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ABSTRACT 

Microplastics are very small size plastic particle (<5mm) and are widely scattered in 

ecosystem. These small particles originate from the primary and secondary sources which 

produce deleterious effects to ecosystem. Microplastics have potential to easily diffuse, 

assemble and migrate in ecosystem due to their different properties such as hydrophobic 

nature, constant chemical properties, presence of persistent organic pollutants, highly 

ductile, and ability to transport several other harmful pollutants. Microplastic consists of 

different types of harmful additives like plasticizers, highly effective lubricant and 

different types of flame retardants. Different types of microplastics have widely polluted 

the soil and terrestrial ecosystem.  

Microplastic enters into the soil through activities of human beings, use of plastic mulch, 

compost, sewage irrigation, domestic waste and atmospheric deposition. Microplastic 

affects the physical (soil porosity, change in bulk density and aggregates) and chemical 

properties (pH, temperature and organic matter) of the soil. Microplastics also have the 

potential to produce toxic effects on the soil macro and micro fauna such as earthworms, 

arthropods, collembolans and mussels. Soil organisms easily ingest the tiny fragments or 

particles of plastics which changes the microbial and enzymatic activities.   

Earthworms act as ecological engineers; have a significant impact on the agriculture field 

or soil. Agricultural intensification through the extensive use of plastic mulch, sewage 

sludge and composting has resulted in sharp decline in the soil biodiversity as well as soil 

fertility. To overcome this serious issue, it is important to identify different types of 

microplastics in agriculture soil. The quantities of different types of microplastics in soil 

were investigated that produce several toxic effects on earthworm. Soil samples were 

collected from three plastic product manufacturing industries located at Kapurthala, 

Jalandhar and Amritsar. All the soil samples were analyzed for different physico-

chemical parameters. The present study reported different types, shape and size of 

particles and were identified by using ATR-FTIR spectrophotometer. Microplastics in the 

agriculture soil such as polyethylene, polypropylene, polystyrene, polybutylene 

terephthalate, polyethylene terephthalate were separated by using density separation 
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method. These polypropylene particles were more dominant and polybutylene 

terephthalate were less dominant in all soil samples. Different types of extracted 

microplastics were counted under stereomicroscope and then stained with Nile red dye 

for visualization under fluorescence microscope. Further, the crystalline natures of 

different types of microplastics were checked through X-Ray Diffraction analysis. SEM 

analysis showed the surface morphology of different types of extracted microplastics.    

Two species of earthworm, exotic (Eisenia fetida) and indigenous (Lampito mauritii) 

were selected to check the toxic effects of polypropylene in terms of growth, fecundity 

rate and antioxidant activity. Polypropylene microplastics were selected on the basis of 

their abundance as compared to other microplastics in the present study. The results of 

this study suggested that polypropylene microplastics decreased the activity of earthworm 

with increase in exposure time and concentrations. The growth rate of earthworms were 

declined at high concentration, similarly the fecundity rate of earthworms were also 

declined with increase in concentration. Antioxidant study revealed the oxidative stress 

produced by the different enzymes such as Superoxide dismutase (SOD), Catalase 

(CAT), Glutathione-S-Transferase (GST) and Guaicol Peroxidase (POD) after exposure 

of polypropylene. The antioxidant activities of E. fetida enzymes i.e. SOD, CAT and 

GST were initially increased but the activity decreased with increase in time period as 

well as treatment exposure. POD activity of E. fetida showed an increasing trend from 

intial to final period of polypropylene exposure. Similarly in Lampito mauritii the 

enzymatic activity of SOD, CAT and GST initially increased with increase in exposure 

time and then slightly reduced with increase in exposure period and polypropylene 

exposure. POD activity exhibits similar pattern in E. fetida and increased with increase in 

polypropylene exposure.  

Molecular docking studies revealed the binding of polypropylene with earthworms 

enzyme (SOD, CAT, GST and POD) at catalytic and non-catalytic sites. The binding 

affinity of polypropylene with enzymes was measured by calculating the docking score. 

SOD has potential to bind with polypropylene at three sites, CAT has four active binding 

sites with polypropylene, GST has five binding sites and POD has three binding sites 

with polypropylene.  
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The earthworm gut microorganisms play an important role in the degradation of organic 

pollutants such as microplastic polymers. The biodegradation of polymers can be 

observed by changes in the chemical properties, surface morphology and loss in weight 

of polymers. The present study was planned to assess the ability of different gut 

microorganisms of earthworms (Eisenia fetida and Lampito mauritii) towards 

degradation of polypropylene because plastic polymers have deleterious or negative 

effects on environment. It must be eliminated by employing eco-friendly method.The 

earthworm gut microorganisms study reveals that the polypropylene causes moderate 

effect on both species of earthworms. Different types of gut microorganisms were 

identified by 16s rDNA metagenomic sequencing.  At phylum level the percentage of 

bacteria were Tenericutes (0.01-0.06%), Bacteroidetes (0.01-0.10%) Chloroflexi (0.01-

0.12%), Cyanobacteria (0.02-0.22%), Acidobacteria (0.6-0.9%) Saccharibacteria–TM7 

(0.9-2.1%) Verrucombria (3-3.9%), Gemmatimonadetes (3.3-4.7%), Actinobacteria (5.6- 

7.1%), Planctomycetes (7.1-9%), TM6 (7.4-11%), Firmicutes (12-14.2%), Chlamydiae 

(15.4-15.6%) and Proteobacteria (32.6-35.4%). The changes in phylogenetic shift were 

measured by studying the alpha and beta diversity. 

Earthworms gut microorganisms have potential to degrade the polypropylene 

microplastics. Microplastics degradation rate was determined on the basis of ingestion 

and egestion of microplastics in the form of cast. The present study observed the changes 

occur in the peak or functional group of polypropylene. ATR-FTIR analysis predicts the 

changes in the peak and formation of new groups. In case of E. fetida new peaks were 

observed at wave number 2868.15cm-1 due to presence of C-H group similarly in case of 

L. mauritii new peak were formed at 1460.11 and one peak were disappeared from wave 

number 898.33cm-1. SEM analysis shows the changes in surface morphology of 

earthworms cast it means polypropylene particles causes changes in the surface 

morphology of cast. Polypropylene microplastics were recovered from each treatment 

group and degradation percentage was also measured.The efficiency of earthworms gut 

microorganisms of E. fetida towards degradation of polypropylene was 7.2%, 2.03%, 

1.57%, 1.2% and L. mauritii 7.19%, 2.23% 2.41% and 1.26%. 
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1.  INTRODUCTION  

The earth surface is continuously contaminated by different types of organic 

pollutants. Organic pollutants are also known as persistent organic pollutants (POPs) 

due to its long time existence in environment (Geetha and Nagarajan, 2021). These 

pollutants cause various diseases in human being as well in other organisms. Different 

types of organic pollutants are present in environment in the form of plastics, 

pesticides, organic solvents, detergent and petroleum hydrocarbons (Alharbi et al., 

2018; Tran et al., 2020). These organic pollutants enter into the soil through various 

direct and indirect pathways such as personal care products, pharmaceuticals 

products, compost and sewage sludge, agriculture products and industrial wastes 

(Ohkubo et al., 2012; Song and Guo, 2014; Shen et al., 2022; Zhang et al., 2019a; 

Rochman, 2018). Out of the above said organic pollutants, the microplastics in these 

days consider as most harmful and toxic to organisms. They are tiny plastic particles 

of less than 5mm in diameter and contaminate all the ecosystem includes terrestrial, 

aquatic, marine and freshwater ecosystem. Due to its tiny size, longer durability and 

capacity to carry harmful pollutants, which may produce adverse toxic accoutrements 

to the organisms (Barboza et al., 2020; Chen et al., 2020a; Lei et al., 2018a; Song et 

al., 2019). 

Plastic production reached 368 million tonnes all over the world (Europe, 2018) and 

in India the production reached 20 million metric tonnes (Bardhan et al., 2024).The 

different types of plastic polymers enter into the agriculture soil through modern 

agricultural practices and large amount of plastics utilized in the form of compost, 

fertilizer mulch and sludge. Out of these, plastic mulch is a major source to contribute 

the microplastic pollution in agriculture field. Plastic mulch maintains the temperature 

of agriculture or farmland soil due to this reason the farmers in high cold area widely 

utilize plastic mulch films to keep the appropriate temperature for the crops (Zhang et 

al., 2020a; Liu et al., 2021). Previously reported abundance of microplastics in 

agricultural soil in different cities of China includes Shanghai (vegetable field) 78 

itemskg-1, Xinjiang (agriculture field) 40.35 mgkg-1 and Wuhan (agriculture field) 

12560 itemskg-1 (Liu et al., 2018; Li et al., 2020a; Chen et al., 2020b). Apart from 

mulching, compost is another source of microplastics in agriculture soils. Large 
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amount of microplastics (approximately 1.20 gkg-1 soil) were detected in agriculture 

soil where compost is utilised to improve the crops (Braun et al., 2021). 

Nowadays MPs pollution became a major problem to ecosystem (terrestrial and 

aquatic) that causes various harmful effects. To overcome this issue different 

techniques and methods have been developed to extract the MPs from ecosystem like 

density separation, electrostatic extraction, magnetic, oil and solvent extraction 

method (Prata et al., 2019; He et al., 2021). Density separation method is mostly 

employed to extract MPs from soil by using different solutions like sodium chloride 

(NaCl), calcium chloride (CaCl2), zinc chloride (ZnCl2), sodium bromide (NaBr) and 

sodium iodide (NaI).The extraction efficiency of NaCl is 1.2gcm-3, ZnCl2 is 1.0gcm-3, 

CaCl2 is 1.5gcm-3 and NaI is 1.8gcm-3(Yadav et al., 2022; Li et al., 2018a). NaCl is 

most commonly used solution to extract MPs. The main advantage of this solution is 

cheap and safe use as compared to other solutions (Hurley et al., 2018). Plastic 

polymers (fibres, films and fragements) have been identified by using attenuated total 

reflectance through Fourier infrared spectroscopy (ATR-FTIR), Raman spectroscopy, 

Photoluminescence spectroscopy, Pyrolysis coupled with Gas chromatography-mass 

spectrometry and electron microscopy (Piehl et al., 2018; Hayany et al., 2020). 

MPs have potential to pose effects on the soil properties, plants, soil organisms 

(earthworms, nematodes, collembolans and arthropods) and soil microorganisms. 

High concentration of microplastics changes the physical and chemical properties of 

soil. Physical properties include soil porosity, texture, soil structure and conductivity 

(Huffer et al., 2019). Soil is a permeable substance consists of macro and microscopic 

pores in the structure. MPs in soils usually produce changes in soil porosity and these 

based upon the concentration of microplastics and size present in soil (Wan et al., 

2019; Zhang et al., 2019b). MPs also decrease the soil conductivity and cause cracks 

on soil surface and finally decrease the porosity of soil (Liang et al., 2021; Xing et al., 

2021). The decline in pH of MPs contaminated soil leads to discharge of lactic acid 

from the aliphatic polyester which causes cracks in soil surface through a process 

known as mineralization (Ainali et al., 2022; Schopfer et al., 2022). Microplastic 

induces the effects on the bulk density of soil because it plays an important role to 

maintain the water level, solute movement, soil structure and aeration of soil (Shah et 

al., 2017). Microplastics in soil decreases the organic matter of soil by reducing the 

soil aggregate balance or depleting the nutrients content and cause major effects to 
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soil micro and macro fauna (Obalum et al., 2017).Chemical properties of soil are 

strongly affected by MPs for example pH, soil electrical conductivity and soil salinity 

(Lozano at al., 2021). 

MPs produce deleterious effects to soil organisms through ingestion or feeding. Its 

small size appearance in soil helps to transfer the particles to the tissues of organisms. 

Various studies reported the adverse effects of MPs on aquatic organisms include 

mortality, reduce reproduction and alter the biological function of organisms (Zitouni 

et al., 2020, 2021). Moreover, fewer studies reported the effects of microplastics on 

terrestrial organisms. Earthworm is a widespread model organism of terrestrial 

ecosystem to study the effects of MPs on soil biota MP particles and debris enters to 

the earthworm’s intestine through the food chain (Zhu et al., 2018a; Rodriguez et al., 

2017). They act as a MPs transporter in soil and help to assimilate MPs in soil through 

casts, egestion and burrows (Rillig et al., 2017). Earthworms play an important role in 

reconstruction of soil structure; maintain nutrient cycle and degradation of organic 

matter (Zhou et al., 2020). MPs reduce the growth, survival, reproduction rate and 

also produce oxidative stress in earthworm. MPs are easily ingested by earthworm 

and gets accumulate in the intestine of earthworm and results in intestinal damage 

which affects the feeding behaviour.The presence of microbial community in 

earthworm gut is directly linked to earthworm health, immunity and uptake of proper 

nutrition.  

Earthworm gut micro biota performs a major role towards pathogenic defence 

mechanisms and cellulose metabolism. In earthworm, MPs cause imbalance and 

trigger the alpha and beta diversity of microorganisms through alterations and 

inflammation of mucus layer (Cheng et al., 2021). Earthworms gut rich with different 

types of aerobic, anaerobic and facultative anaerobic microorganisms (Sun et al., 

2020) and these microorganisms are analyzed by employing latest technique 16s 

rDNA metagenomic sequence. MPs not only generate oxidative stress but also cause 

the effect on the gene expression. Oxidative stress leads to increase or decrease the 

antioxidant biomarkers such as Superoxide dismutase (SOD), Catalase (CAT), 

Glutathione -S-Transferase (GST) and Guaicol peroxidase (POD) (Cui et al., 2022a). 

These enzymes acts as free radical scavenger and plays important role in enzymatic 

defense mechanism.  
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In addition MPs affect the plants and disregulate the electron transport chain and 

photosynthetic cycle of plants, this result in decrease the enzymatic activity of plants 

(Li et al., 2020b). Effects of MPs on varieties of plants (Lepidium sativum, 

Arabidopsis thaliana, Triticum aestivum) depend upon the type, shape and size. MPs 

decrease the germination rate as well as reduce the roots, shoot traits and leaves etc 

(Qi et al., 2018; de Souza et al., 2019). Human beings are also affected by these 

organic pollutants through inhalation or by ingestion of microplastic contaminated 

food. MPs are also ingested through root vegetables e.g. Raphanus sativus (radish), 

Allium cepa (onion) (Yadav et al., 2022). MPs in human beings produce a 

consequence of disease on body system such as digestive, respiratory, oxidative 

stress, immune disorders, neurotoxicity, and also change cell viability (Prata et al., 

2020). 

Microorganisms play an important role in degradation of different types of 

conventional or non-conventional microplastics and utilize as sole energy source. The 

degradation rate of MPs totally depends upon the change in chemical properties of 

polymers i.e functional group and bond strength (Wani et al., 2023).These enzymes 

breakdown the larger plastic polymers into monomers and oligomers (Lin et al., 

2022). Earthworm gut act as crucial component in decomposition and mineralization 

of microplastics. The earthworm gut epithelium secretes various types of enzymes 

including chitinase, lipases, eaterases, proteases, cellulase and phosphatase.Gut of 

earthworms indirectly promotes the production of microbial exoenzymes that degrade 

the microplastic polymers (Sanchez – Hernandez et al., 2020). Most commonly 

reported microorganisms in degradation of MPs belong to phylum Proteobacteria, 

Actinobacteria and Firmicutes (Tareen et al., 2022). 

In light of the above mentioned facts, the present study was planned to measure the 

tolerance potential of earthworm species (E. fetida and L. mauritii) towards 

polypropylene in terms of growth and fecundity.To overcome the microplastics 

pollution from the soil, the role of microplastic degrading bacteria from earthworm 

gut through metagenomic analysis were also studied.   
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2. REVIEW OF LITERATURE 

2.1 Microplastics  

Plastic whose size is less than 5mm in diameter is referred as microplastics (Hidalgo 

et al., 2012; Mourgkogiannis et al., 2018). Microplastics (MPs) pollution is globally 

distributed and has become an emerging threat to ecosystems. Microplastic particles 

are widely conveyed and dispersed in soil, water and sediments due to the excessive 

utilization in daily life, including household goods, cosmetic products such as face 

scrubs; face wash etc (Hamidian et al., 2021). Plastic/MPs are organic polymers made 

from non-renewable sources such as crude oil, natural gas and coal. According to 

Rahman and Bhoi, (2021) approximately 8660 millions metric ton of microplastics 

was produced worldwide and 132 millions metric ton of microplastic was produced in 

Asia in 2018. Microplastic has been categorized into two main types; primary and 

secondary microplastics. Primary MPs are formed from cosmetics, toothpaste, 

medical products and clothing fibres (Zhang et al., 2021). Secondary MPs are formed 

from the breakdown of larger plastic products (Andrady, 2011; Gewert et al., 2015; 

Salvador et al., 2017; Siegfried et al., 2017; Dalvand and Hamidian, 2022). They are 

further categorized in two types on the basis of degradation; biodegradable and non-

biodegradable (Table 2.1). Biodegradable MPs are eco-friendly and completely 

degraded by microbes (for example, bacteria, fungi and algae) into carbon dioxide and 

water (Iwata, 2015; Wei et al., 2021). Non-biodegradable MPs cannot be degraded 

easily by microbes. 

A huge amount of MPs enters in ecosystem through different pathways due to poor 

management, dumping practices and cause serious pollution obstacles (Zhang et al., 

2021). Now there is a dire need to control MPs pollution through different 

degradation processes such biological, thermal and photo catalytic degradation 

process (Du et al., 2021). Biological degradation complete by using different types of 

microorganisms. Microorganisms have potential to degrade different types of organic 

pollutants without causing harm to environment (Yuan et al., 2020). The degradation 

efficiency of microorganisms depends on the conditions such as temperature, pH and 

moisture. Temperature and pH controls the degradation rate of MPs by regulating 

metabolism of microorganisms (Lin et al., 2022). 

MPs enter into the soil through different sources such as sewage sludge, plastic film 

mulching, irrigation, car tire debris, atmospheric deposition etc. (Li et al., 2020c).  
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Table 2.1 Different types of biodegradable and non-biodegradable microplastics 

Biodegradable/ Non-Biodegradable Types of  microplastics Applications References 

Biodegradable microplastics Polylactic acid (PLA) Use in bottles, plastic film, 

medical instruments. 

Iwata, 2015; Lambert and 

Wagner, 2017 

Polyhydroxyalkanoates 

(PHA) 

Use in disposal cups, tissues, 

dipers, bags and fertilizer. 

Gonzalez-Pleiter et al., 2019 

Polycaprolactone (PCL) Use in medical devices and food 

packaging. 

Krueger et al., 2015 

Non- biodegradable microplastics Polyethylene Use in plastic bottles and can. Majewsky et al., 2016 

Polypropylene Used in stoppers and clothes Zhang et al., 2020b 

Polystyrene Used in food cans Zhang et al., 2020b 

Polyethylene terephthalate Used in water bottles Wagner et al., 2018 

Polyurethane Used in tyres, gaskets, furniture 

cushioning, life jackets and 

bumpers in refrigerator insulation. 

Shah et al., 2008 
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MPs easily accumulates into the soil due to its small size and cause change in physical 

and chemical properties of soil like porosity, bulk density and cracks on the soil 

surface (De Souza et al., 2019; Wan et al., 2019). MPs cause adverse effect on the soil 

fauna due to the presence of plastic additives or chemicals (Lei et al., 2018b). Soil 

fauna includes nematodes, amphipods, isopods, collembolans, snails and other 

invertebrates which are reported to ingest microplastic. The effects depend upon the 

concentration (reported upto 250g kg-1soil), shape (film, fibers, fragments) and size of 

MPs (<5mm) (Selonen et al., 2020; Ji et al., 2021). Microplastic remains in the 

intestine of soil fauna for a longer period, altering gut microbial community and 

intestinal damages that disturb the feeding behaviour, growth, reproduction and 

survival rate (Xi et al., 2022; Ding et al., 2022).  

2.1.1 Use of plastic mulching in agriculture fields 

Farmers use plastic mulch in the agriculture field to improve the quality of crops and 

yields. Plastic mulch maintains the hydrothermal properties of the soil by a rise in soil 

temperature and decreasing the soil water evaporation, humidity (Tarara, 2000; Fan et 

al., 2017; Wu et al., 2017). Mulch provides proper nutrients to the soil to increase the 

crop yield and reduce nitrogen leaching. Mulch provides support to soil and prevent 

water erosion (Li et al., 2018b). Plastic mulch is made up by using different types of 

lightweight plastics, such as low-density polyethylene (Hayes et al., 2012). According 

to the previous data large amount of plastic mulch is used in Europe and 

approximately 4270 km area has been covered with plastic mulch (Mugnozza et al., 

2012). In China, Japan and South Korea 80% of the agricultural area is covered with 

plastic mulch (Espi et al., 2006), but in US the PVC containing mulch is totally 

banned due to its carcinogenic and toxic properties. The use of plastic mulch in 

different countries is presented in Table 2.2. 

2.1.2 Sources of microplastics from wastewater irrigation  

Wastewater is used for irrigation purpose in agricultural field and act as a source of 

microplastic in soil (Table 2.3). Wastewater contains a large number of microplastics 

from personal care products and plastic fibre from the washing of clothes (Hartline et 

al., 2016). Plastic enters directly into the agricultural field by using the wastewater 

and cause changes in soil properties.Wastewater contains several harmful substances 

such as pharmaceuticals and acts as a source of microplastic in agricultural soil. 
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Table 2.2 Plastic mulch used by various countries or cities in the agricultural 

field. 

Country/Cities Year 
Use of plastic mulch 

in Hectares or tons 
References 

Western Europe 1997 500,000 tons Hussain and Hamid, 

2003 

China 1999 

2014 

10 million hectare 

19.8 million hectare 

Miles et al., 2012 

Liu et al., 2014 

USA 1994 

1998 

2001 

2004 

519 million lb 

85 0 million lb 

1,000 million lb 

1,30,000 tons 

Hussain and Hamid, 

2003; Lawrence, 2007 

Warnick et al., 2006 

US 2006 160,000 hactare Brodhagen et al., 2015 

China 

Shandong 

Xinjiang 

Sichuan 

2008 

 

 

148,100 tons 

121,200 tons 

71,000 tons 

Changrong et al., 2014 

Europe 2011 1.3 million hectare Brodhagen et al., 2015 

 

In Sweden, 15000 items m-3 plastic in 2014 were reported in the wastewater, Russia 

627000 items mˉ3 plastic were reported in 2014. In the US, 1000 items of plastic were 

reported in 2016 (Carr et al., 2016; Helcom, 2014; Magnusson and Noren, 2014). 

Other sources of microplastics in agricultural soil are tyres abrasion and illegal 

dumping of waste (Fig 2.1). Microplastic directly enters into the soil through wind 

and is immobilised on the soil surface to cause bioturbation. Due to these, changes 

occur in the soil properties such as soil structure, vegetation, soil fertility (Sommer et 

al., 2018: Gonzalez-Pleiter et al., 2019). 
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Fig 2.1 Different sources of microplastic and its entry into the agriculture soil through a different ways. 
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Table 2.3 Occurrence of different types of microplastics in agricultural, 

industrial soil, wastewater treatment plant and sewage sludge. 

Countries 
Soil 

Sampling 

Types of 

microplastic 

Microplastic 

Abundance 
References 

US Agricultural 

soil 

Synthetic fibre 1500 – 4000 

itemskg-1  

Zubris and Richards, 

2005 

Sweden Wastewater 

treatment 

plant 

Plastic fibres 14740-18,660 

itemskg-1 

Magnusson and 

Noren, 2014 

Sydney Industrial 

soil 

Polyethylene, 

Polyvinyl chloride, 

Polystyrene 

300- 67,500 

mgkgˉ1 

Fuller and Gautam, 

2016 

Germany Sewage 

sludge 

Polypropylene, 

Polyethylene, 

Polyvinyl chloride, 

Polystyrene 

1000- 2400 

itemskg-1 

Mintenig et al., 2017 

Ireland Sewage 

sludge 

Polypropylene, 

Polyethylene, 

High-Density 

Polyethylene 

4200- 15800 

itemskg-1 

Mahon et al., 2017 

Sweden Agricultural 

soil 

Polyethylene 16,700 itemskg-1 Blasing and Amelung, 

2018 

Canada Wastewater 

treatment 

plant 

Plastic fibre 4400-14900 

itemskg-1 

Gies et al., 2018 

Finland  Wastewater 

and sewage 

sludge 

Polypropylene, 

Polyester, 

Polyamide, 

Polyethylene 

2300- 170,000 

itemskg-1 

Lares et al., 2018 

China Wastewater 

treatment 

plant 

 1565 – 56,386 

itemskg-1 

Li et al., 2018c 

China Agricultural 

soil 

PE, Polyproylene, 

Polystyrene 

0.54 mgkg-1 Zhang et al., 2018 

China  Agricultural 

soil  

PE , PP 78.00 ± 12.91 Liu et al., 2018 

Germany  Agricultural 

soil 

PE, PP 0.34±0.36 Piehl et al., 2018 

Australia  Agricultural 

soil  

??? 1241 – 7170 

tonnes/ year 

Mohajerani and 

Karabatak, 2020 

China  Agricultural 

soil  

Plastic fibres, 

fragments, films  

13660- 78930 

tonnes/ year 

Mohajerani and 

Karabatak, 2020 

European 

Union  

Agricultural 

soil  

PE, Low density 

Polyethylene 

Polystyrene 

26156- 15137 

tonness/ year 

Mohajerani and 

Karabatak, 2020 

United State  Agricultural 

soil  

PS, PET, PVC   21249- 122780 

tonnes/ year 

Mohajerani and 

Karabatak, 2020 

Canada  Agricultural 

soil 

Plastics granules, 

sheet, films, pellets  

1581-8770 tonnes/ 

year 

Mohajerani and 

Karabatak,2020 
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2.2 Extraction of microplastics from soil  

Various types of methods, their advantage and disadvantage to extract microplastics 

from the soil are given in Table 2.4 and Table 2.5 respectively. 

2.2.1 Density Separation 

This extraction method is commonly used to extract microplastics from the soil 

samples on the basis of density (Table 2.4, Fig 2.2). 

 

Fig 2.2 Schematic diagram of density separation method for extraction of 

microplastic from soil. 

Principle  

This method is based on the density difference of different types of microplastic 

particles and the soil. Microplastic particles impose the potency in the solution with a 

higher density of soil particles, and soil particles settle at the surface (Enders et al., 

2020; Liu et al., 2020). Microplastic is extracted on the basis of their density because 

microplastic particles have a low density as compare to the soil, but microplastic 

particles also have differences in size. Some particles are lower in density, and some 

are higher (Prata et al., 2019). This method is useful for the extraction of microplastics 

from different soil samples. Various types of high-density solutes are used for the 

extraction of microplastics, such as ZnCl2, CaCl2, NaCl, and NaI. In this method, 

collected soilsamples were mixed with the selected salt after a limited time period, 

visualised the mixing sample and collected the floating microplastic particles.  
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Table 2.4 Different types of density solutions used for extraction of 

microplastics from soil. 

Solution  Types of 

microplastics  

Advantages Disadvantages References 

NaCl PE, PP, PS Cheap and non-toxic 

solution. 

Due to its low cost and 

low toxicity, most 

researchers used this 

solution for the 

extraction. 

This solution is 

not used for the 

extraction of 

high-density 

microplastic such 

as PET or PVC. 

Nuelle et 

al., 2014 ; 

Liu et al., 

2018 ; 

Scheurer 

and 

Bigalke, 

2018; Zhou 

et al., 2018 

CaCl2 PE, PP, PS, 

PET, PVC 

Used to extract all 

types of microplastics. 

Ca2+ ions easily 

react with organic 

residue and cause 

coagulation in 

organic residues. 

Scheurer 

and 

Bigalke, 

2018 

ZnCl2 PS ------- Cost is very high 

and corrosive. 

Flury et al., 

2019 

Sodium 

Iodide 

PE, PP, 

PS,PVC 

-------- Cost is very high. Huang et 

al., 2020 
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Table 2.5 Advantages and disadvantages of different types of extraction methods. 

Method Advantages Disadvantages References 

Oil 

Extraction 

Rapid 

Cheap 

Simple 

Non-toxic 

Low accuracy efficiency 

rate. 

Organic residues attach to 

some microplastics and 

damage MP in oil-water 

intermediate. 

Mani et al., 

2019; 

Scopetani et 

al., 2020 

Electrostatic 

Separation 

It is a highly convenient 

and accurate method for 

the extraction of 

microplastics. 

It takes less time for the 

extraction of 

microplastics. 

Low influence of matrix 

related variables. 

Handling should be done 

by a trained person. 

He et al., 2021 

Magnetic 

extraction 

Small size MPs can be 

easily extracted by using 

this method. 

Time-consuming method. Grbic et al., 

2019 

Density 

Separation 

A rapid method for the 

extraction of 

microplastics. 

Micro-sized particles are 

easily extracted. 

Cost-effective and 

accurate method. 

Various chemicals are 

used for the extraction of 

microplastics. 

 

He et al., 

2021; 

Li et al., 2020c 

Solvent 

extraction 

A rapid method for the 

extraction of 

microplastics. 

Low cost. 

High-efficiency rate. 

A large amount of solvent 

required for the 

extraction. 

Wen et al., 

2021 
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2.2.2. Electrostatic Separation 

This method is used for the extraction of microplastics from different soil samples, 

such as industrial and agricultural soil (Rajaonarivony et al., 2017).  

Principle 

Its principle is based on the conduction properties of soil particles because soil 

particles are charged due to their conduction characteristics, and microplastics are 

non-conductive. Soil sample added to the funnel of electrostatic separator instrument 

and it passes to the corona electrode system with the help of vibrating conveyor. 

Instrument fitted with high voltage current. At high voltage current soil particles 

easily charged between the grounded drum and above-fitted electrode of the 

instrument. Soil particles rapidly discharge due to their conductive property and start 

jumping from the grounded drum. Microplastic particles discharge slowly and attach 

to the rotating drum of the instrument. Attach particles of microplastics erase with the 

help of a scraping plate (Enders et al., 2020).  

2.2.3 Oil Extraction 

Generally, two types of oil are used for the extraction of microplastics from the soil, 

such as olive oil and castor oil (Fig 2.3).  

 

Fig 2.3 Schematic diagram of extraction of microplastic from the soil by using oil. 

Principle 

Its principle is based on the oleophilic interaction of plastic polymers, which means 

oil consists of long-chain fatty acids. These long-chain fatty acids rapidly interact 

with the backbone of plastic polymer.  



Review of Literature 

 
 

15 

2.3.4 Magnetic Extraction  

The principle of this method is based on the Fe coated nanoparticles easily 

magnetized with the hydrophobic surface of microplastics (Fig. 2.4). Microplastics 

from the soil sample are extracted by applying magnetic force on the magnetic field 

because of the magnetic properties of Fe nanoparticles bound to microplastic and 

allow microplastics to separate out (He et al., 2021). 

2.3.5 Solvent Extraction  

Fuller and Gautam, (2016) automatically extract microplastics by using different 

types of solvents. This method is used to extract the organic pollutants present in the 

soil (Fig 2.5). Two types of organic solvents are mostly used for the extraction of 

microplastics, such as dichloromethane and methanol.  

 

Fig. 2.4  Schematic diagram of extraction of microplastics from soil via magnetic 

separation. 

 

Fig 2.5 Systematic diagram of extraction of microplastics via organic solvent. 
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2.2.6 Pressurized Fluid Extraction  

Principle 

This is based on recovering semi-volatile organic pollutants using solvent at critical 

conditions such as temperature and pressure. By maintaining the temperature and 

pressure parameters, the microplastics were extracted from the soil. Extraction is 

based on either stir together or dissolving the sample (Fuller and Gautam, 2016).  

2.3 Detection techniques of Microplastics  

2.3.1 Vibrational Spectroscopy 

It is the most commonly used spectroscopic technique for the detection of 

microplastic particles. The main principle is based on vibrational microscopy 

combines with optical microscopy resulting in the determination of the composition 

of the microplastic particles and the visual identification of the particles (Nguyen et 

al., 2019).  

2.3.2 FTIR Spectroscopy 

Fourier transform infrared spectroscopy is a technique used to obtain an infrared 

spectrum of absorption emission of a solid, liquid and gas. An FTIR 

spectrophotometer simultaneously collects high- spectral- resolution data over a wide 

spectral range (Griffiths and De, 2007). 

 FTIR spectroscopy principle is based on the variation that occurs at the dipole 

moment of chemical bonds and provides a spectrum of microplastic particle analysis. 

These variations occur at the dipole moment due to the signals that produce a 

spectrum, and polar functional groups make the particle more sensitive (Nguyen et al., 

2019, Hu et al., 2019). FTIR spectroscopy can easily detect the different types of 

plastic polymer. Compared to other spectroscopic techniques, FTIR detects a large 

number of microplastics within a short period of time. FTIR is an adorable technique 

for detecting the microplastic for various reasons such as ease of use, non-destructive 

technique, and low cost to the other spectroscopic technique (Chalmers and Everall, 

1996; Coates, 2006; Evanson et al., 1991). FTIR spectroscopy generally depends on 

reflectance and transmittance. A small amount of sample is required for the detection 

due to its spatial resolution being less than 5µm (Elert et al., 2017, Mallikarjunchari 
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and Ghosh, 2016). FTIR spectroscopy techniques include Micro FTIR, attenuated 

total reflectance (ATR- FTIR) and focal plane array (FPA-FTIR).Micro FTIR is used 

only to detect the small microplastic size, whereas ATR- FTIR technique is used to 

analyze the asymmetrical microplastics of size 500 micrometer (Prata et al., 2019; 

Loder and Gerdts, 2015) while FPA-FTIR detects the microplastic of size more than 

20µm (Ojeda et al., 2015). Complex microplastics can be analyzed by using the FPA- 

FTIR and ATR-FTIR. ATR- FTIR spectroscopy uses a chemo-metric method to 

assess and identifying the antiquated and characterized the surface contaminated with 

microplastic (da Costa et al., 2019). Microplastic from the wastewater is easily 

identified and detected by using FPA- FTIR (Ojedha et al., 2015). 

2.3.3 Raman Spectroscopy 

Raman spectroscopy was first used to detect the microplastic by Signer and Weiler in 

1932, in which they attained the polystyrene spectra (Crawford and Quinn, 2017). 

Raman spectroscopy technique is a very important technique based on the principle 

that causes the polarization of the scattered light to detect the microplastic particles at 

a particular range of wavelengths (Lenz et al., 2015). The scattering of lights occurs 

due to the changes in molecular vibration. Raman spectroscopy is used to detect the 

microplastic size less than or equal 20 microns. This technique is applicable for the 

characterization and alteration of several compounds containing different aromatic 

bonds (Hu et al., 2019). Using this technique, the composition of microplastic 

polymers can be detected by passing through the irradiating monochromatic beam and 

providing information about the molecular structure and the composition of the atoms 

present in the microplastics at different scattering frequencies (Araujo et al., 2018).As 

a comparison to FTIR organic and inorganic fillers, dyes and microbiological 

substances can be detected easily by using the Raman spectroscopy (Imhof et al., 

2013; Lenz et al., 2015; Kappler et al., 2016). The main drawbacks of this 

spectroscopic technique are taking a long processing time, heating the microplastic 

polymer and degradation, as well as fluorescence inference (Strangaru et al., 2019; 

Ribeiro- Clairo et al., 2017). 
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2.3.4 Mass Spectrometry 

Mass spectroscopy is a very important physio-chemical technique used to identify 

different types of the compound and provides information about the chemical 

structure and reactivity of the compounds. This method is based on the detection of 

microplastics by using a spatial resolution that increases the sensitivity of microplastic 

particles. These microplastic particles become more sensitive and easily attract to the 

signal that analyzes the total surface.Mass spectrometry is used to analyze the 

qualitative information about the mixture of plastic particles and is sometimes used 

for quantification of the plastic particles (Nguyen et al., 2019). 

2.3.5 Pyrolysis Coupled with Gas Chromatography-Mass Spectrometry 

This technique is employed to detect various chemicals and organic additives used in 

plastics (Fries et al., 2013, Kappler et al., 2018). The principle is based on the 

degradation of microplastic depends on the pyrolysis temperature, results in the 

degradation of volatile polymers, and traces the microplastic polymer. GC column 

separates the pyrolysis product of the microplastic, and these pyrolysed polymers can 

be characterized on the basis of pyrolysis pattern (Kappler et al., 2018). Pyr-GC-MS 

technique works by the hydrolysis of larger plastic polymers into smaller ones. The 

volatile component can be detected and separated from the smaller plastic polymers 

by using Pyr-GC-MS. This technique cannot provide morphological information such 

as shape and size. Microplastics of larger than 100 µm can be analyzed manually by 

putting them into a pyrolysis tube (Dekiff et al., 2014). It is a harmful technique for 

the degradation of microplastics thermally and compares the thermally degraded 

product with pyrogram of known pure polymers. This technique cannot identify the 

polymer that forms polar pyrolyzate, which consists of polar subunits, including 

polyester and polyether (Challinor, 1989; 2001). 

2.3.6 TDS-GC-MS (Thermal Desorption Coupled with Gas Chromatography- 

Mass Spectrometry) 

To overcome the shortcomings of Py-GC-MS, another technique is available in which 

the microplastics are treated thermally at the ambient temperature, e.g. 1000 degrees 

(Dumichen et al., 2017). In this method, detection and characterization of microplastic 

are done by absorbing the microplastics on a solid phase. After that, microplastic 
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particles are transferred to a thermal desorption unit. This is due to the high 

temperature of microplastic particles. The microplastic particles analyzed by the high 

degree of temperature can be separated with the help of a chromatographic column 

and characterized by using mass spectrometry (Dumichen et al., 2014; 2015). The 

main advantage of this technique is that it can characterize a larger amount of samples 

in one time compared to PY-GC-MS. It is a quantitative technique for detecting and 

characterization of a large number of microplastics (Dumichen et al., 2015).  

2.3.7 TGA-DSC (Combined Thermogravimetric Analysis- Differential Thermal 

Calorimetry) 

This thermal technology is used to detect microplastics from the environmental 

samples, mainly for the detection of microplastics from the wastewater. Detection can 

be done by checking its thermodynamic properties, for example, enthalpies, heat 

capacities and temperature. If collected samples exhibit an endothermic or exothermic 

property and increase or decrease, the temperature shows the result in the form of the 

peak. The peak area is further used for the identification of the microplastic (Penalver 

et al., 2020). 

2.3.8 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

Inductively Coupled Plasma-Mass spectrometry principle is based on the single event 

mode, and this technique is also known as Single Particle (SP- ICP-MS). This single-

particle theory was first reported in contrast to detect or identify the colloidal particle 

in water by Degueldre (Meermann and Nischwitz, 2018). This technique utilises the 

single event mode to detect microplastics and provides detailed information about the 

morphological characteristics such as size distribution, chemical composition, and 

mass concentration of the microplastics (Bolea et al., 2020). When microplastics pass 

through the ICP, the separate signals provide for screening each spike, and the period 

of signal for each spike is 0.5 ms (Hineman and Stephan, 2014). When signals reach 

the surface of the microplastic, it starts differentiating the microplastics on the basis of 

the signal. This technique is based on the single-particle or single-mode event changes 

that occur in the signal baseline of blank, and microplastics exhibit the dissolved 

concentration of the element. The single event mode frequency is directly 
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proportional to the number of microplastic particles (Hineman and Stephan 2014; 

Bolea et al., 2020). 

2.3.9 Photoluminescence Spectroscopy 

Photoluminescence spectroscopy is also used for the detection of microplastics. This 

technique is based on the principle in which the light emits from the microplastic 

sample surface and is optically excited from the sample (White and Argauer, 1970). 

The excitation of light from the sample surface is due to the higher wavelength of 

photoluminescence emission. Microplastics can be identified by studying the 

photoluminescence spectra. This analytical technique is not an encouraging technique 

for the detection of microplastics (Ornik et al., 2020).  

2.3.10 Visual Identification 

Direct observation of microplastics can be done by naked eyes observation and by 

using the microscope. The large size of MPs particle was observed using the naked 

eye, but the small size of microplastic particles was examined using the microscope 

under different magnification lenses (Lv et al., 2021). Detection is based on the shape 

and colour of microplastic particles. Microplastic particles are difficult to differentiate 

(Qui et al., 2016; Song et al., 2015). 

2.3.11 Scanning Electron Microscope (SEM) 

Scanning Electron microscopy detects microplastics on the basis of individual surface 

characteristics of microplastics (Kalcikova et al., 2017; Fu et al., 2020). This 

microscopic technique coupled with Energy-dispersive X-ray spectroscopy detects the 

morphological characteristics and chemical compositions. The principle is based on 

characterizing the microplastic element and provides information about the 

microplastic particle by emitting the electron beam with the help of X-rays (Fu et al., 

2020). Characterization can be done by using high magnification power for better 

image and differentiate the microplastic particle (Copper and Corcoran, 2010). The 

prospects and consequence of all these microplastic detection techniques are 

mentioned in Table 2.6. 
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Table 2.6 Different techniques for detection of microplastic and their merits and demerits. 

Techniques Applications Merits Demerits References 

Laser Direct Infrared 

(LDIR)  

This technique is used to detect 

the size ratio and types of 

microplastic particles present in 

the sample. 

It is a rapid and automatic technique 

that provides detailed information 

about each microplastic particle's 

spectra with the validation of their 

identity. 

This technique is used to detect a 

large number of microplastics. 

A microplastic particle such as a 

plastic polymer or mixture of 

polymers cannot be identified. 

Scircle et al., 2020; Zhang et 

al., 2015 

Fourier Transform 

Infrared Spectroscopy 

(FTIR) 

This spectrophotometer can detect 

smaller (less than 20 µm) and 

larger particles (greater than 500 

µm). 

This technique is helpful to 

provide information about the 

shape and size of the classes of 

plastic polymer. 

It is an easy and rapid method. 

It can analyze several thousand 

samples in a short period. 

This spectroscopic technique is very 

easy than other techniques. 

The cost of the instrument is very 

high. 

 

 

Zhang et al., 2015; Crawford 

and Quinn, 2017; Li et al., 

2018a; Fries et al., 2013 

 

Micro- FTIR  

 

Microplastic polymers of regular 

shapes can be easily detected by 

using this technique. 

Characterize the small size 

microplastics such as 10 µm. 

 

Time-consuming technique. 

 

 

Shim et al., 2016; Fu et al., 

2020 

 

Attenuated Total 

Reflections 

ATR-FTIR is used for the 

detection of irregularly shaped 

microplastics. 

Non-destructive analysis. 

An easy technique, not sample 

preparation, is required. 

Expensive instrument. Fu et al., 2020 

Nuclear Magnetic 

Resonance Spectroscopy 

(NMR) 

This technique is used to detect 

the plastic polymer by 

characterizing the chemical 

structure of the polymer chain. 

It is a very reliable and sensitive 

technique for the detection of 

polymer and chemicals. 

It is time-consuming and costly. Crawford and Quinn, 2017 

Cont... 
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Techniques Applications Merits Demerits References 

Raman Spectroscopy This technique is applicable to 

identify small microplastic sizes 

less than 1µm. 

This method can characterize 

microplastic particles on the basis 

of the difference of interaction of 

the laser light and the frequency 

of back scattered light 

Easily identify the organic and 

inorganic substances by the 

intrusion of fluorescence. 

Time-consuming analytical 

technique. 

Various parameters can be 

determined before analysis, such 

as wavelength, photo bleaching 

and laser power. 

It is a slow and automatic method 

used for the collection of spectra. 

Cole et al., 2013; Zhao et al., 

2014; Weisheu et al., 2016 

Fluorescence 

Spectroscopy 

Semi-quantitative type of 

spectroscopy detects the 

microplastics on the basis of 

physical and chemical mapping of 

microplastic. 

The detection rate is very low and 

provides spectra of the sample by 

using single absorption and 

emission line. 

It takes a longer duration for 

detection due to the sample 

preparation. 

Fu et al., 2020; Towett et al., 

2013 

Scanning Electron 

Microscopy (SEM) 

This technique is generally used 

to characterize the whole surface 

of the sample to identify the 

microplastics particles and 

elementcompositionofmicroplastic 

identified by using SEM-EDS. 

It provides clear and highly 

magnified images of microplastics 

with high spatial resolution. 

It is applicable for the 

characterization of microplastic 

particles such as fibres and spherule. 

SEM-EDS microscopy is more 

costly than other microscopy and 

acquires more laborious work to 

prepare the sample. 

It takes a long time for the 

characterization of samples; hence 

only limited samples can be 

analyzed. 

Shim et al., 2017; Dehghani et 

al., 2017; Zbyszewski et al., 

2014 ; Vianello et al., 2013 

Pyrolysis GC-MS (Pyr -

GC MS) 

It is a technique used to study 

microplastic polymers' science 

and characterise the different 

types of chemical and organic 

additives with their composition. 

This technique is very sensitive in 

comparison to other techniques to 

enabling polymer types in 

microplastics with relatively low 

masses of microplastics polymer can 

be identified. 

It requires the manual placement 

of microplastic particles.  

It can analyze only one 

microplastic particle from the 

running sample at one time. 

Lusher et al., 2017; Fries et 

al., 2013;  Kappler et al., 

2018; Fabbri et al., 2000 

Matrix-assisted laser 

desorption/ionization 

This technique is applicable for 

the detection and characterization 

It is a rapid, simple and cheap 

technique.  

Characterization of the 

microplastic polymers based on 

Dimzon and Knepper, 2012; 

Schirinzi et al., 2019; 

Cont... 
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Techniques Applications Merits Demerits References 

time-of-flight mass 

spectrometry (MALDI-

TOF–MS) 

of the high molecular weight of 

the plastic polymer. 

It is easily characterized or detected 

the microplastic polymers from a 

whole sample. 

the area between the matrix and 

polymers. 

Rizzarelli and Carroccio 2014; 

Fu et al., 2020 

Ambient Ionization 

Technique  

 

This technique provides 

information on the basis of the 

composition of polymer in 

microplastics. 

Easily identify the polymer with a 

short period. 

 

This technique does not require the 

pretreatment of the sample to 

obtain spectra. 

Schirinzi et al., 2019 

Liquid Chromatography This chromatographic technique is 

applicable for the detection of 

nonvolatile compounds combined 

with microplastics due to high 

sensitivity  

A small amount of sample 

(milligram) is required for the 

identification.  

It is unavailable to give the details 

about the physical parameters 

includes size details and types of 

plastic polymer. 

Hintersteiner et al., 2015; Elert 

et al., 2017;  Fu et al., 2020 

Microscopic Count It is used for the identification of 

microplastic particles that are 

micrometer in size and can be 

identified with the help of 

stereomicroscope by direct 

counting. 

Only pretreated microplastic 

particles are recommending for 

detection. 

A large quantity of microplastic can 

be easily identified. 

It takes a short time and gives the 

best result at a low cost. 

The quality of microplastic 

particles cannot be determined. 

Li et al., 2018a 

Staining Technique  Micrometer plastic particles can 

be detected by using hydrophobic 

dye such as Nile red.  

This process is less expensive and 

fast than other techniques. 

Plastic debris can be identified by 

staining with dye. 

Shim et al., 2016 

Thermogravimetry 

coupled with 

Differential Scanning 

Calorimetry (TGA –

DSC) 

This thermal technology is used 

for the detection of primary 

microplastics and polymer types 

on the basis of their mass 

concentration. 

For the detection of microplastics 

very small amount of sample is 

required. 

This thermal technology is coat 

effective and laborious. 

Majewsky et al., 2016 ; Shim 

et al., 2017; Penalver et al., 

2020 

Cont.... 
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Techniques Applications Merits Demerits References 

Differential Scanning 

Technique 

(DSC) 

This technique is used to detect 

microplastic from a large number 

of polymer products. 

Simple and fast technique for 

detection of microplastics. 

Destructive technique. Shim et al., 2017: Tsukame et 

al., 1997 

TGA- GC- MS This thermal technique detects 

microplastic on the basis of 

additives and chemicals.  

The major advantage of this method 

large number of samples can be 

analyzed. 

Time-consuming and laborious 

technique. 

Zhang et al., 2020c; Shim et 

al., 2016; Penalver et al 2020 

TED-GC-MS This thermal technique is 

available for the detection of 

unknown organic microplastic 

particles. 

Fast and easy technique as a 

comparison to other techniques. 

It cannot give information about 

the size and quantity of 

microplastic. 

Lares et al., 2019 
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2.4 Effect of microplastics on micro and macro-fauna of soil 

Microplastic shows adverse effects on the soil micro and macrofauna. Microplastic 

ingestion by nematodes (Caenorhabditis elegans) cause several changes such as 

effects on the reproduction and growth rate. It also causes intestinal and oxidative 

damage (Xu et al., 2020: Lei et al., 2018b). Intestinal and oxidative damages improve 

by minimization in intestinal calcium level of C. elegans and by a rise in the 

expression of oxidative stress gene (gst-4) (He et al., 2018). Microfauna such as snail 

(Achatina fulica) are used as a model to check the toxic effect of microplastic 

ingestion. The adverse effect includes a decrease in food hold and produces oxidative 

stress (Song et al., 2019). In isopods (Proisotoma minuta), microplastic cause an 

effect on the food uptake, defecation rate, body weight and leads to death (Kokalj et 

al., 2018).  

Microplastic causes various biological changes such as the growth and reproduction 

of earthworms due to their small size and easy accumulation in the earthworm body. 

Earthworm directly takes microplastic from the soil because microplastic used in 

agriculture field by using wastewater irrigation, etc. Earthworm ingests microplastics 

that’s enters into the intestine and accumulates in the casts cause bioturbation 

(Lwanga et al., 2016). Mainly microplastic particles attach to the gut and stomach of 

the earthworm and change the feeding activities, which alter the growth or 

development of earthworm (Table 2.7; Fig 2.6). Due to the large existence of 

absorbed organic pollutants in the gut of organisms, which are desorbed by the 

organisms after ingestion and cause a deleterious effect on earthworms (Bakir et al., 

2014). Due to its small size, microplastics attach to the outer surface of the earthworm 

precisely prohibit the flexibility of the organisms. Normally changes occur, such as 

false satiation and decrease in the level of carbon biomass leads to death, loss of 

energy, and effects on the growth and development of the organisms (da Costa et al., 

2016; Setala et al., 2016). Other mechanical obstruction includes metabolism disorder, 

intestinal damage and direct effect of ingested microplastics on the earthworm 

oesophagus (Lahive et al., 2019; Lonnstedt and Eklov, 2016; Wang et al., 2019a). 

Immune system of earthworm also effected by ingestion of microplastics because 

microplastics attach to villi and enters into the different cells of intestine epithelial. 
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This accumulation of microplastic to the intestine causes inflammation of the gut and 

also causes various sub-lethal effects on the immune system and growth (Hirt et al., 

2020). 
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Fig 2.6 Impact of different types of microplastics on soil micro and macro fauna. 
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Table 2.7 Effects of microplastics on different species of earthworm after exposure.  

Species Type of microplastic Size range Concentration Exposure Observation References 

Lumbricus terrestris Polyethylene 

(PE) 

<400 µm 0,7, 28, 45, and 

60% 

14 and 60 days After 14 days of exposure, no 

changes occur in mortality, but 

after 60 days, exposures show an 

effect on concentration. 

Lwanga et al., 

2016 

Lumbricus terrestris Low Density 

Polyethylene (LDPE) 

400 µm 0 (control), 7, 

28, 45 and 60% 

(w/w) 

14 days  Changes can be seen in the 

growth and rapid increase in the 

mortality of the earthworm. 

Lwang et al., 

2017 

Eisenia fetida Polystyrene (PS) 58µm 0, 0.25, 0.5,1 

and 2% 

30 days Growth of E. foetida is greatly 

affected at concentrations 1% 

and 2%, as well as lethal effects, 

can notice. 

Cao et al., 

2017 

Lumbricus terrestris Polyethylene (PE) 710-2800 µm  21 days Microplastic attached to the skin 

mucus of earthworm. This 

attachment is the major source to 

carry the microplastic and affect 

the growth of earthworms. 

Rillig et al., 

2017 

Lumbricus terrestris High Density 

Polyethylene (HDPE) 

<150 µm  28 days Ingestion of zinc bearing 

microplastic affect the growth 

and the mortality of the 

earthworms. 

Hodson et al., 

2017 

Eisenia andrei Polyethylene(PE) 250-1000 µm 0, 62.5, 125, 

500, 1000 

mgkg-1 

28 days 

56 days 

Gastrointestinal tissue of 

earthworm affected after 

ingestion of microplastic. 

Rodriquez-

Seijo et al., 

2017 

Lumbricus terrestris Low-Density   60 days  Gut bacteria reduce the size of Lwanga et al., 

    Cont... 
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Species Type of microplastic Size range Concentration Exposure Observation References 

Polyethylene (LDPE) LDPE and affected the volatile 

compounds of microplastics. 

2017 

Eisenia fetida Low-Density 

Polyethylene (LDPE) 

 

250-100 µm 65, 125, 250, 

500, 1000 

mgkg-1 

28 days After the exposure of 28 days of 

polypropylene microplastic, the 

toxic effects include oxidative 

stress and changes occur in the 

metabolic process of earthworm. 

Rodriguez-

Seijo et al., 

2018 

Lumbricus terrestris Polyester microfibers 0.05-2 mm 0 (Control), 0.1 

and 1.0% 

(w/w) 

35 days  After the ingestion of polyester 

microplastics death rate is very 

low. 

Prendergast-

Miller  et al., 

2019  

Lumbricus terrestris Low-Density 

Polyethylene 

(LDPE) 

----- ---------- ---- Microplastics in earthworms can 

directly or indirectly enter the 

tissue, adhere to the tissue, and 

cause obstructions on the 

earthworm's gut. 

Lu et al., 2019 

Eisenia fetida Low-Density 

Polyethylene (LDPE) 

5 mm and 0.25 

µm -1 mm in 

diameter 

---- 14 days  After 14 days of exposure, 

neurological changes can be 

observed. 

Rodriquez-

Seijo et al., 

2019 

Aporrectodea rosea High-Density 

Polyethylene (HDPE) 

--- ----- 30 days  After exposure to microplastics, 

earthworm loses their weight. 

Boots et al., 

2019 

Eisenia fetida High-Density 

Polethylene (HDPE) 

Polyethylene 

terephthalate (PET) 

Polyvinyl Chloride 

---- 0.1, 0.25, 0.5 

and 1% w/w 

for acute 

toxicity test 

0.01, 0.1, 0.25, 

0.5, 1% 

28 days for testing 

acute toxicity 56 

days for chronic 

toxicity 

At concentration 0.5%, there are 

no toxic effects on an earthworm. 

In other concentrations, slightly 

acute and chronic changes can be 

seen. 

Judy et al., 

2019 

Cont... 
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Species Type of microplastic Size range Concentration Exposure Observation References 

(PVC)  

Eisenia fetida Low-Density 

polyethylene (LDPE) 

Polystyrene (PS) 

<300 µm 

 

<250 µm 

0, 1, 5,10 and 

20% 

14 days  At concentration 20%, 

mechanical obstructions can be 

seen includes oxidative stress 

and damage in earthworm. 

Wang et al., 

2019b 

Enchytraeus 

crypticus 

PVC  

 

Nylon  

106-150 µm 

13-18µm 

63-90 µm 

90-150 µm 

90 gKg-1 

 

20, 50, 90, 120 

gkg-1 

21 days At a high concentration of 

microplastic in the soil, the 

reproduction rate is reduced in 

juveniles. 

Lahive et al., 

2019 

Eisenia fetida Low-density 

polyethylene (LDPE) 

<400 µm 0.1, 0.25, 0.5, 

1.0, 1.5 gkg-1 

dry weight 

28 days The rapid increase in the CAT 

activity of earthworms. Various 

mechanical obstructions can be 

seen, such as ulceration, 

blockage and skin damages. 

Prust et al., 

2020  

Eisenia fetida Polypropylene (PP) 150 µm in 

diameter 

0.03, 0.3, 0.6, 

0.9% 

42 days A high concentration of 

microplastics and cadmium leads 

to an increase in Lipo peroxide 

level and GSH content and show 

various harmful effects on an 

earthworm. 

Zhou et al., 

2020 

Eisenia fetida Polystyrene (PS) ----- ---- 15 days After 15 days of exposure cause 

toxic effects such as DNA 

damage and induce oxidative 

stress  

Jiang et al., 

2020 

Cont... 
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Species Type of microplastic Size range Concentration Exposure Observation References 

Eisenia fetida Polystyrene  ----- ------ 21 days  Microbial diversity of earthworm 

increase after the exposure of 

polystyrene microplastics. 

Xu et al., 2020 

Eisenia fetida Low Density 

Polyethylene  

550-1000 µm ------ 28 days  Induce oxidative stress due to an 

increase in the activity of the 

antioxidant enzymes. 

Chen et al., 

2020d 

Eisenia fetida MP + Dufulin  40- 50 µm -------- 28 days  Microplastic and dufulin cause 

oxidative damage and direct 

effect on the metabolic profile of 

earthworm.  

Sun et al., 2021 

Eisenia fetida Low Density 

Polyethylene  

 

 

 

Polypropylene  

28–145, 133–

415, 400-1464 

μm 

 

 

8–125, 71–383 

and 761–1660 

μm 

------ 

- 

28 days Both types of MPs produce 

changes in the different types of 

earthworm’s enzymes.  

Li et al., 2021 
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2.5 Effect of microplastics on Antioxidant biomarkers of earthworms 

Various types of antioxidant enzymes of earthworms induce various types of 

oxidative stress and affect the mortality of the earthworm when exposed to different 

types of microplastics (Rodriquez-Seijo et al., 2018). The digestive system of the 

earthworm contains various types of highly active antioxidant enzymes such as 

catalase, phosphatase, protease, polyphenol oxidase (Tikhonov et al., 2011; Frouz et 

al., 2011). These enzymes play a key role in the breakdown of the peptidic element, 

and changes occur in the elemental composition. All these enzymes degrade the 

organic waste with the help of microorganisms. The presence of enzymes in 

earthworms is due to the microorganism’s activity in soil (Shan et al., 2010). 

Oxidative stress is defined as the “imbalance between the oxidative as well as 

antioxidant indices in the living systems” (Tiwari et al., 2016). The function and role 

of different types of antioxidants is given in Table 2.8 and Fig 2.7. 

2.5.1 Role of antioxidant biomarkers  

Different types of biomarkers catalyze the antioxidant mechanisms and various 

organic pollutants such as microplastic produces oxidative circumstances and cause 

disruption in the tissue of organisms. Oxidative challenges occur when ROS 

concentration increases very fast in the tissue of the organisms. These organic 

pollutant leads to changes occur in the spike of ROS concentration which regulates 

physiological pathway. An increase in the ROS concentration plays an important role 

to produce oxidative damage. In the first stage, a spike occurs in ROS concentration is 

normal, but in the second stage, excess ROS concentration is not counter balanced by 

antioxidant biomarkers. In the second stage, all immune able antioxidant biomarkers 

regulate physiological activity. These antioxidant biomarkers rapidly increase the 

antioxidant level. An increased level of antioxidant biomarker neutralises the large 

concentration of ROS. Various types of enzymes take part to maintain ROS 

concentration. In stage third, disruption occurs due to the late response of antioxidant 

constituents because cell takes a long time to construct these constituents. These 

antioxidant constituents normally up-regulated various changes produced in the 

organism, such as oxidative stress (Sies and Cadenas, 1985). 
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Table 2.8 Antioxidant enzymes of the earthworm and their functions. 

Enzymes Functions References 

Catalase (CAT) 

 

Catalase is an enzyme that plays 

an important role in the 

breakdown of the free radical of 

hydrogen peroxide in the form of 

water and oxygen. It acts as a 

detoxifying enzyme.  

Claiborne, 1985; 

Zhang et al., 2009; 

Liu et al., 2011 

Glutathione –S-

Transferase (GST) 

Glutathione-S-Transferase plays 

an important role in catalysing the 

conjugation reaction of GSH. 

Maity et al., 2008 

Jiang et al., 2020 

Glutathione  It is an antioxidant molecule that 

oxidizes glutathione and 

overcomes the ROS concentration. 

It acts as a cofactor for another 

biomarker such as GPx and GST.  

Trestrail et al., 2020; 

Sharma et al., 2004 

 

Lactate dehydrogenase Lactate dehydrogenase enzymes 

play an important role to provide 

the amount of energy if organisms 

need. It is an anaerobic enzyme.  

Diamantino et al., 

2001; 

Tripati et al., 2011 

Superoxide dismutase 

(SOD) 

Superoxide dismutase enzyme 

plays an important role to catalyze 

the conversion of oxygen into 

hydrogen peroxide.  

Jiang et al., 2020 

Malondialdheyde 

(MDA) 

It is an antioxidant biomarker that 

causes oxidative stress in the 

organisms and produces after lipid 

per oxidation  

Trestrail et al., 2020 
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Fig 2.7 Interaction of microplastic to the earthworm and relevant antioxidant         

biomarkers cause oxidative stress in three stages. 

 

2.6   Different types of microorganisms in gut of earthworm  

The rapid use of microplastic in the agricultural field to increase the crop yield and 

quality of crop cause a threat to terrestrial biota. Earthworm gut provides a 

microenvironment for the growth of microorganisms such as appropriate moisture 

content, neutral pH and a large quantity of mucus (secreted from the foregut and 

absorbed by gut bacteria). The presence of mucus in the earthworm gut consists of a 

mixture of low molecular weight organic matter and act as a good source for the 

growth of microorganisms (Du, 2018). Microplastic acts as a sole carbon source for 

the metabolism of microorganisms in the gut of earthworms (Table 2.9). Gut 

microorganisms play an important role in the degradation of organic pollutants such 

as microplastic, chemical pollutants, etc. A large amount of microplastic disturbs the 

metabolism as well as intestinal diversity of microorganisms. 
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Table 2.9 Different types of bacteria present in the gut of different species of earthworm. 

Species  Microorganisms in Earthworm gut References

 Referen 

Proteobacteria  Firmicutes  Actinobacteria  Bacteroidetes  Acidobacteria  Verrucomicrobia  Chloroflexi Plantomycetes 

 

 

Eisenia fetida 

44% 31% 6% - - - 6% - Hong et al., 2011 

50% - 9% 7% - - - - Wang et al., 2017  

62% 14% 24% - - - - - Wang et al.,2017 

24% 52% 13% - - - - - Yausheva et al., 2016 

10% 21% 10% 3% - - - 6% Singh et al., 2015 

16% 46% 11% - - 1% - 5% Schulz et al., 2015 

Eudrilus eugeniae  52% 26% 7% 8% - - 3% - Schulz et al., 2015 

46% 2% 1% 42% - - - 6% Zhu et al., 2018 

Enchytraeus crypticus  9% 12% 48% 1% - - - - Zhu et al., 2018 

44% 42% - - 1% 9% - 1% Zhu et al., 2018 

Pheretima carnosa 45% 18% 2% 2% 2% 2% - 1% Liu et al., 2011 

Perionyx excavates 20% 15% 2% 5% - - - 6% Singh et al., 2015 

Metaphire calfornica  24% 12% 29% 4% 6% 3% 3% 13% Wang et al., 2019a 

Metaphire sieboldi 13% 21% 59% 2% 1% - - 1% Hu et al., 2016 

Lumbricus rubellus 36% 20% 3% 17% - 10% - - Knapp et al., 2009 

50% 30% - 6% 3% - - - Pass et al., 2015 

Lumbricus terrestris 30% - 28% - 4% 9% 4% 7% Meier et al., 2018 
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2.7  Degradation of the microplastic by microbes associated enzymes  

Generally, the mechanisms of degradation of MPs depend upon the different types of 

factors such as the chemical structure of plastic polymer, molecular weight of 

chemical compounds, plasticizer and additives used for making plastics (Alshehrei, 

2017b; Yuan et al., 2020). Various biochemical reactions are involved in the 

degradation of microplastic by microorganisms. Microorganisms (Bacillus sp., 

Ideonella sakaiensis, Rhodococcus sp. and Paenibacillus sp. etc.) secretes different 

varieties of enzymes (esterase, urease, lipase, protease, glycoside hydrolases and 

laccase), these enzymes gets attached on the backbone of long chain plastic polymers 

and cleave long chain of polymer into monomers units. The first and most important 

step of degradation is the hydrolysis of microplastic to improve the hydrophobicity by 

the enzymes by offering the functional group of the microplastic polymers (Iram et 

al., 2019; Yuan et al., 2020). MPs are not easily utilized and absorbed by microbes 

due to their high molecular weight. Therefore, intracellular and extracellular enzymes 

play an important role in the cleavage of microplastic particles. Intracellular 

degradation engages the breakdown of stored endogenous carbon by accumulating 

several microorganisms itself. On the other hand, extracellular enzymes use an 

exogenous carbon reservoir to break down MPs polymers into smaller fragments such 

as oligomers, dimers and monomers through endo and exo attacks (Wilkes and 

Aristilde, 2017; Yuan et al., 2020). Microorganisms secret extracellular enzymes to 

hydrolyze the long-chain polymer into short-chain molecules. The short chain 

molecules are very small to enter through membrane, and these short chain molecules. 

Once the MPs are cleaved into small molecules by extracellular enzymes then 

Intracellular enzymes metabolized these small molecules into carbon dioxide (CO2) 

and water (H2O) which is utilized as a source of energy (Yoon et al., 1996; Gu, 2003; 

Zhang et al., 2021; Lin et al., 2022). 

Enzymatic degradation of MPs is divided in two different groups; hydrolysable (PET) 

and non-hydrolysable (PE, PS and PP). Enzymes reported for degradation of PET 

includes cutinase, PETase and MHETase. Cutinase enzyme secreted by Fusarium 

solani degrades the PET through breakdown of both the aliphatic and aromatic ester 

bonds of polyester (Yoshida et al., 2016). Cutinase enzyme perform biodegradation at 

optimum pH range 7 and temperature at 50-55˚C. PETase enzyme secreted by 

microorganism (Ideonella siakensis) breaks the aromatic ester bond of polyester and 
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performs degradation at pH value 7- 9 (Yoshida et al., 2016; Urbanek et al., 2021). 

This enzyme produces changes in amino acids resulting in inhibiting the thermal 

balance. MHETase cause nucleophillic attack on the carbon atom of polyester. It 

requires optimum pH of 6.5 - 9 and a temperature 45˚C (Urbanek et al., 2021). On the 

other hand, PE degradation is completed by two intracellular enzymes, such as 

polyethylene glycol (PEG) dehydrogenase and alkane hydrolase. PEG dehydrogenase 

cleaves the PEG and produces glyoxylic acid while alkane hydrolases cleaves 

polyethylene microplastic at optimum temperature of 45˚C and pH 4.5 (Wilkes and 

Aristilde, 2017). Similarly for PS degradation the different enzymes are capable to 

form single ring aromatic compounds and hydrolyze the C-C bond. Bacillus subtilis, 

Sphingomomonas paucimobilis, Alcanivorax borkumensis secretes Cytochrome 

P450CPX152A1, Cytochrome P450CPX152B1, Cytochrome CPX153s, respectively 

to catalyze oxidation of styrene and hydroxylation of ethyl benzene. These enzymes 

play an important role in the conversion of alkane to alcohol (Hou and Majumder, 

2021). Hydrolytic enzyme (esterase) was reported for degradation of PS, this enzyme 

breakdown the polymer into smaller fragments at an optimum temperature of 45˚C at 

pH 9 (Temporiti et al., 2022). 

2.8  Microplastics (MPs) Degradation  

MPs are degraded by two main process i.e. biological and oxidation process. 

Biological degradation of MPs continues by the enzymatic action of microorganisms, 

resulting in various changes occurring on the microplastic polymer structure (Fig 2.8). 

Oxidation mechanisms decompose MPs via different processes under the exposure of 

light and influence of reactive oxygen species (ROS) such as photochemical 

oxidation, electrochemical oxidation and photo degradation. For the biological 

degradation of organic pollutants, the factors such as temperature, moisture and pH 

play a role (Lucas et al., 2008; Shah et al., 2008; Sivan, 2011).  
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Fig 2.8 Schematic representation of mechanism of microplastics biodegradation 

2.8.1 Biological degradation  

a) Bio-deterioration 

In this phase of degradation, enzymes act on the microplastic and disrupt the 

microplastic polymer into the monomers. Disruption of microplastic polymer occurs 

on the inside and outside of the plastic material (Lucas et al., 2008). Enzymatic 

degradation of microplastics depends upon the types of enzymes secreted by 

microorganisms, such as urease, protease and lipases (Sivan, 2011).  

b) Bio-fragmentation 

Bio-fragmentation means the biological cleaving or fragment of the microplastic 

polymer with the help of enzymes (Kjeldsen et al., 2018; Wagner et al., 2014). In this 

stage, enzymes such as hydrolase and oxidoreductase hydrolyze the polymeric 

structure of plastics. While other enzymes catalyze the several oxidation reaction 

resulting in the production of free radicals. Polarities of the plastic polymer gained by 

the oxidation occur in the free radicals and formation of carbonyl and hydroxyl 

functional groups (Luccas et al., 2008; Shah et al., 2008; Laycock et al., 2017; Ali et 

al., 2021).    
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c) Assimilation or Mineralization 

In this phase, monomers were assimilated by the microorganisms to produce the 

microbial biomass, CO2 and CH4 (Shah et al., 2008). These monomers are used as a 

carbon source for energy purposes (Kjeldsen et al., 2018) and utilized by the 

microbial cell for growth. However, due to the semi-permeability of cell membranes, 

some monomers of plastics are difficult to assimilate. Microbial cell utilize the non-

assimilated monomer through the biotransformation process. Nonetheless, the non-

assimilated monomers of polymers are used by microorganisms through a process 

called transformation, i.e. microorganisms secreted enzymes generate the 

transformation of chemical compounds into an end product that could be assimilated 

by similar microorganisms or other (Ali et al., 2021).   

2.8.2 Oxidation mechanism  

This is an efficient process to decompose persistent pollutants. In this process, 

degradation of organic pollutants is based on the formation of reactive oxygen species 

(Du et al., 2021). These reactive oxygen species directly activate the degradation 

process by breaking the long polymer chain and completing the degradation cycle by 

forming useful products (Kang et al., 2019b).  

a) Photocatalytic degradation 

Photo catalytic degradation is a green technique to decompose organic pollutants by 

employing free solar energy. This process is based on the decomposition of 

semiconductor components of organic pollutant. In this process, decomposition starts 

when the photon energy of semiconductor components is too much higher than the 

gap energy of semiconductor substances. The valence band electrons easily transfer to 

the conduction band and cause a positive hole in the valence band of semiconductor 

substance resulting in the partition of electron holes (Du et al., 2021). Both electron 

and positive holes react with free hydroxyl radicals, generating reactive oxygen 

species. Free reactive oxygen directly initiates degradation of MPs (Tofa et al., 2019). 

b) Photochemical degradation  

Photo chemical degradation is another method for decomposing organic pollutants. 

Ultra violet (UV) light plays an important role in photochemical degradation (Gewert 

et al., 2015). Organic pollutants decomposed through long-time exposure to UV light 

results in the formation of oxygen free radicals and cross-linked the long chain of 



Review of Literature 

 
 

39 

polymers (Song et al., 2017). 

c) Electrochemical degradation 

This method is based on the anodic and cathodic surface degradation of pollutants. 

Anodic degradation causes direct oxidation by transferring the charge on the anode 

surface of pollutants and indirect oxidation by reactive oxygen species and H2O2. 

Cathodic degradation is completed by Electron-Fenton technique and oxygen free 

radicals. It is generated by Fe+ and is responsible for degradation of MPs (Du et al., 

2021).  

2.9 Types of Microplastic degradation by microorganisms  

2.9.1 Polyethylene Terephthalate (PET) 

The degradation and molecular mechanism of PET by different microbes and their 

degradation efficiency are compiled in Table 2.10 and Fig. 2.9. Idonella sakaiensis 

and Thermobifida fusca reported 97% and 50% degradation rate respectively incubate 

at a temperature 55˚C for 21 days (Yoshida et al., 2016; Ali et al., 2021). PET consists 

of an amorphous semi-crystalline structure and linear polymer of repeating units of 

ethylene glycol or aromatic terephthalic acid (Danso et al., 2019). Two types of 

enzymes are involved in the degradation of PET that is PETase and MHETase. These 

two enzymes are used for the rapid degradation of PET and its monomer, such as 

terephthalic acid and ethylene glycol (TPA and EG) and also help in the 

bioconversion of high value trace compounds (Taniguchi et al., 2019). PETase 

converts polyethylene terephthalate into mono terephthalic (2-hyroxyethyl) acid and 

bis (2- hydroxyethyl) terephthalic acid, and MHETase converts mono-2-hydroxyethyl 

terephthalate (MHET) to terephthalic acid and ethylene glycol. This intermediate 

product is also internalized by the cell and breakdown by an organism that uses PET 

as a major source of carbon and energy source by enzyme PET hydrolase (Othman et 

al., 2021). The depolymerized products of PET are used by the bacteria for their 

metabolism (Yoshida et al., 2016).  
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Table 2.10 Degradation of Polyethylene Terephthalate (PET) by bacteria, fungi and algae.   

Name of 

microplastic 

Types of 

microbes 

Species Conditions Degradation 

percentage 

Days References 

Polyethylene 

Terephthalate (PET) 
Bacteria Vibrio Nutrient broth 

Temp- 50˚C±2 

35% 60 Sarkhel et al., 2020 

Bacillus cereus Bushnell Hass Broth 

Temp- 27˚C±2 

1.6% 40 Auta et al., 2017 

Bacillus gottheilii Nutrient Broth 

Temp- 37˚C 

3.0% 30 Auta et al., 2017 

Pseudomonas sps. Bushnell Hass Broth 

Temp- 30˚C±2 

5% ---- Taghavi et al., 2021; Wilkes 

and Aristilde., 2017 

Ideonella sakaiensis Nutrient Rich Medium 

Temp-27˚C±2 

1% ---- Yoshida et al., 2016 ; Wei 

et al., 2019 

Thermobifida fusca Temp- 55˚C±2 54% 21 Wei et al., 2019 

Algae Phaeodactylum tricornutum Culture Agar media 

Temp-21˚C±2 

- 54 Moog et al., 2019 

Spirulina sps.  - -- Khoironi et al., 2019 

Fungus Penicillium sps. Czapek-Doxa Broth 

medium 

Temp-50˚C 

- 28 Sepperumal et al., 2017 

Penicillium  funiculosum Czapek-Doxa  Broth 

medium 

Temp-30˚C±2 

0.21% 84 Nowak et al., 2011 

Thermomyces sp.  97% 18 Ronkvist et al., 2009 

Pichia pastoris Buffered Glycerol 

complex medium 

Temp-65˚C 

- 1 Chen et al., 2020c, Chen et 

al., 2020e 

Aspergillus sp Potato Dextrose Agar 

Medium 

Temp-37˚C±2 

22% 42 Sarkhel et al., 2020 

Fusarium solani Temp-50˚C 5% ---- Ronkvist et al., 2009 
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Fig 2.9 Molecular mechanism of degradation of Polyethylene Terephthalate. 

2.9.2 Polyethylene degradation (PE)  

In a year, all around the world, about 500 billion to one trillion polyethylene bags are 

used (Sarmah and Rout, 2020). PE extrapolates from petroleum based sources and 

uses in large quantities by people in the form of plastic bags. PE group of MP are 

categorized into two groups on the basis of their density; low-density polyethylene 

(LDPE) and high-density polyethylene (HDPE). It consists of a large linear carbon 

chain of poly-olefin. Poly-olefin is a polymer formed from the monomer of olefin or 

alkene. Olefin is an unsaturated hydrocarbon in which carbon and hydrogen are held 

together by double or triple bonds of one or more carbon (Chen and Marks, 2000). 

Approximately 63% of polyolefin has been used globally for the production of 

microplastic polymers (Posch, 2017). Degradation of polyethylene is too difficult due 
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to the presence of stable long linear carbon and hydrogen chains, and both carbon and 

hydrogen contain a balanced charge. The molecular mechanism and degradation 

efficiency of microbes in degradation of PE are given in Table 2.11- 2.13 and Fig. 

2.10.  

Previous studies reported the various microorganisms for degradation of MPs such as 

Bacillus gottheilli, Lysinibacillus fusiformis, Bacillus cereus, and Bacillus 

borstelensis and have efficiency to degrade 6.2%, 21.9% 36%, 20% MPs respectively 

at temperature 25˚C (Ali et al., 2021; Muhonja et al., 2018). Microorganisms use 

various enzymes to diminish the electric charge. With the help of enzymes, 

microorganism adds oxygen molecules to long linear carbon chains (Krueger et al., 

2015). Mono-oxygenases enzyme adds one oxygen atom and di-oxygenases add two 

oxygen atoms to form alcohol and peroxyl group. Alcohol and peroxyl group act as 

less recalcitrants for biodegradation. PE oxidation form carboxylic acids, alcohol, 

ketones and aldehyde (Gewert et al., 2015). PE polymer after oxidation and 

fragmentation become more hydrophilic. Basically degradation of polyethylene 

occurs in two stages. The first stage is depolymerization, where different types of 

extracellular enzymes involve such as laccase and alkane hydroxylase and 

depolymerise the PE polymer into shorter chains such as oligomers, dimers and 

monomers. Depolymerization stage mainly aids low-density polyethylene molecules 

and absorb them into the cell through a permeable lipid membrane (Othman et al., 

2021). The second stage is mineralization, in this stage long linear chain of low-

density polyethylene mineralized and gives end products such as H2O, CO2, and CH4. 

Microorganisms and bacteria use these end product as a carbon source (Sen and Raut, 

2015; Ghatge et al., 2020). 
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Table 2.11 Different types of microorganisms degrade polyethylene. 

Type of Microplastic Microorganism Conditions Degradation 

percentage 

Days References 

 

 

Polyethylene 

Pseudomonas aeruginosa Nutrient Broth Culture medium 

Temp-30˚C 

- 5 Yoon et al., 2012; Taghavi et al., 2021; Tribedi 

and Sil, 2013 

Pseudomonas fluorescens Nutrient Broth Culture medium 

Temp-27˚C 

18% 270 Thomas et al., 2015 ; Nowak et al., 2011 ; 

Balasubramanian et al., 2010 

Paenibacillus sps. 

 

                      - 14.7% 60 Park and Kim, 2019; Nowak et al., 2011 

Rhododcoccus rhodochrous Culture Medium 

Temp-27˚C 

- --- Fontanella et al., 2010; Koutny et al., 2006; 

Bonhomme et al., 2003 

Rhododcoccus ruber 

 

Nutrient Broth 20% 56 Hadar and Sivan, 2004; Sivan et al., 2006 

Bacillus brevies Mineral Salt Medium Temp-30˚C - 60 Watanable et al., 2009 

Bacillus cereus Mineral Salt Medium 

Temp-37˚C±2 

- 90 Sudhakar et al., 2008; Satlewal et al., 2008; 

Auta et al., 2017 

Bacillus subtilis 

 

Mineral Salt Medium 

Temp-37˚C±2 

1.5 – 1.75% 28 Harshvardhan and Jha, 2013 

Bacillus pumilus Temp-30˚C 1.5%-1.75% 30 Roy et al., 2008; Nowak et al., 2011; Satlewal 

et al., 2008; Harshvardhan and Jha., 2013 

Bacillus sp. BCBT21 - 44% --- Dang et al., 2018 

Bacillus cereus strain A5 

 

- 35.72 % --- Muhonja et al., 2018 

Bacillus vallismortis bt-

dsce01 

- 75% ---- Skariyachan et al., 2017 

Bacillus siansesis - 8.46% 90 Maroof et al., 2021 

Streptomyces badius - - 20 Pometto et al., 1992 

Staphylocoocus epidermis - - - Chatterjee et al., 2010 

Microbacterium 

paraoxydans 

- - - Rajandas et al., 2012 

Arthrobacteria paraffineus - - 14 Albertsson et al.,1995 

Klebsiella pneumonia 

CHOO1 

- 18.4% - Awasthi et al., 2017 

Cont... 



Review of Literature 

 
 

44 

Type of Microplastic Microorganism Conditions Degradation 

percentage 

Days References 

Low Density 

Polyethylene 

Phormidium lucidium - 30% - Sarmah and Rout, 2018 

Aneurini baccilus sps. Temp-50˚C 58.2% 140 Skariyachan et al., 2018 

Oscillatoria subbrevis - 30% - Sarmah and Rout, 2018 

Brevibaccilus sps. - 46.6% 30 Skariyachan et al., 2018 

Bacilus cereus 

 

Synthetic Minimal media 

Temp-25˚C±2 

35.72% 90 Muhonja et al., 2018 

Brevibaccilus borstelensis 

 

Mannitol Free VB medium 

Temp-50˚C 

11% 30 Hadad et al., 2005 

Cupriavidus neactor Temp-25˚C 33.7% 21 Montazer et al., 2019 

Klebsiella pneumonia Temp- 70˚C 18.4% 60 Kotova et al., 2021 

Microbacterium 

paraoxydans 

Minimal Medium 

Temp- 50˚C±2 

61% 60 Rajandas et al., 2012 

Micrococcus luteus Minimal Medium 18.9% 21 Montazer et al., 2019 

Pseudomonas citronellolis 

 

Minimal Medium 

Temp-25˚C 

17.8% ---- Bhatia et al., 2014 

Rhodococcus ruber Minimal Medium 8% 60 Hadar and  Sivan., 2004 

Rhodococcous sp.  33% 21 Nanda and Sahu, 2010; Koutny et al., 2009 

Rhodococcus ruber C208 

 

Mineral Medium  

Temp-35˚C 

4% 60 Hadar and Sivan, 2004 

Pseudomonas sp. AKS2 Minimal Salt Medium 5% 90 Tribedi and Sil, 2013 

Bacillus subtilis H1584 Minimal salt Medium 1.75% 28 Harshvardhan and Jha, 2013 

Bacillus sphericus Nutrient Broth culture 2.5- 10% 8 Sudhakar et al., 2008 

High Density 

Polyethylene 

Achromobacter xylosoxidans Luria Bertani Broth Medium 

Temp-27˚C±2 

9% 50 Kowalczyk et al., 2016 

Alcanivorax borkumensis 

 

Bushnell Hass Broth 

Temp-27˚C 

3.5% 80 Delacuvellerie et al., 2019 

Aneurinibacillus sps. Minimal salt media 45.7% 140 Skariyachan et al., 2018 

Brevibacillus sps. Minimal salt media 37.2% ---- Skariyachan et al., 2018 

Arthrobacter sp. GMB5 ----- 12- 15% 14 Balasubramanian et al., 2010 
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Table 2.12 Different types of fungi that degrade various types of polyethylene. 

Microplastics Fungi Degradation 

efficiency (%) 

References 

Polyethylene Aspergillus niger 17.4% Raghavan and Torma,1992; Nandi and Joshi, 2013 

Aspergillus oryzae strain A5 36.4% Muhonja et al., 2018 

Aspergillus nomius RH03 6.63% Munir et al., 2018  

Aspergillus flavus 16.2% Nandi and Joshi., 2013 

Aspergillus sydowii 37.94% Sangale et al., 2019 

Aspergillus terreus 4.182% Sangale et al., 2019 

Zalerion maritimum (ATTC 34329) 56.7% Paco et al., 2017 

Phanerochaete chrysosporium ----- Browne et al., 2008 

Trichoderma viride RH03 5.13% Munir et al., 2018 

Fusarium sp. AF4 ------- Shah et al., 2009 

Aspergillus fumigatus 20.5% Alshehrei., 2017a 

Penicillium sp. 43.4% Alshehrei., 2017a 

Aspergillus glaucus 28.8% Kathiresan, 2003 

F. oxysporum --- Spina et al., 2021 

Low Density 

Polyethylene 

Aspergillus niger 5.8% Manzur et al.,2004; Pramila and Ramesh., 2011a; Jeeva and Kanchana, 2021 ; Raaman 

et al., 2012 

Aspergillus nominus 6.63% Munir et al., 2018 

Aspergillus oryzae 36.4% Muhonja et al., 2018 

Trichoderma viride 5.13% Munir et al., 2018 

Aspergillus japonicus 11.11% Raaman et al.,2012 

Aspergillus flavus MMP10 ----- Kunlere et al., 2019 

Aspergillus flavus MCP5 ----- Kunlere et al., 2019 

Penicillium pinophilum ----- Manzur et al., 2004; Pramila and Ramesh, 2011a 

Penicillium oxalicum NS4 36.60% Ojha et al., 2017 

Mucorcicinelloides ---- Pramila and Ramesh, 2011b 

Nodulisporium gregarium ---- Jeeva  and Kanchana, 2021 

Xylaria sp. ---- Jeeva and Kanchana, 2021 

High Density 

Polyethylene  

Cephalosporium sp. ----- Chaudhary and Vijayakumar, 2020 

Aspergillus tubingensis VRKPT1 6% Devi et al., 2015 

Aspergillus flavus VRKPT2 8.5% Devi et al., 2015 

Bjerkandera adusta TBB-03 - Kang et al., 2019a 

Penicillium oxalicum NS4  55.34% Ojha et al., 2017 

Aspergillus flavus 5.5% Kang et al., 2019b ; Taghavi et al., 2021 
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Table 2.13 Different types of algae degrade polyethylene. 

Algal species Conditions Degradation 

percentage 

Days References 

Navicula popula Bold Basal Medium Temp-27˚C 4.44% 30 Kumar et al., 2017; Ali et al., 2021 

Scenedesmus 

dimorphous 

Diatomic medium 

Bold Basal medium 

Temp-27˚C 

3.74% 30 Kumar et al., 2017 ; Ali et al., 2021 

Anabaena spiroides Blue green algae 11(BG 11) Medium 8.18% 45 Kumar et al., 2017; Ali et al., 2021 

Phormidium lucidium - - - Sarmah and Raut, 2018 

Oscillatoria subbrevis Temp- 27˚C 30% 42 Sarmah and Raut, 2018 

Nostoc carneum - - - Sarmah and Raut, 2019 
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Fig 2.10 Mechanism of polyethylene degradation by microorganisms. 

2.9.3 Degradation of polystyrene (PS)  

Polystyrene is a type of high molecular-weight synthetic aromatic polymer made from 

the monomer units of styrene (Sheikh et al., 2013). PS is applicable for making 

different types of plastic products such as yoghurt containers, cold drink cups and 

disposable plates or bowls etc. (Krueger et al., 2017).  The degradation efficiency and 

mechanisms of PS are carried out by the different types of bacteria, algae and fungi 

(Table 2.14 and Fig. 2.11). Various microorganisms have been reported with 

degradation rate such as Xanthomonas sp., Sphingobacterium sp., Enterobacter, 

Bacillus gottheilii and Rhodococous ruber with degradation efficiency 56%, 40% , 

12.4%, 5.8% and 0.8% and respectively to degrade MPs (Muhonja et al., 2018; Ali et 

al., 2021). Microorganisms use styrene as the sole carbon source for their growth. 

First monomer of styrene breaks into styrene oxide by using a specific enzyme, 

styrene monooxygenase. Further, the enzyme isomerase breaks styrene oxide into 

phenylacetaldehyde, and phenylacetaldehyde dehydrogenase is further converted into 

phenylacetic acid. Finally, phenylacetaldehyde coenzyme A ligase breaks 

phenylacetic acid into phenyl acetyl coenzyme A. To yield acetyl CoA in 

Tricarboxylic acid (TCA) cycle, phenyl-acetaldehyde coenzyme A experiences β- 

oxidation (Ho et al., 2018; Danso et al., 2019; Othman et al., 2021). 
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2.9.4 Degradation of polypropylene (PP) 

Polypropylene (PP) is similar to polyethylene and the most common petroleum-based 

microplastic comes after polyethylene (Jeya et al., 2013). It consists of a straight chain 

of a hydrocarbon containing carbon atom in the main ring structure. Due to the 

presence of individual carbon in ring structure PP becomes more stable in structure. It 

has a hydrophobic surface because of its arrangement in hydrocarbon and consists of 

three stereoisomers isotactic, syndiotactic and atactic. 

        

 

Fig 2.11 Molecular mechanism of degradation of polystyrene. 
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Table 2.14 Degradation of polystyrene (PS) by algae, fungi and bacteria species. 

Name of 

microplastic 

Microorganisms Species Conditions Degradation 

percentage 

Days References 

Polystyrene 

(PS) 

Fungus Cepahlosporium 

sps. 

Mineral Salt 

Medium 

Temp-28˚C 

2.17% 56 Chaudhary and Vijayakumar, 

2020 

Penicillium sps. Mineral Liquid 

Medium 

8.4% - Oviedo-Anchundia et al., 2021 

Mucor sps. Mineral Salt 

Medium 

Temp-28˚C 

1.81% 56 Chaudhary and Vijayakumar, 

2020 

Mortierella sps. Mineral Salt 

Medium 

Temp-18˚C 

2.2% 90 Oviedo-Anchundia et al., 2021 

Geomices sps. Mineral Salt 

Medium 

Temp-18˚C 

6.8% 90 Oviedo-Anchundia et al., 2021 

Bacteria Citrobacter sps. Bushnell Hass Broth 

Temp-30˚C 

-  Brandon et al., 2018 

Exguobacterium 

sps. 

Liquid Carbon Free 

Basal Medium, 

Mineral Medium 

7.4% 28 Yuan et al., 2020 

Serratia sps. 

 

- - - Lou et al., 2020 

Bacillus subtilis Bushnell Hass 

Broth, Nutrient 

Broth 

Temp- 37˚C 

20% 28 Ashimta et al., 2015 

Microbacterium sps. 

NA23, 

- - - Oikawa et al., 2003 

Cont... 
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Name of 

microplastic 

Microorganisms Species Conditions Degradation 

percentage 

Days References 

Rhodococcus ruber 

C208 

Mineral 

Medium,Synthetic 

medium 

Temp- 35˚C 

0.8% 56 Mor and Sivan, 2008 

Paenibacillus 

urinalis NA26 

- 22.8 60 Oikawa et al., 2003 

Bacillus sp. Nutrient Broth 

 

4- 6.4% 40 Auta et al., 2018 

Pseudomonas sp. Minimal Salt 

Medium 

Temp- 20˚C±2 

5% 28 Taghavi et al., 2021 ; Oikawa et 

al., 2003 ;Ward et al., 2006; 

Ashmita et al., 2015 

Staphylococcus 

 aureus 

Bushnell Hass Broth 

Temp-37˚C 

4.7% 30 Ashmita et al., 2015 

Streptococcus. 

pyogenes 

Bushnell Hass Broth 

Temp-37˚C 

8.3% 30 Ashmita et al., 2015 

Algae Chlamydomonas  
reinhardtii 

- - - Barone et al., 2020 

Pseudokirchneriella          

subcapitata 

- - - Padervand et al., 2020 

https://www.intechopen.com/chapters/54154#:~:text=Microscopic%20morphology,light%20microscope%20after%20Gram%20staining.
https://www.intechopen.com/chapters/54154#:~:text=Microscopic%20morphology,light%20microscope%20after%20Gram%20staining.
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Table 2.15 Degradation of polypropylene by bacteria fungi and algae.  

Microplastics Species Microrganisms Conditions Degradation 

percentage 

Days References 

Polypropylene Fungi Aspergillus fumigatus - 18.08% - Oliya et al., 2020 

Aspergillus sps. Rose Bengal Medium 

Temp-27˚C 

12% 90 Raaman et al., 2012 

Lasiodiploida theobromae Rose Bengal Medium 

Temp-27˚C 

- 90 Sheikh et al., 2015 

Aspergillus niger 

 

Rose Bengal Medium 

Temp-27˚C 

53.09% 90 Williams and Osahon, 2021 

Phanerochaete chrysosporium Mineral Salt medium 

Temp-30˚C 

4-5% - Jeya et al., 2013 

Paecilomyces lilacinus Rose Bengal Medium - 90 Sheikh et al., 2015 

Phanerochaete chrysosporium 

NCIM  1170 

Mineral Salt medium 

Temp-30˚C 

18.8% 360 Jeya et al., 2013 

Engyodontium album MTP091 Mineral Salt medium 

 

9.42% 360 Jeya et al., 2013 

Bacteria Stenotrophomonas panacihumi  

PA3-2 
Temp-37˚C ±2 12.8% 90 Jeon and Kim, 2016 

Pseudomonas sps. Bushnell Hass Broth 

Temp-25˚C 

9% 40 Jeon et al., 2021 

Lysinibacillus sps. JJY0126 Minimal medium 

Temp-30˚C 

3% 28 Mukherjee et al., 2016 

Brevibaccilus sps. - 56% - Skariyachan et al., 2018 

Bacillus sps. Bushnell Hass Broth 6% 40 Auta et al., 2018 

Rhodococcus sps. Bushnell Hass Broth 

Temp-25˚C. 

6% 40 Auta et al., 2018 

Staphyloococcus sps. - 9.5% - Oliya et al., 2020 

Bacillus cereus - 0.03% /day - Helen et al., 2017 

Sporosarcina globispora - 0.02% / day - Helen et al., 2017 

Actinomycetes - 0.08% - Helen et al., 2017 

Aneurinbaccilus sps. Minimal Medium - 140 Skariyachan et al., 2018 

Algae Spirulina - - - Khoironi et al., 2019 

https://link.springer.com/article/10.1007/s12275-010-0006-0
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Its hydrophobic property becomes more recalcitrant in the environment (Khoironi et 

al., 2020; Othman et al., 2021). It is degraded by different types of microorganisms, 

algae and fungi (Table 2.15). Polypropylene consists of C-C and C-H bond in the 

chemical structure. These bonds are too much stable in degradation in comparison to 

the ester bond. During degradation both C-C and C-H are oxidized by different types 

of microorganism’s secreted enzymes. Enzymes such as alkane hydroxylase, alcohol 

dehydrogenase and aldehyde dehydrogenase get attached to surface of PP and start the 

decomposition process resulting in reduce the number of the carbonyl group. Further, 

enzymes convert carbonyl groups into carboxylic acids (Ali et al., 2021) and later the 

enzymes break down the long carbon chain into small hydrocarbon and release alkane 

and alkenes. Microorganisms metabolize small hydrocarbons which pass them to cells 

and convert ultimately into carbon dioxide and water (Zhang et al., 2022). 

2.10 Role and mechanisms of different insects gut microflora in in-situ 

degradation of microplastic  

Different types of insects are considered as model organisms to study the in-insitu 

degradation of microplastic by their gut microflora (Table 2.16). Mechanism of 

microplastic degradation by insects divides into five different stages; a) Microplastics 

are actually gnawed by mouthparts and enter the gastrointestinal tract; b) 

microorganisms in the gastrointestinal tract stick to and deteriorate plastic polymers; 

c) the plastic polymers is depolymerized into fragments (oligomers) through oxidation 

or hydrolysis of enzymes offered by the host and intestinal microbiome; d) the host 

delivers bioemulsifying representatives which elevate the efficiency of microbial and 

host enzymes in attacking polymers; e) oligomer bonds are broken to form fatty acids; 

and f) fatty acids are decomposed by insects biological metabolism.  
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Table 2.16 Insects involved in the in-situ degradation of different types of microplastics. 

Insects Microplastics  Microflora  References 

Tenebrio molitor 

(Yellow worm) 

 

PVC Firmicutes, Tenericutes, Proteobacteria, Bacteriodetes, 

Actinobacteria, Chloroflexi, Saccharibacteria, SBR1093 

Peng et al., 2020 

PS, PU, PE Firmicutes, Bacteriodetes, Actinobacteria, Acidobacteria, 

Chloroflexi, Verrucomicrobiota   

Bulak et al., 2021 

PS Firmicutes, Proteobacteria, Bacteriodetes, Actinobacteria, 

Acidobacteria, Chloroflexi, Verrucomicrobiota, Myxococcota 

Jiang et al., 2021 

PVC Gammaproteobacteria, Proteobacteria, Enterobacterales, 

Aquabacterium 

Xu  and Dong., 2024 

Galleria mellonella 

( Greater waxmoth) 

PS Firmicutes, Proteobacteria, Bacteriodetes, Actinobacteria, 

Acidobacteria, Chloroflexi, Verrucomicrobiota, Myxococcota 

Jiang et al., 2021 

Zophobas atratus 

( Superworm) 

PS Firmicutes, Proteobacteria, Bacteriodetes, Actinobacteria, 

Acidobacteria, Chloroflexi, Verrucomicrobiota, Myxococcota 

Jiang et al., 2021 
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2.11 Conclusion  

MPs pollution has long been a source of consideration in ecology and environmental 

studies as well as in environmental engineering. Microorganisms associated in MPs 

degradation also contribute a better compassionate path to overcome microplastic 

pollution. The main challenges that occur in the degradation of microplastic by 

microbes also depend on the properties of microplastics. Plastic properties play an 

important role in the degradation of plastic particles or their colonization on the 

surface. Different types of microorganisms involved in the biodegradation process 

and the degradation of plastic depends upon the enzymatic reaction produced by 

microorganisms. This review briefly highlights the types and extraction techniques of 

microplastics from the agriculture soil, mechanism of degradation process and recent 

aspects of the biological degradation of MPs along with the microbes associated for 

MPs degradation mechanisms. Different strains of bacteria, fungi and algae play a 

role in breakdown the larger plastic particles into smaller ones. The present study also 

highlights the role of extracellular and intracellular enzymes produced by microbes 

for the degradation of microplastics.Further research explore for degradation of 

different types of plastics polymer by employing different arthropods, isopods, snails, 

invertebrates, and also study their intestinal microflora that help to degrade to 

microplastics. Apart from this further research proceed on the ecotoxicological effects 

of plastic polymers on insects.   
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3.  HYPOTHESIS  

Plastic pollution increases day by day due to its low cost, more ductile and high 

durability. Our society permeates use of plastics product in each and every aspects of 

life but people do not aware about its harmful effects. Plastic produces various 

harmful toxic effects to human being as well as terrestrial ecosystem. Nowadays, 

plastics become a hot topic due to its excess use. Large amount of plastic enters to the 

agriculture field through sewage sludge, wastewater irrigation and plastic mulching. 

Earthworm act as ecological engineer in agriculture field but tiny particles of plastics 

easily ingested and cause many changes in their body such as oxidative stress, 

neurotoxic effects, gut micro biome dysbiosis, growth inhibition and tissue damage. 

Therefore, the present study designed to investigate the effects of polypropylene on 

earthworm species in terms of biomass, reproduction, oxidative stress, gut micro biota 

and their potential to degraded polypropylene.    

For best of my observation till date there is no study reported on this designed project 

work on toxic effects and degradation of polypropylene by gut microbiota of two 

different species of earthworm i.e Eisenia fetida and Lampito mauritii.  
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4. OBJECTIVES 

1. To identify and quantify the microplastics from the agricultural soil situated 

near to industrial area. 

2. To study the effect of microplastics on the growth and fecundity of Indigenous 

and Exotic earthworm species.  

3. To study the antioxidant activities by performing biochemical assay.  

4. To identify microplastic degrading bacteria from earthworm gut by 

metagenomic analysis.  

5. To study the degradation of microplastic in the gut of earthworm by 

microorganisms through FTIR and SEM techniques. 
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5.  MATERIALS AND METHODS  

Experiments were aimed to identify and quantify the microplastics from the 

agricultural soil situated near to industrial area. Apart from this the tolerance potential 

of earthworm in terms of growth, fecundity and oxidative stress towards the 

polypropylene microplastic was assessed. Molecular docking and earthworms gut 

microrganisms were also studied. 

5.1 Earthworm species  

5.1.1 Eisenia fetida  

Healthy and mature well developed clitellated earthworms having weight 200-400 mg 

were procured from vermicomposting unit of Guru Nanak Dev University, Amritsar. 

5.1.2 Lampito mauritii 

Adult earthworms were collected from Botanical garden of Guru Nanak Dev 

University, Amritsar and its culture was maintained in the garden soil by maintaining 

the moisture level at 50 to 60%.  

5.2 Microplastics 

Polypropylene microplastic was purchase from Indian Oil Corporation Limited, 

Panipat (India) and Fig 5.1a shows the polypropylene microplastic used for 

experimental study. 

5.3 Artificial soil  

Artificial soils were purchased from the Kamal Traders, Preet Nagar, Sodal road, 

Jalandhar (Punjab) city. Artificial soil consists of mixture of three different soil 

components (Fig 5.1b). 

 Industrial Quatrz Sand (70%) 

 Coco peat or sphagnum peat (10%) 

 Clay (Kaolinite clay) (20%) 

The above content was thoroughly mixed and pH of artificial soil was adjusted (pH-

6.0) by adding calcium carbonate (CaCO3). Distilled water was employed to maintain 

the moisture (35%) of soil according to OECD guidelines (OECD. 1984).In this study 

artificial soil was used as a control.  
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Fig 5.1(a) Polypropylene microplastics used for the experimental study b) The 

mixture of artificial soil (Kaolinite clay, Sand and Coco peat). 

5.4 Collection of soil sample  

Three plastic industries were selected for sampling i.e. Amritsar (Frontiers Pvt. Ltd.), 

Jalandhar (Aman Polymers Pvt. Ltd.) and Kapurthala (Gupta Traders Pvt. Ltd.). Soil 

samples were collected from different sites near plastic product manufacturing 

industries for extraction of MPs. Twelve soil samples (four from each site) were 

collected by doing bore hole up to 25 cm with the help of spade. All soil samples were 

stored in polyethylene zip lock bag and properly labeled. Soil samples were dried, 

sieve with 2 mm mesh and stored in polyethylene zip lock bags for further physico-

chemical analysis and microplastic extraction. 

5.5  Extraction of MPs by density floatation method  

5.5.1 Preparation of reagent  

NaCl was prepared by dissolving 337 g in 1000 ml of distilled water. 

Salt  Density of salt (g/cm-3) Weight of NaCl added in 1000 ml 

Sodium Chloride (NaCl) 1.2 337 g 

5.5.2 Pre-treatment 

To achieve the optimal separation of different size of microplastics from soil, the 

various steps were involved such as removal of organic matter by performing pre 

digestion before flotation. 

5.5.3 Pre digestion (Organic matter removal) 

The first step of extraction of microplastics from soil was the removal of organic 

matter by performing mild digestion. Digestion treatments were conducted to digest 
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low and high organic matter concentration of soil. Initially 30% hydrogen peroxide 

(H2O2) was employed as reagent for oxidation. Precisely, 10g of soil sample were 

taken in conical flask for digestion in triplicate manner. Gradually add 200 ml of 30% 

H2O2 with slowly increment in the conical flask containing sample. To avoid the 

excessive increase in temperature, the conical flasks were placed in cold water bath. 

When the temperature stays constant, the conical flasks were heated on the hot plate 

at 70˚C and continuously stirred to avoid the colliding of H2O2 and soil. At the time of 

excessive froth few drops of butyl alcohol was added to the flask. Heat the sample for 

approximately 12 hrs until its colour turned to greyish and dry. After digestion, flask 

were allowed to cool down and prepared to carry floatation process. 

5.5.4 Density Separation and floatation of Microplastics (MPs) 

Density separation method was regularly employed to separate small size of plastics 

particle present in the soil, due to less density of microplastics. In this method, 

Sodium chloride (NaCl) was employed as a density separation solution. Prepare NaCl 

solution by dissolving 300 ml distilled water. After pre digestion of soil sample, add 

200 ml of NaCl to each conical flask and flask was tightly sealed for shaking in 

orbital shaker for 1 hr at 200 rpm. After shaking, allow it to stand for 48 hrs and then 

decanted 150 ml of supernatant from the conical flask. Again add remaining 100 ml 

of NaCl solution to conical flask and repeat shaking with decrease in shaking time (30 

min) and again allow settle down and collect the supernatant. 

5.5.5 Floatation process 

For floatation process, supernatant containing microplastics filtered by employing 

vacuum filtration using Whatman filter paper (pore size 11µm). Floatation process 

was repeated for 3 times until no plastics particles were seen floated or adhered 

around the sides of conical flask. After filtration, the filter paper was placed in a 

cleaned covered petriplates and dry in oven at 60˚C for 1 hr. 

5.5.6 Post- oxidation digestion and Purification of MPs 

After filtration, the filter paper containing MPs were washed with 30% H2O2 in a 

conical flask. Prior to the qualitative analysis, organic matter was eliminated from soil 

by performing post- digestion for extraction of microplastics from agriculture soil. 

Then 30%  H2O2 was added and flask was sonicated for 30 min and placed flask in ice 

bath. Filtered the solution by employing filter paper and dried the filter at 50-60˚C. 
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The extracted microplastics on filter paper were visualize under stereomicroscope and 

identified the extracted microplastics by Fourier transform infrared spectroscopy –

attenuated total reflectance (FTIR-ATR). 

5.5.7 Identification, detection and characterization of MPs  

The detection of extracted microplastics filters were stained with Nile Red dye (NR). 

NR dye was prepared by dissolving 1 mg/ml concentration of solvent (methanol). 

Add 2-3 drops of dye on filter paper and incubate the filter paper for 30 min. Dry the 

filter paper and examine the NR stained microplastic particles irradiated with 

wavelength of light employing UV lamp. Microplastics particles fluoresce when 

irradiate under red light and excitation wavelength varied from 540-580 nm and 

emission wavelength 600-660 nm. Extracted microplastics particles were observed 

and counted under fluorescence microscope (Nikon model SMZ 18, Japan). The 

shape, size and color of microplastics were recorded by Image J processing program. 

Different types of MPs with different shape include fibres, fragments and other 

miscellaneous shapes (size range from 100 µm – 1 mm). MPs particles were 

identified by using attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR Shimazdu model IR Tracer 100, Japan) with 64 scans in the 

spectral range of 4000 – 550 cm-1 and at resolution 4 cm-1. All obtained spectra were 

compared with the Shimadzu libraries database with at least 80% matching score for 

spectra. X-ray diffraction spectra of different types of microplastics were obtained by 

X-ray diffractometer (Bruker Company model D8 discover, Germany) and analysis 

were performed in the range 1˚to 80˚ under 2Θ diffraction angle. 

5.5.8 Recovery Test  

The recovery test was performed in NaCl solution for different types of microplastics 

extracted from soil. The soil samples were dry at 72˚C and then all dried soil sample 

were sieved three-four times to remove all the microplastics particles in soil. For 

recovery test 10 pieces of each type of microplastics were add in 50 g of clean sieved 

soil and add 200 ml of saturated NaCl solution and stirred the soil containing MPs 

particles and NaCl solution at 40˚C. For further floatation, soil sample was stirred at 

600 rpm for 5 min. MPs were recovered from soil by using a stainless stell mesh size 

of 0.1 mm. Different types of microplastics particles were collected from soil by using 

mesh and place the MPs particles on petriplates. MPs particles were counted and 
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identified by their shape, size and colors. This test was repeated several times for 

accurate results.  

5.6  Physico-chemical analysis  

Physico-chemical investigation of soil samples was done at the beginning of the 

experiment to measure organic carbon, pH, electric conductivity (EC), nitrogen, total 

dissolved solids (TDS), phosphorus, potassium, lithium and sodium  

5.6.1 pH 

5g dried soil sample was dissolved in 50 ml of de-ionized water (1:10 w/v) and 

vigorously shaken for 40 min on an orbital shaker. Then supernatant was collected 

and finally the pH was measured by using digital pH meter (PCS Tester 35 series, 

Eutech Instruments,).  

5.6.2 TDS 

5g dried soil was dissolved in 50ml of de-ionized water (1:10 w/v) and continuously 

shake for 40 min on an orbital shaker. TDS was measured from the collected 

supernatant by using (PCS Tester 35 series, Eutech Instruments).The values were 

expressed in unit mg/I. 

5.6.3 EC  

5g dried soil was dissolved in50 ml of de-ionized water (1:10 w/v) and shake for 40 

min on an orbital shaker. Then supernatant was collected and measure the EC by 

using (PCS Tester 35 series, Eutech Instruments). The values were expressed in unit 

mS/cm. 

5.6.4 Organic Carbon  

Organic carbon content was estimated by the method of Nelson and Sommers (1996). 

Add 1g dried soil sample in pre-weighed crucibles and soil sample was ignited at 

550˚C for 60 min. Then allowed to cool down the muffle furnace and weighed the ash 

content. Calculate total OC in soil sample by using formula. 
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5.6.5 Nitrogen 

Total Kjeldhal Nitrogen (TKN) was estimated by the method of Bremner and 

Mulvaney (1982).  

(i)  Chemicals and reagents  

a) Digestion mixture: Selenium dioxide (SeO2), copper sulphate (CuSO4) and 

potassium sulphate (K2SO4) was mixed in ratio 1:4:10 respectively.  

b)  Boric acid (H3BO3) indicator solution: 20g of H3BO3 acid was dissolved in 

700 ml of hot ultrapure water. Cooled H3BO3 solutions. Indicator solution was 

prepared by dissolving 100 mg bromocrescol green and 50 mg methyl red in 

100 ml of ethanol. Transferred in volumetric flask and add 700ml of H3BO3 

solution. Comprehensively mix the solution in volumetric flask and made final 

volume to 1 lt by adding ultrapure water. 

c) Sodium Hydroxide (NaOH) 40% solution: Weigh 40g of NaOH and dissolved 

in 100 ml of ultrapure water to made up 40% NaOH. 

d) Titration solution: 0.01N Hydrochloric Acid. 

e) Concentrated sulphuric acid (H2SO4). 

(ii)  Digestion of soil 

a) 0.5g of dried soil was placed in flask and added 15 ml of digestion acid 

mixture. Digestion acid mixture was prepared by dissolving 1g digestion 

mixture in 15 ml concentrated H2SO4. 

b)  The flask containing solution was heated at low temperature until the color of 

solution and sample turned into light yellow green. 

c) Cool digested sample solution and add ultrapure water to raise the volume 

upto 50 ml. 

(iii)  Distillation  

a) 10 ml aliquot of digested soil sample was reacted with 10 ml of 40% NaOH 

and run in Kjeldhal apparatus. 

b) 5 ml H3BO3 acid indicator added in flask and placed beneath the condenser of 

apparatus, tip of the condenser properly soaked into indicator to ingest the 

liberate ammonia.  

c)  Following this, the distillation was started and approximately 50 ml of 
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condensate was collected in the flask. 

d) Remove the flask before stopping the heat to avoid back sucking of liquid. 

e)  The condensate indicator in the flask titrated with 0.01N HCl until the color 

turned from greenish-blue to permanent light pink. 

(iv)  Calculation 

Nitrogen (%  

5.6.6   Phosphorus 

              Phosphorus content of soil was determined by using the John (1970) method. 

(i)  Chemicals and reagents 

a) Stock solution: 20 g ammonium molybdate was dissolved in 300 ml of de-

ionised water. Gently 450 ml of 10N H2SO4 was added with proper stirring, 

100 ml of 0.5% antimony potassium tartarate (C4H4K2O6) was prepared and 

added to the solution. Final volume of solution was made up to 1 litre by using 

de-ionized water and stored in a dark colored bottle.  

b) Standard solution: 1000 mg/l standard stock solution was prepared by 

weighing 0.439 g potassium dihydrogen  phosphate (KH2PO4), dissolve in 100 

ml of de-ionised water and standard curve was prepared in spectrum of 0.2, 

0.4, 0.6, 0.8 and 1.0 mg/l. 

c) Working Reagent: This reagent was freshly prepared by dissolving 1.5 g 

ascorbic acid (C6H8O6) in 100 ml stock solution.  

d) Diacid mixture: Concentrated nitric acid (HNO3) and perchloric acid (HClO4) 

was mixed in ratio 4:1 (v/v) respectively. 

(ii)  Procedure 

a) 0.5g dried soil sample and 15 ml of diacid mixture was added to the digestion flask. 

Further the whole mixture was digested in digestion chamber until it was colorless. 

Dilute the content by using 30ml de-ionized water, after filtered the solution by using 

Whatman filter paper and relocate to a volumetric flask and final was made by adding 

de-ionised water.  
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b) 1ml aliquot was taken from each digested sample in volumetric flask of 50 

ml and added 5ml freshly prepared working reagent. Then deionised water 

was added to make final volume 50ml. After placing for 30 min, absorbance 

was taken at 880 nm by suing a Systronics UV-Visible spectrophotometer 

model-117.    

5.6.7  Potassium, Sodium and Lithium  

Potassium (K), Sodium (Na) and Lithium (Li) were estimated according to American 

Public Health Association Guidelines (APHA guidelines, 1998) by using Digital 

Flame photometer. Diacid digested soil samples were taken from previously prepared 

in case of phosphorous. 

a) Standard Stock solution for K, Na and Li 

1000 ppm (1000mg/l) stock solution of K and Na was prepared by separately 

dissolved 0.191g of potassium chloride (KCl) and 0.254g of sodium chloride (NaCl), 

152.7 mg of lithium chloride (LiCl) in 100 ml of deionised water.0.5g dried soil were 

dissolved in all solutions. Standard curve was prepared in the range of 20, 40, 60, 80 

and 100 mg/l for K, Na and Li.  

5.6.8 Heavy metal analysis 

The content of Iron (Fe), Zinc (Zn), Chromium (Cr), Cadmium (Cd), Lead (Pb), and 

Manganese (Mg) in soil samples were determined from the diacid digested samples 

by using Microwave Plasma Atomic Emission Spectrophotometer (MP-AES 4200, 

Agilent technologies).Diacid digested soil samples were taken from previously 

prepared in case of phosphorous. 

5.7  Microplastic treatment on earthworm 

Healthy and mature earthworms of both species (Eisenia fetida and Lampito mauritii 

were collected from the acclimatized culture and earthworms were weighed by using 

measuring scale prior to the experiment. Ten weighed earthworms were added in each 

tray having different concentrations of microplastics (1000, 4000, 8000 and 16000 

mgkg-1) and control (without microplastic) in triplicate manner for 28 days (Fig 5.2). 

Spread 5gm of partially decomposed cow dung in each tray as nutrient to earthworms. 

Earthworms from each tray was withdrawn and weighed on day 7, 14, 21 and 28th 

day. At 28th days the numbers of coccons from each tray were counted and weighed, 
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again incubate for another 28 days. On 56th day the numbers of earthworm’s juveniles 

were counted from each tray.  

 

Fig 5.2 Experimental setup for study the effects of different concentrations of 

polypropylene on earthworms.  

 

5.8  Antioxidant enzymatic assay (Biochemical Assay) 

 Four antioxidant enzymes Superoxide Dismutase (SOD), Catalase (CAT), 

Glutathione–S-Transferase (GST), Guaicol Peroxidase  (POD) were studied to 

know the the oxidative stress in earthworm tissues after the treatment with 

microplastics. 

5.8.1 Preparation of reagents 

a) 50 mM Sodium Carbonate Buffer (pH 10.0)  

Stock 

solution  

Chemical name Weight of 

chemical 

Volume 

Stock A Sodium carbonate (Na2CO3) 0.529 g 100 ml 

Stock B Sodium bicarbonate (NaHCO3) 0.420 g 100 ml 

Procedure: Sodium carbonate buffer was prepared by using 55 ml of stock solution A 

of Na2C03 and 45 ml of stock solution B of NaHCO3 and make final volume 100 ml 

by mixing both.  

b) 20 mM Hydroxylamine Hydrochloride 

Chemical name  Weight of chemical Volume 

Hydroxylamine Hydrochloride 

(CIH.H3N0)  

1.38 g 100 ml 
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Procedure: 1.38 g Hydroxylamine hydrochloride was mixed in 100 ml of buffer 

(Sodium carbonate) to make stock solution (200 mM). Add 200 µl of stock solution in 

2 ml of reaction mixture.  

c) 96µM of Nitroblue Tetrazolium  

Chemical Name  Weight of chemical Volume 

NBT  0.078 g 100 ml 

Procedure: 0.078 g of NBT was mixed in 100 ml of buffer (Phosphate) to make stock 

solution (960 µM). Add 200 µl of stock solution in 2 ml of reaction mixture. 

d) 0.6% Triton X-100  

Chemical Name  Quantity of chemical (ml) Volume 

Triton- X-100 6 94 ml 

e) 50 mM Phosphate Buffer (pH -7.0) 

Stock Solution Chemical name Weight of 

chemicals 

Volume 

Stock A  Dipotassium hydrogen 

orthophosphate (K2HPO4) 

0.684 g 100 ml 

Stock B  Potassium dihydrogen 

orthophosphate 

(kH2PO4) 

0.870 g 100 ml 

Procedure: 50 mM Phosphate buffer was prepared by mixing 39 ml of stock A of 

K2HPO4 and 61 ml of stock solution B of KH2PO4 and make final volume 100 ml. 

Adjust pH 7.6 by using pH meter (Systronic, model 361).  

f) 30 mM Hydrogen Peroxide (H2O2)  

Chemical name Quantity of chemical (ml) Volume 

Hydrogen Peroxide  3 100 ml 

Procedure: 3 ml H2O2 was dissolved in 100ml of buffer (Phosphate) to make stock 

solution (300 mM). Add 200µl of stock solution in 2ml of reaction mixture to make 

final concentration of 30mM.  
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g) 20 mM Guaiacol solution 

Chemical Name Quantity of chemical (ml) Volume 

Guaiacol 2.262 100ml 

Procedure: 2.262 ml of Guaiacol was dissolved in 100ml of buffer (Phosphate) to 

make stock solution (200 mM). Add 200µl of stock solution in 2ml of reaction 

mixture.  

h) 20mM Hydrogen Peroxide (H2O2) 

Chemical name Quantity of chemical (µl) Volume 

Hydrogen Peroxide  204 100 ml 

Procedure: 204 µl H2O2 was mixed in 100 ml of buffer (Phosphate) to make stock 

solution (200 mM). Add 200 µl of stock solution in 2ml of reaction mixture. 

i) Methanol (80%) 

Chemical Name  Quantity (ml) Volume 

Methanol 80 100 ml 

 80% methanol was prepared by dissolving in 20ml of distilled water to make 100ml 

final volume. 

j) 10mM 1-chloro, 2, 4- dinitro benzene (CDNB)  

Chemical name  Weight of chemical Volume 

CDNB 2.02 g 100 ml 

Procedure: 2.02 g CDNB was mixed in 100 ml of buffer (Phosphate) to make stock 

solution (100 mM). Add 200 µl of stock solution in 2 ml of reaction mixture. 

k) 10 mM Glutathione reduced  

Chemical name  Weight of chemical Volume 

Glutathione Reduced  3.073g 100 ml 

Procedure: 3.073 g was mixed in 100 ml of buffer (Phosphate) to make stock solution 

(100 mM). Add 200 µl of stock solution in 2 ml of reaction mixture. 
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5.8.2 Tissue Extract Preparation 

 Oxidative stress was measured on day 7, 14, 21 and 28 of polypropylene exposure. 

On the respective day earthworms were collected from each tray. All the collected 

earthworms were kept in beakers having moist filter paper for 24 hrs to empty the gut. 

Homogenize 5 g of earthworm tissue in 5 ml of 50 mM Sodium carbonate buffer. 

After homogenization, centrifuged the tissue extract at temperature 4˚C for 30 min. 

Supernatant was collected to estimate the enzymatic activity.  

5.8.3 Superoxide Dismutase assay 

Superoxide dismutase assay was estimated by the method described by Kono (1978). 

The ability of the enzyme inhibits the photochemical reduction of nitroblue 

tetrazolium (NBT) dye to superoxide radicals produced by auto-oxidation of 

hydroxylamine. 

Procedure 

Take (300 µl) tissue extract in a cuvette and 50mM Phosphate Buffer (1000 µl) was 

added, 96 µM NBT (300 µl), 20 mM (200µl) and 0.6% Triton (200 µl) adjust pH 6.0 

in a cuvette. The change in absorbance was estimated through UV-Visible 

spectrophotometer (Shimazdu UV-1800) at 560 nm for interval of 120 sec at 

temperature 27˚C.   

(vi) Calculations of SOD enzyme assay 

 

5.8.4 Catalase (CAT) Assay 

Catalase assay was estimated by the describe method of Aebi (1984) with slight 

modifications. CAT plays an important role to convert H2O2 to water (H2O) and 

oxygen (O2). The principle of this biochemical assay is based on the reaction of 

catalase with H2O2. 

Procedure  

Take (70 µl) tissue extract in a cuvette, add 50 mM Phosphate Buffer (1600 µl) and 

30 mM H2O2 (330 µl) cuvette. The change in activity and absorbance was recorded at 

240 nm for 60 sec interval at temperature 27˚C.   
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Calculation 

CAT enzyme activity was estimated by using molar extinction value 40 mM-1cm-1. 

 

5.8.5 Guaiacol Peroxidase (POD) 

Guaiacol peroxidase assay was estimated by described method of Xu et al (2013) with 

slight modifications. The principle is based upon the conversion of lipid 

hydroperoxidase to alcohols and H2O2 to H2O. 

Procedure  

Take (70 µl) tissue extract in a cuvette, add 50 mM Phosphate Buffer (1000µl), 

20mM Guaiacol (450 µl), 20 mM H2O2 (450 µl) in a cuvette. The change in 

absorbance was recorded at 436 nm for 1 min interval at temperature 27˚C.  

Calculations  

POD enzyme activity was estimated by using molar extinction coefficient value 

26.6mM-1 cm-1. 

 

5.8.6 Glutathione-S-Transferase (GST) assay  

This assay was estimated by the described method of Habig and Jakoby (1981). The 

principle of this assay is based on the chemical reaction of 1-chloro, 2, 4- dinitro 

benzene (CDNB) with another reagent reduced glutathione (GSH).  

5.8.6.1 Preparation of reagents  

Procedure  

Take (70 µl) tissue extract in a cuvette, add 50mM Phosphate Buffer (1300µl) ,10mM 

CDNB (315µl), 10Mm Glutathione reduced (315µl) in a cuvette. The change in 

absorbance was recorded at 340 nm for 1 min interval at temperature 27˚C. 

Calculations 

GST enzyme activity was estimated by using molar extinction coefficient value 9.6 

mM-1cm-1. 
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5.8.7 Molecular docking  

Molecular interactions between polypropylene and antioxidant enzymes (SOD, POD, 

CAT and GST) were studied to know the effects of polypropylene on the enzyme 

activities The Glide module of Schrödinger software (Schrödinger Release 2022-1: 

Maestro, Schrödinger, LLC, New York, NY) was used to explore different binding 

sites available on these enzymes. The 2D sketcher of Maestro was employed to draw 

the structure of Polypropylene, which was then optimized using Lig prep. The 

structures of SOD (PDB Id: 1CBJ; resolution 1.65 Å), POD (PDB Id: 1GZA; 

resolution 2.06 Å), CAT (PDB Id: 1TGU; resolution 2.80 Å), and GST (PDB Id: 

1M0U; resolution 1.75 Å) were obtained from the Protein data bank (www.rcsb.org) 

and imported into Maestro. The protein structures were optimized using Protein prep 

wizard, which involves eliminating water molecules, inserting lost hydrogen atoms, 

and other pre processing steps to clean up the protein structure. The sitemap tool of 

Glide were employed to identify the optimal SOD, POD, CAT, and GST binding 

pockets, and a grid was generated for each binding pocket using the receptor grid 

generation wizard. The prepared structure of polypropylene was docked into the 

binding sites obtained from sitemap using Glide docking module in Schrodinger. The 

binding affinities of the polypropylene at different site were then compared using the 

Glide-Score provided by docking studies. The 3D enzyme-ligand interactions were 

visualized using XP-visualizer.  

5.9 To identify the microplastic degrading bacteria from earthworm gut. 

Before experiment, the artificial soil was sterilized to free from contamination and all 

the earthworms were kept for 24 hrs in glass beakers with moist filter paper for 

starvation. Earthworms were washed with distilled water and wipe with 70% ethanol. 

Ten mature earthworms were placed in each tray without microplastics (Control) and 

with microplastics concentration (16000 mgkg-1) in triplicate (Zhou et al., 2020). 

These concentrations were selected on the basis of previous reported study to check 

the effects of microplastic concentration i.e. 9000 mg on gut microorganisms of 

earthworm. After 28 days the earthworms were collected from each tray to study the 

intestinal microbial community.  

 

http://www.rcsb.org/
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5.9.1  Isolation of earthworms gut to isolate DNA for metagenomic studies to assess 

microbial diversity. 

All earthworms were kept for 24 hrs starvation period on wet filter paper to egest all 

the ingested particles. Entire body of earthworms were washed with distilled water 

and again washed with 70% ethanol or 5% Sodium hypochlorite solution. Before the 

isolation of gut, earthworms were defrosted and kept under low temperature (-16˚C). 

Earthworms were dissected from clitellum part to end part i.e anus with sterilized 

scissors.  

5.9.2  Gut metagenomic analysis using Amplicon sequencing  

The metagenomic DNA was extracted using Blood and Tissue (Qiagen miniprep kit, 

USA) following manufacturer’s instructions. The quality of isolated DNA was assessed 

on 0.85% agarose gel and the concentration was quantified using nanodrop 

spectrophotometer.  Polymerase Chain Reaction (PCR) amplification of the hypervariable 

region (V3-V4) of the 16s rDNA gene was performed with forward and reverse primer 

(5'CCTACGGGNGGCWGCAG3') (5'GACTACHVGGGTATCTAATCC3') 

respectively. The specific sequences were selected according Klindworth et al (2013). 

PCR programming was carried as denaturation with following parameters 5min at 95˚C, 

followed by 35 cycles at 95˚C for 50 sec, annealing and elongation was perform at 52˚C 

and 72˚C for 40 sec and 60 sec respectively with 72˚C final extension for 10 min.The 

amplified PCR products were combined in equal fractions and purified using Qiagen gel 

extraction kit (Qiagen, Germany). Multiplexed pair-end libraries (250×2bp) were 

prepared using the illumine DNA Prep Kit (Illumina, San Diego, USA), followed by 

sequencing on the Illumina Novaseq 600 platform (Illumina, San Diego, USA) at Molsys 

Pvt. Ltd. Bangalore (India). The obtained nucleotide sequences were deposited in NCBI 

database with accession number (PP815664, PP815665 and PP815665).  

5.9.3  Bioinformatic Analysis  

The obtained raw sequences (fastq files) were processed using the open-source 

Quantitative Insights into Microbial Ecology (QIIME2 2020.8) package (Bolyen et al. 

2019). Demultiplexing and quality filtering on the rawreads was done using the q2-

demux plug-in followed by denoising with divisive amplicon denoising algorithm 

Divisive Amplicon Denoising Algorithm (DADA2) viaq2-dada2 (Callahan et al., 

2016). Amplicon sequence variants (ASV) were aligned by MAFFT via q2-alignment 
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(Katoh and Standley, 2013) and were used to construct phylogeny with fast-tree (via 

q2-phylogeny) (Price et al., 2010). Operational Taxonomic Unit (OTU) clustering was 

performed at 3% divergence (i.e. 97% similarity) using VSEARCH (via q2-vsearch) 

(Rognes et al., 2016). Taxonomy was assigned using the q2-feature-classifier 

(Bokulich et al., 2018) against the Greengenes 13_8 at 99% OUT reference sequences 

(McDonald et al., 2012). To obtain more in-depth detail of different metabolic 

pathways and enzymes involved, the functional abundances of amplicon sequences 

were predicted using Phylogenetic Investigation of Communities by Reconstruction 

of Unobserved States, PICRUSt2 v2.3.0 (Douglas et al., 2018). 

5.10  To study the degradation of microplastic in the gut of earthworms by 

microorganisms 

Polypropylene exposure experiment was aimed for 4 weeks (28 days) to know the 

degradation of microplastic in the gut of earthworm. Prior to the experiment, the 

earthworms of both species (E. fetida and L. mauritii) were put 24 hrs for degutting 

and soil was sterilized by using autoclave. 10 healthy mature well developed 

clitellated earthworms were added in each tray in triplicate manner containing 

different concentrations of microplastic viz. 1000, 4000, 8000 and 16000 mg kg-1and 

control (without microplastic). For degradation of PP, particles were extracted from 

casts, degutting and soil. Everyday ten earthworms cast were collected from each tray 

and store in petriplates upto 28 days. After 28 days, collected cast were employed for 

analysis. PP microplastic concentration in earthworms cast was quantified by using 

the method of Erni-Cassola et al (2017) and Meng et al (2023) with slight 

modifications. For extraction of microplastic from cast add 30% H2O2 in a flask 

containing casts and heat the flask to digest organic matter for 24 hrs time period at 

optimum temperature 50˚C. After 24 hrs flasks were placed for desiccation for 48 hrs 

at 60˚C temperature. 30 ml of saturated NaCl solution was added in the flask 

containing casts were sonicate for 1 hrs and stirred cast solution for 30 min and then 

allow settling for 1day (24 hrs). After 24 hrs collect the supernatant in beakers and 

repeat this step for three times to extract PP microplastic. Supernatant were filtered by 

using filter paper and dry the filter paper in oven at 40˚C to measure the constant 

weight of PP in earthworms casts. Similarly microplastics were extracted from soil by 

using same method. On 28th day all the earthworms were collected from each tray, 

collect the degutting content and extract PP particles by using similar method. 
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Extracted microplastic particles from the soil, cast and degutting were employed to 

know the degradation of PP by ATR-FTIR to study the change in functional groups. 

5.11  Statistical Analysis  

For statistical analysis different software includes SPSS (version 20), Microsoft Excel 

(version 14) and GraphPad prism (version 8) was used to done the analysis. Analysis 

of variance (One way anova) was use to check the significant variations between 

different concentrations in biomass, fecundity and interaction with earthworm 

enzymes followed by using Tukey’s (HSD). All the values are presented in mean, 

standard deviation and standard error. All chemical structures and degradation 

mechanism was draw by using Chem Draw Ultra (version 7.0.4). For microorganisms 

study all the downstream and statistical analysis was performed in R language (R core 

team, 2016). The significance level between the control and polypropylene were 

tested by Wilcoxon Rank Sum Tests at a significant level of less than 5% (p ≤ 0.05). 

Alpha diversity was calculated by using R microeco v0.20.0 packages. All the tests 

were performed using microeco package in R and plots were made using ggplot2 

package v 3.4.2. Furthermore Bray-Curtis distance was used to calculate beta-

diversity. 
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6.  RESULTS AND DISCUSSION  

Punjab is also known as “Food Basket of the Country” or “Granary of India” and 16th 

largest state according to population. The cultivated land is approx 95.7% (4.023 

million hectare out of 5.036 million hectare). Punjab is famous for different types of 

crops production such as wheat, sugarcane, rice, cotton, maize and different types of 

fruits. It consists of 23 districts and 237 cities. Out of which Kapurthala, Jalandhar 

and Amritsar are known for manufacturing of plastic items and these manufacturing 

industries dispose the waste into rivers and canals etc (Fig 6.1). These wastes have 

been used for agriculture purpose through wastewater irrigation. Farmers also use 

plastic mulch and sewage sludge in agriculture fields. Use of plastic through different 

pathways changes the physical and chemical properties of soil.   

6.1  Physico-chemical analysis of agriculture soil near industrial area 

Plastic pollution increase day by day and causes several deleterious effects to human 

beings as well as terrestrial ecosystem. Therefore it is important to study the effects of 

plastics on soil physical and chemical properties by studying the different parameters 

such as pH, EC (Electrical Conductivity), TDS (Total Dissolved Solids), OC (Organic 

Carbon) (Table 6.1) and different elements like Nitrogen, Phosphorus, Potassium, 

Sodium and Lithium. The heavy metals content were also measured from all soil 

samples like Iron, Zinc, Chromium, Copper, Cadmium and Lead were reported in soil 

samples (Table 6.2). 

The pH of all soil samples were found to be significantly different (p< 0.05). The 

average pH value at sampling sites A1-A4 was 8.26±0.07, J1-J4 was 8.07±0.07 and 

K1-K4 was 7.36±0.06. The average EC value of A1-A4 sites were 146.41±1.03, J1-J4 

was 136.5±1.19 and K1-K4 was 209.62±1.71.The average value of TDS and OC in all 

samples were found to be significantly different (p < 0.05). Similarly the N, P, K, N, 

Li and heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) content of all soil samples were found to 

be significantly different. The availability of different elements in all soil samples 

were in the order of Na > K > P > Li > N. The Fe content was found maximum at site 

A4 (331.9±0.68 mg/kg) while minimum in K3 site (138.5±0.34 mg/kg). Cd content 

was found minimum in all the sampling sites compared to other heavy metals. The  
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content of availability of different heavy metals in the soil sampling were in the order 

of Fe > Zn > Cr > Cu > Pb > Cd. 

 

Fig 6.1 Industrial area selected for selection of soil samples. 
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Table 6.1 Physico-chemical analysis of different soil samples of agriculture field. 

City Sites code Location pH EC (µS/cm) TDS (mg/l) OC (%) 

 

N (g/kg) P (g/kg) K (g/kg) Na(g/kg) 

 

Li (g/kg) 

 Amritsar  

(Frontiers 

Polymers 

Pvt. Ltd.) 

A1 N 31˚ 34' 40.19 

E 74˚ 59' 42.21 

8.42±0.10 176.3±0.88 94.9 ±0.39 2.56±0.86 0.25±0.05 0.72±0.03 2±0.05 3.8±0.05 0.36±0.06 

A2 N 31˚ 34' 41.11 

E 74˚ 59' 44.96 

8.4±0.15 132.3±1.76 71.5±0.26 4.47±0.68 0.18±0.02 1.42±0.25 1.8±0.12 1.46±0.84 1.03±0.03 

A3 N  31˚ 34' 41.61 

E 74˚ 59' 43.70 

8.7±0.03 161.0±1.15 68.5±0.20 3.52±0.50 0.14±0.04 1.23±0.18 1.5 ±0.18 1.83±0.12 0.5±0.15 

A4 N  31˚ 34' 41.68 

E 74˚ 59' 43.53 

7.53±0.02 115.7±0.33 82.5±0.14 3.96±1.39 0.18±0.05 1.02±0.04 1.9±0.03 1.23±0.08 1.33±0.06 

Average  8.26±0.07 

 

146.41±1.03 79.37±0.25 2.76±0.86 0.19±0.04 1.09±0.12 1.83±0.09 2.08±0.09 0.80±0.07 

 Jalandhar 

(Aman 

Polymers 

Pvt. Ltd.) 

 

J1 N 31˚ 22' 46.43 

E 75˚ 35' 31.56 

8.10±0.06 116.0±2.52 124.1±0.08 4.19±1.09 0.40±0.06 0.25±0.01 3±0.05 3.73±0.12 0.4±0.01 

J2 N 31˚ 22' 45.87 

E 75˚ 35' 30.79 

7.7±0.09 135.0±0.58 70.2±0.05 2.04±0.50 0.13±0.02 0.92±0.05 1.63±0.08 1.76±0.12 0.56±0.08 

J3 N 31˚ 22' 46.49 

E 75˚ 35' 30.44 

8.36±0.08 153.7±0.33 121.1±0.31 1.14±0.85 0.11±0.01 0.16±0.01 1.46±0.03 1.7±0.05 0.33±0.05 

J4 N 31˚ 22' 46.00 

E 75˚ 35' 30.91 

8.13±0.05 141.7±1.33 78.6±0.12 3.95±2.96 0.14±0.03 0.59±0.23 1.56±0.08 1.86±0.03 0.3±0.05 

Average  8.07±0.07 

 

136.5±1.09 98.52±0.14 2.83±1.35 0.19±0.02 0.48±0.07 0.11±0.06 2.26±0.08 0.4±0.08 

Kapurthala  

(Gupta 

Traders 

Pvt. Ltd.)  

K1 N 31˚ 39' 53.1 

E 75˚ 38' 16.2 

7.18 ±0.09 184.9±1.80 120±0.57 3.29±2.03 0.52±0.03 0.25±0.01 4.13±2.3 5±0.1 0.63±0.08 

K2 N 31˚23' 51.46 

E 75˚ 38' 21.31 

7.08±0.04 224.7±1.86 94.1±0.80 5.65±0.39 0.46 ±0.03 0.23±0.13 3.23±1.8 4.2±0.08 0.46±0.06 

K3 N 31˚23'53.66 

E 75˚23' 16.30 

7.1±0.07 198.6±1.75 118.5±0.18 5.05±0.36 0.52±0.08 0.25±0.00 3.7±0.11 5.1±0.1 0.20±0.05 

K4 N 31˚ 23' 53.43 

E 75˚ 23' 16.29 

8.1±0.03 230.3±1.45 121.9±0.11 5.22±0.63 0.35±0.05 0.21±0.00 2.9±0.05 3.43±0.12 0.63±0.03 

Average  7.36±0.06 

 

209.6±1.71 113.64±0.41 4.81±0.85 0.46±0.05 0.23±0.00 3.49±0.08 4.45±0.07 0.48±0.06 
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Table 6.2 Heavy metal content (mg/kg) in different soil samples of agriculture field. 

City Sites Code Cd Cr Cu Fe Pb Zn 

Amritsar 

(Frontiers Polymers 

Pvt. Ltd.) 

 

A1 0.03±0.02 25.5±0.62 29.2±0.43 322.1±0.68 0.14±0.04 37.2±1.02 

A2 0.06±0.24 22.9±0.34 28.2±0.27 315.9±0.61 0.20±0.05 37.4±1.05 

A3 0.03±0.01 25.2±0.90 29.0±0.44 324.1±0.67 0.43±0.18 41.4±0.58 

A4 0.04±0.01 26.0±0.64 30.1±1.19 331.9±0.68 0.26±0.03 34.0±1.21 

Average 0.04±0.01 24.96±0.63 29.1±0.58 323.52±0.66 0.26±0.08 37.52±0.97 

Jalandhar 

(Aman Polymers Pvt. 

Ltd.) 

 

J1 0.02±0.18 22.9±0.48 27.0±0.89 235.6±1.35 2.76±0.31 43.4±1.72 

J2 0.02±0.01 21.5±0.82 33.0±0.30 264.6±0.51 3.33±0.28 47.1±1.12 

J3 0.05±0.01 26.7±0.28 31.3±0.66 237.9±0.11 3.08±0.27 43.1±1.44 

J4 0.02±0 26.1±1.53 31.2±0.62 236.2±2.82 2.61±0.80 40.8±0.88 

Average 0.03±0.00 24.349±0.78 30.67±0.62 243.58±1.20 2.94±0.23 43.62±1.29 

Kapurthala 

(Gupta Traders Pvt. 

Ltd.). 

 

K1 0.02±0.18 22.1±1.9 33.3±1.71 140.2±1.05 1.08±0.01 41.7±0.31 

K2 0.02±0.01 24.8±0.75 31.7±0.89 143.2±0.73 1.19±0.41 42.6±0.21 

K3 0.05±0.01 22.5±0.84 35.9±0.99 138.5±0.34 0.98±0.06 39.7±0.35 

K4 0.02±0 22.3±0.85 31.2±0.61 141.8±1.18 0.81±0.28 41.3±0.29 

Average 0.05±0 22.96±1.08 33.08±1.05 140.99±0.83 1.02±0.19 41.37±0.19 
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6.2  Extraction, Identification and characterization of microplastics particles 

from soil samples.  

6.2.1 Shape, size and Color of MPs 

Different types of MPs were recovered with different shapes include fibres, fragments 

and miscellaneous and their size range from 100 µm–1 mm (Table 6.3). Five different 

colors of microplastics were extracted from agricultural soil including blue, white, 

light green, dark blue and orange. Blue and white color MPs presiding in all soil 

samples (Fig 6.2). Out of all blue color is more prevalent (67%) than white color MPs 

(30%) orange color are present in very low quantity (2%), light brown, light pink and 

light pink color (1%) are also present. Three different shapes of microplastic were 

observed i.e fibers, fragments and film. Fragments of different colors of microplastics 

were present in large quantities in all soil samples. All stained microplastic fibers and 

particles were observed under fluorescence microscope (Fig 6.3). Li et al, (2018c) 

also extracted the different shapes and sizes of microplastic by employing NaCl from 

wastewater treatment plant sludge. In another study Zhang et al., (2018d) extracted 

low density polyethylene (LDPE) and polypropylene (PP) from soil. 

6.2.2 FTIR analysis  

Total five different types of microplastics were detected and identified by using ATR-

FTIR viz polypropylene (PP), polystyrene (PS) polyethylene terephthalate (PET), 

polybutylene terephthalate (PBT) and polyethylene (PE). These microplastic 

polymers were identified on the basis of absorption peak in the spectra. PS were 

identified by two intense absorption peaks present at wave number 3026.6 cm-1 and 

2922.2 cm-1  due to medium aromatic C-H stretching vibrations, 1938.4 cm-1 and  

1871.1 cm-1 occur due to combination band C=C=C, 1804 cm-1 and 1744.4 cm-1 

appear due to strong C=O, 1602.8 cm-1 is due to presence of aromatic C=C stretching, 

1177.8 cm-1 were due to strong C-O stretching, 842.4 cm-1 were due to strong C-H  

bending, 752.9 cm-1 and 700.7 cm-1 absorption peak observed due to C-H bending and 

1-2 di-substituted and presence of benzene derivative. PP polymer absorption peak 

appears at wavenumber 2922.2 cm-1 due to C-H stretching, 1714.6 cm-1 were due to 

strong C=O stretching, 1617.7cm-1 due to C=C stretching, 1453.7cm-1 occurs due to 

presence of CH2 bending 1371.7 cm-1 due to CH3 bending, 1162.9 cm-1 and 842.4 cm-1 

due to C-H bending all these are the identification peak of polypropylene polymer. 
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Table 6.3 Abundance and characterization of different types of microplastics extracted from agriculture soil near to industries. 

 

Soil 

Sample 

 

City 

 

Strategy for 

identification 

Microplastic Parameters  

Mean abundance 

in (g) 
MP type MP shape MP size MP color 

A1 Amritsar ATR-FTIR PS, PP Fragments  <5 mm White, Light brown 0.117 

 

A2 PP, PE, PET Fibres, Fragments, 

Film 

<0.05 mm Blue, white, White 0.215 

A3 PP, PBT Fragments <1 mm White, Light blue, 

Light Green  

0.009 

A4 PP Fibres <100 µm Blue 0.007 

 

J1 Jalandhar ATR- FTIR PP, PET Miscellaneous, 

Film  

100-5 mm 

 

Light sky blue, 

Transparent 

0.234 

J2 PP, PE 

 

Fragments, Fibres < 2 mm Blue, Light pink 0.017 

J3 PP, PE 

 

Fragments 2 mm-5 mm Blue, Transparent 0.023 

J4 PP, PET, PE Fibres, Fragments < 2 mm White, Dark blue, 

Green 

0.113 

K1 Kapurthala ATR-FTIR PP, PET Fibres, Fragments, 

Film 

<0.05 mm Blue, White 0.267 

K2 PP, PE Fragments <1 mm Dark blue, Light 

green, White   

0.452 

K3 PBT, PP Fibres, 

Miscellaneous, 

Fragments 

<100 µm Orange, Blue 0.309 

K4 PS, PP Fragments, Fibres 100-200 µm White, Blue 0.209 
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Fig 6.2  Different types of microplastics particles were extracted using density 

separation and floatation method. 

a b 

c d 
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Fig 6.3  Different types of microplastic polymer stained with nile red dye under 

fluorescence microscope (a) PET (b) PBT (c) PP (d) PE fibre (e) PS. 

The absorption peak of PET at wave number 2918.34 cm-1is due to C-H stretching, 

alkane group present, 1714.6 cm-1  strong C=0 stretching, 1364.2 cm-1 CH2 bending, 

1237.5 cm-1 due to strong C-O stretching , 872.2 cm-1 due to strong C=C bending, 

723.1 cm-1 due to aromatic CH bending out of plane. PE polymers were identified by 

studying the absorption peak at wave number  2914.8 cm-1 due to C-H stretching, 

1468.6 cm-1due to CH2 bending, 872.2 cm-1 due to strong C=C bending, 775.3 cm-1  

and  715.6 cm-1 is due to CH2 rocking. Different types of microplastics such as PS, 

PP, PE and PET spectra were matched with previous reported study (Morgado et al., 

2021; Mataji et al., 2020; Mecozzi and Nisini, 2019). PBT was identified by 

observing absorption peak at 2922.2cm-1 due to aromatic C-H stretching, 1714.6 cm-1 

is due to C=0 stretching, 1267.3cm-1 due to the presence of strong C-O stretching , 

1013.8 cm-1 strong aromatic C-H bending in plane, 797.7cm -1 due to C=C bending  

and tri-substituted and 723.1cm-1 due to C=C bending and di-substitute. Fig 6.4 shows 

the FTIR spectra of different types of microplastics polymers present in agriculture 

soil. In previous study different types of microplastics were identified on the basis of 

resulting peak in the FTIR spectra with a familiar microplastic polymer in the spectral 
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library (Mecozzi et al., 2016; Jung et al., 2018; Veerasingam et al., 2021; Alvim et al., 

2020). Different types of microplastic polymer have different chemical structures 

(Fig. 6.5) and these stretching and bending depends on the presence of carbon, 

hydrogen and oxygen atoms. 

 

Fig 6.4  ATR-FTIR spectra of different types of microplastic extracted from 

agriculture soil. 
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Fig 6.5  Chemical structures of different types of MPs extract from agriculture 

soil (a) PET (b) PE (c) PS  (d) PP (e) PBT. 

6.2.3 X-Ray diffraction  

Different types of microplastics were studied by XRD patterns.Table 6.4 shows the 

peak intensity and crystalline percent of different types of polymer. PET is a very 

poor crystalline in nature and shows broad peak and its maximum peak intensity falls 

in 2Θ of 25.71˚ (Fig 6.6). PP shows sharp peak due to its strong crystalline nature. It 

has a maximum diffraction peak decline in 2Θ of 31.15˚. PE is crystalline in nature 

and its maximum diffraction peak intensity decline in 2Θ of 21.62˚. All these three 

peaks are very sharp and clearly visualize. PS shows the poor crystalline nature with 

the presence of broad and wide peaks. PS has maximum peak intensity at 2 Θ of 

22.68˚. PBT microplastic polymer is amorphous in nature and has no sharp peak, but 

the pattern is noisy. XRD pattern reported in the previous study of three types of 

microplastics (PE, PVC, PS) shows two intense sharp peaks at 2Θ of 21.1˚, 23.4˚ for 

PE, no sharp peak in PVC and broad peaks in PS described poor crystalline in nature 

(Liu et al., 2019; Ezeonu et al., 2019; Moura et al., 2023). 
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Table 6.4 XRD pattern of different microplastics polymer. 

 

Fig 6.6 X-Ray diffraction pattern of different types of MPs extracted from 

agriculture soil. 

Microplastic 

 

2Θ˚value of intense 

peak 

Crystallinity 

(%) 

Crystalline size (Å) 

PET 25.71 50.6 3.47 

PP 31.15 64.5 4.09 

PE 21.62 61.1 2.86 

PS 22.68 70.3 3.46 

PBT 10.10 60.4 8.78 
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6.2.4   Scanning Electron Microscopy (SEM) analysis 

SEM analysis of different types of microplastics (PBT, PE, PET, PP and PS) extracted 

from agriculture soil revealed the surface morphology of different types of 

conventional and non-conventional microplastics (Fig 6.7). 

 

Fig 6.7  SEM micrographs of different types of microplastics extracted from 

agriculture soil (a) PBT (b) PE (c) PET (d) PP (e) PS. 

6.2.5  Validation of recovery rate 

The recovery efficiency of different types of microplastics depends upon the types of 

microplastics and Sodium chloride solution (NaCl) (Table 6.5). PP has the highest 

recovery efficiency in NaCl solution compared to other microplastics, and PET has 
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the lowest recovery efficiency in NaCl solution. Remaining microplastic particles 

cannot recover from the soil due to the high density of solutions. In a previous study, 

the recovery rates of seven different types of microplastics were extracted from 

sediments by employing two types of saturated solution, NaCl and Sodium 

dihydrogen phosphate (NaH2PO4). NaCl has poor efficiency in recovering 

microplastics, but NaH2PO4 recovered 93% of microplastics (Zhang et al., 2018; 

Zhang et al., 2020d). 

Table 6.5 Mean productivity of different types of microplastics in NaCl solution. 

Microplastics Mean recovery productivity 

in NaCl solution 

PET 6 ± 0.5 

PP 9.3 ±0.3 

PE 7.0 ±1.0 

PS 8.0 ±1.0 

PBT 7.0 ±0.5 

Mean productivity 7.6 ±0.5 

 

6.3 Toxic effects of polypropylene on exotic (E. fetida) and indigenous (L. 

mauritii) species of earthworm.    

Two earthworm species were selected to study the toxic effects of polypropylene in 

terms of growth and reproduction. 

6.3.1  Earthworm (E. fetida) biomass and fecundity rate towards polypropylene 

microplastic exposure 

E. fetida were treated with polypropylene microplastic for 28 days and all the 

earthworms were acclimatized for 7 days in artificial soil (Fig 6.8). Five 

concentrations (0, 1000, 4000, 8000 and 16000 mgkg-1) were selected to study the 

effects of microplastics on growth and reproduction (Fig 6.9, 6.10). No earthworm 

mortality was observed during the different treatment of polypropylene microplastics. 

Earthworm biomass increased significantly from 0 to 28 day in control. At 0 day the 

data was non significant and p value is 0.63 and on 7 day the earthworm biomass 

increased significantly (p value is 0.00). On 14th day the high concentration of 
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polypropylene (4000, 8000, 16000 mgkg-1) strongly inhibit the biomass of E. fetida 

earthworm except at 1000 mgkg-1. On 21st and 28th day, the biomass decreased 

significantly (p value is 0.01) in each concentration as compared to control (Table 6.6 

and Fig 6.9). Overall, different concentrations of polypropylene MP show significant 

influence on the biomass of E. fetida. 

Table 6.6 Effect of polypropylene on biomass of E. fetida and all values 

represents as Mean ± S.E. with different superscripts (a-d) within column shows 

significance value (p ≤ 0.05) at different treated concentrations.  

Conc  

(mgkg-1) 

Treatment Period  

0th day 7th day 14th day 21st day 28th day 

0 4.16±0.00a 5.23±0.00d 5.70±0.12c 5.93±0.05d 6.00±0.03d 

1000 4.19±0.04a 4.98±0.02cd 4.99±0.03b 4.87±0.03c 4.76±0.04c 

4000 4.17±0.02a 4.76±0.05bc 4.62±0.09ab 4.46±0.04bc 4.34±0.03bc 

8000 4.16±0.01a 4.62±0.09b 4.34±0.15ab 4.19±0.06ab 4.09±0.15ab 

16000 4.13±0.00a 4.29±0.03a 4.11±0.09a 3.97±0.04a 3.69±0.13a 

 

Reproduction rate was measured on the basis of different criteria like number of 

cocoons, cocoons biomass and number of hatchlings. On 28th day, the cocoons from 

each tray were harvested, counted and weighed (Fig 6.9). As compared to control, the 

higher concentrations (4000, 8000 and 16000 mgkg-1) of polypropylene showed more 

toxicity on cocoon formation as well as cocoons weight (Table 6.7).The cocoons were 

put back in trays after counting and weighing and incubate for another 28 days. On 

56th day of activity, all juvenile earthworms in each tray were counted. The result 

showed that the number of juvenile earthworms (hatchlings) decreased with increase 

in concentrations. Overall maximum numbers and weight of E. fetida cocoons 

reported in control (without microplastic) and minimum reported at concentrations 

8000, 16000 mgkg-1. Low amount of microplastic concentrations and less exposure 

duration have no deleterious or negative effects on the growth and mortality rate. In 

the present study, no mortality of E. fetida was reported in all treatments which is in 

accordance with the study of Rodriguez-Seijo et al, (2017) that no negative impact of 

polyethylene on E. andrei.  



Results and Discussion 

 

 
 

88 

 

Fig 6.8  Effect of different concentrations of polypropylene on the biomass of E. 

fetida and superscripts (a-d) within column shows significant difference 

between concentrations. 

 

Fig 6.9  Cocoons of E. fetida during 28 days exposure of polypropylene.  
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Table 6.7   Effect of polypropylene on reproduction rate (Cocoons weigh, cocoon 

numbers and numbers of hatchlings of E. fetida and all values represents as 

Mean ± S.E. with different superscripts (a-c) within column shows significant 

difference  at p ≤ 0.05 at different treated concentrations.  

 

Conc. 

mg kg-1 

Reproduction Parameters 

No of cocoons 

per earthworm 

Weight of cocoons 

(mg) 

No of hatchlings per 

cocoons  

0 5.33 ± 0.33c 15.66 ± 0.88b 4.66 ± 0.33b 

1000 4.66 ± 0.33c 15.33 ± 0.33b 4.33 ± 0.33b 

4000 4.33 ± 0.33bc 13.00 ± 0.57ab 3.33 ± 0.66ab 

8000 2.66 ± 0.33ab 7.66 ± 0.88ab 3.00 ± 0.57a 

16000 2  ± 0.57a 5.66 ± 1.76a 1.66 ± 0.33a 

 

Further the high dose of microplastics for long duration cause stomach and intestinal 

damage to terrestrial organisms (especially earthworms) includes blockage, abrasion 

in gut and also effects the feeding activity, which may be a major reason to reduce the 

biomass and growth rate (Lwanga et al., 2017). In this study, E. fetida showed 

significant change in biomass. The biomass of earthworm declined   at 4000, 8000, 

16000 mgkg-1of polypropylene concentration at 28th day. Lwanga et al, (2016) also 

reported the effects of polyethylene (PE) microplastic on Lumbricus terrestris and 

observed the reduction in growth rate with increase in the concentrations. In this 

study, fecundity rate (in terms of cocoons formation, biomass and juveniles) of E. 

fetida toward different concentrations of polypropylene shows impact at longer 

duration and high dose (28 days, conc. 16000 mg kg-1). Previous finding reported that 

three different types of microplastics (polyethylene, polylactic acid, polypropylene 

carbonate) at high concentration affect the cocoons biomass and number (Ding et al., 

2021). Microplastics have potential to cause disturbance in male reproductive organs 

and coelomocyte and this may be a major cause to reduce fecundity rate (Kwak and 

An, 2021). 
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6.3.2  Earthworm (L. mauritii) biomass and fecundity rate towards 

polypropylene microplastic exposure. 

No mortality of earthworm was noticed during 28 days exposure period of 

polypropylene microplastic. The biomass of L. mauritii significantly increased in 

control group (without microplastic) with increase in exposure time up to 28 days as 

compared to microplastic treatment. Average biomass of L. mauritii in control group 

at initial day (0 day) were non significant (p value is 0.473). Earthworm’s biomass 

increased upto 984.3mg at final day (28th days). Similarly biomass of L. mauritii was 

increased in concentration 1000 and 4000 mgkg-1 concentrations upto 28 days. The 

biomass of L. mauritii was significantly (p value is 0.01) declined on day 14, 21 and 

28 day at highest concentration (8000 and 16000 mgkg-1). Overall, the biomass 

reduction was found in high concentration of polypropylene (Table 6.8 and Fig 6.10). 

Reproduction test of L. mauritii were evaluated on the basis of different parameters 

such as cocoon numbers, cocoon weight and hatchlings. At 28th day, number of 

cocoons was decreased with increase in polypropylene concentrations. As compared 

to control the PP exposure significantly reduced the number of cocoons, cocoons 

weight and hatchlings with increase in polypropylene concentration (Table 6.9 and 

Fig 6.11). Similarly on 56th day the hatchlings number was significantly reduced with 

increase in exposure period as well as PP concentrations. 

Table 6.8 Effect of polypropylene on biomass of L. mauritii and all values 

represents as Mean ± S.E. with different superscripts (a-d) within column shows 

significant difference at p ≤ 0.05 in concentrations. 

Conc             

(mg kg-1) 

Treatment period  

0th day 7th day 14th day 21st day 28th day 

0 8.55±0.18a 9.50±0.04b 967.3±0.85c 981.6±0.54c 984.3±0.05d 

1000 8.58±0.19a 9.20±0.04b 935.3±0.60bc 940.3±0.61bc 9.47±0.25cd 

4000 8.29±0.12a 8.61±0.12a 881.3±1.62b 8.87±1.69b 892.6±1.73c 

8000 8.33±0.05a 8.54±0.02a 762.0±2.17a 7.49±1.98a 739.6±2.04b 

16000 8.30 ± 0.11a 8.33±0.05a 711.6±0.44a 7.00±0.66a 635.6±2.44a 
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Ju et al., (2023) reported that the earthworm (Lumbricus terrestris) biomass and 

mortality rate were significantly affected by the LDPE microplastics particles but 

shows no effect on the reproduction. Rashti et al, (2023) also studied the effects of 

microplastics on Amynthas gracilis and E. fetida. The biomass of Amynthas gracilis 

was not affected but the body weight of E. fetida was strongly affected after 28 days 

treatment period. The result of our study relates with previously reported study on the 

effect of polyamides or nylon particles on Enchytraeus crypticus reproduction rate 

and was significantly reduced with increase in polyamide concentration in soil 

(Lahive et al., 2019). Reproduction rate of different species of earthworm were altered 

by small size of plastic particles due to the formation of oocytes, follicles and results 

in the imbalance of germ cells (Kwak and An, 2021).The effect depends upon the 

size, concentrations and types of microplastics (Mondal et al., 2023). 

 

Fig 6.10   Effect of different concentrations of polypropylene on the biomass of L. 

mauritii and superscripts (a-d) shows significant within column 

difference between concentration. 
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Fig 6.11 Cocoons of L. mauritii during 28 days exposure of polypropylene.  

Table 6.9 Effect of polypropylene on reproduction rate (Cocoons weigh, cocoon 

numbers and number of hatchlings) of L. mauritii and all values represent as 

Mean ± S.E. with different superscripts (a-c) within column shows significance 

value (p≤0.05) in different treated concentrations . 

Conc 

mgkg-1 

 

Reproduction parameters 

No of cocoons per 

earthworm 

Weight of cocoons 

(mg) 

No of hatchlings 

per cocoons 

0 5.33±0.33c 14.36 ± 0.31c 7.33 ± 0.33d 

1000 4.66± 0.33bc 13.89 ± 0.47c 6  ± 0.57cd 

4000 4 ± 0.57abc 12.40 ± 1.27bc 4.33 ± 0.33bc 

8000 3± 0.57ab 8.23 ± 1.39ab 2.66 ± 0.88ab 

16000 2 ± 0.57a 6.63 ± 1.59a 1.66 ± 0.33a 

 

6.4 Antioxidant activity of exotic (E. fetida) and indigenous (L. mauritii) species 

of earthworms. 

Different types of antioxidant enzymes (SOD, CAT, GST and POD) of both species 

of earthworm were studied after exposure of polypropylene at different concentrations 

on different days. 

6.4.1 Oxidative stress towards MPs exposure on exotic species (E. fetida) of 

earthworms  

Different enzymes of E. fetida produce oxidative stress after exposure of 

polypropylene. A graphical representation depicts the changes in SOD, CAT, GST 
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and POD antioxidant enzymes activity in E. fetida after exposure of different 

concentrations of MPs at different days.  

6.4.1.1 Effect of polypropylene on SOD 

The SOD activity of E. fetida increased initially as compared to control with increase 

in concentration and then decrease in activity were observed with increase in 

concentrations. At 7th day of experiment, the enzymatic activity increased  (p ≤ 0.05) 

in all concentrations as compared to control but at 14th day, SOD activity increased in 

all concentrations except 16000 mgkg-1 concentration (Fig 6.12a). On 21st and 28th 

day, the SOD activity increases as compared to control but decreased at high 

concentrations i.e. 8000 and 16000 mgkg-1. 

6.4.1.2 Effect of polypropylene on CAT  

The change in CAT antioxidant enzyme activities at different days and different 

concentrations showed in (Fig 6.12b). During the initial day of MP exposure the CAT 

activity of E. fetida was increased with increase in concentrations but decreased with 

concentration and days (p <0.05).  

6.4.1.3 Effect of polypropylene on GST  

The GST enzyme activities of E. fetida at different concentrations were illustrated in 

Fig 6.12c and significantly (p<0.05) increased up to 14th days as compared to control. 

GST enzymatic activity is greatly influenced at highest concentration (8000 and 

16000 mg kg-1) on 21st day. At highest concentration (16000 mgkg-1), the enzymatic 

activity is lower as compared to control, whereas at 8000 mg kg-1 concentration the 

enzymatic activity increased relatively to control. GST activity level decreased at 

16000 mgkg-1 concentration as compared to control.  

6.4.1.4 Effect of polypropylene on POD  

 All the changes occur in the POD activity of E. fetida shows in Fig 6.12d.The figure 

depicts the variations occur in the POD activity of E. fetida as compared to control 

and the enzymatic activity significantly increased with increase in concentrations 

(1000, 4000, 8000, 16000 mg kg-1) up to 28 days. 

Antioxidant enzymes (SOD, CAT and POD) and detoxifying enzyme (GST) plays an 

important role in eradicating the extreme level of reactive oxygen species (ROS) in 

earthworm and these enzymes recognize as effective signal of microplastics (Liang et 

al., 2017). SOD plays an important role in antioxidant defence system by scavenging 
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the superoxide anions; convert O2
- into H2O2 (peroxide), O2 (oxygen) and produce 

oxidative stress to the organisms (Liu et al., 2012; Jia et al., 2014). In the present 

study, SOD activity significantly inhibited with increase in concentrations and 

exposure time. PP exposure towards E. fetida resulted in accumulation of ROS and 

act as first line of defense opposed to ROS. Excess amount of ROS produced by the 

earthworm body diminish antioxidant defence system and produce direct influence on 

structure and synthesis of antioxidant enzymes (Yang et al., 2016). In previous 

findings, SOD activity of E. fetida was significantly (p<0.05) enhanced in all 

polystyrene (PS) microplastic concentration but strongly inhibit the enzymatic activity 

at 1000µg kg-1 concentration (Jiang et al., 2020).  

CAT is a tetrameric heme-containing antioxidant enzyme and plays a crucial role in 

the conversion of H2O2 to H2O (water) and oxygen (O2) and act as second line of 

defence against ROS. In this study the CAT activity of E. fetida at high concentration 

(8000, 16000 mgkg-1) decreased on 21st and 28th day as compared to control. The 

decreased in the CAT activity for long exposure may be due to changes in the 

synthesis and subunits of enzyme (Liu et al., 2011). Chen et al, (2020d) reported the 

biochemical activity of low density polyethylene (LDPE) on E. fetida. CAT activity 

significantly reduced at 21st day of microplastics exposure and at 28th day the 

enzymatic activity increased at highest concentrations (0.25, 0.5, 1.0, 1.5 g kg-1). GST 

is a detoxification enzyme and act as a biomarker to diminish DNA damage and 

scavenge the activity of lipid peroxidation. In the present study, the enzymatic activity 

significantly enhanced on 21st day at concentration 4000 and 8000 mgkg-1. At 28th day 

the GST activity of earthworm significantly decreased at highest concentration as 

compared to control. Similar findings reported by Li et al, (2021) with the treatment 

of LDPE and PP microplastics resulted in decrease in GST activity of E. fetida at 14th 

and 28th day as compared to control. Another study revealed the decreasing trend in 

GST activity of E. fetida against two different types of microplastics (polystyrene and 

polyethylene) (Wang et al., 2019b). POD is one of most important enzyme that plays 

a key role in hydrolysis of compounds by adopting H2O2 as a electron acceptor and 

convert to H2O. The present study revealed the exposure of polypropylene on 

earthworm POD activity on 7, 14 21 and 28 days at different concentrations (1000, 

4000, 8000, 16000 mgkg-1). In comparison to the control, POD activity increases with 

increasing PP concentration and exposure time. Previous study showed (Wang et al.,  
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Fig 6.12  Changes in antioxidant enzymes (a) SOD, (b) CAT, (c) GST and (d) POD activities of E. fetida towards different polypropylene 

concentrations  at different days and all values are presented as Mean ± S.E. Different  superscript (a-d) within column shows 

significant difference (p < 0.05) between different concentration. 



Results and Discussion 

 

 
 

96 

2019b) significant increase in trend of POD activity under polystyrene (PS) and 

polyethylene (PE). 

6.4.2 Oxidative stress towards MPs exposure on indigenous species of 

earthworms L. mauritii 

The oxidative stress changes occur under the influence of PP microplastic exposure in 

different oxidative markers such as SOD, CAT, GST and POD. 

6.4.2.1 Effect of polypropylene on SOD activity of L. mauritii 

SOD activity on 7th and 14th day was initially increased with increase in concentration 

of microplastic (Fig 6.13a) as compared to control but on 21st and 28th day as 

compared to control (without microplastic), the activity of SOD increased at 1000 and 

4000 mgkg-1 concentration and significantly decreased (p<0.05) at concentration 8000 

and16000 mgKg-1. 

6.4.2.2 Effect of polypropylene on CAT activity of L. mauritii 

The CAT activity (Fig 6.13b) of L. mauritii at different concentrations on day 7th and 

14th increased with increase in concentrations with contrast to control but on day 21st 

and 28th the CAT enzyme shows increment upto concentration 4000 mgKg-1 and at 

concentration 8000 and 16000 mgKg-1the activity greatly reduced (p<0.05).  

6.4.2.3 Effect of polypropylene on GST activity of L. mauritii 

The GST enzymatic activity (Fig 6.13c) of L. mauritii on day 7th significantly 

increased (p < 0.05) with increase in concentrations of PP but on day 14th the enzyme 

also possess a similar activity as on 7th day. On day 21st and 28th, the GST enzyme 

activity possess changes at high concentration (8000, 16000 mgkg-1) as compared to 

7th and 14th day activity.  On day 21st and 28th day, the activity greatly increased at 

concentration (1000, 4000 mgkg-1) but PP treatments highly alters the GST activity at 

high concentrations (8000, 16000 mgkg-1) when compared with control.  

6.6.2.4 Effect of polypropylene on POD activity of L. mauritii 

POD level of L. mauritii (Fig 6.13d) showed increase pattern with increase in 

different concentrations as well as exposure period. The trend of the present study was 

consistent with previously reported effect of polystyrene microplastics on different 

enzymes of earthworms such as SOD, CAT, GST and POD (Liu et al., 2022). The 

activity of SOD, CAT and GST enzymes increased upto 14 days but activity 
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decreased with increase in exposure period and increase in microplastics 

concentration (Liu et al., 2022). The other studies also reported a similar trend during 

exposure of conventional and biodegradable microplastics for 28 days in yellow and 

black soil on the different oxidative enzymes of E. fetida. The enzymes exhibit initial 

increase but on 14th days the enzyme activity starts decreased with increase in 

exposure period (Yu et al., 2022; Zhao et al., 2023).  

6.4.3 Molecular docking and binding mode of PP with SOD, CAT, GST and POD 

The molecular docking studies were carried on to predict the binding of polypropylene 

(PP) with enzymes (SOD, POD, CAT, and GST) at catalytic or non-catalytic sites. The 

docking scores were used to compare the binding affinities of these enzymes for PP. 

SOD is an important antioxidant defense mechanism in cells that converts superoxide 

radicals to oxygen and hydrogen peroxide (Ighodaro and Akinloye, 2018). The 

docking analysis indicated that there were three potential binding sites for PP binding 

on Cu/Zn SOD, as indicated in Fig 6.14(i) (Chowdhary et al., 2022).The interaction 

behavior of PP with SOD enzyme was studied on all of these three available sites 

(Table 6.10). The site 1, which is located at the junction of the cavity between two 

subunits of SOD and surrounded by Val 7, Lys 9, Asn 51, Gly 145, Val 146 of Chain 

A and Cys 6, Val 7, Lys 9, Asn 51, Cys 144, Gly 145, and Val 146 of Chain B amino 

acids, was found to be a potential binding site for PP with the docking score of -3.694 

(Fig 6.14(ii)a). The site 2, located near chain B of SOD enzyme and is surrounded by 

amino acids Ala 1, Leu 104, Ser 105, Gly 106, Glu 107, Ser 109, Ile 111, Arg 113, Ile 

149 of Chain A and Ala 1, Leu 104, Ser 105, Gly 106, Ser 109, Ile 111, Arg 113, Ile 

149 of Chain b, showed a docking score of -2.322 with PP (Fig 6.14(ii)b). Site 3, 

located in subunit A and comprising of amino acids Lys 67, Pro 72, Lys 73, Asp 74, 

Glu 75, Glu 76, Arg 77, Hie 78, exhibited a docking score of -2.591 with PP (Fig 

6.14(ii)c). The PP showed good interaction with Cu/Zn SOD enzyme and has the 

potential to modulate its activity significantly. CAT is an essential tetrameric enzyme 

found in nearly all organisms and the main functions of enzyme is to prevent cells 

from oxidative damage by converting hydrogen peroxide into water and oxygen 

(Kirkman and Gaetani, 1984; Chelikani et al., 2004; Glorieux and Calderon, 2017). 

The site map calculations showed five potential binding sites available for PP binding 

as indicated in Fig 6.15(i) and the interaction behavior of PP was studied on all the 

available sites of CAT (Table 6.10). 
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Fig 6.13 Changes in antioxidant enzymes (a) SOD, (b) CAT, (c) GST and (d) POD activities of L. mauritii towards different 

polypropylene concentrations at different days and all values are presented as Mean± S.E. Different superscript (a-c) shows 

significant difference (p < 0.05) between different concentrations. 
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Fig 6.14(i) Potential binding sites available for PP binding in SOD and Fig 6.14(ii) shows the 3D interactions of PP with SOD at (a) Site 1 

(b) Site 2 & (c) Site 3. 
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The Site 1 is surrounded by Asn 268, Pro 367, Leu 370, Gln 371, Val 382, Asn 384, 

Gln 386, Arg 387, Asp 388, Cys 392, Met 393, Asn 395, Asn 396, and Gln 397 

exhibited docking score of -2.735 (Fig 6.15(ii)a).The Site 2 is composed of  Thr 114, 

Ala 116, Gly 117, Ser 121, Ala 122, Val 125, Arg 126, Asp 127, Gln 167, Val 181, 

Lys 176, Trp 185, Leu 198 and Phe 199 exhibited docking score of -2.964 (Fig 

6.15(ii)b). The site 3 flanked by amino acid residues,  Val 72, Val 73,  Ala 157, Leu 

158, Phe 160, His 165, Pro 361, Ile 364, Gly 352, Phe 355, Ala 356, Asp 359, Thr 360 

exhibited docking score of -3.239 (Fig 6.16(ii)c).The PP displayed highest docking 

score of -4.00 with site 4 which is surrounded by Ala 7, Ala 78, Gly 79, Ala 80, Asp 

258, Leu 261, Arg 262, Leu 264, Phe 265, Asn 320, Pro 321, Tyr 324  and Val 328 

(Fig 6.15(ii)d).The site 5 which is near to site 2 is surrounded by  Pro 150, Ile 151, His 

193, Phe 197, Arg 202, Tyr  214, Lys 236, Thr 444, Phe 445, Val 449 and showed 

docking score of -3.617 (Fig 6.15(ii)e). 

GST enzyme that can combine the tripeptide glutathione with various electrophilic 

compounds such as carcinogens, xenobiotics and oxidative stress products, resulting 

in the production of nontoxic compounds (Lushchak, 2012). Site mapping analysis 

showed that among the five available binding sites on the protein, three of them (Site 

2-4) were potential binding sites (Table 6.10 and Fig 6.16(i) (Chowdhary et al., 2022). 

PP was found to interact with these sites via hydrophobic interactions. Site 1 had a 

docking score of -2.977 with PP and was surrounded by Asp A143, Leu A146, Ala  

A149, Lys A147, Val A150, Asp B143, Leu B146, Lys B147 and Val B150 amino 

acid residues (Fig 6.16(ii)a). Site 2 had a docking score of -4.032 with PP and 

consisted of Thr 140, Val 137, Ile 136, Ile 134, Gln 133, Lys 178, Leu 179, Thr 182, 

Asn 186, Leu 190, Ala 191 and Leu 192 amino acid residues in Chain A and Arg 106, 

Val 107, His 108, Pro 93, and Met 94 in Chain B (Fig 6.16(ii)b). The amino acid 

residues surrounding Site 3 (Docking score -3.197) were Pro 93, Met 94, Val 107, Hie 

108 in Chain A, Leu 132, Gln 133, Ile 136, Val 137, Thr 140, Leu 179, Thr 182, Asn 

186, Leu 190, Ala 191 and Leu 192 in Chain B (Fig 6.16(ii)c). Site 4 (Docking score -

3.076) was present in subunit B and Site 5 (Docking score -2.411) was present in 

subunit A, with the lowest binding affinity for PP (Fig 6.16(ii)d-e). Comparing the 

scores indicated that GST preferentially binds to Site 2 via hydrophobic interactions. 

POD are enzymes containing heme that are made up of single units and can cause the 

oxidation of different types of compounds i.e. organic and inorganic  by employing 

hydrogen peroxide (Koua et al., 2009; Demarche et al., 2012). 
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Fig 6.15 (i) Potential binding sites available for PP binding in Catalase and Fig 6.15(ii) shows the 3D interactions of PP with CAT (a) 

Site 1 (b) Site 2 (c) Site 3 (d) Site 4 (e ) Site 5. 
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Table 6.10 Different molecular interactions of polypropylene microplastic with different enzymes SOD, CAT, GST and POD. 

S. 

No 

Protein 

Target 

Site Dock 

Score 

Backbone Interaction Aromatic 

Residues 

Side Chain 

Interactions 

Polar 

Residues 

Hydrophobic 

Residues 

Charged Residues 

1 SOD Site 1 

 

-3.694 

 

Val 7, Lys 9, Asn 51, Gly 

145, Val 146 of Chain A 

Cys 6, Val 7, Lys 9, Asn 

51, Cys B55, Cys 144, Gly 

145, Val 146 

Nil Val A7, Lys A9, Asn 

A51,Val A146, Val 

B7,Asn B51,Cys B55, 

Val B146,Cys B146 

Lys A9, Asn 

A51, Lys B9, 

Asn B51 

Val A7, Val 

A146,Val B7,Cys 

B144, Val B146 

 

Lys A9, Asn A51, 

Lys B9,Asn B51 

 

Site 2 -2.322 Ala A1, Leu A104, Leu 

B104, Ser B105, Gly 

B106, Ser B109 

 

Nil Ala A1, Ser A109, 

Ile A111,Ile A149 

Ser B105,Arg B113 

Ser B109, Ile B149 

Ser A109, 

Ser B105, 

Ser B109,  

Arg B113, 

Ile A111, Ile B149 ArgB113 

Site 3 -2.591 Pro A72,Lys A73, Asp 

A74, Glu A75,ARG A77 

Nil Lys A67, Lys A 73 

Arg A77,Pro 

A100,Leu A101 

Lys A67,  Lys 

A 73 Arg A77 

Pro A100,Leu A101 Lys A67,Lys A73 

A75,Arg A77 

2 CAT Site 1 -2.735 Pro A367, Gln A386, Asn 

A396, Gln A397 

Nil  Asn A368, GlnA 371, 

Asn A 384, Gln 

A386, Met A 394, 

Asn A396, Gln A 397 

Asn A 368, 

Gln A371, 

Asn A384, 

Gln A386, 

Asn A396, 

Gln A 397 

Met A 394 Nil  

Site 2 -2.964 Arg A126, Gln A167 Phe A199 Val A125, Asp A127, 

Gln A167, Trp A185, 

Phe A199, Hie A 365 

Asp A127, 

Gln A167, 

Hie A 365 

Val A125, Phe A199 Asp A127 

Site 3 -3.239 Ala A157, Pro A161 Phe A160, 

Phe A355 

Ala A157, Phe A160, 

Pro A161, Phe A355 

NIL Ala A157, Phe 

A160, Pro A161, Ile 

A164, Phe A 355 

Nil  

Site 4 -4.00 Ala A 78, Gly A79, Phe 

A265 

Phe A265, 

Tyr A324 

Ala A 78, Leu A261, 

Arg A262, , Phe 

A265,Pro A321, Tyr 

A324 

Arg A262, 

Asn A320 

Ala A 78, Leu A261, 

Phe A265,Pro A321, 

Tyr A324 

Asn A262 

Site 5 -3.617 Nil  Tyr A214, 

Phe A 445 

Pro A150, His A193, 

Phe A197,Tyr A214, 

Val A 301, His A 

304,  Phe A445  

His A193, His 

A304 

Pro A 150, Tyr 

A214, Val A301, His 

A304, Phe A445, 

Val A 449 

Nil  

  3 GST Site 1 -2.977 Leu A146, Nil Asp A143,Lys A147, Asp A143, Leu A146, Asp A143, 
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S. 

No 

Protein 

Target 

Site Dock 

Score 

Backbone Interaction Aromatic 

Residues 

Side Chain 

Interactions 

Polar 

Residues 

Hydrophobic 

Residues 

Charged Residues 

Lys A147, 

Asp B143 

Leu A146,Val A150, 

Lys B147, Leu 

B146,Val B150 

Lys A147, 

Lys B147 

Val A150, 

Leu B146, 

Val B150 

Lys A147, 

Lys B147 

Site 2 -4.032 Gln A133 

Lys A178, Leu A 179 

Ala A191 

Val A137 

Leu A190 

Nil Gln A133,Ile A136, 

VAl A137, Thr A140, 

Lys A178, Leu A179, 

Thr A182, Ala A191, 

Pro B93, MetB94, 

Val B107, His B108 

Gln A133, 

Thr A140, 

Lys A178, 

Thr A182, 

His B108 

 

Val A137, 

Ile A136, 

Leu A179, 

Met B94, 

Val B107 

 

Lys A178 

Site 3 -3.197 Gln B133, Ileu B136, Val 

B137, Lys B178, 

Leu  B190 

 

Nil Met A94, Gln B133, 

Ile B136, Val B137, 

Lys B178, Leu B179, 

Thr B182, Asn B186 

Gln B133, 

Thr b140, 

Lys B178, 

Thr B182, 

Asn B186 

Ile B136, 

Val B137, 

Ala B 191 

Lys B178 

Site 4 -3.076 Phe B68, Ala B69, 

Asn B72, Gln B73, 

Tyr B75 

Tyr B75, 

Trp B240 

Ala B69,Tyr B75, 

Asp B77, Trp B240, 

Lys B243 

Asp B77, 

Lys B243 

Ala B69, 

Tyr B75, 

Trp B240 

Asp b77 

Lys B 

Site 5 -2.411 Ala A69, Gln A73,            

Glu A 74, Tyr A75,        

Asp A77, Pro A236 

 Tyr A75, 

Trp A240 

Tyr A75, Asp A77 

Ala A69, Trp A240 

Lys A243 

Asp A77, 

Lys A243 

Tyr A75, 

Ala A69, 

Trp A240 

Nil 

4 POD Site 1 -3.169 Asn A36, PheA37, Pro 

A46, Asp A98,Thr A99. 

 

Nil Phe A 37, Gln A39, 

Pro A46, Ser A45, 

Lys A49, Asp A98, 

Thr A99, Ala A102 

Gln A39, Lys 

A 49,  Asp 

A98,  Thr 

A99, 

Pro A46, 

Ala 102 

Lys A 49, Asp A98 

Site 2 -2.732 Gln A22, Val A112 

,Ser A113, 

Asn A143 

TRP A26 Gln A22,Val A25,Trp 

A26, Ser A113, Asp 

A116,Thr A139, Asn 

A 143 

Gln A22, Ser 

A113, 

Asp A116, 

Thr A139, 

Asn A 143 

Trp A26, VAL A112 Asp A116 

Site 3 -2.859 Gly A131,Ser A132, Pro 

A133,Asn A266, Glu 

A267, Gly A270, Gln 

A271, Ser A 302, Asn 

A303 

Nil Pro A133, Glu A267, 

Ser A302, Asn A303 

Glu A267, 

Ser A302 

Pro A133 

 

Glu A267 

 

Cont... 
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Fig 6.16(i) Potential binding sites available for PP binding in GST and Fig 6.16(ii) shows the 3D interactions of PP at different sites of 

GST (a) Site 1 (b) Site 2 (c) Site 3 (d) Site 4 (e) Site 5. 
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Through site mapping calculations Halgren, (2007) reported three potential binding sites 

for PP binding as seen in Table 6.10 and Fig 6.17(i).The Site 1, which is surrounded by 

amino acid residues including Asn 36, Phe 37, Gln 39, Ser 45, Pro 46, Lys 49, Asp 98, 

Thr 99, Ala 102, Arg 198, exhibited a docking score of -3.169 with PP (as shown in Fig 

6.17(ii)a). Site 2, located near the heme group of the POD enzyme and surrounded by 

amino acid residues such as Gln 22, Val 25, Trp 26, Gly 111, Val 112, Ser 113, Asp 116, 

Thr 139, Gly 140, Arg 141, Ser 142, and Asn 143 displayed a docking score of -2.732  

with PP (as displayed in Fig 6.17(ii)b).Site 3, which is surrounded by specific amino acid 

residues such as Gly 131, Ser 132, Pro 133, Arg 134, Phe 208, Asn 266, Glu 267, Met 

269, Gly 270, Gln 271, Arg 274,  Ala 300, Val 301, Ser 302, Asn 303, and Asn 304 

showed a docking score of -2.859 with PP (Fig 6.17(ii)c).Overall, the docking results 

indicated that POD has a relatively weak binding affinity for PP. 

The molecular docking analyses were conducted to gain insights into the observed 

experimental activities of PP and their potential binding interactions with SOD, CAT, 

GST and POD enzymes using Glide suite of Schrodinger software. The docking analysis 

with SOD enzyme (Omar et al., 1992; Valdivia et al., 2006) revealed that PP exhibited 

the highest docking score of -3.694 at the junction cavity among two subunits of 

superoxide dismutase (SOD). This suggests that preferentially binding of PP at the 

junction cavity either than the active sites or center through hydrophobic interactions, 

inhibiting the enzymes function. The site map analysis on CAT revealed five potential 

binding sites for PP with the highest docking score observed at site 4 (docking score -

4.00) of CAT and PP stabilized by hydrophobic contacts (Corbo et al., 2022). Further, the 

docking analysis with GST showed that out of the 5 available binding sites, PP preferably 

interacts with site 2 at the junction of GST (docking score -4.032) through hydrophobic 

interactions, indicating excellent binding interactions with GST (Latif et al., 2018). 

Additionally, the docking studies with POD indicated that PP showed a higher docking 

score at site 1 and was stabilized by hydrophobic contacts. Moreover, the docking 

analysis suggested that POD has appreciable affinity for PP. Although PP did not form 

any hydrogen bond interactions with any of the four studied enzymes, it was found to be 

stabilized in the cavity of the receptors through hydrophobic interactions. These 

hydrophobic interactions of PP with amino acid residues of the receptors induced 

structural changes in all four studied enzymes, resulting in inhibition of their activity. 

These findings are consistent with our experimental observations. 
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Fig.6.17 (i) Potential binding sites available for PP binding in POD and Fig 6.17 (ii) shows the 3D interactions of PP at (a) Site 1 (b) Site 

2& (c) Site 3of POD. 
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6.5 Identification of different types of degrading microplastic gut 

microorganisms of E. fetida and L. mauritii. 

6.5.1 Bacterial diversity of earthworms at taxonomic and functional levels in 

Control and treated group of polypropylene. 

Analyzing the gut-microbial communities of control and microplastic exposed 

earthworms, approximately 2,736,216 high-quality reads were obtained, which 

resulted in 95,403 OTUs, at 97% similarity thresholds. The observed α-diversity 

metrics such as Chao1, ACE, Shannon, Simpson, Simpson_e, and Pielous are given in 

Table 6.11. The Good's coverage was much higher for all the samples (> 0.99), which 

shows a good sequencing depth and suggests that extreme diversity of earthworms gut 

was covered. In this study, the most relevant number of earthworms gut OTUs (32, 

641) was observed in the control sample, when compared to the treatment groups (E. 

fetida (31,621), L. mauritii (31,141) (Table 6.11). Likewise, the maximum abundance 

of species; Chao1 (Cnt = 3721, E. fetida = 4331; L. mauritii = 4121); ACE (Cnt = 

2971, E. fetida = 3611; L. mauritii = 3421); species richness in terms of Shannon (Cnt 

= 2.87, E. fetida = 4.02; L. mauritii = 3.92) and Simpson (Cnt = 0.96; E. fetida =0.97 

and L. maurtii = 0.97) were measured for both without polypropylene (control) and 

polypropylene exposure groups (Table 6.11).The results of present study directly 

indicated that the control samples harbour more diversity in comparison to the 

treatment groups; moreover the abundance of bacterial species was higher in 

polypropylene treated groups.The β-diversity between the control and treated groups 

was measured in terms of Bray-Curtis and Jaccard index and the results showed a 

clear separation or distance between the control and treated group (Table 6.12 and 

Table 6.13).The present study reported that the microplastic treated earthworm 

species have small distance compared to the control (Table 6.12 and 6.13).    

Relative abundance and taxonomic distribution of major phyla of earthworm gut are 

given in (Fig 6.18, 6.19 and 6.20). Earthworms gut microbial community shows a 

significant difference at phylum level in relative abundance of different gut bacterial 

groups between control (Cnt) and the treated groups (E. fetida and L. mauritii) (Fig 

6.18).The overall phylogenetic composition of the bacterial communities (top 

fourteen) at phylum level across all the groups showed a highly relative abundance of 

different groups such as Proteobacteria (32.6 - 35.4 %), Chlamydiae (15.4-15.6%), 

Firmicutes (12- 14.2%), TM6 (7.4-11%), Planctomycetes (7.1-9%), Actinobacteria 

(5.6-7.1%), Gemmatiomonadetes (3.3-4.7%), Veerucomicrobia (3-3.9%), 
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Saccharibacteria_TM7 (0.9-2.1), Acidobacteria (0.6-0.9%), Cyanobacteria (0.02-

0.22%), Chloroflexi (0.01-0.12%), Bacteroidetes (0.01-0.10%), Tenericutes (0.01-

0.06%). The dominant classes were Gammaproteobacteria (19.3 -24.4%), Chlamydiae 

(11.4- 14.7%), TM6 (7.9-15.6%), Bacilli, (7.4-10.9%), Planctomycetia (9.4-10.3%), 

 

Fig 6.18 Taxonomic distribution and the relative abundance of major phylum 

after treatment of polypropylene microplastic in E. fetida and L. mauritii. 

Alphaproteobacteria (6.3-12%), Clostridia (4.5-8.5%), Acidimicrobiia (3.4-8.6%), 

Longimicrobia (0.6-3.1%), Spartobacteria (0.7-2.3%), Oligoflexia (0.1-0.3%), 

Saccharimonas (0.04-0.13%), PAC002280_c (0.05-0.10%), Actinobacteria (0.02-

0.13%), Vampirovibrioc (0.01-0.13%) and others (0.01-0.12%) (Fig 6.19). The 

relative division of the expressive bacterial genus was found as Pantoea (6.3-8.10%), 

Pseudomonas (2.7-5.99%), Streptococcus (2.5-4.89%), Aquicella (2.5-3.7%), 

Planctomicrobium (1.7-4.7%), Protochlamydia (1.7-3.4%), Parachlamydiaceae  (2.1-

2.98%), DQ129127 (1.5-3.19%),  Alcanivorax (1.7-2.98%),  Bacillus (1.5-2.98%), 

Hyphomicrobium (1.5-2.98%), Catonella (0.6-3.9%), EU363464 (0.6-3.03%), 

EF540396  (0.71-2.34%), EF51641 (0.5-2.68%) (Fig 6.20). From the results, it is clear 

that a change or shift in the relative abundance of bacterial group was measured across 

the control and polypropylene treatment groups, with relative high distribution and 

relative abundance of the peculiar group of bacteria in the exposed earthworm species 

(Table 6.14). 
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Table 6.11 Estimated alpha-diversity indices of control and microplastic exposed earthworm species (E. fetida and L. mauritii). 

 

Group 

Alpha diversity Indices 

Observed OTUs Chao1 Shannon Simpson ACE Goods Coverage 

Control 32641 372 2.87 0.96 297 0.99 

E. fetida 31621 433 4.02 0.97 361 0.99 

L. mauritii 31141 412 3.92 0.97 342 0.99 



Results and Discussion 

 

 
 

110 

Table 6.12 Beta-diversity based on Bray-Curtis dissimilarity distances between 

the control and treatment groups.  

 

 

Fig 6.19 Taxonomic distribution and the relative abundance of E. fetida and L. 

mauritii bacteria at class level after treatment of polypropylene microplastic.

 Control E. fetida L. mauritii 

Control 0 0.3 0.79 

E. fetida 0.3 0 0.81 

L. mauritii 0.79 0.81 0 
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Fig 6.20 Taxonomic distribution and the relative abundance of E. fetida and L. 

mauritii bacteria at genus level after treatment of polypropylene 

microplastic. 

Table 6.13 Beta-diversity based on based on Jaccard-dissimilarity distance 

between the control and treatment groups. 

 Control E. fetida L. mauritii 

Control 0 0.19 0.2 

E.fetida 0.19 0 0.25 

L. mauritii 0.2 0.25 0 

 

6.5.2 Predicted pathways of bacteria communities in control and exposed 

earthworm species. 

For functional analysis, the taxonomic delineation obtained from QIIME2 were 

subjected to Picrust2 (Douglas et al., 2020) investigation for functional predictions to 

estimate the metabolic potential of the earthworm bacterial communities and to 

identify the functional characters that were differentially abundant in different 

microbial communities. The predicted genes were further categorized using KEGG 

orthologs (KOs) which were obtained from the KEGG (Kyoto Encyclopedia of Genes 

and Genomes Orthology) database and classified further (Kanehsia et al., 2016). 

When compared with control group, it was found that the exposed earthworms have a 
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much larger abundance of genes. For example, metabolism, environmental 

information processing, genetic information, cellular processes and organismal 

systems were found higher in exposed worms than in control (Fig 6.21). Moreover, 

the other relative abundance of genes allied with metabolism of different biological 

molecules (such as carbohydrate, amino-acids, energy, nucleotides, co-factors and 

vitamins), xenobiotics biodegradation and metabolism, signalling and interactions, 

environmental adaptation transport and catabolism, degradation and sorting, etc were 

found higher in exposed earthworms than in control (Fig 6.22). In exposed worms, the 

growth and survival of microbial communities are totally dependent upon the 

expression of genes. Moreover, the gut-microbiota analysis of earthworm exposed to 

microplastic resulted in the discovery of various genes encoding enzymes involved in 

the degradative pathway of different pollutants including microplastics (Fig 6.23).  

 

Fig 6.21  Depicts the heat-map of different Clusters of Orthologous Gene (COG) 

of three analyzed samples (Control, E.fetida and L. mauritii) and colour 

strength of each panel represent the abundance or plenitude of 

degradation pathway. 
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Fig 6.22  Heat-Map of bacterial degradation pathway in all three samples and 

colour intensity represents the relative abundance of gene associated 

metabolism in degradation pathway.Top box referring as colour key. 
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Fig 6.23  Heat-Map of bacterial degradation pathway in all three samples and 

colour intensity represents the relative abundance of gene associated 

enzymes metabolism in degradation pathway.Top box referring as 

colour key. 
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Table 6.14 Comparison of top fourteen bacterial phylotypes from control and microplastic treated earthworms. 

 

Phylogeny 

Relative abundance (%) 

Control E. fetida L. mauritii 

Pantoea 6.3184 7.1126 8.104 

Pseudomonas 2.7745 5.5687 5.9953 

Streptococcus 3.5384 4.8529 3.9973 

Aquicella 2.5438 3.7019 3.0528 

Planctomicrobium 1.7245 3.1955 4.7368 

Protochlamydia 1.7385 3.4376 3.2986 

Parachlamydiaceae-uc 2.1483 2.9191 2.9842 

DQ12912 1.5303 2.9476 3.1997 

Alcanivorax 1.7451 2.919 2.9842 

Bacillus 1.5226 2.919 2.9837 

Hyphomicrobium 1.5226 2.9187 2.9836 

Catonella 0.6754 2.1164 3.9007 

EU363464 0.6759 2.1166 3.0397 

EF540396 0.7097 2.1167 2.3405 

EF516411 0.5006 2.6874 0.6759 
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      Earthworm gut microorganisms recreate a crucial role in the metabolism 

(carbohydrate, amino acids etc), immunity and provide defence mechanism to 

pathogen.The alpha and beta community of different microorganisms in the gut is 

balanced but after the exposure of organic pollutants such pesticides, microplastics etc 

the stability of bacterial diversity might be disrupted. The disruption of bacterial 

diversity might be due to harmful and toxic components such plasticizers, additives 

etc. Cheng et al, (2021) observed the effects of two different types of microplastics 

(HDPE and PP) at concentration 0.25% w/w for 28 days on the relative abundance of 

microorganisms in the Metaphire guillelmi gut and surrounding soil. Microplastics 

were decreased both richness and diversity of earthworms gut as comparison to 

surrounding soil. Therefore, there was no significant effect of HDPE and PP on gut of 

Metaphire guillelmi at concentration 0.25% as compare to control the result of this 

study suggesting HDPE and PP did not alter the gut microbiome of Metaphire 

guillelmi. Adhikari et al., (2023) also demonstrate the effect of LDPE and PBAT 

microplastics on L. terrestris gut community and the dominant bacterial taxa at 

phylum levels in gut includes Acidobacteria, Bacteriodetes, Actinobacteria, 

Firmicutes, Proteobacteria, Gemmatimonadetes and Verrumicrobia. The findings of 

study reveals microplastics produce effects on the relative abundance of 

microrganisms. Other than earthworm, microplastics also change the gut microbial 

diversity of soil collembolan (Folsomia candida). Folsomia candida was exposed 

with PVC concentration 0.1% w/w in soil for 56 days and result suggests that the 

alpha diversity was increased as comparison to non-treated organisms (Zhu et al., 

2018b). On the contrary, the microbial diversity in the gut of Folsomia candida was 

decreased when treated with polyethylene concentration 0.5% w/w for 28 days (Ju et 

al., 2019). It is cleared from previous reported studies the effect of different types of 

microplastics on microbial diversity of organisms totally depends on the types, 

concentration and exposure time. Our results are corroborated with the findings of 

reported study by Yu et al, (2022) that polyethylene and polylactic acid microplastics 

showed no effect on dominant microorganisms of gut but change the relative 

abundance of different microorganisms. In this study polypropylene exposure causes 

the changes in the relative abundance of different microorganisms and also produces 
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moderate effect on the earthworm’s alpha and β diversity.  Microplastics act as a sole 

carbon source for microorganisms a nd microorganisms supports the degradation 

process.The magnitude of the taxonomic distribution of gut microorganisms phyla 

indicated that microplastics caused shifts in gut wall-associated bacterial community. 

6.6  Degradation of microplastic in the gut of earthworm by microorganisms 

Different types of aerobic and anaerobic microorganisms were identified in the gut of 

exotic (E. fetida) and indigenous (L. mauritii) species of earthworm. These different 

types of gut microorganisms degrade polypropylene microplastics particles.  

6.6.1 Extraction of polypropylene from earthworm cast, degutting of E. fetida, L. 

mauritii and soil. 

During 28 days treatment period of different concentration (0, 1000, 4000, 8000 and 

16000 mgkg-1 sterilized soil) of polypropylene microplastic to both species of 

earthworm. Cast of earthworms were collected from each tray continuously for 28 

days (Fig 6.24) and the collected cast of 28 days were incorporated for extraction of 

polypropylene to know the abundance of ingested and egested polypropylene 

particles.Table 6.15 shows the quantity of polypropylene microplastics extracted from 

28 days cast of E. fetida. Large quantity of polypropylene microplastics were 

extracted from cast collected from different treatments. From lowest concentration of 

polypropylene i.e 1000 mgkg-1, 43.03 mg of polypropylene microplastics were 

extracted from cast. The average abundance of polypropylene particles in cast 

collected from 4000 and 8000 were 172 mg, 234.66 mg respectively and 376 mg 

polypropylene extracted from cast collected from highest concentration (16000 mgkg-

1) of polypropylene microplastic.   

The abundance of polypropylene microplastics extracted from 28 days casts of L. 

mauritii is shown in Table 6.15. Polypropylene microplastics extracted from cast 

shows significance level (p< 0.05). From initial concentration i.e. 1000 mgkg-1, the 

total quantity of polypropylene in cast were 50.03mg and from highest concentration 

(16000 mgkg-1) cast consists of 368.67 mg of polypropylene particles. Appearance of 

microplastics in the cast (digested material) proves the ingestion behaviour of both 

species of earthworm (Wang et al., 2022).  
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Fig 6.24  Cast collected from both exotic and indigenous species of earthworms 

during exposure of polypropylene. 

 

Microplastics were also extracted from degutting of both species of earthworms. The 

degutting content of earthworms was used to estimate the polypropylene microplastics 

in earthworm gut. Table 6.16 shows the quantity of polypropylene microplastics. 

Earthworms ingest polypropylene MP together with soil. Similarly polypropylene MP 

particles also extracted from the soil in which we fed earthworms (E. fetida and L. 

mauritii) with PP. Weighs all the extracted MP particles to know the abundance of 

MP in soil. Table 6.17 shows the abundance of MP extracted from soil treated with 

earthworm species. This study revealed that the abundance of polypropylene was not 

high in degutting of both species of earthworms. Our results are corroborated by the 

findings of Adhikari et al, (2023) and reported that the polypropylene microplastics 

were ingested through soil and ingested polypropylene microplastics particles passes 

through the intestine (digestive tract) of earthworm where different gut micro-

organisms secrets different types of enzymes to breakdown the microplastic. In 

comparison with E. fetida, L. mauritii ingested or digested large amount of 

polypropylene microplastics particles in casts.  
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Table 6.15 Abundance of polypropylene microplastics (mgkg-1) in the casts of 

both exotic and indigenous species of earthworms. All value represents the Mean 

± S.E. with different subscripts (a-c) within column shows significant difference 

in different concentration of polypropylene.  

Conc.(mg kg-1) 

 

Abundance of PP in cast (mgkg-1) (Mean ± S.E.) 

E. fetida L. mauritii 

1000 43.03± 15.07a 50.03 ± 11.25a 

4000 172 ±81.05a 178.6 ± 75.05ab 

8000 234.66 ± 21.86ab 236.33 ± 16.38bc 

16000 376 ± 6.11b 368.67 ± 19.88c 

 

 

Table 6.16 Abundance of polypropylene microplastics in degutting of both exotic 

and indigenous species of earthworms. All value represents the Mean ± S.E. with 

different subscripts (a-b) within column shows significant difference (p<0.05) in 

different concentration of polypropylene. 

Conc. (mg kg-1 Abundance of PP (mgkg-1) in degutting content (Mean ± S.E) 

E. fetida L. mauritii 

1000 0.03 ± 0.00a 0.07 ± 0.02a 

4000 0.06 ± 0.00ab 0.13 ± 0.01ab 

8000 0.08 ± 0.01ab 0.16 ± 0.00ab 

16000 0.10 ± 0.00b 0.22 ± 0.05b 
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Table 6.17 Abundance of polypropylene in the soil of both exotic and indigenous 

species of earthworms. All value represents the Mean ± S.E. with different 

subscripts (a-b) within column shows significant difference (p<0.05) in different 

concentration of polypropylene. 

Conc.(mg kg-1) Abundance of PP (mgkg-1) in culture media (Mean±S.E) 

E. fetida L. mauritii 

1000 885 ± 21.19a 878.1 ± 3.21a 

4000 3746.6 ± 60.64b 3732 ± 48.21b 

8000 7640 ± 123.60c 7570.1 ± 101.44c 

16000 15433 ± 141.65d 15431 ± 92.53d 

 

The total recovery of polypropylene microplastics extracted from different parameters 

such as cast, degutting of both E. fetida and L. mauritii and from soil. From each 

concentration of polypropylene treatment (1000, 4000, 8000 and 16000 mgkg-1). The 

recovered amount of polypropylene from E. fetida were 928.06, 3918.73, 7874.08 and 

15808.01 mgkg-1(Fig 6.25 and Table 6.18) and remaining amount of polypropylene 

were degraded by gut microorganisms. The degradation percentage of E. fetida 

towards polypropylene was 7.2%, 2.03%, 1.57% and 1.2%. Similarly in case of L. 

mauritii total recovered polypropylene microplastic from each concentration were 

928.10, 3910.8, 7806.49 and 15798.88 mg respectively and degradation percentage of 

L. mauritii towards microplastics were 7.19%, 2.23%, 2.41%  and 1.26% (Fig 6.26 

and Table 6.18). Adhikari et al, (2023) also extracted LDPE and PBAT microplastics 

from earthworm (L. terrestris) cast, bulk soil and gut. Twenty five and twenty three 

particles of LDPE and PBAT respectively extracted from the cast by using 

stereomicroscope (Meng et al., 2023). Lwanga et al, (2017) degrade 60% LDPE 

through gut microorganisms of L. terrestris under 21 day’s exposure period.   
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Fig 6.25 Total recovery of polypropylene PP from cast, degutting and soil of E. 

fetida. 

 

Fig 6.26 Total recovery of polypropylene from cast, degutting and soil of L. 

mauritii.  



Results and Discussion 

 

 
 

122 

Table 6.18 Abundance of total recovered polypropylene from the cast, soil and 

gut of both exotic and indigenous species of earthworms. All value represents the 

Mean ± S.E. with different subscripts (a-d) within column shows significant 

difference (p<0.05) in different concentration of polypropylene. 

 

Conc. (mg) Total recovered amount of PP (Mean ± S.E.) 

E. fetida L. mauritii 

1000 928.06±12.09a 928.10±4.83a 

4000 3918.73±47.23b 3910.80±41.09b 

8000 7874.08±48.49c 7806.49±39.27c 

16000 15808.01±49.25d 15798.88±37.48d 

 

6.7 Biodegradation analysis  

6.7.1 ATR- FTIR spectroscopic analysis of polypropylene microplastic extracted 

from both E. fetida and L. mauritii earthworms. 

FTIR analysis of extracted polypropylene microplastics were taken after 28 days 

interval of degradation in the gut of earthworm by different microorganisms. 

Additionally, the results of FTIR analysis were showed appearance and disappearance 

of peaks, change in chemical groups and it also offer potential proof for degradation 

of microplastic particles through different types of microorganisms present in the 

intestine of earthworms (Cui et al., 2022b).The FTIR spectra of polypropylene 

without treated with earthworms (Control) (Fig 6.27a) and after 28 days exposure of 

polypropylene to earthworms to study the degradation of polypropylene in the gut of 

earthworms through the presence of different intestinal microrganisms that cause 

change in the chemical groups and peak intensity of polypropylene. The peak of 

polypropylene without earthworm was formed at 2877.79cm-1(Fig 6.27b) but the peak 

of polypropylene after 28 days polypropylene exposure period of earthworms 

(polypropylene microplastics extracted from degutting) were shift at wave number 

2868.15cm-1(Fig 6.27b and Table 6.19) and presence of C-H group Another peak was 

appeared at wave number 1454.40cm-1 in case of E. fetida but in L. mauritii peak was 

formed at 1460.11 and C-H (methylene) group were present. Due to the formation of 
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C-H group the peak formed at 1359.82cm-1 in E. fetida. Due to the presence of C=C 

group after 28 days exposure  in both species E. fetida and L. mauritii the peak were 

formed at wavenumber 972.12cm-1. The another peak were formed at wave number 

675.09cm-1 due to C-H group.The appearance of peak probably represents the 

oxidation effects of polypropylene due to activity of different functional gut 

microorganisms. Tziourrou et al, (2021) reported that different types of 

microorganisms play a role in the degradation of microplastics by enhancing the 

hydrophilicity of microplastics. The peaks were present at wavenumber 898.33cm-1 

without earthworm treatment and this peak were disappearing after 28 days exposure 

in both species of earthworm. Meng et al, (2023) reported the activity of L. terrestris 

gut microorganisms and enzymes that triggered, hydrolyze or breakdown the PBAT 

and PLA microplastics. The gut of E. fetida and L. mauritii were more effective to 

breakdown of microplastic polymers.The ingested polypropylene microplastics may 

transformed through the digestive tract through the action of gut microorganisms.The 

breakdown of microplastic relates with the polymers properties. Previously reported 

study showed that earthworm has higher ability to breakdown low density 

polyethylene (Lwanga et al., 2016). Polylactic acid microplastics were degraded by 

the action of different intestinal microorganisms of earthworm and these 

microorganisms were secreting different enzymes such as carboxylestrase to degrade 

microplastics (Sanchez-Hermandez et al., 2009; 2014). The main finding of our study 

revealed that the ingested polypropylene microplastics were mineralized and degraded 

by different gut microorganisms of both earthworm species.   

Table 6.19 ATR-FTIR spectral analysis of extracted polypropylene particles 

from earthworms gut. 

S.NO. New Peaks Appear  Functional 

Group  

Peaks disappear Functional 

Group 

E. fetida L. mauritii E. fetida L. mauritii 

1 2868.15 2868.15 C-H 898.33 898.33 C-H 

2 1452.40 1460.11 C-H    

3 1359.82 ----- C-H    

4 972.12 972.12 C=C    

5 675.09 ------ C-H    
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Fig 6.27 FTIR spectra of polypropylene microplastic (a) depicts the FTIR spectra 

of polypropylene (control) without earthworm (b) FTIR spectra of 

polypropylene particles extracted after 28 days from the gut of E. fetida (c) 

spectra of polypropylene microplastics extracted from the gut of  L. mauritii. 

 

6.7.2 Scanning Electron Microscopy (SEM) analysis.  

After incubation of 28 days casts from control (without microplastics) and 

polypropylene treatment group of both E. fetida and L. mauritii were employed for 

SEM analysis. SEM analysis was implemented to examine morphological alterations 

of casts after polypropylene passing through the earthworms gastrointestinal tract 

(Song et al., 2019). Fig 6.28 showed the micrographs of cast from control (without 

polypropylene) and with polypropylene microplastics. As compared to control of E. 

fetida and L. mauritti polypropylene microplastics changed the surface morphology of 

cast.  

 

c 
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Fig 6.28  SEM micrographs of cast (a-b) collected from E. fetida (a) without 

polypropylene (control) (b) with polypropylene treatment (c-d) shows 

the micrographs of cast collected from L. mauritii without 

polypropylene (control) (d) after polypropylene treatment. 

 

6.8 Evidences control startegies and policies to mitigate plastic pollution  

Government implements different campaigns and policy to reduce MPs pollution 

from environment. It is important to clear that reducing plastic polymer production 

and managing microplastics waste must be a priority. The United Nations 

Environment Assembly implements several aspects to overcome the microplastic 

pollution so as to reduce plastic use and increase recycling, reuse, and proper disposal 

(Rochman, 2018). Further, it is also necessary to address the issue of microplastic 

waste management in developing countries, particularly in Asia and Africa, which 

account for the largest share of plastic waste to ocean. The use of artificial 

intelligence technology, improving waste collection systems, implementing public 

awareness programs and education about the harmful impacts of plastic waste in some 

aspects help to overcome microplastic pollution. 
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7.  SUMMARY AND CONCLUSIONS  

Punjab has very large number of plastic product manufacturing industries. The waste 

of these industries reached in agricultural field through different sources such as 

utilization of wastewater for irrigation and sewage sludge. Plastic mulching is one of 

the major source of microplastic in agriculture field.The use of these sources in the 

agricultural field no doubt increase the crop quality and productivity but also produces 

negative effect on the soil micro and macrofauna.Therefore the present work were 

designed on the basis of plastic pollution in agriculture field and its toxic effects on 

soil ecological engineer (earthworms).  

Soil collected from agriculture field near plastic product manufacturing industries was 

employed to know the concentration, shapes, size, color and types of microplastics.  

Various types of microplastics i.e. polyethylene, polypropylene, polystyrene, 

polyethylene terephthalate, polybutylene terephthalate were extracted by using 

density separation method. Different shapes (fibres, fragments, miscellaneous, film), 

size (100 µm-1 mm) of microplastics particles were extracted. These microplastics 

particles were identified by using ATR-FTIR spectrophotometer on the basis of their 

identification peak and functional groups. The surface morphology of PE, PP, PS, 

PET and PBT microplastics was studied by SEM and the nature of these particles was 

studied through XRD. PE, PS and PET microplastics particles are poorly crystalline in 

nature where as PP exhibits the strong crystalline nature but PBT are amorphous in 

nature due to its noisy peak. 

Microplastic polypropylene were tested to check the toxic effects in terms of biomass, 

fecundity rate and antioxidant enzymes (biochemical assay) (Superoxide dismutase, 

Catalase, Glutathione-S-Transferase, Guiacol Peroxidase) on two earthworm’s species 

namely E. fetida (exotic species) and L. mauritii (indigenous species). Two 

earthworms species (E. fetida and L. mauritii) were treated with different 

concentrations of polypropylene (0, 1000, 4000, 8000, 16000 mgkg-1) in artificial soil 

to know its effect in term of biomass and fecundity rate and oxidative stress 

earthworm. Artifical soil (OECD soil) was free from any harmful pollutants 

contaminats so that earthworms test species depicts the real toxic effects toward the 

microplastic or other chemical compound. Highest concentrations of polypropylene 
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pose significant negative impact on the biomass and reproduction of E. fetida and L. 

mauritii. Different antioxidant enzymes (SOD, CAT, GST and POD) activity increase 

up to 14 days but inhibit the enzymatic activity at 8000 and 16000 mgkg-1 while POD 

activity increases with increase in exposure time. The SOD, CAT and GST enzyme 

unit activity of E. fetida on 14th day at 16000 mgkg-1 was 0.015, 0.074, and 0.097 

respectively but in L. mauritii the unit activity of SOD, CAT and GST (0.009, 0.024 

and 0.012 respectively) at 1600 mgkg-1 were increased on 14th day while POD unit 

activity of E. fetida and L. mauritii were increased with increase in exposure time. On 

28th day in E. fetida at similar concentration the unit activity of SOD, CAT and GST 

were significantly decrease 0.008, 0.058, 0.045 similarly in case of L. mauritii the unit 

activity of SOD, CAT and GST (0.002, 0.011 and 0.09 respectively) at 16000 mgkg-1 

on  28th day were declined. The unit activity of POD enzymes of E. fetida on 7th day 

at highest concentration (16000 mgkg-1) was 0.025 and on 28th day at similar 

concentration the unit activity is 0.035 but in L. mauritii the POD unit activity on 7th 

day at 16000 mgkg-1 was 0.027 and on 28th day at same concentration the unit activity 

was 0.035. High concentrations of polypropylene produce oxidative stress on different 

antioxidant enzymes of E. fetida. Molecular docking study is a tool to analyze the 

available binding site of ligand in particular enzymes and its interaction with catalytic 

and non-catalytic sites at a molecular level that are responsible for the modulation of 

the activity of that enzyme. Futhermore docking study illustrates the docking score of 

different enzymes. In this study the docking score was high with CAT and GST 

indicated that these two enzymes have high binding affinity for polypropylene and  

have different active binding sites towards polypropylene such as SOD have three, 

CAT has four, GST has five and POD has three active binding sites. 

Earthworms gut provides a stable environment for different types of microorganisms. 

Organic pollutants includes microplastics, pesticides etc disturb the stability of gut 

microorganisms. In this study different types of gut microorganisms of earthworms 

treated with polypropylene were identified by metagenomic sequencing. Study 

reported that polypropylene affects the alpha and beta diversity of microorganisms. 

Alpha diversity were measured on the basis of Chao1, ACE, Shanon, Simpson and 

beta diversity were measured by Bray-curtis dissimilarity, Jaccard dissimilarity 

distance between control and polypropylene treated group.The measured Operational 
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Taxonomic Unit (OTUs) was 32641, 31621 and 31141 respectively in control, treated 

E. fetida and L. mauritii.This clearly showed that the polypropylene causes moderate 

effects on the earthworms gut microbiome. At phylum levels different types of 

microorganisms were identified i.e Tenericutes, Bacteriodetes, Chloroflexi, 

Cyanobacteria, Acidobacteria, Saccharibacteria-TM7, Verrucomicrobia, 

Gemmatimonadetes, Actinobacteria, Plantomycetes, TM6, Firmicutes, Chlamydiae 

and Proteobacteria. At genus level different types microorganisms were identified i.e. 

Pantoea, Pseudomonas, Streptococcous, Aquicella, Planctomicrobium, 

Protochlamydiae, Parachlamydiae-uc, Q129127-g, Alcanivorax, Bacillus, 

Hyphomicrobium, Cantonella, EUC363464-f-uc, EF516411-g.These different types 

of microorganisms play a crucial role in degradation of microplastics. Earthworm gut 

microorganisms have the ability to degrade or breakdown microplastic particles. In 

this study earthworms were treated with polypropylene for 28 days to study the 

degradation of polypropylene in the gut of earthworm. Degradation of polypropylene 

was studied on the basis of weight loss of particles. Weight loss of polypropylene 

were analyze on three different parameters i.e polypropylene recovered from cast up 

to 28 days, degutting of earthworms and soil. Total amount of recovered 

polypropylene from E. fetida and L. mauritii was 928.06, 3918.73, 7874.08, 15808 

mgkg-1 and 928.10, 3910.80, 7806.49 and 15798.01 mgkg-1 respectively when 

earthworms were treated in 1000, 4000, 8000 and 16000 mgkg1. Microplastics 

particles passed through the earthworm intestine and incorporated in the form of cast 

but different types of microrganisms present in the gut they degrade microplastic 

particles and cause change in the chemical groups and peak intensity. Hence, the 

remaining amount of polypropylene may be degraded by earthworm gut 

microorganisms. The extracted polypropylene particles from degutting and cast were 

employed for ATR-FTIR analysis to study the appearance of new peaks or group. 

ATR-FTIR spectral analysis shows the formation of C-H group at wavenumber 

2868.15 cm-1 and 1460.11cm-1,972.12cm-1 (C=C group) and one peak disappear from 

wavenumber 898.33cm-1 (C-H group). Scanning Electron Microscopy were employed 

to study the changes in the surface morphology of treated and without treated cast. 

SEM micrographs showed changes between treated and without treated group.Our 

results represents the earthworms gut microrganisms are capable to degrade the 
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polypropylene.Therefore, further study is needed to investigate or determine the 

interaction of different insects (nematodes, collembolans isopods and amphipods) and 

their gut microrganisms to reveal the degradation mechanisms of various types of 

plastic by insects eating. In terms of molecular docking further it is necessary to 

illustrate the hydrophobic interaction and catalytic and non-catalytic sites of different 

types of other insect enzymes with microplastic.    
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APPENDIX-I 

ABBREVIATIONS 

S.No Abbreviation Expansion  

1.  CDNB  1-chloro, 2, 4- dinitro benzene (CDNB)  

2.  Ala   Alanine 

3.  APHA American Public Health Association Guidelines 

4.  ANOVA Analysis of variance 

5.  Å Angstrom 

6.  Arg Arginine 

7.  C6H8O Ascorbic acid  

8.  Asn Asparagine 

9.  Asp Aspartic acid  

10.  ATR-FTIR Attenuated total reflectance - Fourier transform 

infrared spectroscopy 

11.  β Beta 

12.  H3BO3 Boric acid  

13.  Cd Cadmium 

14.  CaCO3 Calcium carbonate  

15.  CaCl2 Calcium chloride 

16.  Ca+ Calcium ions  

17.  CO2 Carbon dioxide  

18.  Catalase CAT 

19.  C Celsius  

20.  cm  Centimetre 

21.  Cr Chromium 

22.  COG Clusters of Orthologous Gene 
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S.No Abbreviation Expansion  

23.  TGA-DSC Combined Thermogravemetric Analysis -

Differential Thermal Calorimetry  

24.  CuSO4 Copper sulphate  

25.  Cys Cysteine 

26.  ˚ Degree 

27.  EC Electrical  conductivity 

28.  EG Ethylene glycol 

29.  FPA-FTIR Focal plane array- Fourier transform infrared 

spectroscopy  

30.  Glu Glutamic acid 

31.  GSH Glutathione  

32.  Gly Glycine 

33.  g Gram 

34.  Glutathione-S- 

Transferase 

GST 

35.  High Density 

Polyethylene 

High-density polyethylene (HDPE) 

36.  His Histidine 

37.  hrs Hours 

38.  H2O2 Hydrogen Peroxide 

39.  ICP-MS Inductively Coupled Plasma Mass 

Spectrometry  

40.  Fe Iron  

41.  Kg Kilogram 

42.  Km  Kilometre 

43.  KEGG Kyoto Encylopedia of Genes and Genomes 

44.  LDIR  Laser Direct Infrared  
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S.No Abbreviation Expansion  

45.  Pb Lead 

46.  < Less than 

47.  Leu Leucine 

48.  Ltd Limited 

49.  Li Lithium 

50.  LiCl Lithium chloride  

51.  l Litre 

52.  LDPE Low density polyethylene  

53.  Lys Lysine 

54.  Mg Manganese 

55.  MALDI-TOF-MS Matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry. 

56.  CH4 Methane 

57.  Met Methionine 

58.  µl micro litre 

59.  µM Micromolar 

60.  µm Micronmeter 

61.  MPs Microplastics 

62.  mg Milligrams 

63.  ml Millilitre 

64.  mm Millimetre 

65.  min Minute 

66.  MHET Mono-2-hydroxyethyl terephthalate 

67.  nm Nanometre 

68.  NR Nile red 
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S.No Abbreviation Expansion  

69.  HNO3 Nitric acid  

70.  NBT Nitroblue tetrazolium 

71.  N Normality 

72.  NMR Nuclear Magnetic Resonance Spectroscopy. 

73.  OTU Operational Taxonomic Units 

74.  OC Organic carbon 

75.  OECD Organization for Economic Co-operation and 

Development 

76.  O2 Oxygen 

77.  % Percentage 

78.  HClO4 Perchloric acid 

79.  POP Persistent organic pollutions  

80.  Phe Phenyalanine 

81.  Guiacol peroxidase POD 

82.  PBT Polybutylene  terephthalate 

83.  PCL Polycaprolactone  

84.  PE Polyethylene  

85.  PS Polyethylene 

86.  PET Polyethylene terephthalate 

87.  PHA Polyhydroxyalkanoates 

88.  PLA Polylactic acid 

89.  PCR Polymerase Chain Reaction 

90.  PP Polypropylene 

91.  PVC Polyvinyl chloride 

92.  K Potassium  
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S.No Abbreviation Expansion  

93.  K2SO4 Potassium sulphate 

94.  Pvt Private 

95.  Pro Proline 

96.  Pyr-GC-MS Pyrolysis Coupled with Gas Chromatography-

Mass Spectrometry 

97.  ROS Reactive Oxygen Species 

98.  SEM Scanning Electron Microscope 

99.  SeO2 Selenium dioxide  

100.  Ser Serine 

101.  SP-ICP-MS Single Particle Inductively Coupled Plasma 

Mass Spectrometry 

102.  Superoxide dismutase  SOD 

103.  Na Sodium 

104.  NaBr Sodium bromide 

105.  NaCl  Sodium chloride 

106.  NaH2PO4 Sodium dihydrogen phosphate  

107.  NaOH Sodium Hydroxide  

108.  NaI. Sodium iodide 

109.  SE Standard Error 

110.  H2SO4 Sulphuric acid  

111.  Temp Temperature 

112.  TPA Terephthalic acid  

113.  TDS-GC-MS Thermal Desorption Coupled with Gas 

Chromatography- Mass Spectrometry. 

114.  Θ Theta 

115.  Thr Threonine 
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S.No Abbreviation Expansion  

116.  TDS Total dissolved solids  

117.  TKN Total Kjeldhal Nitrogen  

118.  Trp Tryptophan 

119.  Tyr Tyrosine 

120.  UV Ultra violet 

121.  US United State 

122.  Val Valine 

123.  v/v Volume by volume 

124.  H2O Water 

125.  w/v Weight by volume 

126.  w/w Weight by weight 

127.  XRD X-Ray diffraction  

128.  Zn  Zinc 

129.  ZnCl2 Zinc chloride 
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APPENDIX II 

LIST OF SCIENTIFIC NAMES AND THEIR ABBREVIATIONS 

MENTIONED IN THE THESIS 

S.NO Scientific name  Abbreviated name 

1.  Eisenia fetida  E. fetida 

2.  Lumbricus terrestris  L. terrestris 

3.  Lampito mauritii L. mauritii 

4.  Caenorhabditis elegans C. elegans 
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LIST OF CONFERENCES 

a. Internationals Conferences 

1. Babita Thakur, Jaswinder Singh and Joginder Singh. Extraction and detection of 
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International conference Plastic Pollution from Macro to Nano from 17-18 November, 

2022, organized by UNESCO. (Oral presentation) 

2. Babita Thakur, Jaswinder Singh and Joginder Singh. Exotoxicological effects of 

polypropylene on earthworm E. fetida.International Conference in recent advances in 

Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar 

(Punjab)  from 2-4 December, 2022. (Oral presentation) 

3. Babita Thakur, Jaswinder Singh and Joginder Singh. Exotoxicological effects of 
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Scenario of Science Technology and Innovation, Carrier Point University Hamirpur 

(H.P) from 24-25 February, 2023. (Oral Presentation) 

4.Participate  in International conference on Sustainability: Life on Earth, Lovely 

Professional University, Phagwara (Punjab) from 17-18 December, 2021.  

b. National Conferences 

1. Babita Thakur, Jaswinder Singh and Joginder Singh. Separation and 

identifications of different types of microplastics in agriculture soil. National 

conference on Air Quality and Human Health: Consequences of Remedies, Khalsa 

College, Amritsar from November 4-5, 2022. (Poster presentation). 
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LIST OF WORKSHOPS 

1.  Participate in One-Day Training workshop on “Science Communication and 

Popular Science Writing” under AWSAR programme organized by 

Department of Science and Technology, Vigyan Prasar, Guru Nanak Dev 

University, Amritsar (Punjab), 5 August, 2022. 

2.  Participate in one day National workshop “Vermicompost: Recycling Waste 

into wealth” organized by Khalsa College Amritsar (Punjab) in collaboration 

with Punjab Pollution Control Board, Patiala, 5 November, 2022. 

3.  Participate in Two- Day workshop on “Training of Dairy Farmers for 

Management of Cattle Dung through Vermicomposting, organized by 

Directorate of Environment and Climate Change, Punjab, Guru Nanak Dev 

University, Amritsar (Punjab) from 13- 14 June, 2023. 

 

 

 

 

 

 

 


