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Abstract 

Machines have significantly impacted the life of mankind. In a journey from stone age 

to Industry 4.0 in second decade of 21st century, machines have enrichened the human 

life in various technological aspects. With the rise in population, in turn demand, it was 

almost impossible to cater the needs of all without the development of industrial 

machines.  That is why, it is getting difficult to afford the failure of machines with its 

rising dependency. To tackle this situation, researchers around the world developed 

several monitoring techniques and refined the concept of “condition monitoring” in 

Industry 4.0.  As far as failures in the machines are concerned, mostly it occurs due to 

loss of usefulness of critical components like bearings, gears or transmission elements. 

In this work, a ball bearing is considered for research work. Although, several attempts 

have been made since decades by various manufacturers to improve the life of bearing 

by heat treatments, induction of alloys and coating for high-speed applications. 

Moreover, numerous techniques were also developed to monitor the condition of the 

running bearing based on several parameters like noise, temperature, and vibration. 

However, vibration signature analysis found to be preferred choice of many researchers 

since long for condition monitoring of bearing. But in all these methods of condition 

monitoring, indication of fault occurs after the origin of fault hence post failure. 

Though, any type of failure does not grow in fraction of time. Before failure, it is 

obvious that degradation in material properties must get initiated at micro level, then 

with continuous operation of machines under same load and conditions, material 

properties continue to deteriorate which get mature and leads to fault. However, 

traditional methods used to measure the level of these properties needs dismantling of 

the bearing followed by disassembly of bearing races to analyze load bearing area of 

the bearing, which is impractical in nature. In view of this, in this research work, an 

attempt has been made to develop a technique to monitor the degradation in level of 

material characteristics based on vibration signal analysis. As with continuous 

deterioration, vibration of the material bound to change at the micro level. Therefore, 

by continuous monitoring of its vibration signal, it would be possible to know the 

initiation of failure at very much incipient stage. It would also assist several researchers 

to calculate the remaining useful of life of the bearing accurately. Based on this 

approach, in this research work, five ball bearings (Model: 6205) have been considered 
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as its one of the widely used model for high speeds. These five bearings were coated 

with five different materials (Copper, Silver, Zinc Phosphate and Black Oxide) having 

different level of material properties. Selection of coating material has been done based 

on the catalogue of bearing manufacturers [11,42]. Based on manufacturer 

specifications in the catalogue, coating procedure has been carried out on all five 

bearings as per industrial standards. Additionally, these coating has been carried out on 

loose samples also, taken as per ASTM standards to evaluate the level of different 

properties of coated material.  Moreover, five different properties of coatings 

considered in this research are: surface roughness, wear resistance, hardness, grain size 

and self-lubricating level, selection of these properties has been done based on the 

rigorous literature review [35, 36, 37 77,78,79]. It is worth mentioning that all chosen 

coatings are having different level of pre-defined five characteristics of material. 

Further, the coated bearings were installed in customized bearing set up one after 

another and its vibration signals were captured at the following five different speeds: 

300 rpm, 600 rpm, 900 rpm, 1200 rpm and 1500 rpm. Afterwards, statistical analysis 

of all acquired signals has been carried out by calculating RMS, Skewness, Kurtosis, 

Variance, Shannon entropy, log energy and Crest factor. These statistical parameters 

were chosen based on its wide acceptability by many researchers for condition 

monitoring of bearings [220-238]. After calculating all values, results were presented 

in tabular form separately according to different values of properties. Like, initially all 

coatings were arranged in ascending order of its surface roughness value then calculated 

statistical values were also arranged in table accordingly. Then from table, it was 

analyzed that which of the statistical parameter values exhibiting same ascending order 

like surface roughness.  In case, any statistical parameter is presenting same trend with 

the variation in characteristic of material, then it can be said that with the increase in 

particular property, its effect can be seen in responded statistical parameter. Therefore, 

it would be possible to detect the variation in property of material by just acquiring its 

vibration signal and calculating that associated statistical parameter. This is the main 

objective of this whole research work. Same approach has been carried out for all five 

properties. Although, it is important to note that, with direct statistical analysis of 

captured vibration signal, encouraging results were not obtained with variation in any 

of the five properties. Then, for in depth analysis, all signals were decomposed with 
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empirical mode decomposition (EMD) but irregular trends were found. Later, wavelet 

packet transform was applied onto the signals but inconsistency in results continued to 

exist. Finally, variational mode decomposition technique applied on the signals up to 

sixth level to generate six amplitude and frequency modulated modes. Then same 

statistical analysis of all six modes were carried out. This technique was able to find 

similar patterns (rise or fall) in at least one of the statistical parameters in at least one 

of the six modes with respect to variation in material properties. However, in case of 

more than one responded parameter in one or different IMFs at same speed, selection 

of most sensitive parameter has been carried out based on percentage variation in 

responded parameter while switching coating. Moreover, average chain index has been 

calculated also to select the overall most responsive statistical parameter with the 

change in the specific property of the material. Except hardness, all material properties 

have responded to following statistical parameters as presented further. However, based 

on the acquired results, it can be proposed that effect of variation in surface roughness 

level of the bearing surface can be found in IMF 4 at 900 rpm and in IMF 2 at 1200 and 

1500 rpm based on Shannon entropy calculations of the acquired vibration signal. Next, 

change in grain size found to be linked with variation in variance in IMF 3 at 300 rpm 

whereas RMS in IMF 2 at 1500 rpm. Moreover, best response towards change in wear 

resistance was depicted by Shannon entropy in IMF 4 at 300 rpm and in IMF 3 at 600 

rpm.  However, at 1200 and 1500 rpm, log energy found to be best suited in IMF 4 and 

IMF 1 respectively in response to change in wear resistance. Lastly, similar results were 

found in case of self-lubricating level as ascending order of wear resistance values and 

self- lubricating level found to be same. Hence, degradation in properties of bearing 

surface can be monitored based on vibration signature analysis without dismantling the 

bearing. 
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1. Introduction 

 

A bearing is a mechanical element utilized to minimize friction among the moving 

components of a machine so as to facilitate the attainment of the intended motion. The 

term "bearing" encompasses the meaning "to support" and "to carry a burden". For 

instance, a bearing supports the load of a rotating fan and diminishes noise and vibration 

while constraining movement along a radial axis. The principal bearing functions are: 

to lessen friction between rotating components, to support rotating machine 

components and to withstand radial and thrust forces. Typically, bearings come across 

two types of loads: radial and thrust/axial loads.  Radial load refers to the load that acts 

perpendicular to the longitudinal axis like in case of bicycles, fans, skateboards, food 

processors, etc. Axial or thrust load is a load that acts in line to the longitudinal axis. 

Examples include rotating tables, screw jacks, bar stools and fluid control valves. The 

combined load includes both the axial and radial forces exerted on a structure. For 

example: railway axles, mining and construction machinery, vehicle engines and 

gearboxes and agricultural machinery. The application of the bearing will determine 

whether it is subject to radial or thrust loading, or both. The essential components of 

bearing are shown in Figure 1. 

  

Figure 1: Parts of the ball bearing [1] 

a) Outer ring/race:  The outer ring of the bearing is the larger among two rings. There 

is a groove on the inner periphery of the ring to allow rotation of the balls in the 
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passage. The inner grooved surface of the ring is finished to extremely close 

tolerances and is highly polished. Typically, the outer ring is retained stationary. 

b) Inner ring/race: The inner ring of the bearing is the smaller among two rings. It 

has a groove on its outer diameter that functions as a passage for the balls. It is also 

finished with the same high precision as the outer ring. The rotating element is the 

inner ring, which is affixed on the shaft. 

c) Rolling elements: The rolling elements separate the inner and outer rings of a 

bearing and allow it to rotate with minimal friction. Rolling elements have a 

significantly smaller diameter than the inner and outer tracks. The dimensions of 

rolling element dimensions have to be meticulously controlled. Surface texture and 

dimension variations are essential characteristics. These characteristics are 

governed to the micro inch level. The bearings can be classified based on type of 

rolling element used in between the races like: balls, cylindrical rollers, spherical 

rollers, tapered rollers, needle rollers, etc. 

d) Cage/Retainer: The role of the cage in bearings is to maintain a constant distance 

between the inner and outer rings and to separate the rotating elements, to precisely 

direct the rolling elements along the path during rotation and to prevent these 

elements from tumbling out. 

e) Shield: The shield, a profiled sheet metal disc, is stamped and pressed into a narrow 

crevice on the inner edge of the outer ring's inner diameter. A deliberate space is 

maintained between the outer diameter of the inner ring and the shield. This 

intentional gap ensures that the shield doesn't come into contact with the bearing's 

inner ring, thereby avoiding any additional friction. Shields are specifically 

engineered to bar larger contaminants from infiltrating the bearing. 

f) Seal: The seal is likewise fitted into a narrow groove located on the inner, thinner 

rim of the outer ring. Its inner edge features a lip structure meticulously crafted for 

effective sealing. 
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1.2 Failures modes of bearing [2] 

Precision ball bearings are made to last a long time and be effective. Providing the 

application is initially correct, bearings need to be correctly placed, greased, and 

maintained in order to maximize longevity. Poor conditions for operation particularly 

damp or impure regions, incorrect handling techniques encourages early bearing 

failure. 

It is crucial to pinpoint the exact cause of a bearing failure so that the proper adjustments 

can be made. Investigation of the failure mode can describe the reason behind the 

failure. Since one failure scenario could lead to another, this technique is complicated. 

For instance, corrosion in a ball race can produce rust, an abrasive that can wear down 

materials and cause a loss of preload or an increase in radial clearance. In a grease-

lubricated bearing, worn debris can obstruct lubrication, leading to lubrication failure 

and consequent overheating. The different types of bearing failure are:  

A) Excessive load: Premature failure is typically caused by excessive loads. Early 

fatigue failure can also be caused by inadequate preloading, brinelling, and tight 

fittings. Failure of this kind typically resembles normal fatigue. Even though 

extensive ball wear routes are present, excessive heat up and a fatigue region are 

typically seen with decreased life. To resolve this issue, decrease in load or 

remodeling with more potential are the two possible alternatives.  

 

Figure 2: Failure due to excessive load 

 

B) Overheating: In case of overheating, the rings, balls, and cages turn from golden 

to bluish as a symptom. The materials for the ring and ball gets annealed at 
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temperatures higher than 400°F. As a result, the hardness decreases, lowering the 

bearing capacity and hastening failure. In severe circumstances, rings and balls may 

distort. As the temperature rises, properties of lubricant also get effected hence leads 

to overheat. Heavy electrical heat burdens and inadequate heat paths are typical 

culprits along with inadequate cooling or lubrication under excessive loads and 

velocities. To overcome this issue, heat or excessive loading controls, proper 

thermal paths, and additional ventilation proves to be an effective solution.  

 

        

Figure 3: Discoloration of bearing elements 

 

C) False Brinelling: Excessive external vibration indicates false brinelling, which 

appears as ellipsoidal signs of wear along the axis at ball location, with a brilliant 

finish and strong borderline, and usually encircled with a brown debris ring. When 

a non-rotating ball bearing is subjected to external vibration, the balls move 

relatively with respect to the raceway. When the bearing is not rotating, an oil film 

that prevents raceway erosion cannot be formed. The oxidation of wear detritus 

accelerates the wear process. It can be corrected by isolating bearing from external 

vibration or with the usage of anti-wear elements like greases or molybdenum 

disulfide.  
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Figure 4: False Brinelling marks on bearing element 

 

D) True Brinelling: Brinelling appears when load surpasses the elasticity of ring 

content. Indentations called Brinell marks can be seen in ball passages of a bearing, 

and it increases the intensity of vibration in the bearing. Extreme Brinell marks 

might lead to fatigue failure beforehand. Brinelling can also be caused by any static 

overflow or severe impact. For instance, a bearing can be installed onto a shaft by 

exerting force to the outer ring with a hammer. Dropping or damaging assembled 

equipment is another common cause of bearing damage. While press-fitting a 

bearing onto a shaft, it is advisable that only the ring that is being press-fitted should 

be pushed with a significant amount of force; the outer ring should not be pushed 

at all. 

 

      

Figure 5: Ball spaced Brinell marks 
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E) Normal Fatigue Failure: Fatigue failure, also known as spalling, is the fracture 

and subsequent elimination of small, discrete particles of material from the running 

surfaces. The interior ring, the outer ring, and the balls are prone to spalling. This 

form of failure is gradual and will escalate with ongoing operation once initiated. It 

is consistently accompanied by a discernible rise in vibration, signaling an 

abnormality. The remedy involves either replacing the bearing or reconsidering the 

design to integrate a bearing with an extended calculated fatigue life. 

         

Figure 6: Spalled area on bearing inner race 

 

F) Contamination: Contamination stands out as a primary contributor to bearing 

failure. Because of contamination, pitting usually occurs in balls and its running 

passages, causing excessive vibration and wear. Examples of contaminants are 

floating dirt, grime and any coarse-grained particles that enters inside the bearing. 

Principal origins include soiled instruments, infected job environments, soiled 

hands, and external particles in lubricants or cleaning solutions. The cleanliness of 

shop floors, machines, jigs and fixtures, and accessories aids in the prevention of 

contamination losses. It is advisable to carry out grinding jobs isolated from 

assembly line, and store bearings in their original packaging until installation. Seals 

that are severely damaged or inoperable cannot protect bearings from 

contamination. 
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Figure 7: Bearing contamination failures 

 

G) Lubricant Failure: Ball traces and balls that are discolored (blue/brown) are 

indicative of lubricant failure. The excessive wear of the balls, ring, and cages will 

lead to overheating and calamitous failure. To function properly, ball bearings 

require a constant coating of lubricant to be present between the balls, rings, cage 

and races. Typically, failures arise due to either constrained lubricant flow or 

elevated temperatures that lead to degradation in the properties of lubricant. Any 

measures opted to rectify inappropriate fittings, with better regulation of preloading 

conditions and ensuring proper cooling of shafts and casings can effectively lower 

bearing temperatures. and lengthen life cycle of the lubricant. 

         

Figure 8: Excessive wear and overheating due to lubricant failure 
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H) Corrosion: Reddish-brown spots on the balls, raceways, cages, or bands of ball 

bearings indicate corrosion. This condition occurs when bearings are working in 

corrosive fluids or an atmosphere. Typically, rise in vibration is followed by 

increased wear, resulting in an increase in radial clearance or loss of preload. In 

extreme conditions, corrosion can cause fatigue failures to occur sooner. Use 

integrally sealed bearings whenever possible, and correct by rerouting corrosive 

fluids away from bearing zones. If the environment is unusually hostile, external 

seals should be considered in addition to integral seals. Utilizing stainless steel 

bearings is also advantageous. 

                          

Figure 9: Corrosion attack on the metal due to hostile fluids or atmosphere 

 

I)  Misalignment: A ball wear pattern that deviates from parallelism with the raceway 

edges can serve as an indicator of misalignment on the non-rotating ring's raceway. 

An abnormal temperature rise in the bearing can be anticipated with significant 

wear in the cage ball-pockets if misalignment is greater than 0.001 in./in. Bends, 

burrs or impurities on shaft or casing shoulders, out-of-square shaft threads 

Concerning shaft seats and locking nuts, the most prevalent causes of misalignment 

are faces that are not perpendicular to the thread axis. The permissible misalignment 

varies widely between applications, for instance decreasing with speed. Corrective 

measures are using single point-turned or ground threads exclusively on non-

hardened shafts, and employing ground threads solely on hardened shafts, as well 
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as utilizing precision grade locknuts, and inspecting shafts and housings for any 

deviation in the alignment of shoulders and bearing seats. 

 

Figure 10: Misalignment causes abnormal temperature rise and premature wear 

 

J) Loose fits: Loose fittings can result in relative movement between mating 

components. Fretting occurs when the relative motion between mating elements is 

slight but continuous. The process of fretting generates thin metallic layers that 

oxidizes, which results in a brown hue afterwards. This abrasive material will 

exacerbate the slackness. If the slackness is sufficient to accommodate significant 

inner or outer ring movement, the mounting surfaces will wear and heat up, leads 

to noise and runout issues. 

     

Figure 11: Discoloration and scoring due to outer ring slippage in the housing 
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K) Tight Fits:  Excessive ball worn out in the raceway base along the whole inner and 

outer ring circumferences is indicative of tight fit. When interference fits surpass 

the radial clearance at operating temperature, it results in overloading of the balls, 

which leads to sudden increase in temperature and a high torque. Rapid degradation 

and fatigue may result from continuous operation. Remedial measures include a 

reduction in overlapping: a improved match between bearings, shafts, and casings, 

considering material and operating temperature differences. Under the 

aforementioned conditions, a greater radial clearance will also extend bearing life. 

 

      

Figure 12: Discolored wide ball path at bottom of raceways 

 

1.3 Bearing Life 

Bearing life is the period during which it can be anticipated that the bearing will fulfill 

its intended function adequately under predefined operating conditions. Moreover, it is 

considered as the anticipated number of rotations a bearing can endure before 

displaying fatigue symptoms such as spalling or stress-related cracks. 

1.3.1 Factors determining the service life of a bearing  

In addition to normal wear and tear, failure in bearing can occur due to extreme 

temperatures, fractures, lack of lubrication, or seal or cage damage. This type of bearing 
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damage is frequently the result of improper bearing selection, discrepancies in the 

design of the adjacent parts, improper installation, or inadequate maintenance. 

 

Figure 13: Typical symptoms of fatigue include the detachment of small, flat flakes of bearing 

material (flaking/spalling) [3] 

1.3.2  Basic fatigue life rating L10 

The fatigue life rating of a bearing is established based on the number of rotations where 

90% of all bearings within a specific group achieve or surpass the calculated duration 

without failure. This is typically determined using a standardized formula, often 

referred to as the catalogue method (ISO 281), which takes into account parameters 

such as bearing load, rotational speed, dynamic load rating, and bearing type. As a 

result, the bearing's fatigue life, denoted as L10 or L10h, is calculated as shown in 

equation (3).  

The dynamic load rating, also referred to as the basic load rating, denotes the constant 

load that bearings with stationary outer rings can endure for a rating life of one million 

revolutions (106 rev). A constant radial load applied to the bearing's center is considered 

its basic load rating, whereas a constant axial load applied in the bearing's axis of 

rotation is considered its basic load rating for thrust bearings. In the dimension tables, 

the load ratings are listed under Cr for radial bearings and Ca for thrust bearings. 

The dynamic equivalent load P is defined as a constant magnitude and direction radial 

and axial load for radial and axial bearings respectively that exhibits mirror impact on 

the lifespan of the bearing according to actual forces exerted on the component. For 

constant or combined loads, P is determined with the help of subsequent formula [3] as 

shown in equation (1) and (2)  
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Figure 14: Failure Probability and Bearing Life [3] 

 

P = X • Fr + Y • Fa                                                                                                             (1) 

Other than Thrust Spherical Roller Bearing:  

P = Fa + 1.2 • Fr                                                                                                                                                               (2) 

L10/L10h: basic life rating [106 rotations/h] 

L10 = (
𝐶

𝑃
)

𝑝

  or L10h = 
106

60𝑛
 (

𝐶

𝑃
)

𝑝

                                                                                       (3)                                                                           

C: Dynamic load rating [N] 

P: Dynamic equivalent bearing load [N] 

p: Exponent (3 for ball bearings, 10/3 for roller bearings)  

n: Rotational speed [rpm] 

 

After studying failure modes of the bearing and bearing life calculations, it is advent 

that each failure leads to degradation in the properties of bearing material which is 

affecting bearing life. For example, failure due to excessive load, normal fatigue failure, 
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true brinelling and contamination leads to surface irregularities and hence variation in 

surface roughness. Likewise, overheating, misalignment and tight fits are responsible 

for rise in temperature which results in reduction of hardness of the bearing element. 

Moreover, failures like false brinelling, corrosion and loose fits acts as catalyst to wear 

process hence impacting wear resistant property of bearing element. Additionally, grain 

size also strongly influences several mechanical properties of material like hardness, 

wear resistance, ductility and strength also as per Hall-Petch relationship [5]. Therefore, 

it can be concluded that surface roughness, hardness, wear resistance and self-

lubricating level are significant properties of bearing element as most of the failures are 

associated with degradation in following properties of the material along with grain size 

variation.  

Therefore, to improve the life of bearing by enhancing desirable properties of bearing 

elements, manufacturers have adopted different methods like heat treatment or coating 

of bearing elements. From the discussion on failure modes of bearing, it is clear that 

the properties of the material start degrading at micro level which ultimately leads to 

failure without getting notice until failure occurs. Therefore, it is very important to keep 

a check on deterioration in important properties of material like Surface roughness, 

Hardness and Wear resistance during its life cycle so as to predict remaining useful life 

of the machine element accurately. Along with these properties, one more factor must 

be included due to introduction of coating on bearing element, i.e., grain size. Grain 

size plays an important role in behavior of the material. Grain size is the dimension of 

the crystallites or elements that make up a solid metal. Grain size and grain boundaries 

are significant factors in determining the physical properties of the entire metal. In thin 

film deposition, the grain size will be smaller if the particles are deposited with a high 

quantity of energy and they exhibit a high level of migration. If migration is reduced 

when particulates condense on a substrate, the grain size will be greater. Density of a 

coating is significantly influenced by the energy and particulate size of thin film 

particles. Grain or particle refinement can be utilized to alter the grain boundary density. 

Consequently, the coating's wear resistance and resilience are enhanced. The optimal 

grain size for thin film coatings depends on the desired result and physical properties, 

particularly the intended density. Coating density typically decreases with increasing 



14 

 

particle size in a thin film. Therefore, for applications requiring a greater density, a film 

with a smaller grain size and greater migration is optimal. If less density is desired, a 

film with a larger particle size and lower migration would be optimal [4]. Finally, along 

with grain size, the significant material properties considered in this research work are 

surface roughness, hardness, wear resistance and self-lubricating level.  

Conventionally, there are numerous techniques available to measure the above-

mentioned properties of coated elements like Profilometer for surface roughness, 

Vickers hardness tester for coated surface hardness, pin-on-disc test for wear resistance 

and scanning electron microscope (SEM) analysis for grain size. However, in all these 

methods, machine element must be dismantled for the purpose of analysis which leads 

to idle time and it is impractical to measure properties of material using conventional 

methods at different life stages by dismantling the machine component. Therefore, 

researchers have developed several on-board techniques like acoustic signal analysis, 

thermography, motor current signature analysis, radiography, oil analysis, ultrasonic 

monitoring, laser interferometry and vibration analysis to monitor the status of the 

machinery. However, vibration signature analysis considered to be most sensitive in 

detecting the micro level variation in the material of machine element as it is also widely 

used by many researchers in detecting faults at incipient stage [6,7]. 

In this research work, five different coatings with different level of material properties 

have been selected for the bearing elements as per the industrial standards. The outer 

and inner race of bearing were electroplated with the following five different coatings: 

Nickel, Copper, Silver, Zinc phosphate and black oxide. All coatings are having unique 

level of surface roughness, hardness, wear resistance, grain size, and self-lubricating 

level. Two sets of coated bearing have been prepared, one is used for experimentation 

and second is utilized for the sake of characterization of already specified material 

properties. After measuring the level of considered properties for all bearing coatings, 

coated bearing has been installed in the bearing casing for the experimentation to 

capture its vibration signal in running condition. Then, effect of degradation in surface 

properties is monitored by analyzing variations in vibration signal.  
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2. Literature Review  

The study of the literature has been divided into two parts. Firstly, significance of 

coatings has been discussed followed by discussion on various methods of coatings. 

Further, review on analysis of different coating properties has been carried out.  

 

2.1 Coatings on bearing 

Surface technology is among the most vital technologies in industry. By utilizing 

appropriate coating systems, it is possible to meet higher requirements for corrosion or 

wear protection as well as friction reduction. Consequently, coating systems contribute 

to the conservation of resources by extending the service life of components and 

reducing energy losses due to friction. This technology will grow in significance in the 

future, not only for extant products but also especially for new product types. Energy 

systems and wind energy are examples that can be used to illustrate this point. 

Moreover, a future contribution to the digitalized networking of the components and 

systems will be made possible by the multifunctional properties of components' 

surfaces. Energy systems and wind energy are examples that can be used to illustrate 

this point. Further, a future contribution to the digitalized networking of components 

and systems will be made possible by the multifunctional properties of component 

surfaces [10,11]. 

2.1.1 Coating systems with its applications 

Coating is a tried-and-true method for enhancing the performance capability of the base 

material through functional expansion, thereby providing components with additional 

properties for specific applications. Coated rolling bearings enhance corrosion 

resistance in addition to tribological and electrical insulation properties. Corroded 

bearing components can cause functional issues, decreased efficiency, and premature 

bearing failure. Appropriate coatings may serve as a substitute for costly, corrosion-

resistant bearing steels. The quality of a rolling bearing is largely determined by its 

smooth operation and resistance to attrition. These variables affect not only the 
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fundamental operation but also the energy and material requirements. A low friction 

coefficient decreases both energy consumption and lubricant requirements. This is 

related to reduced mechanical fatigue. In turn, this ensures the bearing's continued 

functionality and extends its service life. Coating systems are appropriate for the 

enhancement of tribological behavior. In these instances, the performance under poor 

lubrication conditions (lubricant starvation) can also be substantially enhanced by 

selecting the appropriate coating. To prevent rolling bearing failures caused by current 

flow, ceramic insulating coatings can be applied to the cylindrical surfaces and end 

faces of the bearing rings [11]. 

Depending on the specific application and requirements, a bearing's coating can provide 

various advantages. Here are some commonly utilized bearing coatings: 

• Anti corrosion coating: In corrosive environments, bearings may require a 

protective coating against rust and other forms of corrosion. Zinc, nickel, chrome, 

and various forms of polymer coatings are common anti-corrosion coatings. 

• Lubrication enhancers: Coatings can enhance bearings' lubrication properties, 

thereby minimizing friction and wear. For instance, certain solid lubricant coatings 

such as molybdenum disulfide (MoS2) or polytetrafluoroethylene (PTFE) can be 

applied to improve the self-lubricating properties of the bearing. 

• Thermal Barrier Coatings: Thermal barrier coatings can be beneficial for bearings 

exposed to elevated temperatures. These coatings provide insulation, which reduces 

heat transfer to the bearing and enhances its performance and durability. 

• Wear resistant coating: When bearings are exposed to high loads or abrasive 

environments, wear-resistant coatings may be required. These coatings can be 

applied to the bearing surfaces in order to increase their hardness, resistance to 

attrition, and longevity. 

• Low friction coatings: Coatings such as diamond-like carbon (DLC) and other 

nanocomposite coatings can reduce friction between bearing surfaces, resulting in 

increased efficiency, decreased energy consumption, and decreased heat 

production. 
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Notably, the choice of coating is dependent on bearing type, operating conditions, 

desired performance enhancements, and cost considerations. The utilization of specific 

coating will vary based on the requirements of the application. 

2.1.2 Various methods of coating bearing elements 

Several methods are used for coating of the bearings, each is having its own advantages 

and disadvantages. Commonly used methods for coating bearings are: 

• Electroplating and Electroless Plating: Electroplating is the electrolytic deposition 

of a metal coating on a bearing surface. It provides exceptional adhesion and coating 

thickness control. Electroless plating is a chemical procedure that deposits a metal 

coating on a bearing surface without using an electrical current. It provides 

homogeneous and regulated coatings, even on intricate geometries. 

• Physical Vapor Deposition (PVD): PVD techniques, including sputtering and 

evaporation, involve the vaporization of a solid metal or alloy, which is then 

deposited on the bearing surface. This method produces thin, adherent coatings with 

superior hardness, wear resistance, and friction. 

• Chemical Vapor Deposition (CVD): CVD is a process that involves introducing a 

reactive gas to the bearing surface, which then reacts to form a solid coating. It 

permits precise control over coating composition and thickness and can produce 

dense, conformal coatings with high thermal stability. 

• Thermal Spray Coating: Thermal spray techniques involve heating and propelling 

coating material particles onto a bearing surface. This technique incorporates 

plasma spraying, flame spraying, and high-velocity oxygen fuel (HVOF) spraying. 

Thermal spray coatings offer superior abrasion resistance, corrosion protection, and 

the ability to deposit different materials (metals, ceramics, polymers). 

• Sol-Gel Coating: Sol-gel is a wet chemical process that entails the formation of a 

thin film on a bearing surface from a sol (a stable colloidal suspension). The sol-gel 

coating provides enhanced adhesion, lubrication, and corrosion resistance after 

drying and curing. 

• Polymer-based Coatings: Bearings are coated with polymer-based coatings, 

including solid film lubricants, to reduce friction, wear, and noise. These coatings 
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frequently contain lubricating additives such as PTFE (polytetrafluoroethylene) or 

MoS2 (molybdenum disulfide). 

• Diamond-Like Carbon (DLC) Coating: DLC coatings are a form of diamond-like 

amorphous carbon coating. They possess extraordinary hardness, low friction, high 

wear resistance, and chemical inertness. DLC coatings can be applied using PVD 

or plasma-enhanced chemical vapor deposition (PECVD) techniques. 

• Hybrid Coatings: Hybrid coatings combine diverse materials or processes to attain 

properties. Combining a tough ceramic layer with a lubricious polymer layer, for 

instance, can provide wear resistance and minimal friction.  

It is essential to note that the selection of a coating method is contingent on a number 

of variables, including the desired properties, application requirements, budget, and 

production scale. Each method has its own advantages, limitations, and considerations, 

and the selection should be based on the bearing application's specific requirements. 

Some common methods that are used by bearing industries are anodizing, galvanizing 

and electroplating [12]. Anodizing is a procedure that triggers the generation of a 

protective oxide layer on a metal's surface. The resultant oxide layer develops at an 

accelerated rate and tends to be thicker compared to its natural formation [13]. 

Galvanizing is the procedure of immersing a metal (typically iron or steel) in a bath of 

molten zinc. When the coated metal is removed, it reacts with oxygen and carbon 

dioxide in the environment to form a protective layer of zinc carbonate [0]. 

Electroplating, also known as electro-deposition, is the application of a fine layer of 

one metal onto the surface of another. During electroplating, both metals are immersed 

in an electrolytic solution. The cathode is the coating metal, while the anode is the metal 

to be coated. A current is transmitted through the electrolytic cell, resulting in the flow 

of metal ions from the cathode to the anode and the formation of the coating [15]. 

There are a variety of materials that can be used to surface bearings, depending on the 

desirable property to be enhanced. The most widely used bearing coatings in the 

industry are Nickel, Copper, Zinc phosphate, Silver, and Black oxide [11]. The nickel 

coating has been used to improve corrosion resistance, adhesive resistance, and abrasive 

wear which make it a potential choice in engineering applications [20]. It has been 

observed that along with enhancing corrosion resistance, nickel electroplating also 
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improves the conductance and resistance to oxidation in transparent conductor also 

[21]. Moreover, nickel plating was also used on parts made by laser additive process to 

improve friction and wear behaviour. An important point to be noted that electroplating 

with nickel is a commercially significant surface treatment procedure that annually 

consumes approximately 100,000 tons of nickel across the globe [22]. As far as copper 

coating is concerned, due to its high conductivity and corrosion resistance that copper 

coatings confer on engineered assemblies, the use of copper coatings on steel 

mechanisms is abundantly viable. Copper electroplating on bearing steel AISI 52100 

exhibited excellent results under sliding load. Moreover, it coating resulted in lower 

friction coefficient and wear loss from the surface of substrate, hence better surface 

properties [23]. Commonly, copper coating is preferred for enhanced tribological 

properties and increased electrical conductivity and is widely used on large bearing 

cages and cages for aerospace applications [24]. Further, in case of zinc phosphate 

coating, it has been observed that it has excellent friction reduction and wear protection 

properties and is utilized in numerous industries, including the wire drawing industry, 

the automobile industry, and various appliance and electronics industries. [16]. 

Phosphate coating is one of the most popular pre-treatments for steel due to its 

affordability, speed of application, abrasion resistance, and lubricating properties [17].  

Moreover, zinc increases the hardness of the surface without affecting their corrosion 

resistance negatively when tested on mild steel substrate and verified using Vickers 

micro hardness tester [25, 26]. To improve the sustainability of bearing at high 

temperatures, silver coating has been used and depicted outstanding tribological 

characteristics at elevated temperatures. With the silver coating on bearing surfaces 

having antifriction performance, the magnitudes of friction force and coefficient could 

potentially be reduced. Crystallinity, microhardness, residual strain, and grain size are 

all enhanced on bearings when heated to high temperatures. Tribo-chemical reactions 

increase the surface's uniformity, making it more resistant to plastic deformations and 

so extending the bearing's useful life [28]. Surfaces benefit from increased wear 

resistance and antifriction due to the combined effects of Ag element, which is a hard 

lubricant with excellent lubricating behavior, and texturing [29-33]. Additionally, it has 

been found that to provide exceptional electrical conductivity for high-speed bearing, 

silver coating proves to be an effective solution [19]. Electroplating with silver has 
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existed for centuries. It has been utilized since the beginning of coinage and metal 

working. In modern times, silver was initially accumulated as a status symbol and, more 

significantly, for industrial use. Moreover, silver coating is used in numerous types of 

medical devices, including surgical instruments, implants, and MRI machines, 

incorporate metal coatings and finishes to provide or enhance various advantageous 

properties. Depositing a fine metal layer to the exterior of a medical device, such as 

through the plating process, can enhance electrical conductivity, reflectivity, and 

resistance to pathogens, among other benefits [20]. Along with medical, silver plating 

has been widely used in other areas like aerospace, defense, microelectronics, jewelry, 

and automotive industries [34]. Therefore, it can be said that the benefits of using silver 

coating are enhancement of tribological properties, increased emergency running 

performance under low-lubricant situations, better heat removal from a working space, 

to make substrate sustainable to extreme velocities and speeds and higher electrical 

conductivity [17]. Lastly, the significance of black oxide coatings in the field of bearing 

cannot be skipped. As utilization of black oxide coatings in bearing applications is 

prevalent throughout the industry [35]. In comparison to non-coated bearing steels, a 

black oxide layer has several advantages: It has better running-in behavior, higher 

corrosion resistance, lower hydrogen permeability, more micro pitting protection, and 

better smearing/scuffing resistance than conventional lubricants [36-41]. Black 

oxidation helps in reducing the prematurely risks of failure in wind gearbox bearings 

and wind turbine drivetrains due to cracks, spalls, or erratic white etching cracks 

(WECs). WEC describes how a microsection of polished and etched steel looks after 

its microstructure has been modified. Several bearings in a wind gearbox, including the 

planet bearings, intermediate shaft bearings, and high-speed shaft bearings, are prone 

to failure [42]. There are several mechanisms that, according to ongoing research and 

literature, can help lower the chance of WEC failures, including reduction in abrasive 

and corrosive wear [43], bearing steel with less hydrogen diffusing into it [44], 

protection from corrosion [45] and stabilization of track surface microstructure [71]. 

Therefore, Black oxidation serves as a protective measure for bearing components 

against the aforementioned failure mechanisms. Moreover, black oxide's porous 

microstructure helps boost the coating layer's affinity for lubricant or preservatives, 

which in turn makes the coating more water- and corrosion-resistant [42]. Black 
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oxidized bearings have been put through a bearing life test under extreme mixed 

lubrication circumstances. In terms of running-in and low kappa lubrication 

circumstances, the advantageous impact of black oxidized bearings over their non-

coated counterparts has been proved [77]. 

From literature, it is obvious that different bearing manufacturer are coating the bearing 

elements with aim of enhancing the surface properties of bearing elements. Along with 

grain size, the important coating properties of the bearing elements considered in this 

work are: Surface roughness, Hardness, Wear resistance and Self-lubricating level. 

Next, the literature about evaluation of these coating properties is presented one after 

another. 

 

2.2 Review on analysis of coating properties 

Starting with surface roughness, E.García et al. had applied singular spectrum analysis 

(SSA) for the examination of surface roughness in CNC turning operation using 

vibration signal. SSA was used to decompose the signal into multiple sets of principal 

components. The results indicate that a single spectrum analysis of vibration signal 

processing distinguished the optimal frequency range for surface roughness prediction. 

[46]. Same author applied wavelet packet transform to predict the surface roughness 

using biorthogonal 4.4 wavelet. The best association between the vibration signal and 

the surface roughness was discovered at the third level of decomposition. The 

considerable packets were obtained in the medium to high frequency DDA (6250-9375 

Hz) and high frequency ADA (9375-12500Hz) ranges [47]. Generally, conventional 

decomposition technique decomposes the signal without considering its nature but on 

the basis of highest frequency present in the signal. Sometimes, these frequency bands 

are very wide and contains insignificant information of the signal along with significant 

information. Due to this insignificant information present in the signal, it becomes 

difficult to study characteristics which are having lower energy contents. In the cases 

where required characteristics are having low energy levels, Variational mode 

decomposition (VMD) is proposed. The main advantage of VMD is that it is non-

recursive in nature and generates frequency band across the significant frequencies 
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present in the signal [49]. These frequency bands are called intrinsic mode functions 

(IMF) with having specific sparsity characteristics while reproducing the signal. In this 

method, principal modes (IMF) of the signal are extracted while updating center 

frequencies for each mode during shifting operation [50,51]. VMD was successfully 

used to detect bearing fault by differentiating the transient impulses of complex 

vibration signals using IMF evaluation index [48]. Due to VMD's capacity to highlight 

non-stationary signal characteristics, significant results were obtained while analyzing 

seismic data with low frequency and high amplitude [52]. Moreover, VMD exhibits 

excellent execution in decomposition and feature extraction to diagnose rotor-stator 

faults by detecting multiple signal characteristics induced by rubbing in gas turbine 

blade [120]. In addition, VMD has also been used to enhance the precision of diagnosis 

by extracting weak characteristics of the signal corresponding to bearing’s fault [53,54]. 

In case of hardness testing, commonly used methods are: Rockwell, Brinell, Vickers 

and Knoop testing. In all these methods, the resistance to penetration i.e., depth of 

indentation is going to be the measuring principle. However, among these four, Vickers 

method is preferred for measuring hardness of thin surfaces like coatings [55-58]. On 

the other hand, Ultrasonic Contact Impedance (UCI) Hardness Testing and 

Electromagnetic Induction Hardness Testing are considered to be non-destructive 

hardness measurement methods. Hardness is measured, without damaging the sample, 

by ultrasonic contact impedance (UCI) testing, which is commonly used on metals and 

alloys. Under compression, an indenter's depth of penetration is proportional to the load 

applied, hence UCI testing is based on the relationship between material hardness and 

elastic modulus. UCI testing employs a small Vickers indenter with a diamond-tipped 

point. Typically, the diamond tip has a pyramidal shape with a very small angle at the 

apex. The indenter is placed against the surface of the material, and a controlled force 

is applied. A transducer for ultrasonic waves is affixed to the indenter. Through the 

indenter, a high-frequency vibration is transmitted into the material. Measuring the 

resulting contact impedance, which is the resistance to the flow of ultrasonic vibrations. 

There is a relationship between material hardness and contact impedance. The contact 

impedance is higher and the indentation is shallower with harder materials, while the 

opposite is true with softer materials. The UCI hardness value is derived from the 
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calibration-established relationship between contact impedance and hardness [59-61]. 

Another nondestructive method of measuring hardness, Electromagnetic Induction 

Hardness Testing is useful in evaluating case depth of hardened material. This method 

is especially useful for determining the hardness of heat-treated components, such as 

carburized or induction-hardened parts. It is based on the principle that a material's 

hardness influences its electrical conductivity and magnetic permeability. The 

technique makes use of the correlation between a material's hardness and its electrical 

conductivity and magnetic permeability. An electromagnetic field is produced when an 

alternating current with a high frequency is created in a coil. The measurement 

instrument consists of a probe or coil placed on the surface of the material. The 

electromagnetic field's alternating nature is produced by the coil. Eddy currents are 

created in the material due to the alternating electromagnetic field. The hardness and 

case depth of the material affect the behavior of these eddy currents, including their 

penetration depth and phase shift. The amplitude, phase, and impedance of the eddy 

current are all measured by the equipment. The material's hardness or case depth is 

connected to these shifts. Accurate results are impossible without calibration. The 

output of the instrument is then correlated with the hardness of a collection of reference 

samples with established values. Based on the relationship determined during 

calibration, the device returns a hardness value. Some tools may also be able to produce 

a graphical representation of depth-dependent hardness changes [62-66]. Thomazella 

et al. developed a novel vibration signal processing method for chatter identification in 

tangential surface grinding of AISI 1045 steel using the short-time Fourier transform 

(STFT) and the ratio of power (ROP) statistical tool. In addition, the Vickers hardness, 

irregularity, and metallography of the surfaces of the ground workpieces were 

evaluated. The vibration signals underwent digital processing utilizing a technique 

grounded in the Short-Time Fourier Transform (STFT) and ratio of power (ROP) to 

deduce the properties of the babble. The findings indicate that this approach can be 

utilized for characterizing the spectral bands linked with chatter over a duration [67].  

Further, in case of wear evaluation, a systematic approach for monitoring diamond tool 

degradation based on vibration measurements was developed. The monitoring system 

used the correlation coefficient with a perfect trend function to choose the 
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characteristics that consistently demonstrated tool wear. The monitoring system can 

rapidly extract and select features, allowing the manufacturer to implement an online 

monitoring system. This system will allow the manufacturer to optimize the utilization 

of diamond tools, resulting in substantial cost savings [63]. In turning operation, the 

relationship between tool wear and features of vibration signal has been developed. It 

was observed that frequency-based features associated well with the tool wear. The 

characteristics revealed a strong correlation between the measured wear values and 

particular resonant peak frequencies [68].  In another study of twist drill wear detection, 

vibration signal processing techniques proves to be more reliable and efficient when 

training a supervised neural network to identify and categorize the drill wear. Discrete 

harmonic wavelet transforms, Burg power spectral density (PSD), and four statistical 

metrics in the time domain were used to examine the data gathered from extensive 

experimentation. The findings demonstrate that once the neural network was 

appropriately instructed, it became an effective and trustworthy instrument for 

addressing classification and pattern recognition tasks, such as those encountered in 

this drilling job examination. The findings clearly signify that vibration signals have 

enormous potential for monitoring tool condition and diagnosing manufacturing 

processes [69]. Along with this, a reliable tool wear monitoring system was proposed 

based on vibration signal analysis. The singular spectrum analysis (SSA) and cluster 

analysis are used to analyze the constitution of the tool vibration signals, which forms 

the basis of the proposed tool condition monitoring system. SSA is a cutting-edge non-

parametric time series analysis method that breaks down the recorded vibrations of a 

tool into a series of time points that can be analyzed together. To assess the tool flank 

wear, a feedforward back-propagation (FFBP) neural network is trained using a 

clustered SSA decomposition, which yields numerous distinct components in the 

frequency domain [70]. Another wear identification technique was proposed based on 

vibration signal for gears using an indicator of vibration cyclo-stationarity. In particular, 

the relationship between tribological features of the two wear phenomena and gear 

mesh-modulated second-order cyclo-stationary properties of the vibration signal is 

studied, taking into account the fundamental physics of gear meshing and the distinctive 

surface characteristics caused by fatigue pitting and abrasive wear. Gear mesh-cyclic 

components are analyzed for their carrier frequencies (spectral content) in order to 
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differentiate between the two wear phenomena. Using vibration data from two tests—

one lubricated and influenced by fatigue pitting, and one dry and influenced by abrasive 

wear—the efficiency of the suggested approaches in wear mechanism recognition and 

deterioration trail is proven. With this advancement, fatigue pitting and abrasive wear 

can be detected and monitored using vibration-based approaches [76].  

For grain size evaluation also, vibration signature has been used in estimating the 

sediment flux and grain size in river bed based on the amplitude of main mode of 

vibration. Sediment flux in rivers can be estimated indirectly by measuring the 

vibrations caused by sediments being moved on the riverbed. Metal plates installed on 

the riverbed are a commonly used technique. Geophones pick up the tremors and 

interpret the data as sediment flow rates. Controlled experiments and physical 

modelling shown that information, such as the grain size of transported particles, may 

be taken out from additional factors, such as the amplitude and frequency of the 

collected signal [72]. In another study, different grain sized rock drilling was 

differentiated on the basis of vibration signal. On the basis of examination of vibration 

signals recorded while drilling into various rock samples using a diamond impregnated 

drill bit on a laboratory drilling setup, it can be asserted that under consistent drilling 

conditions, both the disintegration process and the resulting fragmented rock display 

distinctive vibration patterns across time, frequency, and time-frequency domains. In 

the frequency domain, the vibration spectrum of materials with bigger grains showed 

greater amplitude components at low rotation speeds. Unique grain diameters of the 

studied materials were represented in the spectrograms by having distinct dominating 

frequencies and peak acceleration amplitudes. During the analysis of vibration data in 

the frequency domain, it was observed that there exists a polynomial correlation 

between the drilling rate and the vibration signal [75]. Another research work has been 

carried out to collect information about the rock structure based on the vibration signal 

analysis. The spectral properties of the sound or vibration signals produced during rock 

drilling operations were studied in relation to the mineral particle sizes using both 

numerical simulation and experimental methods. The results showed that the proportion 

of high-frequency sound and vibration increased as the aggregate size decreased. The 

aggregate sizes of the rock samples were varied in order to conduct several drilling 
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tests. Data from the vibrations were acquired using an indoor signal capture and 

processing system, and distinctive signals were then extracted. This study offered an 

alternative technique for evaluating the rock structure data collected via vibration from 

drilling [74]. Apart from this, grain size of the material was also studied based on the 

behavior of ultrasonic waves in low carbon steel. Using the acoustic resonance method, 

the precise measurement of ultrasonic wave attenuations in low carbon steels was 

conducted. Velocities were directly computed based on resonant frequencies and 

material thicknesses, while attenuations were determined by observing the decay of a 

signal from resonant vibration after halting external excitation at the selected resonant 

frequency. Average grain size and yield strength were shown to correlate well with 

attenuations measured at a frequency of around 5 MHz. Industrial applications for the 

findings include real-time assessment of grain size and mechanical strength of steels 

[73]. 

Lastly, to differentiate self-lubricating level based on the vibration signal, an attempt 

has been made by the researcher by taking two different coated bearings. One is coated 

with Al2O3 deposited using plasma thermal spray (NBC30205), while the other is 

coated via physical vapor deposition with wear-resistant carbon coating. The vibration 

signals of these two bearings were recorded after running at three distinct linear 

velocities under load conditions. The statistical moments of these vibration signals were 

computed, and the results were presented in the context of coating properties. As this 

coating is self-lubricating, the results demonstrate that bearings with a wear-resistant 

carbon coating have reduced statistical moment values. By calculating the RMS of the 

Fast Fourier transform, the spectral constituents of these signals were also determined, 

with the carbon-coated material yielding a lower value than the Al2O3-coated bearing. 

Due to improved lubrication, the lower value of spectral content reveals that the signal's 

harshness is significantly reduced. Randomness of spectral contents exhibits the 

greatest variation among all the analyzed parameters and proposed as a benchmark for 

analyzing the various levels of self-lubrication [80]. Based on the above discussed 

literature, it is advent that effect of change in material properties can be sensed by 

analyzing the variation in vibration signals by establishing a suitable relationship.  
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To improve the properties of bearing and hence life, most of the reputed bearing 

manufactures like SKF, NSK, FAG, RBC are using different types of surface coatings. 

Over a period, due to continuous running, the coating characteristics of bearing are 

bound to degrade but there are no techniques available to check the deterioration of the 

coating properties. Either the bearing needs to be dismantled or destroyed and is 

impossible to reuse the bearing for the same application. To overcome this challenge, 

this study will provide insight about the probable techniques that could be used to 

evaluate the bearing coating properties without damaging the bearing elements. After 

getting complete insight about most used techniques to measure properties, best 

possible would be recommended for checking coating deterioration without 

dismantling or destroying the bearing. Moreover, in actual conditions, the load on the 

bearing could be varying depending upon the application, as result it is challenging to 

estimate the bearing life effectively with the available formulas. 
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3. Hypothesis 

From literature review, it is clear that there is a need to have an on-board technique to 

assess the level of properties of material. An evaluation technique is required which can 

work without dismantling the workpiece and can keep the component in shape during 

evaluation also i.e., nondestructive in nature. Although, numerous non-destructive 

techniques like Thermography, Ultrasonic testing, Radiography, Eddy current testing, 

Magnetic particle testing, Acoustic emission analysis, Dye penetrant testing and 

Vibration signal analysis are in use to monitor the state of the machine. But vibration 

signature analysis remains to be a preferred choice of researchers due to its ability to 

identify minute variations in the system from normal working condition. That is why 

in this research work, to compare the level of different properties of bearing coating, 

vibration signature analysis has been selected.  
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4. Objectives 

 

• To coat the bearing mating surfaces with different materials to achieve various 

levels of surface properties. 

• To measure and characterize surface properties of bearing coatings using 

conventional techniques 

• Development of correlation for each material property with the relevant 

statistical parameter of the vibration signal of coated bearing element. So that, 

bearing surface properties could be evaluated while the bearing is in running 

condition, based on statistical analysis of the vibration signal. 
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5. Methods and Materials  

 In this research work, a ball bearing, NBC make, Model no: 6205 has been used for 

experimentation. It falls under the category of deep groove ball bearings.  The single 

row deep groove ball bearing boasts minimal friction, noise, and vibration which make 

them ideal for use at high rotational speeds. Compared to other bearing types, they are 

more durable, easier to install, and require less maintenance for radial and axial loads 

in both directions [81]. 

     

Figure 15: Sectional view of 6205 ball bearing [81] 

 

Table 1: Technical specification of 6205 ball bearing [81] 

Symbol Value Entity name 

D 52 mm Outside diameter 

d 25 mm Bore diameter 

B 15 mm Width 

D2     ≈46.21 mm Recess diameter  

d1 ≈34.35 mm   Shoulder diameter 

r1,2 min.1 mm Chamfer dimension 
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Table 2: Calculation data of 6205 ball bearing [81] 

Parameter Value 

Basic static load rating 7.8 kN 

Basic dynamic load rating 14.8 kN 

Fatigue load limit 0.335 kN 

Limiting speed 18, 000 rpm 

Reference speed 28, 000 rpm 

Mass of bearing 0.13 kg 

 

Total 10 bearings are procured from bearing manufacturer and divided into two sets of 

5 each. Each bearing in both sets were disassembled using the facility of manufacturer 

only. Later, each bearing from both sets were coated with a specific material as per the 

industrial standards. The coating used for the bearing in this study are: Nickel, Copper, 

Silver, Zinc Phosphate and Black Oxide.  First three coatings are carried out with the 

process of electroplating and last two with chemical conversion process. 

5.1  Electroplating 

 Electroplating involves immersing the bearing in a metal salt solution as a cathode, and 

required coating material like zinc as anode, followed by the passage of electricity to 

initiate chemical reaction process. In order to supply the electrical energy required for 

the plating process, they are wired to the power source, often a direct current (DC) 

power supply. An electrical current flow through the circuit when power is supplied, 

which draws metal ions from the electrolyte and directing them toward the cathode 

(substrate). At the cathode, the metal ions gain electrons and deposit as a metallic layer 

on the substrate after being reduced. The anode is responsible for replenishing the 

electrolyte with metal ions because this is where the metal is oxidized before being 

dissolved in the electrolyte. Prior to electroplating process, surface preparation is an 

important step where the substrate, such as a metal object or a plastic component, is 

extensively cleaned to remove any dirt, grease, or oxides. Typically, this is 

accomplished through a sequence of chemical degreasing, mechanical scouring, and 

rinsing steps. To ensure excellent adhesion and quality of the plated layer, it is 

imperative that the substrate should be clean. After cleaning the base metal, there are 

important parameters to be controlled during the electroplating process apart from 
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assigning cathode and anode after immersion in the electrolyte. These important 

parameters along with their significance are discussed further.  

• Preparation of base material: To ensure high adherence and quality of the plated 

layer, surface pretreatment of the substrate prior to plating is essential. Adhesion 

between the substrate and the plated metal depends on factors including controlling 

the cleaning, activation, and etching processes, which remove impurities, prepare 

the surface for plating, and promote adhesion. That is why, the surface of bearing 

elements was thoroughly cleaned before the electroplating.  After being cleaned of 

oil with hot aqueous alkali and acetone, the substrates were mechanically polished 

and immersed in a 10% (volume fraction) hydrochloric acid solution for 8-10 

seconds to activate the surface. 

• Plating time: The thickness of the plated layer depends on how long the substrate 

is submerged in the plating bath. In order to avoid under- or over-plating, the plating 

duration must be precisely managed to reach the target coating thickness. The 

plating time is directly linked with required coating thickness, which typically 

ranges from 3 to 6 minutes in this work, whereas the coating uniformity is highly 

dependent on the rate of withdrawal from the reservoir [82]. 

• Current density: How much electricity flows through the plating solution per 

square centimeter of the substrate is measured in terms of current density. Current 

density is commonly expressed as a ratio of amperes per centimeter squared 

(A/cm2). Because it impacts plating velocity, thickness, and homogeneity of the 

deposited metal, controlling the current density is critical. Coating surface 

morphology is significantly impacted by plating current density. Very small 

platelets, measuring less than 1 m in size, were seen when the current density was 

raised from 30 mA/cm2 to 48 mA/cm2. There were also microcracks visible all the 

way through the coatings. Microcracks were more prominent when a lower current 

density was used [83]. 

• Temperature: The rate of plating and the grade of the deposited metal are affected 

by the temperature of the plating bath. Various metals have distinct temperature 

requirements for optimal gilding outcomes. Monitoring and regulating the 

temperature of the bath is essential for maintaining process consistency and 
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ensuring uniformity. The processing temperature in electroplating are usually below 

100° C. 

 

• Voltage: The rate of metal deposition during plating is controlled by the applied 

voltage or current. The plating rate cannot be adjusted or problems like burning or 

surface roughness can be avoided without careful voltage regulation. 

• Composition of Bath: To get the proper plating results, it's crucial to know the 

exact composition of the plating bath or electrolyte solution. Factors such as metal 

ion concentration, pH, temperature, and the presence of additives or brighteners are 

all considered. To achieve consistent quality of plating, bath should be maintained 

in a controlled manner. 

• Agitation: By stirring the plating fluid, concentration gradients of metal ions can 

be avoided, resulting in more uniform plating. By mixing the solution thoroughly, 

we can prevent faults like voids and roughness on the plated surface and guarantee 

uniform deposition. The plating technique and bath composition determine the type 

of agitation and the degree to which it must be applied. 

• Configuration of Anode: The distribution of current and metal ions during plating 

can be affected by the selection and placement of anodes in the plating solution. 

Uniform plating thickness and the avoidance of problems like edge buildup or 

uneven deposition necessitate careful consideration when selecting and installing 

anodes. 

After coating nickel, copper, and silver on the bearing elements using process of 

electroplating as explained above. Next two coatings i.e., zinc phosphate and black 

oxide were coated with the help of chemical conversion process.  

 

 

 

 

 

 



34 

 

Table 3: Electroplating parameters used in the process 

 

 

 

 

 

 

 

     

Coating 

Material 

      

Current 

density 

(A/dm2) 

      

pH  

value 

 

 Mean 

Thickness 

(µm) 

      

Deposition 

rate 

 (µm/min) 

      

Temperature 

(0C) 

    

Plating  

     time 

(minutes) 

      

Bath 

Composition 

   Nickel 5    3.4       18.54     1.8      60 10      Nickel 

Sulfate (240–

300 g/L), 

Nickel 

Chloride (30–

60 g/L), Boric 

Acid (30–40 

g/L) 

     

Copper 

5    1.8      21.47        1.2    35 18      Copper 

Sulfate (150–

250 g/L), 

Sulfuric Acid 

(50–80 g/L), 

Chloride Ions 

(50–100 

mg/L) 

    Silver 5     9      20.09         0.7       25 30      Silver 

Cyanide (25–

50 g/L), 

Potassium 

Cyanide (75–

150 g/L) 
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5.2 Chemical conversion Process 

The term "chemical conversion coating" refers to a surface treatment method in which 

a fine protective layer is generated on the surface of a substrate through the application 

of a chemical solution. The substrate's surface reacts with a chemical solution or 

substance in this process. Metals like aluminum, magnesium, zinc, and steel frequently 

undergo chemical conversion to improve their corrosion resistance, serve as a 

foundation for later coatings or paints, increase adhesion, or otherwise alter their 

surface qualities. Chemical conversion coatings come in a wide variety of styles, each 

optimized for a certain set of properties in combination with the substrate material. 

Some common chemical techniques for transforming metals are discussed further:  

• Phosphate Conversion Coating: Steel and iron surfaces are often coated with 

phosphate conversion coating. It entails applying a solution containing phosphoric 

acid or phosphate salts to the metal surface. Phosphate conversion compounds offer 

corrosion resistance, improve paint adhesion, and can serve as a base for lubricants 

and oils. For instance: Zinc phosphating is also used on bearing surfaces by the 

manufacturers.  

• Black Oxide Coating: Coating steel, stainless steel, or copper with a layer of black 

oxide also called blackening or blackening oxide, is the result of a chemical 

conversion process. Producing the black oxide layer that provides corrosion 

resistance and enhances aesthetics requires treating the metal surface with an 

alkaline solution or a mixture of chemicals. Black oxide coating is also carried out 

by the bearing industry.  

• Chromate Conversion Coating: The coating of chromate conversion, also known 

as chromating or passivation, is commonly employed for zinc and aluminum. 

Chromates, phosphates, or other chemical compounds are used in a solution to treat 

the metal's surface. Corrosion protection and better adherence for later paints and 

coatings are both provided by chromate conversion coatings. 

• Anodizing: Aluminum and its alloys undergo a unique chemical conversion 

process called anodizing. The aluminum is submerged in an electrolytic solution, 

and an electric current is then used to create an oxide coating on the metal's surface. 
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A variety of artistic and practical anodized coatings can be achieved, and corrosion 

resistance is greatly increased. 

 

     Table 4: Phosphating and black oxide process parameters 

 

 

 

 

 

 

 

 

 

 

5.3 Step by step procedure of Phosphating/ Black Oxidizing 

Typically, a protective layer of zinc phosphate or black oxide is formed on the surface 

of AISI 52100 through a chemical conversion procedure. The following is an outline 

of the process required to apply zinc phosphate or black oxide coating on AISI 52100. 

• Surface Preparation: It is very important to remove any debris, oil, rust, and scale 

from the AISI 52100 steel surface. Degreasing, alkaline cleaning, and mechanical 

cleaning (sandblasting, wire brushing) are all effective ways to do this. Zinc 

phosphate or black oxide coatings require a clean, contaminant-free surface to 

adhere successfully. 

• Activation: Apply an acidic activator solution to the cleansed surface. This process 

aids in the elimination of any lingering oxides and helps prepare the surface for the 

zinc or black oxide coating. In most cases, an acidic cleanser or acidic phosphate 

solution is used as the activator solution. Concentration and duration of immersion 

should be determined in accordance with manufacturer recommendations. 

 

Process 

 

pH 

value 

Mean 

Thickness 

(µm) 

 

Temperature 

(0C) 

 

Time 

(minutes) 

 

Bath 

Composition 

      

Phosphating 

3.4 17.5 55–65°C 20 Zinc Phosphate 

(30–50 g/L) 

 Black 

Oxidizing 

>12 2 135–145°C 30 Sodium  

Hydroxide 

 (500–550 g/L), 

Sodium Nitrate 

(100–200 g/L) 



37 

 

• Immersion: The treated AISI 52100 steel must be submerged in the zinc 

phosphating solution. In case of black oxide coating, sodium hydroxide (caustic 

soda) and sodium nitrite, together with a few additional secret ingredients, make up 

the bulk of the black oxide solution. For a uniform coating, make sure the entire 

component to be coated has been completely submerged in the solution. Time in 

immersion will be determined by coating thickness and manufacturer-

recommended procedure parameters. Immersion times often varies from few 

minutes to long time. 

• Rinse: Rinsing the coated AISI 52100 steel with water after the zinc phosphating 

or black oxidizing process removes any remaining solution and by-products from 

the treatment, protecting the coating against residues and extending its life. 

• Drying: Use methods such as air drying or forced hot air to dry the AISI 52100 

steel that has been coated. Before proceeding with any packaging or handling, be 

sure the coating is totally dry. 

 

5.4 Characterization of material properties 

After coating the bearing elements with electroplating and chemical conversion process 

as per the nature of coating, the properties of these coatings were evaluated. As already 

discussed earlier, along with grain size, important properties of bearing coating 

considered in this work are: Surface roughness, Hardness, Wear resistance and Self-

lubricating level. Further, description of all these properties is presented one by one, 

followed by its measurement method used in this work.   

5.4.1 Surface Roughness 

Starting with surface roughness, mostly termed as roughness, is a component of surface 

finish. It is determined by the extent to which an actual surface deviates from its ideal 

shape along the normal vector. If these variations are significant, the surface is 

considered rough; if minimal, it is deemed smooth. In surface metrology, roughness is 

commonly identified as the high-frequency, short-wavelength aspect of a surface under 

measurement. Assessing both the amplitude and frequency of roughness is often 

necessary to ensure surface suitability for a particular purpose. Roughness essentially 
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dictates the interaction of a real object with its environment. In tribology, rough surfaces 

typically exhibit higher friction coefficients and experience accelerated wear compared 

to smooth surfaces. Moreover, surface irregularities can act as initiation points for 

cracks or corrosion, utilizing roughness as a dependable indicator for the performance 

of mechanical component performance. Roughness can be assessed manually using a 

surface roughness comparator in reference to a sample of defined surface roughness, 

but more frequently, a profilometer is used to quantify the surface profile which could 

be optical (e.g.: a white light interferometer) or contact based which is usually a 

diamond stylus. For measurement, Mitutoyo made, Model: SJ-410 surface roughness 

tester has been used in this work as shown in Figure 16. Surface roughness level has 

been measured of coated bearing races before and after operation as presented in Table 

5. Different units like arithmetical mean roughness (Ra), maximum height (Ry), ten-

point mean roughness (Rz), mean spacing of profile irregularities (Sm), mean spacing 

of local peaks of the profile (S) and profile bearing length ratio (tp) are in use to measure 

the surface roughness, whereas Ra is most widely used term to measure the roughness 

mainly due to historical reasons, as earlier mostly testers used to give readings in Ra 

only, there is no other specific benefit of choosing Ra to define roughness level.  

Table 5: Surface roughness level (Ra) of coated bearing element 

S. No Coated  

Material 

Surface Roughness Indicator 

(Ra) 

(Before Operation) 

Surface Roughness Indicator 

(Ra) 

(After Operation) 

1 Nickel 0.29 0.29 

2 Copper 0.52 0.53 

3 Zinc Phosphate 0.71 0.71 

4 Silver 2.65 2.66 

5 Black Oxide 3.22 3.25 
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Figure 16: Surface roughness tester used to measure roughness level of coated bearing races [85] 

 

 

Figure 17: Average surface roughness (Ra) plot of bearing coating 
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5.4.2 Hardness 

A material's hardness is assessed based on its capacity to endure localized permanent 

deformation, often resulting from indentation. Furthermore, it reflects the material's 

resilience against deformation against abrasion, penetration, or scratching. Hardness is 

a significant factor in numerous applications of engineering design, as it plays a pivotal 

role by directly impacting the performance and appropriateness of the material. For 

example, as hardness increases, a component's resistance to wear generally improves. 

As hardness is not a fundamental characteristic of a material, it must be understood in 

relation to other characteristics like strength, elasticity, and ductility. For instance, a 

substance may be hard but also brittle. This characteristic may restrict the use of the 

item in particular applications. Therefore, it should be within required limits for smooth 

functioning of the machine element. This is crucial for mechanical equipment like 

bearing that has moving parts where metal components come in contact with other 

metal or containments. In order to ensure less wear and a longer service life, the 

hardening process during production is essential. Additionally, hardening offers the 

physical qualities that develop the optimal physical characteristics for the bearing. 

Therefore, it is important to retain this property during the functioning of the bearing, 

as degradation of the same may lead to failure of the component. However, the process 

of degradation is not happening at a noticeable rate so it is impractical to define a time 

period when hardness is going to be get effected. Therefore, onboard technique is 

required to monitor the hardness level without dismantling the component again and 

again during its working life. However, Conventionally, the surface hardness of the 

coated bearing has been measured using Vickers Hardness tester (Make: OmniTech, 

Model: S-Auto), same has been used in this work to measure hardness of bearing 

coating as shown in Figure 19 and measured values are mentioned in Table 6. Five 

sample readings of the same surface at different locations have been taken then mean 

of the five values has been considered as the final hardness value of each coated bearing.  

The values are taken in HV, Vickers hardness number. This process of measuring 

hardness is based on indentation only where a diamond shaped stylus forced to 

penetrate into the surface and leave its impression which is to be evaluated with the 

help of microscope.    



41 

 

Table 6: Vickers Hardness number (HV) of coated bearing 

S. No Coated  

Material 

Vickers Hardness Number 

(HV) 

(Before operation) 

Vickers Hardness Number 

(HV) 

 (After Operation) 

1 Silver 192 192 

2 Copper 491 489 

3 Zinc Phosphate 539 538 

4 Nickel 614 611 

5 Black Oxide 624 623 

 

Then, the dimensions of the indentation, a diagonal formed into the surface after 

penetration has been proportionally converted into HV number by dividing the test 

force with surface area of the indentation which is then displayed on the screen as 

measured output value. 

 

Figure 18: Microhardness plots of the coating 
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Figure 19: Vickers hardness tester used to measure hardness of coated bearing races 

 

5.4.3  Wear Resistance 

Wear resistance refers to a material's capacity to withstand extensive external forces 

throughout service, including abrasion, edge cutting, impact, and so on. It is possible 

for a material to have high wear resistance and toughness without being extremely hard, 

and vice versa. On the other hand, the ability of a material to absorb impact energy and 

bend (either elastically or plastically) without breaking is known as its toughness. For 

instance, tires of a car. Tires are not that challenging.  Tires are remarkably resilient, 

springing back from even severe distortion (elastic deformation) caused by anything as 

small as a fingernail. Even if a tire is perpetually deformed (plastic deformation), it rips 

or breaks infrequently.  Despite traveling on much harder surfaces, such as concrete, 

these tires last a very long time to wear out. In addition, they are shock and temperature-

resistant.  Tires are durable, deformable, able to sustain a great deal of energy prior to 

failure, and resistant to wear, but they are not particularly hard.  

For the wear testing, Pin-on-disc measurement involves pressing an indenter or pin 

(typically flat or spherical) against a test specimen. With the rotation of test specimen, 
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the engagement mechanism applies a precise force to the indenter.  Using a strain gauge 

sensor, the resulting friction forces are determined. Wear coefficients can be determined 

for both the pin and the sample by assessing the quantity of material lost throughout the 

testing process. Pin-on-disc can be used to determine the wear resistance of a coating, 

as well as its coefficient of friction, lubricity, and adhesion properties.  A surface 

exhibiting low friction coefficient and high lubricating properties will allow the pin to 

roll more readily on the surface, reducing material loss and enhancing wear resistance. 

In contrast, the pin's tension would cause a coating with inadequate adhesion to break 

apart at the bond and peel off.  This indicates poor wear resistance, even if the coating 

is tough. 

 

 

Figure 20: General layout of Pin-on-disc equipment to measure wear [86] 

The wear test of the bearing coatings was conducted using pin-on-disc test according 

to the ASTM-G99 standard. For testing, cylindrical pin shaped samples were prepared 

to slide against the SiC (silicon carbide) emery sheet of 200 grit size mounted on the 

rotary disc of the tribometer. The diameter and length of the pin were taken as 10 mm 

and 30 mm respectively. After fixing the sample in specimen holder, it must slide 

against the SiC emery sheet mounted on the rotary disc made up of EN31 steel [8]. 

Table 7 gives information about the wear testing parameters used in this work. The loss 
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in weight of the samples after wear was evaluated with the help of weight measuring 

instrument (Model: ML-220, Make: Mettler Toledo). 

Table 7: Parameters of abrasive wear test  

Wear Test Parameters Values 

Speed (m s-1) 1 

Load (N) 20 

Track diameter of disc (mm)   80 

Sliding distance (m)    5000 

Temperature (°C) 30 ± 5 

 

The abrasive wear coefficient and characteristics of cumulative weight loss of all the 

samples (coatings) are shown in Figure 21 and Figure 22. The equation (4) is used to 

find out abrasive wear coefficient for all samples is called as Archard’s wear equation 

[241].  

                                                           Q = 
𝐾𝑊

𝐻
                                                             (4) 

Where K = Dimensionless parameter called as abrasive wear coefficient 

 Q = Wear rate (g m−1) 

W = Load (N) 

 H = Sample Hardness  
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Figure 21: Abrasive wear coefficient for all coatings 
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Figure 22: Cumulative weight loss w.r.t sliding distance 

 

 

Figure 23: Pin on disc apparatus to measure wear rate [86] 
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5.4.4 Grain Size 

Grain size is an essential determinant of a material's mechanical properties and 

corrosion behavior. The mechanical properties of material such as fatigue, creep, yield 

strength, and impact transition temperature, are affected by the grain size. The particle 

sizes can have a substantial effect on the macro-scale mechanical response. Altering 

grain size will impact the volumetric number density of interactions between grains and 

the geometric configuration of their surroundings, solely from a geometric perspective. 

Moreover, grain size variation can affect the initial rigidity and damage behavior of 

grain-pair interactions. The mathematical description of the macroscopic response of 

granular materials must start with the concept of grain-interactions. According to the 

traditional Hall-Petch equation, grain size is significant: yield strength decreases as the 

square root of the grain size increases. Grain size also influences both hardenability and 

critical plastic flow properties [87]. Therefore, estimating the grain size of a material 

can be extremely beneficial. Conventionally, grain size is measured using optical 

photomicrographs or by observing the microstructure under a microscope. In 

comparison to optical microscope, higher magnification and in-depth details can be 

obtained using Scanning electron microscope (SEM). Employing a focused beam of 

high-energy electrons, the scanning electron microscope (SEM) produces a variety of 

signals on the surface of solid specimens. Signals resulting from electron-sample 

interactions disclose data of the specimen, such as its surface morphology, chemical 

composition, and crystalline structure and orientation of the sample's constituent 

materials. In most applications, data are collected over a specific region of the sample's 

surface, and a two-dimensional image displaying spatial variations in these properties 

is generated. With conventional SEM imaging methods, one can capture areas ranging 

from about 1 cm to 5 microns wide in scanning mode, with magnifications ranging from 

20X to approximately 30,000X and a spatial resolution of 50 to 100 nm. Additionally, 

the SEM can conduct point-by-point analyses of the sample, which proves especially 

beneficial for qualitative or semi-quantitative assessments of chemical compositions 

using energy dispersive X-ray spectroscopy (EDS), crystalline structure, and crystal 

orientations, with the aid of diffracted backscattered electrons (EBSD). Considerable 

quantity of kinetic energy is conveyed by accelerated electrons within a SEM. This 
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energy disperses as diverse signals arising from the interactions between electrons and 

the sample, these phenomena occur as incident electrons slow down within the solid 

specimen. These signals include secondary electrons, which produce SEM images, 

backscattered electrons (BSE), and diffracted backscattered electrons (EBSD), used to 

determine crystal structures and mineral orientations. Additionally, photons emit 

characteristic X-rays for elemental analysis, alongside continuum X-rays, visible light, 

and heat. Primarily, the SEM is employed for producing high-resolution images 

illustrating object morphologies (SEI) and for unveiling spatial differences in chemical 

compositions. This includes tasks such as obtaining elemental maps or conducting spot 

chemical analyses using EDS, distinguishing phases by mean atomic number (typically 

associated with relative density) using BSE, and generating compositional maps based 

on variances in trace element "activators" (usually transition metals and Rare Earth 

elements) [87]. Therefore, in this work, SEM is used to measure the grain size of coated 

material. For this purpose, second set of coated bearing has been used after cutting out 

a rectangular piece from inner and outer race using slow speed (200 rpm) diamond 

cutter (Make: Chennai Metco). After cutting, sample preparation has been carried out 

to get better results during SEM analysis. Each piece is etched with suitable acid 

followed by gold plating on the surface to be inspected. Etching represents a chemical 

or electrolytic procedure commonly employed prior to microscopic surface analysis. In 

materialgraphy, etching intentionally alters the surface profile or optical properties at 

grain boundaries, phases, or grain surfaces. This aids in microscopic examination and 

the additional use of optical filters.  

5.4.4.1 Steps to be followed in etching process [88]:  

a) Pre-polishing of the specimen necessitates a smooth, deformation and scratch-free 

surface. 

b) The appropriate etching solution for the material is chosen based on information 

obtained from the literature as shown in Table 8. 

c) In certain instances, light microscope filters could be utilized in conjunction with 

chemical etching for better contrast. This process is known as "optical etching." 

d) Electrolytic etching requires the selection of an appropriate electrolyte, voltage, 

and sample exposure duration. 
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Table 8: Etchant used for different coated elements 

S. No Coated  

Material 

Acid used for etching Time of etching 

in seconds 

1 Nickel Sulfuric acid 2 

2 Copper Nitric acid 2 

3 Zinc Phosphate Sulfuric acid 2 

4 Silver Hydrofluoric acid + water (in same 

proportion) 

30 

5 Black Oxide Hydrofluoric/ Nitric acid 3 

 

5.4.4.2  Types of Etching [88] 

a) Chemical Etching: Chemical etching involves fully submerging a sample, which 

is ground for macro etching or finely polished for micro etching, into an etching 

solution (etchant). Macro etching allows for visual inspection of the sample surface 

either with the naked eye or under a magnifying lens (up to 25x magnification). 

Micro etching facilitates microscopic examination at magnifications of 1,000x or 

more, utilizing either light microscopy or electron microscopy. The dissolution 

etching process enables targeted attacks on grain boundaries, surfaces, and phases. 

In precipitation etching, alternatively known as color etching, a thin layer develops 

on the surface, its thickness determined by the chemical composition or particle 

orientation. 

b) Electrolytic Etching: Electrolytic etching necessitates a uniformly conductive 

workpiece. Initial surface preparation typically involves brief mechanical grinding 

and furbishing to achieve better even surface, albeit with potential deformation and 

scratches. Unlike mechanical methods, electrolytic polishing tends to minimize 

edge rounding and potential phase discharge while reducing deformation. The 

underlying principle of electrolytic etching mirrors that of chemical etching, except 

that the specimen serves as the anode within a galvanic cell, resulting in material 

removal from the specimen's surface. For specialized investigations involving 

aluminum-based materials, electrolytic ablation can be employed to produce an 

anodized layer on a meticulously furbished specimen surface, which can then be 

examined using polarized light (known as Barker-etching). 
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 Although, in this work, only chemical etching has been done followed by gold 

sputtering. Throughout history, gold has maintained its status as the preferred material 

for sputter coating. Its high conductivity and relatively fine grain size contribute to 

enhancing the signal-to-noise ratio in SEM imaging, thereby producing higher-quality 

images and rendering it optimal for analysis. After gold plating, the samples are 

mounted on holder with the help of carbon tape as shown in the Figure 24. 

 

 

Figure 24: Coated bearing samples after cutting and gold sputtering mounted on SEM holder 

with carbon tape 

 SEM analysis has been carried out on JEOL make machine, Model No: JSM-7610F 

Plus as shown in Figure 25.  However, it is required to measure grain size with an 

onboard technique. The optical microscopic methods are time-consuming and 

frequently require cutting samples from the material which is impractical during 

working conditions [93].  
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Figure 25: Machine used for SEM analysis to measure grain size of bearing coating 

 

Table 9: Grain size of bearing coating 

S. No Coated  

Material 

Grain size diameter 

(nm)  

1 Nickel 22.25 

2 ZnP 24.16 

3 Copper 24.92 

4 Silver 26.8 

5 Black oxide 78.48 

 

The conventional techniques discussed above for the evaluation of properties of coated 

material needs dismantling of the workpiece which adds to idle time. Therefore, an 

onboard method is required to assess the level of these properties when the component 

is in running condition. In this work, vibration signature analysis technique has been 

utilized to compare the different level of properties for the bearing coating. All coated 

bearings were made to run using a customized bearing test rig and their vibration signals 

were recorded at five different speeds i.e., 300, 600, 900, 1200 and 1500 rpm. The 

statistical analysis of the captured signals was carried out using relevant signal 

processing techniques. Then, correlation between the coating properties and statistical 

parameters of vibration signal have been developed. 
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Figure 26: SEM micrographs of nickel coating 

 

 

 

 

     

Figure 27: SEM micrographs of zinc phosphate coating 
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Figure 28: SEM micrographs of copper coating 

 

 

 

    

Figure 29: SEM micrographs of silver coating 
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Figure 30: SEM micrographs of black oxide coating 

 

 

Figure 31: Plot of grain size diameter of bearing coating 
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5.4.5 Self-lubricating level 

The ability of the bearings to transfer minute quantities of material to the mating surface 

is what makes them self-lubricating. This method of transmission results in a layer that 

lubricates and decreases friction along the whole shaft. Self-lubricating bearings have 

various benefits over their greased counterparts. Because there is no oil, disposal, or 

cleanup of hazardous materials to worry about, self-lubricating bearings reduce the cost 

and inconvenience of preventative maintenance. Consistent frictional forces on the 

bearings and drive system are maintained by self-lubrication, eliminating the need for 

the grease or oil that attracts the impurities that wear out standard bearings. In this type, 

the process of providing lubrication is continuous throughout its service life. The break-

in stage is the first and most important stage. It is the beginning of transfer of material 

to the mating surface. Several variables, including as transfer rate, load, stroke length, 

etc., might affect the bearing material's degree of damage during the transition. In most 

cases, the first transfer will take between 50-100 strokes of continuous operation to 

complete. 

5.4.5.1 Step by step procedure of making a self-lubricating bearing 

1) First step is to select a suitable base material for the bearing with required 

mechanical properties, specified dimensions and compatible for the given 

application. Commonly used materials are bronze, composites, polymers, and 

ceramics. 

2) Next step is to select an appropriate solid lubricant with can exhibit self-lubricating 

behavior. Commonly used solid lubricants are: Polytetrafluoroethylene (PTFE), 

nylon, graphite, and Molybdenum disulfide (MoS2).  

3) These solid lubricants need to be integrated with the bearing material during 

manufacturing. The particles of the lubricant should be uniformly distributed 

within the bearing material matrix for proper lubrication.  

4) The various methods used to manufacture the self-lubricating bearing are powder 

metallurgy, sintering, injection molding or machining.  

5) The mechanism of lubricant transfer must be incorporated in bearing design by 

providing micro-pores or reservoirs to provide continuous supply of lubricant to 
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bearing surface.  With the wear of bearing surface, these lubricant particles must be 

released gradually through transfer mechanism. 

6) The surface of bearing could be treated with a layer of solid lubricant through the 

process of impregnation, spray coating or electrostatic deposition. Otherwise, 

lubricant particles can be embedded into the bearing surface with burnishing process.  

 

5.4.5.2 Applications of self-lubricating bearing 

The automotive and aerospace industries make extensive use of self-lubricating 

bearings. Aerospace applications require resilient, low-friction bearings to reduce the 

likelihood of a malfunction at altitudes of 10,000 feet or more. Additionally, many of 

an aircraft's components are difficult to access and service, and therefore benefit greatly 

from the extended service lives of self-lubricating bearings. However, it is incorrect to 

claim that self-lubricating bearing systems require no additional lubrication during their 

operational life, there is no such thing as an indefinitely lubricated bearing. Most of 

these systems lubricate themselves through integrated lubrication, which ultimately 

runs out or becomes ineffective. Therefore, it is more accurate to mention that these 

self-lubricating systems have a very long service life. Inspecting and maintaining the 

machine assemblies on a regular basis should always include lubricating these systems. 

Since self-lubricating materials are developed to lessen friction and wear between 

surfaces, there is a strong correlation between self-lubricating level and wear rate. There 

is a strong association between efficient lubrication and less wear, and a lower wear 

rate is indicative of better self-lubricating properties [90-92]. Therefore, in this work, 

self-lubricating level of the bearing coating is considered based on the wear rate, which 

is already evaluated and presented earlier in section 5.4.3. Based on this inverse 

correlation between wear rate and self-lubricating level, readings of wear rate are 

utilized to develop a relation between self-lubricating level and statistical parameter of 

vibration signal.  
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5.5 Bearing Testing  

With the help of procedure discussed above, two sets of bearing elements were coated 

with zinc phosphate and black oxide. Even though, two different processes were 

followed to coat all bearing sets but thickness of coating thickness was maintained in 

the range of 15-25 microns. The reason behind close tolerances of the coating thickness 

is the requirement of accurate assembly of the bearing elements. After coating inner 

and outer races of all five bearings, the process of assembly has been carried out as per 

the industrial standards.  

 

Figure 32: Coated bearing elements after assembly 

After coating all five sets of bearing (two bearing in each set) with the specified 

coatings, first set of five coated bearings has been utilized for the experimentation and 

second set used for characterization of material properties. The description about 

considered material properties of the bearing coating has already been done in the 

introduction chapter. Further, details about the experimentation carried out on the first 

set of coated bearings has been discussed.  
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Figure 33: Customized bearing test rig 

In this research work, a customized bearing set up has been developed as shown in the 

Figure 33. Here, the main shaft was powered by a 3-phase induction motor of 1.5 kW 

capacity (Make: Crompton). As depicted in Figure 33, two ball bearings are affixed at 

the ends of the shaft (Make: NBC Model: 6205). Using an optical tachometer, speed 

can be measured during an experiment. On the loading side of bearing casing, coated 

bearings were mounted. To measure vertical acceleration, a PCB accelerometer with a 

sensitivity of 990 mV/g was mounted on the bearing's upper right side. A PC-based 

acquisition system by National Instrument (Model: SCXI-1000 with 4 channel input) 

employed to capture vibration signatures. Then, an inline arrangement was made to 

store the captured data on the hard drive using the NI LabVIEW (2020) interface so 

that it can be further analyzed in MATLAB software.  
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5.6 Introduction to Lab-VIEW 

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a graphical 

programming language and development interface developed by National Instruments. 

It deals with measurement and control system design, prototyping, and deployment 

with extensive application in the fields of engineering and scientific research. 

LabVIEW is a visual programming environment in which users can construct virtual 

instruments (VIs) by connecting graphical icons that represent different functions and 

operations. As no textual code is required, engineers and scientists who lack 

programming skills can also use LabVIEW software due to its visual method. 

LabVIEW's graphical dataflow paradigm is its central idea. LabVIEW uses wires 

between nodes to represent the transmission of data and the execution of commands 

throughout the program. The various features of nodes are sensor data collection, 

computation, output to a user interface, hardware device control, and system 

communication. It is simple to interact with multiple instruments and sensors because 

of LabVIEW's wide library with pre-built functions, tools, and drivers for diverse 

hardware devices. As a result, LabVIEW is widely used in fields like as data 

acquisition, test and measurement, and automation. In addition to its many other useful 

features, LabVIEW's user interface design toolset lets you craft dynamic and 

aesthetically pleasing user interfaces for your digital instruments. A variety of controls 

and visual representations of data in real time can be included into these front panels. 

LabVIEW also allows users to incorporate existing code or improve LabVIEW's 

capabilities by accessing additional libraries and tools thanks to its support for 

integration with other programming languages like C/C++, .NET, and Python. Apart of 

this, LabVIEW has developed its base in many different sectors like Automation in 

industry, robotics, control systems, embedded systems, scientific experimentation, and 

academic research. Its widespread adoption in the fields of engineering, science, and 

education can be attributed to the software's adaptability, user-friendliness, and 

hardware compatibility. 

In this research work also, a graphical interface has been developed using LabVIEW 

software to record vibration signals. A file with extension .vi has been created where 

after selecting integrated data acquisition system, recording can be initiated. For 
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recording purposes, a start and stop button has been provided on the interface along 

with timer. For continuous monitoring, live plotting of two waveform graphs have been 

incorporated also where live feed of amplitude vs time and amplitude vs frequency can 

be seen. The whole exercise has been done by developing block diagram of the whole 

system. This block diagram has been drawn by covering up all the elements like ball 

bearing, data acquisition system (DAQ) physical channel, DAQ assistant data, spectral 

measurements, waveform graph, file path control, record button, stop button and reset 

button along with setting up of their connections in the software. The front panel of the 

interface is shown in the Figure 34. 

 

Figure 34: LabVIEW Interface to record vibration signals 

Using front panel interface of LabVIEW software, it becomes feasible to record 

vibration signal with the computer system.  For this, accelerometer has been mounted 

on top of the bearing using petro wax. At low temperatures, petrol wax is an outstanding 

adhesive. Like cyanoacrylate, the uniform frequency response of petro-wax increases 

as temperature decreases. It should be noted that the maximal bonding strength of petro-

wax when applied to smooth steel surfaces is approximately 15 psi. After acquiring 

signal from top of the bearing casing using accelerometer, it is transferred through DAQ 

system to the computer. Further, the signal is saved in the hard drive using DAQ 

integrated LabVIEW software installed in the computer system. The signal file was 

saved in .tdms format which was converted into .xlsx format by installing converter 
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extension file from official website of LabVIEW software. These converted files were 

imported into MATLAB software, where it was firstly converted into .mat file 

extension to analyze the same using signal processing toolbox of the software or by 

using relevant code-based signal processing technique.  

5.7 Introduction to Signal Processing Toolbox of MATLAB 

The Signal Processing Toolbox offers capabilities and uses for managing, examining, 

preprocessing, and extracting characteristics from signals, whether they are uniformly 

sampled or nonuniformly sampled. It provides comprehensive functions and tools for 

signal analysis, processing, and synthesis within the MATLAB environment. It has 

many features used in signal processing, including as filtering, spectral analysis, 

waveform synthesis, and signal visualization. The toolbox contains instruments for 

filter design and analysis, resampling, smoothing, detrending, and estimation of the 

power spectrum. The Signal Analyzer application can be used to simultaneously 

visualize and process signals in the time, frequency, and time-frequency domains.  The 

various features of the toolbox are discussed further:  

• Filtration: Filter types including FIR (Finite Impulse Response) filters, IIR 

(Infinite Impulse Response) filters, and multi-rate filters are all available as part of 

the toolbox's collection of functions. Filters can be designed and implemented to 

perform operations such as suppressing unwanted noise, amplifying weak signals, 

and processing data based on their frequencies.   

• Frequency Analysis: Functions for calculating and inspecting signal frequencies 

are included in the toolkit. Spectral analysis activities like as performing the Fourier 

transform, estimating power spectral density, creating spectrograms, and using 

windowing techniques are all within the reach using this approach. 

• Signal Processing algorithms: The toolbox contains an assortment of 

sophisticated algorithms for signal processing, such as adaptive filters, wavelet 

transforms, and cepstral analysis. These algorithms can be used for a variety of 

purposes, including reverberation cancellation, speech recognition, and audio 

compression. 
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• Waveform generation: The toolbox includes functions for generating sine waves, 

square waves, sawtooth waves, and pulse trains, among other waveforms. These 

functions are useful for producing test signals, simulating communications systems, 

and synthesizing audio signals, among other applications. 

• Signal Visualization: To better view and analyze signals, MATLAB's Signal 

Processing Toolbox provides several charting and visualization capabilities. To 

better understand the signals, it can be plotted in time domain or frequency domain, 

make spectrograms, and construct various types of graphs. 

 

Figure 35: Interface for the signal processing in MATLAB 

In this study, each coated ball bearing was made to run at five different speeds i.e., 300, 

600, 900, 1200 and 1500 rpm and its vibration signals were captured for ten seconds 

using timer feature in front panel display screen of LabVIEW software. The sampling 

rate for signal capturing was kept at the rate of 12800 data points per second. The 

captured ten second signal was later trimmed to a five second signal hence generating 

64000 data points for each signal, which is relevant enough for the application of 

suitable signal processing technique. After acquiring the signals at different speeds, the 

bearing has been dismantled from casing and was replaced with next coated bearing. 

The same procedure for all coated bearings were repeated for five times then average 

of the vibration signals collected in five attempts has been considered for the further 

analysis. It is to be noted that, in all five iterations, the order of installing bearing in the 

mounting were maintained. For instance, if while taking readings for the first set, the 
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order of installing bearing were Nickel, Copper, Zinc Phosphate, Silver, and Black 

Oxide then in second set also, same order of installation of bearings has been followed 

and so on. While recordings the signals, care has been taken to maintain the same 

working conditions to the best possible extent. Moreover, all signals were recorded only 

after stabilization of the system i.e., after attaining required shaft speed using VFD, the 

system was allowed to run idle for few minutes before start recording the signal. All 

signals were saved in hard drive of the computer in different folders made according to 

the specified coatings at different running speeds. Depending on the nature of the signal 

and required information to be extracted, suitable signal processing techniques can be 

applied onto these signals using signal processing toolbox or code-based algorithms of 

MATLAB software. The R2022b release version of the software has been used in this 

research work. 

After acquiring vibration signals of specified coated bearings at different speeds, it is 

required to extract relevant information from these signals with the help of suitable 

signal processing techniques. Condition monitoring and fault diagnostics rely heavily 

on information achieved after processing vibration signal of bearings [84,89]. These 

signals are often processed and analyzed using a variety of methods.  The techniques 

for processing vibration signals can be broadly categorized as follows: 

• Time-Domain Techniques: The time domain techniques have been sub 

categorized into two versions as time waveform analysis and envelope analysis. 

Time waveform analysis is the process of analyzing the unprocessed vibration 

signal in the time domain to identify key characteristics. such as peak amplitudes, 

impulses, and transient patterns. Whereas, in envelope analysis with the usage of 

techniques like demodulation and high-pass filtering, the amplitude variations of 

the vibration signal are extracted. This assists in identifying bearing defect 

frequencies and tracking their progression. 

• Frequency Domain Techniques: The frequency domain techniques have been sub 

categorized into three types as: Fast Fourier transform (FFT), Power spectral 

density (PSD) and Cepstrum analysis.  
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a) Fast Fourier transform (FFT): In order to locate specific frequencies associated 

with bearing defects, it is necessary to transform the vibration signal from the time 

domain to the spectral domain. 

b) Power spectral density (PSD): The main frequencies and their harmonics can be 

more accurately represented by estimating the power distribution across all audible 

frequencies. 

c) Cepstrum analysis: To isolate overlapping frequency components and spot patterns 

related to bearing faults, a logarithmic spectrum analysis is performed. 

 

• Statistical Analysis: Statistical analysis is the procedure to analyze data gathered 

from vibrating systems and can be interpreted with the use of statistical methods 

and techniques. The state, health, and behavior of the vibrating system, including 

bearings, machinery, or structures, can be predicted by analyzing the statistical 

features of vibration signals. The method of statistical analysis remains to be a 

preferred choice of researchers since decades to be implemented on vibration signal 

for the variety of tasks like fault detection and analysis [84-96], Trend analysis [97-

100], Condition Assessment [101-106], Identification of fault related frequencies 

[94,107-111], Statistical pattern recognition [112-116], Prognostics [117-122], 

Remaining Useful Life (RUL) estimation [123-129], Decision support [130-134] 

and Data-driven Insights [135-141].  

Therefore, in this work also, attempt has been made to compare the level of 

properties for the bearing coating based on the statistical analysis of the vibration 

signal. Further, details about the same has been discussed in the next chapter.  
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6. Results and Discussion 

 

As previously stated, this research work focuses on comparing the diverse properties of 

the bearing coating through statistical analysis of vibration signals. The aim is to 

establish a correlation between variations in specific properties and appropriate 

statistical parameters. The objective is to identify a statistically significant parameter 

that exhibits a similar trend of increase or decrease as the level of the property varies 

with changes in the coating. For example, if the coatings are arranged in ascending 

order based on their surface roughness, the goal is to determine the corresponding 

increase in the value of a specific statistical parameter as the roughness increases. 

However, if multiple statistical parameters exhibit an increasing trend, a sensitivity 

analysis has been conducted to identify the most suitable parameter that responds 

effectively to variations in the surface roughness of the coating. While it is possible to 

directly perform statistical analysis on the acquired vibration signal, preprocessing the 

signal can yield improved results. In this study, first of all, statistical analysis has been 

directly conducted on the obtained vibration signals. but not much encouraging results 

were obtained.  Therefore, a decomposition technique has also been employed to 

separate the signal into distinct spectral components, aligning with the nature of the 

research. It enables a more accurate identification of the frequency band that may 

correlates with the variation in the specific material property under investigation. Once 

the relevant frequency band is identified, further statistical analysis is conducted to 

obtain refined information regarding the statistical parameter that exhibits a response 

to the property variation. Further, decomposition technique is elaborated upon in detail, 

alongside a comprehensive description of the various statistical parameters utilized in 

this study. 

6.1 Signal Decomposition 

Signal processing plays a crucial role in facilitating vibration-based Structural Health 

Monitoring (SHM), which encompasses tasks such as damage detection and more 

complex analyses. It is widely acknowledged that signal processing serves as the 

fundamental enabling technology for SHM, providing the necessary tools and 

techniques to extract valuable information from vibration signals and support various 
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aspects of structural health assessment and monitoring. Nevertheless, the exploration 

of real-world vibration measurements presents an intriguing challenge. In order to 

enhance our comprehension of the system's dynamic characteristics, it is essential to 

effectively decompose a multi-degree-of-freedom system into its individual 

components. However, nonlinearities, whether associated with damage or not, can 

introduce noise-like distortions in the vibrational response of the target structure. These 

distortions can result in nonstationary behavior, necessitating a time-frequency analysis 

approach. In such cases, adaptive mode decomposition methods considered to be best 

strategy to effectively address these challenges. In this study, a careful selection process 

has been undertaken to identify three widely recognized signal decomposition 

algorithms for in-depth analysis. The chosen approaches: Empirical Mode 

Decomposition (EMD), Wavelet Packet Transform (WPT) and Variational Mode 

Decomposition (VMD) have been regarded as representative techniques due to their 

extensive utilization and positive reception within the research community [146-155]. 

The research comprehensively examines and compares the key characteristics of these 

data-adaptive methods, along with their respective advantages and disadvantages. 

Following the analysis of vibration signals, the selection of the most suitable 

decomposition technique has been made based on the obtained response. 

Examining actual signals from vibrating structures presents challenges primarily due to 

measurement noise, non-stationarity, and distortions resembling noise induced by 

structural nonlinearities [142]. Nonetheless, the dynamic response of a target system 

can unveil its mechanical characteristics, particularly its stiffness and/or mass. This 

process is commonly known as System Identification (SI/NLSI), which involves the 

process of determining the linear or nonlinear characteristics of a system. In the 

presence of consistent operational, environmental, and boundary conditions (i.e., 

without confounding factors), alterations in these characteristics can be directly 

associated with the advancement of damage [143]. Through a comprehensive 

comparison between the present state of the system and the predefined "normal" 

baseline model, effective implementation of vibration-based damage detection and 

Structural Health Monitoring (SHM) becomes feasible. The primary objective of any 

decomposition technique is to separate and extract a variation from normal i.e., Defect 
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Signal Mode (DSM) from the wide-band recordings of the structural response. These 

DSMs can be utilized either individually or, more commonly, further post-processed to 

extract one or more Damage-Sensitive Features (DSFs) from each mode. Subsequently, 

surrogate models can be established using the DSMs and/or the DSFs obtained during 

normal operational conditions. To ensure robustness and minimize false alarms, it is 

advisable to incorporate data recorded across diverse environmental and operational 

conditions. That is why, five different sets have been made while recording vibration 

signals then mean of these signals is taken before further processing [142]. Finally, 

damage-related or property variation anomalies can be uncovered using standard outlier 

identification statistical approaches. The fundamental concept of decomposing a signal 

is to effectively fragment a complex signal into simple and identical parts in a rapid and 

efficient manner. These components, also known as modes, should ideally exhibit a 

high degree of independence from one another, resembling the eigenmodes obtained 

from the modal analysis of a time-independent, linear system. Additionally, it is 

desirable for these components to possess certain sparsity properties, such as being 

limited in bandwidth within the frequency domain and exhibiting compactness around 

a center frequency. It is crucial that the integration of all these elements enables the 

reconstruction of the original signal with minimal information loss, ideally obtaining a 

minimum least-square error. While the generated modes share similarities with linear 

normal modes (LNMs), it is important to note that they are not necessarily identical, 

and both logics should not be conflated [144].  

Subsequently, these "modes" can be utilized in various ways. For instance, it is possible 

to discard very low- or high-frequency content that is not linked with physical 

characteristics of the system under investigation. This process is commonly known as 

denoising and baseline drift removal. Both techniques are commonly employed in 

Structural Health Monitoring (SHM). However, it is crucial to exercise caution when 

removing nonstationary components, as it may result in the loss of important data 

information. This consideration is particularly significant in civil engineering 

applications where the input excitation is influenced by ground motion [145]. 

Additional modes that are not relevant to damage detection or influenced by external 

factors such as temperature, seasonal variations, or vibrations from operating 
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machinery, pedestrians, or vehicles can also be eliminated. Nonstationary components 

can be disregarded to emphasize time-independent mechanisms or features [146]. 

Ultimately, certain modes may exhibit higher sensitivity to damage compared to others. 

Consequently, it becomes easier to detect small changes, such as those caused by early-

stage crack development, in an individual component rather than across the entire 

signal. The presence of other damage-insensitive information can mask these subtle 

variations, making it more challenging to identify them. 

 

6.2 Adaptive Mode Decomposition Methods 

In recent years, numerous algorithms have been proposed to address the objectives 

mentioned earlier. Nevertheless, there has been a lack of systematic analysis of these 

approaches from the perspective of Structural Health Monitoring (SHM). Many review 

papers simply compile uses documented in the previous research, presenting the results 

and outcomes of several authors. Some review articles conduct restricted testing by 

executing algorithms on limited signals, often synthetic, with minimum additional 

remarks. The objective of the given straight-forward comparison is to evaluate the 

accuracy and efficiency of these procedures to extract Damage-Sensitive Features 

(DSFs) and subsequent training of Machine Learning models. Among the various 

suggestions documented in scientific literature, the most renowned methods comprise 

Empirical Mode Decomposition (EMD) [147], Wavelet Packet Transform (WPT) [148] 

and Variational Mode Decomposition (VMD) [49]. Each of these approaches is 

predominantly based on empirical observations or incorporates theoretical principles 

that justify their operational methodology. Their mutual aim is to facilitate data-

adaptive time-frequency analysis for nonstationary time histories (THs) of both linear 

and nonlinear systems. These three algorithms have been carefully chosen that have 

gained significant popularity across various engineering domains and exhibit 

substantial differences from one another. Each of these algorithms has demonstrated 

successful applications in the realms of fault detection and damage assessment [150, 

151]. In this study, the three methods mentioned above are subjected to a quantitative 

comparison. It is important to note that although the reviewed algorithms are not 

restricted to time series or one-dimensional single-channel data analysis, given study 
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will focus solely on this specific case, even though respective bivariate or multivariate 

extensions may exist [153, 154]. 

 

6.3 Theoretical Background of Signal Processing Techniques 

This section focuses on the theoretical aspects of the three decomposition techniques 

under consideration. As mentioned earlier, all of these methods involve splitting the 

given signal into multiple parts. This decomposition can be achieved directly in the 

time domain, as seen in the case of the Empirical Mode Decomposition (EMD) and 

related methods, or in the frequency domain, such as with the Variational Mode 

Decomposition (VMD). Moreover, decomposition can also take place in the time-

frequency (or time-scale) domain. The fundamental principle behind frequency- and 

time-frequency-based decomposition methods lies in the recognition that the majority 

of real-world signals demonstrate compact and band-limited Fourier spectra. These 

techniques inherently presuppose that the individual components of the signal exhibit 

narrow-band characteristics and typically possess clearly defined spectrum supports. 

What distinguishes the discussed methodologies from the conventional Fourier 

transform (FT) is their ability to analyze time-varying signals, often referred to as 

nonstationary signals. These techniques are characterized by their analytical or 

empirical definitions, meaning that it operates based on algorithms rather than having 

a precise mathematical formulation. This feature grants them a certain level of 

adaptability to the data being analyzed [155]. The subsequent subsections provide a 

comprehensive description of the three methodologies. The discussion commences with 

the Empirical Mode Decomposition (EMD) and its subsequent variants, followed by 

the WPT, and finally the VMD.  

 

6.3.1 Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) is a multi-resolution method to split a signal 

into meaningful components based on the data itself. This technique is capable of 

handling non-linear and non-stationary signals by extracting components with varying 
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resolutions. Empirical mode decomposition finds its usefulness in various domains 

such as bearing fault detection, analysis of biomedical data, power signal analysis, and 

examination of seismic signals [156-158] 

 

Figure 36: Empirical mode decomposition applied to a vibration data in MATLAB [158] 

 

Since its inception in 1998 [147], the Empirical Mode Decomposition (EMD) has been 

extensively investigated and implemented in a variety of fields. For structural purposes, 

it has been utilized for System Identification [158,159], as well as for Operational 

Modal Analysis [160] by approximating the eigenmodes of bridges. In addition to the 

SHM of steel frame structures [161], it has been utilized in a variety of other 

applications. The technique is notably valued for rotating machinery condition 

monitoring [162-164].   

Empirical Mode Decomposition (EMD) enables time-frequency analysis while 

preserving the signal's time domain representation. The resulting components, known 
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as intrinsic mode functions (IMFs), maintain the same time scale as the original signal, 

facilitating their analysis. Unlike conventional multiresolution analysis techniques like 

wavelet analysis, EMD recursively separates different resolutions directly from the data 

itself, without relying on predefined functions or filters. Another approach to 

understanding EMD is to consider a signal as a combination of a rapid oscillation 

overlaid on a slower variation. By extracting the rapid oscillation component, in the 

EMD algorithm, the slower component that remains is considered as the new signal. 

and repeats the process, considering it as a rapid oscillation superimposed on a slower 

variation. This iterative procedure continues until reaching a predefined stopping 

criterion. By employing this methodology, EMD decomposes the signal into its 

constituent IMFs, providing a localized and interpretable representation of its intrinsic 

mode functions [158]. To be classified as an Intrinsic Mode Function (IMF), a function 

needs to fulfill two specific criteria: 

a) The count of local maxima and minima should either be equal or differ by at most 

one. 

b) The local mean, calculated as the average of the upper and lower envelopes, must be 

zero. 

In essence, an IMF must possess a balanced number of extrema and zero crossings 

while maintaining a symmetrical distribution of energy around its mean value. These 

conditions ensure that IMFs capture the intrinsic mode functions of a signal without 

introducing any spurious components or biases. Therefore, the Intrinsic Mode 

Functions (IMFs) can be regarded as zero-mean components characterized by 

amplitude modulation and frequency modulation. Consequently, the original signal can 

be reconstructed by simply taking sum of all the IMFs in the time domain [147]. It is 

important to note that IMFs lack a specific analytical formulation [165]. This is due to 

the fact that Empirical Mode Decomposition (EMD) is an algorithm based on empirical 

rules, as the name suggests, without a well-defined theoretical foundation, unlike, for 

example, the Fourier Transform. The EMD decomposition process, also known as the 

"sifting process" [166]. In Figure 28, a visual representation illustrates the steps 

involved in the process. At each step, the residual signal, referred to as rp(t) (where p=0 

and rp=0(t)=x(t)), is sifted. The mean of the upper and lower envelopes is obtained, 
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resulting in mp(t). The difference between rp(t) and mp(t) is then further iterated, denoted 

by the additional counter i, until it satisfies the two defining conditions of an IMF. At 

this stage, xp(t) represents the p-th IMF, and a new residual is computed. The algorithm 

continues until the P-th residual, rP(t), becomes a monotone function or a function with 

less than two local minimum or maximum points, indicating the termination of the 

process.  

One significant technical drawback of the basic definition of Empirical Mode 

Decomposition (EMD) is the presence of a phenomenon called "mode-mixing" when 

applied to signals contaminated with measurement noise or noise-like nonlinear 

disturbances. This issue arises when the EMD method excessively decomposes a signal, 

resulting in the extraction of more Intrinsic Mode Functions (IMFs) than the original 

signal's actual oscillatory modes. The occurrence of mode-mixing can be attributed to 

the completely data-driven nature of EMD. When noise is introduced, it introduces 

additional "artificial" maximum and minimum points that are detected and interpolated 

by the algorithm. Consequently, even a single-component signal like a simple sinusoid 

can be fragmented into multiple sub-signals when influenced by noise [167]. The 

heightened susceptibility to noise restricts the dependability of a signal monitoring 

scheme based on Empirical Mode Decomposition (EMD). Therefore, WPT and VMD 

methods of decomposition are also applied on same dataset so as to compare and obtain 

best results.  
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6.3.2 Wavelet Packet Transform 

When it comes to breaking down signals or data into their component frequencies, the 

Wavelet Packet Transform (WPT) is an extremely useful mathematical technique. It is 

an expansion of the Wavelet Transform that allows for greater versatility in signal 

representation and processing. The WPT uses wavelet functions, including the Wavelet 

Transform, which are small, localized functions that are ideal for capturing localized 

aspects of signals. However, the wavelet transform decomposes signals into a collection 

of approximation and detail coefficients, which appears to be a treelike structure, 

therefore called as Wavelet Packet Tree. WPT is one of the instruments for time 

frequency analysis. It is a transformation that places the signal in a domain containing 

both time and frequency data [168]. This allows for simultaneous frequency and time 

examination of the signal. Making FFT analyses in small time windows is the simplest 

technique to perform time frequency analysis. This has the downside that a long 

window is needed to identify low frequency components and a short window is needed 

to identify rapid changes in the signal. When it comes to handling transitory signals, 

the wavelet packet transform (WPT) provides a great lot of flexibility [148]. Wavelet 

packets are a specific type of linear combination formed by combining wavelets. These 

combinations create bases that preserve important properties of their parent wavelets, 

including orthogonality, smoothness, and localization. The coefficients for these 

combinations are determined through a recursive algorithm, which calculates each 

wavelet packet coefficient. As a result of this computational process, expansions using 

wavelet packet bases exhibit low computational complexity. Each level of the Discrete 

wavelet transform (DWT) is computed by applying high and low pass filters to the 

preceding approximation coefficients. The WPD, on the other hand, separates out the 

detail and approximation coefficients. In contrast to the DWT, which generates (n+1) 

sets of coefficients (or nodes) for n levels of decomposition, the Wavelet packet 

decomposition (WPD) generates 2n sets. However, the total number of coefficients 

remains constant due to the down sampling process, thus eliminating redundancy [148]. 

Moreover, features have been deduced from time domain signals using WPT 

algorithms. The time signal is mined for information that can then be used in the feature 

extraction process [169]. The wavelet packet transform offers several significant 
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advantages over the discrete wavelet transform. Wavelet packet functions form a 

diverse set of fundamental building block functions. While still exhibiting temporal 

localization, wavelet packet functions provide greater flexibility compared to wavelets 

in representing various signal types. It is particularly effective at capturing signals with 

oscillatory or periodic behavior. Wavelet packets are naturally organized into 

collections, with each collection serving as an orthogonal basis for L2 (R). This simple 

yet powerful extension of wavelets and multiresolution analysis (MRA) enables the 

basis to adapt more flexibly to a signal's frequency content. Furthermore, developing a 

fast wavelet packet transform is relatively straightforward. The strength of the wavelet 

packet transform lies in its increased freedom to choose the most appropriate basis 

function for representing a given function. Additionally, it can be computed efficiently, 

requiring only O (M log M) time, where M represents the number of data points. This 

efficiency is particularly advantageous in real-time applications. Furthermore, wavelet 

packets exhibit compact support both in the time and frequency domains, adapting their 

support locally to the signal. This adaptability is crucial for handling time-varying 

signals. With wavelet packets, finer resolution of the signal is gained with wider range 

of options for decomposition. These capabilities provide enhanced flexibility and 

accuracy in signal analysis and processing. 

The wavelet packet method serves as an extension of wavelet decomposition, offering 

a broader array of options for signal analysis and enabling optimal matching of the 

analysis to the signal. It transforms a signal from the time domain to the frequency 

domain level by level. This transformation is achieved through a recursive process of 

filter-decimation operations, which decreases time resolution while enhancing 

frequency resolution. Unlike wavelet decomposition, which only divides the low-

frequency subband, the wavelet packet method partitions both the low and high-

frequency subbands, resulting in uniformly wide frequency bands. 

During wavelet analysis, a signal is split into an approximation coefficient and a detail 

coefficient. The approximation coefficient is further subdivided into second-level 

approximation and detail coefficients, and this process continues iteratively. In WPT, 

details and approximations can be separated, providing multiple encoding options for 

the signal. Unlike wavelet transformation, which employs only two basis functions at 
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the deepest level, the wavelet packet method allows for more than one basis function at 

a given scale by iterating both low and high-pass filter outputs. 

The wavelet packet method offers various bases constructed from collections of wavelet 

sequences, with the wavelet basis resulting from iterating only the low-pass filter, and 

the full tree basis generated by iterating both low and high-pass filters. At the highest 

level of the wavelet packet decomposition tree lies the signal's temporal representation, 

while traversing each level of the tree involves a trade-off in between time and 

frequency resolution. Ultimately, the lowest tier of a fully decomposed tree illustrates 

the signal's frequency representation. 

 

Figure 38: Wavelet packet decomposed signal up to level 3 

In wavelet packet analysis, the optimal decomposition of a given signal is determined 

using an entropy-based criterion. This entails examining each node of the 

decomposition tree and quantifying the information to be obtained from each split. 

There are several different families of wavelets. Haar, Daubechies, Symlets, Coiflets, 

and biorthogonal wavelets are some of the most well-known wavelet families. 

Before decomposing the signals using WPT, choosing an appropriate wavelet based on 

the signal's characteristics is crucial. The choice of wavelet can be made based on 

several significant criteria as discussed next after literature review. There are numerous 

varieties of mother wavelet that can be utilized in wavelet analysis. If distinct mother 

wavelets are used to scrutinize the given signal, different results will be produced. In 

general, mother wavelets are distinguished by characteristics including orthogonality, 

compact support, symmetry, and vanishing moment. In selecting a mother wavelet, the 
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properties of the mother wavelet are considered in light of previous research. However, 

there is frequently more than one mother wavelet with the same properties. In order to 

circumvent this, the resemblance between the signal and mother wavelet is taken into 

account when selecting a mother wavelet. Based on quantitative and qualitative 

approaches, researchers have devised numerous methods for determining the similarity 

between a signal and its mother wavelet. There is currently no standard or general 

method for choosing the mother wavelet. 

6.3.2.1 Review on the selection of mother wavelet using qualitative approach 

 

Choosing the appropriate mother wavelet for analysis relies on considering either the 

characteristics of the mother wavelet itself or the resemblance between the signal and 

the mother wavelet. In this specific case, choosing the optimal mother wavelet for 

separating surface profiles into their multi-scale representations is based on the 

symmetry properties of the wavelet. It was determined that the biorthogonal 6.8 wavelet 

best fulfilled the desired criteria [170]. In consideration of regularity, vanishing 

moment, and degree of shift variance, biorthogonal wavelets were chosen for 

characterizing texture [171]. The Daubechies4 (db4), coiflet, and b-spline were all 

found to be equally effective by Safavian et al. [172] in detecting transients in power 

systems. Biomedical engineers Wang et al. [173] separated burst and tonic components 

in compound surface electromyogram (EMG) signals collected from patients with 

dystonia by considering the features of compact support, vanishing moment, and 

orthogonality. After considering orthogonality, symmetry, regularity, explicit 

expression, and compact support, Ahuja et al. [174] in the field of image processing 

determined that B-spline wavelets are the optimal choice as the mother wavelet for 

enhancing image sequence super resolution. 

Another qualitative criterion for selecting a mother wavelet was the degree to which it 

resembled the input signal. Picking the best mother wavelet typically involves using 

shape matching via visual inspection. Timing of multiunit bursts in surface 

electromyograms (EMG) from single trials was studied by Martha Flanders [175], who 

looked into the effectiveness of various mother wavelet shapes. To best represent the 

EMG signal, the db2 wavelet was selected as the mother wavelet. Faisal et al. [176] 
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noted that the choice of a mother wavelet that closely fits the signal is crucial in the 

identification of true three phase voltage sags. Finally, the Gauss wavelet was found to 

be the optimal mother wavelet for spotting voltage drops in three-phase systems. The 

gauss mother wavelets are visually most similar to the recorded acoustic emission 

leakage signal-signatures, as discovered by Ahadi et al. [177]. Also, it was noted that 

leak detection systems can make advantage of the spectrograms generated by well 

selected mother wavelets. Since morlet wavelet is analogous to mechanical impulse 

signal, Tang et al. [178] used it to de-noise vibration signals for defect diagnostics of 

wind turbines. It was also noted that the chosen mother wavelet should possess 

characteristics similar to the mechanical impulse response. This similarity helps 

amplify the amplitude of the resulting wavelet coefficients associated with fault 

impulses, thereby enhancing the fault identification process. However, visually 

correlating the signal's structure with that of the mother wavelet found to be 

challenging. 

6.3.2.2 Review on the selection of mother wavelet using quantitative approach 

Researchers have also introduced the introduction of quantitative approaches to the 

justification of the similarities between a signal and its mother wavelet. Saito et al. [178] 

suggested the metric of minimum description length (MDL) as a criterion for choosing 

the best mother wavelet (MW) for noise cancellation and signal compression. 

According to the Minimum Description Length (MDL) concept, the 'best' model is the 

one that describes the data and the model with the fewest words. In order to choose the 

best MW for power disturbance data compression, Hamid et al. [180] used MDL as a 

guideline. When compared to other mother wavelets using the MDL criterion, symlet 

7 appeared to be the most effective at suppressing power disturbance signals. Khan et 

al. [181], who analyzed the safety of three-phase, induction permanent-magnet motors, 

also used MDL criteria to determine which mother wavelet was best suited to their 

problem. This led to db3 being chosen as the "MW" for WPT. A self-tuning 

multiresolution proportional integral derivative controller was designed for the interior 

permanent magnet synchronous motor drive system, employing the same criteria for 

selecting the mother wavelet [182]. The db4 wavelet was selected as the mother wavelet 

for denoising UHF signals in a study on partial discharge (PD) detection, primarily due 
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to its highest cross-correlation coefficient with the UHF signal among the considered 

options [183]. To determine the optimal mother wavelet for PD signal extraction, W. 

Li [184] used the maximum cross correlation coefficient (MCCC) criterion. Denoising 

an electrocardiogram signal also used the MCCC criterion. Singh et al. [185] 

investigated the denoising of the electrocardiogram signal with db8, after using the 

highest cross correlation coefficient as a criterion for its selection.  Zhang et al. [186] 

provided two criteria’ for choosing the best mother wavelet for image denoising. 

Information extraction (IC) criterion and distribution error (DE) criterion were the first 

and second criteria, respectively. As the congruence between the selected mother 

wavelet and the form of the signal under study increases, the ratio of the first to the 

second criterion should decrease. Using the aforementioned criterion, the bior1.3 

wavelet was discovered to be capable of providing the greatest performance for image 

denoising. In order to choose the best mother wavelet for automatic ultrasound non-

destructive foreign body (FB) detection and categorization, Tsui et. al [187] presented 

relative entropy as the evaluating parameter to find out resemblance between wavelet 

coefficients. According to their research, biorthogonal 3.1 is the best mother wavelet 

for classifying FB shapes, whereas haar (or symlet 1 or reverse biorthogonal 1.1) and 

reverse biorthogonal 3.9 are the best for classifying FB materials that are spherical and 

rectangular, respectively. R. Yan [188] introduced the energy-to-Shannon entropy ratio 

(ESER) criterion and the MinMax information criterion as techniques for selecting the 

optimal mother wavelet for detecting bearing faults. The ESER criterion aims to 

maximize the energy while minimizing the Shannon entropy of the associated wavelet 

coefficients. On the other hand, the MinMax information criterion takes into account 

several criteria, including the minimum joint entropy, minimum conditional entropy, 

minimum relative entropy, maximum mutual information, and maximum correlation 

coefficient. By employing the ESER criterion and the MinMax information criterion, 

the reverse biorthogonal 5.5 wavelet was chosen as the MW for discrete wavelet 

transform analysis in this study. On the contrary, the authors opted for the utilization of 

the complex Morlet wavelet in their analysis through continuous wavelet transform. J. 

Rafiee et al. [189] put forth a method to select the most appropriate MW for gear signals 

by evaluating the variances of continuous wavelet coefficients. They found that a higher 

variance indicated a better ability to accurately classify failures. To simplify the 
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process, they calculated the sum of the five elements with the highest values from 

various faults, referred to as "SUMVAR." The MW with the highest SUMVAR value 

was chosen as the most identical MW for gear signals. Out of the 324 MWs, the db44 

wavelet was chosen for analysis as it displayed the closest similarity to gear signals. 

The same selection criterion for the mother wavelet was also applied in diagnosing 

bearing and gear faults. The investigation revealed that while db44 exhibited the highest 

similarity as a MW function for both bearing and gear signals, it was not suitable for 

all wavelet-based processing [190]. In another study by J. Rafiee et al. [191], the 

selection of the MW, for gear fault diagnosis was proposed using a genetic algorithm. 

The genetic algorithm methodology was utilized to explore the optimal Daubechies 

order, signal decomposition level, and the quantity of neurons in the hidden layer. The 

findings revealed that db11, level 4, and 14 neurons were identified as the optimal 

values for the Daubechies order, decomposition level, and hidden layer node count, 

respectively. To determine the optimal wavelet family and MW for studying power 

system steady-state harmonic distorted waveforms with minimal spectral leakage, 

Morsi et al. [192] suggested a novel criterion for selecting the mother wavelet, relying 

on the energy of the wavelet coefficients at every level. Accuracy improves with each 

wavelet order, and the db MW family was shown to be the best fit for low distorted 

levels. Results are more reliable when using a low-order MW, and the coiflet family is 

optimal for high-distortion situations. Cheng et al. [193] suggested a novel method for 

automatically picking the mother wavelet and parameters, a significant factor to employ 

wavelet algorithms, in the context of contrast enhancement research. A total of 66 MWs 

were chosen in advance using the suggested method, with each one being evaluated for 

its vanishing moment, shift variance, and regularity. An ideal MW was chosen by 

minimizing a measurement of the wavelet's horizontal and vertical edges. Phinyomark 

et al. [194] proposed a innovative, noise-resistant mother wavelet selection technique 

for EMG feature extraction in the field of biomedicine. Wavelet coefficients and 

reconstructed signals' mean squared errors were compared to find the best mother 

wavelet. J. Rafiee et al. presented [195] evaluation metric (EM) for the MW selection 

process concerning biomedical signals. The continuous wavelet coefficient absolute 

value was determined at various resolutions. This value was then estimated across all 

scales for various biological signals. For convenience, an average across all signal types 
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were calculated and labeled it "evaluation criterion" (EC). The db44 was chosen for the 

evaluation of EMG, EEG, and VPA signals using continuous wavelet transform. The 

research suggested that exclusively depending on the resemblance between signals and 

mother wavelet functions might not always be appropriate for signal processing with 

wavelet transform and other wavelet-based techniques. Instead, it was proposed that 

methods relying on the similarity between signals and mother functions were better 

suited for wavelet-based processing techniques. Kankar et al. [196] also employed the 

energy to Shannon entropy ratio criterion to detect bearing faults. Additionally, an 

alternative criterion was proposed for selecting the mother wavelet based on 

information regarding relative energy within associated frequency bands. Through the 

application of continuous wavelet transform on the bearing signals, the coefficients 

were computed with the help of three real mother wavelets and three complex mother 

wavelets. The choice of the Meyer wavelet was guided by the ESER criterion, whereas 

the complex Morlet wavelet was selected based on the maximum relative wavelet 

energy. Findings indicated that the mother wavelet chosen via the ESER criterion 

notably enhanced classification accuracy. After analyzing the above-mentioned case 

studies, the selection of wavelets for this research has been determined by considering 

the ratio of maximum relative energy to the Shannon entropy criterion. This approach 

has exhibited significant outcomes in many similar cases [197-200], which aligns well 

with the objectives of this research. Therefore, for each coated bearing signal, the value 

of maximum energy has been calculated using 30 wavelets followed by calculation of 

minimum Shannon entropy. Afterwards, ratio of these two terms were taken out for the 

purpose of selecting wavelet based on maximum energy to minimum Shannon entropy 

criteria.  Out of 30 wavelets, Bior 2.6 wavelet has shown promising results for the given 

type of signal. Hence, bior 2.6 wavelet has been used to decompose the signal further 

using wavelet packet transform. For in-depth analysis, the signals were decomposed up 

to 30th level, then statistical analysis was performed on each part of the signal. However, 

no significant results have been found even after decomposing the signal up to 30th 

level. The reason behind inefficiency of the given technique to extract a particular 

frequency of interest possibly due to presence of miniscule frequency content 

corresponding to thin bearing coating which may get dominated by existing frequencies 

present in the signal. Hence, a sensitive decomposition technique is required which can 
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create frequency bands around central frequencies present in the signal. Therefore, 

Variable mode of decomposition has been implemented on acquired vibration signals 

to obtain desirable results.  

6.3.3 Variational Mode of decomposition 

Variational Mode Decomposition (VMD) splits the input signal into distinct band-

limited Intrinsic Mode Functions (IMFs). VMD offers advantages over methods like 

Wavelet Transform (WT) and Empirical mode decomposition (EMD) by eliminating 

the issue of modal aliasing and exhibiting sensitivity to noise [201].  VMD aims to 

break down a real-valued input signal into a finite number of sub-signals or modes. 

These modes possess specific sparsity characteristics while accurately representing the 

original signal. The sparsity property of each mode is determined by its spectral 

bandwidth. Essentially, we assume that each mode primarily occupies a compact region 

centered around a pulsation frequency, which is determined as part of the 

decomposition process [202]. To determine the bandwidth of each mode, a scheme is 

suggested, which involves the following steps: 

a) Compute the analytic signal corresponding to each mode by applying the Hilbert 

transform. This allows obtaining a one-sided frequency spectrum for each mode. 

b) Translate the frequency spectrum of each mode to the "baseband" by combining it 

with an exponential function tailored to the estimated center frequency of that mode. 

c) Estimate the bandwidth by evaluating the smoothness of the demodulated signal, 

specifically by measuring the squared norm of the gradient. This estimation is based on 

the Gaussian smoothness concept. Consequently, the resulting problem to be solved is 

a constrained variational problem as given in the equation below. 

                           
𝑚𝑖𝑛

{𝑢𝑘},{𝜔𝑘}
{∑ ‖𝜕𝑡 [(𝛿(𝑡) +

𝑗

𝜋𝑡
)  ∗ 𝑢𝑘(𝑡)] 𝑒  −𝑗𝜔𝑘𝑡‖

2

2

}

𝑠 ⋅ 𝑡 ⋅ ∑ 𝑢𝑘𝑘 = 𝑓
                          iv) 

      where {𝑢𝑘} ≔  {𝑢1 … … 𝑢𝑘}  and {𝜔𝑘} ≔ {𝜔1 … ⋅ … 𝜔𝑘}  representing notations of 

the entire set of modes and their respective center frequencies. 

      Equally, 𝛴𝑘 ≔ ∑ 𝑓𝑘
𝑘=1   is understood as the summation over all modes [202]. The 

reconstruction constraint can be handled in various ways. In this approach, we 
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propose employing both a quadratic penalty term and Lagrangian multipliers, λ to 

make the problem unconstrained. The quadratic penalty method is a traditional 

approach used to promote constancy in the reconstruction, particularly when dealing 

with additive independent and identically distributed (i.i.d.) Gaussian noise. The 

weight of the penalty term is determined based on a Bayesian prior, inversely 

proportional to the noise level in the data. However, in a noise-free scenario, the 

weight must be infinitely large to ensure precise data fidelity, which can lead to an 

ill-conditioned system. On the other hand, Lagrangian multipliers are commonly 

employed to strictly enforce constraints. The incorporation of both terms brings 

about advantages by capitalizing on the favorable convergence properties of the 

quadratic penalty with finite weight, as well as the stringent enforcement of the 

constraint through the use of the Lagrangian multiplier. Therefore, augmented 

Lagrangian L has been introduced as written in equation (5). [203,204]  

           ℒ({𝜇𝑘}, {𝜔𝑘}, 𝜆) ≔ 𝛼𝛴1𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) × 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡|

2

2
+ 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)|2

2
𝑘

 +

                                      ⟨𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 ⟩                                                                        (5) 

 

The initial minimization problem's solution is achieved by pinpointing the saddle point 

of the augmented lagrangian via a series of iterative sub-optimizations, a process known 

as the alternate direction method of multipliers (ADMM) [205–207]. In accordance 

with the VMD algorithm, each mode undergoes updates in the frequency domain, and 

for each iteration, the center frequencies are recalculated. 

The Lagrange multiplier serves to enhance the constraint, while a secondary penalty 

can enhance convergence. If exact reconstruction is not necessary, constraints can be 

relaxed by solely utilizing the quadratic penalty function and eliminating the need for 

the Lagrange multiplier. In essence, the quadratic penalty function reflects the precision 

with which the least squares are connected to the introduced Gaussian noise. The 

primary procedure of VMD can be briefly outlined as follows [208]: 

a) Initialize û1
k, ω

1
k, λˆ1 initial value of iteration n, maximum number of iteration N; 

b) n=n+1, update û k for all ω≥0  

c) update ωk for all ω≥0  
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d) update λ̂ 

e) Repeat step (b) to (d) until n > N and convergence formula as shown in equation 

(6)   

                                ∑k|| 𝑢̂𝑘
𝑛+1 − 𝑢̂𝑘

𝑛||2
2/|| 𝑢̂𝑘

𝑛||2
2<ε                                (6) 

VMD enables the decomposition of a complex echo signal into several modal signals. 

By eliminating the noise present in the undesired modes and combining the modalities 

with frequencies close to the transducer's center frequency, the resulting data can be 

utilized for the reconstruction [209]. 

6.3.3.1 Intrinsic Mode function  

The vmd function in MATLAB software performs the decomposition of a signal x(t) 

into a limited number K of narrowband intrinsic mode functions (IMFs). The intrinsic 

mode functions are provided as a matrix or timetable. Each IMF represents an 

amplitude and frequency modulated signal, featuring positive and slowly changing 

envelopes. Furthermore, every mode exhibits an instantaneous frequency that 

progressively increases, changes slowly, and tends to concentrate around a central value 

[210]. It can be defined mathematically with the help of equation (7) 

                                                    x(t)=  ∑ 𝑢𝑘(𝑡)𝑘
𝑘=1                                                   (7) 

The IMFs exhibit the following characteristics: 

• Each mode, uk, is a signal that combines amplitude and frequency modulation, 

represented as uk (t) = Ak(t)cos(ϕk(t)), where ϕk(t) represents the phase of the mode 

and Ak(t) represents its envelope. 

• The modes possess positive and gradually changing envelopes. 

• Every mode has an instantaneous frequency, ϕ'k(t), that is non-decreasing, changes 

slowly, and is primarily concentrated around a central value, fk. 

The VMD technique calculates the waveforms of all the modes and their central 

frequencies simultaneously. The process involves solving a constrained variational 

problem to determine a set of uk(t) and fk(t) that minimizes the objective [49]. 
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Figure 39: Sample signal plotted w.r.t time in seconds 

   

Figure 40: Example of VMD decomposition for an ECG signal [210] 
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6.3.3.2 General methods to select number of IMFs 

• Maximum Center Frequency Observation Method: The underlying principle of 

the Maximum Center Frequency Observation (MCFO) method is to monitor the 

trend of the maximum center frequencies. As the mode number increases, the 

maximum center frequency of each mode component gradually rises. Once the 

maximum center frequencies begin to stabilize, then K value can be found [211]. 

 

• Correlation Coefficient Method: Correlation coefficient (CC) between the mode 

components and the original signal can be obtained by the equation (8). 

Decomposition will be stopped when the minimum correlation coefficient is less 

than the given threshold, and then K value can be calculated [212]: 

 

                                    𝜌𝑢𝑘,𝑓
=

𝐸(𝑢𝑘⋅𝑓)−𝐸(𝑢𝑘)𝐸(𝑓)

√𝐸(𝑢𝑘
2)−𝐸2(𝑢𝑘)√𝐸(𝑓2)−𝐸2(𝑓)

                                             (8) 

Where 𝜌𝑢𝑘,𝑓
 depicts the correlation coefficient between the intrinsic mode function 

(IMF) and the original signal; f and uk illustrates the actual signal and IMF generated 

by VMD; E(.) relates to the mathematical expectation. 

 

• Normalized Mutual Information Method: The Mutual Information (MI) value 

between the intrinsic mode function (IMF) and the original signal is computed using 

the equation (9). The decomposition process ceases when the minimum value of 

Normalized Mutual Information (NMI) falls below the specified threshold, enabling 

the determination of the value of K [212]: 

                                        MI (X, Y) = H(Y) – H(Y|X)                                           (9) 

Where H(Y) shows information entropy of Y; H(Y|X) depicts the conditional entropy 

of Y for known X. As the correlation between X and Y strengthens, the conditional 

entropy value H(Y/X) diminishes, while the mutual information MI (X, Y) increases. 

The normalized mutual information (NMI) can be defined with equation (10) [212]. 

                                                     𝛿𝑖 =
𝑀𝐼𝑖

𝑚𝑎𝑥(𝑀𝐼𝑖)
                                                   (10) 

where i reflects the serial number of the IMF 
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• Variance ratio criterion:  The ratio of variances between successive IMF 

deviations is measured against this criterion. The goal is to pinpoint the maximum 

or most notable shift in the variance ratio, which would indicate the optimal number 

of IMFs. The decomposition procedure for this criterion begins by calculating the 

variances between adjacent IMFs. Examining the ratio of variances to determine if 

there is a significant change or peak. This change in the variance ratio indicates that 

the signal is transitioning between distinct modes or frequency components. The 

criterion focuses on locating the point at which the variance ratio shifts significantly 

or reaches its maximal value. This value represents the desirable number of IMFs 

to retain during decomposition. Depending on the application and the 

characteristics of the analyzed signal, the threshold or condition for determining a 

significant change in the variance ratio may vary. It can be determined empirically 

or through prior knowledge of the signal's characteristics [214]. 

 

• Empirical Mode Decomposition (EMD)-Based Methods: These strategies use 

EMD to break the signal down into IMFs, and then use statistical analysis to figure 

out relevant number of IMFs. One method involves looking at the IMFs' 

instantaneous frequency characteristics. The rate of phase or frequency change 

within each IMF must be calculated. It is possible to gain insight into the optimal 

number of IMFs by counting the number of notable shifts or crossings in the 

frequency content. Analyzing the IMFs' amplitude modulation and frequency 

modulation properties, or using statistical metrics like kurtosis or skewness to 

evaluate their characteristics, are two more possible EMD-based approaches. These 

strategies are geared toward capturing the IMFs' instinctive structure and properties 

in order to direct the selection of the appropriate number of modes. The signal's 

characteristics, the level of decomposition required to achieve, and application's 

needs are all factors that could influence the decision on the EMD-based method to 

choose. To ascertain how well these strategies perform in actual use, researchers 

frequently conduct experiments and validate their results against known signals or 

real time data. 
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6.3.3.3 Methods to select IMF in case of distributed defects in bearing [53] 

As already mentioned earlier, in this work, the purpose is to differentiate the level of 

properties of bearing coating based on vibration signature of coated bearing. Several 

researchers since many decades have successfully utilized vibration signature analysis 

to study the various types of defects in the bearing. However, limited work has been 

done to study about the properties of bearing surface with vibration signal. Broadly, 

bearing defects can be categorized into two types as local defect and distributed defect. 

The nature of this work is somewhat similar to distributed discontinuity as the coating 

has been done over the whole surface of bearing elements. Therefore, the techniques 

used to study local defects in bearing may not be able to yield relevant results. Hence, 

the methods used to select number of IMFs in VMD technique while dealing with 

distributed defects in bearing has been preferred in this work. The commonly used 

methods are discussed further: 

• Energy based criteria: This criterion evaluates the contribution of each IMF to the 

total signal's energy. Using this method, the relative importance of each IMF to the 

whole signal's energy level may be determined. When the total energy of the 

remaining IMFs falls below a certain level, the breakdown process is terminated. 

The important modes associated with the distributed faults can be determined by 

taking into account the energy distribution among the IMFs. The process of 

decomposition proceeds until the remaining IMFs' energy becomes negligible or 

falls below a predetermined threshold. This indicates that additional decomposition 

would not significantly contribute to capture the significant features of signal. Using 

the Energy-Based Criterion, the number of IMFs is determined by the trade-off 

between capturing essential signal components and averting noise or insignificant 

modes. The criterion ensures that the retained IMFs comprise the significant energy 

contributions, enabling an accurate representation of the signal's properties. 

Depending on the application, signal-to-noise ratio, and level of decomposition 

desired, the specific threshold for energy reduction may vary. It may be determined 

empirically or based on prior knowledge of the energy distribution of the signal. It 

is essential to note that the Energy-Based Criterion is a popular and widely used 

method due to its simplicity and efficacy in capturing the fundamental modes of the 
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signal. However, it should be used with caution and in conjunction with other 

methods to assure a thorough analysis of the signal's characteristics. 

 

• Kurtosis based criterion: Kurtosis quantifies the non-Gaussianity or a signal's 

peaks. In this method, the kurtosis of each IMF is determined, and the 

decomposition procedure is terminated when the kurtosis values begin to decrease 

or remain comparatively constant. This suggests that the predominant modes 

associated with distributed defects have been identified. The Kurtosis-Based 

Criterion takes into account the turning point or stabilization of the kurtosis values 

to identify the number of relevant IMFs. This technique uses the kurtosis to take 

advantage of the unique features of the bearing faults to help choose useful IMFs 

for further investigation and interpretation. Depending on the bearing's properties 

and the level of precision required for the decomposition, the threshold or condition 

for identifying the stability or turning point of the kurtosis data may change. This 

criterion can be refined and fine-tuned for actual applications with the help of 

validation against known failure cases and experience in bearing analysis. 

• Frequency Band analysis: In this method, the frequency content of each IMF is 

examined to locate unique bands related to the distributed defects. The transitions 

in the frequency bands across IMFs can be used to estimate the number of relevant 

IMFs. The frequency content of each IMF derived from the VMD decomposition is 

examined. This can be accomplished through the use of techniques such as Fourier 

analysis, wavelet transform, and spectrogram analysis. Observing the frequency 

spectra or power spectra of the IMFs enables the identification of distinct frequency 

bands associated with the distributed defects in the bearing. These bands might 

correspond to particular harmonics, sidebands, or modulation patterns resulting 

from the defects. In order to learn more about the dispersed flaws, analyze the 

properties of the discovered frequency bands. To further establish the optimal 

number of IMFs for capturing the defect-related information, the transitions or 

variations in frequency bands across the IMFs are also studied. On the basis of the 

identified frequency bands and their transitions, it is possible to determine the 

number of relevant IMFs. The number of distinct bands or significant variations in 

the frequency content indicate the number of IMFs required to effectively represent 
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the distributed defects. When applying this method, it is essential to consider the 

signal-to-noise ratio, signal complexity, and defect characteristics. Validation 

against known defect cases or expert knowledge can boost the precision and 

reliability of the chosen IMFs.  

 

In this study, the determination of the optimal number of decomposed levels has been 

carried out based on an energy-based criterion. Energy based method has been chosen 

because of thin coating on bearing surface. It is anticipated that the impact of balls on 

the surfaces of a thin coating will generate a correspondingly low-energy event in the 

vibration signature of the bearing. Therefore, the decomposition process has been 

conducted with the aim of obtaining a residue that possesses nearly negligible energy. 

Hence, the vibration signals of coated bearing are decomposed up to six levels with 

residue having less than 1% relative energy content. Further, statistical analysis was 

conducted on all six levels of the decomposed signal to determine the frequency band 

that is most closely associated with changes in the coating's properties 

6.3.4 Comparison between EMD, WPT and VMD 

Though similar in effectiveness, EMD, WPT, and VMD each take a unique approach 

to time-frequency analysis and signal decomposition. However, EMD is prone to mode 

mixing, while being adaptable and well-suited for non-stationary signals. WPT offers a 

high-resolution, flexible decomposition, but only if nature of the signal is well known 

in advance.  Contrary, VMD is adaptable to non-stationary and non-linear signals, 

addresses mode mixing efficiently, and has a foundation in variational optimization. In 

comparison to EMD, it is capable of mitigating errors that can arise from recursive 

calculations and termination of recursion. VMD exhibits superior noise reduction 

capabilities compared to the empirical mode decomposition (EMD) method. Unlike 

EMD, where the number of intrinsic mode functions (IMFs) cannot be manually 

adjusted, VMD allows for such customization. Additionally, parameters in EMD, like 

sifting stopping criteria and IMF number determination, must be manually chosen, 

which can be a subjective and time-consuming process. However, VMD eliminates the 

requirement for manual involvement by automatically determining the number of 

modes and their related parameters via variational optimization. The low-frequency 
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component of VMD accurately captures the overall fluctuation trend of the original 

signal, a feature that is challenging to observe using EMD. Moreover, in contrast to 

Empirical Mode Decomposition (EMD), Variational Mode Decomposition (VMD) 

requires a smaller number of modes to reconstruct the original non-linear signal. This 

study focuses solely on the three decomposed modes (IMFs) obtained through VMD. 

The VMD algorithm is more efficient compared to the EMD algorithm because it can 

decompose a given signal into a smaller number of modes without the need for 

recursive iterations [215].  

In comparison to WPT, VMD is superior at isolating individual signal modes. With 

VMD, the signal is broken down into clearer modes, each of which has its own unique 

instantaneous frequency and amplitude. WPT, on the other hand, uses a set of 

predetermined wavelet basis functions and may not be as effective at isolating 

complicated signals as other methods. When distinct frequency components are mixed 

within the same sub-band, mode mixing can occur in WPT. The optimization-based 

strategy of VMD reduces or eliminates mode blending, resulting in a more precise 

signal decomposition. Additionally, VMD is typically more resistant to background 

noise than WPT. Although noise can interfere with the decomposition process in WPT 

due to the usage of predetermined wavelet bases, VMD's variational optimization 

framework permits efficient noise separation and improves the clarity of the signal 

modes. When dealing with large-scale or high-dimensional signals, VMD typically 

provides faster computing than WPT. In contrast to WPT's tree-based decomposition 

structure, VMD's optimization-based method can be quickly implemented with 

numerical optimization algorithms, resulting in shorter decomposition durations. 

Unlike WPT, which is limited to extracting a single IMF, VMD is capable of 

simultaneously extracting multiple IMFs. Because of this, VMD is better suited for 

evaluating signals with a wide range of frequencies. Along with this, VMD exhibits a 

higher degree of parameter insensitivity compared to WPT, ensuring more consistent 

outcomes even with slight variations in parameter selection. In comparison to noise-

assisted versions of empirical mode decomposition (EMD) and wavelet packet 

transform (WPT), the parameter-optimized VMD demonstrates superior capability in 
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effectively separating closely spaced modes while concurrently recovering the most 

extensive modal information.  

Therefore, considering the sensitivity of analyzing bearing coating properties through 

vibration signals, the VMD technique has been chosen as the preferred method based 

on the above-mentioned comparative analysis of EMD, WPT, and VMD. The coated 

vibration signals have been decomposed up to six levels based on energy criterion and 

statistical analysis of all six levels has been carried out as mentioned earlier also. 

Further, details about parameters used for the statistical analysis has been discussed in 

detail.  

6.4 Vibration signal analysis 

Vibration is a physical occurrence observed in operational rotating machines and 

moving structures, irrespective of the condition of the machines or structures. Multiple 

sources, such as shafts, gears, bearings, and structural resonance can induce vibration. 

Vibration is highly applicable for determining the operational conditions and status of 

rotating apparatus and structures due to its prevalence. Vibrations are capable of being 

represented in various ways, including displacement, velocity, and acceleration. 

Displacement is the distance traveled by the measuring point, velocity is the speed of 

the movement, and acceleration is the rate of change of velocity. Acceleration, 

providing the broadest frequency range, is extensively utilized for dynamic fault 

analysis., is the most popular of the three varieties. For measurement, multiple 

vibration-detecting sensors are commercially available. There are a wide variety of 

vibration-based sensors that use technologies including piezoelectric (PZT) sensors, 

microelectromechanical (MEMS) sensors, proximity probes, laser Doppler 

vibrometers, and many others to measure displacement, velocity, and acceleration. The 

proper placement of sensors is essential for gathering reliable information. Stud 

mounting the sensor on a smooth, flat area of the machine is the suggested way of sensor 

installation. This guarantees a complete and uniform recording of the electromagnetic 

spectrum. Magnet holders, wax, or glue can be used as alternatives to stud mounts when 

vibrational and frequency considerations are more important. Vibration signals are 

typically below 20 kHz, although certain vibration resonances can exceed this 

frequency. In practice, the sampling rate must be selected with care to ensure that the 
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bandwidth containing the frequencies of interest is captured. In addition, the recording 

duration for one measurement should be at least several periods of the devices' slowest 

speed. A vibration monitoring system is a comprehensive setup designed to collect 

vibration signals according to predetermined parameters such as sampling frequency, 

vibration level, recording duration, recording intervals, and frequency bandwidths. The 

system should be able to interpret the vibration data and provide machine operators, 

maintenance personnel, and asset managers with intuitive warnings. There should not 

be any interreference between system with the normal operation of the monitored 

devices or structures, and the benefits of the system should outweigh the 

implementation costs. 

Vibration analysis is the process to detect abnormal vibration events and assess the state 

of the test object by overseeing the magnitudes and patterns of vibration signals within 

a component or machinery, or building. It is typically performed on both the raw time 

waveforms of the vibration signal and the frequency spectrum derived from the time 

waveform using Fourier Transform. Analyzing recorded vibration waveforms in the 

time domain reveals the occurrence and severity of abnormal vibration events by means 

of parameters such as RMS, Skewness, Kurtosis, Variance, Shannon entropy, Log 

energy, and Crest factor. Time domain analysis can monitor the state of the system 

under observation as a whole. In real-world applications, particularly those involving 

rotating apparatus, it is highly desirable to include frequency spectrum analysis in 

addition to time domain analysis. In a complex machine comprising multiple 

components, vibrations combine to form a composite signal, encompassing the 

vibrations generated by each rotating component. Hence, evaluating the condition of 

critical components such as gears, bearings, and shafts in large rotating equipment 

solely based on time waveforms poses a challenge. With time domain vibration 

analysis, it is possible to monitor vibration levels and determine the safe operating 

range. The machine's long-term performance and breakdown records can be used to set 

these limits. The machine's health is deteriorating and flaws are present when these 

thresholds are repeatedly crossed. When these limits are surpassed, it indicates a 

deterioration in the machine's overall health and the occurrence of defects. Nonetheless, 

frequency analysis dissects time waveforms and delineates the repetitive nature of 
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vibration patterns to explore the frequency components associated with each individual 

component. It is possible to detect bearing defects by monitoring the frequency 

spectrum and studying the periodicity of the collisions.  

As mentioned earlier also, in this work, a series of tests have been conducted on coated 

bearings, varying their rotational speeds from 300 rpm to 1500 rpm. During these tests, 

the vibration signals generated by the bearings were recorded. These recorded vibration 

signals exhibited distinct characteristics that are influenced by the properties of the ball 

rolling on different surfaces. As a result, the signals displayed a distributed nature. 

To analyze the distributed characteristics of the signals, several commonly used 

statistical parameters were calculated, including Root Mean Square (RMS), Crest 

factor, Variance, Skewness, Kurtosis, Shannon entropy (SE), and Log energy (LE). The 

intention is to assess the correlation between these parameters and the different levels 

of properties present, but no significant relationship was found. The probable reason 

for getting no response in statistical parameters might be because of weak 

characteristics of surface roughness in the overall signal. Therefore, for further 

investigation, signals are decomposed into intrinsic mode functions (IMF) using 

Variational Mode Decomposition (VMD) technique. This decomposition process 

effectively isolates narrow frequency bands centered around prominent frequencies 

present in the signal. The same set of statistical parameters are then recalculated for 

each of these decomposed levels. The usage of statistical parameters in vibration signal 

analysis continued to be a preferred choice of many authors because of its simplicity, 

precision, reliability, and quicker computation [221-232]. Moreover, statistical 

parameters have also been used to extract information about the level of properties 

[227-230], which is of prime concern in this research work.  The following features are 

encouraging the use of statistical parameters like finding out energy content present in 

signal, dispersion of the data, variation in data, impulsiveness of the signal and degree 

of randomness and so on. The statistical parameters with characteristics to cover 

important features present in the signal are selected are discussed with their 

significance. 

a) RMS (Root Mean Square): Root mean square, in general, estimates the entire 

power intensity of an acoustic/vibration signal [80]. It is simply the square root of the 
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signal's average squared value. The strength of the vibrating signal created by rolling 

elements defines the signal's intensity. It is one of the statistical parameters used to 

predict the surface roughness in machining process using vibration signal analysis 

[227].   

b) Crest Factor: The crest factor is the ratio of the crest value (the largest absolute 

value attained by the functions representing of the signal during the time period under 

consideration) to the root mean square value of the signal [231]. Crest factor proved to 

be an important parameter for differentiating healthy bearing from bearing with 

distributed defects like pitting, scratching, or misalignment [232]. 

c) Variance: Variance (σ2) is the average of a data set’s squared difference from the 

mean. Equation (11) gives the variance of a set of numbers, xn, n = 1, …, N, with a 

known mean value of μ [233]. Variance is also considered to be among important 

statistical parameter to discriminate fault conditions [234]                                               

                                                     σ2 = 
1

𝑁
 ∑ (𝑥𝑛 − 𝜇)2𝑁

𝑛=1                                                 (11) 

                        

d) Skewness: Because a normal distribution has zero skewness, any symmetrical data 

should have skewness close to zero as well. When the skewness is negative, the data 

is skewed to the left of the normal distribution curve and skewed right when the 

skewness is positive. When there are noticeable peaks in the signal, it often 

produces a larger value [233]. Skewness is commonly used to extract features of 

vibration signal with statistical computations [229]. Mathematically, it can be 

defined with the help of equation (12) [224]. 

                                         Skewness = 
1

𝑛
 ∑ ((𝑥𝑘 − 𝑥̅)3𝑛

𝑘=1
1

𝜎3
                                       (12)  

                                       

e) Kurtosis: Kurtosis is a statistical metric used to assess impulsiveness by calculating 

the peak and tails of a temporal domain signal. A bearing in excellent condition has 

a Kurtosis value of a Gaussian curve and its signal is near to three, but the Kurtosis 

value of a damaged bearing is greater than three [235]. The Kurtosis factor has been 

used to analyze local defect signals but not much explored in detecting distributed 
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characteristics of the signal. Mathematical expression for kurtosis is shown in 

equation (13) [224] is, 

                                            Kurtosis = 

1

𝑛  
 ∑ [𝑥𝑘−𝑥̅]4𝑛

𝑘=1

[
1

𝑛
∑ [𝑥𝑘−𝑥̅]2𝑛

𝑘=1 ]
2                                             (13) 

The given statistical term has been used by many authors to differentiate healthy and 

faulty bearing or to extract relevant information from the vibration signal statistically 

[220-224, 234, 236] 

f) Shannon Entropy: It provides insights into the level of randomness within the 

signal i.e., random signal alterations. Shannon Entropy is the metric used to assess 

changes in a signal because of different characteristics on a logarithmic scale (SE). 

The more is the changes in the characteristics in the signal more will be the change 

in value. The change is expected to bring variation in the level of randomness 

contained within the signal. It amplifies the characteristics of the signal in the form 

of randomness such that even small disturbances can be highlighted using SE [237]. 

The measure of randomness has been used in a variety of applications such as 

identifying gear problems, image processing, motor defect analysis, and structural 

health audits to examine various features. Because of its capacity to process signals 

on a logarithmic scale, it may serve as a significant criterion for representing the 

diverse features of coating in addition to its many uses. Mathematically, it is 

expressed as equation (14) [224].   

                                         S(Z) = - ∑ 𝑧𝑖
2 𝑙𝑜𝑔2[𝑃(𝑧𝑖)]2𝑋−1

𝑖=0                                          (14) 

Shannon entropy is another important statistical parameter and widely used in 

diagnostic and monitoring analysis of bearing [221-224, 229, 237,] and used in the 

study carried out to extract features of vibration signal for the monitoring of important 

coating property i.e., surface finish in CNC operation [222]. 

g) Logarithmic Energy: The statistical feature with the capability of measuring 

uncertainty proved to be an effective indicator of the fault severity. Mathematically, 

expressed in equation (15) [238]. 

                                                 L(Z) = - ∑ 𝑙𝑜𝑔2[𝑃(𝑧𝑖)]2𝑋−1
𝑖=0                                                 (15) 
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In log energy, representative features are retrieved in sub-bands of interest as a measure 

of the degree of disturbance. If the chance of occurrence for each discrete state is 

roughly equal, then this entropy is lower. Log energy is already used as representative 

feature in the study of early fault detection in bearings [239]. 

After introduction of all statistical parameters, all obtained results needs to be presented 

in tabular form in reference to specified property of the coated material. Therefore, 

starting with surface roughness, after calculating values of previously defined statistical 

parameters, results are presented in reference to surface roughness.  

 

 

6.4.1 Study of variation in statistical parameters in reference to surface 

roughness 

To find out the responsive parameter in response to variation in surface roughness, 

results of statistical analysis are presented in tabular form. In these tables, the coatings 

are arranged in ascending order of surface roughness so that it becomes easier to 

identify similar upward or downward trend in any of the statistical parameters 

(specified earlier). Initially, simple statistical analysis has been carried out on acquired 

vibration signals as shown in the Table 10 to Table 14. No considerable trend is 

obtained in any of the statistical parameter reference to variation in surface roughness 

from 300 to 1200 rpm.   

 

Table 10: Calculated statistical parameters of acquired vibration signal at 300 rpm 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.3483 -0.0549 6.6457 0.0084 1.5380E+04 -1.4521E+05 4.3904 

Copper 0.52 0.5303 0.0212 24.0533 0.1352 9.4413E+03 -1.5015E+05 16.9466 

ZnP 0.7 0.5539 -0.0604 4.7608 0.0759 1.5467E+04 -1.1623E+05 5.4113 

Silver 2.65 0.6030 0.4346 42.8313 0.1241 8.1855E+03 -1.0988E+05 13.6759 

Black 

Oxide 

3.22 0.5062 0.0157 3.5156 0.1241 1.2158E+04 -1.5690E+05 5.3841 
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Table 11: Calculated statistical parameters of acquired vibration signal at 600 rpm 

 

Table 12: Calculated statistical parameters of acquired vibration signal at 900 rpm 

 

Table 13: Calculated statistical parameters of acquired vibration signal at 1200 rpm 

 

 

Table 14: Calculated statistical parameters of acquired vibration signal at 1500 rpm 

 

However, at 1500 rpm, RMS and Shannon entropy has shown continuous rising trend 

with the increase in surface roughness as shown in Table 14. Based on this result, it can 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.4240 -0.0512 6.9079 0.0657 1.3613E+04 -1.6413E+05 8.4871 

Copper 0.52 0.5785 -0.0464 3.8190 0.1429 1.1206E+04 -1.3404E+05 5.2815 

ZnP 0.7 0.7168 0.7289 36.5291 0.2880 -1.3361E+04 -1.1924E+05 17.5162 

Silver 2.65 0.6039 0.0526 15.2910 0.2197 3.2207E+03 -1.4386E+05 12.8050 

Black 

Oxide 

3.22 1.3020 0.0617 3.2082 1.5628 -1.4040E+05 -4.9631E+04 4.5811 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.6878 0.0661 6.4600 0.3594 -4.8971E+03 -1.3604E+05 8.5603 

Copper 0.52 0.8759 -0.0206 3.6320 0.5609 -2.3209E+04 -9.7597E+04 6.4620 

ZnP 0.7 1.3640 0.5979 31.6941 1.6630 -2.9778E+05 -8.6381E+04 17.7376 

Silver 2.65 1.0419 -0.0032 6.4559 0.9125 -7.1170E+04 -8.5177E+04 9.3617 

Black 

Oxide 

3.22 2.1142 0.0499 3.1541 4.3430 -6.4608E+05 1.2190E+04 5.1794 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.9157 0.0746 6.8410 0.7158 -4.4123E+04 -1.0547E+05 9.5801 

Copper 0.52 1.3137 -0.0104 3.5016 1.5141 -1.4497E+05 -4.7965E+04 6.5199 

ZnP 0.7 1.8629 0.2448 19.3549 3.2666 -6.4716E+05 -4.4193E+04 13.4397 

Silver 2.65 1.6567 -0.0031 8.0532 2.5606 -3.7475E+05 -3.5971E+04 11.6506 

Black 

Oxide 

3.22 3.3363 0.0890 3.2619 11.0010 -2.2693E+06 7.0207E+04 5.0021 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 1.7112 0.0068 7.3779 2.7967 -4.0019E+05 -2.9785E+04 12.9099 

Copper 0.52 1.9870 0.0133 3.4406 3.6855 -5.4450E+05 3.5729E+03 5.9436 

ZnP 0.7 1.9888 0.0469 13.8614 3.7372 -7.0755E+05 -2.3921E+04 12.2110 

Silver 2.65 2.7803 -0.0217 8.4975 7.5545 -1.6260E+06 2.1392E+04 10.1144 

Black 

Oxide 

 

3.22 4.4616 0.0181 3.5697 19.7852 -4.8394E+06 1.0585E+05 6.8683 
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be stated that rise in power and randomness of the vibration signal is noticeable with 

the increase in surface roughness of mating surfaces at 1500 rpm. Further, in order to 

find out most sensitive parameter among these two, chain indexing has been carried out 

as shown in Table 15. With average percentage variation of 98.35%, it is clear that 

Shannon entropy is much more sensitive than RMS towards variation in roughness at 

1500 rpm.  It reflects that signal acquired for different coatings below 1500 rpm cannot 

be differentiated in reference to surface characteristics with simple statistical analysis. 

Therefore, decomposition of the signals was carried out using VMD as mentioned 

earlier. 

Table 15: Chain indexing of responded parameters at 1500 rpm 

S. No Coating Ra RMS Chain Index Shannon entropy Chain Index 

1 Nickel 0.29 1.7112 -- -4.0019E+05 -- 

2 Copper 0.52 1.9870 16.1173 -5.4450E+05 36.0604 

3 ZnP 0.7 1.9888 0.0906 -7.0755E+05 29.9449 

4 Silver 2.65 2.7803 39.7979 -1.6260E+06 129.8071 

5 Black Oxide 3.22 4.4616 60.4719 -4.8394E+06 197.6261 

Average Chain Index 29.11  98.35 

 

After decomposition, the statistical parameters of all six modes are calculated and 

relevant outcomes are illustrated next in tabular form.  Decomposition was stopped at 

sixth level because beyond that, the percentage of relative energy content in the signal 

is extremely low. However, in the process of finalizing decomposition up to sixth level, 

it was kept in mind that essence of thin coating in vibration signal is going to be a low 

energy event only. Therefore, decomposition was extended up to sixth level to cover 

relevant low energy events also in the calculations.  

Table 16: Statistical parameters of IMF 1 at 300 rpm 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.0211 0.0026 7.5290 0.0004 1.9136E+02 -5.8614E+05 13.9519 

Copper 0.52 0.0871 0.1464 68.3347 0.0076 1.4702E+03 -4.3350E+05 29.2495 

ZnP 0.7 0.0395 0.0015 3.3055 0.0016 5.6840E+02 -4.9727E+05 6.1717 

Silver 2.65 0.1128 0.0002 70.2502 0.0127 1.7526E+03 -4.0967E+05 23.4350 

Black 

Oxide 

 

3.22 0.1025 0.0005 3.1083 0.0105 2.5586E+03 -3.7408E+05 4.3417 
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 Table 17: Statistical parameters of IMF 2 at 300 rpm 

 

 

 Table 18: Statistical parameters of IMF 3 at 300 rpm 

 

 

 Table 19: Statistical parameters of IMF 4 at 300 rpm 

 

 

Table 20: Statistical parameters of IMF 5 at 300 rpm 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.0222 0.0026 29.0549 0.0005 1.9787E+02 -5.8891E+05 23.4255 

Copper 0.52 0.1801 0.0022 20.5296 0.0325 4.5628E+03 -3.1735E+05 18.9200 

ZnP 0.7 0.0443 0.0031 4.1635 0.0020 6.7353E+02 -4.8814E+05 7.1655 

Silver 2.65 0.1530 -0.0123 46.8417 0.0234 2.4652E+03 -3.7574E+05 19.4516 

Black 

Oxide 

3.22 0.0966 0.0048 3.2972 0.0093 2.3314E+03 -3.8304E+05 5.2231 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.0290 0.0078 14.0081 0.0008 3.0828E+02 -5.6268E+05 13.1508 

Copper 0.52 0.1488 0.0006 8.5246 0.0222 3.9101E+03 -3.3755E+05 11.9742 

ZnP 0.7 0.0540 -0.0063 23.4947 0.0029 8.3061E+02 -4.7778E+05 18.1938 

Silver 2.65 0.1543 0.0027 36.5897 0.0238 2.4941E+03 -3.8303E+05 17.7908 

Black 

Oxide 

3.22 0.1577 0.0008 4.2258 0.0249 4.5630E+03 -3.2225E+05 8.9797 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.0399 -0.0050 9.6108 0.0016 5.2925E+02 -5.2122E+05 11.5277 

Copper 0.52 0.0859 -0.0082 4.2707 0.0074 1.9060E+03 -4.0305E+05 7.1574 

ZnP 0.7 0.0764 -0.0022 11.8841 0.0058 1.4354E+03 -4.3644E+05 11.6646 

Silver 2.65 0.1466 0.0008 14.6782 0.0215 3.1964E+03 -3.6214E+05 10.6533 

Black 

Oxide 

3.22 0.1819 -0.0019 3.4225 0.0331 5.5076E+03 -3.0556E+05 4.9911 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.0501 -0.0177 5.3196 0.0025 7.8921E+02 -4.8717E+05 5.7100 

Copper 0.52 0.1436 -0.0059 4.9765 0.0206 3.8464E+03 -3.4237E+05 6.7712 

ZnP 0.7 0.0545 0.0793 4.1068 0.0030 9.3973E+02 -4.6224E+05 6.4678 

Silver 2.65 0.0865 -0.0622 6.9086 0.0075 1.7928E+03 -4.1757E+05 7.8006 

Black 

Oxide 

3.22 0.1396 0.0132 3.1170 0.0195 3.9753E+03 -3.3478E+05 4.5140 
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Table 21: Statistical parameters of IMF 6 at 300 rpm 

 

From results presented in Table 16 to Table 21, it was observed that at 300 rpm, no 

significant trend was found in any of the statistical parameter with the variation in Ra. 

Absence of any trend is due to presence of weak harmonics in the signal corresponding 

to roughness level or the given technique was unable to differentiate the roughness 

characteristics at low speed. Only the tables (values of statistical parameters in tabular 

form) of responded IMFs have been presented and discussed further. Remaining tables 

of all IMFs at all speeds are added in Appendix  

Table 22: Statistical parameters of IMF 6 at 600 rpm 

 

  

 

Table 23: Statistical parameters of IMF 4 at 900 rpm 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.3371 0.0270 3.0426 0.0007 1.5732E+04 -1.3993E+05 1.3129 

Copper 0.52 0.3845 -0.0934 3.4511 0.0018 1.7863E+04 -1.2391E+05 1.4332 

ZnP 0.7 0.4586 0.1143 2.7605 0.0020 2.0728E+04 -1.0103E+05 1.3400 

Silver 2.65 0.4908 -0.1571 3.2507 0.0013 2.1775E+04 -9.1821E+04 1.2719 

Black 

Oxide 

3.22 0.3671 0.0053 3.1491 0.0026 1.6961E+04 -1.3079E+05 1.6170 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.3416 0.0689 3.1202 0.0026 1.5709E+04 -1.4047E+05 1.6221 

Copper 0.52 0.3922 0.0410 3.3110 0.0043 1.7879E+04 -1.2360E+05 1.7043 

ZnP 0.7 0.4176 0.3074 5.9950 0.0092 1.8333E+04 -1.1916E+05 3.7997 

Silver 2.65 0.4554 -0.0248 3.2999 0.0093 1.9722E+04 -1.0695E+05 1.8395 

Black 

Oxide 

3.22 0.4594 -0.0045 3.2959 0.0081 1.9992E+04 -1.0486E+05 2.2225 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.2145 0.0253 11.5853 0.0460 4.9698E+03 -3.1531E+05 12.4978 

Copper 0.52 1.1888 -0.0002 3.6845 1.4132 -1.0802E+05 -6.7736E+04 4.6418 

ZnP 0.7 1.4660 0.0004 3.3983 2.1491 -2.1658E+05 -3.9258E+04 4.2566 

Silver 2.65 1.1008 0.0135 4.7679 1.2118 -9.1663E+04 -8.6184E+04 6.5777 

Black 

Oxide 

3.22 1.4370 0.0013 3.1161 2.0651 -1.9524E+05 -3.7115E+04 4.5632 
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Table 24: Statistical parameters of IMF 2 at 1200 rpm 

 

At 600, 900 and 1200 rpm, considerable variation in characteristics of the signal like 

energy level (RMS), dispersion of data from mean (Variance) and degree of 

randomness (Shannon entropy) were noticed. All three parameters were showing rising 

trend in 6th, 4th, and 2nd IMF respectively with the increase in Ra as shown in Table 

22, Table 23 and Table 24. 

 Table 25: Statistical parameters of IMF 2 at 1500 rpm 

 

However, at 1500 rpm, only randomness level continued to depict rising trend in IMF 

2 with the rise in Ra as shown in Table 25. 

Table 26: IMF wise different responsive statistical parameters at different speed 

S. No RPM  IMF level shown 

response 

Responding statistical 

parameters (SPs) 

1 300 None None 

2 600 6 RMS, Variance, SE 

3 900 4 RMS, Variance, SE 

4 1200 2 RMS, Variance, SE 

5 1500 2 SE 

 

The occurrence of rising trend in above mentioned IMFs at different speeds is due to 

interaction of bearing balls with different coatings. Each coated material possesses 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.4457 0.0172 13.4801 0.1986 -1.3447E+02 -2.4237E+05 12.1138 

Copper 0.52 1.0156 0.0031 4.0636 1.0314 -6.1044E+04 -9.0671E+04 5.9267 

ZnP 0.7 1.0281 -0.0019 7.2462 1.0569 -8.1241E+04 -1.0064E+05 9.6025 

Silver 2.65 1.3398 0.0143 26.8203 1.7950 -3.0240E+05 -3.0174E+05 17.2483 

Black 

Oxide 

3.22 1.8366 -0.0015 3.7760 3.3733 -4.4557E+05 -1.0732E+04 5.8560 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Nickel 0.29 0.7251 0.0100 6.5700 0.5257 -1.8766E+04 -1.5574E+05 6.7257 

Copper 0.52 0.8957 -0.0014 3.1598 0.8022 -2.6915E+04 -9.5922E+04 5.5265 

ZnP 0.7 0.8923 0.0054 19.3354 0.7963 -8.5186E+04 -1.5613E+05 10.5387 

Silver 2.65 1.0875 0.0034 8.3551 1.1827 -1.1187E+05 -1.0722E+05 9.9914 

Black 

Oxide 

3.22 2.8276 -0.0012 3.4671 7.9954 -1.4725E+06 4.7083E+04 5.8121 
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different damping characteristic thus, generating unique frequency bands due to balls 

rolling on the surfaces of different roughness. Therefore, corresponding roughness 

characteristics can be obtained in responsive frequency bands of vibration signal.  

 

However, due to thin film of the coating, responded IMFs are of low energy as 

compared to energies of other common frequencies present in signal like BPFO, BPFI 

or cage frequency. That is why, no consistent trend has been found between various 

modes and distribution of relative energy at all speeds in all coatings. The results in 

tabular form are presented in Appendix .  

 

Further, to compare the level of variation among responsive statistical parameters in 

reference to Ra, chain indexing has been used. Chain indexing gives percentage 

variation in consecutive values. The variation in value of statistical parameters were 

calculated in percentage while moving from one surface roughness level to other. Based 

on chain indexing, at 600 rpm, it has been observed that beyond Ra value of 0.7, the 

value of chain index is comparatively negligible. Therefore, even though three 

statistical parameters have shown rising trend in reference to increase in Ra but rate of 

variation is almost negligible. The reason behind this minute variation could be same 

as in case of 300 rpm. Hence, no significant results have been obtained at 600 rpm also 

as presented in  

Table 27.  

 

Table 27: Responded statistical parameters at 600 RPM in IMF 6 with its chain index. 

S. No Coating Ra RMS Chain 

Index 

Variance Chain 

Index 

Shannon 

entropy 

Chain 

Index 

1 Nickel 0.29 0.3416 -- 0.0026 -- 1.5709E+04 -- 

2 Copper 0.52 0.3922 14.814 0.0043 65.839 1.7879E+04 13.812 

3 ZnP 0.7 0.4176 6.494 0.0092 111.641 1.8333E+04 2.541 

4 Silver 2.65 0.4554 9.056 0.0093 1.531 1.9722E+04 7.573 

5 Black 

Oxide 

3.22 0.4594 0.861 0.0094 1.326 1.9992E+04 1.370 

Average Chain Index 7.80  45.08  6.32 
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However, at 900 rpm, all three responsive parameters have shown considerable 

minimum variation at each level as shown in Table 28. The selection of most 

appropriate parameter has been done based on the value of minimum variation. 

Therefore, based on comparison of chain index values, randomness level found to be 

most relevant parameter at the given speed to estimate level of surface roughness.  

Table 28: Responded statistical parameters at 900 RPM in IMF 4 with its chain index. 

S. No Coating Ra RMS Chain 

Index 

Variance Chain 

Index 

Shannon 

entropy 

Chain 

Index 

1 Nickel 0.29 0.1692  0.0286  9.7675E+02  

2 Copper 0.52 0.2772 63.840 0.0768 168.436 3.5166E+03 260.032 

3 ZnP 0.7 0.6702 141.831 0.4492 484.821 8.6090E+03 144.810 

4 Silver 2.65 0.7767 15.887 0.6033 34.297 1.7476E+04 102.996 

5 Black 

Oxide 

3.22 1.2654 62.918 1.6013 165.423 2.4901E+05 1324.891 

Average Chain Index 71.12  213.24  458.18 

 

Further at 1200 rpm, insignificant high variation in chain index values is observed in 

RMS and variance. Contrary, Shannon entropy depicting considerable variation in 

values of chain index. Overall, based on the minimum variation in percentage, 

randomness level surpasses both other parameters as depicted in Table 29.  

Finally, again at 1500 rpm, out of three responsive parameters, only degree of 

randomness continued to show considerable rising trend as shown in Table 30.  

 

 

Table 29: Responded statistical parameters at 1200 RPM in IMF 2 with its chain index. 

S. No Coating Ra RMS Chain 

Index 

Variance Chain 

Index 

Shannon 

entropy 

Chain 

Index 

1 Nickel 0.29 0.4457  0.1986  1.3447E+04  

2 Copper 0.52 1.0156 127.884 1.0314 419.311 6.1044E+04 353.953 

3 ZnP 0.7 1.0281 1.237 1.0569 2.474 8.1241E+04 33.085 

4 Silver 2.65 1.3398 30.309 1.7950 69.829 3.0240E+05 272.221 

5 Black 

Oxide 

3.22 1.8366 37.088 3.3733 87.930 4.4557E+05 47.346 

Average Chain Index 49.12  144.89  176.65 
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Table 30: Responded statistical parameters at 1500 RPM in IMF 2 with its chain index. 

S. No Coating Ra RMS Chain 

Index 

Variance Chain 

Index 

Shannon 

entropy 

Chain 

Index 

1 Nickel 0.29 0.7251  0.5257  1.8766E+04  

2 Copper 0.52 0.8957 23.529 0.8022 52.593 2.6915E+04 43.421 

3 ZnP 0.7 0.8923 -0.370 0.7963 -0.740 8.5186E+04 216.502 

4 Silver 2.65 1.0875 21.872 1.1827 48.528 1.1187E+05 31.323 

5 Black 

Oxide 

3.22 2.8276 160.009 

7.9954 576.028 1.4725E+06 1216.260 

Average Chain Index 51.26  169.10  376.87 

 

From results, it is also clear that with the rise in rpm, central frequencies responsible to 

create IMFs were found to be shifted towards higher bands as shown in Table 31. Based 

on the highest value of average chain index, the effect of surface roughness variation 

can be seen at its best in IMF 4 at 900 rpm with the help of Shannon entropy. Therefore, 

Shannon entropy found to be a reliable indicator of surface roughness level for bearing 

surface running between 900 to 1500 rpm.  

 

Table 31: Responsive IMF and statistical parameters at different rpm 

 

S. No 

 

RPM 

IMF level 

shown 

response 

Approximate 

Frequencies 

Band (Hz) 

Responding 

statistical 

parameters  

Average 

chain 

index 

1 300 None None None NA 

2 600 6 0.0058-431 Variance 

(Insignificant) 

NA 

3 900 4 567-2100 Shannon 

entropy 

458.18 

4 1200 2 2250-4490 Shannon 

entropy 

176.65 

5 1500 2 3010-4590 Shannon 

entropy 

376.87 

 

6.4.2  Study of variation in statistical parameters in reference to hardness  

To find out the responsive statistical parameter in relation to variation in hardness, again 

results are presented in tabular form. In these tables, the coatings are now arranged in 

ascending order of hardness so that it becomes easier to identify similar upward or 

downward trend in any of the statistical parameters.  Firstly, attempt has been made to 

find out a relevant trend in reference to hardness from the statistical analysis of acquired 

vibration signal. The results are presented in Table 32 to Table 36.  
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Table 32: Calculated statistical parameters of acquired vibration signal at 300 rpm 

 

 Table 33: Calculated statistical parameters of acquired vibration signal at 600 rpm 

 

Table 34: Calculated statistical parameters of acquired vibration signal at 900 rpm 

 

 

Table 35: Calculated statistical parameters of acquired vibration signal at 1200 rpm 

 

 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 0.603 0.4346 42.8313 0.1241 8.19E+03 -1.10E+05 13.6759 

Copper 491 0.5303 0.0212 24.0533 0.1352 9.44E+03 -1.50E+05 16.9466 

ZnP 539 0.5539 -0.0604 4.7608 0.0759 1.55E+04 -1.16E+05 5.4113 

Nickel 614 0.3622 0.2099 16.9047 0.0105 1.58E+04 -1.41E+05 7.5891 

Black 

Oxide 

624 0.5062 0.0157 3.5156 0.1241 1.22E+04 -1.57E+05 5.3841 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 0.6039 0.0526 15.291 2.20E-01 3.22E+03 -143860 12.805 

Copper 491 0.5785 -0.0464 3.819 0.1429 1.12E+04 -1.34E+05 5.2815 

ZnP 539 1.6964 0.0712 7.6801 2.7124 -3.98E+05 -3.12E+04 11.8225 

Nickel 614 0.4543 0.1271 6.8154 0.0843 1.28E+04 -1.60E+05 7.3244 

Black 

Oxide 

624 1.9627 0.04 3.5348 3.729 -5.37E+05 -2.93E+03 4.9784 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 1.0419 -0.0032 6.4559 0.9125 -7.12E+04 -8.52E+04 9.3617 

Copper 491 0.8759 -0.0206 3.632 0.5609 -2.32E+04 -9.76E+04 6.462 

ZnP 539 1.364 0.5979 31.6941 1.663 -2.98E+05 -8.64E+04 17.7376 

Nickel 614 0.6878 0.0661 6.46 0.3594 -4.90E+03 -1.36E+05 8.5603 

Black 

Oxide 

624 2.1142 0.0499 3.1541 4.343 -6.46E+05 1.22E+04 5.1794 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 1.6567 -0.0031 8.0532 2.5606 -3.75E+05 -3.60E+04 11.6506 

Copper 491 1.3137 -0.0104 3.5016 1.5141 -1.45E+05 -4.80E+04 6.5199 

ZnP 539 1.8629 0.2448 19.3549 3.2666 -6.47E+05 -4.42E+04 13.4397 

Nickel 614 0.9157 0.0746 6.841 0.7158 -4.41E+04 -1.05E+05 9.5801 

Black 

Oxide 

624 3.3363 0.089 3.2619 11.001 -2.27E+06 7.02E+04 5.0021 
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 Table 36: Calculated statistical parameters of acquired vibration signal at 1500 rpm 

 

However, no considerable trend has been found with the calculations of statistical 

parameters directly. Therefore, for in depth analysis, the signals are decomposed into 

six levels using VMD. After decomposition, the statistical parameters (specified earlier) 

of all six modes at all speeds are calculated and outcomes are illustrated from Table 37 

to Table 66.  

Table 37: Statistical parameters of IMF 1 at 300 rpm 

 

 Table 38: Statistical parameters of IMF 2 at 300 rpm 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 2.7803 -0.0217 8.4975 7.5545 -1.63E+06 2.14E+04 10.1144 

Copper 491 1.987 0.0133 3.4406 3.6855 -5.45E+05 3.57E+03 5.9436 

ZnP 539 1.9888 0.0469 13.8614 3.7372 -7.08E+05 -2.39E+04 12.211 

Nickel 614 1.7112 0.0068 7.3779 2.7967 -4.00E+05 -2.98E+04 12.9099 

Black 

Oxide 

624 4.4616 0.0181 3.5697 19.7852 -4.84E+06 1.06E+05 6.8683 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 0.1128 0.0002 70.2502 0.0127 1.75E+03 -4.10E+05 23.435 

Copper 491 0.0871 0.1464 68.3347 0.0076 1.47E+03 -4.34E+05 29.2495 

ZnP 539 0.0395 0.0015 3.3055 0.0016 5.68E+02 -4.97E+05 6.1717 

Nickel 614 0.0211 0.0026 7.529 0.0004 1.91E+02 -5.86E+05 13.9519 

Black 

Oxide 

624 
0.1025 0.0005 3.1083 0.0105 2.56E+03 -3.74E+05 4.3417 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 0.153 -0.0123 46.8417 0.0234 2.47E+03 -3.76E+05 19.4516 

Copper 491 0.1801 0.0022 20.5296 0.0325 4.56E+03 -3.17E+05 18.92 

ZnP 539 0.0443 0.0031 4.1635 0.002 6.74E+02 -4.88E+05 7.1655 

Nickel 614 0.0222 0.0026 29.0549 0.0005 1.98E+02 -5.89E+05 23.4255 

Black 

Oxide 

624 
0.0966 0.0048 3.2972 0.0093 2.33E+03 -3.83E+05 5.2231 
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Table 39: Statistical parameters of IMF 3 at 300 rpm 

 

 

Table 40: Statistical parameters of IMF 4 at 300 rpm 

 

Table 41: Statistical parameters of IMF 5 at 300 rpm 

 

Table 42: Statistical parameters of IMF 6 at 300 rpm 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 0.1543 0.0027 36.5897 0.0238 2.49E+03 -3.83E+05 17.7908 

Copper 491 0.1488 0.0006 8.5246 0.0222 3.91E+03 -3.38E+05 11.9742 

ZnP 539 0.054 -0.0063 23.4947 0.0029 8.31E+02 -4.78E+05 18.1938 

Nickel 614 0.029 0.0078 14.0081 0.0008 3.08E+02 -5.63E+05 13.1508 

Black 

Oxide 

624 
0.1577 0.0008 4.2258 0.0249 4.56E+03 -3.22E+05 8.9797 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 0.1466 0.0008 14.6782 0.0215 3.20E+03 -3.62E+05 10.6533 

Copper 491 0.0859 -0.0082 4.2707 0.0074 1.91E+03 -4.03E+05 7.1574 

ZnP 539 0.0764 -0.0022 11.8841 0.0058 1.44E+03 -4.36E+05 11.6646 

Nickel 614 0.0399 -0.005 9.6108 0.0016 5.29E+02 -5.21E+05 11.5277 

Black 

Oxide 

624 
0.1819 -0.0019 3.4225 0.0331 5.51E+03 -3.06E+05 4.9911 

Coating HV RMS Skewness Kurtosis Variance 
Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Silver 192 0.0865 -0.0622 6.9086 0.0075 1.79E+03 -4.18E+05 7.8006 

Copper 491 0.1436 -0.0059 4.9765 0.0206 3.85E+03 -3.42E+05 6.7712 

ZnP 539 0.0545 0.0793 4.1068 0.003 9.40E+02 -4.62E+05 6.4678 

Nickel 614 0.0501 -0.0177 5.3196 0.0025 7.89E+02 -4.87E+05 5.71 

Black 

Oxide 
624 0.1396 0.0132 3.117 0.0195 3.98E+03 -3.35E+05 4.514 

Coating HV RMS Skewness Kurtosis Variance 
Shannon 

entropy 

Log 

Energy 

Crest 

Factor 

Silver 192 0.4908 -0.1571 3.2507 0.0013 2.18E+04 -9.18E+04 1.2719 

Copper 491 0.3845 -0.0934 3.4511 0.0018 1.79E+04 -1.24E+05 1.4332 

ZnP 539 0.4586 0.1143 2.7605 0.002 2.07E+04 -1.01E+05 1.34 

Nickel 614 0.3371 0.027 3.0426 0.0007 1.57E+04 -1.40E+05 1.3129 

Black 

Oxide 
624 0.3671 0.0053 3.1491 0.0026 1.70E+04 -1.31E+05 1.617 
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Table 43: Statistical parameters of IMF 1 at 600 rpm 

 

Table 44: Statistical parameters of IMF 2 at 600 rpm 

 

 

Table 45: Statistical parameters of IMF 3 at 600 rpm 

 

Table 46: Statistical parameters of IMF 4 at 600 rpm 

 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.5635 -0.0031 63.73 0.3175 -3.07E+04 -2.44E+05 21.6952 

Copper 491 0.6907 -0.001 16.3892 0.477 -2.38E+04 -1.63E+05 14.5551 

ZnP 539 0.4895 -0.0011 23.8247 0.2396 -9.15E+03 -2.39E+05 14.1663 

Nickel 614 0.0572 -0.003 16.791 0.0033 9.17E+02 -4.74E+05 17.4657 

Black 

Oxide 

624 
0.3346 -0.0008 3.1906 0.1119 1.02E+04 -2.23E+05 5.2739 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.824 -0.0084 13.7681 0.679 -5.44E+04 -1.59E+05 9.7533 

Copper 491 0.6793 -0.0015 5.321 0.4615 -6.24E+03 -1.45E+05 6.868 

ZnP 539 0.3696 0.0018 8.9878 0.1366 6.23E+03 -2.38E+05 10.3832 

Nickel 614 0.0692 0.001 16.192 0.0048 1.19E+03 -4.58E+05 15.2598 

Black 

Oxide 

624 
0.2952 0.0004 3.1938 0.0871 9.36E+03 -2.40E+05 4.5429 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.7028 0.0062 14.6203 0.494 -2.75E+04 -1.72E+05 10.8552 

Copper 491 0.5875 -0.0075 4.4207 0.3452 3.47E+03 -1.60E+05 7.1354 

ZnP 539 0.8865 -0.0002 7.3241 0.7859 -4.72E+04 -1.21E+05 8.4017 

Nickel 614 0.0912 -0.0034 10.6744 0.0083 1.85E+03 -4.20E+05 14.4297 

Black 

Oxide 

624 
0.3531 0.003 3.3901 0.1247 1.03E+04 -2.18E+05 4.6307 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.5749 -0.0032 5.7985 0.3305 1.01E+03 -1.72E+05 7.7872 

Copper 491 0.285 -0.0051 3.9663 0.0812 8.49E+03 -2.51E+05 5.8306 

ZnP 539 0.8598 -0.0017 5.8483 0.7393 -3.43E+04 -1.18E+05 7.8138 

Nickel 614 0.1072 0.0047 6.7441 0.0115 2.47E+03 -3.89E+05 9.4908 

Black 

Oxide 

624 
0.6349 0.0008 3.4052 0.4031 2.56E+03 -1.46E+05 4.8794 
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 Table 47: Statistical parameters of IMF 5 at 600 rpm 

 

Table 48: Statistical parameters of IMF 6 at 600 rpm 

 

 

Table 49: Statistical parameters of IMF 1 at 900 rpm 

 

Table 50: Statistical parameters of IMF 2 at 900 rpm 

 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.4098 -0.0065 4.6196 0.1679 8.91E+03 -2.09E+05 6.4683 

Copper 491 0.3645 -0.0092 3.7827 0.1329 1.00E+04 -2.17E+05 6.1077 

ZnP 539 0.5028 -0.0093 5.359 0.2528 5.73E+03 -1.88E+05 9.0597 

Nickel 614 0.1282 -0.0173 3.7566 0.0164 3.42E+03 -3.54E+05 5.4057 

Black 

Oxide 

624 
0.686 -0.0002 3.1002 0.4706 9.06E+01 -1.31E+05 4.3666 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.4554 -0.0248 3.2999 0.0093 1.97E+04 -1.07E+05 1.8395 

Copper 491 0.3922 0.041 3.311 0.0043 1.79E+04 -1.24E+05 1.7043 

ZnP 539 0.4176 0.3074 5.995 0.0092 1.83E+04 -1.19E+05 3.7997 

Nickel 614 0.3416 0.0689 3.1202 0.0026 1.57E+04 -1.40E+05 1.6221 

Black 

Oxide 

624 
0.4594 -0.0045 3.2959 0.0081 2.00E+04 -1.05E+05 2.2225 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

 Factor 

Silver 192 1.1082 0.0012 22.7812 1.228 -1.73E+05 -1.39E+05 12.2114 

Copper 491 1.0936 -0.0036 8.6869 1.1959 -1.07E+05 -9.39E+04 10.5799 

ZnP 539 0.65 -0.0022 9.1436 0.4225 -9.73E+03 -1.59E+05 9.728 

Nickel 614 0.1737 -0.002 21.5595 0.0302 3.62E+03 -3.47E+05 21.4151 

Black 

Oxide 

624 
0.7747 0.0007 3.1807 0.6001 -9.55E+03 -1.15E+05 4.2343 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

 Factor 

Silver 192 0.7767 0.0028 4.7991 0.6033 -1.75E+04 -1.27E+05 6.4016 

Copper 491 0.2772 0.004 3.5065 0.0768 8.61E+03 -2.52E+05 7.2891 

ZnP 539 0.6702 0.0013 3.2507 0.4492 9.77E+02 -1.35E+05 5.8372 

Nickel 614 0.1692 0.0015 18.1231 0.0286 3.52E+03 -3.54E+05 16.5515 

Black 

Oxide 

624 
1.2654 0.0019 21.7436 1.6013 -2.49E+05 -1.16E+05 13.1383 
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 Table 51: Statistical parameters of IMF 3 at 900 rpm 

 

 

 Table 52: Statistical parameters of IMF 4 at 900 rpm 

 

 

Table 53: Statistical parameters of IMF 5 at 900 rpm 

 

 Table 54: Statistical parameters of IMF 6 at 900 rpm 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

 Factor 

Silver 192 1.6126 0.0061 6.2299 2.6005 -3.42E+05 -4.10E+04 6.3868 

Copper 491 1.3851 -0.0011 3.5264 1.9184 -1.80E+05 -4.61E+04 4.798 

ZnP 539 1.2262 -0.0002 3.9545 1.5036 -1.21E+05 -6.24E+04 6.2884 

Nickel 614 0.2184 0.0042 9.0939 0.0477 5.29E+03 -3.09E+05 9.6058 

Black 

Oxide 

624 
0.7661 0.0012 3.2004 0.5868 -8.76E+03 -1.19E+05 4.8477 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 1.1008 0.0135 4.7679 1.2118 -9.17E+04 -8.62E+04 6.5777 

Copper 491 1.1888 -0.0002 3.6845 1.4132 -1.08E+05 -6.77E+04 4.6418 

ZnP 539 1.466 0.0004 3.3983 2.1491 -2.17E+05 -3.93E+04 4.2566 

Nickel 614 0.2145 0.0253 11.5853 0.046 4.97E+03 -3.15E+05 12.4978 

Black 

Oxide 

624 
1.437 0.0013 3.1161 2.0651 -1.95E+05 -3.71E+04 4.5632 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 1.1386 -0.0061 7.067 1.2963 -1.24E+05 -9.56E+04 6.9403 

Copper 491 0.6706 -0.0264 3.6641 0.4498 -1.14E+03 -1.39E+05 5.2673 

ZnP 539 1.1693 -0.007 3.4682 1.3673 -9.79E+04 -6.49E+04 4.4124 

Nickel 614 0.337 0.1015 5.9586 0.1136 8.76E+03 -2.34E+05 12.3622 

Black 

Oxide 

624 
1.0889 0.0049 3.0211 1.1856 -6.89E+04 -7.12E+04 3.9696 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

 Factor 

Silver 192 0.5089 -0.0966 4.6351 0.0649 1.58E+04 -1.27E+05 4.1106 

Copper 491 0.3911 0.1627 6.6078 0.0184 1.62E+04 -1.40E+05 5.3252 

ZnP 539 0.5358 -0.0536 3.2425 0.0254 1.99E+04 -9.36E+04 2.4888 

Nickel 614 0.4166 1.5007 13.0792 0.0409 1.40E+04 -1.52E+05 7.9615 

Black 

Oxide 

624 
0.4198 0.0147 3.1518 0.0471 1.48E+04 -1.59E+05 4.3824 
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Table 55: Statistical parameters of IMF 1 at 1200 rpm 

 

Table 56: Statistical parameters of IMF 2 at 1200 rpm 

 

 

Table 57: Statistical parameters of IMF 3 at 1200 rpm 

 

Table 58: Statistical parameters of IMF 4 at 1200 rpm 

 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.9839 -0.0003 4.9368 0.9681 -5.70E+04 -9.51E+04 7.9734 

Copper 491 1.7748 0.0085 9.7998 3.15 -4.88E+05 -3.42E+04 11.0052 

ZnP 539 0.852 -0.0004 4.2549 0.7259 -2.65E+04 -1.11E+05 6.4216 

Nickel 614 0.433 0.0057 12.4155 0.1875 1.29E+03 -2.39E+05 10.5572 

Black 

Oxide 

624 
1.2065 0.0005 3.062 1.4556 -1.04E+05 -5.72E+04 4.4453 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 1.3398 0.0143 26.8203 1.795 -3.02E+05 -3.02E+05 17.2483 

Copper 491 1.0156 0.0031 4.0636 1.0314 -6.10E+04 -9.07E+04 5.9267 

ZnP 539 1.0281 -0.0019 7.2462 1.0569 -8.12E+04 -1.01E+05 9.6025 

Nickel 614 0.4457 0.0172 13.4801 0.1986 -1.34E+02 -2.42E+05 12.1138 

Black 

Oxide 

624 
1.8366 -0.0015 3.776 3.3733 -4.46E+05 -1.07E+04 5.856 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 1.8589 0.0034 3.7271 3.4557 -4.59E+05 -7.97E+03 5.0248 

Copper 491 2.4898 -0.0008 3.6409 6.1994 -1.05E+06 3.08E+04 5.5239 

ZnP 539 1.3905 -0.0002 4.0756 1.9329 -1.92E+05 -4.98E+04 6.0418 

Nickel 614 0.5381 0.03 9.0811 0.2896 -1.27E+03 -1.97E+05 10.3904 

Black 

Oxide 

624 
1.3036 0.0004 3.2562 1.6994 -1.41E+05 -4.96E+04 5.1265 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 1.198 0.0037 3.5782 1.4353 -1.08E+05 -6.31E+04 5.1592 

Copper 491 2.0225 -0.0004 3.8556 4.0906 -6.00E+05 -2.56E+03 4.641 

ZnP 539 2.314 0.0002 3.3702 5.353 -8.50E+05 2.07E+04 4.5203 

Nickel 614 0.5238 0.1122 11.8411 0.2744 -4.12E+03 -2.15E+05 11.5845 

Black 

Oxide 

624 
1.9789 0.0021 3.1926 3.9162 -5.34E+05 3.80E+03 4.5121 
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 Table 59: Statistical parameters of IMF 5 at 1200 rpm 

 

 Table 60: Statistical parameters of IMF 6 at 1200 rpm 

 

 

Table 61: Statistical parameters of IMF 1 at 1500 rpm 

 

Table 62: Statistical parameters of IMF 2 at 1500 rpm 

 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 1.2332 0.0009 4.0125 1.5207 -1.25E+05 -6.21E+04 5.3837 

Copper 491 0.9525 -0.0358 3.5899 0.9072 -4.27E+04 -9.51E+04 5.1184 

ZnP 539 2.1308 -0.0015 3.8945 4.5329 -6.96E+05 4.28E+03 4.5484 

Nickel 614 0.815 0.3335 11.2156 0.6642 -4.58E+04 -1.54E+05 11.5691 

Black 

Oxide 

624 
1.3277 -0.0028 3.0424 1.7628 -1.47E+05 -4.50E+04 5.1329 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

 Factor 

Silver 192 0.5027 0.1068 4.411 0.058 1.60E+04 -1.29E+05 6.6959 

Copper 491 0.4878 -0.0612 3.3297 0.0618 1.56E+04 -1.37E+05 3.7485 

ZnP 539 1.7499 -0.0087 3.3997 3.0399 -3.76E+05 -1.54E+04 5.2416 

Nickel 614 0.8575 2.4291 14.1941 0.6271 -6.40E+04 -1.56E+05 11.9742 

Black 

Oxide 

624 
0.4698 -0.122 3.1138 0.0957 1.36E+04 -1.60E+05 4.4289 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.9778 -0.0001 7.3501 0.956 -6.69E+04 -1.05E+05 8.4322 

Copper 491 0.6199 0.0007 4.015 0.3843 2.97E+03 -1.47E+05 7.1016 

ZnP 539 0.5076 -0.0015 4.3418 0.2577 8.15E+03 -1.74E+05 9.0807 

Nickel 614 0.7083 0.0013 15.4231 0.5017 -3.04E+04 -1.77E+05 12.0114 

Black 

Oxide 

624 
1.9 -0.0001 3.3097 3.61 -4.76E+05 -2.57E+03 4.7725 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 1.0875 0.0034 8.3551 1.1827 -1.12E+05 -1.07E+05 9.9914 

Copper 491 0.8957 -0.0014 3.1598 0.8022 -2.69E+04 -9.59E+04 5.5265 

ZnP 539 0.8923 0.0054 19.3354 0.7963 -8.52E+04 -1.56E+05 10.5387 

Nickel 614 0.7251 0.01 6.57 0.5257 -1.88E+04 -1.56E+05 6.7257 

Black 

Oxide 

624 
2.8276 -0.0012 3.4671 7.9954 -1.47E+06 4.71E+04 5.8121 
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Table 63: Statistical parameters of IMF 3 at 1500 rpm 

 

 

 Table 64: Statistical parameters of IMF 4 at 1500 rpm 

 

 

 Table 65: Statistical parameters of IMF 5 at 1500 rpm 

 

 Table 66: Statistical parameters of IMF 6 at 1500 rpm 

 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 1.4462 0.0003 8.5996 2.0916 -2.84E+05 -7.87E+04 8.6056 

Copper 491 0.7612 0.0008 3.6447 0.5795 -1.05E+04 -1.23E+05 5.3458 

ZnP 539 1.0191 0 15.6397 1.0387 -1.18E+05 -1.35E+05 12.5102 

Nickel 614 0.8077 0.0022 5.735 0.6524 -2.73E+04 -1.31E+05 7.7781 

Black 

Oxide 

624 
2.3186 0.0008 3.6212 5.3759 -8.54E+05 2.21E+04 7.2312 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest  

Factor 

Silver 192 0.7315 0.0003 8.4006 0.535 -2.09E+04 -1.48E+05 10.8105 

Copper 491 0.5902 -0.0203 4.3166 0.3484 4.24E+03 -1.56E+05 9.7947 

ZnP 539 0.5209 -0.0035 6.2872 0.2713 4.09E+03 -1.82E+05 8.272 

Nickel 614 0.6756 0 10.3079 0.4565 -1.89E+04 -1.76E+05 9.5747 

Black 

Oxide 

624 
1.8171 0.0089 3.3125 3.3018 -4.19E+05 -8.96E+03 4.6152 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

 Factor 

Silver 192 1.1487 -0.0027 4.2314 1.3196 -1.03E+05 -7.85E+04 5.2013 

Copper 491 0.8921 -0.0096 3.9992 0.7958 -3.32E+04 -1.06E+05 5.5059 

ZnP 539 0.7283 0.0037 3.6869 0.5305 -7.22E+03 -1.30E+05 5.0813 

Nickel 614 0.7406 0.0275 3.7096 0.5485 -8.60E+03 -1.28E+05 5.7351 

Black 

Oxide 

624 
1.4557 -0.0056 3.0946 2.1176 -2.02E+05 -3.32E+04 5.5974 

Coating HV RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

 Factor 

Silver 192 0.5553 0.0604 3.5011 0.1423 1.12E+04 -1.43E+05 4.2028 

Copper 491 0.555 -0.1102 2.8872 0.0464 1.80E+04 -1.02E+05 2.2395 

ZnP 539 0.5251 -0.1644 3.1573 0.0594 1.66E+04 -1.21E+05 3.1858 

Nickel 614 0.5556 0.1939 3.2425 0.1262 1.14E+04 -1.46E+05 5.8755 

Black 

Oxide 

624 
0.8736 -0.0182 3.1412 0.7526 -2.33E+04 -9.96E+04 4.5335 
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Literature suggested that effect of hardness can be seen in RMS value of vibration 

signal [240]. As per the findings, higher the hardness, greater is the RMS value. 

However, no such behavior has been observed after calculating statistical values of 

acquired vibration signals. Later, statistical values obtained after decomposing the 

signal using VMD were compared in reference to hardness. Even after implementation 

of EMD, VMD and WPT on vibration signal, no significant trend has been obtained in 

relation to hardness based on statistical analysis of decomposed signal. Therefore, it 

can be said that the information in the vibration signal corresponding to hardness of 

bearing surface is challenging to extract with the given techniques. However, it is 

obvious that bearing balls after striking with surfaces of different hardness will generate 

unique frequencies. So, based on identification of relevant frequency bands corresponds 

to hardness of the surface, it would be possible to estimate the hardness. Though, 

encouraging results are not obtained with EMD, WPT and VMD. But still there is a 

possibility to identify frequency bands corresponding to hardness level with some other 

vibration signal analysis technique.     

6.4.3 Study of variation in statistical parameters in reference to grain size 

Following same approach as discussed in previous cases, the obtained statistical 

parameter values of acquired vibration signals are arranged as per the ascending order 

of grain size of bearing coating as shown in Table 67 to Table 71 for all five speeds.  

 

Table 67: Calculated statistical parameters of acquired vibration signal at 300 rpm 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.3622 0.2099 16.9047 0.0105 1.58E+04 -1.41E+05 7.5891 

ZnP 24.16 0.5539 -0.0604 4.7608 0.0759 1.55E+04 -1.16E+05 5.4113 

Copper 24.92 0.5303 0.0212 24.0533 0.1352 9.44E+03 -1.50E+05 16.9466 

Silver 26.8 0.6030 0.4346 42.8313 0.1241 8.18E+03 -1.09E+05 13.6759 

Black 

Oxide 
78.48 0.5062 0.0157 3.5156 0.1241 1.21E+04 -1.56E+05 5.3841 
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Table 68: Calculated statistical parameters of acquired vibration signal at 600 rpm 

 

Table 69: Calculated statistical parameters of acquired vibration signal at 900 rpm 

 

 

Table 70: Calculated statistical parameters of acquired vibration signal at 1200 rpm 

 

Table 71: Calculated statistical parameters of acquired vibration signal at 1500 rpm 

  

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.4543 0.1271 6.8154 0.0843 1.28E+04 -1.59E+05 7.3244 

ZnP 24.16 1.6964 0.0712 7.6801 2.7124 -3.98E+05 -3.12E+04 11.8225 

Copper 24.92 0.5785 -0.0464 3.8190 0.1429 1.12E+04 -1.34E+05 5.2815 

Silver 26.8 0.6039 0.0526 15.2910 0.2197 3.22E+03 -1.44E+05 12.8050 

Black 

Oxide 
78.48 1.9627 0.0400 3.5348 3.7290 -5.37E+05 -2.93E+03 4.9784 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.6878 0.0661 6.4600 0.3594 -4.90E+03 -1.36E+05 8.5603 

ZnP 24.16 1.3640 0.5979 31.6941 1.6630 -2.97E+05 -8.63E+04 17.7376 

Copper 24.92 0.8759 -0.0206 3.6320 0.5609 -2.32E+04 -9.76E+04 6.4620 

Silver 26.8 1.0419 -0.0032 6.4559 0.9125 -7.11E+04 -8.52E+04 9.3617 

Black 

Oxide 
78.48 2.1142 0.0499 3.1541 4.3430 -6.46E+05 1.22E+04 5.1794 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.9157 0.0746 6.8410 0.7158 -4.41E+04 -1.05E+05 9.5801 

ZnP 24.16 1.8629 0.2448 19.3549 3.2666 -6.47E+05 -4.42E+04 13.4397 

Copper 24.92 1.3137 -0.0104 3.5016 1.5141 -1.45E+05 -4.80E+04 6.5199 

Silver 26.8 1.6567 -0.0031 8.0532 2.5606 -3.75E+05 -3.60E+04 11.6506 

Black 

Oxide 
78.48 3.3363 0.0890 3.2619 11.0010 -2.27E+06 7.02E+04 5.0021 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 1.7112 0.0068 7.3779 2.7967 -4.00E+05 -2.98E+04 12.9099 

ZnP 24.16 1.9888 0.0469 13.8614 3.7372 -7.07E+05 -2.39E+04 12.2110 

Copper 24.92 1.9870 0.0133 3.4406 3.6855 -5.44E+05 3.57E+03 5.9436 

Silver 26.8 2.7803 -0.0217 8.4975 7.5545 -1.63E+06 2.14E+04 10.1144 

Black 

Oxide 
78.48 4.4616 0.0181 3.5697 19.7852 -4.84E+06 1.06E+05 6.8683 
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From these results, it is clear that no statistical parameter is showing any trend in 

reference to grain size. Therefore, in this case also, VMD must be applied which has 

shown significant results in case of surface roughness. So, after decomposing the 

signals into six levels using VMD, same statistical values have been calculated again. 

From these results, it has been observed that considerable trend has been obtained at 

different speeds in different IMFs. Only the tables of responded IMFs have been 

presented and discussed further.  

Table 72: Calculated statistical parameters of IMF 3 at 300 rpm 

 

 

Table 73: Calculated statistical parameters of IMF 4 at 300 rpm 

 

From these tables, it can be interpreted that RMS i.e., power content of the signal is 

closely associated with the grain size of the surface. At all speeds, RMS has shown 

similar rising trend with the increase in grain diameter except few minor exceptions. At 

300 rpm, in IMF 3 and 4, both RMS and variance has shown similar rising trend with 

the rise in grain size as shown in Table 72 and Table 73. Moreover, in IMF 4, along 

with RMS and variance, randomness level has also shown increasing trend along with 

variation in grain size. However, in same IMF 4, log energy continued to decline with 

the change in coating as shown in Table 73. It shows that bigger grains result in 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.029 0.0078 14.0081 0.0008 3.08E+02 -5.63E+05 13.1508 

ZnP 24.16 0.054 -0.0063 23.4947 0.0029 8.31E+02 -4.78E+05 18.1938 

Copper 24.92 0.1488 0.0006 8.5246 0.0222 3.91E+03 -3.38E+05 11.9742 

Silver 26.8 0.1543 0.0027 36.5897 0.0238 2.49E+03 -3.83E+05 17.7908 

Black 

Oxide 
78.48 0.1577 0.0008 4.2258 0.0249 4.56E+03 -3.22E+05 8.9797 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.0399 -0.005 9.6108 0.0016 5.29E+02 -5.21E+05 11.5277 

ZnP 24.16 0.0764 -0.0022 11.8841 0.0058 1.44E+03 -4.36E+05 11.6646 

Copper 24.92 0.0859 -0.0082 4.2707 0.0074 1.91E+03 -4.03E+05 7.1574 

Silver 26.8 0.1466 0.0008 14.6782 0.0215 3.20E+03 -3.62E+05 10.6533 

Black 

Oxide 
78.48 

0.1819 -0.0019 3.4225 0.0331 5.51E+03 -3.06E+05 4.9911 
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generation of high-power vibration signals with more randomness and enhanced 

deviations from the mean value. In order to select best parameter among RMS, 

variance, Shannon entropy and log energy, chain index has been calculated based on 

the percentage variation of the values with change in coating.  Later, average of these 

chain index has been taken to better evaluate the variation of statistical values with the 

increase in grain size. 

 

Table 74: Responded statistical parameters at 300 RPM in IMF 3 with its chain index 

 

 

 

 

 

  

Table 75: Responded statistical parameters at 300 RPM in IMF 4 with its chain index 

 

From Table 74 and Table 75, it is obvious that at 300 rpm, variance responds much 

stronger than RMS, Shannon entropy and log energy with the variation in grain size. 

Therefore, variance appears to be most relevant statistical parameter in reference to the 

grain size of the bearing coating at low speed. However, after comparing results 

obtained from both IMF 3 and 4, chain index of variance in IMF 3 is more than IMF 4, 

so it is better to select IMF 3 based on the higher value of chain index. On the other 

hand, IMF 4 is best suited to define the variation in grain size if decision is based on 

Coating 
GS 

(nm) 
RMS  

Chain 

index 
Variance 

Chain 

index 

Nickel 22.42 0.029  0.0008  

ZnP 24.16 0.054 86.2069 0.0029 262.5 

Copper 24.92 0.1488 175.5556 0.0222 665.5172 

Silver 26.8 0.1543 3.6962 0.0238 7.2072 

Black 

Oxide 
78.48 0.1577 2.2035 0.0249 4.6218 

Average chain index 66.91 -- 234.96 

Coating 
GS 

(nm) 
RMS  

Chain 

index 
Variance 

Chain 

index 

Shannon 

entropy 

Chain 

index  

Log  

Energy 

Chain 

index  

Nickel 22.42 0.0399   0.0016   5.29E+02   -5.21E+05   

ZnP 24.16 0.0764 91.478 0.0058 262.5 1.43E+03 171.21 -4.36E+05 -16.26 

Copper 24.92 0.0859 12.434 0.0074 27.58 1.90E+03 32.78 -4.03E+05 -7.65 

Silver 26.8 0.1466 70.663 0.0215 190.54 3.20E+03 67.70 -3.62E+05 -10.15 

Black 

Oxide 
78.48 0.1819 24.079 0.0331 53.95 5.51E+03 72.31 -3.05E+05 -15.62 

Average chain index 49.66 -- 133.64 -- 86.00 -- -49.69 
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number of parameters responded in a particular frequency band. As in IMF 4, four 

parameters have responded as compared to two parameters of IMF 3. Therefore, for 

future work, it is left up to the researcher that in case to go for stronger statistical 

relationship with grain diameter variation, IMF 3 can be chosen. Contrary, to obtain 

variation in more than one statistical parameter, IMF 4 can be selected. In both the cases 

(IMF 3 and 4), variance appears to be most relevant parameter with grain size variation 

based on chain indexing. 

Table 76:  Calculated statistical parameters of IMF 6 at 600 rpm 

 

 

Table 77: Responded statistical parameters at 600 RPM in IMF 6 with its chain index 

 

 

 

 

 

 

 

After decomposing vibration signal taken at 600 rpm into six levels, only in IMF 6, 

RMS has exhibited somewhat rising trend with the increase in grain size as shown in 

Table 76.  However, RMS value dipped while switching coating from zinc phosphate 

to copper as shown in Table 77.   Therefore, at 600 rpm, overall, there is no such 

statistical parameter found which continued to show rising trend with the increase in 

grain diameter. The reason behind the same could be overlapping of frequency bands 

corresponding to grain size with other common frequencies present in the signal at the 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.3416 0.0689 3.1202 0.0026 1.57E+04 -1.40E+05 1.6221 

ZnP 24.16 0.4176 0.3074 5.995 0.0092 1.83E+04 -1.19E+05 3.7997 

Copper 24.92 0.3922 0.041 3.311 0.0043 1.79E+04 -1.24E+05 1.7043 

Silver 26.8 0.4554 -0.0248 3.2999 0.0093 1.97E+04 -1.07E+05 1.8395 

Black 

Oxide 
78.48 0.4594 -0.0045 3.2959 0.0081 2.00E+04 -1.05E+05 2.2225 

Coating GS (nm) RMS  
Chain 

index 

Nickel 22.42 0.3416   

ZnP 24.16 0.4176 22.24 

Copper 24.92 0.3922 -6.08 

Silver 26.8 0.4554 16.11 

Black 

Oxide 
78.48 0.4594 0.87 

Average chain index 8.28 



120 

 

given speed. The given VMD decomposition technique may not be able to differentiate 

the relevant frequency band at 600 rpm.  

 

Table 78: Calculated statistical parameters of IMF 3 at 900 rpm 

 

 

 

Table 79: Responded statistical parameters at 900 RPM in IMF 3 with its chain index 

 

 

 

 

 

From Table 78 and  Table 79 it is obvious that at 900 rpm, both RMS and variance have 

responded considerably to the variation in grain size. However, while switching from 

grain size of 22.42 nm to 24.16 nm, there is huge rise in the values of RMS and variance. 

RMS has shown growth of 461.44% whereas variance has depicted enormous growth 

of 3052.2% within the grain size variation of 1.74 nm. Although, beyond grain diameter 

of 24.16, both parameters continued to show rising trend with increasing grain size but 

overall rate of increase is less than 17% in RMS and less than 36% in variance as per 

the chain indexing. Another important point to be noted that beyond grain size of silver, 

i.e., 26.8 nm both parameters discontinued to exhibit rising trend. Contrary, both these 

parameters depicted downward trend up to grain size of 78.48, i.e., of black oxide 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.2184 0.0042 9.0939 0.0477 5.29E+03 -3.09E+05 9.6058 

ZnP 24.16 1.2262 -0.0002 3.9545 1.5036 -1.21E+05 -6.24E+04 6.2884 

Copper 24.92 1.3851 -0.0011 3.5264 1.9184 -1.80E+05 -4.61E+04 4.798 

Silver 26.8 1.6126 0.0061 6.2299 2.6005 -3.42E+05 -4.10E+04 6.3868 

Black 

Oxide 
78.48 0.7661 0.0012 3.2004 0.5868 -8.76E+03 -1.19E+05 4.8477 

Coating 
GS 

(nm) 
RMS  

Chain 

index 
Variance 

Chain 

index 

Nickel 22.42 0.2184   0.0477   

ZnP 24.16 1.2262 461.44 1.5036 3052.20 

Copper 24.92 1.3851 12.95 1.9184 27.59 

Silver 26.8 1.6126 16.42 2.6005 35.56 

Black Oxide 78.48 0.7661 -52.49 0.5868 -77.44 

Average chain index 109.58 -- 759.48 
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coating. In all the cases, variance continued to be a dominant parameter than RMS with 

grain size variation. From nickel to silver coating, i.e., for grain size variation of 19.53% 

(22.42 to 26.8 nm), RMS has shown rise of 163.8% followed by fall of 52% for grain 

size variation of 192.83% (26.8 to 78.48 nm). Similarly, variance exhibited rise of 

1083% for grain size variation of 19.53% (22.42 to 26.8 nm) followed by dip of 77.44% 

for grain size change of 192.83% (26.8 to 78.48 nm) based on the chain indexing. 

Therefore, like 600 rpm, at 900 rpm also, there is no statistical parameter found which 

can depict continuous increasing trend with the rise in grain size.  

Table 80: Calculated statistical parameters of IMF 2 at 1200 rpm 

 

 

Table 81: Responded statistical parameters at 1200 RPM in IMF 2 with its chain index 

 

 

 

 

 

 

At 1200 rpm, again RMS and Shannon entropy have shown inconsistency in trend with 

the change in grain size as shown in Table 81. In this case, initially RMS has shown a 

significant increase of 130.67% up to the grain size of 24.16 nm. From 24.16 nm to 

24.92 nm, RMS value dips slightly around 1%. Later, up to the grain size of 78.48 nm, 

RMS again depicted rising trend. Similarly, Shannon is also showing rising trend up to 

the grain size of 24.16 nm, however excessive rise of 60315.71% has been identified. 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.4457 0.0172 13.4801 0.1986 -1.34E+02 -2.42E+05 12.1138 

ZnP 24.16 1.0281 -0.0019 7.2462 1.0569 -8.12E+04 -1.01E+05 9.6025 

Copper 24.92 1.0156 0.0031 4.0636 1.0314 -6.10E+04 -9.07E+04 5.9267 

Silver 26.8 1.3398 0.0143 26.8203 1.795 -3.02E+05 -3.02E+05 17.2483 

Black 

Oxide 
78.48 

1.8366 -0.0015 3.776 3.3733 -4.46E+05 -1.07E+04 5.856 

Coating 
GS 

(nm) 
RMS  

Chain 

index 

Shannon 

entropy 

Chain 

index 

Nickel 22.42 0.4457   -1.34E+02   

ZnP 24.16 1.0281 130.67 -8.12E+04 60315.71 

Copper 24.92 1.0156 -1.22 -6.10E+04 -24.86 

Silver 26.8 1.3398 31.92 -3.02E+05 395.38 

Black 

Oxide 
78.48 1.8366 37.08 -4.46E+05 47.34 

Average chain index 49.61 -- 15183.39 
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Further, variance also dipped by 24.86% up to grain size of 24.92 nm followed by 

significant rise of 395.38% till grain size of 26.8 nm.  Then, again rise of 47.34% in 

Shannon has been noted till grain diameter of 78.48 nm. Due to this fluctuating behavior 

of both responded parameters, RMS, and Shannon entropy, it is difficult to associate 

any statistical parameter with grain size variation at 1200 rpm also.  

 

 Table 82: Calculated statistical parameters of IMF 2 at 1500 rpm 

 

 

Table 83: Responded statistical parameters at 1500 RPM in IMF 2 with its chain index 

 

 

 

 

 

 

At 1500 rpm, only RMS has shown consistent rising trend with the increase in grain 

size as shown in Table 83. Unlike, 600, 900 and 1200 rpm where responded parameters 

has shown downward trend while changing grain size, there is no downfall found in 

this case. However, there is significant fluctuation in rate of change of RMS while 

switching grain size. Initially, RMS has shown percentage variation of 23.05% for the 

grain size change from 22.42 nm to 24.16 nm (Nickel to ZnP). Further, up to 24.92 nm 

(Copper), there is very small rise of only 0.38% has been noted. Later, there is revival 

Coating 
GS 

(nm) 
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 22.42 0.7251 0.01 6.57 0.5257 -1.88E+04 -1.56E+05 6.7257 

ZnP 24.16 0.8923 0.0054 19.3354 0.7963 -8.52E+04 -1.56E+05 10.5387 

Copper 24.92 0.8957 -0.0014 3.1598 0.8022 -2.69E+04 -9.59E+04 5.5265 

Silver 26.8 1.0875 0.0034 8.3551 1.1827 -1.12E+05 -1.07E+05 9.9914 

Black 

Oxide 
78.48 2.8276 -0.0012 3.4671 7.9954 -1.47E+06 4.71E+04 5.8121 

Coating 
GS 

(nm) 
RMS  

Chain 

index 

Nickel 22.42 0.7251   

ZnP 24.16 0.8923 23.05 

Copper 24.92 0.8957 0.38 

Silver 26.8 1.0875 21.41 

Black 

Oxide 
78.48 2.8276 160.00 

Average chain index 51.22 
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in percentage variation and rate of change again touched to 21.41% up to grain diameter 

of 26.8 nm (Silver). Finally, a sharp rise of 160% has been achieved for the change of 

grain size from 26.8 to 78.48 % (Black Oxide). Based on the chain indexing, RMS has 

depicted growth of 51.22% for the grain size growth of 250% (Nickel to Black oxide). 

Therefore, at 1500 rpm, RMS found to be most reliable parameter for the grain size 

variation in the surface of bearing element.  

Table 84: Responded IMF level, frequency bands, statistical parameters along with average 

chain index at all speeds 

S. 

No 

RPM IMF level 

shown 

response 

Approximate 

Frequencies Band 

(Hz) 

Responding 

statistical 

parameters 

Average chain 

index value 

1 300 3 & 4 1410-2570 & 801-1630 RMS, Variance & 

RMS, Variance, SE 

66.91, 234.96 & 

49.66, 133.64, 86 

2 600 6 0.00507 - 574 Inconsistent trend NA 

3 900 3 1370 – 3090 Inconsistent trend NA 

4 1200 2 2700 - 4820 Inconsistent trend NA 

5 1500 2 2870 - 4790 RMS 51.22 

 

It is also important to note that, though encouraging results were obtained at 300 and 

1500 rpm, it is not obvious to obtain results at all speeds between this range. Because 

at different speeds, range of frequency bands corresponding to particular surface 

property also varies. As, referring to frequency bands of responded IMFs as shown in 

Table 84, it is observed that with the rise in speed, frequency bands responsive to 

variation in grain size are shifting towards higher side. After shifting, it may get 

overlapped with other common frequencies present in the signal.  

6.4.4 Study of variation in statistical parameters in reference to wear resistance 

The coated bearings used in this study are also having different levels of wear resistance 

like other mentioned properties. The evaluated statistical values of the acquired 

vibration signals of different coated bearing are re-arranged as per the ascending order 

of the wear rate, opposite to wear resistance. As mentioned earlier in Chapter 5 that 

experimentally, the value of wear rate is obtained instead of wear resistance. Therefore, 

in the tables, wear rate is mentioned in descending order, to get wear resistance in 

increasing order as both are opposite to each other. In reference to wear rate, the results 

are presented next in tabular form from Table 85 to Table 89. 
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Table 85: Statistical parameters of original signal at 300 rpm 

 

Table 86: Statistical parameters of original signal at 600 rpm 

 

Table 87: Statistical parameters of original signal at 900 rpm 

 

Table 88: Statistical parameters of original signal at 1200 rpm 

 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 9.94E-04 0.5062 0.0156 3.5156 0.1240 1.22E+04 -1.57E+05 5.3841 

Silver 9.69E-04 0.6030 0.4346 42.8313 0.1241 8.19E+03 -1.10E+05 13.6759 

Copper 3.78E-04 0.5303 0.0212 24.0533 0.1351 9.44E+03 -1.50E+05 16.9466 

ZnP 2.15E-04 0.5538 -0.0604 4.76077 0.0759 1.55E+04 -1.16E+05 5.4112 

Nickel 1.23E-04 0.3622 0.2099 16.9047 0.0105 1.58E+04 -1.41E+05 7.5891 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 9.94E-04 1.9626 0.0400 3.5347 3.7289 -5.37E+05 -2.93E+03 4.9783 

Silver 9.69E-04 0.6039 0.0525 15.291 0.2196 3.22E+03 -1.44E+05 12.8049 

Copper 3.78E-04 0.5785 -0.0464 3.8189 0.1429 1.12E+04 -1.34E+05 5.2814 

ZnP 2.15E-04 1.6963 0.0711 7.6801 2.7123 -3.98E+05 -3.12E+04 11.8225 

Nickel 1.23E-04 0.4542 0.1270 6.8153 0.0843 1.28E+04 -1.60E+05 7.3243 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 9.94E-04 2.1141 0.0498 3.1541 4.3430 -6.46E+05 1.22E+04 5.1793 

Silver 9.69E-04 1.0418 -0.0032 6.4559 0.9125 -7.12E+04 -8.52E+04 9.3617 

Copper 3.78E-04 0.8758 -0.0206 3.6319 0.5609 -2.32E+04 -9.76E+04 6.4620 

ZnP 2.15E-04 1.3640 0.5979 31.6941 1.6630 -2.98E+05 -8.64E+04 17.7376 

Nickel 1.23E-04 0.6878 0.0660 6.4599 0.3593 -4.90E+03 -1.36E+05 8.5603 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 9.94E-04 3.3362 0.08897 3.2619 11.0010 -2.27E+06 7.02E+04 5.0021 

Silver 9.69E-04 1.6566 -0.0030 8.0532 2.5606 -3.75E+05 -3.60E+04 11.6505 

Copper 3.78E-04 1.3136 -0.0104 3.5015 1.5140 -1.45E+05 -4.80E+04 6.5199 

ZnP 2.15E-04 1.8629 0.2447 19.3548 3.2665 -6.47E+05 -4.42E+04 13.4397 

Nickel 1.23E-04 0.9157 0.0746 6.8409 0.7157 -4.41E+04 -1.05E+05 9.5801 
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Table 89: Statistical parameters of original signal at 1500 rpm 

 

From tables, it is clear that not even a single statistical parameter has shown any trend 

in relevance to variation in wear resistance. Therefore, to explore the signal in detail, it 

has been decomposed into six levels using VMD technique and same statistical values 

have been calculated again for all six parts of the signal at all speeds. The results of the 

responded IMFs at different speeds are presented further. 

Table 90: Statistical parameters of IMF 4 at 300 rpm 

 

After decomposing the signals into six modes and calculating specified statistical 

parameters at all speeds, it has been observed that at 300 rpm in IMF 4, RMS, Variance, 

Shannon entropy and log energy have shown downfall trend consistently with the 

increase in wear resistance. It reflects that amplitude, dispersion, randomness and 

intensity of the vibration signal have been reduced with the decrease in wear rate. In 

order to quantify these variations, chain indexing has been done as mentioned in  Table 

91.  

 

 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 9.94E-04 4.4616 0.01805 3.5697 19.7851 -4.84E+06 1.06E+05 6.8683 

Silver 9.69E-04 2.7802 -0.0217 8.4974 7.5544 -1.63E+06 2.14E+04 10.1144 

Copper 3.78E-04 1.9869 0.01334 3.4405 3.6854 -5.45E+05 3.57E+03 5.9435 

ZnP 2.15E-04 1.9887 0.04688 13.8614 3.7372 -7.08E+05 -2.39E+04 12.2109 

Nickel 1.23E-04 1.7111 0.00682 7.3778 2.7967 -4.00E+05 -2.98E+04 12.9098 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 
9.94E-04 0.1819 -0.0019 3.4225 0.0331 5.51E+03 -3.06E+05 4.9911 

Silver 9.69E-04 0.1466 0.0008 14.6782 0.0215 3.20E+03 -3.62E+05 10.6533 

Copper 3.78E-04 0.0859 -0.0082 4.2707 0.0074 1.91E+03 -4.03E+05 7.1574 

ZnP 2.15E-04 0.0764 -0.0022 11.8841 0.0058 1.44E+03 -4.36E+05 11.6646 

Nickel 1.23E-04 0.0399 -0.005 9.6108 0.0016 5.29E+02 -5.21E+05 11.5277 
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Table 91: Responded statistical parameters at 300 RPM in IMF 4 with its chain index 

 

According to chain indexing, it can be stated that for the wear rate variation of 87.62% 

(black oxide to nickel coating), average amplitude, dispersion, uncertainty, and 

logarithm of the energy in the data have been reduced by 29.91%, 48.66%, 42.54% and 

14.38% respectively. Therefore, Variance found to be most responsive parameter to the 

change in wear rate at 300 rpm based on the magnitude of chain indexing. 

 Table 92: Statistical parameters of IMF 3 at 600 rpm 

 

At 600 rpm in IMF 3, again randomness level has shown considerable response with 

the rise in wear rate as shown in Table 92 . Like 300 rpm, Shannon entropy has 

decreased consistently at 600 rpm also. To evaluate the percentage variation, chain 

indexing has been carried out as shown in Table 93. Based on the chain index, Shannon 

entropy has shown a strong reaction towards variation in wear rate. Initially for the wear 

rate decrement of 2.51% (black oxide to silver), Shannon entropy has shown downfall 

of 166.99%. Later, for the decrease of 61% in wear rate (silver to copper), randomness 

level has shown fall of 26.18%, which is comparatively less than last case.  

Coating Wear rate RMS  
Chain 

index 
Variance 

Chain 

index 

Shannon 

entropy 

Chain 

index 

Log  

Energy 

Chain 

index 

Black 

Oxide 
9.94E-04 0.1819   0.0331   5.51E+03 

 
-3.06E+05 

 

Silver 9.69E-04 0.1466 -19.40 0.0215 -35.04 3.20E+03 -41.96 -3.62E+05 18.52 

Copper 3.78E-04 0.0859 -41.40 0.0074 -65.58 1.91E+03 -40.37 -4.03E+05 11.29 

ZnP 2.15E-04 0.0764 -11.05 0.0058 -21.62 1.44E+03 -24.69 -4.36E+05 8.28 

Nickel 1.23E-04 0.0399 -47.77 0.0016 -72.41 5.29E+02 -63.12 -5.21E+05 19.42 

Average chain index -29.91 -- -48.66 -- -42.54 -- 14.38 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 
9.94E-04 0.3531 0.003 3.3901 0.1247 

-1.03E+04 
-2.18E+05 4.6307 

Silver 9.69E-04 0.7028 0.0062 14.6203 0.494 -2.75E+04 -1.72E+05 10.8552 

Copper 3.78E-04 0.5875 -0.0075 4.4207 0.3452 -3.47E+04 -1.60E+05 7.1354 

ZnP 2.15E-04 0.8865 -0.0002 7.3241 0.7859 -4.72E+04 -1.21E+05 8.4017 

Nickel 1.23E-04 0.0912 -0.0034 10.6744 0.0083 -5.85E+04 -4.20E+05 14.4297 
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Table 93: Responded statistical parameter at 600 RPM in IMF 3 with its chain index 

 

 

 

 

 

Further, there is significant downfall of 36.02% in orderliness has been registered for 

the 43% reduction in wear rate (Copper to zinc phosphate). Lastly, Shannon entropy 

has again shown downward trend with reduction of 103.91% for 23.94% decrement in 

wear rate (zinc phosphate to nickel). Overall, for the wear rate variation of 87.62% 

(black oxide to nickel), randomness level has shown fall of 63.28%. Therefore at 600 

rpm, it is to be noted that only Shannon entropy has shown a considerable and consistent 

downfall trend towards the decrement in wear rate, i.e., increase in wear resistance.  It 

depicts that smoother the surface, lesser will be the wear, which further reflected with 

reduction in randomness of the vibration signal.  

Next at 900 rpm, none of the statistical parameter has shown any response to the 

variation in wear resistance. For exploration, the signal has been decomposed with 

specified techniques, EMD, WPT and VMD. Each part of the signal has been analyzed 

individually using statistical parameters but no considerable trend has been obtained. 

The reason behind the same could be the overlapping of the frequency bands 

corresponding to wear rate with other dominant frequencies present in the signal. There 

might be other relevant techniques available to extract those frequency bands at 900 

rpm which could be beyond the scope of this research work. 

 

 

 

Coating Wear rate  
Shannon 

entropy 

 Chain 

index 

Black 

Oxide 
9.94E-04 

-1.03E+04 
  

Silver 9.69E-04 -2.75E+04 166.99 

Copper 3.78E-04 -3.47E+04 26.18 

ZnP 2.15E-04 -4.72E+04 36.02 

Nickel 1.23E-04 -5.85E+04 23.94 

Average chain index 63.28 
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Table 94: Statistical parameters of IMF 4 at 1200 rpm 

 

Further at 1200 rpm in IMF 4, consistent downward trend has been depicted by the log 

energy as shown in Table 94. No other parameter has shown any trend in reference to 

variation in wear rate at the given speed. In terms of the percentage variation using 

chain index, results are presented in Table 95. 

 

Table 95: Responded statistical parameter at 1200 RPM in IMF 4 with its chain index 

 

 

 

 

 

As per the results, significantly high downfall of 1760.53% in log energy has been noted 

corresponding to the wear rate decrement of 2.51% (black oxide to silver). Followed 

by decrease in log energy by 35.66% for the wear rate reduction of 61% (silver to 

copper). The log energy continued to decrease by 141.82% for further drop-in wear rate 

by 43% (copper to zinc phosphate). Lastly, for the decrease in wear rate by 3.52% (zinc 

phosphate to nickel), intensity of the vibration signal i.e., log energy continued to 

dipped by 3.86%. Overall, for the wear rate fall of 87.62% (black oxide to nickel), log 

of the energy has fallen by 485.47% as per the average chain indexing at 1200 rpm in 

IMF 4.  

 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 
9.94E-04 1.9789 0.0021 3.1926 3.9162 -5.34E+05 3.80E+03 4.5121 

Silver 9.69E-04 1.1980 0.0037 3.5782 1.4353 -1.08E+05 -6.31E+04 5.1592 

Copper 3.78E-04 2.0225 -0.0004 3.8556 4.0906 -6.00E+05 -8.56E+04 4.6410 

ZnP 2.15E-04 2.3140 0.0002 3.3702 5.3530 -8.50E+05 -2.07E+05 4.5203 

Nickel 1.23E-04 0.5238 0.1122 11.8411 0.2744 -4.12E+03 -2.15E+05 11.5845 

Coating 
Wear 

rate  

Log 

energy 

 Chain 

index 

Black 

Oxide 
9.94E-04 3.80E+03   

Silver 9.69E-04 -6.31E+04 1760.53 

Copper 3.78E-04 -8.56E+04 35.66 

ZnP 2.15E-04 -2.07E+05 141.82 

Nickel 1.23E-04 -2.15E+05 3.86 

Average chain index 485.47 
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 Table 96: Statistical parameters of IMF 1 at 1500 rpm 

 

At 1500 rpm in IMF 1, only log energy has shown consistent rising trend against the 

variation in wear rate as shown in Table 96. To know about the percentage variation 

with the change in wear behavior of coating, chain indexing has been calculated as 

shown in Table 97. 

 

Table 97: Responded statistical parameter at 1500 RPM in IMF 1 with its chain index 

 

 

 

 

 

Initially for the wear rate variation of 2.51% (black oxide to silver), significantly high 

increase of 3972.15% has been noted in the logarithmic of the signal’s energy. Later, 

when bearing coating got changed from silver to copper (61% fall in wear rate), signal’s 

intensity increased by 40.69%. Next, for the coating variation from copper to zinc 

phosphate (wear rate decrement of 43%), magnitude of the vibration signals depicted 

rise of 18.36%. Lastly, from zinc phosphate to nickel coating (wear rate decrease of 

42.79%), log of the energy has shown rise of 1.71%. Overall, for the wear rate fall of 

87.62% (black oxide to nickel), log of the energy has risen by 1008.23% as per the 

average chain indexing at 1500 rpm in IMF 1. 

Coating 
Wear 

rate  
RMS  Skewness Kurtosis Variance Shannon 

Entropy 

Log 

 Energy 

Crest 

Factor 

Black 

Oxide 
9.94E-04 1.9 -0.0001 3.3097 3.61 -4.76E+05 -2.57E+03 4.7725 

Silver 9.69E-04 0.9778 -0.0001 7.3501 0.956 -6.69E+04 -1.05E+05 8.4322 

Copper 3.78E-04 0.6199 0.0007 4.015 0.3843 2.97E+03 -1.47E+05 7.1016 

ZnP 2.15E-04 0.5076 -0.0015 4.3418 0.2577 8.15E+03 -1.74E+05 9.0807 

Nickel 1.23E-04 0.7083 0.0013 15.4231 0.5017 -3.04E+04 -1.77E+05 12.0114 

Coating 
Wear 

rate  

Log 

energy 

 Chain 

index 

Black 

Oxide 
9.94E-04 -2.57E+03   

Silver 9.69E-04 -1.05E+05 3972.15 

Copper 3.78E-04 -1.47E+05 40.69 

ZnP 2.15E-04 -1.74E+05 18.36 

Nickel 1.23E-04 -1.77E+05 1.71 

Average chain index 1008.23 
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Table 98: Responded IMF level, frequency bands, statistical parameters along with average 

chain index at all speeds 

S. 

No 

RPM  IMF level 

shown 

response 

Approximate 

Frequencies 

Band (Hz) 

Responding statistical 

parameters (SPs) 

Average chain 

index value of SPs 

1 300 4 879 - 1360 RMS, Variance, SE & 

log energy 

-29.91, -48.66, -

42.54, 14.38 

2 600 3 1540 - 2210 SE 63.28 

3 900 -- -- None NA 

4 1200 4 1430 - 1870 Log energy 485.47 

5 1500 1 4800 - 5520 Log energy 1008.23 

 

Referring to Table 98, it is noted that at low rpm, variation in wear resistance is 

highlighted by low frequency events by getting response in IMF 4. With the increase in 

speed up to 600 rpm, responsive frequency bands shifted to higher side i.e., IMF 3. 

Further, there was no response obtained at 900 rpm. After reaching 1200 rpm, again 

response is achieved in IMF 4 but in lower frequency band as compared to 600 rpm. 

However, at 1500 rpm, frequency band responsive to variation in wear resistance has 

been noted in IMF 1, a higher frequency zone. Unlike, in case of other properties, there 

is no consistent trend in responsive frequency bands with the increase in speed.  

 

6.4.5 Study of variation in statistical parameters in reference to self-lubricating 

level 

As already discussed earlier, that there is inverse relationship exists between wear rate 

and self-lubricating level. So, based on the reading obtained from wear analysis, 

different bearing coatings can be arranged in ascending order of self-lubricating level 

by arranging the coating with highest wear rate first as shown in Table 99.  

Table 99: Different bearing coating arranged in ascending order of self-lubricating level 

 

 

 

Coating Wear rate  

Black Oxide 9.94E-04 

Silver 9.69E-04 

Copper 3.78E-04 

ZnP 2.15E-04 

Nickel 1.23E-04 
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However, the same approach of arranging coatings as per descending order of wear rate 

has been followed while analyzing wear resistance of the coating. Therefore, results 

obtained through statistical analysis of vibration signal in the case of wear resistance 

are going to be same in the given case of self-lubricating level. Hence, findings of 

Section 6.4.5 can be referred as it is, to obtain a correlation between self-lubricating 

level of coating with a suitable statistical parameter of vibration signal at different 

speeds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 

 

7. Summary and Conclusions. 

The goal of this research is to characterize and correlate the material properties of five 

different bearing coatings with respect to vibration characteristics. These properties 

included surface roughness, hardness, grain size, and wear resistance. Five different 

bearing coatings taken up in this work are: Nickel, Silver, Copper, Zinc Phosphate and 

Black oxide. Different coated bearings were tested at five different speeds, i.e., 300, 

600, 900, 1200 and 1500 rpm and the resulting vibration signals were recorded. VMD 

was then used to break down the recorded signals into IMFs, each of which 

comprised of narrow frequency bands generated around a significant central frequency. 

After doing statistical analysis on the raw signal and the decomposed signal, the 

following conclusions can be drawn property wise, starting with surface roughness: 

• Initially, simple statistical analysis of acquired vibration signals is carried out and 

no correlation with different levels of surface roughness was found at all the RPMs. 

With an exception at 1500 rpm, where RMS and Shannon entropy have shown 

considerable trend with average chain index of 29.11 and 98.35 respectively. It is 

to be noted that only at 1500 pm, effect of variation in surface roughness of mating 

surfaces can be analyzed by calculating RMS and SE of acquired raw vibration 

signal.  Further, to analyze the signal more precisely and to get response at other 

speeds, raw signal has been decomposed into six modes using VMD and findings 

are discussed further after statistical analysis of all modes at different speeds.  

• At 300 rpm, statistical parameters have been calculated for all the frequency bands 

(IMFs) using VMD but none of the statistical parameter has shown any correlation 

with different levels of Ra. The surface characteristics generated at low rolling speed 

were either very weak or the frequency band in which characteristics were coming 

may have overlapped with the fundamental frequencies.   

• In the case of 600 RPM, statistical parameters RMS, Variance and Shannon entropy 

for IMF 6 decomposition level have shown inconsistent rising trend with increase 

in Ra. In some of the cases, the variation in the statistical parameters was even less 

than 2%. Therefore, none of statistical parameters can be relied on for analyzing the 

different levels of surface roughness at 600 RPM.  
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• The consistent rising trend of statistical parameters RMS, Variance and Shannon 

entropy for IMF 4 decomposition level is observed at 900 rpm with increase in Ra. 

However, randomness has shown better sensitivity to the Ra variation as minimum 

variation of nearly 103% and overall average of 458.18% in chain indexing.  

• Variation in randomness is again found to be suitable parameter for depicting the 

different levels of Ra at 1200 RPM and 1500 RPM in IMF 2. The same rising trend 

in randomness was observed with increase in Ra. However, other parameters RMS 

and Variance have shown very less variation in differentiating Ra levels from 0.52 

to 0.7 at 1200 RPM and opposite trend at 1500 RPM at same levels. Shannon 

entropy found to be an optimal parameter to detect variation in surface roughness 

level of the bearing surface in IMF 4 at 900 rpm and in IMF 2 at 1200 and 1500 

rpm based on statistical analysis of vibration signal using VMD. Therefore, for a 

bearing running between 900 to 1500 RPM, it is possible to estimate its surface 

roughness level through vibration signature analysis.  

 

Next, in case of hardness, it can be concluded that for thin coatings, it is challenging to 

identify different level of surface hardness through statistical analysis of vibration 

signal. No significant patterns have been observed in any of the statistical parameters 

related to hardness following the completion of statistical analysis on both the original 

and decomposed signals. The reason behind the same could be inability of EMD, VMD 

and WPT techniques to extract the specific frequency bands responsive to hardness of 

the material. Therefore, there is possibility of getting results in response to hardness 

also with another way to be explored yet.  

Further, in case of grain size, the following inferences can be drawn after statistical 

analysis of the vibration signal: 

• Initially, simple statistical analysis of acquired vibration signals is carried out and 

no correlation with different grain size has been found at all the RPMs. 

• At 300 rpm, statistical parameters are calculated for all the frequency bands (IMFs) 

generated through VMD, RMS and Variance have shown considerable correlation 

with the variation in grain size in IMF 3. Additionally, RMS, Variance, Shannon 
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entropy and log energy depicted significant response to grain size variation. 

However, in IMF 3, Variance found to be more sensitive with average chain index 

value of 234.96 in comparison to 66.91 of RMS. Similarly in IMF 4, again variance 

found to be leading parameter among all four responsive parameters with average 

chain index value of 133.64.  

• In the case of 600 RPM, statistical parameters RMS for IMF 6 decomposition level 

have shown inconsistent rising trend with increase in grain size. In some of the 

cases, the variation in the statistical parameters is even less than 1%. Therefore, 

none of statistical parameters can be relied on for analyzing the different grain size 

at 600 RPM.  

• The inconsistent trend of statistical parameters RMS and variance continued at 900 

rpm also as found in IMF 4 decomposition level with increase in grain diameter. 

However, both parameters have shown continuous rise from grain diameter of 22.42 

nm (nickel) to 26.8 nm (silver) followed by sharp decline of 52.49% and 77.44% in 

both parameters. Therefore, none of statistical parameters can be relied on for 

analyzing the different grain size at 900 RPM also. 

• High fluctuations in the values of responded statistical parameters RMS and 

Shannon entropy has been noted again at 1200 rpm also for depicting the different 

levels of grain size. After considerable rise of 130.67% and 60315.71% for the grain 

diameter variation of 22.42 nm (Nickel) to 24.16 nm (ZnP). Both parameters 

declined by 1.22% and 24.86% corresponding to grain size change of 24.16 nm 

(ZnP) to 24.92 nm (Copper). Further, significant rising trend found to be continued 

in both parameters while grain size changing from 24.92 nm (Copper) to 78.48 nm 

(Black oxide). Due to this inconsistent behavior in variations of statistical 

parameters, it is not advisable to rely on any parameter for analyzing the different 

grain size at 1200 RPM too. 

• Variation in RMS was again found to be suitable parameter for depicting the 

different grain sizes at 1500 RPM. The same rising trend in RMS has been observed 

with increase in grain diameter. However, RMS has shown very less variation in 

differentiating grain size from 24.16 to 24.92 nm.  Then up to grain size of 78.48 

nm, a significant rise in RMS has been noted. Overall, RMS have depicted rise of 

51.22 % based on average chain index from 22.42 nm (Nickel) to 78.8 nm (Black 
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Oxide). Therefore, Variance of IMF 3 found to be most optimal parameter to 

monitor the level of grain size of bearing surface running at 300 rpm. However, 

RMS in IMF 2 found to be most reliable parameter at 1500 rpm in relevance to 

grain size variation. Hence, grain size estimation of bearing surface is possible by 

analyzing its vibration signal.  

Next, in case of wear resistance property of bearing coating, the following conclusions 

can be made after carrying out statistical analysis of the acquired vibration signatures: 

• On similar note, after carrying out simple statistical analysis of acquired vibration 

signals, no correlation with different levels of wear resistance has been found at all 

the RPMs. 

• At 300 rpm, statistical parameters have been calculated for all the frequency bands 

(IMFs) generated through VMD. RMS, Variance, Shannon entropy (SE) and log 

energy (LE) have shown considerable correlation with the variation in wear 

resistance in IMF 4. However, RMS, Variance and SE showed continuous 

decrement with the increase in wear resistance. Contrary, log energy depicted 

consistent rise at each level with the increase in wear resistance.  Among decrement 

parameters, Variance found to be more sensitive with average chain index value of 

48.66 in comparison to 42.54 of SE and 29.92 of RMS. On the other hand, 

increment parameter, log energy has shown average chain index value of 14.38.  

• In the case of 600 RPM, statistical parameter SE for IMF 3 decomposition level 

have shown consistent fall with the rise in wear resistance. Therefore, SE with 

average chain index value of 63.28 can be relied on for analyzing the different levels 

of wear resistance at 600 RPM.  

• At 900 rpm, no trend has been found in any of the statistical parameter with simple 

statistical analysis towards the change in wear resistance.  

 

• The consistent fall in one of the statistical parameters, Log energy has been noted 

at 1200 rpm in IMF 4 decomposition level with increase in wear resistance. 

However, rate of fall is not uniform throughout. Initially, for the wear rate change 

of 2.51% (Black oxide to silver), log energy value has decreased sharply by 

1760.53%. On the other hand, corresponding to wear rate variation of 61% (Silver 
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to copper), log energy has only fallen by 35.66% comparatively. Overall, LE with 

average chain index decrement value of 485.47 can be relied on for analyzing the 

different levels of wear resistance at 1200 RPM. 

• Rise in the values of responded statistical parameter, log energy has been noted at 

1500 rpm in IMF 1 in relevance to the different levels of wear resistance. However, 

percentage variation in rising trend is highly fluctuating. In response to change in 

wear rate by 2.51% (Black oxide to silver), huge rise of 3972.15% has been noted 

in log energy based on chain index value. Contrary, for the wear rate variation of 

42.79% (ZnP to nickel), only 1.71% of rise has been observed in log energy as per 

chain indexing. Overall, log energy could be suggested as relatable parameter to 

variations in wear resistance at 1500 rpm with exceptionally high average chain 

index value of 1008.23. Therefore, it can be concluded that at 300 and 600 rpm, 

wear resistance variation is linked with Shannon entropy in IMF 4 and IMF 3 

respectively. However, at 1200 and 1500 rpm, log energy found to be optimal 

responded parameter linked with wear resistance level in IMF 4 and IMF 1 

respectively generated by VMD applied on acquired vibration signal of coated 

bearing. Hence, it is feasible to approximate the wear resistance level of bearing in 

running condition by analyzing its vibration signal, without the need of dismantling 

to evaluate its surface properties.  

 

Lastly, in case of self-lubricating property of bearing coating, the conclusions obtained 

in case of wear resistance analysis are equally valid as the order of coatings are same 

in both cases.  

 

Hence, it is feasible to monitor the deterioration of bearing surface in running condition 

based on statistical analysis of its vibration signature. As continuous degradation of the 

surface may lead to formation of any geometric discontinuity like pits, cracks, erosion 

etc. Therefore, this research work can help in predicting the remaining useful life of 

bearing precisely by detecting the fault at very incipient stage, thus useful in industry 

also to avoid unplanned downtime.  

 

 



137 

 

Future Scope 

Though this research work is limited to bearing applications with few coatings. The 

same approach can also be utilized to determine deterioration of mating surfaces in 

other running components like gears, pulleys, or shafts. Therefore, life of the critical 

components of a machine can also be accurately predicted based on the statistical 

analysis of their vibration signature. 
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Appendix  

 

Statistical parameters of non-responsive decomposed levels at 600 rpm  

 

Table A1: Statistical parameters of IMF 1 at 600 rpm 

 

 

Table A2: Statistical parameters of IMF 2 at 600 rpm 

 

 

Table A3: Statistical parameters of IMF 3 at 600 rpm 

 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.0572 -0.0030 16.7910 0.0033 9.1660E+02 -4.7358E+05 17.4657 

Copper 0.52 0.6907 -0.0010 16.3892 0.4770 -2.3808E+04 -1.6267E+05 14.5551 

ZnP 0.7 0.4895 -0.0011 23.8247 0.2396 -9.1546E+03 -2.3932E+05 14.1663 

Silver 2.65 0.5635 -0.0031 63.7300 0.3175 -3.0721E+04 -2.4359E+05 21.6952 

Black 

Oxide 

3.22 0.3346 -0.0008 3.1906 0.1119 1.0248E+04 -2.2318E+05 5.2739 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.0692 0.0010 16.1920 0.0048 1.1904E+03 -4.5757E+05 15.2598 

Copper 0.52 0.6793 -0.0015 5.3210 0.4615 -6.2368E+03 -1.4467E+05 6.8680 

ZnP 0.7 0.3696 0.0018 8.9878 0.1366 6.2314E+03 -2.3825E+05 10.3832 

Silver 2.65 0.8240 -0.0084 13.7681 0.6790 -5.4443E+04 -1.5870E+05 9.7533 

Black 

Oxide 

3.22 0.2952 0.0004 3.1938 0.0871 9.3610E+03 -2.3978E+05 4.5429 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

Entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.0912 -0.0034 10.6744 0.0083 1.8468E+03 -4.1990E+05 14.4297 

Copper 0.52 0.5875 -0.0075 4.4207 0.3452 3.4689E+03 -1.5995E+05 7.1354 

ZnP 0.7 0.8865 -0.0002 7.3241 0.7859 -4.7177E+04 -1.2063E+05 8.4017 

Silver 2.65 0.7028 0.0062 14.6203 0.4940 -2.7488E+04 -1.7243E+05 10.8552 

Black 

Oxide 

3.22 0.3531 0.0030 3.3901 0.1247 1.0308E+04 -2.1836E+05 4.6307 
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Table A4: Statistical parameters of IMF 4 at 600 rpm 

 

 Table A5: Statistical parameters of IMF 5 at 600 rpm 

 

Statistical parameters of non-responsive decomposed levels at 900 rpm 

Table A6: Statistical parameters of IMF 1 at 900 rpm 

 

 Table A7: Statistical parameters of IMF 2 at 900 rpm 

 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.1072 0.0047 6.7441 0.0115 2.4669E+03 -3.8915E+05 9.4908 

Copper 0.52 0.2850 -0.0051 3.9663 0.0812 8.4945E+03 -2.5133E+05 5.8306 

ZnP 0.7 0.8598 -0.0017 5.8483 0.7393 -3.4287E+04 -1.1772E+05 7.8138 

Silver 2.65 0.5749 -0.0032 5.7985 0.3305 1.0091E+03 -1.7165E+05 7.7872 

Black 

Oxide 

3.22 0.6349 0.0008 3.4052 0.4031 2.5629E+03 -1.4573E+05 4.8794 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.1282 -0.0173 3.7566 0.0164 3.4173E+03 -3.5394E+05 5.4057 

Copper 0.52 0.3645 -0.0092 3.7827 0.1329 1.0001E+04 -2.1739E+05 6.1077 

ZnP 0.7 0.5028 -0.0093 5.3590 0.2528 5.7325E+03 -1.8823E+05 9.0597 

Silver 2.65 0.4098 -0.0065 4.6196 0.1679 8.9103E+03 -2.0939E+05 6.4683 

Black 

Oxide 

3.22 0.6860 -0.0002 3.1002 0.4706 9.0577E+01 -1.3109E+05 4.3666 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.1737 -0.0020 21.5595 0.0302 3.6243E+03 -3.4747E+05 21.4151 

Copper 0.52 1.0936 -0.0036 8.6869 1.1959 -1.0675E+05 -9.3884E+04 10.5799 

ZnP 0.7 0.6500 -0.0022 9.1436 0.4225 -9.7256E+03 -1.5947E+05 9.7280 

Silver 2.65 1.1082 0.0012 22.7812 1.2280 -1.7291E+05 -1.3893E+05 12.2114 

Black 

Oxide 

3.22 0.7747 0.0007 3.1807 0.6001 -9.5547E+03 -1.1535E+05 4.2343 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.1692 0.0015 18.1231 0.0286 3.5166E+03 -3.5408E+05 16.5515 

Copper 0.52 0.2772 0.0040 3.5065 0.0768 8.6090E+03 -2.5158E+05 7.2891 

ZnP 0.7 0.6702 0.0013 3.2507 0.4492 9.7675E+02 -1.3453E+05 5.8372 

Silver 2.65 0.7767 0.0028 4.7991 0.6033 -1.7476E+04 -1.2654E+05 6.4016 

Black 

Oxide 

3.22 1.2654 0.0019 21.7436 1.6013 -2.4901E+05 -1.1563E+05 13.1383 
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Table A8: Statistical parameters of IMF 3 at 900 rpm 

 

 

Table A9: Statistical parameters of IMF 5 at 900 rpm 

 

Table A10: Statistical parameters of IMF 6 at 900 rpm 

 

Statistical parameters of non-responsive decomposed levels at 1200 rpm 

Table A11: Statistical parameters of IMF 1 at 1200 rpm 

 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.2184 0.0042 9.0939 0.0477 5.2933E+03 -3.0890E+05 9.6058 

Copper 0.52 1.3851 -0.0011 3.5264 1.9184 -1.8000E+05 -4.6136E+04 4.7980 

ZnP 0.7 1.2262 -0.0002 3.9545 1.5036 -1.2099E+05 -6.2420E+04 6.2884 

Silver 2.65 1.6126 0.0061 6.2299 2.6005 -3.4241E+05 -4.0969E+04 6.3868 

Black 

Oxide 

3.22 0.7661 0.0012 3.2004 0.5868 -8.7646E+03 -1.1850E+05 4.8477 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.3370 0.1015 5.9586 0.1136 8.7615E+03 -2.3380E+05 12.3622 

Copper 0.52 0.6706 -0.0264 3.6641 0.4498 -1.1448E+03 -1.3942E+05 5.2673 

ZnP 0.7 1.1693 -0.0070 3.4682 1.3673 -9.7949E+04 -6.4930E+04 4.4124 

Silver 2.65 1.1386 -0.0061 7.0670 1.2963 -1.2383E+05 -9.5551E+04 6.9403 

Black 

Oxide 

3.22 1.0889 0.0049 3.0211 1.1856 -6.8900E+04 -7.1154E+04 3.9696 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.4166 1.5007 13.0792 0.0409 1.3984E+04 -1.5236E+05 7.9615 

Copper 0.52 0.3911 0.1627 6.6078 0.0184 1.6210E+04 -1.3994E+05 5.3252 

ZnP 0.7 0.5358 -0.0536 3.2425 0.0254 1.9874E+04 -9.3626E+04 2.4888 

Silver 2.65 0.5089 -0.0966 4.6351 0.0649 1.5848E+04 -1.2693E+05 4.1106 

Black 

Oxide 

3.22 0.4198 0.0147 3.1518 0.0471 1.4769E+04 -1.5891E+05 4.3824 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.4330 0.0057 12.4155 0.1875 1.2889E+03 -2.3882E+05 10.5572 

Copper 0.52 1.7748 0.0085 9.7998 3.1500 -4.8774E+05 -3.4239E+04 11.0052 

ZnP 0.7 0.8520 -0.0004 4.2549 0.7259 -2.6508E+04 -1.1140E+05 6.4216 

Silver 2.65 0.9839 -0.0003 4.9368 0.9681 -5.7031E+04 -9.5149E+04 7.9734 

Black 

Oxide 

3.22 1.2065 0.0005 3.0620 1.4556 -1.0370E+05 -5.7202E+04 4.4453 
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 Table A12: Statistical parameters of IMF 3 at 1200 rpm 

 

 

Table A13: Statistical parameters of IMF 4 at 1200 rpm 

 

 

 Table A14: Statistical parameters of IMF 5 at 1200 rpm 

 

 

 Table A15: Statistical parameters of IMF 6 at 1200 rpm 

 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.5381 0.0300 9.0811 0.2896 -1.2651E+03 -1.9667E+05 10.3904 

Copper 0.52 2.4898 -0.0008 3.6409 6.1994 -1.0482E+06 3.0774E+04 5.5239 

ZnP 0.7 1.3905 -0.0002 4.0756 1.9329 -1.9191E+05 -4.9780E+04 6.0418 

Silver 2.65 1.8589 0.0034 3.7271 3.4557 -4.5936E+05 -7.9692E+03 5.0248 

Black 

Oxide 

3.22 1.3036 0.0004 3.2562 1.6994 -1.4101E+05 -4.9610E+04 5.1265 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.5238 0.1122 11.8411 0.2744 -4.1184E+03 -2.1505E+05 11.5845 

Copper 0.52 2.0225 -0.0004 3.8556 4.0906 -5.9990E+05 -2.5561E+03 4.6410 

ZnP 0.7 2.3140 0.0002 3.3702 5.3530 -8.4965E+05 2.0682E+04 4.5203 

Silver 2.65 1.1980 0.0037 3.5782 1.4353 -1.0797E+05 -6.3103E+04 5.1592 

Black 

Oxide 

3.22 1.9789 0.0021 3.1926 3.9162 -5.3390E+05 3.8002E+03 4.5121 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.8150 0.3335 11.2156 0.6642 -4.5793E+04 -1.5351E+05 11.5691 

Copper 0.52 0.9525 -0.0358 3.5899 0.9072 -4.2671E+04 -9.5141E+04 5.1184 

ZnP 0.7 2.1308 -0.0015 3.8945 4.5329 -6.9552E+05 4.2795E+03 4.5484 

Silver 2.65 1.2332 0.0009 4.0125 1.5207 -1.2510E+05 -6.2066E+04 5.3837 

Black 

Oxide 

3.22 1.3277 -0.0028 3.0424 1.7628 -1.4683E+05 -4.5002E+04 5.1329 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.8575 2.4291 14.1941 0.6271 -6.3952E+04 -1.5579E+05 11.9742 

Copper 0.52 0.4878 -0.0612 3.3297 0.0618 1.5625E+04 -1.3681E+05 3.7485 

ZnP 0.7 1.7499 -0.0087 3.3997 3.0399 -3.7583E+05 -1.5434E+04 5.2416 

Silver 2.65 0.5027 0.1068 4.4110 0.0580 1.6026E+04 -1.2934E+05 6.6959 

Black 

Oxide 

3.22 0.4698 -0.1220 3.1138 0.0957 1.3625E+04 -1.5993E+05 4.4289 
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Statistical parameters of non-responsive decomposed levels at 1500 rpm 

 Table A16: Statistical parameters of IMF 1 at 1500 rpm 

Table A17: Statistical parameters of IMF 3 at 1500 rpm 

 

Table A18: Statistical parameters of IMF 4 at 1500 rpm 

 

Table A19: Statistical parameters of IMF 5 at 1500 rpm 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log 

 Energy 

Crest 

Factor 

Nickel 0.29 0.7083 0.0013 15.4231 0.5017 -3.0447E+04 -1.7743E+05 12.0114 

Copper 0.52 0.6199 0.0007 4.0150 0.3843 2.9707E+03 -1.4736E+05 7.1016 

ZnP 0.7 0.5076 -0.0015 4.3418 0.2577 8.1509E+03 -1.7443E+05 9.0807 

Silver 2.65 0.9778 -0.0001 7.3501 0.9560 -6.6939E+04 -1.0474E+05 8.4322 

Black 

Oxide 

3.22 1.9000 -0.0001 3.3097 3.6100 -4.7648E+05 -2.5721E+03 4.7725 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.8077 0.0022 5.7350 0.6524 -2.7283E+04 -1.3097E+05 7.7781 

Copper 0.52 0.7612 0.0008 3.6447 0.5795 -1.0536E+04 -1.2280E+05 5.3458 

ZnP 0.7 1.0191 0.0000 15.6397 1.0387 -1.1810E+05 -1.3489E+05 12.5102 

Silver 2.65 1.4462 0.0003 8.5996 2.0916 -2.8401E+05 -7.8651E+04 8.6056 

Black 

Oxide 

3.22 2.3186 0.0008 3.6212 5.3759 -8.5431E+05 2.2130E+04 7.2312 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.6756 0.0000 10.3079 0.4565 -1.8855E+04 -1.7602E+05 9.5747 

Copper 0.52 0.5902 -0.0203 4.3166 0.3484 4.2419E+03 -1.5602E+05 9.7947 

ZnP 0.7 0.5209 -0.0035 6.2872 0.2713 4.0937E+03 -1.8157E+05 8.2720 

Silver 2.65 0.7315 0.0003 8.4006 0.5350 -2.0947E+04 -1.4811E+05 10.8105 

Black 

Oxide 

3.22 1.8171 0.0089 3.3125 3.3018 -4.1854E+05 -8.9574E+03 4.6152 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.7406 0.0275 3.7096 0.5485 -8.5981E+03 -1.2752E+05 5.7351 

Copper 0.52 0.8921 -0.0096 3.9992 0.7958 -3.3231E+04 -1.0578E+05 5.5059 

ZnP 0.7 0.7283 0.0037 3.6869 0.5305 -7.2233E+03 -1.3032E+05 5.0813 

Silver 2.65 1.1487 -0.0027 4.2314 1.3196 -1.0252E+05 -7.8504E+04 5.2013 

Black 

Oxide 

3.22 1.4557 -0.0056 3.0946 2.1176 -2.0159E+05 -3.3216E+04 5.5974 
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Table A20: Statistical parameters of IMF 6 at 1500 rpm 

 

Table A21:Frequency bands of responsive IMFs (surface roughness) 

S. No RPM Responsive IMF Approximate Frequencies Band 

(Hz) 

1 300 None None 

2 600 6 0.0058-431 

3 900 4 567-2100 

4 1200 2 2250-4490 

5 1500 2 3010-4590 

 

 

Coating wise information of frequency bands and relative energy  

Table A22: IMF wise frequency band and percentage of relative energy for nickel coated bearing 

at all speeds 

 Speed  600 rpm   900 rpm   1200 rpm 

 

  1500 rpm     

 Modes 

gained 

Frequency Relative  Frequency Relative  Frequency Relative  Frequency Relative    

 by VMD Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)    

 Mode1 4480-5400 2.02  4590-5430 6.78  4510-5390 7.87  4510-5370 16.30    

 Mode2 2930-3760 2.95  3180-4060 6.43  3110-3980 8.33  3010-3760 14.84    

 Mode3 1870-2650 5.12  2280-2960 10.71  2230-2900 12.15  2300-2880 21.20    

 Mode4 904-1540 7.08  1400-2080 10.34  1360-2020 11.51  1390-2030 17.09    

 Mode5 405-870 10.13  579-1070 25.52  607-1130 27.87  584-1140 17.83    

 Mode 6 0.00511-0.0972 71.86  0.00654-226 38.99  0.034-372 30.85  0.00846-325 10.03    

 

 

 

 

 

Coating Ra RMS  Skewness Kurtosis Variance 

Shannon 

entropy 

Log  

Energy 

Crest 

Factor 

Nickel 0.29 0.5556 0.1939 3.2425 0.1262 1.1436E+04 -1.4626E+05 5.8755 

Copper 0.52 0.5550 -0.1102 2.8872 0.0464 1.7960E+04 -1.0249E+05 2.2395 

ZnP 0.7 0.5251 -0.1644 3.1573 0.0594 1.6633E+04 -1.2105E+05 3.1858 

Silver 2.65 0.5553 0.0604 3.5011 0.1423 1.1197E+04 -1.4289E+05 4.2028 

Black 

Oxide 

3.22 0.8736 -0.0182 3.1412 0.7526 -2.3335E+04 -9.9639E+04 4.5335 
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Table A23: IMF wise frequency band and percentage of relative energy for copper coated 

bearing at all speeds 

 Speed    600 rpm    900 rpm   1200 rpm 

 

  1500 rpm     

 Modes 

gained 

Frequency Relative  Frequency Relative  Frequency Relative  Frequency Relative    

 by VMD Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)    

 Mode1 4680-5280 27.71  4530-5410 7.35  4560-5280 20.01  4790-5300 16.24    

 Mode2 1950-2400 26.81  2780-3620 5.46  2270-2830 6.55  3860-4590 9.45    

 Mode3 1510-1910 20.05  1800-2310 11.23  1880-2180 39.38  2130-2560 14.37    

 Mode4 905-1440 4.72  1270-1760 16.05  1450-1830 25.99  1860-2110 34.42    

 Mode5 479-824 7.72  685-1140 25.38  592-1190 5.76  1430-1780 18.28    

 Mode 6 0.00515-

0.0978 

8.93  0.00523-

0.0994 

32.84  0.00675-565 1.51  490-1130 4.62    

 

 

 

 

 

 

 

Table A24: IMF wise frequency band and percentage of relative energy for zinc phosphate 

coated bearing at all speeds 

 Speed 600 rpm   900 rpm   1200 rpm 

 

  1500 rpm     

 Modes 

gained 

Frequency Relative  Frequency Relative  Frequency Relative  Frequency Relative    

 by VMD Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)    

 Mode1 2270-2910 10.12  2310-3030 6.54  3020-3690 4.30  2990-3610 5.68    

 Mode2 1490-1910 5.77  1520-1880 9.34  2250-2740 6.26  2280-2790 4.93    

 Mode3 1210-1420 33.19  1180-1430 23.27  1540-1940 11.45  1710-2000 12.39    

 Mode4 840-1030 31.23  844-1040 33.27  1210-1500 31.70  1390-1660 11.15    

 Mode5 400-710 10.68  576-786 21.16  862-1080 26.88  1140-1380 28.97    

 Mode 6 0.00528-101 7.37  0.00549-290 4.44  604-818 18.13  709-1030 35.68    
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Table A25: IMF wise frequency band and percentage of relative energy for silver coated bearing 

at all speeds 

 Speed  600 rpm         900 rpm     1200 rpm 

 

      1500 rpm     

 Modes gained Frequency Relative  Frequency Relative  Frequency Relative  Frequency Relative    

 by VMD Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)    

 Mode1 2310-2710 14.37  2280-2690 12.53  3080-5000 5.68  1640-2440 3.00    

 Mode2 1590-1770 30.73  1590-1790 31.98  2700-3380 7.56  1420-1640 10.76    

 Mode3 1390-1590 22.35  1410-1590 26.54  2150-2560 26.69  1160-1320 18.32    

 Mode4 892-1200 14.96  1070-1290 12.37  1400-1990 13.21  972-1110 28.41    

 Mode5 452-849 7.60  714-1030 13.23  813-1260 32.52  773-972 21.58    

 Mode 6 0.00524-0.0995 9.39  0.00667-375 2.64  0.00808-353 13.46  226-485 17.78    

 

 

 

 

 

 

Table A26: IMF wise frequency band and percentage of relative energy for black oxide coated 

bearing at all speeds 

 Speed        600 rpm         900 rpm       1200 rpm 

 

      1500 rpm     

 Modes 

gained 

Frequency Relative  Frequency Relative  Frequency Relative  Frequency Relative    

 by VMD Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)  Band (Hz) energy (%)    

 Mode1 4410-5330 8.11  4400-5280 11.58  4940-5560 13.53  4760-5510 15.27    

 Mode2 3160-4000 6.31  3270-4020 8.67  3970-4740 13.50  3690-4510 13.97    

 Mode3 2130-2830 9.03  2320-2990 11.33  2490-3280 15.80  2540-3160 22.75    

 Mode4 1580-2050 29.20  1630-2100 39.86  1700-2240 36.41  1760-2260 33.83    

 Mode5 783-1250 34.09  909-1290 22.88  924-1460 16.39  1050-1600 8.97    

 Mode 6 0.006-431 11.41  0.00682-575 3.40  0.00883-608 2.05  424-1040 3.23    
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