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ABSTRACT 

Prostate cancer (PCa) has become a major health concern being the third most prevalent 

cancer in India. On the other hand, type-2 diabetes mellitus (T2DM) and metabolic disorders 

contribute to a major chunk of the diseases associated with cancers. The link between 

Diabetes and Prostate Cancer (PCa) reveals shared risk factors, and notably, hyperglycemia 

increases prostate-specific antigen (PSA) level which is commonly used as a PCa biomarker. 

However, PSA’s association with variables often turns out to be an erroneous positive result 

or even end up in needless biopsies of elderly people. Besides this, many antidiabetic drugs 

(like metformin) are found showing anticancer effects and increasing the survival rate of the 

PCa patients with diabetes. One of the prime objectives of the study was to explore the 

crosstalk of tumor metabolism that intersects between PCa and diabetes, with a focus on 

identifying variants and biomarkers beyond PSA for early detection. 

With Genome Wide Association Studies (GWAS) and Next Generation Studies (NGS) 

proving to be boon for precision medicine, this thesis employed two different studies, first a 

meta-analysis study of already published datasets and then a preliminary study of 5 clinical 

cases and their genetic profiling with the help of whole exome sequencing (WES) from our 

consortium, viz. CAPCI. We conducted a comprehensive literature review focusing on meta- 

analysis to gather clinical parameters related to comorbidities such as diabetes, obesity, as 

well as PCa, recognizing their potential influence on complex processes of carcinogenesis, 

particularly in relation to PCa. The data was transformed into a semi-binary format for 

machine learning (ML) analysis. Publicly available datasets, our published RNA-seq datasets, 

and whole-exome sequencing data were cross-checked to identify common role players in 

PCa, diabetes, and obesity. Protein-Protein interaction (PPI) studies narrowed down to 

common genetic factors, revealing BLM, TMPO and FOXP1. Intriguingly, BLM gene was the 

only common gene to all three conditions, interacting with both FOXP1 and TMPO. 

The cases we have considered were prostate adenocarcinoma cancer from north-western 

region of India. We identified a total of 123,480 variants from our genomes of cases studied 

by WES and further delved into discerning pathogenic variants and selected mutations were 

validated using Sanger Sequencing. The studies through databanks, pathway enrichment 

analysis and literature search showed that most of the genes are enriched in the pathways of 

glucose metabolism, insulin resistance and other comorbidities. The prostate gland primarily 

produces prostate fluid under the regulation of the androgen receptor (AR), which mediates 

hormone signaling. AR stimulation is known to be involved in PCa. Additionally, AR 
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modulates insulin sensitivity, insulin secretion, obesity, and oxidative stress all of which 

impact the diabetes progression which marks AR pathway as a common target and needs to 

be explored with reference to both conditions. Since, lncRNAs are increasingly recognized as 

important players in cancer pathogenesis, including PCa, serving as signal transduction 

mediators. Hence, to bridge the gap between regulatory mechanisms of PCa and AR we 

aimed to identify lncRNAs and attempted to ask how AR signaling interacts with lncRNA 

networks in PCa biology and diabetes to uncover connections, shedding light on potential 

biomarkers and therapeutic targets. 

Taken together, this study has allowed us to bring insights into ascertaining different 

phenotypes in the form of diabetes, PCa, and obesity. Also, the result of this study confirms 

that there is a plausible association between PCa and comorbidities like diabetes. The study 

moreover highlights the need to consider the comorbidities at the time of both diagnosis and 

treatment. Further investigation is warranted to understand the mechanism and early 

prediction of PCa. 
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CHAPTER 1: INTRODUCTION 

 
A greater part of deaths worldwide are due to non-communicable diseases, and cancer is 

likely to score the top most position. It is also considered the only significant barricade for the 

rising life span of all countries in the present world (Bochen Cao et al., 2018) (Ramesh & 

Kosalram, 2023) (Witts et al., 2024). In 2015, WHO claimed cancer as the first or second 

main reason for mortality earlier than the age of 70 years among 91 over 172 countries; it also 

lays third or fourth position in 22 other countries (Bray et al., 2018) (R. D. Smith & Mallath, 

2019). Among all, PCa (PCa) is specific and unique to male reproductive health, a neoplasia 

of the outer peripheral region of the prostate gland and associated with unique reprogramming 

of glucose metabolism (Bader & McGuire, 2020). Among all male malignancies, PCa, an 

adenocarcinoma, is one of the most prevalent in men worldwide, affecting the prostate gland, 

testis and androgen receptor pathways (Tyagi et al., 2022). As PCa arises at the periphery of 

the gland, it has a peripheral epithelium with exocrine glands made up of secretory luminal 

cells with PCa that is ultimately tissue origin-specific. PCa is entirely tissue-origin-specific, 

and therefore, it is categorized into prostate epithelial carcinoma and prostate 

adenocarcinomas (Bader & McGuire, 2020). 

Global Cancer Observatory (GLOBOCAN) data for 2020 predicts that by 2040, a total of 

63100 more cases will be added and 256,000 deaths will happen across Asia. Recent 

Population Based Registries (PBCR) statistics 2020 for India and that across the globe by the 

International Agency for Research on Cancer reported data for incidence rates for five Asian 

nations (China, India, Japan, Republic of Korea, and Thailand), three North American nations 

(the USA, Canada, and Brazil), two Oceanian nations (Australia and New Zealand), and four 

European nations (the UK, France, Germany, and Italy) for the years 2008 to 2012. In all the 

mentioned locations, the incidence of men below 40 was extremely low and rose sharply 

beyond that age. Prevalence peaked at ages 75–84, 70–79, and 70–79 years, respectively, 

across Asia (apart from China and India), America, Oceania, and Europe. In general, Asia's 

incidence was typically lower than that of other western continents, even as several Asian 

countries have shown an expanding rate of incidence and mortality (R. Sharma et al., 2024). 

A piece of precise information regarding the weight of Asian PCa is shortening, which is 

ethnically, economically, and geographically heterogeneous (Ha Chung et al., 2019) The low 

occurrence rate in Asian men compared to western men might be because of a shortage of 

prostate-specific antigen systemic screening approaches (Ha Chung et al., 2019) (Kimura & 

Egawa, 2018). 
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Japan and South Korea have higher incidence rates of PCa compared to other Asian nations, 

with Japan having a prevalence of 520 per 100,000 and South Korea 370 per 100,000 (Hori & 

Palmer, 2021) (Ha Chung et al., 2019). PCa is the most commonly diagnosed malignancy 

among males in western nations, with increasing incidence rates (Mittal et al., 2012) (Wang et 

al., 2022) (Jiang et al., 2024). The etiology of PCa is not fully understood but is associated 

with age, family history (42% genetic background association), first-degree relatives being 

more at risk of developing it, and dietary factors such as red meat, fat, diary, and egg intake in 

Asian men (Ha Chung et al., 2019) (Khan et al., 2019). However, due to its complex and 

polygenic character, its pathophysiology is not yet fully understood, and PCa has become 

such a typical malady (Khan et al., 2019) (Mittal et al., 2012). Genetic variations contribute to 

differences in PCa incidence between western and Asian populations (Ha Chung et al., 2019). 

Acquired and congenital risk factors also affect PCa development. Latent PCa means men 

who show no undeniable signs during their life expectancy, and the cancer-causing tumor is 

unexpectedly discovered while examining the dead body (autopsy). On the other hand, 

accidental PCa is, by chance, identified in prostatic tissue extracted as a non-malignant 

ailment (Kimura & Egawa, 2018). In the pathogenesis of PCa, genetic factors are crucial. 

There are few Indian reports on hereditary PCa susceptibility (Mittal et al., 2012) (Vietri et 

al., 2021) (Berenguer et al., 2023). Only 25-30% of the patients are accurately staged 

clinically, based on a physical examination (Ravi et al., 2021). Comparatively fewer PCa 

instances are reported in India than in other Western nations with common symptoms like 

frequent occurrences can contribute to raising PCa risk (Patel & Klein, 2009). Smoking 

increases the risk by 1.6 times (Kenfield et al., 2011) (Mittal et al., 2012). Genetic variations 

contribute to differences in PCa incidence between Western and Asian populations (Ha 

Chung et al., 2019). Acquired and congenital risk factors also affect PCa development. Latent 

PCa means men who show no undeniable signs during their life expectancy, and the cancer- 

causing tumor is unexpectedly discovered while examining the dead body (autopsy). On the 

other hand, accidental PCa is, by chance, identified in prostatic tissue extracted as a non- 

malignant ailment(Kimura & Egawa, 2018). In the pathogenesis of PCa, genetic factors are 

crucial. There are few Indian reports on hereditary PCa susceptibility (Kimura & Egawa, 

2018) (Mittal et al., 2012) (Vietri et al., 2021) (Berenguer et al., 2023). Only 25-30% of the 

patients are accurately staged clinically, based on a physical examination (Ravi et al., 2021). 

Comparatively fewer PCa instances are reported in India than in other Western nations with 

common symptoms like frequent urination difficulties, a worn-out urinary flow, bloody pee or 

semen, and severe lower back, hip, or thigh discomfort are some prevalent PCa symptoms. 

Similar symptoms, though, might also be caused by benign prostatic hyperplasia or prostatitis, 
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and as a result, it is extremely challenging to identify PCa from typical symptoms (Sarkar et 

al., 2022). Therefore, an improved awareness of epidemiology in Asia, including its 

modifiable and non-modifiable conditions of risk, might make it possible to make better 

healthcare decisions and develop policies (Ha Chung et al., 2019). 

PCa screening in past years has significantly been geared toward Prostate Serum Antigen 

(PSA) testing, Digital Rectal Examination (DRE) or prostatectomy or at autopsy to identify 

latent cancers in asymptomatic individuals (Bray et al., 2018). Prostate Specific Antigen 

(PSA) is a 33kD proenzyme that belongs to the Kallikrein group of proteases and is also 

known as human Kallikrein 3. It is the most often used biomarker for identifying PCa. Its 

concentration in seminal fluid ranges from 0.5-2 g/L in men's urine and saliva (Khan et al., 

2019) (Sarkar et al., 2022). The two common techniques for diagnosing PCa are Gleason 

scoring of tissue images from microarrays and the microscopic analysis of stained specimens 

by pathologists. However, scoring PCa tissue images requires much effort, is prone to 

arbitrary decisions from different observers, and displays low reliability. Pathologists use 

needle biopsy in the biography during the conventional PCa diagnosis, relying on Gleason 

grading system, which assesses glandular structures. While glandular structures eventually 

disappear in high-grade tumours, epithelial cells do not show in low-grade tumours. The 

tissue for PCa is separated into five growth patterns, numbered from 1 to 5, each 

corresponding to a distinct cell tissue shape and a better prognosis. And yet, the distinction 

between normal tissue and high risk tissue is little and challenging (Tyagi et al., 2022). In 

geriatric medical care (medical care for aged people), the prostate-specific antigen (PSA) titer 

is a standard clinical procedure frequently used to detect early occurrences of PCa. Numerous 

international studies have shown population-specific normative PSA readings with different 

thresholds for PCa. The universal use of normalized standard values causes many false- 

positive screening findings, which causes undue stress and frequently unneeded invasive 

follow-ups. Regular PSA testing of serum boosts PCa (PCa) detection over digital rectal 

examination (DRE), which enhances the DRE's ability to predict cancer, which results in the 

early identification of prostate malignancies. The most effective method for early detection of 

PCa is the combined use of DRE and serum PSA testing. This combination can change the 

likelihood that PCa is present. This combination has shown a higher detection rate when 

screening tests with serum PSA measurements than with DRE alone (Rahul Unnikrishnan et 

al., 2021). However, relying solely on PSA levels above 20ng/mL for high-risk classification 

may overlook other pathological indicators, especially in certain populations like Indian men. 

Therefore, clinical symptoms and pathological characteristics should also be considered for 

accurate risk assessment (Garg et al., 2022). 
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Comorbidities are frequently overlooked while making PCa treatment decisions, leaving 

patients in a quandary about whether to pursue aggressive therapy. The explanation for this 

disparity might be doctors and patients making incorrect assumptions about extended life 

periods with single comorbidities, believing that they will have less influence on males, and 

ignoring good mortality estimation when making treatment decisions (Chamie et al., 2012). 

According to a study, individuals who have regular contact with healthcare facilities for 

comorbidities receive early diagnosis due to routine testing. This shows that comorbidities 

may be associated with cancer aetiology to promote aggressiveness and could help in early 

prognosis (Fleming et al., 2006) (Tiruye et al., 2024). For example, diabetes, chronic pain, 

anxiety, depression, hypertension, obesity and urolithiasis are known to be associated with 

PCa. Obesity is known to play a role in the recurrence of PCa along with other comorbidities 

like diabetes, hormonal imbalance and heart problems (Wilson et al., 2022) (Tiruye et al., 

2024). Hypertension is generally found as an after-effect of treatment therapy (Xiaolei Zhu & 

Wu, 2019). Another condition observed known as urolithiasis, which could be considered a 

comorbidity, is mainly located at the metastatic stage and seen during diagnosis and treatment 

(J. M. Liu et al., 2013). Urolithiasis has been linked to PCa via calcium homeostasis, ROS, 

androgen receptors (X. Sun et al., 2021). 

The comorbidity of diabetes and cancer is that both are multifactorial, severe, heterogeneous, 

and life-threatening diseases associated with acute, chronic, and fatal illnesses. Several 

epidemiological studies have suggested that the chances of developing many cancer types, 

viz., urinary tract, pancreatic, breast, liver, kidney, female reproductive tract and colorectal 

increase with diabetes (particularly DM) (Vigneri et al., 2009) (Pearson-Stuttard et al., 2021). 

It was shown that there is an increase in malignancies in Korean and Japanese people who 

had DM from 4.7% up to 21.9% after a survey conducted for 10 years (Suh & Kim, 2011). 

Despite numerous investigations, the association between DM and cancer remains unclear 

due to the complex nature of type 2 diabetes mellitus, which is characterized by 

hyperglycemia and hormonal imbalances. Various factors such as obesity, medication, 

metabolic control, and diet in diabetic patients may influence this association (Vigneri et al., 

2009). Since diabetes is underdiagnosed in adults (3-5%), even if we believe that DM 

increases cancer risk, this association is still underrated (Vigneri et al., 2009) (R. K. Shahid et 

al., 2021). 

In the prostate gland, the role of glucose metabolism is unique as compared to others. The 

prostate gland is more glycolytic with a tremendous collection of citrate (Beier et al., 2023). 

The primary role of a prostate gland is to produce prostate fluid. This function depends on the 

hormone signalling mediated through the hormone receptor transcription factor AR (androgen 
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receptor). Androgens bind the androgen receptor in the cytoplasm, which moves to the 

nucleus, where they activate genes for PCa. Since, PCa originates from the periphery region 

of the gland, there is high glycolysis and production of pyruvate, which is converted into 

lactate to maintain the redox nature for producing ATP molecules and citrate, which 

accumulate in prostate fluid. There seems to be no Krebs cycle or oxidative phosphorylation 

(Bader & McGuire, 2020). As per “the bioenergetics theory of prostate malignancy” proposed 

by Franklin and Costello, in prostate cells, the Kreb’s cycle is inhibited, leading to inefficient 

energy production. To compensate, these cells increase glycolysis to survive and sustain 

citrate production. However, PCa cells undergo metabolic reprogramming, oxidizing citrate to 

produce ATP and restoring energy efficiency. Unlike many other cancers, PCa cells do not 

rely heavily on increased glucose consumption early in tumor development (Cutruzzolà et al.,  

2017). Another essential feature of the prostate gland is the highest deposition of zinc inside 

it, which is a critical regulator of various enzymes and TF’s (transcription factors). This Zn 

inhibits the aconitase enzyme (ACO2), which truncates the TCA cycle. On the other hand, 

prostate adenocarcinomas have an intact TCA cycle, oxidative phosphorylation and 

lipogenesis, leading to cell proliferation in the prostate. They have low or limited glycolysis 

(Bader & McGuire, 2020). Zinc has antitumor effects (induce apoptosis, inhibit anti-apoptotic 

protein NF-κB, reduce the invasive and proangiogenic capabilities in metastasis) however its 

level falls in PCa. Instead, they switch to the Warburg effect only in metastatic stages. This 

delay in the metabolic shift limits the effectiveness of early diagnosis methods (Cutruzzolà et 

al., 2017). 

Some in vitro studies have shown that increased exposure of PCa cells to glucose increases 

the AR expression, suggesting that the elevated glucose promotes tumor aggressiveness. In 

some diabetic cases the volume of prostate has increased with no clear indication of 

oncological staging (Antunes et al., 2018). Although the exact involvement of glucose 

metabolism remains unclear, evidence has suggested its link to PCa progression, as diabetes 

mellitus patients tend to exhibit more progressive PCa phenotypes. This suggests a 

relationship between both diseases particularly in later stages (Eidelman et al., 2017). 

Increased insulin due to insulin promotion promotes the IGF-1 secretion that causes several 

impacts on cancer development (through powerful mitogenic effects) (Szablewski, 2024). 

IGF-1 and insulin bind to their particular receptors on the cell's surface, activating the 

PI3K/Akt/mTOR and Ras/Raf/MAPK signalling pathways. This concludes that the PCa cell 

exhibits a shift towards oxidative phosphorylation and lipogenesis. Further, metformin, an 

antidiabetic drug, has shown anticancer effects by lowering the insulin in the serum and 
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blocking PI3K/Akt/mTOR while activating AMPK, which inhibits mTOR. While metformin is 

effective in improving survival rates in aggressive PCa, its impact on lowering cancer PCa 

incidence remains uncertain. It is known that enhanced metabolism in diabetic patient’s leads 

to increased PCa cell proliferation and tumor formation (Baxi et al., 2024). Thus, studying the 

underlying mechanisms behind PCa metabolic functions wherein phosphorylases and kinases 

such as PI3K activate glucose uptake and control glycolytic enzymes directly would hold 

importance (Jang et al., 2013) (M. Shahid et al., 2019) and could suggest a relationship 

between diabetes and PCa. Even a study conducted on 6,403 Americans found that higher 

dietary sugar intake correlates with elevated serum PSA levels. Every 1gm intake increases 

PSA level by 0.003ng/m, with P less than 0.05. This link may be due to increased activation 

of inflammatory cytokines and serum uric acid, leading to chronic inflammation. However, 

both natural and added sugars have the same chemical structure but may show a wide range 

of physiological effects to regulate inflammation (Z. Liu et al., 2021). Further, intake of 

dietary sugars is found to be associated with metabolic syndromes like high blood pressure, 

LDL cholesterol, triglycerides, uric acid and inflammation (Z. Liu et al., 2021). Also, the 

glucose level during diagnosis and treatment of PCa is an independent predictor of PCa 

recurrence (50% higher risk) compared to patients with normal glucose levels. Therefore, this 

evidence suggests glucose is an influencer and controls the modifiable risk factors that lead to 

recurrences of PCa and its progression (Wright et al., 2013). However, PSA works as a 

protease to cleave the insulin-like growth factor binding protein-3 (IGFBP-3), which could 

modulate the IGFs (Insulin-like growth) and lead to the proliferation of both normal and 

abnormal prostatic cells (Cohen et al., 1992). 

Furthermore, obesity which contributes to insulin resistance is also a critical factor in PCa 

development. Many meta-analyses indicate a slight but significant increase in prostate cancer 

risk associated with obesity, particularly for more aggressive forms. Insulin and IGF-1 levels, 

which tend to rise with obesity, may produce tumor growth and contribute to the transition of 

PCa cells to an androgen-resistant state. Men with obesity frequently have decreased 

testosterone levels, which can stimulate the production of adipokines including adiponectin 

and leptin. Obese people have greater leptin levels, which promotes cancer cells to proliferate 

and resist dying, particularly in aggressive stages of cancer. On the other hand the 

adiponectin, which is decreased in obese people, appears to aid in cancer prevention. Several 

biological processes may be involved in this protective effect. All in all, this indicates that 

adipokines are significant in risk of aggressive PCa. Nevertheless, further studies are required 

to clarify the ways in which these variables interact with insulin resistance to promote PCa. 
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Also, PCa risk is frequently assessed in obese male using BMI, which is a rough indicator of 

obesity. It is important to look at the interaction between muscle and fat, specifically its 

metabolic status, in order to comprehend how obesity contributes to insulin resistance in PCa 

(Di Sebastiano et al., 2018). 

Since PCa is heterogeneous clinically and pathologically, most of the glands with cancer have 

more than one individual tumor focus with diverse pathological features and no clear shared 

somatic commonality (Lindberg et al., 2013) (Segura-Moreno et al., 2021) (X. Yu et al., 

2023). NGS development, such as DNA and RNA sequencing, enables the discovery of the 

genomic, transcriptomic and epigenomic landscapes of individual malignant expansions. 

Various genomic abnormalities, frequent and rare auxiliary variations (deletions and 

insertions), fusion transcripts and copy-number variations could be examined concurrently. In 

combination with applications of the bioinformatic approach, NGS advancements are being 

increasingly utilized to study many genes affordably and have been employed in assessing 

cancer clinical samples, offering NGS-centred molecular diagnostic services (Nair et al, 2021) 

However, there have been no previous attempts at genotype-phenotype associations using 

next-generation sequencing (NGS) investigations in India. NGS breakthroughs have hailed 

the finding of biomarkers from Chinese and Caucasian/European heritage, but nothing is 

known about the Indian phenotype/variant of PCa (Gupta et al., 2020). Till today, oncologists 

in India are in a dilemma over routine use of NGS because most of them are unsure of the 

report interpretations. Oncologists believe that we are evolving continuously as are our 

genetic profiles, too (Pathak et al., 2024). 

Though few studies employing whole transcriptomic and exome analyses from our lab have 

recently been done to identify genetic variants related to PCa, there are still a large number of 

variants from samples to be screened. Our CAPCI (bioclues.org/capci), last accessed on April 

12, 2024) group has shown that over 30 causal genes were known to be associated with PCa 

risk in the Indian sub-population and besides that novel lncRNAs (LINCO1440, 

ENSG00000234855, SOX2OT, ENST00000647843.1 and ENSG00000287903) and 

differentially expressed genes (DEGs) were identified using RNA sequencing (Gupta et al., 

2020) (N. Shukla et al., 2023). 

 

Through an intense literature review and considering the shortcomings in proper diagnosis 

and treatment, we aimed to identify the known potential biomarkers for early detection with 

the help of NGS. We hope that this study will help to identify new variants or signatures for 

prostate cancer in association with comorbidities like diabetes. Also, common pathways will 

http://bioclues.org/capci
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be explored for them with respect to PCa development and diabetes. Investigation of the 

underlying mechanisms of such a complex disease and its other disease associations will help 

to improve treatment. The study may underlie some evidence elucidating the association of 

phenotype traits with distinct variants of Indian origin. 

 

Therefore, the Cancer Prostate Consortium of India (D. Sharma et al., 2023), a pilot study 

from the Systems Genomics Lab, reported mutations in a small north-western cohort of 

Indians. We believe this was the first research in India performed using WES to screen 

mutations and infer the genetic associations (polygenetic) between PCa and diabetes. It is 

likely that obesity can also contribute to an increased risk of PCa through the imbalance of 

circulating molecules, the promotion of cancer cell proliferation by adipokines, and the 

complex interplay of age, diabetes and obesity. However, the debate on such associations and 

the exact nature of relationships is going on (Mistry et al., 2007) (Freedland & Aronson, 

2004). 

 

AR stimulation is known to be involved in PCa, and AR also modulates insulin sensitivity, 

insulin secretion, obesity, and oxidative stress, all of which impact diabetes progression, 

which marks the AR pathway as a common target and needs to be explored with reference to 

both conditions. Since then, lncRNAs are increasingly recognized as important players in 

cancer pathogenesis, including PCa, serving as signal transduction mediators. Hence, to 

bridge the gap between the regulatory mechanisms of PCa and AR, we have also conducted a 

collaborative RNA-seq study on a small cohort from the north-western region of India. We 

used the identified lncRNAs in the current study, where we attempted to ask how AR 

signaling interacts with lncRNA networks in PCa biology and diabetes to uncover 

connections, shedding light on potential biomarkers and therapeutic targets. 
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CHAPTER 2: REVIEW OF LITERATURE 

2.1. Prostate gland, anatomy, and region of cancer development: 

 
The prostate gland is an upturned pyramid looking, exocrine in nature, surrounding the 

urethra and placed in the middle of the genitourinary lining and bladder neck. Ejaculatory 

ducts traverse obliquely into the gland and enter the prostatic urethra at verumontanum 

(Figure 2.1.A). On an average, mature gland weighs 15 to 20g, roughly the size of a walnut, 

and measures 4 (transverse) × 3 (anteroposterior) × 3 (craniocaudal) cm. It performs the role 

of an additional sex gland (Coakley & Hricak, 2000). The prostate gland begins to form 

during the third month of pregnancy as invaginations of epithelium from the urogenital sinus 

of the posterior region, driven by the mesenchyme that lies under it. The enzyme 5α-reductase 

converts foetal testosterone into the hormone 5α-dihydrotestosterone, which is necessary for 

the prostate gland to develop normally. Deficiency of the 5α-reductase can therefore result in 

significant deformities related to external genitalia as well as a minor or barely detectable PCa 

(Hammerich et al., 2008) (Gogola et al., 2024). 

 

Earlier prostate was internally described in terms of five lobes (anterior, middle, posterior and 

two laterals) (Figure 2.1.B). However, according to modern descriptions, the prostate 

comprises acinar (glandular) and some non-glandular components like urethra and fibrous 

tissue with stromal at the anterior region and prostatic urethra. The glandular part of the 

prostate has both outer and inner elements characterized by their location, histology and 

ductal anatomy. Further, the inner part includes transition and periurethral zones, whereas the 

outer portion comprises peripheral and central zones (Coakley & Hricak, 2000) (Gogola et al., 

2024). 

 

According to McNeal's (1981) description of anatomical zones in the prostate gland (McNeal, 

1981), the transition zone forms the 10-15% of glandular tissues of an adult prostate gland, 

divided into two equal regions on the lateral sides of the urethra. This region is usually 

resistant to cancer development but is susceptible to age-related benign hyperplasia (BPH) or 

nodal hyperplasia and rarely adenocarcinomas. A cone-shaped central zone forms the gland's 

base, with the cone's tip where ejaculatory ducts converge. The transition and central zones 

give rise to minor PCa foci but are at very low risk for cancer progression. The peripheral 

region mostly constitutes glandular tissues and contributes to 70% of the young prostate. 

Carcinomas, post-inflammatory atrophy and chronic prostatitis often originate from this 

region compared to others (McNeal, 1981). 
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Histologically, gland ducts are branched, lined with a secretory layer of columnar cells and an 

underneath layer of basal cells, where the lumen of ducts is generally filled with corpora 

amylacea (Figure 2.1.C). The gland's surrounding fibrous tissue comprises the prostatic 

capsule (Figure 2.1.B). On the superior region of the base of the gland, seminal vesicles (SV) 

are placed and form the ejaculatory duct complex. These vesicles are generally resilient to any 

ailment affecting the prostate gland. Still, its involvement (seminal vesicle involvement, SVI) 

because of PCa could be among the most crucial indicators of PCa (Hammerich et al., 2008). 

 

PCa is typically multifocal and most prevalent in the posterior region, near the prostatic 

capsule, known as the periphery region, compared to the other areas. Since the PCa and 

Gleason grading in patients is often heterogeneous, both primary with high prevalence and 

secondary with lower prevalence grading is preferred. Hence, both patterns are added to form 

the Gleason scoring (Hammerich et al., 2008). 

 

 
Figure 2.1: Anatomy of Prostate gland. A. Posteriorly placed at the neck of the bladder, B. 

Cross-sectional representation of the different lobes in the prostate gland (anterior, posterior, 

lateral and middle, C. Histological representation of the prostate duct (Figure created through 

BioRender https://www.biorender.com/) 

https://www.biorender.com/
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2.2. PCa development: 

The transformation from a normal prostate to a neoplastic or malignant prostate undergoes 

several steps. It starts with prostatic intraepithelial neoplasias (PIN) by proliferation in 

luminal cells, then becomes localized, reaches an advanced stage called prostate 

adenocarcinomas (PRAD), and finally, locally invasive cancer stage by degrading the basal 

cell layer and basal lamina. The sensitivity towards the hormone plays an essential role in 

PCa, as several androgen deprivation therapies (ADT) have been reported to block the 

androgen pathways; however, it can develop resistance to ADT, thus inviting (metastatic) 

castration-resistant PCa (CRPC). The first spot to start the metastasis is the lymph node, 

which is adjacent to the prostate gland, where the primary tumor would have already formed. 

Later, it spreads to distant organs like bones, lungs, and liver. Metastasis which forms bone as 

osteoblastic and osteolytic lesions is often found leading to frequent bone fractures and body 

pain. Figure 2.2 represents the four stages of PCa development and the beginning of 

metastasis. Like every other cancer type, epithelial-mesenchymal transition (EMT) also plays 

a role in PCa metastasis (G. Wang et al., 2018). As per the “cell origin model”, the columnar 

luminal cells, which produce secretory proteins and the basal cells, represent the main two 

epithelial cells, and a rare neuroendocrine cell plays a role in the origin of PCa. These three 

cells are found to arise from the basal progenitors (multipotent) during the organogenesis of 

the prostate gland (S. H. Lee & Shen, 2015). 

 

 
Figure 2.2: Cancer development in the prostate gland from stage 1 to stage 4. In stage 1, a 

neoplastic growth starts in one lobe of the gland, in stage 2, it reaches the sector lobe of the 

gland, spreading to the seminal vesicle, which defines the third stage; and in stage 4, when it 
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comes to the lymph nodes, and the urethra becomes narrower, it starts spreading to other 

organs and marks the beginning of the metastatic stage (Figure created with BioRender, 

https://www.biorender.com/, last accessed on April 1, 2024) 

 

Several growth factors are secreted by the PCa cells, like adrenomedullin, endothelin 1, 

fibroblast growth factors, bone morphogenetic proteins and platelet-derived growth factors, 

which show paracrine signalling during metastasis in bone. Some proteases like urokinase- 

type plasminogen, prostate-specific antigen (PSA), insulin-like growth factor, transforming 

growth factor β, and matrix al metalloproteinase (G. Wang et al., 2018). However, the exact 

mechanism of PCa initiation is still unclear (S. H. Lee & Shen, 2015) (Testa et al., 2019). 

 

 
2.3. Epidemiology: 

PCa was expected to be the second most common cancer and would be ranked as the fifth 

most significant reason for mortality in men caused by cancer by 2020 (Sung et al., 2021) 

(Oderda et al., 2023) (Hartley & Ahmad, 2023). It is projected to be diagnosed in one in seven 

American men and in one in every 25 men worldwide (Barsouk et al., 2020). It was estimated 

to have roughly 14 million fresh cases and global deaths of about 37,000 by 2020 (Figure 

2.3). Death rates aren’t changing much, with 8.1 cases in transitioned countries and 5.9 cases 

in transitioning countries for every 100,000 men, respectively. However, the incidence of 

transitioned countries was three times higher than that of transitioning countries (Sung et al., 

2021). 

 

According to the latest Population Based Cancer Registry (PBCR) statistics for 2020 India, 

the total number of PCa cases is 41,532, with a crude rate of 5.7 among men (Mathur et al., 

2020). In particular, the incidence rate is 37.5 cases per every 1 00,000 men in transitioning 

countries, compared to 11.3 cases per every 1 00,000 men in transitioning countries. In 

particular, PCa is most often diagnosed in more than half (112 countries) of the 185 countries 

globally. It was observed that the incidence of PCa varies regionally from 6.3 to 83.4 per 

100,000 males, with maximum prevalence seen in North America, New Zealand/Australia, 

Western Europe, Northern Europe, South Africa and the Caribbean. However, the lowest 

prevalence was seen in North Africa and the Middle East. In the case of mortality, the 

regional pattern differed from the incidence as the highest deaths were seen in 

Polynesia/Micronesia, Sub-Saharan Africa and the Caribbean. There are about 48 countries, 

including South America (Chile, Venezuela and Ecuador), Central America, Africa, Sweden 

and the Caribbean, in which the major region of deaths in men is PCa (Sung et al., 2021). 

http://www.biorender.com/
http://www.biorender.com/
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Further, it has been reported that black men who are residents of both the United States (US) 

and the Caribbean regions and who are connected to West African ancestry have a higher 

incidence. This suggests that Western African genetic inheritance is a modulating factor in 

increasing the risk of PCa (Rebbeck et al., 2013). 

 

In the late 1980s and early 1990s, the PCa incident rate spiked quickly in the US, Australia 

and Canada because of the widespread use of PSA screening broadly, but the rate fell sharply 

a few years later by 2000 (C. K. Zhou et al., 2016) (Sung et al., 2021) with countries in 

northern Europe, western Europe, central Asia, and south Asia also showing similar patterns. 

However, eastern countries like Bulgaria, Slovakia, Belarus and China continued to have a 

rise in PCa incidence rates (Culp et al., 2020) (Barsouk et al., 2020). Also, the sub-Saharan 

African region has reported an annual rise of 2% to 10% over time. With rising cases in Asia 

and Africa, their mortality trend also increased, which could be because of limited proper 

treatment and PSA screening. On the other hand, from 2009-2013, those countries with 

significant resources for health facilities that could manage to control the mortality rate, like 

high-income regions of the Americas, Europe and Oceania with highly advanced treatments, 

could conduct early screening at a high rate. Besides this, since 2010, the US has reported an 

increased incidence of last-stage PC, leading to the highest mortality rates from 2012 to 2017 

(Sung et al., 2021). The most significant factor influencing the discrepancies in PCa incidence 

rates globally is probably different PCa detection procedures worldwide, for instance, the 

utilization of PSA tests and healthcare systems (C. K. Zhou et al., 2016). According to the 

Global Cancer Observatory (GLOBOCAN) data for 2020, it has been estimated that by 2040, 

631000 more cases will be added in Asia and 256000 more deaths will be reported (Figure 

2.4). Also, by 2040, 64800 more cases will be added and 32200 deaths will occur in India 

(Figure 2.5). 
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Figure 2.3: Estimated number of new cases (1409 428), deaths (734 018) and prevalence 

(4949 877) in 2020 among males over 45 years, GLOBOCAN 2020 https://gco.iarc.fr/ 

 

 
Figure 2.4: Predicted incidence (approx. 362000 to 631000 cases) and mortality 

(approximately 118000-256000 cases) from 2020 to 2040, males, age 45-85+, Asia, 

GLOBOCAN 2020 https://gco.iarc.fr/ 

 

 
Figure 2.5: Predicted incidence (34300 to 64800 cases) and mortality (16700 to 32200) from 

2020 to 2040, males, age 45-85+, India, GLOBOCAN 2020, https://gco.iarc.fr/ 

https://gco.iarc.fr/
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2.4. Causes: 

Risk factors of heterogeneous cancer, PCa can be age, ethnicity, genetic mutation, lifestyle 

habits, infections and inflammations, changes in hormone levels and food habits (Oderda et 

al., 2023) (Figure 2.6). 

 
2.4.1. Age and ethnicity 

 
PCa is often found among older men, and incidence has shown a positive relationship with 

age (Barsouk et al., 2020) (Kimura & Egawa, 2018). Men under 50 years old have a very low 

overall incidence of PCa; they make up a mere 0.1% of all patients with the disease. Around 

85% of cases are identified in patients 65 years old, whereas on crossing the 85 years of age, 

an aggregated global PCa threat lays up to 20% from 0.2%. Autopsies have shown that more 

than 75% of minor lesions are seen in men who are years old, 50% in sixth-decade and fourth-

decades study claimed that the middle age single test of PSA might predict the chances of PCa 

till the next 25 years. Men with PSA levels above 0.5 1.0 ng/ml have 2.5 fold higher risks, 

while those who have levels above 2.0 up to 3.0 ng/ml have a higher than 19 fold risk (Patel 

& Klein, 2009). 

 

Ethnically, Asians have fewer incidents, particularly in India, China and Japan, where 

annually, 1.9 fresh cases are rising per every 100,000 men in the population. However, in the 

US, 161 fresh cases are added for every 100,000 men in the population (Patel & Klein 2009). 

African Americans have a higher incidence in the US (Barsouk et al., 2020). Interestingly, 

there has been a rise in cases when the origin of Japan moves to developing countries like the 

US, indicating that there must be external unknown factors that might be playing a role in 

increasing risk (Patel & Klein, 2009). 

 

 
2.4.2. Genetic Disparities 

It suggested that having a first-degree relative with PCa (familial) enhanced a man's 

likelihood of developing the disease. The chance of having PCa is inversely correlated with 

the age at which family members were affected and the number of affected family members 

(Xu et al., 2021). PCa can be categorized as hereditary, sporadic, or familial with early-onset 

cases (below or till the age of 55) found to be largely hereditary (43%), although sporadic 

instances make up the majority of PCa patients (85%). Hereditary cases can be considered as 

a subtype of the familial type, which exhibits a consistent genetic susceptibility pattern for 

PCa in the Mendelian pattern of inheritance. Twin studies say the probability of two twins 
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developing PCa could be because of the same environment and genetic makeup 

(concordance), especially for the identical and non-identical. Segregation analysis indicated 

that the tendency to cluster the PCa in the family could be because of its inheritance in an 

autosomal dominant fashion. Other than single nuclear polymorphism hypermethylation in 

promoter regions, gene fusions (fusion-oncogenes) like TMPRSS2-ETV1 and TMPRSS2-ERG 

and deletions like in PTEN are also the genetic reasons for PCa development. Some of the 

susceptible genes for PCa are MSR1, BRCA2, ATM, CHEK2, MSR1, OGG1, and RNASEL 

(Patel & Klein, 2009) (Barsouk et al., 2020) (Lin & Jin, 2023). BRCA1 has reported low risk 

in comparison to BRCA2 (Barsouk et al., 2020). 

 

 
2.4.3. Infection and Inflammation 

PCa development can develop from infection related inflammations (prostatitis) caused by 

sexual intercourse or urine and the hyperproliferative. According to some studies, many 

viruses, like herpesvirus type-8, herpes simplex type-1, hepatitis B and C, human 

papillomavirus type-16, and cytomegalovirus are found to be associated with PCa 

development by turning on oncogenes and neoplastic transformations. In African populations, 

both prostatitis and gonorrhoea are seen as associated. Observations from several studies are 

inconsistent in declaring a clear relationship between infection and PCa (Patel & Klein, 

2009). 

In epithelial atrophy, a range of lesions that are probably caused by oxidative damage, 

infection, and hypoxia can cause mutations in cells that divide quickly, which could aid in the 

growth of cancer. This condition is also known as proliferative inflammatory atrophy and 

commonly coexists with high-grade prostatic intraepithelial neoplasias (Patel & Klein, 2009) 

(Oseni et al., 2023). 

 

 
2.4.4. Androgens 

Dihydrotestosterone (in tissues) and testosterone (circulating) are the two principal androgens 

found inside the male adult body of a male. These androgens are crucial in the development, 

maturity and maintenance of a prostate gland and require AR for their mode of action. 

However, few studies have shown that the high level of testosterone in serum increases the 

risk for PCa. Recently, a polymorphism in the gene (SRD5A2) coding for 5α reductase 

isozyme type 2 has been associated with PCa development. Even the conflicting observations 

are noted in the associations of mutations in genes related to testosterone biosynthesis and its 
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degradation with PCa, like Cytochrome P450 17 (CYP 17), HSD3B1 and 2 (Patel & Klein, 

2009). 

 
2.4.5. Diet, Fitness and Obesity 

The risk of PCa is also related to the average amount of fat intake as well as polyunsaturated 

fat. Obesity has recently been considered a risk factor for inducing PCa by the crosstalk of 

oxidative stress caused by insulin resistance and inflammation caused by an increase in 

circulating inflammatory factors (IL-6, TNF and leptin) as a consequence (Patel & Klein, 

2009) (Szablewski, 2024). Studies have shown that with a 5% increase in 5 kg/m2 BMI, the 

risk for PCa is raised in an obese person (Patel & Klein, 2009). A trial study comparing BMI 

showed a 29% increase in risk with a BMI above 30 kg/m2 and an 18% decrease in risk with 

BMI below 25 kg/m2. Obesity is also found to increase the risk of developing leptin 

resistance. Leptin is known to play a role in stimulating proliferation and PCa progression in 

cell lines. Besides this, the intake of red meat prepared at high temperatures causes the 

formation of carcinogenic heterocyclic amines and less vegetable and fruit intake. Further, 

Vitamin D has been claimed in several studies to have a protective role against PCa by 

increasing apoptosis and (Patel & Klein, 2009) (Dovey et al., 2023). 

 

 
2.4.6. Life style 

Smoking is considered mostly a lifestyle factor as it causes a rise in the level of circulating 

androgens on exposure to cadmium, which brings high oxidative stress. Other than smoking, 

drinking alcohol and sexually transmitted infections during intercourse can contribute to 

raising PCa risk (Patel & Klein, 2009), while smoking increases the risk by 1.6 times 

(Kenfield et al., 2011). 
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Figure 2.6: Risk factors of PCa includes diet, age, obesity, ethnicity, lifestyle, habits, familial 

inheritance, genetic mutations and hormonal level (Figure created with BioRender 

https://www.biorender.com/) 

 
2.5. Symptoms: 

General symptoms of PCa include prostate pain, sexual problems, erectile dysfunction, 

urinary problems (micturition and pain), loss of appetite, constipation, fatigue, diarrhoea, 

dyspnea, nausea, insomnia, cognitive functioning, problems with partner and financial 

difficulties (Bestmann et al., 2007). Bone pain, loss of weight, oedema in the lower end, 

intravascular coagulant anemia and impediment in the upper region of the urinary duct are 

seen in metastatic patients (Hernandez & Thompson, 2004). Treatment may also cause 

adverse effects on the body, like urine inconsistency, erectile dysfunction, insomnia and 

bowel issues. Pain, fatigue, and depression exist simultaneously as “symptom clusters” in PCa 

survivor patients (Baden et al., 2020). Depression and suicidal thoughts are frequently seen in 

PCa patients (one in every six cases). Selecting the right treatment is the reason for depression 

(Fervaha et al., 2019)  (Figure 2.7). 

https://www.biorender.com/
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Figure 2.7: Symptoms of PCa includes loss of weight, frequent urination, haematuria, 

burning sensation while urinating, shortness of breath, loss of appetite and difficulty in 

urination 

 
2.6. Diagnosis 

Since, the PCa is heterogeneous in regards to the spectrum of tumors, starting from minor and 

indolent up to one that is a threat to life, the goal of primary identification is the evaluation of 

local and farthest tumor aggressiveness via staging. The conventional way of diagnosing PCa 

is first, with the help of DRE and PSA levels in the blood and then biopsy guided by TRUS 

(Descotes, 2019). 

 
Prostate Specific Antigen (PSA): 

The serum level of a glycoprotein produced by the prostate epithelium in men called PSA gets 

elevated in PCa and prostatitis. A cut-off value of 0.4ng/ml is set with a 46% accuracy rate. 

With the increasing age of a patient, accuracy can be up to 91% (Barry, 2001) (Kachuri et al., 

2023). 

Unfortunately, the drawback in diagnosis with the level of PSA is that PSA is specific to the 

prostate organ but not the PCa, which explains why there is an overlap in the levels of PCa 

and BPH. Therefore, it can be detected even if the level of PSA is low, indicating that there is 

no particular threshold value for PSA. Consequently, the decision regarding the threshold of a 
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PSA level at which a doctor would advise a biopsy is still debatable. However, the high levels 

can surely testify to PCa. According to a study, age-related ranges for PSA testing can 

improve the diagnosis specificity rate. A study has proposed cut-off values for age-related 

ranges of 2.5, 3.5, 4.5 and 6.5, respectively, for the ages 40s, 50s, 60s, and 70s. The level of 

free PSA (fPSA) is checked in those men whose DRE test is normal and whose PSA level 

falls in the range of 4ng/ml to 10ng/ml. Other than this, PSA velocity (>0.75 ng/ml/year) 

could be associated with PCa and could help in the stratification of risk before checking the 

total PSA (tPSA) level (Descotes, 2019). 

Recently, phi test known as the prostate health index done from blood was used to combine 

tPSA, fPSA and proPSA blood tests. When compared to tPSA or fPSA/tPSA alone, phi 

results can increase the accuracy of PCa diagnosis. It has shown a greater specificity of 95%. 

Another test is called a 4K score, which is a combination of four Kallikrein (intact PSA, 

tPSA, fPSA, and a peptidase called hK2). Studies have suggested its high specificity in the 

diagnosis of high-grade cancers, even of 7 Gleason grade and could help in reducing 

unnecessary indolent biopsies by 41% (Descotes, 2019). Clinical staging is mainly based on 

whether a prostatic nodule is present or not in the DRE test. Gleason grading of biopsies is 

used to estimate the chances of organ restricted disease, invasion of seminal vesicles and 

involvement of lymph nodes of the pelvis (Hernandez & Thompson, 2004). 

The urinary test includes PCa gene 3 mRNA testing (PCA3), which gets upregulated in PCa 

patients (Descotes, 2019). Multiparametric MRI (mpMRI) is also used for local staging. 

Metastasis in lymph nodes can be detected through CT scans, MRI and monogram’s 

(Descotes, 2019). 

 
2.7. Treatment 

2.7.1. Radical prostatectomy: 

Radical prostatectomy, considered the primary approach to treatment, in general, has been 

reported to increase the survival rate ranging from 90-94%, metastasis free survival from 82- 

87%, and PSA free 10 year survival rate ranging from 52-68% (Hernandez & Thompson, 

2004) (Bejrananda & Pliensiri, 2023). 

 
2.7.2. Radiation therapy: 

In this approach, a beam is administered externally to treat the local tumors. Out of the 

different types of radiation therapy, the choice for a particular patient is made based on the 

range of risk inferred by several pre-treatment tests like Gleason grading score, level of PSA 

and clinical stage. To improve the outcomes of the therapy, hormonal therapy is provided in 
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combination with the patients who are at higher risk. Those who have undergone radiotherapy 

are less likely to have bowel issues in comparison to those who have undergone radical 

prostatectomy (Hernandez & Thompson, 2004). 

 
2.7.3. Cryosurgery: 

This kind of surgery is done to kill the tissues or cells on direct exposure to cold and followed 

by hot treatment, which delays the blood supply and damages the structure of tissues 

(Hernandez & Thompson, 2004). 

 
2.7.4. Hormonal therapy/Androgen Deprived Therapy: 

ADT is also known as surgical castration and is the most preferred treatment for the treatment 

of advanced stage adenocarcinoma PCa (Sharifi et al., 2005) (Y. H. A. Lee et al., 2023). The 

positive effects of ADY were first observed by Huggins and Hodges in metastatic patients 

(Huggins 1941). Androgen receptors (ARs) belong to the family of nuclear receptors and 

regulate the expression of target genes as ligand induced transcription factors. These include 

sex steroids (progestin, androgens and estrogen), steroids of the adrenal gland 

(mineralocorticoids and glucocorticoids), vitamin D, fatty acids, retinoid and thyroid 

hormones (Miyamoto et al., 2004). It basically involves the inhibition of male hormones, 

specifically testosterone and ultimately the reduction and inhibition of ARs. There are two 

ways for hormonal therapy: Luteinizing Hormone-Releasing Hormone (LHRH) analogue 

therapy (suppresses LH-RH secretion) and LHRH antagonist therapy (which antagonizes the 

LH-RH receptor) (Sekhoacha et al., 2022). Others include estrogen Diethylstilbestrol 

(suppresses LH-RH secretion), steroidal antiandrogens (antagonize AR in a particular tissue 

and suppress LH-RH), non-steroidal antiandrogens (antagonize AR), 5α-reductase inhibitors 

and adrenal androgen inhibitors (to suppress adrenal corticoids and testicular steroid genesis) 

(Miyamoto et al., 2004). 

 
2.8. Biomarkers of PCa 

Recently, urine has been considered as important as blood as a biofluid for diagnosis because 

of its easy collection and the presence of materials from all the body tissues directly. 

Therefore, cells, DNA, RNA and proteins from the prostate in the urine could be potential 

biomarkers. However, the Food and Drug Administration (FDA) has only approved PCA3 

(PCa Antigen 3) as a urinary marker. Its level is estimated by taking the ratio of PCA3 and 

PSA mRNA. Since it is, the cut-off value is also not clear; therefore, PCA3 testing is also 

considered for those who have had a negative biopsy previously. Thus, genetic testing along 
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with the results of family history PSA and DRE is considered for calculating risk. The genetic 

testing includes the Mi Prostate (the combined result of PSA of serum and TMPRSS2-ERG 

with PCA3) or SelectMDx (measure of DLX1 and HOX6 gene mRNA) score. Another score 

called ExoDx Prostate IntelliScore is for ERG transcript expression in exosomes and PCA3 

(Salciccia et al., 2021). 

Earlier, PSA was the only FDA-approved serum biomarker. Blood biomarkers are less 

specific markers that are explored, though many are studied like fPSA. Lately, because of 

limitations with PSA, the FDA has approved a 4K score (Four-kallikrein) and prostate health 

index (PHI) serum assay. PHI is the combined test of tPSA, p2PSA and fPSA (Salciccia et al., 

2021). 

Metabolomics, a study of metabolites playing a role in any biological process, is an effective 

method for clinical research that could help to identify biomarkers and would provide better 

knowledge for disease pathophysiology by bridging the gap between genotype and 

phenotype. Nuclear Magnetic Resonance (NMR) and Mass spectrophotometry (MS) with 

targeted and untargeted approaches offer various perspectives on metabolite profiles. Later, 

for the identification of biomarkers and interpreting data, chemometric is applied. For 

instance, in the case of pancreatic cancer cysteine, cystathionine and homocysteine are found 

to be helpful in the detection of recurrence, while lysophosphatidylcholines are found to be 

associated with pancreatic cancer risk (Salciccia et al., 2021). 

Exosomes are found in different biofluids like urine and plasma, generated by endosomes. 

These are considered potential biomarkers for diseases and cancers because they have specific 

markers (e.g., carbonic anhydrase IX, CA-IX, CD63, CD81, CF9, HSP70, etc.) obtained 

during the fusion of endosomes and plasma membranes. These are filled with DNA, micro- 

RNAs and mRNAs. Cancer cells increase the release of exosomes because of extracellular 

acidosis and hypoxia. A study found that the level of exosomes PSA was significantly higher 

in plasma as compared to BPH patients, suggesting high sensitivity (96%) and specificity 

(100%). Further, it could help in distinguishing BPH from PCa (Salciccia et al., 2021). 

 

 
 

2.9. Comorbidities of PCa 

While making decisions for PCa, comorbidities are very poorly considered, due to which the 

patient faces a dilemma for definite treatment as to whether they should go for aggressive 

treatment or not. As a consequence, patients with comorbidity have post-treatment traumas. 

The Charlson Comorbidity Index is a method which can assess mortality risk and survival. A 

study has explained that those who have single comorbidities like obesity, alcoholism, 
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smoking and mobility problems are receiving aggressive treatments as compared to those who 

are without comorbidities. The reason for such discrepancy could be because of false 

assumptions by both doctors and patients of long survival periods with single comorbidity as 

they are not going to impact much on men and hence, neglecting proper estimation of 

mortality during treatment. However, for men who have peripheral vascular problems, 

diabetes with organ damage and chronic obstructive pulmonary disease (COPD) and have a 

10 year life expectancy over the age of 75 years, then aggressive treatment (surgery or 

radiation therapy) may not be the right option for them (Chamie et al., 2012). 

A study in 1999 by Post PN et al. estimated the chance of having a minimum of single 

comorbidity for patients between 60 and 69 ages is 38%, 48% for 70-74% ages and 53 

percent for patients who are 75 years old or above (Post et al., 1999). Among all diseases, 

COPD and cardiovascular diseases are very common (Post et al., 1999). Previous studies have 

examined the effect and outcomes of ADT on patients with co-existing major cardiovascular 

disease and inferred that therapy could be fatal or have other adverse effects. Hence, careful 

consideration of the risk-benefit ratio of each health condition is required (Wu et al., 2020). 

To investigate the association between co-existing medical conditions and the PCa stage at 

which it is diagnosed, it was shown that patients who have coronary heart disease, 

dyslipidemia or benign hypertension have a lower chance of advanced PCa than those who 

have no co-existing medical condition (Fleming et al., 2006). Conversely, a higher risk of 

advanced stage is among those who have renal disorders, peripheral vascular diseases and 

substance addiction. Considering racial disparities, comorbidities of renal disease are 

increasing of last stage PCa with the same frequency in both races (black and white). 

However, it is seen that substance adductors among white men are at greater risk as compared 

to black men (Fleming et al., 2006). Further, it has been observed, according to the study, 

those patients who are in regular touch with healthcare centres for comorbidities are getting 

early diagnosis because of regular testing. This suggests that comorbidities interact with the 

pathogenesis of cancer to increase aggressiveness (Fleming et al., 2006). 

 
2.9.1. Diabetes Mellitus 

Diabetes mellitus (DM) occurs as a result of insufficient insulin production or impaired 

insulin sensitivity, and it has become a serious threat to people's health. It is a heterogeneous 

problem with numerous aetiologies comprising three main types, viz., type 1 diabetes mellitus 

(T1DM), type-2-diabetes mellitus (T2DM), and gestational diabetes mellitus (GDM). 

Understanding the biological mechanisms associated with them would allow us to identify 

candidate proteins and genes (X. Tang et al., 2016). The emergence of genome-wide 
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association studies (GWAS) has substantially enhanced our understanding of the genetic basis 

of disease risk in the past few years. Prior to the introduction of GWASs in 2006, very little 

information was available about the genes that influence common complicated or 

multifactorial diseases and quantitative traits. These research findings imply that 

susceptibility to prevalent diseases is influenced by a variety of genetic topologies, including 

common genetic variants with minimal effects and uncommon variants with substantial 

impact sizes. Nevertheless, the combination of candidate T2DM genes discovered using 

GWASs does not fully confirm established features of disease pathogenesis. Several system- 

level approaches have been used to bridge the gap between genome and phenome correlation 

(Jain et al., 2013). Computational analyses of disease-linked genes using interactome and 

toxic genomic data help us to connect T2DM candidate genes found in GWAS with disease 

pathophysiology, including abnormal pancreatic cell formation and function and insulin 

sensitivity. On the other hand, computational predictions of potential proteins/genes are less 

expensive and time-saving than experimental methods. In order to unravel the genetic roots of 

common disorders, it is necessary to understand the complexity of the gene–phenotype 

connection. Recent research employing the human interactome and phenome has uncovered 

not just common phenotypic and genetic overlap between diseases but also a modular 

architecture of the genetic landscape of human diseases, opening up new avenues for reducing 

the complexity of humans. Because diseases are rarely caused by the malfunction of a single 

protein, a more comprehensive and robust interactome is essential for identifying groups of 

interconnected proteins associated with disease aetiology. GDM is categorised as insulin 

resistance leading to hyperglycemia during pregnancy, which mostly retracts after parturition. 

According to the WHO, the prevalence rate is 15.8%, accounting for about 20.4 million live 

births, with the majority of cases in pregnant women above the age of 35 years (Who.int, last 

accessed on April 2, 2024). The International Diabetes Federation in 2019 estimated a 

prevalence of 28.5% in India, with incidence varying in each state due to challenges in 

screening strategies and paucity of consensus among physicians and healthcare providers in 

prepartum and postpartum management of GDM. Pregnant women with GDM have an 

inherent risk of developing T2DM post-delivery or later in life. The offspring is also 

susceptible to any form of diabetes postnatally or in the long term. The genetic factors 

responsible for GDM and the future risk of developing T2DM through epidemiological and 

physiological studies reveal commonality in susceptibility loci, which implies that most of the 

diabetes genes are involved in causing GDM. The few key genes that share common variants 

are KCNJ11, GCK, HNF1A, TCF7L2, CDKAL1, KCNQ1, CDKN2A, MTNR1B, SRR, HHEX, 

TCF2, SLC30A8, and IGF2BP2. Genetic similarities between T1DM and GDM are less 
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studied, and a study among Asian Indian women with GDM showed the presence of 

pancreatic autoantibodies like GAD, which is a biomarker for T1DM (Ranjit Unnikrishnan et 

al., 2016) (Rout et al., 2022). 

2.9.2. Obesity as a phenotype 

Men who have both obesity and PCa have higher chances of recurrence, last stages and PCa 

related deaths. Moreover, obese PCa would face adverse during or post-treatment effects and 

would more likely lead to CRPC. Besides this, obesity can also cause other comorbidities like 

diabetes and cardiovascular diseases. It can also affect men psychologically, socially, 

mobility and overall life quality (Wilson et al., 2022) (Tiruye et al., 2024). It can be vice 

versa, that PCa patients who are not obese can get obese later out of stress, change in eating, 

or less physical action because of side effects from treatment and ADT (Wilson et al., 2022). 

Although the precise physiological processes linking obesity with PCa are not completely 

known, it is assumed that the metabolic modulations and inflammatory environment 

associated with high body fat play an important role (Wilson et al., 2022) (Mistry et al., 

2007). 

Hormonal imbalances associated with obesity can also promote PCa progression instead of 

becoming a risk aspect directly. It is assumed that the adipose tissue actively functions as an 

endocrine organ and secretes adipokines (Mistry et al., 2007). In obese patients, the level of 

circulating ratio of several molecules like steroid hormones (testosterone), insulin-like growth 

factor, insulin, and adipokines also imbalances (Mistry et al., 2007) (Freedland & Aronson, 

2004) (Szablewski, 2024). As a result, it may cause prostate cells to get exposed to elevated 

circulating adipokines or help in retropubic space invasions and promote tumor progression. 

Furthermore, the interaction of leptin (adipokines) and adiponectin was also reported to 

promote PCa cell line proliferation. However, only adipokines can’t justify this association, 

and more study is required (Mistry et al., 2007). Body Mass Index (BMI) above 30 kg/m2 is 

supposed to raise the chances of having PCa in adults of age above 21 by 9%. Men aged 50 or 

above 59 are at risk 58% for PCa, suggesting a complex relationship of age and obesity with 

respect to PCa. A controversy related to high BMI is also there, even as few studies showed a 

protective effect of high BMI and BMI estimation at adult ages is ambiguous results in 

prediction (Freedland & Aronson, 2004). 
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2.9.3. Hypertension 

Arterial hypertension increases the risk of PCa by about 15% (Radišauskas et al., 2016). A 

drug used to treat PCa called enzalutamide is found to increase the risk of developing 

hypertension and high grade cardiovascular problems. It is suggested that enzalutamide is an 

inhibitor of androgen signalling, causing androgen deprivation. Androgen deprivation is 

associated with hypertension because of endothelial dysfunction, causing the proliferation of 

smooth muscles and vasoconstriction. A fall in testosterone is also an indicator of endothelial 

dysfunction. Recently, hypertension as a side effect of ADT has frequently been seen. Other 

ADT drugs that increase the incidence of hypertension are leuprolide, darolutamide, 

apalutamide, abiraterone, firmagon and bicalutamide. Anti-VEGF is also known to increase 

hypertension in any cancer patient (Xiaolei Zhu & Wu, 2019). 

 
2.9.4. Urolithiasis 

When stones develop in any portion of the renal system-the kidney, bladder, or urethra, it is 

known as urolithiasis, commonly referred to as urinary tract stone disease. It is the third most 

prevalent urinary illness globally, with different incidence rates in different countries. It has 

been discovered to be between 1% and 5% in Asian nations, 5% to 9% in Europe, and 7% to 

13% in North America. Globally, the incidence rate was 62 per 100,000 people per year; 

however, it was 197 per 100,000 people annually for men and women. Although there was a 

very high rate of reversion and frequency, the risk factors have not yet been classified, despite 

the fact that the danger of familial inheritance in higher possibilities of stone formation is 

similar to 2.57 times that in men. Although the genetic tendencies to manifest urolithiasis are 

not known, the intricate interactions between genetic and external environmental factors 

would perhaps allow us to have a deeper understanding of the disease. Within the first five 

years following the initial incident, over 50% of patients with kidney stones are at risk of 

another incident (X. Sun et al., 2021). The complicated pathophysiology of urolithiasis 

involves the production of tiny stones that often do not cause any symptoms; nevertheless, if 

the stones become larger than 5mm, it becomes an obstruction to the ureter and causes 

excruciating agony. The kidney stone excretes itself from the body through the urine. While 

bladder stones can grow naturally or can be incorporated into kidney-derived stones through 

the urine stream, certain stones can also enter the pelvic area and start to harm the kidneys. 

Some microorganisms are also known to play a role, i.e., stone formation, like urea splitting 

(Proteus species), forms the struvite stones (infection stones) in the kidney. Not only urinary, 

but also intestinal microbes may also be responsible as a consequence of their associations 

with other diseases, such as hypertension, diabetes mellitus, obesity, and other metabolic 
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syndromes. Interestingly, 70% of calcium stones are composed of oxalate as gut microbiota 

like oxalate metabolizing bacterial species (OMBS) specifically Oxalobacter formigenes, 

ingests oxalate and activates its secretion to form oxalate stones (X. Sun et al., 2021). 

Furthermore, a correlation between increased body mass index (BMI) and the formation of 

kidney stones was also seen on the basis of some evident studies, which have shown that there 

is more mineral excretion (Uric acid, Calcium, Sodium, Oxalate, Phosphorous, Sulphate, 

Magnesium, Cysteine and Citrate) and a fall in the pH of urine (X. Sun et al., 2021). The 

prevalence of calcium oxalate is higher, irrespective of obesity. More specifically, in obese 

patients, uric acid stones (63%) are more common when compared to non-obese (11%) 

patients. Since obesity, along with age, is more susceptible to stone formation, both of these 

are associated risk factors for urolithiasis. Low pH endures phosphate or calcium stones, but 

high pH favours uric acid stones. On the other hand, inflammatory agents (eicosanoids) 

having poly fatty acids lower the excretion of calcium, thereby further reducing kidney stone 

formation, and these fatty acids can change vitamin D synthesis, which controls the calcium 

excretion (X. Sun et al., 2021). Stone formation is still an unclear process; however, the mass 

spectrometric proteomic approach for matrix proteins might be helpful in understanding 

stone formation. Urolithiasis has posed itself as a universal health issue. This new era has 

already given approaches which are far less invasive, but the rate of recurrence has proved the 

advancement inadequate for urolithiasis prevention. Despite other lifestyle reasons, it may be 

possible that some urolithiasis genes and their polymorphisms are associated with developing 

PCa (X. Sun et al., 2021). By using the bioinformatics approach, we have also reviewed the 

role of Urolithiasis and PCa in relation to genetic association and associated risk factors. We 

have identified their pathogenic and likely pathogenic polymorphisms by co-relational studies 

(X. Sun et al., 2021). Efforts are on the way to identify and screen urolithiasis related 

mutations using NGS approaches, viz. WES, RNA-Seq etc. 

Recently, more detailed work on PCa has been included using WES and identifying some 

differentially expressed genes (DEGs). These DEGs are also subjected to analysis in relation 

to urolithiasis. 

Association of Urolithiasis and PCa: 

 
Urolithiasis and PCa can be seen at the same time and are treated simultaneously in many 

cases. By applying conditional logistic regression, a case-control study has confirmed the 

associations of PCa with previous urinary calculi (kidney, bladder and other unspecified 

sites). For example, Urinary calculi can be classified into two subcategories; primarily 
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because of metabolic issues and secondary as a result of several diseases (comorbidity), 

medicines, dietary habits (fat intake), anatomy, infections or more likely in those patients with 

diabetes or glucose intolerance. Thus, dietary changes like more fat consumption on one side 

promote stone formation, and, on the other side, the hormonal imbalance caused by AR 

ultimately leads to PCa progression. While treating a PCa patient with luteinizing hormone- 

releasing hormone analogues, they produce androgen deficiency along with osteoporosis 

through certain cytokines, mainly IL-1, 6, 10 and TGF-1. This state of bone loss also 

increases calcium and phosphorus minerals in the serum and urine, resulting in renal calcium 

deposition in the kidneys (nephrolithiasis). Androgen therapy also lowers ammonium 

excretion, resulting in an increase of free ions inside the tubular lumen, which increases the 

risk of uric acid lithiasis. Therefore, oxidative stress and decreased urinary pH because of 

androgen deprivation therapy (ADT) also cause urolithiasis. According to some follow-up 

cases, people undergoing testosterone replacement therapy have also shown associations by 

inhibiting an active calcium transporter (TRPV5) and increasing calcium excretion and 

oxalate levels in urine. A study says doing brachytherapy for PCa has a high chance of 

lithiasis because of iodine seeds acting as nidus. Also, next-generation (NGS)-based exome 

analysis of common genes between Asians and Caucasians for PCa found 9 genes, and 

UGT1A1 was one of them. However, UGT1A1, already mentioned, is responsible for 

urolithiasis by forming Atazanavir related to kidney stones (X. Sun et al., 2021). 

UGTIA1: Protease inhibitors like atazanavir are also well-known to be associated with kidney 

stones. A case study of 74 year old HIV patients reported kidney stones with a composition of 

atazanavir and renal colic. Atazanavir linked lithiasis has a prevalence rate of 7%. This type 

of nephrolithiasis is considered rare in comparison to other types of lithiasis. Genotype TC of 

rs10929303, GC of rs1042640, and rs8330 allele of UGT1A-30-UTR independently 

contribute to risk in these HIV patients. Depending upon the types of protease inhibitor drugs, 

the composition of the stone will change accordingly (emtricitabine, tenofovir, ritonavir, 

indinavir, nelfinavir). Therefore, urolithiasis has shown its impact on PCa through calcium 

homeostasis, ROS or androgen receptors (X. Sun et al., 2021) (Taguchi et al., 2017). 

2.10. Diabetes and cancer 

Some meta-analysis studies have suggested that the highest relative risk observed for 

increased chances of cancer in diabetes is with liver and pancreatic cancer. In comparison to 

any other tissue type, liver cells are more exposed to high concentrations of insulin during 

portal circulation, as seen in insulin-resistant hyperinsulinemia type-2-diabetes patients. 

Therefore, the mitogenic impact of insulin is particularly involved in raising liver cancer due 
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to the higher physiological exposure of normal liver cells to insulin. Besides this, exogenous 

insulin supply also makes liver cells exposed to the same level of insulin. Hepatitis B and C 

virus infections, and other diabetes related disorders, including steatosis and cirrhosis, are also 

assumed to indirectly expedite the development of cancer in diabetic patients. The risk of 

pancreatic cancer starts with the pre-diabetic stage. Studies have observed that it increases 

relative risk by increasing glucose tolerance impairments. High exposure of exocrine 

pancreatic cells to high insulin (hyperinsulinemia) has also been observed in pancreatic 

cancer development because of the same blood flow with insulin secretory cells (islets). In the 

case of kidney cancer, the risk is generally referred to as hypertension, obesity and 

hyperinsulinemia. Patients with DM frequently have urinary tract infections, increasing the 

chances of cancer in reproductive organs. Diabetes increases the risk of both endometrial and 

breast cancer by unbalancing the sex hormones and delaying menarche, specifically in those 

women who have type-1-diabetes and fertility disorders. In the case of PCa, although 

diagnosis at an early stage (neoplasia forms) in diabetic patients reduces the cancer incidence, 

once the patient becomes overweight and insulin resistant, the chances of the patient ending 

his life with PCa will increase. However, diabetes has not only increased the relative risk of 

incidence but has also increased mortality more drastically in breast cancer and colorectal 

cancer (Vigneri et al., 2009). DM and cancer have common risk factors like obesity, physical 

inactivity, age and smoking associated with hyperglycemia, insulin resistance to mention a 

few (Smith and Gale 2010). 

Being an autoimmune disorder, type 1 diabetes requires an exogenous supply of insulin when 

the Beta-cells of the pancreas are unable to produce endogenous insulin. Exogenous insulin 

cannot mimic the compartment distribution pattern of endogenous insulin, which is first 

supplied to the liver where it retains the required level of insulin (80%), and the left hormone 

flows through the systemic circulatory system to reach peripheral tissues (liver/peripheral 

ratio (9:1). In contrast to endogenous insulin, exogenous insulin, reaches both liver and 

peripheral tissue at the same time and at the same concentrations. Hence, exogenous insulin 

leads to a two-fold to five-fold higher hyperinsulinemia in peripheral tissues.   While in 

T2DM, there is endogenous hyperinsulinemia because of insulin resistance and this insulin 

can’t replace the fuel storage of the body (Vigneri et al., 2009) (Szablewski, 2024). Hence, 

the unused material, i.e., glucose, is found in excess. The excess of both glucose and insulin 

results in several other hormonal abnormalities leptin, glucagon, etc.). With passing years of 

DM, the beta cells decrease insulin secretion because of an increase in the rate of apoptosis, 

which is not balanced by neogenesis. When this stage arises, the T2DM patient's body starts 

working metabolically like a type-1-diabetes patient with both endogenous hyperinsulinemia 
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and exogenous insulin requirement. As a consequence, the duration of diabetes and the 

requirement of insulin differently affect the exposure of tissue to insulin. It is well known that 

through the mitogenic action of insulin, hyperinsulinemia enhances cancer initiation in 

multiple ways For instance, high insulin binds and activates the insulin-like growth factor 

1(IGF-1) receptor and decreases the IGF-1 binding proteins, setting IGf-1 free as an active 

growth factor (Noto et al., 2013) (Vigneri et al., 2009). Secondly, high insulin may increase 

the insulin receptor IR level, having two isoforms, IR-A and IR-B. IRs after alternative 

splicing increases the mitogenic effects (Vigneri et al., 2009) (J. Li & Huang, 2024). 

Over the years, several antidiabetic drugs, viz. biguanides (metformin), thiazolidinedione, 

sulphonylureas, meglitinides and α- glycosidase inhibitors are in use (Huo et al., 2023). A 

patient is prescribed a variety of drugs over the years of diabetes duration. These drugs help to 

decrease the hyperinsulinemia (Vigneri et al., 2009). The biguanide metformin had been 

recently found to reduce the cancer risk in DM patients. Apart from reducing the insulin, 

these antidiabetic drugs are showing anticancer effects by stimulating AMPK, known to 

induce glucose consumption by muscle cells and also stimulating its upstream regulator 

LKB1 (tumor suppressor gene). AMPK works as an anti-proliferative by reducing insulin and 

IGF-1 signalling (DeCensi et al., 2010) (Vigneri et al., 2009). 

It can inhibit the MAPK, AKT and mTOR to arrest the cell at the cell cycle (Vigneri et al., 

2009). The sulphonylureas are known to increase insulin and increase the cancer risk. Vice- 

versa, many anticancer therapies can induce hyperglycemia. For example, glucocorticoid use 

has shown diabetogenic action by causing insulin resistance when used at high doses. 

Corticosteroids used as anti-androgens have also shown a negative impact on the glucose 

metabolism. Androgen therapy decreases insulin sensitivity, alters the lipid profile, and raises 

the risk of diabetes and heart problems (Vigneri et al., 2009). 

Metformin mainly works in two ways. First, it reduces the production of glucose by blocking 

one step of an aerobic cellular energy production molecule called ATP via activating the 

AMPK enzyme. The other way metformin works independently is AMPK, where ATM is 

assumed to modulate the action of metformin by some other parallel pathway. It has been 

observed in some patients with ataxia telangiectasia who were having insulin resistance 

(Birnbaum & Shaw, 2011). It was indicated that the ATM could regulate AMPK by 

phosphorylating its upstream activator, LKB, to affect the cellular process, or it can regulate 

the AMPK independently of LKB1. It regulates the other targets of metformin independent of 

AMPK (Birnbaum & Shaw, 2011). 

Hyperglycemia favours malignancies as it fulfils those cellular processes which consume the 

highest level of energy, like cell proliferation; thereby, glucose serves as a fuel to cancer 
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progression. This was provided by many studies wherein starved tumor cells reduced their 

malignant growth. Hyperglycemia also supports angiogenesis through microRNA-467 

upregulation. It produces oxidative stress and inflammation by the interaction of advanced 

glycation end products and their receptors, favouring cancer development (Sciacca et al., 

2013). 

 
Biological connection between diabetes and cancer 

The glucose level in the body is regulated by insulin, a hormone (peptide) which increases the 

glucose up taking and its assimilation. However, insulin resistance is stated when it becomes 

unable to perform this function in a diabetic patient. On the other hand, the beta cell 

continuously secretes insulin to make up and maintain balance, but it results in 

hyperinsulinemia (Wilcox, 2005). This increased level will trigger the production of IGF-1 

from liver cells. IGF-1 will then binds to its tyrosine kinase receptor IGF-1Ra and stimulate 

various metabolic and mitogenic signalling pathways to control processes like cancer cell 

proliferation, differentiation, and apoptosis. Later, some downstream targets like PI3KB and 

rat sarcoma-mitogen-activated protein kinase/extracellular signal regulated kinase signalling 

pathways get stimulated. PI3KB signalling has a role in cancer cell survival and migration. 

While rat sarcoma mitogen-activated protein kinase, extracellular signal regulated kinase 

signalling pathway to control cancer cell proliferation and metabolism (Poloz & Stambolic, 

2015). Hence, patients who have diabetes show increased levels of IGF-1, bringing them 

more susceptibility towards higher risk of different cancer development like breast, prostate 

and colorectal cancer (Szablewski, 2024).   In general, cancer cells show the Warburg Effect, 

in which high glucose uptake is there for more glycolysis to provide energy to cancer cells. 

Therefore, this state of hyperglycemia in diabetic patients will provide cancer cells with good 

conditions for the survival and proliferation of a cancer cell. At the same time, tumor DNA 

and protein synthesis are linked to the metabolism of glucose. Consequently, a higher blood 

glucose level impacts the growth of a tumor and metastasis (M. Wang et al., 2020) both 

conditions, hyperinsulinemia and hyperglycemia, co-exist in nearly all patients of diabetes, it 

becomes hard to identify the individual part played by each of these abnormalities. A clear 

idea about whether or not hyperglycemia acts as an autonomous factor in the promotion of 

tumor growth and metastasis was taken up by (M. Wang et al., 2020). In the wake of 

assessing the different cell and molecular pathways, metformin (MF) might be considered a 

perfect specialist to be utilized either alone or in assistance as standard medications for PCa. 

MF has demonstrated to be a perfect remedial operator, being reasonable and non-harmful for 

cell targets. MF assumes a job as an enemy of proliferations and hostile to cancer causing 
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operators. MF can: (1) bring down the degrees of insulin, which therefore brings down cell 

expansion, (2) increment the initiation of the AMPK pathway that brings about development 

restraint legitimately to PCa cells, and (3) in a roundabout way follow up on AMPK 

enactment and reduce cell multiplication in malignant growth cells. MF smothers the 

androgen signalling pathway, and modifications of insulin-like development factor-1 (IGF-1) 

flagging pathways cause the development and multiplication of PCa, hindrance of the mTOR 

pathway, and lipogenesis. In light of epidemiological factors, patients with DM may be 

protectively affected by PCa (Zaidi et al., 2019). So, metformin diminishes hyperglycemia 

hyperinsulinemia, and the results of these conditions are dominated by diminishing hepatic 

gluconeogenesis. This medication may likewise act straightforwardly on diseases or cells in 

danger of change by instigating vitality stress, which eases back cell multiplication through 

initiation of AMPK or potentially other mechanisms (Klil-Drori et al., 2017). Patients treated 

with Metformin for T2DM indicated lower tumor mortality, showing a relationship between 

metformin and tumorigenesis (Zi et al., 2018). 

 
2.11. Diabetes and PCa 

 
 

Androgen receptor and PCa: 

AR is a member of the steroid and nuclear receptor superfamily of nuclear transcription factor 

(NR3C4, nuclear receptor subfamily 3, group C, gene 4) and is involved in the regulation of 

normal growth and development of various target organs (W. Gao et al., 2005). The AR is a 

ligand-dependent transcription factor upon binding with androgens, i.e. native ligands 5α- 

dihydrotestosterone (DHT) and testosterone. AR initiates male sexual development and 

differentiation. In a nutshell, AR functions in response to androgens and regulates the 

transcription of genes via nuclear translocation (Heinlein & Chang, 2004) (Davey & 

Grossmann, 2016). 

PCa is also dependent on androgen stimulation mediated by the AR, even as the latter plays a 

significant role in the growth and differentiation of the healthy prostate (Koochekpour, 2010). 

For example, it is well known that the AR complexes move to the nucleus and dimerizes 

before modulating the transcription of targeted genes, wherein, many genes become 

regulatory and invite candidate genes to interact with them. Furthermore, it also allows the 

drugs to be targeted on their AR grooves, thus making the active functional motifs 

(Koochekpour, 2010). The AR gene is located on the X-chromosome at the locus Xq11-12 

and is composed of 8 exons coding for a ∼2757 bp open reading frame and ∼919 amino acids 

within a 10.6 kb mRNA (Brinkmann et al., 1989). AR signalling pathway involves various 



33 
 

 

 

mediators regulated by long non-coding RNA (lncRNA) by various mechanisms (Yongyong 

Yang et al., 2021). PCA3 modulates PCa cell survival via modulating AR signalling and is 

now used in PCa diagnosis (Lemos et al., 2019). 

 

The testis of a fetus produces first testosterone and the 5α reductase, which later reduces the 

level of testosterone to undergo the process of prostate morphogenesis. Those foetuses 

lacking 5α reductase enzyme due to mutation or deficiency will develop an underdeveloped 

prostate. Once the prostate gland forms the androgens help to maintain the survival of 

secretory epithelial cells, which are known to transform into adenocarcinomas. However, the 

mere level of androgen is not the reason for the cancer progression, but the AR is equally 

important as mediators in cancer development. For instance, a fall in testosterone could be 

because of hyper expression of ARs. It is observed that the AR expression is highly 

heterogeneous in PCa, which usually correlates with ADT response. Besides this, the reason 

behind the cancer development in some cells that have cells that have lost the AR 

expression/gene is still unclear. Therefore, an attempt to complete AR ablation could give 

selective benefit to cancer growth or survival. Moreover, PSA expression is also observed to 

be primarily regulated by AR (Heinlein & Chang, 2004). Moreover, dysregulated lipid 

metabolism related pathways also contribute to escaping of tumors from eradication in PCa 

(Guerrero-Ochoa et al., 2024). 

 

Role of Androgen Receptor in Diabetes: 

A study showed that 43% of DM had a lower level of testosterone, and 57% of DM patients 

had a lower level of free testosterone, whereas only 7% of patients who had type 1 diabetes 

showed lower testosterone levels. The lower level of testosterone is generally linked to high 

insulin resistance in both type 1 and type-2-diabetes (inverse relationship). This inverse 

relation is seen majorly in type-2-diabetes (Grossmann et al., 2008). This relation can be seen 

vice versa as lower levels of androgen (testosterone) can ensure acquiring DM in future and 

hypogonadism. A fall in free testosterone level is also reported in obese people and is 

inversely related to the obesity degree. Obesity also causes insulin resistance, glucose 

intolerance, an increase in the level of leptin, and further decreases the androgen levels. After 

the castration, it has been observed in many studies that the level of insulin and improvement 

in glycemic control. However, the mechanism underlying insulin resistance is yet more to 

understand   (Kapoor et al., 2006). It is suggested that when an androgen like testosterone 

binds its AR in liver cells, it activates the AR signal, which leads to glucose stimulated insulin 
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secretion (GSIS), and the deficiency of GSIS is associated with DM. These androgens might 

be involved differently in DM associated disorders (Sakkiah et al., 2018). 

A study has reported that the elevated AR signalling is because of mutated IGF-1/insulin 

receptors in PCa with DM patients (J. Li & Huang, 2024). The authors concluded that this 

could be the reason for the poor prognosis of diabetes and PCa; another reason could be 

reduced estrogen receptor ligands causing the disinhibition of androgen pathway signalling 

(Lutz et al., 2018). However, the growth factor IGF-I, which shares locus with lncH19 (IGF- 

II/H19), forms an imprinted gene. This silencing is found disrupted in different cancers 

including PCa. The association of adipose tissue and obesity is a known risk factor for both 

T2DM and PCa by disturbing cellular environments. As a result, hyperglycaemia or 

inflammatory, metabolic situations are hypothesized to be the cause of this loss of imprinting 

(LOI) (Kingshott et al., 2021). 

 

Antidiabetic drug and PCa: 

 

Metformin, an antidiabetic drug from several studies, has been proven to not only have an 

effect on glucose metabolism but also show interactions with androgen receptors. It plays a 

role in stabilizing PSA levels (Rout et al., 2022). In certain therapies, another commonly used 

method for T2DM, it is reported that glucagon-like peptide-1 receptor expression plays an 

anti-PCa effect. It helps in attenuating cell cycle progression. So, its forceful activation to 

express can be a potential therapeutic approach (Rout et al., 2022). Therefore, both metformin 

and certain therapies help in blocking cell cycle progression by reducing mTOR activity 

(Rout et al., 2022). Hypogonadism (decrease in level of testosterone) is also found associated 

with both diabetes and PCa. A fall in its serum level is capable of causing high graded PCa. 

Hence, T2DM is suggested to be a crucial predictor of high graded PCa, especially with 

benign prostatic hyperplasia (Rout et al., 2022). For early possible detection, PSA levels are 

broadly used, but its concentration shows variation due to several other comorbidities, age, 

and lifestyle, which makes it demand more precise analysis of test results. Based on a linear 

regression analysis, there is a fall in PSA in patients who are taking antidiabetics and obese 

people on haemodilution. This establishes an inverse relationship between diabetes obesity 

and PSA level. Such a study suggests deliberately checking the PSA level, especially in 

diabetic and obese patients (Rout et al., 2022). Both PCa and DM incidence is rising parallel 

with age. Despite the fact diabetes mellitus reduces the risk of PCa; DM can also increase its 

mortality (Rout et al., 2022). The understanding of the association between DM and PCa is 

still insufficient. Moreover, obesity makes its pathophysiology a more complex situation 
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(Rout et al., 2022). Besides this the glucagon-like-peptide-1 (GLP-1) used as external 

analogues in treating diabetes was found in lowering the risk of PCa to half (Stein et al., 

2023). 

 

2.12. LncRNAs 

RNA molecules have one of a type known as non-coding RNA (ncRNA) which cannot code 

any protein. Studies on several molecular processes of a cell have reported their role in 

regulating them. Basically these ncRNAs are categorized further into small ncRNAs, which 

involve Circular RNAs (CirRNAs), microRNAs (MmRNAs), and long noncoding RNAs 

(lncRNAs) and long intergenic noncoding RNAs (lincRNAs) (S. Yang et al., 2018) It is 

suggested that all those ailments caused by corrupted transcriptome are not always limited to 

errors in making of protein-coding RNAs; however errors in several ncRNA expressions are 

also responsible. Despite the fact that the proof for connection between various human 

medical issues and lncRNA are increasing (Suravajhala et al., 2015) (Huang et al., 2021), 

ncRNA–protein connections have drawn huge interest for further studies and have become a 

new area for exploring causes of various diseases, especially cancers. These ncRNAs have 

also shown their associations in cancer (Statello et al., 2021). Recent studies on lncRNAs 

employed NGS for identifying novel targets (H. L. V. Wang & Chekanova, 2019). A 

systematic analysis is done on genes involved in subcutaneous adipose tissue from the thigh 

of AIT2DM patients followed by phenome-interactome map preparation. Several new 

pathways and genes along with those of non-coding RNAs involved in AIT2DM were found. 

They have been explained to be in relation with some pathways like NOTCH, tyrosine kinase 

JAK2, thus recruitment of Src and STAT5 family kinases (signalling molecules) may assist as 

biomarkers on cell surface (Saxena et al., 2021). As already mentioned, among men PCa has 

become the most frequent cancer type, but still the approach of NGS studies were not in use 

before times. Lately, this approach has reported the identification of genetic biomarkers in 

Caucasians, but such studies are very rarely done on Indian PCa genetic variants (Gupta et al., 

2020). 

Numerous cellular processes depend on lncRNAs interactions with more than one RNA- 

binding protein (RBPs), which are frequently able to bind a variety of RNAs. Very few 

lncRNA are characterized fully functionally. Some of them remain attached to sites of 

transcription and regulate cis gene expression while the remaining acts as decoys as they 

prevent the transcription factors (TF) from interacting with DNA by binding with TF 

themselves. LncRNAs can even show interaction with chromatin modifying complexes to 

direct them  to transgenic  targets. Further, these can work like sponges for microRNAs 
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(miRNAs), help enhancers by binding them, can regulate antisense mRNAs after transcription 

or could be a scaffold for the formation of macromolecular complexes. Many RBPs can be 

cancer related proteins like MSL, DNA methyltransferase, trithorax-group proteins etc. and 

could interact with lncRNAs. The RBPs expression level in tumors fluctuates significantly 

which indicates their potential for diagnosis of PCa or any other cancer type. Metastasis 

associated lung adenocarcinoma transcript 1, MALAT1, is the first lncRNA to be upregulated 

and associated with PCa and other cancer types, as its interaction with the SR family of 

proteins (Ferrè et al., 2016). A near 2% of RNAs are coding, the rest of them are non-coding, 

called long non-coding RNAs, lncRNAs. These are RNA polymerase II synthesized, caped, 

polyadenylated and less than 200 nt. in size. Lately, these are well known for playing a role in 

several cellular processes like cell differentiation, metabolism, cell cycle, signal transduction, 

transcription, translation and post-translations, epigenetics, receptor interactions, DNA 

modifications, and many diseases including infections (Bridges et al., 2021). 

 
2.13. LncRNA and PCa 

2.13.1. LncRNA and Cancer: 

To understand the role of lncRNAs in cancer, first, their expression, functions and structures 

need to be understood. Both epigenetic and transcriptional factors regulate the lncRNA 

expressions. Genes of lncRNA are highly methylated in comparison to any other protein 

coding gene which shows epigenetic control. LncRNAs are tissue specific even though they 

are expressed in lower levels. Genetic or epigenetic mutation in their genes causes 

deregulations and transforms the cell to initiate cancer progression (G. Yang et al., 2014). 

Besides this, the more the underlying roles of lncRNAs are being exposed, the more their 

importance and potential in cancer treatment is realized since they be involved in cell cycle 

regulation, epigenetic regulation, miRNA regulation, DNA damages, chromosomal 

instability, and tumor induction related signaling pathways. These usually bind or interact 

with DNAs, Proteins and other RNAs; and their location, sequence length and secondary 

structures also matter to show their effect in tumor development. LncRNAs binds as decoy to 

different transcriptional regulatory sites (showing cis and trans function) and other 

translational factors for example a novel cancer associated lncRNA SNHG9 interacts with 

LATS1 C-terminal facilitating liquid-liquid phase separation. Since, lncRNAs have also 

known to interfere in chemotherapy resistance for drugs by regulating expressions of target 

gene involved in drug efflux, autophagy, apoptosis, cancer stem cells and EMT, suggesting a 

new potential way to treat the cancers and as potential biomarkers of cancers. However, 

lncRNAs and their therapeutic importance is still less explored with respect to cancers despite 
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their high stability in body fluids which can make both treatment and diagnosis feasible (X. 

Yin et al., 2022) (X. Zhou et al., 2022). 

Studies have also suggested that the lncRNA can maintain the stemness of the cancer cells, 

for instance, the LUNAR1 which is an lncRNA and regulated by notch signalling which 

directs the stem cells of leukemia and T-cells of acute lymphoblastic leukemia. Recently, the 

PRC complexes have been identified as promoting stemness and interacting with lncRNAs 

like ANRIL and HOTAIR. In aggressive PCa, PCAT-1 is reported as a highly upregulated 

lncRNA. Since lncRNA can be easily detected from body fluids and can regulate DNA, RNA, 

protein function and their synthesis, they are promising markers for diagnosis such as PCA3. 

Further, several studies have proved their importance in treatment for instance, lncRNAs are 

regulators of epigenetics, thus shutting down such lncRNAs which epigenetically regulate any 

cancerous gene expression (X. Yin et al., 2022) (Zhou et al., 2022). Recently a study used 

variational graph auto-encoder (VGAELDA) algorithms to find associations between 

lncRNAs and metastatic events and showed few novel lncRNAs are specifically regulating 

the metastatic events (cell invasion and cell migration) in different cancers. For instance 

lncRNA-MEG3 (breast, lung, cervical, colorectal), SNHG16 (breast, bladder, renal, gastric, 

ovarian, retinoblastoma, prostate), MALAT1 (lung), and MT1JP (cervical, colorectal, 

gallbladder, melanoma, thyroid, ovarian, prostate, esophageal, gallbladder) are some of them 

(Zhu et al., 2023) 

 
2.13.2. PCa and LncRNA Biomarkers: 

Recently, a multitude of novel lncRNAs dysregulated in PCa, have been identified by large 

scale RNA profiling projects. RNA sequencing identified a set of 121 PCa-associated 

intergenic non-coding RNA transcripts termed the PCAT family (Khilwani et al., 2023 

Unpublished). Functional analyses of lncRNAs have revealed significant contributions to PCa 

by targeting relevant pathways and gene regulation mechanisms including PTEN/AKT and 

androgen receptor signalling as well as chromatin remodelling complexes (Aird et al., 2018). 

Among all the identified biomarkers of PCa, PCA3 showed the highest specificity in 

diagnosis as a biomarker and it expresses 60-100 times more in over 95% of the PCa cases. 

PCA3 is known to regulate apoptotic genes, angiogenesis, cell-cell adhesions, and mitogen- 

activated kinase kinase-1 and signal transductions. PCA3 shows more specificity in diagnosis 

when combined with a gene fusion testing of TMPRSS2-ERG (Misawa et al., 2017). PCa 

antigen 3 (PCA3) modulates PCa cell survival via modulating AR signalling and is now used 

in PCa diagnosis (Lemos et al., 2019). SChLAP1 (Second chromosome locus associated with 

Prostate-1) lncRNA expresses in CRPCs and is associated with biochemical recurrence risk, 
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metastasis, lethal progression and PCa related mortality. It is expressed in 25% of the PCa 

cases, predicts recurrence after radical prostatectomy and is known to interact with a 

chromatin remodelling complex called Switch-Sucrose Non-Fermentable. SPRY4-IT1 

(SPRY4 intronic transcript 1) was markedly elevated in both patients and PC3 cell lines. 

SPRY4-IT1 plays a role in invasion, proliferation and apoptosis. MALAT1 is known as a 

poor prognostic lncRNA biomarker as it is found expressed in other types of cancers like 

lung, breast, colon, liver and pancreas, suggesting its role in promoting tumor growth and 

metastasis. Further, its high expression is associated with poor prognostic indicators like a 

high Gleason score suggesting an aggressive tumor stage, high PSA and high TNM. 

However, it is expressed mostly in CRCP patients and binds with a gene regulation protein 

called Enhancer of Zeste Homolog 2 (EZH2) to enhance the migration, invasions, and 

aggressiveness to bring metastasis turning out to be a poor prognostic factor. Another poor 

prognostic biomarker for PCa is TRPM2-AS (Transient receptor potential cation, subfamily 

M, member2-antisense transcript). It is associated with PCa cell apoptosis and is a known 

therapeutic target. NEAT1 (Nuclear enriched abundant transcript) has shown resistance to 

antagonists of AR or androgen deprivation therapy. NEAT1 changes the epigenetic pattern by 

binding to the promoter region of the gene so that transcription initiates and also starts 

oncogenic growth. Its high expression is an indicator of early recurrence by raising 

biochemicals like PSA and metastasis. Around 50% of PCa tumors have elevated levels of 

PCGEM1 lncRNA (PCa gene expression marker1). It has a role in the proliferation of cancer 

cells by regulating c-Myc and the formation of colonies. Another c-Myc interacting lncRNA 

is PCAT1 which has a repressive impact on several genes like BRCA2 and expresses highly in 

localized high grade tumors and metastatic PCa (Misawa et al., 2017). 

 

Previous studies have also identified GAS5, HULC and UCA1 as three lncRNAs linked with 

PCa radiosensitivity. A study compared TCGA datasets and lncRNAs expressions of both 

complete and incomplete radioresponse patients. They found that LINC01600 was highly 

upregulated in incomplete radio response patients. LINC01600 was also earlier reported 

overexpressed in adenocarcinomas of the lung and about 558 coding genes (involved in DNA 

repair, cell cycle, metabolism and radiosensitivity related) were showing co-expression with it 

(Rout et al., 2022). Another study by Iris et al., 2020 reported upregulated LINC00665 and 

LINC0026 in patients after radiotherapy. LINC00665 and LINC0026 play a role in survival 

and DNA repair mechanisms, suggesting them as potential markers of PCa (Eke et al., 2021) 

(Iris et al., 2020). Hence, the important role of lncRNAs has been identified in the 

development of PCa, promotion of castration-resistant PCa (CRPC), cell proliferation, 
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invasion, metastatic spread along with modulation of AR-mediated signalling (Yang et al., 

2021). Lately, LincRNA-p21 expression, a biomarker present in urine, can be used to 

differentiate between a BPH and PCa. It was observed that the circulating lncRNAs can be 

more helpful in diagnosis of PCa (Beylerli et al., 2022). 

 

2.14. LncRNA and Diabetes 

Considering the dynamic role of lncRNAs as novel prognostic, diagnostic and predictive 

markers in PCa, lncRNAs may also serve as therapeutic targets aiding in the prevention, 

development and treatment of CRPC and metastasis of the disease. Functional analysis of 

lncRNAs could be done by deciphering lncRNA-protein interaction, as the function of most 

lncRNAs is dependent on interaction with protein-coding genes. In contrast to the limited 

experimental approaches available, lncRNA-protein interactions can be more effectively 

studied by employing different computational tools. It will be interesting to predict the 

lncRNA that is common in PCa and AR which can enable us to develop potential lncRNAs 

that are prognostic biomarkers. Epigenetic mechanisms that control intricate interactions 

between different genes and the environmental variables while retaining the sequence of a 

DNA include methylation, posttranslational modification of histones and lncRNAs 

(Sathishkumar et al., 2018). As it is well known that lncRNAs play a role in several molecular 

processes and lately an increasing amount of research has indicated that lncRNAs are 

important regulators of insulin secretion and resistance, functioning of beta cells, apoptosis, 

and metabolism of glucose. As a result, many investigations have observed the shifts in the 

expression of lncRNAs among DM patients and animal models of both type-1 and type-2- 

diabetes. LncRNAs are therefore believed to offer novel biomarkers with intriguing potential 

for the diagnosis of both type1 and type-2-diabetes. For instance, a study found the level of 

GAS5 lncRNA falls in T2DM patients of the US cohort and vice versa. Having low serum 

levels of S5 was at more risk of acquiring T2DM in future. Another study on cohorts from 

testified upregulation of ENST00000550337.1 in the blood could be highly promising in early 

diagnosis of early T2DM (Dieter et al., 2021). 

Dieter et al. (2021), in a review explained that the levels of some lncRNAs (Hotair, Malat1, 

Kncq1ot1, Miat and Anril) were upregulated consistently, whereas the level of Meg3 was 

downregulated. Malat1, also a predictor of metastatic lung cancer, is upregulated in 

macrophages, serum and liver of D2TM animal models (J. Y. Liu et al., 2014) (S. X. Liu et 

al., 2019). Further, Malat1 has been seen to interact with PI3K/Akt, MAPK/ERK, Wnt/β- 

catenin, NF-κB insulin, AMPK and FoxO signalling related to DM (Dong et al., 2014). 
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Hotair is hyper expressed in blood and liver of T2DM and diabetic kidney disease. It interacts 

with MAPK, TNF, FoxO, Akt and HIF-1 signalling (Shaker et al., 2019). 

Anril is a known predictor of many cancer types like liver, thyroid, colon, breast, lung and 

gliomas. It also interacts with TGFβ, MAPK, FoxO, AGE/RACE and PI3K/Akt signalling 

(Dieter et al., 2021). An antisense lncRNA, Kncq1ot1, regulates the development of beta cells 

and stress related protein processing in the endoplasmic reticulum (Dieter et al., 2021) 

(Kassem et al., 2001). High expression of Miat was found in rats with diabetic myocardium. 

However, the down regulation of Meg3 was seen in the blood, serum and Islets of DM mice 

models. It is found to be involved in insulin synthesis by suppressing insulin gene 

transcription (D. Zhang et al., 2018). Sathiskumar et al., also reported XIST (diabetic 

neuropathy), LET (upregulated in DM), RNCR3I (increases vasculature of the retina and 

upregulated), THRIL (controls TNF-alpha), GM4419 (diabetic neuropathy), SALRNA1 

(downregulated in DM and negatively related to hyperglycemia, inflammation and 

senescence), NBR2 and PANDA (AMPK signalling and liver fibrosis), PLUTO (upregulated 

in pre-diabetic and DM) and LincRNA-p21 with varying expression levels because of 

mutation in DM patients (Sathishkumar et al., 2018) (Goyal et al., 2018). In high glucose 

induced inflammatory response in the case of diabetic retinopathy, lncRNA H19 is also found 

to play an important role through the H19/miR-19b/SIRT1 axis (Luo et al., 2021). 

Differentially expressed lncRNA (LINC01128) is already known to increase the rate of 

cervical cancer progression and is also predicted as a biomarker of gestational hypertension. 

Similarly, Saxena et al. (2021), suggested that LINC01128 could serve as a biomarker for 

diabetes diagnosis and prognosis (Rout et al., 2022). 

LINC01128 Thigh Adipose Tissue and identified LINC01128 to be relatively expressed 

(Tiwari et al., 2019). Further studies on GEO datasets of osteosarcoma have shown that 

LINC01128 expresses its oncogenic role. It revealed that increased expression of LINC01128 

in OS patients is accompanied by their shorter survival. However, its knockdown turned down 

the proliferation, migration, and invasion. In OS, LINC01128 is identified to work as a 

sponge in triggering Wnt/β-Catenin signalling by promoting MMP2 expression through miR- 

299-3p (Yao & Chen, 2020). In cervical cancer tissues, the expression of LINC01128 is found 

to be significantly high, and its fall suggests that it might lower the SFN (stratifin) at both the 

mRNA and protein levels. SFN, a known potential biomarker in cervical cancer, is also 

majorly expressed in the early stage of lung adenocarcinomas. It clearly explains how 

LINC01128 could accelerate cell processes like cell proliferation, migration, and invasion and 

even can inhibit apoptosis through SFN upregulation and release by binding miR-383-5p and 

also working as its antagonist (Rout et al., 2022). MiR-383 is under the regulation of 
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LINC01128. However, overexpression of miR-383 in T2DM serum reverses the cell 

apoptosis under high glucose in mouse β cells by TLR4 and APOC3 suppression (X. Cheng et 

al., 2020). Also, high LINC01128 was seen in stage III-IV CRC and mediated PRMT5 

function, which is a mediator of methylation of proteins. In pancreatic cancer, it was found as 

an EMT-LPS (epithelial mesenchymal transition related lncRNA prognostic signature) 

molecule (Bo Cao et al., 2021) (Deng et al., 2022). 

2.15. Research Gaps 

Scientists have yet to identify the reasons behind variations in outcomes linking type-2 

diabetes and PCa, which appears complex across different stages. Glucose transporters are 

crucial for PCa development since glucose assimilation in the prostate gland is unusual as 

compared to other tissues. Therefore, exploring glucose metabolism elements, including 

enzymes, metabolites, or other transporters has become an important area for more in-depth 

studies. Also, the behavioural understandings of the metabolic interchanging occurring 

between immune cells, tumor cells and stromal cells of the microenvironment in tumors are 

still blurry. The two conditions, neoplastic transformation and hyperglycaemia, often co-occur 

and their interaction complicates treatment by limiting drug selection. Thus, a shortage of 

understanding of these co-occurring conditions adds to greater death rates. While some 

pathways linking glucose and insulin metabolism to PCa have been proposed, the impact of 

varying extracellular degrees of glucose on malignant cells is weakly stated till now. 

However, the matter of concern is will the answers for metabolism-related medical problems 

decrease the chance of having PCa before it is diagnosed? Current research is focused on 

finding if a molecular subtype interaction with the metabolic environment can help in 

affecting the outcome of PCa mortality. Although the role of insulin is contributing, how 

exactly it is affecting is still unclear. Further, age significantly influences PCa risk, with the 

highest risk is seen in diabetic patients with 1–3 years of diabetes, after which progressively it 

drops. This suggests an undefined cause for this non-linearity. The reason behind the variation 

in the impact of geographical and socioeconomic is also demanding further detection. Though 

the associations between both of them are evident, more research is demanding to come out 

with some constant inferences and potential mechanisms. Future analyses should include the 

detection of more biomarkers for prostate neoplasm, especially since NGS has already 

identified some genetic variants in Caucasians but Asian India has not been explored yet. 
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2.16. Aim and Objectives 

2.16.1. Hypothesis 

Several confounders like obesity, drugs for treatment, metabolic control, diet, etc. in diabetic 

patients are likely to influence the link between cancer and diabetes. The exact incidence of 

association is still lacking except for the PCa case, wherein a decrease in incidence rate has 

been noted among diabetic men. Diabetes itself is underdiagnosed in adults (3-5%), so even if 

we believe that DM is increasing the chances of cancer, this association is still underrated. 

Moreover, whether diabetes via a different mechanism leads to cancer development 

aggressively or is it the host body that is not able to show resistance towards cancer 

development is not answered yet (Vigneri et al., 2009). Obesity is also recently considered as 

a risk factor for inducing PCa by crosstalk of oxidative stress caused by insulin resistance and 

inflammation caused by increase in circulating inflammatory factors (IL-6, TNF and leptin) as 

a consequence. Some studies say 5% per every increase of 5 kg/m2 BMI; risk for PCa is 

raised in an obese person. In case of PCa, although diagnosis at early stage (neoplasias forms) 

in diabetic patients reduces the cancer incidence, but once the patient becomes overweight 

and insulin resistant, the chances of the patient ending his life with PCa will increase. 

However, diabetes has not only increased the relative risk of incidence but has also increased 

the mortality more drastically in breast cancer and colorectal cancer (Vigneri et al., 2009). 

From studying literature intensively, it can be assumed that the AR mediates the connection 

between the PCa and Diabetes. In PCa it plays an important role in growth and differentiation 

of healthy prostate. Hence, PCa is dependent on androgen stimulation and AR mediates this 

stimulation. Even the fall in the testosterone could be related to hyper expression of ARs 

ultimately ending in tumor development. These testosterone (androgens) are also found low in 

in many DM patients and on other side fall in testosterone being an androgen when binds to 

AR, it stimulates the AR signaling in liver cells which leads to GSIS. This suggests its link 

with high insulin resistance. Further, this explains on AR therapy to reduce AR and GSIS, 

chances of having the diabetes is high indicating a risk for post AR therapy diabetes 

development. This elevating signaling is also supposed to be the result of a mutated 

IGF/insulin receptor and its contribution in poor prognosis of diabetic PCa patients. Few 

studies have also reported the elevated AR signaling in diabetic PCa patients. This highlights 

a potential interplay of the complex hormonal signaling pathway of two conditions which 

motivates this to explore more explicit associations at genetic level. 

Metformin has shown that the beyond glucose metabolism but interferes with AR. In few 

cases even it is observed to stabilize the PSA level presenting PCa management property. 

Analysis has also inferred that the fall in PSA level diabetic patients who are taking 



43 
 

 

 

antidiabetic and obese patients, has an inverse relationship between diabetes, obesity and PSA 

levels. Therefore, while screening for diabetes and obesity PSA level should also be 

considered. Metformin mainly works two ways first; it reduces the production of glucose by 

blocking one step of an aerobic cellular energy production molecule called ATP via activating 

AMPK enzyme. The other way of metformin works independent of AMPK, where ATM is 

assumed to modulate the action of metformin by some other parallel pathway. It has been 

observed in some patients with ataxia telangiectasia who were having insulin resistance. It 

was indicated that the ATM could regulate AMPK by phosphorylating its upstream activator, 

LKB1 to affect the cellular process or it can regulate the AMPK independent of LKB1. It 

regulates the other targets of metformin independent of AMPK (Birnbaum & Shaw 2011) 

(Figure: 2.7). 

Antidiabetic therapies or metformin can certainly block cell progression by halting mTOR. 

The mTOR can stimulate glycolysis on getting phosphorylated from AMPK under AR 

dependent hyperglycemia and PI3K/Akt signaling pathway. In the PI3K/Akt pathway active 

mTOR can bring angiogenesis and cell survival. MF can inhibit PI3K, Akt directly and 

mTOR (Figure: 2.7). Further, mTOR regulates the insulin secretion from Beta cells and leads 

to hyperinsulinemia and insulin resistance. This signaling activates mitogens RAS-MAPK and 

PI3KB through IGF-1 and which can induce cell proliferation, invasion and metastasis. Here, 

Metformin in many studies is found to inhibit hyperinsulinemia, IGF-1 and PI3KB directly. 

DM is not just a single disease but it is a cluster of metabolic ailments because of either 

missing insulin or low levels of insulin causing abnormal glucose level and its tolerance 

(Deepthi et al., 2017). In  general, lack of any enzymes which are required to turn  one 

metabolite into another results in a metabolic affliction in the body. Other ways, metabolite 

over accumulation can also manifest a metabolic disorder and hence diabetes fits a better 

example which is lack of enzyme and over accumulation of glucose (Nagamani et al., 2019). 

This indicates more has to be explored in connection of metabolic disorders and PCa. 

On one side we could see it is lowering the chances of PCa but on the opposite side it is 

supposed to be responsible for PCa related deaths. So it is confirmed that the associations are 

very complex since the understanding of this association can be considered insufficient and 

obesity is assumed to complicate more pathophysiology. 
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Figure: 2.7: Showing the interplay of hyperglycemia, insulin resistance, hyperinsulemia, AR 

signaling, and anticancer Metformin mode of action. Apart from the antidiabetic effect 

metformin contributes and anticancer effect through interfering in glucose metabolism 

pathway as it directly blocks PI3K, Akt, AMPK and mTOR to reduce glucose production 

(glycolysis) and energy production for cell progression, angiogenesis and cell survival. 

Metformin also puts checks on hyperinsulinemia and insulin resistance by blocking PI3K and 

IGF-1 to halt the RAS-MAPK activation. Hyperinsulinemia and insulin resistance are 

observed to play role in cancer development, cell proliferation and metastasis. AR (Androgen 

receptor), PI3KB (Phosphoinositide 3-kinase beta protein), AMPK (Adenosine 

monophosphate-activated protein kinase), Akt (Ak strain transforming), mTOR (Mammalian 

target of rapamycin), HIF-1 (Hypoxia inducing factor-1), IGF1 (Insulin growth factor), RAS-

MAPK (Ras/mitogen-activated protein kinase), MF (Metformin), T2DM (Type-2- diabetes 

mellitus) 

 
Further, glucose transporters are taken as appropriate for PCa development since glucose 

assimilation in the prostate gland is unusual as compared to other differentiated tissues. So 

therefore, utilization of elements of glucose metabolism, together with enzymes, metabolites, 

or other transporters for typifying carcinomas has become an important area which requires 

more attention which must be further exploited and thoroughly considered. Additional 

knowledge of the metabolic dependencies that enable tumor development in the local 

surroundings will be significant for new findings. The two conditions neoplastic 

transformation and hyperglycemia are repeatedly present in co-morbidity; moreover their 

interaction has made treatment system further difficult by limiting the drug selection. Thus 

shortage of clarification in knowledge regarding these co-occurring medical issues adds to 

greater death rates. Based on very limited research many pathways were presented to make 
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clear the potential integrative associations in glucose and insulin metabolism and PCa but the 

impact of varying extracellular degrees of glucose on malignant cells is weakly stated till 

now. Although, the role of insulin is confirmed but how exactly it is affecting is still unclear. 

Whereas the growth-encouraging role of insulin via canonical mTOR/Akt/ ribosomal protein 

S6 kinase signaling in malignant cells has undoubtedly shown contribution in cancer 

development but the possible straight away metabolic role of insulin in malignant cells is still 

under the soil. Though, the associations between both of them are evident but more research 

is demanding to come out with some constant inferences and potential mechanisms could be 

drawn regarding an association between PCa and metabolic abnormalities. Future analyses 

should include the detection of more biomarkers for prostate neoplasm. Next generation 

sequencing technology has already identified some genetic variants in Caucasians but Asian 

India has not been explored yet. 

Hence, the present study is aimed to decipher the known potential targets and identify the 

splice variants of the non-coding RNA players such as lncRNAs of modulation in tumor 

metabolism that cross talk between PCa and diabetes. 

2.16.2. Aim: 

In Silico Analysis for Genomics Understanding to Ascertain Impact of Diabetes risk in PCa 

 
 

2.16.3. Objectives: 

1. To screen variants in PCa patients affected with diabetes, thereby establishing a 

causal relationship between them using integrated systems genomic approaches 

2. To identify and explore the role of lncRNAs as potential targets using lncRNA- 

protein interactions 

3. To perform protein-protein interaction (PPI) network analyses and identify pathways 

associated with T2D and PCa in silico method 
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CHAPTER 3: METHODOLOGY 
 

 
3.1. To screen variants in PCa patients affected with diabetes, thereby establishing 

a causal relationship between them using integrated systems genomic 

approaches 

 
3.1.1. Integrated machine learning approaches on Publicly Available Dataset 

for identification of Plausible Candidate 

3.1.1.1. NCBI dbSNP 

The dbSNP stands for single nucleotide polymorphism database which is a publically 

available repository of gene variations data at NCBI (National Center for Biotechnology 

Information) (https://www.ncbi.nlm.nih.gov/snp/ last accessed on April 2, 2024). As 

suggested by its name, it includes all the changes at nucleotides as well as other small 

insertions or deletions and short tandem repeats (Bhagwat, 2010). 

This helps to match the variations and handles more than 2 billion of variants of a human each 

with different submission IDs (Bradley Holmes et al., 2020). When submitted SNP matches 

the same location as the genome, they are then reported to Reference SNP (refSNP) and 

receive an ID number starting with “rs”. We need to put query in search box of dbSNP in the 

form of text and then multiple filters (like organism, SNP type, and functional aspects) can be 

selected, which will be added on by Boolean operators “AND”, “OR” or “NOT” (Bhagwat, 

2010). It links all the variations of clinical mutations and polymorphisms with several other 

databases like sequence resources through E-PCR and BLAST, literature with their time of 

submissions or PubMed, GenBank, Entrez and Locus Link (Sherry et al., 2001). 

 
3.1.1.2. ClinVar 

National Institute of Health (NIH) has maintained publically available record of all the 

clinically validated variants (ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/ last accessed on 

April 12, 2024) (Harrison et al., 2016). More than 1300 different organizations which include 

several laboratories (for clinical tests and research), clinicians, LSDBs (locus-specific 

databases), panel experts, registries of patients and many others submit their identified 

variants to ClinVar (Landrum et al., 2020). Further, each submission has the record of 

conditions associated with it and disease for which it has been identified, its clinical 

significance, status of review and evidence of identification (Harrison et al., 2016). The 

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/clinvar/
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scope of ClinVar is restricted to only those variations that were thoroughly evaluated for their 

both functional and clinical significance but not just discovered (Landrum et al., 2020). 

We went to the website of the ClinVar and a home page was displayed with a search box at 

the top for our queries. We provided the variants with rs IDs as a query and hit the search 

option. From the homepage we were directed to the page where both variation report and 

record report were displayed with filter options available on the left side for more refinement. 

We selected both pathogenic and likely pathogenic for clinical significance and then filtered 

for only RefSeq variants. Later, we download the searched variant results as tab delimited 

variant summary file (Harrison et al., 2016). 

 
3.1.1.3. Dataset 

Separate catalogs of clinically verified variants (ClinVar) were first prepared for PCa, 

diabetes, and obesity from the NCBI with searches using keywords, “Prostate Cancer”, 

“Diabetes”, “Obesity”, and Boolean expressions, viz. AND, OR, NOT were used wherever 

needed. Also, we surveyed the literature and identified the associated clinical parameters of 

comorbidities leading to cancer progression, especially for the prostate malignancy was 

carefully chosen. The ClinVar datasets were then further categorized into unknown 

significance, likely benign, benign, likely pathogenic and pathogenic based on their clinical 

significance and similarly the clinical parameters were categorized based on threshold values. 

Later, the annotated data for all three diseases is transformed into binary/semi-binary scores, 

viz.-1, -0.5, 0, 0.5, and 1 (Figure 3.1) and (Figure 3.2). While these binary scores are given 

based on the risk of acquiring PCa increases with rising in the pathogenicity of a variant, the 

general stratification of low grade, intermediate but less risk, intermediate, moderate risk, and 

high risk corresponds with -1, -0.5, 0, 0.5, and 1 respectively were checked and tabulated. The 

training model was prepared from the converted binary/semi-binary datasets and then 

subjected to seven different machine learning algorithms that are linear regression, multilayer 

perceptron, simple linear regression, random forest, random tree, REP tree, and Zero R and 

further compared to predict the chance of developing PCa when there are any change 

variables from the control population (Kour et al., 2023). 
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Figure 3.1: Flow chart representing identification, filtering, mapping (to SNP database, 

ClinVar, and SNPnexus), selecting, and finally, semi-binary data conversion of (1, 0.5, 0, - 

0.5, -1) with respective significance. 

 
3.1.1.4. Clinical parameters of PCa: 

3.1.1.4.1. Gleason Grading: 

Originally, Gleason grading was based on anatomical patterns seen in hematoxylin and eosin 

(H and E) stained sections of prostate adenocarcinoma, instead of cellular characteristics. In 

that system, pattern 1 was regarded as a well-confined lump consisting of somewhat even, 

tightly packed, separate, well distinguished and moderate-sized glands whereas pattern 2 

showed several variations in neoplastic glands size with increased stroma in them and 

irregularities in their lump’s circumference. In pattern 3 some Polyporus form glands in gland 

structures called glomerulations while fuse glands were seen in pattern 4. A blemish outgrowth 

demarcated it as pattern 5 where solid cord growth and tumor cell infiltration were seen later 

(N. Chen & Zhou, 2016). Modern biopsies approaches demanded more advances in Gleason 

grading to interpret and score biopsies. Hence, on the new grading system, Gleason's score less 

than or equal to 6 is categorized under grade group 1, a score of 3+4=7 under group 2, a score 

of 4+3=7 under group 3, a score of 4+4=8 under group 4, and a score of 9 -10 under grade 5. 

This latest advanced grading system is incorporated as a new addition to the World Health 

Organization classification for prostate tumor. Scoring is the sum of highly frequent common 

and secondary patterns 3+5 (Bulten et al., 2020). As per current developments in 
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immunohistochemistry, grades 1, 2, and 3 are almost identified as similar, hence are not much 

considered. However, in grade five, an interface between grade 3 or 4 and 6 or 7 is marginal 

between low risk and high risk of cancer (Iczkowski & Lucia, 2011) (Figure 3.2.A). 

3.1.1.4.2. Prostate-Specific Antigen (PSA): 

PSA is used in PCa screening at earlier stages to reduce the overall mortality rate but specific 

mortality and improve treatment approaches. However, PSA screening has still not shown 

remarkable results in saving patient lives. Besides this, PSA screening is accompanied by 

several problems like over diagnosis (false positive or false negative) which can lead to 

prolonged side effects of treatments (Velonas et al., 2013) (Figure 3.2.A). 

3.1.1.4.3. Digital Rectal examination (DRE): 

Digital rectal examination was largely used for earlier diagnosis of PCa before the advent of 

PSA. However, DRE can only detect several tumors because of its inefficacy in correlating 

location nodules with tumor locations in biopsy results. Therefore, these days DRE tests are 

less recommended in routine PCa screenings (Figure 3.2.A)  (Okotie et al., 2007). 
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Figure 3.2: Different clinical parameters of A. PCa (Clinical Significance, PSA Level, 

Gleason Grading, Minor Allele Frequency, DRE Value), B. Different clinical parameters of 

Diabetes (Clinical Significance, Minor Allele  Frequency, Glycated Hemoglobin: HbA1c, 
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WBC Count Test, Fasting Blood Glucose, Body Mass Index); C. Different clinical parameters 

of Obesity (Clinical Significance, Minor Allele Frequency, Body Mass Index, LDL/HDL) for 

PCa, and their different ranges based on risk, and their conversion into semi-binary data (-1, - 

0.5, 0, 0.5, 1). 

 
3.1.1.5. Clinical parameters of diabetes associated with cancer/PCa: 

3.1.1.5.1. Glycated hemoglobin (HbA1c): 

Glycated hemoglobin (HbA1c) testing is considered a gold standard for evaluating glycemic 

control in diabetic patients. It gives the average estimation of plasma glucose (Y. Hu et al., 

2010) (Schnedl et al., 2001). A high level of HbA1c is interlinked with a chance of having 

hepatocellular carcinoma (HCC) among pre-existing diabetic patients. With every rise of 1% 

HbA1c level, the possibility of having HCC elevates by 26-50%. In insulin resistance (IR) in 

T2DM patients, because of prolonged use of antidiabetic therapies, exposure to free 

circulating insulin increases, and cellular mitosis gets stimulated by the insulin growth factor 

(IGF-1) intracellular pathway, a key mitogenic and antiapoptotic trigger in cancer 

development (Donadon et al., 2010) (Kour et al., 2023). A threshold value of 6.1% is the 

optimum sensitivity and specificity and 6.5% is the finest specificity to diagnose diabetes as 

indexed in American Diabetes Association (ADA) recommendations (P. R. Kumar et al., 

2010) (Lippi & Targher, 2010). Its limitations include its association with poor performance 

in pregnant females, old age, and the chance of overdoing in anemia and genetically 

predisposed ones (Kour et al., 2023). A study under UK Biobank has also suggested that high 

HbA1c is associated with several types of cancer with increased risk for stomach, liver, colon, 

bladder, esophagous, lungs, endometrium, pancreas, and kidneys and decreased risk for PCa 

suggesting that diabetes and glycemic control is crucial in limiting cancer risk (Figure 3.2.B) 

(Peila & Rohan, 2020). 

 

3.1.1.5.2. WBC count test: 

 
WBC count testing alone can predict diabetes even in non-glycemic men. It has been 

estimated that for every 1000 cell/mm3 rise within the normal range, the chance of diabetes 

rises by 7.6% (Twig et al., 2013). In addition, chorionic inflammation increases the 

likelihood of diabetes even without the obesity in autoimmune ailed patients. So, WBC count 

is considered an independent risk factor for diabetes in young (Vozarova et al., n.d.). A high 

WBC count is associated with an increased risk of venous thromboembolism (VTE) (arterial 

thrombosis and pulmonary embolism) in cancer patients. These cancer patients who 
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developed VTE showed a short life span compared with those who didn’t develop VTE (Kour 

et al., 2023) (Blix et al., 2013)(Figure 3.2.B). 

 

3.1.1.5.3. Fasting Blood Glucose: 

 
Fasting or exposure to a nutrient-deprived (fast mimicking diet, FMD) environment of cancer 

cells brings alteration in growth factors and metabolites which could lower the tendency of 

cancer to adapt and survive. This can be a possible way of refining the cancer treatment 

approaches (Nencioni et al., 2018). Some epidemiological studies have presented that T2DM 

has an inconsistent effect on the risk of PCa at different points in time. It was suggested in 

some cases that, over time, diabetes has shown a protective impact on PCa development 

because of poor serum levels or less availability and activity of IGF-1 in the late stages of 

T2DM. Fasting blood sugar testing is more reliable than HbA1c (Ghazanfari et al., 2010) 

(Figure 3.2.B). 

 

3.1.1.5.4. Body Mass Index (BMI): 

 
Overweight or obesity in adults has shown considerable chances of acquiring diabetes in a 

lifetime. However, with aging its impact on the risk of diabetes, life span and period of 

diabetes will weaken. Adults are affected and have a higher chance of mortality due to 

diabetes if the BMI level is above or equal to 30kg/m2 (Ghazanfari et al., 2010). A number of 

genetic variants are found common in GWAS which confirms their associations (Figure 

3.2.B) (L. Cheng et al., 2019). 

 

3.1.1.6. Clinical parameters of obesity-associated with cancer/PCa: 

3.1.1.6.1. BMI (Body Mass Index) 

 
Accumulation of adipose tissue in excess amounts as a result of a high intake of calories as 

compared to the energy expenditure of the body is considered obesity (Khandekar et al., 

2011). It is quite evident that along with the risk of T2DM and cardiovascular diseases, 

several cancer types’ risk is also directly proportional to increasing body weight. Their 

interlinking can be explained based on altered endogenous hormone metabolisms like insulin, 

IGF and steroids which deviate from living processes; cell proliferation, differentiation, and 

apoptosis from the normal equilibrium. Hence, checking on weight gain could significantly 

help in lowering cancer risk. A BMI of 18.5-25kg/m2 is suggested to escape from this risk, 

even as, in some studies, it is found that there is a high risk of cancer even in the range of 20- 

25kg/m2. Therefore, it has been highly advised to maintain weight in lower fields (Ancellin & 
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Bessette, 2013). A systemic pro-inflammatory environment caused by abdominal adiposity 

might initiate diabetes and cancer as internal metabolic alterations in combination with 

several environmental factors trigger various other processes in the body that are required in 

the initiation of tumor development (Khandekar et al., 2011) (Hopkins et al., 2016). If there is 

a family history of PCa there are more likely chances of having the same with increasing 

BMI. So, it has been indicated that BMI is one of the clinical factors that could predict PCa 

while biopsies (Liang et al., 2014). This is supported by a study clarifying that a higher BMI 

results in more mortality and moderate to high short duration annual changes in BMI linked 

with less mortality rate in any cancer (Figure 3.2.C) (Kour et al., 2023) (Taghizadeh et al., 

2015). 

 

3.1.1.6.2. LDL/HDL: 

 
Several types of cancers, including aggressive PCa, are known to be caused because of 

obesity. Cholesterol is a known precursor of androgens which plays a key role in PCa 

development. Cholesterol-related comorbidity called hypercholesterolemia in association with 

obesity is a promoter of both tumor proliferation and inflammation. Serum cholesterol is 

related to PSA and ends up in a high rate of PSA-based biopsies and diagnosis resulting in 

high cholesterol in men. It can be said that high total serum cholesterol or HDL (high-density 

lipoprotein) is a risk factor for having a more aggressive form of PCa (Figure 3.2.C) 

(Jamnagerwalla et al., 2018). 

 

3.1.1.7. Machine learning Algorithms: 

We have used Waikato Environment for Knowledge Analysis (Weka) for implementing the 

machine learning algorithms on training model prepared earlier. The algorithms used for the 

study included Linear regression, Multilayer perceptron, Random forest, Random tree and 

REPTree for the regression analysis (Table 3.1). 

Table 3.1: List of different regression algorithms used for regression analysis 
 

Algorithm Details 

Linear regression This algorithm is used to model a linear relationship between 

multiple independent variables and the target variable using a linear 

function. The main objective is to minimize the sum of squared 

errors between the original values and the predicted values of the 

target variable. This algorithm differs from simple linear regression 

in the way that the latter handles only one input feature while the 
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 former is capable of handling multiple input features (Kour et al., 

2023). 

Multilayer 

perceptron (MLP) 

MLP is an artificial neural network which can be used both for 

classification and regression tasks. It is used to model the non-linear 

relationships between the input features and the output/target 

variable. A typical MLP network contains an input layer, an output 

layer and a number of intermediate hidden layers. With the Weka 

tool, one can define several configurations of the network, while 

specifying the activation function, number of hidden layers, and 

number of nodes per hidden layer learning rate parameters (Kour et 

al., 2023). 

Random forest Random forest algorithm is an ensemble of decision trees each 

trained on a random set of features and random set of samples. This 

sampling procedure tends to minimize the over fitting and induces 

diversity in the ensemble. The random forest can be configured using 

WEKA in terms of number of trees, number of input features at each 

split, and tree depth parameters. It can also be used to model non- 

linear relationships between the input features and the target variable 

both for classification and regression tasks (Kour et al., 2023). 

Random tree This algorithm is used for both classification and regression tasks. It 

considers a set of decision trees each constructed using a subset of 

input features. The predictions from the individual trees are 

aggregated to generate the final predictions. As for random forest, 

WEKA provides parameters to configure the results of the algorithm 

(Kour et al., 2023). 

REPTree REPTree (Reduced Error Pruning Tree) is a decision tree algorithm 

that works by partitioning the input data by considering the feature 

that produces the best split at each node of the tree. After building 

the tree, the algorithm applies reduced error pruning to discard the 

branches that do not improve the accuracy of the tree. This process 

involves removing each subtree of the tree while evaluating the 

performance of the pruned tree on a validation set. If the 

performance of the pruned tree is same or better than the original tree 

on the validation set, the subtree is discarded (Kour et al., 2023). 
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Note: The configuration of each algorithm in WEKA was customized based on the task, 

including parameters like learning rate, number of features and tree depth. Algorithms listed 

are applicable for both classification and regression tasks where applicable. 

 
The annotated PCa, diabetes, and obesity data sets consist of three attributes: protein change, 

clinical significance (last reviewed), and semi binary value to clinical relevance (Figure 3.3). 

The first two attributes form the independent variables while the third denotes the defendant 

variable. We evaluated the following regression algorithms (with the default set of 

parameters) on each of the PCa, diabetes, and obesity datasets using a train test split of 70:30. 

Based on the RMSE values (Table 3.2) and the average, the standard deviation (PCa=0.001; 

DM=0.012; Obesity=0.0013) and then the normalized deviation value is calculated and 

plotted against each other by line graphs. 

 

Figure 3.3: Representation of Matrices we prepared by semi binary conversion of data 
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Table 3.2: List of different regression algorithms applied in Weka software applied on 

datasets of PCa, diabetes mellitus, and obesity and their Root mean square error (RMSE) 

value 

Dataset used Algorithm Root Mean Square Error (RMSE) 

PCa Linear Regression 0.5419 

Multilayer Perceptron 0.5434 

Random Forest 0.5419 

Random Tree 0.5419 

Reptree 0.5419 

Diabetes Linear Regression 0.5975 

Multilayer Perceptron 0.5977 

Random Forest 0.6022 

Random Tree 0.6022 

Reptree 0.6022 

Obesity Linear Regression 0.2982 

Multilayer Perceptron 0.2985 

Random Forest 0.2981 

Random Tree 0.2981 

Reptree 0.2981 

Note: The Root Mean Square Error (RMSE) values indicate the prediction error of each 

algorithm for different datasets (PCa, Diabetes and Obesity). Lower RMSE values represent 

better model performance. Algorithms were evaluated using WEKA with optimized settings. 

 
3.1.1.8. Correlational study: 

To categorize this, the risk variants were retrieved from ClinVar, published GWAS data (from 

the PRACTICAL Consortium and GWAS central), and our own Exome data (Kour et al., 

2023), (Saxena et al., 2021) and Diabetes Type 2 Mellitus data (Figure 3.4). A cross-check is 



57 
 

 

 

performed to identify common key players using Venn plots 

(https://bioinfogp.cnb.csic.es/tools/venny/). 

 

Figure 3.4: Flow chart for the correlational study of ClinVar variants (PCa, diabetes, and 

obesity) and published GWAS data from GWAS Central, PRACTICAL Consortium, Exome 

data, and RNA Seq data of both PCa and diabetes mellitus for identifying common variants 

 

 
3.1.1.9. Differential Analysis: GEPIA 2 (Gene Expression Profiling Interactive 

Analysis): 

GEPIA 2 facilitates the comprehensive analysis and complex data mining tasks of expression 

datasets from TCGA (The Cancer Genome Atlas) and GTEx (Genotype-Tissue Expression) 

(Lonsdale et al., 2013) (http://gepia2.cancer-pku.cn/#index) last accessed on April 12, 

2024. Box plots were analysed for studying transcription profiles of different cancers in 

humans and normal tissues using the datasets of TCGA and GTEx in the GEPIA tool. It is 

one of the important publicly available and personalized tools for the functions like 

correlation, survival, profiling, plotting, analysis, dimension reductional or differential 

expression analysis, and detection of a similar gene (Figure 3.5) (Z. Tang et al., 2017) (Kour 

et al., 2023). 

https://bioinfogp.cnb.csic.es/tools/venny/
http://gepia2.cancer-pku.cn/#index
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Figure 3.5: Interface of the GEPIA 2 tool used for expression and survival analysis. For 

expression analysis we have to first enter the key gene name, select the differential method, 

log2 fold change cutoff, q value cutoff, matching data TCGA data, and the type of prostate 

cancer dataset. For survival analysis plots, key gene name, method selection either overall or 

disease frees survival, group cutoff, hazard ratio, axis units and the type of prostate cancer 

dataset. 

 
3.1.1.10. CBioportal: 

We used Armenia et al., (2018) datasets wherein they have identified 97 significantly mutated 

genes (SMGs), 70 of which were not earlier involved in PCa and followed by several 

mutations that were seen in less than 3% of the cases and the other study used is of TCGA, 

Cell 2015 (https://www.cbioportal.org/datasets) last accessed on April 12, 2024. 

 
3.1.1.11. Survival Analysis: 

For the survival analysis we have used GEPIA2 wherein the log-rank below 0.05 (p<0.05) is 

referred to as significant. GEPIA2 uses RNA-Seq data from TCGA, and divides the patients 

into high expression groups (whose gene expression value is above the threshold) and low 

expression groups (whose gene expression value is below the threshold) and then applies 

Kaplan-Meier survival analysis to estimate survival function. Survival curves are formed with 

Kaplan-Meier (KM curve), showing the proportion of patients surviving over time for both 

high and low expression groups. Later, it is compared with the log-rank test (Mantel-Cox test) 

to find out the differences between the two groups. The test provides a P-value indicating 

whether the difference in survival of groups is statistically significant (C. Li et al., 2021). 

https://www.ncbi.nlm.nih.gov/pubmed/26544944
https://www.ncbi.nlm.nih.gov/pubmed/26544944
https://www.cbioportal.org/datasets
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3.1.2. To establish a causal relationship between PCa (PCa) and type-2-diabetes 

through WES 

 
3.1.2.1. Clinical cases 

Case 1: 

A 70-year old man was diagnosed with prostate adenocarcinoma, with a PSA level of 

55ng/mL in routine evaluations. The patient was complaining with lower back pain and 

frequent urination. 

His physical examination with DRE revealed enlargement in the prostate gland. Histological 

evaluations of the biopsy specimen revealed a Gleason score grade of 6 (3+3). The laboratory 

data showed the patient was having diabetes mellitus as comorbidity. 

Sample taken: FFPE block 

 
 

Case 2: 

An 80-year old man diagnosed with Prostate adenocarcinoma, with a PSA level of 200ng/mL 

in his routine laboratory evaluations. The patient was complaining with weakness, loss of 

appetite, back pain, and urinary incompetence. 

His physical examination with DRE and MRI revealed enlargement in both sides of the 

prostate gland. Histological evaluations of biopsy specimens revealed a Gleason grade score 

of 8 (4+4). The other laboratory test and the clinical history showed the patient was having 

diabetes mellitus as comorbidity. 

Sample taken: FFPE block 

 
 

Case 3: 

A 68-year old man diagnosed with Prostate adenocarcinoma, with a PSA level of 38ng/ml in 

his routine laboratory evaluation. The patient was complaining with body aches, increased 

frequency of micturition, fever and weakness. 

His physical examination with DRE and MRI revealed enlargement in both sides of the 

prostate gland. Histological evaluations of biopsy specimens revealed a Gleason grade score 

of 7 (3+4). The other laboratory test and the clinical history showed the patient was having 

diabetes mellitus as comorbidity. 

Sample taken: FFPE block 
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Case 4: 

A 65-year old man diagnosed with Prostate adenocarcinoma, with a PSA level of 12ng/mL in 

his routine laboratory evaluations. The patient was complaining with loss of appetite, 

abdomen pain and urinary frequency. 

His physical examination with DRE and MRI revealed enlargement in both side of the 

prostate gland. Histological evaluations of biopsy specimens revealed a Gleason grade score 

of 6 (3+3). The other laboratory test and the clinical history showed the patient was having 

diabetes mellitus as comorbidity. 

Sample taken: FFPE block 

 
 

Case 5: 

A 60-year old man diagnosed with Prostate adenocarcinoma, with a PSA level of 60ng/mL in 

his routine laboratory evaluations. The patient was complaining of burning micturition, 

cough, back pain, insomnia and fever. 

His physical examination with DRE and MRI revealed enlargement in the left side of the 

prostate gland. Histological evaluations of biopsy specimens revealed a Gleason grade score 

of 7 (3+4). The other laboratory test and the clinical history showed the patient was having 

diabetes mellitus as comorbidity. 

Sample taken: FFPE block 

 
 

The FFPE blocks of the cases were obtained from Rukmani Birla Hospital, RBH Jaipur 

(Rajasthan), India. After taking informed consent prescribed in Performa of each patient, 

clinical data were collected from the registry with the help of a medical oncologist. The 

ethical committee was approved for biomedical research which was received once in 2018 

under registration number (RBH/IEC/18/004) and next in 2021 under the registration number 

(RBH/IEC/21/008) from RBH. The inclusion criteria were; male age should be above 52 

having PCa with comorbid/immunomodulatory response/diabetes. The exclusion criteria 

were; healthy, benign prostate hyperplasia (BPH), and no detected tumors or malignant 

growth. 

 
3.1.2.2. Next Generation Sequencing (NGS)-WES 

NGS is a platform to perform sequencing of millions of small DNA fragments together in 

parallel. Later, we put together these fragments with the help of a bioinformatic approach 

which maps each read to the reference of the human genome. Every base undergoes 

sequencing a number of times to provide the higher depths, so that the unexpected variant can 
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be explored and the data is delivered with highest accuracy. Old Sanger sequencing has 

limitations of identifying only substitution and small deletions and insertions (Behjati & 

Tarpey, 2013). The basic principle of NGS is the same as Sanger validation. It works on the 

principle of chain termination with chain terminating and fluorescent labelling 

dideoxyneucleotides, separation of fragments on the basis of size and then finally 

electrophoresis (capillary gel) to analyse the fragments (T. Hu et al., 2021). 

When it comes to discovering disease related genes that are resistant to linkage analysis, WES 

has shown to be a particularly helpful diagnostic technique in the study of genetic disorders. 

The coding region of the genome is obtained using WES, through which we can locate 

possible disease causing genetic mutations in exome (Xiaolin Zhu et al., 2015) (Figure 3.6). 

 

Figure 3.6: Diagrammatic illustration of WES approach (Figure created with BioRender 

https://www.biorender.com/) 

 
3.1.2.2.1. DNA extraction, DNA quantification, and DNA QC 

The quantity of Extracted DNA from FFPE blocks (Figure 3.8) was checked with the help of 

NanoDrop 1000 (Thermo Fisher scientific, Washington, DE, USA). DNA concentrations, 

D260/OD280 and OD260/OD230 ratios of solutions were calculated by NanoDrop. PCR was 

then performed which involved the initial denaturation at 94°C for one minute, then 35 cycles 

of 98°C for ten seconds and 65°C for one minute and finally followed by extension at 72°C 

for five minutes. 

The quality of the quantified DNA was confirmed on the 1% agarose gel. In brief, 2 µls of the 

DNA is mixed with 2 µls of 6x Loading dye (Invitrogen) and subjected to electrophoresis at 

120 volts for 30 mins. 

https://www.biorender.com/
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3.1.2.2.2. Preparation of libraries for exome capture and evaluation of Molarity of 

electronic ladder and sample 

Final libraries were quantified using Qubit 4.0 fluorometer (Thermofisher #Q33238) using a 

DNA HS assay kit (Thermofisher #Q32851) following the manufacturer’s protocol. To 

identify the insert size of the library, we queried it on Tapestation 4150 (Agilent) utilizing 

high sensitivity D1000 screentape (Agilent # 5067- 5582) following manufacturers’ protocol 

(Figure 3.7). 

Tapestation Electropherogram: In order to make sure of effective sequencing outcomes, it 

is essential to evaluate the quality and quantity of the NGS library manufacturing process. For 

the purpose of offering a reproducible QC approach to analyse samples while the workflow of 

library preparation is going on, Agilent created the Genomic DNA ScreenTape (D1000 

ScreenTape used) and new D1000 ScreenTape assays. In less than two minutes per sample, 

the Agilent 4150 TapeStation device and Genomic ScreenTape automates the evaluation 

(automated electrophoresis) of initial genomic DNA with volume of sample as little as 1 µl 

and produces digital results (M. H. Liu et al., 2014). 

 
 

Figure 3.7: Workflow of library quality check using Agilent 4150 Tapestation (Figure 

created with BioRender https://www.biorender.com/) 

https://www.biorender.com/
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Table 3.3: Summary of sequenced data including total number of reads both forward and 

backward and the size of total sequenced data 

 
SAM 

PLE 

 
Raw Tot 

Reads 

Raw 

Total 

Bases 

 
Read1 

length 

 
Read 2 

length 

 
Total 

GB 

 
Trimmed 

Total Reads 

 
Trimmed 

Total Base 

Trimmed 

Read 1 

length 

Trimmed 

Read 2 

length 

 
Total 

Data 

S1 
15992 

6532 

2542831 

858 
159 159 

25.42 

832 
143541822 

2077119 

8403 
144 144 

25.4 

2832 

S2 
16241 

8144 

2582448 

4896 
159 159 

25.82 

448 

 

151617042 
2246715 

9525 
148 148 

25.8 

2448 

S3 
18263 

0124 

2903818 

9716 
159 159 

29.03 

819 

 

156136314 
2194330 

8209 
140 140 

29.0 

3819 

S4 
23292 

5348 

3703513 

0332 
159 159 

37.03 

513 

 

217367520 
3207374 

8997 
147 147 

37.0 

3513 

S5 
12986 

3620 

2064831 

5580 
159 159 

20.64 

832 

 

113252290 
1611231 

7189 
142 142 

20.6 

4832 

Note: The table shows sequencing data for samples S1 to S5, including raw and trimmed 

reads, bases counts, read lengths, and total data in gigabase (GB). “Raw” refers to the 

unprocessed data, while “Trimmed” refers to data that has been processed to remove low- 

quality sections or adapters, improving the overall quality for downstream analysis. 

 
3.1.2.2.3. Processing Sequenced data: 

All samples were sequenced using Illumina (NOVASEQ 6000), sequencing depth asked for 

6GB/sample. The read length of both forward and backward reads was 159 bp. Table 3.3 

illustrates the total number of reads (both forward and backward), the trimming size of read 

and the total size of data generated after the sequencing per sample. 

The WES pipeline is a combination of software viz, Fastqc, Bowtie2, Samtools, Bamtools, 

VarScan, Bcftools, Vcftools, and dbSNP and a reference human genome (hg38). 
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Figure 3.8: Work flow of WES benched marked pipeline. After obtaining the raw reads the 

sequenced data downstream analysis performed in 3 phases; Pre-processing, Variant discovery 

and Variant Prioritization 

 
 

Figure 3.9: Set of commands used for WES pipelines, a benchmarked pipeline using 

bowtie2, BAM tools and SAM tools, Varscan, bcftools and vcftools as cited previously 

(Misawa et al., 2017) 

 
3.1.2.2.4. Data pre-processing: 

Pre-processing of raw data initiates with sequence quality check using FastQC html files of 

both forward and reverse read. Html files contain plots (box and graphs) representing mean 

values of quality scores for read length, depth, intended coverage, yield, base per read, 

and sequences and statistical inference is made. Bowtie2 first indexed the reference genome 

and then both forward and reverse reads were then aligned to indexed reference genome. 

Alignment gave the sequence alignment map (SAM) format files (Figure 3.8) (Figure 3.9) 

(Figure 4.4). 
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a. Variant discovery: Bamtools converted the SAM files to binary mapped (BAM) format 

to save memory. We used sorting BAM to remove extra alignment or overlappings and 

samtools mpileup to get the coverage of the mapped reads on the reference genome 

across all the samples at single base pair resolution (Figure 3.8) (Figure 3.9) (Figure 

4.4). VarScan helped to call the desired variants from the pool of sequenced data that 

matched the required threshold values for base quality, allele frequency, read depth, 

and statistical significance (P-value of less than 0.005). 

 
b. Variant prioritization: We identified the germline variants (SNPs), Indels from the 

pool and remove the false positive indels and SNPs to obtain highly assured SNVs and 

indels. Later variant calling files (VCF) were created to store the data of all the SNPs 

and indels with the help of bcftools and vcftools (Figure 3.8 and 4.4). 

 
3.1.2.3. Downstream analysis of VCF files 

These files were then subjected to downstream processing which involves their annotation of 

the data through different tools and databases viz, SNPnexus, NCBI-dbSNP, Batch Entrez, 

and ClinVar (Figure 3.10). 

 

Figure 3.10: Workflow of vcf files analysis. The called variants including several SNPs, 

Indels were filtered to select only heterozygous variants, and then selected those variants 

which were having mapped read depth above or equal to 10 and with good quality of greater 

than or equal to 20%. The screened variants were queried using SNPnexus to confirm each 
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variant and for annotations we used Batch Entrez which retrieves a large number of SNP data 

in one mode. Annotated variants were mapped to NCBI and ClinVar to know the clinical 

significance and clinical conditions associated. 

 
3.1.2.3.1. SNPnexus 

Perhaps, it is the most robust tool accessible at present for evaluation of functional 

consequences of both already publicly available and novel variants using transcriptomic, 

proteomic, regulatory and the structural variant models. The annotation in SNPnexus 

(https://www.snp-nexus.org/v4/ last accessed on April 2, 2024) is made by using data from 

five more annotation platforms (RefSeq, AceView, VEGA, UCSC and Ensemble) (Chelala et 

al., 2009) (Dayem Ullah et al., 2012). Recently, the range of SNPnexus is extended to 

interpret sequenced data of cancer patients more efficiently by identifying the driver variants 

for cancer and those variations which can be targeted as biomarkers (Oscanoa et al., 2020). 

After obtaining the filtered vcf files we uploaded that vcf file format as “My Query”, entered 

username, email detail and University name. Next, we selected all for the annotations 

comprising Gene or protein consequences, effect of non-synonymous coding SNP, population 

data, regulatory elements, conversation, non-coding scoring, structural variants, pathway 

analysis and biological/clinical interpretations. Then finally we hit the submit query (Figure 

3.11). 

  

https://www.snp-nexus.org/v4/
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Figure 3.11: Three steps to run SNPnexus: First information, providing the query format 

(genomic coordinates/chromosome regions/dbSNP/vcf file) and selection of all the annotation 

categories and finally submitting the query. 

 
3.1.2.3.2. Batch Entrez 

The Entrez and Batch Entrez (https://www.ncbi.nlm.nih.gov/sites/batchentrez) programmes 

from NCBI are the two major ways to retrieve this data quickly (Crow et al., 2001). It is a 

data retrieval system of NCBI (Bhagwat, 2010) (Figure 3.12). 

 

Figure 3.12: Image showing the interface of Batch Entrez on which we selected database on 

SNP to provide the data type and uploaded .text file for analysis. 

 
3.1.3. Sanger Sequencing for Validation of WES results: 

 
Sanger sequencing or dideoxy terminator sequencing is a gold standard approach for 

validating results of next generation sequencing. First the genes are selected for validation 

https://www.ncbi.nlm.nih.gov/sites/batchentrez
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and then an equal set of primers were designed and synthesized for both PCR and Sanger 

sequencing. Flanking regions were taken from dbSNP database (Beck et al., 2016). 

Amplicons for PCR were then formed, purified, and sequenced for validation (De Cario et al., 

2020) (Figure 3.13). 

 

Steps for Sanger sequencing includes primer annealing, DNA amplification by 

deoxynucleotides (dNTPs), chain termination, generation of amplicons by cDNA 

amplification and its quantification by using Qubit® 4.0 Fluorometer (Table 3.4) and using 

master mix (Table 3.5) (De Cario et al., 2020) (Crossley et al., 2020). The PCR cycling 

conditions are summarized in Table 3.6. The details of primer sequence used and their 

lengths are given in Table 3.7. Later the sequencing template identification, isolation, 

purification amplicons by removing all the free dNTPs, unbound primers, salt, polymerase 

enzyme, or any other impurities and quantification of amplicons were done and the capillary 

gel electrophoresis suggests the homogeneity of the product. Next, the amplicon visualization 

using gel electrophoresis, quantification assessment by spectrophotometry and ultraviolet 

fluorescence tagging was done. Finally, sequencing analysis was received in the format of the 

chromatogram generated as either “.fa” and or “.ab1”. Primers are removed once the 

chromatogram was assessed by the software leaving behind a target sequence of high quality 

(Crossley et al., 2020). 

 

Figure 3.13: Steps involved in Sanger sequencing using capillary gel electrophoresis 

(https://www.sigmaaldrich.com/IN/en/technical- 

documents/protocol/genomics/sequencing/sanger-sequencing) 

https://www.sigmaaldrich.com/IN/en/technical-documents/protocol/genomics/sequencing/sanger-sequencing
https://www.sigmaaldrich.com/IN/en/technical-documents/protocol/genomics/sequencing/sanger-sequencing
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Table 3.4: Quantification by Qubit® 4.0 Fluorometer 

 
S. No. FFPE Block No. DNA Con. (ng/µl) Volume (µl) Yield (ng) 

1 H20/6591 41.6 50 2080 

2 H20/8329 5.3 50 265 

3 H20/8030 7.82 50 391 

4 H20/7111 4.56 50 228 

5 H20/7255 15.5 50 755 

Note: This table presents the DNA concentration (ng/µl), and yield (ng) for various FFPE 

(formalin-fixed, paraffin-embedded) block samples. The yield is calculated based on the DNA 

concentration and volume, indicating the total amount of DNA extracted from each block. 

Table 3.5: Master Mix for Amplification 
 

S. No. Reagent Volume in µl 

1 Premix Master mix 12.5 

2 Betaine 1.0 

3 FP Primer (10 pmol/ µl) 1.0 

4 RP Primer (10 pmol/ µl) 1.0 

5 DNA Sample (10-20ng) Variable 

6 DH2O Variable 

Final Volume 25 

Note: This table outlines the components and corresponding volumes of reagents used in the 

PCR (polymerase chain reaction) setup. The final volume is adjusted to 25µl, with the DNA 

sample and DH2O volumes varying based on the specific requirements 

 
Table 3.6: PCR cycling conditions 

 

No. of 

Cycles 

Name of 

Step 

Temperature 

(°C) 
Time 

(mm:ss) 

1 Initial 

Denaturation 

95 05:00 

 

 

35 

Denaturation 95 00:30 

Annealing 60 00:45 

Extension 72 01:00 
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1 Final 

Extension 

72 05:00 

1 Hold 4 𝖺 

Note: This table summarizes the thermal cycling conditions for the PCR process, detailing the 

number of cycles, step names, temperatures, and durations. The initial denaturation occurs at 

95ºC for 5 minutes, followed by 35 cycles of denaturation, annealing, and extension steps. 

The final extension is performed at 72ºC for 5 minutes, and the reaction is held at 4ºC 

Table 3.7 Primer details designed for the Sanger validation 

 

S. 

No 

Gene 

Name 

SNP  
Primer 

 
Primer sequence 

Primer 

Length 

(bp) 

Mutation 

(Hotspot 

region) 

Product 

size 

1 MYRF rs370887875 
Forward TGGGTGGAGAT 

TCAGAGGCG 

20 
c.3207C>T 193bp 

Reverse GTGGGTGTGGA 

GACTCTGTG 

20 

2 MYO15A rs375290498 
Forward TTGCTTGAGTGT 

GGCCGCCTTG 

22 
c.5925G>A 250bp 

Reverse TAGAGGGACAG 

TGCATGGGAC 

21 

3 ITGB4 rs199620842 
Forward AGCGGTCAGTG 

TAGACATGCC 

21 
c.4559- 

4C>G 

204bp 

Reverse TCCTGCCAGCT 

CACTCTGAG 

20 

4 ATM rs587779865 
Forward AATTAGCCCTG 

CGTGCACTG 

20 
c.7456C>T 200bp 

Reverse GGGTAGAATAT 

TGGGCTGAG 

20 

5 GJB2 rs111033186 
Forward TTTAAGGACAT 

CGAGGAGATC 

21 
c.457G>A 202bp 

Reverse CAAAGCAGTCC 

ACAGTGTTG 

20 

6 HNF1A rs1169305 
Forward TCTTCACCTCAG 

ACACTGAGG 

21 
c.1720A>G 228bp 

Reverse GTGACGGACAG 20 
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    CAACAGAAG    

7 MPO rs35897051 
Forward GGCTTTGTTATA 

TCCTGGGAG 

21 
c.2031- 

2A>C 

193bp 

Reverse TGATGCCTGT 

GTTGTCGCAG 

20 

Note: This table lists the details of specific genes and their associated single nucleotide 

polymorphisms (SNPs), including primer sequences, primer lengths, and mutations in hotspot 

regions, and product sizes for PCR amplification. Each entry provides information on the 

forward and reverse primers used for amplification, essential for studying genetic variants. 

 
3.1.4. Study of Mutational Hotspots of PTEN: 

By using SNPnexus we identified first all the single nucleotide variants (SNVs). Those 

variants were then annotated using ANNOVAR (https://annovar.openbioinformatics.org), 

gnomAD v21.1, 1000 Genomes Project, dbNSFP 

(https://sites.google.com/site/jpopgen/dbNSFP, and Exome Aggregation Consortium (ExAC). 

0.1% Minor allele frequency (MAF). Then we used CADD scoring to score the variants to 

find the deleterious and potential pathogenic variants. This scoring is based on quantitative 

prioritizing of the variant data as per function, deleterious effect and disease caused. It uses 

the PHRED score, for instance, a score of    ≥10 indicates 10% of the deleterious variants in 

the genome and a score of ≥20 indicates the top 1% of deleterious variants (Rentzsch et al., 

2019). For evolutionary conservation screening we used Genomic Evolutionary Rate Profiling 

(GREP) and Phastcons. This indicated the functional importance and helped in predicting 

whether the variant is deleterious or not (Skopelitou et al., 2021). Then we performed the 

functional screening by SIFT (analysed the substitution mutation impact), PolyPhen (showed 

the impact of Amino acid change either loss of function or gain of function), ClinVar, and 

Mutation Taster scoring (Sim et al., 2012) (Flanagan et al., 2010). At last we screened 

deleterious variants and validated them using the ClinVar and Ensemble database (Skopelitou 

et al., 2021) (Figure 3.14). 

https://annovar.openbioinformatics.org/en/latest/
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Figure 3.14: Overview of cancer variant prioritization based on coding variants, 

conservational screening, and functional prediction. 

 
3.1.5. Categorizing the variants or candidate genes for PCa in Urolithiasis as Co- 

morbidity 

We have systematically reviewed and searched for published literature using PubMed using 

the keywords, viz. “Urolithiasis” and “PCa” in NCBI. A gene list is then prepared from the 

published National Centre of Biotechnology Information (NCBI) dataset, comprising all the 

genes related to Urolithiasis primarily with mutations (both pathogenic and likely pathogenic 

Single nucleotide polymorphisms, SNP’s) for every particular gene screened from the 

published datasets. To see the interactions among all the potential genetic factors, 

GeneMANIA and String databases were used and an interaction map was prepared. After 

which, determination of the cellular and subcellular location of all the potential genes was 

done by using target p2.0 and UniProt databases respectively. For the characterization of 

mutations representing the associations of urolithiasis and PCa, a correlational study is 

applied. For this purpose, we have used gnomAD (https://gnomad.broadinstitute.org/ last 

accessed on April 2, 2024) for verifying all the SNPs whether they are synonymous or 

nonsynonymous mutations (Figure 3.15) (X. Sun et al., 2021). 

https://gnomad.broadinstitute.org/
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Figure 3.15: A flowchart for the steps of gnomAD to identify the variant types and their 

rarity of Urolithiasis related genes. We mapped RefSeq proteins (19) of urolithiasis to the 

SNP database which resulted in the identification of 50896 different SNPs, which were 

subjected to ClinVar/dbVar. Later from the given categorized list (pathogenic, likely 

pathogenic, conflicting predictions, uncertain significant, benign and likely benign) we 

filtered out those genes which are pathogenic (61) and are having uncertain significance 

(100). These SNPs can be verified on the basis of type of variation (missense or nonsense) or 

can also be analysed for their associations with other diseases (Figure created through 

BioRender https://www.biorender.com/). 

3.2. To identify and explore the role of lncRNAs as potential targets using lncRNA- 

protein interactions 

 
3.2.1. PCa Causal Proteins, LncRNAs and Androgen Receptors (AR): 

 
FASTA files of all the 28 prostate specific proteins as follows: ADA, ANG, BRCA1 , CTNS, 

HBB, GNPTAB, COL6A1, OTOF , TP53, CYP11B2, CYP1B1 , GJB6, RHAG, DNAAF1, 

BRCA2, NF1 MCM8, MCCC1, CAPN3, MYO15A, MRE11, KRIT1, HEXB, SCN9A, PRLR, 

OPA1, ATP6V0A2 and USH2A (Table 3.6) were taken from NCBI (Khilwani et al., n.d.), 

(Unpublished Data). 

https://www.biorender.com/
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The clinical samples data was screened to identify pathogenic related lncRNAs in which 11 

lncRNAs were identified (Shukla et al., 2023). The sequence data of 11 lncRNAs 

(SCARNA10, LINC01973, LINC00940, NPBWR1, FLJ16779, ANKRD20A9P, LINC00298, 

SNHG19, LOC341056, TLX1NB, LINC00662:60) were extracted from NONCODE 

(http://www.noncode.org/ last accessed on April 2, 2024), LNCipedia (https://lncipedia.org/) 

and RNAcentral (https://rnacentral.org/ last accessed on April 2, 2024) to get their HSAT 

id’s and their FASTA files. Here, proteins were taken as receptors and LncRNAs as ligands.  

These fasta files were then given as input to the HDOCK server (Khilwani et al., n.d.), 

(Unpublished Data). 

 

We had selected PCa associated 8 ARs (2Q71, 5V8Q, 4QL8, 2PNU, 5CJ6, 2AM9, 1E3G, 

7KW7) and we gave their PDB id and chain IDs as input (Table 3.8). Both PDB and chain ID 

were taken from RSCB PDB protein data bank (https://www.rcsb.org/ last accessed on April 

2, 2024). All the ARs were then considered as receptors and lncRNAs as ligands (Khilwani et 

al., n.d.), (Unpublished Data). 

 

Table 3.8: List of PCa Proteins, Androgen Receptors and PDB Ids used in the molecular 

docking study 

 

PCa Proteins 

PROTEIN PDB ID REFERENCES 

ADA 3IAR (Khilwani et al., n.d.) (Unpublished Data). 

ANG 4AOH (Khilwani et al., n.d.) (Unpublished Data). 

BRCA1 6GVW (Khilwani et al., n.d.) (Unpublished Data). 

CTNS 7ZKW (Khilwani et al., n.d.) (Unpublished Data). 

HBB 6LCX (Khilwani et al., n.d.) (Unpublished Data). 

GNPTAB 2N6D (Khilwani et al., n.d.) (Unpublished Data). 

COL6A1 1KNT (Khilwani et al., n.d.) (Unpublished Data). 

OTOF 3L9B (Khilwani et al., n.d.) (Unpublished Data). 

TP53 6VTC (Khilwani et al., n.d.) (Unpublished Data). 

CYP11B2 7M8I (Khilwani et al., n.d.) (Unpublished Data). 

CYP1B1 6OYV (Khilwani et al., n.d.) (Unpublished Data). 

GJB6 5ER7 (Khilwani et al., n.d.) (Unpublished Data). 

RHAG 8CSX (Khilwani et al., n.d.) (Unpublished Data). 

BRCA2 1MIU (Khilwani et al., n.d.) (Unpublished Data). 

http://www.noncode.org/
https://rnacentral.org/
https://www.rcsb.org/
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NF1 1NF1 (Khilwani et al., n.d.) (Unpublished Data). 

MCM8 6L0O (Khilwani et al., n.d.) (Unpublished Data). 

MCCC1 2EJM (Khilwani et al., n.d.) (Unpublished Data). 

CAPN3 6BGP (Khilwani et al., n.d.) (Unpublished Data). 

MYO15A 7UDU (Khilwani et al., n.d.) (Unpublished Data). 

MRE11 3T1I (Khilwani et al., n.d.) (Unpublished Data). 

KRIT1 5D68 (Khilwani et al., n.d.) (Unpublished Data). 

HEXB 3LMY (Khilwani et al., n.d.) (Unpublished Data). 

SCN9A 7W9M (Khilwani et al., n.d.) (Unpublished Data). 

PRLR 3NPZ (Khilwani et al., n.d.) (Unpublished Data). 

OPA1 6JTG (Khilwani et al., n.d.) (Unpublished Data). 

ATP6V0A2 3RRK (Khilwani et al., n.d.) (Unpublished Data). 

Androgen Receptors 

Uroporphyrinogen Decarboxylase (URO-D) 2Q71 (Khilwani et al., n.d.) 

(Unpublished Data). 

Androgen Receptor (AR) 4QL8 (Khilwani et al., n.d.) 

(Unpublished Data). 

Selective Androgen Receptor Modulator 

(SARM) 

5V8Q (Khilwani et al., n.d.) 

(Unpublished Data). 

Androgen receptor (AR) 2AM9 (Khilwani et al., n.d.) 

(Unpublished Data). 

Androgen receptor (AR) 2PNU (Khilwani et al., n.d.) 

(Unpublished Data). 

Selective Androgen Receptor Modulator 

(SARM) 

5CJ6 (Khilwani et al., n.d.) 

(Unpublished Data). 

Androgen receptor (AR) 1E3G (Khilwani et al., n.d.) 

(Unpublished Data). 

Note: This table lists various proteins and androgen receptors (AR) associated with prostate 

cancer (PCa) along with their corresponding PDB (Protein Data Bank) Ida nd references 

used in molecular docking studies. 



76 
 

 

 

3.2.2. Molecular Docking studies: 

 
Docking analysis was performed using HDOCK (http://hdock.phys.hust.edu.cn/), a docking 

tool. Numerous biological activities, including signal transmission, cell control, protein 

synthesis, DNA replication and repair, RNA transcription, etc., depend on interactions 

between nucleic acids and proteins. Thus, understanding their intricate structure will help 

researchers design treatment strategies or medications that specifically target these 

interactions. Because experimental approaches are expensive and technically challenging, 

molecular docking has become crucial in the identification of complex structures (Khilwani et 

al., n.d.), (Unpublished Data). 

 

For protein-protein docking, the HDOCK server (http://hdock.phys.hust.edu.cn/ last accessed 

on April 12, 2024) combines homology search, template-based modeling, structure 

prediction, macromolecular docking, biological information incorporation, and task 

administration (Figure 3.16). The server automatically predicts the interaction between 

receptor and ligand molecules using input data for both molecules (amino acid sequences or 

Protein Data Bank structures). This was done using a hybrid method of template-based and 

template-free docking (Khilwani et al., n.d.), (Unpublished Data). 

 

3.2.3. Work flow of molecular docking 

3.2.3.1. Input: 

Both protein sequences and structures were accepted as input data in the workflow's initial 

step. The HDOCK server was built to take inputs for both protein sequences and structures, 

which makes it easier for both inexperienced and regular users to operate. The server takes 

two types of inputs for structures and two types of inputs for sequences for every molecule, 

given: (1) A PDB-formatted pdb file, (ii) pdb file with chainID in PDB (e.g. 1CGI:E), (iii) 

Copy the protein sequence and paste it in the FASTA format, (iv) Uploading a FASTA- 

formatted protein sequence file. Each molecule just requires one kind of input   and 

with automated modeling of DNA/RNA structures from sequences currently difficult; the 

service only accepts structure inputs for DNAs and RNAs at this (Khilwani et al., n.d.), 

(Unpublished Data). 

http://hdock.phys.hust.edu.cn/
http://hdock.phys.hust.edu.cn/
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Figure 3.16: Showing interface of HDOCK server and the uploaded FASTA format 

sequence of the both Receptor (PCa protein) and ligand (LncRNA). 

 
3.2.3.2. Sequencing similarity: 

The workflow's second phase is the search for similarity in sequence. To determine the 

homologous sequences for receptor and ligand molecules, this similarity match was carried 

out against the PDB sequence database using the sequences from input or converted from 

structures. The HHSuite software was used for protein sequence searches since it is widely 

known because of its effectiveness in locating distant homologs. Since FASTA (version 3.6) 

is a powerful and user-friendly tool for both protein and DNA/RNA sequence search, it is 

utilized for DNA/RNA and thus two sets of homologous templates are produced as a result of 

this process (Khilwani et al., n.d.), (Unpublished Data). 

3.2.3.3. Template selection: 

After that, the process moves on to the third stage, this involves comparing two set of 

templates to check if they share any entries with similar PDB codes. A similar template will 

be chosen both for the receptor and the ligand if there are any such PDB codes. The best 

templates for the receptor protein and/or ligand protein will be chosen from two sets of 

homologous templates, respectively, assuming that there is no link between the two sets. 
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When there are many templates present, then the one with maximum sequence coverage, 

sequence similarity, and resolution is chosen. Models are constructed using 

MODELLER with the chosen templates, and ClustalW was used for sequence alignment 

(Khilwani et al., n.d.), (Unpublished Data). 

3.2.3.4. Result: 

HDOCK server adds docking tasks to the queue on providing input three task status 

including "QUEUED," "RUNNING," and "RESULTS," are yielded and finally the docking 

results may be found at http://hdock.phys.hust.edu.cn/date/jobid, where "jobid" is the specific 

job id displayed on the web page of status (Khilwani et al., n.d.), (Unpublished Data). 

3.2.3.5. Output: 

 
The docking output consists of three fundamental files: Receptor PDB file created by the 

server using the users' FASTA sequence or supplied by users, Ligand PDB file created by the 

server using the user-provided FASTA sequence or supplied by users and ligand binding 

modes reflected by their transformations in the HDOCK output. Additionally, the result page 

displays a docking summary of the top 10 models at the bottom and the template information 

for the receptor and ligand at the top. Based on the highest ligand receptor binding energy 

interacting model of each interaction was selected. Those models were then subjected for 

visualization (Figure 3.17) (Khilwani et al., n.d.), (Unpublished Data). 

 

Figure 3.17: Systematic work flow of the 11 lncRNAs and the 36 targeted PCa and AR 

Protein. 

http://hdock.phys.hust.edu.cn/date/jobid
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3.2.3.6. Visualization: 

 
The docked scores of lncRNA with proteins generated 180 complexes with 10 best poses for 

each lncRNA-protein resulting in 1800 models. Screening of the models was carried by least- 

bind energy complexes; 12 models of the complexes were considered to be identified of 

which, 5 complexes with PCa and 7 complexes with AR. The lowest energy known to have 

more stability was considered for 3D visualization with Pymol software. The parameters were 

assigned to ligand site hydrogen bonds with below 3Å. Bond distances were identified that 

indicate the high intensity and the possible orientation of the proteins resulting in the stable 

complex formation (Khilwani et al., n.d.), (Unpublished Data). 

 

3.2.3.7. Coding potential: 

 
To check if there is any coding potential attributing to the interfacial residues, we performed 

checks using intrinsic feature estimation by employing CPC2 (Kang et al., 2017). The tool 

works on the premise that the open reading frame (ORF) length coverage is estimated along 

with Fickett and hexamer scores which serve as a prudent classifier for estimating non coding 

RNAs (ncRNAs). The Fickett score is based on frequencies of A, T, G, Cs learning upon the 

intrinsic divergence between ncRNAs (Khilwani et al., n.d.), (Unpublished Data). 

 

3.2.4. Correlation of T2DM associated lncRNAs with PCa related lncRNAs 

identified through RNA-seq study: 

We have also used a publically available database generated for type-2-diabetes associated 

lncRNAs to correlate with the PCa linked lncRNAs identified in our RNA-seq analysis. 

T2DB database was developed by using three GEO datasets of RNA-seq studies with 

accession number GSE164416, GSE75988, and GSE115601 in order to discover and annotate 

genes of T2D related lncRNAs (http://rebeccadistefano.shinyapps.io/T2DM/; last accessed on 

17 May 2024). Both the GSE164416 and GSE75988 datasets belongs to expression profiles 

of lncRNAs identified in T2D and Impaired Glucose Tolerance (IGT) while GSE115601 

dataset contain expression data of Diabetic Gastroparesis (Distefano et al., 2023). Therefore, 

we considered only GSE164416 and GSE75988 datasets and compared them with our RNA- 

seq study. 

http://rebeccadistefano.shinyapps.io/T2DM/
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3.3. To perform protein-protein interaction (PPI) network analyses and identify 

pathways associated with T2D and PCa in silico method 

 
3.3.1. Interactome network: 

For visualizing the interaction network of the commonalities to find associations through their 

interacting partners, GeneMania is used wherein different types of gene-gene interactions by 

providing a seed list of our interest and which is then extended to incorporate other genes as 

interacting partners which are predicted to share the same function based on their overlapping 

connections in biological pathways (Kour et al., 2023). 

 

3.3.2. Phenolyzer: 

In order to prioritize genes related to human diseases or phenotypic data that a user provides 

in the text form as input, a computational tool was introduced called Phenolyzer 

(https://phenolyzer.wglab.org/ last accessed on April 12, 2024). It can relate input phenotype 

to other linked phenotypes, predict the genes which were earlier unknown for their 

association to any particular disease, integrate large information on previously known genes 

of a disease, number of factors to help in scoring and prioritizing every potential genes and 

visualize networks for investigating links between genes and genotype-phenotype 

relationships (H. Yang et al., 2015). 

 
3.3.3. Gene/Pathway enrichment: 

(PEA) Pathway enrichment analysis is based completely on computational biology and a 

common approach to discover gene functions and disease causing pathways (Chicco & 

Agapito, 2022) (H. Liu et al., 2022). It determines the biological functions which are over- 

represented in a gene list and functions are ranked by significance (Chicco & Agapito, 2022). 

It can also help to get molecular insights of gene sets produced by genomic studies (Reimand 

et al., 2019) (Ulgen et al., 2018). By using this strategy, it is possible to find the pathways of 

all biological processes which are more prevalent in a given gene set than would be predicted 

by chance. Enrichment study is basically performed in 3 steps: selection of genes from the 

genomics studies data, identification of statistically significant pathways and then result 

visualization and their interpretations. There are several free tools or software available for 

pathway enrichment: reactome, g:Profiler, Cytoscape, Gene Set Enrichment Analysis 

(GSEA), KEGG pathway, DAVID, gene ontology (GO) and reactome (Reimand et al., 2019) 

(Mubeen et al., 2022) (Hong et al., 2014). It is suggested to always use more than one PEA 

tool because there is a chance of relegation of results with databases related to specific PEA 

https://phenolyzer.wglab.org/
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software. Therefore, using more than one can probably give more information of associated 

pathways, some pathways can be confirmed, some can be complementary and some could be 

conflicting (Chicco & Agapito, 2022). 

Steps: 

a. Defining a gene list: 

The raw data generated from large scale genomic studies are then normalized and scored with 

a sequence process of computational tools which leaves us with identification of the gene list 

of our interest (Reimand et al., 2019). 

b. Enrichment studies: 

After finding the pathways with help of any pathway database, they are filtered by the P value 

<0.05 and fold change value >2 (Reimand et al., 2019). 

c. Pathway visualization and result interpretations: 

Visualization is like the main pillar in bioinformatics; it not only represents the data but can 

also deliver us with new or alternative data (Chicco & Agapito, 2022). A gene of interest is 

possibly involved in more than one pathway and the available databases maintain the 

hierarchy of pathways by including both specific and non-specific pathways of shared genes. 

Interpretation is made easier by condensing multiple biological processes into a single matter 

of concern. To combat redundancy like this visualization is done by Enrichment map using 

Cytoscape (Reimand et al., 2019). 

 

Figure 3.18: Work flow for Gene Enrichment Analysis using Kegg Mapper and Kegg 

Pathway database, Reactome, Panther-Db and Cytoscape software. 
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3.3.4. Reactome 

Reactome is a database containing details of life processes like molecular signaling 

transmission, replication, transport, metabolism and several other cellular level processes 

(https://reactome.org/) last accessed on April 12, 2024. All these processes are arranged in a 

network of molecular changes in a single model database (Fabregat et al., 2018). Reactome 

serves as a resource of biological mechanisms as well as a method for identifying 

unanticipated functional links, for instance, expression level or registries of somatic mutations 

in tumors (Fabregat et al., 2018). It includes both acquired and inherited disease data. 

Recently the improved version also incorporated the drugs that could target the disease related 

signaling pathways (Gillespie et al., 2022). PhD scientists or peer reviewers before curating 

the reactome annotations manually (Rothfels et al., 2023). 

We retrieved the Uniprot IDs from the NCBI Uniprot database and put the list of all the IDs 

as input into the Analysis tool portal of the Reactome database. We obtained 780 pathways 

involved with our input. Then we filtered all pathways on the basis of the p value and FDR 

value and the final list narrowed down to the top 6 significant pathways (Figure 3.18). 

 
3.3.5. KEGG pathway 

All living organisms have protein-protein interactions (PPI), which are one of the most crucial 

and common biological processes. These interactions (protein-protein) result in several 

regulatory and biological processes. PPIs are generally categorised into five groups based on 

various biological implications like; signal transmission, transfer of electrons, contraction of 

muscles and cell metabolism (Y. H. Zhang et al., 2021). The Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway is known as a diagram which schematically wires molecules 

of biological systems to describe the cell functions resulting from the molecular interaction in 

a network and could be used as guide for the functional reconstruction. Additionally, KEGG 

includes binary equations that depict molecular relationships and interactions. The KEGG 

pathway can also be used to compute and make comparisons of the pathways. The KEGG 

pathway separately displays metabolic pathways and regulatory pathways 

(https://www.genome.jp/kegg/pathway.html) last accessed on April 12, 2024 (Ogata et al., 

1998). 

First we took all the Uniprot ID of our gene set and uploaded in the KEGG Mapper portal to 

obtain the KEGG Ids and then we feed those Ids into KEGG pathway database and selected 

the Homo sapiens as organism to map all KEGG Ids and then we obtained the different 

pathways with their accession codes. We enlisted all the pathways in which our gene set was 

involved (Figure 3.18). 

https://reactome.org/
http://www.genome.jp/kegg/pathway.html)
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3.3.6. Panther database: 

PANTHER is a curated database of pathways (https://pantherdb.org/) (Mi et al., 2009). It 

stands for Protein Analysis through Evolutionary Relationships and is a broadly used publicly 

available database to classify proteins comprehensively in terms of evolutionary history and 

their functional roles (Ontology). It offers tools for processing biological data at a large scale. 

It uses UniProt reference proteomes data set which is organized in homologous gene families. 

Every family has a phylogenetic tree to depict the evolutionary relation among the genes of a 

family by accessing all the processes of divergence of gene or protein (speciation, gene 

duplication, horizontal and vertical transfer) of an organism (Mi et al., 2016). PANTHER GO-

slim is the upgraded PANTHER to provide 4 times more gene ontology (GO) for functional 

classification (Mi et al., 2019). 

We have uploaded the list of genes on PANTHER homepage, hit the run and retrieved the 

functional classification (biological and molecular) and its visualization as pie chart or bar 

chart or enrichment analysis (Figure 3.18). 

 
3.3.7. Cytoscape: 

Cytoscape is free software for integrating molecular interaction networks, enabling network 

querying, visualization, and integration with phenotypes and biomolecule data. It connects to 

functional annotation databases, utilizing annotations for static data like protein function 

ontology and attributes for dynamic molecular interactions. Plug-ins extends its functionality. 

In Cytoscape’s network graphs, molecules are nodes and intermolecular relations are edges. 

The visualization of nodes and edges as a 2D network is one of the most essential tools to 

understand molecular interactions (Shannon et al., 2003). Filtering is also supported by 

Cytoscape by a tool called “Boolean Meta-Filter” which helps in pathway analysis to select 

the nodes which show large differences (Kohl et al., 2011). 

CytoHubba plugin in Cytoscape was integrated that ranked network nodes by features, 

enabled topological analysis and subnetworks retrieval. Nodes’ topological attributes are 

computed and saved. Clustering coefficient and node color were determined based on degree 

(Assenov et al., 2008). PPI networks from STRING databases were visualized, and 

subnetworks formed. Network Analyzer Plugin calculated topological parameter like 

connectivity, node number, connecting edges, clustering coefficient, average clustering 

coefficient, centralization, connectivity degree, etc. (Gollapalli et al., 2021) (Figure 3.18). 
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CHAPTER 4: RESULTS  

 
 

4.1. To screen variants in PCa and diabetes using integrated systems genomic 

approaches 

 
4.1.1. Results of Meta-analysis Study 

Comparison of vivid datasets yield candidate genes common to Diabetes and PCa: 

By comparing variants of all the individual comorbidities with PCa, we identified several 

common genes and variants along with some common protein change (Kour et al., 2023). 

 
4.1.1.1.  Comparison of ClinVar unveiled BLM as a key player in Diabetes, PCa and 

Obesity: 

It showed 27 common genes between PCa and diabetes, 8 common genes between PCa 

and obesity, 69 common genes between diabetes and obesity, and 4 among all the three 

diseases. DNAJC6, SDHA, WRN, RET, MRE11, NF1, GNRHR, HSPB1, ACAT1, SHH, 

BIN1, STAT3, ZIC2, FBP1, PARK7, RGS2, SYNE2, ALDH6A1, BBOF1, HNF1B, AKT1, 

CACNA1H, KDM6B, KDM3B, HP, TXNL4B, BMP4, IRS1, and NCL are common in PCa 

and diabetes. BRCA2, FANCI, BAP1, AR, and PMS2 are common in PCa and obesity. 

AHDC1, TOP3A, LEP, BBS12, FOXP3, BBS7, GATA6, GCK, POLG, GHRL, BBS1, 

SCN1A, BTK, CYP19A1, ASTN2, PDE4D, SHANK3, WDPCP, RPL36A-HNRNPH2, 

MKKS, IFT74, MC4R, BBS9, SLC12A3, GHRLOS, DMXL2, PAX6, TTC8, BBS4, NUDC, 

CEP19, NR0B2, IL1RN, BBS5, GLI2, TGIF1, LPL, MIR4713HG, ALMS1, UCP3, APC, 

ARL6, DARS2, LZTR1, SDCCAG8, PHKG2, MECP2, PROK2, NPHP1, SMARCB1, 

ATP7A, BBS10, ZDHHC24, APOA5, MPO, AVPR2, LOC106694316, DYRK1B, TMEM67, 

BBS2, CLCN5, GJB2, CORIN, ABCD1, ABCB4, TRIM32, MAGEL2, INSR, FOXP1, 

DDX3X, and APPL1 are common in diabetes and obesity with variants. BLM, TMEM67, 

RFX6, NR0B2, and NUDC were found common among PCa, diabetes mellitus, and obesity 

(Figure 4.1) (Kour et al., 2023). 
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Figure 4.1: Venn plot for identifying commonalities between Clinvar datasets of PCa, 

diabetes, and obesity. A total of 27 common genes between PCa and diabetes, 8 common 

genes between PCa and obesity, 69 common genes between diabetes and obesity, and 4 

among all the three diseases. 

 
4.1.1.2. Overlapping variants in PCa ClinVar and GWAS central: 

GWAS comparison yielded rs721048 (EHBP1) and rs138213197 (HOXB13), which were 

found to be in ClinVar of PCa and GWAS central. In addition, 5 variants of BRCA2 from 

exome data and PCa ClinVar data are seen as common, i.e. rs145988146, rs80358600, 

rs276174854, rs276174889, rs771203198, and 1 variant of BRCA1 (rs28897696) GWAS 

Central common to both of them (Figure 4.2) (Kour et al., 2023). 

 
 

4.1.1.3. More variant alliances between PRACTICAL Consortium GWAS Central 

and Clinvar of PCa: 

Whereas PRACTICAL consortium comparison yielded rs721048 (EHBP1) and rs138213197 

(HOXB13) were found earlier common to ClinVar PCa and GWAS Central, 17 other variants 

are also found common in the PRACTICAL consortium and ClinVar. Among them, 8 belongs 

to BRCA1 (rs147297981, rs181430678, rs147509580, rs182524124, rs148500539, 

rs147856441, rs148068102, rs149141411, 2 of FANCM (rs147021911 and 

rs144567652), and 1 of each MAD1L1 (rs121908982), MSH6 (rs1800937), PALB2 

(rs45494092), PNKP (rs201872477), XPC (rs182616621), POLD1 (rs149366027), and 

EXOC8 (rs148264842) (Figure 4.2.B). No commonality is observed between exome data and 

obesity (Figure 4.2.A). One common variant rs61816761 associated with the FLAG gene is 

found common to obesity and diabetes (Figure 4.2.C and D) (Kour et al., 2023). 
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Figure 4.2: A, B: Venn Plot to identify common variants among ClinVar PCa, diabetes, 

GWAS central, PRACTICAL consortium for PCa, and PCa exome data. No commonality is 

observed between exome data and obesity. PRACTICAL consortium comparison yielded 

rs721048 (EHBP1) and rs138213197 (HOXB13) were found earlier common to ClinVar PCa 

and GWAS Central, 17 other variants are also found common in the PRACTICAL 

consortium and ClinVar; C, D: Venn Plot to identify common variants among ClinVar PCa, 

Diabetes, Obesity, GWAS central, PRACTICAL consortium for PCa and PCa exome data. 

One common variant rs61816761 associated with the FLAG gene is found common to obesity 

and diabetes. 

Figure 4.3: A: Venn plot showing no commonality between exome data and obesity ClinVar 

data; B: Venn plot for GWAS central data of Diabetes and PCa, PRACTICAL Consortium, 
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and ClinVar PCa; C: Venn plot showing some commonalities between RNAseq results of 

three PCa samples and ClinVar data of Diabetes 

No commonality was seen between ClinVar Obesity and exome data (Figure 4.3.A), 2 

commonalities were seen among ClinVar PCa data, GWAS data of PCa and PRACTICAL 

Consortium, 216 common variants between GWAS Central PCa and PRACTICAL 

Consortium and only 4 variants common among both the GWAS Central of PCa and Diabetes 

with PRACTICAL Consortium data (Figure 4.3B). In Figure 4.3.C, we observed 14 

commonalities in RNA Seq and ClinVar Diabetes (Kour et al., 2023). 

 
4.1.1.4. Comparison of RNA-Seq data revealed PP1MB and SFTPC as common: 

On comparing RNA-seq data of both PCa and DT2M with all the datasets PP1MB and 

SFTPC were common in both types of RNA seq and PCa ClinVar data. 

We used Gene cards to study the pathways involved with the identified genes (Table 4.1 and 

Table 4.2) (Kour et al., 2023). 

 
4.1.1.5. Regression algorithms on PCa, diabetes and obesity data sets suggest 

potential improvements for predictive models: 

 

Figure 4.4: Linear plots for RMSE standard deviations of PCa, DM and Obesity 

 
 

The annotated PCa, diabetes, and obesity data sets consist of three attributes: protein change,  

clinical significance (last reviewed), and semi binary value to clinical relevance. The first two 

attributes form the independent variables while the third denotes the dependent variable. We 

evaluated the following regression algorithms (with the default set of parameters) on each of 

the PCa, diabetes, and obesity datasets using a train test split of 70:30. Based on the RMSE 

values and the average, the standard deviation (PCa=0.001; DM=0.012; Obesity=0.0013) and 

then the normalized deviation value is calculated and plotted against each other by line graphs 

(Figure 4.4). The results can be further improved by including more independent variables 
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with respect to each dataset. The linear regression and tree-based algorithms have a lower 

RMSE than the multilayer perceptron algorithm for the PCa dataset. The linear regression has 

the lowest RMSE as compared to multilayer perceptron and tree-based algorithms for the 

diabetes dataset. The tree-based algorithms have the lowest RMSE as compared to linear 

regression and multilayer perceptron algorithms for the obesity dataset (Kour et al., 2023). 

Table 4.1: Functions and pathways involved in the common genes among ClinVar PCa and 

ClinVar diabetes from Genecards (Kour et al., 2023) 

GENE FUNCTION PATHWAYS INVOLVED 

WRN  

Magnesium and ATP-dependent DNA 

multifunctional helicase enzyme, 3'->5' 

exonuclease (ds DNA) at 5’ overhangs. Plays key 

roles in joint DNA molecule dissociation which 

might end up giving homologous recombination 

products, formation of focal centers while 

replication, and ds break repair after gamma- 

irradiation. Also, it increases DNA polymerase 

obstruction at DNA lesion sites. 

● Homology Directed Repair 

● Homologous DNA Pairing and 

Strand Exchange 

● Regulation of TP53 Activity 

● Resolution of D-Loop Structures 

● SUMOylation 

● Cell Cycle Checkpoints 

● Gene Expression 

● Metabolism of proteins 

● DNA Damage 

● Cell Cycle, Mitotic 

● Telomere C-strand (Lagging 

Strand) Synthesis 

● DNA damage NHEJ mechanisms 

of DSBs repair 

● Regulation of Telomerase 

DNAJC6 Promotes uncoating of clathrin-coated vesicles by 

recruiting HSPA8 or HSC70 and clathrin- 

mediated endocytosis in neurons 

● Clathrin derived vesicle budding 

● Vesicle-mediated transport 

● Clathrin-mediated endocytosis 

RET Plays role in neuronal navigation, cell 

proliferation, cell differentiation, and cell 

migration, when upon binding with glial cell- 

derived neurotrophic factor family ligands, 

PTK2/FAK1 phosphorylation and regulates the 

balance between both cell death and survival. 

Active without ligand and triggers apoptosis by a 

process that needs receptor intracellular caspase 

cleavage. Behave as a dependence receptor in the 

● RET signaling 

● Developmental Biology 

● Cytokine Signaling in Immune 

system 

● Innate Immune System 

● Signaling by GPCR 

● Tyrosine Kinases / Adaptors 

● VEGF Pathway (Tocris) 

● G-protein signaling-RAS 

https://pathcards.genecards.org/card/homology_directed_repair
https://pathcards.genecards.org/card/homologous_dna_pairing_and_strand_exchange
https://pathcards.genecards.org/card/homologous_dna_pairing_and_strand_exchange
https://pathcards.genecards.org/card/regulation_of_tp53_activity
https://pathcards.genecards.org/card/resolution_of_d-loop_structures
https://pathcards.genecards.org/card/sumoylation
https://pathcards.genecards.org/card/metabolism_of_proteins
https://pathcards.genecards.org/card/dna_damage
https://pathcards.genecards.org/card/cell_cycle_mitotic
https://pathcards.genecards.org/card/ret_signaling
https://pathcards.genecards.org/card/developmental_biology
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/innate_immune_system
https://pathcards.genecards.org/card/signaling_by_gpcr
https://pathcards.genecards.org/card/tyrosine_kinases__adaptors
https://pathcards.genecards.org/card/vegf_pathway_(tocris)
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 presence of the ligand GDNF in somatotrophs 

and promotes survival and downregulates growth 

hormone (GH) production, and if GDNF is absent 

triggers apoptosis 

regulation pathway 

● Aryl Hydrocarbon Receptor 

● Dopaminergic Neurogenesis 

● Signaling events regulated by Ret 

tyrosine kinase 

● Sudden Infant Death Syndrome 

(SIDS) Susceptibility Pathways 

NF1 NF1 is known to stimulate the Ras GTPase 

activity. It might be regulating the activity of Ras, 

has more affinity for Ras GAP, and lessens its 

particular activity. 

● MAP Kinase Signaling 

● Ras Signaling 

● Endometrial Cancer 

● Development of VEGF signaling 

and activation 

● Oncogenic MAPK signaling 

● Integrated breast cancer Pathway 

● Prolactin Signaling 

TMPO Encodes many different LEM domains comprising 

isoforms of proteins that are involved in gene 

expressions, replication, cell cycle control, and 

chromatin organization. 

Alpha isoform encoded by it is mostly diffused in 

the nucleus and has lamin binding domain, 

whereas beta and gamma isoforms get located on 

nuclear membranes containing HDAC3 interaction 

domains. 

● Cell Cycle, Mitosis (M Phase) 

● Nuclear envelope reassembly 

● Transport of the SLBP 

independent Mature mRNA 

● Mitotic Metaphase and Anaphase 

(depolymerisation of the nuclear 

lamina) 

● 5. Apoptosis and Autophagy 

 

Table 4.2: Details of common genes retrieved using genecards (Kour et al., 2023) 
 

GENE FUNCTION (UniProtKB) 

SFTPC Elevates alveolar stability by reducing surface tension at the air-liquid interface in the 

peripheral air spaces. 

PPM1B It encodes an enzyme that has large specificity. This enzyme can dephosphorylate 

PRKAA1 and PRKAA2; CDK2 and CDK6 in vitro. Its dephosphorylation at 'Ser-17’in 

can inhibit TBK1-mediated antiviral signaling. Has an important   role   in 

terminating TNF-alpha-mediated NF-kappa-B activation by dephosphorylating and 

inactivating IKBKB/IKKB 

PPP2CA Important phosphatase for microtubule-associated proteins (MAPs), modulates the 

phosphorylase B kinase casein kinase 2 activity, MAP-2 kinase, and mitogen-stimulated 

S6 kinase; protects centromeric cohesion in oocytes especially during meiosis I; can 

https://pathcards.genecards.org/card/dopaminergic_neurogenesis
https://pathcards.genecards.org/card/signaling_events_regulated_by_ret_tyrosine_kinase
https://pathcards.genecards.org/card/signaling_events_regulated_by_ret_tyrosine_kinase
https://pathcards.genecards.org/card/sudden_infant_death_syndrome_(sids)_susceptibility_pathways
https://pathcards.genecards.org/card/sudden_infant_death_syndrome_(sids)_susceptibility_pathways
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 dephosphorylate SV40 large T antigen as well as p53/Tp53; activation of RAF1 by 

dephosphorylating it at 'Ser-259'; dephosphorylation of WEE1 which prevents its 

ubiquitin-mediated proteolysis;   increase   levels   of   WEE1   protein;   G2/M 

checkpoint promotion; dephosphorylation of MYC and its ubiquitin-mediated 

proteolysis; dephosphorylation of FOXO3 which promotes its stabilization 

PPARG It is a nuclear receptor and binds peroxisome proliferators like fatty acids and 

hypolipidemic drugs; modulates the transcription of its target genes like acyl-CoA 

oxidase; important regulator of glucose homeostasis and adipocyte differentiation; critical 

regulator of gut homeostasis through NF-kappa-B-mediated proinflammatory responses 

suppression; regulates the transcription of ARNTL/BMAL1 in the blood vessels 

which controls cardiovascular circadian rhythms 

TMEM67 It is crucial for the structure and operation of cilia; potentially involved in the regulation 

of the composition of ciliary membranes. It facilitates the migration of the centrosome to 

the apical cell surface in the early stages of ciliogenesis. TMEM67 also participates in the 

maintenance of optimal cilia length and the correct number by overseeing centrosome 

duplication. Further it helps in development of the cell branching morphology and plays 

important role in endoplasmic reticulum-associated degradation (ERAD) process of 

surfactant 

FOXP1 As a transcriptional repressor, it collaborates with CTBP1 to influence lung epithelium 

differentiation, regulating secretory cell fate and inhibiting goblet cell lineage. It also 

plays a vital role in B-cell development, cardiac muscle cell proliferation, and spinal 

motor neuron organization. Additionally, it contributes to midbrain identify, T follicular 

helper cell regulation, and hair follicle stem maintenance, promoting B-cell expansion by 

inhibiting caspase-dependent apoptosis. 

 

 

4.1.1.6. Mutational analysis 

4.1.1.6.1. FOXP1: a highly mutated in Prostate adenocarcinoma 

 

On putting different queries of individual genes, it summarizes the genomic alterations across 

the whole sample lot, given the details about the frequency of gene mRNA (RNA-seq FPKM) 

related to its mutations from the selected study. Also, the graphical representation of protein 

domains and specific regions of a particular mutation in a gene is provided. Graphs showed 

FOXP1 with the highest 8 % of alteration (amplification, deep deletions, in frame and 

missense mutation with unknown significance, and truncated mutations in putative driver), 

SFTPC with an overall 5% of alteration which includes amplification and deep deletions 

(shown in blue), 1.8 % in PPP2CA (amplification, deletions, missense mutation with 
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unknown significance), PPARG with an overall 1.5 % of alteration (amplification, deletions, 

missense mutation with unknown significance), TMEM67 with overall 6   %   of 

alteration which includes amplification, deep deletions,   missense and truncated mutation 

with unknown significance, 1.5 % of alteration (amplification, deletions, and missense shown 

in green) for PPM1B gene, TMPO with 0.1% of truncated mutation and BLM with 0.3% of 

mutations (missense with unknown significance, truncation as putative driver and deep 

deletion) (Figure 4.5) in a prostate adenocarcinoma study of Armenia et al., (2018) (Kour et 

al., 2023). 

 

 

Figure 4.5: Overall percent and type of genetic mutations in FOXP1 (8%), SFTPC (5%), 

PPP2CA (1.8%), PPARG (1.5%), PPM1B (1.6%), TMEM67 (6%), TMPO (0.1%), and BLM 

(0.3%) related to prostate adenocarcinoma. 

 
4.1.1.7. Gene expression patterns highlighted PPP2CA and FOXP1 as highly 

expressed genes: 

 

Using normal expression profile graphs (transcripts per million mapped reads, a.k.a., TPM) 

and box plots with the help of GEPIA 2, we performed a comparative expression analyzed. 

Box Plots were divided based on quartiles, with every box depicting the median range of 
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expression of a particular gene in both normal and tumor samples separately. A horizontal 

bar in the middle of all boxes is the actual median of the expression and both medians of 

tumor and normal are different. Outside the box both below and above sets a deviation limit,  

beyond that is known for outlier regions (abundant expression) (Figure 4.6a). Outliers in 

normal sample expressions might be a chance of experimental error or error in replicates. The 

prostate adenocarcinoma (PRAD) dataset was used to compare 492 tumors with 152 normal 

sample expression data and later the multigene expression comparison was rendered based on 

Z scores (Kour et al., 2023). 

In comparison, only tumor tissue expression and by matching TCGA normal and GTEx data, 

we found that the PPP2CA (5.5) and FOXP1(4.9) is highly expressing genes as compared to 

others, whereas TMEM67, PPARG are low expressing, and TMPO, SFTC and PPM1B are 

least expressing genes (Figure 4.6b)TMPO showed a very small change in expression profile 

from the normal but with a slightly higher deviation from the median expression in 

tumor (Figure 4.6c) and the most outlied expression is the seen for PPARG gene (Figure 

4.6a) (Kour et al., 2023). 

 

 

 

Figure 4.6.a: Box plots for expression of common genes compared to TCGA tumor-normal 

datasets of Prostate adenocarcinomas (PRAD). Every box depicts the median range of 

expression of a particular gene in both normal and tumor samples separately. A horizontal 

bar in the middle of all boxes is the actual median of the expression and both medians of 
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tumor and normal are different. Outside the box both below and above sets a deviation limit, 

beyond that is known for outlier regions (abundant expression) 

 

 
 

Figure 4.6.b: Box plots for expression of common genes in compared to TCGA tumor- 

normal datasets of Prostate adenocarcinomas (PRAD) and GTEx data (multiple genes based 

on Z scores) A. Only tumor tissue expression; B. Match TCGA normal data; C. Match TCGA 

normal and GTEx data, the plots showed PPP2CA (5.5) and FOXP1 (4.9) is highly 

expressing genes as compared to others, whereas, the TMPO, SFTC and PPM1B are the least 

expressing genes. 

 

Figure 4.6.c: Expression in comparison to TCGA tumor-normal dataset of Prostate 

Adenocarcinomas (PRAD) dataset and GTEx data for TMPO gene 
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4.1.1.8. BLM showed significant impact on disease free survival in survival analysis: 

On analysing we found that the overall survival for FOXP1 (log rank p=0.39), TMPO (log 

rank p=0.14), TMEM67 (log rank p=0.24), BLM (log rank p=0.12), PPP2CA (log rank 

p=0.12), PPARG (log rank p=0.53) and PP1MB (log rank p=0.87). 

Disease-free survival for FOXP1 (log rank p=0.005), TMPO (log rank p=0.21), TMEM67 (log 

rank p=0.55), BLM (log rank p=0.00065), PPP2CA (log rank p=0.5), PPARG (log rank 

p=0.13) and PPM1B (log rank p=0.88) (Figure 4.7). In a comparison of overall survival and 

disease-free survival in reference to the significance, only BLM is observed to have a 

significant p-value in disease-free survival. The insignificance with respect to other genes of 

p-value is may be because of the individual genetic variability, each study exhibits clinical 

heterogeneity. Therefore we need to see higher sample size studies (Kour et al., 2023). 

OVERALL SURVIVAL DISEASE FREE SURVIVAL 
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Figure 4.7: Comparison of overall survival (OS) and disease-free survival (DFS) bases on log 

p value among FOXP1, TMPO, TMEM67, TMPO, BLM, PPP2CA, PPM1B, and PPARG 

using GEPIA 2 tool with PRAD dataset for both TCGA normalized data and GTEx data. 

 
 

4.1.2. Causal relationship between PCa (PCa) and type-2-diabetes (T2D) through 

WES 

The DNA was isolated from FFPE blocks and then it was checked with the help of NanoDrop 

1000 which showed good quality of isolated DNA on the basis of OD260/OD280 and 

OD260/OD230 ratios. Also, the quantified DNA using PCR passed the quality check when 

we runned it on 1% agarose gel. 

 
4.1.2.1. Quality Check 

4.1.2.1.1. DNA QC report: 

DNA quantity check: Extracted DNA quantity was checked with the help of Nanodrop 1000, 

average of two individual data points is provided below in the table 5.1. By looking at both 

the A260/280 ratio (1.9) and A260/230 ratio (2.0-2.2) it suggested good quality as per the 

report given and passed the check (Table 4.3). Figure 4.8 shows the all 5 sample bands in the 

smear on running agarose gel electrophoresis. 

Table 4.3: Table representing the DNA quality at both ratio A260/280 (1.9) and A260/230 

(2.0-2.2) by using Nanodrop 1000 

 

Sr. 

No. 

Case ID Case PPF 

Block Name 

Nanodrop 

(ng/µl) 

A260/280 A260/230 QC 

Remarks 

1 20307401271 H20/6591 3088.7 1.98 2.29 Pass 

2 20307401272 H20/8329 1866.5 1.96 2.25 Pass 

3 20307401273 H20/8030 1564 1.97 2.24 Pass 

4 20307401274 H20/7111 1784.2 1.98 2.24 Pass 

5 20307401275 H20/7255 3070.6 1.98 2.29 Pass 
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Note: This table provides the quality control (QC) metrics for DNA samples extracted from 

FFPE blocks, including cases IDs, Nanodrop concentrations (ng/µl), and absorbance ratios 

(A260/280 and A260/230). The A260/280 ratio indicated protein contamination, while, the 

A260/230 ratio reflected the presence of organic compounds and impurities. All samples 

passed QC, demonstrating acceptable purity and concentration for downstream application. 

 

Figure 4.8: Image of agarose gel electrophoresis of all tumor samples and Ladder 

 
4.1.2.1.2. cDNA QC report: 

 
Acquired sizes of all libraries are reported in the following (Table 4.4). 

Table 4.4: Table showing details of quality check of cDNA 

Sr. No. 
Case PPFE 

Block Name 
ng/µl Insert Size Index QC remarks 

Sample 1 H20/6591 18.5 302 C10 Pass 

Sample 2 H20/8329 15.5 368 D10 Pass 

Sample 3 H20/8030 25.0 429 E10 Pass 

Sample 4 H20/7111 10.2 426 F10 Pass 

Sample 5 H20/7255 20.0 296 G10 Pass 

Note: The table summarizes the quality control (QC) metrics for DNA samples extracted from 

FFPE blocks, including the concentration (ng/µl), insert size (bp), index designation, and QC 

remarks for each sample. The values indicate acceptable DNA concentration and insert sizes 

for subsequent analysis, with all samples passing the QC assessment. 
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4.1.2.2. Molarity of electronic ladder and sample: 

 
Different calibration concentrations ranging from 78.4pg/µl (lowest) up to 1110pg/µl 

(highest) as per the different fragment lengths were used and to determine the modal fragment 

length of sequencing pool by running on D1000 HS screen tape of Agilent Tapestation 4150. 

Later, calculation of the concentrations and molarity of the sequencing pool was done. An 

electronic ladder was included in each run which contained one lower and one upper mark to 

align the ladder data against the samples so that size of a fragment can be determined. The 

size of a library was calculated within two regions and later normalized before sequencing. 

Each region showed a normalized peak value. The upper value determines the molar sample 

concentration. The electropherogram report shows the size of different fragments on x-axis 

mostly ranging from 150-200 base pairs in a smear Figure 4.9-4.14 shows TapeStation 

Electropherogram report of sample representing the size of different fragments, sample 

intensity, peak values of lower mark, and the a major peak values of ladder and all  5 samples. 

EL1: Electronic Ladder: 

 

 
Figure 4.9: The TapeStation Electropherogram report of electronic ladder. It shows the size 

of different fragments on x-axis, sample intensity at y-axis and peak values as per the 

different size of fragments seen ranging from 50-1500 bps. 

Size of fragments, calibrated concentrations, peak molarity, % age integrated area and their 

concerned observations are tabulated separately (sample table and peak table) for each sample 

and electronic ladder from Table 4.5-Table 4.16. 
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Table 4.5: Sample table for electronic ladder 

 
Size 

(bp.) 

Calibrate 

Conc. 

[pg/µl] 

Assigned 

Conc. 

[pg/µl] 

Peak 

Molarity 

[pmol/l] 

%Integrated 

Area 

Peak 

Comment 

Observation 

25 340 - 20900 -  Lower Marker 

50 265 - 8160 11.28   

100 278 - 4270 11.82   

200 290 - 2230 12.32   

300 304 - 1560 12.95   

400 306 - 1180 13.00   

500 312 - 961 13.29   

700 286 - 629 12.19   

1000 309 - 476 13.15   

1500 250 250 256 -  Upper Marker 

Note: This table represents the characterization of DNA fragments based on size (in bp) and 

their corresponding calibrated and assigned concentration (pg/µl), peak molarity (pmol/l), 

and integrated area percentages. The data include lower and upper marker observations, 

with the last row indicating and assigned concentration for the 1500 bp fragment. This 

information is crucial for assessing the quality and quantity of DNA samples. 

Table 4.6: Peak Table for ladder 

 
Well Sample Description Alert Observation 

EL1 Electronic Ladder  Ladder 

Note: Summarizes the peak analysis for the electronic ladder EL1, which serves as reference 

for determining the sizes of DNA fragments. No alerts indicate no issues with the ladder’s 

performance. 
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H20/6591 
 
 

Figure 4.10: The TapeStation Electropherogram report of sample (gDNA) H20/6591. It 

shows the size of different fragments on x-axis, sample intensity at y-axis and peak values of 

lower mark, a major peak in the region of 275-305 bps 

Table 4.7: Sample table for sample 1 

 
Well Sample Description Alert Observation 

B2 NCGM:794-H20/6591   

Note: Table presents the sample information for sample 1 analyzed in the study. There are no 

alerts and observations noted, suggesting that the sample was processed without any issues 

or anomalies during the analysis. 

 
Table 4.8: Peak table for sample 1 

 

Size 

(bp.) 

Calibrate 

Conc. 

[pg/µl] 

Assigned 

Conc. 

[pg/µl] 

Peak 

Molarity 

[pmol/l] 

%Integrated 

Area 

Peak 

Comment 

Observation 

25 457 - 28100 -  Lower 

Marker 

302 301 - 1560 100.00   

1500 250 250 256 -  Upper 

Marker 

Note: This table represents the characterization of DNA fragments of sample 1 based on size 

(in bp) and their corresponding calibrated and assigned concentration (pg/µl), peak molarity 

(pmol/l), and integrated area percentages, The data indicates lower mark at 25bp, a sample 

peak at 302 bp with full integrated area, and upper marker at 1500 bp with an assigned 

concentration. This information is crucial for assessing quality and quantity of DNA 

fragments in samples. 
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H20/8329 

 

Figure 4.11: The TapeStation Electropherogram report of sample (gDNA) H20/8329. It 

shows the size of different fragments on x-axis, sample intensity at y-axis and peak values of 

lower mark, a major peak in the region of 360-380 bps 

Table 4.9: Sample table for sample 2 

 
Well Sample Description Alert Observation 

A1 NCGM:794-H20/8329   

Note: Table presents the sample information for sample 2 analyzed in the study. There are no 

alerts and observations noted, suggesting that the sample was processed without any issues 

or anomalies during the analysis. 

 
Table 4.10: Peak Table for sample 2 

 

Size 

(bp.) 

Calibrate 

Conc. 

[pg/µl] 

Assigned 

Conc. 

[pg/µl] 

Peak 

Molarity 

[pmol/l] 

%Integrated 

Area 

Peak 

Comment 

Observation 

25 442 - 27200 -  Lower Marker 

368 78.4 - 328 100.00   

1500 250 250 256 -  Upper Marker 

Note: This table represents the characterization of DNA fragments of sample 1 based on size 

(in bp) and their corresponding calibrated and assigned concentration (pg/µl), peak molarity 

(pmol/l), and integrated area percentages, The data indicates lower mark at 25bp, a sample 

peak at 368 bp with full integrated area, and upper marker at 1500 bp with an assigned 

concentration. This information is crucial for assessing quality and quantity of DNA 

fragments in samples. 
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H20/8030 

 

Figure 4.12 The TapeStation Electropherogram report of sample (gDNA) H20/8030. It shows 

the size of different fragments on x-axis, sample intensity at y-axis and peak values of lower 

mark, a major peak in the region of 275-530 bps 

Table 4.11: Sample Table for Sample 3 

 
Well Sample Description Alert Observation 

G2 NCGM:794-H20/8030   

Note: Table presents the sample information for sample 3 analyzed in the study. There are no 

alerts and observations noted, suggesting that the sample was processed without any issues 

or anomalies during the analysis. 

 
Table 4.12: Peak Table for sample 3 

 
Size 

(bp.) 

Calibrate 

Conc. 

[pg/µl] 

Assigned 

Conc. 

[pg/µl] 

Peak 

Molarity 

[pmol/l] 

%Integrated 

Area 

Peak 

Comment 

Observation 

25 466 - 28700 -  Lower 

Marker 

429 1110 - 3980 100.00   

1500 250 250 256 -  Upper 

Marker 

Note: This table represents the characterization of DNA fragments of sample 1 based on size 

(in bp) and their corresponding calibrated and assigned concentration (pg/µl), peak molarity 

(pmol/l), and integrated area percentages, The data indicates lower mark at 25bp, a sample 

peak at 429 bp with full integrated area, and upper marker at 1500 bp with an assigned 
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concentration. This information is crucial for assessing quality and quantity of DNA 

fragments in samples. 

H20/7111 

 

Figure 4.13: The TapeStation Electropherogram report of sample (gDNA) H20/7111. It 

shows the size of different fragments on x-axis, sample intensity at y-axis and peak values of 

lower mark, a major peak in the region of 305-540 bps 

Table 4.13: Sample table for Sample 4 

 
Well Sample Description Alert Observation 

F1 NCGM:794-H20/7111   

Note: Table presents the sample information for sample 4 analyzed in the study. There are no 

alerts and observations noted, suggesting that the sample was processed without any issues 

or anomalies during the analysis. 

 
Table 4.14: Peak table for Sample 4 

 

Size 

(bp.) 

Calibrate 

Conc. 

[pg/µl] 

Assigned 

Conc. 

[pg/µl] 

Peak 

Molarity 

[pmol/l] 

%Integrated 

Area 

Peak 

Comment 

Observation 

25 444 - 27300 -  Lower Marker 

426 804 - 2900 100.00   

1500 250 250 256 -  Upper Marker 

Note: This table represents the characterization of DNA fragments of sample 1 based on size 

(in bp) and their corresponding calibrated and assigned concentration (pg/µl), peak molarity 

(pmol/l), and integrated area percentages, The data indicates lower mark at 25 bp, a sample 

peak at 426 bp with full integrated area, and upper marker at 1500 bp with an assigned 
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concentration. This information is crucial for assessing quality and quantity of DNA 

fragments in samples. 

H20/7255 

 

Figure 4.14: The TapeStation Electropherogram report of sample (gDNA) H20/7255. It 

shows the size of different fragments on x-axis, sample intensity at y-axis and peak values of 

lower mark, a major peak in the region of 210-320bps 

Table 4.15: Sample table for sample 5 

 
Well Sample Description Alert Observation 

F2 NCGM:794-H20/7255   

Note: Table presents the sample information for sample 5 analyzed in the study. There are no 

alerts and observations noted, suggesting that the sample was processed without any issues 

or anomalies during the analysis. 

 
Table 4.16: Peak table for sample 5 

 
Size 

(bp.) 

Calibrate 

Conc. 

[pg/µl] 

Assigned 

Conc. 

[pg/µl] 

Peak 

Molarity 

[pmol/l] 

%Integrated 

Area 

Peak 

Comment 

Observation 

25 458 - 28200 -  Lower 

Marker 

296 410 - 2130 100.00   

1500 250 250 256 -  Upper 

Marker 

Note: This table represents the characterization of DNA fragments of sample 1 based on size 

(in bp) and their corresponding calibrated and assigned concentration (pg/µl), peak molarity 
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(pmol/l), and integrated area percentages, The data indicates lower mark at 25 bp, a sample 

peak at 296 bp with full integrated area, and upper marker at 1500 bp with an assigned 

concentration. This information is crucial for assessing quality and quantity of DNA 

fragments in samples. 

4.1.2.3. Sample QC report 
 

The NGS data we obtained by WES was checked for quality by running FastQC and we 

received the .html formatted files of quality check reports for every individual read (forward 

and backward separately). We transfer the html files from the server to the local system. The 

very first table of the report provided “basic statistics” for the particular sample like name of 

file, read length, number of the sequences to keep us on track. The plot of “per base 

sequence quality” showed quality scores on the y-axis of each read at each position on the x- 

axis. The color segregation of the plot differentiates the high, medium and low scores of the 

quality. The blue line showed the average quality score of a base and the red line represented 

the median. While “per sequence quality score” provided average quality score on x-axis 

against the number of sequences on y-axis. No bumps in low quality scores are a sign of good 

quality of data. The “Per base sequence content” has a given percentage of individual 

nucleotides (A, C, T. G) at every single position across all the reads. Per sequence GC 

content plot determined the GC distribution in all the sequences. Per base N content plot 

showed the percentage of bases at each position or with no base call (N). The “Sequence 

length distribution” plot presented the distribution of fragments of different sizes in an 

analysed file. “Sequence duplication level” identified the number of duplicated sequences in 

the library resulting from over cycles of PCR amplification than expected or too little initial 

material for the reaction. “Overrepresented sequences” showed a minimum of at least 20 bp 

sequences that could be present in above 0.1 percent of the total sequences. Once the quality 

of the read is determined we had to check from which gene or mRNA the reads belong by 

mapping. This also determined the contamination of any vector, “adaptor content” and any 

low quality bases at the reads end (Supplementary Figures 1-10). 

4.1.2.4. Results of down-analysis on sequenced data: 

After our benched marked pipeline for pre-processing (read alignment, variant calling, and 

variant prioritization) we obtained the variants in the form of a vcf file. Vcf files were then 

subjected to various in silico tools (like SNPnexus, gnomAD, ClinVar and dbSNP of NCBI 

data bank) to characterize the variants and to annotate. We first check how many variants are 

commonly mutated in the sample (Figure 4.15). 
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Figure 4.15: Venn plot showing the common number of variants among the sequenced 

samples of the 5 cases (Sample 2, Sample 3, Sample 4, and Sample 5). A total of 3982 

variants were found common in all four samples. From Sample 1 of case 1 didn’t identify 

pathogenic variants. 

4.1.2.5. MYO15A and BRCA2 mutations appeared common with the previous pilot 

study: 

We have identified a pathogenic, a germline, missense and noncoding transcript variant, 

rs375290498 (A=0.00005/7) of MYO15A which is common among our cohort. Besides this, 

two germline variants of the BRCA2 gene were identified common with the previous cohort 

study but with different mutations; benign rs148341992 (0.00129), pathogenic rs780919805 

(T=0.000004/1), and a single base pair pathogenic duplication rs80359668. In the previous 

cohort, we found rs276174854, rs276174889, rs80358600, rs80359171, rs771203198, and 

rs145988146 (Table 4.17). 

 
Table 4.17: Significant common variants and genes with previous cohort 

 
Gene Reference 

ID 

MAF Clinical 

Significance 

Functional 

Consequence 

Allele 

change 

Description 

MYO15A rs375290498 A=0.00005/7 Pathogenic, 

Conflicting: 

Interpretatio 

ns of 

Pathogenicit 

Non_coding_tra 

nscript_variant_ 

missense_varian 

t 

G> T, A SNV 

https://www.ncbi.nlm.nih.gov/snp/rs276174854
https://www.ncbi.nlm.nih.gov/snp/rs276174854
https://www.ncbi.nlm.nih.gov/snp/rs80358600
https://www.ncbi.nlm.nih.gov/snp/rs80358600
https://www.ncbi.nlm.nih.gov/snp/rs771203198
https://www.ncbi.nlm.nih.gov/snp/rs145988146
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   y, Uncertain 

Significance 

   

BRCA2 rs276174854 -0.000004/1 Pathogenic Coding_sequenc 

e_Variant,frame 

shift_varaint 

 
TATG>- 

4bp 

deletion 

BRCA2 rs276174889 G=0/0 Pathogenic Stop_gained,mis 

sen_variant,codi 

ng_sequence_va 

raint 

 
C>G,T 

SNV 

BRCA2 rs80358600 T=0.000626/3 Pathogenic Stop_gained,mis 

sen_variant,codi 

ng_sequence_va 

raint 

 
C>A,G,T 

SNV 

BRCA2 rs80359171 A=0.000014/2 Uncertain 

Significance, 

Pathogenic, 

Likely- 

Benign 

Missense_varai 

nt,coding_seque 

nce_variant 

 
G>A,C,T 

SNV 

BRCA2 rs771203198 C=0.000004/1 Pathogenic Stop_gained,mis 

sen_variant,codi 

ng_sequence_va 

raint 

 
G>A,C, 

T 

SNV 

BRCA2 rs145988146 T=0.000012/3 Pathogenic  
Coding_sequenc 

e_varaint,synon 

ymous_varisnt,s 

top_gained 

C>A,G, 

T 

SNV 

BRCA2 rs780919805 T=0.000004/1 Pathogenic  
Stop_gained,syn 

onymous_varian 

t,coding_sequen 

ce_varaint 

C>A,G, 

T 

SNV 

BRCA2 rs80359668 - Pathogenic Coding_sequenc 

e_Variant,frame 

shift_varaint 

->T 1bp dup 

BRCA1 rs148341992 G=0.001324 Benign Inton_Variant A>G 1bp dup 

Note: The table lists significant common variants and associated genes identified in a 

previous cohort study (Last Accessed on April 2, 2024). Each entry includes the gene name, 

https://www.ncbi.nlm.nih.gov/snp/rs276174854
https://www.ncbi.nlm.nih.gov/snp/rs276174889
https://www.ncbi.nlm.nih.gov/snp/rs80358600
https://www.ncbi.nlm.nih.gov/snp/rs80359171
https://www.ncbi.nlm.nih.gov/snp/rs771203198
https://www.ncbi.nlm.nih.gov/snp/rs145988146
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reference SNP (rs) ID, minor allele frequency (MAF), clinical significance, functional 

consequence, allele changes, and a brief description. The data indicates various pathogenic 

and uncertain significance variants in the BRCA1 and BRCA2 genes, highlighting their 

relevance in clinical genetics and implication for disease risk assessment. 

MYO15A’s plausible role on hearing loss and PCa: 
 

MYO15A is known for second most causing non-syndromic hearing loss (HL) (Vanniya. S et 

al., 2022). Familial inheritance of mutated MYO15A is associated with high severity (Y. Chen 

et al., 2018). In a study of HL in 61 consanguineous Egyptian families’ linkage analysis 

wherein the majority of variants were identified in MYO15A and among which one family had 

mutated the WFS1 gene causing Wolfram syndrome (WS) and the variant was inherited in an 

autosomal recessive manner. Wolfram syndrome is characterized by childhood-onset diabetes 

mellitus, diabetes insipidus optic atrophy, and sensorineural HL SNHL. However, the affected 

siblings of the same family didn’t express any other complication except WS (Budde et al., 

2020). Another study was conducted on four South Indian families which are mating 

assortatively, in which one individual was having a history of 10 years of diabetes (Vanniya. 

S et al., 2022). 

The movement and migration of cells depend on the broad and varied family of molecular 

motors known as myosins (Makowska et al., 2015). A study of W. Zhang et al., in the year 

2022 found MYO15A as a novel contributor in the evolution of a hormone sensitive PCa 

(HSPC) to CRPC (W. Zhang et al., 2022). Mutation in MYO15A is one of the frequent 

somatic mutations of PCa and commonly related to advanced stage PCa (Zarzour et al., 2020) 

(Mamidi et al., 2019). 

Regulatory potential of BRCA1 and BRCA2 in PCa: 
 

While the link between BRCA1 and 2 and PCa remains enigmatic, the genetic alterations 

identified so far that the greatest PCa risk particularly made over the age of 65, are mutations 

in the BRCA2 gene, which is associated with an 8.6 fold increased risk (Castro & Eeles, 

2012). BRCA1 holds the moderate risk of 1.35-fol for PCa indicating very less association 

with PCa (Oh et al., 2019). Aside from the DNA damage response, repair, chromatin 

modelling, and transcriptional control, BRCA1 has recently been found as an AR co-regulator. 

It has also been proposed that it may affect another key route in PCa by regulating IGF-1R in 

an AR-dependent manner. BRCA2 may potentially operate as a tumor suppressor in epithelial 

prostate tissue, leading to premalignant prostatic lesions. BRCA2 may reduce cancer chances 
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of spreading (metastasis) by inhibiting PI3-kinase/Akt and activating MAP/ERK, thereby 

reducing cancer cell migration and invasion (Castro & Eeles, 2012). 

Significant genomic mutations were explored from our cases: 

 
A total of 37 more significant pathogenic variants were identified in our cohort (Table 4.18) 

and among them were 31 Nonsynonymous mutations 19 missense mutations in the coding 

region (rs5110, rs6339, rs6336, rs1169305, rs41265017, rs45517213, rs61753021, 

rs104894493, rs111033186, rs120074126, rs121913601, rs145525174, rs201518227, 

rs387907228, rs764790770, rs770066171, rs771578775, rs987916591, rs778295360); 5 stop 

gain missense mutations (rs9514067, rs61749438, rs200098356, rs786205776, rs9536062); 3 

stop gain missense mutation in the downstream transcript (rs9536062, rs587779865, 

rs267606953); one intronic downstream transcript mutation (rs1161370391); one, stop gain 

missense mutation in the upstream transcript (rs781580050); one missense downstream 

transcript variant (rs12021720) and one noncoding transcript missense variant 

(rs377715702). Furthermore, 4 synonymous mutations were seen in which one was stop 

gained variation in the coding region (rs74315369), 1 stop gained in the downstream 

transcript (rs764389018), and a stop gain intron variant (rs151212477). Two intron splice 

donor variants (rs724159829, rs758623165), one intron variant (rs765990217), one frameshift 

in 5’ UTR (rs886041816), and stop gain mutation of non-coding transcript in the downstream 

transcript (rs1394131270) were also seen. Later we checked the associations of these genes 

with the PCa and diabetes by looking into the reported literature (Table 4.19). 

Table 4.18: Other 37 significant pathogenic variants from our cohort 

 
Gene Reference 

ID 

MAF Clinical 

significance 

Functional 

Consequence 

Allele 

Change 

Description 

APOA4 rs5110 A=0.0522 

85/13128 

Pathogenic coding_sequence 

_variant;missens 

e_variant 

C>A,G SNV 

NTRK1 rs6339 T=0.02436 

/122 

Pathogenic; 

Benign 

missense_variant 

;coding_sequenc 

e_variant 

G>T SNV, 

Haplotype 

NTRK1 rs6336 T=0.03696 

4/5180 

Pathogenic; 

Benign 

missense_variant 

;coding_sequenc 

e_variant 

C> 

A,G,T 

SNV, 

Haplotype 
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HNF1A rs1169305 A=0.0138 

99/1950 

Pathogenic; 

Likely 

Pathogenic, 

Benign 

coding_sequence 

_variant; 

missense_variant 

A>C,G,T SNV 

ERCC5; 

BIVM- 

ERCC5 

rs9514067 G=0.0023 

42/12 

Likely- 

Pathogenic; 

not-provided 

stop_gained;codi 

ng_sequence_var 

iant; 

missense_variant 

G>A,C,T SNV 

ATM; 

C11orf6 

5 

rs58777986 

5 

T=0.00001 

2/3 

Pathogenic; 

Pathogenic- 

Likely- 

Pathogenic 

genic_downstrea 

m_transcript_var 

iant;intron_varia 

nt;coding_seque 

nce_variant;stop 

_gained 

C> 

A,G,T 

SNV 

SEMA4 

A 

rs41265017 A=0.0209 

24/105 

Pathogenic; 

Benign 

missense_variant 

;coding_sequenc 

e_variant 

C> 

A,G,T 

SNV 

TSC2 rs45517213  Pathogenic stop_gained;codi 

ng_sequence_var 

iant 

G>A SNV 

ABCA4 rs61749438 A=0.0000 

04/1 

Pathogenic; 

not-provided 

stop_gained;miss 

ense_variant;cod 

ing_sequence_va 

riant 

C>A,T SNV 

ABCA4 rs61753021 T=0.00003 

6/5 

Likely- 

Pathogenic; 

not-provided 

missense_variant 

;coding_sequenc 

e_variant 

C>A,T SNV 

SDHB rs74315369 T=0./0 

(ALFA) 

Pathogenic; 

uncertain- 

significance; 

Benign 

synonymous_varia 

nt;coding_sequenc 

e_variant;missense 

_variant;stop_gain 

ed 

G>A,C,T SNV 

NR2E3 rs104894493 A=0.00028 

5/40 

Pathogenic; 

Uncertain- 

Significance 

coding_sequence_ 

variant;missense_v 

ariant 

G>A SNV 

GJB2 rs111033186 T=0.00247 

4/347 

Likely- 

Pathogenic; 

Benign 

missense_variant;c 

oding_sequence_v 

ariant 

C>A,T SNV 

https://www.ncbi.nlm.nih.gov/snp/rs74315369#frequency_tab
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SMPD1 rs120074126 T=0.00000 

7/1 

Pathogenic coding_sequence_ 

variant; 

non_coding_transc 

ript_variant;misse 

nse_variant 

C>T SNV 

MPZ rs121913601 T=0.00078 

1/4 

Pathogenic; 

Likely- 

Pathogenic; 

Uncertain- 

Significance 

missense_variant; 

coding_sequence_ 

variant 

G>A,C SNV 

ABCA4 rs145525174 T=0.00246 

1/345 

Likely- 

Pathogenic; 

Likely Benign 

coding_sequence_ 

variant;missense_v 

ariant 

C>T SNV 

PKP2 rs151212477 A=0.00000 

7/1 

 
 

T=0./0 

Pathogenic; 

Likely Benign 

synonymous_varia 

nt;intron_variant;st 

op_gained;coding_ 

sequence_variant 

G>A,T SNV 

CACNA2 

D4 

rs200098356 A=0.00046 

8/2 

Likely- 

Pathogenic; 

Uncertain 

Significance 

stop_gained;misse 

nse_variant;coding 

_sequence_variant 

G>A,C SNV 

TOR1AI 

P1 

rs201518227 T=0.00005 

7/8 

Likely 

Pathogenic, 

missense_variant;c 

oding_sequence_v 

ariant 

C>T SNV 

FGD4 rs281865063 A=0./0 Pathogenic; 

Uncertain 

Significance 

non_coding_transc 

ript_variant;genic_ 

downstream_trans 

cript_variant;misse 

nse_variant;coding 

_sequence_variant 

G>A SNV 

RNPC3 rs370930012 A=0.00002 

9/4 

Pathogenic missense_variant;c 

oding_sequence_v 

ariant 

C>A SNV 

POLR3B rs371453512 T=0.00000 

7/1 

Likely 

Pathogenic 

missense_variant;c 

oding_sequence_v 

ariant 

C>T SNV 

TMX2;T 

MX2- 

CTNND1 

rs377715702 T=0.00004 

3/6 

Likely 

Pathogenic 

coding_sequence_ 

variant;missense_v 

ariant;non_coding 

_transcript_variant 

;intron_variant;sto 

C>T SNV 
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    p_gained   

ABCC9 rs387907228 A=0./0 

(ALFA) 

Pathogenic; 

Likely 

Pathogenic 

coding_sequence_ 

variant;missense_v 

ariant 

G>A SNV 

ATM;C1 

1orf65 

rs587779865 T=0.00000 

8/2 

Pathogenic; 

Pathogenic- 

Likely- 

Pathogenic 

genic_downstream 

_transcript_variant 

;intron_variant;cod 

ing_sequence_vari 

ant;stop_gained 

C> A,G,T SNV 

PDHX rs724159829  Pathogenic intron_variant;spli 

ce_donor_variant 

G>A SNV 

UBR1 rs758623165 G=0.00000 

7/1 

Likely 

Pathogenic 

splice_donor_varia 

nt 

C> A,G,T SNV 

ATM rs764389018 T=0.00000 

7/1 

Pathogenic; 

likely 

Pathogenic 

coding_sequence_ 

variant;genic_dow 

nstream_transcript 

_variant;stop_gain 

ed;non_coding_tra 

nscript_variant;mi 

ssense_variant;syn 

onymous_variant 

C> A,G,T SNV 

CLN5;F 

BXL3 

rs764790770 C=0./0 Uncertain 

Significance, 

Likely 

Benign; 

Pathogenic, 

500B_downstream 

_variant;coding_se 

quence_variant;sto 

p_gained;missense 

_variant;downstrea 

m_transcript_varia 

nt 

G>A,C SNV 

TSC2 rs765990217 T=0.00001 

4/2 

Likely 

Pathogenic; 

Benign 

intron_variant C> A,G,T SNV 

PGM1 rs770066171 T=0.00001 

2/3 

Pathogenic coding_sequence_ 

variant;stop_gaine 

d 

C>T SNV 

COQ8A rs771578775 T=0.00005 

7/8 

Pathogenic coding_sequence_ 

variant;stop_gaine 

d 

C>T SNV 

AGL rs781580050 T=0.00000 

7/1 

Pathogenic- 

Likely- 

Pathogenic 

stop_gained;codin 

g_sequence_varian 

t;genic_upstream_t 

ranscript_variant 

C>T  

https://www.ncbi.nlm.nih.gov/snp/rs387907228#frequency_tab
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CACNA1 

C 

rs786205776  Likely 

Pathogenic; 

Uncertain- 

Significance 

coding_sequence_ 

variant;missense_v 

ariant;stop_gained 

G>A,C,T  

PTEN rs886041816  Pathogenic 5_prime_UTR_var 

iant;coding_seque 

nce_variant;frames 

hift_variant 

->CT 2bp duplication 

(DELINS) 

PDE2A rs987916591  Pathogenic coding_sequence_ 

variant;missense_v 

ariant 

G>A SNV 

DOCK7 rs116137039 

1 

 Likely 

Pathogenic 

genic_downstream 

_transcript_variant 

;intron_variant 

T>- DEL 

SZT2 rs139413127 

0 

T=0.00000 

4/1 

Pathogenic coding_sequence_ 

variant;non_codin 

g_transcript_varia 

nt;genic_downstre 

am_transcript_vari 

ant;stop_gained 

C>T SNV 

NDUFV1 rs778295360 T=0.00001 

4/2 

Likely 

Pathogenic 

stop_gained;codin 

g_sequence_varian 

t;missense_variant 

G>A,T SNV 

THSD1 rs9536062 C=0.05402 

9/271 

Pathogenic genic_downstream 

_transcript_variant 

;coding_sequence_ 

variant;stop_gaine 

d;intron_variant 

G>A,C SNV 

PLCE1; 

NOC3L 

rs267606953 T=0./0 

(ALFA) 

T=0.00000 

4/1 

(GnomAD_ 

exomes) 

Likely 

Pathogenic 

coding_sequence_ 

variant;missense_v 

ariant 

C>T SNV 

Note: The table lists 37 significant pathogenic variants identified in our cohort. Each entry 

include the gene name, reference SNP (rs) ID, minor allele frequency (MAF), clinical 

significance, functional consequence, and allele changes (Last Accessed on April 2, 2024). 

https://www.ncbi.nlm.nih.gov/snp/rs267606953#frequency_tab


113 
 

 

 

Table 4.19: Tabular summary of the general associations of identified mutated gene with PCa 

and diabetes 

Gene Association with PCa Association with Diabetes Disease conditions 

linked to Gene 

APOA4 ● The specific function of 

apolipoprotein, APOA4 has 

not been completely 

investigated. However it is 

suggested that the APOA4 

plays a role in metabolism and 

transporting lipids (including 

cholesterol and triglycerides) 

particularly in the lymphatic 

and circulatory system. 

● Found upregulated in mCRPC. 

(Kakkat et al., 2023). 

● Cardiovascular diseases 

(CVDs) are commonly 

observed in PCa patients and a 

vice versa relation is also seen, 

that the pre-existing CVD 

patients are more likely to have 

PCa. It could be possible that 

there might be a molecular 

connection between CVD and 

PCa (Kakkat et al., 2023). 

● Physiological role of 

Thrombosis and aggregation of 

platelets is also seen (Buscher, 

n.d.) . 

● In the type-2-diabetes patients 

APOA4 can be a novel biomarker 

in plasma for identification of 

renal problems (Peters et al., 

2017). 

● It can decrease the glucose 

● Level is found lower in 

prediabetes 

● Has anti-inflammatory and 

antioxidant properties suggesting 

its potency to prevent 

development of type-2-diabetes 

(von Toerne et al., 2016). 

Cardiovascular 

diseases and renal 

complications. 

ITGB4 ● Particularly in the context of 

tumour aggressiveness, 

metastasis (bone), and 

therapeutic  response 

(resistance to chemotherapies), 

ITGB4 appears to be important 

in PCa. It is more abundantly 

expressed in advanced PCa and 

correlated with increased 

motility and invasiveness 

(Wilkinson et al., 2020). 

● ITGB4 was also suggested in a 
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 study to interact with Prostate- 

Specific membrane Antigen 

(PSMA, a unique glycoprotein 

and highly expressed in PCa 

cells) and regulates the 

angiogenesis through 

activating NF-κB (Y. Gao et 

al., 2021). 

  

ABCC9 ● Downregulated in PCa 

(Demidenko et al., 2015). 

Found mutated in those myocardial 

infarction patients who were having 

history of diabetes mellitus, 

hypercholesterolemia, and 

hypertensions (Minoretti et al., 

2006). 

Coronary vasomotor 

dysfunction, 

ischemic disease and 

myocardial infarction 

SEMA4A ● Initiates the migration of 

endothelial cells (Nkyimbeng- 

Takwi & Chapoval, 2011). 

● Plays role in EMT and 

promotes invasion and 

metastasis (X. Liu et al., 2023). 

Different semaphorins are involved 

in different diabetes related 

complications like diabetic 

retinopathy, neuropathy, and 

osteoporosis and wound healing. 

SEMA4A is found to play role in 

regulation of inflammatory colitis 

(Lu & Zhu, 2020). 

Inflammatory colitis 

ATM ● Loss of ATM is found in 10% 

of the advanced PCa, cells 

more sensitive to the PARP 

inhibitors and can bring 

genetic instability as the ATR 

will get inhibited and its 

sensitivity also increases (Neeb 

et al., 2021). 

● By phosphorylating p53 

regulates the insulin resistance 

and deficiency of ATM can 

develop DM 

● Through alteration in 

metabolism of glucose can 

cause cardiac problems (Espach 

et al., 2015), and a role in 

metformin response (glycemic) 

(Yee et al., 2012). 

Cardiovascular 

disease  (Ischemic 

conditions,  fibrosis 

and hypertrophy), 

insulin resistance and 

diabetes 

ERCC5 ● ERCC5 is found in Asian 

cohort studies. Identified 

polymorphisms didn’t suggest 

the risk associations; however, 

it is believed that its deficiency 

can modulate the susceptibility 

for PCa (Y. Liu et al., 2018). 

No clear associations Xeroderma 

pigmentosum, 

bladder cancer, 

breast cancer, CS and 

TTD 

HNF1A ● HNF4G together with HNF1A 

initiates a new enhancer 

● HNF1A   is   a   most   commonly 

mutated   gene   among   the   key 

GD, T2D and 

MODY 
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 transcription circuit in 

gastrointestinal cancer of 

mCRPCs which offers more 

AR independent growth and 

resistance and rapid 

development of CRPC (S. 

Shukla et al., 2017). 

● HNF1A regulates the 

glucuronosyltransferase (UGT) 

which can modulate androgen 

activity suggesting AR and 

HNF1A regulated CRPC 

development    (Yun    et    al., 

2017). 

genes related to maturity onset 

diabetes in the young (MODY) 

(Valkovicova et al., 2019). 

● It can trigger the risk of GD and 

T2D (Ding et al., 2022). 

 

NTRK1 ● NTRK1 is reported in fusion 

with IRF2BP2 gene 

translocation in PCa (Yeh et 

al., 2019). 

● It is also found playing a role 

in tumour progression together 

with NGF by involving into a 

loop of autocrine signaling in 

prostate cells (Pierotti & 

Greco, 2006). 

● It is related to a poor prognosis 

and downregulated in PCa 

patients (Bagherabadi et al., 

2022). 

It is identified in serving as a 

potential biomarker of diabetes 

(type 3 diabetes) caused by 

Alzheimer disease (Pandiyan et al., 

2021). 

type 3 diabetes 

TSC2 In PCa cells isoform of TSC2 

(TSC2A) functions as an active 

target of androgen receptors and 

is down regulated. Its down 

regulation    stimulates cell 

proliferation (Munkley et al., 

2014). 

TSC2 regulates mTORC1 by 

inhibiting it which decreases 

insulin resistance. Further for the 

action of metformin both TSC2 and 

RAPTOR is required to inhibit 

mTORC1suggesting TSC2 

importance in metformin pathway 

and diabetes management (van 

Nostrand et al., 2020). 

T2D, tuber sclerosis 

and diabetic 

neuropathy 

ABCA4 No association found No association found Stargardt disease 

SDHB ● It forms one of the catalytic 

domains of succinate 

dehydrogenase (SDH) in a 

matrix of mitochondria. SDHB 

It is down-regulated in prediabetes 

and β cells of T2DM which reduces 

the activity of   SDH enzymes and 

leads to development of type-2- 

Mitochondrial 

dysfunction and 

T2DM 
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 is strongly linked to cancer 

development. Its inhibition 

causes succinate accumulation 

as result of respiration and 

TCA cycle impairment. This 

succinate accumulation inside 

PCa is linked to PTEN deletion 

(Sant’anna-Silva et al., 2021). 

diabetes (S. Lee et al., 2022).  

NR2E3 No association found Diabetes can negatively affect the 

clock system of the retina and the 

output of the circadian cycle. 

Diabetes is found to alter clock but 

not at the gene expression level of 

NR2E3 (Vancura et al., 2021). 

Retinopathies 

GJB2 ● GJB2 is downregulated in PCa 

and helps in transport and cell- 

cell signaling in CRPC cells 

resistant to docetaxel (Marín- 

Aguilera et al., 2012). 

● It is one of the frequently 

mutated genes in PCa. It codes 

a gap junction protein, and it 

has been assumed that it might 

promote in metastasis of PCa 

(Tang et al., 2022) 

It is observed that the GJB2 is 

mutated in those who have hearing 

loss and maternally inherited 

diabetes (Frei et al., 2005). 

Inherited diabetes 

and Hearing loss 

SMPD1 Down regulated in PCa Found upregulated and associated 

with diabetic related and alcoholic 

cardiomyopathy (R. Liu et al., 

2023) 

Alcoholic 

cardiomyopathy and 

cardiac dysfunction 

PKP2 It is one of the most commonly 

distributed desmosomal plaque 

proteins found in both basal and 

luminal cells present in 

pseudostratified epithelium of the 

prostate gland. However, its 

expression never changes with 

increasing tumor grade which 

suggests its indirect role in PCa 

(Breuninger et al., 2010). 

It is interrelated with diabetes and 

arrhythmic cardiomyopathy 

(Mathiyalagan et al., 2014). 

Diabetic retinopathy 

and arrhythmic 

cardiomyopathy 

PDHX No association Plays role in glucose metabolism. 

MiRNA-26a inhibits PDHX to stop 

citric acid cycle pyruvate to convert 
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  into acetyl coenzyme A (B. Chen et 

al., 2014). 

 

CACNA2D4 It is rarely identified because of 

epigenetic mutation and found 

related to PCa specific mortality 

(PCSM). Its promoter gets 

methylated and downregulated 

and suggested to be a potential 

biomarker (Pidsley et al., 2022). 

It plays a role in diabetes induced 

atherosclerosis (L. Wang et al., 

2019). 

Cardiovascular 

diseases and 

atherosclerosis 

TOR1AIP No association, not reported till 

now in PCa 

Mutated in distal myopathy 

(Finsterer & Stöllberger, 2016). 

Distal myopathy and 

Alzheimer disease 

FGD4 It is upregulated in PCa cells and 

expressed as the advancement of 

the PCa. FGD4 basically helps in 

PCa cell migration and 

expression of mesenchymal cell 

markers (Bossan et al., 2018). 

● Found mutated in 

Amyotrophic lateral sclerosis 

of the Chinese population and 

associated with Charcot- 

Marie Tooth disease with 

diabetes (Wei et al., 2019). 

● Also, reported in mutated 

esophageal squamous cell 

carcinoma with a history of 

diabetes (Ying Yang et al., 

2021). 

Amyotrophic lateral 

sclerosis 

RNPC3 It is a minor component of 

spliceosomes and its expressions 

counterparts the tumor 

progression. Its expression is 

lower in hormone sensitive cells 

of PCa and benign tumors, 

intermediately expressed in 

CRPC. However, hyper- 

expressed in metastatic 

neuroendocrine PCa its 

expression (Augspach et al., 

2021). 

It encodes spliceosomes and is 

found linked to growth hormone 

deficiency in children who had 

diabetes insipidus (Murray & 

Clayton, 2015). 

Growth hormone 

deficiency 

POLR3B No clear association No clear association  

TMX2 No association TMX2 regulates redox signaling 

where endoplasmic reticulum (ER) 

and mitochondria contacts called 

Mitochondrial-associated 

endoplasmic reticulum, MAMs (site 

for influencing energy production). 

In the liver these MAMs increase in 

Neurodevelopmental 

disorders 
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  obesity and insulin resistance. Over 

formation of MAMs leads Ca2+ 

load in mitochondria and 

mitochondrial  dysfunction. 

Mutation in  TMX2-like 

transmembrane ER redox genes 

causes neurodevelopmental 

disorders (N. Sharma et al., 2020). 

 

CTNND1 No association CTNND1 relates to diabetes by 

influencing the migration of 

neutrophil cells in diabetic skin 

wounds (Kang et al., 2021). 

Diabetic skin wounds 

CLN5/FBXL3 A glycoprotein which is 

downregulated in PCa (Shah et 

al., 2015) 

● CLN5 is downregulated in 

diabetic foot and down 

regulated in DM (W. Zhao et 

al., 2020). 

● Inhibition of CLN5 can cause 

suppression of Wnt-pathway 

leading to in vitro endothelial 

cell formations and retinopathy 

(J. Chen et al., 2011). 

DM, diabetic foot 

and retinopathies 

PLCE1 PLCE1 mutations are associated 

with high grade PCa (Edwards et 

al., 2013). Found commonly 

mutated in stomach cancer (H. 

Sun et al., 2015) 

It is a podocyte cell marker of 

glomeruli whose expression 

decreases in diabetic neuropathy 

and diabetic kidney disease (Eadon 

et al., 2022). 

Diabetic neuropathy 

and diabetic kidney 

disease 

CACNA1C Its lower expression could be a 

potential biomarker for PCa 

(Phan et al., 2017). 

CACNA1C is a calcium voltage- 

gated channel subunit and its 

polymorphisms linked to 

hypertension and coronary artery 

disease (Beitelshees et al., 2009). It 

is also associated with diabetic 

cataract by calcium channels 

Coronary artery 

disease and diabetic 

cataract 

PTEN Most frequently mutated in PCa 

and brings altering the PI3K 

signaling (Wise et al., 2017) 

(Jamaspishvili et al., 2018). 

It is found responsible for DN and 

in the PI3K pathway it regulates 

Akt and Fak (Yan et al., 2019). 

Diabetic neuropathy 

DOCK7 DOCK7 gene fusion with OLR1 

gene was found in promoting 

PCa metastasis and its recurrence 

(Y. P. Yu et al., 2023). 

DM patients who have dyslipidemia 

as comorbidity with risk of 

developing CVDs have DOCK7 

mutations in Chinese population 

(Kong et al., 2015). 

Dyslipidemia 
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SZT2 SZT2 is one of the protein 

complexes which plays a role in 

mTORC1 signaling (Yin et al., 

2021) 

This gene is downregulated in the 

plasma of CVD and also linked to 

epilepsy and development of the 

human brain. Loss of SZT2 causes 

the increase in mTORC1, important 

for diabetes and cardiac systems 

(Lygirou et al., 2018). 

CVD 

NDUFV1 NDUFV1 is supposed to be one 

of the 11 protein panels which 

can differentiate patients with 

low grade PCa from high grade 

(Kawahara et al., 2019). 

No Specific associations  

THSD1 No association No association  

 

Rare insights of MPZ, UBR1, PGM1, COQ8A, AGL and PDE2A anomalies associated 

with diabetes and PCa: 

 

MPZ protein is produced by Schwan cells and is essential for retaining the firmness and 

integrity of myelin sheaths in peripheral nerves (Haddad et al., 2022). In diabetic patients, 

phospholipids, cholesterol, and fatty acid content of myelin gets altered, affecting the fluidity 

of the membrane and leading to a condition called diabetic neuropathy. Myelin protein zero 

coding gene MPZ is seen suppressed in diabetic patients (Cermenati et al., 2012). Type 1 

diabetes-associated myelin abnormalities lower the signal conduction velocity in nerves of the 

peripheral nervous system (Cermenati et al., 2012). In a study on non-obese T2DM mice 

(MKR) it has been found that metformin can restore the MPZ level by regulating the ROS 

produced in hyperglycaemic conditions suggesting a correlation of Metformin, ROS, and 

alteration in MPZ protein (Haddad et al., 2022). Therefore, it has been marked as the 

biomarker of diabetic peripheral neuropathy (Haddad et al., 2022). 

 

The gene UBR1 codes ubiquitin ligase protein and plays a role in stabilizing a protein called 

adipose triglyceride lipase (ATGL) which works as a rate-limiting lipase, crucial for the 

breakdown of lipids. In a study, UBR1 and 2 were found in reducing the level of ATGL by 

ubiquitination and degradation and promoting lipid storage (Bingham, 2023). This regulation 

of ATGL is important for maintaining a cellular level of lipids in obese patients (Bingham, 

2023). However, in PCa cell lines like PC3, it has been observed to destabilize and inhibit a 

pro-apoptotic truncated bone marrow kinase (BMXΔN) of bone marrow kinase (BMX) by 

ubiquitination. BMX in a study was found to get cleaved into its truncated form which makes 
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the PCa cells more sensitive towards apoptosis as a response to several apoptosis stimuli 

(Eldeeb & Fahlman, 2016). 

 

Phoshoglucomutase (PGM1) is a glycogen metabolism enzyme and it catalyzes the 

transformation of glucose-1-phosphate to glucose-6-phosphate in a reversible manner. Among 

all the isoforms, PGM1 is majorly (90-95%) is responsible for its activity (Gloria-Bottini F et 

al., 2019). PGM1 has been shown to have an important function in regulating glucose 

metabolism and cancer development in different types of cancers. PGM1 has been related to 

cell proliferation and metabolism (Bo Cao et al., 2021). The maternal-effect is more 

significant on T2DM susceptibility in offspring. This effect has been observed in association 

with polymorphism in phoshpoglucomutase when transmitted from a type 2 diabetic mother 

(Akbarzadeh et al., 2022). 

 

An unusual kinase-like protein called COQ8A facilitates the production of coenzyme Q, a 

crucial antioxidant and cofactor for cells. COQ8A's mode of action remains unclear, in part 

due to the lack of small molecule tools to probe its function. The absence of small molecule 

instruments to investigate the function of COQ8A contributes to the uncertainty surrounding 

its method of action (N. H. Murray et al., 2022). 

 

COQ8A is an important lipid soluble electron transporter, however in diabetic 

cardiomyopathies it has been observed that its level decreased therefore leading to impaired 

production of mitochondrial ATP (Gomes et al., 2022). 

 

Genes involved in amylo-alpha-1, 6-glucosidase activity, 4-alpha-glucanotransferase activity, 

were downregulated in DPH (Diabetes with parental history) with respect to obese people 

(Das & Rao, 2007). As a part of CD44 pathogenesis in cancer, those cells which have lost the 

AGL gene, CD44 interacts with hyaluronic acid (HA) which increases the hyaluronic acid 

synthase 2 (HAS2). Eventually producing more HA and CD44-HA interactions involved in 

inflammatory responses (Sottnik & Theodorescu, 2016). 

 

PDE2A is one of the 100 isoforms of superfamily phosphodiesterases (PDEs) is known to be 

involved in degradation of cAMP and cGMP, expressed in different tissues (brain, liver, 

heart, lung etc.). Different isoforms are expressed within different sites of cells and 

consequently are regulating differentially cAMPs local level at specific locations, 

determination of which PKA to be targeted, and its downstream signaling. One of its three 

variants (PDE2A1, PDE2A2 and PDE2A3), PDE2A2, localized in mitochondria controls the 
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production of ATP by regulating cAMP generation from the plasma membrane. Impaired 

cAMP signaling is linked with several diseases (Monterisi et al., 2017). 

 

4.1.2.6. Correlation of sequencing results using meta-analysis: 

4.1.2.6.1. Comparison with ClinVar data of PCa: 

Among cohort 5 significant variants are seen as common with ClinVar Datasets of PCa; 

rs148341992, rs199620842, and rs186753161 which were benign and 2 were pathogenic 

rs780919805 and rs80359668 (Table 4.20) (Figure 4.16). 

 
Table 4.20: ClinVar and common of 5 samples 

 

 
Gene Reference 

ID 

MAF Clinical 

Significance 

Varian 

t type 

Mutation 

type 

Allele 

change 

BRCA 2 rs14834199 

2 

0.00129 

(G) 

Benign SNV Intron 

variant 

A>G 

ITGB4 rs19962084 

2 

0.00619 

(G) 

Benign SNV Downstrea 

m transcript 

variant 

C>G 

CTPS1 rs18675316 

1 

0.000114/ 

16 (A) 

Benign SNV Downstrea 

m transcript 

variant 

G>C,T 

BRCA 2 rs78091980 

5 

0.000004/ 

1 (T) 

Pathogenic 1bp 

dup 

Synonymou 

s stop gain 

variant 

 

BRCA 2 rs80359668  Pathogenic  Frame 

shift 

 

Note:   The table lists significant variants identified common in our cohort and ClinVar data 

of PCa. Each entry include the gene name, reference SNP (rs) ID, minor allele frequency 

(MAF), clinical significance, functional consequence, allele changes. The mutations includes 

3with benign and 2 with pathogenic significance (Last Accessed on April2, 2024). 
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Figure 4.16: Venn plots of comparison of each case sample variant with the ClinVar data of 

PCa, diabetes and obesity. Sample 2, 3, 4 and 5 each showed 1 commonality with ClinVar 

diabetes. Sample 2 showed 2, Sample 3 showed 1, Sample 4 showed 2 common variants with 

PCa ClinVar. In case of ClinVar obesity, Sample 2 has 1 commonality 

 
4.1.2.6.2. Comparison of CAPCI with PRACTICAL consortium yielded 

significant variants 

In total 866 variants were found similar in our cohort and PRACTICAL consortium data sets. 

The prostate cancer association group to investigate cancer associated alternations in the genome, 

(PRACTICAL) consortium was established by several scientific collaborations in 2008 with the 

goal to identify genes increasing the risk of inherited PCa. The consortium aimed to combine 

data of different studies to provide a reliable assessment of the risk associated with these genes, 

and to validate new findings. The PRACTICAL involves 134 different research groups from 

Europe, North America, Asia, Australia, South America, and Africa. 

Among which very few were clinically verified and benign. Those variants were rs506504 

(CHEK1), rs117773969 (TUBGCP4), rs6416927 (BRCA1), rs1800058 (ATM), rs1793959 

(COL2A1), rs1800574 (HNF1A), and rs61750984 of PARP1 which falls under the significant p- 

value (less than or equals to 0.05) with MAF 0.00419 (A) (Figure 4.17) (Table 4.21). 

https://www.ncbi.nlm.nih.gov/snp/rs61750984
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Figure 4.17: Venn plots for cohort and PRACTICAL consortium. A total of 866 variants were 

common with PRACTICAL consortium data from our case samples. 

 
Table 4.21: Variants common with PRACTICAL Consortium 

 
Gene Reference ID MAF Clinical 

significance 

Functional 

Consequence 

Allele 

change 

CHEK1 rs506504 A=0.014054/70 Benign non coding 

transcript 

missense 

variant 

A>C,G,T 

TUBGCP4 s117773969 A=0.00203/10 Likely 

benign 

intron variant G>A 

BRCA1 rs6416927 G=0.003629/509 Benign intron variant G>A,C,T 

ATM rs1800058 T=0.006715/34 Benign downstream 

transcript 

variant, 

missense 

variant 

C>G,T 
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HNF1A rs1800574 T=0.020649/2896 Benign missense 

variant 

C> A,G,T 

COL2A1 rs1793959 T=0.03654/183 Benign intron variant T>A.C.G 

PARP1 rs61750984 0.00419 (A) Benign synonymous 

missense 

variant 

G>A,T 

Note: This table presents variants identified in common with PRACTICAL Consortium, 

detailing gene name, reference SNP (rs) ID, minor allele frequency (MAF), clinical 

significance, functional consequence, and allele change. The majority of variants listed, 

including those in CHEK1, BRCA1, and ATM are classified as benign or likely benign, 

highlighting the genetic diversity and low pathogenic impact of these variants in the studies 

population (Last Accessed on April2, 2024). 

 
4.1.2.6.3. Comparison with GWAS Central PCa: 

8 variants of unknown significance were seen as similar to GWAS central data from our cohort 

rs2230552 (G= 0.290935/1457), rs12421354 (T=0.152955/766, ROBO4), rs4924675 

(A=0.123306/17273, CAPN3), rs7920517 (A=0.425319/2130), rs1243647 (A=0.247005/1237, 

RNASE9), rs4245739 (C=0.214058/1072, MDM4), rs2901964 (G=0.335736/46989, 

CELA2A;LOC105376767), rs636291 (G=0.455272/2280, PEX14) and a clinically verified, 

with significant risk factor MAF 0.459445, MSMB) was also seen similar (Figure 4.18) (Table 

4.22). 

 
Table 4.22: Variants common with GWAS central data of PCa 

 
Gene Reference ID MAF Variant type Allele 

change 

MSMB rs10993994 A= 0.459445/64348 Upstream transcrip 

t variant 

A>G 

CCT6B rs2230552 G=0.290935/1457 Missense upstream 

transcript variant 

A>C,G 

ROBO4 rs12421354 T=0.152955/766 Upstream 

transcript variant 

C>A,T 

CAPN3 rs4924675 A=0.123306/17273 Upstream 

transcript variant 

G>A 

Gene not rs7920517 A=0.425319/2130  C>G,T 

https://www.ncbi.nlm.nih.gov/snp/rs61750984
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specified     

RNASE9 rs1243647 A=0.247005/1237 Missense variant A>C,G 

MDM4 rs4245739 C=0.214058/1072 Downstream 

transcript variant 

C> 

A,G,T 

CELA2A; 

LOC105376 

767 

rs2901964 G=0.335736/46989 Intron variant C>G,T 

PEX14 rs636291 G=0.455272/2280 Upstream 

transcript variant 

G>A 

Note: The table summarizes variants associated with PCa as reported in the GWAS central 

database. Each entry includes gene name, reference SNP (rs) ID, minor allele frequency 

(MAF), clinical significance, variant type, and allele change. The high MAF values in genes 

underscore their potential relevance in the genetic predisposition to PCa (Last Accessed on 

April2, 2024). 

 

Figure 4.18: Commonalities with GWAS data sets of PCa. 6 variants in sample 2, 2 variants in 

sample 3, 2 variants in sample 4 and 5 variants were found common with GWAS Central data 

of PCa 
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4.1.2.6.4. A suspicious mutation of SLC16A13 discovered on comparison with 

GWAS central Diabetes Datasets: 

36 variants were identified commonly with GWAS central Diabetes viz. rs3729842, rs689, 

rs2476601, rs757110, rs5215, rs846111, rs2298632, rs1805096, rs5219, rs4148646, rs5213, 

rs657317, rs2275620, rs3740878, rs11037909, rs2271586, rs10509201, rs10741243, 

rs3184504, rs883079, rs2259816, rs1060105, rs1800574, rs11597086, rs1504907, rs1775368, 

rs12029454, rs3101336, rs2934381, rs937254, rs312457, rs1058018, rs781852, rs781831, 

rs10278 and rs2032844. Rs2476601 of PTPN22 (A=0.068394/9585), rs657317 of 

LOC105369526 (A=0.0454/525), rs1800574 of HNF1A (T=0.020649/2896), rs312457 of 

SLC16A13 (G=0.033428/797) (Figure 4.19) (Table 4.23). 

 

Figure 4.19: Commonalities with GWAS data sets of diabetes. 24 variants in sample 2, 18 

variants in sample 3, 20 variants in sample 4 and 11 variants in sample 5 were found common 

with GWAS Central data of Diabetes 

Table 4.23: Variants common with GWAS central Diabetes 
 
 

Gene Reference ID Clinical 

Significance 

MAF 

TNNT2 rs3729842 Benign A=0.158499/22201 
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INS rs689 Benign A=0.32427/9040 

PTNP22 rs2476601 Benign A=0.068394/9585 

ABCC8 rs757110 Benign C=0.280648/39303 

KCNJ11 rs5215 Benign C=0.286488/40137 

RNF207 rs846111 - C=0.194283/27198 

TCEA3 rs2298632 - T=0.401959/56312 

LEPR rs1805096 Benign A=0.431398/60363 

KCNJ11 rs5219 Likely-benign, 

drug-response 

T=0.279516/39187 

ABCC8 rs4148646 - C=0.284537/39883 

KCNJ11 rs5213 BENIGN C=0.26258/1315 

LOC105369526 rs657317 - A=0.0454/525 

CYP2C8 rs2275620 - A=0.422025/105275 

EXT2 rs3740878 BENIGN C=0.238554/33409 

EXT2 rs11037909 BENIGN C=0.238554/33409 

ART5 rs2271586 - T=0.299521/1500 

Gene Not Specified rs10509201 - C=0.488506/68428 

TCERG1L rs10741243 - C=0.188898/946 

SH2B3 rs3184504 - G=0./0 

T=0.332057/46498 

EXT2 rs883079 BENIGN C=0.238554/33409 

HNF1A rs2259816 - T=0.358826/1797 

SBNO1 rs1060105 - T=0.161355/22602 

HNF1A rs1800574 BENIGN T=0.020649/2896 

CHUK rs11597086 - C=0.293409/41109 

PLEKHG7 rs1504907 - G=0.147856/27309 

LOC105378797 rs1775368 - A=0.290027/40558 

NOS1AP rs12029454 - A=0.20641/28904 
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LOC105378797 rs3101336 - T=0.383145/53641 

NOTCH2 rs2934381 - A=0.171048/23959 

GCOM1 (Varview), 

MYZAP (Varview) 

rs937254 - A=0.467277/65401 

SLC16A13 rs312457 - G=0.033428/797 

UBE2Z rs1058018 - C=0.409629/102273 

ZZEF1 rs781852 - A=0.49508/69330 

ZZEF1 rs781831 - C=0.452122/113516 

CALCOCO2 rs10278 - G=0.324753/45429 

TTLL6 rs2032844 - A=0.265422/37115 

Note: This table lists genetic variants common with GWAS central data of diabetes. Each 

entry includes gene name, reference SNP (rs) ID, minor allele frequency (MAF), clinical 

significance, and allele change. Majority if these variants are classified as benign suggesting 

they may not contribute significantly to PCa. Variants exhibiting high MAF indicated a more 

common occurrence in the population. The clinical significance of some variants remains 

unspecified, highlighting the need for further research (Last Accessed on April2, 2024). 

 
4.1.2.6.5. Comparison with ClinVar Diabetes: 

On comparing our cohort with ClinVar diabetes, we got a synonymous rs370887875 and a 

nonsynonymous missense rs1800450 as common. Two mutations, 1 intron variant 

(rs148341992) and downstream transcript intron variant (rs199620842) from our cohort were 

seen present in both ClinVar datasets of PCa and diabetes. Further, a splice acceptor variant 

(rs3589051) was identified common in ClinVar datasets of obesity also (Table 4.24) (Figure 

4.16). 

Table 4.24: Common Variants common with ClinVar diabetes 

 
Gene Reference ID MAF Clinical Significance 

MYRF rs370887875 0.00719 (T) Benign 

MBL2 rs1800450 0.12201 (T)) Conflicting interpretations of 

pathogenicity, benign, uncertain 

significance 

BRCA2 rs148341992 0.0129(G) Benign 

ITGB4 rs199620842 0.00619 (G) Benign 
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MPO rs35897051 0.00080(G) Likely pathogenic and pathogenic 

Note: The table summarizes variant common with ClinVar diabetes data. Each entry includes 

gene name, reference SNP (rs) ID, minor allele frequency (MAF), clinical significance, and 

allele change (Last Accessed on April2, 2024). 

 

4.1.2.6.7.   Mutation in our PCa Cohort: 

Using the cBioportal we mapped the mutated genes to the PCa datasets and found the 

different mutation regions on each gene related to the PCa. Each protein change and the 

region is represented by upright lollipop marking is on the results (Figure 4.20 a-as) 

 

(a) ABCA4 
 

(b) ABCC9 

 

(c) AGL 
 

(d) APOA4 
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(e) ATM 
 

(f) BIVM-ERCC5 

 

(g) BLM 
 

(h) BRCA1 
 

(i) BRCA2 

 

(j) C11ORF65 
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(k) CACNA1C 
 

(l) CACNA2D4 
 

(m) CLN5 
 

(n) DOCK7 

 

(o) ERCC5 
 

(p) FBXL3 
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(q) FGD4 
 

(r) GJB2 
 

(s) HNF1A 
 

(t) ITGB4` 

 

(u) MPO 
 

(v) MPZ 

 

(w) MYO15A 
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(x) MYRF 

(y) NDUFV1 

 

(z) NOC3L 
 

(aa) NTRK1 
 

(ab) PDE2A 

 

(ac) PDHX 



134 
 

 

 
 

 

(ad) PGM1 
 

(ae) PKP2 

 

(af) PLCE1 
 

(ag) POLR3B 
 

(ah) PTEN 

 

(ai) RNPC3 
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(aj) SDHB 
 

(ak) SEMA4A 
 

(al) SMPD1 
 

(am) SZT2 

 

(an) THSD1 

(ao) TMX2 
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(ap) TMX2-CTNND1 

(aq) TOR1AIP1 

 

(ar) TSC2 
 

(as) UBR1 

Figure 4.20: All the results images (a-as) of cBioportal mutational analysis done mapping the 

identified genes to the PCa datasets. Upright lollipops indicate the position of the different 

protein changes caused by mutations related to PCa in that particular region. PTEN, BRCA2, 

ATM, MYO15A, CACNA1C, ABCC9, TSC2, SZT2 and PLCE1 are high in protein changes. 

 
4.1.2.3. Results of Sanger validation: 

 
As we considered heterozygous mutations, a few variants identified from our cohort study 

were validated using Sanger chemistry, viz; MYRF, MYO15A, ATM, ITGB4, GJB2, MPO, and 

HNF1A (Table 4.25). Validated mutation was identified as heterozygous and there 

chromatographs helping in visualization of allele change are obtained and visualized using 

SnapGENE Viewer software (Figure 4.21 a-i). While one mutation was found to be 

homozygous, it wasn't considered it assuming they are not pathogenic. 
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Table 4.25: Analysis and identification of Genotype 

 

Gene name Reference Id Mutation region Genotype observed Remarks 

MYRF rs370887875 c.3207C>T CT Heterozygous 

MYO15A rs375290498 c.5925G>A GA Heterozygous 

ITGB4 rs199620842 c.4559-4C>G CG Heterozygous 

ATM rs587779865 c.7456C>T CT Heterozygous 

GJB2 rs111033186 c.457G>A GA Heterozygous 

HNF1A rs1169305 c.1720A>G GG* Homozygous 

MPO rs35897051 c.2031-2A>C AC Heterozygous 

MYRF rs370887875 c.3207C>T CT Heterozygous 

MYRF rs370887875 c.3207C>T CT Heterozygous 

GJB2 rs111033186 c.457G>A GA Heterozygous 

HNF1A rs1169305 c.1720A>G GG+ Homozygous 

 

Note: The table lists observed genetic variants in Sanger sequencing, including gene name, 

reference IDs, mutation regions, genotypes and remarks on allele inheritance (Heterozygous 

and Homozygous) (Last Accessed on April2, 2024).. 

 

Figure 4.21 a: Chromatograph of Sanger validated gene GJB2 
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Figure 4.21 b: Chromatograph of Sanger validated gene MPO 
 

Figure 4.21 c: Chromatograph of Sanger validated gene ITGB4 
 

Figure 4.21 d: Chromatograph of Sanger validated gene MYRF 

 

Figure 4.21 e: Chromatograph of Sanger validated gene ATM 
 

Figure 4.21 f: Chromatograph of Sanger validated gene MYRF 
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Figure 4.21 g: Chromatograph of Sanger validated gene HNF1A 
 

Figure 4.21 h: Chromatograph of Sanger validated gene GJB2 
 

Figure 4.21 i: Chromatograph of Sanger validated gene MYRF 

 
 

4.2. To identify and explore the role of lncRNAs as potential targets using 

lncRNA-protein interactions 

 
4.2.1. Molecular Docking and Visualization results: 

 
We have considered the HDOCK web server for the molecular docking studies to identify the 

interactions of receptor-ligands. Among the 11 lncRNAs of them 6 lncRNAs LINC01973, 

FLJ16779, LINC00298, SNHG19, LOC341056, and LINC00662:60 due to the restrictions 
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with sequence with a limit of 5000 residues were unable to perform the interactions and no 

alternate tools are available to consider. We performed docking on 5 lncRNAs (SCARNA10, 

LINC00940, NPBWR1, ANKRD20A9P and TLX1NB) with 28 PCa and AR targeted proteins 

(Refer materials: PCa Causal Proteins, LncRNAs and Androgen Receptors (AR)). Five 

lncRNAs (SCARNA10, LINC00940, NPBWR1, ANKRD20A9P and TLX1NB) with 27 PCa 

proteins except USH2A resulted best confirmers each generated 10 models of which CTNS 

(PDB ID: 5CTG); ANG (PDB ID: 4AOH); CYP1B1 (PDB ID: 3PM0) observed to show 

more stable complex formation (Khilwani et al., n.d.), (Unpublished data). 

 
4.2.1.1. TLXINB and SCARNA10 LncRNA showed highest PCa related genes 

interactions 

The docked complexes of TLXINB-CTNS (PDB ID: 5CTG) with binding energy-322.82 

kcal/mol and interacting residues was identified as Ser177,Lys 176, Trp 304,Asn 322,Asp 

324, Phe 317,Thr 261 as shown in figure (Figure 4.22a); SCARNA10-ANG(PDB ID: 4AOH) 

observed to have the least binding energy -259.38 kcal/mol and interacting residues was 

identified as Gly72, Asn87, Lys89, Ser99, Lys 9, Phy100 as shown in Figure 4.22b; in 

complex NPBWR1-ANG(PDB ID:4AOH) -230.33 kcal/mol and interacting residues was 

identified as Lys41, Gly72, Ser99, Arg146 as shown in Figure 4.22c; in complex 

ANKRD20A9P-ANG (PDB ID: 4AOH)-220.15 kcal/mol and interacting residues was 

identified as Asn 73,Ser 99, Lys 97 as shown in Figure 4.22 d; While the LINC00940- 

CYP1B1 (PDB ID:3PM0) -201.96 kcal/mol and interacting residues were identified as 

Gly72,Ser99,Ile143 as shown in Figure 4.22e. Results are summarized in Table 4.22 

(Khilwani et al., n.d.), (Unpublished data). 
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Figure 4.22: Representation of 3D visualizations of the complexes using Pymol for the 

potential 5-lncRNAs (TXLNIB, SCARNA10, NPBWR1, ANKRD20A9P, and LINC00940) 

and their interacting residues with 3-PCa proteins (CTNS, ANG, and CYP1B1) (a-e). 

 
 

Table 4.26: The potential candidate 5-lncRNAs’ interactions with 3-PCa proteins (PDB id) 

and binding energies, RMSD and interacting residues were summarized 

 

 

S. No. 

 

LncRNA 

 

PCa Protein 

 

PDB ID 
Docking 

Score 

Ligand 

RMSD (Å) 

 

Interface Residues 

 

 
1 

 

 
TLXINB 

 

 
CTNS 

 

 
7ZKW 

 

 
-322.82 

 

 
57.44 

 

Ser177, Lys 176, Trp 304, 

Asn 322, Asp 324, Phe 317, 

Thr 261 

 

2 
SCARNA 

10 

 

ANG 

 

4AOH 

 

-259.38 

 

482.89 
Gly72, Asn87, Lys89, 

Ser99, Lys 97, Phy100 

 

3 
NPBWR 

1 

 

ANG 

 

4AOH 

 

-230.33 

 

740.84 
Lys41, Gly72, Ser99, 

Arg146 

 

4 
ANKRD 

20A9P 

 

ANG 

 

4AOH 

 

-220.15 

 

803.24 

 

Asn 73, Ser 99, Lys 97 

 

5 
LINC009 

40 

 

CYP1B1 

 

6OYB 

 

-201.96 

 

3095.39 

 

Gly72, Ser99, Ile143 

Note: This table summarizes the interactions between 5 lncRNAs and 3 PCa proteins, 

detailing their PBD IDs, docking scores, ligand root mean square deviation RMSD) and their 

interface residues involved in the interactions. Negative docking scores indicate a favourable 
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binding affinity between the lncRNAs and the proteins, while RMSD values reflect the 

stability of the ligand-protein complex. 

 

4.2.1.2. ANKRD20A9P, SCARNA10 and NPBWR1 lncRNAs showed more AR 

interactions affinity 

 

The docked complexes of 5 lncRNA (SCARNA10, LINC00940, NPBWR1, ANKRD20A9P, 

TLX1NB) with 8 AR targeted proteins (PDB Id: 2Q71, 5V8Q, 4QL8, 2PNU, 5CJ6, 2AM9, 

1E3G, 7KW7) excluding 1E3G and 4QL8 AR proteins against TLXINB and all the docking 

jobs regarding AR 7KW7 with all 5 LncRNAs. We identified least binding energy in 1E3G- 

ANKRD20A9P, 2AM9-SCARNA10, 5V8Q-NPBWR1 with -212--208 Kcal/mol binding 

energy as shown in Table 3. 1E3G-ANKRD20A9P has binding energy of -212.74 kcal/mol, 

with ligand RMSD of 742.99Å and residues are Arg-85,Trp-796,Arg-846 as shown in Figure 

4.23a; 2AM9-SCARNA10 with binding energy of -208.93 kcal/mol, ligand RMSD as 

536.64Å and the interaction residues are Thr755, Arg774, Leu-700 as shown in Figure 4.23b; 

While 5V8Q-NPBWR1 with -208.04 kcal/mol, ligand RMSD 677.49Å of and interacting 

residues was identified as His-917as shown in Figure 4.23c; 2PNU-SCARNA10 with binding 

energy as -201.39 kcal/mol, RMSD 613.81Å and interacting residues Thr-850, Ser-853,Tyr- 

857 as shown in Figure 4.23d; 5CJ6-SCARNA10 complex has binding energy of -197.78 

kcal/mol, RMSD of 631.85Å and binding residues are Trp-796,Leu-797,Pro-868, Thr-918 as 

shown in Figure 4.23e; and 2Q71-SCARNA10 complex showed binding energy of -193.91 

kcal/mol, RMSD of 634.84Å and its binding residues are Gln-919,Gln-792, Tyr-857 as 

shown in Figure 4.23f were visualized the 3D complexes with hydrogen interactions bellow 3 

Å bond distance. While in 4QL8-ANKRD20A9P we have identified the highest binding 

energy of -185.99kcal/mol with 762.89+ Å as ligand RMSD value (Table 4.27) (Khilwani et 

al., n.d.), (Unpublished data). 
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Figure 4.23: Representation of the 3D visualization using Pymol for the complexes of 

potential 5-lncRNAs (TXLNIB, SCARNA10, NPBWR1, ANKRD20A9P, and LINC00940) 

and interacting residues with 7 targeted AR proteins (1E3G, 2AM9, 5V8Q, 2PNU, 5CJ6, 

2Q71, 4QL8) (a-f). 

Table 4.27: The potential candidate 5-lncRNAs interactions with 7-AR proteins (PDB id) and 

binding energies, RMSD and interacting residues were summarized 

 

S. 

No. 

 
LncRNA 

Androgen 

Receptor 

Protein 

Docking 

Score 

Ligand 

RMSD (Å) 

 
Interface Residues 

 
1 

 

ANKRD20A9P 

 

1E3G 

 

-212.74 

 

742.99 

 

Arg-85,Trp-796,Arg-846 

 
2 

 

SCARNA10 

 

2AM9 

 

-208.93 

 

536.64 

 

Thr755, Arg774, Leu-700 

 
3 

 

NPBWR1 

 

5V8Q 

 

-208.04 

 

677.49 

 

His-917 

 
4 

 
SCARNA10 

 
2PNU 

 
-201.39 

 
613.81 

 
Thr-850, Ser-853,Tyr-857 

 

5 

 

SCARNA10 

 

5CJ6 

 

-197.78 

 

631.85 Trp-796,Leu-797,Pro-868, 

Thr-918 

 

6 

 

SCARNA10 

 

2Q71 

 

-193.91 

 

634.84 

 

Gln-919,Gln-792, Tyr-857 

 
7 

 
ANKRD20A9P 

 
4QL8 

 
-185.99 

 
762.89 

 
Trp-796,Gln-792 

Note: This table summarizes the interactions between 7 lncRNAs and 7 ARs, detailing their 

PBD IDs, docking scores, ligand root mean square deviation RMSD) and their interface 

residues involved in the interactions. Negative docking scores indicate a favourable binding 
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affinity between the lncRNAs and the ARs, while RMSD values reflect the stability of the 

ligand-protein complex. 

Our study clearly highlighted that the SCARNA10 is a potential lncRNA which is showing 

lowest binding affinity energy with both PCa protein (ANG) and AR (2AM9). The binding 

score is -259.38 (SCARNA10-ANG) and -259.38 (SCARNA10-2AM9) with interacting 

residues which are suggesting their potency (Figure 4.24) (Khilwani et al., n.d.), 

(Unpublished data). 

 

 
Figure 4.24: Statistical overview of 11 lncRNAs and 3 lncRNAs that are common, of 

which SCARNA10 as potential biomarker using Venny 2.1. 

4.2.2. Common LncRNAs identified through correlation of PCa related lncRNAs 

from RNA-seq study and publically available datasets of T2D lncRNAs: 

On comparing identified 11 lncRNAs (SCARNA10, LINC01973, LINC00940, NPBWR1, 

FLJ16779, ANKRD20A9P, LINC00298, SNHG19, LOC341056, TLX1NB, LINC00662:60) 

discovered in RNA-seq study, we found 9 lncRNAs (SCARNA10, LINC01973, LINC00940, 

NPBWR1, FLJ16779, ANKRD20A9P, LINC00298, SNHG19, and TLX1NB) were common 

with datasets available in T2DB database (Table 4.28). 

 
Table 4.28: List of common PCa related LncRNAs with T2D related lncRNAs datasets 

 
Ensemble Gene 

ID 

Gene 

Symbol 

Biotype Function Reference 

ENSG000002356 

65 

LINC00298 lncRNA Long Intergenic non coding 

RNA with unknown 

function 

(Kenkpen et al., 

2023) 

(Prokopenko et 

al., 2021) 

ENSG000002886 NPBWR1 protein coding Regulatory lncRNA (Stein et al., 
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11    2023) 

ENSG000002363 

11 

TLX1NB lncRNA Neighbouring lncRNA of 

TLX1 gene and regulates in 

chromatin binding, 

modification and 

transcription 

(Verboom et al., 

2018) 

ENSG000002350 

49 

LINC00940 lncRNA Long Intergenic non coding 

RNA, with unknown 

function, and forms triple 

helices in promoter regions 

with AL157886.1 lncRNA 

(KUNKLER et 

al., 2022) 

ENSG000002390 

02 

SCARNA10 snoRNA Small Nucleolar RNA, 

serum lncRNA, regulates the 

transcription and linked to 

PRC2 complex 

(K. Zhang et al., 

2019) 

ENSG000002061 

92 

ANKRD20A9 

P 

unprocessed_ 

pseudogene 

Chromatin remodeling (Tindale, 2018) 

ENSG000002602 

60 

SNHG19 lncRNA Regulation at both 

transcriptional and post- 

translational level 

(G. Y. Zhao et 

al., 2021) 

ENSG000002042 

83 

LINC01973 lncRNA Long Intergenic non coding 

RNA and with unknown 

function 

https://www.gen 

ecards.org/cgi- 

bin/carddisp.pl?g 

ene=LINC01973 

ENSG000002756 

20 

FLJ16779 lncRNA An Uncharacterized lncRNA https://www.gen 

ecards.org/cgi- 

bin/carddisp.pl?g 

ene=FLJ16779& 

keywords=FLJ1 

6779 

Note: This table lists the lncRNAs associated with PCa and their relevance in T2DM. It 

includes the Ensemble Gene ID, gene symbol, biotype, functional annotations, and references 

for each lncRNA. Notably, some lncRNAs exhibit unknown functions, while others are linked 

to chromatin remodeling and regulatory processes. 
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4.3. To perform protein-protein interaction (PPI) network analyses and identify 

pathways associated with T2D and PCa in silico method 

 
4.3.1. Interactome networks using GeneMania for Metadata analysis: 

4.3.1.1. BLM, TMPO and FOXP1 as common interacting partners: 

On applying GeneMANIA to the common genes of PCa and diabetes mellitus data of 

ClinVar, the interactome network showed a common interacting partner among them, which 

is TMPO (Figure 4.25 A.). The interactome network of PP1MB and SFTPC showed some 

commonalities in their interacting partners with other datasets. SFTPC’s interacting partner 

TMEM67 is common with PCa ClinVar data and FOXP1 with diabetes ClinVar data. 

PPM1B’s interacting partner PPP2CA is common with PCa ClinVar data and PPARG is 

common with diabetes ClinVar. TMEM67 is also common among the ClinVar data sets and 

SFTPC, whereas, FOXP1 is found as the common interacting partner of PP1MB, SFTPC, and 

TMEM67 (Figure 4.25). FOXP1 showed genetic interactions with both SFTPC and PPM1B 

(Figure 4.25). However, the rest of the interactome broadly showed physical interactions 

(red) with their functions and pathways involved enlisted from Genecards. 

(www.genecards.org last accessed on May 25, 2022). On the other hand, what was seen as 

interesting is the BLM gene which is found as the only common gene between PCa, and 

diabetes, interacting with both the earlier identified FOXP1 (physical interactions shown in 

red color) and TMPO (co-expression shown in purple color) (Figure 4.25 C-D) (Kour et al., 

2023). 

 
 

http://www.genecards.org/
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Figure 4.25: A. Interactome Network of commonly associated genes (WRN, DNAJC6, RET, 

NF1AND TMEM67) of PCa and diabetes from ClinVar data, TMPO is shown as a common 

interacting partner; B. Interactome network of TMEM67, SFTPC, and PPMIB showing 

mainly genetic interactions (green) with one common FOXP1; C. Interactome network of 

BLM gene found it as the only one common gene between PCa, diabetes, and obesity that is 

interacting with both the earlier identified FOXP1(physical interactions shown in red color) 

and TMPO (co-expression shown in purple color) which can be seen in D. 

 
4.3.2. Interactome networks   using GeneMania   revealed   proteins   with   co- 

expression of 49.23% associated with common pathways : 

Apart from the commonalities of meta-analysis, we also studied the protein-protein 

interaction studies for our cohort mutated gene set also by using GeneMania and prepared the 

PPI network map. Majority of genes showed co-expression of 49.23%, common pathways 

23.71%, genetic interactions 9.10%, co-localization 8.32%, physical interaction 7.91% and 

for predictive it was 1.7% (Figure 4.26) (Kour et al., 2023). 

 

Figure 4.26: PPI map of selected Sanger validated gene set. Different color of edges indicates 

different kind of interactions among the proteins viz. Co-expression of 49.23% (purple), 

pathway of 23.71% (sky blue), genetic interactions of 9.10% (green), co-localization of 

8.32% (blue), physical interactions of 7.91% (red) and predicted genes of 1.72% with orange 

color. PPI map indicates majority of genes are co-expressed. 
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4.3.3. Pathway Enrichment of Gene sets from our PCa Cohort: 

4.3.3.1. Kegg Mapper and Kegg Pathway 

The KEGG, a database of signaling pathways is used and we obtained that most of the genes 

are enriched in signaling pathways related to glucose metabolism and insulin resistance 

(Table 4.29). 

Table 4.29: List of pathways in which our input gene set playing role obtained by KEGG 

Mapper and pathway 

 

PATHWAYS PATHWAYS PATHWAYS 

hsa01100 Metabolic 

pathways (9) 

hsa04261 Adrenergic signaling 

in cardiomyocytes (2) 

hsa04142 Lysosome (2) 

hsa04151 PI3K-Akt 

signaling pathway (5) 

hsa04925 Aldosterone 

synthesis and secretion (2) 

hsa05016 Huntington disease 

(2) 

hsa05165 Human 

papillomavirus infection 

(4) 

hsa05166 Human T-cell 

leukemia virus 1 infection (2) 

hsa04015 Rap1 signaling 

pathway (2) 

hsa05412 Arrhythmogenic 

right ventricular 

cardiomyopathy (4) 

hsa00190 Oxidative 

phosphorylation (2) 

hsa04260 Cardiac muscle 

contraction (2) 

hsa05410 Hypertrophic 

cardiomyopathy (3) 

hsa04932 Non-alcoholic fatty 

liver disease (2) 

hsa04068 FoxO signaling 

pathway (2) 

hsa05415 Diabetic 

cardiomyopathy (3) 

hsa00500 Starch and sucrose 

metabolism (2) 

hsa05230 Central carbon 

metabolism in cancer (2) 

hsa05208 Chemical 

carcinogenesis - reactive 

oxygen species (3) 

hsa04071 Sphingolipid 

signaling pathway (2) 

hsa05202 Transcriptional 

misregulation in cancer (2) 

hsa05200 Pathways in 

cancer (3) 

hsa04210 Apoptosis (2) hsa05012 Parkinson disease 

(2) 

hsa05022 Pathways of 

neurodegeneration - 

multiple diseases (3) 

hsa04510 Focal adhesion (2) hsa01524 Platinum drug 

resistance (2) 

hsa05224 Breast cancer (3) hsa04024 cAMP signaling 

pathway (2) 

hsa05131 Shigellosis (2) 
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hsa04714 Thermogenesis 

(3) 

hsa00230 Purine metabolism 

(2) 

hsa04919 Thyroid hormone 

signaling pathway (2) 

hsa04010 MAPK signaling 

pathway (3) 

hsa03460 Fanconi anemia 

pathway (2) 

hsa04022 cGMP-PKG 

signaling pathway (2) 

hsa05020 Prion disease (3) hsa00562 Inositol phosphate 

metabolism (2) 

hsa04950 Maturity onset 

diabetes of the young (1) 

hsa05010 Alzheimer 

disease (3) 

hsa04070 Phosphatidylinositol 

signaling system (2) 

hsa04810 Regulation of actin 

cytoskeleton (1) 

hsa04020 Calcium 

signaling pathway (3) 

hsa04014 Ras signaling 

pathway (2) 

hsa05216 Thyroid cancer (1) 

hsa04115 p53 signaling 

pathway (3) 

hsa04723 Retrograde 

endocannabinoid signaling (2) 

hsa04270 Vascular smooth 

muscle contraction (1) 

hsa03440 Homologous 

recombination (3) 

hsa04150 mTOR signaling 

pathway (2) 

hsa04750 Inflammatory 

mediator regulation of TRP 

channels (1) 

hsa05414 Dilated 

cardiomyopathy (3) 

hsa04921 Oxytocin signaling 

pathway (2) 

hsa05163 Human 

cytomegalovirus infection (1) 

hsa04218 Cellular 

senescence (3) 

hsa05014 Amyotrophic lateral 

sclerosis (2) 

hsa05231 Choline 

metabolism in cancer (1) 

hsa05206 MicroRNAs in 

cancer (3) 

hsa04140 Autophagy - animal 

(2) 

hsa04724 Glutamatergic 

synapse (1) 

hsa04072 Phospholipase D 

signaling pathway (1) 

hsa01250 Biosynthesis of 

nucleotide sugars (1) 

hsa04713 Circadian 

entrainment (1) 

hsa05170 Human 

immunodeficiency virus 1 

infection (1) 

hsa05417 Lipid and 

atherosclerosis (1) 

hsa04211 Longevity 

regulating pathway (1) 

hsa05031 Amphetamine 

addiction (1) 

hsa04720 Long-term 

potentiation (1) 

hsa04360 Axon guidance (1) 

hsa05212 Pancreatic 

cancer (1) 

hsa04924 Renin secretion (1) hsa05205 Proteoglycans in 

cancer (1) 

hsa05168 Herpes simplex 

virus 1 infection (1) 

hsa04910 Insulin signaling 

pathway (1) 

hsa04979 Cholesterol 

metabolism (1) 

hsa05207 Chemical 

carcinogenesis - receptor 

hsa00010 Glycolysis / 

Gluconeogenesis (1) 

hsa04110 Cell cycle (1) 
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activation (1)   

hsa04911 Insulin secretion 

(1) 

hsa00030 Pentose phosphate 

pathway (1) 

hsa04512 ECM-receptor 

interaction (1) 

hsa04927 Cortisol 

synthesis and secretion (1) 

hsa04725 Cholinergic synapse 

(1) 

hsa05218 Melanoma (1) 

hsa00020 Citrate cycle 

(TCA cycle) (1) 

hsa03420 Nucleotide excision 

repair (1) 

hsa04670 Leukocyte 

transendothelial migration (1) 

hsa04722 Neurotrophin 

signaling pathway (1) 

hsa04912 GnRH signaling 

pathway (1) 

hsa00520 Amino sugar and 

nucleotide sugar metabolism 

(1) 

hsa00600 Sphingolipid 

metabolism (1) 

hsa04931 Insulin resistance (1) hsa05213 Endometrial cancer 

(1) 

hsa05032 Morphine 

addiction (1) 

hsa04977 Vitamin digestion 

and absorption (1) 

hsa04740 Olfactory 

transduction (1) 

hsa04726 Serotonergic 

synapse (1) 

hsa05214 Glioma (1) hsa05225 Hepatocellular 

carcinoma (1) 

hsa00052 Galactose 

metabolism (1) 

hsa04935 Growth hormone 

synthesis, secretion and action 

(1) 

hsa04727 GABAergic 

synapse (1) 

hsa01521 EGFR tyrosine 

kinase inhibitor resistance 

(1) 

hsa05235 PD-L1 expression 

and PD-1 checkpoint pathway 

in cancer (1) 

hsa04933 AGE-RAGE 

signaling pathway in diabetic 

complications (1) 

hsa03020 RNA polymerase 

(1) 

hsa04217 Necroptosis (1) hsa04814 Motor proteins (1) 

hsa04975 Fat digestion and 

absorption (1) 

hsa04520 Adherens junction 

(1) 

hsa02010 ABC transporters 

(1) 

hsa05215 PCa (1) hsa04064 NF-kappa B 

signaling pathway (1) 

hsa04728 Dopaminergic 

synapse (1) 

hsa04742 Taste 

transduction (1) 

hsa01200 Carbon metabolism 

(1) 

hsa04934 Cushing syndrome 

(1) 

hsa04152 AMPK signaling 

pathway (1) 

hsa04514 Cell adhesion 

molecules (1) 

hsa04930 Type II diabetes 

mellitus (1) 

hsa04120 Ubiquitin 

mediated proteolysis (1) 

hsa04623 Cytosolic DNA- 

sensing pathway (1) 

hsa05222 Small cell lung 

cancer (1) 
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hsa05222 Small cell lung 

cancer (1) 

hsa04929 GnRH secretion (1) hsa04929 GnRH secretion (1) 

hsa04072 Phospholipase D 

signaling pathway (1) 

hsa01250 Biosynthesis of 

nucleotide sugars (1) 

hsa04713 Circadian 

entrainment (1) 

hsa05170 Human 

immunodeficiency virus 1 

infection (1) 

hsa05417 Lipid and 

atherosclerosis (1) 

hsa04211 Longevity 

regulating pathway (1) 

hsa05031 Amphetamine 

addiction (1) 

hsa04720 Long-term 

potentiation (1) 

hsa04360 Axon guidance (1) 

hsa05212 Pancreatic 

cancer (1) 

hsa04924 Renin secretion (1) hsa05205 Proteoglycans in 

cancer (1) 

hsa05168 Herpes simplex 

virus 1 infection (1) 

hsa04910 Insulin signaling 

pathway (1) 

hsa04979 Cholesterol 

metabolism (1) 

hsa05207 Chemical 

carcinogenesis - receptor 

activation (1) 

hsa00010 Glycolysis / 

Gluconeogenesis (1) 

hsa04110 Cell cycle (1) 

hsa04911 Insulin secretion 

(1) 

hsa00030 Pentose phosphate 

pathway (1) 

hsa04512 ECM-receptor 

interaction (1) 

hsa04927 Cortisol 

synthesis and secretion (1) 

hsa04725 Cholinergic synapse 

(1) 

hsa05218 Melanoma (1) 

hsa00020 Citrate cycle 

(TCA cycle) (1) 

hsa03420 Nucleotide excision 

repair (1) 

hsa04670 Leukocyte 

transendothelial migration (1) 

hsa04722 Neurotrophin 

signaling pathway (1) 

hsa04912 GnRH signaling 

pathway (1) 

hsa00520 Amino sugar and 

nucleotide sugar metabolism 

hsa00600 Sphingolipid 

metabolism (1) 

hsa04931 Insulin resistance (1) hsa05213 Endometrial cancer 

(1) 

hsa05032 Morphine 

addiction (1) 

hsa04977 Vitamin digestion 

and absorption (1) 

hsa04740 Olfactory 

transduction (1) 

hsa04726 Serotonergic 

synapse (1) 

hsa05214 Glioma (1) hsa05225 Hepatocellular 

carcinoma (1) 

hsa00052 Galactose 

metabolism (1) 

hsa04935 Growth hormone 

synthesis, secretion and action 

(1) 

hsa04727 GABAergic 

synapse (1) 

hsa01521 EGFR tyrosine hsa05235 PD-L1 expression hsa04933 AGE-RAGE 
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kinase inhibitor resistance 

(1) 

and PD-1 checkpoint pathway 

in cancer (1) 

signaling pathway in diabetic 

complications (1) 

hsa03020 RNA polymerase 

(1) 

hsa04217 Necroptosis (1) hsa04814 Motor proteins (1) 

hsa04975 Fat digestion and 

absorption (1) 

hsa04520 Adherens junction 

(1) 

hsa02010 ABC transporters 

(1) 

hsa05215 PCa (1) hsa04064 NF-kappa B 

signaling pathway (1) 

hsa04728 Dopaminergic 

synapse (1) 

hsa04742 Taste 

transduction (1) 

hsa01200 Carbon metabolism 

(1) 

hsa04934 Cushing syndrome 

(1) 

hsa04152 AMPK signaling 

pathway (1) 

hsa04514 Cell adhesion 

molecules (1) 

hsa04930 Type II diabetes 

mellitus (1) 

hsa04120 Ubiquitin 

mediated proteolysis (1) 

hsa04623 Cytosolic DNA- 

sensing pathway (1) 

 

Note: This table summarizes the pathways in which the input gene set is implicated, as 

identified through KEGG Mapper analysis. Each pathway is listed alongside the number of 

genes associated with it from input, demonstrating the diverse biological processes and 

signaling pathways influenced by the gene set. These include those pathways related to 

metabolic pathways, cancer, diabetes, and various signaling mechanisms 

On giving the input of “PCa” the KEGG pathway searched and displayed a complex network 

of multiple pathways related to PCa already explored and published in many studies (Figure 

4.27). Looking at the cross talk of pathways, we obtained 5 major pathways involved in PCa. 

These pathways also regulate glucose metabolism and insulin sensitivity. The identified 

pathways are Mutation-inactivated PTEN to PI3K signaling pathway, Loss of NKX3-1 to 

PI3K signaling pathway, Amplified AR to androgen receptor signaling pathway, Mutation- 

activated AR to androgen receptor signaling pathway and Loss of CDKN1B to p27-cell cycle 

G1/S (Table 4.30) 
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Figure 4.27: PCa pathway retrieved from KEGG pathway representing how normal 

prostate epithelium changes to PCa involving oncogenes, tumor suppressors and major 

signaling pathways playing roles like PI3K-Akt signaling, MAPK signaling, p53 

signaling, transcriptional misregulation, hypermethylation, and Cytokine-cytokine 

receptor interaction to bring steroid hormone biosynthesis, genome damage, apoptosis 

inhibitions, tumor growth, cell survival, cell proliferation, cell invasions and impaired G1 

and G2 arrest 

Table 4.30: List of PCa related pathways from KEGG pathway database 

 
Pathway id Pathway involved in PCa 

N00052 Mutation-inactivated PTEN to PI3K signaling pathway 

N00082 Loss of NKX3-1 to PI3K signaling pathway 

N00084 Amplified AR to androgen receptor signaling pathway 

N00085 Mutation-activated AR to androgen receptor signaling pathway 

N00093 Loss of CDKN1B to p27-cell cycle G1/S 

 

 
4.3.3.2. Reactome identified top six significant pathways with focus on DNA 

repair genes Tp53, PALB2, BRCA1, BRCA2 and ATM : 

Pathway enrichment analysis using the reactome tool gave a list of associated pathways but 

we selected the top 6 pathways by filtering on the basis of FDR and p value below 0.05 

(Table 4.31). The top six pathways significantly involved are viz., regulation of transcription 

of DNA repair genes Tp53, defective homologous recombination repair (HRR) due to PALB2 

https://www.genome.jp/entry/N00052
https://www.genome.jp/entry/N00082
https://www.genome.jp/entry/N00084
https://www.genome.jp/entry/N00085
https://www.genome.jp/entry/N00093
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loss of function, Defective HDR through Homologous Recombination Repair (HRR) due to 

PALB2 loss of BRCA2/RAD51/RAD51C binding function, Defective HDR through 

Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function, 

Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of 

BRCA1 binding function, Impaired BRCA2 binding to PALB2 and Defective homologous 

recombination repair (HRR) due to BRCA1 loss of function. ATM, BRCA2 and BRCA1 are 

playing a major role in the identified significant pathways (©2019 TZEH KEONG FOO ALL 

RIGHTS RESERVED, 2019). 

Rarely reported PALB2 mutations are found for hereditary PCa. PALB2 works as a bridge for 

BRCA1 and BRCA2 to form the BRCA complex in Homologous Recombination for DNA 

repair. 83% of its mutations are previously reported in Pancreatic and Breast Cancer and till 

now 0.4% mutations identified related to PCa and none of them are clinically verified yet for 

PCa but for familial pancreatic and breast cancer (DEL DOTTORATO Profssa Laura 

Stronati, 2023). 

Table 4.31: List of pathways related to the gene set using the reactome database 

 

Pathway 

identifier 

 
Pathway name 

Entities p 

Value 

Entities 

FDR 

Submitted 

entities 

found 

 
Mapped entities 

 

 

R-HSA- 

6796648 

 

 

TP53 Regulates Transcription of 

DNA Repair Genes 

 

 

0.0000611 

 

 

 
0.021135 

 

 

ATM;BRCA 

1 

P38398;ENST00 

000278616;ENS 

T00000357654;Q 

13315;ENSG000 

00149311;ENSG 

00000012048 

R-HSA- 

9701193 

Defective homologous 

recombination repair (HRR) due 

to PALB2 loss of function 

 
0.00011 

 
0.021135 

 
ATM;BRCA1;BRCA2 

 

 

R-HSA- 

9704646 

Defective HDR through 

Homologous Recombination 

Repair (HRR) due to PALB2 

loss of 

BRCA2/RAD51/RAD51C 

binding function 

 

 

 
0.00011 

 

 

 
0.021135 

 

 

 
ATM;BRCA1;BRCA2 

R-HSA- 

9704331 

Defective HDR through 

Homologous Recombination 

Repair (HRR) due to PALB2 

 
0.00011 

 
0.021135 

 
ATM;BRCA1;BRCA2 
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 loss of BRCA1 binding function    

R-HSA- 

9709603 

Impaired BRCA2 binding to 

PALB2 

0.000198 
0.027667 

ATM;BRCA 

1;BRCA2 

P38398;Q13315; 

P51587 

R-HSA- 

9701192 

Defective homologous 

recombination repair (HRR) due 

to BRCA1 loss of function 

 
0.000216 

 
0.027667 

ATM;BRCA 

1;BRCA2 

P38398;Q13315; 

P51587 

R-HSA- 

9709570 

Impaired BRCA2 binding to 

RAD51 
0.000916 0.100792 

ATM;BRCA 

1;BRCA2 

P38398;Q13315; 

P51587 

R-HSA- 

187042 
TRKA activation by NGF 0.001361 0.130698 NTRK1 P04629-1;P04629 

R-HSA- 

9701190 

Defective homologous 

recombination repair (HRR) due 

to BRCA2 loss of function 

 
0.002704 

 
0.229832 

ATM;BRCA 

1;BRCA2 

P38398;Q13315; 

P51587 

 
R-HSA- 

5628897 

 

 
TP53 Regulates Metabolic Genes 

 

 
0.005676 

 

 
0.392895 

 

 
PTEN;TSC2 

ENST000003719 

53;P60484;P4981 

5;ENSG0000017 

1862 

R-HSA- 

8982491 
Glycogen metabolism 0.01688 0.50246 AGL;PGM1 

 

R-HSA- 

5693579 

Homologous DNA Pairing and 

Strand Exchange 

 
0.01753 

 
0.50246 

ATM;BRCA 

1;BRCA2 

P38398;Q13315; 

P51587 

R-HSA- 

1296025 

ATP sensitive Potassium 

channels 

 

0.01985 
 

0.50246 
 

ABCC9 
 

R-HSA- 

187687 
Signalling to ERKs 0.02636 0.50246 NTRK1 

 

R-HSA- 

187706 

Signalling to p38 via RIT and 

RIN 
0.02638 0.50246 NTRK1 

 

R-HSA- 

8963889 

Assembly of active LPL and 

LIPC lipase complexes 

 

0.029 
 

0.50246 
 

APOA4 
 

R-HSA- 

9036866 

Expression and Processing of 

Neurotrophins 
0.03609 0.50246 

  

R-HSA- 

167060 
NGF processing 0.03609 0.50246 

  

R-HSA- 

170984 
ARMS-mediated activation 0.0393 0.50246 NTRK1 

 

R-HSA- 

4570571 
Defective RFT1 causes CDG-1n 0.0393 0.50246 
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R-HSA- 

190827 

Transport of connexins along the 

secretory pathway 
0.0393 0.50246 GJB2 

 

R-HSA- 

9675135 
Diseases of DNA repair 0.04722 0.50246 

ATM;BRCA 

1;BRCA2 

P38398;Q13315; 

P51587 

R-HSA- 

165181 

Inhibition of TSC complex 

formation by PKB 

 

0.04889 
 

0.50246 
 

TSC2 
 

R-HSA- 

187015 
Activation of TRKA receptors 0.0066 0.3929 NTRK1 P04629-1;P04629 

R-HSA- 

70221 

Glycogen breakdown 

(glycogenolysis) 
0.0066 0.3929 AGL;PGM1 

 

R-HSA- 

9709275 

Impaired BRCA2 translocation 

to the nucleus 

 

0.00666 
 

0.3929 
 

BRCA2 
 

R-HSA- 

1855204 

Synthesis of IP3 and IP4 in the 

cytosol 

 
0.0077 

 
0.42339 

PTEN;PLCE 

1 

 

R-HSA- 

5674404 

PTEN Loss of Function in 

Cancer 

 

0.00997 
 

0.44876 
 

PTEN 
 

R-HSA- 

5609974 

Defective PGM1 causes PGM1- 

CDG 
0.00997 0.44876 PGM1 

 

R-HSA- 

5678420 

Defective ABCC9 causes 

CMD10, ATFB12 and Cantu 

syndrome 

 
0.00997 

 
0.44876 

 
ABCC9 

 

R-HSA- 

9675136 

Diseases of DNA Double-Strand 

Break Repair 
0.01288 0.50246 

ATM;BRCA 

1;BRCA2 

P38398;Q13315; 

P51587 

R-HSA- 

169893 
Prolonged ERK activation events 0.01331 0.50246 NTRK1 

 

R-HSA- 

8943723 

Regulation of PTEN mRNA 

translation 
0.0138 0.50246 PTEN 

ENST000003719 

53;P60484 

R-HSA- 

5693616 

Presynaptic phase of 

homologous DNA pairing and 

strand exchange 

 
0.0151 

 
0.50246 

ATM;BRCA 

1;BRCA2 

P38398;Q13315; 

P51587 

Note: The table lists the pathways related to the gene set identified using the Reactome 

database. Each pathway is described by its identifier and name, along with statistical 

parameters, including the p-value and false discovery rate (FDR), which indicate the 

significance of the associations. The table also provides information about the entities 

involved in each pathway, including those submitted and mapped, highlighting the relevance 

of specific genes in biological processes such as DNA repair, metabolism, and signaling 

pathways. 
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4.3.3.3. Panther DB Analysis of pathways indicating molecular and biological 

processes 

Panther DB tool is used to annotate genes and analyse their overall pathways, biological and 

molecular functions. The overall pathway analysis showed ATM, PTEN, PLCE1, CACNA1C 

are TSC2 mostly involved in diabetes associated pathways. Figure 4.28 and Table 4.32 

showed the pie chart of overall pathways according to the proportion represented in different 

colours, Table 4.33 Figure 4.29 gave the pie distribution of biological processes and Table 

4.34 and Figure 4.30 molecular processes linked to our gene set. 

 

Figure 4.28: Pie chart distribution of the genes and the related pathways by different colours. 

Major portion represented that the genes are not well explored for the pathway associations 

(purple portion). 

Table 4.32: List of overall pathways and genes playing role in 

 
PATHWAYS GENES 

PI3K Kinase pathway, PTEN 

Inflammation mediated   by   chemokine   and   cytokine   signaling 

pathway 

PTEN AND PLCE1 

Hypoxia response via HIF activation PTEN 

Insulin/IGF pathway-protein kinase B signaling cascade PTEN, TSC2 

p53 feedback loop PTEN and ATM 

p53 feedback loop PTEN and ATM 

Thyrotropin releasing hormone PLCE1 

Histamine H1 signaling PLCE1 

Oxytocin receptor mediated signaling pathway PLCE1, CACNA1C 
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p53 pathway by glucose deprivation TSC2 

Gonadotropin releasing pathway CACNA1C 

Nicotine acetylcholine receptor signaling pathway CACNA1C 

Cadherin CTNND1 

Nicotine pharmacodynamics pathway CACNA1C 

Note: The table outlines the key pathways and their associated genes identified in the Panther 

DB analysis. Pathways include PI3K kinase inflammation signaling and hypoxia response, 

with significant roles played by genes like PTEN, PLCE1, and CACNA1C. 

 

 
Figure 4.29: Pie chart distribution of the genes and the biological processes represented by 

different colours. Majorly gene are involved in cellular processes (green portion) and very 

least are playing role in locomotion (sky) 

Table 4.33: List of Biological processes associated with genes set 

 
Biological processes GENES 

Biological adhesions PKP2, CTNND1 

Biological Regulation APOA4, PLCE1, NR2E3, SEMA4A, DOCK7, HNF1A, 

CACNA1C, NTRK1, PDE2A, ATM 

Cellular process ATM, AGL, PTEN, APOA4, TOR1AIP1, PLCE1, 

UBR1, PKP2, FGD4, NR2E3, SEMA4A, ERCC5, 

DOCK7, HNF1A, MPZ, COQ8A, CACNA1C, RNPC3, 

CTNND1, NTRK1, PDE2A, CLN5, SDHB 

Development PKP2, NR2E3, SEMA4A, DOCK7, MPZ, NTRK1 

Growth SEMA4A 

Localization APOA4, PKP2, SEMA4A, CACNA1C, ABCA4 
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Locomotion SEMA4A 

Metabolic APOA4, PGM1, PTEN, AGL, UBR1, NR2E3, ERCC5, 

HNF1A, COQ8A, RNPC3, NTRK1, PDE2A, SDHB, 

ATM 

Multicellular organismal process APOA4, PKP2, SEMA4A, DOCK7A, MPZ, NTRK1 

Response to stimulus PLCE1, SEMA4A, PDE2A, ATM, NTRK1, ERCC5 

Signaling PLCE1, SEMA4A, NTRK1, PDE2A, ATM 

Note: This table presents a summary of biological processes associated with the specified 

gene set, illustrating the diverse roles these genes play in cellular functions. Each process 

lists the corresponding gene involved, highlighting their contributions to biological adhesions 

regulations, cellular activity, development, growth, localization, locomotion, metabolic 

pathways, multicellular organismal processes, responses to stimuli and signaling mechanisms 

 

 
Figure 4.30: Pie chart distribution of the genes and the molecular processes represented by 

different colours. Majorly gene are involved in catalytic activities (green portion) followed by 

binding activities in blue portion and very less are playing role in molecular adaptor activities 

(yellow) 

Table 4.34: List of Molecular processes associated with genes set 

 
Molecular functions GENES 

ATP dependent ABCA4 

Binding APOA4, PKP2, NR2E3, SEMA4A, ERCC5, 

DOCK7, HNF1A, RNPC3, CTNND1, NTRK1, 

PDE2A, TSC2 

Catalytic POLR3B, TMX2, APOA4, PGM1, PTEN, AGL, 
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 PLCE1, UBR1, RCC5 DOCK7, COQ8A, 

NTRK1, PDE2A, ABCA4, CLN5, ATM, TSC2 

Molecular Adaptor PKP2 

Molecular Function Regulator APOA4, SEMA4A, DOCK7, TSC2 

Molecular Transducer NR2E3, SEMA4A, NTRK1 

Transcription Regulator NR2E3, HNF1A 

Transporter CACNA2D4, CACNA1C, ABCA4 

Note: This table outlines the molecular functions associated with the gene set, categorizing 

them into various processes such as ATP-dependent functions, binding activities, catalytic 

roles, molecular adaptation, regulation, transduction, transcription regulation, and transport 

mechanism. Each function lists the gene involved, emphasizing their contribution to essential 

molecular processes within the biological system. 

 
4.3.3.4. Cytoscape-CytoHubba 

4.3.3.4.1. Top ranking genes showed vivid clustering coefficients for ascertaining 

survival plots 

By applying the clustering coefficients algorithm of plug-in cytoHubba, we screened the top 

10 hub genes for each gene identified in the Meta-analysis. 

The PPI visualization of all the major genes using Cytoscape-cytoHubba revealed a 

significant number of nodes and edges of the topmost stable and highest scored genes in their 

respective networks based on the degree clustering coefficient (Figure 4.31) (Kour et al., 

2023). 
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Figure 4.31: Clustering coefficient networks showing top 10 genes for FOXP1, PPM1B, 

PPARG, TMEM67, TMPO, SFTPC, PPP2CA and BLM genes identified in Meta-Analysis 

 

Taking together the findings of meta-analysis studies and the genes discovered mutated in our 

current study we reformed the clustering coefficients cytoHubba plugged in analysis using 

Cytoscape to co relate the results, identify common pathway related genes and see the 

crosstalk (Figure 4.32). 

 

Figure 4.32: Clustering coefficient networks showing top 10 genes for all 42 mutated genes 

and FOXP1, TMPO and BLM identified from the meta-analysis study. DLD, PDHX, 

NDUFB4, NDUFB7, BLM, UQCRC1, NDUFV1, PARP1, CHEK1 and PTEN are the top 10 

genes that are functioning together. The network analysis of significant genes using the 

Cytoscape-cytoHubba plugin ranked the genes by the clustering coefficient to show the 

hierarchy in high confidence interactions in PPI networks. The network represents the degree 

of clustering coefficient through a color scale ranging from red to yellow based on which we 

can validate the experimental protein targets in the network and prioritize potential candidate 

genes. Clustering PPI networks can be helpful for identifying groups of interacting proteins 

that take part in the same biological process or cooperate together to carry out a particular 

biological function. These candidate genes with highest clustering coefficient are noted in red, 
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high to moderate clustering coefficients are in orange and those with low are shown in 

yellow. Some of the important6 genes were identified through all. The greater the colour the 

more they are connected. 

PTEN: A Modulator of PI3K/AKT pathway (negative) regulating glucose homeostasis, 

insulin sensitivity and tumor development (PCa) 

The pathway enrichment studies show that PI3K/Akt is majorly linked to mutated genes 

(PTEN particular) of PCa and also well-established relations in glucose metabolism and 

insulin regulation pathways. We observed that the link between the PCa and diabetes can be 

established through PTEN, a modulator of PI3K/Akt signaling. 

First, decrease in PTEN expression was seen associated with the worsening of DN. However, 

PTEN also regulates the ETM and TIF where PTEN transcription is further regulated by 

PPARɤ. PPARɤ shows dual regulation i.e., regulates PTEN and through PTEN regulates EMT 

and TIF; which can further regulate AKT and FAK phosphorylation level and FAK 

transcription. PTEN has two distinct phosphatase activities, protein phosphatase (regulates 

cell cycle, proliferation, migration and apoptosis) and lipid phosphatase (regulates cell 

growth, survival, migration and proliferation). Deletion in PTEN in chromosome 10 is a 

tumor suppressor gene. It regulates the PI3K/Akt (pathway which is presented frequently by 

our enrichment analysis) signaling however in DN it is altered. Peroxisome proliferator- 

activated receptors (PPARs) are nuclear hormone receptors (α, β, and ɤ). Tumor studies have 

revealed that the PPARɤ attaches to a PTEN upstream promoter PPRE (peroxisome 

proliferator responsive element) to regulate its expression. As a transcription factor, PPARɤ 

also exhibits both tissue and disease specificity. In exposure to high glucose (25 mmol/L of 

glucose and mannitol), Yan et al. in 2019 observed that the PPARɤ and PTEN expression 

decreased at both mRNA and protein level. High glucose initiates the cell proliferation, 

production of extracellular matrix and trans-differentiation. This suggests in diabetic patients, 

variation in expression of PPARɤ level regulates the PTEN expression. For suppression of 

invasion and migration in metastasis PTEN inhibits FAK expression. PTEN also exhibits the 

dual activity of dephosphorylating FAK and AKT and FAK transcription regulation (Yan et 

al., 2019) Figure 4.33. 

In cancers PTEN is often mutated and dysregulated in PIP3 metabolism in diseases like 

diabetes. Generally, PTEN is called an AKT pathway antagonist by turning PIP3 to PIP2 

which reverses the PI3K effect. Through reversing the PI3K effect it can modulate the 

lipogenesis, glycolysis and other cellular processes. Hence the regulatory balance between 
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PI3K and PTEN is very important for cell survival and its proliferation by regulating AKT 

signaling (via GSK3, FOXO, p53 and mTORC1) (S. L. Smith et al., 2021) (Figure 4.34). 

 
In T2DM, some polymorphism in the 5’-UTR region of PTEN was found associated in a 

Japanese population study. PTEN plays a role in both insulin resistance and sensitivity. On 

stimulation of Insulin receptor by a ligand, the activated β-subunit of IR stimulates the 

autophosphorylation of insulin receptor substrates (IRS) which acts as scaffolds to recruit the 

signaling complexes by phosphotyrosine binding and passes signal to PI3K/AKT to produce 

PIP3. Suppression of PTEN also increases the GLUT4 which are insulin induced glucose 

transporters. Further, its suppression increases the pro and anti-inflammatory conditions in 

obesity associated with IR. Even hypo methylations in the promoter region of PTEN were 

seen in mild T2DM suggesting its potential biomarker for T2DM diagnosis (Khokhar et al., 

2020). 

In response to radiation treatment, the early growth regulated transcription factor EGR1 and 

IGF2 up-regulates PTEN. AN anti-diabetic drug rosiglitazone acts as a selective ligand and 

activate PPARɤ which then binds the two regions of PTEN promoter (PRE1 and PRE2) to 

promote the PTEN upregulation in both normal and cancerous cells. This upregulation goes 

along with the fall in AKT phosphorylation and cell proliferation suggesting the antagonist 

activity of PPARɤ could be better target in treating the cancers. Another up-regulator of 

PTEN is p53 (Tamguney & Stokoe, 2007). 

A cytokine of IR and inflammation called resistin, also up-regulates the PTEN expression. In 

a study on Japanese cohort germline variation was identified in the 5’UTR region of promoter 

and linked with DT2M by increasing PTEN expression and decreasing the PI3K signaling on 

exposure to insulin stimuli (Tamguney & Stokoe, 2007). Further it has been observed that in 

the presence of higher levels of PTEN, glucose and translocation of GLUT4 uptake stops. 

This suggested the importance of PTEN in maintaining the glucose homeostasis (Butler et al., 

2002). 

Glucose homeostasis is also maintained by skeletal muscles and adipose tissues. PTEN 

variant is linked to peripheral insulin resistance. It was observed that the glucose tolerance 

and insulin sensitivity are improved when one allele of PTEN (+/-) is altered or PTEN is 

depleted in in vivo study of lover tissue. This implies that the PTEN is a negative regulator of 

insulin stimulated glucose absorption and insulin sensitivity. Major sites for glucose 

metabolism and insulin sensitivity are skeletal tissues. PTEN expression in skeletal muscle is 

reduced in acute diabetes and rises in insulin resistance or chronic diabetes. Deficiency of 
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PTEN causes fatty liver by hepatocytes however increases the glucose uptake and insulin 

sensitivity increases in the skeletal muscles. Studies have found that the knocked out PTEN in 

muscles controls the degradation of proteins in diabetics by inhibiting ubiquitin-proteasome 

and caspase-3 activation (Shan et al., 2019). 

 

Figure 4.33: Pictorial representation illustrating the difference between the normal 

metabolism and hyperglycaemic (diabetes) situation in PTEN pathway. In normal state the 

PPARG and PPRE both in down signaling pathway stimulates the PTEN which then blocks 

PI3K from activating Akt and can also directly in inhibit Akt to stop the cellular processes 

like cell growth, cell proliferation, cell survival, increase in extracellular matrix and EMT. 

Further PTEN can also inhibit FAK to avoid metastasis and invasions. However, in the 

hyperglycemia when the PPARG expression is lower and hence inactive PTEN fails to block 

the FAK, Akt and PI3K. When antidiabetic drug like rosiglitazone is used it works as agonist 

and raise the level of PPARG and active PTEN to regain the function suggesting molecular 

interconnections of diabetes and PTEN. 
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Figure 4.34: Figure representing the signaling pathway involving few mutated genes 

from our study playing a role in cancer development and diabetes. Blue arrows depicting 

the activating effect and red arrows are for halt in the signaling. 

4.4. Results of urolithiasis: 

 
GeneMANIA analysis revealed 20 other associated genes which are; HRH1, A2M, FGA, 

NPL, ZBTB16, VKORC1L1, IL37, ORAI3, ORAI2, PROZ, PON2, HPRT1,PON3, IL1A, 

CAT, LCTL, IL18BP, KLB, APOA1 and IL1RL2. Based on several network studies till 

date, the identified urolithiasis genes are categorized on their functional grounds such as 

phosphate or calcium regulation (VDR, KL, Calcitonin receptor etc.), calcium sensing 

receptor related to calcium regulation (CLDN14, ORAI1), stone matrix (OPN), stone 

formation inhibitors (SLC13A2, F2), uric acid stone related (CARD8), for stones having 

atazanavir (UGT1A1) and also the anti-inflammatory and antioxidant stress (IL-1, PON1) 

related ones (Figure 4.35). Many genome wide association studies have been performed 

to identify the other candidate genes and their SNPs causing nephrolithiasis (SLC34A1, 

CLDN14, AQP1, DGKH and ALPL). We also checked this from the gene database of 

NCBI by which 22 urolithiasis responsible genes were identified and enlisted and also 

their pathogenic and likely pathogenic SNPs were identified, viz-VDR, IL6, IL1B, SPP1, 

PON1, SOD2, F2, IL1RN, IL18, CASR, PLAU, KL,VKORC1, ORAI1, CP, HSPG2, 

GGCX, CALCR, SLC26A1, APRT, ZNF365 and HOGA1 (Sun et al., 2021). 
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Figure 4.35: A schematic representation of an interaction map of all the 22 urolithiasis and 

other 20 associated genes using GeneMania, forming a network of urolithiasis causal genes 

with other genes. The purple edges show that those genes are co-expressed for example IL-18 

and VDR; CALCR and ZNF365. The blue edges show that they are localized to the same 

organelle (blue edges connected by nodes, viz. HRH1 and IL-6; F2-SPP1). 

Disease-Gene Interactions 

 

 
 

Figure 4.36: Disease gene based network analysis using Phenolyzer. All the edges indicate 

the propensity of interactions. By turning off gene annotation, interactions of all specific 

diseases and input terms; by turning off disease annotation, network of all the genes; Protein- 

protein interaction network of genes from the same gene family; and all genes of same family 

can be analysed. 
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While analysing the gene-disease (gene-phenotype) interaction networks (Figure 4.36), 5 

keywords (disease names) were given, viz. urolithiasis, Hyperuricemia, hyperoxaluria, PCa 

and renal diseases against the searches. In the resultant image, we found an approximate 2000 

genes, among which CREBP was found to be interacting most (Sun et al., 2021). 
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CHAPTER 5: DISCUSSIONS 

 
PCa was ranked fifth greatest reason of mortality in men caused by cancer by 2020 (Sung et 

al., 2021). It is projected to be diagnosed in one in seven American men and one in every 25 

men worldwide (Barsouk et al., 2020). According to India’s most recent Population Based 

Cancer Registries (PBCR) 2020 data, there have been 41,532 cases of PCa overall, with a 

crude rate of 5.7 among males (Sung et al., 2021). Comorbidities are very poorly considered 

in PCa due to which the patient faces a dilemma for definite treatment, if he should go for 

aggressive treatment or not. As a consequence, patients with comorbidity have to go through 

post treatment traumas. As reviewed, the men who are having single comorbidities like 

obesity, alcoholism, smoking and mobility problems are receiving aggressive treatments as 

compared to those who are without comorbidities. The reason for such discrepancy could be 

because of false assumptions by both doctors and patients of long survival period with single 

comorbidity as they are not going to impact much on men and hence neglecting proper 

estimation of mortality while decision making of treatment. However, men who have 

peripheral vascular problems, diabetes with organ damage and chronic obstructive pulmonary 

disease (COPD) and having chances of 10 years of life expectancy over the age of 75 years, 

than aggressive treatment (surgery or radiation therapy) may not be a right option for them 

(Chamie et al., 2012). Moreover, the obese PCa patient would face adverse during or post 

treatment effects and would more likely lead to CRPC. Besides this, obesity can also invite 

other comorbidities like diabetes and cardiovascular diseases (Wilson et al., 2022). Hormonal 

imbalances associated with obesity can also promote PCa progression instead of becoming a 

risk aspect directly (Mistry et al., 2007). Other comorbidities include hypertension and 

urolithiasis. To investigate the association of co-existing medical conditions, particularly, 

diabetes mellitus with PCa, we performed two small prospective studies one with meta- 

analysis study of already published datasets and other with WES of clinical samples of 5 case 

studies. 

Meta-analysis: 

 
We first studied already published datasets (ClinVar data of PCa, diabetes and obesity; 

GWAS Central of both PCa and diabetes; PRACTICAL Consortium datasets; Published WES 

dataset and RNA-Seq dataset from our lab) to check whether candidate genes could be 

considered for precision scale modeling, and therefore we brought this to prediction scale and 

analytics. The analysis revealed several common genetic factors shared among PCa, diabetes 

mellitus and obesity. Specifically, BLM, TMEM67, RFX6 and NUDC found common genes 
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among these conditions when comparing their data from ClinVar. A single variant, 

rs61816761, associated with the FLAG gene, was found common to both obesity and diabetes 

with GWAS Central data of PCa. Our RNA-seq data showed PP1MB and SFTPC as common 

in PCa and diabetes. By using GeneMANIA to commonalities we obtained a network with 

common interacting partners between TMPO and FOXP1. While FOXP1 was found to be a 

common interaction partner of PP1MB, SFTPC and TMEM67, an intriguing finding was that 

the BLM gene was the only common gene between PCa, diabetes mellitus and obesity, 

interacting with both FOXP1 and TMPO. The strength of our study lies in the comprehensive 

analysis of genetic factors in PCa, diabetes mellitus and obesity, as well as its effective 

integration of diverse datasets, identification of common genetic variants, and the application 

of advanced analytical techniques. The current study employed a range of statistical and ML 

algorithms to analyse the data that identified common genetic factors and assessed predictive 

models. The lower RMSE values for specific algorithms in each dataset demonstrated the 

feasibility of using these methods for future research and clinical application. 

NGS-WES Study: 

 
Our study using WES has revealed 44 genes harbouring putative somatic and significant 

mutations. These genes includes MYO15A, BRCA1, BRCA2, HNF1A, ERCC5, ATM, 

SEMA4A, TSC2, ABAC4, SDHB, NR2E3, GJB2, SMPD1, MPZ, PKP2, CACNA2D4, 

TOR1AIP1, FGD4, POLR3B, TMX2, ABCC9, PDHX, UBR1, CLN5, PGM1, COQ8A, AGL, 

CACNA1C, PTEN, PDE2A, DOCK7, SZT2, NDUFV1, TSHD1, PLCE1, CTPS1, ITGB4, 

CHEK1, COL2A1, PARP1, PTNP22, SLC16A13, MYRF and MPO. 

Association of genes with PCa 

 
MYO15A has been identified in our previous study (Gupta et al., 2020) and with the same 

mutation ‘rs375290498’. MYO15A is known for second most causing non-syndromic hearing 

loss (HL) (Vanniya. S et al., 2022). Familial inheritance of mutated MYO15A is associated 

with high severity (Chen et al., 2018). In a study of HL in 61 consanguineous Egyptian 

families’ linkage analysis wherein the majority of variants were identified in MYO15A and 

among which one family had mutated the WFS1 gene causing Wolfram syndrome (WS) and 

the variant was inherited in an autosomal recessive manner. Wolfram syndrome is 

characterized by childhood-onset diabetes mellitus, diabetes insipidus optic atrophy, and 

sensorineural HL SNHL. However, the affected siblings of the same family didn’t express 

any other complication except WS (Budde et al., 2020). Another study was conducted on four 
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South Indian families which were mating assortatively, in which one individual was having a 

history of 10 years of diabetes (Vanniya. S et al., 2022). 

The movement and migration of cells depend on the broad and varied family of molecular 

motors known as myosins (Makowska et al., 2015). A study of W. Zhang et al., in the year 

2022 found MYO15A as a novel contributor in the evolution of a hormone sensitive PCa 

(HSPC) to CRPC (Zhang et al., 2022). Mutation in MYO15A is one of the frequent somatic 

mutations of PCa and commonly related to advanced stage PCa (Zarzour et al., 2020) 

(Mamidi et al., 2019). 

BRCA1 and BRCA2 were also mutated in previous cohort studies. While the link between 

BRCA1 and BRCA2 and PCa remains enigmatic, the genetic alterations identified so far that 

the greatest PCa risk particularly made over the age of 65, are mutations in the BRCA2 gene, 

which is associated with an 8.6 fold increased risk (Castro & Eeles, 2012). BRCA1 holds the 

moderate risk of 1.35-fol for PCa (Oh et al., 2019). Aside from the DNA damage response, 

repair, chromatin modelling, and transcriptional control, BRCA1 has recently been found as 

an AR co-regulator. It may affect another key route in PCa by regulating IGF-1R in an AR- 

dependent manner. BRCA2 may potentially operate as a tumor suppressor in epithelial 

prostate tissue, leading to premalignant prostatic lesions (Castro & Eeles, 2012). 10% of PCa 

are harbouring the ATM mutations in PARP inhibitor sensitive cells and bring more genetic 

instability of PCa cells (Neeb et al., 2021). TSC2 stimulates cell proliferation in PCa 

(Munkley et al., 2014). 

Particularly in the context of tumour aggressiveness, metastasis (bone), and therapeutic 

response (resistance to chemotherapies), ITGB4 appears to be important in PCa. It is more 

abundantly expressed in advanced PCa and correlated with increased motility and 

invasiveness (Wilkinson et al., 2020). ITGB4 also interacts with a glycoprotein, Prostate- 

Specific membrane Antigen (PSMA), and regulates the angiogenesis (Gao et al., 2021). A 

lipid APOA4 transporter found which transports cholesterol and triglyceride gets upregulated 

in mCRPC. Being a lipid transporter it suggested it can connect PCa with CVDs (Kakkat et 

al., 2023). SEMA4A stimulates migration in endothelial cells and EMT to promote metastasis 

(Nkyimbeng-Takwi & Chapoval, 2011) (Liu et al., 2023). GJB2 encodes junction proteins. It 

is a frequently mutated gene in PCa playing a role in transport, cell-cell signaling in castration 

resistant PCa and metastasis (Tang et al., 2022) (Marín-Aguilera et al., 2012). PTEN is a 

tumor suppressor gene; loss of function mutation causes alteration in PI3K signaling and is 

considered as the most frequent driving mutation found in PCa. Its mutation is mostly 

observed in metastasis PCa (Wise et al., 2017) (Jamaspishvili et al., 2018). RNPC3 is a minor 
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component of spliceosomes and its expressions counterparts the tumor progression. Its 

expression is lower in hormone sensitive cells of PCa and benign tumors, intermediately 

expressed in CRPC. However, it is hyper-expressed in metastatic neuroendocrine PCa, its 

expression (Augspach et al., 2021). HNF1A regulates the glucuronosyltransferase (UGT) 

which can modulate androgen activity suggesting AR and HNF1A regulated CRPC 

development (Yun et al., 2017). FGD4 is upregulated in PCa cells and expressed as the 

advancement of the PCa. FGD4 basically helps in PCa cell migration and expression of 

mesenchymal cell markers (Bossan et al., 2018). PKP2, a desmosomal protein, is present in 

both basal and luminal cells of prostate gland stratified epithelium (Breuninger et al., 2010). 

An indirect relation has been suggested but no clear association has been made till now. 

PLCE1 mutations are associated with high grade PCa (Edwards et al., 2013). Found 

commonly mutated in stomach cancer (Sun et al., 2015). DOCK7 gene fusion with OLR1 

gene was found in promoting PCa metastasis and its recurrence (Y. P. Yu et al., 2023). 

Mutation in CACNA2D4 is rarely identified because of epigenetic mutation and found related 

to PCa specific mortality (PCSM). Its promoter gets methylated and downregulated and 

suggested to be a potential biomarker (Pidsley et al., 2022). ERCC5 is linked to increasing 

PCa susceptibility and till now it has been found mutated in Asian populations only (Y. Liu et 

al., 2018). NTRK1 helps in autocrine signaling of prostate cells, is downregulated and causes 

poor prognosis of PCa (Pierotti & Greco, 2006) (Bagherabadi et al., 2022). SZT2 is one of the 

protein complexes which play a role in mTORC1 signaling (Yin et al., 2021). 

Apart from this, few genes which are rarely mutated in PCa are (UBR1, PDE2A, MPZ, 

COQ8A, and AGL). In PCa cell lines like PC3, it has been observed to destabilize and inhibit 

a pro-apoptotic truncated bone marrow kinase (BMXΔN) of bone marrow kinase (BMX) by 

ubiquitination. BMX in a study was found to get cleaved into its truncated form which makes 

the PCa cells more sensitive towards apoptosis as a response to several apoptosis stimuli 

(Eldeeb & Fahlman, 2016). MPZ protein is produced by Schwan cells and is essential for 

retaining the firmness and integrity of myelin sheaths in peripheral nerves (Haddad et al., 

2022). COQ8A is an unusual kinase-like protein called COQ8A facilitates the production of 

coenzyme Q, a crucial antioxidant and cofactor for cells (N. H. Murray et al., 2022). AGL 

involved in amylo alpha-1, 6-glucosidase activity, 4-alpha-glucanotransferase activity (Das & 

Rao, 2007). Further, few genes were never reported in association with PCa and even have no 

role related to prostate but found mutated and changes in their expression level. These genes 

includes; ABCC9 (upregulated) (Demidenko et al., 2015). SMPD1 (downregulated), CLN5, a 

glycoprotein and downregulated (Shah et al., 2015) and CACNA1C expresses lower and could 
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be a potential biomarker for PCa (Phan et al., 2017). However, ABCA4, NR2E3, PDHX, 

TOR1AIP, POLR3B, TMX2, CTNND1, NDUFV1, PGM1 are those few these which are found 

mutated in our study but has no study clearly providing evidence of their role in PCa 

development or progression. 

 
Association of genes with Diabetes 

 
Our study identified some mutated genes regulating glucose level. PGM1 has an important 

function in regulating glucose metabolism and cancer development in different types of 

cancers through cell proliferation and metabolism (Cao et al., 2021). The maternal-effect is 

more significant on T2DM susceptibility in offspring. This effect has been observed in 

association with polymorphism in phoshoglucomutase when transmitted from a Type 2 

diabetic mother (Akbarzadeh et al., 2022). APOA4 also has the potential to lower the glucose 

level and has an anti-inflammatory property which suggests its ability to prevent type-2- 

diabetes but its level decreases in prediabetes patients (von Toerne et al., 2016). PDE2A is 

known to involve degradation of cAMP and cGMP, expressed in different tissues (brain, 

liver, heart, lung etc.) Different isoforms are expressed within different sites of cells and 

consequently are regulating differentially cAMPs local level at specific locations. One of its 

three variants (PDE2A1, PDE2A2 and PDE2A3), PDE2A2, localized in mitochondria 

controls the production of ATP by regulating cAMP generation from the plasma membrane. 

Impaired cAMP signaling is linked with several clinical conditions (Monterisi et al., 2017). 

Besides glucose regulation, some are involved in insulin regulation. By phosphorylating p53, 

ATM regulates the insulin resistance and deficiency of ATM can develop DM and has a role in 

metformin response (glycemic) (Yee et al., 2012). HNF1A is a most commonly mutated gene 

among the key genes related to maturity onset diabetes in the young (MODY) (Valkovicova 

et al., 2019). TSC2 regulates mTORC1 by inhibiting it which decreases the insulin resistance. 

Further for the action of metformin both TSC2 and RAPTOR is required to inhibit mTORC1 

suggesting TSC2 importance in metformin pathway and diabetes management (van Nostrand 

et al., 2020). TMX2 also regulates Mitochondrial-associated endoplasmic reticulum, MAMs 

(site for influencing energy production). In the liver, these MAMs increase in obesity, insulin 

resistance and due to Ca2+ load in mitochondria lead to mitochondrial dysfunction (N. 

Sharma et al., 2020). Type 1 diabetes-associated myelin abnormalities can lower the signal 

conduction velocity in nerves of the peripheral nervous system (Cermenati et al., 2012). In a 

non-obese T2DM mice (MKR) it has been found that metformin can restore the MPZ level by 

regulating the ROS produced in hyperglycaemic conditions suggesting a correlation of 
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Metformin, ROS, and alteration in MPZ protein (Haddad et al., 2022). NTRK1 is identified in 

serving as a potential biomarker of diabetes (type 3 diabetes) caused by Alzheimer disease 

(Pandiyan et al., 2021). SHDB is downregulated in prediabetes and β cells of T2DM which 

reduces the activity of SDH enzyme and leads to development of type 2-diabetes (S. Lee et 

al., 2022). CLN5 is also downregulated in diabetic foot and down regulated in DM (W. Zhao 

et al., 2020). 

Interestingly, we have also noticed some mutated genes from our cohort associates diabetes 

associated with PCa through the cardiovascular abnormalities indicating, cardiac 

complications as an important comorbidity to consider. ABBC9 is found mutated in those 

myocardial infarction patients who were having history of diabetes mellitus, 

hypercholesterolemia, and hypertension (Minoretti et al., 2006). SMPD1 shows upregulation 

and is associated with diabetic related and alcoholic cardiomyopathy (R. Liu et al., 2023). 

PDHX plays a role in glucose metabolism. MiRNA-26a inhibits PDHX to stop citric acid 

cycle pyruvate to convert into acetyl coenzyme A (B. Chen et al., 2014). FGD4 is found to be 

mutated in patients who were having history of diabetes and having Amyotrophic lateral 

sclerosis (Wei et al., 2019). CACNA1C is a calcium voltage-gated channel subunit and its 

polymorphisms linked to hypertension and coronary artery disease (Beitelshees et al., 2009). 

It is also associated with diabetic cataract by calcium channels. DM patients who have 

dyslipidemia as comorbidity with risk of developing CVDs have DOCK7 mutations in the 

Chinese population (Kong et al., 2015). SZT2 gene is downregulated in the plasma of CVD 

and also linked to epilepsy and development of the human brain. Loss of SZT2 causes the 

increase in mTORC1, important for diabetes and cardiac systems (Lygirou et al., 2018). 

COQ8A is an important lipid soluble electron transporter, however in diabetic 

cardiomyopathies it has been observed that its level decreased therefore leading to impaired 

production of mitochondrial ATP (Gomes et al., 2022). The gene UBR1 stabilizes a protein 

called adipose triglyceride lipase (ATGL) which works as a rate-limiting lipase, crucial for 

the breakdown of lipids. Changes in the ATGL bring change in the cellular lipid level of 

obese patients (Bingham, 2023). 

 

There were some genes which showed the co-existence of diabetic comorbidities like 

Neuropathies and Renal diseases a PCa. Tubular epithelial mesenchymal transition (ETM) 

and tubuloiterstitial fibrosis (TIF) in the renal system are the two important pathological 

characteristics of diabetic neuropathy (DN). Decrease in PTEN expression was seen 

associated with the worsening of DN. However, PTEN also regulates the ETM and TIF where 

PTEN transcription is further regulated by PPARɤ. Thence, it is clear PPARɤ shows dual 
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regulation i.e., PTEN and through PTEN regulates EMT and TIF; which can further regulate 

AKT and FAK phosphorylation level and FAK transcription (Yan et al., 2019). MPZ protein is 

produced by Schwan cells and is essential for retaining the firmness and integrity of myelin 

sheaths in peripheral nerves (Haddad et al., 2022). In diabetic patients phospholipids, 

cholesterol, and fatty acid content of myelin gets altered, affecting the fluidity of the 

membrane and leading to a condition called diabetic neuropathy. Myelin protein zero coding 

gene MPZ is suppressed in diabetic patients (Cermenati et al., 2012). Therefore, it has been 

marked as the biomarker of diabetic peripheral neuropathy (Haddad et al., 2022). PLCE1 is a 

podocyte cell marker of glomeruli whose expression decreases in diabetic neuropathy and 

diabetic kidney disease (Eadon et al., 2022). SEMA4A regulates inflammatory colitis. 

Different semaphorins are involved in different diabetes related complications like diabetic 

retinopathy, neuropathy, and osteoporosis and wound healing (Lu & Zhu, 2020) and in the 

type-2-diabetes patients APOA4 can be novel biomarker in plasma for identification of renal 

problems (Peters et al., 2017). 

 

We found two genes, MYO15A and GJB2 linked with hearing loss. MYO15A association with 

diabetes is not clear but it is found mutated in those patients who have a history of diabetes 

with NON-syndromic hearing loss   and Wolfram syndrome (Vanniya. S et al., 2022) (Budde 

et al., 2020). GJB2 is also mutated in those who have hearing loss and maternally inherited 

diabetes (Frei et al., 2005). 

CLN5, PKP2 and NR2E3 are interrelated with diabetes and generally cause diabetic 

retinopathy and are mutated in our cohort. Diabetes can negatively affect the clock system of 

the retina and the output of the circadian cycle. Diabetes is found to alter clock but not at the 

gene expression level of NR2E3 (Vancura et al., 2021). Other includes FGD4 linked to 

esophageal squamous cell carcinoma (Y. Gao et al., 2021), CACNA2D which plays role in 

diabetes induced atherosclerosis (Wang et al., 2019), TOR1AIP causing distal myopathy 

(Finsterer & Stöllberger, 2016), SEMA4A which regulates of inflammatory colitis (Lu 2020), 

RNPC3 encoding spliceosomes and found linked to growth hormone deficiency in children 

who had diabetes insipidus (Murray and Clayton 2015), CTNND1 relates to diabetes by 

influencing the migration of neutrophil cells in diabetic skin wounds (Kang et al., 2021) and 

AGL through hyaluronic acid synthase 2 (HAS2) and CD44-HA regulates inflammatory 

responses (Sottnik & Theodorescu, 2016). However few genes ITGB4, ERCC5, ABCA4, 

POLR3B, NDUFV1, THSD1, BRCA1 and BRCA2 are not yet reported in clear association 

with diabetes and in future they must be explored to understand the mechanisms underlying 

which associate these genes with diabetes in PCa. 
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Disease conditions associated with altered alleles 

 
In genetic profiling of our cases, we found heterozygous mutations and among them we 

validated some of them using Sanger sequencing as per the second objective requirement. A 

missense allele change c.5925G>A of rs375290498 in MYO15A is reported earlier and found 

in our cohort for non-syndromic hearing loss where c.5925G>A mutation truncates the 

MYO15A protein and causes functional impairments of myosin-XV (Fattahi et al., 2012). 

Another variant associated with hearing loss is c.457C>T of rs111033186 in GJB2 (Fattahi et 

al., 2012). SNV c.4559-4C>G allele change of rs199620842 in ITGB4 is not reported with 

any condition however it is supposed to be associated with junctional epidermolysis bullosa 

with pyloric atresia (https://www.ncbi.nlm.nih.gov/medgen/C5676875/ last accessed on 

November 5, 2023). A substitution allele change in 3’ splice region c.2031-2A>C 

(rs35897051) of intron 11 in MPO is associated with inherited myeloperoxidase deficiency 

(MPOD) which is a very common defect in neutrophils (Marchetti et al., 2004). The nonsense 

variant c.7456C>T allele change of rs587779865 in ATM gene is reported in hereditary 

predisposed breast cancer, ovarian cancer and pancreatic cancer (Ohmoto et al., 2018). 

However, a variant position C>T of rs758623165 in UBR1 as per the ClinVar is reported in 

single Nigerian woman having inborn genetic diseases like underdeveloped nasal alae, 

exocrine pancreatic insufficiency, hearing impairment, and imperforate anus 

(https://www.ncbi.nlm.nih.gov/clinvar/variation/985540/?oq=rs758623165&m=NM_174916. 

3(UBR1):c.3848%201G%3ET last accessed on November 5, 2023). The variant region 

c.1720A>G of rs1169305 in HNF1A predisposes to MODY and cardiac problems in diabetic 

patients is validated in our cohort as homozygous with genotype GG (Koko et al., 2018). The 

ClinVar reported it with other clinical implications also viz. type-2-diabetes, hepatic 

adenocarcinomas, non-papillary renal cell carcinoma, diabetes mellitus type 1, reduced 

delayed hypersensitivity, and breast cancer. 

Some of them were not provided with any record conditions suggesting it be as novel 

mutations identified in PCa from our cohort viz. c.3207C>T allele change of rs370887875 in 

MYRF, c.79G>A allele change of rs74315369 in SDHB, c.1489G>A allele of rs151212477 in 

PKP2, and c.392_39dup (ACT> ACTCT) of rs886041816 in PTEN. Since then, LncRNAs 

have been implicated as diagnostic and prognostic biomarkers in different cancers. Some 

well-known lncRNAs are identified and are being used as biomarkers in other cancers. In 

fact, some are also suggested in PCa but are not in use. Also, AR signaling pathway involves 

various mediators regulated by lncRNA by various mechanisms. Important role of lncRNAs 

has been identified in development of PCa, promotion of castration-resistant PCa (CRPC), 

https://www.ncbi.nlm.nih.gov/medgen/C5676875/
https://www.ncbi.nlm.nih.gov/medgen/C5676875/
https://www.ncbi.nlm.nih.gov/medgen/C5676875/
https://www.ncbi.nlm.nih.gov/clinvar/variation/985540/?oq=rs758623165&m=NM_174916.3(UBR1)%3Ac.3848%201G%3ET
https://www.ncbi.nlm.nih.gov/clinvar/variation/985540/?oq=rs758623165&m=NM_174916.3(UBR1)%3Ac.3848%201G%3ET
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cell proliferation, invasion, and metastatic spread along with modulation of AR-mediated 

signaling (Gu et al., 2019). PCa antigen 3 (PCA3) modulates PCa cell survival via modulating 

AR signaling and is now used in PCa diagnosis (Ferreira et al., 2012). SChLAP1 (second 

chromosome locus associated with prostate-1) was identified as a highly prognostic lncRNA 

that differentially expressed in aggressive and indolent form of PCa (Malik & Feng, 2016). 

Considering the dynamic role of lncRNAs as novel prognostic, diagnostic and predictive 

markers in PCa, lncRNAs may also serve as therapeutic targets aiding in prevention, 

development and treatment of CRPC and metastasis of the disease (Ramnarine et al., 2019). 

Functional analysis of lncRNAs could be done by deciphering lncRNA-protein interaction as 

the function of most lncRNAs is dependent on interaction with protein-coding genes. Hence, 

there felt a need to discover a potential lncRNA biomarker for PCa diagnosis. Similarly in our 

parallel study which was going in our lab we identified 11 lncRNAs (SCARNA10, 

LINC01973, LINC00940, NPBWR1, FLJ16779, ANKRD20A9P, LINC00298, SNHG19, 

LOC341056, TLX1NB, LINC00662:60) using RNA sequencing (Shukla et al., 2023). Taking 

these lncRNAs we performed the molecular docking studies with already identified PCa 

causing genes using WES (ADA, ANG, BRCA1 , CTNS, HBB, GNPTAB, COL6A1, OTOF , 

TP53, CYP11B2, CYP1B1 , GJB6, RHAG, DNAAF1, BRCA2, NF1 MCM8, MCCC1, CAPN3, 

MYO15A, MRE11, KRIT1, HEXB, SCN9A, PRLR, OPA1, ATP6V0A2 and USH2A) (Gupta et 

al., 2020). Other than this, we also screened 7 ARs (2Q71, 5V8Q, 4QL8, 2PNU, 5CJ6, 

2AM9, 1E3G, 7KW7) related to the PCa. Androgen signaling plays a vital role in PCa 

development and in treatment strategies (Jacob et al., 2021) even as AR splice variants, 

amplification/overexpression of androgens, AR-Ligand binding etc. stimulates development 

of CRPC (Efstathiou et al., 2020). Both PCa related proteins and ARs were taken as receptors 

and lncRNA as ligands. We used HDOCK server for this study and then visualized the 

binding interfacial sites and the binding energies were noted. Recent studies have revealed 

that lncRNAs can regulate androgen signaling through various mechanisms (S. Kumar et al., 

2021). It has been reported that lncRNAs can transactivate AR by binding to its enhancer 

region. LncRNAs are significant in prostate tumorigenesis as gene transcription regulatory 

sequences. PCGEM1, HOX transcript antisense RNA (HOTAIR), PCa gene 3 (PCA3) are 

some examples of lncRNAs that function as oncogenic and/or tumor suppressor in PCa 

through AR signaling pathway (Zhang et al., 2016). In present study, docking analysis of 

prostate specific proteins and AR with lncRNAs was performed to explore binding potential 

towards identifying interacting residues and putative RNA-binding motifs. 
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From the molecular docking and visualization studies, SCARNA10 (lncRNA) was identified 

as common in both the PCa and AR targeted proteins and our attempt to check the role of 

SCARNA10 (lncRNA) with PCa and AR targeted proteins were successful. SCARNA10 is a 

small cajal body specific RNA10, an lncRNA, observed majorly in liver fibrosis reported 

patients in tissues and serum. While it is known to inhibit targeted gene binding of a 

promoter to polycomb repressive complex 2 (PRC2) suppressing the TGF signaling, we 

aimed to understand the mechanism of SCARNA10, when silenced, reducing the levels of 

TGF, TGF R1, KLF6 and Smad2 and Smad3 (Khilwani et al., n.d.), (Unpublished data). It was 

also reported that SCARNA10 has a major role in chromosomal mutation at 12p13.31 

identified in PCa metastasis studies. In a few studies, SCARNA10 was reported to be up- 

regulated in breast and lung cancer and we have reported the role of SCARNA10 in PCa 

considering LNCaP cell line (Khilwani et al., n.d.), (Unpublished data). Also, nine lncRNAs, 

LINC01973, LINC00940, NPBWR1, FLJ16779, ANKRD20A9P, LINC00298, SNHG19, 

TLX1NB, including SCARNA10, were found to be shared by publically available datasets in 

the T2DB database in a correlation analysis after comparing the 11 lncRNAs that were 

identified in the RNA-seq study. This suggests these lncRNA may be commonly differentially 

expressed in both the disease conditions and would provide a basis for further investigations 

to elucidate their functional significance, regulatory interactions in PCa progressions and 

identifying therapeutic targets. 

Pathway enrichment study performed on the identified gene set using different online tools 

like KEGG pathway, Cytoscape, database Panther and reactome to discover gene functions 

and disease causing pathways. According to the result of the KEGG mapper, we identified 

that a majority of pathways are related to glucose metabolism and insulin resistance. The 

overall pathway of PCa available on KEGG showed 5 major pathways involved viz. mutation- 

inactivated PTEN to PI3K signaling pathway, loss of NKX3-1 to PI3K signaling pathway, 

Amplified AR to androgen receptor signaling pathway, mutation-activated AR to androgen 

receptor signaling pathway and loss of CDKN1B to p27-cell cycle G1/S. Reactome study 

revealed top 6 pathways related to ATM, BRCA1, BRCA2 and PALB2 related homologous 

recombination DNA repair pathways with FDR value and p Value less than 0.05. PALB2 is a 

very rarely mutated gene in PCa and PALB2 works as a bridge for BRCA1 and BRCA2 to 

form BRCA complex in Homologous Recombination for DNA repair (©2019 TZEH KEONG 

FOO ALL RIGHTS RESERVED, 2019) (DEL DOTTORATO Profssa Laura Stronati, 2023). 

We identified its pathogenic variants in our cohort giving confirmations for the rare mutations 

with respect to PCa. Where with the help of Panther Db we could annotate the genes and the 
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type of pathways they are involved in, either biological or molecular. The results showed that 

overall the PTEN, PLCE1 are TSC2 mostly involved in diabetes associated pathways. Using 

the clustering coefficients plug-in cytoHubba, we screened the top 10 hub genes for our gene 

set. Cytoscape-cytoHubba plugin ranked the genes by the clustering coefficient to show the 

hierarchy in high confidence interactions in PPI networks. We identified DLD, PDHX, 

NDUFB4, NDUFB7, BLM, UQCRC1, NDUFV1, PARP1, CHEK1 and PTEN as the top 10 

candidate genes. While BLM was found to be among the top 10 candidate genes in our PPI 

network analyses, it was also shown to play a role in our meta-analyses. This could show a 

potential role of BLM in serving as inhibitor suppressing growth and metastasis of PCa (Ma 

et al., 2022). All of them except NDUFV1 and PDHX have no clear links identified, rest all 9 

genes are PCa related and diabetes. 

 
Association with Urolithiasis: a complication of metastasis in PCa 

In a separate study to understand the PCa association with other comorbidities like 

urolithiasis, since it is well documented that bone is the most preferred site for metastasis in 

PCa. The fact that PCa typically exclusively spreads to skeletal areas, changes the structure of 

the bones, and raises extracellular levels of calcium, suggests that the bones provide PCa cells 

a suitable place to grow and localise (Sun et al., 2021). PCa is mostly localized in bone 

turnover regions, which are defined as areas with elevated rates of both bone creation and 

bone loss. The extracellular calcium content increases from 2.5 up to 7.5mmol/l. As a result 

of this, on-going turnover process, which releases a large amount of inorganic bioactive 

compounds. Its function as a potential mediator of PCa skeletal metastases is made obvious 

here. To check this, we considered a NCBI publicly available dataset and from the 

bioinformatics analyses, we found that 22 genes were linked to urolithiasis. Further, we 

utilised gnomAD to characterise them and determine if the mutations were synonymous or 

non-synonymous. After comparing the results with genes relevant to PCa, we carried out 

protein-protein interaction (PPI) investigations to evaluate the interactions and create PPI 

maps. Numerous genes were found to be shared in the research, and their subtle associations 

with immunomodulatory response are well established. Instead of urolithiasis, we discovered 

a correlation between vitamins and calcium based on our annotations. According to Dong 

(2006), ORAI 1 is an endogenous store-operated Ca2+ entry (SOCE) of human PCa cells that 

has demonstrated pro-apoptotic property rescue in PCa cells. PCa susceptibility is increased 

by sunlight tanning, demonstrating VDR participation and an inverse relationship between 

exposure and PCa risk, whereby an increase in exposure leads to a reduction in PCa risk. It is 

evident that vitamin D has protective effects if levels are not limited (Sun et al., 2021). 
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Angiogenesis and cell migration are two mechanisms linked to VKORC1 that can promote 

invasion and metastasis, and the C subunit is implicated in raising PCa vulnerability. A 

transmembrane receptor called CASR is involved in homeostasis, PCa development, and PCa 

patients' increased risk of metastasis. This elevated calcium induces PI3K/Akt/mTOR 

signalling, which in turn drives the CASR and metastasis. Variants in the CASR gene are 

often associated and overexpressed in PCa cells (Sun et al., 2021). Differential roles of IL6 

include controlling VEGF expression, immunological responses, and cell proliferation and 

differentiation. It can even promote cell survival or prevent cell division. It is well established 

that IL6 and its receptors are overexpressed in PCa, whether benign or malignant, and that IL6 

is a key positive growth factor for a large number of prostate cells (Sun et al., 2021). In 

prostate cell lines, a cytokine called IL18 has been shown to evade immune surveillance. 

Prostate gland chronic inflammation is a common observation. By causing inflammation 

linked to DNA damage, angiogenesis, proliferation, invasion, and metastasis, inflammatory 

genes are known to increase the risk of PCa (Sun et al., 2021). IL1RN is an anti-inflammatory 

cytokine that suppresses the proinflammatory cytokines IL1α and IL1β. It provides evidence 

in favour of the theory that inflammation contributes significantly to the development of PCa 

and causes advanced PCa (both homozygous malignancies and non-cancerous conditions). 

Klotho transmembrane proteins in renal tubes are encoded by the anti-aging gene KL. 

Through many pathways, such as Wnt signalling, tumour growth factor (TGF β1), and 

insulin/insulin growth factor (IGF), it regulates the survival of malignant cells. It is muted or  

downregulated in PCa. According to (Sun et al., 2021), the expression of PLAU declines in 

PCa cells based on the relative expression of certain genes in PCa. The presumed role of 

serum lipids (HDL-cholesterol) and HDL cholesterol linked antioxidant enzymes 

(arylesterase and paraoxonase 1) in PCa promotion is also being investigated, with PON1 

being identified as an increasing factor. The findings unmistakably showed that PON1 levels 

may raise the risk of PCa. Human paraoxonase 1 is associated with HDL and is produced in 

the liver. The number of neuroendocrine (NE) cells rises with the advancement of PCa and 

assumes a regulatory role in several processes; in a similar vein, the expression of 

mitochondrial SOD2 increases with advanced PCa. For processes of differentiation and trans- 

differentiation, NE is crucial. Drug resistance and metastasis castration resistant PCa 

(mCPRC) have been shown to have much higher levels of SPP1 expression, both mRNA and 

protein. For the remaining common genes F2, IL1B, CALCR, SLC26A1, APRT, ZNF365 and 

HOGA1 have not been reported yet with particular PCa links (Sun et al., 2021). The genotype 

phenotype study using Phenolyzer revealed CREBP is the most common interacting partner. 
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Polygenicity effect: 

 
This work also attempted to check the role of polygenicity in cancers with respect to diabetes. 

Polygenicity refers to the combined effect of many genes, each contributing to a small 

proportion of the trait development (Wendt et al., 2020). Since the PCa is well known as a 

genetically heterogeneous disease, however, our study explains that the PCa is influenced by 

a combination of genetic factors and environmental factors interplaying at the background 

through comorbidities obesity, type-2-diabetes, cardiovascular problems and urolithiasis. 

Multiple genes are involved in various aspects of pathways underlying for instance in glucose 

metabolism, insulin sensitivity or energy storage and the presence of multiple risk alleles 

across the different genes must be contributing to the polygenic nature of the disease. Such 

variants are increasing the susceptibility of individuals even if they are contributing to the 

small effect. In addition, the summarized results also highlight the both types of 

heterogeneity, locus and allelic. For instance multiple genes like ATM, PTEN, HNF1A, 

BRCA2, MYO15A and MPZ are having allele change at specific location causing PCa shows 

the allelic heterogeneity while more than one mutation as in case of same gen BRCA2 in our 

cohort suggesting locus heterogeneity. 

Continued development in precision medicine demands thorough characterization of genetic 

heterogeneity in investigations for complicated diseases to understand the heterogeneous 

pattern of association. 
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CHAPTER 6: CONCLUSIONS AND FUTURE PERSPECTIVES 

 
What we contemplated to achieve from the current study was (1) to comprehend the known 

potential targets and find variants associated with PCa and diabetes, (2) identify potential 

targets could later aid in establishing biomarkers other than PSA that may help in early 

detection and enhancing frequency rate records in the future and (3) provide indefatigable 

evidence for the correlation of phenotypic features with different variants. 

With the initial meta-analysis and extensive in silico application of tools, we obtained major 

common interacting genes from a meta-analysis study of published datasets of PCa, diabetes 

and obesity viz, TMPO, BLM, and FOXP1. These 3 genes emerged as the potential target to 

establish the association in the meta-analysis. The meta-analysis study was aimed to check 

whether candidate genes could be considered for precision scale modeling, and therefore we 

brought this to prediction scale and analytics. Furthermore, a probabilistic machine learning 

model was also achieved to identify key candidates between diabetes, obesity, and PCa. This, 

we believe, would herald precision scale modeling for easy prognosis. The ML heuristics has 

set a precedent to bring a transformation in cancer with data-driven pipelines for 

understanding possible causal relationships. 

Applying WES as another objective has led us to sequence the FFPE blocks of our clinical 

cases and control cases and we obtained 42 mutated genes with heterozygous putative somatic 

and germline variants viz, MYO15A, BRCA1, BRCA2, HNF1A, ERCC5, ATM, SEMA4A, 

TSC2, ABAC4, SDHB, NR2E3, GJB2, SMPD1, MPZ, PKP2, CACNA2D4, TOR1AIP1, FGD4, 

POLR3B, TMX2, ABCC9, PDHX, UBR1, CLN5, PGM1, COQ8A, AGL, CACNA1C, PTEN, 

PDE2A, DOCK7, SZT2, NDUFV1, TSHD1, PLCE1, CTPS1, ITGB4, CHEK1, COL2A1, 

PARP1, PTNP22, SLC16A13, MYRF and MPO. We used several in silico tools to characterize 

the variant and validate through Sanger sequencing, which has made us distinguish those 

which are in association with both diabetes and PCa and which are rare and novel in PCa 

association. 

Together with the analysis of clinical cases, the results of WES and meta-analysis, we did the 

comparison study, we obtained BRCA2 (rs148341992, rs780919805, rs80359668), ITGB4 

(rs199620842), and CTPS1 (rs186753161) from ClinVar dataset of PCa, CHEK1 (rs506504), 

TUBGCP4 (rs117773969), BRCA1 (rs6416927), ATM (rs1800058), HNF1A (rs1800574), 

COL2A1 (rs1793959), PARP1 (rs61750984) from PRACTICAL consortium, SLC16A13 
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(rs312457) from GWAS central diabetes and MYRF (rs370887875), BRCA2 (rs148341992), 

ITGB4 (rs199620842) and MPO (rs35897051) from ClinVar diabetes. 

 
Moreover, our attempts on how candidates associated with AR signaling interacts with 

lncRNA networks in PCa biology were fulfilled by performing docking studies between 

selected lncRNAs from our RNA-seq data with AR targeted proteins as well as PCa causal 

proteins in Objective 3. Interestingly, we identified SCARNA10 as a common lncRNA 

between both PCa and AR. Characterizing the functional aspect of this lncRNA would give us 

some insights into PCa progression. We firmly hope that this lncRNA would serve as 

prognostic signatures for PCa detection in Indian phenotype. Further a comparison with 

database of lncRNA associated T2DM identified LINC01973, LINC00940, NPBWR1, 

FLJ16779, ANKRD20A9P, LINC00298, SNHG19, TLX1NB, including SCARNA10 which 

needs future investigations understand the common regulatory mechanism of the T2DM and 

PCa to establish more associations. 

Besides this we performed pathway enrichment analysis on results obtained from both clinical 

sample analysis and meta-analysis in objective four using KEGG pathway, Panther DB, and 

Reactome, we noticed most of the pathways associated with the mutated genes were related to 

glycolytic pathways and insulin metabolism and AR receptor pathway. By applying the 

clustering coefficients algorithm of plug-in cytoHubba, we screened the top 10 hub genes for 

gene identified in the Meta-analysis and the WES again we obtained a ranking of DLD, 

PDHX, NDUFB4, NDUFB7, BLM, UQCRC1, NDUFV1, PARP1, CHEK1 and PTEN are the 

top 10 genes that are functioning together are well related to both PCa and Diabetes except 

UQCRC, PDHX and PAPR1. The network analysis of significant genes using the Cytoscape- 

cytoHubba plugin ranked the genes by the clustering coefficient to show the hierarchy in high 

confidence interactions in PPI networks. Clustering PPI networks can be helpful for 

identifying groups of interacting proteins that take part in the same biological process or 

cooperate together to carry out a particular biological function. 

 

On a granular level, both investigations, whether meta-analysis or prospective sample 

analysis, have enabled us to gain insights into three distinct phenotypes: diabetes, PCa, and 

obesity. However, there is room for improvement in ML-based integration, and time will tell. 

WES research on clinical samples supports the existence of a link between PCa and 

comorbidities such as diabetes and cardiovascular disease. Aside from heterogeneity, 

polygenicity may now be postulated in PCa for the first time. The study also emphasises the 
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need of taking comorbidities into account during both diagnosis and therapy. Further 

investigation is warranted to understand more for the mechanism and early prediction of PCa. 

 

Putting all together we have achieved what we expected. WES, meta-analysis and molecular 

docking studies identified the potential targets and potential biomarkers. Enrichment analysis 

confirmed and explains the possible interplay and co-existence of the PCa and diabetes and 

with the effect polygenicity. 

 

The NGS holds promise for transforming and benefiting precision medicine. We aim to 

extend the molecular docking studies by taking the present study genes associated with both 

diabetes and PCa. Hopefully in the coming years, we would validate the AR-lncRNA-PCa 

protein results experimentally using cell line studies. Although we faced challenges to collect 

the samples and thereby end up performing a small preliminary study with 5 clinical samples, 

this thesis, in our humble opinion, has set an early inroads for understanding comorbidity 

associated with the risk of PCa and therefore, performing more studies with a large cohort 

could be on the anvil through our CAPCI efforts (biocues.org/capci last accessed on April 12, 

2024). Since many complex ailments like diabetes and cancer are well known heterogeneous 

diseases which makes present study a novel resource for understanding undiscovered genetic 

heterogeneities, in figuring out missing inheritance, accuracy in risk prediction and biomarker 

identification for better treatment approaches. The future looks bright with such a study 

having done large scale meta-analysis to design better risk prediction models and treatment 

decisions using machine learning algorithms which could benefit from considering the genetic 

heterogeneity and polygenicity observed in our current study. Through the CAPCI 

consortium, we are providing such an opportunity to extend, improve and come with more 

precision for screening candidate variants associated with PCa diagnosis in India. 

Overall, the study successfully identified potential genetic targets and biomarkers that link 

PCa with diabetes and obesity. The combination of meta-analysis, WES and machine 

learning, our research has highlighted key variants and pathways involved in these conditions. 

The findings support development of precision medicine approaches and set the foundation 

for future studies to validate these associations, with a focus on improving early detection, 

risk prediction and treatment strategies for PCa in populations like India. 

http://biocues.org/capci
http://biocues.org/capci
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Supplementary Figure 1: Fastq reports for quality values of the bases in forward reads of 

sample 1 where red line in the centre of graphs depicts the median value, average quality is 

represented by blue line and green line shows the very high quality. Y-axis shows quality 

scores and X-axis shows read position 

S1_R2.fastqc 
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Supplementary Figure 2: Fastq graph plot reports for quality values of the bases in reverse 

read of sample 1 
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Supplementary Figure 3: Fastq graph plot reports for quality values of the bases in forward 

read of sample-2 
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Supplementary Figure 4: Fastq graph plot reports for quality values of the bases in reverse 

read of sample-2 
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Supplementary Figure 5: Fastq graph plot reports for quality values of the bases in forward 

read of sample-3 
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Supplementary Figure 6: Fastq graph plot reports for quality values of the bases in reverse 

read of sample-3 

S4_R1_Qc 
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Supplementary Figure 7: Fastq graph plot reports for quality values of the bases in forwards 

read of sample 4 
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Supplementary Figure 8: Fastq graph plot reports for quality values of the bases in reverse 

read of sample-4 

S5_R1_QC 
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Supplementary Figure 9: Fastq graph plot reports for quality values of the bases in forwards 

read of sample-4 
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Supplementary Figure 10: Fastq graph plot reports for quality values of the bases in reverse 

read of sample-5 

Sequence Duplication Level Sequence length Distribution 
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