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SHRUTI  

 

ABSTRACT 

In the thesis entitled “Study of some Elastodynamic problems in Non-local 

Micropolar media”, we have studied the wave propagation problems in non-local 

Micropolar elastic material using Eringen’s non local Micropolar theory. These 

problems investigated the effects of various parameters on propagation of surface 

waves in non-local Micropolar half space alone as well as in structured consisting of 

Non-local Micropolar half space and piezoelectric layer.  The parameters whose 

effects are investigated in details are non-locality of the material, piezoelectricity, 

initial stress, interface imperfection, thermal effects, impedance and memory 

dependent derivatives etc. The thesis has been divided into 5 chapters, details of each 

chapter has been given below. 

Chapter 1 contains the basics and literature review of classical theory of elasticity, 

Micropolar theory, non-local theory of elasticity and non-local Micropolar theory of 

elasticity and surface waves in elastic media. Based upon the literature review the 

research gap and then objectives of the study are given in this chapter.  

Chapter 2 includes the study of propagation of shear waves in piezoelectric layered 

non-local Micropolar half space composite structure. The general equation of shear 

waves in the coupled structure is obtained analytically in the closed form. In the 

particular case the result obtained is in accordance with the classical Love wave 

equation. The effects of key factor like non-locality, characteristic length, 

piezoelectric and elastic constants on the phase velocity of shear waves has been 

investigated and the results are depicted graphically. The theoretical results obtained 

shows that the phase velocity of shear wave is significantly affected due the presence 

of non-locality and size effects on small length scale in Micropolar elastic material. 

Chapter 3 deals with the study of the effect of initial stress on the shear waves in 

non-local Micropolar half space and non-local piezoelectric layer bounded 



imperfectly. Imposing the initial stress and a condition of imperfect surface between 

the layered composite structures could lead to new insights in design. Taking the non-

local and microstructure effects into consideration, the propagation of shear waves has 

been investigated in an initially stressed piezoelectric layer imperfectly bounded to a 

Micropolar half-space under the non-local theory. The general phase velocity 

equation for shear waves has been obtained analytically in closed form. The phase 

velocity equation is in agreement with the classical Love wave equation in a particular 

case. The effects of key factors such as non-locality, interfacial imperfection, initial 

stress and thickness of the layer on the phase velocity have been evaluated. Graphical 

analysis has been performed and the results obtained indicate that shear wave 

propagation is significantly affected by various parameters considered in the study 

and are useful for designing high performance surface acoustic devices and sensors. 

Chapter 4 deals with the analysis of propagation of Rayleigh waves in a non-local 

Micropolar thermoelastic half space with impedance boundary conditions. Dispersion 

equation of Rayleigh wave propagation with impedance boundary conditions is 

obtained and the effect of impedance and non-local parameters are studied. Dispersion 

equation of Rayleigh waves for a Micropolar thermoelastic half space with impedance 

boundary as well as traction free half space is obtained in the particular case. The non-

dimensional speed of Rayleigh wave is computed as function of impedance 

parameters and presented graphically for aluminum epoxy material. It is observed that 

non-local and impedance parameter has significant effects on Rayleigh wave speed.    

Chapter 5 studied the problem of Rayleigh waves propagation in a non-local 

Micropolar thermoelastic material within the framework of memory-dependent heat 

conduction model. The secular equation of Rayleigh waves, describing the 

dependence of Rayleigh wave speed on the memory dependent parameter and non-

local parameter, is obtained analytically under stress-free and thermally 

insulated/isothermal boundary conditions. In the particular case, the secular equation 

obtained is in agreement with previously published results. Numerical computations 

have been performed to investigate the effects of key factors such as time delay 

parameter, non-local parameter, and kernel functions on propagation of Rayleigh 

waves in the aluminum-epoxy composite material. The numerical and graphical 



analysis validate that the speed of Rayleigh waves is influenced significantly by time 

delay heat transfer, selection of kernel and non-local characteristic of the material. 
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CHAPTER – 1 
 

INTRODUCTION 

1.1 PRELIMINARIES  

Mathematical modeling is necessary for comprehending both the theoretical foundations 

of solid mechanics as well as its practical applications. The use of mathematical modeling 

opens up the possibility of discovering answers to arduous mechanical problems. Theory 

of elasticity developed various mathematical models to study the deformation in elastic 

medium using laws of mechanics.   

The application of an external force onto a material induces a displacement of the 

constituent particles leading to a consequential deformation of the material. Elastic and 

plastic deformations are distinct modes of deformation that can be discerned based on 

their characteristic behavior. Elastic deformation pertains to the reversible alteration in 

the shape and dimensions of a physical entity, which is contingent upon the 

discontinuation of external forces, thereby leading to the entity's reinstatement of its 

original configuration. Elastic deformation is a phenomenon that can manifest in a 

diverse range of materials. Material exhibits the elastic behavior until the external 

material forces are applied to a certain limit known as elastic limit. Plastic deformation is 

the result of the application of forces that exceed the elastic limit of a body. This 

phenomenon results in a permanent alteration in the body's configuration, persisting even 

in the absence of the impelling forces. 

1.2 THEORY OF CLASSICAL ELASTICITY 

Classical elasticity theory is based upon on an idealized model of elastic and continuous 

body such that the material is perfect and spread out evenly throughout its whole volume 

without any defects. Irrespective of the positions of the particles, they possess the same 

properties throughout the material. This assumption serves as the fundamental principle 
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upon which the theory is constructed. Materials like concrete, steel, and aluminium 

behave according to the "Theory of classical elasticity" when subjected to stresses that do 

not exceed their elastic limits. 

1.2.1 STRESS AND STRAIN COMPONENTS  

The responses of elastic materials under the act of external forces have been studied by 

using “theory of classical elasticity” which is comprised of some fundamental equations 

and constitutive relations. These fundamental equations are developed using universal 

principles of physics including the conservation of mass, energy and momentum etc. The 

medium is said to be strained when the relative position of the particle is altered in a 

continuous medium. Material deformation occurs when there is a simultaneous change in 

the relative position of material points and the distance between them. Measure of 

deformation is known as strain and its study is referred as strain analysis.  

Let us consider a continuous elastic medium having surface 𝑆 and volume 𝑉. After the 

deformation, let us assume that the particle in continuous medium changes its position 

from 𝑃 (𝑥1
 , 𝑥2

 , 𝑥3
 ) to 𝑃′(𝑥1

′  , 𝑥2
′  , 𝑥3

′ ) as per the fig. 1.1. Displacement from old to new 

point has been represented by 𝑢𝑖 = 𝑥𝑖
′  −  𝑥𝑖

  . Here 𝑢𝑖  , 𝑖(= 1,2,3)  represents the 

displacement components.  

 

Fig. 1.1 Deformation of an elastic body 
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The infinitesimal strain tensor  ∈𝑖𝑗 is symmetrical 

 and is represented as ∈𝑖𝑗= 
1

2
(
𝜕 𝑢𝑖

𝜕 𝑥𝑗
+ 

𝜕 𝑢𝑗

𝜕 𝑥𝑖
) . Here, ∈11 , ∈22 , ∈33  are normal strain 

components and∈12= ∈21 ,∈13= ∈31 ,∈23= ∈32 are shear strain component.  

The internal resistance developed within the material due to external forces is known as 

stress. It is quantified as force extended per unit area. Considering an arbitrary element 

with area Δ 𝐴 in the continuum within normal 𝑛𝑖 and stress vector on elementary area is 

𝑇𝑖
𝑛Δ 𝐴. Here, 𝑇𝑖

𝑛  force traction vector and symmetric stress tensor 𝜎𝑖𝑗  are related as                    

 
𝑇𝑖
𝑛
=  𝜎𝑖𝑗𝑛𝑗 , 𝑖, 𝑗 = 1,2,3.  Components 𝜎11 , 𝜎22, 𝜎33  are normal stress components and 

𝜎12 = 𝜎21 , 𝜎13 = 𝜎31 , 𝜎23 = 𝜎32represents shear stresses as represented in fig. 1.2.  

 

Fig. 1.2 Stress components 

Relationship between strain and stress for an elastic medium could be defined as per the 

Hooke’s law. The simplest form of Hooke’s law (𝐹 = −𝑘𝑥) is valid for ideal linear 

elastic material within the elastic limit of the material. For materials with complex 

behavior and structure under varying conditions the generalized Hooke’s law is used 

which in tensor form can be written 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∈𝑘𝑙  , 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3. where ∈𝑘𝑙  , 𝜎𝑖𝑗  are 

infinitesimal strain and stress components and 𝐶𝑖𝑗𝑘𝑙  are elastic constants. The count of  

𝐶𝑖𝑗𝑘𝑙  are 81 which reduces to 36 by imposing the symmetry condition of stress and strain. 
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Further these constants reduce to 21 by the condition 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗  which arises due to 

isothermal and adiabatic system in nature. Now, by assuming symmetry of axis and 

planes, and considering the material to be isotropic in nature, the elastic constant reduces 

to only 2. Hence the Hooke’s law for homogeneous, isotropic material becomes  

𝜎𝑖𝑗 =  𝜆 Δ δij + 2 𝜇 ∈𝑖𝑗 . (1.1) 

Here,  𝜆 and 𝜇 are Lame’s contents, Δ = ∈𝑖𝑖= ∈11+ ∈22+ ∈33 is volume dilation and δij 

is the Kronecker delta represented as  

δij = {
1 , 𝑖𝑓 𝑖 = 𝑗
0 , 𝑖𝑓 𝑖 ≠ 𝑗 .

 

The condition of equilibrium could be written as  

𝜎𝑖𝑗,𝑗 =  − 𝐹𝑖 . (1.2) 

The above equation represents the equation of motion in classical mechanics.  Here, 𝐹𝑖 

are force components and, 𝜎𝑖𝑗,𝑗 = 
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
 .  

Using equation (1.1) in equation (1.2), the equation of motion of an isotropic elastic 

medium can be written as given below 

(𝜆 +  𝜇)𝑢𝑗,𝑗𝑖 +  𝜇 𝑢𝑖,𝑗𝑗 + 𝐹𝑖 =  0 . (1.3) 

Equation of motion is derived from the equilibrium condition by adding components of 

inertial force per unit volume. Hence, the equation of motion in an isotropic elastic 

medium could be written as  

(𝜆 +  𝜇)𝑢𝑗,𝑗𝑖 +  𝜇 𝑢𝑖,𝑗𝑗 + 𝐹𝑖 =  𝜌 
𝜕2𝑢𝑖
𝜕𝑡2

 . 
(1.4) 

Where 𝑢𝑖 is the displacement component, 𝑖(= 1,2,3). 𝐹𝑖 represents the force components.  
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1.3 MICROPOLAR THEORY OF ELASTICITY 

Micropolar theory addresses the limitations of classical elasticity by considering the effects of 

material microstructures, including particle rotations and couple stresses. It enables more precise 

modeling of materials like composites and foams that exhibit size-dependent behaviors. By 

accounting for internal micro-rotations, it provides better analysis for materials with complex 

microstructures, which classical elasticity cannot handle effectively. When attempting to 

characterize the properties of materials in which the microstructure does not play any part 

in the material’s mechanical responses, the “theory of classical elasticity” can be of great 

assistance. But certain discrepancies have been perceived between the conclusions of 

classical theory and the results of empirical experimentation in many materials indicating 

that the microstructure of the material may have an impact on its mechanical response. 

The aforementioned inconsistencies serve to underscore the potential influence of the 

material's microstructure on its mechanical properties. Such discrepancies serve as proof 

that the material's microstructure may have an impact on its mechanical properties. 

Consequently, the examination of the material’s mechanical properties necessitates a 

significant focus on the role played by the microstructures embedded within it. Therefore 

one must take into consideration the material’s microstructure in order to make sense of 

the findings of an examination into the mechanical properties of such materials. Only 

then will the findings make sense. In an effort to find a solution to these discrepancies in 

classical theory of elasticity and identify a way to reconcile them, a number of authors 

have put out a wide variety of different theories relating to the continuum of 

micromechanics. Voigt (1887) tried to explain the discrepancies in classical theory and 

attempted to establish a theory of the micromechanics continuum while working under an 

array of assumptions. He came to the conclusion that the interaction that takes place 

between two particles of a substance is conveyed by the force vector along with the 

moment vector, that results in couple-stress in elasticity. The next stage of this process 

will include the beginning of an investigation into the microstructure of the substance that 

we are now studying. 
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After this, Cosserat and Cosserat (1909) proceeded to develop the fundamental "Theory 

of Micro-Mechanics." The proposed theory is reliant not solely on "The Theory of Linear 

Displacement," but also on an autonomous rotational motion exhibited by each material 

particle during the course of deformation. The theory under consideration is commonly 

known as the "Cosserat Theory of Elasticity," which was named as such by its originator. 

These hypotheses have demonstrated both the existence of couple-stress within the 

medium and the correlation between stress and strain. The observed outcome led to 

significant revisions in the constitutive equations, as well as various other aspects of 

classical elasticity. 

Eringen and Suhubi (1964a, 1964b) formulated a comprehensive theory for nonlinear 

microelastic solids. They achieved this by augmenting the balancing laws of continuum 

mechanics with additional laws that consider the inherent motions of the microelements 

present within the macro volume. A microcontinuum is a continuous medium where each 

point is linked to a sub-continuum, allowing translation, rotation, and deformation. 

Eringen (1966) extended the asymmetric theory of elasticity and introduced micropolar 

theory of elasticity with body microinertia effects. The micropolar medium is a specific 

type of microcontinuum, wherein the associated sub-continuum can solely undergo 

translation and rotation, while the entire medium has the capacity for translation, rotation, 

and deformation. In other words, a micropolar elastic body is comprised of interconnected 

atoms or particles shaped as small rigid bodies capable of simultaneous translational and 

rotational motion. These particles have the autonomy to rotate independently. In the 

context to micropolar elasticity theory, the stress and strain tensors exhibit asymmetry 

that is, it no longer exhibit the property of symmetry anymore. This unique feature in 

micropolar continuum theory enables the incorporation of internal long-range cohesive 

forces while staying within the limits of the basic continuum framework. Fiber glass, 

solid propellant granules, and polymeric compounds are all examples of this category of 

material. It's possible that micro-cracks and micro-fractures can be explained by this 

notion as well. 
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The theory of micropolar elastic plates was conceived of and developed by Eringen 

(1967). Parfitt and Eringen (1969) conducted a study on plane wave propagation within a 

micropolar elastic half space, as well as their subsequent reflections on a stress-free flat 

surface. Furthermore, an examination was conducted on the propagation of plane waves 

as they traversed the given spatial domain. Based on the outcomes of several conducted 

studies, it has been observed that a micropolar elastic solid has the potential to facilitate 

the coexistence of four distinct waves, each characterized by its unique velocity. Below a 

critical frequency, two waves undergo a phenomenon wherein they cease to propagate 

due to their interaction within the medium they traverse. The current investigation 

presents a set of successive equations that pertain to non-linear theory. It is noteworthy 

that the linear theory can be obtained as a particular instance by imposing specific 

constraints related to the stability of local materials.   

In the field of micropolar elasticity, Nowacki (1970, 1971) conducted a study on the 

axially symmetric problem and the second plane problem. Eringen (1999) studied the 

field of solid mechanics for the evaluation of the deformation of materials with 

microstructures. This theory takes into account 6 degrees of freedom, 3 translational 

elements, and 3 micro-rotational components in order to describe motion. Additionally, 

there are six micro rotational components. 

As per the Eringen‘s (1966)“theory of micropolar elasticity”, the field equations for 

homogenous isotropic solids are given by 

σkℓ,k +  ρ (fℓ − üℓ) = 0, (1.5) 

𝑚𝑘ℓ,𝑘 + ∈ℓ𝑚𝑛 𝜎𝑚𝑛 + 𝜌(𝑙ℓ −  𝑗 𝜙̈ℓ) = 0. (1.6) 

 The stress tensor can be represented as 

𝜎𝑘ℓ =  𝜆𝑒𝑟𝑟𝛿𝑘ℓ + (𝜇 + 𝜅)𝑒𝑘ℓ + 𝜇𝑒ℓk , (1.7) 

𝑚𝑘ℓ =  𝛼 𝛾𝑟𝑟𝛿𝑘ℓ + 𝛽𝛾𝑘ℓ + 𝛾𝛾𝑘ℓ , (1.8) 

𝑒𝑘ℓ= (𝑢ℓ,𝑘 − 𝜖𝑘ℓ𝑚 𝜙𝑚,ℓ ), 𝛾𝑘ℓ = 𝜙𝑘,ℓ . (1.9) 

Using the above equation, the field equations can be written as 

(𝜆 +  𝜇)𝑢𝑘,𝑘ℓ + (𝜇 +  𝜅)𝑢ℓ,𝑘𝑘 +  𝜅 ∈ℓ𝑚𝑛 𝜙𝑛,𝑚 + 𝜌(𝑓ℓ – 𝑢̈ℓ) = 0, (1.10) 
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(𝛼 + 𝛽) 𝜙𝑘,𝑘ℓ + 𝛾 𝜙ℓ,𝑘𝑘  +  𝜅 ∈ℓ𝑚𝑛 𝑢𝑚,𝑚 − 2 𝜅 𝜙ℓ + 𝜌(𝑙ℓ −  𝑗 𝜙̈ℓ) = 0. (1.11) 

 

Here 𝛼, 𝛽, 𝛾, 𝜅 are the micro polar material constants. 𝛿𝑘𝑙  is the Kronecker delta. 𝜎𝑘ℓis 

micropolar stress and 𝑚𝑘ℓ  represents couple stress tenser.j is the micro inertia density. 

𝜙ℓ represents micro-rotation vector. ρ  represents mass density, 𝑢ℓ  is the displacement 

vector. ∈ℓmn  is the alternating symbol. Index after comma denotes the partial derivative.  

Few of the latest studies on micropolar materials are as given here, Sharma and 

Kumar(2009), Sharma et al. (2009), Kaur et al. (2016), Kaur et al. (2017), Zhang et al. 

(2016), Kaur et al. (2016) , Barak and Kaliraman (2019), Singh et al. (2019), Khurana 

and Tomar (2022), Abo-Dahab et al. (2022),  Singh and Kashyap (2023), Kumar et al. 

(2023), Sahu et al. (2023), Somaiah and Kumar (2023), Kumar and Pratap (2023). 

 

1.3.1  MICROPOLAR THEORY OF THERMOELASTICITY 

The fundamental study conducted by Nowacki (1966) investigated the impact of 

temperature on various phenomena, thereby contributing significantly to the advancement 

of the micropolar continuum concept and introduced the linear theory of micropolar 

thermoelasticity. Extensive advancements are covered by thermoelasticity. It is composed 

out of the theories of strains, stresses and heat transfer arising from the coupling of 

temperature and strain fields when subjected to heat flow. Thermoelasticity allows one to 

compute the temperature scattering resulting from the action of time-varying internal 

forces, as well as the stresses induced by the temperature field. Theory of classical 

thermoelasticity is unable to describe the material’s response to a quick transient loading 

and at low temperatures. Due to these limitations, numerous researchers have developed 

generalized theories of thermoelasticity. Then models featuring single or dual relaxation 

times, models centered on two temperatures, models without energy dissipation, dual-

phase-lag theories, and explanation for anomalous heat conduction through fractional 

calculus have also been put forwarded. Biot (1956) developed the heat conduction 
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equation based on the thermodynamics of irreversible processes that includes the 

dilatation term. It includes two equations: 

a) Hyperbolic equation of motion. 

b) Parabolic equation of heat conduction. 

Anomalies that have been detected in the classical theory of thermoelasticity have been 

removed by Lord and Shulman (1967). Instead of using the Fourier law, they proposed a 

novel law of heat conduction, and this theory includes a new constant that serves as the 

relaxation period. The remaining field equations in this theory are the same as they are in 

coupled and uncoupled theories of thermoelasticity, but the heat equation is of wave type 

(hyperbolic). The theory of thermoelasticity with two relaxation times is another 

generalization of the linked theory. Green and Laws (1971) were able to generalize this 

inequality. Eringen (1970) made significant contributions to the field by expanding the 

existing theory and introducing the linear theory of micropolar thermal elasticity. Many 

researchers have studied the thermoelastic property in Micropolar materials and few of 

them are listed below: Tauchert and Claus (1968) , Dost and Tabarrok (1978) , 

Chandrasekhariah (1986), Sharma et al. (2007),  Kumar et al. (2011), sharma et al. 

(2011), Zakaria (2012) , Kumar and Abbas (2013) , Kumar et al. (2016), Marin et al. 

(2019) , Othman et al. (2020), Lianngenga  and Singh (2020) , Tarun (2022), Abouelregal 

et al. (2022), Sharma and Kumar (2023). 

1.4 NON-LOCAL THEORY OF ELASTICITY: 

The nonlocal elasticity theories were initially developed by Edelen and Laws (1971). The 

distinguishing factor among these various theories lies in the existence of nonlocality 

residuals within the fields. In accordance with the nonlocal theory of elasticity, it is 

posited that the stress experienced at any given point situated in a continuous body is 

dependent not solely upon the strain observed at that point, but also on the strains 

exhibited at all other sites within the body. Due to this phenomenon, it can be observed 

that the nonlocal stress forces functions as remote action forces. At extended 
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wavelengths, the non-local theory converges to the classical local theory, while at 

abbreviated wavelengths it converges to the atomic lattice's dynamics. Eringen (1983) 

studied the differential equations of nonlocal elasticity and proposed few results for 

surface waves and screw dislocation. 

The utilization of nonlocal elasticity theory has been widely implemented in the analysis 

of the flexural, vibrational, and buckling characteristics of 1-D nanostructure. Several 

researchers have incorporated nonlocal elasticity theory in their investigations of the 

diverse applications of micro and nanostructures. The nonlocal elasticity theory has been 

extensively employed by numerous scholars who recognize the significance of its 

application to structures at a micro-level. 

In classical field theories, it is commonly observed that the ratio between the external 

characteristic length, represented by 𝐿  (referred to as crack length, sample size or 

wavelength) and the internal characteristic length (generally referred as lattice parameter 

or size of the grain) denoted as 𝑙, tends to be significantly large. The aforementioned ratio 

is commonly denoted as the 𝐿/𝑙 ratio. The present findings provide evidence supporting 

the notion that accurate calculations can be achieved under the condition that the value of 

𝐿 exceeds that of 𝑙 . Despite this, researchers are compelled to resort to non-classical 

theories when their local classical field theories (denoted as (𝐿 ≈ 𝑙) are proven to be 

incorrect, necessitating the adoption of non-classical theories.  

In the same way, in a dynamic problems if  𝑡𝑒  and 𝑡𝑖  denotes external and internal 

characteristic time respectively then (
𝑡𝑒

𝑡𝑖
)  is called as pertinent ratio. Where 𝑡𝑒 is the 

period of variation. Consider, for instance, the amount of time that the external loads are 

applied. Here, 𝑡𝑖 denotes travel time of the signal between the molecules. For example, 

the relaxation time. For 
𝑡𝑒

𝑡𝑖
 ≈ 1 , the classical theory fails to explain many physical 

phenomena. So there is a need to incorporate the non-local theories. Three possible kinds 

of non-locality are: mixed spatial-temporal, temporal, and spatial. Following Povstenko 

(1999), any physical quantity (referred to as effect-“𝑠”) at a given reference point 𝒙 and 
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time 𝑡 is dependent locally on a different physical quantity (referred to as cause-“𝑞”) at 

same position and time could be represented by the following relation: 

𝑠(𝑥1, 𝑥2, 𝑥3 , 𝑡) = 𝑠(𝑞 (𝑥1, 𝑥2, 𝑥3 , 𝑡))  (1.12)  

 

Spatial non-locality could be defined as “effect” (𝑠̅) at time 𝑡 and point 𝑥is dependent 

upon the “causes” from all other points 𝑥' at the same instant of time 𝑡.Therefore the 

nonlocal average or the spatial non-locality of a local field 𝑠(𝑥1, 𝑥2, 𝑥3)  within the 

domain 𝑉 at the same time 𝑡 could be written as:  

𝑠̅(𝑥1, 𝑥2, 𝑥3, 𝑡) =  ∫ 𝛼1
 (|𝑥 − 𝑥′|, 𝜁) 𝑠(𝑞(𝑥1

′ , 𝑥2
′ , 𝑥3

′  , 𝑡)) 𝑑𝑥1
′𝑑𝑥2

′   𝑑𝑥3
′ 

𝑉
. (1.13) 

Here, 𝛼1  is the positive continuous function of the spatial non-local kernels. 𝜁 is 

proportional to the characteristic length ratio (
𝐿

𝑙
).  In case of constitutive equation, the 

“effect” is referred as “stress” and the “cause” is referred as “strain”. The non-local 

consecutive equation (1.13) could be written as: 

𝜎𝑖𝑗
𝑛𝑙(𝑥1, 𝑥2, 𝑥3 , 𝑡) =  ∫ 𝛼1(|𝑥 − 𝑥

′|, 𝜁)𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙(𝑥1
′ , 𝑥2

′ , 𝑥3
′  , 𝑡) 𝑑𝑥1

′ 𝑑𝑥2
′   𝑑𝑥3

′ 

𝑉
. (1.14) 

Where 𝜎𝑖𝑗
𝑛𝑙denotes the non-local stress components. For long rage interactions, we use 

spatial non-locality.  

In case of temporal non-locality (with time dependent memory), “effect” 𝑠̅ at point 𝑥 and 

time 𝑡 relies on the history of “causes” at the same point 𝑥 and at all proceeding times to 

the time 𝑡.  

Mathematically,  

𝑠̅(𝑥1, 𝑥2, 𝑥3, 𝑡) =  ∫ 𝛽1
 (𝑡 − 𝑡′ , 𝜂)

𝑡

0
 𝑠 (𝑞(𝑥1

′ , 𝑥2
′ , 𝑥3

′  , 𝑡′))𝑑𝑡′. (1.15) 

Here 𝛽1 represents the time dependent non-locality kernel. The parameter 𝜂  is 

proportional to the characteristic time ratio (
𝑡𝑒

𝑡𝑖
) . So the time dependent constitutive 

equation could be represented as  

𝜎𝑖𝑗
𝑛𝑙(𝑥1, 𝑥2, 𝑥3 , 𝑡) = ∫ 𝛽

1
(𝑡 − 𝑡′ , 𝜂)

𝑡

0

𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙(𝑥1
 , 𝑥2

 , 𝑥3
  , 𝑡′)𝑑𝑡′. 

 

(1.16) 
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The above constitutive equation implies that the stress depends upon the past deformation 

also. When both spatial and temporal non-locality effects are accompanied, then it is 

known as mixed spatial-temporal non-locality. In this case the effect 𝑠̅ at a position 𝒙 and 

time 𝑡 depends on the “causes” at all other positions 𝒙′ and at all the proceeding time 𝑡′. 

 

Mathematically, 

𝑠̅(𝑥1, 𝑥2, 𝑥3, 𝑡) =  ∫  

𝑡

0

∫𝛾1
 (|𝑥 − 𝑥′| ,

 

𝑉

𝑡 − 𝑡′ , 𝜁 , 𝜂)  𝑠 (𝑞(𝑥1
′ , 𝑥2

′ , 𝑥3
′  , 𝑡′)) 𝑑𝑥1

′𝑑𝑥2
′   𝑑𝑥3

′𝑑𝑡′. 

 

(1.17) 

 

Here 𝛾′  is the space-time non-locality kernel. Therefore the constitutive equation for 

mixed spatial-temporal non-locality could be expressed as: 

𝜎𝑖𝑗
𝑛𝑙(𝑥1, 𝑥2, 𝑥3 , 𝑡)

= ∫  

𝑡

0

∫ 𝛾
1
(|𝑥 − 𝑥′| 𝑡

 

𝑉

− 𝑡′ , 𝜁 , 𝜂) 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙(𝑥1
′ , 𝑥2

′ , 𝑥3
′  , 𝑡′) 𝑑𝑥1

′ 𝑑𝑥2
′   𝑑𝑥3

′ 𝑑𝑡′. 

 

(1.18) 

As, 𝜂 → 0 , the spatial and temporal non-locality effect disappears.  

 

PROPERTIES OF SPATIAL NON-LOCAL KERNEL: 

 𝛼1
 (|𝑥 − 𝑥′|, 𝜁) has a maximum at |𝒙 − 𝒙′|. 

 𝛼1(|𝑥 − 𝑥
′|, 𝜁)  → 0 with increase in |𝑥 − 𝑥′|. 

 𝛼1(|𝑥 − 𝑥
′|, 𝜁) is continuous function of |𝑥 − 𝑥′|. 

 𝛼1(|𝑥 − 𝑥
′|, 𝜁) represents a delta-sequence which tends to direct δ − function as 

𝜁 → 0 i.e. lim
𝜁 →0

𝛼1(|𝑥 − 𝑥
′|, 𝜁) =  𝛿 ( |𝑥 − 𝑥′|) 

 ∫ 𝛼1(|𝑥 − 𝑥
′|, 𝜁) 𝑑𝑉(𝑥′) = 1 

 

𝑉
. 
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The properties of other kernels are similar.  

The theory of nonlocal elasticity resolves the shortcomings of classical elasticity by 

incorporating long-range interactions between material points. This provides more 

accurate modeling of small-scale materials, such as nanomaterials, where size effects are 

important. It improves the understanding of phenomena like stress concentration and 

size-dependent mechanical behaviors that classical elasticity cannot capture. 

 

1.4.1 THEORYOF NON-LOCAL MICROPOLAR ELASTICITY:  

Eringen (1984) extended the “theory of non-local elasticity” to the Micropolar materials.  

He developed the dispersion relations in linear, non-local micropolar elastic solids for 

transverse plane waves. Non-local micropolar theory takes micropolar theory a step 

further by considering non-local interactions between different points within the material. 

Unlike “classical continuum mechanics”, at a given point the deformation is influenced 

solely by its immediate neighborhood whereas non-local micropolar theory incorporates 

the influence of deformation at all other points within the material. However, the 

influence decreases with increasing distance. This non-local interaction effect enables a 

more accurate representation of materials with long-range interactions or small-scale 

features. At the sub molecular or atomic level, it is observed that materials exhibiting 

elastic properties invariably exhibit a discernible internal structure. The traditional 

classical theory is deemed inaccurate whenever the internal and external scales are 

situated within a context that can be likened to the contrast between them. Non-local 

micropolar theory finds applications in various areas, including modeling granular 

materials, biological tissues, and heterogeneous materials. It provides a comprehensive 

framework for analyzing the behavior of these materials, considering their 

microstructural characteristics and non-local interactions. 

In conclusion, non-local micropolar theory is a valuable approach for studying the 

material’s mechanical behavior with complex microstructures and long-range 

interactions. By incorporating these effects, engineers and researchers can gain deeper 

insights into the behavior of such materials, leading to improved designs and a better 
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understanding of their mechanical properties. So, Non-local micropolar theory enhances 

traditional micropolar theory by considering interactions over a finite distance between 

material points, rather than just local interactions. This allows for a more precise 

representation of materials with microstructures, capturing size effects and long-range 

influences. As a result, it provides better modeling of wave dispersion and stress 

distribution, particularly in materials where microstructural effects are significant. 

By using Eringen’s non-local formulation (1972, 1973, 1976), “the theory of non-local 

Micropolar elasticity” has been stated by Eringen (1984). For homogeneous and isotropic 

solids, the basic equations may be represented as  

σkℓ,k
𝑛𝑙 +  ρ (fℓ − üℓ

𝑛) = 0, (1.19) 

𝑚𝑘ℓ,𝑘
𝑛𝑙 + ∈ℓ𝑚𝑛 𝜎𝑚𝑛 + 𝜌(𝑙ℓ −  𝑗 𝜙̈ℓ) = 0, (1.20) 

 σkℓ
𝑛𝑙 = ∫[𝜆′ 𝑒𝑟𝑟

′ 𝛿𝑘ℓ + (𝜇
′ + 𝜅′)𝑒𝑘ℓ

′ + 𝜇′𝑒ℓk
′ ] 𝑑𝑣′, (1.21) 

mkℓ
𝑛𝑙 = ∫[𝛼′ 𝛾𝑟𝑟

′ 𝛿𝑘ℓ + 𝛽
′ 𝛾𝑘𝑙

′  +  𝛾′𝛾𝑘ℓ
′ ] 𝑑𝑣′, (1.22) 

𝑒𝑘ℓ
′ =

𝜕𝑢ℓ
𝑛(𝒙′, 𝑡)

𝜕𝑥𝑘
′ − 𝜖𝑘ℓ𝑚  

𝜕𝜙𝑚(𝒙
′, 𝑡 )

𝜕𝑥𝑙
′  , 

(1.23) 

𝛾𝑘ℓ =  
𝜕𝜙𝑘(𝒙

′,𝑡 )

𝜕𝑥𝑙
′ . 

(1.24) 

 

where, σkℓ
𝑛𝑙 = non-local stress tensor, uℓ

n = displacement vector , ρ = mass density , 

fℓ = body force , 𝜙ℓ = microinertia vector , j = microinertia density , mkℓ
𝑛𝑙 = non −

local couple stress tensor, 𝑙ℓ = body couple density.𝜆′ , 𝜇′   , 𝛼′, 𝛽′and 𝛾′ represents the 

non-local material moduli which is dependent on the distance |𝑥 − 𝑥′| .  𝛿𝑘ℓ  is the 

Kronecker delta. ∈ℓmn  is the alternating symbol. Index after comma denotes the partial 

derivative and dot (ˑ) represents the partial derivative w.r.t time. The sole distinction 

between the local and non-local theories lies in the equations (1.21) and (1.22). These 

equations specify the stress and couple stress at a point 𝑥 within a body are contingent 

upon the strain measures 𝑒𝑘ℓ and 𝛾𝑘ℓ  at all points 𝑥′of the body. Eringen (1984) used the 

special case of nonlocality could be considered for the simplicity of mathematical 

problems  
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{𝜆′ , 𝜇′  , 𝜅′, 𝛼′, 𝛽′, 𝛾′} =  𝛼1(|𝑥 − 𝑥
′|){𝜆 , 𝜇, 𝜅, 𝛼, 𝛽, 𝛾} (1.25) 

 

where,𝜅, 𝛼, 𝛽, 𝛾 = local Micropolar material constants 

𝜆 , 𝜇                    = Classical Lame’s constant. 

𝛼1(|𝑥 − 𝑥
′|)         = Attenuation function 

Here, the attenuation function is calculated as per the distance of the material point 𝒙′and 

𝒙. The greater the distance the lesser is the effect. This function shows its maximum 

value when 𝒙′ = 𝒙. Also, it must be a Dirac-Delta sequence which depends upon the 

internal characteristic length 𝑎. From the equation (1.21) and (1.22), it is could be written 

that, 

lim
𝑎→0

𝛼1 (|𝑥 − 𝑥
′|  , 𝑎)  =  𝛿 |𝑥 − 𝑥′|. (1.26) 

 

This study worked on nonlocal elasticity and predicted the wave dispersion and other 

phenomena which are in accordance with the atomic theories. In two dimensions, the 

representation could be given as: 

𝛼1(|𝑥 − 𝑥
′| , 𝑎) =  (2 𝜋 𝜖2)−1𝜅0[|𝑥 − 𝑥

′|/ 𝜀] (1.27) 

 

Here, 𝜅0= modified Bessel’s function, and 𝜀 = 𝑒0𝑙  (1.28) 

Here, 𝑙= internal characteristic length,    𝑒0= material constant. 

For infinite plane, Eringen (1984) proposed a special case using Green’s function which 

can be written as follows 

(1 − ∈2 ∇2)𝛼1 =  𝛿 |𝑥 − 𝑥
′|. (1.29) 

 So applying the operator  (1 − ∈2 ∇2) on equation (1.21) and (1.22), we get, 

 

(1 − 𝜀2𝛻2 )𝜎𝑘ℓ
𝑛𝑙 = 𝜎𝑘ℓ

 =  𝜆𝑒𝑟𝑟𝛿𝑘ℓ + (𝜇 + 𝜅)𝑒𝑘ℓ + 𝜇𝑒ℓk , (1.30) 

(1 − 𝜀2𝛻2 ) 𝑚𝑘ℓ
𝑛𝑙 = 𝑚𝑘ℓ

 =  𝛼 𝛾𝑟𝑟𝛿𝑘ℓ + 𝛽𝛾𝑘ℓ + 𝛾𝛾𝑘ℓ , (1.31) 

𝑒𝑘ℓ= (𝑢ℓ,𝑘  
𝑛 − 𝜖𝑘ℓ𝑚 𝜙𝑚,ℓ ), 𝛾𝑘ℓ =  𝜙𝑘,ℓ . (1.32) 

Using the above equation, the field equations can be written as 
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(𝜆 +  𝜇)𝑢𝑘,𝑘ℓ
𝑛 + (𝜇 +  𝜅)𝑢ℓ,𝑘𝑘

𝑛 +  𝜅 ∈ℓ𝑚𝑛 𝜙𝑛,𝑚 + 𝜌(1 − 𝜀
2𝛻2 )(𝑓ℓ – 𝑢̈ℓ

𝑛) = 0, (1.33) 

(𝛼 + 𝛽) 𝜙𝑘,𝑘ℓ + 𝛾 𝜙ℓ,𝑘𝑘  +  𝜅 ∈ℓ𝑚𝑛 𝑢𝑛,𝑚
𝑛 − 2 𝜅 𝜙ℓ + 𝜌(1 − 𝜀

2𝛻2 )(𝑙ℓ −

 𝑗 𝜙̈ℓ) = 0. 

(1.34) 

Where 𝜀 is a non-local parameter (𝜀 =  𝑒0𝑙) , 𝑙  characteristic length, 𝛼, 𝛽, 𝛾 ,  𝜅  are the 

micro polar material constants. 𝛿𝑘𝑙 is the Kronecker delta. 𝜎𝑘ℓ
  , 𝑚𝑘ℓ

  are local micropolar 

stress and couple stress tenser. 𝜎𝑘ℓ
𝑛𝑙     , 𝑚𝑘ℓ

 𝑛𝑙  represents the non-local micropolar stress and 

non-local couple stress tenser. j is the micro inertia density. 𝜙ℓ is the micro-rotation 

vector. ρ  is the mass density, 𝑢ℓ  is the displacement vector. ∈ℓmn  is the alternating 

symbol. Index after comma denotes the partial derivative. Numerous authors have made 

significant contributions to the advancement of the non-local theory. The development of 

this theory was undertaken by a diverse group of authors. Few of the researches are 

mentioned here. The study conducted by Nowinski (1993) explored the investigation of 

Eringen's theory pertaining to micromorphic bodies. In doing so, Nowinski successfully 

derived the equilibrium equation for linear isotropic micropolar and microstretch bodies 

featuring nonlocal cohesion. Following papers could be referred for elastodynamical 

problems in non-local Micropolar media. Tien-min (1980), Hsieh (1982), Kaliski et al. 

(1992), Jun and Dhaliwal (1993),Trovalusci, and Masiani (2003), Acharya (2004), Huang 

et al. (2005), Lazar and Kirchner (2006), Chakraborty (2007),  Khurana and Tomar 

(2013, 2017), Ding et al.(2016), Mondal et al. (2019), Kalkal et al. (2020), Kumar and 

Tomar (2020),Sahrawa et al. (2020), Deswal  et al. (2021), Poonam et al. (2021), 

Ceballes  et al.(2021), Sheoram et al. (2022), Shorkin et al. (2023). 

 

1.5 THEORY OF PIEZOELECTRICITY  

Piezoelectricity is the effect through which electrical energy is generated from 

mechanical energy in certain materials. There are some natural and manmade materials 

which exhibit such phenomena such as Quartz, Rochelle salt and ceramics like lead 

zirconate etc. Piezoelectric materials have been used in many appliances such as 

powerful sonar, microphones and sonobuoys etc. The study of composite structures 
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containing a piezoelectric material is in demand nowadays due to their remarkably 

different physical and chemical properties and applications in sensor technology. By 

using ideal combination of control elements in piezoelectric structures, we can achieve 

the effective control of electromechanical coupling. The wave propagation in composite 

materials has been used extensively in sensor technology and nondestructive testing 

techniques to determine strength of materials. In the study by Qian et al. (2004), the 

constitutive relations and equations of motion for a homogeneous transversely isotropic 

piezoelectric medium are formulated to account for the material's specific anisotropy and 

symmetry properties. When explaining piezoelectricity in such materials, it's important to 

note that anisotropy refers to the directional dependence of properties, and in the case of 

transversely isotropic piezoelectric materials (such as crystal class 6mm and certain 

piezoelectric ceramics), the 𝑥3-axis is typically the axis of symmetry. This symmetry 

plays a crucial role in determining how the material responds to mechanical and electrical 

fields, influencing the form of the constitutive equations. These equations reflect the 

coupling between mechanical stresses and electric fields, and are expressed in terms of 

specific components that respect the symmetry of the material.  

The constitutive relations and equation of motion for a homogeneous transversely 

isotropic piezoelectric medium given by Qian et al. (2004)are given as given  

{
𝜏𝑖𝑗 =  𝑐𝑖𝑗𝑘𝑙𝑆𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 ,

𝐷𝑗 =  𝑒𝑗𝑘𝑙𝑆𝑘𝑙 + 𝜖𝑗𝑘𝐸𝑘 .
 (1.35) 

{
𝜏𝑖𝑗,𝑗 = 𝜌

′𝑢𝑖 ,̈

𝐷𝑖,𝑖 = 0.
 (1.36) 

Here 𝜏𝑖𝑗  represents stress tensor, 𝐷𝑗  is the electric displacement, 𝑒𝑘𝑖𝑗  , 𝜖𝑗𝑘  𝑎𝑛𝑑 𝑐𝑖𝑗𝑘𝑙  

represents piezoelectric, dielectric and elastic constants respectively. Density of 

piezoelectric material is represented by 𝜌′. 𝑢 is the mechanical displacement. 𝑆𝑘𝑙 and 𝐸𝑘  

are the strain tensor and electric field intensity and can be denoted in terms of 

displacement 𝑢 and electric potential 𝜑 as 

𝑆𝑖𝑗 =  
𝑢𝑖,𝑗+ 𝑢𝑗,𝑖

2
, (1.37) 

𝐸𝑖 = − 𝜕𝜑 𝜕𝑥𝑖⁄ . (1.38) 
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Following papers can be referred for various types of problems in piezoelectric materials. 

Curtis and Redwood (1973), Li et al. (2001) , Sharma et al. (2004), Jin et al. (2005), 

Sharma et al. (2005), Sharma et al. (2008), Walia et al. (2009), Sharma et  al. (2010), Liu 

and He (2010a), Liu and He (2010b), Sharma et al. (2011), sharma et al. (2011) , Huang 

and Li (2011), Abd-alla et al. (2012), Cui et al. (2013), Liu et al (2013), Li and Jin 

(2015), Yanping Kong and Nie (2015), Lee et al. (2016), Goyal (2020) ,Goyal et al. 

(2020),  Sharma and Kumar (2022), Sharma et al.(2023). 

 

1.6 WAVES IN ELASTIC MEDIA 

1.6.1 BODY WAVES: 

Body waves travel through the medium's interior. It exhibits shorter wavelengths and 

smaller amplitudes compared to surface waves. It also possesses a higher velocity of 

propagation. The waves mentioned can be categorized into two distinct types: 

Longitudinal waves and Transverse waves. 

a) LONGITUDINAL WAVES:  

Longitudinal waves, also called as dilatational/irrational or compressional waves. These 

are such type of waves that travels through the medium so they are associated with the 

refraction and compression of the particles. These waves are the fastest waves and are 

first to appear on the seismograms. These waves are also known as primary waves or P-

waves in seismology.  

b) TRANSVERSE WAVES : 

Transverse waves, also known as equivoluminal/shear/rotational waves and are 

characterized by the rotational and shearing motion of particles as the wave propagates 

through a medium, while maintaining a constant volume. Within these waves, particles 

undergo vibrations that occur in a direction ⊥ to the wave's propagation. These waves are 

also known as S- waves or secondary waves in seismology. These particular waves are 

categorized as SH-waves and SV-waves. When the particles' motion exhibits polarization 

exclusively in the horizontal plane, it is referred to as shear horizontal (SH) waves. When 

vibrational motion is confined to the vertical plane of the particles, it designates the 
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waves as vertically polarized shear (SV) waves. Both transverse and longitudinal waves 

have the ability to propagate through a solid medium. 

 

Fig. 1.3: Types of elastic waves 

 

Fig. 1.4 SH- waves, SV - waves 

 

1.6.2 SURFACE WAVES: 

 Surface waves are waves that are able to travel along the free surface of a bounded 

medium and are given their own category. Since surface waves travel at a velocity that is 

lower than that of body waves, when seismic activity occurs, surface waves are 

recognized on the seismogram after body waves have been recorded. Love and Rayleigh 

waves are two types of surface waves that can be encountered. 

a) LOVE WAVES: 

SH Waves

• motion of the particles is 
polarized in the horizontal plane

SV Waves

• the vibration of the particles is 
polarized in the vertical plane
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Love waves have the ability to propagate through layered structures that are composed of 

a distinct layer with a finite thickness that is firmly attached to a substrate. The Love 

wave’s propagation is contingent upon condition that the velocity of the layer is lower 

than the velocity of the half-space. In the context of these waves, it is observed that the 

particles exhibit transverse vibrations that are parallel to the surface. The investigation of 

Love waves was conducted by A.E.H Love (1911). Love waves, a type of surface wave, 

have found utility in different applications such as sensors and non-destructive testing 

techniques. These waves have been extensively studied by researchers including Tamarin 

et al. (2003). Midya (2004) studied the love type waves in homogeneous micropolar 

isotropic elastic media consisting of layer over a semi-infinite medium. Sharma et al. 

(2020) studies the love waves in layered media. The dispersion relation for Love-waves 

in a piezomagnetic layered pair stress substrate under viscous liquid loading was 

developed by Sharma and Kumar (2021). Following studies could also be referred. 

Papadakis et al. (2009), Kuznetsov (2010),   Zhu et al. (2014), Qingzeng et al. (2014), 

Saha et al. (2015), Kaur et al. (2019), Goya and Kumar (2019), Nobili and Volpini 

(2021), Manna et al. (2022), Sharma and Kumar (2022), Singh et al. (2023), Hrytsyna et 

al. (2023). 

b) RAYLEIGH WAVES: 

Lord Rayleigh (1887) studied about the waves that travel along the homogeneous half-

space in free-surface. Due to the fact that surface waves have a tendency to cause damage 

during earthquakes, seismology places a particularly great emphasis on their study. 

Rayleigh waves are a type of surface wave that have been the subject of investigation by 

a number of different researchers. Since Rayleigh waves in micropolar elastic materials 

have potential practical applications in a variety of fields, including seismology, 

acoustics, aerospace, and undersea structures, they have been the subject of investigation 

by a large number of researchers. Deresiewicz (1961) analyzed the Rayleigh waves for 

thermoelastic solid. Chimenti et al. (1982) studied the Rayleigh waves on a layered half 

space. Smith and Dahlen (1973) studied the Rayleigh waves in an anisotropic medium. 

Tolipov (2002) investigated the Rayleigh waves in an elastic wedge. Vashishth and 



21 
 

 

Khurana (2005) studied the Rayleigh waves in anisotropic, heterogeneous poroelastic 

layer. Vinh (2009) investigated the Rayleigh waves in elastic medium influenced by 

initial stress. Zhang et al. (2014) analyzed Rayleigh wave’s propagation in magneto 

elastic half space. Ozisik (2021) investigated the Rayleigh waves in the pre-stressed 

layers under complete contact. Mrithymjayo and Reddy (1993), Kumar and Singh (1996), 

Tomar (2005), Kumar and Deswal (2006), Kumar and Pratap (2006), Sharma and Kumar 

(2009), Zhang et al. (2015), Singh et al. (2016) can be referred to understand the 

Rayleigh wave’s propagation in micropolar elastic material. 

The choice of Love and Rayleigh waves for studying non-local micropolar materials is 

both practical and innovative. Love waves are vital for applications in geophysics and 

earthquake engineering, as they help analyze surface vibrations and subsurface structures. 

Rayleigh waves are significant for surface inspection and non-destructive testing, 

providing insights into material responses to surface stresses. By applying non-local 

micropolar theory, the research can better account for the effects of microstructures and 

size-dependent behaviors that traditional theories might overlook. This approach 

promises to improve the accuracy of wave propagation models and advance the 

understanding of material behavior in engineering and materials science.  

1.7 RESEARCH GAP: 

Classical elasticity theory struggles to account for size-dependent material responses, 

prompting the development of microcontinuum theories with additional parameters. 

While micropolar elasticity has been extensively studied in contexts like wave 

propagation and various effects (thermal, magnetic, etc.), the non-local version of this 

theory is less explored. Non-local elasticity has shown promise in solving fracture 

mechanics problems, but its application to micropolar materials remains under-

researched. This study aims to address this gap by examining elastodynamic issues within 

the non-local micropolar elasticity framework. Utilizing mathematical approaches, we 

will explore wave propagation problems in non-local micropolar elastic materials. 
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1.8 OBJECTIVES OF THE WORK: 

1. Comprehensive and in-depth study of the literature to acquire the knowledge to 

construct mathematical models in non-local micropolar theory of elasticity. 

2. To formulate the problem related to wave propagation using non-local micropolar 

theory and to solve them by using suitable mathematical methods. 

3. To study the effects of inner microstructures and other additional material 

parameters in two dimensional problems in non-local micropolar elasticity under 

different types of boundary conditions. 
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CHAPTER- 2 
 

SHEAR WAVES PROPAGATION IN LAYERED STRUCTURE 
HAVING NON-LOCAL MICROPOLAR/PIEZOELECTRIC 

MATERIALS1 

 

 

2.1.  INTRODUCTION: 

Many researchers studied the phenomenon of wave propagation in composite materials 

consisting of piezoelectric and elastic materials. Tiersten (1963) investigated the pure 

piezoelectric materials and studied about the thickness vibrations in these materials. 

Piezoelectric materials in purely elastic homogeneous material has been investigated by 

Bleustein (1968) and found that that there exists a new type surface waves in the 

considered structure. Liu et al. (1973) studied the dispersive behavior of shear waves in 

the piezoelectric layer and elastic half space with an imperfect interface between them.  

Qian et al. (2004) worked on the dispersion relation of SH-waves propagating in 

piezoelectric composite layered structure. Many more studies has been done in the field 

of piezoelectricity, few of them has been mentioned here. Mindlin (1952), Wang and 

Zhao (2013), Wang and Jin (2016), Chenlin et al., Kumar et al. (2018), Kumar et al. 

(2019), Sharma and Kumar (2021), Yang et al. (2021) , Shatalov et al. (2021) etc.   

Studying anti-plane waves in layered structures is important for understanding how 

waves interact with different materials stacked together. Layered materials are frequently 

used in applications such as advanced composites, coatings, and electronic devices. By 

examining how anti-plane waves propagate through these structures, we can optimize 

their design for better performance and functionality. Additionally, this research supports 

                                                             
1*

The content of this chapter is published in journal “Mechanics of Solids” under the research paper “Non-locality Effects on the Propagation of 

Shear Waves in Piezoelectric/Non-local Micropolar layered structure”, ISSN 0025-6544, Vol.57, issue, 5, page-1265-1276. (SCI and Scopus , IF- 0.7 , 

SJR-0.267) 
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the development of precise models that improve material design and engineering, and it 

advances theoretical knowledge by exploring how materials with unique properties, such 

as non-local micropolar or piezoelectric materials, affect wave propagation. 

In the present chapter, a composite structure consisting of homogeneous, isotropic non-

local micropolar elastic half space in perfect contact with a piezoelectric layer has been 

considered to investigate surface wave propagation. An analysis has been performed to 

explore how various parameters influence the phase-velocity of shear waves. The 

dispersion relation of shear waves in closed form is obtained analytically. Numerical 

computation for phase-velocity is carried out and the results are illustrated graphically. 

 

2.2 FORMULATION OF THE PROBLEM AND ITS SOLUTION  

In this problem, a composite structure consisting of layer of piezoelectric material of 

thickness "ℎ” lying in perfect contact over a non-local micropolar elastic half space. The 

origin “O” of the Cartesian coordinate system is considered to be at the joining surface of 

piezoelectric layer and the substrate as shown in the fig.-2.1. The piezoelectric layer is 

polarized along 𝑥3-axis direction perpendicular to𝑥1 − 𝑥2 plane.  The 𝑥2-axis is taken 

positive in the vertically downward direction and shear waves are considered as 

propagating in 𝑥1  direction so the displacement components will be free from 𝑥3 

coordinates. 

                              

Fig.2.1 Geometry of the problem  
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Let  𝒖𝒏 = (𝑢1
𝑛 , 𝑢2

𝑛 , 𝑢3
𝑛) and 𝝓 = (𝜙1, 𝜙2 , 𝜙3) denotes the displacement and micro-rotation 

vector components in non-local micropolar elastic half space respectively. Also, 𝒖 =

(𝑢1, 𝑢2 , 𝑢3) and 𝜑 represents displacement components and electric field potential respectively 

in the upper piezoelectric layer.                                                      

As shear wave propagates in 𝑥1-direction, causing displacement in 𝑥3 -direction so the 

components of displacement and microrotation for non-local Micropolar material can be 

expressed as: 

𝑢1
𝑛 = 𝑢2

𝑛 = 0, 𝑢3
𝑛 = 𝑢3

𝑛(𝑥1, 𝑥2, 𝑡), 𝜙1 = 𝜙1(𝑥1, 𝑥2, 𝑡),  𝜙2 = 𝜙2(𝑥1, 𝑥2, 𝑡),  𝜙3 = 0.               (2.1) 

The displacement component for piezoelectric layer can be taken as: 

𝑢1 = 𝑢2 = 0, 𝑢3 = 𝑢3 (𝑥1 , 𝑥2 , 𝑡),                                                                                            (2.2) 

 

2.2.1. SOLUTION OF NON-LOCAL MICROPOLAR ELASTIC HALF 

SPACE 

As per the Eringen‘s (1984) “theory of non-local micropolar elasticity”, the field 

equations for homogenous, isotropic solids are given by 

σkℓ,k
nl +  ρ (fℓ − üℓ

n) = 0, (2.3) 

𝑚𝑘ℓ,𝑘
𝑛𝑙 + ∈ℓ𝑚𝑛 𝜎𝑚𝑛 + 𝜌(𝑙ℓ −  𝑗 𝜙̈ℓ) = 0. (2.4) 

  

Here, σkℓ
𝑛𝑙  is the force stress tensor, fℓ is the body force density, mkℓ

𝑛𝑙  is the couple stress 

tensor, lℓ is the body couple density. j is the micro inertia density. 𝜙ℓ is the micro-rotation 

vector. ρ is the mass density, 𝑢ℓ
𝑛  is the displacement vector. ∈ℓmn is the alternating 

symbol. Index after comma denotes the partial derivative.  

By using Eringen’s non-local formulation as given explained in section (1.4.1) in chapter 

1, the non-local stress tensor can be represented in terms of local stress tensor as 

(1 − 𝜀2𝛻2 )𝜎𝑘ℓ
𝑛𝑙 = 𝜎𝑘ℓ

 =  𝜆𝑒𝑟𝑟𝛿𝑘ℓ + (𝜇 + 𝜅)𝑒𝑘ℓ + 𝜇𝑒ℓk , (2.5) 

(1 − 𝜀2𝛻2 )𝑚𝑘ℓ
𝑛𝑙 = 𝑚𝑘ℓ

 =  𝛼 𝛾𝑟𝑟𝛿𝑘ℓ + 𝛽𝛾𝑘ℓ + 𝛾𝛾𝑘ℓ , (2.6) 

𝑒𝑘ℓ= (𝑢ℓ,𝑘
𝑛 − 𝜖𝑘ℓ𝑚 𝜙𝑚,ℓ ), 𝛾𝑘ℓ = 𝜙𝑘,ℓ . (2.7) 
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Where the symbols have their usual meanings as explained in the section (1.4.1) in 

chapter 1. 

Using equations (2.5)-(2.7) in equations (2.3)-(2.4) the field equations can be written as 

(𝜆 +  𝜇)𝑢𝑘,𝑘ℓ
𝑛 + (𝜇 +  𝜅)𝑢ℓ,𝑘𝑘

𝑛 +  𝜅 ∈ℓ𝑚𝑛 𝜙𝑛,𝑚 + 𝜌(1 − 𝜀
2𝛻2 )(𝑓ℓ – 𝑢̈ℓ) = 0, (2.8) 

(𝛼 + 𝛽) 𝜙𝑘,𝑘ℓ + 𝛾𝜙ℓ,𝑘𝑘  +  𝜅 ∈ℓ𝑚𝑛 𝑢𝑛,𝑚
n − 2 𝜅𝜙ℓ + 𝜌(1 − 𝜀

2𝛻2 )(𝑙ℓ −  𝑗𝜙̈ℓ) = 0. (2.9) 

It can be noted here that in the absence of body forces and the nonlocal Micropolar 

parameter𝜀, the system reduced to those of local micropolar theory. 

Hence, equations (2.8) and (2.9) reduce to following equations without applied body 

force and body couple densities using equation (2.1) and (2.2). 

(𝜇 +  𝜅)𝛻2𝑢3
𝑛 + 𝜅 (

𝜕𝜙2

𝜕𝑥1
−

𝜕𝜙1

𝜕𝑥2
) = 𝜌(1 − 𝜀2𝛻2 )

𝜕2 𝑢3
𝑛

𝜕𝑡2 
, (2.10) 

(𝛼 + 𝛽) 
𝜕

𝜕𝑥1
(
𝜕𝜙1

𝜕𝑥1
+

𝜕𝜙2

𝜕𝑥2
) + 𝛾𝛻2𝜙1 − 2𝜅𝜙1 + 𝜅

𝜕𝑢3
𝑛

𝜕𝑥2
=  𝜌𝑗(1 − 𝜀2𝛻2 )

𝜕2 𝜙1

𝜕𝑡2 
, (2.11) 

(𝛼 + 𝛽) 
𝜕

𝜕𝑥2
(
𝜕𝜙1

𝜕𝑥1
+

𝜕𝜙2

𝜕𝑥2
) + 𝛾𝛻2𝜙2 − 2𝜅𝜙2 − 𝜅

𝜕𝑢3
𝑛

𝜕𝑥1
=  𝜌𝑗(1 − 𝜀2𝛻2 )

𝜕2 𝜙2

𝜕𝑡2 
. (2.12) 

To decouple the equation (2.10)-(2.12) introducing the potential functions 𝜓 and 𝜉 as   

𝜙1 =  
𝜕𝜓

𝜕𝑥1
+

𝜕𝜉

𝜕𝑥2
  𝑎𝑛𝑑  𝜙2 =

𝜕𝜓

𝜕𝑥2
−

𝜕𝜉

𝜕𝑥1
.                                                                        (2.13) 

On substituting equation (2.13) in (2.10)-(2.12), we obtained  

𝛻2 𝑢3
𝑛 − 𝑐1𝛻

2 𝜉 =  (1 − 𝜀2𝛻2 )
1

𝑐2
2

𝜕2 𝑢3
𝑛

𝜕𝑡2  ,                                                                      (2.14) 

𝛻2 𝜓 − 
2𝑐5

2

𝑐3
2+ 𝑐4

2  𝜓 =  (1 − 𝜀
2𝛻2 )

1

𝑐3
2+𝑐4

2

𝜕2 𝜓

𝜕𝑡2 
 ,                                                                (2.15) 

𝛻2 𝜉 − 
2𝑐5

2

𝑐3
2 𝜉 +

𝑐5
2

𝑐3
2 𝑢3

𝑛 = (1 − 𝜀2𝛻2 )
1

𝑐3
2

𝜕2 𝜉

𝜕𝑡2 
.                                                                 (2.16) 

where𝑐1 =  
𝜅

𝜇+ 𝜅
  , 𝑐2 =  √

𝜇+ 𝜅

𝜌
 , 𝑐3 =  √

𝛾

𝜌𝑗
 , 𝑐4 = √

𝛼+ 𝛽

𝜌𝑗
 and 𝑐5 =  √

𝜅

𝜌𝑗
. 

The wave solution of equation (2.14)-(2.16) can be expressed as   

(𝜓, 𝜉, 𝑢3
𝑛) =  (𝜓, 𝜉, 𝑢3

𝑛)(𝑥2)𝑒
𝜄(𝑘𝑥1−𝜔𝑡) .                                                                        (2.17) 



27 
 

 

In this context, 𝜔 is expressed as 𝜔 = 𝑘c, where 𝑐  signifies the phase-velocity of the 

wave and 𝑘 represents the wave number. 

Using the equation (2.17) in equations (2.14)-(2.16), we obtained, 

(𝐷2 − 𝑟2)𝜓(𝑥2) = 0.                                                                                             (2.18) 

(𝐷4 − 𝑃𝐷2 +𝑄)(𝑢3
𝑛 , 𝜉)(𝑥2) =  0.                                                                         (2.19) 

where  𝑟2 = 
𝑘2+

2𝑐5
2

𝑐3
2+ 𝑐4

2−
𝜔2

𝑐3
2+ 𝑐4

2−
𝜔2𝜀2𝑘2

𝑐3
2+ 𝑐4

2

(1−
𝜔2𝜀2

𝑐3
2+ 𝑐4

2)
,  

 𝑃 = 
(𝑘2− 

𝜔2

𝑐2
2)+(𝑘

2− 
𝜔2

𝑐3
2)+

𝑐5
2

𝑐3
2(2−𝑐1)−

2𝜔2𝜀2𝑘2

𝑐3
2 −

2𝜔2𝜀2𝑐5
2

𝑐2
2𝑐3

2 +
2𝜔4𝜀2

𝑐2
2𝑐3

2+
2𝜔4𝜀4𝑘2

𝑐2
2𝑐3

2 +  
𝜔4𝜀2𝑘2

𝑐2
2𝑐3

2

(1−
𝜀2𝜔2

𝑐3
2 + 

𝜀4𝜔4

𝑐2
2𝑐3

2−
𝜀2𝜔2

𝑐2
2 )

, 

𝑄 = 
𝑘2 − 

𝜔2

𝑐3
2 +

2𝑐5
2

𝑐3
2 −

𝑐1𝑐5
2𝑘2

𝑐3
2 −

𝜔2𝜀2𝑘4

𝑐3
2 +

2𝜔4𝜀2𝑘2

𝑐2
2𝑐3

2 −
𝜔2𝜀2𝑘4

𝑐2
2 − 

2𝜔2𝜀2𝑘𝑐5
2

𝑐2
2𝑐3

2 +
𝜔4𝜀4𝑘4

𝑐2
2𝑐3

2

(1 −
𝜀2𝜔2

𝑐3
2 + 

𝜀4𝜔4

𝑐2
2𝑐3

2 −
𝜀2𝜔2

𝑐2
2 )

. 

We consider the above calculation under the following assumption, 

𝜔2𝜀2

𝑐3
2+ 𝑐4

2  ≠ 1 ,
𝜀2𝜔2

𝑐3
2 + 

𝜀4𝜔4

𝑐2
2𝑐3

2 −
𝜀2𝜔2

𝑐2
2  ≠  1, 

𝜀2𝜔2

𝑐3
2 + 

𝜀4𝜔4

𝑐2
2𝑐3

2 −
𝜀2𝜔2

𝑐2
2  ≠ 1. 

Using radiation condition  (𝑢3
𝑛 , 𝜉, 𝜓)(𝑥2) ⟶ 0 𝑎𝑠 𝑥2 ⟶∞ , the general solution of 

equations (2.18)-(2.19) can be written as 

𝜓 = (𝑆 𝑒−𝑟 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡) , (2.20) 

𝜉 = (𝑀𝑒−𝑝 𝑥2 +𝑁𝑒−𝑞 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡) , (2.21) 

𝑢3
𝑛 = (𝑀𝑞1𝑒

−𝑝 𝑥2 + 𝑁𝑞2𝑒
−𝑞 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡) . (2.22) 

 

Where  𝑝, 𝑞 =  √
𝑃±√𝑃2−4𝑄

2
,  𝑝2 + 𝑞2 =  𝑃 , 𝑝2𝑞2 = 𝑄, 
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𝑞1  = 
𝑐3
2

𝑐5
2 (𝑘

2 −
𝜔2

𝑐3
2 +  2

𝑐5
2

𝑐3
2 − 𝑝

2), 𝑞2  =  
𝑐3
2

𝑐5
2 (𝑘

2 −
𝜔2

𝑐3
2 +  2

𝑐5
2

𝑐3
2 − 𝑞

2). 

and S, M and N are arbitrary constants. The components of microrotation are obtained 

from equation (2.12) by using equations (2.19)-(2.20) as        

𝜙1 = (𝜄𝑘𝑆𝑒
−𝑟𝑥2 − 𝑝 𝑀𝑒−𝑝 𝑥2 − 𝑞 𝑁𝑒−𝑞 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡), (2.23) 

𝜙2 = (−𝑟𝑆𝑒
−𝑅𝑥2 − 𝜄𝑘(𝑀𝑒−𝑝 𝑥2 +  𝑁𝑒−𝑞 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡) . (2.24) 

The expressions (2.20) - (2.24) are obtained under the assumption that 𝑐 < 𝑐2 and 𝑐 < 𝑐3. 

The wave corresponding to 𝑐 > 𝑐2  is represents the refracted wave which lose their 

energy very quickly and hence not significant. 

 

2.2.2 SOLUTION OF PIEZOELECTRIC LAYER 

The constitutive relations and equation of motion for a homogeneous transversely 

isotropic piezoelectric medium as given by Qian et al. (2004) are 

{
𝜏𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑆𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 ,

𝐷𝑗 = 𝑒𝑗𝑘𝑙𝑆𝑘𝑙 + 𝜖𝑗𝑘𝐸𝑘 .
 

(2.25) 

{
𝜏𝑖𝑗,𝑗 = 𝜌

′𝑢𝑖 ,̈

𝐷𝑖,𝑖 = 0.
 

(2.26) 

 

Here 𝜏𝑖𝑗  represents stress tensor, 𝐷𝑗  is the electric displacement, 𝑒𝑘𝑖𝑗  , 𝜖𝑗𝑘  𝑎𝑛𝑑𝑐𝑖𝑗𝑘𝑙  

represents piezoelectric, dielectric and elastic constants respectively. Density of 

piezoelectric material is represented by 𝜌′. 𝑢 is the mechanical displacement. 𝑆𝑘𝑙 and 𝐸𝑘  

are the strain tensor and electric field intensity and can be shown in terms of 

displacement 𝑢 and electric potential 𝜑 as 

𝑆𝑖𝑗 =  
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖

2
, 

(2.27) 

𝐸𝑖 = − 𝜕𝜑 𝜕𝑥𝑖⁄ . (2.28) 

Using equations (2.27) -(2.28) and (2.2) in equations (2.25)-(2.26), we obtained the 

following equations 

𝑐44 [
𝜕2𝑢3

𝜕 𝑥1
2 + 

𝜕2𝑢3

𝜕 𝑥2
2
] + 𝑒15 [

𝜕2𝜑

𝜕 𝑥1
2 + 

𝜕2𝜑

𝜕 𝑥2
2
]  =  𝜌′

𝜕2𝑢3

𝜕 𝑡2
,                                                     (2.29) 
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𝑒15 [
𝜕2𝑢3

𝜕 𝑥1
2 + 

𝜕2𝑢3

𝜕 𝑥2
2
]   −  𝜖11 [

𝜕2𝜑

𝜕 𝑥1
2 + 

𝜕2𝜑

𝜕 𝑥2
2
] = 0,                                                             (2.30) 

{
 
 

 
 𝜏11 = 𝜏22  =  𝜏33 =  𝜏12  =  0,

𝜏23 = 𝑐44
𝜕𝑢3

𝜕 𝑥2
+ 𝑒15

𝜕𝜑

𝜕 𝑥2
,

𝜏31 = 𝑐44
𝜕𝑢3

𝜕 𝑥1
+ 𝑒15

𝜕𝜑

𝜕 𝑥1
.

                                                                                 (2.31) 

{
 
 

 
 𝐷1 = 𝑒15

𝜕𝑢3

𝜕 𝑥1
− 𝜖11

𝜕𝜑

𝜕 𝑥1
,

𝐷2 = 𝑒15
𝜕𝑢3

𝜕 𝑥2
− 𝜖11

𝜕𝜑

𝜕 𝑥2
,

𝐷3 = 0.

                                                                                          (2.32) 

where the constants 𝑐44, 𝜖11 and 𝑒15 represents elastic coefficient, dielectric coefficients 

and piezoelectric coefficients respectively.  

The solution of the differential equations (2.29)-(2.30) is assumed as  

𝑢3(𝑥1, 𝑥2, 𝑡) =  𝑢3(𝑥2)𝑒
𝜄(𝑘𝑥1−𝜔𝑡) ,                                                                                (2.33) 

𝜑(𝑥1, 𝑥2, 𝑡)  =  𝜑(𝑥2)𝑒
𝜄 (𝑘𝑥1−𝜔𝑡).                                                                                 (2.34) 

Using equations (2.33) and (2.34) in (2.29) - (2.30), we get   

𝑢3  =  (𝐸1 𝑐𝑜𝑠 𝜆1 𝑥2 + 𝐸2 𝑠𝑖𝑛 𝜆1𝑥2)𝑒
𝜄(𝑘𝑥1−𝜔𝑡) , (2.35) 

𝜑 = [𝐹1𝑒
𝑘𝑥2 + 𝐹2𝑒

−𝑘𝑥2 +
𝑒15

𝜖11
(𝐸1 𝑐𝑜𝑠 𝜆1 𝑥2 + 𝐸2 𝑠𝑖𝑛 𝜆1𝑥2)] 𝑒

𝜄(𝑘𝑥1−𝜔𝑡) .(2.36) 

Here, 𝜆1 = 𝑘√
(𝑐2− 𝑐𝑠ℎ

2 )

𝑐𝑠ℎ
2 , 𝑐𝑠ℎ = √

𝑐44 𝜖11 +𝑒15
2

𝜌 𝜖11
represents bulk shear wave velocity in 

piezoelectric layer.  𝐸1, 𝐸2, 𝐹1, 𝐹2  are the arbitrary constants. The expressions (2.35)-

(2.36) are obtained under the assumption 𝑐 > 𝑐𝑠ℎ.     

 

2.3. BOUNDARY CONDITIONS  

The below mentioned boundary conditions should be satisfied for the shear wave 

propagation in the considered model. 

a) The top layer of the piezoelectric layer is taken to be electrically open and 

mechanically free i.e. at 𝑥2 = −ℎ 

𝜏32 = 0 ,  𝐷2 = 0, (2.37) 
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b) As the piezoelectric layer is in perfect contact with non-local micropolar half space so 

continuity conditions at the common interface  𝑥2 =  0 can be written as, 

 Displacement components should be continuous:     𝑢3 = 𝑢3
𝑛   , 

 Stress components should be continuous:               𝜎32
𝑛𝑙 = 𝜏32 . 

Apply the operator(1 − 𝜀2𝛻2 ) on the stress components and using equation (2.5), we 

obtained  

(1 − 𝜀2𝛻2 )𝜎32
𝑛𝑙 = (1 − 𝜀2𝛻2 )𝜏32 ,  

𝜎32
 = (1 − 𝜀2𝛻2 )𝜏32 . (2.38) 

Here 𝜎32
  is the stress component of local micropolar half space. 

c) The non-local couple stress vanishes at 𝑥2 =  0, as the piezoelectric layer does not 

exhibit micropolar property.     𝑚21
𝑛𝑙 = 0 ,𝑚22

𝑛𝑙 = 0. 

Apply the operator (1 − 𝜀2𝛻2 ) on both sides of the equation and using equation (2.6), 

we get 

𝑚21
 = 0 ,𝑚22

 = 0. (2.39) 

Where 𝑚21
  and 𝑚22

  are the local micropolar couple stress components. 

d)  Electric potential should vanish at the common interface 𝑥2 =  0 .

                                       𝜑 = 0.                     (2.40)                

2.4. DERIVATION OF DISPERSION RELATION 

On substituting the values of displacement and stress components form equations (2.5) - 

(2.6), (2.20)-(2.24), (2.31)-(2.32) and (2.35)-(2.36) in the boundary conditions (2.37)-

(2.40), we obtained following equations in seven unknowns coefficients 𝐸1 , 𝐸2  , 

𝐹1 , 𝐹2 , 𝑆 ,𝑀 , 𝑁. 

𝑐4̅4𝜆1(𝐸1 sin 𝜆1 ℎ + 𝐸2 cos 𝜆1ℎ) + 𝑒15 𝑘 (𝐹1𝑒
−𝑘ℎ − 𝐹2𝑒

𝑘ℎ) = 0, 

𝐹1𝑒
−𝑘ℎ − 𝐹2𝑒

𝑘ℎ =  0, 

𝐸1  = 𝑀 𝑞1  +  𝑁 𝑞2, 
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𝑐4̅4𝜆1[1 + 𝜖
2(𝜆1

2 + 𝑘2)] 𝐸2 + 𝑒15 𝑘 (𝐹1 − 𝐹2) =  𝑞3   𝑀+ 𝑞4  𝑁 + 𝜄 𝑞5𝑆,  (2.41) 

𝑒15

𝜀11
𝐸1 + 𝐹1 + 𝐹2 = 0, 

𝜄𝑞6 S + 𝑞7 𝑀 + 𝑞8  𝑁 = 0, 

𝑞9𝑆 + 𝜄𝑞10 𝑀 + 𝜄 𝑞11  𝑁 = 0. 

Where 𝑐4̅4 =  𝑐44 +
𝑒15

2

𝜀11
, 𝑞1  =  𝛿 − 

𝛾𝑝2

𝜅
, 𝑞2  =  𝛿 −

𝛾𝑞2

𝜅
, 𝑞3  =  𝑝[𝜇 𝑞1 + 𝜅(1 −

 𝑞1)], 𝑞4  = 𝑞 ( 𝜇 𝑞2  + 𝜅(1 − 𝑞2  ),𝑞5  = 𝜅𝑘,  𝑞6 = (𝛽 +  𝛾)𝑘𝑟,  𝑞7 =  𝛽 𝑘
2 +  𝛾𝑝2, 

𝑞8 = 𝛽 𝑘
2 + 𝛾𝑞2, 𝑞9 = −𝛼𝑘

2 + (𝛼 + 𝛽 + 𝛾)𝑟2, 𝑞10 = (𝛽 + 𝛾)𝑘 𝑝,  𝑞11 = (𝛽 + 𝛾)𝑘𝑞, 

𝛿 =
𝑐3
2𝑘2− 𝜔2+ 2 𝑐5

2

𝑐5
2 . 

In the system of equations (2.41) for non-trivial solution, the determinant of the  7 × 7 

coefficient matrix must be zero which will results in the subsequent dispersion relation of 

shear waves in the considered composite structure.  

𝑒15
2𝑘 𝑡𝑎𝑛ℎ(𝑘ℎ)𝑊1 – 𝜀11𝑊2 

𝜀11𝑊1 
+ 𝑐4̅4𝜆1[1 + 𝜖

2(𝜆1
2 + 𝑘2)]𝑡𝑎𝑛(𝜆1ℎ) = 0,                              (2.42) 

where,  𝑊1 = 𝑞1  𝑞6  𝑞11  − 𝑞2  𝑞6  𝑞10  − 𝑞1  𝑞8 𝑞9  + 𝑞2  𝑞7 𝑞9 , 

𝑊2 = 𝑞5  𝑞7  𝑞11  − 𝑞5  𝑞8  𝑞10  + 𝑞3  𝑞6 𝑞11  + 𝑞4  𝑞6 𝑞10 − 𝑞3  𝑞8 𝑞9  − 𝑞4  𝑞7 𝑞9 . 

2.5. PARTICULAR CASES  

CASE I: 

 In order to obtained the dispersion equation in piezoelectric/local micropolar half space, 

we assume that the nonlocality parameter is absent that is 𝜖 = 0, then the dispersion 

equation (2.42) reduces to 
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𝑒15
2 𝑘 𝑡𝑎𝑛ℎ(𝑘ℎ)𝑊1 – 𝜀11𝑊2 

𝜀11𝑊1 
= 𝑐4̅4𝜆1𝑡𝑎𝑛(𝜆1ℎ).                                                                  (2.43) 

Also the values of r, P and Q in the differential equations (2.18)-(2.19) are reduces to 

𝑟2 = 𝑘2 +
2𝑐5

2

𝑐3
2+ 𝑐4

2 −
𝜔2

𝑐3
2+ 𝑐4

2 , 𝑃 =  (𝑘
2 − 

𝜔2

𝑐2
2) + (𝑘

2 − 
𝜔2

𝑐3
2) +

𝑐5
2

𝑐3
2
(2 − 𝑐1),  

𝑄 = (𝑘2 − 
𝜔2

𝑐3
2 +

2𝑐5
2

𝑐3
2 ) −

𝑐1𝑐5
2𝑘2

𝑐3
2 .                                                                                   (2.44) 

The dispersion relation (2.43) and values in equations (2.44) are in agreement with 

already published results given by Kumar et al. (2019) 

CASE II: 

By neglecting the micropolar parameters i.e., in the limiting case when , 𝛽, 𝛾, 𝑗𝜅 → 0, we 

get the new value of 𝑐2 as  𝑐2 = √
𝜇

𝜌
   and  

𝑊2 

𝑊1
→ −𝜇𝑘√1 −

𝑐2

𝑐2
2 and then by substituting 

these values in equation (2.43), we obtained 

𝑒15
2 𝑡𝑎ℎℎ(𝑘ℎ)

𝜀11
+ 𝜇√1 −

𝑐2

𝑐2
2 = 𝑐44√

𝑐2

𝑐𝑠ℎ
2 − 1 𝑡𝑎𝑛 (𝑘ℎ√

𝑐2

𝑐𝑠ℎ
2 − 1) .                                        (2.45) 

Further in the absence of piezoelectric parameter𝑒15, the relation 𝑐4̅4 = 𝑐44 +
𝑒15
2

𝜀11
 and  

𝑐𝑠ℎ = √
𝑐44 𝜖11 +𝑒15

2

𝜌′𝜖11
 , reduced to 𝑐4̅4 = 𝑐44 and 𝑐𝑠ℎ = √

𝑐44 

𝜌′
= 𝑐1

′ . On substituting the 

values of 𝑒15, 𝑐4̅4 and 𝑐𝑠ℎ in equation (2.45), we get  

𝜇√1 −
𝑐2

𝑐2
2 = 𝑐44√

𝑐2

𝑐1
′2 − 1 𝑡𝑎𝑛 (𝑘ℎ√

𝑐2

𝑐1
′2 − 1)                                                                (2.46) 

Equation (2.46) is the well-known classical equation given by Love (1911). 

 

2.6. NUMERICAL ANALYSIS AND DISCUSSION 

For the purpose of verification and illustration of the theoretical results obtained in the 

preceding section numerical computations have been performed and the results are 

depicted graphically. The variations in non dimensional phase-velocity(
𝑐

𝑐𝑠ℎ
)w.r.t non 

dimensional wave number 𝑘ℎ under the effects of key parameters like non-local, 

piezoelectric and elastic stiffness constants have been exhibited in figures (2.2-2.6). The 
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fundamental mode together with some higher modes of dispersion curves are depicted in 

these figures to demonstrate the influence of various parameters. The thickness of the 

piezoelectric layer is taken as ℎ = 0.001𝑚 and 𝑒0 = 0.39. For numerical calculations we 

took aluminum epoxy material and piezoelectric material (PZT-4) for which the values of 

relevant parameters are given in table-2.1 

Table 2.1 Material parameters Gauthier (1982) and  Liu et al. (2010) 

 

Aluminum epoxy material Piezoelectric layer PZT-4 

𝜌 = 2.19 × 103𝑘𝑔/𝑚3, 𝜌′ = 7.5 × 103𝑘𝑔/𝑚3 

𝜆 = 7.59 × 1010𝑁/𝑚2 𝐶44 = 2.56 × 10
10𝑁/𝑚2 

𝜇 = 1.89 × 1010𝑁/𝑚2 𝑒15 = 12.7 𝐶/𝑚
2 

𝜅 = 0.0149× 1010𝑁/𝑚2 𝜖11 = 6.46 × 10
−9𝐶2/𝑁𝑚2 

𝛼 = 0.01 × 106𝑁  

𝛽 = 0.015 × 106𝑁  

𝛾 = 0.268 × 106𝑁  

𝑗 = 0.196 × 104𝑚2  
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Fig.2.2  Dispersion curves for piezoelectric/local micropolar elastic and piezoelectric/ 

non-local micropolar elastic structure. 

 

Fig.2.3 Effect of characteristic length of non-local micropolar elastic half space on the 

phase-velocity of shear waves. 
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Fig.2.4 Effect of thickness of piezoelectric layer on the phase-velocity of shear waves. 

Figure-2.2 compares the variations of non dimensionalphase-velocity w.r.t. non 

dimensional wave number in a piezoelectric/non-local micropolar half space and 

piezoelectric/micropolar half space. The dispersion curves for first three modes have been 

drawn for both local micropolar and non-local micropolar half space.  It is noticeable 

here that the phase-velocityminimized gradually in both the structures with increase in 

wave number. With same value of wave number, the phase-velocity is greater in case of 

local micropolar half space as compared to non-local micropolar half space. For higher 

wave number values, it is noticed that dispersion curves vanished for non-local 

micropolar half space which is due to decreasing effects of neighboring points on the 

reference point. This suggests that local interactions among particles enhance wave 

propagation, while in non-local micropolar materials, the diminishing influence of 

surrounding points leads to reduced phase velocity at higher wave numbers.   

Figure-2.3 illustrates how the internal characteristic length affects the phase-velocity of 

shear waves, and as visible from the graph this parameter has significant effect. First two 

modes have been plotted to study the behavior on different modes. We consider three 
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distinct values of internal characteristic length and as shown in graph, with rise in internal 

characteristic length the phase-velocity falls in all modes. The dispersion curves for two 

modes are of same type but the distance between them corresponding to different 

characteristic length decreases in second modes.  The increment of internal characteristic 

length results in increased wave attenuation and a reduction in phase velocity, as the 

waves encounter greater resistance during propagation.  

Figure 2.4 demonstrates the influence of the thickness of piezoelectric layer on phase 

velocity of the shear waves. The layer thickness has a significant effect on the phase 

velocity of shear waves. It is observed that, as the thickness increases, the phase velocity 

also increases for the selected values of this parameter. 

2.7. CONCLUSIONS 

This chapter delves into the transmission of shear waves within a composite structure 

comprising a piezoelectric layer atop a non-local micropolar elastic half space. An 

overarching wave dispersion equation for the propagation of shear waves in such a 

piezoelectric and non-local micropolar structure has been analytically derived. In specific 

instances, this relationship aligns well with the classical Love wave equation. The 

following points encapsulate the findings of the current investigation: 

 Non-local Micropolar Effects: The non-local characteristics of the micropolar 

elastic material significantly reduce the phase velocity of shear waves in the 

composite structure. 

 Characteristic Length Influence: An increase in the characteristic length 

parameter of the non-local micropolar material decreases the phase velocity for a 

fixed wave number. 

 Phase Velocity and Wave Number: The shear waves exhibit dispersive behavior, 

characterized by a decrease in phase velocity as the wave number increases. 

 Dispersion Curve Analysis: The dispersion curves for various modes show similar 

shapes, but lower modes are more affected by the parameters compared to higher 

modes. 
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 Thickness of piezoelectric layer: The analysis reveals that the thickness parameter 

(ℎ)  has a substantial impact on the phase velocity of shear waves in layered 

structures. As the thickness increases, the phase velocity rises, indicating that 

thicker layers enhance wave propagation speed. This relationship between thickness 

and phase velocity highlights the importance of layer geometry in determining wave 

behavior in non-local composite materials.  

In conclusion, the study highlights the critical role of non-local and piezoelectric effects 

on shear wave propagation in layered structures. The results provide valuable insights 

into how these materials influence wave behavior, which is essential for designing 

advanced composite materials and understanding their dynamic properties. 

Understanding shear wave propagation in layered structures with non-local micropolar 

and piezoelectric materials can have applications in many fields such as in aerospace 

engineering, it can improve the design and performance of composite materials used in 

aircraft by offering better predictions of wave interactions under various conditions. In 

civil engineering, the insights can enhance the development of earthquake-resistant 

structures by improving the understanding of seismic wave behavior in layered 

composites. For electronics, this research is valuable for optimizing sensors and actuators 

that rely on piezoelectric materials. Overall, accurately predicting and controlling shear 

wave behavior in these advanced materials can lead to significant advancements in 

material design and structural integrity. 
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CHAPTER 3 
 

INFLUENCE OF INITIAL STRESS AND SURFACE 
IMPERFECTION ON SHEAR WAVES IN NONLOCAL 

COMPOSITE MATERIAL2 

 

3.1. INTRODUCTION: 

The utilization of wave propagation in composite materials is a common practice in 

sensor technology and nondestructive testing procedures for the purpose of assessing 

material strength. The surface wave’s propagation in composite materials comprising of 

piezoelectric and elastic materials has been studied by many researchers. While most 

research assumes a perfectly bounded surface but in practicality the materials possess the 

imperfect surfaces due many reasons like manufacturing defects. Furthermore, the 

multilayer structure is typically pre-stressed throughout the manufacturing process to 

avoid brittle fracture. As a result, more accurate findings can be obtained by taking into 

account the impacts of uneven surfaces and beginning tension.  

The literature has a large number of research publications that examine the impact of 

initial stress and imperfect interfaces in many types of composite materials. For instance, 

Chen et al.(2004) investigated how waves move across two distinct mediums with poor 

bonding. Their results revealed that the presence of interface flaws can greatly impact 

how waves propagate through a material. Qian et al. (2004) examined how Love waves 

moved through a piezoelectric multilayer device under initial stress. Chen et al. (2008) 

analyzed the shear horizontal piezoelectric wave’s propagation through a plate composed 

of polarized piezoceramics with an imperfect interface between the two surfaces. Kurt 

                                                             
2

The content of this chapter is published in journal “International Journal of Applied and Computational Mathematics” entitlled “Effects of nonlocal 

characteristics of composite material on shear waves propagation with an imperfect interface”, vol. 9 and isuue 5 page-113. (SCOPUS , SJR-0.37)  
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(2016) studied the influence of initial stress for the Lamb wave in a material comprising 

of piezoelectric and pre stressed elastic layers. Singh et al. (2017) explored the 

transmission characteristics of Love-waves in a composite structure. The structure 

consisted of bounded piezoelectric layer at top and lower fiber-reinforced half-space, 

taking into account a rectangular-shaped irregularity at the common interface. Kumar et 

al. (2019) derive dispersion relation for shear wave’s propagation in a piezoelectric 

device in contact with a micropolar elastic half space under initial load. Qing-tian and 

Song-nan (2018) established dispersion equation in piezoelectric circular curved rods in 

an orthogonal curvilinear coordinate system. Qing et al. (2019) investigated the 

application of piezoelectric materials used as transducers in structural health monitoring 

which is also widely examined by the aerospace industry for improving the safety and 

reliability of aircraft structures. Bharti et al. (2021) have used shear waves to study the 

impact of soft and rigid mountain surfaces on the phase-velocity in a composite structure 

consisting of fluid saturated porous medium and orthotropic half space. Dhabal et al. 

(2022) studied the interaction of shear waves has been studied in an infinite 

magnetoelastic orthotropic medium. Liu et al. (2022) described effects of piezoelectricity 

on the guided waves in nonlocal piezoelectric nano plates. Liu et al. (2022) investigated 

the shear wave propagation in functionally graded small scaled plates. The piezoelectric 

effects have been studied on the same. Sharma & Kumar (2022) investigated the 

Bleustein–Gulyaev wave’s propagation in non-local piezoelectric film on the non-local 

piezoelectric half space.  

The motivation for exploring layered structures in the study of shear waves, particularly 

concerning initial stress and surface imperfections in non-local composite materials, lies 

in the desire to understand how these factors influence wave propagation. Layered 

composites present intricate interactions due to their diverse mechanical properties and 

stress distributions, which are crucial for analyzing shear wave behavior under various 

conditions. This approach helps to illuminate the complexities involved in the use of 

layered composites. The current chapter pertains to an intricate configuration comprising 

a non-local micropolar elastic half-space that is homogeneous and isotropic in nature, 
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along with a pre-stressed non-local piezoelectric layer. The two components are separated 

by an imperfect interface. Our study delves into the examination of the influence of 

diverse parameters, including non-locality, imperfect interface and initial stress on the 

phase-velocity of shear waves. We derive closed-form analytical expression for the 

dispersion relation of shear waves and conduct numerical computations to determine the 

phase-velocity. Subsequently, the outcomes are depicted in a graphical format. 

3.2. BASIC EQUATIONS 

Using basic equation applicable to a homogeneous, isotropic, non-local micropolar elastic 

material as given in section (1.4.1) of chapter 1. 

σkℓ,k 
nl +  ρ (fℓ − üℓ

n) = 0, (3.1) 

mkℓ,k
nl + ∈ℓmn σmn + ρ(lℓ −  j ϕ̈ℓ) = 0, (3.2) 

(1 − 𝜀2𝛻2 )𝜎𝑘ℓ
𝑛𝑙 = 𝜎𝑘ℓ

 =  𝜆𝑒𝑟𝑟𝛿𝑘ℓ + (𝜇 + 𝜅)𝑒𝑘ℓ + 𝜇𝑒ℓk, (3.3) 

(1 − 𝜀2𝛻2 )𝑚𝑘ℓ
𝑛𝑙 = 𝑚𝑘ℓ

 =  𝛼 𝛾𝑟𝑟𝛿𝑘ℓ + 𝛽𝛾𝑘ℓ + 𝛾𝛾𝑘ℓ , (3.4) 

𝑒𝑘ℓ= (𝑢ℓ,𝑘
𝑛 − 𝜖𝑘ℓm𝜙𝑚,ℓ ), 𝛾𝑘ℓ =  𝜙𝑘,ℓ. (3.5) 

The physical meaning of symbols has already been defined in chapter 1. 

Using above equations, the field equations can be written as: 

(𝜆 +  𝜇)𝑢𝑘,𝑘ℓ
𝑛 + (𝜇 + 𝜅)𝑢ℓ,𝑘𝑘

𝑛 +  𝜅 ∈ℓ𝑚𝑛 𝜙𝑛,𝑚 + 𝜌(1 − 𝜀
2𝛻2 )(𝑓ℓ– üℓ

𝑛) = 0, (3.6) 

(𝛼 + 𝛽) 𝜙𝑘,𝑘ℓ + 𝛾 𝜙ℓ,𝑘𝑘  +  𝜅 ∈ℓ𝑚𝑛 𝑢𝑛,𝑚
𝑛 − 2 𝜅 𝜙ℓ + 𝜌(1 − 𝜀

2𝛻2 )(lℓ −

 j 𝜙̈ℓ) = 0. 

(3.7) 

Now, the constitutive relations and equation of motion for a homogeneous, transversely 

isotropic non-local piezoelectric medium can be expressed as in Sharma and Kumar 

(2022)  

{
(1 − 𝜀′2𝛻2 )𝜏𝑖𝑗

𝑛𝑙 = 𝜏𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑆𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 ,

(1 − 𝜀′2𝛻2 )𝐷𝑗
𝑛𝑙 = 𝑒𝑗𝑘𝑙𝑆𝑘𝑙 + 𝜖𝑗𝑘𝐸𝑘 .

 
(3.8) 
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{
𝜏𝑖𝑗,𝑗
𝑛𝑙 + (𝑢𝑖,𝑗𝜏𝑘𝑗

0 ),𝑗 = (1 − 𝜀
′2𝛻2 )𝜌′𝑢𝑖 ,̈

𝐷𝑖,𝑖
𝑛𝑙 + (𝑢𝑖,𝑘𝐷𝑗

0),𝑖 = 0.
 

(3.9) 

Where 

𝑆𝑖𝑗 = 
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖

2
, 

(3.10) 

𝐸𝑖 = −𝜕𝜑 𝜕𝑥𝑖⁄  . (3.11) 

Here 𝜏𝑖𝑗
𝑛𝑙 represents non-local stress tensor and𝜏𝑖𝑗represents local stress tensor. 𝐷𝑗

𝑛𝑙 is the 

electric displacement,  𝜀′ = 𝑒0𝑎  is the non-local parameter which denotes small scale 

effect. 𝑒𝑘𝑖𝑗  , 𝜖𝑗𝑘  𝑎𝑛𝑑 𝑐𝑖𝑗𝑘𝑙 represents piezoelectric, dielectric and elastic constants 

respectively. Density of piezoelectric material is represented by 𝜌′. 𝑢is the mechanical 

displacement. It could be observed that in absence of non-local constraint the above 

equation will represent the one for local piezoelectric medium. 𝑆𝑘𝑙  and 𝐸𝑘  are the strain 

tensor and electric field intensity.  

3.3. FORMULATION AND PROBLEM’S SOLUTION: 

As illustrated in figure 3.1, we consider a composite structure with a pre-stressed layer of 

non-local piezoelectric material of thickness h on top of a non-local micropolar elastic 

half space. The starting point of the chosen Cartesian coordinate system is established at 

the location marked as point O, as illustrated in Figure 3.1.The non-local piezoelectric 

layer polarized along 𝑥3-axis direction perpendicular to 𝑥1 − 𝑥2 plane is considered. We 

assume that shear waves propagates in  𝑥1 direction and 𝑥2-axis is assumed to be positive 

in perpendicularly downward direction so the displacement components will be free from 

𝑥3 coordinates. 

Thus,   (𝑢1, 𝑢2 , 𝑢3) and (𝑢1
𝑛 , 𝑢2

𝑛 , 𝑢3
𝑛) stand for the displacement components resulting 

from shear wave propagation in a non-local piezoelectric layer and a NLME half space, 

respectively. 
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Fig.3.1 Geometry of the problem 

The components of displacement, micro rotation and electric field potential can be 

represented as 

𝑢1
𝑛 = 𝑢2

𝑛 = 0,  𝑢3
𝑛 = 𝑢3

𝑛(𝑥1, 𝑥2, 𝑡), 𝜙1 = 𝜙1(𝑥1, 𝑥2, 𝑡),  𝜙2 = 𝜙2(𝑥1, 𝑥2, 𝑡), , 

𝜙3 = 0,   𝑢1 = 𝑢2 = 0, 𝑢3 = 𝑢3(𝑥1, 𝑥2, 𝑡), 𝜑 = 𝜑(𝑥1 , 𝑥2 , 𝑡). 

 

(3.12) 

 

3.3.1 SOLUTION OF NON-LOCAL MICROPOLAR HALF SPACE: 

In the absence of body force and body couple densities, equations (3.6) and (3.7) can be 

simplified as follows 

(𝜇 + 𝜅)∇2𝑢3
𝑛 + 𝜅 (

𝜕𝜙2
𝜕𝑥1

−
𝜕𝜙1
𝜕𝑥2

) = 𝜌(1 − 𝜀2𝛻2 )
𝜕2 𝑢3

𝑛

𝜕𝑡2 
, 

(3.13) 

(𝛼 + 𝛽) 
𝜕

𝜕𝑥1
(
𝜕𝜙1

𝜕𝑥1
+

𝜕𝜙2

𝜕𝑥2
) + 𝛾∇2𝜙1 − 2𝜅𝜙1 + 𝜅

𝜕𝑢3
𝑛

𝜕𝑥2
=  𝜌j(1 − 𝜀2𝛻2 )

𝜕2 𝜙1

𝜕𝑡2 
, (3.14) 

(𝛼 + 𝛽) 
𝜕

𝜕𝑥2
(
𝜕𝜙1

𝜕𝑥1
+

𝜕𝜙2

𝜕𝑥2
) + 𝛾∇2𝜙2 − 2𝜅𝜙2 − 𝜅

𝜕𝑢3
𝑛

𝜕𝑥1
=  𝜌j(1 − 𝜀2𝛻2 )

𝜕2 𝜙2

𝜕𝑡2 
. (3.15) 

To decouple the equation (3.13)-(3.15) introducing the potential functions 𝜓 and 𝜉 as   
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𝜙1 =  
𝜕𝜓

𝜕𝑥1
+

𝜕𝜉

𝜕𝑥2
  𝑎𝑛𝑑  𝜙2 =

𝜕𝜓

𝜕𝑥2
−

𝜕𝜉

𝜕𝑥1
. (3.16) 

On substituting equation (3.16) in (3.13)-(3.15), we obtained  

𝛻2 𝑢3
𝑛 − 𝑐1𝛻

2 𝜉 =  (1 − 𝜀2𝛻2 )
1

𝑐2
2

𝜕2 𝑢3
𝑛

𝜕𝑡2 
 , 

(3.17) 

𝛻2 𝜓− 
2𝑐5

2

𝑐3
2 + 𝑐4

2  𝜓 =  (1 − 𝜀
2𝛻2 )

1

𝑐3
2 + 𝑐4

2

𝜕2 𝜓

𝜕𝑡2 
 , 

(3.18) 

𝛻2 𝜉 − 
2𝑐5

2

𝑐3
2 𝜉 +

𝑐5
2

𝑐3
2 𝑢3

𝑛 = (1 − 𝜀2𝛻2 )
1

𝑐3
2

𝜕2 𝜉

𝜕𝑡2 
. 

(3.19) 

where𝑐1 =  
𝜅

𝜇+ 𝜅
  , 𝑐2 =  √

𝜇+ 𝜅

𝜌
 , 𝑐3 =  √

𝛾

𝜌𝑗
 , 𝑐4 = √

𝛼+ 𝛽

𝜌𝑗
 and 𝑐5 =  √

𝜅

𝜌𝑗
 . 

The solution for waves described in equations (3.17)-(3.19) can be represented as 

(𝜓, 𝜉, 𝑢3
𝑛) =  (𝜓, 𝜉, 𝑢3

𝑛)(𝑥2)𝑒
𝜄(𝑘𝑥1−𝜔𝑡) . (3.20) 

where 𝑘and 𝜔 are as explained in equation (2.17) in chapter 2. 

Using the equation (3.20) in equations (3.17)-(3.19), we obtained, 

(𝐷2 − 𝑅2)𝜓(𝑥2) = 0. (3.21) 

(𝐷4 − 𝑃𝐷2 +𝑄)(𝑢3
𝑛 , 𝜉)(𝑥2) =  0. (3.22) 

where     𝑅2 =  
𝑘2+

2𝑐5
2

𝑐3
2+ 𝑐4

2−
𝜔2

𝑐3
2+ 𝑐4

2−
𝜔2𝜀2𝑘2

𝑐3
2+ 𝑐4

2

(1−
𝜔2𝜀2

𝑐3
2+ 𝑐4

2)
, 

 

𝑃 =  
(𝑘2 − 

𝜔2

𝑐2
2
) + (𝑘2 − 

𝜔2

𝑐3
2
) +

𝑐5
2

𝑐3
2
(2 − 𝑐1) −

2𝜔2𝜀2𝑘2

𝑐3
2 −

2𝜔2𝜀2𝑐5
2

𝑐2
2𝑐3

2 +
2𝜔4𝜀2

𝑐2
2𝑐3

2 +
2𝜔4𝜀4𝑘2

𝑐2
2𝑐3

2 +
𝜔4𝜀2𝑘2

𝑐2
2𝑐3

2

[1 − 𝜀2𝜔2 (
1

𝑐2
2 +

1

𝑐3
2
) + 

𝜀4𝜔4

𝑐2
2𝑐3

2
]

, 

𝑄 = 
(𝑘2 −

𝜔2

𝑐2
2
) (𝑘2 − 

𝜔2

𝑐3
2 +

2𝑐5
2

𝑐3
2
) −

𝑐1𝑐5
2𝑘2

𝑐3
2 −

𝜔2𝜀2𝑘4

𝑐3
2 +

2𝜔4𝜀2𝑘2

𝑐2
2𝑐3

2 −
𝜔2𝜀2𝑘4

𝑐2
2 − 

2𝜔2𝜀2𝑘𝑐5
2

𝑐2
2𝑐3

2 +
𝜔4𝜀4𝑘4

𝑐2
2𝑐3

2

[1 − 𝜀2𝜔2 (
1

𝑐2
2 +

1

𝑐3
2
) + 

𝜀4𝜔4

𝑐2
2𝑐3

2
]

. 

Using radiation condition  (𝑢3
𝑛 , 𝜉, 𝜓)(𝑥2) ⟶ 0 𝑎𝑠 𝑥2 ⟶∞ , the general solution of 

equations (3.21)-(3.22) is taken as: 
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𝜓 = (𝑆 𝑒−𝑟 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡), (3.23) 

𝜉 = (𝑀𝑒−𝑝 𝑥2 + 𝑁𝑒−𝑞 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡), (3.24) 

𝑢3
𝑛 = (𝑀𝑟1𝑒

−𝑝 𝑥2 +𝑁𝑟2𝑒
−𝑞 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡). (3.25) 

Where 𝑝, 𝑞 =  √
𝑃±√𝑃2−4𝑄

2
, 𝑝2 + 𝑞2 =  𝑃 , 𝑝2𝑞2 = 𝑄 , S, M and N are arbitrary 

constants. The components of microrotation are obtained from equation (3.16) by using 

equations (3.23) - (3.24) as 

𝜙1 = (𝜄𝑘𝑆𝑒−𝑟𝑥2 − 𝑝 𝑀𝑒−𝑝 𝑥2 − 𝑞 𝑁𝑒−𝑞 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡), (3.26) 

𝜙2 = (−𝑟𝑆𝑒
−𝑅𝑥2 − 𝜄𝑘(𝑀𝑒−𝑝 𝑥2 +  𝑁𝑒−𝑞 𝑥2)𝑒𝜄(𝑘𝑥1−𝜔𝑡). (3.27) 

The expressions (3.23)–(3.27) are obtained under the assumption that c is less than both 

𝑐2 and 𝑐3. The wave corresponding to 𝑐 > 𝑐2 is represents the refracted wave which lose 

their energy very quickly and hence not significant. 

3.3.2 SOLUTION OF NON-LOCAL PIEZOELECTRIC LAYER 

Now for non-local piezoelectric layer, using equations (3.10)-(3.12) in equations (3.8)-

(3.9) we obtained the following equations 

 (𝑐44 + 𝜏11
0 )

𝜕2𝑢3

𝜕𝑥1
2 +  𝑐44

𝜕2𝑢3

𝜕𝑥2
2 + 𝑒15 [

𝜕2𝜑

𝜕𝑥1
2 + 

𝜕2𝜑

𝜕𝑥2
2
]  =  (1 − 𝜀′2𝛻2 )𝜌′

𝜕2𝑢3

𝜕𝑡2
, (3.28) 

e15 [
∂2u3

∂x1
2 + 

∂2u3

∂x2
2
] − ϵ11 [

∂2φ

∂x1
2 + 

∂2φ

∂x2
2
] = 0. (3.29) 

𝑐44 ,  𝜖11  and 𝑒15 represents the terms as explained in section 2.2.2 in chapter 2. 

Solution of eq. (3.28)-(3.29) are assumed as  

𝑢3(𝑥1, 𝑥2, 𝑡) =  𝑢3(𝑥2)𝑒
𝜄𝑘(𝑥1−𝑐𝑡), (3.30) 

𝜑(𝑥1, 𝑥2, 𝑡)  =  𝜑(𝑥2)e
ιk(x1−ct). (3.31) 

Where, the symbols have their usual meaning as discussed in section 2.2.1 in chapter 2. 

Substituting (3.30) and (3.31) in (3.28)-(3.29), we get   

𝑢3  =  (𝐸1 cos 𝜆1𝑥2 + 𝐸2 sin 𝜆1𝑥2)e
ιk(x1−ct), (3.32) 
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𝜑 =  [𝐹1𝑒
𝑘𝑥2 + 𝐹2𝑒

−𝑘𝑥2 +
𝑒15
𝜖11

(𝐸1 cos 𝜆1𝑥2 + 𝐸2 sin 𝜆1𝑥2)] e
ιk(x1−ct). 

(3.33) 

Here, 𝜆1 = 𝑘 √
𝑐2(1+𝑘2𝜖′

2
)− 

𝜏11
0

𝜌′
−𝑐𝑠ℎ

2

𝑐𝑠ℎ
2 +𝜔2𝜖′

2  , 𝑐𝑠ℎ =  √
𝑐44 𝜖11 +𝑒15

2

𝜌𝜖11
 represents the bulk shear wave 

velocity in the piezoelectric layer.  𝐸1, 𝐸2 , 𝐹1, 𝐹2 are the arbitrary constants. The 

expressions (3.32) - (3.33) are obtained under the assumption 𝑐 > 𝑐𝑠ℎ. 

3.4. BOUNDARY CONDITIONS 

For the propagation of shear waves in the model being considered, it is necessary to meet 

the specified boundary conditions. 

a) The upper layer of non-local piezoelectric layer is taken to be electrically open 

and mechanically free i.e. at 𝑥2 = −ℎ 

𝜏32 
𝑛𝑙 = 0 ,  𝐷2

𝑛𝑙 = 0 . (3.34) 

b) As we are considering imperfect interface between the layer and the half space so 

to characterize the interfacial imperfection the linear spring model (2004) and has 

applied which can be expressed as below. 

At 𝑥2 =  0 , 𝜒 𝜎32
𝑛𝑙 = ( 𝑢3

𝑛 − 𝑢3 ) where 𝜒indicates the degree of imperfectness of 

the interface. 

              Apply the operator (1 − 𝜀2𝛻2 ) on both sides, we get  

𝜒 𝜎32
 = (1 − 𝜀2𝛻2 )( 𝑢3

𝑛 − 𝑢3 ) , (3.35) 

where 𝜎23
  is the local micropolar stress component. 

c) Stress components should be continuous:  𝜎32
𝑛𝑙 = 𝜏32 

𝑛𝑙 . 

Apply the operator (1 − 𝜀2𝛻2 )(1 − 𝜀′2𝛻2 ) on both sides of the equation, we get 

(1 − 𝜀2𝛻2 )(1 − 𝜀′2𝛻2 ) 𝜎32
𝑛𝑙 = (1 − 𝜀2𝛻2 )(1 − 𝜀′2𝛻2 )𝜏32 

𝑛𝑙 . 

or (1 − 𝜀′2𝛻2 ) 𝜎32
 = (1 − 𝜀2𝛻2 )𝜏32

 . 

 

(3.36) 

where 𝜏32
  is the local piezoelectric stress component.      
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d) At 𝑥2 =  0, the non-local couple stress vanishes as the piezoelectric layer does not 

does not exhibit micropolar property.  

𝑚21
𝑛𝑙 = 0 ,    𝑚22

𝑛𝑙 = 0.  

           Apply the operator (1 − 𝜀2𝛻2 ) on both sides of the equation, we get 

(1 − 𝜀2𝛻2 )𝑚21
𝑛𝑙 = 0 , (1 − 𝜀2𝛻2 )𝑚22

𝑛𝑙 = 0. 

or  𝑚21
 = 0 ,    𝑚22

 = 0. (3.37) 

where 𝑚21
  and   𝑚22

  are the local micropolar couple stress component. 

e) Electric potential must be zero at the shared interface. i.e. at   𝑥2 =  0. 

𝜑 = 0 (3.38) 

 

3.5. DERIVATION OF DISPERSION RELATION 

By plugging in the values of displacement and stress components from equations (3.3)-  

(3.4), (3.23)-(3.27) and (3.32)-(3.33) into equations (3.34)-(3.38), we obtain  

𝑐4̅4𝜆1(𝐸1 sin 𝜆1 ℎ + 𝐸2 cos 𝜆1ℎ) + 𝑒15 𝑘 (𝐹1𝑒
−𝑘ℎ − 𝐹2𝑒

𝑘ℎ) = 0, 

𝐹1𝑒
−𝑘ℎ − 𝐹2𝑒

𝑘ℎ =  0, 

𝐸1[1 + 𝑘
2(𝜖2 + 𝜆1

2)] = 𝑀{[1 + 𝜖2(𝑘2 − 𝑝2)]𝑟1 + 𝜒𝑟3 ] + 𝑁 {[1 + 𝜖
2(𝑘2 − 𝑞2)]𝑟2 +

𝜒𝑟4} − 𝜒 𝜄𝑟5  𝑆, 

𝑐4̅4𝜆1(1 + 𝜖
2(𝑘2 + 𝜆1

2)𝐸2 + 𝑒15 𝑘 (𝐹1 − 𝐹2) 

= − 𝑟3   [1 + 𝜀
′2(𝑘2 − 𝑝2)]𝑀 − 𝑟4  [1 +  𝜀

′2(𝑘2 − 𝑞2)]𝑁 +  𝜄 𝑟5𝑆[1 + 𝜀
′2(𝑘2 − 𝑟2)], 

𝑒15

𝜀11
𝐸1 + 𝐹1 + 𝐹2 = 0, 

𝜄𝑟6 S + 𝑟7 𝑀 + 𝑟8   𝑁 = 0, 

𝑟9𝑆 + 𝜄𝑟10 𝑀 + 𝜄 𝑟11  𝑁 = 0. 

 

 

 

 

(3.39 

Where 𝐸1 , 𝐸2 , 𝐹1 , 𝐹2 , 𝑆 ,𝑀 , 𝑁 are unknown coefficients.  
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𝑐4̅4 = 𝑐44 +
𝑒15

2

𝜀11
, 𝑟1  =  𝛿 − 

𝛾𝑝2

𝜅
, 𝑟2  =  𝛿 −

𝛾𝑞2

𝜅
 , 𝑟3  =p (𝜇 𝑟1 + 𝜅) ,  

𝑟4  = 𝑞 ( 𝜇 𝑟2 + 𝜅)  , 𝑟5  =  𝜅𝑘, 𝑟6 = 𝑣𝑟, 𝑟7 =  𝛽 𝑘
2 +  𝛾𝑝2 , 𝑟8 = 𝛽 𝑘

2 + 𝛾𝑞2 ,  𝑟9 =

−𝛼𝑘2 + (𝛼 + 𝛽 + 𝛾)𝑟2,  𝑟10 = 𝑣 𝑝,  𝑟11 = 𝑣𝑘𝑞,   𝛿 =
𝑐3
2𝑘2− 𝜔2+ 2 𝑐5

2

𝑐5
2 ,  𝑣 = (𝛽 +  𝛾)𝑘. 

The condition of non-trivial solution of equations (3.39) leads to the following dispersion 

relation for shear waves in the composite structure, 

𝑒15
2𝑘 tanh(𝑘ℎ)

𝜀11
+ 𝑐4̅4𝜆1𝐿1𝑡𝑎𝑛(𝜆1ℎ) =

𝐿1[𝐿4𝐿7 − 𝐿5𝐿8 + 𝐿6𝐿9]

[(𝐿2𝐿10 + 𝐿3𝐿11 + 𝜒(𝐿7 + 𝐿8 − 𝐿9)
, 

(3.40) 

where, 𝐿1 = 1 + 𝜖
2(𝜆1

2 + 𝑘2) ,  𝐿2 = 1 + 𝜖
2(𝑘2 − 𝑝2), 𝐿3 = 1 + 𝜖

2(𝑘2 − 𝑞2), 𝐿4 = 1 +

𝜖′2(𝑘2 − 𝑝2) , 𝐿5 = 1+ 𝜖′2(𝑘2 − 𝑞2) , 𝐿6 = 1 + 𝜖
′2(𝑘2 − 𝑟2) , 𝐿7 = 𝑟3𝑟6𝑟11 − 𝑟3𝑟8𝑟9 , 

𝐿8 = 𝑟4𝑟7𝑟9 − 𝑟4𝑟6𝑟10 , 𝐿9 = 𝑟5𝑟7𝑟11 − 𝑟5𝑟8𝑟10 , 𝐿10 = 𝑟1𝑟6𝑟11 − 𝑟1𝑟8𝑟9 , 𝐿11 = 𝑟2𝑟7𝑟9 −

𝑟2𝑟6𝑟10. 

3.6. PARTICULAR CASES  

CASE I: 

 In order to obtained the dispersion equation in local piezoelectric/non-local micropolar 

half space, we assume that the non-locality parameter of piezoelectric material is absent 

that is 𝜖′ = 0, then the dispersion equation (3.42) reduces to  

Here,   𝐿4 = 𝐿5 =  𝐿6 = 1 for 𝜖′ = 0. 

𝑒15
2𝑘 tanh(𝑘ℎ)

𝜀11
+ 𝑐4̅4𝜆1𝐿1𝑡𝑎𝑛(𝜆1ℎ) =

𝐿1[𝐿7−𝐿8+𝐿9]

[(𝐿2𝐿10+𝐿3𝐿11+𝜒(𝐿7+𝐿8−𝐿9)
. (3.41) 

CASE II: 

 In order to obtained the dispersion equation in local piezoelectric/ local micropolar half 

space, we assume that the non-locality parameter of piezoelectric material and micropolar 

material are absent that is 𝜖 = 0 , 𝜖′ = 0, then the dispersion equation (3.43) reduces to 
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𝑒15
2𝑘 tanh(𝑘ℎ)

𝜀11
+ 𝑐4̅4𝜆1𝑡𝑎𝑛(𝜆1ℎ) =

[𝐿7−𝐿8+𝐿9]

[𝐿10+𝐿11+𝜒(𝐿7+𝐿8−𝐿9)]
 . 

Here , 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 =  𝐿5 = 𝐿6 = 1  for 𝜖′ = 0 , 𝜖 = 0 . 

       (3.42)                 

 

Also the values r, P and Q in the differential equations (3.21)-(3.22) reduced to  

𝑟2 = 𝑘2 +
2𝑐5

2

𝑐32 + 𝑐42
−

𝜔2

𝑐32 + 𝑐42
, 

𝑃 = (𝑘2 − 
𝜔2

𝑐2
2) + (𝑘

2 − 
𝜔2

𝑐3
2) +

𝑐5
2

𝑐3
2
(2 − 𝑐1), 

𝑄 =  (𝑘2 −
𝜔2

𝑐22
)(𝑘2 − 

𝜔2

𝑐3
2 +

2𝑐5
2

𝑐3
2 ) −

𝑐1𝑐5
2𝑘2

𝑐3
2 . 

 

 

(3.43) 

The dispersion relation (3.41) and values in equations (3.42) are in agreement with 

already published results Kumar et al. (2019). 

CASE-III: 

On substituting, 𝜒 = 0, 𝜏11
0  in the equation (3.43) we obtain, 

𝑒15
2𝑘 tanh(𝑘ℎ)

𝜀11
+ 𝑐4̅4𝜆1𝑡𝑎𝑛(𝜆1ℎ) =

𝐿7−𝐿8+𝐿9

𝐿10+𝐿11
, (3.44) 

where, 𝜆1 = 𝑘 √
𝑐2−𝑐𝑠ℎ

2

𝑐𝑠ℎ
2  , 𝑐𝑠ℎ = √

𝑐44 𝜖11 +𝑒15
2

𝜌𝜖11
. 

Which is same as the result of obtained under case I in equation (2.43) in chapter 2.  

CASE-IV: 

By neglecting the piezoelectric and micropolar parameters i.e., under limiting case 

when 𝛼, 𝛽, 𝛾, 𝑗, 𝜅, 𝑒15,→ 0  ,  

We have, 𝑐2 = √
𝜇

𝜌
 and , 𝑐4̅4 = 𝑐44 and 𝑐𝑠ℎ = √

𝑐44 

𝜌
= 𝑐1

′ ,  
𝐿7−𝐿8+𝐿9

𝐿10+𝐿11
 → 𝜇𝑘√1 −

𝑐2

𝑐2
2. 

On substituting the values of 𝑒15, 𝑐4̅4 and 𝑐𝑠ℎ in equation (3.44), we get  
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𝜇√1 −
𝑐2

𝑐2
2 = 𝑐44√

𝑐2

𝑐1
′2 − 1 𝑡𝑎𝑛 (𝑘ℎ√

𝑐2

𝑐𝑠ℎ
2 − 1). 

Which is same as result obtained under case II in equation (2.45) in chapter 2. 

 

(3.45) 

3.7. NUMERICAL ANALYSIS AND DISCUSSION 

To study the behavior of propagating shear wave in the considered structure numerical 

computations has been performed by considering a combination of piezoelectric layer 

PZT-4 and aluminum epoxy half space. The numerically computed results are presented 

graphically in figures (3.2-3.7). The variations in non dimensional phase-velocity w.r.t. 

non dimensional wave number has been investigated under the effects of key parameters 

like non-local piezoelectric, non-local micropolar, thickness parameter, initial stress and 

imperfect parameter. The half space is considered of aluminum epoxy material for which 

the values of relevant parameters are as given in table 2.1 of chapter 2. 

Figure–3.2 Describes the behavior of phase-velocity w.r.t. wave number in non-local 

piezoelectric layer imperfectly bonded over non-local micropolar half space. Dispersion 

curves of various mode of shear waves are shown and it is noticed that the phase-velocity 

 decreases with an increase in wave number values which indicates the dispersive wave 

behavior in the composite structure. This suggests that wave speed varies with frequency. 

Figure-3.3 shows the impact of non-local parameter of piezoelectric material (𝜀′) over the 

variations of phase-velocity  w.r.t. wave number. To investigate the effect of(𝜀′), we 

considered different values of 𝜀′ (0 nm, 0.2 nm, 0.25 nm), while the non-local parameter 

of micropolar material (𝜀) is assumed to be fixed (𝑖. 𝑒. 𝜀 =0.30 nm). As visible in the 

graph the phase-velocity  decreases with increase in non-local parameter of piezoelectric 

material. It is also seen that the phase-velocity is on higher side in case of local 

piezoelectric half space (𝑖. 𝑒. 𝜀′  =0) as compared to non-local piezoelectric half space. 

This reduction is due to the size-dependent effects introduced by the non-local 

characteristic, which results in lower wave speeds compared to a local piezoelectric 

material. Figure-3.4 presents the influence of non-local parameter of micropolar material 
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(𝜀) on the variation phase-velocity  for fixed value of 𝜀′=0.3nm. It could be seen from the 

graph, dispersion curves vanishes after certain wave number values for different values of  

𝜀 . With increase in this parameter the dispersion curve can be seen for longer wave 

number  values. So this parameter also has significant effects on phase-velocity of shear 

waves. Figure-3.5 describes the effects of initial stress on the variation of phase-velocity   

w.r.t. wave number. It is noticed that the initial stress has little effect on the dispersion 

relation for  |𝜏11
0 | < 108 and significant variations are observed for |𝜏11

0 | > 108 as shown 

in graph. With increase in initial stress the phase-velocity  increases for same 

wave number  value.  

Figure-3.6 describes the impact of an imperfect surface on the change in phase-velocity 

w.r.t. wave number. It has been demonstrated that at the imperfect interface, the phase-

velocity decreases compared to a perfectly bounded surface. Figure-3.7 illustrates the 

impact of thickness parameter (h) on the variation in non dimensional phase-velocity and 

non dimensional wave number. The layer’s significantly influences the phase-velocity  of 

shear waves. For considered values of this parameter it is noticed that phase-velocity 

 increases with increase in thickness. 

These numerical results provide a comprehensive understanding of how various 

parameters such as non-local effects, initial stress, interface conditions, and layer 

thickness affect shear wave propagation in layered structures. 
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Fig. 3.2 Dispersion curve for shear waves for the considered model. 

 

Fig.  3.3 Influence of non-local piezoelectric parameter. 
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Fig. 3.4 Influence of non-local micropolar parameter. 

 

Fig. 3.5 Influence of initial stress parameter. 
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Fig. 3.6 Effect of imperfect parameter. 

 

Figure 3.7 Variation due to thickness of layer. 
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3.8. CONCLUSION 

The focus of this research pertains to the transmission of shear waves within a composite 

construction composed of a nonlocal piezoelectric layer that is imperfectly connected to a

 nonlocal micropolar elastic half space, which has an effect on the initial stress. A general 

wave dispersion equation for the shear wave propagation in considered structure has been 

derived analytically.  Following points are concluded out of the present study: 

 Dispersion Relations: The wave dispersion relations are affected by the non-local 

properties of both piezoelectric and micropolar materials.  

 Phase Velocity and Wave Number: An increase in wave number leads to a 

reduction in phase velocity, illustrating the dispersive nature of wave propagation in 

this composite structure.  

 Effect of Non-locality: Non-local characteristics of both piezoelectric and 

micropolar materials significantly lower the phase velocity of shear waves. This 

indicates that size-dependent and non-local effects play a crucial role in modifying 

wave propagation behavior. 

 Impact of Initial Stress: Initial stress has a significant effect on the phase velocity 

of shear waves, with increase in initial stress the phase velocity also increases.   

 Layer Thickness: The thickness of the piezoelectric layer is a vital factor in 

designing wave propagation within the composite structure. Changes in layer 

thickness can influence the dispersion and phase velocity of shear waves, making it a 

key consideration for material optimization. 

In this chapter, considering the non-local effect in a piezoelectric material bonded 

imperfectly over NLME half space that will undoubtedly support investigators those 

are functioning in non-local piezoelectric materials. The study of shear wave 

propagation in layered structures with non-local micropolar and piezoelectric 

materials has significant practical applications. The insights gained can enhance the 

design of sensors by improving their sensitivity and performance, making them more 
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effective in various environments. Additionally, this research is valuable for structural 

health monitoring, providing a deeper understanding of wave behavior in composite 

materials used in aerospace and civil engineering. It also contributes to better 

vibration control solutions for machinery and infrastructure, enhancing safety and 

reducing wear. Furthermore, the findings can guide the development of advanced 

composite materials with tailored properties for specific applications, leveraging the 

unique characteristics of non-local micropolar and piezoelectric materials. Overall, 

these applications highlight the study's potential to advance both theoretical 

knowledge and practical engineering solutions. 
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CHAPTER 4 
 

RAYLEIGH WAVES IN NON-LOCAL MICROPOLAR 
THERMOELASTIC MATERIALS UNDER IMPEDANCE 

BOUNDARY CONDITIONS3 

 

4.1 INTRODUCTION:  

Rayleigh waves are important to investigate in materials due to their unique surface-

propagation characteristics. These waves travel along the surface of a solid and provide 

valuable insights into how energy disperses in complex materials. The inclusion of non-

local micropolar effects, which account for rotational motions and size-dependent 

behavior, allows for a deeper understanding of wave dispersion and energy transmission 

beyond classical models. Rayleigh waves are highly sensitive to surface properties, 

making them important for studying surface behavior, stress distribution, and the effects 

of material imperfections. Rayleigh waves in the layered model has several applications, 

including non-destructive testing techniques for detecting faults and weaknesses in 

materials, SAW devices, and geotechnical and geophysics engineering to investigate the 

earth's internal structure. Eringen (1968) determined the dispersion relation for Rayleigh 

surface waves in micropolar elastic half space under stress-free boundary. In the majority 

of scenarios involving Rayleigh waves, the standard practice is to consider boundary 

conditions where the surface is treated as traction-free. The exploration of alternative 

boundary conditions such as impedance boundary (IB) conditions is seldom undertaken 

in seismology. Nevertheless, in other branches of physics such as acoustics and 

electromagnetism, the use of IB conditions is prevalent. The IB conditions refer to a 

linear combination of unspecified functions and their derivatives that are defined along a 

boundary. The research articles given by Godoy et al. (2012), Vinh and Hue (2014a), 

                                                             
3

The content of this chapter is published in “Journal of Physics: Conference Series” in the research paper entitled “Rayleigh waves with impedance 

boundary conditions in a non-local micropolar thermoelastic material”, VOL.1531 , p. 012048 (scopus indexed, 0.183). 
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Vinh and Hue (2014b), Singh (2015), Kaur and Singh (2015). Vinh and Xuan (2017), 

Singh (2016), Giang and Vinh (2021), Singh (2017), Anh et al. (2023) used IB conditions 

to study Rayleigh wave propagation in elastic materials.  

This chapter focuses on examining the Rayleigh wave’s propagation within a non-local 

micropolar thermoelastic half space characterized by presence of IB conditions. The 

dispersion equation governing the propagation of Rayleigh waves under IB conditions is 

derived, and the impact of both impedance and non-local parameters is investigated. 

Some earlier published results have been derived as particular cases from this study. The 

Rayleigh waves speed is calculated based on impedance parameters and then visually 

illustrated for an aluminum epoxy material. It is observed that the non-local and 

impedance parameter have significant effect on the Rayleigh waves speed.  

4.2 BASIC EQUATIONS:  

Using Eringen‘s (1984) non-local theory as explained in chapter 1, the equation of 

motion for homogenous, isotropic non-local micropolar elastic solids are given by 

 σkℓ,k  
nl +  ρ (fℓ − üℓ

n) = 0, (4.1) 

𝑚𝑘ℓ,𝑘
nl + ∈ℓ𝑚𝑛 𝜎𝑚𝑛 + 𝜌(𝑙ℓ −  𝑗𝜙̈ℓ) = 0. (4.2) 

where, fℓ is the body force density, lℓ is the body couple density, j denotes micro inertia 

density. 𝜙ℓ is the micro-rotation vector. ρ is the mass density, 𝑢ℓ represents displacement 

vector. ∈ℓmnis the alternating symbol. Index after comma signifies the partial derivative.  

The non-local stress tensor (𝜎𝑘ℓ
𝑛𝑙) and couple stress tensor ( 𝑚𝑘ℓ

𝑛𝑙 ) can be represented in 

terms of local stress tensor (𝜎𝑘ℓ
 ) and local couple stress tensor (𝑚𝑘ℓ

 ) as  

(1 − 𝜀2𝛻2 ) 𝜎𝑘ℓ
nl = 𝜎𝑘ℓ

   (4.3) 

(1 − 𝜀2𝛻2 )𝑚𝑘ℓ
nl = 𝑚𝑘ℓ

 . (4.4) 
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where 𝜀 is a non-local parameter (𝜀 =  𝑒0𝑙) , 𝑙 is characteristic length 𝑒0is the non-local 

constant. The local stress tensor 𝜎𝑘ℓ
  and local couple stress tensor 𝑚𝑘ℓ

   for an isotropic, 

homogeneous micropolar thermoelastic material are given by Eringen (1970)  

{

𝜎𝑘ℓ
 =  𝜆𝑒𝑟𝑟𝛿𝑘ℓ + (𝜇 + 𝜅)𝑒𝑘ℓ + 𝜇𝑒ℓk − 𝜈𝑇𝛿𝑘ℓ ,

𝑚𝑘ℓ
 =  𝛼𝛾𝑟𝑟𝛿𝑘ℓ + 𝛽𝛾𝑘ℓ + 𝛾𝛾𝑘ℓ ,

𝑒𝑘ℓ  =  (𝑢ℓ,𝑘
n − 𝜖𝑘ℓ𝑚𝜙𝑚,ℓ ) , 𝛾𝑘ℓ = 𝜙𝑘,ℓ .

 

(4.5) 

where, T is the change in temperature from the reference temperature 𝑇𝑜 of the body and 

𝜈 = (3𝜆 + 2𝜇 + 𝜅)𝛼𝑡 .  Here, 𝛼𝑡 denotes coefficient of thermal linear expansion.  

 Using equations (4.3)-(4.5) in equations (4.1)-(4.2), the field equations of a non-local 

micropolar thermoelastic material can be written as 

(𝜆 +  𝜇)𝑢𝑘,𝑘ℓ
n + (𝜇 +  𝜅)𝑢ℓ,𝑘𝑘

n +  𝜅 ∈ℓ𝑚𝑛 𝜙𝑛,𝑚 − 𝜈∇𝑇 + 𝜌(1 − 𝜀
2𝛻2 )(𝑓ℓ – 𝑢̈ℓ

𝑛) = 0,

 (4.6) 

(𝛼 + 𝛽) 𝜙𝑘,𝑘ℓ + 𝛾𝜙ℓ,𝑘𝑘  +  𝜅 ∈ℓ𝑚𝑛 𝑢𝑚,𝑚
n − 2 𝜅𝜙ℓ + 𝜌(1 − 𝜀

2𝛻2 )(𝑙ℓ −  𝑗𝜙̈ℓ) = 0.     

(4.7) 

Equations (4.3)-(4.4) and (4.6)-(4.7) reduced to those of local micropolar theory in the 

static case and in the absence of body forces and couples.  

The heat conduction equation as per the Lord Shulman (1967) is given as,  

𝐾∗∇2𝑇 =  𝜌 𝐶∗ (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2
)  𝑇 + 𝜈 𝑇0 (

𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2
)∇. 𝒖𝒏 

 

(4.8) 

where,  𝐾∗= coefficient of thermal conductivity,  

𝐶∗= specific heat at constant strain 

𝜏0= thermal relaxation time. 

4.3 PROBLEM’S FORMULATION  

In the initial state, a non-local thermoelastic half space, which is homogeneous and 

isotropic, is considered to be at a uniform temperature 𝑇0. The geometry of the problem is 
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as shown in the figure 4.1. Wave propagation direction is assumed along the 𝑥1- axis, 

ensuring the particles vibrating on a line parallel to the 𝑥3 -axis experiences equal 

displacement. Consequently, all field quantities are presumed to be independent of 𝑥3-

axis. 

 
Fig. 4.1 Geometry of the problem 

 

For the two- dimensional problem in 𝑥1 − 𝑥2plane, we have  
𝒖𝒏 = (𝑢1

𝑛 , 𝑢2
𝑛 , 0), 𝝓 = (0, 0, 𝜙3 )           ( 4.9) 

Using (4.9), equation (4.6) and (4.7) can written as : 

(𝜆 + 2𝜇 + 𝐾)
𝜕2𝑢1

𝑛

𝜕𝑥1
2 + (𝜇 + 𝐾)

𝜕2𝑢1
𝑛

𝜕𝑥2
2 + (𝜆 + 𝜇)

𝜕2𝑢2
𝑛

𝜕𝑥1𝜕𝑥2
+𝐾

𝜕𝜙3

𝜕𝑥2
− 𝜈

𝜕𝑇

𝜕𝑥1
 =  𝜌(1 − 𝜀2𝛻2 )

𝜕2 𝑢1
𝑛

𝜕𝑡2 
, 

              (4.10) 

(𝜆 + 2𝜇 + 𝐾)
𝜕2𝑢2

𝑛

𝜕𝑥2
2 + (𝜇 + 𝐾)

𝜕2𝑢2
𝑛

𝜕𝑥1
2 + (𝜆 + 𝜇)

𝜕2𝑢1
𝑛

𝜕𝑥1𝜕𝑥2
− 𝐾

𝜕𝜙3
𝜕𝑥1

− 𝜈
𝜕𝑇

𝜕𝑥2
 =  𝜌 

(1 − 𝜀2𝛻2 )
𝜕2 𝑢2

𝑛

𝜕𝑡2 
,          

     (4.11) 

𝛾 (
𝜕2𝜙3

𝜕𝑥1
2  + 

𝜕2𝜙3

𝜕𝑥2
2 ) + 𝐾 (

𝜕𝑢2
𝑛

𝜕𝑥1
− 

𝜕𝑢1
𝑛

𝜕𝑥2
) − 2𝐾𝜙3 =  𝜌j(1 − 𝜀

2𝛻2 )
𝜕2 𝜙3

𝜕𝑡2 
.     (4.12) 

 

By employing Helmholtz’s decomposition, 𝑢1
𝑛  and 𝑢2

𝑛  can be expressed in 

terms of potential function Φ and Ψ  as  

 

𝑢1
𝑛 = 

𝜕Φ

𝜕𝑥1
+ 

𝜕Ψ

𝜕𝑥2
  , 𝑢2

𝑛 = 
𝜕Φ

𝜕𝑥1
− 

𝜕Ψ

𝜕𝑥2
.   (4.13)  

 

Substituting (4.13) in equation (4.8) and (4.10) to (4.12) ,  we get 
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(𝜆 + 2𝜇 + 𝐾 )∇2Φ− 𝜈 𝑇 = 𝜌(1 − 𝜀2𝛻2 )
𝜕2 Φ

𝜕𝑡2 
, 

 

(4.14) 

(𝜇 + 𝐾 )∇2Ψ+𝐾 𝜙3  = 𝜌(1 − 𝜀2𝛻2 )
𝜕2 Ψ

𝜕𝑡2 
, 

(4.15) 

𝛾∇2𝜙3 − 2 𝐾 𝜙3 −  𝐾 ∇
2Ψ =  𝜌j(1 − 𝜀2𝛻2 )

𝜕2 ϕ3

𝜕𝑡2 
, (4.16) 

𝐾∗∇2𝑇 =  (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2
) (𝜌 𝐶∗𝑇 + 𝜈 𝑇0∇

2Φ). (4.17) 

 

4.4. PROBLEM’S SOLUTION 
The surface wave solutions of the equation (4.14) to (4.17) is taken as  

 

{Φ,Ψ , 𝑇 , 𝜙3}={Φ̅(𝑥2), Ψ̅(𝑥2), 𝑇̅(𝑥2), 𝜙3̅̅̅̅ (𝑥2)}𝑒
𝑖𝑘(𝑥1−𝑐𝑡) (4.18) 

where 𝜔 = 𝑘𝑐.  𝑐,  𝑘 are as explained in chapter 2. Here, the assumption is made that 

Rayleigh surface waves exhibit temporal damping and propagation side  𝑥1 − 𝑎𝑥𝑖𝑠 with 

wave speed 𝑅𝑒 (𝑐) = 𝑉 > 0and 𝐼𝑚 (𝑐)  ≤ 0. 

The equations (4.14) to (4.17) by using (4.18), we obtain 

 

[𝐷4 − 𝐴𝐷2 +𝐵](Φ̅(𝑥2) , 𝑇̅(𝑥2)) = 0 (4.19) 

[𝐷4 − 𝐴′𝐷2 +𝐵′] (Ψ̅(𝑥2) , 𝜙3̅̅̅̅ (𝑥2)) = 0 (4.20) 

 

 Where, 

 

𝐷 = 
𝑑

𝑑𝑥2
 , 𝐴 =  𝑘2 [2 − 

𝑐2 (1 + 𝐴2 + 
𝐴1

𝑐1
2)

𝐴1
] + 

𝑘4𝜀2𝑐2

𝑐1
2

(
𝑐2

𝐴1
− 2) 

 

 

𝐵 = 𝑘4 [
𝐴1− 𝑐

2(1+ 𝐴2+ 
𝐴1
𝑐1
2)+ 

𝑐4

𝑐1
2

𝐴1
] + 𝑘6𝜀2𝑐2 (

𝑐2

𝐴1
− 1)   

𝐴′ = 𝑘2 (1 −
𝑐2

𝑐22
) + 𝑘2 −  

𝑘2𝑐2𝜌j

𝛾
+
2𝐾

𝛾
− 

𝐾2

𝛾 (𝜇 + 𝐾 )
+
2𝑘2𝑐2𝜌 j 𝜀2

𝛾 𝑐22
 

(𝑐2
2 + 𝑘2𝑐2 + 𝑘4𝜀4𝑐4) − 

2𝑘2𝑐2𝜀2

𝑐2
2 (1 +

2𝐾

𝛾
)    
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𝐵′ =  𝑘2 (𝑘2  −
𝑘2𝑐2 𝜌j

𝛾
  +

2𝐾

𝛾
) (1 −

𝑐2

𝑐2
2) − 

𝑘2𝐾2

𝛾 (𝜇+𝐾 )
 −

2𝑘2 𝐾 𝑐2𝜀2

𝛾 𝑐2
2  +

 
𝑘6𝜀2𝑐2

𝑐2
2 (

𝑘2𝑐2𝜌 j 𝜀2

𝛾 
+ 

2 𝜌 j

𝛾
−  

 𝜌 j 𝑐2
2

𝛾
− 1), 

 

𝑐1
2 = 

𝜆 + 2𝜇 + 𝐾

𝜌
 , 𝑐2

2 =  
𝜇 + 𝐾

𝜌
 , 𝜏∗ = 𝜏0 + 

𝑖

𝜔
 , 

𝐴1 = 
𝐾∗

𝜌 𝐶∗𝜏∗
 , 𝐴2 = 

𝑣2𝑇0

𝜌2𝑐1
2𝐶∗

                          (4.21) 

Using the radiation conditions  Φ̅(𝑥2), Ψ̅(𝑥2), 𝑇̅(𝑥2), 𝜙3̅̅̅̅ (𝑥2) →  0 𝑎𝑠 𝑥2  →
∞ on the general solution of the equations (4.19) and (4.20) using (4.18) , we 

obtain 

 

Φ = (𝐵1𝑒
−𝑏1 𝑦 + 𝐵2𝑒

−𝑏2 𝑦)𝑒𝑖𝑘(𝑥1−𝑐𝑡), (4.22) 

 Ψ =  (𝐵3𝑒
−𝑏3 𝑦 + 𝐵4𝑒

−𝑏4 𝑦)𝑒𝑖𝑘(𝑥1−𝑐𝑡), (4.23)   

𝑇 = (𝑟1𝐵1𝑒
−𝑏1 𝑦 + 𝑟2𝐵2𝑒

−𝑏2 𝑦)𝑒𝑖𝑘(𝑥1−𝑐𝑡), (4.24) 

𝜙3 = (𝑟3 𝐵3𝑒
−𝑏3 𝑦 + 𝑟4 𝐵4𝑒

−𝑏4 𝑦)𝑒𝑖𝑘(𝑥1−𝑐𝑡). 
 

(4.25) 

Where 

𝑏1
2 + 𝑏2

2 = 𝐴 , 𝑏1
2𝑏2

2 = 𝐵 , 𝑏3
2 + 𝑏4

2 =  𝐴′ , 𝑏3
2𝑏4

2 =  𝐵′. 

 

 

(4.26) 

{

 
𝑟𝑖=  

𝑘2

𝑣
[(𝜆+2𝜇+𝐾)(

𝑏𝑖
𝑘2
−1)+𝜌𝑐2(1+𝜀2(𝑘2−1))] ,                            (𝑖=1,2)

𝑟𝑗 = 
𝑘2(𝜇 + 𝐾)

𝐾
[1 − 

𝑐2

𝑐22
− 
𝑏𝑗
𝑘2
+
𝜀2𝑐2

𝑐22
(𝑏3

2 − 𝑘2)],     (𝑗 = 3,4)
 

 

 

(4.27) 

here,𝐵1 ,𝐵2 , 𝐵3 , 𝐵4 are arbitrary constants.   

 

 

4.5. BOUNDARY CONDITIONS 
 

Following Godoy and Nedelec (2012), the IB conditions at the surface 𝑥2 = 0can be 

written as:                                             𝜎2𝑖
 +  𝜔 𝑍𝑖𝑢𝑖 = 0. 

Therefore, the IB conditions for non-local Micropolar thermoelastic half space can be 

formulated as: 

 

(1 − 𝜀2𝛻2 )(𝜎21
𝑛𝑙 +  𝜔 𝑍1𝑢1) = 0,  
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(1 − 𝜀2𝛻2 )(𝜎22
𝑛𝑙 +  𝜔 𝑍2𝑢2) = 0, 

(1 − 𝜀2𝛻2 )(𝑚23
𝑛𝑙 +  𝜔 𝑍3𝜙3) = 0. 

 
 

Or 

𝜎21
 + (1 − 𝜀2𝛻2 )𝜔 𝑍1𝑢1 = 0, 

𝜎22
 +  (1 − 𝜀2𝛻2 ) 𝜔 𝑍2𝑢2 = 0, 

𝑚23
 + (1 − 𝜀2𝛻2 ) 𝜔 𝑍3𝜙3 = 0. 

 

We consider thermal boundary condition as  ,
𝜕𝑇

𝜕𝑢2
+ ℎ𝑇 = 0. 

 
(4.28) 

 

Where ℎ approaches to ∞ corresponds to isothermal surface and ℎ approaches to 0 

corresponds to thermally insulated surface. 

Using condition (4.28) on the surface 𝑥2= 0, The resulting secular equation for the 

velocity of Rayleigh wave propagation is as follows 

𝑀1[𝑇1(𝐿2𝑁4 −𝑁2𝐿4) − 𝑇2(𝐿1𝑁4 −𝑁1𝐿4)] = 𝑀2[𝑇1(𝐿2𝑁3 − 𝑁2𝐿3)𝑇2(𝐿1𝑁3 − 𝑁1𝐿3)] (4.29) 

Where, 

𝐿1 = [𝑘 𝑉1𝑍1
∗ − 𝑏1 − (1 + 

𝐾

𝜇
) 𝑏1], 

𝐿2 = [𝑘 𝑉1𝑍1
∗ − 𝑏2 − (1 + 

𝐾

𝜇
) 𝑏2], 

𝐿3 =  𝑉1𝑍1
∗𝑏3 − 𝑘 −  𝑘 (1 + 

𝐾

𝜇
) (1 − 

𝑐2

𝑐2
2 − 

𝜀2𝑘2𝑐2

𝑐2
2 + 

𝜀2𝑏3
2𝑐2

𝑐2
2 ), 

𝐿4 =  𝑉1𝑍1
∗𝑏4 − 𝑘 −  𝑘 (1 + 

𝐾

𝜇
) (1 − 

𝑐2

𝑐2
2 − 

𝜀2𝑘2𝑐2

𝑐2
2 + 

𝜀2𝑏4
2𝑐2

𝑐2
2 ), 

𝑁1 = 2 + 
𝐾

𝜇
− 𝑉1

2 + (𝑘2 − 1)𝜀2𝑉1
2 − 𝑉1𝑍2 

∗ 𝑏1 ,  

𝑁2 = 2 + 
𝐾

𝜇
− 𝑉1

2 + (𝑘2 − 1)𝜀2𝑉1
2 − 𝑉1𝑍2 

∗ 𝑏2 ,  

𝑁3 = [(2 + 
𝐾

𝜇
) 𝑏3 − 𝑘 𝑉1𝑍2 

∗ ], 

𝑁3 = [(2 + 
𝐾

𝜇
) 𝑏4 − 𝑘 𝑉1𝑍2 

∗ ], 
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𝑀1 = (𝑘 𝜇 𝑉1𝑍3 
∗ −  𝛾 𝑏3) (1 − 

𝑐2

𝑐2
2 − 

𝑏3
2

𝑘2
− 

𝜀2𝑘2𝑐2

𝑐2
2 + 

𝜀2𝑏3
2𝑐2

𝑐2
2 ) ,  

𝑀2 = (𝑘 𝜇 𝑉1𝑍3 
∗ −  𝛾 𝑏4) (1 − 

𝑐2

𝑐2
2 − 

𝑏4
2

𝑘2
− 

𝜀2𝑘2𝑐2

𝑐2
2 + 

𝜀2𝑏4
2𝑐2

𝑐2
2 ) ,  

𝑉1 = √
𝜌 𝑐2

𝜇
 ,  

𝑍1
∗ = 

𝑧𝑖

√𝜌𝜇
. 

For isothermally insulated surface: 

𝑇1 = 𝑏1 [(2 + 
𝜆+𝐾

𝜇
) (

𝑏1
2

𝑘2
− 1) + 𝑉1

2(1 + 𝜀2(𝑘2 − 1))], 

𝑇2 = 𝑏2 [(2 + 
𝜆+𝐾

𝜇
) (

𝑏2
2

𝑘2
− 1) + 𝑉1

2(1 + 𝜀2(𝑘2 − 1))].  

For isothermal surface: 

𝑇1 = [(2 + 
𝜆+𝐾

𝜇
) (

𝑏1
2

𝑘2
− 1) + 𝑉1

2(1 + 𝜀2(𝑘2 − 1))], 

𝑇2 = [(2 + 
𝜆+𝐾

𝜇
) (

𝑏2
2

𝑘2
− 1) + 𝑉1

2(1 + 𝜀2(𝑘2 − 1))].  

4.6. PARTICULAR CASES  
Case I:  

When the non-local parameter is absent, equation (4.29) simplifies to the secular equation 

of Rayleigh waves in a micropolar thermoelastic half-space under IB conditions. 

Case II: 

On overlooking the non-local and Micropolar effects (𝜀 = 𝐾 = 𝑗 = 0 ) in the equation 

(4.29), we obtain the following equation  

𝐿3(𝑁1𝑇2 −𝑁2𝑇1) − 𝑁3(𝐿1𝑇2 − 𝐿2𝑇1) = 0. (4.30) 

Equation (4.30) aligns with the secular equation derived by the author Kumar et al. 

(2018) for Rayleigh waves in a thermoelastic half-space featuring IB conditions. 
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Case III: 

If we neglect non-local, impedance, thermal and Micropolar effects from the model i.e. 

𝜀 = 𝐾 = 𝑗 = 𝑍1
∗ = 𝑍2

∗ = 𝑍3
∗ = 𝜈 =  0,  

Then equation (4.30) becomes, 

 

(2 −
𝑐2

𝑐2
2)
2

= 4 √1 −
𝑐2

𝑐1
2√1−

𝑐2

𝑐2
2. 

(4.31) 

where 𝑐1
2 = 

𝜆+2𝜇

𝜌
 , 𝑐2

2 =
𝜇

𝜌
 

This is widely recognized dispersion equation for the Rayleigh wave’s phase-velocity in 

classical elastic half-space.  

4.7 NUMERICAL RESULTS AND DISCUSSIONS  
 

We have considered aluminum epoxy material for numerical results. The values of 

relevant physical parameters are mentioned in the table 2.1 in chapter 2. The values of 

additional physical parameters are mentioned here.   

Table 4.1 material parameters 

Aluminum epoxy material 

𝜌 = 2.19 × 103𝑘𝑔/𝑚3, 𝑗 = 0.196 × 104𝑚2 

𝜆 = 7.59 × 1010𝑁/𝑚2 𝐾∗=0.492 × 102𝑊/𝑚 

𝜇 = 1.89 × 1010𝑁/𝑚2 𝐶∗ = 1.89 × 1010𝑗/𝑘𝑔 

𝛼 = 0.01 × 106𝑁 𝜏0 = 0.5 × 10−10𝑠 

𝛽 = 0.015 × 106𝑁 𝑇0=298𝐾 

𝛾 = 0.268 × 106𝑁 𝛼𝑡=2.36 × 10
−6𝐾−1 

𝑗 = 0.196 × 104𝑚2 𝐾=0.0149× 1010 𝑁/𝑚2 

The phase velocity c is considered as a complex constant with 𝑅𝑒 (𝑐) = 𝑉 ≥ 0. The 

Rayleigh wave speed 𝑉1 =  √
𝜌 𝑉2

𝜇
 is taken in non-dimensional form and calculated by 

using the equation (4.29). The influence of non-local and impedance parameters on the 
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Rayleigh-wave speed w.r.t non dimensional wave number (𝑘𝑎) , where 𝑎 is the internal 

characteristic length, under thermally insulated boundary surface have been discussed in 

figure 4.2 to 4.6.    

 

 
 

Fig.4.2 Non dimensional Rayleigh wave speed behavior w.r.t. non dimensional wave 

number in local and non-local Micropolar thermoelastic half spaces. 
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Fig 4.3 Effects of non-local constants on the variations of non dimensional wave speed 

w.r.t. non dimensional wave number 

 
Fig. 4.4 Effects of impedance parameter 𝑍1

∗ on Rayleigh wave speed 
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2 

3 

 
Fig4.5 Effects of impedance parameter 𝑍2 

∗ on Rayleigh wave speed 

 

Fig. 4 . 6 Effects of impedance parameter 𝑍3
∗ on Rayleigh wave speed 
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Fig. 4.7 Effects of isothermal and insulated boundary conditions on the variation of non 

dimensional wave speed with non dimensional wave number. 

Figure.4.2 compares the wave speed in local and non-local Micropolar thermoelastic half 

space under fixed values of impedance parameters ( 𝑍1
∗ = 1, 𝑍2

∗ = 0 , 𝑍3
∗ = 0)  and 

internal characteristic length 𝑎 = 10−9𝑚. As visible, the graph shows that speed of wave 

vanishes quickly with wave number in case of non-local Micropolar thermoelastic 

material. This rapid decline suggests that as wave number rises, the impact of the 

material's microstructural characteristics becomes more significant, leading to increased 

energy loss and diminished efficiency of wave propagation. 

Figure 4.3 shows the effect of non-local constant. It is noticed that as the value of non-

local constant decreases the wave speed increases. This relationship indicates a more 

effective coupling between microstructural dynamics and macroscopic behavior, 

resulting in better wave transmission at reduced non-local constants. Figure (4.4 – 4.6) 
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describes the effect of impedance parameters on the wave speed in a non-local 

Micropolar thermoelastic half space. The impedance parameters  𝑍2
∗  and 𝑍3

∗  has 

significant effects on Rayleigh wave speed rather it is has minimal effect by 𝑍1
∗. These 

insights emphasize the importance of carefully selecting material properties to achieve 

desired wave behavior in practical applications. 

Figure 4.7 compares the non-dimensional wave speed for thermally insulated and 

isothermal boundary conditions as a function of the non-dimensional wave number. The 

isothermal condition exhibits a consistently lower wave speed across all wave numbers 

compared to the thermally insulated case, which shows a higher wave speed, especially 

for smaller wave numbers. As the wave number increases, both curves tend to stabilize, 

indicating a reduced effect of thermal boundary conditions on wave speed at higher wave 

numbers. 

Overall, these results shed light on the intricate factors influencing wave propagation in 

micropolar thermoelastic materials, revealing the essential contributions of 

microstructural features and impedance parameters. 

4.8. CONCLUSION 

In this chapter, we investigate Rayleigh waves in a non-local micropolar thermoelastic 

half-space under IB conditions for both thermally insulated and isothermal surfaces. We 

derive the explicit form of the secular equation that satisfies the IB conditions. Specific 

instances reveal that when the non-local parameter is eliminated, the resulting secular 

equation agrees with the earlier published results. From numerical discussions, we can 

conclude that 

 Effect of Non-Local Parameter on Wave Speed: The non-local parameter has 

significant effects on Rayleigh waves speed. The wave decreases in case of non-

local Micropolar material as compared to the local Micropolar material. 
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 Impact of Increasing Non-Local Parameter: With increase in non-local 

parameter value the wave speed decreases.  

 Role of Impedance and Thermal Parameters: The Rayleigh wave speed 

depends upon impedance and thermal parameters and affected significantly by 

these parameters. The wave speed is highly or low dispersive according to the 

range of impedance parameters and wave number. 

The study of Rayleigh waves in non-local micropolar materials has several practical 

applications. These waves are widely used in non-destructive testing to detect surface 

flaws, such as cracks or delaminations, in materials. In the field of geophysics, Rayleigh 

waves help in seismic surveys, providing insights into the Earth's subsurface properties. 

They are also crucial in the development of microelectromechanical systems (MEMS), 

where they enhance the sensitivity of devices such as sensors. Additionally, they play a 

key role in the design of surface acoustic wave (SAW) devices, used in 

telecommunications for filtering and signal processing. So the results obtained such as 

effects of impedance and non –local on the wave speed and the secular equation of 

Rayleigh wave in non-local Micropolar material may be useful for the researcher working 

in material design and solid mechanics.  
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Chapter -5 
 

RAYLEIGH WAVES IN NON-LOCAL MICROPOLAR 
MATERIAL UNDER MEMORY DEPENDENT HEAT 

TRANSFER4 
 

5.1 INTRODUCTION 

The memory dependent derivatives now days have been applied to number of problems 

related to heat conduction equation as in certain materials, where the heat transfer rate 

depends not only on the local temperature gradient but also on the past history of 

temperature changes in the material. The memory dependent derivative (MDD) has been 

used in some interesting problems such as Ezzat et al. (2015) applied the concept of 

MDD in magneto-thermoelasticity to solve a one-dimensional problem of elastic half 

space. Ezzat et al. (2016) introduced MDD in generalized thermoelasticity theory and 

derived a new heat conduction equation. Othman and Mondal (2019) studied the effects 

of MDD under phase-lag modals on the wave propagation in generalized micropolar 

thermoelasticity using laser beam thermal shock conditions. Kumar and Pratap (2022) 

used MDD to analyzed wave propagation in micropolar generalized thermoelastic plate. 

Ahmed et al. (2018) developed a model based on MDD to study damping in different 

types of oscillatory systems. Kant and Mukhopadhyay (2019) investigated thermoelastic 

interaction using MDD within a thick plate. Sarkar and Mondal (2019) solved a two-

temperature problem of generalized thermoelasticity using memory dependent derivative. 

Mondal and Othman (2021) obtained the general solution for the propagation of plane 

waves in generalized piezo-thermoelastic medium using memory dependent derivatives. 

Purkait et al. (2021) studied the elasto thermo-diffusion in a spherical shell using MDD 

for two temperature theory. Mondal and Sur (2023) applied MDD to investigate the 

                                                             
4Communicated in SCI journal. 
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interaction in a functionally graded thermoelastic rod and explored the influence of 

memory effects, magnetic field, and non-homogeneity of the material.  

The motivation for examining Rayleigh-type waves in non-local micropolar materials 

with memory-dependent heat transfer is rooted in the complex interplay between 

microstructural characteristics and thermal effects. Traditional models often fail to 

account for the significant impact of non-local behavior and memory effects, which can  

result in more precise predictions of wave propagation in advanced materials. By 

investigating these interactions, this study aims to enhance our understanding of wave 

dynamics, which is vital for optimizing material performance in various applications. 

This research addresses a significant gap in the existing literature, offering novel insights 

that are essential for developing more comprehensive models of wave behavior in 

intricate material systems. 

This chapter addressed the propagation of Rayleigh waves in a non-local micropolar 

thermoelastic material under the memory-dependent heat conduction model. The secular 

equation is obtained analytically. Numerical computations have been performed to 

investigate impact of time delay parameter, non-local parameter, and kernel functions on 

propagation of Rayleigh waves in the aluminum-epoxy composite material. The 

numerical and graphical analysis validate that the speed of Rayleigh waves is influenced 

significantly by time delay heat transfer, selection of kernel and non-local characteristic 

of the material.  

5.2 BASIC EQUATIONS 

As discussed in section 4.2 of chapter 4, the basic equations of motion for homogenous, 

isotropic non-local micropolar elastic solids are given by 

 σkℓ,k
nl +  ρ (fℓ − üℓ) = 0, (5.1)                                                              

𝑚𝑘ℓ,𝑘
nl + ∈ℓ𝑚𝑛 𝜎𝑚𝑛 + 𝜌(𝑙ℓ −  𝑗𝜙̈ℓ) = 0. (5.2) 
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The non-local stress tensor (𝜎𝑘ℓ
𝑛𝑙) and couple stress tensor ( 𝑚𝑘ℓ

𝑛𝑙 ) can be represented in 

terms of local stress tensor (𝜎𝑘ℓ
 ) and local couple stress tensor (𝑚𝑘ℓ

 ) as  

                                      (1 − 𝜀2𝛻2 ) 𝜎𝑘ℓ
nl = 𝜎𝑘ℓ

               (5.3) 

                                    (1 − 𝜀2𝛻2 )𝑚𝑘ℓ
nl = 𝑚𝑘ℓ

 .                 (5.4) 

{

𝜎𝑘ℓ
 =  𝜆𝑒𝑟𝑟𝛿𝑘ℓ + (𝜇 + 𝜅)𝑒𝑘ℓ + 𝜇𝑒ℓk − 𝜈𝑇𝛿𝑘ℓ ,

𝑚𝑘ℓ
′ =  𝛼𝛾𝑟𝑟𝛿𝑘ℓ + 𝛽𝛾𝑘ℓ + 𝛾𝛾𝑘ℓ ,

𝑒𝑘ℓ  =  (𝑢ℓ,𝑘
n − 𝜖𝑘ℓ𝑚𝜙𝑚,ℓ ) , 𝛾𝑘ℓ = 𝜙𝑘,ℓ .

 

(5.5) 

where,  symbols are having the usual meaning as explained in chapter - 4.   

Using equations (5.3)-(5.5) in equations (5.1)-(5.2), the field equations of a non-local 

micropolar thermoelastic material can be written as 

(𝜆 +  𝜇)𝑢𝑘,𝑘ℓ
n + (𝜇 +  𝜅)𝑢ℓ,𝑘𝑘

n +  𝜅 ∈ℓ𝑚𝑛 𝜙𝑛,𝑚 − 𝜈∇𝑇 + 𝜌(1 − 𝜀
2𝛻2 )(𝑓ℓ – 𝑢̈ℓ

𝑛) = 0,

 (5.6) 

(𝛼 + 𝛽) 𝜙𝑘,𝑘ℓ + 𝛾𝜙ℓ,𝑘𝑘  +  𝜅 ∈ℓ𝑚𝑛 𝑢𝑛,𝑚
n − 2 𝜅𝜙ℓ + 𝜌(1 − 𝜀

2𝛻2 )(𝑙ℓ −  𝑗𝜙̈ℓ) = 0.     

(5.7) 

As stated by Wang and Li (2011), the memory dependent derivative of a function f(t) is 

given as  

𝐷𝜉(𝑓(𝑡)) =
1

𝜉
∫ 𝐾(𝑡 − 𝑠)𝑓′(𝑠)𝑑𝑠
𝑡

𝑡−𝜉

 
(5.8) 

Where 𝐾(𝑡 –  𝑠) is the kernel function and 𝜉 is the time delay parameter, which can be 

adjusted based on the system requirement, and its units are same as that of time. The 

kernel function may be thought of as the strength of the impact that the past on the 

present and it is freely selectable such as 1, [1 + 
𝑠 – 𝑡

𝜉
]
2

and [1 + 
𝑠 – 𝑡

𝜉
]

1

4
 according to the 

system. In general, the inequality 0 ≤  𝐾(𝑡 –  𝑠) <  1 should be satisfied by the function 

𝐾(𝑡 –  𝑠) 𝑓𝑜𝑟𝑠 ∈  [𝑡 − 𝜉, 𝑡]  from the perspective of applications. 

In case of 𝐾(𝑡 − 𝑠) = 1 the memory dependent derivative 𝐷𝜉 can be expressed as follows  
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𝐷𝜉(𝑓(𝑡)) =
1

𝜉
∫ 𝑓 

′(𝑠)
𝑡

𝑡−𝜉
𝑑𝑠 =

𝑓(𝑡)−𝑓(𝑡−𝜉)

𝜉
 → 𝑓′(𝑡) when 𝜉 → 0.   

Therefore, the limit of a memory-dependent derivative 𝐷𝜉 can be considered as the 

common derivative 𝑓′𝑎𝑠 𝜉 → 0. Also, second order memory dependent derivative can be 

written as 𝐷𝜉
2 = 𝐷𝐷𝜉 i.e. derivative of memory dependent derivative. 

Based upon memory dependent derivative a new energy equation having the time delay 

parameter 𝜉 is defined as (2016) 

𝐾∗∇2𝑇 = (𝜌𝐶∗
𝜕

𝜕𝑡
𝑇 + 𝜈𝑇0

𝜕

𝜕𝑡
∇. 𝒖𝒏) +

𝜏0
𝜉
[∫ 𝐾(𝑡 − 𝑠) (𝜌𝐶∗

𝜕2𝑇

𝜕𝑠2
+ 𝜈𝑇0

𝜕∇. 𝒖𝒏

𝜕𝑠2
)𝑑𝑠

𝑡

𝑡−𝜉

] 
  

(5.9) 

The symbols 𝐾∗, 𝐶∗, 𝜏𝑜, 𝑇, 𝑇𝑜 are as mentioned in chapter 4 in section 4.1.  

The kernel function 𝐾(𝑡 –  𝑠) is consider to be in the following forms, Ezzat et al. (2014) 

𝐾(𝑡 − 𝑠) = 1 −
2𝑛

𝜉
(𝑡 − 𝑠) +

𝑚2

𝜉2
(𝑡 − 𝑠)2,   

(5.10) 

𝐾(𝑡 − 𝑠) =   

{
 
 

 
 

1                    𝑚 = 0, 𝑛 = 0

1 − (
𝑡 − s

𝜉
)𝑚 = 0, 𝑛 =

1

2
 

               (1 −
𝑡 − 𝑠

𝜉
)
2

  , 𝑚 = 1, 𝑛 = 1.

 

 

5.3 PROBLEM FORMULATION 

Considering a non-local Micropolar thermoelastic half space which is isotropic and 

homogeneous, the configuration assumes absence of body forces with coordinate 

origin located on surface of the plane and 𝑥2-axis is oriented vertically downward. 

The half space is considered to be undeformed at constant temperature 𝑇0 . It is 

considered that Rayleigh wave propagates along the 𝑥1 -axis and all the particles 

vibrating on a line parallel to the 𝑥3-axis are equally spaced. So all field variables will 
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be independent of 𝑥3-Coordinates. In 𝑥1 − 𝑥2 plane, the components of displacement 

vector 𝒖𝒏 and microrotation vector 𝝓 are taken as  

            𝒖𝒏 = (u1
𝑛 , u2

𝑛 , 0)  , 𝝓 = (0,0,ϕ
3
).      (5.11) 

 

Fig. 5.1 Geometry of the problem  

By using equation (5.11), equation (5.6) & (5.7) can be written as 

(𝜆 + 2𝜇 + 𝜅)
𝜕2𝑢1

𝑛

𝜕𝑥1
2 + (𝜇 + 𝜅)

𝜕2𝑢1
𝑛

𝜕𝑥2
2 + (𝜆 + 𝜇)

𝜕2𝑢2
𝑛

𝜕𝑥1𝜕𝑥2
+ 𝜅

𝜕𝜙3
𝜕𝑥2

− 𝜈
𝜕𝑇

𝜕𝑥1

= (1 − 𝜖2∇2)𝜌
𝜕2𝑢1

𝑛

𝜕𝑡2
, 

(5.12) 

(𝜆 + 2𝜇 + 𝜅)
𝜕2𝑢2

𝑛

𝜕𝑥2
2 + (𝜇 + 𝜅)

𝜕2𝑢2
𝑛

𝜕𝑥1
2 + (𝜆 + 𝜇)

𝜕2𝑢1
𝑛

𝜕𝑥1𝜕𝑥2
+ 𝜅

𝜕𝜙3
𝜕𝑥1

− 𝜈
𝜕𝑇

𝜕𝑥2

= (1 − 𝜖2∇2)𝜌𝑗
𝜕2𝑢2
𝜕𝑡2

, 

(5.13) 

𝛾∇2𝜙3 + 𝜅 (
𝜕𝑢2

𝑛

𝜕𝑥1
−

𝜕𝑢1
𝑛

𝜕𝑥2
) − 2𝜅𝜙3 = (1 − 𝜖

2∇2)𝜌𝑗
𝜕2𝜙3

𝜕𝑡2
 . (5.14) 

By using the Helmholtz’s decomposition, we have, 

𝑢1
𝑛 = 

𝜕Φ

𝜕𝑥1
+ 

𝜕Ψ

𝜕𝑥2
  , 𝑢2

𝑛 = 
𝜕Φ

𝜕𝑥1
− 

𝜕Ψ

𝜕𝑥2
   .                                                                          (5.15) 

On substituting (5.15) in equations (5.9), (5.12), (5.13), (5.14), we obtained 

(𝜆 + 2𝜇 + 𝜅)∇2Φ− 𝜈𝑇 = (1 − 𝜖2∇2)𝜌
𝜕2Φ

𝜕𝑡2
, 

  

(5.16) 
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(𝜇 + 𝜅)∇2Ψ+ 𝜅𝜙3 = (1 − 𝜖2∇2)𝜌
𝜕2Ψ

𝜕𝑡2
 ,                                                                                          (5.17) 

𝛾∇2𝜙3 − 𝜅∇
2Ψ− 2𝜅𝜙3 = (1 − 𝜖2∇2)𝜌𝑗

𝜕2𝜙3

𝜕𝑡2
 ,                                                                             (5.18) 

𝐾∗∇2𝑇 =  (𝜌𝐶∗
𝜕

𝜕𝑡
𝑇 + 𝜈𝑇0

𝜕

𝜕𝑡
∇. 𝒖𝒏) +

𝜏0
𝜉
[∫ 𝐾(𝑡 − 𝑠) (𝜌𝐶∗

𝜕2𝑇

𝜕𝑠2
+ 𝜈𝑇0

𝜕∇2Φ

𝜕𝑠2
)𝑑𝑠 

𝑡

𝑡−𝜉

]. 
   

(5.19) 

 

5.4  PROBLEM’S SOLUTION 

The surface wave equations (5.11)-(5.13) is taken as 

{𝜙1, 𝜓1, 𝑇, 𝜙} = {𝜙1̅̅̅̅ (𝑥2), 𝜓1̅̅̅̅ (𝑥2), 𝑇̅(𝑥2), 𝜙̅(𝑥2)}𝑒
𝜄𝑘(𝑥1−𝑐𝑡) .      (5.20) 

where 𝜔 = 𝑘𝑐 is the circular frequency, 𝑐 is the phase-velocity and 𝑘 is the wave number. 

For the propagation of Rayleigh wave, we assumed that 𝑐  is a complex and 𝑅𝑒(𝑐) >

0 gives the Rayleigh wave speed and exp(𝑘 𝑖𝑚(𝑐)𝑡)  is giving the damping in time, 

therefore it is assumed that 𝐼𝑚(𝑐) ≤ 0.  

By using (5.20) in equations (5.16)-(5.19), we get 

[𝐷4 − 𝐴𝑚𝐷
2 + 𝐵𝑚](𝜙1̅̅̅̅ (𝑥2), 𝑇̅(𝑥2)) = 0 , (5.21) 

[𝐷4 − 𝐴∗𝐷2 + 𝐵∗] (𝜓1(𝑥2), 𝜙̅(𝑥2)) = 0. 
(5.22) 

 

Where, 

𝐷 =
𝑑

𝑑𝑥2
,  𝐴𝑚 = 2𝑘2 −

𝜄𝜔

𝐴1𝜏
∗ 𝑎𝑚 −

𝜔2

(𝐶1
2−𝜖2𝜔2)

−
𝜄𝜔𝐶1

2𝐴2𝑎𝑚

𝜏∗𝐴1(𝐶1
2−𝜖2𝜔2)

 , 𝑚 = 1,2,3,4, 

𝐵𝑚 = 𝑘4 −
𝜄𝑘3𝑐𝑎𝑚

𝜏∗𝐴1
−

𝑘4𝑐2

[𝑐1
2−𝜖2𝜔2]

+
𝜄𝜔3𝑎𝑚

𝐴1𝜏
∗[𝑐1

2−𝜖2𝜔2]
−

𝐴2𝑐1
2𝑘3𝑎𝑚𝜄𝑐

𝐴1𝜏
∗[𝑐1

2−𝜖2𝜔2]
, 𝑚 = 1,2,3,4, 

𝐴∗ = 𝑘2 (1 −
𝑐2

𝑐2   
2 ) + 𝑘

2 −
𝑘2𝑐2𝜌𝑗

𝛾
+
2𝜅

𝛾
−

𝜅2

𝛾(𝜇 + 𝜅)

+
2𝑘2𝑐2𝜌𝑗𝜖2

𝛾𝑐2
2

(𝑐2
2 + 𝑘2𝑐2 + 𝑘4𝑐4𝜖4) −

2𝑘2𝑐2𝜖2

𝑐2
2 (1 +

2𝜅

𝛾
), 
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𝐵∗ = 𝑘2 (𝑘2 −
𝑘2𝑐2𝜌𝑗

𝛾
+
2𝜅

𝛾
)(1 −

𝑐2

𝑐2
2) −

𝑘2𝜅2

𝛾(𝜇 + 𝜅)
−
2𝑘2𝜅𝜖2𝑐2

𝛾𝑐2
2

+
𝑘6𝜖2𝑐2

𝑐2
2 (

𝑘2𝜖2𝑐2𝜌𝑗

𝛾
+
2𝜌𝑗

𝛾
−
𝜌𝑗𝑐2

2

𝛾
− 1), 

𝑐1
2 =

𝜆+2𝜇+𝜅

𝜌
 ,   𝑐2

2 =
𝜇+𝜅

𝜌
 , A1 =

𝐾∗

𝜌𝑐∗𝜏∗
 , 𝐴2 =

𝜈2𝑇0

𝜌2𝑐1
2𝑐∗

 , 𝜏∗ = 𝜏0 +
𝜄

𝜔
, 

𝑎𝑚

=

{
  
 

  
 

 

     𝑎1 = 1 +
𝜏0
𝜉
(1 − 𝑒𝜄𝑘𝑐𝜉),                                     𝐾(𝑡 − 𝑠) = 1                                                        

𝑎3 = 1 +
𝜏0
𝜉
+

𝜏0
𝜉2(𝑖𝑘𝑐)

(1 − 𝑒𝜄𝑘𝑐𝜉),            𝐾(𝑡 − 𝑠) = 1 −
𝑡 − 𝑠

𝜉

𝑎4 = 1+
𝜏0
𝜉
−

2𝜏0
𝜉2(𝑘𝑐)

(𝜄 +
(1 − 𝑒𝜄𝑘𝑐𝜉)

𝜉(𝑘𝑐)
) ,    𝐾(𝑡 − 𝑠) = [1 −

𝑡 − 𝑠

𝜉
]
2

 

 

The general solution of equation (5.21) and (5.22) by utilizing the radiation conditions 

i.e., 𝜙1̅̅̅̅ (𝑥2),𝜓1 ̅̅ ̅̅ (𝑥2), 𝑇̅(𝑥2), 𝜙̅(𝑥2)  → 0 , 𝑥2  →  ∞ , can be written as  

𝜙1 = (𝐷1𝑒
−𝑏1𝑥2 + 𝐷2𝑒

−𝑏2𝑥2)𝑒𝜄𝑘(𝑥1−𝑐𝑡), (5.23) 

𝑇 = (𝑟1 𝐷1𝑒
−𝑏1𝑥2 + 𝑟2𝐷2𝑒

−𝑏2𝑥2)𝑒𝜄𝑘(𝑥1−𝑐𝑡), (5.24) 

𝜓1 = (𝐷3𝑒
−𝑏3𝑥2 + 𝐷4𝑒

−𝑏4𝑥2)𝑒𝜄𝑘(𝑥1−𝑐𝑡), (5.25) 

𝜙 = (𝑟3 𝐷3𝑒
−𝑏3𝑥2 + 𝑟4𝐷4𝑒

−𝑏4𝑥2)𝑒𝜄𝑘(𝑥1−𝑐𝑡). (5.26) 

Where,𝐷1, 𝐷2, 𝐷3and𝐷4 are arbitrary constants. 𝑏1, 𝑏2and 𝑏3, 𝑏4 are the roots of the 

equations (5.21) and (5.22) respectively whose real parts are positive to ensure the decay 

conditions. These roots satisfy the following equations.   

𝑏1
2 + 𝑏2

2 = 𝐴𝑚 , 𝑏1
2𝑏2

2 = 𝐵𝑚, 𝑏3
2 + 𝑏4

2 = 𝐴∗, 𝑏3
2𝑏4

2 = 𝐵∗ , (5.27) 

𝑟𝑖 =
𝑘2

𝜈
[(𝜆 + 2𝜇 + 𝜅) (

𝑏𝑖
2

𝑘2
− 1) + 𝜌𝑐2(1 + 𝜖2(𝑘2 − 1)]],  ( 𝑖 = 1,2), 

 

(5.28) 
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𝑟𝑗 =
𝑘2(𝜇+𝜅)

𝜅
[1 −

𝑐2

𝑐2
2 −

𝑏𝑗
2

𝑘2
+

𝜖2𝑐2

𝑐2   
2 (𝑏𝑗

2 − 𝑘2)], (𝑗 = 3,4). 

 

5.5 BOUNDARY CONDITIONS AND SECULAR EQUATIONS 

The boundary condition at the surface 𝑥2 = 0 are taken as: 

a)  

Using equation (5.3) and (5.4), we have,𝜎21
 = 0 , 𝜎22

 = 0  , 𝑚23
 = 0, which are the 

components of stresses in local micropolar elastic material. 

b)  

Boundary changes to thermally insulated surface when h →0 and isothermal when 

h→∞. 

Using equations (5.3)-(5.4), (5.15) and (5.23)-(5.26), the boundary conditions (5.29)-

(5.30) are imposed at the surface 𝑥2  = 0, we obtained a system of four homogeneous 

equations in the unknown 𝐷1, 𝐷2, 𝐷3and𝐷4. For non-trivial solution we have equations 

for which the determinant of the coefficients matrix must vanish which gives, 

𝑝3[𝑚4(𝑞1𝑚2 − 𝑞2𝑚1) + 𝑛4(𝑞2𝑇1 − 𝑞1𝑇2)] = 𝑝4[𝑚3(𝑞1𝑚2 − 𝑞2𝑚1) + 𝑛3(𝑞2𝑇1 −

𝑞1𝑇2)]. 

(5.31) 

Eq. (5.31) represents the secular equation of Rayleigh waves.  

𝑚𝑖 = 𝑘𝑏𝑖 (2 +
𝜅

𝜇
) ,                                                                                    (𝑖 = 1,2,3,4) 

𝑇𝑖 = (2 +
𝜆 + 𝜅

𝜇
) 𝑏𝑖

2 −
𝜆

𝜇
𝑘2 −

𝜈

𝜇
𝑟𝑖  ,                                                      (𝑖 = 1,2) 

𝑛𝑖 = [𝑘2 + (1 +
𝐾

𝜇
)(2𝑏𝑗

2 − 𝑘2 (1 −
𝑐2

𝑐2
2 ++

𝜖2𝑐2

𝑐2
2 (𝑏𝑗

2 − 𝑘2)))]   ,    (𝑗 = 1,2) 

𝜎21
𝑛𝑙 = 0, 𝜎22 = 0  ,𝑚23

𝑛𝑙 = 0. (5.29) 

𝜕𝑇

𝜕𝑥2
+ ℎ𝑇 = 0. 

(5.30) 
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𝑝𝑖 = 𝑏𝑗 (1 +
𝜅

𝜇
) [1 −

𝑐2

𝑐2
2 −

𝑏𝑗
2

𝑘2
+
𝜖2𝑐2

𝑐2
2 (𝑏𝑗

2 − 𝑘2)],                              (𝑗 = 3,4) 

𝑞𝑖 = 𝑏𝑖 [(2 +
𝜆+𝜅

𝜇
) (1 −

𝑏𝑖
2

𝑘2
) +

𝜌𝑐2

𝜇
(1 + 𝜖2(𝑘2 − 1))] , (𝑖 = 1,2), for thermally insulated 

surface. 

𝑞𝑖 = [(2 +
𝜆+𝜅

𝜇
) (1 −

𝑏𝑖
2

𝑘2
) +

𝜌𝑐2

𝜇
(1 + 𝜖2(𝑘2 − 1))] , (𝑖 = 1,2), for isothermal surface. 

5.6  PARTICULAR CASES 
 

(a) When non-local parameter 𝜖 → 0 then we obtained the following changed values of 

some parameters.  

𝐴𝑚 = 2𝑘2 −
𝜄𝜔

𝐴1𝜏
∗ 𝑎𝑚 −

𝜔2

(𝑐1
2)
−

𝑖𝜔𝑐1
2𝐴2𝑎𝑚

𝜏∗𝐴1𝑐1
2 , 

𝐵𝑚 = 𝑘4 −
𝑖𝑘3𝑐𝑎𝑚

𝜏∗𝐴1
−

𝑘4𝑐2

𝑐1
2 +

𝑖𝜔3𝑎𝑚

𝐴1𝜏
∗𝑐1
2 −

𝐴2𝑐1
2𝑘3𝑎𝑚𝑖𝑐

𝐴1𝜏
∗𝑐1
2 , 

𝐴∗ = 𝑘2 (1 −
𝑐2

𝑐2   
2 ) + 𝑘

2 −
𝑘2𝑐2𝜌𝑗

𝛾
+
2𝜅

𝛾
−

𝜅2

𝛾(𝜇 + 𝜅)
, 

𝐵∗ = 𝑘2 (𝑘2 −
𝑘2𝑐2𝜌𝑗

𝛾
+
2𝜅

𝛾
)(1 −

𝑐2

𝑐2
2) −

𝑘2𝜅2

𝛾(𝜇 + 𝜅)
. 

The equation (5.31) with above parameters is the secular equation of Rayleigh wave in 

micropolar thermoelastic material with MDD which is in agreement with the earlier 

results published by Singh and Kashyap (2023) 

(b) When the kernel 𝐾(𝑡 − 𝑠) = 1 and the memory dependent parameter 𝜉 → 0 , the 

memory dependent tends to the ordinary derivative i.e.  

 𝐷𝜉(𝑓(𝑡)) =
1

𝜉
∫ 𝑓 

′(𝑠)
𝑡

𝑡−𝜉
𝑑𝑠 =

𝑓(𝑡)−𝑓(𝑡−𝜉)

𝜉
 → 𝑓′(𝑡) 𝑎𝑠 𝜉 → 0.  

From this we obtained the following changed values of 𝐴𝑚 and 𝐵𝑚 

𝐴𝑚 = 𝑘2 [2 − 𝑐2 (
1

𝐴1
−
1

𝑐1
2 −

𝐴2
𝐴1
)]  ,   𝐵𝑚 =

𝑘4

𝐴1
[
𝑐4

𝑐1
2 + 𝐴1 − 𝑐

2 (1 + 𝐴2 +
𝐴1
𝑐1
2)] 
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The equation (5.31) with these changed values of 𝐴𝑚 and 𝐵𝑚 is the secular equation of 

Rayleigh wave in micropolar thermoelastic material without MDD. These equations 

coincide with the solution of the problem derived by Kumar et al.(2018) 

(c) Further in the absence of micropolar effects (𝜅 = 𝑗 = 0), we obtained the following 

changed values  

𝑐1
2 =

𝜆+2𝜇

𝜌
,  𝑐2

2 =
𝜇

𝜌
 ,  𝐴∗ = 𝑘2 (1 −

𝑐2

𝑐2
2) + 𝑘

2, 𝐵∗ = 𝑘4 (1 −
𝑐2

𝑐2
2), 

𝑝3 = 𝑏3 (1 −
𝑐2

𝑐2
2 −

𝑏3
2

𝑘2
) , 𝑝4 = 𝑏4 (1 −

𝑐2

𝑐2
2 −

𝑏4
2

𝑘2
), 

Using condition (5.27), in the particular case we have 𝑏3
2 = 𝑘2 (1 −

𝑐2

𝑐2
2) , 𝑏4

2 = 𝑘2which 

implies that 𝑝3 = 0 and 𝑝4 will be a non-zero term. Using these values in the equation 

(5.31), we obtained  

𝑚3(𝑞1𝑚2 − 𝑞2𝑚1) + 𝑛3(𝑞2𝑇1 − 𝑞1𝑇2) = 0. 

 

(5.32) 

where, 

𝑚𝑖 = 2𝑘𝑏𝑖 , (𝑖 = 1,2,3),  

𝑛3 = 𝑘
2 (2 −

𝑐2

𝑐2
2) , 

 

𝑇1 = 𝑇2 = 𝑘
2 (2 −

𝑐2

𝑐2
2), 

 

𝑞𝑖=𝑏𝑖 [(2 +
𝜆

𝜇
) (1 −

𝑏𝑖
2

𝑘2
) +

𝜌𝑐2

𝜇
] , (𝑖 = 1,2),  For thermally insulated boundary,  

𝑞𝑖=[(2 +
𝜆

𝜇
) (1 −

𝑏𝑖
2

𝑘2
) +

𝜌𝑐2

𝜇
] , (𝑖 = 1,2),  For isothermal boundary.  

 

Equation (5.32) is the secular equation of Rayleigh wave in thermoelastic half-space. 

(d) On neglecting the thermal effects in the equation (5.30) it reduces to  

(2 −
𝑐2

𝑐2
2)
2

= 4√1−
𝑐2

𝑐1
2√1−

𝑐2

𝑐2
2. 

(5.33) 

Equation (5.33) is the well-known dispersion equation of Rayleigh waves in the elastic 

half space. 
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5.7  NUMERICAL RESULTS AND DISCUSSIONS 

In this section, numerical computations have been executed to illustrate the theoretical 

findings, and the outcomes are visually presented through graphical representations. For 

numerical calculation the relevant parameters of aluminum epoxy material taken from 

Gauthier (1982) are given below in table-5.1 

Table 5.1. Material parameters 

Aluminum epoxy material 

𝜌 = 2.19 × 103𝑘𝑔/𝑚3, 𝑗 = 0.196 × 104𝑚2 

𝜆 = 7.59 × 1010𝑁/𝑚2 𝐾∗=0.492 × 102𝑊/𝑚 

𝜇 = 1.89 × 1010𝑁/𝑚2 𝐶∗ = 1.89 × 1010𝑗/𝑘𝑔 

𝛼 = 0.01 × 106𝑁 𝜏0 = 0.5 × 10−10𝑠 

𝛽 = 0.015 × 106𝑁 𝑇0=298𝐾 

𝛾 = 0.268 × 106𝑁 𝛼𝑡=2.36 × 10
−6𝐾−1 

𝑗 = 0.196 × 104𝑚2 𝐾=0.0149× 1010 𝑁/𝑚2 

 

Assuming that 𝑐 is the complex constant with 𝑅𝑒(𝑐) = 𝑉 ≥ 0 , the non dimensional 

Rayleigh wave speed 𝑉1 = √
𝜌𝑉2

𝜇
 has been calculated and its variations has been shown 

graphical with wave number. The impact of key factors under consideration such as 

nonlocality, time delay heat transfer, kernels and insulated and thermal boundary 

conditions on the non dimensional Rayleigh wave speed have been analyzed and 

visualized graphically in figures (5.2-5.8). 

Figure (5.2) exhibits the effects of time delayed heat transfer on the non dimensional 

Rayleigh wave speed w.r.t. wave number for kernels 𝐾(𝑡 − 𝑠) = 1. The wave speed has 

been calculated at constant non-local parameter value 𝜖 = 0.003𝑚𝑚 and three different 

time delay parameter values (𝜉 = 0.1 𝑠, 0.2𝑠 𝑎𝑛𝑑 0.3𝑠). As shown in the graph the wave 

speed decreases with increasing values of the wave number initially and then becomes 

almost constant at higher wave number values. The wave speed is significantly affected 
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by different values of the time delay parameter. As clear from the magnified image, the 

wave speed decreases with increment in time delay parameter.  

Figure (5.3-5.4) demonstrate the variations of non dimensional wave speed for the kernel 

𝐾(𝑡 − 𝑠) =  (1 −
𝑡−𝑠

𝜉
)
2

and  𝐾(𝑡 − 𝑠) = 1 −
𝑡−s

𝜉
 with same parameter values as consider 

for figure (5.2). It is noticed from a magnified image of a small portion of the dispersion 

curve of figure (5.3) and (5.4) that the non dimensional Rayleigh wave speed increases 

with increasing values of time delay parameter. It is noticed that the variations of 

Rayleigh wave speed depend upon the combination of time delay parameter, kernel as 

well as wave number values.   

Figures (5.5-5.7) depict the impact of non-local parameter on the non dimensional 

Rayleigh wave speed w.r.t. wave number and different kernels. The non dimensional 

wave speed 𝑉1 = √
𝜌𝑉2

𝜇
 is computed and visualized graphically at fixed time delay 

parameter ( 𝜉 = 0.1𝑠) and for three non-local parameter values ( 𝜖 =

0.001mm, 0.002mm,0.003mm). Figure (5.5) display the effects of non-local parameter 

on the wave speed for the kernel 𝐾(𝑡 − 𝑠) = 1. As noticed from the figure, the non 

dimensional wave speed decreases with an increment in the non-local parameter. Figures 

(5.6-5.7) also display the same type of effects for the kernel 𝐾(𝑡 − 𝑠) = (1 −
𝑡−𝑠

𝜉
)
2

 and  

𝐾(𝑡 − 𝑠) = 1 −
𝑡−s

𝜉
 .  

Figure (5.8) shows the effects of the isothermal and thermally insulated boundary on the 

Rayleigh wave speed with a time delay heat transfer (𝜉 = 0.1𝑠) and non-local parameter 

(𝜖 = 0.001mm). It could be witnessed that Rayleigh wave speed is on the higher side in 

the case of an isothermal boundary as compared to thermally insulated boundary. 

Figure (5.9-5.10) shows effect of thermal relaxation parameter. Initially, the wave speed 

increases for all values of thermal relaxation parameter then drops down smoothly. As 

thermal relaxation parameter increases, the wave speed decreases more rapidly with 

increasing wave number, indicating slower heat transfer and thus slower wave 

propagation. Smaller thermal relaxation parameter allow for faster wave speeds, as the 
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material responds more quickly to thermal changes. Overall, higher thermal relaxation 

times lead to more significant damping of wave speed, especially at higher wave 

numbers.   

                   

Fig. 5.2 Effects of time delay parameter on non dimensional wave speed w.r.t. wave 

number for the kernel 𝐾(𝑡 − 𝑠) = 1 

 

Fig. 5.3 Effects of time delay parameter on non dimensional wave speed w.r.t. wave 

number for the kernel 𝐾(𝑡 − 𝑠) =  (1 −
𝑡−𝑠

𝜉
)
2
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Fig. 5.4 Effects of time delay parameter on non dimensional wave speed w.r.t. wave 

number for the kernel 𝐾(𝑡 − 𝑠) = 1 −
𝑡−𝑠

𝜉
 

 

Fig. 5.5 Effects of non-local parameter on non dimensional Rayleigh wave speed w.r.t. 

wave number for the kernel 𝐾(𝑡 − 𝑠) = 1 
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Fig. 5.6 Effects of non-local parameter on non dimensional Rayleigh wave speed w.r.t. 

non-dimensional wave number for the kernel 𝐾(𝑡 − 𝑠) = (1 −
𝑡−𝑠

𝜉
)
2

 

 

 

Fig. 5.7 Effects of non-local parameter on non dimensional Rayleigh wave speed w.r.t. 

wave number for the kernel 𝐾(𝑡 − 𝑠) = 1 −
𝑡−𝑠

𝜉
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Fig. 5.8 Effects of isothermal and insulated boundary conditions on the non dimensional 

wave speed with time delay (𝜉 = 0.1𝑠) and nonlocal parameter (𝜖 = 0.001𝑚𝑚). 

                 

Fig. 5.9 Effects of thermal relaxation parameterime on non dimensional Rayleigh wave 

speed w.r.t. wave number for the kernel 𝐾(𝑡 − 𝑠) = 1 
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Fig. 5.10 Effects of thermal relaxation on non dimensional Rayleigh wave speed w.r.t. 

wave number for the kernel 𝐾(𝑡 − 𝑠) = 1 −
𝑡−𝑠

𝜉
 

5.8 CONCLUSIONS 

The core findings of the present study can be summarized in the following points: 

 

 Existence of Rayleigh Waves: The secular equation shows that there exist 

Rayleigh waves in non-local micropolar thermoelastic half space under 

memory dependent heat transfer.  

 Effect of Non-local Parameter: The non-local parameter has substantial 

effects on the Rayleigh wave speed. The increase in non-local parameter 

values decreases the non dimensional Rayleigh wave speed. 
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 Role of Memory Effects (Kernels): Different types of kernels describing the 

memory effects have significant effects on the Rayleigh wave speed and hence 

kernels may be used according the problem.   

 Dispersive Nature of Rayleigh Waves: The Rayleigh waves are dispersive in 

nature and the non dimensional phase-velocity decreases with increase in wave 

number.  

 The presence of a time delay parameter in the heat equation influenced the 

Rayleigh wave speed significantly.  

 Impact of Thermal Boundary Conditions: It is found that the Rayleigh 

wave speed is influenced by the thermal boundary conditions.  For small 

wave number values, the Rayleigh wave speed is on the higher side for 

isothermal boundary as compared to a thermally insulated surface.  

 Thermal Relaxation Parameter Influence: As seen in the previous trends, the 

thermal relaxation parameter plays a pivotal role, affecting the wave speed across 

different wave numbers. Higher thermal relaxation leads to pronounced changes 

at lower wave numbers. 

The current study presents a theoretical model to analyze the Rayleigh wave 

propagation in non-local micropolar thermoelastic material with time delay heat 

transfer. The study may provide valuable information to the researcher and engineer 

working in seismology and related fields. The study of Rayleigh waves in non-local 

micropolar materials with memory-dependent heat transfer holds significant potential 

in various applied fields. In seismology and earthquake engineering, the insights 

gained can lead to more accurate predictions of seismic wave behavior through 

complex, heterogeneous earth materials, aiding in the design of earthquake-resistant 

infrastructure. In nanotechnology and materials science, understanding wave 

propagation in non-local micropolar materials is essential for developing advanced 

materials for applications in micro-electromechanical systems and nano-

electromechanical systems where size effects and thermal management are critical. 

Additionally, in geophysical surveys, Rayleigh waves help in subsurface 
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explorations, and the inclusion of thermal effects makes this study highly relevant for 

geothermal energy and oil exploration. The thermal aspects also apply to aerospace 

and nuclear reactors, where managing thermal stresses is crucial for the integrity and 

performance of engineering structures. Overall, this research enhances our ability to 

model and apply wave phenomena in technologically critical areas, leading to 

improvements in material design and diagnostic techniques. 
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FUTURE SCOPE 

 

The following suggestions have been made for the future work as the extension of present 

work done in this thesis: 

 The propagation of shear waves has been studied in the layered structure of non-

local Micropolar elastic half space attached along with piezoelectric/non-local 

piezoelectric layer in perfect and imperfect contact. Effect of initial stress has also 

been studied on the proposed structure. Now as extension of this work, The 

behavior of non-local Micropolar martial could be studied under the different 

effects like hall effect, magnetic effect or gravity.  

 We have studied the propagation of Rayleigh waves in the non-local Micropolar 

thermoelastic material under the impedance boundary condition in this thesis. 

Further as the futuristic scope of this work, love waves could be studied under the 

impedance boundary conditions in the layered structure as well.  

 Wave propagation in non-local micropolar half space with double layer structure 

or sandwich structure can be studied. 
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