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ABSTRACT 

According to the World Health Organization (WHO) records in USA in the year 

2015, approximately 166039 humans are faced and living with a brain tumor, in 

United Kingdom (UK), brain and other Central Nervous System (CNS) tumors were 

the ninth most common cancer in 2013, with approximately 10,608 people diagnosed. 

In 2012, it was the eighth leading cause of cancer-related deaths, with around 5,200 

fatalities. In 2019, it was estimated that over 28,000 people under the age of 20 in the 

United States were diagnosed with a brain tumor. According to statistics from the 

National Cancer Institute (NCIS), the death rate from brain tumors in the USA 

averages 34 per day, 245 per week, 1,063 per month, and 12,674 per year. 

Brain tumors are a critical health concern, with early detection playing a pivotal role 

in improving patient outcomes. Magnetic Resonance Imaging (MRI) is a widely used 

medical imaging modality for diagnosing brain tumors due to its non-invasive nature 

and high-resolution imaging capabilities. In recent years, deep learning techniques 

have revolutionized medical image analysis, offering enhanced accuracy and 

efficiency in the detection of various diseases, including brain tumors. This abstract 

presents an overview of a deep learning-based approach for the detection of brain 

tumors in MRI images. Our proposed methodology leverages Convolutional Neural 

Networks (CNNs) and advanced neural network architectures to automatically detect 

and classify brain tumors in MRI scans. The process begins with pre-processing 

techniques to enhance image quality and reduce noise, followed by region-of-interest 

extraction to focus on the relevant brain regions. Subsequently, the extracted regions 

are fed into a deep learning model, which learns intricate patterns and features within 

the images to distinguish between tumor and non-tumor regions. 

Computer-vision image-based brain disease detection has gained a lot of attention in 

the past few years and has proved to be a highly successful tool in this field. As an 

emerging technology for recognizing and categorizing various diseases, Digital Image 

Processing successfully tackles the limitations encountered during manual inspection. 

Thanks to AI, particularly for Deep Learning, uses Convolutional Neural Networks to 

learn features directly from the raw data for image recognition and classification 

problems. The main aim of this research is to design an optimized deep convolutional 

neural network for categorizing brain tumor in MRI. The dataset used for training and 
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evaluation comprises a diverse collection of MRI images, including scans from 

different modalities, orientations, and tumor types. We employ data augmentation 

techniques to expand the dataset and improve the model's ability to generalize to 

unseen cases. The performance of our deep learning model is assessed in terms of 

sensitivity, specificity, accuracy. Our results demonstrate the potential of deep 

learning techniques for brain tumor detection in MRI images, showcasing high 

accuracy and sensitivity. The proposed approach exhibits promise for assisting 

radiologists in their clinical decision-making process by providing reliable and timely 

tumor detection, ultimately contributing to improved patient care and outcomes. 

This research contributes to the field of medical image analysis by providing a 

comprehensive overview of deep learning applications in brain tumor detection and 

presenting a practical and accurate framework for clinical implementation. The 

proposed framework has the potential to revolutionize the way brain tumors are 

diagnosed and assist medical professionals in making more informed decisions for 

timely and precise treatment 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Digital Image Processing involves the transformation of an image into a digital 

representation. It encompasses a variety of procedures aimed at improving the image 

and extracting valuable data. The primary goal of this technique is to restore and 

sharpen the image to improve its visualization. It also facilitates pattern measurement 

and enables efficient image retrieval in addition; Digital Image Processing is of great 

significance in a variety of domains including computer science, business, and 

engineering. It belongs to the realm of signal processing, where an input image, 

whether it is a photograph or a video frame, undergoes precise operations to generate 

an output image with specific desired attributes. 

The process of Digital Image Processing commonly revolves around working with 2D 

signals and employing established signal processing techniques to manipulate and 

analyze the images effectively. The chapter provides a historical overview of the 

system for segmenting brain tumors using Digital Image Processing techniques. The 

subsequent section explores the common challenges encountered in Brain Tumor 

Detection. Later in this chapter, the research motivation is discussed, along with 

specific research problems and objectives. A diagram is used to visually represent the 

stages of the research methodology employed. Lastly, the contributions of the thesis, 

as well as the publications and organization of the thesis, are illustrated using a flow 

chart. 

The process of Digital Image Processing encompasses three sequential steps, which 

are as follows: 

➢ Acquire the image by means of digital photography or through an optical 

scanner. 

➢ Perform manipulation and analysis on the image to achieve tasks such as 

image enhancement, pattern recognition, and data compression. 

➢ Lastly, the results are reported, or the modified image is generated based on 

the analysis of the image. 
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1.1.1 Digital Image Processing Categories 

•  Digital Image Processing 

• Analog  Image Processing 

The analog technique, also referred to as the visual technique, is utilized handling 

physical copies, such as prints and photographs, in Digital Image Processing. With 

visualization methods, image analysts store information in several formats. The 

application of Digital Image Processing techniques is not restricted to a specific 

domain but should be studied considering the expertise of the analyst. Moreover, 

association plays a crucial role in Digital Image Processing using analog methods, 

where analysts harness a blend of supplementary data and their own expertise. 

Furthermore, digital image techniques enable the manipulation of digital images by 

leveraging raw data from imaging sensors. These techniques typically involve three 

phases: information extraction to obtain the original information, enhancement and 

display of the image, and pre-processing tasks. 

1.1.2 Digital Image Processing Purposes 

Digital Image Processing serves various purposes across different domains. Some of 

the key purposes of Digital Image Processing are: 

Image Enhancement: Digital Image Processing techniques are employed to improve 

the quality of images by enhancing their visual appearance. This includes adjusting 

brightness, contrast, sharpness, and reducing noise or artifacts present in the image. 

Image Restoration: Image restoration techniques are used to recover or restore 

images that have been degraded or corrupted due to various factors such as noise, 

blur, or compression. These techniques aim to reconstruct the original image as 

accurately as possible. 

Image Compression: Digital Image Processing techniques enable the compression of 

images to reduce their file size while preserving important visual information. 

Compression algorithms remove redundant or irrelevant data to achieve efficient 

storage and transmission of images. 

Image Segmentation: Digital Image Processing algorithms are utilized for 

segmenting or partitioning an image into meaningful regions or objects. This aids in 

object recognition, analysis, and understanding of the image content. 
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Object Detection and Recognition: Digital Image Processing plays a crucial role in 

detecting and recognizing objects within images. This includes tasks such as face 

detection, object tracking, and pattern recognition, which have applications in various 

fields like surveillance, autonomous vehicles, and augmented reality. 

Image Analysis and Measurement: Digital Image Processing techniques are 

employed to extract quantitative information from images, such as measuring 

distances, angles, areas, or counting objects. This enables automated analysis and 

measurements for scientific, medical, and industrial applications. 

Medical Imaging: Digital Image Processing finds extensive application in medical 

imaging for purposes such as improving image quality, segmenting structures of 

interest, and facilitating visualization. It plays a pivotal role in aiding medical 

professionals in tasks such as diagnosis, treatment strategy formulation, and the 

continuous monitoring of a wide range of medical conditions.  

These are just a few examples of the purposes and applications of Digital Image 

Processing, which continue to evolve and find new applications in diverse fields. 

1.1.3 Applications of Digital Image Processing 

Remote sensing: is a field that utilizes sensors to capture images of the Earth's 

surface. These images can be obtained through multi-spectral scanners or remote 

sensing satellites mounted on aircraft. The captured images are then processed during 

transmission to ground stations. This approach involves interpreting the regions and 

objects depicted in the images, and it finds applications in various areas such as 

resource mobilization, agricultural production monitoring, city planning, and flood 

control. Remote sensing enables the collection of valuable data and information about 

the Earth's surface from a distance, providing insights and supporting decision-

making processes in various fields. 

Biomedical Imaging techniques: In this modality, various imaging tools such as MRI 

(Magnetic Resonance Imaging), Ultrasound, CT (Computed Tomography), and X-ray 

are utilized. These imaging techniques serve different purposes and have distinct 

principles of operation: 

Magnetic Resonance Imaging (MRI): MRI, or Magnetic Resonance Imaging, relies 

on the utilization of powerful radio waves and magnetic fields can be used to create 
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incredibly detailed images of inside body systems. This technology proves especially 

valuable when it comes to capturing intricate visuals of soft tissues, including organs, 

muscles, and the brain, offering a level of precision that is often indispensable in 

medical diagnostics and research. MRI is commonly employed for diagnosing 

conditions such as tumors, joint injuries, and neurological disorders. 

Ultrasound: Ultrasound imaging makes use of high-frequency sound waves to 

generate images of internal body structure. It is commonly used in prenatal care to 

monitor fetal development and detect any abnormalities. Additionally, ultrasound is 

used for imaging organs, blood vessels, and soft tissues, and can assist in guiding 

minimally invasive procedures. 

Computed Tomography (CT): CT scans, also known as Computed Tomography 

scans, employ a sequence of X-ray images captured from various angles to produce 

cross-sectional images of the human body. This technique provides detailed 

information about bones, blood vessels, and organs. CT scans are valuable for 

diagnosing conditions like fractures, tumors, and internal bleeding. 

X-ray: X-ray imaging involves using to create images of the bones and tissues, a 

small quantity of ionizing radiation is used. X-rays are frequently used to identify 

lung problems, infections, and fractures. They are widely available, relatively 

inexpensive, and provide quick results. Each of these imaging tools has its strengths 

and limitations, and they are chosen based on the specific requirements of the medical 

situation. By utilizing a combination of these imaging modalities, healthcare 

professionals can obtain a comprehensive understanding of the internal structures and 

conditions of the human body. 

1.1.4 Medical Imaging Applications 

• The biomedical imaging applications are given below: 

Identification of lung disease: This inherent contrast in X-ray images between air-

filled spaces and solid tissues provides valuable information for diagnosing various 

conditions and abnormalities within the body. Radiologists and healthcare 

professionals interpret these differences in density to identify fractures, tumors, 

infections, and other abnormalities that may be present. 

Digital mammograms: Mammography is a frequently employed imaging method for 
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the purpose of detection and diagnosis of breast tumors and other breast 

abnormalities. In the process of analyzing mammograms, various Digital Image 

Processing techniques are employed to enhance the interpretation and extraction of 

relevant information.  

Identification of heart disease: In the field of diagnosing heart diseases, it is crucial 

to analyze and identify specific features such as the shape and size of the heart. These 

diagnostic features play a significant role in categorizing different heart conditions 

and guiding appropriate treatments. To achieve this, image analysis approaches are 

employed to enhance the interpretation and diagnosis of heart-related diseases using 

radiographic images. 

Medical imaging is a powerful technology utilized to obtain valuable insights into 

medical abnormalities. It involves generating visual representations of the body 

tissues or internal organs, which are then used for clinical diagnosis. Digital Image 

Processing is an integral part of the medical system and applications, playing a crucial 

role in the field of medicine from diagnosis to therapy. It exerts a notable influence on 

the operational processes in digital medical diagnostics. Early detection is crucial for 

improving the prognosis and survival rates of brain tumor patients. Identifying tumors 

at an early stage increases the chances of successful treatment and significantly 

improves overall patient outcomes. It enables medical professionals to initiate 

appropriate interventions promptly and develop personalized treatment plans based on 

the specific characteristics of the tumor. 

Advancements in medical imaging technologies, such as MRI and CT scans, have 

greatly enhanced the detection of brain tumors. These imaging techniques provide 

detailed images of the brain, allowing for the identification of tumors at earlier stages, 

which is crucial for effective treatment and better patient outcomes. These imaging 

modalities allow for non-invasive visualization and detailed examination of the brain, 

helping to identify the presence, location, and characteristics of tumors. Early 

detection of tumors enables the timely implementation of appropriate treatment 

strategies, offering a chance to intervene before the disease advances or spreads to 

other parts of the body this can lead to better disease management and improved 

patient outcomes. In summary, the diagnosis of tumors in the early stages is crucial 

for improving survival possibilities and treatment outcomes.  
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Brain tumors occur as the accumulation or abnormal expansion of biological the cells 

in the human brain. These tumors can arise from the division of abnormal cells, which 

separate from the normal brain cells. Over time, these abnormal cells continue to 

develop and increase in size within the rigid skull that surrounds the brain. The 

growth of the tumor mass within the confined space of the skull exerts pressure on the 

brain cells, leading to a range of complex issues and severe pain. As the tumor grows, 

it can interfere with the normal functioning of the brain, disrupting various 

neurological processes. The increased pressure on surrounding brain tissue can cause 

symptoms such as headaches, seizures, cognitive impairments, motor deficits, and 

changes in behavior or personality. The specific symptoms experienced can differ 

based on the position and size of the brain tumor. 

1.1.5 Types of Brain Tumor 

There are typically four types of brain tumors: primary tumors, secondary tumors 

(also known as metastatic tumors), benign tumors, and malignant tumors. The growth 

of any of these tumor types can have severe implications for a patient's life as it 

occurs within the confines of the skull. 

 

Figure 1.1 Brain tumor images [SMane, Mansa et al. (2014)]. 

Primary Tumor: A primary brain tumor originates within the brain itself. These 

tumors can develop from different types of brain cells and are categorized based on 

the specific. The type of cell and its location within the brain are determining factors. 

Primary brain tumors can manifest as either benign or malignant growths. 

Secondary Tumor (Metastatic Tumor): A secondary brain tumor, often referred to as 

a metastatic tumor, develops when cancer cells from a different region of the body 
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migrate and establish themselves in the brain. These tumors are considered secondary 

because they have originated from cancer that started elsewhere in the body. 

Metastatic brain tumors are always malignant. 

Benign Tumor: A benign brain tumor is a development that is usually slow-growing 

and not malignant, And does not invade nearby tissues. Despite being non-cancerous, 

benign tumors can lead to complications and health concerns depending on their size 

and their specific location within the brain. 

Malignant Tumor: Malignant brain tumor is a cancerous growth that can rapidly 

invade nearby healthy tissues and potentially the potential for spread to other areas of 

the brain or central nervous system exists. Malignant tumors are generally more 

aggressive and pose a greater threat to a patient's health and well-being. Growth of 

any type of brain tumor can have detrimental effects on a patient's life due to the 

confined space within the skull. Figure 1.2 is referenced as illustrating primary brain 

images, which likely depicts visual representations or scans of primary brain tumors 

for diagnostic or research purposes. 

 

Figure 1.2 Primary brain tumors [Kieran MW, Chi SN, Manley PE, et al. (2015)] 

Proper diagnosis, accurate classification, and timely treatment are crucial in managing 

brain tumors to mitigate their harmful effects and improve patient outcomes. 

Treatment options can encompass surgery, radiation therapy, chemotherapy, targeted 

therapies, or a combination of these strategies, depending on the type, location, and 

stage of the tumor. 

GBM (Glioblastoma) stands out as the most aggressive and prevalent form of glioma, 

constituting approximately 54% of all glioma cases. Gliomas, including GBM, are 

characterized by their fast infiltrative growth within the brain. Unfortunately, after 
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diagnosis, the prognosis for GBM is generally poor, with an average survival time of 

around 1 year. Among all malignant brain tumors, Gliomas make up roughly 30% of 

both brain tumors and CNS tumors. Gliomas are further categorized into four distinct 

grades according to the World Health Organization (WHO) classification. 

Grade I: Grade I tumors are considered benign tumors with cells that closely 

resemble normal glial cells. They typically have a slow growth rate and are less 

aggressive compared to higher-grade gliomas. Grade II: Grade II tumors show slightly 

abnormal cell characteristics compared to normal glial cells. They are considered low-

grade gliomas and have a relatively slow growth rate. Grade III: Grade III tumors are 

classified as malignant gliomas. They exhibit more pronounced cellular abnormalities 

and have a faster growth rate compared to lower-grade gliomas. Grade IV: Grade IV 

gliomas are the most severe and aggressive stage of glioma. The most common grade 

IV glioma is Glioblastoma Multiforme (GBM). Grade IV tumors exhibit pronounced 

tissue abnormalities that are observable without the need for microscopic 

examination. 

1.1.6 Views of Brain Tumor Images 

In standard clinical procedures, the evaluation of acquired images is typically carried 

out manually, relying on quantitative measures or criteria such as the primary visible 

diameter in an axial slice. There is so a substantial possibility for an automated and 

highly accurate method to analyze brain tumor scan images, offering immense 

potential for therapy planning and diagnosis. The manual annotation process is 

performed by experienced raters, revealing variations in the areas due to obscured or 

smoothed intensity gradients between surrounding tissues and tumor structures these 

discrepancies can often be attributed to partial volume effects or bias field artifacts. 

Furthermore, the detection of brain tumor lesions hinges exclusively on disparities in 

relative intensity, their specific location, size, and shape for each individual patient. 

As the number of patients has increased, there has been a corresponding increase in 

the amount of data collected. Figure 1.3 provides a visual representation of the Brain 

MRI as viewed from three different perspectives.  
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Figure 1.3 Brain MRI viewed from three directions [Ullah, Zahid & Lee, et al. (2020)] 

MR sequences: MRI techniques are widely employed for exploration and analysis of 

brain tumors. Each technique is utilized for different imaging processes, 

encompassing a range of MR sequences. Currently, multiple MR sequences are often 

combined to attain more precise and valuable results. MRI plays a crucial role in 

advanced research endeavors focused on studying the human brain. The image in 

question offers valuable insights into the soft tissue structures. Furthermore, MR 

images greatly enhance our understanding of brain pathology and enable accurate 

identification of abnormalities. However, the volume of data involved makes manual 

interpretation challenging, thus necessitating the adoption of advanced image analysis 

tools. The demand for such tools has significantly increased as a result. 

MR imaging methods are frequently employed for imaging brain tumor growth and 

accurately identifying their location due to their high resolution. MR images offer 

greater flexibility compared to X-ray and CT scan images. One significant advantage 

of MR images is that they are radiation-free, which is beneficial for the well-being of 

the human body as radiation can be harmful. Various techniques such as atlas 

methods, knowledge-oriented systems, fuzzy schemes, shape-based techniques, neural 

networks, and variation segmentation are utilized for categorizing MRI scans; MRI 

classification commonly involves two existing schemes: unsupervised and supervised 

processes. In the supervised model, Artificial Neural Networks (ANN), Support 

Vector Machines (SVM), and K-Nearest Neighbors (KNN) are frequently utilized. On 

the other hand, the unsupervised approach encompasses techniques such as Self-

Organization Maps and Fuzzy C-means clustering. Researchers often employ both 

unsupervised and supervised processes to classify MRI scans as either abnormal or 
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normal; MR images play a crucial role in identifying tumor regions by employing 

various contrast agents to highlight specific features. However, medical imaging 

research encounters challenges when it comes to accurately identifying brain tumors 

in MR images. Tumor tissues exhibit notable differences compared to normal tissues 

in many patients. MR images offer precise visualization of the anatomical tissue 

structure, and the data derived from these images are immensely valuable for 

detecting brain tumors. To identify brain tumors, MR images are accurately 

segmented using computer-assisted clinical tools. This necessitates brain image 

segmentation, which is considered one of the most challenging tasks. Manual 

segmentation of brain MRI is known for being a time-consuming and non-

reproducible procedure that often leads to non-uniform segmentation results, varying 

among different specialists. In such cases, computer-assisted tools provide valuable 

support. Figure 1.4 provides a visual representation of a brain MRI. 

Figure 1.4 MRI of the brain [V. Vijaya Kishore and V. Kalpana et.al. (2019)] 

1.1.7 Types of MRI Techniques 

T1 Weighted Image: In the realm of MRI, T1 refers to the duration it takes for the 

protons within a tissue revert to their original magnetization state within the static 

magnetic field. A T1-weighted image, compared to other T2-weighted images, offers 

high anatomical detail. However, it may not provide as much relevant information 

when examining brain tumors T1-weighted images, when enhanced with a contrast 

agent, can effectively highlight the flow of blood. This can result in hyper-intense 

appearances of vessels and the active part of a tumor, making them easily 
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distinguishable from surrounding tissues. Active tumors are commonly examined 

using these enhanced T1-weighted images, especially in the investigation of 

malignant tumors. Additionally, these images are commonly referred to as "contrast-

enhanced T1-weighted images." 

T2 Weighted Image: T2 is the time reference, required for protons to lose coherence 

after being disturbed by coherent oscillations from the radio frequency pulse. T2-

weighted images are more sensitive to water content compared to T1 images. As a 

result, (CSF) appears hyper-intense, making it easier to detect pathologies in T2-

weighted images. 

FLAIR Image: Fluid-Attenuated Inversion Recovery (FLAIR) is a dedicated MRI 

sequence crafted to attenuate or suppress the signal from fluids in the image, thereby 

enhancing the visibility of other structures and CSF during brain imaging. This 

technique effectively distinguishes lesions from CSF by causing the CSF to appear 

hypo-intense in T2-weighted images. FLAIR is commonly used in brain tumor 

imaging. Figure 1.5 provides a visual depiction of different types of MRI techniques, 

including FLAIR. 

Figure 1.5 Types of MRI Technique [Filippi, M., Rocca et.al. (2011)] 

1.1.8 Views of Noisy and De-Noisy Images 

In Digital Image Processing, image de-noising and filtration serve as essential 

preprocessing steps. De-noising involves employing specific restoration techniques to 

remove noise that may be introduced during image transmission, compression, or 

acquisition. This process aims to maximize and enhance the quality of the image, 

leading to more accurate and improved results. Figure 1.6 provides an example 
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illustrating the difference between a noisy image and a de-noised image. 

 

Figure 1.6 Example of noisy image and de-noisy image [Gomathi, P et.al. (2020)] 

1.1.9 Brain Tumor Detection 

Tumor detection represents a pivotal facet of biomedical image analysis and has 

evolved as a substantial advancement in clinical investigations undertaken by 

healthcare professionals. Imaging techniques are initially employed to identify tumors 

and document medical images. To differentiate the suspicious tumor area from the 

surrounding healthy tissue, software-oriented algorithms are applied to process the 

obtained images. These types of algorithms have a crucial function in segregating and 

outlining tumor areas, thereby contributing to precise tumor detection and diagnosis. 

Segmentation is an essential undertaking within the realm of medical imaging that is 

performed by specialists to achieve higher accuracy. However, it is a time-consuming 

operation that poses challenges. To address these challenges, radiologists have 

increasingly adopted semi-automatic segmentation techniques. This strategy has the 

ability to mitigate the drawbacks of fully computerized segmentation models by 

involving the radiologist in the segmentation process. By combining the expertise of 

radiologists with automated segmentation methods, Enhancing the efficiency and 

precision of segmentation in medical imaging is achievable. 

Image segmentation represents a pivotal stage in which the affected area is isolated 

from the remainder of the image. Accurate segmentation techniques play a critical 

part in defining the tumor's size and placement, thereby aiding in treatment planning. 

Expert physicians are responsible for defining the initial settings and training data 

used in the segmentation process. Numerous research studies are conducted to extract 
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visual data and identify various types of tumors. These investigations aim to improve 

the understanding and characterization of different tumor types using visual 

information extracted from medical images. 

Timely identification of any disease is essential for successful treatment and 

improving the likelihood of patient survival, particularly in the case of brain tumors. 

Timely identification not only lowers the risk to the patient’s life but also enhances 

the chances of effective treatment, with cure rates reaching as high as 90%. However, 

achieving tumor detection requires the expertise of specialized medical professionals 

who can assess the patient's condition and interpret diagnostic results accurately. 

Their involvement is necessary to ensure accurate and timely detection, leading to 

appropriate treatment interventions. Due to the challenges of handling brain tumor 

detection for all individuals, the significance of computer-aided detection (CAD) 

becomes even more pronounced. CAD serves as the initial stage of tumor detection 

and is performed automatically by specialized software. While MRI produces brain 

images, the software is responsible for detecting various areas or sections indicative 

of a brain tumor. CAD assists human experts in generating preliminary reports 

regarding tumor possibilities. In the detection of brain tumors, computer-based 

detection plays a vital and influential role, enhancing the efficiency and accuracy of 

the diagnostic process. Currently, CADe (Computer-Aided Detection) systems are 

commonly utilized for the explicit and efficient identification of anomalies in the 

brain. CADe, also referred to as CADx (Computer-Aided Diagnosis) systems, assist 

doctors in interpreting medical images. These systems provide an interdisciplinary 

tool that integrates computer vision, AI, and Digital Image Processing techniques 

from pathology and radiology. The abnormal growth of brain tumor tissue or its 

impact on the central nervous system can significantly interfere with proper brain 

function. 

1.1.10 Segmentation of Brain Tumor 

Brain tumors are divided into segments it is crucial in the processing of medical 

images. There are three main categories of brain tumor segmentation models: 

interactive methods, automated and semi-automatic techniques. Semi-automatic 
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approaches involve User interactions are frequently seen as classification approaches. 

The purpose of brain tumor segmentation in the medical imaging field is to accurately 

separate tumor tissues, includes edema and necrosis, in white matter (WM), gray 

matter (GM), and cerebrospinal fluid (CSF), normal brain tissues. This classification 

process allows for precise localization and analysis of tumor-related structures within 

the brain. The segmentation process plays a crucial role in identifying tumor tissues 

using medical imaging techniques, and assessments are frequently carried out on 

improved images. The accuracy achieved through segmentation is of great importance 

in the medical field, as it aids in early disease detection. Accurate segmentation 

results are particularly significant for treatment planning and surgical interventions, 

where precision is a critical factor in determining appropriate treatments for patients. 

However, the current approach may be inefficient and time-consuming, as it lacks 

consideration of automatic classifications and decision-making processes. 

There are various difficulties in analyzing MRI brain tumor image. that motivate the 

need for more in-depth analysis. Brain tumor segmentation and auto classification 

techniques hold the potential to improve the accuracy of diagnosis for various medical 

images. Segmentation is essential for classifying image pixels based on different 

anatomical regions such as blood vessels, muscles, and bones. It is also used to 

identify and classify pathological regions, including multiple sclerosis lesions, tissue 

deformities, and cancerous areas. Furthermore, obtaining good image segmentation 

involves considering certain aspects to ensure accurate delineation and identification 

of regions of interest within the image. 

1. Significant difference in the segmented image was obtained in the adjacent 

regions. 

2. Regions of the segmented image are similar. 

3. The segmented region boundary is not coarse and smooth. 

4. Regions in the internal area must be clear with no small holes. 

The use of an automated classification system for brain tumors is a useful tool that 

aids medical professionals in providing patients with effective care. These systems 

utilize MRI images, which are commonly employed by radiologists for brain 
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diagnosis. In recent times, researchers have developed various automated systems that 

utilize MR images to classify and detect brain tumors. Additionally, in brain tumor 

segmentation, hybrid approaches combining cellular automata and FCM (Fuzzy C-

means) algorithms have been proposed. The challenges associated with seed growing 

segmentation methods have been addressed by introducing a novel similarity function 

incorporating ‘Gray-Level Co-occurrence Matrix’ (GLCM), and the performance of 

these approaches has been evaluated using the BraTS2020 dataset. A proposed 

automated method for brain tumor detection utilizes tumor extraction and image 

segmentation techniques. The method involves extracting the tumor area and 

capturing circularity features from the segmented brain images. The segmented 

images are compared against ground truth images to see how accurate the 

segmentation was to measure the average similarity. Additionally, a method for 

segmenting MR brain images that is semi-automatic has been created. This method 

uses active contour methodology with an initialized region of interest (ROI) to 

perform segmentation of the required area and incorporates human participation to 

create a feature map from MR images. 

The brain is segmented using the Markov Random Field (MRF) model. Brain tumors 

are found using an automated detection method in 3D images. The process involves 

histogram matching and bias field correction to segment the region of interest (ROI) 

from the background of the image. The performance and accuracy of the segmentation 

are evaluated using the BRATS2020 dataset. In recent times, numerous research 

studies have focused on the development of automatic tumor detection methods for 

various types of tumors. In the field of MR images, researchers are actively exploring 

novel approaches to enhance the efficiency of segmentation and automatic tumor 

detection. Artificial Neural Networks (ANNs) have made significant contributions in 

medical imaging and Digital Image Processing. They serve as a prominent framework 

for disease diagnosis and medical image analysis. ANNs excel in handling complex 

tasks that require brain-like performance. Their efficient structure has positioned them 

as a crucial tool in various medical fields. 

1.1.11 ML Based Brain Tumor Detection 

Machine Learning (ML) refers to statistical models and algorithms used to perform 
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specific tasks without explicit programming or instructions. ML algorithms are a 

crucial component of the discipline of medical imaging makes substantial use of 

artificial intelligence (AI). ML can be categorized into two major types: unsupervised 

learning and supervised learning. In supervised learning, algorithms are trained to 

identify the mapping function between input variables and their corresponding output 

labels. This enables the algorithm to make predictions for new subjects based on 

related output labels. Using methods like ANN, SVM, and KNN, supervised learning 

aims to discover innate patterns within the training data. Self-Organizing Maps 

(SOM) and Fuzzy C-Means (FCM) are frequently employed to examine input 

variables in unsupervised learning. In order to extract features, training images often 

utilize statistical, grayscale, and texture features. However, in certain cases, tumor 

segmentation is required prior to the feature extraction stage. These features are 

referred to as handcrafted features, as they require domain expertise to identify the 

relevant and important features. Handcrafted feature extraction is prone to error and 

can be time-consuming, especially when dealing with large amounts of data 

1.1.12 Deep Learning Based Brain Tumor Detection 

A branch of machine learning known as Deep Learning (DL) focuses on data 

representation and learning hierarchical features. DL algorithms utilize layered 

arrangements of nonlinear processing units for the purpose of feature extraction. The 

result of each layer serves as the input for the next layer, enabling a deep network to 

abstract and process data at various degrees of abstraction. Convolutional Neural 

Networks (CNNs) are a popular class of DL algorithms commonly used for visual 

imagery analysis. They are designed to minimize the need for extensive preprocessing 

and are inspired by biological processes in the human brain. CNNs are particularly 

effective in handling data arranged in multiple arrays or dimensions. The use of deep 

CNNs dates back to the late Lecun's introduction of the deep neural network in the 

20th century called "LeNet" for document recognition applications. However, the 

popularity of deep CNNs surged in later years, particularly after the introduction of 

AlexNet, which achieved remarkable performance in image classification, specifically 

in the ImageNet Large Scale Visual Recognition Challenge (LSVRC) in 2010. 

AlexNet's success paved the way for subsequent advancements in CNN architectures 
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within the field of Deep Learning. 

CNNs offer several advantages over traditional ML and feature learning approaches. 

One of their key benefits is the potential for achieving higher accuracy and 

robustness. Vanilla neural networks, which have increased training samples, can 

greatly improve accuracy. In CNNs, convolutional filters act as feature extractors, 

capturing more complex features such as structural and spatial information. This is 

accomplished by convolving small filters across input patterns, selecting important 

features, and subsequently training the classification network. The combination of 

feature extraction and classification training in CNNs contributes to their superior 

performance and ability to handle complex tasks.  

When assessing the effectiveness of deep learning approaches for brain tumor 

classification dataset comprising images from various patients is typically used. A 

subset of these images is employed to test and train the classification model. While 

deep learning has shown promising results in brain tumor classification, it requires a 

large number of training samples, high computational resources, and lengthy training 

times; In contrast, Extreme Learning Machine (ELM) is a regression and 

classification method that has gained attention due to its ability to overcome some of 

the limitations associated with back propagation approaches. ELM exhibits lower 

complexity and faster training speeds, making it advantageous over other classifiers. 

The efficiency and speed of training are notable merits of ELM. 
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1.1.13 Brain Image Classification 

 

 

 

 

 

 

           

 

 

 

 

 

  

 

Figure 1.7 Different types of image classification techniques [Jalalian, Afsaneh et.al. 

(2017)] 

Three main types of image classification methods are commonly used: object-based 

classification, pixel-based classification, and sub-pixel-based classification. Using 

object-based classification, pixels are categorized into useful items. and assigning 

class labels to those objects. Pixel-based classification assigns class labels to 

individual pixels based on their spectral properties. Sub-pixel-based classification 

goes a step further by considering the fractional contribution of different classes 

within each pixel. Figure 1.7 provides a visual representation of the different types of 

image classification techniques 

1.1.14 Diagnosis of Brain Tumor 

Doctors utilize various tests to identify and diagnose brain tumors. These tests may 
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also find out if the tumor has spread to other bodily regions, a condition known as 

metastasis, which is rare in primary brain tumors. Multiple tests are conducted by 

doctors to gather essential information for determining the most suitable treatment 

approach. During a biopsy, a sample of the tumor is taken to determine the specific 

type of tumor. This can be done either by removing the entire tumor through surgery 

or by taking a small tissue sample for analysis. The extracted tissue sample is then 

sent to a laboratory for further testing, such as histological examination or molecular 

analysis, to obtain a more accurate diagnosis. In light of the biopsy's findings, the 

doctor may recommend additional tests or procedures if further information is needed 

to establish a precise diagnosis or guide treatment decisions. 

1.1.15 Biopsy of Brain Tumor 

It is indeed a procedure that involves drilling a hole in the skull to access the brain 

and remove a sample of the tumor or surrounding tissue to be looked at under a 

microscope. That process is considered invasive and carries certain risks, given the 

delicate nature of the brain. The precise location of the tumor and guidance during the 

biopsy procedure are often aided by imaging techniques such as MRI or CT scans. 

Figure 1.8 provides a visual representation of the biopsy of the brain, illustrating the 

process involved in obtaining a tissue sample for diagnostic purposes. 

 

Figure 1.8 Biopsy of Brain [Muhammad Naeem Tahir et.al. (2018)] 

Imaging tests play a crucial role in helping doctors differentiate between a primary 

brain tumor and a tumor that has spread to the brain from another part of the body. 

These tests provide detailed images of the internal structures and aid in the diagnostic 

process. When selecting a diagnostic test, doctors take several factors into 

consideration, including 
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Signs and symptoms 

General health and Age 

Type of tumor 

Outcomes of earlier medical tests 

The diagnosis of brain tumors is typically carried out by a team of medical 

professionals, including neurologists and internists. Specialists in the diagnosis and 

treatment of brain, spinal cord, and other neurological conditions include neurologists 

and CNS. They have expertise in identifying and evaluating various neurological 

problems, including brain tumors. Internists, on the other hand, are physicians who 

specialize in the care of adult patients and are skilled in diagnosing and managing a 

diverse array of medical conditions. In the context of brain tumor diagnosis, both 

neurologists and internists play important roles in evaluating patients, conducting 

necessary tests, and determining appropriate treatment approaches. 

1.1.16 Problem Identification 

Accuracy and Reliability: Attaining precise and dependable results poses a significant 

hurdle in segmentation and detection of brain tumors. The diverse characteristics of 

tumors, such as their varying sizes, shapes, and locations within the brain, make it 

challenging to accurately identify and segment them from brain images. Therefore, it 

is imperative to develop a resilient and trustworthy algorithm capable of accurately 

detecting tumors of different types and sizes. This is essential for ensuring effective 

diagnosis and planning appropriate treatment strategies. 

Computational Efficiency: Another obstacle is to achieve computational efficiency in 

the process of segmentation and detection. Brain images are typically extensive and 

intricate, demanding substantial computational resources and time for processing. It is 

crucial to develop efficient algorithms that can handle these computational demands 

while preserving accuracy. This is particularly important in clinical settings where 

prompt decision-making is critical. By enabling real-time or near-real-time analysis, 

efficient algorithms can facilitate timely diagnoses and enhance the overall workflow. 

Variability and Heterogeneity: The presence of considerable variability and 

heterogeneity in the appearance, texture, and characteristics of brain tumors presents a 

formidable challenge for segmentation and detection algorithms. These algorithms 
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must be adaptable and capable of accounting for different tumor types and subtypes. It 

is crucial to develop robust algorithms that can effectively handle this variability and 

accurately detect tumors across diverse patients and imaging modalities. By 

addressing this challenge, we can enhance the reliability and generalizability of the 

algorithms, leading to improved tumor detection and diagnosis in clinical practice 

Handling Image Artifacts: Brain images frequently encounter artifacts, including 

noise, partial volume effect, and imaging distortions, which can adversely impact the 

accuracy of tumor segmentation and detection. It is crucial to develop techniques that 

can effectively handle and mitigate these artifacts to ensure reliable and accurate 

results. This may involve implementing pre-processing steps, such as denoising and 

normalization, to improve the quality of the images. Additionally, incorporating 

artifact-aware algorithms that are specifically designed to handle these challenges can 

further enhance the accuracy of tumor segmentation and detection. By addressing 

these artifacts, we can minimize their impact on the analysis and improve the overall 

robustness of the algorithms. 

Limited Training Data: Obtaining labeled training data for brain tumor segmentation 

and detection can be challenging due to the need for expert annotations and the rarity 

of certain tumor types. Limited training data can hinder the performance and 

generalizability of machine learning algorithms. To address this challenge, it is crucial 

to develop techniques that can augment the available data. One approach is data 

augmentation, which involves generating synthetic samples to expand the training 

dataset. Another strategy is to leverage transfer learning, where pre-trained models 

from related tasks or datasets are used to kick start the training process. Additionally, 

unsupervised learning approaches can be employed to extract valuable information 

from unlabeled data, thereby increasing the available training resources. By 

incorporating these techniques, the limitations imposed by a scarcity of labeled data 

can be overcome, leading to improved performance and adaptability of the algorithms 

for brain tumor segmentation and detection. 

Clinical Validation and Adoption: In Clinical practice needs to successfully include 

brain tumor segmentation and detection technologies, it is crucial to conduct thorough 

clinical validation studies. These studies should be designed to provide robust 

evidence of the algorithms' effectiveness, reliability, and safety when applied in real-



22 

 

world clinical scenarios. To ensure widespread acceptance and utilization of these 

technologies, it is necessary to overcome various barriers to adoption. This includes 

obtaining regulatory approval, seamlessly integrating the algorithms with existing 

healthcare systems, and addressing concerns related to liability and trust. By 

addressing these challenges and demonstrating the clinical validity of the algorithms, 

they can be successfully implemented in clinical settings, ultimately leading to 

improved patient care and outcomes. 

Addressing these challenges requires collaboration between researchers, clinicians, 

and technologists to develop robust and accurate algorithms that can enhance the 

efficiency and effectiveness of brain tumor segmentation and detection, ultimately 

improving patient outcomes. 

1.1.17 Motivation 

Advance detection and diagnosis are vital because brain tumors can profoundly 

impact an individual's health and overall quality of life. The utilization of 

segmentation and detection algorithms can play a pivotal role in identifying brain 

tumors at an early stage, facilitating prompt medical intervention and leading to 

improved patient outcomes. By enabling early detection, these algorithms contribute 

to a higher likelihood of successful treatment and enhanced quality of life for 

individuals affected by brain tumors 

Treatment Planning and Monitoring: Effective treatment planning depends on how 

to correctly segment and diagnose brain tumors. Precisely delineating the boundaries 

of the tumor is essential in assisting surgeons in determining the most suitable 

surgical approach while ensuring the preservation of healthy brain tissue. Moreover, 

segmentation algorithms provide valuable assistance in monitoring the progression or 

regression of tumors during and after treatment. This information is vital for making 

informed decisions regarding therapy adjustments and evaluating the efficacy of the 

treatment. By facilitating precise tumor delineation and providing valuable insights 

throughout the treatment process, these algorithms significantly contribute to 

optimizing treatment outcomes and improving patient care. 

Improved Patient Care: Brain tumor segmentation and detection algorithms have the 

potential to enhance patient care by providing quantitative measurements and 
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objective data. These algorithms offer clinicians valuable information that can assist 

in making informed decisions, such as selecting appropriate treatment strategies and 

assessing treatment response. By providing accurate and reliable tumor detection, 

these algorithms can reduce the risk of misdiagnosis or overlooking smaller tumors, 

ultimately improving patient management and personalized care. The objective and 

quantitative nature of the data provided by these algorithms contribute to a more 

precise understanding of the tumor's characteristics and progression, enabling 

clinicians to tailor treatment plans to individual patients.  

Time and Cost Efficiency: Automating the process of brain tumor segmentation and 

detection brings significant benefits by reducing the time and effort required for 

manual analysis. Clinicians can save valuable time by minimizing tedious and 

repetitive tasks, allowing them to dedicate more attention to interpreting the results 

and delivering personalized care to their patients. In addition, automated algorithms 

have the potential to reduce healthcare costs associated with image interpretation. By 

providing a more efficient and consistent approach to tumor segmentation and 

detection, these algorithms contribute to streamlined workflows and standardized 

analysis. This not only improves the overall efficiency of healthcare services but also 

ensures a more consistent and reliable interpretation of brain images. Ultimately, 

automation in this domain leads to enhanced patient care, reduced healthcare costs, 

and improved clinical outcomes 

Research and Development: The utilization of brain tumor segmentation and 

detection algorithms it plays a pivotal role in advancing medical research and 

development. These algorithms make it easier to analyze brain imaging data in large-

scale studies and clinical trials, enabling researchers to effectively investigate tumor 

characteristics, treatment outcomes, and correlations with patient demographics. This 

deeper understanding of brain tumors facilitates the development of targeted treatment 

approaches, leading to improved patient outcomes and a more comprehensive 

knowledge of this complex medical condition. 

Accessibility and Outreach: The development of precise and efficient the creation of 

algorithms for the Brain tumor segmentation and detection have the potential to 

improve patient access to medical care, especially in underserved areas where 

specialized medical expertise is limited. Automated algorithms enable telemedicine 
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and remote diagnosis, allowing healthcare professionals to analyze brain images and 

provide initial assessments from a distance. This technology helps bridge healthcare 

disparities, ensuring that patients receive timely and appropriate care regardless of 

their location. The primary motivation behind brain tumor segmentation and detection 

is its ability to enhance early detection, improve treatment planning and monitoring, 

provide superior patient care, increase efficiency, advance medical research, and 

improve accessibility to healthcare services. These advantages ultimately contribute to 

better patient outcomes, reduced healthcare costs, and advancements in the field of 

neuro-oncology Top of Form. 

1.1.18 Research Issues and Objectives 

The primary goals of this study are to tackle the challenges associated with real-time 

brain tumor detection through efficient preprocessing algorithms and feature 

extraction methods. The aim is to identify brain tumors in real-time and provide a 

cost-effective solution to society by comparing it with existing systems and 

techniques. The major components targeted in the present study include: 

• Pre-processing Algorithm: It is responsible for the accurate 

extraction of brain tumor . 

• Segmentation: It is responsible for dividing an image or a digital 

representation of an object into multiple distinct regions or 

segments based on specific criteria or characteristics. 

• Feature Extraction: It is responsible for various exact features    

of the tumor  that can act as a base for exact classification. 

• Classification: It is responsible for the exact    identification and 

related tumor location. 

To work on the above-mentioned significant components, first, there is a need 

to identify the platform that is capable enough to perform the challenging task. 

This helps to implement the system with greater accuracy and lesser time and 

how to verify the system's effectiveness. After the selection of the platform, 

Datasets selection needs to identify carefully. 

➢ How to select an efficient dataset. 

➢ How to train the selected dataset. 
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➢ Which deep-network should be used to increase the efficiency and 

deploy the pre-trained Network? 

➢ Which edge device is compatible with a selected platform? 

By taking into consideration all the above-discussed points, the researcher 

summarizes the following objectives. 

➢ RO1:   To extract the tumor region in MRI brain images.  

➢ RO2: To develop a pre-processing algorithm to enhance the 

quality of MRI images. 

➢ RO3:  To develop deep learning based novel algorithm to classify 

brain tumors into three classes, normal (no tumor), benign and 

malignant). 

➢ RO4: Performance verification of the projected method by 

comparing it with already existing techniques. 

1.1.19 Research Methodology 

Below is a generalized block schematic of the proposed research work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Block Schematic of the Proposed Research  
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1.1.20 Contribution of Thesis 

The ongoing search focuses on the specific research inquiries and aims to 

provide the following contributions mentioned in the thesis. A thorough 

literature review of all preprocessing, segmentation, and classification methods 

is conducted. 

1. A thorough research has been conducted to examine various 

preprocessing, segmentation, and classification techniques. 

2. The backdrop must be removed and the algorithm must be 

implemented through the merger of preprocessing techniques. 

3. To comprehend the diverse Brain tumor datasets available for 

research, a thorough investigation has been conducted. 

4. Based on the classes, resolution, and number of samples available 

in each class, training datasets have been chosen. 

A platform has been chosen in order to create a system with special features 

for brain tumor detection.  

1.1.21 Thesis Structure 

The flow chart in Figure 1.10 shows the thesis' overall structure as well as its chapter-

by-chapter layout. Chapter 1 primarily deals with introduction the literature review of 

all the practices currently in use is covered in Chapter 2 of Preprocessing, Feature 

Extraction, and Classification. Chapter 3 is about Deep learning concepts and 

various architectures. Chapter 4 explains the detailed methodology and developed 

algorithms to create a pre-processing algorithm to improve the quality of MRI images 

and to extract the tumor location in MRI brain images. Chapters 5 to develop deep 

learning based novel algorithm to classify brain tumors into three classes. Chapter 6 

performance verification of the projected method by comparing it with already 

existing techniques. And Chapter 7 explains the Conclusion and future scope. 
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Figure 1.10 Chapter-Wise Thesis Organization
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This thesis is structured into seven chapters, each covering different phases of the 

research development process. The organization of the thesis and a brief summary of 

each chapter are as follows: 

• Chapter 1: This chapter provides an extensive overview of the research 

conducted in this study. Additionally, it presents a concise introduction to the 

diagnosis of brain tumors based on clinical backgrounds using MRI scans, 

which encompasses the crucial task of identifying both abnormal and normal 

brain conditions. Furthermore, it highlights the research's underlying 

motivation and outlines its objectives. 

• Chapter 2: This chapter presents a comprehensive review of previous 

studies focusing on the segmentation, Brain tumor classification and 

automatic MRI image detection. It extensively discusses the various methods 

and techniques employed in this particular research. 

• Chapter 3: This chapter offers an elaborate overview of the classification 

and segmentation of brain tumors using deep learning concepts and various 

architectures. 

• Chapter 4: This chapter presents a methodology and developed algorithms 

aimed at extracting the tumor region in MRI brain images. Additionally, a 

pre-processing a new algorithm to improve the quality of MRI images is 

introduced. The focus lies on the contribution of a proposed technique for 

brain tumor segmentation utilizing the cascaded UNET architecture. 

Furthermore, an enhanced adaptive gamma correction is applied to the input 

images for improve quality of individual pixels.  

• Chapter 5: This chapter provides a thorough explanation of the creation of a 

revolutionary Deep Learning (DL) algorithm for classification of the brain 

tumors. Into three distinct classes. The algorithm encompasses four essential 

phases: (I) Pre-processing (II) Segmentation (III) Brain Feature Extraction, 

and (IV) Brain Tumor Classification. The proposed approach incorporates an 

ensemble technique that combines Google Net and ELM (Extreme Learning 
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Machine) for enhanced performance. 

• Chapter 6: In this chapter, we go over the research's results. and give the 

findings to you. We analyze and interpret the outcomes of our study, 

highlighting the key findings and their significance. 

• Chapter 7: In this chapter, we provide a comprehensive conclusion based on 

the findings and outcomes of our research, we summarize the main 

contributions, insights, and implications of the study Furthermore, and we 

outline the future scope and potential avenues for further research in the field, 

identifying areas that can benefit from additional investigation and 

development. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 INTRODUCTION 

Digital Image Processing is a methodology that involves converting an image into a 

digital format. It utilizes various techniques to enhance and extract important information 

from the image. In Digital Image Processing, the input is typically an image, and the 

output can be either another image or specific characteristics of the input image. When 

processing images using computer applications, they are typically treated as 2D signals, 

similar to how the human visual system perceives them. Initially, images are commonly 

in analog form, but for the purpose of storage, manipulation, and transmission through 

computer systems, they are transformed into a digital format. A, DI can be described as a 

two-dimensional array composed of pixels. It is an important form of information that is 

perceived, processed, and interpreted by the human brain. The brain dedicates a 

significant portion of its capacity to process visual information. Digital Image Processing 

(DIP) is a field of computer-based intelligence that involves automated enhancement, 

analysis, and interpretation of visual information. It aims to clarify and provide guidance 

in understanding the acquired visual data. The Digital Image Processing is plays 

important role it has used for different application in various fields. 

Like as: 

1. Space Digital Image Processing Telescopic and Planetary Exploration 

Images-(Space Digital Image Processing). 

2. in the field of Medical Image Processing (MIP) (CT-scan, X-ray and 

blood/vascular/cellular microscopic images). 

3. Automatic and pattern recognition (zip code, license board, and 

biometrics recognition) 

In general DIP encompasses it has major areas as given in Figure 2.1: 

image formation, Image Enhancement, Image Management, Image 

visualization, and analysis. 

1. Image formation: comprises the steps from image capturing till it forms 

into a digital image matrix. 
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2. Image enhancement: Collection of methods that are used to upgrade the 

pictorial appearance of an image without any distortions. 

3. Image visualization: refers to all types of manipulation of this matrix 

(like shading illumination, display) resulting in an optimized output of the 

image. 

4. Image management: process sums up all techniques that provide the 

efficient storage, communication, transmission, archiving, and access 

(retrieval) of image data. Thus, the methods of telemedicine are also a part 

of the image management. 

5. Image analysis: includes all the steps to obtain the quantitative 

measurements along with theoretical evaluation of images. 

 

 

 

 

 

 

 

 

 

 

 

Figure: 2.1. Digital Image Processing Implementation [Kumar, Y., Gupta, N., Chhabra, 

A. et al. (2017)] 

2.1.1 Biomedical Image Analysis 

The field of Biomedical Image Analysis (BIA) primarily focuses on utilizing 

computational methods to extract insights from images of biological tissues. This 

encompasses a wide range of applications, including medical diagnostics aimed at 

establishing correlations between imaging data and various conditions, as well as 

studying the structure and function of organs in the human body. BIA involves 

Formation 

Preprocessing 

Digitalization 

Acquisition 

Transformation Filtering Registration 

Management 

Analysis 

Visualization 

Feature 

Extraction 
Segmentation 



32 
 

constructing computational models using several sorts of data, including image data and 

supplementary information ranging from demographic records to genetic markers in 

clinical studies. The primary objective of the analysis, measurements, and data processing 

is to derive meaningful conclusions about populations, whether they consist of healthy 

individuals or cases affected by specific conditions, based on representative samples. 

Since biomedical imaging systems can generate large volumes of images, a 

comprehensive analysis is required. Typically, experts perform meticulous evaluation 

procedures on medical images, leading to time-consuming processes and requiring 

significant effort to form opinions. Experts in the field rely on their professional 

experience to analyze (Magnetic Resonance) MR images both qualitatively and 

quantitatively. However, this analysis is inherently constrained by the limitations of the 

human visual system, which can only perceive fragments of the overall image. 

Furthermore, the image acquisition process itself introduces noise, such as swab and 

pepper noise, which can degrade the quality of the images. Additionally, during MRI 

examinations, auditory noise can arise from patient discomfort, resulting in 

communication difficulties and potential hearing impairments. To address these biases 

and obtain clearer images, measures can be taken to mitigate the effects of noise. 

Reducing patient movements and minimizing temporary discomfort can be achieved by 

avoiding verbal exchanges during the checkup. The use of headphones during MRI 

examinations can significantly reduce robotic arm and leg movements, leading to 

improved image quality. By reducing auditory noise, it becomes easier to discern fine 

details in the images, facilitating the diagnosis process for medical experts. Furthermore, 

image denoising plays a crucial role in various fields, including astrophysics and 

criminology, as it allows researchers to extract meaningful data. Denoising techniques are 

employed to eliminate noise from the images without compromising the integrity of the 

original features, making it a vital step in BIA. The primary objective of biomedical 

Digital Image Processing methods is to accurately identify the objects of interest visually. 

Medical images are utilized to depict the distribution of physical attributes and aid 

healthcare professionals in measuring, diagnosing, treating, and understanding various 

medical conditions. They offer a non-invasive way to see the body's interior structures. 
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Without the need for surgical intervention. However, challenges arise due to the presence 

of overlapping objects in an image and the close proximity of pixel values in medical 

images, making the interpretation process quite challenging. To effectively address these 

issues, it is preferable to apply a preprocessing step to the image before further analysis. 

The purpose of preprocessing is to enhance the image's features by reducing unwanted 

artifacts or enhancing the structures relevant to subsequent analysis. Segmentation aims 

to divide an image into distinct regions that are semantically meaningful, homogeneous, 

and non-overlapping based on their original properties such as depth, color, texture, or 

shape. The results of segmentation can be categorized as either complete or partial. In the 

complete form, the segmented regions align closely with the objects present in the input 

image, resulting in a set of disjoint regions that correspond to the image objects. On the 

other hand, in the partial form, the segmented regions may not directly correspond to 

specific objects in the input image. In medical imaging, various anatomical structures of 

the human body, including bones, blood vessels, spine, knees, tissues, and pathological 

conditions like tumors, multiple sclerosis lesions, and Alzheimer's disease, are analyzed. 

Analyzing brain scans aids in identifying significant data that assists in making 

quantifiable assessments of a patient's condition for improved treatment outcomes. Image 

analysis involves identifying abnormalities or characteristics at specific points or regions. 

Segmentation plays a vital role in BIA. In the context of medical image segmentation of 

the brain, it refers to the process of labeling each pixel or voxel to identify the 

corresponding anatomical structure or tissue. These segmented regions have diverse 

applications in studying and analyzing medical conditions. A procedure called 

segmentation divides an image into homogenous, non-overlapping areas based on several 

characteristics like intensity, depth, color, or texture. In order to improve the 

interpretation and analysis of medical Images, segmentation tries to deliver more exact 

and detailed information. 

2.1.2 Brain Digital Image Processing for MR Images 

Currently, MRI systems have the capability to produce high-resolution images of organs 

with exceptional detail, reaching up to 535 Argentinean situations (presumably referring 

to the maximum resolution or quality). However, the information obtained from an MRI 
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scan cannot be fully analyzed by the human eye alone, given its limitations. This has led 

to the utilization of Computer-Aided Diagnosis (CAD), which allows for in-depth 

analysis of both high and low-resolution MRI images. CAD assists radiologists in 

examining abnormal regions more clearly and accurately. The indispensability of medical 

Digital Image Processing has become evident as it plays a crucial role in saving millions 

of lives through early and precise diagnosis. MRI is considered one of the most important 

and a versatile tool available to radiologists and researchers today and there has been 

significant advancement in technology and clinical applications. The efficiency, quality, 

and time required for MRI procedures have significantly improved as a result. 

➢ Robust high- field attraction schemes, 

➢ High- position functioning of grade systems, 

➢ Wide range of technical Radio- frequencies (RF) coils, 

➢ Development of computer technologies. 

The advancements in technology and software have led to the production of highly 

detailed images of the human body, focusing on all organs. These developments enable 

user-friendly progress and processing capabilities, enhancing the diagnostic capabilities 

of radiologists. MRI is widely used in various diagnostic examinations, providing 

clinicians with enhanced information. It helps reduce the risks associated with radiation 

exposure and invasive procedures, while also improving diagnostic strategies to save time 

and resources. The advancements in computer processing and acquisition techniques, 

such as compressed sensing, have enabled the generation of fast and highly detailed 

images. The use of 3 Tesla (3T) magnetic field strengths and advanced magnetic field 

configurations provide enhanced visualization of both anatomical and functional aspects. 

Moreover, the progress in MRI scanner technology includes improvements in ease of 

installation and patient comfort. The cutaway view of an MRI scanner reveals the 

presence of RF (radiofrequency) and gradient coils, which are essential components of 

the system. 
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Figure: 2.2. Cutaway MRI Scanner [Al-Tamimi, M. S. H., & Sulong, G. et.al. (2014)] 

2.1.3 MRI and Other Imaging Modalities 

X-ray imaging, also known as radiography, is a primary imaging modality used to 

visualize the human body. As they travel through the body, X-rays, a type of 

electromagnetic radiation, interact with tissues and ionize them. The speed of X-ray 

imaging is well recognized, cost-effectiveness, and portability. There are various types of 

specialized X-ray techniques: 2D mammography is commonly used for breast imaging 

and is considered the gold standard in detecting bone abnormalities. 3D mammography, 

also known as to mosynthesis, is gaining popularity as an alternative method for breast 

cancer diagnosis. Each of these X-ray techniques utilizes the different ways in which 

tissues interact with X-rays to provide diagnostic information. Other imaging modalities 

have emerged over the years to address the limitations of X-ray imaging and showcase 

technological advancements. Tomographic Images, Such As Those Produced by Single 

Photon Emission Computed Tomography (SPECT), Nuclear Magnetic Resonance 

(NMR), CT, and Positron Emission Tomography (PET), and Ultrasound, are widely used 

by clinicians and radiologists to provide additional diagnostic information and fill the 

gaps left by X-ray imaging. 

CT: X-ray imaging and MRI are often compared as both modalities produce images that 

depict anatomical structures with varying shades of gray to represent different intensity 

details. However, the underlying principles for image formation and the detailed 

visualization of tissues in each modality are not the same. In the case of CT (Computed 
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Tomography), like other imaging modalities, it involves directing energy into the body 

and assessing how that energy is absorbed or altered as it passes through the tissues, but 

in the form of X-ray beams.  

Nuclear Medicine: Nuclear medicine and Single Photon Emission Computed 

Tomography (SPECT) utilize radioactive substances to introduce radioactive energy into 

the body and capture the decay of these substances to form images of radioactive 

volumes and their distribution. Contrast agents containing radioactive isotopes emit 

gamma rays as they decay, similar to X-rays but with higher energy. These gamma rays 

are detected by a gamma camera, which generates the final image. 

PET: Positron Emission Tomography relies on the use of a radioactive tracer and 

detectors to measure its distribution based on radioactive decay. In PET, the radioactive 

decay produces small the imaging system picks up positrons, which are subatomic 

particles. Despite having poorer resolution than MRI, PET scans are nevertheless useful 

for learning about how different organs work. Areas of increased metabolic activity are 

directly correlated with anatomical location, making PET particularly useful in detecting 

tumors and assessing their activity. 

2.1.4 Tumor Characterization 

CT: The degree of tissue attenuation and contrast in X-ray images is determined by the 

absorption of X-ray energy at each point in the image. As a result, bones, being denser 

structures in the body, absorb more X-rays and appear brighter in the image. On the other 

hand, tissues such as blood, cerebrospinal fluid (CSF), and other soft tissues have lower 

density and absorb fewer X-rays, resulting in a darker appearance in the image. This 

contrast in X-ray attenuation allows for differentiation between different tissues and 

structures in the body. 

MRI: The interpretation and contrast in MRI images are based on entirely different 

principles compared to CT. The interactions between tissues and radio waves in a 

magnetic field are what cause the brightness changes in MRI images. Different tissues 

exhibit different signal intensities, resulting in areas appearing bright, dark, or various 

shades of gray. The radio waves and magnetic fields used in MRI can be manipulated in 

various ways to modify the appearance of specific tissues, allowing for greater versatility 
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in image interpretation. 

In T1-weighted MRI brain images, fluids tend to appear dark, while in T2-weighted MRI 

images, fluids appear bright. MRI acquisitions can also be tailored to highlight changes in 

blood flow, fat content, and tissue relaxation characteristics. This enables the detection of 

various illnesses and offers helpful data for making a diagnosis and developing a therapy 

plan. 

Despite its limitations, MRI is currently considered among the most popular available 

and frequently used imaging modalities for assessing tumors and pathologies in the body. 

It offers unparalleled versatility compared to CT and other imaging techniques, allowing 

for a wide range of applications in medical practice. Various Digital Image Processing 

techniques are applied to MR brain images to facilitate interpretation and analysis. 

Advancements in MRI technology have led to improvements in image quality and 

acquisition speed. MRI uses the property of nuclear magnetic resonance (NMR) to 

capture signals from within the body and visualize its internal structures. By applying a 

powerful magnetic field and radiofrequency (RF) pulses, MRI can manipulate the 

magnetization of protons in the body to generate detailed images. The analysis of MR 

images often involves a pre-processing step to enhance image quality. This may include 

techniques such as image denoising and skull stripping using morphological Digital 

Image Processing methods. Tumor detection and segmentation can be performed 

manually or automatically. In manual processes, tumor regions are identified by human 

observers on consecutive image slices, which can be time-consuming and subjective. 

The segmentation of the brain is a crucial step in BIA, where the boundaries of different 

brain regions are identified and marked. MRI is particularly effective in capturing 

detailed images of various brain structures and is highly regarded for analyzing and 

correlating abnormal findings. It provides greater contrast and resolution compared to 

modalities like X-ray, CT, PET, and SPECT. X-ray imaging is commonly used for 

evaluating internal body structures, especially related to bone fractures. CT is valuable 

for the assessment of multiple trauma cases. PET utilizes radioactive tracers to detect and 

analyze the functional activity of organs and tumors. SPECT, another nuclear medical 

imaging modality, uses radioactive substances to produce 3D images that depict the 
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functioning of internal organs in the body. 

2.2 Classification and Description of Survey 

In this section, an examination of various studies was conducted, focusing on the 

classification of brain tumors. The reviewed literature encompassed diverse models, 

which were classified into five distinct types as outlined below. 

➢ Analysis utilizing deep learning (DL) techniques. 

➢ Analysis centered on optimization methods. 

➢ Analysis combining DL techniques with optimization approaches. 

➢ Analysis employing machine learning (ML) techniques. 

➢ Others 

2.2.1 Analysis Based on DL Techniques 

A method for automatic segmentation using CNN that makes use of 3x3 kernels was 

proposed by Pereira et al. in 2016. By using smaller kernels, the deep architecture of the 

network was able to benefit from a reduced number of weights, which helps to mitigate 

over fitting. The use of intensity normalization in the pre-processing was also explored in 

the study. Phase, a factor that was not commonly explored in CNN-based segmentation 

approaches. Data augmentation techniques were found as more prominent in segmenting 

brain tumors in MRI images. The proposed method had been evaluated on the BRATS 

2013 database, where it achieved the first position in completing and improving the 

regions of the Challenge dataset based on the Dice Similarity Coefficient metric. 

Furthermore, the proposed approach secured the top overall position in the online 

evaluation platform for the BRATS 2013 Challenge. In the subsequent BRATS 2015 

Challenge, the same approach participated and obtained obtaining Similarity of dice 

Coefficient ratings for the complete, core, and upgraded areas were 0.78, 0.65, and 0.75, 

respectively, put them in second place. 

 

Mohsen et al. (2018) introduced a Deep Learning (DL) framework called the DNN 

classifier for categorizing MRI brain image into four classes: metastatic bronchogenic 

carcinoma, normal, sarcoma, and glioblastoma tumors. The proposed model utilized an 

efficient methodology that combined the discrete wavelet transform (DWT) with the 
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DNN for accurate classification of brain MRIs. Additionally principal component 

analysis (PCA) and DWT as integrated feature extraction technologies were used in the 

investigation, into the analysis and classifier. The executed results of the said model 

demonstrated superior performance regarding the reduced time consumption and 

hardware requirements compared to existing approaches. 

Hemanth et al. (2019) proposed a novel Multi-Directional Convolutional Neural Network 

(MDCNN) for MR brain image classification in patients with brain cancers. The primary 

objective of this research was to reduce the computational complexity associated with 

traditional DCNNs. The training algorithm of the MDCNN introduced certain 

modifications to minimize the number of parameter adjustments. Notably, the weight 

adjustment approach in the convolutional layer was eliminated in this adopted method. 

Instead, the weights of the fully connected layer were obtained through simple 

assignment process. Experimental results of the proposed model demonstrated promising 

outcomes, surpassing the performance of existing models in the field. 

Sultan et al. (2019) conducted a study where they implemented DL model based on CNN 

for the classification of different types of brain tumors using two publically accessible 

data sets. The standard model successfully categorized cancers into several categories, 

including pituitary tumors, gliomas, and meningiomas. Furthermore, gliomas were 

differentiated into three grades: II, III, and IV grades, respectively. The dataset used in 

the proposed method included between 73 and 233 patients, and a significant portion of 

the images were T1-weighted contrast enhanced images. Compared to other existing 

models, the adopted approach significantly improved sensitivity, specificity, and overall 

accuracy. 

Kumar et al. (2019) developed a Deep Neural Network (DNN) that achieved superior 

performance in both segmentation and classification tasks. The approach involved using 

Dynamic Wavelet Allocation (DWA) for image compression, which combined the 

feature reduction property of autoencoders with the image decomposition properties of 

wavelet transform. Additionally, an optimization algorithm was employed to extract and 

learn the principal components from large data distributions. The combination of these 

components in the adopted model had a remarkable effect on reducing feature 
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dimensionality and improving classification tasks through DNN. The DWA-DNN 

classifier outperformed traditional classifiers such as DNN or Autoencoder-DNN, 

yielding better outcomes in terms of accuracy and performance. 

Nawab et al. (2019) developed a DL framework utilizing deep Convolutional Neural 

Networks (CNNs) to address challenges in image classification tasks. DL demonstrated 

its strength in feature representation by capturing both high-level and low-level 

information, effectively integrating classification and feature extraction through self-

learning. However, DL models typically require large training datasets, which may be 

scarce in certain medical imaging scenarios. To overcome this limitation, the authors 

employed a block-wise fine-tuning approach with Transfer Learning (TL) and pre-trained 

deep CNN models. The proposed model was evaluated on a benchmark dataset of T1-

weighted Contrast-Enhanced MRI images. It exhibited a generic nature by requiring 

minimal preprocessing, avoiding the need for handcrafted features, and achieving 

competitive accuracy through 5-fold cross-validation. Comparative analysis with existing 

(Machine Learning) ML and DL models demonstrated the superior performance of the 

suggested strategy. The simulation results on the Contrast-Enhanced MRI dataset 

showcased higher accuracy compared to traditional schemes. 

Navid et al. (2019), Introduced to novel DL model for classifying brain tumors for MR 

images. The model was pre-trained using a deep neural network (NN) with on multiple 

MR image datasets, a Generative Adversarial Network (GAN) discriminator. Through 

convolutional layers, the model was able to learn the MR images framework during the 

pre-training process and extract reliable features. Subsequently, the entire deep network 

was replaced, and the fully connected layer was to distinguish between the three groups 

of cancers, it was trained as a classifier. The deep NN classifier consisted of six layers 

and 1.7 million weight parameters. To prevent overtraining of the network on a small 

dataset, the pre-training as the GAN discriminator was combined with different 

approaches, such as data augmentations (e.g., mirroring, dropout, and image rotation).  

Huang et al. (2020) proposed a novel approach for the classification of brain tumors in 

medical imaging using complex network-based CNN. The adopted model aimed to 

enhance the effectiveness and practicality of medical image analysis. They introduced a 
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CNN with complex networks, called CNNBCN, along with a modified activation 

function specifically designed for MRI-based brain tumor classification. Unlike manual 

optimization, the network framework was generated randomly using graph algorithms. 

These graphs were then mapped onto the accessible neural network through a network 

generator. The modified CNNBCN approach achieved an impressive accuracy of 

approximately 95.49%, surpassing other models for brain tumor classification. 

Furthermore, the experimentation showed that the modified CNNBCN approach had 

lower loss compared to DenseNet, MobileNet, and ResNet approaches. Although the 

adopted CNNBCN approach did not yield satisfactory outcomes in classifying brain 

tumor images, it contributed to enriching the neural network methodology in this context. 

M. I. Sharif et al. (2021) suggest a deep learning strategy for classifying brain tumor 

diseases. They utilize the BraTS2018 and BraTS2019 datasets for their study. They use a 

transfer learning to hone the Densenet201 model and extract features. In addition, they 

use the Modified Genetic Algorithm (MGA) and the entropy-kurtosis-based high feature 

value (EKbHFV) to choose the best features. A technique based on nonredundant serial 

data is used to produce fusion, and the resulting features are classified using the cubic 

SVM. Remarkably, the approach achieves an accuracy exceeding 95%. Additionally, the 

authors compare the results of different deep learning models regarding their capacity to 

analyze brain tumors, including VGG16, AlexNet, GoogLeNet, and ResNet50. The rating 

criteria include processing speed and accuracy. Notably, AlexNet has the fastest 

processing time at around 1.2 seconds, which is slashed to 8.3 milliseconds with the use 

of a GPU. ResNet50, on the other hand, has the highest accuracy at about 95.8%. 

A brain tumor detection technique that combines edge detection and the U-NET model 

was put forth by Maqsood et al. (2021). The framework for tumor segmentation 

integrates fuzzy logic edge detection and improves images contrast. The U-NET 

architecture is used for classification, and features are retrieved from decaying sub band 

images. This method successfully recognizes meningioma in brain imaging. 

An approach proposed by Usman Zahid et al. (2022) introduces an effective solution for 

brain tumor detection and classification through optimal deep learning feature fusion. 

Manual removal of tumors detection and classification takes a lot of time, expensive, and 
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laborious. In this research, a fully automated architecture based on deep feature fusion is 

proposed to address these challenges. A comprehensive database of MRI images, 

encompassing four distinct tumor categories, is prepared for evaluation purposes. The 

proposed approach delivers a remarkable level of accuracy of approximately 96.7%, 

surpassing existing techniques. However, the study reveals the presence of redundant and 

irrelevant features, emphasizing the importance of selecting optimal features. 

Furthermore, it demonstrates that the fusion of these optimal features not only improves 

accuracy but also significantly reduces prediction time, aligning with the primary 

objective of the research. Nonetheless, it is worth noting that the fusion process increases 

computational time during testing. To overcome this limitation, future endeavors will 

explore lightweight deep learning frameworks and leverage optimized feature fusion 

approaches for tumor classification and detection. 

A. Sekhar et al. (2022) present a brain tumor classification approach that combines both 

ML and DL techniques. The authors focus on three distinct brain tumor classes: glioma, 

meningioma, and pituitary. To extract deep features, they employ transfer learning to 

fine-tune the GoogLeNet model. These extracted features are subsequently classified 

using the SVM, KNN, and softmax algorithms. 

A. Gumaei et al. (2022) present an algorithm aimed at early identification and types of 

brain tumors, which is crucial for effective patient treatment. With advancements in 

technology, automated healthcare systems enable experts to provide better treatment to 

patients. The researchers propose the use of ML and DL algorithms to address medical 

image diagnosis challenges. Among the DL models, CNNs have gained significant 

popularity and a number of domains, including Digital Image Processing; have produced 

ground-breaking achievements. Systems based on CNN prove to be efficient in 

diagnosing aiding medical professionals in selecting a course of treatment for brain 

tumors. Notably, 190 of the more than 200 DL-based investigations on medical images 

that were carried out in 2016 used CNNs. Prominent CNN models such as AlexNet, 

VGG, and GoogLeNet are currently utilized in medical image classification tasks. 

2.2.2  Analysis Based on Optimization 

When considering optimization techniques for brain tumors, various approaches can be 
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utilized to improve diagnosis, treatment planning, and surgical interventions. These 

techniques aim to enhance the accuracy of tumor segmentation from medical imaging 

data, optimize radiation therapy treatment planning, aid in surgical planning, and 

optimize treatment parameters based on genetic profiles. Additionally, machine learning 

algorithms, such as deep learning, can be leveraged to improve brain tumor diagnosis, 

classification, and treatment response prediction. Multi-objective optimization techniques 

are also employed to address the conflicting objectives involved in brain tumor 

management. It is crucial to emphasize that these optimization techniques should be 

implemented by qualified medical professionals in accordance with established clinical 

guidelines, as they are just one component of the comprehensive treatment strategy for 

brain tumors. 

Dmour et al. (2018) introduced a fusion-based clustering technique for MRI tissue 

segmentation. Their approach involved calculating the pixel intensity of each pixel as 

part of the clustering process. During the training phase, they experimented with K-

means, Fuzzy C-Means, and Self-Organizing Maps (SOM) clustering algorithms. In the 

ensemble model segmentation procedure, they utilized multiple Artificial Neural 

Networks (ANNs) and selected the one that yielded the highest majority vote result. In a 

different study, Hasan, Khan et al. (2018) proposed a model for segmenting cancer cells 

based on their behavior in brain cancer. To identify the cell behavior in genes, they 

employed SVM, random forest, and Naive Bayes classifiers. 

In order to quickly pick an ideal feature subset with good discriminatory capacity from a 

set of available features, Saini et al. (2018) developed a unique feature selection approach 

for classifying brain tumor MR images. The Fisher criteria and the PFree Bat 

optimization technique were combined to create the model. The traditional Bat algorithm 

had limitations in the exploration phase, so modifications were made to guide the Bat 

using local best positions, global best positions, and pulse frequency. The enhanced 

version of the Bat algorithm, called the PFree Bat algorithm, directly updated the Bat 

position and rejected the velocity equation. The proposed approach utilized the Fisher 

criteria to choose the ideal combination of features for classifying brain tumors. After 

that, an LS SVM classifier was used to classify the area of interest as either low grade or 
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high grade using these chosen features. The adopted model achieved a 100% recognition 

rate within a significantly shorter time compared to other hybrid models. Additionally, an 

integrated index was implemented to determine the best performing algorithm based on 

metrics such as computational time, accuracy, and number of features.  

Sharif et al. (2018) a novel strategy for treating brain tumors classification and 

segmentation, incorporating a best feature selection method and improved saliency 

segmentation. The approach consisted of four pipeline measures: tumor segmentation, 

feature extraction, classification, and tumor preprocessing. The preprocessing stage 

involved manual skull stripping to extract the Region of Interest (ROI) and reduce noise 

using a Gaussian filter. Tumor segmentation was performed using an enhanced 

thresholding approach based on binomial standard deviation and mean variance. Texture 

and geometric features were extracted, and a serial-based model was used to fuse these 

features. The Genetic Algorithm (GA) was utilized to pick the aspects that are most 

pertinent. Finally, a SVM was used to classify the selected characteristics. with a linear 

kernel function. The proposed scheme was tested on both Private and Harvard datasets. 

The Private Dataset was collected from Nishtar Hospital Multan in Pakistan. The adopted 

approach achieved improved classification accuracy, demonstrating its effectiveness 

across different datasets and validating its authenticity. 

Anitha et al. (2019) proposed a novel image classification method for identifying 

abnormal brain tumors in MR images using a modified GA. The method involved 

extracting texture features using the Gray Level Dependence Matrix (GLDM) from the 

images. The modified GA was utilized to extract the most relevant features from the 

images. The proposed model incorporated various binary operations for generating 

offspring during the mutation and crossover processes. These binary operations were 

designed with objectives that differed from traditional binary operations in GA. The 

optimal features obtained were then classified using a Backpropagation Neural Network 

(BPN). The effectiveness of the suggested method was assessed by contrasting its 

sensitivity, positive predictive value (PPV), accuracy, and specificity to those of other 

methods. 

Narmatha et al. (2020) proposed a novel algorithm called FBSO (Fuzzy Brain-Storm 
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Optimization) that combines the Brain-Storm Optimization (BSO) algorithm with a fuzzy 

model for brain tumor classification and segmentation. The Brain-Storm Optimization 

approach prioritized maximum attention to cluster centers, but it could sometimes lead to 

local optima similar to other swarm algorithms. To address this while the BSO algorithm 

helped to improve the results of the investigation, the fuzzy technique repeatedly iterated 

network frameworks. When examined using the BRATs 2018 dataset, the adopted model 

displayed robustness, improved precision, high accuracy, and a better F1 score. 

Alhassan et al. (2020) proposed an automated segmentation model for MRI images of 

brain tumors, aiming to increase effectiveness of classification and segmentation 

processes. The adopted model consisted of segmentation and preprocessing processes to 

identify tumor or malignant and benign tissues using various clustering and data 

processing techniques. The proposed work utilized modern learning-based models to 

process multimodal MRI images and performs automated segmentation to detect brain 

tumors. The BAFCOM clustering algorithm was recommended for tumor segmentation, 

and the Bat Algorithm was employed to determine the distance and initial centroids 

within the pixels of the tumor. The distance between non-tumor and tumor regions of 

interest (RoI) was calculated to aid in the segmentation process. The MRI image was then 

evaluated using the ECN approach to classify it as either brain tumor or normal. The 

performance of the adopted model was assessed using the ECN algorithm, which 

differentiated between the two types of tumors present in the MRI images. The ECN 

classifier was evaluated based on measurement factors such as F1-score, accuracy, recall, 

and precision. Additionally, the Genetic Algorithm (GA) was applied to the automatic 

tumor stage classification, resulting in improved classification accuracy. 

In the study conducted by Murmu et al. (2021), a deep learning (DL) model was explored 

for segmenting a medical disease using MRI and CT image datasets. The researchers 

employed the 2D-U-Net and 3D-U-Net methods for segmenting medical data. Within the 

2D-U-Net model, the package nibabel was utilized for reading and visualizing the data. 

The 3D-U-Net model, on the other hand, was employed for segmentation and 

classification tasks using MRI and CT images. To evaluate the system, the researchers 

utilized the Medical Segmentation Decathlon (MSD) datasets specifically for Brain, 
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Heart, and Spleen segmentation. Performance evaluation was conducted based on metrics 

such as F1-score, Intersection over Union (IOU) and Dice similarity coefficient for the 

Brain, Heart, and Spleen datasets. The results demonstrated that this method 

outperformed previous network models across various aspects. 

Qiu et al. (2021) developed a DL based U-Net model for segmenting 3D liver tumor 

images. This U-Net model incorporates a dynamic convolution model and attention 

mechanism to effectively enhance feature extraction capabilities. Additionally, a transfer 

learning (TL) model is employed during the training process, utilizing learned data 

transfer techniques specific to liver tumor segmentation. As a result, the TL-based U-Net 

method improves the model's fitting capability. The performance evaluation of the model 

yielded a Dice coefficient value of 94.9%. When compared to various traditional 

segmentation models, the U-Net model demonstrated a performance improvement of 

4.4%. 

Wang et al. (2022) investigated a context-aware neural network (NN) approach for 

segmenting lung infections. The authors specifically focused on two modules: autofocus 

and panorama, which aimed to extract intricate details and semantic information while 

capturing long-range contextual dependencies at both companion level and cross-level. 

Additionally, they proposed an original construction consistency correction to align the 

foreground and background by describing the fundamental connection between them. 

The success of their strategy was demonstrated by experimental findings on COVID-19 

CT images of both single-class and multiclass structures. Notably, their method 

outperformed three benchmark datasets for COVID-19 disease segmentation in terms of 

mean Intersection over Union (mIoU) score. 

2.2.3 Analysis Based on DL Techniques with Optimization 

Amin et al. (2018) implemented a novel model that combined Genetic Algorithm (GA) 

and CNNs for non-invasive classification of various Glioma grades using MRI. The 

architecture of the CNN was determined using GA, which allowed for the exploration of 

different architectures compared to traditional methods that rely on trial and error or 

predefined frameworks. The ensemble algorithm, specifically bagging, was utilized to 

further improve the prediction accuracy by reducing the variance of the prediction errors. 
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The results demonstrated 90.9% accuracy in classifying the 3 Glioma grades. 

Additionally, the model achieved better accuracy in classifying Pituitary tumor, 

Meningioma, and Glioma types. The outcomes of the study highlighted the efficacy of 

the suggested model in classifying brain tumor MRI images. 

Kaur et al. (2019) developed an automated detection approach for classifying tumor 

grades in MRI images. The approach involved delineating the Region of Interest (ROI) 

using edge and intensity magnitude-based multilevel thresholding algorithms. Texture 

attributes and intensity features were then extracted from the segmented ROIs. The 

optimal feature subset was derived using a combined model called PFreeBAT 

optimization. A new learning model, referred to as PFree BAT-based improved Fuzzy K-

Nearest Neighbors (FKNN), was implemented using FKNN with PFree BAT 

optimization to classify MR images into two subdivisions: low-grade and high-grade. The 

model parameters, such as fuzzy strength and neighborhood size, were adaptively 

specified by the PFree BAT optimization model. The adopted model achieved an 

accuracy of 97.45% and 98% with feature selection when evaluated on the PD dataset. 

Mishra et al. (2019) proposed a novel approach called MASCA (Modified ASCA) 

combined with Particle Swarm Optimization (PSO) based on the Local Learning-Based 

Radial Basis Function Neural Network (LLRBFNN) method for the automatic 

classification and identification of brain tumors. The traditional FCM Fuzzy C-Means 

(FCM) algorithm-based approach was ineffective in removing noise from MR images 

during the segmentation process. Therefore, the proposed model included an enhanced 

fast and robust FCM algorithm segmentation method to smoothen and reduce noise in 

brain tumor MR images. Features were extracted using the Gray-Level Co-occurrence 

Matrix (GLCM), and these features were used as inputs to the modified ASCA-PSO and 

LLRBFNN approach for classifying malignant and benign tumors. The weights of the 

LLRBFNN approach were optimized using the MASCA-PSO algorithm, which obtained 

a unique solution based on manual detection tasks performed by radiologists. The 

experimental results demonstrated higher classification accuracy for the MASCA-PSO 

based LLRBFNN approach compared to other LLRBFNN methods, such as the adaptive 

sine cosine optimization method, PSO, and the sine cosine optimization algorithm paired 
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with the LLRBFNN technique. 

Sathish et al. (2020) introduced a clustering approach called Gaussian-based Hybrid 

Fuzzy C-Means (GHFC) and Fuzzy C-Means for segmentation by combining sparse 

FCM (Fuzzy C-Means) and FCM clustering techniques. The segmentation process 

utilized the Gaussian function. After segmentation, relevant features were extracted from 

the brain tumor images. These extracted features were then used as training data for the 

"exponential cuckoo-based Rough Boost Neural Network (RBNN) to find the training 

classes using a classifier. The proposed model's experimental findings showed increased 

accuracy and a low Mean Squared Error (MSE). The SIMBRATS and BRATS databases 

were used to conduct the experiment. 

Sharan et al. (2020) proposed a DL model that was called Dolphin-SCA based deep CNN 

for brain tumor classification. The input MRI images underwent a pre-processing phase. 

The segmentation process utilized the Dolphin-SCA method in conjunction with the 

fuzzy deformable fusion strategy. Power LDP (Local Directional Pattern) and statistical 

characteristics were used to extract the features. The DCNN and Dolphin-SCA 

algorithms were used to classify brain tumors using these extracted features. Comparing 

the experimental findings of the chosen model to other traditional models for classifying 

brain tumors, they showed superior performance with the maximum accuracy. 

Lee et al. (2021) introduced a boundary-aware sampling technique that focused on 

utilizing features from image patches located at the ground-truth boundary area. This 

approach was applied to perform lung segmentation in CT, liver segmentation in CT, 

chest radiographs, and segmentation of brain tumors and spinal cord gray matter in MRI 

images. The results indicated that this method enhanced the segmentation performance of 

popular deep learning (DL) models such as U-Net, U-Net++, and DeepLabV3+. The 

study further revealed that the robustness of domain shifts in segmentation tasks could be 

improved through the use of contrastive embedding. These findings highlight the 

potential of the boundary-aware sampling method in improving DL-based segmentation 

tasks across various medical imaging domains. 

Geng et al. (2022) explored a medical image denoising pipeline method and implemented 

it as a generative adversarial network. The methods like as predictors, U-Net, 
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SRDenseNet, and DnCNN are investigated. The model's effectiveness has been verified 

using CT, PET, and MR imaging datasets. Regarding visual appeal and numerical 

measurements, the results demonstrate that this system performed a best-in-class 

denoising method, and the technique demonstrates a strong generalization potential. 

These predictions confirmed that this straightforward approach, while intriguing, 

demonstrates promising potential for clinical image denoising function that may be used 

to provide a clinical effect in the future. 

Yu et al. (2022) examined the impacts of different k values, specifically 2, 4, 8, 16, 32, 

and 64, on the effectiveness of DL techniques like VGG-16, ResNet18, Inception V3, and 

VGG-19 for predicting corn diseases. The study found that using a k value of 32 yielded 

higher identification accuracy on samples and improved diagnostic recall for leaf spot 

gray spot, rust, and diseases. The proposed method achieved an average diagnostic 

accuracy of 93% in corn disease prediction using DL methods. These promising results 

have significant implications for agricultural applications, providing effective disease 

protection measures in the field. 

2.2.4 Analysis Based on ML Techniques 

Whitney et al. (2017) used a guided ML approach to examine how race affected post-

brain tumor surgery discharge disposition and length of stay (LOS). The study focused on 

a retrospective cohort of 41,222 individuals who underwent craniotomies for brain 

tumors between 2002 and 2011, using data from the Project National Inpatient Sample 

and Healthcare Cost. Using pre-hospitalization characteristics, 26 ML systems were 

trained to forecast LOS and non-home discharge. Ensemble models were developed by 

combining the most predictive algorithms. To look into how race affected the ensembles 

autonomously, partial dependence analysis was used. Better discrimination in predicting 

extended LOS and non-home disposition was shown by the guided ML strategy. The 

study also discovered that non-black race increased the chance of prolonged. It is 

important to note that the experimental outcomes of race were not obtained when 

analyzing the overall operative population or general inpatients. The findings contribute 

to understanding the influence of race on discharge and highlight the role of LOS in 

implementing interventions and recognizing race-related disparities. 
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Antony et al. (2018) conducted a study on predicting the grades of brain tumor types, 

specifically glioma and meningioma, using the Weighted Neighbour Distance approach. 

The researchers developed a Compound Hierarchy model that utilized the Morphology 

(wndchrm) tool and SVM classifiers. To enhance the SVM classifier's performance, an 

iterative technique was employed to determine the optimal boundary and kernel 

parameters. The streamlined features extracted from the Wndchrm tool were utilized in 

training the SVM classifier 

Arokia et al. (2018) introduced a mixture approach based classification method using 

MRI images of meningioma brain tumors. The adopted scheme consisted of four stages. 

The initial stage involved processing the cells' boundaries to ensure the discrete region 

boundary for specific cells. Mathematical morphology was utilized to interpret the 

outcomes during this process. Accurate segmentation of cancer cell nuclei is crucial for 

automated cytological image analysis, with segmentation's key step being thresholding. 

The adaptive binarization approach, a crucial stage in medical Digital Image Processing, 

was used in the study. Additionally, a fresh hybrid Fuzzy SVM was implemented for 

meningioma brain tumor classification. The classification results were as follows: MM 

with RBF achieved 62.71%, MM with FSVM achieved 82.67%, feature extraction with 

SVM achieved 74.24%, and the proposed MM with Hybrid SVM achieved 91.64% 

accuracy, respectively. 

Shree et al. (2018) conducted a study on enhancing the efficiency of noise removal and 

brain tumor segmentation using DWT. They employed the extraction of features based on 

GLCM. The statistical algorithm, PNN, and Bayesian network called Kernel Fisher 

discriminant analysis were used to acquire results. Furthermore, morphological filtering 

was implemented to eliminate noise after the segmentation process. The PNN classifier 

was employed for testing and training in tumor detection. Ultimately, the simulation 

results of their approach demonstrated high accuracy in distinguishing between normal 

and abnormal tissues. 

Shrot et al. (2019) conducted a study on utilizing machine learning techniques with 

advanced and basic MR sequences to distinguish between several kinds of brain tumors. 

The research involved 141 patients, including 12 primary CNS lymphomas, 38 
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metastases, 41 glioblastomas, and 50 meningiomas. A computer-assisted classification 

approach was employed, combining perfusion MRI, DTI metrics, and morphologic MRI 

to classify the brain tumors. The adopted multistep scheme encompassed ROI definition, 

preprocessing, feature selection, classification, and feature extraction. SVMs were used 

for feature subset selection. The classification performance was evaluated through 

validation, without any human intervention, as the entire process was automated. The 

experimental results of the adopted model, employing binary SVM classification, 

demonstrated high sensitivity, accuracy, and specificity for metastases, glioblastomas, 

primary CNS lymphomas, and meningiomas, respectively. 

Kalpana et al. (2019) developed a novel model for brain tumor (BT) segmentation called 

BT MLTS-HSO. The model involved feature extraction and classification using various 

classifiers such as DSVM, RBFN, NB, and KNN for MRBT images. The adopted 

approach consisted of three phases: (I) Classification Phase, (ii) Detection Phase, and (iii) 

Radiation Dosage Calculation Phase. Additionally, the HSO algorithm was employed 

using two MLT methods, Kapur and Otsu. Otsu thresholding was used to determine the 

threshold of the minimized weighted within-class variance. The proposed approach 

incorporated NN, ANFIS, and SVM, where a seed point was utilized to detect the tumor 

region, select it on a scale, and calculate radiation dosage and performance measures. 

Consequently, the adopted model demonstrated the ability to analyze the position and 

size of the tumor, and it achieved more accurate predictions compared to other models. 

Krishna et al. (2020) introduced a novel method for efficiently classifying and 

segmenting using the MKSVM and rough K means method to create MRI images of 

brain tumors. When examining brain tumors, their suggested model produced precise and 

effective results by employing useful techniques. The images were first subjected to a 

preprocessing step, and then feature extraction was carried out using an upgraded GWT. 

Additionally, the standard GWT's mean of optimization method was adjusted. Utilizing 

the oppositional fruit fly approach, the optimization model's efficacy was verified and the 

feature values that resulted were then used to the segmentation process utilizing the 

clustering technique. Overall, the presented approach showcased superior sensitivity, 

classification accuracy, and specificity. 
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Rehman et al. (2020) introduced a machine learning model for localizing brain tumors in 

FLAIR MRI scans. The study utilized the BraTs 2012 dataset, which was co-registered 

and skull stripped. Trilateral filtering was used to reduce noise, and texton-map images 

were created using a bank of Gabor filters. First-order intensity statistical characteristics 

were used to extract low-level features after the image had been divided into superpixels. 

The texton-map with histogram level was computed for each superpixel. Instead of 

considering the contribution of low features, the model focused on combining features at 

the region level using texton-map images to localize brain tumors in the MR images. 

These features were fed into the classifier to predict three classes: non-tumor, tumor, and 

background region. The labels were used to calculate two different areas. The proposed 

model employed a LOOCV technique and achieved a score for the localization of the 

whole tumor area, which matched the confirmed score in the "MICCAI BraTS 

challenge." Additionally, the brain tumor localization model based on superpixel features 

using the texton-map image yielded similar results to other approaches. Recently, 

autonomous computer-based approaches in medical diagnosis have made significant 

progress in generating medical hypotheses for disease diagnosis. 

Gokulalakshmi et al. (2020) devised an enhanced classification approach for diagnosing 

brain tumors from MRI images. The initial step involved using a filtering model to 

preprocess the acquired scan images. Feature extraction was performed using GLCM and 

DWT equations, resulting in more accurate outcomes. The K-means clustering model 

was employed for segmentation, where similar tissues were grouped together. Cells were 

also grouped using K-means clustering based on the extracted features, determining the 

number of groups and frames. Furthermore, the classification stage utilized the SVM 

technique for binary classification. The proposed approach was evaluated through 

simulation, and the results demonstrated superior precision, recall, and reduced 

processing time compared to traditional brain tumor detection methods. 

Majib et al. (2021) presented a computer-assisted method for the detection of brain 

tumors. This study utilized hybrid ML models and extensively investigated the 

classification of brain tumor images without manual intervention. Additionally, To find 

the optimum transfer learning model for classifying brain tumors using a neural network, 
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16 alternative TL models were investigated. The researchers also offered a stacked 

classifier that surpassed all other established models by utilizing a number of 

enhancements. The VGG-SCNet (VGG Stacked Classifier Network) in particular 

achieved impressive precision, recall, and F1 scores of 99.2%, 99.1%, and 99.2% 

respectively. These results demonstrate the effectiveness of the proposed approach in 

accurately classifying brain tumors, providing a computer-assisted solution that 

minimizes manual effort. 

2.2.5 Others Research Papers Related to Deep Learning  

Ural et al. (2017) presented a brain tumor detection approach utilizing MRI images. The 

method's main goal was to identify and pinpoint the area of the brain tumor. using 

advanced Digital Image Processing techniques and PNN systems. Initially, a specialized 

clustering approach was applied to the MRI image. Subsequently, tumor areas were 

identified using level-set segmentation and thresholding methods. Furthermore, the PNN 

system was employed for automatic classification and analysis of the brain tumor based 

on the identified tumor areas. The study utilized 25 out-of-sample neuro images for 

optimizing and testing the proposed approach. The simulation results demonstrated 

improved classification accuracy for the neural network structures and Digital Image 

Processing techniques employed in the proposed model. 

Ma et al. (2018) developed a multimodal volumetric MR image and the Random Forests 

and Multiscale Patch Driven Active Contour (RF-MPDAC) method; brain tumors may be 

automatically segmented. The proposed approach integrated random forests and the 

active contour model. Modality-specific random forests were utilized to incorporate local 

information from multimodal images, aiming to explore contextual and structural 

information of gliomas within the framework. Additionally, a multiscale patch-driven 

active contour approach was employed, leveraging sparse representation techniques to 

refine the gliomas framework. The experimental results demonstrated higher accuracy 

compared to other traditional approaches for brain tumor segmentation. 

Rehman et al. (2019) developed an automated brain tissue classification approach using a 

regional classifier based on Random Forest (RF) for distinguishing between normal and 

abnormal tissues. The regional classification method employed in the study aimed to 
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accurately segment and detect tumors at the pixel level. Various region-based features, 

including fractal features, statistical measures, and texton histograms, were utilized in the 

proposed approach. To address class imbalance issues, the researchers employed RMD-

SMOTE at the regional level. The study also compared the performance of standard 

supervised techniques such as RF, SVM, and AdaBoost classifiers, ultimately selecting 

the RF-based regional classifier due to its superior generalization performance. The 

proposed model achieved improved precision and specificity in the segmentation and 

detection of brain tumors. 

Bal et al. (2018) presented an innovative model for automatic segmentation of brain 

tumors using RFCM (Rough Fuzzy C-Means) with shape-based topological properties. 

The rough-FCM approach effectively addressed the issue of overlapping partition 

problems through the utilization of fuzzy membership, upper and lower bounds of rough 

sets, which helped handle uncertainty in the dataset. The RFCM, combined with fuzzy 

boundary belonging and crisp lower approximation, demonstrated enhanced efficiency in 

brain tumor segmentation. Skull stripping was performed using a patch-based K-means 

approach. The proposed model was evaluated on standard benchmark datasets of MRI 

scans. The simulation results of the adopted model showcased superior performance with 

maximum accuracy. 

Pinto et al. (2018) developed an automatic hierarchical brain tumor segmentation pipeline 

utilizing an innovative technique called ERT (Ensemble of Randomized Trees) that 

incorporated context-based features. The pipeline involved evaluating the location and 

shape of the tumor, followed by hierarchical two-stage classification to classify the tumor 

region into different types of tumor tissues. The model employed context-based features 

and higher randomized trees. Various features were calculated based on non-linear 

transformations of the MRI images. The experimental results of the proposed approach, 

evaluated on the BRATS 2013 dataset, demonstrated a better Dice Similarity Coefficient, 

indicating improved accuracy in tumor segmentation. 

Gumaei et al. (2019) devised a brain tumor classification system using the RELM 

(Rational Extreme Learning Machine) with a hybrid feature extraction approach. The 

proposed model extracted features using a hybrid feature extraction process and 
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computed the features of the covariance matrix, which were then projected into a new 

feature set using Principal Component Analysis (PCA). The RELM algorithm was 

employed for the classification of brain tumor types. The presented model was evaluated 

on public datasets through a series of experiments using brain images. The experimental 

findings showed that the suggested model performed better than others, achieving high 

classification rates in the task of brain tumor classification. 

Siva et al. (2020) proposed a hybrid approach that combines BFC-based segmentation 

with a DAE (Deep Autoencoder) system. A non-local mean filter was used for denoising 

during the preprocessing stage. The brain tumor was then divided up using the BFC 

model. Strong features were retrieved, including ST (Statistical Texture), WPTE 

(Weighted Phase Transport Entropy), and information theoretic measures. During the 

classification process, the hybrid model combined DAE with JOA (Joint Optimization 

Algorithm) and a softmax regression technique to categorize the regions of brain tumors. 

The experimental findings of the used model showed improved classification accuracy, 

demonstrating the efficacy of the suggested hybrid strategy for classifying brain tumors. 

Imtiaz et al. (2020) proposed an innovative model for segmentation of brain tumors based 

on superpixel-level characteristics extracted from three 3D volumetric MR image planes 

(y-z, x-y, and z-x). To address the challenges of precise segmentation in homogeneous 

boundaries and to reduce pixel randomness, each image within a specific plane was 

divided into superpixels, which are irregular patches based on spatial and intensity 

similarity. Various textural and statistical features were extracted from each superpixel, 

with special emphasis on high labeling in tumor edges for all three planes. Feature 

selection was performed using histogram with local descriptor pattern analysis and 

consistency analysis to eliminate non-informative features and reduce feature dimension. 

The extremely Randomized Trees algorithm was employed for supervised classification 

of the superpixels into classes of tumors or non-tumors. According on the decisions 

made, pixel-level decisions were then made for each plane. When compared to 

conventional models, the suggested model's experimental findings showed superior 

tumor segmentation performance. 

Bennai et al. (2020) developed a multi-agent model for the segmentation of 3D medical 
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images. The model was based on a group of interactive agents that worked together to 

segment a 3D image and modify the region growing algorithm. In the first association of 

agents, region seed placement and region growing were performed. The collaboration and 

interaction among the agents allowed for refinement of the segmentation by combining 

over-segmented regions in the second association. Initially, the group of agents 

partitioned the image voxels into non-edge and edge voxels based on the gradient 

magnitude between the voxels. Different groups of agents were employed for voxel 

partitioning and extraction, and homogeneous regions were detected. The simulation was 

conducted on MRI images of both pathological and healthy brains. The testing outcomes 

proved the usefulness of the chosen strategy, with superior performance over alternative 

approaches. 

Neal et al. (2017) investigated the occurrence of recurrent thromboembolic events in 

patients with ischemic stroke who also have primary brain tumors. Recurrent 

thromboembolism and stroke mechanisms in people with primary brain tumors are still 

poorly understood. A retrospective cohort of patients having primary brain tumor 

diagnoses at Memorial Sloan Kettering Cancer Center between 2005 and 2015 with acute 

ischemic stroke verified by MRI was included in the study. Neurologists gathered 

information on therapies, patients' histories of cancer, stroke risk factors, and results. The 

primary outcomes of interest were recurrent thromboembolism (both venous and arterial) 

and recurrent ischemic stroke as a secondary outcome. Cumulative outcome rates were 

calculated using Kaplan-Meier statistics, and Cox hazards analysis was used to assess the 

association between outcomes and potential risk factors. The study identified 83 patients 

with primary brain tumors who experienced tumor-associated acute ischemic stroke. The 

findings revealed an increased risk of recurrent thromboembolism, including stroke from 

rare mechanisms, in patients with primary brain tumors. 

Philipp et al. (2017) a study to find risk variables for neurocognitive deterioration in 

patients with common supratentorial brain tumors and modest neurological abnormalities. 

The study involves rigorous cognition testing and was carried out at a German academic 

institution, of patients diagnosed with pituitary adenoma, meningioma, cerebral 

metastasis, or glioblastoma multiforme, who were in better neurological condition. The 
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neurocognitive testing assessed various domains including short and long-term memory, 

depression, visual-spatial abilities, executive function, verbal fluency, anxiety, fluid 

intelligence, verbal working memory, and perceptual speed. The patients were compared 

to a group of healthy controls who were pair-matched based on sex, age, profession, and 

handedness. The study found that patients performed significantly poorer on 

neurocognitive tests compared to healthy controls. Risk factors such as frontal tumor 

location, left/dominant hemisphere involvement, and larger tumor volumes were 

associated with deficits in verbal fluency, executive functioning, and perceptual speed. 

Impairments in short- and long-term memory and visual-spatial abilities were more 

related to frontal tumor location. Patient self-awareness, clinical presentation, and tumor 

type did not show significant associations with specific neurocognitive impairments. The 

study highlighted that patients with new brain tumor diagnoses in good neurological 

condition can exhibit neurocognitive impairments in different domains, with 

left/dominant hemisphere involvement, larger tumor volumes, and frontal location being 

important predictors of such deficits. 

Shah et al. (2017) conducted a study to evaluate a multi-modality and multiparametric 

imaging protocol in brain tumors and investigate the correlations among various imaging 

measures. The researchers focused on quantitatively imaging water content using a single 

multi-gradient echo (mGRE) acquisition. They employed a PCA-based approach for 

noise reduction in the multi-contrast data during the processing phase. The study utilized 

a hybrid MR-PET environment to apply the quantitative approach to brain tumor patients. 

The active tumor tissue was determined using FET-PET, while MRI contrasts were used 

for grey-matter, edema, and white matter segmentation. Although water content 

information itself was not directly relevant, its correlation with other quantitative 

measures provided insights into the microenvironment of water and tissue. The study 

found that oedema regions (79%) and active tumor tissue (84%) had higher water content 

compared to normal white matter (WM) (69%), which was similar to ordinary grey 

matter (GM) (83%). Furthermore, mean kurtosis was lower in oedema and tumor regions 

compared to normal GM and WM, while mean diffusivity was increased. Voxel-based 

associations among diffusion and water content indices were observed using diffusion 
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kurtosis tensor imaging, and correlations between FET-PET and quantitative MRI were 

reported for eight brain tumor patients. Overall efficient transverse relaxation times (T2*) 

demonstrated stronger associations with FET-PET and other MR indices. 

Elisee et al. (2017) proposed the LRACM (Local Region-Based Active Contour Model) 

for automatic selection in brain tumor segmentation applications based on image content. 

The architecture was designed to select one of the three LRACM methods: LACM-BIC 

(Local Active Contour Model with Bayesian Information Criterion), localized C-V 

(Chan-Vese) model, and LGDF (Local Gaussian Distribution Fitting) model. To make 

the appropriate selection, 12 visual features were extracted from the input image. The 

proposed approach utilized a supervised model. The simulation results demonstrated that 

the adopted approach successfully selected the most suitable LRACM for effectively 

handling the specific image requirements, particularly in the context of MRI images. The 

proposed architecture exhibited higher accuracy compared to using the three LRACM 

methods independently. 

Markus et al. (2017) conducted a study to assess post-operative and pre-operative 

neurocognitive deficits in brain tumor patients using a screening test. The researchers 

utilized a computer-based neurocognitive assessment tool to screen data from brain tumor 

patients before and after surgery. A total of 196 patients who underwent tumor resections 

at their institution were tested using the NeuroCog Fx® software, two days before and 

three to four months after surgery. Patient-related information such as age, handedness, 

level of education, Karnofsky Performance Status (KPS), sex, post and pre-operative 

neurological status, histopathological diagnosis, and tumor location were recorded for 

testing purposes. The gathered outcomes were analyzed using a retrospective approach. 

The study found that a significant number of patients with meningiomas, metastases, and 

malignant gliomas exhibited notable deficits in various neurocognitive domains. 

However, there was no significant association between brain tumor location and 

neurocognitive deficits. The standardized neuropsychological assessment was deemed an 

essential part of patient care and management for individuals with brain tumors, 

providing a tailored and more personalized treatment approach. 

Nidhi et al. (2017) proposed an adaptive and non-invasive method for tumor detection 
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using T2-weighted brain MR images. The approach involved preprocessing and 

segmenting the images through a customized multilevel Otsu's thresholding model. Shape 

and textural features were extracted from the segmented image, and the two most 

prominent features, identified using entropy measure, were selected. The SVM classifier 

was then applied to the MR images using these selected features. The study conducted 

simulations at NSCB Medical College, Jabalpur, MP, MRI & CT Scan Centre, and 

gathered a dataset from Research Centre Jabalpur & Charak Diagnostic. The results 

showed 98% accuracy at a 99% confidence interval and 100% sensitivity for both 

datasets. The proposed approach outperformed traditional models, demonstrating better 

efficacy in tumor detection. 

Song et al. (2016) conducted a numerical investigation on the influence of brain tumor 

location during transcranial direct current stimulation (TDCS) in different electrode 

montages. They utilized a high-resolution realistic human-head model with brain tumors 

to examine the threshold area and density of peak current in the region of interest (RoI). 

The experimental results indicated that TDCS could be safely applied to patients with 

brain tumors to alleviate cancer-related pain associated with neuropsychiatric conditions. 

However, they observed significant changes in current distributions due to the presence 

of the brain tumor. The study provided clarification on the local and global effects of 

possible edema and tumor grade. These findings were valuable for clinical doctors and 

researchers in the treatment of brain tumor patients. Overall, the study showed 

advancements in the application of TDCS for brain tumor patients. 

Sallemi et al. (2015) presented an innovative model for the modeling of tumor growth in 

brain glioblastomas. The tumor region was extracted using a distribution matching 

algorithm based on global pixel-wise information. The novel approach involved 

simulating tumor growth based on two key elements: the fast marching method and 

cellular automata (CFMM). This model calculated the evolution of the brain tumor over a 

specific time period. The researchers conducted experiments and carefully analyzed the 

outcomes using 20 selected cases of pathological MRI. The experimental results were 

compared to real tumor growth measurements, using the dice metric parameter as a 

ground truth reference. The simulation results showed good agreement with the adopted 
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algorithm in the proposed model. The primary goal of this model was to achieve 

advancements and progress that could assist radiologists in their diagnosis during clinical 

investigations. The use of advanced tools provided guidelines and clinical decisions that 

focused on enhancing objectivity and accuracy for clinicians. 

Yang et al. (2015) introduced a DWT-based subspectral and whole-spectral analysis 

approach using single voxel MR Spectroscopy for improved brain tumor clustering. The 

model utilized the discrete wavelet transform (DWT) to analyze subspectral or whole-

spectral information of key metabolites in the MR spectroscopy (MRS) signal. The 

separability of the extracted wavelet features was evaluated through unsupervised 

learning and clustering techniques. The study included 134 short echo time single voxel 

MRS data, covering low-grade and high-grade tumors as well as normal controls. By 

combining the DWT-based subspectral or whole-spectral analysis with unsupervised 

clustering, the approach achieved a balanced error rate of 7.8% and an overall clustering 

accuracy of 94.8% in clustering brain MRS data. The proposed method offered an 

alternative approach for feature extraction in brain tumor clustering, surpassing the 

traditional approaches of feature selection or dimensionality reduction through model 

fitting on single voxel MRS data. 

Menze et al. (2015) reported the results and setup in connection with the MICCAI 

conferences in 2012 and 2013, the Multimodal Brain Tumor Segmentation Challenge 

(BRATS) was held. 65 multi-contrast MR scans were used in the evaluation of 20 

conventional tumor segmentation techniques. Four raters personally marked these scans, 

and for comparison, 65 more scans were produced using tumor image modeling software. 

The study quantitatively evaluated the performance of the algorithms and found 

significant disagreement among the human raters in segmenting different tumor sub-

regions, highlighting the complexity of the task. While various algorithms achieved 

performance comparable to human inter-rater variability for different sub-regions, no 

single algorithm consistently ranked at the top for all sub-regions. To address this, a 

hierarchical majority vote approach was used to fuse the segmentations from multiple 

algorithms, resulting in improved methodological performance. Additionally, the study 

found that individual algorithms consistently ranked well, indicating remaining 
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opportunities for further improvement. Overall, the availability of manual annotations 

and the BRATS image data provided valuable insights and contributed to better outcomes 

in brain tumor segmentation research. 

Mendes et al. (2015) proposed an approach utilizing the Multimodal Imaging-based 

Connectome Analysis (MIBCA) toolbox to investigate the connectivity of brain tumor 

patients. Using a 3T MRI scanner with BrainPET, two patients with glioblastoma lesions 

in the left hemisphere had dynamic PET scans and simultaneous MRI. insertion. The 

collected data included dynamic 18F-FET PET, T1-weighted MPRAGE, and diffusion 

tensor imaging (DTI). The MIBCA toolbox was employed to extract connectivity and 

imaging measures from the multimodal data and perform automatic preprocessing of 

MRI-PET data. Metrics such as cortical thickness from T1-weighted data, mean 

diffusivity (MD), node degree, fractional anisotropy (FA), pairwise region of interest 

(ROI) fiber tracking, and standardized uptake value (SUV) were computed and included 

in the study. Differences between the right and left hemispheres were assessed for all 

metrics using a 25% threshold. The data was visualized in connectograms, which 

displayed both metrics and structural connectivity in the areas close to the lesions, with a 

lower number of fibers connecting frontal regions with subcortical structures. These 

findings suggested that the presence of a tumor can affect both local and more distant 

structural connections. The study emphasized the need for further investigation with 

larger patient samples and the inclusion of a control group to validate these results. 

Yu et al. (2016) conducted an analysis of brain tumor patients' brain anatomical networks 

using diffusion tensor imaging (DTI) to investigate the topological properties and 

connection densities. The study aimed to gain insights into the compensatory mechanisms 

and structural plasticity of the brain in tumor patients. The researchers constructed brain 

anatomical networks based on DTI data by tracking white matter fiber bundles and 

quantitatively describing the network's topological properties. A comparison was made 

between healthy controls and tumor patients using six DTI parameters: degree, regional 

efficiency, local efficiency, betweenness centrality, vulnerability, and clustering 

coefficient. A network-based statistic model was employed to localize changes in specific 

brain regions related to structural connectivity. The study found that the tumor patients 
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exhibited alterations in the low-world features of the cerebral structural network 

compared to the controls. The connection density in the tumor group was significantly 

increased, indicating the impact of tumors on the structural network. This suggests that 

the presence of brain tumors can lead to changes in the structural connectivity of the 

brain. Overall, the study provided novel insights into the compensatory mechanisms and 

structural plasticity in the brains of tumor patients using network analysis of DTI data. 

Arakeri et al. (2015) developed a CAD model for accurate and automatic detection of 

brain tumors, aiming to minimize human errors in the detection process. The system 

utilized an ensemble classifier on magnetic resonance (MR) images to characterize brain 

tumors as malignant or benign. The first step of the system involved segmenting the brain 

tumor tissue from MR images using a segmentation technique. The shape, boundary, and 

texture features of the tumor were then extracted to characterize its properties. To identify 

the most relevant features, independent component analysis techniques and gain-based 

feature ranking were employed. Next, the extracted features were trained using an 

ensemble classifier comprising SVM, ANN, and KNN classifiers. This ensemble 

classifier allowed for improved accuracy and robustness in tumor characterization. The 

CAD system was evaluated on a dataset of 550 patients, consisting of T2-weighted MR 

images and T1-weighted post-contrast images. The system's performance was assessed 

using a leave-one-out approach, where each patient's data was used for testing while the 

remaining data was used for training. The simulation results demonstrated a high 

accuracy of 99.09% for the adopted segmentation approach, indicating its effectiveness in 

accurately identifying and characterizing brain tumors. The CAD system provided 

radiologists with a reliable tool to assist in the diagnosis of brain tumors, improving the 

accuracy and efficiency of the diagnostic process. 

2.3 Research Gaps and Challenges 

In stating that automatic classification of brain MRI has the potential to significantly 

impact clinical medicine by reducing the burden of manual labeling for physicians and 

providing more robust quantitative measurements to aid in disease diagnosis. Medical 

Digital Image Processing aims to automate tools that are currently used by the medical 

imaging community but still require expert assistance. One of the challenging tasks in 
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brain tumor detection is isolating abnormal tissues from the surrounding healthy brain 

tissues. The analysis of brain tumors often involves the use of MR images in medical 

Digital Image Processing, where core steps such as classification, segmentation, and 

feature extraction are automated to facilitate tumor detection. These automated processes 

help in accurately identifying and characterizing brain tumors, providing valuable 

information for diagnosis and treatment planning. By automating these steps, medical 

Digital Image Processing techniques can enhance the efficiency and accuracy of brain 

tumor analysis, enabling faster and more reliable diagnoses. It is important to continue 

developing and refining these automated methods to improve patient outcomes and assist 

healthcare professionals in their clinical decision-making. 

The research in automatic brain tumor detection has been focused on the properties of 

non-invasive imaging, particularly MRI. The variability in areas, sizes, and shapes of 

tumors presents challenges in developing effective detection systems or CAD model. In 

past few decades, researchers in the fields of soft computing and medical Digital Image 

Processing have concentrated on the classification, segmentation, and combination of 

these techniques for automatic brain tumor detection. Numerous models and approaches 

have been developed and reviewed, considering the specific challenges and strengths 

associated with using MR images to detect different types of brain tumors. The current 

classification, detection, and segmentation techniques when it comes to medical imaging 

are discussed, highlighting the advantages and disadvantages of each modality. These 

discussions aim to provide insights into the performance and limitations of different 

approaches and assist in the selection of appropriate methods for specific applications. By 

considering the specific characteristics and challenges of brain tumor detection in MR 

images, researchers can develop more accurate and reliable models and techniques to aid 

in the diagnosis and treatment of brain tumors. 

2.4 SUMMARY 

In the reviewed papers on brain tumor classification, various methodologies were 

employed, and they were categorized into different groups for analysis. These categories 

included: 
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➢ Analysis based on DL techniques: Several papers utilized deep learning 

techniques, such as CNNs, to analyze brain tumor images and classify them into 

different categories. Automatic feature extraction and classification using DL 

approaches has produced encouraging results. 

➢ Analysis based on optimization: Some papers focused on optimization algorithms 

and techniques to improve the performance of brain tumor classification. These 

optimization methods aimed to boost the classification models' precision and 

effectiveness. 

➢ Analysis based on DL techniques with optimization: Certain studies combined 

deep learning techniques with optimization approaches to achieve better results in 

brain tumor classification. These hybrid models aimed to leverage the strengths of 

both DL and optimization methods. 

➢ Analysis based on ML techniques: Other papers employed ML techniques, such 

as SVMs, decision trees, and random forests, for brain tumor classification. ML 

approaches have been widely used in medical image analysis and showed good 

performance in various studies. 

Additionally, the reviewed papers identified several research gaps and challenges in brain 

tumor classification. These challenges included the need for larger and more diverse 

datasets, the lack of interpretability and explain ability in deep learning models, the need 

for robust and generalizable models across different imaging modalities, and the 

importance of addressing class imbalance and data variability in tumor samples. By 

understanding these research gaps and challenges, future studies can focus on addressing 

these limitations and further advancing the field of brain tumor classification. 

 

 

 

 

 

 

 

 

CHAPTER 3 

DEEP LEARNING 
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3.1 Introduction to Deep Learning 

The chapter centers on several fundamental principles concerning learning functions and 

the architecture of neural networks. It commences with an exploration of the core 

essence of learning functions, underlining their significance in the fields of artificial 

intelligence and machine learning. The chapter proceeds by introducing artificial 

neurons as the fundamental components that constitute neural networks. It elaborates on 

the fundamental structure of neural networks, highlighting the interconnected nature of 

artificial neurons and their capacity to process and transmit information. Moreover, the 

chapter delves into deep neural networks, which encompass multiple hidden layers. A 

comprehensive overview of the key ideas linked to deep neural networks is provided, 

along with a discussion of common architectures commonly employed in practical 

applications. 

The concluding section of the chapter concentrates CNNs, offering a more 

comprehensive elucidation of this specific type of neural network. CNNs find extensive 

applications in Digital Image Processing and pattern recognition tasks. The chapter 

further explores the distinctive attributes of CNNs, such as the utilization of 

convolutional layers for extracting features and pooling layers for reducing 

dimensionality. In summary, the chapter serves as an introductory guide to learning 

functions, artificial neurons, neural network structures, deep neural networks, and 

convolutional neural networks. Its primary objective is to familiarize the reader with 

these fundamental concepts in the field of neural networks and lay the groundwork for 

further exploration of advanced topics. 

 “Deep learning methods are distinguished by their hierarchical organization, wherein 

each layer of the network acquires the ability to comprehend progressively intricate 

features or patterns. Human designers do not explicitly create these layers; instead, they 

are learned autonomously through a process called training, during which the network is 

exposed to vast amounts of data. Deep learning represents a subfield that falls within 

both artificial intelligence (AI) and machine learning. The overarching objective of AI is 

to develop models and algorithms that empower computers to solve intricate problems 

in an automatic, intuitive, and efficient manner. As a specific subset of AI, deep learning 
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centers on employing neural networks comprising multiple layers to learn and extract 

meaningful representations from the provided data. 

Figure 3.1 presents a comprehensive illustration of the interrelationship between AI, 

machine learning, and deep learning, emphasizing the role of deep learning within the 

broader landscape of AI and machine learning. The figure demonstrates how deep 

learning methodologies play a crucial part in propelling the field of AI forward by 

empowering computers to autonomously learn and process intricate information. 

In conclusion, deep learning methods utilize hierarchical representations learned from 

data to tackle intricate problems, and they belong to the subfields of both AI and machine 

learning. These techniques play a vital role in pushing the boundaries of AI capabilities 

and addressing challenges that traditional computational approaches find difficult. 

Indeed, the perception and comprehension of the content within images pose significant 

challenges for computers, but deep learning has demonstrated remarkable achievements 

in this domain. Specifically, CNNs have made significant strides in image recognition 

and understanding, showcasing the power of deep learning models in this area. 

ANNs are machine learning algorithms inspired by the structure and functionality of the 

brain. They are composed of interconnected nodes, also known as artificial neurons, 

which process and transmit information. Deep learning is a specific subset of ANN 

algorithms that refers to neural networks with multiple layers. These deep neural 

networks have the capacity to learn hierarchical representations of data, enabling them 

to extract intricate patterns and features. In practice, the terms "deep learning" and 

"artificial neural networks" are often used interchangeably because deep learning is a 

prominent approach within the broader field of ANNs. Deep learning has garnered 

significant attention and popularity due to its ability to learn complex representations 

from vast amounts of data, leading to breakthroughs in various AI tasks including 

speech recognition, natural language processing, and picture recognition. While there 

are some technical distinctions between deep learning and ANN, they are closely 

related, and in many cases, the terms are used interchangeably to refer to the utilization 

of neural networks, especially deep neural networks, for machine learning tasks. 

Deep learning has a long and evolving history that spans over sixty years, with various 
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names and incarnations based on research trends, available hardware and information 

systems, and prevailing methodologies from influential researchers. Throughout the rest 

of this chapter, we will delve into a brief yet insightful history of deep learning, tracing 

its journey as a powerful paradigm in the fields of machinery and computer vision 

learning, and how it has emerged as one of the most remarkable success stories in 

contemporary AI. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Deep Learning is shown as a Venn diagram [Chandankhede, Ankit, et.al 

(2023)] 

The history of neural networks and deep learning is indeed rich and dates back to the 

1940s. Over the years, the field has undergone various shifts and significant 

advancements. Some notable milestones include the emergence of cybernetics, which 

laid the foundation for understanding feedback mechanisms and control systems in both 

biological and artificial systems. The concept of connectivity, inspired by the 

organization of neurons in the brain, became a fundamental principle in developing 

neural network models. The popularization of ANNs gained traction during the 1980s 

and 1990s, where researchers explored their capabilities and limitations. However, due 

to certain challenges at the time, interest in neural networks declined briefly until the 

2000s when breakthroughs in computing power, the availability of large datasets, and 

innovative algorithms led to the renaissance of deep learning. 

This resurgence of interest and progress in deep learning has since led to remarkable 

advancements and breakthroughs in various fields, including computer vision, natural 

language processing, speech recognition, and more. The continuous evolution of neural 
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networks and deep learning has opened new frontiers in artificial intelligence and 

continues to shape the future of technology. While ANNs draw inspiration from the 

interactions of neurons in the human brain, they are not meant to be exact replicas or 

interactive representations of the brain's intricate workings. Instead, ANNs function as 

computational models that aim to mimic certain behaviors and processes observed in the 

brain. The design and architecture of ANNs are simplified abstractions of neural 

networks found in the brain, adapted to suit specific computational tasks. The neurons in 

ANNs process information using mathematical operations and activation functions, 

while the connections between neurons are governed by weights that are adjusted during 

the training process. This allows the ANN to learn and adapt to patterns and data it is 

exposed to, similar to how the brain learns from experiences and information. 

While ANNs do not fully replicate the complexity of the human brain, they have proven 

to be highly effective in solving a wide range of problems and have become a 

cornerstone of the field of artificial intelligence and machine learning. Their ability to 

approximate and model complex relationships in data has led to significant 

advancements in various domains, making them indispensable tools in modern 

technological developments. The earliest foundations of neural networks can be 

attributed to the pioneering work of Warren McCulloch and Walter Pitts et al. in 1943. 

In their seminal paper, "A Logical Calculus of Ideas Immanent in Nervous Activity," 

they proposed a simple model of a neural network, specifically a binary classification 

system. This network aimed to distinguish between two distinct groups based on given 

input data. 

McCulloch and Pitts' et al. model was built on binary thresholds, where the neurons 

would output either 0 or 1 based on the input signals. While this marked a significant 

step towards creating computational models inspired by the brain's neurons, the early 

network had its limitations. One major drawback was that the parameters of the network 

required manual calibration by a human operator. This manual tuning made the network 

less practical for tackling complex real-world problems. Despite its limitations, the 

McCulloch-Pitts model laid the groundwork for further research and the development of 

more sophisticated neural network architectures over the following decades. It set the 
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stage for the continuous exploration of neural networks, leading to the significant 

advancements and breakthroughs we witness in modern deep learning and artificial 

intelligence. 

In the 1950s, Frank Rosenblatt et al. introduced the Perceptron, which was a notable 

advancement in neural network research. The Perceptron was a more sophisticated 

algorithm compared to the earlier McCulloch-Pitts model. One of the key contributions 

of the Perceptron was its ability to automatically learn the necessary weights for 

classifying inputs without requiring human intervention for manual calibration. The 

Perceptron became a milestone in the development of neural networks and marked a 

significant step towards creating more powerful and adaptable computational models. Its 

design and functioning played a crucial role in laying the foundation for further 

advancements in neural network research. 

Figure 3.2 likely depicts the concept and design of the Perceptron, showcasing its 

architecture and how it automatically adjusts the weights to make classifications based 

on input data. The Perceptron's ability to learn and adapt from training data represented 

a major breakthrough, and it paved the way for the ongoing evolution and sophistication 

of neural networks in the years to come. 

The development of Stochastic Gradient Descent (SGD) during that era was a 

significant contribution that revolutionized the training of neural networks and remains a 

fundamental optimization technique used in training deep neural networks to this day. 

SGD, introduced by Herbert Robbins and Sutton Monro et al. in the 1950s, enabled 

automatic weight adjustments in neural networks based on available data. This 

optimization method allowed the network to iteratively update its parameters to 

minimize the error between predicted outputs and actual targets during training. By 

iteratively making small updates to the weights, the network gradually improved its 

performance and learned to make better predictions on new data. The combination of 

the Perceptron and SGD provided a powerful and automated training approach for 

neural networks. This advancement garnered significant attention and marked the 

beginning of neural networks gaining importance in the area of pattern recognition and 

machine learning. The capability of automatic learning from data opened up new 
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possibilities and applications for neural networks, setting the stage for further research 

and development in the field of artificial intelligence and deep learning. 

 

Figure 3.2: The Artificial Neuron [Liam G. Gannon et.al 2023] 

The history of neural networks and deep learning is a fascinating journey filled with 

numerous milestones and transformative breakthroughs. Each advancement and shift in 

research focus has played a critical role in shaping the current state of deep learning, 

where complex neural network architectures and sophisticated learning algorithms are 

applied to tackle a vast array of tasks and challenges. As you progress through the 

chapter, you will gain a deeper understanding of the historical progression of neural 

networks. It will likely cover influential developments, such as the introduction of 

various neural network architectures, the resurgence of interest in deep learning due to 

advancements in hardware and data availability, and the remarkable successes achieved 

in fields like computer vision, natural language processing, and speech recognition. 

The chapter will likely provide valuable insights into how the field of deep learning has 

evolved over time, leading to its current prominence in the world of artificial 

intelligence. It will showcase the ingenuity and dedication of researchers who have 

contributed to shaping this dynamic and ever-growing area of study. By exploring the 

historical context, you will gain a better appreciation for the profound impact of deep 

learning on technology, research, and society as a whole. The field of neural network 

research faced significant challenges during its early years. One crucial publication that 

had a notable impact on the progress of neural networks was the work by Marvin 

Minsky and Seymour Papert et al. in 1969. In their influential book, "Perceptrons," they 
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demonstrated the limitations of a single-layer neural network with a linear activation 

function (perceptron). 

Minsky and Papert's et al. research showed that a perceptron without depth (i.e., a 

single-layer network) was unable to solve non-linear problems effectively. They 

specifically highlighted the inability of a perceptron to learn the XOR function, a classic 

example of a non-linear problem. The XOR dataset, as depicted in Figure 3.3, consists 

of two classes, represented by blue stars and red circles. These classes cannot be 

separated by a single straight line, making it challenging for a single-layer perceptron to 

correctly classify the data. Their findings had a negative impact on neural network 

research during that time. The limitations of computational resources at that era further 

exacerbated the challenges. As a result, interest in neural networks waned, and research 

in the field entered a period of stagnation, often referred to as the "AI winter." However, 

it's important to note that these challenges and setbacks were essential for the growth 

and eventual resurgence of neural networks. They prompted researchers to explore 

alternative architectures and training algorithms, leading to the development of multi-

layer neural networks and more powerful learning methods. 

Ultimately, as computational resources improved, and new algorithms such as 

backpropagation were introduced, neural network research experienced a renaissance, 

leading to the birth of modern deep learning and its tremendous success in solving 

complex tasks across various domains. Thus, the setbacks faced in the past were crucial 

for the evolution and maturation of the field, and they paved the way for the remarkable 

progress we witness in deep learning today. The backpropagation algorithm, introduced 

by Paul Werbos et al. in 1974, played a pivotal role in reviving and advancing neural 

network research. Backpropagation enabled the training of multi-layer feed-forward 

neural networks, overcoming one of the key limitations identified by Minsky and Papert 

et al. in 1969. One of the major breakthroughs achieved through backpropagation was 

the ability to incorporate nonlinear activation functions into neural networks. This 

critical advancement allowed researchers to explore and exploit the power of nonlinear 

features in data. Prior to backpropagation, linear activation functions severely limited 

the expressiveness and learning capacity of neural networks. 



72 
 

Y 

X 
 

Figure 3.3: An example of a non-linear, separable problem [(Minsky et.al 1969] 

The work of Hornik, Stinchcombe, and White et al. in 1989 demonstrated that neural 

networks have the capacity to approximate continuous functions, providing valuable 

insights into their expressive power. This finding was a significant step forward in 

understanding the capabilities of neural networks to represent and learn complex 

relationships in data. However, it's crucial to recognize that the ability to approximate 

functions doesn't guarantee that a neural network will automatically learn the required 

parameters to accurately describe a given problem or feature. Effective training, 

appropriate network architecture, and careful tuning of hyper parameters are essential 

factors in achieving successful learning outcomes. The introduction of the back 

propagation algorithm, along with subsequent advancements in neural network research, 

indeed paved the way for exploring the nonlinear nature of data and addressing more 

complex problems. This progress allowed researchers to build deeper and more 

sophisticated neural network architectures that could learn hierarchical representations 

and extract intricate patterns from data. 

The backpropagation method has been a fundamental cornerstone that revolutionized 

the training of neural networks. It allows for iterative learning from mistakes, adjusting 

the network's parameters to improve performance over time. With advancements in 

technology, faster and more sophisticated equipment, and the availability of vast 

amounts of training data, deep learning has emerged as the new iteration of neural 

networks. The term "deep" refers to the ability to create neural networks with many 

more hidden layers than previous incarnations. This depth enables the networks to learn 

hierarchical representations, where lower layers capture basic concepts and higher layers 
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learn more complex patterns. CNNs are a powerful application of deep learning, 

particularly in the field of object recognition. The seminal work by LeCun et al. in 1989 

demonstrated the effectiveness of CNNs in automatically learning to recognize patterns, 

specifically in the context of handwriting character recognition. 

Since then, CNNs have become a critical component in various computer vision tasks, 

including image classification, object detection, and segmentation. Their ability to 

automatically learn and extract features from raw pixel data has led to remarkable 

achievements in image recognition and understanding. The availability of large-scale 

datasets, powerful Graphics Processing Units (GPUs), and advancements in neural 

network architectures has contributed to the success and widespread adoption of deep 

learning and CNNs. These techniques have revolutionized numerous fields, including 

computer vision, natural language processing, speech recognition, and more. The 

progress in deep learning has opened up exciting possibilities for solving complex real-

world problems and has reshaped the landscape of artificial intelligence research. 

CNNs excel at learning hierarchical representations, where filters in earlier layers detect 

simple visual features like edges and corners, and higher layers differentiate between 

different groups of images, allowing them to recognize complex patterns and make 

accurate classifications. The learning process in deep neural networks can be broadly 

categorized into three types. Unsupervised learning: In unsupervised learning, the 

network learns from unlabeled data without any specific target outputs. The objective is 

to discover underlying patterns or structures within the data. Common techniques used 

in unsupervised learning include clustering, autoencoders, and generative models. 

Supervised learning: In supervised learning, the network is provided with both input 

data and corresponding target outputs.  

The goal is for the network to learn the mapping between the inputs and the desired 

outputs. It is commonly used for tasks like image classification, object detection, and 

language translation, where the network learns to predict specific labels or values given 

input data. Semi-supervised learning: Semi-supervised learning is a combination of both 

supervised and unsupervised learning. A smaller collection of labeled data and a bigger 

set of unlabeled data are combined in this process. In order to perform better, the 
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network learns from both labeled and unlabeled input. on the task at hand. This 

approach is often used when acquiring labeled data is expensive or time-consuming. By 

employing these different learning techniques, deep neural networks can leverage both 

labeled and unlabeled data to enhance their learning capabilities and achieve remarkable 

performance on a wide range of tasks. The flexibility and adaptability of these learning 

methods have contributed to the success and widespread application of deep learning in 

various domains. 

In supervised learning, the algorithm acts like a student taking a test under the guidance 

of a teacher (the provided dataset). The algorithm is presented with input data 

(questions) and their corresponding desired outputs (correct answers). The goal is for the 

algorithm to learn from these examples and automatically map the input data to the 

correct output, just as a student strives to provide correct answers based on previous 

experiences and the teacher's guidance. If the algorithm makes mistakes during training, 

the teacher (the dataset) provides feedback in the form of correct answers, guiding the 

algorithm to make more accurate predictions in the future. The algorithm iteratively 

adjusts its parameters to minimize the difference between its predictions and the 

provided correct outputs, gradually improving its performance. 

CNNs and other deep learning techniques have indeed revolutionized the field of pattern 

recognition. They have demonstrated remarkable performance across a wide range of 

tasks, including image classification, object detection, speech recognition, natural 

language processing, and more. The ability of deep learning models to automatically 

learn hierarchical representations from data has been a game-changer, enabling them to 

capture complex patterns and features that were challenging for traditional machine 

learning approaches. The success of deep learning can be attributed to the availability of 

large-scale datasets, the development of powerful GPUs, and advancements in neural 

network architectures and training algorithms. As a result, deep learning has become the 

go-to approach in many real-world applications, pushing the boundaries of artificial 

intelligence and transforming various industries. 

In a chaotic situation, algorithms may struggle to discover meaningful and 

discriminatory features due to the randomness of the data. Similarly, in the analogy of a 
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student, the student might attempt to answer and ask questions randomly, even if they 

do not know the correct answers. This kind of learning, known as unsupervised learning, 

can be more challenging than supervised learning, where clear labels and guidance are 

provided for the learning process. In the context of image classification, unsupervised 

learning algorithms would attempt to identify patterns in the data without explicit 

knowledge of the correct labels. This can be more difficult because the algorithm needs 

to find structure and meaning in the data without any specific guidance on what to look 

for. On the other hand, in supervised learning, where labeled datasets are used to 

evaluate models, the algorithm has a clear purpose in distinguishing patterns and 

connecting input data to the corresponding correct outputs (labels). This guidance 

allows the model to learn specific features that are relevant to the task at hand, such as 

recognizing objects in images. In the past, traditional image classification approaches 

used hand-crafted features to quantify image quality and extract relevant information. 

These features were carefully designed by domain experts to represent specific 

characteristics of the data. However, with the rise of deep learning and convolutional 

neural networks, the need for hand-crafted features has diminished. Deep learning 

models can automatically learn hierarchical representations and extract relevant features 

from raw pixel intensities without explicit feature engineering. This has proven to be 

highly effective in image classification tasks, as the models can discover and leverage 

intricate patterns that might not have been apparent to human designers. Overall, the 

power of deep learning lies in its ability to learn from large-scale data directly, 

extracting complex patterns and features without the need for hand-crafted features. 

This has led to remarkable progress in various areas of artificial intelligence, including 

image classification and other computer vision tasks. 

3.2 Basics of Neural Network 

Neural biological systems primarily consist of interconnected neurons, which are the 

basic building blocks responsible for processing and transmitting signals. These neurons 

are connected through axon terminals, forming a network that facilitates the flow of 

signals in a continuous path. The connectivity between neurons enables information 

processing and communication within the neural network. In the context of ANNs, these 
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models are inspired by the structure and functionality of neural biological systems. 

Figure 3.4 illustrates a shallow ANN, which refers to a neural network with no hidden 

layer. In this case, the input layer directly connects to the output layer, and there are no  

intermediate layers for additional computations. 

Figure 3.4: Shallow ANN with no hidden layer [Breen, Vivian et.al 2014] 

In shallow ANNs, the input data is fed into the network, and the output is generated 

without any intermediate transformations or representations. Shallow ANNs can be 

useful for simple tasks that do not require complex feature extraction or hierarchical 

representations. However, for more intricate tasks that involve capturing complex 

patterns and representations, deep neural networks (DNNs) with multiple hidden layers 

are commonly used. Deep learning, as the name suggests, involves training deep neural 

networks that can learn hierarchical features from data and solve more complex 

problems effectively. Deep learning models with multiple hidden layers have shown 

remarkable performance in various tasks, including image recognition, natural language 

processing, and speech recognition. By leveraging the power of deep neural networks, 

researchers and practitioners have achieved breakthroughs and advancements in the 

field of artificial intelligence, contributing to the rapid progress in machine learning and 

its practical applications. 

3.3 The Artificial Neuron 

 

As for Figure 3.2, the output of such an artificial neuron represented as: 

 

       (3.1) 

Where Xn refers to the nth neuron input, Wn refers to the weight analogous to that 

input, θ refers to the neuron bias/threshold parameter, and N refers to the number of 
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neuron inputs. Besides, f (•) refers to the neuron's activation or transfer role, as set out in 

the section below. 

Each neuron in a network is interconnected with every subsequent neuron to which it 

has connections. This interconnection allows a neuron to receive feedback from others, 

and the signal is then amplified by the related weight. The resulting output is combined 

with outputs from other adjacent neurons in the previous layer through the process of 

induction, leading to the activation of the current neuron. Activation functions play a 

crucial role in neural networks by introducing nonlinearity to the network's behavior. 

Since the sum of linear functions remains linear, using only linear activation functions 

in a single-layer network without weight sharing would limit the network's 

representational capacity. Therefore, the use of nonlinear activation functions is 

necessary to take advantage of the expressiveness offered by multiple layers in a 

network. 

Rectifier functions, such as the Rectified Linear Unit (ReLU), are a popular choice for 

nonlinear activation mechanisms, offering an excellent alternative to traditional 

activation functions like the Hyperbolic Tangent Sigmoid. The main advantages of 

using ReLU as an activation function, as highlighted in the work by Glorot, Bordes, and 

Bengio et al. in 2011, include: 

Simplicity: ReLU is a simple function to compute, involving only element-wise 

operations, which makes it computationally efficient. 

Avoiding vanishing gradient problem: ReLU does not saturate for positive inputs, 

avoiding the vanishing gradient problem that can hinder learning in deeper networks. 

Sparse activations: ReLU induces sparsity in the network as it turns off neurons with 

negative outputs, leading to more efficient memory usage and faster computations. 

Overall, the use of nonlinear activation functions like ReLU is essential for enabling the 

expressive power of DNN and contributing to the success of DL in various tasks. 

3.4 Deep Neural Networks (DNN) 

A specific kind of neural network called a DNN classification comprises of multiple 
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hidden layers between the input and output layers. The quantity of covert layers in a 

deep neural network is not strictly defined, and the term "deep" refers to the fact that it 

has multiple hidden layers, making it deeper than traditional single-hidden-layer 

networks. Figure 3.5 represents a Deep Neural Network with three hidden layers. These 

hidden layers allow the network to learn hierarchical representations of the data, 

capturing complex patterns and features as information passes through each layer. One 

of the significant advantages of using multiple hidden layers is that it enables the 

network to act as a universal approximator, as demonstrated by Leshno, Lin, Pinkus, and 

Schocken et al. in 1993. The addition of hidden neuron layers allows deep neural 

networks to approximate a wide range of complex functions, provided that the network 

has a sufficient number of parameters and appropriate activation functions. 

The depth of the network is crucial because it allows for the transformation of the input 

data through multiple nonlinear layers. Each hidden layer tests and enhances the non-

linear alterations made by the previous layers, contributing to the network's ability to 

represent complex relationships in the data. As the network becomes more extensive, 

with more hidden layers and neurons, its capacity to capture intricate patterns and 

generalize to different data increases. This enables deep neural networks to tackle 

complex tasks, such as image recognition, natural language understanding, and speech 

recognition, with impressive performance. The concept of deep learning, with its multi-

layered architectures and powerful learning algorithms, has revolutionized the field of 

artificial intelligence and machine learning, leading to breakthroughs and advancements 

across various domains. The depth and representational power of deep neural networks 

are key factors behind their remarkable success in solving challenging real-world 

problems. 
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Figure 3.5. Structure of a DNN with three hidden layers [Adil Masood, Kafeel 

Ahmad,et.al. (2021)] 

As stated by Bengio and LeCun et al. in 2007, a deep neural network with an 

exponentially higher number of neurons (O(2n)) can be more powerful and expressive 

than a shallow network with only O(log n) layers. This property allows deep networks to 

efficiently capture complex relationships and features in data, making them capable of 

solving more challenging problems compared to shallow networks. Figure 3.5 

demonstrates a classic example of a nonlinear, separable problem known as the XOR 

(Exclusive OR) dataset. The Perceptron, being a shallow linear classifier, is unable to 

solve this problem. Drawing a single line to separate the red stars from the green circles 

in the XOR dataset is impossible due to its nonlinear nature. The data points are not 

linearly separable, and therefore, a simple linear decision boundary is insufficient to 

correctly classify the data. 

This limitation of the Perceptron and other shallow linear classifiers was one of the key 

motivations for the development of deeper neural networks with nonlinear activation 

functions. By introducing nonlinearity through activation functions like ReLU, deep 

neural networks can learn and approximate more complex decision boundaries, allowing 

them to solve problems like the XOR dataset effectively. The power of deep neural 

networks lies in their ability to learn hierarchical representations and extract intricate 

patterns from data, enabling them to address tasks that were previously considered 

challenging or even impossible for traditional shallow networks. This has been a 

significant driver behind the success of deep learning in various real-world applications, 
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making it a powerful tool in the field of artificial intelligence and machine learning. 

 

 
 

Figure 3.6: Above is Deep Neural Network with two hidden layers [Vignon,Colin et.al. 

(2023)] 

One of the fundamental challenges in the development of deeper neural networks was 

the requirement for significant computational resources, which were not widely 

available until more recent times. Traditional CPUs were limited in their ability to 

efficiently handle the extensive computations required for training large deep neural 

networks. The advent of powerful (GPUs) played a crucial role in overcoming this 

computational bottleneck. GPUs are highly parallel processing units designed to handle 

large-scale computations, particularly those used in graphics rendering. However, 

researchers and practitioners soon recognized the potential of GPUs in accelerating 

various types of numerical computations, including those involved in training deep 

neural networks. GPUs offer significant advantages over traditional CPUs for deep 

learning tasks. They can perform numerous mathematical operations simultaneously, 

allowing for massive parallelism in the computations involved in neural network 

training. This parallelism significantly reduces the training times for large networks, 

often by several orders of magnitude, when compared to running the same computations 

on CPUs. 

The tests result showed, training times for a given network can be dramatically reduced 

when using a powerful GPU. In some cases, training that would take hours or even days 

on a CPU can be completed in just minutes or seconds on a GPU, depending on the 

complexity of the network and the size of the dataset. The availability of powerful GPUs 
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has been a game-changer for the field of deep learning, enabling researchers and 

practitioners to train more extensive and complex models efficiently. This has 

accelerated progress in various deep learning applications and has played a crucial role 

in driving the widespread adoption of deep learning in numerous industries and 

domains. As technology continues to advance, we can expect further innovations that 

will enhance the performance and capabilities of deep neural networks even further. 

                  UNSUPERVISED 

 

 

 

 

 

 

 

Figure 3.7: Types of Machine Learning Models, Neural Networks and their 

properties [Shiyong Zheng et.al. (2023)] 

3.5  Deep Network Architectures 

Figure 3.7 in the section presents a range of network classes based on training and 

distance properties, along with other network architectures. It likely illustrates various 

types of deep neural network architectures, each with its own unique characteristics and 

applications. One of the architectures mentioned in the section is the autoencoder. 
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Autoencoders are a type of artificial neural network used for unsupervised learning, and 

they aim to learn a compressed and distributed representation of a specific set of inputs. 

The primary goal of an autoencoder is to reconstruct the input data as accurately as 

possible. Encoder and decoder are the two fundamental components of an autoencoder. 

The decoder attempts to recreate the original input data from the compressed 

representation after the encoder compresses the input data into a lower-dimensional 

representation. The encoder and decoder are usually symmetric in structure. Figure 3.8 

depicts a stacked autoencoder, which is a variation of the basic autoencoder. In a 

stacked autoencoder, multiple layers of encoding and decoding are stacked together. 

This stacking of multiple layers allows the autoencoder to learn more complex and 

hierarchical representations of the input data. In the training process of an autoencoder, 

the network tries to minimize the dissimilarity factor or reconstruction error between the 

original data and the reconstructed data using inverse weights. By minimizing this error, 

the autoencoder learns to capture essential features and patterns in the input data, 

leading to an effective compressed representation. Autoencoders are used for various 

tasks, including dimensionality reduction, data compression, denoising, and feature 

learning. They have found applications in areas such as Digital Image Processing, 

computer vision, and natural language processing. 

Overall, autoencoders are valuable tools for unsupervised learning, allowing neural 

networks to learn efficient representations of data without the need for explicit labels or 

supervision. Stacked autoencoders, in particular, have demonstrated their effectiveness 

in capturing hierarchical features and have been a significant contribution to the field of 

deep learning. 
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Figure 3.8: Deep neural network architectures [Zhang, Minhao, et.al. (2022)] 

 
 

Figure 3.9: Stacked Auto encoder [Truong, D. et. Al. (2019)].  

 

 
 

Figure 3.10: Recurrent Neural Network [Bengio et al., 2007] 

 

One of the most valuable benefits of stacked automatic encoders: ease of use layer by 

layer (Bengio et al., 2007), which enables them to learn from unchecked input encoding. 
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3.6 Recurrent Neural Networks (RNN)  

Current neural networks often incorporate time-based encoding information through 

architectures RNNs (Hochreiter & Schmidhuber, 1997), as shown in Figure 3.10. RNNs 

are designed to process sequential data, such as time series or natural language, where 

each input is associated with a specific time step. The activation characteristics of 

neurons in RNNs are influenced not only by the current input but also by the recent 

input history, allowing them to remember past information and maintain short-term 

memory. In RNNs, the weights of the connections among neurons can be interpreted as 

a form of long-term memory. These weights are learned and adapted based on the 

network inputs and the temporal relationships in the data. Over time, the network 

gradually changes these weights as it processes data sequentially. However, RNNs have 

limitations in capturing long-term dependencies, as they can suffer from the vanishing 

gradient problem. This problem arises when the gradients become too small as they are 

back-propagated through time, making it difficult to learn dependencies that span long 

sequences. To address this issue, variants like Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) were introduced, which have gating mechanisms that 

allow them to better capture long-term dependencies and mitigate the vanishing gradient 

problem. 

Figure 3.11 illustrates a feature map generated by a convolutional layer in a CNN. 

CNNs are designed to recognize patterns and features in spatial data, such as images. 

The feature map is a visualization of the response of a specific filter (or kernel) to 

different regions of the input data. Each color in the feature map corresponds to the 

strength of the filter's response at a particular location. The blue-colored neurons 

represent the basis of activation, indicating the neurons that are activated and contribute 

to the specific features detected in the input data. CNNs use convolutional filters to scan 

the input data and learn relevant patterns, which are then represented in the feature map. 

Both RNNs and CNNs are powerful tools in the field of deep learning, and they have 

enabled significant advancements in various applications, including sequence-to-

sequence tasks, image recognition, natural language processing, and more. 
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Figure 3.11: Feature map through a convolution layer [BN. Chandrasekhar et.al. 

(2020)] 

3.7 Convolutional Neural Networks 

➢ Use different network designs as Convolutional Neural Networks or (LSTM) 

Long Short-Term Memory Networks. 

➢ You are doing deep learning if the network gaining depth is less than 2. 

The statement discusses the concept of deep networks, implying that networks with a 

depth greater than 10 can be considered "deep" networks. If a network has a depth of 

over 10, it suggests a more complex architecture with multiple layers, indicating a deep 

learning model. The statement also highlights the historical development of deep 

learning over the past sixty years, emphasizing that profound training has been a subject 

of research across various educational institutions. Different researchers and think tanks 

have focused on understanding the function and structure of artificial neural networks, 

drawing inspiration from the workings of the human brain. Machine learning involves 

the utilization of artificial neural networks regardless of their size, width, or advanced 

architecture. However, some types of problems, particularly those involving visually 

detailed data, may not be well addressed by standard network architectures. The 

statement points out that the proliferation of weights in deep layers can lead to weak 

gradients, which can be a challenge in training deep networks. 
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One major downside of standard network architectures is their limited consideration of 

spatial input structures, such as images. The statement proposes the use of network 

structural design to leverage the spatial properties of the data and reduce the training 

constraints. This can be achieved by employing convolutional layers with shared filters 

that apply to spatially organized inputs, leading to output maps with similar spatial 

structures. Figure 3.12 illustrates the concept of Local Contrast Normalization (LCN) 

with a kernel size of 2x2 over a 4x4 serial input. LCN is a technique used to enhance the 

contrast of features in an image or input, helping the neural network focus on important 

details and patterns. The output matrix boxes represent the outputs generated by the 

LCN kernels over the inputs displayed in the same colored boxes. 

 
 

Figure 3.12: The operation of Local Contrast normalization [Patrik Kamencay 

et.al. (2017)] 

 

Figure 3.13: The max-pooling operation [Patrik Kamencay et.al. (2017)] 

Figure 3.13 illustrates the max pooling operation with a kernel size of 3x3 and a stride 

of 1 applied to a 4x4 input. The colored boxes on the left side represent max-pooling 

kernels, and the corresponding colored boxes on the right side display the maximum 

pooling outputs. The process involves using the filter at different positions of the input 
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matrix and selecting the maximum value within each filter's receptive field. When 

dealing with network inputs in a two-dimensional matrix structure, such as images, the 

weight layer between a 2D input patch and a single neuron output is represented as a 

filter or kernel.  

These filters are repeatedly applied at multiple positions (they can overlap) across the 

input to generate outputs with a 2D activation matrix. By using the max pooling 

operation, the network gains an understanding of the spatial arrangement of the input 

data. Max pooling helps reduce the spatial dimensions of the data while retaining the 

most relevant features, enhancing the network's ability to recognize patterns and spatial 

relationships in the input data. Overall, Figure 3.12 demonstrates how max pooling, with 

appropriately chosen kernel size and stride plays a significant role. in spatial data 

processing and contributes to the network's spatial awareness and ability to capture 

important patterns in the data. Assume that a matrix which is 2-D in size I x J and the 

size of Î x Ĵ for Convolutional layer translate into a two-dimensional input room, with a 

stride Î & Ĵ. This layer brings into being the size of the output  X  . The neurons 

layers calculate their Activations based on equation 3.1 

∀𝑖 ∈                 (3.2) 

Where the ith row and jth column in the input and output space are denoted by xi, j, and 

yi, j, the primary feature of convolutionary layers is the combination of the filter weights 

at different points throughout the input. 

3.8 Max-Pooling 

The construction of a convolutional layer in a neural network involves applying a 

function that captures patterns defined in the input space at specific locations. If this 

function is shifted to a different location in the input, the activation pattern of the layer 

will still be similar, but proportionally transformed. The goal of this process is to create 

a degree of invariance to small input irregularities and provide robustness to the filters. 

The convolutional layer typically operates by reading a 2-D input patch (also called a 

receptive field) and computing a single output value based on the features present in the 
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input patch. This process is repeated across the entire input data, preserving the spatial 

information of the data region.         

Pooling is an essential operation in CNNs, and it involves subsampling the output of the 

previous layer to reduce its spatial dimensions. The pooling operation does not involve 

any weights; it acts as a downsampling step. One common type of pooling is max 

pooling, where the output value is determined by selecting the maximum value from the 

input patch. For example, in max pooling, the output value is the maximum value 

calculated from a given 2-D input patch X. This process helps to reduce the spatial 

dimensions of the data while retaining important features and creating a degree of 

translation invariance in the network. Max pooling has been a widely used technique in 

CNNs for handling spatial information in image recognition tasks and achieving higher 

accuracy and robustness. 

𝑦 = max (𝑋)                                (3.3) 

 

It cannot be regarded as a place on the input room but rather as a function in the field of 

the input area. The overlapping kernel activity is displayed in Figure 3.13. 

3.9 Understanding Transfer Learning 

Transfer learning is a concept that is dedicated to deep learning. As compared to 

traditional learning in which the system is designed and dedicated to a particular task, 

transfer learning is the process in which anyone can leverage weights, features, etc. 

from a model that is pre-trained and can be used to train a new model which is even 

having lesser number of datasets. 
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Figure 3.14: Transfer Learning [Priyanka Gupta et.al. (2021)] 

3.10 Transfer Learning for Deep Learning 

Many misconceptions are popular in context with deep learning. The most popular 

one is that deep learning cannot be done until and unless anyone is not having millions 

of labeled examples for any problem. The truth is that the unlabeled data can also be 

trained, and the training can be done on the nearby surrogate objective and for those, the 

labels can be easily generated. The learned representation can also be transferred from 

any related task, as shown in Figure 3.14. 

3.11  Shelf Pre-trained Models as Feature Extractors 

Deep learning is the process in which different layers present in a network used for 

learning different features. These layers finally connected to the last layer from which the 

final output is achieved. So basically, we can utilize this layered architecture to extract the 

features without utilizing its final fully connected layer. The main question that arises here is 

that if these networks perform well in actual practice. The literature has proved that such                       

networks are strong enough to perform well in different tasks. 
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3.12 Pre-trained Models 

One of the standard requirements of transfer learning is the models that can handle the 

task in hand. Fortunately, the world of deep learning believes in sharing. There are 

plenty of deep learning architectures that are available for people and research 

community by the developers and team of those networks, and those networks are 

state of the art networks. In deep learning, the most common and popular fields are 

computer vision and Natural language Processing. The models that pre-trained and 

available are huge in count in terms of weight and parameters that model achieves while 

training. All these pre-trained models are available in different forms, and the most 

popular deep learning Python library is Keras, via which the most popular models can 

be downloaded. Not only that, but one can also download various web sources, and most 

of them are open-sourced. 

 
 

Figure 3.15: Representation of Deep neural networks learn hierarchal feature    

representations [Taye, M.M et.al. (2023)] 

 

Some popular models for computer vision are: 

➢ VGG-16 

➢ VGG-19 

➢ Inception-V3 

➢ RestNet50 
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CHAPTER 4 

Segmentation of Tumor Regions in Magnetic Resonance Images with 

Tailored Convolutional Neural Networks 

4.1 INTRODUCTION 

In today's era, brain tumors pose a significant health challenge in various countries due to 

factors like global warming, genetic predisposition, and occupational influences. 

Gliomas, the most aggressive type of brain tumor, result in a shortened lifespan with high 

severity. The chapter highlights that early detection of brain tumors is crucial for 

successful treatment outcomes. By identifying tumors in their initial stages, patients can 

benefit from more effective therapies and better prognosis. 

While MRI can easily pinpoint the location of tumors, the substantial amount of MRI-

generated data makes manual segmentation time-consuming. This in turn limits the 

practical use of dependable quantitative methods in clinical settings. The demand for an 

automated and dependable solution for accurate tumor segmentation is evident. 

Concurrently, cancer, amplified by the aging population, has evolved into a worldwide 

health concern. As indicated by the latest data from the World Cancer Research Fund, 

cancer stands as the most fatal global ailment. Annually, approximately 12.7 million 

individuals receive a cancer diagnosis, with 7.6 million losing their lives to it. The annual 

mortality rate due to cancer continues to climb, underscoring the urgency of the issue.  

Extensive information on most cancer sub types is a challenge due to their abundance. 

Following stomach, uterine, breast, and esophageal cancer, brain cancer stands as the 

fifth most prevalent in terms of both occurrence and fatality. The WHO reports an excess 

of 120 diverse brain tumor types. Classification relies on factors such as location, tissue 

type, presence of non-cancerous or cancerous cells (benign or malignant), origin (primary 

or secondary), and other key attributes. Precise determination of the proportional volume 

of brain tumor sub components holds significant importance for purposes like monitoring 

progression, planning radiation treatments, assessing outcomes, and conducting follow-

up examinations.  

Brain tumors encompass growths that emerge from brain tissue or its immediate 
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surroundings. Primary tumors are categorized based on factors like benign or malignant 

nature, composition of glial cells or non-glial elements, and their origin within brain 

structures, encompassing nerves, blood vessels, and glands. Tumors can be either glial or 

non-glial. Additionally, metastatic tumors, which stem from other body parts such as the 

lungs or breasts and spread to the brain, often via the bloodstream, are typically 

malignant and cancerous. The manual segmentation of tissues presents significant hurdles 

for human experts due to the diverse appearances that tumors can assume and the 

necessity to analyze multiple images derived from various MRI sequences for accurate 

tissue classification. This intricate process is prone to human inaccuracies and time-

consuming efforts, leading to substantial levels of variability among different raters and 

even within the same rater. 

Manual segmentation proves to be a time-intensive and challenging endeavor in the 

context of MRI scans due to their complex multi-modality and the voluminous nature of 

the 3D images. Moreover, the subjective experiences of the raters can introduce errors 

into the manual segmentation process. Consequently, there is a considerable demand for 

fully automated and precise methodologies for brain tumor segmentation in practical 

applications. Nonetheless, crafting an accurate brain tumor segmentation system remains 

a formidable undertaking, primarily due to several factors. Firstly, tumors exhibit diverse 

shapes and internal structures. Secondly, the variable positions of tumors and the 

influence of the "tumor bulk effect" lead to a wide spectrum of appearances in the 

surrounding normal tissues. Thirdly, the boundaries between normal and malignant 

tissues frequently lack clarity, posing challenges in their differentiation. To develop MRI 

classifiers, it is essential to label training data with tissue types. However, expert labelling 

is subjective and often focuses on specific areas with high confidence in labeling 

accuracy. Incorporating model uncertainties can improve the segmentation process as it 

enables human experts to effectively address uncertain cases. A Bayesian deep learning 

approach, which not only predicts outcomes but also quantifies uncertainty for individual 

pixels, offers a means to estimate this uncertainty. This involves utilizing probability 

distributions for model weights rather than relying solely on deterministic weights of the 

model. 
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Medical images play a pivotal role in diagnosing, planning treatments, and monitoring 

cancer patients. Determining the size and location of tumors is often integral to treatment 

strategies. Clinicians face the task of manually delineating target volumes for radiation 

planning, which proves to be demanding and time-intensive. In the realm of brain cancer 

imaging, MR images offer invaluable insights. Different MR sequences, such as T2, T2-

FLAIR, T1, and T1 with gadolinium, unveil distinct tumor subcomponents like edema, 

necrosis, and the contrast-enhancing core. Recent years have witnessed remarkable 

accomplishments by machine learning algorithms in various image recognition 

applications. CNNs are the backbone of most advanced segmentation techniques. 

However, directly extending segmentations derived from high-quality data to multi-

channel images may result in diminished segmentation accuracy. 

CNNs offer a noteworthy advantage by autonomously grasping essential features within 

images. This capability holds particular significance for tumor segmentation. CNN-

driven techniques have remarkably excelled on the latest four iterations of the BRATS. 

Most machine learning-driven segmentation algorithms heavily rely on manually 

annotated images. The cost of such annotations is notably substantial in medical imaging 

due to the time-intensive nature and the necessity for profound medical expertise. In 

cases of MRI or CT scans, the image intensity of malignant tissues often resembles that 

of adjacent healthy or affected tissues, introducing complexity and subjectivity to precise 

tumor delineation. Therefore, approaches that can leverage images with less elaborate 

annotations are of special interest. Deep learning models, like deep neural networks, 

exhibit remarkable potency in this regard. This study introduces a new method for brain 

tumor segmentation utilizing a cascaded UNET architecture. Initially, the images are 

resized to dimensions of 128x128 pixels to ensure optimal computational efficiency. 

Moreover, an improved adaptive gamma correction technique is applied to enhance pixel 

quality in the input images. The training and validation process is conducted using 

selected image slices containing tumor regions. Previous research achieved notable 

results with an accuracy of 98.12% and a specificity of 97.43%. The presented model is 

validated using the BraTS 2020 dataset and yields an impressive accuracy of 99.78%. 

Notably, compared to existing methods, the suggested method performs better, 
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demonstrating significantly improved accuracy. 

However, the approaches discussed earlier possess both advantages and drawbacks. 

Notably, the previous methods suffer from challenges related to computation time and 

accuracy. The primary objectives of this study include: 

a) To conduct tumor segmentation encompassing three distinct areas: the 

edematous, enhancing, and non-enhancing tumor regions. 

b) To enhance the algorithm's versatility in handling diverse MRI images 

produced by different imaging machines. 

c) To execute the prediction process using high-resolution MRI images while 

minimizing computational complexity. 

4.2 Proposed Methodology 

4.2.1 About UNET 

U-Net is a convolutional neural network architecture designed primarily for biomedical 

image segmentation. Developed by Olaf Ronneberger and his colleagues in 2015, U-Net 

quickly became one of the most widely adopted models for segmentation tasks due to its 

simplicity and effectiveness. Unlike traditional image classification models, which focus 

on identifying objects in an image, U-Net excels at pixel-wise classification, making it 

ideal for tasks where the precise location and boundaries of objects are important, such as 

in medical imaging, satellite image analysis, and autonomous driving. Advantages of U-

Net are High Accuracy, Efficiency and Flexibility. 

The U-Net architecture is CNN architecture primarily for use in the field of biomedical 

image analysis when performing image segmentation jobs. A contracting path, also 

known as the encoder, and an expanded path, also known as the decoder, make up the 

characteristic U-shaped structure of the U-Net design. This layout enables the network to 

take pictures both contextual information and fine-grained details, making it highly 

effective for segmenting objects or regions of interest within images. Overall, U-Net's 

unique architectural design and its advantages make it a powerful tool for various image 

segmentation tasks, particularly in the context of biomedical image analysis. 

4.3  Proposed Tumor Region Segmentation from MRI Images 

Brain tumor segmentation from MRI data can be effectively achieved through the 
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application of UNET architecture. The proposed MRI image segmentation process is 

visually depicted in Figure 4.1. The procedure commences by reading and preprocessing 

input slices. Initially, slices are extracted from the image database, specifically focusing 

on those slices that exhibit tumor regions. These selected slices are then employed for 

both training and validation phases. The analysis of the slices is facilitated by referencing 

mask data present within the dataset. To streamline the network model's complexity and 

reduce memory consumption, a preliminary step involves downsizing the images to 

dimensions of 128 × 128 pixels before applying enhanced adaptive gamma correction. 

Subsequently, the UNET architecture is trained concurrently using distinct masks 

representing the enhancing tumor, non-enhancing tumor, and edema regions. The trained 

UNET model is subsequently harnessed to execute the testing phase during the final stage 

of the validation process. 



96 
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Figure 4.1 Proposed Brain Tumor segmentation using parallel UNET [Ramu, B., & Bansal, S. 

(2024)] 
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For the classification of the three distinct regions, a dedicated set of three UNETs is 

employed. These UNETs undergo individual training processes based on the edema 

mask, the non-enhancing tumor mask, and the enhancing tumor mask, respectively. 

These regions exhibit distinct attributes, including pixel density, intensity fluctuations, 

and textural patterns. This information is harnessed to educate the UNETs, enabling them 

to effectively discern and categorize the three diverse tumor regions. In the initial training 

phase, various mask images sourced from the database, each labeled differently, are 

utilized. Prior to training, a down sampling procedure is implemented to optimize 

computational efficiency during the convolutional process. The choice of an optimal 

image size strikes a balance between performance and computational speed. It is 

important to note that reducing the image size may potentially impact training 

performance, which could subsequently lead to a reduction in classification accuracy. 

The testing phase involves loading individual images into the respective UNETs 

following image enhancement and resizing procedures. This process yields segmentation 

maps for each tumor region through their corresponding trained UNET architectures. 

These segmented tumor regions are then consolidated to identify the distinctive attributes 

of each region. The segmentation results are independently generated by the three 

previously mentioned UNET models. To mitigate model discrepancies and amplify 

segmentation performance, a weighted voting technique is employed for producing a 

fused segmentation outcome. This approach effectively decreases model variation and 

contributes to an improved overall segmentation performance. 

The proposed MRI image classification procedure utilizes Algorithm 1. The process 

initiates with the reading of a training image from the dataset IdB. Sequentially, each kth 

image Ik and its corresponding Mask Mik are processed through preprocessing and 

resizing steps. Subsequently, the Mask Mik is resized to dimensions of 128x128, aimed at 

reducing computational complexity. The arrangement of images for the training phase is 

based on information contained within the mask data. For images with non-empty masks, 

the masks are accumulated for the training process. The images are then categorized 

based on the labels present in the masks, resulting in the creation of Enhancing Tumor 

Mask MkET, Non-Enhancing Tumor Mask MkNET, and Edema Mask MkER. The 
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training process ensures using input images alongside the generated mask data. The 

process culminates with the execution of both training and validation stages to 

comprehensively assess the performance of the algorithm. 

Algorithm: 1. Algorithm for Proposed MRI Image Classification 

Input: Training Image Dataset IdB 

Output: Trained , ,  

              : Segmentation Map  

1 Get Number of Images N from Database 

2 For k=0 to N-1 

3      Read Image , and Mask  

4      = Resize ( ,) 

5 
     Perform Improved adaptive gamma correction on , using threshold  

6      If (~Empty ( ,)) 

7 

              Extract 

a) Enhancing Tumor Mask  

b) Non-Enhancing Tumor Mask  

c) Edema Mask  

8           Collect All Mask in a variable for training , ,  

9           Collect All Mask in a variable for training  

10 

Perform Training UNET using , , 

                                                  , , 

                                                        ,   

Using Loss function  

11 Generate Trained , ,  

12 Perform Testing on Trained , ,  

13 Generate  

4.5 Improved Adaptive Gamma Correction 

Improved Adaptive Gamma Correction (IAGC) is a technique used in Digital Image 

Processing to enhance the visual quality of images by adjusting the gamma correction 

parameter in a more intelligent and adaptive manner. Gamma correction is a non-linear 

operation applied to images to account for the non-linear behavior of display devices 

such as monitors and screens. It helps ensure that the perceived brightness levels of an 

image match the actual intensity levels. Traditional gamma correction involves applying 

a fixed gamma value to the entire image, which might not always provide the best results. 

Improved Adaptive Gamma Correction, on the other hand, takes into consideration the 

local characteristics of an image and adjusts the gamma correction parameter 
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accordingly. This can lead to better contrast, improved visibility of details, and overall 

enhanced visual quality. The process of Improved Adaptive Gamma Correction typically 

involves the following steps: 

➢ Image Analysis 

➢ Local Gamma Calculation 

➢ Gamma Adjustment 

➢ Image Enhancement 

➢ Smooth Transition 

Improved Adaptive Gamma Correction can be particularly useful in scenarios where 

images have varying lighting conditions, complex lighting environments, or areas with 

extreme contrast. It can be applied to various fields such as photography, medical 

imaging, computer graphics, and more, to provide images that are more visually pleasing 

and informative. It is important to note that specific implementations of Improved 

Adaptive Gamma Correction can vary, and there might be different algorithms or 

approaches that fall under this concept. The precision of the analysis and the caliber of 

the local gamma correction computations determine how well the procedure performs. 

The techniques may not effectively enhance the quality of images captured under normal 

lighting conditions, as these conditions are considered unsuitable for augmentation based 

on AGC. To strike a balance between improved quality and technical feasibility, the 

value of ’t’ is established through experimental evaluation. For contrast enhancement and 

brightness restoration, an Adaptive Gamma Correction (AGC) approach is employed. 

Specifically, the negative image-based AGC technique is utilized for bright images, while 

the Cumulative Distribution Function (CDF) truncation method is applied for dimmed 

images. This combination of approaches ensures effective enhancement of both bright 

and dimmed image types while accommodating the intricacies of their respective lighting 

conditions. 

                       (4.1) 

As the anticipated average brightness for typical natural photographs, the constant Tt is 

established. Evidence obtained from numerous standard images databases suggests that 

Tt is best set around 128 for 8-bit images, or about half of the maximum pixel intensity. 



100 
 

When analyzing a source image, if the threshold 't' falls below -Tt, the image is classified 

as dimmed; conversely, if 't' surpasses Tt, the image is considered bright. It is important 

to note that images with normal illuminance are not amenable to AGC-based 

augmentation and are therefore excluded from our methods. The selection of ‘t’ is made 

through empirical analysis, carefully balancing the quest for enhanced quality with the 

practical feasibility of the approach. For images falling into the bright and dimmed 

categories, the AGC technique based on negative images and the CDF truncation method 

are employed to respectively achieve contrast enhancement and brightness restoration. 

This approach effectively tailors the enhancement strategies to address the specific 

characteristics of bright and dimmed images, providing comprehensive image 

improvement. 

 

Figure 4.2 Block diagram for Improved Adaptive Gamma Correction [Ramu, B., & Bansal, S. 

(2024)] 

Figure 4.2 illustrates the block diagram outlining the process of enhanced adaptive 

gamma correction. The Digital Image Processing is contingent on the classification of the 

image type. In the case of a bright image, the process involves applying a negative image 

transformation, followed by adaptive gamma correction. Here's a breakdown of the process 

based on the image: 

The block diagram represents a process for enhancing images based on their brightness. It 

begins with an input image, which undergoes a classification based on its brightness level 
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into one of two categories: bright image processing or dimmed image processing. This 

categorization occurs at the decision point labeled "Type." 

For bright images, the process starts with the creation of a negative image, which inverts 

the colors of the original input. Following this, an automatic gain control (AGC) step is 

applied. AGC adjusts the contrast of the image to optimize the brightness and detail. 

After the AGC step, the image is reversed, restoring it to its original orientation but now 

enhanced in terms of contrast and brightness. The result is a visually improved image 

with more detail and balance in the bright areas. 

For dimmed images, a different path is followed. First, a truncated cumulative 

distribution function (CDF) is applied. The truncated CDF adjusts the image's histogram, 

limiting extreme values in order to enhance details in darker areas while preventing 

overexposure. Following this, AGC is also applied to further optimize contrast, adjusting 

the dim areas to reveal more details. The outcome is an enhanced image with improved 

visibility in darker regions. Both the bright and dimmed image processing paths lead to a 

final "Enhanced Image" output, which presents improved contrast, clarity, and visibility. 

This system, combining negative image inversion, histogram adjustments (CDF), and 

AGC, works dynamically based on the initial brightness of the input image, ensuring 

appropriate enhancement is applied for both bright and dimmed images. This method is 

especially useful in medical imaging, where clarity in both bright and dark areas is 

essential for accurate diagnosis. 

4.6 Convolutional Neural network UNET 

U-Net stands as a convolutional neural network initially devised for segmenting 

biological images within the medical domain. The core principle revolves around 

enhancing a standard contracting network by appending consecutive layers. These newly 

added layers replace pooling operations with upsampling operators, thereby yielding 

performance enhancements. Consequently, this sequence of layers contributes to an 

enhanced resolution of the output. Subsequently, a following convolutional layer has the 

capacity to acquire insights from the preceding layer's information and generate a refined 

output, thus contributing to the network's accurate segmentation capabilities. The 

architecture of the network comprises two distinct paths: a contracting route and an 
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expanding path, culminating in a U-shaped network design. The contracting route mirrors 

a conventional convolutional network structure, involving the repeated application of 

convolutions, each followed by a rectified linear unit (ReLU) activation and a subsequent 

max-pooling operation. This sequence is iterated to achieve spatial contraction while 

simultaneously amplifying feature information. In contrast, the expansive route focuses 

on combining feature and spatial information from the contracting path with high-

resolution data. This is achieved through a series of up-convolutions and concatenations, 

which effectively integrate the acquired information. The amalgamation of these two 

routes results in the distinctive U-shaped network architecture, enabling the network to 

effectively capture and refine features across different scales while maintaining spatial 

information. 

    (4.2) 

Where  is the arrangement notch is agreed by the organization to the ground truth 

for pixel (x,y) of the ith image of the consignment and  is the assumed heaviness to 

the pixel. Since cancer pixels just make up a little level of the image, the loads are 

utilized to lessen the impact of class unevenness. 

4.7  Training  

During the network's training process, The Caffe stochastic gradient descent 

implementation is paired with input images and the appropriate segmentation maps. This 

integration generates segmentation maps. To maintain a consistent border width between 

the output image and the input image, unpadded convolutions are employed on the input 

image. Notably, large input tiles are distributed across a sizable batch size. This approach 

reduces the batch size to a single image, there by conserving computational overhead and 

optimizing GPU RAM utilization. In our optimization stage, a high momentum value of 

0.99 is utilized to ensure that a substantial number of previously processed training 

samples contribute to the update process. The energy function is computed by applying 

softmax over the final feature map and subsequently combining the outcome with the 

cross-entropy loss function. The softmax function is defined as part of this process. This 

comprehensive approach during the training phase aids in effectively enhancing the 

network's performance and segmentation capabilities. 



103 
 

pk(x) = exp(ak(x))/    k=1 exp (ak (x))  (4.3) 

In the given context, the notation ak(x) represents the activation in the feature channel 

denoted by 'k' at the pixel position 'x', where 'x' belongs to the set Ω contained within Z2. 

The value 'K' signifies the total number of classes, and pk(x) represents an approximation 

of the maximum function. Specifically, pk(x) is approximately equal to 1 for the class 'k' 

that possesses the highest activation ak(x), while it approximates to 0 for all other classes 

'k'. Consequently, the cross-entropy mechanism functions by penalizing deviations from 

the ideal value of 1 at each pixel position, as defined by p(x)(x). This deviation 

assessment is a crucial element for optimizing the network's performance and aligning 

the segmentation outcomes more accurately with the desired results. 

                           (4.4) 

In the given context, the notation Ω → {1. . . K} denotes the true label assigned to each 

pixel, while w: Ω → R represents a weight map that has been introduced to assign 

varying degrees of importance to different pixels during training. The inclusion of this 

weight map is essential for several reasons: firstly, it compensates for the varying 

frequencies of pixels belonging to specific classes within the training dataset; and 

secondly, it encourages the network to effectively learn and distinguish the finer borders 

separating adjacent cells, which are introduced in the dataset. To accurately capture these 

separation borders, morphological operations are executed on the data, culminating in the 

calculation of the weight map. This weight map is subsequently derived using the 

following methodology: 

       (4.5) 

In the given expression, wc: Ω → R corresponds to the weight map introduced for the 

purpose of balancing class frequencies. Additionally, d1: Ω → R represents the distance 

from each pixel to the border of the nearest cell, while d2: Ω → R signifies the distance 

to the border of the second nearest cell. In our experimental setup, we set the values of 

w0 to be 10 and σ to be approximately 5 pixels. In the context of deep networks 

characterized by multiple convolutional layers and diverse pathways, the proper 

initialization of weights holds significant importance. Improper initialization can lead to 

certain sections of the network displaying excessive activations, while other portions 
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remain relatively dormant. To address this concern, it is crucial to modify the initial 

weights in such a way that each feature map within the network attains approximately 

unit variance. This strategy aids in achieving a more balanced and effective flow of 

information throughout the network, thereby enhancing its overall performance 

In the case of our designed network, which incorporates alternating convolution and 

ReLU layers, the appropriate weight initialization is possible by selecting initial weights 

from a Gaussian distribution with a standard deviation of 2/N. Here, 'N' corresponds to 

the number of input nodes for a specific neuron. This method is particularly suited to our 

design where convolution and ReLU layers are interchanged. To elaborate, the goal is to 

ensure that the starting weights of each feature map within the network exhibit roughly 

unit variance. This is realized by sampling weights from a Gaussian distribution with a 

standard deviation of 2/N, where N is determined by the number of input nodes for a 

given neuron. For example, if we consider a scenario involving a 3x3 convolution and 64 

feature channels in the preceding layer, the value of N would be calculated as 9 x 64 = 

576. This weight initialization strategy contributes to a balanced and effective 

information flow throughout the network, optimizing its overall performance. 

 
Figure 4.3 UNET Architecture used for MRI segmentation[Ramu, B., & Bansal, 

S. (2024)] 
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Figure 4.3 depicts the UNET Architecture employed for MRI segmentation. The input 

image undergoes resizing to dimensions of 128x128, which serves as the input layer size 

for the UNET. The UNET architecture, tailored for MRI image segmentation, is 

structured with a total of 9 layers, each fulfilling distinct roles as visualized in Figure 4.3. 

The culmination of this architecture is marked by the final layer, which is pivotal for the 

decision-making process. This layer incorporates the sigmoid activation function, a 

mathematical operation that facilitates the decision-making process by determining the 

probability of the presence of certain features or attributes within the segmented image. 

This activation function enhances the network's ability to make accurate and meaningful 

segmentation decisions based on the input data.  

4.8 Result and Discussion 

The envisioned MRI segmentation approach is realized through Python programming 

within the Kaggle environment. Direct access to the BraTS 2020 database is facilitated 

using Python commands, enabling efficient data retrieval. Specifically chosen slices from 

the database are employed for both the training and validation phases of the process. The 

implementation of the proposed UNET architecture is coded utilizing the Tensor Flow 

and sklearn libraries, harnessing their capabilities to create the required architecture and 

facilitate efficient training and validation processes. It is important to note that 

comprehensive details about the BraTS 2020 dataset are provided in the subsequent 

section, shedding light on the dataset's composition, characteristics, and relevance to the 

segmentation task. This thorough description offers valuable insights into the dataset's 

significance within the context of the proposed MRI segmentation endeavor. 

4.9 Dataset 

The BraTS 2020 dataset utilized in this research to evaluate the performance of the 

suggested network. The dataset includes 369 multimodal brain MR studies for training, 

125 for validation, and 169 for testing. These studies use fluid-attenuated inversion 

recovery (Flair) sequences, T1-weighted (T1), post-contrast (T1ce), T2-weighted (T2), 

and T2-weighted (T1) images. All MR images share a consistent size of 240 × 240 × 155 

pixels. Furthermore, experts have meticulously annotated key regions within each study, 

specifically the enhancing tumor (ET), peritumoral edema (ED), and the necrotic and 
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non-enhancing tumor core (NET). These annotations provide crucial ground truth data for 

training and validation purposes. Notably, the annotations for training studies have been 

made publicly available for online evaluation and as part of the final segmentation 

competition. However, the annotations corresponding to validation and test studies are 

deliberately withheld to ensure unbiased and rigorous evaluation of segmentation 

algorithms. This dataset's comprehensive composition and annotations offer a robust 

foundation for assessing the proposed network's segmentation performance in the context 

of brain tumor MR imaging. 

  

  

(a) (b) 

Figure 4.4 Examples of the dataset's Images (a) Input image, (b) 

Mask 

Figure 4.4 illustrates a set of sample images sourced from the BraTS 2020 dataset. In 

Figure 4.4 (a), the displayed image slices represent input images derived from the BraTS 

2020 dataset (https://www.kaggle.com/datasets/awsaf49/brats2020-training-data). On the 

other hand, Figure 4.4 (b) showcases a mask image extracted from the same database. 
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The mask image delineates various regions within the MRI images. The black region 

within the mask corresponds to the background of the MRI image. The white region 

signifies the non-enhancing tumor area. Meanwhile, the gray region represents the 

enhancing tumor region, and the middle region of the mask depicts the edema present in 

the brain MRI. This visualization effectively provides insight into the different regions of 

interest that are annotated within the images, thereby facilitating a better understanding of 

the dataset's composition and the context in which the proposed segmentation is 

performed. 

 

  
  

 
 

Figure 4.5 Improved image using Enhanced adaptive gamma 

correction technique (a) Input image, (b) Enhanced adaptive gamma-

corrected image. 
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Figure 4.5 presents the outcome achieved through the utilization of the enhanced adaptive 

gamma correction technique. In Figure 4.5(a), the displayed image represents the input 

image under consideration. In Figure 4.5(b), the image depicts the output obtained after 

the application of the enhanced adaptive gamma correction process. It is evident from the 

comparison that the utilization of enhanced adaptive gamma correction yields 

improvements, particularly evident in the texture region of the tumor portion, as 

illustrated in Figure 4.5(b). This enhancement contributes to a clearer and more distinct 

representation of the specific features and characteristics present within the tumor area, 

underscoring the effectiveness of the applied technique in refining image quality and 

information. 

4.10  Result Analysis 

4.10.1 Accuracy 

The accuracy of a system is quantified as the proportion of correct predictions in relation 

to the total number of predictions made. Notably, the proposed approach exhibits a 

notably higher accuracy compared to previous methods. 

                                               (4.6) 

4.10.2 Sensitivity 

The accuracy of a system is assessed by calculating the ratio of accurate predictions to 

the total number of predictions made. Importantly, it is worth noting that the proposed 

approach demonstrates a significantly superior level of accuracy when compared to 

previous methods. 

                                                     (4.7) 

In this context, the terms are defined as follows: 

TP (True Positives): Positive instances that are correctly classified as positive. 

FP (False Positives): Negative instances that are incorrectly classified as positive. 

TN (True Negatives): Negative instances that are correctly classified as negatives. 

FN (False Negatives): Positive instances that are incorrectly classified as negatives. 

These elements form the basis for evaluating the performance of a classification system 

by assessing the accuracy of its predictions.  
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4.10.3  Specificity 

The ratio of true negative samples to all of the negative samples in the data set is what's 

meant by this term. It should be elevated. The calculation of the specificity is                                                 

                                (4.8) 

4.10.4  Precision 

Precision defines how much was correctly classified as positive out of all positives. The 

formula for calculating precision is given below  

                                         (4.9) 

4.10.5  F1 Score 

The F1 Score is a metric that takes into account both precision and recall in a 

classification system. It is calculated as the harmonic mean (average) of precision and 

recall. The F1 Score is particularly useful when there is a need to strike a balance 

between precision and recall within the system. The F1 score can be computed using the 

following formula this formula encapsulates the combined influence of both precision 

and recall, providing a comprehensive assessment of the classification system's 

performance. 

                           (4.10) 
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Figure 4.6 (a) Input images from the dataset (b) Segmented Enhancing Tumor 

Region, (c)Non enhancing Tumor, (d) Edema image 

 

Figure 4.6 visually presents the input images and the corresponding generated 

segmentation maps. Specifically: In Figure 4.6 (a), a sequence of three successive input 

slices derived from the MRI of individual 1 is depicted. Figure 4.6 (b) displays the 

segmentation map produced through the application of the UNET trained to identify the 

enhancing tumor region. Figure 4.6 (c) illustrates the segmentation map generated using 

the UNET trained to identify non-enhancing tumor regions. Finally, Figure 4.6 (d) 

showcases the segmentation map derived via the utilization of the UNET model trained 

to detect the edema region. This visualization effectively demonstrates the segmentation 

outcomes achieved by each specialized UNET model for distinct regions of interest 

within the input images. It provides a clear insight into the network's ability to accurately 

delineate and identify specific tumor and edema regions, showcasing its potential in the 

field of medical image analysis. 

Table 4.1 provides a comprehensive overview of the suggested approach's performance 

based on the number of iterations conducted. The accuracy scores for different tumor 
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regions are as follows: For the enhancing tumor region, after 50 iterations, the accuracy 

stands at 90.56%, while with 100 iterations, it improves to 99.62%. In the case of the 

edema tumor region, the accuracy is 91.23% after 50 iterations, and it increases to 

98.62% after 100 iterations. Regarding non-enhancing tumors, the accuracy reaches 

91.63% after 50 iterations and further improves to 98.99% after 100 iterations. This table 

effectively showcases the incremental improvements in accuracy achieved through a 

higher number of iterations, highlighting the method's ability to refine segmentation 

performance with increasing computational steps. 

Table 4.1 Assessment of the Proposed Approach's Performance through Iteration 

 

Iteration 

 

Metrics 

 

50 

 

60 

 

70 

 

80 

 

90 

 

100 

Enhancing 

Tumor 

Accuracy % 90.56 93.82 93.82 98.42 98.91 99.62 

Sensitivity % 97.36 96.84 86.49 98.13 98.23 98.93 

Specificity % 98.36 97.18 93.25 98.76 98.81 98.99 

Edema 

Accuracy % 91.23 91.66 92.12 96.23 97.91 98.62 

Sensitivity % 91.44 92.15 92.52 96.32 96.89 99.23 

Specificity % 91.32 92.56 92.63 96.85 96.83 99.12 

non-

Enhancing 

Tumor Core 

Accuracy % 91.63 93.82 93.82 98.42 98.91 99.62 

Sensitivity % 91.65 96.84 86.49 98.13 98.23 98.93 

Specificity % 91.85 97.18 93.25 98.76 98.81 98.99 

 

Table 4.2 Evaluating the Proposed Method's Performance across Epochs 

No of Epochs 
Training 

loss 

Training 

Accuracy 

Validation 

loss 

Validation 

Accuracy 

25 0.5217 96.5 0.5112 96.251 

30 0.4631 97.1 0.4421 97.058 

35 0.4123 97.5 0.3912 97.563 
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40 0.3621 98.6 0.3325 98.321 

45 0.2516 99.1 0.2351 99.101 

50 0.1475 99.6 0.1523 99.261 

 

Table 4.2 presents an overview of the suggested approach performance based on the 

number of epochs employed. The recorded metrics are as follows: For 20 epochs, the 

accuracy is 96.5%, the validation loss is 0.5112, and the validation accuracy is 96.251%. 

With 30 epochs, the accuracy increases to 97.1%, while the validation loss decreases to 

0.44. The validation accuracy is noted as 97.058%. After 50 epochs, the accuracy reaches 

99.6%, accompanied by a significantly reduced validation loss of 0.15. The validation 

accuracy notably improves to 99.261%. This table provides valuable insights into the 

method's performance trajectory as the number of epoch’s increases, highlighting the 

positive impact of additional training iterations on accuracy, loss, and validation metrics. 

Table 4.3 Assessing the Performance of the Proposed Method Using Testing-to-Training 

Ratio 

Testing Training Accuracy 

% 

Specificity 

% 

Sensitivity 

% 

F1-Score 

75 25 72.89 66.94 70.43 81.658 

50 50 86.43 82.61 88.31 90.125 

25 75 99.71 98.99 98.46 98.92 

Table 4.3 provides a comprehensive overview of the proposed method's performance as 

influenced by the ratio of testing to training images. Notably: When using a ratio of 75% 

testing images and 25% training images, the performance exhibits lower outcomes. 

Conversely, with a ratio of 25% testing images and 75% training images, a significant 

improvement is observed. Specifically, the accuracy achieves a high value of 99.71%, 

accompanied by an impressive specificity score of 98.99% and a sensitivity score of 

98.46%. This table underscores the substantial impact that the distribution of testing and 

training images can have on the overall performance of the suggested approach, with the 
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higher training image ratio yielding notably enhanced results across multiple performance 

metrics. 

Table 4.4 Performance of Proposed Method Concerning Conventional Techniques 

Methods Accuracy Specificity Sensitivity Precision 

CNN [28] 79.53 88.21 91.52 94.86 

OWT [29] 88.53 90.53 90.17 97.83 

WAE [30] 92.46 94.82 93.43 92.83 

GA [31] 89.39 92.49 94.82 93.49 

UNET [32] 96.43 89.43 93.46 96.44 

Watershed [41] 92.0 93.46 90.14 97.3 

CNN [42] 97.4 98.6 96.0 98.4 

This work 99.56 99.71 96.43 98.49 

 

Table 4.4 presents a comprehensive performance comparison between the proposed 

method and conventional techniques. The results are as follows: CNN (Wang Guotai, 

et.al) method yields an accuracy of 79.53%, specificity of 88.21%, sensitivity of 91.52%, 

and precision of 94.86%. (Arif M, et.al) method achieves an accuracy of 88.53%, 

specificity of 90.53%, sensitivity of 90.17%, and precision of 97.83%. WAE 

(Abdelkadev I, et.al) method returns an accuracy of 92.46%, specificity of 94.82%, 

sensitivity of 93.43%, and precision of 92.83%. GA (Aswathy, et.al) method attains an 

accuracy of 89.39%, specificity of 92.49%, sensitivity of 94.82%, and precision of 

93.49%. UNET (Huang C, et.al) method demonstrates an accuracy of 96.43%, specificity 

of 89.43%, sensitivity of 93.46%, and precision of 96.44%. The proposed method in this 

work showcases superior performance, achieving an accuracy of 99.56%, specificity of 

99.71%, sensitivity of 96.43%, and precision of 93.49%. Table 4.4 provides a 

comprehensive comparative analysis that underscores the remarkable performance of the 

suggested approach when compared to existing techniques, solidifying its position as a 

high-performing approach within the field. 
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Figure 4.7 Shows the Comparison of the Proposed Technique with Previous Works 

 
Figure 4.8 Shows the Validation and Training Loss Regarding the Quantity of Iterations 
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Figure 4.9 Depicts Validation and Training Accuracy Regarding the Quantity of 

Iterations 

 
Figure 4.10 Indicates Training and Validation Loss for Non-Enhancing Tumor UNET 

Training Process 
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Figure 4.11 Indicates the Training and Validation Loss for Enhancing Tumor UNET 

Training Process. 

 
 

Figure 4.12 Indicates the Training and Validation Loss for Edema UNET Training 

Process 
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Table 4.5 UNET Specifications 

1 Input Size 128x128 

2 Output Size 128x128 

3 Output Labels 4 

4 Number of Filters 16 

5 Minimum Learning Rate 0.00001 

6 Batch Size 32 

7 Minimum Epoch 50 

8 Loss Function Binary Cross Entropy 

9 Training Algorithm Adam 

10 Dropout 0.05 

11 Training Testing Ratio 75:25 

12 Number of Layers 9 

 

Table 4.5 outlines the UNET specifications employed in the proposed work to generate 

the segmentation map. The specifications are as follows: Input Size: The UNET input 

size is established as 128x128 pixels, chosen to enhance performance. Output Size: The 

output size is aligned with the input, set at 128x128 pixels. Layer Configuration: The 

UNET architecture is structured with a total of 9 layers, facilitating the segmentation 

process. Training Algorithm: The Adam training algorithm is utilized for optimizing 

weights during the training process. Validation Ratio: A training-to-testing ratio of 75:25 

is adopted for the validation process. These UNET specifications collectively contribute 

to the design and operational characteristics of the segmentation process within the 

proposed approach, promoting efficient and accurate segmentation of the input images. 

 

Table 4.6 Confusion Matrix 

  

Non-

Enhancing 

Tumor  

Enhancing 

Tumor  
Edema 

Non-Enhancing Tumor  15423 251 12 

Enhancing Tumor  123 15236 2 

Edema 102 120 5326 

 

Table 4.6 provides the confusion matrix obtained from the proposed work's results. This 

matrix is established through pixel classification, utilizing ground truth images to 
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compare with predicted outcomes. The matrix categorizes predictions into different 

classes, specifically Non-Enhancing Tumor, Enhancing Tumor, and Edema. The entries 

in the matrix reflect the number of pixels falling into various categories based on the 

classification. In Table 4.6, the following observations are made: Non-Enhancing Tumor: 

A total of 15,423 pixels are accurately predicted as Non-Enhancing Tumors. Enhancing 

Tumor: 123 pixels are classified as Enhancing Tumor, while they actually belong to other 

classes. Edema: Similarly, 102 pixels are falsely classified as Edema. The matrix also 

reflects the misclassification of pixels across the different true classes. This confusion 

matrix provides valuable insights into the model's performance, shedding light on the 

areas of accurate classification and instances of misclassification. 

4.11  Conclusion 

Due to the substantial class imbalance present in MRI scans, segmenting brain tumors 

from those images is a difficult task. The objective is to accurately predict tumor regions 

by meticulously segmenting the entire MRI images, a task that benefits from the 

application of advanced artificial intelligence techniques. In response, we have 

introduced a novel framework, a modified U-NET, which has demonstrated superior 

performance in glioma tumor segmentation compared to existing frameworks. Our 

proposed approach has surpassed previous methods in terms of outcomes. Furthermore, 

we have conducted a comprehensive examination of available datasets, considering their 

unique challenges and contributions. Specifically, we have delved into the BraTS 2020 

dataset challenge, highlighting its significance in the field. Within this context, it is 

noteworthy that among various methodologies, machine learning methods have been 

employed, with deep learning techniques consistently delivering better results. Despite 

their efficacy, it is crucial to acknowledge that deep learning methods can sometimes be 

associated with longer processing times and time constraints. Overall, our work 

emphasizes the importance of adopting innovative AI solutions, particularly deep 

learning approaches, to discuss the challenging process of segmenting brain tumors from 

MRI scans, contributing to enhanced accuracy and understanding within the medical 

imaging domain. 
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CHAPTER 5 

DETECTING AND CLASSIFYING BRAIN TUMORS WITH U-NET 

AND EXTREME LEARNING MACHINE 

5.1. INTRODUCTION  

The brain governs the central nervous system and regulates all human actions. While 

brain tumors can be life-threatening, early detection can greatly enhance survival rates. 

These tumors arise from abnormal growth of brain cells, and their high prevalence in 

society presents a significant concern. Gliomas are the most prevalent types of malignant 

brain tumors, and MRI is frequently used as a non-invasive diagnostic tool for detecting 

and treating them, including both high-grade and low-grade variants. According to the 

2020 GLOBOCAN Cancer Statistics, brain cancer ranks as the second leading cause of 

death among females, with breast cancer being the primary cause. In males aged 10-39, 

brain cancer is responsible for 3,700 deaths, as reported by the 2020 Statistics for 

Adolescents and Young Adults. The same statistics predicted 19.3 million cancer deaths 

and new cases in 2020, with 300,000 new cases and 250,000 deaths specifically related to 

brain and nervous system cancers. There are four commonly used MRI techniques for 

imaging the brain, which include Contrast-enhanced T1, T1, T2, and Recovery after 

Fluid-Attenuated Inversion (FLAIR). 

Manual segmentation relies on the expertise of medical professionals to assess brain 

tumors, which can vary significantly in morphology and location. Consequently, factors 

such as fatigue, memory lapses, and lack of experience can contribute to inaccuracies in 

diagnostic outcomes. The convergence of computer science and medicine has given rise 

to Medical Imaging and Computer-Aided Diagnostics (MICAD). Leveraging MICAD 

technology in tandem with computer vision to present MRI image segmentation results to 

clinicians has the potential to expedite and enhance diagnostic processes. 

Brain tumors have the capacity to adversely affect an individual's quality of life as well as 

that of their family. The presence of visible tumors amplifies the risk of mortality. 

However, the knowledge that early tumor detection can lead to effective treatment serves 

as a source of inspiration. In the realm of medical research, the most commonly 

employed imaging methods for tumor detection include MRI, CT, PET, x-ray, and 
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ultrasonic screening. X-rays, CT scans, and MRIs are instrumental in diagnosing 

diseases, with MRI being a prevalent technique for both identification and treatment of 

brain tumors within the medical field. 

Recent advancements in neural network-based image segmentation techniques effectively 

address the limitations of traditional approaches. These modern methods excel in the 

segmentation of biological images. Present-day image segmentation technology leverages 

various image attributes such as color, monochrome, structure, and more to accurately 

delineate the main components within the image. Given that images typically contain a 

wealth of geometric data, the segmentation and extraction process represent fundamental 

applications. This technology finds widespread use in remote sensing, medical imaging, 

automated transportation, and fingerprint authentication. Regarding the segmentation of 

brain tumors, conventional methods have traditionally relied on Digital Image Processing 

techniques, with three widely employed approaches being image thresholding, edge 

detection, and region-based growth 

Manual multimodal brain tumor segmentation is a time-consuming and costly process 

compared to automated segmentation. An experienced radiologist typically dedicates 

three hours to meticulously segment a pixel-level image, achieving a Dice Similarity 

Coefficient (DSC) score ranging from 74% to 85% in manual segmentation. The precise 

delineation of tumors is crucial for clinical diagnosis and treatment planning. 

In recent times, CNNs have gained widespread popularity. They have demonstrated 

exceptional performance in various tasks such as object recognition, semantic 

segmentation, depth estimation, object spotting, and more. CNNs employ convolutional 

layers to autonomously extract meaningful features from input images, enabling them to 

tackle perceptual tasks without human intervention. CNN-based systems excel in feature 

extraction and are well-suited for processing biological segmentation tasks like lung and 

brain tumor segmentation, making them a popular choice in this domain 

Increasing the depth of deep learning models has demonstrated improvements across 

various network segmentation techniques, including CNN, FCN, GNN, RNN, GAN, and 

more. The development of stronger neural network models is critical for improving brain 

tumor segmentation. Deep learning has gained significant attention in the context of brain 
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tumor segmentation. In 3D medical imaging, particularly for brain tumors, the U-shaped 

model known as U-Net has proven to be highly effective. U-Net consists of four encoder 

and decoder layers and leverages features from both deep and peripheral neural units, 

making it a straightforward yet powerful segmentation network. The presence of 

abnormal cells in the brain can lead to the formation of brain tumors. Among these 

tumors, gliomas are particularly dangerous due to their low survival rates and the 

difficulty in physically detecting them, given their irregular shape and intricate 

boundaries. Gliomas are the most dangerous kind of brain tumor because of this. The 

most used imaging technique for this purpose is MRI. MRI employs radio waves and a 

magnet to enable radiologists to peer inside the brain, providing valuable insights into its 

structure and any potential abnormalities such as tumors. 

Identifying the tumor area manually is a laborious and challenging task, which is why 

there is a pressing need for an accurate and automated solution. To achieve precise 

segmentation and prediction of brain tumors, a dependable and efficient method is 

essential. Therefore, the objective of this study is to propose a method that employs U-

Net for brain tumor segmentation and an ensemble learning model for predicting patient 

survival probabilities. In this study, both U-Net and Extreme Learning Machine (ELM) 

are utilized. Statistical and shape characteristics are extracted using Local Binary Patterns 

(LBP). The study utilizes the BraTS 2020 dataset, which involves the use of data or 

images for both training and testing a model. The images undergo segmentation through 

U-Net, and the classification of brain tumors is accomplished using ELM. The results of 

this work demonstrate an impressive performance, achieving approximately 99.87% 

accuracy, 98.96% specificity, 99.58% sensitivity, and 98.75% precision. 

This work's main goals: 

➢ By extracting statistical and textural information from the preprocessed 

image, the process of categorizing the image becomes simpler. 

➢ Reducing the dimensionality of features can lead to faster training and 

improved classification performance. 

➢ The U-Net algorithms can accurately predict whether an image represents a 

healthy brain or one affected by a tumor. 
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➢ Using an UNET-based segmentation technique, tumor -affected regions can 

be accurately cropped from abnormal images. 

5.2. Materials and Methods 

5.2.1 Block Diagram. 

The proposed approach to treating brain tumor classification using ELM and 

segmentation using U-Net is elaborated in Figure 5.1, providing a more in-depth view of 

the process. The initial stage involves image preprocessing, which includes two key 

steps: image smoothing and Adaptive Histogram Equalization (AHE). Additionally, the 

images undergo refinement through Wiener smoothing. Following the preprocessing 

steps, the U-Net approach is applied for image segmentation. Subsequently, further 

feature extraction is conducted to capture a diverse range of characteristics, 

encompassing statistical, shape, and texture information. To perform the classification 

task, an additional layer of ELM is utilized. This comprehensive approach ensures a 

thorough analysis of brain tumor images, ultimately enhancing the accuracy and 

reliability of the classification process. 
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Figure 5.1 Proposed Method Block Diagram 

5.2.2. Preprocessing 

MR images may have noise from a number of different sources. It is possible that the 

noise was brought either by image compression or transmission errors. To reduce the 

noise in this inquiry, nonlocal approaches and local smoothing methods, respectively, 

were applied. 

5.2.3. Image smoothing. 

In this study, the Wiener filter is employed to eliminate noise from the normalized image. 

The Wiener filter effectively reduces noise while preserving image details and softening 

sharp edges, gradually decreasing corruption step by step. It acts as a concealment and 

smoothing tool, effectively addressing noise-related issues. The Wiener filter is 
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particularly proficient at handling mean square error, making it a robust choice for noise 

reduction. It is important to note that the Wiener filter method is inherently stochastic, 

meaning it incorporates elements of randomness or probability in its processing. 

     (5.1) 

The power spectrum  can be estimated directly from the observation using the 

periodogram estimate. H is the blurring filter. 

5.2.4. Adaptive Histogram Equalization.  

The Adaptive Histogram Equalization (AHE) algorithm excels at enhancing an image's 

contrast because it adapts to the local distribution of pixel intensities, which is more 

effective than methods that rely solely on global information from the entire input image. 

This adaptability enables the algorithm to deliver more precise and improved results. 

However, it is important to note that AHE tends to produce excessive contrast 

enhancement, especially in regions of the image that are already somewhat homogenous. 

This is because the adaptive technique boosts contrast locally, in contrast to the standard 

histogram equalization method, which is one of the key distinctions between the two 

approaches. 

5.2.5. UNET. 

Image segmentation is the process of partitioning an image into distinct regions or 

categories based on the similarities among pixels, with each pixel being assigned to a 

specific category. In the realm of medical image segmentation, state-of-the-art techniques 

often involve the use of CNNs, such as the U-Net architecture. The fundamental U-Net 

architecture comprises two main pathways: the contracting path (also known as the 

encoder) and the expansive path (or decoder). In the encoder, CNNs consist of input, 

convolutional, pooling, and fully connected layers. This encoder path progressively 

reduces the spatial dimensions of the input image while increasing the extracted features. 

Each pooling operation effectively down samples the image, resulting in a doubling of 

the features extracted from the image. On the other hand, the decoder path in U-Net 

involves transposed convolutions, which help localize the features and recover spatial 

information. The feature map is upsampled in the decoder, effectively halving the number 

of feature channels at each step. This decoder path is essential for reconstructing a 
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segmented image with detailed information. In summary, U-Net and similar CNN-based 

architectures have proven to be highly effective in medical image segmentation, allowing 

for accurate and precise delineation of regions of interest within the images. In the U-Net 

architecture, the final step involves a convolutional layer that maps the channels to 

specific classes after concatenating the feature maps from both the encoder and decoder 

paths. These feature maps capture essential information for classifying different regions 

or categories within the segmented image. Both the encoder and decoder in the U-Net 

architecture are composed of various layers, including convolutional layers, pooling 

layers, and dense layers. Each convolutional layer applies filters to process the input data, 

extracting relevant features. These layers play a crucial role in learning and representing 

important characteristics of the image. The encoder network in the U-Net architecture is 

responsible for gathering features from data-augmented images, enabling it to learn 

abstract representations and patterns. This abstract learning is vital for the subsequent 

steps in image segmentation, where the model must accurately classify pixels into 

different categories or regions. 

The Rectified Linear Unit (ReLU) activation function is employed to address negative 

outputs at the Convolutional layer outputs in the encoder part of the U-Net architecture. 

ReLU replaces negative values with zero while leaving positive values unchanged, 

promoting the learning of more meaningful features. The U-Net decoder replicates the 

architecture and performs reverse operations compared to the encoder. Specifically, while 

the encoder utilizes down-sampling operations to reduce spatial dimensions and increase 

the number of features, the decoder employs up-sampling operations to recover spatial 

information and reduce the number of feature channels, ultimately aiding in the 

reconstruction of the segmented image. The proposed U-Net architecture consists of an 

encoder and decoder, with each internal layer output employing down-sampling and up-

sampling, respectively. These operations are crucial for the successful segmentation of 

the image, capturing and preserving essential information throughout the process; table 

5.1 shows the U-Net training settings. 
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Table 5.1 Training parameters of UNET 

Parameters UNET 

Convolutional blocks 4,5,6 

Regularization L1, dropout, L2 

Deconvolutional blocks 4,5,6 

Batch size 32 

Epochs 40 

Learning rate 1xe-4 

5.3.  Statistical Feature Extraction 

Brain tumor detection using medical imaging, such as MRI or CT scans, often relies on 

statistical feature extraction to identify abnormal regions and distinguish tumors from 

healthy brain tissue. Statistical features summarize important information about the 

intensity, texture, and structure of the brain tissues in the images, which are then used by 

machine learning or deep learning models to detect and classify brain tumors. Below is 

an explanation of how statistical features are extracted from brain scans and how they are 

used for tumor detection. 

5.3.1 Energy  

Energy is the probability (normalized histogram) of colour intensity at the point and N is 

the grey level. The variable "N" represents the number of grey levels or discrete color 

values that can be observed in the image. In many cases, N is used to represent the range 

of color or intensity values that are possible in a given image, often expressed as the 

number of levels or shades of grey in a gray scale image or the number of discrete color 

values in a color image 

      (5.2) 

5.3.2 Entropy (EN) 

The lowest EN value measures unpredictability. This coefficient's equation is below. 

                 (5.3) 
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5.3.3 Inertia (IN) 

The IN, also known as the Contrast feature, measures visual contrast or local variations to 

show texture quality.  

                    (5.4) 

5.3.4 Correlation (CO) 

Correlation (CO) describes the linear connection between the co-occurrence matrix's 

rows and columns. The equation defines this parameter. 

                                 (5.5) 

Where  are the means and standers deviations of  

5.3.5 Inverse Difference Moment (IDM) 

Homogeneity, also known as inverse difference moment, gauges the density of the co-

occurrence matrix and diagonal elements.  

                               (5.6) 

5.3.6 Difference Entropy (DE) 

Digital Image Processing discrete entropy measures the amount of bits needed to encode 

visual data.  

   (5.7) 

5.3.7 LBP 

The local texture information is encoded by the LBP features, which may be used for a 

variety of tasks including classification, detection, and identification. The image is 

thresholded with the value of the center pixel, which results in the production of a binary 

code for each pixel in the image. A histogram is constructed by basing its construction on 

the many patterns that this binary number presents. LBP stands for pattern number and 

refers to a gray scale texture operator. It is this operator's job to describe the spatial 

structure of a local image, and the formula for doing so is as follows:  

                         (5.8) 
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 Is an LBP value at the center pixel  and I  are the values of the 

neighbor pixel and center pixel respectively. The function g(x) can be zero if x < 0 and 

g(x) = 1 if x≥0. 

5.3.8 Shape Feature 

Applying parametric curve concepts to the level sets of the image is the key to defining 

the curvature of images. These level sets are not explicitly parameterized, but we can 

specify an implicit parameterization. By equating the contour normal to the image 

gradient. 

                                    (5.9) 

5.3.9 ELM 

Extreme Learning Machine offers significant advantages in terms of speed, simplicity, 

and generalization, making it a suitable choice for classification and detection tasks, 

particularly when computational efficiency is a priority. Its ability to avoid local minima 

and quickly train without iterative optimization gives it an edge in real-time or large-scale 

applications. However, its performance depends on the number of hidden neurons and 

can be sensitive to initialization, In comparison to other classifiers like deep neural networks 

or SVMs, ELM is much faster to train and easier to implement. ELM is especially useful when 

the goal is to achieve a balance between speed and accuracy the advantages of ELM are Fast 

Training Speed and Scalability. 

After the identification of the relevant features, an ELM classification approach is used in 

order to determine whether the MRI brain image in question is healthy or affected by 

tumor . The ELM is a single hidden layered feed forward neural network. The output 

weights of this network are obtained analytically, while the input weights are decided on 

a case-by-case basis. Because of the model that is learnt by output hidden weights, the 

training procedure may be completed very quickly. In this model, the training samples {〖 

(H_i,〖tar〗_j)}j〗_(j=1)^N is considered with x classes, N number of samples, hidden 

nodes g, and activation function ρ(h). It is mathematically represented by using the 

following equation:  
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(5.10) 

Where, j = 1, 2 … N,  = [ ] s , = [ ]s, weight 

value = [ ]s,  indicates the bias value, and  denotes the output value. 

ELM transmits several discriminations to regression output functions via One against all 

coding. The actual output index sample is determined before applying predicted labels. 

The regularized least-squares approach finds the optimum solution for statistically 

unstable pseudo-inverses. Based on the regularization parameter, the identity matrix 

predicts the categorized label. This technique improves training speed, time efficiency, 

classification accuracy, and implementation. Table 5.2 shows the training parameters of 

ELM. 

Table 5.2 Training Parameters of ELM 

Parameters ELM 

Optimization method SGDM 

Shuffle Every epoch 

Momentum 0.90 

Batch size 128 

Epochs 10 

Learning rate 0.01 

Frequency Validation 30 

5.4.  Result and Discussion 

Utilizing MATLAB 2019a, the suggested method was put into practice. On a computer 

with an Intel Core i5 6300 processor and 8 GB of RAM, the testing was carried out. The 

dataset was divided randomly into two separate sets: During the training process, a 

training set containing 70% of the data is used to train the network. The remaining 30% 

of the dataset is used as a validation set to evaluate the performance of the learned model 

in an unbiased manner. 
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5.4.1. Dataset 

The 3D MRI dataset for the Brain Tumor  Segmentation Competition (BraTS) 2020 we 

are using this dataset. 166 test examples and 369 training instances are available; the 

sample count is the sole element. The dataset includes both high-grade gliomas (HGG) 

and low-grade gliomas (LGG), providing a wide variety of cases that exhibit different 

growth patterns and aggressiveness. This ensures that models trained on the dataset can 

generalize across a range of tumor types, from slower-growing low-grade tumors to 

highly aggressive high-grade tumors; Table 5.3 shows the description of dataset. 

Table 5.3 Description of Dataset 

BraTS 2020 

No of training images 369 

No of testing images 166 

volume Each MRI image represented by 

240 × 240 × 155 voxels (Width 

× Height × Depth). 

Labels 3: Enhancing Tumor (ET), 

Tumor Core (TC), Whole 

Tumor (WT) 

Tumor Types Tumor or Normal 

 

5.4.2 Performance Matrices 

Accuracy: The use of accuracy is required for calculating the rate of correctly classifying 

malignancies. 

        (5.11) 

Sensitivity: A method's sensitivity is measured using sensitivity, as well as the rate at 

which tumor is discovered. 

       (5.12) 
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(a) Input image (b) Segmented image 

     Figure 5.2 Sample input and segmented 

image 

Specificity: The ratio of true negatives (TN) to true positives (TP) is known as specificity. 

         (5.13) 

Precision: The term "precision" refers to the number of digits that are used to signify a 

certain value. 

                        (5.14) 

Figures 5.2 to 5.3 depict the results and comparative performance of the proposed 

method. Figure 5.2 presents the sample input (a) and the segmented input image (b), 

while Table 5.4 summarizes the comparative performance of the proposed method. 

Additionally, Figure 5.3 displays the comparative accuracy, Figure 5.4 presents the 

comparative precision. 

 



132 
 

 

 

Table 5.4 Performance Evaluation of the Proposed Method 

Performance CNN [3] SVM [4] 
KELM 

[11] 

RESNET-

18 [12] 

This work 

Accuracy 98.04 %  95.81 % 93.68 % 98.0 % 99.87 % 

Sensitivity 96.89 % 91.93 % - - 99.58 % 

Specificity 98.55 % 96.13 % - - 98.96 % 

Precision 95.27 % 93.5 % 94.5 % 98.3 % 98.75 % 

 

 

 

Figure 5.3. Comaparative accuracy of proposed method 

 

Figure 5. 4. Comparative precision of proposed method 
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5.5. Conclusion 

The primary objective of this study is to provide a method for the classification of brain 

tumor that is both accurate and effective, despite its relatively simple nature. In the 

traditional method of brain tumor classification, U-Net based segmentation, ELM-based 

extraction of texture and shape features and ELM-based classification are all carried out. 

The classifications findings are shown as either normal brain images or tumor images. 

ELM is a deep learning approach that involves a series of feed forward layers. The Image 

BraTS 2020 database is used in order to classify images. During implementation of our 

pre-trained models, only the top layer undergoes training. This model got the accuracy is 

99.87%, sensitivity is 99.58%, specificity is 98.96, and precision is 98.75. 
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CHAPTER 6 

TUMOR CLASSIFICATION via GOOGLENET and EXTREME LEARNING 

MACHINE (ELM) UTILIZING MULTIPLE FEATURES 

6.1 INTRODUCTION 

Brain tumors are currently the most dangerous illness in the world. Tumors can damage 

healthy brain tissue or elevate intracranial pressure, affecting the brain. So, a tumor cell’s 

fast development might result in death. Thus, early brain tumor diagnosis is more 

important since it might spare the patient from negative consequences. A common 

imaging method for evaluating these cancers is Magnetic Resonance Imaging (MRI). A 

brain tumor is sometimes called intracranial cancer when abnormal cell development 

occurs in the brain tissues. In the United States (US), there were anticipated to be 23,820 

new instances of brain tumors and 17,760 expected fatalities from the disease. Twenty-

four thousand five hundred thirty incidences of brain tumors have been anticipated in the 

US, including 13,840 males and 10,690 women, according to 2021 cancer data. Primary 

and secondary (metastatic) brain tumors are the two types of brain cancers. A primary 

tumor has not metastasized to other organs. Malignant brain tumors, even if they are not 

situated in critical brain regions, still pose a grave threat due to their rapid development, 

atypical characteristics, and potential to metastasize to other parts of the brain. The 

utilization of MRI proves highly advantageous in the detection of brain cancer. The 

contrast-enhanced core is observable across multiple MRI sequences, including T2, T2-

Fluid Attenuated Inversion Recovery (FLAIR), and T1, T1 + gadolinium. These 

sequences unveil distinct tumor components like edema, necrosis, and the contrast-

enhanced core. Brain tumors are typically diagnosed through imaging techniques such as 

Positron Emission Tomography (PET), Computed Tomography (CT), and MRI. CT 

imaging relies on the distinct radiation properties of different tissues, employing 

radioactive rays to penetrate the human body. On the other hand, PET involves the 

injection of radioactive agents into the body, which circulate through the bloodstream, 

reaching all cells, tissues, and organs. 

Manual segmentation of MRIs is a laborious and challenging task, primarily due to the 

multi-modality and voluminous nature of 3D images. Additionally, the subjective 
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experiences of the individuals performing manual segmentation can introduce errors into 

the process. Consequently, there is a significant demand for automated and precise 

methods to segment brain tumors. These automated techniques are sought after for 

several reasons. Firstly, brain tumors come in diverse shapes and internal structures. 

Secondly, the wide array of appearances in surrounding normal tissues, attributable to the 

varying positions of tumors and the associated tumor bulk effects, adds complexity. 

Thirdly, the boundaries between normal and malignant tissues often lack clarity, posing a 

challenge in their differentiation. 

Brain MRI images are favored for applications relying on the depiction of soft brain 

tissues due to their superior contrast compared to Computed Tomography (CT) images, 

which are less suitable for this purpose. Computer-Aided Design (CAD) systems 

frequently incorporate machine learning methods to detect and classify brain tumors. 

Various approaches for feature extraction have been put forth in this context. 

Subsequently, brain tumors are identified and categorized by employing structured form 

models and the collected data. Nevertheless, these systems often make an assumption of 

independence among the essential components of MRI images, a simplification aimed at 

managing the computational complexity of the task. 

CNNs offer a significant advantage by autonomously learning essential image 

characteristics. This capability proves particularly invaluable in tumor segmentation 

tasks. In the latest iterations of the multimodal BRATS competition, CNN-based 

techniques consistently outperformed other methods in all four rounds. Many machine 

learning-based segmentation approaches predominantly rely on images that have 

undergone manual segmentation. Manual segmentation, especially in the context of 

medical imaging, is both time-consuming and demanding in terms of the required 

medical expertise. Given that the imaging intensity of malignant tissues often closely 

resembles that of surrounding healthy or diseased tissues in magnetic resonance imaging 

or computed tomography scans, achieving precise tumor delineation becomes a 

challenging and subjectivity-prone endeavor. This study introduces an innovative 

approach for brain tumor segmentation utilizing a single GoogLeNet model. Initially, the 

process involves tumor image classification, which employs multiple-feature extraction 
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in conjunction with an ELM classifier. Subsequently, the segmentation task separates the 

image into three distinct regions: the core, enhancing tumor, and non-enhancing tumor 

regions. The primary advantage of this approach lies in its ability to employ a single 

GoogLeNet model to segment three different regions within a classified image. The 

performance of both the classification and segmentation processes is assessed using 

sensitivity evaluation techniques. To determine whether the suggested method is 

effective, the BRATS2020 dataset serves as the reference dataset. 

 

This study introduces an advanced approach for precise tumor classification through the 

utilization of Extreme Learning Machine (ELM), coupled with region segmentation in 

classified images using GoogLeNet. Initially, the image classification phase employs an 

ELM classifier, allowing for the classification of images into three distinct groups: 1. 

Core, 2. Enhancing Tumor, and 3. Non-Enhancing Tumor. Subsequently, GoogLeNet is 

leveraged to segment tumor images, specifically identifying core, enhancing, and non-

enhancing regions. Notably, this technique demonstrates the capacity to decrease 

computational time while enhancing accuracy in comparison to traditional methods. The 

effectiveness of the approach is quantified through accuracy, sensitivity, and specificity 

calculations across various image sizes. Remarkably, this endeavor achieved an 

impressive average accuracy of 99.5%, a notable improvement over conventional 

classification and segmentation methods. 

The main objectives of this work are as follows: 

➢ To progress the detection performance of accuracy by using more training with 

multiple higher priority features with optimized training parameters 

➢ To perform multiple tumor regions of classified images with high accuracy. 

➢ To reduce the computational complexity of the classifier by choosing 

optimized training parameters. 

6.2 PROPOSED METHOD 

6.2.1 Block diagram 

Figure 6.1 depicts the comprehensive framework outlining the suggested approach for 

brain tumor classification through ELM and subsequent segmentation utilizing 
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GoogLeNet. The process initiates with image preprocessing, encompassing operations 

such as image normalization, smoothing, and contrast enhancement. Image normalization 

is grounded in the range of minimum and maximum pixel values. Notably, the 

normalization process employs the mean value derived from the image matrix for its 

execution. Following the normalization step, the images undergo smoothing through 

Wiener smoothing. Subsequently, the preprocessing advances to the application of the 

Fuzzy C Means (FCM) technique on the smoothed image to execute the segmentation 

process. Moving forward, the process involves feature extraction to capture a range of 

features encompassing statistical, shape, texture, and Gray-Level Co-Occurrence Matrix 

(GLCM) attributes. This feature-rich data is then subjected to classification using the 

Extreme Learning Machine (ELM), allowing differentiation between normal, malignant, 

and benign types. Subsequent to the classification, the classified images are subjected to 

training using GoogLeNet to discern and analyze core, enhancing, and non-enhancing 

tumor regions. 

6.2.2 Normalization 

The data within all four columns of the datasets cover a wide range from significantly 

positive to significantly negative values. In this study, Minmax normalization is 

employed to confine these values within the range of 0 to 1. This normalization technique 

preserves the linear relationship of the features. The formula depicting Minmax 

normalization is as follows. 

                                                   (6.1) 

Here, mini signifies the smallest value of the attribute, and maxi denotes its maximum 

value 
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Figure 6.1 Block diagram of the proposed method of brain tumor classification and 

segmentation techniques 
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6.2.3 Image smoothing 

In this study, the Wiener filter is employed to eliminate noise from the normalized 

images. The Wiener filter is known for its ability to reduce noise while retaining the 

essential interior features of an image, albeit at the cost of slightly softening its sharp 

edges. To achieve this, a reconstruction computation is created for each type of 

corruption, addressing them one at a time, and then these reconstructions are combined. 

The Wiener filter strikes a favorable balance between noise reduction and preservation of 

the underlying structure. It achieves this by simultaneously adjusting the filtering and 

reducing the additional signal amplitude. In essence, the Wiener filter is particularly 

effective in managing mean square error and operates on a stochastic foundation. 

                                         (6.2) 

 

The power spectrum wy can be estimated directly from the observation using the 

periodogram estimate. H is the blurring filter. 

6.2.4 Contrast Enhancement 

The Contrast Limited Adaptive Histogram Equalization (CLAHE) stands as a frequently 

employed algorithm for enhancing low-contrast medical images, significantly advancing 

the quality of medical imagery. Upon segmenting the MRI image into NxN sub-blocks, 

the histogram of each image block is computed. Subsequently, a clipping limit is defined 

as a threshold for the sub-blocks. By adjusting the clipping limit setting, the contrast of 

local image sub-blocks can be intensified. However, this adjustment is constrained to 

ensure that the histogram alteration does not surpass the specified clipping limit. This 

process aligns with a mathematical representation of a uniform distribution. 

             (6.3) 

6.2.5 Edge Sharpening 

Most of the image's essential structural information is concentrated within its edges. 

Enhancing an image sharpness and clarity can be achieved by identifying these edges 

within the image and then utilizing this information to enhance the regions of the image 

that contain these edges. This study introduces an adapted Sobel edge detection technique 

that focuses on sharp edges. Before detecting the image's edges, it is important to 
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eliminate any extraneous pixels from the data. Additionally, reducing noise in the image 

can be achieved by applying a Gaussian filter. Subsequently, a suitable mask is chosen 

and convolved with the image to perform edge detection. 

6.2.6 GLCM 

GLCM, which stands for Gray-Level Co-Occurrence Matrix, is an alternate term used to 

describe the gray-level spatial dependency matrix. Among its numerous applications, 

texture analysis is a notable one, with a strong track record in the domain of medical 

image analysis. This technique mandates the quantization of image data. In this context, 

each sample is interpreted as a pixel within an image, and its value corresponds to the 

intensity of that pixel. The process involves constructing the GLCM itself, followed by 

the selection of a specific feature of interest. The computed value of this chosen feature 

then replaces the sample’s’ within the resulting virtual variable. When presented with a 

grayscale image I, the co-occurrence matrix determines the frequency with which a pair 

of pixels with a certain value and offset appears in the image. It is parameterized by an 

offset (Δa, Δb) as: 

   (6.4) 

Where x and y are the image's spatial coordinates and I and j are the pixel values; the 

offsets, (Δa, Δb) define the spatial relation for which this matrix is calculated; and 𝐼 

indicates the pixel value at pixel (a, b). 

 

6.2.7 Features of GLCM 

Contrast 

Contrast is indeed determined by the discrepancy between the highest and lowest 

intensity values present in an image. However, the formula mentioned earlier, ∑ 

(i,j=0)(level−1)P(i,j)(i−j)2  is utilized to compute the variance of contrast as a texture 

characteristic derived from the Gray-Level Co-Occurrence Matrix (GLCM) For 

computing the average contrast of an image, the following formula is typically employed 

Average Contrast= Max Intensity + Min Intensity/Max Intensity − Min Intensity 

In this equation: 
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➢ Max Intensity represents the highest intensity value detected within the 

image. 

➢ Min Intensity corresponds to the lowest intensity value found in the 

image. 

This formula yields a standardized measurement of contrast, considering both the scope 

of intensity values and their distribution throughout the image. The outcome typically 

falls within the range of -1 to 1, where elevated values indicate more pronounced 

contrast. 

Dissimilarity 

The average dissimilarity of an image refers to the absolute difference between 

consecutive pixels. This value can be computed using the following formula. 

                                          (6.5) 

Homogeneity 

An image is considered homogeneous when all the pixels within it have the same color. 

Conversely, if there are noticeable contrasts present within the image, it is categorized as 

inhomogeneous. In the most basic scenario, the standard deviation of each pixel from the 

mean gray value can be determined using the following equations. 

                                             (6.6) 

ASM (Angular Second Moment) 

Angular Second Moment (ASM) is a measure that signifies the uniformity of the gray 

level distribution within an image. The calculation of ASM involves the following 

formula. 

                                                   (6.7) 

Energy  

Energy is derived from the square root of ASM. The provided formula pertains to the 

probability, which is essentially the normalized histogram of color intensity at a specific 

position. Here, N represents the gray level, often corresponding to 256 in standard 

grayscale images. 

                                                           (6.8) 
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Correlation 

Correlation is a mathematical method used to assess the degree of relationship between 

two entities. In the context of Digital Image Processing, it is employed to calculate the 

output of a mask applied to an image. The process involves sliding a mask over a matrix 

from left to right, shifting by one unit with each step. 

                              (6.9) 

6.2.8 Statistical Feature Extraction 

Standard Deviation (SD) 

The standard deviation, denoted as σ, quantifies the extent to which data points are spread 

out from the mean. A smaller standard deviation suggests that the data is closely 

concentrated around the mean, while a larger standard deviation indicates that the data is 

more widely distributed 

                            (6.10) 

Mean 

The mean value is obtained by dividing the sum of pixel values by the total number of 

pixels. A way to gauge the relative intensity of an image is by considering its brightness, 

which is represented by the mean pixel intensity. This comparison can help assess how 

bright the image appears in relation to another image 

              (6.11) 

Kurtosis 

Kurtosis is a metric used to determine if the data distribution has heavy tails or light tails 

compared to a normal distribution. High kurtosis values indicate the presence of heavy 

tails or outliers in the dataset. Conversely, low kurtosis values suggest light tails or a 

scarcity of outliers in the data. 

 

     (6.12) 
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Skewness 

Skewness is a numerical measure that quantifies the degree of asymmetry in a 

distribution. When the left and right sides of a distribution are not symmetrical, the 

distribution is said to be skewed. Skewness can take three forms: right (positive), left 

(negative), or zero, indicating the absence of skewness. 

       (6.13) 

Moment 

The moment invariant is a method employed for feature extraction, specifically to derive 

global features for shape recognition and identification analysis. Over time, various types 

of moment invariant techniques have been developed and applied for this purpose. 

                                (6.14) 

Energy 

Energy represents the square root of Angular Second Moment (ASM). The equation 

mentioned pertains to the probability of normalized histogram values for color intensity 

at a specific position. The parameter "N" signifies the gray level, such as 256 in the case 

of typical grayscale images. 

                                          (6.15) 

Entropy (EN) 

For a GLCM matrix with irregular patterns, the Entropy (EN), a metric of 

unpredictability, takes on its lowest value. The coefficient EN is defined by the following 

equation: 

                          (6.16) 

Inertia (IN) 

The Intensity Variance (IN), also referred to as the Contrast feature, quantifies the 

image's contrast or the presence of local fluctuations within the image, providing insight 

into the texture quality. The following equation defines this parameter: 
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                             (6.17)    

                                                                                                                              

Correlation (CO) 

The term correlation (CO) metric evaluates the linear correlation between elements in the 

GLCM or indicates the interdependencies between the rows and columns of the co-

occurrence matrix. The mathematical expression defining this parameter is as follows: 

                                      (6.18) 

Where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝑎𝑛𝑑 𝜎𝑦 are the means and standers deviations of 𝑝𝑥𝑝𝑦 

Inverse Difference Moment (IDM) 

Homogeneity, alternatively referred to as inverse difference moment, quantifies the 

compactness of the distribution of elements within the co-occurrence matrix and its 

diagonal elements. The calculation of homogeneity is expressed as follows: (20.4). 

Moreover, correlation serves as an indicator of linear relationships present within the 

image. 

IDM is written as:      (6.19) 

Difference Entropy (DE) 

Difference entropy is particularly useful in applications like texture analysis in images or 

feature extraction from audio signals, where understanding the variations or transitions 

between adjacent elements is important. 

                                   (6.20) 

Local Binary Patterns (LBP) 

LBP, or Local Binary Pattern, is a visual descriptor commonly utilized in computer 

vision to characterize objects. Typically applied in grayscale images, the LBP operator 

processes each pixel with a specific code. In the proposed system, the LBP operator is 

adapted for color images, implying that the individual R, G, and B components of the 

image are extracted, organized into a matrix, and then subjected to the LBP operator 

independently. This texture operator represents a local region by forming a binary pattern 

through thresholding the differences between the center pixel and its neighboring pixels. 
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However, in the proposed approach, color images introduce new challenges. As the LBPs 

are aggregated into a single histogram, the spatial relationships between them are often 

disregarded. To address this limitation, enhancements have been made to the LBP 

histogram feature, integrating information about the co-occurrence among the LBPs. This 

augmentation enables a more comprehensive analysis of the spatial correlations present 

among the LBPs within the image. 

          (6.21) 

In the LBP computation, (𝑥𝑐, 𝑦𝑐) denotes the LBP value at the center pixel coordinates 

(𝑥𝑐, 𝑦𝑐), while I (𝑥𝑐, 𝑦𝑐) represent the intensity value of the center pixel. Additionally, 

the function g(x) is defined as zero if x < 0, and g(x) = 1 if x≥0. For instance, consider 

selecting 54 as the threshold value for the center pixel. When the neighboring pixel 

values are below this threshold, they are set to 0. Conversely, if the neighboring pixel 

values are greater than or equal to the threshold, they are assigned a value of 1. The LBP 

value is determined through scalar multiplication of these two values. The weight and 

binary matrices are then combined to calculate the LBP value. 

6.2.9 Google Net 

The research paper titled "Going Deeper with Convolutions," published in 2014, 

introduced the Google Net architecture, also known as Inception V1. This endeavor was a 

collaborative venture involving Google researchers and several universities. The 

architecture gained prominence by securing the top position in the 2014 image 

classification competition. In the Inception V1 design, innovative strategies were 

employed, including the utilization of global average pooling and 1x1 convolutions. 

Central to the architecture is the Inception module, a pivotal element situated in the 

middle of the overall structure. This module employs various techniques to create a more 

intricate and efficient architecture. Notably, it incorporates methods such as global 

average pooling and 1x1 convolutions. The architecture's layout and key constituents are 

depicted in Figure 6.2, providing an overview of the Google Net’s design. This section 

provides an in-depth exploration of several of these architectural techniques that 

contribute to the model's robust and high-performing nature. 



146 
 

 

1×1 convolution:  

The concept of employing 1x1 convolutions is a unique and defining aspect of the 

inception architecture. The integration of these convolutions serves the specific purpose 

of reducing the total number of parameters within the architecture. Through the strategic 

use of 1x1 convolutions, the inception architecture achieves an increased depth while 

concurrently minimizing the overall parameter count. This deliberate incorporation of 

1x1 convolutions significantly enhances the architecture's depth and its ability to handle 

intricate tasks, all while ensuring computational efficiency and optimized performance. 

Global Average Pooling:  

A notable fraction of parameters within different architectures, often responsible for 

driving up computational costs, is concentrated in these fully connected layers. As the 

network approaches its final stages, the GoogLeNet design introduces a technique called 

global average pooling. This layer functions by computing the average of a seven-by-

seven feature map, resulting in a compressed one-by-one size representation. By 

employing global average pooling in this manner, the architecture achieves dual benefits: 

it reduces the dimensions of the data while still preserving critical information. This 

strategic implementation of global average pooling serves to optimize the architecture's 

efficiency by curbing complexity and mitigating computational demands during the latter 

phases of processing. 

Inception Module:  

The inception module distinguishes itself as a novel and distinct feature in contrast to 

preceding network architectures. This system employs a predetermined convolution size 

for each layer. Within the inception module, the outcomes of the 1x1, 3x3, and 5x5 

convolutions, as well as the 3x3 max pooling operations, are concurrently processed. This 

parallel processing approach facilitates the extraction of features across various scales 

and dimensions. By harnessing this innovative method of parallel processing within the 

inception module, the architecture adeptly captures a wide spectrum of features and 

patterns from the input data. This capability enhances the network's capacity to 

comprehend and represent intricate relationships inherent in the data. 
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Figure 6.2 Architecture of GoogLeNet [Zhiling Guo et.al. ( 2017)] 

6.3 Extreme Learning Machine 

ELM offers several advantages, including rapid and efficient learning, strong 

generalization capabilities, a swift convergence rate, and straightforward implementation. 

Its variants are commonly applied in sequential, batch, and incremental learning 

scenarios. Unlike conventional learning algorithms, ELM's primary objective is to 

enhance generalization performance by achieving minimal output weight norms and 

minimizing training errors. 

 

Figure 6.3 Architecture of ELM [Fan Zhang et.al. (2019)] 
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Prior to computing the output layer's weights, ELM employs a random adjustment of 

biases and weights within the input layer. This technique not only yields improved 

performance but also accelerates the learning process compared to conventional neural 

network algorithms. The architecture of ELM is depicted in Figure 6.3. 

 

                               (6.22) 

 

    (6.23) 

Here, since the input layer to the hidden layer,  is an input sample,  is the value of the 

weight and  is the bias value. Minimized:  and  where  is the hidden 

layer output matrix; 

                                             (6.24) 

 

In this scenario, T represents the tag matrix, and  stands for the inverse of the Moore-

Penrose generalized hidden layer output matrix. The matrix H is formed by concatenating 

the transposed hidden layer outputs for the training samples, denoted 

as , where N is the total number of training samples. To 

enhance the robustness and generalization capacity of the ELM, the optimization process 

incorporates a regularization coefficient denoted as C. Consequently, when K kernels are 

involved, the weight set is determined as follows: 

                                                           (6.25) 

 

The system was modeled using kernels incorporating linear, polynomial, and radial basis 

functions. After careful evaluation, it was established that the radial basis function (RBF) 

kernel yielded the most favorable outcomes. Hence, the study employed the RBF kernel. 

Moving on to the final phase of our endeavor, which is classification, a tenfold cross-

validation approach was employed in the classification process. 
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6.4 RESULTS AND DISCUSSIONS 

6.4.1 Dataset 

The brain tumor dataset comprises a total of 1426 slices of glioma, 708 slices of 

meningioma, and 3064 slices of pituitary tumors, collectively amounting to 233 patients 

with distinct brain tumor types. The dataset encompasses 930 slices, covering the three 

tumor forms. Additionally, the dataset offers 5-fold cross-validation indices for 

assessment purposes. Figure 6.4 provides a visual representation of sample images 

extracted from the dataset. 

   

   

Benign Malignant Normal 

Figure 6.4 Sample images from the dataset 

6.4.2 Performance Metrics 

In accordance with the previously stated definition, accuracy represents a composite 

measure encompassing various forms of observational errors. Thus, achieving a 

heightened accuracy necessitates a concurrent emphasis on both precision and trueness. 

The formula for calculating accuracy is as follows: 
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                                 (6.26) 

 

Where TP = True positive; FP = False positive; TN = True negative; FN = False negative 

 

The ability of a test to accurately distinguish between individuals with and without the 

condition is denoted as its sensitivity (Se). It is often colloquially known as the True 

Positive Rate (TPR). This can be mathematically expressed as: 

 

                                       (6.27) 

 

Where TP = True Positives, FN = Number of False Negatives 

 

Specificity refers to the ability of a test to accurately classify individuals who do not have 

the specific condition. It quantifies the probability that a patient is indeed without the 

disorder (Sp). At times, it is also referred to as the True Negative Rate (TNR). 

 

                             (6.28) 

 

The Precision (Pr) is calculated as: 

                              (6.29) 

Where, TP=True Positive; FP=False Positive. 

6.5 Results Analysis 

The parallel and vertical histogram is shown in Figure 6.5. Histogram of the images of 

the brain tumor's horizontal and vertical axes. Since the kurtosis for the Gaussian 

distribution is 3, the wavelet transform coefficients are strongly non-Gaussian. 
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Figure 6.5 Parallel and vertical histogram 

 

Table 6.1 Performance of Proposed Method with existing methods 

Performance Benign Malignant Normal 

Accuracy % 0.97 0.99 0.96 

Sensitivity % 0.98 0.98 0.97 

Specificity % 0.98 0.97 0.97 

Precision % 0.99 0.93 0.99 

 

Table 6.1 illustrates the performance outcomes of the proposed method. For the 

classification of benign tumors, an accuracy of 0.97, sensitivity of 0.98, specificity of 

0.98, and precision of 0.99 were achieved. In the case of malignant tumors, the accuracy 

reached 0.99, sensitivity was 0.98, specificity reached 0.97, and precision achieved 0.99. 

Lastly, normal tumors achieved an accuracy of 0.96, sensitivity of 0.97, specificity of 

0.97, and precision of 0.99. 

Table 6.2 Performance of Proposed Method with existing methods 

Method 

Accuracy % Specificity % Precision % 

NET Core ET NET Core ET NET 
Cor

e 
ET 

VGG16 [82] 0.92 0.93 0.85 0.94 0.92 0.96 0.92 0.91 0.97 

U-Net [83] 0.97 0.97 0.79 0.93 0.86 0.98 0.96 0.96 0.75 

CNN-M-SVM 0.86 0.75 0.71 0.96 0.96 0.95 0.95 0.86 0.79 
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Table 6.2 presents a comparison between the performance of the suggested method and 

existing methods. The accuracy performance in comparison to the current approaches is 

depicted in Figure 6.6 the comparison of specificity's performance with previous 

techniques can be observed in Figure6.7 Furthermore; Figure 6.8 illustrates the 

comparison of precision performance with those of existing techniques. To provide 

insight into the suggested technique's outcomes, the confusion matrix is presented in 

Figure 6.9. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Comparative performance of accuracy with existing methods 
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Figure 6.7 Comparative performance of specificity with existing methods 

 

 

Figure 6.8 Comparative performance of precision with existing methods 
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Normal 

Normal Benign Malignant 

35200 300 965 

Benign 1520 28500 1002 

Malignant 153 135 35050 

 

Figure 6.9 Confusion Matrix for the Proposed Method 
 

6.6 CONCLUSIONS 

In this research introduces a novel methodology for brain tumor classification coupled 

with region segmentation. The approach involves the utilization of Google Net for brain 

tumor detection, where an ELM classifier performs image classification, and Google Net 

handles region segmentation. The process initiates with image normalization, followed by 

wiener smoothing to filter the images. Additionally, contrast enhancement is employed to 

enhance the image quality. The dataset is divided into three categories: benign, 

malignant, and normal, paving the way for subsequent tumor segmentation through the 

FCM technique. Feature extraction is executed, encompassing edge features, LBP, and 

pixel statistics. The trained Google Net is then employed to extract distinct regions: core, 

enhancing tumor, and non-enhancing tumor. The outcomes are promising, boasting an 

accuracy of 0.97, sensitivity of 0.98, specificity of 0.98, and precision of 0.99 for the 

benign stage. Likewise, the malignant stage demonstrates an accuracy of 0.99, sensitivity 

of 0.98, specificity of 0.97, and precision of 0.93. Finally, the normal stage showcases an 

accuracy of 0.96, sensitivity of 0.97, specificity of 0.97, and precision of 0.99. 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 
7.1 Conclusion 

Brain tumor is one of the deadliest diseases and causes millions of new cases each year. 

There is an urgency to classify or resolve brain cancer in the early stage. The early 

diagnosis will increase the survival rate of the patient. With this motivation, the presented 

research work concentrates more on developing an automated brain tumor identification 

and detection module. Initially, the detailed literature review is carried out to get the 

knowledge of brain tumor and its detection framework modules. It was observed that 

most of the researchers suggested improving the current detection framework to make 

diagnosing automatic and to perform rapid operations. The important objective of this 

research work is to develop an efficient framework to diagnose the brain tumor using 

various filtering, segmentation, classification techniques. This work presents a robust 

approach to brain tumor region segmentation through the development and training of 

three distinct U-Net models, each targeting specific tumor regions. By integrating an 

improved adaptive gamma correction technique and utilizing the BraTS 2020 dataset for 

rigorous testing and validation, the proposed method achieves significant enhancements 

in training and testing accuracy. The segmentation process is further refined through 

sensitivity analysis and the use of an ELM classifier in conjunction with GoogLeNet for 

effective classification.  

The systematic image processing steps, including normalization, filtering, and contrast 

enhancement, contribute to the overall success of the method, resulting in an impressive 

accuracy rate of 99.5%. This study not only advances the field of brain tumor detection 

but also lays the groundwork for future research in medical image analysis, emphasizing 

the importance of innovative techniques in improving diagnostic capabilities.  

Using three U-Net models for different tumor regions adds complexity to the training 

process. Time is taking the process of training multiple models and requires significant 

computational resources. The technology majorly depends on BraTS2020 datasets for 

validation, which may limit it's generalizability to other datasets. The performances on 

various MRI datasets with changing characteristics persist uncertain. 

 



156 
 

7.2 Future Scope  

The UNET model's classification accuracy can be further improved by exploring various 

weight optimization techniques. This includes experimenting with different optimizers, 

learning rate schedules, and advanced techniques like automated hyper parameter tuning. 

Extending the work to incorporate a 3D active contour model could lead to significant 

improvements in segmenting complex structures like tumors in volumetric scans. Active 

contours in 3D can better capture the shape and boundaries of tumors by leveraging 

information from neighboring slices. 

In future work could also apply the proposed segmentation method to other organ tumor 

regions, such as lung cancer in CT scans or liver tumors in MRIs. Each organ presents 

unique segmentation challenges, and the model could be fine-tuned or adapted to better 

handle these variations. 
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