraints are instrumental in ensuring data transmission in the 

IoMT network without delays or interference. Evaluation of the proposed SR-CHGWO 

confirms its superiority, exhibiting enhancements of 42.50%, 27.18%, 33.16%, and 20.30% 

compared to PSO, JA, GWO, and CHIO, respectively, in node power analysis. This 

underscores the effectiveness of Health Information transmission through cognitive routing in 

IoT, as facilitated by the proposed SR-CHGWO. Additionally, simulation results highlight the 

superior computational complexity of the proposed algorithm when compared to traditional 

optimization methods. 
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CHAPTER 4 

ENERGY HARVESTING BASED CRSN 

Due to the rapid growth in the number of interconnected IoT devices worldwide, data 

transmission capability of the IoT sensor nodes alternately can be termed as wireless sensor 

nodes suffer from spectrum congestion problems due to limited ISM bandwidth. To address the 

spectrum crunch issues a new technology needs to be integrated which leads to a new 

technology named as cognitive radio based IoT. CR node in IoT continuously monitors the 

surrounding environment to sense and occupy the available vacant channel for the transmission 

of the data. Due this CR nodes poses energy efficiency issues which reduces the lifetime of the 

network drastically. In recent research history Energy Harvesting methods took a drastic 

advancement in its technological design methodologies with greater amount energy conversion 

efficiency. In this research work we aim to integrate EH methods with CRSN to prolong the 

lifetime of the network to transmit the large medical data collected by IoMT devices. 

 

4.1 Introduction 

Energy harvesting emerges as a dominating technology in the context of future 

generation wireless networks, such as Internet-of-Things (IoT) and other wireless networks. 

These networks face challenges associated with the limited size of connected devices, which 

necessitate fulfilling their energy requirements through harvesting techniques, especially via 

Radio Frequency (RF) links, to overcome constraints imposed by restricted battery storage 

capabilities [96]. Thus, the development of wireless networks incorporates energy transmission 

antennas or nodes that serve the dual purpose of transmitting both data and energy, playing a 

crucial role in the evolution of communication systems. This concept is embodied in the Hybrid 

Base Station (HBS), where nodes possess the capability of both data and energy transmission, 

as well as reception [97, 98]. The merits of energy harvesting approaches are particularly 

evident in environments characterized by substantial interference. Cognitive Radio (CR) 

networks offer valuable solutions by facilitating the co-existence of Secondary Users (SUs) 

and Primary Users (PUs) within the RF spectrum [99]. Commonly employed paradigms in CR 

networks involve ensuring that SU networks can transmit data concurrently with PUs while 

adhering to specified PU interference constraints [100]. 

The integration of recently developed technologies, such as CR and energy harvesting, 

leads to improved use of available RF sources, encompassing both RF-transmitted energy and 

the RF spectrum [101]. Advances in pattern recognition and multimedia-based medical 
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technologies contribute significantly to daily life through innovations like smart hospitals, 

smart medical facilities, and smart clinics, particularly in the realms of health monitoring and 

disease diagnosis. However, communication networks supporting these innovations encounter 

numerous challenges. The incorporation of CR networks, guided by emerging technologies, 

facilitates the resolution of these challenges by forming clusters to track node information 

[102]. 

CR's adaptability within wireless technologies allows for dynamic spectrum access by 

modifying optimal parameters based on the working environment [103]. It supports various 

technologies to initialize wireless adaptability, emphasizing adaptability and reconfigurability's 

characteristic features [104]. CR functionality addresses the transmitter's requirements in terms 

of agility and flexibility, enabling adjustments to radio parameters to achieve spectrum goals, 

sensing needs, and environmental state considerations [105]. Sensing becomes crucial for 

devices to assess transmitter parameters, considering RF environment knowledge. Networks 

with sufficient capacity are essential for learning and adapting patterns according to working 

nature, environmental conditions, and improving pre-coded algorithms' performance through a 

learning approach [106]. CR facilitates interactions between two non-CR platforms 

independently, fostering interoperability across diverse platforms without centralized control. 

Given the evolving demands in spectrum usage, spectrum policymakers find appropriate 

solutions to ensure spectrum security [107]. 

Simulation research indicates that various licensed users share the spectrum during idle 

periods, prompting the exploration of unlicensed user access to these idle spectrums within 

licensed bands [108]. These approaches exhibit dynamic behaviors in spectrum access, 

introducing flexibility to the network [109]. Multiple access methods can be deployed in 

regions where higher-level transmissions occur within the same band. An essential challenge 

in this context is energy harvesting, which can significantly impact network stability and 

lifetime [110]. Scalability becomes a critical consideration as the network accumulates a 

substantial number of nodes [111]. 

 

In Cognitive Radio (CR) networks, enhancing network performance requires careful 

monitoring of broadcast communications [112]. This monitoring process can have adverse 

effects, such as insufficient energy supply to sustain operational parameters across all nodes. 

In CR networks, energy harvesting, and scalability are often recognized as highly challenging 

aspects, necessitating the design of an improved Cognitive Radio Sensor Network (CRSN) 

routing protocol that incorporates energy harvesting through optimization algorithms. 
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Below are the key contributions of the energy harvesting-based Cognitive Radio Sensor 

Network (CRSN) that has been developed. 

• Implementing an optimized energy harvesting scheme with a hybrid strategy to ensure 

seamless medical data transmission without interference or information loss on IoMT 

devices. 

• Designing a hybrid heuristic technique, HCSEHO, for efficient energy harvesting in 

CR networks by selecting the optimal cluster head from source to destination nodes, 

ensuring effective medical data transmission. 

• Assessing the effectiveness of the developed Cognitive Radio Sensor Network (CRSN) 

in the Internet of Medical Things (IoMT) framework through comparison with 

conventional approaches across various objectives. 

In summary, the study focuses on optimizing energy harvesting in IoMT devices, designing 

a hybrid heuristic technique for efficient energy harvesting in Cognitive Radio Sensor 

Networks, and evaluating the effectiveness of the developed approach compared to 

conventional methods. 

 

4.2 Problem statement 

Recently, the CR networks have focused on leveraging scattered data related to 

spectrum allocation, routing, dynamic spectrum access, and spectrum sharing. However, the 

CR network lacks emphasis on energy consumption and fails to deliver consistent performance. 

Therefore, the CSRN has been developed to offer effective routing in wireless transmission. 

The Multi Objective Ant Colony Optimization [23] method is employed to enhance residual 

energy and prolong network lifespan. However, it lacks superior performance in evaluating 

energy properties and exhibits increased complexity during the execution of jamming assaults. 

Unconstrained PSO [94] prioritizes optimal energy transmission power and low system outage 

performance, however it does not provide sufficient attention to route selection and power 

distribution in underlay nodes.  

The EAQ-AODV [113] method is used to improve network energy and minimize data 

packet transmission time. Nevertheless, this technique increases energy consumption for 

battery-operated devices and reduces per-node capacity utilization. For various destination 

nodes, the TCEM algorithm [114] shows to be a workable and efficient way of achieving great 

energy productivity in the overall network. Nevertheless, the network forfeits generality as a 

result of the variance in power transmission throughout each node. The problem of outage 
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reduction is tackled by the Fully EH-enabled multi-hop CR Network (CRN) [115], which 

considers relay power, source, and relay harvesting time. However, it fails to take into 

consideration the issue of outage secrecy minimization when the number of eavesdroppers 

rises. ERCR [116] selects a route with a low amount of energy requiring a very small number 

of forwarding nodes. As a result, it is restricted while using the medium access method to 

access the specific wireless channel. Improved performance in terms of throughput, packet 

delivery ratio, and end-to-end packet latency is offered by HyMPRo [117]. However, it does 

not focus on the model's multi-path communication to increase its flexibility. The dynamic 

spectrum and energy-related problems are resolved by EACRP [118]. However, difficulties 

arise because of the frequent re-clumping caused by PU actions.  

Sensor nodes operate in an unattended environment and hence sensor nodes become 

useless when their battery is depleted. It is important to note that although there is a lot of radio 

frequency (RF) energy available everywhere, it has a low power density. Energy 

harvesting allows electronics to operate where there's no conventional power source, 

eliminating the need to run wires or make frequent visits to replace batteries. 

 

4.3. Energy Harvesting based CR Routing  

4.3.1 Proposed model and its description 

Wireless energy harvesting is emerging as a technology allowing devices to integrate 

with necessary hardware to extract energy from various sources such as radio frequencies, 

thermoelectric, and solar devices. Recently, researchers have shown a keen interest in energy 

harvesting through RF devices in wireless networks. While IoT technology benefits from 

wireless energy harvesting, the batteries of IoT devices [119] often face challenges of frequent 

replacement or recharging. Utilizing smart wireless energy harvesting approaches in wireless 

devices can significantly improve network lifetime compared to traditional battery usage. 

Cognitive Radio (CR) adds another layer of flexibility by enabling channel switching or 

assigning Secondary Users (SUs) to utilize licensed frequency bands. This energy harvesting 

presents a promising solution for conventional wireless communication devices. 

In a CR network, Spectrum Users (SUs) detect spectrum holes through spectrum 

sensing, efficiently transmitting information and energy during the specified phase. However, 

during PU activation in the transmission phase, SUs are restricted from interaction to enhance 

service quality for licensed PUs and reduce interference effects.  

In an energy harvesting-based Cognitive Radio (CR) network, mobile devices, often 

referred to as Secondary Users (SU), are equipped with the capability to harvest energy from 
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Radio Frequency (RF) signals. These RF signals can originate from either the Primary User 

(PU) transmitter or the base station within the network. The goal is to make optimal use of the 

PU's signal, and this is achieved through the transmission of both information and harvested 

energy to both PU and SU. 

The process involves the efficient utilization of the PU's signal, where information and 

energy harvesting occur simultaneously. The information is transmitted using the information 

power, while wireless transfer methods are employed to convey both information and harvested 

energy to both the PU and SU within the network. This integration of energy harvesting with 

CR technology enables mobile devices to sustain their operations by harnessing energy from 

the surrounding RF signals, thereby contributing to the overall efficiency and sustainability of 

the CR network. 

A new energy harvesting-based Cognitive Radio Sensor Network (CRSN) is developed 

for medical data transmission, as depicted in Fig. 4.1. The routing in this CRSN is specifically 

designed to transmit medical data, focusing on enhancing energy harvesting and minimizing 

delay in the network's data transmission performance. Addressing issues in medical data 

transmission over Cognitive Radio Sensor Networks (CRSN), a heuristic strategy named 

HCSEHO is developed. This strategy aims to enhance efficacy by selecting the best cluster 

head among all nodes during data transmission. However, the cluster head selection process 

may lead to reduced energy, potentially causing alive nodes to be mistakenly considered in a 

dead state. To resolve this, the proposed model tackles the alive nodes problem by initially 

setting the harvesting energy to 0.2 for data transmission. When the normalized energy falls 

below a specified threshold, the node's energy is replenished from the harvesting energy, 

effectively recovering nodes from a potentially erroneous dead state and facilitating efficient 

data transmission. Therefore, the routing protocol devised for Cognitive Radio Sensor 

Networks (CRSN) contributes to improved energy harvesting and extended network lifespan 

during the transmission of medical data, ensuring minimal delay. Subsequently, a multi-

objective function is executed, considering constraints such as distance, energy harvesting, 

throughput, hop count, data rate, power, outage probability, and delay, with the aim of 

enhancing overall performance. 
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Fig. 4.1 Diagrammatic representation of designed EH-CRSN framework 
 

 

4.3.2 Energy Harvesting model 

The Energy Harvesting (EH) model entails a fixed Single User (SU) source equipped with 

multiple antennas (𝑀𝑡) associated with a Primary User (PU) pair [120]. The Hybrid Base 

Station (HBS) is responsible for energy transmission via antenna ‘f’ and acquiring data from 

the SU with antenna ‘e’. Additionally, the SU adopts a spectrum-sharing paradigm for energy 

harvesting, ensuring that the total power for both energy and data transmissions remains below 

the achievable interference limit 𝑅𝑄 of the PU. The SU source operates with a limited battery 

storage capacity, necessitating the harvesting of sufficient energy from both the PU and Hybrid 

BS networks to facilitate the data transmission. The energy �̑�𝐸𝑆, established at the SU's starting 

point in the preceding time slot before data transmission, is computed using Eq, (4.1). 

  �̑�𝐸𝑆 = 𝜐(𝑄𝑃𝑇‖𝑓𝑇𝑆‖
2 + 𝑄𝐸‖𝑖𝐸𝑆‖

2)               (4.1)

  .  indicates the Frobenius norm of the vectors.      

XYf , XYi are the channel along the two nodes X  and Y  both PU and SU respectively.  

PTQ  indicates PU transmitter power and EQ  indicates the available harvesting energy over the 

hybrid BS.  
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 The efficiency of harvesting energy is represented by the coefficient 𝜐 at time slot T 

(0 ≤ 𝜐 ≤ 1). If the total energy of a node is above a defined threshold ER̂ , then SU will perform 

data transmission. If  �̂�𝐸𝑆 > �̂�𝐸  then SU will be allowed for data transmissions over the 

network. If EES RR ˆˆ   then the system aborts the SU data transmission. Here a“piece-linear 

energy harvesting model” is incorporated due to its simplicity.    

Further it is assumed that the Hybrid BS (HBS) is regarded as lacking current information 

after the energy harvesting from Secondary Users (SU) to provide ample energy for data 

communication. If EES RR ˆˆ  , the SU provides enough power for data transmission towards the 

HBS receiving antenna f  with power TQ by considering the constraint QR .Therefore, the 

deduction is drawn that the influence of Secondary User (SU) transmission results from two 

types of interference signals affecting the Hybrid Base Station (HBS). The first type is the "Co-

Channel Interference (CCI)" signal impacting the transmission from the Primary User (PU) to 

'e'. The second cause is self-interference affecting the transmitting antenna 'f' from the HBS. 

To mitigate this, approaches like "Self-Interference Cancellation (SIC)" can be employed. The 

energy harvesting model, considering a single SU source, is illustrated in Fig. 4.2. 

 

Fig. 4.2 Designed energy harvesting CRSN framework with a single SU source 
   

4.4. Development of novel HCSEHO for optimal CR routing  

4.4.1 Cluster Head Optimization 

 A key strategy for increasing a wireless communication network's lifespan is clustering. 

This entails clustering a collection of sensor nodes and choosing a cluster head by applying the 

implemented HCSEHO while taking into account all cluster heads that are accessible. In order 

to facilitate data or message sharing across nodes, each cluster is given a time slot during cluster 
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creation, which is determined by the cluster head. Cluster heads are essential to gathering 

information from every node in their clusters. The cluster head aggregates data and sends 

medical data to the base station when all nodes have collected the required information. After 

that, until every node is processed, data transmission and re-clustering occur in repeating 

cycles. The cluster unites with the closest clusters if its size drops below a certain threshold, 

suggesting that it is quite tiny. As a result of this merging process, there are fewer active nodes, 

fewer cycles, and ultimately fewer clusters overall. The number of nodes in the physical 

environment falls in tandem with a drop in the volume of information. 

 

Objective Function description 

  Using the developed Hybrid CSO-EHO algorithm, the proposed EH-based CRSN 

routing architecture in IoMT selects the optimum cluster head in order to achieve the multi-

objective function with "the distance, energy, throughput, hop count, probability of outage and 

latency." This expression refers to the invented routing protocol's objective function, as seen 

in Equation (4.2). 

   𝐵𝑜𝑏−𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛
{𝐶𝐻𝑟

𝑜𝑝
}

(𝐹𝑓5)                (4.2) 

For the medical data transfer, the ideal cluster head is chosen and denoted by op

rCH . The 

following equations may be derived to obtain the objective 
5Ff . 

  𝐹𝑓1 = 𝑃𝑝 ∗ 𝐷𝐼𝑠 + ((1 − 𝑃𝑝) ∗ (
1

𝑄𝐸
))              (4.3) 

   𝐹𝑓2 = 𝑄𝑞 ∗ 𝐹𝑓1 + ((1 − 𝑄𝑞) ∗ 𝐷𝐸𝑙)               (4.4) 

   𝐹𝑓3 = 𝑅𝑟 ∗ 𝐹𝑓2 + ((1 − 𝑅𝑟) ∗ (𝐻𝑂𝑐))              (4.5) 

   𝐹𝑓4 = 𝑆𝑠 ∗ 𝐹𝑓3 + (1 − 𝑆𝑠) ∗ (𝑇𝐻𝑟)               (4.6) 

  𝐹𝑓5 = 𝑇𝑡 ∗ 𝐹𝑓4 + (1 − 𝑇𝑡) ∗ (
1

𝑂𝑃𝑟
())              (4.7) 

In this case, the values of alpha ( Pp ), beta ( Qq ), gamma ( Rr ), omega ( Ss ) and epsilon(Tt ) 

are set at 0.2, 0.1, and 0.2 respectively. 

 

4.4.2 Proposed HCSEHO for CR routing 

 The proposed Cognitive Radio (CR) networks in the Internet of Things (IoT) employ best 

CH selection through the proposed Hybrid-CSEHO to enhance the harvesting energy capability 

of the HBS antenna and facilitate optimum medical data transmission. The chosen EHO [121] 

is selected for its proficiency in addressing a variety of optimization problems, including 
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continuous optimization, combinatorial optimization, constrained optimization, and multi-

objective optimization, along with its capability to handle diverse engineering challenges. 

However, EHO tends to be inefficient in theoretical analysis interpretation and exhibits lower 

performance in solving constrained optimization problems.  

 To overcome this, CSO [122] algorithm is combined with EHO to create Hybrid CS-EH 

Optimization algorithm  to tackle with the conventional problems. In Hybrid CS-EHO, the final 

position of the solution is obtained by using the first position  1xi  obtained from CSO algorithm 

and the second position 2xi  obtained from EHO algorithm by using Eq. 4.8 

   𝑥𝑖𝑓𝑖𝑛 = 𝑚𝑒𝑎𝑛(𝑥𝑖1, 𝑥𝑖2) +
𝑠𝑡𝑑(𝑥𝑖1,𝑥𝑖2)

2
               (4.8) 

Here, the terms ( )21, xixistd  and ( )21, xiximean  will indicate the standard deviation and mean 

and of the two positions vectors. The major parameters involved in the development of CSO 

[122] algorithm as summarized as follows 

 Generally, each and every cuckoo has the ability to lay only one egg at a time, and this egg 

is randomly deposited into other nests. Subsequently, only the nests that contain superior-

quality eggs manage to survive to progress to the next generations. The availability rate of host 

nests is predetermined, and the host can potentially create an alien egg based on the probability 

denoted as  1,0aiPi . This probability fraction, aiPi  is considered for a certain number of nests 

ni  and is used to modify the newly generated nests. The process involves generating new 

solutions represented as ( )1+tixi  according to Eq. (4.9), wherein a Levy flight is also incorporated. 

   𝑥𝑖𝑖𝑖
(𝑡𝑖+1) = 𝑥𝑖𝑖𝑖

(𝑡𝑖) + 𝛼⊕ 𝐿𝑒𝑣(𝜆)               (4.9) 

The term 0 represents step size. The product   signifies entry-wise multiplications, and 

Levy flights guarantee a random walk. The arbitrary steps in the random walk are derived from 

the levy distribution, as illustrated in Eq. (4.10). 

   𝐿𝑒𝑣 ≈ 𝑢𝑖 = 𝑡𝑖−𝜆, (1 < 𝜆 ≤ 3)             (4.10) 

Clan-updating operator: Drawing inspiration from the inherent behavior of elephants, every 

elephant within the clan adheres to the guidance provided by the matriarch. Consequently, the 

position of each elephant is determined using Eq. (4.15). 

   𝑥𝑖𝑁𝑒𝑤,𝐶𝑖,𝑘𝑖 = 𝑥𝑖𝐶𝑖,𝑘𝑖 + 𝛼 × (𝑃𝑖𝑏𝑡,𝐶𝑖 − 𝑃𝑖𝐶𝑖,𝑘𝑖) × 𝑅𝑖           (4.11) 

kiCiPi , - old position  

kiCiNewxi ,, - updated position of elephant ki  among clan Ci .  

CibtPi , - position matriarch position (best elephant among the clan) 
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Ri - random variable in the interval  1,0  and   is a random scaling factor 

The matriarch position (optimal elephant) in the clan is determined by Eq. (4.12). 

   𝑥𝑖𝑁𝑒𝑤,𝐶𝑖,𝑘𝑖 = 𝛽 × 𝑥𝑖𝐶𝑡𝑟,𝐶𝑖              (4.12) 

The central position of the elephant in the clan  Ci  is indicated by CiCtrxi , and it can computed 

by using Eq. (4.13). 

   𝑥𝑖𝐶𝑡𝑟,𝐶𝑖,𝑙𝑖 =
1

𝑁𝑖𝐶𝑖
× ∑ 𝑥𝑖𝐶𝑖,𝑘𝑖,𝑙𝑖

𝑁𝑖𝐶
𝑘𝑖=1              (4.13) 

CiNi - Total number of elephants  

likiCixi ,, - Pposition of the elephant at
thli dimension1 

The worst fitness among the elephants is expressed as in Eq. (4.18). 

   𝑥𝑖𝑤𝑠𝑡,𝐶𝑖 = 𝑥𝑖(𝑥𝑖𝑚𝑖𝑛𝑚𝑎𝑥 × 𝑅𝑖1)𝑚𝑖𝑛             (4.14) 

 𝑅𝑖1 lies in the interval   1,0 .  

maxxi and minxi  are upper bound and lower bounds 

The pseudo-code of the developed HCSEHO is shown in Algorithm 4.1. 

 

Algorithm 4.1: HCSEHO 

 

Input: Optimal cluster head op

rCH  

Output: Optimal solution 

Initialize Elephant and cuckoo populations  

While (till the termination criteria) do 

 Fitness calculation for all solutions in the population  

  For each solution 

   Update the 1st  position using Eq. (4.7) 

   Update the 2nd  position using Eq. (4.12) 

   Update the final position using Eq. (4.1) 

  End for 

 Position-based fitness estimation of all solutions. 

End while 

Return the best Solution 
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Fig.4.3. Flowchart of Proposed HCSEHO 

4.5. Results and discussions 

4.5.1 Simulation Setup 

The EH-CRSN framework for health data transmission, designed with Hybrid CS)-

EHO, was simulated using MATLAB 2020b and subjected to various analyses. The simulation 

involved a maximum of 100 iterations with a populations size of 10. Additionally, a 

comparative assessment was conducted between the proposed Hybrid CSO-EHO algorithm 

and conventional algorithms, including Particle Swarm Optimization (PSO) [19], Rider 

Optimization (ROA) [123], CSO [122] and EHO [121]. This comparison aimed to assess the 

scalability of the model to ensuring secure transmission of medical data.. 
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4.5.2 Cost function evaluation  

 In Figures 4.4, 4.5, and 4.6, three distinct medical datasets are employed to analyze the cost 

function within the designed energy harvesting-based Cognitive Radio Sensor Network 

(CRSN) framework for medical data transmission. This analysis is conducted using the 

developed Hybrid Cuckoo Search Elephant Herding Optimization (HCSEHO) while varying 

the number of nodes. The results demonstrate that the designed energy harvesting-based CRSN 

framework for medical data transmission exhibits improved performance in transmitting 

medical data over the CRSN without any delays, accompanied by enhanced energy harvesting 

capabilities. 

 

 

 

(a) (b) 

 

(c) 

Fig.4.4. Validation of EH-CRSN framework (Dataset-1) under 50, 100 and 150 nodes 
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(a) (b) 

 

(c) 

Fig.4.5. Validation of EH-CRSN framework (Dataset-2) under 50, 100 and 150 nodes 

 

 

  

(a) (b) 
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(c) 

Fig.4.6 Validation of EH-CRSN framework(Dataset-3) 50, 100 and 150 nodes 
 

4.5.3 Performance Analysis 

4.5.3.1 Throughput Aanalysis  

 The analysis evaluates the throughput of the energy harvesting-based Cognitive Radio 

Sensor Network (CRSN) framework for medical data transmission using various heuristic 

algorithms, as illustrated in Fig. 4.7. The developed HCSEFO demonstrates superior 

throughput performance, surpassing PSO, ROA, CSO, and EHO by 13.51%, 17.60%, 16.12%, 

and 18.91%, respectively. This substantiates the model's superiority in terms of throughput. 

  

(a) (b) 

 

(c) 

Fig.4.7 Throughput analysis of EH-CRSN using “(a) dataset 1, (b) dataset 2 and (c) dataset 3” 
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4.5.3.2 Hop count analysis  

 The evaluation considered the hop count to assess the efficiency of the energy harvesting-

based Cognitive Radio Sensor Network (CRSN) framework for medical data transmission 

across various heuristic algorithms, depicted in Fig. 4.8. The developed HCSEHO exhibits 

superior performance with a minimal hop count, as observed in the analysis compared to other 

heuristic strategies such as PSO, ROA, CSO, and EHO. 

 

 

(a) (b) 

 
(c) 

Fig 4.8. Hop count Analysis of EH-CRSN using “(a) dataset 1, (b) dataset 2 and (c) dataset 3” 

 

4.5.3.3 Outage probability analysis  

The energy harvesting-based Cognitive Radio Sensor Network (CRSN) framework for 

medical data transmission underwent an analysis of outage probability across three datasets, 

illustrated in Fig. 4.9. The outage probability analysis indicates a notable improvement of 

11.41%, 24.51%, 17.81%, and 18.71% better than PSO, ROA, CSO, and EHO, respectively. 
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Consequently, the implemented HCSEHO in the designed energy harvesting-based CRSN 

framework enhances the efficiency of medical data transmission. 

  

(a) (b) 

 

(c) 

Fig 4.9 Outage probability Analysis of EH-CRSN using “(a) dataset 1, (b) dataset 2 and (c) 

dataset 3” 

 

4.5.3.4 Alive node Analysis 

In evaluating the designed energy harvesting-based Cognitive Radio Sensor Network 

(CRSN) framework for medical data transmission across different heuristic algorithms, Fig. 

4.10 illustrates the analysis focused on alive nodes. The analysis shows minimal variation 

between the performance of the proposed and conventional algorithms, particularly evident in 

the zoomed graphs for rounds 1990 to 2000. However, the developed framework, aided by the 

implemented HCSEHO, outperforms existing algorithms, showcasing better overall 

performance. 
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(a) (b) 

  

(c) (d) 

 

 

(e) (f) 

Fig.4.10 Alive node analysis of EH-CRSN  using “(a) dataset 1, (b) zoom-in of dataset 1,  (c) 

dataset 2, (d) zoom-in of dataset 2, (e) dataset 3 and (f) zoom-in of dataset 3” 
 

 

4.5.3.5 Harvesting Eenergy analysis  

 The energy harvesting-based Cognitive Radio Sensor Network (CRSN) framework, tested 

across three datasets as depicted in Fig. 4.12, exhibits improved efficiency for medical data 
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transmission. This enhancement is attributed to the implemented HCSEHO within the designed 

framework. 

  

(a) (b) 

 

(c) 

Fig.4.11 Harvesting Energy analysis of EH CRSN  using “(a) dataset 1, (b) dataset 2 and (c) 

dataset 3” 

 

4.5.3.6 Residual energy analysis  

The analysis of the designed energy harvesting-based Cognitive Radio Sensor Network 

(CRSN) framework, depicted in Fig. 4.13, is conducted based on residual energy across three 

datasets. The findings reveal that the framework significantly improves the efficiency of 

medical data transmission, primarily attributed to the support provided by the implemented 

HCSEHO. 
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(a) (b) 

 

(c) 

Fig.4.12 Residual Energy analysis of EH CRSN  using “(a) dataset 1, (b) dataset 2 and (c) 

dataset 3” 

 

The efficiency of the designed energy harvesting-based Cognitive Radio Sensor 

Network (CRSN) framework for medical data transmission is compared with conventional 

algorithms across three datasets: dataset 1 (Table 4.1), dataset 2 (Table 4.2), and dataset 3 

(Table 4.3). 

This analysis involves variations in the number of nodes at 50, 100, and 150. 

Specifically, at 100 nodes, the proposed HCSEHO demonstrates 0.49%, 79.29%, 10.90%, and 

44.92% enhanced performance compared to PSO, ROA, CSO, and EHO, respectively, in terms 

of energy consumption within dataset 1. Additionally, in dataset 2 analysis, the HCSEHO-

based medical data transmission achieves 16.16%, 31.86%, 22.22%, and 18.65% improved 

throughput compared to PSO, ROA, CSO, and EHO, respectively, at 150 nodes. This confirms 

the superior performance of the proposed model in transmitting medical data over the Cognitive 

Radio Sensor Network (CRSN) compared to conventional approaches. 
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TABLE 4.1 DATASET 1 ESTIMATION OF EH-BASED CRSN FRAMEWORK 
 

Algorithm 50 nodes 100 nodes 150 nodes 

Hop count analysis 

PSO 7 13 15 

ROA 5 9 13 

CSO 13 11 13 

EHO 7 14 11 

HCSEHO 9 8 9 

Energy Harvesting analysis(mJ) 

PSO 0.000397 0.000205 0.00081 

ROA 0.00039 0.000288 0.000167 

CSO 0.000883 0.000916 0.000894 

EHO 0.000262 0.000168 0.000444 

HCSEHO 0.000255 0.000426 0.000806 

Throughput analysis (Mbps) 

PSO 0.87971 0.94292 0.33254 

ROA 0.63734 1.0423 0.48755 

CSO 0.79939 0.41044 0.59607 

EHO 0.89511 0.40302 0.82279 

HCSEHO 0.97063 1.0942 1.09 

Outage probability analysis (x10-4) 

PSO 1038 656 1143 

ROA 905 814 958 

CSO 1157 865 973 

EHO 1258 985 1011 

HCSEHO 811 761 736 
 

TABLE 4.2 DATASET 2 ESTIMATION OF EH-BASED CRSN FRAMEWORK  

 

Algorithm 50 nodes 100 nodes 150 nodes 

Hop count analysis 

PSO 4 13 15 

ROA 8 14 8 

CSO 6 10 10 

EHO 5 6 8 

HCSEHO 5 5 7 

Energy Harvesting analysis(mJ) 

PSO 0.000442 0.000573 0.000833 

ROA 0.000488 0.000254 0.000832 

CSO 0.000748 0.00027 0.000683 

EHO 0.000937 0.00057 0.0006 

HCSEHO 0.000382 0.000958 0.000302 

Throughput analysis (Mbps) 

PSO 0.52779 0.83525 0.79 

ROA 0.33098 0.98931 0.69596 

CSO 0.3828 0.92484 0.75083 

EHO 0.56369 1.0264 0.77329 

HCSEHO 0.64224 1.0534 0.91765 



72 
 

Outage probability analysis (x10-4) 

PSO 719 905 1247 

ROA 784 620 1111 

CSO 886 783 1098 

EHO 682 823 956 

HCSEHO 729 1286 677 
 

TABLE 4.3 DATASET 3 ESTIMATION OF EH-BASED CRSN FRAMEWORK 

Algorithm 50 nodes 100 nodes 150 nodes 

Hop count analysis 

PSO 9 6 15 

ROA 9 9 11 

CSO 7 3 14 

EHO 4 9 12 

HCSEHO 4 7 4 

Energy Harvesting analysis(mJ) 

PSO 0.000767 0.000386 0.000334 

ROA 0.000153 0.000607 0.000875 

CSO 0.000812 0.000467 0.000548 

EHO 0.000332 0.000938 0.000604 

HCSEHO 0.000876 0.000553 0.000431 

Throughput analysis (Mbps) 

PSO 0.54191 0.63534 0.47915 

ROA 0.7174 0.37203 0.50266 

CSO 0.64761 0.89597 0.64822 

EHO 0.68362 0.43176 0.56989 

HCSEHO 1.004 1.0836 0.89261 

Outage probability analysis (x10-4) 

PSO 1005 921 983 

ROA 1058 1146 1233 

CSO 1292 1220 1158 

EHO 783 1076 1105 

HCSEHO 762 1037 877 

4.6  Conclusions 

 This study has devised an effective energy harvesting-based Cognitive Radio Sensor 

Network (CRSN) framework for the transmission of medical data. The framework incorporates 

the HCSEHO optimization strategy to enhance transmission performance. Optimal cluster head 

selection was optimized through a multi-objective function considering factors such as 

"distance, energy harvesting, throughput, hop count, outage probability, and delay." These 

constraints were taken into account to improve data transmission rates without introducing 

delays. In the analysis of dataset 1, with 100 nodes, the proposed HCSEHO outperforms PSO, 

ROA, CSO, and EHO by 0.48%, 79.29%, 10.90%, and 44.92%, respectively, in terms of energy 

harvesting. The findings confirm the superiority of the developed framework utilizing 

HCSEHO in medical data transmission compared to existing techniques. 
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CHAPTER 5 

5. TRUST-AWARE CR NETWORK WITH ENERGY HARVESTING  

5.1 Introduction 

  Energy Harvesting can extract the energy of the surrounding conditions, which is 

considered to be an efficient technique for assuring the energy level, which is also able to 

combine with the CR systems for prolonged the lifetime of CR-SN and also able to minimize 

their deployment cost [124]. Two broadly used energy harvesting architectures are observed to 

be Time Switching (TS) and Power Splitting (PS) [125]. When considering PS model, the 

signal power received is separated into 2-segments, in that some fraction is utilized to gather 

energy, and the remaining is employed to process the received signal [126]. On the other hand, 

in TS architecture, the transmission slot is separated into two processes, where the former 

process performs the energy harvesting using the surrounding conditions, and further, the 

generated energy is utilized to perform the data transmission at the latter process [127]. The 

SUs in CR networks seem to be susceptible when analyzing both internal and external attacks. 

Moreover, the Secret messages passed over the CR Network led to overhead via the malicious 

EDs because of the broadcast characteristics of radio propagation [128]. Therefore, in addition 

to maintaining a constant transmission, the goal is to protect the CRN transfer while taking 

malevolent eavesdropping into account. Owing to the current technological advancements and 

rising processing power, it is equally important to have highly secure communication to prevent 

harmful assaults. [129]. 

Energy harvesting elevates the system to be self-independent in wireless devices. 

Following this, the challenging operation of reaching the environments in the case of sensors 

fixed within the human body [130] is possible. Further, this mechanism extends the 

computation time required for wireless devices before the requirement of battery recharge. The 

energy harvesting task transmits received energy like “solar, wind, electromagnetic, etc.” into 

electric energy [131]. Radio Frequency (RF) sources are very helpful for harvesting energy for 

wireless devices, in which energy harvesting with RF has covered a broad range and also has 

powered a huge count of devices [132]. For RF-energy harvesting, harvested energy is taken 

through ambient or dedicated sources. Dedicated sources are considered to be consistent [133]. 

On the other hand, they are limited by their cost inefficiency along with power safety [134].  

While the network seems to be under open access and is vulnerable to external threats, 

CRN security is at its peak [135]. Eavesdropper makes the network intrusion [136] and also, 

leads to energy depletion in the energy gathering nodes to change them to erroneous nodes to 
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reduce safety. Conventional CRNs makes high efforts to improve the security and also 

reliability tradeoff of CRN, which depends on energy harvesting. In order to support the CRN, 

the cooperative jamming method and artificial noise were devised in [137] with the purpose of 

improving network security. Additionally, in [138], algorithms for energy harvesting are 

created using an ideal relay selection to provide an improved trade-off between the security 

and efficiency of the primary transmission and the secondary transmission. The study 

conducted an analysis of an underlay CRN consisting of a set of primary nodes and two 

secondary nodes. The analysis focused on the secrecy outage performance. However, the CRN 

faced challenges in terms of network performance. To address this, an efficient heuristic 

algorithm was developed to improve the performance of the CRN in data transmission, taking 

into account energy harvesting and trust assurance [139]. 

The following are the main contributions of the developed EH-CRN model, which includes 

trust computation and energy harvesting. 

• To develop an extremely effective routing protocol in CRN for performing better 

MDT considering the energy harvesting and trust computation for enhancing the 

lifetime of the network and also improving the security of the data transmission. 

• To develop a more advanced heuristic technique called SA-LBOA that focuses on 

improving trust performance and energy harvesting in EH-CRN. This technique 

aims to optimize the selection of cluster heads between source and destination nodes, 

taking into account multiple constraints such as trust computation, energy 

harvesting, hop count, throughput, and outage probability. The ultimate goal is to 

support medical applications. 

• To evaluate the effectiveness of the trust-aware CRN-based MDT model in 

comparison to standard heuristic techniques based on the analysis of multiple 

objectives. 

 

5.2 Proposed System Model 

In the context of the Internet of Things (IoT), several heterogeneous wireless devices 

are interconnected to provide a wide range of applications such as personal healthcare, smart 

cities, transportation  and smart homes. The integration of diverse devices in the IoT network 

leads to an increased demand on the frequency spectrum. Hence, CR technology is widely 

regarded as the definitive option for optimizing spectrum use in the field of data transmission. 

The growing number of devices in the Internet of Things (IoT) places more strain on the limited 
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frequency resources available in the Industrial Scientific Medical (ISM) bands, which are 

managed by Cognitive Radio (CR) technology to address issues of congestion. An efficient 

routing protocol has to be created for cognitive radio-based Internet of Things (CR-based IoT). 

However, this job is tough due to the diverse and dynamic nature of the IoT nodes and 

spectrum. While there is a significant amount of research being conducted on the development 

of routing algorithms, these efforts have not been successful in effectively managing the routing 

table. Furthermore, the majority of the studies do not prioritize the integration of cognitive 

radio (CR) with an optimization algorithm to improve the efficiency of data transmission in the 

context of trust inside the Internet of Things (IoT). In light of the CR situations [140] [141], 

the malfunctioning node engages in assaults against the regular node and amplifies the 

reputation of certain other malevolent users. Furthermore, this also results in a decrease in the 

confidence level of the well-behaving nodes, which subsequently leads to a fall in both network 

and energy efficiency [142]. Therefore, the objective is to create a highly effective routing 

protocol that functions as an optimization algorithm to improve the performance and energy 

harvesting of Cognitive Radio Networks (CRN), with a specific emphasis on medical data 

transmission. The architectural diagram of the trust-aware MDT model built for CRN is 

presented in Figure 5.1.      

 

Fig. 5.1  Trust-Aware Model in EH-CRN  
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 A novel optimization approach called SA-LBOA has been developed to improve trust 

performance and energy harvesting in the CR Network. To address the problems that arise 

while transferring medical data over CRN, we resolve them by implementing an optimum 

cluster head selection method. This method improves energy harvesting during data 

transmission by routing it across all the nodes in the network. This aids in achieving the multi-

objective function while taking into account restrictions such as "trust, hob count, throughput, 

energy harvesting, and outage probability" in order to enhance the overall system performance. 

Moreover, this optimization of performance results in enhanced longevity of the network and 

increased energy acquisition, along with reliable data transfers. 

5.2.1 Description of proposed SA-LBO Algorithm 

The implemented Cognitive Radio Network (CRN) executes Health Data Transmission 

(MDT) with the optimal CH selection through the proposed SA-LBOA, aiming to achieve 

improved energy harvesting and trusted performance for enhanced MDT effectiveness. LBOA 

[143] algorithm is considered here because of its advantages against not falling in to local 

minimum easily. However,1LBOA requires certain changes to address multiple optimization 

problems within benchmark functions. To enhance LBOA's efficiency, adaptive concepts are 

incorporated, resulting in the development of Adaptive LBOA, termed SA-LBOA. Here the 

random self-adaptive parameter  Rdn  is indicated in Eq. (5.1). 

   𝑅𝑑𝑛 =
(𝐵𝑠𝑡𝐹𝑡−𝐶𝑟𝑛𝐹𝑡)

(𝑊𝑟𝑡𝐹𝑡−𝐶𝑟𝑛𝐹𝑡)
                 (5.1) 

BstFt  - best fitness value,  

CrnFt  - current fitness  

WrtFt  - worst fitness values 

Rdn  will be in the range (0, 1) 

Rdn  is used to update position of the ladybugs and population size. 

( )0L -Initial population size of ladybugs  

( )maXmL - final population of ladybugs. 

Generally ( ) ( )maXmLL 0  

According to the population size, the optimal objective function will be finalized.  

Suppose the modification of a population member occurs depending on the positions of 

another members within the populations. thk ladybug's position among the population is denoted 

by ( )my  at thm  iteration. The updated position of thk ladybug is computed in Eq.  (5.2). 
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              (5.2) 

kD - indicates the ratio of the thk  ladybug value to the entire ladybugs in the thm  iteration and 

is calculated by using Eq.(5.3). 

   𝐷𝑘 =
𝑓(𝑦𝑘(𝑚))

∑ 𝑓(𝑦𝑠(𝑚))
𝑃𝑚
𝑠=1

                 (5.3) 

The location of the thn ladybug is calculated by using the random roulette wheel1selection 

method, which will help to update the thk  ladybug’s location.  

Then, mutation process is taken to establish the un-covered sample space to avoid the local 

minima problem.  

thk ladybug gets into the mutations by its decision variables rq  as given Eq. (5.4). 

   𝑞𝑟 = 𝑟𝑜𝑢𝑛𝑑(𝑞 ∗ 𝜇𝑟)                 (5.4) 

 r : Rate of mutation; q : variable size.  

Due to the random movements of ladybugs, there will be loss in the total ladybugs in a given 

direction. This reduction in the count of the  lady-bugs takes place at the time of searching in 

LBOA  population and is indicated as in Eq. (5.5). 

                                      (5.5) 

𝑁𝐹𝐸 - evaluation of the function count  

maXNFE - maximum value of NFE  

This condition will continue till function evaluations satisfy termination condition.  

If it does not satisfy the termination condition, the updated new position of the ladybug is 

obtained through Eq. (6).   

                 (5.6) 

The variable m denotes the present iteration and maXm  denotes maximum iteration. The 

pseudocode for SA-LBOA is shown in Algorithm 5.1. 
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Algorithm 5.1: Developed SA-LBOA [147] 

Generate the ladybug population 

determine the lower-cost function of the ladybug 

For all ladybugs do 

 determine the objective function of ladybugs 

 compute the random parameter adaptively, as shown in Eq. (5.1) 

 If ( )QrRdn   

  ;0=n  

  While ( )2n do 

   Determine thn ladybug based on the roulette wheel selection method  

  End while 

  Determine the coefficient kD as shown in Eq. (5.3)  

 Else  

  Compute the decision variables rq  in the feasible region as given in Eq. (5.4). 

 End if  

 If ( )( )miNk ymy +1 do 

  ( )( )miNk ymy =+1  

 End if 

 If ( )( )maXk ymy +1 do 

  ( )( )maXk ymy =+1  

 End if 

End for 

Arrange the population based on the cost function values 

Get the best solution as the final population outcome at the current iteration  

End 

 

5.2.2 Description of the Energy Harvesting Model  

The Energy Harvesting (EH) model [148] entails a fixed Single User (SU) source equipped 

with multiple antennas (𝑀𝑡) associated with a Primary User (PU) pair. The Hybrid Base Station 

(HBS) is responsible for energy transmission via antenna ‘f ’  and acquiring data from the SU, 

which is situated under the antennas. Additionally, the SU adopts a spectrum-sharing paradigm 

for energy harvesting, ensuring that the total power for both energy and data transmissions 

remains below the achievable interference limit 𝑅𝑢 of the PU. The SU source operates with a 

limited battery storage capacity, necessitating the harvesting of sufficient energy from both the 
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PU and Hybrid BS networks to facilitate the data transmission. The energy �̑�𝐸𝑆, established at 

the SU's starting point in the preceding time slot before data transmission, is computed using 

Eq. (5.7). 

   �̑�𝐸𝑆 = 𝜐(𝑄𝑃𝑇‖𝑓𝑇𝑆‖
2 + 𝑄𝐸‖𝑖𝐸𝑆‖

2)               (5.7) 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 EH-CRSN with single SU  

 

5.2.3 Description of the Trust Model 

As node 'b' consistently sends a higher volume of messages received from node 'a,' the 

possibility of deeming node 'b' a trusted neighbor of node 'a' arises. This likelihood is leveraged 

for trust computation. Let '𝑃𝑐𝑎,𝑏(𝑇𝑚1)' represent the count of packets successfully transmitted 

between nodes 'a' and 'b' at time Tm . The ratio '𝑃𝑐𝑅𝑎,𝑏(𝑇𝑚1),' computed as the ratio of 

𝑃𝑐𝑅𝑎,𝑏(𝑇𝑚1) to the total packets forwarded by all one-hop neighbors (∑ 𝑃𝑐𝑎,𝑐(𝑇𝑚1)
𝑐𝑎(𝑇𝑚)
𝑐=1 ) 

is given as in Eq.5.8 

   𝑃𝑐𝑅𝑎,𝑏(𝑇𝑚) =
𝑃𝑐𝑎,𝑏(𝑇𝑚)

(∑ 𝑃𝑐𝑎,𝑐(𝑇𝑚)
𝑐𝑎(𝑇𝑚)
𝑐=1 )

                (5.8) 

Further, to determine the trust values of the nodes, direct and indirect trust values are 

calculated based on the Eq. (5.9) and Eq. (5.10) respectively. 

   𝑇𝑟𝑠𝑡𝑎,𝑏
𝑑𝑖𝑟𝑐𝑡(𝑇𝑚1) = 𝛼 × 𝑃𝑐𝑎,𝑏(𝑇𝑚1)               (5.9) 

𝛼 - weighing factor lies in the interval  1,0 .  

   𝑇𝑟𝑠𝑡𝑎,𝑏
𝑖𝑛𝑑𝑖𝑟𝑐𝑡(𝑇𝑚1) =

∑ (𝑇𝑟𝑠𝑡𝑎,𝑑
𝑑𝑖𝑟𝑐𝑡(𝑇𝑚1)×𝑇𝑟𝑠𝑡𝑑,𝑏

𝑖𝑛𝑑𝑖𝑟𝑐𝑡(𝑇𝑚1))𝑑∈𝐴,𝑑≠𝑏

∑ 𝑇𝑟𝑠𝑡𝑎,𝑑
𝑑𝑖𝑟𝑐𝑡(𝑇𝑚1)𝑑∈𝐴,𝑑≠𝑏

         (5.10) 
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Total Trust value is given by Eq. (5.11) 

   𝑇𝑟𝑠𝑡𝑎,𝑏(𝑇𝑚1) =
𝜙1𝑇𝑟𝑠𝑡𝑎,𝑏

𝑑𝑖𝑟𝑐𝑡(𝑇𝑚1)+𝜙2𝑇𝑟𝑠𝑡𝑎,𝑏
𝑖𝑛𝑑𝑖𝑟𝑐𝑡(𝑇𝑚1)

𝑝𝑎(𝑇𝑚)
           (5.11) 

The weighing factors were indicated by 1 and 2 that ranges in between  1,0, 21  . The 

sending nodes are classified as malicious node when 
1,0  baTrst , an uncertain node when 

the node with the trust value of 1 , and the trusted node when of 1,1  baTrst . 

 

5.3 Derivation of Multi-Objective Function 

The developed MDT model in CRN with trust computation and energy harvesting makes 

the optimal selection of cluster head using the developed SA-LBOA to achieve the multi-

objective function including “trust, energy harvesting, hob count, throughput, and outage 

probability”. The objective function fnO _  for the developed SA-LBOA-based optimal cluster 

head selection is mentioned in Eq. (5.12). 

  𝑂_𝑓𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛
{𝐶𝑙_ℎ𝑑𝑥

𝑜𝑝𝑡
}

(
1

𝐹𝑔5
)                       (5.12) 

The optimally selected cluster heads are denoted by opt

xhdCl _ for performing efficient MDT in 

CRN. The objective 5Fg  is derived from the below-mentioned equations. 

   𝐹𝑔1 = 𝛼 + ((1 − 𝛼) ∗ (
1

𝑇𝑟𝑠𝑡
))             (5.13) 

   𝐹𝑔2 = 𝛽 ∗ 𝐹𝑔1 + ((1 − 𝛽) ∗ 𝑅𝑒)             (5.14) 

   𝐹𝑔3 = 𝜒 ∗ 𝐹𝑔2 + ((1 − 𝜒) ∗ (𝐻𝑐𝑛))             (5.15) 

   𝐹𝑔4 = 𝛿 ∗ 𝐹𝑔3 + (1 − 𝛿) ∗ (
1

𝑇ℎ𝑟𝑔ℎ
)             (5.16) 

   𝐹𝑔5 = 𝜀 ∗ 𝐹𝑔4 + (1 − 𝜀) ∗ (
1

𝑂𝑢𝑡𝑃
)             (5.17) 

The terms alpha , gamma  , and omega  are taken as the value of 0.2. Moreover, the beta

  value is considered as 0.3, and also, the epsilon   contains 0.1. 

The objectives constraints are performed in the designed MDT model in CRN are given as 

“trust, energy harvesting, hob count, throughput, and outage probability” are given below. 

The harvested energy eR  is “the average energy which is presented in the alive node,” as in 

Eq. (18). 

   𝑅𝑒 = 𝑅𝑛𝑘 − (𝑅𝑛𝑘
𝑐𝑘 + 𝑅𝑛𝑘

𝑠𝑘)              (5.18) 
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Here, the energy is denoted by nkR at all nodes nk , the necessary energy for data gathering is 

indicated by ck

nkR , and the necessary energy for transmitting data is mentioned by sk

nkR . 

Throughput Thrgh  is “the successful data is delivered over a communication channel in the 

network,” as in Eq. (5.19). 

   𝑇ℎ𝑟𝑔ℎ =
∑(𝑃𝑐𝑠𝑘∗𝑎𝑃𝑐𝑠𝑘)

𝑡𝑚𝐾
               (5.19) 

The average packet size is shown by skaPc , and successive packet count is indicated by skPc . 

Outage probability OutP  is “the probability of the information rate is less than the required 

threshold information rate which is occurred within a certain period” which is denoted in Eq. 

(5.20). 

   𝑂𝑢𝑡𝑃 =
𝑂𝑢𝑡𝑐𝑡

𝑈𝑛
                (5.20) 

Here, the term ctOut denotes the outage counter and nU indicates the number of times taken to 

determine the probability of an outage. This outage probability is ranged between  4105,0 − . 

Hop count Hcn is used “to determine the best possible route to a host or network”. 

 

5.3.1 Optimization of Cluster Heads in CRN 

The SA-LBOA algorithm is utilized to choose and optimize the cluster heads by taking into 

account the balance between intra-cluster communication, distance from the cluster head to the 

base station, and the remaining energy of nodes for cluster head selection. The system consists 

of a group of sensor nodes that are connected to form clusters. The cluster head is selected 

using the SA-LBOA algorithm, which takes into account all cluster heads. The cluster 

formation involves assigning time slots based on the cluster head's role in receiving messages 

or data from other nodes. The cluster head plays a crucial role in facilitating data gathering 

from all the nodes within the cluster. Upon receiving all the necessary information from the 

nodes, the cluster head initiates the transfer of medical data to the base station, followed by the 

process of data aggregation. Subsequently, the process of re-clustering and data transmission 

occurs at each iteration in order to reach the terminating nodes. If the size of the cluster is 

smaller than the specified threshold, it will be merged with nearby clusters to optimize data 

transmission. The optimum solutions obtained using the developed SA-LBOA algorithm are 

shown in Fig. 5.2 
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Fig. 5.3 Optimized Solutions through Proposed SA-LBOA 

 

5.4 Results and Discussions 

5.4.1 Experimental setup 

The developed trust computation and energy harvesting-based MDT model in CRN using 

the implemented SA-LBOA has utilized MATLAB 2020a as the implementation platform and 

also for performing various analyses on the developed model. Also, the developed SA-LBOA 

was compared with conventional techniques like “Deer Hunting Optimization Algorithm 

(DHOA) [144], Shark Smell Optimization (SSO) [145], Hybrid Leader-Based Optimization 

(HLBO) [146] and LBOA [143]” to determine the trust performance and energy harvesting of 

the implemented model. The normalized energy is referred as the computation of the energy 

consumption of the fully loaded system to the total energy consumption of the system. 

5.4.2 Evaluation of Developed algorithm – Dataset-1 

The analysis of the developed MDT model in CRN with trust computation and energy 

harvesting is done based on dataset 1, as shown in Fig.5.4 
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(c) (d) 

Fig. 5.4. Validating of Trust-Aware EH-CRSN Model (Dataset-1) in terms of   “(a) Energy 

Harvesting, (b) hop count, (c) outage probability, (d) throughput 
 

5.6.3 Evaluation of Developed algorithm – Dataset-2 

Evaluating the developed MDT model in CRN with trust computation and energy 

harvesting is performed for testing its efficiency according to dataset 1, as shown in Fig.5.5.  

  

(a) (b) 

 

 

(c) (d) 

Fig. 5.5 Validating of Trust-Aware EH-CRSN Model (Dataset-2) in terms of   “(a) Energy 

Harvesting, (b) hop count, (c) outage probability, (d) throughput 
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5.4.4 Evaluation of Developed algorithm – Dataset-3 

 The implemented MDT model in CRN with trust computation and energy harvesting is 

considered for the comparative analysis with conventional heuristic algorithms based on 

dataset 3, as shown in Fig.5.5.  

 

 

(a) (b) 

  

(c) (d) 

Fig. 5.6 Validating of Trust-Aware EH-CRSN Model (Dataset-1) in terms of   “(a) Energy 

Harvesting, (b) hop count, (c) outage probability, (d) throughput 

 

5.4.5 Statistical analysis on Different Node Ranges 

The statistical analysis is carried out by varying the node ranges as 50, 100, and 150, as 

shown in Table 2, Table 3, and Table 4. The developed SA-LBOA attains 0.078%, 0.02%, 

0.04%, and 0.05% better trust values than DHOA, SSO, HLBO, and LBOA based on dataset 

1. Similarly, higher performance enhancements are observed in two further dataset-based 

analyses of the proposed model. 
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TABLE 5.1 COMPARATIVE STATISTICAL ANALYSIS WITH 50 NODES 

Description DHOA SSO  HLBO  LBOA  SA-LBOA 

Dead node analysis 

Best 0 0 0 0 0 

Mean 
0.022511 0.022511 0.022511 0.022511 0.022011 

Worst 1 2 2 3 2 

Standard deviation 0.14838 0.16438 0.15498 0.17036 0.15343 

Median 0 0 0 0 0 

Normalized energy analysis 

Worst 0.000466 0.000478 0.000478 0.000478 0.000478 

Best 0 0 0 0 0 

Median 0.000399 0.000401 0.000402 0.000402 0.000372 

Mean 
0.000253 0.000252 0.000255 0.000251 0.000248 

Standard deviation 0.000199 0.000205 0.0002 0.000206 0.000206 

Trust analysis 

Worst 6.44×10-05 0.000144 0.000495 0.000275 0.000239 

Best 0.99922 0.99984 0.99958 0.99948 0.99999 

Median 0.49017 0.50185 0.51125 0.50187 0.48433 

Mean 
0.49279 0.49754 0.50328 0.50388 0.49508 

Standard deviation 0.2893 0.29043 0.28744 0.28643 0.2871 

Energy harvesting analysis 

Worst 0.000197 0.000308 5.49×10-05 0.00011 9.57×10-05 

Best 0.99991 0.99996 0.99892 0.99992 0.99905 

Median 0.51612 0.51574 0.51583 0.50048 0.48461 

Mean 
0.51061 0.51079 0.50896 0.49866 0.4928 

Standard deviation 0.29078 0.28626 0.28555 0.29279 0.29315 

Hop count analysis 

Best 0.000894 6.60×10-05 0.00011 0.000158 0.00028 

Mean 
0.49428 0.5003 0.48685 0.49976 0.50165 

Worst 0.99997 0.99932 0.99979 0.99976 0.99988 

Standard deviation 0.28729 0.29164 0.28685 0.29218 0.28763 

Median 0.49894 0.49949 0.48159 0.50081 0.51017 

Throughput analysis 

Mean 
0.49716 0.51233 0.50506 0.50569 0.49517 

Best 0.99947 0.99993 0.99984 0.99998 0.99994 

Median 0.49146 0.51363 0.50426 0.50155 0.49906 

Worst 8.67×10-05 0.000403 0.000664 0.001245 5.96×10-06 

Standard deviation 0.29405 0.28625 0.29115 0.29114 0.28851 

Outage probability analysis 

Worst 0.9999 0.9992 0.99996 0.99985 0.99855 

Best 0.000163 0.000439 0.001753 0.000412 0.000188 

Median 0.51211 0.49303 0.50011 0.51244 0.52412 

Mean 
0.50665 0.50097 0.50238 0.50332 0.51415 

Standard deviation 0.28823 0.29259 0.28642 0.28632 0.28927 
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TABLE 5.2 COMPARATIVE STATISTICAL ANALYSIS WITH 100 NODES 

Description DHOA SSO HLBO LBOA SA-LBOA 

Dead node analysis 

Best 0 0 0 0 0 

Standard deviation 0.23322 0.24297 0.23244 0.23671 0.24203 

Mean 
0.046523 0.045023 0.045023 0.045023 0.044522 

Worst 2 4 3 3 3 

Median 0 0 0 0 0 

Normalized energy analysis 

Median 0.000402 0.000414 0.000417 0.000416 0.000416 

Worst 0.000483 0.000481 0.000485 0.000478 0.000483 

Best 0 0 0 0 0 

Standard deviation 0.000199 0.000195 0.000195 0.000197 0.000197 

Mean 
0.000267 0.000264 0.000263 0.000263 0.000262 

Trust analysis 

Worst 0.00014 0.000264 0.001133 0.000161 0.001533 

Best 0.99963 0.99973 0.99985 0.99981 0.99934 

Mean 
0.49166 0.50128 0.49086 0.50327 0.51104 

Standard deviation 0.29024 0.2869 0.28927 0.29061 0.28259 

Median 0.49141 0.50657 0.5022 0.51217 0.50509 

Energy harvesting analysis 

Best 0.99999 0.99786 0.99986 0.99987 0.99962 

Worst 0.000535 0.000351 0.001245 0.000189 0.000442 

Median 0.48985 0.49863 0.50204 0.49251 0.49508 

Standard deviation 0.28646 0.28803 0.28224 0.29227 0.28874 

Mean 
0.49454 0.4994 0.502 0.49819 0.4954 

Hop count analysis 

Best 0.001521 0.001262 0.000494 0.000115 0.000297 

Worst 0.99924 0.99986 0.99923 0.99965 0.9998 

Mean 
0.49295 0.49898 0.49995 0.49801 0.50693 

Median 0.48613 0.49383 0.5051 0.50519 0.50603 

Standard deviation 0.28161 0.28453 0.28523 0.28499 0.29215 

Throughput analysis 

Mean 
0.50652 0.50041 0.50924 0.50118 0.4825 

Worst 0.000498 3.11×10-05 3.56×10-05 0.000161 0.001437 

Median 0.51884 0.4952 0.50785 0.50003 0.46849 

Best 0.99993 0.99972 0.99845 0.99911 0.99967 

Standard deviation 0.28875 0.28985 0.28747 0.28729 0.28707 

Outage probability analysis 

Best 0.000745 0.000578 0.001414 7.38×10-05 0.000857 

Median 0.49914 0.52135 0.53182 0.49737 0.50379 

Mean 
0.49885 0.51466 0.52012 0.50021 0.50187 

Standard deviation 0.28914 0.28604 0.28593 0.28716 0.28631 

Worst 0.99938 0.99989 0.99985 0.99979 0.99985 
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TABLE 5.3 COMPARATIVE STATISTICAL ANALYSIS WITH 150 NODES 

Description DHOA SSO HLBO LBOA SA-LBOA 

Dead node analysis 

Best 0 0 0 0 0 

Mean 0.070035 0.068034 0.067534 0.068534 0.067034 

Worst 3 5 3 3 3 

Standard deviation 0.29186 0.3106 0.2864 0.28964 0.29933 

Median 0 0 0 0 0 

Normalized energy analysis 

Best 0 0 0 0 0 

Mean 0.000272 0.000264 0.000265 0.000266 0.000263 

Worst 0.000483 0.000466 0.000474 0.000474 0.000469 

Standard deviation 0.000194 0.000192 0.000191 0.000191 0.00019 

Median 0.000407 0.000411 0.000416 0.000411 0.00041 

Trust analysis 

Best 0.99971 0.99955 0.99947 0.99922 0.99976 

Worst 0.001101 0.00013 0.000511 0.001125 0.000319 

Mean 0.50456 0.50826 0.51022 0.50816 0.4881 

Median 0.50403 0.50872 0.5227 0.51088 0.48391 

Standard deviation 0.2862 0.28406 0.28732 0.29075 0.29206 

Energy harvesting analysis 

Median 0.49271 0.48009 0.49089 0.49679 0.51475 

Mean 0.50081 0.48973 0.50099 0.49591 0.51306 

Best 0.9999 0.99973 0.99954 0.99987 0.99917 

Worst 0.000435 0.000365 0.00014 0.000189 0.000429 

Standard deviation 0.29157 0.28905 0.2841 0.29481 0.28713 

Hop count analysis 

Best 0.000442 0.001267 0.000362 0.000115 4.77×10-05 

Mean 0.49443 0.50863 0.50024 0.49446 0.4959 

Worst 0.99906 0.99956 0.99863 0.99966 0.99983 

Standard deviation 0.28524 0.28932 0.28789 0.2867 0.29059 

Median 0.47964 0.50651 0.49933 0.4908 0.49863 

Throughput analysis 

Mean 0.50611 0.49167 0.49148 0.49478 0.50079 

Best 0.99937 0.9991 1 0.99859 0.99983 

Standard deviation 0.28958 0.28562 0.28571 0.28458 0.29085 

Worst 9.34×10-05 0.000258 0.000268 0.000161 0.000343 

Median 0.52003 0.48284 0.48758 0.49227 0.5011 

Outage probability analysis 

Best 9.95×10-05 2.26×10-06 0.00059 0.000582 0.000216 

Worst 0.99864 0.99895 0.99895 0.99979 0.99973 

Standard deviation 0.29406 0.28739 0.28686 0.28458 0.28536 

Mean 0.50413 0.50815 0.49884 0.49944 0.50228 

Median 0.49917 0.51745 0.50344 0.49804 0.51405 
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5.5 Conclusion 

A very effective optimization method was deployed in the EH CRN network to improve 

trust performance and energy collection. The problems encountered during the 

transmission of medical data over CRN were resolved by implementing optimal cluster 

head selection for routing across all nodes to improve energy harvesting during data 

transmission. This approach has achieved a multi-objective function that takes into account 

constraints such as trust, energy harvesting, hop count, throughput, and outage probability 

to enhance the overall performance of the system. The suggested model outperformed the 

standard methods, as evidenced by the above study findings. Subsequent research will 

assess the efficacy of contemporary deep learning models in order to yield more precise 

and dependable results. Furthermore, future study will thoroughly examine the resource 

allocation process in the multi-hop CRN. Hence, the assessment and consideration of 

forecasting the interference and link quality in the CRN will be undertaken as part of future 

research. 
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CHAPTER 6 

THESIS CONCLUSION 

In conclusion, this thesis endeavors to contribute significantly to the advancement 

of healthcare communication systems by focusing on the symbiotic integration of cognitive 

radio and energy harvesting within the context of IoMT. The overarching objective is to 

establish a robust framework for the secure transmission of medical data, ensuring the 

confidentiality and integrity of sensitive information. By merging cognitive radio 

technology with energy harvesting capabilities, the proposed system not only enhances the 

efficiency and reliability of data transmission but also addresses the crucial aspect of 

sustainability. The integration of energy harvesting mechanisms aims to extend the 

operational lifetime of the Cognitive Radio (CR) Network, ensuring continuous and 

resilient connectivity for medical devices. Through these innovations, this research strives 

to pave the way for more resilient and sustainable healthcare networks, fostering 

advancements in patient care, data security, and overall system longevity. 

This study initially implemented the CR routing protocol within the IoT to facilitate 

the efficient transmission of clinical data, employing the novel SR-CHGWO. This 

algorithm considered multi-objective constraints for CH selection, encompassing 

parameters such as energy, throughput, distance, time delay, data rate, and outage 

probability. The assessment of the SR-CHGWO revealed a substantial improvement of 

42.5%, 27.2%, 33.2%, and 20.29% in node power against PSO, JAYA, GWO and CHIO 

respectively. These findings unequivocally demonstrate the efficacy of the proposed 

routing protocol in enhancing medical data transmission within the cognitive routing 

framework of IoT. Furthermore, simulation results underscore the superior computational 

efficiency of the SR-CHGWO algorithm when contrasted with traditional optimization 

methods. Furthermore, this study has devised an effective EHCRSN framework for the 

transmission of health data, leveraging the optimization prowess of HCSEHO to amplify 

the overall performance. The optimization process focused on selecting the optimal cluster 

heads by addressing a multi-objective function that encompasses parameters such as 

"distance, energy harvesting, throughput1, hop count, 1outage probability, and 1delay". All 

these constraints were strategically considered to enhance the data transfer rates without 

compromising on delay. In comparison to PSO, ROA, CSO and EHO the proposed 
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HCSEHO exhibited a notable performance improvement of 0.49%, 79.28%, 10.91%, and 

44.91%, respectively, particularly in terms of energy harvesting when considering a dataset 

of 100 nodes in Dataset-1. Furthermore, it was ascertained that the developed framework, 

empowered by HCSEHO, outperforms existing medical data transmission techniques, 

highlighting its superiority in the realm of efficient and optimized medical data 

transmission. 

Finally, a highly effective optimization mechanism was employed to optimize data 

transmission within the Cognitive Radio Network (CRN), significantly improving trust 

performance and the viability of nodes after 2000 iterations. To address challenges arising 

during data transmission over the CRN, an optimal cluster head selection process was 

executed, covering all nodes to enhance throughput and mitigate outage probability. This 

approach achieved a multi-objective function, incorporating constraints such as hop count, 

throughput, and outage probability ultimately enhancing overall system performance even 

in the presence of mis behaving nodes. The performance boost facilitated by the developed 

SA-LBOA not only extended the network lifespan but also instilled trust in the transmission 

nodes. Furthermore, the model's versatility allows for simulation with various network 

performance metrics, thereby offering a comprehensive approach to enhancing network 

efficiency through multi-objective functions. Comparative analysis with conventional 

algorithms underscored the superior performance of the proposed model, validating its 

efficacy as revealed in the aforementioned results. 

In summary, this comprehensive study explores the implementation of cognitive 

routing protocols and energy harvesting-based frameworks within the Internet of Things 

(IoT) and Cognitive Radio Networks (CRN) for efficient medical data transmission. The 

first part introduces the novel SR-CHGWO algorithm, demonstrating substantial 

improvements in node power compared to existing algorithms. The second part focuses on 

the HCSEHO optimization strategy in a Cognitive Radio Sensor Network (CRSN), 

showcasing notable performance enhancements, especially in energy harvesting. The final 

section discusses the D-LBOA optimization mechanism for data transmission in CRN, 

emphasizing improvements in trust performance and network lifespan. The study 

underscores the superiority of these proposed models over conventional algorithms, 

validating their effectiveness through comprehensive simulations and analyses. 
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CHAPTER 7 

FUTURE SCOPE 

This thesis presents a complete study and performance evaluation of EH-CRSN 

from different perspectives. Further, as a part of future research works the following are 

the few points that can be considered to enhance the performance of Energy Harvesting 

based CR Networks.  

The energy Harvesting model consider for this analysis assumes a linear piece wise 

model. Practical Non-Linear models can also be used for real time analysis of the system. 

Further real time data can be used for the simulation of the proposed network and can 

extended the work based on the amount of data and its impact on the network parameters 

can be studied. Extend research on optimal cluster head selection by refining multi-

objective functions, considering evolving parameters and constraints to enhance the overall 

efficiency of data transmission. Develop and implement more robust security measures to 

ensure the confidentiality and integrity of medical data transmitted over the Internet of 

Medical Things (IoMT). Explore encryption and authentication methods to fortify the 

security of sensitive healthcare information. Continuous Improvement of Optimization 

Algorithms: Continuously refine and enhance the optimization algorithms (e.g., SR-

CHGWO, HCSEHO, D-LBOA) by incorporating feedback from practical implementations 

and addressing any identified limitations or challenges. 
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