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Abstract

Throughout this thesis, the research work on Q(X,Y ) is a space of quasicontinuous

function from a topological space X to topological space Y . Function spaces from a

topological perspective have acquired great eminence from ages. Initiated from the set

of continuous functions, mathematicians have studied many different topologies and

attained tremendous benchmarks as applied in many different ways. The quite famous

functions space of continuous functions has been studied concerning numerous topologies

such as; Point-open topology, compact-open topology, uniform topology, fine topology,

regular topology, etc. However, quite good literature is available regarding the analysis

of such topologies on a slightly larger set containing quasicontinuous functions. The two

most important reasons are: The first reason is the fairly strong relationship between

continuity and quasicontinuity, despite the broad applicability of the latter concept.

The second reason pertains to the significant connection between quasi-continuity and

the fields of mathematical analysis and topology. In this regard, we study the set of

quasicontinuous functions corresponding to pointwise and compact convergence topology

in this thesis. To begin with the quasicontinuous functions and its basic properties, we

explore the results regarding the preservation of some strong forms of connectedness

under the quasicontinuous function. Following the same result, we are able to prove

a general form of the Intermediate Value Theorem for the quasicontinuous function.

Nonetheless, we explore Q(X,Y ) under the pointwise topology as we study some of

the cardinal invariants corresponding to the same. In particular, we evaluate tightness,

network weight, and pseudocharacter ofQp(X,Y ). Moreover, we obtained a condition on

X for which the network weight and weight of Qp(X) coincide and provided a condition

for the separability of a regular space in terms of the cardinal functions of a compact

subset of Qp(X,Y ). Furthermore, we elucidated maps such as the openness of the

restriction map and studied the denseness of the image of the induced map on Qp(X,Y )

corresponding to the same topology. Moreover, we also elucidate the space QC(X) under

the compact convergence topology and study some properties. Specifically, we explore

the cardinal invariants such as density and various types of tightness (i.e. Density-

tightness, fan-tightness and strongly fan-tightness), also we obtained a condition of
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coincidence of tightness of QC(X) and compact Lindelof number of space X. Moreover,

we also prove that if X be locally compact Hausdorff, then the space QC(X) is Frechet-

Urysohn, has countable tightness coincides with the σ-compactness of X.
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Chapter 1

Introduction

The domain of topology consists of the study of surfaces and the name “topology” bears a

mix of two greek origin words “topos (surface) and “logos”(study). Topology provides a

structure on a set in terms of the subsets of given set and then study its properties based

on the considered structure. The study of set of functions under topological structure

was not present till early 19th century. Although, the notion of pointwise convergence

of a sequence of real-valued functions was present in calculus, specifically in the study of

trigonometric and power series. After that, Balzano (1781− 1848) and Cauchy (1781−
1848), who considered investigating the uniform convergence of a function’s sequence and

explained the notion of convergence of sequence, series, and continuous function. Earlier

in this development, it resulted in contradictions and disagreement when convergence

and divergence were not considered.

In 1817, Bolzano provided an understanding of the requirement for convergence of a

sequence of maps. Cauchy followed, who misinterpreted the term-by-term integration

of maps in 1821 and the study of the limit of a convergent series of maps. As a result,

Cauchy overlooked the necessity for further uniform convergence conditions. Interest-

ingly, Cauchy’s proof was erroneous which Abel(1802 − 1829) pointed out. Further,

in 1826 Abel’s paper demonstrate that the sum of a continuous series that is uniformly

converging is continuous inside the convergence interval. This is recognized as the initial

stage of uniform convergence, which paved the way for Stokes and Philipp L. Seidel to

separately identify and emphasize the concept of uniform convergence in 1847–1848 and

Cauchy in 1853.

Although Weierstrass (1815–1897) proposed the idea of uniform convergence pretty pre-

cisely in 1842, his work on the subject was not published until much later in 1894.

Heine(1821 − 1881), Weierstrass, and others have worked on the same concept in the

last half of the 19th century. They paved a route to the concept of uniform convergence

1
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to be considered for application purposes, for example in Fourier series and integration

theory. It appears that during the final twenty years of the nineteenth century, the work

of Ascoli [1], Arzela [2], and Hadamards [3] influenced the emergence of the theory of

function space. Roughly, we can infer a topological space in which functions are treated

as points. It is noteworthy to centralize Riemann as the creator of the field of topology

because he was the first who came forward with the concept of topology.

The notion of pointwise and uniform convergence of series of continuous maps inspired

the idea of topologizing the set of continuous maps. Point-open topology and uniform

topology are the terms used to describe the topologies resulting from pointwise and uni-

form convergence, respectively. In 1906 Frechet [4] studied supremum metric topology,

in fact which is the uniform topology. The point-open and uniform topology are the

first two topologies on the function space in general topology. After that search to find

some topology that lies between point-open topology and the uniform topology. This

gave birth to the compact convergence topology. Since all these topologies (except point-

open) involve metric, so they started to look for a new topology stronger than point-open

topology that does not involve metric. In 1945, R.H.Fox [5] introduced compact-open

topology on set of continuous functions.

We would like to adopt some symbols and what they signify which we will use throughout

the thesis. The symbols R, N, J , and ω stand for sets of real numbers, natural numbers,

index sets, and countable sets of numbers, respectively. A metric space is denoted by

(M,d) where d is metric and M is arbitrary space. Next, we define a collection of

functions that we use in our thesis. The family of all functions from set T to M is

represented by the symbol F (T,M) (or MT ). We will use the expressions C(T,M),

C(T ), and Q(T,M), where C(T,M) = {f : f : T → M and f is continuous}, C(T ) =

{f : f : T → R and f is continuous} and Q(T,M) = {f : f : T → M is quasicontinuous},
respectively. The function space of quasicontinuous functions from set T to R is denoted

by Q(T ), which is equal to {f : f : T → R, and f is quasicontinuous} and QS(T,M) =

{f : f : T → M andf is quasi-subcontinuous}. In the same way that different letters

are used in subscript to C(T ) to denote different topology on functions space, such

as k, d, g, f, r, and w signify compact-open, uniform, graph, fine topology, and weak

topology, respectively. The Cp(T,M) stand for C(T,M) is equipped with a pointwise

convergence topology. Cp(T,M) ⊆ Ck(T,M) indicates that Cp(T,M) is less powerful

than Ck(T,M). Throughout this thesis the term ‘space’ denotes a ‘topological space’.



Chapter 1. Introduction 3

1.1 Topologizing a Function Space

The motive behind topologizing a function space is to study the convergence of the se-

quence of functions. By changing the topology of function space we can change means

for convergence of the sequence of functions. So topologizing the function space dif-

ferently and examining the properties of function space MT (i.e. set of all functions

from set T to M) is a generalization of finite product space Mn (i.e a set of all function

f : {1, 2, . . . , n} →M). Firstly, the finite power set is replaced by indexed set T then by

any arbitrary set T and denoted as MT =
∏

y∈T M , whose elements are infinite tuples

of point of M . Then define the product topology on it and point-open topology on it.

Then both are generated by the same sub-basis(i.e. convergence in product topology is

the same as point-wise convergence). The point-open topology is defined as;“ T is set

and M is space. Given point y ∈ T , S(y, U) = {f : f ∈ MT andf(y) ∈ U}, where U is

open inM , is sub-basis element that generate topology onMT .” In point-open topology,

we see some examples which shows that the sequence of continuous maps is not neces-

sarily converge to a continuous map. So some strong concepts were needed and this idea

lead to uniform convergence that generate uniform topology. The concept of uniform

convergence is stronger than pointwise convergence so uniform topology is stronger than

point-open topology. As it is seen that the point-open topology is defined on any set

M and any space T but uniform topology involves uniform structure (as Metric space).

Now take a look on the metric and metric space such as, let (M,d) be metric space and

defines “standard bounded metric d̄(a, b) = min{d(a, b), 1} on M is induced by d. Let

x = (xα)α∈J and y = (yα)α∈J are elements of MJ then ρ̄(x, y) = sup{d̄(xα, yα)|α ∈ J}
is uniform metric on MJ .” Then by generalizing the index set J with any set T , we get

the uniform metric on MT . This metric induces the uniform topology on MT , which is

defined as; “T be space and (M,d) is a metric space, for f ∈MT and given ϵ > 0 the set

Bρ(f, ϵ) = {g ∈MT : ρ̄(f, g) < ϵ} is basic set to generate the topology on MT .” The se-

quence of continuous function in uniform topology converges to continuous function, but

it may not be converges to continuous function in point-open topology. Then, a question

arise that “Is there any topology exists which lies between these point-open topology

and uniform topology, that ensure that the sequence of continuous maps converges to a

continuous map”. For that answer is: Yes, there exists a topology named as compact

convergence topology in which if T is compactly generated and (M,d) is metric space,

then a sequence of continuous functions {fn} converges to a continuous function f . This

topology is defined as;“ Any f ∈ MT , compact set K in M and given ϵ > 0, then the

sets BK(f, ϵ) = {g ∈ MT : sup{d(f(x), g(x)) : x ∈ K} < ϵ} generate topology on MT

which is also known as topology of uniform convergence on a compact set.” A limit of

the convergent sequence {fn} in CC(T ) is a function f , then f ∈ CC(T ) if and only if the

restricted function sequence {fn|C} uniformly converges f |C for each compact set C in
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T . Next we see that if we take M is compact then uniform topology and compact con-

vergence topology coincide and if we assume that T is a discrete space, then point-open

topology and compact convergence topology are identical. Since the point-open topology

does not depends on the metric but the other two depend on the metric. So again arises

the question “ Is there any topology exist that considerM is any space instead of a met-

ric space and stronger than point-open topology”. There is no sufficient answer for this

on MT . However, it can be demonstrated for the subspace C(T,M) under the topology

known as compact-open topology. It is defined as: “For any space T and M , if C is

compact subset inM and U is open set inM then S(C,U) = {f ∈ C(T,M) : f(C) ⊂ U}
sets form a subbasis for topology on C(T,M)”. Compact-open topology is stronger than

point-open topology, as may be seen from the definition. Assuming that M is a metric

space, we can state that the topology of compact convergence and compact-open topol-

ogy coincide, or that the topology of compact convergence is independent of metric.

Now, let us now examine the evaluation map e : T × C(T,M) → M , which is defined

as follows; for every x ∈ T and every f ∈ C(T,M), e(x, f) = f(x). When C(T,M) has

the pointwise convergence topology, this map is not continuous. However, in this case,

the evaluation map becomes continuous if we take M to be a locally compact Hausdorff

space and C(T,M) equipped with the compact-open topology.

A general notion of uniform convergence in real analysis was provided by E.H. Moore in

1911–1912 when he established the idea of roughly uniform convergence relative to a scale

function. Unlike the traditional definition using a positive constant, Moore generalized

the concept by incorporating a positive function, denoted as ϵ(x) on R, known as a scale

function. Hewitt then created the m-topology on the function space C(T ). This was in

1948. Similar to Moore’s concept of approximate regularity of convergence relative to a

scale function, this topology, called the fine topology, expands the notion of convergence

in C(T ). Hewitt highlighted the relationship between the m-topology for C(R) and E.H.

Moore’s work.

In the current state of function space, the traditional topologies such as uniform topology

and compact-open topology are not robust enough to be used. As fine topology is a

sincere illustration of this. Therefore, it makes sense to discover a different topology

on C(T,M) which outweigh uniform topologies in strength, one of them is the graph

topology [6] on C(T,M). Also, many more topology are defined on C(T,M) like σ-

compact open topology [7], open-open Topology [8], bounded-open topology [9], support-

open topology [10], C-compact topology [11] etc. Study the properties of function space

under above mentioned topologies.

The Q(T,M) is a set of quasicontinuous functions from set T to M , which is a superset

of C(T,M). Several topologies on C(T,M) are studied, as previously specified. Since
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the Q(T,M) is richer space than C(T,M). It took researcher’s attention to study con-

vergence of a sequence of functions in Q(T,M) and L. Hola and D. Holy investigated the

idea of pointwise convergence in Q(T,M) in 2011, and they determined the requirements

for the sequence of a quasicontinuous map to converge to a quasicontinuous map. All

topologies on Q(T,M) and their properties we will study in brief in chapter“Review of

literature”.

1.2 Impact of Function Spaces

The function space, although has arisen from general topology, have importance in many

other branches. Firstly we take hyperspace, for any space T the hyperspace of real valued

multifunction can be considered as subset of T × R. Due to this reason hyperspace is

denoted as 2T×R. There are two traditional topologies named as Hausdorff topology [12]

and Vietoris topology [13], which have spacial importance. A specific reason behind its

importance is that C(X) under the graph topology is same as C(X) as a subspace of

set of all non-empty closed subset of T × R equipped with Vietoris topology. For more

see [14].

From the space T and M , a larger space appears, which is the function space C(T,M)

and there is an inherent connection between C(T,M) and the properties of T orM . The

function space C(T,M) equipped with the uniform topology is complete if and only if

M is a complete metric space, as is shown in a specific conclusion. Also, there is another

important result is called Nagata theorem [15] gives a strong result to check duality in

C(M) with point-open topology and the result is “ Any two Tychonoff spaces T and M

are homeomorphic if and only if Cp(T ) and Cp(M) are ring isomorphic”.

The function space plays an important role in Approximation Theory. For the Stone-

Weierstrass Approximation theorem, Weierstrass initially proved that the sequence of

polynomials in a closed bounded interval converges to a real-valued map defined on that

interval. Then, M.H.Stone made its generalization by the sequence of polynomials on a

compact Hausdorff space converges to a real-valued or complex-valued map.

The function space is by some means the inspiration for Homotopy Theory. First, in

1930 Hurewicz started the study of Homotopy group. The base for Homotopy theory

may functions and Homotopy is just a map that study the transformation of a function

to other. Also, the compact-open topology possesses an appropriate value in Homotopy

theory because it is observed that Homotopy between two functions corresponds abso-

lutely to a path in space C(T,M). In 1946, G.W.Whithead [16] introduced a problem

to categorizing the Homotopy types consisting of path components of function, while
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focusing on his idea of the case map (s1, s2). Also, the Homotopy theory is studied at

its own importance as a separate subject.

The compact-open topology on function space has got quite much importance in math-

ematics. The Arzela-Ascoli theorem is among one of the important results of compact-

open topology which provides the equivalent condition for compact subspace and equi-

continuity in C(T,M). That condition is, “ a set F ⊂ C(T,M) in compact-open topology

has compact closure if and only if it is closed, bounded and equicontinuous”. Arzela and

Ascoli, respectively, provide the necessary and enough conditions. Since Q(T,M) is a

space, it is a larger class than C(T,M). The notion of topologizing the space Q(T,M)

in many ways has recently come to light, and its features, such as the closedness of

Q(T,M) in F (T,M) under various topologies, have been examined in [17, 18].

Last but not the least, function spaces C(T,M) and Q(T,M) can behave as a vector

space, ring, group, etc. in combination with some topology, replacing the objects in

general topology and transforming it into algebraic topology. There is a wide area in

which the topological function space is studied under an algebraic structure, as whatever

operations can be put on a simple space can be also put on a topological function

space. For example, the function space along with some topology carries two algebraic

operations, addition and multiplication, which makes it a topological ring and under

uniform structure it becomes an uniform space. Then study the algebraic topological

properties, ring properties, and µ-properties.

1.3 Thesis organisation

The principal focus of our thesis is to study the space Q(T,M) endowed with different

topologies. Firstly we go through the comprehensive study of quasicontinuity. Next, we

examine the behavior of Q(T,M) under different topologies and study different topolog-

ical proprieties. We formulate different equivalent results and their interdependencies

with each other. Our thesis is distributed into six chapters; (1) Introduction, (2) Re-

view of literature, (3) Quasicontinuity, (4) The topology of pointwise convergence on the

space Q(T,M), (5) The space Q(T ) endowed with compact convergence topology and

(6) Conclusion and future works.

In the Chapter (1), delves into a detailed exploration of the origin, significance, and

operational principles governing function spaces and their topologies. Additionally, it

elucidates diverse approaches to studying function spaces, aiming to contribute original

insights to the field and propose solutions to unresolved challenges. The chapter further
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offers a concise overview of the applications of function space topologies in various other

mathematical domains.

In the second Chapter (2), first, we briefly go through the existing literature of quasi-

continuity. Next, a comprehensive literature review unfolds, systematically presenting

function space Q(T,M) under various topologies in chronological order, ranging from

older to more contemporary ones. This examination delves into the reasons behind

introducing each topology, conducts comparisons with others, and explores both topo-

logical and non-topological properties associated with the respective spaces. Notably,

this Chapter highlights pivotal findings from influential papers that have left a lasting

impact on the field.

In the third Chapter (3), we initiate our exploration by examining quasicontinuous

functions and their equivalent representations. Subsequently, we conduct a comparative

analysis of quasicontinuity with other types of continuity. Our investigation extended

to exploring the construction of quasicontinuous functions under various constraints on

their domain and range. Additionally, we delve into the behavior of quasicontinuous

functions under composition, product, and different algebraic operations. Furthermore,

we investigate the preservation of certain properties of spaces under quasicontinuity.

Finally, we examine the Intermediate Value Theorem in the context of quasicontinuous

function.

In the Chapter (4), we have systematically examine the cardinal invariants, includ-

ing pseudocharacter, network weight, weight, and tightness, within the context of the

space Qp(T,M). Our findings establish a dominant relationship, demonstrating that the

pseudocharacter of Qp(T,M) surpasses the network weight, density, and weak covering

number of a regular space T . Furthermore, we have obtain a set of sufficient and nec-

essary criteria on T such that the weight and network weight of Qp(T ) are the same.

Additionally, we have establish a condition that expresses a regular space’s separability

in terms of pseudocharacter of a compact subset of Qp(T,M). Our exploration about the

openness of the restriction map on Qp(T ) and demonstration that Qp(T,Z) is densely

embedded in the image of Qp(T,M) under the induced map.

In the Chapter (5), we delve into the examination of the density and various types

of tightness within the space QC(T ). Our proofs establish the equivalence between

the tightness of QC(T ) and the compact Lindelöf number of the underlying Hausdorff

space T . Furthermore, we demonstrate that the density of QC(T ) is bounded by the

k-cofinality of T , and we identify conditions on T that lead to the confluence of density

tightness and tightness in QC(T ). We proceeded to characterize fan tightness and strong

fan-tightness in terms of k-covers of T . We also prove that, given a locally compact Haus-

dorff space T , σ-compactness of T , countable tightness, and Frechet-Urysohn properties
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of QC(T ) are mutually equivalent. Furthermore, we prove that every kf -open covering

of T has a countable subcover that converges to T if QC(T ) is a Frechet-Urysohn space.



Chapter 2

Review of literature

The space of functions has been used since the 19th century to make the framework for

the study of convergence of the sequence of functions. Till now it’s an intense and active

research area. G. Ascoli [1], C.Arezla [2], and J.Hadamard [3] on functions space marked

a good contribution to the theory of function space. Topology of pointwise convergence

(also known as point-open topology) is a type of topology on function space that was

first studied in 1935 by Tychnoff. He discovered that topology on MT could be created

using the condition of pointwise convergence in product topology. In his opinion, the

topology of pointwise convergence is all that product topology on MT is. We define

the point-open topology for any space T and M on MT . It comes from the result, “ A

sequence of function fn converges to function f in the topology of pointwise convergence

if and only if for each point x ∈ T the sequence fn(x) of points inM converges to f(x)”.

The idea of uniform convergence in all circumstances is stronger than that of pointwise

convergence. Uniform topology on MT , thus, involves the investigation of uniform

convergence of a sequence of functions such as: “ for any space T and (M,d) is metric

space, sequence fn ∈MT converges to uniformly to f ∈MT ; if for given ϵ > 0 ∃ n0 ∈ N
s.t. d(fn(x), f(x)) < ϵ for all n ≥ n0 and x ∈ T”. In uniform topology, the series

of continuous functions in MT converges to a continuous function. Then the question

arises that, is there any other topology weaker than uniform topology and stronger than

point open topology in which subspace C(T,M) is closed in MT ? For that answer is:

Yes, the concept of uniform convergence of the sequence on a compact subspace is part

of the topology of compact convergence. The sequence of functions fn ∈ MT (where

T is any space and M is metric space) converges to a function f ∈ MT if and only if

the sequence fn|K uniformly converges to f |K for every compact subset K of T . This

is the result known as the topology of compact convergence. In addition, T must be

9
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compactly generated and (M,d) can be any metric space for C(T,M) to be closed in

MT under the topology of compact convergence.

After going through the topology of pointwise convergence, compact convergence, and

uniform convergence on C(T,M). One question arises “Is there any other topology that

is stronger than point-open in which M is any space instead of metric space”. For that

answer is: Yes the compact-open topology on C(T,M) exists. It was introduced by R.H.

Fox in 1945 and improved by Arens and Dugundji [19]. Finally, it is explored by J.R.

Jackson [20] by studying the convergence of a sequence of functions on compact subsets.

That is defined as; “let T andM be any space, letK ⊂ T is compact and U is open set in

M then the set S(K,U) = {f ∈ C(T,M) : f(C) ⊂ U} is sub basic set to form topology

on C(T,M)”. When assuming that M is metric space then compact-open topology and

topology of compact convergence coincide on C(T,M), or then the topology of compact

convergence is independent of metric. The compact-open topology is more useful than

point-open as we can see in an example that an evaluation map e : T × C(T,M) → M

as e(x, f) = f(x) is continuous in compact-open topology.

There are various of topologies defined on C(T,M) or C(T ) to study the convergence of a

sequence of functions. Some of them are named fine topology, graph topology, bounded-

open topology, open-open topology, support-open topology, compact Gδ topology, bi-

point open topology etc. Then they studied the topological properties (like cardinality,

separation axioms, countability, connectedness, metrizibility, and compactness) of their

functions spaces and also studied duality theory on it.

2.1 Quasicontinuity on topological spaces

In 1932, S. Kempisty [21] introduced the concept of the quasicontinuous map for the

real-valued function of several variables. But the first time use of conditions of quasi-

continuity found in R.Baire’s paper [22]. There are many reasons to study the quasicon-

tinuity. But the best two of them are, the first is a deep connection between continuity

and quasicontinuity despite generality and the second is a good connection between qua-

sicontinuity with mathematical analysis and topology. Quasicontinuity was studied for

both single-valued and multi-valued maps. Let T and M be space, f : T → M is a

single-valued map, and F : T →M is a multi-valued map. If F is multi-valued map for

A ⊂M we denote F+(A) = {x ∈ T : F (x) ⊂ A} and F−(A) = {x ∈ T : F (x) ∩A ̸= ϕ}.

The definition of quasicontinuity of a function f : T →M was given for T = Rn andM =

R by Kempisty [21]. However, the function of two variables being quasicontinuous under

consideration that it is continuous in each variable separately mentioned by Volterra [22].
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This definition was reformulated for the space as; a map f : T →M is quasicontinuous

at p ∈ T if for any open sets U and V such that p ∈ U and f(p) ∈ V , there exists

a non-empty subset G of U such that f(G) ⊂ V . It is said to be quasicontinuous if

it is quasicontinuous at any x ∈ T . Every continuous map is quasicontinuous but not

conversely. For example every monotone left(right) continuous map is quasicontinuous

f : R → R, but not continuous. Next, take a look at multi-valued quasicontinuous,

which is defined as; a multi-valued map F : T →M is upper(lower) continuous at p ∈ T

if for any open set V , F (p) ⊂ V (F (p) ∩ V ̸= ϕ) ∃ a neighborhood U of p such that

F (x) ⊂ V (F (x)∩V ̸= ϕ) for all x ∈ U . It is continuous at p if it is both upper and lower

continuous. A multi-valued map F is upper(lower) quasicontinuous at x ∈ T [23] if any

open V ⊂M such that F (p) ⊂ V (F (p)∩ V ̸= ϕ) and for any open set U containing p ∃
nonempty subset G of U , such that F (x) ⊂ V (F (x)∩V ̸= ϕ) for all x ∈ G. It is said to

be upper(lower) quasicontinuous if it is upper(lower) quasicontinuous for all x ∈ T . Any

multi-valued map is upper(lower) continuous then it is upper(lower) quasicontinuous but

not conversely.

Now we study some concepts that are equivalent to quasicontinuity in various situations.

The first one is the neighbourly function, which was introduced by W.W. Bledose in his

paper [24] and defined as; let (T, ρ) and (M,ρ
′
) are metric spaces. A map f : T →

M is a neighbourly function if for given ϵ > 0, ∃ an open sphere S ⊂ T such that

ρ(x, y) + ρ
′
(f(x), f(y)) < ϵ for all y ∈ S. S.Marculs [25] proved that the concept of

neighbourly and quasicontinuity was equivalent for T and M is metric space. Another

equivalent concept is semi-continuity, it was introduced by N.Levine [26] by using the

notion of semi-open. A subset A of T is called semi-open if it is contained in the closure

of the interior of itself and semi-continuity is defined as; a map f : T → M is semi-

continuous if the inverse image of open in M is semi-open in T . In [27] proved that “ for

single-valued map the concept of semi-continuity and quasicontinuity are equivalent”.

Also, they proved for upper (lower) quasicontinuity of multifunction as, a multifunction

F : T → M is upper(lower)quasicontinuous if and only if F+(V )(F−(V )) is semi-open

set for every open set V ⊂M .

The concept of somewhat continuity is closely related to quasicontinuity. In 1971,

K.R.Gentry and H.B.Hoyle, [28] introduced the concept of somewhat continuous map,

defined as; a map f : T → M is somewhat continuous if for any open set V in M the

inverse image and interior of inverse image f−1(V ) ̸= ϕ and (f−1(V ))◦ ̸= ϕ. Clearly,

by definition, every quasicontinuous map is somewhat continuous but not conversely.

For example, the function f : R → R defined as f(x) = 0 if x < 0, x is rational or

x ∈ [0, 1]and f(x) = 1 if x < 0, x is irrational or x ∈ (0,∞). Then f is somewhat but

not quasicontinuous. Also, the restriction of a somewhat continuous map need not be
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somewhat continuous. But restriction is useful and a connection between somewhat con-

tinuity and quasicontinuity as seen in the result“ a map f : T →M is quasicontinuous if

and only if ∃ basis B of open set such that the restriction map f |B is somewhat contin-

uous for every B ∈ B”. The useful characterization of somewhat continuity is “ a map

f : T →M is somewhat continuous if and only if for any dense set D ⊂ T the set f(D) is

dense in f(T ).” As a simple consequence of this result. There is a similar result for qua-

sicontinuous maps which follow as, a map f : T →M is quasicontinuous has equivalent

to any dense setW in T the set f(W ∩G) is dense in f(G) for any open set G. Also, they

introduced a simple extension of somewhat continuity to a multi-valued map as, a multi-

valued map F : T → M is upper(lower) somewhat continuous if for any open V ⊂ M

for which F+(V ) ̸= ϕ((F−(V ) ̸= ϕ) we have (F+(V ))◦ ̸= ϕ ((F−(V ))◦ ̸= ϕ)). Also, the

restriction of multifunction somewhat upper(lower) continuity is related to upper(lower)

quasicontinuity of multifunction as we can see,” a multi-valued map F : T → M is

upper(lower) quasicontinuous if and only if restriction of F |B is upper(lower) somewhat

continuous for any set B ∈ B of open set.

Now, we are going to look at how quasicontinuity can be defined in terms of the continu-

ous restriction of a function under certain conditions upon the underlying spaces. First,

consider a single-valued function f defined from a first countable Hausdorff space T to a

first countable space M then f is quasicontinuous at x ∈ T if and only if there exists a

quasi-open set A containing x such that restriction f |A is continuous at x. Next, define

the quasicontinuity of multi-valued function F : T → M at a point x. It demonstrates

that “if T is the first countable Hausdorff space ‘and assume that M is first countable

at collection K = {F (T ) : x ∈ T}, Than F If and only if there is a quasi-open set A

containing T such that constraint F |A is upper(lower) continuous at point x ∈ T .” Yet

a certain sequential characterization of the quasicontinuity may be possible in the case

of that characterization through restriction fails. Specifically, it established that if T

and M are Hausdorff spaces, a multi-valued map F : T → M is lower quasicontinuous

at x ∈ T if and only if for any y ∈ F (x), ∃ a quasi-open set A containing x such that,

for any sequence {xn}n∈N, xn → x, ∃ {yn} yn ∈ F (xn) andn ∈ N, yn → y..

The continuity points of quasicontinuous maps with the values in space with a base of

given cardinality. The set of all continuity points (discontinuity points) of a function f

is denoted by C(f) (and D(f) respectively), and Dl(F ) (Du(F )) represents the set of

all points where the multi-valued map F is not lower (upper) continuous. Additionally,

let Cl(F ) = T − Dl(F ) and Cu(F ) = T − Du(F ). N.Levine proved a fundamental

result related to the continuity points of a quasicontinuous function, that result is “ a

map f : T → M is quasicontinuous and M is second countable, then D(f) is a first

category set”. Extension of this is possible in two ways, the first way is that assume the

multi-valued map and the second way is that consider spaces more general than second
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countable. Also, they proved results for multifunction such as a map F : T → M is

lower quasicontinuous and M has a base of cardinality less than k, than Dl(F ) is a first

k-category set. Also if F is upper quasicontinuous compact valued and M with base

of cardinality less than k. Then Du(F ) is of first k-category. They demonstrated the

quasicontinuous nature of f : T → M for a single-valued map. Let M have cardinality

smaller than k and let T be a k-Baire space. Then C(F ) is dense.

Various topological properties that are known to be preserved under continuous maps

also are preserved by a quasicontinuous map. Preserving separability is one of the im-

portant properties of quasicontinuity. Somewhat continuity is sufficient, so it is evident

that, given T is a separable space and if f : T →M as a somewhat continuous map onto

M , then, M is separable. Thus, quasicontinuity is also applicable, as quasicontinuity

and a single-valued map are somewhat similar. But if f is a bijective quasicontinu-

ous map and M is separable then T need not be separable, for example, the identity

map i : RD → RU is bijective quasicontinuous, where RD and RU are discrete and

usual topologies on R, respectively. The space RU is separable but RD is not. Next,

considering, a bijective and quasicontinuous map f : T → M having a condition that

(f(G))◦ ̸= ϕ for each non-empty open G ⊂ T , then the following outcome occurs, M

is separable if and only if T is separable. Somewhat continuous generalized types of

quasicontinuous functions preserve Baire space. Since T is k-Baire space and a map

f : T → M is quasicontinuous onto M , it formulated such a conclusion for k-Baire

space and the same holds for Baire spaces. If for any non empty open set G ⊂ T we

have (f(G))◦ ̸= ϕ, then M is k-Baire space. Many topological applications of mappings

are closely related to quasicontinuity. For this, the concept of quasi-homeomorphism or

semi-homeomorphism is introduced by S.G Crossly and S.K. Hildebrand in [29], [30].

They examined the preservation of different topological properties related to the quasi-

continuous map.

Initial study of the sequence of quasicontinuous and its convergence. It found that

the sequence of the quasicontinuous function may not converge to the quasicontinuous

function. For example, fn is a sequence of quasicontinuous functions as fn(x) = xn shows

that may not converge to quasicontinuous function, However, at that time the result “fn

is a sequence of quasicontinuous function converges to a quasicontinuous function f , then

D(f) is a first category set” is well known. Some more work on convergence is done in

[31], [32], and still is an active research area.
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2.2 Topologies on set of quasicontinuous functions

In 2011, L.Hola and D.Holy [33] investigated the idea of pointwise convergence of a real-

valued quasicontinuous function sequence. They used the Choquet game to derive the

conditions under which the sequence of real-valued quasicontinuous function pointwise

converges to a real-valued quasicontinuous function. Further, it was demonstrated that

f is quasicontinuous if and only if {fn : n ∈ N} is equi-quasicontinuous, given T to

be a Baire space and {fn : n ∈ N} to be a sequence of real-valued quasicontinuous

functions that pointwise converges to real-valued function f . Also, the conclusion for

pointwise convergence in the quasi-regular T1 space with locally countable π-base and

metrizable space classes is derived. f is quasicontinuous if and only if {fn : n ∈ N} is

equi-quasicontinuous. If T is metric space, then T is Baire space, and the {fn : n ∈ N}
is a sequence of real-valued quasicontinuous function that pointwise converges to real-

valued function f . If T is Regular T1-space with locally countable π-base holds, a similar

outcome would occur.

In 2016, L.Hola and D.Holy [34] explored convergence topologies, specifically pointwise

convergence τp and uniform convergence on compact sets τuc, within the space F (T,M).

Their investigation revealed that these two topologies coincide on a subset E of densely

equi-quasicontinuous functions, where T is any space and (M,d) is an metric space. Fur-

thermore, the authors derived significant results concerning the compactness of subsets

in (QS(T,M), τuc). Specifically, for T being locally compact and (M,d) being a metric

space, they demonstrated that “ any subset E of (QS(T,M), τuc) is compact if and only

if it is closed, densely equi-quasicontinuous, and compactly bounded”. In the context

of compactness, the researchers extended their findings to cover the scenario where T is

locally compact, and (M,d) is a complete metric space. In this case, they established

that “ a subset E of (QS(T,M), τuc) is compact if and only if it is closed, densely equi-

quasicontinuous, and pointwise bounded”. Concluding their study, the authors provided

a noteworthy result regarding metric completeness. They proved compactness of E of

(QS(T,M), τuc) is equivalent to its densely equi-quasicontinuity, closedness, and point-

wise boundedness, where T is locally compact and M is complete metric space. They

demonstrated that, given any space T and an metric space (M,d), any densely equi-

quasicontinuous E subset of (QS(T,M) then τp and τuc coincide on E . They also obtained

strong results indicating that any subset of (QS(T,M), τuc) is compact. Assuming T

to be locally compact and (M,d) to be an metric space, proved E ⊂ (QS(T,M), τuc)

is compact only if it is densely equi-quasicontinuous, compactly bounded, and closed.

They also demonstrated compactness in the case the T is locally compact and (M,d)

is a complete metric space. Any closed, densely equi-quasicontinuous, and pointwise

bounded subset E of (QS(T,M), τuc) is compact. At the end of the paper they prove



Chapter 2. Review of Literature 15

that “ if T is a locally compact space and (M,d) is a complete metric space, then any

subset E of (QS(T,M), τuc) is compact if and only if it is pointwise bounded, closed,

and densely equi-quasicontinuous”.

In 2017, L.Hola and D.Holy [17] investigated the topology of compact convergence on

Q(T,M). They discovered that every subset of QC(T,M) must meet both necessary

and sufficient conditions to be compact. Their first finding demonstrated that the com-

pactness of E ⊂ QC(T,M) is equivalent to its densely equi-quasicontinuity, closedness,

supported at a point where E is non-locally bounded and pointwise boundedness, where

T is a locally compact space andM is complete metric space. In other results the condi-

tion densely equi-quasicontinuous and supported at the point of nonlocal boundedness

of E in the above result is replaced by the condition that is, there is a densely open set

W in M s.t. E is densely equi-quasicontinuous at each point x ∈W and E is supported

at every point x ∈ T ∖W . OR there is a dense Gδ set G s.t. E is equi-continuous at

every point x ∈ G and it has supported at each point x ∈ T ∖G.

In 2018, L.Hola and D.Holy [35] introduced a novel perspective on the topology of

compact convergence by employing uniformity on MT . In this framework, where T is a

Hausdorff space and (M,d) is a metric space, they defined as; “the set K(T ) = {K ⊂
T : K ̸= ϕ and K is compact}. The topology of compact convergence, denoted as τuc on

MT , is induced by the uniformity Uuc, whose base comprises sets of the form W (K, ϵ) =

{(f, g) : ∀x ∈ K, d(f(x), g(x)) < ϵ} where ϵ > 0 and K ∈ K(T )”. They explored the

properties of the subspace of QC(T,M), showing that it is first countable, metrizable,

and completely metrizable. Subsequently, they established equivalence between several

statements:“ the uniformity Uuc on Q(T,M) being induced by a metric, Q(T,M) being

metrizable, Q(T,M) being first countable, and T being hemicompact”. When M is

replaced by R, two additional statements were found to be equivalent: Q(T,M) being

pointwise countable and Q(T,M) being a q-space. Subsequently, when M is an regular

space with countable pseudo-character and M is any metric space, these results were

shown to hold when T is a space and M = R. Further, for complete metrizability, the

authors demonstrated that if T is an locally compact space and (M,d) is a complete

metric space, then the uniformity Uuc on Q(T,M) is induced by a complete metric,

and Q(T,M) is completely metrizable, first countable, and T is hemicompact, all of

which are equivalent. In the final part of their paper, they presented an application to

characterize compact and sequentially compact subsets of Q(T,M). Specifically, “for a

locally compact hemicompact space T and boundedly compact metric space (M,d), any

subset of Q∗(T,M) = {f |f : T → M and quasicontinuous locally boundedly function},
is compact (sequentially compact) if and only if it is closed, pointwise bounded, and

densely equi-quasicontinuous”.
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In 2020, L.Hola and D.Holy [18] introduced the topology of pointwise convergence,

denoted as τp, on RT by utilizing a uniform structure. Specifically, if T is a Hausdorff

space and ℑ = {A ⊂ T : A is finite}, the topology τp is induced by the uniformity Up.

The basis sets of Up are of the form W (A, ϵ) = {(f, g) : ∀x ∈ A, and|f(x) − g(x)| < ϵ},
where ϵ > 0 and A ∈ ℑ. It is noteworthy that the topology of pointwise convergence

coincides with the product topology on RT . Consequently, the authors demonstrated

that Qp(T ) is dense in RT equipped with the product topology. Also they studied some

cardinal invariant (like weight w, density d, cellularity c, network weight nw, character

χ, π-character πχ and uniform weight u) of Qp(T ) and proved that for a space T , weight,

character, π-character and uniform weight of Qp(T ) are equal to cardinality of T and

also d(Qp(T )) ≤ w(T ) and with the help of results on cardinal invariant, they prove that

for any T is space all conditions, T is countable, Qp(T ) is metrizable, first countable,

has countable base and has countable π base. At the end of the paper, they compared

the cardinal invariant of Qp(R) and Cp(R) by taking examples.

In 2021, L.Hola and D.Holy [36] studied space of quasicontinuous function endowed

with uniform topology. Provided that for a Huasdorff space T the uniform weight, π-

character, and character of QC(T ) coincide with k-cofinality of T and if T is a locally

compact space then weight and network weight of QC(T ) coincides. Also, they studied

some cardinal invariants (like density, cellularity, network weight, character, π-character,

and spreads) ofQC(T ) under different conditions on T and particularly obtained different

cardinal functions for QC(R). With the help of results on cardinal invariant, they proved

that hemicompactness of T , metrizability ofQC(T ), andQC(T ) are first countable spaces

all are equivalents.

Further, in 2022, M.Kumar and B.K.Tyagi [37] examined the topology of pointwise

convergence τp on F (T,M) and demonstrated that Qp(T,M) is dense in Fp(T,M). Sev-

eral cardinal invariants of Qp(T,M) are also studied, including weight u, character χ,

π-character πχ, density d, cellularity c, network weight nw, and weight w. They demon-

strated that given a space T , the cardinality of T is equal to the character and π-character

of Qp(T,M); additionally, d(Qp(T,M)) ≤ w(T ). In addition, they demonstrated that

for any T that is a space, then all conditions, T is countable, Qp(T,M) is metrizable,

first countable, has a countable base, and has a countable π base are equivalent. They

characterized the cardinal invariant character, density, spread, weight, cellularity, and

pseudocharacter of Qp(T,M). Some properties of restriction maps, evaluation maps,

and induced maps on Qp(T ).
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2.3 Conclusion and research gap

All through the literature on topological spaces the preservation of different properties

of topological spaces under continuous maps is one of the most important areas of

research, see in [38]. Similarly, do these properties are also preserved by quasicontinuous

maps, is also an interesting topic but in the case of quasicontinuity there are only

a few properties whose preservation is studied, see in [39]. Yet, the preservation of

connectedness, separation axioms, countability, etc. under quasicontinuous maps is not

studied. This leaves us with an opportunity to explore this gap and conduct further

study.

In the existing literature on quasicontinuity, the space Q(T,M) has been studied under

only two different topologies, pointwise convergence topology [18] and compact conver-

gence topology [17]. In comparison the space C(T,M) has been studied through the

lenses of a huge number of different topologies, such as regular topology [40], Cauchy

convergence topology [41], graph topology [6] etc. The space Q(T,M) being a larger

space than C(T,M) gives us the scope to explore the properties ofQ(T,M) under various

topologies.

The available literature on the properties of cardinal functions on the space Qp(T,M)

is only focused on weight, density, character, cellularity, and spread [18, 37]. This gives

us a chance to explore many other left-out cardinal functions such as tightness, weak

covering number, Lindelöf number, etc for the space Qp(T,M). Also, special maps such

as induced, evaluation, and restriction maps are defined on Qp(T,M) and studied to

a little extent in [37]. Hence, we can carry on our study on properties of these above-

mentioned maps and also many more special maps for the space Qp(T,M).

The existing study on the space QC(T,M) mostly focused around metrizability, com-

pactness and countability properties, see in [17, 35]. Thus in case of QC(T,M) we have

vast area of other properties such as, sequential, Baire and covering properties, which

can be considered for further study. Also, in case of cardinal functions, there are some

cardinal functions like weight, density and cellularity on the space Q(T ) which are stud-

ied under the light of compact convergence topology, see in [42]. So this leaves us with

opportunity to explore various other cardinal functions such as density tightness, fan

tightness, strongly fan tightness and density of QC(T ).
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2.4 Research Objectives

After the study of literature on different topologies in the function space, especially

topologies in the space of the quasicontinuous functions, these objectives are fixed for

further study:

1. Comprehensive study of quasicontinuous functions on Topological space and its

applications.

2. Analysis of topological properties of the space of quasicontinuous functions under

different topologies.

3. Investigation on the existence of weak or strong topology on the space of quasi-

continuous functions.



Chapter 3

Quasicontinuity

3.1 Introduction

Baire discovered the condition of quasicontinuous functions for the first time in 1899 in

[43] when examining the continuity points of separately continuous functions from R2 to

R. Later, the quasicontinuity introduced in the paper [21] for real functions of several

real variables was thoroughly and extensively tested by Kempisty in 1932. When we

take a closer look, it turns out that the researchers found this study interesting for a few

big reasons. The two most important of these are: the first reason is the fairly strong

relationship between continuity and quasi-continuity, despite the broad applicability of

the latter concept. The second reason pertains to the significant connection between

quasi-continuity and the fields of mathematical analysis and topology. The reader can

see survey articles authored by Piotrowski, specifically [44] and [45] that encompass a

range of intriguing outcomes in this area. However, these papers do not exclusively focus

on this subject. In addition to these papers, readers are encouraged to see the survey

paper [39] written by Neubrunn, which is a collection of interesting and important results

on quasicontinuous functions. Quasicontinuous functions played an important role in

the study of topological groups, the characterization of minimal usco and minimal cusco

maps, the CHART group which is the key object for the study of topological dynamics

quasicontinuity is a concept in topology that bridges the gap between continuity and

discontinuity. In this guide, we will explore the definition of quasicontinuity, discuss

its algebraic properties and characteristics, and provide examples of quasicontinuous

functions. We will also examine the relation between quasicontinuity and continuity,

and explore applications of quasicontinuity in space.

In section (3.2), we study quasicontinuous functions and some other generalizations of

continuous functions, which are equivalent to quasicontinuous functions under certain

19
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conditions. Further, we study the several different ways to define quasicontinuity of

functions and the methods of construction of quasicontinuous functions in space.

In section (3.3), we study the preservation of topological properties under quasicontin-

uous functions, especially strong forms of connected spaces. Moreover, we study the

Intermediate value theorem for the quasicontinuous function.

3.2 Quasicontinuous function

In this section, we delve into the definition and characteristics of quasicontinuous func-

tions. We explore how these functions generalize the traditional notion of continuity and

introduce the reader to the construction of quasicontinuous functions. Understanding

the fundamental properties and structure of quasicontinuity lays the groundwork for

further exploration.

Definition 3.2.1 (Continuous). [38] A mapping f : T → M is called as continuous if

the pre-image of each open set in M is also an open set in T .

Definition 3.2.2 (Quasicontinuous function). [39] A map f : T →M is quasicontinuous

at t ∈ T if ∃ a non-void subset H of A such that f(H) ⊂ B for any open sets A, B

such that t ∈ A and f(t) ∈ B. If it is quasicontinuous at any t in T , it is said to be

quasicontinuous.

Theorem 3.2.1. [39] Every continuous function is quasicontinuous function, but the

converse is not true.

Example 3.2.1. Let Rs and Rl represent the set of real numbers in standard topology

and the lower limit topology, respectively. Let f : Rs → Rl be defined as a quasicontinu-

ous function but not a continuous function.

N.Levine [26] first proposed the idea of semi-continuity in 1963. He did this by defining

a semi-open set as “ A subset A of space T is said to be semi-open set if A ⊂ Cl(Int(A)),

according to [46]. Semi-closed set are those whose complement a semi-open set.” The

intersection of any semi-closed set that contains A is the semi-closure (scl) of a set A.

Definition 3.2.3. [26] A function f : T → M is called as semi-continuous if the pre-

image of an open set in M is semi-open set in T .

Theorem 3.2.2. [27] If a map µ : T →M is single-valued, it is semi-continuous if and

only if it is quasicontinuous.
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Proof. Let µ be quasicontinuous on T . Choose any non-void open set E containing

t. Let t ∈ µ−1(E) and let V be any open set containing t. Therefore ∃ a non-void

U contained in V such that µ(U) ⊂ E, U ⊂ µ−1(E). Hence U ⊂ (µ−1(E))◦ and

ϕ ̸= U = V ∩ U ⊂ V ∩ (µ−1(E))◦. This implies that any open set V containing t.

V ∩ (µ−1(E))◦ ̸= ϕ.

Then t ∈ (µ−1(E))◦. Since t is arbitrary element in µ−1(E) we have µ−1(E) ⊂
(µ−1(G))◦. Thus µ−1(E) is semi-open set.

Conversely, Let µ be semi-continuous. Let t ∈ T and E any open set such that µ(t) ∈ E.

Let V be any open set containing t. Under the assumption µ−1(E) is a semi-open set.

Hence

µ−1(E) ⊂ (µ−1(E))◦.

Put U = V ∩(µ−1(E))◦. Since t ∈ µ−1(E) ⊂ (µ−1(E))◦, there is a point in V belonging to

(µ−1(E)), hence U is a non-void set. Evidently U ⊂ V and µ(U) = µ(V ∩ (µ−1(E))◦) ⊂
µ(µ−1(E)) ⊂ E. Hence µ is quasicontinuous at t. Since t was arbitrarily chosen, the

function T is quasicontinuous on T .

In 1971, K.R.Gentry and H.B.Hoyle[28] introduced the concept of a somewhat continu-

ous map.

Definition 3.2.4. [28] A function f : T → M is somewhat if the inverse image and

interior of the inverse image for each open set V in M are f−1(V ) ̸= ϕ and (f−1(V ))◦ ̸=
ϕ.

Every quasicontinuous map is somewhat continuous but not conversely.

Example 3.2.2. Let µ : R → R defined as;

µ(t) =



0 if t < 0 and t is rational,

1 if t < 0 and t is irrational,

0 if t ∈ [0, 1],

1 if t ∈ (1,∞).

Then µ is somewhat continuous but not quasicontinuous.

W.W. Bledose [24] introduced the concept of neighbourly function.

Definition 3.2.5. [24] Consider the metric space (T, ρ) and (M,ρ
′
). A map f : T →M

is a neighbourly function if an open sphere S ⊂ T exists for a given ϵ > 0 s.t.

ρ(x, y) + ρ
′
(f(x), f(y)) < ϵ∀ y ∈ S.
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Theorem 3.2.3. [25] If T and M are metric space, and f : T →M is a function, it is

neighbourly if and only if it is quasicontinuous.

In 1982, T. Noiri [46] introduced the concept of α-continuous which is also known as a

strongly quasicontinuous map by using the α-open set which are defined as; “ A subset A

of a space T is said to be α-open set (also known as α-set)[46] if A ⊂ Int(Cl(Int(A))).”

α-closed set are those whose complements are α-open set.

Definition 3.2.6. [46] A function f : T → M is termed as α-continuous(strongly

quasicontinuous) if the pre-image of any open set V in M is a α-set in T .

Theorem 3.2.4. Consider T and M to be space. If µ : T → M is used, the following

are equivalent.

1. µ is quasicontinuous.

2. The µ−1(B) is a semi-closed subset of T for any closed subset B of M .

3. [28] There exists a B basis of T such that the restriction map µ|B is somewhat

continuous for any B ∈ B.

4. [28] µ(W ∩G) is dense in µ(G) for any open set G for any dense set W ⊂ T .

Theorem 3.2.5. [47] Consider a functionf : T →M that is quasicontinuous (or strongly

quasicontinuous). Then

Scl(f−1(B)) ⊆ f−1(Scl(B)) (resp. αCl(f−1(B)) ⊆ f−1(αCl(B)).

In 2011 L.Hola and D.Holy investigated the notion of convergence of a sequence of

real-valued quasicontinuous functions pointwise manner.

Theorem 3.2.6. [33] If {fn : n ∈ N} is a sequence of functions in Q(T ) is pointwisely

convergent to f , which is a real-valued function defined on T . If {fn : n ∈ N} is equi-

quasicontinuous, then f is quasicontinuous at x.

Theorem 3.2.7. [33] If T be Baire space and {fn : n ∈ N} i sequence of functions in

Q(T )is pointwisely converges to f , which is a real-valued function defined on T . Then

f is quasicontinuous if and only if {fn : n ∈ N} is equi-quasicontinuous.

Theorem 3.2.8. [33] If a metric space (T, d), then following conditions are equivalent,

1. T is Baire space.

2. The {fn : n ∈ N} be a sequence of functions in Q(T )is pointwisely converges to

f , which is a real-valued function defined on T . Then f is quasicontinuous if and

only if {fn : n ∈ N} is equi-quasicontinuous.
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Theorem 3.2.9. [33] Consider a quasi-regular T1 space (T, d) having countable local π-

base, then following conditions are equivalent,

1. T is Baire space.

2. The {fn : n ∈ N} be a sequence of functions in Q(T )is pointwisely converges to

f , which is a real-valued function defined on T . Then f is quasicontinuous if and

only if {fn : n ∈ N} is equi-quasicontinuous.

Construction of quasicontinuous functions

Theorem 3.2.10. Let T , M and Z be space,

1. (Constant function) If the function g : T →M maps the entire set T to a single

point y0 in the codomain M , then g is quasicontinuous.

Proof. Constant functions are continuous. Since every continuous function is qua-

sicontinuous. Hence constant functions are quasicontinuous.

2. (Inclusion) The inclusion function k : A→ T becomes quasicontinuous if A is a

subspace of T .

Proof. Let V be an open set in T . Then k−1(V ) = A∩V by Definition of subspace

topology is open set in A. So by Theorem (3.2.2) inclusion map k is quasicontin-

uous.

3. (Composition)[[26], Remark 12] If f : T → M and g : M → Z being quasi-

continuous, it is not necessary for the composite function g ◦ f : T → Z to be

quasicontinuous.

Example 3.2.3. Assume T = M = [0, 2] and Z = R are spaces with standard

topology. Let us defines f : T →M and g :M → Z as

f(t) =


0 if 0 ≤ t < 1,

1 if 1 ≤ t < 2,

2 if t = 2.

it is monotone and left continuous at every point. Hence quasicontinuous.

g(t) =


1 if 0 ≤ t ≤ 1/2,

1 if 1/2 < t ≤ 1,

2 if 1 < t ≤ 2.
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then the inverse of g is

g−1(t) =


[0, 1/2] if t = 1,

(1/2, 1] if t = 2,

2 if 0 < t < 1.

clearly inverse image of every open set in Z is semi-open set in M . So by Theorem

(3.2.2) g is quasicontinuous. The composition of functions g ◦ f : T → Z is given

by

(g ◦ f)(t) =


1 if 0 ≤ t < 1

2 if 1 ≤ t < 2

1 if t = 2

Here V = (0, 2) is open set in Z but f−1(V ) = [0, 1) ∪ {2} is semi-open set 2.

Therefore by Theorem (3.2.2) g ◦ f is not quasicontinuous.

4. (Composition with continuous) If the function f : T →M is quasicontinuous,

and the function g : M → Z is continuous, then the composition g ◦ f : T → Z is

also quasicontinuous.

Proof. Given g ◦ f : T → Z is a map. To prove g ◦ f is quasicontinuous, it is

sufficient to show that inverse image of every open in Z is semi-open set in T . Let

W be an open set of Z. Since g is continuous mapM to Z so by Def. of continuity

g−1(W ) is open set in M . Also given that f is a quasicontinuous function from T

to M . By Theorem (3.2.2) f−1(g−1(W )) = (g ◦ f)−1(W ) is semi-open set in T .

Therefore for every open set W of Z inverse image (g ◦ f)−1(W ) is semi-open set

in T . Hence proved g ◦ f is quasicontinuous.

5. (Restricting Domain) If g : T → M is quasicontinuous and B is a subspace of

T . The restricted function f |B : B →M does not have to be quasicontinuous.

Example 3.2.4. Let T = [0, 1] = M are space under usual topology and g : T →
M is a function defined as;

g(t) =

1/2 if 1/2 ≤ t < 1,

0 if 0 ≤ t < 1/2,

inverse of g is

g−1(t) =

[0, 1/2) if t = 0

[1/2, 1] if t = 1/2

2A subset A of space is said to be semi-open set if it is contained in the closure of its interior(i.e.
A ⊂ cl(int(A)).
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inverse image of every open set in M is semi-open set in T . So by Theorem (3.2.2)

g is quasicontinuous.

Let B = [0, 1/2] is subspace of T then restricted function to set B is

g|B(t) =

0 if 0 ≤ t < 1/2,

1/2 if t = 1/2.

Let V = (1/3, 3/4) is open set in T . But (g|B)−1(V ) = {2} is not semi-open. By

Theorem (3.2.2) restriction g|B is not quasicontinuous.

6. (Restricting domain to open subspace) If the function g : T →M is quasicon-

tinuous, and B is an open subspace of T , then the restricted function g|B : B →M

is also quasicontinuous.

Proof. Given g : T →M is a quasicontinuous function and B is open subspace of

T . To prove restriction f |B is quasicontinuous.

Let V be an open of M . Then

(g|B)−1(V ) = g−1(V ) ∩B

Since g is quasicontinuous then by Theorem (3.2.2) g−1(V ) is semi-open set in T .

Given B is open set and g−1(V ) is semi-open set then g−1(V ) ∩ B is semi-open

set. Also g−1(V ) ∩ B ⊂ B ⊂ T . So g−1(V ) ∩ B is semi-open set in B. Hence by

Theorem (3.2.2) restriction g|B is quasicontinuous.

7. (Restricting or expanding the range) If the function g : T →M is quasicon-

tinuous and Z is a subspace of M containing the image set g(T ), then the function

h : T → Z derived by reducing the range of g is also quasicontinuous. If Z is a

space with M as a subspace, then the function k : T → Z is also quasicontinuous

when the range of g is expanded.

Proof. Restricting range Since g : T → M is quasicontinuous and g(T ) ⊂ Z ⊂
M

To prove h : T → Z is quasicontinuous.

Let B be any open set of Z and B = V ∩ Z, where V is open set in M . Then

g−1(V ) = h−1(B) because Z contain image set g(T ). Since g is quasicontinuous so

by Theorem (3.2.2) g−1(V ) is semi-open set in T . Therefore h−1(V ) is semi-open

set in T . Hence by Theorem (3.2.2) h is quasicontinuous.

Expanding domain Given that g : T →M is quasicontinuous and M is a subset

of Z. Then the inclusion map j : M → Z is continuous. To show that k : T → Z
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is quasicontinuous.

Clearly h is composition of g and j (i.e h = j ◦ g). As we proved in part[4]

Composition of quasicontinuous and continuous is quasicontinuous. Hence k is

quasicontinuous.

8. (Local formation of quasicontinuity) If T can be expressed as the union of

open sets Oα such that h|Oα is quasicontinuous for each α, the map h : T → M

is quasicontinuous.

Proof. Since T =
⋃

α∈J Oα such that g|Oα is quasicontinuous for each α ∈ J . To

prove g is quasicontinuous.

Let V be an open subset of M . Then

g−1(V ) ∩Oα = (g|Oα)
−1(V ) (3.1)

for each α ∈ J function g|Oα is quasicontinuous so by Theorem (3.2.2) (g|Oα)
−1(V )

is semi-open set in Oα for each α ∈ J . Then (g|Oα)
−1(V ) is semi-open set in T . So

expression (3.1) denotes the set of all points x that lie in Oα for which g(x) ∈ V .

Therefore

g−1(V ) =
⋃
α∈J

(g−1(V ) ∩Oα)

for every α ∈ J , (g−1(V ) ∩ Oα) is open set in T , So
⋃

α∈J(g
−1(V ) ∩ Oα ie semi-

open set 1. Therefore g−1(V ) is semi-open set in T . Hence by Theorem (3.2.2) g

is quasicontinuous.

9. (Maps into product)[[26], Theorem 15] Given g : B → T ×M , which is given

by g(a) = (g1(a), g2(a)) for all a ∈ B, and assuming that g is quasicontinuous,

then we have quasicontinuous functions g1 : B → M and g2 : B → M , which are

coordinate mappings of g. The converse is not true.

Proof. Given g : B → T ×M be given by g(a) = (g1(a), g2(a)) for all a ∈ B is

quasicontinuous. To prove g1 and g2 are quasicontinuous.

Firstly we prove g1 : B → T is quasicontinuous. Let V1 be any open set in

T , therefore V1 × M is open set in T × M . Since g is quasicontinuous so by

Theorem (3.2.2) g−1(V1 × M) is semi-open in B, as by Definition of function

g−1(V1 ×M) = (g1)
−1(V1) therefore (g1)

−1(V1) is semi-open set in B. Hence g1 is

quasicontinuous. Similarly, we can prove for g2.

1Arbitrary union of semi-open set is semi-open.
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Example 3.2.5. Let B = T1 = [0, 1] = T2 are space with usual topology. Let

gi : B → Ti for i = 1, 2. as follows:

g1(t) =

1 if 0 ≤ t ≤ 1/2,

0 if 1/2 < t < 1.

g2(t) =

1 if 0 ≤ t < 1/2,

0 if 1/2 ≤ t < 1.

Both functions g1 and g2 are quasi-continuous. but g : B → T ×M defined as

g(x) = (g1(x), g2(x)) for all x ∈ B is not quasicontinuous because V = S1/2(1, 0) is

a open set in T ×M . Then g−1(V ) = g1
−1(V )∩ g1−1(V )=[0, 1/2]∩ [1/2, 1) = {2}

is not semi-open set in B.

10. (Map on product)[[26], Theorem 14] If quasicontinuous map gi : Ti → Mi and

g : T1 × T2 → M1 ×M2, they are defined as follows: g(x1, x2) = (g1(x1), g2(x2)).

Then g is quasicontinuous.

Proof. Given gi : Ti → Mi be quasicontinuous map and g : T1 × T2 → M1 ×M2

and defined as g(x1, x2) = (g1(x1), g2(x2)).Let p = (p1, p2) ∈ T1 × T2. To prove

g is quasicontinuous. for this we show that for any p ∈ W open set in T1 × T2

and g(p) ∈ Z open set in M1 ×M2 ∃ non-void open set A such that A ⊂ W and

g(A) ⊂ Z. Let W = U1 × U2 for any U1 and U2 open set in T1 and T2 resp. And

Z = V1 × V2 for any V1 and V2 open set in M1 and M2, respectively. Therefore

p1 ∈ U1 and g1(p1) ∈ V1. Since g1 is quasicontinuous so by Definition ∃ a non-

void set G1 ⊂ U1 such that g1(G1) ⊂ V1. Similarly p2 ∈ U2 and g2(p2) ∈ V2.

Since g2 is quasicontinuous so by Definition ∃ a non-void set G2 ⊂ U2 such that

g2(G2) ⊂ V1. Therefore ∃ a non-void open set G1 ×G2 ⊂ U1 × U2 =W such that

g(G1 × G2) = g1(G1) × g2(G2) ⊂ V1 × V2 = Z. This implies g is quasicontinuous

at point p. But p is an arbitrary point of T1 × T2. Hence g is quasicontinuous on

T1 × T2.

11. (Algebraic operation on quasicontinuity)[[26], Remark 13] Let T be space and

if h, k : T → R are quasicontinuous function. Then h+k, h−k, and h ·k need not

be quasicontinuous. If k(z) ̸= 0 for all z, then h/k need not be a quasicontinuous

function.

Example 3.2.6. For the sum of two quasicontinuous functions Let T =

[0, 2],M = R be space with usual topology and h, k : T →M are two function given
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by

h(t) =


3 if 0 ≤ t ≤ 1

2 ,

1, if 1
2 < t ≤ 1,

−t, if 1 < t ≤ 2.

k(t) =


0 if 0 ≤ t ≤ 1

2 ,

−1 if 1
2 < t < 1,

t+ 1 if 1 ≤ t ≤ 2.

Both h and k are quasicontinuous and their sum is defined as

(h+ k)(t) =



3 if 0 ≤ t ≤ 1/2,

0 if 1/2 < t < 1,

3 if t = 1,

1 if 1 < t ≤ 2.

take V = (2, 4) be open set of M but (h+k)−1(V ) = [0, 1/2]∪{1} is not semi-open.

Hence by Theorem (3.2.2) h+ k is not quasicontinuous.

Example 3.2.7. For the product of two quasicontinuous functions Let

T = [0, 2],M = R be space with usual topology and h, k : T → M are to function

defined as;

h(t) =


2 if 0 ≤ t ≤ 1

2 ,

1 if 1
2 < t ≤ 1,

−t if 1 < t ≤ 2.

k(t) =


1 if 0 ≤ t ≤ 1

2 ,

−1 if 1
2 < t < 1,

2 if 1 ≤ t ≤ 2.

both h and k are quasicontinuous and their product is defined as;

(h · k)(t) =



2 if 0 ≤ t ≤ 1
2 ,

−1 if 1
2 < t < 1,

2 if t = 1,

−2t if 1 < t ≤ 2.

Take V = (1, 3) is open set in M , but (h·k)−1(V ) = [0, 1/2)∪{1} is not semi-open.

So by Theorem (3.2.2) h · k is not quasicontinuous.
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3.3 Topological properties and quasicontinuous function

Preservation of properties under continuous functions on space is a very important tool

for the classification of space. However, in some cases, the quaiscontinuous functions are

more useful than the continuous functions for classifying space. However, the preserva-

tion of a properties under quasicontinuous map implies preservation under a continuous

map, but not conversely. As we already have separable space and Baire space are in-

variant under a quasicontinuous map in [39]. In [30], the properties like compactness,

connectedness, and T0-axiom are not preserved by quasicontinuous map but persevered

by continuous map. For example “ Let T = [0, 1) and τ1 = {{ϕ, T}∪ {[0, 2−n) : n ∈ N}}
and τ2 = {{ϕ, T} ∪ {[0, a) : 0 < a ≤ 1}} are two topology on T . Let the iden-

tity map i : (T, τ1) → (T, τ2) is defined by i(x) = x is quasicontinuous onto map.

Since (T, τ1) is compact but (T, τ2) is not compact space. Therefore, quasicontin-

uous map does not preserve compactness, The space T = {a, b, c} be set with two

topology τ1 = {ϕ, {a}, {b}, {a, b}, T} and τ2 = {ϕ, {a}, {b, c}, T}. Then, identity map

f : (T, τ1) → (T, τ2) is quasicontinuous. As (T, τ1) is connected space but (T, τ2) is

not a connected space and if T = [0, 1) and τ1 = {{ϕ, T} ∪ {[0, a) : 0 < a ≤ 1}}
and τ1 = {ϕ, T} ∪ {[0, 2−n) : n ∈ N} are two topology on T . Let identity map

i : (T, τ1) → (T, τ2) defined by i(x) = x is quasicontinuous onto map. Since (T, τ1)

is T0-space but (T, τ2) is not T0-space. We focus on the preservation of a strong form of

connected space under a quasicontinuous map.

3.3.1 Strong forms of connected space

Roughly speaking, a connected space is a single piece, but in proper way it is de-

fined as follows: any space (T, τ) is said to be connected if there does not exist any

separation (i.e. it is not possible to find non-void disjoint open sets A and B such

that T = A ∪ B). Connectedness is a topological property and has great impor-

tance in the study of space. Some of the generalized form of connectedness like semi-

connectedness, α-connectedness, β-connectedness, b-connectedness, half connected, half

semi-connectedness, half α-connectedness and half β-connectedness have been intro-

duced and studied in [47–52]. The Cl-Cl connectedness introduced by Modak and Noiri

in [52] is a weak form of connectedness and all others are strong forms of connectedness.

In this section, we study quasicontinuous functions on the mentioned forms of connected

space. In the second section, we mention some results that we will use in the subsequent

sections.
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Various types of connected space If T,M and Z be our space. Thus, any subset D

of T is said to be b-open [53] ( resp. β-open set [54]) if A ⊂ (Int(Cl(D))) ∪Cl(Int(D))

(resp. A ⊂ Cl(Int(Cl(D)))). The complement of b-open set ( resp. β-open set) set is

said to be b-closed (resp. β-closed set). The b-closure(bcl) of D is the intersection of all

b-closed set containing D. Similar definitions for β-closure (βCl).

Definition 3.3.1. Two non-void subsets C and D in a space T are said to be

1. semi-separated [48] (resp. α-separated [49], b-separated [51]) if C ∩ Scl(D) = ∅ =

Scl(C)∩D, (resp. C ∩αCl(D) = ∅ = αCl(C)∩D, C ∩ bcl(D) = ∅ = bcl(C)∩D).

2. half semi-separated (resp. half α-separated) [47] if C∩Scl(D) = ∅ or Scl(C)∩D =

∅, (resp. C ∩ αCl(D) = ∅ or ∅ = αCl(C) ∩D)

3. Cl − Cl separated sets [52] if closure of two set C and D is disjoint.

Definition 3.3.2. [48] A subset S of a space T is said to be semi-connected (resp.,

α-connected) if there are no two semi-separated subsets C and D (resp. α-separated)

such that S = C ∪D.

Theorem 3.3.1. [48] Semi-connected space is connected, but not conversely.

Definition 3.3.3. [47] A set C ⊂ T is said to be half semi-connected (resp. half

α-connected) if C is not the union of two non-void half semi-separated (resp. half α-

separated) sets in T .

Theorem 3.3.2. [47] Half semi-connected space is semi-connected, but not conversely.

Theorem 3.3.3. [47] Every semi-connected space is α-connected, but not conversely.

Definition 3.3.4. [52] A set C ⊂ T is said to be Cl-Cl connected if C f C is not the

union of two non-void Cl-Cl separated sets in T .

Theorem 3.3.4. [52] Connected spaces are always Cl-Cl connected, but not conversely.

Scl-Scl Connected space We are going to introduce a strong form of semi-connectedness

which lies between lies between semi-connectedness and Cl-Cl connectedness. Next, we

study its relations with other forms of connectedness.

Definition 3.3.5 (Scl-Scl separated sets). Let C and D be two non-void subsets of the

space T are called Scl-Scl separated sets if Scl(C) ∩ Scl(D) = ∅.

Theorem 3.3.5. The Cl-Cl separated set is always Scl-Scl separated, but not conversely.
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Proof. Let C and D be non-void Cl-Cl separated sets so Cl(C) ∩ Cl(D) = ∅. Since for

any subset A of T , then Scl(A) ⊂ Cl(A). This implies that Scl(C)∩Scl(D) = ∅. Hence
C and D are Scl-Scl separated.

Converse, let T = {1, 2, 3} having topology τ = {∅, {1}, {1, 2}, T}. Semi-open set in T

are ∅, {1}, {1, 2}, {1, 3} and T . Take C = {2} and D = {3}, then Scl(C) = {2} and

Scl(D) = {3}. But Cl(C) = {2, 3} and Cl(D) = {3}, then Scl(C) ∩ Scl(D) = ∅ and

Cl(C)∩Cl(D) = {3}. Hence C and D are Scl-Scl separated but not Cl-Cl separated.

Theorem 3.3.6. The Scl-Scl separated sets are always semi-separated, but not con-

versely.

Proof. Given C and D are non-void Scl-Scl separated sets, so Scl(C) ∩ Scl(D) = ∅.
Since for any subset B of T , then B ⊂ Scl(B). This implies that C ∩ Scl(D) = ∅ and

Scl(C) ∩D = ∅. Hence C and D are semi-separated.

Converse, take R having standard topology. C = {(−1)n 1
2n |n ∈ N} and D = {(−1)n 1

3n

|n ∈ N}, then Scl(C) = {0} ∪ C = Cl(C) and Scl(D) = {0} ∪ D = Cl(D). Therefore

Scl(C) ∩ Scl(D) = {0} and Scl(C) ∩ D = ∅ = C ∩ Scl(D). Hence C and D are

semi-separated but not Scl-Scl Separated.

A Scl-Scl separation has no relation with separation. Let T = {1, 2, 3} having topology

τ = {∅, {1}, {1, 2}, T}. Semi-open subset of T are ∅, {1}, {1, 2}, {1, 3} and T . Then set

C = {2} and D = {3} are Scl-Scl separated but Cl(C) ∩D = {3}, hence C and D are

not separated.

Consider R having standard topology, C = {(−1)n 1
2n |n ∈ N} and D = {(−1)n 1

3n |n ∈
N}, then C ∩Cl(D) = ∅ = Cl(C) ∩D, but Scl(C) ∩ Scl(D) = {0}. Hence C and D are

separated but not Scl-Scl separated.

Definition 3.3.6 (Scl-Scl connectedness). A subset A of T is said to be Scl-Scl connected

if A cannot be written as a union of two Scl-Scl separated sets in T .

Theorem 3.3.7. A space T is Scl-Scl connected if and only if it is not possible to express

T as the union of two non-void and disjoint semi-clopen sets.

Proof. Firstly, assume that T is Scl-Scl connected. If possible, let us assume T = C ∪D
such that C and D are non-void disjoint semi clopen sets. Therefore Scl(C) = C and

Scl(D) = D, then Scl(C)∩Scl(D) = ∅, which is contradiction to T is Scl-Scl connected.

Hence x is not equal to the disjoint union of two non-void semi clopen sets.

Conversely, let us assume T is not Scl-Scl connected space. Therefore ∃ two non empty

sets C and D such that T = C∪D and Scl(C)∩Scl(D) = ∅. Then T = Scl(C)∪Scl(D).
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Both sets U = Scl(C) and V = Scl(D) are non-void disjoint semi clopen sets and

T = U ∪ V , which is a contraction. Therefore T is Scl-Scl connected.

Theorem 3.3.8. Each Scl-Scl connected space is always Cl − Cl connected, but not

conversely.

Proof. As T Scl-Scl connected if there are no two Scl-Scl separated subsets C and D

such that T = C∪D. Thus, by Theorem (3.3.5) there are no two Cl-Cl separated subsets

C and D with T = C ∪D. Hence T is Cl-Cl connected.

Converse, let T = {1, 2, 3} having topology τ = {∅, {1}, {2}, {1, 2}, T} is connected. Take
C = {1} and D = {2, 3}, then C and D are disjoint semi clopen sets with T = C ∪D.

Therefore by Theorem (3.3.7) space T is not Scl-Scl connected space.

Theorem 3.3.9. Semi-connected space is always Scl-Scl connected, but not conversely.

Proof. Let T be a semi-connected space, then there do not exist two semi-separated

subsets C and D such that T = C ∪ D. By Theorem (3.3.6), there are no two Scl-Scl

separated subsets C and D with T = C ∪D. Hence T is Scl-Scl connected. Conversely

it need not be hold, by example in the proof of the Theorem (3.3.6).

We found that Scl-Scl connected space has no relation with connected space. This can

be verified with the following examples. For connected space ⇏ Scl-Scl connected, take

a set T = {a, b, c} having topology τ = {∅, {a}, {b}, {a, b}, T}. Then, space have semi-

open set sets are ∅, {a}, {b, c}, {b}, {a, b}, {a, c}, T . Let C = {a} and D = {b, c} are

non-void semi clopen sets and T = C ∪ D, then by Theorem (3.3.7), T is not Scl-Scl

connected but it is connected.

For Scl-Scl connected space ⇏ connected, take R having usual topology is connected

but not Scl-Scl connected because R = (−∞, 1] ∪ (1,∞) both are disjoint and Scl-Scl

separated sets.

Thus, from the above discussions, we have the following diagram:

Figure 3.1: Relationship between different connected spaces
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3.3.2 Preservation under the quasicontinuous maps

In this subsection, we study the preservation of some strong forms of the connectedness

of the space under a quasicontinuous map. In the end, we prove the intermediate value

theorem for a quasicontinuous map. All the stronger forms of quasicontinuous maps are

denoted by QS-map and it is understood that any QS-map is also a quasicontinuous

map but its converse need not be true, for example, continuous maps and Strongly

quasicontinuous map both are stronger then quasicontinuous map.

Theorem 3.3.10. If P property is preserved under a quasicontinuous map, then P is

preserved under a QS-map.

Proof. Given that property P is preserved under a quasicontinuous map, that is for any

quasicontinuous map f : T →M if T has P property then f(T ) also has P property. To

prove P is preserved under a QS-map. Take g : T → M to be any QS-map and T has

P property. We must prove g(T ) has P . Since every QS-map is a quasicontinuous map.

So g is quasicontinuous map. Therefore g(T ) has P property. Hence QS-map preserves

the P property.

Corollary 3.3.1. If P property is preserved under a quasicontinuous map, then P is

preserved during a continuous map, but not conversely.

Proof. Since a continuous map is stronger than quasicontinuous map. Hence it preserves

property P . Conversely, Take T = {1, 2, 3} with topologies τ1 = {∅, {1}, {2}, {1, 2}, T}
and τ2 = {∅, {1}, {2, 3}, T}. Then, identity map f : (T, τ1) → (T, τ2) is a quasicontinu-

ous. As (T, τ1) and (T, τ2) are connected and not connected space, respectively.

Theorem 3.3.11. The image of semi-connected space under the quasicontinuous map

is semi-connected.

Proof. Given T is semi-connected and g : T →M is a quasicontinuous map. If possible,

assume g(T ) is not semi-connected, so by Definition (3.3.2) ∃ two non-void sets C and D

with g(T ) = C∪D such that C∩Scl(D) = ∅ = Scl(C)∩D. Then T = g−1(C)∪g−1(D).

Firstly, C ∩ Scl(D) = ∅ implies g−1(C ∩ Scl(D)) = ∅ and since g is a quasicontinuous

map, so by using Theorem (3.2.5), we get

g−1(C) ∩ Sclg−1(D) ⊂ g−1(C ∩ Scl(D)) = ∅.

Similarly

Sclg−1(C) ∩ g−1(D) ⊂ g−1(Scl(C) ∩ (D)) = ∅.



Chapter 3.Quasicontinuity 34

Which contradicts that T is semi-connected. Therefore g(T ) must be semi-connected.

Remark 3.1. The image of α-connected space under the strongly quasicontinuous map

is α-connected.

Corollary 3.3.2. The image of semi-connected space under a quasicontinuous map is

connected.

Proof. By the above Theorem (3.3.11) the image of semi-connected space under the

quasicontinuous map is semi-connected, then by Theorem (3.3.1) every semi-connected

is connected.

Subsequently we can prove results for a strongly quasicontinuous map.

Remark 3.2. The image of α-connected space under the strongly quasicontinuous map

is connected.

Corollary 3.3.3. [[47]] The image of semi-connected(resp. α-connected) space under a

quasicontinuous map(resp. strongly quasicontinuous map) is Cl-Cl connected.

Proof. By the above Corollary (3.3.2), the quasicontinuous image of a semi-connected

space is connected, then by Theorem (3.3.4), a connected space is Cl-Cl connected.

Corollary 3.3.4. The image of semi-connected space under a quasicontinuous map is

β-connected, α-connected, αβ-connected [55].

Proof. By using Theorem (3.3.11).

Theorem 3.3.12. The image of half semi-connected space under a quasicontinuous map

is half semi-connected.

Proof. Given that T is half semi-connected and g : T → M is a quasicontinuous map.

Let us assume that g(T ) is not half semi-connected so by Definition (3.3.3) ∃ two non-

void sets C and D with g(T ) = C ∪D such that C ∩Scl(D) = ∅ or ∅ = Scl(C)∩D. By

hypotheses T = g−1(C) ∪ g−1(D). If C ∩ Scl(D) = ∅ implies g−1(C ∩ Scl(D)) = ∅ and

since g is a quasicontinuous map so by using Theorem (3.2.5) we get

g−1(C) ∩ Sclg−1(D) ⊂ g−1(C ∩ Scl(D)) = ∅.

On the other hand, if Scl(C)∩D = ∅ implies Sclg−1(C)∩g−1(D) ⊂ g−1(Scl(C)∩(D)) =

∅. Which is a contradiction to that T is half semi-connected. Thus g(T ) must be half

semi-connected.
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Remark 3.3. The image of half α-connected space under a strongly quasicontinuous map

is half α-connected.

Corollary 3.3.5 ([47], Theorem5.4). The image of half semi-connected space under a

quasicontinuous map is Cl-Cl connected.

Theorem 3.3.13. The image of semi-connected space under a strongly quasicontinuous

map is semi-connected.

Proof. From Theorem (3.3.11), the quasicontinuous image of semi-connected space is

semi-connected. Since the strongly quasicontinuous map is stronger than the quasi-

continuous map, so by Theorem (3.3.10), the strongly quasicontinuous image of semi-

connected space is semi-connected.

Remark 3.4. The image of half semi-connected space under a strongly quasicontinuous

map is half semi-connected.

Theorem 3.3.14. The image of Scl-Scl connected space under a quasicontinuous map

is Scl-Scl connected.

Proof. Given g : T → M be a quasicontinuous map, T be Scl-Scl connected and M

be any space. If possible, assume that g(T ) is not Scl-Scl connected, ∃ two non-void

disjoint subsets of g(T ) with g(T ) = C ∪ D such that Scl(C) ∩ Scl(D) = ∅. Then

T = g−1(C) ∪ g−1(D). As Scl(C) ∩ Scl(D) = ∅ implies

g−1(Scl(C) ∩ Scl(D)) = ∅,

g−1(Scl(C)) ∩ g−1(Scl(D)) = ∅.

by Theorem (3.2.5) we have Sclg−1(C) ⊂ g−1(Scl(D)) so

Sclg−1(C) ∩ Sclg−1(D) = ∅,

therefore, the sets g−1(C) and g−1(D) a form Scl-Scl separation which contradicts our

assumption. Thus g(T ) is Scl-Scl connected.

Theorem 3.3.15. The image of Scl-Scl connected space under a strongly quasicontin-

uous map is Scl-Scl connected.

Proof. From Theorem (3.3.14), the quasicontinuous image of Scl-Scl connected space

is Scl-Scl connected. Since the strongly quasicontinuous map is stronger than quasi-

continuous map, so by Theorem (3.3.10) the strongly quasicontinuous image of Scl-Scl

connected space is Scl-Scl connected.
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Theorem 3.3.16. The image of b-connected space under a quasicontinuous map is

semi-connected.

Proof. Given a b-connected space T and g : T → M is a quasicontinuous map. Let

us assume that g(T ) is not semi-connected, so by Definition (3.3.2) ∃ two non-void

sets C and D with g(T ) = C ∪ D such that C ∩ Scl(D) = ∅ = Scl(C) ∩ D. Then

T = g−1(C) ∪ g−1(D). Firstly, we take C ∩ Scl(D) = ∅ implies g−1(C ∩ sCl(D)) = ∅
and since g is a quasicontinuous map, so by using Theorem (3.2.5) we get

g−1(C) ∩ Sclg−1(D) ⊂ g−1(C ∩ Scl(D)) = ∅.

Since we know bcl(C) ⊂ Scl(C) then, g−1(C) ∩ bclg−1(D) ⊂ ∅. In a similar way from

Scl(C) ∩ D = ∅, we get bclg−1(C) ∩ g−1(D) is empty. This shows that T is not semi-

connected, contrary to our assumption. Thus g(T ) must be semi-connected.

Remark 3.5. The image of β-connected space under a strongly quasicontinuous map is

semi-connected.

Theorem 3.3.17. The image of b-connected(resp. β-connected [49]) space under a

strongly quasicontinuous map is semi-connected.

Proof. By Theorem (3.3.16) the image of b-connected space under a quasicontinuous

map is semi-connected. Since a strongly quasicontinuous map is stronger than a qua-

sicontinuous map. So by Theorem (3.3.10) the image of b-connected space under a

strongly quasicontinuous map is semi-connected.

Theorem 3.3.18. The image of half b-connected space under a quasicontinuous map is

half semi-connected.

Proof. Given a half b-connected space T and g : T →M is a quasicontinuous map. Let

us assume that g(T ) is not half semi-connected so by Definition (3.3.3) ∃ two non-void

sets A and B with M = A ∪ B and A ∩ Scl(B) = ∅ or ∅ = Scl(A) ∩ B. By hypotheses

T = g−1(A) ∪ f−1(B). If A ∩ Scl(B) = ∅ implies g−1(A ∩ Scl(B)) = ∅ and since g is a

quasicontinuous map so by using Theorem (3.2.5) we get

g−1(A) ∩ Sclg−1(B) ⊂ g−1(A ∩ Scl(B)) = ∅,

by using bcl(A) ⊂ Scl(A), we get g−1(A) ∩ bclg−1(B) = ∅. On the other hand, if

Scl(A) ∩B = ∅, in similar way we get

bclg−1(A) ∩ g−1(B) = ∅.
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This shows that T is not half semi-connected which is a contradiction. Thus g(T ) must

be half semi-connected.

Remark 3.6. The image of half β-connected space under a quasicontinuous map is half

semi-connected.

Theorem 3.3.19. The image of half b-connected(resp. half β-connected) space under a

strongly quasicontinuous map is half semi-connected.

Proof. From Theorem (3.3.18), the image of half b-connected under a quasicontinuous

map is half semi-connected. Since Strongly quasicontinuous -the map is stronger than a

quasicontinuous map. By Theorem (3.3.10), the image of half b-connected space under

a Strongly quasicontinuous map is half semi-connected.

The main consequence of the intermediate value theorem of calculus is the study of real-

valued continuous functions on closed intervals [a, b] of the real line, where we consider

the interval as a subset of R. When we consider this interval as a space, then this

theorem does not depend only on the continuity of function but on the properties of

the space also. Now the connectedness as a topological property inherited by the space

comes into the picture, which gives the general form of this theorem. In the next result,

we see how the intermediate value theorem in calculus is generalized using a topological

approach as :

Theorem 3.3.20 (Intermediate value theorem). [38] For a connected space T , M is an

ordered space, and f : T → M is a continuous map. If a, b ∈ T and r ∈ M such that

r ∈ (f(a), f(b)). Then ∃ c ∈ T such that f(c) = r.

Now the question arises from the general form of the intermediate value theorem: Is it

possible that the theorem also holds for a more general form of continuous map that is

a quasicontinuous map? Unfortunately, we can see from the below example that it does

not hold good for a quasicontinuous map.

Example 3.3.1. Let T = [0, 2],M = R be space having standard topology and g : T →M

is a map defined as follows:

g(z) =


3 if 0 ≤ x ≤ 1

2 ,

1 if 1
2 < z ≤ 1,

−z if 1 < z ≤ 2.

The map g is a quasicontinuous map. Take r = 2 ∈ M , then r lies between g(1/2) = 3

and g(1) = 1. But there is no c ∈ T such that g(c) = r. Hence the intermediate value

theorem does not hold when we replace continuous by a quasicontinuous map.
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Now we can find that the general intermediate value theorem is not possible for a qua-

sicontinuous map. But in the case of semi-connected space, it works.

Theorem 3.3.21 (Intermediate value theorem for quasicontinuous map). For a semi-

connected space T , M is an ordered space and g : T → M is a quasicontinuous map. If

a, b ∈ T and r ∈M s.t. r ∈ (g(a), g(b)). Then ∃ c ∈ T such that g(c) = r.

Proof. Given a semi-connected space T , M is an ordered space and g : T → M is a

quasicontinuous map. The sets C = g(T )∩ (−∞, r) and D = g(T )∩ (r,∞) are non-void

and disjoint because g(a) ∈ A and g(b) ∈ D. Both sets are open set in g(T ) because

both rays are open set in M . If there is no c ∈ T such that g(c) = r, then g(T ) would be

the union of C and D. Then C and D form a separation for g(T ), which contradicts that

the image of semi-connected space under a quasicontinuous map is connected. Therefore

g(c) = r, for a c ∈ T .

Remark 3.7. If T is a α-connected space and g is a strongly quasicontinuous map, then

the intermediate value theorem also holds.

3.4 CONCLUSION

In this chapter, we summarizing the key findings and insights gained in the exploration

of quasicontinuity. The set of all continuous functions C(T,M) is a subset of the set

of all quasicontinuous functions Q(T,M). This chapter serves as a reflection on the

significance of the preservations of different forms of connectedness under a quasicontin-

uous function. Finally, we examined the Intermediate Value Theorem in the context of

quasicontinuous function and set the stage for further chapters in this study of functions

in space.
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The topology of pointwise

convergence on the space Q(T,M)

4.1 Introduction

In previous chapter, we already studied that a set of continuous functions is contained

in a set of quasicontinuous functions. The introduction of the theory of function spaces

of continuous function equipped with the topology of point convergence, now called Cp-

theory, is attributed to Alexander Vladimir Arhangel’skii. In 1992, Arhangel’skii studied

important results of Cp-theory in [60]. Subsequently, numerous researchers dedicated

their efforts to enhancing Cp-theory, bestowing upon it the elegance and magnificence it

possesses today. In the latter half of the 20th century, Cp theory underwent significant

development, emerging as one of the most dynamic and actively researched areas within

set-theoretic topology. Tkachuk made substantial contributions to this field, presenting

a wealth of results and posing numerous unresolved questions in his influential works

[56, 57, 75, 77]. These works not only advanced the theoretical foundations of Cp theory

but also stimulated extensive subsequent research.

In 2018, McCoy et al. [14] consolidated and expanded upon the existing body of knowl-

edge by compiling comprehensive general results concerning topological function spaces.

Their work encompassed a diverse range of topologies such as the uniform topology, fine

topology, and graph topology, among others, which are crucial in the study of topologi-

cal structures and their properties [14]. This compilation not only provided a synthesis

of existing findings but also highlighted avenues for further exploration and refinement

within the broader context of topological function spaces. In recent years Mishra and

Bhaumik [90], and Aaliya and Mishra [82] studied properties of topological function

spaces under Cauchy convergence topology and regular topology, respectively. Thus, the

39
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evolution of Cp theory and related areas underscores its pivotal role in shaping contem-

porary research in set-theoretic topology, marked by both foundational advancements

and ongoing inquiries into unresolved problems and novel theoretical perspectives.

Now, let us see how the study of topological quasicontinuous function space begins where

functions were considered quasicontinuous functions. Hola and Holy studied various

properties of the space of quasicontinuous functions under different topologies in the

literature in [17] and [35]. Recently, in 2020, Hola and Holy studied cardinal invariants

of the space Qp(T ). Furthermore, in 2022, Kumar and Tyagi studied cardinal invariants

of the space Qp(T,M) in [37] a more general form. Extending these investigations, we

present in this chapter additional findings concerning cardinal invariants of the space

Qp(T ) and further study some maps on both Qp(T ) and Qp(T,M) spaces. Roughly

speaking, cardinal functions extend such important topological properties as countable

base, separable, and first countable to higher cardinality. Cardinal functions then allow

one to formulate, generalize, and prove results of the type just discussed systematically

and elegantly. In addition, cardinal functions allow one to make precise quantitative

comparisons between certain topological properties. For example, it is well known that

a space with a countable base has a countable dense set. A converse of this result from

the theory of cardinal functions states that a regular space with a countable dense set

has a base of cardinality ≤ 2ω.

In the section (4.2), we define the topology of pointwise convergence on function space

and recall some important definitions of cardinal invariants (weight, network, tightness,

Lindelöff no. and pseudocharacter, etc.) and their interrelation. Moreover, we discuss

results that help us to understand our main results.

In section (4.3), we study the coincidence of network weight and weight of Qp(T ). For

a regular space T , we characterize the cardinal invariants such as tightness, pseudo

character, network weight, and i-weight for Qp(T ) and Qp(T,M). Further, we prove a

regular space is Lindelöf if Qp(T ) has countable tightness and provide a condition of

separability of an regular space in terms of the cardinal function of a compact subset of

Qp(T,M).

In section (4.4), we prove the openness of restriction map from space Qp(T ) to Q(T,M),

where M is a dense subspace of T , a map q defined on Cp(T ) × Qp(T ) to Qp(T ) by

q(f, g) = f · g is a continuous map and the image of the induced map from Qp(T,M)

to Qp(T,Z) is dense in Qp(T,Z), where the induced map is r∗ : Qp(T,M) → Qp(T,Z)

defined by r∗(f) = r ◦ f whenever r be surjective continuous map from M to Z.
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4.2 Preliminaries

We define the topology of pointwise convergence on the function spaces,“ The collection

S = {S(x, U) : x ∈ T,U is open set inM}, where
S(x, U) = {f ∈ F (T,M) : f(x) ∈ U}.

is subbase for the topology on the set F (T,M) called the topology of point-wise conver-

gence?” The topology of point-wise convergence on the Q(T,M),“ The collections

S ′ = {[x, U ] : x ∈ T,U is open set inM}, where
[x, U ] = {f ∈ Q(T,M) : f(x) ∈ U}.

and

B = {[x1, . . . , xn;U1, . . . , Un] : xi ∈ T,Ui open set inM},where
[x1, . . . , xn;U1, . . . , Un] = {f ∈ Q(T,M) : f(xi) ∈ Ui, 1 ≤ i ≤ n}.

are respectively subbase and base, for the topology of point-wise convergence Q(T,M).”

The space Qp(T,M) is the subspace of Fp(T,M). For metric space M , the set

W (f,A, ϵ) = {g ∈ Q(T,M) : d(f(x), g(x)) < ϵ,∀x ∈ A ∈ F , ϵ > 0}.

is an open neighbourhood of f in Qp(T,M).

Since our main objective is to discuss cardinal invariance for spaces Qp(T ) and Qp(T,M),

we now recall some important definitions of cardinal functions for the space T for better

understanding. If T is space, then

1. the weight of the space T is

w(T ) = ℵ0 +min{|B| : B is a basis inT}. (4.1)

2. the network weight of the space T is

nw(T ) = ℵ0 +min{|N | : N is a network ofT}. (4.2)

where the network of a space T is a collection N of subsets of T such that for any

x ∈ T and every open set U containing x, ∃ N ∈ N such that x ∈ N ⊂ U .
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3. the i-weight of the space T is

iw(T ) = ℵ0 +min{w(M) : ∃ continuous and bijective f : T →M}.. (4.3)

4. the weak covering number of the space T is

wc(T ) = ℵ0 +min{|J | : J is a weak covering ofT} (4.4)

where a weak covering of a space T is a collection J of open set in T such that⋃J = T .

5. the tightness of the space T is

t(T ) = {t(x, T ) : x ∈ T}, where (4.5)

t(x, T ) = ℵ0 + sup{a(x,M) : x ∈M ⊂ T} (4.6)

is tightness at the point x ∈ T and a(x,M) = min{|Z| : Z ⊂M,x ∈ Z}.

6. the density of the space T is

d(T ) = ℵ0 +min{|D| : D is a dense set inT}. (4.7)

7. the character of the space T is

χ(T ) = sup{χ(x, T ) : x ∈ T}, where (4.8)

χ(x, T ) = ℵ0 +min{|O| : O is local base atx} (4.9)

is character of the point x ∈ T .

8. the pseudo character of the space T is

ψ(T ) = sup{ψ(x, T ) : x ∈ T}, where (4.10)

ψ(x, T ) = ℵ0 +min{|γ| : γ is a family of open set inT such that ∩ γ = {x}}
(4.11)

is pseudocharacter of the point x ∈ T . The pseudocharacter of the subset A of the

space T is

ψ(A, T ) = min{|U| : U ⊂ τ(T ),
⋃

U = A}. (4.12)
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We have an interrelation between cardinal functions.

d(T ) ≤ nw(T ) ≤ w(T ), whereT is arbitrary space, (4.13)

d(T ) = nw(T ) = w(T ), whereT is metrizable space. (4.14)

For a more comprehensive understanding of cardinal functions associated with space,

refer to [73]. For more details on cardinal invariants for the space of continuous functions

see [60, 75]. Let us look at some important lemmas which help us to prove the main

results in the next section.

Lemma 4.2.1. [18] If T and M are spaces and f : T → M is a function such that for

every x ∈ T , ∃ an open subset U of T containing x such that f(y) = f(x) for any y ∈ U

and x is in the closure of U , then f is said to be quasicontinuous.

Lemma 4.2.2. [37] For any x ∈ T , non-empty closed E ⊆ T such that x /∈ E and

y1, y2 ∈M , where T is a regular space and M is any space, ∃ a function f in Qp(T,M)

such that f(x) = y1 and f(E) = y2.

Lemma 4.2.3. [37] For any x ∈ T , the evaluation map ex : Qp(T,M) → M , denoted

by ex(f) = f(x), is continuous.

4.3 Cardinal invariants of Qp(T ) and Qp(T,M)

As we know for an arbitrary space T , nw(T ) ≤ w(T ) but for metrizable space T network

weight and weight coincide. In addition to the metrizable space T , the problem of the

coincidence of network weight and weight can be solved in terms of the function space.

However, according to Hola and Holy [18, Example 5.1], nw(Cp(R)) ̸= w(Cp(R)), since
nw(Cp(R)) = ℵ0 and w(Cp(R)) = ℵ1. In continuation, the result [18, Corollary 4.11]

tells us the coincidence of network weight and weight for the space Qp(T ) for countable

space T but our next result is a coincidence of network weight and weight for the space

Qp(T ) in the more general form of the space T .

Theorem 4.3.1. For a ordered Hausdorff space T , then nw(Qp(T )) = w(Qp(T )) = |T |.

Proof. Let T is ordered Hausdorff space. Then, for each r ∈ T , we choose an open set

Ur such that x ∈ Ur for all x < r. We define a function fr : T → R as,

fr(x) =

1, if x ∈ Ur;

0, otherwise.
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By Lemma (4.2.1) is quasicontinuous. Let N is network for the space Qp(T ) such that

|N | = nw(Qp(T )). Fix 1 > ϵ > 0, then {W (fr, {r}, ϵ) : r ∈ X, } is collection of open

neighborhoods of fr ∈ Qp(T ). By the definition of network, for all fr ∈ Qp(T ) there

exists Nr ∈ N such that fr ∈ Nr ⊂ W (fr, {r}, ϵ). The map g : T → N defined as

g(r) = Nr for any r ∈ T . Now we claim |T | ≤ |N |. To prove our claim, we show

that the map g : T → N defined as g(r) = Nr for any r ∈ T , is injective. Let us

choose two distinct elements r1 and r2 of T . By the definition of the function fr, fr1 /∈
W (fr2 , {r2}, ϵ) i.e. Nr1 ⊈ W (fr2 , {r2}, ϵ). Since Nr2 ⊆ W (fr2 , {r2}, ϵ) so Nr1 ̸= Nr2 .

Since |N | = nw(Qp(T )) and |T | ≤ |N |, therefore |T | ≤ nw(Qp(T )). By result [18,

Theorem 4.9], w(Qp(T )) = |T |, therefore w(Qp(T )) ≤ nw(Qp(T )). But by the result

(2.13), nw(Qp(T )) ≤ w(Qp(T )), therefore nw(Qp(T )) = w(Qp(T )).

We are now going to investigate the cardinal function for the space Qp(T ) in terms of

the covering property. Let us define some important definitions and results that help

in proving the next result. The Lindelöf space is defined by Alexandroff and Urysohn

in 1929 as a space T called Lindelöf or has Lindelöf property if every open cover of T

is reducible to a countable subcover. The Lindelöf degree of a space T is a cardinal

number that provides a measure of the ”smallness” of the space in terms of its covering

properties. Symbolically the Lindelöf degree of a space T is defined by L(T ) = ℵ0 +

inf{κ : any open cover V ofT has a subcoverU ⊆ V and |U| ≤ κ}. When investigating

topological function spaces, it is observed that the tightness of such spaces is intricately

linked to the Lindelöf degree of the underlying base space. This relation becomes clear in

the ensuing result [59, Theorem 4.7.1] αL(T ) = t(CαT ), where α is collection of subsets

of T . Motivated by this result, we set out to explore the relation between the tightness

of the space Qp(T ) and the Lindelöf degree of the space T in our next result.

Theorem 4.3.2. For any regular space T , then L(T ) ≤ t(Qp(T )).

Proof. Let t(Qp(T )) = η and O be any open cover of T . Let us choose a subcollection

F ′ = {A ∈ F : A ⊂ OA, OA ∈ O} of F . By the Lemma (4.2.2), for each A ∈ F ′ ∃
fA ∈ Qp(T ) such that fA(OA) = {0} and fA(T\OA) = {1}. Let us construct a subset

P = {fA : A ∈ F ′} of Qp(T ). By the definition of fA, it is clear that zero function

f0 ∈ P . By the definition of tightness of the space Qp(T ), ∃ a subset P ′ of P such

that |P ′| ≤ η and f0 ∈ P ′. Let us choose a subcollection O′ = {OA : fA ∈ P ′} of O,

where |O′| ≤ η. Now we claim O′ is cover of T . For this we show that for all x ∈ T ,

∃ OA ∈ O′ such that x ∈ OA. Let us consider an open neighborhood [x, (−1, 1)] =

{g ∈ Qp(T ) : g(x) ∈ (−1, 1)} of the zero function f0. Since f0 ∈ P ′ so ∃ some fA ∈ P ′

such that fA ∈ P ′ ∩ [x, (−1, 1)]. Thus fA(x) < 1, but by definition of fA, fA(x) = 0.

Therefore, x ∈ OA. Finally by definition of Lindelöf degree, L(T ) ≤ t(Qp(T )).
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Corollary 4.3.1. For any regular space T , if t(Qp(T )) = ℵ0, then T is Lindelöf space.

According to the Example [18, Example 5.1], ψ(Qp(R)) = c. But we know that wc(R) =
ℵ0 i.e. ψ(Qp(R)) ̸= wc(R). An emerging question is how the pseudocharacter and weak

covering numbers are generally interconnected. Our next result tells us that under the

condition of regularity of space T and for any metric space M , wc(T ) ≤ ψ(Qp(T,M)).

Theorem 4.3.3. For a regular space T and M be a metric space, then wc(T ) ≤
ψ(Qp(T,M)).

Proof. Let h0 ∈ Qp(T,M) such that h0(x) = b, for all x ∈ T , where b is fixed in

M . Let ψ(h0, Qp(T,M)) = |V|, where V = {W (h0, Ai, ϵ) : i ∈ J} is collection of open

neighborhoods of h0 ∈ Qp(T,M), such that
⋂V = {h0}, Ai ∈ F and J is arbitrary index

set. Let us construct a collection BAi = {Ux : x ∈ Ai} of open subset of T such that for

each x ∈ Ai, we can pick a open set Ux that contain x. Let J =
⋃{BAi : i ∈ J}, where

|J | ≤ |J |. We claim that J is the weak covering of T . Let x ∈ T and x /∈ ⋃J . Then

by Lemma (4.2.2) ∃ a map h ∈ Qp(T,M) such that h(x) = a and h(
⋃J ) = {b} where

a ̸= b. But each W (h0, Ai, ϵ) contains h, which is a contradiction. Thus,
⋃J = T .

Since J is a weak cover of T , therefore, wc(T ) ≤ ψ(Qp(T,M)).

By the Problem [76, Problem 175], the separability of the Tychnoff space T is related

to the pseudocharacter of some compact subspace G of Cp(T ) that is T is separable if

ψ(G,Qp(T,M)) ≤ ℵ0. Now, in the next result, we are going to find the condition for the

separability of regular space T with the help of the pseudocharacter of some compact

subspace of the Qp(T,M), where M is order space.

Theorem 4.3.4. Assume that T is an regular space and M is an ordered space with an

ordered topology. Given a compact subset G ⊂ Qp(T,M) such that ψ(G,Qp(T,M)) ≤ ℵ0,

then T is separable.

Proof. Let g ∈ G such that g(x) = b, for all x ∈ T , where b ∈ M is fixed. Let open

set U = [x1, . . . , xn;V1, . . . , Vn] in Qp(T,M), where xi ∈ T and Vi open set in M .

Construct a set K(U) = {x1, . . . , xn}. Since ψ(G,Qp(T,M)) ≤ ℵ0, then by definition

of pseudocharacter ∃ a collection V = {On : n ∈ N} of open subsets of Qp(T,M) such

that
⋂V = G. So, for fixed n ∈ N and for each g ∈ G we have an open set Ug such

that g ∈ Ug ⊂ On. Since G is compact so every open cover {Ug : g ∈ G} of G has finite

subcover say {Ug1 , . . . , Ugm}. Construct two sets Pn =
⋃m

i=1 Ugi such that G ⊂ Pn ⊂ On

and Dn =
⋃m

i=1K(Ugi). It is easy to see that D = ∪{Dn : n ∈ N} is countable. Now we

claim D = T . Let us assume that D ̸= T , then x ∈ T \D. By the Lemma (4.2.3) the

map ex : Qp(T,M) →M defined by ex(f) = f(x) is continuous, therefore the set ex(G)
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is bounded inM . So ∃ b′ > b such that |f(x)| < b′ for all f ∈ G and from Lemma (4.2.2)

we have a map h ∈ Qp(T,M) with h(x) = b′ and h(D) ⊂ {b}. This implies h(a) = b′,

so h /∈ G. However h|D = g|D implies h ∈ ⋂V, a contradiction.

By the result [18, Theorem 4.12] that for a regular space T , network weight of T follows

the network weight of Qp(T ) and in general network weight of any space T dominates

the pseudocharacter of the space T by Problem [76, Problem 156(iii)]. Now, in the next

result, we proved that the pseudocharacter of Qp(T,M) lies between the network weight

of T and the network weight of Qp(T,M).

Theorem 4.3.5. For any space M and a regular space T , then nw(T ) ≤ ψ(Qp(T,M))

Proof. Let g(x) = z0 for all x ∈ T and ψ(g,Qp(T,M)) = |V|, where V is collection of

open subsets of Qp(T,M) such that ∩V = {g0} and V contains element of the form

U = [x1, . . . , xn;V1, . . . , Vn]. Now construct a set K(U) = {x1, . . . , xn} and take N =

∪{K(U) : U ∈ V}, clearly |N | ≤ |V|. Since ψ(g,Qp(T,M)) ≤ ψ(Qp(T,M)), so |V| ≤
ψ(Qp(T,M)). Now we claim that N is a network of T . Let us consider V be any open

set in T containing x. By Lemma (4.2.1) define a quasicontinuous function as

f(x) =

z1 if x ∈ V ;

z0 otherwise.

There exists a U ∈ V such that f /∈ U . Then ∃ a N ∈ N such that z0 /∈ f(N). Therefore

for each y ∈ N the f(y) ̸= z0. This implies y /∈ V C , thus y ∈ N ⊂ V . Therefore N is

network for T . Hence nw(T ) ≤ ψ(Qp(T,M)).

Corollary 4.3.2. For any spaceM and a regular space T , then nw(T ) ≤ nw(Qp(T,M)).

Proof. For a space T the ψ(T ) ≤ nw(T ). Then by Theorem (4.3.5), we get nw(T ) ≤
nw(Qp(T,M)).

Corollary 4.3.3. For any metric spaceM and a regular space T , then d(T ) ≤ nw(Qp(T,M)).

[37, Theorem 4.13]

Proof. For a space T the d(T ) ≤ nw(T ). Then by Theorem (4.3.5), we get d(T ) ≤
nw(T ) ≤ nw(Qp(T,M)).

Theorem 4.3.6. For a regular space T , the inequality wc(T ) · log(nw(T )) ≤ iw(Qp(T ))

holds.
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Proof. For any space Z, ψ(Z) · log(nw(Z)) ≤ iw(Z). From Theorem (4.3.3), we have

wc(T ) ≤ ψ(Qp(T )) and by Corollary (4.3.2) nw(T ) ≤ nw(Qp(T )). Therefore, wc(T ) ·
log(nw(T )) ≤ iw(Qp(T )).

In general wc(T )·log(nw(T )) ̸= iw(Qp(T )). For example, from [18, Example 5.1] we have

c = ψ(Qp(R)) ≤ iw(Qp(R)), wc(R) = ℵ0 and nw(R) = ℵ0, so we have log(nw(R)) = ℵ0.

This implies wc(R) · log(nw(R)) ̸= iw(Qp(R)).

Theorem 4.3.7. For any Hausdorff space T and any spaceM , the inequality d(Fp(T,M)) ≤
w(T ) · d(M) holds.

Proof. For any space T and dense subset S of T , d(T ) ≤ d(S). By [37, Theorem 4.15],

we have Qp(T,M) which is dense in Fp(T,M). Therefore d(Fp(T,M)) ≤ d(Qp(T,M)).

Also from [37, Theorem 4.10], d(Qp(T,M)) ≤ w(T ) · d(M). Thus d(Fp(T,M)) ≤ w(T ) ·
d(M).

4.4 Maps on Qp(T ) and Qp(T,M)

Initially, in [59, Chapter-II], McCoy and Ntantu investigated some maps on the space

Cp(T,M). Continuing this work, Kumar and Tyagi studied some maps on the space

Qp(T,M) in [37]. Now, in this section, we study properties of maps on Qp(T ) and

Qp(T,M) spaces.

Theorem 4.4.1. Let M be an open subspace of T and let T be a Hausdorff space. For

any f ∈ Qp(T ), πM (f) = f |M defines a restriction map πM : Qp(T ) → Qp(M). Then

πM (Qp(T )) = Qp(M) and πM are open continuous.

Proof. The restriction map πM : Qp(T ) → Qp(M) is continuous since it is a projection

map. For non-empty open subset Y of T , we prove πM (Qp(T )) = Qp(Y ). It is oblivious

πM (Qp(T )) ⊂ Qp(M). SinceM is open set in T and g ∈ Q(M), now we define a function

h : T → R as follows

h(x) =

g(x), ifx ∈M ;

1, T \M.

Clearly πM (h) = h|M = g. Let any x ∈ T . Since h|M = g and g is quasicontinuous.

Therefore, for x ∈ M function h is quasicontinuous. If x ∈ T \ M , then h(x) =

h(y) for all y ∈ T \M = T \M (Since T \M is closed). Hence by Lemma (4.2.1) h

is quasicontinuous at T . Finally we have h is quasicontinuous. Now, we prove that
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πM is open. Let W (f, {x1, . . . , xk}, ϵ) is open set in Qp(T ), where k ∈ N. We claim

πM (W (f, {x1, . . . , xk}, ϵ)) is open set in Qp(M). For this we prove

πM (W (f, {x1, . . . , xk}, ϵ)) =W (πM (f), {x1, . . . , xk}, ϵ),

where xi ∈ M for all 1 ≤ i ≤ k. By definition of topology of point-wise convergence

W (πM (f), {x1, . . . , xk}, ϵ) ⊂ Qp(M). By definition of map πM ,

πM (W (f, {x1, . . . , xk}, ϵ)) ⊂ Qp(M).

Let g ∈W (f, {x1, . . . , xk}, ϵ) then by definition of open set in Qp(T ), |g(xi)− f(xi)| < ϵ

for all either i = 1, 2, . . . , k or i = 1, 2, . . . , l, where l ≤ k.

If x ∈ M , implies πM (g)(x) = g(x) and πM (f)(x) = f(x). This show that πM (g) ∈
W (πM (f), {x1, . . . , xl}, ϵ), therefore

πM (W (f, {x1, . . . , xk}, ϵ)) ⊂W (πM (f), {x1, . . . , xl}, ϵ)

Remain to prove πM (W (πM (f), {x1, . . . , xk}, ϵ)) ⊃ W (πM (f), {x1, . . . , xl}, ϵ). Take g ∈
Qp(M) so ∃ a g1 ∈ Qp(T ) such that g = πM (g1). Let

m(x) =

g1(x) if x /∈ ⋃k
i=l+1 V

∗
i ;

f(x) if x ∈ ⋃k
i=l+1 V

∗
i .

where V ∗
i = Vi ∩ (T\M) and Vi are disjoint open set containing point xi, then m is

quasicontinuous. Since πM (m) = πM (g1) = g implies that m ∈ W (f, {x1, . . . , xk}, ϵ)
and g ∈ πM (W (f, {x1, . . . , xk}, ϵ)). So,

πM (W (πM (f), {x1, . . . , xk}, ϵ)) ⊃W (πM (f), {x1, . . . , xl}, ϵ).

As we know from the result in [39] semi-continuity and quasi-continuity are equivalence

for single-valued function. Now from the result [Remark, 13[26]] and (4.4.2) it is clear

that the product of two quasicontinuous functions is not quasicontinuous in general but

on the other hand the product of continuous and quasicontinuous function is quasicon-

tinuous respectively. For any f : T → R and g : T → R maps. The product of maps f

and g is map f · g : T → R defined by (f · g)(x) = f(x) · g(x)

Theorem 4.4.2. The product of continuous and quasicontinuous functions is quasicon-

tinuous.
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Proof. Suppose f and g are continuous and quasicontinuous maps respectively. Now we

claim that product map f · g is quasicontinuous. For this assume h : T → R×R defined

by h(x) = (f(x), g(x)) and j : R × R defined by j(x, y) = x · y, it is easy to check j is

continuous. Now to prove h is quasicontinuous, let any W = U ×V is open set in R×R,
where U and V are open set in R. Then h−1(W ) = h−1(U × V ) = f−1(U) ∩ g−1(V ).

Since f is continuous and g is quasicontinuous so by the respective definition, f−1(U)

and g−1(V ) are open and semi-open set in T , respectively. The intersection of semi-open

and open set is semi-open set, thus W is semi-open set. therefore h is quasicontinuous.

The map f ·g = j◦h and the composition of the quasicontinuous map and the continuous

map is quasicontinuous. Hence f · g is quasicontinuous.

Theorem 4.4.3. The map q : Cp(T ) × Qp(T ) → Qp(T ) defined by q(f, g) = f · g is

continuous for any space T .

Proof. Let h0 = (f0, g0) ∈ Cp(T ) × Qp(T ) and V be any open set in Qp(T ) such that

q(h0) = f0 · g0 ∈ V . Then ∃ {x1, . . . , xn} ⊂ T, n ∈ N and ϵ > 0 such that q(h0) ∈
W (q(h0), {x1, . . . , xn}, ϵ) ⊂ V . Take M = Σn

i=1|f0(xi)| + Σn
i=1|g0(xi)| + 3 and δ =

min{ ϵ
2M , 1}. The set O = O1 × O2 is open set in Cp(T ) × Qp(T ) containing h0, where

O1 = W (f0, {x1, . . . , xn}, δ) and O2 = W (g0, {x1, . . . , xn}, δ) are open neighborhood of

f0 and g0 in Cp(T ) and Qp(T ) respectively. For any h = (f, g) ∈ O we have, |g(xi)| <
1 + |g0(xi)| < M and |f(xi)| < 1 + |f0(xi)| < M , for all i ≤ n. So,

|q(h)(xi)− q(h0)(xi)| = |(f · g)(xi)− (f0 · g0)(xi)| = |f(xi) · g(xi)− f0(xi) · g0(xi)|
= |f(xi) · g(xi)− f0(xi) · g(xi) + f0(xi) · g(xi)− f0(xi) · g0(xi)|
≤ |g(xi)||(f(xi)− f0(xi))|+ |f0(xi)||(g(xi)− g0(xi))|
< M · ϵ

2M
+M · ϵ

2M
< ϵ, for all i ≤ n

|q(h)(xi)− q(h0)(xi)| < ϵ

This show that q(h) = f · g ∈ V and q(O) ⊂ V , therefore map q is continuous at h0.

Since h0 is arbitrary element of Cp(T )×Qp(T ), hence q is continuous map.

In [37], Kumar and Tyagi studied the continuity of an induced map on Qp(T,M). In

continuation, we are going to prove the denseness of the image of the induced map.

Theorem 4.4.4. Consider a surjective continuous map r : M → Z, and the induced

map r : Qp(T,M) → Qp(T,Z) defined as r∗(f) = r ◦ f . Then, the space r∗(Qp(T,M))

is dense in Qp(T,Z)

Proof. Given r : M → Z surjective continuous map. To prove r∗(Qp(T,M)) is dense in

Qp(T,Z). For this we show that for any g ∈ Qp(T,Z) and any open set [x1, . . . , xn : V1, . . . , Vn]
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inQp(T,Z) containing g, where xi ∈ T and Vi open set in Z, then [x1, . . . , xn;V1, . . . , Vn]∩
r∗(Qp(T,M)) ̸= ∅. Now by the definition of continuity and surjectivity of map r implies

that, ∀i ≤ n, r−1(Vi) = Ui for some Ui open set in M . Therefore any element f of

[x1, . . . , xn : U1, . . . , Un] ⊂ Qp(T,M), then r(f(xi)) = r∗(f)(xi) ∈ Vi for all i ≤ n, which

implies r∗(f) ∈ [x1, . . . , xn : V1, . . . , Vn]. Thus [x1, . . . , xn;V1, . . . , Vn] ∩ r∗(Qp(T,M)) ̸=
∅.

4.5 CONCLUSION

In this chapter, we characterized the cardinal invariants such as pseudocharacter, net-

work weight, weight, and tightness for space Qp(T,M). We proved that pseudocharacter

of Qp(T,M) dominates the network weight, density and weak covering number of regular

space T and we obtained necessary and sufficient conditions on T so that weight and

network weight of Qp(T ) coincide. Further, we proved the condition of separability of a

regular space in terms of pseudocharacter of a compact subset of Qp(T,M). Moreover,

we studied the openness of the restriction map on Qp(T ) and further proved that the

image of Qp(T,M) under the induced map is dense in Qp(T,Z).



Chapter 5

The space Q(T ) endowed with the

compact convergence topology

5.1 Introduction

In previous chapter (4), we studied the space Q(T,M) under pointwise convergence

topology, which is coarsest topology on Q(T,M). It helps us to study various properties

of Q(T,M). But to its disadvantage, it does not preserves the quasicontinuity under

the convergence of sequence of quasicontinuous functions. On the other hand uniform

topology gives a metric structure in which most of the results reduce to triviality. This

motivate us to dissect the space of Q(T,M) with a topology lies between pointwise and

uniform convergence topology, also in which sequence of quasicontinuous functions con-

verge to a quasicontinuous function. Thus, we study the topology of uniform convergence

on compacta(or the compact convergence topology) over the space of quasicontinuous

functions Q(T ), which is finer than the topology of pointwise convergence on Q(T ).

Also, the function space of continuous function endowed with the compact convergence

topology is a subspace of QC(T ). The study regarding CC(T ) can be found in [14, 56–

58]. For better understanding of this chapter, first we take a brief look over the existing

study of QC(T,M). In 2017, L.Hola and D.Holy [17] studied the Ascoli types theorem

for QC(T,M). In 2018, L.Hola and D.Holy [35] studied the metrizability and completely

metrizability of QC(T,M). In 2021, L.Hola and D.Holy [36] studied some cardinal func-

tions of QC(T,M). Extending these investigations, we present in this chapter additional

findings concerning density and various types of tightness of the space QC(T ). Moreover,

we studied the Frechet-Urysohn property of QC(T ).

51
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In the section (5.2), we define the compact convergence topology over the function space

and recall some important definitions of various types of tightness cardinal functions

and results that help to understand our main results.

In section (5.3), we study the coincidence of tightness of QC(T ) and compact Lindelöf

no. of T . Next we characterize the density of QC(T ) in terms of k-cofinality of T and

various types of tightness(density tightness, fan tightness, and strongly fan tightness) of

QC(T ) in terms of covering of space T .

In section (5.4), we study the equivalent condition for the QC(T ) space to be Fréchet-

Urysohn space.

5.2 Preliminaries

The compact convergence topology on Q(T ) in [36] is defined as “ If Hausdorff space

T and K(T ) be the collections of all nonempty compact subsets of T . The compact

convergence topology on F (T,R), denoted as τUC , is induced by the uniformity UUC .

The base of this uniformity consists of sets of the form

W (C, ϵ) = {(f, g) : |f(x)− g(x)| < ϵ,∀x ∈ C ∈ K(T ), ϵ > 0},

where F (T,R) represents the space of real-valued functions on T .

The general τUC-basic neighborhood of a function f in F (T,R) is denoted byW (f, C, ϵ),

defined as

W (f, C, ϵ) = {g ∈ F (T,R) : |f(x)− g(x)| < ϵ,∀x ∈ C ∈ K(T ), ϵ > 0}, ”

Recall some definitions, any space is σ-compact, if it is equal to the countable union

of its compact subsets and A space T is Hemicompact if a countable cofinal subfamily

exists in the family of all compact subspaces of T ordered by inclusion. Further they

have one-sided implication i.e. Hemicompactness =⇒ σ-compactness.

Definition 5.2.1 (k-cofinality). [36] The k-cofinality of the space T is defined as:

kcof(T ) = ℵ0 + sup{|U| : U is a cofinal family ofK(T )}

Definition 5.2.2. [58][κ-dense] A subsetM of the space T is called κ-dense if [M ]κ = T ,

where [M ]κ is κ-closure of set M defined as

[M ]κ =
⋃

{|B| : B ⊂M and|B| ≤ κ}
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Definition 5.2.3. [58][Density-tightness] The density tightness of the space T is ex-

pressed as:

dt(T ) = min{κ : Every dense subset of T is κ-dense inT}

Definition 5.2.4. [59][Fan-tightness] The Fan-tightness of the space T is defined as:

ft(T ) = sup{ft(x, T ) : x ∈ T}

where

ft(x, T ) = ℵ0 +min{λ : for each sequence {An} of subsets T and x ∈ ⋂
n∈NAn,

∃ Bn ⊂ An such that x ∈ ⋃
n∈NAn with |Bn| ≤ λ}.

Definition 5.2.5. [59] A space T is said to have countably strongly fan tightness if,

for each x ∈ T , ∃ a sequence {An}n∈N of subsets of T with x ∈ ⋂
n∈NAn and then ∃

xn ∈ An such that x ∈ {xn : n ∈ N}.

Definition 5.2.6. [60] A space T is called as Frechet-Urysohn space if, for every point x

in T and every subset A of T where x belongs to the closure of A, ∃ a sequence {xn}n∈N
in A that converges to x.

Definition 5.2.7. [61] A space T is called as Whyburn if for any subset S of T and any

z ∈ S/S, there is a set P ⊂ S such that P = S ∪ {z}.

Theorem 5.2.1 ([58], Proposition 2.2). For any space T , the dt(T ) ≤ t(T ).

Lemma 5.2.1 ([18], Lemma 4.2). If T be a Hausdorff spaces and f : T → R is a

function with property that for any x ∈ T , ∃ an open set U ⊂ T such that x ∈ U and

f(y) = f(x) for any y ∈ U . Then f ∈ Q(T ).

5.3 Various types of tightness of QC(T )

Definition 5.3.1. Let V ⊂ P (T ) such that, for each C ∈ K(T ) ∃ an element in V
containing C, then V is k-cover of T . If the elements of V are open set, then it is known

as an open k-cover.

Definition 5.3.2. The compact Lindelöf number of T is denoted and defined by

kL(T ) = ℵ0 + inf{λ : For every open k-cover J ofT ∃ sub k-cover W with |W| ≤ λ}.
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Theorem 5.3.1. Every open k-cover J of a space T , ∃ sub k-cover J ′
of T with |J ′ | ≤ η

if and only the kL(T ) ≤ η.

Proof. Consider that for every open k-cover J of space T , then we have a sub k-cover

J ′
of T such that |J ′ | ≤ η, then simply by definition of compact Lindelöf number,

kL(T ) ≤ η.

Conversely, let kL(T ) ≤ η and J be any open k-cover space T , then by definition of

compact Lindelöf number ∃ sub k-cover J ′
of T such that |J ′ | ≤ η.

Theorem 5.3.2. A Hausdorff space T has the property kL(T ) = t(QC(T )).

Proof. Suppose t(QC(T )) = λ. Let J be any open k-cover of T . Then, for any C ∈ K(T ),

∃ a UC ∈ J such that C ⊂ UC , according to Definition (5.3.1). Assume that the function

fC : T → R is defined by fC(UC) = {0} and fC(T/UC) ⊂ {1}, then by Lemma (5.2.1)

fC is quasicontinuous for each C ∈ K(T ). Let D = {fC : C ∈ K(T )} be a collection of

quasicontinuous function on T . Take f0 be a zero function on T , then f0 ∈ D. Since

t(QC(T )) = λ, then by definition of tightness ∃ D′ ⊂ D such that f0 ∈ D′ and |D′ | ≤ λ.

Let us consider a subfamily W = {UC : fC ∈ D
′} of J . Now we claimW is k-cover of T .

Take C ∈ K(T ) andW (f0, C, 1) is a neighborhood of f0, therefore fC′ ∈ D
′∩W (f0, C, 1),

for some compact subset C
′
of T . Thus for x ∈ C, we have

fC′ (x) < 1 ifx ∈ Uk′ , fC′ (x) = 1, otherwise.

This implies that C ⊂ UC′ , Therefore W is a k-cover of T . Hence, kL(T ) ≤ t(QC(T )).

Next, to prove t(QC(T )) ≤ kL(T ). Suppose kL(T ) = η. According to the Definition

of kL-number, for any open k-cover J there is a sub k-cover J ′
of J such that |J ′ | ≤

η. For any f ∈ QC(T ) we can define a real-valued function fUC
on T which satisfies

fUC
(x) = f(x) if x ∈ UC and fUC

(x) = 1 if x ∈ T/UC , for each UC ∈ J . By Lemma

(5.2.1) fUC
is quasicontinuous. Let D = {fUC

: UC ∈ J }, from construction of fUC
,

easily we have f(x) ∈ D and we have subset D
′
= {fUC

: UC ∈ J ′} of D whose closure

contains f . Then, t(f,QC(T )) = |D′ | ≤ η. Since f is any function quasicontinuous

function, thus t(QC(T )) ≤ kL(T ).

Corollary 5.3.1. For a second countable space T , QC(T ) has countable tightness.

Theorem 5.3.3. For any Hausdorff space T , then every open k-cover J of space T , ∃
a sub k-cover J ′

of T with |J ′ | ≤ η if and only t(QC(T )) ≤ η

Proof. Simply by using Theorem (5.3.1) and Theorem (5.3.2).

Theorem 5.3.4. For any Hausdorff space T , the equality dt(QC(T )) = t(QC(T )) holds.



Chapter 5. The space Q(T ) endowed with the compact convergence topology 55

Proof. Firstly, we prove that t(QC(T )) ≤ dt(QC(T )), for this by Theorem (5.3.3), to

prove that ∃ a sub k-cover J ′
of T with |J ′ | ≤ η for every open k-cover J of T . Take

A = {f ∈ QC(T ) : for someU ∈ J s.t. f(T/U) ⊂ {0}}.

Since J is the open k-cover of T , then for any open set W (f, C, ϵ) of QC(T ), ∃ U ∈ J
such that C ⊂ U . Take g ∈W (f, C, ϵ), then we have h ∈ QC(T ) such that

h(x) = g(x) ifx ∈ U andh(T/U) ⊂ {0}.

Then h ∈ A∩W (f, C, ϵ), therefore A is dense in QC(T ). Let f0 be a zero function, then

by Definition of density tightness, there is a B ⊂ A satisfying |B| ≤ η with f0 ∈ B.

Take J ′
= {Uf : f ∈ B}, clearly |J ′ | ≤ η. Let any C ∈ K(T ) and W (f0, C, 1) is a

neighborhood of f0, then ∃ g ∈ B such that g ∈ W (f0, C, 1), then C ⊂ Ug. Therefore,

J ′
is k-cover of T .

Next to prove dt(QC(T )) ≤ t(QC(T )), it follows from Theorem (5.2.1), we have dt(QC(T )) ≤
t(QC(T )).

For any real-valued continuous and quasicontinuous map f and g on T , respectively. The

sum of the maps f+g is quasicontinuous, where it is defined as (f+g)(x) = f(x)+g(x).

In [[37]], the mapping hf : Qp(T ) → Qp(T ) defined as hf (g) = f + g is continuous, for

any f ∈ Cp(T ). Consequently, we have the following results for QC(T ).

Lemma 5.3.1. For any real-valued continuous and quasicontinuous map f and g on T ,

respectively. A mapping hf : QC(T ) → QC(T ) such that hf (g) = f + g is a homeomor-

phism.

Theorem 5.3.5. If T be a Hausdorff space, Then ∃ a finite subset Jn
′
of Jn such that⋃

n∈N Jn
′
is an open k-cover of T for every sequence {Jn}n∈N of open k-cover of T if

and only if ft(QC(T )) = ℵ0.

Proof. Let a sequence {Jn : n ∈ N} of open k-cover of T . Take

An = {f ∈ QC(T ) : For someU ∈ Jn s.t. f(T/U) ⊂ {0}}.

for all n ∈ N. Since J n is an open k-cover for T , then for any open set W (f, C, ϵ) of

QC(T ), ∃ an element U in Jn such that C ⊂ U .

Take g ∈W (f, C, ϵ), then we have h ∈ QC(T ) such that

h(x) = g(x) ifx ∈ U andh(T/U) ⊂ {0}.
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Then h ∈ An ∩W (f, C, ϵ), therefore An is dense in QC(T ).

Now, we take g1, the constant unit function. Since each An is dense, thus g1 ∈
⋂∞

n=1An

so, ∃ set Bn ⊂ An such that g1 ∈
⋃∞

n=1Bn, where Bn is finite. Construct Bn = {f(n,j) ∈
An : j ≤ i(n)}, where i(n) is a finite function of n. Thus there is U(n,j) ∈ Jn s.t.

f(n,j)(T/U) ⊂ {0}. Let J ′
n = {U(n,j) ∈ Jn : j ≤ i(n)}. Next, to prove

⋃
n∈N J ′

n is a

k-cover of T . For any C ∈ K(T ), ∃ f(n,j) ∈ W (g1, C, 1), for some n ∈ N and j ≤ i(n).

Then, ∃ a U(n,j) ∈
⋃

n∈N J ′
n with C ⊂ U(n,j). Therefore,

⋃
n∈N J ′

n is an open k-cover

of T .

Conversely, take f0 be zero function. By Lemma (5.3.1), QC(T ) is homogeneous, now

it is enough to prove ft(f0, QC(T )) = ℵ0. Let f0 ∈ ⋂
n∈NAn, where An ⊂ QC(T ). For

each n ∈ N and f ∈ An, ∃ some open subset of T such that image of that set under

function f is contained in (− 1
n ,

1
n), we denote it as On,f . Construct

Jn = {On,f : f ∈ An}.

For each C ∈ K(T ) ∃ a f ∈W (f0, C, 1/n)∩An such that C ⊂ On,f . Thus Jn is an open

k-cover of T . Take P = {n ∈ N : T ∈ Jn}.

Case-1 If P is infinite. For every W (f0, C, ϵ) neighborhood of f0 and ϵ > 0, ∃ some

m ∈ N such that 1
m < ϵ. Then, from the construction of Jm we have some

gm ∈ Am with gm(T ) = (− 1
m ,

1
m) and gm ∈ W (f0, C, ϵ). Thus sequence {gm}m∈N

is convergent to f0. Here Bm = {gm}m∈N satisfies that f0 ∈
⋃

m∈NBm.

Case-2 If P is finite. Then ∃ n0 ∈ N such that

g(T ) ̸= (− 1

m
,
1

m
) wheneverm ≥ n0, g ∈ Am.

Since {Jm}m≥n0 is a sequence of open k-cover, thus we have a finite subset J ′
m of

Jm such that
⋃

m≥n0
J ′

m is an open k-cover of T . Let it be denoted by

U
′
m = {U(m,j) ∈ Jm : j ≤ i(m)}.

Then from construction of Jm, ∃ some f(m,j) ∈ Am with f(m,j)(U(m,j)) ⊂ (− 1
m ,

1
m).

Now we prove f0 ∈ {f(m,j) : j ≤ i(m)}
m∈N. For any neighborhood W (f0, C, ϵ) of

f0, let

H = {{m, j} : m ≥ n0, j ≤ i(m) andC ⊂ U(m,j))}.

Then H ̸= ∅, if H is finite for each {m, j} ∈ H, by U(m,j) ̸= T , taking x(m,j) ∈
T/U(m,j). Then {x(m,j) : {m, j} ∈ H} ∪ C. But ∃ no element {x(m,j) : {m, j} ∈
H} ∪ C in

⋃
m≥n0

J ′
m, which is contradiction. So H is infinite, then ∃ m ≥ n0,
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j ≤ i(m) such that C ⊂ U(m,j) and f(m,j)(C) ⊂ (− 1
m ,

1
m) with 1

m < ϵ. Thus,

f(m,j)(C) ⊂ (−ϵ, ϵ) and f(m,j) ∈W (f0, C, ϵ). Hence f0 ∈ {f(m,j) : j ≤ i(m)}.

Theorem 5.3.6. For any Hausdorff space T , then QC(T ) is countably strongly fan

tightness if and only if for each sequence {Jn}n∈N of open k-cover of T , ∃ a Un ∈ Jn

such that {Un}n∈N is an open k-cover of T .

Proof. Let a sequence {Jn : n ∈ N} of open k-cover of T . Take

An = {f ∈ QC(T ) : For someU ∈ Jn s.t. f(T/U) ⊂ {0}}

for all n ∈ N. Since J n is an open k-cover for T , then for any open set W (f, C, ϵ) of

QC(T ), ∃ an element U in Jn such that C ⊂ U . Take g ∈ W (f, C, ϵ), then we have

h ∈ QC(T ) such that

h(x) = g(x) ifx ∈ U andh(T/U) ⊂ {0}.

Then h ∈ An ∩W (f, C, ϵ), therefore An is dense in QC(T ).

Now, we take g1 ∈ QC(T ) such that g1 ≡ 1, since each An is dense, thus g1 ∈
⋂∞

n=1An.

Then ∃ a fn ∈ An such that g1 ∈ {fn : n ∈ N}. For each n ∈ N and fn ∈ An, ∃ a

Un ∈ Jn such that fn(T/U) ⊂ 3. Now take collection of all such Un’s which denote as

{Un : n ∈ N}. Next to prove {Un : n ∈ N} is a k-cover of T . For any C ∈ K(T ), since

g1 ∈ {fn : n ∈ N}, so ∃ fn ∈ W (g1, C, 1), for some n ∈ N. Then, ∃ a Un with C ⊂ Un.

Therefore, {Un : n ∈ N} is an open k-cover of T .

Conversely, take f0 be zero function and f0 ∈ ⋂
n∈NAn, where An ⊂ QC(T ). For each

n ∈ N and f ∈ An, ∃ some open subset of T such that image of that set under function

f is contained in (− 1
n ,

1
n), we denote it as On,f . Construct

Jn = {On,f : f ∈ An}

For each C ∈ K(T ) ∃ a f ∈W (f0, C, 1/n)∩An such that C ⊂ On,f . Thus Jn is an open

k-cover of T . Take M = {n ∈ N : T ∈ Jn}.

Case-1 If P is infinite. For every W (f0, C, ϵ) neighborhood of f0 and ϵ > 0, ∃ some

m ∈ N such that 1
m < ϵ. Then, from the construction of Jm we have some

gm ∈ Am with gm(T ) = (− 1
m ,

1
m) and gm ∈ W (f0, C, ϵ). Thus sequence {gm}m∈N

is convergent to f0.
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Case-2 If P is finite. Then ∃ n0 ∈ N such that

g(T ) ̸= (− 1

m
,
1

m
) wheneverm ≥ n0, g ∈ Am.

Since {Jm}m≥n0 is a sequence of open k-cover, thus we have a finite subset J ′
m

of Jm such that
⋃

m≥n0
J ′

m is an open k-cover of T . For m ≥ n0, ∃ fm ∈ Am

such that fm(Um) = (− 1
m ,

1
m). Next we claim that f0 ∈ {fm : m ≥ n0}. For

any neighborhood W (f0, C, ϵ) of f0, let JC = {Um : C ⊂ Um,m ≥ n0}, clearly
UC ̸= ∅. Let us assume JC is finite, then JC = {Umj : j ≤ p} where p is some

finite natural number. By Umj ̸= T we take xmj ∈ T/Umj , then {Tmj : j ≤ p}∪C,
so Um ∩ ({xmj : j ≤ p} ∪ C) = ∅ whenever m ̸= n0. Which is a contradiction,

therefore, JC is infinite. Hence ∃ m ̸= n0 such that C ⊂ Um with fm(C) ⊂
fm(Um) ⊂ (− 1

m ,
1
m), with 1

m < ϵ, then fm ∈ W (f0, C, ϵ). Which implies that

f0 ∈ {fm : m ≥ n0}

Lemma 5.3.2. Let T be a regular space and M be any space. Then, for a finite number

of nonempty disjoint closed subsets F1, F2, . . . , Fn of T and y1, y2, . . . , yn ∈ M , ∃ a

quasicontinuous function f : T →M such that f(Fi) = {yi} for all 1 ≤ i ≤ n.

Proof. Since F1, F2, . . . , Fn are compact subsets of T . For each i, 1 ≤ i ≤ n, by there

exits a fi ∈ QC(T ) such that

fi(x) =

1 if x ∈ Fi,

0 otherwise.

Then we can define a quasicontinuous function f : T →M as

f(x) =

yifi(x) if x ∈ Fi,

0 otherwise.

It satisfies f(Fi) = {yi} for all 1 ≤ i ≤ n.

Theorem 5.3.7. Let T be a regular space. Then d(QC(T )) ≤ kcof(T ).

Proof. Let kcof(T ) = |V|, where V is cofinal family in K(T ). Now assume M to

be a collection of all finite pairwise disjoint sets of the cofinal family V. Let C =

{C1, C2, . . . , Cn} ∈ M and r = {r1, r2, . . . , rn} be a finite set of rational number. Then
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by Lemma (5.3.2), there is a quasicontinuous function such that gC,r(Ci) = {ri} for all

1 ≤ i ≤ n. Consider a family

D = {gC,r : C ∈ M and r ∈ Q}.

clearly |D| ≤ |V | ≤ η. Now it is sufficient to prove D is dense in QC(T ). For any

f ∈ QC(T ), r ∈ Q and C ∈ K(T ). We can define a quasicontinous function

gk′ ,r(x) = f(x) ifx ∈ C; gk′ ,r(x) = r ifx ∈ T/C.

where C
′
= {C ′}, C ′ ∈M such that C

′ ⊂ T/C. Therefore any neighborhood W (f, C, ϵ)

of f , ∃ a gC′ ,r quasicontinuous function such that gC′ ,r ∈ W (f, C, ϵ). Hence D is dense

in QC(T ).

5.4 Fréchet-Urysohn Property of QC(T )

Theorem 5.4.1. If T is an Hausdorff the and QC(T ) is a Frechet-Urysohn space, Then

for every open k-cover of T , ∃ a countable sub k-cover of T .

Proof. Suppose QC(T ) is Frechet-Urysohn space. Let J be any open k-cover of T . So,

for each C ∈ K(T ) ∃ UC ∈ J C ⊂ UC . Then fC ∈ QC(T ) such that fC(UC) = {0} and

fC(T/UC) = {1}. Take zero function f0 ∈ QC(T ) and W (f0, C, ϵ) be any neighborhood

of f0. For C ∃ UC such that C ⊂ UC . Thus we have a function fC that lies in

W (f0, C, ϵ). Therefore f0 ∈ {fC : C ∈ K(T )}. Then by definition of Frechet-Urysohn

space, ∃ a sequence {fCn : n ∈ N} converges to f0. Construct collection {UCn : n ∈ N},
clearly it is countable. Remain proof that is k-cover of T . Let any C ∈ K(T ), ∃ some

n ∈ N such that fCn ∈ W (f0, C, 1), then C ⊂ UCn . Therefore {UCn : n ∈ N} is k-cover

of T .

In 2007, Ferrando and Moll proved that [[62], Theorem 1], for locally compact Hausdorff

space T and C(T ) endowed with compact-open topology then following conditions are

equivalent: (a) C(T ) is Frechet-Urysohn space, (b) C(T ) has countable tightness and

(c) T is σ-compact. Now we provided the following results for the space QC(T ).

Theorem 5.4.2. If T is locally compact Hausdorff space then following are equivalent

1. QC(T ) be Frechet-Urysohn space.

2. QC(T ) has countable tightness.
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3. T is σ-compact space.

Proof. The statement (1) ⇒ (2) is easily hold by Theorem (5.4.1) and Theorem (5.3.2).

Next, to prove (2) ⇒ (3), let t(QC(T )) = ℵ0 and J be any open k-cover of T , then by

Theorem (5.3.3), ∃ a sub k-cover J ′
of T with |J ′ | ≤ ℵ0. Take M = {U : U ∈ J ′}.

Since T is locally compact, hence every set in M is compact. Now it is sufficient to

prove that M is a cofinal subfamily in K(T ). For every C ∈ K(T ), ∃ some U ∈ M such

that C ⊂ U . Therefore M is cofinal subfamily in K(T ). Hence T is hemicompact.

To prove (3) ⇒ (1), let T is σ-compact, by definition T =
⋃

n∈NCn, where Cn is

compact subset of T for all n ∈ N and every C ∈ K(T ) ∃ some j ∈ N such that C ⊂ Cj .

Construct C
′
i =

⋃i
n=1Cn for all i ∈ N. Since the space QC(T ) is homogenous. Let

f0 be zero function and F be any subset of QC(T ) such that f0 ∈ F . Then for every

W (f0, C
′
i ,

1
n) neighborhood of f0, ∃ some function f

C
′
i ,i

∈W (f0, C
′
i ,

1
n)∩F for all i ∈ N.

Now assume that gi = f
C

′
i ,i

for all i ∈ N. Next we claim that sequence {gi : i ∈ N} is

converges to f0. Let any C ∈ K(T ), ϵ > 0, ∃ some p ∈ N with 1
p < ϵ, also ∃ some m ∈ N

such that C ⊂ Cm, implies C ⊂ C
′
i for all i ≥ m.

Case-1 If m ≥ p, then 1
m ≤ 1

p . Thus

|gi(x)− f0(x)| < ϵ∀x ∈ C ∀ i ≥ m,

Case-2 If p > m, since C ⊂ C
′
i for all i ≥ m. Thus C ⊂ C

′
i for all i ≥ p. Then we have

|gi(x)− f0(x)| < ϵ∀x ∈ C ∀ i ≥ p.

Therefore sequence {gi : n ∈ N} converges to f0. Hence QC(T ) is a Frechet-

Urysohn space.

Corollary 5.4.1. If T is locally compact metric space then following are equivalent

1. QC(T ) be Frechet-Urysohn space.

2. QC(T ) has countable tightness.

3. T is separable.

Proof. Firstly, we have to show (2) ⇒ (3), the space QC(T ) has countable tightness.

Then by above Theorem (5.4.2), space T is σ-compact, since T is metric space therefore

it is separable.
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Now, we show (3) ⇒ (1), Since any space T is separable and locally compact metric

space, then it is a σ-compact. Then by the above Theorem (5.4.2), QC(T ) is Frechet-

Urysohn space.

Definition 5.4.1. A family V of subsets of a space T is called a kf -cover if for every

finite subfamily C′
of K(T ) ∃ V ∈ V such that

⋃ C′ ⊂ V . If each element of V is open,

it is called an open kf -cover.

Suppose T be any space and γ be family of subsets of T , let lim γ = {x ∈ T : |{U ∈
γ : x /∈ U} < |ℵ0}.

Theorem 5.4.3. Let T be any Hausdorff space and QC(T ) be Frechet-Urysohn space.

Then for any open kf -cover J of space T , ∃ a countable subfamily ξ of J such that

lim ξ = T .

Proof. Let QC(T ) be Frechet-Uryshon space. If T ∈ J then ξ = T , if not then we

assume that

M = {f ∈ QC(T ) : supp(f) ⊂ U for someU ∈ J }.

Let g1 be a constant function such that g1(x) = 1 for all x ∈ T . Then supp(g1) = T /∈ J
this implies g1 /∈ M . Now, take C1, C2, . . . Cp ∈ K(T ), where Ci ∩ Cj = ∅, for all

1 ≤ i, j ≤ p. By definition of kf -cover, there is a U ∈ J such that {C1, C2, . . . Cp} ⊂ U .

So
⋃p

i=1Ci and T/U are two disjoint closed subsets of T . Therefore, by Lemma (5.3.2)

∃ a quasicontinuous function such that

f(T/U) = {0} and f(
p⋃

i=1

Ci) = {1}.

Thus f ∈W (f1, Ci, ϵ) and supp(f) =
⋃p

i=1Ci ⊂ U ∈ J . Then we have f ∈W (f1, Ci, ϵ)∩
M , which implies that f ∈M . Therefore f ∈M/M .

By the definition of Frechet-Urysohn space QC(T ), ∃ a sequence {fn : n ∈ N} ⊂M such

that fn → g1. By the selection of sequence, ∃ some Un ∈ J such that supp(fn) ⊂ Un for

each n ∈ N. Now, we claim that if ξ = {Un : n ∈ N} then limξ = T . For any x ∈ T , then

W (g1, {x}, ϵ) be a neighborhood of f1, where 0 < ϵ < 1. Thus, for W (g1, {x}, ϵ) ∃ some

m ∈ N such that fn ∈W (g1, {x}, ϵ) for all n ≥ m, which implies x ∈ supp(fn) ⊂ Un for

all n ≥ m. Therefore, limξ = T .

Theorem 5.4.4. If T is a Hausdorff space and QC(T ) is a Whyburn space. Let {γn}n∈N
be a sequence of open covers of T having the following properties:

1. γn = {Un
m : m ∈ N} and Un

m ⊂ Un
m+1, for each n ∈ N.
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2. For any n ∈ N, we have a closed cover Un = {Fn
m : m ∈ N} of T with Fn

m ⊂ Un
m+1

and Fn
m ⊂ Fn

m+1 ∀m ∈ N.

Then there exists a k-cover {Wn : n ∈ N} of T , where Wn ∈ γn, ∀m ∈ N.

Proof. Let (m,n) be any pair of natural numbers. Then there exists a fnm ∈ QC(T ) such

that fnm|Fn
m ≡ 1

n and fnm|(T/Un
m) ≡ 1. Now, take a sequence Sn = {fnm : m ∈ N}, which

converges to hn ≡ 1
n . Set S =

⋃
n∈N Sn and a zero function h, then clearly h lies in

S. Since QC(T ) is a whyburn space, thus we have a subset F of S with F = F ∪ {h}.
Therefore, for any n ∈ N, the set F = F ∩ Sn will not contain because F/F = {h}
otherwise hn ∈ F/F . Therefore, for every n ∈ N, we have a number m(n) ∈ N such that

Fn ⊂ {fnm : m ∈ N}. So for each n ∈ N takeWn = {Un
m(n)}. Next, to prove {Wn : n ∈ N}

is k-cover of T . Since h ∈ F , then for each K ∈ K(T ), there exists a fnm ∈ F such that

fnm(x) < 1 for all x ∈ K. Therefore, K ∩ (T/Un
m) = ∅, thus K ⊂ Un

m ⊂ Un
m(n). Hence,

{Wn : n ∈ N} is a k-cover of T .

5.5 CONCLUSION

In this chapter, we studied the density and various types of tightness for space QC(T ).

We proved that tightness of QC(T ) is equal to compact Lindelöf no. of Hausdorff space

T , the density of QC(T ) is less than k-cofinality of T and we obtained condition on T

so that density-tightness and tightness of QC(T ) coincides. Further we characterized

fan tightness and strongly fan-tightness in terms of ccvr of T . Next, we proved that if

T locally compact Hausdorff space then QC(T ) being Frechet-Urysohn, QC(T ) having

countable tightness, and σ-compactness of T are equivalent. Moreover, we proved that

if QC(T ) is Frechet-Urysohn space then every kf -open covering of T has countable

subcover which converges to T .
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Conclusion and future works

6.0.1 Conclusion

In this study, we explored the properties of quasicontinuous functions and their related

topological spaces. We established that the set of all continuous functions, C(T,M),

is a subset of the set of all quasicontinuous functions, Q(T,M), and examined the

Intermediate Value Theorem in this context. We characterized cardinal invariants for

the space Qp(T,M), demonstrating that the pseudocharacter of Qp(T,M) dominates

the network weight, density, and weak covering number of a regular space T . Necessary

and sufficient conditions for the weight and network weight of Qp(T ) to coincide were

derived. Also, we derived the separability condition of an regular space in terms of

the pseudocharacter of a compact subset of Qp(T,M). We studied the openness of the

restriction map on Qp(T ) and the density of the image of Qp(T,M) under the induced

map inQp(T,Z). Furthermore, we investigated the density and various types of tightness

for the space QC(T ), proving that the tightness of QC(T ) equals the compact Lindelöf

number of Hausdorff space T and that the density of QC(T ) is less than the k-cofinality

of T . Conditions on T for the density-tightness and tightness of QC(T ) to coincide were

identified. We characterized fan tightness and strongly fan-tightness in terms of the k-

cover of T , and showed that if T is locally compact Hausdorff space, then QC(T ) being

Fréchet-Urysohn, QC(T ) having countable tightness, and the σ-compactness of T are

equivalent. Lastly, we demonstrated that if QC(T ) is a Fréchet-Urysohn space, every

kf -ops covering of T has a countable subcover converging to T . This study provides

a foundation for further research on quasicontinuous functions and their impact on

topological properties.

63
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6.0.2 Future works

Throughout the thesis, we studied two different topologies (pointwise convergence and

compact convergence) on Q(T,M) and some of their properties. Although there is a

wide magnitude of area still left to explore. Some of them are:

� In the study of spaces Qp(T,M) and QC(T,M), there is a large gap in the knowl-

edge of various forms of connectivity. This comprises path-connectedness, local

connectivity, and connectedness, which have yet to be completely studied. Ex-

isting research on Qp(T,M) and QC(T,M) is missing important properties like

submetrizability (a space’s ability to inherit metrizability from a finer topology),

local metrizability (where each point has a metrizable neighborhood), and Baire

properties (conditions under which the space is a Baire space). These elements

provide fertile territory for future investigation.

� Our current study of Q(T,M) has been limited to two specific topologies, which

are pointwise convergence and compact convergence. However, Q(T,M) can be

endowed with various other topologies, much like the space C(T,M) which can be

topologized in multiple ways, such as regular topology, Cauchy convergence, and

fine topology. Exploring Q(T,M) under various topologies allows us to draw com-

parisons and contrasts with C(T,M), providing a greater grasp of the structure

and characteristics of both spaces. This technique offers up new options for inves-

tigating and comparing topological properties, giving a comprehensive framework

for future research in the topic.

� Till now, the space Q(T,M) has been studied under the consideration that the

range is a topological space without any specific algebraic structure, this gives us

the scope to explore the space Q(T,M), where the range space M have a specific

structure such as group, linear space, uniform space. We can further study the

properties of space Q(T,M) under above mentioned conditions and compare it

with the existing results.

� Throughout the literature, the space Q(T,M) has been examined under a topo-

logical framework. However, several structures can be used to explore function

spaces. For example, in functional analysis, function spaces are often studied as

normed spaces. We can broaden our understanding of Q(T,M) by examining sev-

eral structures, including groups, rings, linear spaces, normed spaces, and uniform

spaces. Exploring Q(T,M) under these varied structures can provide deeper in-

sights and enrich the overall study of function spaces, leading to a more thorough

understanding of their distinctive characteristics and prospective applications.
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� An important area of research in function spaces involves understanding the dual-

ity between the base space T and the function space Q(T,M), specifically how the

properties of T influence Q(T,M) and vice versa. This includes investigating the

impact of topological and algebraic structures of T on Q(T,M), such as compact-

ness, connectedness, and uniformity, as well as examining how the characteristics

of Q(T,M) can reflect back on T . Similarly, the presence of additional algebraic

structures like group operations or vector space properties in T might significantly

influence the properties of Q(T,M). Conversely, the study of Q(T,M) can reveal

new aspects of the base space T , such as how the completeness or compactness of

Q(T,M) provides information about the topology of T . Developing new topologi-

cal constructs within Q(T,M) based on this duality can lead to novel results and

applications. The current lack of extensive literature on these topics underscores

a valuable opportunity for future research to explore these aspects, ultimately

contributing significantly to the fields of topology and functional analysis.

� Topological function spaces have broad applications across numerous mathematical

fields and beyond. By leveraging our findings, we can integrate them into various

areas, thereby enriching these disciplines and contributing to their advancement.

In functional analysis, for example, incorporating topological insights can lead to

a deeper understanding of normed spaces, potentially revealing new connections

and results. In game theory, topological function spaces can provide a more robust

framework for analyzing strategies and equilibria, leading to more comprehensive

models and solutions. Similarly, in graph theory, the integration of function spaces

can enhance the study of graph properties and dynamics, offering new perspectives

and tools for solving complex.

� The integration of quasicontinuous functions into Topological Data Analysis(TDA)

opens up promising directions for handling noisy, incomplete, or irregular data.

These functions, which exhibit partial continuity, could enhance persistent ho-

mology by capturing finer topological features often smoothed out by traditional

methods. They offer potential in functional data analysis, where time-varying or

discontinuous data like signals or financial series can be better modeled. quasi-

continuous functions can also lead to new filtration techniques and generalized

persistence modules, providing deeper insights into machine learning models, such

as neural networks with non-smooth mappings. Additionally, they may enhance

multi-parameter persistent homology, helping analyze complex systems with multi-

ple variables. Finally, these functions can bridge discrete and continuous spaces in

TDA, improving the approximation of topological structures. Overall, quasicontin-

uous functions bring flexibility and robustness to TDA, extending its applicability

across fields like signal processing, machine learning, and beyond.
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� Investigating quasicontinuous functions in topologies beyond standard metric and

Euclidean spaces offers potential for uncovering new mathematical insights and ap-

plications. In non-Hausdorff spaces, where points cannot always be separated by

disjoint neighborhoods, quasicontinuous functions may exhibit behaviors distinct

from those in Hausdorff spaces, leading to applications in fields like quantum topol-

ogy and non-classical topology. Exploring quasicontinuity in coarser topologies

such as the order topology and Scott topology is also promising. These topologies,

often used in domain theory and lattice theory, structure data through inherent

orderings, providing a useful framework for studying quasicontinuous functions in

contexts where order and hierarchy are critical, such as in computational mod-

els. The Scott topology, in particular, allows for understanding quasicontinuity

in the context of computational processes that evolve in a structured yet non-

continuous way. Additionally, specialized topologies like the lower limit topology

(Sorgenfrey line), where intervals are open only to the right, offer another layer

of complexity. Quasicontinuous functions in this context could model asymmet-

rical phenomena, such as systems with one-sided growth or decay. This broader

exploration of topological contexts for quasicontinuous functions not only deep-

ens theoretical understanding but also opens up diverse applications in fields like

economics, biology, and computational systems.
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Abstract. Preservation of properties under continuous functions on topological

spaces is a very important tool for the classification of topological spaces. However,

in some cases the quaiscontinuous functions are more useful than the continuous

functions for classifying topological spaces. In this paper, we study preservation of

strong forms of connectedness under quasicontinuous function that help to prove

the general form of intermediate value theorem.

Key words and Phrases: Quasicontinuous, Half connected, Semi-connected and Half

semi-connected.

1. INTRODUCTION

In 1899, Baire [3] used the condition of quasicontinuity to study topological
spaces. Later in 1932, Kempisty [6] introduced the concept of quasicontinuous map
for several real variables. The conditions for quasicontinuity of function of two vari-
ables provided by Volterra [3]. In 1976, Neubrunn [12] reformulated the Kempisty’s
definition of quasicontinuity for general topological spaces as: “a map f : X → Y is
quasicontinuous at p ∈ X if for any open sets U in X and V in Y such that p ∈ U
and f(p) ∈ V , then there exists a non-empty subset G of U such that f(G) ⊂ V .
It is said to be quasicontinuous if it is quasicontinuous at any p ∈ X”. All contin-
uous maps are quasicontinuous but its converse not holds. For example f : R→ Rl
defined by f(x) = x is quasicontinuous function but not continuous, where R and
Rl are set of real numbers with usual and lower limit topology respectively. Qua-
sicontinuity has deep connection with mathematical analysis, topology and many
applications in analysis, topology, measure theory, and probability theory.
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