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Abstract 

The area of fractional calculus known as "Applied Mathematics" examines integrals and 

derivatives of arbitrary orders and how they are used in a variety of fields, including 

mathematics, computer science, and physics. Since then, Calculus of rational order has been 

referred to as "Fractional Calculus". Mathematicians such as Cauchy Riemann have been 

exploring this strategy since the late 1800s. Many mathematicians have examined it since 

then. In the fields of science and engineering, fractional calculus is used to study natural and 

physical events that correspond to mathematical models with differential equation solutions. 

Much attention has been paid to the solutions of FDEs, integral equations, PDEs, and other 

problems. Since most FDEs are known to have an approximate analytical solution, 

approximations and numerical approaches are used so often. 

There are numerous analytical methods that can be used to solve linear and non-linear FDEs. 

Among the more important techniques are the variational iteration method, the Fourier 

transform method, the Laplace transforms method, the green function method, the Homotopy 

perturbation method, the Adomian decomposition method, the differential transform method, 

the Homotopy analysis method, and the residual power series method. Numerous academics 

have looked into the numerical methods for solving FDEs. Much work has been done in the 

last year to develop robust numerical analytical methods for solving FDEs of physical 

interest.  

This work is about exploring the application of residual power series method for the 

numerical solution of fractional order differential equations as well as numerical solution of 

these equations by using Laplace and Elzaki transforms with residual power series method. 

The relaxation-oscillation equations are solved by residual power series method. The Laplace 

residual power series method is used to solve one-dimensional and two-dimensional 

fractional order differential equations with simulations and graphs. The Elzaki residual power 

series method is used to solve two-dimensional diffusion equation. Also comparative study of 

solutions of diffusion equation by both ERPSM and LRPSM are also observed in this thesis. 

These methods of numerical solutions of such fractional order differential equations are very 

useful, effective and reliable. Some common techniques for solving fractional differential 

equations in time numerically are explained in this Thesis widely which verifies the 

importance of such methods. Separate discussions and convincing numerical examples are 

provided for the discretization techniques for the fractal, Riemann–Liouville, Caputo, and 

positive time-fractional derivatives. We refer to equations involving time fractional 

derivatives as time fractional differential equations. In Fractional Calculus, the solutions to 

such equations are very significant.  
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Chapter 1 

Introduction 

1. Fractional Calculus 

A branch of Applied Mathematics known as Fractional Calculus studies integrals and 

derivatives of arbitrary orders and their applications in Physics, Computer Science, 

Engineering, and Mathematics, among other subjects. Since then, the term "Fractional 

Calculus" has been used to refer to Calculus of rational order. This method is not new; 

mathematicians like as Cauchy Riemann began studying it around the end of the 1800s. After 

that several mathematicians have studied about it [1- 3].  Physical and natural phenomena of 

Fractional Calculus are studied in the field of engineering and science which represent 

mathematical models having solutions of differential equations. The solutions to fractional 

differential equations (FDEs), integral equations, partial differential equations (PDEs), and 

other problems of physical significance have received an attention of great deal. The majority 

of FDEs are known to have an approximate analytical solution that is why numerical methods 

and approximations are so frequently employed. 

The solution of linear or non-linear FDEs can be achieved by a variety of analytical 

techniques. Variational iteration method [9], Fourier transform method [10], Laplace 

transforms method [7, 8], & green function methods [4-6] are a few of the more significant 

techniques. Many researchers [11, 12] have examined the numerical approaches used to solve 

FDEs. Over the past year, a great deal of work has been done to establish reliable numerical 

analytical approaches to solve FDEs of physical interest. Homotopy perturbation method 

[13], Adomian decomposition method [14], differential transform method [15], & Homotopy 

analysis method [13] are few of novel techniques for the analytical solution of FDEs both 

linear as well as non-linear.   

Because FDEs concern requires complex mathematical solution methodologies, they are not 

only significant but also highly tough. It is very difficult to obtain exact solutions for FDEs 

and other equations; hence a reliable and very efficient numerical method is required to solve 

such FDEs.   

Without discretization, linearization, or disturbance, residual power series method (RPSM) 

offers a quick and effective way to generate power series solutions for both linear and non-

linear FDEs. This method does not necessitate a recursive relation of the coefficients of the 

connected terms, in contrast to the traditional power series approach. The RPSM determines 

the coefficients of power series using a collection of algebraic equations in one or more 

variables. This method is also used to find analytical solutions to FDEs of higher order. 

This RPSM was developed to give a rapid and efficient method for finding the values of the 

coefficients in the power series solution for fuzzy differential equations [16]. This method has 

been successfully applied to,  
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-numerical solution of the highly nonlinear singular differential equation known as the 

generalised Lane-Emden problem [17]. 

-numerical solution of normal differential equations of greater order [18] 

-nonlinear KdV-Burgers equation's approximate solution [21],  

-solution of composite and non-composite FDEs [19],  

-prediction and representation of variety of solutions of boundary value problems [20], and in 

many other applications as well [20, 22, 23]. 

-this method has recently led to the discovery of analytic solution of second order two-

component evolutionary scheme. [24]. 

1.2 Some Useful Results 

1.2.1 The Beta function   

The definite integral defined by ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−11

0
𝑑𝑥 𝑓𝑜𝑟 𝑚 > 0, 𝑛 > 0  is called the beta 

function.  Beta function is also known as the Eulerian integral of first kind and it is denoted 

by 𝛽(𝑚, 𝑛). 

∴ 𝛽(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−11

0
𝑑𝑥 𝑓𝑜𝑟 𝑚 > 0, 𝑛 > 0                                                    (1.1) 

1.2.2 The Gamma function  

The definite integral defined by ∫ 𝑒−𝑥∞

0
𝑥𝑛−1𝑑𝑥  𝑓𝑜𝑟 𝑛 > 0  is called gamma function.  

Gamma function is also known as the Eulerian integral of second kind and is denoted by  

Γ(𝑛).  

∴ Γ (𝑛) = ∫ 𝑒−𝑥∞

0
𝑥𝑛−1𝑑𝑥  𝑓𝑜𝑟 𝑛 > 0                                                                              (1.2) 

The integrals (1.1) and (1.2) are convergent for these values of m and n since it is evident that 

the former is valid only for m >0, n >0, while the latter is valid only for n >0. 

Properties 

i) Γ(1)  =  1.  

ii) Γ(n + 1) = nΓ(𝑛)      𝑛 > 0.  

iii) If 𝑛 is a positive integer then  Γ(𝑛 + 1) =  𝑛!. 

iv) Γ(n) = ∞ if n is zero or a negative integer.  

v) An important result Γ (
1

2
) = √π. 

vi) Symmetrical property of beta function,  𝛽(𝑚, 𝑛)  =  𝛽(𝑛, 𝑚). 
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Remark 1: The relation between beta and gamma function is, 𝛽(𝑚, 𝑛)  =

 
 𝛤(𝑚).𝛤(𝑛)

 𝛤(𝑚+𝑛)
 , 𝑓𝑜𝑟 𝑚 > 0, 𝑛 > 0.       

1.2.3 Power Series 

An infinite series,  ∑ 𝑐𝑛
∞
𝑛=0 (𝑥 − 𝑥0)𝑛 =  𝑐0 + 𝑐1(𝑥 − 𝑥0) + 𝑐2(𝑥 − 𝑥0)2 + ⋯   is known as a 

general power series in 𝑥 − 𝑥0. In particular, the infinite series ∑ 𝑐𝑛
∞
𝑛=0 𝑥𝑛 =  𝑐0 + 𝑐1𝑥 +

𝑐2𝑥2 + ⋯  is known as power series in 𝑥.  

Convergence  

The series  ∑ 𝑐𝑛(𝑥 − 𝑥0)𝑛∞
𝑛=0  is an absolutely convergent series for |𝑥| < 𝑅 , here 𝑅 =

lim
𝑛→∞

|
𝑐𝑛

𝑐𝑛+1
|, provided that limit exists.  

Radius of convergence and interval of convergence 

The radius of convergence, denoted by a definite number R > 0, occurs when a given power 

series does not converge everywhere or nowhere, meaning that it is absolutely convergent for 

every |x| < R and divergent for every |x| > R. An interval of convergence is denoted by the 

open interval (-R, R). 

Remarks 

i) Power expansion of ex is, 

ex = ∑
xn

n!

∞
n=0 = 1 + x +

x2

2!
+

x3

3!
+ ⋯.     

ii) A power series represents a continuous function inside its convergence interval. 

iii) A power series is differentiable term by term inside its interval of convergence. 

iv) Power series is considered nowhere convergent if it does not converges to any value other 

than x = 0. That is the power series ∑ 𝑛𝑛𝑥𝑛∞
𝑛=0  is nowhere convergent. 

v) A particular power series is everywhere convergent if it converges for all values of x. That 

is, the power series ∑
xn

n!

∞
n=0  is convergent everywhere.  

vi) The set of all values of x for which the given power series is convergent is referred to as 

its area of convergence if it converges for certain x & diverges for other x. 
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1.2.4 Analytic function  

A function 𝑓(𝑥) defined on the period containing 𝑥 = 𝑥0 is known as an analytic function at 

𝑥0 if its Taylor series ∑
𝑓(𝑛)(𝑥)

𝑛!

∞
𝑛=0 (𝑥 − 𝑥0)𝑛 exists and converges to 𝑓(𝑥) for all 𝑥 in that 

interval of convergence of its Taylor series. 

Remarks  

i) In short a function which is defined and differentiable at a point is also known as an 

analytic function at that point. 

ii) All the polynomial functions, 𝑆𝑖𝑛 𝑥, 𝐶𝑜𝑠 𝑥, 𝑆𝑖𝑛ℎ 𝑥 𝑎𝑛𝑑 𝐶𝑜𝑠ℎ 𝑥 are analytic functions 

everywhere. 

iii) A rational function is analytic except when its denominator is zero, which occurs at 

certain values of x. Such function given by 
3𝑥+1

𝑥2−5𝑥+6
 is analytic everywhere except 𝑥 =

 2 𝑎𝑛𝑑 𝑥 =  3. 

 1.2.5 Ordinary and singular points 

i) A point 𝑥 = 𝑥0 is known as an ordinary point of differential equation 

 𝑦" + 𝑃(𝑥)𝑦 ′ + 𝑄(𝑥)𝑦 = 0 if  𝑃(𝑥) & 𝑄(𝑥) are both analytic at  𝑥 = 𝑥0. 

ii) The point 𝑥 = 𝑥0in the differential equation above is referred to as a singular point if it is 

not an ordinary point. The singular points are of two types: 

a) Regular singular point 

 A singular point 𝑥 = 𝑥0 of an equation is known as regular singular point if both (𝑥 −

𝑥0)𝑃(𝑥) and (𝑥 − 𝑥0)2𝑄(𝑥) are analytic at  𝑥 = 𝑥0. 

b) Irregular singular point 

A singular point that is not regular is an irregular singular. 

For example 2𝑥2 𝑑2𝑦

𝑑𝑥2 + 7𝑥(𝑥 + 1)
𝑑𝑦

𝑑𝑥
− 3𝑦 = 0  is a differential equation of order two. We 

may identify 𝑥 = 0 is an ordinary point.  

The above equation can be written as, 

𝑑2𝑦

𝑑𝑥2 +
7(𝑥+1)

2𝑥

𝑑𝑦

𝑑𝑥
−

3

2𝑥2 𝑦 = 0.   

Comparing this equation with   𝑦" + 𝑃(𝑥)𝑦 ′ + 𝑄(𝑥)𝑦 = 0, we get 

𝑃(𝑥) =
7(𝑥+1)

2𝑥
 𝑎𝑛𝑑 𝑄(𝑥) = −

3

2𝑥2   
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It is evident that in the case of 𝑥 = 0  𝑛𝑒𝑖𝑡ℎ𝑒𝑟𝑃(𝑥) 𝑛𝑜𝑟 𝑄(𝑥) is analytic as they are both 

undefined. Consequently, since 𝑥 = 0 is not ordinary point for equation provided, it is a 

singular point. 

 1.2.6 Laplace Transform  

Assume that a function 𝑓(𝑡)is defined for every 𝑡 > 0. Then the Laplace transform of 𝑓(𝑡) is 

defined as the integral ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡
∞

0
, provided that it exists with parameter t and is denoted 

by ℒ{𝑓(𝑡)} and written as 𝑓(̅p). The Laplace transform is a function of 𝑝. 

∴ 𝑓(̅p) = ℒ{𝑓(𝑡)} = ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡
∞

0
. 

Again, function 𝑓(𝑡) is called inverse Laplace transform of  𝑓(̅p).     

Laplace transform of function 𝑓(𝑡) 𝑓𝑜𝑟 𝑡 > 0  exists if,  

i) 𝑓(𝑡) is continuous and 

ii) lim
𝑡→∞

𝑒−𝑝𝑡 𝑓(𝑡) is finite. 

It is remarkable that conditions are sufficient but not necessary. 

1.2.7 Laplace transforms of some standard functions 

i) ℒ(tn) =
1

p
 , for ( 𝑝 > 0) 

ii) ℒ(tn) =
n!

pn+1 =
Γ(n+1)

pn+1        where 𝑛 = 0,1,2 … … 

iii) ℒ(𝑒𝑎𝑡) =
1

𝑝−𝑎
           ( 𝑝 > 0) 

iv) ℒ(𝑠𝑖𝑛 𝑎𝑡) =
𝑎

𝑝2+𝑎2     ( 𝑝 > 0) 

v) ℒ(𝑐𝑜𝑠 𝑎𝑡) =
𝑝

𝑝2+𝑎2      ( 𝑝 > 0) 

vi) ℒ(𝑠𝑖𝑛ℎ 𝑎𝑡) =
𝑎

𝑝2−𝑎2   (  𝑝 > |𝑎|) 

vii) ℒ(𝑐𝑜𝑠ℎ 𝑎𝑡) =
𝑝

𝑝2−𝑎2  ( 𝑝 > |𝑎|) 

1.2.8 Properties of Laplace transform 

i) Linearity Property  

 If a, b, c are constants and f, g, h are functions of t then 

 ℒ{𝑎𝑓(𝑡) + 𝑏𝑔(𝑡) − 𝑐ℎ(𝑡)} = 𝑎ℒ{𝑓(𝑡)} + 𝑏ℒ{𝑔(𝑡)} − 𝑐ℒ{ℎ(𝑡)}. 

ii) First shifting property   
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If ℒ{f(t)} = f(̅p) then ℒ{eatf(t)} = f(̅p − a).  

With the help of this property it can be determined that if f ̅(p) is Laplace of f(t) then the 

transform of eatf(t) can be simply written by replacing p by p − a to get f̅(p − a). Again this 

property gives us the following useful formulae: 

i) ℒ(𝑒𝑎𝑡) =
1

𝑝−𝑎
   (𝑝 > 0) 

ii) ℒ(𝑒𝑎𝑡𝑡𝑛) =
𝑛!

(𝑝−𝑎)𝑛+1 =
𝛤(𝑛+1)

(𝑝−𝑎)𝑛+1 , where n=0, 1, 2, … … 

iii) ℒ(𝑒𝑎𝑡𝑠𝑖𝑛 𝑏𝑡) =
𝑏

(𝑝−𝑎)2+𝑏2  

iv) ℒ(𝑒𝑎𝑡𝑐𝑜𝑠 𝑏𝑡) =
𝑝−𝑎

(𝑝−𝑎)2+𝑏2 

v) ℒ(𝑒𝑎𝑡𝑠𝑖𝑛ℎ 𝑏𝑡) =
𝑏

(𝑝−𝑎)2−𝑏2 

vi) ℒ(𝑒𝑎𝑡𝑐𝑜𝑠ℎ 𝑏𝑡) =
𝑝−𝑎

(𝑝−𝑎)2−𝑏2, where p > 𝑎 in each case. 

1.3 Review of Literature 

FDEs can be found in many fields of mathematics and statistics as well as in the investigation 

of numerous scientific and biological phenomena. These equations have extensive 

applications in Physics, Mechanics, Fluid Mechanics, Optics, Visco-elasticity, Electric 

Networks, Signal Processing, Image Processing, Fractional Dynamical approach, and 

numerous other fields of Mathematics including Physics. The analytical technique is a 

challenging approach to solve these non-linear fractional problems, and in certain cases, it is 

not feasible. Determining the coefficients in series form is a challenging task when using an 

analytical approach.  

Numerous methods, including differential transform method, homotopy perturbation method, 

Adomian decomposition method, homotopy analysis method, Laplace transform method, 

modified least squares homotopy perturbation method, and other methods, are available in the 

literature for the analytical solutions [25] of non-linear FDEs and ordinary PDEs.   

The analytical technique RPSM is based on power series extension without any linearization, 

without any perturbation, and without discretization. The error function of the residual power 

series and the generalised Taylor series formula serve as the broad foundation for this 

approach. This is an alternate method for handling linear or non-linear differential equation 

solutions. This method used for solution of FDEs that are linear or non-linear. The Sharma-

Tasso-Oliver equation is solved using the RPSM in the work suggested by researcher [27]. 

Literature demonstrates this method is dependable and effective analytical technique for 

solving many non-linear fractional order differential equations.  

When a non-linear FDE is solved using this method, a power series solution for a truncated 

series is obtained. One way to find the coefficients of power series is to solve a set of one or 
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more variable algebraic equations. Consequently, we have a series solution for the non-linear 

FDE under consideration. By choosing an approximate sufficient initial guess, this method's 

primary advantage over other ways is its ability to be applied quickly to the current scenario. 

The error role of residual series and generalised Taylor series formula serve as the broad 

foundation for this approach. The approach presented in this study, according to the authors, 

is effective, simple to use, and trustworthy when applied to various non-linear FDEs that arise 

in Science, Technology, and Mathematics. 

The least squares method combined with RPSM is provided in Zhang et al.'s work [28]. This 

method's numerical computations rely on the idea of Caputo derivative. First, the analytical 

answer can be found through the use of the conventional RPSM. Subsequently, the notion of 

Wronskian is employed to verify the functions' linear independence. In addition, a linear 

grouping of first few terms which have unknown coefficients is utilised as an approximate 

solution. Compared to the classical RPSM, this method requires fewer term expansions to 

obtain the estimated solutions and unknown coefficients. 

The non-linear FDEs that occur in a number of fields of Mathematics as well as Physics are 

solved using the boosted RPSM with Laplace transform method [29]. The temporal-fractional 

derivatives in this work represent physical applications with certain memory properties. 

These memories are recognised as a homotopy mapping that maintains the physical nature of 

the fractional solutions while mapping them into the integer solution. This paper introduces a 

novel strategy that combines the RPSM with the Laplace transform approach. It has been 

used with the time-space Benney-Lin equation that arises in falling film situations as well as 

the temporal-fractional Newell-Whitehead-Segel approach [30]. 

The generic residual power series solutions are used to derive analytical solutions for non-

linear FDEs with variable coefficients in the study Chen et. al. [31]. It is discovered that the 

approach is straightforward, potent, and successful.  

FDEs with variable coefficients, parabolic non-homogeneous equations, wave equations in 

space, and heat equations in planes can all have their analytical series solutions found [32]. 

Additionally, Klein-Gordon Schrodinger problem [33] may be successfully and efficiently 

solved using the RPSM. The approximate solution of non-linear FDEs using the RPSM was 

also described in this study by Khadar et al. [34]. Fractional integro-differential equations can 

be solved using Homotopy perturbation method and variational iteration method [35]. 

The authors successfully present a unique method for getting the approximate solution of the 

biological population diffusion equation. In this study, Alquran et al. [36] generalised the 

Taylor series and established the foundation for residual power series, also which is used to 

solve multi-pantograph delay differential equations [22] and be expanded to handle two-

dimensional models.  The RPSM can also be used to discover the analytical solution of the 

gas dynamic equations [38] and Schrodinger equations [37]. 
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The fractional initial Emden-Folwer equation [39] can be solved by applying RPSM. The 

series solution of non-linear higher PDEs can be found quickly and easily using this method. 

This method is more useful for solving non-linear FDEs.  

Numerous well-known equations have been investigated in literature to answer FDEs using 

RPSM, however additional work can be done to solve FDEs utilising different fractional 

derivative approaches. To solve such FDEs by RPSM, the applications of Laplace transform 

and other available transforms can also be implemented. 

1.4 Difference between analytic and numerical approximate method for solution of 

FDEs 

The difference between analytic & numerical approximate methods of solution of FDEs is 

identical in pure and applied mathematics. In practice both involve each other so there is no 

fine difference between these two. According as the literature the researchers have used this 

categorization particularly. Analytic approach provides unending nearby of the problem most 

important to the exact solution or an analytical solution where as numerical solution is all 

about reaching the best approximate solution. Analytic method applies the methods of 

analysis and numerical method applies the methods of numerical analysis. First method gives 

a comprehensive general solution where as the second method gives mainly a problem based 

distinct solution. As a result solving a differential equation using transformation or special 

functions is considered analytical and using approximate derivatives/ initial solutions or other 

applications to solve the differential equation comes in the numerical methods' type. In this 

thesis, the FDEs have been solved using both ideologies. Out of many analytic and numerical 

methods residual power series approach with different transforms used to solve such FDEs. 

These methods have a vast literature on the solution of FDEs. They have been used to solve 

such various FDEs in this thesis.   

1.5 Objectives of the Research Work 

The specific objectives of this research work approved in the state of the art of seminar 

(SOTA) are given as follows: 

1) To apply the concept of residual power series method to solve fractional differential 

equations. 

2) To solve the fractional differential equations in one-dimension by Laplace transform with 

residual power series approach. 

3) To solve the fractional differential equations in two dimensions by Laplace transform with 

residual power series approach.  

4) To implement residual power series approach by other available transforms in fractional 

differential equations.  
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1.6 Organisation of the thesis  

This work aims and determines to find a suitable and efficient technique for numerical 

solutions of the FDEs. In particular residual power series method (RPSM), Laplace transform 

with residual power series method (LRPSM) as well as Elzaki transform with residual power 

series methods (ERPSM) are implemented for numerical solutions of FDEs with their 

programming in this research work. In present work, these methods have been applied to 

solve some different fractional order differential equations. 

The first chapter provides an introduction to Fractional Calculus along with preliminaries' 

information, basic concepts, and an overview of FDEs with literature.  

In the second chapter, the relaxation-oscillation equations of fractional order have been 

solved by using RPSM.  

In the third chapter, one-dimensional FDEs such as BBM-Burger, Schrödinger, Fisher's and 

logistic differential equations are solved by using LRPSM. One part of it is also presented in 

an international conference conducted by IRDCP-2022.  

In the fourth chapter, LRPSM is used to solve two dimensional FDEs such as diffusion and 

biological population equations.  

In the fifth chapter, ERPSM is used to solve two dimensional fractional order diffusion 

equation and it is also presented in an international conference conducted by RAMSA-2022. 

In the sixth chapter, the conclusion of the research work and the future scopes of this research 

work are outlined. 
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Chapter 2 

Solution of Relaxation-Oscillation Equations by 

Residual Power Series Method 

In this chapter, the solution of relaxation-oscillation equations via residual power series 

method (RPSM) is explained.  

FDEs are coming to the attention of researchers nowadays as they are able to discuss the 

phenomena happening in the real world with deep insight. Recently, authors have presented a 

mathematical model involving a FDE for optimal control of a pandemic, investigating the 

disease dynamics. It is obvious that the concept of a fractional derivative will be traced back 

to the genesis of integral calculus [40]. These equations have received valuable attention in 

recent years, including various fractional forms. Researchers have investigated the fractional 

order derivatives of various forms, including Riemann-Liouville, Caputo-Fabrizio, and 

Atangana-Baleanu integrals. Because most FDEs do not have analytical solutions, we must 

use an approximate approach to solve them. To tackle and solve FDEs, there are approximate 

techniques such as Variational iteration method [41], Adomian decomposition method [42], 

operational matrix method [43], collocation method [44], and Tau method [45]. Researchers 

are continuously working to enhance the methods for solving fractional equations, with a 

focus on existence and uniqueness of the equations [46]. 

Many mathematicians have recently acknowledged that the fractional models can explain 

natural phenomena in a systematic and accurate way as compared to the classic integer-order 

time-derivatives. Researchers are currently using fractional calculus to explain many complex 

fractional biological systems, such as the zooplankton-phytoplankton system [47] and the 

study of a non-linear doffing oscillator. FDEs also exist in the chemical and physical studies 

of applications involving solute transport models [48] and many more. 

Relaxation-oscillator is a type of oscillator that depends on behaviour of physical phenomena 

that return to equilibrium after having been distributed. Relaxation-oscillation models are of 

many types, involving fractional derivatives [49], appropriate fractional derivatives [50], and 

fractal derivatives [51]. Relaxation-oscillation equation is major equation of relaxation and 

oscillation processes.  

Standard relaxation equation is given as follows: 

𝑑𝑢

𝑑𝑡
+ 𝑃𝑢 = 𝑓(𝑡),                                                                                                       (2.1) 

where P denotes the elastic modulus and 𝑓(𝑡) denotes strain rate multiplied by P. If 𝑓(𝑡) = 0 

then the analytic solution of this equation is 𝑢(𝑡) = 𝐴𝑒−𝑃𝑡, where A is a constant obtained by 

using initial conditions. 

Also, standard oscillation equation be given as: 
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𝑑2𝑢

𝑑𝑡2 + 𝑃𝑢 = 𝑓(𝑡),                                                                                                    (2.2) 

where 𝑃 =
𝑘

𝑚
, 𝑘 denotes stiffness coefficient and 𝑚 is the mass. When 𝑓(𝑡) = 0 then the 

analytic solution of this equation is 𝑢(𝑡) = 𝐶𝑐𝑜𝑠√𝑃𝑡 + 𝐷𝑠𝑖𝑛√𝑃𝑡, where 𝐶 and 𝐷 are the 

constants to be obtained by using initial conditions.  

To represent slow relaxation damping oscillation [52], fractional derivatives have been 

applied in the relaxation-oscillation modules. The fractional relaxation-oscillation model may 

be written as: 

𝐷𝑡
𝛽

𝑢(𝑡) + 𝐴𝑢(𝑡) = 𝑓(𝑡),                 𝑡 > 0, 

𝑢(0) = 𝑎 𝑖𝑓 0 < 𝛽 ≤ 1,  

 𝑢(0) = 𝜆 𝑎𝑛𝑑 𝑢′(0) = 𝜇 𝑖𝑓 1 < 𝛽 ≤ 2,                                                                          (2.3) 

where 𝐴, a +ve constant. 

When 0 < 𝛽 ≤ 2 then this equation is known as a relaxation-oscillation.  

When 0 < 𝛽 < 1 then this relation gives the relaxation by means of power law attenuation. 

 When 1 < 𝛽 < 2 then this relation gives the damped oscillation having viscoelastic essential 

damping of oscillator [53].  

Such relation has been applied for modelling cardiac pacemakers [54], spruce-budworm 

interactions [55], predator-prey system [56] and electrical form of heart and signal processing 

[57]. Due to their wide applicability, fractional relaxation-oscillation equations have been 

solved by various approaches, including the cubic B-spline wavelet collocation method [58], 

the reproducing kernel Hilbert space method [59], Adomian's method [60], the differential 

transform method [61], and so on. 

The problems in FDEs are not only important but also quite challenging to solve using 

mathematical techniques. Therefore, a reliable as well as efficient method for the solution of 

such equations is required. One of the most reliable and efficient methods for solving FDEs is 

the residual power series approach. This method is a capable technique for finding solutions 

of such equations. This approach is applied to work out various FDEs, such as the Sharma-

Tasso-Olever equation in fractional form [27], approximate solutions of fractional IVP's [62], 

fractional population diffusion equations [63], fractional fuzzy delay differential equation 

[64], fractional Bousinesq equation [65], time-fractional Schrodinger equations [38], etc. The 

current effort aims to solve relaxation-oscillation equations via RPSM. The method has the 

capability to solve fractional order differential equations and has the potential to be 

hybridised with other distinguished transforms as Laplace [66], Elzaki [63] & Sumudu [67]. 

The stability and convergence analysis of fractional order differential equation solutions is 

dependent on the variables, order of fractional derivatives, and domain.  
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2.1 Methodology for Implementation  

RPSM is a very powerful and widely used one-of-a-kind method for obtaining approximate 

solutions to ODE & FDEs. This methodology has the benefit of allowing one to find the 

solution in terms of a power series, where the coefficients are found through a sequence of 

algebraic procedures. This method has implemented efficiently to find approximate analytical 

solutions of various linear and non-linear FDEs of higher order [62–65]. The basic steps for 

implementing RPSM can be demonstrated as follows: 

Step 1: 

 Consider a fractional differential equation with the considered Caputo-fractional derivative, 

𝐷𝑡
𝑛𝛼𝑧(𝑥, 𝑡) + 𝐿[𝑥]𝑧(𝑥, 𝑡) +  𝑁[𝑥] 𝑧(𝑥, 𝑡) =  ∅(𝑥, 𝑡),                                                         (2.4) 

For t > 0, x ∈ R, n-1< n𝛼 ≤ n, with initial condition,  ∅0(𝑥) =  𝑧(𝑥, 0), 

and ∅𝑛−1 (𝑥) = 𝐷𝑡
(𝑛−1)𝛼

𝑧(𝑥, 0)= µ(x),                                                                               (2.5) 

where 𝐷𝑡
𝑛𝛼 =  

𝜕𝑛𝛼

𝜕𝑡𝑛𝛼, 

𝐿[𝑥] = linear function in x, N[𝑥] = universal non-linear function in x, and ∅(x, t) = continuous 

operator. For RPSM, solution of FDEs (2.4) & (2.5) is written as non-integer power series 

form with primary value t = 0. 

Step 2: 

Suppose the solution has expansion relation of the form,  

𝑧(𝑥, 𝑡) = ∑ ∅𝑛(𝑥)
𝑡𝑛𝛼

Γ(1+𝑛𝛼)
  ∞

𝑛=0 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 0 ≤ 𝑡 < 𝑅.                                          (2.6) 

Step 3: 

The kth truncated chain for z(x, t) denoted as 𝑧𝑘(𝑥, 𝑡) has been defined as follows, 

𝑧𝑘(𝑥, 𝑡) = ∑ ∅𝑛(𝑥)
𝑡𝑛𝛼

Γ(1+𝑛𝛼)
 𝑘

𝑛=0 .                                                                                          (2.7) 

for, 𝑘 = 1,2,3, … . Evidently 𝑧(𝑥, 𝑡) satisfy initial condition (2.5) and hence the equation 

results in   𝑧(𝑥, 0) =  ∅0(𝑥).                                                                                                (2.8) 

Step 4:  

The initial guess or first RPS approximation from equation (2.7) must be, 

𝑧1(𝑥, 𝑡) = ∅(𝑥) +  ∅1(𝑥)
𝑡𝛼

Γ(1+𝛼)
.                                                                                         (2.9) 
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Hence, it may reformulate expansion of equation (2.7) as given below, 

𝑧𝑘(𝑥, 𝑡) = ∅(𝑥) +  ∅1(𝑥)
𝑡𝛼

Γ(1+𝛼)
+ ∑ ∅𝑛(𝑥)

𝑡𝑛𝛼

Γ(1+𝑛𝛼)
 𝑘

𝑛=2 , with 𝑘 = 2,3,4, … …,                (2.10) 

Step 5:  

Now for finding coefficients ∅𝑛(𝑥) (i.e. values) by RPS techniques 𝑛 = 1, 2, 3, … , 𝑘 in series 

form of equation (2.10) residual function is defined as follows: 

ℛ𝑒𝑠(𝑥, 𝑡) =  𝐷𝑡
𝑛𝛼𝑧(𝑥, 𝑡) + 𝐿[𝑥]𝑧(𝑥, 𝑡) +  𝑁[𝑥] 𝑧(𝑥, 𝑡) − ∅(𝑥, 𝑡).                                    (2.11) 

and then 𝑘𝑡ℎ residual function 𝓡esk  in desirable form is as follows:  

ℛ𝑒𝑠𝑘(𝑥, 𝑡) =  𝐷𝑡
𝑛𝛼𝑧𝑘(𝑥, 𝑡) +  𝐿[𝑥]𝑧𝑘(𝑥, 𝑡) +  𝑁𝐿[𝑥]𝑧𝑘(𝑥, 𝑡) − ∅(𝑥, 𝑡), 𝑘 = 1, 2, 3, …    (2.12) 

It is well known that, 𝓡es(x, t) = 0, and   lim
𝑘→∞

ℛ𝑒𝑠𝑘(𝑥, 𝑡) =𝓡es(x, t), for 𝑥 𝜖 𝐼 and  𝑡 ≥ 0. 

Step 6:  

From step 5 we get the results,  

𝐷𝑡
(𝑛−1)𝛼

ℛ𝑒𝑠𝑛(𝑥, 𝑡0), = 0, 𝑛 = 1, 2, 3, … … . 𝑘,  so that fractional derivatives 𝐷𝑡
(𝑛−1)𝛼

 of 𝓡es(x, 

t) and 𝓡esn(x, t) are identical at t= 0 for every 𝑛 = 1, 2, 3, . . . , k,  

i.e. 𝐷𝑡
(𝑛−1)𝛼

ℛ𝑒𝑠 (𝑥, 0) =  𝐷𝑡
(𝑛−1)𝛼

ℛ𝑒𝑠𝑛(𝑥, 0) = 0, 𝑛 = 1, 2, 3, . . . , k. 

Step 7:  

For finding the coefficients,  ∅𝑛(𝑥), 𝑛 = 1, 2, 3, . . . , k, Substitute 𝑛𝑡ℎ truncated series for z(x, 

t) on equation (2.12), and operate the fractional derivative procedure 

 𝐷𝑡
(𝑛−1)𝛼𝑜𝑛 ℛ𝑒𝑠𝑛(𝑥, 𝑡), 𝑛 = 1, 2, 3, … , k , on substituting 𝑡 = 0 and solving the obtained 

numerical equation results in the required type of the other coefficients. 

Step 8:  

At last, to solve the following fractional differential algebraic equations completely put 

residue equal to zero as, 

𝐷𝑡
(𝑛−1)𝛼ℛ𝑒𝑠𝑘(𝑥, 𝑡) = 0, 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 0 ≤ 𝑡 < 𝑅, 𝑛 = 1, 2, 3, … … , k.                  (2.13) 

Hence this is the way of finding all the necessary coefficients of numerous power series of 

FDEs (2.4) & (2.5).  

Convergence of RPSM has been discussed in detail by Momani et. al. [68] showing residual 

power series as a Taylor's series expansion that converges to the exact solution with the 

increase in the number of terms.  
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Suppose 𝑧𝑖(𝑡) is the exact solution of the considered equation and 𝑧𝑖
𝑘(𝑡) is the approximate 

solution with k-terms of that equation. Then the difference between these two solutions 𝑧𝑖(𝑡) 

and 𝑧𝑖
𝑘(𝑡) is denoted by 𝑅𝑒𝑚𝑖

𝑘(𝑡) and is given by 

𝑅𝑒𝑚𝑖
𝑘(𝑡) = 𝑧𝑖(𝑡) − 𝑧𝑖

𝑘(𝑡)  

𝑅𝑒𝑚𝑖
𝑘(𝑡) = 𝑧𝑖=∑

𝑧𝑖
𝑚(𝑡0)

𝑚!

∞
𝑚=𝑘+1 (𝑡 − 𝑡0)𝑚  

which is kth _remainder of Taylor's series of 𝑧𝑖(𝑡) that approaches to zero with increase in 

number of terms in approximate analytical solution of considered equation.  

2.2 Related Examples 

Example 2.2.1 Consider the relaxation-oscillation equation in fractional form as, 

𝐷𝑡
𝛼𝑢(𝑡) + 𝑢(𝑡) = 0 with the primary situation 𝑢(0) = 1                                     (2.14) 

Exact solution of equation when 𝛼 = 1 is 𝑢(𝑡) = 𝑒−𝑡.  

 Now for 𝑘 = 1,  first truncated series approximation is of the form,   

𝑢1(𝑡) = 1 + 𝑐1
𝑡𝛼

𝛤(1+𝛼)
,                                                                                                        (2.15) 

and first residual function is 

 𝑅𝑒𝑠𝑢1(𝑡) = 𝐷𝑡
𝛼𝑢1(𝑡) + 𝑢1(𝑡)                                                                                           (2.16)      

 = 𝐷𝑡
𝛼 {1 +

𝑐1

𝛤(1+𝛼)
𝑡𝛼} + 1 +

𝑐1

𝛤(1+𝛼)
𝑡𝛼 

 =
𝑐1

𝛼!
𝛼! + 1 +

𝑐1

𝛤(1+𝛼)
𝑡𝛼 

= 𝑐1 {1 +
𝑡𝛼

𝛤(1+𝛼)
} + 1  

Again for residue 𝑅𝑒𝑠𝑢1(0) = 0 gives us 𝑐1 {1 +
0𝛼

𝛤(1+𝛼)
} + 1 = 0  

𝑜𝑟, 𝑐1 + 1 = 0 𝑜𝑟, 𝑐1 = −1. 

Hence from (2.15)  first residual power series is given as, 𝑢1(𝑡) = 1 −
𝑡𝛼

𝛤(1+𝛼)
. 

For 𝑘 = 2,  second truncated approximation is of the form, 

𝑢2(𝑡) = 1 −
𝑡𝛼

𝛤(1+𝛼)
+ 𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
 ,                                                                               (2.17)               

and second residual function is given as, 

𝐷𝑡
𝛼𝑅𝑒𝑠𝑢2 = 𝐷𝑡

𝛼{𝐷𝑡
𝛼 (1 −

𝑡𝛼

𝛤(1+𝛼)
+ 𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
) + 1 −

𝑡𝛼

𝛤(1+𝛼)
+ 𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
}                (2.18) 
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= 𝑐2
(2𝛼)!

(2𝛼)!
−

𝛼!

𝛼!
+ 𝑐2

𝛼!

(2𝛼)!
𝑡𝛼  

= 𝑐2 − 1 + 𝑐2
𝛼!

(2𝛼)!
𝑡𝛼  

But 𝐷𝑡
𝛼𝑅𝑒𝑠𝑢2(𝑡) = 0 𝑓𝑜𝑟 𝑡 = 0 gives us 𝑐2 − 1 = 0 𝑜𝑟, 𝑐2 = 1. 

Hence, second series solution from (2.17) is written as, 

𝑢2(𝑡) = 1 −
𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
. 

For 𝑘 = 3, third truncated series approximation is, 

𝑢3(𝑡) = 1 −
𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
+ 𝑐3 

𝑡3𝛼

𝛤(1+3𝛼)
,                                                              (2.19) 

and third residual function is  

𝐷𝑡
2𝛼𝑅𝑒𝑠𝑢3(𝑡) = 𝐷𝑡

2𝛼 {𝐷𝑡
𝛼 (1 −

𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
+ 𝑐3 

𝑡3𝛼

𝛤(1+3𝛼)
) + 1 −

𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
+

𝑐3 
𝑡3𝛼

𝛤(1+3𝛼)
}                                                                                                                 (2.20) 

= 𝑐3 + 1 + 𝑐3
(2𝛼)!

(3𝛼)!
𝑡𝛼  

But 𝐷𝑡
2𝛼𝑅𝑒𝑠𝑢3(𝑡) = 0 for 𝑡 = 0 gives that   𝑐3 + 1 = 0     𝑜𝑟, 𝑐3 = −1. 

Hence from (2.19), third residual series solution is given by, 

𝑢3(𝑡) = 1 −
𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
−

𝑡3𝛼

𝛤(1+3𝛼)
.   

In the same way, fourth residual power series solution is,  

𝑢4(𝑡) = 1 −
𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
−

𝑡3𝛼

𝛤(1+3𝛼)
+

𝑡4𝛼

𝛤(1+4𝛼)
.  

Therefore, in general series solution of the given equation is, 

𝑢(𝑡) = 1 −
𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
−

𝑡3𝛼

𝛤(1+3𝛼)
+

𝑡4𝛼

𝛤(1+4𝛼)
− ⋯.                                           (2.21) 

The both solutions of the equation for different values of 𝑡 are calculated & compared. The 

comparison of exact with approximate solution taken as 5 to 10 terms are presented in Table 

2.1 when value of α = 1. The point-wise errors are also shown in Table 2.2 with the exact 

solution taking eleven terms. The particular solution for different values of 𝑡 in exact solution 

and absolute errors containing different number of terms of equation 1 for α = 0.5 are given 

in Table 2.3 to observe reliability of this approach. The graph of exact solution of equation 

2.3.1 and its approximation solutions with different number of terms are shown in Figure 2.1. 

Also the graph of errors of RPSM with respect to exact solution of equation 2.3.1 are as 

shown in Figure 2.2, which shows that the reliability and efficiency of this method. 
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Table 2.1 Comparison of both solutions with different number of terms of example 2.3.1 

  Number of terms 

t Exact solution 5 6 7 8 9 10 

0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.1 0.9048374 0.9047542 0.9048374 0.9048374 0.9048374 0.9048374 0.9048374 

0.2 0.8187308 0.8193500 0.8187306 0.8187307 0.8187307 0.8187307 0.8187307 

0.3 0.7408182 0.7408375 0.7408341 0.7408351 0.7408182 0.7408182 0.7408182 

0.4 0.6703200 0.6704000 0.6703146 0.6703203 0.6703200 0.6703200 0.6703200 

0.5 0.6065307 0.5234375 0.6065104 0.6065321 0.6065305 0.6065306 0.6065306 

0.6 0.5488160 0.5494000 0.5487520 0.5488168 0.5488112 0.5488116 0.5488116 

0.7 0.4965853 0.4978375 0.4964369 0.4966003 0.4965839 0.4965854 0.4965852 

0.8 0.4493290 0.4517333 0.4490026 0.4493667 0.4493251 0.4493293 0.4493389 

0.9 0.4065697 0.4108375 0.4059167 0.4066548 0.4065599 0.4065704 0.4065691 

1.0 0.3678794 0.3750000 0.3666666 0.3680555 0.3678571 0.3678819 0.3678791 

 

Table 2.2 Point-wise absolute errors with 11 terms for example 2.3.1 

T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Errors 0 0 0 0 0 1.0e-11 9.0e-11 4.7e-10 2.0e-09 7.31e-09 2.31e-08 

 
Table 2.3 Absolute errors for α = 0.5 at t=0 to 0.8 of equation 2.3.1 in comparison with 

OHAM [69] and GTMM [52]. 

 

 
 

 

 
Absolute Errors 

 

 

t 

 

Exact solution 

 

RPS(n=10) RPS(n=20) OHAM[69] GTMM[52] 

0.0 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.1 0.7288934 
 

9.7467e-09 0.0000000 0.1508e-03 0.2355e-04 

0.2 0.6394073 
 

4.2132e-07 3.5527e-15 0.6078e-04 0.2523e-03 

0.3 0.5782652 
 

3.7879e-06 2.3370e-13 0.7485e-04 0.1002e-02 

0.4 0.5312856 
 

1.7927e-05 4.6866e-12 0.1313e-03 0.2655e-02 

0.5 0.4930686 5.9724e-05 4.7896e-11 0.1000e-03 0.5638e-02 

0.6 0.4608896 
 

1.5939e-04 3.1952e-10 0.1357e-04 0.1043e-01 

0.7 
 

0.8 

0.4331548 
 

0.4088417 

3.6510e-04 
 

7.4784e-04 

1.5882e-09 
 

6.3656e-08 

0.7979e-04 
 

0.1256e-03 

0.1746e-01 
 

0.2732e-01 
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Figure 2.1 Exact solution and approximation solution of example 1 with different number of 

terms. 

 

Figure 2.2 Error of both solutions of equation 2.3.1 with different number of terms. 

Example 2.2.2 Consider following fractional equation, 

𝐷𝑡
𝛼𝑢(𝑡) − 4𝑢(𝑡) = 0 having primary condition 𝑢(0) = 1.                                   (2.22) 

Exact solution of equation when 𝛼 = 1 is 𝑢(𝑡) = 𝑒4𝑡. 
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Now for 𝑘 = 1,  first truncated approximation is, 

𝑢1(𝑡) = 1 +
𝑐1

𝛤(1+𝛼)
𝑡𝛼,                                                                                                        (2.23) 

and first residual function is 

𝑅𝑒𝑠𝑢1(𝑡) = 𝐷𝑡
𝛼𝑢1(𝑡) − 4𝑢1(𝑡)                                                                                          (2.24) 

= 𝐷𝑡
𝛼 {1 +

𝑐1

𝛤(1+𝛼)
𝑡𝛼} − 4 − 4

𝑐1

𝛤(1+𝛼)
𝑡𝛼   

=
𝑐1

𝛼!
𝛼! − 4 − 4

𝑐1

𝛤(1+𝛼)
𝑡𝛼   

= 𝑐1 {1 − 4
𝑡𝛼

𝛤(1+𝛼)
} − 4  

Again for residue 𝑅𝑒𝑠𝑢1(0) = 0 gives us 𝑐1 {1 −
0𝛼

𝛤(1+𝛼)
} − 4 = 0 𝑜𝑟, 𝑐1 = 4. 

Hence from (2.23) first residual power series is, 𝑢1(𝑡) = 1 + 4
𝑡𝛼

𝛤(1+𝛼)
 

For 𝑘 = 2, second truncated approximation is, 

𝑢2(𝑡) = 1 + 4
𝑡𝛼

𝛤(1+𝛼)
+ 𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
.                                                                              (2.25) 

and second residual function is 

𝐷𝑡
𝛼𝑅𝑒𝑠u2 (𝑡) = 𝐷𝑡

𝛼{𝐷𝑡
𝛼𝑢2(𝑡) − 4𝑢2(𝑡)}                                                                   (2.26) 

= 𝐷𝑡
𝛼{𝐷𝑡

𝛼 (1 + 4
𝑡𝛼

𝛤(1+𝛼)
+ 𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
) − 4 − 16

𝑡𝛼

𝛤(1+𝛼)
− 4𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
} 

= 𝑐2
(2𝛼)!

(2𝛼)!
− 16

𝛼!

𝛼!
− 4𝑐2

𝛼!

(2𝛼)!
𝑡𝛼  

= 𝑐2 − 16 − 4𝑐2
𝛼!

(2𝛼)!
𝑡𝛼   

But 𝐷𝑡
∝𝑅𝑒𝑠𝑢2(𝑡) = 0 𝑓𝑜𝑟𝑡 = 0 gives us 𝑐2 − 16 = 0 𝑜𝑟, 𝑐2 = 16. 

Hence from (2.25), second residual power series solution is, 

𝑢2(𝑡) = 1 + 4
𝑡𝛼

𝛤(1+𝛼)
+ 16

𝑡2𝛼

𝛤(1+2𝛼)
.  

For 𝑘 = 3, third truncated approximation is, 

𝑢3(𝑡) = 1 + 4
𝑡𝛼

𝛤(1+𝛼)
+ 16

𝑡2𝛼

𝛤(1+2𝛼)
+ 𝑐3 

𝑡3𝛼

𝛤(1+3𝛼)
,                                                         (2.27) 

and the third residual function is  
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𝐷𝑡
2𝛼𝑅𝑒𝑠𝑢3(𝑡) = 𝐷𝑡

2𝛼 {𝐷𝑡
𝛼 (1 + 4

𝑡𝛼

𝛤(1+𝛼)
+ 16

𝑡2𝛼

𝛤(1+2𝛼)
+ 𝑐3 

𝑡3𝛼

𝛤(1+3𝛼)
) − 4 − 16

𝑡𝛼

𝛤(1+𝛼)
−

64
𝑡2𝛼

𝛤(1+2𝛼)
− 4𝑐3 

𝑡3𝛼

𝛤(1+3𝛼)
}                                                                                           (2.28) 

= 𝑐3 − 64 − 𝑐3
(2𝛼)!

(3𝛼)!
𝑡𝛼.  

But 𝐷𝑡
2𝛼𝑅𝑒𝑠𝑢3(𝑡) = 0 𝑓𝑜𝑟𝑡 = 0 gives that 𝑐3 − 64 = 0  𝑜𝑟, 𝑐3 = 64. 

Hence from (2.27), third residual power series solution is given as, 

      𝑢3(𝑡) = 1 + 4
𝑡𝛼

𝛤(1+𝛼)
+ 16

𝑡2𝛼

𝛤(1+2𝛼)
+ 64

𝑡3𝛼

𝛤(1+3𝛼)
.   

In the same way fourth residual power series solution is, 

𝑢4(𝑡) = 1 + 4
𝑡𝛼

𝛤(1+𝛼)
+ 16

𝑡2𝛼

𝛤(1+2𝛼)
+ 64

𝑡3𝛼

𝛤(1+3𝛼)
+ 256

𝑡4𝛼

𝛤(1+4𝛼)
.   

Therefore, power series solution of given equation is 

𝑢(𝑡) = 1 + 4
𝑡𝛼

𝛤(1+𝛼)
+ 16

𝑡2𝛼

𝛤(1+2𝛼)
+ 64

𝑡3𝛼

𝛤(1+3𝛼)
+ 256

𝑡4𝛼

𝛤(1+4𝛼)
+ ⋯.                                   (2.29)  

Both solutions of this equation for different values of 𝑡 is calculated compared. The 

comparison of both solutions taken as 10, 15, and 20, which are presented in Table 2.4, when 

value of α = 1. The point-wise errors are also shown in Table 2.4 with the exact solution 

taking eleven terms. 

Table 2.4 Point-wise values & errors of both solutions of example 2.2.2.  

 

Example 2.2.3 Consider following fractional equation, 

𝐷𝑡
𝛼𝑢(𝑡) − 𝑢(𝑡) − 1 = 0 with primary condition 𝑢(0) = 0.                                  (2.30) 

  Number of terms 

                                             10                                         15                                            20 

     t Exact solution Value Error Value Error Value Error 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.0000000 
1.4918246 
2.2255409 
3.3201169 
4.9530324 
7.3890560 

11.0231763 
16.4446467 
24.5325301 
36.5982344 
54.5981500 

1.0000000 
1.4918246 
2.2255409 
3.3201167 
4.9530273 
7.3889947 

11.0227019 
16.4419542 
24.5203334 
36.5517073 
54.4431040 

0 
1.08e-12 
2.30e-09 
2.06e-07 
5.07e-06 
6.13e-05 
4.74e-04 
2.69e-03 
1.21e-02 
4.65e-02 
1.55e-01 

 

1.0000000 
1.4918246 
2.2255409 
3.3201169 
4.9530324 
7.3890560 

11.0231763 
16.4446459 
24.5325230 
36.5981863 
54.5978829 

0 
2.22e-13 
1.33e-12 
9.49e-10 
9.72e-08 
3.54e-06 
6.73e-05 
8.15e-04 
7.09e-06 
4.80e-05 
2.67e-04 

 

1.0000000 
1.4918246 
2.2255409 
3.3201169 
4.9530324 
7.3890560 

11.0231763 
16.4446467 
24.5325301 
36.5982344 
54.5981499 

0 
2.22e-16 

0 
4.44e-16 

0 
4.61e-14 
2.11e-12 
5.50e-11 
9.27e-10 
1.12e-08 
1.04e-07 
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Exact solution of equation when 𝛼 = 1 is 𝑢(𝑡) = 𝑒𝑡 − 1. 

Now for 𝑘 = 1, first truncated approximation is, 

𝑢1(𝑡) =
𝑐1

𝛤(1+𝛼)
𝛼, (∴  𝑢(0) = 0)                                                                                       (2.31) 

and first residual function is, 

 𝑅𝑒𝑠𝑢1(𝑡) = 𝐷𝑡
𝛼𝑢1(𝑡) − 𝑢1(𝑡) − 1                                                                       (2.32)     =

𝐷𝑡
𝛼 {

𝑐1

𝛤(1+𝛼)
𝑡𝛼} −

𝑐1

𝛤(1+𝛼)
𝑡𝛼 − 1  

=
𝑐1

𝛼!
𝛼! −

𝑐1

𝛤(1+𝛼)
𝑡𝛼 − 1  

= 𝑐1 {1 −
𝑡𝛼

𝛤(1+𝛼)
} − 1.   

Again residue 𝑅𝑒𝑠𝑢1(0) = 0 gives us 𝑐1 {1 −
0𝛼

𝛤(1+𝛼)
} − 1 = 0  𝑜𝑟, 𝑐1 − 1 = 0  𝑜𝑟, 𝑐1 = 1. 

Hence from (2.31), first residual power series is, 𝑢1(𝑡) =
𝑡𝛼

𝛤(1+𝛼)
. 

For 𝑘 = 2, second truncated approximation is, 

𝑢2(𝑡) =
𝑡𝛼

𝛤(1+𝛼)
+ 𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
. (∴  𝑢(0) = 0)                                                              (2.33) 

And second residual function is, 

𝐷𝑡
𝛼𝑅𝑒𝑠𝑢2(𝑡) = 𝐷𝑡

𝛼{𝐷𝑡
𝛼 (

𝑡𝛼

𝛤(1+𝛼)
+ 𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
) −

𝑡𝛼

𝛤(1+𝛼)
− 𝑐2

𝑡2𝛼

𝛤(1+2𝛼)
− 1}                (2.34) 

= 𝑐2
(2𝛼)!

(2𝛼)!
−

𝛼!

𝛼!
+ 𝑐2

𝛼!

(2𝛼)!
𝑡𝛼  

= 𝑐2 − 1 + 𝑐2
𝛼!

(2𝛼)!
𝑡𝛼.  

But 𝐷𝑡
𝛼𝑅𝑒𝑠𝑢2(𝑡) = 0 𝑓𝑜𝑟 𝑡 = 0 gives us 𝑐2 − 1 + 𝑐2

𝛼!

(2𝛼)!
0𝛼 = 0 𝑜𝑟, 𝑐2 − 1 = 𝑜𝑟, 𝑐2 = 1. 

Hence from (2.33), second residual power series solution is, 

𝑢2(𝑡) =
𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
.   

Therefore in general, power series solution of given equation is, 

𝑢(𝑡) =
𝑡𝛼

𝛤(1+𝛼)
+

𝑡2𝛼

𝛤(1+2𝛼)
+

𝑡3𝛼

𝛤(1+3𝛼)
+

𝑡4𝛼

𝛤(1+4𝛼)
+ ⋯.                                                     (2.35) 

Both solutions of this equation for different values of 𝑡 is compared. The comparison of the 

exact solution with numerical values of approximate solutions of the different number of 
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terms, taken 10, 15 and 20 terms presented in Table 2.5 when the value of α = 1. The point-

wise errors are also shown in Table 5 with the exact solution taking eleven terms. 

 

Table 2.5 Point-wise values & errors of both solutions of example 2.2.3 for different number 

of terms. 

  Number of terms 

𝒕 Exact 
solution 

10 15 20 

  Value Error Value Error Value Error 

        

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

 

0.0000000 

0.1051709 

0.2214027 

0.3498588 

0.4918246 

0.6487212 

0.8221188 

1.0137527 

1.2255409 

1.4596031 

1.7182818 
 

0.0000000 

0.1051709 

0.2214027 

0.3498588 

0.4918246 

0.6487212 

0.8221188 

1.0137527 

1.2255409 

1.4596031 

1.7182818 

0 

8.32e-17 

4.99e-16 

4.55e-14 

1.08e-12 

1.27e-11 

9.56e-11 

5.25e-10 

2.30e-09 

8.49e-09 

2.73e-08 

0.0000000 

0.1051709 

0.2214027 

0.3498588 

0.4918246 

0.6487212 

0.8221188 

1.0137527 

1.2255409 

1.4596031 

1.7182818 

0 

8.32e-17 

0 

5.55e-17 

0 

1.11e-16 

1.11e-16 

8.88e-16 

1.99e-15 

1.99e-15 

5.08e-14 

0.0000000 

0.1051709 

0.2214027 

0.3498588 

0.4918246 

0.6487212 

0.8221188 

1.0137527 

1.2255409 

1.4596031 

1.7182818 
 

0 

8.32e-17 

0 

5.55e-17 

0 

1.11e-16 

1.11e-16 

6.66e-16 

6.66e-16 

2.22e-16 

0 

 

2.3 Conclusion 

The residual power series method is used in this paper to obtain approximate solutions to the 

relaxation-oscillation equations and to compare different numerical values of approximate 

solutions with numerical values of the exact solution at various values of α. Also, the errors 

of both the solutions of different numbers of terms are observed for relaxation-oscillation 

equations. In this paper, the approximate values are very close to the exact values, indicating 

that RPSM is one of the best efficient methods for solving FDEs. The presented tables and 

graphs show comparisons of both the solutions with errors. This method for solving FDEs 

like relaxation-oscillation equations is a very prevailing and accurate method that is 

considered an additive instrument in the area of fractional theory and its computations. It has 

been demonstrated that the accuracy and efficiency of RPSM designed for the solution of 

such differential equations are reliable. 
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Chapter 3 

Solutions of One-dimensional Fractional Differential 

Equations by Laplace Transform with Residual 

Power Series Method 

In this chapter, the solutions of one-dimensional FDEs by using LRPSM are discussed. In 

particular, time-fractional BBM-Burger (BBMB), Fisher's, logistic and Schrödinger 

differential equations are solved by this method. 

FDEs are highly helpful nowadays in a variety of domains, including dynamic systems, 

engineering, and mathematics. Leibniz and L'Hospital were first proposed FDEs in 1695. 

FDEs were used by Lakshmikantham and Vatsala [70–71] to describe the fundamental theory 

of initial value problems relating Riemann-Liouville differential operators. Diethelm and 

Ford raised the analytical issues of FDEs existence as well as distinctiveness of solutions 

[72]. Numerous scholars have examined various ideas related to such FDEs. Numerous 

numerical techniques have been discovered to solve these FDEs; however the majority of the 

problems lack an analytical solution. 

FDEs are a generalised version of classical differential equations that have seen significant 

use in a variety of scientific fields in recent years. The BBMB, Fisher's, logistic and 

Schrödinger differential equations are all solved numerically in this chapter using LRPSM, 

one of the numerous analytical techniques available for FDEs solutions.  

Variational iteration method [73], homotopy analysis transform [74], G′/G expansion method 

[75], cubic B-spline functions [76], cubic B-spline method [77], homotopy analysis method 

[78], unified method [79], Runge Kutta method [80], Hermite wavelet technique along by 

Newton-Raphson iteration method [81], Lie symmetry method [82], differential transform 

method [83], Adomian decomposition method [84] and many more are used to find the 

analytical solution of FDEs.  

The well-known BBMB equation has been applied to the study of long-wavelength surface 

waves into liquids, acoustic-gravity release into compressible fluids, and hydro-magnetic 

waves within cold plasma [85]. Given that solving the water wave shape analytically is 

renowned for being difficult. Therefore, several studies have conducted recently to ascertain 

the water wave model's numerical solution. The BBMB equation has applications in science 

and engineering, including acoustic-gravity waves in fluids [86], thermodynamics, cracked 

rock, and acoustic waves in anharmonic crystals.  

To obtain the logical solution to BBMB equation, homotopy analysis method has been 

devised. Furthermore, homotopy analysis method [87] has established the precise solution to 

the time-fractional order BBMB equation. Researchers have also looked into adopting a 

linearised difference approach to solve the BBMB equation. The equation containing a time-
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fractional non-local viscous factor has been handled using the linear difference technique 

with Crank Nicolson. Cubic B-spline technique was utilised by Majeed et al. [83] to estimate 

the solution of the temporal fractional non-homogeneous BBMB equation. By employing 

method based on Laplace transform & Adomian decomposition method, Ostrovsky and 

Degasperis-Procesi have determined analytical solution of the BBMB [88].  

In, the researchers have also derived the BBMB and K-dV equations [89] on water signal 

model. The space-time fractional BBMB equation [90] has solved analytically using ADM. 

Again, energy method [91] is applied to verify the distinctiveness as well as reality of BBMB 

form.    

In recent times, many analytical techniques utilising power series expansion have been 

discovered and effectively used to various types of FDEs that arise in non-linear dynamical 

systems. These techniques do not involve linearization, discretization, or perturbation. 

LRPSM is one approach that is used to solve these types of FDEs. In many different sectors, 

the RPSM has been widely applied. It has been suggested and demonstrated by numerous 

writers that the differential algebraic equation systems can also be solved using the RPSM 

[92]. In this chapter, the BBMB equation is solved using the LRPSM.  

FDEs are a generalised version of classical differential equations [38] that have found 

extensive use in various scientific fields in recent years. A multitude of books have provided 

definitions and basic information about Fractional Calculus, and various other applications 

[93–95]. Nonetheless, a plethora of analytical techniques exist for the numerical resolution of 

FDEs; the most widely used and relevant techniques are documented in the literature [96–

103]. FDEs are manually solved using the LRPSM.  

One of most effective and dependable methods for solving linear or non-linear FDEs in 

closed form is the RPSM [104]. Sometimes it is impossible to discover such solutions for 

linear FDEs, and finding the series coefficients can also be exceedingly challenging. Next, 

utilising transformed functions, a RPSM is introduced to obtain the coefficients in sequential 

form as a recurrence relation. To obtain the nth ordered coefficients of a power series, one 

dependable but uncommon method is to differentiate its nth partial sum in (n-1) times. In this 

technique, ordinary derivatives are sometimes upgraded to fractional order derivatives in 

order to handle certain fractional linear situations. For solving such FDEs, the LRPSM is 

established.  

As a result, LRPSM is used analytically to solve some of the significant models that arise in 

various departments of mathematics, physics, and engineering. In this chapter, fractional 

Fisher's, logistic as well as Schrödinger differential equations are solved with numerical 

simulations and graphs by using the LRPSM. The aim of this work is to enhance the accuracy 

and reliability of the RPSM by applying Laplace to the problem's approach. 

In mid-19th century, Fractional Calculus was first created as a mathematical model. 

Subsequently, it began to emerge in an increasing number of engineering and science fields. 

FDEs have drawn lots of consideration due to their continued rise in multiple applications in 

biology and fluid dynamics. Fractional order behaviour appears to be exhibited by many 
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physical processes and can vary in space and time. Quite accurate numerical approaches can 

be applied, since FDEs usually lack exact solutions. The numerical solution of such issues is 

very desirable and has large variety of applications. It is essential to employ numerical 

methods to generate approximations of solutions because only a portion of FDEs encountered 

in practise can be solved explicitly. Among its particular uses is the modelling of cancer 

development in medicine using logistic curves. This use within the context of environmental 

research can be viewed as an extension of the use that was previously discussed. 

One effective and dependable method for solving linear or non-linear FDEs in closed form 

using the solution of well-known functions is the RPSM. The FDEs are the standard 

differential equations expanded from integer order to fractional order.  Recently, a large 

number of fresh researchers have taken up learning of FDEs theory. The existence of these 

equations' solutions is one of their most important qualitative characteristics. The discovery 

of solutions confirms that these equations have the necessary conditions for a solution. 

Fractional power series are used to express the solutions to FDEs. By truncating the series 

into the first term, the RPSM employs the nth residual function to determine the nth 

coefficients of power series form.  

For non-linear FDEs, there are no such solutions, and finding series coefficients is quite 

difficult. Then coefficients are found in sequential form as a recurrence relation using a 

RPSM and transformed functions. One can differentiate the nth partial sum of the power 

series in (n-1) times to find the nth ordered coefficients. To handle fractional non-linear 

equations, the ordinary derivatives are typically upgraded to fractional order derivatives. The 

LRPSM is defined for fractional non-linear problems. Consequently, LRPSM finds use in the 

analytical solution of fundamental models that arise in several fields of mathematics, physics, 

and engineering. This work employs the Laplace transform as part of its technique to improve 

the accuracy and reliability of RPSM.   

3.1 Methodology to solve one-dimensional FDEs 

The following are the steps that comprise the LRPSM methodology for solving one-

dimensional FDEs: 

Consider the following one-dimensional FDE, in general as, 

𝐷𝑡
𝑛𝛼𝑢(𝑥, 𝑡) + 𝐿𝑢(𝑥, 𝑡) + 𝑁𝑢𝑞(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)  𝑛 − 1 < 𝑛𝛼 ≤ 𝑛                                      (3.1) 

With initial condition, 𝑢(𝑥, 0) = ℎ(𝑥)                                                                                (3.2) 

Where 𝐷𝑡
𝑛𝛼= Caputo fractional derivative, 𝑔(𝑥, 𝑡)= continuous function, L= linear operator 

and N = non-linear operators. 

Step 1 Using the Laplace transform with an equation (3.1) as  

ℒ{𝐷𝑡
𝑛𝛼𝑢(𝑥, 𝑡) + 𝐿𝑢(𝑥, 𝑡) + 𝑁𝑢𝑞(𝑥, 𝑡)} = ℒ{𝑔(𝑥, 𝑡)}                                                        (3.3) 

From Laplace transform of fractional derivatives using the relation 
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 ℒ[𝐷𝑡
𝛼𝑢] = 𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) on equation (3.3), then it can be re-framed as,  

𝑈(𝑥, 𝑠) =
1

𝑠
𝑓0(𝑥) −

1

𝑠𝛼
[𝐿𝑈(𝑥, 𝑠) + 𝑁ℒ({ℒ−1𝑈(𝑥, 𝑠)}𝑞)] + ℒ{𝑔(𝑥, 𝑡)}                            (3.4)  

where   𝑓0(𝑥) = 𝑢(𝑥, 0), 𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝑡)]  

Step 2 It is possible to express the transformed function 𝑈(𝑥, 𝑠)as,  

𝑈(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
∞
𝑛=0                                                                                                           (3.5) 

The kth-truncated series of this equation (3.5) can also be expressed as, 

𝑈𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=0   

 𝑖. 𝑒. 𝑈𝑘(𝑥, 𝑠) =  
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1                                                                                     (3.6)                 

Again the 𝑘𝑡ℎ −Laplace residual function is, 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
1

𝑠
𝑓0(𝑥) −

1

𝑠𝛼
[𝐿𝑈𝑘(𝑥, 𝑠) + 𝑁ℒ({ℒ−1𝑈𝑘(𝑥, 𝑠)}𝑞)] + ℒ{𝑔(𝑥, 𝑡)}(3.7)  

To find the values of 𝑓𝑘(𝑥), 𝑘 = 1, 2, 3, … … … substitute 𝑘𝑡ℎ − truncated series (3.6) in 

𝑘𝑡ℎ −Laplace residual function (3.7). 

Step 3 By solving the following relation recursively the coefficients  𝑓𝑛(𝑥) can be obtained, 

lim
𝑠→∞

𝑠𝑘𝛼+1ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 0 𝑓𝑜𝑟 0 < 𝛼 ≤ 1, 𝑘 = 1,2,3, …                                            (3.8) 

Following are some useful relations which are used in LRPSM; 

𝑖)  ℒ𝑅𝑒𝑠(𝑥, 𝑠) = 0 𝑎𝑛𝑑 lim
𝑘→∞

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = ℒ𝑅𝑒𝑠(𝑥, 𝑠), for 𝑠 > 0. 

𝑖𝑖)  lim
𝑠→∞

𝑠ℒ𝑅𝑒𝑠(𝑥, 𝑠) = 0 𝑔𝑖𝑣𝑒𝑠 lim
𝑠→∞

𝑠ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 0. 

𝑖𝑖𝑖)  lim
𝑠→∞

𝑠𝑘𝛼+1 ℒ𝑅𝑒𝑠(𝑥, 𝑠) = lim
𝑠→∞

𝑠𝑘𝛼+1ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 0 𝑓𝑜𝑟 0 < 𝛼 ≤ 1. 

Step 4 At last applying the inverse Laplace transform to 𝑈𝑘(𝑥, 𝑠) for obtaining the 𝑘𝑡ℎ 

approximate supportive solution 𝑢𝑘(𝑥, 𝑡).  

3.2 Implementation of method  

The numerical solutions of one-dimensional FDEs by LRPSM can be done as follows: 

Example 3. 2. 1 BBMB equation  

Consider the one-dimensional BBMB equation defined as, 

 𝐷𝑡
𝛼𝑢 − 𝑢𝑥𝑥𝑡 + 𝑢𝑥 + (

𝑢2

2
)𝑥 = 0, 𝑡 > 0, 0 < 𝛼 ≤ 1                                                            (3.9) 
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with initial situation 𝑢(𝑥, 0) = 𝑓0(𝑥) = 𝑠𝑒𝑐ℎ2(
𝑥

4
)                                                           (3.10) 

and exact solution for 𝛼 = 1 is 𝑢(𝑥, 𝑡) = 𝑠𝑒𝑐ℎ2(
𝑥

4
−

𝑡

4
)                                                  (3.11)  

This equation is a non-linear FDE and is solved by LRPSM. 

Applying Laplace transform on equation (3.9) we get, 

ℒ{𝐷𝑡
𝛼𝑢 − 𝑢𝑥𝑥𝑡 + 𝑢𝑥 + (

𝑢2

2
)𝑥} = 0                                                                                   (3.12) 

𝑜𝑟, ℒ(𝐷𝑡
𝛼𝑢) = ℒ(𝑢𝑥𝑥𝑡) − ℒ(𝑢𝑥) − ℒ(

𝑢2

2
)𝑥  

From Laplace transform of fractional derivatives using the relation  

ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = 𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) on equation (3.12), then it can be re-framed as, 

𝑠𝛼ℒ[𝑢] − 𝑠𝛼−1𝑢(𝑥, 0) =  ℒ(𝑢𝑥𝑥𝑡) − ℒ(𝑢𝑥) − ℒ(
𝑢2

2
)𝑥  

𝑜𝑟, ℒ[𝑢] =  
1

𝑠
𝑢(𝑥, 0) +

1

𝑠𝛼 { ℒ(𝑢𝑥𝑥𝑡) − ℒ(𝑢𝑥) − ℒ (
𝑢2

2
)

𝑥
}  

𝑜𝑟, 𝑈(𝑥, 𝑠) =
1

𝑠
𝑓0(𝑥) +

1

𝑠𝛼 [{𝑈(𝑥, 𝑠)}𝑥𝑥𝑡 − {𝑈(𝑥, 𝑠)}𝑥 −
1

2
[ℒ{ℒ−1[𝑈(𝑥, 𝑠)2]}]𝑥               (3.13) 

where ℒ[𝑢(𝑥, 𝑡)] = 𝑈(𝑥, 𝑠) and 𝑢(𝑥, 0) = 𝑓0(𝑥)  

The transformed function 𝑈(𝑥, 𝑠) can be written as 

𝑈(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
∞
𝑛=0                                                                                                          (3.14) 

Also the 𝑘𝑡ℎ − truncated series of this relation (3.14) can be written as 

𝑈𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=0   

𝑖. 𝑒. 𝑈𝑘(𝑥, 𝑠) =  
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1                                                                                       (3.15) 

Again the 𝑘𝑡ℎ −Laplace residual function of (3.15) is 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
1

𝑠
𝑓0(𝑥) −

1

𝑠𝛼 [{𝑈𝑘(𝑥, 𝑠)}𝑥𝑥𝑡 − {𝑈𝑘(𝑥, 𝑠)}𝑥 −

1

2
[ℒ{ℒ−1[𝑈𝑘(𝑥, 𝑠)2]}]𝑥]            (3.16)  

To find the values of 𝑓𝑘(𝑥), 𝑘 = 1,2,3, … … … substitute the 𝑘𝑡ℎ − truncated series (3.15) in 

𝑘𝑡ℎ −Laplace residual function (3.16) we get,  

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

𝑓0(𝑥)

𝑠
−

1

𝑠𝛼 [{
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥𝑡 − {

𝑓0(𝑥)

𝑠
+

∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }

𝑥
−

1

2
[ℒ {ℒ−1(

𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}]

𝑥
]  
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= ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠𝛼 [{
𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥𝑡 − {

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }

𝑥
−

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+

∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}]

𝑥
]     

= ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠𝛼 [{
𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥𝑡 − {

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }

𝑥
−

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+

∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}]

𝑥
]    

= ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠𝛼 [{∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥𝑡 +

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥 −

1

2
[ℒ{ℒ−1(

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+

∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}]

𝑥
]   

Or,ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠𝛼 [{∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥𝑡 +

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥 −

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}]

𝑥
]                                                                             (3.17) 

For 𝑘 = 1  from (3.17) the first Laplace residual function is, 

ℒ𝑅𝑒𝑠1(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 −
1

𝑠𝛼 [{𝑓1(𝑥)}𝑥𝑥𝑡
1

𝑠𝛼+1 +
1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {𝑓1(𝑥)}𝑥

1

𝑠𝛼+1 −

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1)2}]
𝑥

]                                                                                                                    

(3.18) 

=
𝑓1(𝑥)

𝑠𝛼+1 − [{𝑓1(𝑥)}𝑥𝑥𝑡
1

𝑠2𝛼+1 +
1

2𝑠𝛼+1 𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {𝑓1(𝑥)}𝑥

1

𝑠2𝛼+1 −
1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ4𝑥

4

𝑠2 +

2𝑠𝑒𝑐ℎ2𝑥

4
𝑓1(𝑥)

𝑠𝛼+2 +
{𝑓1(𝑥)}2

𝑠2𝛼+2
}]

𝑥
]   

=
𝑓1(𝑥)

𝑠𝛼+1 − {𝑓1(𝑥)}𝑥𝑥𝑡
1

𝑠2𝛼+1 −
1

2𝑠𝛼+1 𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
+ {𝑓1(𝑥)}𝑥

1

𝑠2𝛼+1 +
1

2𝑠𝛼 ℒ[𝑠𝑒𝑐ℎ4 𝑥

4

𝑡

1!
+

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

𝑡𝛼+1

(𝛼+1)!
+

{𝑓1(𝑥)}2

(2𝛼+1)!
 𝑡2𝛼+1]   

=
𝑓1(𝑥)

𝑠𝛼+1 − {𝑓1(𝑥)}𝑥𝑥𝑡
1

𝑠2𝛼+1 −
1

2𝑠𝛼+1 𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
+ {𝑓1(𝑥)}𝑥

1

𝑠2𝛼+1 +
1

2𝑠𝛼 [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠2 +

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

(𝛼+1)!

(𝛼+1)!

𝑠𝛼+2 +
{𝑓1(𝑥)}2

(2𝛼+1)!

(2𝛼+1)!

𝑠2𝛼+2 ]   

=
𝑓1(𝑥)

𝑠𝛼+1 − {𝑓1(𝑥)}𝑥𝑥𝑡
1

𝑠2𝛼+1 −
1

2𝑠𝛼+1 𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
+ {𝑓1(𝑥)}𝑥

1

𝑠2𝛼+1 +
1

2
𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠𝛼+2 +

𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

𝑠2𝛼+2 +
{𝑓1(𝑥)}2

𝑠3𝛼+2   

Now, the relation lim
𝑠→∞

(𝑠𝛼+1 ℒ𝑅𝑒𝑠1(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 1  gives that, 

𝑓1(𝑥) −
1

2
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
= 0  
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i.e. 𝑓1(𝑥) =
1

2
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
  

For 𝑘 = 2  from (3.17) the second Laplace residual function is,  

ℒ𝑅𝑒𝑠2(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1 −

1

𝑠𝛼 [{∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1 }

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1 }

𝑥
−

1

2
[ℒ {ℒ−1 (

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1 )

2

}]
𝑥

]                                                                              (3.19) 

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
1

𝑠𝛼 [{
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1
}

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1
}

𝑥
−

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2(
𝑥

4
)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1)}
2

]𝑥]    

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
1

𝑠𝛼 [{
𝑓1(𝑥)

𝑠𝛼+1
}

𝑥𝑥𝑡
 + {

𝑓2(𝑥)

𝑠2𝛼+1
}

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {

𝑓1(𝑥)

𝑠𝛼+1
}

𝑥
− {

𝑓2(𝑥)

𝑠2𝛼+1
}

𝑥
−

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2(
𝑥

4
)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1)}
2

]𝑥]  

=
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4

2𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4

2𝑠𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +

1

2𝑠𝛼 [ℒ{ℒ−1(
𝑠𝑒𝑐ℎ4𝑥

4

𝑠2 +
{𝑓1(𝑥)}2

𝑠2𝛼+2 +
{𝑓2(𝑥)}2

𝑠4𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓1(𝑥)

𝑠𝛼+2 +
2𝑓1(𝑥)𝑓2(𝑥)

𝑠3𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓2(𝑥)

𝑠2𝛼+2 )]𝑥    

=
𝑓2(𝑥)

𝑠2𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
1

2𝑠𝛼 [ℒ{𝑠𝑒𝑐ℎ4 𝑥

4

𝑡

1!
+ {𝑓1(𝑥)}2 𝑡2𝛼+1

(2𝛼+1)!
+

{𝑓2(𝑥)}2 𝑡4𝛼+1

(4𝛼+1)!
+ 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

𝑡𝛼+1

(𝛼+1)!
+ 2𝑓1(𝑥)𝑓2(𝑥)

𝑡3𝛼+1

(3𝛼+1)!
+ 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

𝑡2𝛼+1

(2𝛼+1)!
]𝑥  

=
𝑓2(𝑥)

𝑠2𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
1

2𝑠𝛼 [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠2 +

{𝑓1(𝑥)}2 1

(2𝛼+1)!

(2𝛼+1)!

𝑠2𝛼+2 + {𝑓2(𝑥)}2 1

(4𝛼+1)!

(4𝛼+1)!

𝑠4𝛼+2 + 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

(𝛼+1)!

(𝛼+1)!

𝑠𝛼+2 +

2𝑓1(𝑥)𝑓2(𝑥)
1

(3𝛼+1)!

(3𝛼+1)!

𝑠3𝛼+2 + 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

(2𝛼+1)!

(2𝛼+1)!

𝑠2𝛼+2 ]𝑥   

=
𝑓2(𝑥)

𝑠2𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 + [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠𝛼+2 +
1

2
{𝑓1(𝑥)}2 1

𝑠3𝛼+2 +

1

2
{𝑓2(𝑥)}2 1

𝑠5𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

𝑠2𝛼+2 + 𝑓1(𝑥)𝑓2(𝑥)
1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

𝑠3𝛼+2]𝑥  

Now, the relation lim
𝑠→∞

(𝑠2𝛼+1 ℒ𝑅𝑒𝑠2(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 2 , gives us that 

𝑓2(𝑥) + {𝑓1(𝑥)}𝑥 = 0   

 𝑓2(𝑥) = −{𝑓1(𝑥)}𝑥  

𝑓2(𝑥) = −
1

8
𝑠𝑒𝑐ℎ4 𝑥

4
+

1

4
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ2 𝑥

4
  

For 𝑘 = 3  from (3.17) the third Laplace residual function is,  
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ℒ𝑅𝑒𝑠3(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
3
𝑛=1 −

1

𝑠𝛼 [{∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
3
𝑛=1 }

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
3
𝑛=1 }

𝑥
−

1

2
[ℒ {ℒ−1 (

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
3
𝑛=1 )

2

}]
𝑥

]                                                                              (3.20) 

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
1

𝑠𝛼 [{
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1
}

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +

𝑓3(𝑥)

𝑠3𝛼+1
}

𝑥
−

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2(
𝑥

4
)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1)}
2

]𝑥]    

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
1

𝑠𝛼 [{
𝑓1(𝑥)

𝑠𝛼+1
}

𝑥𝑥𝑡
 + {

𝑓2(𝑥)

𝑠2𝛼+1
}

𝑥𝑥𝑡
+  + {

𝑓3(𝑥)

𝑠3𝛼+1
}

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
−

{
𝑓1(𝑥)

𝑠𝛼+1
}

𝑥
− {

𝑓2(𝑥)

𝑠2𝛼+1
}

𝑥
− {

𝑓3(𝑥)

𝑠3𝛼+1
}

𝑥
−

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2(
𝑥

4
)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1)}
2

]𝑥]  

=
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4

2𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 −
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4

2𝑠𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +

{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +
1

2𝑠𝛼 [ℒ{ℒ−1 (
𝑠𝑒𝑐ℎ4𝑥

4

𝑠2 +
{𝑓1(𝑥)}2

𝑠2𝛼+2 +
{𝑓2(𝑥)}2

𝑠4𝛼+2 +
{𝑓3(𝑥)}2

𝑠6𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓1(𝑥)

𝑠𝛼+2 +

2𝑓1(𝑥)𝑓2(𝑥)

𝑠3𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓2(𝑥)

𝑠2𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓3(𝑥)

𝑠3𝛼+2 +
2𝑓1(𝑥)𝑓3(𝑥)

𝑠4𝛼+2 +
2𝑓2(𝑥)𝑓3(𝑥)

𝑠5𝛼+2 )}]𝑥    

=
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +

1

2𝑠𝛼 [ℒ{𝑠𝑒𝑐ℎ4 𝑥

4

𝑡

1!
+ {𝑓1(𝑥)}2 𝑡2𝛼+1

(2𝛼+1)!
+ {𝑓2(𝑥)}2 𝑡4𝛼+1

(4𝛼+1)!
+ {𝑓3(𝑥)}2 𝑡6𝛼+1

(6𝛼+1)!
+

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

𝑡𝛼+1

(𝛼+1)!
+ 2𝑓1(𝑥)𝑓2(𝑥)

𝑡3𝛼+1

(3𝛼+1)!
+ 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

𝑡2𝛼+1

(2𝛼+1)!
+

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

𝑡3𝛼+1

(3𝛼+1)!
+ 2𝑓1(𝑥)𝑓3(𝑥)

𝑡4𝛼+1

(4𝛼+1)!
+ 2𝑓2(𝑥)𝑓3(𝑥)

𝑡5𝛼+1

(5𝛼+1)!
]𝑥    

=
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +

1

2𝑠𝛼 [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠2 + {𝑓1(𝑥)}2 1

(2𝛼+1)!

(2𝛼+1)!

𝑠2𝛼+2 + {𝑓2(𝑥)}2 1

(4𝛼+1)!

(4𝛼+1)!

𝑠4𝛼+2 + {𝑓3(𝑥)}2 1

(6𝛼+1)!

(6𝛼+1)!

𝑠6𝛼+2 +

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

(𝛼+1)!

(𝛼+1)!

𝑠𝛼+2 + 2𝑓1(𝑥)𝑓2(𝑥)
1

(3𝛼+1)!

(3𝛼+1)!

𝑠3𝛼+2 + 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

(2𝛼+1)!

(2𝛼+1)!

𝑠2𝛼+2 +

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

1

(3𝛼+1)!

(3𝛼+1)!

𝑠3𝛼+2 + 2𝑓1(𝑥)𝑓3(𝑥)
1

(4𝛼+1)!

(4𝛼+1)!

𝑠4𝛼+2 + 2𝑓2(𝑥)𝑓3(𝑥)
1

(5𝛼+1)!

(5𝛼+1)!

𝑠5𝛼+2 ]𝑥     

=
−

1

8
𝑠𝑒𝑐ℎ4𝑥

4
+

1

4
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ2𝑥

4

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 +
1

8
𝑠𝑒𝑐ℎ4𝑥

4
−

1

4
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ2𝑥

4

𝑠2𝛼+1 +

{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 + [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠𝛼+2 +
1

2
{𝑓1(𝑥)}2 1

𝑠3𝛼+2 +
1

2
{𝑓2(𝑥)}2 1

𝑠5𝛼+2 +
1

2
{𝑓3(𝑥)}2 1

𝑠7𝛼+2 +

𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

𝑠2𝛼+2 + 𝑓1(𝑥)𝑓2(𝑥)
1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

𝑠3𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

1

𝑠4𝛼+2 +

𝑓1(𝑥)𝑓3(𝑥)
1

𝑠5𝛼+2 + 𝑓2(𝑥)𝑓3(𝑥)
1

𝑠6𝛼+2]𝑥  

=
𝑓3(𝑥)

𝑠3𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 + [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠𝛼+2 +

1

2
{𝑓1(𝑥)}2 1

𝑠3𝛼+2 +
1

2
{𝑓2(𝑥)}2 1

𝑠5𝛼+2 +
1

2
{𝑓3(𝑥)}2 1

𝑠7𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

𝑠2𝛼+2 +
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𝑓1(𝑥)𝑓2(𝑥)
1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

𝑠3𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

1

𝑠4𝛼+2 + 𝑓1(𝑥)𝑓3(𝑥)
1

𝑠5𝛼+2 +

𝑓2(𝑥)𝑓3(𝑥)
1

𝑠6𝛼+2]𝑥  

 Now, the relation lim
𝑠→∞

(𝑠3𝛼+1 ℒ𝑅𝑒𝑠3(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 3 , gives us that 

𝑓3(𝑥) + {𝑓2(𝑥)}𝑥 = 0   

i.e. 𝑓3(𝑥) = −{𝑓2(𝑥)}𝑥 

i.e.  𝑓3(𝑥) = −
1

12
𝑠𝑒𝑐ℎ4 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
+

1

4
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ3 𝑥

4
 

For 𝑘 = 4  from (3.17) the fourth Laplace residual function is,  

ℒ𝑅𝑒𝑠4(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
4
𝑛=1 −

1

𝑠𝛼 [{∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
4
𝑛=1 }

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
4
𝑛=1 }

𝑥
−

1

2
[ℒ {ℒ−1 (

𝑠𝑒𝑐ℎ2𝑥

4

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
4
𝑛=1 )

2

}]
𝑥

]                                                                              (3.21) 

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1 −
1

𝑠𝛼 [{
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1
}

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
−

{
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1
}

𝑥
−

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2(
𝑥

4
)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1)}
2

]𝑥]     

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1 −
1

𝑠𝛼 [{
𝑓1(𝑥)

𝑠𝛼+1
}

𝑥𝑥𝑡
 + {

𝑓2(𝑥)

𝑠2𝛼+1
}

𝑥𝑥𝑡
+  {

𝑓3(𝑥)

𝑠3𝛼+1
}

𝑥𝑥𝑡
+  {

𝑓4(𝑥)

𝑠4𝛼+1
}

𝑥𝑥𝑡
+

1

2𝑠
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
− {

𝑓1(𝑥)

𝑠𝛼+1
}

𝑥
− {

𝑓2(𝑥)

𝑠2𝛼+1
}

𝑥
− {

𝑓3(𝑥)

𝑠3𝛼+1
}

𝑥
− {

𝑓4(𝑥)

𝑠4𝛼+1
}

𝑥
−

1

2
[ℒ {ℒ−1(

𝑠𝑒𝑐ℎ2(
𝑥

4
)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +

𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1)}
2

]𝑥]   

=
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4

2𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 −
{𝑓4(𝑥)}𝑥𝑥𝑡

𝑠5𝛼+1 −

𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4

2𝑠𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +
{𝑓4(𝑥)}𝑥

𝑠5𝛼+1 +
1

2𝑠𝛼 [ℒ{ℒ−1 (
𝑠𝑒𝑐ℎ4𝑥

4

𝑠2 +
{𝑓1(𝑥)}2

𝑠2𝛼+2 +
{𝑓2(𝑥)}2

𝑠4𝛼+2 +

{𝑓3(𝑥)}2

𝑠6𝛼+2 +
{𝑓4(𝑥)}2

𝑠8𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓1(𝑥)

𝑠𝛼+2 +
2𝑓1(𝑥)𝑓2(𝑥)

𝑠3𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓2(𝑥)

𝑠2𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓3(𝑥)

𝑠3𝛼+2 +
2𝑓1(𝑥)𝑓3(𝑥)

𝑠4𝛼+2 +

2𝑓2(𝑥)𝑓3(𝑥)

𝑠5𝛼+2 +
2𝑠𝑒𝑐ℎ2𝑥

4
𝑓4(𝑥)

𝑠4𝛼+2 +
2𝑓1(𝑥)𝑓4(𝑥)

𝑠5𝛼+2 +
2𝑓2(𝑥)𝑓4(𝑥)

𝑠6𝛼+2 +
2𝑓3(𝑥)𝑓4(𝑥)

𝑠7𝛼+2 )}]𝑥     

=
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 −
{𝑓4(𝑥)}𝑥𝑥𝑡

𝑠5𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +

{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +
{𝑓4(𝑥)}𝑥

𝑠5𝛼+1 +
1

2𝑠𝛼 [ℒ{𝑠𝑒𝑐ℎ4 𝑥

4

𝑡

1!
+ {𝑓1(𝑥)}2 𝑡2𝛼+1

(2𝛼+1)!
+ {𝑓2(𝑥)}2 𝑡4𝛼+1

(4𝛼+1)!
+ {𝑓3(𝑥)}2 𝑡6𝛼+1

(6𝛼+1)!
+

{𝑓4(𝑥)}2 𝑡8𝛼+1

(8𝛼+1)!
+ 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

𝑡𝛼+1

(𝛼+1)!
+ 2𝑓1(𝑥)𝑓2(𝑥)

𝑡3𝛼+1

(3𝛼+1)!
+ 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

𝑡2𝛼+1

(2𝛼+1)!
+

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

𝑡3𝛼+1

(3𝛼+1)!
+ 2𝑓1(𝑥)𝑓3(𝑥)

𝑡4𝛼+1

(4𝛼+1)!
+ 2𝑓2(𝑥)𝑓3(𝑥)

𝑡5𝛼+1

(5𝛼+1)!
+

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓4(𝑥)

𝑡4𝛼+1

(4𝛼+1)!
+ 2𝑓1(𝑥)𝑓4(𝑥)

𝑡5𝛼+1

(5𝛼+1)!
+ 2𝑓2(𝑥)𝑓4(𝑥)

𝑡6𝛼+1

(6𝛼+1)!
+ 2𝑓3(𝑥)𝑓4(𝑥)

𝑡7𝛼+1

(7𝛼+1)!
]𝑥       
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=
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 −
{𝑓4(𝑥)}𝑥𝑥𝑡

𝑠5𝛼+1 +
{𝑓1(𝑥)}𝑥

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +

{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +
{𝑓4(𝑥)}𝑥

𝑠5𝛼+1 +
1

2𝑠𝛼 [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠2 + {𝑓1(𝑥)}2 1

(2𝛼+1)!

(2𝛼+1)!

𝑠2𝛼+2 + {𝑓2(𝑥)}2 1

(4𝛼+1)!

(4𝛼+1)!

𝑠4𝛼+2 +

{𝑓3(𝑥)}2 1

(6𝛼+1)!

(6𝛼+1)!

𝑠6𝛼+2 + {𝑓4(𝑥)}2 1

(8𝛼+1)!

(8𝛼+1)!

𝑠8𝛼+2 + 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

(𝛼+1)!

(𝛼+1)!

𝑠𝛼+2 +

2𝑓1(𝑥)𝑓2(𝑥)
1

(3𝛼+1)!

(3𝛼+1)!

𝑠3𝛼+2 + 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

(2𝛼+1)!

(2𝛼+1)!

𝑠2𝛼+2 + 2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

1

(3𝛼+1)!

(3𝛼+1)!

𝑠3𝛼+2 +

2𝑠𝑒𝑐ℎ2 𝑥

4
𝑓4(𝑥)

1

(4𝛼+1)!

(4𝛼+1)!

𝑠4𝛼+2 + 2𝑓1(𝑥)𝑓3(𝑥)
1

(4𝛼+1)!

(4𝛼+1)!

𝑠4𝛼+2 + 2𝑓2(𝑥)𝑓3(𝑥)
1

(5𝛼+1)!

(5𝛼+1)!

𝑠5𝛼+2 +

2𝑓1(𝑥)𝑓4(𝑥)
1

(5𝛼+1)!

(5𝛼+1)!

𝑠5𝛼+2 + 2𝑓2(𝑥)𝑓4(𝑥)
1

(6𝛼+1)!

(6𝛼+1)!

𝑠6𝛼+2 + 2𝑓3(𝑥)𝑓4(𝑥)
1

(7𝛼+1)!

(7𝛼+1)!

𝑠7𝛼+2 ]𝑥     

=
−

1

8
𝑠𝑒𝑐ℎ4𝑥

4
+

1

4
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ2𝑥

4

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 −
{𝑓4(𝑥)}𝑥𝑥𝑡

𝑠5𝛼+1 +
1

8
𝑠𝑒𝑐ℎ4𝑥

4
−

1

4
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ2𝑥

4

𝑠2𝛼+1 +
{𝑓2(𝑥)}𝑥

𝑠3𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +
{𝑓4(𝑥)}𝑥

𝑠5𝛼+1 + [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠𝛼+2 +
1

2
{𝑓1(𝑥)}2 1

𝑠3𝛼+2 +

1

2
{𝑓2(𝑥)}2 1

𝑠5𝛼+2 +
1

2
{𝑓3(𝑥)}2 1

𝑠7𝛼+2 +
1

2
{𝑓4(𝑥)}2 1

𝑠9𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

𝑠2𝛼+2 +

𝑓1(𝑥)𝑓2(𝑥)
1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

𝑠3𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓4(𝑥)

1

𝑠5𝛼+2 +

𝑓1(𝑥)𝑓3(𝑥)
1

𝑠5𝛼+2 + 𝑓2(𝑥)𝑓3(𝑥)
1

𝑠6𝛼+2 + 𝑓1(𝑥)𝑓4(𝑥)
1

𝑠6𝛼+2 + 𝑓2(𝑥)𝑓4(𝑥)
1

𝑠7𝛼+2 +

𝑓3(𝑥)𝑓4(𝑥)
1

𝑠8𝛼+2]𝑥   

= −
1

4
𝑠𝑒𝑐ℎ4𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
−

1

8
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ3𝑥

4

𝑠3𝛼+1 +
𝑓4(𝑥)

𝑠4𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 −
{𝑓4(𝑥)}𝑥𝑥𝑡

𝑠5𝛼+1 +
1

4
𝑠𝑒𝑐ℎ4𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
−

1

8
𝑠𝑒𝑐ℎ2𝑥

4
𝑡𝑎𝑛ℎ3𝑥

4

𝑠3𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +
{𝑓4(𝑥)}𝑥

𝑠5𝛼+1 + [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠𝛼+2 +
1

2
{𝑓1(𝑥)}2 1

𝑠3𝛼+2 +

1

2
{𝑓2(𝑥)}2 1

𝑠5𝛼+2 +
1

2
{𝑓3(𝑥)}2 1

𝑠7𝛼+2 +
1

2
{𝑓4(𝑥)}2 1

𝑠9𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

𝑠2𝛼+2 +

𝑓1(𝑥)𝑓2(𝑥)
1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

𝑠3𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓4(𝑥)

1

𝑠5𝛼+2 +

𝑓1(𝑥)𝑓3(𝑥)
1

𝑠5𝛼+2 + 𝑓2(𝑥)𝑓3(𝑥)
1

𝑠6𝛼+2 + 𝑓1(𝑥)𝑓4(𝑥)
1

𝑠6𝛼+2 + 𝑓2(𝑥)𝑓4(𝑥)
1

𝑠7𝛼+2 +

𝑓3(𝑥)𝑓4(𝑥)
1

𝑠8𝛼+2]𝑥   

=
𝑓4(𝑥)

𝑠4𝛼+1 −
(𝑓1(𝑥))𝑥𝑥𝑡

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥𝑡

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥𝑡

𝑠4𝛼+1 −
{𝑓4(𝑥)}𝑥𝑥𝑡

𝑠5𝛼+1 +
{𝑓3(𝑥)}𝑥

𝑠4𝛼+1 +
{𝑓4(𝑥)}𝑥

𝑠5𝛼+1 + [𝑠𝑒𝑐ℎ4 𝑥

4

1

𝑠𝛼+2 +

1

2
{𝑓1(𝑥)}2 1

𝑠3𝛼+2 +
1

2
{𝑓2(𝑥)}2 1

𝑠5𝛼+2 +
1

2
{𝑓3(𝑥)}2 1

𝑠7𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓1(𝑥)

1

𝑠2𝛼+2 +

𝑓1(𝑥)𝑓2(𝑥)
1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓2(𝑥)

1

𝑠3𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓3(𝑥)

1

𝑠4𝛼+2 + 𝑠𝑒𝑐ℎ2 𝑥

4
𝑓4(𝑥)

1

𝑠5𝛼+2 +

𝑓1(𝑥)𝑓3(𝑥)
1

𝑠5𝛼+2 + 𝑓2(𝑥)𝑓3(𝑥)
1

𝑠6𝛼+2 + 𝑓1(𝑥)𝑓4(𝑥)
1

𝑠6𝛼+2 + 𝑓2(𝑥)𝑓4(𝑥)
1

𝑠7𝛼+2 +

𝑓3(𝑥)𝑓4(𝑥)
1

𝑠8𝛼+2]𝑥  

 Now, the relation lim
𝑠→∞

(𝑠4𝛼+1 ℒ𝑅𝑒𝑠4(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 4 , gives us that 

𝑓4(𝑥) + {𝑓3(𝑥)}𝑥 = 0   

i.e. 𝑓4(𝑥) = −{𝑓3(𝑥)}𝑥 

i.e.  𝑓4(𝑥) =
1

48
𝑠𝑒𝑐ℎ6 𝑥

4
−

13

48
𝑠𝑒𝑐ℎ4 𝑥

4
𝑡𝑎𝑛ℎ2 𝑥

4
+

1

8
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ4 𝑥

4
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Hence by Laplace residual power series solution of given equation in infinite form is, 

𝑈(𝑥, 𝑠) = 𝑠𝑒𝑐ℎ2 𝑥

4

1   

𝑠
+

1

2
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4

1

𝑠𝛼+1 + (
1

4
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ2 𝑥

4
−

1

8
𝑠𝑒𝑐ℎ4 𝑥

4
)

1

𝑠2𝛼+1 +

(−
1

12
𝑠𝑒𝑐ℎ4 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
+

1

4
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ3 𝑥

4
 )

1

𝑠3𝛼+1 + (
1

48
𝑠𝑒𝑐ℎ6 𝑥

4
−

13

48
𝑠𝑒𝑐ℎ4 𝑥

4
𝑡𝑎𝑛ℎ2 𝑥

4
+

1

8
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ4 𝑥

4
)

1

𝑠4𝛼+1 …                                                                                                (3.22) 

At last taking inverse Laplace in equation (3.22) then the required solution of given equation 

by LRPSM is, 

𝑢(𝑥, 𝑡) = 𝑠𝑒𝑐ℎ2 𝑥

4
+

1

2
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4

𝑡𝛼

𝛼!
+ {

1

4
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ2 𝑥

4
−

1

8
𝑠𝑒𝑐ℎ4 𝑥

4
}

𝑡2𝛼

(2𝛼)!
+

(−
1

12
𝑠𝑒𝑐ℎ4 𝑥

4
𝑡𝑎𝑛ℎ

𝑥

4
+

1

4
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ3 𝑥

4
 )

𝑡3𝛼

(3𝛼)!
+ (

1

48
𝑠𝑒𝑐ℎ6 𝑥

4
−

13

48
𝑠𝑒𝑐ℎ4 𝑥

4
𝑡𝑎𝑛ℎ2 𝑥

4
+

1

8
𝑠𝑒𝑐ℎ2 𝑥

4
𝑡𝑎𝑛ℎ4 𝑥

4
)

𝑡4𝛼

(4𝛼)!
…                                                                                                   (3.23) 

Example 3. 2. 2 Fisher's equation  

Consider one-dimensional non-linear Fisher's equation [116] defined as, 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) + 6 𝑢(𝑥, 𝑡){1 − 𝑢(𝑥, 𝑡)}, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1                                 (3.24) 

with initial condition 𝑢 (𝑥, 0)  =   
1

(1 + 𝑒𝑥 ) 2
                                                                       (3.25) 

& exact solution at α = 1 is 𝑢 (𝑥, 𝑡)  =  
1

(1 + 𝑒𝑥−5𝑡 )2 
                                                          (3.26) 

Applying Laplace transform on equation (3.24) then, 

ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = ℒ[𝑢𝑥𝑥(𝑥, 𝑡) + 6𝑢(𝑥, 𝑡){1 − 𝑢(𝑥, 𝑡)}]  

i.e.ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = ℒ[𝑢𝑥𝑥(𝑥, 𝑡)] + 6[ℒ(𝑢(𝑥, 𝑡)) − ℒ(𝑢2(𝑥, 𝑡))]                                    (3.27) 

From famous Laplace transform of fractional order derivatives using the relation 

ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = 𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) on equation (3.27) then it is framed as,  

𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) = ℒ[𝑢𝑥𝑥(𝑥, 𝑡)] + 6[ℒ(𝑢(𝑥, 𝑡)) − ℒ(𝑢2(𝑥, 𝑡))]   

𝑠𝛼𝑈(𝑥, 𝑠) − 𝑠𝛼−1𝑓0(𝑥) = {𝑈(𝑥, 𝑠)}𝑥𝑥 + 6[𝑈(𝑥, 𝑠) − ℒ[ℒ−1{(𝑈(𝑥, 𝑠))2}]  

i.e. 𝑈(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+

1

𝑠𝛼 {𝑈(𝑥, 𝑠)}𝑥𝑥 +
6

𝑠𝛼 [𝑈(𝑥, 𝑠) − ℒ[ℒ−1{(𝑈(𝑥, 𝑠))2}]                      (3.28) 

where             𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝑡)]  

Transformed function 𝑈(𝑥, 𝑠) can be written as, 

𝑈(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
∞
𝑛=0                                                                                                          (3.29) 

Also, 𝑘𝑡ℎ − truncated series of this relation (3.29) is written as, 
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𝑈𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=0   

𝑖. 𝑒. 𝑈𝑘(𝑥, 𝑠) =  
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1                                                                                      (3.30) 

Again, 𝑘𝑡ℎ −Laplace residual function is 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
𝑓0(𝑥)

𝑠
−

1

𝑠𝛼 {𝑈𝑘(𝑥, 𝑠)}𝑥𝑥 −
6

𝑠𝛼 [𝑈𝑘(𝑥, 𝑠) −

ℒ[ℒ−1 {(𝑈𝑘(𝑥, 𝑠))
2
}](3.31) 

To find the values of 𝑓𝑘(𝑥), 𝑘 = 1,2,3, … … … substitute 𝑘𝑡ℎ − truncated series (3.30) in 

𝑘𝑡ℎ −Laplace residual function (3.31) we get,  

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

𝑓0(𝑥)

𝑠
−

1

𝑠𝛼 {
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥 −

6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1  − ℒ{ℒ−1(

𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}].    

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠𝛼 {
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥 −

6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1  −

ℒ{ℒ−1(
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}]                                                                                         (3.32) 

For 𝑘 = 1  from (3.32) the first Laplace residual function is, 

ℒ𝑅𝑒𝑠1(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 − ℒ{ℒ−1 (
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1)
2

}](3.33) 

=
𝑓1(𝑥)

𝑠𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 − ℒ{ℒ−1 (
(𝑓0(𝑥))2

𝑠2 + 2
𝑓0(𝑥)𝑓1(𝑥)

𝑠𝛼+2 +
f1
2(x)

s2α+2)}]    

=
𝑓1(𝑥)

𝑠𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 − ℒ{(𝑓0(𝑥))2𝑡 +
2𝑓0(𝑥)𝑓1(𝑥)𝑡𝛼+1

(𝛼+1)!
+

(𝑓1(𝑥))2𝑡2𝛼+1

(2𝛼+1)!
}]   

=
𝑓1(𝑥)

𝑠𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 −
(𝑓0(𝑥))2

𝑠2 −
2(𝛼+1)!𝑓0(𝑥)𝑓1(𝑥)

(𝛼+1)!𝑠𝛼+2 −
(2𝛼+1)!(𝑓1(𝑥))2

(2𝛼+1)!𝑠2𝛼+2 ]  

=
𝑓1(𝑥)

𝑠𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 − 6[
𝑓0(𝑥)

𝑠𝛼+1 +
𝑓1(𝑥)

𝑠2𝛼+1 −
(𝑓0(𝑥))2

𝑠𝛼+2 −
2𝑓0(𝑥)𝑓1(𝑥)

𝑠2𝛼+2 −
((𝑓1(𝑥))2

𝑠3𝛼+2 ]   

Now, the relation lim
𝑠→∞

(𝑠𝛼+1 ℒ𝑅𝑒𝑠1(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 1 , gives that 

𝑓1(𝑥) − {𝑓0(𝑥)}𝑥𝑥 − 6𝑓0(𝑥) = 0  

  𝑓1(𝑥) = {𝑓0(𝑥)}𝑥𝑥 + 6𝑓0(𝑥) =
10𝑒2𝑥+10𝑒𝑥+6

(1+𝑒𝑥)4   where 𝑢 (𝑥, 0) = 𝑓0(𝑥) =   
1

(1 + 𝑒𝑥 ) 2
 

For  𝑘 = 2 from (3.32) the second Laplace residual function is, 

ℒ𝑅𝑒𝑠2(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1 −

{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1  −

ℒ {ℒ−1 (
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1 )

2

}]                                                                                       (3.34) 
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=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − ℒ {ℒ−1 (
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1)
2

}]   

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − ℒ {ℒ−1 (
(𝑓0(𝑥))2

𝑠2 +

(𝑓1(𝑥))2

𝑠2𝛼+2 +
(𝑓2(𝑥))2

𝑠4𝛼+2 +
2𝑓0(𝑥)𝑓1(𝑥)

𝑠𝛼+2 +
2𝑓1(𝑥)𝑓2(𝑥)

𝑠3𝛼+2 +
2𝑓0(𝑥)𝑓2(𝑥)

𝑠2𝛼+2 )}]   

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − ℒ {(𝑓0(𝑥))2𝑡 +

(𝑓1(𝑥))2𝑡2𝛼+1

(2𝛼+1)!
+

(𝑓2(𝑥))2𝑡4𝛼+1

(4𝛼+1)!
+

2𝑓0(𝑥)𝑓1(𝑥)𝑡𝛼+1

(𝛼+1)!
+

2𝑓1(𝑥)𝑓2(𝑥)𝑡3𝛼+1

(3𝛼+1)!
+

2𝑓0(𝑥)𝑓2(𝑥)𝑡2𝛼+1

(2𝛼+1)!
}]   

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − {
(𝑓0(𝑥))2

𝑠2 +

(2𝛼+1)!(𝑓1(𝑥))2

(2𝛼+1)!𝑠2𝛼+2 +
(4𝛼+1)!(𝑓2(𝑥))2

(4𝛼+1)!𝑠4𝛼+2 +
2(𝛼+1)!𝑓0(𝑥)𝑓1(𝑥)

(𝛼+1)!𝑠𝛼+2 +
2(3𝛼+1)!𝑓1(𝑥)𝑓2(𝑥)

(3𝛼+1)!𝑠3𝛼+2 +
2(2𝛼+1)!𝑓0(𝑥)𝑓2(𝑥)

(2𝛼+1)!𝑠2𝛼+2
}]  

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 − 6[
𝑓0(𝑥)

𝑠𝛼+1 +
𝑓1(𝑥)

𝑠2𝛼+1 +
𝑓2(𝑥)

𝑠3𝛼+1 − {
(𝑓0(𝑥))2

𝑠𝛼+2 +

(𝑓1(𝑥))2

𝑠3𝛼+2 +
(𝑓2(𝑥))2

𝑠5𝛼+2 +
2𝑓0(𝑥)𝑓1(𝑥)

𝑠2𝛼+2 +
2𝑓1(𝑥)𝑓2(𝑥)

𝑠4𝛼+2 +
2𝑓0(𝑥)𝑓2(𝑥)

𝑠3𝛼+2
}]   

 =
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
6𝑓0(𝑥)

𝑠𝛼+1 −
6𝑓1(𝑥)

𝑠2𝛼+1 −
6𝑓2(𝑥)

𝑠3𝛼+1 +
6(𝑓0(𝑥))2

𝑠𝛼+2 +

6(𝑓1(𝑥))2

𝑠3𝛼+2 +
6(𝑓2(𝑥))2

𝑠5𝛼+2 +
12𝑓0(𝑥)𝑓1(𝑥)

𝑠2𝛼+2 +
12𝑓1(𝑥)𝑓2(𝑥)

𝑠4𝛼+2 +
12𝑓0(𝑥)𝑓2(𝑥)

𝑠3𝛼+2     

=
𝑓2(𝑥)

𝑠2𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
6𝑓1(𝑥)

𝑠2𝛼+1 −
6𝑓2(𝑥)

𝑠3𝛼+1 +
6(𝑓0(𝑥))2

𝑠𝛼+2 +
6(𝑓1(𝑥))2

𝑠3𝛼+2 +
6(𝑓2(𝑥))2

𝑠5𝛼+2 +
12𝑓0(𝑥)𝑓1(𝑥)

𝑠2𝛼+2 +

12𝑓1(𝑥)𝑓2(𝑥)

𝑠4𝛼+2 +
12𝑓0(𝑥)𝑓2(𝑥)

𝑠3𝛼+2    

Now, the relation lim
𝑠→∞

(𝑠2𝛼+1 ℒ𝑅𝑒𝑠2(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 2 , gives us that 

𝑓2(𝑥) − {𝑓1(𝑥)}𝑥𝑥 − 6𝑓1(𝑥) = 0 𝑖. 𝑒. 𝑓2(𝑥) = {𝑓1(𝑥)}𝑥𝑥 + 6𝑓1(𝑥)   

𝑖. 𝑒. 𝑓2(𝑥) =
100𝑒4𝑥+150𝑒3𝑥+252𝑒2𝑥+118𝑒𝑥+36

(1+𝑒𝑥)6    

For  𝑘 = 3 from (3.32) the third Laplace residual function is, 

ℒ𝑅𝑒𝑠2(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
3
𝑛=1 −

{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥

𝑠4𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
3
𝑛=1  − ℒ {ℒ−1 (

𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
3
𝑛=1 )

2

}]                                                               (3.35) 

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥

𝑠4𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +

𝑓3(𝑥)

𝑠3𝛼+1 − ℒ {ℒ−1 (
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1)
2

}]    
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=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥

𝑠4𝛼+1 −
6

𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +

𝑓3(𝑥)

𝑠3𝛼+1 − ℒ {ℒ−1 (
𝑓0

2(𝑥)

𝑠2 +
𝑓1

2(𝑥)

𝑠2𝛼+2 +
𝑓2

2(𝑥)

𝑠4𝛼+2 +
𝑓3

2(𝑥)

𝑠6𝛼+2 +
2𝑓0(𝑥)𝑓1(𝑥)

𝑠𝛼+2 +
2𝑓1(𝑥)𝑓2(𝑥)

𝑠3𝛼+2 +
2𝑓0(𝑥)𝑓2(𝑥)

𝑠2𝛼+2 +

2𝑓1(𝑥)𝑓3(𝑥)

𝑠4𝛼+2 +
2𝑓2(𝑥)𝑓3(𝑥)

𝑠5𝛼+2 +
2𝑓0(𝑥)𝑓3(𝑥)

𝑠3𝛼+2 )}]   

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥

𝑠4𝛼+1 −
6𝑓0(𝑥)

𝑠𝛼+1 −
6𝑓1(𝑥)

𝑠2𝛼+1 −
6𝑓2(𝑥)

𝑠3𝛼+1 −

6𝑓3(𝑥)

𝑠4𝛼+1 +
6

𝑠𝛼 ℒ {
𝑓0

2(𝑥)𝑡

1!
+

𝑓1
2(𝑥)𝑡2𝛼+1

(2𝛼+1)!
+

𝑓2
2(𝑥)𝑡4𝛼+1

(4𝛼+1)!
+

𝑓3
2(𝑥)𝑡6𝛼+1

(6𝛼+1)!
+

2𝑓0(𝑥)𝑓1(𝑥)𝑡𝛼+1

(𝛼+1)!
+

2𝑓1(𝑥)𝑓2(𝑥)𝑡3𝛼+1

(3𝛼+1)!
+

2𝑓0(𝑥)𝑓2(𝑥)𝑡2𝛼+1

(2𝛼+1)!
+

2𝑓1(𝑥)𝑓3(𝑥)𝑡4𝛼+1

(4𝛼+1)!
+

2𝑓2(𝑥)𝑓3(𝑥)𝑡5𝛼+1

(5𝛼+1)!
+

2𝑓0(𝑥)𝑓3(𝑥)𝑡3𝛼+1

(3𝛼+1)!
}    

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥

𝑠4𝛼+1 −
6𝑓0(𝑥)

𝑠𝛼+1 −
6𝑓1(𝑥)

𝑠2𝛼+1 −
6𝑓2(𝑥)

𝑠3𝛼+1 −

6𝑓3(𝑥)

𝑠4𝛼+1 +
6

𝑠𝛼
{

𝑓0
2(𝑥)1!

1!𝑠2 +
𝑓1

2(𝑥)(2𝛼+1)!

(2𝛼+1)!𝑠2𝛼+2 +
𝑓2

2(𝑥)(4𝛼+1)!

(4𝛼+1)!𝑠4𝛼+2 +
𝑓3

2(𝑥)(6𝛼+1)!

(6𝛼+1)!𝑠4𝛼+2 +
2𝑓0(𝑥)𝑓1(𝑥)(𝛼+1)!

(𝛼+1)!𝑠𝛼+2 +

2𝑓1(𝑥)𝑓2(𝑥)(3𝛼+1)!

(3𝛼+1)!𝑠3𝛼+2 +
2𝑓0(𝑥)𝑓2(𝑥)(2𝛼+1)!

(2𝛼+1)!𝑠2𝛼+2 +
2𝑓1(𝑥)𝑓3(𝑥)(4𝛼+1)!

(4𝛼+1)!𝑠4𝛼+2 +
2𝑓2(𝑥)𝑓3(𝑥)(5𝛼+1)!

(5𝛼+1)!𝑠5𝛼+2 +
2𝑓0(𝑥)𝑓3(𝑥)(3𝛼+1)!

(3𝛼+1)!𝑠3𝛼+2
}  

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
{𝑓0(𝑥)}𝑥𝑥

𝑠𝛼+1 −
{𝑓1(𝑥)}𝑥𝑥

𝑠2𝛼+1 −
{𝑓2(𝑥)}𝑥𝑥

𝑠3𝛼+1 −
{𝑓3(𝑥)}𝑥𝑥

𝑠4𝛼+1 −
6𝑓0(𝑥)

𝑠𝛼+1 −
6𝑓1(𝑥)

𝑠2𝛼+1 −
6𝑓2(𝑥)

𝑠3𝛼+1 −

6𝑓3(𝑥)

𝑠4𝛼+1 +
6𝑓0

2(𝑥)

𝑠𝛼+2 +
6𝑓1

2(𝑥)

𝑠3𝛼+2 +
6𝑓2

2(𝑥)

𝑠5𝛼+2 +
6𝑓3

2(𝑥)

𝑠5𝛼+2 +
12𝑓0(𝑥)𝑓1(𝑥)

𝑠2𝛼+2 +
12𝑓1(𝑥)𝑓2(𝑥)

𝑠4𝛼+2 +
12𝑓0(𝑥)𝑓2(𝑥)

𝑠3𝛼+2 +

12𝑓1(𝑥)𝑓3(𝑥)

𝑠5𝛼+2 +
12𝑓2(𝑥)𝑓3(𝑥)

𝑠6𝛼+2 +
12𝑓0(𝑥)𝑓3(𝑥)

𝑠4𝛼+2    

Now, the relation lim
𝑠→∞

(𝑠3𝛼+1 ℒ𝑅𝑒𝑠3(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 3 , gives us that 

𝑓3(𝑥) − {𝑓2(𝑥)}𝑥𝑥 − 6𝑓2(𝑥) = 0 𝑖. 𝑒. 𝑓3(𝑥) = {𝑓2(𝑥)}𝑥𝑥 + 6𝑓2(𝑥)   

∴ 𝑓3(𝑥) =
1000𝑒6𝑥+1250𝑒5𝑥+5944𝑒4𝑥+3388𝑒3𝑥+3560𝑒2𝑥+1042𝑒𝑥+216

(1+𝑒𝑥)8    

Hence, the power series solution of given Fisher's equation in infinite form is, 

𝑈(𝑥, 𝑠) =
1

(1 + 𝑒𝑥 ) 2
1

𝑠
+

10𝑒2𝑥+10𝑒𝑥+6

(1+𝑒𝑥)4

1

𝑠𝛼+1 +
100𝑒4𝑥+150𝑒3𝑥+252𝑒2𝑥+118𝑒𝑥+36

(1+𝑒𝑥)6

1

𝑠2𝛼+1 +

                      
1000𝑒6𝑥+1250𝑒5𝑥+5944𝑒4𝑥+3388𝑒3𝑥+3560𝑒2𝑥+1042𝑒𝑥+216

(1+𝑒𝑥)8

1

𝑠3𝛼+1 + ⋯                    (3.36)  

At last taking inverse Laplace in (3.36) then the required solution of Fisher's equation via 

LRPSM is, 

𝑢(𝑥, 𝑡) =        
1

(1 + 𝑒𝑥 ) 2
+

10𝑒2𝑥+10𝑒𝑥+6

(1+𝑒𝑥)4

𝑡𝛼

𝛼!
+

100𝑒4𝑥+150𝑒3𝑥+252𝑒2𝑥+118𝑒𝑥+36

(1+𝑒𝑥)6

𝑡2𝛼

(2𝛼)!
+

                  
1000𝑒6𝑥+1250𝑒5𝑥+5944𝑒4𝑥+3388𝑒3𝑥+3560𝑒2𝑥+1042𝑒𝑥+216

(1+𝑒𝑥)8

𝑡3𝛼

(3𝛼)!
+ ⋯                        (3.37) 

 

 

3.3 Numerical Simulations and Graphs  
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i) The both solutions of BBMB equation for various values of t are computed and compared. 

The graph of both the solutions with values of t=0.02, 0.04, 0.06, 0.08 and 0.10 and 

alpha=0.5 are shown in Figure 3.1, Figure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5 when x 

varies from -20 to 20.  

 

Figure 3.1 When t=0.02 and alpha=0.5 

 

Figure 3.2 When t=0.04 and alpha=0.5 
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Figure 3.3 When t=0.06 and alpha=0.5 

 

Figure 3.4 When t=0.08 and alpha=0.5 

 

Figure 3.5 When t=0.10 and alpha=0.5 

Table 3.1 Absolute errors of solutions of BBMB equation as prescribed points when 

alpha=0.5.  

X t=0.02 t=0.04 t=0.06 t=0.08 t=0.10 

-20 1.1865e-05 1.5332e-05 1.7464e-05 1.8924e-05 1.9966e-05 

-16 8.7574e-05 1.1317e-04 1.2891e-04 1.3969e-04 1.4739e-04 

-12 6.4193e-04 8.2977e-04 9.4538e-04 1.0246e-03 1.0813e-03 

-8 4.4721e-03 5.7918e-03 6.6090e-03 7.1731e-03 7.5798e-03 

-4 2.1629e-02 2.8390e-02 3.2751e-02 3.5890e-02 3.8263e-02 

4 2.3164e-02 3.1422e-02 3.7242e-02 4.1803e-02 4.5560e-02 

8 5.1000e-03 7.0400e-03 8.4701e-03 9.6394e-03 1.0644e-02 

12 7.3863e-04 1.0222e-03 1.2325e-03 1.4055e-03 1.5548e-03 

16 1.0089e-04 1.3967e-04 1.6845e-04 1.9214e-04 2.1262e-04 

20 1.3671e-05 1.8926e-05 2.2828e-05 2.6040e-05 2.8816e-05 
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Table 3.2 Absolute errors of solutions of BBMB equation at point t=0.02 for prescribed 

values of alpha. 

x/alpha 0.25 0.50 0.75 1.0 

-20 3.0789e-05 1.1865e-05 3.3528e-06 3.0187e-11 

-16 2.2728e-04 8.7574e-05 2.4746e-05 2.2288e-10 

-12 1.6676e-03 6.4193e-04 1.8133e-04 1.6375e-09 

-8 1.1696e-02 4.4721e-03 1.2600e-03 1.1591e-08 

-4 5.9167e-02 2.1629e-02 5.9830e-03 6.0683e-08 

4 7.1211e-02 2.3164e-02 6.1328e-03 6.0859e-08 

8 1.6985e-02 5.1000e-03 1.3209e-03 1.1646e-08 

12 2.4895e-03 7.3863e-04 1.9070e-04 1.6457e-09 

16 3.4060e-04 1.0089e-04 2.6036e-05 2.2400e-10 

20 4.6162e-05 1.3671e-05 3.5278e-06 3.0338e-11 

 

ii) A comparison is made between both the solutions for varying numbers of terms in the one-

dimensional non-linear Fisher's equation for a range of t values. The graph of both solutions 

with values of t=0.002, 0.004, 0.006, 0.008 and 0.010 and alpha=0.5 are shown in Figure 3.6, 

Figure 3.7, Figure 3.8, Figure 3.9, Figure 3.10 where x varies from -20 to 20.   

 
Figure 3.6 When t=0.002 and alpha=0.5 

 

Figure 3.7 When t=0.004 and alpha=0.5 
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Figure 3.8 When t=0.006 and alpha=0.5 

 

Figure 3.9 When t=0.008 and alpha=0.5 

 

Figure 3.10 When t=0.010 and alpha=0.5 

Table 3.3 Absolute errors of solutions of Fisher's equation as prescribed points when 

alpha=0.5.   

X t=0.002 t=0.004 t=0.006 t=0.008 t=0.010 

-20 4.1018e-11 8.1627e-11 1.2183e-10 1.6164e-10 2.0105e-10 

-16 2.2395e-09 4.4567e-09 6.6518e-09 8.8251e-09 1.0977e-08 
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-12 1.2227e-07 2.4332e-07 3.6317e-07 4.8183e-07 5.9930e-07 

-8 6.6691e-06 1.3272e-05 1.9809e-05 2.6281e-05 3.2689e-05 

-4 3.4526e-04 6.8728e-04 1.0261e-03 1.3617e-03 1.6941e-03 

4 6.4159e-06 1.2958e-05 1.9628e-05 2.6430e-05 3.3365e-05 

8 2.2711e-09 4.5880e-09 6.9517e-09 9.3631e-09 1.1823e-08 

12 7.6261e-13 1.5406e-12 2.3344e-12 3.1441e-12 3.9703e-12 

16 2.5186e-16 5.1013e-16 7.7375e-16 1.0427e-15 1.3171e-15 

20 3.8857e-18 6.5262e-18 9.0985e-18 1.1689e-17 1.4323e-17 

 

Table 3.4 Absolute errors of solutions of Fisher's equation at point t=0.002 for prescribed 

values of alpha 

x/alpha 0.25 0.50 0.75 1.0 

-20 4.1018e-11 4.1018e-11 4.1018e-11 4.1018e-11 

-16 2.2395e-09 2.2395e-09 2.2395e-09 2.2395e-09 

-12 1.2227e-07 1.2227e-07 1.2227e-07 1.2227e-07 

-8 6.6691e-06 6.6691e-06 6.6691e-06 6.6691e-06 

-4 3.4526e-04 3.4526e-04 3.4526e-04 3.4526e-04 

4 6.4159e-06 6.4159e-06 6.4159e-06 6.4159e-06 

8 2.2711e-09 2.2711e-09 2.2711e-09 2.2711e-09 

12 7.6252e-13 7.6261e-13 7.6261e-13 7.6261e-13 

16 1.6556e-16 2.5186e-16 2.5527e-16 2.5573e-16 

20 9.0186e-17 3.8857e-18 4.8201e-19 1.8566e-20 

 

Example 3.2.3 The Schrödinger equation  𝐷𝑡
𝛼𝑢 + 𝑖𝑢𝑥𝑥 = 0, 0 < 𝛼 ≤ 1                       (3.38) 

with primary condition 𝑢(𝑥, 0) = 1 + cosh (2𝑥)                                                            (3.39) 

and exact solution  𝑢(𝑥, 𝑡) = 1 + 𝐸𝛼 (−4𝑖𝑡𝛼) cosh (2𝑥)   

where 𝐸𝛼(𝑧) = ∑
𝑧𝑘

ᴦ(1+𝑘𝛼)

∞
𝑘=0 , 𝑧 = −4𝑖tα 

and 𝑢(𝑥, 𝑡) = 1 + cosh(2𝑥) 𝑒−4𝑖𝑡𝑓𝑜𝑟 𝛼 = 1 with 𝑖2 = −1.                                           (3.40) 

Taking Laplace transform on equation (3.38), we get 

ℒ[𝐷𝑡
𝛼𝑢] + ℒ[𝑖𝑢𝑥𝑥] = 0                                                                                                     (3.41) 

From Laplace transform of fractional derivatives using the relation, 

 ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = 𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) on equation (3.41), then it can be framed as,  

𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) + ℒ[𝑖𝑢𝑥𝑥] = 0   

𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] = 𝑠𝛼−1𝑢(𝑥, 0) − 𝑖ℒ[𝑢𝑥𝑥]  

𝑈(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
− 𝑖

1

𝑠𝛼 {𝑈(𝑥, 𝑠)}𝑥𝑥                                                                                    (3.42) 
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where    𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝑡)] and 𝑢(𝑥, 0) = 𝑓0(𝑥)  

The transformed function 𝑈(𝑥, 𝑠) written as, 

𝑈(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
∞
𝑛=0                                                                                                         (3.43) 

Also the 𝑘𝑡ℎ − truncated series of this relation (3.43) is 

𝑈𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=0   

 𝑖. 𝑒. 𝑈𝑘(𝑥, 𝑠) =  
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1                                                                                    (3.44)                 

Again the 𝑘𝑡ℎ −Laplace residual function of (3.42) is 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
𝑓0(𝑥)

𝑠
− 𝑖

1

𝑠𝛼 {𝑈𝑘(𝑥, 𝑠)}𝑥𝑥                             (3.45) 

To find the values of 𝑓𝑘(𝑥), 𝑘 = 1,2,3, … … … substitute 𝑘𝑡ℎ − truncated series (3.44) in 

𝑘𝑡ℎ −Laplace residual function (3.45) we get, 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

𝑓0(𝑥)

𝑠
− 𝑖

1

𝑠𝛼 {
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥   

                     = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 − 𝑖

1

𝑠𝛼 {
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥                                                    (3.46) 

For 𝑘 = 1  from (3.46) first Laplace residual function is, 

ℒ𝑅𝑒𝑠1(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 − 𝑖
1

𝑠𝛼 {
1+cosh (2𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1}𝑥𝑥  [∴𝑢(𝑥, 0) = 1 + cosh(2𝑥) = 𝑓0(𝑥)] 

                      =
𝑓1(𝑥)

𝑠𝛼+1 −
4𝑖cosh (2𝑥)

𝑠𝛼+1 − 𝑖
(𝑓1(𝑥))𝑥𝑥

𝑠2𝛼+1  

Now, the relation lim
𝑠→∞

(𝑠𝛼+1 ℒ𝑅𝑒𝑠1(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 1  gives that,  

𝑓1(𝑥) − 4𝑖 cosh(2𝑥) = 0  

 𝑖. 𝑒. 𝑓1(𝑥) = 4𝑖 cosh(2𝑥) 

For 𝑘 = 2  from (3.46) the second Laplace residual function is,  

ℒ𝑅𝑒𝑠2(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − 𝑖
1

𝑠𝛼 {
1+cosh (2𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1}𝑥𝑥  

                    =
4𝑖 cosh(2𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − 𝑖
1

𝑠𝛼 {
1+cosh (2𝑥)

𝑠
+

4𝑖 cosh(2𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1}𝑥𝑥   

                    =
4𝑖 cosh(2𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
4𝑖cosh (2𝑥)

𝑠𝛼+1 +
16 cosh(2𝑥)

𝑠2𝛼+1 −
𝑖(𝑓2(𝑥))𝑥𝑥

𝑠3𝛼+1   

                    =
𝑓2(𝑥)

𝑠2𝛼+1 +
16 cosh(2𝑥)

𝑠2𝛼+1 −
𝑖(𝑓2(𝑥))𝑥𝑥

𝑠3𝛼+1  
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Now the relation lim
𝑠→∞

(𝑠2𝛼+1 ℒ𝑅𝑒𝑠2(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 2 , gives us that 

𝑓2(𝑥) + 16 cosh(2𝑥) = 0  

 𝑖. 𝑒. 𝑓2(𝑥) = −16 cosh(2𝑥)  

For 𝑘 = 3 from (3.46) the third Laplace residual function is,  

ℒ𝑅𝑒𝑠2(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 − 𝑖
1

𝑠𝛼 {
1+cosh (2𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1}𝑥𝑥  

       =
4𝑖 cosh(2𝑥)

𝑠𝛼+1 −
16 cosh(2𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 − 𝑖
1

𝑠𝛼 {
1+cosh (2𝑥)

𝑠
+

4𝑖 cosh(2𝑥)

𝑠𝛼+1 −
16 cosh(2𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1}𝑥𝑥  

=
4𝑖 cosh(2𝑥)

𝑠𝛼+1 −
16 cosh(2𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 − 𝑖
1

𝑠𝛼{
4cosh (2𝑥)

𝑠
+

16𝑖 cosh(2𝑥)

𝑠𝛼+1
−

64 cosh(2𝑥)

𝑠2𝛼+1
+

(𝑓3(𝑥))𝑥𝑥

𝑠3𝛼+1
} 

=
4𝑖 cosh(2𝑥)

𝑠𝛼+1 −
16 cosh(2𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 −
4𝑖cosh (2𝑥)

𝑠𝛼+1 +
16 cosh(2𝑥)

𝑠2𝛼+1 +
64𝑖 cosh(2𝑥)

𝑠3𝛼+1 −
𝑖(𝑓3(𝑥))

𝑥𝑥

𝑠4𝛼+1   

=
𝑓3(𝑥)

𝑠3𝛼+1 +
64𝑖 cosh(2𝑥)

𝑠3𝛼+1 −
𝑖(𝑓3(𝑥))

𝑥𝑥

𝑠4𝛼+1   

Now the relation lim
𝑠→∞

(𝑠3𝛼+1 ℒ𝑅𝑒𝑠3(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 3 , gives us that 

𝑓3(𝑥) + 64𝑖 cosh(2𝑥) = 0  

 𝑖. 𝑒. 𝑓3(𝑥) = −64𝑖 cosh(2𝑥)  

Therefore, the solution to the above equation in infinite form in the Laplace residual power 

series form is,  

𝑈(𝑥, 𝑠) =
1+cosh (2𝑥)  

𝑠
+ 4𝑖 cosh(2𝑥)

1

𝑠𝛼+1 − 16 cosh(2𝑥)
1

𝑠2𝛼+1 − 64𝑖 cosh(2𝑥)
1

𝑠3𝛼+1 − ⋯   (3.47) 

At last by taking inverse Laplace in (3.47) then solution of given equation via LRPSM as, 

𝑢(𝑥, 𝑡) = 1 + cosh(2𝑥) + 4𝑖 cosh(2𝑥)
𝑡𝛼

𝛼!
− 16 cosh(2𝑥)

𝑡2𝛼

(2𝛼)!
− 64𝑖 cosh(2𝑥)

𝑡3𝛼

(3𝛼)!
−…       (3.48)                                                                

Example 3.2.4 The Schrödinger equation  𝐷𝑡
𝛼𝑢 + 𝑖𝑢𝑥𝑥 = 0, 0 < 𝛼 ≤ 1                        (3.49) 

with primary condition 𝑢(𝑥, 0) = 𝑒3𝑖𝑥 , 𝑖2 = −1                                                             (3.50) 

and exact solution is  𝑢(𝑥, 𝑡) = 1 + 𝐸𝛼(−4𝑖𝑡𝛼) cosh (2𝑥)                                            (3.51) 

where    𝐸𝛼(𝑧) = ∑
𝑧𝑘

ᴦ(1+𝑘𝛼)

∞
𝑘=0 , 𝑧 = −4𝑖𝑡𝛼 

and 𝑢(𝑥, 𝑡) = 1 + cosh(2𝑥) 𝑒−4𝑖𝑡𝑓𝑜𝑟 𝛼 = 1 with 𝑖2 = −1.                                              

Taking Laplace transform on equation (3.49), we get 

ℒ[𝐷𝑡
𝛼𝑢] + ℒ[𝑖𝑢𝑥𝑥] = 0                                                                                                     (3.52) 
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From Laplace transform of fractional derivatives using the relation,  

ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = 𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) on equation (3.52), then it can be framed as,  

𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) + ℒ[𝑖𝑢𝑥𝑥] = 0   

𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] = 𝑠𝛼−1𝑢(𝑥, 0) − 𝑖ℒ[𝑢𝑥𝑥]  

𝑈(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
− 𝑖

1

𝑠𝛼 {𝑈(𝑥, 𝑠)}𝑥𝑥                                                                                       (3.53) 

where    𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝑡)] and 𝑢(𝑥, 0) = 𝑓0(𝑥)   

The transformed function 𝑈(𝑥, 𝑠) is written as 

𝑈(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
∞
𝑛=0                                                                                                          (3.54) 

Also the 𝑘𝑡ℎ − truncated series of this relation (3.44) is 

𝑈𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=0   

 𝑖. 𝑒. 𝑈𝑘(𝑥, 𝑠) =  
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1                                                                                    (3.55)                 

Again the 𝑘𝑡ℎ −Laplace residual function of (3.53) is 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
𝑓0(𝑥)

𝑠
− 𝑖

1

𝑠𝛼 {𝑈𝑘(𝑥, 𝑠)}𝑥𝑥                              (3.56) 

To find the values of 𝑓𝑘(𝑥), 𝑘 = 1,2,3, … … … substitute 𝑘𝑡ℎ − truncated series (3.55) in 

𝑘𝑡ℎ −Laplace residual function (3.56) we get, 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

𝑓0(𝑥)

𝑠
− 𝑖

1

𝑠𝛼 {
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥   

                     = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 − 𝑖

1

𝑠𝛼 {
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 }𝑥𝑥                                                    (3.57) 

For 𝑘 = 1  from (3.57) the first Laplace residual function is, 

ℒ𝑅𝑒𝑠1(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 − 𝑖
1

𝑠𝛼 {
𝑒3𝑖𝑥

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1}𝑥𝑥  [∴𝑢(𝑥, 0) = 𝑒3𝑖𝑥 = 𝑓0(𝑥)]  

                      =
𝑓1(𝑥)

𝑠𝛼+1 −
9𝑖3𝑒3𝑖𝑥

𝑠𝛼+1 − 𝑖
(𝑓1(𝑥))𝑥𝑥

𝑠2𝛼+1   

                      =
𝑓1(𝑥)

𝑠𝛼+1 +
9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 − 𝑖
(𝑓1(𝑥))𝑥𝑥

𝑠2𝛼+1   

Now, the relation lim
𝑠→∞

(𝑠𝛼+1 ℒ𝑅𝑒𝑠1(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 1  gives that,  

𝑓1(𝑥) + 9𝑖𝑒3𝑖𝑥 = 0  

 𝑖. 𝑒. 𝑓1(𝑥) = −9𝑖𝑒3𝑖𝑥   
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For 𝑘 = 2  from (3.57) the second Laplace residual function is,  

ℒ𝑅𝑒𝑠2(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − 𝑖
1

𝑠𝛼 {
𝑒3𝑖𝑥

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1}𝑥𝑥   

                    = −
9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − 𝑖
1

𝑠𝛼 {
𝑒3𝑖𝑥

𝑠
+

−9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1}𝑥𝑥    

                    = −
9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 +
81𝑒3𝑖𝑥

𝑠2𝛼+1 −
𝑖(𝑓2(𝑥))𝑥𝑥

𝑠3𝛼+1   

                    =
𝑓2(𝑥)

𝑠2𝛼+1 +
81𝑒3𝑖𝑥

𝑠2𝛼+1 −
𝑖(𝑓2(𝑥))𝑥𝑥

𝑠3𝛼+1   

Now the relation lim
𝑠→∞

(𝑠2𝛼+1 ℒ𝑅𝑒𝑠2(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 2 , gives us that 

𝑓2(𝑥) + 81𝑒3𝑖𝑥 = 0  

 𝑖. 𝑒. 𝑓2(𝑥) = −81𝑒3𝑖𝑥    

For 𝑘 = 3 from (3.57) the third Laplace residual function is,  

ℒ𝑅𝑒𝑠2(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 − 𝑖
1

𝑠𝛼 {
𝑒3𝑖𝑥

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1}𝑥𝑥  

=−
9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 −
81𝑒3𝑖𝑥

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 − 𝑖
1

𝑠𝛼 {
𝑒3𝑖𝑥

𝑠
−

9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 −
81𝑒3𝑖𝑥

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1}𝑥𝑥   

= −
9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 −
81𝑒3𝑖𝑥

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 − 𝑖
1

𝑠𝛼{
9𝑖2𝑒3𝑖𝑥

𝑠
+

81𝑖𝑒3𝑖𝑥

𝑠𝛼+1
+

729𝑒3𝑖𝑥

𝑠2𝛼+1
+

(𝑓3(𝑥))𝑥𝑥

𝑠3𝛼+1
} 

= −
9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 −
81𝑒3𝑖𝑥

𝑠2𝛼+1 +
𝑓3(𝑥)

𝑠3𝛼+1 +
9𝑖𝑒3𝑖𝑥

𝑠𝛼+1 +
81𝑒3𝑖𝑥

𝑠2𝛼+1 −
729𝑖𝑒3𝑖𝑥

𝑠3𝛼+1 −
𝑖(𝑓3(𝑥))

𝑥𝑥

𝑠4𝛼+1    

=
𝑓3(𝑥)

𝑠3𝛼+1 −
729𝑖𝑒3𝑖𝑥

𝑠3𝛼+1 −
𝑖(𝑓3(𝑥))

𝑥𝑥

𝑠4𝛼+1   

Now the relation lim
𝑠→∞

(𝑠3𝛼+1 ℒ𝑅𝑒𝑠3(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 3 , gives us that 

𝑓3(𝑥) − 729𝑖𝑒3𝑖𝑥 = 0  

 𝑖. 𝑒. 𝑓3(𝑥) = 729𝑖𝑒3𝑖𝑥   

Therefore, the solution to the above equation in infinite form in the Laplace residual power 

series form is,  

𝑈(𝑥, 𝑠) =
𝑒3𝑖𝑥  

𝑠
− 9𝑖𝑒3𝑖𝑥 1

𝑠𝛼+1 − 81𝑒3𝑖𝑥 1

𝑠2𝛼+1 + 729𝑖𝑒3𝑖𝑥  
1

𝑠3𝛼+1 − ⋯                               (3.58)                       

At last taking inverse Laplace in (3.58) then required solution of considered equation via 

LRPSM is, 

𝑢(𝑥, 𝑡) = 𝑒3𝑖𝑥 − 9𝑖𝑒3𝑖𝑥 𝑡𝛼

𝛼!
− 81𝑒3𝑖𝑥 𝑡2𝛼

(2𝛼)!
+ 729𝑖𝑒3𝑖𝑥  

𝑡3𝛼

(3𝛼)!
− ⋯                                                                      
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             = 𝑒3𝑖𝑥{1 − 9𝑖
𝑡𝛼

𝛼!
− 81

𝑡2𝛼

(2𝛼)!
+ 729𝑖 

𝑡3𝛼

(3𝛼)!
− ⋯}                                                   (3.59)  

Example 3.2.5 Logistic equation  

The logistic equation is defined as, 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) =

1

𝑎𝛼 𝑢(𝑥, 𝑡){1 − 𝑢(𝑥, 𝑡)}, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1                                                  (3.60) 

with primary condition 𝑢(𝑥, 0) = 𝑓0(𝑥) = 𝜇                                                                   (3.61) 

and exact solution is  𝑢(𝑥, 𝑡) =
𝑢(𝑥,0)

𝑢(𝑥,0)+{1−𝑢(𝑥,0)}𝑒
−

𝑡
𝑎

                                   

𝑖. 𝑒. 𝑢(𝑥, 𝑡) =
𝜇

𝜇+(1−𝜇)𝑒
−

𝑡
𝑎

  , where  𝜇 = 𝑢(𝑥, 0)                                                                 (3.62)     

This is a non-linear FDE that can be solved with LRPSM. 

3.2.5.1 Methodology for solution of logistic equation  

Logistic equation is solved with LRPSM by taking the following subsequent steps: 

Step 1: Applying Laplace on fractional logistic equation (3.60) as, 

ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] =

1

𝑎𝛼 [ℒ(𝑢(𝑥, 𝑡)) − ℒ(𝑢2(𝑥, 𝑡))]                                                                 (3.63) 

From Laplace transform of fractional derivatives using the relation, 

 ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = 𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) on equation (3.63), then it can be framed as, 

𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) =
1

𝑎𝛼 [ℒ(𝑢(𝑥, 𝑡)) − ℒ(𝑢2(𝑥, 𝑡))]  

𝑖. 𝑒. 𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) =
1

𝑎𝛼 [ℒ(𝑢(𝑥, 𝑡)) − ℒ(𝑢2(𝑥, 𝑡))]  

𝑈(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+

1

𝑎𝛼𝑠𝛼 [𝑈(𝑥, 𝑠) − ℒ[ℒ−1{(𝑈(𝑥, 𝑠))2}]                                                      (3.64) 

where    𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝑡)]  

Step 2: The transformed function 𝑈(𝑥, 𝑠) is written as, 

𝑈(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
∞
𝑛=0                                                                                                           (3.65) 

Also the 𝑘𝑡ℎ − truncated series of this relation (3.64) is, 

𝑈𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=0   

 𝑖. 𝑒. 𝑈𝑘(𝑥, 𝑠) =  
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1                                                                                     (3.66)                 



61 
 

Again the 𝑘𝑡ℎ −Laplace residual function is, 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
𝑓0(𝑥)

𝑠
−

1

𝑎𝛼𝑠𝛼 [𝑈𝑘(𝑥, 𝑠) − ℒ[ℒ−1{(𝑈𝑘(𝑥, 𝑠))
2

}]                       (3.67) 

Substitute the 𝑘𝑡ℎ − truncated series (3.66) in 𝑘𝑡ℎ −Laplace residual function (3.67) then it 

becomes, 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

𝑓0(𝑥)

𝑠
−

1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1  − ℒ{ℒ−1 (

𝑓0(𝑥)

𝑠
+

∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1  )

2

}]. 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1  − ℒ{ℒ−1 (

𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1  )

2

}](3.68)  

Step 3: By solving the following relation recursively the coefficients 𝑓𝑛(𝑥) can be obtained, 

lim
𝑠→∞

𝑠𝑘𝛼+1ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 0 𝑓𝑜𝑟 0 < 𝛼 ≤ 1, 𝑘 = 1,2,3, …                                           (3.69) 

Following are some useful relations which are used in standard RPSM: 

𝑖)  ℒ𝑅𝑒𝑠(𝑥, 𝑠) = 0 𝑎𝑛𝑑 lim
𝑘→∞

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = ℒ𝑅𝑒𝑠(𝑥, 𝑠), for 𝑠 > 0. 

𝑖𝑖)  lim
𝑠→∞

𝑠ℒ𝑅𝑒𝑠(𝑥, 𝑠) = 0 𝑔𝑖𝑣𝑒𝑠 lim
𝑠→∞

𝑠ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 0. 

𝑖𝑖𝑖)  lim
𝑠→∞

𝑠𝑘𝛼+1 ℒ𝑅𝑒𝑠(𝑥, 𝑠) = lim
𝑠→∞

𝑠𝑘𝛼+1ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 0 𝑓𝑜𝑟 0 < 𝛼 ≤ 1. 

Step 4: At last applying the inverse Laplace transform to 𝑈𝑘(𝑥, 𝑠) for obtaining the 𝑘𝑡ℎ 

approximate solution 𝑢𝑘(𝑥, 𝑡) of logistic equation.  

 

3.2.5.2 Numerical solution 

The LRPSM is used to calculate the logistic FDE's numerical solution, which is as follows. 

Applying Laplace transform on equation (3.60) then, 

ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = ℒ[

1

𝑎𝛼 𝑢(𝑥, 𝑡){1 − 𝑢(𝑥, 𝑡)}]  

i.e.ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] =

1

𝑎𝛼 [ℒ(𝑢(𝑥, 𝑡)) − ℒ(𝑢2(𝑥, 𝑡))]                                                          (3.70) 

From famous Laplace transform of fractional order derivatives using the relation 

ℒ[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = 𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) on equation (3.70) then it is framed as,  

𝑠𝛼ℒ[𝑢(𝑥, 𝑡)] − 𝑠𝛼−1𝑢(𝑥, 0) =
1

𝑎𝛼 [ℒ(𝑢(𝑥, 𝑡)) − ℒ(𝑢2(𝑥, 𝑡))]  

𝑠𝛼𝑈(𝑥, 𝑠) − 𝑠𝛼−1𝑓0(𝑥) =
1

𝑎𝛼 [𝑈(𝑥, 𝑠) − ℒ[ℒ−1{(𝑈(𝑥, 𝑠))2}]  
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i.e. 𝑈(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+

1

𝑎𝛼𝑠𝛼 [𝑈(𝑥, 𝑠) − ℒ[ℒ−1{(𝑈(𝑥, 𝑠))2}]                                              (3.71) 

where             𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝑡)]  

The transformed function 𝑈(𝑥, 𝑠) is, 

𝑈(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
∞
𝑛=0                                                                                                         (3.72) 

Also the 𝑘𝑡ℎ − truncated series of this relation (3.72) is given as, 

𝑈𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=0   

𝑖. 𝑒. 𝑈𝑘(𝑥, 𝑠) =  
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1                                                                                    (3.73) 

Again the 𝑘𝑡ℎ −Laplace residual function is 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
𝑓0(𝑥)

𝑠
−

1

𝑎𝛼𝑠𝛼 [𝑈𝑘(𝑥, 𝑠) − ℒ[ℒ−1{(𝑈𝑘(𝑥, 𝑠))
2

}]                       (3.74) 

To find the values of 𝑓𝑘(𝑥), 𝑘 = 1,2,3, … … … substitute the 𝑘𝑡ℎ − truncated series (3.73) in 

𝑘𝑡ℎ −Laplace residual function (3.74) we get,  

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) =
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

𝑓0(𝑥)

𝑠
−

1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1  − ℒ{ℒ−1(

𝑓0(𝑥)

𝑠
+

∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}].  

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1  − ℒ{ℒ−1(

𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )2}](3.75)  

For 𝑘 = 1  from (3.75) the first Laplace residual function is, 

ℒ𝑅𝑒𝑠1(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠𝛼+1 −
1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 − ℒ{ℒ−1 (
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1)
2

}]                               (3.76) 

=
𝑓1(𝑥)

𝑠𝛼+1 −
1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 − ℒ{ℒ−1 (
(𝑓0(𝑥))2

𝑠2 + 2
𝑓0(𝑥)𝑓1(𝑥)

𝑠𝛼+2 +
f1
2(x)

s2α+2)}]    

=
𝑓1(𝑥)

𝑠𝛼+1 −
1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 − ℒ{(𝑓0(𝑥))2𝑡 +
2𝑓0(𝑥)𝑓1(𝑥)𝑡𝛼+1

(𝛼+1)!
+

(𝑓1(𝑥))2𝑡2𝛼+1

(2𝛼+1)!
}]   

=
𝑓1(𝑥)

𝑠𝛼+1 −
1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 −
(𝑓0(𝑥))2

𝑠2 −
2(𝛼+1)!𝑓0(𝑥)𝑓1(𝑥)

(𝛼+1)!𝑠𝛼+2 −
(2𝛼+1)!(𝑓1(𝑥))2

(2𝛼+1)!𝑠2𝛼+2 ]  

=
𝑓1(𝑥)

𝑠𝛼+1 −
1

𝑎𝛼 [
𝑓0(𝑥)

𝑠𝛼+1 +
𝑓1(𝑥)

𝑠2𝛼+1 −
(𝑓0(𝑥))2

𝑠𝛼+2 −
2𝑓0(𝑥)𝑓1(𝑥)

𝑠2𝛼+2 −
((𝑓1(𝑥))2

𝑠3𝛼+2 ]   

Now, the relation lim
𝑠→∞

(𝑠𝛼+1 ℒ𝑅𝑒𝑠1(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 1 , gives that 

𝑓1(𝑥) −
𝑓0(𝑥)

𝑎𝛼 = 0    i.e.  𝑓1(𝑥) =
𝑓0(𝑥)

𝑎𝛼     i.e.  𝑓1(𝑥) =
𝜇

𝑎𝛼          (⸪𝑓0(𝑥) = 𝜇)  

For  𝑘 = 2 from (3.75) the second Laplace residual function is, 
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ℒ𝑅𝑒𝑠2(𝑥, 𝑠) = ∑
𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1 −

1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1  − ℒ {ℒ−1 (

𝑓0(𝑥)

𝑠
+ ∑

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
2
𝑛=1 )

2

}](3.77) 

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − ℒ {ℒ−1 (
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1)
2

}]   

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − ℒ {ℒ−1 (
(𝑓0(𝑥))2

𝑠2 +
(𝑓1(𝑥))2

𝑠2𝛼+2 +
(𝑓2(𝑥))2

𝑠4𝛼+2 +

2𝑓0(𝑥)𝑓1(𝑥)

𝑠𝛼+2 +
2𝑓1(𝑥)𝑓2(𝑥)

𝑠3𝛼+2 +
2𝑓0(𝑥)𝑓2(𝑥)

𝑠2𝛼+2 )}]   

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − ℒ {(𝑓0(𝑥))2𝑡 +
(𝑓1(𝑥))2𝑡2𝛼+1

(2𝛼+1)!
+

(𝑓2(𝑥))2𝑡4𝛼+1

(4𝛼+1)!
+

2𝑓0(𝑥)𝑓1(𝑥)𝑡𝛼+1

(𝛼+1)!
+

2𝑓1(𝑥)𝑓2(𝑥)𝑡3𝛼+1

(3𝛼+1)!
+

2𝑓0(𝑥)𝑓2(𝑥)𝑡2𝛼+1

(2𝛼+1)!
}]   

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
1

𝑎𝛼𝑠𝛼 [
𝑓0(𝑥)

𝑠
+

𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 − {
(𝑓0(𝑥))2

𝑠2 +
(2𝛼+1)!(𝑓1(𝑥))2

(2𝛼+1)!𝑠2𝛼+2 +
(4𝛼+1)!(𝑓2(𝑥))2

(4𝛼+1)!𝑠4𝛼+2 +

2(𝛼+1)!𝑓0(𝑥)𝑓1(𝑥)

(𝛼+1)!𝑠𝛼+2 +
2(3𝛼+1)!𝑓1(𝑥)𝑓2(𝑥)

(3𝛼+1)!𝑠3𝛼+2 +
2(2𝛼+1)!𝑓0(𝑥)𝑓2(𝑥)

(2𝛼+1)!𝑠2𝛼+2
}]  

=
𝑓1(𝑥)

𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
1

𝑎𝛼 [
𝑓0(𝑥)

𝑠𝛼+1 +
𝑓1(𝑥)

𝑠2𝛼+1 +
𝑓2(𝑥)

𝑠3𝛼+1 − {
(𝑓0(𝑥))2

𝑠𝛼+2 +
(𝑓1(𝑥))2

𝑠3𝛼+2 +
(𝑓2(𝑥))2

𝑠5𝛼+2 +
2𝑓0(𝑥)𝑓1(𝑥)

𝑠2𝛼+2 +

2𝑓1(𝑥)𝑓2(𝑥)

𝑠4𝛼+2 +
2𝑓0(𝑥)𝑓2(𝑥)

𝑠3𝛼+2
}]   

 =
𝑓0(𝑥)

𝑎𝛼𝑠𝛼+1 +
𝑓2(𝑥)

𝑠2𝛼+1 −
1

𝑎𝛼

𝑓0(𝑥)

𝑠𝛼+1 −
𝑓1(𝑥)

𝑎𝛼𝑠2𝛼+1 −
𝑓2(𝑥)

𝑎𝛼𝑠3𝛼+1 +
(𝑓0(𝑥))2

𝑎𝛼𝑠𝛼+2 +
(𝑓1(𝑥))2

𝑎𝛼𝑠3𝛼+2 +
(𝑓2(𝑥))2

𝑎𝛼𝑠5𝛼+2 +
2𝑓0(𝑥)𝑓1(𝑥)

𝑎𝛼𝑠2𝛼+2 +

2𝑓1(𝑥)𝑓2(𝑥)

𝑎𝛼𝑠4𝛼+2 +
2𝑓0(𝑥)𝑓2(𝑥)

𝑎𝛼𝑠3𝛼+2     

=
𝑓2(𝑥)

𝑠2𝛼+1 −
𝑓1(𝑥)

𝑎𝛼𝑠2𝛼+1 −
𝑓2(𝑥)

𝑎𝛼𝑠3𝛼+1 +
(𝑓0(𝑥))2

𝑎𝛼𝑠𝛼+2 +
(𝑓1(𝑥))2

𝑎𝛼𝑠3𝛼+2 +
(𝑓2(𝑥))2

𝑎𝛼𝑠5𝛼+2 +
2𝑓0(𝑥)𝑓1(𝑥)

𝑎𝛼𝑠2𝛼+2 +
2𝑓1(𝑥)𝑓2(𝑥)

𝑎𝛼𝑠4𝛼+2 +

2𝑓0(𝑥)𝑓2(𝑥)

𝑎𝛼𝑠3𝛼+2    

Now, the relation lim
𝑠→∞

(𝑠2𝛼+1 ℒ𝑅𝑒𝑠2(𝑥, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 2 , gives us that 

𝑓2(𝑥) −
𝑓1(𝑥)

𝑎𝛼 = 0 𝑖. 𝑒. 𝑓2(𝑥) =
𝑓1(𝑥)

𝑎𝛼  𝑖. 𝑒. 𝑓2(𝑥) =
𝜇

𝑎2𝛼   

Hence power series solution of considered logistic equation in infinite form is, 

𝑈(𝑥, 𝑠) =
𝜇

𝑠
+

𝜇

𝑎𝛼

1

𝑠𝛼+1 +
𝜇

𝑎2𝛼

1

𝑠2𝛼+1 +
𝜇

𝑎3𝛼

1

𝑠3𝛼+1 + ⋯                                                           (3.78)  

At last by taking inverse Laplace transform in (3.78) then the required solution of considered 

equation (3.60) via LRPSM is, 

𝑢(𝑥, 𝑡) = 𝜇 +
𝜇

𝑎𝛼

𝑡𝛼

𝛼!
+

𝜇

𝑎2𝛼

𝑡2𝛼

(2𝛼)!
+

𝜇

𝑎3𝛼

𝑡3𝛼

(3𝛼)!
+ ⋯                                                                  (3.79) 

3.2.5.3 Numerical simulations and graphs 

Graphs of both solutions are compared with values of alpha = 1.0, 0.95, and 0.9, and t = 

0:0.01:0.1, also displayed in Figure 3.11, Figure 3.12, and Figure 3.13 respectively. 
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Figure 3.11 solutions when alpha=1.0. 

 

Figure 3.12 Solutions when alpha=0.97. 

 

 

Figure 3.13 Solutions when alpha=0.95. 
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This Chapter develops a novel and reliable method for solving one-dimensional time-

fractional order logistic, BBMB, Fisher's, and Schrödinger differential equations using 

LRPSM. The advantage of considered technique is to decrease computational effort required 

for finding the solutions in residual power series form after applying Laplace transform. The 

coefficients of power series solution form are determined after applying LRPSM in the above 

successive steps. These differential equations are solved by using the LRPSM which proved 

its ability to work out linear or non-linear FDEs with sufficient accuracy and reliable 

calculation steps. When number of terms increased in numerical solutions then the solution 

becomes closer towards the exact solution of these equations. This demonstrated the 

exactness and consistency of the considered method's solution of one-dimensional FDEs.   

The LRPSM is a practical, reliable and efficient technique for locating analytical 

approximations of one dimensional time-fractional BBMB, Fisher's, Schrödinger, and logistic 

differential equations. 
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Chapter 4 

Solutions of Two-dimensional Fractional Differential 

Equations by Laplace Transform with Residual 

Power Series Method 

The use of LRPSM to solve two-dimensional FDEs, specifically the diffusion and biological 

population equations are explained in this chapter.   Due to their broad implications and 

numerous applications in different types of problems arising in signal processing systems, 

diffusion-reaction processes, electrical network systems, and some other technical issues, 

FDEs have piqued the interest of researchers studying differential calculus [109].  

The extended versions of the classical differential equations are the FDEs [52, 99], which 

have been widely applied in a variety of scientific domains during the past few decades. 

There are various applications in science that describe the importance of the principles of 

fractional calculus. Although there are many available approximate analytical techniques for 

solving FDEs mathematically, researchers are putting their efforts in developing new 

technique that can lead to more accurate solution of the fractional equations.  

There are many trustworthy and effective numerical and analytical procedures that can be 

used to address time-fractional problems with greater accuracy. FDEs have solved with 

variety of methods, including the homotopy analysis method [110], Laplace transform [103], 

Adomian decomposition method [38], variational iteration method [111], promoted residual 

power series method [69], homotopy perturbation method [119], differential transform 

method [112], iterative method [120], and others. Local fractional integral transforms [101] 

are also applied to find the solutions of such equations in numerical forms. Recently, a well-

known relaxation oscillation equation is solved by RPSM [113] and got highly reliable and 

efficient results. 

For the principle of solving systems of ODEs, PDEs & FDEs, the RPSM is a well-liked semi-

analytical method [103]. The method yields a polynomial as the answer, but the analytical 

approximation gives a convergent power series with easily calculable components. There are 

several ways why RPSM is not traditional superior order Taylor chain approach. This 

approach differs from Taylor's series approximation, among other things, in that it is simple 

to hybridise the RPSM with the transform. A Schrödinger equation [105], a relaxation-

oscillation equation [133], a foam drainage model [114], a fractional Boussinesq equation 

[115], coupled physical equations occurring in fluid flow [116], and many more linear and 

nonlinear equations are solved using RPSM.  

Many other well-known equations can also be solved with the help of transform in addition to 

RPSM. For example, the temporal-fractional NWS equation, Burger's equation, Drinfeld-

Sokolov-Wilson system, Riccati differential equation, reaction diffusion Brusselator model, 

and Burger's equation can all be solved using the LRPSM [114-119]. The two-dimensional 
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diffusion and biological population diffusion equations [65, 119] are two examples of FDEs 

that can be successfully solved using the LRPSM in this chapter.  

In the last several decades, numerous fractional generalisations of the diffusion equation have 

been presented and have been the subject of significant discussion in both the academic 

literature and various diffusion model applications [119].  By using the notions of fractional 

calculus, the diffusion equation is a PDE that describes the temporal evolution of a quantity, 

such as heat, mass, or particles. In contrast to the conventional diffusion equation that 

employs integer-order derivatives, the diffusion equation incorporates fractional derivatives 

in the temporal domain. This feature enables the model to effectively capture non-local and 

memory-dependent behaviours in diffusion processes, making it particularly advantageous 

for modelling phenomena characterized by long-range interactions or intricate temporal 

dependencies. Although the fractional diffusion equations has been solved by many 

numerical and analytical approaches. Here an attempt is made to implement the LPRSM to 

solve the equation for various values of the fractional power. 

Another equation which is presented in this work is a biological population equation. The 

biological population equation is a mathematical model that integrates fractional calculus 

concepts to clarify the time dynamics of a biological population [65]. Within the framework 

of a biological population equation, the fractional order is commonly utilized to denote a 

level of memory or a more intricate reliance on previous occurrences compared to 

conventional differential equations with integer orders. The utilization of these equations in 

the field of ecology and population dynamics serves to effectively capture much behaviour, 

including but not limited to population growth, competition, predation, and the influence of 

environmental factors, with enhanced precision.   

Consider the general FDE in two dimensions of the form, 

𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡) + 𝐿[𝑥, 𝑦]𝛹(𝑥, 𝑦, 𝑡) +  𝑁𝐿[𝑥, 𝑦] 𝛹(𝑥, 𝑦, 𝑡) = 𝜑(𝑥, 𝑦, 𝑡)                                  (4.1) 

for   𝑡 >  0, 𝑛 − 1 <  𝑛𝛼 ≤  𝑛  

with initial condition,  𝛹(𝑥, 𝑦, 0) = 𝑓0(𝑥, 𝑦)                                                                              (4.2)  

and 𝑓𝑛−1(𝑥, 𝑦) = 𝐷𝑡
𝛼−1𝛹(𝑥, 𝑦, 0) = 𝜇(𝑥, 𝑦)                                                                              (4.3)  

where 𝐷𝑡
𝑛𝛼 =  

𝜕𝑛𝛼

𝜕𝑡𝑛𝛼 , 𝐿[𝑥, 𝑦] = linear function in 𝑥 and 𝑦, 

 𝑁𝐿[𝑥, 𝑦] = general non-linear function in 𝑥 & 𝑦,  

and   𝜑(𝑥, 𝑦, 𝑡) = continuous function.   

The solutions to equations (4.1) and (4.2) in relation to the primary point 𝑡 = 0 is written in 

power series form by using LRPSM.   
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4.1 Methodology for Implementation  

The steps below outline the methods used to solve two-dimensional FDEs using LRPSM: 

Step 1: Performing Laplace transform in two-dimensional diffusion equation, it takes the 

form,  

ℒ𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡) = ℒ𝛹𝑥𝑥(𝑥, 𝑦, 𝑡) + ℒ𝛹𝑦𝑦(𝑥, 𝑦, 𝑡)                                                                  (4.4) 

By the property of Laplace transform, 

 ℒ[𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡)] = 𝑠𝛼ℒ[𝛹(𝑥, 𝑦, 𝑡)] − 𝑠𝛼−1𝛹(𝑥, 𝑦, 0)                                                       (4.5) 

 Hence equation (4.4) can be written as, 

𝑠𝛼ℒ[𝛹(𝑥, 𝑦, 𝑡)] − 𝑠𝛼−1𝛹(𝑥, 𝑦, 0) = ℒ(𝛹(𝑥, 𝑦, 𝑡))𝑥𝑥 + ℒ(𝛹(𝑥, 𝑦, 𝑡))𝑦𝑦  

𝛹(𝑥, 𝑦, 𝑠) =
𝛹(𝑥,𝑦,0)

𝑠
+

1

𝑠𝛼 𝛹𝑥𝑥(𝑥, 𝑦, 𝑠) +
1

𝑠𝛼 𝛹𝑦𝑦(𝑥, 𝑦, 𝑠)                                                     (4.6) 

Step 2: The solutions in LRPS form can be written as, 

𝛹(𝑥, 𝑦, 𝑠) = ∑
ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0                                                                                                      (4.7) 

𝛹𝑥𝑥(𝑥, 𝑦, 𝑠) = ∑
𝜕𝑥

2ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0                                                                                                (4.8) 

𝛹𝑦𝑦(𝑥, 𝑦, 𝑠) = ∑
𝜕𝑦

2ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0                                                                                               (4.9) 

Again the 𝑘𝑡ℎ −Laplace residual function of (4.6) is, 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑦, 𝑠) = 𝛹𝑘(𝑥, 𝑦, 𝑠) −
1

𝑠
𝛹(𝑥, 𝑦, 0) −

1

𝑠𝛼 (𝛹𝑘(𝑥, 𝑦, 𝑠))𝑥𝑥 −
1

𝑠𝛼 (𝛹𝑘(𝑥, 𝑦, 𝑠))𝑦𝑦    (4.10) 

= ∑
ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0 −

1

𝑠
𝛹(𝑥, 𝑦, 0) − ∑

∇2ℎ𝑘−1(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=1   

=
ℎ0−𝛹(𝑥,𝑦,0)

𝑠
+ ∑

ℎ𝑘−∇2ℎ𝑘−1

𝑠𝛼𝑘+1
∞
𝑘=1   

Step 3: Using adopting properties of LRPS,  

ℎ0 = 𝛹(𝑥, 𝑦, 0) and ℎ𝑘 − ∇2ℎ𝑘−1 = 0 or ℎ𝑘 = ∇2ℎ𝑘−1 

Following are some useful relations which are used in standard RPSM: 

𝑖) ℒ𝑅𝑒𝑠(𝑥, 𝑦, 𝑠) = 0 𝑎𝑛𝑑 lim
𝑘→∞

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑦, 𝑠) = ℒ𝑅𝑒𝑠(𝑥, 𝑦, 𝑠), for 𝑠 > 0. 

𝑖𝑖)  lim
𝑠→∞

𝑠ℒ𝑅𝑒𝑠(𝑥, 𝑦, 𝑠) = 0 𝑔𝑖𝑣𝑒𝑠 lim
𝑠→∞

𝑠ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑦, 𝑠) = 0. 

𝑖𝑖𝑖)  lim
𝑠→∞

𝑠𝑘𝛼+1 ℒ𝑅𝑒𝑠(𝑥, 𝑦, 𝑠) = lim
𝑠→∞

𝑠𝑘𝛼+1ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑦, 𝑠) = 0 𝑓𝑜𝑟 0 < 𝛼 ≤ 1.  

Step 4: At last performing inverse Laplace transform to 𝛹′(𝑥, 𝑦, 𝑠) then the 𝑘𝑡ℎ − 

approximate solution 𝛹(𝑥, 𝑦, 𝑡) can be obtained.   
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4.2 Numerical Experiments   

This section computes numerical solution of FDEs in two dimensions using LRPSM. Two 

well-known equations are taken as numerical solution in order to demonstrate the 

effectiveness of the method. A diffusion equation is the first equation under consideration, 

and a biological population equation is the second.  

Example 4.2.1 The diffusion equation is given by, 

𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡) = 𝛹𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝛹𝑦𝑦(𝑥, 𝑦, 𝑡) with 0 < 𝛼 ≤ 1                                             (4.11) 

with primary condition,  𝛹(𝑥, 𝑦, 0) = 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦                                                            (4.12) 

and exact solution is, 𝛹(𝑥, 𝑦, 𝑡) = 𝑒−2𝑡𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦𝑓𝑜𝑟 𝛼 = 1                                         (4.13) 

& for  0 < 𝛼 < 1, is  𝛹(𝑥, 𝑦, 𝑡) = 𝐸𝛼(𝑧) 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

where 𝐸𝛼(𝑧) = ∑
𝑧𝑘

ᴦ(1+𝑘𝛼)

∞
𝑘=0 , 𝑧 = −4𝑖tα. 

To obtain the solution, applying Laplace transform on equation (4.1), 

ℒ𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡) = ℒ𝛹𝑥𝑥(𝑥, 𝑦, 𝑡) + ℒ𝛹𝑦𝑦(𝑥, 𝑦, 𝑡)                                                                (4.14) 

By property of Laplace transform,  ℒ[𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡)] = 𝑠𝛼ℒ[𝛹(𝑥, 𝑦, 𝑡)] − 𝑠𝛼−1𝛹(𝑥, 𝑦, 0), 

then equation (4.14) can be written as,  

𝑠𝛼ℒ[𝛹(𝑥, 𝑦, 𝑡)] − 𝑠𝛼−1𝛹(𝑥, 𝑦, 0) = ℒ(𝛹(𝑥, 𝑦, 𝑡))𝑥𝑥 + ℒ(𝛹(𝑥, 𝑦, 𝑡))𝑦𝑦   

𝛹(𝑥, 𝑦, 𝑠) =
𝛹(𝑥,𝑦,0)

𝑠
+

1

𝑠𝛼 𝛹𝑥𝑥(𝑥, 𝑦, 𝑠) +
1

𝑠𝛼 𝛹𝑦𝑦(𝑥, 𝑦, 𝑠)                                                    (4.15) 

The solutions in LRPS form is written as, 

𝛹(𝑥, 𝑦, 𝑠) = ∑
ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0                                                                                                    (4.16) 

𝛹𝑥𝑥(𝑥, 𝑦, 𝑠) = ∑
𝜕𝑥

2ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0   

𝛹𝑦𝑦(𝑥, 𝑦, 𝑠) = ∑
𝜕𝑦

2ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0   

Then we get,  

∑
ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0 =

1

𝑠𝛼
∑

𝜕𝑥
2ℎ𝑘(𝑥,𝑦)+𝜕𝑦

2ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0   

                    = ∑
∇2ℎ𝑘(𝑥,𝑦)

𝑠(𝑘+1)𝛼+1
∞
𝑘=0         

                    =∑
∇2ℎ𝑘−1(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=1   

Therefore, ℎ0 = 𝛹(𝑥, 𝑦, 0), ℎ1 = ∇2ℎ0 and ℎ2 = ∇2ℎ1  



70 
 

Again the 𝑘𝑡ℎ −Laplace residual function of (4.15) is, 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑦, 𝑠) = 𝛹𝑘(𝑥, 𝑦, 𝑠) −
1

𝑠
𝛹(𝑥, 𝑦, 0) −

1

𝑠𝛼 (𝛹𝑘(𝑥, 𝑦, 𝑠))𝑥𝑥 −
1

𝑠𝛼 (𝛹𝑘(𝑥, 𝑦, 𝑠))𝑦𝑦   (4.17) 

= ∑
ℎ𝑘(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=0 −

1

𝑠
𝛹(𝑥, 𝑦, 0) − ∑

∇2ℎ𝑘−1(𝑥,𝑦)

𝑠𝛼𝑘+1
∞
𝑘=1   

=
ℎ0−𝛹(𝑥,𝑦,0)

𝑠
+ ∑

ℎ𝑘−∇2ℎ𝑘−1

𝑠𝛼𝑘+1
∞
𝑘=1   

By adopting properties of LRPS, 

ℎ0 = 𝛹(𝑥, 𝑦, 0) and ℎ𝑘 − ∇2ℎ𝑘−1 = 0 or ℎ𝑘 = ∇2ℎ𝑘−1 

Hence, 

 ℎ0 = 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

ℎ1 = ∇2(𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦) = −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  

ℎ2 = ∇2ℎ1 = ∇2(−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦) = 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  

… … … 

ℎ𝑘 = ∇𝑘(−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦) = (−2)𝑘𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  

Therefore by LRPSM solution of given equation in infinite form is, 

𝛹′(𝑥, 𝑦, 𝑠) = 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
1

𝑠
− 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

1

𝑠𝛼+1 + 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
1

𝑠2𝛼+1 − 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
1

𝑠3𝛼+1 + ⋯ 

(4.18) 

Finally, by taking inverse Laplace in (4.18), to obtain required solution of considered 

equation via LRPSM as, 

𝛹(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 − 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡2𝛼

(2𝛼)!
− 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡3𝛼

(3𝛼)!
+ ⋯         

(4.19) 

Example 4.2.2 The biological population equation is given by, 

  𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡) = (𝛹2(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝛹2(𝑥, 𝑦, 𝑡))𝑦𝑦 + ℎ𝛹(𝑥, 𝑦, 𝑡), where ℎ is constant,(4.20) 

with primary condition 𝛹(𝑥, 𝑦, 0) = √𝑥𝑦                                                                        (4.21) 

and exact solution for 𝛼 = 1 is 𝛹(𝑥, 𝑦, 𝑡) = √𝑥𝑦𝑒ℎ𝑡                                                      (4.22) 

To obtain the solution, performing Laplace transform on equation (4.20) results in 

ℒ(𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡)) = ℒ((𝛹2(𝑥, 𝑦, 𝑡))𝑥𝑥) + ℒ((𝛹2(𝑥, 𝑦, 𝑡))𝑦𝑦) + ℎℒ(𝛹(𝑥, 𝑦, 𝑡))              (4.23) 

But it is clear that, ℒ[𝐷𝑡
𝛼𝛹(𝑥, 𝑦, 𝑡)] = 𝑠𝛼ℒ[𝛹(𝑥, 𝑦, 𝑡)] − 𝑠𝛼−1𝛹(𝑥, 𝑦, 0) , so we may write, 
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𝑠𝛼ℒ[𝛹(𝑥, 𝑦, 𝑡)] − 𝑠𝛼−1𝛹(𝑥, 𝑦, 0) = ℒ((𝛹2(𝑥, 𝑦, 𝑡))𝑥𝑥) + ℒ((𝛹2(𝑥, 𝑦, 𝑡))𝑦𝑦) +

ℎℒ(𝛹(𝑥, 𝑦, 𝑡))  

or,𝑠𝛼𝛹′(𝑥, 𝑦, 𝑠) − 𝑠𝛼−1√𝑥𝑦 = ℒ[{ℒ−1(𝛹′(𝑥, 𝑦, 𝑠)𝑥𝑥)}2] + ℒ[{ℒ−1(𝛹′(𝑥, 𝑦, 𝑠)𝑦𝑦)}2] +

ℎ𝛹′(𝑥, 𝑦, 𝑠) 

where 𝛹(𝑥, 𝑦, 0) = √𝑥𝑦 

or,𝛹′(𝑥, 𝑦, 𝑠) =
1

𝑠
√𝑥𝑦 +

1

𝑠𝛼 ℒ[{ℒ−1(𝛹′(𝑥, 𝑦, 𝑠)𝑥𝑥)}2] +
1

𝑠𝛼 ℒ[{ℒ−1(𝛹′(𝑥, 𝑦, 𝑠)𝑦𝑦)}2] +

ℎ 
1

𝑠𝛼 𝛹′(𝑥, 𝑦, 𝑠)                                                                                                                    (4.24) 

where 𝛹′(𝑥, 𝑦, 𝑠) = ℒ[𝛹(𝑥, 𝑦, 𝑡)]       

Now, the transformed function 𝛹′(𝑥, 𝑦, 𝑠) in expansion is, 

𝛹′(𝑥, 𝑦, 𝑠) = ∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
∞
𝑛=0                                                                                                    (4.25) 

The 𝑘𝑡ℎ −truncated series of (4.25) is, 

𝛹′𝑘(𝑥, 𝑦, 𝑠) = ∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=0                                                                                                  (4.26) 

Then by the Laplace residual function of (4.24) is, 

ℒ𝑅𝑒𝑠(𝑥, 𝑠) = 𝛹′(𝑥, 𝑦, 𝑠) −
1

𝑠
√𝑥𝑦 −

1

𝑠𝛼 ℒ[{ℒ−1(𝛹′(𝑥, 𝑦, 𝑠)𝑥𝑥)}2] −

1

𝑠𝛼 ℒ[{ℒ−1(𝛹′(𝑥, 𝑦, 𝑠)𝑦𝑦)}2] − ℎ 
1

𝑠𝛼 𝛹′(𝑥, 𝑦, 𝑠)                                                                                                                    

(4.27) 

Again the 𝑘𝑡ℎ −Laplace residual function of (4.27) is 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑠) = 𝛹′𝑘(𝑥, 𝑦, 𝑠) −
1

𝑠
√𝑥𝑦 −

1

𝑠𝛼 ℒ[{ℒ−1(𝛹′𝑘(𝑥, 𝑦, 𝑠)𝑥𝑥)}2] −

1

𝑠𝛼 ℒ[{ℒ−1(𝛹′𝑘(𝑥, 𝑦, 𝑠)𝑦𝑦)}2] − ℎ 
1

𝑠𝛼 𝛹′𝑘(𝑥, 𝑦, 𝑠)                                                                                                                   

(4.28) 

  To find the values of 𝑓𝑘(𝑥, 𝑦), 𝑘 = 1,2,3, … … putting 𝑘𝑡ℎ − truncated series (4.26) in 

𝑘𝑡ℎ −Laplace residual function (4.28) we get, 

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑦, 𝑠) = ∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=0 −

1

𝑠
√𝑥𝑦 −

1

𝑠𝛼 ℒ [{ℒ−1((∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=0 )𝑥𝑥)}2] −

1

𝑠𝛼 ℒ [{ℒ−1(∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=0 )𝑦𝑦)}2] − ℎ 

1

𝑠𝛼
∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=0       

=
  𝑓0(𝑥,𝑦)

𝑠
+ ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠
√𝑥𝑦 −

1

𝑠𝛼 ℒ [{ℒ−1((
𝑓0(𝑥,𝑦)

𝑠
+ ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )𝑥𝑥)}2] −

1

𝑠𝛼 ℒ [{ℒ−1((
𝑓0(𝑥,𝑦)

𝑠
+ ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )𝑦𝑦)}2] −

ℎ

𝑠𝛼 (
𝑓0(𝑥,𝑦)

𝑠
+ ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )                                                                                                     
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                                                                =
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠
√𝑥𝑦 −

1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )𝑥𝑥)}2] −

1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )𝑦𝑦)}2] −

ℎ

𝑠𝛼 (
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )     

= ∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )𝑥𝑥)}2] −

1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 +

∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )𝑦𝑦)}2] −

ℎ

𝑠𝛼 (
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )  

ℒ𝑅𝑒𝑠𝑘(𝑥, 𝑦, 𝑠) = ∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 −

1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )𝑥𝑥)}2] −

1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )𝑦𝑦)}2] −

ℎ

𝑠𝛼 (
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
𝑘
𝑛=1 )                          (4.29) 

For 𝑘 = 1 from (4.29), the first Laplace residual function is, 

ℒ𝑅𝑒𝑠1(𝑥, 𝑦, 𝑠) =
𝑓1(𝑥,𝑦)

𝑠𝛼+1 −
1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 +

𝑓1(𝑥,𝑦)

𝑠𝛼+1 )𝑥𝑥)}2] −
1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 +

𝑓1(𝑥,𝑦)

𝑠𝛼+1 )𝑦𝑦)}2] −
ℎ

𝑠𝛼 (
1

𝑠
√𝑥𝑦 +

𝑓1(𝑥,𝑦)

𝑠𝛼+1 )                                                                                 (4.30) 

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 −
1

𝑠𝛼 ℒ [{(1 ∗ √𝑥𝑦 +
𝑓1(𝑥,𝑦)𝑡𝛼

𝛼!
)𝑥𝑥)}2] −

1

𝑠𝛼 ℒ [{(1 ∗ √𝑥𝑦 +
𝑓1(𝑥,𝑦)𝑡𝛼

𝛼!
)𝑦𝑦)}2] −

ℎ

𝑠𝛼+1 √𝑥𝑦 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1   

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 −
1

𝑠𝛼 ℒ[{−
1

4
𝑥−

3

2𝑦
1

2 + {𝑓1(𝑥, 𝑦)}𝑥𝑥
𝑡𝛼

𝛼!
}

2

] −
1

𝑠𝛼 ℒ[{−
1

4
𝑥

1

2𝑦
−3

2 + {𝑓1(𝑥, 𝑦)}𝑦𝑦
𝑡𝛼

𝛼!
}

2

] −

ℎ

𝑠𝛼+1 √𝑥𝑦 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1   

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 −
1

𝑠𝛼  ℒ [
1

16
𝑥−3𝑦 −

1

2
𝑥−

3

2𝑦
1

2{𝑓1(𝑥, 𝑦)}𝑥𝑥
𝑡𝛼

𝛼!
+ [{𝑓1(𝑥, 𝑦)}𝑥𝑥]2 𝑡2𝛼

(𝛼!)2
] −

1

𝑠𝛼 ℒ [
1

16
𝑥𝑦−3 −

1

2
𝑥

1

2𝑦
−3

2 {𝑓1(𝑥, 𝑦)}𝑦𝑦
𝑡𝛼

𝛼!
+ [{𝑓1(𝑥, 𝑦)}𝑦𝑦]2 𝑡2𝛼

(𝛼!)2
] −

ℎ

𝑠𝛼+1 √𝑥𝑦 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1   

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 −
1

𝑠𝛼  [
1

16
𝑥−3𝑦

1

𝑠
−

1

2
𝑥−

3

2𝑦
1

2{𝑓1(𝑥, 𝑦)}𝑥𝑥
1

𝛼!

𝛼!

𝑠𝛼+1 + [{𝑓1(𝑥, 𝑦)}𝑥𝑥]2 1

(𝛼!)2

(2𝛼)!

𝑠2𝛼+1
] −

1

𝑠𝛼
[

1

16
𝑥𝑦−3 1

𝑠
−

1

2
𝑥

1

2𝑦
−3

2 {𝑓1(𝑥, 𝑦)}𝑦𝑦
1

𝛼!

𝛼!

𝑠𝛼+1 + [{𝑓1(𝑥, 𝑦)}𝑦𝑦]2 1

(𝛼!)2

(2𝛼)!

𝑠2𝛼+1
] −

ℎ

𝑠𝛼+1 √𝑥𝑦 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1   

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 −  
1

16
𝑥−3𝑦

1

𝑠𝛼+1 +
1

2
𝑥−

3

2𝑦
1

2{𝑓1(𝑥, 𝑦)}𝑥𝑥
1

𝑠2𝛼+1 − [{𝑓1(𝑥, 𝑦)}𝑥𝑥]2 1

(𝛼!)2

(2𝛼)!

𝑠3𝛼+1 −

1

16
𝑥𝑦−3 1

𝑠𝛼+1 +
1

2
𝑥

1

2𝑦
−3

2 {𝑓1(𝑥, 𝑦)}𝑦𝑦
1

𝛼!

𝛼!

𝑠2𝛼+1 − [{𝑓1(𝑥, 𝑦)}𝑦𝑦]2 1

(𝛼!)2

(2𝛼)!

𝑠3𝛼+1 −
ℎ

𝑠𝛼+1 √𝑥𝑦 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1   

Now, the relation  lim
𝑠→∞

(𝑠𝛼+1 ℒ𝑅𝑒𝑠1(𝑥, 𝑦, 𝑠)) = 0 𝑓𝑜𝑟 𝑘 = 1 , gives that 

𝑓1(𝑥, 𝑦) −  
1

16
𝑥−3𝑦 −

1

16
𝑥𝑦−3 − ℎ√𝑥𝑦 = 0  

∴ 𝑓1(𝑥, 𝑦) =
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 + ℎ√𝑥𝑦   

For  𝑘 = 2, from (4.29) the second Laplace residual function is, 
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ℒ𝑅𝑒𝑠2(𝑥, 𝑦, 𝑠) = ∑
𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
2
𝑛=1 −

1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
2
𝑛=1 )𝑥𝑥)}2] −

1

𝑠𝛼 ℒ [{ℒ−1((
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
2
𝑛=1 )𝑦𝑦)}2] −

ℎ

𝑠𝛼 (
1

𝑠
√𝑥𝑦 + ∑

𝑓𝑛(𝑥,𝑦)

𝑠𝑛𝛼+1
2
𝑛=1 )                      (4.31) 

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 −
1

𝑠𝛼 ℒ [{ℒ−1 ((
1

𝑠
√𝑥𝑦 +

𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 )
𝑥𝑥

)}
2

] −
1

𝑠𝛼 ℒ [{ℒ−1 ((
1

𝑠
√𝑥𝑦 +

𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 )
𝑦𝑦

)}
2

] −
ℎ

𝑠𝛼 (
1

𝑠
√𝑥𝑦 +

𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 )  

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 −
1

𝑠𝛼 ℒ[{ℒ−1 (−
1

4
𝑥−

3

2𝑦
1

2
1

𝑠
+ (𝑓1(𝑥, 𝑦))𝑥𝑥

1

𝑠𝛼+1 + (𝑓2(𝑥, 𝑦))𝑥𝑥
1

𝑠2𝛼+1)}2] −

1

𝑠𝛼 ℒ[{ℒ−1 (−
1

4
𝑥

1

2𝑦
−3

2
1

𝑠
+ (𝑓1(𝑥, 𝑦))𝑦𝑦

1

𝑠𝛼+1 + (𝑓2(𝑥, 𝑦))𝑦𝑦
1

𝑠2𝛼+1)}2] −
ℎ

𝑠𝛼 (
1

𝑠
√𝑥𝑦 +

𝑓1(𝑥,𝑦)

𝑠𝛼+1 +

𝑓2(𝑥,𝑦)

𝑠2𝛼+1 )  

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 −
1

𝑠𝛼 ℒ[{−
1

4
𝑥−

3

2𝑦
1

2 ∗ 1 + (𝑓1(𝑥, 𝑦))𝑥𝑥
𝑡𝛼

𝛼!
+ (𝑓2(𝑥, 𝑦))𝑥𝑥

𝑡2𝛼

(2𝛼)!
}2] −

1

𝑠𝛼 ℒ[{−
1

4
𝑥

1

2𝑦
−3

2 ∗ 1 + (𝑓1(𝑥, 𝑦))𝑦𝑦
𝑡𝛼

𝛼!
+ (𝑓2(𝑥, 𝑦))𝑦𝑦

𝑡2𝛼

(2𝛼)!
}2] −

ℎ

𝑠𝛼 (
1

𝑠
√𝑥𝑦 +

𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 )  

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 −
1

𝑠𝛼 ℒ [
1

16
𝑥−3𝑦 + {(𝑓1(𝑥, 𝑦))𝑥𝑥}2 𝑡2𝛼

(𝛼!)2 + {(𝑓2(𝑥, 𝑦))𝑥𝑥}2 𝑡4𝛼

((2𝛼)!)
2 −

1

2
𝑥−

3

2𝑦
1

2(𝑓1(𝑥, 𝑦))𝑥𝑥
𝑡𝛼

𝛼!
−

1

2
𝑥−

3

2𝑦
1

2(𝑓2(𝑥, 𝑦))𝑥𝑥
𝑡2𝛼

(2𝛼)!
+ 2(𝑓1(𝑥, 𝑦))𝑥𝑥(𝑓2(𝑥, 𝑦))𝑥𝑥

𝑡3𝛼

𝛼!(2𝛼)!
] −

1

𝑠𝛼 ℒ [
1

16
𝑥𝑦−3 + {(𝑓1(𝑥, 𝑦))𝑦𝑦}2 𝑡2𝛼

(𝛼!)2 + {(𝑓2(𝑥, 𝑦))𝑦𝑦}2 𝑡4𝛼

((2𝛼)!)
2 −

1

2
𝑥

1

2𝑦
−3

2 (𝑓1(𝑥, 𝑦))𝑦𝑦
𝑡𝛼

𝛼!
−

1

2
𝑥

1

2𝑦
−3

2 (𝑓2(𝑥, 𝑦))𝑦𝑦
𝑡2𝛼

(2𝛼)!
+ 2(𝑓1(𝑥, 𝑦))𝑦𝑦(𝑓2(𝑥, 𝑦))𝑦𝑦

𝑡3𝛼

𝛼!(2𝛼)!
]] −

ℎ

𝑠𝛼+1 √𝑥𝑦 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1 −
ℎ𝑓2(𝑥,𝑦)

𝑠3𝛼+1   

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 −
1

𝑠𝛼 [
1

16
𝑥−3𝑦

1

𝑠
+ {(𝑓1(𝑥, 𝑦))𝑥𝑥}2 1

(𝛼!)2

(2𝛼)!

𝑠2𝛼+1 + {(𝑓2(𝑥, 𝑦))𝑥𝑥}2 1

((2𝛼)!)
2

(4𝛼)!

𝑠4𝛼+1 −

1

2
𝑥−

3

2𝑦
1

2(𝑓1(𝑥, 𝑦))𝑥𝑥
1

𝛼!

𝛼!

𝑠𝛼+1 −
1

2
𝑥−

3

2𝑦
1

2(𝑓2(𝑥, 𝑦))𝑥𝑥
1

(2𝛼)!

(2𝛼)!

𝑠2𝛼+1 +

2(𝑓1(𝑥, 𝑦))𝑥𝑥(𝑓2(𝑥, 𝑦))𝑥𝑥
1

𝛼!(2𝛼)!

(3𝛼)!

𝑠3𝛼+1] −
1

𝑠𝛼 [
1

16
𝑥𝑦−3 1

𝑠
+ {(𝑓1(𝑥, 𝑦))𝑦𝑦}2 1

(𝛼!)2

(2𝛼)!

𝑠2𝛼+1 +

{(𝑓2(𝑥, 𝑦))𝑦𝑦}2 1

((2𝛼)!)
2

(4𝛼)!

𝑠4𝛼+1 −
1

2
𝑥

1

2𝑦
−3

2 (𝑓1(𝑥, 𝑦))𝑦𝑦
1

𝛼!

𝛼!

𝑠𝛼+1 −
1

2
𝑥

1

2𝑦
−3

2 (𝑓2(𝑥, 𝑦))𝑦𝑦
1

(2𝛼)!

(2𝛼)!

𝑠2𝛼+1 +

2(𝑓1(𝑥, 𝑦))𝑦𝑦(𝑓2(𝑥, 𝑦))𝑦𝑦
1

𝛼!(2𝛼)!

(3𝛼)!

𝑠3𝛼+1]] −
ℎ

𝑠𝛼+1 √𝑥𝑦 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1 −
ℎ𝑓2(𝑥,𝑦)

𝑠3𝛼+1   

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 −
1

16
𝑥−3𝑦

1

𝑠𝛼+1 − {(𝑓1(𝑥, 𝑦))𝑥𝑥}2 1

(𝛼!)2

(2𝛼)!

𝑠3𝛼+1 − {(𝑓2(𝑥, 𝑦))𝑥𝑥}2 1

((2𝛼)!)
2

(4𝛼)!

𝑠5𝛼+1 +

1

2
𝑥−

3

2𝑦
1

2(𝑓1(𝑥, 𝑦))𝑥𝑥
1

𝑠2𝛼+1 +
1

2
𝑥−

3

2𝑦
1

2(𝑓2(𝑥, 𝑦))𝑥𝑥
1

𝑠3𝛼+1 −

2(𝑓1(𝑥, 𝑦))𝑥𝑥(𝑓2(𝑥, 𝑦))𝑥𝑥
1

𝛼!(2𝛼)!

(3𝛼)!

𝑠4𝛼+1 −
1

16
𝑥𝑦−3 1

𝑠𝛼+1 − {(𝑓1(𝑥, 𝑦))𝑦𝑦}2 1

(𝛼!)2

(2𝛼)!

𝑠3𝛼+1 −

{(𝑓2(𝑥, 𝑦))𝑦𝑦}2 1

((2𝛼)!)
2

(4𝛼)!

𝑠5𝛼+1 +
1

2
𝑥

1

2𝑦
−3

2 (𝑓1(𝑥, 𝑦))𝑦𝑦
1

𝑠2𝛼+1 +
1

2
𝑥

1

2𝑦
−3

2 (𝑓2(𝑥, 𝑦))𝑦𝑦
1

𝑠3𝛼+1 −

2(𝑓1(𝑥, 𝑦))𝑦𝑦(𝑓2(𝑥, 𝑦))𝑦𝑦
1

𝛼!(2𝛼)!

(3𝛼)!

𝑠4𝛼+1 −
ℎ

𝑠𝛼+1 √𝑥𝑦 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1 −
ℎ𝑓2(𝑥,𝑦)

𝑠3𝛼+1   
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=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 − {
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 + ℎ√𝑥𝑦}

1

𝑠𝛼+1 − {(𝑓1(𝑥, 𝑦))𝑥𝑥}2 1

(𝛼!)2

(2𝛼)!

𝑠3𝛼+1 −

{(𝑓2(𝑥, 𝑦))𝑥𝑥}2 1

((2𝛼)!)
2

(4𝛼)!

𝑠5𝛼+1 +
1

2
𝑥−

3

2𝑦
1

2(𝑓1(𝑥, 𝑦))𝑥𝑥
1

𝑠2𝛼+1 +
1

2
𝑥−

3

2𝑦
1

2(𝑓2(𝑥, 𝑦))𝑥𝑥
1

𝑠3𝛼+1 −

2(𝑓1(𝑥, 𝑦))𝑥𝑥(𝑓2(𝑥, 𝑦))𝑥𝑥
1

𝛼!(2𝛼)!

(3𝛼)!

𝑠4𝛼+1 − {(𝑓1(𝑥, 𝑦))𝑦𝑦}2 1

(𝛼!)2

(2𝛼)!

𝑠3𝛼+1 −

{(𝑓2(𝑥, 𝑦))𝑦𝑦}2 1

((2𝛼)!)
2

(4𝛼)!

𝑠5𝛼+1 +
1

2
𝑥

1

2𝑦
−3

2 (𝑓1(𝑥, 𝑦))𝑦𝑦
1

𝑠2𝛼+1 +
1

2
𝑥

1

2𝑦
−3

2 (𝑓2(𝑥, 𝑦))𝑦𝑦
1

𝑠3𝛼+1 −

2(𝑓1(𝑥, 𝑦))𝑦𝑦(𝑓2(𝑥, 𝑦))𝑦𝑦
1

𝛼!(2𝛼)!

(3𝛼)!

𝑠4𝛼+1 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1 −
ℎ𝑓2(𝑥,𝑦)

𝑠3𝛼+1   

=
𝑓1(𝑥,𝑦)

𝑠𝛼+1 +
𝑓2(𝑥,𝑦)

𝑠2𝛼+1 − 𝑓1(𝑥, 𝑦)
1

𝑠𝛼+1 − {(𝑓1(𝑥, 𝑦))𝑥𝑥}2 1

(𝛼!)2

(2𝛼)!

𝑠3𝛼+1 − {(𝑓2(𝑥, 𝑦))𝑥𝑥}2 1

((2𝛼)!)
2

(4𝛼)!

𝑠5𝛼+1 +

1

2
𝑥−

3

2𝑦
1

2(𝑓1(𝑥, 𝑦))𝑥𝑥
1

𝑠2𝛼+1 +
1

2
𝑥−

3

2𝑦
1

2(𝑓2(𝑥, 𝑦))𝑥𝑥
1

𝑠3𝛼+1 −

2(𝑓1(𝑥, 𝑦))𝑥𝑥(𝑓2(𝑥, 𝑦))𝑥𝑥
1

𝛼!(2𝛼)!

(3𝛼)!

𝑠4𝛼+1 − {(𝑓1(𝑥, 𝑦))𝑦𝑦}2 1

(𝛼!)2

(2𝛼)!

𝑠3𝛼+1 −

{(𝑓2(𝑥, 𝑦))𝑦𝑦}2 1

((2𝛼)!)
2

(4𝛼)!

𝑠5𝛼+1 +
1

2
𝑥

1

2𝑦
−3

2 (𝑓1(𝑥, 𝑦))𝑦𝑦
1

𝑠2𝛼+1 +
1

2
𝑥

1

2𝑦
−3

2 (𝑓2(𝑥, 𝑦))𝑦𝑦
1

𝑠3𝛼+1 −

2(𝑓1(𝑥, 𝑦))𝑦𝑦(𝑓2(𝑥, 𝑦))𝑦𝑦
1

𝛼!(2𝛼)!

(3𝛼)!

𝑠4𝛼+1 −
ℎ𝑓1(𝑥,𝑦)

𝑠2𝛼+1 −
ℎ𝑓2(𝑥,𝑦)

𝑠3𝛼+1    

Now, the relation  lim
𝑠→∞

(𝑠2𝛼+1 ℒ𝑅𝑒𝑠2(𝑥, 𝑦, 𝑠)) = 0 for 𝑘 = 2 , gives us that, 

𝑓2(𝑥, 𝑦) +
1

2
𝑥−

3

2𝑦
1

2(𝑓1(𝑥, 𝑦))𝑥𝑥 +
1

2
𝑥

1

2𝑦
−3

2 (𝑓1(𝑥, 𝑦))𝑦𝑦 − ℎ𝑓1(𝑥, 𝑦) = 0  

𝑜𝑟, 𝑓2(𝑥, 𝑦) +
1

2
𝑥−

3

2𝑦
1

2(
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 + ℎ√𝑥𝑦)𝑥𝑥 +

1

2
𝑥

1

2𝑦
−3

2 (
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 +

ℎ√𝑥𝑦)𝑦𝑦 − ℎ(
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 + ℎ√𝑥𝑦) = 0  

𝑜𝑟, 𝑓2(𝑥, 𝑦) +
1

2
𝑥−

3

2𝑦
1

2(
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 + ℎ𝑥

1

2𝑦
1

2)𝑥𝑥 +
1

2
𝑥

1

2𝑦
−3

2 (
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 +

ℎ𝑥
1

2𝑦
1

2)𝑦𝑦 − ℎ(
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 + ℎ𝑥

1

2𝑦
1

2) = 0  

𝑜𝑟, 𝑓2(𝑥, 𝑦) +
1

2
𝑥−

3

2𝑦
1

2(−3
1

16
𝑥−4𝑦 +

1

16
𝑦−3 +

1

2
ℎ𝑥−

1

2𝑦
1

2)𝑥 +
1

2
𝑥

1

2𝑦
−3

2 (
1

16
𝑥−3 − 3

1

16
𝑥𝑦−4 +

ℎ𝑥
1

2𝑦
−1

2 )𝑦 − ℎ
1

16
𝑥−3𝑦 − ℎ

1

16
𝑥𝑦−3 − ℎ2𝑥

1

2𝑦
1

2 = 0  

𝑜𝑟, 𝑓2(𝑥, 𝑦) +
1

2
𝑥−

3

2𝑦
1

2{−3(−4)
1

16
𝑥−5𝑦 + 0 +

1

2
(−

1

2
) ℎ𝑥−

3

2𝑦
1

2} +
1

2
𝑥

1

2𝑦
−3

2 {0 −

3(−4)
1

16
𝑥𝑦−5 +

1

2
(−

1

2
) ℎ𝑥

1

2𝑦
−3

2 } −
1

16
ℎ𝑥−3𝑦 −

1

16
ℎ𝑥𝑦−3 − ℎ2𝑥

1

2𝑦
1

2 = 0  

𝑜𝑟, 𝑓2(𝑥, 𝑦) +
3

8
𝑥−

13

2 𝑦
3

2 −
1

8
ℎ𝑥−3𝑦 +

3

8
𝑥

3

2𝑦
−13

2 −
1

8
ℎ𝑥𝑦−3 −

1

16
ℎ𝑥−3𝑦 −

1

16
ℎ𝑥𝑦−3 −

ℎ2𝑥
1

2𝑦
1

2 =0  

𝑜𝑟, 𝑓2(𝑥, 𝑦) +
3

8
𝑥−

13

2 𝑦
3

2 +
3

8
𝑥

3

2𝑦
−13

2 −
3

16
ℎ𝑥−3𝑦 −

3

16
ℎ𝑥𝑦−3 − ℎ2𝑥

1

2𝑦
1

2 =0  
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𝑜𝑟, 𝑓2(𝑥, 𝑦) = −
3

8
𝑥−

13

2 𝑦
3

2 −
3

8
𝑥

3

2𝑦
−13

2 +
3

16
ℎ𝑥−3𝑦 +

3

16
ℎ𝑥𝑦−3 + ℎ2𝑥

1

2𝑦
1

2  

Hence by LRPSM the solution of given equation in infinite form is, 

𝛹′(𝑥, 𝑦, 𝑠) = √𝑥𝑦
1

𝑠
+  {

1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 + ℎ√𝑥𝑦}

1

𝑠𝛼+1 + {−
3

8
𝑥−

13

2 𝑦
3

2 −
3

8
𝑥

3

2𝑦
−13

2 +

3

16
ℎ𝑥−3𝑦 +

3

16
ℎ𝑥𝑦−3 + ℎ2𝑥

1

2𝑦
1

2}
1

𝑠2𝛼+1 + ⋯                                                                     (4.32) 

Finally, by performing an inverse Laplace transform in (4.32), the required solution by 

utilising LRPSM is, 

𝛹(𝑥, 𝑦, 𝑡) = √𝑥𝑦 +  {
1

16
𝑥−3𝑦 +

1

16
𝑥𝑦−3 + ℎ√𝑥𝑦}

𝑡𝛼

𝛼!
+ {−

3

8
𝑥−

13

2 𝑦
3

2 −
3

8
𝑥

3

2𝑦
−13

2 +
3

16
ℎ𝑥−3𝑦 +

3

16
ℎ𝑥𝑦−3 + ℎ2𝑥

1

2𝑦
1

2}
𝑡2𝛼

(2𝛼)!
+ ⋯                                                                                           (4.33) 

4.3 Explanation and Results  

In this part, the obtained findings for diffusion and biological population equations are used 

to discuss the trustworthiness and effectiveness of the LRPSM.   

Figure 4.1 compares the behaviour of the solutions of diffusion equation at different values 

of t when 𝛼 = 0.5, 0.7, 1.0, with exact solution. This shows that solutions are reliable for 

alpha less than equal to one. 

The absolute errors of number of terms 6, 8, 10, and 12 of solutions of diffusion equation at 

values of t = 0.2, 0.4, 0.6, 0.8, 1.0 and alpha equal to 0.7 with exact solution are presented in 

Figure 4.2. This shows that when number of terms are increased then the approximate 

solution approaches the numerical solution and hence errors s reduced.  

The absolute errors of number of terms 6, 8, 10, and 12 of solutions of diffusion equation at 

values of t = 0.2, 0.4, 0.6, 0.8, 1.0 and alpha = 0.9 with exact solution are presented in Figure 

4.3. This shows that when numbers of terms are increased then errors are decreased.  

In Figure 4.4 the absolute errors of number of terms 6, 8, 10, and 12 of solutions of diffusion 

equation at values of t = 0.2, 0.4, 0.6, 0.8, 1.0 and alpha = 1.0 with exact solution are 

presented. It is evident from the results that the errors are reducing with the addition of more 

terms in the solution.  

Figures 4.5(a) & 4.5(b) show the errors for various values of 𝑡 in two dimensions. The first 

graph is drawn for 𝑡 = 0.5 and alpha as 0.5 while the second graph is presenting the errors in 

solution for alpha as one at 𝑡 = 1. This shows that when value of alpha is approaching to 1 

the errors are improved even at higher time levels. 

Table 4.1 displays the numerical values of (𝐿∞), the maximum errors for prescribed values 

of 𝑡 as 0.25, 0.50, 0.75, and 1.0 at various alpha values. This shows that maximum errors are 

decreasing as alpha is approaching to 1.  
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Table 4.2 and Table 4.3 displays both solutions of diffusion equation at predetermined 

points in two dimensions where x varies from 0.0 to 1.0 as well as y varies from 0.1 to 0.2 

and 0.3 to 0.4 respectively. It is evident that both the solutions are very close enough.  

Table 4.4 and Table 4.5 demonstrates both solutions of diffusion equation at predetermined 

sites in two dimensions where x ranges from 0.0 to 1.0 as well as y changes from 0.6 to 0.7 

and 0.8 to 0.9 respectively which also verifies that both the solutions are close enough and 

reliable. This demonstrates the precision of the diffusion equation's mathematical solutions 

using the LRPSM.     

In Figure 4.6 the solution behaviour of biological population equation at various values of t= 

0.0, 0.2, 0.4, 0.6, 0.8, 1.0 is presented when 𝛼 = 0.5, 0.7, 1.0. From the diagram it is observed 

that the lines representing both solutions are almost overlapping hence, there is no significant 

difference between the solutions at different alpha. 

Figure 4.7 displays the absolute errors of the two-dimensional biological population equation 

at various values of t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 for a fixed value of alpha taken as 0.7. This 

shows that when number of terms are increased then errors of both solutions decreased.   

This demonstrates how effective and innovative the LRPSM is for solving two-dimensional 

FDEs and obtaining analytical approximate of solutions. 

Table 4.1 Maximum errors of fractional order diffusion equation at various t and α. 

t/α 0.5 0.7 1.0 

0.25 4.5786688e-08 3.2196467e-15 0 

0.50 6.0499380e-05 8.1960438e-11 0 

0.75 4.0032692e-03 3.0248714e-08 8.3266726e-17 

1.0 7.7937435e-02 1.9896927e-06 2.6645352e-14 

 

Table 4.2 The fractional order diffusion equation solutions at the designated points. 

x/y 0.1 0.2 

 Exact Numerical Exact Numerical 

0.0 0.0 0.0 0.0 0.0 
0.1 

0.2 

0.3 

0.003419805307053 

0.006805441049916 

0.010123079075388 

0.003419805307054 

0.006805441049918 

0.010123079075390 

0.006805441049916 

0.013542884382441 

0.020145011690899 

0.006805441049918 

0.013542884382444 

0.020145011690904 

0.4 0.013339570640983 0.013339570640986 0.026545856701597 0.026545856701604 
0.5 0.016422777626210 0.016422777626214 0.032681464287027 0.032681464287035 

0.6 0.019341893646044 0.019341893646048 0.038490529484356 0.038490529484365 

0.7 0.022067751858146 0.022067751858152 0.043915010034355 0.043915010034365 
0.8 0.024573116388311 0.024573116388317 0.048900706320463 0.048900706320475 

0.9 0.026832954462317 0.026832954462323 0.053397802913441 0.053397802913454 

1.0 0.028824686525130 0.028824686525137 0.057361366310675 0.057361366310689 

 

Table 4.3 The fractional order diffusion equation solutions at the designated points. 

x/y 0.3 0.4 
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 Exact Numerical Exact Numerical 

0.0 0.0 0.0 0.0 0.0 
0.1 

0.2 

0.3 

0.010123079075388 

0.020145011690899 

0.029965662008651 

0.010123079075388 

0.020145011690904 

0.029965662008658 

0.013339570640983 

0.026545856701597 

0.039486905336943 

0.013339570640986 

0.026545856701604 

0.039486905336952 
0.4 0.039486905336943 0.039486905336952 0.052033413866797 0.052033413866810 

0.5 0.048613608559744 0.048613608559755 0.064060021725254 0.064060021725270 

0.6 0.057254580675338 0.057254580675352 0.075446563022060 0.075446563022078 

0.7 0.065323483946673 0.065323483946688 0.086079267200468 0.086079267200489 
0.8 0.072739696559485 0.072739696559502 0.095851895795031 0.095851895795054 

0.9 0.079429118168822 0.079429118168841 0.104666803931235 0.104666803931260 

1.0 0.085324910285191 0.085324910285212 0.112435915960803 0.112435915960830 

 

Table 4.4 The fractional order diffusion equation solutions at the designated points.  

x/y 0.6 0.7 

 Exact Numerical Exact Numerical 

0.0 0.0 0.0 0.0 0.0 

0.1 0.0193418936460436 0.0193418936460483 0.0220677518581463 0.0220677518581516 

0.2 0.0384905294843560 0.0384905294843652 0.0439150100343549 0.0439150100343654 
0.3 0.0572545806753381 0.0572545806753518 0.0653234839466726 0.0653234839466882 

0.4 0.0754465630220603 0.0754465630220784 0.0860792672004680 0.0860792672004886 

0.5 0.0928847082503841 0.0928847082504064 0.1059749748704190 0.1059749748704440 
0.6 0.1093947801774730 0.1093947801774990 0.1248118156221340 0.1248118156221640 

0.7 0.1248118156221340 0.1248118156221640 0.1424015779694540 0.1424015779694880 

0.8 0.1389817726624000 0.1389817726624340 0.1585685108214060 0.1585685108214440 

0.9 0.1517630697714900 0.1517630697715260 0.1731510795290120 0.1731510795290530 
1.0 0.1630280004536240 0.1630280004536630 0.1860035798861000 0.1860035798861450 

 

Table 4.5 The fractional order diffusion equation solutions at the designated points. 

x/y 0.8 0.9 

 Exact Numerical Exact Numerical 

0.0 0.0 0.0 0.0 0.0 

0.1 

0.2 
0.3 

0.0245731163883113 

0.0489007063204629 
0.0727396965594849 

0.0245731163883172 

0.0489007063204746 
0.0727396965595023 

0.0268329544623166 

0.0533978029134413 
0.0794291181688217 

0.0268329544623230 

0.0533978029134540 
0.0794291181688407 

0.4 0.0958518957950313 0.0958518957950543 0.1046668039312350 0.1046668039312600 

0.5 0.1180063745722180 0.1180063745722460 0.1288586935870130 0.1288586935870440 
0.6 0.1389817726624000 0.1389817726624340 0.1517630697714900 0.1517630697715260 

0.7 0.1585685108214060 0.1585685108214440 0.1731510795290120 0.1731510795290530 

0.8 0.1765708848360650 0.1765708848361070 0.1928090209360170 0.1928090209360630 

0.9 0.1928090209360170 0.1928090209360630 0.2105404783400180 0.2105404783400680 
1.0 0.2071206730329640 0.2071206730330140 0.2261682848798740 0.2261682848799280 
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Fig 4.1 Comparison of solution behaviour of diffusion equation at different t when α=0.5, 

0.7, 1. 

 

Fig 4.2 Errors of diffusion equation when value of α=0.7. 
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Fig 4.3 Errors of diffusion equation when α= 0.9. 

Fig 4.4 Errors of diffusion equation when α=1.0. 
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Fig 4.5 (a)                                                 Fig 4.5 (b) 

Figure 4.5 (a) The absolute errors for α = 0.5 at t = 0.5   

Figure 4.5 (b) absolute errors for α = 1 for t = 1. 
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Fig 4.6 Comparison of solution behaviour of fractional biological population equation at 

different t if α=0.5, 0.7, 1.0. 

 

Fig 4.7 Absolute error of fractional biological population equation when α=0.7. 

4.4 Conclusion 

In order to use LRPSM to analytically approximate the solutions of these FDEs in two 

dimensions, a semi-analytical approach is used to two significant equations in this chapter. 

This method has the advantage of requiring less computation to obtain numerical solutions in 

power series form following the application of Laplace in a manner where the coefficients of 

those solutions are determined in the previously specified sequential algebraic phases. It is 

consequently possible to work out the two-dimensional FDEs precisely and efficiently using 

the LRPSM. It is shown that the method can solve two-dimensional FDEs with sufficient 

accuracy. Thus, this approach yields reliable results with fewer mistakes. 
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Chapter 5 

Solutions of two-dimensional Fractional Differential 

Equations by Elzaki Transform with Residual 

Power Series Method 

The most reliable and effective method of solving fractional differential equations (FDEs) is 

Elzaki transform with residual power series method (ERPSM), which is used to illustrate 

solution of two-dimensional temporal-fractional diffusion equation in current chapter. 

FDEs are widely applicable and have wide-ranging consequences for a variety of problems in 

electrical network systems, diffusion-reaction processes, and signal processing systems, 

among other areas [120]. Researchers are interested in examining the impact of the fractional 

derivative included in these equations. Extensive variants of the classical differential 

equations, the FDEs [52] have widely functional in abundant scientific domains in last few 

decades. Although there are many analytical techniques for solving FDEs, scientists are 

constantly striving to create new techniques that can lead to a more precise solution of the 

fractional equations. 

For determining the solutions to FDEs, there are numerous trustworthy, well-liked, and 

effective analytical techniques available. Various methods have employed to solve FDEs, 

including residual power series method [121], homotopy perturbation and analysis methods 

[119], differential transform method [122], iterative method [123], Adomian decomposition 

method [124], various forms of non-integer power series version [120], biological 

engineering image dispensation [125], physical model [126], risk analysis [127], Taylor's 

method [114], novel hybrid D(TQ) method [128], and numerous others.  

The residual power series method (RPSM) is one of the reliable and effective ways to solve 

FDEs. It is complicated and impossible to find the series solutions and coefficients for non-

linear FDEs [129]. Solutions can be achieved with a residual power series technique [99] to 

extract the coefficients in sequential form, using transformed functions as recurrence 

relations. By using RPSM, the nth ordered coefficients of the power series solutions are 

found by differentiating nth partial sum of series (n-1) times. In order to solve non-integer 

non-linear problems, ordinary derivatives are typically upgraded to fractional derivatives 

[69].  

Many transforms, including the Laplace, Sumudu, Elzaki, and many more transforms, can be 

used to solve the FDEs [111]. One transform that has been used to determine the numerical 

solution of well-known differential equations that serve as mathematical representations of 

scientific and technological phenomena is the Elzaki transform [130].  

Researchers have used a variety of transforms along with well-known methodologies to solve 

differential equations, including non-integer order logistic differential models [131], non-
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integer order BBM-Burger equations [132], non-integer order ordinary differential equations 

[133], and more. The ERPSM has successfully used to solve some well-known FDEs. The 

ERPSM was developed to provide for the analytical solutions of FDEs that exists for a 

variety of applications in mathematics, engineering and physics. Using this method to solve 

two-dimensional equation is the main goal of the current effort, which aims to increase 

method's accuracy [65]. A modified form of the Sumudu and Laplace transforms is the Elzaki 

transform. 

Over the past few decades, a number of fractional generalisations of diffusion equation have 

proposed. These have caused a great deal of discussion in the academic literature as well as in 

numerous diffusion model implementations. A PDE named diffusion equation uses fractional 

calculus ideas to explain the temporal evolution of a quantity such as heat, mass, or particles. 

Unlike the standard diffusion equation, which employs integer-order derivatives, diffusion 

equation includes fractional derivatives [121] in the temporal domain. Because it enables the 

model to effectively represent non-local and memory-dependent behaviours in diffusion 

processes, this trait makes it especially helpful for researching phenomena with complicated 

temporal dependencies or long-range interactions [134]. Nevertheless, numbers of analytical 

techniques have used to diffusion equations.  An attempt is made to apply the ERPSM to 

solve the problems for various values of the fractional power in this chapter.   

The diffusion equation of non-integer order in two dimensions is, 

𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡) with 0 < 𝛼 ≤ 1                                                (5.1) 

with initial condition,  𝑢(𝑥, 𝑦, 0) = 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦                                                                 (5.2) 

and exact solution is, 𝑢(𝑥, 𝑦, 𝑡) = 𝑒−2𝑡𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 for 𝛼 =1 

For  0 < 𝛼 ≤ 1 exact solution is, 𝑢(𝑥, 𝑦, 𝑡) = 𝐸𝛼(𝑧) 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦                                      (5.3) 

where 𝐸𝛼(𝑧) = ∑
𝑧𝑘

ᴦ(1+𝑘𝛼)

∞
𝑘=0 , 𝑧 = −4𝑖𝑡𝛼 

ERPSM is used to solve equation (5.1), which is a fractional order differential equation.  

5.1 Methodology for Implementation  

The following steps are included in the process for solving the diffusion equation [136] using 

ERPSM [137]:  

Step 1 Applying Elzaki transform on equation (5.1) as, 

𝐸(𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡)) = 𝐸(𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡))                                                              (5.4) 

Applying the differentiation property of Elzaki transform,  

𝐸[𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡)] =

1

𝜐𝛼 {𝐸(𝑢(𝑥, 𝑦, 𝑡)) − 𝑔(𝑥, 𝑦, 𝑡)}  on equation (5.4), we get 
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1

𝜐𝛼
{𝐸(𝑢(𝑥, 𝑦, 𝑡)) − 𝑔(𝑥, 𝑦, 𝑡)} = 𝐸{(𝑢(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢(𝑥, 𝑦, 𝑡))𝑦𝑦}   

𝑖. 𝑒. 𝐸(𝑢(𝑥, 𝑦, 𝑡)) = 𝑔(𝑥, 𝑦, 𝑡) + 𝜐𝛼𝐸{(𝑢(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢(𝑥, 𝑦, 𝑡))𝑦𝑦}                             (5.5)  

Step 2 Taking inverse Elzaki transform in equation (5.5), we get 

𝑢(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 𝑡) + 𝐸−1[𝜐𝛼𝐸{(𝑢(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢(𝑥, 𝑦, 𝑡))𝑦𝑦}]                                (5.6) 

here G(x, y, t) is  the primary circumstance of given problem. 

Step 3 By this method algorithm of 𝑢(𝑥, 𝑦, 𝑡) is proposed as, 

𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑓𝑛(𝑥, 𝑦)
𝑡𝑛𝛼

(𝑛𝛼)!

∞
𝑛=0                                                                                              (5.7) 

To find the mathematical solutions of (5.7), 𝑢𝑖(𝑥, 𝑦, 𝑡) is written as, 

𝑠𝑖 = ∑ 𝑢𝑛(𝑥, 𝑦, 𝑡)𝑖
𝑛=0 = ∑ 𝑓𝑛(𝑥, 𝑦)𝑖

𝑛=0
𝑡𝑛𝛼

(𝑛𝛼)!
                                                                         (5.8) 

Step 4 The Elzaki residual function from (5.6) can be written as, 

𝑅𝑒𝑠𝑖(𝑥, 𝑦, 𝑡) = 𝑢𝑖(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 𝑡) − 𝐸−1[𝜐𝛼𝐸{𝑢𝑖−1(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢𝑖−1(𝑥, 𝑦, 𝑡))𝑦𝑦}](5.9) 

and hence the values of 𝑓𝑛(𝑥, 𝑦) may be obtained by putting 𝑛 = 0,1,2, … …in the relation,  

 𝑡−𝑛𝛼𝑅𝑒𝑠𝑛(𝑥, 𝑦, 𝑡)/𝑡=0= 0                                                                                                (5.10)  

Substituting these values of 𝑓𝑛(𝑥, 𝑦) obtained from equation (5.10) in equation (5.7) the 

approximate solution of diffusion equation [135] is obtained analytically by using ERPSM. 

5.2 Numerical Experiment   

Using Elzaki transform on equation (5.1), then 

𝐸(𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡)) = 𝐸(𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡))                                                           (5.11) 

Applying the differentiation property of Elzaki transform, 

𝐸[𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡)] =

1

𝜐𝛼 {𝐸(𝑢(𝑥, 𝑦, 𝑡)) − 𝑔(𝑥, 𝑦, 𝑡)}  on equation (5.11), we get  

1

𝜐𝛼
{𝐸(𝑢(𝑥, 𝑦, 𝑡)) − 𝑔(𝑥, 𝑦, 𝑡)} = 𝐸{(𝑢(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢(𝑥, 𝑦, 𝑡))𝑦𝑦}   

𝑖. 𝑒. 𝐸(𝑢(𝑥, 𝑦, 𝑡)) = 𝑔(𝑥, 𝑦, 𝑡) + 𝜐𝛼𝐸{(𝑢(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢(𝑥, 𝑦, 𝑡))𝑦𝑦}                            (5.12) 

Taking inverse Elzaki transform in equation (5.12), we get 

𝑢(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 𝑡) + 𝐸−1[𝜐𝛼𝐸{(𝑢(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢(𝑥, 𝑦, 𝑡))𝑦𝑦}]                               (5.13) 
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Now 𝑢𝑖(𝑥, 𝑦, 𝑡) may be written as, 

𝑠𝑖 = ∑ 𝑢𝑛(𝑥, 𝑦, 𝑡)𝑖
𝑛=0 = ∑ 𝑓𝑛(𝑥, 𝑦)𝑖

𝑛=0
𝑡𝑛𝛼

(𝑛𝛼)!
                                                                       (5.14) 

Then the values of 𝑓𝑛(𝑥, 𝑦) can be obtained by using  

𝑅𝑒𝑠𝑖(𝑥, 𝑦, 𝑡) = 𝑢𝑖(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 𝑡) − 𝐸−1[𝜐𝛼𝐸{𝑢𝑖−1(𝑥, 𝑦, 𝑡))𝑥𝑥 +

(𝑢𝑖−1(𝑥, 𝑦, 𝑡))𝑦𝑦}](5.15)                                                                                      

When 𝑖 = 0 from equation (5.15), 

𝑅𝑒𝑠0(𝑥, 𝑦, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 𝑡) and from equation (5.14), 

0 = 𝑢0(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 𝑡) i.e.  𝑢0(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 𝑡)  

𝑢0(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) = sin 𝑥 𝑠𝑖𝑛 𝑦                                                                                    

(5.16) 

When 𝑖 = 1 from equation (5.15), 

𝑅𝑒𝑠1(𝑥, 𝑦, 𝑡) = 𝑢1(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 𝑡) − 𝐸−1[𝜐𝛼𝐸{(𝑢0(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢0(𝑥, 𝑦, 𝑡))𝑦𝑦}] with 

the conditions 𝑢1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
 then we can obtain, 

𝑅𝑒𝑠1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
− 𝐺(𝑥, 𝑦, 𝑡) − 𝐸−1[𝜐𝛼𝐸{𝑓0(𝑥, 𝑦))𝑥𝑥 + 𝑓0(𝑥, 𝑦))𝑦𝑦}]  

= 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
− 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 − 𝐸−1[𝜐𝛼𝐸{(𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦)𝑥𝑥 + (𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦)𝑦𝑦}]   

= 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
− 𝐸−1[𝜐𝛼𝐸(−𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 − 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦)]  

= 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
− 𝐸−1[𝜐𝛼𝐸(−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦)]  

= 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸−1[𝜐𝛼𝐸(1)]  

= 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦𝐸−1[𝜐𝛼+2]                                           

= 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡𝛼

𝛼!
                                                      

= {𝑓1(𝑥, 𝑦) + 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦}
𝑡𝛼

𝛼!
  

Then after solving 𝑡−𝛼𝑅𝑒𝑠1(𝑥, 𝑦, 𝑡)𝑡=0 = 0 gives that 

𝑓1(𝑥, 𝑦) + 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 = 0 𝑖. 𝑒. 𝑓1(𝑥, 𝑦) = −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦                                                     (5.17) 

When 𝑖 = 2 from equation (5.15) 
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𝑅𝑒𝑠2(𝑥, 𝑦, 𝑡) = 𝑢2(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 𝑡) − 𝐸−1[𝜐𝛼𝐸{(𝑢1(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢1(𝑥, 𝑦, 𝑡))𝑦𝑦}] , with 

conditions 𝑢1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
 and 

 𝑢2(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
 , we get 

𝑅𝑒𝑠2(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
− 𝑓0(𝑥, 𝑦) − 𝐸−1 [𝜐𝛼𝐸 {(𝑓0(𝑥, 𝑦) +

𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
)𝑥𝑥 + (𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)

𝑡𝛼

𝛼!
)𝑦𝑦}]   

= 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
− 𝐸−1 [𝜐𝛼𝐸 {(𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 − 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡𝛼

𝛼!
)𝑥𝑥 +

(𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 − 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
)𝑦𝑦}]  

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
− 𝐸−1 [𝜐𝛼𝐸 {−𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 + 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡𝛼

𝛼!
+

−𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 + 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
}]    

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
− 𝐸−1 [𝜐𝛼𝐸 {−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 + 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡𝛼

𝛼!
}]     

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
− 𝐸−1 [𝜐𝛼𝐸 {−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 + 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡𝛼

𝛼!
}]     

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
− 𝐸−1 [𝜐𝛼{−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸(1) + 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸(

𝑡𝛼

𝛼!
)]  

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
− 𝐸−1 [𝜐𝛼{−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝜐2 + 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝛼!𝜐𝛼+2

𝛼!
]  

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
+ 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸−1(𝜐𝛼+2) − 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸−1[𝜐2𝛼+2]   

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
+ 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡𝛼

𝛼!
 − 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
   

= {𝑓2(𝑥, 𝑦)  − 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦} 
𝑡2𝛼

(2𝛼)!
   

Therefore, from 𝑡−2𝛼𝑅𝑒𝑠2(𝑥, 𝑦, 𝑡)/𝑡=0= 0 we have, 

𝑓2(𝑥, 𝑦) − 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 = 0  𝑖. 𝑒. 𝑓2(𝑥, 𝑦) = 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦                                              (5.18) 

Now, the second approximate solution is, 

𝑢2(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 − 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡2𝛼

(2𝛼)!
  

When 𝑖 = 3 from equation (5.15) 
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𝑅𝑒𝑠3(𝑥, 𝑦, 𝑡) = 𝑢3(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 𝑡) − 𝐸−1[𝜐𝛼𝐸{(𝑢2(𝑥, 𝑦, 𝑡))𝑥𝑥 + (𝑢2(𝑥, 𝑦, 𝑡))𝑦𝑦}] , with 

conditions 𝑢2(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
  and  

 𝑢3(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
  we get, 

𝑅𝑒𝑠3(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)  
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
− 𝑓0(𝑥, 𝑦) −

𝐸−1 [𝜐𝛼𝐸 {(𝑓0(𝑥, 𝑦)  + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼!
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

(2𝛼)!
)𝑥𝑥 + (𝑓0(𝑥, 𝑦)  + 𝑓1(𝑥, 𝑦)

𝑡𝛼

𝛼!
+

𝑓2(𝑥, 𝑦)
𝑡2𝛼

(2𝛼)!
)𝑦𝑦}]    

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
− 𝐸−1 [𝜐𝛼𝐸 {(𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 −

2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
)𝑥𝑥 + (𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 − 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡𝛼

𝛼!
+

4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 
𝑡2𝛼

(2𝛼)!
)𝑦𝑦}]   

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
− 𝐸−1 [𝜐𝛼𝐸 {−𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 +

2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 
𝑡𝛼

𝛼!
− 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
− 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 + 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡𝛼

𝛼!
− 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
}]   

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
− 𝐸−1 [𝜐𝛼𝐸 {−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 +

4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 
𝑡𝛼

𝛼!
− 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
}]  

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
− 𝐸−1 [𝜐𝛼 {−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸(1) +

4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 
𝐸(𝑡𝛼)

𝛼!
− 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝐸(𝑡2𝛼)

(2𝛼)!
}]  

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
− 𝐸−1 [𝜐𝛼 {−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝜐2 +

4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 
𝛼!𝜐𝛼+2

𝛼!
− 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

(2𝛼)!𝜐2𝛼+2

(2𝛼)!
}]    

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
− 𝐸−1[−2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝜐𝛼+2 +

4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦𝜐2𝛼+2 − 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝜐3𝛼+2]      

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
+ 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸−1(𝜐𝛼+2) −

4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸−1(𝜐2𝛼+2) + 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝐸−1(𝜐3𝛼+2)      

= −2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦  
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡2𝛼

(2𝛼)!
+ 𝑓

3
(𝑥, 𝑦)

𝑡3𝛼

(3𝛼)!
+ 2𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡𝛼

𝛼!
−

4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 
𝑡2𝛼

(2𝛼)!
+ 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡3𝛼

(3𝛼)!
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= 𝑓
3

(𝑥, 𝑦)
𝑡3𝛼

(3𝛼)!
+ 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

𝑡3𝛼

(3𝛼)!
   

= {𝑓
3

(𝑥, 𝑦) + 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 }
𝑡3𝛼

(3𝛼)!
    

Therefore, from 𝑡−3𝛼𝑅𝑒𝑠3(𝑥, 𝑦, 𝑡)/𝑡=0= 0 we have, 

𝑓3(𝑥, 𝑦) + 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 = 0  𝑖. 𝑒. 𝑓3(𝑥, 𝑦) = −8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦                                          (5.19) 

Now, the third approximate solution is, 

𝑢3(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 − 2 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦
𝑡𝛼

𝛼!
+ 4𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡2𝛼

(2𝛼)!
− 8𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦

𝑡3𝛼

(3𝛼)!
  

Similarly, the 𝑛𝑡ℎ coefficient of 𝑢(𝑥, 𝑦, 𝑡) is 𝑓𝑛(𝑥, 𝑦) = (−2)𝑛𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 

At last the 𝑛𝑡ℎ ERPSM approximate solutions of  𝑢(𝑥, 𝑦, 𝑡) is 

𝑢𝑛(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 ∑
(−2𝑡𝛼)𝑛

(𝑛𝛼)!

𝑖
𝑛=0                                                                              (5.20) 

5.3 Numerical Simulations and graphs  

The numerical solution of this equation has been obtained for the domain [0, 1] for both x 

and y and the results are presented at t=0.5 for α=0.5, 0.8 and 1.0 in Table 5.1-5.3 and 

Figure 5.1-5.3. 

Table 5.1 Solution when value of α =0.5 

y/x 0.2 0.4 0.6 0.8 1.0 

0.1 0.006805 0.01334 0.019342 0.024573 0.028825 

0.2 0.013543 0.026546 0.038491 0.048901 0.057361 

0.3 0.020145 0.039487 0.057255 0.07274 0.085325 

0.4 0.026546 0.052033 0.075447 0.095852 0.112436 

0.5 0.032681 0.06406 0.092885 0.118006 0.138423 

0.6 0.038491 0.075447 0.109395 0.138982 0.163028 

0.7 0.043915 0.086079 0.124812 0.158569 0.186004 

0.8 0.048901 0.095852 0.138982 0.176571 0.207121 

0.9 0.053398 0.104667 0.151763 0.192809 0.226168 

1.0 0.057361 0.112436 0.163028 0.207121 0.242956 
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Figure 5.1 Graph when value of α =0.5 

 

Table 5.2 Solution when value of α =0.8 

y/x 0.2 0.4 0.6 0.8 1.0 

0.1 0.003764 0.007379 0.010699 0.013593 0.015944 

0.2 0.007491 0.014684 0.021291 0.027049 0.031729 

0.3 0.011143 0.021842 0.03167 0.040236 0.047197 

0.4 0.014684 0.028782 0.041733 0.053020 0.062193 

0.5 0.018078 0.035434 0.051379 0.065275 0.076568 

0.6 0.021291 0.041733 0.060511 0.076877 0.090178 

0.7 0.024291 0.047614 0.069039 0.087711 0.102887 

0.8 0.027049 0.053020 0.076877 0.097669 0.114568 

0.9 0.029537 0.057896 0.083947 0.106651 0.125104 

1.0 0.031729 0.062193 0.090178 0.114568 0.134390 
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Figure 5.2 Graph when value of α =0.8 

 

 

Table 5.3 Solution when value of α =1.0 

y/x 0.2 0.4 0.6 0.8 1.0 

0.1 0.002684 0.005261 0.007629 0.009692 0.011369 

0.2 0.005342 0.01047 0.015182 0.019288 0.022625 

0.3 0.007946 0.015575 0.022582 0.02869 0.033654 

0.4 0.01047 0.020523 0.029758 0.037806 0.044347 

0.5 0.01289 0.025267 0.036636 0.046544 0.054597 

0.6 0.015182 0.029758 0.043148 0.054818 0.064302 

0.7 0.017321 0.033952 0.049229 0.062543 0.073364 

0.8 0.019288 0.037806 0.054818 0.069644 0.081693 

0.9 0.021061 0.041283 0.059859 0.076048 0.089206 

1.0 0.022625 0.044347 0.064302 0.081693 0.095827 
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Figure 5.3 Graph when value of α =1.0 

 

 

 Table 5.4 For α =1, maximum errors (𝑙∞ ) with different time levels 

t 𝒍∞ 

0.1 4.4408e-16 

0.2 7.1981e-13 

0.3 6.1280e-11 

0.4 1.4280e-09 

0.5 1.6366e-08 

0.6 1.1974e-07 

0.7 6.4273e-07 

0.8 2.7504e-06 

0.9 9.8999e-06 

1.0 3.1088e-05 
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Table 5.5 Comparison of maximum errors of diffusion equation by ERPSM and RPSM 

for α =1. 

t 

 

ERPSM with different number of terms RPSM [137] 

 10 12 14 10 

0.2 7.1981e-13 6.1062e-16 0 0.5e-07 

0.4 1.4280e-09 5.9121e-12 1.8152e-14 1.0e-07 

0.6 1.1974e-07 1.1200e-09 7.7582e-12 1.5.e-07 

0.8 2.7504e-06 4.5924e-08 5.6724e-10 2.5e-06 

1.0 3.1088e-05 8.1419e-07 1.5759e-08 3.0e-05 

 

5.4 Conclusion 

In this chapter, the current research presents the implementation of a novel and trustworthy 

method ERPSM to solve the non-integer order diffusion equation. This strategy combines the 

RPSM, an improvement of the conventional RPSM, with the Elzaki transform. This method 

has a benefit of requires less calculation and give less error in the solution. The 

aforementioned sequential procedures lead to the determination of the coefficients of this 

power series solution. ERPSM demonstrated its capacity to solve non-integer order 

differential equations with sufficient correctness and dependable computing steps for two-

dimensional non-integer order diffusion equations. From the table of comparison in 

numerical example it can be concluded that this novel approach is advantageous. This 

approach also offers straightforward and precise algorithms for estimating solutions of 

diffusion equation. 
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Chapter 6 

Summary and Future work 

The work completed in this thesis is about the application of newly established methods 

having applications to solve one-dimensional as well as two-dimensional FDEs. There are 

plentiful approaches to define non-integer derivatives; Caputo’s explanation has been used 

because it is the most acceptable one due to its characteristics. RPSM has applied to solve the 

relaxation-oscillation differential equations and same method is also used to solve FDEs in 

one and two dimensions by the use of Laplace transforms as well as Elzaki transforms 

separately. The introduction of prerequisites is covered in the first chapter. The relaxation-

oscillation equation has solved by RPSM in the second chapter. The numerical solutions that 

were produced are extremely close to the exact answer that is currently accessible, meaning 

that the errors in both solutions are negligible. Similar to this, chapter three's numerical 

solutions of one-dimensional FDEs using LRPSM produce significant and trustworthy 

results. 

Reliable and productive results are also obtained by using LRPSM to solve diffusion and 

fractional biological population equations in two-dimension of temporal fractional order in 

chapter four. Similarly, chapter five of this thesis explains solution of diffusion equation of 

temporal fractional order using ERPSM as well as its comparison with solution of same 

equation by LRPSM.  

6.1 Future Scope  

The future scope of this work includes: 

 • This work can be tested for the solution of FDEs by using different solution methods.  

• The applications and experiments with the new definitions of the fractional derivatives can 

be done.  

• The RPSM with different transforms can be tested for various one and two dimensional 

FDEs. 

 • The higher order differential equations can be tried for a solution using the RPSM with 

different transforms.  

• For the space FDEs, the RPSM with different transforms can be improvised and 

implemented. 

 • This work had the experiment based results for RPSM with different transforms. 

Furthermore the theory and stability can be observed into details in future if possible. 
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