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Abstract 

Fibonacci numbers are the amazing numbers discovered by Leonardo of Pisa and are 

one of God's best-gifted numbers, having a significant impact on our daily lives. These 

numbers are the outcomes of Leonardo of Pisa's well-known "rabbit problem”, which 

we will cover in more detail later in this thesis. These numbers, in addition to being a 

part of our everyday lives, have a variety of applications in nature, music, and other 

fields that cannot be expressed in a few words. 

This thesis as a whole concentrate on the notion of these divinely endowed 

Fibonacci numbers and the associated polynomials that surround them. There are six 

chapters in this thesis. The first chapter of the thesis provides a brief introduction to the 

Fibonacci numbers, their history, and their applications in different fields of our lives. 

In addition, a brief outline of the significant concepts and well-known results pertaining 

to Fibonacci numbers and the associated polynomials with tabular and graphic 

illustrations are given, which meets the minimal prerequisite for the establishment of 

the necessary framework for subsequent chapters. In the section of literature review, a 

discussion on the existing works done by various researchers in the domain of 

Fibonacci and related numbers and their associated polynomials is covered, wherein 

our main focus is on summation representations of finite products of these sequences 

of numbers and polynomials. A research gap has been identified in this review. This 

chapter also lays down the objectives and methods that will be employed to bridge these 

gaps. We extensively employed GeoGebra software to represent various sequences 

graphically. 

The remainder of the thesis is focused on the behaviour and different properties 

of polynomial sequences that are analogous to sequences of Fibonacci numbers and 

their inter-linkages. Our work mainly zeros in on the sequences of Lucas, Fibonacci, & 

Pell numbers & their polynomials, Chebyshev polynomials of the 1st, 2nd, 3rd, & 4th 

kind, followed by a brief description of Trivariate Lucas and Fibonacci polynomials 

and their extension to generalized Trivariate Lucas and Fibonacci polynomials, with 

the development of some results based on their properties and inter-relationships. We 

employ a variety of methodologies and techniques to accomplish our objectives. By 
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employing recursive methodology in this thesis, we develop various summation 

representations for sequences of Lucas and Fibonacci numbers and their polynomials 

with positive as well as negative indices. After that explicit formulae for the 3rd & 4th 

kinds of Chebyshev polynomials and their derivatives with odd & even index are 

obtained, followed by the establishment of their linkages with the Fibonacci 

polynomial. Furthermore, the sums of the finite products of the 3rd & 4th kinds of 

Chebyshev polynomials and Pell polynomials are expressed as a linear sum of other 

orthogonal polynomials using elementary computations. Next, we studied the 

extensions of Trivariate Lucas and Fibonacci polynomials to (p, q, r)-Generalized 

Trivariate Lucas, and (p, q, r)-Generalized Trivariate Fibonacci polynomials and 

developed their basic properties.  Using these properties, we derived the explicit 

representations of (p, q, r)-Generalized Trivariate Fibonacci and (p, q, r)-Generalized 

Trivariate Lucas polynomials and derived several intriguing identities associated with 

their generating matrices and corresponding determinants.  

After introduction to the thesis, we developed various identities on summations 

of finite products of Lucas & Fibonacci numbers in terms of the 2nd kinds of Chebyshev 

polynomials and their derivatives. These identities are further extended to the Fibonacci 

and Lucas numbers with positive as well as negative indices. Next, we derived 

analogous results for the 3rd & 4th kinds of Chebyshev polynomials followed by some 

particular cases of these identities. Thereafter, the explicit formulas for the 3rd & 4th 

kinds of Chebyshev polynomials and their derivatives with odd and even indices were 

obtained, and their connections with the odd and even indexed Fibonacci polynomials 

were studied. Further, we obtained some more identities connecting finite product of 

the 3rd & 4th kinds of Chebyshev polynomials with several other orthogonal 

polynomials like Pell, Jacobi, Fibonacci, Gegenbauer, Vieta-Fibonacci, and Vieta-Pell 

polynomials. In terms of these polynomials, analogous results for Lucas & Fibonacci 

numbers are obtained using the computational method. 

Our next step is to establish some new results on representations of finite 

products of the Lucas & Fibonacci numbers, Fibonacci & Pell polynomials as a linear 

sum of derivatives of Pell polynomials. Similar results are obtained for the 3rd & 4th 

kinds of Chebyshev polynomials. Following this pattern, we will introduce similar 
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results for Lucas, Fibonacci, & Complex Fibonacci numbers with negative indices as a 

linear combination of Pell polynomials. In terms of the 3rd & 4th kinds of Chebyshev 

polynomials, similar identities were obtained for Pell numbers and Fibonacci 

polynomials with a negative index. Similar representations for the Chebyshev 

polynomials of the 3rd & 4th kinds as a linear sum of the Chebyshev polynomials of the 

2nd kind are studied. 

At the end, we worked on the sequence of Tribonacci numbers and associated   

polynomials, Trivariate Lucas and Fibonacci polynomials that follows a third-order 

recursive relation. Following this concept, we will study (p, q, r)-Generali𝓏ed Trivariate 

Lucas and (p, q, r)-Generali𝓏ed Trivariate Fibonacci polynomials and some of their 

basic properties and their inter-linkages.  These polynomials are characterized 

recursively as follow: 

𝐹∗𝛼(𝜉, 𝜔, 𝜁)

=

{
 

 
0                                                                                                                                               𝑖𝑓 𝛼 = 0
1                                                                                                                                              𝑖𝑓 𝛼 = 1

𝑝(𝜉, 𝜔, 𝜁)                                                                                                                               𝑖𝑓 𝛼 = 2

𝑝(𝜉, 𝜔, 𝜁) 𝐹∗𝛼−1(𝜉, 𝜔, 𝜁) + 𝑞(𝜉, 𝜔, 𝜁)𝐹
∗
𝛼−2(𝜉, 𝜔, 𝜁) + 𝑟(𝜉, 𝜔, 𝜁)𝐹

∗
𝛼−3(𝜉, 𝜔, 𝜁), 𝑖𝑓  𝛼 > 2

 

and  

𝐺∗𝛼(𝜉, 𝜔, 𝜁)

=

{
 

 
3                                                                                                                                             𝑖𝑓 𝛼 = 0

𝑝(𝜉, 𝜔, 𝜁)                                                                                                                              𝑖𝑓 𝛼 = 1

𝑝(𝜉, 𝜔, 𝜁)2 + 𝑞(𝜉, 𝜔, 𝜁)                                                                                                      𝑖𝑓 𝛼 = 2

𝑝(𝜉, 𝜔, 𝜁) 𝐺∗𝛼−1(𝜉, 𝜔, 𝜁) + 𝑞(𝜉, 𝜔, 𝜁)𝐺
∗
𝛼−2(𝜉, 𝜔, 𝜁) + 𝑟(𝜉, 𝜔, 𝜁)𝐺

∗
𝛼−3(𝜉, 𝜔, 𝜁), 𝑖𝑓  𝛼 > 2

 

 where 𝑝(𝜉, 𝜔, 𝜁), 𝑞(𝜉, 𝜔, 𝜁), 𝑟(𝜉, 𝜔, 𝜁)are polynomials of the variables  𝜉, 𝜔 and 𝜁. 

Using these recurrence formulas, we will study the sum of the first 𝑛-terms of these 

polynomials, followed by their sum of even and odd number of terms. Some relations 

involving Jacobian of (p, q, r)-Generalized trivariate Lucas and (p, q, r)-Generalized 

trivariate Fibonacci polynomials are also considered. 

Using the properties of these polynomials, we will derive the explicit formulae 

of (p, q, r)-Generalized trivariate Fibonacci and (p, q, r)-Generalized trivariate Lucas 

polynomials which are given by 
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𝐹∗𝛼(𝜉, 𝜔, 𝜁) = ∑ ∑(
𝑡

𝑠
)

𝑡

𝑠=0

⌊
𝛼−1
2
⌋

𝑡=0

(
𝛼 − 𝑡 − 𝑠 − 1

𝑡
) 𝑝𝛼−2𝑡−𝑠−1𝑞𝑡−𝑠𝑟𝑠,  

𝐺∗𝛼(𝜉, 𝜔, 𝜁) =∑∑
𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠

𝑡
)

𝑡

𝑠=0

⌊
𝛼
2
⌋

𝑡=0

𝑝𝛼−2𝑡−𝑠𝑞𝑡−𝑠𝑟𝑠,  

such that (𝑗
𝑖
) = 0 for 𝑖 > 𝑗  and writing 𝑝 = 𝑝(𝜉, 𝜔, 𝜁), 𝑞 = 𝑞(𝜉, 𝜔, 𝜁), 𝑟 = 𝑟(𝜉, 𝜔, 𝜁). 

 At the end, we will deduce some identities involving the generating matrices 

and their determinants. The generating matrix for (p, q, r)-Generalized Trivariate 

Fibonacci and (p, q, r)-Generalized Trivariate Lucas polynomials are generated with 

the help of the following matrix 

ℋ = [
𝑝 1 0
𝑞 0 1
𝑟 0 0

] 

and deduced some related determinantal properties. 

Finally, we lay out the brief mapping of the future research possibilities based 

on the content of this thesis. 
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Chapter 1 

Introduction 

1.1 Introduction 

Leonardo Pisano (1170-1250), an Italian mathematician who is better known by his 

nick name Fibonacci (an abbreviation of Filius Bonacci), while studying Hindu-Arab 

numerals, came across what is known as the Fibonacci Sequence, and he compiled his 

findings in the book Liber Abaci which was published in 1202 and later revised in 1228. 

He visited a number of Mediterranean nations and researched their mathematical 

practices. Fibonacci's work in Liber Abaci is said to have been influenced by the 

mathematical work of Egyptian mathematician Abu Kamil. His book opens with the 

following explanation of the Hindu-Arabic numeral model: The following nine figures 

have been identified as 1,2,3,4,5,6,7,8,9 allowing any number to be represented using 

these nine figures and the symbol 0 [3]. First-hand instances of the potential benefits of 

the new Hindu-Arabic numeral scheme were offered by the problems in this book. Liber 

Abaci was considered a complete source of mathematical knowledge during the time 

of Fibonacci. For hundreds of years after its publication, this book served as a crucial 

source for mathematicians searching for new ideas in algebra and computation. 

Now let's focus on Indian mathematicians and their contribution to the Fibonacci 

numbers. Although Leonardo Fibonacci, who was mentioned in detail above, is the 

name-bearer of the Fibonacci numbers, the knowledge of these numbers existed long 

before his time. The Indian mathematician Pingala is credited as being the first to have 

knowledge of the Fibonacci numbers, according to a number of researchers including 

Singh [1, 3-4]. The estimated year when he lived is 400 B.C. It is believed that Acarya 

Virahanka, an Indian mathematician who lived between 600 and 800 A.D., was the first 

to present the Fibonacci numbers in written form. Gopala is another key figure in the 

domain of the Fibonacci numbers, born before 1135 A.D. and having significant 

contributions. Archarya Hemachandra, a renowned Jain writer, presents an estimate of 

variations in matra-vrttas in Chandonusasana. In Chandonusasana, the translation of his 

rule, which is referenced from [4], is as follows: "Sum of the last and the last but one, 
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number of variations of the matra-vrttas coming afterward”. (Matras-Vrttas are metres 

with varying letter counts but consistent amounts of morae). He continues, “the number 

3, which is preserved later and is the number of variants (of meter) having three matras, 

is the last among the numbers 1, 2, etc., and the last number other than one. The result 

of adding 3 and 2 is 5, which is kept later, and there are 4 matras in the metre's 

variations [5]”. 

In the classic rabbit problem, the Fibonacci sequence was initially employed to 

determine how many pairs of rabbits are born out of one pair of rabbits in one year. 

       This problem is stated as under: 

A pair of rabbits was kept in a wall-enclosed region to determine precisely the 

number of pairs of rabbits that could be bred by a pair of rabbits over an entire year, 

assuming that each pair of rabbits bears a new pair every month, which becomes 

productive from the second month onwards, and no rabbit dies during this span of time. 

This rabbit problem demonstrated by Fibonacci (1202) is subject to the 

following ideal conditions: 

a) Start with a pair of neonatal rabbits. 

b)  Maturation period is one month. 

c) One month before pregnancy. 

d) Imitate a new born couple. 

e) Repeating the intimacy, and so on. 

f) No rabbit dies. 

 

Figure 1.1: Breeding pattern in rabbit Experiment. 
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Table 1.1: Rabbit problem and Fibonacci numbers. 

In the outcome of this experiment, Leonardo found that the rabbit reproduction pattern 

conforms to a sequence,  

               1, 2, 3, 5, 8, 13, 21, 34, 55, 89… 

This sequence is known as the Fibonacci sequence. In this sequence, every 

successive term is the sum of the preceding two terms and is generally represented by 

the recursive relation given by  

ℱ𝑛 = {
0,                         𝑛 = 0 
1,                         𝑛 = 1

ℱ𝑛−1 + ℱ𝑛−2 ,     𝑛 ≥  2 , 𝑛 ∈ 𝑁
(1.1) 
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Equivalently, the Fibonacci sequence (ℱ𝑛) is represented as: 

𝑛 0 1 2 3 4 5 6 7 … 

ℱ𝑛 0 1 1 2 5 8 13 21 … 

 

Table 1.2: Fibonacci numbers. 

In 1634, A. Gerard arrived at the following recurrence relation for the sequence:  

𝒰𝑛+2 = 𝒰𝑛+1 +𝒰𝑛 , 𝑛 ≥  1, (1.2) 

with 𝒰1 = 1,𝒰2 = 1. 

R. Simpson in 1753, derived a formula implied by Kepler 

𝒰𝑛+1𝒰𝑛−1 −𝒰𝑛
2 = (−1)𝑛−1. (1.3) 

It was during the period 1878–1891 that Edward Lucas, who dominated the field of 

recursive series, first attributed Fibonacci’s name to the sequence given by (1.1), and 

since then, it has been called the Fibonacci sequence.  

The higher-order Fibonacci numbers are found with the help of Binet’s formula. 

Bernoulli (1724) provided the nth Fibonacci number in Binet's form as: 

ℱ𝑛 =
1

√5
( 𝑎𝑛 −  𝑏𝑛), (1.4) 

where a and b satisfy the equation 

 𝓍2 − 𝓍 − 1 = 0. (1.5) 

 

Figure 1.2: Graph of Fibonacci numbers. 
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Furthermore, the Fibonacci spiral aptly describes the Fibonacci numbers as under: 

 

Figure 1.3: Fibonacci Spiral. 

Fibonacci numbers have many uses in many different fields of study and are 

useful in everyday life and the natural world in addition to mathematics. The patella of 

several blooms generates the Fibonacci number sequence. Lilies, for instance, have 

three petals; buttercups, five; delphiniums, daisies, and asters, respectively, eight, 

thirteen, and twenty-one. Additionally, while counting flowers in a clockwise or 

anticlockwise orientation, some of them display spirals that follow Fibonacci numbers. 

          

 

Figure 1.4: Flowers with Fibonacci numbers. 
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Music and Fibonacci numbers are also inextricably linked. Looking at the keyboard of 

a piano outlines the Fibonacci numbers. [6]. These numbers can also be spotted in 

pineapples. [7].  

 

 

Figure 1.5: Pineapples with Fibonacci numbers. 

 

Figure 1.6: Fibonacci numbers on the keyboard of  the Piano. 

Fibonacci numbers plays a significant role in the life cycle of plants and animals, in 

bee family trees, in tree growth points, and in various fields that cannot be described in 

a few words. 

1.2  Basic Terminologies and Preliminaries  

We employ some fundamental concepts in order to achieve our objective which are 

discussed as under: 

1.2.1 The Golden ratio  

The golden ratio is termed as the ratio of the length of the largest portion (L) to 

the smallest portion (S) being equal to the ratio between the total length and the length 

of the largest portion of the line segment i.e.   

 𝐿

𝑆
=
𝐿 + 𝑆

𝐿
. (1.6) 

8 Parallel rows of scales 

spiraling gradually 

 

21 Parallel rows of scales 

spiraling at a steep slope 

 

13 Parallel rows of scales 

spiraling at a medium 

slope 
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For finding the numerical value of the golden ratio, put 
 𝐿

𝑆
 = 𝓍 which reduces (1.6) to   

𝓍2 − 𝓍 − 1 = 0. 

The positive roots of this equation give the “golden ratio,” or “golden proportion,” or 

“the golden mean,” which is generally denoted by ∅  and numerically equal to ∅ =

1+√5

2
= 1.616803….  

1.2.2 Fibonacci numbers with negative index  

The sequence of Fibonacci numbers (ℱ𝔫) is extended to the negative value of the index 

𝔫,  where 𝔫 being positive integer, by Abramovich [8] through a relation as follows: 

ℱ−𝔫 = (−1)
𝔫−1ℱ𝔫, (1.7) 

or 

     ℱ𝔫+1 = ℱ𝔫 + ℱ𝔫−1, (1.8) 

 with ℱ0 = 0 , ℱ1 = ℱ−1 = 1. 

The extended Fibonacci numbers to negative index are represented by the table as 

under: 

𝖓 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 

𝓕𝖓 0 1 1 2 3 5 8 13 21 34 55 

𝓕−𝖓 0 1 −1 2 −3 5 −8 −13 −21 34 −55 

 

Table 1.3. Fibonacci numbers with negative index. 

1.2.3 Fibonacci Polynomial  

Fibonacci sequence in one of its generalizations extends to polynomials known 

as Fibonacci polynomials. E. C. Catalan, a Belgian mathematician, and E. Jacobsthal, 

a German mathematician, studied the Fibonacci polynomials in1883. Catalan defined 

the Fibonacci polynomials recursively as 

 

ℱ𝛼+2(𝓍) = 𝓍 ℱ𝛼+1(𝓍) + ℱ𝛼 (𝓍) , (1.9) 

with   ℱ1(𝓍) = 1 and ℱ2(𝓍) = 𝓍 for every integer 𝛼 ≥ 3. Also, ℱ𝛼 (1) = ℱ𝛼, 𝛼
𝓉ℎ 

Fibonacci number. 
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According to Jacobsthal, Fibonacci polynomials are given by the recursive relation 

𝐺𝛼(𝓍) = 𝐺𝛼−1(𝓍) + 𝑥 𝐺𝛼−2(𝓍), (1.10) 

with   𝐺1(𝓍) = 1 = 𝐺2 (𝓍), for every integer  𝛼 ≥ 3.. 

Koshy [41], in his book, defines a polynomial sequence called the Fibonacci 

polynomial, given by 

ℱ𝛼(𝓍) = {
0                                                            𝛼 = 0
1                                                            𝛼 = 1

𝓍ℱ𝛼−1(𝓍) + ℱ𝛼−2(𝓍),                                    𝛼 ≥ 2 , α ∈ 𝑁.
(1.11) 

The graphical representation is as under: 

 

Figure 1.7: Graph of Fibonacci Polynomial. 

The sequence of Fibonacci polynomials with negative indices is given by 

ℱ−𝛼(𝓍) = (−1)𝛼+1ℱ𝛼(𝓍), 𝛼 ∈ 𝑁  , 𝛼 ≥ 1. (1.12) 

Some of the useful properties and identities satisfied by the Fibonacci polynomials are: 

a) The generating function (ℱ(𝓍, 𝓉)) is given by 

ℱ(𝓍, 𝓉) =
1

1 − 𝓉2 − 𝓉𝓍
. (1.13) 

b) The 𝛼𝓉ℎ Fibonacci polynomials are obtained by the formula 

ℱ𝛼(𝓍) =
( 𝒸𝛼 −  𝒹𝛼)

𝒸 − 𝒹
, (1.14) 

where 𝒸 =
𝓍+√𝓍2+4

2
  ,  𝒹 =

𝓍−√𝓍2+4

2
  satisfies the equation 𝓉2 − 𝓉𝓍 − 1 = 0. 
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c) The Fibonacci polynomials are represented by an explicit formula  

ℱ𝛼(𝓍)  =     ∑ (
𝛼 − 𝓉 − 1

𝓉
) (𝓍)𝛼−2𝓉−1.

 [
𝛼−1
2
]

𝓉=0

(1.15) 

d) The Fibonacci polynomials satisfies the relation 

ℱ𝛼(−𝓍) = (−1)
𝛼+1 ℱ𝛼(𝓍), ∀  𝛼 ≥ 1. (1.16) 

1.2.4 Lucas number 

The Lucas numbers [13], named after F. E. A. Lucas, a French mathematician, 

follows a recursive relation similar to that of Fibonacci numbers but differ only in its 

initial terms. The sequence  

2, 1, 3, 4, 7, 11, 18, 29…, 

represented recursively as  

ℒ𝓃  = ℒ𝓃−1 + ℒ𝓃−2, 𝓃 ≥ 2  (1.17) 

with ℒ0 = 2 and ℒ1 = 1  is called Lucas’s sequence, and its terms are called as Lucas 

numbers. 

The higher order Lucas numbers are obtained by using Binet’s formula. The 

Binet’s form of nth Lucas number were given by Euler (1726) as: 

ℒ𝓃 = 𝑎𝓃 + 𝑏𝓃, (1.18) 

where a and b satisfy  

 𝓍2 − 𝓍 − 1 = 0.  

The graphical representation is as under: 

 

Figure 1.8: Lucas numbers. 
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Similarly, as the Fibonacci numbers are represented by Fibonacci spiral, Lucas numbers 

are also well depicted by the Lucas spiral as below 

 

Figure 1.9: Lucas Spiral 

1.2.5  Lucas numbers with negative index 

Analogous to the Fibonacci sequence, the Lucas sequence with a negative index 

is given by the following relations: 

ℒ−𝓃 = (−1)𝓃ℒ𝓃, (1.19) 

or 

ℒ𝓃+1 = ℒ𝓃 + ℒ𝓃−1, (1.20) 

where ℒ−1 = −1,   ℒ0 = 2 , &   ℒ1 = 1. 

A few terms of extended Lucas numbers are as follows: 

𝓷 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 

𝓛𝓷 2 1 3 4 7 11 18 29 47 76 123 

𝓛−𝓷 2 −1 3 −4 7 −11 18 −29 47 −76 123 

 

Table 1.4: Lucas numbers with negative indices. 



11 

 

1.2.6 Lucas polynomial 

Similar to Fibonacci sequence, the Lucas sequence [10] is also extended to 

polynomials called Lucas polynomials. Lucas polynomials and Fibonacci polynomials 

are strongly connected because they have the same recursive relation and differs only 

through their initial conditions. Bicknell (1970) studied the Lucas polynomials, which 

are defined by 

ℒ𝛼(𝓍) = {
2                                             𝛼 = 0,
𝓍                                            𝛼 = 1,

𝑥ℒ𝛼−1(𝓍) + ℒ𝛼−2(𝓍)       𝛼 ≥ 2 , 𝛼 ∈ 𝑁 .
(1.21) 

 Furthermore, ℒ𝛼(1) =  ℒ𝛼, Lucas number. 

The graphical representation is as under; 

 

Figure 1.10: Graph of Lucas polynomials. 

The sequence of Lucas polynomials can be extended to the set of integers by using the 

relation  

ℒ−𝛼(𝓍) = (−1)𝛼ℒ𝛼(𝓍),   𝛼 ∈ 𝑁  , 𝛼 ≥ 1 (1.22) 

For any integer 𝛼 ≥ 1, some of the useful properties and identities satisfied by the Lucas 

polynomials are 

i). The generating function for Lucas polynomials is  

ℒ(𝓍, 𝓉) =
2 − 𝓍𝓉

1 − 𝓉2 − 𝓉𝓍
(1.23) 
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ii). The 𝛼𝓉ℎ Lucas polynomials are obtained by the formula 

ℒ𝛼(𝓍) = ( 𝒸𝛼 +  𝒹𝛼), (1.24) 

 where 𝒸 =
𝓍+√𝓍2+4

2
 and 𝒹 =

𝓍−√𝓍2+4

2
 satisfies 𝓉2 − 𝓉𝓍 − 1 = 0. 

iii). The Lucas polynomials are represented by an explicit formula  

ℒ𝛼(𝓍)  =  ∑
𝛼

𝛼 − 𝛾
(
𝛼 − 𝛾

𝛾
) (𝓍)𝛼−2𝛾.

 [
𝛼
2
]

𝛾=0

(1.25) 

iv). The Lucas polynomials satisfy the identity 

ℒ𝛼(−𝓍) = (−1)
𝛼  ℒ𝛼(𝓍),    𝛼 ∈ 𝑁,𝛼 ≥ 1. (1.26) 

1.2.7 Fibonacci numbers, Lucas numbers, and Golden ratio 

The ratio of two consecutive Fibonacci numbers such that the subsequent is 

divided by the preceding generates a sequence which approaches to 𝜙 , the golden ratio. 

A similar, argument holds for Lucas numbers too. Thus, 

lim
𝓃→∞

ℱ𝓃+1
ℱ𝓃

= 𝜙

lim
𝓃→∞

ℒ𝓃+1
ℒ𝓃

= 𝜙
}
 

 

(1.27) 

 

 

Figure 1.11:(The Fibonacci numbers (Red) and Lucas numbers (Green) has their 

ratios converge to Golden ratio). 
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1.2.8 Complex Fibonacci numbers 

The Complex Fibonacci numbers [8] are characterized by the relation 

ℱ∗ω = {
𝑖,                                           𝜔 = 0
1 + 𝑖,                                    𝜔 = 1 

ℱ∗𝜔−1 + ℱ
∗
𝜔−2 ,                   𝜔 ≥  2 , 𝜔 ∈ 𝑍

 (1.28) 

and satisfies the relation  

ℱ∗𝜔 = ℱ𝜔 + 𝑖 ℱ𝜔+1 (1.29) 

where 𝑖2 = −1. 

1.2.9 Pell Numbers 

Pell numbers [9], derived by John Pell, are given recursively as  

𝒫𝓃 = 2𝒫𝓃−1 + 𝒫𝓃−2;  ∀ 𝓃 ≥ 2, (1.30)                

with 𝒫0 = 0,𝒫1 = 1.Thus, Pell numbers are the sum of twice of its previous term and 

the term that precedes it. Pell numbers can be generated by the following formula: 

𝒫𝓃 =
𝒻𝓃 − ℊ𝓃

2√2
, (1.31) 

where 𝒻, ℊ satisfies  

 𝓍2 − 2𝓍 − 1 = 0. 

The graphical representation of Pell numbers is  

 

Figure 1.12: Graph of Pell numbers. 
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1.2.10 Pell Polynomials 

Pell polynomials [60], studied by A.F. Horadam (1985), are represented recursively as  

𝒫ν(𝓍) = {
0                             𝜈 = 0
1                             𝜈 = 1

2𝓍𝒫𝜈−1(𝓍) + 𝒫𝜈−2(𝓍)   𝜈 ≥ 2, 𝜈 ∈ 𝑁.
(1.32) 

Also, 𝒫𝜈 (
1

2
) = ℱ𝜈 and 𝒫𝜈(1) = 𝒫𝜈. 

The 𝜈𝓉ℎ term of the Pell polynomials is obtained by the formula 

𝒫𝜈(𝓍) =
𝑎𝜈 − 𝑏𝜈 

𝑎 − 𝑏
, (1.33) 

where 𝑎 =
𝓍+√𝓍2+4

2
 , and 𝑏 =

𝓍−√𝓍2+4

2
, satisfies 𝓉2 − 𝓍𝓉 − 1 = 0. 

The graphical representation of Pell polynomials is 

Figure 1.13: Graph of Pell polynomials. 

For all integers 𝜈 ≥ 1, some of the useful properties and identities satisfied by the Pell 

polynomials are 

i) The Pell polynomials are generated by 

𝒫(𝓍, 𝓉) =
𝓉

1 − 𝓉2 − 2𝓉𝓍
. (1.34) 
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ii) The Pell polynomials are represented by an explicit formula  

𝒫𝜈(𝓍)  =     ∑ (
𝜈 − 𝛾 − 1

𝛾
) (𝓍)𝜈−2𝛾−1.

 [
𝜈−1
2
]

𝛾=0

(1.35) 

iii) The Pell polynomials satisfies  

𝒫𝜈(−𝓍) = (−1)
𝜈+1 𝒫𝜈(𝓍). (1.36) 

1.2.11 Chebyshev polynomials  

Chebyshev polynomials were first studied by P. L. Chebyshev (1821-94), a 

Russian mathematician. In studying the numerical solutions of differential equations, 

classical orthogonal polynomials are frequently used. Chebyshev polynomials are 

increasingly used in numerical analysis. Four kinds of Chebyshev polynomials are 

isolated out of which a wide range of research work is done on the 1st & 2nd kinds of 

Chebyshev polynomials whereas very little work has been carried out on the 3rd & 4th 

kinds of Chebyshev polynomials offering a dynamic field for the prospective 

researchers. These Chebyshev polynomials find application in approximation theory. 

In this subsection, the existence of Chebyshev polynomials and some of their key 

characteristics will be discussed [2, 11- 12].  Chebyshev polynomials are solutions of 

the Chebyshev differential equations [12] which occurs as a special case of the Strum-

Liouville problems [52], which we will discuss below: 

(i) Chebyshev polynomial of first kind 

The solutions of the Chebyshev differential equation 

(1 − 𝓍2)
𝑑2𝓎

𝑑𝓍2
− 𝓍

𝑑𝓎

𝑑𝓍
+ 𝛼2𝓎 = 0, , for |𝓍| < 1, and 𝛼 ∈ 𝑁. (1.37) 

  represented by the polynomials  

𝒯𝛼  ( 𝓍) = cos 𝛼𝜃 , (1.38) 

where 𝓍 = cos 𝜃 for all integers 𝛼 ≥ 0, 𝓍 ∈ [−1,1] and 𝜃 ∈ [0, 𝜋] , are called 

Chebyshev polynomials of first kind. 

Furthermore, the application of De Moivre’s theorem allows the representation 

of these polynomials by the recurrence relation as follows:  

𝒯𝛼  (𝓍) = {
1                                                        𝛼 = 0,
𝑥                                                         𝛼 = 1,

2𝓍𝒯𝛼−1  (𝓍) − 𝒯𝛼−2  (𝓍)                𝛼 ≥ 2,𝛼 ∈ 𝑁.
(1.39) 
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The generating function 𝐺𝒯(𝑡) is  

∑𝒯𝛼  ( 𝓍)

∞

𝛼=0

𝑡𝛼 = 𝐺𝒯(𝑡) =
1 − 𝓍𝑡

1 − 2𝓍𝑡 + 𝑡2
. (1.40) 

The 𝛼𝑡ℎ Chebyshev polynomial of first kind is given by 

𝒯𝛼  ( 𝓍) =
1

2
[𝑎𝛼 + 𝑏𝛼] (1.41) 

where 𝑎, 𝑏 satisfies  

𝜆2 − 2𝑥𝜆 + 1 = 0 . 

It follows the explicit formula 

𝒯𝛼  ( 𝓍) =∑(
𝛼

2ℓ
)

⌊
𝛼
2
⌋

ℓ=0

𝓍𝛼−2ℓ(𝓍2 − 1)ℓ (1.42) 

Further, for any integer 𝛼, 𝛽 ≥ 0, 

∫
𝒯𝛼  ( 𝓍)𝒯𝛽  ( 𝓍)

√1 − 𝓍2

1

−1

𝑑𝓍 = {

0,           𝛼 ≠ 𝛽
𝜋

2
,          𝛼 = 𝛽 ≠ 0

𝜋,           𝛼 = 𝛽 = 0.

(1.43) 

The graphical representation of these polynomials is  

 

 

Figure 1.14: Graph of Chebyshev polynomials of first kind (𝜶 = 𝟏 𝐭𝐨 𝜶 = 𝟓) 
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(ii) Chebyshev polynomials of the second kind 

The solutions of the Chebyshev differential equation 

(1 − 𝓍2)
𝑑2𝓎

𝑑𝓍2
− 3𝓍

𝑑𝓎

𝑑𝓍
+ 𝛼(𝛼 + 2)𝓎 = 0 (1.44) 

  represented by the polynomials   

𝒰𝛼  ( 𝓍) =
𝑠𝑖𝑛(𝛼 + 1)𝜃

𝑠𝑖𝑛𝜃
(1.45) 

where 𝓍 = cos 𝜃, for all integers 𝛼 ≥ 0, 𝓍 ∈ [−1,1]and 𝜃 ∈ [0, 𝜋] are called 

Chebyshev polynomial of second kind.  

Furthermore, the application of De Moivre’s theorem allows the representation of these 

polynomials by the recurrence relation as follows:  

𝒰𝛼  (𝓍) = {
1                                                          𝛼 = 0,
2𝑥                                                         𝛼 = 1,

2𝓍𝒰𝛼−1  (𝓍) − 𝒰𝛼−2  (𝓍)                               𝛼 ≥ 2,𝛼 ∈ 𝑁.
(1.46) 

 

The generating function 𝐺𝒰(𝑡) is given by 

∑ 𝒰𝛼  (𝓍)

∞

𝛼=0

𝑡𝛼 = 𝐺𝒰(𝑡) =
1

1 − 2𝓍𝑡 + 𝑡2
. (1.47) 

 

The 𝛼𝑡ℎ term of this sequence of polynomials {𝒰𝛼  (𝓍)} is given by 

𝒰𝛼  ( 𝓍) =
𝔞𝛼+1 + 𝔟𝛼+1

𝔞 − 𝔟
, (1.48) 

where 𝔞, 𝔟 satisfies 

𝜆2 − 2𝑥𝜆 + 1 = 0 . 

The explicit formula is 

𝒰𝛼  ( 𝓍) =∑(
𝛼 + 1

2ℓ + 1
)

⌊
𝛼
2
⌋

ℓ=0

𝓍𝛼−2ℓ(𝓍2 − 1)ℓ. (1.49) 

Further, for any integer 𝛼, 𝛽 ≥ 0,  

 (Orthogonality Property) 

∫𝒰𝛼  ( 𝓍)𝒰𝛽 ( 𝓍)√1 − 𝓍2

1

−1

𝑑𝓍 = {
0,         𝛼 ≠ 𝛽
𝜋

2
,       𝛼 = 𝛽.

(1.50) 
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The graphical representation is as under: 

 

Figure 1.15: Graph of Chebyshev polynomials of second kind (𝜶 = 𝟏 𝐭𝐨 𝜶 = 𝟓) 

(iii) Chebyshev polynomials of the third kind 

The solutions of the Chebyshev differential equation 

(1 − 𝓍2)
𝑑2𝓎

𝑑𝓍2
+ (1 − 2𝓍)

𝑑𝓎

𝑑𝓍
+ 𝛼(𝛼 + 1)𝓎 = 0, , for |𝓍| < 1, and 𝛼 ∈ 𝑁. (1.51) 

 represented by the polynomials 

𝒱𝛼  ( 𝑥) =
𝑐𝑜𝑠 (𝛼 +

1
2)𝜃

𝑐𝑜𝑠 (
𝜃
2)

, (1.52) 

where 𝓍 = cos 𝜃, for all integers 𝛼 ≥ 0, 𝓍 ∈ [−1,1] and 𝜃 ∈ [0, 𝜋] are called 

Chebyshev polynomial of third kind. 

As a consequence of De Moivre’s theorem, the above polynomials (𝒱𝛼(x)) can 

be represented by 

𝒱𝛼  ( 𝓍) = {
1                                                          𝛼 = 0,
2𝑥 − 1                                                𝛼 = 1,

2𝓍𝒱𝛼−1  ( 𝓍) − 𝒱𝛼−2  ( 𝓍),                        𝛼 ≥ 2,𝛼 ∈ 𝑁.
(1.53) 
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The generating function 𝐺𝒱(𝑡) is given by 

∑𝒱𝛼  ( 𝓍)

∞

𝛼=0

𝑡𝛼 = 𝐺𝒱(𝑡) =
1 − 𝑡

1 − 2𝓍𝑡 + 𝑡2
. (1.54) 

The 𝛼𝑡ℎ term of the sequence of Chebyshev polynomials of third kind {𝒱𝛼  ( 𝓍)} is 

given by 

𝒱𝛼  ( 𝓍) =
1

2𝛼
[
𝒻2𝛼+1 + ℊ2𝛼+1

𝒻 + ℊ
] , (1.55) 

where 𝒻, ℊ  satisfies 

𝜆2 − 2𝑥𝜆 + 1 = 0 . 

It follows the explicit formula  

𝒱𝛼  ( 𝓍) =∑
(−1)𝛾

2𝛼
(
2𝛼 + 1

2𝛾
)

𝛼

𝛾=0

(1 + 𝓍)𝛼−𝛾(1 − 𝓍)𝛾. (1.56) 

For any integer 𝛼, 𝑝 ≥ 0,  

(Orthogonality Property) 

∫𝒱𝛼  ( 𝓍)𝒱𝑝  ( 𝓍)√
1 + 𝓍

1 − 𝓍

1

−1

𝑑𝓍 = {
0,         𝛼 ≠ 𝑝
𝜋,           𝛼 = 𝑝 .

(1.57) 

The graphical representation is as follows: 

 

 

Figure 1.16: Graph of Chebyshev polynomials of third kind (𝜶 = 𝟏 𝐭𝐨 𝜶 = 𝟓) 
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(iv) Chebyshev polynomials of the fourth kind 

The solutions of the Chebyshev differential equation 

(1 − 𝓍2)
𝑑2𝓎

𝑑𝓍2
− (1 + 2𝓍)

𝑑𝓎

𝑑𝓍
+ 𝛼(𝛼 + 1)𝓎 = 0, |𝓍| < 1, 𝛼 ∈ 𝑁, (1.58) 

represented by the polynomials   

𝒲𝛼  (x) =
𝑠𝑖𝑛 (𝛼 +

1
2) 𝜃

𝑠𝑖𝑛 (
𝜃
2)

, (1.59) 

where 𝓍 = 𝑐𝑜𝑠𝜃, for all integers 𝛼 ≥ 0, 𝓍 ∈ [−1,1]and 𝜃 ∈ [0, 𝜋] are called 

Chebyshev polynomials of fourth kind.  

As a consequence of De Moivre’s theorem, the above polynomials (𝒲𝛼(x)) can 

be represented as 

𝒲𝛼  ( 𝓍) = {
1                                                          𝛼 = 0,
2𝑥 + 1                                                𝛼 = 1,

2𝓍𝒲𝛼−1  ( 𝓍) −𝒲𝛼−2  ( 𝓍)                      𝛼 ≥ 2,𝛼 ∈ 𝑁.
(1.60) 

 

The generating function 𝐺𝒲(𝑡) is  

∑𝒲𝛼  ( 𝓍)

∞

𝛼=0

𝑡𝛼 = 𝐺𝒲(𝑡) =
1 + 𝑡

1 − 2𝓍𝑡 + 𝑡2
. (1.61) 

 

The 𝛼𝑡ℎ term of the sequence of Chebyshev polynomials of third kind {𝒲𝛼  ( 𝓍)} is 

given by 

𝒲𝛼  ( 𝓍) =
1

2𝛼
[
𝒻2𝛼+1 − ℊ2𝛼+1

𝒻 − ℊ
] , (1.62) 

where 𝒻, ℊ satisfies 

𝜆2 − 2𝑥𝜆 + 1 = 0 . 

 

 It follows the explicit formula 

𝒲𝛼  ( 𝓍) = ∑
1

2𝛼
(
2𝛼 + 1

𝛾
)

𝛼

𝛾=0

(1 + 𝓍)𝛼−𝛾(𝓍 − 1)𝛾. (1.63) 
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For any integer 𝛼, 𝛽 ≥ 0, 

(Orthogonality Property)  

∫𝒲𝛼  ( 𝓍)𝒲𝛽  ( 𝓍)√
1 − 𝓍

1 + 𝓍

1

−1

𝑑𝓍 = {
0,        𝛼 ≠ 𝛽
𝜋,        𝛼 = 𝛽.

(1.64) 

The graphical representation is as under: 

 

 

Figure 1.17: Graph of Chebyshev polynomials of fourth kind(𝜶 = 𝟏 𝐭𝐨 𝜶 = 𝟒) 

Some of the important identities connecting these Chebyshev polynomials 

which are going to be useful in the development of the subsequent results are 

enumerated as under:  
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For every integer 𝜅 ≥ 0,  the Chebyshev polynomials satisfies the following identities: 

𝑖)                               2 𝒯𝜅  ( 𝓍) =  𝒰𝜅  ( 𝓍) −  𝒰𝜅−2 ( 𝓍)

𝑖𝑖)                           𝒱𝜅  ( 𝓍) =  𝒰𝜅  ( 𝓍) − 𝒰𝜅−1  ( 𝓍)       

𝑖𝑖𝑖)                               𝒲𝜅  ( 𝓍) =  𝒰𝜅 ( 𝓍) + 𝒰𝜅−1  ( 𝓍)

𝑖𝑣)                        𝒯2𝜅+1  ( √
1 + 𝓍

2
) = √

1 + 𝑥

2
 𝒱𝜅  ( 𝓍)

𝑣)                                         𝒲𝜅  ( 𝓍) =  𝒰2𝜅  ( √
1 + 𝓍

2
)

𝑣𝑖)               2(1 − 𝓍2) 𝒰𝜅  ( 𝓍) =  𝒯𝜅  ( 𝓍) −  𝒯𝜅+2  ( 𝓍)

𝑣𝑖𝑖)                  (1 + 𝓍) 𝒱𝜅  ( 𝓍) =  𝒯𝜅  ( 𝓍) +  𝒯𝜅+1  ( 𝓍)

𝑣𝑖𝑖𝑖)                                       𝒱𝜅  ( 
3

2
) = ℱ2𝜅+1                    

𝑖𝓍)                 (1 − 𝓍) 𝒲𝜅  ( 𝓍) =  𝒯𝜅  ( 𝓍) −  𝒯𝜅+1  ( 𝓍)

𝑥)                                                             𝒲𝜅  ( 
3

2
) = ℒ2𝜅+1  

𝓍𝑖)                                𝒱𝜅  ( 𝓍) +  𝒱𝜅−1  ( 𝓍) = 2 𝒯𝜅  ( 𝓍)

𝓍𝑖𝑖)                                          𝒲𝜅  ( 𝓍) = (−1)
𝜅𝒱𝜅  (−𝓍)

𝓍𝑖𝑣)                              𝒲𝜅  ( 𝓍)−𝒲𝜅−1  ( 𝓍) = 2 𝒯𝜅  ( 𝓍)

𝑥𝑣)                                                  𝒰𝜅  ( 𝑖𝓍) = 𝑖𝜅𝒫𝜅+1  (𝓍)}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(1.65) 

 

These identities can easily be established with the help of basic definitions & 

fundamental properties of the Chebyshev polynomials 

 

1.2.12 Chebyshev polynomials with negative index 

The Chebyshev polynomials can be extended to the negative value of the index 

[53, 54] by defining the relations as follows: 

For any integer 𝛼 ≥ 0, and 𝜁, 

𝒯−𝛼   ( 𝜁) =   𝒯𝛼  ( 𝜁)    (1.66)                                       

 𝒰−𝛼  ( 𝜁) = −𝒰𝛼−2  ( 𝜁)  with  𝒰−1  ( 𝜁) = 0 (167) 

𝒱−𝛼  ( 𝜁) = 𝒱𝛼−1  ( 𝜁) (1.68)   

𝒲−𝛼  ( 𝜁) = −𝒲𝛼−1  ( 𝜁) (1.69) 
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1.2.13 Vieta-Fibonacci and Vieta-Pell polynomials 

A.F. Horadam [36] studied the Vieta-Fibonacci polynomials (𝑆𝑛(𝓍)), which are 

defined recursively by  

𝑆𝑛(𝓍) = 𝓍𝑆𝑛−1(𝓍) − 𝑆𝑛−2(𝓍), (1.70) 

with initial conditions  𝑆0(𝓍) = 0,  𝑆1(𝓍) = 1 and 𝑛 ≥ 2. 

 

Tascı and Yalcın [37] studied Vieta-Pell polynomials (𝑅𝑛(𝓍)),, which are defined 

recursively by  

𝑅𝑛(𝓍) = 2𝓍𝑅𝑛−1(𝓍) − 𝑅𝑛−2(𝓍), (1.71) 

with initial conditions 𝑅0(𝓍) = 0, and  𝑅1(𝓍) = 1. 

 

Few of the values of these polynomials are: 

 

N Vieta-Fibonacci Polynomials (𝑆𝑛(𝓍)) Vieta-Pell Polynomials (𝑅𝑛(𝓍)) 

0 0 0 

1 1 1 

2 𝓍 2x 

3 𝓍2 − 1 4𝓍2 − 1 

4 𝓍3 − 2𝓍 8𝓍3 − 4𝓍 

5 𝓍4 − 3𝓍2 + 1 16𝓍4 − 12𝓍2 + 1 

6 𝓍5 − 4𝓍3 + 3𝓍 32𝓍5 − 32𝓍3 + 6𝓍 

 

Table 1.5: Vieta-Fibonacci and Vieta-Pell polynomials 

 

The graphical representation of Vieta-Fibonacci and Vieta-Pell Polynomials is as 

follows: 
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Figure 1.18: Graphical representation of Vieta-Fibonacci polynomials 

 

 

Figure 1.19 Graphical representation of Vieta-Pell polynomials 



25 

 

1.2.14 Jacobi polynomials 

The Jacobi polynomials (𝒫(𝑛: 𝜆, 𝛽)(𝓍)) [12] are solutions of the Jacobi equation: 

(1 − 𝓍2)
𝑑2𝓎

𝑑𝓍2
– [𝛽 − 𝜆 − (𝜆 + 𝛽 + 2)𝓍]

𝑑𝓎

𝑑𝓍
 + 𝑛(𝑛 + 𝜆 + 𝛽 + 1)𝓎 = 0   

for|𝓍| < 1 and 𝑛 ∈ 𝑁, satisfies the recurrence relation 

 

2(𝑛 + 1)(𝜆 + 𝛽 + 𝑛 + 1)(𝜆 + 𝛽 + 2𝑛)𝒫(𝑛 + 1: 𝜆, 𝛽)(𝓍)

= (𝜆 + 𝛽 + 2𝑛 + 1)[(𝜆2 − 𝛽2) + (𝜆 + 𝛽 + 2𝑛)(𝜆 + 𝛽 + 2𝑛 + 2)𝑥]𝒫(𝑛: 𝜆, 𝛽)(𝓍)

− 2(𝜆 + 𝑛)(𝛽 + 𝑛)(𝜆 + 𝛽 + 2𝑛 + 2)𝒫(𝑛

− 1: 𝜆, 𝛽)(𝓍),                                                                                                                                  (1.72)    

with initial conditions 

𝒫(0: 𝜆, 𝛽)(𝓍) = 1, 𝒫(1: 𝜆, 𝛽)(𝓍) =
1

2
[𝜆 − 𝛽 + (𝜆 + 𝛽 + 2)𝓍] 

1.2.15 Gegenbauer polynomials 

The Gegenbauer polynomials (𝐶(𝜈: 𝜆)(𝓍) ) [12] are given by the Jacobi equation: 

(1 − 𝓍2)
𝑑2𝓎

𝑑𝓍2
– (2𝜆+ 1)𝓍

𝑑𝓎

𝑑𝓍
 + 𝜈(𝜈 + 2𝜆)𝓎 = 0   

for|𝓍| < 1 and 𝜈 ∈ 𝑁, satisfies the recurrence relation 

𝐶(𝜈: 𝜆)(𝓍) =
1

𝜈
[2𝓍(𝜈 + 𝜆 − 1)𝐶(𝜈 − 1: 𝜆)(𝓍) − (𝜈 + 2𝜆 − 2)𝐶(𝜈 − 2: 𝜆)(𝓍)], (1.73) 

with initial conditions  

𝐶(0: 𝜆)(𝓍) = 1, 𝐶(1: 𝜆)(𝓍) = 2𝜆𝓍. 

1.2.16 Tribonacci Sequence   

Fibonacci sequence in one of its generalisations extends to a sequence called 

Tribonacci sequence [14]. The sequence  

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149 , … 

where each successive term is a sum of the preceding three terms is called Tribonacci 

sequence. This sequence is represented by the recursive relation 

  

𝓉ω  = {

 0,                                                                  𝜔 = 0,
1,                                                                  𝜔 = 1,
1,                                                                  𝜔 = 2,

𝓉𝜔−1  + 𝓉𝜔−2  + 𝓉𝜔−3  ,                                        𝜔 ≥ 3,𝜔 ∈ 𝑁 

 (1.74) 
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The graphical representation is: 

 

 

Figure 1.20 Graphical representation of Tribonacci numbers 

1.2.17 Tribonacci Polynomials 

Hoggatt and Bicknell [15] defined the Tribonacci polynomials in 1973 by the 

following recursive relation: 

𝓉𝜐  (𝓍) = {

 1,                                                                   𝜐 = 0,
1,                                                                   𝜐 = 1,

𝓍2,                                                                 𝜐 = 2,

𝓍2𝓉𝜐−1  (𝓍) − 𝓍𝓉𝜐−2  (𝓍) + 𝓉𝜐−3  (𝓍),               𝜐 ≥ 3, 𝜐 ∈ 𝑁.

 (1.75) 

Few of the values of these polynomials are: 

Value of 𝝂 Tribonacci Polynomials (𝓉𝜐  (𝓍)) 

0 0 

1 1 

2 𝓍2 

3 𝓍4 + 𝓍 

4 𝓍6 + 2𝓍3 + 1 

5 𝓍8 + 3𝓍5 + 3𝓍2 

… and so on … and so on 

 

Table 1.6:  Tribonacci polynomials (𝓉𝜐  (𝓍)). 
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The graphical representation is  

 

 

Figure 1.21 Graphical representation of Tribonacci polynomials. 

1.2.18 Trivariate Fibonacci polynomials  

Let 𝒻’, ℓ’,𝓌′ be the given variables. Trivariate Fibonacci [23] polynomials 

ℋ𝛼(ℊ’, ℓ’,𝓌’), 𝛼 ∈ 𝑁 is an extension of Fibonacci polynomials and follows a third-

order recursive relation given by 

ℋ𝛼(𝒻’, ℓ’,𝓌’) = 𝒻’ℋ𝛼−1(𝒻’, ℓ’,𝓌’) + ℓ’ℋ𝛼−2(𝒻’, ℓ’,𝓌’) +𝓌’ℋ𝛼−3(𝒻’, ℓ’,𝓌’), 𝛼 > 2(1.76) 

with ℋ0(𝒻’, ℓ’,𝓌’) = 0, ℋ1(𝒻’, ℓ’,𝓌’) = 1, ℋ2(𝒻’, ℓ’,𝓌’) = 𝒻’. 

𝜶 Trivariate Fibonacci Polynomials (ℋ𝛼(𝒻’, ℓ’,𝓌’)) 

0 0 

1 1 

2 𝒻’ 

3 𝒻’2 + ℓ’ 

4 𝒻’3 + 2𝒻’ℓ’ +𝓌’ 

5 𝒻’4 + 3𝒻’2ℓ’ + 2𝒻’𝓌’ + ℓ’2 

6 𝒻’5 + 4𝒻’3ℓ’ + 3𝒻’ℓ’2 + 3𝒻’2𝓌’ + 2ℓ’𝓌’ 

 

Table 1.7: Trivariate Fibonacci polynomials 
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The Trivariate Fibonacci Polynomials sequences, by taking different values of 

𝒻’, ℓ′,𝓌’, take different forms viz. for 𝒻’ = 1, ℓ’ = 1, and 𝓌’ = 0,  ℋ𝛼(𝒻’, ℓ’,𝓌’) =

𝓉𝛼  , Tribonacci number, and for 𝒻’ = 𝓍2, ℓ’ = 𝓍, ℓ’ = 1,ℋ𝛼(𝒻’, ℓ’,𝓌’) = 𝓉𝛼  (𝓍). 

1.2.19 Trivariate Lucas polynomials  

For any variable quantities 𝒻’, ℓ’,𝓌’ and for integer 𝛼 ≥ 3, Trivariate Lucas [23] 

polynomials ℒ𝛼(𝒻’, ℓ’,𝓌’) is an extension of Lucas polynomials and follows a third-

order recursive relation given by 

ℒ𝛼(𝒻’, ℓ’,𝓌’)                                                                                                                        

= 𝒻’ℒ𝛼−1(𝒻’, ℓ’,𝓌’) + ℓ’ℒ𝛼−2(𝒻’, ℓ’,𝓌’) +𝓌’ℒ𝛼−3(𝒻’, ℓ’,𝓌’), 𝛼 > 2, (1.77)
 

with 

ℒ0(𝒻’, ℓ’,𝓌’) = 3, ℒ1(𝒻’, ℓ’,𝓌’) = 𝒻’, ℒ2(𝒻’, ℓ’,𝓌’) = 𝒻’
2 + 2ℓ’.  

   𝛼 Trivariate Lucas Polynomials 

0 3 

1 𝒻’ 

2 𝒻’2 + 2ℓ’ 

3 𝒻’3 + 3𝒻’ℓ’ + 3𝓌’ 

4 𝒻’4 + 4𝒻’2ℓ’ + 4𝒻’𝓌’ + 2ℓ’2 

5 𝒻’5 + 5𝒻’3ℓ’ + 5𝒻’ℓ’2 + 5𝒻’2𝓌’ + 5ℓ’𝓌’ 

6 𝒻’6 + 6𝒻’4ℓ’ + 9𝒻’2ℓ’2 + 6𝒻’3𝓌’ + 12𝒻’ℓ’𝓌’ + 2ℓ’3 + 3𝓌’2 

 

Table 1.8: Trivariate Lucas polynomials 

1.3 Literature Review 

The literature on the Fibonacci sequence is vast, as numerous applications of 

this sequence have been deciphered in different aspects of life, including nature, 
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astronomy, art, and architecture, thereby inspiring many research scholars and 

mathematicians.  

The Vorobyov Brothers, Alfred [17], and Hogatt V.E [18], have given wide 

spectrum of intriguing properties of the Lucas and Fibonacci numbers. These   numbers 

have been related to almost every kind of number. 

Nobel Laureate, the famous physicist Aston [73], has shown the occurrence of 

the Fibonacci numbers in the atomic world. 

 Read [19] applied the Fibonacci series to determine how far the moons of 

Saturn, Uranus, and Jupiter were from their respective axes. He has shown that a 

particular moon’s position is dependent upon the position of previous two moons closer 

to the primary. Also, the moon seems to reside and, in the case of Jupiter, even 

congregate at potential levels predicted by the Fibonacci series. 

These Fibonacci sequences have been generalized in different way  

1.      Altering the recurrence relation while keeping the initial terms preserved. 

2. Altering the initial term & maintaining the recurrence relations. 

3. Modifying the recurrence relation so that each term is the sum of the preceding 

terms. 

4. Others modify recurrence relation so that each term is the sum of four preceding 

terms. 

 The sequence  

{𝒫𝑛} =  0, 1, 2, 5, 12,…, 

where 𝒫0 = 0 ,  𝒫1 = 1  and   𝒫𝑛 = 2𝒫𝑛−1 + 𝒫𝑛−2  , 𝑛 ≥  2  is called Pell sequence. 

The associated Pell’s sequence is defined by 

                             𝐽𝑛 = 2𝐽𝑛−1 + 𝐽𝑛−2 , 𝑛 ≥  2 , with   𝐽0 = 2 = 𝐽1 .  

In [20], Horadam replaced the first two Fibonacci numbers by arbitrary integers and 

defined the sequence {𝔤𝑛}  

𝔤𝑛 = 𝔤𝑛−1 + 𝔤𝑛−2 , 𝑛 ≥  2, 

where   𝔤0 and   𝔤1 are arbitrary integers. 

Waddil and Sacks [21] has considered the sequence {𝐾𝑛} where 𝐾0 , 𝐾1 , and 𝐾2 are 

arbitrary algebraic integers with 

𝐾𝑛 = 𝐾𝑛−1 + 𝐾𝑛−2 + 𝐾𝑛−3 , 𝑛 ≥  3 
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In 2007, Falcon and Plaza [22] defined the 𝑘-Fibonacci numbers. For every real 

𝑘 > 0, the sequence of  𝑘-Fibonacci numbers (ℱ𝑘,𝛼)  is characterized recursively as  

ℱ𝑘,𝛼+1 = 𝑘ℱ𝑘,𝛼 + ℱ𝑘,𝛼−1, 

for 𝛼 ∈ 𝑁 with  ℱ𝑘,0 = 0 , ℱ𝑘,1 = 1. 

 If 𝑘 = 1, 𝑘-Fibonacci sequence becomes classical Fibonacci sequence and if 𝑘 = 2, it 

becomes Pell sequence. 

Also, in 2017, Elif Tan [23] generalized the Horadam sequence defined by 

𝑤𝑛 = 𝑝𝑤𝑛−1 − 𝑞𝑤𝑛−2 , 𝑛 ≥ 2, 

with 𝑤0, 𝑤1, 𝑝, 𝑞  being arbitrary integers, to a bi-periodic Horadam sequence ( 

𝑤𝑛) defined by  

𝑤𝑛 = {
𝑏𝑤𝑛−1 + 𝑤𝑛−2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
𝑎𝑤𝑛−1 + 𝑤𝑛−2  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

  , 𝑛 ≥ 2, 

 with 𝑤0, 𝑤1,𝑎, 𝑏 are arbitrary non-zero real numbers and obtained various fundamental 

properties of   bi-periodic Horadam Sequence which generalizes the well-established 

results on bi-periodic Lucas and Fibonacci sequence. 

The bi-periodic sequences play an important role in characterizing Fibonacci 

Octonions and the Lucas Octonions. 

     In 1963, A.F. Horadam [24] expressed the 𝑛𝑡ℎ Fibonacci Quaternion and Lucas 

Quaternion as 

    𝒬𝑛 = ℱ𝑛 + 𝑖ℱ𝑛+1 + 𝑗ℱ𝑛+2 + 𝑘ℱ𝑛+3, 

     𝒯𝑛 = ℒ𝑛 + 𝑖ℒ𝑛+1 + 𝑗ℒ𝑛+2 + 𝑘ℒ𝑛+3, 

where ℱ𝑛 = 𝑛𝑡ℎ Fibonacci number & ℒ𝑛 = 𝑛𝑡ℎ Lucas number &  𝑖, 𝑗, 𝑘  obeys the 

relations 

𝑗𝑘 = 𝑖 =  −𝑘𝑗, 𝑖𝑗 = 𝑘 =  −𝑗𝑖, 𝑘𝑖 =  𝑗 = −𝑖𝑘,   𝑖2 = −1 = 𝑗2 = 𝑘2 . 

In 1969, Muthu Lakshmi R. Iyer [25, 26] derived several relations between 

Fibonacci Quaternions and Lucas Quaternions and their relation with Fibonacci 

numbers and Lucas numbers like 

𝒬𝑛ℒ𝑛 + 𝒯𝑛ℱ𝑛 = 2𝒬2𝑛. 

𝒬𝑛ℒ𝑛 − 𝒯𝑛ℱ𝑛 = 2(−1)
𝑛 𝒬0. 

Qn + Tn = 2 Qn+1. 

𝒯𝑛 − 𝒬𝑛 = 2𝒬𝑛−1. 
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In 2009, Edson and Yayenie [27], for every non-zero reals a and b, defined the 

sequence of bi-periodic Fibonacci numbers {𝑞𝑛} by the recursive relation 

𝑞0 = 0, 𝑞1 = 1, 𝑞𝑛 = {
𝑎𝑞𝑛−1 + 𝑞𝑛−2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑏𝑞𝑛−1 + 𝑞𝑛−2  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

  , 𝑛 ≥ 2.  

In the same line in 2014, Bilgici [28] defined the Bi-periodic Lucas sequence { 

𝑙𝑛} by the recursive relation 

𝑙0 = 0, 𝑙1 = 1, 𝑙𝑛 = {
𝑏𝑙𝑛−1 + 𝑙𝑛−2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑎𝑙𝑛−1 + 𝑙𝑛−2  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

  , 𝑛 ≥ 2. 

In 2016, Yilmaz et al [29] using these bi-periodic Fibonacci numbers, they 

introduced the bi-periodic Fibonacci Octonions as 

𝑂𝑛(𝔞, 𝔟) =∑𝑞𝑛+𝑠

7

𝑠=0

𝑒𝑠, 

where 𝑞𝑛 represents bi-periodic Fibonacci numbers. For negative subscripts, bi-

periodic Fibonacci Octonions numbers are 

𝑂−𝑛(𝔞, 𝔟) =∑(−1)𝑛−𝑠−1𝑞𝑛−𝑠

7

𝑠=0

𝑒𝑠, 

   where 𝑛 ∈ 𝑁 and derived the generating function for these Octonions as below  

 

∑ 𝑂𝑛(𝔞, 𝔟)𝓍
𝑛

𝑛

𝑖=0

=
𝑂0(𝔞, 𝔟) + 𝓍(𝑂1(𝔞, 𝔟) − 𝔟 𝑂0(𝔞, 𝔟)) + 𝑅(𝓍)

1 − 𝔟𝓍 − 𝓍2
 , 

 where  

𝑅(𝓍) = (𝓍𝑒0 + 𝑒1 +
1

𝓍
𝑒2 +

1

𝓍2
𝑒3 +

1

𝓍3
𝑒4 +

1

𝓍4
𝑒5 +

1

𝓍5
𝑒6 +

1

𝓍6
𝑒7𝑓(𝓍) − (𝓍𝑒1 + 𝑒2 +

(
1

𝓍
 + (𝔞𝔟 + 1)𝓍) 𝑒3 + (

1

𝓍2
+ 𝔞𝔟 + 1) 𝑒4 + (

1

𝓍3
+ (𝔞𝔟 + 1)

1

𝓍
+ (𝔞2𝔟2 + 3𝔞𝔟 +

1)𝓍) 𝑒5 + (
1

𝓍4
+ (𝔞𝔟 + 1)

1

𝓍2
+ (𝔞2𝔟2 + 3𝔞𝔟 + 1)) 𝑒6 + (

1

𝓍5
+ (𝔞𝔟 + 1)

1

𝓍3
+ (𝔞2𝔟2 +

3𝔞𝔟 + 1)
1

𝓍
+ (𝔞3𝔟3 + 5𝔞2𝔟2 + 6𝔞𝔟 + 1)𝓍) 𝑒7),  

and  

𝑓(𝓍) =
𝓍 − 𝓍 3

1 − (𝔞𝔟 + 2)𝓍2 + 𝓍4
. 
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In a similar manner, in 2017, Yilmaz et al [30], using these bi-periodic Lucas 

numbers, defined the bi-periodic Lucas Octonions and derived their generating 

functions. 

Several mathematicians have investigated the infinite sums of the reciprocals of 

wide variety of sequences like Fibonacci sequence, Lucas sequence etc. and organized 

Lucas and Fibonacci numbers as 

Fibonacci sequence Lucas Sequence 

∑
1

ℱ𝓃2 

∞

𝓃=1

 ∑
1

ℒ𝓃2

∞

𝓃=1

 

∑
1

ℱ𝓃4

∞

𝓃=1

 ∑
1

ℒ𝓃4

∞

𝓃=1

 

∑
1

ℱ𝓃6

∞

𝓃=1

 ∑
1

ℒ𝓃6

∞

𝓃=1

 

and expressed each number 

∑
1

ℱ𝓃2𝑠  

∞

𝓃=1

 𝑎𝑛𝑑 ∑
1

ℒ𝓃2𝑠

∞

𝓃=1

. 

𝑠 = 0,1,2,3…, as a rational (respectively algebraic) function over 𝒬. Analogous results 

in [31-33] were proved for Fibonacci numbers with odd (2008) and even indices (2012).  

     In 2009, Nakamura and Ohtsuka [34] found the infinite sums for the reciprocal 

of the Fibonacci numbers and their squares. Taking the floor function of these sums, 

the authors have obtained very interesting identities for Fibonacci numbers. The main 

results established by Ohtsuka and Nakamura are as follows: 

For all 𝔲 ≥  1  

⌊(∑
1

ℱℓ

∞

ℓ=𝔲

)

−1

⌋ = {
ℱ𝔲−2 ,              𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛
ℱ𝔲−2 − 1,      𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑,

(1.78) 
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and  

⌊(∑
1

ℱℓ
2

∞

ℓ=𝔲

)

−1

⌋ = {
−1 + ℱ𝔲−1ℱ𝔲,    𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛
ℱ𝔲−1ℱ𝔲,               𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑,

(1.79) 

where ⌊. ⌋  stands for the floor function. 

For the generalized Fibonacci numbers given by 

𝒢𝔲+2 = 𝑎 𝒢𝔲+1 + 𝒢𝔲, 𝔲 >  1, 

 with 𝒢0 = 0, 𝒢1 = 1, and 𝑎 being positive integer, Holliday and Komastsu [35] in 

2011, proved the following results: 

 ⌊(∑
1

𝒢𝜈

∞

𝜈=𝔲

)

−1

⌋ = {
𝒢𝔲 − 𝒢𝔲−1 ,                    𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛
𝒢𝔲 − 𝒢𝔲−1 −  1,           𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑,

 

and 

⌊(∑
1

𝒢𝜈2

∞

𝜈=𝔲

)

−1

⌋ = {
𝑎𝒢𝔲𝒢𝔲−1 −  1,            𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑎𝒢𝔲𝒢𝔲−1,                    𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑.

 

  Wu and Wang [38] in 2011 investigated the similar results for the finite case 

(i.e., partial finite sums) and observed that  

⌊(∑
1

ℱ𝑘

2𝑛

𝑘=𝑛

)

−1

⌋ = ℱ𝑛−2, ∀    𝑛 ≥ 4 

In 2015, while improving upon the observations of Ohtsuka and Nakamura [24], 

Wang and Wen [39], examined the case of partial sums for Fibonacci numbers and gave 

results as follows:  

For any integer 𝒽 > 2, 𝑛 > 1 ,  

⌊(∑
1

ℱ𝑘

𝑛𝒽

𝑘=𝑛

)

−1

⌋ = {
ℱ𝑛−2,              𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
ℱ𝑛−2 − 1,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

(1.80) 

For any integer 𝒽 ≥  0, 𝑛 ≥  1 , 

⌊(∑
1

ℱ𝛾2

𝑛𝒽

𝛾=𝑛

)

−1

⌋ = {
ℱ𝑛−1ℱ𝑛 − 1,    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
ℱ𝑛−1ℱ𝑛 ,             𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

(1.81) 

As 𝒽 → ∞, (1.80) and (1.81) respectively becomes (1.78) and (1.79). 
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In 2015, Wang and Zhang [40] obtained the similar results for even and odd 

indexed Fibonacci numbers which are as under:  

For any integers   𝑛 ≥ 1, 𝒽 ≥ 3, 

⌊(∑
1

ℱ2𝛾

n𝒽

𝛾=𝑛

)

−1

⌋ = ℱ2𝑛−1 − 1, 

and for any integers    𝒽 ≥ 2, 𝑛 ≥ 1, 

⌊(∑
1

ℱ2𝛾−1

𝓃𝒽

𝛾=𝑛

)

−1

⌋ = ℱ2𝑛−2 . 

In one of their generalizations, the sequences of Fibonacci and Lucas numbers, 

extend to polynomials called Fibonacci polynomials and Lucas polynomials, 

respectively as discussed in section (1.2).  

Numerous authors have examined several aspects of the Lucas and Fibonacci 

polynomials, yielding a host of intriguing results [42]. 

In 2012, Wu and Zhang [43] extended the results given by Ohtsuka and 

Nakamura [34] to the Lucas and Fibonacci polynomials and deduced the following 

significant conclusions:  

For all integers 𝜁, 𝛼 > 0, 

⌊(∑
1

ℱ𝜆(𝜁)

∞

𝜆=𝛼

)

−1

⌋ = {
ℱ𝛼(𝜁) − ℱ𝛼−1 (𝜁),                    𝑖𝑓 𝛼 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑤𝑖𝑡ℎ 𝛼 ≥ 2

ℱ𝛼(𝜁) − ℱ𝛼−1 (𝜁) − 1,             𝑖𝑓 𝛼 𝑖𝑠 𝑜𝑑𝑑 𝑤𝑖𝑡ℎ 𝛼 ≥ 1,
 

     ⌊(∑
1

ℱ𝜆
2(𝜁)

∞

𝜆=𝛼

)

−1

⌋ = {
𝑥ℱ𝛼 (𝜁) ∙ ℱ𝛼−1(𝜁) − 1,          𝑖𝑓 𝛼 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑤𝑖𝑡ℎ 𝛼 ≥ 2

𝜁ℱ𝛼(𝜁) ∙ ℱ𝛼−1 (𝜁),                 𝑖𝑓 𝛼 𝑖𝑠 𝑜𝑑𝑑 𝑤𝑖𝑡ℎ 𝛼 ≥ 1.
    

Similar results are obtained for Lucas polynomials. 

In [70], Wu and Zhang (2013) obtained similar results as in [43] by considering 

the subseries of infinite sums of these polynomials and deducing the results as follows: 

For any positive integer 𝜁, 𝔲 and even  𝔞 ≥ 2, 𝔟 ≥ 1, 

     ⌊(∑
1

ℱ𝔞𝛾(𝜁)

∞

𝛾=𝔲

)

−1

⌋ = ℱ𝔞𝔲(𝜁) − ℱ𝔞𝔲−𝔞(𝜁) − 1.                                            
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⌊(∑
1

ℱ𝔞𝛾2 (𝜁)

∞

𝛾=𝔲

)

−1

⌋ = ℱ𝔞𝔲
2(𝜁) − ℱ𝔞𝔲−𝔞

2 (𝜁) − 1.                                      

 ⌊(∑
1

ℒ𝔞𝛾(𝜁)

∞

𝛾=𝔲

)

−1

⌋ = ℒ𝔞𝔲(𝜁) − ℒ𝔞𝔲−𝔞(𝜁).       

 ⌊(∑
1

ℒ𝔞𝛾2 (𝜁)

∞

𝛾=𝔲

)

−1

⌋ = ℒ𝔞𝔲
2 (𝜁) − ℒ𝔞𝔲−𝔞

2 (𝜁) + 1.                                    

and 

   ⌊(∑
1

ℱ𝔟𝛾(𝜁)

∞

𝛾=𝔲

)

−1

⌋ = {
ℱ𝔟𝔲(𝜁) − ℱ𝔟𝔲−𝔟(𝜁),                    𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛

ℱ𝔟𝔲(𝜁) − ℱ𝔟𝔲−𝔟(𝜁) − 1,            𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑,
 

⌊(∑
1

ℱ𝔟𝛾
2 (𝜁)

∞

𝛾=𝔲

)

−1

⌋ = {
 ℱ𝔟𝔲

2
 
(𝜁) −  ℱ𝔟𝔲−𝔟

2
 
(𝜁),                        𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛

 ℱ𝔟𝔲
2
 
(𝜁) −  ℱ𝔟𝔲−𝔟

2
 
(𝜁) − 1,         𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑,

 

 ⌊(∑
1

ℒ𝔟𝛾(𝜁)

∞

𝛾=𝔲

)

−1

⌋ = {
ℒ𝔟𝔲(𝜁) − ℒ𝔟𝔲−𝔟(𝜁) − 1,            𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛

ℒ𝔟𝔲(𝜁) − ℒ𝔟𝔲−𝔟(𝜁),                 𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑,
 

⌊(∑
1

ℒ𝔟𝛾
2 (𝜁)

∞

𝛾=𝔲

)

−1

⌋ = {
 ℒ𝔟𝔲
2
 
(𝜁) −  ℒ𝔟𝔲−𝔟

2
 
(𝜁) − 3 ,            𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛

 ℒ𝔟𝔲
2
 
(𝜁) −  ℒ𝔟𝔲−𝔟

2
 
(𝜁) + 1,            𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑.

 

where ⌊. ⌋  is the floor function. 

In 2019, Dutta and Ray [44] extended the works of Wang and Wen [39] to the 

Lucas and Fibonacci polynomials and obtained these results: 

For any integer 𝜁, 𝔲 ≥ 2 , 𝑚 ≥ 3 

⌊(∑
1

ℱ𝛾(𝜁)

𝑚𝔲

𝛾=𝔲

)

−1

⌋ = ℱ𝔲(𝜁) − ℱ𝔲−1 (𝜁). 

For an integer 𝜁 < 0 and integers 𝔲 ≥ 3, 𝑚 ≥ 3 
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⌊(∑
1

ℒ𝛽(𝜁)

𝑚𝔲

𝛽=𝔲

)

−1

⌋ = ℒ𝔲(𝜁) − ℒ𝔲−1 (𝜁). 

For 𝜁 ∈ 𝑍 − 0 and integers 𝔲 > 0 and s𝑚 ≥ 2 

⌊(∑
1

ℱ𝛽
2(𝜁)

𝑚𝔲

𝛽=𝔲

)

−1

⌋ = {
𝜁ℱ𝔲−1(𝜁). ℱ𝔲 (𝜁) − 1,            𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛 

𝜁ℱ𝔲(𝜁). ℱ𝔲−1 (𝜁),                   𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑.
   

For 𝜁 ∈ 𝑍 − 0 ± 1and integers 𝔲 > 0 and 𝑚 ≥ 2, 

⌊(∑
1

ℒ2𝛽(𝜁)

𝑚𝔲

𝛽=𝔲

)

−1

⌋ = {
𝜁ℒ2𝔲−1(𝜁) + 1,              𝑖𝑓 𝔲 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝔲 ≥ 2

𝜁ℒ2𝔲−1(𝜁) − 2,              𝑖𝑓 𝔲 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝔲 ≥ 3.
 

Many authors have attempted to draw a relationship between the Chebyshev 

polynomials, Lucas and Fibonacci polynomials. 

Many researchers have analyzed a wide spectrum of properties of the 

Chebyshev polynomials & deduced a wide spectrum of results. For instance, in 2002, 

Zhang [55] considered the summations of finite products of Chebyshev polynomials, 

Lucas and Fibonacci numbers and deduced several intriguing results, particularly 

∑ 𝒰𝜎1(𝜁) ∙ 𝒰𝜎2(𝜁)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1= 𝑛

𝒰𝜎𝑟+1(𝜁) =
1

2𝑟  𝑟!
𝒰𝑛+𝑟
𝑟 (𝜁), (1.82) 

where 𝒰𝑛
𝑟(𝜁) = 𝑟𝑡ℎ derivative of 𝒰𝑛(𝜁) w.r.t 𝜁 & the sum is taken over 𝑟 + 1 

dimensional non-negative integral coordinates (σ1, σ2, ⋯ , σr+1) satisfying  𝜎1 + 𝜎2 +

⋯+ 𝜎𝑟+1 = 𝑛.  

In 2004, Wenpeng Zhang [45] studied Chebyshev polynomials and their 

derivatives and deduced their interesting relations with the Lucas and Fibonacci 

numbers. The main results are: 

For integers 𝑘 ,𝑚 > 0 and non-negative integer 𝛼  

∑     ℱ𝑚(𝑎1+1)
𝑎1+𝑎2+⋯+𝑎𝑘+1 =𝛼

ℱ𝑚(𝑎2+1)……ℱ𝑚(𝑎𝑘+1+1)                                              

= (−𝑖)𝑚𝛼
ℱ𝑚

𝑘+1

2𝑘  𝑘!
𝒰𝛼+𝑘
𝑘 (

𝑖𝑚

2
ℒ𝑚) , (1.83)
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  . 

∑     ℒ𝑚𝑎1
𝑎1+𝑎2+⋯+𝑎𝑘+1 =𝛼+𝑘+1

ℒ𝑚𝑎2 ……ℒ𝑚𝑎𝑘+1 

=
2 (−𝑖)𝑚(𝛼+1+𝑘)

𝑘!  
∑ (

𝑘 + 1

𝒽
)

𝑘+1 

𝒽=0
(
𝑖𝑚+2

2
)

𝒽

𝒰𝛼+2𝑘+1−𝒽
𝑘 (

𝑖𝑚

2
     ℒ𝑚) , (1.84) 

Where (𝑘+1
𝒽
) =

(𝑘+1)!

𝒽!(𝑘+1−𝒽)!
 and 𝒰𝛼

𝑘  denotes the kth derivative of Chebyshev polynomials 

of second kind. 

In 2009, Falcon and Plaza [46] extended the 𝑘-Fibonacci numbers to the 𝑘 –

Fibonacci polynomials by taking 𝑘 as 𝓍, a real variable, then ℱ𝑘,𝛼 = ℱ𝓍,𝛼 and the 

sequence take the form 

ℱ𝛼+1(𝓍) = {

1,                                    𝑖𝑓 𝛼 = 0
𝓍,                                   𝑖𝑓 𝛼 = 1

𝓍ℱ𝛼(𝓍) + ℱ𝛼−1(𝓍),   𝑖𝑓 𝛼 > 1.
 

and proved several properties along with the computation of derivatives of these 

polynomials in the form of convolutions of k-Fibonacci polynomials. They obtained the 

sequence of derivatives of Fibonacci polynomials and generated many integer 

sequences by giving particular values to the variable x, derived the relation between 

derivatives of Fibonacci polynomials and Fibonacci numbers, and deduced the 

generating functions for k-Fibonacci polynomials and the recurrence relation of the 

derivative sequence. 

In 2014, Yang Li [47] used these ideas of Zhang [45] and Falcon and Plaza [46] 

and established the relation between the Chebyshev polynomials, Fibonacci 

polynomial, and the rth derivative of the Chebyshev polynomials. They derived the 

following relations: 

For any integer 𝛼, 𝑟 > 0, 

𝒯2𝛼 
2𝑟(𝓍) = ∑ ∑   

(−1)𝛼−𝑟−𝜇+1  22𝜆+𝑟(2𝜇𝛼 − 𝛼)(𝛼 + 𝜆 − 1)!

(𝛼 − 𝜆)! (𝜆 − 𝑟 − 𝜇 + 1)! (𝜆 + 𝜇 − 𝑟)!

𝛼 

𝜆=𝑟

𝛼−𝑟+1

𝜇=1

ℱ2𝜇−1(𝓍). (1.85) 

𝒯2𝛼 
2𝑟−1(𝓍) = ∑ ∑    

(−1)𝛼−𝑟−𝜇+1  22𝜆+𝑟(𝛼 + 𝜆 − 1)! 𝜇𝛼

(𝛼 − 𝜆)! (𝜆 − 𝑟 − 𝜇 + 1)! (𝜆 + 𝜇 − 𝑟 + 1)!

𝛼

𝜆=0

𝛼−𝑟+1

𝜇=1

ℱ2𝜇(𝓍). (1.86) 

Similar results for the Chebyshev and Fibonacci polynomials with odd indices are 

deduced. 
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In 2015, Yang Li [48], again derived similar results for the Chebyshev and 

Fibonacci polynomials: 

For any integer 𝛼 > 0, 

𝒯2𝛼(𝓍) =∑ ∑
22𝜆(2𝜇𝛼 − 𝛼)(𝛼 + 𝜆 − 1)!

(−1)𝜇+𝛼−1(𝛼 − 𝜆)! (𝜆 + 𝜇)! (𝜆 − 𝜇 + 1)!

𝛼 

𝜆=0

𝛼+1

𝜇=1
ℱ2𝜇−1(𝓍).

𝒰2𝛼(𝓍) = ∑∑   
22𝜆−1(1 − 2𝜇)(𝛼 + 𝜆)!

(−1)𝜇+𝛼(𝛼 − 𝜆)! (𝜆 + 𝜇)! (𝜆 − 𝜇 + 1)!

𝛼 

𝜆=0

𝛼+1

𝜇=1

ℱ2𝜇−1(𝓍).              
}
 
 

 
 

(1.87) 

ℱ2𝛼(𝓍) = ∑∑          
22𝛾−2𝛼+2   𝜆(2𝛼 − 𝛾 − 1)!

𝛾! (𝛼 − 𝜆 − 𝛾)! (𝛼 + 𝜆 − 𝛾)!

𝛼−1 

γ=1

𝛼−1

𝜆=1

𝒰2𝜆(𝓍).                

ℱ2𝛼(𝓍) = ∑∑    
22𝛾+2−2𝛼(2𝛼 − 𝛾 − 1)!

𝛾! (2𝛼 + 2𝜆 − 2𝛾 − 2)! (2𝛼 − 2𝜆 − 𝛾)!

𝛼−1 

𝛾=1

𝛼

𝜆=1

𝒯2𝜆−1(𝓍).

               

}
 
 

 
 

(1.88) 

 

Similarly, the relations between odd indexed 1st and 2nd kinds of Chebyshev 

polynomials and Fibonacci polynomials and vice versa. 

In 2015, Xiaoxue Li [49], derived some identities of summation formula for 

powers of Chebyshev polynomials and discussed few divisibility properties involving 

these polynomials as follows: 

For any integer 𝒽, 𝑛 > 0 and variable 𝜁, 

a)  

∑𝒯2𝜆+1  
2𝑛+1

𝒽

𝜆=0

(𝜁)    =     
1

22𝑛+1
    ∑ (

2𝑛 + 1

𝑛 − 𝜇
)      

𝑛

𝜇=0

𝒰2(2𝜇+1)(𝒽+1)−1 (𝜁)

𝒰2𝜇(𝜁)
. (1.89) 

 

b)  

∑𝒯2𝜆  
2𝑛+1

𝒽    

𝜆=1

 (𝜁)   =    
1

22𝑛+1
 ∑  (

2𝑛 + 1

𝑛 − 𝜇
)

𝑛 

𝜇=0

     𝒰(2𝜇+1)(2𝒽+1)−1 (𝜁) − 𝒰2𝜇(𝜁)

𝒰2𝜇(𝜁)
. (1.90) 

 

and similar identities for odd and even indexed second kinds of Chebyshev 

polynomials. In addition to this, they also studied a few divisibility properties of these 

polynomials as an application of the above-stated results. 
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In 2015, W. Siyi [57], considered the summations of finite products of second kinds of 

Chebyshev polynomials and improved upon the results of Zhang [55] and derived the 

interesting results which includes: 

∑ 𝒰𝑑1(𝜁) ∙ 𝒰𝑑2(𝜁)⋯

𝑑1+𝑑2+⋯+𝑑𝑟+1= 𝑛

𝒰𝑑𝑟+1(𝜁) =
1

2𝑟𝑟!
𝒰𝑛+𝑟
𝑟 (𝜁)                                                                     

     

 

=
1

2𝑟𝑟!
[
(2𝑟 − 1)𝜁

(1 − 𝜁2)
𝒰𝑛+𝑟
𝑟−1(𝜁) +

(𝑟 − 2)𝑟 − (𝑛 + 𝑟)(𝑛 + 𝑟 + 2)

(1 − 𝜁2)
𝒰𝑛+𝑟
𝑟−2(𝜁). ] (1.91) 

 

In 2018, T. Kim et al. [50] considered the summations of finite products of 

second kinds of Chebyshev polynomials and derived the Fourier expansion of the 

associated functions, which in turn were used to represent these sums in Bernoulli 

polynomials.  Similar results for Fibonacci polynomials are obtained. 

They considered two functions  

𝛼𝜈,𝑟(ζ) =  ∑ 𝒰𝒸1(𝜁)

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

∙  𝒰𝒸2(𝜁)…… .𝒰𝒸𝑟+1(𝜁), 

and               

𝛽𝜈,𝑟(𝜁) =  ∑ ℱ𝒸1+1(𝜁)

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

∙  ℱ𝒸2+1(𝜁)…… .ℱ𝒸𝑟+1(𝜁), 

such that the sum is taken over all non-negative integers 𝒸1, …… . . 𝒸𝑟+1 with 𝒸1 + 𝒸2 +

⋯… . . +𝒸𝑟+1 = 𝜈 and gave the following results: 

For any integer 𝑟 ≥  1, and  𝜈 ≥ 1 , we let 

Δ𝜈,𝑟 =
1

2𝑟𝑟!
∑ (−1)𝑘(𝜈 + 𝑟 − 2𝜔)𝑟

[
𝜈−1
2
]

𝜔=0
(
𝜈 + 𝑟 − 𝜔

𝜔
)  2𝜈+𝑟−2𝜔. 

(a) Assume that Δ𝜈,𝑟 = 0 for some positive integer 𝜈, 𝑟. Then 

 (i) 

∑ 𝒰𝒸1(〈𝜁〉)

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

∙  𝒰𝒸2(〈𝜁〉)…… .𝒰𝒸𝑟+1(〈𝜁〉), 

has the Fourier series expansion 

 



40 

 

∑ 𝒰𝒸1(〈𝜁〉)

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

∙ 𝒰𝒸2(〈𝜁〉)…… .𝒰𝒸𝑟+1(〈𝜁〉)

=
1

2𝑟
Δ𝜈+1,𝑟−1

− ∑  (
1

2𝑟
 ∑

2𝜆(𝑟 + 𝜆 − 1)

(2𝜋𝑖𝑛)𝜆
 Δ𝜈−𝜆+1,𝑟+𝜆−1   

𝜈

𝜆=1

 )

∞

𝑛=−∞,𝑛≠0

𝑒2𝜋𝑖𝑛𝜁 , 

for all 𝜁 in R when convergence is uniform. 

 

(ii) 

∑ 𝒰𝒸1(〈𝜁〉)

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

∙ 𝒰𝒸2(〈𝜁〉)…… .𝒰𝒸𝑟+1(〈𝜁〉)

=
1

2𝑟
 ∑ 2𝜆  (

r + 𝜆 − 1

r − 1
)

𝜈

𝜆=0,𝜆≠0

Δ𝜈−𝜆+1,𝑟+𝜆−1𝐵 𝜆(〈𝜁〉), 

 

 ∀ 𝜁  in R. Here (𝜁)𝑟 = 𝜁(𝜁 − 1)… . (𝜁 − 𝑟 + 1) for 𝑟 ≥ 1 and(𝜁)0 = 1. 

 

(b) Assume   that Δ𝜈,𝑟 ≠ 0 for some positive integer 𝑟, 𝜈 , 

 

(i) 

 

 
1

2𝑟
𝛥𝜈+1,𝑟−1 − ∑  (

1

2𝑟
 ∑

 2𝜆(𝑟 + 𝜆 − 1)

(2𝜋𝑖𝑛)𝜆
 𝛥𝜈−𝜆+1,𝑟+𝜆−1   

𝜈

𝜆=1

 )

∞

𝑛=−∞,𝑛≠0

𝑒2𝜋𝑖𝑛𝜁

=

{
 
 
 

 
 
 ∑ 𝒰𝒸1(〈𝜁〉) ∙ 𝒰𝒸2(〈𝜁〉)… . . 𝒰𝒸𝑟+1(〈𝜁〉),            𝑖𝑓 𝜁 ∈ 𝑅 − 𝑍

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

               
𝛥𝜈,𝑟  
2

 ,                                                            𝑖𝑓 𝜁 ∈ 𝑍 𝑎𝑛𝑑 𝜈 𝑜𝑑𝑑

(−1)
𝜈
2 (

𝜈
2 + 𝑟

𝜈
2

) +
𝛥𝜈,𝑟  
2

 ,                                  𝑖𝑓 𝜁 ∈ 𝑍 𝑎𝑛𝑑 𝜈 𝑒𝑣𝑒𝑛.
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(ii) 

 
1

2𝑟
 ∑ 2𝜆  (

𝑟 + 𝜆 − 1

𝑟 − 1
)

𝜈

𝜆=0,𝜆≠0

𝛥𝜈−𝜆+1,𝑟+𝜆−1𝐵 𝜆(〈𝜁〉)

=

{
 
 
 

 
 
 ∑ 𝒰𝒸1(〈𝜁〉) ∙ 𝒰𝒸2(〈𝜁〉)… . . 𝒰𝒸𝑟+1(〈𝜁〉),               , 𝑖𝑓 𝜁 ∈ 𝑅 − 𝑍

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

               
𝛥𝜈,𝑟  
2

,                                                                                     𝑖𝑓 𝜁 ∈ 𝑍 𝑎𝑛𝑑 𝜈 𝑜𝑑𝑑

(−1)
𝜈
2 (

𝜈
2 + 𝑟

𝜈
2

) +
𝛥𝜈,𝑟  
2

 ,                                                               𝑖𝑓 𝜁 ∈ 𝑍 𝑎𝑛𝑑 𝜈 𝑒𝑣𝑒𝑛.

 

and similarly, for any positive integer 𝜈 , 𝑟,assuming 

𝛺𝜈,𝑟 =∑ (
𝜈 + 𝑟 − 𝑙 − 1

𝑙
)

[
𝜈−1
2
]

𝑘=0
(
𝜈 + 𝑟 − 2𝑙 − 1

𝑟 − 1
). 

we have 

(i)  

1

𝑟 − 1
𝛺𝜈+1,𝑟−1 − ∑  (

1

𝑟 − 1
 ∑

 (𝑟 − 2 + 𝜆)𝜆
(2𝜋𝑖𝑛)𝜆

 𝛺𝜈−𝜆+1,𝑟+𝜆−1   

𝜈

𝜆=1

 )

∞

𝑛=−∞,𝑛≠0

𝑒2𝜋𝑖𝑛𝜁

=

{
 
 
 

 
 
 ∑ ℱ𝒸1(〈𝜁〉) ∙ ℱ(〈𝜁〉)… . . ℱ𝒸𝑟+1(〈𝜁〉),                                   𝑖𝑓 𝜁 ∈ 𝑅 − 𝑍

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

               
𝛺𝜈,𝑟  
2

,                                                                                                𝑖𝑓𝜁 ∈ 𝑍 𝑎𝑛𝑑 𝜈 𝑜𝑑𝑑

(

𝜈
2 + 𝑟 − 1

𝜈
2

) +
𝛺𝜈,𝑟  
2

 ,                                                                                𝑖𝑓𝜁 ∈ 𝑍 𝑎𝑛𝑑 𝜈 𝑒𝑣𝑒𝑛.

 

(ii)  

 
1

𝑟 − 1
 ∑  (

𝑟 − 2 + 𝜆

𝜆
)

𝜈

𝜆=0

𝛺𝜈−𝜆+1,𝑟+𝜆−1𝐵 𝜆(〈𝜁〉)

=

{
 
 
 

 
 
 ∑ ℱ𝒸1(〈𝜁〉) ∙ ℱ𝒸2(〈𝜁〉)… . . ℱ𝒸𝑟+1(〈𝜁〉),                 𝑖𝑓 𝜁 ∈ 𝑅 − 𝑍           

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝜈

               
𝛺𝜈,𝑟  
2

  ,                                                                              𝑖𝑓𝜁 ∈ 𝑍 𝑎𝑛𝑑 𝜈 𝑜𝑑𝑑

(

𝜈
2 + 𝑟 − 1

𝜈
2

) +
𝛺𝜈,𝑟  
2

  ,                                                               𝑖𝑓𝜁 ∈ 𝑍 𝑎𝑛𝑑 𝜈 𝑒𝑣𝑒𝑛.
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T. Kim et al. [51] considered the summations of finite products of the 3rd and 4th kinds 

of  Chebyshev polynomials and obtained the similar Fourier series of the associated 

functions, which in turn led to the expression of  these sums as a linear sum of Bernoulli 

polynomials. The associated functions used in this case were 

𝛼𝜈,𝑟(𝜁) =  ∑ ∑ (
𝑟 + 𝜈 − 𝛾 − 1

𝑟 − 1
)𝒱𝒸1(𝜁) ∙ 𝒱𝒸2(𝜁)…𝒱𝒸𝑟+1(𝜁)

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝛾

𝜈

𝛾=𝑜

, 

and               

𝛽𝜈,𝑟(𝜁) =  ∑ ∑ (−1)m−l (
𝑟 + 𝜈 − 𝛾 − 1

𝑟 − 1
)𝒲𝒸1

(𝜁)

𝒸1+𝒸2+⋯…..+𝒸𝑟+1=𝛾

𝜈

𝛾=0

                  

∙ 𝒲𝒸2
(𝜁)…𝒲𝒸𝑟+1

(𝜁), 

and derived the similar Fourier series results for the 3rd and 4th kinds of Chebyshev 

polynomials as in the case of first and second kinds of Chebyshev polynomials. 

 In 2019, T. Kim et al. [56] studied the classical linearization problem, 

expressing the sums of finite product of Chebyshev polynomials as a linear combination 

of other orthogonal polynomials like Hermite(ℋ𝓃(𝜉)), Legendre(ℒ𝓃(𝜉)), extended 

Laguerre (𝒫𝓃(𝜉)), Gegenbauer (𝐶𝓃
(𝜆)
(𝜉)), and Jacobi Polynomials (𝒫𝓃

(𝛼,𝛽)
(𝜉)). The 

results obtained includes 

∑ 𝒱𝜎1(𝜉) ∙ 𝒱𝜎2(𝜉)

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝓃

∙ … .∙ 𝒱𝜎𝑟+1(𝜉) =
1

2𝑟  𝑟!
∑(−1)𝛾
𝓃

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝓃−𝑖+𝛾

𝑟 (𝜉)   (1.92) 

∑ 𝒲𝜎1
(𝜉) ∙ 𝒲𝜎2

(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝓃

𝒲𝜎𝑟+1
(𝜉) =

1

2𝑟  𝑟!
∑(

𝑟 + 1

𝛾
)

𝓃

𝛾=0

𝒰𝓃−𝑖+𝛾
𝑟 (𝜉)  (1.93) 

∑ 𝒯𝜎1(𝜉) ∙ 𝒯𝜎2(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝓃

𝒯𝜎𝑟+1(𝜉) 

=
1

𝑟!
∑

1

(𝓃 − 2𝓈)!

[
𝓃
2
]

𝓈=0

∑
(−1)𝛾(𝓃 + 𝑟 − 𝛾)!

𝛾! (𝓈 − 𝛾)!

𝓈

𝛾=0

                         

2ℱ1 (2𝛾 − 𝓃,−𝑟 − 1; 𝛾 −𝑚 − 𝑟;
1

2
) ℋ𝓃−2𝓈(𝜉) (1.94)
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∑ 𝒱𝜎1(𝜉) ∙ 𝒱𝜎2(𝜉)

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝓃

∙ … .∙ 𝒱𝜎𝑟+1(𝜉)      

= (−1)𝓃(𝑟 + 1)∑
(−1)𝜆

𝜆!

𝓃

𝜆=0

∑
(𝜆 + 2𝛽 + 𝑟)!

(𝓃 − 𝜆 − 2𝛽)! (𝑟 + 1 − 𝓃 + 𝜆 + 2𝛽)! 𝛽!

[
𝓃−𝜆
2 ]

𝛽=0

  

1ℱ1(−𝛽,−𝜆 − 2𝛽 − 𝑟;−1) ℋ𝜆(𝜉) (1.95)

 

 

∑ 𝒲𝜎1
(𝜉) ∙ 𝒲𝜎2

(𝜉)

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝓃

∙ … .∙ 𝒲𝜎𝑟+1
(𝜉)      

= (𝑟  + 1)∑
1

𝜆!

𝓃

𝜆=0

∑
(𝜆 + 2𝛽 + 𝑟)!

(𝓃 − 𝜆 − 2𝛽)! (𝑟 + 1 − 𝓃 + 𝜆 + 2𝛽)! 𝛽!

[
𝓃−𝜆
2
]

𝛽=0

 

 1ℱ1(−𝛽,−𝜆 − 2𝛽 − 𝑟;−1) ℋ𝜆(𝜉) (1.96)

 

where all sums run over integers 𝜎1, 𝜎2, … , 𝜎𝑟+1( ≥ 0)  satisfying 𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝓃, with (𝑟+1
𝛾
) = 0  for 𝛾 >  𝑟 + 1. 

Similar results for Legendre (ℒ𝓃(𝜉)), extended Laguerre (𝒫𝓃(𝜉)), Gegenbauer 

(𝐶𝓃
(𝜆)
(𝜉)), and Jacobi Polynomials (𝒫𝓃

(𝛼,𝛽)
(𝜉)) were obtained. In 2022, A. Patra, and 

G.K. Panda [59], obtained similar results for Pell polynomials. 

In another line of generalisation, several authors have generalised and extended 

Fibonacci and Lucas polynomials to two or more variables and studied their interesting 

properties and deduced several results. 

One such generalisation was studied by M. Catalani [71] wherein the author studied the 

bivariate Fibonacci polynomials given by  

ℋ𝓃(ω, ζ) = 𝜔ℋ𝓃−1(𝜔, 𝜁) + 𝜁ℋ𝓃−2(𝜔, 𝜁) (1.97) 

with ℋ0(𝜔, 𝜁) = 𝔞0 and ℋ1(𝜔, 𝜁) = 𝔞1 , for every 𝓃 > 1 and deduced several results 

involving their generating matrices. 

In 2016, E.G. Kocer and S. Tuncez [72] studied the new generalizations of the 

Fibonacci and Lucas polynomials to two variables and studied their properties and 

obtained some results. They introduced the bivariate Fibonacci and Lucas polynomials 

given by 
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ℱ𝓃(𝜔, 𝜁) = 𝑝(𝜔, 𝜁)ℱ𝓃−1(𝜔, 𝜁) + 𝑞(𝜔, 𝜁)ℱ𝓃−2(𝜔, 𝜁), (1.98) 

with ℱ0(𝜔, 𝜁) = 0  and  ℱ1(𝜔, 𝜁) = 1. 

and  

ℒ𝓃(𝜔, 𝜁) = 𝑝(𝜔, 𝜁)ℒ𝓃−1(𝜔, 𝜁) + 𝑞(𝜔, 𝜁)ℒ𝓃−2(𝜔, 𝜁), (1.99) 

with ℒ0(𝜔, 𝜁) = 2  and  ℒ1(𝜔, 𝜁) = 𝑝(𝜔, 𝜁), for every 𝓃 > 1 , where 𝑝(𝜔, 𝜁) and 

𝑞(𝜔, 𝜁) are polynomials with real coefficients. Similar studies were done by Tan and 

Yang [68]. Further generalization of Lucas and Fibonacci polynomials to trivariate 

Lucas and Fibonacci polynomials were studied by Kocer and Gedikce [16, 63] 

obtaining several interesting properties. 

1.4 Research Gap 

A generalization is an abstraction wherein common characteristics of particular 

instances are expressed as general concepts or claims. Generalizations presumes the 

existence of a domain or set of elements as well as one or more common properties 

shared by those elements (thus evolving a conceptual method). Thus, they are 

fundamental to all the valid deductive inferences. In mathematics, the sequence of 

Fibonacci polynomials  can be viewed as a generalization of the sequence of Fibonacci 

numbers. Lucas polynomials are the polynomials generated from the Lucas numbers in 

a similar manner.  

The thorough review of the cited literature leads to the following inferences 

regarding the research gap which is proposed to be bridged during tenure of our research 

work  that the Fibonacci polynomials and Lucas polynomials have been generalized 

mostly for up to two variables and their properties have been established so for, 

generalizations of Fibonacci and Lucas polynomials for more than three variables is to 

be explored for this we may extend the recurrence relation, or the recurrence relation is 

preserved but the coefficients of polynomial are replaced by some new coefficients with 

more variables or by changing the initial conditions and established their properties.  

Many researchers have worked on Chebyshev polynomials of the first and 

second kind in one or two variables; properties and applications of the 3rd and 4th   kinds 

of Chebyshev polynomials in two or more variables are to be studied, and new relations 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
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are to be established. Relations between the 3rd and 4th kinds of Chebyshev polynomials 

and Pell, Lucas and Fibonacci numbers and polynomials are to be obtained. 

The divisibility properties of Chebyshev polynomials can also be explored, and 

the Fourier series expansion associated with them can be obtained along the same lines 

as that of Chebyshev Polynomials of 1st and 2nd kind and similar concepts can be 

extended to Chebyshev-like polynomials also. 

1.5 Proposed Objectives of the Research Work 

In our research work, we propose to consider the following problems: 

• To obtained new generalization of Fibonacci and Lucas polynomials for three 

or more variables and established their properties.  

•  New generalization of Chebyshev like polynomials of third and fourth kind are 

to be find out and to discuss their properties.   

• To find out relations between Chebyshev polynomials of third and fourth kind 

with Fibonacci, Lucas and Pell numbers and polynomials. 

• To discuss the application of Chebyshev polynomials and Fibonacci like 

polynomials   

1.6 Proposed Methodology of the Research Work 

During our research work, we propose to use the usual method of pure mathematics to 

achieve our goals. 

The Fibonacci and Chebyshev-like polynomials are generalized by extending the 

recurrence relation; the recurrence relation is preserved, but the coefficients of the 

polynomial are replaced by some other coefficients with more variables or by changing 

the initial conditions. We will use these techniques to obtain new generalizations. 

Methods of mathematical induction and the techniques of combinatory are used 

for proving the properties obtained in the form of theorems and lemmas. 

1.7 Structure of Thesis 

The proposed work, entitled "A STUDY OF FIBONACCI POLYNOMIAL, 

CHEBYSHEV POLYNOMIAL, AND ITS SEQUENCES," is inspired by the study 

of the sequence of the Fibonacci numbers and their generalizations from Fibonacci 

polynomials to Chebyshev polynomials and like polynomials. The core of the subject 
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matter of the manuscript grows from a series of our research papers that are cited at the 

end. The following overview summarizes the thesis: 

In the first chapter, an introduction to Fibonacci numbers, their history, their 

applications in diverse fields, and their polynomial expansions are presented. 

Additionally, we will give a quick review of a few definitions and well-known results 

relating to the Fibonacci numbers, Chebyshev polynomials, and Fibonacci numbers, 

which meet the minimal requirements for the evolution of the emerging chapters. This 

chapter includes a section of literature review focused on the work done by various 

researchers in the field of the Fibonacci numbers and their polynomial generalisations 

through the first, second, third, and fourth kinds of Chebyshev and similar polynomials. 

This review has identified the research gap. Furthermore, this chapter has also outlined 

the objectives and methodology to bridge these gaps. 

In chapter 2, we will deal with the second kind Chebyshev polynomials. Here 

we have discussed the identities of the second-kind Chebyshev polynomials and Lucas, 

Fibonacci, and complex Fibonacci numbers. Several identities connecting sums of 

finite products of Lucas, Fibonacci, and complex Fibonacci numbers and the second 

kind Chebyshev polynomials with positive as well as negative odd indices are 

investigated.  

In chapter 3, we will consider the interaction between the 3rd and 4th kinds of 

Chebyshev polynomials and the Lucas and Fibonacci numbers and the second kind 

Chebyshev polynomials. In terms of second-kind Chebyshev polynomials and their 

derivatives, we will develop certain identities involving sums of their finite products. 

We also discussed some specific cases of these summation identities that result from 

different values of 𝑟 = 1,2,3. 

In Chapter 4, explicit formulae for the 3rd and 4th kinds of Chebyshev polynomials 

and their derivatives with odd and even index are established. Further, their links with 

Fibonacci polynomials with negative odd and even indices are also obtained. In the 

second section, some works on summations of the finite products of the third and 

fourth-kind Chebyshev polynomials and Pell polynomials as a linear sum of other 

orthogonal polynomials are considered. 
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Chapter 5 is composed of two sections focused mainly on the interrelationship 

between the 3rd and 4th kinds of Chebyshev polynomials and Lucas, Fibonacci, and Pell 

numbers and their polynomials. In the first section of this chapter, we introduced some 

more identities expressing summation of finite products of Lucas, Fibonacci, and Pell 

numbers and Fibonacci polynomials as a linear sum of derived Pell polynomials with 

even and odd indices, using their basic properties through elementary computations. 

Similar identities are obtained for the 3rd and 4th kinds of Chebyshev polynomials. We 

also analyzed these identities by taking particular cases with 𝑟 = 1,2,3.    

And in the second section, we will establish few more similar identities for 

negative indexed Lucas, Fibonacci, and Complex Fibonacci numbers in terms of Pell 

polynomials with negative even and odd indices, using their basic properties through 

elementary computations. In terms of the 3rd and 4th kinds of Chebyshev polynomials, 

similar identities were obtained for Pell numbers and Fibonacci polynomials. Special 

cases of these identities are also discussed. 

At the end in the Chapter 6, we developed the concepts of (p, q, r)-Generalized 

trivariate Fibonacci and (p, q, r)-Generalized trivariate Lucas polynomials and their 

sequences and discussed their properties. Several results involving the relationships of 

(p, q, r)-Generalized trivariate Fibonacci and (p, q, r)-generalized trivariate Lucas 

polynomials are discussed. Using these properties and results, we derived the explicit 

formula of (p, q, r)-Generalized trivariate Lucas and Fibonacci polynomials and 

deduced several identities involving the generating matrices and their determinants. 
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Chapter 2 

SOME CONNECTIONS BETWEEN FINITE PRODUCTS 

OF FIBONACCI AND LUCAS NUMBERS AND 

CHEBYSHEV POLYNOMIALS OF SECOND KIND 

 

2.1 Introduction  

This chapter will focus on the development of some results on the representation of 

the summations of finite products of the Lucas, the Fibonacci numbers, and the 

Complex Fibonacci numbers as a linear sum of the 2nd-kind Chebyshev polynomials 

through elementary computations. 

2.2 Representations of finite products of Fibonacci and Lucas Numbers in 

Chebyshev polynomials of the second kind 

Here, we will develop some results expressing summations of finite products of 

the Lucas, Fibonacci, and the complex Fibonacci numbers as a linear sum of derivatives 

of 2nd kinds of Chebyshev polynomials. 

Chebyshev polynomials have drawn the attention of numerous researchers, who 

have investigated their properties and developed a wide range of results. Zhang [55] for 

instance, considered the summation formulae for finite products of Chebyshev 

polynomials, Lucas and Fibonacci numbers and deduced several intriguing results, 

specifically, given by equation (1.82). Similarly, in [56], the authors have deduced 

analogous results which include equations (1.92)- (1.94) especially, 

∑ 𝒱𝜎1(𝜉) ∙ 𝒱𝜎2(𝜉). . .

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒱𝜎𝑟+1(𝜉) =
1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (𝜉)  

∑ 𝒲𝜎1
(𝜉) ∙ 𝒲𝜎2

(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒲𝜎𝑟+1
(𝜉) =

1

2𝑟  𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (𝜉)    

where these sums run over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 and (𝑟+1
𝛾
) = 0  for 𝛾 >  𝑟 + 1. 
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In the same line of action, we considered a few more identities on summations 

of finite products of the Lucas and Fibonacci numbers and expressed them as the linear 

combinations of the derivative of the 2nd kinds of Chebyshev polynomials. The main 

findings are: 

Theorem 2.2.1. For integers 𝛼, 𝑟 ≥ 0,   

∑ ℱ2𝜎1+1 ∙ ℱ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ2𝜎𝑟+1+1 =
1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (
3

2
), 

where (𝑟+1
𝛾
) = 0, for 𝛾 >  𝑟 + 1. 

Proof. Taking   𝜉 =
3

2
  in equation (1.92), we have 

∑ 𝒱𝜎1 (
3

2
) ∙ 𝒱𝜎2 (

3

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒱𝜎𝑟+1 (
3

2
) 

=
1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (
3

2
) , (2.4) 

Using 𝒰𝛼 (
3

2
) = ℱ2𝛼+2 in equation (1.65) (ii) to get  𝒱𝛼 (

3

2
) = ℱ2𝛼+1 and using this in 

turn, in equation (2.4), we have 

∑ ℱ2𝜎1+1 ∙ ℱ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ2𝜎𝑟+1+1 =
1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (
3

2
). 

Thus Theorem 2.2.1 is established. ∎ 

Theorem 2.2.2. For integers 𝛼, 𝑟 ≥ 0,  

∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℒ2𝜎𝑟+1+1 =
1

2𝑟  𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (

3

2
), 

where (𝑟+1
𝛾
) = 0,  for 𝛾 >  𝑟 + 1. 

Proof. Taking  𝜉 =
3

2
  in equation (1.93), we have  

∑ 𝒲𝜎 (
3

2
) ∙ 𝒲𝜎2 (

3

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒲𝜎𝑟+1 (
3

2
) 

=
1

2𝑟  𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (

3

2
) , (2.5) 
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Using 𝒰𝛼 (
3

2
) = ℱ2𝛼+2 in equation (1.65) (iii) to get  𝒲𝛼 (

3

2
) = ℒ2𝛼+1 and using this 

in turn in equation (2.5), we have 

∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℒ2𝜎𝑟+1+1 =
1

2𝑟  𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (

3

2
). 

Hence the Theorem 2.2.2. ∎                                                                                                                   

Theorem 2.2.3: For integers 𝛼, 𝑟 ≥ 0, 

∑ ℱ∗𝜎1 ∙ ℱ
∗
𝜎2⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ∗𝜎𝑟+1 

=
𝑖𝛼+𝑟+1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (−
𝑖

2
) 

=
1

𝑖𝛼−(𝑟+1) 2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (
𝑖

2
), 

where (𝑟+1
𝛾
) = 0,   for 𝛾 >  𝑟 + 1 and   ℱ∗𝛼 is complex Fibonacci number.    

Proof. Taking 𝜉 =   ̶ 
𝑖

 2
  in equation (1.92), and 𝜉 =   

𝑖

2
  in equation (1.93), we have 

∑ 𝒱𝜎1 ( ̶ 
𝑖

 2
) ∙ 𝒱𝜎2 ( ̶ 

𝑖

 2
)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒱𝜎𝑟+1 ( ̶ 
𝑖

 2
)     

=
1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 ( ̶ 
𝑖

 2
)                                                                    (2.6) 

∑ 𝒲𝜎1 ( 
𝑖

2
) ∙ 𝒲𝜎2 ( 

𝑖

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒲𝜎𝑟+1 ( 
𝑖

2
)

=
1

2𝑟  𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 ( 

𝑖

2
)                                                           (2.7) 

Using 𝒰𝛼 (
𝑖

2
) = 𝑖𝛼ℱ𝛼+1 in equation (1.65) (iii) we get  

 

𝒲𝛼 (
𝑖

2
) = 𝑖𝛼−1ℱ𝛼

∗ (2.8) 
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Again using equation (2.8) in equation (1.65) (xii) we get 

 𝒱𝛼 (−
𝑖

2
) =

ℱ𝛼
∗

𝑖𝛼+1
(2.9) 

Using equation (2.9), in equation (2.6), we have  

∑ ℱ∗𝜎1 ∙ ℱ
∗
𝜎2⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ∗𝜎𝑟+1 

=
𝑖𝛼+𝑟+1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (−
𝑖

2
) 

Similarly, using equation (2.8), in equation (2.7), we have  

∑ ℱ∗2𝜎1+1 ∙ ℱ
∗
2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ∗2𝜎𝑟+1+1

=
1

𝑖𝛼−(𝑟+1) 2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (
𝑖

2
),                         

This establishes the Theorem 2.2.3 ∎ 

Corollary 2.2.1: For integers 𝛼, 𝑟 ≥ 0 

∑ ℱ−(2𝜎1+1) ∙ ℱ−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ−(2𝜎𝑟+1+1)

=
1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (
3

2
), 

where (𝑟+1
𝛾
) = 0, for 𝛾 >  𝑟 + 1. 

Proof. Using ℱ−𝛼 = (−1)
𝛼+1ℱ𝛼 in Theorem 2.2.1 to establish the results. ∎  

Corollary 2.2.2: For integers 𝛼, 𝑟 ≥ 0 

∑ ℒ−(2𝜎1+1) ∙ ℒ−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℒ−(2𝜎𝑟+1+1)

=
(−1)𝑟+1

2𝑟  𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (

3

2
), 

where (𝑟+1
𝛾
) = 0, for 𝛾 >  𝑟 + 1. 



52 

 

Proof. Using ℒ−𝛼 = (−1)𝛼 ℒ𝛼 in Theorem 2.2.2, to achieve the desired results. ∎  

Corollary 2.2. 3: For an integers 𝛼, 𝑟 ≥ 0,  

∑ ℱ∗−𝜎1 ∙ ℱ
∗
−𝜎2⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ∗−𝜎𝑟+1 

=
𝑖𝛼+𝑟+1

2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (
𝑖

2
)               

=
1

𝑖𝛼−(𝑟+1) 2𝑟  𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒰𝛼−𝛾+𝑟

𝑟 (−
𝑖

2
) 

where (𝑟+1
𝛾
) = 0, for 𝛾 >  𝑟 + 1, and ℱ∗𝛼  is a complex Fibonacci number.  

Proof. Taking conjugate of  ℱ∗𝛼 in Theorem 2.2.3 and using ℱ∗−𝛼 = (−1)
𝛼+1ℱ∗𝛼̅̅ ̅̅ ̅ , 

where ℱ∗𝛼̅̅ ̅̅ ̅ is the complex conjugate of  ℱ∗𝛼 , we can achieve the desired result. ∎ 
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Chapter 3 

IDENTITIES ON CHEBYSHEV POLYNOMIALS OF 

THIRD AND FOURTH KIND AND FIBONACCI AND 

LUCAS NUMBERS IN TERMS OF SECOND KINDS OF 

CHEBYSHEV POLYNOMIALS 

 

3.1 Introduction   

we will discuss a few identities representing summations of finite products of 

the 3rd and 4th kinds of Chebyshev polynomials, Lucas, and Fibonacci numbers in the 

2nd kinds of Chebyshev polynomials and their derivatives, using the elementary 

computational method. 

3.2 Sums of finite products of third and fourth kinds of Chebyshev polynomials, 

Lucas and Fibonacci numbers in terms of the second kinds of Chebyshev 

polynomials. 

Several researchers have investigated Chebyshev polynomials and their 

properties and deduced a broad spectrum of results. One such area is the classical 

linearization problem considered by Zhang [55], in 2002, wherein the sums of finite 

products of 2nd-kind Chebyshev polynomials, Lucas and Fibonacci numbers were 

represented in the linear sums of the derived 2nd-kind Chebyshev polynomials as given 

by the equation (1.82). Similar results were given by T. Kim et al. [56] in 2019, 

especially, given by the equations (1.92)- (1.93) in Section 1.2 of Chapter 1. In 2020, 

D. Han and L. Xinging [74], working on the same idea, introduced some more 

summation representations of Lucas, Fibonacci and Chebyshev polynomials as a linear 

sum of Lucas and the1st-kind Chebyshev polynomials. 

With the same motivation, we will consider a few more identities connecting 

summations of finite products of the 3rd and 4th kinds of Chebyshev polynomials, Lucas, 

and Fibonacci numbers with the Chebyshev polynomials of the 2nd kind. The main 

results are: 
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Theorem 3.2.1. For integers 𝛼, 𝑟 ≥ 0, we have 

∑ 𝒱𝜎1(𝜉) ∙ 𝒱𝜎2(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒱𝜎𝑟+1(𝜉)

=
1

2𝑟  𝑟! (1 − 𝜉2)
∑(−1)𝜆
𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [(2𝑟 − 1)𝜉𝒰𝛼−𝜆+𝑟

𝑟−1 (𝜉)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉)], 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 and  (𝑟+1
𝜆
) = 0  for 𝜆 >  𝑟 + 1. 

Proof. From [57], we first note that for any positive integer 𝛼 ≥ 𝑟 > 0,  

𝒰𝛼+𝑟
𝑟 (𝜉) =

(2𝑟 − 1)𝜉

(1 − 𝜉2)
𝒰𝛼+𝑟
𝑟−1(𝜉) +

(𝑟 − 2)𝑟 − (𝛼 + 𝑟)(𝛼 + 𝑟 + 2)

(1 − 𝜉2)
𝒰𝛼+𝑟
𝑟−2(𝜉). (3.1) 

Thus , 

𝒰𝛼−𝜆+𝑟
𝑟 (𝜉) =

(2𝑟 − 1)𝜉

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉)

+
(𝑟 − 2)𝑟 − (𝛼 − 𝜆 + 𝑟)(𝛼 − 𝜆 + 𝑟 + 2)

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉) , 

=
(2𝑟 − 1)𝜉

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉)

−
[𝛼(𝛼 − 𝜆 + 𝑟) − 𝜆(𝛼 − 𝜆 + 𝑟) + 𝑟(𝛼 − 𝜆 + 2) + 2(𝛼 − 𝜆 + 𝑟)]

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉) , 

     =
(2𝑟 − 1)𝜉

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉)

−
[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 𝑟) + 𝑟(𝛼 − 𝜆 + 2)]

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉),    

=
(2𝑟 − 1)𝜉

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉) −

[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉) .                         

Therefore, 

𝒰𝛼−𝜆+𝑟
𝑟 (𝜉) =

(2𝑟 − 1)𝜉

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉) −

[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉). (3.2) 
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Using equations (3.1), (3.2) and (1.92), we have 

∑ 𝒱𝜎1(𝜉) ∙ 𝒱𝜎2(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒱𝜎𝑟+1(𝜉) =
1

2𝑟  𝑟!
∑(−1)𝜆
𝛼

𝜆=0

(
𝑟 + 1

𝜆
)𝒰𝛼−𝜆+𝜆

𝑟 (𝜉), 

=
1

2𝑟  𝑟!
∑(−1)𝜆
𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [
(2𝑟 − 1)𝜉

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉)

−
[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉)], 

 =
1

2𝑟  𝑟! (1 − 𝜉2)
∑(−1)𝜆
𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [(2𝑟 − 1)𝜉𝒰𝛼−𝜆+𝑟

𝑟−1 (𝜉)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉)] 

∑ 𝒱𝜎1(𝜉) ∙ 𝒱𝜎2(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒱𝜎𝑟+1(𝜉) 

=
1

2𝑟  𝑟! (1 − 𝜉2)
∑(−1)𝜆
𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [(2𝑟 − 1)𝜉𝒰𝛼−𝜆+𝑟

𝑟−1 (𝜉)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉)] 

Hence, the Theorem is established. ∎ 

Theorem 3.2.2. For any integer 𝛼, 𝑟 ≥ 0,  

∑ 𝒲𝜎1
(𝜉) ∙ 𝒲𝜎2

(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒲𝜎𝑟+1
(𝜉) 

=
1

2𝑟  𝑟! (1 − 𝜉2)
∑(

𝑟 + 1

𝜆
)

𝛼

𝜆=0

[(2𝑟 − 1)𝜉𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉)], 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 and  (𝑟+1
𝜆
) = 0  for 𝜆 >  𝑟 + 1.. 

Proof. We will proceed in a similar manner by using equation (3.1), (3.2) in equation 

(1.93). So, we have 

∑ 𝒲𝜎1
(𝜉) ∙ 𝒲𝜎2

(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒲𝜎𝑟+1
(𝜉) =  

1

2𝑟  𝑟!
∑(

𝑟 + 1

𝜆
)

𝛼

𝜆=0

𝒰𝛼−𝜆+𝑟
𝑟 (𝜉), 
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=  
1

2𝑟  𝑟!
∑(

𝑟 + 1

𝜆
)

𝛼

𝜆=0

[
(2𝑟 − 1)𝜉

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉)

−
[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]

(1 − 𝜉2)
𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉)], 

=
1

2𝑟  𝑟! (1 − 𝜉2)
∑(

𝑟 + 1

𝜆
)

𝛼

𝜆=0

[(2𝑟 − 1)𝜉𝒰𝛼−𝜆+𝑟
𝑟−1 (𝜉)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (𝜉)]. 

Hence, the Theorem is established. ∎ 

Theorem 3.2.3. For any integers 𝛼, 𝑟 ≥ 0,  

∑ ℱ2𝜎1+1 ∙ ℱ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ2𝜎𝑟+1+1 

=
1

2𝑟−1  𝑟!
∑

(−1)𝜆

5

𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟

𝑟−2 (
3

2
)

− 3(2𝑟 − 1)𝒰𝛼−𝜆+𝑟
𝑟−1 (

3

2
)], 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 and  (𝑟+1
𝜆
) = 0  for 𝜆 >  𝑟 + 1. 

Proof. We use the fact that 

𝒰𝛼 (
3

2
) = ℱ2𝛼+2. 

in equation (1.65) (ii) to deduce equation (1.65) (viii) and using this in turn in 

Theorem 3.2.1, with 𝜉 =
3

2
 , we get 

∑ 𝒱𝜎1 (
3

2
) ∙ 𝒱𝜎2 (

3

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒱𝜎𝑟+1 (
3

2
)

=
1

2𝑟  𝑟! (1 − (
3
2)

2

)

∑(−1)𝜆
𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [(2𝑟 − 1) (

3

2
)𝒰𝛼−𝜆+𝑟

𝑟−1 (
3

2
)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
)]. 
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which in turn yields 

∑ ℱ2𝜎1+1 ∙ ℱ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ2𝜎𝑟+1+1

=
1

2𝑟  𝑟!
(−

4

5
 )∑(−1)𝜆

𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [(2𝑟 − 1) (

3

2
)𝒰𝛼−𝜆+𝑟

𝑟−1 (
3

2
)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
)]

=
1

2𝑟+1  𝑟!
(
4

5
)∑(−1)𝜆

𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆

+ 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
) − 3(2𝑟 − 1)𝒰𝛼−𝜆+𝑟

𝑟−1 (
3

2
)] 

                         =
1

2𝑟−1  𝑟!
∑

(−1)𝜆

5

𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟

𝑟−2 (
3

2
)

− 3(2𝑟 − 1)𝒰𝛼−𝜆+𝑟
𝑟−1 (

3

2
)]. 

That is, 

∑ ℱ2𝜎1+1 ∙ ℱ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℱ2𝜎𝑟+1+1

=
1

2𝑟−1  𝑟!
∑

(−1)𝜆

5

𝛼

𝜆=0

(
𝑟 + 1

𝜆
) [2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆

+ 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
) − 3(2𝑟 − 1)𝒰𝛼−𝜆+𝑟

𝑟−1 (
3

2
)]. 

Hence, the Theorem is established. ∎ 

Theorem 3.2.4. For any integers 𝛼, 𝑟 ≥ 0,  

∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℒ2𝜎𝑟+1+1

=
1

2𝑟−1  𝑟!
∑

1

5
. (
𝑟 + 1

𝜆
)

𝛼

𝜆=0

[2[(𝛼 − 𝜆 + 2𝑟)(𝛼 − 𝜆 + 2)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
)

− 3(2𝑟 − 1)𝒰𝛼−𝜆+𝑟
𝑟−1 (

3

2
)], 
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where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 and  (𝑟+1
𝜆
) = 0  for 𝜆 >  𝑟 + 1. 

Proof. To establish this Theorem 3.2.4, we will proceed as in the case of the Theorem 

3.2.3 by using the fact 

𝒰𝛼 (
3

2
) = ℱ2𝛼+2, 

in equation (1.65) (iii) to equation (1.65) (x) and then using this in turn in Theorem 

3.2.2 with 𝜉 =
3

2
  , resulting in 

∑ 𝒲𝜎1 (
3

2
) ∙ 𝒲𝜎2 (

3

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

𝒲𝜎𝑟+1 (
3

2
)

=
1

2𝑟  𝑟! (1 − (
3
2)

2

)

∑(
𝑟 + 1

𝜆
)

𝛼

𝜆=0

[(2𝑟 − 1) (
3

2
)𝒰𝛼−𝜆+𝑟

𝑟−1 (
3

2
)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
)]. 

which in turn yields 

∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℒ2𝜎𝑟+1+1

=
1

2𝑟  𝑟!
(−

4

5
 )∑(

𝑟 + 1

𝜆
)

𝛼

𝜆=0

[(2𝑟 − 1) (
3

2
)𝒰𝛼−𝜆+𝑟

𝑟−1 (
3

2
)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
)] 

∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℒ2𝜎𝑟+1+1

=
1

2𝑟+1  𝑟!
(
4

5
)∑(

𝑟 + 1

𝜆
)

𝛼

𝜆=0

[2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
)

− 3(2𝑟 − 1)𝒰𝛼−𝜆+𝑟
𝑟−1 (

3

2
)] 
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∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℒ2𝜎𝑟+1+1

=
1

2𝑟−1  𝑟!
∑

1

5
∙ (
𝑟 + 1

𝜆
)

𝛼

𝜆=0

[2[(𝛼 − 𝜆 + 2𝑟)(𝛼 − 𝜆 + 2)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
)

− 3(2𝑟 − 1)𝒰𝛼−𝜆+𝑟
𝑟−1 (

3

2
)]. 

That is, 

 

∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝑟+1=𝛼

ℒ2𝜎𝑟+1+1

=
1

2𝑟−1  𝑟!
∑

1

5
∙ (
𝑟 + 1

𝜆
)

𝛼

𝜆=0

[2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 2𝑟)]𝒰𝛼−𝜆+𝑟
𝑟−2 (

3

2
)

− 3(2𝑟 − 1)𝒰𝛼−𝜆+𝑟
𝑟−1 (

3

2
)]. 

Hence, the Theorem is established. ∎ 

Corollary 3.2.1 For integers 𝛼 ≥ 0, we have 

 

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝑎+𝔟+𝔠=𝛼

𝒱𝔠(𝜉)

= ∑ (−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [𝒫(𝛼, 𝜆, 𝜉) 𝒰𝛼−𝜆+1(𝜉) − 𝒬(𝛼, 𝜆, 𝜉) 𝒰𝛼−𝜆+2(𝜉)], 

where  

𝒫(𝛼, 𝜆, 𝜉) = (
3𝜉(𝛼 − 𝜆 + 3)

8(1 − 𝜉2)2
), 

and 

𝒬(𝛼, 𝜆, 𝜉) =
(𝛼 − 𝜆 + 2)

8  (1 − 𝜉2)2
((𝛼 − 𝜆 + 4) − (𝛼 − 𝜆 − 1)𝜉2). 

Proof. Take 𝑟 = 2 in Theorem 3.2.1 coupled with the identity [57], 

𝒰′
𝛼(𝜉) =

(𝛼 + 1)

(1 − 𝜉2)
𝒰𝛼−1(𝜉) −

𝛼𝜉

(1 − 𝜉2)
𝒰𝛼(𝜉). (3.3) 

So, that we have, 
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∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠=𝛼

𝒱𝔠(𝜉)  

=
1

22   2! (1 − 𝜉2)
 ∑  (−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [3𝜉𝒰′

𝛼+2−𝜆(𝜉)

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 4)]𝒰𝛼−𝜆+2(𝜉)], 

                           =
1

8  (1 − 𝜉2)
 ∑  (−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) {[3𝜉 (

(𝛼 − 𝜆 + 3)

(1 − 𝜉2)
𝒰𝛼+1−𝜆(𝜉)

−
𝜉(𝛼 − 𝜆 + 2)

(1 − 𝜉2)
𝒰𝛼+2−𝜆(𝜉))]

− [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 4)]𝒰𝛼−𝜆+2(𝜉)}, 

                       =   ∑  (−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [(

3𝜉(𝛼 − 𝜆 + 3)

8(1 − 𝜉2)2
)𝒰𝛼−𝜆+1(𝜉)

− (
3𝜉2(𝛼 + 2 − 𝜆)

8(1 − 𝜉2)2
 +
[(𝛼 + 2 − 𝜆)(𝛼 + 4 − 𝜆)]

8 (1 − 𝜉2)
)𝒰𝛼−𝜆+2(𝜉)], 

 

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠=𝛼

𝒱𝔠(𝜉)        

=  ∑  (−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [(

3𝜉(𝛼 − 𝜆 + 3)

8(1 − 𝜉2)2
)𝒰𝛼−𝜆+1(𝜉)

−
(𝛼 − 𝜆 + 2)

8  (1 − 𝜉2)
(

3𝜉2

(1 − 𝜉2)
 + (𝛼 − 𝜆 + 4))𝒰𝛼−𝜆+2(𝜉)]                          

 

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠=𝛼

𝒱𝔠(𝜉)    

= ∑  (−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [(

3𝜉(𝛼 − 𝜆 + 3)

8(1 − 𝜉2)2
)𝒰𝛼−𝜆+1(𝜉)

−
(𝛼 − 𝜆 + 2)

8  (1 − 𝜉2)2
((𝛼 − 𝜆 + 4) − (𝛼 − 𝜆 − 1)𝜉2)𝒰𝛼−𝜆+2(𝜉)]. 
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Therefore,  

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠=𝛼

𝒱𝔠(𝜉)  

= ∑  (−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [𝒫(𝛼, 𝜆, 𝜉) 𝒰𝛼−𝜆+1(𝜉) − 𝒬(𝛼, 𝜆, 𝜉) 𝒰𝛼−𝜆+2(𝜉)], 

where  

𝒫(𝛼, 𝜆, 𝜉) = (
3𝜉(𝛼 − 𝜆 + 3)

8(1 − 𝜉2)2
), 

and 

𝒬(𝛼, 𝜆, 𝜉) =
(𝛼 − 𝜆 + 2)

8  (1 − 𝜉2)2
((𝛼 − 𝜆 + 4) − (𝛼 − 𝜆 − 1)𝜉2). 

This establishes the Corollary. ∎ 

Corollary 3.2.2. For integers 𝛼 ≥ 0, we have 

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠+𝑑=𝛼

𝒱𝔠(𝜉) ∙ 𝒱𝑑(𝜉)

= ∑
 (−1)𝜆

48

𝛼

𝜆=0

(
4

𝜆
) [𝑅(𝛼, 𝜆, 𝜉)𝒰𝛼−𝜆+2(𝜉) − 𝑆(𝛼. 𝜆, 𝜉)𝒰𝛼−𝜆+3(𝜉)], 

where 

𝑅(𝛼, 𝜆, 𝜉) = [
15𝜉2 − (𝛼 − 𝜆 + 6)(𝛼 − 𝜆 + 2)(1 − 𝜉2)

(1 − 𝜉2)3
] (𝛼 − 𝜆 + 4), 

 and 

𝑆(𝛼. 𝜆, 𝜉) = (𝛼 − 𝜆 + 3)𝜉 (
15𝜉2 − [(𝛼 − 𝜆 + 6)(𝛼 − 𝜆 + 2) + 5(𝛼 − 𝜆 + 5)](1 − 𝜉2)

(1 − 𝜉2)3
). 

Proof. Take 𝑟 =  3 in Theorem 3.2.1, we have 

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠+𝑑=𝛼

𝒱𝔠(𝜉) ∙ 𝒱𝑑(𝜉)    

=
1

23   3! (1 − 𝜉2)
 ∑  (−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [5𝜉𝒰"𝛼−𝜆+3(𝜉)

− ((𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6))𝒰′
𝛼−𝜆+3(𝜉)], 

Using the identity [57] 
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(1 − 𝜉2)𝒰𝛼
′′(𝜉) = 3𝜉 𝒰′

𝛼(𝜉) − 𝛼(𝛼 + 2) 𝒰𝛼(𝜉) , 

We have 

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠+𝑑=𝛼

𝒱𝔠(𝜉) ∙ 𝒱𝑑(𝜉)

=
1

48 (1 − 𝜉2)
 ∑  (−1)𝜆
𝛼

𝜆=0

(
4

𝜆
)(5𝜉 (

3𝜉

(1 − 𝜉2)
𝒰′

𝛼−𝜆+3(𝜉)

−
(𝛼 − 𝜆 + 3)(𝛼 − 𝜆 + 5)

(1 − 𝜉2)
𝒰𝛼−𝜆+3(𝜉))

− ((𝛼 − 𝜆 + 6)(𝛼 − 𝜆 + 2))𝒰′
𝛼−𝜆+3(𝜉)) 

            =
1

48 (1 − 𝜉2)
 ∑  (−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [

15𝜉2

(1 − 𝜉2)

− (𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)]𝒰′
𝛼−𝜆+3(𝜉)  

−
5𝜉(𝛼 − 𝜆 + 5)(𝛼 − 𝜆 + 3)

(1 − 𝜉2)
𝒰𝛼−𝜆+3(𝜉), 

Now using equation (3.3), we have 

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠+𝑑=𝛼

𝒱𝔠(𝜉) ∙ 𝒱𝑑(𝜉) 

=
1

48 (1 − 𝜉2)
∑  (−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) × 

{[
15𝜉2 − (𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)(1 − 𝜉2)

(1 − 𝜉2)
]
(𝛼 − 𝜆 + 4)

(1 − 𝜉2)
𝒰𝛼−𝜆+2(𝜉)

− (𝛼 − 𝜆 + 3)𝜉 (
15𝜉2 − (𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)(1 − 𝜉2)

(1 − 𝜉2)2

+
5(𝛼 − 𝜆 + 5)

(1 − 𝜉2)
)𝒰𝛼−𝜆+3(𝜉)}, 
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∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠+𝑑=𝛼

𝒱𝔠(𝜉) ∙ 𝒱𝑑(𝜉)

=∑
 (−1)𝜆

48

𝛼

𝜆=0

(
4

𝜆
) [
15𝜉2 − (𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)(1 − 𝜉2)

(1 − 𝜉2)3
] (𝛼 − 𝜆 + 4)𝒰𝛼−𝜆+2(𝜉)

− (𝛼 − 𝜆

+ 3)𝜉 (
15𝜉2 − [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) + 5(𝛼 − 𝜆 + 5)](1 − 𝜉2)

(1 − 𝜉2)3
)𝒰𝛼−𝜆+3(𝜉), 

Therefore, 

∑ 𝒱𝔞(𝜉) ∙ 𝒱𝔟(𝜉) ∙

𝔞+𝔟+𝔠+𝑑=𝛼

𝒱𝔠(𝜉) ∙ 𝒱𝑑(𝜉)

= ∑
 (−1)𝜆

48

𝛼

𝜆=0

(
4

𝜆
) [𝑅(𝛼, 𝜆, 𝜉)𝒰𝛼−𝜆+2(𝜉) − 𝑆(𝛼. 𝜆, 𝜉)𝒰𝛼−𝜆+3(𝜉)], 

where, 

𝑅(𝛼, 𝜆, 𝜉) = [
15𝜉2 − (𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)(1 − 𝜉2)

(1 − 𝜉2)3
] (𝛼 − 𝜆 + 4), 

 and 

 𝑆(𝛼. 𝜆, 𝜉) = 

(𝛼 − 𝜆 + 3)𝜉 (
15𝜉2 − [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) + 5(𝛼 − 𝜆 + 5)](1 − 𝜉2)

(1 − 𝜉2)3
). 

This establishes the Corollary. ∎ 

Corollary 3.2.3. For integers 𝛼 ≥ 0, we have 

∑ 𝒲𝔞(𝜉) ∙ 𝒲𝔟(𝜉) ∙

𝔞+𝔟+𝔠=𝛼

𝒲𝔠(𝜉)

= ∑ 

𝛼

𝜆=0

(
3

𝜆
) [𝒫(𝛼, 𝜆, 𝜉) 𝒰𝛼−𝜆+1(𝜉) − 𝒬(𝛼, 𝜆, 𝜉) 𝒰𝛼−𝜆+2(𝜉)], 

where 

𝒫(𝛼, 𝜆, 𝜉) = (
3𝜉(𝛼 − 𝜆 + 3)

8(1 − 𝜉2)2
), 
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and 

𝒬(𝛼, 𝜆, 𝜉) =
(𝛼 − 𝜆 + 2)

8  (1 − 𝜉2)2
((𝛼 − 𝜆 + 4) − (𝛼 − 𝜆 − 1)𝜉2). 

Proof. For the proof of the Corollary, we will take 𝑟 =  2 in Theorem 3.2.2 and proceed 

similarly as in the case of the Corollary 3.2.1 to achieve the desired results. ∎ 

 

Corollary 3.2.4. For integer 𝛼 ≥0, we have 

∑ 𝒲𝔞(𝜉) ∙ 𝒲𝔟(𝜉) ∙

𝔞+𝔟+𝔠+𝑑=𝛼

𝒲𝔠(𝜉) ∙ 𝒲𝑑(𝜉)

= ∑
1

48

𝛼

𝜆=0

(
4

𝜆
) [𝑅(𝛼, 𝜆, 𝜉)𝒰𝛼−𝜆+2(𝜉) − 𝑆(𝛼. 𝜆, 𝜉)𝒰𝛼−𝜆+3(𝜉)], 

where 

𝑅(𝛼, 𝜆, 𝜉) = [
15𝜉2 − (𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)(1 − 𝜉2)

(1 − 𝜉2)3
] (𝛼 − 𝜆 + 4), 

 and 

𝑆(𝛼. 𝜆, 𝜉) = (𝛼 − 𝜆

+ 3)𝜉 (
15𝜉2 − [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) + 5(𝛼 − 𝜆 + 5)](1 − 𝜉2)

(1 − 𝜉2)3
). 

Proof. For the proof of the Corollary 3.2.4, we will take 𝑟 =  3 in Theorem 3.2.2 and 

proceed similarly as in case of the Corollary 3.2.2 to achieve the desired result. ∎ 

Corollary 3.2.5. For integer 𝛼 ≥ 0,  

∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠=𝛼

ℱ2𝔠+1 =∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [𝐴𝛼,𝜆 ℱ2𝛼−2𝜆+4 + 𝐵𝛼,𝜆ℱ2𝛼−2𝜆+6], 

where   

𝐴𝛼,𝜆 =
9

25
(𝛼 − 𝜆 + 3)  and   𝐵𝛼,𝜆 =

1

50
(𝛼 − 𝜆 + 2)(5𝛼 − 5𝜆 − 7). 
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Proof. Using equation (1.65) (viii) together with 𝒰𝛼 (
3

2
) = ℱ2𝛼+2 in Theorem 3.2.3 

for 𝜉 =
3

2
  with r =2, we have 

∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠=𝛼

ℱ2𝔠+1

=
1

2 ∙ 2!
∑

(−1)𝜆

5

𝛼

𝜆=0

(
3

𝜆
) [2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 4)]𝒰𝛼−𝜆+2 (

3

2
)

− 3(3)𝒰′
𝛼−𝜆+2 (

3

2
)] 

  ∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠=𝛼

ℱ2𝔠+1   

=
1

4
∑

(−1)𝜆

5

𝛼

𝜆=0

(
3

𝜆
)

[
 
 
 
 

2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 4)]𝒰𝛼−𝜆+2 (
3

2
)

− 9

(

  
 (𝛼 − 𝜆 + 3)

(1 − (
3
2)

2

)

  𝒰𝛼−𝜆+1 (
3

2
) −

(𝛼 − 𝜆 + 2) (
3
2)

(1 − (
3
2)

2

)

𝒰𝛼−𝜆+2 (
3

2
)

)

  
 

]
 
 
 
 

. 

  

                           =
1

20
∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 4)]ℱ2𝛼−2𝜆+6  

− 9(
(𝛼 − 𝜆 + 3)

(−
5
4)

  ℱ2𝛼−2𝜆+4 −
(𝛼 − 𝜆 + 2) (

3
2)

(−
5
4)

ℱ2𝛼−2𝜆+6)], 

          =
1

20
∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 4)]ℱ2𝛼−2𝜆+6

− 9( (−
4

5
) (𝛼 − 𝜆 + 3) ℱ2𝛼−2𝜆+4

− (−
4

5
) (𝛼 − 𝜆 + 2) (

3

2
)ℱ2𝛼−2𝜆+6)], 
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     ∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠=𝛼

ℱ2𝔠+1  

=
1

10
∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 4)]ℱ2𝛼−2𝜆+6

− 9( (−
2

5
) (𝛼 − 𝜆 + 3) ℱ2𝛼−2𝜆+4 − (−

3

5
) (𝛼 − 𝜆 + 2)ℱ2𝛼−2𝜆+6)], 

                       =
1

10
∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 4)]ℱ2𝛼−2𝜆+6

+ 9( (
2

5
) (𝛼 − 𝜆 + 3) ℱ2𝛼−2𝜆+4 (

3

2
) − (

3

5
) (𝛼 − 𝜆 + 2)ℱ2𝛼−2𝜆+6)], 

  ∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠=𝛼

ℱ2𝔠+1

=
1

10
∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [(𝛼 − 𝜆 + 2) ((𝛼 − 𝜆 + 4) −

27

5
)ℱ2𝛼−2𝜆+6

+
18

5
(𝛼 − 𝜆 + 3) ℱ2𝛼−2𝜆+4], 

   =
1

10
∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [
1

5
(𝛼 − 𝜆 + 2)(5𝛼 − 5𝜆 − 7)ℱ2𝛼−2𝜆+6

+
18

5
(𝛼 − 𝜆 + 3) ℱ2𝛼−2𝜆+4], 

=∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [
9

25
(𝛼 − 𝜆 + 3) ℱ2𝛼−2𝜆+4

+
1

50
(𝛼 − 𝜆 + 2)(5𝛼 − 5𝜆 − 7)ℱ2𝛼−2𝜆+6]. 

Therefore,  

∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠=𝛼

ℱ2𝔠+1 =∑(−1)𝜆
𝛼

𝜆=0

(
3

𝜆
) [𝐴𝛼,𝜆 ℱ2𝛼−2𝜆+4 + 𝐵𝛼,𝜆ℱ2𝛼−2𝜆+6], 

where   

                               𝐴𝛼,𝜆 =
9

25
(𝛼 − 𝜆 + 3) and 𝐵𝛼,𝜆 =

1

50
(𝛼 − 𝜆 + 2)(5𝛼 − 5𝜆 − 7). 

This proves the Corollary 3.2.5. ∎ 
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Corollary 3.2.6. For integer 𝛼 ≥ 0, we have 

∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠+𝑑=𝛼

ℱ2𝔠+1 ∙ ℱ2𝑑+1   

=
1

150
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [𝐶𝛼,𝜆ℱ2𝛼−2𝜆+8 − 𝐷𝛼,𝜆ℱ2𝛼−2𝜆+6], 

where 

𝐶𝛼,𝜆 = 3(𝛼 − 𝜆 + 3) (((𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27) − 5(𝛼 − 𝜆 + 5)), 

and 

𝐷𝛼,𝜆 = 2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27](𝛼 − 𝜆 + 4). 

Proof. To prove the Corollary, we will proceed as in the case of Corollary 3.2.5 and 

use equation (1.65) (viii) in Theorem 3.2.3 for 𝜉 =
3

2
 with 𝑟 = 3, we have  

∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠+𝑑=𝛼

ℱ2𝔠+1 ∙ ℱ2𝑑+1

=
1

5
.
1

223!
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)]𝒰′

𝛼−𝜆+3 (
3

2
) − 3

∙ 5 𝒰"𝛼−𝜆+3 (
3

2
)], 

∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠+𝑑=𝛼

ℱ2𝔠+1 ∙ ℱ2𝑑+1

=
1

120
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
)

[
 
 
 
 

2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)]𝒰′
𝛼−𝜆+3 (

3

2
)

− 15

(

  
 3(

3
2)

(1 − (
3
2)

2

)

𝒰′
𝛼−𝜆+3 (

3

2
)

−
(𝛼 − 𝜆 + 3)(𝛼 − 𝜆 + 5)

(1 − (
3
2)

2

)

𝒰𝛼−𝜆+3 (
3

2
)

)

  
 

]
 
 
 
 

, 
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                          =
1

120
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  54]𝒰′

𝛼−𝜆+3 (
3

2
)

− 12((𝛼 − 𝜆 + 3)(𝛼 − 𝜆 + 5)𝒰𝛼−𝜆+3 (
3

2
))], 

 

 ∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠+𝑑=𝛼

ℱ2𝔠+1 ∙ ℱ2𝑑+1

=
1

120
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
)

[
 
 
 
 
 

[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)  

+  54]

(

  
 (𝛼 − 𝜆 + 4)

(1 − (
3
2
)
2

)

  𝒰𝛼−𝜆+2 (
3

2
) −

(𝛼 − 𝜆 + 3) (
3
2)

(1 − (
3
2
)
2

)

𝒰𝛼−𝜆+3 (
3

2
)

)

  
 

− 12(𝛼 − 𝜆 + 3)(𝛼 − 𝜆 + 5)𝒰𝛼−𝜆+3 (
3

2
)

]
 
 
 
 
 

, 

                         =
1

120
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
)

[
 
 
 
 

[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6)

+  54]

(

 
(𝛼 − 𝜆 + 4)

(−
5
4)

  𝒰𝛼−𝜆+2 (
3

2
) −

(𝛼 − 𝜆 + 3) (
3
2)

(−
5
4)

𝒰𝛼−𝜆+3 (
3

2
)

)

 

− 12(𝛼 − 𝜆 + 3)(𝛼 − 𝜆 + 5)𝒰𝛼−𝜆+3 (
3

2
)

]
 
 
 
 

, 
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=
1

60
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [(−

4

5
) [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27](𝛼 − 𝜆 + 4)𝒰𝛼−𝜆+2 (

3

2
)

+ (
6

5
) ((𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27)(𝛼 − 𝜆 + 3)𝒰𝛼−𝜆+3 (

3

2
)

− 6(𝛼 − 𝜆 + 3)(𝛼 − 𝜆 + 5)𝒰𝛼−𝜆+3 (
3

2
)], 

  ∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠+𝑑=𝛼

ℱ2𝔠+1 ∙ ℱ2𝑑+1

=
1

60
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [(−

4

5
) [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27](𝛼 − 𝜆

+ 4)ℱ2𝛼−2𝜆+6

+ (𝛼 − 𝜆 + 3) ((
6

5
) ((𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27)

− 6(𝛼 − 𝜆 + 5))ℱ2𝛼−2𝜆+8], 

                         =
1

30
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [(−

2

5
) [(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27](𝛼 − 𝜆

+ 4)ℱ2𝛼−2𝜆+6

+ (
3

5
) (𝛼 − 𝜆 + 3) (((𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27)

− 5(𝛼 − 𝜆 + 5))ℱ2𝛼−2𝜆+8], 

                         =
1

150
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) [3(𝛼 − 𝜆 + 3) (((𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27)

− 5(𝛼 − 𝜆 + 5))ℱ2𝛼−2𝜆+8]

− 2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27](𝛼 − 𝜆 + 4)ℱ2𝛼−2𝜆+6. 

Therefore,  

∑ ℱ2𝔞+1 ∙ ℱ2𝔟+1 ∙

𝔞+𝔟+𝔠+𝑑=𝛼

ℱ2𝔠+1 ∙ ℱ2𝑑+1

=
1

150
∑(−1)𝜆
𝛼

𝜆=0

(
4

𝜆
) 𝐶𝛼,𝜆ℱ2𝛼−2𝜆+8 −𝐷𝛼,𝜆ℱ2𝛼−2𝜆+6, 
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where  

𝐶𝛼,𝜆 = 3(𝛼 − 𝜆 + 3) (((𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27) − 5(𝛼 − 𝜆 + 5)), 

and  

𝐷𝛼,𝜆 = 2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27](𝛼 − 𝜆 + 4). 

 

This establishes the Corollary. ∎ 

Corollary 3.2.7. For integers n, 𝑟 ≥ 0, we have 

∑ ℒ2𝔞+1 ∙ ℒ2𝔟+1 ∙

𝔞+𝔟+𝔠=𝛼

ℒ2𝔠+1 =∑(
3

𝜆
)

𝛼

𝜆=0

[𝐴𝛼,𝜆 ℱ2𝛼−2𝜆+4 + 𝐵𝛼,𝜆ℱ2𝛼−2𝜆+6] 

where   

𝐴𝛼,𝜆 =
9

25
(𝛼 − 𝜆 + 3) 𝑎𝑛𝑑   𝐵𝛼,𝜆 =

1

50
(𝛼 − 𝜆 + 2)(5𝛼 − 5𝜆 − 7). 

Proof. For the proof of the Corollary 3.2.7, we will proceed similarly as in the case of 

Corollary 3.2.5 and use equation (1.65) (x) in Theorem 3.2.4 for 𝜉 =
3

2
 with 𝑟 = 2 to 

achieve the desired results. ∎ 

Corollary 3.2.8. For integer 𝛼 ≥ 0, we have 

∑ ℒ2𝔞+1 ∙ ℒ2𝔟+1 ∙

𝔞+𝔟+𝔠+𝑑=𝛼

ℒ2𝔠+1 ∙ 𝑙2𝑑+1

=
1

150
∑(

4

𝜆
)

𝛼

𝜆=0

[𝐶𝛼,𝜆ℱ2𝛼−2𝜆+8 − 𝐷𝛼,𝜆ℱ2𝛼−2𝜆+6], 

where 

𝐶𝛼,𝜆 = 3(𝛼 − 𝜆 + 3) (((𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27) − 5(𝛼 − 𝜆 + 5)), 

and 

𝐷𝛼,𝜆 = 2[(𝛼 − 𝜆 + 2)(𝛼 − 𝜆 + 6) +  27](𝛼 − 𝜆 + 4). 

Proof. For the proof of the Corollary 3.2.8, we will proceed similarly as in case of 

Corollary 3.2.6 and use equation (1.65) (x) in Theorem 3.2.4 for 𝜉 =
3

2
 with 𝑟 = 3 to 

achieve the desired results. ∎ 
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CHAPTER  4 

IDENTITIES ON CHEBYSHEV POLYNOMIALS OF 

THIRD AND FOURTH KINDS AND THEIR 

DERIVATIVES 

 

4.1 Introduction 

In the first section of this chapter, we shall derive the explicit formulae for the 

3rd and 4th kinds of Chebyshev polynomials and investigate their connections with the 

negative indexed Fibonacci polynomials. Similar results for their derivatives are 

obtained. 

In the second section, we will express sums of finite products of the 3rd and 4th 

kinds of Chebyshev polynomials as a linear combination of Jacobi, Fibonacci, 

Gegenbauer, Pell, Vieta-Fibonacci, and Vieta-Pell polynomials. Similar identities for 

Lucas and Fibonacci numbers are obtained. 

 4.2 Explicit formulae on Chebyshev polynomial  

This section focuses on the development of explicit formulae for the of Chebyshev 

polynomials of 3rd and 4th kinds and their derivatives and express their connections with 

the negative indexed Fibonacci polynomials. 

Many authors have investigated the Chebyshev polynomials and obtained several 

explicit formulations [45-49, 58]. For instance, Yang Li in [47,48] has derived the 

explicit formulae for the 1st and 2nd kinds of Chebyshev polynomials. Similarly, in this 

section, explicit formulae for the 3rd and 4th kinds of Chebyshev polynomials with odd 

and even indices as well as their derivatives will be derived, followed by an 

investigation of their relation with the negative indexed Fibonacci polynomials. The 

main findings are: 

Theorem 4.2.1. For any positive integer 𝛼 and 𝜁 ∈ R, 

𝒱2𝛼(𝜁) = (2𝜁)2𝛼 +∑(−1)𝛼−𝜈 22𝜈+1
𝛼−1

𝜈=0

(
𝛼 + 𝜈

2𝜈
) [
(𝜁)2𝜈

2
 + (

𝛼 − 𝜈

2𝜈 + 1
) (𝜁)2𝜈+1 ] ,  
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𝒱2𝛼+1(𝜁) = ∑(−1)𝛼−𝜈 22𝜈+1
𝛼

𝜈=0

(
𝛼 + 𝜈

2𝜈
) [ (

𝛼 + 𝜈 + 1

2𝜈 + 1
) (𝜁)2𝜈+1 −

(𝜁)2𝜈

2
 ] .  

Proof. From [48], for any positive integer 𝛼, we have 

𝒯2𝛼(𝜁) =∑
(−1)𝛼−𝜈 22𝜈 𝛼

𝛼 + 𝜈

𝛼

𝜈=0

(
𝛼 + 𝜈

2𝜈
) (𝜁)2𝜈 . (4.1) 

𝒯2𝛼+1(𝜁) =∑
(−1)𝛼−𝜈 22𝜈 (2𝛼 + 1)

𝛼 + 𝜈 + 1

𝛼

𝜈=0

(
𝛼 + 𝜈 + 1

2𝜈 + 1
) (𝜁)2𝜈+1. (4.2) 

Using the fact,    

𝒯′𝛼(𝜁) = 𝛼𝒰𝛼−1(𝜁). (4.3) 

𝒰2𝛼(𝜁) =  
1

(2𝛼 + 1)
𝒯′2𝛼+1(𝜁). 

and           

𝒯′2𝛼+1(𝜁) =∑
(−1)𝛼−𝜈22𝜈(2𝛼 + 1)

𝛼 + 𝜈 + 1

𝛼

𝜈=0

(
𝛼 + 𝜈 + 1

2𝜈 + 1
) (2𝜈 + 1)(𝜁)2𝜈 . 

which implies 

𝒰2𝛼(𝜁) = ∑
(−1)𝛼−𝜈 22𝜈 (2𝜈 + 1)

𝛼 + 𝜈 + 1

𝛼

𝜈=0

(
𝛼 + 𝜈 + 1

2𝜈 + 1
) (𝜁)2𝜈 .                            (4.4) 

Similarly,  

𝒰2𝛼+1(𝜁) =
1

2(𝛼 + 1)
𝒯′2(𝛼+1)(𝜁), 

implies 

𝒰2𝛼+1(𝜁) = ∑
(−1)𝛼−𝜈 22𝜈+2 (𝜈 + 1)

𝛼 + 𝜈 + 2

𝛼

𝜈=0

(
𝛼 + 𝜈 + 2

2𝜈 + 2
) (𝜁)2𝜈+1. (4.5) 

Consequently, 

𝒰2𝛼−1(𝜁) = ∑
(−1)𝛼−𝜈−1 22𝜈+2 (𝜈 + 1)

𝛼 + 𝜈 + 1

𝛼−1

𝜈=0

(
𝛼 + 𝜈 + 1

2𝜈 + 2
) (𝜁)2𝜈+1.      (4.6) 
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Thus, using Theorem 1.65 (ii) with equation (4.4) and (4.6), we proceed as, 

𝒱2𝛼(𝜁) = 𝒰2𝛼(𝜁) − 𝒰2𝛼−1(𝜁)

=∑
(−1)𝛼−𝜈 22𝜈 (2𝜈 + 1)

𝛼 + 𝜈 + 1

𝛼

𝜈=0

(
𝛼 + 𝜈 + 1

2𝜈 + 1
) (𝜁)2𝜈

−∑
(−1)𝛼−𝜈−1 22𝜈+2 (𝜈 + 1)

𝛼 + 𝜈 + 1

𝛼

𝜈=0

(
𝛼 + 𝜈 + 2

2𝜈 + 2
) (𝜁)2𝜈+1,

= ∑(−1)𝛼−𝜈 22𝜈 (
𝛼 + 𝜈

2𝜈
) (𝜁)2𝜈 

𝛼

𝜈=0

−∑
(−1)𝛼−𝜈−1 22𝜈+1 (𝛼 − 𝜈)

(2𝜈 + 1)

𝛼−1

𝜈=0

(
𝛼 + 𝜈

2𝜈
) (𝜁)2𝜈+1,

= (2𝜁)2𝛼   +  ∑(−1)𝛼−𝜈 22𝜈  (
𝛼 + 𝜈

2𝜈
) (𝜁)2𝜈 

𝛼−1

𝜈=0

   

+    ∑
(−1)𝛼−𝜈 22𝜈+1 (𝛼 − 𝜈)

(2𝜈 + 1)

𝛼−1

𝜈=0

(
𝛼 + 𝜈

2𝜈
) (𝜁)2𝜈+1. 

𝒱2𝛼(𝜁) = (2𝜁)
2𝛼 +∑(−1)𝛼−𝜈 22𝜈+1 (

𝛼 + 𝜈

2𝜈
) [
(𝜁)2𝜈

2
+
(𝛼 − 𝜈)

(2𝜈 + 1)
 (𝜁)2𝜈+1] .

𝛼−1

𝜈=0

(4.7) 

Similarly, using Theorem 1.65 (ii)) and (4.4) and (4.5) 

𝒱2𝛼+1(𝜁) = 𝒰2𝛼+1(𝜁) − 𝒰2𝛼(𝜁)

=∑
(−1)𝛼−𝜈 22𝜈+2 (𝜈 + 1)

𝛼 + 𝜈 + 2

𝛼

𝜈=0

(
𝛼 + 𝜈 + 2

2𝜈 + 2
) (𝜁)2𝜈+1

−∑
(−1)𝛼−𝜈 22𝜈 (2𝜈 + 1)

𝛼 + 𝜈 + 1

𝛼

𝜈=0

(
𝛼 + 𝜈 + 1

2𝜈 + 1
) (𝜁)2𝜈 ,

= ∑
(−1)𝛼−𝜈 22𝜈+1 (𝛼 + 𝜈 + 1)

(2𝜈 + 1)
 

𝛼

𝜈=0

(
𝛼 + 𝜈

2𝜈
) (𝜁)2𝜈+1

−∑(−1)𝛼−𝜈 22𝜈 (
𝛼 + 𝜈

2𝜈
) (𝜁)2𝜈 

𝛼

𝜈=0

, 
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𝒱2𝛼+1(𝜁) =∑(−1)𝛼−𝜈 22𝜈 (
𝛼 + 𝜈

2𝜈
) [
2(𝛼 + 𝜈 + 1)

(2𝜈 + 1)
 (𝜁)2𝜈+1 − (𝜁)2𝜈] 

𝛼

𝜈=0

, 

                     = ∑(−1)𝛼−𝜈 22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [
(𝛼 + 𝜈 + 1)

(2𝜈 + 1)
 (𝜁)2𝜈+1 −

(𝜁)2𝜈

2
] 

𝛼

𝜈=0

, 

Therefore, 

𝒱2𝛼+1(𝜁) =∑(−1)𝛼−𝜈 22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [
(𝛼 + 𝜈 + 1)

(2𝜈 + 1)
 (𝜁)2𝜈+1 −

(𝜁)2𝜈

2
] .

𝛼

𝜈=0

(4.8) 

This proves the Theorem 4.2.1. ∎                                                                                                                                                      

Theorem 4.2.2. For any positive integer 𝛼 and 𝜁 ∈ R,  

𝒲2𝛼(𝜁) = (2𝜁)2𝛼 +∑(−1)𝛼−𝜈 22𝜈+1
𝛼−1

𝜈=0

(
𝛼 + 𝜈

2𝜈
) [
(𝜁)2𝜈

2
− (

𝛼 − 𝜈

2𝜈 + 1
) (𝜁)2𝜈+1 ] ,  

𝒲2𝛼+1(𝜁)   =   ∑(−1)𝛼−𝜈   22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [  

(𝜁)2𝜈

2
+ (

𝛼 + 𝜈 + 1

2𝜈 + 1
) (𝜁)2𝜈+1 ] 

𝛼

𝜈=0

.  

Proof. Using Theorem 1.65 (xii) and equation (4.7), we have 

𝒲2𝛼(𝜁) = (−1)2𝛼𝒱2𝛼 (−𝜁)

= 𝒱2𝛼 (−𝜁) = (−2𝜁)
2𝛼

+∑(−1)𝛼−𝜈 22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [
(−𝜁)2𝜈

2
+
(𝛼 − 𝜈)

(2𝜈 + 1)
 (−𝜁)2𝜈+1] 

𝛼−1

𝜈=0

, 

                            = (2𝜁)2𝛼 +∑(−1)𝛼−𝜈 22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [
(𝜁)2𝜈

2
−
(𝛼 − 𝜈)

(2𝜈 + 1)
 (𝜁)2𝜈+1] 

𝛼−1

𝜈=0

. 

Therefore 

𝒲2𝛼(𝜁) = (2𝜁)
2𝛼 +∑(−1)𝛼−𝜈 22𝜈+1 (

𝛼 + 𝜈

2𝜈
) [
(𝜁)2𝜈

2
−
(𝛼 − 𝜈)

(2𝜈 + 1)
 (𝜁)2𝜈+1] .

𝛼−1

𝜈=0

 

Similarly, using Theorem 1.65 (xii) and equation (4.8), 

𝒲2𝛼+1(𝜁) = (−1)2𝛼+1𝒱2𝛼+1 (−𝜁) = −𝒱2𝛼+1(−𝜁),

= −∑(−1)𝛼−𝜈 22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [
(𝛼 + 𝜈 + 1)

(2𝜈 + 1)
 (−𝜁)2𝜈+1 −

(−𝜁)2𝜈

2
]

𝛼

𝜈=0
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                      = ∑(−1)𝛼−𝜈 22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [
(𝛼 + 𝜈 + 1)

(2𝜈 + 1)
 (𝜁)2𝜈+1 +

(𝜁)2𝜈

2
] 

𝛼

𝜈=0

, 

=∑(−1)𝛼−𝜈 22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [
(𝜁)2𝜈

2
+
(𝛼 + 𝜈 + 1)

(2𝜈 + 1)
 (𝜁)2𝜈+1] 

𝛼

𝜈=0

, 

Therefore, 

𝒲2𝛼+1(𝜁) =∑(−1)𝛼−𝜈 22𝜈+1 (
𝛼 + 𝜈

2𝜈
) [
(𝜁)2𝜈

2
+
(𝛼 + 𝜈 + 1)

(2𝜈 + 1)
 (𝜁)2𝜈+1]

𝛼

𝜈=0

. 

This proves the Theorem 4.2.2. ∎ 

Theorem 4.2.3. For integer n, r (> 0) and 𝜁 ∈ R, 

𝒱2𝛼
𝑟(𝜁) =  ∑

(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)! 

𝛼

𝜈=⌈
𝑟
2
⌉

𝜁2𝜈−𝑟

− ∑
(−1)𝛼−𝜈−1 22𝜈+1 (𝛼 + 𝜈)!

(𝛼 − 𝜈 − 1)! (2𝜈 + 1 − 𝑟)! 

𝛼−1

𝜈=⌈
𝑟−1
2
⌉

𝜁(2𝜈+1)−𝑟 

𝒱2𝛼+1
𝑟(𝜁) =  ∑

(−1)𝛼−𝜈 22𝜈+1 (𝛼 + 𝜈 + 1)!

(𝛼 − 𝜈)! (2𝜈 + 1 − 𝑟)! 

𝛼

𝜈=⌈
𝑟−1
2
⌉

𝜁(2𝜈+1)−𝑟

− ∑
(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)! 

𝛼−1

𝜈=⌈
𝑟
2
⌉

𝜁(2𝜈−𝑟) 

where ⌈𝜁⌉ denotes ceiling function. 

Proof. Differentiating equations (4.4), (4.5) and (4.6) 𝑟 times, we have 

𝒰𝑟
2𝛼(𝜁) = ∑

(−1)𝛼−𝜈 22𝜈 (2𝜈 + 1)

𝛼 + 𝜈 + 1

𝛼

𝜈=⌈
𝑟
2
⌉

(
𝛼 + 𝜈 + 1

2𝜈 + 1
) (2𝜈) (2𝜈 − 1) (2𝜈

− 2)…… . (2𝜈 − 𝑟 + 1) (𝜁)2𝜈−𝑟 , 
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      𝒰𝑟
2𝛼(𝜁)  = ∑

(−1)𝛼−𝜈 22𝜈 (2𝜈 + 1)(2𝜈)!

(𝛼 + 𝜈 + 1)(2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(
𝛼 + 𝜈 + 1

2𝜈 + 1
) (𝜁)2𝜈−𝑟 ,

= ∑
(−1)𝛼−𝜈 22𝜈 (2𝜈 + 1)(2𝜈)! (𝛼 + 𝜈 + 1)!

(𝛼 + 𝜈 + 1)(2𝜈 − 𝑟)! (2𝑘 + 1)! (𝛼 − 𝑘)!

𝛼

𝜈=⌈
𝑟
2
⌉

(𝜁)2𝜈−𝑟 . 

∴ 𝒰𝑟
2𝛼(𝜁) = ∑

(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(𝜁)2𝜈−𝑟 .                    (4.9)      

Similarly differentiating equations (4.5) and (4.6) 𝑟 times, we have 

𝒰𝑟
2𝛼+1(𝜁) = ∑

(−1)𝛼−𝜈 22𝜈+1(𝛼 + 𝜈 + 1)!

(𝛼 − 𝜈)! (2𝜈 + 1 − 𝑟)!

𝛼

𝜈=⌈
𝑟−1
2
⌉

 (𝜁)2𝜈+1−𝑟.                  (4.10) 

𝒰𝑟
2𝛼−1(𝜁) = ∑

(−1)𝛼−𝜈−1 22𝜈+1 (𝛼 + 𝜈)!

(2𝜈 + 1 − 𝑟)! (𝛼 − 𝜈 − 1)!

𝛼−1

𝜈=⌈
𝑟−1
2
⌉

(𝜁)2𝜈+1−𝑟.                          (4.11) 

Now, differentiating Theorem 1.65 (ii),  

𝒱𝑟𝛼(𝜁) = 𝒰
𝑟
𝛼(𝜁) − 𝒰

𝑟
𝛼−1(𝜁). 

which implies 

 𝒱𝑟2𝛼(𝜁) = 𝒰
𝑟
2𝛼(𝜁) − 𝒰

𝑟
2𝛼−1(𝜁)

= ∑
(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(𝜁)2𝜈−𝑟

− ∑
(−1)𝛼−𝜈−1 22𝜈+1 (𝛼 + 𝜈)!

(2𝜈 + 1 − 𝑟)! (𝛼 − 𝜈 − 1)!

𝛼−1

𝜈=⌈
𝑟−1
2
⌉

(𝜁)2𝜈+1−𝑟 , 

𝒱𝑟2𝛼(𝜁) = ∑
(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(𝜁)2𝜈−𝑟

+ ∑
(−1)𝛼−𝜈 22𝜈+1 (𝛼 + 𝜈)!

(2𝜈 + 1 − 𝑟)! (𝛼 − 𝜈 − 1)!

𝛼−1

𝜈=⌈
𝑟−1
2
⌉

(𝜁)2𝜈+1−𝑟 .                        (4.12) 
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Also,  

𝒱𝑟2𝛼+1(𝜁) = 𝒰
𝑟
2𝛼+1(𝜁) − 𝒰

𝑟
2𝛼(𝜁)

= ∑
(−1)𝛼−𝜈 22𝜈+1(𝛼 + 𝜈 + 1)!

(𝛼 − 𝜈)! (2𝜈 + 1 − 𝑟)!

𝛼

𝜈=⌈
𝑟−1
2
⌉

 (𝜁)2𝜈+1−𝑟

− ∑
(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(𝜁)2𝜈−𝑟 , 

Therefore, 

𝒱𝑟2𝛼+1(𝜁) = ∑ (−1)𝛼−𝜈 22𝜈+1
𝛼

𝜈=⌈
𝑟−1
2
⌉

(𝛼 + 𝜈 + 1)!

(𝛼 − 𝜈)! (2𝜈 + 1 − 𝑟)!
(𝜁)2𝜈+1−𝑟

− ∑
(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(𝜁)2𝜈−𝑟                                          (4.13) 

This proves the Theorem 4.2.3. ∎ 

Theorem 4.2.4. For any integer 𝑟 > 0 and 𝜁 ∈ R, 

𝒲2𝛼
𝑟(𝜁) = ∑

(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)! 

𝛼

𝜈=⌈
𝑟
2
⌉

𝜁2𝜈−𝑟

− ∑
(−1)𝛼−𝜈 22𝜈+1 (𝛼 + 𝜈)!

(𝛼 − 𝜈 − 1)! (2𝜈 + 1 − 𝑟)! 

𝛼−1

𝜈=⌈
𝑟−1
2
⌉

𝜁(2𝜈+1)−𝑟 , 

𝒲2𝛼+1
𝑟(𝜁) = ∑

(−1)𝛼−𝜈 22𝜈+1 (𝛼 + 𝜈 + 1)!

(𝛼 − 𝜈)! (2𝜈 + 1 − 𝑟)! 

𝛼

𝜈=⌈
𝑟−1
2
⌉

𝜁2𝜈−𝑟

+ ∑
(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)! 

𝛼−1

𝜈=⌈
𝑟
2
⌉

𝜁(2𝜈−𝑟), 

where ⌈𝜁⌉ represents ceiling function. 

Proof. Differentiating 1.65 (xii) r times we have  

𝒲𝑟
𝛼(𝜁) = (−1)

𝛼+1𝒱𝑟𝛼 (−𝜁). 

On replacing 𝛼 by 2𝛼 and using equations 4.12 and 4.13, we have 
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𝒲𝑟
2𝛼(𝜁) = (−1)

2𝛼+1𝒱𝑟2𝛼 (−𝜁) = −𝒱
𝑟
2𝛼 (−𝜁)

= ∑
(−1)𝛼−𝜈+1 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(−𝜁)2𝜈−𝑟

− ∑
(−1)𝛼−𝜈−2 22𝜈+1 (𝛼 + 𝜈)!

(2𝜈 + 1 − 𝑟)! (𝛼 − 𝜈 − 1)!

𝛼−1

𝜈=⌈
𝑟−1
2
⌉

(−𝜁)2𝜈+1−𝑟 

 

𝒲𝑟
2𝛼(𝜁) = ∑

(−1)𝛼−𝜈−𝑟+1 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(𝜁)2𝜈−𝑟

+ ∑
(−1)𝛼−𝜈−𝑟 22𝜈+1 (𝛼 + 𝜈)!

(2𝜈 + 1 − 𝑟)! (𝛼 − 𝜈 − 1)!

𝛼−1

𝜈=⌈
𝑟−1
2
⌉

(𝜁)2𝜈+1−𝑟 

 

Similarly, 

𝒲𝑟
2𝛼+1(𝜁) = (−1)

2𝛼+2 𝒱𝑟2𝛼+1 (−𝜁) = 𝒱𝑟2𝛼+1 (−𝜁)

= [ ∑
(−1)𝛼−𝜈 22𝜈+1(𝛼 + 𝜈 + 1)!

(𝛼 − 𝜈)! (2𝜈 + 1 − 𝑟)!

𝛼

𝜈=⌈
𝑟−1
2
⌉

 (−𝜁)2𝜈+1−𝑟

− ∑
(−1)𝛼−𝜈 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(−𝜁)2𝜈−𝑟] 

 

𝒲𝑟
2𝛼+1(𝜁) = ∑

(−1)𝛼−𝜈−𝑟+1 22𝜈+1(𝛼 + 𝜈 + 1)!

(𝛼 − 𝜈)! (2𝜈 + 1 − 𝑟)!

𝛼

𝜈=⌈
𝑟−1
2
⌉

 (𝜁)2𝜈+1−𝑟

− ∑
(−1)𝛼−𝜈−𝑟 22𝜈 (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 − 𝑟)!

𝛼

𝜈=⌈
𝑟
2
⌉

(𝜁)2𝜈−𝑟 

 

This proves the Theorem 4.2.4.∎ 
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Theorem 4.2.5. For any positive integer 𝛼 and 𝜁 ∈ R, 

𝒱2𝛼(𝜁)  = ∑  ∑
 (−1)𝛿+𝛼  22𝜈−1   (1 − 2𝛿)    (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

×

 𝛼+1

𝛿=1

 ℱ−(2𝛿−1)(𝜁)

+∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  ×

𝛼

𝛿=1

ℱ−(2𝛿)(𝜁), 

 𝒱2𝛼+1(𝜁) = ∑∑
(−1)𝛿+𝛼+2(𝛼 + 𝜈)!

(𝜈 − 𝛿 + 1)!

[
 
 
 
 

 22𝜈+2 𝛿 

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)!
ℱ−(2𝛿)(𝜁)

−
 22𝜈−1 (1 − 2𝛿)

(𝛼 − 𝜈)! (𝜈 + 𝛿)!
ℱ−(2𝛿−1)(𝜁) ]

 
 
 
 𝛼

𝜈=0

 

𝛼+1

𝛿=1

.  

Proof. For integer 𝛼 > 0, one can see that [48], 

𝒰2𝛼(𝜁) = ∑𝑐2𝛼,𝛿

+∞

𝛿=1

ℱ𝛿(𝜁), 

and             

𝒰2𝛼−1(𝜁) = ∑𝑐2𝛼−1,𝛿

+∞

𝛿=1

ℱ𝛿(𝜁), 

where, 

𝑐2𝛼,𝛿 = {
∑

 24𝜈+1 𝑖3𝛿+2𝛼+1𝛿(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (2𝜈 + 𝛿 + 1)‼ (2𝜈 − 𝛿 + 1)‼

𝛼

𝜈=0

 ,     𝛿 𝑖𝑠 𝑜𝑑𝑑 

0,                                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

, 

𝑐2𝛼−1,𝛿 = {
∑

 24𝜈+3 𝑖3𝛿+2𝛼 𝛿(𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 − 1)! (2𝜈 + 𝛿 + 2)‼ (2𝜈 − 𝛿 + 2)‼

𝛼

𝜈=0

   𝛿 𝑖𝑠 𝑜𝑑𝑑 

0,                                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. 

Using this, from [48], for any positive integer 𝛼, we have 

𝒰2𝛼(𝜁) = ∑∑
(−1)𝛿+𝛼 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ2𝛿−1(𝜁), (4.14) 

𝒰2𝛼−1(𝜁) = ∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  ×

𝛼

𝛿=1

ℱ2𝛿(𝜁), (4.15) 
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Again, 

𝒰2𝛼+1(𝜁) = ∑∑
(−1)𝛿+𝛼+1 22𝜈+2 𝛿 (𝛼 + 𝜈)!

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

  ×

𝛼+1

𝛿=1

ℱ2𝛿(𝜁). (4.16) 

Now using Theorem 1.65 (ii), equations (4.14), (4.15) and (4.16), we have 

𝒱2𝛼(𝜁) = 𝒰2𝛼(𝜁) − 𝒰2𝛼−1(𝜁)

= ∑∑
(−1)𝛿+𝛼 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ2𝛿−1(𝜁)

−∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  ×

𝛼

𝛿=1

ℱ2𝛿(𝜁), 

Using equation 1.12 (section 1.2, Chapter 1),  ℱ2𝛿−1(𝜁) = ℱ−(2𝛿−1)(𝜁) and ℱ2𝛿(𝜁) =

−ℱ−(2𝛿)(𝜁) 

𝒱2𝛼(𝜁) = ∑∑
(−1)𝛿+𝛼 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ−(2𝛿−1)(𝜁)

−∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  × (−1)

𝛼

𝛿=1

ℱ−(2𝛿)(𝜁), 

𝒱2𝛼(𝜁) = ∑  ∑
 (−1)𝛿+𝛼  22𝜈−1   (1 − 2𝛿)    (𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

×

 𝛼+1

𝛿=1

ℱ−(2𝛿−1)(𝜁)  

+∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  

𝛼

𝛿=1

×ℱ−(2𝛿)(𝜁)                                                                                               (4.17) 

Similarly, 

𝒱2𝛼+1(𝜁) = 𝒰2𝛼+1(𝜁) − 𝒰2𝛼(𝜁)

= ∑∑
(−1)𝛿+𝛼+1 22𝜈+2 𝛿 (𝛼 + 𝜈)!

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

  ×

𝛼+1

𝛿=1

ℱ2𝛿(𝜁)

−∑∑
(−1)𝛿+𝛼 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ2𝛿−1(𝜁) 
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𝒱2𝛼+1(𝜁) = ∑∑
(−1)𝛿+𝛼+1 22𝜈+2 𝛿 (𝛼 + 𝜈)!

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

  ×

𝛼+1

𝛿=1

(−1)ℱ−2𝛿(𝜁)

+∑∑
(−1)𝛿+𝛼+1 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ−(2𝛿−1)(𝜁) 

𝒱2𝛼+1(𝜁) = ∑∑
(−1)𝛿+𝛼(𝛼 + 𝜈)!

(𝜈 − 𝛿 + 1)!
[

 22𝜈+2 𝛿 

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)!
ℱ−(2𝛿)(𝜁)

𝛼

𝜈=0

𝛼+1

𝛿=1

−
 22𝜈−1 (1 − 2𝛿)

(𝛼 − 𝜈)! (𝜈 + 𝛿)!
ℱ−(2𝛿−1)(𝜁)]                                                     (4.18) 

This proves the Theorem 4.2.5.∎ 

Theorem 4.2.6. For any integer 𝛼 > 0 and 𝜁 ∈ R, 

𝒲2𝛼(𝜁) = ∑∑
(−1)𝛿+𝛼 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ−(2𝛿−1)(𝜁)

−∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  ×

𝛼

𝛿=1

ℱ−(2𝛿)(𝜁), 

𝒲2𝛼+1(𝜁) = ∑∑
(−1)𝛿+𝛼(𝛼 + 𝜈)!

(𝜈 − 𝛿 + 1)!

[
 
 
 
 

 22𝜈+2 𝛿 

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)!
ℱ−(2𝛿)(𝜁)

+
 22𝜈−1 (1 − 2𝛿)

(𝛼 − 𝜈)! (𝜈 + 𝛿)!
ℱ−(2𝛿−1)(𝜁) ]

 
 
 
 𝛼

𝜈=0

 

𝛼+1

𝛿=1

.  

Proof. Using equation 1.12 & 1.16 (section 1.2, Chapter 1), we have 

ℱ−(2𝛿−1)(−𝜁) = ℱ−(2𝛿−1)(𝜁), (4.19) 

 

and 

ℱ−(2𝛿)(−𝜁)    =  −ℱ−(2𝛿)(𝜁). (4.20) 

Using equations (4.19) and (4.20) in equation (4.17), we have  
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𝒲2𝛼(𝜁) = (−1)2𝛼𝒱2𝛼 (−𝜁) = 𝒱2𝛼 (−𝜁)

= ∑∑
(−1)𝛿+𝛼 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ−(2𝛿−1)(−𝜁)

+∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  ×

𝛼

𝛿=1

ℱ−(2𝛿)(−𝜁) 

⇒𝒲2𝛼(𝜁) = ∑∑
(−1)𝛿+𝛼 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ−(2𝛿−1)(𝜁)

+∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  

𝛼

𝛿=1

× (−1) ℱ−(2𝛿)(−𝜁) 

∴ 𝒲2𝛼(𝜁) = ∑∑
(−1)𝛿+𝛼 22𝜈−1 (1 − 2𝛿)(𝛼 + 𝜈)!

(𝛼 − 𝜈)! (𝜈 + 𝛿)! (𝜈 − 𝛿 + 1)!

𝛼

𝜈=0

 ×

𝛼+1

𝛿=1

ℱ−(2𝛿−1)(𝜁)

−∑∑
(−1)𝛿+𝛼 22𝜈+2 𝛿 (𝛼 + 𝜈 − 1)!

(𝛼 − 𝜈 + 1)! (𝜈 + 𝛿 + 1)! (𝜈 − 𝛿 + 1)!

𝛼−1

𝜈=0

  ×

𝛼

𝛿=1

ℱ−(2𝛿)(𝜁)          

Similarly, using equations (4.19) and (4.20) in equation (4.18), we have  

𝒲2𝛼+1(𝜁) = (−1)
2𝛼+1𝒱2𝛼+1 (−𝜁) = −𝒱2𝛼+1 (−𝜁)

= (−1)∑∑
(−1)𝛿+𝛼(𝛼 + 𝜈)!

(𝜈 − 𝛿 + 1)!
[

 22𝜈+2 𝛿 

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)!
ℱ−(2𝛿)(−𝜁)

𝛼

𝜈=0

𝛼+1

𝛿=1

−
 22𝜈−1 (1 − 2𝛿)

(𝛼 − 𝜈)! (𝜈 + 𝛿)!
ℱ−(2𝛿−1)(−𝜁)] 

⇒𝒲2𝛼+1(𝜁)

= (−1)∑∑
(−1)𝛿+𝛼(𝛼 + 𝜈)!

(𝜈 − 𝛿 + 1)!
[

 22𝜈+2 𝛿 

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)!
(−1)ℱ−(2𝛿)(𝜁)

𝛼

𝜈=0

𝛼+1

𝛿=1

−
 22𝜈−1 (1 − 2𝛿)

(𝛼 − 𝜈)! (𝜈 + 𝛿)!
ℱ−(2𝛿−1)(𝜁)]  
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∴ 𝒲2𝛼+1(𝜁) = ∑∑
(−1)𝛿+𝛼(𝛼 + 𝜈)!

(𝜈 − 𝛿 + 1)!
[

 22𝜈+2 𝛿 

(𝛼 − 𝜈 + 2)! (𝜈 + 𝛿 + 1)!
ℱ−(2𝛿)(𝜁)

𝛼

𝜈=0

𝛼+1

𝛿=1

+
 22𝜈−1 (1 − 2𝛿)

(𝛼 − 𝜈)! (𝜈 + 𝛿)!
ℱ−(2𝛿−1)(𝜁)]  

This proves the Theorem 4.2.5. ∎ 

 4.3 Sums of finite products of Chebyshev polynomials of the third and fourth 

kinds in other orthogonal polynomials. 

Before coming to the main results, it is important to revisit the basic definitions 

and concepts already discussed in section 1.2 of Chapter 1 regarding Jacobi, Pell, 

Gegenbauer, Fibonacci, Vieta-Pell, and Vieta-Fibonacci polynomials [11, 12, 37, 55, 

and 60] which are instrumental in the development of the essence of the content of this 

section. Here the summation representations of finite products of the 3rd and 4th kinds 

of Chebyshev polynomials in other orthogonal polynomials are studied. 

Many authors have analyzed and investigated Chebyshev polynomials and one 

such area is the classical linearization problem. For instance, Zhang [55], in 2002, 

studied summation problems of finite products of 2nd-kind Chebyshev polynomials, 

Lucas and Fibonacci numbers as given by the equation (1.82). Similar study was 

conducted by T. Kim et al. [56] in 2019 and obtained interesting results, especially, 

given by the equations (1.92)- (1.93). Following the pattern, D. Han and L. Xinging 

[73], similar summation representations for Lucas, Fibonacci and Chebyshev 

polynomials in terms of 1st-kind Chebyshev and Lucas polynomials are deduced. 

Similarly, following this pattern, we will write sums of the finite products of the 

3rd and 4th kinds of Chebyshev polynomials as a linear sum of Jacobi, Pell, Gegenbauer, 

Fibonacci, Vieta-Pell, and Vieta-Fibonacci polynomials. Analogous results for the 

Lucas and Fibonacci numbers are considered. The main results are: 

Lemma 4.3.1. For all positive integers 𝛼 and 𝜉 ∈ R, 

𝒫𝛼(𝜉) = ℱ𝛼(2𝜉). (4.21) 
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𝒫𝛼+1(𝜉) =
1

√(−1)𝛼
𝒰𝛼(√−1𝜉) =

1

𝑖𝛼
𝒰𝛼(𝑖𝜉). (4.22) 

𝑆𝛼(𝜉) = 𝒰𝛼 (
1

2
𝜉) . (4.23) 

𝒰𝛼(𝜉) = 𝑅𝛼+1(𝜉). (4.24) 

𝒰𝛼(𝜉) = 𝐶(𝛼: 1)(𝜉). (4.25) 

𝒰𝛼(𝜉) =
(𝛼 + 1)! Γ (

3
2)

Γ (𝛼 +
3
2)

𝒫 (𝛼:
1

2
,
1

2
) (𝜉). (4.26) 

Proof. This Lemma can easily be developed by utilizing the basic definitions and 

recurrence relations for Pell polynomials 𝒫𝛼(𝜉) (sub-section 1.2.10), Chebyshev 

polynomials of second kind 𝒰𝛼(𝜉) (sub-section 1.2.11(i)) Vieta-Fibonacci polynomials 

𝑆𝛼(𝜉) and Vieta-Pell polynomials 𝐶(𝛼: 𝜆)(𝜉) (sub-section 1.2.13),  Jacobi 

Polynomials( sub-section 1.2.14), Gegenbauer polynomials 𝒫(𝛼: 𝜆, β)(𝜉) (sub-section 

1.2.15).∎  

Theorem 4.3.1 For any integer 𝛼, 𝑟 ≥ 0, we have  

 

∑ 𝒱𝜎1(𝑖𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝑖𝜉). 𝒱𝜎3(𝑖𝜉).…𝒱𝜎𝑟+1(𝑖𝜉)   

=
1

2𝑟𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
) 𝑖𝛼−𝑟𝒫𝛼−𝑟+𝛾+1

𝑟 (𝜉), 

=
1

𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
) 𝑖𝛼−𝑟ℱ𝛼−𝑟+𝛾+1

𝑟 (2𝜉), 
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∑ 𝒲𝜎1
(𝑖𝜉).𝒲𝜎2

(𝑖𝜉).𝒲𝜎3
(𝑖𝜉).…𝒲𝜎𝑟+1

(𝑖𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑖𝛼−𝑟𝒫𝛼−𝑟+𝛾+1
𝑟 (𝜉),

=
1

𝑟!
∑ (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑖𝛼−𝑟ℱ𝛼−𝑟+𝛾+1
𝑟 (2𝜉), 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 &  (𝑟+1
𝛾
) = 0  for 𝛾 >  𝑟 + 1, 𝑖 = √−1 and   𝒫𝛼

𝑟(𝜉) &  ℱ𝛼
𝑟(𝜉) is  rth 

derivative of Pell polynomial and Fibonacci polynomial respectively. 

Proof. Replacing 𝜉 by 𝑖𝜉 in equations (1.92) and (1.93), we have 

∑ 𝒱𝜎1(𝑖𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝑖𝜉). 𝒱𝜎3(𝑖𝜉). …𝒱𝜎𝑟+1(𝑖𝜉)

=
1

2𝑟𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (𝑖𝜉),                                                                   (4.27) 

∑ 𝒲𝜎1
(𝑖𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

.𝒲𝜎2
(𝑖𝜉).𝒲𝜎3

(𝑖𝜉). …𝒲𝜎𝑟+1
(𝑖𝜉)

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (𝑖𝜉),                                                                            (4.28) 

Differentiating equations (4.21) and (4.22), r- times w.r.t 𝜉, we get 

𝒫𝛼
𝑟(𝜉) = 2𝑟ℱ𝛼

𝑟(2𝜉), (4.29) 

𝒰𝛼
𝑟 (𝑖𝜉) = 𝑖𝛼−𝑟𝒫𝛼+1

𝑟 (𝜉), (4.30) 

Using equations (4.29) and (4.30) in equations (4.27) and (4.28), we have 

∑ 𝒱𝜎1(𝑖𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝑖𝜉). 𝒱𝜎3(𝑖𝜉).…𝒱𝜎𝑟+1(𝑖𝜉)

=
1

2𝑟𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑖𝛼−𝑟𝒫𝛼−𝛾+𝑟+1
𝑟 (𝜉), 
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∑ 𝒱𝜎1(𝑖𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝑖𝜉). 𝒱𝜎3(𝑖𝜉).…𝒱𝜎𝑟+1(𝑖𝜉)

=
1

𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
) 𝑖𝛼−𝑟ℱ𝛼−𝛾+𝑟+1

𝑟 (2𝜉), 

∑ 𝒲𝜎1
(𝑖𝜉).𝒲𝜎2

(𝑖𝜉).𝒲𝜎3
(𝑖𝜉). …𝒲𝜎𝑟+1

(𝑖𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
) 𝑖𝛼−𝑟𝒫𝛼−𝛾+𝑟+1

𝑟 (𝜉)

𝛼

𝛾=0

=
1

𝑟!
∑(

𝑟 + 1

𝛾
) 𝑖𝛼−𝑟ℱ𝛼−𝛾+𝑟+1

𝑟 (2𝜉)

𝛼

𝛾=0

. 

Hence the Theorem 4.3.1 is established. ∎ 

Theorem 4.3.2 For any integer 𝛼, 𝑟 ≥ 0 and  𝜉 ∈ 𝑅, we have  

∑ 𝒱𝜎1(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝜉). 𝒱𝜎3(𝜉). …𝒱𝜎𝑟+1(𝜉)

=
1

2𝑟𝑟!

(𝛼 + 1)! Γ (
3
2)

Γ (𝛼 +
3
2)

∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒫𝑟 (𝛼 − 𝛾 + 𝑟:

1

2
,
1

2
) (𝜉)

=
1

2𝑟𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝐶𝑟(𝛼 − 𝛾 + 𝑟: 1)(𝜉), 

∑ 𝒲𝜎1
(𝜉).𝒲𝜎2

(𝜉).𝒲𝜎3
(𝜉).…𝒲𝜎𝑟+1

(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

=
1

2𝑟𝑟!

(𝛼 + 1)! Γ (
3
2)

Γ (𝛼 +
3
2)

∑(
𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒫𝑟 (𝛼 − 𝛾 + 𝑟:
1

2
,
1

2
) (𝜉)

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝐶𝑟(𝛼 − 𝛾 + 𝑟: 1)(𝜉), 

  where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 and  (𝑟+1
𝛾
) = 0  for 𝛾 >  𝑟 + 1, 𝑖 = √−1 and  𝒫𝑟(𝛼: 𝛽, 𝛾)(𝜉) and 
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𝐶𝑟(𝛼: 𝛽)(𝜉) is the rth derivative of Jacobi's polynomial and Gegenbauer polynomials 

respectively. 

Proof. Differentiating equations (4.25) and (4.26) 𝑟 times, we have 

𝒰𝛼
𝑟 (𝜉) = 𝐶𝑟(𝛼: 1)(𝜉) (4.31) 

𝒰𝛼
𝑟 (𝜉) =

(𝛼 + 1)! Γ (
3
2
)

Γ (𝛼 +
3
2)

𝒫𝑟 (𝛼:
1

2
,
1

2
) (𝜉) (4.32) 

Using equations (4.31) and (4.32) in equations (1.92) and (1.93), we have 

∑ 𝒱𝜎1(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝜉). 𝒱𝜎3(𝜉). …𝒱𝜎𝑟+1(𝜉)

=
1

2𝑟𝑟!

(𝛼 + 1)! Γ (
3
2)

Γ (𝛼 +
3
2
)

∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝒫𝑟 (𝛼 − 𝛾 + 𝑟:

1

2
,
1

2
) (𝜉) 

∴  ∑ 𝒱𝜎1(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝜉). 𝒱𝜎3(𝜉).…𝒱𝜎𝑟+1(𝜉)

=
1

2𝑟𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
)𝐶𝑟(𝛼 − 𝛾 + 𝑟: 1)(𝜉), 

∑ 𝒲𝜎1
(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

.𝒲𝜎2
(𝜉).𝒲𝜎3

(𝜉).…𝒲𝜎𝑟+1
(𝜉)

=
1

2𝑟𝑟!

(𝛼 + 1)! Γ (
3
2)

Γ (𝛼 +
3
2)

∑(
𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒫𝑟 (𝛼 − 𝛾 + 𝑟:
1

2
,
1

2
) (𝜉),

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝐶𝑟(𝛼 − 𝛾 + 𝑟: 1)(𝜉). 

Hence the Theorem 4.3.2 is proved. ∎ 

Theorem 4.3.3. For any integer 𝛼, 𝑟 ≥ 0 and  𝜉 ∈ 𝑅, 
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∑ 𝒱𝜎1 (
𝜉

2
)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2 (
𝜉

2
) . 𝒱𝜎3 (

𝜉

2
) .…𝒱𝜎𝑟+1 (

𝜉

2
)

=
1

𝑟!
∑(−1)𝛾
𝛼

𝛾=0

(
𝑟 + 1

𝛾
) 𝑆𝛼−𝛾+𝑟

𝑟 (𝜉), 

∑ 𝒲𝜎1 (
𝜉

2
)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

.𝒲𝜎2 (
𝜉

2
) .𝒲𝜎3 (

𝜉

2
) .…𝒲𝜎𝑟+1 (

𝜉

2
)    

=
1

𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑆𝛼−𝛾+𝑟
𝑟 (𝜉), 

 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 and  (𝑟+1
𝛾
) = 0  for 𝛾 >  𝑟 + 1, 𝑖 = √−1  and   𝑆𝛼

𝑟(𝜉) represents the  rth 

derivative of Vieta- Fibonacci polynomials. 

Proof. Replacing 𝜉by  
𝜉

2
  in equations (1.92) and (1.93), we get 

∑ 𝒱𝜎1 (
𝜉

2
)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2 (
𝜉

2
) . 𝒱𝜎3 (

𝜉

2
) .…𝒱𝜎𝑟+1 (

𝜉

2
)

=
1

2𝑟𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (

𝜉

2
).                                              (4.33) 

 

∑ 𝒲𝜎1 (
𝜉

2
)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

.𝒲𝜎2 (
𝜉

2
) .𝒲𝜎3 (

𝜉

2
) .…𝒲𝜎𝑟+1 (

𝜉

2
)                                           

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝑟
𝑟 (

𝜉

2
).                                                                                   (4.34) 

Differentiating (4.23) 𝑟-times, we have 

𝑆𝛼
𝑟(𝜉) =

1

2𝑟
𝒰𝛼
𝑟 (
1

2
𝜉) . (4.35) 

Using equation (4.35) in equations (4.33) and (4.34), we get 
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∑ 𝒱𝜎1 (
𝜉

2
)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2 (
𝜉

2
) . 𝒱𝜎3 (

𝜉

2
) . …𝒱𝜎𝑟+1 (

𝜉

2
)

=
1

𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑆𝛼−𝛾+𝑟
𝑟 (𝜉), 

∑ 𝒲𝜎1 (
𝜉

2
)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

.𝒲𝜎2 (
𝜉

2
) .𝒲𝜎3 (

𝜉

2
) . …𝒲𝜎𝑟+1 (

𝜉

2
)

=
1

𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑆𝛼−𝛾+𝑟
𝑟 (𝜉). 

This establishes the Theorem 4.3.3. ∎ 

Theorem 4.3.4. For integers 𝛼, 𝑟 ≥ 0 and  𝜉 ∈ 𝑅, we have  

∑ 𝒱𝜎1(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝜉). 𝒱𝜎3(𝜉).…𝒱𝜎𝑟+1(𝜉)

=
1

2𝑟𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑅𝛼−𝛾+𝑟+1
𝑟 (𝜉),                     

∑ 𝒲𝜎1
(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

.𝒲𝜎2
(𝜉).𝒲𝜎3

(𝜉).…𝒲𝜎𝑟+1
(𝜉)

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑅𝛼−𝛾+𝑟+1
𝑟 (𝜉)                           

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝑟 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝑟+1 = 𝛼 and  (𝑟+1
𝛾
) = 0  for 𝛾 >  𝑟 + 1, 𝑖 = √−1 and  𝑅𝛼

𝑟(𝜉) is rth derivative of 

Vieta- Pell polynomial. 

Proof. Differentiating (4.24)  𝑟 -times, we have 

𝒰𝛼
𝑟 (𝜉) = 𝑅𝛼+1

𝑟 (𝜉). (4.38) 

Using equation (4.38) in equations (1.92) and (1.93), we see that 

∑ 𝒱𝜎1(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. 𝒱𝜎2(𝜉). 𝒱𝜎3(𝜉).…𝒱𝜎𝑟+1(𝜉)

=
1

2𝑟𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑅𝛼−𝛾+𝑟+1
𝑟 (𝜉). 
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∑ 𝒲𝜎1
(𝜉)

𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

.𝒲𝜎2
(𝜉).𝒲𝜎3

(𝜉).…𝒲𝜎𝑟+1
(𝜉)

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑅𝛼−𝛾+𝑟+1
𝑟 (𝜉). 

This establishes the Theorem 4.3.4. ∎ 

 

Corollary 4.3.1. For integer 𝛼, 𝑟 ≥ 0 and  𝜉 ∈ 𝑅, we have 

∑ ℱ𝜎1
𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. ℱ𝜎2 . ℱ𝜎3 . …ℱ𝜎𝑟+1  

=
1

2𝑟𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑖𝛼−𝑟𝒫𝛼−𝛾+𝑟+1
𝑟 (−

3

2
𝑖) 

=
1

𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑖𝛼−𝑟ℱ𝛼−𝛾+𝑟+1
𝑟 (−3𝑖)          

                                         

=
1

2𝑟𝑟!

(𝛼 + 1)

𝒫𝛼 (𝛼:
1
2 ,
1
2)
(1)

∑(−1)𝛾 (
𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝒫𝑟 (𝛼 − 𝛾 + 𝑟:
1

2
,
1

2
) (
3

2
)      

=
1

2𝑟𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝐶𝑟(𝛼 − 𝛾 + 𝑟: 1) (
3

2
)             

=
1

𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑆𝛼−𝛾+𝑟
𝑟 (3)                                    

=
1

2𝑟𝑟!
∑(−1)𝛾 (

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑅𝛼−𝛾+𝑟+1
𝑟 (

3

2
)                        

Proof. By taking  𝜉 =
3

2𝑖
 in Theorem 4.3.1, 𝜉 =

3

2
 in Theorem 4.3.2, 𝜉 = 3 in Theorem 

4.3.3, 𝜉 =
3

2
 in Theorem 4.3.4, and using equation in Theorem 1.65(viii) establishes the 

Corollary 4.3.1. ∎ 

Corollary 4.3.2. For any integers  𝛼, 𝑟 ≥ 0 and 𝜉 ∈ 𝑅,  
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∑ ℒ𝜎1
𝜎1+𝜎2+𝜎3+⋯+𝜎𝑟+1=𝛼

. ℒ𝜎2 . ℒ𝜎3 . … ℒ𝜎𝑟+1 

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
) 𝑖𝛼−𝑟𝒫𝛼−𝛾+𝑟+1

𝑟 (−
3

2
𝑖)

𝛼

𝛾=0

 

=
1

𝑟!
∑(

𝑟 + 1

𝛾
) 𝑖𝛼−𝑟ℱ𝛼−𝛾+𝑟+1

𝑟 (−3𝑖)

𝛼

𝛾=0

          

                                   =
1

2𝑟𝑟!

(𝛼 + 1)

𝒫𝛼 (𝛼:
1
2 ,
1
2)
(1)

∑(
𝑟 + 1

𝛾
)𝒫𝑟 (𝛼 − 𝛾 + 𝑟:

1

2
,
1

2
) (
3

2
)

𝛼

𝛾=0

 

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝐶𝑟(𝛼 − 𝛾 + 𝑟: 1) (
3

2
)  

=
1

𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑆𝛼−𝛾+𝑟
𝑟 (3)                     

=
1

2𝑟𝑟!
∑(

𝑟 + 1

𝛾
)

𝛼

𝛾=0

𝑅𝛼−𝛾+𝑟+1
𝑟 (

3

2
)        

Proof. Similarly, by taking 𝜉 =
3

2𝑖
 in Theorem 4.3.1, 𝜉 =

3

2
 in Theorem 4.3.2, 𝜉 = 3   in 

Theorem 4.3.3, 𝜉 =
3

2
 in Theorem 4.3.4, and using Theorem 1.65(x) establishes the 

Corollary 4.3.2. ∎  
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Chapter 5 

SOME REPRESENTATIONS OF SUMS OF FINITE 

PRODUCTS OF PELL, FIBONACCI AND CHEBYSHEV 

POLYNOMIALS  

 

5.1 Introduction  

 The first section will focus on establishment of some more identities on 

representations of summations of finite products of Lucas and Fibonacci numbers and 

Fibonacci and Pell polynomials as a linear sum of derivatives of Pell polynomials, using 

their basic properties through elementary computations. Similar identities are obtained 

for the 3rd and 4th kinds of Chebyshev polynomials. 

In the second section, we will prove some more similar identities on finite 

products of negative indexed Lucas, Fibonacci, and Complex Fibonacci numbers. In 

terms of the 3rd and 4th kinds of Chebyshev polynomials, analogous results are obtained 

for Pell numbers and Fibonacci polynomials. 

5.2 Sums of finite products of Pell, Fibonacci, and Chebyshev polynomials of third 

and fourth kinds in Pell polynomials 

              Here we will develop some results expressing finite products of Lucas and 

Fibonacci numbers, Pell and Fibonacci polynomials as a linear sum of derived Pell 

polynomials, through elementary computations. Analogous identities are obtained for 

the 3rd and 4th kinds of Chebyshev polynomials. 

            Zhang [55] investigated the linear sum problem on 2nd kinds of Chebyshev 

polynomials and derived many identities, particularly, given by the equation (1.82). 

Similar results were observed by T. Kim et al. [51] for 1st kinds of Chebyshev 

polynomials and Lucas polynomials. In [56], T. Kim et al. have observed the sums of 

finite products of the 3rd and 4th kinds of Chebyshev polynomials which among others 

includes which are represented by equations (1.92)- (1.93). Analogous results were 

developed by W. Siyi [57] and D. Han and L. Xinging [74]. A. Patra and G.K. Panda 
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[59] also developed similar identities expressing finite products of Pell polynomials in 

other orthogonal polynomials.  

According to the preceding literature, previous works have developed identities 

representing finite products of Lucas and Fibonacci numbers, Fibonacci, Pell and Lucas 

polynomials, and Chebyshev polynomials of 3rd and 4th kind as a linear sum of 

derivatives of Lucas Polynomials, Fibonacci polynomials, or Chebyshev polynomials, 

but the similar results in terms of Pell polynomials have not been studied. So, this 

section is dedicated to the development of some more similar identities representing 

finite products of the Lucas and Fibonacci numbers and Pell, Fibonacci, and Chebyshev 

polynomials of 3rd and 4th kinds, primarily in terms of derivatives of the Pell 

polynomials, are obtained. The main findings of this section are: 

Lemma 5.2.1. For any non-negative integers 𝛼, the following identities holds 

i).  𝒫𝛼+1 (−
3

2
 𝑖) = 𝑖−𝛼 ℱ2(𝛼+1). 

ii).  𝒫𝛼+1 (
3

2
 𝑖) = 𝑖𝛼 ℱ2(𝛼+1). 

iii).  𝒫𝛼+1 (−2) =
𝑖𝛼 

2
ℱ3(𝛼+1). 

iv).  𝒱𝛼 (
3

2
 ) = ℱ2𝛼+1. 

v).  𝒲𝛼 (
3

2
 ) = ℒ2𝛼+1.  

Proof. (i) Take 𝜉 = −
3𝑖

2
 in equation 1.65 (xv), we have 

𝒰𝛼  ( 
3

2
) = 𝑖𝛼𝒫𝛼+1  (−

3

2
 𝑖). 

𝒫𝛼+1  (−
3

2
 𝑖) = 𝑖−𝛼𝒰𝛼  ( 

3

2
) . (5.1) 

Using   𝒰𝛼 (
3

2
) = ℱ2(𝛼+1)  in equation (5.1) we have 

𝒫𝛼+1  (−
3

2
 𝑖) = 𝑖−𝛼ℱ2(𝛼+1) . 

ii)  To establish this identity, we will proceed as above in case of (i) and using 

 𝒰𝛼 (−
3

2
) = (−1)𝛼 ℱ2(𝛼+1). 

iii) Taking 𝜉 = −2 in equation 1.65 (xv), we have 

𝒰𝛼  (−2𝑖) = 𝑖𝛼𝒫𝛼+1  (−2). 
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𝒫𝛼+1  (−2) = 𝑖−𝛼𝒰𝛼  ( −2𝑖) . (5.2) 

Using   𝒰𝛼 (−2𝑖) =
(−1)𝛼 

2
ℱ3(𝛼+1) in equation (5.2), we have 

 𝒫𝛼+1 (−2) =
𝑖𝛼

2
ℱ3(𝛼+1). 

iv)  From equation 1.65 (ii), we have 

 𝒱𝛼  ( 𝜉) =  𝒰𝛼  ( 𝜉) − 𝒰𝛼−1  ( 𝜉) (5.3) 

Taking 𝜉 =
3

2
  and using  𝒰𝛼 (

3

2
) = ℱ2(𝛼+1) in equation (5.3), we have  

 𝒱𝛼 (
3

2
 ) =  𝒰𝛼 (

3

2
 ) −  𝒰𝛼−1 (

3

2
 ) = ℱ2𝛼+2 − ℱ2𝛼 = ℱ2𝛼+1 

v)  Similarly, using equation 1.65 (iii) and proceeding as above in (iv), we can establish 

the result ∎ 

Lemma 5.2.2. For any integer 𝛼 ≥ 0, and 𝜉 ∈ 𝑅, we have the identity 

𝒫𝛼+1
′ (𝜉)  =  

(𝛼 + 1)

(1 + 𝜉2)
 𝒫𝛼(𝜉) +

𝛼𝜉

(1 + 𝜉2)
  𝒫𝛼+1(𝜉).  

where 𝒫𝛼(𝜉) is a Pell polynomial. 

Proof. From [57], we have 

(1 − 𝜉2)𝒰𝛼
′ (𝜉) = (𝛼 + 1)𝒰𝛼−1(𝜉) − 𝛼𝜉𝒰𝛼(𝜉).        (5.4) 

Replacing 𝜉 by 𝑖𝜉 in equation (5.4), we have  

(1 + 𝜉2)𝒰𝛼
′ (𝑖𝜉) = (𝛼 + 1)𝒰𝛼−1(𝑖𝜉) − 𝛼𝑖𝜉𝒰𝛼(𝑖𝜉).        (5.5) 

Differentiating equation 1.65 (xv), we have 

𝒰′
𝛼(𝑖𝜉) = 𝑖

𝛼−1  𝒫′𝛼+1 (𝜉). (5.6) 

Using equation (5.6) in equation (5.5), we have 

(1 + 𝜉2)𝑖𝛼−1 𝒫𝛼
′(𝜉) = (𝛼 + 1) 𝑖𝛼−1 𝒫𝛼(𝜉) − 𝛼 𝑖 𝜉 𝑖

𝛼 𝒫𝛼(𝜉), 

(1 + 𝜉2)𝒫𝛼+1
′ (𝜉)  =  (𝛼 + 1) 𝒫𝛼(𝜉) + 𝛼𝜉  𝒫𝛼+1(𝜉),  

𝒫𝛼+1
′ (𝜉)  =  

(𝛼 + 1)

(1 + 𝜉2)
 𝒫𝛼(𝜉) +

𝛼𝜉

(1 + 𝜉2)
  𝒫𝛼+1(𝜉).  

This proves the Lemma 5.2.2. ∎ 

Lemma 5.2.3. For any integer 𝛼 ≥ 0, and 𝜉 ∈ 𝑅, we have the identity 

𝒫𝛼
′′(𝜉) =

𝛼(𝛼 + 2)

(1 + 𝜉2)
𝒫𝛼+1(𝜉) −

3𝜉

(1 + 𝜉2)
𝒫′𝛼+1(𝜉).  

where 𝒫𝛼(𝜉) is a Pell polynomial. 
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Proof.  From [57], we have 

(1 − 𝜉2)𝒰𝛼
′′(𝜉) = 3𝜉 𝒰′

𝛼(𝜉) − 𝛼(𝛼 + 2) 𝒰𝛼(𝜉), (5.7) 

Replacing 𝜉 by 𝑖𝜉 in equation (5.7), we have  

(1 + 𝜉2) 𝒰𝛼
′′(𝑖𝜉) = 3𝜉𝑖 𝒰′

𝛼(𝑖𝜉) − 𝛼(𝛼 + 2) 𝒰𝛼(𝑖𝜉),       (5.8) 

Differentiating equation 1.65 (xv), we have 

𝒰′
𝛼(𝑖𝜉) = 𝑖

𝛼−1  𝒫′𝛼+1 (𝜉), (5.9) 

 

𝒰′′
𝛼(𝑖𝜉) = −𝑖𝛼  𝒫′′𝛼+1 (𝜉). (5.10) 

Using equation (5.9) and equation (5.10) in equation (5.8) and proceeding as above in 

Lemma 5.2.2, we have 

(1 + 𝜉2)𝒫𝛼
′′(𝜉) = 𝛼(𝛼 + 2)𝒫𝛼+1(𝜉) − 3𝜉𝒫

′
𝛼+1(𝜉),  

𝒫𝛼
′′(𝜉) =

𝛼(𝛼 + 2)

(1 + 𝜉2)
𝒫𝛼+1(𝜉) −

3𝜉

(1 + 𝜉2)
𝒫′𝛼+1(𝜉).  

This proves the Lemma 5.2.3. ∎ 

Lemma 5.2.4. For any integer 𝛼 ≥ 𝜆 > 0, and 𝜉 ∈ 𝑅 , we have the identity 

𝒫𝛼+1
𝜆 (𝜉) = −

1

(1 + 𝜉2)
[(2𝜆 − 1)𝜉  𝒫𝛼+1

𝜆−1(𝜉) + ((𝜆 − 2)𝜆 − 𝛼(𝛼 + 2)) 𝒫𝛼+1
𝜆−2(𝜉)]. 

where 𝒫𝛼(𝜉) is a Pell polynomial. 

Proof. From Lemma 5.2.2 and Lemma 5.2.3, 

 (1 + 𝜉2)𝒫𝛼+1
′ (𝜉)  =  (𝛼 + 1) 𝒫𝛼(𝜉) + 𝛼𝜉  𝒫𝛼+1(𝜉), (5.11) 

(1 + 𝜉2)𝒫𝛼
′′(𝜉) = 𝛼(𝛼 + 2)𝒫𝛼+1(𝜉) − 3𝜉𝒫

′
𝛼+1(𝜉), (5.12) 

Differentiating equation (5.12) (𝜆 − 2) times, and using equation (5.11) we obtain 

(1 + 𝜉2) 𝒫𝛼+1
𝜆 (𝜉) = −(2𝜆 − 1)𝜉  𝒫𝛼+1

𝜆−1(𝜉) − ((𝜆 − 2)𝜆 − 𝛼(𝛼 + 2)) 𝒫𝛼+1
𝜆−2(𝜉),  

𝒫𝛼+1
𝜆 (𝜉) = − 

1

(1 + 𝜉2)
[(2𝜆 − 1)𝜉  𝒫𝛼+1

𝜆−1(𝜉) + ((𝜆 − 2)𝜆 − 𝛼(𝛼 + 2)) 𝒫𝛼+1
𝜆−2(𝜉)],  

This proves the Lemma 5.2.4. ∎ 

Lemma 5.2.5. For any non-negative integers 𝛼,𝑘, and 𝜉 ∈ 𝑅, 

∑ 𝒫𝜎1+1(𝜉) ∙ 𝒫𝜎2+1(𝜉)⋯𝒫𝜎𝜆+1+1(𝜉)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

=
1

2𝜆  𝜆!
𝒫𝛼+𝜆+1
𝜆 (𝜉),  

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 and where 𝒫𝛼(𝜉) is a Pell polynomial. 
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Proof.  The Lemma 5.2.5 can be easily established by using the equation 1.65 (xv) in 

equation (1.82) ∎. 

Theorem 5.2.1. For any non-negative integers 𝛼 ≥ 𝜆 > 0, and 𝜉 ∈ 𝑅 then  

∑ 𝒫𝜎1+1(𝜉) ∙ 𝒫𝜎2+1(𝜉)⋯𝒫𝜎𝜆+1+1(𝜉)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

= −
1

2𝜆  𝜆! (1 + 𝜉2)
[(2𝜆 − 1)𝜉  𝒫𝛼+𝜆+1

𝜆−1 (𝜉)

+ (𝜆(𝜆 − 2) − (𝛼 + 𝜆 + 2)(𝛼 + 𝜆)) 𝒫𝛼+𝜆+1
𝜆−2 (𝜉)] 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼. 

Proof. Using Lemma 5.2.4 and Lemma 5.2.5, we get the desired result. ∎ 

Theorem 5.2.2. For any non-negative integers 𝛼 ≥ 𝜆 > 0, then the following identities 

hold: 

∑ ℱ𝜎1+1(𝜉) ∙ ℱ𝜎2+1(𝜉)⋯ℱ𝜎𝜆+1+1(𝜉)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

=
(−1)𝛼 

2𝜆−1  𝜆! (𝜉2 + 4)
[(2𝜆 − 1)𝜉  𝒫𝛼+𝜆+1

𝜆−1 (−
𝜉

2
)

−  2((𝜆 − 2)𝜆 − (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (−

𝜉

2
)] 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 . 

Proof: Replacing 𝜉 by −
𝜉

2
  in Theorem 5.2.1, we have 

∑ 𝒫𝜎1+1 (−
𝜉

2
) ∙ 𝒫𝜎2+1 (−

𝜉

2
)⋯𝒫𝜎𝜆+1+1 (−

𝜉

2
)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

= −
1

2𝜆  𝜆! (1 + (−
𝜉
2)

2

)

[(2𝜆 − 1) (−
𝜉

2
)𝒫𝛼+𝜆+1

𝜆−1 (−
𝜉

2
)

+ ((𝜆 − 2)𝜆

− (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (−

𝜉

2
)],                      (5.13) 

Replacing 𝜉 by 
𝜉

2
  in equation 1.65 (xv) and using ℱ𝛼(𝜉) = 𝑖

𝛼−1  𝒰𝛼−1 (−
𝜉𝑖

2
), we get 
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 𝒫𝛼+1 (−
𝜉

2
) = (−1)𝛼 ℱ𝛼+1(𝜉), (5.14) 

Using equation (5.14) in equation (5.13), we have 

∑ ℱ𝜎1+1(𝜉) ∙ ℱ𝜎2+1(𝜉)⋯ℱ𝜎𝜆+1+1(𝜉)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

=
(−1)𝛼+1 

2𝜆  𝜆! (1 + (−
𝜉
2
)
2

)

[(2𝜆 − 1) (−
𝜉

2
)  𝒫𝛼+𝜆+1

𝜆−1 (−
𝜉

2
)+ ((𝜆 − 2)𝜆

− (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (−

𝜉

2
)] ,

=  
(−1)𝛼+2 22 

2𝜆+1  𝜆! (4 + 𝜉2)
[(2𝜆 − 1)𝜉  𝒫𝛼+𝜆+1

𝜆−1 (−
𝜉

2
)− 2((𝜆 − 2)𝜆

− (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (−

𝜉

2
)], 

∴ ∑ ℱ𝜎1+1(𝜉) ∙ ℱ𝜎2+1(𝜉)⋯ℱ𝜎𝜆+1+1(𝜉)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

=
(−1)𝛼 

2𝜆−1  𝜆! (𝜉2 + 4)
[(2𝜆 − 1)𝜉  𝒫𝛼+𝜆+1

𝜆−1 (−
𝜉

2
)− 2((𝜆 − 2)

− (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (−

𝜉

2
)]. 

This establishes the Theorem 5.2.2. ∎ 

Theorem 5.2.3. For any non-negative integers 𝛼 ≥ 𝜆 > 0, we have the following 

identities: 

∑ ℱ2(𝜎1+1) ∙ ℱ2(𝜎2+1)⋯ℱ2(𝜎𝜆+1+1)
𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

= −
𝑖𝛼

2𝜆−1 . 5 . 𝜆!
[3𝑖 (2𝜆 − 1) 𝒫𝛼+𝜆+1

𝜆−1 (−
3𝑖

2
)

+  2((𝛼 + 𝜆)(𝛼 + 𝜆 + 2) − (𝜆 − 2)𝜆) 𝒫𝛼+𝜆+1
𝜆−2 (−

3𝑖

2
)]

=
1

2𝜆−1  . 5. 𝑖𝛼. 𝜆!
[3𝑖 (2𝜆 − 1) 𝒫𝛼+𝜆+1

𝜆−1 (
3𝑖

2
)

+  2((𝜆 − 2)𝜆 − (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (

3𝑖

2
)], 
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where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0, for  𝛾 >  𝜆 + 1. 

Proof. Taking 𝜉 = −
3𝑖

2
 in Theorem 5.2.1, we have 

∑ 𝒫𝜎1+1 (−
3𝑖

2
) ∙ 𝒫𝜎2+1 (−

3𝑖

2
)⋯𝒫𝜎𝜆+1+1 (−

3𝑖

2
)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

 

= −
1

2𝜆  𝜆! (1 + (−
3𝑖
2 )

2

)

[(2𝜆 − 1) (−
3𝑖

2
)  𝒫𝛼+𝜆+1

𝜆−1 (−
3𝑖

2
)+ ((𝜆 − 2)𝜆

− (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (−

3𝑖

2
)] , 

∑ 𝒫𝜎1+1 (−
3𝑖

2
) ∙ 𝒫𝜎2+1 (−

3𝑖

2
)⋯𝒫𝜎𝜆+1+1 (−

3𝑖

2
)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

= −
1

2𝜆−1  𝜆!  5
[3𝑖 (2𝜆 − 1)  𝒫𝛼+𝜆+1

𝜆−1 (−
3𝑖

2
)−2 ((𝜆 − 2)𝜆

− (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (−

3𝑖

2
)]. 

Now using Lemma 5.2.1(i), we have 

∑ ℱ2(𝜎1+1) ∙ ℱ2(𝜎2+1)⋯ℱ2(𝜎𝜆+1+1)
𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

= −
𝑖𝛼

2𝜆−1 . 5 . 𝜆!
[3𝑖 (2𝜆 − 1) 𝒫𝛼+𝜆+1

𝜆−1 (−
3𝑖

2
)

+  2((𝛼 + 𝜆)(𝛼 + 𝜆 + 2) − (𝜆 − 2)𝜆) 𝒫𝛼+𝜆+1
𝜆−2 (−

3𝑖

2
)]. 

Again, taking 𝜉 =
3𝑖

2
 in Theorem 5.2. 1 and using Lemma 5.2.1(ii), and proceeding as 

above, we get 

∑ ℱ2(𝜎1+1) ∙ ℱ2(𝜎2+1)⋯ℱ2(𝜎𝜆+1+1)
𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

=
1

2𝜆−1  . 5. 𝑖𝛼. 𝜆!
[3𝑖 (2𝜆 − 1) 𝒫𝛼+𝜆+1

𝜆−1 (
3𝑖

2
)

+  2((𝜆 − 2)𝜆 − (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (

3𝑖

2
)]. 

Thus, the Theorem 5.2.3 is established. ∎ 
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Theorem 5.2.4. For any non-negative integers 𝛼 ≥ 𝜆 > 0, we have the following 

identities: 

∑ ℱ3(𝜎1+1) ∙ ℱ3(𝜎2+1)⋯ℱ3(𝜎𝜆+1+1)
𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

=
(−1)𝛼

5. 𝜆!
[2(2𝜆 − 1) 𝒫𝛼+𝜆+1

𝜆−1 (−2)

+ ((𝛼 + 𝜆)(𝛼 + 𝜆 + 2) − (𝜆 − 2)𝜆) 𝒫𝛼+𝜆+1
𝜆−2 (−2)], 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0, for 𝛾 >  𝜆 + 1. 

Proof. Taking 𝜉 = −2 in Theorem 5.2.1, we have 

∑ 𝒫𝜎1+1(−2) ∙ 𝒫𝜎2+1(−2)⋯𝒫𝜎𝜆+1+1(−2)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

= −
1

2𝜆  𝜆! (1 + (−2)2)
[(2𝜆 − 1)(−2)  𝒫𝛼+𝜆+1

𝜆−1 (−2)+ ((𝜆 − 2)𝜆

− (𝛼 + 𝜆)(𝛼 + 𝜆 + 2)) 𝒫𝛼+𝜆+1
𝜆−2 (−2)], 

∑ 𝒫𝜎1+1(−2) ∙ 𝒫𝜎2+1(−2)⋯𝒫𝜎𝜆+1+1(−2)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

         

=
1

2𝜆  𝜆! 5
[2(2𝜆 − 1)  𝒫𝛼+𝜆+1

𝜆−1 (−2)

+ ((𝛼 + 𝜆)(𝛼 + 𝜆 + 2) − (𝜆 − 2)𝜆) 𝒫𝛼+𝜆+1
𝜆−2 (−2)], 

Now using Lemma 5.2.1(iii), we have 

∑ ℱ3(𝜎1+1) ∙ ℱ3(𝜎2+1)⋯ℱ3(𝜎𝜆+1+1)
𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

=
(−1)𝛼

5. 𝜆!
[2(2𝜆 − 1) 𝒫𝛼+𝜆+1

𝜆−1 (−2)

+ ((𝛼 + 𝜆)(𝛼 + 𝜆 + 2) − (𝜆 − 2)𝜆) 𝒫𝛼+𝜆+1
𝜆−2 (−2)]. 

Hence the Theorem 5.2.4 is established. ∎ 

Theorem 5.2.5. For any non-negative integers 𝛼 ≥ 𝜆 > 0, we have the following 

identities: 
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∑ 𝒱𝜎1(𝑖𝜉) ∙ 𝒱𝜎2(𝑖𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1(𝑖𝜉)

=
1

2𝜆  𝜆! (1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

𝜆 + 1

𝛾
) [(2𝜆 − 1)𝜉  𝒫𝛼−𝛾+𝜆+1

𝜆−1 (𝜉)

𝛼

𝛾=0

+(𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 2𝜆) 𝒫𝛼−𝛾+𝜆+1
𝜆−2 (𝜉)], 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0, for 𝛾 >  𝜆 + 1 and 𝑖 = √−1. 

Proof. Replacing 𝜉 by 𝑖𝜉 in equation (1.93), we have  

∑ 𝒱𝜎1(𝑖𝜉) ∙ 𝒱𝜎2(𝑖𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1(𝑖𝜉) 

=
1

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝛾+𝜆

𝜆 (𝑖𝜉). (5.15) 

Differentiating equation 1.65 (xv) w.r.t 𝜉, we get 

𝒰𝛼
𝜆(𝑖𝜉) = 𝑖𝛼−𝜆  𝒫𝛼+1 (𝜉),                     (5.16)  

Using equation (5.16) in equation (5.15), we have 

∑ 𝒱𝜎1(𝑖𝜉) ∙ 𝒱𝜎2(𝑖𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1(𝑖𝜉) 

=
1

2𝜆  𝜆!
∑(−1)𝛾𝑖𝛼−𝛾 (

𝜆 + 1

𝛾
)𝒫𝛼−𝛾+𝜆+1

𝜆 (𝜉)

𝛼

𝛾=0

(5.17) 

Using Lemma 5.2.4 in equation (5.17), we have 

∑ 𝒱𝜎1(𝑖𝜉) ∙ 𝒱𝜎2(𝑖𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1(𝑖𝜉)

=
1

2𝜆  𝜆! (1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

𝜆 + 1

𝛾
) [(2𝜆 − 1)𝜉  𝒫𝛼−𝛾+𝜆+1

𝜆−1 (𝜉)

𝛼

𝛾=0

+ ((𝜆 − 2)𝜆 − 𝛼(𝛼 + 2)) 𝒫𝛼−𝛾+𝜆+1
𝜆−2 (𝜉)] 

∑ 𝒱𝜎1(𝑖𝜉) ∙ 𝒱𝜎2(𝑖𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1(𝑖𝜉)

=
1

2𝜆  𝜆! (1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

𝜆 + 1

𝛾
) [(2𝜆 − 1)𝜉  𝒫𝛼−𝛾+𝜆+1

𝜆−1 (𝜉)

𝛼

𝛾=0

+ (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 2𝜆) 𝒫𝛼−𝛾+𝜆+1
𝜆−2 (𝜉)] 

which establishes the Theorem 5.2.5. ∎ 
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Theorem 5.2.6. For any non-negative integers 𝛼 ≥ 𝜆 > 0, the following identities 

holds: 

∑ 𝒲𝜎1
(𝑖𝜉) ∙ 𝒲𝜎2

(𝑖𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒲𝜎𝜆+1
(𝑖𝜉)

= −
1

2𝜆  𝜆! (1 + 𝜉2)
∑ 𝑖𝛼−𝛾 (

𝜆 + 1

𝛾
) [(2𝜆 − 1)𝜉  𝒫𝛼−𝛾+𝜆+1

𝜆−1 (𝜉)

𝛼

𝛾=0

+(𝛼

− 𝛾 + 2)(𝛼 − 𝛾 + 2𝜆)𝒫𝛼−𝛾+𝜆+1
𝜆−2 (𝜉)], 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0   for 𝛾 >  𝜆 + 1 and 𝑖 = √−1. 

Proof. Using equation (1.93) and proceeding as in Theorem 5.2.5, we can easily 

establish Theorem 5.2.6. ∎ 

Theorem 5.2.7. For any non-negative integers 𝛼 ≥ 𝜆 > 0, we have the following 

identities: 

∑ ℱ2𝜎1+1 ∙ ℱ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ2𝜎𝜆+1+1

=  
1

2𝜆−1 . 5. 𝜆!
  ∑(−1)𝛾+1𝑖𝛼−𝛾   (

𝜆 + 1

𝛾
)  [3𝑖(2𝜆

𝛼

𝛾=0

− 1)𝒫𝛼−𝛾+𝜆+1
𝜆−1 (−

3

2
𝑖)

− 2(𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 2𝜆) 𝒫𝛼−𝛾+𝜆+1
𝜆−2 (−

3

2
𝑖)], 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0   for 𝛾 >  𝜆 + 1 and 𝑖 = √−1. 

Proof. Replacing z by 𝜉 = −
3

2
𝑖 in Theorem 5.2.5, we have 
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∑ 𝒱𝜎1 (
3

2
) ∙ 𝒱𝜎2 (

3

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1 (
3

2
)

=
1

2𝜆𝜆! (1 + (−
3
2 𝑖)

2

)

∑(−1)𝛾+1𝑖𝛼−𝛾 (
𝜆 + 1

𝛾
) [(2𝜆

𝛼

𝛾=0

− 1) (−
3

2
𝑖)  𝒫𝛼−𝛾+𝜆+1

𝜆−1 (−
3

2
𝑖)+(𝛼 − 𝛾 + 2)(𝛼 − 𝛾

+ 2𝜆) 𝒫𝛼−𝛾+𝜆+1
𝜆−2 (−

3

2
𝑖)], 

 

∑ 𝒱𝜎1 (
3

2
) ∙ 𝒱𝜎2 (

3

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1 (
3

2
)

=   
1

2𝜆−1 . 5. 𝜆!
  ∑(−1)𝛾+1𝑖𝛼−𝛾   (

𝜆 + 1

𝛾
) [3𝑖(2𝜆

𝛼

𝛾=0

− 1)𝒫𝛼−𝛾+𝜆+1
𝜆−1 (−

3

2
𝑖) −2(𝛼 − 𝛾 + 2)(𝛼 − 𝛾

+ 2𝜆) 𝒫𝛼−𝛾+𝜆+1
𝜆−2 (−

3

2
𝑖)], 

Using Lemma 5.2.1(iv), we have 

∑ ℱ2𝜎1+1 ∙ ℱ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ2𝜎𝜆+1+1

=  
1

2𝜆−1 . 5. 𝜆!
  ∑(−1)𝛾+1𝑖𝛼−𝛾   (

𝜆 + 1

𝛾
)  [3𝑖(2𝜆

𝛼

𝛾=0

− 1)𝒫𝛼−𝛾+𝜆+1
𝜆−1 (−

3

2
𝑖)

− 2(𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 2𝜆) 𝒫𝛼−𝛾+𝜆+1
𝜆−2 (−

3

2
𝑖)] . ∎ 

Theorem 5.2.8. For any non-negative integers 𝛼 ≥ 𝜆 > 0, we have the following 

identities: 
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∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℒ2𝜎𝜆+1+1 

= −
1

2𝜆−1 . 5. 𝜆!
  ∑ 𝑖𝛼−𝛾   (

𝜆 + 1

𝛾
)  [3𝑖(2𝜆 − 1)𝒫𝛼−𝛾+𝜆+1

𝜆−1 (−
3

2
𝑖)

𝛼

𝛾=0

 

−2(𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 2𝜆) 𝒫𝛼−𝛾+𝜆+1
𝜆−2 (−

3

2
𝑖)] 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0   for 𝛾 >  𝜆 + 1 and 𝑖 = √−1. 

Proof. Replacing z by 𝜉 = −
3

2
𝑖 in Theorem 5.2.6 and proceeding as in Theorem 5.2.7, 

we get the desired result. ∎ 

Corollary 5.2.1. For any non-negative integer 𝛼, and  𝜉 ∈ 𝑅 , the following identities 

holds: 

∑ 𝒫𝔞+1(𝜉) ∙ 𝒫𝔟+1(𝜉).𝒫𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

= 𝐴𝛼(𝜉) 𝒫𝛼+3(𝜉) − 𝐵𝛼(𝜉)𝒫𝛼+2(𝜉), 

∑ 𝒫𝔞+1(𝜉) ∙ 𝒫𝔟+1(𝜉).𝒫𝑐+1(𝜉).𝒫𝑑+1(𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

= 𝐶𝛼(𝜉) 𝒫𝛼+3(𝜉) + 𝐷𝛼(𝜉) 𝒫𝛼+4(𝜉), 

where  

𝐴𝛼(𝜉) =
(𝛼 + 2)

8(1 + 𝜉2)2
[(𝛼 + 1)𝜉2 + (𝛼 + 4)],  

𝐵𝛼(𝜉) =
3𝜉(𝛼 + 3)

8(1 + 𝜉2)2
 , 

 𝐶𝛼(𝜉) =
(𝛼 + 4)

48(1 + 𝜉2)3
[(𝛼2 + 8𝛼 + 27)𝜉2 + (𝛼2 + 8𝛼 + 12)], 

𝐷𝛼(𝜉) =
(𝛼 + 3)𝜉

48(1 + 𝜉2)3
 [(𝛼2 + 3𝛼 + 2)𝜉2 + (𝛼2 + 3𝛼 − 13)]. 

Proof. Taking  𝜆 = 2 in Theorem 5.2.1, we have 
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∑ 𝒫𝔞+1(𝜉) ∙ 𝒫𝔟+1(𝜉).𝒫𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

= −
1

8(1 + 𝜉2)
[3𝜉𝒫′𝛼+3(𝜉) − (𝛼 + 2)(𝛼 + 4)𝒫𝛼+3(𝜉)], 

∑ 𝒫𝔞+1(𝜉) ∙ 𝒫𝔟+1(𝜉).𝒫𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

=
1

8(1 + 𝜉2)
[(𝛼 + 2)(𝛼 + 4)𝒫𝛼+3(𝜉) − 3𝜉𝒫

′
𝛼+3(𝜉)],

=
1

8(1 + 𝜉2)
(𝛼 + 2)(𝛼 + 4)𝒫𝛼+3(𝜉)

−
3𝜉

8(1 + 𝜉2)
[
(𝛼 + 3)

(1 + 𝜉2)
𝒫𝛼+2(𝜉) +

(𝛼 + 2)

(1 + 𝜉2)
 𝜉 𝒫𝛼+3(𝜉)] ,

=
(𝛼 + 2)

8(1 + 𝜉2)
[(𝛼 + 4) −

3𝜉2

(1 + 𝜉2)
]  𝒫𝛼+3(𝜉) −

3𝜉(𝛼 + 3)

8(1 + 𝜉2)2
𝒫𝛼+2(𝜉)

=
(𝛼 + 2)

8(1 + 𝜉2)2
[(𝛼 + 1)𝜉2 + (𝛼 + 4)] 𝒫𝛼+3(𝜉) −

3𝜉(𝛼 + 3)

8(1 + 𝜉2)2
𝒫𝛼+2(𝜉), 

Therefore, 

∑ 𝒫𝔞+1(𝜉) ∙ 𝒫𝔟+1(𝜉). 𝒫𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

= 𝐴𝛼(𝜉) 𝒫𝛼+3(𝜉) − 𝐵𝛼(𝜉)𝒫𝛼+2(𝜉),  

where, 

𝐴𝛼(𝜉) =
(𝛼 + 2)

8(1 + 𝜉2)2
[(𝛼 + 1)𝜉2 + (𝛼 + 4)],    𝐵𝛼(𝜉) =

3𝜉(𝛼 + 3)

8(1 + 𝜉2)2
. 

Taking  𝜆 = 3 in Theorem 5.2.1, we have 

∑ 𝒫𝔞+1(𝜉) ∙ 𝒫𝔟+1(𝜉). 𝒫𝑐+1(𝜉).𝒫𝑑+1(𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

  

= −
1

48(1 + 𝜉2)
[5𝜉𝒫′′𝛼+4(𝜉) + (3 − (𝛼 + 3)(𝛼 + 5))𝒫

′
𝛼+4(𝜉)],

=
1

48(1 + 𝜉2)
[(𝛼 + 3)(𝛼 + 5) − 3]𝒫′𝛼+4(𝜉) − 5𝜉𝒫

′′
𝛼+4(𝜉),

=
1

48(1 + 𝜉2)
[(𝛼 + 3)(𝛼 + 5) − 3]𝒫′𝛼+4(𝜉)

−
5𝜉

48(1 + 𝜉2)
[
(𝛼 + 3)(𝛼 + 5)

(1 + 𝜉2)
𝒫𝛼+4(𝜉) −

3𝜉

(1 + 𝜉2)
  𝒫′𝛼+4(𝜉)], 
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             =
1

48(1 + 𝜉2)
[((𝛼 + 3)(𝛼 + 5) − 3) +

15𝜉2

(1 + 𝜉2)
]𝒫′𝛼+4(𝜉)

−
5𝜉 (𝛼 + 3)(𝛼 + 5)

48 (1 + 𝜉2)2
𝒫𝛼+4(𝜉), 

∑ 𝒫𝔞+1(𝜉) ∙ 𝒫𝔟+1(𝜉).𝒫𝑐+1(𝜉). 𝒫𝑑+1(𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

=
1

48(1 + 𝜉2)
[((𝛼 + 3)(𝛼 + 5) − 3) +

15𝜉2

(1 + 𝜉2)
] [
(𝛼 + 4)

(1 + 𝜉2)
𝒫𝛼+3(𝜉)

+
(𝛼 + 3)𝜉

(1 + 𝜉2)
 𝒫𝛼+4(𝜉)] −

5𝜉 (𝛼 + 3)(𝛼 + 5)

48 (1 + 𝜉2)2
𝒫𝛼+4(𝜉), 

              =
(𝛼 + 4)

48(1 + 𝜉2)3
[((𝛼 + 3)(𝛼 + 5) − 3)(1 + 𝜉2)

+ 15𝜉2] 𝒫𝛼+3(𝜉)                          

+
(𝛼 + 3)𝜉

48(1 + 𝜉2)3
 [((𝛼 + 3)(𝛼 + 5) − 3)(1 + 𝜉2) + 15𝜉2

− 5 (𝛼 + 5)(1 + 𝜉2)]𝒫𝛼+4(𝜉), 

                  =
(𝛼 + 4)

48(1 + 𝜉2)3
[(𝛼2 + 8𝛼 + 27)𝜉2 + (𝛼2 + 8𝛼 + 12)] 𝒫𝛼+3(𝜉)                 

+
(𝛼 + 3)𝜉

48(1 + 𝜉2)3
 [(𝛼2 + 3𝛼 + 2)𝜉2 + (𝛼2 + 3𝛼 − 13)]𝒫𝛼+4(𝜉), 

 

Therefore, 

∑ 𝒫𝔞+1(𝜉) ∙ 𝒫𝔟+1(𝜉).𝒫𝑐+1(𝜉).𝒫𝑑+1(𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

= 𝐶𝛼(𝜉) 𝒫𝛼+3(𝜉) + 𝐷𝛼(𝜉) 𝒫𝛼+4(𝜉), 

where 

𝐶𝛼(𝜉) =
(𝛼 + 4)

48(1 + 𝜉2)3
[(𝛼2 + 8𝛼 + 27)𝜉2 + (𝛼2 + 8𝛼 + 12)],  

  𝐷𝛼(𝜉) =
(𝛼 + 3)𝜉

48(1 + 𝜉2)3
 [(𝛼2 + 3𝛼 + 2)𝜉2 + (𝛼2 + 3𝛼 − 13)]. 

Thus, the Corollary 5.2.1 is established. ∎ 



106 

 

Corollary 5.2.2. For any non-negative integer 𝛼, and 𝜉 ∈ 𝑅, the following identities 

holds: 

∑ ℱ𝔞+1(𝜉) ∙ ℱ𝔟+1(𝜉). ℱ𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

=
(𝛼 + 2)

2(𝜉2 + 4)2
[(𝛼 + 1)𝜉2 + 4(𝛼 + 4)]ℱ𝛼+3(𝜉) −

3𝜉(𝛼 + 3)

(𝜉2 + 4)2
 ℱ𝛼+2(𝜉), 

∑ ℱ𝔞+1(𝜉) ∙ ℱ𝔟+1(𝜉). ℱ𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

ℱ𝑑+1(𝜉)

=
(𝛼 + 4)

3(𝜉2 + 4)3
[(𝛼2 + 8𝛼 + 27)𝜉2 + 4(𝛼2 + 8𝛼 + 12)]ℱ𝛼+3(𝜉)

+
(𝛼 + 3) 𝜉

6(𝜉2 + 4)3
[(𝛼2 + 3𝛼 + 2)𝜉2 + 4(𝛼2 + 3𝛼 − 13)] ℱ𝛼+4(𝜉), 

Proof. Taking  𝜆 = 2 in Theorem 5.2.2, we have 

∑ ℱ𝔞+1(𝜉) ∙ ℱ𝔟+1(𝜉). ℱ𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

=
(−1)𝛼 

4  (𝜉2 + 4)
[3𝜉 𝒫′𝛼+3 (−

𝜉

2
)

+ 2(𝛼 + 2)(𝛼

+ 4)  𝒫𝛼+3 (−
𝜉

2
)],                                                                              (5.18) 

Using Lemma 5.2.1, we have 

𝒫𝛼+3
′ (−

𝜉

2
)  =  

4 (𝛼 + 3)

(𝜉2 + 4)
 𝒫𝛼+2 (−

𝜉

2
) −

2(𝛼 + 2)𝜉

(𝜉2 + 4)
  𝒫𝛼+3 (−

𝜉

2
) , (5.19) 

By using equation (5.18) in equation (5.19), we have 

∑ ℱ𝔞+1(𝜉) ∙ ℱ𝔟+1(𝜉). ℱ𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

=
(−1)𝛼 

4  (𝜉2 + 4)
[3𝜉 (

4 (𝛼 + 3)

(𝜉2 + 4)
 𝒫𝛼+2 (−

𝜉

2
)

−
2(𝛼 + 2)𝜉

(𝜉2 + 4)
  𝒫𝛼+3 (−

𝜉

2
))  +  2(𝛼 + 2)(𝛼 + 4)  𝒫𝛼+3 (−

𝜉

2
)], 
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= 
(−1)𝛼 

4  (𝜉2 + 4)
[ 
12𝜉 (𝛼 + 3)

(𝜉2 + 4)
 𝒫𝛼+2 (−

𝜉

2
)

− 2(𝛼 + 2) (
3𝜉2

(𝜉2 + 4)
− (𝛼 + 4)  )𝒫𝛼+3 (−

𝜉

2
)], 

∑ ℱ𝔞+1(𝜉) ∙ ℱ𝔟+1(𝜉). ℱ𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

=
(−1)𝛼 

4  (𝜉2 + 4)
[ 
12𝜉 (𝛼 + 3)

(𝜉2 + 4)
 𝒫𝛼+2 (−

𝜉

2
)

− 2(𝛼 + 2) (
3𝜉2

(𝜉2 + 4)
− (𝛼 + 4)  )𝒫𝛼+3 (−

𝜉

2
)], 

Now using equation (5.14), we have 

∑ ℱ𝔞+1(𝜉) ∙ ℱ𝔟+1(𝜉). ℱ𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

= −
1

2 (𝜉2 + 4)2  
{6𝜉 (𝛼 + 3) ℱ𝛼+2(𝜉)

− (𝛼 + 2)[(𝛼 + 1)𝜉2 + 4(𝛼 + 4)]ℱ𝛼+3(𝜉)},

=
(𝛼 + 2)

2(𝜉2 + 4)2
[(𝛼 + 1)𝜉2 + 4(𝛼 + 4)]ℱ𝛼+3(𝜉) −

3𝜉(𝛼 + 3)

(𝜉2 + 4)2
 ℱ𝛼+2(𝜉). 

Again Taking  𝜆 = 3 in Theorem 5.2.2, and using Lemma 5.2.2 and Lemma 5.2.3 and 

using equation (5.14) and proceeding as above, we have 

∑ ℱ𝔞+1(𝜉) ∙ ℱ𝔟+1(𝜉). ℱ𝑐+1(𝜉)

𝔞+𝔟+𝑐=𝛼

ℱ𝑑+1(𝜉)

=
(𝛼 + 4)

3(𝜉2 + 4)3
[(𝛼2 + 8𝛼 + 27)𝜉2 + 4(𝛼2 + 8𝛼 + 12)]ℱ𝛼+3(𝜉)

+
(𝛼 + 3) 𝜉

6(𝜉2 + 4)3
[(𝛼2 + 3𝛼 + 2)𝜉2 + 4(𝛼2 + 3𝛼 − 13)] ℱ𝛼+4(𝜉). 

This establishes the Corollary 5.2.2. ∎ 

Corollary 5.2. 3. For any non-negative integers 𝛼, we have the following identities 

∑ ℱ2(𝔞+1) ∙ ℱ2(𝔟+1). ℱ2(𝑐+1)
𝔞+𝔟+𝑐=𝛼

=
1

50
[18 (𝛼 + 3)ℱ2𝛼+4 + (𝛼 + 2)(5𝛼 − 7) ℱ2𝛼+6]. 
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∑ ℱ2(𝔞+1) ∙ ℱ2(𝔟+1). ℱ2(𝑐+1). ℱ2(𝑑+1)
𝔞+𝔟+𝑐+𝑑=𝛼

   

=
1

150
 [3(𝛼 + 3)(𝛼2 + 3𝛼 + 14) ℱ2𝛼+8 − 2(𝛼 + 4)(𝛼

2 + 8𝛼 + 39)ℱ2𝛼+6]. 

Proof.  Taking  𝜆 = 2 in Theorem 5.2.3, we have 

∑ ℱ2(𝔞+1) ∙ ℱ2(𝔟+1). ℱ2(𝑐+1)
𝔞+𝔟+𝑐=𝛼

= −
𝑖𝛼

20
[9𝑖 𝒫′𝛼+3 (−

3

2
 𝑖)

+ 2(𝛼 + 2)(𝛼 + 4)𝒫𝛼+3 (−
3

2
 𝑖)],      (5.20) 

Using Lemma 5.2.2 

𝒫𝛼+3
′ (−

3

2
 𝑖)  =  −

4(𝛼 + 3)

5
 𝒫𝛼+2 (−

3

2
 𝑖) +

6𝑖

5
  (𝛼 + 2)𝒫𝛼+3 (−

3

2
 𝑖) , (5.21) 

From equation (5.21) and equation (5.20), we have 

∑ ℱ2(𝔞+1) ∙ ℱ2(𝔟+1). ℱ2(𝑐+1)
𝔞+𝔟+𝑐=𝛼

= −
𝑖𝛼

20
[9𝑖 (−

4(𝛼 + 3)

5
 𝒫𝛼+2 (−

3

2
 𝑖) +

6𝑖

5
  (𝛼 + 2)𝒫𝛼+3 (−

3

2
 𝑖))

+ 2(𝛼 + 2)(𝛼 + 4)𝒫𝛼+3 (−
3

2
 𝑖)], 

∑ ℱ2(𝔞+1) ∙ ℱ2(𝔟+1). ℱ2(𝑐+1)
𝔞+𝔟+𝑐=𝛼

= −
𝑖𝛼

50
[−18𝑖(𝛼 + 3) 𝒫𝛼+2 (−

3

2
 𝑖)

+ (𝛼 + 2)(5𝛼 − 7)𝒫𝛼+3 (−
3

2
 𝑖)], 

Using Lemma 5.2.1(i), we have 

∑ ℱ2(𝔞+1) ∙ ℱ2(𝔟+1). ℱ2(𝑐+1)
𝔞+𝔟+𝑐=𝛼

= −
𝑖𝛼

50
[−18𝑖(𝛼 + 3) 

ℱ2𝛼+4
𝑖𝛼+1

+ (𝛼 + 2)(5𝛼 − 7) 
ℱ2𝛼+6
𝑖𝛼+2

], 
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∑ ℱ2(𝔞+1) ∙ ℱ2(𝔟+1). ℱ2(c+1)
𝔞+𝔟+𝑐=𝛼

=
1

50
[18 (𝛼 + 3)ℱ2𝛼+4 + (𝛼 + 2)(5𝛼 − 7) ℱ2𝛼+6]. 

Again, taking  𝜆 = 3 in Theorem 5.2.3 and using Lemma 5.2.2 and Lemma 5.2.3, with 

𝜉 = −
3

2
 𝑖 and proceeding as above, we have 

∑ ℱ2(𝔞+1) ∙ ℱ2(𝔟+1). ℱ2(c+1). ℱ2(𝑑+1)
𝔞+𝔟+𝑐+𝑑=𝛼

=
1

150
 [3(𝛼 + 3)(𝛼2 + 3𝛼 + 14) ℱ2𝛼+8

− 2(𝛼 + 4)(𝛼2 + 8𝛼 + 39)ℱ2𝛼+6]. 

This establishes the Corollary 5.2.3.∎ 

Corollary 5.2.4. For any non-negative integer 𝛼 , the following identities holds: 

(𝑖) ∑ ℱ3(𝔞+1) ∙ ℱ3(𝔟+1). ℱ3(c+1)
𝔞+𝔟+𝑐=𝛼

=
1

100
[(𝛼 + 2)(5𝛼 − 18)ℱ3𝛼+9 − 2(𝛼 + 3) ℱ3𝛼+6], 

 

(𝑖𝑖) ∑ ℱ3(𝔞+1) ∙ ℱ3(𝔟+1). ℱ3(c+1). ℱ3(𝑑+1)
𝔞+𝔟+𝑐+𝑑=𝛼

=
1

150
 [(𝛼 + 4)(𝛼2 + 8𝛼 + 24) ℱ3𝛼+9

+ 2(𝛼 + 3)(𝛼2 + 3𝛼 − 1)ℱ3𝛼+12]. 

 

Proof.  Taking  𝜆 = 2 in Theorem 5.2.4, we have 

∑ ℱ3(𝔞+1) ∙ ℱ3(𝔟+1). ℱ3(𝑐+1)
𝔞+𝔟+𝑐=𝛼

=
(−1)𝛼

10
[6 𝒫′𝛼+3(−2)

+ (𝛼 + 2)(𝛼 + 4)𝒫𝛼+3(−2)]                  (5.22)   
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Using Lemma 5.2.2 

𝒫𝛼+3
′ (−2)  =  

(𝛼 + 3)

5
 𝒫𝛼+2(−2) −

2

5
  (𝛼 + 2)𝒫𝛼+3(−2) (5.23) 

From equation (5.23) and equation (5.22) with Lemma 5.2.1(iii) 

∑ ℱ3(𝔞+1) ∙ ℱ3(𝔟+1). ℱ3(𝑐+1)
𝔞+𝔟+𝑐=𝛼

=
(−1)𝛼

10
[6(

(𝛼 + 3)

5
 𝒫𝛼+2(−2) −

2

5
  (𝛼 + 2)𝒫𝛼+3(−2)) 

+ (𝛼 + 2)(𝛼 + 4)𝒫𝛼+3(−2)]   

∑ ℱ3(𝔞+1) ∙ ℱ3(𝔟+1). ℱ3(𝑐+1)
𝔞+𝔟+𝑐=𝛼

=
(−1)𝛼

50
[2(𝛼 + 3) 𝒫𝛼+2(−2) + (𝛼 + 2)(5𝛼 − 18)𝒫𝛼+3(−2)]     

 

Using Lemma 5.2.1 (iii), we have  

 

∑ ℱ3(𝔞+1) ∙ ℱ3(𝔟+1). ℱ3(𝑐+1)
𝔞+𝔟+𝑐=𝛼

= 
1

100 
 [ (𝛼 + 2) (5𝛼 − 18) ℱ3𝛼+9 − 2 (𝛼 + 3)  ℱ3𝛼+6]  

 

Again, taking  𝜆 = 3 in Theorem 5.2.4, and using Lemma 5.2.2 and Lemma 5.2.3, with 

𝜉 = −2  and proceeding as above, we have 

 

∑ ℱ3(𝔞+1) ∙ ℱ3(𝔟+1). ℱ3(𝑐+1). ℱ3(𝑑+1)
𝔞+𝔟+𝑐+𝑑=𝛼

=
1

150
 [(𝛼 + 4)(𝛼2 + 8𝛼 + 24) ℱ3𝛼+9

+ 2(𝛼 + 3)(𝛼2 + 3𝛼 − 1)ℱ3𝛼+12] 

This establishes the Corollary 5.2.4. ∎ 
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Corollary 5.2.5. For any non-negative integers 𝛼,and  𝜉 ∈ 𝑅, we have the following 

identities: 

∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐=𝛼

𝒱𝑐(𝑖𝜉)

=
1

8(1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

3

𝛾
) {3𝜉 (𝛼 − 𝛾 + 3)  𝒫𝛼−𝛾+2(𝜉)

𝛼

𝛾=0

− (𝛼 − 𝛾 + 2)[(𝛼 − 𝛾 + 1)𝜉2 + (𝛼 − 𝛾 + 4)] 𝒫𝛼−𝛾+3(𝜉)}, 

 

∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

𝒱𝑐(𝑖𝜉)𝒱𝑑(𝑖𝜉)

=
1

48(1 + 𝜉2)3
∑(−1)𝛾+1𝑖𝛼−𝛾 (

4

𝛾
) [(𝛼 − 𝛾

𝛼

𝛾=0

+ 3)𝜉[(5(𝛼 − 𝛾 + 5) − (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6))(1 + 𝜉2)

− 15𝜉2] 𝒫𝛼−𝛾+4(𝜉) −(𝛼 − 𝛾 + 4)[15 𝜉
2

+ (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6)(1 + 𝜉2)  ]𝒫𝛼−𝛾+3(𝜉)] 

 

Proof.  Taking in Theorem 5.2.5, we have 

 

∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐=𝛼

𝒱𝑐(𝑖𝜉) =
1

8(1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

3

𝛾
) 3𝜉 {𝒫′𝛼−𝛾+3(𝜉)

𝛼

𝛾=0

                                                                         −(𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 4) 𝒫𝛼−𝛾+3(𝜉) }, (5.24)

 

From Lemma 5.2.2  

 

𝒫𝛼−𝛾+3
′ (𝜉)  =

(𝛼 − 𝛾 + 3)

(1 + 𝜉2)
 𝒫𝛼−𝛾+2(𝜉) +

(𝛼 − 𝛾 + 2) 𝜉

(1 + 𝜉2)
  𝒫𝛼−𝛾+3(𝜉), (5.25) 

 

Using equation (5.25) in equation (5.24), we have 
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∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐=𝛼

𝒱𝑐(𝑖𝜉)

=
1

8(1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

3

𝛾
) {3𝜉 [

(𝛼 − 𝛾 + 3)

(1 + 𝜉2)
 𝒫𝛼−𝛾+2(𝜉)

𝛼

𝛾=0

+
(𝛼 − 𝛾 + 2) 𝜉

(1 + 𝜉2)
  𝒫𝛼−𝛾+3(𝜉)] − (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 4) 𝒫𝛼−𝛾+3(𝜉)} ,

=
1

8(1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

3

𝛾
) {
3𝜉 (𝛼 − 𝛾 + 3)

(1 + 𝜉2)
 𝒫𝛼−𝛾+2(𝜉)

𝛼

𝛾=0

+
(𝛼 − 𝛾 + 2) 

(1 + 𝜉2)
 [3𝜉2 − (𝛼 − 𝛾 + 4)(1 + 𝜉2)] 𝒫𝛼−𝛾+3(𝜉) }, 

∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐=𝛼

𝒱𝑐(𝑖𝜉)

=
1

8(1 + 𝜉2)2
∑(−1)𝛾+1𝑖𝛼−𝛾 (

3

𝛾
) {3𝜉 (𝛼 − 𝛾 + 3) 𝒫𝛼−𝛾+2(𝜉)

𝛼

𝛾=0

− (𝛼 − 𝛾 + 2) [(𝛼 − 𝛾 + 1)𝜉2 + (𝛼 − 𝛾 + 4)] 𝒫𝛼−𝛾+3(𝜉) }, 

Now, taking 𝜆 = 3 in Theorem 5.2.5, we have 

∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

𝒱𝑐(𝑖𝜉)𝒱𝑑(𝑖𝜉)

=
1

48(1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

4

𝛾
) {5𝜉 𝒫′′𝛼−𝛾+4(𝜉)

𝛼

𝛾=0

− (𝛼 − 𝛾 + 2)(𝛼 − 𝛾

+ 6) 𝒫′𝛼−𝛾+3(𝜉)},                                                                                (5.26) 

 

From Lemma 5.2.3, we have  

 

𝒫𝛼−𝛾+4
′′ (𝜉)  =

(𝛼 − 𝛾 + 3)(𝛼 − 𝛾 + 5)

(1 + 𝜉2)
 𝒫𝛼−𝛾+4(𝜉) −

3 𝜉

(1 + 𝜉2)
  𝒫′𝛼−𝛾+4(𝜉), (5.27) 

 

Using equation (5.27) in equation (5.26), we have  
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∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

𝒱𝑐(𝑖𝜉)𝒱𝑑(𝑖𝜉)

=
1

48(1 + 𝜉2)
∑(−1)𝛾+1𝑖𝛼−𝛾 (

4

𝛾
) {5𝜉 [

(𝛼 − 𝛾 + 3)(𝛼 − 𝛾 + 5)

(1 + 𝜉2)
 𝒫𝛼−𝛾+4(𝜉)

𝛼

𝛾=0

−
3 𝜉

(1 + 𝜉2)
  𝒫′𝛼−𝛾+4(𝜉)]  − (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6) 𝒫

′
𝛼−𝛾+3(𝜉)}, 

=    
1

48(1 + 𝜉2)
      ∑(−1)𝛾+1𝑖𝛼−𝛾 (

4

𝛾
)

 𝛼

𝛾=0

   {
5𝜉(𝛼 − 𝛾 + 3)(𝛼 − 𝛾 + 5)

(1 + 𝜉2)
𝒫𝛼−𝛾+4(𝜉)

− [
15 𝜉2

(1 + 𝜉2)
+ (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6)  ] 𝒫′𝛼−𝛾+4(𝜉)}, 

∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

𝒱𝑐(𝑖𝜉)𝒱𝑑(𝑖𝜉)

=  
1

48(1 + 𝜉2)2
   ∑(−1)𝛾+1𝑖𝛼−𝛾  (

4

𝛾
)

 𝛼

𝛾=0

{5𝜉(𝛼 − 𝛾 + 3)(𝛼 − 𝛾

+ 5)𝒫𝛼−𝛾+4(𝜉)

− [15 𝜉2 + (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6)(1 + 𝜉2)  ]𝒫′𝛼−𝛾+4(𝜉)}, 

Again, from Lemma 5.2.2, 

𝒫𝛼−𝛾+4
′ (𝜉)  =

(𝛼 − 𝛾 + 4)

(1 + 𝜉2)
 𝒫𝛼−𝛾+3(𝜉) +

(𝛼 − 𝛾 + 3) 𝜉

(1 + 𝜉2)
  𝒫𝛼−𝛾+4(𝜉), (5.28) 

Using equation (5.28), we have  

∑ 𝒱𝔞(𝑖𝜉) ∙ 𝒱𝔟(𝑖𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

𝒱𝑐(𝑖𝜉)𝒱𝑑(𝑖𝜉)

=
1

48(1 + 𝜉2)3
∑(−1)𝛾+1𝑖𝛼−𝛾 (

4

𝛾
)

𝛼

𝛾=0

{(𝛼 − 𝛾

+ 3)𝜉[(5(𝛼 − 𝛾 + 5) − (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6))(1 + 𝜉2)

− 15𝜉2] 𝒫𝛼−𝛾+4(𝜉)

− (𝛼 − 𝛾 + 4)[15 𝜉2

+ (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6)(1 + 𝜉2)  ]}𝒫𝛼−𝛾+3(𝜉). 

This establishes the Corollary 5.2.5. ∎ 
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Corollary 5.2.6. For any non-negative integers 𝛼, and  𝜉 ∈ 𝑅, we have the following 

identities 

∑ 𝒲𝔞(𝑖𝜉) ∙ 𝒲𝔟(𝑖𝜉)

𝔞+𝔟+𝑐=𝛼

𝒲𝑐(𝑖𝜉)

= −
1

8(1 + 𝜉2)
∑ 𝑖𝛼−𝛾 (

3

𝛾
) {3𝜉 (𝛼 − 𝛾 + 3)  𝒫𝛼−𝛾+2(𝜉)

𝛼

𝛾=0

− (𝛼 − 𝛾 + 2)[(𝛼 − 𝛾 + 1)𝜉2 + (𝛼 − 𝛾 + 4)] 𝒫𝛼−𝛾+3(𝜉)}, 

∑ 𝒲𝔞(𝑖𝜉) ∙ 𝒲𝔟(𝑖𝜉)

𝔞+𝔟+𝑐+𝑑=𝛼

𝒲𝑐(𝑖𝜉)𝒲𝑑(𝑖𝜉)

= −
1

48(1 + 𝜉2)3
∑𝑖𝛼−𝛾 (

4

𝛾
) {(𝛼 − 𝛾

𝛼

𝛾=0

+ 3)𝜉[(5(𝛼 − 𝛾 + 5) − (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6))(1 + 𝜉2)

− 15𝜉2] 𝒫𝛼−𝛾+4(𝜉)

− (𝛼 − 𝛾 + 4)[15 𝜉2

+ (𝛼 − 𝛾 + 2)(𝛼 − 𝛾 + 6)(1 + 𝜉2)  ]𝒫𝛼−𝛾+3(𝜉)}, 

 

Proof. Taking 𝜆 = 2,3 in Theorem 5.2.6, and proceeding as in Corollary 5.2.6, we can 

establish this Corollary. ∎ 

5.3 Representations of sums of finite products of Pell, Fibonacci, and Chebyshev 

polynomials with negative indices 

 Here, we develop some results representing summations of finite products of 

negative indexed Lucas, Fibonacci, and Complex Fibonacci numbers as a linear sum of 

Pell polynomials. In terms of the 3rd and 4th kinds of Chebyshev polynomials, similar 

identities are obtained for Pell numbers and Fibonacci polynomials with the same line 

of action as in Section 5.2.  The main findings are: 

Theorem 5.3.1. For integers 𝛼, 𝜆 ≥0,  

∑ ℱ−(2𝜎1+1) ∙ ℱ−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ−(2𝜎𝜆+1+1)

=
1

2𝜆  𝜆!
  ∑(−1)𝛾
𝛼

𝛾=0

𝑖𝛼−𝛾 (
𝜆 + 1

𝛾
) 𝒫𝛼−𝛾+𝜆+1

𝜆 (−
3

2
 𝑖) 
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where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0 for 𝛾 >  𝜆 + 1 and 𝑖 = √−1. 

 Proof.  Taking  𝜉 =
3

2
  in equation (1.92), we have 

∑ 𝒱𝜎1 (
3

2
) ∙ 𝒱𝜎2 (

3

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1 (
3

2
) 

=
1

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝑖+𝛾

𝜆 (
3

2
) (5.26) 

Using Lemma 5.2.1 (iv) in equation (5.29), we have 

∑ ℱ2𝜎1+1 ∙ ℱ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ2𝜎𝜆+1+1 

=
1

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝑖+𝛾

𝜆 (
3

2
) , (5.30) 

Using equation 1.12 (section 1.2) in equation (5.30), we have 

∑ ℱ−(2𝜎1+1) ∙ ℱ−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ−(2𝜎𝜆+1+1)            

=
1

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝑖+𝛾

𝜆 (
3

2
),                                                                     (5.31) 

Differentiating equation 1.65 (xv) w.r.t x , we have 

𝒰𝛼
𝜆(𝑖𝜉) = 𝑖𝛼−𝜆  𝒫𝛼+1 (𝜉), (5.32) 

Taking 𝜉 = −
3

2
𝑖 in equation (5.32), we have 

𝒰𝛼
𝜆 (
3

2
) = 𝑖𝛼−𝜆  𝒫𝛼+1 (−

3

2
𝑖) , (5.33) 

From equations (5.31) and (5.33), we have 

∑ ℱ−(2𝜎1+1) ∙ ℱ−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ−(2𝜎𝜆+1+1)

=
1

2𝜆  𝜆!
  ∑(−1)𝛾
𝛼

𝛾=0

𝑖𝛼−𝛾 (
𝜆 + 1

𝛾
) 𝒫𝛼−𝛾+𝜆+1

𝜆 (−
3

2
 𝑖).                                             (5.34) 

This establishes the Theorem 5.3.1. ∎ 
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Theorem 5.3.2. For integers 𝛼, 𝜆 ≥0,  

∑ ℒ−(2𝜎1+1) ∙ ℒ−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℒ−(2𝜎𝜆+1+1)

=
(−1)2𝛼+𝜆+1

2𝜆  𝜆!
∑ 𝑖𝛼−𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒫𝛼−𝛾+𝜆+1

𝜆 (−
3

2
 𝑖), 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0   for 𝛾 >  𝜆 + 1 and 𝑖 = √−1. 

Proof.  Taking  𝜉 =
3

2
  in equation (1.93), we have  

∑ 𝒲𝜎 (
3

2
) ∙ 𝒲𝜎2 (

3

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒲𝜎𝜆+1
(
3

2
) 

=
1

2𝜆  𝜆!
∑ (

𝜆 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝜆
𝜆 (

3

2
) , (5.35) 

Using Lemma 5.2.1 (v) in equation (5.35), we have  

∑ ℒ2𝜎1+1 ∙ ℒ2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℒ2𝜎𝜆+1+1 

=
1

2𝜆  𝜆!
∑ (

𝜆 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝜆
𝜆 (

3

2
) , (5.36) 

Using ℒ−𝛼 = (−1)𝛼 ℒ𝛼 in (5.36), we have 

∑ ℒ−(2𝜎1+1) ∙ ℒ−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℒ−(2𝜎𝜆+1+1)

=
(−1)2𝛼+𝜆+1

2𝜆  𝜆!
∑(

𝜆 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝜆
𝜆 (

3

2
),                                                                   (5.37) 

Differentiating equation 1.65 (xv) w.r.t z, and taking 𝜉 = −
3

2
𝑖 and using this in (5.37), 

we have 

∑ ℒ−(2𝜎1+1) ∙ ℒ−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℒ−(2𝜎𝜆+1+1)

=
(−1)2𝛼+𝜆+1

2𝜆  𝜆!
∑ 𝑖𝛼−𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒫𝛼−𝛾+𝜆+1

𝜆 (−
3

2
 𝑖).                                          (5.38) 

This establishes the Theorem 5.3.2. ∎ 
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Theorem 5.3. 3. For integers 𝛼, 𝜆 ≥0,  

∑ ℱ∗−(2𝜎1+1) ∙ ℱ
∗
−(2𝜎2+1)…ℱ

∗
−(2𝜎𝜆+1+1)

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

=
((𝑖)2𝛼+2𝜆+2)

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

𝑖𝛼−𝛾 (
𝜆 + 1

𝛾
)𝒫𝛼−𝛾+𝜆+1

𝜆 (
1

2
) ,

=
1

(𝑖)2𝛼 2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

𝑖𝛼−𝛾 (
𝜆 + 1

𝛾
)𝒫𝛼−𝛾+𝜆+1

𝜆 (−
1

2
), 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼 with (𝜆+1
𝛾
) = 0   for 𝛾 >  𝜆 + 1 and 𝑖 = √−1  and  ℱ∗𝛼  is a Complex 

Fibonacci number.   

Proof.    Taking 𝜉 =   ̶ 
𝑖

 2
  in equation (1.92), and 𝜉 =   

𝑖

2
  in equation (1.93), we have 

∑ 𝒱𝜎1 ( ̶ 
𝑖

 2
) ∙ 𝒱𝜎2 ( ̶ 

𝑖

 2
)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱𝜎𝜆+1 ( ̶ 
𝑖

 2
)               

=
1

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝛾+𝜆

𝜆 ( ̶ 
𝑖

 2
),                                                              (5.39) 

∑ 𝒲𝜎1 ( 
𝑖

2
) ∙ 𝒲𝜎2 ( 

𝑖

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒲𝜎𝜆+1
( 
𝑖

2
)                                                               

                                         =
1

2𝜆  𝜆!
∑ (

𝜆 + 1

𝛾
)

𝛼

𝛾=0

𝒰𝛼−𝛾+𝜆
𝜆 ( 

𝑖

2
),                                         (5.40)  

 

Using,  𝒰𝛼 (
𝑖

2
) = 𝑖𝛼ℱ𝛼+1

∗  in equation 1.65 (iii) to get 𝒲𝛼 (
𝑖

2
) = 𝑖𝛼−1ℱ𝛼

∗  and using this 

in turn in equation 1.65 (xii), we get  𝒱𝛼 (−
𝑖

2
) =  

ℱ𝛼
∗

𝑖𝛼+1
 .  

Using this, therefore, reduces (5.39) and (5.40) to 

∑ ℱ∗2𝜎1+1 ∙ ℱ
∗
2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ∗2𝜎𝜆+1+1                 

=
(𝑖2𝛼+2𝜆+2)

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝛾+𝜆

𝜆 (−
𝑖

2
),                                                (5.41) 
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∑ ℱ∗2𝜎1+1 ∙ ℱ
∗
2𝜎2+1⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ∗2𝜎𝜆+1+1

=
1

𝑖2𝛼 2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝛾+𝜆

𝜆 (
𝑖

2
).                                                             (5.42) 

Taking conjugate of  ℱ∗𝛼 in (5.41) and (5.42), using ℱ∗−𝛼 = (−1)
𝛼+1ℱ∗𝛼̅̅ ̅̅ ̅ , where ℱ∗𝛼̅̅ ̅̅ ̅ 

represents complex conjugate of ℱ∗𝛼, we have 

∑ ℱ∗−(2𝜎1+1) ∙ ℱ
∗
−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ∗−(2𝜎𝜆+1+1)

=
((𝑖)2𝛼+2𝜆+2)

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝛾+𝜆

𝜆 (
𝑖

2
), 

                          =
1

(𝑖)2𝛼 2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰𝛼−𝛾+𝜆

𝜆 (−
𝑖

2
).                              (5.43) 

Differentiating equation 1.65 (xv) r- times w. r. t 𝜉 and putting 𝜉 =
1

2
  and 𝜉 = −

1

2
  , we 

get 𝒰𝜆
𝛼 (

𝑖

2
) = 𝑖𝛼−𝜆  𝒫𝛼+1 (

1

2
) and 𝒰𝜆

𝛼 (−
𝑖

2
) = 𝑖𝛼−𝜆  𝒫𝛼+1 (−

1

2
). Using this in (5.43) 

gives 

∑ ℱ∗−(2𝜎1+1) ∙ ℱ
∗
−(2𝜎2+1)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

ℱ∗−(2𝜎𝜆+1+1)

= 
((𝑖)2𝛼+2𝜆+2)

2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

𝑖𝛼−𝛾 (
𝜆 + 1

𝛾
)𝒫𝛼−𝛾+𝜆+1

𝜆 (
1

2
)

=
1

(𝑖)2𝛼 2𝜆  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

𝑖𝛼−𝛾 (
𝜆 + 1

𝛾
)𝒫𝛼−𝛾+𝜆+1

𝜆 (−
1

2
).                                 (5.44) 

This establishes the desired result. ∎ 

Theorem 5.3.4. For integer 𝛼, 𝜆 ≥0, and 𝜉 ∈ 𝑅  

∑ 𝒫−(𝜎1+1)(𝜉) ∙   𝒫−(𝜎2+1)(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

 𝒫−(𝜎𝜆+1+1)(𝜉)

= ∑ 𝒫−(𝜎1+1)  ∙   𝒫−(𝜎2+1)  ⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

 𝒫−(𝜎𝜆+1+1)  
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              =
𝑖𝛼  

𝜆!
∑(

𝜆 + [
𝛾
2]

𝜆
)

𝛼

𝛾=0

(𝛼 + 𝜆 − [
𝛾

2
])
𝜆
𝒱𝛼−𝛾(𝑖)   

                       =
𝑖𝛼  

𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + [

𝛾
2]

𝜆
) (𝛼 + 𝜆 − [

𝛾

2
])
𝜆
𝒲𝛼−𝛾(𝑖) 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼  with (𝜆+1
𝛾
) = 0   for 𝛾 >  𝜆 + 1 and 𝑖 = √−1  and (𝑠)𝛼 = 𝑠(𝑠 − 1)(𝑠 −

2)… (𝑠 − 𝛼 + 1)  is falling factorial polynomial. 

Proof. From [59],  

∑ 𝒫𝜎1+1(𝜉) ∙   𝒫𝜎2+1 (𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  𝒫𝜎𝜆+1+1(𝜉)

=
1

𝑖𝛼  𝜆!
∑(

𝜆 + [
𝛾
2]

𝜆
)

𝛼

𝛾=0

(𝛼 + 𝜆 − [
𝛾

2
])
𝜆
𝒱𝛼−𝛾(𝑖𝜉), 

∑ 𝒫𝜎1+1(𝜉) ∙   𝒫𝜎2+1 (𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  𝒫𝜎𝜆+1+1(𝜉)

=  
1

𝑖𝛼  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + [

𝛾
2]

𝜆
) (𝛼 + 𝜆

− [
𝛾

2
])
𝜆
 𝒲𝛼−𝛾(𝑖𝜉),                                                                                 (5.45) 

Using 𝒫−𝛼(𝜉) = (−1)
𝛼+1𝒫𝛼(𝜉)  in (5.45), we have 

∑ 𝒫−(𝜎1+1)(𝜉) ∙   𝒫−(𝜎2+1) (𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  𝒫−(𝜎𝜆+1+1)(𝜉)

=
𝑖𝛼  

𝜆!
∑(

𝜆 + [
𝛾
2]

𝜆
)

𝛼

𝛾=0

(𝛼 + 𝜆 − [
𝛾

2
])
𝜆
𝒱𝛼−𝛾(𝑖𝜉), 

∑ 𝒫−(𝜎1+1)(𝜉) ∙   𝒫−(𝜎2+1) (𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  𝒫−(𝜎𝜆+1+1)(𝜉)

=
𝑖𝛼  

𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + [

𝛾
2]

𝜆
) (𝛼 + 𝜆

− [
𝛾

2
])
𝜆
𝒲𝛼−𝛾(𝑖𝜉),                                                                               (5.46) 
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Using 𝒫−𝛼(1) = 𝒫−𝛼 in (5.46), we have 

∑ 𝒫−(𝜎1+1)  ∙   𝒫−(𝜎2+1)  ⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  𝒫−(𝜎𝜆+1+1)     

=
𝑖𝛼  

𝜆!
∑(

𝜆 + [
𝛾
2]

𝜆
)

𝛼

𝛾=0

(𝛼 + 𝜆 − [
𝛾

2
])
𝜆
𝒱𝛼−𝛾(𝑖), 

∑ 𝒫−(𝜎1+1)  ∙   𝒫−(𝜎2+1)  ⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  𝒫−(𝜎𝜆+1+1)

=
𝑖𝛼  

𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + [

𝛾
2]

𝜆
)(𝛼 + 𝜆

− [
𝛾

2
])
𝜆
𝒲𝛼−𝛾(𝑖).                                                                              (5.47) 

Hence the Theorem is established. ∎ 

Theorem 5.3.5. For integers 𝛼, 𝜆 ≥0 and 𝜉 ∈ 𝑅 

∑ ℱ−(𝜎1+1)(𝜉) ∙   ℱ−(𝜎2+1)(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  ℱ−(𝜎𝜆+1+1)(𝜉)

=
(−1)𝛼+𝜆+1  

𝑖𝛼  𝜆!
∑(

𝜆 + [
𝛾
2]

𝜆
)

𝛼

𝛾=0

(𝛼 + 𝜆 − [
𝛾

2
])
𝜆
𝒱𝛼−𝛾 (

𝜉

2
𝑖), 

∑ ℱ−(𝜎1+1)(𝜉) ∙   ℱ−(𝜎2+1)(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  ℱ−(𝜎𝜆+1+1)(𝜉)

=
(−1)𝛼+𝜆+1  

𝑖𝛼  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + [

𝛾
2]

𝜆
)(𝛼 + 𝜆 − [

𝛾

2
])
𝜆
𝒲𝛼−𝛾 (

𝜉

2
𝑖) , 

where sum runs over all 𝜎𝒽 (≥ 0) in Z (𝒽 = 1,2, … , 𝜆 + 1)  with  𝜎1 + 𝜎2 +⋯+

𝜎𝜆+1 = 𝛼  with (𝜆+1
𝛾
) = 0   for 𝛾 >  𝜆 + 1 and 𝑖 = √−1  and (𝑠)𝛼 = 𝑠(𝑠 − 1)(𝑠 −

2)… (𝑠 − 𝛼 + 1)  is falling factorial polynomial. 

Proof. Replacing 𝜉 by 
𝜉

2
  in equation (5.45), we have 

∑ 𝒫𝜎1+1 (
𝜉

2
) ∙   𝒫𝜎2+1 (

𝜉

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  𝒫𝜎𝜆+1+1 (
𝜉

2
)

=
1

𝑖𝛼  𝜆!
∑(

𝜆 + [
𝛾
2]

𝜆
)

𝛼

𝛾=0

(𝛼 + 𝜆 − [
𝛾

2
])
𝜆
𝒱𝛼−𝛾 (

𝜉

2
𝑖),  
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∑ 𝒫𝜎1+1 (
𝜉

2
) ∙   𝒫𝜎2+1 (

𝜉

2
)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  𝒫𝜎𝜆+1+1 (
𝜉

2
)

=
1

𝑖𝛼  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + [

𝛾
2]

𝜆
) (𝛼 + 𝜆

− [
𝛾

2
])
𝜆
𝒲𝛼−𝛾 (

𝜉

2
𝑖),                                                                               (5.48) 

Using ℱ𝛼(𝜉) = 𝒫𝛼 (
𝜉

2
) in equation (5.47), we have 

∑ ℱ(𝜎1+1)(𝜉) ∙   ℱ(𝜎2+1)(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

 ℱ(𝜎𝜆+1+1)(𝜉)

=
1

𝑖𝛼  𝜆!
∑(

𝜆 + [
𝛾
2]

𝜆
)

𝛼

𝛾=0

(𝛼 + 𝜆 − [
𝛾

2
])
𝜆
𝒱𝛼−𝛾 (

𝜉

2
𝑖), 

∑ ℱ(𝜎1+1)(𝜉) ∙   ℱ(𝜎2+1)(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

 ℱ(𝜎𝜆+1+1)(𝜉)

=
1

𝑖𝛼  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + [

𝛾
2]

𝜆
) (𝛼 + 𝜆 − [

𝛾

2
])
𝜆
𝒲𝛼−𝛾 (

𝜉

2
𝑖),          (5.49) 

Again, using ℱ−𝛼(𝜉) = (−1)
𝛼ℱ𝛼(𝜉)in equation (5.49), we get the desired result. 

∑ ℱ−(𝜎1+1)(𝜉) ∙   ℱ−(𝜎2+1)(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  ℱ−(𝜎𝜆+1+1)(𝜉)

=
(−1)𝛼+𝜆+1  

𝑖𝛼  𝜆!
∑(

𝜆 + [
𝛾
2]

𝜆
)

𝛼

𝛾=0

(𝛼 + 𝜆 − [
𝛾

2
])
𝜆
𝒱𝛼−𝛾 (

𝜉

2
𝑖), 

∑ ℱ−(𝜎1+1)(𝜉) ∙   ℱ−(𝜎2+1)(𝜉)⋯

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

  ℱ−(𝜎𝜆+1+1)(𝜉)

=
(−1)𝛼+𝜆+1  

𝑖𝛼  𝜆!
∑(−1)𝛾
𝛼

𝛾=0

(
𝜆 + [

𝛾
2]

𝜆
) (𝛼 + 𝜆

− [
𝛾

2
])
𝜆
𝒲𝛼−𝛾 (

𝜉

2
𝑖).                                                                         (5.50) 

Hence the Theorem is established. ∎ 
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Theorem 5.3.6. For any integer 𝛼 ≥0, and 𝜉 ∈ 𝑅, 

∑ 𝒱−(𝜎1+1)(𝜉) ∙ 𝒱−(𝜎2+1)(𝜉) ∙ … ∙

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱−(𝜎𝜆+1+1)(𝜉) 

                       =
1

2𝜆  𝜆!
∑(−1)𝛾+1
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰−(𝛼−𝛾+𝜆+2)

𝜆 (𝜉) 

∑ 𝒲−(𝜎1+1)
(𝜉) ∙ 𝒲−(𝜎2+1)

(𝜉) ∙ … ∙

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒲−(𝜎𝜆+1+1)
(𝜉) 

=
(−1)𝜆

2𝜆  𝜆!
∑(

𝜆 + 1

𝛾
)

𝛼

𝛾=0

𝒰−(𝛼−𝛾+𝜆+2)
𝜆 (𝜉) 

where all sums run over all non-negative integers (𝜎1, 𝜎2, … , 𝜎𝜆+1) such that 𝜎1 + 𝜎2 +

⋯+ 𝜎𝜆+1 = 𝛼  with (𝜆+1
𝛾
) = 0   for 𝛾 > r+1. 

Proof.  From [53],  

 𝒰−𝛼  ( 𝜉) = −𝒰𝛼−2  ( 𝜉)  with  𝒰−1  ( 𝜉) = 0 (5.51) 

 Using equation (5.51) in equations 1.65 (ii) and 1.65 (iii) we have  

𝒱−𝛼  ( 𝜉) = 𝒱𝛼−1  ( 𝜉) (5.52)   

and  

𝒲−𝛼  ( 𝜉) = −𝒲𝛼−1  ( 𝜉) (5.53) 

Using equation (5.52) in equation (1.92), we have  

∑ 𝒱−(𝜎1+1)(𝜉) ∙ 𝒱−(𝜎2+1)(𝜉) ∙ … ∙

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒱−(𝜎𝜆+1+1)(𝜉) 

=
1

2𝜆  𝜆!
∑(−1)𝛾+1
𝛼

𝛾=0

(
𝜆 + 1

𝛾
)𝒰−(𝛼−𝛾+𝜆+2)

𝜆 (𝜉) (5.54) 

Similarly, using equation (5.53) in equation (1.93), we have  

∑ (−1)𝜆+1 𝒲−(𝜎1+1)
(𝜉) ∙ 𝒲−(𝜎2+1)

(𝜉) ∙ … ∙

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒲−(𝜎𝜆+1+1)
(𝜉)

=
1

2𝜆  𝜆!
∑(

𝜆 + 1

𝛾
)

𝛼

𝛾=0

𝒰−(𝛼−𝛾+𝜆+2)
𝜆 (𝜉) . 
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∴ ∑ 𝒲−(𝜎1+1)
(𝜉) ∙ 𝒲−(𝜎2+1)

(𝜉) ∙ … ∙

𝜎1+𝜎2+⋯+𝜎𝜆+1=𝛼

𝒲−(𝜎𝜆+1+1)
(𝜉) 

=
(−1)𝜆

2𝜆  𝜆!
∑(

𝜆 + 1

𝛾
)

𝛼

𝛾=0

𝒰−(𝛼−𝛾+𝜆+2)
𝜆 (𝜉) (5.55) 

Thus, the equations (5.54) and (5.55) establishes the Theorem. ∎ 

Corollary 5.3.1. For integer 𝛼 ≥0, 

∑ ℱ−(2𝔞+1) ∙ ℱ−(2𝔟+1)
𝔞+𝔟+𝔠=𝛼

ℱ−(2𝔠+1)

=∑(−1)𝛾
𝛼

𝛾=0

(
3

𝛾
) [
9

25
 𝐴𝛼,𝛾 ℱ(2𝛼−2𝛾+4) −

1

50
𝐵𝛼,𝛾 ℱ(2𝛼−2𝛾+6)], 

∑ ℱ−(2𝔞+1) ∙ ℱ−(2𝔟+1)
𝔞+𝔟+𝔠=𝛼

ℱ−(2𝔠+1)

=∑(−1)𝛾
𝛼

𝛾=0

(𝑖)𝛼−𝛾 (
3

𝛾
) [
1

50
𝐵𝛼,𝛾𝒫(𝛼−𝛾+3) (−

3𝑖

2
)

−
9𝑖

25
 𝐴𝛼,𝛾𝒫(𝛼−𝛾+2) (−

3𝑖

2
)] , 

where 𝐴𝛼,𝛾 = (𝛼 − 𝛾 + 3), 𝐵𝛼,𝛾 = (𝛼 − 𝛾 + 2)(7 − 5𝛼 − 5𝛾), (3
𝛾
) = 0, for 𝛾 >  3 

and 𝑖 = √−1. 

Proof. Taking 𝜆 = 2 in Theorem 5.3.1 and equation (5.31) using the identities [57, 59] 

(1 − 𝜉2)𝒰𝛼
′ (𝜉) = (𝛼 + 1)𝒰𝛼−1(𝜉) − 𝛼𝜉𝒰𝛼(𝜉). (5.56) 

(1 − 𝜉2)𝒰𝛼
′′(𝜉) = 3𝜉𝒰′

𝛼(𝜉) − 𝛼(𝛼 + 2)𝒰𝛼(𝜉). (5.57) 

(1 + 𝜉2)𝒫𝛼+1
′ (𝜉) = (𝛼 + 1)𝒫𝛼(𝜉) + 𝛼𝜉𝒫𝛼+1(𝜉). (5.58) 

    (1 + 𝜉2)𝒫𝛼
′′(𝜉) = 𝛼(𝛼 + 2)𝒫𝛼+1(𝜉) − 3𝜉𝒫

′
𝛼+1(𝜉). (5.59) 

with 𝜉 =
3

2
  and  𝜉 = −

3

2
𝑖 , we get the desired result. ∎ 

Corollary 5.3.2. For integer 𝛼 ≥0, 

∑ ℒ−(2𝔞+1) ℒ−(2𝔟+1)
𝔞+𝔟+𝔠=𝛼

ℒ−(2𝔠+1)

=∑(
3

𝛾
) [
1

50
𝐵𝛼,𝛾 ℱ(2𝛼−2𝛾+6) −

9

25
 𝐴𝛼,𝛾 ℱ(2𝛼−2𝛾+4)]

𝛼

𝛾=0

, 
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∑ ℒ−(2𝔞+1) ℒ−(2𝔟+1)
𝔞+𝔟+𝔠=𝛼

ℒ−(2𝔠+1)

=∑ 𝑖𝛼−𝛾
𝛼

𝛾=0

(
3

𝛾
) [
9𝑖

25
 𝐴𝛼,𝛾𝒫(𝛼−𝛾+2) (−

3𝑖

2
) −

1

50
𝐵𝛼,𝛾𝒫(𝛼−𝛾+3) (−

3𝑖

2
)], 

where 𝐴𝛼,𝛾 = (𝛼 − 𝛾 + 3), 𝐵𝛼,𝛾 = (𝛼 − 𝛾 + 2)(7 − 5𝛼 − 5𝛾), (3
𝛾
) = 0, for 𝛾 >  3 

and 𝑖 = √−1. 

Proof. Taking 𝜆 = 2 in Theorem 5.3.2 and equation (5.36) and using the identities 

(5.56) - (5.59) with 𝜉 =
3

2
 , −

3

2
𝑖 , we get the desired result. ∎ 

Corollary 5.3.3. For integer  𝛼 ≥ 0,  

∑ ℱ∗−(2𝔞+1) ∙ ℱ
∗
−(2𝔟+1). ℱ

∗
−(2𝔠+1)

𝔞+𝔟+𝔠=𝛼

=∑(−1)𝛼+𝛾+3
𝛼

𝛾=0

(
3

𝛾
) [
3𝑖

25
𝐶𝛼,𝛾𝒰(𝛼−𝛾+1) (

𝑖

2
) −

1

50
𝐷𝛼,𝛾𝒰(𝛼−𝛾+2) (

𝑖

2
)]  

= ∑(−1)𝛼+𝛾+1
𝛼

𝛾=0

(
3

𝛾
) [
3𝑖

25
𝐶𝛼,𝛾𝒰(𝛼−𝛾+1) (−

𝑖

2
)

+
1

50
𝐷𝛼,𝛾𝒰(𝛼−𝛾+2) (−

𝑖

2
)], 

∑ ℱ∗−(2𝔞+1) ∙ ℱ
∗
−(2𝔟+1). ℱ

∗
−(2𝔠+1)

𝔞+𝔟+𝔠=𝛼

=∑(−1)𝛼+𝛾+3
𝛼

𝛾=0

𝑖𝛼−𝛾 (
3

𝛾
) [
1

50
 𝐷𝛼,𝛾 ℱ(𝛼−𝛾+3) −

3

25
𝐶𝛼,𝛾 ℱ(𝛼−𝛾+2)] ,

= ∑(−1)𝛼+𝛾
𝛼

𝛾=0

𝑖𝛼−𝛾 (
3

𝛾
) [
1

50
 𝐷𝛼,𝛾 𝒫(𝛼−𝛾+3) (−

1

2
)

+
3

25
𝐶𝛼,𝛾 𝒫(𝛼−𝛾+2) (−

1

2
)], 

where 𝐶𝛼,𝛾 = (𝛼 − 𝛾 + 3),   𝐷𝛼,𝛾 = (𝛼 − 𝛾 + 2)(5𝛼 − 5𝛾 + 17), (
3
𝛾
) = 0 for 𝛾 > 3 

and  ℱ∗𝛼 is a complex Fibonacci number.    
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Proof. Taking 𝜆 = 2 in Theorem 5.3.3 and equation (5.43) and using the identities 

(5.56)- (5.59) with 𝜉 =
𝑖

2
, −

𝑖

2
,
1

2
, −

1

2
 , we get the desired result. ∎ 
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CHAPTER 6 

GENERALIZED TRIVARIATE FIBONACCI AND 

LUCAS POLYNOMIALS  

 

6.1 Introduction  

This chapter will focus on the study of (p, q, r)-Generalized Trivariate 

Fibonacci and (p, q, r)-Generalized Trivariate Lucas polynomials and their basic 

properties. Using these properties, we will derive the explicit formula of (p, q, r)-

Generalized Trivariate Lucas and Fibonacci polynomials and deduce some intriguing 

identities involving the generating matrices and their determinants. 

6.2 Generalized Trivariate Fibonacci and Lucas polynomials 

The Fibonacci and Lucas numbers and their generalizations have been widely 

studied, and many interesting properties have been established. For any positive 𝛼 ≥

2 , the Fibonacci and Lucas numbers are recursively defined as in chapter 1, 

ℱ𝛼 = ℱ𝛼−1 + ℱ𝛼−2, ℱ0 = 0, ℱ1 = 1, 

and 

ℒ𝛼 = ℒ𝛼−1 + ℒ𝛼−2, ℒ0 = 2, ℒ1 = 1. 

As an extension of the Fibonacci numbers, the Tribonacci numbers [14, 41] were first 

studied by M. Feinberg [75] in 1963 by defining the recursive relation as 

𝒯𝛼 = 𝒯𝛼−1 + 𝒯𝛼−2 + 𝒯𝛼−3    , 𝛼 > 2, 

 

with initial conditions 

𝒯0 = 0, 𝒯1 = 1, 𝒯2 = 1. 

  In [14, 62, 64-67], different authors have studied the Tribonacci numbers and deduced 

various properties and generalizations and obtained several identities thereof. Alladi 

and Hoggatt [61] studied the Tribonacci numbers by defining the Tribonacci triangle as 

below 
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  Table 6.1: Tribonacci number triangle 

If 𝐴(𝛼, 𝛽) represents the element in the 𝛼𝑡ℎ row & 𝛽 𝑡ℎ   columns of the Tribonacci 

Triangle, the we can see that 

 

𝐴(𝛼 + 1, 𝛽) = 𝐴(𝛼, 𝛽) + 𝐴(𝛼, 𝛽 − 1) + 𝐴(𝛼 − 1, 𝛽 − 1).  

and 

𝒯𝛼 = ∑𝐴(𝛼 − 1, 𝛽)

⌊
𝛼
2
⌋

𝛼=0

. 

which represents the aggregate of the elements that constitute the rising diagonals 

which generates Tribonacci numbers. 

In one of the branches of extension of Fibonacci numbers, E.C. Catalan in 1883 

studied the Fibonacci polynomials characterized by the recursive relation:  

ℱ𝛼(𝜉) = 𝜉ℱ𝛼−1(𝜉) + ℱ𝛼−2(𝜉), for all 𝛼 > 2,with ℱ1(𝜉) = 1, ℱ2(𝜉) = 𝜉. 

𝜷 

𝜶          

0 1 2 3 4 5 . . . 

0 1         

1 1 1        

2 1 3 1       

3 1 5 5 1      

4 1 7 13 7 1     

. . . . . . .    

. . . . . . .    

. . . . . . .    
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Similarly, in 1970, Bicknel originally studied the Lucas polynomials by defining the 

recursive relation as 

ℒ𝛼(𝜉) = 𝜉ℒ𝛼−1(𝜉) + ℒ𝛼−2(𝜉), forall 𝛼 ≥ 2,with ℒ0(𝜉) = 2, ℒ1(𝜉) = 𝜉. 

In 1973, Hoggatt and Bicknell [15] gave a new generalization in the form of Tribonacci 

polynomials defined recursively as 

𝑡𝛼(𝜉) = 𝜉
2𝑡𝛼−1(𝜉) + 𝜉𝑡𝛼−2(𝜉) + 𝑡𝛼−3(𝜉), for all 𝛼 > 2 

with 

 𝑡0(𝜉) = 0, 𝑡1(𝜉) = 1, 𝑡2(𝜉) = 𝜉
2. 

Further generalization of Lucas and Fibonacci polynomials to Bivariate Lucas 

and Fibonacci polynomials were studied by Tan and Yang [68] by obtaining some of 

their interesting properties. Kocer and Gedikce [16, 63] studied the Trivariate Fibonacci 

and Lucas polynomials with recurrence relations defined as follows: 

ℋ𝛼(𝜉, 𝜔, 𝜁) = 𝜉ℋ𝛼−1(𝜉, 𝜔, 𝜁) + 𝜔ℋ𝛼−2(𝜉, 𝜔, 𝜁) + 𝜁ℋ𝛼−3(𝜉, 𝜔, 𝜁), 𝛼 > 2, 

with 

ℋ0(𝜉, 𝜔, 𝜁) = 0, ℋ1(𝜉, 𝜔, 𝜁) = 1, ℋ2(𝜉, 𝜔, 𝜁) = 𝜉. 

and  

𝐾𝛼(𝜉, 𝜔, 𝜁) = 𝜉𝐾𝛼−1(𝜉, 𝜔, 𝜁) + 𝜔𝐾𝛼−2(𝜉, 𝜔, 𝜁) + 𝜁𝐾𝛼−3(𝜉, 𝜔, 𝜁), 𝛼 > 2, 

with 

𝐾0(𝜉, 𝜔, 𝜁) = 3, 𝐾1(𝜉, 𝜔, 𝜁) = 𝜉, 𝐾2(𝜉, 𝜔, 𝜁) = 𝜉2 + 2𝜔, 

respectively and derived several properties thereof. 

Continuing in the same line of action, in this study, we will study new generalizations 

of the Trivariate Fibonacci and Lucas polynomials.  

Definition 6.2.1. For integer 𝛼 > 2, the recurrence relation of the (p, q, r) -Generalized 

Trivariate Fibonacci polynomials is defined as: 

𝐹∗𝛼(𝜉, 𝜔, 𝜁) = 𝑝(𝜉, 𝜔, 𝜁) 𝐹∗𝛼−1(𝜉, 𝜔, 𝜁) + 𝑞(𝜉, 𝜔, 𝜁)𝐹
∗
𝛼−2(𝜉, 𝜔, 𝜁)

+𝑟(𝜉, 𝜔, 𝜁)𝐹∗𝛼−3(𝜉, 𝜔, 𝜁), (6.1)
 

with 

𝐹∗0(𝜉, 𝜔, 𝜁) = 0, 𝐹∗1(𝜉, 𝜔, 𝜁) = 1, 𝐹∗2(𝜉, 𝜔, 𝜁) = 𝑝(𝜉, 𝜔, 𝜁),  

 where 𝑝(𝜉, 𝜔, 𝜁), 𝑞(𝜉, 𝜔, 𝜁), 𝑟(𝜉, 𝜔, 𝜁)are polynomials of 𝜉, 𝜔 and 𝜁 respectively. 



129 

 

Definition 6.2.2. For integer 𝛼 > 2, the recurrence relation of the (p, q, r)-Generalized 

Trivariate Lucas polynomials is defined as follows: 

𝐺∗𝛼(𝜉, 𝜔, 𝜁) = 𝑝(𝜉, 𝜔, 𝜁)𝐺∗𝛼−1(𝜉, 𝜔, 𝜁) + 𝑞(𝜉, 𝜔, 𝜁)𝐺
∗
𝛼−2(𝜉, 𝜔, 𝜁)

+𝑟(𝜉, 𝜔, 𝜁)𝐺∗𝛼−3(𝜉, 𝜔, 𝜁) (6.2)
 

with 

𝐺∗0(𝜉, 𝜔, 𝜁) = 3 , 𝐺
∗
1(𝜉, 𝜔, 𝜁) = 𝑝(𝜉), 𝐺∗2(𝜉, 𝜔, 𝜁) = 𝑝(𝜉, 𝜔, 𝜁)

2 + 2𝑞(𝜉, 𝜔, 𝜁). 

For different values of  𝑝(𝜉, 𝜔, 𝜁), 𝑞(𝜉, 𝜔, 𝜁), 𝑟(𝜉, 𝜔, 𝜁) these recursive relations give 

rise to different polynomials. As for 𝑝(𝜉, 𝜔, 𝜁) = 𝜉, 𝑞(𝜉, 𝜔, 𝜁) = 𝜔, 𝑟(𝜉, 𝜔, 𝜁) = 𝜁, we 

have 𝐹∗𝛼(𝜉, 𝜔, 𝜁) = ℋ𝛼(𝜉, 𝜔, 𝜁), Trivariate Fibonacci polynomials and 𝐺∗α(𝜉, 𝜔, 𝜁) =

𝐾𝛼(𝜉, 𝜔, 𝜁), Trivariate Lucas polynomials and for 𝑝(𝜉, 𝜔, 𝜁) = 1, 𝑞(𝜉, 𝜔, 𝜁) =

1, 𝑟(𝜉, 𝜔, 𝜁) = 1 gives 𝐹∗𝛼(1,1,1) = 𝒯α,  Tribonacci numbers and 𝑝(𝜉, 𝜔, 𝜁) =

𝜉2, 𝑞(𝜉, 𝜔, 𝜁) = 𝜉, 𝑟(𝜉, 𝜔, 𝜁) = 1 𝐹∗𝛼(𝜉, 𝜔, 𝜁) = 𝑡𝛼(𝜉), Tribonacci polynomials. Some 

of the values of the (p, q, r)-Generalized Trivariate Lucas and Fibonacci polynomials 

are written as below (writing 𝑝(𝜉, 𝜔, 𝜁) = 𝑝, 𝑞(𝜉, 𝜔, 𝜁) = 𝑞, 𝑟(𝜉, 𝜔, 𝜁) = 𝑟). 

 

 

Table 6.2: (p, q, r)-Generalized Trivariate Fibonacci and Lucas polynomials 

𝜶 𝑭∗𝜶(𝝃,𝝎, 𝜻) 𝑮∗𝜶(𝝃,𝝎, 𝜻) 

0 0 3 

1 1 𝑝 

2 𝑝 𝑝2 + 2𝑞 

3 𝑝2 + 𝑞 𝑝3 + 3𝑝𝑞 + 3𝑟 

4 𝑝3 + 2𝑝𝑞 + 𝑞 𝑝4 + 4𝑝2𝑞 + 4𝑝𝑟 + 2𝑞2 

5 𝑝4 + 3𝑝2𝑞 + 2𝑝𝑟 + 𝑞2 𝑝5 + 5𝑝3𝑞 + 5𝑝𝑞2 + 5𝑝2𝑟 + 5𝑞𝑟 

… …                                … 
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Further, the characteristic equation corresponding to the recursive relations (6.1) and 

(6.2) is 

μ3 − 𝑝(𝜉, 𝜔, 𝜁)μ2 − 𝑞(𝜉, 𝜔, 𝜁)𝜇 − 𝑟(𝜉, 𝜔, 𝜁) = 0. (6.3) 

and the corresponding Binet's formula are 

𝐹∗𝛼(𝜉, 𝜔, 𝜁) =
𝒶𝛼+1

(𝒶 − 𝒷)(𝒶 − 𝒸)
+

𝒷𝛼+1

(𝒷 − 𝒶)(𝒷 − 𝒸)
+

𝒸𝛼+1

(𝒸 − 𝒶)(𝒸 − 𝒷)
. (6.4) 

and 

𝐺∗α(𝜉, 𝜔, 𝜁) = 𝒶𝛼 +𝒷𝛼 + 𝒸𝛼 . (6.5) 

where 𝒶,𝒷, 𝒸 satisfies the characteristic equation 

μ3 − 𝑝(𝜉, 𝜔, 𝜁)μ2 − 𝑞(𝜉, 𝜔, 𝜁)𝜇 − 𝑟(𝜉, 𝜔, 𝜁) = 0. 

Again, the generating functions of (p, q, r)-Generalized Trivariate Fibonacci and Lucas 

polynomials respectively are: 

𝐹∗(𝑡) = ∑𝐹∗𝛼(𝜉, 𝜔, 𝜁)

∞

𝛼=0

=
𝑡

1 − 𝑝𝑡 − 𝑞𝑡2 − 𝑟𝑡3
. (6.6) 

and 

𝐺∗(𝑡) = ∑𝐺∗α(𝜉, 𝜔, 𝜁)

∞

𝛼=0

=
3 − 2𝑝𝑡 − 𝑞𝑡2

1 − 𝑝𝑡 − 𝑞𝑡2 − 𝑟𝑡3
. (6.7) 

Again taking 𝑝(𝜉, 𝜔, 𝜁) = 1, 𝑞(𝜉, 𝜔, 𝜁) = 1, 𝑟(𝜉, 𝜔, 𝜁) = 1 equation (6.6) 

gives generating function for Tribonacci numbers (𝒯𝛼) and taking 𝑝(𝜉, 𝜔, 𝜁) = 𝜉,

(𝜉, 𝜔, 𝜁) = 𝜔, (𝜉, 𝜔, 𝜁) = 𝜁 and then replacing 𝜉 by 𝜉2, 𝜔 by 𝜉, 𝜁 by 1 , we get 

generating function for Tribonacci polynomials (𝑡𝛼(𝜉)). In the further discussions, we 

shall write  𝑝 = 𝑝(𝜉, 𝜔, 𝜁), 𝑞 = (𝜉, 𝜔, 𝜁), 𝑟 = 𝑟(𝜉, 𝜔, 𝜁). 

Theorem 6.2.1. For any integer 𝛼 ≥ 0, 

𝐺∗𝛼(𝜉, 𝜔, 𝜁) = 𝑝𝐹∗𝛼(𝜉, 𝜔, 𝜁) + 2𝑞𝐹
∗
𝛼−1(𝜉, 𝜔, 𝜁) + 3𝑟𝐹

∗
𝛼−2(𝜉, 𝜔, 𝜁). (6.8) 

Proof. Using the generating functions for (p, q, r)-Generalized Lucas polynomials 

given by equation (6.7), the Theorem 6.2.1 can easily be established. ∎ 

Theorem 6.2.2. For any integer 𝛼 ≥ 0, 

∑𝐹∗𝑠(𝜉, 𝜔, 𝜁)

𝛼

𝑠=0

=
𝐹∗𝛼+2(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
𝛼+1(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
𝛼(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1
, (6.9) 

and 
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∑𝐺∗𝑠(𝜉, 𝜔, 𝜁)

𝛼

𝑠=0

                                                                                                                                

=
𝐺∗𝛼+2(𝜉, 𝜔, 𝜁) + (𝑝 − 1)𝐺

∗
𝛼+1(𝜉, 𝜔, 𝜁) + 𝑟𝐺

∗
𝛼(𝜉, 𝜔, 𝜁) − (3 − 2𝑝 − 𝑞)

𝑝 + 𝑞 + 𝑟 − 1
, (6.10)

 

provided  𝑝 + 𝑞 + 𝑟 ≠ 1  

Proof. We shall prove equation (6.9) and equation (6.10) by using method of 

mathematical induction. For equation (6.9), we proceed as follows 

For 𝛼 = 1 , we have to show 

∑𝐹∗𝑠(𝜉, 𝜔, 𝜁)

1

𝑠=0

=
𝐹∗3(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
2(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
1(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1
, 

Equivalently, 

𝐹∗0(𝜉, 𝜔, 𝜁) + 𝐹
∗
1(𝜉, 𝜔, 𝜁)

=
𝐹∗3(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
2(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
1(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1
. 

           𝑅 .ℋ. 𝑆 =
𝐹∗3(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
2(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
1(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1

=
𝑝2 + 𝑞 + (1 − 𝑝)𝑝 + 𝑟 − 1

𝑝 + 𝑞 + 𝑟 − 1
= 1 + 0 = 𝐹∗0(𝜉, 𝜔, 𝜁) + 𝐹

∗
1(𝜉, 𝜔, 𝜁)

=  𝑅.ℋ. 𝑆 

Hence for 𝛼 = 1,   the result is true.  

Suppose for 𝛼 = 𝜂, the result is true i.e. 

∑𝐹∗𝑠(𝜉, 𝜔, 𝜁)

𝜂

𝑠=0

=
𝐹∗𝜂+2(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
𝜂+1(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
𝜂(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1
 

Next, we shall prove the result for 𝛼 = 𝜂 + 1, that is, 

∑𝐹∗𝑠(𝜉, 𝜔, 𝜁)

𝜂+1

𝑠=0

=
𝐹∗𝜂+3(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
𝜂+2(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
𝜂+1(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1
 

Now 

𝑅.ℋ. 𝑆. = ∑𝐹∗𝑠(𝜉, 𝜔, 𝜁)

𝜂+1

𝑠=0

=∑𝐹∗𝑠(𝜉, 𝜔, 𝜁)

𝜂

𝑠=0

+ 𝐹∗𝜂+1(𝜉, 𝜔, 𝜁) 

           =
𝐹∗𝜂+2(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
𝜂+1(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
𝜂(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1
         

+ 𝐹∗𝜂+1(𝜉, 𝜔, 𝜁)                        
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=
𝐹∗𝜂+2(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
𝜂+1(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
𝜂(𝜉, 𝜔, 𝜁) − 1 + (𝑝 + 𝑞 + 𝑟 − 1)𝐹

∗
𝜂+1(𝜉, 𝜔, 𝜁)

𝑝 + 𝑞 + 𝑟 − 1
   

   

=
𝐹∗𝜂+2(𝜉, 𝜔, 𝜁) + 𝐹

∗
𝜂+1(𝜉, 𝜔, 𝜁) + 𝐹

∗
𝜂+3(𝜉, 𝜔, 𝜁) − 𝑝𝐹

∗
𝜂+2(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
𝜂+2(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1
 

=
𝐹∗𝜂+3(𝜉, 𝜔, 𝜁) + (1 − 𝑝)𝐹

∗
𝜂+2(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
𝜂+1(𝜉, 𝜔, 𝜁) − 1

𝑝 + 𝑞 + 𝑟 − 1
 

= 𝑅.ℋ. 𝑆                             

Hence equation (6.9) holds for all positive 𝛼.  

Similarly, we can see that equation (6.10) also holds true. That is,  

∑𝐺∗𝑠(𝜉, 𝜔, 𝜁)

𝛼

𝑠=0

=
𝐺∗𝛼+2(𝜉, 𝜔, 𝜁) + (𝑝 − 1)𝐺

∗
𝛼+1(𝜉, 𝜔, 𝜁) + 𝑟𝐺

∗
𝛼(𝜉, 𝜔, 𝜁) − (3 − 2𝑝 − 𝑞)

𝑝 + 𝑞 + 𝑟 − 1
. 

This proves the theorem. ∎ 

Taking 𝑝(𝜉, 𝜔, 𝜁) = 𝜉, 𝑞(𝜉, 𝜔, 𝜁) = 𝜔, 𝑟(𝜉, 𝜔, 𝜁) = 𝜁  at  𝜉 = 𝜔 = 𝜁 = 1 , we get the 

sum for 𝛼- Tribonacci numbers and at 𝜉 = 𝜉2, 𝜔 = 𝜉, 𝜁 = 1, we have sum of 𝛼- 

Tribonacci Polynomials respectively. 

Theorem 6.2.3. For any integer 𝛼 ≥ 0, 

∑𝐹∗2𝜂(𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

=
𝐹∗2𝛼+2(𝜉, 𝜔, 𝜁) + 𝑟

2 𝐹2𝛼−2
∗ (𝜉, 𝜔, 𝜁) + (𝑟2 − 𝑞2 + 2𝑟𝑝)𝐹∗2𝛼(𝜉, 𝜔, 𝜁) − (𝑝 + 𝑟)

[(𝑝 + 𝑞)2 − (1 − 𝑞)2]
, 

and  

∑𝐹∗2𝜂−1(𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

=
𝐹∗2𝛼+3(𝜉, 𝜔, 𝜁) + (1 − 2𝑞 − 𝑝

2)𝐹∗2𝛼+1(𝜉, 𝜔, 𝜁) + 𝑟
2𝐹2𝛼−1

∗ (𝜉, 𝜔, 𝜁) − (1 − 𝑞)

[(𝑝 + 𝑞)2 − (1 − 𝑞)2]
 , 

provided  (𝑝 + 𝑞)2 − (1 − 𝑞)2 ≠  0. 
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Proof. From the recurrence relation (6.1), we have 

𝑝𝐹∗𝛼(𝜉, 𝜔, 𝜁) + 𝑟𝐹
∗
𝛼−2(𝜉, 𝜔, 𝜁) = 𝐹∗𝛼+1(𝜉, 𝜔, 𝜁) − 𝑞𝐹

∗
𝛼−1(𝜉, 𝜔, 𝜁) (6.11) 

Writing the equation (6.11) for different values of  𝛼 , we have 

𝑝𝐹∗0(𝜉, 𝜔, 𝜁) + 𝑟𝐹
∗
−2(𝜉, 𝜔, 𝜁) = 𝐹∗1(𝜉, 𝜔, 𝜁) − 𝑞𝐹

∗
−1(𝜉, 𝜔, 𝜁) 

𝑝𝐹∗2(𝜉, 𝜔, 𝜁) + 𝑟𝐹
∗
0(𝜉, 𝜔, 𝜁)  = 𝐹∗3(𝜉, 𝜔, 𝜁) − 𝑞𝐹

∗
1(𝜉, 𝜔, 𝜁) 

𝑝𝐹∗4(𝜉, 𝜔, 𝜁) + 𝑟𝐹
∗
2(𝜉, 𝜔, 𝜁)   = 𝐹∗5(𝜉, 𝜔, 𝜁) − 𝑞𝐹

∗
3(𝜉, 𝜔, 𝜁) 

                 . 

          . 

          . 

𝑝𝐹∗2𝛼(𝜉, 𝜔, 𝜁) + 𝑟𝐹
∗
2𝛼−2(𝜉, 𝜔, 𝜁)     = 𝐹

∗
2𝛼+1(𝜉, 𝜔, 𝜁) − 𝑞𝐹

∗
2𝛼−1(𝜉, 𝜔, 𝜁) 

Adding these equations, we have 

1 + (𝑝 + 𝑟)∑𝐹2𝜂−2
∗ (𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

+ 𝑝𝐹∗2𝛼(𝜉, 𝜔, 𝜁)

= 𝐹∗2𝛼+1(𝜉, 𝜔, 𝜁) + (1 − 𝑞)∑𝐹2𝜂−1
∗ (𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

 

After simplification, we have 

(𝑝 + 𝑟)∑𝐹2𝜂
∗ (𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

                                                                                                      

= 𝐹∗2𝛼+1(𝜉, 𝜔, 𝜁) + 𝑟𝐹
∗
2𝛼(𝜉, 𝜔, 𝜁) − 1 + (1 − 𝑞)∑𝐹2𝜂−1

∗ (𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

(6.12)

 

Again, using the (6.11) and proceeding as above, we can write 

(𝑝 + 𝑟)∑𝐹2𝜂−1
∗ (𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

= 𝐹∗2𝛼(𝜉, 𝜔, 𝜁) + 𝑟𝐹
∗
2𝛼−1(𝜉, 𝜔, 𝜁) + (1 − 𝑞)∑𝐹2𝜂−2

∗ (𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

 

After simplification, we can write 

(𝑝 + 𝑟)∑𝐹2𝜂−1
∗ (𝜉, 𝜔, 𝜁)                                                                                                  

𝛼

𝜂=1

= 𝑞𝐹∗2𝛼(𝜉, 𝜔, 𝜁) + 𝑟𝐹
∗
2𝛼−1(𝜉, 𝜔, 𝜁) + (1 − 𝑞)∑𝐹2𝜂

∗ (𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

(6.13)

 

Using (6.12) in (6.13), we get 
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∑𝐹∗2𝓀(𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

=
𝐹∗2𝛼+2(𝜉, 𝜔, 𝜁) + 𝑟

2𝐹2𝛼−2
∗ (𝜉, 𝜔, 𝜁) + (𝑟2 − 𝑞2 + 2𝑟𝑝)𝐹∗2𝛼(𝜉, 𝜔, 𝜁) − (𝑝 + 𝑟)

[(𝑝 + 𝑞)2 − (1 − 𝑞)2]
 

Similarly, using (6.13) in (6.12), we have 

∑𝐹∗2𝜂−1(𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

=
𝐹∗2𝛼+3(𝜉, 𝜔, 𝜁) + (1 − 2𝑞 − 𝑝

2)𝐹∗2𝛼+1(𝜉, 𝜔, 𝜁) + 𝑟
2𝐹2𝛼−1

∗ (𝜉, 𝜔, 𝜁) − (1 − 𝑞)

[(𝑝 + 𝑞)2 − (1 − 𝑞)2]
 

This establishes the Theorem. ∎ 

Theorem 6.2.4 For any integer 𝛼 ≥ 0, 

∑𝐺∗2𝜂(𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

=
𝐺∗2𝛼+2(𝜉, 𝜔, 𝜁) + 𝑟

2𝐺2𝛼−2
∗ (𝜉, 𝜔, 𝜁) + (𝑟2 − 𝑞2 + 2𝑟𝑝)𝐺∗2𝛼(𝜉, 𝜔, 𝜁) − [(3𝑟 + 𝑝)(𝑝 + 𝑟) + 2𝑞(1 − 𝑞)]

[(𝑝 + 𝑞)2 − (1 − 𝑞)2]
 , 

and 

∑𝐺∗2𝜂−1(𝜉, 𝜔, 𝜁)

𝛼

𝜂=1

=
𝐺∗2𝛼+3(𝜉, 𝜔, 𝜁) + (1 − 2𝑞 − 𝑝

2)𝐺∗2𝛼+1(𝜉, 𝜔, 𝜁) + 𝑟
2𝐺2𝛼−1

∗ (𝜉, 𝜔, 𝜁) − [(𝑞 + 1)𝑝 + (3 − 𝑞)𝑟]

[(𝑝 + 𝑞)2 − (1 − 𝑞)2]
 

provided (𝑝 + 𝑞)2 − (1 − 𝑞)2 ≠  0. 

Proof: Proceeding as above in Theorem 6.2.3, the desired results can be established. 

∎ 

Now we shall discuss explicit formulas for (𝑝, 𝑞, 𝑟) -Generalized Trivariate 

Fibonacci and Lucas polynomials. Firstly, we will write the  (𝑝, 𝑞, 𝑟)-Generalised 

Trivariate Fibonacci polynomials triangle and   (𝑝, 𝑞, 𝑟) −Generalized Trivariate 

Lucus polynomials triangle as under: 
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        t    

𝜶 

0 1 2 3 4 . . . 

0 1        

1 𝑝 𝑞       

2 𝑝2 2pq+r 𝑞2      

3 𝑝3 3𝑝2𝑞 + 2𝑝𝑟 3p𝑞2 + 2𝑞𝑟 𝑞3     

4 𝑝4 4𝑝3𝑞 + 3𝑝2𝑟 6𝑝2𝑞2 + 6𝑝𝑞𝑟

+ 𝑟2 

4𝑝𝑞3 + 3𝑞2𝑟 𝑞4 

 

   

... … ... … ... ..    

 

Table 6.3: (p, q, r)-Generalized Trivariate Fibonacci polynomials triangle 

 

 

      t           

𝜶 

0 1 2 3 4 . . . 

0 3        

1 𝑝 2𝑞       

2 𝑝2 3pq+3r 2𝑞2      

3 𝑝3 4𝑝2𝑞 + 4𝑝𝑟 5p𝑞2 + 5𝑞𝑟 2𝑞3 

 

    

4 𝑝4 5𝑝3𝑞

+ 5𝑝2𝑟 

9𝑝2𝑞2 + 11𝑝𝑞𝑟

+ 3𝑟2 

7𝑝𝑞3

+ 6𝑞2𝑟 

2𝑞4 

 

   

... … ... … ... ..    

 

Table 6.4: (p, q, r)-Generalized Trivariate Lucas polynomials triangle 
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If ℬ𝐹∗(𝛼, 𝑡) and ℬ𝐺∗(𝛼, 𝑡)represents the element in the 𝛼𝑡ℎ − 𝑟𝑜𝑤 and 𝑡𝑡ℎ −

𝑐𝑜𝑙𝑢𝑚𝑛 of the (𝑝, 𝑞, 𝑟)-Generalised Trivariate Fibonacci polynomial triangle and 

(𝑝, 𝑞, 𝑟)-Generalised Trivariate Lucas polynomial triangle respectively, then we can 

write 

ℬ𝐹∗(𝛼, 𝑡) =∑(
𝑡

𝑠
)

𝑡

𝑠=0

(
𝛼 − 𝑠

𝑡
) 𝑝𝛼−𝑡−𝑠𝑞𝑡−𝑠𝑟𝑠, 

and  

ℬ𝐺∗(𝛼, 𝑡) =∑
𝛼 + 𝑡

𝛼 − 𝑠
 

𝑡

𝑠=0

(
𝑡

𝑠
) (
𝛼 − 𝑠

𝑡
) 𝑝𝛼−𝑡−𝑠𝑞𝑡−𝑠𝑟𝑠, 

 

Consequently, it can be easily seen that, 

 

ℬ𝐹∗(𝛼 + 1, 𝑡) = 𝑝ℬ𝐹∗(𝛼, 𝑡) + 𝑞ℬ𝐹∗(𝛼, 𝑡 − 1) + 𝑟ℬ𝐹∗(𝛼 − 1, 𝑡 − 1), 

with 

ℬ𝐹∗(𝛼, 0) = 𝑝
𝛼   , ℬ𝐹∗(𝛼, 𝛼) = 𝑞𝛼. 

 

ℬ𝐺∗(𝛼 + 1, 𝑡) = 𝑝ℬ𝐺∗(𝛼, 𝑡) + 𝑞ℬ𝐺∗(𝛼, 𝑡 − 1) + 𝑟ℬ𝐺∗(𝛼 − 1, 𝑡 − 1), 

with 

ℬ𝐺∗(𝛼, 0) = 𝑝𝛼, ℬ𝐺∗(𝛼, 𝛼) = 2𝑞
𝛼. 

 

Further, we can easily write that, 

𝐹∗𝛼(𝜉, 𝜔, 𝜁) = ∑ ℬ𝐹∗(𝛼 − 𝑡 − 1, 𝑡)

⌊
𝛼−1
2
⌋

𝑡=0

, 

and  

𝐺∗𝛼(𝜉, 𝜔, 𝜁) =∑ℬ𝐺∗(𝛼 − 𝑡, 𝑡)

⌊
𝛼
2
⌋

𝑡=0

. 

Now, we are in a position to write the explicit formulae for (𝑝, 𝑞, 𝑟) -Generalized 

Trivariate Fibonacci and Lucas polynomials respectively as under: 
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Theorem 6.2.5. The explicit representation of (𝑝, 𝑞, 𝑟) −Generalized Trivariate 

Fibonacci and Lucas polynomials is as follows: 

𝐹∗𝛼(𝜉, 𝜔, 𝜁) = ∑ ∑(
𝑡

𝑠
)

𝑡

𝑠=0

⌊
𝛼−1
2
⌋

𝑡=0

(
𝛼 − 𝑡 − 𝑠 − 1

𝑡
) 𝑝𝛼−2𝑡−𝑠−1𝑞𝑡−𝑠𝑟𝑠, (6.14) 

𝐺∗𝛼(𝜉, 𝜔, 𝜁) =∑∑
𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠

𝑡
)

𝑡

𝑠=0

⌊
𝛼
2
⌋

𝑡=0

𝑝𝛼−2𝑡−𝑠𝑞𝑡−𝑠𝑟𝑠, (6.15) 

such that (𝑗
𝑖
) = 0 whenever 𝑖 > 𝑗. 

Proof. We will prove (6.14) by using mathematical induction. 

 For = 1,2,3,4 , the result (6.11) is true. 

Suppose the result is true for 𝛼 = 𝜂, that is, 

𝐹∗𝜂(𝜉, 𝜔, 𝜁) = ∑ ∑(
𝑡

𝑠
)

𝑡

𝑠=0

⌊
𝜂−1
2
⌋

𝑡=0

(
𝜂 − 𝑡 − 𝑠 − 1

𝑡
) 𝑝𝜂−2𝑡−𝑠−1𝑞𝑡−𝑠𝑟𝑠. 

Next, we will show that the result is true for 𝛼 = 𝜂 + 1, that is, 

𝐹∗𝜂+1(𝜉, 𝜔, 𝜁) =∑∑(
𝑡

𝑠
)

𝑡

𝑠=0

⌊
𝜂
2
⌋

𝑡=0

(
𝜂 − 𝑡 − 𝑠

𝑡
) 𝑝𝜂−2𝑡−𝑠𝑞𝑡−𝑠𝑟𝑠. 

Consider 

𝐹∗𝜂+1(𝜉, 𝜔, 𝜁) = 𝑝𝐹∗𝜂(𝜉, 𝜔, 𝜁) + 𝑞𝐹
∗
𝜂−1(𝜉, 𝜔, 𝜁) + 𝑟𝐹

∗
𝜂−2(𝜉, 𝜔, 𝜁)            

  = 𝑝

[
 
 
 

∑ ∑ℬ𝐹∗(𝜂 − 𝑡 − 1, 𝑡)

𝑡

𝑠=0

⌊
𝜂−1
2
⌋

𝑡=0
]
 
 
 

+ 𝑞

[
 
 
 

∑ ∑ℬ𝐹∗(𝜂 − 𝑡 − 2, 𝑡)

𝑡

𝑠=0

⌊
𝜂−2
2
⌋

𝑡=0
]
 
 
 

+ 𝑟

[
 
 
 

∑ ∑ℬ𝐹∗(𝜂 − 𝑡 − 3, 𝑡)

𝑡

𝑠=0

⌊
𝜂−3
2
⌋

𝑡=0
]
 
 
 

, 
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= 𝑝 [ℬ𝐹∗(𝜂 − 1,0) + ℬ𝐹∗(𝜂 − 2,1) + ℬ𝐹∗(𝜂 − 3,2) + ⋯+ ℬ𝐹∗ (
𝜂 − 1

2
,
𝜂 − 1

2
)]

+ 𝑞 [ℬ𝐹∗(𝜂 − 2,0) + ℬ𝐹∗(𝜂 − 3,1) + +ℬ𝐹∗(𝜂 − 4,2)

+ ⋯ℬ𝐹∗ (
𝜂 − 2

2
,
𝜂 − 2

2
)]  

+ 𝑟 [ℬ𝐹∗(𝜂 − 3,0) + ℬ𝐹∗(𝜂 − 4,1) + ℬ𝐹∗(𝜂 − 5,2) + ⋯

+ ℬ𝐹∗ (
𝜂 − 3

2
,
𝜂 − 3

2
)], 

= ℬ𝐹∗(𝜂, 0) + ℬ𝐹∗(𝜂 − 1,1) + ℬ𝐹∗(𝜂 − 2,2) + ℬ𝐹∗(𝜂 − 3,3) + ⋯ + ℬ𝐹∗ (
𝜂 + 1

2
,
𝜂 − 1

2
)

+ ℬ𝐹∗ (
𝜂

2
,
𝜂

2
), 

∴ 𝐹∗𝜂+1(𝜉, 𝜔, 𝜁) =∑ℬ𝐹∗(𝜂 − 𝑡, 𝑡)

⌊
𝜂
2
⌋

𝑡=0

=∑∑(
𝑡

𝑠
)

𝑡

𝑠=0

⌊
𝜂
2
⌋

𝑡=0

(
𝜂 − 𝑡 − 𝑠

𝑡
) 𝑝𝜂−2𝑡−𝑠𝑞𝑡−𝑠𝑟𝑠. 

Thus, by induction, the result holds for all positive integer 𝛼. 

Similarly, we can obtain (6.15) for (𝑝, 𝑞, 𝑟)-Generalized Trivariate Lucas 

polynomials. ∎ 

Theorem 6.2.6. Let 𝐹∗𝛼(𝜉, 𝜔, 𝜁) and 𝐺∗𝛼(𝜉, 𝜔, 𝜁) be (𝑝, 𝑞, 𝑟) −Generalized Trivariate 

Fibonacci and Lucas Polynomials respectively. Then 

𝜕(𝑝, 𝐺∗𝛼(𝜉, 𝜔, 𝜁), 𝑟)

𝜕(𝜉, 𝜔, 𝜁)
= 𝛼𝐹∗𝛼−1(𝜉, 𝜔, 𝜁)

𝜕(𝑝, 𝑞, 𝑟)

𝜕(𝜉, 𝜔, 𝜁)
 . 

Proof. From Theorem 6.2.5, we have 

𝐺∗𝛼(𝜉, 𝜔, 𝜁) =∑∑
𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
)

𝑡

𝑠=0

⌊
𝛼
2
⌋

𝑡=0

(
𝛼 − 𝑡 − 𝑠

𝑡
) 𝑝𝛼−2𝑡−𝑠𝑞𝑡−𝑠𝑟𝑠. (6.16) 

Differentiating equation (6.16) w.r.t 𝜉, partially, we have 



139 

 

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝜉
=∑∑

𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠

𝑡
) (𝛼 − 2𝑡 − 𝑠)𝑝𝛼−2𝑡−𝑠−1 𝑝𝜉

𝑡

𝑠=0

⌊
𝛼
2
⌋

𝑡=0

𝑞𝑡−𝑠𝑟𝑠

+∑∑
𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠

𝑡
)

𝑡

𝑠=0

𝑝𝛼−2𝑡−𝑠(𝑡 − 𝑠)  𝑞𝜉

⌊
𝛼
2
⌋

𝑡=0

𝑞𝑡−𝑠−1𝑟𝑠

+∑∑
𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠

𝑡
)

𝑡

𝑠=0

𝑝𝛼−2𝑡−𝑠𝑞𝑡−𝑠

⌊
𝛼
2
⌋

𝑡=0

𝑟𝜉  𝑠 𝑟
𝑠 

                 = 𝛼𝑝𝜉 ∑ ∑(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠 − 1

𝑡
)

𝑡

𝑠=0

𝑝𝛼−2𝑡−𝑠−1𝑞𝑡−𝑠𝑟𝑠

⌊
𝛼−1
2
⌋

𝑡=0

                     

+ 𝛼𝑞𝜉 ∑ ∑(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠 − 2

𝑡
)

𝑡

𝑠=0

𝑝𝛼−2𝑡−𝑠−2𝑞𝑡−𝑠𝑟𝑠

⌊
𝛼−2
2
⌋

𝑡=0

  

+ 𝛼𝑟𝜉 ∑ ∑(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠 − 3

𝑡
)

𝑡

𝑠=0

𝑝𝛼−2𝑡−𝑠−3𝑞𝑡−𝑠𝑟𝑠

⌊
𝛼−3
2
⌋

𝑡=0

 

 

           = 𝛼𝑝𝜉𝐹
∗
𝛼(𝜉, 𝜔, 𝜁) + 𝛼𝑞𝜉𝐹

∗
𝛼−1(𝜉, 𝜔, 𝜁) + 𝛼𝑟𝜉𝐹

∗
𝛼−2(𝜉, 𝜔, 𝜁). 

 

Therefore, 

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝜉
= 𝛼𝑝𝜉𝐹

∗
𝛼(𝜉, 𝜔, 𝜁) + 𝛼𝑞𝜉𝐹

∗
𝛼−1(𝜉, 𝜔, 𝜁) + 𝛼𝑟𝜉𝐹

∗
𝛼−2(𝜉, 𝜔, 𝜁). (6.17) 

Similarly, 

∂𝐺∗α(𝜉, 𝜔, 𝜁)

∂𝜔
= α𝑝𝜔𝐹𝛼

∗(𝜉, 𝜔, 𝜁) + α𝑞𝜔𝐹𝛼−1
∗ (𝜉, 𝜔, 𝜁) + α𝑟𝜔𝐹𝛼−2

∗ (𝜉, 𝜔, 𝜁). (6.18) 

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝜁
= 𝛼𝑝𝜁𝐹𝛼

∗(𝜉, 𝜔, 𝜁) + 𝛼𝑞𝜔𝐹𝛼−1
∗ (𝜉, 𝜔, 𝜁) + 𝛼𝑟𝜁𝐹𝛼−2

∗ (𝜉, 𝜔, 𝜁). (6.19) 

Multiplying (6.18) by 𝑟𝜁and (6.19) by 𝑟𝜔 and subtracting we have, 
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𝑟𝜁
𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝜔
− 𝑟𝜔

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝜁
                                                                                              

                                = 𝛼[𝑝𝜔𝑟𝜁 − 𝑝𝜁𝑟𝜔]𝐹𝛼(𝜉, 𝜔, 𝜁) + 𝛼[𝑞𝜔𝑟𝜁 − 𝑞𝜁𝑟𝜔]𝐹𝛼−1(𝜉, 𝜔, 𝜁) (6.20)

 

Multiplying (6.17) by 𝑟𝜁and (6.19) by 𝑟𝜉 and subtracting we have, 

𝑟𝜁
∂𝐺∗α(𝜉, 𝜔, 𝜁)

∂𝜉
− 𝑟𝜉

∂𝐺∗α(𝜉, 𝜔, 𝜁)

∂𝜁
                                                                                             

                                   = α[𝑝𝜉𝑟𝜁 − 𝑝𝜁𝑟𝜉]𝐹α(𝜉, 𝜔, 𝜁) + α[𝑞𝜉𝑟𝜁 − 𝑞𝜁𝑟𝜉]𝐹α−1(𝜉, 𝜔, 𝜁) (6.21)

 

Multiplying (6.17) by 𝑟𝜔  and (6.18) by 𝑟𝜉 and subtracting we have, 

𝑟𝜔
∂𝐺∗α(𝜉, 𝜔, 𝜁)

∂𝜉
− 𝑟𝜉

∂𝐺∗α(𝜉, 𝜔, 𝜁)

∂𝜔
                                                                                              

                                = α[𝑝𝜉𝑟𝜔 − 𝑝𝜔𝑟𝜉]𝐹α(𝜉, 𝜔, 𝜁) + α[𝑞𝜉𝑟𝜔 − 𝑞𝜔𝑟𝜉]𝐹α−1(𝜉, 𝜔, 𝜁) (6.22)

 

Now, using (6.20), (6.21) and (6.22), we have  

∂(𝑝, 𝐺∗α(𝜉, 𝜔, 𝜁), 𝑟)

∂(𝜉, 𝜔, 𝜁)
= α𝐹∗α−1(𝜉, 𝜔, 𝜁)

∂(𝑝, 𝑞, 𝑟)

∂(𝜉, 𝜔, 𝜁)
 

This completes the proof. ∎ 

Theorem 6.2.7. Let 𝐹∗𝛼(𝜉, 𝜔, 𝜁) and 𝐺∗𝛼(𝜉, 𝜔, 𝜁) be (𝑝, 𝑞, 𝑟) −Generalized Trivariate 

Fibonacci and Lucas Polynomials respectively. Then 

𝑝
𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑝
+ 𝑞

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑞
+ 𝑟 

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑟
= 𝛼𝐹∗𝛼(𝜉, 𝜔, 𝜁). (6.23) 

Proof. From Theorem 6.2.3, we have, 

𝐺∗𝛼(𝜉, 𝜔, 𝜁) =∑∑
𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
)

𝑡

𝑠=0

⌊
𝛼
2
⌋

𝑡=0

(
𝛼 − 𝑡 − 𝑠

𝑡
) 𝑝𝛼−2𝑡−𝑠𝑞𝑡−𝑠𝑟𝑠. (6.24) 

Differentiating equation (6.24) w.r.t 𝑝  partially, we have 

∂𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑝
=∑∑

𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
)

𝑡

𝑠=0

⌊
𝛼
2
⌋

𝑡=0

(𝑠
𝛼 − 𝑡 − 𝑠

𝑡
) (𝛼 − 2𝑡 − 𝑠)𝑝𝛼−2𝑡−𝑠−1𝑞𝑡−𝑠𝑟𝑠

= 𝛼 ∑ ∑(
𝑡

𝑠
)

𝑡

𝑠=0

(
𝛼 − 𝑡 − 𝑠 − 1

𝑡
) 𝑝𝛼−2𝑡−𝑠−1𝑞𝑡−𝑠𝑟𝑠

⌊
𝛼−1
2
⌋

𝑡=0

 = 𝛼𝐹∗𝛼(𝜉, 𝜔, 𝜁), 

Therefore, 

  
𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑝
  =  𝛼  𝐹∗𝛼(𝜉, 𝜔, 𝜁). 
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Again, differentiating equation (6.24) w.r.t 𝑞 partially, we have 

∂𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑞
=∑∑

𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
)

𝑡

𝑠=0

(
𝛼 − 𝑡 − 𝑠

𝑡
) 𝑝𝛼−2𝑡−𝑠(𝑡 − 𝑠)

⌊
𝛼
2
⌋

𝑡=0

𝑞𝑡−𝑠−1𝑟𝑠

= 𝛼 ∑ ∑(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠 − 2

𝑡
)

𝑡

𝑠=0

⌊
𝛼−2
2
⌋

𝑡=0

𝑝𝛼−2𝑡−𝑠−2𝑞𝑡−𝑠𝑟𝑠

= 𝛼𝐹∗𝛼−1(𝜉, 𝜔, 𝜁), 

Therefore, 

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑞
= 𝛼𝐹∗𝛼−1(𝜉, 𝜔, 𝜁). 

Again, differentiating   equation (6.14) w.r.t 𝑟 partially, we have 

∂𝐺∗𝛼(𝜉, 𝜔, 𝜁)

∂𝑟
=∑∑

𝛼

𝛼 − 𝑡 − 𝑠
(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠

𝑡
)

𝑡

𝑠=0

⌊
𝛼
2
⌋

𝑡=0

𝑝𝛼−2𝑡−𝑠𝑞𝑡−𝑠𝑠𝑟𝑠

= 𝛼 ∑ ∑(
𝑡

𝑠
) (
𝛼 − 𝑡 − 𝑠 − 3

𝑡
)

𝑡

𝑠=0

⌊
𝛼−3
2
⌋

𝑡=0

𝑝𝛼−2𝑡−𝑠−3𝑞𝑡−𝑠𝑟𝑠

= 𝛼 𝐹∗𝛼−2(𝜉, 𝜔, 𝜁), 

Therefore, 

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑟
= 𝛼𝐹∗𝛼−2(𝜉, 𝜔, 𝜁). 

Now, we have 

𝐺.ℋ. 𝑆 = 𝑝
∂𝐺∗𝛼(𝜉, 𝜔, 𝜁)

∂𝑝
+ 𝑞

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑞
+ 𝑟

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑟

= 𝛼𝑝𝐹∗𝛼(𝜉, 𝜔, 𝜁) + 𝛼𝑞𝐹
∗
𝛼−1(𝜉, 𝜔, 𝜁) + 𝛼𝑟𝐹

∗
𝛼−2(𝜉, 𝜔, 𝜁)

= 𝛼𝐹∗𝛼+1(𝜉, 𝜔, 𝜁) = 𝑅.ℋ. 𝑆 

Therefore,  

𝑝
∂𝐺∗𝛼(𝜉, 𝜔, 𝜁)

∂𝑝
+ 𝑞

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑞
+ 𝑟

𝜕𝐺∗𝛼(𝜉, 𝜔, 𝜁)

𝜕𝑟
 = 𝛼 𝐹∗𝛼(𝜉, 𝜔, 𝜁) .   ∎ 

6.2.1. Generating matrix for (𝒑, 𝒒, 𝒓) −Generalized Trivariate Fibonacci 

polynomials 
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As in [62, 64] the generating matrix for (𝑝, 𝑞, 𝑟) −Generalized Trivariate 

Fibonacci polynomials is 

ℋ = [
𝑝 1 0
𝑞 0 1
𝑟 0 0

]. 

Using mathematical Induction, we can easily deduce 

ℋ𝛼 = [

𝐹∗𝛼+1 𝐹∗𝛼 𝐹∗𝛼−1
𝑞𝐹∗𝛼 + 𝑟𝐹

∗
𝛼−1 𝑞𝐹∗𝛼−1 + 𝑟𝐹

∗
𝛼−2 𝑞𝐹∗𝛼−2 + 𝑟𝐹

∗
𝛼−3

𝑟𝐹∗𝛼 𝑟𝐹∗𝛼−1 𝑟𝐹∗𝛼−2

], 

where  

𝐹∗𝛼 = 𝐹∗𝛼(𝜉, 𝜔, 𝜁). 

Theorem 6.2.8. For any positive integers 𝛼, 𝛽  

𝐹∗𝛼+𝛽(𝜉, 𝜔, 𝜁) = 𝐹∗𝛽+1(𝜉, 𝜔, 𝜁)𝐹
∗
𝛼(𝜉, 𝜔, 𝜁) + 𝐹

∗
𝛽(𝜉, 𝜔, 𝜁)𝐹

∗
𝛼+1(𝜉, 𝜔, 𝜁)

+ 𝜁𝐹∗𝛽−1(𝜉, 𝜔, 𝜁)𝐹
∗
𝛼−1(𝜉, 𝜔, 𝜁)

− 𝜉𝐹∗𝛽(𝜉, 𝜔, 𝜁) 𝐹
∗
𝛼(𝜉, 𝜔, 𝜁).                                                       (6.25) 

Proof. With the help of the identity ℋ𝛼+𝛽 = ℋ𝛼ℋ𝛽 and equality of matrices, the 

desired result can be established. ∎ 

 

Corollary 6.2.1. For any positive integers 𝛼, 𝛽 

𝐹∗2𝛼(𝜉, 𝜔, 𝜁) = 𝑟𝐹∗𝛽+1
2 (𝜉, 𝜔, 𝜁) − 𝑝𝐹∗𝛽

2(𝜉, 𝜔, 𝜁)

+ 2𝐹∗𝛼+1(𝜉, 𝜔, 𝜁)𝐹
∗
𝛼(𝜉, 𝜔, 𝜁).                                                   (6.26) 

Proof.  By using 𝛼 = 𝛽 in equation (6.26), the desired result can be established. ∎ 

 

Corollary 6.2.2. For any positive integers 𝛼, 𝛽  

𝐹∗2𝛼+1 = 𝐹
∗
𝛼+1
2 (𝜉, 𝜔, 𝜁) + 𝑞𝐹∗𝛼

2(𝜉, 𝜔, 𝜁) + 2𝑟𝐹∗𝛼(𝜉, 𝜔, 𝜁)𝐹
∗
𝛼−1(𝜉, 𝜔, 𝜁) 

Proof.  By using 𝛽 = 𝛼 + 1 equation (6.26), the desired result can be established. ∎ 

Theorem 6.2.9. For any positive integer n, 

|

𝐹∗𝛼+2 𝐹∗𝛼+1 𝐹∗𝛼
𝐹∗𝛼+1 𝐹∗𝛼 𝐹∗𝛼−1
𝐹∗𝛼 𝐹∗𝛼−1 𝐹∗𝛼−2

| = −𝑟𝛼−1, (6.27) 

where  𝐹∗𝛼 = 𝐹
∗
𝛼(𝜉, 𝜔, 𝜁). 

Proof.  Evidently  det(ℋ) = 𝑟 and hence det(ℋ𝛼) = 𝑟𝛼, implies 
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|

𝐹∗𝛼+1 𝐹∗𝛼 𝐹∗𝛼−1
𝑞𝐹∗𝛼 + 𝑟𝐹

∗
𝛼−1 𝑞𝐹∗𝛼−1 + 𝑟𝐹

∗
𝛼−2 𝑞𝐹∗𝛼−2 + 𝑟𝐹

∗
𝛼−3

𝑟𝐹∗𝛼 𝑟𝐹∗𝛼−1 𝑟𝐹∗𝛼−2

| = 𝑟𝛼, 

Operating R2 + 𝑝R1  and interchanging R1 and R2, we have 

|

𝐹∗𝛼+2 𝐹∗𝛼+1 𝐹∗𝛼
𝐹∗𝛼+1 𝐹∗𝛼 𝐹∗𝛼−1
𝑟𝐹∗𝛼 𝑟𝐹∗𝛼−1 𝑟𝐹∗𝛼−2

| = −𝑟𝛼, 

Which further implies, 

|

𝐹∗𝛼+2 𝐹∗𝛼+1 𝐹∗𝛼
𝐹∗𝛼+1 𝐹∗𝛼 𝐹∗𝛼−1
𝐹∗𝛼 𝐹∗𝛼−1 𝐹∗𝛼−2

| = −𝑟𝛼−1, 

This establishes the determinant properties of (𝑝, 𝑞, 𝑟)-Generalized Trivariate 

Fibonacci polynomials. Taking 𝑝 = 𝑞 = 𝑟 = 1   , we obtain the determinant property 

of Tribonacci numbers and by taking 𝑝 = 𝜉2, 𝑞 = 𝜉, 𝑟 = 1, determinant property of 

Tribonacci polynomials is obtained. Next, we will attempt to establish the determinant 

properties of (𝑝, 𝑞, 𝑟)-Generalized Trivariate Lucas polynomials.  The (𝑝, 𝑞, 𝑟)-

Generalized Trivariate Lucas polynomials are generated by a matrix 𝑀1 with the help 

of the following matrices: 

ℋ = [
𝑝 1 0
𝑞 0 1
𝑟 0 0

], 

and 

𝑀0 = [

𝐺∗2 𝐺∗1 𝐺∗0
𝐺∗1 𝐺∗0 𝐺∗−1
𝐺∗0 𝐺∗−1 𝐺∗−2

] =

[
 
 
 
 
𝑝2 + 2𝑞 𝑝 3

𝑝 3 −
𝑞

𝑟

3 −
𝑞

𝑟

𝑞2 − 2𝑝𝑟

𝑟2 ]
 
 
 
 

, 

such that 

𝑀1 = 𝑀0ℋ = [

𝐺∗2 𝐺∗1 𝐺∗0
𝐺∗1 𝐺∗0 𝐺∗−1
𝐺∗0 𝐺∗−1 𝐺∗−2

] [
𝑝 1 0
𝑞 0 1
𝑟 0 0

] = [

𝑝3 + 3𝑝𝑞 + 3𝑟 𝑝2 + 2𝑞 𝑝

𝑝2 + 2𝑞 𝑝 3

𝑝 3 −
𝑞

𝑟

]

= [

𝐺∗3 𝐺∗2 𝐺∗1
𝐺∗2 𝐺∗1 𝐺∗0
𝐺∗1 𝐺∗0 𝐺∗−1

]. 

Proceeding inductively, we can easily see that 
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𝑀𝛼 = 𝑀𝛼−1ℋ = [

𝐺∗𝛼+2 𝐺∗𝛼+1 𝐺∗𝛼
𝐺∗𝛼+1 𝐺∗𝛼 𝐺∗𝛼−1
𝐺∗𝛼 𝐺∗𝛼−1 𝐺∗𝛼−2

]. 

Theorem 6.2.9.  For any positive integer 𝛼, 

𝑀𝛼 = 𝑀0ℋ
𝛼, (6.28) 

where ℋ1 = ℋ. 

 Proof. The result can be easily established using induction hypothesis. 

  For 𝛼 = 1 , clearly   𝑀1 = 𝑀0ℋ
1 = 𝑀0ℋ 

As 

𝑀0ℋ =

[
 
 
 
 
𝑝2 + 2𝑞 𝑝 3

𝑝 3 −
𝑞

𝑟

3 −
𝑞

𝑟

𝑞2 − 2𝑝𝑟

𝑟2 ]
 
 
 
 

[
𝑝 1 0
𝑞 0 1
𝑟 0 0

], 

= [

𝑝3 + 3𝑝𝑞 + 3𝑟 𝑝2 + 2𝑞 𝑝

𝑝2 + 2𝑞 𝑝 3

𝑝 3 −
𝑞

𝑟

] 

= [

𝐺∗3 𝐺∗2 𝐺∗1
𝐺∗2, 𝐺∗1 𝐺∗0
𝐺∗1 𝐺∗0 𝐺∗−1

] = 𝑀1.           

Suppose the result is true for 𝛼 = 𝜂, that is, 

𝑀𝜂 = 𝑀0ℋ
𝜂 . 

Next, we shall prove that the result is true for 𝛼 = 𝜂 + 1, that is, 

𝑀𝜂+1 = 𝑀0ℋ
𝜂+1. 

𝑀0ℋ
𝜂+1 = 𝑀0ℋ

𝜂ℋ = 𝑀𝜂ℋ = [

𝐺∗𝜂+2 𝐺∗𝜂+1 𝐺∗𝜂
𝐺∗𝜂+1 𝐺∗𝜂 𝐺∗𝜂−1
𝐺∗𝜂 𝐺∗𝜂−1 𝐺∗𝜂−2

] [
𝑝 1 0
𝑞 0 1
𝑟 0 0

] 

 = [

𝑝𝐺∗𝜂+2 + 𝑞𝐺
∗
𝜂+1 + 𝑟𝐺

∗
𝜂 𝐺∗𝜂+1 𝐺∗𝜂

𝑝𝐺∗𝜂+2 + 𝑞𝐺
∗
𝜂+1 + 𝑟𝐺

∗
𝜂 𝐺∗𝜂 , 𝐺∗𝜂−1

𝑝𝐺∗𝜂 + 𝑞𝐺
∗
𝜂−1 + 𝑟𝐺

∗
𝜂−2 𝐺∗𝜂−1 𝐺∗𝜂−2

],     

𝑀0ℋ
𝜂+1 = [

𝐺∗𝜂+3 𝐺∗𝜂+2 𝐺∗𝜂+1
𝐺∗𝜂+2 𝐺∗𝜂+1 𝐺∗𝜂
𝐺∗𝜂+1 𝐺∗𝜂 𝐺∗𝜂−1

] = 𝑀𝜂+1. 

Hence, the result holds for all positive integers 𝛼. ∎ 
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Summary and Conclusions. 

In chapter 2, we derived identities expressing sums of finite product of the Lucas 

numbers (ℒ𝑛), the Fibonacci (ℱ𝑛), & the Complex Fibonacci numbers(ℱ∗𝑛) as linear 

sum of derivatives of the 2nd kinds of Chebyshev polynomials (𝒰𝑛  ( 𝑧)) through 

elementary computations. 

In chapter 3, we introduced a few more results on sums of finite product of the 3rd 

and 4th kinds of Chebyshev polynomials, Lucas and Fibonacci numbers in terms of the 

2nd kind Chebyshev polynomials and their derivatives. Also, we discussed some 

particular cases of the results obtained in this chapter in the form of corollaries by taking 

different values of 𝑟 = 1,2,3. 

In chapter 4, using elementary methods, we deduced the explicit formulae for the 

3rd and 4th kinds of Chebyshev Polynomials and their derivatives with odd and even 

indices and obtained a relationship connecting the 3rd and 4th kinds of Chebyshev 

Polynomials and negative indexed Fibonacci polynomials.   

In first section of chapter 5, we introduced a few more results expressing 

summations of finite products of Lucas & Fibonacci numbers, Fibonacci and Pell 

polynomials as a linear sum of the derivatives of Pell polynomials, using their basic 

properties through elementary computations. Similar identities are obtained for the 3rd 

and 4th kinds of Chebyshev polynomials. In the next section, we established similar 

identities for the negative indexed Lucas, Fibonacci, and Complex Fibonacci numbers. 

In terms of the 3rd and 4th kinds of Chebyshev polynomials, similar identities were 

obtained for Pell numbers and Fibonacci polynomials 

At the end in the chapter 6, we developed the concept of (p, q, r)-Generalized 

Trivariate Fibonacci and (p, q, r)-Generalized Trivariate Lucas polynomials and 

discussed their properties. Using these properties, we derived the explicit formula of 

(p,q,r)-Generalized Trivariate Fibonacci and Lucas polynomials and deduce some 

results  on the generating matrices and their determinants. 

 



146 

 

Future and Scope 

1. Identities on the sums of the finite product of the Pell numbers, the Jacobsthal 

numbers, and polynomials in terms of the derivatives of the 1st, 2nd, 3rd, and 4th 

kinds of Chebyshev polynomials can be obtained using elementary 

computational method. 

2. Identities on sums of finite products of Lucas and Fibonacci numbers, Pell and 

Fibonacci polynomials as a linear sum of derivatives of Jacobsthal polynomials, 

using their basic properties through elementary computations can be obtained.  

3. Identities on sums of finite products of negative indexed Lucas, Fibonacci,and 

Complex Fibonacci numbers in terms of Jacobsthal polynomials and Jacobsthal 

Lucas polynomials can be obtained using their basic properties through 

elementary computations.  
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