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ABSTRACT  

Cervical cancer, ranking as the fourth most prevalent cancer among women globally, remains 

a significant health concern, emphasizing the urgent need for accurate and timely detection 

methods. In response, the groundbreaking development of DeepCervix-Net emerges as an 

innovative AI-based approach, strategically designed to automate the comprehensive analysis 

of cervical cell images, from segmentation to classification, with the overarching goal of 

enhancing early detection strategies and subsequent medical interventions. The foundational 

pillar of DeepCervix-Net lies in its meticulously structured three-stage process: semantic 

segmentation, feature extraction, and classification. Each stage operates cohesively to 

meticulously dissect pap-smear images, identify intricate cell structures, and categorize them 

according to the latest Bethesda Classification System. The initial stage, semantic 

segmentation, is important in precisely segmenting the cytoplasm and nucleus within cervical 

cells. DeepCervix-Net utilizes a modified U-Net architecture, which integrates Attention 

modules and Residual blocks to highlight spatial information and elevate segmentation 

accuracy. This stage's precision in identifying and segmenting cell structures forms a crucial 

foundation for subsequent analysis. Following semantic segmentation, Cell Profiler, a 

powerful tool, is integrated to meticulously extract morphological and textural features from 

individual cells. This critical step enables the characterization of diverse cell structures, 

furnishing detailed insights that significantly enrich the subsequent classification task. The 

extracted features serve as a comprehensive blueprint for understanding cell characteristics, 

essential for identifying potential cancerous and precancerous cells. The concluding stage 

entails the utilization of the innovative Artificial Neural Network Architecture model, precisely 

classifying cervical cells into seven classes. This robust classification process facilitates early 

detection of abnormal cells, indicative of potential cancerous or precancerous conditions. The 

use of deep learning techniques at this stage improves accuracy and makes decision-making 

easier for medical practitioners. DeepCervix-Net shows great promise in automating the 

segmentation, feature extraction, and classification of cervical cells for cancer screening. With 

a demonstrated overall accuracy rate of 98%, surpassing comparable techniques utilizing 

VGG16 and XGboost, it stands as a testament to its efficacy and potential to revolutionize 

cervical cancer diagnosis. By using the capabilities of deep learning techniques and deploying 

a holistic multi-stage approach, DeepCervix-Net offers a promising solution to significantly 

enhance the efficiency of cervical cancer screening. This groundbreaking innovation holds the 
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potential to reshape the landscape of cervical cancer detection, potentially reducing mortality 

rates and enhancing the overall well-being of women worldwide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

ACKNOWLEDGEMENTS 

In the Name of Almighty, the most Beneficent, the most Merciful All praise belongs to Almighty, 

the Lord of the Heavens and the Lord of Earth, Lord of all the worlds. All greatness belongs to 

Him. He is All-Wise, the lord of magnificent Throne. My deepest gratitude goes to Dr. Baljit 

Singh Saini and Dr. Abid Sarwar, my supervisors for their luminous guidance and warm 

encouragement during this research. This work would not have the spirit that it has, without 

the invaluable academic, educational, psychological, and human support provided by them and 

the belief that they laid upon my capabilities to undergo this research. I am also deeply indebted 

to Dr. Abid Sarwar for his support and guidance which shaped my carrier. I express my sincere 

thanks to Pushpendra Kumar Pateriya and Dr. Navneet Kaur for their support. I also thank all 

the non-teaching staff members of the department for all the facilities provided to me during 

my research. My sincere thanks also go to Dr. Sameer Ahmad Rather, (Department of 

Medicine, GMC Srinagar) who supported me, and provided the clinical data that was required 

for conducting this research. 

I extend my heartfelt thanks to my parents, whose boundless love, unwavering support, and 

enduring guidance have been the cornerstone of my resilience during life's toughest challenges. 

Alongside them, my uncle, aunt, brother, Ubaid Bashir and Hadika Bashir, have been 

unwavering pillars of strength, offering constant encouragement through their prayers and 

support during my most trying moments. I express deep gratitude to my best friend Khan 

Summayh for their unwavering companionship and understanding, and to my sister Zahida 

Nazir for being an immense source of comfort. Aijaz Ahmad Bhat's invaluable support and 

guidance, along with Dr. Abid Sarwar's exceptional and unconditional assistance, have played 

pivotal roles in navigating through difficult times. I dedicate this thesis to my parents and Dr. 

Abid Sarwar, acknowledging their pivotal roles in my journey. 

                                                                                                                          Nahida Nazir 

 

 

 

 

 

 

 

 



vii 

 

TABLE OF CONTENTS 

 

 

DECLARATION ii 

CERTIFICATE iii 

ABSTRACT iv 

ACKNOWLEDGEMENTS vi 

LIST OF TABLES xi 

LIST OF FIGURES xii 

LIST OF ABBREVIATIONS xiv 

CHAPTER 1 1 

INTRODUCTION 1 

1.1 Cervical cancer 1 

1.2 Risk factors 3 

1.2.1 HPV Infection 3 

1.2.2 Sexual Behaviour 3 

1.2.3 Lack of Screening 4 

1.2.4 Smoking 4 

1.2.5 Weakened Immunity 4 

1.2.6 Socioeconomic Factors 4 

1.2.7 Oral Contraceptives 4 

1.2.8 Genetics and Family History 4 

1.3 Types of screening test 5 

1.3.1 HPV Test 5 

1.3.2 Pap Smear (Pap Test) 5 

1.3.3 Visual Inspection with Acetic Acid (VIA) 5 

1.4 BETHESDA SYSTEM 6 



viii 

 

1.4.1 NILM 6 

1.4.2 Atypical Squamous Cells of Undetermined Significance (ASC-US) 6 

1.4.3 Low-Grade Squamous Intraepithelial Lesion (LSIL) 6 

1.4.4 High-Grade Squamous Intraepithelial Lesion (HSIL) 7 

1.4.5 Atypical Glandular Cells (AGC) 7 

1.4.6 Squamous Cell Carcinoma or Adenocarcinoma 7 

1.5 Role of DL in cervical cancer diagnosis 7 

1.6 Public datasets 8 

1.6.1 Herlev dataset 8 

1.6.2 SIPakMed dataset description 9 

1.6.3 Intel and Mobile ODT dataset description 9 

1.6.4 ISBI 2014 Challenge database 10 

1.6.5 UCI dataset 10 

1.7 Motivation 11 

1.8 Research gaps 12 

1.9 Research Objectives 13 

1.10 Thesis Organization 13 

CHAPTER 2 15 

LITERATURE REVIEW 15 

2.1 Segmentation 15 

2. 1.1 Deep learning for segmentation 15 

2.2 Feature Extraction: 17 

2.2.1 DL for feature extraction 17 

2.3 Classification 22 

2.3.1 Deep learning for Classification 22 

2.4 SUMMARY 38 

 



ix 

 

CHAPTER 3 40 

METHODOLOGY 40 

3.1 Proposed Methodology 40 

3.2 Dataset for study 43 

3.2.1 Description of the collected cells 46 

3.3 Pre-processing methods 48 

3.3.1 Resizing 48 

3.3.2 Contrast Limited Histogram Equalization 49 

3.4 Software used 49 

3.4.1-Label-studio 49 

3.4.2 Image J 51 

3.4.3 Fiji plugin 52 

3.4.4 Cell profiler 52 

3. 5 Types of segmentation 54 

3.5.1 Semantic Segmentation 55 

3.5.2 Instance Segmentation 55 

3.5.3 Panoptic Segmentation 55 

3.6 Segmentation models 55 

3.6.1 Standard U-Net 55 

3.6.2 Residual U-Net 56 

3.6.3 Attention U-Net 57 

3.6.4 Residual-Attention U-Net 58 

3.7 Feature extraction 61 

3.7.1 VGG16 62 

3.8 Classifier 63 

3.8.1 Artificial neural network 63 

3.8.2 XGBoost 65 



x 

 

3.9 Justification of the chosen architectures 67 

3.10 SUMMARY 68 

CHAPTER 4 70 

RESULTS AND DISCUSSION 70 

4.1 Segmentation result 70 

4.1.1 Standard U-Net 70 

4.1.2 Residual U-Net 71 

4.1.3 Attention U-Net 72 

4.1.4 Residual Attention U-Net 73 

4.2 Feature extraction and classification 76 

4.2.1 Description of extracted features from cell profiler 76 

4.3 Evaluation metrics 80 

4.4 Muti class classification 81 

4.5 Profiling of folded cytoplasm 87 

4.6 Comparison with state-of art approaches 90 

CHAPTER 5 93 

CONCLUSION AND FUTURE SCOPE 93 

5.1 Conclusion 93 

5.2 Future scope 94 

5.3 SUMMARY 95 

LIST OF PUBLICATIONS 96 

BIBLIOGRAPHY 97 

 

 

 

 

 

 



xi 

 

LIST OF TABLES 

                                                                    

Table No. Caption Page No. 

Table 1 Summary of the state-of-the-art approaches in cervical cancer diagnosis 32-38 

Table 2 Total number of Pap smear images in the prepared dataset 45 

Table 3 Artificial neural network model parameters 65 

Table 4 VGG16 model summary of Convolutional and Maxpooling layers 67 

Table 5 Performance comparison of segmentation models 75 

Table 6 Features extracted from cytoplasm and nucleus using cell-profiler 79 

Table 7 Cell mapping for cervical cell classification 79-80 

Table 8 Performance analysis of seven classes of cervical cells classified 

(VGG16-XGBoost)  

84 

Table 9 Performance analysis using Deep-CervixNet classification of Pap smear 

images. 

85 

Table 10 Average performance comparison of Deep-CervixNet Model and 

VGG16-XGBoost.  

86 

Table 11 Range difference in folded and unfolded cytoplasmic features 89-90 

Table 12 Comparison of Deep-CervixNet with state-of-art approaches 92 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

LIST OF FIGURES 

 

Figure No.                                        Caption      Page No. 

Figure 1 Visual representation of HPV life cycle    3 

Figure 2  Basic types of cervical cancer diagnostic tests                                   6 

Figure 3 Bethesda system of cell classification 7 

Figure 4 Deep learning trends in cervical cancer diagnosis from 2014 to 2023    8 

Figure 5 Yearly usage of public and private datasets in cervical cancer diagnosis 11 

Figure 6 Proposed methodology for diagnosis of cervical cancer                            43 

Figure 7 Dataset preparation with 843 images for model training                           46 

Figure 8 Cell Samples                                                                                                48 

Figure 9 Labeling interfaces for generating ground truth images 50 

Figure 10 Labeling of nucleus and cytoplasm in parabasal cells 51 

Figure 11  Edge detection and area calculation with ImageJ 52 

Figure 12 Cell Profiler Pipeline for extracting cytoplasm and nucleus features 53 

Figure 13 Object identification of intermediate cells for feature extraction 54 

Figure 14 Segmentation methods for obtaining region of interest 54 

Figure 15 U-Net Architecture (32x32 Pixels)   56 

Figure 16 Residual U-Net Architecture 57 

Figure 17 Attention U-Net architecture for segmenting the region of interest 58 

Figure 18  Residual attention U-Net architecture 58 

Figure 19  Block diagram of attention module 59 

Figure 20  Structure of different residual blocks utilized in the architecture 60 

Figure 21 VGG16 architecture for feature extraction 63 

Figure 22 Multiclass cervical cell classification using MLP 64 

Figure 23 Multi-level classification of cervical cells using VGG16-XGBoost 66 

Figure 24 Segmented cytoplasm and nucleus using standard U-Net 71 

Figure 25  Segmentation of cytoplasm and nucleus using residual U-Net 72 

Figure 26 Segmentation of cytoplasm and nucleus with attention U-Net 73 



xiii 

 

Figure 27 Segmented cytoplasm and nucleus using residual-attention U-Net 74 

Figure 28 Training and validation IoU and Loss of residual -attention U-Net 75 

Figure 29 Visual representation of feature extraction from 843 Pap smear images 76 

Figure 30 Multiclass classification of segmentation free Pap smear images 82 

Figure 31 Multiclass classification of Deep-CervixNet architecture 83 

Figure 32 Training and validation accuracy and loss graphs for Deep-CervixNet 87 

Figure 33 Unfolding of Intermediate Squamous images 89 

Figure 34 Unfolding of Superficial Squamous cells folded cytoplasm 89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

LIST OF ABBREVIATIONS 

 

ANFIS    Adaptive Neuro Fuzzy Inference System 

ANN    Artificial Neural Network  

AGC    Atypical Glandular Cells 

ASC-US                                  Atypical Squamous Cells of Undetermined Significance 

AttFPN                                    Attention Feature Pyramid Neural  

AUC    Area Under the Curve 

CHALE   Contrast Limited Adaptive Histogram Equalization  

CIN     Cervical Intraepithelial Neoplasia 

CNN    Convolutional Neural Network 

DCNN    Deep Convolution Neural Network 

DL        Deep Learning 

ELM     Extreme Learning Machine  

EVA    Enhanced Visual Assessment 

FC     Fully Connected  

FP    False Positive  

FN    False Negative 

GAN     Generative Adversarial Neural Network  

GLCM    Gray-Level Co-occurrence Matrix 

HCME    Hierarchical Convolutional Mixture of Experts 

HDI     Human Development Index 

HPV     Human Papillomavirus 

HSIL    High Grade Squamous Intraepithelial Lesion 

IoU    Intersection Over Union  

ISBI     International Symposium on Biomedical Imaging 

KNN    K Nearest Neighbor 

LMIc    Low- & Middle-Income Countries   

LSIL     Low-grade Squamous Intraepithelial Lesion 

MLP    Multilayer Perceptron 

MSE    Mean-Squared Error 

NILM     Negative for Intraepithelial Lesion or Malignancy 

PCA    Principal Component Analysis 



xv 

 

ReLU    Rectified Linear Unit  

RCNN    Region-Based Convolutional Neural Network 

RNN                                        Recurrent Neural Network 

RPN    Regional Proposal Network  

SGD                                        Stochastic Gradient Descent 

SPFNet   Subspace Pyramid Fusion Network 

SPFNet   Series-Parallel Fusion Network  

STIs    Sexually Transmitted Infections  

TCT    ThinPrep Cytologic Test 

TN    True Negative 

TP    True Positive 

UCI    University of California Irvine machine learning  

VA                                          Variational Autoencoder  

VILI                                        Visual Inspection Lugol's Iodine 

VGG    Visual Geometry Group 

VIA    Visual Inspection Acetic Acid  

WHO    World Health Organization 

YOLO    You Only Look Once



1 

 

CHAPTER 1 

INTRODUCTION 

This chapter serves as an expansive exploration into the multifaceted landscape of cervical 

cancer diagnostics and understanding. It encompasses a comprehensive discussion on various 

pivotal facets, including a detailed portrayal of cervical cancer pathology, an analysis of 

associated risk factors such as HPV infection and socio-economic disparities, an overview of 

diverse screening methodologies like Pap smears and HPV DNA tests, and an exploration into 

the Bethesda System of Classification. Additionally, it delves into the transformative role of 

deep learning (DL) techniques in enhancing cervical cancer diagnosis, illuminating the impact 

of advanced computational methodologies on accuracy and efficiency. Furthermore, this 

chapter navigates through publicly available datasets pertinent to cervical cancer research, 

highlighting their potential utility for researchers. It also elucidates the motivation behind the 

research, identifying existing gaps in diagnostic accuracy and computational methodologies. 

The chapter culminates by articulating the research objectives and outlining the structural 

organization of the thesis to provide a coherent roadmap for the ensuing discussions and 

analyses. 

1.1 Cervical Cancer 

Cervical cancer originates in the cells of the cervix, the lower portion of the uterus (womb) 

which is connected to the vagina [1,2,3]. Most cervical cancer are caused by the human 

papillomavirus (HPV), a sexually transmitted infection. Approximately 123,907 women 

receive a diagnosis of cervical cancer annually, with 77,348 succumbing to the illness [4-5,46]. 

However, not all HPV infections lead to cervical cancer; some strains of HPV are considered 

high-risk and can lead to abnormal changes in cervical cells, potentially developing into cancer 

over time [4,5,6]. The progression from HPV infection to cervical cancer typically occurs 

slowly, often starting with precancerous changes in the cells of the cervix. These changes can 

be detected through regular screening tests such as Pap smears or HPV tests, allowing for early 

detection and intervention before cancer develops. In the initial stages of cervical cancer, 

symptoms might not manifest, but as the disease advances, individuals may notice irregular 

vaginal bleeding, pain during sexual intercourse, pelvic discomfort, and other associated 

symptoms [7-14]. Preventive measures for cervical cancer include HPV vaccination, routine 

screenings, and practicing safe sex [15-16]. Nearly all instances of cervical cancer stem from 

persistent infections by one of the 15 carcinogenic HPV genotypes [17-19], following a 

sequence of stages: initial infection of the cervical transformation zone's metaplastic 
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epithelium, sustained HPV infection, progression to cervical precancer from persistently 

infected cells, and eventual invasion through the epithelium's basement membrane [20-25]. 

HPV vaccines offer protection against HPV infection for girls and young women, yet current 

HPV vaccination rates remain notably low, even in some developed nations [26,27,28]. 

Moreover, the benefits of HPV vaccination typically extend to young women under 26 years 

old, particularly with the 9-valent HPV vaccines [29,30]. Despite vaccination, 

recommendations from the American Cancer Society advise vaccinated women to undergo 

regular screening like unvaccinated individuals, recognizing the inability to eliminate risk 

through vaccination alone [31-33]. 

Cervical cancer poses a significant global health challenge, in nations with lower and middle 

economic standings [LMICs] where effective interventions like HPV vaccination and improved 

screening methods remain less accessible [34,35]. While strides in reducing cervical cancer 

incidence and mortality have been notable in high Human Development Index (HDI) countries 

due to quality screening and timely treatments, progress has been slow in LMICs [36], where 

most cases and deaths occur. The WHO launched an initiative in 2020 to address the cervical 

cancer issues, aiming to lower incidence rates to below 4 cases per 100,000 women-years 

worldwide by 2030 [64]. This initiative sets ambitious targets, this includes ensuring that 90% 

of girls are vaccinated by the age of 15, screening 70% of females at least twice by age 45 with 

high-performance tests and ensuring treatment for 90% of identified cases. The WHO's strategy 

emphasizes the need for enhanced surveillance and monitoring to identify gaps and take 

targeted actions, highlighting the importance of continuous progress in the fight against cervical 

cancer on a global scale [37-40]. Figure 1 provides an overview of the human papillomavirus 

(HPV) life cycle, crucial for understanding cervical cancer development. On the left side of the 

diagram, a representation of a healthy cervix is depicted, serving as the baseline for cervical 

cancer analysis. Within this context, the progression of cervical cancer is elucidated through 

three distinct grades of cancerous cells, each delineated by the extent of cellular abnormalities 

and involvement. Notably, CIN3, positioned at the apex of the severity spectrum, signifies a 

substantial proportion of cells affected by malignancy. Transitioning towards the far-right 

section of the image, an abnormal cervix overtaken by cancer is illustrated. Here, the cells 

exhibit profound deviations from the morphology of healthy cervical cells, showcasing a 

spectrum of severe deformities and dysplasia.  This work focuses specifically on applying deep 

learning methods to the analysis and classification of cervical cancer images. The research aims 

to develop and evaluate models tailored to the unique features and diagnostic needs associated 

with cervical cancer. While the findings and methodologies presented in this work demonstrate 
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significant potential within this specific context, it is important to note that these results are not 

directly generalizable to other types of cancer or medical conditions. The methods developed 

and tested in this thesis are optimized for cervical cancer, and their applicability to other 

contexts would require further validation and adaptation. 

 

Figure1: Visual representation of HPV life cycle [33]. 

  

1.2 Risk Factors 

Cervical cancer risk factors encompass a range of biological, lifestyle, and environmental 

elements that contribute to the likelihood of developing the disease.  

1.2.1 HPV Infection 

Infection with high-risk HPV strains, like types 18 and 16, is the main risk factor associated 

with cervical cancer. HPV is transmitted through sexual contact and can lead to cellular changes 

in the cervix that may progress to cancer if left untreated. Regular screening helps detect HPV-

related changes early, preventing their advancement to cancer [40]. 

1.2.2 Sexual Behaviour  

Certain sexual behaviours increase the risk of HPV exposure, which heightens the likelihood 

of cervical cancer. Engaging in sexual activity at a young age, having n number of sexual 

partners, or being in a relationship with someone who has multiple partners elevates the risk of 

HPV. Additionally, a history of other sexually transmitted infections (STIs) may exacerbate 

this risk [41]. 
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1.2.3 Lack of Screening 

Inadequate or infrequent cervical cancer screenings, like HPV tests, can delay the identification 

of precancerous or cancerous changes in cervical cells. Without timely detection and 

intervention, these changes might progress to more advanced stages of cancer [41]. 

1.2.4 Smoking  

Tobacco use, particularly smoking, is linked to an increased risk of cervical cancer. Chemicals 

in tobacco smoke can damage cervical cells, making them more susceptible to HPV infection. 

Furthermore, smoking reduces the capability to immune system to combat off HPV infections 

and may also hinder the body's ability to clear the virus [41,42]. 

1.2.5 Weakened Immunity  

Conditions that weaken the immune system, such as HIV/AIDS or the use of 

immunosuppressive medications, heighten the risk of cervical cancer. A robust immune 

response is crucial for clearing HPV infections. Individuals with compromised immunity may 

struggle to control HPV infections, leading to a higher risk of cervical cancer development [43-

45]. 

1.2.6 Socioeconomic Factors  

Socioeconomic disparities impact cervical cancer risk. Limited access to healthcare, including 

preventive measures like HPV vaccination and regular screenings, is associated with higher 

incidence rates. Socioeconomic factors also influence lifestyle choices and access to quality 

healthcare services, affecting the ability to prevent and detect cervical cancer early [46]. 

1.2.7 Oral Contraceptives  

Prolonged intake of oral contraceptives may slightly elevate the likelihood of cervical cancer. 

However, this risk tends to decrease after discontinuing their use [47]. 

1.2.8 Genetics and Family History  

A family history of gynaecological cancers or certain genetic factors might predispose 

individuals to a higher risk of developing cervical cancer. Genetic susceptibility can influence 

an individual's ability to combat HPV infections and their progression to cervical cancer [48]. 

Addressing these risk factors involves comprehensive strategies such as promoting HPV 

vaccination, encouraging regular cervical cancer screenings, advocating for smoking cessation 

programs, emphasizing safe sexual practices, improving healthcare accessibility, and 

conducting genetic counselling for individuals with a family history of gynaecological cancers 

[49]. 
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1.3 Types of Screening Test  

Cervical cancer screening aims to detect precancerous cell changes to prevent the development 

of cervical cancer through timely treatment. Occasionally, cancer is identified during screening. 

Detecting cervical cancer early typically facilitates easier and more effective treatment. 

However, when symptoms manifest, the cancer may have already started spreading, posing 

challenges for treatment. The various types of screening tests are depicted in figure 2.  

1.3.1 HPV Test   

This test looks specifically for the existence of high-risk types of HPV in cervical cells. The 

HPV test may be used alone or in conjunction with a Pap smear (co-testing) for more accurate 

identification of precancerous changes or early-stage cancer [50]. 

1.3.2 Pap Smear (Pap Test)  

This test involves collecting cells from the cervix, which are then examined under a microscope 

to identify any abnormal changes in the cervical cells. It's effective in detecting precancerous 

or cancerous cells. The traditional Pap smear has been largely replaced by liquid-based 

cytology, where the collected cells are preserved in liquid before examination [51]. 

1.3.3 Visual Inspection with Acetic Acid (VIA)  

These are low-cost screening methods suitable for resource-limited settings. It is also known 

as Lugol's Iodine (VILI) test.VIA involves applying dilute acetic acid to the cervix and 

observing it under light to detect precancerous changes. VILI uses iodine solution for a similar 

purpose. If abnormalities are detected in a Pap smear, HPV test, or during a visual inspection, 

a cervical biopsy may be performed. This involves removing a small tissue sample from the 

cervix for further examination under a microscope to confirm the presence of precancerous or 

cancerous cells. The choice of screening test or combination of tests depends on various factors, 

including age, risk factors, previous screening history, and healthcare resources available in a 

particular setting. Generally, regular screenings starting at age 21 or earlier if sexually active, 

and following recommended guidelines based on age and risk factors, are crucial for early 

detection and prevention of cervical cancer [52]. Figure 2 depicted below represents the 

common types of tests used in cervical cancer diagnosis.  
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Figure 2: Basic Types of cervical cancer diagnostic tests. 

 

1.4 Bethesda System 

It is a standardized classification system used worldwide to interpret and categorize cervical 

cell abnormalities observed in Pap Smears. Developed to improve consistency and accuracy in 

reporting cytological findings, this system helps guide clinical management decisions and 

facilitates communication among healthcare professionals. The system, established in 1988 and 

subsequently updated in 2001 and 2014, categorizes cervical cell abnormalities into specific 

groups. Figure 3 represents the normal and abnormal endometrial cells.  

1.4.1 NILM  

Negative for Intraepithelial Lesion or Malignancy (NILM) indicates a normal Pap smear result, 

where no evidence of precancerous or cancerous cells is observed [53]. Figure 3a represents 

the ASC-US cells 

1.4.2 Atypical Squamous Cells of Undetermined Significance (ASC-US)  

These categories denote minor abnormalities in squamous cells that do not distinctly suggest 

precancerous changes but warrant further investigation due to their uncertain nature [53]. 

Figure 3b represents the ASC-US cells.  

1.4.3 Low-Grade Squamous Intraepithelial Lesion (LSIL) 

LSIL findings indicate mild cellular changes, often associated with human HPV infections, and 

typically pose a lower risk of progressing to cancer [53-55]. Figure 3c represented below is the 

LSIL image. It is considered a precursor to cervical cancer, but usually reflects early changes 

in the cells that are often caused by an HPV (Human Papillomavirus) infection. 
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1.4.4 High-Grade Squamous Intraepithelial Lesion (HSIL)  

HSIL denotes significant to severe abnormalities in squamous cells, indicating a higher risk of 

progression to cervical cancer [53-56]. Figure 3d represents the HSIL of Pap Smear images.  

1.4.5 Atypical Glandular Cells (AGC)  

AGC findings suggest abnormalities in glandular cells of the cervix, necessitating further 

evaluation due to the potential for underlying neoplastic changes [53,57]. Figure 3e represents 

the Atypical Glandular Cell.  

1.4.6 Squamous Cell Carcinoma or Adenocarcinoma  

These categories represent definitive findings of invasive cervical cancer. The Bethesda System 

aims to standardize terminology, enhancing the accuracy and reproducibility of Pap smear 

interpretations, and guide appropriate patient management strategies based on the identified 

abnormalities [53,58]. Figure 3f represents the Squamous Cell Carcinoma.  

 

Figure 3: Bethesda system of cell classification [53].  

 

1.5 Role of DL in Cervical Cancer Diagnosis 

Over the past decade, deep learning has emerged as an important contributor in the domain of 

cervical cancer diagnosis. From 2014 to 2022, deep learning-based approaches have 

experienced remarkable growth and advancement, revolutionizing the way cervical cytology 

screening is conducted. The early years saw the exploration and development of foundational 

DL models and architectures, laying the groundwork for subsequent breakthroughs. As DL 

gained traction, its application in cervical cancer diagnosis expanded rapidly, leveraging large-

scale datasets, and enhanced computational resources. From 2016 onwards, there has been a 

notable surge in research publications, indicating the increasing interest and recognition of DL's 

potential in this domain. Key areas of focus include object detection for precise identification 
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of abnormal cells, segmentation, feature extraction assessments, and the integration of DL with 

other diagnostic modalities for improved accuracy and efficiency. The trends from 2010 to 

2022 clearly demonstrate DL's significant impact in advancing cervical cancer diagnosis, 

offering promising avenues for enhancing early detection, patient outcomes, and ultimately, 

reducing the global burden of this devastating disease. Figure 4 illustrates a comprehensive 

overview of DL techniques employed in automatic cervical cancer diagnosis, showcasing the 

diverse methodologies utilized for enhanced detection and classification. It is observed that 

CNN is frequently used deep learning approach in automatic diagnosis of cervical cancer.  

 

 

Figure 4: Deep learning trends in cervical cancer diagnosis from 2014 to 2022. 

 

1.6 Public Datasets 

The effectiveness of deep learning techniques depends on several factors, including 

computational resources and the availability of testing and training datasets. This section 

presents the most used datasets by the authors, but some researchers have also explored datasets 

like UCI, ISBI challenge database, and Guanacaste database. 

1.6.1 Herlev Dataset 

It is a publicly available dataset widely used in the domain of cervical cancer diagnosis. It 

consists of cervical cell images that are collected from Pap smear images, a standard technique 

for detecting precancerous changes in the cervix. The dataset is composed of both normal and 

abnormal cells. Researchers often utilize the Herlev dataset to train and evaluate DL models 
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for cervical cancer diagnosis. By using this dataset, they can develop computer-assisted 

diagnosis tools that can aid in the accurate and efficient screening of cervical cancer. The 

database contains a total of 917 images, comprising both normal and abnormal cases. These 

images are divided into seven separate classes, each based on different cell characteristics. The 

dataset can be accessed from the mentioned link http://mdelab.aegean.gr/index.php/downloads 

[59]. 

1.6.2 SIPakMed Dataset Description 

The SIPaKMeD (Serbian Intelligent PAP smear analysis database) is a valuable resource in the 

domain of cervical cancer diagnosis and research. It consists of cervical cell images obtained 

from the Pathology department at the Clinical Center of Serbia. This dataset includes both 

normal and abnormal cell images, making it suitable for studying cervical abnormalities and 

developing computer-assisted diagnostic tools. The SIPaKMeD dataset is well-annotated, 

providing class labels for different cell types, including normal cells, LSIL, and HSIL. These 

annotations facilitate the training and evaluation of machine learning and DL models for 

cervical cancer classification and segmentation. By using this dataset, researchers can gain 

insights into the characteristics of cervical cells and explore novel approaches to improve early 

diagnosis of cervical cancer. The SIPaKMeD Database comprises a total of 4049 images, which 

were captured using a digital. This dataset can be accessed from 

https://www.cs.uoi.gr/~marina/sipakmed.html [60].  

1.6.3 Intel and Mobile ODT Dataset Description 

The Intel and Mobile ODT datasets are two valuable resources used for cervical cancer 

diagnosis and analysis. The Intel dataset contains cervical cell images captured using Intel's 

mobile devices. This dataset provides a large collection of images, including both normal and 

abnormal cervical cells. The dataset is annotated with class labels, allowing researchers to train 

and evaluate AI based models for cervical cancer detection and classification. The Mobile ODT 

dataset, on the other hand, consists of cervical images captured using the Enhanced Visual 

Assessment (EVA) system developed by Mobile ODT. This dataset includes images from both 

the cervix and the vaginal fornix, providing a comprehensive view of the cervical region. It is 

a valuable resource for analysing cervical abnormalities and studying various cell 

characteristics associated with cervical cancer [61]. The Intel and Mobile-ODT datasets, 

available on Kaggle's website (https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-

screening), consist of a total of 1481 training samples, 512 test images, and an additional 4633 

images provided for extra training data [62]. 
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1.6.4 ISBI 2014 Challenge Database 

Biomedical Imaging (ISBI) 2014 Challenge. This database typically contains medical imaging 

data or related information that participants use to develop and evaluate algorithms or methods 

for specific tasks in biomedical image analysis. These challenges aim to advance the state-of-

the-art in medical imaging technology and often focus on areas such as image segmentation, 

registration, or classification [62].  

1.6.5 UCI Dataset 

This dataset contains information on various risk factors related to cervical cancer, such as 

demographic factors, behavioural factors, and medical history. The data was collected from 

patients in hospitals in Brazil and is aimed at studying the risk factors associated with cervical 

cancer development. Researchers can use this dataset for studying and analyzing the 

relationships between different risk factors and cervical cancer incidence. It provides valuable 

information that can contribute to the understanding and prevention of cervical cancer, as well 

as the development of predictive models for early detection and diagnosis [63].  

Cervical cancer diagnosis typically begins with the utilization of various primary datasets, 

which serve as fundamental resources for training and developing diagnostic models. These 

datasets encompass diverse cervical cell images, allowing researchers to study normal and 

abnormal cell patterns. Following the primary datasets, researchers often turn to the Herlev 

dataset, a well-known and extensively used collection of cervical cell images. The Herlev 

dataset provides annotated images divided into multiple classes based on cell characteristics, 

making it valuable for refining and evaluating diagnostic algorithms. Additionally, the 

SIPaKMeD dataset is a prominent secondary resource, comprising manually selected images 

from Pap smear samples, which aids in the analysis of cervical abnormalities. Alongside these 

primary and secondary datasets, researchers have explored other secondary datasets to further 

enhance cervical cancer diagnosis and contribute to advancements in automated screening 

methods. The below mentioned figure 5 represents the year wise usage of various public and 

private datasets. From the stacked bar graph, it is evident that real dataset is used more 

frequently compared to other datasets, which is followed by the Herlev dataset.  
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Figure 5: Yearly usage of public and private datasets in cervical cancer diagnosis.  

 

1.7 Motivation  

The motivation behind delving into cervical cancer diagnosis using deep learning stems from 

the urgent need to enhance early detection and accuracy in identifying cervical abnormalities. 

By using AI based approaches, this research aims to overcome challenges associated with 

human error in manual screening processes, providing a consistent and objective approach. The 

scalability of deep learning models facilitates the efficient processing of vast amounts of 

medical data, optimizing healthcare resources and improving accessibility to screening 

services. Ultimately, the goal is to significantly impact patient outcomes by enabling timely 

interventions, reducing false negatives, and contributing to the broader field of medical 

research, all with the overarching objective of alleviating the worldwide impact of cervical 

cancer and improving the quality of life for affected individuals. Our primary emphasis will be 

on the following aspects: 

• Focusing on using deep learning to enhance early detection for identifying cervical 

abnormalities. 

• Improving accessibility to cervical cancer screening services through efficient data 

processing, particularly in resource-constrained regions.  

• Commitment to minimizing false negatives in cervical cancer diagnoses through 

highly sensitive and accurate deep learning algorithms. 

• Aspiring to reduce the global burden of cervical cancer through innovative deep 

learning approaches, improving healthcare outcomes worldwide. 
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1.8 Research Gaps  

• In contemporary biomedical research, the unfolding of folded cytoplasm’s stands as 

a challenging frontier, and despite the strides made in image processing and deep 

learning techniques, a noticeable research gap persists in their collective ability to 

achieve comprehensive unfolding. Existing methodologies encounter difficulties in 

preserving the intricate spatial relationships within cytoplasmic structures, 

grappling with complex geometries, and adapting to the dynamic nature of cellular 

components during the unfolding process.  

• The scarcity of benchmark datasets specifically designed for evaluating cytoplasmic 

unfolding represents an additional significant research gap. The absence of 

standardized datasets tailored to the intricacies of cytoplasmic structures hampers 

the development, testing, and comparison of unfolding algorithms. A lack of diverse 

and representative datasets impedes researchers from effectively benchmarking 

their approaches, hindering progress in the field. Establishing comprehensive 

benchmark datasets that encompass the variability in cytoplasmic structures will be 

crucial for advancing the accuracy and reliability of unfolding methodologies, 

contributing to a more robust foundation for future advancements in this domain. 

• Medical images, especially those acquired during cervical cancer screening, are 

often affected by noise, artifacts, and variations in imaging conditions. Deep 

learning models may struggle to perform reliably in the presence of such challenges. 

There is a need for research focusing on developing robust deep learning models 

that can effectively handle noisy and artifact-ridden images. 

• Cervical cancer diagnosis often involves multiple modalities such as 

histopathology, cytology, and imaging (e.g., colposcopy, MRI). There is a gap in 

research focusing on the development of deep learning models capable of 

integrating information from multiple modalities to improve diagnostic accuracy 

and reliability. 

• A significant gap exists in pre-existing research efforts: there's a lack of advanced 

techniques to effectively profile features from folded cytoplasm. Current methods 

fall short in capturing the detailed characteristics of these folded structures. 

Addressing this gap is crucial for gaining a deeper understanding of the functional 

aspects of cytoplasmic components. Developing specialized techniques for accurate 
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feature profiling will be essential to close this research gap and uncover insights 

into the role of folded cytoplasm in cellular biology. 

• The absence of annotated datasets containing both cytoplasmic and nuclear features 

poses a significant obstacle in training accurate deep learning models for cervical 

cancer detection. Current research predominantly focuses on individual cellular 

components, overlooking the vital interplay between cytoplasm and nucleus crucial 

for precise cancer classification. Addressing this gap by developing annotated 

datasets with comprehensive cellular features will enable the training of more 

effective deep learning models, thereby improving the accuracy of cervical cancer 

screening methodologies. 

1.9 Research Objectives 

• To analyze the existing image processing and deep learning algorithms. 

• To collect and preprocess the appropriate cervical image dataset.  

• To segment cell organelles from individual cells. 

• To extract the features from processed dataset. 

• To develop a deep learning model for profiling of cells with folded cytoplasm. 

• To test and validate the proposed model. 

1.10 Thesis Organization 

The thesis on automated diagnosis of cervical cancer is meticulously structured into distinct 

sections, each contributing significantly to the comprehensive understanding of this critical 

domain. Chapter 2, the Literature Review, serves as a foundational pillar, meticulously 

surveying and synthesizing prior research and studies pertinent to automated cervical cancer 

diagnosis. This extensive review contextualizes the research within the existing landscape, 

elucidating the evolution of methodologies, technologies, and challenges faced in this 

specialized field. Chapter 3, Methodology, presents an intricate and detailed exposition of the 

employed approach. This section meticulously elaborates on the research methodology, 

detailing the selection criteria, data collection methods, technological tools utilized, and the 

step-by-step process of automated diagnosis. It elucidates the rationale behind the chosen 

methodologies, providing transparency and reproducibility while showcasing the robustness of 

the applied approach. 

Chapter 4, Results and Comparison, emerges as the focal point where the culmination of 

research efforts is presented. This section meticulously unveils the findings gleaned from the 

conducted research, employing a comparative analysis approach. It not only showcases the 



14 

 

achieved results but also compares these findings with existing benchmarks or standards. 

Through this comparative analysis, it sheds light on the efficacy, strengths, and potential 

limitations of the devised automated diagnosis system, thereby emphasizing the significance of 

the contributions made by the research. 

Finally, Chapter 5, Conclusion and Future Scope, serves as the intellectual zenith of the thesis. 

It provides an extensive and in-depth discussion, interpreting the implications of the research 

findings within the broader context of cervical cancer diagnosis. This section synthesizes the 

results, critically analyzes their significance, and explores avenues for further research and 

practical application. It culminates with a comprehensive conclusion, encapsulating the key 

takeaways, implications, and potential future directions arising from the study. 
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CHAPTER 2 

LITERATURE REVIEW 

The current chapter provides an examination and analysis of Pap smear images with a focus, 

on segmentation, feature extraction, and classification techniques. It delves into these methods 

using datasets from secondary sources aiming to offer a comprehensive understanding of their 

applicability and performance. A significant part of this investigation revolves around using 

deep learning architectures like Mask RCNN, U-Net, VGG16, Google-Net and other cutting-

edge approaches. The goal is to clarify their contributions, nuances, and comparative strengths 

in the context of Pap smear image analysis. By covering a range of methodologies and datasets 

this chapter aims to facilitate improved insights, for optimizing the accuracy and effectiveness 

of medical image processing specifically tailored for Pap smear analysis. 

2.1 Segmentation  

Segmentation serves as the foundational step in the diagnostic pipeline, involving the precise 

isolation of relevant regions of interest within medical images. The delineation of abnormal 

cell nuclei or lesions from healthy tissue is fundamental for accurate diagnosis. A diverse array 

of techniques, ranging from traditional thresholding and edge detection methods to more 

sophisticated deep learning-based approaches, have been employed to achieve accurate 

segmentation. The success of subsequent stages greatly hinges on the precision of this 

segmentation process. 

2. 1.1 Deep Learning for Segmentation 

This subsection delves into the realm of DL segmentation approaches tailored for cervical 

cancer diagnosis. These techniques leverage convolutional neural networks and other 

sophisticated architectures to automatically delineate regions of interest within cervical images, 

such as the cervix, squamous epithelium, columnar epithelium, and potentially cancerous 

lesions. By utilizing large, annotated datasets and powerful computational resources, these 

approaches have unlocked new avenues for early detection and accurate assessment of cervical 

abnormalities. The section begins by introducing the foundational concepts of deep learning 

and explaining how they apply to medical image segmentation. Subsequently, it explores a 

spectrum of state-of-the-art architectures, ranging from U-Net and FCN (Fully Convolutional 

Network) to more recent innovations like Mask R-CNN, discussing their adaptations and 

optimizations for diagnosis of cervical cancer.  
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Song et al. [51] conducted a study on automatic segmentation of cervical cancerous cells using 

a combination of superpixel and CNN. The CNN achieved a precision of 0.914 ± 0.0202 and a 

recall of 0.872 ± 0.0008 for detecting nucleus areas, surpassing other methods like 

Backpropagation Neural Network and Support Vector Machine, demonstrating the 

effectiveness of deep learning in detecting nuclei and cytoplasm. The process involved pre-

processing the images to remove Gaussian and impulse noise using a median filter. A coarse 

cytoplasmic mask was then created with a global threshold value, followed by fine 

segmentation using the superpixel-based algorithm. Finally, the CNN was implemented to 

extract various features from cervix cells. The dataset used for model training was collected 

from the Sixth People's Hospital of Shenzhen. 

Sompawong et al. [65] used the Mask RCNN for cervical cancer diagnosis, utilizing the Herlev 

dataset for model training. Their technique achieved an accuracy of 89.8%, sensitivity of 

72.5%, and specificity of 94.3%. Araújo et al. [6] emphasized a CNN approach for segmenting 

abnormal cervical cells. The technique ranked images based on the average area of segmented 

sections to determine the likelihood of aberrant cells. It effectively segmented both free-floating 

and clustered aberrant cells, employing a CNN and post-processing to remove these regions. 

The method proved resilient to noise and artifacts commonly found in conventional Pap smear 

images, offering faster performance without the need for prior segmentation. The results were 

ranked based on image likelihood. 

Rigaud et al. [67] investigated deep learning models capable of auto-segmenting cervix 

anatomy, yielding equivalent results on two different datasets. The study integrated 2D 

DeepLabV3 and 3D U-Net. The 2D DeepLabV3 model was designed for single-pass inference, 

classifying each pixel into either the background or one of the 12 anatomic regions. On the 

other hand, the 3D U-Net model focused on classifying various body organs. To assess 

performance, the models were evaluated using metrics such as Hausdorff distance, dice 

similarity coefficient, and distance-to-agreement. Notably, both models achieved comparable 

and successful results for cervical cancer therapy segmentation. 

Ma et al. [68] addressed the importance of precise and effective radiation target outlining for 

treating cervical cancer. To achieve autonomous contouring of clinical target volumes in 

cervical malignancies, authors explored deep learning auto-segmentation systems. A new type 

of network called VB-Net as an improved alternative to V-Net was introduced. In VB-Net, the 

letter "B" replaces the convolution, normalization, and activation layers of V-Net. This 

modification allows a significant reduction in model parameters since spatial convolution 
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operates on lower-dimensional feature images, enhancing overall efficiency. The model was 

trained on 535 computer tomography images. The proposed auto-segmentation approach 

outperformed manual contouring procedures. Consequently, this technique holds promise as a 

valuable tool to precisely outline radiation targets and improve the efficacy of cervical cancer 

radiotherapy. 

Wang et al. [124] focused on addressing the complexity of classifying pap smear images, which 

is challenging due to overlapped cells, dust, and contaminants. Traditional feature-based 

techniques struggle with proper segmentation and feature extraction in this context, the 

researchers implemented deep learning as a viable alternative. This model comprises ten layers 

of convolution, succeeded by three fully connected layers. The convolution kernels in this 

network act as filters to extract edge information, aiding in feature extraction. By abstracting 

the image layer-wise, the model achieves enhanced feature extraction, resulting in improved 

discrimination and significantly higher classification accuracy. The researchers trained this 

model on a dataset consisting of 389 Pap smear images and achieved an impressive accuracy 

of more than 98%. 

2.2 Feature Extraction 

The subsequent stage entails the extraction of salient features from the segmented regions. 

These features encapsulate essential characteristics of the cell nuclei or lesions and serve as the 

basis for subsequent classification. Morphological, textural, and spatial attributes are among 

the key features extracted. To preserve relevant information while reducing dimensionality, 

feature extraction techniques such gray-level co-occurrence matrices, and statistical measures 

are frequently employed. 

2.2.1 DL for Feature Extraction 

Traditional methods of feature extraction from medical images often relied on handcrafted 

algorithms, which were constrained in their ability to reveal the nuanced patterns present in 

cervical images. The deep learning architectures has revolutionized the process of feature 

extraction, offering a powerful solution to effectively mine complex information from images 

and significantly enhance the diagnostic accuracy for cervical cancer. This subsection 

emphasizes the significance of utilizing deep learning-based feature extraction techniques for 

cervical cancer diagnosis. Unlike conventional approaches that require manual crafting of 

features, deep learning networks can automatically learn and extract high-level features from 

raw image data. This intrinsic capability enables these networks to uncover subtle and 

previously unnoticed patterns, textures, and structures within cervical images that are indicative 
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of potential abnormalities. By employing convolutional layers, pooling operations, and other 

architectural components, deep learning models can hierarchically learn features at various 

levels of abstraction. This hierarchical feature extraction is particularly advantageous for 

cervical cancer diagnosis, as the disease often presents intricate variations in tissue appearance 

and structure. Deep learning networks can capture these nuanced variations, allowing for 

improved discrimination between normal and abnormal cervical tissues. Furthermore, the 

ability of deep learning models to adapt and generalize to diverse image datasets is instrumental 

in addressing the challenges posed by the variability in image quality, patient demographics, 

and imaging conditions. Incorporating deep learning-based feature extraction into the 

diagnostic pipeline not only enhances accuracy but also potentially reduces the workload for 

medical professionals. Automating the process of feature extraction through DL enables faster 

and more consistent analysis, facilitating earlier detection of abnormalities and streamlining the 

overall diagnostic workflow. 

 Xu et al. [69] proposed a deep multimodal network for diagnosing cervical dysplasia, utilizing 

feature learning based on AlexNet. The network includes five convolutional layers, two 

connected layers, and a 1000-way SoftMax layer, with transfer learning utilized during training. 

The CNN feature vector from the fc7 layer has a larger dimension than the non-image feature. 

The dataset for training was collected from the National Cancer Institute (NCI), and the 

suggested framework learns complementary features through backpropagation. The model 

achieved 87.83% sensitivity and 90% specificity, providing accurate diagnosis for cervical 

dysplasia, surpassing techniques that use only one information source or prior multimodal 

frameworks. Plissiti et al. [70] introduced an annotated image dataset for cervical cancer 

analysis, exploring 26 features using a convolutional neural network (CNN) on the SIPaKMeD 

dataset. The CNN outperformed MLP and SVM in terms of performance. 

Hu et al. [71] presented a CNN for automated detection of cervical precancer and cancer. This 

technique aims to address the lack of affordable HPV vaccination and cervical screening in 

low-resource areas with high cancer incidence. The proposed system performs two key 

functions: first, it detects and locates the cervix in input images, and second, it predicts the 

likelihood of the image being a CIN2 case. The Faster R-CNN algorithm handles object 

identification, feature extraction, and classification. The method was trained and validated 

using digitized cervical images obtained through cervicography from a population-based 

longitudinal cohort of 9406 females in Guanacaste, over a seven-year period. The R-CNN 
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method provides a faster and more accurate balance, making it an effective tool for cervical 

cancer detection. 

Mousser et al. [72] provided a comprehensive analysis on cervical cancer using Pap smear 

images. Cervical cancer is a significant societal health concern, and early detection through 

accurate Pap smear tests is essential. Traditionally, cytopathologists have relied on hand-crafted 

features to assess the health of cervical structures. However, DL techniques have shown greater 

promise in classification accuracy. The authors employed four CNN models to extract deep 

features. These features were then used as input for a multi-layer perceptron classifier. The 

study was conducted on the DTU/HERLEV database, and the results revealed that ResNet50 

outperformed VGG and InceptionV3, achieving an impressive accuracy of 89%. The findings 

highlight the significance of adopting DL methods in medical images for enhanced early 

detection and prevention of this life-threatening disease. 

Xiang et al. [73] proposed an automatic cervical screening technique using object detection. 

This approach offers an effective and segmentation-free solution for analyzing cervical cells 

automatically. The method utilizes YOLOv3, a contemporary object detector, which eliminates 

the need for hand-crafted features. YOLOv3 consists of two components: Darknet53, a deep 

architecture for feature extraction trained on ImageNet with 53 layers, and multi-scale feature 

fusion layers for predictions. Unlike traditional multi-stage approaches relying on segmentation 

accuracy and hand-crafted features, this method instantly extracts high-level features and 

detects cervical cells promptly. The model achieved impressive results, with 97.5% accuracy, 

a mean average precision of 63.8%, and a specificity of 67.8%. This research represents a 

significant advancement in cervical cancer screening, providing a more efficient and accurate 

solution for early detection. 

Xia et al. [74] introduced Series-parallel fusion network (SPFNet), a novel network topology 

for cervical cancer cell detection. Unlike standard architectures that use classification models 

for feature extraction, SPFNet applies multiple combination tactics in the series module and 

incorporates five distinct head components to optimize the detection task. The approach 

involves three main steps: feeding the processed image into the network, extracting relevant 

features, and obtaining different feature maps. These maps with various resolutions are then 

passed through the Regional Proposal Network, resulting in 256 regions of interest. 

Subsequently, the R-CNN head is applied to these regions, enabling SPFNet to extract high-

level semantic and spatial information’s. The SPFNet achieved remarkable results, attaining an 

average precision of 78.4% in identifying cancerous cells, outperforming traditional detection 
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methods significantly. This novel network presents a promising approach for cervical cancer 

detection, demonstrating its superiority in comparison to other existing techniques. 

Alyafeai et al. [75] presented a robust deep learning approach for diagnosing cervical cancer, 

exploring techniques like RCNN, YOLO, and GoogleNet. Their proposed method 

demonstrated significant efficiency, being 1000 times faster than existing models. It achieved 

an intersection of union of 0.68 and an AUC score of 0.82, outperforming other techniques by 

20 times. In another study by Lee et al. [76], introduced a deep learning method using YOLO 

V3, a lightweight object recognition algorithm. This approach allows the model to operate 

efficiently on low-performance devices while maintaining high accuracy. The model uses 

bounding boxes to identify abnormal cells from normal cells in cervical cancer images. The 

algorithm's performance was measured using average precision, which reached 73.34%. This 

method could serve as an auxiliary tool for pathologists in cervical cancer detection.  

Khamparia et al. [77] proposed an innovative approach by combining a convolutional neural 

network with a variational autoencoder (VA) for cervical cancer analysis. The model's 

encoding phase uses convolution to generate high-dimensional feature vectors, while the 

decoding phase employs autoencoders to reconstruct damaged cells. Data augmentation and 

VA generate diverse outputs during training. Experimental results showed that VA provided 

spatial image features for convolutional networks, leading to the best classification results for 

cervical cells. The accuracy of classifying the normal class was significantly higher with a 3*3 

filter compared to a 2*2 filter. The designed architecture achieved a variational accuracy of 

99.2% with a 2*2 filter size and 99.4% with a 3*3 filter size. The Herlev dataset was used for 

model training. This hybrid variational convolutional autoencoder technique outperformed 

other state-of-the-art machine learning algorithms, offering promising results for cervical 

cancer analysis. 

Jia et al. [78] developed a novel approach to detect abnormal cervical cells using the YOLO 

method, ensuring fast and accurate detection. To improve the model's ability to recognize cell 

features effectively, authors introduced DenseNet and Stochastic-pooling (S3Pool) algorithms 

into the Darknet-53 feature extraction network. DenseNet connects lower layer features with 

higher layer features, creating a more cohesive network structure. S3Pool enhances the 

network's generalization capability, leading to better feature extraction and improved overall 

performance. The model was trained on Herlev dataset and a primary dataset. This training 

resulted in an increase in average detection accuracy from 70.65% to 78.87%. Additionally, to 

handle complicated backgrounds, dense cell clusters, and irregular cells, the model utilized 
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Focal Loss and balanced cross-entropy functions, enhancing its diagnostic ability. Moreover, 

the integration of transfer learning a technique where pre-trained models are leveraged as 

starting points significantly accelerates the training process and enhances classification 

performance, even when the available cervical cancer dataset is limited. This transfer learning 

approach takes advantage of knowledge gained from larger datasets, effectively increasing the 

model's ability to generalize to the nuances of cervical cancer images. 

Attallah et al. [79] cervical cancer prevention involves routine screenings, with Pap smears 

being common but prone to errors. The authors introduced an advanced computer-aided 

diagnostic (CAD) model leveraging Artificial Intelligence. Unlike existing CADs, it avoids 

complex pre-segmentation, using three efficient deep learning models for spatial features. 

Through rigorous analysis, the model achieves 100% accuracy using SVM. The CAD's 

performance underscores the effectiveness of combining diverse features for improved 

diagnostic accuracy, as demonstrated through comparative analysis with existing studies. 

Kalbhor et al. [80] presented a new approach for automatic cervical cancer diagnosis. The 

experimental results revealed that ResNet-50 stands out with superior accuracy compared to 

other models. Simple Logistics achieves the highest accuracy among machine learning 

algorithms. The authors utilized features from the ResNet-50 pre-trained model with Simple 

Logistic classification performs best for pap smear image classification.  

Chung et al. [81] focused on developing an auto-segmentation model for organs-at-risk (OARs) 

and clinical target volumes (CTVs) in cervical cancer radiotherapy. Experimental findings 

indicated acceptable correlation between manual and auto-segmented contours for various 

structures. Auto-segmentation demonstrated favourable outcomes in terms of reducing 

heterogeneity and contouring time, with most physicians expressing a preference for the auto-

contouring system. The study emphasizes the feasibility and efficacy of the proposed DL model 

for the early treatment of cancer. 

Xu et al. [82] investigated SIPaKMeD and Herlev datasets, categorized into eight types, with 

3612 images. Initial attempts with the Faster R-CNN yielded suboptimal classification 

outcomes. Subsequent analysis led to the development of an improved classification of cervical 

cells. Comparative evaluations using P-R curves, AP values, and mAP values against 

prominent detection algorithms demonstrated the superior performance of the proposed model 

over CenterNet, YOLOv5, and Faster R-CNN. Comparison with recent literature on cervical 

cell classification revealed higher accuracy and a precision score of 99.81%. While the 

precision of automatic classification of pathological images using DL algorithms requires 
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further rigorous testing, the current results offer a valuable preliminary analysis that can aid 

pathologists in improving their work efficiency. 

2.3 Classification 

Classification is the final stage of the diagnostic pipeline, involving the allocation of labeled 

data points into predefined classes based on the extracted features. Machine learning 

approaches, encompassing support vector machines, random forests, and neural networks, have 

been harnessed for this purpose. Particularly, CNNs, exhibit remarkable performance due to 

their ability to automatically learn intricate hierarchical features directly from images. 

Rigorously trained on annotated datasets, these models accurately classify cervical cells and 

predict malignancy likelihood. The application of these advanced algorithms not only expedites 

the diagnostic process but also mitigates inter-observer variability and subjectivity. As the 

synergy of medical imaging and machine learning progresses, these components continue to 

evolve, promising heightened accuracy, dependability, and accessibility in cervical cancer 

diagnosis. This comprehensive approach embodies a significant stride towards bridging the gap 

between medical expertise and technological innovation. 

2.3.1 Deep Learning for Classification   

This subsection delves into a comprehensive exploration of various deep learning architectures 

employed for cervical cancer classification. From convolutional neural networks that excel at 

image-based classification tasks to recurrent neural networks (RNNs) capable of processing 

sequential data, a diverse range of models can be adapted and fine-tuned to discern different 

stages of cervical cancer with a great level of precision.  

Bora et al. [83] introduced a robust system for efficiently recognizing dysplasia from pap 

smears. Authors integrated ALexNet architecture for model design and employed DCNN for 

extracting features. The experiments were conducted on a Herlev dataset and a clinical dataset, 

with the private database containing 1611 categorized samples. The model operates in various 

steps. Firstly, a private dataset is created, comprising images from class1, class2, and class3. 

The system is also validated using the Herlev dataset. Next, features are extracted using 

AlexNet. In the subsequent phase, the model minimizes various features by selecting a subset 

of features. Finally, cell classification is performed using the mentioned classifiers. By 

implementing the feature selection technique, the accuracy of the system can be improved to 

reach 90-95 percent.  
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Zhang et al. [84] introduced a CNN-based cervical cell classification system that overcomes 

the limitations of previous methods. Unlike earlier systems that relied on cytoplasm-nucleus 

segmentation and manual feature engineering, their technique extracts deep features without 

the need for segmentation. The approach involves pre-training the ConvNet on a real-world 

image dataset and then fine-tuning it using the images of cervical cells, which is composed of 

adaptively re-sampled, coarsely centered patches of image. The experimental results 

demonstrate its superiority over previous algorithms, achieving an impressive 98.3% accuracy, 

0.99 area under the curve, and 98.3% specificity in classification. This method outperforms 

other approaches on both the Herlev dataset and liquid-based cytology datasets. However, a 

notable limitation of this research is that it requires 3.5 seconds for single patch classification, 

which is impractical for clinical settings where real-time processing is necessary. 

Rohmatillah et al. [85] introduced an automatic cervical cancer classification system, which 

operates in three distinct steps. Firstly, different features are extracted using a CNN. In the 

second phase, the number of features is reduced through the application of PCA and LDA and 

followed by the classification process. The experimental findings demonstrated that the 

proposed approach outperforms existing techniques for cervical cancer classification. 

Harinarayanan et al. [86] introduced VGG16, for cervical cancer diagnosis. This innovative 

approach involves a segmentation-free deep learning algorithm for classifying PAP smear 

images. The proposed method generates a map highlighting important regions within the 

images, aiding pathologists in their investigations using the network's inherent knowledge. This 

map is created through subtraction, eliminating the need for traditional segmentation 

techniques, and significantly reducing the time required to gather training and testing data. By 

leveraging extracellular information, the algorithm enhances data classification. The intrinsic 

information within the neural network provides doctors with a map of significant images and 

regions, aligning with the requirements of assisted screening. This map not only improves result 

interpretability but also expedites the evaluation process for doctors, making the entire 

diagnostic process more efficient.  

In separate research done by Promworn et al. [87] five DL models were explored to locate 

abnormal cells from cervical cells. The model training was accomplished using the Herlev 

dataset. The experimental results revealed that Densnet 161 outperformed other approaches. 

Guo et al. [88] developed and fine-tuned several deep learning approaches, such as RetinaNet, 

fine-tuned VGG, and Inception-based models, to improve cervical cancer screening. The 

authors incorporated an automatic cervix detection method using a pre-trained deep learning 
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model to provide bounding box annotations for observed cervix regions. When necessary, the 

image could be cropped to this region for further processing. Subsequently, the leading object 

identification model, RetinaNet, along with VGG16 as base networks for image sharpness and 

classification was used. Among various techniques, RetinaNet with ResNet50 proved to be the 

most effective. The developed deep learning approach demonstrated the capability to identify 

precancerous cells faster than human specialists, especially in women aged 25 to 49. Improving 

cervical cancer diagnosis and early detection of lesions. 

Hussain et al. [89] explored six deep convolutional neural networks to detect cervical cancer's 

precancerous and cancerous lesions. The authors utilized both the Herlev dataset, and a 

hospital-derived pap smear dataset gathered from various medical facilities, containing 1670 

liquid cytology-based and 1320 pap smear test samples. The proposed technique resolves 

inaccurate predictions without needing segmentation or hand-engineered feature extraction 

processes. The ensemble method proved beneficial as it focused on all dysplasia stages, 

suggesting its potential for early-stage illness diagnosis. Among the models tested, GoogLeNet 

attained the topmost accuracy and the smallest log-loss, whereas AlexNet displayed the lowest 

accuracy and the highest log-loss. Deeper networks, like Googlenet, performed better, whereas 

Alexnet networks showed a 37% reduction in the number of trainable parameters. This research 

highlights that fine-tuned Googlenet, Resnet-(50 and 101) models effectively learn more visual 

deep characteristics of pap smear images compared to other pre-trained models. 

Yilmaz et al. [90] performed a comparative examination between traditional ML and DL 

methods for the cancer classification of cervical cells. Experimental findings revealed that CNN 

surpassed traditional ML techniques in cervical cancer classification, achieving an accuracy of 

93% compared to traditional methods reaching a maximum accuracy of 85%. Notably, features 

extracted by CNN were superior to manually crafted ones. Furthermore, the CNN model's 

training time was minimized to 22 seconds per epoch. 

Martínez et al. [91] proposed a novel cell merger and CNN approach for accurate cervical 

cancer analysis. Early diagnosis of cervical cancer is crucial to reduce mortality rates. While 

most algorithms involve cell pre-processing, this research directly used folded cells to build the 

CNN model, creating a robust and reliable cervical analysis system. The presented model 

achieved an accuracy of 88.8%, making it suitable for clinical screening. The dataset comprised 

cells from ten patients, categorized into four classes: normal squamous, L-SIL, ASC-US, and 

H-SIL. The cells were further labeled as "review not needed" for squamous cells and "review 

needed" for L-SIL, ASC-US, and H-SIL to enable proper cervical cancer classification. 
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Mohammed et al. [92] implemented a CNN technique for classification of cervical cells. 

Authors evaluated the top 10 pre-trained deep CNN models, including DenseNet 169, ResNet 

(101 and 152) for classifying cancerous cells. The presented technique involved image 

acquisition, pre-processing, feature extraction, and finally cell classification. DenseNet169 

outperformed the other 9 deep CNN techniques, demonstrating a minimum size of 57 MB, 

making it easier for deployment on portable devices. The model achieved an impressive, 

normalized accuracy of 0.990, making it a promising tool for accurate classification of single-

cell pap smear images. 

Tan et al. [93] introduced an efficient DCNN technique to help medical practitioners in cervical 

cancer screening. Authors conducted a retrospective investigation of multicentre ThinPrep 

cytologic test (TCT) images to develop a CNN-based TCT screening system. This approach 

significantly improves the screening of cervical cancer, addressing the bottleneck in medical 

resources. The system can identify images and provide a test report in just three minutes, 

reducing pathologists' workload and freeing up time for complex case investigation. The 

proposed system achieved a specificity of 34.8%, sensitivity of 99.4% and an AUC of 0.67. 

Dhawan et al. [94] presented various DL methods for classification of cervix. Authors utilized 

VGG19, Inception V3, and ResNet50 architectures. VGG19 and Inception V3 were employed 

for classification, while ResNet50 benefited from transfer learning. The dataset comprised 5287 

labeled images collected from Kaggle, pre-processed using a Python inbuilt function. Fine-

tuning multiple parameters improved the model's performance, achieving an accuracy of 

97.3%. The experimental results indicated that Inception V3 outperformed VGG19 and 

ResNet50. 

Jia et al. [95] developed a novel model by integrating CNN with SVM for the classification of 

cervical cancer. Experimental findings revealed that LeNet-5 architecture for feature extraction 

outperformed other existing techniques. On the other hand, Park et al. [96] performed a 

comparative analysis between ML and DL algorithms for early diagnosis of cervical 

abnormalities. Authors worked with 4119 Cervicography samples, including normal and 

abnormal cells. For comparison, authors used the ResNet-50 architecture against machine 

learning techniques (Random Forest, Extreme Gradient Boost, and Support Vector Machine). 

Pre-processing included image cropping for uniformity. The SVM classifier achieved an 

accuracy of 0.84, better than Extreme Gradient Boost and Random Forest, but ResNet-50 

surpassed all three classifiers with an accuracy of 0.97. The experimental results showed that 

ResNet-50 outperformed current machine learning models for cervicography images. 
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Cao et al. [97] introduced a technique called attention feature pyramid network for spotting 

cervical cancerous cells. The technique consists of two vital parts. The initial segment emulates 

the procedure undertaken by medical practitioners when scrutinizing a cervical cytology image. 

The second module involves fusing refined features to detect abnormal cervical cells at multiple 

scales. The proposed algorithm achieves an average diagnosing time of 0.04 seconds per image, 

significantly faster than the average time taken by the doctor. Adweb et al. [98] developed 

ResNet-based networks for cervical cancer detection and investigated the impact of activation 

functions on ResNet's performance. Authors designed three ResNet models with distinct 

activation functions and evaluated them on a cervical image dataset. The findings revealed that 

ResNets with leaky and parametric rectified linear unit activation functions achieved similar 

accuracy, with 90.2% and 100% respectively. Both activation functions enhanced the 

performance of the ResNet-based network for cervical cancer detection. 

Elakkiya et al. [99] addressed the challenges in proper segmentation of cervical cells, which 

has been problematic despite extensive research. To overcome this, authors proposed a blended 

method using Fine-tuned Stacked Autoencoder and Small-Object Detection GAN. The 

detection procedure consisted of three steps: data fine-tuning and normalization, cervical lesion 

identification and classification, and stage identification and cervical cancer prognosis. The 

approach utilized encoders to extract prominent features from images and object detection 

methods to locate areas of interest. Bayesian Optimization (BO) was employed to balance the 

network parameters. The dataset used to train the model was collected from public repositories 

and hospitals. The presented deep learning architecture utilized heterogeneous data to diagnose 

and predict cervical abnormalities. 

Harangi et al. [100] presented a new screening technique for the detection and segmentation of 

cervical cells with high resolution, sensitivity, and specificity. The study consists of two phases: 

cell segmentation and deep learning-based cervical cancer classification. Compared to 

traditional algorithms, deep learning-based methods, such as FCN-8, FCN-16, and superpixel-

based segmentation algorithms, outperformed with higher sensitivity and specificity. The 

dataset comprised 10,000 images from 6 digitized slides, used as input for the network. The 

evaluation metrics included sensitivity, specificity, Matthew's correlation coefficient, and 

intersection over the union. 

In a related study, Lin et al. [101] introduced a robust cervical cancer diagnosis approach using 

GoogleNet, achieving good accuracy in 2 and 7 class classifications compared to other 

architectures. The experimental studies were conducted on the Herlev dataset. Additionally, 
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With the use of the Hierarchical Convolutional Mixture of Experts (HCME) method, Gorantla 

et al. [102] developed the CervixNet technology for the diagnosis of cervical cancer, reaching 

a remarkable 96.77% accuracy rate and a kappa value of 0.95.  

Allehaibi et al. [103] presented a novel approach for cervical cancer classification. Authors 

utilized a Mask Regional CNN for cell segmentation, followed by classification using a smaller 

VGG-like Network. The first stage involved Mask R-CNN segmentation to divide cell areas, 

and the second stage focused on specifying the entire cell region based on the identified 

segments. Authors used ResNet10 as the backbone for Mask R-CNN, allowing it to exploit 

spatial information and prior knowledge to automatically segment and create pixel masks for 

each image component. For classification, a modified VGG-like Net was employed. 

Rahaman et al. [104] presented a detailed survey on deep learning methods for diagnosing 

cervical cancer, a deadly disease affecting females. While the Pap smear examination is 

frequently employed for early identification purpose, it endures from a significant FP rate due 

to errors made by humans. To enhance the efficiency DL has been employed automatically 

segmenting and categorizing cervical cytology images. The study focused on deep learning 

techniques for segmenting and classifying cervical cytopathology images. MASK-RCNN 

combined with LFCCRF demonstrated superior performance in segmenting both overlapping 

and non-overlapping cells. On the other hand, for classification tasks, CNN (AlexNet) and 

decision-based tree algorithms outperformed other methods. 

Dharani et al. [105] implemented an innovative technique for cervical cancer diagnosis that 

considers both single and overlapped cells. The study involved three main phases: detection, 

segmentation, and classification. Authors utilized Mask-RCNN, a deep learning technique, for 

segmenting cell nuclei. Classification was performed using decision trees to categorize cells as 

either normal or abnormal. The researchers collected the dataset for model training from the 

Guanacaste dataset. The study was carried out in two phases: firstly, implementing Mask-

RCNN for cell segmentation, and secondly, classifying the segmented images based on the 

calculated area of cytoplasm and nucleus. To achieve multiclass classification using transfer 

learning, the authors examined conv5T, conv3T, and conv1T. Interestingly, the results revealed 

that successful segmentation was not a prerequisite for deep learning-based classification. For 

2-class classification, the proposed approach achieved an impressive accuracy of 99.3%, and 

for 7-class classification, the accuracy attained was 93.7%. This research highlights a promising 

and efficient method for cervical cancer diagnosis.  
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Chen et al. [106] introduced an autonomous cervical cancer detection system based on deep 

learning techniques. The architecture of CytoBrain includes four max-pooling layers, two fully 

connected layers, and ten convolution layers which together extract features from input images 

and provide prediction probabilities for various classes. CytoBrain utilizes CompactVGG, a 

thinner and shallower variant of VGG16, to reduce computational cost while maintaining 

efficiency. The experimental results demonstrate that CompactVGG outperforms VGG11, 

which is the most efficient VGG network in the family, in terms of training and testing time. 

Kano et al. [107] examined a 2D and 3D UNet models based on automatic contour 

segmentation technique for cervical cancer diagnosis. The objective of this approach is to 

reduce the workload on oncologists. Although it has seen limited application in clinical settings, 

it shows potential for enhancing the diagnosis of cervical cancer. 

Desiani et al. [108] presented an automatic analysis system for cervical cancer screening, 

focusing on segmenting and classifying the pap smear images. The manual screening process 

for cell classification is laborious and prone to inaccuracies, prompting the authors to work on 

an automatic solution for analysing cervical cancer cells. To enhance image quality, pre-

processing steps such as Normalization, CLAHE, and Adaptive Gamma Correction were 

applied. The multi-class classification utilized the SoftMax function, with ANN and KNN used 

for the classification task. The Herlev database provided the dataset for model training. For 

segmentation, the UNET architecture, consisting of contracting and expanding paths, was 

employed for semantic segmentation of cytoplasm, nucleus, and background. Although the 

segmentation results with CNN were not ideal, they significantly impacted the classification 

process when using ANN or KNN. The experimental results confirmed the effectiveness of the 

proposed architecture in accurately classifying Pap smear images as either benign or malignant. 

The system showcased potential as an efficient and reliable tool for cervical cancer screening. 

Kuko et al. [109] developed a novel method for categorizing cervical cancer. The research 

encompassed four main approaches: data collection, cell extraction, segmentation, and 

classification of abnormal cells. Authors collected 104 Pap smear images from the University 

of Southern California Medical Center. The cell extraction process involved converting input 

images to grayscale and using thresholding to convert them to black and white for improved 

readability and removal of debris from the area of interest. During segmentation and feature 

extraction, the cells were broken down into three distinct vector pixels, which were categorized 

into four different clusters using the K-means algorithm. The authors utilized 33 morphological 

features, including size measurements of the nucleus and cytoplasm, as well as mean color 
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values (red, green, and blue) of nuclei channels. The presented architecture consisted of five 

separate convolutional neural networks (CNNs), each trained on one of the pre-defined clusters 

to highlight irregularities among the cell clusters. Each convolutional layer had a ReLU 

activation function and dropout. Ensemble learning was applied with multiple random forests, 

achieving a promising accuracy of 90.37%. However, CNNs outperformed the ensemble 

learning approach, achieving an accuracy of 91.63%. This automated cell screening system has 

the potential to save time compared to manual examination by pathologists, as it can analyze 

most cells using ensemble learning and deep learning techniques. Notably, deep learning 

outperformed the ensemble learning approach, significantly reducing sensitivity and specificity 

variations by 95.47%. 

Da et al. [110] implemented a hybrid model for cervical cancer diagnosis, combining ML and 

DL to overcome their individual limitations. The model starts with pre-processing of input 

images, which are then fed into a RetinaNet with a ResNet50 for deep learning analysis of the 

area of interest. Subsequently, feature extraction is performed, and a basic machine learning 

approach like SVM is used for classification. Two primary datasets were used for model 

training, and a RetinaNet with a ResNet50 backbone was employed to detect anomalous regions 

and classify them as low- or high-grade lesions. Nuclei within anomalous regions with a 

detection score above 50% were segmented using an iterative thresholding approach. The 

feature extraction module utilized the segmentation findings to locate 29 geometrical, color, 

and texture features from the nucleus structures, along with 840 additional features from the 

entire aberrant area. The final classified result was generated using two SVMs. The approach 

was trained and evaluated on the Herlev dataset. For the 7-class problem, the model achieved 

95.9% accuracy, 96.2% sensitivity, and 99.3% specificity. A key advantage of this technique 

is its reduced reliance on extensive pre-processing compared to other methods. However, a 

drawback is the relatively high computational cost. 

Pacal et al. [111] employed AI based approaches on the SIPaKMeD dataset, comprising cervix 

images. Experimental findings unveiled that the ViT-B16 transformer approach and 

EfficientNet-B16 CNN model performed exceptionally well. The max voting ensemble 

approach, applied to vision transformer techniques, demonstrated the highest performance in 

cervical cancer diagnosis. The proposed approach proves successful for early detection and 

holds potential for addressing other medical issues in the future. 

Meza et al. [112] presented a method for automatically extracting features from Pap smear 

images and classifying them to diagnose cervical cancer. The first approach employs 
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techniques such as ResNet-50 and Simple Logistics which yielded the best performance. The 

second approach utilizes transfer learning with CNN models (AlexNet, ResNet-18, 

GoogleNet), showing GoogleNet's superior performance. Utilizing transfer learning to extract 

features yields greater accuracy compared to pre-trained CNN models independently. The study 

aims to inspire new methodologies and serve as a foundation for advancements in Pap smear 

image categorization. 

Fekri et al. [113] presented a cervical cancer diagnosis approach with enhanced accuracy by 

proposing a method that combines VGG-19, ResNet34 and MLP. The classification accuracy 

is improved by replacing and flattening the classification layers. Results indicate higher 

accuracy compared to using each network separately and outperforming other state-of-art 

techniques. This method can be expanded to solve visual pattern classification issues in 

domains such as skin cancer diagnosis and image retrieval. The authors suggested using 

GoogleNet for future studies, emphasizing the generalizability and versatility of the proposed 

approach to cervical cancer diagnosis.  

Youneszade et al. [114] provided a comprehensive review of current research on DL solutions 

utilizing image segmentation and classification techniques for the analysis of cervical screening 

images. It discusses key components and methods of DL techniques, emphasizing their 

significance in cytopathology and colposcopy image processing for cervical cancer detection. 

CNNs are acknowledged for their exceptional performance. Future studies may explore mixed 

feature selection using VGG19, RCNN, and Faster RCNN. 

Chen et al. [115] introduced an independent Risk Score (RS) for outcome prediction in cervical 

cancer patients, distinct from primary clinical characteristics. Classifying patients into high- 

and low-risk groups based on the risk score demonstrates notable effectiveness.RS surpasses 

clinicopathological characteristics in predictive accuracy, attributed to its capacity to 

incorporate semantic structural tumor features alongside the often-neglected manual tumor 

information. This superiority is further enhanced by utilizing high-dimensional deep learning 

imaging features for analysis of Whole Slide Images, providing comprehensive insights into 

tumor microenvironment properties. In the current landscape of post-surgery prognostic 

stratification, RS proves advantageous, offering a more nuanced approach compared to the 

reliance on clinicopathological factors.  

Kalbhor et al. [116] cervical cancer entails abnormal cell growth in the cervix, which is the 

second most prevalent cancer in women. Pap smears, Colposcopies, and HPV tests are a couple 

of screening techniques to aid in diagnosis. The subjectivity of cancer diagnosis underscores 
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the importance of pathologists' experience and training. The suggested method refines these 

models and utilizes diverse machine learning algorithms, where simple logistic regression 

achieves an accuracy peak at 95.14% when employing the pre-trained AlexNet model. 

Li et al. [117] cervical cancer stands as the most widespread form of cancer among women 

worldwide, necessitates accurate diagnosis for optimal treatment decisions. This study aims to 

create and validate a CNN-based diagnostic system for identifying cervical malignancies in 

histology images. The Xception model demonstrated excellent performance, achieving AUC 

values of 0.98 (SCC) and 0.966 (AC) in internal validation. External validation results were 

0.974 (SCC) and 0.958 (AC). Guided Backpropagation and Grad-CAM ensured interpretability 

by highlighting morphological features, suggesting CNNs as efficient tools for histological 

image classification in cervical cancer diagnosis. 

Kang et al. [118] introduced a 1D hierarchical convolutional neural network (H-CNN), to 

integrate prior hierarchical classification knowledge with DL in Raman spectroscopy. 

Comparative evaluations against traditional methods such as decision tree classifier, Bayesian 

classifier, support vector machine classifier, and CNN. H-CNN's effectiveness in accurate 

tissue identification was demonstrated by its Macro-Accuracy of 94.91%, Macro-AUC of 

97.35%, Macro-Recall of 95.31%, and Macro-F1 of 95.23%. This suggests that Raman 

spectroscopy may advance as a clinical diagnostic tool for cervical cancer diagnosis. 

Sheela et al. [119] cervical cancer, a significant contributor to mortality rates, poses challenges 

in identification. Therefore, the authors presented three innovative approaches for 

automatically detecting and categorizing cervical cancer in Pap images. The presented method 

was evaluated on Herlev dataset. The model achieved an accuracy of 96% which proved 

superiority of the proposed method over existing intelligent techniques. 

Attallah et al. [120] presented CerCanNet, a novel CAD model for automated cervical cancer 

classification. CerCanNet utilizes three streamlined CNNs with reduced parameters and less 

complex layers in comparison to established models such as MobileNet, DarkNet-19, and 

ResNet-18. Unlike usual methods, CerCan·Net uses the final three deep layers from each CNN, 

making it more straightforward and efficient. These features are merged and subjected to a 

feature selection process to create a compact set capable of distinguishing Pap smear image 

categories. The classification process involves three contexts: individual layer-based 

classification, ensemble-based classification, and feature-selected blended features 

classification. Context II demonstrates that merging features from CNNs with distinct 

structures enhances accuracy but increases feature space dimension. Context III validates that 
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the reduced feature set selected by CerCan·Net improves classification performance while 

reducing dimensionality. Overall, CerCan·Net proves to be a reliable CAD model, offering 

potential assistance to cytopathologists in cervical cancer diagnosis and addressing challenges 

in routine diagnosis. 

Del et al. [121] focused on cell segmentation of nuclei and cytoplasm from Pap smear images 

based on Herlev dataset. Given the substantial impact of cervical cancer on public health in less 

developed regions, there is a heightened necessity for enhanced screening methods. Thus, 

leveraging advanced classification architectures like EfficientNet and Feature Pyramid 

Networks, the proposed method demonstrates robust performance. Validated through 5-fold 

cross-validation, the approach accurately identifies cervical cell lesions, offering potential 

enhancements in patient care. Table 1 provides a comprehensive overview of various deep 

learning approaches used in the automatic diagnosis of cervical cancer, highlighting their 

specific techniques, such as Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), Autoencoders, and Generative Adversarial Networks (GANs). It also details 

the datasets employed, like the Herlev Dataset, ISBI Challenge Dataset, and National Cancer 

Institute (NCI) Dataset. The table presents key metrics for evaluating model performance, 

including accuracy, precision, recall, F1 score, and AUC-ROC. Accuracy measures overall 

prediction correctness, precision assesses the proportion of true positives, and recall evaluates 

the model’s ability to detect actual positives. The F1 score balances precision and recall, while 

AUC-ROC measures the model's ability to distinguish between positive and negative cases. 

Additionally, the table addresses limitations such as data quality, overfitting, and computational 

complexity, which can affect the model’s reliability and efficiency.  

Table 1: Summary of the state-of-the-art approaches in cervical cancer diagnosis. 

References Type of 

learning 

Dataset DL Models Performance 

 

Limitations 

[51] Supervised   

learning 

(Primary dataset) 

Real dataset of 

1400 images 

CNN  Accuracy=95% 

Precision=0.91430 

Recall 

=0.87260.0008   

Weak staining of 

abnormal nucleus 

affected the 

segmentation 

process.  

[55]  Supervised 

learning 

(Secondary 

dataset) UCI 

database which 

consists of 858 

samples 

Stacked auto-

encoder  

 Accuracy =97.8% Training time 

performance is 

worse compared to 

other approaches. 

 [65] Supervised 

learning 

(Primary dataset) 

Liquid-based 

histological 

Mask RCNN  Accuracy= 89.8% 

Sensitivity =72.5% 

Data imbalance 
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References Type of 

learning 

Dataset DL Models Performance 

 

Limitations 

slides obtained 

from Thammasat 

University, 

Thailand 

Specificity 

=94.3%. 

[66] Unsupervised 

learning 

(Primary dataset) 

 

A CNN based 

model called Pap 

smear images 

convolutional 

neural network 

(PsiNet) 

 

Accuracy=98% The integrated 

optimization 

strategy makes it 

computationally 

expensive 

[67] Unsupervised 

learning  

 (Primary 

dataset) 

 CT scans 

obtained from 

MD Anderson 

Cancer Center, 

USA.  

(2D) 

DeepLabV3+Go

ogl e and (3D) 

Unet  

DSC=0.71to0.97 Reduced image 

quality, Poor 

performance. 

[71]  Supervised 

learning 

(Primary dataset) Faster R-CNN  Accuracy =91% A smaller number of 

CIN3 cases were 

considered.  

[72]  Supervised 

learning 

(Secondary 

dataset) 

DTU/HERLEV 

dataset 

VGG, ResNet50 

and inception V3  

Accuracy=98.87% Model is evaluated 

on single 

performance metric 

[73]  Supervised 

learning 

(Primary dataset) 

 

 

YOLOv3  Sensitivity =97.5% 

Specificity=67.8% 

Mean Average 

Precision(mAP)=6

3.4% 

Extra overhead due 

to integration of 

extra task specific 

classifier. 

[74] Unsupervised 

learning 

(Primary and 

Secondary 

dataset) 

Primary data 

collected from 

Peking Union 

Medical 

College 

Hospital,China 

Herlev dataset 

A CNN based 

model called 

Series-parallel 

fusion network  

 Average precision 

=78.4% 

 

Data imbalance  

[75]  Unsupervised 

learning 

(Secondary 

dataset) Intel & 

Mobile ODT 

Dataset NCI 

Guanacaste 

Project Dataset 

provided by 

American 

CNN  AUC=0.82 Data imbalance  
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References Type of 

learning 

Dataset DL Models Performance 

 

Limitations 

National Cancer 

Institute 

[76]  Supervised 

learning 

(Secondary 

dataset) 

COCO dataset 

obtained from 

Microsoft 

ImageNet Large 

Scale Visual 

Recognition 

Challenge 

YOLO V3  Accuracy=86.45 

%. 

Precision= 73.34 % 

Small dataset 

[77] Unsupervised 

learning 

(Secondary 

dataset) Herlev 

dataset 

CNN, 

Variational 

autoencoder  

Accuracy=99.4% Minor distortion 

could lead to the 

wrong results 

[78]  Supervised 

learning 

(Primary and 

secondary 

datasets) 

Images obtained 

from Guangdong 

Provincial 

People’s 

Hospital, 

Beijing,China 

 

Herlev dataset 

YOLOv3  Accuracy=98.8, 

Sensitivity=96.7, 

Specificity=98.4 

Weak generalization 

[79] Supervised 

learning 

(Secondary 

dataset) 

Mendeley LBC 

dataset. 

 

A computer-

aided diagnostic 

model based on 

deep learning, 

PCA and SVM.  

Accuracy=100% It is restricted to 

classification task 

only.  

[81] 

 

Supervised 

learning 

Secondary 

dataset  

U-Net based 

CNN 

DSC= 95% 

Hausdorff 

distance=95% 

Limited to 

traditional geometric 

indices.  

[83]  Supervised 

learning 

(Primary dataset) 

Pap smear 

images collected 

from 

Ayursundram 

Healthcare Pvt. 

Ltd and    

Dr.B.Borooah    

Cancer Institute,  

Guwahati, 

Assam  

CNN  Accuracy = 95% Small dataset 

[84]  Supervised 

learning 

(Primary and 

secondary 

dataset) 

HEMLBC 

dataset obtained 

CNN  Accuracy =98.3%,  

 

Area under the 

curve=0.99 

Specificity=98.3% 

Miss classification 

of few severe 

dysplasia and 

carcinoma cells. 
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References Type of 

learning 

Dataset DL Models Performance 

 

Limitations 

from People’s 

Hospital of 

Nanshan, China 

Herlev dataset 

[85]  Supervised 

learning 

(Secondary 

dataset) 

Herlev dataset 

CNN  Accuracy= 95.8%,  

Sensitivity =99.3%  

Specificity =99.1%  

Data imbalance  

[86]  Supervised 

learning 

(Primary dataset) 

 

 

 

VGG16  Accuracy=81% Evaluated on single 

performance metric  

[87]  Supervised 

learning 

(Secondary 

dataset) 

Herlev dataset 

DenseNet161, 

AlexNet, 

ResNet101, VG 

G19 and 

SqueezNet  

Accuracy=94.38% 

Sensitivity=98.48 

Specificity=82.61 

High computational 

cost. 

[88]  Supervised 

learning 

(Secondary 

dataset) 

Mobile ODT 

dataset 

 

RetinaNet, 

Inception V3, 

VGG 

Accuracy=94% 

Recall=98% 

Precision=94% 

F1 score=96% 

No hyperparameter 

information 

available. 

[89]  Supervised 

learning 

(Primary and 

secondary 

dataset) The 

primary dataset 

was collected 

from Babina 

Diagnostic Pvt. 

Ltd, Imphal 

 

Herlev dataset 

AlexNet,VGGN

et, ResNet, 

GoogleNet  

Accuracy=0.989, 

Sensitivity=0.978,   

Specificity=0.979 

Data imbalance 

[90] Unsupervised 

learning 

(Secondary 

dataset) Herlev 

dataset 

CNN and basic 

machine learning 

approaches  

Accuracy=99% Computationally 

expensive 

[91]  Unsupervised 

learning 

(Primary dataset) A blended 

approach of 

CNN and cell 

merger  

Sensitivity=0.92 

Specificity=0.83 

High Computation 

cost required 

[92] Supervised 

learning 

(Secondary 

dataset) 

SIPaKMeD 

 

 Deep CNN  Accuracy=0.990 

Precision=0.974 

 Recall= 0.974 

F1-score= 0.974 

Lack of similar 

cytology datasets. 

[93] Supervised 

learning 

(Primary dataset) 

Images were 

obtained from 

Shanghai 

General 

Hospital, 

Shanghai First 

Faster R-CNN Sensitivity=99.4 

Specificity=34.8% 

Area under the 

curve=0.67 

Due to overlapping 

of cells it was 

difficult to different 

between normal and 

abnormal cells.  
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References Type of 

learning 

Dataset DL Models Performance 

 

Limitations 

Maternity and 

Infant Hospital 

Shanghai.  

[95]  Unsupervised 

learning 

(Primary and 

secondary 

dataset) Images 

were obtained 

fromGuangdong 

Province 

People's 

Hospital,China 

Herlev  

CNN and SVM  Accuracy=99.3 

Sensitivity=98.9 

and 

Specificity=99.4 

Based on two class 

classification 

[96] Supervised 

learning 

(Primary dataset) 

Cervicography 

images obtained 

from Ewha 

Womans 

University 

Mokdong 

hospital, South 

Korea 

XGB, RF, SVM  

ResNet50  

Highest 

accuracy=97%(Re

sNet50) 

The cropped images 

contain vaginal walls 

which reduce the 

accuracy of the 

model.  

[97]  Supervised 

learning 

(Primary dataset) 

Cervical 

Cytology images 

obtained from 

Heilongjiang 

Maternal and 

Child Health 

Hospital, China 

Harbin Medical 

University 

Cancer Hospital, 

China.  

A novel CNN 

based model 

called Attention 

feature pyramid 

network 

(AttFPN)) 

Sensitivity=91.30

%, 

specificity=90.62

%, 

Accuracy=90.91%, 

and AUC=0.934 

Subclassification of 

abnormal cells is 

missing.  

[98]  Unsupervised 

learning 

(Primary and 

Secondary 

datasets) 

Healthy cervical 

cells were 

collected from 

Tripoli Hospital 

center, Libya 

 

Intel and Mobile 

ODT obtained 

from Kaggle.   

ResNet Accuracy=100% 

Sensitivity=97.8% 

Specificity=98.1% 

AUC=96.9% 

Data Imbalance  

[99]  Unsupervised 

learning  

(Secondary 

dataset) 

Herlev dataset 

A novel model 

based on GAN 

called Small-

Object Detection 

Accuracy= 97.08 

Recall= 100 

Precision= 95.62 

The proposed 

architecture is not 

compared with state-

of-the-art deep 
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References Type of 

learning 

Dataset DL Models Performance 

 

Limitations 

colposcopy 

images  

 

 

  

Generative 

Adversarial 

Networks (SOD-

GAN) 

learning-based 

approaches.  

[100]  Supervised 

learning 

(Primary dataset) 

 

Ensemble 

learning and 

fully connected 

neural network 

Accuracy=0.8656 

IoU=0.5197 

Specificity=0.6439 

Sensitivity=0.9666 

MCC=0.3892 

Manual annotation 

of the dataset. 

[101]  Supervised 

learning 

(Secondary 

dataset) 

Herlev dataset 

AlexNet 

GoogLeNet, 

ResNet, and 

DenseNet  

Accuracy=94.5% Model overfitting 

[102]  Unsupervised 

learning 

(Secondary 

dataset) Intel and 

Mobile-ODT 

CNN 

(Hierarchical co 

nvolutional 

mixture of 

experts)  

Accuracy=96.77%, 

kappa score=0.951 

The Type of noise is 

not mentioned.  

[103]  Supervised 

learning 

(Secondary 

dataset) Herlev 

dataset 

Mask RCNN and 

VGGNet  

Accuracy=95.9%, 

Sensitivity=96.2% 

Specificity=99.3%, 

High h-mean of 

=97.7% 

Higher processing 

power required.  

[105] Supervised 

learning 

(Secondary 

dataset) 

Guanacaste 

dataset 

Mask R-CNN  Precision=(0.92±0.

06),Recall=(0.91±

0.05),and 

ZSI=(0.91±0.04) 

Not compared with 

other state-of-art 

approaches.  

[107]  Supervised 

learning 

(Primary dataset) 

 

2D U-Net  

3D U-Net  

DSC<0.65 

HD=2.7to9.6mm 

Only one contour 

extractor was 

utilized to minimize 

the impact of inter-

contour variation. 

[108] Supervised 

learning 

(Secondary 

dataset) 

Herlev dataset 

CNN  

 UNET  

Accuracy=0.91 

Sensitivity= 0.87 

Specificity= 0.91  

F1 score=0.89 

Extensive pre-

processing is 

required. 

[109]  Unsupervised 

learning 

(Primary dataset) 

 

 

CNN and 

Ensemble 

learning  

Accuracy=90.4% 

Accuracy=91.6% 

Cells are corrupted 

with debris 

[110]  Supervised 

learning 

(Primary dataset) 

Liquid based 

slides obtained 

Fernando 

Fonseca (HFF), 

Portugal 

 

A ResNet based 

model called 

RetinaNet  

Precision=0.20, 

recall=0.40 

F1score= 0.27 

The network faces 

challenges in 

accurately 

recognizing the 

annotated areas with 

abnormalities. 

[111] 

 

Supervised 

learning 

Secondary 

datastet 

SIPAKMED 

Dataset  

Accuracy =9.95% 

F1-score =90.74% 

It is limited to 

secondary dataset.  
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2.4 SUMMARY 

The development of successful screening systems can contribute to the decline of cervical 

cancer. While the Pap smear is a widely used technique for precancerous diagnosis, human 

analysis of these smears is prone to errors due to its difficulty and time-consuming nature. 

Hence, creating a computer-assisted diagnosis tool can improve precision and speed in the 

diagnostic process. This chapter explores recent deep learning techniques for diagnosing and 

categorizing cervical cancer, aiming to minimize human errors and enhance diagnostic 

efficiency. The research identifies specific challenges such as the lack of annotated public 

datasets, high computation costs, huge training time, and the need for ground truth images in 

supervised approaches. The study emphasizes the importance of classification, segmentation, 

References Type of 

learning 

Dataset DL Models Performance 

 

Limitations 

 

[113] 

 

Supervised 

learning  

Secondary 

dataset 

ResNet-34, 

ResNet-50 and 

VGG-19 

Accuracy= 97.65% The model is 

evaluated on single 

performance metric. 

[116] 

 

Supervised 

learning 

Secondary 

dataset  

Alexnet, Resnet-

18, Resnet-50 

and Googlenet 

Accuracy=95.14% The model is 

evaluated on single 

performance metric.  

[118] 

 

Supervised 

learning 

Primary dataset 

(233 real images) 

Hierarchical 

convolutional 

neural network  

F1= 95.23%, 

AUC= 97.35% 

The model is 

computationally 

intensive.  

[119] 

 

Supervised 

learning 

(Secondary 

dataset) 

Herlev Pap smear 

data 

Anisotropic 

Diffusion Filter, 

Advance Map-

Based 

Superpixel 

Segmentation,  

Auto encoder-

based Extreme 

Learning 

 

Accuracy=96.0% Extensive Pre-

processing is 

required.  

[121] Supervised 

learning 

(Secondary 

dataset) 

Herlev dataset 

EfficientNet 0.91 F1 score, 0.85 

IoU, 0.91 

Precision, 0.92 

Recall, and 0.96 

Specificity. 

It is limited to 

secondary dataset.  

 

[122]  Supervised 

learning 

(Primary dataset) 

Data collected 

from Fourth 

central hospital 

of Baoding city, 

China 

CNN  Area under the 

curve=0.997 

Limited dataset 
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and feature extraction approaches in cervical cancer analysis. The classification problem may 

involve multiple classes depending on the Bethesda system of classification. While 99 percent 

of algorithms achieve over 90 percent accuracy in classifying normal and abnormal cells, none 

have achieved 100 percent results. These techniques vary in parameters, model size, 

architecture complexity, dataset size, labeled images, and total training and testing time. 

Commonly used techniques include CNN, VGGNet, ResNet, GoogleNet, AlexNet, GAN, and 

YOLO V3 for classification and feature extraction, with CNN, ResNet, and VGGNet being the 

most widely used. Researchers have frequently utilized Mask-RCNN and UNET for 

segmenting the nucleus and cytoplasm in cervical cancer analysis. Despite the superior 

performance of deep learning approaches in this aspect, Support Vector Machines (SVM) 

remain commonly employed as a classifier, followed by Multilayer Perceptron (MLP), decision 

trees, and Random Forest. This comprehensive survey delves into crucial aspects of cervical 

cancer analysis, including dataset descriptions, the percentage of dataset usage over the past 

nine years, and performance metrics. By addressing these key areas of interest, the survey 

serves as a valuable resource for authors and researchers, offering insights into current trends 

in automatic cervical cancer analysis, dataset selection, and technique implementation for 

enhanced diagnosis. Its findings provide guidance for future research endeavors, facilitating a 

deeper understanding of the evolving landscape in cervical cancer diagnosis and paving the 

way for improved methodologies and outcomes.  
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CHAPTER 3 

METHODOLOGY 

This chapter presents the approach and methods employed to achieve the objectives outlined 

in the preceding chapters. The process consists of data collection, analysis, pre-processing, 

and the deep learning model utilized for cervical cancer diagnosis. Initiating with data 

collection, the dataset was sourced from the Sheri-Kashmir Institute of Medical Science Soura 

(SKIMS) in Jammu and Kashmir. A total of 109 Pap smear slides were obtained, yet only 90 

were deemed suitable for image preparation due to over-staining issues, rendering 20 slides 

unsuitable for experimentation. The gathered data underwent meticulous analysis and pre-

processing (Contrast Limited Histogram Equalization and Resizing) to ensure quality and 

relevance for the subsequent phases. Furthermore, a specialized deep learning models such as 

Standard U-Net, Residual U-Net, Attention U-Net and a Hybrid model of Residual U-Net and 

Attention U-Net (DeepSegNet) was employed to facilitate cervical cancer diagnosis, leveraging 

the refined dataset for accurate and precise evaluations. 

3.1 Proposed Methodology 

The proposed methodology comprises three integral sub-modules aimed at comprehensive 

analysis and classification of Pap smear images. The initial phase involves meticulous data 

collection and preparation, forming the foundational first module. Through rigorous acquisition 

from diverse sources, a robust dataset of Pap smear images is assembled, ensuring 

representation across various conditions and abnormalities. This data undergoes thorough 

preparation, encompassing cleaning, labeling, and annotation to guarantee accuracy and 

relevance for subsequent analysis. Following the data preparation, the second module focuses 

on pre-processing the Pap smear images. Techniques like cropping, resizing, and normalization 

are employed to standardize the images, ensuring uniformity in size, resolution, and quality. 

This crucial step optimizes the images for subsequent stages of analysis and facilitates 

consistent interpretation by subsequent algorithms. The final module constitutes the core of the 

methodology, revolving around segmentation, feature extraction, and classification. Utilizing 

advanced U-net architectures, the images are segmented to delineate the cytoplasm and nucleus 

boundaries accurately. This segmentation lays the groundwork for subsequent analysis and 

classification. Feature extraction is then performed using either the VGG16 model or Cell 

Profiler, aiming to capture nuanced characteristics and patterns within the segmented regions.  

The subsequent step involves employing classification methodologies. Here, the extracted 

features serve as inputs for classification models. Two distinct classifiers are evaluated for their 
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performance: XGBoost and Artificial Neural Networks (ANN). Comparative analysis reveals 

that ANN outperforms XGBoost in the challenging task of 7-class classification, showcasing 

superior accuracy and robustness in distinguishing between various cell types and 

abnormalities. This comprehensive approach not only accurately identifies cellular structures 

but also facilitates the differentiation of diverse cell categories crucial in diagnosing various 

conditions. The integrated approach of these modules signifies a systematic and comprehensive 

strategy for the analysis of Pap smear images. From meticulous data collection and preparation 

to precise segmentation, feature extraction, and ultimately classification, the methodology aims 

to enhance the accuracy and efficiency of cell classification in Pap smear images, potentially 

revolutionizing diagnostic processes in cytology. The significance lies not only in the 

individual components but in their cohesive integration, ensuring a comprehensive and accurate 

analysis of Pap smear images for improved medical diagnoses. The proposed methodology for 

automated cervical cancer diagnosis, as illustrated in Figure 6, encompasses a series of critical 

procedures aimed at effectively analyzing Pap smear images. Initially, the dataset is 

meticulously labeled to enable seven-class classification, ensuring that each image is 

appropriately categorized according to the specific type or stage of cervical cancer it represents. 

Following this, ground truth images of cytoplasm and nucleus are meticulously generated 

utilizing the label studio tool, serving as reference standards for subsequent analyses. Upon 

preprocessing the collected Pap smear images, which involves essential steps like cropping, 

resizing, and normalization to standardize their attributes, attention is devoted to cases where 

cytoplasm appears folded or fragmented. In such instances, an additional preprocessing step is 

undertaken, involving the careful rotation of the region of interest to reestablish its connection 

with the original image, thereby facilitating accurate feature extraction. Subsequently, the 

segmentation process is initiated, aimed at precisely delineating the cytoplasm and nucleus 

regions of both normal and abnormal cells within the images. This segmentation step is crucial 

as it lays the foundation for subsequent feature extraction. By extracting pertinent features from 

the segmented cytoplasm and nucleus regions, a rich set of attributes is derived, which serves 

as the basis for subsequent analysis. Leveraging these extracted features, an automatic 

classification framework is then deployed to categorize cervical cancer instances into one of 

the predefined seven classes. Overall, this comprehensive methodology integrates meticulous 

data preprocessing, precise segmentation, feature extraction and sophisticated classification 

techniques to deliver a robust and reliable automated cervical cancer diagnostic solution. 
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The novelty of this work lies in the creation of a Deep-SegNet architecture (semantic 

segmentation model), which integrates residual blocks and attention blocks. This model excels 

in segmenting complex cell structures, maintaining cell boundary integrity more effectively 

than existing models. Besides its precise segmentation capabilities for cell structures, Deep-

SegNet can also be applied to segment other complex structures in satellite images. The 

different types of layers used are convolutional layers, Max pooling layers, Up-sampling layers, 

Attention gates, and Gating signals. Each convolutional block contains two convolutional 

layers. Max pooling layers are used for down-sampling in the encoder. The up-sampling layers 

are used for up-sampling in the decoder. Attention blocks integrate attention mechanism. 

Gating signal layers generates gating signals for attention blocks. The ReLU and sigmoid 

activation functions are used. Apart from this the main components of the model are encoders, 

decoders, attention gates, skip connections, and residual blocks. The total number of encoders 

used is 5, with 4 decoders, 4 attention gates, 4 skip connections, and 9 residual blocks. Each 

encoder and decoder block uses residual blocks, resulting in a total of 9 residual blocks (5 in 

the encoders and 4 in the decoders). One of the interesting aspects of Deep-SegNet is its ability 

to preserve the cytoplasmic and nuclear boundaries for proper feature extraction from the 

cytoplasm and nucleus. Additionally, the development of the Deep-CervixNet model, which 

restructures folded structures, represents a significant breakthrough not previously achieved in 

this field. Deep-CervixNet is composed of three primary modules. The first module is 

responsible for data collection, followed by data preparation. The next module handles the 

preprocessing of Pap smear images. The last module comprises three sub-components: the first 

one performs segmentation of the cytoplasm and nucleus, including folded cells; then, features 

are extracted from the cytoplasm and nucleus, which are provided as input to an artificial neural 

network to classify cells as cancerous or non-cancerous according to the Bethesda system 

(TBS) of classification. The Bethesda system is a standardized system which is used to report 

the cervical cytology diagnosis. This system was initially introduced in 1988 and subsequently 

revised in 1991, 2001, and 2014. For cervical cytology, TBS categorizes findings into several 

groups, including specimen adequacy, general categorization (such as negative for 

intraepithelial lesion or malignancy), and epithelial cell abnormalities, which range from 

atypical squamous cells to squamous cell carcinoma.  
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Figure 6: Proposed methodology for diagnosis of cervical cancer. 

 

3.2 Dataset for Study 

The success of a Machine learning (ML) techniques heavily depends on the quality of the 

training dataset. It's believed that with a suitably precise database, a machine can learn and 

replicate human behaviour. Cervical cancer screening using machine learning algorithms 

heavily relies on the quality and comprehensiveness of the training dataset. The choice of 

dataset significantly impacts the performance and accuracy of the developed AI models. In this 
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section, the information of the dataset used in the research study are presented. The dataset 

employed in this study follows the 2001-Bethesda system of classification, which provides 

standardized criteria for reporting cervical cell abnormalities. It consists of 843 cells that 

represent the data from approximately 109 clinical cases. To compile this dataset, slides of pap-

smear tests were collected from medical healthcare institutions in northern India, specifically 

from the Sheri Kashmir Institute of Medical Sciences, Soura (SKIMS), Kashmir. Care was 

taken to ensure patient confidentiality and adherence to medical ethical guidelines throughout 

the data collection process. The slides were examined under a multi-headed microscope of 

Labomed (LX 300 Microscope) equipped with a digital camera. Images of the slides were 

captured at 100X magnification to maintain uniformity. Pre-processing techniques were 

applied to isolate individual cells from cell clusters and enhance their brightness, color, and 

contrast using Contrast Limited Adaptive Histogram Equalization for improved cytoplasmic 

and nuclear feature recognition. Two trained Cyto-pathologists inspected and cross-validated 

the diagnoses, ensuring the accuracy and reliability of the database. Samples with conflicting 

diagnoses were excluded from the dataset. Out of a total of 843 images, 487 are of the normal 

category, whereas 356 are of the abnormal category. Each tuple contains 40 attributes and is 

uniquely identified by a primary key. Out of these attributes, 19 describe cytoplasmic features, 

19 describe nuclear features, one records the nuclear-cytoplasmic area ratio, and the last 

attribute identifies the cell's class. In consultation with medical experts, 39 morphological 

features (19 each from cytoplasm and nucleus) were identified for cell profiling, extracted using 

the open-source software Cell Profiler. This software, developed by the BROAD Institute and 

MIT, allows quantitative measurements of medical image phenotypes. This software allows for 

the creation of tailored pipelines to quantitatively measure the features of biological objects in 

input images. The process begins with importing Pap smear images depicting cytoplasm and 

corresponding nucleus regions. Cell Profiler's object processing module identifies the primary 

objects, which are the cytoplasm and nucleus. Once identified, advanced algorithms in Cell 

Profiler measure and extract relevant features from both cytoplasm and nucleus regions, 

providing valuable insights into cellular properties, including size, shape, and textural 

characteristics. Upon completing the analysis of cells using the cell profiling tool, the resulting 

data was organized in a spreadsheet format. All database properties were integrated to facilitate 

seamless correlation between digital data and respective clinical cases. A comprehensive 

description of the extracted features is provided in the subsequent section.  
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Table 2 highlights a summary of the various categories of Pap smear images and their respective 

quantities. The dataset contains seven classes, with the initial four representing healthy cells 

and the latter three indicating unhealthy cells. Therefore, the screening task can be approached 

as a binary classification problem (healthy vs. unhealthy) or as a more detailed classification 

into seven distinct categories. 

 

Table 2: Total number of Pap smear images in the prepared dataset. 

Class Category Cell Type  Number of cell 

images 

Sub total 

I Normal Superficial Squamous  172 487 

II Intermediate Squamous 125 

III Parabasal Squamous 98 

IV Basal Squamous 92 

V Abnormal LSIL 170 356 

VI HSIL 146 

VII SSC 40 

 

 The dataset employed in this research study is a valuable resource for training and evaluating 

machine learning algorithms for cervical cancer screening based on AI approaches. The dataset 

is characterized by its comprehensiveness, adherence to standardized classification criteria, and 

the valuable input of skilled cyto-pathologists, guaranteeing its precision and trustworthiness. 

The dataset's efficiency has been verified through the successful execution of diverse machine 

learning algorithms in the screening procedure. The cells presented in the table exhibit 

variations in several characteristics, including cytoplasmic-nucleus ratio, solidity, eccentricity, 

and more. Class I consists of 172 normal Superficial Squamous cells, while Class II comprises 

125 Intermediate cells. Class III consists of 98 Parabasal Squamous cells, followed by Class 

IV with 92 Basal Squamous cells. Class V contains 170 LSIL cells, and Class VI consists of 

146 HSIL cells. Finally, Class VII comprises a limited pair of cells, totalling 40, known as 

Squamous cell carcinoma (SSC). Figure 7 illustrates the dataset preparation for model training, 

comprising a total of 843 images. 
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Figure 7: Dataset preparation with 843 images for model training. 

 

3.2.1 Description of the Collected Cells  

3.2.1.1 Superficial Squamous 

The outermost layer of non-keratinized epithelium consists of flat squamous cells that appear 

polygonal and lack visible nuclear details due to nuclear degeneration. The late proliferative 

and ovulatory phases of the menstrual cycle are characterized by increased concentrations of 

these superficial squamous cells. 

3.2.1.2 Intermediate Squamous  

The polygonal cells range in size from 1256 to 1618 µm [40]. They have vesicular nuclei that 

are noticeably bigger. When a cervix is estrogen-influenced, the cells in the superficial and 

intermediate layers have more cytoplasm as they get older and have more glycogen in them. 

3.2.1.3 Parabasal Squamous  

The lowermost layer of the squamous epithelium constitutes this type of cells, commonly seen 

in individuals with low estrogen levels, like those in premenstrual, postpartum, or post-

menopausal stages or using estrogen-inhibiting medications. These cells have a compact, even 

basophilic cytoplasm enveloping a 50 µm nucleus [41]. 

3.2.1.4 Basal Squamous  

These cells reside in the deepest layer of the skin, called the epidermis, which forms the skin's 

outermost surface. When these cells undergo malignancy, they can result in a skin cancer called 
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basal cell carcinoma. This is the most common kind of skin cancer, and it typically manifests 

as a tiny, glossy bump. Although basal cell carcinoma generally grows slowly and seldom 

metastasizes to other body areas, untreated cases can inflict considerable harm on the 

surrounding tissue. 

3.2.1.5 Low-Grade Squamous Intraepithelial Lesion  

An LSIL denotes an area containing abnormal cells that have an increased amount of 

cytoplasm. The nuclear membrane exhibits notable anomalies in LSIL, and the nucleus is three 

times larger than in typical intermediate cells. 

3.2.1.6 High-Grade Squamous Intraepithelial Lesion  

 An HPV-related anomaly in squamous cells is known as an HSIL. HSIL is recognized as a 

precancerous disorder that is treatable, even though not all cases develop into malignancy. 

There are three grades for HSILs: CIN 1, CIN 2, and CIN 3. CIN 1 is a lower-grade lesion that 

affects about one-third of the epithelial cells and has a decreased chance of developing into 

cancer. Moderate dysplasia, a higher-grade lesion affecting the upper two-thirds of the 

epithelium, is seen in CIN 2. Severe dysplasia affecting the top two-thirds of the epithelium is 

seen in CIN 3. The different cell types from the prepared dataset are shown in Figure 8. 

3.2.1.7 Squamous Cell Carcinoma  

Squamous cell carcinoma is one of the types of cancer. It occurs when the squamous cells that 

line the surface of the cervix become cancerous. This type of carcinoma is responsible, for 

several cancer cases worldwide. Squamous cell carcinoma usually develops because of HPV 

infection, especially from high-risk strains, like HPV 16 and HPV 18. Doctors often identify it 

by examining tissue samples under a microscope, which reveal cellular characteristics that 

indicate this cancer. SCC is characterized by large, irregularly shaped cells with 

hyperchromatic nuclei and an increased nuclear-to-cytoplasmic ratio. These cells often exhibit 

keratinization, appearing orange or yellow due to keratin production. The presence of SCC in 

Pap smear samples is highly significant, as it indicates invasive cervical cancer, necessitating 

prompt medical intervention. Early detection through cytological screening is crucial for 

improving patient outcomes. Squamous cell carcinoma can cause local tissue invasion, leading 

to severe damage and potential metastasis to other organs if untreated. It poses a significant 

risk of morbidity and mortality, especially in advanced stages of the disease. 
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Figure 8: Cell samples a) Superficial squamous cell, b) intermediate squamous cells, 

c) parabasal squamous cell, d) basal squamous cell, e) low-grade squamous intraepithelial 

lesion, f) high-grade squamous intraepithelial lesion, g) squamous cell carcinoma. 

 

3.3 Pre-Processing Methods 

Data pre-processing means refining and converting unprocessed data into a processed format. 

This initial phase is crucial for data readiness before model construction. To maintain the 

balance in the data all 843 images were resized to a common size of 128 × 128 pixels. This 

resizing helps streamline model training and ensures consistent input data. Maintaining uniform 

image sizes eliminates potential variations that could hinder model performance. The following 

sections will elaborate on methodology, experimental outcomes, and analysis from Pap smear 

image segmentation. 

3.3.1 Resizing 

The resizing process of 843 images for input into the segmentation network was executed 

meticulously and effectively. Each image was carefully adjusted to ensure compatibility with 

the network's input requirements, guaranteeing optimal performance and accuracy during the 

segmentation task. By maintaining the integrity of the images through proper resizing 

techniques, potential distortions or loss of critical information were mitigated, preserving the 

quality of the dataset. This meticulous approach underscores the commitment to robust data 

preprocessing, laying a solid foundation for the subsequent segmentation analysis. 
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3.3.2 Contrast Limited Histogram Equalization  

Contrast Limited Adaptive Histogram Equalization (CLAHE) stands as a pivotal image 

processing technique renowned for its ability to enhance image contrast while mitigating the 

risk of amplifying noise or artifacts. Unlike traditional Histogram Equalization, CLAHE 

operates on a localized scale, dividing images into smaller regions, or tiles, to independently 

adjust their contrast levels. By doing so, it alleviates the uniform contrast adjustment across the 

entire image, catering to specific regions with varying luminance characteristics. Crucially, 

CLAHE incorporates a contrast limitation mechanism, preventing excessive amplification of 

contrast within individual tiles. This constraint ensures that the enhancement process retains 

natural image features while significantly boosting the visibility of details in both dark and 

bright areas. Widely utilized in medical imaging, satellite imagery, and diverse fields requiring 

precise contrast enhancement without compromising image integrity, CLAHE continues to be 

a cornerstone technique in digital image processing workflows. 

3.4 Software Used 

3.4.1-Label-Studio 

Label Studio is a data labeling tool available as open-source software, facilitates the annotation 

of diverse data formats such as audio, text, images, videos, and time series via an intuitive user 

interface. Its functionality extends to exporting labeled data into multiple model formats. It 

serves as a versatile solution for both refining existing training data and preparing raw data, 

culminating in the enhancement of machine learning models' accuracy and performance. The 

software operates under the Apache 2.0 LICENSE © Heartex, covering the period from 2020 

to 2022. The role of Label Studio extends beyond its annotation tools; it serves as a pivotal 

platform for training machine learning models. The meticulously labeled datasets generated 

within Label Studio serve as invaluable training data, enabling AI based approaches to learn 

and recognize cytoplasm and nucleus within images with remarkable accuracy. This tool can 

be downloaded from labelstudio.com. Since the proposed work is based on supervised learning, 

so the ground truth images were required to generate the individual masks for cytoplasm and 

nucleus almost 1686 masks were generated for both cytoplasm and nucleus for the proper 

model training. Figure 9 is an array of labeling interfaces that enable the creation of precise 

ground truth images, tailored to specific annotation requirements across tasks like object 

detection, segmentation, and key point identification. The label values for a give class must be 

of unique or binary (0 /1 or 2/255). The various steps to install the label include:  

• Pip install-u label-studio 
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• Conda env list  

• Create a separate environment and activate the environment using below mention 

command  

• Conda activate truth 

The below mentioned images a, b, c, d are the various interfaces for generating ground 

truth. Among these images semantic segmentation mask is used to generate the ground truth 

for cytoplasm and nucleus. The semantic segmentation mask generating interface is 

depicted in 9a.  

 

Figure 9: Different types of labeling interfaces for generating ground truth images. 

 

 The below mentioned images represents the parabasal image and the process of generating the 

mask for nucleus and cytoplasm respectively. From the visual representation, it is evident that 

if three classes are to be generated, then three sets of labels must be created. However, the 

segmentation process that is carried out in this research is based on two classes cytoplasm and 

nucleus. Thus, two labels are required to generate the cytoplasm and nucleus of Pap smear 

images. The first image acts as an input to the label studio then after activating the project 

cytoplasm and nucleus masks are generated. Figure 10 mentioned below represents how the 

ground truth images are generated using label-studio for nucleus and cytoplasm of the 

respective cells. The first image in Figure 10 serves as the input image, followed by the second 

image, which represents the ground truth image for the nucleus. Subsequently, cytoplasmic 

labeling of the same cell is depicted in the third image.  
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Figure 10: Labeling of nucleus and cytoplasm in parabasal cells: a) Input Image b) Nucleus 

labeling c) Cytoplasm labeling.   

3.4.2 Image J 

ImageJ is an image processing software that is enriched with abundant functions. To download 

ImageJ, users can access the official website or repository where they'll find versions 

compatible with different operating systems. Once downloaded, the software offers an intuitive 

interface with various plugins and functionalities tailored for tasks such as particle analysis, 

cell counting, and image segmentation. For academic purposes or publications, referencing 

ImageJ typically involves citing the software version, the NIH as the developer, and providing 

the appropriate publication reference or DOI (Digital Object Identifier) for the specific ImageJ 

version used. ImageJ is a comprehensive software capable of handling, modifying, examining, 

processing, storing, and printing images in various formats. Notably, ImageJ supports image 

stacks, where a sequence of images shares a single window, and its multithreaded nature 

enables concurrent execution of time-intensive operations on multi-CPU hardware. Offering 

versatile analysis capabilities, ImageJ computes area and pixel value statistics for user-defined 

selections and objects based on intensity thresholds. It facilitates measurements of distances, 

angles, creation of density histograms, and line profile plots. Its capacity to handle multiple 

images simultaneously is constrained solely by available system memory. The below 

mentioned figure 11 belongs to the intermediate squamous cells which is imported into the 

ImageJ software to display the histogram of image, measurement of an image and edges of an 

image for further analysis. Similarly, there are other relevant operations like cell count, filters, 

enhance contrast and many more. Moreover, this tool is beneficial for visualizing 3D images, 

performing 3D measurements, tracking objects in 3D space over time, and integrating with 

other scientific software and databases for streamlined workflows. 
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Figure 11: Edge detection and area calculation with ImageJ. 

 

3.4.3 Fiji Plugin 

Fiji, an acronym for “Fiji Is Just ImageJ,” presents a comprehensive distribution of ImageJ2 

bundled with a rich assortment of plugins and enhancements for enhanced functionality. Often 

described as "ImageJ with Batteries. Fiji provides user-friendly installation packages designed 

for different operating systems. These packages come pre-equipped with a JRE optimized for 

Fiji's use, although bare distributions are also available for those preferring to use their existing 

JRE. Being an Open-Source project, Fiji's entire source code is accessible for download. The 

installation process for Fiji is uncomplicated as it operates as a portable application, allowing 

it to function independently from its directory. Installation merely involves downloading and 

unpacking the distribution Fiji doesn't necessitate an installer, modify system directories, or 

store configurations in system databases like the Windows registry. This portability facilitates 

easy relocation by simply moving or copying the directory tree.  

Upon launching Fiji, users encounter the main window, which houses the Menu bar, Tools bar, 

and a Status bar for system notifications and updates. The updater, a standout feature of Fiji, 

triggers upon launch or via the Help menu. This tool scans the local installation, checking for 

updates or new features in the global Fiji repositories. Users can easily fetch and apply the latest 

updates and patches to their Fiji installation, ensuring access to the most recent enhancements 

and bug fixes. 

3.4.4 Cell Profiler  

Cell Profiler is a freely accessible modular software specifically designed for image analysis, 

capable of managing an extensive volume of images. The software comes equipped with pre-

existing methods tailored for various cell types and assays. Moreover, it serves as an open-
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source platform, fostering collaboration among image analysis experts for the creation, testing, 

and enhancement of new analysis techniques. Addressing diverse needs, CellProfiler 

incorporates advanced algorithms adept at accurately identifying crowded cells and non-

mammalian cell types. Its modular and adaptable framework allows for the analysis of novel 

assays and phenotypes. Being open source, the software grants visibility into its underlying 

methodology, enabling modifications and improvements by the community. Additionally, Cell 

Profiler offers a user-friendly interface, leverages computer clusters when available, and 

streamlines the often laborious and non-transferable image analysis steps, such as image 

formatting and combining multiple analysis steps. Although primarily optimized for two-

dimensional high-content screening images, Cell Profiler’s support for time-lapse and three-

dimensional image stack analysis is limited; however, researchers keen on these areas can 

potentially develop compatible modules for such analyses. The configurations of the pipeline's 

modules, along with their settings, are preserved and can be utilized to replicate the analysis or 

shared among collaborators. The Cell Profiler website [125] offers numerous sample pipelines, 

serving as helpful templates for initiating new analyses. Figure 12 illustrates the automated 

process of distinguishing and labeling individual cells within images. Cell Profiler utilizes 

image segmentation algorithms to accurately identify and outline cellular structures, assigning 

unique labels to each object. This precise identification allows for subsequent quantitative 

analysis of various parameters, such as size and intensity, thereby enhancing the accuracy and 

efficiency of cellular analysis in the context of cervical cancer diagnosis. Moreover, it supports 

various segmentation algorithms, including thresholding, watershed segmentation, and 

morphological operations, for accurately identifying cellular structures. 

 

 

Figure 12: Cell Profiler pipeline for extracting cytoplasm and nucleus features. 
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Figure 13: Object identification of intermediate cells for feature extraction. 

 

3. 5 Types of Segmentation 

Image segmentation is a widely used approach in digital image processing and analysis to 

divide an image into several sections or parts, usually according to the properties of the picture's 

pixels. Foreground and background separation as well as pixel clustering based on color or 

form similarity are two examples of image segmentation techniques. To identify and label 

individual pixels in an image or voxels in a 3D volume that reflect a tumor in a patient's brain 

or other organs, for instance, is a common use of image segmentation in medical imaging. 

Figure 14 displays segmentation methods for defining the region of interest (ROI). Semantic 

segmentation classifies pixels into categories, such as tumors. Instance segmentation identifies 

individual objects, allowing for multiple tumor recognition. Panoptic segmentation merges 

both methods, labeling all pixels while distinguishing instances, thereby enhancing detail and 

accuracy in medical image analysis. 

 

Figure14: Segmentation methods for obtaining region of interest.  
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3.5.1 Semantic Segmentation 

Semantic segmentation means labeling each pixel in a picture with a specific category, dividing 

the image into separate parts, with each part representing something meaningful in the picture, 

several methods in semantic segmentation have succeeded through the application of deep 

neural networks. By providing abundant images with their pixel-level labels for training, these 

networks learn how semantic labels relate to diverse visual features. This learning process 

progressively narrows the gap between high-level meanings and detailed visual traits, 

enhancing the network's understanding of various semantic concepts. The various deep learning 

architectures used in semantic segmentation are U-Net, VGG (Visual Geometry Group), 

variants of VGG network are VGG-13, VGG-16, and VGG-19. ResNet, DenseNet, ResNeX, 

MobileNet are other architectures used in semantic segmentation.  

3.5.2 Instance Segmentation 

A particular form of image segmentation called instance segmentation focuses on identifying 

and distinguishing between each individual instance of an object that appears in an image. In 

addition to detecting all instances of a class, instance segmentation also can distinguish between 

distinct instances of each segment class. The various architectures based on instance 

segmentation are RCNN, Fast RCNN, Multipath Network, Faster RCNN, Mask RCNN, Non-

Local Neural Networks, (Path Aggregation Network) PANet, YOLACT, Mask Scoring RCNN, 

and Tensor Mask.  

3.5.3 Panoptic Segmentation 

Panoptic segmentation combines instance and semantic segmentation to distinguish between 

elements in a scene, categorizing them into two groups: stuff and things. Stuff encompasses 

uncountable areas like the sky, pavements, and grounds. The various techniques that fall under 

panoptic segmentation are Unified Panoptic Segmentation Network (UPSNet), (FPSNet), 

Efficient Spatial Pyramid of Dilated Convolutions (EPSNet), (VPSNet).  

3.6 Segmentation Models    

The segmentation models that are used to segment the cytoplasm from nucleus include standard 

U-Net, residual U-Net, attention U-Net, and residual attention U-Net. The detailed description 

of the architectures is presented in the preceding sub-sections.   

3.6.1 Standard U-Net  

Olaf Ronneberger presented the U-Net architecture in 2015 [25]. It is a CNN with an 

interconnected encoding path and decoding path. The input data is compressed by a series of 
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encoders in the encoding path, which is on the left. The decoding path, shown on the right, is 

made up of decoders that recover and extend spatial information. To keep input-output sizes 

balanced, pixel-level categorization is carried out at each level. Bottleneck layers are then 

utilized to create the final feature maps. Important components of the U-Net architecture 

include skip connections, which create direct links between layers to provide inputs, ReLU 

acting as the nonlinear activation function, and max-pooling layers, which reduce dimensions 

by choosing the maximum value in a defined region. Figure 15 illustrated below represents the 

U-Net architecture.  

 

 

Figure 15: U-Net Architecture (32x32 Pixels) [25].  

 

3.6.2 Residual U-Net 

The residual U-Net is an enhancement of the standard architecture introduced by Olaf 

Ronneberg; the architecture is designed using a U-shaped deep fully connected convolutional 

CNN. Then, Residual layers are incorporated at every stage within both the compressing and 

expanding pathways. In the contracting path, each stage comprises a 3 × 3 convolutional filter 

set and its accompanying residual layer. At the conclusion of every stage, the resulting images 

undergo downsizing through a 2 × 2 average-pooling. Consequently, the input patch size 

reduces by a factor of two, a process beneficial for enhancing feature propagation due to the 

typically smooth circular shape of small extracellular vesicles in 2D TEM images. Post 

downsizing, the feature map size at each stage increases twofold, progressing from 32 to 256 

in the contracting path. By merging the features at the same level from the contracting path 
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with an unsampled version of the features from the level before it in the expanding path, the 

expanding path creates its feature maps. The remaining blocks in the expanding path are not 

symmetrical like those in the shrinking path. More specifically, the merging of the expanding 

and high-level features serves as the direct input for these residual layers. A separate 1 × 1 

convolutional layer is incorporated into the residual block in this configuration, which lowers 

the quantity of feature mappings while keeping the fine features from the contracting path. 

Furthermore, the first 3 × 3 convolution in the residual layer reduces the size of the feature map, 

which aids in the formation of the residual connection. Figure 16 is the block diagram of the 

residual U-Net.  

 

Figure16: Residual U-Net architecture [18]. 

 

3.6.3 Attention U-Net  

The attention gate module is inserted at the skip links between the encoder and decoder in 

Attention U-Net, which is an extension of regular U-Net that emphasizes key aspects and 

mutes’ details of unimportant regions. An attention mechanism's primary goal is to quickly 

connect a set of key-value pairs to a query and generate an output in the most efficient way 

possible. In the attention mechanism, vectors that represent key, query, values, and outputs are 

used. Weights are used to determine how well a query and its matching key work together. The 

output is then obtained by computing the weighted sums of the values. These weights represent 

the importance of the inputs (keys) with respect to a certain output (the query). As xl originates 

from earlier layers, it holds richer spatial information. Input g, known as the "gating signal," is 

derived from a deeper network layer and encompasses enhanced feature representations and 



58 

 

contextual details for identifying the focal region. Figure 17 depicts the block diagram of 

attention U-Net.  

 

Figure 17: Attention U-Net architecture for segmenting the region of interest [2]. 

 

3.6.4 Residual-Attention U-Net  

The residual attention U-Net is modified here called DeepSegNet, which is composed of two 

components. The first component is made up of residual blocks and another module is 

attention. The integration of residual and attention blocks enhances the performance of the 

network. Both modules enable the network to focus on important areas while retaining 

intricate details.  

 

Figure 18: Residual attention U-Net architecture.  
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Attention mechanisms within deep learning models guide the network in allocating its 

resources by assigning varying importance to distinct sections of the input. Incorporating 

attention blocks into the U-Net design empowers RAU-Net to highlight crucial features and 

diminish irrelevant or noisy data, consequently enhancing the accuracy of segmentation. 

Figure 18 is the visual representation of the Residual Attention U-Net. 

• Attention Module 

The attention mechanism, akin to human visual focus, effectively filters out irrelevant 

image regions [20], thus reducing false positives. In this study, it enables parameter updates 

in spatial areas crucial for cytoplasm and nucleus segmentation. A connection is 

established between the encoder and decoder through a skip connection, utilizing an 

attention gate. This gate takes two inputs: one from the encoder, containing contextual and 

spatial information, and the other from the decoder layer below. The gate's output is 

subsequently directed to the decoder for concatenation. For a visual representation of our 

model's attention gate, please refer to Figure 19.  

 

Figure 19: Block diagram of attention module[54]. 

 

• Residual block 

A residual block is a sequence of layers arranged in a manner where the output of one layer is 

combined with the output of a deeper layer within the block. After this combination, a non-

linear operation is applied to the result alongside the output of the corresponding layer in the 

main path. The main difference between the traditional network and the residual block is that 

instead of F(X) the F(X)-X is used. In networks containing residual blocks, each layer passes 

its output to the subsequent layer and to layers approximately 2-3 steps ahead. Here in, 

R(X)=F(X)-X or F(X)=R(X)+X. Therefore, the layers are trying to learn the residual R(X). 
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Thus, the output is added up with the identity which is shortcut connection then passed to the 

next layer. Figure 20 mentioned below depicts the structure of various residual blocks used.   

 

Figure 20: Structure of different residual blocks utilized in the architecture. 

 

• Algorithm of DeepSegNet a modified architecture of Residual Attention U-Net 

BEGIN 

1. Input: Pap smear images with cytoplasm and nucleus. 

2. Preprocess the images (e.g., resizing, normalization, etc.) 

3. DEFINE Residual Attention U-Net  

4. INITIALIZE encoder layers  

5. DOWN-SAMPLE using max pooling 

6. Integrate residual blocks 

7. APPLY attention modules 

8. UP-SAMPLE using transposed convolutions 

9. ADD residual blocks 

10. FINALIZE with convolution layer 

11. INITIALIZE model parameters  

12. DEFINE loss function    

13. SELECT Adam optimizer and learning rate schedule 

14. SPLIT dataset into training, validation, and testing sets 

15. FOR each epoch DO 

16. FOR each batch of training data DO 

17. PROPAGATE input through the network 
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18. COMPUTE loss between predicted segmentation masks and ground truth 

19. COMPUTE gradients of the loss w.r.t. model parameters 

20. UPDATE model parameters using optimizer 

21. END FOR 

22. COMPUTE validation loss 

23. ADJUST learning rate, if necessary, based on validation performance 

24. END FOR 

25. GENERATE segmentation masks for test images 

26. EVALUATE segmentation accuracy using appropriate metrics 

27. VISUALIZE segmentation results 

28. ANALYZE performance 

29. DEPLOY the model for segmenting cytoplasm and nucleus in new pap smear 

images 

END 

• Model Hyperparameter Tunning  

The manual method of hyperparameter tuning was applied with several sets of values. It uses a 

trial-and-error approach, tracking trial outcomes and using them as feedback to find the 

combination of hyperparameters that performs best. The implemented filters are 16, 32, 64, 

128, and 256, and the kernel size is 3. The Adam optimizer is used, batch normalization is 

enabled, and dropout is set at 0.5. Twenty epochs are followed by a batch size of 32. The 

selection of these hyperparameters resulted in high performance of the trained models. The 

chosen hyperparameters were selected based on their proven effectiveness in deep learning 

techniques and to balance computational efficiency with model performance. Filters (16, 32, 

64, 128, and 256) capture features at various levels of abstraction, while a kernel size of 3 

effectively extracts spatial features. The Adam optimizer, known for its adaptive learning rate, 

and batch normalization stabilize and accelerate training. A dropout rate of 0.5 prevents 

overfitting, and twenty epochs ensure sufficient learning without excessive fitting. A batch size 

of 32 balances gradient estimate noise and memory usage. These choices, fine-tuned through a 

trial-and-error approach, resulted in high performance for the trained models. 

3.7 Feature Extraction  

Feature extraction entails the process of diminishing dimensionality of raw data, breaking it 

into smaller, more manageable groups for easier processing. Large datasets, characterized by 

numerous variables, demand substantial computing resources. Feature extraction addresses 
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this challenge by selecting and combining variables to create features, significantly reducing 

the data volume. These derived features remain easy to process yet accurately represent the 

original dataset with precision and authenticity. The architecture used for feature extraction 

is VGG16.  

3.7.1 VGG16 

VGG stands for Visual Geometry Group, the different variants of VGG are VGG11, VGG13, 

VGG16, and VGG19. The architectures vary in terms of the number of layers they possess. 

VGG11, and VGG13 contains 11 and 13 convolutional layers, which are comparatively fewer 

than VGG16 and VGG19. VGG16 is based on 16 layers convolutional layers and last three are 

fully connected layers. Each convolutional block is made up of multiple 3x3 convolutional 

layers followed by a max-pooling layer, contributing to the network's ability to learn rich 

representations of input images. VGG16 has been used widely as a base architecture for 

various tasks, such as transfer learning. VGG19 consists of 19 layers. It is a variant of VGG16, 

three extra convolutional layers are added into it, to make it deeper. Since deeper models tend 

to learn more complex features but requires more computational features. In an ImageNet 

dataset, VGG16 obtained 92.7% top 5 test accuracy. This model is trained on 14 million 

images which contain 1000 classes. The input to the cov1 layer maintains a fixed size of 256 

x 256 RGB image. A sequence of convolutional (conv.) layers processes the image using 3×3 

filters. Some configurations incorporate 1×1 convolution filters, functioning as a linear 

transformation of input channels followed by non-linear processes. Convolution occurs with a 

fixed stride of 1 pixel, maintaining spatial resolution through 1-pixel padding for 3×3 conv. 

layers. Among the conv. layers, five max-pooling layers perform spatial pooling using a 2×2-

pixel window and a stride of 2. Following the convolutional layers of varying depths across 

architectures, three Fully Connected layers are employed: the first two possess 4096 channels 

each, while the third facilitates 1000-way ILSVRC classification with 1000 channels, 

representing individual classes. The soft-max layer is made up of the last layer, followed by 

ReLU which is encoded in every hidden layer. Notably, barring one exception, the networks 

do not include Local Response Normalisation (LRN) due to its negligible impact on ILSVRC 

dataset performance, yet it significantly increases memory usage and computation time. 

Following figure 21 is the architecture of VGG16 with various convolutional layers.  
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Figure 21: VGG16 architecture for feature extraction [123]. 

  

3.8 Classifier  

In machine learning, a classifier is an algorithm that autonomously organizes or groups data 

into one or multiple predefined "classes." The various types of classifiers are decision tree, 

Support Vector Machine, Naïve Bayes classifier, K Nearest Neighbor, Artificial Neural 

Network, Random Forest, Logistic Regression, and Ensemble Methods. These classifiers 

play an important role as they facilitate the automated decision making, enable predictions, 

and unveil patterns within data that might not be immediately apparent. The two classifiers 

chosen for the classification purpose include ANN and XGBoost. 

3.8.1 Artificial Neural Network 

In this classification module, a three-layer artificial neural network architecture, as 

depicted in Figure 22, is utilized. The initial layer, serving as the input, comprises several 

nodes that receive data from various cervical cells. At the other end, the output layer 

consists of one node that provides a confidence level for a sample's classification. To 

normalize the network's output and restrict each output value within the 0 to 1 range, a 

final output function known as SoftMax is employed. Notably, the sum of the output 

nodes' values always equals 1, enabling straightforward interpretation as probabilities or 

confidence scores. Consequently, the predicted class corresponds to the one with the 

highest confidence level. The intermediate layer, also known as the hidden layer, is 

completely connected and resides between the input and output layers. All its nodes 

receive input from each of the seven input nodes. It processes this information and 

transmits the results to the three output nodes. Different configurations with varying 

numbers of nodes in the hidden layer were explored in this study to strike a balance 

between architecture complexity and effective classification. Thus, to perform the 
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multiclass classification of pap smear images, an approach based on ANNs utilizing 

features extracted from Cell profiler is proposed. The input features are derived from 

different cellular regions, including intermediate squamous, superficial squamous, basal, 

parabasal, LSIL, and HSIL. The ANNs are trained on a comprehensive dataset of pap 

smear images, enabling them to learn the complex patterns and relationships between the 

extracted features and the respective classes. The ANN’s architecture is carefully designed 

to ensure effective classification performance. By leveraging this approach, the aim is to 

enhance the accuracy and efficiency of Pap smear image classification, facilitating 

automated screening and detection of cervical abnormalities. The dataset is split into 

training and validation subsets, ensuring proper evaluation of the ANN's performance. 

During the training phase, the ANNs learn to map the extracted features to their respective 

classes through the backpropagation algorithm and gradient descent optimization. 

Evaluation metrics such as recall, and F1-score, accuracy, and precision, are employed to 

assess the ANN's performance on the validation set. Hyperparameter tuning is conducted 

to optimize the network's performance by adjusting parameters such as learning rate, batch 

size, and regularization techniques. Table 3 provides a comprehensive overview of the 

model parameters essential for carrying out the classification process. The classification 

is based on multiclass classification according to the latest Bethesda System of 

classification. 

 

Figure 22: Multiclass cervical cell classification using MLP. 
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Table 3: Artificial neural network model parameters.  

Parameter Name  Value  

 

Epochs 100 

Batch size  32 

Verbose  1 

Optimizer  Adam optimizer 

Loss function  Categorical cross entropy  

Activation function  ReLU and SoftMax 

Test and train  20:80 

 

3.8.2 XGBoost 

 Cervical cancer diagnosis relies heavily on the accurate and early classification of Pap smear 

images. In this context, we introduce a state-of-the-art approach that leverages the combined 

strengths of deep learning, specifically the VGG16 convolutional neural network architecture, 

and gradient boosting through XGBoost. VGG16 is a well-established neural network 

architecture celebrated for its effectiveness in feature extraction from diverse image types, 

including Pap smear images. The VGG16 architecture is characterized by multiple layers of 

convolution, each followed by a non-linear activation function, allowing it to progressively 

learn intricate and abstract visual features. When a Pap smear image is input into VGG16, it 

undergoes a series of convolutions with learnable filters designed to detect patterns across a 

spectrum of scales, from elementary features such as edges and corners to more complex 

textures and shapes. As the image traverses through the network, subsequent convolutional 

layers combine these lower-level features to construct higher-level and more sophisticated 

image representations. A distinctive feature of VGG16 is its repeated use of 3x3 convolutional 

filters, which enables deeper networks with a more compact receptive field. This architectural 

choice enhances the ability to capture intricate details while reducing the spatial dimensions of 

the input. In the method, 8-bit 256x256-pixel cervical cell images are employed as input. The 

pre-trained VGG16 with 'ImageNet' weights is adopted, bypassing the dense layers as the focus 

remains solely on feature extraction. These pre-trained weights are used to extract a rich set of 

features. Given that 843 cervical cell images of size 256x256x3 are used, VGG16 extracts 

approximately 32,768 features (8x8x512). Subsequently, XGBoost, a robust gradient boosting 

classifier, is applied to perform multiclass classification. 
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This holistic approach blends the power of VGG16 for feature extraction with the precision of 

XGBoost for multiclass classification, offering an effective tool for the early and accurate 

detection of cervical cancer. The process commences with meticulous data preprocessing, 

which involves resizing Pap smear images to a consistent 256x256-pixel dimension and 

ensuring color normalization. Further, labels are systematically assigned to images based on 

their folder structure, providing the necessary ground truth for training. Feature extraction with 

VGG16 takes centre stage, capitalizing on its ability to capture intricate patterns, textures, and 

structures. The pre-trained weights facilitate the automatic distillation of essential features from 

Pap smear images. Notably, VGG16's top classifier layers are pruned, preserving only the 

convolutional layers for this feature extraction step. The extracted features are subsequently 

reshaped into high-dimensional feature matrices, encapsulating the nuanced information 

crucial for precise classification. These matrices serve as the foundation for the final 

classification step with XGBoost, an algorithm well-suited for the intricacies of high-

dimensional data. Through this amalgamation of deep learning and gradient boosting, the 

approach holds immense promise for enhancing the diagnostic accuracy of cervical cancer via 

Pap smear image analysis. A diagrammatic representation of multi-level image classification 

of cervical cells into cancerous or non-cancerous cells is depicted in figure 23.  The VGG16 

model summary is presented in table 4. 

  

 

Figure 23: Multi-level classification of cervical cells using VGG16-XGBoost.  
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Table 4: VGG16 model summary of Convolutional and Maxpooling layers 

 

 

3.9 Justification of the Chosen Architectures  

The choice to use the Residual Attention U-Net model for cytoplasm and nucleus segmentation 

in Pap smear images and an ANN for classification is based on several benefits that these 

methods offer in the field of cytological analysis. The intrinsic ability of the Residual Attention 

U-Net to tackle intricate structural recognition tasks makes it a reliable option. The attention 

mechanisms incorporated into this architecture allow for selective emphasis on important 

characteristics and efficient noise suppression, which guarantees correct cellular boundary 

delineation, which is essential for precisely segmenting nuclear and cytoplasmic regions. 

Additionally, the U-Net architecture's residual connections allow for smoother information 

flow, which successfully addresses the vanishing gradient problem and makes learning 

complex structural elements easier a particularly important aspect. The subsequent use of an 

ANN for classification benefits from its ability to identify intricate relationships within the 

segmented regions, ensuring precise classification of specific cellular components such as 

cytoplasm and nucleus. This approach combines the precise segmentation capabilities of the 
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Residual Attention U-Net with the ANN's strength in learning from diverse features, resulting 

in a synergistic methodology that aims for accurate cytological analysis in pap smear images. 

Furthermore, this strategy's effectiveness is not only rooted in its inherent strengths but also in 

its potential adaptability and scalability. It has the capability to expand and adapt to handle 

diverse cell types, varying image resolutions, and other complexities commonly encountered 

in cytological image analysis. 

3.10 SUMMARY 

The chapter elaborates on the diverse array of architectures meticulously employed in executing 

experimental setups. These architectures were specifically tailored for various tasks involving 

Pap smear image analysis, encompassing segmentation, classification, and feature extraction. 

The ensemble comprises a spectrum of sophisticated models, including the standard U-Net, 

Residual U-Net, Attention U-Net, Residual Attention U-Net called Deep-SegNet, VGG16 

architecture, Artificial Neural Network, and XGBoost. Each model was strategically chosen to 

contribute to the comprehensive classification of cervical cells across seven distinct classes: 

class I, class II, class III, class IV, class V, class VI, and class VII. The utilization of these deep 

learning and machine learning models serves a distinct purpose within the experimental 

paradigm. The standard U-Net, renowned for its efficacy in biomedical image segmentation, 

forms the bedrock of the segmentation task. Its ability to accurately delineate cellular structures 

and boundaries in Pap smear images lays the groundwork for subsequent analyses. In parallel, 

the Residual U-Net and Attention U-Net variants enhance segmentation precision by 

incorporating residual connections and attention mechanisms, respectively. The Deep-SegNet, 

a fusion of these features, further refines the segmentation process by selectively attending to 

vital regions while leveraging residual connections for enhanced information flow. Moving 

beyond segmentation, the VGG16 architecture, with its deep convolutional layers, emerges as 

a pivotal tool for feature extraction. Its hierarchical representation of image features enables 

the extraction of high-level features crucial for differentiating between cervical cell classes. 

Meanwhile, the integration of an Artificial Neural Network and XGBoost specifically caters to 

the classification phase. The ANN's capacity to discern intricate relationships within segmented 

regions aids in precise classification, while XGBoost, a robust boosting algorithm, 

complements this process by enhancing the model's accuracy and interpretability. The 

collective application of these models amalgamates intricate techniques and methodologies, 

aiming to achieve comprehensive and precise classification of cervical cells. By leveraging the 

distinctive strengths of each architecture, this multifaceted approach not only strives for 
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accurate classification across the seven cell classes but also seeks to establish a robust 

framework adaptable to the nuances and complexities inherent in cytological image analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 

 

CHAPTER 4 

RESULTS AND DISCUSSION 

 This chapter extensively evaluates standard U-Net, residual U-Net, attention U-Net, and 

Residual Attention U-Net performance in segmenting cytoplasm and nucleus. After successful 

segmentation, the focus shifts to feature extraction, employing VGG16, and subsequent 

classification using ANN, and XGBoost. Moreover, this chapter employs a diverse range of 

performance metrics such as accuracy, precision, recall, and others to comprehensively 

evaluate the capabilities of these techniques in accurately identifying cellular components and 

performing precise classifications based on the extracted features. The meticulous integration 

of these algorithms allows for robust and accurate predictions, enabling the identification of 

potentially malignant cellular patterns with high precision. 

4.1 Segmentation Result 

This section showcases visual representations of segmented cytoplasm and nucleus derived 

from different neural network architectures: the Standard U-Net, Residual U-Net, Attention U-

Net, and Residual Attention U-Net. Through these visualizations, the diverse segmentation 

outputs of each model become apparent, highlighting their distinct approaches in delineating 

cellular structures within pap smear images. The comparative analysis of these representations 

offers valuable insights into the varying degrees of accuracy, detail preservation, and boundary 

delineation achieved by these different architectures, paving the way for a comprehensive 

understanding of their respective strengths and limitations in cellular segmentation tasks. 

4.1.1 Standard U-Net 

In this subsection, the focus centers on delineating the segmentation process applied to the 

cytoplasm and nucleus within Pap smear images. The visual representation provided vividly 

illustrates the challenges encountered in employing the standard U-Net architecture for 

achieving accurate segmentation. Through the displayed images, a noticeable limitation 

becomes apparent: the standard U-Net model struggles to effectively segment both the 

cytoplasm and nucleus with precision. Despite its widespread use and success in various 

segmentation tasks, the U-Net architecture encounters difficulties in achieving satisfactory 

segmentation results in this context. Notably, the evaluation metrics such as Intersection over 

Union (IoU) and accuracy demonstrate constrained performance, emphasizing the necessity for 

an enhanced segmentation approach tailored to the complexities inherent in Pap smear image 

analysis. The discrepancies between the anticipated and obtained segmentation outcomes 

underscore the need for a refined methodology that can accurately delineate the cytoplasmic 
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and nuclear boundaries, ensuring improved reliability in diagnostic interpretations. This 

observation sets the stage for further exploration and development of advanced segmentation 

techniques, aimed at augmenting the accuracy and efficacy of Pap smear image analysis for 

enhanced clinical applications and pathological assessments. Figure 24 is the segmented 

cytoplasm and nucleus from cervical cells. Images a, b, c, d, e, and f depict parabasal and 

intermediate squamous cells. The first three represent parabasal cells, followed by three 

squamous cells. Correspondingly, a1, b1, c1 are the ground truth cytoplasm images of a, b, and 

c, while d1, e1, f1 are the ground truth cytoplasm images of d, e, and f. Additionally, a2, b2, c2 

represent the ground truth nuclei for a, b, and c, whereas d2, e2, and f2 are the ground truth 

nuclei for d, e, and f. A1, A2 denote the segmented cytoplasm and nucleus of cell a, B1, B2 

represent those of cell b, and C1, C2 depict those of cell c. Similarly, D1, D2 are the segmented 

cytoplasm and nucleus of cell d, E1, E2 are for cell e, and F1, F2 are for cell f. The visual 

representation of these images reveals that the U-Net model does not preserve the cellular 

structure while segmenting Pap smear images. 

 

 

Figure 24: Segmented cytoplasm and nucleus using standard U-Net. 

 

4.1.2 Residual U-Net  

This subsection highlights the comparative analysis between the standard U-Net and the 

Residual U-Net architectures in their application to Pap smear image segmentation. Notably, 

the Residual U-Net demonstrates superior performance in segmenting select pap smear images, 

showcasing improved accuracy and delineation of both cytoplasmic and nuclear regions 

compared to its standard counterpart. However, despite this progress, it becomes evident that 
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the Residual U-Net still encounters challenges in achieving consistent and precise segmentation 

across the entirety of the Pap smear images. While the Residual U-Net exhibits promising 

advancements over the standard U-Net by yielding better segmentation results in specific 

instances, the variability in outcomes across different images highlights the necessity for further 

refinement and enhancement in the segmentation methodology. Figure 25 represents the 

segmented cytoplasm and nucleus with residual U-Net. This observation underscores the 

ongoing need for innovation and optimization within the Residual U-Net framework to ensure 

consistent and accurate segmentation of all pap smear images, aiming to establish a more robust 

and reliable tool for pathological assessments and diagnostic applications in clinical settings. 

Images a-f depict parabasal and intermediate squamous cells. The first three are parabasal cells, 

followed by three squamous cells. Correspondingly, a1-c1 are the ground truth cytoplasm 

images for a-c, and d1-f1 are for d-f. Similarly, a2-c2 represent the ground truth nuclei for a-c, 

and d2-f2 for d-f. Segmented cytoplasm and nuclei for each cell are denoted as A1-A2, B1-B2, 

C1-C2, D1-D2, E1-E2, and F1-F2. The visual representation reveals that the residual U-Net 

model fails to preserve cellular structure in segmenting Pap Smear images. 

 

 

Figure 25: Segmentation of cytoplasm and nucleus using residual U-Net.  

 

4.1.3 Attention U-Net 

Despite the advancements brought by the Residual U-Net architecture in the segmentation of 

cytoplasmic and nuclear regions within Pap smear images, its performance, as indicated by 
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metrics such as Intersection over Union (IoU) and accuracy, remains below the desired 

standards. While it exhibits improved segmentation compared to traditional methods like the 

standard U-Net, there are persistent challenges in accurately defining the boundaries of these 

crucial cellular components consistently across the entire dataset. The IoU and accuracy scores 

obtained through the Residual U-Net analysis reveal inconsistencies and inaccuracies in 

segmenting cytoplasmic and nuclear structures within the images, hindering its reliability for 

clinical interpretations and pathological assessments. These limitations emphasize the critical 

need for further enhancements and refinements in the Residual U-Net model to achieve more 

consistent and precise segmentation results across diverse Pap smear images. Advancements in 

this area are crucial for bolstering the accuracy and reliability of automated analysis tools in 

the realm of cytopathology, ultimately improving diagnostic capabilities and patient care in 

clinical settings. Figure 26 is the visualized images of segmented cytoplasm and nucleus using 

attention U-Net. The cell types depicted in images a–c are parabasal cells, while images d–f 

show squamous cells. Ground truth images of the cytoplasm (a1-f1) and nucleus (a2-f2) 

correspond to each cell. For cells a-f, the labels A1-A2, B1-B2, C1-C2, D1-D2, E1-E2, and F1-

F2 correspond to the segmented cytoplasm and nucleus images. The outputs obtained from the 

Attention U-Net model did not effectively preserve the boundaries between cytoplasmic and 

nuclear regions.  

 

  

Figure 26: Segmentation of cytoplasm and nucleus using attention U-Net. 

 

4.1.4 Residual Attention U-Net (Deep SegNet) 

The segmentation of cytoplasm and nucleus utilizing the Residual Attention U-Net represents 

a substantial leap forward, notably improving Intersection over Union (IoU) and accuracy 
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metrics while preserving intricate details and edges within the images. This advanced 

architecture, the Residual Attention U-Net, demonstrates significant success in accurately 

delineating the boundaries of cytoplasmic and nuclear regions, showcasing superior 

preservation of fine details and structural edges compared to previous models. The IoU and 

accuracy scores obtained through the Residual Attention U-Net analysis signify a marked 

enhancement in the precision and consistency of segmentation, ensuring a more comprehensive 

preservation of intricate cellular structures and edges within pap smear images. This notable 

achievement underscores the efficacy and potential of advanced architectures, particularly the 

Residual Attention U-Net, in bolstering the accuracy and reliability of automated segmentation 

tools for cytoplasmic and nuclear analysis. Such advancements hold promise for refining 

diagnostic interpretations in cytopathology and advancing clinical practices by providing more 

detailed and accurate insights into cellular morphology and pathology. 

 

 

Figure 27: Segmented cytoplasm and nucleus with residual attention U-Net. 

 

 Figure 27 is the segmentation of cytoplasm and nucleus achieved using residual attention U-

Net.  Images a-f depict parabasal and intermediate squamous cells. The first three represent 

parabasal cells, followed by three squamous cells. Correspondingly, a1-c1 are the ground truth 

cytoplasm images of a-c, while d1-f1 represent the ground truth cytoplasm images of d-f. 

Additionally, a2-c2 represent the ground truth nuclei for cells a-c, whereas d2-f2 represent the 

ground truth nuclei for cells d-f. A1-A2 represent the segmented cytoplasm and nucleus of cell 

a, B1-B2 represent those of cell b, and C1-C2 depict those of cell c. Similarly, D1-D2 represent 

the segmented cytoplasm and nucleus of cell d, E1-E2 represent those of cell e, and F1-F2 

represent those of cell f. The visual representation of these images reveals that the Residual 
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attention U-Net model preserve the cellular structure while segmenting Pap Smear images 

compared to other standard models. Figure 28 represents the training and validation of IOU 

and Loss of the same architecture. Table 5 is the performance comparison of various deep 

learning models 

 

Table 5: Performance comparison of segmentation models. 

Technique Cytoplasm Nucleus 

IoU Accuracy IoU Accuracy 

U-Net 90.23  91.57 91.23  90.27 

Residual U-Net 70.53 73.10 69.53 75.10 

Attention U-Net 71.64 73.23 71.02 76.23 

Deep SegNet 97.36 99.04 96.36 99.84 

 

The standard U-Net model achieves an Intersection over Union (IoU) and accuracy of 90.23 

for cytoplasm segmentation and 91.23 and 90.27 for nucleus segmentation, respectively. This 

performance is comparatively better than that of the Residual and Attention U-Net models. 

However, the complexity of these models increases with the integration of individual residual 

and attention blocks.  

 

 

Figure 28: Training and validation IoU and Loss of residual-attention-U-Net.  

 

Interestingly, when both modules are integrated together into the standard U-Net architecture, 

there is a drastic improvement in performance for cytoplasm and nucleus segmentation. The 

integrated model achieves an IoU of 97.36 and 96.36 for cytoplasm and nucleus, with accuracy 
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rates of 99.04 and 99.84 for cytoplasm and nucleus, respectively. These results were obtained 

after training the models for 20 epochs. 

4.2 Feature Extraction and Classification 

In an automated cervical screening approach, such as DeepCervix-Net, the morphological 

features of cervical cells are analyzed meticulously and efficiently. These features, selected in 

consultation with trained cytopathologists and cyto-technicians, are calibrated in terms of pixel 

count, as indicated in Table 6. Morphological examination involves assessing size, shape, 

orientation, and the proportion of the cell area shared by the nucleus and cytoplasm. This study's 

formalization of these features using computer techniques and image processing algorithms 

replaces the subjective manual interpretation by cytopathologists, minimizing the possibility 

for human errors (Bamford and Lovell 1996; Lezoray and Cardot 2002) [56]. Various 

parameters, such as area, perimeter, form factor, solidity, extent, center, eccentricity, major and 

minor axis length, orientation, compactness, and nucleus-cytoplasm ratio, are examined to 

assess various aspects of cellular abnormalities. Table 6 illustrates the morphological features 

of the cytoplasm and nucleus extracted with Cell Profiler, and figure 29 visually demonstrates 

the feature extraction process on 843 pap smear images. A detailed description of the features 

is provided in the following section.  

 

Figure 29:  Visual representation of feature extraction from 843 Pap smear images.  

 

4.2.1 Description of Extracted Features from Cell Profiler  
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4.2.1.1 Area of Cytoplasm-Nucleus 

The area of cytoplasm and nucleus represents the total pixel count within their boundaries. The 

prognosis of malignancies can be significantly influenced by the size of the cytoplasm and 

nucleus. Normal cervical cells typically have a larger cytoplasmic area and a smaller nucleus 

compared to abnormal cervical cells like CIN-II and CIN-III, where the nucleus is almost as 

large as the cytoplasm. Meyer-Arendt and Humphreys [4] noted that cancerous cells are smaller 

in size compared to normal superficial and intermediate cells.  

4.2.1.2 Cytoplasmic and Nuclear Perimeter  

The cytoplasmic and nuclear perimeter refers to the number of pixels that make up the boundary 

of these regions. In this context, it's worth noting that normal cervical cells typically have a 

larger cytoplasmic perimeter but a smaller nuclear perimeter. Conversely, cervical 

intraepithelial neoplasia cells exhibit increased perimeter values for both cytoplasm and 

nucleus. 

4.2.1.3 Form Factor 

The form factor is a metric that quantifies the roundness of an object. It's determined by the 

formula: 4πxarea/perimeter2. When an object has a form factor value of 1, it means it has a 

perfectly circular shape. The form factor is a useful measure for identifying irregular and 

asymmetric cells by assessing how much they deviate from a normal circular shape. 

4.2.1.4 Solidity  

Solidity is a measure that compares the area under the convex hull (the smallest convex polygon 

encompassing all object points) to the object's total area. When Solidity equals 1, it signifies a 

smooth and regular surface, typical of Normal and Atypical Squamous Cells of Undetermined 

Significance (ACS-US) category cells. In contrast, cells from the High-grade Squamous 

Intraepithelial Lesion (HSIL) category, including moderate (CIN-II) and severe dysplasia 

(CIN-III), exhibit low Solidity values due to their irregular and non-convex surfaces. 

4.2.1.5 Cytoplasmic and Nuclear Extent  

Cytoplasmic and nuclear extent represents the proportion of the total figure area covered by the 

object. It's calculated by dividing the cytoplasmic or nuclear area by the overall figure area. 

 

4.2.1.6 Center of Cytoplasm-Nucleus X-axis and Y-axis 

 The X and Y coordinates of the cytoplasm-nucleus centre represent the point farthest from the 

cytoplasm/nucleus edge. These coordinates are significant for characterizing the shape of the 



78 

 

cytoplasm and nucleus, as well as measuring the relative position of the nucleus in relation to 

the cytoplasm. 

4.2.1.7 Eccentricity  

Eccentricity is a parameter that measures the roundness or elongation of the cytoplasm and 

nucleus. It's determined by the ratio of the foci of an ellipse to its major axis length. As Cervical 

Intraepithelial Neoplasia progresses, the nucleus becomes more distorted, leading to an increase 

in eccentricity, especially in very elongated nuclei with a value approaching 1. Therefore, 

eccentricity is a useful indicator for identifying irregular cell shapes, particularly in the high-

grade squamous intraepithelial lesion category, including moderate (CIN-II) and severe 

dysplasia (CIN-III). 

4.2.1.8 Major Axis and Minor Axis Length of Cytoplasm-Nucleus 

 The major axis and minor axis lengths of the cytoplasm-nucleus represent the pixel 

measurements of the longest and shortest axes, respectively, of the best-fitting ellipse around 

the object. These measurements are instrumental in calculating other characteristics such as 

elongation and eccentricity. 

4.2.1.9 Cytoplasmic and Nuclear orientation 

Cytoplasmic and nuclear orientation indicates the angle between the X-axis and the major axis 

of the best-fitting ellipse around the biological object. 

4.2.1.10 Cytoplasm/Nuclear Compactness 

Cytoplasmic/nuclear compactness is a parameter used to standardize shape measurements, 

widely applied for characterizing morphological changes in biological entities [30,31]. It's 

determined by calculating the ratio of the perimeter squared to the ellipse's area. Observations 

reveal that ecto-cervical cells, including mature superficial and intermediate cells, exhibit a 

more compact nucleus but less compact cytoplasm in comparison to immature squamous cells 

like parabasal and basal cells, which are characterized by both compact cytoplasm and nucleus. 

4.2.1.11 Nucleus-Cytoplasm Ratio 

The presence of malignancy can be identified through the nucleus-to-cytoplasm ratio. 

Abnormal cells, such as atypical squamous cells with a potential for HSIL, CIN-II, and CIN-

III, tend to exhibit elevated nucleus-to-cytoplasm ratios, which may approach a 1:1 ratio. 

Conversely, normal cells or atypical squamous cells of undetermined significance typically 

have lower nucleus-to-cytoplasm ratios, which may approximate ratios of 1:4 or 1:6 Das et al.  

[5]. The MaxFeretDiameter, MinFeretDiameter, maximum radius, mean radius, and median 

radius exhibit greater values in normal polygonal-shaped cervical cells, whereas they are 
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smaller for cells in the dysplastic category, such as LSIL, CIN-II, and CIN-III. These 39 listed 

features of cytoplasm and nucleus encompass the critical morphological attributes necessary 

for a comprehensive profile of individual cervical cells, thereby aiding in precise and accurate 

automated screening for cervical cancer. 

 

Table 6: Various features extracted from cytoplasm and nucleus using cell-profiler. 

Cytoplasmic Features 

1. Cytoplasmic and Nucleus Area  

2. Centre of Cytoplasm and Nucleus-axis 

3. Centre of Cytoplasm and Nucleus Y-axis 

4. Compactness of Cytoplasm and Nucleus 

5. Eccentricity of Cytoplasm and Nucleus 

6. Extent of Cytoplasm and Nucleus 

7. Form factor of Cytoplasm and Nucleus 

8. Major Axis Length of Cytoplasm and Nucleus 

9. Maximum Radius of Cytoplasm and Nucleus 

10. Mean Radius of Cytoplasm and Nucleus 

11. Median Radius of Cytoplasm and Nucleus 

12. Minor Axis Length of Cytoplasm and Nucleus 

13. Cytoplasmic and Nucleus Orientation  

14. Cytoplasmic and Nucleus Perimeter  

15. Solidity of Cytoplasm and Nucleus 

16. Location of Centre of Cytoplasm and Nucleus X-Axis  

17. Location of Centre of Cytoplasm and Nucleus-Axis  

18. Maximum Farthest Diameter of Cytoplasm and Nucleus 

19. Minimum Farthest Diameter of Cytoplasm and Nucleus. 

20. Cytoplasmic and Nucleus ratio 

 

Table 7 provides the mapping of seven classes used for multi-class classification. Initially, there 

were twenty attributes associated with cytoplasm and nucleus in pap smear images. These 

attributes were combined into a single attribute identified by the primary key "Pap smear," 

which spanned across 843 entries.  

Table 7: Cell mapping for cervical cell classification 

Pap Smear Cytoplasmic Attributes Nucleus Attributes Class 

1 20 Attributes 20 Attributes Class I 

2 20 Attributes 20 Attributes Class II 

3 20 Attributes 20 Attributes Class III 
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Pap Smear Cytoplasmic Attributes Nucleus Attributes Class 

4  20 Attributes 20 Attributes Class IV 

5 20 Attributes 20 Attributes Class V 

6 20 Attributes 20 Attributes Class VI 

7 20 Attributes 20 Attributes Class VII 

 

Following this consolidation, the data was processed based on these 40 attributes, resulting in 

the classification of instances into one of the seven predefined classes. 

4.3 Evaluation Metrics 

The proposed methodology is assessed through a range of metrics, including Intersection over 

Union (IoU), accuracy, specificity, sensitivity, and the F1 score. The IoU measures the degree 

of overlap between a predicted region and a ground truth region. In mathematical notation 

predicted segmentation (often referred to as "A") and the ground truth segmentation (often 

referred to as "B"). Here's what each part of the formula represents:|A ∩ B| is the size of the 

intersection between the predicted and ground truth segmentation masks. It measures the 

number of pixels that are correctly classified as part of the object in both the prediction and 

ground truth. |A ∪ B|: The size of the union of the predicted and ground truth segmentation 

masks. It measures the total number of pixels that are classified as part of the object in either 

the prediction or the ground truth (or both). Accuracy quantifies the ratio of accurate predictions 

made by a model. Specificity is a performance metric used in binary classification tasks, 

particularly in medical and diagnostic applications. It evaluates the capability of a model to 

accurately detect negative instances (true negatives) among all real negative instances. 

Sensitivity, also known as recall, measures the true positive cases among all positive cases. The 

F1 score combines both precision and recall into a single score. Precision quantifies the 

proportion of true positive predictions among all the instances that the model predicted as 

positive. The definitions of these metrics are as under: 

 

IoU (A, B) = |A ∩ B| / |A ∪ B|         (1) 

 

Accuracy = (Number of Correct Predictions) / (Total Number of Predictions)  (2) 

 

Specificity = (True Negatives) / (True Negatives + False Positives)             (3) 

 

Sensitivity = (True Positives) / (True Positives + False Negatives)   (4) 
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F1 Score = 2 * (Precision * Recall) / (Precision + Recall)    (5) 

 

Precision = (True Positives) / (True Positives + False Positives)   (6) 

   True positives (TP) refer to correctly identified instances of a condition or feature, indicating 

accurate detection by the diagnostic method. False positives (FP) occur when non-target 

instances are incorrectly labeled as positive, leading to potential overdiagnosis. False negatives 

(FN) represent missed detections, where actual instances are not identified, which can result in 

undetected conditions. Together, these metrics are essential for evaluating the performance of 

diagnostic tests, impacting clinical decision-making and patient outcomes. 

4.4 Muti Class Classification 

The confusion matrix provides a detailed assessment of a seven-class classification system that 

employs the VGG16 architecture for feature extraction and XGBoost as the classifier, evaluated 

on Pap smear images, which are vital for the early detection and diagnosis of cervical cancer. 

The analysis reveals specific challenges in classification performance among the different 

classes. Class I emerged as the most problematic, with 12 instances of misclassification, 

indicating potential complexities in accurately identifying this category. Class II followed 

closely with one error, suggesting that while it is generally well classified, some ambiguity 

remains. Classes III and IV each recorded four misclassifications, reflecting difficulties in 

distinguishing these categories from others. Conversely, Class V demonstrated flawless 

classification with no errors, indicating a strong model performance for this category. Class VI 

faced two misclassifications, which may point to overlaps with other classes, warranting further 

investigation. In contrast, Class VII exhibited remarkable accuracy, suggesting that the model 

effectively identifies this class with minimal errors. This high level of precision may be 

attributed to distinct morphological features that allow for clear differentiation from other 

classes. Such effective classification reinforces the model's potential in clinical settings, 

enhancing the reliability of cervical cancer diagnoses and contributing to improved patient 

outcomes through timely intervention. 
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Figure 30: Multiclass classification of segmentation free Pap smear images. 

 

The confusion matrix presented in figure 31 is generated from the Deep-CervixNet model 

which highlights its efficacy in the realm of seven-class classification for cervical cancer 

diagnosis. With a meticulous examination of its performance, it becomes evident that this 

model surpasses its predecessors. Notably, classes I and II showcase flawless classification, 

indicating the model's robust ability to accurately identify these categories. Class III exhibits 

only two misclassifications, while class IV displays a marginal improvement with a total of 

three misclassifications. Class V, although presenting eight misclassifications, still 

demonstrates a notable advancement compared to previous models. Impressively, both class 

VI and class VII show minimal misclassifications, with zero and one respectively. These 

findings collectively underscore the superior performance of the Deep-CervixNet model 

compared to traditional approaches like VGG16 and XGBoost in the complex task of seven-

class classification for cervical cancer diagnosis. The Deep-CervixNet model demonstrates 

enhanced accuracy and robustness in distinguishing between various classes, addressing the 

challenges faced by conventional methods. Its advanced architecture and feature extraction 

capabilities enable it to capture subtle differences in Pap smear images, leading to improved 

diagnostic precision. This improvement is crucial for effective early detection and treatment 

planning, ultimately contributing to better patient outcomes in cervical cancer management. 
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Figure 31: Multiclass classification of Deep-CervixNet architecture. 

 

The performance evaluation of the seven classes, conducted using VGG16 as the feature 

extractor and XGBoost as the classifier, yields insightful metrics across various aspects of 

classification accuracy. For class I, an Accuracy of 0.65, Precision of 1, Recall of 0.65, 

Specificity of 1, and F1 score of 0.79 are observed. Class II exhibits impressive performance 

with an Accuracy of 0.96, Precision of 1, Recall of 0.96, Specificity of 1, and F1 score of 0.98. 

Similarly, class III displays notable scores, with an Accuracy of 0.80, Precision of 1, Recall of 

0.80, Specificity of 1, and F1 score of 0.89. Class IV showcases an Accuracy of 0.76, Precision 

of 0.52, Recall of 0.76, Specificity of 0.92, and F1 score of 0.62, indicating some challenges in 

precise classification within this category. Class V demonstrates perfect performance across all 

metrics, including Accuracy, Precision, Recall, Specificity, and F1 score, all at 1. Class VI 

achieves an Accuracy of 0.93, Precision of 1, Recall of 0.93, Specificity of 1, and F1 score of 

0.96, indicating robust classification capability. Lastly, class VII presents an Accuracy of 1, 

Precision of 0.42, Recall of 1, Specificity of 0.93, and F1 score of 0.59, suggesting room for 

improvement particularly in precision. These metrics collectively provide a comprehensive 

understanding of the model's performance across diverse classes in cervical cancer diagnosis, 

offering valuable insights into its efficacy and areas for refinement. The summary of these 

classes is presented in table 8. 
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Table 8: Performance analysis of seven classes of cervical cells classified using VGG16 and 

XGboost. 

Class Accuracy Precision  Recall  Specificity  F1 score  

Class I 0.65 1 0.65 1 0.79 

Class II 0.96 1 0.96 1 0.98 

Class III 0.80 1 0.80 1 0.89 

Class IV 0.76 0.52 0.76 0.92 0.62 

Class V 1 1 1 1 1 

Class VI 0.93 1 0.93 1 0.96 

Class VII  1 0.42 1 0.93 0.59 

 

The reported performance metrics in table 9, including Accuracy, Precision, Recall, Specificity, 

and F1 score, were achieved through Deep-CervixNet, applied to Pap smear images for cervical 

cancer diagnosis. Specifically, the evaluation yielded the following results across different 

classes: For class I, an Accuracy of 1, Precision of 1, Recall of 1, Specificity of 1, and F1 score 

of 1 were observed. Class II exhibited an impressive performance with an Accuracy of 1, 

Precision of 1, Recall of 1, Specificity of 1, and F1 score of 1. Similarly, class III displayed 

notable scores, with an Accuracy of 1, Precision of 0.87, Recall of 1, Specificity of 0.98, and 

F1 score of 0.93. Class IV showcased an Accuracy of 0.76, Precision of 0.87, Recall of 0.76, 

Specificity of 0.99, and F1 score of 0.81. Class V demonstrated Accuracy of 0.88, Precision of 

0.94, Recall of 0.88, Specificity of 0.98, and F1 score of 0.91. Class VI achieved an Accuracy 

of 0.97, Precision of 0.90, Recall of 0.97, Specificity of 0.98, and F1 score of 0.93. Finally, 

class VII achieves an accuracy of 0.88, precision of 1, recall of 0.88, specificity of 1, and F1 

score of 0.93. These comprehensive metrics revealed that Deep-CervixNet outperformed than 

VGG16-XGBoost model for cervical cancer diagnosis. The VGG16-XGBoost method is a 

segmentation-free classification approach for Pap smear images. In this method, the VGG16 

model, pre-trained on the ImageNet dataset, is used for feature extraction, followed by multi-

class classification using XGBoost. In contrast, Deep CervixNet employs semantic 

segmentation of the cytoplasm and nucleus. Features are then extracted from both the 

cytoplasm and nucleus to classify the images into seven classes. Thus, it is evident that the 

classification of Pap smear images is enhanced using segmentation compared to segmentation-

free classification.  
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Table 9: Performance analysis using Deep-CervixNet classification of Pap smear images. 

 

Comparing the performance of VGG16 and XGBoost against Deep-CervixNet in the context 

of cervical cancer diagnosis reveals nuanced differences in classification efficacy. VGG16, 

coupled with XGBoost, demonstrates commendable performance across various metrics, 

accurately classifying instances within different classes. However, when contrasted with Deep-

CervixNet, a more specialized architecture tailored specifically for cervical cancer diagnosis, 

distinct advantages emerge. Deep-CervixNet showcases superior precision, recall, and F1 

scores across multiple classes, indicating its robustness in identifying intricate features 

indicative of cervical cancer. While VGG16 and XGBoost offer a general-purpose framework, 

Deep-CervixNet's specialized design allows it to leverage domain-specific insights and 

nuances, leading to enhanced classification accuracy and diagnostic reliability. Moreover, 

Deep-CervixNet's tailored architecture potentially streamlines the feature extraction and 

classification processes, optimizing performance for the specific task at hand. Overall, while 

VGG16 and XGBoost provide a solid foundation for classification tasks, Deep-CervixNet's 

specialized design and superior performance metrics underscore its potential as a promising 

tool in cervical cancer diagnosis. Further exploration and validation are warranted to fully 

ascertain its clinical utility and integration into diagnostic workflows. The table 10 mentioned 

below is the comparison of Deep-CervixNet and VGG16-XGBoost for cervical cancer 

diagnosis. Acc, as used herein, stands for accuracy of the Deep-CervixNet Model and VGG16-

XGBoost for multiclass classification of cervical cells.  

 

 

 

Class Accuracy Precision  Recall  Specificity  F1 score  

Class I 1 1 1 1 1 

Class II 1 1 1 1 1 

Class III 1 0.87 1 0.98 0.93 

Class IV 0.76 0.87 0.76 0.99 0.81 

Class V 0.88 0.94 0.88 0.98 0.91 

Class VI  0.97 0.90 0.97 098 0.93 

Class VII  0.88 1 0.88 1 0.93 
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Table 10: Average performance comparison of Deep-CervixNet Model and VGG16-

XGBoost. 

 

Figure 32 depicts the training and validation accuracy, as well as the training and validation 

loss, of the proposed approach executed over 100 epochs. This visual representation offers 

valuable insights into the model's performance and learning dynamics throughout the training 

process. Moreover, the proposed model was initially validated using the holdout validation 

approach. However, due to certain limitations, an additional external validation was conducted 

using independent Pap smear images, which were not employed during model training or 

testing. This process provided a more rigorous assessment of the model’s generalization ability. 

By observing trends in accuracy, one can discern the model's capacity to correctly classify 

instances in both the training and validation datasets across successive epochs. Similarly, the 

fluctuations in loss provide a measure of the model's convergence and optimization progress, 

with lower values indicating improved fitting to the data. Analyzing these metrics collectively 

offers a comprehensive understanding of the proposed approach's training behavior, aiding in 

fine-tuning parameters and optimizing performance for the task at hand.    

Deep-CervixNet Model VGG16-XGBoost 

Class Acc Precision  Recall  Specificity  F1 

score  

Acc Precision  Recall  Specif

icity  

F1 

score  

Class 

I 

1 1 1 1 1 0.65 1 0.65 1 0.79 

Class 

II 

1 1 1 1 1 0.96 1 0.96 1 0.98 

Class 

III 

1 0.87 1 0.98 0.93 0.80 1 0.80 1 0.89 

Class 

IV 

0.7

6 

0.87 0.76 0.99 0.81 0.76 0.52 0.76 0.92 0.62 

Class 

V 

0.8

8 

0.94 0.88 0.98 0.91 1 1 1 1 1 

Class 

VI 

0.9

7 

0.90 0.97 098 0.93 0.93 1 0.93 1 0.96 

Class 

VII 

0.8

8 

1 0.88 1 0.93 1 0.42 1 0.93 0.59 
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Figure 32:Training and validation accuracy and loss graphs for Deep-CervixNet. 

 

4.5 Profiling of Folded Cytoplasm  

The proposed approach presents a promising methodology for profiling folded cytoplasm in a 

comprehensive three-fold process. This innovative method involves segmenting the folded 

area, semi-stitching with Fiji software, and effectively profiling the features within the 

cytoplasm, marking a significant stride in cellular analysis, and understanding. The initial step 

of this approach is based on precise segmentation of the folded cytoplasmic areas. This crucial 

stage demands meticulous delineation and isolation of these intricate folded regions within 

cellular images. Leveraging advanced image processing algorithms and techniques, the 

segmentation process identifies and separates the folded cytoplasm, forming the foundation for 

subsequent analysis. Following segmentation, the semi-stitching process, facilitated by Fiji 

software, is employed to assemble, and reconstruct the segmented folded areas. Fiji, known for 

its robust capabilities in image processing and analysis, facilitates the semi-stitching by 

integrating segmented regions, creating a cohesive visual representation of the previously 

isolated folded cytoplasmic areas. This semi-stitching stage aims to create a coherent and 

comprehensive visualization for further analysis. The final stage of this approach revolves 

around effectively profiling the features within the folded cytoplasmic regions. This pivotal 

step involves a detailed analysis of the reconstructed areas, extracting and characterizing key 

features present within these folded regions. By meticulously examining the structural 

attributes, morphological nuances, and textural intricacies, this profiling process provides 

comprehensive insights into the nature and composition of the folded cytoplasm. This three-

fold approach offers a novel and systematic methodology to delve into the complexities of 

folded cytoplasmic areas within cellular structures. Its segmentation, semi-stitching, and 

feature profiling collectively aim to unravel the intricacies and nuances inherent in these folded 

regions, enabling a deeper understanding of cellular structures and functions. Moreover, the 

application potential of this approach extends across various domains, including but not limited 
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to medical research, cellular biology, and pathological studies. By providing a structured 

framework to profile folded cytoplasm, this approach holds promise in elucidating the 

significance and implications of these structures in cellular dynamics, disease pathology, and 

functional analyses. In essence, the proposed approach presents a systematic and innovative 

methodology to profile folded cytoplasm, integrating segmentation, semi-stitching, and 

detailed feature profiling. Its application heralds a significant advancement in the understanding 

of cellular complexities, paving the way for enhanced insights into cellular structures and 

functions across diverse scientific domains. 

In the realm of biomedical imaging, a nuanced and intricate challenge lies in deciphering the 

intricate folds of cytoplasmic structures within microscopic images. This study endeavors to 

address this complexity through a meticulously designed four-stage unfolding process. At the 

forefront of this methodology is the implementation of a Residual Attention U-Net, a 

specialized neural network tailored for image segmentation. This initial stage involves training 

the network to discern and precisely delineate the folded regions within cytoplasmic structures. 

The efficacy of this segmentation process is paramount in isolating the areas of interest, as it 

lays the groundwork for subsequent analyses. Following the precise segmentation, the 

unfolding process advances with the integration of a Fiji stitching module, renowned for its 

sophisticated approach to image stitching and blending. This module operates on multiple steps, 

notably including the identification of keypoints, serving as crucial reference points for 

seamlessly merging the segmented portions. The culmination of this step is the creation of a 

cohesive and unfolded representation of the cytoplasmic structure. This unfolded image, now 

free from the complexities of folding, becomes the canvas for the extraction of meaningful 

features. Feature extraction, the cornerstone of subsequent analyses, is executed with precision 

on the unfolded image. Leveraging advanced segmentation techniques, this stage ensures that 

only the most relevant and biologically significant information is extracted. The objective is to 

highlight the intricate details and patterns from the unfolded cytoplasmic structures, providing 

a foundation for a deeper understanding of cellular dynamics and functions. This 

comprehensive unfolding strategy serves as a critical enabler for sophisticated image analysis. 

By optimizing the accuracy of feature extraction, it enhances the overall effectiveness of the 

methodology. The elimination of the intricacies associated with folded structures allows for a 

more focused exploration of the biological intricacies inherent in cytoplasmic components. The 

insights garnered through this process contribute not only to the advancement of biomedical 

imaging techniques but also hold the potential to shed light on fundamental cellular processes, 
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offering a richer and more nuanced perspective in the realm of life sciences. In summary, this 

research endeavors to unravel the complexities of cytoplasmic structures, presenting a 

methodological framework that transcends the confines of folded imagery to reveal the hidden 

intricacies within the microscopic landscape. The below mentioned figure 33(a) represents the 

folded cytoplasm, (b) segmented folded part, (c)ground truth of folded cells (d) stitched Pap 

smear cell, (e) unfolded cytoplasm. Figure 34 represents the folded cytoplasm of Intermediate 

Squamous Cells (ISC), (b) segmented folded part, (c)ground truth of folded cells (d) stitched 

Pap smear,  

e) Unfolded cytoplasm.  

 

Figure 33: Unfolding of Intermediate Squamous images, a) Input image b) Ground truth 

image c) Segmented ROI d) stitched ROI part with input image e) Unfolded cytoplasm.  

 

    Figure 34. Unfolding of Superficial Squamous cells folded cytoplasm a) Input image b) 

Ground truth image c) Segmented ROI d) stitched ROI part with input image e) Unfolded 

cytoplasm.   

Table 11: Range difference in folded and unfolded cytoplasmic features. 

Features Folded cell features  Unfolded cytoplasmic features Difference   

Cytoplasmic Area  105573 125231 19658 

Centre of Cytoplasm X-

axis 

459 500 41 

Centre of Cytoplasm Y-

axis 

517 517 0 

Compactness of 

Cytoplasm  

1.358512589 1.252156806 -0.1 
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Features Folded cell features  Unfolded cytoplasmic features Difference   

Eccentricity of 

Cytoplasm  

0.684710433 0.516674081 0.17 

Extent of Cytoplasm  0.703632365 0.735917024 0.03 

Form factor of 

Cytoplasm  

0.736099178 0.798622022 0.06 

Major Axis Length of 

Cytoplasm  

437.7833183 435.0121187 -2 

Maximum Radius of 

Cytoplasm  

147.8715659 173.4041522 28 

Mean Radius of 

Cytoplasm  

53.2711685 61.18841165 8 

Median Radius of 

Cytoplasm  

47.80167361 54.12947441 7 

Minor Axis Length of 

Cytoplasm  

319.063145 372.4496162 53 

Cytoplasmic 

Orientation  

9.358100784 

 

-2.936661335 

 

6.4 

Cytoplasmic Perimeter  1342.496608 1403.751442 61 

Solidity of Cytoplasm  0.963732131 0.968807779 0.005 

Location of Centre of 

Cytoplasm X-Axis  

296.8549629 313.0198833 17 

Location of Centre of 

Cytoplasm Y-Axis  

310.6512839 303.1752601 -7 

Maximum Farthest 

Diameter of Cytoplasm  

445.4267617 450.4686449 5 

Minimum Farthest 

Diameter of Cytoplasm  

323.8943178 362.6801896 39 

Nuclear cytoplasmic 

ratio 

245.354 287.193 42.559 

 

4.6 Comparison with State-of Art Approaches  

Table 12 presents a comparative analysis of the proposed methodology for diagnosing cervical 

cancer alongside other state-of-the-art approaches. This table allows for a thorough 

examination of the performance metrics, such as sensitivity, specificity, and accuracy, of each 

method. By scrutinizing these key indicators, researchers and practitioners can gain valuable 

insights into the strengths and weaknesses of various diagnostic techniques. This comparison 
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not only highlights the effectiveness of the proposed methodology but also provides valuable 

context within the broader landscape of cervical cancer diagnosis.   

Alyafeai et al. [75] presented a pipeline to integrate two pre-trained deep learning models for 

cervix detection and tumor classification. The first model achieves cervix region detection 

significantly faster than state-of-the-art models, with an IoU accuracy of 0.68. The second 

model utilizes self-extracted features for tumor classification, leveraging lightweight CNNs. 

This classifier surpasses existing models in both classification accuracy and speed. The model 

also achieves a Recall of 59.70±12.08, followed by specificity of 77.43±10.57.  

Haraz et al. [21] employed machine learning algorithms to classify cervical cancer cells from 

Pap smears into five distinct types using the SIPaKMeD database. The dataset comprises 4045 

isolated Pap smear cells categorized by experts into superficial-intermediate, Parabasal, 

Koilocytotic, Dyskeratotic, and Metaplastic cells. A pipeline was introduced to enhance 

algorithm accuracy and ease of implementation by employing a specified feature extractor and 

suitable preprocessing steps. The study concluded that machine learning can enhance Pap 

smear screening results, with SVM achieving the highest accuracy (0.968), followed by Neural 

Network at 0.958 and KNN at 0.941. The model also achieved an overall score of 0.968, with 

a Precision of 0.968, Recall of 0.968, and Specificity of 0.992 for cervical cancer diagnosis.  

Kalbhor et al. [16] introduced a novel hybrid approach that integrates deep learning 

architectures with machine learning classifiers and fuzzy min-max neural networks for feature 

extraction and Pap smear image classification, respectively. Pretrained deep learning models, 

including AlexNet, ResNet-18, ResNet-50, and GoogleNet, are utilized. Benchmark datasets 

from Herlev and SIPaKMeD are employed for experimentation. The highest classification 

accuracy of 95.33% is achieved with the fine-tuned ResNet-50 architecture, followed by 

AlexNet, on the SIPaKMeD dataset. Based on the findings, SVM achieved superior 

performance metrics compared to NN and KNN. SVM demonstrated an F1 score, recall, 

specificity, and AUC of 0.968, 0.968, 0.992, and 0.998, respectively, with a low log loss of 

0.103. In contrast, Neural Network yielded an AUC of 0.997, precision of 0.958, F1 score, 

recall, and log loss of 0.958, 0.958, and 0.141, respectively, with specificity at 0.989. 

Meanwhile, KNN exhibited an AUC of 0.993, F1 score, recall, and specificity of 0.941, 0.941, 

and 0.985, respectively, with a higher log loss of 0.340. 
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Table 12: Comparison of Deep-CervixNet with state-of-art approaches. 

Author  Dataset Technique  IoU  Acc Precision  Recall F1 

score  

Specifici

ty 

Acc 

Alyafeai 

et al. [75] 

Cervi 

gram 

images 

CNN 0.68 68.25

±9.74 

- 59.70±

12.08 

- 77.43±10

.57 

- 

Haraz et 

al. [21] 

SIPaKM

eD 

SVM - - 0.958 0.958 0.958 0.989 96.8

% 

Kalbhor 

et al.  

[16] 

Herlev 

and 

SIPaKM

eD  

AlexNet, 

ResNet-18, 

ResNet-50, 

and 

GoogleNet 

- - 0.958 0.968 0.968 0.992 95.33

% 

Proposed 

Method  

Primary 

dataset 

Deep 

Cervix Net 

97.36 99.8

% 

0.94 0.94 0.99 0.99 98% 

Herlev 

dataset 

0.95 0.91 0.95 0.95 0.95 0.95 95.5

% 

 

 From the experimental results it was observed the Deep Cervix Net achieved an accuracy of 

98%, demonstrated remarkable precision, correctly identifying 94% of positive cases, and 

achieving a high recall rate of 94%, ensuring minimal false negatives. Moreover, its exceptional 

specificity of 99% indicated its ability to accurately identify negative cases. The F1 score of 

94% further underscores the model's effectiveness in achieving a balance between precision 

and recall. The results clearly show that the Deep Cervix Net outperforms other methods in 

several key areas. It's not just more accurate; it's also better at precision, recall, and specificity. 

This means it's good at correctly identifying both positive and negative cases, minimizing 

errors. Overall, these findings suggest that the Deep Cervix Net represents a significant step 

forward in diagnosing cervical cancer. It offers promise for improving how to detect this 

disease, ultimately leading to better outcomes for patients. The Deep Cervix Net's advanced 

capabilities make it a viable option for underdeveloped countries with limited resources, 

potentially reducing the economic burden of late-stage cervical cancer detection and treatment. 

The proposed model, evaluated on the Herlev dataset, shows approximate values of IoU 0.95, 

Segmentation Accuracy 95%, Classification Accuracy 95.8%, Precision 95.5%, Recall 95.5%, 

F1 Score 95.5%, and Specificity 95.5%.  
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

This chapter focuses on the conclusion and future scope of “Development of Deep Learning 

Based Approach for Early Diagnosis of Cervical Cancer”. It serves as a comprehensive 

consolidation of the insights garnered throughout this research endeavor, outlining key 

takeaways and future directions in the realm of cervical cancer detection. 

5.1 Conclusion 

Cervical cancer remains a significant global health concern, necessitating precise and timely 

detection methods to mitigate its impact. The development of DeepCervix-Net represents a 

groundbreaking advancement in this area, introducing an AI-based system meticulously 

engineered to automate the intricate analysis of cervical cell images. This approach, employing 

a meticulously structured three-stage process - semantic segmentation, feature extraction, and 

classification stands as a beacon of promise in revolutionizing early detection strategies and 

subsequent medical interventions. At its core, DeepCervix-Net's strength lies in its meticulous 

approach. Through semantic segmentation, leveraging a modified U-Net architecture, 

DeepSeg-Net, it precisely isolates cell structures, providing a foundation for subsequent 

analysis. Subsequently, employing Cell Profiler, the system extracts intricate features that 

enrich the classification task, enabling the identification of potential cancerous and 

precancerous cells. The final stage, employing the innovative Artificial Neural Network 

Architecture model, ensures precise classification aligned with the latest Bethesda System of 

Classification, facilitating early detection and informed decision-making. The efficacy of 

DeepCervix-Net is evident in its exceptional overall accuracy rate of 98%, surpassing existing 

approaches. This approach not only enhances efficiency but also offers a transformative 

potential to reshape cervical cancer detection. By harnessing the capabilities of deep learning 

techniques and deploying a comprehensive multi-stage approach, DeepCervix-Net paves the 

way for a future where mortality rates can potentially decrease, offering improved health 

outcomes and a better quality of life for women worldwide. As research in this field evolves, 

the integration of AI-driven advancements, as demonstrated by DeepCervix-Net, promises a 

brighter future in the fight against cervical cancer. It brings renewed hope for improved 

diagnostic accuracy and better-informed medical interventions, ultimately aiming to reduce the 

burden of this disease on a global scale. DeepCervix-Net stands not just as a technological 

innovation but as a potential transformative approach in the ongoing battle against cervical 

cancer, promising a future where early detection becomes more precise, accessible, and 
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lifesaving for countless individuals worldwide. However, this work encounters several 

challenges and limitations: generating extensive ground truth images for each cytoplasm and 

nucleus is labour-intensive and requires expert knowledge, while high computational power is 

needed for model training. Additionally, the complexity of double segmentation processes to 

accurately handle folded parts of the cytoplasm adds to the computational demands. A 

significant challenge is the careful delineation of nuclear boundaries, which is crucial for 

effective segmentation but complicated by variability in nuclear shapes, overlapping structures, 

and image quality. Ensuring precise and consistent annotations is time-consuming and impacts 

the reliability of the training data, affecting the model’s performance. Furthermore, while the 

model's generalizability was evaluated through the benchmark Herlev dataset, achieving an 

efficiency of 95.8%.   

5.2 Future Scope 

• This study can be extended to other diseases as well. For such extension, relevant 

factors need to be identified after detailed study of concerned literature and 

consultation with medical experts. 

• The study reported in this thesis can be further improved by enriching the database 

used for training of proposed artificial neural network, to include a greater number of 

clinical cases so that the database becomes more diverse. 

• The work presented in this thesis is limited to cytological features of cervical cells, 

however if some genetic features are also incorporated in the study, the overall results 

can become more robust. 

• The Deep-CervixNet model proposed in this work can be embedded into a hardware 

device to makeup a portable cervical cancer screening tool. 

• This work can be tested on diverse datasets such as the Cervical Cancer Risk Prediction 

Database (CRIC), the International Symposium on Biomedical Imaging 2015 

Challenge (ISBI 2015), and the Breast Cancer Histology Challenge Dataset (BACH) 

to evaluate its robustness and improve its applicability, particularly in cervical cancer 

diagnosis.  

• Future work will focus on real-world implementation, including integration into 

healthcare systems, addressing computational challenges, overcoming real-time image 

capture difficulties, and ensuring scalability and cost-effectiveness for clinical use 

• The presented unfolded cytoplasm is limited to semi-stitching, in future it can be 

further improved to fully automatic stitching to profile the cytoplasmic features.  
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5.3 SUMMARY 

This section is not just a conclusion but a stepping stone for future research and exploration. It 

seeks to inspire ongoing efforts, driving innovation and advancements in the use of cutting-

edge technologies for the early diagnosis of cervical cancer. By addressing the challenges 

identified in current methodologies and exploring the untapped potential of new technologies, 

the goal is to significantly improve the efficacy and accessibility of diagnostic tools, ultimately 

leading to better healthcare outcomes in cervical cancer diagnosis. Efforts could focus on 

making these advanced diagnostic tools more accessible to low-resource settings, where 

cervical cancer incidence and mortality rates are often highest, by developing cost-effective 

and user-friendly diagnostic platforms. Interdisciplinary collaboration among cytologists, 

oncologists, data scientists, and engineers will be crucial in driving innovations, addressing 

ethical, regulatory, and implementation challenges. This collaborative approach will accelerate 

the development of sophisticated diagnostic systems, paving the way for a future where cervical 

cancer diagnosis is more accurate, efficient, and accessible, ultimately aiming to reduce the 

global burden of cervical cancer through early detection and treatment. 
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