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ABSTRACT

Agriculture is a vital economic sector in India, which employs a large percent-

age of the population. India is one of the world’s top agricultural producers due to

its diverse climate and soil types. Rice, wheat, soybean, barley, maize, cotton sug-

arcane, etc. are major cultivated crops in India. Soybean known as Glycine max

is a high-protein legume from the pea family (Fabaceae). Soybeans has a major

commodity in international trade and contribute significantly to the economies of

many countries. However, environmental factors like droughts or excessive rainfall

during cultivation significantly impact the health and yield of soybean crops. In-

sufficient pest and disease management also compromises bean quality. Improper

harvesting methods can cause physical damage to the beans which reduces their

overall quality. This decline in soybean quality has economic, nutritional, and

environmental consequences. A decrease in nutritional value raises concerns for

both human and animal consumption also leads to nutrient deficiencies that affects

overall health. Hence, it is essential to identify defects and varieties of soybean

seeds from both agricultural and industrial perspectives.

This thesis proposed two neural network approaches named “soybean seed

defect identification network (SSDINet)” and “Modified GoogleNet for Variety

Identification (MGVI)” to differentiate the defects and variety of soybean seeds.

This thesis also introduces a seed Contour detection (SCD) algorithm to enhance

the quality of soybean images. Initially, we collected the soybean samples from

the Vidarbha region of Maharashtra, where soybean is a major crop cultivated

crop. With the assistance of local farmers and agricultural experts, the seeds were

classified into 10 categories: ‘cracked’, ‘wrinkled’, ‘broken’, ‘purple’, ‘damaged’,

‘insect-bitten’, ‘green seed’, ‘KDS726’, ‘JS335’ and ‘JS9305’. Subsequently, images
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of the soybean seeds were captured using an experimental setup. The collected im-

ages were meticulously organized and processed to create a comprehensive dataset.

This dataset serves as the foundation for training the neural network and allows it

to learn and classify the various classes of soybean seeds effectively. By providing

a diverse range of images, this research work aimed to enhance the model’s ability

to generalize and accurately classify new, unseen seed samples.

Initially, SSDINet was developed to differentiate between 7 classes of defective

seeds, while three classes of seed varieties were grouped under the category of

good seeds. The SSDINet architecture comprises a convolutional neural network,

depthwise convolution blocks, and squeeze-and-excitation blocks, which collec-

tively make the network lightweight, faster, and more accurate compared to other

state-of-the-art approaches. Experimental results showed that SSDINet achieved

an impressive accuracy of 98.64% with just 1.15 million parameters and a pro-

cessing time of 4.70 milliseconds, that surpasses existing models. This research

not only advances deep learning techniques in agricultural applications but also

provides valuable insights into the practical implementation of seed classification

systems for quality control in the soybean industry.

To identify the variety of soybean seeds, MGVI utilized a pre-trained Inception-

V1 (GoogleNet) model. This model employs parallel convolutional paths with

varying receptive field sizes. The initial part of the network consists of several

convolutional layers with small filter sizes and the ReLU activation function. The

core building block of GoogleNet is the inception module, which includes mul-

tiple parallel convolutional branches with different filters, max pooling, and 1x1

convolutional layers for dimensionality reduction. MGVI was tested on a dataset

with an 80:20 training-to-testing ratio and achieved an average accuracy of 97.90%

which outperformed state-of-the-art approaches. This proposed approach ensures

precise identification and classification, promoting better crop management and

quality control in the soybean industry.
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All the models are implemented in GPU-enabled Intel Xeon®Gold 5222 3.8GHz

processor workstation. It contains 1TB SATA hard disk and 128GB DDR4 RAM

with Windows 10 Pro operating system. Spyder IDE with Python 3.11 is used for

various deep-learning operations.
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Chapter 1

INTRODUCTION

1.1 Introduction

Soybean, scientifically known as Glycine max, is a leguminous plant that belongs to

the Fabaceae family. It is an annual herbaceous plant, highly valued for its edible

seeds which are rich in protein and oil. Originating from East Asia, soybean is

now a globally important crop due to its versatile uses in food, feed, and industrial

applications [1]. Soybean plays a crucial role in global agriculture and the economy

because it is a source of plant-based protein and oil, which makes it essential

for human nutrition and animal feed [2]. Soybean seed oil is mostly used in

cooking, food processing, industrial applications such as biodiesel production and

the manufacture of bioplastics [3]. Soybeans thrive in warm, temperate climates

with well-distributed rainfall. The optimal temperature range for soybean growth

is between 68°F to 86°F [4]. They require at least 500 mm (20 inches) of rainfall

during the growing season, but well-drained soils are essential to prevent water

logging, which can harm the plants. Soybeans are sensitive to frost, particularly

during the flowering and pod-filling stages, making them best suited to regions

with long, frost-free periods [5]. Several countries have developed substantial

soybean industries and contribute significantly to global production. Some of

them are listed as follows:

1. United States: The largest producer of soybeans, with major cultivation

areas in states like Iowa, Illinois, and Minnesota.
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2. Brazil: A close competitor to the U.S., Brazil’s vast arable land in states

like Mato Grosso and Paraná makes it a leading exporter.

3. Argentina: Known for its high-quality soybean production, Argentina ex-

ports a significant portion of its crop.

4. China: Although historically a major producer, China has become a signif-

icant importer of soybeans to meet its domestic demand.

5. India: Emerging as a notable producer, especially in states like Madhya

Pradesh and Maharashtra.

6. Other countries: Paraguay, Canada, and Ukraine are also important con-

tributors to the global soybean market.

India is an important player in the global soybean market, being one of the top

producers of this versatile crop. The cultivation of soybeans in India primarily

takes place in the central and western regions, with Madhya Pradesh, Maharash-

tra, and Rajasthan being the leading states. Together, these states contribute to

over 90% of the soybean production [6]. As of the 2022-2023 agricultural year, In-

dia produced approximately 12.9 million metric tons of soybeans [7]. This marked

a substantial increase compared to previous years, driven by favorable monsoon

rains and improved farming practices. The total area under soybean cultivation in

India was about 12.4 million hectares, reflecting a steady interest among farmers

in this crop due to its profitability and demand. The average yield of soybeans in

India hovers around 1,000-1,100 kg per hectare [8]. This yield is lower compared

to major soybean-producing countries like the United States and Brazil, where

advanced agricultural technologies and practices result in higher productivity. Ef-

forts are being made to bridge this yield gap through the adoption of high-yielding

varieties, better irrigation practices, and integrated pest management [9]. India is

both an importer and exporter of soybeans and soybean products. The country im-

ports soy oil primarily from Argentina and Brazil to meet domestic demand, while

exporting soybean meal to countries like Vietnam, Indonesia, and Iran. The prices

of soybeans in India are influenced by global market trends, domestic production
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levels, and policy decisions regarding tariffs and subsidies. The Indian govern-

ment has implemented various policies and initiatives to support soybean farmers

and enhance production. The introduction of Minimum Support Prices (MSP)

for soybeans aims to ensure that farmers receive a fair price for their produce

[10]. Additionally, government programs focus on providing farmers with access

to quality seeds, credit facilities, and training on modern agricultural practices.

Research institutions such as the Indian Institute of Soybean Research (IISR) are

actively involved in developing improved soybean varieties and promoting sustain-

able farming techniques.

1.2 Significance of Soybean Seed

Soybean seeds are of immense significance due to their multifaceted benefits across

various domains. They are a crucial source of high-quality protein and essential

nutrients, making them vital for human and animal nutrition [11]. Some of major

significance are listed as follows and shown in figure 1.1:-

1. Nutritional Value: Soybean seeds are highly nutritious, containing sig-

nificant amounts of protein, essential fatty acids, vitamins, and minerals

[11].

2. Economic Importance: Soybeans are one of the most important crops

worldwide, with extensive uses in food, feed, and industrial applications.

The global soybean market impacts the economy significantly, particularly

in countries like the United States, Brazil, India and Argentina, which are

major producers.

3. Versatility in Food Products: Many products like tempeh, soy milk,

soy sauce, and tofu, are made from soybeans. These products are staples in

many cultures and contribute to diverse culinary practices.

4. Animal Feed: Soybean meal, a byproduct of oil extraction, is a key ingre-

dient in animal feed due to its high protein content. It supports the livestock
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Figure 1.1: Significance of soybean seed.

industry, particularly poultry, swine, and cattle farming.

5. Industrial Uses: Soybeans are also used in non-food products like biodiesel,

plastics, lubricants, and inks [3]. Soy-based products are considered more

environmentally friendly, contributing to sustainable industrial practices.

6. Health Benefits: Soybean consumptions reduces the risk of heart disease

that improves bone health, and manages menopausal symptoms. Isoflavones,

a type of phytoestrogen found in soybeans, play a role in these health ben-

efits.

7. Soil Health: Soybeans are leguminous plants that can fix nitrogen in the

soil, enhancing soil fertility and reducing the need for chemical fertilizers.

This makes them valuable in crop rotation systems to maintain soil health

and sustainability. Lecithin Production: Soybeans are a primary source of

lecithin, a byproduct of oil processing, which is a natural emulsifier. Lecithin
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is widely used in pharmaceuticals, cosmetics, food products, and even as a

feed additive.

8. Soil Improvement: The cultivation of soybeans can help improve soil

fertility. As a legume, soybeans can fix atmospheric nitrogen into the soil,

reducing the need for synthetic fertilizers.

9. Textiles: Soybean fiber, a relatively recent innovation, is used in the pro-

duction of soft, absorbent, and comfortable fabrics. These textiles are used

for clothing, upholstery, and other applications.

10. Adhesives and Coatings: Modified soy proteins are used to produce envi-

ronmentally friendly adhesives and coatings. These soy-based products are

used in wood adhesives, paper coatings, and other industrial applications

where sustainable alternatives to synthetic products are desirable.

These applications highlight the critical role of soybeans in supporting sus-

tainable agriculture, industry, and energy production, alongside their significant

nutritional contributions.

1.3 Used of Soybean Seed

Soybean seeds have diverse uses in food products, animal feed, livestock health,

and industry which highlights their versatility and economic importance [9]. Some

of the major uses are mentioned below:

1. Food Products

• Soy Milk: A popular dairy milk alternative rich in protein and suitable

for lactose-intolerant individuals.

• Tofu: A versatile soy product used in various dishes, known for its

ability to absorb flavors and its high protein content.

• Soy Sauce: A fermented product used as a condiment and flavor en-

hancer in many Asian cuisines.
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• Tempeh: A traditional Indonesian product made from fermented soy-

beans, offering a firm texture and nutty flavor.

• Edamame: Young, green soybeans that are often steamed or boiled

and served as a snack or appetizer.

• Soy Flour: Used in baking and cooking, soy flour adds protein content

to various recipes [12].

2. Animal Feed

• Soybean Meal: Widely used in animal feeds due to its high protein

content, supporting growth and development in livestock

3. Industrial Products

• Oil Production: Soybean seeds are primarily processed to extract

oil, which is one of the most consumed vegetable oils globally. This oil

is used in cooking, baking, and frying, and as an ingredient in many

processed foods.

• Biodiesel: Soybean oil is a renewable source for biodiesel production,

offering a cleaner alternative to fossil fuels.

• Bioplastics: Soy-based plastics are biodegradable and used in pack-

aging and manufacturing.

• Inks and Lubricants: Environmentally friendly inks and lubricants

are made from soybean oil [13].

4. Health Supplements

• Soy Protein Isolate: Used in dietary supplements and protein shakes,

it provides a high-quality protein source for athletes and individuals

seeking to increase protein intake.

• Isoflavone Supplements: These are used for their potential health

benefits, including menopausal symptom relief and cardiovascular health.
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5. Agricultural Benefits

• Soil Fertility: Soybeans contribute to soil nitrogen fixation, improving

soil health and benefiting subsequent crops in rotation systems.

1.4 Impact of Soybean Seed Degradation

Given the significance of soybeans both economically and nutritionally, any degra-

dation in their quality can indeed have wide-reaching effects. Environmental fac-

tors such as adverse weather conditions during cultivation, including droughts or

excessive rainfall, significantly affect crop health and yield. Likewise, improper

pest and disease management practices can diminish bean quality. Inadequate

harvesting methods may cause physical damage to the beans, reducing their over-

all quality. The decline in soybean quality can impact multiple sectors, leading to

economic, nutritional, and environmental repercussions. A decrease in nutritional

value raises concerns for both human and animal consumption, resulting in defi-

ciencies in essential nutrients and affecting overall health. Here’s a more detailed

examination of how such quality degradation can impact various sectors:

1.4.1 Economic Impact

1. Reduced Profitability for Farmers: Poor quality beans often sell for

lower prices, directly affecting farmers’ income. Additionally, if the crop

doesn’t meet certain industry standards, it may not be sellable at all, leading

to significant financial losses.

2. Supply Chain Disruptions: Low-quality crops can disrupt the supply

chain. For instance, processors might need to slow down production lines to

sort out unacceptable beans, leading to decreased efficiency and increased

costs.

3. Increased Costs for Consumers: When supply is affected, or extra

processing is needed, the costs can be passed down to consumers. Moreover,
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farmers might need to invest more in future crops to mitigate past losses,

potentially increasing the market prices.

1.4.2 Nutritional Impact

1. Reduced Nutritional Quality: Soybeans are a critical source of protein,

essential fatty acids, vitamins, and minerals. A decline in their quality can

mean a reduction in these nutrients, impacting the dietary quality of foods

derived from soybeans, such as tofu, tempeh, and soy milk.

2. Health Implications for Livestock: Soybeans are also a major compo-

nent of animal feed, particularly for poultry and swine. Lower nutritional

quality can affect the growth, health, and productivity of these animals,

further influencing the food industry and food security.

3. Impact on Food Security: Soybeans are a staple in many diets around the

world. Any reduction in their availability or affordability can compromise

food security, particularly in less developed regions where alternative protein

sources are not as readily available.

1.4.3 Environmental Impact

1. Resource Inefficiency: Growing crops that end up being of low quality

wastes resources like water, land, and energy. This inefficiency is particularly

significant in areas where these resources are scarce.

2. Increased Use of Chemicals: If pests and diseases are mismanaged,

there might be an increased reliance on pesticides and fungicides, which can

have deleterious environmental effects, such as harming non-target species

and contaminating water sources.
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1.5 Motivation

The classification of soybean seeds is a significant task for several reasons, primarily

within the agricultural and agribusiness sectors. Here are the main reasons why

this process is crucial:

1. Quality Control: Classifying soybean seeds helps in distinguishing high-

quality seeds from those of lower quality. High-quality seeds generally ensure

better germination rates, healthier plant growth, and more robust yields,

which are critical for profitable farming.

2. Disease Management: Some classifications are based on the resistance of

seeds to diseases. Identifying and categorizing seeds based on their disease

resistance allows farmers to select varieties that are best suited to their local

environmental conditions and disease prevalence, reducing losses due to seed

and crop diseases.

3. Genetic Diversity: Classification helps in maintaining and exploiting ge-

netic diversity within soybean cultivars. Different classes might have specific

desirable traits such as drought tolerance, pest resistance, or improved nu-

tritional content. By effectively classifying seeds, breeders and farmers can

select specific traits to meet environmental challenges and market demands.

4. Research and Development: In the field of agricultural research, clas-

sifying soybean seeds is essential for conducting experiments and studies

related to crop improvement. Accurate classification allows researchers to

ensure that the results are attributable to the genetic makeup of the seed

rather than external factors.

5. Customization for Specific Markets: Different markets may demand

different types of soybean seeds based on local cuisine, climate, or soil con-

ditions. Classification allows producers to target specific markets more ef-

fectively with seeds that are more likely to thrive and meet local consumer

preferences.
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6. Regulatory Compliance: In many regions, agricultural products, includ-

ing seeds, must meet certain standards before they are sold. Classification

can be part of the compliance process, ensuring that only seeds that meet

specific standards are distributed and planted.

7. Optimization of Planting and Cultivation Strategies: By classifying

seeds, farmers can optimize their planting strategies according to the specific

characteristics of seeds. This leads to more effective use of resources like

water, fertilizers, and pesticides.

8. Enhanced Traceability and Accountability: When seeds are classified

and labeled properly, it enhances traceability throughout the supply chain,

from breeders to farmers to consumers. This can help in case of a recall or

when determining the source of any issues related to crop failures or food

safety.

Farmers, distributors, and processors face significant economic losses due to the

reduced market value of soybeans, increased production costs, and the potential

rejection of substandard batches. These economic impacts can disrupt livelihoods

and exacerbate food insecurity, particularly in regions where soybeans are a key

staple or primary protein source. Therefore, it is vital to separate low-quality

soybean seeds from high-quality ones. Traditionally, visual inspections are con-

ducted to identify visible signs of damage, discoloration, or mold. Beans are

also sorted by size and shape using screening or sieving mechanisms, as damaged

beans often display distinct physical characteristics. However, this traditional ap-

proach relies heavily on subjective human judgment, leading to inconsistencies

and misidentification of degraded beans. Manual inspection is also labor-intensive

and time-consuming, increasing production costs and slowing processing speeds.

Given that damage to soybean seeds is mainly visible on the surface, computer

vision methods are crucial for effectively classifying affected seeds.
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1.6 Review of Deep Learning

”Deep learning is not just a tool, but a revolution in how we understand and model

complex patterns in data, offering unprecedented capabilities in transforming raw

information into actionable insights [14]”.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Deep Learning (DL) and Machine Learning (ML) are branches of Artificial In-

telligence (AI). DL is distinguished by its use of Artificial Neural Networks (ANN)

with multiple layers, referred to as Deep Neural Networks (DNN), to capture and

model intricate data patterns. DL has revolutionized various fields by enabling

significant advances in tasks such as image classification, speech recognition e.t.c.

The detailed exploration traces the history and development of DL, from its early

conceptual stages to its existing applications are explained in further subsections:

1.6.1 Evolution of Deep Learning

The evolution of DL has been marked by significant milestones and rapid advance-

ments, transforming it from a theoretical concept to a cornerstone of modern AI.

From the early foundations laid by McCulloch and Pitts, through the challenges

of the AI winter, to the breakthroughs in the 2010s and the diverse applications

in the 2020s, DL has consistently pushed the boundaries of AI which is mentioned

below.

1. Primary Foundations (1940s-1970s)

The origins of deep learning date back to the 1940s when Warren McCulloch

and Walter Pitts proposed a model of artificial neurons that could carry out

simple logical functions. Their work laid the groundwork for the develop-

ment of ANN. In the 1950s, Frank Rosenblatt developed the Perceptron, the

first algorithm modeled after the neural network concept. The Perceptron

was a simple linear classifier, capable of learning weights from input data

to make predictions. Although it was limited to solving linearly separable

problems, the Perceptron represented a significant step forward in neural
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network research. The 1960s and 1970s saw the emergence of the first multi-

layer networks, known as Multi-Layer Perceptrons (MLPs). These networks

consist of many layers of neurons that allow them to learn more complex

patterns. However, training these networks proved challenging due to the

lack of effective learning algorithms.

2. The Winter of AI (1980s)

The development of backpropagation in the 1980s marked a turning point in

neural network research. Backpropagation, developed by Rumelhart, Hin-

ton, and Williams, is a supervised learning technique for training multi-layer

networks. It works by adjusting the network’s weights to reduce the differ-

ence between the predicted and actual outputs. This breakthrough made

it feasible to train deeper networks, although computational limitations and

the scarcity of large datasets hindered progress. Despite the promise of back-

propagation, neural network research faced significant challenges in the late

1980s and early 1990s.

3. Renaissance of Neural Networks (1990s-2000s)

The resurgence of interest in neural networks in the 1990s and 2000s can

be attributed to several factors. First, the advent of more powerful com-

puting hardware, particularly Graphics Processing Units (GPUs), enabled

researchers to train larger and more complex models more efficiently. Sec-

ond, the availability of vast amounts of data, driven by the rise of the internet

and digital data storage, provided the necessary resources for training deep

networks.

During this period, important advances were made in network architectures

and training techniques. The introduction of Convolutional Neural Networks

(CNN) by Yann LeCun and his colleagues revolutionized image-processing

tasks. Convolutional layers in CNN capture spatial feature hierarchies from

input images and used these features for tasks like image classification and

Object Detection (OD). Another significant development was the introduc-
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tion of Recurrent Neural Networks (RNN), which can handle sequential data.

4. The Deep Learning Revolution (2010s)

The 2010s witnessed an explosion of interest and progress in DL, driven by

several landmark achievements and technological advancements. The Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC) played a crucial

role in showcasing the power of DL models. In 2012, Alex Krizhevsky and

his team developed a DNN named AlexNet that achieved groundbreaking

performance on the ImageNet dataset and significantly outperformed tradi-

tional computer vision methods [15]. AlexNet’s success sparked widespread

interest in DL, leading to the development of more sophisticated architec-

tures. VGGNet, developed by the Visual Geometry Group at the Univer-

sity of Oxford, further improved image classification accuracy by using very

deep networks with small convolutional filters [16]. Another notable model,

GoogLeNet (Inception), introduced by Szegedy et al., employed a novel ar-

chitecture with inception modules to improve computational efficiency and

performance [17].

In 2016, the progress of Residual Networks (ResNet) addressed the prob-

lem of training DNN by introducing residual connections, which allowed

gradients to flow more easily through the network during training. ResNet

achieved state-of-the-art performance on several benchmarks and became

a foundation for many subsequent DL models [18]. In natural language

processing, the introduction of sequence-to-sequence models and the atten-

tion mechanism revolutionized tasks like machine translation. The Trans-

former model, introduced by Vaswani et al., replaced recurrent layers with

self-attention mechanisms, enabling parallel processing and improving per-

formance on various Natural Language Processing (NLP) tasks [19]. This

led to the development of large-scale pre-trained language models, such as

Bidirectional Encoder Representations from Transformers (BERT) and Gen-

erative Pre-trained Transformer(GPT) which achieved remarkable results on

a wide range of NLP benchmarks [20].
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5. Current State and Applications (2020s)

DL has become a cornerstone of modern AI, with applications spanning

numerous domains. In computer vision, models like You Only Look Once

(YOLO) and Mask R-CNN enable real-time OD and instance segmenta-

tion [21]-[22]. In healthcare, DL models assist in medical imaging, disease

diagnosis, and drug discovery, providing tools for early detection and per-

sonalized treatment plans [23]. In speech recognition and synthesis, models

like WaveNet and Tacotron have significantly improved the naturalness and

accuracy of generated speech [24]- [25]. Autonomous vehicles leverage DL for

perception, decision-making, and control, enabling advances in self-driving

technology [26]. DL also plays a critical role in recommendation systems, en-

hancing user experiences on platforms like Netflix, YouTube, and Amazon

by predicting user preferences and suggesting relevant content [27]. In fi-

nance, DL models are used for algorithmic trading, fraud detection, and risk

management, helping institutions make data-driven decisions and mitigate

risks [28]. Table 1.1 provides the overview of DL milestone.

Table 1.1: Overview of the Evolution of Deep Learning

Period Milestone Advances & Key

Figures

Significant

Models &

Techniques

Applications

1940s-

1970s

Foundations of

ANN

- McCulloch and Pitts

propose artificial neu-

rons (1940s)

- Multi-layer percep-

trons developed

- Perceptron Basic pattern

recognition
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Period Milestone Advances & Key

Figures

Significant

Models &

Techniques

Applications

1980s Backpropagation

and Neural

Network Train-

ing

- Backpropagation al-

gorithm

- Computational and

data limitations lead

to AI Winter

- Enhanced

training for

multi-layer

networks

Neural net-

work training

gains feasi-

bility despite

limited

datasets

1990s-

2000s

Neural Net-

work Resur-

gence

- GPUs enable effi-

cient training

- Internet and digi-

tal storage drive large

datasets

- CNN

- RNN

Image clas-

sification,

speech recog-

nition

2010s DL Revolution - AlexNet wins Im-

ageNet Challenge,

revitalizing DL

- Development of VG-

GNet, GoogLeNet,

ResNet

- Attention mecha-

nism in NLP

- AlexNet,

VGGNet,

GoogLeNet,

ResNet,

Transformer

Image clas-

sification,

NLP, medi-

cal imaging
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Period Milestone Advances & Key

Figures

Significant

Models &

Techniques

Applications

2020s

(Cur-

rent)

DL becomes a

cornerstone of

modern AI

- Models for real-

time OD, segmenta-

tion, and NLP

- YOLO,

Mask R-

CNN, BERT,

GPT

Real-time

OD, health-

care, au-

tonomous

vehicles,

speech recog-

nition, fraud

detection

and agricul-

ture sector

1.6.2 Deep Learning Use Cases in Agriculture Sector

Agriculture, the backbone of food production, faces numerous challenges, from

optimizing crop yields to managing pests and diseases. By leveraging vast amounts

of data and advanced algorithms, DL models can provide valuable insights and

predictions. It also revolutionized various aspects of agricultural practices which

are summarized as follows. Figure 1.2 shows the use of DL in agriculture sector.

1. Crop Monitoring and Yield Prediction: Crop monitoring and yield

prediction are essential tasks in modern agriculture. Accurate assessments

of crop health and yield forecasts enable farmers to make informed decisions

regarding irrigation, fertilization, and harvesting schedules. DL models, par-

ticularly CNN, have shown remarkable capabilities in analyzing satellite im-

agery and sensor data to monitor crop growth and predict yields. These

models can identify subtle differences in plant color, texture, and structure,

enabling early detection of issues that may affect crop yields [29].

2. Pest and Disease Detection: Pests and diseases are significant affects to
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Figure 1.2: DL use case in the agriculture sector.

crop production, often causing substantial losses if not detected and managed

promptly. DL models offer a promising solution by automating the detection

and diagnosis of plant diseases and pest infestations. By analyzing images of

crops, these models can identify symptoms and patterns indicative of specific

diseases or pest damage [30].

3. Weed Identification and Management: Weed control is essential for

maintaining crop yields and minimizing competition for resources. DL mod-

els prove beneficial in weed identification and management by differentiating

crops and weeds in field images. By enabling targeted herbicide application

or mechanical weed removal, these models contribute to sustainable farming

practices and reduced chemical usage [31].

4. Soil Health Monitoring: Soil health is critical for crop productivity and

sustainability. DL models can analyze soil sensor data, such as moisture

levels and nutrient content, to assess soil health and recommend appropri-
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ate interventions. By optimizing irrigation and fertilization practices, these

models help conserve resources and enhance crop yields [32].

5. Pest Monitoring and Control: DL algorithms can detect and track

pest populations using data from trap cameras, sensors, and monitoring

devices. By predicting pest outbreaks and movement patterns, farmers can

implement targeted control measures. It also reduces the used of pesticides

and minimizes environmental impact [33].

6. Weather Forecasting: Plays a crucial role in agriculture, helping farm-

ers make informed decisions about planting, irrigation, harvesting, and pest

management. DL has emerged as a powerful tool for improving the accu-

racy and reliability of weather forecasts, enabling more precise predictions of

short-term and long-term weather patterns. DL-based weather forecasting

systems can provide valuable insights into short-term weather phenomena,

such as thunderstorms, hurricanes, and heatwaves, as well as long-term cli-

mate trends. By integrating DL models into existing forecasting systems,

meteorologists can improve the accuracy and reliability of weather forecasts,

helping farmers mitigate risks and optimize their agricultural practices in an

ever-changing climate [34].

7. Seed Classification: Seed classification is the process of categorizing seeds

into distinct groups depending on various parameters such as shape, species,

color, variety, size, and genetic traits. This classification is essential for

seed producers, farmers, researchers, and regulatory bodies to ensure quality

control, breeding programs, seed certification, and efficient management of

seed resources. CNN is well-suited for seed classification tasks due to their

ability to learn hierarchical features from raw input data [35].

8. Market Price Prediction: Through the analysis of historical market

information, DL models predict future commodity prices, guiding farmers

to decide when to plant, harvest, and market their products. [36].
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9. Food Quality Inspection: DL systems inspect food products for quality

attributes such as size, shape, color, and defects, ensuring food safety and

meeting quality standards.

These use cases demonstrate the versatility of DL in addressing various challenges

across the agricultural value chain, from production and management to distribu-

tion and market analysis. Implementing DL offers a more efficient and automated

method for processing large volumes of soybeans with speed and accuracy. DL

algorithms are particularly effective in image recognition and classification, mak-

ing them well-suited for detecting soybean defects and varieties. The main goal

of these techniques is to improve accuracy and reliability, reducing the chances

of false positives or overlooked defects compared to traditional methods. From a

financial standpoint, automated DL-based defect detection systems can result in

substantial savings by decreasing the need for manual labor and reducing losses

due to undetected defects. With the rising global demand for soybeans, the ne-

cessity for efficient and precise quality control measures is growing. Developing

advanced computational approaches for soybean defect quantification addresses

this need and aligns with industry objectives to enhance efficiency and quality.

1.7 Thesis Objectives

The major contribution of thesis and objectives of research work are listed as

follows: -

i. To collect good and defective soybean seeds image dataset.

ii. To pre-process soybean seeds image dataset.

iii. To develop a recognition model for soybean seeds defects.

iv. To develop an identification model for soybean seeds varieties.

v. To compare and validate the proposed models with existing models based on

various performance metrics.
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1.8 Research Methodology

To achieve the proposed objectives, Intel Xeon®Gold 5222 3.9GHz processor

workstation with 1TB 7200 RPM SATA HDD, 8*16 GB DDR4 2933 RAM is used.

Python 3.10 was installed on the Windows 11 Pro operating system for implemen-

tation purposes. The process of achieving the proposed research methodology is

explained in Figure 1.3.

1. To achieve the first objective, samples of soybean seed are collected from

the Vidarbha region of Maharashtra, India. As the research work began in

2020, at that time soybean seed dataset was not publicly available. Hence,

initially soybean samples of different defects and varieties are collected and

with the help of agriculture expert and farmers samples are splits into 10

different classes. Using the experimental setup mentioned in Figure 3.1

images are captured and the dataset is developed. Simultaneously various

research works related to the classification of seeds are studied and identified

the exact problem associated with existing methods. Details steps of soybean

dataset preparation is mentioned in Chapter 3.

2. In the second objective of the research work, soybean seed images are pre-

processed using the seed contour detection (SCD) algorithm. As the DL

model required pre-processed data, using SCD algorithm dataset is filtered,

and images quality are enhanced. The complete process is explained in

Chapter 4.

3. To classify the defective seeds of soybeans in third objective, initially ML

algorithms and CNN architecture are used. Later, soybean seed defect iden-

tification network (SSDINet) is developed which outperforms all existing

methodologies and identify seven defects and one good quality of soybean

seed. In addition, using the transfer learning technique, EfficientNetv2 with

customized head detects the seven defects and one good quality of soybean

seed and also outperforms existing methodology.
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Survey and Review soybean classification
paper using ML & DL  

Identifying the problem and defining the
objectives

To collect good and defective soybean seeds image dataset. 

To pre-process soybean seeds image dataset. 

            To develop a recognition model for soybean seeds defects.

            To develop an identification model for soybean seeds varieties.

To compare and validate the proposed models with existing
models based on various performance metrics

Reviewed the state of art approaches for seed
classification using AI

Research
papers

Research
papers

Online
sources

Online
sources

State-of-the-art

Figure 1.3: Flowchart of the research methodology.
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4. To achieve the fourth objective, GoogleNet with the modified head is used to

classify three soybean seed varieties which is elaborated in brief in Chapter 6.

5. In the fifth objective proposed SSDINet and DVINet is compared with ex-

isting methodology and outperform existing approaches in all evaluation

metrics. Details are mentioned in Chapter 7.

1.9 Summary

This chapter introduces the significance and use of soybean seed in all sectors from

agriculture to India’s growth perspective. It also explains the effect of soybean seed

degradation from an economic, nutritional, and environmental point of view. The

motivation behind the development of this research work is also explained in this

chapter. Later, as the classification of seed is carried out using DL approaches this

chapter explains the evolution and use case of DL from an agriculture perspective.

At the end, it highlights the objectives of thesis and the research methodology

adopted to achieve the classification of soybean seed into 10 different classes.

1.10 Thesis Organization

The subsequent sections of this thesis are arranged into eight chapters. Chapter 2

deals with the background of ML and DL techniques. It also explains the various

existing approaches used to classify various seeds (including defects and varieties)

using DL and ML approaches. Chapter 3 presents the process of soybean seed col-

lection and preparation of the dataset (objective 1). Using farmers and agriculture

experts knowledge, the dataset is split into 10 different classes is also mentioned

in this chapter. Chapter 4 details the proposed SCD algorithm. This chapter

mainly highlights the image enhancement process (objective 2) of soybean seed.

The process of soybean seed defect identification using SSDINet and DVINet (ob-

jective 3) is explained in Chapter 5. Chapter 6 explained variety identification of

soybean seed using a DL approach (Objective 4). Chapter 7 compares SSDINet

22



and DVINet with existing methodology and explains how the proposed research

work surpasses other approaches (Objective 5). At the end, chapter 8 provides a

comprehensive summary of the thesis key findings and contributions. Figure 1.4

shows the organization of the thesis in the pictorial format.

Chapter 1
Introduction, Significance of soybean
seed, Motivation,  Research objective,

Contribution & Thesis structure 

Chapter 2
Literature review and Comparison of
Machine learning & Deep learning

algorithms 

Chapter 3
To collect good and defective
soybean seeds image dataset. 

Chapter 5
To develop a recognition model for

soybean seeds defects.

Chapter 6
To develop an identification model

for soybean seeds varieties.

Chapter 6
To compare and validate the proposed
models with existing models based on

various performance metrics

Chapter 4
To pre-process soybean seeds image

dataset. 

Figure 1.4: Organization of the thesis.
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Chapter 2

RELATED WORK

2.1 Introduction

Agriculture plays a pivotal role in India’s economy, particularly in regions like

northern India where rice farming is predominant. However, traditional methods

for ensuring grain quality prevail despite technological advancements. The main

objective of this chapter is to illustrate AI’s potential in the agriculture sector.

Utilizing DL algorithms, the study focuses on detecting and classifying various

seeds. It also deals with the basics of image classification and explains various

algorithms of ML and DL models used to detect the class of seed. Image clas-

sification is a process in computer vision where an algorithm assigns a label or

category to an input image [37]. It involves several key steps to accurately rec-

ognize and identify the objects, patterns, or features present in the image. The

process begins with an input image that can be in various formats such as JPEG

or PNG. Before feeding the image into a classification model, it often undergoes

preprocessing steps such as resizing, normalization, and data augmentation to im-

prove the accuracy and robustness of the model. Feature extraction is a crucial

step where distinctive characteristics of the image such as edges, textures, colors,

and shapes, are identified and quantified. Traditional methods use techniques like

edge detection and histograms, while modern approaches rely on DL models to

automatically learn relevant features. A classification model, typically a machine

learning or deep learning algorithm, is then used to assign a label to the image.
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CNN are widely used for classification due to their ability to capture spatial hi-

erarchies in images. Models like Visual Geometry Group (VGG) [16], Residual

Network (ResNet) [18], and Inception [17], which are pre-trained on large datasets

such as ImageNet, are often fine-tuned for specific tasks [38].

During training, the model learns to map the input images to their respective

labels by minimizing the prediction error. Once trained, the model can predict the

label of new, unseen images. This involves feeding the new image into the model,

which then outputs a probability distribution over the possible categories, with

the category having the highest probability being chosen as the predicted label.

The performance of the classification model is evaluated using various metrics to

assess how well the model is performing and to identify areas for improvement.

Image classification has numerous applications, including object recognition, scene

classification, medical imaging, and autonomous vehicles. It forms the basis for

more complex tasks such as object detection, segmentation, and image generation,

making it a fundamental task in computer vision. To achieve the task image

classification various approaches of ML and DL are listed in section 2.2. This

chapter is derived from the article 1.

1Sable A, Singh P, Singh J, Hedabou M. A Survey on Soybean Seed Varieties and Defects
Identification Using Image Processing. in International Semantic Intelligence Conference (IHIC-
2021). Proceedings are published in Advances in Computational Intelligence, its Concepts &
Applications (ACI 2022).
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2.2 Technology Background

This sub-section explain the working model of ML and DL techniques used to

classify the seed of soybean.

2.2.1 Machine Learning (ML)

”We are moving towards a world where data is the new oil and machine learning is the

engine that extracts insights from it [39]”.

Amit Ray, Compassionate Artificial Intelligence (2018)

The goal of ML is to create statistical models and algorithms that let com-

puters carry out tasks without having explicit instructions. ML develops systems

that enhance their performance on specific tasks over time through accumulated

experience. Many leading companies use ML for prediction or operational tasks.

Based on the nature of the learning process and the type of feedback received by

the algorithm there are four types of ML algorithms shown in Figure 2.1.

Figure 2.1: Types of ML.

i. Supervised Learning: In this approach, the training process involves a

labeled dataset, where each data point is paired with an output. The model

learns to predict the target output based on the given inputs [40].
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ii. Unsupervised Learning: This approach handles data without labels, where

the model attempts to find patterns, structures, or relationships on its own,

without being directed toward a specific output [41].

iii. Semi-Supervised Learning: This approach used the training process be-

tween supervised and unsupervised learning. It uses a small amount of labeled

data and a large amount of unlabeled data for training. This approach can

significantly improve learning accuracy when labeled data is scarce [42].

iv. Reinforcement Learning: Reinforcement learning allows an agent to make

decisions by interacting with an environment, aiming to optimize cumulative

rewards. Feedback in the form of rewards or punishments helps the agent

refine its actions as it learns over time [43].

In this thesis, four algorithms of ML are used which are explained as follows:-

i. K-Nearest Neighbors (KNN) Algorithm: KNN is a basic yet highly

effective algorithm in ML, used for classification and regression. KNN specif-

ically belongs to the supervised learning category because it requires labeled

training data to make predictions. This algorithm falls under instance-based

learning, where no prior assumptions are made regarding the data distribu-

tion. Instead, it makes predictions based on the instances in the training

dataset. In the prediction stage, the algorithm calculates the distance be-

tween the new data point and all points in the training set, identifies the K

nearest neighbors, and predicts based on their class labels or values. The

Figure 2.2 shows the basic classification performed by KNN. KNN does not

involve any explicit training phase since it is a lazy learning algorithm. It

simply stores the training data. To classify or predict a new query point,

the algorithm computes its distance to all training data points, using metrics

like Euclidean, Manhattan, or Minkowski distances. In classification tasks,

the most common class among the K nearest neighbors is chosen, whereas in

regression, the algorithm predicts by averaging the values of these neighbors

[44].
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Figure 2.2: KNN classifier.

Pros of KNN

(a) Simplicity: It does not require any complex parameters or training al-

gorithms.

(b) Adaptability: Used for both classification and regression tasks.

(c) Versatility: Effective in multi-class classification problems.

Cons of KNN

(a) Computationally Expensive: KNN involves calculating the distance

between the query point and all training points, which can be time-consuming

and resource-demanding, particularly with large datasets.

(b) Memory Intensive: KNN needs to store all the training data, which

can be problematic for large datasets.

(c) Sensitivity to Irrelevant Features: KNN’s performance can degrade

if the dataset has many irrelevant or redundant features.

(d) Choice of Distance Metric: The performance of KNN depends on

the choice of distance metric, which might need domain-specific knowledge to

select appropriately.
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ii. Logistic Regression (LR) Algorithm: LR is a widely used ML algorithm,

mainly applied to binary classification tasks, but it can also be adapted for

multiclass classification. It predicts the probability of a class, which is often

mapped with classes using a threshold (commonly 0.5). Logistic Regression

models the probability that a given input x belongs to a particular class.

This probability is modeled using the logistic sigmoid function mentioned in

Equation 2.1. The cost function for LR is the log-loss or binary cross-entropy

function. The model parameters w and b are optimized to minimize the cost

function using methods such as Gradient Descent, which iteratively updates

the parameters to reduce the error [45].

σ(z) =
1

1 + e−z
(2.1)

where

z = wTx + b. (2.2)

Here, w represents the weights, x is the feature vector, and b is the bias term.

Pros of LR

(a) Simplicity and Interpretability: LR is easy to understand and imple-

ment. The model parameters (coefficients) can be interpreted as the impact

of the corresponding features on the probability of the target class.

(b) Efficiency: It is computationally efficient and works well on relatively

small datasets.

(c) Less Prone to Overfitting: With proper regularization (such as L1 or

L2 regularization), LR is less prone to overfitting.

Cons of LR

(a) Not Suitable for Complex Relationships: For complex and non-linear

decision boundaries, LR may not perform well compared to more advanced

techniques like Decision Trees or Neural Networks.
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(b) Feature Scaling: LR requires careful feature scaling (standardization

or normalization) to ensure that the model converges properly and performs

well.

iii. Random Forest (RF) Algorithm: RF classifier is versatile as it addresses

classification and regression tasks. It employs ensemble learning and amalga-

mates multiple classifiers to tackle intricate problems [46]. Significantly, its

accuracy exceeds that of the Decision Tree (DT) algorithm, as it combines

multiple DTs, resulting in a more robust prediction. Utilizing the bagging

method combines diverse learning models and augments overall performance.

The RF algorithm begins by creating random samples from the dataset. Each

sample constructs a DT to contribute to the final prediction. Subsequently,

the RF classifier assesses the output from all DTs and predicts the final re-

sult based on majority voting. By increasing the number of trees, accuracy

improves while minimizing overfitting concerns.

Pros of RF

(a) High Accuracy: RF yields higher accuracy compared to single decision

trees, especially for complex datasets with non-linear relationships.

(b) Handles Missing Values: RF can handle missing values in the dataset

without requiring imputation.

(c) Parallelization: Training of individual decision trees in a Random Forest

can be parallelized, leading to faster training times.

Cons of RF

(a) Less Effective on Noisy Data: RF may struggle with noisy datasets,

as individual decision trees can be sensitive to noise.

(b) Memory Consumption: Storing multiple decision trees in memory can

consume a significant amount of memory, particularly for large forests with

deep trees.
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iv. Support Vector Machine (SVM): SVM is a robust supervised ML al-

gorithm utilized for classification as well as regression tasks [47]. SVM falls

under the domain of supervised learning, where it gains knowledge from train-

ing data that has been labeled and then uses that knowledge to create pre-

dictions. A linear hyperplane can effectively divide the data points in this

space shown in Figure 2.3. Depending on the type of data, different kernel

functions, including polynomials, Radial Basis Functions (RBF), and sigmoid,

can be used. Here are some common types of SVM:

Figure 2.3: SVM classifier

(1) Linear SVM: Linear SVM is the most straightforward variant, suitable

for problems where the data is linearly separable. It finds the optimal hy-

perplane that linearly separates the data points into different classes. This

hyperplane is a line in 2D or in 3D. Linear SVM is effective when the classes

can be separated by a straight line or a hyperplane, such as in binary classi-

fication tasks with linearly separable data.

(2) Polynomial Kernel SVM: Polynomial Kernel SVM is used when the

data is not linearly separable and requires a higher-dimensional space to be

separated. It employs a polynomial kernel function to convert input features
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into a higher-dimensional space, which allows SVM to locate a nonlinear de-

cision boundary that effectively differentiates the classes. Polynomial Kernel

SVM is suitable for problems with complex decision boundaries, such as image

classification tasks where the relationship between features may not be linear.

(3) Radial Basis Function (RBF) Kernel SVM: RBF Kernel SVM is a

popular choice for nonlinear classification problems. It transforms the input

features into an infinite-dimensional space using a radial basis function kernel.

This kernel function measures the similarity between data points in the orig-

inal feature space and assigns higher weights to nearby points. RBF Kernel

SVM can capture complex relationships in the data and is effective for tasks

where the decision boundary is highly irregular or nonlinear.

(4) Custom Kernel SVM: In addition to the predefined kernel functions

mentioned above, SVM also allows the use of custom kernel functions tai-

lored to specific problem domains. Custom Kernel SVM enables flexibility in

modeling complex relationships in the data by defining a kernel function that

captures the domain knowledge or characteristics of the data.

Pros of SVM

(a) Effective in High-Dimensional Spaces: VM performs well in high-

dimensional spaces, making it suitable for tasks with a large number of fea-

tures, such as text classification and image recognition.

(b) Robust to Overfitting:SVM maximizes the margin between classes,

which helps reduce overfitting and improves generalization performance.

(c) Effective for Nonlinear Data: SVMs can model complex decision

boundaries by using kernel functions, allowing them to handle nonlinear data

effectively.

Cons of SVM

(a) Sensitive to Noise: SVMs can be sensitive to noisy data, which can

affect the placement of the decision boundary and lead to suboptimal perfor-

mance.
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(b) Parameter Sensitivity: SVM performance can be sensitive to the choice

of hyperparameters, such as the kernel type and regularization parameter.

Tuning these parameters effectively can require significant computational re-

sources and expertise.

2.2.2 Deep Learning (DL)

DL is a subset of ML that involves the use of ANN to learn complex patterns

and data. These deep neural networks are capable of learning hierarchical repre-

sentations of data through the composition of multiple nonlinear transformations.

Figure 2.4 shows the components commonly found in deep learning architectures:

Figure 2.4: Architecture of CNN.

Input Layer: The input layer serves as the first layer of the neural network,

hence it receives raw input data. Each neuron in this layer corresponds to a feature

or input variable, and the number of neurons is based on the dimensionality of

the input data.

Convolutional Layer: Convolutional layers are the primary building blocks

of CNN, extensively used in computer vision applications. This layer performs

convolution operations on the input data using learnable filters or kernels and

effectively captures spatial patterns by detecting features like edges, textures, and

shapes. They are defined by parameters such as the number of filters, filter size,

and stride.

Pooling Layer: Pooling layers are often integrated after convolutional layers

in CNN architectures to lower the spatial dimensions of feature maps while re-
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taining key information. Utilizing techniques like max pooling or average pooling,

these layers downsample the feature maps, which helps decrease the network’s

computational complexity and enhances its robustness to variations in the input

data.

Dense Layer: Dense layers, often referred to as fully connected layers, are

fundamental components of neural networks, where every neuron connects to all

neurons in the preceding layer. They are essential for capturing intricate nonlinear

relationships within the data. Typically positioned in the later stages of the net-

work, dense layers aggregate the features extracted by earlier layers to facilitate

predictions.

Output Layer: The output layer serves as the final component of a neural

network to generate the network’s predictions or outputs. The configuration of

neurons in this layer varies based on the specific task. In binary classification tasks,

a single neuron with a sigmoid activation function is often employed to yield a

probability score. For multi-class classification, the output layer generally features

multiple neurons (one for each class) and uses a softmax activation function to

provide class probabilities. In regression tasks, the output layer may consist of

a single neuron with a linear activation function, producing continuous output

values.

2.3 State-Of-The-Art (SOTA)

This section explores existing research, methodologies, and advancements in DL-

based seed identification. Researchers investigate various techniques, including

image processing, machine learning, and hyperspectral imaging, to improve clas-

sification accuracy and efficiency in agricultural applications [48]. Subsection 2.3.1

presents the various approaches for seed defects identification while subsection 2.3.2

introduces state-of-the-art methods for variety identification using neural network

approaches.
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2.3.1 Defect Identification

This sub-section delves into the applications of DL techniques in agriculture, to

detect defects of seed and perform seed classification. Table 2.1 highlights a few

articles to identify defects of various seeds. Zhao et al. [49] emphasize the potential

of computer vision for classifying seeds and seedlings, which is vital for purity

analysis and germination assessments. The study discusses various challenges,

including a lack of expertise, the lengthy training process, and the requirement for

large reference specimens. It recommends optimizing processes related to image

acquisition, dataset creation, and model development to expedite the integration

of computer vision in seed testing applications. The authors also propose a concept

flow chart to advance computer-assisted seed identification.

Table 2.1: Identification of seed defects using DL techniques

Title and Ref-

erence Num-

ber

Journal

Name

and

Year

Seed

Type

Techniques Remarks

Corn Seed

Defect Detec-

tion Based on

Watershed Al-

gorithm and

Two-pathway

Convolutional

Neural Networks

[50].

Frontiers

in Plant

Science

(2022).

Corn

Seed

Presents Corn-seed-Net

model which leverages

the strengths of both

VGG16 and ResNet50.

It uses Watershed (seg-

mentation) + CNN

(Classification).

Achieved

95.63% aver-

age accuracy.
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Title and Ref-

erence Num-

ber

Journal

Name

and

Year

Seed

Type

Techniques Remarks

Enhanced

Individual

Characteristics

Normalized

Lightweight

Rice-VGG16

Method for Rice

Seed Defect

Recognition

[51].

Multimedia

Tools

and

Appli-

cations

(2023).

Rice

Seed

Develop a lightweight

version of Rice-VGG16

for the purpose of rice

seed defect recognition.

Achieved

99.51%

recognition

accuracy.

Detection of

Cotton Seed

Damage Based

on Improved

YOLOv5 [52].

MDPI-

Processes

(2023).

Cotton

Seed

Images of cotton seeds

with three damage levels

(undamaged, slightly

damaged, seriously dam-

aged) were collected and

labeled. Later, it given

as input to improved

YOLOv5s algorithm,

which incorporated the

CARAFE upsampling

operator and an en-

hanced loss function for

damage identification.

The improved

YOLOv5s

achieved high

accuracy

(mAP 0.5 up

to 99.5%) and

recall rates.
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Title and Ref-

erence Num-

ber

Journal

Name

and

Year

Seed

Type

Techniques Remarks

Identification of

Defective Maize

Seeds Using

Hyperspectral

Imaging Com-

bined with Deep

Learning [53].

Foods-

MDPI

(2022).

Maize

Seed

Collected hyperspectral

data from 400 maize

seeds and developed

CNN-FES for feature

selection and CNN-ATM

for classification.

Gained ac-

curacy up to

97.50%.

Research on

Classification

Method of

Maize Seed

Defect Based on

Machine Vision

[54].

Journal

of Sen-

sors

(2020).

Maize

Seed

Used CNNs and trans-

fer learning for seed

classification, compared

with traditional machine

learning algorithms.

DL out-

performs

traditional

methods

with 95%

accuracy.

Detection of

Surface De-

fects for Maize

Seeds Based on

YOLOv5 [55].

Journal

of

Stored

Prod-

ucts

Re-

search

(2024).

Maize

Seed

Proposed method inte-

grates YOLOv5 frame-

work for image process-

ing and defect detection.

Acheived

95.5% accu-

racy with 8.8

MB size.
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Title and Ref-

erence Num-

ber

Journal

Name

and

Year

Seed

Type

Techniques Remarks

A Lightweight

Method for

Maize Seed

Defects Identifi-

cation Based on

Convolutional

Block Attention

Module [56].

Frontiers

in Plant

Science

(2023).

Maize

Seed

Integrate CBAM into

MobileNetv3 for maize

seed defect detection.

Efficient net-

work with

superior con-

vergence and

accuracy of

93.14%.

Detection of

Insect-Damaged

Maize Seed

Using Hyper-

spectral Imaging

and Hybrid 1D-

CNN-BiLSTM

Model [57].

Infrared

Physics

& Tech-

nology

(2024).

Maize

Seed

Hyperspectral imaging

(930–1866 nm) was used

to capture maize seed

data, with the optimal

band ratio identified

via ANOVA. The 1D-

CNN-BiLSTM model

integrated both spectral

and texture features,

achieving optimal clas-

sification results with

GLCM texture features.

Compared to

traditional

SVM, the

1D-CNN-

BiLSTM

model

achieved

better results.
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Title and Ref-

erence Num-

ber

Journal

Name

and

Year

Seed

Type

Techniques Remarks

Enhancing

Soybean Clas-

sification with

Modified Incep-

tion Model: A

Transfer Learn-

ing Approach

[58].

Elsevier-

Gene

(2024).

Soybean

Seed

Classify problematic soy-

bean seeds using a mod-

ified InceptionV3 model

and advanced optimiza-

tion techniques.

High pre-

cision and

recall demon-

strate the

model’s ef-

fectiveness,

achieving

98.73% ac-

curacy in

classification.

Online Clas-

sification of

Soybean Seeds

Based on Deep

Learning [59].

Elsevier-

Engineering

Appli-

cations

of Ar-

tificial

Intelli-

gence

(2023).

Soybean

Seed

Utilized MSRCR for im-

age segmentation and

SoyNet for classification

on NVIDIA Jetson TX2.

Efficient real-

time soybean

quality as-

sessment with

high accuracy

and speed.
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Title and Ref-

erence Num-

ber

Journal

Name

and

Year

Seed

Type

Techniques Remarks

Deep Learning

Based Soybean

Seed Classifica-

tion [60].

Elsevier-

Computers

and

Elec-

tronics

in Agri-

culture

(2022).

Soybean

Seed

SNet is a lightweight

CNN that uses separa-

ble convolution blocks,

MFR modules, and av-

erage pooling combined

with Mask R-CNN for

segmentation and classi-

fication.

SNet achieves

96.2% ac-

curacy in

soybean seed

classification

and surpasses

state-of-the-

art models

with only

1.29M pa-

rameters.

Real-time

Recognition

System of

Soybean Seed

Full-Surface De-

fects Based on

Deep Learning

[61].

Elsevier-

Computers

and

Elec-

tronics

in Agri-

culture

(2021).

Soybean

Seed

Developed a DL-based

sorting system for full-

surface recognition of

soybean seeds using

alternate circumrotat-

ing exposure and CNN

classification.

Achieved

97.84% ac-

curacy with

MobileNetV2

on masked

datasets,

enabling real-

time sorting

at high pre-

cision and

speed.
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Title and Ref-

erence Num-

ber

Journal

Name

and

Year

Seed

Type

Techniques Remarks

Classification of

External Defects

on Soybean

Seeds Using

Multi-Input

Convolutional

Neural Networks

with Color and

UV-Induced

Fluorescence

Images Input

[62].

Intelligence,

Infor-

matics

and

Infras-

tructure

(2024).

Soybean

Seed

Combines color and UV

fluorescence images to

improve classification

accuracy for soybean

seed defects using three

pre-trained networks

(AlexNet, ResNet-18,

EfficientNet).

ResNet-18

achieved

the highest

accuracy of

93.9%.

Defect Detection

and Classifica-

tion of Soybean

Using Convo-

lutional Neural

Network [63].

IEEE-

7th

Interna-

tional

Confer-

ence on

Infor-

mation

and

Com-

puter

Tech-

nologies

(2024).

Soybean

Seed

Developed an image-

processing system using

CNNs to detect and

classify soybean defects

with a Raspberry Pi

Camera module.

Slight in-

accuracies

occurred

in distin-

guishing

deformed soy-

beans from

damaged

ones, which

affected

classification.
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Wang et al. [50] outline a novel approach for corn seed defect detection, lever-

aging a watershed algorithm in combination with a two-pathway CNN model

which is trained on both RGB and NIR images. The model achieved an average

accuracy of 95.63% and outperformed traditional methods. The study explores

various parameter settings’ impacts on model training and discusses the potential

application of the proposed method for high-throughput quality control of corn

seeds, which offers an effective. tool for agricultural quality assurance.

Sun et al. [51] present an enhanced method named Rice-VGG16 for rice seed

defect recognition This approach addresses shortcomings of current approaches

such as complex operations and non-normalization processing. Defects in rice

seeds are initially classified, and then image enhancement steps are employed to

standardize the seed images and develop the datasets. The fifth max-pooling layer

is exchanged for an average-pooling layer, and the activation function is altered

to Leaky Rectified Linear Units (Leaky-ReLU) to enhance individual features and

boost recognition accuracy. Furthermore, a batch normalization layer is included

after the last convolution layer of each group, the first fully connected layer is

eliminated, the number of neurons in the second fully connected layer is modi-

fied to 1024, and the model parameters are optimized for reduced weight. This

results in the creation of a normalized lightweight Rice-VGG16 model that im-

proves recognition speed. Hence, by modifying network architecture using the

activation function and batch normalization layers, the proposed method achieves

improved recognition accuracy and speed. Experimental results showcase high

training and recognition accuracies of 99.63% and 99.51%, respectively, with sig-

nificant parameter reduction compared to traditional VGG16 models, which leads

to reduced training and recognition times.

Xu et al. [53] develops a fast, non-destructive method for detecting defects

using hyperspectral imaging for maize seeds. Raw spectra from 400 maize seeds,

comprising 200 healthy seeds and 200 worm-eaten seeds, underwent preprocess-

ing involving detrending and Multiple Scattering Corrections (MSC) to improve

the spectral distinctions. The study introduces CNN-FES, a CNN architecture
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based on feature selection, which outperforms conventional methods like Successive

Projections Algorithm (SPA) and Competitive Adaptive Reweighted Sampling

(CARS) in capturing essential spectral data. Moreover, the CNN-ATM model,

which features an attentional classification mechanism, attained classification ac-

curacy exceeding 90% on both the training and test sets, with accuracy reaching

as high as 97.50% in feature wavelength modeling. These results validate the ef-

fectiveness of the hyperspectral dataset used for detecting defects in maize seeds,

which highlights its significant potential for processing and analyzing complex hy-

perspectral data. Huang et al. [54] used CNN and transfer learning into the seed

defect classification domain and compared it against traditional ML algorithms.

Experimental results indicated a significant improvement in classification accuracy

with DL algorithms, achieving 95% accuracy with GoogLeNet compared to 79.2%

accuracy with the SURF+SVM method. Furthermore, the study explored the im-

pact of network depth on classification accuracy, revealing that deeper networks

generally resulted in higher accuracy. Visualization techniques were employed to

examine the feature maps of each CNN layer and represent the probability distri-

bution of inference results using heat maps. Xia et al. [55] propose the YOLOv5

DL framework for detecting Surface irregularities in maize seeds. Initially, a sys-

tem for capturing maize seed images is established, followed by preprocessing tech-

niques to enhance image quality. The ECA-Improved-YOLOv5S-Mobilenet model

is then introduced to improve feature learning and defect detection. Experimental

results demonstrate high precision 92.8%, recall rate 98.9%, and mPA0.5 95.5%

with a compact model size of 8.8 MB. Overall, this method offers a promising

approach to automate seed grading and improve plantation practices, providing a

solid foundation for future developments in seed quality assessment. Li et al. [56]

introduce a lightweight and efficient network for to integrate the Convolutional

Block Attention Module (CBAM) into the pre-trained MobileNetv3 to enhance

feature extraction by focusing on crucial channel and spatial domain information.

Validated with 12,784 images encompassing seven defect types, the proposed net-

work outperforms other pre-trained models. With a true positive rate of 93.14%
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and a false positive rate of 1.14%, it demonstrates exceptional convergence with

a reduced number of iterations This approach promises improved maize seed de-

fect identification, benefiting food safety and agricultural production. Kahar et

al. [64] presents an integrated method for recognizing paddy plant leaf diseases

and providing recommendations for their control. The research focuses on three

prevalent paddy diseases in Malaysia: Bacterial Leaf Blight (BLB), Leaf Blast

Disease (LBD), and Bacterial Sheath Blight (BSB). The recognition approach

used is a neuro-fuzzy expert system, which integrates the learning capabilities of

ANN with the human-like knowledge representation and interpretative strengths

of fuzzy logic systems, complemented by a rule-based expert system. A prototype

was created to support Malaysian paddy farmers and researchers by providing

early detection of diseases and assistance with crop management. Effective crop

management is crucial for ensuring crop health and maximizing yield. The recog-

nition accuracy achieved by the system is 74.21%.

Lin et al. [65] proposed a soybean image segmentation method named Multi-

Scale Retinex with Color Restoration (MSRCR) model to enhance the quality of

soybean image with Otsu’s segmentation, which achieves 98.05% accuracy. It ad-

dresses seed overlapping and adhesion effectively and offers potential for broader

agricultural seed classification applications. After image enhancement, author

presents SoyNet to perform the classification of soybean seeds which achieves

95.63% accuracy with a 4.92 ms classification time [59]. This state-of-the-art deep

learning model is crafted for the online classification of soybean seeds, and incor-

porates a mix of CONV layers, pooling layers, inception modules, residual blocks,

and a fully connected layer. The use of inception modules helps reduce the num-

ber of parameters and extract multi-dimensional features, while residual blocks

are important for preventing model degradation and simplifying the optimization

of weight parameters. These architectural choices enable SoyNet to efficiently

process and classify soybean seeds with high accuracy and speed. SoyNet’s de-

ployment on the NVIDIA Jetson TX2 platform ensures it meets the requirements

for efficient and effective online classification in agricultural applications.
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Huang et al. [60] developed a soybean network named SNet to predict the

classes of soybean seeds. This approach uses the popular object detection ap-

proach Mask-RCNN [22] to perform the segmentation of soybean seeds. The SNet

is a lightweight CNN designed for the accurate classification of soybean seeds. The

architecture is divided into three main sections. The first section comprises seven

separable convolution blocks, a Batch Normalization (BN) layer, and a ReLU

activation layer. The second section features three separable convolution blocks

enhanced with Mixed Feature Recalibration (MFR) modules, which improve the

model’s ability to emphasize important areas and better capture damaged features.

The third section includes an average pooling layer, followed by dense layers for

classification. SNet uses a 3 × 3 kernel size with specific kernel numbers and

stride. The full classification pipeline starts with image segmentation using the

Mask R-CNN method, followed by classification with SNet. This model achieves a

remarkable 96.2% identification accuracy while utilizing only 1.29 million param-

eters, surpassing six existing state-of-the-art models. Due to its efficiency, SNet is

well-suited for the automatic recognition of soybean seeds on resource-constrained

platforms, facilitating quality inspection and food safety processes. Gulzar et al.

[58] employ DL models to classify problematic soybean seeds using a dataset of

5513 images across five classes. The InceptionV3 model was enhanced with five

additional layers to improve performance. An initial training accuracy of 88.07%

and a validation accuracy of 86.67% were achieved by utilizing techniques such

as transfer learning, adaptive learning rate adjustment, and model checkpointing.

Further tuning increased accuracy to 98.73%. Evaluation measures that high-

lighted the efficacy of the model were recall, F1-score, and accuracy (0.9706 to

1.0000). The model’s potential for classifying soybean seeds is demonstrated by

this study, which advances agricultural technology for crop health evaluation.

Yang et al. [66] proposes methods for high-throughput image acquisition, data

processing, and analysis of soybean seed. To achieve high-throughput segmen-

tation and classification of soybean seeds, the author used Mask R-CNN with

transfer learning in conjunction with synthetic picture synthesis via domain ran-
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domization for training. Results indicate the ability to quantitatively assess color

and various morphological traits and established a standard for genotype eval-

uation. Hence, the proposed method effectively segments individual seeds and

calculates morphological parameters, proving practical for high-throughput phe-

notyping with reduced manual annotation costs. Zhao et al. [61] introduce a

DL-based sorting system that innovatively recognizes the entire surface of soy-

bean seeds. It employs an alternate circumrotating mechanism system that cap-

tures comprehensive seed feature information and facilitates precise classification

through a trained DL model. Six seed categories were defined, and images were

collected under varying brightness and surface conditions to quantify seed defects.

Seven CNN models were evaluated, with MobileNetV2 showing the best perfor-

mance. Visual assessment confirmed the model’s capability to detect seed defects

across different scales. Optimizations based on these results enhanced classifi-

cation accuracy, reaching 97.84% on masked datasets. The system operates in

real-time on NVIDIA’s Jetson Nano.

2.3.2 Variety Identification

Variety identification of soybean seeds refers to the process of determining the

specific type or variety of soybean from which the seeds originate. It involves

distinguishing between different seed varieties based on their unique genetic, mor-

phological, or biochemical traits. This identification is crucial in agriculture to

ensure the correct variety is planted, which influences crop yield, quality, disease

resistance, and adaptability to environmental conditions. Table 2.2 mentioned the

research related with variety identification of various seed.
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Table 2.2: Identification of seed variety using DL techniques

Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Corn Seeds

Identifica-

tion Based

on Shape

and Colour

Features

[67].

Khazanah

Infor-

matika:

Jurnal

Ilmu Kom-

puter dan

Infor-

matika

(2020) .

Corn

Seed

Performed variety iden-

tification of BIMA-20

Good vs. NASA-29

Good corn seed using

color+shape features

and perform classifica-

tion through ANN.

Acheived 97%

accuracy with

both features.

Computer-

Vision

Classifi-

cation of

Corn Seed

Varieties

Using

Deep Con-

volutional

Neural

Network

[68].

Journal

of Stored

Products

Research

(2021).

Corn

Seed

Used CNN for feature ex-

traction and SVM, KNN,

bagged tree, ANN and

boosted tree for classifi-

cation.

CNN-ANN

combina-

tion received

98.1% accu-

racy.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

RiceSeedNet:

Rice Seed

Variety

Identifica-

tion Using

Deep

Neural

Network

[69].

Elsevier-

Journal

of Agri-

culture

and Food

Research

(2024).

Rice

Seed

Introduce RiceSeedNet

where a neural network

is merged with image

processing techniques.

Acheived

97% to clas-

sify thirteen

local varieties

of rice seed.

Identification

of Rice

Seed Vari-

eties Based

on Near-

Infrared

Hyper-

spectral

Imaging

Tech-

nology

Combined

with Deep

Learning

[70].

ACS

omega

(2022).

Rice

Seed

Used various ML and

DL approaches to per-

form rice variety identifi-

cation using NIR images.

ResNet gain

highest ac-

curacy of

86.08%.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Hyperspectral

Imaging

for Ac-

curate

Determi-

nation of

Rice Vari-

ety Using

a Deep

Learning

Network

with

Multi-

Feature

Fusion

[71].

Elsevier-

Spectrochimica

Acta Part

A: Molec-

ular and

Biomolec-

ular Spec-

troscopy

(2020).

Rice

Seed

Utilized HSI, multi-

feature fusion, and

PCANet for accurate

rice variety identifi-

cation, outperforming

traditional machine

learning methods.

PCANet

achieved

98.57% clas-

sification

accuracy.

Wheat

Varieties

Identifica-

tion Based

on a Deep

Learning

Approach

[72].

Elsevier-

Journal of

the Saudi

Society

of Agri-

cultural

Sciences

(2021).

Wheat

Seed

Employed CNNs with

Transfer Learning on a

dataset of wheat grain

images.

Gain accu-

racy upto

95.68%.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Classification

of Bread

Wheat

Varieties

With a

Combi-

nation

of Deep

Learning

Approach

[73].

Springer-

European

Food Re-

search

and Tech-

nology

(2024).

Wheat

Seed

Utilized pre-trained

CNN models and hybrid

Xception + BiLSTM

approach for accurate

classification of wheat

varieties.

Achieved

high clas-

sification

accuracy of

97.73%.

Quality

Assess-

ment of

Compo-

nents of

Wheat

Seed Using

Different

Classifi-

cations

Models

[74].

MDPI-

Applied

Sciences

(2022).

Wheat

Seed

Employed industrial dig-

ital cameras and SVMs

to classify wheat seeds

based on shape, color,

and texture features.

Acheived

overall 97.6%

accuracy.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Non-

Destructive

Discrim-

ination

of The

Variety

of Sweet

Maize

Seeds

Based on

Hyper-

spectral

Image

Cou-

pled with

Wave-

length

Selection

Algorithm[75].

Elsevier-

Infrared

Physics

& Tech-

nology

(2021).

Maize

Seed

Vis–NIR hyperspectral

imaging, SG smoothing,

FD methods, CARS

for feature selection,

SVM for classification,

compared with multiple

algorithms.

Gained

94.07% for

nine vari-

eties and

94.86% for

germ-up and

germ-down.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Research

on Maize

Seed

Classifica-

tion and

Recog-

nition

Based on

Machine

Vision

and Deep

Learning

[76].

MDPI-

Agriculture

(2022).

Maize

Seed

Proposed P-ResNet

models is compared with

many algorithms and

surpasses all.

Outperform

other mod-

els with an

accuracy of

99.70%.

Maize Seed

Variety

Identi-

fication

Model Us-

ing Image

Processing

and Deep

Learning

[77].

Indonesian

Journal of

Electrical

Engineer-

ing and

Computer

Science

(2024).

Maize

Seed

The proposed hybrid

model Gabor, HOG, and

CNN-based feature selec-

tion identifies Ethiopian

maize varieties.

Received 99%

accuracy.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Vis-NIR

Hyper-

spectral

Imaging

Combined

with In-

cremental

Learning

for Open

World

Maize

Seed Va-

rieties

Identi-

fication

[78].

Elsevier-

Computers

and Elec-

tronics

in Agri-

culture

(2022).

Maize

Seed

Hyperspectral imaging

(HSI) and convolutional

autoencoder (CAE)

extract features; incre-

mental learning (IL)

with RBF-BPR model

classifies maize varieties.

Achieved

100% ac-

curacy in

distinguish-

ing known

and unknown

varieties.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Variety

Classifi-

cation of

Coated

Maize

Seeds

Based on

Raman

Hyper-

spectral

Imaging[79].

Elsevier-

Spectrochimica

Acta Part

A: Molec-

ular and

Biomolec-

ular Spec-

troscopy

(2022).

Maize

Seed

Raman hyperspectral

imaging, variable selec-

tion (MCARS, SPA),

SVM model is optimized

using genetic algorithm.

Accuracy is

96.88%.

Germinative

Paddy

Seed Iden-

tification

Using

Deep Con-

volutional

Neural

Network

[80].

Springer-

Multimedia

Tools and

Appli-

cations

(2023).

Paddy

Seed

Utilized deep CNN for

germinative seed detec-

tion.

Achieved

high ac-

curacy;

outperformed

transfer

learning and

traditional

methods.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Employing

Image

Processing

and Deep

Learning

in Grada-

tion and

Classi-

fication

of Paddy

Grain [81].

Springer-

Artificial

Intelli-

gence for

Societal

Issues

(2023).

Paddy

Seed

Employ deep learning for

paddy seed classification

using image processing

techniques.

AI transforms

agriculture,

enhancing

grain quality

assessment

and produc-

tivity.

Paddy

Seed

Variety

Identi-

fication

Using t20-

Hog and

Haralick

Textural

Features

[82].

Complex

&

Springer-

Intelligent

Systems

(2022).

Paddy

Seed

Develop computer vision

system for paddy vari-

ety identification using

diverse features like T20-

HOG.

T20-HOG

enhances

system per-

formance

significantly

and gained

99.28% accu-

racy.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Varietal

Classifi-

cation of

Barley by

Convo-

lutional

Neural

Networks

[83].

Elsevier-

Biosystems

Engineer-

ing (2020).

Barley

Seed

Nine CNN models were

compared for varietal

classification based on

learning time, computa-

tional requirements, and

accuracy.

CNN sig-

nificantly

improve

barley clas-

sification

accuracy.

Image

Analysis

Methods

in Clas-

sifying

Selected

Malting

Barley

Varieties

by Neural

Modelling

[84].

MDPI-

Agriculture

(2021).

Barley

Seed

Utilized AI and neural

image analysis to assess

barley quality via digital

image color data.

Effective

model en-

hances barley

quality eval-

uation for

better beer

production.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Nondestructive

Identifi-

cation of

Barley

Seeds Va-

riety Using

Near-

Infrared

Hyper-

spectral

Imaging

Coupled

With Con-

volutional

Neural

Network

[85].

Journal

of Food

Process

Engineer-

ing (2021).

Barley

Seed

Collected hyperspectral

images, preprocessed

data, used CNN and

traditional models for

barley seed variety

classification.

CNN outper-

formed tradi-

tional models

by achieving

over 98% ac-

curacy.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

A Method

for Detect-

ing The

Quality

of Cot-

ton Seeds

Based

on An

Improved

ResNet50

Model [86].

Plos one

(2023).

Cotton

Seed

Enhanced ResNet50 with

CBAM and modified FC

layer to classify cotton

seed using 4419 images.

Achieved

97.23%

accuracy,

outperform-

ing classical

models, fast

recognition.

Near-

Infrared

Hyper-

spectral

Imaging

Combined

With Deep

Learning

to Identify

Cotton

Seed Va-

rieties

[87].

MDPI-

Molecules

(2020).

Cotton

Seed

Used NIR hyperspectral

imaging, PCA, CNN,

ResNet, and various clas-

sifiers for cotton seed va-

riety identification.

Deep learning

effectively

identifies

cotton seed

varieties

with high

accuracy.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Cotton-

Net: Effi-

cient and

Accurate

Rapid De-

tection of

Impurity

Content in

Machine-

Picked

Seed Cot-

ton Using

Near-

Infrared

Spec-

troscopy

[88].

Frontiers

in Plant

Science

(2024).

Cotton

Seed

Preprocessed seed cotton

spectral data with SG,

SNV, and Normalization;

developed Cotton-Net

CNN.

Cotton-Net

significantly

enhances

impurity

detection

accuracy.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

A Deep

Learning

Image

System for

Classifying

High Oleic

Sunflower

Seed Va-

rieties

[89].

MDPI-

Sensors

(2023).

Sunflower

Seed

CNN AlexNet for classi-

fying sunflower seed vari-

eties.

Achieved

high accuracy

despite visual

similarity of

varieties.

Comparative

Evaluation

of Some

Quality

Charac-

teristics of

Sunflower

Oilseeds

(He-

lianthus

annuus L.)

Through

Machine

Learning

Classifiers

[90].

Springer-

Food

Analytical

Methods

(2023).

Cotton

Seed

Evaluated classification

performance using six

ML algorithms and mul-

tivariate tests.

RF, SVM,

and MLP

achieved

the highest

classification

accuracy.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

Soybean

Variety

Identi-

fication

Based on

Improved

ResNet18

Hyper-

spectral

Image [91].

Springer-

European

Food Re-

search

and Tech-

nology

(2022).

Soybean

Seed

Enhanced ResNet18 with

decomposed convolution

kernels, BN layers, and

multi-scale feature ex-

traction for soybean va-

riety identification.

Achieved

97.36% ac-

curacy and

surpasses

Nasnet large

and ResNet18

using hy-

perspectral

images.
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Title

and Ref-

erence

Number

Journal

Name

and Year

Seed

Type

Techniques Remarks

A Rapid

and Highly

Efficient

Method for

The Iden-

tification

of Soy-

bean Seed

Varieties:

Hyper-

spectral

Images

Combined

With

Transfer

Learning

[92].

MDPI-

Molecules

(2019).

Soybean

Seed

Utilized CNN with hy-

perspectral images, data

augmentation, and trans-

fer learning for soybean

variety identification.

Achieved

up to 97.2%

accuracy

and surpasse

traditional

methods,

enabling

rapid and

accurate seed

identification.

Yafie et al. [67] introduce a technique in which shape and color features are

used for the classification of corn seed using ANN. The identification process in-

volves three primary stages: selection of ROI, feature extraction and classification.

Shape features extraction are derived from eccentricity values, while color fea-

tures are extracted from hue saturation values. Experimental results demonstrate

the excellent performance of the model to achieve 89% classification accuracy for

poor and good quality BIMA-20 corn seeds and 97% accuracy in distinguishing

between BIMA-20 and NASA-29 species. Zhang et al. [93] explored the classifi-

cation of freeze-damaged corn seeds through hyperspectral imaging paired with a
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Deep Convolutional Neural Network (DCNN). Hyperspectral images of corn seeds

are captured at five different freezing temperatures across a 400–1000 nm range,

with spectra extracted from embryo regions. Four models, including KNN, SVM,

ELM, and DCNN, were used to handle the classification of freeze corn seed across

five categories. The DCNN model surpassed the other models, reaching accuracy

rates of 100% in training, 96.9% in validation, and 97.5% in testing for the five-

category classification. Javanmardi et al. [68] used a CNN for feature extraction.

These features are then classified using various models, including ANN, cubic-

SVM, quadratic-SVM, kNN, boosted trees, bagged trees, and Linear Discriminant

Analysis (LDA). Compared to models trained solely on simple features, those

trained on CNN-extracted features demonstrated superior classification accuracy

for corn seed variants. Compared to previous classifiers, the CNN-ANN classifier

fared better, identifying 2250 test cases in 26.8 seconds with an F1-score of 98.1%,

recall of 98.1%, precision of 98.2%, and classification accuracy of 98.1%.

The study conducted by Rajalakshmi et al. [69] focuses on the classification

of regional rice seed varieties from southern Tamilnadu, India, using a neural

network called RiceSeedNet in conjunction with conventional image processing

methods. The 13,000 RGB images of regional rice seed varieties are collected with

1,000 images for each of the 13 varieties. It makes up the RiceSeed Image Cor-

pus for research purposes. RiceSeedNet is a vision transformer-based architecture

designed to automate the varietal identification of rice seeds. The 13 local rice

seed varieties were accurately classified using the proposed RiceSeedNet with 97%

accuracy. In addition, an evaluation of RiceSeedNet’s effectiveness across several

rice grain kinds was conducted using a publicly accessible rice grain dataset. In

this cross-data validation, RiceSeedNet classified eight different types of rice grains

in the public dataset with 99% accuracy. This study addresses crucial agricultural

concerns by leveraging advanced technology to ensure seed quality and crop pro-

ductivity in the region. Jin et al. [70] utilize Near-Infrared (NIR) hyperspectral

technology with both conventional and DL methods to design accurate identifica-

tion models for common rice seed types. It employs ML algorithms like SVM, LR,
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and RF and DL methods (LeNet, GoogLeNet, and Residual Network (ResNet)) to

perform variety identification of five common types of rice seeds where the ResNet

model achieves the highest 86.8% testing accuracy. An efficient and nondestruc-

tive technique for rice seed variety identification is provided by the combination

of DL and NIR hyperspectral imaging. Zhang et al. [94] developed a double-sided

identification and elimination system to identify unclosed-glume rice seeds by si-

multaneously analyzing images from both sides. Here, to identify the rice seeds

with an open glume, feature extraction and tough line detection were applied.

Using double-sided image, the system attained an accuracy of 88.1% for regu-

lar seeds and 87.7% for unclosed-glumes seeds. CNN and hyperspectral imaging

were investigated by Qiu et al. [95] as methods for differentiating rice seed types.

Four rice seed cultivars were subjected to hyperspectral imaging at two different

spectral ranges: 380–1030 nm and 874–1734 nm. Spectral data were extracted

from 441–948 nm and 975–1646 nm. Models using KNN, SVM, and CNN were

developed with different numbers of training samples. Results showed that models

in the 975–1646 nm range performed slightly better. Performance improved with

more training samples but plateaued with larger sample sizes. The CNN models

generally outperformed KNN and SVM models, highlighting CNN’s effectiveness

in spectral data analysis. The study concluded that CNNs are a promising method

for spectral data analysis and suggested expanding research to include more rice

varieties to further validate this approach. Weng et al. [71] employed a DL net-

work that combines spectroscopic, texture, and morphological features to identify

rice varieties from Hyperspectral Imaging (HSI) images. For comparison, a DL

network called Principal Component Analysis Network (PCANet) was used in ad-

dition to more conventional ML techniques like KNN and RF. To improve spectral

data, methods including Principal Component Analysis (PCA) and multivariate

scatter correction were used. PCANet achieved 98.66% correct classification rates

for training sets and 98.57% for prediction sets. This technique can be used for

other agricultural goods and provides accurate rice variety identification.

Laabassi et al. [72] used five CNN architectures to identify the class of wheat
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seed. It tackles the vital requirement for precise wheat varietal categorization in

the grain industry, especially for registration and seed screening. By leveraging

transfer Learning, five standard CNN architectures were trained to enhance clas-

sification performance. Evaluation of Algerian regions wheat seed demonstrated

test accuracies ranging from 85% to 95.68%. Notably, the DensNet201 architec-

ture achieved the highest test accuracy (95.68%), followed closely by Inception

V3 (95.62%) and MobileNet (95.49%). These findings affirm the accuracy and

reliability of the proposed approach. A pre-trained hybrid model based on a CNN

is presented by Yasar et al. [73] to categorize bread wheat varieties. Using trans-

fer learning and fine-tuning on the CNN model that was previously trained, the

images were classified. The integration of a bidirectional long short-term mem-

ory algorithm with Xception CNN improved classification accuracy and achieved

the greatest classification success rate of 97.73%. These findings demonstrate the

effectiveness of the proposed approach in automatically classifying bread wheat

varieties and highlight the potential of utilizing such methods in systems designed

for bread wheat variety classification, aiding in the production of pure wheat vari-

eties efficiently. Fazel et al. [74] evaluates the potential of ML algorithm equipped

with industrial digital cameras for identifying and categorizing seven-grain groups

in wheat seed samples. An examination of 21,000 individual grains was conducted

with an emphasis on texture, color, and shape variables using three SVM and

two statistical models. The relief method ranked 91 features, with shape features

being the most significant, followed by texture and color. The quadratic-SVM

with the top 35 features attained the highest classification accuracy. Independent

data testing demonstrated accuracy ranging from 90.7% to 100% across various

grain types, with an average accuracy of 97.6%. This research underscores the

effectiveness of machine vision systems, particularly when combined with QSVM

or non-linear discriminant analysis, in evaluating wheat seed visual qualities for

cereal seed quality control. Olgun et al. [96] propose an automated system capable

of accurately classifying wheat grains. Dense Scale Invariant Features (DSIFT)

performance is evaluated using SVM classification. Histograms of features are
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used to represent images in DSIFT features, which are first clustered using k-

means clustering to create the Bag of Words (BoW) of visual words. The efficacy

of the suggested approach in classifying wheat grains is confirmed by experimental

findings on a customized dataset, which show an overall accuracy rate of 88.33%.

Zhou et al. [75] presents a novel method of utilizing HSI for the identification of

sweet maize seed varieties. It captures Vis-NIR hyperspectral images of nine vari-

eties with germ orientations up and down. To emphasize the distinctions between

seed varieties, the Savitzky–Golay (SG) smoothing and First Derivative (FD) tech-

niques were used. The Competitive Adaptive Reweighted Sampling (CARS) ap-

proach was then used to extract effective wavelengths, which were subsequently

used to build an SVM-based variety classification model. The performance of this

model was compared with six other feature extraction methods and six classifi-

cation algorithms (NB, KNN, ANN, DT, LDA, LR). Results demonstrated that

the SG + FD + CARS + SVM model achieved the highest classification accuracy,

with 94.07% and 94.86% accuracy for germ up and germ down orientations, respec-

tively. This method shows promise for accurately discriminating sweet maize seed

varieties. Xu et al. [76] introduces a rapid classification method using machine

vision and deep learning. After gathering 8080 maize seeds altogether from five

different types, the data was enhanced and the sets of seeds were split into training

and validation (80:20 ratios). To recognize and classify maize seeds using transfer

learning, an enhanced network architecture called P-ResNet is developed. The re-

sults show that P-ResNet achieved the highest classification accuracy at 99.70%,

with model loss around 0.01. Other models (AlexNet, VGGNet, GoogLeNet, Mo-

bileNet, DenseNet, ShuffleNet, EfficientNet) showed high accuracy as well, ranging

from 96.44% to 98.28%. The accuracy for BaoQiu, ShanCu, XinNuo, LiaoGe, and

KouXian varieties reached over 99.6%. The experimental findings show how well

the suggested CNN model classifies maize seeds, and they also serve as a guide

for the identification of other crop seeds and agricultural applications in the food

sector. Gebeyehu et al. [77] present an optimal model for the identification of

Ethiopian maize varieties. For training and testing purposes, images of every type
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of maize were gathered from the Adet Agriculture and Research Center (AARC)

in Ethiopia. It employs two feature extraction techniques: (i) CNN and (ii) His-

togram of Oriented Gradients (HOG) + gabor filters while SVM is used to perform

classification Experimental analysis states that a combination of CNN, HOG and

SVM achieves the highest accuracy of 99%. This research underscores the feasi-

bility of deep learning for maize seed identification and proposes the hybrid model

as a valuable tool for variety selection and inspection. Zhang et al. [78] addresses

challenges in the authentication of maize seed varieties in the Chinese market,

where frequent additions, eliminations, and fake varieties complicate the identifi-

cation process. Hyperspectral imaging incorporated with incremental learning is

proposed to tackle this issue. Hyperspectral images of five maize seed varieties

were analyzed using a Convolutional Autoencoder (CAE) to extract features. A

novel Radial Basis Function-Biomimetic Pattern Recognition (RBF-BPR) model

is introduced and compared favorably with other models. This approach achieves

100% correct acceptance and rejection rates and surpasses other models. This

method supports IL without old class data and can adapt to government updates

on maize varieties. Liu et al. [79] introduce a novel method for classifying coated

maize seed varieties using a Raman hyperspectral imaging system. Evaluating

760 maize seeds from four varieties, Raman spectral data were extracted and pre-

processed. Modified Competitive Adaptive Reweighted Sampling (MCARS) and

Successive Projections Algorithm (SPA) were utilized for variable selection, with

MCARS being newly introduced as a stable search technology. RF and Back-

Propagation Neural Network (BPNN) models were compared with SVM models

optimized using the Genetic Algorithm (GA). Based on Raman data, the MCARS-

GA-SVM model produced predictions with a precision of 100% and a calibration

accuracy of 99.29%. With a 96.88% accuracy on the validation set, the method

shows strong potential for real-time, high-accuracy classification of seed varieties.

As paddy cultivation is essential for ensuring food security, but still the tradi-

tional approach used for the selection of paddy seed which is used for cultivation

is a costly and time-consuming process. Islam et al. [80] propose a novel frame-
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work utilizing deep CNN for automatic germinative seed detection. They collect

seed images in open environments, which pose illumination and scale challenges.

To mitigate this, images are converted to HSV format and applied normaliza-

tion techniques. Experiments on a dataset of three paddy varieties demonstrated

the framework’s high accuracy of 99.50%). Compared to transfer learning tech-

niques and traditional feature-based methods. Hence, the proposed model pro-

vides a non-invasive approach for detecting germinative paddy seeds and making

it well-suited for implementation in both the industrial sector and for farmers.

Its application promises to boost paddy cultivation by increasing both yield and

operational efficiency. Ranjan et al. [81] used DL algorithms and focuses on de-

tecting and classifying paddy grain seeds based on morphological characteristics

such as size, color, surface, and thickness. Various image processing techniques

are employed for data pre-processing, including image preparation, feature extrac-

tion, acquisition, filtering, and linearization. The dataset comprises 570 images

of binary-scaled paddy grain samples, with RGB color division and mathemati-

cal feature extraction. ROI boundary detection enhances feature extraction for

training a multi-class CNN. The model’s accuracy is evaluated based on overall

classification performance. This research underscores AI’s potential for revolu-

tionizing agricultural practices and benefiting society. Uddin et al. [82] developed

a novel method for paddy variety identification using a feed-forward NN model.

This model is trained with various heterogeneous features which are extracted by

T20-HOG features and haralick to significantly improve performance. The pro-

posed system exhibits superior accuracy compared to previous works, indicating

its potential for efficient application in both industry and agricultural settings.

Computer vision algorithms shows promising results to replace human exper-

tise in detection of defective grains and recognizing barley varieties. However,

traditional classification methods based on color, texture, and morphology which

achieved less than 75% accuracy. Kozlowski et al. [83] examines performed the

classification of barley seed using nine CNN layers. The comparison encompasses

DL models and transfer learning approaches and assesses their learning time, clas-
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sification times, computational demands, and classification accuracy. The findings

demonstrate that using CNN can achieve barley classification accuracy exceeding

93%, significantly improving over traditional methods and highlighting the poten-

tial for DL to enhance quality control in the brewing industry. Quality evaluation

is crucial in production, including beer brewing and its ingredients like hops, yeast,

and malting barley. Pilarskar et al. [84] focuses on assessing malting barley qual-

ity for malt production, utilizing AI and neural image analysis to identify grain

varieties, contamination levels, and other visual characteristics. The study found

that digital image color data effectively identifies barley quality. The Multi-Layer

Perceptron (MLP) neural network, trained on color data from digital images,

proved to be the best model for recognizing malting barley varieties. This method

promises to enhance malthouse operations and beer production quality in the fu-

ture. Singh et al. [85] used NIR-HSI to discriminate barley seed varieties rapidly

and nondestructively. A dataset consisting of 35,280 seeds from 35 different Indian

barley varieties, including 29 hulled and 6 naked varieties, was collected. HSI. im-

ages were acquired in the 900–1700 nm range, and mean spectra were extracted

and pretreated using six techniques, including Standard Normal Variate (SNV)

and Savitzky–Golay smoothing. Both raw and preprocessed spectral data were

fed into CNN and traditional models such as PLS-DA, KNN, and SVM. The end-

to-end CNN model using raw spectral data outperformed other models by using

preprocessing techniques and traditional methods. This approach achieves over

98% accuracy on the test set. This study highlights that NIR-HSI, combined with

CNN, offers a fast, accurate, and non-destructive approach to identifying barley

seed varieties and make it a powerful tool for agricultural applications.

Ensuring precise detection of cotton seed quality is vital for sustaining cotton

farming. Du et al. [86] present the incorporation of a CBAM into ResNet50 to

enhance feature extraction by learning channel and spatial information for clas-

sify cotton seeds. Modification of the fully connected layer and implementation

of an improved activation function streamline the model training process. Train-

ing on 4419 cotton seed images yields an impressive average detection accuracy
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of 97.23%, processing images in just 0.11s. Comparative analysis against other

models demonstrates superior feature extraction capabilities and accuracy. The

Impro-ResNet50 model proves adept at swiftly and accurately identifying cotton

seed quality, meeting the demands of modern cotton farming effectively.The com-

parative analysis demonstrates superior feature extraction capability and accuracy

compared to other models. Jamuna et al. [97] employs ML techniques to clas-

sify seed quality at varying development stages of the cotton crop. The models

were trained by three ML techniques—Naive Bayes (NB), Decision Tree (DT),

and MLP. Features were extracted from a dataset of 900 records across various

categories. The performance of the models was assessed through 10-fold cross-

validation. The findings revealed that the DT and MLP demonstrated similar

levels of accuracy in classifying seed cotton yield. However, the MLP took more

time to build the model compared to the DT. This research demonstrates the ef-

fectiveness of ML in improving the assessment of cotton seed quality. Cotton seed

production in Xinjiang, China, faces resource wastage due to inefficient distribu-

tion. Niu et al. [98] propose a hierarchical classification method to optimize spatial

suitability based on climate, land, water resources, infrastructure, production risk,

and planting history. Suitable areas for Early-Maturing Cotton, Early-Medium-

Maturing Cotton, and Long Staple Cotton are identified. The western Tarim Basin

is identified as the most suitable region for cotton seed production, whereas the

western and northern parts of the Tarim Basin are considered sub-suitable. This

method aids in selecting optimal production bases, considering market factors.

Zhu et al. [87] utilized near-infrared HSI to identify seven cotton seed varieties.

Pixel-wise PCA score images revealed differences among varieties. Effective wave-

lengths were selected via PCA loadings. Classification models were established

using a custom CNN and ResNet. Partial Least Squares Discriminant Analysis

(PLS-DA), LR, and SVM were employed as direct classifiers, and full spectra and

effective wavelengths were used. Furthermore, models using PLS-DA, LR, and

SVM were assessed with deep features extracted by CNN and ResNet.The custom

CNN outperformed ResNet slightly. Full spectra models showed higher accuracy,
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with most models achieving over 80% accuracy across calibration, validation, and

prediction sets. This study demonstrates the feasibility of using near-infrared

hyperspectral imaging with deep learning for cotton seed variety identification.

The widespread use of machine-picked cotton in China has significantly increased

seed cotton impurities, affecting the valuation and the quality of processed prod-

ucts. Traditional semi-automated impurity testing is inefficient and inadequate

for purchasing needs. A technique for quickly acquiring Near-Infrared Spectral

(NIRS) data for seed cotton spectral data is presented by Li et al. [88]. Data

preprocessing was done using three pretreatment algorithms: Standard Normal

Variate Transformation (SNV), Normalization, and Savitzky-Golay convolutional

Smoothing. A one-dimensional CNN, Cotton-Net, was developed to improve im-

purity content prediction accuracy. Ablation experiments with SELU, ReLU, and

Sigmoid activation functions found that Cotton-Net with SELU and normalized

data performed best, achieving a correlation coefficient of 0.9063 and an RMSE of

0.0546. The LSSVM model, enhanced by Normalization and the Random Frog al-

gorithm, also performed well with a correlation coefficient of 0.8662 and an RMSE

of 0.0622. This method shows potential for advancing rapid detection instruments

for seed cotton impurities.

Sunflower seeds are renowned for their oil and oleic acid content, making them

highly nutritious and resilient to arid climates. Barrio et al. [89] explores the effi-

cacy of DL algorithms in the classification of sunflower seeds. 6000 seeds from six

different types of sunflowers were photographed using a Nikon camera and an im-

age acquisition setup with controlled illumination. Using the CNN AlexNet model,

classification accuracies reached 100% for two classes and 89.5% for six classes. To

Evaluate the physico-chemical properties of sunflower seeds for their classification

and quality assessment. DT, RF, SVM, Multiple Linear Regression (MLR), NB,

and MLP are the six ML methods used by Ccetin et al. [90] to categorize six

sunflower oilseed types. Multivariate tests, including MANOVA, and discriminant

analysis were conducted to analyze the seeds’ characteristic properties. RF, SVM,

and MLP exhibited the highest accuracy rates, while NB demonstrated the lowest
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mean absolute error. MANOVA underscored significant variations in the physical

attributes of the sunflower varieties, with Colombi and Transol showing similar

characteristics.

In horticulture, fruit classification demands expert knowledge, prompting the

need for an automated system. Younis Gulzar [99] addressed fruit classification

issues in the horticulture sector by utilizing MobileNetv2. This study used a

dataset of 26,149 images of 40 fruit types, split into a 3:1 training-test ratio.The

TL-MobileNetV2 model, which makes advantage of transfer learning, was devel-

oped by augmenting the MobileNetV2 architecture with a five-layer customized

head. TL-MobileNetV2 achieved 99% accuracy, outperforming MobileNetV2 by

3% and surpassing AlexNet, VGG16, InceptionV3, and ResNet. The model also

achieved 99% precision, recall, and F1-score, demonstrating that transfer learn-

ing and dropout techniques effectively improve performance and reduce overfitting.

Recent advancements in agricultural research have introduced computational tech-

nologies to enhance farming practices, particularly in seed quality classification.

Traditional methods, reliant on visual inspection of seed characteristics like color,

shape, and texture, are labor-intensive and time-consuming. Hamid et al. [100]

proposes an automated seed classification system using CNN and transfer learn-

ing to classify 14 common seed varieties. The system employs advanced DL tech-

niques, including decayed learning rate, model checkpointing, and hybrid weight

adjustment, and applies symmetry in image sampling for consistent feature extrac-

tion. The model achieved 99% classification accuracy on both training and test

sets, significantly outperforming previous studies. This research demonstrates the

potential of computational intelligence to improve efficiency in agricultural seed

sorting.

Liu et al. [91] present a novel method for soybean variety identification using

an improved ResNet18 model on hyperspectral images. The method enhances

feature extraction by decomposing large convolution kernels and incorporating a

multi-scale feature extraction module to improve the perception of soybean hyper-

spectral images. The proposed method achieves a recognition accuracy of 97.36%,
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outperforming the standard ResNet18 and NasNet Large models. Zhu et al. [92]

utilized CNN with hyperspectral imaging to identify ten soybean varieties. It col-

lected reflectance data from 1200 seeds, augmenting it to create 9600 images split

into training, validation, and test sets. Pretrained CNN models like AlexNet,

ResNet18, Xception, InceptionV3, DenseNet201, and NASNetLarge were fine-

tuned via transfer learning. Here, validation accuracy reached 91%, while test

accuracies ranged from 90.6% to 97.2%, which performs on par with traditional

methods reliant solely on hyperspectral reflectance. This approach demonstrates

CNN effectiveness in rapidly and accurately identifying soybean seed varieties and

suggests broader applicability for efficient crop seed identification in agricultural

contexts.

Upon reviewing the current literature on DL applications in agriculture, signif-

icant advancements are noted in crop disease detection, yield prediction, and seed

classification across various crops. These studies highlight the efficacy of CNN and

ML algorithms for the accurate prediction of seeds which enhances quality con-

trol and agricultural productivity. Despite these achievements, challenges persist.

Some research lacks pre-processing techniques before classification, while others

apply them without specifying model weights. Moreover, seed classification typi-

cally involves four to five classes, with specific focus on crops like corn, rice, barley,

wheat, cotton, sunflower, camellia, and maize. There remains a need for further

research dedicated to addressing the unique challenges of soybean seed classifica-

tion, ensuring comprehensive coverage of its distinct characteristics in agricultural

contexts. The limitations of defect and variety identification in soybean seed are

mentioned in the article [101] and in this report, efforts were made to address

these limitations.
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2.4 Summary

This chapter covers the fundamentals of image classification and explores various

ML algorithms and DL models used for seed classification. Initially, section 2.2 is

divided into two subsections which inform about the fundamentals of ML and DL.

The subsection 2.2.1 gives an idea about the four basic types of ML algorithms

and then explores popular algorithms like KNN, LR, NB, RF, and SVM with

their respective pros and cons. However, section 2.2.2 gives an idea about the

basic architecture of CNN and the working of various layers. While section 2.3

reviewed various state-of-the-art methods for defect and variety identification of

seeds like rice, barley, wheat, maize, corn etc using neural network architecture.
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Chapter 3

COLLECTION OF GOOD AND DEFECTIVE

SOYBEAN SEED DATASET

3.1 Introduction to Dataset Collection

A dataset is a collection of data or observations that are organized for analysis.

It typically consists of structured or unstructured data, such as numbers, text,

images, or other types of information. Datasets are used in various fields for

research, analysis, modeling, and ML tasks. They can range from small and simple

datasets with a few entries to large and complex datasets containing millions or

even billions of records. Datasets are essential for training and assessing machine

learning models, as well as for generating insights and supporting data-driven

decision-making across various fields. An image dataset is a collection of images

that are used to train, validate, and test machine learning models, particularly

neural networks, for image classification tasks. Image datasets are essential for

several reasons:

1. Training Neural Networks: Image datasets provide the necessary in-

put data to train neural networks for image classification tasks. Through

exposure to a wide variety of images, the neural network learns to identify

patterns and features that differentiate between various classes or categories.

2. Model Evaluation: Image datasets are crucial for evaluating the perfor-

mance of trained models. Once training is complete, the model is evaluated
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on a distinct subset of the dataset to measure its accuracy, specificity, sen-

sitivity, and other performance metrics.

3. Generalization: A diverse and comprehensive image dataset helps neural

networks generalize well to unseen data. It ensures that the model can

accurately classify images it hasn’t encountered during training.

4. Bias Detection: Image datasets also help in identifying and mitigating

biases in the model. By analyzing the distribution of images across classes,

researchers can detect biases and take corrective measures to ensure fair

and unbiased classification. Image datasets play a crucial role in training,

assessing, and enhancing the performance of neural networks for image clas-

sification tasks. They enable the development of robust and accurate models

that can effectively classify images across various domains and applications.

3.2 Proposed Dataset

In DL endeavor, dataset play an important role. For the proposed research work,

we present our soybean seed dataset. The details steps are explained in subsec-

tion 3.2.1 and Subsection 3.2.2.

3.2.1 Data Collection

Initially, soybean seeds are gathered from a specific geographic location, Rajnapur

Khinkhini, Taluka Murtijapur, in the Akola district with precise coordinates for

this village 20.716954212 latitude and 77.540011783 longitude. Total 500 to 600

seeds of varied varieties and defects are collected. Utilizing a NIKION D800 cam-

era, 1000 photos of soybean seeds are captured and categorized into 10 distinct

classes, guided by agricultural experts and farmers insights. These classes com-

prise seven defective seed categories and three variety classifications. Each class

encompasses 100 soybean image samples, and various training-testing ratios are

employed for model training. Defective seed images encompass cracked, wrinkled,
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broken, purple, damaged, insect-bitten, and green seeds. Table 3.1 mentions the

definition of defective soybean seeds. This meticulously curated dataset forms the

foundation for training the deep learning model, ensuring robust performance in

soybean seed classification tasks.

Table 3.1: Defective Soybean Seed Classes with Definitions

Sr. No. Seed Class Name Definition
1 Broken soybean Soybean with an incomplete body

shape.
2 Green soybean Soybean that is infected by a

pathogen, causing the surface to
turn green.

3 Damaged soybean Affected by various fungal dis-
eases, brown to black or small,
irregular grey areas with black
specks.

4 Insect-bitten soybean Soybean with long, wide cracks
in the epidermis caused by insect
bites.

5 Wrinkled soybean When seed is exposed to high tem-
perature and alternating wet and
dry conditions.

6 Purple seeds soybean Affected by Cercospora Leaf Spot.
7 Cracked soybean Soybean with a slight crack on the

surface due to external force.

3.2.2 Experimental Setup

The NIKON D800 camera is used to capture images of both good quality and

defective soybean seeds. Two 11-watt lamps are placed from two sides of the table

at a height of 12 inches from the table and the same height camera is used to

capture the pictures. The camera photographed each image of soybean samples

placed on the white cloth from a distance of 12 inches and an angle ranging be-

tween 60° to 90° with the cloth. For each seed of soybean, pictures are captured

from all possible sides. While some images are captured to depict soybean clus-

ters containing 5 to 10 seeds, captured of size 7360*4912 pixels with a vertical

and horizontal resolution of 300 dpi. Figure 3.1 shows the experimental setup to
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capture the soybean dataset while Figure 3.2, Figure 3.3 and Figure 3.4 shows the

sample image and all side view of all ten classes of soybean seed.

Figure 3.1: Experimental setup to capture images of soybean seed dataset.

3.3 Existing Dataset

In 2023 Lin et al. present Soybean Seeds Classification Dataset on kaggle [59].

The dataset contains 5 types of soybean seed images with 5,513 samples. The

five categories present in dataset are are intact, spotted, immature, broken, and

skin-damaged. These images are resized to 227×227 pixels, and were derived from

original 3072×2048 pixel images using an image-processing algorithm1.

1Soybean Seeds Classification Dataset, available at https://www.kaggle.com/datasets/

aryashah2k/soybean-seedsclassification-dataset.
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(a) JS335 Seed (b) S9305 Seed

(c) KDS726 Seed

Figure 3.2: Sample image and all side view of soybean seed variety.
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(a) Broken Seed (b) InsectBitten Seed

(c) Crack Seed (d) Damaged Seed

Figure 3.3: Sample image and all side view of soybean seed defects.

80



(a) Green Seed (b) Purple Seed

(c) Wrinkle Seed

Figure 3.4: Sample image and all side views of soybean seed defects.
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3.4 Summary

This chapter discusses the development of a soybean seed dataset, a critical step

for training, validating, and testing ML and DL models. The soybean seeds were

collected from Rajnapur Khinkhini, Taluka Murtijapur, in the Akola district, with

500-600 seeds of different varieties and defects gathered. Using a NIKON D800

camera, 1000 photos were taken and categorized into 10 classes (7 defective seed

categories and 3 variety classifications) with 100 images each, guided by agricul-

tural experts. Images were captured from all possible sides of each seed, with

clusters of 5-10 seeds also photographed at a resolution of 7360x4912 pixels and

300 dpi. This high-quality, diverse dataset ensures robust performance in soybean

seed classification tasks.
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Chapter 4

PREPROCESSING OF SOYBEAN SEEDS

IMAGE DATASET

4.1 Introduction to Pre-processing Step of Soy-

bean Seed Dataset

Image-based analysis of agricultural products, particularly soybean seeds, has be-

come increasingly important for ensuring quality and optimizing yield. It is essen-

tial to pre-process the image dataset effectively to facilitate advanced image-based

analysis. Pre-processing converts raw images into a format optimized for analysis,

improving the accuracy and efficiency of later steps like feature extraction and

classification. This involves a series of steps including image normalization, noise

reduction, segmentation, and enhancement.

The objective of this work is to develop a comprehensive pre-processing pipeline

for a soybean seeds image dataset. By systematically addressing common issues

such as varying lighting conditions, background noise, and inconsistent seed ori-

entations, we aim to create a standardized dataset that can be used for robust

and reliable image analysis. This chapter is derived from the article 1. This pre-

processed dataset will serve as a foundational resource for machine learning mod-

els and other analytical techniques aimed at improving agricultural practices and

1Amar V. Sable, Parminder Singh, and Avinash Kaur, Present paper in the International
Conference on VLSI, SIGNAL PROCESSING, POWER ELECTRONICS, IOT, COMMUNI-
CATION AND EMBEDDED SYSTEM (VSPICE) Springer, 2023 on the topic “Classification
of Soybean Seed using Support Vector Machine with Image Enhancement Techniques”
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outcomes. As the agricultural industry increasingly adopts digital and automated

technologies, the importance of high-quality image data cannot be overstated. A

well-prepared image dataset ensures that the analytical models can perform at

their best, ultimately contributing to better crop management and higher yields.

To enhance the quality of the soybean seed image, we proposed a seed-based

contour detection (SCD) algorithm that performs pre-processing operations on the

seed. This algorithm is a comprehensive process designed to identify and isolate

soybean seeds accurately. This approach follows a carefully designed sequence of

steps to systematically process and analyze visual data.

4.2 Seed Contour Detection Algorithm

Preprocessing images is a vital first step in image analysis and computer vision.

It consists of applying various techniques to raw images to improve their quality

and make them suitable for subsequent processing and analysis. The purpose of

image pre-processing is to enhance the visual quality of images by reducing noise

and emphasizing key features, which helps algorithms more effectively carry out

tasks like object detection, classification, and segmentation. In this study, Seed

Contour Detection (SCD) Algorithm is proposed to enhance the quality of the

soybean seed dataset. Figure 4.1 shows the Sequence Flow Diagram (SFD) of

SCD algorithm.

The SCD algorithm used RGB images from the dataset. Each image serves

as the foundation for subsequent processing stages. Initially, it isolates the red

component from the RGB image to enhance features specific to soybean seeds, as

they often exhibit distinct characteristics in this color channel. In mathematical

terms, for a given pixel at coordinates (x, y) in an RGB image represented as

R (x, y), G (x, y), and B (x, y) (denoting red, green, and blue color channels

respectively), the extraction of the red component (R (x, y)) can be expressed as

per Equation 4.1.

R(x,y) = Red Channel of Pixel at(x, y) (4.1)
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Figure 4.1: SFD of SCD algorithm.

This operation essentially involves retaining the intensity values from the red

channel while disregarding the green and blue components, resulting in an image

where each pixel’s value represents only the red channel information. This can be

symbolically represented in Equation 4.2.

R(x,y) = Intensity of Red Channel at (x, y) (4.2)

The median filter is a non-linear image processing technique that is used to reduce

noise in an image dataset. It works by replacing each pixel value with the median

value of its neighbors within a defined window (e.g., 3x3 or 5x5). To mitigate

noise and irregularities within the image, a median filter of 3x3 window size is

applied. This filtering process smoothens the image while preserving essential

details. Applying a median filter with a 3x3 window to an image involves sorting

the pixel values within the window and selecting the median value as the new

value for the center pixel. The process for a 3x3 median filter at a specific pixel

location (x, y) is shown in Equation 4.3.

I ′new(x, y) = median
(
I(x− 1, y − 1), I(x, y − 1), I(x + 1, y − 1),

I(x− 1, y), I(x, y), I(x + 1, y),

I(x− 1, y + 1), I(x, y + 1), I(x + 1, y + 1)
) (4.3)
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To reduce noise and blur the image slightly to prepare it for subsequent analysis

gaussian filter is used. A Gaussian filter is a linear filter used in image process-

ing to blur an image and reduce noise. It works by applying a Gaussian func-

tion, which assigns weights to neighboring pixels based on their distance from the

center. The result is that nearby pixels have more influence than distant ones,

creating a smoothing effect. The Gaussian filter is widely used for edge-detection

pre-processing and noise reduction. Here, at each pixel location (x, y) in the im-

age, the filter operation computes a weighted average of the pixel values in the

neighborhood defined by the Gaussian kernel using Equation 4.4.

I ′(x,y) =
k∑

i=−k

k∑
j=−k

G(i,j) · I(x−i,y−j) (4.4)

where I ′(x,y) is the new value of the pixel at position (x, y) after applying the

Gaussian filter. I(x,y) represents the intensity value of the pixel at position (x, y)

in the original image. G(i,j) is the Gaussian kernel value at position (i, j) within the

filter. The sums are performed over the Gaussian kernel window, typically covering

a region around the pixel (x, y) and k determines the extent of the Gaussian kernel

window, often related to the standard deviation.

By subtracting the filtered image from 255, the algorithm inverts the image.

This inversion step sets the groundwork for binarization by applying a threshold

to the inverted image. A threshold value of 128 is set to create a binary image,

separating soyabean seeds from the background. The resulting binarized image

undergoes another inversion. This step readies the image for morphological oper-

ations to refine seed boundaries further. To ensure the consistency of the back-

ground binary image is inverted. During this tiny regions or holes within regions

of interest became evident. Though these holes are potentially small, they hinder

the accurate identification of seed boundaries and need addressing. Morphological

operations play a vital role in preserving the shapes within images, especially in

the context of binary images. In our process, four essential morphological op-

erations were employed: dilation, closing, erosion, and opening. Morphological

operations, specifically dilation followed by erosion, were employed to fill these
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holes. The concept here is simple: dilation expands the white regions, thereby

filling small black holes, and erosion then shrinks them back to preserve the gen-

eral shape but without the holes. We utilized a 7x7 window called a Structuring

Element (SE), to ensure effective filling even for slightly larger holes also. SE is a

matrix or kernel used to modify the pixels of an image based on their neighbors

A significant point to mention is the choice of closing areas for post-dilation. By

restricting the area to 50,000 pixels, we effectively maintained the integrity of our

region of interest and ensured that there is no over-extension. Let’s represent the

input image and the SE is a small matrix or kernel that defines the neighborhood

used for morphological operations dilation, erosion, opening, and closing denotes

from Equation 4.5 to Equation 4.10.

Dilation Operation (SE is a 7x7 window):

Idilated(x, y) = max
(i,j)∈SE

I(x+i,y+j) (4.5)

Erosion Operation (SE is a 7x7 window):

Ierosion(x, y) = min
(i,j)∈SE

I(x+i,y+j) (4.6)

Opening Operation (Combination of Erosion followed by Dilation):

Iopened(x, y) = dilate (erode(I)) (4.7)

Iopened(x, y) = max
(i,j)∈SE

[
min

(k,l)∈SE
I(x+k+i,y+l+j)

]
(4.8)

Closing Operation (Combination of Dilation followed by Erosion):

Iclosed(x, y) = erode (dilate(I)) (4.9)

Iclosed(x, y) = min
(i,j)∈SE

[
max

(k,l)∈SE
I(x+k+i,y+l+j)

]
(4.10)

Label Regions operation in image processing assigns unique labels or identi-

fiers to different connected components or regions within an image. This process
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is performed using connected-component labeling algorithms. Here, connected

pixels are identified by scanning the entire image and marking neighboring pixels

belonging to the same region. After an extensive experiment, we finalized the value

of the threshold is 1000 and eliminated small regions or components in an image

that are smaller than a prede-fined threshold. It filters out small, insignificant

areas to refine and focus on larger, more substantial elements within the image.

This process helps in reducing noise or eliminating minor structures that might

not be of interest for analysis or identification. Thresholding the image creates

a mask essential for handling multiple seeds within an image. This process pre-

pares for the next step of identifying bounding boxes. It gives a clear distinction

between foreground and background elements, aiding in segmentation and feature

extraction.

A bounding box algorithm is employed to precisely delineate the boundaries

around individual soyabean seeds. This crucial step provides a visual reference for

accurate seed identification. The process involves finding the extreme coordinates

(top-left and bottom-right corners) for each identified region. This bounding box

delineates the spatial extent of the identified area, aiding in subsequent analysis

or visualization. In the case of cracked, damaged and insect-bitten seeds labelled

regions were more than one since the upper shell or coat of seeds is broken. Due

to this, a single seed is differentiated into many small neighbouring regions or

rectangles. In the case of a single region of interest, we cropped the region corre-

sponding to the upper-left coordinate and bottom-right coordinate of the bounding

box. For multiple bounding boxes, we se-lect the top left and bottom right bound-

ing boxes. Then top left coordinates of the former bounding box and the bottom

right coordinates of the bottom right bounding box were used to extract the re-

gion of interest. As cracked, damaged and insect-bitten seeds contain more than

one bounding box, the remaining classes demonstrate the single bounding box as

shown in Figure 4.2. Using the coordinates obtained from the previ-ous step, the

algorithm crops individual seed images. These cropped images contain isolated

soybean seeds, crucial for detailed analysis and further processing. Figure 4.3 rep-
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resents the output of the SCD algorithm on a single insect-bitten seed image with

three bounding boxes and Figure 4.4 indicates the output of the SCD algorithm

for multiple Seeds and their bounding boxes. For our research work, we used single

seed images for further process. The meticulous execution of each step within the

Seed Contour Detection Algorithm ensures that noise is minimized, seed bound-

aries are accurately delineated, and resulting images contain individual soybean

seeds with clear bound-ing boxes, facilitating precise identification and analysis.

Figure 4.2: Output of SCD algorithm for single regions (1 bounding box) in a single
seed.

Figure 4.3: Output of SCD algorithm for multiple regions (3 bounding boxes) in a
single seed.
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Figure 4.4: Output of SCD algorithm for multiple seeds and their bounding boxes.

4.2.1 SCD algorithm

Algorithm 1 represents the step-by-step execution of the SCD algorithm.

Algorithm 1: SCD Algorithm for Soybean Seed Image Pre-processing

Data: Soybean Seed Dataset

Result: Cropped Seed Image with Bounding Box around seed in an

image

1 SCD A ← Input (Soybean dataset);

2 SCD B ← Extract R((SCD A));

3 SCD C ← Apply Median Filter((SCD B));

4 SCD D ← Apply Gaussian Filter((SCD C));

5 SCD E ← Invert((SCD D));

6 SCD F ← Binarize((SCD E));

7 SCD G ← Invert((SCD F));

8 SCD H ← Morphological operation((SCD G));

9 SCD I ← Label Regions((SCD H));

10 SCD J ← Eliminate((SCD I));

11 SCD K ← Threshold((SCD J));

12 SCD L ← Apply Bounding Box Algorithm((SCD K));

13 SCD M ← Locate BB Coordinates((SCD L));

14 SCD N ← Crop((SCD M));
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In the above algorithm, various variables are utilized to store intermediate re-

sults and facilitate specific operations. These variables serve as placeholders for

data transformations and enable the algorithm to progress through its preprocess-

ing steps effectively.

i SCD A: Represents the input image obtained from the Soybean Seed Dataset.

This serves as the starting point for the algorithm, encapsulating the raw image

data of soybean seeds.

ii SCD B: As the algorithm progresses, subsequent variables are assigned to

store different stages of image processing. For instance, SCD B is used to

hold the red channel (R) extracted from the input image, isolating important

information regarding the seed characteristics.

iii SCD C: Following this, SCD C retains the outcome of applying a median

filter to the red channel image. This filter helps reduce noise present in the

image, ensuring a smoother and clearer representation.

iv SCD D: Continuing the preprocessing pipeline, SCD D stores the result of ap-

plying a Gaussian filter. This operation further refines the image by smoothing

it and diminishing noise, contributing to improved feature detection.

v SCD E: The variable SCD E is designated to contain the inverted image, a

step often employed to enhance contrast or prepare for subsequent processing.

vi SCD F and SCD G: Subsequently, SCD F and SCD G respectively hold the

binarized and inverted binary versions of the image. These transformations

simplify the image into a binary representation, facilitating subsequent analy-

sis.

vii SCD H: Further processing involves morphological operations, with SCD H

capturing the outcomes of dilation and erosion applied to the binary image.

These operations enhance or suppress features based on the image’s structures

within a specified window.
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viii SCD I through SCD K: As the algorithm progresses, variables such as SCD I

through SCD K are utilized to store results including labeled regions, elimi-

nated noise, and thresholded images. These steps help prepare the image for

subsequent analysis.

ix SCD L and SCD M: Towards the end of the preprocessing pipeline, SCD L

and SCD M respectively store the results of applying a bounding box algorithm

and locating extreme coordinates of each bounding box. These steps are crucial

for precisely delineating the positions and extent of individual seeds.

x SCD N: Finally, SCD N represents the cropped seed images, serving as the

output of the algorithm. Through these sequential operations and variable

assignments, the algorithm systematically preprocesses soybean seed images,

ensuring they are ready for further analysis and classification.

Through this systematic preprocessing pipeline, the SCD Algorithm ensures

that soybean seed images are suitably prepared for subsequent analytical tasks,

contributing to improved accuracy and efficiency in crop detection and classifica-

tion. Figure 4.5 and Figure 4.6 show the output of all stages of the SCD algorithm

for a variety and defects class of soybean seed.

Orignal Red Component Image Median Filtered Image Gaussian Filtered Image Negative Image

Binary Image- Threshold - 128 Negative Image Dilated-Closing-Erosion-Opening Labelled Regions

Small Region Eliminated Masked Image Separated Image 1 Bounding Boxes Regions

Figure 4.5: Each stage output of SCD algorithm for a soybean seed (variety).
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Orignal Red Component Image Median Filtered Image Gaussian Filtered Image Negative Image

Binary Image- Threshold - 128 Negative Image Dilated-Closing-Erosion-Opening Labelled Regions

Small Region Eliminated Masked Image Separated Image 1 Bounding Boxes Regions

Figure 4.6: Each stage output of SCD algorithm for a soybean seed (defects).

4.3 Summary

This chapter presents objective 2 “ To pre-process soybean seeds image dataset ” of

research work. Preprocessing is pivotal in data analysis, ensuring data quality and

optimizing models. In this chapter, a Seed Contour Detection algorithm (SCD) is

proposed to enhance the quality of soybean seed. The enhanced soybean dataset

is used as input for subsequent stages. Overall, preprocessing lays the groundwork

for effective modeling and insights generation by preparing data for subsequent

analysis, improving model accuracy, and enabling robust predictions. Present one

conference paper and one journal paper on this objective.
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Chapter 5

SOYBEAN SEED DEFECT IDENTIFICATION

5.1 Introduction to Defect Identification Model

Soybean is a native crop growing in East Asia for its edible bean [102]. As a major

leguminous crop, soybeans are a fundamental component of the global food sys-

tem to fulfill the dietary needs of humans and animals. They can be consumed in

various forms, including whole soybeans or in the form of tofu, tempeh, soy milk,

soy sauce, and soybean oil [103]. Beyond their nutritional value, soybeans have nu-

merous industrial applications [12]. However, environmental factors like droughts

or excessive rainfall can significantly impact crop health and yield. Additionally,

improper pest and disease management practices can compromise bean quality.

Harvesting methods that are not properly executed may cause physical damage

to the beans, further reducing their quality. The degradation of soybean quality

can have widespread economic, nutritional, and environmental effects [104]. Re-

duced nutritional value raises concerns for both human and animal consumption

and leads to deficiencies in essential nutrients which impacts overall health. This

chapter is derived from the article 1.

Economically, farmers, distributors, and processors incur substantial losses due

to decreased market value, increased production costs, and the potential rejection

1Sable A, Singh P, Kaur A, Driss M, Boulila W. “Quantifying Soybean Defects: A Compu-
tational Approach to Seed Classification Using Deep Learning Techniques”. Agronomy. 2024;
14(6):1098. https://doi.org/10.3390/agronomy14061098, Journal Rank:JCRQ1 (Plant Sciences),
CiteScore- Q1 (Agronomy and Crop Science) with Impact Factor: 3.3; 5-Year Impact Factor:
3.7. SJR:- 0.69
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Figure 5.1: Sequence Slow Diagram of Seed Defect Identification.

of inferior batches. These losses can disrupt livelihoods and worsen food insecu-

rity, especially in areas where soybeans are a staple crop or key protein source.

Therefore, it is essential to separate low-quality soybean seeds from high-quality

ones. Traditionally, visual inspection is used to identify visible signs of damage,

discoloration, or mold. Screening or sieving mechanisms are also employed to sort

beans based on size and shape, as damaged beans often exhibit different physical

characteristics. However, this traditional method relies heavily on subjective hu-

man judgment, leading to inconsistency and misidentification of degraded beans.

Manual inspection is also labor-intensive and time-consuming, affecting produc-

tion costs and slowing down processing speeds [105]. Since soybean seed damage

is primarily visible on the surface, computer vision methods are crucial for effec-

tively classifying affected soybean seeds. Implementation of the DL model offers a

more efficient and automated solution for quickly and accurately processing large

volumes of soybeans. DL algorithms are highly effective in image recognition and

classification tasks [66]. These advanced techniques aim to improve accuracy and

reliability and they significantly reduce the likelihood of false positives or missed
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defects compared to traditional methods. From a cost perspective, automated

DL-based defect detection systems can lead to long-term savings by decreasing

the reliance on manual labor and minimizing losses from undetected defects. With

the increasing global demand for soybeans, the need for efficient and precise qual-

ity control measures is growing. Developing advanced computational methods for

soybean defect quantification addresses this need and aligns with industry goals of

enhancing efficiency and quality. This thesis provides a comprehensive approach

to perform defect identification of soybean seed using ML and DL approaches.

Figure 5.1 shows the sequence flow diagram of seed defect idenification module

where initial step of data collection and classification is explained in Chapter 3

while pre-processing is explained in Chapter 4.

5.2 Feature Extraction

Feature extraction is a technique of converting raw data into a set of attributes

that can be effectively used in ML models. It involves the identification and iso-

lation of relevant information from the data that contributes to the predictive

power of the model. It also reduces the complexity of the data while retain es-

sential patterns. The need for feature extraction arises because raw data often

contains noise, irrelevant information, and redundancies that can negatively affect

model performance. By using informative features, feature extraction improves

the model’s accuracy, efficiency, and generalizability. It enables models to learn

from data more effectively by highlighting key characteristics and reducing di-

mensionality, which also addres the issue of overfitting. To detect the class of

defective soybean seed effictively, feature extraction plays crucial role. To extract

good quality spatial features from images, this thesis used the following feature

extraction algorithm.

1. Wavelet based feature: Features are extracted using 6 types of wavelets

which are bior 3.1, bior 3.5, bior 3.7, db3, sym3 and haar wavelet. It extract

4 feature from single wavelet, hence it extracts 24 features from 6 wavelets.
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2. Grey-level co-occurrence matrix (GLCM): GLCM extracts the statis-

tical features of soybean image. It creates a matrix representing the fre-

quency of pixel pairs with specific intensity values and directions. Key pa-

rameters include the direction and distance between pixel pairs. The GLCM

is normalized to form a probability distribution, from which statistical fea-

tures such as contrast, correlation, energy, and homogeneity are extracted.

These features form a vector representing the image texture. GLCM reduces

data complexity and enhances machine learning model performance.

3. Local binary pattern-based feature and histogram of gaussian-

based feature : Local Binary Pattern (LBP) and Histogram of Oriented

Gradients (HOG) are powerful feature extraction techniques used in image

processing. LBP captures texture information by comparing pixels with

their neighbors and converts these comparisons into binary codes, and gen-

erating a histogram of these codes to form a feature vector. This method is

efficient, robust to illumination changes, and widely used in tasks like tex-

ture classification and face recognition. On the other hand, HOG focuses

on the shape and structure of objects by computing the gradients of the

image, creating histograms of gradient directions within small regions, and

normalizing these histograms. The resulting feature vector represents the

image’s edge and gradient structures, making HOG particularly effective for

object detection, such as identifying pedestrians and vehicles. Both LBP

and HOG enhance machine learning models’ ability to analyze and classify

images based on texture and shape, respectively, making them essential tools

in computer vision.

Using the above feature extractor 7536 statistical and fine features are extracted

from soybean images. 24 features from the wavelet-based feature, 6 from GLCM,

512 from LBP, 324 from HOG, 2601 from LBP texture feature and 4096 from the

wavelet-based texture feature and at last all features are concatenated to generate

a features.csv file. This file contains the complete 7536 features of the soybean

seed image. For defective seed, the value in the truth table is zero and for good
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quality seed, it is 1.

Figure 5.2: Count of Extracted Features.

5.2.1 Normalization

Data normalization, is the process of arranging data entries so that they appear

uniform across all fields and records and hence simplifies the procedure of finding,

gathering, and analyzing information. Normalization after feature extraction is an

essential step to feed input to machine learning models. It ensures that different

features, which varying in scales and range, are brought to a similar scale to prevent

any single feature from disproportionately influencing the model. This consistency

is crucial for the stability and efficiency of optimization processes, especially for

gradient descent-based algorithms, which converge faster with normalized features.

Normalization also enhances the interpretability of model coefficients, making it

easier to understand each feature’s influence. Furthermore, it can improve model

accuracy for algorithms sensitive to feature scales, such as KNN, and SVM. By

reducing computational complexity, normalization leads to more efficient training

and prediction processes. Ultimately, it ensures that features contribute equally

to the model, preventing those with larger scales from dominating and leading
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to more balanced and fair predictions. In our normalization process, the data in

features.csv is converted into standard form. Firstly, we identify the maximum

value in each column and then divide by that maximum value to the entire column.

So that the column contains either 0 or 1 entry for each feature and this updated

features.csv file is fe to different models of ML.

5.3 ML Model

To predict 7 defective (Cracked, Wrinkled, Broken, Purple, Damaged, Insect-

Bitten, and Green Seed) and one good-quality soybean seed, this thesis used the

following ML algorithms:-

5.3.1 KNN

KNN is a non-parametric ML approach used for classification and regression. It

assigns data points to a class by evaluating the majority label among their nearest

neighbors in the feature space, where proximity is calculated using distance mea-

sures such as Euclidean or Manhattan distance. In my research work, the KNN

model is created with k=3 neighbors, which specifies that the algorithm will con-

sider the three nearest data points to make predictions. The Manhattan distance

is employed as the distance metric in this context. The model is subsequently

trained using the fit method, with X train and Y train denoting the features and

labels of the training dataset, respectively.

5.3.2 LR

LR is a statistical method used for classification tasks. It is set to classify seeds

into different categories including cracked, wrinkled, broken, purple, damaged,

insect-bitten green seeds and good-quality seeds. LR models the probability that

a seed belongs to each category using a logistic function. During training, LR

learns the optimal coefficients for each feature to predict the probability of a seed

being defective.
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5.3.3 RF

RF models are ensemble learning methods that combine the predictions of several

decision trees during the training process. RF combines predictions from these

trees (mode for classification, mean for regression) to achieve robust and accurate

results. By randomly selecting features at each node and utilizing bagging, RF

mitigates variance and improves generalization compared to individual decision

trees. It’s effective for various applications, providing insights into feature im-

portance and performing well in high-dimensional data scenarios where complex

interactions need to be captured with minimal parameter tuning.

5.3.4 SVM

SVM with a Radial Basis Function (RBF) kernel are effective for non-linear classi-

fication tasks. The RBF kernel maps the data into a higher-dimensional space and

measures the similarity between data points through a Gaussian function. SVMs

then find the optimal hyperplane that maximizes the margin between classes.

This method is advantageous in scenarios where data is not linearly separable, as

it allows SVMs to create complex decision boundaries in the transformed feature

space. The regularization parameter (C) plays a key role in managing the balance

between increasing the margin and reducing classification errors, which is essential

for preventing overfitting. SVMs that utilize RBF kernels perform exceptionally

well in a range of applications, including image recognition, text classification, and

bioinformatics, where it’s crucial to capture complex relationships among features.

However, tuning parameters like C and the kernel parameter gamma γ is crucial

for optimizing SVM performance and generalization to new data, ensuring robust

model performance across different domains.
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5.4 DL Model

In DL model to identify the class of defective soybean seed, we used CNN and

developed SSDINet which is explained as follows:

5.4.1 CNN

The CNN model consists of 12 layers which is used to detect the defects of soybean

seed. The network starts with five convolutional blocks, each block containing

a convolutional layer (with 32, 64, 128, 256, and 512 filters respectively, all of

size 3x3), followed by batch normalization, ReLU activation, and max pooling.

Figure 5.3 shows the architecture of CNN model.

Figure 5.3: Architecture of CNN.

The CNN layers are responsible for performing feature extrection in the images

by applying filters to detect patterns such as edges, textures, and more complex

structures in deeper layers. Batch normalization stabilizes and accelerates training

by normalizing the outputs of the convolutional layers. The ReLU activation func-

tion allows to learn complex patterns to network. Max pooling reduces the spatial

dimensions of the feature maps while retains the most important information and

makes the computation more efficient. After these convolutional blocks, the model

has a flattened layer to convert the feature maps into a single vector, followed by a

dense layer with 128 neurons, batch normalization, and ReLU activation. The fi-
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nal output layer is a dense layer with 8 neurons and a softmax activation function,

which produces a probability distribution over 8 classes, effectively classifying the

input images into one of these classes.

5.4.2 SSDINet

To recognize defective soybean seeds, this thesis proposed the Soybean Seed De-

fect Identification Network (SSDINet) which is a lightweight and fast model. It is

composed of CNN layers, max-pooling layers, parallel executable depthwise con-

volution blocks, and squeeze-and-excitation blocks, followed by an average pooling

layer and a flattened layer. For seed classification, the network employs four fully

connected layers. Initially, features are extracted through the CONV layer, which

uses swish activation and BN. BN helps to mitigate overfitting and is followed by

a max-pooling layer, as illustrated in Figure 5.4 and Table 5.1 indicates model

architecture with input and output shapes and operations. To reduce parameters

and perform channel-wise recalibration, Depthwise Separable Convolution blocks

(DSep-conv) and Squeeze-and-Excitation Networks (SENet) are used simultane-

ously. Features extracted by DSep-conv and SENet are merged to effectively

obtain high-quality spatial features. After the feature combination, an average

pooling layer and a flattened layer are applied. Finally, four dense layers are em-

ployed for seed classification, which incorporates ReLU activation, BN, and drop

out. The last dense layer uses SoftMax for defects classification which transforms

logits into probability distributions across classes. Algorithm 2 details the steps

of SSDINet.

In SSDINet, DSep-conv and SENet serve distinct yet complementary functions

in the feature extraction process. DSep-conv reduces the number of parameters

efficiently while captures spatial hierarchies in the input features. It uses Kd as

depthwise filters, and Z represents the depthwise convolution result, as described

using Equation 5.1.

Zi,j,k =
∑
m,n

X(i·s+m),(j·s+n),k ·Kd,m,n,k (5.1)
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Algorithm 2: Soybean Seed Defect Identification Network (SSDINet)

Require: Enhanced Soybean seed dataset
Ensure: Classification of Soybean seed
1: ZCONV = Convolution(X, swish activation, batch normalization) {Feature

Extraction through CONV Layer}
2: ZMaxPool = MaxPooling(ZCONV) {Max Pooling Layer}
3: ZDSep conv = DepthwiseSeparableConv(ZMaxPool) {Depthwise Separable

Convolution Blocks (Deeps-conv)}
4: ZSENet = SqueezeAndExcitation(ZMaxPool) {Squeeze-and-Excitation Networks

(SENet)}
5: ZMerged = Concatenate(ZDSep conv, ZSENet) {Merge Features from DSep-conv

and SENet}
6: ZAvgPool = AveragePooling(ZMerged) {Average Pooling Layer}
7: ZFlatten = Flatten(ZAvgPool) {Flatten Layer}
8: ZClassif = FullyConnectedLayers(ZFlatten) {Four Fully Connected Layers}
9: Y = Softmax(ZClassif) {Softmax Activation for Multi-Class Classification}

Figure 5.4: Architecture of SSDINet.

Where s represents the stride, i, j denote spatial indices, k denotes the channel

index of the input feature map, m,n represent convolution kernel indices, and

Kd,m,n,k signifies the depthwise convolution filter. Depthwise convolution performs

a separate convolution operation for each channel in the input feature map, with
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Table 5.1: Model architecture of SSDINet with input and output shapes and
operations

Layer Name Input Shape Operation Output Shape Kernel/Filter Stride

Input Layer (224, 224, 3) Input (224, 224, 3) - -

Conv2D (224, 224, 3) Conv2D(32 filters, 3x3, padding=’same’) (224, 224, 32) 32, 3x3 1

BatchNormalization (224, 224, 32) Batch Norm (224, 224, 32) - -

Activation (Swish) (224, 224, 32) Swish (224, 224, 32) - -

MaxPooling2D (224, 224, 32) MaxPooling2D(2x2) (112, 112, 32) 2x2 2

DepthwiseConv2D (112, 112, 32) DepthwiseConv2D(3x3, padding=’same’) (112, 112, 32) 32, 3x3 1

BatchNormalization (112, 112, 32) Batch Norm (112, 112, 32) - -

SE Block (112, 112, 32) SE (2 Dense layers) (112, 112, 32) Global Pool -¿ Dense -

Concatenate (112, 112, 32) Concat (Depthwise + SE) (112, 112, 64) - -

AvgPooling2D (112, 112, 64) AvgPooling2D(2x2) (56, 56, 64) 2x2 2

Flatten (56, 56, 64) Flatten (200704,) - -

Dense (1st layer) (200704,) Dense(256) (256,) 256 -

Dense (2nd layer) (256,) Dense(128) (128,) 128 -

Dense (3rd layer) (128,) Dense(64) (64,) 64 -

Dense (4th layer) (64,) Dense(32) (32,) 32 -

Output Layer (32,) Dense(8) (8,) 8 -

spatial dimensions determined by the stride s. In Pointwise Convolution, Kp

serves as a pointwise filter, yielding Y as the final output feature map shows in

Equation 5.2.

Yi,j,l =
∑
k

Zi,j,k ·Kp,k,l (5.2)

Where l denotes the output channel index. The pointwise convolution inte-

grates outputs from depthwise convolution across channels, performing a 1x1 con-

volution to blend and transform features. This approach significantly reduces pa-

rameters compared to traditional convolutions. Leveraging DSep-conv, the model

sustains expressive power with fewer parameters, crucial for lightweight and faster

models, enhancing both computational efficiency and mitigating overfitting. Fig-

ure 5.5 illustrates the DSep-conv structure. Therefore, the operation of DSep-conv

is summarized as follows:

Y = Pointwise Conv(DepthwiseConv(X,Kd), Kp) (5.3)

Here, DepthwiseConv(X, Kd) denotes depthwise convolution and Pointwise Conv(,

Kp) represents pointwise convolution. This structure optimizes SSDINet for com-

putational efficiency and suitability in lightweight models.
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Figure 5.5: Architecture of depthwise separable convolution block (DSep-conv).

The role of SENet is to enhance channel-wise recalibration of feature responses,

prioritizing important information while suppressing less informative channels.

SENet introduces an attention mechanism that dynamically recalibrates feature

maps. Here, X represents the input feature map with dimensions H ×W × C,

where H and W are height & width of image and C is the number of channels.

It begins with a squeeze operation (global average pooling) to derive channel-

wise statistics shows in Equation 5.4, followed by an excitation operation (fully

connected layers) to model inter-dependencies between channels represented by

Equation 5.5
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Zk =
1

H ×W

H∑
i=1

W∑
j=1

Xi,j,k (Squeeze operation) (5.4)

Sk = σ(W2 · ReLU(W1 · Zk)) (Excitation operation) (5.5)

Here, Zk represents the channel-wise statistic or squeezed feature for the k-

th channel, Sk denotes the excitation weight for the k-th channel, W1,W2 are

learnable parameters, and σ denotes the sigmoid activation function. The output

is then multiplied element-wise with the input feature maps. SENet enables the

model to focus on relevant features by assigning varying weights to channels based

on their importance. This adaptive recalibration enhances the network’s repre-

sentational power, facilitating better discrimination among different seed defects.

The overall operation of SENet is summarize in Equation 5.6:

Y = Scale(X,Excite(Squeeze(X))) (SENet operation) (5.6)

Here, Y represents the final feature map after adaptive recalibration through the

Squeeze-and-Excitation mechanism. The architecture of SENet is shown in Fig-

ure 5.6.

Figure 5.6: Architecture of squeeze-and-excitation networks (SENet).
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5.5 Evaluation Metrics

To predict the class of soybean seed, the following evaluation metrics are used:

1. Confusion Matrix (CM): - A confusion matrix plays a key role in assessing

the performance of classification models within ML and DL frameworks. It

helps in understanding the performance of a model by comparing the actual

target values with those predicted by the model as shown in Figure 5.7 where

• True Positive (TP): The count of positive instances that are accurately

identified as positive by the classification model.

• True Negative (TN): The count of negative instances that are accurately

identified as negative by the classification model.

• False Positive (FP): the count of negative instances that are incorrectly

identified as positive by the classification model.

• False Negative (FN): the count of positive instances that are incorrectly

identified as negative by the classification model.

Figure 5.7: Structure of Confusion Matrix.
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2. Accuracy (A): - Accuracy is defined as the proportion of correctly pre-

dicted instances to the total number of instances in a dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.7)

3. Precision (P): - Precision is the ratio of correctly predicted positive in-

stances to the total number of instances that were predicted as positive.

Precision =
TP

TP + FP
(5.8)

4. Recall (R): -Recall, also referred to as sensitivity, is the ratio of correctly

predicted positive instances to the total number of actual positive instances.

Recall =
TP

TP + FN
(5.9)

5. F1-score (F1): - The F1 score is the harmonic mean of precision and recall,

offering a single metric that balances the two, reflecting both the accuracy of

positive predictions and the model’s ability to identify all relevant instances.

F1-Score = 2× Precision× Recall

Precision + Recall
(5.10)

5.6 Experimental Result

This section entails the details of syatem requirement to build neural network,

training & testing ratio of soybean classes and comparison of ML and DL moules.

5.6.1 System Requirements

To run the neural network model effectively, a system with specific hardware and

software requirements is necessary which is mentioned as follows :-
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1. Software requirements: To implement ML and DL models, system uses

Windows 11 operating system with GPU acceleration NVIDIA T4 and P100.

Python 3.11 is used, along with TensorFlow 2.0 or later, which includes Keras

as part of its API. The CUDA Toolkit and cuDNN should be installed, and

compatible with the TensorFlow version. The latest NVIDIA drivers are

necessary to ensure compatibility with the GPU and CUDA versions. Basic

requirement to implement neural network architectures is explained in the

Table 5.2.

Table 5.2: Software requirements

Software Requirements Description
Operating System Windows 11
Python Python 3.9 or later
TensorFlow TensorFlow 2.0 or later (includes Keras)

CUDA Toolkit
Version compatible with TensorFlow (e.g.,
CUDA 10.1)

cuDNN Version compatible with CUDA Toolkit

NVIDIA Drivers
Latest drivers compatible with GPU and CUDA
version

Other packages
OpenCV 4.1, Seaborn 0.11, Pycocotools 2.0.6,
tqdm 4.64 etc.

2. Hardware requirements: - A multi-core processor such as an Intel i5

or AMD Ryzen 5 (or higher) is recommended. An NVIDIA GPU with

CUDA support (e.g., NVIDIA GTX 1080 or RTX 20xx series) significantly

accelerates the training process. At least 16 GB of RAM is required, with

32 GB or more being preferable for handling large datasets and models. An

SSD with at least 100 GB of free space ensures faster read/write operations.

A reliable power supply unit is essential to support the GPU and other

hardware components. Basic hardware requiremnt is mentioned in Table 5.3.

5.6.2 Dataset Split

To accurately identify the class of soybean seed, the dataset plays a crucial step. It

serves as the foundation for the model’s learning process, enabling it to recognize
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Table 5.3: Hardware requirements

Hardware Require-
ments

Description

CPU
Multi-core processor (e.g., Intel i5, AMD Ryzen
5 or higher)

GPU
NVIDIA GPU with CUDA support (e.g.,
NVIDIA GTX 1080, RTX 20xx series)

RAM At least 16 GB, preferably 32 GB or more
Storage SSD with at least 100 GB free space

Power Supply
Reliable power supply unit to support GPU and
other components

patterns and features unique to each seed class. We collect samples of 500-600

soyabean seeds where we have 250 samples of good quality seed and the remaining

are defective soyabean samples which are further divided into 7 different classes.

To train the neural network efficiently after applying the SCD algorithm, for ex-

perimental analysis dataset is split into three split ratios (80:20, 85:15, and 90:10)

and their performances are observed mentioned in Table 5.4. From an experimen-

tal analysis, it is noted that an 80:20 ratio gives promising results, So for further

investigation, we prefer an 80:20 ratio.

Table 5.4: Soybean seed classes and split ratios for training and testing

Soybean Seed Classes
80:20 85:15 90:10

Training Testing Training Testing Training Testing
Good seeds 200 50 212 38 225 25
Broken seeds 87 22 92 17 98 11
Crack seeds 88 22 93 17 99 11
Damaged seeds 92 24 98 18 104 12
Insect-bitten seeds 90 23 96 17 101 12
Green seeds 76 20 81 15 86 10
Purple seeds 76 19 80 15 85 10
Wrinkled seeds 88 23 94 17 99 12
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5.6.3 Comparison of ML Models

In the context of soybean seed defect classification, the selection of ML models such

as KNN, RF, LR, and SVM depends on their distinct capabilities and suitability

for addressing the complexities inherent in the classification task.

Firstly, KNN is chosen for its simplicity and effectiveness in scenarios where

the decision boundaries between different seed defect classes may not be linear.

By relying on local similarity measures, KNN can discern patterns in the data and

make predictions based on the majority vote of its nearest neighbors. This makes

KNN particularly useful for exploratory analysis and smaller datasets where it can

capture intricate local patterns that other models might overlook. On the other

hand, RF leverages ensemble learning to aggregate predictions from multiple de-

cision trees. This approach enhances the model’s robustness against noisy data

and outliers, which is advantageous in real-world agricultural datasets where vari-

ability and imperfections are common. RF excels in handling high-dimensional

feature spaces, making it well-suited for scenarios where comprehensive classifica-

tion across multiple seed defect classes is required.

LR offers interpretability through its straightforward coefficients, which allows

researchers and domain experts to understand the influence of each feature on the

classification outcome. This transparency is invaluable in agricultural applica-

tions, where insights into the factors contributing to seed defect classification can

inform agricultural practices and interventions effectively. SVM especially when

equipped with nonlinear kernels, excels in capturing complex relationships within

data and defining clear decision boundaries between different seed defect classes.

SVM are particularly useful when the classification problem requires class separa-

tion that may not be linearly separable in the original feature space, that offers a

powerful tool for achieving high classification accuracy. Hence, the choice to utilize

KNN, RF, LR, and SVM in soybean seed defect classification is grounded in their

ability to address diverse challenges such as nonlinear decision boundaries, inter-

pretability of results, robustness to noise, and scalability to handle large datasets.

By employing these models in combination, our research works conducts com-

111



prehensive analyses that yield reliable insights into identifying and categorizing

seed defects, which supports advancements in agricultural quality assessment and

management.

Table 5.5: Performance of ML algorithms

Algorithms Precision (%) Recall (%) F-1 score (%) Accuracy (%)
RF 82.21 78.08 78.29 78.38
KNN 86.43 78.58 78.54 79.28
LR 85.96 81.78 79.37 81.98
SVM 92.93 90.79 91.85 91.89

The Table 5.5 presents the performance metrics of different ML algorithms—RF,

KNN, LR, and SVM which is evaluated on a soybean seed defect classification

task.Here, SVM achieves the highest precision of 92.93% with recall 90.79%, F-

1 score 91.85%, and accuracy of 91.89% among the algorithms evaluated. SVM

ability to define clear decision boundaries and handle complex relationships within

data contributes to its superior performance in accurately classifying soybean seed

defects. Figure 5.8 shows the confusion metrics of SVM. LR also performs well

with a precision of 85.96%, recall of 81.78%, F-1 score of 79.37%, and accuracy of

81.98%. LR’s interpretability and straightforward coefficients make it effective in

understanding the influence of different features on seed defect classification. Fig-

ure 5.9 indicates the confusion metrics of LR. KNN achieves a precision of 86.43%,

recall of 78.58%, F-1 score of 78.54%, and accuracy of 79.28%. KNN’s reliance on

local similarity measures and its simplicity contribute to its competitive perfor-

mance, although it shows slightly lower recall and F-1 scores compared to SVM

and LR. Figure 5.10 denotes the confusion metrics of KNN. RF exhibits the lowest

performance metrics among the algorithms, with a precision of 82.21%, recall of

78.08%, F-1 score of 78.29%, and accuracy of 78.38%. RF’s ensemble learning ap-

proach helps in handling noise and complex relationships, but in this case, it shows

slightly lower accuracy compared to SVM, LR, and KNN. Figure 5.11 shows the

confusion metrics of RF. Hence, SVM emerges as the top-performing algorithm

for soybean seed defect classification based on the provided metrics among ML

algorithms. It achieves the highest scores across precision, recall, F-1 score, and
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accuracy, indicating its effectiveness in accurately identifying and categorizing seed

defects. LR and KNN also demonstrate competitive performance, while RF shows

slightly lower performance metrics in this specific classification task.

Figure 5.8: CM of SVM.

5.6.4 Comparison of ML Models with DL Models

To train SSDINet on the soybean dataset, we employed a categorical cross-entropy

loss function used for the diverse nature of the soybean dataset. This loss function

was paired with the softmax function in the final layer that transformed the raw

model outputs into a probability distribution. The categorical cross-entropy loss

then measured the dissimilarity between this predicted distribution and the true

distribution of the classes. The initial CNN layer utilized the swish activation

function and the dense layers employed the ReLU function, which is widely used

due to its efficiency and effectiveness in DL models. For optimization Adam

optimizer with a learning rate of 0.0001, weight decay of 0.0005, and a momentum

of 0.9 is used. The SSDINet is trained with a batch size of 4 over 50 epochs. These
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Figure 5.9: CM of LR.

Figure 5.10: CM of KNN.
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Figure 5.11: CM of RF.

hyperparameters were chosen to ensure stable and efficient training. Figure 5.12

illustrates the increase in accuracy and the reduction in loss for the SSDINet model

during the training and testing phases which demonstrate the effectiveness of the

chosen training setup. Figure 5.13 indicates the CM of SSDINet.

Figure 5.12: Performance of SSDINet in terms of epoch Vs accuracy and epoch Vs loss.
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Figure 5.13: CM of SSDINet.

Table 5.6 presents the results of SSDINet for dataset split ratios of 80:20,

85:15, and 90:10. Initially, the soybean dataset was processed through the SCD

algorithm, after which the images were divided according to the specified split

ratios and the network was trained. Notably, the 80:20 split ratio yielded the

most promising results after applying the SCD algorithm. When comparing the

performance on raw data images to those processed with the SCD algorithm, there

was a notable 3% increase in accuracy with the latter. Therefore, the proposed

SCD algorithm not only enhanced the quality of the soybean seed images but also

improved the classification accuracy.
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Table 5.6: Performance metrics for SSDINet models with and without SCD algo-
rithm at different dataset split ratios.

Dataset
split
ratio

Model Precision
(%)

Recall
(%)

F-1 score
(%)

Accuracy
(%)

80:20 SSDINet
without SCD
algorithm

95.01 96.66 96.82 95.23
85:15 94.23 95.36 92.01 94.36
90:10 92.15 93.20 91.89 92.10
80:20

SSDINet with
SCD algorithm

98.74 97.64 95.66 98.64
85:15 95.54 94.93 93.63 95.63
90:10 94.57 94.86 92.19 94.93

For the SSDINet model without the SCD algorithm, the performance metrics

show a consistent decrease in performance as the dataset split ratio becomes more

imbalanced. At the 80:20 split ratio, the model achieves a Precision of 95.01%,

Recall of 96.66%, F-1 score of 96.82%, and Accuracy of 95.23%. With a 85:15

split ratio, these metrics decrease slightly, with Precision at 94.23%, Recall at

95.36%, F-1 score at 92.01%, and Accuracy at 94.36%. At the most imbalanced

90:10 split ratio, the model’s performance drops further, achieving a Precision

of 92.15%, Recall of 93.20%, F-1 score of 91.89%, and Accuracy of 92.10%. In

contrast, the SSDINet model with the SCD algorithm demonstrates superior per-

formance across all split ratios. At the 80:20 split ratio, the model with the SCD

algorithm significantly outperforms the one without it, achieving a Precision of

98.74%, Recall of 97.64%, F-1 score of 95.66%, and Accuracy of 98.64%. Even as

the data becomes more imbalanced, the SCD-enhanced model maintains higher

performance metrics: at the 85:15 split ratio, it achieves a Precision of 95.54%,

Recall of 94.93%, F-1 score of 93.63%, and Accuracy of 95.63%. At the 90:10

split ratio, it still performs better than the model without SCD, with a Precision

of 94.57%, Recall of 94.86%, F-1 score of 92.19%, and Accuracy of 94.93%. Fig-

ure 5.14 shows a graphical comparison of the SSDINet model across various data

splits ratios.
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Figure 5.14: Performance of SSDINet (a) without SCD, (b) with SCD.

The Table 5.7 shows a comparison of the performance metrics for various ML

and DL algorithms applied to a classification task. The algorithms assessed RF,

KNN, LR, SVM, CNN, and SSDINet. Among ML algorithms, SVM performs

better while CNN, as a deep learning model, further improves upon the met-

rics achieved by SVM, with a precision of 94.90%, recall of 92.67%, F-1 score

of 93.50%, and accuracy of 93.69%. CNN’s superior performance highlights the

strength of deep learning models in handling complex datasets, with its robust-

ness in classification tasks evidenced by its high accuracy. Figure 5.15 indicates

confusion metrics of CNN. Among all models, SSDINet achieves the highest per-

formance across all metrics, with a precision of 98.74%, Recall of 97.64%, F-1

score of 98.66%, and Accuracy of 98.64%. SSDINet’s exceptional performance is

a testament to its advanced architecture and capability in accurately identifying

and classifying the data, outperforming all other algorithms evaluated.

Table 5.7: Performance of ML and DL algorithms

Algorithms Precision (%) Recall (%) F-1 score (%) Accuracy (%)
RF 82.21 78.08 78.29 78.38
KNN 86.43 78.58 78.54 79.28
LR 85.96 81.78 79.37 81.98
SVM 92.93 90.79 91.85 91.89
CNN 94.90 92.67 93.50 93.69
SSDINet 98.74 97.64 98.66 98.64
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Figure 5.15: CM of CNN

The classification performance of SSDINet in identifying various soybean seed

classes is summarized in Table 5.8 (Values in brackets indicate the classes). The

categories of cracked seed, damaged seed, insect-bitten seed, green seed, purple

seed, and wrinkled seed all exhibited 100% accuracy, followed by the good seed and

broken seed categories. Figure 5.16 denotes a graphical representation of SSDINet

output using the SCD algorithm for each class.
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Table 5.8: Result of SSDINet with SCD algorithm for each class.

Soyabean Seed Classes Precision
(%)

Recall (%) F-1 score
(%)

Accuracy
(%)

Good seeds (7) 100 98 99 97.7
Broken seeds (0) 100 96 98 96
Crack seeds (1) 92 100 94 100
Damaged seeds (2) 100 100 100 100
Insect-bitten seeds (3) 100 100 100 100
Green seeds (4) 100 100 100 100
Purple seeds (5) 93 100 95 98
Wrinkled seeds (6) 100 100 100 100
Overall 98.74 97.64 95.66 98.64

Figure 5.16: Graphical representation of SSDINet output using the SCD algorithm for
each class.

The proposed SSDINet is also tested on Soybean Seeds Classification Dataset,

available on Kaggle from 2023 [59]. Figure 5.17 shows the confusion metrics of

SSDINet on the available dataset. The Table 5.9 summarizes the classification per-

formance of a model applied to different classes of soybean seeds which includes

Spotted, Damaged, Intact, Immature, and Broken soybean seeds. The Intact class

achieved the highest accuracy 99.6%, while Broken seeds had the lowest 62.5%,

which indicates greater difficulty in identifying this class. Overall accuracy and
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Figure 5.17: CM of SSDINet on Kaggle dataset.

average metrics across all classes are 96.77% for accuracy, 95.97% for precision,

96.07% for recall, and 95.95% for the F1-score, showing strong overall model per-

formance despite variability across specific seed classes.
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Table 5.9: Soybean Seed Classification Results on available Dataset

Seed Class Accuracy
(%)

Precision
(%)

Recall
(%)

F-1 Score
(%)

Spotted (0) 96.9 96 97 96
Damaged (1) 95.3 97 95 96

Intact (2) 99.6 95 100 97
Immature (3) 97.3 98 97 98

Broken (4) 62.5 84 62 71
Overall 96.77 95.97 96.07 95.95

5.7 Summary

This thesis presents a thorough methodology for identifying defects in soybean

seeds, ML and DL techniques. The study begins with an exploration of traditional

ML algorithms KNN, SVM, RF and LR detailing their application in seed classifi-

cation. It then transitions to advanced DL approaches, focusing on Convolutional

Neural Networks (CNNs) and SSDINet. The thesis also incorporates techniques

like transfer learning, adaptive learning rate adjustment, and model checkpointing

to enhance model performance. By using both ML and DL strategies, this research

offers a robust solution for the accurate and efficient identification of soybean seed

defects, ultimately contributing to improvements in agricultural technology and

crop health management. In summary, SSDINet emerges as the top-performing

algorithm, demonstrating superior capability with the highest precision, recall,

F-1 score, and accuracy. CNN and SVM also perform notably well, with CNN

leading among the deep learning models and SVM excelling among the traditional

ML algorithms. This research includes a detailed analysis of the performance of

different models, evaluates their effectiveness in real-world scenarios, and discusses

the potential for implementation in industrial settings. Through this approach,

the thesis aims to contribute to the advancement of agricultural technology and

improve the overall quality and marketability of soybean seeds.
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Chapter 6

SOYBEAN SEED VARIETY

IDENTIFICATION

6.1 Introduction to Seed Variety identification

Model

India is a top agricultural producer because of its diversified climate and soil types.

Soybeans is renowned for their high protein content, due to which it is an impor-

tant source of plant-based protein and are used to produce various food products

like soy milk, tofu, tempeh, miso and soy sauce [12]. Soybean oil, extracted from

soybeans, is one of the most commonly consumed vegetable oils worldwide. They

contain all the essential amino acids and are rich in essential nutrients such as di-

etary fiber, vitamins (especially B vitamins), minerals (iron, calcium, magnesium),

and phytonutrients (isoflavones) [102]. However, environmental factors which in-

clude adverse weather conditions like droughts or excessive rainfall during culti-

vation significantly impact the health and yield of soybean crops [106]. Likewise,

insufficient management practices for pests and diseases result in compromised

bean quality. Hence, the identification of suitable soybean seed varieties is a piv-

otal aspect of maximizing agricultural productivity and sustainability, particularly

in regions with unique climatic and soil conditions like Vidarbha in Maharashtra.

This process is essential for ensuring that the selected soybean varieties are well-
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adapted to local conditions, which can significantly influence yield, pest resistance,

and overall crop health.

In Vidarbha, where the agro-climatic conditions include specific challenges such

as irregular rainfall, high temperatures, and varying soil types, selecting the right

soybean variety can make a substantial difference. The choice of soybean variety

affects multiple factors, including growth duration, which must align with the lo-

cal growing season to avoid periods of adverse weather. Additionally, resistance

to local pests and diseases is critical, as it can reduce the need for chemical inter-

ventions and lower production costs. Identifying the soybean seed variety involves

thorough research and trials to evaluate how different varieties perform under the

specific conditions of Vidarbha. Moreover, the adaptability of soybean varieties

to the region’s soil type is another crucial factor. Vidarbha’s soil can range from

fertile black cotton soil to less fertile red soil, and each type can affect the growth

and productivity of different soybean varieties differently. By selecting varieties

that are well-suited to the prevalent soil conditions, farmers can optimize nutrient

uptake and improve plant health.

In this thesis, three soybean seed varieties are detected using ML and DL

techniques. In ML techniques KNN, RF, LR and SVM are used while in DL mod-

ified GoogleNet is developed named modified GoogleNet for Variety Identification

(MGVI) which are summarized in next section.

6.2 ML Model

To predict 3 varieties (JS335,KDS726 and JS9305) of soybean seed, this thesis used

KNN, RF, LR and SVM algorithms which is explained in detail in Section 5.3.

6.3 DL Model

To recognize the variety of soybean seeds, this thesis presents Modified GoogleNet

for Variety Identification(MGVI) which uses pre-trained Inception-V1(GoogleNet)

[17]. It employs parallel convolutional paths of varying receptive field sizes, which
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Figure 6.1: Architecture of MGVI.

enables the network to capture local features effectively and exhibits better re-

sults for variety identification. The initial part of the network consists of several

convolutional layers with small filter sizes (e.g., 7x7, 3x3) with ReLU activation

function. These layers perform basic feature extraction while reducing the spatial

dimensions of the input. The core building block of GoogleNet is the inception

module. Each inception module contains multiple parallel CNN branches with

varying filter sizes like 1x1, 3x3, 5x5, Max Pooling (MP), and 1x1 CNN layers for

dimensionality reduction. The outputs of these branches are concatenated along

the channel dimension and allow the network to capture features at multiple scales

within the same layer. Inception Modules (IM) are stacked together to form the

main body of the network. As inception modules extract coarse and fine features

efficiently from similar images it prove beneficial for the identification of soybean

seed variety. Throughout the network, max-pooling layers are used to reduce the
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spatial dimensions of feature maps and introduce translational invariance. After

the Inception modules, GAP calculates the average value of every feature map

across the dimensions, which results in a fixed-size feature vector and also pre-

vents overfitting. Figure 6.1 shows the proposed architecture of the MGVI module

and Table 6.1 denotes input and output shapes and operations.

Table 6.1: Model architecture of MGVI with input and output shapes and opera-
tions

Layer Input Shape Operation Kernel/Filter Stride Output Shape

Input 224×224×3 - - - 224×224×3

Conv Layer 1 224×224×3 Conv (64 filters, ReLU) 7×7 2×2 112×112×64

MP-1 112×112×64 MP 3×3 2×2 56×56×64

Conv Layer 2 56×56×64 Conv (192 filters, ReLU) 3×3 1×1 56×56×192

MP-2 56×56×192 MP 3×3 2×2 28×28×192

IM-1 28×28×192 Inception (1×1, 3×3, 5×5, MP) Varies 1×1 28×28×256

IM-2 28×28×256 Inception (1×1, 3×3, 5×5, MP) Varies 1×1 28×28×480

MP-3 28×28×480 MP 3×3 2×2 14×14×480

IM-3 14×14×480 Inception (1×1, 3×3, 5×5, MP) Varies 1×1 14×14×512

IM-4 14×14×512 Inception (1×1, 3×3, 5×5, MP) Varies 1×1 14×14×512

MP-4 14×14×512 MP 3×3 2×2 7×7×512

Average Pooling 7×7×512 GAP 7×7 - 1×1×512

Flatten 1×1×512 Flatten - - 512

Dense Layer 1 512 Fully Connected (ReLU) - - 256

Dropout Layer 256 Dropout (0.2) - - 256

Batch Norm Layer 256 Batch Normalization - - 256

Dense Layer 2 256 Fully Connected - - 3

SoftMax Output 3 Classification (SoftMax) - - Probabilities

After experimentation, this module consists of Inception-V1 and the modified

head. The modified head contains 1) Pooling layer, ii) Flatten layer, iii) Dense

layer, iv) BN and v) Dropout layer. Here, the Pooling Layer reduces the spatial

dimensions of the input feature maps and preserves information. Flatten prepares

the data for fully connected layers while a fully connected layer learns complex

patterns from the flattened input. BN normalizes the previous layer’s activations

and stabilizes and accelerates training. The dropout rate determines the propor-

tion of neurons to drop during each training iteration with a value of 0.2. Lastly,

a dense layer with SoftMax function determines the variety of soybean seeds.

The presented MGVI model stands out due to its use of Inception-V1 with par-
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allel convolutional paths of varying receptive field sizes that enable to capture fine

and coarse features simultaneously. This features play a crucial role for distinguish-

ing soybean seed varieties. Its lightweight design leverages 1x1 convolutions for

dimensionality reduction that reduces parameters while preserves feature richness.

The GAP layer prevents overfitting and improves generalization, while BN and

dropout regularize the model for better training. MGVI’s efficiency, scalability,

and robustness to positional variations make it ideal and outperforms traditional

models in both accuracy and resource efficiency which is shown in section 6.4.

6.4 Result and Analysis

The architecture of MGVI consists of modified GoogleNet which is used for seed

variety identification. The performance of MGVI in terms of accuracy and loss

is shown in Figure 6.2. Here, the training accuracy of the MGVI model starts

from 50% and reaches 99% after 50 epochs. In the case of testing accuracy, it

begins at 50%, meanwhile, after 2 iterations it falls to 35% and then suddenly

starts increasing and achieves the highest 97%. Figure 6.3 also showcases the pro-

posed modules’ training loss, indicating a discernible pattern during the training

phase. Initially, the training loss exhibits a noticeable peak due to the model’s

unfamiliarity with the data. However, as the training proceeds, the model begins

to ingest and encode the images, leading to a gradual decline in the training loss.

Here, the initial training loss is higher than defect identification, it diminishes

progressively over subsequent iterations. Eventually, it stabilizes at a training loss

of 0.20, underscoring the model’s proficiency in distinguishing between different

varieties present in the dataset.

The reduction in training loss serves as a testament to the model’s efficacy

in learning intricate patterns and features essential for both defect and variety

identification tasks. Figure 6.4 shows the confusion metrics of modules. These

matrices illustrate the classification accuracy by showing the TP rates for all class

and confirm the high efficacy of MGVI. The Table 6.2 summarizes the performance

metrics of ML-DL algorithms, which entails their precision, recall, F-1 score, and
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Figure 6.2: Accuracy Vs epoch performance of MGVI model at 50 epochs.

Figure 6.3: Accuracy Vs loss performance of MGVI model at 50 epochs.

accuracy. Each metric offers a unique perspective on the algorithm’s effectiveness.

The RF algorithm exhibits good performance with precision around 83%, and an

accuracy of 83.87%. This suggests that RF is fairly effective in predicting both
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Figure 6.4: CM of MGVI.

positive and negative instances. Figure 6.5 indicates the confusion metrics of RF.

KNN has a slightly higher precision at 84.84%, indicating fewer false positives

compared to RF, but its recall is lower at 81.80%, which might result in missing

some positive instances. Figure 6.6 indicates the confusion metrics of KNN. The

F-1 score and accuracy for KNN are also a bit lower than RF, at 82.86% and

82.80% respectively. LR significantly outperforms both RF and KNN with a pre-

cision of 90.37%, recall of 89.32%, F-1 score of 90.30%, and accuracy of 89.32%.

Figure 6.7 indicates the confusion metrics of LR. This indicates that LR is highly

effective in making balanced predictions. SVM performs slightly better than LR,

with precision at 90.90%, recall at 90.12%, an F-1 score of 90.15%, and accuracy

of 90.32%. This suggests that SVM is a very effective model, offering both high

precision and recall. Figure 6.8 indicates the confusion metrics of SVM. Lastly,

the MGVI which is a deep learning algorithm has the highest performance metrics

across all categories. Its precision and recall are both around 97%, with an F-1

score of 96.81% and an accuracy of 97.90%. These results indicate that MGVI is
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the most effective model among those listed, providing highly accurate and reliable

predictions. Hence, RF and KNN provide decent performance, they are outper-

formed by LR and SVM. Among all, MGVI stands out as the best-performing

algorithm, delivering the highest scores in all metrics, which reflects its superior

prediction capabilities.

Table 6.2: Performance of ML and DL algorithms

Algorithms Precision (%) Recall (%) F-1 score (%) Accuracy (%)
RF 83.81 82.92 83.22 83.87
KNN 84.84 81.80 82.86 82.80
LR 90.37 89.32 90.30 89.32
SVM 90.90 90.12 90.15 90.32
MGVI 96.91 97.37 96.81 97.90

Figure 6.5: CM of RF.

Table 6.3 represents per class performance of variety across various evaluation

metrics. Here, JS335 (class 0) and JS9305 (class 2) achieve the highest accuracy of

100% followed by KDS726 (class 1) with 92.5%. By combining all three classes the

accuracy of seed variety identification module is 97%. However, the performance

of MGVI across all seed classes is impressive, with average metrics showing the
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Figure 6.6: CM of KNN.

Figure 6.7: CM of LR.
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Figure 6.8: CM of SVM.

Table 6.3: Result of MGVI with SCD algorithm for each class of variety.

Soyabean Seed Classes Precision
(%)

Recall (%) F-1 score
(%)

Accuracy
(%)

JS335 (0) 98 100 99 100
KDS726 (1) 93 93 93 92
JS9305 (2) 95 100 97 100
Overall 96.91 97.37 96.81 97.90

overall accuracy of MGVI is 97.90%, with a precision 96.91%, 97.37 % recall and

96.81% F1 score.

6.5 Publication

1. Submitted paper to SN Computer Science journal with title DVINet: A

Transfer Learning-Based Framework for Defect and Variety Identification in

Soybean Seeds”
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6.6 Summary

Identifying suitable soybean seed varieties is vital for optimizing agricultural pro-

ductivity and sustainability in Vidarbha, Maharashtra. The region’s unique cli-

matic conditions, including irregular rainfall, high temperatures, and varied soil

types, necessitate careful selection of soybean varieties to ensure high yield, pest

resistance, and crop health. This thesis provides, ML and DL approaches to rec-

ognize soybean seed variety. KDS726, JS335 and JS9305 are widely cultivated

seeds in Vidarbha Maharashtra. This thesis identifies these varieties using RF,

KNN, LR and SVM which are popular ML techniques. Among these four tech-

niques SVM surpasses other techniques in terms of various evaluation metrics.

Later, this thesis provides novel DL techniques named MGVI which outperformed

all and acheive 97.90% accuracy. Hence, effective identification of variety leads

to enhanced crop resilience, higher yields, and improved profitability,it also con-

tributes to the sustainability of soybean farming in Vidarbha. By selecting the

right varieties, farmers can achieve economic stability, meet market demands, and

maintain the health of their land and resources.
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Chapter 7

COMPARISON WITH EXISTING

METHODOLOGY

7.1 Introduction

The development and evaluation of DL models in the domain of soybean seed

classification have become increasingly crucial due to the growing need for ac-

curate, efficient, and resource-friendly systems. In this chapter, we present an

in-depth analysis of the proposed SSDINet and MGVI model. These models are

compared against state-of-the-art DL models, which includes SNet, SoyNet, and

improved ResNet-18, to highlight their superiority in terms of accuracy, model

size, precision, recall, and classification time.

SSDINet is designed as a faster and lightweight model, optimized for both high

performance and resource efficiency. It achieves a remarkable accuracy of 98.64%,

which surpasses other models while maintaining a smaller model size and faster

inference time. Similarly, MGVI demonstrates superior performance in variety

identification, achieving the highest accuracy of 97.90%. This chapter provides a

comprehensive comparative analysis of these models across key performance met-

rics, underscoring the effectiveness of the proposed approaches in soybean seed

classification tasks. Through this evaluation, SSDINet and MGVI emerge as ro-

bust solutions for enhancing the classification of soybean seed varieties and defects

which offers an optimal balance between accuracy and computational efficiency.
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7.2 SSDINet

The presented faster and lightweight SSDINet model is evaluated against the state-

of-the-art DL models SNet and SoyNet as presented in Table 7.1. In terms of

accuracy, SSDINet achieves 98.64%, surpassing both SNet and SoyNet. Notably,

SSDINet maintains high performance with a smaller model size (1.15 M Params)

compared to SNet and SoyNet, which have 1.29 M and 7.26 M parameters, re-

spectively, which demonstrate its efficiency in resource utilization. Furthermore,

SSDINet exhibits competitive inference times of 4.70 ms, which is comparable to

SoyNet’s 4.92 ms and significantly faster than SNet’s 9.67 ms. This comprehensive

evaluation underscores SSDINet’s effectiveness, efficiency, and superiority over the

other models, making it an optimal choice for soybean seed classification in terms

of both performance and resource efficiency.

Table 7.1: Comparison with state-of-the-art approaches

Model Precision
(%)

Recall
(%)

F-1 Score
(%)

Accuracy
(%)

Size
(Params)

Time

SNet
[60]

97.0 94.0 95.5 96.2 1.29 M 9.67 ms

SoyNet
[59]

96.69 96.71 96.69 95.63 7.26 M 4.92 ms

SSDINet
(Pro-
posed)

98.74 98.64 98.64 98.64 1.15 M 4.70 ms

7.3 MGVI

Table 7.2 provides a comparative analysis of three models—SNet, SoyNet, and

improved ResNet-18 with MGVI (proposed model) across various performance

metrics. Precision, which indicates the % of TP predictions among all positive

predictions, is highest for MGVI at 96.91%, slightly surpassing SNet’s 97.0% and

SoyNet’s 96.69%. In terms of recall, MGVI again leads with 97.37%, significantly

higher than SNet’s 94.0% and slightly better than SoyNet’s 96.71% which high-

lights MGVI’s effectiveness in identifying all positive cases. In terms of accuracy,
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which represents the percentage of correctly predicted instances out of the to-

tal instances, MGVI achieves the highest accuracy at 97.90%, surpasses SNet at

96.2%, SoyNet at 95.63% and improved ResNet-18 at 97.36%. Hence, the higher

accuracy signifies MGVI’s enhanced capability in correctly classifying both pos-

itive and negative cases. It indicates that MGVI works well among all existing

methodologies and classifies seeds effectively. Figure 7.1 indicates the graphical

comparison of the proposed MGVI with other state-of-the-art methods.

Table 7.2: Comparison with existing methodology

Model Precision
(%)

Recall
(%)

F-1 score
(%)

Accuracy
(%)

SoyNet [59] 96.69 96.71 96.69 95.63
SNet [60] 97.0 94.0 95.5 96.2
Improved
ResNet-18 [91]

– – – 97.36

MGVI (Pro-
posed)

96.91 97.37 96.81 97.90

Figure 7.1: Graphical comparison of MGVI with existing methods.
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7.4 Summary

This chapter evaluates the performance of the proposed SSDINet and MGVI mod-

els in comparison to state-of-the-art deep learning models, SNet and SoyNet, fo-

cusing on various performance metrics such as accuracy, model size, classification

time, precision, recall, and F1 score. SSDINet achieves an impressive accuracy

of 98.64%, outperforming both SNet and SoyNet. It also demonstrates efficient

resource utilization with a model size of only 1.15 million parameters, which is

smaller than SNet’s 1.29 million and SoyNet’s 7.26 million. Furthermore, SS-

DINet shows competitive inference times, processing data in 4.70 milliseconds,

faster than SNet’s 9.67 milliseconds and comparable to SoyNet’s 4.92 milliseconds.

These results highlight SSDINet’s effectiveness in terms of both performance and

resource efficiency, making it a superior choice for soybean seed classification.

The chapter also presents the MGVI model, which surpasses its competi-

tors in several key performance areas. MGVI achieves the highest accuracy, at

97.90%, outclassing SNet (96.2%), SoyNet (95.63%), and the improved ResNet-18

(97.36%). MGVI also excels in precision, recall, and F1 score, with a recall rate of

97.37%, indicating its strong ability to identify positive cases. The improved per-

formance metrics across all categories confirm MGVI’s robustness and efficiency

in correctly classifying soybean seeds. Overall, both SSDINet and MGVI prove

to be highly effective and resource-efficient models for soybean seed classification,

significantly improving upon existing methodologies.
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Chapter 8

CONCLUSION AND FUTURE SCOPE

8.1 Conclusion

Soybean is a crucial crop globally, valued not only for its high protein content

but also for its versatility in various products, from animal feed to biodiesel. As a

staple in the agricultural sector, optimizing soybean cultivation is essential for food

security and economic stability. In this context, the identification of defects and

selection of high-performing soybean seed varieties become pivotal. Advanced deep

learning models play a significant role in this process, enabling precise classification

and prediction of soybean seed quality and characteristics. This thesis introduced

SSDINet and MGVI, a novel defect and variety identification network designed

for soybean seeds that leverages transfer learning techniques.

In this thesis, the researcher divides the challenges into four aspects (i) dataset

generation (ii) dataset pre-processing (iii) defect identification and (iv) variety

identification. The researcher performed the methodological literature review,

propose solutions, developed mechanisms, and simulated the techniques to escalate

the current state-of-the-art in these areas. In particular, Chapter 1 explains the

details of the objective of this thesis and describes the contribution of the presented

study. It also defines the structure of the thesis.

Chapter 2, a methodological survey carried out for existing research on the

problem addressed in this research work. Here, the survey is split into two parts,
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the first part explains the technological background while the second part is further

split into papers of variety identification and defects identification. Papers of

variety/defects identification explain the methodology and remarks of state-of-

the-arts approaches.

Chapter 3 entails the details of dataset formation. Initially when the research

work started soybean seed dataset is not publicly available. Later, the samples of

soybean seed are collected and further process of dataset preparation is explained

in this Chapter. After dataset collection, Chapter 4 performs the pre-processing

operation on images using propose SCD algorithm. It also helps in better yield

predictions and research, promoting sustainable farming practices. For farmers in

Vidarbha cultivating soybeans, such an algorithm can significantly boost planting

accuracy, reduce production costs, and support sustainable and profitable farming.

Chapter 5 explains the various ML and DL algorithms that are used to identify

defects of soybean seeds. In ML, RF, KNN, LR and SVM are used to identify

defects where SVM outperformed all other ML algorithms in terms of all evaluation

metrics. This thesis also proposes a novel algorithm named SSDINet to identify 7

defects and one good-quality soybean seed. In comparison, deep learnings SSDINet

outperformed RF, KNN, LR, SVM, and CNN. The same strategy is applied for

variety identification in Chapter 6 where proposed MGVI outperformed all other

algorithms. At Last, Proposed SSDINet and MGVI are compared with state-of-

the-art methods in Chapter 7.

The proposed models SSDINet and MGVI, contribute to future advancements

in agricultural technology by enhancing seed defect and variety identification using

DL. These models provide accurate, efficient, and automated solutions for quality

control in the soybean industry. SSDINet’s lightweight design and fast processing

time enable real-time defect identification, while MGVI’s advanced Inception-V1

architecture improves variety classification accuracy. As agricultural systems in-

creasingly rely on precision technology, these models can significantly optimize

crop management, reduce losses, and ensure higher-quality production that sup-

ports sustainable agriculture and food security.
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8.2 Future Scope

DL approaches play a pivotal part in the identification of seeds. Although the

technology has been around for decades, recent innovations and advancements

have sparked renewed interest. ML and DL-based analytics solutions operate

in real-time, introducing a new dimension to the agriculture industry. While

these models continue to provide valuable insights and reports to senior decision-

makers, real-time analytics empower frontline industry to enhance performance.

The following section explains the future directions in this field.

Figure 8.1: Flow chart of real-time system.

In the future, this thesis provide a solution to sort seeds in real-time into

different categories. As this is our future scope, Figure 8.1 indicates the flow

chart. The potential approach to perform real-time classification of soybean seeds

is as follows:

1. Real-Time Image Acquisition: - Implement a high-speed camera system to

capture images of soybean seeds as they pass along a conveyor belt or through

a sorting mechanism.

2. Mobile Application Interface: - Develop a user-friendly mobile application

interface that allows operators to input data and control the seed sorting

process in real-time.

3. Wireless Connectivity: - Enable wireless connectivity between the mobile

application and the seed sorting system to facilitate real-time communica-
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tion and data exchange. This is achieved using Wi-Fi, Bluetooth, or other

wireless communication protocols according to system requirements.

4. Image Preprocessing: - Apply SCD algorithm to eliminate noise from cap-

tured images and make them for classification.

5. Deep Learning Model Integration: - Deploy a deep learning model SSDINet

to optimized for real-time performance and capable of classifying soybean

seeds into seven predefined categories.

6. Thresholding and Decision Rules: - Define thresholding criteria and decision

rules based on the output probabilities or confidence scores generated by

the deep learning model. These rules should be optimized to accurately

categorize seeds into the seven predefined categories in real-time.

7. Feedback and Control: - Incorporate feedback mechanisms into the mobile

application to provide operators with real-time feedback on the classification

results. Operators can review the sorted seeds’ categories and make adjust-

ments to the sorting parameters or initiate reclassification if necessary.

8. Integration with Sorting Equipment: - Integrate the real-time seed classifi-

cation system with seed sorting equipment, such as pneumatic or mechanical

sorters, to automate the sorting process based on the classification results.

This integration should ensure seamless coordination between the classifi-

cation system and the sorting mechanism to achieve accurate and efficient

seed sorting.

9. Testing and Validation: - Conduct rigorous testing and validation of the real-

time sorting system under various operating conditions like defect types, and

conveyor speeds. Validate the system’s performance against ground truth

data to ensure consistent and reliable sorting results.

By addressing these aspects, this thesis aims to bridge the gap between research

innovation and practical implementation, thereby maximizing the impact of our

work in real-world applications within the soybean industry.
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