
Mathematical Modelling of Plant Herbivore Dynamics 

under Allee Effect using Delay Differential Equations 

 

Thesis Submitted for the Award of the Degree of 

 

    DOCTOR OF PHILOSOPHY  

 

in  

Mathematics 

 

By 

Rupali Verma 

 

Registration Number: 12014919 

 

Supervised By 

Dr. Pankaj Kumar (Associate Professor) 

Department of Mathematics 

School of Chemical Engineering and Physical Sciences 

Lovely Professional University 

 

 

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB 

2024



i 
 

DECLARATION 

 

I, hereby declared that the presented work in the thesis entitled “Mathematical Modelling 

of Plant Herbivore Dynamics under Allee Effect using Delay Differential Equations” 

in fulfilment of degree of Doctor of Philosophy (Ph. D.) is outcome of research work 

carried out by me under the supervision of Dr. Pankaj Kumar (11893), working as 

Associate Professor, in the Department of Mathematics at School of Chemical Engineering 

and Physical Sciences of Lovely Professional University, Punjab, India. In keeping with 

general practice of reporting scientific observations, due acknowledgements have been 

made whenever work described here has been based on findings of other investigator. This 

work has not been submitted in part or full to any other University or Institute for the award 

of any degree. 

                      

 

(Signature of Scholar)  

Name of the scholar: Rupali Verma 

Registration No.: 12014919 

Department/school: Department of Mathematics/ School of Chemical Engineering and 

Physical Sciences 

Lovely Professional University,  

Punjab, India 

 

  

 



ii 
 

 

CERTIFICATE  

 

This is to certify that the work reported in the Ph. D. thesis entitled “Mathematical 

Modelling of Plant Herbivore Dynamics under Allee Effect using Delay Differential 

Equations” submitted in fulfillment of the requirement for the reward of degree of Doctor 

of Philosophy (Ph.D.) in the Department of Mathematics, is a research work carried out 

by Rupali Verma, 12014919, is bonafide record of her original work carried out under my 

supervision and that no part of thesis has been submitted for any other degree, diploma or 

equivalent course. 

 

 

 

(Signature of Supervisor)                                          

Name of supervisor: Dr. Pankaj Kumar 

Designation: Associate Professor 

Department/school: Department of Mathematics/ School of Chemical Engineering and 

Physical Sciences 

University: Lovely Professional University, Punjab, India 

 

 

 

 



iii 
 

DEDICATED 

TO  

LORD SHIVA 

AND 

MY PAPA 

 



iv 
 

ABSTRACT 

 

The proposed work examines plant-herbivore dynamics considering the delay in plant 

population, infectious plant population, herbivore population, and logistic growth. The 

availability of nutrients, favourable resources, and the Allee effect all play a significant 

role in plant growth. Plant growth can be impacted by the Allee effect. The delay parameter, 

which is used as the basis for this entire study, is this impedance in plant growth. In the 

proposed work, models including strong or weak Allee effects are developed, considering 

various kinds of functional responses incorporating the delay in growth dynamics under 

the Allee effect. The proposed models have been mathematically analyzed, and the results 

have been numerically verified. 

The comparison theorem is a mathematical tool used to prove the positivity and 

boundedness of analytical solutions. The possible and feasible interior equilibrium is 

calculated. The local stability analysis of interior equilibrium is established. When the 

delay parameter is considered during the stability analysis of the interior equilibrium, Hopf 

bifurcation occurs, which illustrates the complex dynamical behaviour. Using Rouche's 

theorem and Routh Hurwitz's criteria, the nature of the roots has been thoroughly 

investigated. The "Direct Method" is used to do a sensitivity analysis of state variables with 

respect to model parameters for almost all models. MATLAB is used for numerical 

simulation, and distinct numerical values have been assigned to each model parameter. 

This helped in identifying the delay parameter's critical value, below this critical value, the 

system exhibited stability, and above this, the system lost stability and Hopf-bifurcation 

occurred. 

In Chapter-1, The general overview of plant growth dynamics under the Allee effect is 

given. Moreover, a broad overview of plant-herbivore dynamics is described. The 

remarkable work done by the researchers is cited and the gaps have been identified through 

an extensive literature review. All the important concepts of plant physiology including the 

Allee effect and the necessary mathematical concepts required for their study have also 
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been described. It also includes the proposed objectives of the study and a summary of all 

the chapters. 

In Chapter-2, A mathematical framework is constructed to examine the dynamics of the 

interaction between plants and herbivores, considering the Allee effect by using delay 

differential equations. An analysis is conducted to check the influence of the delay 

parameter on plants and herbivores. It is proved that the solutions are bounded and positive. 

The feasible non-zero equilibrium is determined for both the Allee effects. It is indicated 

that plant and herbivore population goes to extinction due to the strong Allee effect. The 

stability of the system around the non-zero equilibrium point, considering the weak Allee 

effect is examined. When the delay is negligible, it can be observed that the equilibrium 

point is absolutely stable. The system destabilizes if the delay parameter is below the 

critical value 𝜏 = 3.25, indicating that the equilibrium point is asymptotically stable. The 

equilibrium point shows complex behaviour and Hopf- bifurcation occurs when the delay 

exceeds the critical value. Numerical simulation is utilized to support analytical findings 

using MATLAB code. 

In Chapter-3, A model of plant-herbivore interactions, considering the strong Allee effect 

with intraspecific competition among herbivores is proposed. The Holling type- 𝐼𝐼 

functional response is utilized which defines that an individual predator consumes food till 

it feels famished. The loss in stability is shown by utilizing the time delay (𝜏) using delay 

differential equations. The non-trivial equilibrium is determined for the strong Allee effect. 

The value of time delay 𝜏 = 2.7 is the crucial value that shifts the behaviour of the system 

from stability to complex one, leading to Hopf-bifurcation. Moreover, it is identified that 

the entire system becomes more and more stable while the intraspecific competition rate 

of herbivores (𝛿) keeps on increasing. The same fact is represented in time series graphs 

with the help of MATLAB software. 

In Chapter-4, A delayed modified Leslie-Gower plant-herbivore model is analyzed under 

the Allee effect. Holling type-II functional response is used to modify the model. The non-

trivial equilibrium of the proposed model is calculated. Moreover, it is shown that the 
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system represents absolute stability when the system has no delay (𝜏 = 0). The insertion 

of the delay parameter disturbs the stability of the non-trivial equilibrium and the system 

becomes asymptotically stable when the delay parameter is below the threshold value 

which is τ = 3.2. Hopf bifurcation is seen at the threshold value of the delay parameter. 

The time series graphs are also represented to demonstrate that the system becomes more 

stable with the maximum rate of predation. MATLAB software is incorporated to perform 

the graphs to justify the theoretical results. 

In Chapter-5, An eco-epidemiological model which is composed of susceptible plants, 

infectious plants, and herbivores, under the weak Allee effect accompanied by Holling 

type- I functional response is studied. The supposition is that infectious plants are generated 

by the infection of susceptible plants and the herbivores consume only infectious plants. 

The delay differential equations are considered to make the model more realistic. 

Furthermore, stability at the non-trivial equilibrium is determined. It is observed that the 

system shows asymptotic stability when time lag is lower than the threshold point i.e., 𝜏 =

10.6 and the system undergoes Hopf-bifurcation when time lag surpasses the threshold 

point. Sensitivity analysis of the state variables with respect to the herbivores gain by 

consuming infectious plants and the mortality rate of herbivores is represented with time 

series graphs. Numerical examples are shown with the help of MATLAB code. 

In Chapter-6, A delayed Gauss-type Plant-herbivore model is modelled with Holling type-

III functional response which states as a matter of fact that the predation on plant population 

by herbivores becomes more intensive when there is an increment in plant population. The 

growth of plant population is influenced by the Allee effect. By assuming that the delay 

parameter (𝜏) is a bifurcation parameter, the stability analysis of the feasible non-trivial 

equilibrium is investigated. The change of behaviour of the system from being absolutely 

stable to asymptotically stable and then finally Hopf-bifurcation at equilibrium for distinct 

values of time parameter (τ) is represented graphically where the threshold value of the 

time parameter is 𝜏 = 3.2. A graphic representation of the change in system behaviour 
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triggered by variations in the model parameters at variance with the time parameter is 

shown. MATLAB software is used to perform numerical simulations. 
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Chapter 1  

General Introduction 

1.1 Introduction 

In the kingdom Plantae, plants are multicellular organisms that use 

photosynthesis to produce their sustenance. There are over 300,000 plant 

species. Grasses, trees, and shrubs are some examples of plants. Most of the 

oxygen in the environment is produced by plants, and they are crucial to the 

food chain since many organisms consume plants or organisms that consume 

plants. As a result, they are crucial to the ecosystems of the world. The scientific 

study of plants is called botany. 

In the Animal Kingdom, multicellular eukaryotes are animals. All animals are 

heterotrophs. They cannot produce their food as plants; consequently, they eat 

other living things. Additionally, all animals have specialized cells that can do 

distinct kinds of work. Higher levels of organization can also be found in most 

animals. They might possess specialized organ systems, tissues, and organs. 

Animals are able to accomplish an array of difficult tasks because of their higher 

levels of organization. The kingdom of Animalia, or the Metazoa, includes a 

significant group of species that are known as animals. They often are 

multicellular, capable of locomotion and responsive to their surroundings, and 

obtain their food by eating other living things. Animals distinguish themselves 

from other living things by an assortment of characteristics. Animals differ from 

bacteria and the majority of protists in that they are eukaryotic and generally 

multicellular. They are heterotrophic, which sets them apart from plants and 

algae since they usually digest food in an interior chamber. Their absence of 

cell walls makes them distinct from plants, algae, and fungi. Several distinct 

animal species, each of which eats a specific type of food, are included in the 

food chain. 

Herbivores, omnivores, and carnivores are the three main categories of animals. 

Animals are classified as herbivores that only consume plants. Animals that 

only eat meat are called carnivores. Animals that consume both plants and meat 
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are termed omnivores. An animal's diet is not influenced by its size. Even very 

small animals can be carnivores, and some of the biggest animals solely 

consume plants. The kind of food an animal consumes will determine how its 

digestive system is designed. Moreover, depending on the kind of food an 

animal consumes, its teeth will also be uniquely designed. 

Herbivores are animals that only consume plants. Frequently, herbivores only 

consume the fruits or seeds of plants and end up leaving the stems, leaves, and 

roots alone. Herbivores have unique digestive systems that are made to handle 

the various kinds of plants they may consume. Large front teeth, or incisors, are 

typically present in herbivores. Plants can be grasped and chopped using these 

teeth. Moreover, herbivores have molars in the back that they use to crush the 

plants in their mouths. Herbivores, including cows, deer, and elk, are frequently 

quite large animals. A large herbivore needs a lot of sustenance to provide it 

with the energy it requires. Consequently, herbivores may spend a significant 

part of their day eating. Medium-sized animals like sheep or goats can also be 

herbivores. Squirrels and chipmunks are a few examples of small herbivores. 

Herbivores require a lot of food to satisfy their appetites. All herbivores 

consume plants, but some specialize in one kind of plant or a particular 

component of plants. 

Herbivores and plants have a cyclic relationship, according to predator-prey 

interaction theory. When prey (plants) are abundant, their predators (herbivores) 

increase in number, reducing the prey population and causing the predator 

population to decrease. The prey population subsequently recovers, and a new 

cycle begins. This implies that the herbivore population fluctuates in relation to 

the carrying capacity of the plant. Several factors influence these fluctuating 

populations and aid in the stabilization of predator-prey dynamics. This 

stabilizing dynamic is incredibly significant for specialist herbivores that feed 

on a single plant species, as it prevents these specialists from eradicating their 

food source. Prey defenses also aid in the stabilization of predator-prey 

dynamics. Eating a second prey type aids in the stabilization of herbivore 

populations. The herbivore's population is stable when it alternates between two 
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or more plant types, whereas plant populations fluctuate. This is crucial for 

generalist herbivores that eat a wide variety of plants.  

The Allee effect is known as a biological phenomenon where the relationship 

between the density of a population and its average individual fitness is 

established, often measured as the rate of population growth per individual. The 

Allee effect can be divided into two distinct categories: Strong Allee effect and 

Weak Allee effect. 

A demographic Allee effect with a critical population density is named the 

strong Allee effect. The demographic Allee effect is known as the weak Allee 

effect due to the non-existence of the critical population density. A population 

that is characterized by a weak Allee effect, declines the per capita growth rate 

as the population size decreases, which is directly associated with population 

fitness. There will always be a positive per capita growth rate within the 

population, regardless of the small population size. A population exhibiting a 

strong Allee effect will experience a critical size, below which the population 

growth rate becomes negative. That population will therefore be destined for 

extinction when its size declines below this threshold. It is easier to identify the 

density when the per-individual growth rate becomes negative using time series 

data, resulting in an easier empirical determination of the strong Allee effect. 

Numerous mechanisms that affect reproduction and survival can result in a 

positive relationship between fitness and population growth. As a well-known 

example, mate limitation, which requires interaction between male and female 

gametes for sexual reproduction, may lead to under-crowding in species that 

reproduce sexually. Mate limitation decreases reproduction when males and 

females are unable to locate one another or when plants or animals release 

gametes into the environment. In larger social groupings, cooperative actions 

like breeding, feeding, and defense are more efficient, which increases 

reproductive survivability. Although social vertebrates like birds, ungulates, 

and prairie dogs are among those where cooperative behaviour is most obvious. 

Moreover, aquatic creatures like cichlid fish and insects like bark beetles may 

experience adverse impacts from group feeding or defense. 
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However, many mechanisms only depend on the presence of conspecific 

individuals and do not require behavioural cooperation. For instance, large prey 

populations have a lower per capita predation risk in contrast to small prey 

populations. It is also well known that having a large population might improve 

biotic or environmental conditions. Examples of this type include eliminating 

competitors through allelopathy. Finally, Allee effects may result from genetic 

and demographic mechanisms. Active dispersal away from lower-density 

populations may have a negative impact on the growth rates of animal 

populations. Inbreeding depression can cause an Allee effect on many 

organisms when the population size is small by decreasing average fitness as 

population size decreases. Hence, small populations generally have decreased 

average individual fitness. 

Modelling often serves purposes like knowledge integration or quantitative 

testing of hypotheses in research environments. The system of interest needs to 

be specified for modelling. The system of interest in horticulture and 

agricultural sciences is generally a plant, and very often a collection of 

interacting plants, such as a row of plants or a homogeneous crop canopy. 

Many researchers have incorporated time delays of distinct kinds into biological 

models. In the real world, plant population growth rates frequently have a time 

lag or delay in responding to fluctuations in their population rather than reacting 

instantaneously. A type of differential equation known as a delay differential 

equation describes the derivative of an unknown function at a specific time by 

incorporating the function's values at previous times. The terms time-delay 

systems, aftereffect or dead-time systems, equations with diverging arguments, 

or differential-difference equations are also used for referring to DDEs. 

The factors that introduce time delay may include plant population, herbivore 

population, and logistic growth. In comparison to the dynamics described by 

ordinary differential equations, the dynamics exhibited by delay differential 

equations are generally much more intricate. A stable equilibrium is compelled 

by the time delay to lose stability, become unstable, and cause fluctuations. The 

influence of delay on plant population experiencing the Allee effect is a 

relatively recent area of research. 
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Mathematical modelling for a wide range of biological problems is considered 

an interesting topic in the field of applied mathematics. An accurate 

representation of the environmental and ecological data is provided by 

mathematical models. It is impossible to incorporate all uncountable variables 

and factors into a mathematical model of a natural phenomenon; only relevant 

data is considered in order to have a logical concept of the dynamics. The 

proposed research work will be carried out by using mathematical models to 

examine the impact of delay on the dynamics of interactions between plants and 

herbivores in the presence of the Allee effect. 

1.2 Review of literature 

Studies on plant growth have their origins in antiquity. Nomadic early humans 

noticed that crops and plants planted during specific seasons produced more 

fruit and provided more food than those planted during other seasons. Leonardo 

da Vinci was the first person in the middle ages to systematically observe the 

seasonal periodicity of growth and some characteristics of plant forms. In the 

17th century, theories are conducted on how leaves should be arranged on an 

axis or stem started to develop. The key environmental elements that influence 

plant growth are temperature, humidity, radiation input, respiration, 

transpiration, photosynthesis, carbon dioxide, etc. The first to propose 

mathematical models incorporating each of these variables separately and 

combined was Thornley [1]. In his novel theoretical model, Watkinson [2] 

included the following assumptions: that there was variability between the 

individual plants in a population; that competition, which is particularly for the 

smaller plants in a large population, reduced the growth rates, possibly leading 

to mortality; and that there was a dynamic growth process whose rate was 

influenced by the size of the plant, reducing as a plant matured towards an upper 

size limit. In the study of the age-dependent plant growth model, Pugliese [3] 

proposed a continuous-time model of growth and reproduction. Paxson and 

Simon [4] demonstrated how computers can directly control and monitor plant 

growth. According to Jaremo and Palmqvist [5], the compensatory plant type 

has the ability to accelerate its inherent rate of biomass growth as a response to 
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damage. A study of this system revealed that when a highly effective herbivore 

is present, the compensatory capability such as this provides it a competitive 

benefit over other plants, even though it will not increase equilibrium plant 

density. Five distinct consumer-prey models were proposed by O'Connor et al. 

[6]. They observed that plant and herbivore abundances are influenced by 

environmental elements in response to temperature. 

The Allee effect, which allows for a decrease in fitness due to decreasing 

population sizes, was taken into consideration by Ferreira et al. [7] in a predator-

prey system. They examined the weak Allee effect, which is a component in the 

equation describing prey dynamics, and identified the necessary conditions for 

the occurrence of Hopf bifurcation. The findings indicated that the prey 

population is constrained by the carrying capacity of the environment, whereas 

the growth rate of the predator is influenced by the past quantities of the prey. 

The inducible changes harm the growth and reproduction of individual 

herbivores [8], [9]. These induced changes are commonly referred to as induced 

defenses in plant quality, and they frequently have an important effect on the 

dynamics of herbivore populations [10]. Some herbivore populations 

experienced population declines as a result of inducible defenses [11], [12], 

while cyclical fluctuations occur in other populations [13], [14]. Models that 

depict predator-prey interactions and make the assumption that fluctuations in 

the prey abundance cause fluctuations in the predator abundance support many 

of these arguments [15], [16]. There is evidence that diseases have shown 

significant effects on the extinction of species [17]. For instance, there would 

be negative growth in the predators if they consumed infectious prey [18]. 

Models of plant-herbivore interactions are one of the most fundamental 

processes and are crucial to ecology. The most vital component in ecology is 

the relationship between plants and herbivores, which is influenced by 

environmental variables like rainfall, temperature, and altitude. It will be easier 

to predict outcomes and recommend possible conservation strategies if we can 

recognize patterns in these environment-dependent interactions. It is frequently 

defined by complex, nonlinear relationships that might result in thresholds by 

which small scales processes experience weak and slight changes, while larger 
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scales experience sudden and dramatic changes [19]–[21]. Several factors 

besides the size of the population or biomass alone can affect the interaction 

between plants and herbivores. The plant-herbivore system has been classically 

modelled using the predator-prey system [22]–[24]. Several ecologists 

examined models of plant-herbivore interactions using various functional 

responses and Allee effects [19], [22], [23], [25]–[31]. The interaction between 

plants and herbivores is a major factor in determining community structure all 

over the world. They play a vital role in lowland tropical rainforests where 

herbivory rates are higher, plants are better protected physically and chemically, 

and herbivore diets are more specialized [32]. Asfaw et al. [30] focused on the 

reformulation of a mathematical plant-herbivore model with the Allee effect 

such that the mortality rate of herbivores is influenced by the plant population 

and the threshold conditions for the existence of the herbivore population are 

also demonstrated. A mathematical model developed by Asfaw et al. [33] 

incorporates variations in some parameter values caused by changes in 

temperature and rainfall. They demonstrated how the coexistence of the 

population is greatly influenced by environmental changes and collected real 

data to verify the outcomes. A model by Edelstein-Keshet [22] was proposed 

that includes the impact of plant quality. The key finding is that the frequency 

distribution of plant quality in the vegetation can satisfy a conservation 

equation, and three scenarios are discussed to explain the qualitative aspects of 

the system. It was also highlighted that stable equilibrium and stable periodic 

oscillations can be obtained depending on the response of herbivores and plant 

quality. A general mathematical framework was utilized by Edelstein-Keshet 

and Rausher [34] to predominantly concentrate on inducible plant defenses and 

explain how variations in plant quality affect herbivore population dynamics. 

Anttila et al. [35] investigated the combined impacts of UV-B and herbivory on 

the defense mechanisms of the mountain birch as well as the influence of 

increased UV-B radiation on an autumnal moth. Model [28] examined how 

plants and herbivores interact when the herbivore is at risk such as disease and 

harvesting, while the plant has a refuge available. The study discussed the 

conditions of feasibility and stability for the equilibrium points of the system. 
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To evaluate the theoretical findings and examine the system's properties, the 

numerical simulations were validated. To investigate the interactions between 

plants and herbivores, specifically focusing on their scaling up to landscape 

scale, Oene et al. [25] proposed an ecosystem model which is used to determine 

how herbivory will affect the growth of vegetation. Li  [36] developed a plant-

herbivore model where plant toxicity results in herbivore SIS parasite infection. 

It was shown that the dynamics of both populations are significantly impacted 

by their interactions. Kartal [37] has explored the boundedness, periodicity, and 

stability of the plant-herbivore model using both difference and differential 

equations. By incorporating the center manifold theorem and the bifurcation 

theory, Yousef and Yousef [29] utilized fractional-order differential equations 

to analyze the plant-herbivore model and demonstrate the occurrence of flip 

bifurcation. 

Nowadays, many ecologists are very curiously studying the topic of 

mathematical modelling. Using graphs, diagrams, equations, etc., aids in the 

theoretical and experimental solution of real-world problems. It provides 

precise problem-solving techniques. As a result, the interest of ecologists in this 

subject is constantly increasing, and various attempts have been made to 

theoretically predict solutions to issues that arise in the real world. The 

researchers have developed several kinds of mathematical models for issues 

encountered in the real world. The theory of predator-prey mathematical 

modelling was established in 1920. Predator-prey systems that may show 

interactions between prey-predator species are crucial in the biological field. 

The first mathematically realistic models with two or more interacting species 

were developed by Lotka [38] and Volterra [39]. When the ecological law of 

nature was discovered, Lotka and Volterra developed the first predator-prey 

model with the differential equation which is referred to as the Lotka-Volterra 

equation. Their model is now considered the basis for several models and 

research. Many models are modified versions of the prey-predator model [40]–

[44]. The modified versions of predator-prey models include plant-herbivore 

models, Leslie-Gower predator-prey models, and Gauss-type predator-prey 

models. Modified versions of the Lotka-Volterra predator-prey model are 
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frequently used to represent the dynamics of plant-herbivore interactions as well 

[45]–[47].  

Initially, the biologist Warder Allee [48] defined the term Allee effect in the 

1930s, which describes that certain factors related to an individual's fitness are 

positively influenced by the density of the population. In general terms, the 

Allee effect is a phenomenon observed within a population where the initial rate 

of growth per individual increases when the population is sparse, or when the 

growth rate at low density is positive in the first instance [30], [49]. Since 

conservation concerns and issues with rarity have increasingly attained 

prominence over the past few decades, this phenomenon has become the focus 

of interest [49]. The Allee effect is responsible for the increase in the risk of 

extinction when populations exist at low densities, introducing a population 

threshold that must be exceeded under certain circumstances for a population to 

successfully grow [50]. In the fisheries sciences, it is known as depensation [50], 

[51], and in epidemiology, it is recognized as the population threshold of 

susceptible individuals or eradication threshold, and an infectious disease is 

effectively eliminated from a population below this threshold [52]. The negative 

competition effect is an alternate term used in population dynamics to describe 

this phenomenon [53]. In more precise terms, the (component) Allee effect 

refers to the occurrence of a positive association between a specific aspect of 

individual fitness and the density of a population [54]–[56]. The Allee effect is 

triggered by several mechanisms. Mate limitation is the fundamental factor that 

leads to the occurrence of the Allee effect in populations of both plants and 

animals. Environmental factors, inbreeding depression, demographic genetics, 

feeding habits, interacting with society, predator satiation, cooperative defense, 

etc. are some of the other mechanisms [27], [49], [55]–[58]. Natural populations 

of plants [59], birds [60], insects [61], and animals [62] all exhibit the Allee 

effect. In recent years, there has been growing importance placed on 

comprehending the impact of the Allee effect on behaviour of the species, 

reproduction, and conservation efforts. The investigation and comprehension of 

the Allee effect have significant ecological and applied engineering 

applications, including Agropecuary, Fishing, and Forestry Industries. If plant 
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populations are sparsely scattered and low in density, plants can experience the 

Allee effect [63]–[65]. Populations are more vulnerable to extinction due to 

Allee effects, particularly in situations of severe predation or harvesting [66]. 

The Allee effect can be classified into two distinct categories: Strong and 

Weak. The strong Allee effect [54] or critical depensation [51] implies that a 

threshold population level, also known as the Allee threshold [51], [52], exists 

and the growth rate becomes non-positive when the density is extremely low. 

Conversely, when the growth rate at zero density is non-negative and there is 

no threshold population level, the weak Allee effect [56] or noncritical 

depensation [51] occurs [65], [67]–[76]. Species with strong Allee effects are 

more likely to exhibit less susceptibility to additional factors causing mortality, 

exhibit slower recovery rates, and increase their risk of extinction in comparison 

to other species [56]. The majority of predation models consider the influence 

of the Allee effect on the prey, without incorporating the functional response 

that signifies the variations in predation rates due to changes in density of prey. 

The quantitative assumption is that the functional response directly influences 

the extension of the region exhibiting bistability [77], [78]. Various types of 

population dynamics models, incorporating Allee effects were developed by 

Elaydi and Sacker [69]. Based on the biological supposition of the Allee effect, 

they developed several fitness functions, leading to corresponding models 

incorporating the Allee effect. Additionally, they demonstrated the existence of 

carrying capacity with asymptotically stable 2-periodic systems. Dennis [50] 

developed mathematical models that represent the risk of extinction, critical 

density, and growth in sparse populations suffering Allee effects. Both the prey 

and predator populations demonstrate herd behaviour and are prone to 

harvesting in a prey-predator system incorporating the Allee effect in the prey, 

according to Biswas et al. [79]. To support the mathematical conclusions, 

numerical examples and sensitivity analysis of the key parameters are provided. 

The Glanville fritillary, an endangered butterfly, was studied by Kuussaari et al. 

[61] for evidence of the Allee effect in natural populations. They revealed a 

relationship between the ability to find a mate and the rate at which a population 

grows and demonstrated that the emigration rate increases and the proportion of 
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mated females declines when local density decreases. To analyze the dynamics 

of competitive models involving intraspecific and two-species interactions 

incorporating the Allee effect, Wang et al. [53] utilized phase plane analysis and 

simulation. They proved that the Allee effect alone could result in alternate 

stable states in a two-species competitive system and that even in high 

population densities, both species may become extinct if interspecific 

competition is intense. Gonzalez-Olivares et al. [80] presented a set of ordinary 

differential equations with the Allee effect. They established that there exists 

topological equivalency between the majority of them, but they can have 

uncommon properties. A discrete-time predator-prey system with the Allee 

effect was considered by Wang et al [81]. It is investigated how the Allee effect 

stabilizes the populations of both prey and predators. Li et al. [82] demonstrated 

the existence and direction of a Hopf bifurcation, as well as the stability of the 

system using an aquatic diffusive predator-prey model, considering a double 

Allee effect on prey and pH-dependent capture rate. Aguirre et al. [83] 

investigated a predator-prey model that incorporates the Allee effect, supposing 

that environmental randomness is described by noise factors impacting both 

populations. It was demonstrated that the long-term survival of both populations 

could occur if there was a weak Allee effect. When a significant Allee effect is 

taken into consideration, it becomes possible for both species to extinct. Green 

paramecia and cyanobacteria are two examples of photo-autotrophic organisms 

that Ohkawa et al. [84] reported may exhibit the Allee. The finding is that the 

sensitivity of an autotrophic organism to the Allee effect can change as a result 

of a single-gene mutation. According to Asfaw et al. [27], the dynamics change 

more when noise is added to the herbivores than to the plants in the extended 

stochastic plant-herbivore model, considering the Allee effect. The 

investigation of the behaviour of a predator-prey model that incorporates a weak 

Allee effect and a non-monotonic functional response was studied by Lin et al. 

[85]. A nonlinear discretized predator-prey model, considering the nonlinear 

Allee effect in the prey as well as in both populations was the subject of Song's 

[86] investigation. He proved the stability and existence of the fixed points of 

the model through his findings. Furthermore, the dynamical behaviour can be 
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stabilized by a moderate Allee effect in predators. According to Fang et al. [87], 

who examined a Leslie-Gower model with a weak Allee effect, both the prey 

and predator populations will tend towards abundance if the Allee effect is 

intense. Additionally, they demonstrated that the Allee effect alone is able to 

change the stability and trigger supercritical Hopf-bifurcation. Recent 

ecological studies presented the possibility that two or more Allee effects 

provide mechanisms that act on a single population at the same time and the 

combined impact of certain occurrences has been termed multiple Allee effects 

[54], [78]. 

The logistic equation is frequently used in ecology and population biology to 

simulate the population of organisms. Many mathematical models have been 

proposed by combining the logistic model with the Allee effect and functional 

response. In 1959, Holling [88] introduced the functional response theory, 

which defines the rate at which a predator consumes prey and the size of the 

prey [26], [88], [89]. Holling categorized the functional response into three 

distinct kinds. The Holling type-I or rectilinear functional response is 

represented as: 𝑃(𝑥) = 𝑘𝑥, where 𝑥(𝑡) represents the prey biomass and 𝑘 is a 

positive constant. A saturation function is employed to define the amount of 

consumption because the Holling type-II  or hyperbolic response assumes that 

a single predator consumes food until it feels famished. Thus, the type-II  

functional response is: 𝑃(𝑥) = 𝑘𝑥 (1 + 𝑇ℎ𝑘𝑥)⁄ ; where 𝑥(𝑡) is the biomass of 

the prey, 𝑘 is the positive searching efficiency, and 𝑇ℎ called the average time 

for each prey [57], [90]. Herbivores feeding in patches where plants are 

concentrated in space usually exhibit type II functional response [91]. Predators 

who increase their search activity with increasing prey density exhibit Holling 

type-III or sigmoidal functional response. It is given by: 𝑌 =  
𝑎𝑇𝑡𝑋

𝑘 

1 + 𝑎𝑏𝑋𝑘 
, where 

𝑎 is the discovery rate and 𝑘 >  1 [92]. The plant-herbivore model under the 

Allee effect with Holling type-I functional response was presented by Kumar 

and Verma [59]. The presence of a strong Allee effect was seen in relation to 

the decline and disappearance of plant and herbivore populations. It was proved 

that the system is stable around the non-trivial point and becomes unstable when 
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the threshold value crosses the delay parameter, and Hopf-bifurcation occurs 

when there is a weak Allee effect. The theory of Holling type- II response was 

utilized by Dupke et al. [93] for the selection of herbivore habitats. A toxin-

determined functional response resulting from chemical defenses was 

established by Liu et al. [94] by modifying the traditional Holling type- II 

functional response in the plant-herbivore model, allowing herbivores to 

consume fewer plants. The Leslie-Gower predator-prey model, incorporating a 

Holling type-II response and considering a weak Allee effect was analyzed by 

Arancibia-Ibarra et al. [95] and reveals that both populations are able to coexist 

and exhibit oscillations. Moreover, they demonstrated the model's bistability for 

some fixed subset of parameters. Aziz-Alaoui and Okiye [96] developed a 

modification of the Leslie-Gower predator-prey model, incorporating a Holling 

type-𝐼𝐼 response and exhibits boundedness and stability about the interior point. 

Sengupta and Das [97] investigated the interpretation of the dynamical 

characteristics of the stochastic prey-predator model and non-autonomous 

deterministic using sigmoid functional response and derived the  permanence, 

persistence, non-persistence, and positivity. The Gauss-type predator-prey 

model, considering a sigmoid response as well as Allee effect was examined by 

Rojas-Palma and Gonzalez-Olivares [98]. They presented a description of the 

optimal harvest policy and fishing effort by solving the autonomous ordinary 

differential equations. The behaviour of the Eco-epidemiological model with 

SI-type disease in the prey and a nonlinear incidence rate was examined by Naji 

and Mustafa [99]. A Leslie-Gower predator-prey model was studied by Mishra 

et al. [100], who concluded that the model's instability could be caused by the 

prey only. Zhang et al. [101] investigated the Leslie-Gower predator-prey model 

with the harvesting system. The findings of harvesting showed that the 

concentration of the predator population is strictly declining and that, according 

to certain limitations, prey size has no impact. Yue [102] used a modified Leslie-

Gower model to study a prey refuge. The stability and the global attractivity of 

a non-zero equilibrium were investigated. Farajzadeh et al. [103] examined the 

stability behaviour of the interacting species by investigating the Gauss 

predator-prey model with one prey and two predators. 
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Delay differential equations (DDEs) have a historical background of over two 

centuries. The first applications of delay differential equations can be found in 

geometry and number theory. However, the topic gained prominence after 1940 

as a result of its application in engineering systems and control. A general theory 

of DDE was presented in Chapter II of the book "Delay-Differential Equations" 

[104]. Research has been conducted regarding the problem of the solution 

existence and the uniqueness characteristics of those solutions for delay-

differential equations. First-order nonlinear differential-delay equations were 

utilized by Mackey and Glass [105], which show the limit cycle oscillations and 

chaotic solutions to characterize dynamical respiratory systems. Cooke and 

Grossman [106] discussed how crucial it is to consider the time delays that are 

part of biological, physical, and social phenomena. A summary of recent 

advances in the stability and oscillation of autonomous delay differential 

equations was provided by Gopalsamy [107] in his book.  The stability and 

bifurcation phenomenon exhibited by DDEs involving two delays was 

investigated by Li et al. [108]. Numerical methods and a software programme 

for performing bifurcation analysis of delay differential equations were 

introduced by Engelborghs et al. [109]. Bocharov and Rihan [110] studied 

models of biological phenomena whose dynamics are better described by delay 

differential equations, and the tools for their solutions are numerical approaches. 

The distribution and nature of the roots of a transcendental polynomial of third 

degree were examined by Ruan and Wei [111]. A MATLAB code called 

DDE23 was written by Shampine and Thompson [112]  to solve delay 

differential equations with constant delays. A MATLAB package called DDE-

BIFTOOL was described by Engelborghs et al. [113], specifically designed for 

analyzing bifurcation behaviour in systems of DDEs that incorporate several 

fixed, discrete delays. An analysis of population dynamics through the 

examination of non-linear DDEs was conducted by Kubiaczyk and Saker [114] 

for oscillation and stability. By altering the parameters' values, Kuznetsov [115] 

investigated the nonlinear dynamics system and its bifurcation. Nonlinear delay 

differential equations involving population growth were studied by Lenbury and 

Giang [116]. The distribution and nature of the roots of an exponential 
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polynomial of the fourth degree were discussed by Li and Wei [117]. In 

biological models developed by several researchers dealing with the dynamics 

of single species populations, Ruan [118] incorporated time delays of one type 

or another. Roose and Szalai [119] examined the continuation and bifurcation 

phenomenon of DDEs. The distribution and nature of zeros of a fifth-degree 

transcendental polynomial were discussed in detail by Zhang et al. [120]. Smith 

[121] emphasized the key tools in his book to understand the background of 

delay differential equations and their application in different models. Kuang 

[122] demonstrated how the well-known MATLAB-based dde23 solver for 

delay differential equations developed by Shampine and Thompson can be used 

for numerically solving the most of delay differential equations and stability 

analysis. Huang et al. [123] conducted an analysis of the global stability in 

population dynamics, considering non-linear DDEs. To investigate the 

influence of time delay on plant biomass, Kalra and Kumar [124] proposed a 

model involving toxic metals. Li et al. [125] explored a herbivore-plant system 

incorporating time delay with reaction-diffusion equations and demonstrated 

that this model exhibits the characteristic of Hopf bifurcation. Sun et al. [126] 

constructed a mathematical model that illustrates the dual impact of time delay 

on herbivore populations. Their observations revealed that when time delay is 

coupled with space, it promotes the average density of herbivore populations 

during outbreaks, suggesting that time delay might influence the resilience of 

herbivore populations. Gazi and Das [127] examined a nutrient-based model 

depicting the interaction between plants and herbivores, incorporating delayed 

nutrient recycling. The model incorporated the number of herbivores attacking 

plants following Holling type-III functional response. They interpreted all 

analytical findings in ecological terms and compared them with computer 

simulations. 

In 1942, Hopf published his basic paper. As a parameter reaches a critical point, 

Hopf [128] introduced the concept of Hopf bifurcation, defining it as the 

occurrence of local birth or mortality of a periodic solution, which may be a 

self-excited oscillation, from an equilibrium. A complex conjugate pair of 

eigenvalues undergoes Hopf bifurcation when they become purely imaginary. 
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As a result, Hopf bifurcation can only be observed in systems with two 

dimensions or more. Hopf bifurcation was studied by Marsden et al. [129] with 

applications to particular issues, such as stability calculations. Hsu and Hwang 

[130] investigated the Hopf-bifurcation for the well-known prey-predator 

ecological model, Holling-Tanner. A comprehensive investigation of the impact 

of time on the collective dynamics of coupled limit-cycle oscillators on Hopf 

bifurcation was reported by Reddy et al. [131]. The relationships between 

stability theorems and the notions of simple and general Hopf bifurcations were 

elucidated by Manfredi and Fanti [132]. In Nicholson's blowflies equation, Wei 

and Li [133] demonstrated that an occurrence of Hopf bifurcation was observed 

as the delay parameter exceeded a certain threshold point. In the presence of 

non-linear prey harvesting, Gupta and Chandra [134] explored the analysis of 

Hopf-bifurcation, considering a modified Leslie-Gower prey-predator model. 

Zhang and Guo [135] investigated the analysis of stability and direction of 

Hopf-bifurcation by utilizing the application of the center manifold theorem and 

the well-known Van der Pol equation. Wang et al. [136] used the theory of 

normal-form and the center manifold theorem to study the stability analysis and 

direction of Hopf bifurcation within a model concerning phytoplankton-

zooplankton dynamics. Pal et al. [137] conducted an analysis of a predator-prey 

system characterized by intraspecific predator competition and the presence of 

a strong Allee effect in the prey population. They demonstrated that Hopf-

bifurcation could occur when the discrete delay exceeded a critical value and 

used the normal form method and center manifold theory to investigate the 

stability and direction of the Hopf-bifurcating periodic solution. Kalra and 

Kumar [138] established a model for the study of plant growth that includes 

compartments for the shoot and roots. The inclusion of a delay parameter in the 

system disrupts its stability and simultaneously leads to the occurrence of Hopf 

bifurcation. Singh [139] examined the SIR epidemic model and demonstrated 

that Hopf-bifurcation occurs under some circumstances. 

Dickinson and Galinas [140] developed the "Direct method" for the purpose of 

analyzing the sensitivity of ordinary differential equations with inaccurately 

known parameters. The sensitivity of the solution is measured by the partial 
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derivatives with respect to model parameters. Baker and Rihan [141] developed 

a novel approach for estimating the sensitivity of variables to model parameters 

and non-linearity effects in DDEs. In order to prepare consideration merit for 

application, Frey and Patil [142] discovered and compared all of the sensitivity 

methods utilized in various fields. Using adjoint equations and direct methods, 

Rihan [143] established a comprehensive theory for conducting sensitivity 

analysis in mathematical models incorporating delays. The model parameters 

were taken in this study to be constants. Kepler [144] employed both the adjoint 

method and the direct method to investigate the sensitivity of mathematical 

models. Based on Perumal and Gunawan method [145], if parametric sensitivity 

analysis is used indiscriminately, it may not only produce inaccurate results but 

also fail to accurately depict dynamics. The utilization of delay differential 

equations in dynamical systems, as well as their computational tools, parameter 

estimation, and sensitivity analysis, were examined by Rihan [146]. Wu [147] 

established a framework for functional structural plant models to be subjected 

to sensitivity analysis in order to understand the underlying biological 

processes. 

In plant-herbivore interactions, delay differential equations are not very 

prominent and widely used. Only a few instances of plant-herbivore dynamics, 

influenced by the Allee effect have been presented by utilizing DDEs. Due to 

herbivore damage and the use of inducible defenses, delay differential equations 

may frequently occur in interactions between plants and herbivores [23], [24], 

[148], [149]. Sun et al. [149] examined how time lags affect herbivore cycles. 

The necessary conditions for the existence and global attractiveness of a positive 

periodic solution, considering an impulsive delay differential equation 

incorporating the Allee effect were discovered by Yan et al. [150]. The findings 

improve and extend the existing theorems. Liz and Ruiz-Herrera [66] 

demonstrated how the interaction of Allee effects and harvest strength causes 

collapses as a result of overexploitation. Moreover, when population densities 

are at levels that would ensure survival with smaller time delays, the interaction 

between large delays and Allee effects can lead to extinction. Furthermore, they 

revealed that when harvesting effort increases, a stable equilibrium loses 
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stability, leading to sustained oscillations, whereas equilibrium again stabilizes 

due to increased death rates. A set of non-linear DDEs was employed to 

investigate the effect of time lag on the extinction of toxicant-affected plant 

populations [124], [151], [152]. The aspect of time delay in the plant population 

has been investigated under the inhibitory and stimulatory allelopathic effects 

[153]. When predators consume infectious plants, there is a time lag for the 

gestation period. Delay differential equations thus play an important part in 

realistic models [138], [154]–[156]. 

1.3 Motivation and Background (Research Gap) 

From the study of the exclusive literature survey, the following research gaps 

have been identified:  

1. The earlier studies on Plant- Herbivore interaction reveal that a lot of work 

has been reported statistically in this field. 

2. There is some research has been done by using Ordinary differential 

equations on the Plant- Herbivore interaction. 

3. From the available literature, it can be seen that a limited work has been 

attempted on Plant- Herbivore dynamics using Ordinary differential 

equations under the Allee effect. 

4. There is a lack of information in the existing literature regarding Plant- 

Herbivore dynamics where Delay differential equations are used under the 

Allee effect. 

1.4 Hypothesis (Scope of Study) 

Nowadays, a lot of researchers are interested in the dynamics of plants and 

herbivores. Plant growth dynamics is significantly impacted by the Allee effect. 

Several mathematical models that describe the dynamics of plants and 

herbivores were proposed by the researchers. In competing mathematical 

models, ordinary differential equations are very useful for studying the 

dynamics of plant-herbivore interactions under the Allee effect with various 

kinds of functional responses. Moreover, a delay is incorporated into the model 

because the Allee effect periodically takes time to manifest; this time period is 
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known as the Allee effect's incubation period. Therefore, the delay differential 

equations and delay parameter are used to describe the incubation period. 

1.5 Proposed Objectives of the study 

After an exhaustive literature survey, the following objectives have been 

selected to fill the research gaps for the present research work: 

1. To model Plant- Herbivore dynamics with strong Allee effect in plant 

population using Delay differential equations.  

2. To model Plant- Herbivore dynamics with weak Allee effect using Delay 

differential equations.  

3. To perform stability analysis, Hopf bifurcation and sensitivity analysis of 

the proposed model. 

1.6 Basic concepts of general plant physiology used in 

the thesis 

1.6.1 Structure and Storage 

Plant models are always based on a substantially oversimplified representation 

of the real system. Plant material is classified into two kinds: structure and 

storage, which is a simplification with what seems to be some physiological 

importance [1]. 

Let 𝑊 stand for the dry weight of the plant under consideration, and let 𝑊𝐺 and 

𝑊𝑆 represent the structural and storage components of the total dry weight, 

respectively, so that 

 𝑊 = 𝑊𝐺 + 𝑊𝑆 (1.1) 

Using a simple definition of "growth" as the dry matter increment and 

differentiating equation (1.1) with respect to time t, it follows that the total 

growth rate is composed of two components: 

 
𝑑𝑊

𝑑𝑡
=

𝑊𝐺

𝑑𝑡
+

𝑊𝑆

𝑑𝑡
 (1.2) 
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The total growth rate 
𝑑𝑊

𝑑𝑡
, is composed of the structural growth rate 

𝑊𝐺

𝑑𝑡
, and the 

storage growth rate 
𝑊𝑆

𝑑𝑡
. With a positive structural growth rate and a negative 

storage growth rate, a plant can therefore have a negative total growth rate. An 

illustration of this is overnight growth, during which the storage material of 

many plants is significantly reduced, significant structural growth occurs, and 

the overall dry weight decreases as a result of respiration. The relative growth 

rate (RGR) or specific growth rate, which is denoted by the sign 𝑅𝑊 in 

physiology, is a quantity that is determined by: 

 𝑅𝐺 =
1

𝑊

𝑑𝑊

𝑑𝑡
 (1.3) 

In terms of the total dry weight, which includes both structure and storage, a 

specific growth rate is defined. Calculating a specific structural growth rate 𝜇𝐺 

is more beneficial, which is defined by: 

 𝜇𝐺 =
1

𝑊𝐺

𝑑𝑊𝐺

𝑑𝑡
 (1.4) 

1.6.2 Plant Growth Curve 

The plant grows slowly and sluggishly at the beginning (lag phase). Following 

then, the plant's growth increases quickly (exponential phase). Due to nutrient 

restriction, the growth rate now gradually decreases (stationary phase). A plant 

growth curve refers to the usual sigmoid or S-shaped curve generated by 

plotting growth and time (Figure 1.1) [157]. 
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Figure 1.1 Plant Growth Curve 

1.6.3 Plant Growth Rate 

The impact of a limiting resource on plants at the individual, population, and 

ecosystem levels of an organization is known as the plant-resource interaction. 

A growth-rate dependence on nutrition availability at the individual level can 

be expressed as [158]: 

 𝑟(𝑅) = 𝜂𝜇𝑚𝑊𝑟

𝑅

𝑘𝑅 + 𝑅
 (1.5) 

In the above equation, 𝑅 stands for nutrient availability, 𝜂 for nutrient use 

efficiency, 𝑊𝑟 for the proportion of total biomass that is allocated to root mass, 

𝜇𝑚 for the resource-saturated rate of resource uptake per unit of root mass, and 

𝑘𝑅 for the half-saturation constant for nutrient uptake. 

1.6.4 Allee effect 

A biological phenomenon, known as the Allee effect is defined by a 

correspondence between the density of a population and the average fitness of 

its individuals, which is typically measured as the per-individual population 

growth rate [48]. There are two distinct kinds of Allee effects: Strong Allee 

effect and Weak Allee effect, which are shown in figure 1.2 and figure 1.3 [159]. 

A weak Allee effect refers to situations where the density of a population is low 

and the per capita growth rate increases with an increasing population, although 

it is always positive. 
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When population density is low, the Allee effect is strong, meaning that the per 

capita growth rate increases with the increasing population. However, when 

density is zero, the Allee effect exhibits a negative impact below a certain 

threshold referred to as the Allee threshold. 

 

Figure 1.2 Weak Allee effect 

 

 

Figure 1.3 Strong Allee effect 

For example, if 𝑥 =  𝑥(𝑡) refers to the density of a population, the following is 

the prominent continuous growth equation to describe the Allee effect: 

 
𝑑𝑥

𝑑𝑡
= 𝑟 (1 −

𝑥

𝐾
) (𝑥 − 𝑚)𝑥 (1.6) 

known as the multiplicative Allee effect.  
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Consider the natural growth function provided by the following equation: 

 
𝑑𝑥

𝑑𝑡
= 𝑟 (1 −

𝑥

𝐾
 −

𝑚

𝑥 + 𝑏
)𝑥 (1.7) 

Here it is additive Allee effect. It is clear that if 𝑚 ≤ 0, then there is a weak 

Allee effect, and if 𝑚 > 0, then there is a strong Allee effect [78]. 

1.6.5 Functional Response 

According to Holling's [88] research, the predation rate increases as the density 

of the prey population increases. Two factors contribute to this: 

a) Whenever a predator is exposed to a higher prey density, their consumption 

rate increases. 

b) The density of predators increases as prey density increases.  

Holling considered these impacts as two distinct kinds of predator population 

responses to prey density: Functional response and Numerical response. 

The functional response is the term used to describe the relationship between 

the density of a prey population and the number of successfully attacked prey 

per predator. It explains how a predator responds to varying prey density. 

Functional responses are typically divided into three categories, known as 

Holling's type 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼 functional responses. Figure 1.4 represents these 

functional responses [160]. 
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  Figure 1.4 Holling's type 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼 functional responses 

1.6.5.1 Type-𝑰 Functional response 

The first kind is the most basic of the three functional responses. Type- 𝐼 is 

assumed by the Lotka-Volterra equations, which state that the consumption rate 

increases linearly with prey density. The linear increase is based on the 

supposition that the processing time for food items by consumers is negligible. 

Figure 1.3 depicts the Type-I functional response, which exhibits a linear 

relationship between the quantity of prey consumed and the density of prey. The 

Type-I functional response cane be expressed as: 

 𝐶 = 𝛼𝑁 (1.8) 

where 𝐶 is the capturing rate, 𝛼 is a proportionality constant determined by the 

rate of encounters between predators and prey and 𝑁 is the density of prey [88], 

[92], [160]. 

1.6.5.2 Type-𝑰𝑰 Functional response 

According to the assumption that the consumer is constrained by its capacity to 

process food, the Type-𝐼𝐼 functional response shows that the rate of 

consumption increases with density of prey but eventually declines until it 

reaches a plateau while consumption rate remains constant regardless of density 

of prey. Type- 𝐼𝐼 functional response is given by: 
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 𝐶 =
𝛼𝑁

1 + 𝛼𝑡𝑁
 (1.9) 

where 𝑡 is handling time [92], [160]. 

1.6.5.3 Type- 𝑰𝑰𝑰 Functional response 

The functional response of type- 𝐼𝐼𝐼 is comparable to type- 𝐼𝐼 at high prey 

densities. However, at low levels of prey density, when there is an increment in 

the prey density, the rate of predation increases, but as prey density gets higher 

even further, it abruptly declines. A type- 𝐼𝐼𝐼 functional response is S-shaped or 

sigmoidal. Therefore, type-𝐼𝐼𝐼 functional response is of the form [92], [160]: 

 𝐶 =
𝛼𝑁2

1 + 𝛼𝑡𝑁2
 (1.10) 

1.7 Biological Significance of the study 

The study describes distinct mathematical models analyzing the impact of the 

delay parameter on plant and herbivore populations under the Allee effect. The 

findings provide insights into how plant-herbivore dynamics may be influenced 

by ecological and biological factors: 

i. Allee Effect: The Allee effect may result from cooperative behaviors, 

increased mating success, or other mechanisms. 

ii. Strong Allee Effect and Extinction: The study reveals that under a strong 

Allee effect, both plant and herbivore populations can experience extinction. 

This extinction could be due to mechanisms such as cooperative behaviors 

for finding mates or protecting against predators, which are more effective 

at higher population densities. If the population falls below a critical 

threshold, these cooperative behaviors may become ineffective, leading to 

extinction. This suggests that the positive effects on individual fitness at low 

population densities may lead to insufficient reproduction and survival 

when populations are too small. 

iii. Stability Analysis with Delay (𝝉): The delay parameter (𝜏) represents a 

time delay in the response of populations to changes in density or 

environmental conditions. When there is no delay (𝜏 = 0), the equilibrium 
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point 𝐸∗ is shown to be absolutely stable, indicating that the populations 

reach a stable state without fluctuations. As the delay increases but remains 

below a critical value, the equilibrium point 𝐸∗ becomes asymptotically 

stable. This means that the populations eventually stabilize. 

iv. Hopf Bifurcation and Delay: When the delay surpasses a critical value, the 

stability of the equilibrium point 𝐸∗ becomes unstable, leading to the 

observation of Hopf bifurcation. The occurrence of Hopf bifurcation 

suggests that the introduction of a time delay in the system, beyond a critical 

threshold, can destabilize the populations. This could be interpreted in a 

biological context as the delayed response of populations to changes in the 

environment, resource availability, or other factors.  

In summary, the results suggest that the presence of the Allee effect, coupled 

with a time delay has significant implications for the stability and dynamics of 

plant and herbivore populations in the model which can lead to complex 

dynamics including extinction, stable equilibrium, and bifurcations in plant and 

herbivore populations. The critical value of the delay parameter plays a key role 

in determining the stability or instability of the system. 

1.8 Mathematical Preliminaries 

1.8.1 Existence of Unique, Bounded and Positive Solution of 

Delay differential equation 

A delay differential equation is a differential equation in which the present-time 

derivative depends on the solution and derivatives of earlier times. Here an 

initial history function, rather than an initial condition, needs to be defined. A 

delayed state variable can be used to demonstrate the past dependence of a 

differential equation. The derivative of the state variable is not required in this 

case. The corresponding delay differential equation, which includes a single 

delay 𝜏 > 0, can be expressed as follows [121]: 

 𝑥̇(𝑡) = 𝑓(𝑥, 𝑥(𝑡), 𝑥(𝑡 − 𝜏)) (1.11) 
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Assume that 𝑓(𝑡, 𝑥, 𝑦) and 𝑓𝑥(𝑡, 𝑥, 𝑦) are continuous on 𝑅3. Let 𝑠 ∈ 𝑅 and 

∅: [𝑠 − 𝜏, 𝑠] → 𝑅 be continuous. We require a solution 𝑥(𝑡) of equation (1.11) 

satisfying: 

 𝑥(𝑡) = ∅(𝑡), 𝑡 ∈ [𝑠 − 𝜏, 𝑠], 𝑥(0) = 𝑥0 (1.12) 

And satisfying equation (1.11) on 𝑡 ∈ [𝑠, 𝑠 + 𝜎] for some 𝜎 > 0. 

Theorem 1.7.1.1 (Existence of unique solution). Let 𝑓(𝑡, 𝑥, 𝑦) and 𝑓𝑥(𝑡, 𝑥, 𝑦) 

are continuous on 𝑅3. Let 𝑠 ∈ 𝑅 and ∅: [𝑠 − 𝜏, 𝑠] → 𝑅 be continuous. Then 

∃ 𝜎 > 𝑠 and a single solution that is unique to the initial-value problem (1.11)-

(1.12) on [𝑠 − 𝜏, 𝜎]. 

Theorem 1.7.1.2 (Boundedness of solution).  Let 𝑓 satisfy the hypothesis of 

theorem 1.7.1.1 and assuming 𝑥: [𝑠 − 𝜏, 𝜎) → 𝑅 is the solution to the initial 

value problem (1.11)- (1.12), that is not continuous. If 𝜎 < ∞ then 

lim
𝑡→𝜎−

|𝑥(𝑡)| = ∞. 

Remark 1.7.1.3 Theorems 1.7.1.1 and 1.7.1.2 can be expanded to include the 

scenario where 𝑥 ∈ 𝑅𝑛 and 𝑓: 𝑅 × 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛. Additionally, these 

theorems can also be applied to situations involving multiple discrete delays 

𝜏0 < 𝜏1 < ⋯ < 𝜏𝑚 where 𝑓 = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏0), 𝑦(𝑡 − 𝜏1),… , 𝑦(𝑡 − 𝜏𝑚)). 

Theorem 1.7.1.4 (Positivity of solution). Suppose that 𝑓: 𝑅 × 𝑅+
𝑛 × 𝑅+

𝑛 →

𝑅𝑛satisfies the hypothesis of theorem 1.7.1.1 and remark 1.7.1.3 and for all 𝑖, 𝑡 

and for all 𝑥, 𝑦 ∈ 𝑅+
𝑛:  

𝑥𝑖 = 0 ⇒ 𝑓𝑖(𝑡, 𝑥, 𝑦) ≥ 0 

When the initial data ∅ in equation (1.12) satisfies ∅ ≥ 0, the resulting solution 

𝑥(𝑡) of equation (1.11) will also satisfy 𝑥(𝑡) ≥ 0 ∀ 𝑡 ≥ 𝑠, where the solution is 

defined. 

1.8.2 Stability by Variational matrix method 

Let an autonomous system of equations be  
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𝑑𝑦

𝑑𝑡
= 𝑓(𝑦) (1.13) 

where 𝑦 is an 𝑛-tuple vector i.e. 𝑦 = (𝑦1, 𝑦2, − − −𝑦𝑛). Let 𝜙(𝑡)  be the 

solution of system (1.13). The linear part of the expansion of the system (1.13) 

about 𝜙(𝑡) is given by the variational equation (1.13) with respect to 𝜙(𝑡), 

written as: 

 
𝑑𝑥

𝑑𝑡
= 𝑓𝑦(𝜙(𝑡))𝑥 (1.14) 

where 𝑓𝑦(𝜙(𝑡)) =
𝑑𝑓𝑖

(𝑑𝑦𝑗)𝑛×𝑛

 at 𝜙(𝑡). Since the stability of the variational system 

depicts the stability of any solution of a non-linear system governed by it, the 

stability of 𝑥 = 0 of (1.14) determines the stability of 𝑦 = 𝜙(𝑡) of (1.13). 

Particularly, when 𝜙(𝑡) = 𝜙0, a constant, the system (1.13) becomes:  

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 (1.15) 

where 𝐴 = 𝑓𝑦(𝜙0). Since a small perturbation of the system (1.13) is 

represented by the system (1.14), the stability of 𝑦 = 𝜙0 of (1.15) gives the 

stability of the solution of 𝑥 = 0 of (1.14). The description of the stability of 

every solution of 𝑥′ = 𝐴𝑥 is given by following theorems [161]. 

Theorem 1.7.2.1 If every characteristic root of 𝐴 has −𝑣𝑒 real part, then every 

solution of the system 𝑥′ = 𝐴𝑥, where 𝐴 = (𝑎𝑖𝑗) is a constant matrix, and is 

asymptotically stable. 

Theorem 1.7.2.2 If every characteristic root of 𝐴 with multiplicity grater than 

one has −𝑣𝑒 real part and all its roots with multiplicity one have non-positive 

real parts, then every solution of the system  𝑥′ = 𝐴𝑥 is bounded and therefore 

stable. 

By referring to the theorem [161], one can determine the sign of the real parts 

of the roots found in the characteristic equation. 

Theorem 1.7.2.3   Hurwitz’s Theorem. An essential and adequate prerequisite 

for ensuring the negativity of the real parts of every root of the polynomial  
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𝐿(𝜆) = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 + − − − − +𝑎𝑛 with real coefficients 

representing the positivity of every principal diagonal of the minors of the 

Hurwitz matrix 

𝐻𝑛 =

[
 
 
 
 
𝑎1

𝑎3

𝑎5

1
𝑎2

𝑎4

0   0 0    0 ⋯ 0
𝑎1 1 0    0 ⋯ 0
𝑎3 𝑎2 𝑎1 1 ⋯ 0

⋮ ⋮   ⋮    ⋮  ⋮    ⋮  ⋯ 0
0 0  0   0   0  0  ⋯ 0]

 
 
 
 

 

& With the help of Routh- Hurwitz we can calculate the stability of the system, 

whether the system is stable or not stable. For stability we check the first column 

of Hurwitz must be positive & 𝑎1 > 1. If any value of the first column is 

negative & 𝑎1 < 1, then the system is unstable. The Hurwitz is called an 

auxiliary polynomial. The order of the auxiliary polynomial is always even. 

Theorem 1.7.2.4 Let ς1,ς2 … . ςm are all positive and 0 is included and ζi
j(j =

0,1,2, …m: i = 1,2, … n) remains constant. The alteration of the summation of 

the orders of the zeros of exponential polynomial P(χ, e−χς1 , … . , e−χςm) on the 

open right half plane is only possible if a zero emerges on the imaginary axis or 

crosses it, as (ς1, ς2, … , ςm) undergo variations, where 

P(χ, e−χς1 , … . , e−χςm) = χn + ζ1
0χn−1 + ⋯+ ζn−1

0χn + ζn
0 +

[ζ1
1χn−1 + ⋯+ ζn−1

1χn + ζn
1]e−χς1 + ⋯+ [ζ1

mχn−1 + ⋯+ ζn−1
mχn +

ζn
m]e−χςm  

The proof of this theorem, initially established by Ruan and Wei [111], [162], 

relies on the application of Rouche's theorem [163].  

1.8.3 Hopf-Bifurcation 

Hopf's crucial contribution was the extension from two dimensions to higher 

dimensions. Sometimes Hopf bifurcation is also called as “Poincaré-Andronov-

Hopf bifurcation”[164]. The Hopf-bifurcation theorem explains how a 

topological characteristic of a flow changes when one or more parameters are 

modified. The key observation is that if the stationary point is hyperbolic, that 

means if eigenvalues of the linearized flow at the stationary point, all possess 

non-zero real parts, then the local behaviour of the flow is entirely determined 

by the linearized flow. Consequently, bifurcations of stationary points can only 
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be observed at parameter values where the stationary point becomes non-

hyperbolic. More, precisely, the bifurcation value of a parameter is a value at 

which the qualitative nature of the flow changes. 

Analyzing the Hopf bifurcation is significantly more challenging due to the 

presence of a non-hyperbolic stationary point with linearized eigenvalues ∓𝑖𝜔, 

resulting in a two-dimensional center manifold. In addition, the bifurcating 

solutions associated with the Hopf bifurcation are periodic in nature rather than 

stationary. As a result, the complexity of analyzing the Hopf bifurcation is 

several orders of magnitude higher. 

Theorem 1.7.3.1 Hopf-Bifurcation Theorem.   

Let us consider a one-parameter family of delay equations 

 𝑥′(𝑡) = 𝐹(𝑥𝑡, 𝜇) (1.16) 

Considering that 𝐹: 𝐶 × 𝑅 → 𝑅𝑛 is twice continuously differentiable function 

with respect to its arguments and 𝑥 = 0 represents a steady state for all values 

of 𝜇: 𝐹(0, 𝜇) ≡ 0. 

Linearize the function F around ∅ = 0 in the following manner: 

𝐹(∅, 𝜇) = 𝐿(𝜇)∅ + 𝑓(∅, 𝜇) 

where 𝐿(𝜇): 𝐶 → 𝑅𝑛 represents a bounded linear operator and the function 𝑓 is 

of higher order: 

lim
∅→0

|𝑓(∅, 𝜇)|

‖∅‖
= 0 

The characteristic equation concerning 𝐿 can be expressed as given below: 

|𝜆𝐼 − 𝐴(𝜇, 𝜆)| = 0, 𝐴𝑖𝑗(𝜇) = 𝐿(𝜇)𝑖(𝑒𝜆𝑒𝑗) 

The roots of this equation constitute the main assumption. 

(H) The characteristic equation will be having two simple roots ∓𝑖𝜔, where 

𝜔0 ≠ 0 and there will be no other roots that are integer multiples of 𝑖𝜔0 for 𝜇 =

0. 

Here a root of order one means [165] a simple root.  

Let ℎ(𝜇, 𝜆) = 0 represents the characteristic equation, then (H) implies 

ℎ𝜆(0, 𝑖𝜔0) ≠ 0. So, by the implicit function theorem, ∃ a continuously 

differentiable family of roots 𝜆 = 𝜆(𝜇) = 𝛼(𝜇) + 𝑖𝜔(𝜇) for small 𝜇 which 
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satisfies 𝜆(0) = 𝑖𝜔0. Specifically, 𝛼(0) = 0 and 𝜔(0) = 𝜔0. The next 

supposition is that as 𝜇 increases through zero, the line of the imaginary axis is 

crossed transversally by these roots. The assumption is: 

 𝛼′(0) > 0 (1.17) 

In case 𝛼′(0) < 0,  we always ensure that equation (1.17) holds by changing 

the sign of the parameter i.e. we take parameter 𝑣 = −𝜇. Thus, the +𝑣𝑒 sign is 

a normalization that shows if 𝜇 < 0, then two roots have a −𝑣𝑒 real part, and if  

𝜇 > 0, then they have a +𝑣𝑒 real part. 

Theorem 1.7.3.2 Let (H) and equation (1.17) is true. Then ∃ 𝜀0 > 0, real-valued 

even function 𝜇(𝜀) and 𝑇(𝜀) > 0 which satisfies 𝜇(0) = 0 and 𝑇(𝜀) = 2𝜋
𝜔0

⁄ , 

and a non-constant 𝑇(𝜀)- periodic function 𝑝(𝑡, 𝜀) with all functions being 

continuously differentiable in 𝜀 for |𝜀| < 𝜀0, such that 𝑝(𝑡, 𝜀) is a solution of 

equation (1.16) and 𝑝(𝑡, 𝜀) = 𝜀 𝑞(𝑡, 𝜀) where 𝑞(𝑡, 0) is a 2𝜋
𝜔0

⁄ -periodic 

solution of 𝑞′ = 𝐿(0)𝑞. 

Additionally, ∃ 𝜇0, 𝛽0, 𝛿 > 0 such that if equation (1.16) has a non-constant 

periodic solution 𝑥(𝑡) of period 𝑃 for some 𝜇 satisfying |𝜇| < 𝜇0 with 

𝑚𝑎𝑥𝑡|𝑥𝑡| < 𝛽0 and |𝑃 − 2𝜋
𝜔0

⁄ | < 𝛿, then 𝜇 = 𝜇(𝜀) and 𝑥(𝑡) = 𝑝(𝑡 + 𝜃, 𝜀) 

for some |𝜀| < 𝜀0 and 𝜃. 

Assuming that 𝐹 is a function that is five times continuously differentiable, the 

following holds: 

 𝜇(𝜀) = 𝜇1𝜀
2 + 𝑂(𝜀4) (1.18) 

 𝑇(𝜀) =
2𝜋

𝜔0

[1 + 𝜏1𝜀
2 + 𝑂(𝜀4)] (1.19) 

If, for 𝜇 = 0, all the remaining characteristic roots exhibit strictly negative real 

parts, other than ∓𝑖𝜔, then 𝑝(𝑡, 𝜀) will be asymptotically stable when 𝜇1 > 0 

and unstable when 𝜇1 < 0. 
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1.8.4 Sensitivity Analysis of State Variables with respect to 

Model Parameters 

Systematic evaluation of the effects of model parameters on system solutions is 

called sensitivity analysis. There are a number of methods to do a sensitivity 

analysis of systems without delay, but there are only a few methods for 

sensitivity analysis of systems involving delays. The knowledge of how a small 

change in model parameters can bring change in the state variable can be a great 

help in the modelling process. It helps in the elimination of ineffective and 

irrelevant parameters. It gives a complete insight into the overall behaviour of 

the proposed model.  

If all the parameters in the given system (1.11)- (1.12) are considered constants, 

the sensitivity analysis involves the calculation of partial derivatives of the 

solution with respect to parameters [143]. The following is the form of a matrix 

of sensitivity functions: 

 𝑆(𝑡) ≡ 𝑆(𝑡, 𝛼) = [
𝜕

𝜕𝛼
]
𝑇

𝑥(𝑡, 𝛼) (1.20) 

Its 𝑗𝑡ℎ column is:    

𝑆𝑗(𝑡, 𝛼) = [
𝜕𝑥𝑗(𝑡, 𝛼)

𝜕𝛼1
,
𝜕𝑥𝑗(𝑡, 𝛼)

𝜕𝛼2
, … ,

𝜕𝑥𝑗(𝑡, 𝛼)

𝜕𝛼𝑛
 ]

𝑇

 

This column vector gives the sensitivity of the solution 𝑥𝑗(𝑡, 𝛼) for a small 

change in parameter 𝛼𝑖, 𝑖 = 1,2,3, … , 𝑛. 

Theorem 1.7.4.1 𝑆(𝑡) satisfies the delay differential equation: 

 𝑆′(𝑡) = 𝐽(𝑡)𝑆(𝑡) + 𝐽𝜏(𝑡)𝑆(𝑡 − 𝜏) + 𝐵(𝑡), 𝑡 ≥ 0 (1.21) 

where 𝐽(𝑡) =
𝜕

𝜕𝑥
𝑓(𝑡, 𝑥, 𝑥𝜏),   𝐽𝜏(𝑡) =

𝜕

𝜕𝑥𝜏
𝑓(𝑡, 𝑥, 𝑥𝜏),   𝐵(𝑡) =

𝜕

𝜕𝛼
𝑓(𝑡, 𝑥, 𝑥𝜏) 

1.9 Summary 

This thesis consists of six chapters whose detail is as follows: 

 

In Chapter-1, The general introduction of the subject matter is given. Some 

important concepts of plant physiology, the Allee effect, and Functional 
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responses are mentioned. The descriptions of all the necessary mathematical 

concepts are given, which have also made it possible to conduct analytical and 

numerical analysis of all the mathematical models that have been proposed. 

Additionally, a thorough analysis of earlier research in the area of plant-

herbivore dynamics with the Allee effect is included in the form of a literature 

review. 

In Chapter-2, A mathematical model is utilized to examine the dynamics of the 

interaction between plants and herbivores, considering the Allee effect to 

analyze the influence of delay parameter on both populations. It is demonstrated 

that solutions are positive and bounded. The non-trivial equilibrium point is 

determined for both, the strong and weak Allee effects. Under the strong Allee 

effect, it is determined that both populations experience extinction. The stability 

of the system is examined with respect to the interior equilibrium point under 

the influence of the weak Allee effect. The analysis demonstrates that when 

there is a negligible delay, the equilibrium point is proven to be absolutely 

stable, and when the time delay is lower than a threshold value, it becomes 

asymptotically stable. Additionally, the equilibrium point becomes unstable, 

leading to the occurrence of Hopf- bifurcation when the time delay exceeds the 

threshold value. The numerical examples have been presented by utilizing 

MATLAB code dde23 to justify the analytical results. 

In Chapter-3, A mathematical model of delayed plant-herbivore consolidating 

the strong Allee effect with intraspecific competition among herbivores is 

analyzed. The Holling type- 𝐼𝐼 functional response is utilized which describes 

that an individual predator consumes food till it reaches the saturating value of 

the prey consumption rate. The time delay (𝜏) is also considered in the model 

due to which the equilibrium loses stability. The non-trivial equilibrium point 

is determined for the strong Allee effect. The observation of Hopf- bifurcation 

is shown at the crucial value of the time delay. Furthermore, it is found that the 

entire system becomes more and more stable while the intraspecific competition 

rate of herbivores (𝛿) keeps on increasing as represented in time series graphs. 

MATLAB software is utilized to graphically present the analytical findings.  
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In Chapter-4, An eco-epidemiological model under the weak Allee effect 

accompanied by Holling type- I functional response is studied. The 

mathematical model is composed of susceptible plants, infectious plants, and 

herbivores. It is assumed that herbivores consume only infectious plants and 

infectious plants are generated by the infection of susceptible plants. The use of 

delay differential equations plays a vital role to make the model more realistic. 

Furthermore, stability at the non-zero equilibrium is carried out. The behaviour 

of the system becomes unstable and exhibits asymptotic stability when the value 

of time lag is below the threshold point and the system undergoes Hopf-

bifurcation when the value of time lag crosses the threshold point. Sensitivity 

analysis of the state variables with respect to the herbivores gain by consuming 

infectious plants and the mortality rate of herbivores is represented graphically. 

Numerical examples are shown with the help of MATLAB software. 

In Chapter-5, A modified Leslie-Gower plant-herbivore model is studied under 

the Allee effect. The model is modified by incorporating Holling type- II 

functional response and delay differential equations. The non-trivial 

equilibrium of the proposed model is calculated. Moreover, the stability and 

instability of the state variables are described graphically. It is shown that the 

system represents absolute stability when the system has no time parameter (𝜏). 

At a specific threshold value of the time parameter, Hopf bifurcation is 

observed, leading to the emergence of periodic solutions. The time series graphs 

are also represented to demonstrate that the system becomes more stable with 

the maximum rate of predation. MATLAB software is used to perform the 

graphs to justify the theoretical results. 

In Chapter-6, A delayed Gauss-type Plant-herbivore model is proposed with 

Holling type-III functional response which describes the matter of fact that the 

predation on plant population by herbivores becomes more intensive when there 

is an increment in plant population. The Allee effect influences the growth of 

plants. The insertion of the time parameter (𝜏) is demonstrated to change the 

behaviour of the system which leads to introduce complex dynamics with limit 

cycles, periodic solutions, and the bifurcation occurrence. By considering the 

time parameter as a bifurcation parameter, the stability analysis of the feasible 
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non-trivial equilibrium is investigated. The change of behaviour of the system 

from being absolutely stable to asymptotically stable and then finally Hopf-

bifurcation at equilibrium for distinct values of time parameter (τ) is 

represented graphically. The change in system behaviour triggered by changes 

in the model parameters that differ from the time parameter is depicted 

graphically. MATLAB software is used to perform numerical simulations. 

  

In the end, a bibliography is included to justify the problems that were 

encountered during the study of this thesis. 
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Chapter 2  

Impact of Delay parameter on Plant-

Herbivore dynamics under Allee effect 

2.1 Introduction 

Ecology is the branch of science that studies the relationships between living 

things and their environments. Plant ecology is a branch of ecology that 

concentrates on the study of the dispersal, abundance, and interactions of plants 

with both the biotic and abiotic components of the environment. The plant-

herbivore dynamics is one of the most fundamental processes in ecology. It is 

often characterized by non-linear and complex relationships that accelerate 

thresholds by which slight and weak changes in processes operate at smaller 

scales and can effectively lead to significant and sudden changes at larger scales 

[19]–[21]. The interaction between plants and herbivores can be influenced by 

factors except population sizes or biomass. The predator-prey system is the 

classical approach to modelling the plant-herbivore system [22], [24], [37]. 

Lotka [38] and Volterra [39] formulated the first differential equation model of 

the predator-prey type, known as the Lotka-Volterra equation during the 1920s 

when the discovery of ecological laws of nature was undertaken. The impact of 

herbivores on plants leads to changes in the physical, chemical, and nutritional 

composition of the leaves [10]. Individual herbivores' growth and reproduction 

are negatively affected by these inducible changes; for example, see [8], [9]. 

These inducible changes are often termed inducible defenses in plant quality, 

and these inducible defenses can frequently have a significant influence on 

herbivore population dynamics [10]. Some herbivore populations experience 

population crashes as a result of inducible defenses [11], [12] and cyclic 

fluctuations in others [13], [14]. Numerous models supporting these arguments 

describe interactions between predator and prey, assuming that the variations in 

the predator abundance are caused by variations in the prey abundance [15], 

[16]. O' Connor et al. [6] proposed five different consumer-prey models. They 
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discovered that environmental factors affect herbivores and plant abundances in 

response to temperature. Delay differential equations may frequently occur in 

plant-herbivore interactions due to damage to herbivores and the deployment of 

inducible defenses [24], [37], [148]. Sun et al. [149] investigated how the 

herbivore cycles are effected by time lags. Allee [48] introduced the concept of 

the Allee effect, which defines a positive association between individual fitness 

components and density of a population. There are two classifications of Allee 

effects: Strong Allee effect and Weak Allee effect. A strong Allee effect occurs 

when per individual growth rate becomes negative and there is a low population 

density. In contrast, a weak Allee effect occurs when there is a positive per 

individual population growth rate is observed and its density is zero [67]. Lin et 

al. [85] examined the behaviours of a predator-prey model incorporating a non-

monotonic functional response and weak Allee effects specifically on the prey 

population. Asfaw et al. [27] considered a stochastic extension of a model in 

their research. They reported that noise adding to the plant population caused 

less change in the dynamics than noise adding to the herbivore population. 

Although a lot of research has been conducted on plant-herbivore dynamics, the 

utilization of delay differential equations is not commonly employed in this 

field. Considering this fact, a mathematical model is presented to examine the 

dynamics of the plants and herbivores under the Allee effect by introducing a 

delay parameter. 

2.2 Mathematical Model 

The dynamics of Plant population and Herbivores is governed by the following 

equations: 

 
d𝑃

d𝑇
= 𝑟𝑃 (1 −

𝑃

𝐾
) (𝑃 − 𝑎) − 𝑏𝑃𝐻 (2.1) 

 
d𝐻

d𝑇
= 𝑐𝑃(𝑡 − 𝜏)𝐻 − 𝑙𝐻 (2.2) 

With initial conditions 𝑃(0) > 0,𝐻 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑇 ≥ 0, and 𝑃(𝑡 − 𝜏) =

𝜀, Contant for all 𝑡 ∈ [0, 𝜏]. 
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Also,  𝑃 ≤ 𝐾, and all the parameters 𝑟, 𝐾, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑙 are taken as positive 

constants. Furthermore, 𝑎 > 0 for strong Allee effect and 𝑎 ≤ 0 for weak Allee 

effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Non-dimensionalization 

2.3.1 For Strong Allee effect 

For non- dimensionalization, let 𝑥 =
𝑃

𝐾
, 𝑦 = 𝐻, 𝑡 = 𝐾𝑟𝑇. The re-scaled system 

becomes: 

 
d𝑥

d𝑡
= 𝑥(1 − 𝑥)(𝑥 − 𝛼) − 𝛽𝑥𝑦 (2.3) 

 
d𝑦

d𝑡
= 𝛾𝑥(𝑡 − 𝜏)𝑦 − 𝛿𝑦  (2.4) 

Variables/Parameters Description 

𝑷(𝑻) Plant population 

𝑯(𝑻) Herbivores 

𝒓 Plant intrinsic growth rate 

𝑲 Carrying capacity of the 

environment 

𝒂 Allee threshold 

𝒃 Capturing rate/Harvesting 

rate 

𝒄 = 𝒆𝒃 Conversion rate of plants 

into herbivores 

𝒍 Death rate of Herbivores 

𝝉 Delay Parameter 

Table 2.1 Description of the parameters/variables of the system. 
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where 𝛽 =
𝑏

𝐾𝑟
, 𝛼 =

𝑎

𝐾
, 𝛾 =

𝑐𝑏

𝑟
 𝑎𝑛𝑑 𝛿 =

𝑙

𝐾𝑟
 

2.3.2 For Weak Allee effect 

When considering the weak Allee effect, the system of equations (2.3)-(2.4) 

becomes: 

 
d𝑥

d𝑡
= 𝑥(1 − 𝑥)(𝑥 + 𝛼) − 𝛽𝑥𝑦 (2.5) 

 
d𝑦

d𝑡
= 𝛾𝑥(𝑡 − 𝜏)𝑦 − 𝛿𝑦 (2.6) 

2.4 Boundedness of Solutions 

Theorem 2.4.1 Solutions of the model (2.3)-(2.4) are uniformly bounded in 𝑅+.
2  

Proof: Consider, 

𝜒 = 𝑥 +
𝛽

𝛾−𝛿+𝜂
𝑦. 

⇒
d𝜒

d𝑡
=

d𝑥

d𝑡
+

𝛽

𝛾 − 𝛿 + 𝜂

d𝑦

d𝑡
 

= −𝑥3 + (1 + 𝛼)𝑥2 − 𝛼𝑥 − 𝛽𝑥𝑦 +
𝛽

𝛾−𝛿+𝜂
(𝛾𝑥𝑦 − 𝛿𝑦) 

Now for each 𝜂 > 0 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 1, we have 

d𝜒

d𝑡
+ 𝜂𝜒 =  −𝑥3 + (1 + 𝛼)𝑥2 − 𝛼𝑥 − 𝛽𝑥𝑦 +

𝛽

𝛾 − 𝛿 + 𝜂
(𝛾𝑥𝑦 − 𝛿𝑦) + 𝜂𝑥

+
𝜂𝛽

𝛾 − 𝛿 + 𝜂
𝑦 

= −𝑥3 + (1 + 𝛼)𝑥2 − 𝛼𝑥 + 𝜂𝑥 − 𝛽𝑥𝑦 +
𝛽𝛾

𝛾 − 𝛿 + 𝜂
𝑥𝑦 −

𝛽𝛿

𝛾 − 𝛿 + 𝜂
𝑦

+
𝜂𝛽

𝛾 − 𝛿 + 𝜂
𝑦 

≤ −𝑥3 + (1 + 𝛼)𝑥2 − 𝛼𝑥 + 𝜂𝑥 − 𝛽𝑦 +
𝛽𝛾

𝛾 − 𝛿 + 𝜂
𝑦 −

𝛽𝛿

𝛾 − 𝛿 + 𝜂
𝑦

+
𝜂𝛽

𝛾 − 𝛿 + 𝜂
𝑦 

≤ −𝑥3 + (1 + 𝛼)𝑥2 − 𝛼𝑥 + 𝜂𝑥 
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≤ (1 + 𝛼)𝑥2 − 𝛼𝑥 + 𝜂𝑥 

≤ 1 + 𝜂 

Therefore, it is possible to determine a positive value ω such that 

d𝜒

d𝑡
+ 𝜂𝜒 =  𝜔. 

To summarize, we have the following: 

d𝜒

d𝑡
≤ −𝜂𝜒 +  𝜔, 

This implies that  

𝜒(𝑡) ≤ e−𝜂𝑡𝜒(0) +
𝜔

𝜂
(1 − e−𝜂𝑡) 

≤ max (𝜒(0),
𝜔

𝜂
) 

Moreover, we have lim sup 𝜒(𝑡) ≤
𝜔

𝜂
< 𝑀 as 𝑡 → ∞, and it is not related to the 

initial conditions. 

2.5 Positivity of Solutions 

From equation (2.3): 

d𝑥

d𝑡
≥  −𝑥3 − 𝛼𝑥 − 𝛽𝑥𝑦 

⇒
d𝑥

d𝑡
≥  −𝑥(𝑥2 + 𝛼 + 𝛽𝑦) 

⇒ 𝑥 ≥ e−(𝛼+(1+𝜂))𝑡 

From equation (2.4): 

d𝑦

d𝑡
≥ −𝛿𝑦 

⇒ 𝑦 ≥ e−𝛿𝑡 

So, 𝑥 ≥ 0, 𝑦 ≥ 0 ∀ 𝑡 > 0. 

As a result, the solution set of the proposed system maintains positivity for all 

time 𝑡, ensuring the persistence of the system. 
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2.6 Equilibrium point of the model 

2.6.1 For Strong Allee effect 

At non-trivial equilibrium 𝐸∗(𝑥∗ ≠ 0, 𝑦∗ ≠ 0), 𝑥∗(𝑡 − 𝜏) ≈ 𝑥∗(𝑡) 

From equation (2.4): 
𝑑𝑦

d𝑡
= 0                  

⇒ 𝑥∗ =
𝛿

𝛾
 

From equation (2.3):  
𝑑𝑥

d𝑡
= 0   

⇒ 𝑦∗ =
−𝛿2+(1+𝛼)𝛾𝛿−𝛼𝛾2

𝛽𝛾2 ; provided (1 + 𝛼)𝛾𝛿 > 𝛼𝛾2 + 𝛿2 

Therefore, the non-trivial equilibrium is expressed as 𝐸∗ (
𝛿

𝛾
,
−𝛿2+(1+𝛼)𝛾𝛿−𝛼𝛾2

𝛽𝛾2
). 

2.6.2 For Weak Allee effect 

At non-trivial equilibrium 𝐸∗(𝑥∗ ≠ 0, 𝑦∗ ≠ 0), 𝑥∗(𝑡 − 𝜏) ≈ 𝑥∗(𝑡) 

From equation (2.4): 
𝑑𝑦

d𝑡
= 0                  

⇒ 𝑥∗ =
𝛿

𝛾
 

From equation (2.3):  
𝑑𝑥

d𝑡
= 0   

⇒ 𝑦∗ =
−𝛿2+(1+𝛼)𝛾𝛿−𝛼𝛾2

𝛽𝛾2 ; provided (1 + 𝛼)𝛾𝛿 > 𝛼𝛾2 + 𝛿2 

Therefore, the non-trivial equilibrium is expressed as 𝐸∗ (
𝛿

𝛾
,
−𝛿2+(1+𝛼)𝛾𝛿−𝛼𝛾2

𝛽𝛾2
) 

2.7 Stability Analysis and Hopf-Bifurcation 

The equations (2.5)-(2.6) about the equilibrium point 𝐸∗(𝑥∗, 𝑦∗) becomes: 

 
d𝑥∗

d𝑡
= 𝑥∗(1 − 𝑥∗)(𝑥∗ + 𝛼) − 𝛽𝑥∗𝑦∗ (2.7) 

 
d𝑦∗

d𝑡
= 𝛾𝑥∗(𝑡 − 𝜏)𝑦∗ − 𝛿𝑦∗ (2.8) 

The characteristic equation of the system of equations (2.7)-(2.8) is: 

 (𝜆2 + 𝑝𝜆 + 𝑞) + e−𝜆𝜏𝑠 = 0  (2.9) 

where 𝑝 = (𝛼 − 2𝑥∗ + 3𝑥∗2
− 2𝛼𝑥∗ + 𝛽𝑦∗ + 𝛿), 
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 𝑞 = 𝛿(𝛼 − 2𝑥∗ + 3𝑥∗2
− 2𝛼𝑥∗ + 𝛽𝑦∗), 

𝑠 = (−𝛽𝛾𝑥∗𝑦∗) 

When 𝜏 = 0, the equation (2.9) becomes: 

 𝜆2 + 𝑝𝜆 + (𝑞 + 𝑠) = 0  (2.10) 

According to the Routh-Hurwitz criteria, the roots of the equation (2.10) will 

have a negative real part, indicating that the system is stable if: 

(𝑹𝟏): 𝑝 > 0; 

(𝑹𝟐): (𝑞 + 𝑠) > 0 

That clearly holds.  

Next, we aim to examine how the negative real parts of the roots shift to positive 

real parts as the values of 𝜏 vary. 

Assume that 𝜆 = i𝜔 is a root of equation (2.9). Consequently, equation (2.9) 

can be expressed as: 

(i𝜔)2 + 𝑝(i𝜔) + 𝑞 + 𝑠e−(i𝜔)𝜏 = 0 

⇒ −𝜔2 + 𝑝(i𝜔) + 𝑞 +  𝑠(cos𝜔𝜏 − isin 𝜔𝜏 ) = 0 

Separating real parts from imaginary: 

 𝜔2 − 𝑞 = 𝑠 cos𝜔𝜏 (2.11) 

 𝑝𝜔 = 𝑠 sin 𝜔𝜏 (2.12) 

Squaring and adding: 

 𝜔4 + (𝑝2 − 2𝑞)𝜔2 + (𝑝2 − 𝑠2) = 0  (2.13) 

The two roots of equation (2.13) are: 

 𝜔1,2
2 =

(2𝑞 − 𝑝2) ± [(𝑝2 − 2𝑞)2 − 4(𝑝2 − 𝑠2)]1 2⁄

2
 (2.14) 

None of the two roots 𝜔1,2
2  is positive if: 

(𝑹𝟑): (2𝑞 − 𝑝2) < 0 𝑎𝑛𝑑 (𝑝2 − 𝑠2) > 0 𝑜𝑟 (𝑝2 − 2𝑞) < 4(𝑝2 − 𝑠2) 

This implies that equation (2.14) will not have positive roots if the condition 

(𝑅3) is satisfied. We can now introduce the following lemma (Ruan [166]). 

Lemma 2.7.1 For any 𝜏 ≥ 0, if the conditions (𝑅1) − (𝑅2) are satisfied, then 

all the roots of equation (2.9) possess negative real parts. 
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Conversely, if: 

(𝑹𝟒): (𝑝
2 − 𝑠2) < 0 𝑜𝑟  (2𝑞 − 𝑝2) > 0 𝑎𝑛𝑑 (𝑝2 − 2𝑞)2 = 4(𝑝2 − 𝑠2) 

In that case, the +𝑣𝑒 root of equation (2.11) corresponds to 𝜔1
2. 

Correspondingly, if: 

(𝑹𝟓): (𝑝
2 − 𝑠2) > 0 𝑜𝑟  (2𝑞 − 𝑝2) > 0 𝑎𝑛𝑑 (𝑝2 − 2𝑞)2 > 4(𝑝2 − 𝑠2) 

Therefore, the equation (2.11) will have two +𝑣𝑒 roots, known as 𝜔1,2
2 . 

Both conditions (𝑅4)and (𝑅5) lead to the equation (2.9) having purely 

imaginary roots for specific values of 𝜏. The critical values of 𝜏, denoted as 𝜏𝑗
±, 

can be determined by solving the system of equations (2.11)-(2.12), as follows: 

 𝜏𝑗
± =

1

𝜔1,2
cos−1 (

𝜔1,2
2 − 𝑞

𝑠
) +

2𝑗𝜋

𝜔1,2
, 𝑗 = 0,1,2, … (2.15) 

The aforementioned discussion can be succinctly summarized in the subsequent 

lemma (Ruan [166]). 

Lemma 2.7.2 (A) When conditions (𝑅1) − (𝑅2) 𝑎𝑛𝑑 (𝑅4) are satisfied, and 

𝜏 = 𝜏𝑗
+, equation (2.9) has two roots that are purely imaginary, specifically 

±𝑖𝜔1. 

(B) When conditions (𝑅1) − (𝑅2) 𝑎𝑛𝑑 (𝑅5) are satisfied, and 𝜏 = 𝜏𝑗
+(𝜏 =

𝜏𝑗
− 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦), equation (2.9) will exhibit two roots that are purely 

imaginary, denoted as ±i𝜔1(±i𝜔2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). 

We aim that the negative real part of certain roots of equation (2.9) will shift to 

the positive real part when 𝜏 > 𝜏𝑗
+ and 𝜏 < 𝜏𝑗

−. In order to investigate this 

scenario, let us define: 

𝜏𝑗
± = 𝜇𝑗

±(𝜏) + i𝜔𝑗
±(𝜏); 𝑗 = 0,1,2,3, … 

The characteristics of the roots of equation (2.9) can be described using the 

following conditions: 

𝜇𝑗
±(𝜏𝑗

±) = 0,𝜔𝑗
±(𝜏𝑗

±) =𝜔1,2 

It can be confirmed that the following transversality condition is valid: 

d

d𝜏
(𝑅𝑒 𝜆𝑗

+(𝜏𝑗
+)) > 0 𝑎𝑛𝑑 

𝑑

𝑑𝜏
(𝑅𝑒 𝜆𝑗

−(𝜏𝑗
−)) < 0 

This implies that 𝜏𝑗
± represent bifurcation values (Ruan [166]). 
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2.8 Numerical Example 

The dynamics characterized by the system of equations (2.1)-(2.2) are 

represented by considering the following set of parameter values: 

𝛼 = 0.2, 𝛽 = 0.5, 𝛾 = 0.36, 𝛿 = 0.2 

2.8.1 For Strong Allee effect 

 

Figure 2.1 The graph shows the perishing of both plant population and herbivores 

under the strong Allee effect. 

2.8.2 For Weak Allee effect 

The variation of the system of equations (2.1)-(2.2) from stable behaviour to 

complex dynamics around the equilibrium point 𝐸∗(𝑥∗, 𝑦∗) under the influence 

of the weak Allee effect is illustrated below for different values of 𝜏 and 

parameters: 

𝛼 = −0.2, 𝛽 = 0.5, 𝛾 = 0.36, 𝛿 = 0.2 
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Figure 2.2 Equilibrium 𝐸∗(0.5555,0.6717) is absolutely stable, when the delay is not 

present i.e., 𝜏 = 0. 

 

Figure 2.3 Equilibrium 𝐸∗(0.5555,0.6716) is asymptotically stable, when delay is 

lesser than the critical value i.e., 𝜏 < 3.25. 
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Figure 2.4 Phase space diagram showing the asymptotic stability of equilibrium 

𝐸∗(0.5555,0.6716), when delay is lesser than the critical value i.e., 𝜏 < 3.25. 

 

Figure 2.5 Equilibrium 𝐸∗(0.7701,0.3894) becomes unstable and Hopf- bifurcation 

occurs when delay surpasses the critical value i.e., 𝜏 ≥ 3.25. 
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Figure 2.6 Phase space diagram showing the Hopf Bifurcation of equilibrium 

𝐸∗(0.7701,0.3894) when delay surpasses the critical value i.e., 𝜏 ≥ 3.25. 

2.9 Conclusion 

The impact of the delay parameter on plant population and Herbivores under 

the Allee effect is analyzed with the proposed model. The boundedness and 

positivity of the system are proved. The feasible interior equilibrium points 𝐸∗ 

for both Allee effects is calculated. The study revealed that in the case of a 

strong Allee effect, both populations experience extinction, as depicted in 

Figure 2.1. The stability of the system about the non-trivial equilibrium 𝐸∗ is 

examined under the influence of the weak Allee effect. It is demonstrated that 

when the delay is not present (𝜏 = 0), the equilibrium point 𝐸∗ is absolutely 

stable as represented in figure 2.2.  Furthermore, when the delay is lesser than a 

critical value (𝜏 < 3.25), the equilibrium point 𝐸∗ becomes asymptotically 

stable, as illustrated in figure 2.3 and figure 2.4. However, when the delay 

surpasses the critical value (𝜏 ≥ 3.25), the stability of the equilibrium point 

𝐸∗ becomes unstable, leading to the observation of Hopf bifurcation, as depicted 

in figure 2.5 and figure 2.6.  
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Chapter 3  

A delayed Plant-Herbivore model with a 

Strong Allee effect in Plant population 

3.1 Introduction 

The domain of applied mathematics considers mathematical modelling for 

diverse biological issues to be an interesting research area. In the biological 

field, predator-prey systems that can exhibit interactions between prey-predator 

species play a vital role. In 1920, the theory of predator-prey mathematical 

modelling was first developed. Lotka [38], from the United States, and Volterra 

[39], were the first to develop the predator-prey model. Plant-herbivore 

dynamics are frequently depicted by modified versions of the Lotka-Volterra 

predator-prey model [45]–[47]. Warder Allee invented the Allee effect in the 

1930s [48]. If the growth rate at low density is positive in the first instance, then 

the population has an impact on the Allee effect [30], [49]. The Allee effect 

usually occurs due to the challenges in searching for mates, feeding habits, 

interaction with society, predator satiation, and cooperative defense, among 

other factors [27], [57]. The categories of the Allee effect are the Strong and 

Weak Allee effects. A strong Allee effect introduces a threshold value of the 

population size and it has a negative per individual growth rate which is lower 

than the threshold value. However, if there is a positive population growth rate 

but decreases when the population densities are low, then it is categorized as the 

weak Allee effect [65], [68], [76]. The behaviour of the plant-herbivores under 

both Allee effects with Holling-type I functional response is proposed. Under 

the strong Allee effect, the plants and herbivores population vanishes. Under the 

weak Allee effect, Hopf-bifurcation is seen [59]. In 1959, Holling introduced 

the theory of functional response. A functional response is an immediate change 

in the rate at which it consumes prey in response to prey abundance [26], [88], 

[89]. 𝑃(𝑥) = 𝑘𝑥 gives the Holling type-I response, which includes 𝑥(𝑡) as the 

prey biomass and 𝑘 as positive constant. A saturation is applicable for 
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explaining the food consumption because Holling type-II response incorporates 

that an individual predator consumes food till it feels famished. Therefore, the 

functional response is: 𝑃(𝑥) = 𝑘𝑥 (1 + 𝑇ℎ𝑘𝑥)⁄ ; here 𝑥(𝑡) is the prey biomass 

and 𝑘 is searching efficiency which is always positive and 𝑇ℎ is average time 

for each prey [57]. The occurrence of delay differential equations in the plant–

herbivore dynamics is a result of herbivore damage [24], [148], [149]. Using a 

system of non-linear delay differential equations, the impact of time lag on the 

extinction of toxicant-affected plant population has been investigated [124], 

[151], [152]. Under the inhibitory and stimulatory allelopathic effects, the 

aspect of delay parameter in the plant population has been examined [153], 

[167]. 

Many researchers have studied the plant-herbivore dynamics with or without 

Allee effect. However, the utilization of delay differential equations imposed by 

the Allee effect has been studied rarely. Therefore, in this article, Plant 

herbivore dynamics with Holling type-II response imposed by strong Allee 

effect is considered. 

3.2 Mathematical Model 

In this paper, the associate variables 𝑃(𝑡) and 𝐻(𝑡) stands for Plant population 

and Herbivore population respectively. The variables used in the model are 

positive i.e., 𝑃(𝑡) > 0 and 𝐻(𝑡) > 0 and 0 < 𝑏 < 𝐶 for strong Allee effect. The 

reproduction of herbivores does not occur immediately after consuming plants. 

There is an essential delay in gestation. Therefore, time delay (τ) has been 

introduced in the proposed model. 

The initial conditions are given as: 𝑃(0) > 0, 𝐻(0) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0, and 

𝑃(𝑡 − 𝜏) = 𝜀, Contant for all 𝑡 ∈ [0, 𝜏]. 

Also,  𝑃 ≤ 𝐶, and all the parameters 𝑟, 𝐶, 𝑎1, 𝑎2, 𝑚, 𝑑 𝑎𝑛𝑑 𝑙 are taken as positive 

constants. 

 
𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝐶
) (𝑃 − 𝑏) −

𝑎1𝑃𝐻

𝑃 + 𝑚
 (3.1) 
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𝑑𝐻

𝑑𝑡
=

𝑎2𝑃(𝑡 − 𝜏)𝐻

𝑃(𝑡 − 𝜏) + 𝑚
− 𝑑𝐻 − 𝑙𝐻2 (3.2) 

Parameters Description  

𝒓 The internal growth rate of plants  

𝑪 Carrying capacity  

𝒃 Survival threshold of the plants 

𝒂𝟏 Capturing rate 

𝒂𝟐 = (𝒆𝒂𝟏) Conversion rate  

𝒎 Half-capturing saturation constant 

𝒅 The death rate of herbivores 

𝒍 Intraspecific competition rate of herbivores 

𝝉 Time delay  

Table 3.1 Details of the system parameters (3.1)-(3.2). 

3.3 Non-dimensionalization 

To curtail the number of parameters, let  

𝑟𝑡′

𝑏
= 𝑡 , 

𝑃

𝐶
= 𝑥′ , 

𝑎1𝐻

𝑎2𝐶
= 𝑦′ 

and then dropping the dashes for simplicity, the system is simplified as follows: 

 
𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) (1 −

𝑥

𝑀
) −

𝛼𝑥𝑦

𝑥 + 𝛾
 (3.3) 

 
𝑑𝑦

𝑑𝑡
=

𝛼𝑥(𝑡 − 𝜏)𝑦

𝑥(𝑡 − 𝜏) + 𝛾
− 𝛽𝑦 − 𝛿𝑦2 (3.4) 

where the dimensionless parameters are  

𝑀 =
𝑏

𝑐
 , =

𝑚

𝑐
 , 𝛼 =

𝑎2𝑏

𝑟
 , 𝛽 =

𝑑𝑏

𝑟
 and 𝛿 =

𝑙𝑎2

𝑟𝑏𝑎1
. 

3.4 Equilibrium point of the model 

This section accommodates the non-trivial equilibrium which depicts the co-

existence of the state variables (𝑃∗, 𝐻∗), where these state variables are not 

equal to zero. The stability of the model represents that there is no influence of 

delay on any of the other equilibrium points, therefore only non-trivial 
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equilibrium is calculated. To calculate the feasible non-trivial equilibrium, 

equate the system of equations (3.1) and (3.2) to zero at 𝐸∗(𝑥∗ ≠ 0, 𝑦∗ ≠ 0), 

𝑥∗(𝑡 − 𝜏) ≈ 𝑥∗(𝑡): 

𝑑𝑥

𝑑𝑡
= 0 ⇒ 𝑦∗ =

(1−𝑥∗)(𝑀−𝑥∗)(𝑥∗+𝛾)

𝛼𝑀
, provided 1 > 𝑥∗, 𝑀 > 𝑥∗ 

In this scenario, there exists a positive root 𝑥∗ to the quartic equation. 

And 
𝑑𝑦

𝑑𝑡
= 0 

⇒ 𝑥∗4
+ 𝑘1𝑥

∗3
+ 𝑘2𝑥

∗2
+ 𝑘3𝑥

∗ + 𝑘4 = 0 

where 𝑘1 = 2𝛾 + 𝑀 − 1, provided 2𝛾 + 𝑀 > 1; 

𝑘2 = 𝛾2 − 2𝛾 − 2𝛾𝑀 + 𝑀, provided 𝑀 <
𝛾2−2𝛾

2𝛾−1
; 

𝑘3 =
𝑀[𝛼(𝛼−𝛽)+𝛾𝛿(2−𝛾)]−𝛿𝛾2

𝛿
, 

provided 𝛼 > 𝛽, 𝛾 < 2 𝑎𝑛𝑑 𝑀[𝛼(𝛼 − 𝛽) + 𝛾𝛿(2 − 𝛾)] > 𝛿𝛾2; 

and 𝑘4 =
𝛾𝑀(𝛿𝛾−𝛼𝛽)

𝛿
, provided 𝛾 >

𝛼

𝛿
𝛽 

3.5 Stability Analysis and Hopf-Bifurcation 

The set of equations (3.3)-(3.4) of a delayed plant-herbivore model under the 

strong Allee effect about 𝐸∗(𝑥∗, 𝑦∗) are equivalent to: 

 
𝑑𝑥∗

𝑑𝑡
= 𝑥∗(1 − 𝑥∗) (1 −

𝑥∗

𝑀
) −

𝛼𝑥∗𝑦∗

𝑥∗ + 𝛾
 (3.5) 

 
𝑑𝑦∗

𝑑𝑡
=

𝛼𝑥∗(𝑡 − 𝜏)𝑦∗

𝑥∗(𝑡 − 𝜏) + 𝛾
− 𝛽𝑦∗ − 𝛿𝑦∗2   (3.6) 

The exponential equation of the above system is 

 (𝜆2 + 𝑙𝜆 + 𝑚) + 𝑒−𝜆𝜏𝑛 = 0 (3.7) 

where  𝑙 = [
𝛼𝛾𝑦∗

(𝑥∗+𝛾)2
−

𝑥∗(3𝑥∗−2𝑀−2)

𝑀
+ 2𝛿𝑦∗ + 𝛽 − 1 ]; 

𝑚 = (𝛽 + 2𝛿𝑦∗) [
𝛼𝛾𝑦∗

(𝑥∗+𝛾)2
−

𝑥∗(3𝑥∗−2𝑀−2)

𝑀
− 1]; 

And  𝑛 =
−𝛼2𝛾𝑥∗𝑦∗

(𝑥∗+𝛾)[𝑥∗(𝑡−𝜏)+𝛾]2
 

If 𝜏 = 0, then equation (3.7) becomes: 
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 𝜆2 + 𝑙𝜆 + (𝑚 + 𝑛) = 0 (3.8) 

By the criteria [166], the system is stable, i.e., roots of equation (3.8) will have 

its real part as negative when: 

(𝑹𝟏): 𝑙 > 0; 

(𝑹𝟐): (𝑚 + 𝑛) > 0 

which clearly holds. 

Further, we investigate the transference of the real part of the roots which is 

negative to the real part which is positive with alteration in the values of time 

delay (𝜏). 

Consider, equation (3.7) has a root 𝜆 = i𝜔: 

(i𝜔)2 + 𝑙(i𝜔) + 𝑚 + 𝑛e−(i𝜔)𝜏 = 0 

⇒ −𝜔2 + 𝑙(i𝜔) + 𝑚 +  𝑛(cos𝜔𝜏 − isin 𝜔𝜏 ) = 0 

Segregating real and imaginary parts: 

 𝜔2 − 𝑚 = 𝑛 cos𝜔𝜏 (3.9) 

 𝑙𝜔 = 𝑛 sin 𝜔𝜏  (3.10) 

Squaring and adding:  

 𝜔4 + (𝑙2 − 2𝑚)𝜔2 + (𝑙2 − 𝑛2) = 0  (3.11) 

The two roots of equation (3.11) are: 

 𝜔1,2
2 =

(2𝑚 − 𝑙2) ± [(𝑙2 − 2𝑚)2 − 4(𝑙2 − 𝑛2)]1 2⁄

2
 (3.12) 

The two roots 𝜔1,2
2  are not positive if: 

(𝑹𝟑): (2𝑚 − 𝑙2) < 0 𝑎𝑛𝑑 (𝑙2 − 𝑛2) > 0 𝑜𝑟 (𝑙2 − 2𝑚) < 4(𝑙2 − 𝑛2) 

Therefore, if the condition (𝑅3) holds, then equation (3.12) does not have 

positive roots.  

There are the following two lemmas [166]. 

Lemma 3.5.1 If (𝑅1) − (𝑅2) is true, then each root of the equation (3.7) has 

real parts which are negative for all 𝜏 ≥ 0. 

On the contrary, when: 

(𝑹𝟒): (𝑙
2 − 𝑛2) < 0 𝑜𝑟  (2𝑚 − 𝑙2) > 0 𝑎𝑛𝑑 (𝑙2 − 2𝑚)2 = 4(𝑙2 − 𝑛2) 

Then, the positive root of equation (3.9) is 𝜔1
2. 
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(𝑹𝟓): (𝑙
2 − 𝑛2) > 0 𝑜𝑟  (2𝑚 − 𝑙2) > 0 𝑎𝑛𝑑 (𝑙2 − 2𝑚)2 > 4(𝑙2 − 𝑛2) 

Then, two positive roots of equation (3.9) are 𝜔1,2
2 . 

For some specific values of 𝜏, roots of equation (3.7) are purely imaginary in 

both- (𝑅4)and (𝑅5). The crucial values 𝜏𝑗
± of 𝜏 can be enumerated from the set 

of equations (3.9)-(3.10): 

 𝜏𝑗
± =

1

𝜔1,2
cos−1 (

𝜔1,2
2 − 𝑚

𝑛
) +

2𝑗𝜋

𝜔1,2
, 𝑗 = 0,1,2,3,4, … (3.13) 

The above preceding can be summarised in the following lemma [166]. 

Lemma 3.5.2 (A) There are purely imaginary roots ±𝑖𝜔1 of equation (3.7), 

when (𝑅1) − (𝑅2) 𝑎𝑛𝑑 (𝑅4) is true and 𝜏 = 𝜏𝑗
+.  

(B) There exists purely imaginary roots ±i𝜔1(±i𝜔2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) of equation 

(3.7), when (𝑅1) − (𝑅2) 𝑎𝑛𝑑 (𝑅5) is true and 𝜏 = 𝜏𝑗
+(𝜏 = 𝜏𝑗

− 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). 

The expectancy is that the displacement of the real part of some roots of 

equation (3.7) which are negative to the real part which is positive if 𝜏 > 𝜏𝑗
+ and 

𝜏 < 𝜏𝑗
−.  Consider the following to investigate the option: 

𝜏𝑗
± = 𝜇𝑗

±(𝜏) + i𝜔𝑗
±(𝜏); 𝑗 = 0,1,2,3,4, … 

𝜇𝑗
±(𝜏𝑗

±) = 0,𝜔𝑗
±(𝜏𝑗

±) =𝜔1,2 

is satisfied by the roots of equation (3.7). 

The following transversality conditions can be verified: 

d

d𝜏
(𝑅𝑒 𝜆𝑗

+(𝜏𝑗
+)) > 0 𝑎𝑛𝑑 

𝑑

𝑑𝜏
(𝑅𝑒 𝜆𝑗

−(𝜏𝑗
−)) < 0 

Hence, the nature of the bifurcating values 𝜏𝑗
± given by the above expression is 

discussed in detail by [166].  

3.6 Numerical Example 

The dynamics graphs are represented using equations (3.1)- (3.2), considering 

the given set of parametric values: 

𝛼 = 1.65, 𝛾 = 0.5, 𝛽 = 0.8, 𝛿 = 0.2, 𝑀 = 4. 
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Figure 3.1 When the system is without time delay (𝑖. 𝑒. , 𝜏 = 0), then E* (0.5322, 

0.2537) is absolutely stable. 

 

Figure 3.2 When the time parameter is low than the crucial value which is 2.7 

(𝑖. 𝑒. , 𝜏 < 2.7), then E*(0.5520, 0.2553) is asymptotically stable. 
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Figure 3.3 Phase space diagram showing the asymptotic stability of equilibrium E* 

(0.5520,0.2553), when the time parameter is low than the crucial value which is 2.7 

(𝑖. 𝑒. , 𝜏 < 2.7). 

 

Figure 3.4 When the time delay surpasses the crucial value which is 2.7 (𝑖. 𝑒. , 𝜏 ≥

2.7), then E* (0.7276,0.1444) surrenders its stability, and limit cycles are seen, and 

hence Hopf- bifurcation. 
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Figure 3.5 Phase space diagram showing the Hopf- bifurcation of equilibrium E* 

(0.7276, 0.1444) when the time delay surpasses the crucial value which is 2.7 

(𝑖. 𝑒. , 𝜏 ≥ 2.7). 

3.7 Sensitivity Analysis 

The research that represents the stability behaviour of the system while 

triggering the model parameters other than the time delay (𝜏) is known as 

Sensitivity analysis. The Direct method is used for this purpose. For an 

illustration, the sensitivity equations of the partial derivatives of the solution 

(𝑃, 𝐻) with respect to the intraspecific competition rate of herbivores (𝛿) are 

given below: 

𝑑𝑆1

𝑑𝑡
= [1 − 2 (1 +

1

𝑀
) 𝑥 −

3

𝑀
𝑥2 −

𝛼𝑥𝑦

(𝑥+𝛾)2
] 𝑆1 −

𝛼𝑥

𝑥+𝛾
𝑆2            (3.14) 

𝑑𝑆2

𝑑𝑡
= [

𝛼𝑥(𝑡−𝜏)

[𝑥(𝑡−𝜏)+𝛾]
− 𝛽 − 2𝛿𝑦] 𝑆2 +

𝛼𝑥𝑦

[𝑥(𝑡−𝜏)+𝛾]2
𝑆1(𝑡 − 𝜏)          (3.15) 

where 𝑆1 =
𝜕𝑥

𝜕𝛿
 and 𝑆2 =

𝜕𝑦

𝜕𝛿
 

3.7.1 Sensitivity of Variables to Parameter 𝜹 

When we increase the value of the intraspecific competition rate of herbivores 

(𝛿) from 𝛿 = 0.2 to 𝛿 = 0.23, then the state variables (𝑃, 𝐻) shift its behaviour 

from Hopf-bifurcation to asymptotic stability. Again, when we increase 𝛿 =

0.23 to 𝛿 = 0.25, eventually, as depicted in figures 3.6 and 3.7, the entire 

system shifts its dynamics from asymptotic stability to absolute stability. 
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Figure 3.6 Time series graph of change in the size of plant population 𝑃 with respect 

to changes in the intraspecific competition rate of herbivores (𝛿). 

 

Figure 3.7 Time series graph of change in the size of herbivore population 𝐻 with 

respect to changes in the intraspecific competition rate of herbivores (𝛿). 

3.8 Conclusion 

The proposed mathematical model represented the plant-herbivore dynamics 

using Holling Type-II functional response with intraspecific competition among 

herbivores. The strong Allee effect and time delay (𝜏) are incorporated into the 

model. The non-trivial equilibrium points 𝐸∗ and stability of the model about 
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𝐸∗ incorporating the strong Allee effect are examined. Figure 3.1 indicates that 

𝐸∗(0.5322, 0.2537) is absolutely stable, without time delay (𝜏 = 0). When the 

time delay is below 2.7 (𝜏 < 2.7), where 2.7 is a crucial value and keeping all 

the other parameters the same, then 𝐸∗(0.5520, 0.2553)  is asymptotically 

stable which is shown in figure 3.2 and figure 3.3. When the time parameter 

surpasses the crucial value (𝜏 ≥ 2.7), then 𝐸∗(0.7276, 0.1444) surrenders its 

stability and Hopf- bifurcation occurred which is depicted in figure 3.4 and 

figure 3.5. 

Additionally, figure 3.6 and figure 3.7 indicate the change in the model 

parameters with respect to changes in the intraspecific competition rate of 

herbivores (δ) using time series graphs. It is found that when there is an 

increment in the value of the intraspecific competition rate of herbivores (𝛿) 

from 𝛿 = 0.2 to 𝛿 = 0.23, then the state variables which include the size of 

plant population and size of herbivore population (𝑃, 𝐻) changes its behaviour 

from Hopf-bifurcation to asymptotic stability. Similarly, when there is an 

increment in the value of 𝛿 = 0.23 to 𝛿 = 0.25, the entire system again shifts 

its dynamics from asymptotic stability to absolute stability. Hence, when we 

keep on increasing the value of the intraspecific competition rate of herbivores, 

it is favourable for both the populations and the entire system tends to become 

more and more stable. 
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Chapter 4  

The study of Stability analysis of Modified 

Leslie-Gower Herbivore model with Allee 

effect in Plants 

4.1 Introduction 

Plant-herbivore models play an essential role in ecology. Many ecologists 

analyzed plant-herbivore models with different types of functional responses 

and Allee effects [19], [22], [23], [25]–[31]. Functional responses are stated by 

Holling [88], which describes the rate of consumption of prey by the predator 

and the size of the prey. The effect which occurs when the density of plants is 

very small, is called the Allee effect. It can be divided into two categories which 

include the Strong Allee effect and the Weak Allee effect [48]. The Allee effect 

is called strong when the growth rate is non-positive in the low limit of low 

density and it has a population threshold as well. Conversely, the Allee effect is 

called weak when the growth rate at zero density is non-negative [67], [70]–

[75]. Kumar and Verma [59] presented the plant-herbivore model incorporated 

under the Allee effect with Holling type-I functional response. It is shown that 

the system is stable about the interior point and unstable when the threshold 

value crosses the delay parameter and Hopf-bifurcation occurs. Dupke et. al. 

[93] applied Holling’s concept of Holling type- II functional response and 

applied it to the habitat selection of herbivores. Liu et. al. [94] modified the 

traditional Holling type- II functional response for the plant-herbivore model 

and formed a toxin-determined functional response due to chemical defenses so 

that the herbivores can consume less amount of plants. The interpretation of 

dynamical properties of the Stochastic prey-predator model and non-

autonomous deterministic is studied by Sengupta and Das [97] with a sigmoid 

functional response. Persistence, non-persistence, permanence, and positivity 

are derived. The interest of the authors is continuously increasing in the study 

of functional responses and they are modifying the types of functional responses 
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to make them more difficult to analyze. These types of mathematical models 

can be utilized to demonstrate the stability behaviour of the system along with 

time series behaviour [124], [139], [151]–[153], [168]. Arancibia-Ibarra et al. 

[95] studied the Leslie-Gower predator-prey model with Holling type- II 

functional response under the weak Allee effect and revealed the coexistence 

and oscillations of both the predator and prey populations. They also proved the 

bistability of the model for some fixed subset of parameters. Mishra et al. [100] 

examined a Leslie-Gower predator-prey model which conclude that the prey 

alone can be responsible for the instability of the model. A prey population can 

release chemical substance which can be dangerous for the predator population 

and it may lead to the predator’s death. The predation rate may also become less 

due to the inability of the predators. Zhang et al. [101] studied Leslie-Gower 

predator-prey model with the harvesting system. The results due to harvesting 

declare that the concentration of the predator population is strictly decreasing 

and the size of prey has no impact under some restrictions. They used 

Pontryagin’s maximal principle to attain the optimal harvesting policy and 

illustrate a case to represent that the optimal harvesting policy is realizable. Yue 

[102] examined a prey refuge with modified Leslie-Gower model. The global 

attractivity of a positive equilibrium and stability of the system is studied. Fang 

et al. [87] analyzed Leslie-Gower model with weak Allee effect and concluded 

that if the intensity of the Allee effect is strong, then both prey and predator 

population will tend to abundance. It is also shown that Allee effect alone can 

change the stability of the system and supercritical Hopf-bifurcation occurred.  

The motivation for this work lies in the investigation of a crucial ecological 

problem, namely, the dynamics of a modified Leslie-Gower plant-herbivore 

model incorporating the Allee effect. Although previous research has 

extensively investigated different aspects of population dynamics, the 

application of delay differential equations in combination with the proposed 

model has yet to be explored. To address this gap, a novel mathematical model 

is proposed that incorporates delay differential equations to account for past 

historical interactions between the plant and herbivore populations, with 𝜏 as 

the time parameter. Furthermore, the inclusion of a Holling type- II functional 
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response adds another layer of complexity to the model, allowing it to examine 

more realistic and intricate ecological interactions. Through this work, the aim 

is to enhance the understanding of ecological systems and contribute valuable 

insights to the field of population dynamics with implications for conservation 

and ecosystem management. 

The combination of the Allee effect and the Holling type-II functional response 

results in increased vulnerability of prey populations to predation at low prey 

densities. Furthermore, the inclusion of a time delay introduces additional 

complexity to the dynamics of the system. In general, the combined presence of 

these factors in a biological system can have significant implications for 

population dynamics, including aspects such as population persistence, 

stability, as well as the risk of extinction. 

4.2 Mathematical Model 

Let 𝑃(𝑡) represent the population density of the plants and 𝐻(𝑡) be the 

population density of the herbivores at time 𝑡, respectively. Both the plant and 

herbivore populations grow logistically with internal growth rates 𝑟 and 𝑢 

respectively. 𝐾 is known as the carrying capacity of the plant population. The 

carrying capacity of the herbivore population depends on the plant population 

and 𝛾 is a measure of the quality of the plant as food for the herbivore. The 

Holling type-𝐼𝐼 functional response is used where 𝛼 is called the per capita rate 

of maximum predation and 𝛽 is half of the saturated response level. (𝑃 − 𝑏) is 

the Allee effect term where 𝑏 > 0 is the Allee threshold and 𝜏 is the time 

parameter that characterizes the past history. A set of non-linear delay 

differential equations using the above notations is given by: 

 
𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃(𝑡 − 𝜏)

𝐾
) (𝑃 − 𝑏) −

𝛼𝑃𝐻

𝑃 + 𝛽
 (4.1) 

 
𝑑𝐻

𝑑𝑡
= 𝑢𝐻 (1 −

𝐻

𝛾𝑃
) (4.2) 

The given model is characterized by the following initial value conditions: 

𝑃(𝑡) > 0, 𝐻(𝑡) > 0 ∀ 𝑡 ≥ 0. 
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Also, 𝑃(𝑡 − 𝜏) = 𝜀, constant ∀ 𝑡 ∈ [0, 𝜏]. 

Also,  𝑃 ≤ 𝐾, and 𝑏 ≤ 0 for weak Allee effect. All the parameters 

𝑟, 𝐾, 𝑏, 𝛼, 𝛽, 𝑢, 𝑎𝑛𝑑 𝛾 are taken as positive constants. 

4.3 Equilibrium point of the model 

In this section, non-trivial equilibrium is considered which characterizes the co-

existence of all the state variables (𝑃∗, 𝐻∗), where none of them is zero, because 

the stability of the system shows no impact of delay on any of the other 

equilibrium points. The non-trivial equilibrium 𝐸∗(𝑃∗ ≠ 0,𝐻∗ ≠ 0) is as 

follows: 

Let 𝑃(𝑡 − 𝜏) ≅ 𝑃(𝑡) and equate the system of equations (4.1) and (4.2) to zero: 

𝑑𝐻

𝑑𝑡
= 0 ⇒ 𝑃∗ =

𝐻∗

𝛾
 

𝑑𝑃

𝑑𝑡
= 0  

⇒ 𝐴1𝐻
∗3 + 𝐴2𝐻

∗2 + 𝐴3𝐻
∗ − 𝐴4 = 0 

where 𝐴1 = 1, 

 𝐴2 = [(𝛽 − 𝐾)𝛾 − 𝑏]; provided 𝛽 > 𝐾 𝑎𝑛𝑑 (𝛽 − 𝐾)𝛾 > 𝑏, 

𝐴3 = {[(
𝛼𝛾

𝑟
− 𝛽)𝐾𝛾 + (𝐾 − 𝛽)𝑏] 𝛾} ; provided 𝛼 >

𝛽𝑟

𝛾
 𝑎𝑛𝑑 𝐾 > 𝛽, 

𝐴4 =  𝐾𝑏𝛽𝛾2 

4.4 Stability Analysis and Hopf-Bifurcation 

A modified Leslie-Gower plant-herbivore model at the equilibrium 𝐸∗is as 

follows: 

 
𝑑𝑃∗

𝑑𝑡
= 𝑟𝑃∗ (1 −

𝑃∗(𝑡 − 𝜏)

𝐾
) (𝑃∗ − 𝑏) −

𝛼𝑃∗𝐻∗

𝑃∗ + 𝛽
 (4.3) 

 
𝑑𝐻∗

𝑑𝑡
= 𝑢𝐻∗ (1 −

𝐻∗

𝛾𝑃∗
) (4.4) 
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The exponential characteristic equation for the set of equations (4.3)-(4.4) is 

represented by: 

 𝜆2 + 𝐾1𝜆 + 𝐾2 + (𝐾3𝜆 + 𝐾4)𝑒
−𝜆𝜏 = 0 (4.5) 

Here 𝐾1 = −2𝑟𝑃∗ + 𝑟𝑏 +
𝛼𝛽𝐻∗

(𝑃∗+𝛽)2
− 𝑚4, 

𝐾2 = 𝑚4 [2𝑟𝑃∗ − 𝑟𝑏 −
𝛼𝛽𝐻∗

(𝑃∗ + 𝛽)2
] − 𝑚2𝑚3, 

𝐾3 =
𝑟𝑃∗

𝐾
(𝑃∗ − 𝑏), 𝐾4 = 𝑚4 [

−𝑟𝑃∗

𝐾
(𝑃∗ − 𝑏)] 

where 𝑚1 = 2𝑟𝑃∗ − 𝑟𝑏 −
𝛼𝛽𝐻∗

(𝑃∗+𝛽)2
−

𝑟𝑃∗

𝐾
(𝑃∗ − 𝑏)𝑒−𝜆𝜏, 

𝑚2 =
𝑢

𝛾
(
𝐻∗

𝑃∗
)

2

, 𝑚3 = −
𝛼𝑃∗

(𝑃∗ + 𝛽)
,𝑚4 = 𝑢 (1 −

2𝐻∗

𝛾𝑃∗
) 

When 𝜏 = 0, the equation (4.5) is represented as: 

 𝜆2 + (𝐾1 + 𝐾3)𝜆 + (𝐾2 + 𝐾4) = 0 (4.6) 

Using Hurwitz’s criteria, the system shows stability i.e. the zeros of equation 

(4.6) will contain a real part that is negative if: 

(𝑹𝟏): (𝐾1 + 𝐾3) > 0; 

(𝑹𝟐): (𝐾2 + 𝐾4) > 0 

When we change the values of 𝜏, the roots of the negative real parts shift to 

positive real parts as follows: 

Let the root of equation (4.5) be 𝜆 = 𝑖𝜔, then the equation (4.5) is given by: 

(𝑖𝜔)2 + 𝐾1(𝑖𝜔) + 𝐾2 + (𝐾3(𝑖𝜔) + 𝐾4)𝑒
−(𝑖𝜔)𝜏 = 0 

⇒ −𝜔2 + 𝐾1(𝑖𝜔) + 𝐾2 + (𝐾3(𝑖𝜔) + 𝐾4)(cos𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏 ) = 0 

Segregating real parts from the imaginary parts: 

 −𝜔2 + 𝐾2 = −𝐾4 cos𝜔𝜏 − 𝐾3𝜔𝑠𝑖𝑛 𝜔𝜏 (4.7) 

 𝐾1𝜔 = −𝐾3 cos𝜔𝜏 + 𝐾4𝑠𝑖𝑛 𝜔𝜏 (4.8) 

∴  𝜔 is true for: 

 𝜔4 − (𝐾3
2 − 𝐾1

2 + 2𝐾2)𝜔
2 + (𝐾2

2 − 𝐾4
2) = 0 (4.9) 

The two roots of equation (4.9) are: 
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𝜔1,2
2 =

(𝐾3
2−𝐾1

2+2𝐾2)±√(𝐾3
2−𝐾1

2+2𝐾2)
2
−4(𝐾2

2−𝐾4
2)

2
                  (4.10) 

𝜔1,2
2  has no positive roots if: 

(𝑹𝟑): (𝐾3
2 − 𝐾1

2 + 2𝐾2) < 0 𝑎𝑛𝑑 (𝐾2
2 − 𝐾4

2) > 0 𝑜𝑟 (𝐾3
2 − 𝐾1

2 + 2𝐾2)
2

< 4(𝐾2
2 − 𝐾4

2) 

It gives that if the condition (𝑅3) holds, equation (4.10) has no positive roots.  

There are the following lemmas [162]. 

Lemma 4.4.1 Every root of equation (4.5) has real parts which are negative 

∀ 𝜏 ≥ 0, if (𝑅1) − (𝑅2) hold. 

In contrast, if: 

(𝑹𝟒): (𝐾2
2 − 𝐾4

2) < 0 𝑜𝑟  (𝐾3
2 − 𝐾1

2 + 2𝐾2) > 0 𝑎𝑛𝑑 (𝐾3
2 − 𝐾1

2 + 2𝐾2)
2

= 4(𝐾2
2 − 𝐾4

2) 

Then, 𝜔1
2 is the +𝑣𝑒 root of equation (4.7). 

Similarly, if: 

(𝑹𝟓): (𝐾2
2 − 𝐾4

2) > 0 𝑜𝑟  (𝐾3
2 − 𝐾1

2 + 2𝐾2) > 0 𝑎𝑛𝑑 (𝐾3
2 − 𝐾1

2 + 2𝐾2)
2

> 4(𝐾2
2 − 𝐾4

2) 

Then, 𝜔1,2
2  are positive roots of equation (4.7). 

When 𝜏 takes certain values, then equation (4.5) includes purely imaginary roots 

in both- (𝑅4)and (𝑅5). The system of equations (4.5)-(4.6) gives the threshold 

values 𝜏𝑗
± of 𝜏: 

𝜏𝑗
± =

1

𝜔1,2
𝑐𝑜𝑠−1 [

𝐾4(𝜔1,2
2 −𝐾2)−𝐾1𝐾3𝜔1,2

2

𝐾3
2𝜔1,2

2 +𝐾4
2 ] +

2𝑗𝜋

𝜔1,2
, 𝑗 = 0,1,2, …        (4.11) 

The succeeding lemma can condense the above discussion [162]. 

Lemma 4.4.2 (A) If (𝑅1) − (𝑅2) 𝑎𝑛𝑑 (𝑅4) is true and 𝜏 = 𝜏𝑗
+, then there are 

two purely imaginary roots ±𝑖𝜔1 of equation (4.5).  

(B) There is a pair of purely imaginary roots ±𝑖𝜔1(±𝑖𝜔2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) of 

equation (4.5), if (𝑅1) − (𝑅2) 𝑎𝑛𝑑 (𝑅5) is true and 𝜏 = 𝜏𝑗
+(𝜏 =

𝜏𝑗
− 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). 

Let 𝜏𝑗
± = 𝜇𝑗

±(𝜏) + 𝑖𝜔𝑗
±(𝜏); 𝑗 = 0,1,2,3, … to shift the negative real part of some 

roots to the real part of the equation (4.5) which is positive if 𝜏 > 𝜏𝑗
+ and 𝜏 < 𝜏𝑗

−. 
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𝜇𝑗
±(𝜏𝑗

±) = 0,𝜔𝑗
±(𝜏𝑗

±) =𝜔1,2 is satisfied by the roots of equation (4.5). 

The following transversality condition holds for the above criteria: 

𝑑

𝑑𝜏
(𝑅𝑒 𝜆𝑗

+(𝜏𝑗
+)) > 0 𝑎𝑛𝑑 

𝑑

𝑑𝜏
(𝑅𝑒 𝜆𝑗

−(𝜏𝑗
−)) < 0 

It represents that 𝜏𝑗
± are bifurcating values. The scattering of the zeros of 

equation (4.5) can be described by the following theorem [162]. 

Theorem 4.1 Consider, 𝜏𝑗
+(𝑗 = 0,1,2,3, … ) which is deducted from equation 

(4.11). 

(A) Every root has −𝑣𝑒 real part ∀ 𝜏 ≥ 0 in equation (4.5), if (𝑅1), (𝑅2) hold. 

(B) Every root has −𝑣𝑒 real part in equation (4.5), if (𝑅1), (𝑅2) 𝑎𝑛𝑑 (𝑅4) hold 

and when 𝜏 ∈ [0, 𝜏0
+). Equation (4.5) has two roots which are purely imaginary 

±𝑖𝜔1, when 𝜏 = 𝜏0
+. There exists at least one root, including +𝑣𝑒 real part in 

equation (4.3) when 𝜏 > 𝜏0
+. 

(C) When (𝑅1), (𝑅2) 𝑎𝑛𝑑 (𝑅5) is true, then there is a positive integer 𝑚 such 

that  

0 < 𝜏0
+ < 𝜏0

− < 𝜏1
+ < 𝜏1

− − −−< 𝜏𝑚−1
− < 𝜏𝑚

+  and there are 𝑚 fluctuations 

between stability and instability. That is, every root has a negative real part in 

equation (4.5) when 𝜏 ∈ [0, 𝜏0
+), (𝜏0

−, 𝜏1
+),− − −, (𝜏𝑚−1

− , 𝜏𝑚
+ ). There is at least 

one root with +𝑣𝑒 real part in equation (4.5) if  𝜏 ∈ (𝜏0
+, 𝜏0

−), (𝜏1
+, 𝜏1

−),− −

−, (𝜏𝑚−1
+ , 𝜏𝑚−1

− ) and 𝜏 > 𝜏𝑚
+ . 

4.5 Numerical Example 

The graphical examples are presented by the following parametric values to 

depict the modified Leslie-Gower plant-herbivore dynamics of a set of 

equations (4.1)-(4.2): 

𝑟 = 0.8, 𝐾 = 0.4, 𝑏 = −0.3, 𝛼 = 0.8, 𝛽 = 0.4, 𝑢 = 0.2, 𝛾 = 0.1 
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Figure 4.1 The plant population 𝑃 is absolutely stable in the absence of time 

parameter i.e. when 𝜏 = 0. 

 

Figure 4.2 The herbivore population 𝐻 is absolutely stable in the absence of time 

parameter i.e. when 𝜏 = 0. 
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Figure 4.3 The plant population 𝑃 is asymptotically stable when the time parameter is 

below the threshold value i.e. when 𝜏 < 3.2. 

 

Figure 4.4 The herbivore population 𝐻 is asymptotically stable when the time 

parameter is below the threshold value i.e. when 𝜏 < 3.2. 
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Figure 4.5 Equilibrium 𝐸∗ demonstrate phase space graph of asymptotic stability 

when the time parameter is below the threshold value i.e. when 𝜏 < 3.2. 

 

Figure 4.6 The plant population 𝑃 represents Hopf-bifurcation when the time 

parameter surpasses the threshold value i.e. when 𝜏 ≥ 3.2. 
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Figure 4.7 The herbivore population 𝐻 represents Hopf-bifurcation when the time 

parameter surpasses the threshold value i.e. when 𝜏 ≥ 3.2. 

 

Figure 4.8 Equilibrium 𝐸∗ demonstrate phase space graph of Hopf-bifurcation when 

the time parameter surpasses the threshold value i.e. when 𝜏 ≥ 3.2. 

4.6 Sensitivity Analysis 

Sensitivity analysis is a study that represents the behaviour of the stability of 

the proposed state variables by varying the parameter values and taking the 

delay parameter (𝜏) as constant. For instance, the sensitivity equations of the 
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partial derivatives of the solution (𝑃, 𝐻) with respect to the per capita rate of 

maximum predation 𝛼 are as follows: 

 

𝑑𝑆1

𝑑𝑡
= [𝑟(2𝑃 − 𝑏) −

𝛼𝛽𝐻

(𝑃 + 𝛽)2
+ 𝑟 (

𝑏 − 2𝑃

𝐾
)𝑃(𝑡 − 𝜏)] 𝑆1

− 𝛼 [
𝑃2 + 𝛽𝑃

(𝑃 + 𝛽)2
] 𝑆2 + 𝑟𝑃

(𝑏 − 𝑃)

𝐾
𝑆1(𝑡 − 𝜏) 

(4.12) 

 
𝑑𝑆2

𝑑𝑡
=

𝑢𝐻2

𝛾𝑃2
𝑆1 + (𝑢 −

2𝑢𝑃𝐻

𝛾𝑃2
) 𝑆2 (4.13) 

where 𝑆1 =
𝜕𝑃

𝜕𝛼
 and 𝑆2 =

𝜕𝐻

𝜕𝛼
 

4.6.1 Sensitivity of Variables to Parameter 𝜶 

When we increase the value of the per capita rate of maximum predation from 

𝛼 = 0.8 to 𝛼 = 2.3, the system (𝑃, 𝐻) changes its behaviour from Hopf-

bifurcation to asymptotic stability. After that, when we further increase the per 

capita rate of maximum predation from 𝛼 = 2.3 to 𝛼 = 2.9, the system (𝑃, 𝐻) 

again shifts its equilibrium from asymptotic stable to absolutely stable as shown 

in figure 4.9 and figure 4.10. 

 

Figure 4.9 Time series graph of change in density of plant population 𝑃 with respect 

to changes in the per capita rate of maximum predation 𝛼. 
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Figure 4.10 Time series graph of change in density of herbivore population 𝐻 with 

respect to changes in the per capita rate of maximum predation 𝛼. 

4.7 Discussion and Outcome of Sensitivity Analysis 

The relationship between the per capita rate of maximum predation (𝛼) and 

stability is explained by the dynamics of plant-herbivore interactions. In the 

absence of significant predation (low 𝛼), the system exhibits complex dynamics, 

including Hopf-bifurcation for both the plant and herbivore populations. This 

implies oscillatory behavior and instability in the population dynamics.  

As the per capita rate of maximum predation (𝛼) increases, the plant population 

(𝑃) shifts its behavior from Hopf-bifurcation to asymptotic stability. This 

suggests that higher predation pressure initially leads to more stable plant 

population dynamics. The herbivore population (𝐻) also shifts from Hopf-

bifurcation to asymptotic stability with increased α. The explanation provided 

is that as herbivores consume more plants, competition among herbivores 

increases, leading to a decrease in the herbivore population size. The system 

becomes more stable due to this scenario.  

With a continued increase in the per capita rate of maximum predation, both the 

plant and herbivore populations become more stable. The ecological 

interpretation is that as predation pressure intensifies (higher 𝛼), the herbivores 

consume more plants, leading to a decrease in both plant and herbivore 
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populations. This intensified predation reduces competition among herbivores, 

contributing to the stability of the entire system.   

In summary, the sensitivity parameter α, representing the per capita rate of 

maximum predation, plays a crucial role in shaping the dynamics of the plant-

herbivore system. Increasing predation pressure not only affects the plant 

population directly but also has cascading effects on herbivore populations, 

ultimately influencing the stability of the entire ecological system.  

4.8 Conclusion 

A modified Leslie-Gower plant-herbivore model is taken into consideration by 

incorporating the Holling-type-II response under the Allee effect. The time 

parameter 𝜏 is utilized to depict the past history. Both the populations (𝑃, 𝐻) 

grow logistically with different intrinsic growth rates. The carrying capacity of 

the herbivore population 𝐻 depends on the plant population 𝑃. The non-trivial 

equilibrium 𝐸∗(𝑃∗ ≠ 0,𝐻∗ ≠ 0) is calculated. The stability behaviour of the 

system and time series graphs are performed graphically. The observation in 

figure 4.1 and figure 4.2 is that plant population 𝑃 and herbivore population 𝐻 

are absolutely stable when the time parameter 𝜏 = 0. Both the populations are 

asymptotically stable when the time parameter τ < 3.2, as shown in figure 4.3 

and figure 4.4. Furthermore, both populations are unstable and demonstrate 

Hopf-bifurcation when the time parameter 𝜏 ≥ 3.2, which is represented by 

figure 4.6 and figure 4.7. The phase space graphs representing the asymptotic 

stability and Hopf-bifurcation are indicated in figure 4.5 and figure 4.8. 

Time series graphs of change in density of plant population 𝑃 and herbivore 

population 𝐻 with respect to changes in the per capita rate of maximum 

predation 𝛼 are given in figure 4.9 and figure 4.10, respectively. 
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Chapter 5  

Analyzing the Dynamics of Plant-Herbivore 

Interactions under Allee Effect using Delay 

Differential Equation 

5.1 Introduction 

The study of infectious disease is known as Ecological epidemiology. Eco- 

epidemiological models are models where the predator-prey population suffers 

from an infectious disease [18]. Lotka [38] and Volterra [169] were the first 

who started to create realistic models mathematically which include two or more 

interacting species. Initially, the eco-epidemiological model is established by 

Hadeler and Freedman [170]. Thereafter, many researchers worked on eco-

epidemiology models. Different researchers focused on the spread of disease in 

different populations such as prey population only, predator population only, or 

both prey and predator populations [171], [172]. There are some epidemic 

models present in literature where authors supposed that the predators consume 

infectious prey, some supposed that the predator population does not consume 

the infectious prey population, and some authors also supposed that the predator 

population consumes both the susceptible and infectious plants [173]–[175]. 

Some researchers incorporated the Allee effect accompanied by infectious 

disease in the population [176], [177]. Initially, the biologist, Allee [48] defined 

the term Allee effect which describes the correspondence between density of a 

population and mean individual fitness. The Allee effect is observed in natural 

populations such as plants [59], birds [60], insects [61], and animals [62]. There 

are many mechanisms that cause the Allee effect. Mate limitation is the primary 

factor responsible for the occurrence of the Allee effect in both plants and 

animals. The other mechanisms include environmental mechanisms, inbreeding 

depression, demographic genetics, etc. [49], [56]. Plants can suffer from the 

Allee effect if the density of plants is low and sparsely distributed. The Allee 

effect falls into two categories. When the population density is low below a 
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specific threshold known as the Allee threshold, the presence of a strong Allee 

effect leads to a significant decrease in the population size. Adversely, the weak 

Allee effect means the increment of the growth rate with the increment of 

population size but there is no threshold value [65], [69]. The large effects of 

the extinction of species are documented due to the diseases [50]. For instance, 

if predators consume infectious prey, then there is negative growth of the 

predators [18]. There is a required time delay for the gestation period when 

predators eat infectious plants. Hence, delay differential equations have a 

significant role in realistic models [124], [138], [153]. 

The use of the weak Allee effect with infectious disease in plants and time lag 

is very rare in eco-epidemiological models. Therefore, the purpose of this 

contribution is to study an eco-epidemiological model accompanied by a weak 

Allee effect. The susceptible, as well as infectious plants, are incorporated with 

herbivores. Additionally, delay differential equations are used as there is an 

essential time lag for the gestation of the infectious plants by herbivores. 

5.2 Mathematical Model 

5.2.1 Assumptions of the model 

There are some assumptions for the Allee effect as well as for plants: 

1. Reproduction is not possible without mates.  

2. The increment in population density causes the decrement of the Allee 

effect.  

3. When population density is large, i.e., if population density approaches 

infinity, then the Allee function approaches one. 

4. The predation of susceptible plants by herbivores is ignored in this article. 

5. The assumption is that the infectious plants are generated by the infection 

of susceptible plants. Furthermore, infectious plants cannot grow, recover, 

or reproduce. Therefore, 𝛾 > 0 is the mortality rate of the infectious plant. 

6. The supposition for the weak infectious plant is that the handling time of 

herbivore for the infectious plant is zero, so there is a functional response 

with a linear mass-action 𝛽𝑃𝐼 where 𝛽 > 0 is the attack rate of herbivores. 
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5.2.2 Mathematical Formulation 

The plant-herbivore model using the delay differential equations is as follows: 

 
𝑑𝑃𝑆

𝑑𝑡
= 𝑃𝑆{[1 − (𝑃𝑆 + 𝑃𝐼)](𝑃𝑆 − 𝑏) − 𝛼𝑃𝐼} (5.1) 

 
𝑑𝑃𝐼

𝑑𝑡
= 𝑃𝐼(𝛼𝑃𝑆 − 𝛽𝐻 − 𝛾)  (5.2) 

 
𝑑𝐻

𝑑𝑡
= 𝛿𝐻(𝑡 − 𝜏)𝑃𝐼(𝑡 − 𝜏) − 𝜇𝐻 (5.3) 

where 𝑃𝑆(𝑡) > 0, 𝑃𝐼(𝑡) > 0, 𝐻(𝑡) > 0 ∀ 𝑡 ≥ 0 and 𝑏 ≤ 0 for weak Allee effect 

and 𝑃(𝑡 − 𝜏) = 𝜀, Constant for all 𝑡 ∈ [0, 𝜏]. 

Here, all the parameters 𝑏, 𝛼, 𝛽, 𝛾, 𝛿, 𝑎𝑛𝑑 𝜇 are positive constants.  

Variables/Parameters Description 

𝑷𝑺 Density of Susceptible Plant 

𝑷𝑰 Density of Infectious Plant 

𝑯 Density of Herbivores 

𝒃 Allee threshold 

𝜶 Rate of infection 

𝜹 Herbivores gain by consuming Infectious 

Plant 

𝜸 Mortality rate of Infectious Plant 

𝜷 Attack rate of Herbivores 

𝝁 Mortality rate of Herbivores 

𝝉 Gestation period of Herbivores 

Table 5.1 Description of Variables/Parameters. 

5.3 Equilibrium point of the model 

There are eight equilibrium points in the system, each with distinct non-

negativity criteria [178]. However, for the more comprehensive study, non-zero 

equilibrium is discussed which represents the co-existence of all the state 

variables (𝑃𝑆
∗, 𝑃𝐼

∗
, 𝐻∗) where none of them is zero, because the stability of the 

system shows no impact of delay on any of the other seven equilibrium points. 
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To calculate the non-zero equilibrium points of the model, equate the equations 

(5.1)-(5.3) to zero. 

At 𝐸∗(𝑃𝑆
∗, 𝑃𝐼

∗
, 𝐻∗), 𝑃𝐼

∗(𝑡 − 𝜏) ≈ 𝑃𝐼
∗(𝑡) and 𝐻∗(𝑡 − 𝜏) ≈ 𝐻∗(𝑡). 

𝑑𝑃𝐼

𝑑𝑡
= 0 ⇒ 𝐻∗ =

𝛼𝑃𝑆
∗−𝛾

𝛽
, provided 𝑃𝑆

∗ >
𝛾

𝛼
 

𝑑𝐻

𝑑𝑡
= 0 ⇒ 𝑃𝐼

∗ =
𝜇

𝛿
, provided 𝜇 > 0 

and 
𝑑𝑃𝑆

𝑑𝑡
= 0 

⇒ 𝑃𝑆
∗2

− (1 + 𝑏 −
𝜇

𝛿
)𝑃𝑆

∗ + [𝑏 + (𝛼 − 𝑏)
𝜇

𝛿
] = 0 

𝑃𝑆 has real and distinct roots if the discriminant is greater than 0, i.e., 

if (1 + 𝑏 −
𝜇

𝛿
)
2

> 4 [𝑏 + (𝛼 − 𝑏)
𝜇

𝛿
] 

5.4 Stability Analysis and Hopf-Bifurcation 

The original system (5.1)-(5.3) in terms of the non-zero equilibrium 

𝐸∗(𝑃𝑆
∗, 𝑃𝐼

∗, 𝐻∗) can be rewritten as given below: 

 
𝑑𝑃𝑆

∗

𝑑𝑡
= 𝑃𝑆

∗{[1 − (𝑃𝑆
∗ + 𝑃𝐼

∗)](𝑃𝑆
∗ − 𝑏) − 𝛼𝑃𝐼

∗} (5.4) 

 
𝑑𝑃𝐼

∗

𝑑𝑡
= 𝑃𝐼

∗(𝛼𝑃𝑆
∗ − 𝛽𝐻∗ − 𝛾) (5.5) 

 
𝑑𝐻∗

𝑑𝑡
= 𝛿𝐻∗(𝑡 − 𝜏)𝑃𝐼

∗(𝑡 − 𝜏) − 𝜇𝐻∗  (5.6) 

The exponential characteristic equation at equilibrium 𝐸∗(𝑃𝑆
∗, 𝑃𝐼

∗, 𝐻∗) is given 

by  

|

𝜆 − 𝑚1 −𝑚2 −𝑚3

−𝑚4 𝜆 − 𝑚5 −𝑚6

−𝑚7 −𝑚8 𝜆 − 𝑚9

| = 0 

where 𝑚1 = −3𝑃𝑆
∗2

+ 2(1 + 𝑏)𝑃𝑆
∗ − 2𝑃𝑆

∗𝑃𝐼
∗ + (𝑏 − 𝛼)𝑃𝐼

∗ − 𝑏,  

𝑚2 = 𝛼𝑃𝐼
∗, 𝑚3 = 0, 𝑚4 = −𝑃𝑆

∗2
+ 𝑏𝑃𝑆

∗ − 𝛼𝑃𝑆
∗, 𝑚5 = 𝛼𝑃𝑆

∗ − 𝛽𝐻∗ − 𝛾, 

 𝑚6 = 𝛿𝐻∗𝑒−𝜆𝜏, 𝑚7 = 0, 𝑚8 = −𝛽𝑃𝐼
∗, 𝑚9 = 𝛿𝑃𝐼

∗𝑒−𝜆𝜏 − 𝜇 
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 ∴ (𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3) + (𝐵1𝜆

2 + 𝐵2𝜆 + 𝐵3)𝑒
−𝜆𝜏 = 0 (5.7) 

Here 𝐴1 = −𝑚1 − 𝑚5 + 𝜇, 𝐴2 = 𝑚1𝑚5 − 𝑚2𝑚4 − 𝜇(𝑚1 + 𝑚5),  

𝐴3 = 𝜇(𝑚1𝑚5 − 𝑚2𝑚4), 

𝐵1 = −𝛿𝑃𝐼
∗, 𝐵2 = (𝑚1 + 𝑚5)𝛿𝑃𝐼

∗ − 𝑚6𝑚8,  

𝐵3 = (−𝑚1𝑚5 + 𝑚2𝑚4)𝛿𝑃𝐼
∗ + 𝑚1𝑚6𝑚8 

Here, 𝜆 = 𝑖𝜔 is a solution of equation (5.7) if and only if:  

(𝑖𝜔)3 + 𝐴1(𝑖𝜔)2 + 𝐴2(𝑖𝜔) + 𝐴3 + (𝐵1(𝑖𝜔)2 + 𝐵2(𝑖𝜔) + 𝐵3)𝑒
−𝑖𝜔𝜏 = 0 (5.8) 

Segregating real and imaginary parts: 

 𝐴3 − 𝐴1𝜔
2 + (𝐵3 − 𝐵1𝜔

2)𝑐𝑜𝑠 𝜔𝜏 + 𝐵2𝜔 sin𝜔𝜏 = 0 (5.9) 

 𝐴2𝜔 − 𝜔3 + 𝐵2𝜔 𝑐𝑜𝑠 𝜔𝜏 − (𝐵3 − 𝐵1𝜔
2) sin𝜔𝜏 = 0 (5.10) 

And it gives: 

 

𝜔6 + (𝐴1
2 − 𝐵1

2 − 2𝐴2)𝜔
4

+ (𝐴2
2 − 𝐵2

2 + 2𝐵1𝐵3 − 2𝐴1𝐴3)𝜔
2

+ (𝐴3
2 − 𝐵3

2) = 0 

(5.11) 

Let 𝑐1 = (𝐴1
2 − 𝐵1

2 − 2𝐴2), 𝑐2 = (𝐴2
2 − 𝐵2

2 + 2𝐵1𝐵3 − 2𝐴1𝐴3), 

𝑐3 = (𝐴3
2 − 𝐵3

2). 

Let 𝜔2 = 𝑥 , then equation (5.11) becomes: 

 𝑥3 + 𝑐1𝑥
2 + 𝑐2𝑥 + 𝑐3 = 0    (5.12) 

Lemma 5.4.1 When 𝑐3 < 0, Equation (5.12) has at least one real zero which is 

positive. 

Proof: Let  

𝑙(𝑥) = 𝑥3 + 𝑐1𝑥
2 + 𝑐2𝑥 + 𝑐3  

Here 𝑙(0) = 𝑐3, which is less than zero, lim
𝑦→∞

𝑙(𝑥) = ∞. therefore, ∃ 𝑥0 ∈ (0,∞) 

such that 𝑙(𝑥0) is zero. Hence proved. 
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Lemma 5.4.2 When 𝑐3 ≥ 0, an essential condition for equation (5.12) to have 

real zeros which are positive, is 𝐷 = 𝑐1
2 − 3𝑐2 and it is greater than and equal 

to zero. 

Proof: Because 

𝑙(𝑥) = 𝑥3 + 𝑐1𝑥
2 + 𝑐2𝑥 + 𝑐3, 

therefore  

𝑙′(𝑥) = 3𝑥2 + 2𝑐1𝑥 + 𝑐2 

The derivative is equated equal to zero to discuss the nature of roots. We 

reduce the cubic equation to a quadratic equation so that is it easier to check 

the roots. 

𝑙′(𝑥) = 0 

 ⇒ 3𝑥2 + 2𝑐1𝑥 + 𝑐2 = 0 (5.13) 

The zeros of equation (5.13) can be represented as  

 𝑥1,2 =
−2𝑐1 ∓ √4𝑐1

2 − 12𝑐2

6
=

−𝑐1 ∓ √𝐷

3
  (5.14) 

When 𝐷 is less than zero, equation (5.13) has no zero which is real. Therefore,  

𝑙(𝑥) is a monotone-increasing function in 𝑥. The equation (5.12) does not have 

any real zero which is positive because 𝑙(0) = 𝑐3 ≥ 0. Hence proved. 

When 𝐷 is greater than and equal to zero, 𝑥1 =
−𝑐1+√𝐷

3
  is local minima of 𝑙(𝑥).   

Lemma 5.4.3 When 𝑐3 is greater than and equal to zero, equation (5.12) has 

zeros which are positive if and only if 𝑥1 > 0 and  𝑙(𝑥1) ≤ 0. 

Proof: Consider, 𝑥1 ≤ 0 or 𝑥1 > 0 and 𝑙(𝑥1) > 0. When 𝑥1 ≤ 0, 𝑙(𝑥) does not 

have any real zeros which are positive because 𝑙(𝑥) is increasing for 𝑥 ≥ 𝑥1 and 

𝑙(0) = 𝑐3 ≥ 0. When 𝑥1 > 0 and 𝑙(𝑥1) > 0, 𝑙(𝑥1) ≤ 𝑙(𝑥2) because 𝑥2 =

−𝑐1−√𝐷

3
 is the local maxima value. Therefore, 𝑙(0) = 𝑐3 ≥ 0, because 𝑙(𝑥) has 

no real zeros which are positive. Hence proved. 
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Lemma 5.4.4 Suppose equation (5.14) defines 𝑥1. 

(I) When 𝑐3 < 0, Equation (5.12) has at least one real zero which is 

positive. 

(II) When 𝑐3 ≥ 0 and  𝐷 = 𝑐1
2 − 3𝑐2 < 0, equation (5.12) does not have 

any zero which is positive. 

(III) When 𝑐3 ≥ 0, equation (5.12) has zeros which are positive if and only 

if  𝑥1 > 0 and  𝑙(𝑥1) ≤ 0. 

Proof: Assume that equation (5.12) has zeros that are positive. With no loss of 

generality, let 𝑥1, 𝑥2, 𝑥3 are positive zeros. Then equation (5.11) has three zeros 

that are positive, say 𝜔1 = √𝑥1 , 𝜔2 = √𝑥2 , 𝜔3 = √𝑥3 . 

From (5.10), 

sin𝜔𝜏 =
𝐴2𝜔 − 𝜔3

𝑑
 

Which gives  

𝜏 =
1

𝜔
[𝑠𝑖𝑛−1 (

𝐴2𝜔 − 𝜔3

𝑑
) + 2(𝑗 − 1)𝜋] ; 𝑗 = 1,2,3,… 

Consider, 

𝜏𝑘
(𝑗) =

1

𝜔𝑘
[𝑠𝑖𝑛−1 (

𝐴2𝜔𝑘 − 𝜔𝑘
3

𝑑
) + 2(𝑗 − 1)𝜋] ; 𝑘 = 1,2,3. ; 𝑗 = 0,1,2, … 

Therefore, ∓𝑖𝜔𝑘 is a pair of zeros of equation (5.11) that are purely imaginary. 

 Where   

𝜏 = 𝜏𝑘
(𝑗), 𝑘 = 1,2,3. ; 𝑗 = 0,1,2, … .,  lim

𝑗→∞
𝜏𝑘

(𝑗) = ∞, 𝑘 = 1,2,3.    

 Thus, define 

 𝜏0 = 𝜏𝑘0
(𝑗0) = min

1≤𝑘≤3,𝑗≥1
[𝜏𝑘

(𝑗)] , 𝜔0 = 𝜔𝑘0
, 𝑥0 = 𝑥𝑘0

  (5.15) 

Lemma 5.4.5 Suppose that 𝐴1 > 0, (𝐴3 + 𝑑) > 0, 𝐴1𝐴2 − (𝐴3 + 𝑑) > 0. 
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(A) When 𝑐3 ≥ 0 and  𝐷 = 𝑐1
2 − 3𝑐2 < 0, then every zero of equation (5.7) 

includes real parts which are negative ∀ 𝜏 ≥ 0. 

(B) When 𝑐3 < 0 or 𝑐3 ≥ 0, 𝑥1 > 0 and  𝑙(𝑥1) ≤ 0, then every zero of 

equation (5.7) includes real parts which are negative ∀ 𝜏 ∈ [0, 𝜏0). 

Proof: If 𝜏 = 0, equation (5.7) becomes 

 𝜆3 + (𝐴1 + 𝐵1)𝜆
2 + (𝐴2 + 𝐵2)𝜆 + (𝐴3 + 𝐵3) = 0 (5.16) 

By Hurwitz’s condition, (𝑹𝟏): Every zero of equation (5.7) includes real parts 

which are −𝑣𝑒 if and only if   

(𝐴3 + 𝐵3) > 0, (𝐴1 + 𝐵1)(𝐴2 + 𝐵2) − (𝐴3 + 𝐵3) > 0. 

When 𝑐3 ≥ 0 and  𝐷 = 𝑐1
2 − 3𝑐2 < 0, Lemma 5.4.4 (B) represents that 

equation (5.7) does not have any root with zero real part ∀ 𝜏 ≥ 0. If 𝑐3 < 0 or 

𝑐3 ≥ 0, 𝑥1 > 0 and  𝑙(𝑥1) ≤ 0, Lemma 5.4.4 (A) and (C) implies that if 𝜏 ≠

𝜏𝑘
(𝑗), 𝑘 = 1,2,3. ; 𝑗 ≥ 1, equation (5.7) does not include any roots with a real 

part of zero and 𝜏0 is the minimum value of 𝜏, therefore equation (5.7) has zeros 

that are purely imaginary.  

Consider, 

 𝜆(𝜏) = 𝜓(𝜏) + 𝑖𝜔(𝜏) (5.17) 

be the zeros of equation (5.7) which satisfy: 

𝜓(𝜏0) = 0, 𝜔(𝜏0) = 𝜔0 

Let 𝑙′(𝑥0) ≠ 0 to prove that equation (5.7) has zeros ∓𝜔0  which are purely 

imaginary, that includes 𝜏 = 𝜏0 and 𝜆(𝜏) satisfies the transversality condition.  

Lemma 5.4.6 Consider 𝑥0 = 𝜔0
2. If 𝜏 = 𝜏0, Then Sign [𝜓′(𝜏0)] =Sign 

[𝑙′(𝑥0)] 

Proof: Put 𝜆(𝜏) in equation (5.7) and differentiate w.r.t 𝜏,  

𝑑𝜆

𝑑𝜏
[3𝜆2 + 2𝐴1𝜆 + 𝐴2 + ((𝐵1𝜆

2 + 𝐵2𝜆 + 𝐵3)(−𝜏) + (2𝐵1𝜆 + 𝐵2))𝑒
−𝜆𝜏]

= 𝜆(𝐵1𝜆
2 + 𝐵2𝜆 + 𝐵3)𝑒

−𝜆𝜏 

Then (
𝑑𝜆

𝑑𝜏
)
−1

=
(3𝜆2+2𝐴1𝜆+𝐴2)𝑒𝜆𝜏

𝜆(𝐵1𝜆2+𝐵2𝜆+𝐵3)
+

(2𝐵1𝜆+𝐵2)

𝜆(𝐵1𝜆2+𝐵2𝜆+𝐵3)
−

𝜏

𝜆
 

From equations (5.9)-(5.11): 
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𝜇′(𝜏0) = 𝑅𝑒 [
(3𝜆2+2𝐴1𝜆+𝐴2)𝑒𝜆𝜏

𝜆(𝐵1𝜆2+𝐵2𝜆+𝐵3)
] + 𝑅𝑒 [

(2𝐵1𝜆+𝐵2)

𝜆(𝐵1𝜆2+𝐵2𝜆+𝐵3)
]  =

1

∆
[3𝜔0

6 + 2𝑐1𝜔0
4 +

𝑏𝜔0
2] 

Here ∆= [(𝐵3 − 𝐵1𝜔
2)2 + (𝐵2𝜔)2] 

where ∆ > 0 and 𝜔0 > 0. 

Therefore, 

Sign [𝜓′(𝜏0)] =Sign [𝑙′(𝑥0)]. 

Hence proved. 

5.5 Numerical Example 

The following parameter values are incorporated to represent the stability 

behaviour of the entire system: 

𝛼 = 0.5, 𝛽 = 0.1, 𝛾 = 0.05, 𝛿 = 0.55, 𝜇 = 0.1, 𝑏 = −5 

 

Figure 5.1 𝐸∗(0.8013, 0.1818, 3.5127) is absolutely stable when there is no time lag 

that is when 𝜏 = 0. 
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Figure 5.2 𝐸∗(0.7888, 0.1949, 3.4142) is asymptotic stable when the time lag is lower 

than the threshold value that is 𝜏 < 10.6. 

 

Figure 5.3 Phase space diagram showing the asymptotic stability of 

𝐸∗(0.7888, 0.1949, 3.4142) when the time lag is lower than the threshold value that 

is 𝜏 < 10.6. 
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Figure 5.4 𝐸∗(0.5014, 0.4673, 1.4156) loses stability, and Hopf-bifurcation observes 

when time lag surpasses the threshold point that is 𝜏 ≥ 10.6. 

 

Figure 5.5 Phase space diagram showing the Hopf- bifurcation of 

𝐸∗(0.5014, 0.4673, 1.4156) when time lag crosses the threshold value that is 𝜏 ≥

10.6. 
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is 𝜏. For instance, the partial derivatives of the system (𝑃𝑆, 𝑃𝐼 , 𝐻) w.r.t. 𝛿 
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(herbivores gain by consuming infectious plant) has the following set of 

sensitivity equations: 

 

𝑑𝑆1

𝑑𝑡
= [−3𝑃𝑆

2 + 2(𝑏 + 1)𝑃𝑆 + (𝑏 − 𝛼)𝑃𝐼 − 2𝑃𝑆𝑃𝐼]𝑆1

+ [−𝑃𝑆
2 + (𝑏 − 𝛼)𝑃𝑆]𝑆2 

(5.18) 

 
𝑑𝑆2

𝑑𝑡
= 𝛼𝑃𝐼𝑆1 + (𝛼𝑃𝑆 − 𝛽𝐻 − 𝛾)𝑆2 − 𝛽𝑃𝐼𝑆3 (5.19) 

𝑑𝑆3

𝑑𝑡
= −𝜇𝑆3 + 𝛿𝐻(𝑡 − 𝜏)𝑆2(𝑡 − 𝜏) + 𝛿𝑃𝐼(𝑡 − 𝜏)𝑆3(𝑡 − 𝜏)     (5.20) 

where 𝑆1 =
𝜕𝑃𝑆

𝜕𝛿
, 𝑆2 =

𝜕𝑃𝐼

𝜕𝛿
, 𝑆3 =

𝜕𝐻

𝜕𝛿
 

5.6.1 Sensitivity of Variables to Parameter 𝜹 

 

Figure 5.6 Time series graph of change in density of susceptible plant 𝑃𝑆 with respect 

to change in the herbivores gain by consuming infectious plants (𝛿). 
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Figure 5.7 Time series graph of change in density of infectious plant 𝑃𝐼 with respect 

to change in the herbivores gain by consuming infectious plant (𝛿). 

 

Figure 5.8 Time series graph of change in density of herbivores 𝐻 with respect to 

change in the herbivores gain by consuming infectious plant (𝛿). 
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5.6.2 Sensitivity of Variables to Parameter 𝛍 

 

Figure 5.9 Time series graph of change in density of susceptible plant 𝑃𝑆 with respect 

to change in the mortality rate of herbivores (𝜇). 

 

Figure 5.10 Time series graph of change in density of infectious plant 𝑃𝐼 with respect 

to change in the mortality rate of herbivores (𝜇). 
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Figure 5.11 Time series graph of change in density of herbivores 𝐻 with respect to 

change in the mortality rate of herbivores (𝜇). 

5.7 Results and Discussion 

Figure 5.1 indicates that the equilibrium 𝐸∗(0.8013, 0.1818, 3.5127) is 

absolutely stable when the time lag is absent that is 𝜏 = 0. The system 

destabilizes and shows asymptotic stability when the time lag is lesser than the 

threshold point which is 𝜏 < 10.6 as represented in figure 5.2. When the time 

lag crosses the threshold point as shown in figure 5.4, then the system undergoes 

Hopf-bifurcation that is 𝜏 ≥ 10.6. Figures 5.3 and 5.5 indicate the phase space 

diagrams for the asymptotic stability and Hopf-bifurcation.  

The time series graphs are indicated in figures 5.6 to 5.11. As represented in 

figure 5.6, figure 5.7, and figure 5.8, when we decrease the value of 𝛿 

(herbivores gain by consuming infectious plants), the entire system which 

comprises the densities of susceptible plants, infectious plants, and herbivores 

(𝑃𝑆, 𝑃𝐼 , 𝐻), changes its behaviour from Hopf bifurcation to asymptotic and then 

asymptotic to absolutely stable. When 𝛿 (herbivores gain by consuming 

infectious plants) changes from 𝛿 = 0.55 to 𝛿 = 0.45, the equilibrium shifts its 

behaviour from Hopf bifurcation to asymptotic. Furthermore, when we decrease 

the value of 𝛿 (herbivores gain by consuming infectious plant) from 𝛿 = 0.45 

to 𝛿 = 0.35, the system again changes its behaviour to absolute stability. 
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Specifically, initially, when herbivores consume infectious plants, then it is 

beneficial for them as it can satisfy their hunger and facilitate reproduction. 

However, as the herbivore population increases, they start competing with each 

other for food, leading to a decline in the plant population. Consequently, the 

system experiences initial fluctuations. Subsequently, when herbivores gain by 

consuming infectious plants start decreasing, the herbivore population starts 

declining, and the entire system tends towards absolute stability. Moreover, 

figure 5.9, figure 5.10, and figure 5.11 indicates that as we increase the mortality 

rate of herbivores 𝜇, the state variables which include the densities of 

susceptible plant, infectious plant, and herbivores (𝑃𝑆, 𝑃𝐼 , 𝐻) change its 

behaviour from Hopf-bifurcation to asymptotic and finally absolute stability. 

When there is an increment in the value of the mortality rate of herbivores 𝜇 

from 𝜇 = 0.1 to 𝜇 = 0.13, the equilibrium shifts its behaviour from Hopf-

bifurcation to asymptotic. Similarly, when there is an increment in the value of 

the mortality rate of herbivores 𝜇 from 𝜇 = 0.13 to 𝜇 = 0.17, every state 

variable tends to an equilibrium point that is stable. It means that as the mortality 

rate of herbivores increases by consuming infectious plants, the infectious plant 

decreases. This implies an increase in susceptible plants. Consequently, this 

scenario leads the entire system towards stability. 

5.8 Conclusion 

The eco-epidemiological model incorporates the susceptible plant, infectious 

plant, and herbivores, and the weak Allee effect is analyzed. The Holling type- 

I response is used. The main assumption is that susceptible plants generate 

infectious plants. The delay differential equations are used as many processes 

depend on the history and it is important for the gestation period. The non-zero 

equilibrium points are calculated. It is represented that the system is stable when 

there is a negligible time lag that is when τ = 0. When time lag is below the 

threshold value that is when τ < 10.6, then the system demonstrates asymptotic 

stability. Additionally, when time lag surpasses the threshold value that is when 

τ ≥ 10.6, then the system becomes unstable, and Hopf- bifurcation is observed. 

The phase space diagrams for the asymptotic stability and Hopf-bifurcation are 
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also represented. The time series graphs which represent the dynamics of the 

system are also included.  
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Chapter 6  

Mathematical Analysis of Delayed Gauss-type 

Plant-Herbivore Model with Holling type-𝐈𝐈𝐈 

Functional response 

6.1 Introduction 

Nowadays, the topic of mathematical modelling is curiously studied by many 

ecologists. It helps us to solve real-world problems theoretically as well as 

experimentally by using graphs, diagrams, equations, etc. It gives accurate 

strategies to solve problems. As a consequence of this, the interest of ecologists 

is increasing gradually in this topic, and several attempts have been made to 

predict the solutions for real-world problems mathematically.  The authors 

generated distinct types of mathematical models to solve real-life problems. 

Lotka [38] and Volterra [39] were the developers of the predator-prey model in 

1927. Now, their model has been considered the base of several models and 

studies. Canale [179] developed a model of interaction between predator and 

prey as host population using nonlinear ordinary differential equations. It is 

proved that the periodic solution may either depend on the initial conditions or 

limit cycles and it is not necessary that an aperiodic solution will exhibit 

oscillatory behaviour. Many models are modified versions of the prey-predator 

model [40]–[44]. Plant-herbivore models, Leslie-Gower predator-prey models, 

and Gauss-type predator-prey models are some examples of the modified 

versions of predator-prey models. Aziz-Alaoui and Okiye [96] proposed a 

modification of the Leslie-Gower predator-prey and presented boundedness and 

stability about the interior point. Farajzadeh et al. [103] analyzed Gauss 

predator-prey model which includes one prey and two predators and they 

analyzed the stability behaviour of the interacting species. Han et al. [180] 

proposed a predator-prey model with SIS or SIR parasitic infection. They 

concluded that if the prey population is infected and the predator population has 

feeding effectiveness to survive, even then the predator population becomes 
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infected. Rojas-Palma and Gonzalez-Olivares [98] analyzed Gauss-type 

predator-prey model accompanied by Allee effect and sigmoid response. The 

optimal harvest policy and the fishing effort are described by solving the 

autonomous ordinary differential equations. Naji and Mustafa [99] analyzed the 

behaviour of the Eco-epidemiological model with SI-type disease in prey and a 

non-linear incidence rate. Kumar and Verma [59] proposed the plant-herbivore 

model with both Allee effects. The perishing of both plants and herbivore 

populations is presented by considering the strong Allee effect. The stability 

and instability of the system at non-zero equilibrium are also presented. A model 

with the shoot and root compartments is proposed by Kalra and Kumar [138] to 

study the growth of plants. A delay parameter is included which disturbs the 

stability of the system and shows Hopf-bifurcation. Kalra and Kumar [124] 

developed a model with toxic metals and studied the impact of time delay on 

plant biomass. Singh [139] investigated the SIR epidemic model and proved 

that Hopf-bifurcation occurred under certain conditions. Asfaw et al. [27] 

considered the extended stochastic plant-herbivore model, incorporating the 

Allee effect, and found that the dynamics produce more changes when the noise 

is added to the herbivores as compared to the plant population. Asfaw et al. [30] 

reformulated the plant-herbivore model with Allee effect that mortality rate of 

herbivores is dependent on the plant population and the threshold conditions for 

the non-extinction of the herbivores are also demonstrated. Asymptotically 

stable 2-periodic systems were used by Elaydi and Sacker [69] to show the 

occurrence of carrying capacity in a mathematical model with the Allee effect. 

Li [36] established plant-herbivore model with toxicity in plants which causes 

SIS parasitic infection in herbivores. It is demonstrated that the interaction 

between both populations has a dramatic impact on population dynamics. The 

boundedness, periodic nature, and stability of plant-herbivore model, 

considering both difference and differential equations is studied by Kartal [37]. 

Yousef and Yousef [29] conducted a study on the plant-herbivore model, 

utilizing fractional-order differential equations to demonstrate the occurrence of 

flip bifurcation. This analysis involved the application of bifurcation theory and 

the center manifold theorem. Kumar and Verma [181] conducted a study on 
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plant-herbivore model, considering a strong Allee effect and concluded that 

Hopf-bifurcation is seen when time parameter surpasses the critical value. Chan 

et al. [182] explored the necessity of comprehending the complex patterns of 

predator foraging behavior in natural systems through an investigation into how 

alternate prey and predator interference affect density-dependent predation. 

Huang et al. [183] examined a Leslie-type predator-prey system with a 

generalized Holling type-𝐼𝐼𝐼 functional response. They demonstrated that the 

model simultaneously undergoes subcritical Hopf bifurcation and Bogdanov–

Takens bifurcation within the small neighbourhoods of the two degenerate 

equilibria. Morozov [184] suggested a generic model and demonstrated that 

changes in the vertical distribution of food, along with the active foraging 

behavior of zooplankton, can alter the nature of the functional response. 

Several types of mathematical models are introduced and examined by different 

authors in the literature. The authors also modified the existing models and then 

examined them. In the current work, a delayed Gauss-type Plant-herbivore 

model under the Allee effect is examined by consolidating delay as a time 

parameter. The Holling type-III functional response is utilized. The stability and 

sensitivity analysis to demonstrate the variations in the dynamics of the system 

are plotted in the graph. 

6.2 Mathematical Model 

Let 𝑃 = 𝑃(𝑡) and 𝐻 = 𝐻(𝑡) be the plants and herbivores populations 

respectively with respect to time 𝑡. Therefore, a Gauss-type Plant-herbivore 

model, considering the Allee effect and time parameter 𝜏 is presented below: 

 
𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃(𝑡 − 𝜏)

𝐾
) (𝑃 − 𝑏) −

𝛼𝑃2

𝑃2 + 𝛽2
𝐻 (6.1) 

 𝑑𝐻

𝑑𝑡
= (

𝛾𝑃2

𝑃2 + 𝛽2
− 𝑑)𝐻 

(6.2) 
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The initial conditions of the above system are supplemented as follows: 

𝑃(𝑡) > 0, 𝐻(𝑡) > 0 ∀ 𝑡 ≥ 0 

and 𝑃(𝑡 − 𝜏) = 𝜀, constant ∀ 𝑡 ∈ [0, 𝜏]. 

Also,  𝑃 ≤ 𝐾, and 𝑏 ≤ 0 for weak Allee effect. Moreover, the parameters 

𝑟, 𝐾, 𝑏, 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝑑 are taken to be positive.  

The proposed model provides the following ecological interpretations for the 

notations or parameters used within it: 

𝑟 is called internal growth rate of plants, 𝐾 represents the carrying capacity of 

the plants, 𝑏 is called the Allee constant, 𝛼 is known as the maximum per capita 

consumption rate, 𝛽 is called the capturing rate, 𝛾 = 𝑒𝛽 stands for the 

conversion effectiveness of consumed plants, 𝑑 is the mortality rate of 

herbivores and 𝜏 is called time parameter which represents the past history. The 

parameters 𝑟, 𝐾, 𝑏, 𝛽, 𝛾, 𝑎𝑛𝑑 𝑑 are positive constants. 

6.3 Equilibrium point of the model 

In this section, non-trivial equilibrium is considered which characterizes the co-

existence of all the state variables (𝑃∗, 𝐻∗), where none of them is zero, because 

the stability of the system shows no impact of delay on any of the other 

equilibrium points. For feasible non-trivial equilibrium, consider 𝑃(𝑡 − 𝜏) ≅

𝑃(𝑡) and equate the system of equations (6.1) and (6.2) to zero: 

 ∴
𝑑𝐻

𝑑𝑡
= 0 

 ⇒ 𝑃∗ = √
𝑑

𝛾 − 𝑑
𝛽, provided 𝛾 > 𝑑 (6.3) 

and 
𝑑𝑃

𝑑𝑡
= 0 

 
⇒ 𝐻∗ =

𝑟𝛽𝛾

𝛼√𝑑(𝛾 − 𝑑)
(1 −

𝛽

𝐾
√

𝑑

𝛾 − 𝑑
)(𝛽√

𝑑

𝛾 − 𝑑
− 𝑏), 

 provided 𝛾 > 𝑑  

(6.4) 
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Thus, the non-trivial equilibrium is given by: 

𝐸∗(𝑃∗, 𝐻∗) = 𝐸∗ (√
𝑑

𝛾 − 𝑑
𝛽,

𝑟𝛽𝛾

𝛼√𝑑(𝛾 − 𝑑)
(1 −

𝛽

𝐾
√

𝑑

𝛾 − 𝑑
)(𝛽√

𝑑

𝛾 − 𝑑
− 𝑏)) 

6.4 Stability Analysis and Hopf-Bifurcation 

The following system of equations is used to examine the dynamics of the 

equilibrium 𝐸∗(𝑃∗, 𝐻∗) of the delayed Gauss-type Plant-herbivore model under 

the Allee effect: 

 
𝑑𝑃∗

𝑑𝑡
= 𝑟𝑃∗ (1 −

𝑃∗(𝑡 − 𝜏)

𝐾
) (𝑃∗ − 𝑏) −

𝛼𝑃∗2

𝑃∗2 + 𝛽2
𝐻∗ (6.5) 

 
𝑑𝐻∗

𝑑𝑡
= (

𝛾𝑃∗2

𝑃∗2 + 𝛽2
− 𝑑) 𝐻∗ (6.6) 

Differentiating the system of equations (6.5)-(6.6) w.r.t 𝑃∗, 

𝑚1 = 𝑟(2𝑃∗ − 𝑏) +
𝑟𝑃∗

𝐾
(𝑏 − 𝑃∗)𝑒−𝜆𝜏 −

2𝛼𝛽2

(𝑃∗2 + 𝛽2)
2 𝑃∗𝐻∗; 

𝑚2 =
2𝛾𝛽2

(𝑃∗2 + 𝛽2)
2 𝑃∗𝐻∗. 

Differentiating the system of equations (6.5)-(6.6) w.r.t 𝐻∗, 

𝑚3 = −
𝛼𝑃∗2

(𝑃∗2 + 𝛽2)
; 

 𝑚4 =
𝛾𝑃∗2

(𝑃∗2+𝛽2)
− 𝑑. 

Equation (6.7) is the exponential characteristic equation for the system of 

equations (6.5)–(6.6): 

|
𝜆 − 𝑚4 𝑚2

𝑚3 𝜆 − 𝑚4
| = 0 

 ⇒ 𝜆2 + 𝐴1𝜆 + 𝐴2 + 𝑒−𝜆𝜏(𝐴3𝜆 + 𝐴4) = 0 (6.7) 



95 
 

where 𝐴1 = −𝑟(2𝑃∗ − 𝑏) +
2𝛼𝛽2

(𝑃∗2+𝛽2)
2 𝑃∗𝐻∗ − 𝑚4; 

𝐴2 = [𝑟(2𝑃∗ − 𝑏) −
2𝛼𝛽2

(𝑃∗2 + 𝛽2)
2 𝑃∗𝐻∗]𝑚4 − 𝑚2𝑚3; 

𝐴3 = −
𝑟𝑃∗

𝐾
(𝑏 − 𝑃∗);  

𝐴4 =
𝑟𝑃∗

𝐾
(𝑏 − 𝑃∗)𝑚4. 

The equation (6.7) at 𝜏 = 0 is : 

 𝜆2 + (𝐴1 + 𝐴3)𝜆 + (𝐴2 + 𝐴4) = 0 (6.8) 

The entire system is stable which means the equation (6.8) will have – 𝑣𝑒 real 

roots by Routh-Hurwitz’s criteria if: 

(𝑹𝟏): (𝐴1 + 𝐴3) > 0 and (𝑹𝟐): (𝐴2 + 𝐴4) > 0 

Now, with changes in the values of the time parameter (𝜏), verify the switching 

of the roots of −𝑣𝑒 real parts to +𝑣𝑒 real part: 

Consider, the root of equation (6.7) to be 𝜆 = 𝑖𝜔,  

then the following result: 

(𝑖𝜔)2 + 𝐴1(𝑖𝜔) + 𝐴2 + [𝐴3(𝑖𝜔) + 𝐴4]𝑒
−(𝑖𝜔)𝜏 = 0 

⇒ −𝜔2 + 𝐴1(𝑖𝜔) + 𝐴2 + [𝐴3(𝑖𝜔) + 𝐴4](cos𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏 ) = 0 

We get the following equation for separating the real parts from the imaginary 

part: 

 −ω2 + A2 = −A4 cosωτ − A3ωsin ωτ  (6.9) 

 A1ω = −A3 cosωτ + A4sin ωτ  (6.10) 

∴ ω satisfies the following: 

 ω4 − (A3
2 − A1

2 + 2A2)ω
2 + (A2

2 − A4
2) = 0 (6.11) 

Equation (6.11) has the following roots: 



96 
 

𝜔1,2
2 =

(𝐴3
2−𝐴1

2+2𝐴2)±√(𝐴3
2−𝐴1

2+2𝐴2)
2
−4(𝐴2

2−𝐴4
2)

2
                 (6.12) 

𝜔1,2
2  has no +𝑣𝑒 roots if: 

(𝑹𝟑): (𝐴3
2 − 𝐴1

2 + 2𝐴2) < 0 𝑎𝑛𝑑 (𝐴2
2 − 𝐴4

2) > 0  

Or (𝐴3
2 − 𝐴1

2 + 2𝐴2)
2

< 4(𝐴2
2 − 𝐴4

2) 

This implies that if the condition (𝑅3) is true, there is no +𝑣𝑒 root of equation 

(6.12). 

Now, there are some lemmas [162]: 

Lemma 6.4.1 Every root of equation (6.7) has −𝑣𝑒 real parts ∀ 𝜏 ≥ 0 when 

(𝑅1) − (𝑅2) is true.  

On the contrary, if: 

(𝑹𝟒): (𝐴2
2 − 𝐴4

2) < 0 𝑜𝑟  (𝐴3
2 − 𝐴1

2 + 2𝐴2) > 0  

And 

(𝐴3
2 − 𝐴1

2 + 2𝐴2)
2

= 4(𝐴2
2 − 𝐴4

2) 

Then, 𝜔1
2 is the +𝑣𝑒 root of equation (6.9). 

Also, if: 

(𝑹𝟓): (𝐴2
2 − 𝐴4

2) > 0 𝑜𝑟  (𝐴3
2 − 𝐴1

2 + 2𝐴2) > 0  

And (𝐴3
2 − 𝐴1

2 + 2𝐴2)
2

> 4(𝐴2
2 − 𝐴4

2) 

∴  𝜔1,2
2  are the two +𝑣𝑒 roots of equation (6.9). 

When the time parameter (𝜏) takes certain values, equation (6.7) exhibits purely 

imaginary roots in both- (𝑅4) and (𝑅5). 

The system of equations (6.7)-(6.8) gives the critical values 𝜏𝑗
± of time 

parameter (𝜏): 
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 𝜏𝑗
± =

1

𝜔1,2
𝑐𝑜𝑠−1 [

𝐴4(𝜔1,2
2 − 𝐴2) − 𝐴1𝐴3𝜔1,2

2

𝐴3
2𝜔1,2

2 + 𝐴4
2 ] +

2𝑗𝜋

𝜔1,2
, 𝑗 = 0,1,2, … (6.13) 

The succeeding lemma condenses the aforementioned discussion [162]: 

Lemma 6.4.2 (A) If conditions (𝑅1) − (𝑅2) 𝑎𝑛𝑑 (𝑅4) are satisfied, 

equation (6.7) will have two purely imaginary roots ±𝑖𝜔1. 

(B) Equation (6.7) exhibits a pair of purely imaginary roots 

±𝑖𝜔1(±𝑖𝜔2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) when 

(𝑅1) − (𝑅2) 𝑎𝑛𝑑 (𝑅5) is true  

and 𝜏 = 𝜏𝑗
+(𝜏 = 𝜏𝑗

− 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). 

According to our assumption, when 𝜏 > 𝜏𝑗
+ and 𝜏 < 𝜏𝑗

−, the −𝑣𝑒 real part of 

certain roots of equation (6.7) will shift to the +𝑣𝑒 real part. 

∴ Let 𝜏𝑗
± = 𝜇𝑗

±(𝜏) + 𝑖𝜔𝑗
±(𝜏); 𝑗 = 0,1,2,3, … 

𝜇𝑗
±(𝜏𝑗

±) = 0,𝜔𝑗
±(𝜏𝑗

±) =𝜔1,2 

is satisfied by the roots of the equation (6.7). 

We can demonstrate that the transversality criterion stated below is true: 

𝑑

𝑑𝜏
(𝑅𝑒 𝜆𝑗

+(𝜏𝑗
+)) > 0 and 

𝑑

𝑑𝜏
(𝑅𝑒 𝜆𝑗

−(𝜏𝑗
−)) < 0 

∴  𝜏𝑗
± are known as the bifurcating values.  

The scattering of the roots of equation (6.7) is explained by the following 

theorem [162]. 

Theorem 6.1 Consider equation (6.13) defines 𝜏𝑗
+(𝑗 = 0,1,2,3, … ). 

(A) Every root of equation (6.7) has −𝑣𝑒 real part ∀ 𝜏 ≥ 0 when (𝑅1) 𝑎𝑛𝑑 (𝑅2) 

is true. 

(B) Every root of equation (6.7) has −𝑣𝑒 real part when (𝑅1), (𝑅2) 𝑎𝑛𝑑 (𝑅4) 

are true and 𝜏 ∈ [0, 𝜏0
+).  

There are two purely imaginary roots ±𝑖𝜔1 of equation (6.7) if 𝜏 = 𝜏0
+. 

There is at least one root with +𝑣𝑒 real part of the equation (6.5) if: 
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𝜏 > 𝜏0
+. 

(C)  When (𝑅1), (𝑅2) 𝑎𝑛𝑑 (𝑅5) is true, then there exists a +𝑣𝑒 integer 𝑚 such 

that  

0 < 𝜏0
+ < 𝜏0

− < 𝜏1
+ < 𝜏1

− − −−< 𝜏𝑚−1
− < 𝜏𝑚

+  

and there are 𝑚 fluctuations between stability and instability. That is, every root 

has – 𝑣𝑒 real part in equation (6.7) if 𝜏 ∈ [0, 𝜏0
+), (𝜏0

−, 𝜏1
+),− − −, (𝜏𝑚−1

− , 𝜏𝑚
+ ). 

There is at least one root with a +𝑣𝑒 real part in equation (6.7) when  

𝜏 ∈ (𝜏0
+, 𝜏0

−), (𝜏1
+, 𝜏1

−),− − −, (𝜏𝑚−1
+ , 𝜏𝑚−1

− ) and 𝜏 > 𝜏𝑚
+ . 

6.5 Numerical Example 

The results of the change of the behaviour of the system graphically using 

MATLAB for distinct values of time parameter (𝜏) are described by the 

following values: 

𝑟 = 0.8, 𝐾 = 0.4, 𝑏 = −0.3, 𝛼 = 0.1, 𝛽 = 0.1, 𝛾 = 0.9, 𝑑 = 0.4 

 

Figure 6.1 Equilibrium 𝐸∗(0.0895,0.4864) demonstrate absolute stability when the 

system has a negligible delay which means when 𝜏 = 0. 
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Figure 6.2 Equilibrium 𝐸∗(0.0977,0.4691) demonstrate asymptotic stability when 

the system has a time parameter that is lesser than the threshold value 3.2 which 

means when 𝜏 < 3.2. 

 

Figure 6.3 Equilibrium 𝐸∗(0.0977,0.4691) demonstrate phase plane graph of 

asymptotic stability when the system has a time parameter that is lesser than the 

threshold value 3.2 which means when 𝜏 < 3.2. 
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Figure 6.4 Equilibrium 𝐸∗(0.3526,0.4541) demonstrate Hopf-bifurcation when the 

system has a time parameter that surpasses the threshold value 3.2 which means when 

𝜏 ≥ 3.2. 

 

Figure 6.5 Equilibrium 𝐸∗(0.3526,0.4541) demonstrate phase plane graph of Hopf-

bifurcation when the system has a time parameter that surpasses the threshold value 

3.2 which means when 𝜏 ≥ 3.2. 

6.6 Sensitivity Analysis 

Sensitivity analysis is research that uses the "Direct method" to examine how 

the system responds to variations in the model parameters that differ from 

changes in the time parameter (𝜏). For an illustration, the sensitivity equations 
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of the partial derivatives of the solution (𝑃, 𝐻) with respect to the conversion 

effectiveness of consumed plants (𝛾) are given below: 

 

𝑑𝑆1

𝑑𝑡
= [𝑟(2𝑃 − 𝑏) −

2𝛼𝛽2

(𝑃2 + 𝛽2)2
𝑃𝐻 + 𝑟 (

𝑏 − 2𝑃

𝐾
)𝑃(𝑡

− 𝜏)] 𝑆1 −
𝛼𝑃2

𝑃2 + 𝛽2
𝑆2 +

𝑟𝑃(𝑏 − 𝑃)

𝐾
𝑆1(𝑡 − 𝜏) 

(6.14) 

 

𝑑𝑆2

𝑑𝑡
= 2𝛽2𝛾

𝑃𝐻

(𝑃2 + 𝛽2)2
𝑆1 + (

𝛾𝑃2

𝑃2 + 𝛽2
− 𝑑)𝑆2 (6.15) 

where 𝑆1 =
𝜕𝑃

𝜕𝛾
 and 𝑆2 =

𝜕𝐻

𝜕𝛾
 

6.6.1 Sensitivity of Variables to Parameters 𝜸 

 

Figure 6.6 Time series graph of change in the size of plant population 𝑃 with respect 

to changes in the conversion effectiveness of consumed plants (𝛾). 
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Figure 6.7 Time series graph of change in the size of herbivore population 𝐻 with 

respect to changes in the conversion effectiveness of consumed plants (𝛾). 

6.6.2 Sensitivity of Variables to Parameter 𝜷 

 

Figure 6.8 Time series graph of change in the size of plant population 𝑃 with respect 

to changes in the number of plants where the maximum rate of predation of the 

herbivores occur (𝛽). 



103 
 

 

Figure 6.9 Time series graph of change in the size of herbivore population 𝐻 with 

respect to changes in the number of plants where the maximum rate of predation of 

the herbivores occur (𝛽). 

6.7 Results and Discussion 

Figure 6.1 indicates that after initial fluctuations, the equilibrium 

𝐸∗(0.0895,0.4864) tends to be absolutely stable when there is a negligible 

delay which means when τ = 0. The observation of this fact is analytically 

demonstrated by Routh-Hurwitz’s criteria (𝐾1) − (𝐾2) as in lemma 6.4.1. 

Figure 6.2 represents that the fluctuations are initially noticeable, but they 

diminish over time. Therefore, the equilibrium E∗(0.0977,0.4691) demonstrate 

asymptotic stability when the time parameter is below the threshold value which 

means when τ < 3.2. Figure 6.4 reveals that the fluctuations are infinite and it 

is represented that the periodic solutions have large amplitude and limit cycle 

trajectory. Due to Hopf-bifurcation, the equilibrium E∗(0.3526,0.4541) 

exhibits complex behaviour and limit cycles emerge when the time parameter 

exceeds the threshold value that is when τ ≥ 3.2. The same fact of asymptotic 

stability and Hopf-bifurcation is supported by (𝐾4) − (𝐾5) as in lemma 6.4.2. 

Figure 6.3 and figure 6.5 are the phase plane graphs of asymptotic stability and 

Hopf-bifurcation respectively.  
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Moreover, the variation in the system behaviour is shown by the variations in 

the model parameters at variance with the time parameter (τ). That means, when 

we increase the value of the conversion effectiveness of consumed plants (𝛾) 

from 𝛾 = 0.9 to 𝛾 = 0.97, then the system (𝑃, 𝐻) shifts its behaviour from 

Hopf-bifurcation to asymptotic stability. Again, when we increase 𝛾 = 0.97 to 

𝛾 = 0.994, eventually, as depicted in figures 6.6 and 6.7, the state variables of 

the system start to converge into a stable equilibrium. Also, figure 6.8 and figure 

6.9 indicate that when we decrease the number of plants where the maximum 

rate of predation of the herbivores occur (𝛽) from 𝛽 = 0.1 to 𝛽 = 0.02, the 

state variables (𝑃, 𝐻) changes its behaviour from Hopf-bifurcation to 

asymptotic. Similarly, when we decrease 𝛽 = 0.02 to 𝛽 = 0.007, then the 

entire system shifts its dynamics from asymptotic stability to absolute stability. 

6.8 Conclusion 

A delayed Gauss-type Plant-herbivore model is considered in this article. The 

growth of the plant population has an impact on the Allee effect. The Holling 

type- III response is used which characterizes the fact that when there is an 

increment in the plant population, then the herbivore predation rate will also 

increase. The time parameter τ is incorporated which leads to introduce complex 

behaviour with limit cycles, periodic solutions, and the bifurcation occurrence. 

The feasible non-trivial equilibrium point is calculated. The change of 

behaviour of the proposed model from being absolutely stable to asymptotically 

stable and then asymptotically stable to complex dynamics results in the 

occurrence of Hopf-bifurcation at equilibrium 𝐸∗(𝑃∗, 𝐻∗) for distinct values of 

time parameter τ is represented analytically as well as graphically. 

Additionally, the variation in the behaviour of the system is represented using 

time series graphs by the variations in the model parameters at variance with the 

time parameter (τ). It is concluded that when we increase the value of the 

conversion effectiveness of consumed plants or decrease the number of plants 

where the maximum rate of predation of the herbivores occurs, then the entire 

system changes its behaviour and starts converging to a stable equilibrium.  
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APPENDICES 

Units of Parameters used in Chapter 2 

Parameters Description Units 

𝒓 Plant intrinsic growth rate 𝑑𝑎𝑦𝑠−1 

𝑲 Carrying capacity of the 

environment 

𝑑𝑎𝑦𝑠−1 

𝒂 Allee threshold 𝑑𝑎𝑦𝑠−1 

𝒃 Capturing rate/Harvesting 

rate 

𝑑𝑎𝑦𝑠−1 

𝒄 = 𝒆𝒃 Conversion rate of plants 

into herbivores 

𝑑𝑎𝑦𝑠−1 

𝒍 Death rate of Herbivores 𝑑𝑎𝑦𝑠−1 

𝝉 Delay Parameter 𝑑𝑎𝑦𝑠−1 

  

Units of Parameters used in Chapter 3 

Parameters Description Units 

𝒓 The internal growth rate 

of plants  

𝑑𝑎𝑦𝑠−1 

𝑪 Carrying capacity  𝑑𝑎𝑦𝑠−1 

𝒃 Survival threshold of the 

plants 

𝑑𝑎𝑦𝑠−1 

𝒂𝟏 Capturing rate 𝑑𝑎𝑦𝑠−1 

𝒂𝟐 = (𝒆𝒂𝟏) Conversion rate  𝑑𝑎𝑦𝑠−1 

𝒎 Half-capturing saturation 

constant 

𝑑𝑎𝑦𝑠−1 
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𝒅 The death rate of 

herbivores 

𝑑𝑎𝑦𝑠−1 

𝒍 Intraspecific competition 

rate of herbivores 

𝑑𝑎𝑦𝑠−1 

𝝉 Time delay  𝑑𝑎𝑦𝑠−1 

 

Units of Parameters used in Chapter 4 

Parameters Description Units 

𝒓 The internal growth rate 

of plants  

𝑑𝑎𝑦𝑠−1 

𝒖 The internal growth rate 

of herbivores 

𝑑𝑎𝑦𝑠−1 

𝑲 Carrying capacity of the 

plant population 

𝑑𝑎𝑦𝑠−1 

𝜸 Measure of the quality of 

the plant as food for the 

herbivore 

𝑑𝑎𝑦𝑠−1 

𝜶 The per capita rate of 

maximum predation 

𝑑𝑎𝑦𝑠−1 

𝜷 Half of the saturated 

response level 

𝑑𝑎𝑦𝑠−1 

𝒃 Allee threshold 𝑑𝑎𝑦𝑠−1 

𝝉 Time parameter 𝑑𝑎𝑦𝑠−1 

 

Units of Parameters used in Chapter 5 

Parameters Description Units 

𝒃 Allee threshold 𝑑𝑎𝑦𝑠−1 

𝜶 Rate of infection 𝑑𝑎𝑦𝑠−1 
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𝜹 Herbivores gain by 

consuming Infectious 

Plant 

𝑑𝑎𝑦𝑠−1 

𝜸 Mortality rate of 

Infectious Plant 

𝑑𝑎𝑦𝑠−1 

𝜷 Attack rate of Herbivores 𝑑𝑎𝑦𝑠−1 

𝝁 Mortality rate of 

Herbivores 

𝑑𝑎𝑦𝑠−1 

𝝉 Gestation period of 

Herbivores 

𝑑𝑎𝑦𝑠−1 

 

Units of Parameters used in Chapter 6 

Parameters Description Units 

𝒓 Internal growth rate of 

plants 

𝑑𝑎𝑦𝑠−1 

𝑲 Carrying capacity of the 

plants 

𝑑𝑎𝑦𝑠−1 

𝒃 Allee constant 𝑑𝑎𝑦𝑠−1 

𝜶 Maximum per capita 

consumption rate 

𝑑𝑎𝑦𝑠−1 

𝜷 Capturing rate 𝑑𝑎𝑦𝑠−1 

𝜸 = 𝒆𝜷 Conversion effectiveness 

of consumed plants 

𝑑𝑎𝑦𝑠−1 

𝒅 Mortality rate of 

herbivores 

𝑑𝑎𝑦𝑠−1 

𝝉 Time parameter 𝑑𝑎𝑦𝑠−1 

 

 


