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Abstract

Fibonacci numbers are the amazing numbers discovered by Leonardo of Pisa and are
one of God's best-gifted numbers, having a significant impact on our daily lives. These
numbers are the outcomes of Leonardo of Pisa's well-known "rabbit problem”, which
we will cover in more detail later in this thesis. These numbers, in addition to being a
part of our everyday lives, have a variety of applications in nature, music, and other
fields that cannot be expressed in a few words.

This thesis as a whole concentrate on the notion of these divinely endowed
Fibonacci numbers and the associated polynomials that surround them. There are six
chapters in this thesis. The first chapter of the thesis provides a brief introduction to the
Fibonacci numbers, their history, and their applications in different fields of our lives.
In addition, a brief outline of the significant concepts and well-known results pertaining
to Fibonacci numbers and the associated polynomials with tabular and graphic
illustrations are given, which meets the minimal prerequisite for the establishment of
the necessary framework for subsequent chapters. In the section of literature review, a
discussion on the existing works done by various researchers in the domain of
Fibonacci and related numbers and their associated polynomials is covered, wherein
our main focus is on summation representations of finite products of these sequences
of numbers and polynomials. A research gap has been identified in this review. This
chapter also lays down the objectives and methods that will be employed to bridge these
gaps. We extensively employed GeoGebra software to represent various sequences
graphically.

The remainder of the thesis is focused on the behaviour and different properties
of polynomial sequences that are analogous to sequences of Fibonacci numbers and
their inter-linkages. Our work mainly zeros in on the sequences of Lucas, Fibonacci, &
Pell numbers & their polynomials, Chebyshev polynomials of the 1%, 2" 3 & 4
kind, followed by a brief description of Trivariate Lucas and Fibonacci polynomials
and their extension to generalized Trivariate Lucas and Fibonacci polynomials, with
the development of some results based on their properties and inter-relationships. We

employ a variety of methodologies and techniques to accomplish our objectives. By



employing recursive methodology in this thesis, we develop various summation
representations for sequences of Lucas and Fibonacci numbers and their polynomials
with positive as well as negative indices. After that explicit formulae for the 3™ & 4™
kinds of Chebyshev polynomials and their derivatives with odd & even index are
obtained, followed by the establishment of their linkages with the Fibonacci
polynomial. Furthermore, the sums of the finite products of the 3™ & 4" kinds of
Chebyshev polynomials and Pell polynomials are expressed as a linear sum of other
orthogonal polynomials using elementary computations. Next, we studied the
extensions of Trivariate Lucas and Fibonacci polynomials to (p, g, r)-Generalized
Trivariate Lucas, and (p, g, r)-Generalized Trivariate Fibonacci polynomials and
developed their basic properties. Using these properties, we derived the explicit
representations of (p, g, r)-Generalized Trivariate Fibonacci and (p, q, r)-Generalized
Trivariate Lucas polynomials and derived several intriguing identities associated with
their generating matrices and corresponding determinants.

After introduction to the thesis, we developed various identities on summations
of finite products of Lucas & Fibonacci numbers in terms of the 2" kinds of Chebyshev
polynomials and their derivatives. These identities are further extended to the Fibonacci
and Lucas numbers with positive as well as negative indices. Next, we derived
analogous results for the 3" & 4™ kinds of Chebyshev polynomials followed by some
particular cases of these identities. Thereafter, the explicit formulas for the 3 & 4™
kinds of Chebyshev polynomials and their derivatives with odd and even indices were
obtained, and their connections with the odd and even indexed Fibonacci polynomials
were studied. Further, we obtained some more identities connecting finite product of
the 3™ & 4™ kinds of Chebyshev polynomials with several other orthogonal
polynomials like Pell, Jacobi, Fibonacci, Gegenbauer, Vieta-Fibonacci, and Vieta-Pell
polynomials. In terms of these polynomials, analogous results for Lucas & Fibonacci
numbers are obtained using the computational method.

Our next step is to establish some new results on representations of finite
products of the Lucas & Fibonacci numbers, Fibonacci & Pell polynomials as a linear
sum of derivatives of Pell polynomials. Similar results are obtained for the 3™ & 4%
kinds of Chebyshev polynomials. Following this pattern, we will introduce similar
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results for Lucas, Fibonacci, & Complex Fibonacci numbers with negative indices as a
linear combination of Pell polynomials. In terms of the 3" & 4" kinds of Chebyshev
polynomials, similar identities were obtained for Pell numbers and Fibonacci
polynomials with a negative index. Similar representations for the Chebyshev
polynomials of the 3" & 4" kinds as a linear sum of the Chebyshev polynomials of the
2" kind are studied.

At the end, we worked on the sequence of Tribonacci numbers and associated
polynomials, Trivariate Lucas and Fibonacci polynomials that follows a third-order
recursive relation. Following this concept, we will study (p, g, r)-Generalized Trivariate
Lucas and (p, g, r)-Generalized Trivariate Fibonacci polynomials and some of their
basic properties and their inter-linkages. These polynomials are characterized

recursively as follow:

Fro(§,w,0)
(O ifa=0
_) 1 ifa=1
_ip(f:w:{) ifa=2
P w, ) F 16w, +qE 0w, OF ¢ 2§ 0,0 +7(¢ 0, OF 3¢ 0,0),if a>2
and
G'a(§ w,$)
3 ifa=0
P ) ifa=1
rE¢ 0+ qE w,9) if a=2

P(E: w, {) G*a—l(f' w, () + q(f! w, ()G*a—Z(E' w, Z) + T(f, w, Z)G*a—3(§" w, {): lf a>2

where p(¢, w, ), q(¢, w, ), r(& w,{)are polynomials of the variables &, w and (.
Using these recurrence formulas, we will study the sum of the first n-terms of these
polynomials, followed by their sum of even and odd number of terms. Some relations
involving Jacobian of (p, g, r)-Generalized trivariate Lucas and (p, g, r)-Generalized
trivariate Fibonacci polynomials are also considered.

Using the properties of these polynomials, we will derive the explicit formulae
of (p, q, r)-Generalized trivariate Fibonacci and (p, g, r)-Generalized trivariate Lucas

polynomials which are given by
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F* (8, 0,0) = Z Z (Z) (a -t ; S 1) pa—zt—s—lqt—srs’

t=0 s=0
Izl

0= ()Y

t=0 s=0
such that (]) = 0 for i > j and writing p = p(§,®,0),q = (¢, w,)), 7 =1, w,{).

At the end, we will deduce some identities involving the generating matrices
and their determinants. The generating matrix for (p, q, r)-Generalized Trivariate
Fibonacci and (p, g, r)-Generalized Trivariate Lucas polynomials are generated with

the help of the following matrix

p 1 0
}[=[q 0 1]
r 0 0

and deduced some related determinantal properties.

Finally, we lay out the brief mapping of the future research possibilities based

on the content of this thesis.
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Chapter 1
Introduction

1.1  Introduction

Leonardo Pisano (1170-1250), an Italian mathematician who is better known by his
nick name Fibonacci (an abbreviation of Filius Bonacci), while studying Hindu-Arab
numerals, came across what is known as the Fibonacci Sequence, and he compiled his
findings in the book Liber Abaci which was published in 1202 and later revised in 1228.
He visited a number of Mediterranean nations and researched their mathematical
practices. Fibonacci's work in Liber Abaci is said to have been influenced by the
mathematical work of Egyptian mathematician Abu Kamil. His book opens with the
following explanation of the Hindu-Arabic numeral model: The following nine figures
have been identified as 1,2,3,4,5,6,7,8,9 allowing any number to be represented using
these nine figures and the symbol 0 [3]. First-hand instances of the potential benefits of
the new Hindu-Arabic numeral scheme were offered by the problems in this book. Liber
Abaci was considered a complete source of mathematical knowledge during the time
of Fibonacci. For hundreds of years after its publication, this book served as a crucial
source for mathematicians searching for new ideas in algebra and computation.

Now let's focus on Indian mathematicians and their contribution to the Fibonacci
numbers. Although Leonardo Fibonacci, who was mentioned in detail above, is the
name-bearer of the Fibonacci numbers, the knowledge of these numbers existed long
before his time. The Indian mathematician Pingala is credited as being the first to have
knowledge of the Fibonacci numbers, according to a number of researchers including
Singh [1, 3-4]. The estimated year when he lived is 400 B.C. It is believed that Acarya
Virahanka, an Indian mathematician who lived between 600 and 800 A.D., was the first
to present the Fibonacci numbers in written form. Gopala is another key figure in the
domain of the Fibonacci numbers, born before 1135 A.D. and having significant
contributions. Archarya Hemachandra, a renowned Jain writer, presents an estimate of
variations in matra-vrttas in Chandonusasana. In Chandonusasana, the translation of his

rule, which is referenced from [4], is as follows: "Sum of the last and the last but one,
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number of variations of the matra-vrttas coming afterward”. (Matras-Vrttas are metres
with varying letter counts but consistent amounts of morae). He continues, “the number
3, which is preserved later and is the number of variants (of meter) having three matras,
is the last among the numbers 1, 2, etc., and the last number other than one. The result
of adding 3 and 2 is 5, which is kept later, and there are 4 matras in the metre's
variations [5]”.

In the classic rabbit problem, the Fibonacci sequence was initially employed to
determine how many pairs of rabbits are born out of one pair of rabbits in one year.

This problem is stated as under:

A pair of rabbits was kept in a wall-enclosed region to determine precisely the
number of pairs of rabbits that could be bred by a pair of rabbits over an entire year,
assuming that each pair of rabbits bears a new pair every month, which becomes
productive from the second month onwards, and no rabbit dies during this span of time.

This rabbit problem demonstrated by Fibonacci (1202) is subject to the
following ideal conditions:

a) Start with a pair of neonatal rabbits.

b) Maturation period is one month.

c) One month before pregnancy.

d) Imitate a new born couple.

e) Repeating the intimacy, and so on.

f) No rabbit dies.

Legend:
Month 1 @ g_\\} @ @ Infertile pair

rertile pais

Y

_________ The pair becomes fertile

o \ The pair survives

Month 3 £ 0 L) £ &
e — & & The pair generates

\ another pair (infertile)
Month4 L L» L Er L2 L2
w\_

nT N R
XN f‘: :P f‘: > f": ? f": P
Q. O and so on.

Figure 1.1: Breeding pattern in rabbit Experiment.

Month S5
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Month Youth Pairs Matured Pairs Total
January 1 0 1
February 0 1 1
March 1 1 2
April 1 2 3
May 2 3 5
June 3 5 8
July 5 8 13
August 8 13 21
September 13 21 34
October 21 34 55
November 34 55 89
December 55 89 144
January 89 144 233

In the outcome of this experiment, Leonardo found that the rabbit reproduction pattern

conforms to a sequence,

This sequence is known as the Fibonacci sequence. In this sequence, every

successive term is the sum of the preceding two terms and is generally represented by

the recursive relation given by

0,
Fy =
Tn—l +Tn—2’

1,2,3,5,8, 13,21, 34, 55, §89...

n=0
n=1

n=2neN

Table 1.1: Rabbit problem and Fibonacci numbers.




Equivalently, the Fibonacci sequence (F,) is represented as:
n 0 1 2 3 4 5 6 7
F, |0 1 1 2 5 8 13 21

Table 1.2: Fibonacci numbers.
In 1634, A. Gerard arrived at the following recurrence relation for the sequence:

Upry = Upyr +Uy,n = 1, (1.2)
withlU; =1,U, = 1.
R. Simpson in 1753, derived a formula implied by Kepler

UpsrUp—q — Up” = (=D, (1.3)
It was during the period 1878-1891 that Edward Lucas, who dominated the field of
recursive series, first attributed Fibonacci’s name to the sequence given by (1.1), and
since then, it has been called the Fibonacci sequence.
The higher-order Fibonacci numbers are found with the help of Binet’s formula.

Bernoulli (1724) provided the n'" Fibonacci number in Binet's form as:
1
Fa=lam= b, (14)

where a and b satisfy the equation
x>—x—1=0. (1.5)

fibonacci(n)

Figure 1.2: Graph of Fibonacci numbers.
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Furthermore, the Fibonacci spiral aptly describes the Fibonacci numbers as under:

Figure 1.3: Fibonacci Spiral.

Fibonacci numbers have many uses in many different fields of study and are
useful in everyday life and the natural world in addition to mathematics. The patella of
several blooms generates the Fibonacci number sequence. Lilies, for instance, have
three petals; buttercups, five; delphiniums, daisies, and asters, respectively, eight,
thirteen, and twenty-one. Additionally, while counting flowers in a clockwise or

anticlockwise orientation, some of them display spirals that follow Fibonacci numbers.

1

Figure 1.4: Flowers with Fibonacci numbers.



Music and Fibonacci numbers are also inextricably linked. Looking a

t the keyboard of

a piano outlines the Fibonacci numbers. [6]. These numbers can also be spotted in

pineapples. [7].

8 Parallel rows of scales 13 Parallel rows of scales

spiraling gradually spiraling at a medium

21 Parallel rows of scales
spiraling at a steep slope

Figure 1.5: Pineapples with Fibonacci numbers.

Figure 1.6: Fibonacci numbers on the keyboard of the Piano.

Fibonacci numbers plays a significant role in the life cycle of plants and animals, in

bee family trees, in tree growth points, and in various fields that cannot be described in

a few words.

1.2 Basic Terminologies and Preliminaries

We employ some fundamental concepts in order to achieve our objective which are

discussed as under:
1.2.1 The Golden ratio

The golden ratio is termed as the ratio of the length of the largest portion (L) to

the smallest portion (S) being equal to the ratio between the total length and the length

of the largest portion of the line segment i.e.
L _ L+S

S L
6

(1.6)




For finding the numerical value of the golden ratio, put;L = x which reduces (1.6) to
x2—x—1=0.
The positive roots of this equation give the “golden ratio,” or “golden proportion,” or

“the golden mean,” which is generally denoted by @ and numerically equal to @ =

1S _ 1616803 ...

1.2.2 Fibonacci numbers with negative index
The sequence of Fibonacci numbers (F,) is extended to the negative value of the index
1, where n being positive integer, by Abramovich [8] through a relation as follows:

Foo=(D"E, (1.7)

or
Frrr = Fo+ Fuc, (1.8)

WithF,=0,F, =F_, =1.
The extended Fibonacci numbers to negative index are represented by the table as

under:

n 0|1 2 3 4 5 6 7 8 9 10

F. | O 1 1 2 3 5 8 13 21 | 34 | 55

F .| 0 1 |-1(2 |-3|5|-8|-13|-21| 34 |55

Table 1.3. Fibonacci numbers with negative index.
1.2.3 Fibonacci Polynomial
Fibonacci sequence in one of its generalizations extends to polynomials known
as Fibonacci polynomials. E. C. Catalan, a Belgian mathematician, and E. Jacobsthal,
a German mathematician, studied the Fibonacci polynomials in1883. Catalan defined

the Fibonacci polynomials recursively as

Fara(#) = 2 Farq () + Fp (x), (1.9)

with  F;(x) =1 and F,(x) = x for every integer @ > 3. Also, F, (1) = F,, a*?

Fibonacci number.



According to Jacobsthal, Fibonacci polynomials are given by the recursive relation
Go(x) = Ggq (%) + x Gy (%), (1.10)

with G,(x) =1 = G, (x), for every integer a > 3..

Koshy [41], in his book, defines a polynomial sequence called the Fibonacci

polynomial, given by

0 a=20
Folx) = 1 a=1 (1.11)
xFq_1(x) + Fop(x), a>2,a€N.

The graphical representation is as under:

Values of x b

Figure 1.7: Graph of Fibonacci Polynomial.
The sequence of Fibonacci polynomials with negative indices is given by

F o(x) = (—1D)*1E, (x), a€N ,a>1. (1.12)
Some of the useful properties and identities satisfied by the Fibonacci polynomials are:

a) The generating function (F (x, £)) is given by

Fx, 1) = ———. 1.13
&) =171, (1.13)
b) The a*" Fibonacci polynomials are obtained by the formula
(c*—a%)
Fo(2) = ————, (1.14)
where ¢ = x+';2+4 L d = x_‘;ZH satisfies the equation 2 — tx — 1 = 0.
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c) The Fibonacci polynomials are represented by an explicit formula
7]

F(x) = Z (“ _I_ 1) (x)*-2¢-1, (1.15)

d) The Fibonacci polynomials satisfies the relation
F,(—x) = (=11 F,(x), Voa>1. (1.16)
1.2.4 Lucas number
The Lucas numbers [13], named after F. E. A. Lucas, a French mathematician,
follows a recursive relation similar to that of Fibonacci numbers but differ only in its
initial terms. The sequence
2,1,3,4,7,11,18,29 ...,
represented recursively as
L, =Ly 1+ Ly pn>2 (1.17)
with L, = 2and £; = 1 is called Lucas’s sequence, and its terms are called as Lucas
numbers.
The higher order Lucas numbers are obtained by using Binet’s formula. The
Binet’s form of n Lucas number were given by Euler (1726) as:
L, =a"+b", (1.18)
where a and b satisfy
x2—x—-1=0.

The graphical representation is as under:

140

120

100

S0

lucas(n)

s0

40

20

Figure 1.8: Lucas numbers.
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Similarly, as the Fibonacci numbers are represented by Fibonacci spiral, Lucas numbers

are also well depicted by the Lucas spiral as below

29

Figure 1.9: Lucas Spiral

1.2.5 Lucas numbers with negative index

Analogous to the Fibonacci sequence, the Lucas sequence with a negative index

is given by the following relations:

L_,=0-D"L,, (1.19)
or
L/n+1 = Ln + L/n—li (120)
where L_; =—-1, L, =2,& L, =1.
A few terms of extended Lucas numbers are as follows:
n 0 1 2 3 4 5 6 7 8 9 10
L, 2 1 3 4 7 11 18 29 47 76 123
L_, 2 -1 3 —4 7 —-11 18 —29 47 —-76 | 123

Table 1.4: Lucas numbers with negative indices.
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1.2.6 Lucas polynomial

Similar to Fibonacci sequence, the Lucas sequence [10] is also extended to
polynomials called Lucas polynomials. Lucas polynomials and Fibonacci polynomials
are strongly connected because they have the same recursive relation and differs only
through their initial conditions. Bicknell (1970) studied the Lucas polynomials, which
are defined by

2 a=0,
Lo(x) = x a=1, (1.21)
XLy 1(x)+ Ly y(x) a=2,a€EN.

Furthermore, £,(1) = £, Lucas number.

The graphical representation is as under;

g
12 LsIFG |
10 it

Value of x
-20 —18 -16 —14 =2 -10 -8 -6 —-4 =2 D'_ 2 4 6 8 10 12 14 16 18 20

. —‘12
] LaLs

Figure 1.10: Graph of Lucas polynomials.
The sequence of Lucas polynomials can be extended to the set of integers by using the
relation
L_,(x)=(-1DL,y(x), a €N ,a=>1 (1.22)

Forany integer & > 1, some of the useful properties and identities satisfied by the Lucas
polynomials are

i).  The generating function for Lucas polynomials is

2—xt

1—242%2 —tx
11

Lx, 1) = (1.23)



ii).  The a® Lucas polynomials are obtained by the formula

Lo(x) = (c*+ d%), (1.24)
where ¢ = x+":2+4 and 4 = ';2+43atisfies t?2—tx—1=0.
iii).  The Lucas polynomials are represented by an explicit formula
2] ,
_ a a— a-2y
Loy(x) Z - y( , )(x) . (1.25)
y=0
iv).  The Lucas polynomials satisfy the identity
Lo(—x) = (-1)* L (x), a €N,a > 1. (1.26)

1.2.7 Fibonacci numbers, Lucas numbers, and Golden ratio
The ratio of two consecutive Fibonacci numbers such that the subsequent is
divided by the preceding generates a sequence which approaches to ¢ , the golden ratio.

A similar, argument holds for Lucas numbers too. Thus,
Fr

lim =¢
n—oo
i (1.27)
lim n+1 — (l)
Mn—co L/n

. 2

L

AT

/

Figure 1.11:(The Fibonacci numbers (Red) and Lucas numbers (Green) has their

ratios converge to Golden ratio).
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1.2.8 Complex Fibonacci numbers

The Complex Fibonacci numbers [8] are characterized by the relation

i w=20
F*, = 1+, w=1
Fro-1tFu-2, w =2 0w€EZ

and satisfies the relation
F*p=F,+iFui
where i2 = —1.
1.2.9 Pell Numbers
Pell numbers [9], derived by John Pell, are given recursively as
P,=2P, 1 +P,_ V1 =2,

(1.28)

(1.29)

(1.30)

with P, = 0,P; = 1.Thus, Pell numbers are the sum of twice of its previous term and

the term that precedes it. Pell numbers can be generated by the following formula:

n _ 4n
P, = L
2v2
where #, g satisfies
x2—-2x—-1=0.

The graphical representation of Pell numbers is

Y-axix

X-axix represents the values of n

e Y-axix represents the corresponding Pell numbers

(1.31)

X-axix

Figure 1.12: Graph of Pell numbers.
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1.2.10 Pell Polynomials
Pell polynomials [60], studied by A.F. Horadam (1985), are represented recursively as
0 v=20
P, (x) = 1 v=1 (1.32)
2xP,_1(x) + P,_,(x) v=2,vEN.

Also, P, (3) = F, and P,(1) = P,.

The v*" term of the Pell polynomials is obtained by the formula

a’ —bY
P,(x) = , 1.33
V(1) = —— (133)
V2 —Vx2 . -
where g = %+ 2 * and b = xTM, satisfies #2 — xt — 1 = 0.
The graphical representation of Pell polynomials is
PZ 1'\:4lPS Pn( f c/
1 40 / 1
\ H
v 30 I /
\ / / /
\ 20 f/ / —
10 // / 7///
/ = Value of x
_-9 -8 =7 -6 =5 -4 =3 /—/2_/,AT/ 1 2 3 4 5 6 i 8 9
/// /’/ﬁ
—PW// / / -20
/
’;‘ -30
|
/ —-40
—
/ -50
;.‘
JP3 yP5 =3

Figure 1.13: Graph of Pell polynomials.

For all integers v > 1, some of the useful properties and identities satisfied by the Pell

polynomials are

) The Pell polynomials are generated by
P(x,t) = ¢ (1.34)
YT T —ox '
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ii) The Pell polynomials are represented by an explicit formula

=
P (x) = YZ; (V B ; B 1) (x)V-2r-1, (1.35)

iii) The Pell polynomials satisfies
Py(—=x) = (=1)"** B, (x). (1.36)
1.2.11 Chebyshev polynomials
Chebyshev polynomials were first studied by P. L. Chebyshev (1821-94), a
Russian mathematician. In studying the numerical solutions of differential equations,
classical orthogonal polynomials are frequently used. Chebyshev polynomials are
increasingly used in numerical analysis. Four kinds of Chebyshev polynomials are
isolated out of which a wide range of research work is done on the 1% & 2" kinds of
Chebyshev polynomials whereas very little work has been carried out on the 3 & 4%
kinds of Chebyshev polynomials offering a dynamic field for the prospective
researchers. These Chebyshev polynomials find application in approximation theory.
In this subsection, the existence of Chebyshev polynomials and some of their key
characteristics will be discussed [2, 11- 12]. Chebyshev polynomials are solutions of
the Chebyshev differential equations [12] which occurs as a special case of the Strum-
Liouville problems [52], which we will discuss below:
Q) Chebyshev polynomial of first kind
The solutions of the Chebyshev differential equation

d? d
(1—x2)d—£—x£+a2y=0,,for|x|<1,anda€N. (1.37)
represented by the polynomials

T, (x) =cosab, (1.38)
where x = cos8 for all integers a > 0,x € [-1,1] and 6 € [0,7] , are called
Chebyshev polynomials of first kind.

Furthermore, the application of De Moivre’s theorem allows the representation

of these polynomials by the recurrence relation as follows:

1 a=0,
To (x) =1 X a=1, (1.39)
24T 4 () — Ty (%) a=>2,a€N.
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The generating function G (t) is

The at" Chebyshev polynomial of first kind is given by

D T (967 = 6:(0) =<
a=0

Ty (x) =l[a“+b“]

2

where a, b satisfies

A2 —=2xA4+1=0.

It follows the explicit formula

2]

Ta (x) — Z (;;) xa—Z{’(xZ _ 1)£’

£=0

Further, for any integer a, 8 = 0,

The graphical representation of these polynomials is

(T, (2T ()
Negup

-1

dx =

—2xt +t2°

(1.40)

(1.41)

(1.42)

(1.43)

| [ T, (%)

T2 \T4 12

10

= :
] \KK value of x

-6

I ELS 5

Figure 1.14: Graph of Chebyshev polynomials of first kind (& = 1 to a = 5)
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(i) Chebyshev polynomials of the second kind

The solutions of the Chebyshev differential equation

d’y dy
— )L _ 3, 2L =
1-=x )dxz 3x T +a(a+2)yp=0 (1.44)
represented by the polynomials
sin(a +1)0
U, ()=S0t D0 (1.45)
sinf

where x = cos@, for all integers a« = 0,x € [-1,1]and 6 € [0,7r] are called
Chebyshev polynomial of second kind.
Furthermore, the application of De Moivre’s theorem allows the representation of these

polynomials by the recurrence relation as follows:

1 a=0,
U, (x) = { 2x a=1, (1.46)
20Uy g () = Uyy () a=>2,a€eN.

The generating function G (t) is given by

= 1
a —— j— -—
Zu“ ()t = Gu(®) = T (1.47)
a=0
The a™ term of this sequence of polynomials {u, (x)} is given by
a+1 + ba+1
Uy () = 2 mra— (1.48)
where q, b satisfies
A2—2xA+1=0.
The explicit formula is
2] 1
_ @ a-20(0,2 _ 1\
ua(x)_Z(Z{,H)x (2% — )", (1.49)
Further, for any integer a, 8 = 0,
(Orthogonality Property)
! 0, a+pf
f’ua(x)’uﬁ(x) 1—x2dx:{g’ a=p (1.50)
-1
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The graphical representation is as under:
2 -U412

{10

+—8

value of x
1 2 3 4 5 3 7 8 ]

Figure 1.15: Graph of Chebyshev polynomials of second kind (&« = 1to a = 5)

(iii)  Chebyshev polynomials of the third kind

The solutions of the Chebyshev differential equation

d*y dy
(1 —xz)W+ 1- Zx)a+ a(a+ 1)y =0,,for|x] <l,anda € N. (1.51)

represented by the polynomials
) (1.52)

where x = cos6, for all integers a > 0,x € [-1,1] and 6 € [0,7] are called
Chebyshev polynomial of third kind.
As a consequence of De Moivre’s theorem, the above polynomials (V,(X)) can

be represented by

1 a =0,
V, (x)= 2x — 1 a=1, (1.53)
22V, 1 () —V,_, (x), a=>2,a€N.

18



The generating function Gy (t) is given by

(1.54)

- 1—t

a — —_
Z)v“(x)t _GV(t)_l—th+t2'
a=

The at™ term of the sequence of Chebyshev polynomials of third kind {V, (x)} is

given by
Vy (%) = Zia #Za; i szl' (1.55)
where #, g satisfies
A2—=2xA+1=0.
It follows the explicit formula
V, (x) = ' L (2“ * 1) 1+ 21— x). (1.56)
24 2y

y=0
For any integer a,p = 0,

(Orthogonality Property)

1
1+« 0, a#
fva (0, (x) /mdx = {n - =’;_ (1.57)
-1

The graphical representation is as follows:

vy

value of
6 8 10 12 14 16 18

Figure 1.16: Graph of Chebyshev polynomials of third kind (¢ = 1to a = 5)
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(iv)  Chebyshev polynomials of the fourth kind

The solutions of the Chebyshev differential equation
2

d“y dy
— 2y < _ — =
(1—=x9) Tx? (1+2x) T +ala+ 1Dy =0, x| <1, €N, (1.58)

represented by the polynomials
sin (a + %) 0
sin(5)

where x = cos@, for all integers a >0,x € [-1,1]and 6 € [0,m] are called

w, x) = , (1.59)

Chebyshev polynomials of fourth kind.
As a consequence of De Moivre’s theorem, the above polynomials (W, (x)) can

be represented as

1 a=0,
w, (x)= { 2x + 1 a=1, (1.60)
22W,_1 () —W,_, (x) a=>2,a€N.

The generating function Gy, (t) is

> Wi (26 = G () = - 1t (1.61)
a=0

— 2xt +t2°

The at™ term of the sequence of Chebyshev polynomials of third kind {W, (x)} is

given by
1 757_205+1 _ g_2a+1
Wy (x) = >z ra , (1.62)
where #, g satisfies
A2—2xA+1=0.
It follows the explicit formula
a
1 2a+1
W, (x) = Z z—a( ) ) (1 +2)% (x — 1), (1.63)
Y=0
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For any integer a, 8 = 0,

(Orthogonality Property)

1
1 —
f W, (W (%) /H—zdx - {2 Z:g (1.64)
“1

The graphical representation is as under:

!Nz |w4 ¢ (W)

10

value of x
TS B T AT

Figure 1.17: Graph of Chebyshev polynomials of fourth kind(a¢ = 1to a = 4)

Some of the important identities connecting these Chebyshev polynomials
which are going to be useful in the development of the subsequent results are

enumerated as under:
21



For every integer k > 0, the Chebyshev polynomials satisfies the following identities:

D)
i0)

iii)

iv)

xii)
xiv)
xXv)

2T (x) = Uy (%) — Uz (2))
Vi (x) = Uy (x)_ux—l (x)
Wy (x) = Uy (2) + Uy ()

Tocer <j1;x>=j1;xvx<x)
Wy () = Uy ( HTx>

21 =2 U (2) = T () = Ty (2) ) (1.65)
1+2) Ve (2) = T (%) + Tieyq (%)
1% 3 =F
K (E>— 2k+1
(1 =2) W (2) = T (%) = T (%)

w, (5)—1:
k3] T e+t
Vi (2) + Viey () =27, (%)
W (%) = (=1)"V, (—x)
Wi (2)=Wy—q (2) =27, (%)
Uy (ix) =1i* K+1 (x)

These identities can easily be established with the help of basic definitions &

fundamental properties of the Chebyshev polynomials

1.2.12 Chebyshev polynomials with negative index

The Chebyshev polynomials can be extended to the negative value of the index

[53, 54] by defining the relations as follows:

For any integer « > 0, and ¢,

To (D= T, (9 (1.66)

U_q (§) = =Ug—2 (§) with U_; ({) =0 (167)
Voo (§) = Va1 (9) (1.68)

W_q (§) = —We-1 (O) (1.69)
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1.2.13 Vieta-Fibonacci and Vieta-Pell polynomials
A.F. Horadam [36] studied the Vieta-Fibonacci polynomials (S, (x)), which are
defined recursively by
Sp(%) = 2851 (%) — Sp—2 (%), (1.70)
with initial conditions S,(x) =0, S;(x) = 1landn > 2.

Tasct and Yalcin [37] studied Vieta-Pell polynomials (R,,(x)),, which are defined
recursively by
Rn(x) = 2xR;_1(x) — Rp_2(%), (1.71)

with initial conditions Ry(x) = 0,and R, (x) = 1.

Few of the values of these polynomials are:

Vieta-Fibonacci Polynomials (S, (x)) Vieta-Pell Polynomials (R,,(x))
0 0
1 1
x 2X
22 -1 4x% —1
x% —2x 8x3 — 4x
x*=3x%+1 16x* — 1222 + 1
x° —4x3 + 3x 3245 — 32x3 + 6x

Table 1.5: Vieta-Fibonacci and Vieta-Pell polynomials

The graphical representation of Vieta-Fibonacci and Vieta-Pell Polynomials is as

follows:
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| S,
n

85S¢ 7
8
5
4
3
2

8 Value of x
s -8 -7 -6 -5 -4 -3 -2 - i 5;: :: 2 3 4 5 6 7 8 9
-2
-3
/S2 ||56

Figure 1.18: Graphical representation of Vieta-Fibonacci polynomials

\ l R (x)
R, Ry I

Value of x
1 2 3 4 5

w0 0
|
=
P
=
I~

<

Figure 1.19 Graphical representation of Vieta-Pell polynomials
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1.2.14 Jacobi polynomials

The Jacobi polynomials (P (n: A, 8)(x)) [12] are solutions of the Jacobi equation:

d*y

dx?

for|x| < 1 and n € N, satisfies the recurrence relation

(1—2x?) [,8—/1—(/1+ﬁ+2)x]%+n(n+/1+,8+1)y=0

2+ 1A+ B+n+1D)A+B+2n)P(n+ 1:4,8)(x)

=@A+B+2n+D[A* =B+ A+ B +2n)(A+ B+ 2n+ 2)x]P(n: A, B)(x)

-2 +n)B+n)A+L+2n+2)P(n

—1:,8)(x), (1.72)

with initial conditions

P0:4,B)(x) =1, PL:ALLx) ==[A—L+ A+ B+ 2)x]

N| =

1.2.15 Gegenbauer polynomials

The Gegenbauer polynomials (C(v: 1) (x) ) [12] are given by the Jacobi equation:

42 d
a —xz)d—fg—(z/u 1)x£ +v(v +20)g = 0

for|x| < 1 and v € N, satisfies the recurrence relation

! Rev+2-1DCv-1:D)(x)—Wv+21-2)C(v-2:)(x)], (1.73)

Cv:N)(x) = "

with initial conditions
CO:)(x) =1,C(1: D) (x) = 22x.
1.2.16 Tribonacci Sequence
Fibonacci sequence in one of its generalisations extends to a sequence called

Tribonacci sequence [14]. The sequence

0,1,1,2,4,7,13,24,44,81,149, ...
where each successive term is a sum of the preceding three terms is called Tribonacci

sequence. This sequence is represented by the recursive relation

0, w =0,
1, w =1,
ty, = 1 =72 (1.74)
ty1 tEy—2 +E,-3, w=3,wEN
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The graphical representation is:

45
40
35
30
25

20

Value of x

6 8 10 12 14 16

Figure 1.20 Graphical representation of Tribonacci numbers

1.2.17 Tribonacci Polynomials

Hoggatt and Bicknell [15] defined the Tribonacci polynomials in 1973 by the

following recursive relation:

1y (x) = 2

xztv—l (x) —xty_p (x) + 5 (x),

Few of the values of these polynomials are:

v=0,

v=1,

V=2 (1.75)
v=3,vEN.

Value of v Tribonacci Polynomials (%, (x))
0 0
1 1
2 x?
3 xt+x
4 x4+ 223 +1
5 28 + 325 + 322
... and so on ... and so on

Table 1.6: Tribonacci polynomials (£, (x)).
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The graphical representation is

1,00

value of x
2 4 6 8 10 12 14

g
-2 -10 -8 -8 -4

Figure 1.21 Graphical representation of Tribonacci polynomials.
1.2.18 Trivariate Fibonacci polynomials
Let #, ¢, be the given variables. Trivariate Fibonacci [23] polynomials
H,(g',€,w’),a € N is an extension of Fibonacci polynomials and follows a third-
order recursive relation given by
Ho#, O w') =FHo i (F, 0, w0) + H oy (F, 0, w") + wHy_s(F,€,w"),a > 2(1.76)
with Hy(#', €, w’) =0, Hy(#, ¢, w") =1, H,(f, ¢, w') =§.

a Trivariate Fibonacci Polynomials (H,(#, €', w"))

0

1

rz

£33 4280 +w’

£+ 3820 + 26w’ + 2
F5 + AF30 + 3§02 + 3820 + 28w

0
1
2
3 Fr+e
4
5
6

Table 1.7: Trivariate Fibonacci polynomials
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The Trivariate Fibonacci Polynomials sequences, by taking different values of
#, 2", w’, take different forms viz. for # =1, =1, and w’ =0, H,(f, ¢, w') =
t, , Tribonacci number, and for #’ = x2,¢ = x, ¢’ = 1,H,(#, £, w’") = £, (x).

1.2.19 Trivariate Lucas polynomials

For any variable quantities #’,#’,« and for integer « > 3, Trivariate Lucas [23]
polynomials £, (#,¢’,w’) is an extension of Lucas polynomials and follows a third-
order recursive relation given by

La (ﬁ’l 'g,J w,)
= F Ly (F, 0w + Ly s (B, 0w + 0 Lys(F, €, w),a>2,  (1.77)

with
Lo(#, ¢, w) =3,L,(§, 0, w) =§,Ly(§, 0, w) = §7? +20.
a Trivariate Lucas Polynomials
0 3
1 Iz
2 §2 420
3 #3 + 340 + 3w’
4 F4+ 48720 + 4w’ + 207
5 £+ 5§30 + 5807 + 582w’ + 50w’
6 FO+ 6440 + 98202 + 643w’ + 12§ 0w’ + 243 + 3w’?

Table 1.8: Trivariate Lucas polynomials

1.3 Literature Review
The literature on the Fibonacci sequence is vast, as numerous applications of

this sequence have been deciphered in different aspects of life, including nature,
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astronomy, art, and architecture, thereby inspiring many research scholars and
mathematicians.

The Vorobyov Brothers, Alfred [17], and Hogatt V.E [18], have given wide
spectrum of intriguing properties of the Lucas and Fibonacci numbers. These numbers
have been related to almost every kind of number.

Nobel Laureate, the famous physicist Aston [73], has shown the occurrence of
the Fibonacci numbers in the atomic world.

Read [19] applied the Fibonacci series to determine how far the moons of
Saturn, Uranus, and Jupiter were from their respective axes. He has shown that a
particular moon’s position is dependent upon the position of previous two moons closer
to the primary. Also, the moon seems to reside and, in the case of Jupiter, even
congregate at potential levels predicted by the Fibonacci series.

These Fibonacci sequences have been generalized in different way

1. Altering the recurrence relation while keeping the initial terms preserved.

2. Altering the initial term & maintaining the recurrence relations.

3. Modifying the recurrence relation so that each term is the sum of the preceding
terms.

4. Others modify recurrence relation so that each term is the sum of four preceding
terms.

The sequence
{(P}=0,1,2512,..,
where P, =0, P, =1 and P, = 2P,_1 +P,_, ,n = 2 iscalled Pell sequence.
The associated Pell’s sequence is defined by
Jn=2/p1+ n2,n = 2,with Jo=2=];.
In [20], Horadam replaced the first two Fibonacci numbers by arbitrary integers and
defined the sequence {g,}
9n = Gn-1+Gn-2,N = 2,
where g, and g; are arbitrary integers.
Waddil and Sacks [21] has considered the sequence {K,} where K, , K; , and K, are
arbitrary algebraic integers with
K,=K, ,+K, ,+K, 3,n >3
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In 2007, Falcon and Plaza [22] defined the k-Fibonacci numbers. For every real

k > 0, the sequence of k-Fibonacci numbers (Fy ) is characterized recursively as
Frav1 = kFra + Fra-1,
fora € N with F o =0,F,; = 1.
If k = 1, k-Fibonacci sequence becomes classical Fibonacci sequence and if k = 2, it
becomes Pell sequence.
Also, in 2017, Elif Tan [23] generalized the Horadam sequence defined by
Wp = PWp_1 — qWp—2,N 2 2,

with wy, wy,p,q being arbitrary integers, to a bi-periodic Horadam sequence (
wy,) defined by

bw,_+w,_, if nis even
Wn:{ n-1 n—-2 f " n22,

aw,_1 +wy,_, if nisodd,
with wy, wy,a, b are arbitrary non-zero real numbers and obtained various fundamental
properties of bi-periodic Horadam Sequence which generalizes the well-established
results on bi-periodic Lucas and Fibonacci sequence.

The bi-periodic sequences play an important role in characterizing Fibonacci
Octonions and the Lucas Octonions.

In 1963, A.F. Horadam [24] expressed the n'* Fibonacci Quaternion and Lucas
Quaternion as
On = Fnt iFni1 + jFnia + kFnys,
Tn= Ly +ilyiq +jLlyia+kLyys,
where F, = n*" Fibonacci number & £, = n'* Lucas number & i,j,k obeys the
relations
jk=i= —kj, ij =k= —ji, ki=j=—ik, i?=-1=j%=Kk%.

In 1969, Muthu Lakshmi R. lyer [25, 26] derived several relations between
Fibonacci Quaternions and Lucas Quaternions and their relation with Fibonacci
numbers and Lucas numbers like

Onln + T = 2Q5n.
Onln — TF =2(-1)" Qo.
Qn +Th =2 Qny1.

:T?"l - Qn = ZQn—l-
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In 2009, Edson and Yayenie [27], for every non-zero reals a and b, defined the
sequence of bi-periodic Fibonacci numbers {g,,} by the recursive relation

Aqn_1 + qn_, if niseven

bqn-1 + qn-, if nisodd 2.

) =

d4p =0,9, =1,q4 ={

In the same line in 2014, Bilgici [28] defined the Bi-periodic Lucas sequence {
[,,} by the recursive relation

bl,_1+1l,_, if niseven >0

lO :0,[1 = 1,ln:{aln_1+ln_2 lfnlSOdd =

In 2016, Yilmaz et al [29] using these bi-periodic Fibonacci numbers, they
introduced the bi-periodic Fibonacci Octonions as

7
On(a: b) = z Qn+s €s»
s=0

where g,, represents bi-periodic Fibonacci numbers. For negative subscripts, bi-

periodic Fibonacci Octonions numbers are

7
O—n(af b) = Z(_l)n_s_chn—s €,
s=0

where n € N and derived the generating function for these Octonions as below

D Onapyan = LD EXOAD TS BN TED,
i=0

where

1 1 1 1 1 1
R(x)=(xeo+81+;82+x—283+x—384+565+x—566+x—667f(x)—(xel+62+
1 1 1 1
(; +(ab+1)x)eg+(x—2+ab+1)e4+(x—3+(ab+1);+(a2b2+3ab+
1)x)e +(i+(ab+1)i+(a2b2+3ab+1))e +(i+(ab+1)i+(azbz+

5 x4 x2 6 x5 23
1 353 252

3ab + 1) + (a%b% + 5a%h +6ab+1)x)e7),

and

x—x3
1—(ab+ 2)x2 + x%

fx) =
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In a similar manner, in 2017, Yilmaz et al [30], using these bi-periodic Lucas
numbers, defined the bi-periodic Lucas Octonions and derived their generating
functions.

Several mathematicians have investigated the infinite sums of the reciprocals of
wide variety of sequences like Fibonacci sequence, Lucas sequence etc. and organized

Lucas and Fibonacci numbers as

Fibonacci sequence Lucas Sequence

1 i 1
— 1
F2 LI

Nk

YN

1

3
I

NgE
N
NgE
QJ"‘

S
1l
=
S
Il
[N

NgE
N
s
QJ"‘

S
1l
[N
S
1l
[

and expressed each number

(o] [ee]

an .
FZ L1

n=1 =1
s =0,1,2,3 ..., as arational (respectively algebraic) function over Q. Analogous results
in [31-33] were proved for Fibonacci numbers with odd (2008) and even indices (2012).
In 2009, Nakamura and Ohtsuka [34] found the infinite sums for the reciprocal

of the Fibonacci numbers and their squares. Taking the floor function of these sums,
the authors have obtained very interesting identities for Fibonacci numbers. The main
results established by Ohtsuka and Nakamura are as follows:
Forallu > 1
© 1 -1 I . .
(X7) |- e 17w
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and
%) 1 -1
I — -1+ Tu—lTu' lf uiseven
(Z T}) - {T'u_lfu, if wis odd, (1.79)
f{=u
where |. | stands for the floor function.
For the generalized Fibonacci numbers given by
Gus2 =a Gy +Gu > 1,

with Go = 0, G; = 1, and a being positive integer, Holliday and Komastsu [35] in
2011, proved the following results:

o -1

ZL _ {gu_gu—lf if uiseven

gv B gu - gu—l -1 if uis odd,

V=u
and

o -1

Ei _ {agugu—l - 1, if uiseven

Gz) | laGuGu-1, if uis odd.

V=u

Wu and Wang [38] in 2011 investigated the similar results for the finite case

(i.e., partial finite sums) and observed that
-1

2n 1
<Z:F_vk> ::FTL—Z’ V n24

k=n
In 2015, while improving upon the observations of Ohtsuka and Nakamura [24],
Wang and Wen [39], examined the case of partial sums for Fibonacci numbers and gave
results as follows:

Forany integer 2 >2,n > 1,

-1

nh

1 Fr_a if niseven
Z Ty - {Tn_z —1, ifnisodd. (1.80)
k=n

Foranyinteger # = 0,n > 1,

-1

nh

1 Frn1Fo—1, if niseven
Z F? - {Tn_l}"n ) if nisodd. (1.81)
y=n

As A — oo, (1.80) and (1.81) respectively becomes (1.78) and (1.79).
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In 2015, Wang and Zhang [40] obtained the similar results for even and odd
indexed Fibonacci numbers which are as under:

For any integers n> 1,4 > 3,

n# -1

1
2.7, |FFmat
Y=n

and for any integers A >2,n>1,

-1
1

? = TZn—Z .
2y—-1
y=n

In one of their generalizations, the sequences of Fibonacci and Lucas humbers,
extend to polynomials called Fibonacci polynomials and Lucas polynomials,
respectively as discussed in section (1.2).

Numerous authors have examined several aspects of the Lucas and Fibonacci
polynomials, yielding a host of intriguing results [42].

In 2012, Wu and Zhang [43] extended the results given by Ohtsuka and
Nakamura [34] to the Lucas and Fibonacci polynomials and deduced the following
significant conclusions:

For all integers ¢, a > 0,

o1 - (F(§) = Freq (D), if aisevenwitha > 2
IZTA(O _{?‘a(()—?a_l -1, if aisoddwitha > 1,

o1 - (xFy Q) Fooq(O) — 1, if aisevenwitha > 2
Z Fi2(0) B {(Ta({) “Fooq (), if aisoddwitha > 1.

A=a
Similar results are obtained for Lucas polynomials.
In [70], Wu and Zhang (2013) obtained similar results as in [43] by considering

the subseries of infinite sums of these polynomials and deducing the results as follows:
For any positive integer {,uandeven a > 2,b > 1,

-1

o1
yzzug:'ay({) = Fu(() — Fuma(O) — 1.
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= Ta%x(() - Tai—a(() -1

= Ly(§) = Ly (4).

= ['gu(C) - chlu—a(() + 1.

and

— {?bu(Z) - :Fbu—b(():
Fou(Q) = Frup() — 1,

{szu () = Fiu (D,
Fou () = Frus () — 1,

,—
:Mg
s“i‘
~|
~N
p—
\/I

=

i I
y=u LBV (C) Lbu (Z) - Lbu—b (();

-1
i 1 {%@—%MGﬂ,
£,

L5, () = Ls (D) +1,
where |. | is the floor function.

In 2019, Dutta and Ray [44] extended the works of Wang and Wen [39] to the

Lucas and Fibonacci polynomials and obtained these results:

For any integer {,u>2,m >3

mu 1 -1
(27)

For an integer { < 0 and integersu > 3, m > 3

35

=R — Fur (D.

if uiseven
if uisodd,

if uiseven
if uisodd,

if uiseven
if uis odd,

if uiseven
if uisodd.



mu 1 -1
BZW = £,(0) — Loy (D).

For { € Z — 0 and integers u > 0 and sm > 2

-1

i# _{ZTuq(O-Tu(O—L if uis even
crt@) | VRD-Fuea (O, if uis odd.

For{ € Z— 0+ land integersu > 0 and m > 2,
-1

f 1 {Z'CZu—l(() +1, if uis even and u > 2
B=u

L2() - (Ly,—1(0) -2, if uisodd and u = 3.

Many authors have attempted to draw a relationship between the Chebyshev

polynomials, Lucas and Fibonacci polynomials.

Many researchers have analyzed a wide spectrum of properties of the
Chebyshev polynomials & deduced a wide spectrum of results. For instance, in 2002,
Zhang [55] considered the summations of finite products of Chebyshev polynomials,

Lucas and Fibonacci numbers and deduced several intriguing results, particularly

Y U@ U@ Uy, () = W@, (182)

01402+ +0rp1=1
where UL () = rt* derivative of U,(¢) w.rt { & the sum is taken over r + 1
dimensional non-negative integral coordinates (o4, 05, -, 0,41) satisfying o; + o, +
ot Oy =N

In 2004, Wenpeng Zhang [45] studied Chebyshev polynomials and their
derivatives and deduced their interesting relations with the Lucas and Fibonacci
numbers. The main results are:
For integers k ,m > 0 and non-negative integer «

Z Fma+1) Fmiag+1) o - F(age1+1)

ajtaz+-+agy1 =a

1 .
k+ im

T
= (O™ Uk (S L), (183)
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Lina, Lma, = Lmag,,
aj+az+-+agy =a+k+1

m

2 (—i)™@t1+k) k+1 o f 4 1y [iMF2 # . i
N k! Zh:o( A )( 2 > ua+2k+1—h<7 »Cm>, (1.84)

k+1y _  (k+1)!
Where( A ) T AN(k+1-A)!

and UX denotes the kth derivative of Chebyshev polynomials

of second kind.

In 2009, Falcon and Plaza [46] extended the k-Fibonacci numbers to the k —
Fibonacci polynomials by taking k as x, a real variable, then ¥, , = F, , and the
sequence take the form

1, ifa=0
Frr(@) =1 x, if a=1
xFy(x) + Fy_1(x), if a > 1.

and proved several properties along with the computation of derivatives of these
polynomials in the form of convolutions of k-Fibonacci polynomials. They obtained the
sequence of derivatives of Fibonacci polynomials and generated many integer
sequences by giving particular values to the variable x, derived the relation between
derivatives of Fibonacci polynomials and Fibonacci numbers, and deduced the
generating functions for k-Fibonacci polynomials and the recurrence relation of the
derivative sequence.

In 2014, Yang Li [47] used these ideas of Zhang [45] and Falcon and Plaza [46]
and established the relation between the Chebyshev polynomials, Fibonacci
polynomial, and the r'" derivative of the Chebyshev polynomials. They derived the
following relations:

For any integer a,r > 0,

a-r+l1 a

_1\a-r—u+1 92A+r _ _
TH@= Y ) CDT7 7 2 ua )@t Ao Dl oy (1es)
u=1 A=r

(a—-D'A-—r—pu+1D)A+u—r)!

a-r+l1 «

-1 a-r—u+1 22/1+T 1—1)
Tzzar—l(x) — Z Z = (1) (a + ) ua TZu(x)_ (1.86)
u=1 A=0

- DA—-r—u+D'A+u—-r+1)!

Similar results for the Chebyshev and Fibonacci polynomials with odd indices are

deduced.
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In 2015, Yang Li [48], again derived similar results for the Chebyshev and
Fibonacci polynomials:

For any integer a > 0,

I S 222ua — a)(a + 1 — 1)! )
CCRD DI = T En Te R )
a+l «a _ >(1.87)
B 222711 = 2u) (a + A)!
Uza (%) = ;; D@ =D+ 0 A=+ D1 1) J
a-la-l 22)/—2a+2 A(Za —y - 1)| )
Faale) = Z y! (a—/l—y)!(a+/1—y)!u”(x)'
T - ) , (1.88)
3 2%v+e2aq —y — 1)!
Faale) = ; L yiQa+21-2y-2)!@a~-21~ 91221 (): }

Similarly, the relations between odd indexed 1% and 2" kinds of Chebyshev
polynomials and Fibonacci polynomials and vice versa.

In 2015, Xiaoxue Li [49], derived some identities of summation formula for
powers of Chebyshev polynomials and discussed few divisibility properties involving
these polynomials as follows:

For any integer £, n > 0 and variable ¢,

a)
h n
1 2n+1 Uz 2u+1)(r+1)-1 (©)
TE Q) = 5o . 1.89
; 2A+1 ({) 22n+1 ;;) ( n—u > uZM(O ( )
b)
ILZTZ"H Q) = 1 i (Zn + 1) Up+(2a+1)-1 ) — uzu(() (1.90)
L 22 T p2n+1 e n—u ’Uzu(é) . .

and similar identities for odd and even indexed second kinds of Chebyshev
polynomials. In addition to this, they also studied a few divisibility properties of these

polynomials as an application of the above-stated results.
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In 2015, W. Siyi [57], considered the summations of finite products of second kinds of
Chebyshev polynomials and improved upon the results of Zhang [55] and derived the

interesting results which includes:

1
Uy, ©) Uy )+ Ug,,©) = 5o Uer ()
di+dy+tdrp =1
1 [r-1)

=il a—g) WO+

r—2)r—Mm+r)(n+r+2)
1-73

Up37 (D). (1.91)

In 2018, T. Kim et al. [50] considered the summations of finite products of
second kinds of Chebyshev polynomials and derived the Fourier expansion of the
associated functions, which in turn were used to represent these sums in Bernoulli

polynomials. Similar results for Fibonacci polynomials are obtained.

They considered two functions

@@= ) U@ U@ U, @),
ci1teat +Cr+1=V
and
fr@= D Fen® Fon@ o Fon @),
ci1teat +Cr+1=V
such that the sum is taken over all non-negative integers ¢4, ... ..... Ccy4q With ¢y + ¢, +

... +cr41 = v and gave the following results:

For any integerr > 1,and v > 1, we let

-1
1 [VT] V+1r—w
— k -2
Ay, = > E L -Dfv+r-— Zw)r< " ) Uir-ze,

(a) Assume that A, - = 0 for some positive integer v, 7. Then

(i)

U, ((ON) - U, (D)) e e U, , (UOD),

c1tcept- +Cr1=V

has the Fourier series expansion
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U, () - U, (0D . U, , (D)

01+02+"'.....+CT+1=V
1
- ZAV+1,T—1
[ee] v 1
~ IN2ZOEA=D )
2r (Zn_ln)l v—-A+1,r+A-1
n=-—oo,n+0 A=1

for all ¢ in R when convergence is uniform.

(i)
D U U (@) e U, (D)
1 Y +21-1
== > 2 () M B AN,

A=0,A#0

V{ inR.Here ({),=¢((—-1)...(( —r+1)forr =1and({), = 1.

(b) Assume that A, # 0 for some positive integer r, v ,

(i)

[o9] v A
1 1 22(r+1—-1) .
= Avi1r-1— z 5. Z . Ay j41r+2-1 e?miné
2r ’ 2r (2min)4 ’

n=—oo,n*0 A=1

() U U () U, (0D, if{ER—Z
crHcptatCryp =V
= A;r , if (€ Zandvodd
v %/+ T AVT‘
=Dz{ =, + 2 , if { € Zandv even.
\ 2
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1z z 22 (r - 1) By_arrria-1B 240D
A

2r r—1
=0,A%0
( D UL U () e ey, (D,
crHcpt ot Cryp =V
AV,T
:{ 2 4
v
v st+rT
e
\ 2

and similarly, for any positive integer v, r,assuming

Jif(ER-Z

if (€ Zandvodd

if { € Zandv even.

0 _Z[v%l](v+r—l—1)(v+r—2l—1>
v k=0 [ r—1 '

we have
()
1, 5: 1 v (r=2+2),
r—1vtir-1 r—1 (2min)*
n=-—oo,n*0 A=1
( DR A CORICOM AN}
01+C2+"' ..... +CT+1=V
"QV,T'
= { 2 ’
v
7 +r—1 Qv,r
v |t
N\ 2
(i)

R o S PR
A=0

(Y RGO D) e B O
citcat et Crp1=v
QV,T
=< 2 )
% +r—1 N 2y,
4 2 7
\ 2

41

2min.
-Qv—/1+1,r+l—1 >e ¢

if(ER-Z

if{ € Zandvodd

if{ € Zand v even.

if({eR—-Z

if( € Zandvodd

if{ € Zand v even.



T. Kim et al. [51] considered the summations of finite products of the 3" and 4™ kinds
of Chebyshev polynomials and obtained the similar Fourier series of the associated
functions, which in turn led to the expression of these sums as a linear sum of Bernoulli

polynomials. The associated functions used in this case were

w©@=Y Y (T TR0 @

Y=0cqitcy+--.... +Cry1=Y

and

Br(@) = Z S com (VT o

)/:0 c1tcpteen +Cry1=Y

W, (D) W, (D),

and derived the similar Fourier series results for the 3™ and 4" kinds of Chebyshev
polynomials as in the case of first and second kinds of Chebyshev polynomials.

In 2019, T. Kim et al. [56] studied the classical linearization problem,
expressing the sums of finite product of Chebyshev polynomials as a linear combination

of other orthogonal polynomials like Hermite(H,,(¢)), Legendre(£,, (£)), extended
Laguerre (P, (£)), Gegenbauer (Cff)(f)), and Jacobi Polynomials (Pff’ﬁ)(f)). The

results obtained includes

2" r!

Vi, (€) Vi, (€)oo Vi, (6) = oy (T ULy (©) (192)
5 Sn(

O'1+O'2+"'+O'r+1=/n

S WO Wy (O Wi (©) = i () it 199
y=0

0'1+0'2+"'+0'r+1=4’l«

P AGRAGET NG

O'1+O'2+"'+O'r+1=n

1 g 1 S (=) + 1 —p)!
_ﬁ;)(fn—&s)!y (s —y)!

=0

1
oF1 (21 = m,=r = Ly = m=153) o 0(©) (1.94)

42



D V@ Ve ® eV, (©

01t02++0rp1=n

2
B . (— )’1 (A+2B+71)!
=DM+ 1) L, L (= A= 2p)(r + 1—n+ A+ 20)If!
\Fr(=B,—A — 28 — 13 —1) Hy(8) (1.95)

D W © W@ W, ©)

01+02++0rp1=n
=]

A+28+1)!
= +1)Zm s (n=2— 2+ 1—n+2+2B)f!
1:F1( ,8, =28 —1;—1) H(E) (1.96)

where all sums run over integers oy,0, ...,0,.1(=0) satisfyingo; + 0, + - +
Or41 = M, With (r;l) =0 fory > r+1.

Similar results for Legendre (£, (£)), extended Laguerre (P,($)), Gegenbauer
(Cﬁl)(f)), and Jacobi Polynomials (Pff"ﬁ)(f)) were obtained. In 2022, A. Patra, and

G.K. Panda [59], obtained similar results for Pell polynomials.

In another line of generalisation, several authors have generalised and extended
Fibonacci and Lucas polynomials to two or more variables and studied their interesting
properties and deduced several results.

One such generalisation was studied by M. Catalani [71] wherein the author studied the

bivariate Fibonacci polynomials given by

Hp(w, ) = 0H,—1(0,0) + {H, 2 (w,9) (1.97)
with Hy(w, {) = ag and H; (w,{) = a; , for every n > 1 and deduced several results
involving their generating matrices.

In 2016, E.G. Kocer and S. Tuncez [72] studied the new generalizations of the
Fibonacci and Lucas polynomials to two variables and studied their properties and
obtained some results. They introduced the bivariate Fibonacci and Lucas polynomials
given by
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Tn(w’ () = p(a)) ()Tfn—l(w' Z) + Q(w, Z)T,n_z((l), Z)r (198)

with Fy(w,¢) =0 and F;(w,{) = 1.
and
Ln ((1), () = p(a)) ()Ln—l(w' Z) + Q((J), Z)L/n—z ((1), (): (199)

with Ly(w,{) =2 and £L;(w,{) = p(w, ), for every n > 1 , where p(w,{) and
q(w, ¢) are polynomials with real coefficients. Similar studies were done by Tan and
Yang [68]. Further generalization of Lucas and Fibonacci polynomials to trivariate
Lucas and Fibonacci polynomials were studied by Kocer and Gedikce [16, 63]
obtaining several interesting properties.

1.4 Research Gap

A generalization is an abstraction wherein common characteristics of particular
instances are expressed as general concepts or claims. Generalizations presumes the
existence of a domain or set of elements as well as one or more common properties
shared by those elements (thus evolving a conceptual method). Thus, they are
fundamental to all the valid deductive inferences. In mathematics, the sequence of
Fibonacci polynomials can be viewed as a generalization of the sequence of Fibonacci
numbers. Lucas polynomials are the polynomials generated from the Lucas numbers in

a similar manner.

The thorough review of the cited literature leads to the following inferences
regarding the research gap which is proposed to be bridged during tenure of our research
work that the Fibonacci polynomials and Lucas polynomials have been generalized
mostly for up to two variables and their properties have been established so for,
generalizations of Fibonacci and Lucas polynomials for more than three variables is to
be explored for this we may extend the recurrence relation, or the recurrence relation is
preserved but the coefficients of polynomial are replaced by some new coefficients with

more variables or by changing the initial conditions and established their properties.

Many researchers have worked on Chebyshev polynomials of the first and
second kind in one or two variables; properties and applications of the 3" and 4" kinds

of Chebyshev polynomials in two or more variables are to be studied, and new relations
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are to be established. Relations between the 3" and 4™ kinds of Chebyshev polynomials

and Pell, Lucas and Fibonacci numbers and polynomials are to be obtained.

The divisibility properties of Chebyshev polynomials can also be explored, and
the Fourier series expansion associated with them can be obtained along the same lines
as that of Chebyshev Polynomials of 1% and 2" kind and similar concepts can be

extended to Chebyshev-like polynomials also.

1.5 Proposed Objectives of the Research Work
In our research work, we propose to consider the following problems:
e To obtained new generalization of Fibonacci and Lucas polynomials for three
or more variables and established their properties.
e New generalization of Chebyshev like polynomials of third and fourth kind are
to be find out and to discuss their properties.
e To find out relations between Chebyshev polynomials of third and fourth kind
with Fibonacci, Lucas and Pell numbers and polynomials.
e To discuss the application of Chebyshev polynomials and Fibonacci like
polynomials
1.6 Proposed Methodology of the Research Work
During our research work, we propose to use the usual method of pure mathematics to
achieve our goals.

The Fibonacci and Chebyshev-like polynomials are generalized by extending the
recurrence relation; the recurrence relation is preserved, but the coefficients of the
polynomial are replaced by some other coefficients with more variables or by changing
the initial conditions. We will use these techniques to obtain new generalizations.

Methods of mathematical induction and the techniques of combinatory are used
for proving the properties obtained in the form of theorems and lemmas.

1.7 Structure of Thesis

The proposed work, entitled "A STUDY OF FIBONACCI POLYNOMIAL,
CHEBYSHEV POLYNOMIAL, AND ITS SEQUENCES," is inspired by the study
of the sequence of the Fibonacci numbers and their generalizations from Fibonacci

polynomials to Chebyshev polynomials and like polynomials. The core of the subject
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matter of the manuscript grows from a series of our research papers that are cited at the

end. The following overview summarizes the thesis:

In the first chapter, an introduction to Fibonacci numbers, their history, their
applications in diverse fields, and their polynomial expansions are presented.
Additionally, we will give a quick review of a few definitions and well-known results
relating to the Fibonacci numbers, Chebyshev polynomials, and Fibonacci numbers,
which meet the minimal requirements for the evolution of the emerging chapters. This
chapter includes a section of literature review focused on the work done by various
researchers in the field of the Fibonacci numbers and their polynomial generalisations
through the first, second, third, and fourth kinds of Chebyshev and similar polynomials.
This review has identified the research gap. Furthermore, this chapter has also outlined
the objectives and methodology to bridge these gaps.

In chapter 2, we will deal with the second kind Chebyshev polynomials. Here
we have discussed the identities of the second-kind Chebyshev polynomials and Lucas,
Fibonacci, and complex Fibonacci numbers. Several identities connecting sums of
finite products of Lucas, Fibonacci, and complex Fibonacci numbers and the second
kind Chebyshev polynomials with positive as well as negative odd indices are

investigated.

In chapter 3, we will consider the interaction between the 3™ and 4™ kinds of
Chebyshev polynomials and the Lucas and Fibonacci numbers and the second kind
Chebyshev polynomials. In terms of second-kind Chebyshev polynomials and their
derivatives, we will develop certain identities involving sums of their finite products.
We also discussed some specific cases of these summation identities that result from
different values of r = 1,2,3.

In Chapter 4, explicit formulae for the 3™ and 4™ kinds of Chebyshev polynomials
and their derivatives with odd and even index are established. Further, their links with
Fibonacci polynomials with negative odd and even indices are also obtained. In the
second section, some works on summations of the finite products of the third and
fourth-kind Chebyshev polynomials and Pell polynomials as a linear sum of other
orthogonal polynomials are considered.
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Chapter 5 is composed of two sections focused mainly on the interrelationship
between the 3" and 4" kinds of Chebyshev polynomials and Lucas, Fibonacci, and Pell
numbers and their polynomials. In the first section of this chapter, we introduced some
more identities expressing summation of finite products of Lucas, Fibonacci, and Pell
numbers and Fibonacci polynomials as a linear sum of derived Pell polynomials with
even and odd indices, using their basic properties through elementary computations.
Similar identities are obtained for the 3 and 4™ kinds of Chebyshev polynomials. We
also analyzed these identities by taking particular cases with r = 1,2,3.

And in the second section, we will establish few more similar identities for
negative indexed Lucas, Fibonacci, and Complex Fibonacci numbers in terms of Pell
polynomials with negative even and odd indices, using their basic properties through
elementary computations. In terms of the 3 and 4™ kinds of Chebyshev polynomials,
similar identities were obtained for Pell numbers and Fibonacci polynomials. Special
cases of these identities are also discussed.

At the end in the Chapter 6, we developed the concepts of (p, g, r)-Generalized
trivariate Fibonacci and (p, g, r)-Generalized trivariate Lucas polynomials and their
sequences and discussed their properties. Several results involving the relationships of
(p, g, r)-Generalized trivariate Fibonacci and (p, g, r)-generalized trivariate Lucas
polynomials are discussed. Using these properties and results, we derived the explicit
formula of (p, g, r)-Generalized trivariate Lucas and Fibonacci polynomials and

deduced several identities involving the generating matrices and their determinants.
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Chapter 2

SOME CONNECTIONS BETWEEN FINITE PRODUCTS
OF FIBONACCI AND LUCAS NUMBERS AND
CHEBYSHEV POLYNOMIALS OF SECOND KIND

2.1 Introduction

This chapter will focus on the development of some results on the representation of
the summations of finite products of the Lucas, the Fibonacci numbers, and the
Complex Fibonacci numbers as a linear sum of the 2"-kind Chebyshev polynomials
through elementary computations.
2.2 Representations of finite products of Fibonacci and Lucas Numbers in
Chebyshev polynomials of the second kind

Here, we will develop some results expressing summations of finite products of
the Lucas, Fibonacci, and the complex Fibonacci numbers as a linear sum of derivatives
of 2" kinds of Chebyshev polynomials.

Chebyshev polynomials have drawn the attention of numerous researchers, who
have investigated their properties and developed a wide range of results. Zhang [55] for
instance, considered the summation formulae for finite products of Chebyshev
polynomials, Lucas and Fibonacci numbers and deduced several intriguing results,
specifically, given by equation (1.82). Similarly, in [56], the authors have deduced

analogous results which include equations (1.92)- (1.94) especially,

27 r!

> V© VeV, O =5 i(—l)y(ril)uzw(s)
y=0

0'1+02+---+0r+1=a

a

D WO W W@ =g 2 () Uy ®)

27 r!
y=0

01+02+---+0'r+1=a

where these sums runoverall g, (= 0)inZ (A =12,..,vr+ 1) with 6, + 0, + - +
0,41 = a and (r;l) =0 fory > r+1.
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In the same line of action, we considered a few more identities on summations
of finite products of the Lucas and Fibonacci numbers and expressed them as the linear
combinations of the derivative of the 2" kinds of Chebyshev polynomials. The main
findings are:

Theorem 2.2.1. For integers a,r = 0,

1 « r+1y_ 3
Z T20'1+1 ) T20'2+1 T20T+1+1 = ﬁz(_l)y ( Y )ua—y+r (E)l
y=0

o1+03++0r1=a

r+1

where ( y

)=O,f0ry >r+1.

Proof. Taking ¢ = % in equation (1.92), we have

ERAGRACEEME

U'1+O'2+"'+O'r+1=0.’
[24
1 r+1 3
~ 2 Z(_l)y< Y ){uz_y” (E)' 24
v=0

Using U, (%) = F,4+2 IN equation (1.65) (ii) to get V, G) = F,4+1 and using this in

turn, in equation (2.4), we have

a

1 r+1y, (3

O1+03++0rp1=a ¥=0
Thus Theorem 2.2.1 is established. m

Theorem 2.2.2. For integers a,r = 0,

1 o+l (3
Z L20'1+1 ' L20'2+1 e L20r+1+1 = z-r T" z < )/ >ua—y+r (E))
=0

01+02+---+0'r+1=a V4

r+1\ _
Where( y )—O, fory > r+1.
Proof. Taking ¢ = ; in equation (1.93), we have
3 3 3
> W3 W 5) W 5)

01+0'2+---+0'r+1=0(

a

- zrlr! Z (r J;: 1) Uy sr (;) (2:5)

y=0
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Using U, G) = Fya42 IN equation (1.65) (iii) to get W, @) = L,,+1 and using this

in turn in equation (2.5), we have

1 o+l (3
z ’[':20'1"‘1 ’ L20'2+1 ...LZO'T+1+1 = Z'r r' 2 ( _)/ >u(x—y+r (E)'

O'1+O'2+"'+O'r+1=a y=0
Hence the Theorem 2.2.2. m
Theorem 2.2.3: For integers a, 7 = 0,

Z T*0'1 .T*Uz .“T*Ur+1

g1t0p+ - +0rp1=

ra+r+1 d

- lzr 7l Z;(—m (T J): 1) Uy sr (_ %)

Y

1 Oy i
~ ja=G+D) 27 ”Z)(_l) ( % )u“‘y” (E)
'y:

where (r;jl) =0, fory > r+1and F~,iscomplex Fibonacci number.

Proof. Taking & = —iz in equation (1.92),and ¢ = é in equation (1.93), we have

S D

01+02+---+0'r+1=0(

- zrlr! Za: =17 (r J; 1> Uay+r (_ i2) (2:6)
y=0

2 au(g) e (3) (3

01+02+---+0'r+1=0(

a

- zrlr! Z (r ;: 1) Uy r (%) @7

y=0

Using Ug (3) = i%F . in equation (1.65) (jii) we get

w, (—) _ ja-iEs (2.8)



Again using equation (2.8) in equation (1.65) (xii) we get
[ Fo
Ve <_ E) ~ ja
Using equation (2.9), in equation (2.6), we have

z T*U1 'T*Uz '“T*Ur+1

o1+02++0r 1=

(TG r+1 i
2 Z(_l)y< Y ){uz_y” (_ E)
' &
Similarly, using equation (2.8), in equation (2.7), we have

* * *
§ F 201+1'T 202+1“‘T 20741+1

o1t02+ - +0rp1=

1 O (i
= ja=(+1) 27 7l Z)(_l) ( Y )ua_y” (5)'
y:

This establishes the Theorem 2.2.3 m

Corollary 2.2.1: For integers a,r = 0

Z T—(201+1) 'T—(20—2+1) "‘T—(20r+1+1)

0'1+0'2+"'+0'r+1=a

(24
1 r+1 3
ViRL Z)(_l)y( y ){UZ{_V” (E)'
y:

where (T]’:l) =0,fory > r+1.

Proof. Using F_, = (—1)**1F, in Theorem 2.2.1 to establish the results. m

Corollary 2.2.2: For integers a,r = 0

Z L_26,41) " L-@2oy+1) " Lo@20y41+1)
01+02+-~-+0r+1=a
GRS 3
2o Z( Y )Ua—y+r (E)'
y=0

where (r;“l) =0,fory > r+1.
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Proof. Using £L_, = (—1)% £, in Theorem 2.2.2, to achieve the desired results. m

Corollary 2.2. 3: For an integers a,r = 0,

Z T*—(H 'T*—Uz ”'T*—Ur+1

01t02++0ry1=

at+r+1 & )

i r+1 i
2o z(_l)y( % )ug_”r(i

v=0

a

1 y r+1 , [
~ ja—(r+D) gr r!z(_l) ( v )u“‘y”(_i)
Y

=0

r+1

where ( y

) =0,fory > r+1,and F*, isa complex Fibonacci number.

Proof. Taking conjugate of F*, in Theorem 2.2.3 and using F*_, = (—1)**1F*, ,

where F*, is the complex conjugate of F*, , we can achieve the desired result. m
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Chapter 3

IDENTITIES ON CHEBYSHEV POLYNOMIALS OF
THIRD AND FOURTH KIND AND FIBONACCI AND
LUCAS NUMBERS IN TERMS OF SECOND KINDS OF
CHEBYSHEV POLYNOMIALS

3.1 Introduction

we will discuss a few identities representing summations of finite products of
the 39 and 4" kinds of Chebyshev polynomials, Lucas, and Fibonacci numbers in the
2" kinds of Chebyshev polynomials and their derivatives, using the elementary

computational method.

3.2 Sums of finite products of third and fourth kinds of Chebyshev polynomials,
Lucas and Fibonacci numbers in terms of the second kinds of Chebyshev
polynomials.

Several researchers have investigated Chebyshev polynomials and their
properties and deduced a broad spectrum of results. One such area is the classical
linearization problem considered by Zhang [55], in 2002, wherein the sums of finite
products of 2"-kind Chebyshev polynomials, Lucas and Fibonacci numbers were
represented in the linear sums of the derived 2"%-kind Chebyshev polynomials as given
by the equation (1.82). Similar results were given by T. Kim et al. [56] in 2019,
especially, given by the equations (1.92)- (1.93) in Section 1.2 of Chapter 1. In 2020,
D. Han and L. Xinging [74], working on the same idea, introduced some more
summation representations of Lucas, Fibonacci and Chebyshev polynomials as a linear

sum of Lucas and the1%-kind Chebyshev polynomials.

With the same motivation, we will consider a few more identities connecting
summations of finite products of the 3@ and 4" kinds of Chebyshev polynomials, Lucas,
and Fibonacci numbers with the Chebyshev polynomials of the 2" kind. The main

results are:
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Theorem 3.2.1. For integers a,r = 0, we have

Y V® Y ® Y, ©

1 . r+1 .
—[(@ =2+ 2)(a — 2+ 2n]UL5..(D)]

where sum runs over all g, (=0)in Z (A=12,..,r+1) with g, +0, +:-+

orpr=aand ("71)=0ford > r+1.

Proof. From [57], we first note that for any positive integer a > r > 0,

. B @r-1¢_ r—2r—(+nra+r+2)_
ua+r(f) - (1 _ 52) {ua+r(f) + (1 _ EZ) ua+r(€)- (31)
Thus,
- Qr-1¢§
ua—/'Hr(f) = Wua{—ﬁﬂ* (‘f)
r=2r—(a-A+nr)(a—A+r+2)___,
+ (1 _ 52) ‘ua—l+r(f) ’

_C@r- )f

( 5—2) a )L+r(f)

[a(@a—A+7r)—Aa—2A+7r)+r(@a—A+2)+2(a—A+71)]__

- (1—¢2) ua—%Hr(f) )
(27" - )f r—1
(1 52) ua—/1+r(€)
[(@a—2+2)(@a—A+7r)+r(@a—A+2)]_ .,
- (1 —¢2) ua—/1+r(€):

(2r -D¢_ [(@a—2A+2)(a—2A+ 2r)]

( fz) (ua—/1+r(f) (1 Ez) a /1+r($)
Therefore,

2r—1 —A+2)(a—21+2

Uy (@) = E = s (o MG D@ A2 ). 32)

(1-¢2) (1-¢2)
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Using equations (3.1), (3.2) and (1.92), we have

a

S V@ V@V O = 5 > DA ) U@

27 r!
1=0

01t02++0ry1=

_ 1 C r+1\[Q@r—-1D¢_
2T T!Z(_l)l( A ) (1-¢2) Ug 34 ()
[(@ — A+ 2)(a =2+ 2r)]

- (1—¢2) rug:31+r(€)l;

1 N r+1 -
T2 (1= &2) ;(_1)1( 1 > [2r — DEUL54- (D)
—[(@a=2+2)(a -2+ 2n]U;75,,(O)]

D V@ V@ Ve, ©

1 C r+1 -
- m;(_m( 1 )ler- D, ©

—[(a—2+2)(a—21+ 2r)]'u;:3+r(f)]
Hence, the Theorem is established. m
Theorem 3.2.2. For any integer a,r = 0,

D W W W, ()

o1+02+ - +0ry1=

1 o+l o
= m;( 1 ) [(2r — DEULS L, ()
—[(@ =2+ 2)(a — 2+ 2N ]UL 5., ()],

where sum runs over all o, (=0)in Z (A=12,..,r+1) with gy +0, +--+

orpp=aand (31)=0ford > r+1.

Proof. We will proceed in a similar manner by using equation (3.1), (3.2) in equation
(1.93). So, we have

a

S W@ W W@ = 5 > (8 U@

01t02++0rp1= 4=0
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_ ﬁj(r; Y=z,

[(a —A+2)(a—21+ Zr)]
(1-¢2)

=W§_HZ(:1) [(2r - DEULTL,, @)

—[(@a =2+ 2)(a — 1+ 20)]UL5,, (O]
Hence, the Theorem is established. m

a /’l+r (’f)

Theorem 3.2.3. For any integers a,r = 0,

E T201+1 '?202+1 "'T20r+1+1

U'1+O'2+"'+O'r+1=0.’

ZWZ( D% (") et -+ 20— 2+ 201z 2, (3)

-3Qr-nDur},, (;)],

where sum runs over all g4, (=0)in Z (A=12,..,r+1) with g, +0, + -+

oy41 = aand (rj{l) =0 ford > r+1.

Proof. We use the fact that

3
Uy (E) = Faa+2-

in equation (1.65) (ii) to deduce equation (1.65) (viii) and using this in turn in
Theorem 3.2.1, with & = % , We get

2, alg) ) )

0'1+O'2+"'+O'r+1=a

g (e 6

(@ =2+ 2)(a— A+ 20U, @]

56



which in turn yields

§ T201+1 'T202+1 "'T20r+1+1

-8 e () e Qe O

—[(@a—2+2)(@—2A+2r)U 54r (i)]
2”1 ( )Z( 1)A(r+1) [2 (@—2A+2)(a—2
+ 20U, (;) 3(2r — UL, (;)]

zw,z( D7) et =+ 20— 2+ 201z 2, (3)

-3 - DU, (5]

That is,

§ ?2al+1 '?2az+1 “‘T20r+1+1

o1t02++0ry1=

-y e (et a e
A=0

20U, (5) - 32 - DU, (5)]

Hence, the Theorem is established. m

Theorem 3.2.4. For any integers a,r = 0,

§ L201+1 'L202+1 "'L20r+1+1

o1+02++0r1=

% (r * 1) [ [(&—2+2r)(a—A+ 23, (;)

Ma

Zr 1 r!
A:

-3@2r—-1DU3,, (;)],
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where sum runs over all g, (=0)in Z (A=1,2,..,r+1) with gy +0, +:+

oy =aand ("71)=0ford > r+1.

Proof. To establish this Theorem 3.2.4, we will proceed as in the case of the Theorem
3.2.3 by using the fact

3
Ug (E) = Faa+2s
in equation (1.65) (iii) to equation (1.65) (x) and then using this in turn in Theorem
3.2.2with & = % , resulting in

5 @ m)om.)

O'1+O'2+"'+U'r+1=a

1

g GG

NMQ

2

(@ =2+ 2)(a—A+20U3,, (;)]

which in turn yields

§ 13201+1 '5202+1 L2crr+1+1

O e - v Qutn )

A=0

a2+ 2@~ A+ 201U, (5)]

E L201+1 'L202+1 L20r+1+1

01+02+---+0'r+1=0(

- O3t 1 02 omi, )

A=0

~302r - DU, (5)]
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§ L201+1 'L202+1 "'LZUT+1+1

o1t02++0r1=

Ma

=5 1r % (r+1)[ 2[@ =2+ 2r)(a — 21+ 2)JUC /1+r<2>

A=0

-3 - DUk, (5)]

That is,
Z 1:201+1 '5202+1 "'£20r+1+1
O1+03+ +0r1=
a
1 r+1 3
= r,zg ( )[ [ — 2+ 2)(a— A+ 20U, (2)
A=0

3
—3Qr - DU, ( 2)]
Hence, the Theorem is established. m

Corollary 3.2.1 For integers a = 0, we have

PRAGRAGEAG

a+b+c=a
- 3
= () P@A D) Ue1a®) = Q@A) Up 112D,
2=0
where
_ (3§(@—21+3)
:P((I,A,E) - < 8(1 _52)2 >;
and
(a—21+2)
Q(a,A,8) = 8(1—_52)2(@{ —1+4)—(a—21—- 1)52).
Proof. Take r = 2 in Theorem 3.2.1 coupled with the identity [57],
Ve @+ 1) a$
Ul = Ty Uenr ) ~ T3 Le®) (33)

So, that we have,
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PIRAGRAGRAG

a+b+c=a

=52 7] (11 — §2) Z (-1 (i) 38U er2-2(8)

—[l@a=2+2)(a =1+ D]Ug-_2+2()],

1 N 3 (@—A+3)
s . 0 (e (G

1-¢2)
_E(a—/1+2)
(1-¢2)

ua+2—)t(‘f))
—[(@a=2+2)(a—21+ 4)]’%-%2(5)}.

RN 3\ [/3&(a — 1 +3)

= ; 0*(}) [( o )ua_m(f)

_<3§2(a:+2—/1) +[(a+2—/1)(a+4—/1)]
8(1—¢2)2 8(1—-¢2)

> ua—)l+2 (f)l'

PIRAGRAGRAG

a+b+c=a
. 3 [/38@-21+3)
= > (3 [( o )ua_aﬂ(f)
A=0

(@a-2+2) 3&2
8 (1-¢2)\(1-¢2)

+(@—1+ 4’)) Ug-2+2 (f)]

PR AGRAGRAG

a+b+c=a
. 3\ [/38(a — A+ 3
-5 ()] (2
71=0

(a—21+2)
“s -

—2+4) — (@ = 2= 1DE)Ug_242O) |-
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Therefore,

PRZGRAGRAG

a+b+c=a
= 3
= V() P@A D) Uo11®) = Q@A) Uy 112(O)],
A=0
where
B 36(a—1+3)
P(a,1,8) = < 8(1 = ¢2)? )
and
_(@—1+2) 5
Q(d,ﬂ.,f) = 8(1—_52)2((6¥—){+4) - (a—/1— 1)5 )

This establishes the Corollary. =

Corollary 3.2.2. For integers « > 0, we have

Va(§) - Vo(§) - Ve(§) - Va($)

a+b+c+d=a
o (-D* 4
= Z () (R A, U112 — S(@.2, U013 (D))
where
2 _(q-— — _ 22
R(a A, 8) = l15$ (a—2 2—163(;)3/1 +2)(1-¢ )l (a2 +4)
and

2 _ — — _ _ 22
S(a.A,f):(a—,1+3)g<15€ [(@a—A+6)(a—21+2)+5(@—-1+5)]1 f))_

(1-¢2)3
Proof. Take r = 3 in Theorem 3.2.1, we have

Va(f) 'Vb(f) 'Vc(f) ) Vd(f)

a+b+c+d=a

=23 31 (11 —&2) Z -1 (D (56U a-142®

—((@a=2+2)(@=2+6))U 4 243(5)],
Using the identity [57]
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(1= E)ULE) = 38U (&) — ala + 2) Uy (E),
We have

Va(f) 'Vb(f) 'Vc(f) 'Vd(f)

atb+ct+d=a
__ 1 S 4 3¢
C48(1-¢2) ; (-1* (/1) <5€ ((1_—52)11 a-2+3(§)

_(a—/1+3)(a—/1+5)
(1-¢2

ruoc—/1+3 (f))

—((@a=2+6)(@a-2+ 2))U'a-z+3(f)>

a 2
N Wl—s) Z () (112%

—(@a=2+2)(a—21+ 6)] U g-2+3(8)

_5{(a—l+5)(a—/1+3)
1-¢%)

ua—/1+3(f);

Now using equation (3.3), we have

PR AGEAGRIGRAG

a+b+c+d=a

=m; 0 () >

{[1552 —(@=214+2)(@a—21+6)(1—&)](a—21+4)
(1-¢2) (1-¢%)

Ua—/1+2 (S;)

1562 — (@ — 1 + 2)(a — A + 6)(1 — £2)
—(a—/1+3)f< (1—¢2)2
5(a— A + 5)
+ W) Ug-2+3 (f)}.
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Va(f) 'Vb(f) 'Vc(f) 'Vd(f)

a+b+c+d=a
S (=D 4\ [158% — (@ — A+ 2)(a — A + 6) (1 — &2
22(48) (A)l Lo ?13(;)3 X f)l(a—/1+4)’ua_1+z(€)
=0
—(a—2
1582 — —A14+2 —1+6 5(a — A+ 5)](1 — &2
+3)f( ¢ la o) (1 _+EZ)):_ G 3 : )>‘ua—/1+3(f);
Therefore,

Va(§) - Vo(§) - Ve(§) - Va($)

a+b+c+d=a

o (-1 4
=Z 48 (A) [R(a, 2, §)Uq—1+2(8) — S(a. 2, §)Ug—2+3(E)],
A=0

where,
1562 —(a—2+2)(a—21+6)(1 —
(1-¢2)3

R(a,1,&) = [ fz)l (@ —2+4),

and
S(a.1,¢&) =

(=14 3)¢ (1552 —[(a—2+2)(a 21/1_+€62))B+ 5(a—21+5)]1 - 52)>-

This establishes the Corollary. =

Corollary 3.2.3. For integers a > 0, we have

> WO W® W)

a+b+c=a

/3
=Y () P@A D Upmrr @ — 0@ 2,8 U 112(O)]

A=0

where

35(a—l+3)>

Platd) = < 8(1 — £2)?
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and
(a—21+2)
8 (1-¢2)2

Proof. For the proof of the Corollary, we will take r = 2 in Theorem 3.2.2 and proceed

9(a, 2,8 = ((@a=2+4)—(a— 21— 1)&?).

similarly as in the case of the Corollary 3.2.1 to achieve the desired results. m

Corollary 3.2.4. For integer a« =0, we have

Wa(§) - Wy (&) - Wi(§) - Wa($)

a+b+c+d=a
S1 4
- z 48 (/1) [R(a, 2, ) Uq—24+2(§) — (. 4, ) Ug-243(5)],
=0
where
1562 — (@ =2+ 2)(@— A+ 6)(1—¢%)
R(@4,¢8) = [ (1—¢&2)3 (a—21+4),

and

S(alé)=(a—2

1582 —[(a =2+ 2)(@a—A1+6)+5(a— A1+ 5)](1—¢&?)
+ 3)5( T )

Proof. For the proof of the Corollary 3.2.4, we will take r = 3 in Theorem 3.2.2 and

proceed similarly as in case of the Corollary 3.2.2 to achieve the desired result. m

Corollary 3.2.5. For integer « = 0,
. 3
Z T2a+1 'T25+1 'T2c+1 = (—1))l (A) [Aa,l TZa—21+4 + Ba,ATZa—ZA+6]'
a+b+c=a A=0

where

Agp=—(a—2+3) and By =z (a—1+2)(5a—51—7).
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Proof. Using equation (1.65) (viii) together with U, G) = Fya42 IN Theorem 3.2.3

foré = % with r =2, we have

Z Faar1 " Fapr1 " Facsn

a+b+c=a
- rpy () 2+ D o ()
A=0

16 (g)]

z Faar1 " Fopr1 " Facsr

a+b+c=a

=%Za:(_1)l IL [(@=21+2)(a—2+4)]U am(;)
A=0

| @=21+3) 3 _(a—/1+2)<%) 3
9 (<1 B (%)2> Ug-21+1 (2) <1 ] (%)2> Ug-242 <2>)l
202( 1)1( )[ [(@ — A+ 2)(a — A + 4] Fzq-2116

3
=9 (W Faa-21+4 — il +52) (2) 7:2a—2,1+6>].
(-3) (-2)

= %Za:(—l)’1 (j) [2[(01 —1+2)(a =1+ D]Frq-22+6
A=0

—

—9((—i)((l—l+3)$’2a—21+4
—(——>(Of /1+2)( )TZa 2/‘1+6>]
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Z Faar1  Favr1 " Facer

a+b+c=a

- %Z(—m () [[(a — A+ 2)(@ = A+ DI Fsq 16
-9 ( (— ;) (@a=2A+3) Fagopsa — (‘ %) (a—21+ 2):]:20:—2/1+6>lr
= 1—10/12;(—1)1 (j) [[(“ — A+ 2)(a =21+ D]Fza-22+6

+9 ( (%) (@ =2+ 3) Faa-2244 (;) - (%) (a—21+ Z)TZa—Z)l+6>l'

Z Faar1  Favr1 " Faerr

a+b+c=a
a
1 (3 27
==Y ()@= 24D (@= 249 =) Fagaave
A=0
18
+?(a: —A+3) Fag-za+4ls
a
1 NG
= > V() [g @ -2+ DG =51 = D Fsp i
A=0
18
+ T (a—21+3) TZa—ZA+4]'
. 3\ [ 9
=D 0 () [z @A+ D Faeanna
A=0
1
+gs(@—2+2)(5a—51- 7)5,1_2“6].
Therefore,

a
3
Z Forat1  Favr1  Facer1 = Z(—l)l (A) [Aa,/‘l Fora—2244 T Ba,/’LTZa—z,He]»
A=0

a+b+c=a

where
Ay = %(0{ —A+3)and By = — (@ — 1+ 2)(5a — 51— 7).

This proves the Corollary 3.2.5. m
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Corollary 3.2.6. For integer a > 0, we have

Z Faar1 Favr1 " Faer1 " Faarr

a+b+c+d=a

1 v A (4
- 150 Z(_l) (A) [Ca./'l:FZOC—Z)HS - Da,/'l:FZa—zﬂ+6];
A=0

where
Cor = 3(0{—A+3)(((a—l+2)(a—/1+6)+ 27) - 5(a = 1+5)),
and
Dyyr=2[(a—2+2)(@a—21+6)+ 27](a — 1+ 4).
Proof. To prove the Corollary, we will proceed as in the case of Corollary 3.2.5 and

use equation (1.65) (viii) in Theorem 3.2.3 for ¢ = %with r = 3, we have

Faar1 " Fopr1 " Facr1 " Faa

a+b+c+d=a
a
1 1 1 4 , 3
=< > CDA () [pla - 24 D@ -2+ 1w, s (5) - 3
A=0
mn 3
5 UWanaa (3)]
T2a+1 ':F2b+1 “Faer1 " Faast
a+b+c+d=a

_ Floi(—m (Dlet@-1+2@-1+ 01w, 0, (5)
A=0

_(a—/1+3)(a—l+5) a_1+3(3) ’

(1)) ’

2
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= Eloza:(—l)’l (j) [[(a —A+2)(a—2+6)+ 54]U',_,., (;)
=0

- 12 <(a —21+3)(@—2+5)Ug_143 (;))l

Faar1 " Favt1 " Facr1 " Faarr
at+b+ct+d=a

_ Hloi(—m (j) [(@—2+2)(a—A+6)
A=0

3
—12(@ =2+ 3) (@ =24+ 5Ug_143 (E) )

_ %i(—m CDI[(Q A+ 2)(a—A+6)
A=0

+ 54] (% Ug-2+2 G) B . _Z +5;) (i) Ua-2+3 G))

—12(a—21+3)(@— 21+ 5)Uy_343 ()l,
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602( )1()[( )(a A+ 2)(@—2A+6)+ 27)(a — A+ 4)U,_ m(;)

+(§(@—A+ZXu—A+aﬂ-NXa—l+@“wM3€>

—6(@—2+3)(@—2A1+5Ugy 343 (;)].

Faar1  Favr1  Face1 * Faasr

a+b+c+d=a
602( )1( )[( ) [(@—2+2)(@—A+6)+ 27](a—2
+ 4)Fra-22+6
+(a—l+3)<(§)((a—/1+2)(a—/1+6)+ 27)
—6(a—A1+ 5)) TZa—2/1+sl,
302( )ﬂ( )[( ) [(@—A+2)(@—2+6)+ 27](a -2
+ 4)Fra-22+6
+(g)(a—l+3)(((a—/1+2)(a—/1+6)+ 27)
= 5@ =2+5)) Fag zass]
= %O;(—nl (i) [3a—2+3)(((@-2+2)(@—21+6)+ 27)
—5(a@—-21+ 5))?2a—2/1+8]
—2[(a—21+2)(a—2+6)+ 27](a — A+ 4)Fyp_22+6-
Therefore,

z Faar1 " Fapr1 " Facr1 " Faa

a+b+c+d=a

1 . Nz
~ 150 Z(_l) (A) CorF2a-22+8 = DaaFaa-22+6)
=0
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where
Copn=3(a—2+3)(((@=2+2)(@—2+6) + 27) —=5(a - A +5))

and
Dyr=2[(a—2+2)(@a—21+6)+ 27](a — 1+ 4).

This establishes the Corollary. m

Corollary 3.2.7. For integers n,r > 0, we have

a

3
Z L2a+1 'L2b+1 'L2c+1 = z (/1) [Aa,/l Foa—2a4a + Ba,/ITZa—Z/Hé]

a+b+c=a A=0

where
9 1
Agr = E(d —A+3)and By; = %(a —A1+2)(5a —51-17).
Proof. For the proof of the Corollary 3.2.7, we will proceed similarly as in the case of

Corollary 3.2.5 and use equation (1.65) (x) in Theorem 3.2.4 for & = %With r =2to

achieve the desired results. m

Corollary 3.2.8. For integer a« = 0, we have

Logr1 Lops1  Locyr” lza+1
a+b+c+d=a

1 < /4
- ﬁz (/1) [Ca'AT2a—21+8 - Da,ATZa—Z)He]:
=0
where

Con =3 —-2+3)(((@=2+2)(@—2+6) + 27) —=5(a -1 +5))

and
Dyyr=2[(a—2+2)(@a—21+6)+ 27](a — 1+ 4).

Proof. For the proof of the Corollary 3.2.8, we will proceed similarly as in case of
Corollary 3.2.6 and use equation (1.65) (x) in Theorem 3.2.4 for & = Swith r =3to

achieve the desired results. m
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CHAPTER 4

IDENTITIES ON CHEBYSHEV POLYNOMIALS OF
THIRD AND FOURTH KINDS AND THEIR
DERIVATIVES

4.1 Introduction

In the first section of this chapter, we shall derive the explicit formulae for the
3 and 4™ kinds of Chebyshev polynomials and investigate their connections with the
negative indexed Fibonacci polynomials. Similar results for their derivatives are
obtained.

In the second section, we will express sums of finite products of the 3" and 4™
kinds of Chebyshev polynomials as a linear combination of Jacobi, Fibonacci,
Gegenbauer, Pell, Vieta-Fibonacci, and Vieta-Pell polynomials. Similar identities for
Lucas and Fibonacci numbers are obtained.

4.2 Explicit formulae on Chebyshev polynomial

This section focuses on the development of explicit formulae for the of Chebyshev
polynomials of 3 and 4" kinds and their derivatives and express their connections with
the negative indexed Fibonacci polynomials.

Many authors have investigated the Chebyshev polynomials and obtained several
explicit formulations [45-49, 58]. For instance, Yang Li in [47,48] has derived the
explicit formulae for the 1% and 2" kinds of Chebyshev polynomials. Similarly, in this
section, explicit formulae for the 3 and 4™ kinds of Chebyshev polynomials with odd
and even indices as well as their derivatives will be derived, followed by an
investigation of their relation with the negative indexed Fibonacci polynomials. The
main findings are:

Theorem 4.2.1. For any positive integer ¢ and { € R,

V,,(0) = (2{)26{ + Z(_l)a—v 22v+1 ((IZ-:}V) l(()zv + ( a-—-v ) (()2v+1 l )
v=0

2 2v+1
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vy e (T [(EEVELY o O
VZ““(O:;(_D 2" 1( 2v )l( 2v+1 >(OZ 1‘7]'
Proof. From [48], for any positive integer «, we have
. (D V22 a/a+v .
Tz(x(O:; ——— (", o™ (4.1)
C (D2 Qa+ 1) @tvHly
T ® = ) ("0 )@ @
Using the fact,
T'2(§) = alg—1(D). (4.3)
Uze(§) = mT'ZaH(O-
and
o (—1TV22Y2a + 1) fa +v + 1
Taan(@ =y O ZREE D@V o 4y
v=0
which implies
DTV Qv+ D e v+l
Uza(§) = ; a+v+1 ( 2v+1 > . (4.4)
Similarly,
Uzas1(Q) = WT'z(aﬂ)(().
implies
O DT (v D a2y,
U@ = ) s ("2 @ @
Consequently,

a-1
—D*VI22RE (y+ 1) a4+ v+ 1
Uer@ = 3 D O+ Dty
v=0

a+v+1 2v+ 2 ) Ohan (4.6)
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Thus, using Theorem 1.65 (ii) with equation (4.4) and (4.6), we proceed as,

VZa(z) = uZa(z) - ‘uZa—l(z)

e
e
- Z(—n“-v 2 (“ V) @

) a-1 (_Da—v(—zlvz-zl-wlr; (a—v) <a2-|1—/1/) Q)+

o

<

= 2% + ai(—l)“-v 2 (7)o
v=0

]

= (=1)*V 22+ (@ —v) (a +v

2v+1) 2v ) (e

+

v=0

a—1
a a—v H2ve1 (A TV "  (a—v) v+
Voel§) = (20)? +;<—1> e )[ s © 1]. (47)

Similarly, using Theorem 1.65 (ii)) and (4.4) and (4.5)

V2a+1(§) = Uzar1({) — Uze ()

e (CDEV 2R (v + 1) <a+v+2
B a+v+2 2v+2

v=0

S (=1)V 22 (2v + 1) (a+v+1
a+v+1 2v+1

) (()2V+1

)@,

v=0
) a (=1)@V 22v+1 (a+v+1) jfa+v 2v+1
_VZO (2v+ 1) ( 2v )(O

_ Zo e (S g,
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@ o gy (@ F VY [2(@+V + 1)
Vza+1(()=z(—1) 2 ( 2v )[W

(<)2v+1 _ (()21/] ,

z( 1=y g2ve (a+V> [<a+V+ D (ryeva_ %l

2v+1)
Therefore,
— \ —1)a—v 92v+1 a+v> w 2v+1_@
vw(c)—;( e 2 (T, Y S © YD
This proves the Theorem 4.2.1. m
Theorem 4.2.2. For any positive integer « and { € R,
a—1
_ 2a _1\a—v 92v+1 a+v (OZV a—v 2v+1
W2a(9) = (20) +ZO( D2 [ (577 ©**|
a
D S G Y SO “+V+1> 241
W@ = ZO< e 22 () [ ) @

Proof. Using Theorem 1.65 (xii) and equation (4.7), we have
WZO{(() = (_1)20!']]2“ (_{)
= Vsq (_Z) = (_25)2(1

a—-1
a—v H2ve1 (A TV 0% (@-v) v+l
+;<—1> 2 1(2v)[ ——+ (-3 ]

2v+1)
= @+ Y (e (YT l@ _ ((20; ;Vl)) (Ozml |
Therefore
@ = v (U -G o)
v=0

Similarly, using Theorem 1.65 (xii) and equation (4.8),
W2a+1({) = (—1)2a+1V2a+1 (=9 = _V2a+1(_<);

aey o2vi1 (X TV (a+v+1) B 21/H_(—()ZV
Z< e e (401 [ o -
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wey oayag (@ TV [(@+V +1) PR (9t
Z( 1)ev 22 1( )W(OZ 1+ l,

N, vasy ozvet (“5) @ @+v+D)
—;(—1) 2 [ o © ]

Therefore,

a+v l({)z" (a+v+1)

Wi Q) = ;<—1)H 2+ T D

(()2V+1] .
This proves the Theorem 4.2.2. m

Theorem 4.2.3. For integer n, r (> 0) and { € R,

e N (FDEY 22 (a4 )]
Vaa' (§) = Z (a —v)! 2v—1)!

2v—-r

v=[3|
a-1 ( 1)a—v—1 22v+1 (a + V)
_ {(2v+1)—r
(a:—v—l)' Qv+1-—n)!
V_[ 2
Vo7 (0) = (—D)* V22t (@ +v + 1)! @viD)—r
(a—v)!IQR2v+1-—1)!
v=[5=

T (—1)* 22 (@ +)!
(a—v)! Qv —=71)!

((Zv—r)
=

where [{] denotes ceiling function.

Proof. Differentiating equations (4.4), (4.5) and (4.6) r times, we have

o N D2 Qv+ D a v+l
WaalQ) = Z[T] a+v+1 ( 2v+1 )(21/)(21/—1)(21/

—2) . Qv—r+1) (¥,
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e DT uA D@V vy
UWal§) = ? (a+v+1DQ2v—-1)! ( 2v+1 )(OZ ’
v=lz
e DT v+ DRV @ v+ D
- d (a+v+1DQv—-7r)Qk+1)! (a—k)! SO
v=lz
) e CDEV2R @)
U5a(9) CERICER @, (4.9)
v=lz
Similarly differentiating equations (4.5) and (4.6) r times, we have
. o D (g v D
U a+1($) = ;1 @—2v+1-n) (COR A (4.10)
ol
a-—1
. B (_1)6(—1/—1 22v+1 (a + V)' 1er
R GRS o s T vy (4.11)
bl
Now, differentiating Theorem 1.65 (ii),
V() =U () — U q-1(D).
which implies
VrZa(O = urZa({) - urw—1(€)
e (FDEV R (e
B m (a—v)!Q2v—-1)! ©)
v=lZ
a-l (—1)% V=1 22v+1 (g 4 y)! -
B Zl (2v+1—r)!(a—v—1)!(<) ’
ol
) e GDEV2R @)
V= ) =
v=lz
a-1 _1\a-v 92v+
+ ()T 27 (@ + V)l (Q)2v+i-T, (4.12)

[r_l] Qv+1 -7 (a—v-1)!
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Also,
Vr2a+1(€) = ur2a+1(€) - urzfx(f)
S (=)@ 22 (g 4+ v + 1)

B [r—l (a—v)IQ@Rv+1-1r)! @
V=l
o (D2 (@)
B 7 (a—v)!2v —7)! Ol
v=l3
Therefore,
T — C a-—=v v+ (a + 4 + 1)! v+1-r
Vo0 (§) = [Z (D 2 e
V=T
o D2 (@),
JE TR @ 13
v=lz
This proves the Theorem 4.2.3. m
Theorem 4.2.4. For any integer r > 0 and { € R,
o O (D2 (@)
Waa' (§) = Z{;] (a—=v)! Qv —r1)! i
v=l3
N G A AR C R [
- 2 (@ —v—1)! (2v+1—r)!{ ’
V=T
) o (D2 (@ v+ D!
2a+1 (Z) - [r_l (a_v)! (2V+1—T)!
V=7

T D2 (@),
+ Z (a—v)! Qv —r)! (e,

=

where [{] represents ceiling function.

Proof. Differentiating 1.65 (xii) r times we have
W) = (_1)a+1vra =.

On replacing a by 2a and using equations 4.12 and 4.13, we have
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W () = (=D, (=) = =V7"30 (=0)

O (FDEL2Y (g 4 0)!
B s (@a—=n!I2v-r)!
T
a—1

(_1)0(—1/—2 22v+1 (Of + V)'
B z Qv+1-—-7r)(a—v-—-1)!

e

(=

(_{)2v+1—r

@ (_1)a—v—r+1 221/ (CZ + 1/)!
(a—v)IQ2v—-r)!

(()ZV—T

a—-1

(_1)a—v—r 22v+1 (a + 1/)!
+ Z Qv+1-r)(a—v—-1)!

(5)2V+1—T

S
V=2

Similarly,

W' a1(§) = (—1)2a+2 VrZa_,_l (=0) =V 2041 (=0)

a

(=D V22 (g +v +1)!

B = @@ +i=my O
S (=1)%Y 2% (a +v)! .
B 4 (a—v)IQ2v—1)! (=0
=i
. B @ (_1)a—v—r+1 22v+1(a +v+ 1)! S
Waa1(§) = Z (a—v)!IQv+1-71)! ©

a

(=1)* V" 22 (@ +v)!

(a—v)!Q2v—-r)! @

T

This proves the Theorem 4.2.4.m
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Theorem 4.2.5. For any positive integer « and { € R,

a+l «a

~ (_1)8+a 22v-1 (1-28) (a+v)!
Vaa(§) = z (a=! v+)v-56+1)!

X F_25-1)()
6=1 v=0

a—-1

a (_1)5+a 22v+2 S (CZ +y— 1)!
+zz(a—v+1)!(v+5+1)!(v—6+1)! X F_26)(0),

6=1v=0

" [ 22v+2 6
O ED* @ (@ —v + ) (v + 6 + D!
Vaara(§) = Z (v—6+1)! | 22v=1(1 = 26) '
[ T (a=)!(v+0)! F-@s-0() J

Proof. For integer a > 0, one can see that [48],

F_@28)(¢ )]I

6=1v=0

+00
U@ = ) C2aF5(0),
5=1
and
+00
Uze-1(§) = Z Coa-1,6 Fs(Q),
5=1
where,
a 24v+1 i35+2a+15(a + V)!
Z , Oisodd
C2a,6 = Vzo(a—v)!(2v+6+1)!! Qv-=-5§6+ 1D ,
0, otherwise
- 24V+3 (35420 5y 4y — 1)]
0 is odd
Crq-16 = ; (@a—v—DI2v+s+2)i2v—6+2)1 °¥°
0, otherwise

Using this, from [48], for any positive integer a, we have

a+l a

-1 S+a 22v=-1 (1 _ 2§ I
U@ = Y Y D B @, ()
6§=1v=0

(a—)Iv+H)v-86+1)!

. (—1)8+@ 22v+2 § (g + v — 1)
“w-l(f)zz (a—v+DIv+5+ DI Vv-—56+1)! XF2s(6), (415)
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Again,

a+l a

(_1)6+a+1 22v+2 § (a + V)!
Uzarra (O = Z Z (a—v+2)IW+6+D!I(v-56+1)! X F25(O- (416)
5=1v=0

Now using Theorem 1.65 (ii), equations (4.14), (4.15) and (4.16), we have
V2a({) = Upe(§) — Uza-1()

& & (—1)5+@ 22v=1 (1 — 28) (a + v)!
(a—)I+)v-5§+1)!

M

X Fr5-1(4)

§=1v=0

]
JuN

(—1)8*+x 22v+2 5 (@ 4+ v — 1)!
(a—v+DIW+s5+DIv-6+1)!

X Fp5(),

I
=

[e7}
1l

1

<
I
o

Using equation 1.12 (section 1.2, Chapter 1), Fy5_1({) = F_(25-1)({) and Fps({) =
—F_25)({)

a+l a

(—1)8** 22v-1 (1 — 28)(a + v)!
V2a(§) = Z (@—N@+) (W—25+ 1!

5=1v=0

X F_25-1)()

a (_1)6+a 22v+2 S (a +y— 1)!
_Z (a—v+D!'V+5+ DI (v—56+1)! X (1) F-@s)(©),

a+l «

_ (—1)%+® 22v=1 (1-26) (a+v)!
V@) = ). @) G+ w—"06+D!

X F_25-1)(C)

6=1 v=0

< (—1)%e2v25 (g v — 1)
Z(a—v+1)!(v+6+1)!(v—6+1)!

R “ﬁ’Ma

eI(e) (4.17)

Similarly,

V2a+1(€) = u2a+1(€) - uZa({)

a+l a

_ (_1)6+a+1 22v+2 § (a + V)'
_;;(Q—v+2)!(v+5+1)!(v—5+1)! X F2s(S)

at+l a

(—1)8+a 22v-1 (1 — 28)(a +v)!
_Z (= V+8)!(v—56+1)!
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6=1v=0



a+l «a

B (_1)6+a+1 22v+2 ) (a + V)!
Vaar1(§) = ;; @—v+2)+d+Dw-05+1D! " (=DF-25()

at+l « ( 1)5+a+1 22v-1 (1 —28)(a +v)!
+Zv + (@a=I+HV-6+1)! XF-@s-n)
a+l a
(=D (a + v)! 22V+2 §
Vann(€) = Z; v—35+1) I(a v Ty oy e TR COLCY)
221/ 1 (1 _ 26)
C(@—W v+ )] F-Gs-v (Ol (4.18)

This proves the Theorem 4.2.5.m

Theorem 4.2.6. For any integer « > 0 and { € R,

at+l «

(—1)%*@ 22v-1 (1 - 28)(a + v)!
Weal0) = z (@—DW+8)!(v—>5+1)!

XF_25-1)()
6=1v=0

a a-— (_1)5+a 22v+25(a+v_1)!
ZZ a—v+DIv+5+DI(v-5+1)! XF-@ (),

6=1v=0
22v+26
Wi (0) = azﬂ N D@+ (a—v+2)!(v+d + 1)!T—(26)(O
2a+1 ( - Ll (V -5+ 1)| 22v—1 (1 _ 25) .
=1v= + CEDNCE 6)!T_(26_1)(O

Proof. Using equation 1.12 & 1.16 (section 1.2, Chapter 1), we have

F_@s-1)(—=0) = F_2s-1)({), (4.19)

and

F_26)(=0) = =F_26)(D. (4.20)

Using equations (4.19) and (4.20) in equation (4.17), we have
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WZO(({) = (_1)2av2a (_() =Vsq (_()
O e (=D 2271 (1 - 28) (o + v)!
_Z (a—VMIv+H)v-86§+1)

6=1v=0
-1

X F_25-1)(—=0)

ak (=1)5+@ 22942 § (g + v — 1)!
+Z @—v+ D W+0+ DI w—0+1)

6=1v=0

XF_26y(—=9)

& o (=1)5% 22v=1 (1 = 28) (a + v)!
> Waa(Q) = Z Z (@a—VIV+8)!WV-5+1)! XF-2s-1(¢)

§=1v=0

ST (1) 2225 (g v — 1))
ZZ(a—v+1)!(v+6+1)!(v—6+1)!

X (=1) F_@26)(—0)

a+l a
_ ~ (—1)%** 2271 (1 - 28)(a +v)!
* Wae§) ‘Z (@a—WIW+8)V—-256+1)! XF-s-1(©

6=1v=0
a—-1
(—1D)o*ae22v+2 5 (@ +v —1)!

_z (a—=v+DIv+6+DIv=-6+1)! X F_28)({)

Similarly, using equations (4.19) and (4.20) in equation (4.18), we have

Wia+1(§) = (—1)2a+1V2a+1 (=0 = Va1 (=0

~ a+l «a (_1)6+a(a+v)! 22v+2 §
- ;; (v—-56+1)! [(a VI R INC OIS
22v=1 (1 - 26)

T@-niwrol *25-1)(‘5)]

= Waa+1(0)
at+l « (_1)5+a(a+v)! 22v+25
=D Sz:w:o w—-0+D! l(a VI [T ORI AR COI
221/—1 (1 _ 26)

T (@—V)!I(v+6) T—(zs-n(@l
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a+l a

-1 S+a I 22v+2 S
N I e F_ oy @)
5=1v=0

v=56+1)! —v+2)!(v+6+ 1)

22v=1 (1 — 26)
+ (a—v)!(v+98)!

F_(25-1) (()l

This proves the Theorem 4.2.5. m

4.3 Sums of finite products of Chebyshev polynomials of the third and fourth

kinds in other orthogonal polynomials.

Before coming to the main results, it is important to revisit the basic definitions
and concepts already discussed in section 1.2 of Chapter 1 regarding Jacobi, Pell,
Gegenbauer, Fibonacci, Vieta-Pell, and Vieta-Fibonacci polynomials [11, 12, 37, 55,
and 60] which are instrumental in the development of the essence of the content of this
section. Here the summation representations of finite products of the 3" and 4" kinds

of Chebyshev polynomials in other orthogonal polynomials are studied.

Many authors have analyzed and investigated Chebyshev polynomials and one
such area is the classical linearization problem. For instance, Zhang [55], in 2002,
studied summation problems of finite products of 2"d-kind Chebyshev polynomials,
Lucas and Fibonacci numbers as given by the equation (1.82). Similar study was
conducted by T. Kim et al. [56] in 2019 and obtained interesting results, especially,
given by the equations (1.92)- (1.93). Following the pattern, D. Han and L. Xinging
[73], similar summation representations for Lucas, Fibonacci and Chebyshev

polynomials in terms of 1%-kind Chebyshev and Lucas polynomials are deduced.

Similarly, following this pattern, we will write sums of the finite products of the
39 and 4" kinds of Chebyshev polynomials as a linear sum of Jacobi, Pell, Gegenbauer,
Fibonacci, Vieta-Pell, and Vieta-Fibonacci polynomials. Analogous results for the

Lucas and Fibonacci numbers are considered. The main results are:
Lemma 4.3.1. For all positive integers a and € R,

Pa(§) = Fo (28). (4.21)
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1

1
Pes1(8) = —‘ua(\/__l'f) = l-_aua(i'f)-

(=D«

546 = U (5€).

Ug (E) = Ryiq (E)

Ua(§) = Cla: 1)(S).

(a+ DT (%)

F(a+%)

Uu(§) = P(a5.3) @

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

Proof. This Lemma can easily be developed by utilizing the basic definitions and

recurrence relations for Pell polynomials 2,(¢) (sub-section 1.2.10), Chebyshev

polynomials of second kind U, (&) (sub-section 1.2.11(i)) Vieta-Fibonacci polynomials

S,(&)and Vieta-Pell polynomials C(a:1)(§) (sub-section 1.2.13),

Jacobi

Polynomials( sub-section 1.2.14), Gegenbauer polynomials P (a: A, 8)(¢) (sub-section

1.2.15).m

Theorem 4.3.1 For any integer a,r = 0, we have

Y V() V).V, (). Vi, )

01+0'2+03+---+0r+1=a
a

o (iR ©,

2Ty
y=0

1% S N
= ;Z(_l)y( ¥ ) l Ta—r+y+1(2€):
y=0
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D WG W () W, (). W, (80

o1t+0y+03++0r1=

a

1 r+1\,
= er| Z ( ,y ) la T“Pg—r+y+1(f)'

=0

a
1 <r+1
Y

-2 )T iy (20),

y=0
where sum runs over all g, (=0)in Z (A=1,2,..,r+1) with g, +0, +:-+
G =a & (T;l) =0 fory >r+1, i=v—1 and PI(¢) & FI(&)is r"
derivative of Pell polynomial and Fibonacci polynomial respectively.
Proof. Replacing ¢ by i€ in equations (1.92) and (1.93), we have
DR A IR CI R NN

O'1+U'2+0'3+"'+U'T+1=a

1 v 1
2Tyl Z(_l)y (r ;l/- ) {ug—yﬂ"(if); (4.27)
y=0
z Wffl (lf) 'WO'Z (if)'wog (I’E)' "'WO'T+1 (lf)

a

P (i ) (4.28)

~ 2l
=0

Differentiating equations (4.21) and (4.22), r- times w.r.t £, we get

Pa () = 27F; (28), (4.29)
U (i8) = 197" Pgr4 (), (4.30)

Using equations (4.29) and (4.30) in equations (4.27) and (4.28), we have

D V() Ve, () Vi, (). - Vi, 6)

o1+02+03+ " +0rp1=a

1 % o N
2Tl Z(_l)y ( % ) l :Pa—y+r+1(§)r
¥=0
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Y V).V (). Vs, ). Vi, )

o1t+0y+03++0r1=

a
1 r+1\
= Fz(_l)y( % )la TT(;—)/+7‘+1(25;):
v=0

D Wa GO W, () Wy, (). W, (i)

o1+03+03++0,r41=

1 <~ r+1 R
= 2Tyl z ( % > l :Pa—y+r+1(f)

v=0

a
1 <r+1

=D (M Lt e C)

y=0
Hence the Theorem 4.3.1 is established. m

Theorem 4.3.2 For any integer a,r = 0 and ¢ € R, we have

> V® VeV (O,

o1+0y+03++0r1=

:2r1r(a+1)F Z( 1)V( )( —y+riz )(f)

_ Z}r!Z(—m (T ;r Ner@-y +re,
y=0

D WO We ) W) W, (O

01+02+03++0r41=Q

1 “*“‘F%j(“)w(a pert o

~ orl
y=0

: 23,,!2 (THer@-r+rne,
¥=0

where sum runs over all g, (=0)in Z (A =12,..,r+1) with g, +0, +--+

0,41 =a and (“y’l) =0 fory >r+1i=+v-1 and P"(a:p,y)()and
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C"(a: B) (&) is the r'" derivative of Jacobi's polynomial and Gegenbauer polynomials

respectively.
Proof. Differentiating equations (4.25) and (4.26) r times, we have

Ug(§) = CT(a: 1)($) (4.31)

3
UL(E) = w? (:3.5)@©

r(a+3)

Using equations (4.31) and (4.32) in equations (1.92) and (1.93), we have

(4.32)

> V® VOV,

o1t+0y+03++0r1=

3 «
:Zrlr!(CH'1)!F3()7));(_1)y<r;|/-1)? (“—Hr )G)

F(a+7

> V() Ve V(O Ve (O

o1+03+03++0r1=a

23r|Z<— V( 1) C"(@a—-y+r1DE,

v=0

D WO W) W) W, (O

o1+0y+03++0r1=

1 (a+1)'I‘ 3 -

=2y 72(r+1)?r(0{ ”+rl_>(€)

=0

zrr.i( Yot rornd

Hence the Theorem 4.3.2 is proved. m

Theorem 4.3.3. For any integer «,r = 0 and ¢ € R,
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D v, @ Vs, (g) Vs, (g) Vo, @

01+02+03+ - +0r 1=

- %i(—m (" ) Sty (©)
y=0

2 wa(g)wn5) ) )

o1t0y+03++0r1=

a

=2 () st

Tl
y=0

where sumrunsover all g, (= 0)inZ (A =12,...,r+1) with o, + 0, + - +
0,41 = a and (T;l) =0 fory > r+1,i =+v-1 and SL(&) represents the r"

derivative of Vieta- Fibonacci polynomials.

Proof. Replacing by g in equations (1.92) and (1.93), we get

2 (35 (5 )

o1t+0y+03++0r1=a

Zrlr! i(—l)y (r J; 1) Ug—y+r (g) (4.33)
y=0

2 walg)wn5) e g) - )

01+02+03++0rp1=Q

a

e (a9

y=0

Differentiating (4.23) r-times, we have

$26) =55 (5€). (435)

Using equation (4.35) in equations (4.33) and (4.34), we get
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D v, @ Vs, (g) Vs, (g) Vo, (g)

01+03+03+ - +0r41=Q

- %Z(—l)y (MR G
> mm @)

o1t+0+03++0r1=

_1y () st

r!
y=0

This establishes the Theorem 4.3.3. m
Theorem 4.3.4. For integers a,r = 0 and ¢ € R, we have

> V() VO Vi (O Ve (O

o1+0p+03+ " +0r1=

=7 Z(— () R ®),

v=0

D WO W) W) W, (O

o1+0y+03++0r1=

= 2r1T! za: (T ;i; 1) Rgz—y+r+1(f)

y=0
where sum runs over all g, (=0)in Z (A=12,..,r+1) with g, +0, +--+

0,41 = a and (r;l) =0 fory > r+1,i =+—1and R%L(§) is r"derivative of

Vieta- Pell polynomial.

Proof. Differentiating (4.24) r -times, we have

Uy (©) = Rcrz+1(<>z)- (4.38)
Using equation (4.38) in equations (1.92) and (1.93), we see that

Y V@ VOV (O,

o1+02+03+ - +0rp1=

_ Z}r! Za:(—m (" ; 1) Ry ars1(©).
y=0
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D Wa® Wa, () We, (9. W, (©

o1t0+03++0r1=

B 1
2Tyl

N=

() Ry

y=0

This establishes the Theorem 4.3.4. m

Corollary 4.3.1. For integer «,7 > 0 and ¢ € R, we have

S,
U'1+O'2+0'3+"'+U'T+1=a
1 v r+1 a—r T
_Zr 'Z(_l) ( Y )l a—y+r+1( l)
y=0
r+1 o ]
__'Z(_l)y( Y )l ?a—y+r+1(_3l)
e,
1 (@+1) ~ +1 1 1\/3
a r
= ol e
Trl 11

- zrlr! i(_l)y (r J): 1) Cla—y+r1) (;>
yY=0
_ %i(_m (r ;’ 1) St—yr(3)
v=0
- zrlr! ZHV (r J): 1) Rayiria G)
Y=0

Proof. By taking ¢ = 2% in Theorem 4.3.1, ¢ = % in Theorem 4.3.2, £ = 3 in Theorem

433,¢ = % in Theorem 4.3.4, and using equation in Theorem 1.65(viii) establishes the

Corollary 4.3.1. m

Corollary 4.3.2. For any integers a,r > 0 and ¢ € R,
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Z Lo Loy Loy Ly,

o1t+0y+03++0r1=

Ry () (e -r e 3)6)

= 27l P, (a: %’%) = Yy

27r!
y=0
1w r+1
r
== ST (3)
2.y ) Sty
r.yzo %
a
1 r+1 3
- RT z
ZrT!Z( Y ) azy+rl (2)
y=0

Proof. Similarly, by taking & = % in Theorem 4.3.1, ¢ = % in Theorem 4.3.2, ¢ =3 in

Theorem 4.3.3, & =§ in Theorem 4.3.4, and using Theorem 1.65(x) establishes the

Corollary 4.3.2. m
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Chapter 5

SOME REPRESENTATIONS OF SUMS OF FINITE
PRODUCTS OF PELL, FIBONACCI AND CHEBYSHEV
POLYNOMIALS

5.1 Introduction
The first section will focus on establishment of some more identities on
representations of summations of finite products of Lucas and Fibonacci numbers and
Fibonacci and Pell polynomials as a linear sum of derivatives of Pell polynomials, using
their basic properties through elementary computations. Similar identities are obtained
for the 3 and 4" kinds of Chebyshev polynomials.
In the second section, we will prove some more similar identities on finite
products of negative indexed Lucas, Fibonacci, and Complex Fibonacci numbers. In
terms of the 3" and 4™ kinds of Chebyshev polynomials, analogous results are obtained

for Pell numbers and Fibonacci polynomials.

5.2 Sums of finite products of Pell, Fibonacci, and Chebyshev polynomials of third

and fourth kinds in Pell polynomials

Here we will develop some results expressing finite products of Lucas and
Fibonacci numbers, Pell and Fibonacci polynomials as a linear sum of derived Pell
polynomials, through elementary computations. Analogous identities are obtained for
the 39 and 4™ kinds of Chebyshev polynomials.

Zhang [55] investigated the linear sum problem on 2" kinds of Chebyshev
polynomials and derived many identities, particularly, given by the equation (1.82).
Similar results were observed by T. Kim et al. [51] for 1% kinds of Chebyshev
polynomials and Lucas polynomials. In [56], T. Kim et al. have observed the sums of
finite products of the 3 and 4™ kinds of Chebyshev polynomials which among others
includes which are represented by equations (1.92)- (1.93). Analogous results were
developed by W. Siyi [57] and D. Han and L. Xinging [74]. A. Patra and G.K. Panda
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[59] also developed similar identities expressing finite products of Pell polynomials in
other orthogonal polynomials.

According to the preceding literature, previous works have developed identities
representing finite products of Lucas and Fibonacci numbers, Fibonacci, Pell and Lucas
polynomials, and Chebyshev polynomials of 3™ and 4" kind as a linear sum of
derivatives of Lucas Polynomials, Fibonacci polynomials, or Chebyshev polynomials,
but the similar results in terms of Pell polynomials have not been studied. So, this
section is dedicated to the development of some more similar identities representing
finite products of the Lucas and Fibonacci numbers and Pell, Fibonacci, and Chebyshev
polynomials of 3 and 4" kinds, primarily in terms of derivatives of the Pell
polynomials, are obtained. The main findings of this section are:

Lemma 5.2.1. For any non-negative integers «, the following identities holds
). Patr (—2 i) = 1" Faa+1)-

i). Pat1 G i) = iaTz(a+1)-

i), Pa (—2) = = Fagan.

iv). Ve (%) = Faa+1-

V). Wy (Z) = Lyg+1-

Proof. (i) Take & = —%i in equation 1.65 (xv), we have
3 3
e (3)= P (-31).

run (31)= 0 ()

Using U, G) = F(a+1) inequation (5.1) we have

Past (5 1) = I Fauun
i) To establish this identity, we will proceed as above in case of (i) and using
Ue (— %) = (=D* Faa+1):
iii) Taking ¢ = —2 in equation 1.65 (xv), we have

Ug (=20) = 1Py (=2).
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Por1 (=2) =i7%U, (=20). (5.2)

Using U, (—2i) = %Tg(aﬂ) in equation (5.2), we have
ia
Par1 (=2)= ?TS(OHI)-
iv) From equation 1.65 (ii), we have

Vo (§) = Uy (§) —Ug—y () (5.3)
Taking ¢ = % and using U, (g) = Fy(a+1) in equation (5.3), we have

2 B)= e §)- s ()« s
a 2 a 2 a—-1 2 2a+2 2a 2a+1
v) Similarly, using equation 1.65 (iii) and proceeding as above in (iv), we can establish
the result m
Lemma 5.2.2. For any integer « = 0, and ¢ € R, we have the identity
Pins(®) = (e PO + s

where 2, (&) is a Pell polynomial.

Pe+1().

Proof. From [57], we have
(1= 8Ua() = (e + DUa-1(§) — adU($). (5.4)
Replacing ¢ by i€ in equation (5.4), we have
(1 + &)U (E8) = (@ + DUg—1 () — aid U (i), (5.5)
Differentiating equation 1.65 (xv), we have
Wa(id) =i Py (§). (5.6)
Using equation (5.6) in equation (5.5), we have
A+ P =(@+ D i1 R(§) —ai§ i*Pe(d),
(14 8DPer1(©) = (@+1) Po(§) + a§ Pesa(§),

(a+1) aé
a+e) Ot T

This proves the Lemma 5.2.2. m

?c,x+1(f) = ?a+1(f)-

Lemma 5.2.3. For any integer « > 0, and ¢ € R, we have the identity

ala +2) 3¢
aren e

where 2, (&) is a Pell polynomial.

P () = P a+1(8).
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Proof. From [57], we have

(1= §UL(E) =38 UWa(§) — ala +2) Uy(D), (5.7)
Replacing ¢ by i€ in equation (5.7), we have
(1 + &) UG(E) = 3§i W (i8) — ala + 2) U, (i), (5.8)
Differentiating equation 1.65 (xv), we have
Wo(i§) =it Playr (), (5.9)
U" o (i8) = —i% P11 (§). (5.10)

Using equation (5.9) and equation (5.10) in equation (5.8) and proceeding as above in
Lemma 5.2.2, we have
(1 + &P () = ala + 2)Pgy1(§) =38P 441 (S),

ala +2) 3¢
(1 + EZ) :Pa+1(f) - (1 + EZ)

This proves the Lemma 5.2.3. m

P () = P’ a+1(§).

Lemma 5.2.4. For any integer « > A > 0, and ¢ € R , we have the identity

PEAE) = [(21— 1) P2LE) + (A= 2)A — ala + 2)) PLEO)]

1
(1+¢%)
where 2, (&) is a Pell polynomial.
Proof. From Lemma 5.2.2 and Lemma 5.2.3,
(1+8)Pep1(§) = (@ +1) Po(§) + a§ Paya($), (5.11)
(1+ )P/ () = ala + 2)Pgy1(§) =38P 441(5), (5.12)
Differentiating equation (5.12) (4 — 2) times, and using equation (5.11) we obtain
(1483 Pia () = =22 = D¢ Peii(©) = (A - 22— ala +2)) Peii @),

P = [(21 - 1)é PALIE) + (A= 2)A — ala + 2)) PLE(O)],

1
(1+¢2)
This proves the Lemma 5.2.4. m

Lemma 5.2.5. For any non-negative integers a,k, and ¢ € R,

Paras1 (),

1
z :Pcn+1($z)'?az+1(f)"'?0/1+1+1($) =ﬂ

0'1+0'2+"'+0'A+1=(Z
where sum runs over all g, (=0)in Z (A=1,2,...,A+1) with g, +0, +--+

01+1 = a and where P, (£) is a Pell polynomial.
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Proof. The Lemma 5.2.5 can be easily established by using the equation 1.65 (xv) in
equation (1.82) m.

Theorem 5.2.1. For any non-negative integersa« = A > 0, and & € R then

Y Pria® Pra© Py ©)

o1+02+ - +0y41=

1
e T [(2/1 - 1)5 +A+1(€)

22 A1 (1 +€2)
+ (AA-2)—(@+21+2)(a+ 1) PLE.(D)]
where sum runs over all o, (=0)in Z (A=12,..,A+1) with o, +0, +:+

Op+1 = Q.

Proof. Using Lemma 5.2.4 and Lemma 5.2.5, we get the desired result. m

Theorem 5.2.2. For any non-negative integers a > 1 > 0, then the following identities
hold:

Y Fn® Foa @ Fapn®

o1+02++041=a

D ¢
T 221 A1(E2 + 4) [22=1¢ 7, ”“( E)

_ 2((1 2),1—(a+/1)(a+/1+2)) a+/1+1< g)]

where sum runs over all g, (=0)in Z (A =1,2,..,A+1) with g, +0, +--+

O+1 = Q.
Proof: Replacing ¢ by —% in Theorem 5.2.1, we have

2. %(-2)-?az+1(-§)~-?’w1(-§)

o1+0+ - +0)41=Q

_ >[(2/1—1)< ) £+i+1< 5)

22 1 (1 + (——)

2

+ (-2

—(@a+M(a+1+2)) MH( g)] (5.13)

Replacing & by% in equation 1.65 (xv) and using F,(§) = i*™! U,_, (— %) we get
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Par (~3) = (D Fus O, (519)

Using equation (5.14) in equation (5.13), we have
Y Frn® Fou® T n®

0'1+O'2+"'+O'l+1=a

(_1)a+1

(g e

—(a+M(@+21+2)P +a+1( %)]

(_1)a+2 22
T 2M (4 + £2)

|22 - v Pt (-3) - 2(G -2

@+ D+ 2+2) Pt (-3)]

Y Fn® T @ Fapn®

o1+02+ - +041=a

=21_1(;!g;+ 5@ =D Pita (- -2(0-2)
—(@a+M(a+21+2)P +/1+1(—§>]-

This establishes the Theorem 5.2.2. m

Theorem 5.2.3. For any non-negative integers a« = A > 0, we have the following

identities:

Z T2(01+1) ' ‘7:2(02"'1) ‘7:2(0)1+1+1)

O1+02++0 1=

3i
- e [ e 7 (-3)

+ 2((0( +D)(a+A1+2)—-(1— Z)A) a1 ( %)]

3
= ”,[31(2/1 1) “*“1(2)

+2((A-2)A— (@ +D(a+1+2)PH:, (321)]
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where sum runs over all g4 (=0)in Z (A =12,..,A+1) with g+, + -+
Gpeq = @ With (A;l) =0,fory > A+ 1.
Proof. Taking ¢ = —%i in Theorem 5.2.1, we have

3i 3i 3i
2, Fan(-3) Pun(-3) Pan (-3)

o1+0++0)41=Q

= ! @-1(-2) Pt (-2)+ (-2
2Mu<1+(—7)>[ ( ) ( )

—(a+D(a+21+ 2)) e ( 321)] ’

3i 3i 3i
2, Pan(-3) Pun(-3) Pun(-3)

o1t+0++0) 1=

= W [31 (22-1) a+A+1( 32) —2 ((’1 —2)A

~ Gt D+ 2 +2) Pt (-5

Now using Lemma 5.2.1(i), we have

Z ?2(01+1) 'T2(02+1) "'?2(0,1+1+1)

o1+0z++0y41=

3i
- gl G- 0P (-3)

3
+2((@+D)(@+1+2) - (A—2)2) P22, ( 2‘)].
Again, taking & = % in Theorem 5.2. 1 and using Lemma 5.2.1(ii), and proceeding as

above, we get

Z Faor+1) " Foopr1) " Faopp,+1)

O1+0,++0 1=

3
T 221 3, a;u[S‘m 1) “”“(2)

+2((A=2)A = (@ + D(a+1+2)) P2, (?;)]

Thus, the Theorem 5.2.3 is established. m
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Theorem 5.2.4. For any non-negative integers « > A1 > 0, we have the following

identities:
Z T3(01+1) 'T3(02+1) T3(a,1+1+1)
0'1+0'2+~~~+0',1+1=0(
(=D _
= 2@ - D) P (-2)

+ ((@+D(@+21+2)—(A—2)1) PLE . (-2)]
where sum runs over all g5 (=0)in Z (A=12,..,A+1) with oy +0, +--+
0341 = a With (”;1) =0,fory > 1+ 1.

Proof. Taking & = —2 in Theorem 5.2.1, we have

D P2 P (<D Py (-2)

o1+0++0)41=a

1
=~ Iaar oy ® - DED Pia )+ (@ -2

—(a+D(a+1+2)PE:.(-2)]

Y P2 P (<D Py (-2)

o1+02++0)41=a

= 21 15 [2(21 - 1) :Pc/xl-:ll+1(_2)

+((@+D(@+1+2)—A—-22) PLE.(-2)]

Now using Lemma 5.2.1(iii), we have

z F3o1+1) " F3op41) - F3(0p01+1)
O'1+O'2+"'+O_A+1=a
(=D« _
=21 -1 P55, (-2)

+ ((@+D(@+21+2)—(A—2)2) PLE.(-2)]
Hence the Theorem 5.2.4 is established. m
Theorem 5.2.5. For any non-negative integers a« = A > 0, we have the following

identities:
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D V)G Vi, (D)

o1+02+ +0y41=

1 C gy (AF1 B
YT (1+52);(_1)y 1 V( y )[(2/1—1).{ ?O/}—y+l+1(€)

+@-y+2)(a—y+21) :Pa/}:)g+/’l+1(€)],

where sum runs over all g, (=0)in Z (A =1,2,..,A+1) with gy +0, +:+

Gpeq = @ With (A;l) =0,fory > A+1andi=+—1.
Proof. Replacing ¢ by i€ in equation (1.93), we have
D VGO V) Vi, (D)

o1+02++0)41=Q

a

= > o (! ; e

=0
Differentiating equation 1.65 (xv) w.r.t &, we get

U (@§) = i Poar (),
Using equation (5.16) in equation (5.15), we have

Y V) V) Y, ()

o1+0p+ - +0) 1=

1 v (AL
=mz(—1)yl V( y >7Da—y+/1+1(f)
y=0

Using Lemma 5.2.4 in equation (5.17), we have

D V) V)V, (D)

o1+02++0y41=

- 1 . ooy (AF1 ~ N

+ (A=2r—a(a+2)) PA2,,,©)]

D V) V() Vi, (O

O1+0,++0 1=

— 1 Y +1;a— A+1 _ A
—m;(—l)y i V( y )[(2/1 D¢ P

+(@—y+2)(a—y+20) P2 1O)]

which establishes the Theorem 5.2.5. m
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Theorem 5.2.6. For any non-negative integers ¢ > A > 0, the following identities
holds:

D WD) W) W, ()

_ 1 o (A1 -
__m;l y( Y )[(2/1_1)5 ?a—)}+/1+1(§)+(a
—y+2)(@—y +20P; 2141 (D),

where sum runs over all g, (=0)in Z (A=12,..,A+1) with o, +0, + -+

0341 = a With (’L;l) =0 fory > A+ 1landi=+v-1.

Proof. Using equation (1.93) and proceeding as in Theorem 5.2.5, we can easily
establish Theorem 5.2.6. m

Theorem 5.2.7. For any non-negative integers « > A1 > 0, we have the following
identities:

E T201+1 '7:202+1 "'7:20—“1+1

o1+0p+ - +0)41=

(24
1 A+1
- - _1\vtl;a-y :
221511 Z( DY ( y ) [BL(ZA
=0
3
- 1)?&1:)}_”“ <_Ei>
A-2 3.
—2(a—y+2)(@—y+20) Py a1 (——l)],

2

where sum runs over all g (=0)in Z (A =1,2,..,A+1) with g, +0, +:-+

0341 = a With (’1;;1) =0 fory > A+1andi =+v-1.

Proof. Replacing z by ¢ = —Zi in Theorem 5.2.5, we have
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2, g () e )

O'1+O'2+"'+O'A+1=a

a

1 ey (AH1
Tl

y=0

-1) (—;i) Pl yHA+1 (—%i) +a—-y+2)(a—vy

3.
+24) P, y+l+1( El)]'

2 W) el )

o1toy+ - toy 1=

a
1 A+1
—_— — vy+li;a-y 7
22-1 5] Z( DY ( v )[3‘(2’1
y=0
3.
= 0PI (-51) —2(@ -y + D@ -y

3.
+20) P a— y+)L+1< El>]'

Using Lemma 5.2.1(iv), we have

E T201+1 'T202+1 "‘7:20,1+1+1

o1toz+ +0y 1=

a
1 1+1
= ey 2. ot (F70) [
24-1 5! VZ; y

3.
- DP; y+/1+1< El)

—2(a—-y+2)(a—y+22) ay+/1+1( ;i)].l

Theorem 5.2.8. For any non-negative integers a« = A > 0, we have the following
identities:
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§ L201+1 'L202+1 “'Lzm+1+1

o1+0++0)41=Q

a
1 41 . 3
T Zola v ( . ) [31(2/1—1)?a_y+a+1<—§l)
'y:

3
~2(a -y + D@y + 20 P (-5

where sum runs over all g, (=0)in Z (A =12,..,A+1) with gy +0, +-+

0341 = a With (’L;l) =0 fory > A+ 1landi=+v-1.
Proof. Replacing zby & = —%i in Theorem 5.2.6 and proceeding as in Theorem 5.2.7,
we get the desired result. m

Corollary 5.2.1. For any non-negative integer a, and ¢ € R , the following identities
holds:

D Penr® Poa®-Pess () = 40 Para(®) = BalO)Pas(©),

a+b+c=a

Z Par1(8) * Por1(§)-Pes1(8)- Pas1(§) = Co(§) Pas3(§) + Dg(§) Pasal(d),

a+b+c+d=a
where
2
Ag(§) = 8((f+—+52))2 [(a@+1)&* + (a + 4)],
_ 38(a+3)
5 =50+ ey
Ca(§) = 48(5—:?2)3 [(a? + 8a + 27)&2 + (a? + 8a + 12)],
Dy (&) = 4é((11+—+3§§)3 [(a? + 3a + 2)é2 + (a? + 3a — 13)].

Proof. Taking A = 2 in Theorem 5.2.1, we have
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> Pena® Pra (- Pea (O

a+b+c=a

1
387 03(8) — (@ + (@ + DPera(D)],

8(1+¢?)
> P Poa (O-Pera ()
a+b+c=a
1
= 50T (@ + D@+ HPeis5() =38P 0e5))
YD) (@ +2)(a + 4)Pri3(8)
3§ (a+3) (a +2)
T 8(1+ &) |(1+é2) Pa+2(§) +(1+—€2) EPL3(O)],
_ (a+2) 3¢(a +3)
_8(1+§”2) I( (1+§2) a+3(€)_8(T§»2)2?a+2(f)
_ (e+2) 3¢(a + 3)
=8t [(a+ 1D + (a + 4)] Pais(§) — mym(f),
Therefore,
Y Pan® Pora (- Pera(§) = 408 Pass(®) = Ba(O)Paral®),
a+b+c=a
where,
2 3 3
A (§) = 8((;14_—22))2[(04 + 12+ (@ +4)], By(§) = 8(51(1—;2))2.

Taking A = 3 in Theorem 5.2.1, we have

:Pa+1(S() '?b+1(f)-?c+1(f)-?d+1(f)

a+b+c+d=a

1
=~ 48(1 + &2) [55? at+a(§) + (3 —(a+3)(a+ 5)):73 a+4(€)];

= 857 @ T D@+ D) =3P ara(©) = SEP" s (O

= /AT [(a@ +3)(a+5) = 3]P 44+4(8)

5¢ (a+3)(a+5) 3¢
“wa+ro)| are O mTr e

?,a+4(€) )
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S - Dt 5) - 3) + |
= BATE l((a +3)(@+5)—-3)+ s fz)l? a+a(§)
5§ (a +3)(a+5)
- 4‘8 (1 + 62)2 :Pa+4(‘>;),
SDa+1(E) '?b+1(€)-?c+1(€)-?d+1(f)
a+b+c+d=a
B 1 1582 [ (a +4)
= ml((cx +3)(a+5)—3)+ as fz)l l(l = 52)?0“3(5)
(a+3)¢ 56 (a+3)(a+5)
YD) fPa+4(f)l T I8 (11 802 Pa+a($),
(a+4) )
=48(0i—+€2)3[((a+ 3)(a+5) = 3)(1+ &%)
+ 1582] Pyi3(8)
(a+3)¢
48?1—+€2)3 [((a+3)(a+5) = 3)(L +£2) + 152
— 5 (a+5)(1 +ED)|Pera(d),
4
= %((C;—J_lr_é)z)g[(a:2 +8a +27)&% + (a? + 8a + 12)] P,i3(8)
4§?1+—+3g35)3 [(@? + 3a + 2)&? + (a? + 3a — 13)]P,.4(8),
Therefore,

Por1(8) * Por1(§)-Pes1(8)- Pas1(§) = Co(§) Pas3(8) + Do (§) Prrsald),

a+b+c+d=a
where
Ca(§) = %((C;—:?z)g [(@? + 8a + 27)&% + (a? + 8a + 12)],
D, (&) = (@ +3)¢ [(@? + 3a + 2)&? + (a? + 3a — 13)].

48(1 + £2)3

Thus, the Corollary 5.2.1 is established. m
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Corollary 5.2.2. For any non-negative integer a, and ¢ € R, the following identities
holds:

Y Farr® Fua (O F e ®)

a+b+c=a
_ (@+2) 3¢(a + 3)
IGED [(a + 1)&% + 4(a + )] Fpi3(8) — GO Fas2(8),
Y Fea® T Fera (O Fana (O
a+b+c=a
= % [(@? + 8a + 27)é2 + 4(a? + 8a + 12)]Fyr43(8)
(a+3)¢

62+ 4)3 [(a? 4+ 3a + 2)é* + 4(a® + 3a — 13)] Fura(),

Proof. Taking A = 2 in Theorem 5.2.2, we have

D Fea® For - Fera(©

a+b+c=a
~ 3 ((;21):4) [35 Plavs (_ %)

+ 2(a + 2)(«a

+4) Pays (— g)] (5.18)

Using Lemma 5.2.1, we have

= e () D (D), 619

(=) = Grem AN GED 2)
By using equation (5.18) in equation (5.19), we have

Y Fars® Fura (O Fenn ()

a+b+c=a
4 (a+3) &
3¢ ((52 T a) Tar (_E)

Sy (D) e vtesn 2
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_ (=D* [128(@+3) §
T4 (E24+4)| (E2+4) 92 (‘E)

2

3
— 2((1 + 2) <(€2—i_4) - (a + 4) >?a+3 <—%>l,

Y Fair® Foa () Fern®)

a+b+c=a

_ (=D* [128 (a+3) 3
ST ria)| @rray T (")

2
3 2
— 2(6! + 2) <(€2—i4)— (CZ + 4) >?a+3 <_§>l’

Now using equation (5.14), we have

Y Farr® Foun () Fern @)

a+b+c=a

1
= =5 168 (@ +3) Fyz($)

C2(2 + 4)2
— (@ +2)[(a+ D&% + 4(a + D)]Fq43(8)},
_ (@+2) 3¢(a + 3)
= m [(a 4+ )&% + 4(a + )] Fei3(8) — W For2(8).

Again Taking A = 3 in Theorem 5.2.2, and using Lemma 5.2.2 and Lemma 5.2.3 and

using equation (5.14) and proceeding as above, we have

Y Fea® For - Fera (O Faa(©

at+btc=a
4
B % [(@® +8a +27)¢* + 4(a” + 8a + 12)]Fg43(§)
% [(a? + 3 +2)§% + 4(a® + 3a — 13)] Fyr4(§).

This establishes the Corollary 5.2.2. m

Corollary 5.2. 3. For any non-negative integers a, we have the following identities

Z Faa+1) " Fam+1)- Faier)

a+b+c=a

1
= % [18 (& + 3)Frq4a + (@ + 2)(5a — 7) Frgi6l.
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Tz(a+1) 'Tz(b+1)-T2(c+1)-T2(d+1)

a+b+c+d=a

=150 [3(a +3)(a? +3a+ 14) Fypig — 2(a + 4)(a? + 8a + 39)F,u46)-

Proof. Taking 4 = 2 in Theorem 5.2.3, we have

Z :FZ(a+1) ':Fz(b+1)-:F2(c+1)

a+b+c=a

el S 3.
=50 e (-3 1)

+2(a +2)(a + 4Py (—

N W

L)] (5.20)
Using Lemma 5.2.2

, 3 4(a + 3) 3\ 6i 3
ia(-51) = T P (-5 i) 43 @+ DPus (-3 1), 52D
From equation (5.21) and equation (5.20), we have

Z Tz(a+1) ':Fz(b+1)-T2(c+1)
a+b+c=a
[ 4(a+3) 3\ 6i 3
9| === Parz (_E l) += (@ + 2)Pyys <_E l)

+2(a +2)(a + 4) Py (—; l)]

ia

20

Z Tz(a+1) '?2(b+1)-T2(c+1)

a+b+c=a
— —ﬁ[—mi(a +3)P (—5 i)
50 a+2 2
3
+(a+2)(5a —7) Py (— - L>]

Using Lemma 5.2.1(i), we have

2 j:2(a+1) 'Tz(b+1)-T2(c+1)

a+b+c=a

i F F
— —%[—181'(0( + 3) 2a+4 2a+6]'

i+ (e +2)(Ga-7) 2
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Z Tz(a+1) 'Tz(b+1)-~7:2(c+1)

a+b+c=a

1
= % [18 (a + 3)T2a+4 + (a+2)(5a—7) T2a+6]-

Again, taking A = 3 in Theorem 5.2.3 and using Lemma 5.2.2 and Lemma 5.2.3, with

3. -
E=— 5 and proceeding as above, we have

?2(a+1) '?2(b+1)-~7:2(c+1)-?2(d+1)

a+b+c+d=a

—2(a+4)(a? + 8a + 39)F,u16l-
This establishes the Corollary 5.2.3.m

Corollary 5.2.4. For any non-negative integer « , the following identities holds:

(i) Z TS(a+1) 'T3(b+1)-T3(c+1)

a+b+c=a

= 100 [(@+ 2)(5a — 18)F344+9 — 2(a + 3) F3utel,

(ii) Z T3(a+1) '7:3(b+1)-7:3(c+1)-T3(d+1)

a+b+c+d=a

=T5o [(a + 4)(a? + 8a + 24) Fs449

+ 2(0! + 3)(“2 + 3a - 1)?3a+12].

Proof. Taking A = 2 in Theorem 5.2.4, we have

Z Fsa+1) " Fsz+1)- F3e+1)

a+b+c=a

-n* _,
= 10 [6 P q43(=2)

+(a+2)(@+4D)Py5(—2)] (5.22)
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Using Lemma 5.2.2

(a+3)

jD(;z+3(—2) = 5

2
Pos2(—2) — g (a +2)Pyi3(—2) (5.23)

From equation (5.23) and equation (5.22) with Lemma 5.2.1(iii)

Z TS(a+1) 'Ts(b+1)-T3(c+1)
a+b+c=a
_ (=D
10

[6 <(a -SI_ ) Pos2(—2) _g (a + 2)?a+3(_2)>

+(a+2)(a+ 4)Pa+3(—2)]

Z T3(a+1) '?3(b+1)-T3(c+1)

a+b+c=a

_ )"

2o [2(@ +3) Pra(=2) + (@ + 2) (5 — 18)Pe3 (~2)]

Using Lemma 5.2.1 (iii), we have

Z T3(a+1) 'T3(b+1)-7:3(c+1)

a+b+c=a

= 100 [ (@ +2) (5a —18) F3p49 — 2 (@ + 3) Fzgyel

Again, taking A = 3 in Theorem 5.2.4, and using Lemma 5.2.2 and Lemma 5.2.3, with

& = —2 and proceeding as above, we have

Fsa+1) * Faw+1) Faer1)- Fza+1)

a+b+c+d=a

=Tg [(a + 4)(a? + 8a + 24) Fzy49

+2(a +3)(@? + 3a — 1)F34412]
This establishes the Corollary 5.2.4. m
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Corollary 5.2.5. For any non-negative integers a,and ¢ € R, we have the following

identities:

PIRACRACIACS

at+b+c=a
1 . 3
T 8(1+¢2) ;,(_1)y+1ia_y <y) (3¢ (@ =7 +3) Poyra(®)

—(a—-y+Dla—y+ D+ (@a—y + D] Pays3(O)},

Va(if) ’ vb(if) vc(if)vd(if)

a+b+c+d=a

= m;(—l)y“lﬁ_y (;‘:) [(a—y

+ 3)5[(5(6( —y+5) —(a—y+2)(a—y+ 6))(1 + &2)
- 1552] :Pa—y+4(€) _(a —v+ 4’)[15 62
+(a—y+2)(a-y+6)1+¢&2) [Payi3(8)]

Proof. Taking in Theorem 5.2.5, we have

1 X 3
D VD VGO V) = grmrmy ) 1T ()3 (P ayas @)
y=0

a+b+c=a

—(a—y+2)(@a—y+4) Pey+3(5) } (5.24)

From Lemma 5.2.2

(a-y+3) (a-—y+2)¢§

:P(;:—y+3(§) = 1+ ¢2) :Pa—y+2(€) + (1+£2)

:Pa—y+3(€): (5-25)

Using equation (5.25) in equation (5.24), we have
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PR AGEACRACS

a+b+c=a
= 1 Y +1:a— 3 ((l -y + 3)
= m;(_l)y lja-y (y) {3f W :Pa—y+2(f)
- 2
(a(l 1;2)) § Poyi3|-(@—y+2)(a—y+4) ?a_y+3(€)},

= 1 S itiamy (3) 36 (@ =y +3)
—8(1—+52);(—1)V i V()/){ D) Po—ys2(8)

(a—v+2) X
Sy B8~ @y D0+ ] Payaa@) }
PRACGRACRAGC
atb+c=a

! N t1iamy (3
:m;f—”y ‘ y(y){&’; (@ =y +3) Pacys2(§)
—(@-y+2)[(@a—y+ D&+ (a—y + D] Pays3() },

Now, taking A = 3 in Theorem 5.2.5, we have

Va(if) "Wy (if) Vc(if)vd (if)

a+b+c+d=a

1 o +1;a— 4 "
= m;(—l)y i« (y) {56 P" 4y 1a(©)
—(a-y+2)(a—vy
+6) Py yr3(O)}, (5.26)

From Lemma 5.2.3, we have

_ 3 — 5 3
i = P~y

P omyia(®), (5:27)

Using equation (5.27) in equation (5.26), we have
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Vo (i8) - Vo (i) Ve (i) Vq (i€)

a+b+c+d=a
__ 1 N +1ay (4 (a—y+3)(a-y+5)
48(1 + EZ);(_DV e (y) {5"; (1 + é2) Po—y+4(§)
3¢ )
(1 + 9(2) a y+4(€)l - (a -Y + 2)(“ -V + 6) P a—y+3(€)};
B +1ja- 4 58(a—y+3)(a—y+5)
B 4-8(1 + &2) Z( Dl V( ) { 1+ &2) Pa-y+4(§)
15 &2 ,
_ m+ (a—y+2)(a—y+6) l? a_y+4(€)},

Vo (i8) - Vo (i) Ve (i8)Va (i6)

a+b+c+d=ca

1 S +1;a- 4
T B+ ;(—DV l V(y){56<a—y+3)<a—y

+ 5)Py—y+4(§)
—[1582 +(a—y+2D(a—y+6)(A1+&2) 1P 4oysa(O)},

Again, from Lemma 5.2.2,

(a-—y+4) (a—y+3)¢

:P(;:—y+4(€) = (1 +¢2) :Pa—y+3(‘>;) + (1+¢2)

:Pa—y+4(’>;)» (528)

Using equation (5.28), we have

Va(if) "Wy (if) Vc(if)vd (if)

a+b+c+d=a

~ 1801 i £7)? ;(_1)y“i“—y C) o

+ 3)5[(5(0{ —y+5) —(a—y+2)(a—y+ 6))(1 + &2)
— 158%] Po_ya(§)

—(a—y+4)[15¢&?

+a—y+2)(a-y+6)A+E) PfPayss(D.

This establishes the Corollary 5.2.5. m
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Corollary 5.2.6. For any non-negative integers a, and ¢ € R, we have the following

identities
> WO WG WD)
at+b+c=a
1 . 3
= s () B @y +3) Py
y=0
—(@—y+D(a—-y+DE+ (@—y + D] Poey+3(O)},
W, (i) - Wy (i&) W, (i) Wy (i€)
a+b+c+d=a

a

= —48(1—152)321“ (i) -y

y=0
+ 3)5[(5(6( —y+5) —(a—y+2)(a—y+ 6))(1 + &2)
— 158%] Pa_y44(§)

— (@ —y+4)[15¢&?

+(a—y+2)(@—y+6)A+2) 1Peysz(d}

Proof. Taking A = 2,3 in Theorem 5.2.6, and proceeding as in Corollary 5.2.6, we can
establish this Corollary. m
5.3 Representations of sums of finite products of Pell, Fibonacci, and Chebyshev
polynomials with negative indices

Here, we develop some results representing summations of finite products of
negative indexed Lucas, Fibonacci, and Complex Fibonacci numbers as a linear sum of
Pell polynomials. In terms of the 3™ and 4™ kinds of Chebyshev polynomials, similar
identities are obtained for Pell numbers and Fibonacci polynomials with the same line
of action as in Section 5.2. The main findings are:
Theorem 5.3.1. For integers a, A =0,

Z F_2o+1) " F-2oy+1) " F-(20201+1)

01 +0,+ 4041 =

a
1 A+, 3
T2 Z)(_l)yla y( y )?“‘V”“(_El)
‘y:
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where sum runs over all g, (= 0)inZ (A =1,2,...,A+ 1) with o; + o, + -+
Gpeq = @ With (A;l) =0fory > A+1andi=+—1.

Proof. Taking ¢ =% in equation (1.92), we have
3 3 3
2, aly) el5) v 3)

0'1+0'2+~~~+0',1+1=0(
a
1 A+1 3
=— —-1)Y A (=

Using Lemma 5.2.1 (iv) in equation (5.29), we have

E T201+1 '?202+1 "'T201+1+1

o1+op+ - +0y 1=

[24
1 A+1\_ 5, 3
YT Z(_Dy( ¥ )u“—i” (E) (5.30)
v=0
Using equation 1.12 (section 1.2) in equation (5.30), we have
Z ?—(201+1) '?—(202+1) "’T—(20;1+1+1)
o1+02++0y41=
a
1 A+1 3
— 2
27 Al Z(_l)y( % )u“‘”V (E) (5:31)
vy=0
Differentiating equation 1.65 (xv) w.r.t x , we have
Ua(@§) = i Poss ), (5.32)
Taking ¢ = —gi in equation (5.32), we have
3 3
u (E) =i* P, (—§i>, (5.33)

From equations (5.31) and (5.33), we have

Z F_2o+1) " F-2oy+1) " F-(20241+1)
O1+0y++0 )=
1 - by (A1) 3
- Y 1y ( . )?a_mﬂ(—il). (5.34)
yY=0

This establishes the Theorem 5.3.1. m
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Theorem 5.3.2. For integers a, 1 =0,

z L—(201+1) ) L—(202+1) L—(20,1+1+1)

0'1+O'2+"'+0'A+1=a

a

_1\2a+A+1
T 3 (IED
Z)L Al Y a—-y+A+1 2 )

y=0

where sum runs over all g4 (=0)in Z (A =12,..,A+1) with g +0, + -+
0341 = a With (”;1) =0 fory > A+1andi=+-1.
Proof. Taking ¢ =% in equation (1.93), we have
3 3 3
2 Wel3) e 5) W 5)

o1+0++0)41=Q

a

1 A+, (3
=g,y Jhn(3) 539

y=0
Using Lemma 5.2.1 (v) in equation (5.35), we have

§ 13201+1 '5202+1 "‘Lza,1+1+1

o1+02++0)41=a

a

1 A+1y 3
a2 () () (536
'
Using L_, = (—1)* L, in (5.36), we have
Z L—(201+1) 'L—(202+1) L—(20,1+1+1)
0'1+0'2+"'+0'A+1=(Z
[24
(_1)2a+l+1 141 3

2y ) (3) (537)

Differentiating equation 1.65 (xv) w.r.t z, and taking ¢ = —zi and using this in (5.37),
we have

Z L_26,+1) " L-@op+1) " Lo(205,,+1)
0'1+0'2+"'+0'A+1=(Z
(24
(_1)2a+)l+1 o yR | 3 3 '
:21—&!20"“ V( y ):Pa—y+/1+1 (—E l). (538)
‘y:

This establishes the Theorem 5.3.2. m
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Theorem 5.3. 3. For integers a, 4 =0,

Z T*—(201+1) 'T*—(2a2+1) ---T*—(20,1+1+1)

o1+0+ - +0y41=

N 2a+24+2) &
A+1 1
= ((O—)z(—l)y “r ( )730/}— +A+1 <_> ’
242! . y Y 2
’]/:

a
1 AT, 1
T (D)2 22 A!Z)(_l)yla y( Y )‘73“—““1 <_§>’
’y:

where sum runs over all g, (=0)in Z (A=12,..,A+1) with o, +0, + -+
0341 = @ With (’1;1) =0 fory >A+1andi=+v-1 and F*,is a Complex
Fibonacci number.

Proof. Taking ¢ = —% in equation (1.92), and ¢ = % in equation (1.93), we have

2, b)) nlg) )

o1toy++0oy 1=

T 27 A'Z( v (A o )ua y+A< 12) (5.39)

RE RCAC RS E)

o1+op+ - +0y 1=
a
1 A+1y_ i
Ll
. Y=o

Using, U, (é) = ({*F ., In equation 1.65 (iii) to get W, (%) = i*"1F? and using this

*
Fa
ja+1’

in turn in equation 1.65 (xii), we get V, (— %) =

Using this, therefore, reduces (5.39) and (5.40) to

* * *
§ T201+1 :]:202+1"'T 20)41+1

O1+0,++0 1=

( 2a+21+2)

22 11 Z( DY <A+ 1)ua y+,1< ;) (5.41)
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* * *
g T201+1 F 202+1"'T20,1+1+1
0'1+O'2+"'+O'A+1=a

a

=z 2V (1) )t (5) (542

=0
Taking conjugate of F*, in (5.41) and (5.42), using F*_, = (—1)**1F*, , where F*,

represents complex conjugate of F*,, we have

Z T*—(201+1) 'T*—(202+1) "'?*—(20—,1+1+1)
o1t+o0p+ - +0) 1=
((i)2a+2)L+2) a , A+1\_ i
-T2 Z(_l) ( y )u“—m (E)
y=0
1 . A+1 '
_ 2 '
T (D)2 2A Al Z(—m ( y )u“‘m <_ E)' (543)
v=0

Differentiating equation 1.65 (xv) r- times w. r. t £ and putting { = % and ¢ = —% , we

get U%, (é) =it P, G) and U*, (— é) =i* P, (— %) Using this in (5.43)

gives

Z 7:*—(201+1) 'T*—(202+1) "'T*—(20“1+1)

o1+0++0)1=@

This establishes the desired result. m

Theorem 5.3.4. For integer a, A =0,and ¢ € R

Y Plan® Pemin@ P an(®

o1+02++0y41=

= Z ?—(514‘1) ' :P—(O'z+1) :P—(O'A+1+1)

o1+0+ - +0y 1=
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a
x4

l/u Z (A +/1[%]> ((H/1 [VD Ve,
/’uz( )y< [2]) o4 [y]) W, ()

where sum runs over all g4 (=0)in Z (A =12,..,A+1) with g +0, + -+
0341 = a With (’1;1) =0 fory >A+1andi=+v-1 and (s), =s(s—1)(s—

2) ...(s —a + 1) isfalling factorial polynomial.
Proof. From [59],

Y P ® Pr @ Popn®

o1+to0p++0oy 1=

_ uxl,uz (/1 +/1[%]> (a+2- [g])l Vo, (i),

Y P P @ Po

o1+02++0)41=a

= = A'Z( 1)V< m) @+

~[3]), weer i) (5.45)
Using P_, (&) = (=1)**1P,(&) in (5.45), we have

> RECONEAICEESARR

S (B ) o

v=0

Z 7’—(01+1)(f)' P_(gp41) ) P_(g;,,41) ()

/,UZ( 1)V< [2]> o+ 2

—H) Wiy ), (5.46)
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Using P_,(1) = P_, in (5.46), we have

z Pty © Potoprn) = Po(oraatn)
0'1+02+~~~+0';1+1=a
- 1)
b 2 14
_“ z( (e a- ), v
z “P—(Ul"‘l) ' ‘7)—(02"‘1) :P—(‘TA+1+1)
0'1+O'2+"'+0'A+1=a
. Y
i A+ [—]
— N (—1y 2
_/“Z( 1) ( ) )(a+/1
4
-5 ]) oy (). (5.47)

Hence the Theorem is established. m

Theorem 5.3.5. For integers a,A =0 and ¢ € R

Y Fam® @ Fogin(®

o1+toz++0y41=

- S () a1 s )

vy=0

Y P ® Fmn® - Fogn©

a+i+1 & Y
o S < +/1[2]>(a+,1_[g])awa_y(gi),

where sum runs over all g (=0)in Z (A =12,..,A+1) with g, +0, + -+
0341 = a With (A;l) =0 fory >A+1andi=+v-1 and (s), =s(s —1)(s —
2) ...(s —a + 1) isfalling factorial polynomial.

Proof. Replacing & by% in equation (5.45), we have

2, anly) P (§) P 3

O'1+O'2+"'+O_A_+1=a

a

- () - e ),
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2, Zanly) P (3) P 3

O'1+O'2+"'+O'l+1=a

y
= ),V (A 2 ) (+2

y=0
)

Using F,(¢) = P, (g) in equation (5.47), we have

Z For+1()* Fiopun () Fiopp+1)()

O1+02++0 1=

1 v [1+]% &
=”ﬂbw< lbb(a+a_gpiwﬂ(zq
z :F(al+1)(f) ’ :F(az+1)(f) :F(UA+1+1)(";)

S’ Ee-g o) em

Again, using F_, () = ( 1)“?a(§)|n equation (5.49), we get the desired result.

a

Y @ @ Fogin(®

o1toz++0y41=

) (_11.1“;!“1 i </1 +/1[%]> (a+2- [g])l Vaey (g i),

¥y=0

Y P ® Frun@ Fon®

O1+0y+ 40 41=a

_1ya+i+1r & V
- 111,1? Z( Dy( p ]> et/
B, e ). 550

Hence the Theorem is established. m
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Theorem 5.3.6. For any integer « =0, and ¢ € R,

Y V@ Vo ® Vg @

O'1+O'2+"'+O'A+1=a

a
1 A+1
=72 0 () W ®
y=0

Y W@ W@ e Wiy s (@
o1t+o0p+ - +0) 1=

a

= %z (l1 : 1) {u/_l(a—y+l+2)(f)

y=0
where all sums run over all non-negative integers (o4, 05, ..., 034+1) Such that o, + o, +
o+ 0p41 = @ With (’1;;1) =0 for y>r+l.
Proof. From [53],

U_q (§) =—Ug—2 (&) with U_, ($) =0 (5.51)

Using equation (5.51) in equations 1.65 (ii) and 1.65 (iii) we have
V_g (&) =Veoq (&) (5.52)

and

W_q (f) = Wa-1 (5) (5.53)
Using equation (5.52) in equation (1.92), we have

Z ’V—(O'1+1)(E) ' v—(02+1) (f) " v—(011+1+1) (f)
o1+02++0)41=a
[24
1 A+1
T 27 Al Z(_l)y-ﬂ( % )(u/}(a—y+/1+2)(f) (5.54)

y=0

Similarly, using equation (5.53) in equation (1.93), we have

D EDM W@ W@ Wy e ()

O1+02++0 1=

a
1 A+1
27 Z ( ¥ >u/‘1(“‘y+“2)(5) '

y=0
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Z W—(01+1)(E) 'W—(az+1) (S;) R 'W—(al+1+1) (S;)
o1+02++0y 1=

a

_ %Z (’1 * 1) U oy saany (©) (5.55)

- Y
y=0
Thus, the equations (5.54) and (5.55) establishes the Theorem. m
Corollary 5.3.1. For integer a >0,

Z T—(2a+1) 'T—(Zb+1) T—(2c+1)

a+b+c=a

a
3\T9 1
= Z(_l)y ()/) [ﬁ Aa,y ?(Za—2y+4) - %Ba,y ?(Za—2y+6)]'
y=0

Z T—(2a+1) 'T—(Zb+1) T—(2c+1)

at+b+c=a
. 311 3i
~ l
_ Z}(—m ()& (y) [ﬁ BayPlamy+3) (— 7)
']/:

9i 3i
~35 AarParen (=3
where A,, = (a—vy +3),Byy = (@ —y +2)(7— 5a — 5y), ()3/) =0, fory > 3

and i = v—1.
Proof. Taking A = 2 in Theorem 5.3.1 and equation (5.31) using the identities [57, 59]

(1 =& Ua() = (e + DUa-1(§) — adU($). (5.56)
(1= 8A)ULE) = 38U 4 (§) — ala + 2)Ug(S). (5.57)
(14 82)Pes1(§) = (@ + DPo(§) + a§Pass (). (5.58)
(1 48P () = ala + 2)Pgr1(§) =38P 441(D). (5.59)
with & = % and & = —zi , We get the desired result. m

Corollary 5.3.2. For integer a >0,

z L—(2a+1) L—(2b+1) L—(2c+1)

a+b+c=a
a

3\11 9
= ( ) I:% B(Z,)/ T(Za—2y+6) - E Aa,y ‘7:(20[—2]/+4) ,
Y=0

Y
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Z L_20+1) L-@26+1) L-(2¢+1)

a+b+c=a
a .
= > () g5 AerPerm (-3) ~ggBerPeren (-]
. 25 a,y’ (a-y+2) 2 50 a,yy (a-y+3) 2 ]|
‘)/:

where Ay, = (@ —y + 3),B,,, = (@ —y + 2)(7 — 5a — 5y), (;) =0, fory > 3
andi =v—1.

Proof. Taking A = 2 in Theorem 5.3.2 and equation (5.36) and using the identities
(5.56) - (5.59) with & = % ,—%i , We get the desired result. m

Corollary 5.3.3. For integer a > 0,

z T*—(2a+1) ':F*—(Zb+1)-~7:*—(2c+1)

at+b+c=a
a 3 3 . . 1 .
l l l
- ZO(‘”“”” () [55 Certiaren (5) = 5Pertieren ()
V:

a
3\ [3i [
= 2,0 () g5 Cortiaran (-3)
‘y:

1 i
* g Dartlaoren (=3}

Z T*—(2a+1) ':F*—(Zb+1)“7:*—(2c+1)
a+b+c=a
(24

a+y+3 ;a-y 3 1 3
= Z(_l) l (]/) [% Da,y :F(a—y+3) - Eca,y :F(a—y+2)] ’

a
— Z(_l)aﬂ/ (&Y (3) [i D :p( 3) (_ 1)
, ,y 50 ay a-y+ 2
V:

3 1
35 Cer Pamren (=3}
where Cp,, = (@ =y +3), Dgy = (@ —y +2)(5a — 5y + 17), ()=0fory>3

and F*, is a complex Fibonacci number.
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Proof. Taking A = 2 in Theorem 5.3.3 and equation (5.43) and using the identities

(5.56)- (5.59) with & =

1
2~

N |-

%, é , We get the desired result. m
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CHAPTER 6
GENERALIZED TRIVARIATE FIBONACCI AND
LUCAS POLYNOMIALS

6.1 Introduction
This chapter will focus on the study of (p, q, r)-Generalized Trivariate
Fibonacci and (p, g, r)-Generalized Trivariate Lucas polynomials and their basic
properties. Using these properties, we will derive the explicit formula of (p, g, r)-
Generalized Trivariate Lucas and Fibonacci polynomials and deduce some intriguing

identities involving the generating matrices and their determinants.

6.2 Generalized Trivariate Fibonacci and Lucas polynomials
The Fibonacci and Lucas numbers and their generalizations have been widely
studied, and many interesting properties have been established. For any positive a >

2, the Fibonacci and Lucas numbers are recursively defined as in chapter 1,

T(X::FCZ—I-I_T(X—Z' ?OZO, ?1:1,
and
L(Z = La—l + La_z, Lo = 2, Ll = 1.

As an extension of the Fibonacci numbers, the Tribonacci numbers [14, 41] were first

studied by M. Feinberg [75] in 1963 by defining the recursive relation as

Ta = Ta—l + TO_’—Z + Ta_3 ) a > 2,

with initial conditions

In [14, 62, 64-67], different authors have studied the Tribonacci numbers and deduced
various properties and generalizations and obtained several identities thereof. Alladi
and Hoggatt [61] studied the Tribonacci numbers by defining the Tribonacci triangle as

below
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a

0 1

1 1 1

2 1 3 1

3 1 5 5 1

4 1 7 13 7 1

Table 6.1: Tribonacci number triangle

If A, B) represents the element in the at* row & B columns of the Tribonacci

Triangle, the we can see that

Ala+1,8) =A(a,B) + A(a, — 1) + A(a — 1,5 — 1).
and

5]
T, = A(a — 1,pB).

which represents the aggregate of the elements that constitute the rising diagonals
which generates Tribonacci numbers.

In one of the branches of extension of Fibonacci numbers, E.C. Catalan in 1883

studied the Fibonacci polynomials characterized by the recursive relation:

Fa(§) = §Fq-1(8) + Fa—2(§), foralla > 2, with F, (§) = 1, F(¢) = ¢.
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Similarly, in 1970, Bicknel originally studied the Lucas polynomials by defining the

recursive relation as
Lo(§) = 8Ly 1(8) + Ly—2(8), forall @ = 2, with Ly(§) = 2, L,(§) = ¢.

In 1973, Hoggatt and Bicknell [15] gave a new generalization in the form of Tribonacci
polynomials defined recursively as

te (&) = Ezta—l(f) + &tg—2(&) +to—3(8),foralla > 2
with

to(f) = 0) tl(f) = 1' tZ(E) = ’52'

Further generalization of Lucas and Fibonacci polynomials to Bivariate Lucas
and Fibonacci polynomials were studied by Tan and Yang [68] by obtaining some of
their interesting properties. Kocer and Gedikce [16, 63] studied the Trivariate Fibonacci
and Lucas polynomials with recurrence relations defined as follows:

Ho(§w,§) =EHe 1 0,0) + wHy2(§, 0,0) + {Hp 3§, 0,0), a>2
with
Ho(§,w,) =0, Hi(¢ w,{) =1, Hy(& w,{) =5,
and
Ko(§ 0,0) = EKq1(§, 0,0) + wKq_5(§, 0,0) + (Kq_5(§, w,0), a> 2,
with
Ky(§, w,0) =3, K€ w () =¢, K¢ w,0) = &%+ 20,

respectively and derived several properties thereof.

Continuing in the same line of action, in this study, we will study new generalizations

of the Trivariate Fibonacci and Lucas polynomials.

Definition 6.2.1. For integer « > 2, the recurrence relation of the (p, g, r) -Generalized

Trivariate Fibonacci polynomials is defined as:

F*a(EJ w, Z) = P(f, w, () F*a—l(fi w, Z) + q(f: w, Z)F*a—Z(fr w, ()
+T‘(E, w, Z)F*a—3(€' w, (), (61)

with
F*O(EJ 0.),{) = 0’ F*l(fl (1),{) = 1' F*Z(fl (J),z) = p(‘f; w, ();
where p(¢, w, (), q(&, w, (), r(&, w, {are polynomials of &, w and ¢ respectively.
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Definition 6.2.2. For integer a > 2, the recurrence relation of the (p, g, r)-Generalized

Trivariate Lucas polynomials is defined as follows:

G*a(fr w, () = p(f: w, ()G*a—l(fl w, Z) + Q(E' w, Z)G*a—Z(E' w, ()
+T'(€, w, ()G*a—B (S;' w, Z) (62)

with

G*O(fr w, {) = 3 ’ G*1(E, w!() = p(f)) G*Z(S;' w, () = p(f; w, ()2 + ZCI(f, w, {)

For different values of p(¢, w,{),q(, w,0),r(¢, w,{) these recursive relations give
rise to different polynomials. As for p(§, w,{) = &,q(¢,w,0) = w, r(§, w,{) = {, we
have F*, (¢, w,{) = H, (&, w, (), Trivariate Fibonacci polynomials and G*, (¢, w, {) =
K,(¢,w,{), Trivariate Lucas polynomials and for p(§{,w,{) =1,q( w,{) =
1,7(¢,w,{) =1 gives F*,(1,1,1) =T,, Tribonacci numbers and p(¢, w,{) =
2,9 w, ) =¢71E w ) =1F (¢ w, ) = t, (&), Tribonacci polynomials. Some
of the values of the (p, g, r)-Generalized Trivariate Lucas and Fibonacci polynomials

are written as below (writing p(¢, w,{) = p,q(&, w,0) = q,r(¢, w,{) =71).

a Fy(§w Q) G o(§w Q)

0 0 3

1 1 p

2 p p? +2q

3 p?+q p3 + 3pq + 3r

4 p3+2pq+q p* + 4p2q + 4pr + 2¢*

5 p* + 3p2q + 2pr + 2 p> + 5p3q + 5pq? + 5p?r + 5qr

Table 6.2: (p, g, r)-Generalized Trivariate Fibonacci and Lucas polynomials
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Further, the characteristic equation corresponding to the recursive relations (6.1) and
(6.2) is

W —pE o —q¢ o dp-—r¢ w ) =0. (6.3)
and the corresponding Binet's formula are
a+1 /6’0“-1 CO(+1
Fbod =t pha-o t-at-0 a6 &Y
and
G (& w0 =a*+ 6%+ c% (6.5)

where a, &, c satisfies the characteristic equation
IJ-3 - p(f, w, Z)HZ - q(f' w, (),Ll - T'(f, w, () = 0.
Again, the generating functions of (p, g, r)-Generalized Trivariate Fibonacci and Lucas

polynomials respectively are:

= t
Fi@©) = ) Fa§0,0) = e (6.6)
a=0
and
R _ 3-2pt—qt?
6'(® —ZOG (60,0 = T 67)
a=

Again taking p(¢{,w,{) =1, q(§,w,{) =1, r(§,w,{) =1 equation (6.6)
gives generating function for Tribonacci numbers (7;,) and taking p(¢, w,{) = ¢,

(¢ w) =w (§w]) =] and then replacing § by §?, w by § ¢ by 1, we get
generating function for Tribonacci polynomials (t,(€)). In the further discussions, we

shall write p = p(§,w,{),q = (&, w,{),r =7, w, ).
Theorem 6.2.1. For any integer a > 0,

G*(X(El 0), () = pF*a(E: (U, {) + zqF*a—l(f, wl () + 37‘F*a—2(€; (U, () (68)
Proof. Using the generating functions for (p, g, r)-Generalized Lucas polynomials

given by equation (6.7), the Theorem 6.2.1 can easily be established. m

Theorem 6.2.2. For any integer a > 0,

: F* o, 0(E o, 1= p)F* 1w, F* (&, w,0) — 1
zF*s(E,w,Z)= 2§ 0,0 +( 1:9)+qj(rf_w1€)+r ¢ w) (6.9)
s=0

and
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i 655 ,9)
s=0

— G*a+2(€: w, () + (P - 1)G*a+1(f; w,f) + rG*a(E' w, g) B (3 B zp — q)' (610)
p+tq+r—1

provided p+q+r+#1
Proof. We shall prove equation (6.9) and equation (6.10) by using method of
mathematical induction. For equation (6.9), we proceed as follows

Fora = 1, we have to show

1
F'36w, )+ —-p)F ¢ w ) +rF (¢ w () —1
D g = e DD TR D 7]
s=0
Equivalently,

F*O(fr w, () +F*1(E' w,{)
— F*3(f, w, {) + (1 - P)F*z(f' w, {) + TF*l(f, w, () -1

p+tq+r—1
R j’[ S — F*3($,(j),5) + (1 _p)F*Z(fl (1),() +TF*1(€,(1),() - 1
o prq+r—1
2
p*+q+(Q-pp+r-1
p+q+r_1 +O O(Elez)-l_ l(f;w;()
= RH.S

Hence for « = 1, the result is true.

Suppose for a = n, the result is true i.e.

n . _ . * )
ZF*S(g,(;),C) =F n+2(€;(l),€)+(1 Z)-}: gqjgf;wiz)+TF n(f,w,() 1
s=0

Next, we shall prove the result for @ = n + 1, that is,

nz-'_lF* (E ) _ F*n+3(‘>;' w, {) + (1 - p)F*n+2(€' w, () + rF*T]+1(§! w, () -1
e s(§@,¢) = p+q+r—1
Now

n+1 n

R.H.S.= z F*s(¢, 0w, = ZF*S(f, 0, )+ F1(€w,0)
s=0 s=0
. F*r]+2(€' w, () + (1 - p)F*n+1(E' w, Z) + rF*n(E' w, () -1
B p+tq+r—1
+ F*T[+1(Ef w, {)
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F*n+2(€' w, Z) + (1 - p)F*n+1(E' w, Z) + T'F*n(flw!() -1+ (p tq+r-— 1)F*77+1(E; w, ()
B p+tq+r—1

F*T]+2(€' w, () + F*n+1(€J W, () + F*n+3(f' W, () - pF*n+2(E' W, () + TF*T[+2(€I w, () -1
- p+tq+r—1

F*7]+3(€i w, () + (1 - p)F*Y)+2 (f! w!() + rF*n+1(E' w, () -1
B p+q+r—1

=R.H.S
Hence equation (6.9) holds for all positive a.

Similarly, we can see that equation (6.10) also holds true. That is,

> 660
5=0

Carz§ 0,0+ P - 1DGanG 0, +16( w0, -B-2p—q)
p+tq+r—1

This proves the theorem. m

Taking p(§,w,0) =¢§,9¢, 0, ) =w, 7§, w,{) =7 at {=w=7=1, we get the
sum for a- Tribonacci numbers and at § = &2, w =&, =1, we have sum of a-

Tribonacci Polynomials respectively.

Theorem 6.2.3. For any integer a > 0,

za: F*zn(&w,f)

zmﬂfwi%H"ﬂaﬂwa}+U-ﬂz+bmﬁbdfw(}—@+r)
[(p+@)? - (1—q)?]

and

Z F*Zn—l(EJ w, Z)

n=1
F 20+3(&, 0,0 + (1 —2q — pZ)F 2a+1(& W, O"‘TZFZa 16w, ()—(1_61)
[((p +@)? — (1 —q)?]

provided (p + ¢)? — (1 —q)? # 0.
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Proof. From the recurrence relation (6.1), we have

pF*a(Er w, () + rF*a—Z (f! w, () = F*a+1(fﬂ w, Z) - qF*a—l(E' w, 6) (611)
Writing the equation (6.11) for different values of a , we have

pF*O(E' w!() + rF*—Z(f! w, () = F*l(fl w, () - qF*—l(S;' w, {)
pF*Z(E! w, () + rF*O(E' w, () = F*3(E, (1),() - qF*l(E: w, ()
pF*él-(S;' w, () + rF*Z(E! w, () = F*S(El (1),() - qF*3(Er w, ()

pF*Za(fi w, Z) + rF*Za—Z(EJ w, () = F*2a+1(€' w, 5) - qF*Za’—l(fi w, ()
Adding these equations, we have

L+ (+7) ) Fip a6 0,0) + PF00(§,0,0)

n=1

= Pl 60,0+ (1= 9) ) Fiya(€0,0)

n=1
After simplification, we have
a

(0 +7)) Fy(§0,0)

=1

= F*20(+1(€i w, {) + TF*Za(f, w, {) -1+ (1 - Q) z FZ*T)—l(EI w, () (612)

n=1
Again, using the (6.11) and proceeding as above, we can write
a

B +1) ) Fiya 0,0
n=1

= F*Za(ffw'Z) + rF*Za—l(fi w, Z) + (1 - q) Z FZ*n—Z(E' w, ()
n=1

After simplification, we can write

0 +7)) Fipa(60,)

n=1

= qF*Za(ff w, {) + rF*Za—l(E; w, () + (1 - Q) Z F2*77 (fl w, () (613)
n=1
Using (6.12) in (6.13), we get
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Z F*Zk(fi (U,()

n=1

— F*2a+2(€J w, () + rZFZ*a—Z(S;' w,f) + (1,.2 - qZ + zrp)F*Za(E' w, Z) - (p + T)
[((p+q)* — (1 —q)?]

Similarly, using (6.13) in (6.12), we have

z F*Zn—l(g' w, {)
n=1

_ F*2a+3(€! (1),{) + (1 - Zq - pZ)F*2a+1(€' w, () + rzFZ*a—l(E' w, () - (1 - q)
[(p+@)? = (1 —q)?]

This establishes the Theorem. m

Theorem 6.2.4 For any integer a = 0,

Z G*Zn (E' w, ()
n=1

_ G0+ 126302, 0,0) + (r? = q* + 2rp) G2, (&, 0, 0) = [Br+p)(p + 1) +2q(1 — )]
[(p+9)?%—(1-q)?] ’

and

z G*Zn—l(fl w, C)
n=1

_ G 0436 0,0 + (1 =20 = p*)G* 2441, 0,0) + 1726341 (&, 0,0) = [(¢ + Dp + B — 1]
[(p + )2 — (1 —q)?]

provided (p + q)? — (1 — q)? # 0.

Proof: Proceeding as above in Theorem 6.2.3, the desired results can be established.

Now we shall discuss explicit formulas for (p,q,r) -Generalized Trivariate
Fibonacci and Lucas polynomials. Firstly, we will write the (p, q,r)-Generalised
Trivariate Fibonacci polynomials triangle and  (p,q,r) —Generalized Trivariate

Lucus polynomials triangle as under:
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1

p q

p 2pq+r q°

p3 3p%q + 2pr 3pq? + 2qr q3

p*  4p3q + 3p*r 6p2q® + 6pqr 4pq® + 3q¢*r  ¢*

+ r2

Table 6.3: (p, g, r)-Generalized Trivariate Fibonacci polynomials triangle

0 1 2 3 4

3

p 2q

p? 3pg+3r 2q*

p3 4p2q + 4pr 5pq? + 5qr 2q3

p* 5p3q 9p?q* + 11pqr 7pq? 2q*
+ 5p%r + 3r? + 6q°r

Table 6.4: (p, g, r)-Generalized Trivariate Lucas polynomials triangle
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If Be+(a, t) and Bg-(a, t)represents the element in the at® — row and tt" —
column of the (p, q,r)-Generalised Trivariate Fibonacci polynomial triangle and
(p, q,7)-Generalised Trivariate Lucas polynomial triangle respectively, then we can

write
t

t\ ;@ —s
Br+(a,t) = z (s) ( . )p“‘t_sqt_srs,

s=0

and

t
a+t tN\,a—s
BG* (CZ, t) - Z a—S (S) ( t )pa_t_sqt_srs,
s=0

Consequently, it can be easily seen that,

Brp(a+ 1,t) = pBr-(a,t) + qBp<(a,t — 1) + rBp=(a — 1,t — 1),
with

BF*(“! O) = pa ’ BF*(a' (X) = qa'

Be(a+1,t) = pBe+(a, t) + qBg«(a,t — 1) + rBg(a — 1,t — 1),
with

BG*(“! 0) = pa' BG*(a' a) = an

Further, we can easily write that,

5]

F*a(f,w,{) = Z BF*(a_t_ 1't)’
t=0

and
2l
G0 0,0) = Z By (a —t,1).
t=0

Now, we are in a position to write the explicit formulae for (p,q,r) -Generalized

Trivariate Fibonacci and Lucas polynomials respectively as under:
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Theorem 6.2.5. The explicit representation of (p,q,r) —Generalized Trivariate

Fibonacci and Lucas polynomials is as follows:

2
F* (8, 0,0) = Z Z( )(a —t=s— 1) pa-2t=s-1lgt=sys (6.14)
t=0 s=
5]
T L L
t=0 s=0

such that (]) = 0 whenever i > j.

Proof. We will prove (6.14) by using mathematical induction.
For = 1,2,3,4, the result (6.11) is true.

Suppose the result is true for a = n, that is,

F*(&,0,0) = Z Z( >( n—t—s-— 1) pl=2t=s=1gt=sps,

t=0 s=0
Next, we will show that the result is true for « = n + 1, that is,
3l .

Pt =y 3 ()7L o

t=0 s=

Consider

F*n+1(€r w, C) = pF*r](fi w, () + qF*r]—l(E' w, Z) + rF*n—Z (f; w, ()

] 2 .
=p ZZBF*(n—t—l 0|+ ZZBF*(n—t—z 5
t=0 s=0 t=0 s=0
7 .
+r ;ZBF*(n—t—St)
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)
2 " 2

= [Be (1 = 10+ Beo(n = 2.1) + B = 32) + -+ B
+ q [BF*(T] - 2;0) + BF*(T] - 3!1) + +BF*(77 - 4'2)

n—2mn-—2
e (2 17)

+r [BF*(n —3,0) + By (7 — 4,1) + Be-( — 5,.2) + -

-3 n-3
+BF* (n ﬂr] )];

2 ' 2
n+1n-1
=&Amm+3ﬁm—Ln+3ﬁm—za+3ﬁm—a@+m+3ﬁ(2 ;3—)
nn
+BF* (E,E),
3| 3l . t t
. n—t—s\ . .
“Fpnw Q) =ZBF*(77—t,t) =z (s)( . >p’7 Hosqtosys,
t=0 t=0 s=0

Thus, by induction, the result holds for all positive integer a.

Similarly, we can obtain (6.15) for (p, q,r)-Generalized Trivariate Lucas

polynomials. m

Theorem 6.2.6. Let F*,(¢, w,{) and G, (&, w, {) be (p, q,r) —Generalized Trivariate
Fibonacci and Lucas Polynomials respectively. Then
0P, G o(§w,Or) (p.q,7)

G w - F GOzt s

Proof. From Theorem 6.2.5, we have

2l .

500 Y S (T e e

t=0 s=0
Differentiating equation (6.16) w.r.t &, partially, we have
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t

2]
9G* a(f w,{) z a_t_s( )(a_§_5> (@ — 2t — s)p@26=5-1 p, gt=5ys
t=0
E

S=

J

t
a—t—s
a—2t-s t—s— 1
+ZZa—t—s()( t )p U s)q 1
t=0s=
3l t
a—1t—S
a—2t-s t-s s
+Z}Za—t—s()( t )p 1 resT

S=

t\/a—t—s—1
— a—2t—s—1 ,t—5,.5
—ape ) ) (O e
t\/a—t—s—2
+ aqs Z Z (5)( . )p““Zt_S_th_Srs

= (prF*a(f, w, () + (XQEF*a—l(f' w, () + arfF*a’—Z(ft w, C)

Therefore,
%@‘"O WPeF* a6 0,0) + aqeF g 1(6,0,0) + areFrq ,(§,0,0).  (6.17)
Similarly,
W08 — apy 60,0 + €uFis G 0.0 e Fis G0 D). (618)
%ﬂ“’@ = apeFi € w,0) + 0quFiy (60,0 + angFa,(E 0,0, (619)

Multiplying (6.18) by rzand (6.19) by ,, and subtracting we have,
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. 06" (§, w,9) . 06" ¢(§, w,9)
¢ ow ® a¢
= a[po17 = Ptw]Fa €, 0,0) + alqur; — acro]Fa-1( 0,0) - (6.20)

Multiplying (6.17) by rzand (6.19) by 7 and subtracting we have,
06", (§, w,9) 96", (§, w,0)
¢ 9 —Te ac
= a|per; — pere|Fu(€ w0, ) + alqer; — qere]Faci (60,0 (6.21)

Multiplying (6.17) by r,, and (6.18) by r¢ and subtracting we have,
06", (¢, w,Q) 06" (§, w,9)
T
= a[pety, = Pore]Fa(§ 0,0) + alaers, — qure]Fa-1(§ w,0)  (6.22)

Now, using (6.20), (6.21) and (6.22), we have

0P G w)r) | d(p,q,7)
G0y - Faeledzel s

This completes the proof. m

Theorem 6.2.7. Let F*,(¢, w,{) and G* (&, w, {) be (p, q,v) —Generalized Trivariate

Fibonacci and Lucas Polynomials respectively. Then
06", (§, w,9) N 06", (§, w, Z) aG*a(S @9 _
P ap 1 dq or
Proof. From Theorem 6.2.3, we have,
5]

DY) S T

t=0 s=0
Differentiating equation (6.24) w.r.t p partially, we have

2l .

OG*a(f w,{) Zza_t_s< )( “_tt_5> (a — 2t — 5)p@~2t=s=1gt=sps

afF o, w, Q).  (6.23)

t=0 s=0
la 1
a—t—s—1 a—2t—s—1,t—S,.S *
—aZZ()( ) = b w,0),
t=0 s=0
Therefore,
06" w,§) _

5 @ Fol§,0,)
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Again, differentiating equation (6.24) w.r.t g partially, we have
5]

T

t=0 s=0
l“'zl ¢ t ,
a—t—s—
t=0 s=0
= aF*a—l(E' w,{),
Therefore,
06" (£, 0,0) |
~ag Froo1(§ 0, 9).

Again, differentiating equation (6.14) w.r.t r partially, we have
2] .

DY S (e

t=0 s=
2]

RN (e

t=0 s=0

=aFq (w0,

Therefore,

0G"4(§, w,9)

aT = aF*a’—Z(E' (1),().

Now, we have

aG*a(f,w,OJr 06" (§, w, O aG*a(s’.w,i)

GH.S=p p q 3q Fw
= apF*a(fl (1),{) + aqF*a—l(f' w, () + C(TF*a_z(f, w, ()
=aF*,1(¢w, ) =R.H.S
Therefore,
06", w,{)  9G"(§, w,C) GG*a(f )
p o +4q 3q Em aF (¢ w).

6.2.1. Generating matrix for (p,q,r)—Generalized Trivariate Fibonacci

polynomials
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As in [62, 64] the generating matrix for (p,q,r) —Generalized Trivariate

Fibonacci polynomials is

p 1 0
H = [q 0 1}
r 0 O
Using mathematical Induction, we can easily deduce
F o1 F*, Frqq
H* = qF*a + rF*a—l qF*a—l + rF*a—Z qF*a—Z +rF*a—3 ’
rF*, rF* 1 TF*q >

where
Frog =F (& 0.
Theorem 6.2.8. For any positive integers «a,
Fro1p(§0,0) = F'41(§, 0, ODF o (§, w,¢) + F'p(§, 0, OF 441§, w,0)
+{F 51§ 0, OF ¢_1(& w,{)
—$F (8, 0,0 F* (&, 0, 0). (6.25)
Proof. With the help of the identity H**# = 203 # and equality of matrices, the

desired result can be established. m

Corollary 6.2.1. For any positive integers a, 8
F*Za(fi w, {) = rF*[2§+1(E' w, Z) - pF*[Zf (f; w, ()

+ 2F 11§ 0, OF o (§, w, ). (6.26)
Proof. By using a = B in equation (6.26), the desired result can be established. m

Corollary 6.2.2. For any positive integers «a, 8
Foar1 = Fra1(§,0,0) + qF (5, 0,0) + 2rF o (§, 0, OF 41§, ®,0)
Proof. By using 8 = a + 1 equation (6.26), the desired result can be established. m

Theorem 6.2.9. For any positive integer n,
F*a+2 F*a+1 F*a
Fopw Fq Flgq|=-r*1 (6.27)
F*a F*a—l F*a—z
where F*, = F*,(§, w, ).

Proof. Evidently det(#) = r and hence det(H%*) = r%, implies
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F*a+1 F*a F*a—l
qF e +71F 41 qF 1 +T1F 45 qF o +1F o 5| =71%
rF*, rF* 1 rF* g 5
Operating R, + pR; and interchanging R, and R,, we have
F*a+2 F*a+1 F*a
F¥a41 F*q Flgq|=-1%
rF*, T1F'4_1 TF 4,
Which further implies,
F*a+2 F*a+1 F*a
Fas1 Frg  Faq|= —r®1,
F*a F*a—l F*a—z

This establishes the determinant properties of (p, q, r)-Generalized Trivariate
Fibonacci polynomials. Takingp =g =r =1 , we obtain the determinant property
of Tribonacci numbers and by taking p = £2,q = &,r = 1, determinant property of
Tribonacci polynomials is obtained. Next, we will attempt to establish the determinant
The (p,q,7)-

Generalized Trivariate Lucas polynomials are generated by a matrix M; with the help

properties of (p,q,r)-Generalized Trivariate Lucas polynomials.

of the following matrices:

p 1 0
r 0 O
and
p?2+2q9 p 3
G, G*, G* q
Mo=[6*1 G’ G*_1]= po 3 =
Gy G-y G q q°—2pr
3 T 2
r r
such that
G'» G Golfp 1 0 p3+3pqg+3r p>+2q p
2
Mleo}[: G*l G*O G*_]_] q 0 1] p +2q p 3
Gy G-, G_Ilr 0 o p 3 _1
T
G*3 G*z G*l_
=[G*2 G*l G*O .
G*y G*y G*_yl

Proceeding inductively, we can easily see that
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G*a+2 G*a+1 G*a
My =My 1H =G 41 G G q-1].
G*a G*a—l G*a—z

Theorem 6.2.9. For any positive integer «a,

M, = MyH?, (6.28)
where H! = K.
Proof. The result can be easily established using induction hypothesis.

Fora =1,clearly M; = MyH?! = My

As
p2+2q p 3
4 fp 10
My =| P 3 r [q 0 1],
2 _2pr 0 0
o ool
r T
p3+3pg+3r p?+29 p
_| p*+2q p 3
q
p 3 "

G*s G, G*;
= [G*Z’ G*l G*O ] = Ml'
Gy G G*_4
Suppose the result is true for « = n, that is,
M, = My3™.
Next, we shall prove that the result is true for « = n + 1, that is,

Mn+1 = Mog'[n+1.

MoH ™ = MyH"H = M,H = |G'yer G Gyoallg 0 1

n
G*y,  G'yo1 Gpa|lr 0 0

pG*n+2 + qG*r/+1 + rG*n G*n+1 G*n
= pG*T]+2 + qG*T]+1 + TG*T] G*rl' G*n_l ,

pG 'y +qG 1 +1G"_; Gy Gy

G'pez Gy Gy [p 1 0]

G*n+3 G*n+2 G*n+1
Mog-[n+1 = G*TI"'Z G*n+1 G*Tl = MT]+1'
GCper Gy Gy
Hence, the result holds for all positive integers a. m
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Summary and Conclusions.

In chapter 2, we derived identities expressing sums of finite product of the Lucas
numbers (£,,), the Fibonacci (F,), & the Complex Fibonacci numbers(F*,,) as linear
sum of derivatives of the 2" kinds of Chebyshev polynomials (U,, (z)) through

elementary computations.

In chapter 3, we introduced a few more results on sums of finite product of the 3™
and 4™ kinds of Chebyshev polynomials, Lucas and Fibonacci numbers in terms of the
2" kind Chebyshev polynomials and their derivatives. Also, we discussed some
particular cases of the results obtained in this chapter in the form of corollaries by taking

different values of r = 1,2,3.

In chapter 4, using elementary methods, we deduced the explicit formulae for the
3 and 4" kinds of Chebyshev Polynomials and their derivatives with odd and even
indices and obtained a relationship connecting the 3 and 4™ kinds of Chebyshev

Polynomials and negative indexed Fibonacci polynomials.

In first section of chapter 5, we introduced a few more results expressing
summations of finite products of Lucas & Fibonacci numbers, Fibonacci and Pell
polynomials as a linear sum of the derivatives of Pell polynomials, using their basic
properties through elementary computations. Similar identities are obtained for the 3™
and 4™ kinds of Chebyshev polynomials. In the next section, we established similar
identities for the negative indexed Lucas, Fibonacci, and Complex Fibonacci numbers.
In terms of the 3™ and 4" kinds of Chebyshev polynomials, similar identities were

obtained for Pell numbers and Fibonacci polynomials

At the end in the chapter 6, we developed the concept of (p, q, r)-Generalized
Trivariate Fibonacci and (p, g, r)-Generalized Trivariate Lucas polynomials and
discussed their properties. Using these properties, we derived the explicit formula of
(p,q,r)-Generalized Trivariate Fibonacci and Lucas polynomials and deduce some

results on the generating matrices and their determinants.
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Future and Scope

1.

Identities on the sums of the finite product of the Pell numbers, the Jacobsthal
numbers, and polynomials in terms of the derivatives of the 1%, 2", 3™ and 4"
kinds of Chebyshev polynomials can be obtained using elementary
computational method.

Identities on sums of finite products of Lucas and Fibonacci numbers, Pell and
Fibonacci polynomials as a linear sum of derivatives of Jacobsthal polynomials,
using their basic properties through elementary computations can be obtained.

Identities on sums of finite products of negative indexed Lucas, Fibonacci,and
Complex Fibonacci numbers in terms of Jacobsthal polynomials and Jacobsthal
Lucas polynomials can be obtained using their basic properties through

elementary computations.
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List of Publications and Communications

S.No Name of the Journal Title of the Paper Status
Notes on Number Theory | Some identities involving | Published .
1 and Discrete Mathematics | Chebyshev Polynomials, | https://nntdm.net/volume-29-
(Web of Science) Fibonacci  Polynomials and | 2023/number-2/204-215/
their derivatives
2 Presented in this | Sums of Finite Product of | Accepted for publication
International ~ Conference | Chebyshev Polynomials of
on  Mathematical and | Third and Fourth Kind and
statistical Computation | Fibonacci and Lucas Numbers
(ICMSC-2022) and
accepted for publication to
Journal  of  Rajasthan
academy  of  Physical
Sciences-(Web of Science).
3 Journal of  algebraic | Some identities on Finite sums | Published
statistics (Web of Science) | of product of Fibonacci and | https://www.publishoa.com/i
Lucas Numbers in Chebyshev | ndex.php/journal/article/view
Polynomials of second Kind /1136
4 Communication in | Some identities on Sums of | Published
Mathematics and | Finite Product ofChebyshev | DOI: https://doi.org/10.2671
applications  (Web  of | Polynomials of third and fourth | 3 /-3 .v14i1.2079
Science) kind.
5 Indian Journal of Science & | Some more Identities on sums | Published
Technology (Web  of | of Finite Product of the Pell, | https://indjst.org/articles/som
Science) Fibonacci e-identities-on-sums-of-finite-
and Chebyshev Polynomials products-of-the-pell-fibonacci-
and-chebyshev-polynomials
6 Notes on Number Theory | Generalised Trivariate | Communicated
and Discrete Mathematics | Fibonacci and Lucas

(Web of Science)

polynomials and their identities
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List of Conferences

S.No

Name of the Journal

Title of the Paper

Date

National conference on Integrated
Approach  in  science and
Technology for sustainable Future
(IAST-F) organised by MAM,

college Jammu (UT of J&K)

Some identities involving
Chebyshev Polynomials,
Fibonacci  Polynomials

and their derivatives

27-28 Feb 2022

International ~ Conference  on
statistical
(ICMSC-2022)
organised by department of

SKITMG,

Mathematical  and
Computation
Mathematics, Jaipur,
Rajasthan.

Sums of Finite Product of
Chebyshev  Polynomials
of Third and Fourth Kind
and Fibonacci and Lucas

Numbers

March 3-5, 2022

International Conference  on

Fractional  Calculus:  Theory,

Applications and Numeric
(IFCTAN-2023) Organised by

NIT, Puduchchery, Karaikal

Some Identities on Finite
Sums of Product of
Fibonacci type Numbers

and Polynomials

27-29, Jan 2023
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Certificates of Presentation

National Conference on Integrated Approach in Science
and Technology for Sustainable Future (IAST-SF)
27-28 February 2022

This is to Certify that Mr./"Ms./Dr./Prof. Jugal Kishore
Lovely Professional University, Punjab

Srom has delivered an oral presentation on
some identities on Chebshev Poly ial, fib i poly ial and their derivatives

in the two day National Conference on “Integrated Approach in Science and Technology
for Sustainable Future” held at Govt. MAM college, Jammu on 27- 28 Feb., 2022.

\Qode et 1/& - W

Prof. G.S Rakwal Prof. Ranvijay Singh Dr. Vishal Sharma Prof. .S Tara
Principal Principal Convener IAST-SF 2022 Convener ISCA
MAM College, Jammu GDC Ukfhiral, Ramban MAM College, Jammu Jammu Chapter
Organized by T Potlaboration with
Maulana Azad Memonal College Jammu, & Indian Science Congress Association
Govt. Degree College Ukhral. Ramban, J&K Jammu Chapter

International Conference

on
Mathematical and Statistical Computation
(ICMSC-2022)
3-5 March, 2022
Organized by
Department of Mathematics

Swami Keshvanand Institute of Technology,Management & Gramothan
Jaipur(Rajasthan), India
In association with Rajasthan Academy of Physical Sciences

This Certificate is presented to
Jugal Kishore
Lovely Professional University, Phagwara, Punjab

for presenting a paper entitled "Sums of Finite Product of Chebyshev Polynomials of Third and
Fourth Kind and Fibonacci and Lucas Numbers™ in ICMSC-2022 held during 3-5 March, 2022,

: % o
£ s - 6\”/ & W

Dr. S. L. Surana Dr. Ramesh Kumar Pachar  Dr, Sangeeta Choudhary Dy, Shalini Shekhawat

I I Director (Academics) Principal Convenor Convenor I
-]

-
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International Conference on Fractional Calculus:

Theory, Applications and Numerics oij
27-29 January, 2023 »
Organized by 0
14~ Department of Mathematics & 3
+Q National Institute of Technology Puducherry, Karaikal
2023
Certificate of Appreciation
@ This is to certify that Mr. JUGAL KISHORE, Lovely Professional University has participated
e in the International Conference on Fractional Calculus: Theory, Applications & Numerics
Spnnger (ICFCTAN) held during January 27-29, 2023 conducted by National Institute of Technology
Puducherry, Karaikal and presented a paper entitled New identities on finite sums of product
of fibonacci type bers and poly ials through virtual mode.
U"'gﬁﬁgﬂ?gs“ Dr. V. Govindaraj Prof. K. Sankaranarayanasamy \
(Organizing Chairman) (Director, NIT Puducherry) @

/“

(oG
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List of Conferences/workshops attended

S.No

Name of the

Conference/Workshop

Title of the Paper

Date

International Conference on

Recent Advances in

| Fundamental and  applied

Sciences Organiesd by LPU,

Jalandhar

Participated only

25-26, June 2021

Attended One Week Workshop

on  mathematical  analysis

1 organised by Loyola College,

Chennai.

Attended only

13-18, Sept 2021

Attended international webinar
on Mathematics of Computer

| Vision organised by M M

(Deemed to be University)
Mullana Amabala India

Attended only

28 April 2022

Attended International Webinar
on Mathematical modelling of

| Biology and Medicine,

Vidhyasagar Metropolitan
College

Attended only

13 May 2022

Attended one Week Workshop
on Discrete Mathemtics,

| Mathematical Modelling and

probability  Probability and

Attended only

14-20, June 2022
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Statistics organised by Calcutta

Mathematical Society, Kolkatta.

Attended 15 days international 19.05.2022
FDP on Frontiers of 02.06.2022
| Mathematics organised by SRM | Attended only
Institute of  Science and

Technology, Chennai.

Attended One day workshop on 16 July 2022
“Scholarly Publishing: Do’s and
7 ' Attended only

1 Don’t’s” organised by Tumkur

University

Certificate No,___ 227587

EOVELY
IPIROFESSIONAL
WINIVERSITY

Tr mm/r/rmh{g Education 'ﬁ'am/nmu'nj India

Certificate of Participation

This is to certify that Mr. Jugal Kishore

of Lovely Professional University has participated in the

International Conference on "Recent Advances in Fundamental and Applied Sciences" (RAFAS 2021)
held on June 25-26, 2021, organized by School of Chemical Engineering and Physical Sciences, Lovely Faculty of
Technology and Sciences, Lovely Professional University, Punjab.

Date of ssue : 08-08-2021
Place of Issue: Phagwara (India)

- N s ;’J{\%}
Prepared by Organizing Secretary ner
(Administrative Officer-Records) (RAFAS 2021) (RAFAS 2021)
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%F ;. LOYOLA COLLEGE, CHENNALI
[

DEPARTMENT OF MATHEMATICS - SF I

Workshop on Mathematical Analysis /
Coddificale of panticipalion ”

This is to certify that
Prof. Jugal Kishore
Government College for Women, Udhampur, Jammu & Kashmir
participated in the online Workshop on Mathematical Analysis (MATANA 2021)
organized by the Department of Mathematics-Shift IT, Loyola College, Chennai,
from 13 to 18 September 2021.

%i’( 3 Jarek Shetpm @g @&%ﬁv\ﬂm
Dr S Irutha aj Dr. J. Janet Sheeba Dr. D. Anfony Xavier Rev. Dr. A. Thomas, SJ
- Convener Coordinator Head of the Department Principal

MATANA 2021

MMIM!ISIII MARKANDESHWAR -
< (DEEMED TO BE UNIVERSITY)
° Mullana-Ambala, Haryana

(Established under Section 3 of the UGC Act, 1956)

(Accredited by NAAC with Grade ‘A++’)

@mfm

OF PARTICIPATION

This is to certify that Jugal Kishore, Government College for Women.Udhampur has
attended an international webinar on “Mathematics of Computer Vision™ held on April 28.
2022 organized by Department of Mathematics and Humanities, M. M. (Deemed to be

University), Mullana-Ambala, India.

~

Dr. Aliya Naaz Siddiqui Dr. Kamran Ahmad Dr. Deepak Gupta
Co-convener Convener Head of Department
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INTERNATIONAL WEBINAR
ON

MATHEMATICAL MODELLING OF BIOLOGY AND MEDICINE

CERTIFICATE OF PARTICIPATION

This is to certify that Mr Jugal Tishore, flssistant Professor of Government College for Women,
Udhampur has participated in the International Webinar on “MATHEMATICAT MODEYING OF
BIOTOGY AND MEDICINE” organized by Department of Mathematics, Vidyasagar Metropolitan
College on the 13th May, 2022 from 7:00 pm to 8:00 pm.

A

Dr. Mohsin Islam Dr. Ram Swarup Gangopadhyay
Convenor Principal
Vidyasagar Metropolitan College Vidyasagar Metropolitan College

Calcutta Mathematical Society

AE-374, Sector I, Salt Lake City, Kolkata - 700064, WB, India

Workshop on Discrete Mathematics, Mathematical Modelling and
Probability & Statistics (WDMMMPS-2022)
(One Week Faculty Development Programme)

14-20 June, 2022 |

ifi Participati
This is to certify that Mr. Jugal Kishore of Government College for Women, Udhampur participated in
the Workshop on Discrete Mathematics, Mathematical Modelling and Probability &
Statistics (WOMMMPS-2022), One Week Faculty Development Programme, of total
thirty six hours duration organised by Calcutta Mathematical Society, Kolkata, India, during
14-20 June 2022.

Dr. Kalyan Halder Dr. Gokul Saha Prof. Arindam Bhattacharyya Prof. Rasajit Kumar Bera
Jt. Convenor Jt. Convenor Secretary, Calcutta Mathematical Society President, Calcutta Mathematical Society
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RPN SRM Institute of Science and Technology
Qggm Ramapuram Campus, Chennai, INDIA
DEPARTMENT OF MATHEMATICS

in association with

“1 DECEMBRIE 1918 UNIVERSITY" OF ALBA IULIA
ALBATULIA, ROMANIA

15 days Virtual International FDP
FRONTIERS OF MATHEMATICS

&~ ot of Podai

This is to certify that Jugal Kishore, Assistant Professor in Mathematics from Government College for Women,Udhampur has
attended Fifteen Days International Virtual FDP "Frontiers of Mathematics" organised by the Department of Mathematics, SRMIST,

Ramapuram, Chennai, India in association with “t Decembrie 1918 University” of Alba Iulia, Romania from 19.05.2022 to
02.06.2022.

g fut

Dr, Shakeela Sathish Prof, Daniel Breaz

Prof & Head, Dept of Mathematics CERTIFICATEID Rector, “1 Decembrie 118 University”
SRMIST- Ramapuram,Chennai

A l SRMIST - FDP -000158 Albaulia, Romania
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TUMKUR UNIVERSITY
Department of Studies & Research in Business Administration

In association with

Management Research Forum

CERTIFICATE OF PARTICIPATION
This is to Certify that

Jugal Kishore
Asst Prof, Tumkur Government College for Women ,Udhampur

participated m the Workshop on
"Scholarly Publishing: Dos and Don’ts" held on Saturday 16® July 2022

Ylpwnton~ )L/t‘r\ﬂj c 24
- / . 4 | i
Dr. K. shivachithappa Dr.Noor Afza Dr. S, Sathveshwar
Registrar Professor & Chairperson Secret;xy-
Tumbkur University, Tumbur DOS&R in Business MRF
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LOYOLA COLLEGE (AUTONOMOUS), CHENNAI-34
DEPARTMENT OF MATHEMATICS
*

X
>

Y
Q-

International Conference on Recent Trends in Applied Mathematics
(ICRTAM 2022)
March 3 & 4, 2022

o, s

This is to certify that Mr. / Ms: /-Br. [Rref. ........... 21581 IISTOTC, L0y eI NIMCAL LOMNESE 101 Yol

Udhampur, Jammu & Kashmir presented a paper in the International Conference on Recent Trends

in Applied Mathematics (ICRTAM 2022) organized by the Department of Mathematics, Loyola College, Chennai on

March 3 & 4, 2022, titled ... Some Identities on Sums of Finite Product of Fibanacci and Lucas Numbers

in Chebyshev Polynomials of Second Kind

M
8 4 .
fff%m” S IR
Dr. D. Antony Xavier Rev. Dr. A. Thomas SJ
Principal

Convener

National Multi Disciplinary Confere

on Ccrt@ﬁmtc ID: 61y g)@ﬂ; lzzlgg

“Recent Trends in Agriculture, Bio Sciences, Computer Applications, A
Environment & Humanities f
ORGANIZED BY 5‘5 -/ ?
GOVERNMENT DEGREE COLLEGE BILLAWAR Ry
Certificate
This is certify that M/ Miss/Mrs/Dr Twaal Kibhose Designation
Institute/College/University LPU Dhodiuara has participated in a

National Conferenceon “Recent Trends in Agriculture, Bio Sciences, Computer Applications,

Environment & Humanities” (RTABCEH-2022) on \Zﬁth of March 2022 as Chairman/Co Chairman

Rapporteur/Delegate/Invited Speaker and /Presented Paper/Poster entitled Some Tdemtilies on &m"ﬂ
Eimite foduek o) Fuboraeti Avd kusas Numbous sn Cheloigshel poluyngmiolis ) Setord. Kimd

We Wish him/her all success in life.

ld it e
Dr. Shamim Ahmed Banday Prof. Lekh Raj Prof. A amwal

Principal

Organising Secretary Convener
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BABA GHULAM SHAH INTERNATIONAL CONFERENCE ON
BADSHAH UNIVERSITY MATHEMATICAL ANALYSIS
RAJOURI & APPLICATIONS

CERTIFICATE

t Jugal Kishore of Government College for
Women, Udhampur

Dr. Zaheer
Abbas
ome identities on Sums of Finite Product of Fibonacci
Dr. Naveen

Sharms and Lucas Numbers in Chebyshev Polynomials of second Kind .
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FELe -
PATRICIAN COLLEGE OF ARTS AND SCIENCE

E_I

Affiliated to the University of Madras & Re-aceredited A+ Grade by NAAC in 2021
Ranked Ist in I'N and 15th among the Non-Autonomous € olleges in India (EW)
Awarded 4 Star with Mentor Status by Innovation Cell, MoE, Govt. of India

INTERNATIONAL CONFERENCE ON RESEARCH TRENDS
IN CONTEMPORARY MATHEMATICS (ICRTCM 2023)

e Certificate of Participation \'/

b o
This is to certify that JUnAL KisHoRE of
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