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Abstract

The mathematical theory of elasticity is an endeavour to lessen the work involved in de-

termining stress-strain, or relative displacement, within a solid body which is subjected

to an equilibrating system of forces or might be in a state of slight internal relative

motion. It aims to derive results which shall be essentially vital in application to engi-

neering, architecture, and all other useful areas in which the material of construction is

used. Classical theory of elasticity is one of the most important branches of continuum

mechanics, which deals with the stresses and deformations in elastic materials generated

due to the action of external forces or a change in temperature. The classical theory of

elasticity serves as an excellent model for studying the mechanical behaviour of a wide

variety of solid materials and is used extensively in civil, mechanical, and aeronautical

engineering design. This is the oldest established theory governing the behaviour of de-

formable solid materials, which was founded in the early nineteenth century. However,

the classical theory of elasticity was unable to analyze materials possessing microstruc-

tre, and as such, researchers started to focus on a new theory known as the micropolar

theory of elasticity, where the microstructure of the materials plays a significant role.

Micropolar theory assumes materials to be made up of small dumbwell-like intercon-

nected molecules, which can undergo rotational motion independently in addition to

translational motion.

The thesis consists of six chapters where in chapter 1, a general overview on the mi-

cropolar theory of elasticity is given. The development of theory of elasticity from

classical to micropolar elasticity via several generalizations is also discussed, along with

the memory-dependent derivative. In second Chapter, the elastodynamic responses of

magneto micropolar isotropic media is studied under the gravitational influence. The

Matlab software has also been used in order to illustrate the obtained results graphi-

cally. In Chapter 3, we have investigated and studied the 2D mathematical model in the

framework of the Green-Lindsay model in the presence and absence of the micropolar

effect by using a memory-dependent derivative. In Chapter 4, the memory response of a

rotating micropolar elastic media under the thermo-mechanical effect has been investi-

gated. The potential displacement approach, along with the normal mode analysis, has

been used for solving systems of differential equations. In Chapter 5, a 2D model has

v
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been developed in micropolar theory of elasticity, subjected to magnetic and thermal

effects in the context of memory-dependent derivatives. In this chapter, the interaction

of magnetic, thermal, and rotational fields has been studied using a memory-dependent

derivative. In Chapter 6, a novel mathematical model in the micropolar theory of gener-

alized thermoelasticity is established under the framework of photothermal theory. The

resulting differential equations have been solved by using integral transforms along with

the potential displacement approach.
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Chapter 1

Introduction

In this chapter, a brief and concise introduction to the micropolar theory of elasticity

is given, along with several generalizations. In order to study the processes reflecting

memory effect, the notion of memory-dependent derivative in elasticity theory is also

discussed. The main theme of the thesis is presented, along with a brief history and

an extensive survey of the literature. The research gap is identified based on the sur-

vey of the literature, and as a result, the objectives of the current work are proposed

accordingly.

1.1 Classical elasticity

The mathematical elasticity theory is a sublime and attention-grabbing subject that

studies the stresses and distortions created in elastic media due to some external force

or due to temperature change. An adequate outcomes has been produced by classi-

cal elasticity in so many engineering problems involving various structural materials.

The material in classical elasticity is treated as a continuum, and hence the molecular

structure of materials in such a continuum is completely ignored. In this theory, the dis-

placement vector is used to characterize the distortion of the body, and a force, namely

the stress vector, is used to determine the transmission of loads across a surface element.

Therefore, the symmetric tensors of stress and strain are used to describe the distortion

of the body. The materials used in construction, for instance, aluminum, steel, and

concrete, are effectively defined by classical elasticity, provided the elastic limit is not

crossed by stresses. However, the materials possessing microstructure e.g., soil, bone,

composites, polymers etc and those materials with huge stress gradients are neglected

to convey agreeable results by classical elasticity. But after comparing the experimental

results and the results that were acquired using classical elasticity, significant discrepan-

cies were discovered in some of the materials, for instance, fibrous, polymers, asphalts,

1



etc. The reason behind these discrepancies is the material’s atomic structures, which

is overlooked in classical elasticity. The premise of this theory is shaped by Hook’s law

[1], which was found in 1660 and revealed in 1678. In general, Hooke’s law (constitutive

relations) can be expressed as

σij = cijklεkl,

and equation of motion as

σij,j + Fi = ρüi,

where, cijkl is a fourth order tensor having 81 components which depend upon the nature

of medium.

Actually, Galileo was the first mathematician to study the resistance of solids to rupture

by treating solids as inelastic objects. His investigations laid the foundation of a field

that was later investigated by many researchers. Two major breakthroughs in the history

of elasticity initiated by Galileo’s observations were the discovery of Hooke’s law in 1660

by British mathematician Robert Hooke and the formulation of the general equations by

French engineer Navier in 1821. Scientific thinking has been shaped by Hooke’s law for

a long period of time, and its outcomes generally matched experimental findings aswell.

Any solid is said to be elastic if it has the ability to deform when subjected to a load

and then revert back to its primitive form after the removal of deforming forces. An

elastic solid is said to be linear, if an infinitesimal deformation is experienced by that

body“and for which the governing material law is”linear. About any given point, if

the body’s elastic properties are the same in all directions, then the body is said to

be isotropic. If it happens that the body’s elastic properties are independent of the

positions of the points, then the body is said to be homogeneous. For such materials

Hooke’s law reduces to

σij = λδijυ + 2µeij ,

where, υ = e11 + e22 + e33; λ and µ are material constants known as Lame’s constants,

σij represents force stresses, and δij represents the kronecker delta.

In 1887, the concept of couple stress was introduced in classical elasticity for the first

time by Viogt [2] in addition to the force stresses. It was introduced in order to address

the flaws of classical elasticity and hence lead to another theory known as “couple stress

theory”. In 1909, Cosserat and Cosserat [3] further extended the couple stress theory

(CST) and hence introduced the complete theory of asymmetric elasticity, which was

2



non-linear initially. In this theory, it was assumed that in a 3D continuum, each ma-

terial particle is associated with a ‘rigid triad’. So in addition to the displacement, the

material particles can rotate independently during the distortion process. Therefore, in

this way, the concept of rotation was incorporated into the continuum, which leads to

additional degrees of freedom, and these additional degrees of freedom in turn lead to

the asymmetry of stress and strain tensors. Hence, an excellent continuum modelization

was provided by the Cosserat brothers idea for molecular lattices. However, the Cosserat

brothers work did not pique anyone’s interest and thus remained dormant during their

lifetime. It may be due to the non-linear nature of this theory and its presentation as a

unified theory including electrodynamics, optics, and mechanics. Then, around 50 years

of break, so many researchers were fascinated by this theory, and various Cosserat-type

theories were established by them. For instance, Gunther [4], Grioli [5], Rajagopal [6],

Aero and Kuvshinskii [7], Toupin [9], Mindlin and Tiersten [8], Eringen [10], Koiter

[11], Palmov [12], etc., established different Cosserat-type theories. In each of the above

mentioned theories, the kinematic variable has been taken in account, corresponding

to rotation of a material point. However, the theories developed by these researchers

were called by names, for instance, the theory developed by Toupin, was referred to as

“Cosserat theory with constrained motion”, theory developed by Koiter was referred

to as “Couple stress theory”, theory developed by Eringen was referred to as “Inde-

terminate couple stress theory” and theory developed by Nowacki, was referred to as

“Cosserat pseudo-continuum theory” etc. Furthermore, the theories developed by these

researchers were completely identical to the Cosserats theory. The micro-rotation vec-

tor φ in Nowackis theory, is described in terms of displacement vector u by the formula

φ = 1
2∇ × u. Later on, following Eringen [13], the general Cosserat continuum theory

was renamed “micropolar continuum theory,” where the micro-rotation vector is not

defined in terms of a displacement vector. A non-linear theory for micro-elasticity was

devised in [14, 15], and in this theory, the“intrinsic motions of the microelements are

taken”into consideration. This theory is actually an extension of “Indeterminate couple

stress theory” and “Cosserat theory” because in this, the“skew-symmetric part of the

stress tensor, the symmetric part”“of the couple stress tensor, and the spin inertia”are

entirely covered.

1.1.1 Thermoelasticity and magneto-elasticity

The thermoelasticity theory, which is a broadened version of the classical theories of elas-

ticity and thermal conductivity,“deals with the effect of”thermomechanical“disturbances

on an elastic body. The”heating of a body leads to temperature change and deformation

of its structure, which causes thermal deformation. The term “thermal deformation”

3



simply means that a material expands when its thermal energy (and temperature) rises,

causing its atoms (or molecules) to vibrate more often. This increased vibration in

turn results stretching of the molecular bonds. Also, if the material’s thermal energy

is reduced, then accordingly material will contract. Hence, it can be concluded that

the theory of thermoelasticity is actually based on temperature changes. Interaction

between elastic and temperature fields leads to coupling between deformation and tem-

perature distribution, so Hooke’s law gets replaced by the Duhamel-Neumann [16, 17]

equation

σij = λδijν + 2µeij + βijT,

where, βij are thermal moduli. For homogeneous isotropic material

βij = β = −(3λ+ 2µ)αt,

where,“αt is the coefficient of thermal expansion.”

The thermoelasticity theory is classified into three different forms: uncoupled, coupled,

and generalized thermoelasticity. The uncoupled theory of thermoelasticity (classical

thermoelasticity) was introduced by Duhamel and Neumann [16, 17], but this theory

had two shortcomings, namely, the heat conduction equation is free of elastic terms, and

another shortcoming of this theory is the heat equations parabolic nature, anticipating

infinite velocities of thermal signals, so opposing the actual physical phenomena and

therefore doesn’t present exact outcomes. A century later, Biot [18] in 1956 removed

the first paradox of“the classical uncoupled thermoelasticity theory, that the tempera-

ture”remains unaffected by elastic changes, and hence established a new theory known

as the coupled theory of thermoelasticity. However, the second shortcoming of the above

two theories is the same. Therefore, in order to remove the latter shortcoming of the

classical coupled thermoelasticity, various generalizations were established. The first

and foremost generalization was given by Lord and Shulman [19] (LS theory) in 1967,

with one relaxation time, and another generalization was given by Green and Lindsay

[20] (GL theory) in 1972, with two relaxation times. In the above theories, namely

the LS and GL theories, the heat conduction equation is of the hyperbolic type, which

therefore removes the shortcoming of infinite velocities of thermal signals. Later on,

three additional models were introduced by Green and Nagdhi ([21], [22], and [23]) (GN

theory), viz., GN types I, II, and III.

Magnetoelasticity is another generalization of elasticity theory, and it came into ex-

istence when magnetic effects were introduced in the theory of elasticity. Due to its

innumerable applications in different fields, it has grabbed the attention of a number of
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researchers. Knopoff [24] and Chadwick [25] were the first ones to establish the basis of

magnetoelasticity, and later on, Kaliski and Petykiewicz [26] further developed it.

1.2 Micropolar theory of elasticity

So far, classical elasticity was not completely successful in elucidating the behaviour of

those materials possessing microstructure structure. Therefore, in order to study such

types of materials, A.C. Eringen [13] established in 1966 a new theory called as the

“Micropolar theory of elasticity”, which successfully studies the deformation of such ma-

terials or any material whose microstructure plays a crucial part in their macroscopic

reactions. The micropolar elasticity contemplates the granular character of the medium,

and the deformation is described by microrotation and displacement.“The granular char-

acter of”the medium is proposed to be imposed to such type of materials, where the

ordinary classical elasticity theory is ineffective in analyzing their behavior. The motion

of materials in micropolar elasticity is described by displacement and rotation vectors,

though in classical elasticity, only displacement vector is utilized to analyze the motion

of material points. Therefore, the motion of a material point (particle) in the microp-

olar theory of elasticity is described by six degrees of freedom. Usually in micropolar

elasticity, in addition to the displacement components (u1, u2, u3), the microrotational

angles (φ1, φ2, φ3) are also utilized to describe the rotation of the microstructure. The

interaction taking place between two parts of a body is transmitted by a torque vector

along with a force vector, which results in assymetrical force aswell as couple stresses.

The entire class of materials is represented by this medium, which are basically formed

by dumbbell-like molecules or dipole atoms. In micropolar theory, an additional object,

namely the director, is assigned in order to define the orientation of material particles,

and hence the microrotation of the material particles is examined by it.

Now, in isotropic and homogeneous micropolar media, the stress-strain relation, as de-

fined in [13], is given by “

σij = λur,r + µ(ui,j + uj,i) + k(uj,i − εijrφr),

µij = αφr,rδij + βφij + γφj .

” “where, λ, µ represents Lame’s constants, α, β, γ, κ represents micropolar elastic con-

stants, σij represents force stress, and µij represents couple stress.”

The micropolar elasticity is diverse in scope because of its applications in acoustics,

optics, geophysics, etc. In both isotropic and anisotropic media, plenty of research work

has been done, and at present, hundreds of papers are present in this area and related
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areas. Moreover, an intensive study is going on in this field. A cubic crystal that is

subjected to a mechanical source is studied by Kumar and Ailawalia [27] by utilizing the

eigenvalue approach. Ramezani and Naghdabadi [28] established the concept of energy

pairs in the micropolar continuum. Kumar and Choudary [29] studied the axi-symmetric

problem in a micropolar medium by using integral transforms. So much research has

been done in this field that one can refer to [30], [31], [32], etc for more review.

1.2.1 Micropolar thermoelasticity

In 1966, thermal effects were introduced into the micropolar elasticity theory by Nowacki

[33], which gave rise to a new theory of elasticity called the “Micropolar theory of Ther-

moelasticity”. Thus, micropolar thermoelasticity theory is the generalization of microp-

olar theory and hence is comprised of not only heat equation but also of stress strains

that in turn are produced because of heat flow. Therefore, the temperature distribu-

tion and the stresses which are produced by temperature fields can be calculated easily.

Taking Eringen [34], Lord and Shulman [19], and Green and Lindsay [20] under consider-

ation, the mathematical model for computing stress-strain along“with modified Fourier’s

heat”conduction law for homogeneous and isotropic micropolar generalized thermoelas-

tic solids is as follows: “

σij = λur,rδij + µ(ui,j + uj,i) + k(uj,i − εijrφr)− υ
(
T + τ1

∂T

∂t

)
δij ,

µij = αφr,rδij + βφi,j + γφj,i,

K∇2T = ρCe

(
∂T

∂t
+ τ0

∂2T

∂t2

)
+ νT0

(
∂

∂t
+ Ξτ0

∂2

∂t2

)
ui,i.

” “where, σij represents force stress, µij represents couple stress, λ, µ represents Lame’s

constants, α, β, γ, κ represents micropolar elastic constants,”δij represents“Kronecker’s

delta, K represents thermal conductivity, Ce represents specific heat, T represents ther-

modynamic temperature, T0 represents reference temperature, ν = (3λ+ 2µ+κ)αt, and

τ0, τ1 represents relaxation times.”

So, because of its innumerable applications, a lot of research has been done in this

field till now. Therefore, in 1973, the generalized micropolar thermoelasticity theory

was extended by Boschi and Iesan [35]. In 1978, Dost and Taborrok [36] introduced

generalized thermoelasticity by making use of Green and Lindsay theory. The micropolar

thermoelasticity theory was established by Ciarletta [37] without dissipation of energy,

and the thermal signals were allowed to propagate at finite speeds.
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The micropolar thermoelasticity with stretch that was established by Nowacki [38] and

Eringen ([13], [39]) in the framework of Lord-Shulman [19] and Green-Lindsay [20] the-

ories was further generalized by Kumar and Singh [40]. In micropolar generalized ther-

moelastic solids, the plane waves were studied by Singh and Kumar [41] and Singh [42].

A 2D model of a generalized thermo-microstretch elastic solid is studied by Kumar and

Singh [43], in which the elastic solid is exposed to impulsive force. The resulting non-

dimensional coupled equations were solved by utilizing the technique of integral trans-

forms along with the eigenvalue approach, and then the obtained results were illustrated

graphically. In micropolar thermoelasticity, the response of impedance parameters was

studied by Kumar et al. [44] in the context of modified GL theory. The impact of

rotation was investigated by Othman and Abbas [45] in micropolar thermoelasticity in

the context of TPL theory.

1.2.2 Magneto Micropolar elasticity

The magneto-micropolar elasticty theory is the generalization of the micropolar elas-

ticity, and this theory deals with the distortion of a solid body placed in an external

magnetic field. The two fields, namely magnetic and elastic, which are present in this

theory contribute to the total deformation of the body. Moreover, the governing laws of

these two fields get changed due to the interaction of these fields, and hence the elastic

field enters into the governing equations of electromagnetism, i.e., Maxwell’s equations,

by modifying Ohm’s law, and in turn the elastic field is affected by electro-magnetic

field by inclusion of Lorentz’s pondermotive force in Hook’s law.

Taking [106] into consideration, the mathematical model for this type of media along

with Lorentz force is as “

σij = λuk,k + µ(ui,j + uj,i) + k(uj,i − εijkφk),

µij = αφkδij + βφi,j ,

(µ+ k)ui,jj + (λ+ µ)uj,ji + kεijkφk,j + εijkJjBk = ρüi,

kεijkuk,j − 2kφi + (α+ β)φj,ji + γφi,jj = ρjφ̈i.

”

1.2.3 Magneto Micropolar thermoelasticity

In this theory, not only elastic and electromagnetic fields are present, but it also includes

thermal fields, and the total distortion of the body is contributed while these fields in-

teract with each other. The magnetomicropolar thermoelasticity is one of the delightful
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branch of micropolar theory, and because of its applications in different fields, it has

grabbed the attention of thousands of researchers, due to which a lot of research has

been done in this field and in related fields as well. A 2D model was constructed in the

electromagnetic theory of micropolar elasticity by Kumar and Rupender [47], and the

interaction was inquired between the mechanical and electromagnetic fields. Integral

transforms have also been employed to figure out the problem’s required solution. For

two distinct theories, Lord-Shulman and Green-Lindsay, the behaviour of obtained phys-

ical quantities has been visualised graphically by the authors. A plain strain problem

where the half-space was imposed to distributed thermal and mechanical sources was

explored by Kumar [48]. To figure out the problem’s required solution, Integral trans-

forms have been utilized. For generalized theories of thermoelasticity, a considerable

impact of the magnetic field has been observed graphically by authors on different phys-

ical quantities. In a generalized thermo-microstretch elastic medium, a general solution

of field equations is found by Singh and Kumar [49] by making use of the eigenvalue

approach along with Laplace and Hankel transformations for an axisymmetric problem,

and the obtained results were depicted graphically. [50] introduced a simple mathemat-

ical way of obtaining the solution of a boundary value problem exposed to a mechanical

source in magneto-micropolar infinite space in the presence of a transverse magnetic field.

Laplace and Hankel transforms have been utilized to address the non-dimensional cou-

pled equations. A 2D problem is explored by Kumar et al. [51] in magneto-micropolar

thermoelastic half-space by taking hall current and rotational effects into account with

a fractional order derivative. Furthermore, integral transforms along with a potential

displacement approach are utilized in order to find out the solution of the required

problem. The mechanical force and the transverse magnetic field were applied to 2D

generalized magneto-micropolar thermoelastic infinite space by Singh and Kumar [52]

and the technique of integral transforms was utilized for finding the solution of the re-

quired problem. A thermomechanical interactions was studied by Lata and Kaur [53] in

homogeneous magneto thermoelastic medium (which is transversely isotropic aswell) in

the framework of heat transfer (fractional order) and hall current. A new mathematical

model was examined in [54] for a homogeneous magneto-thermoelastic (which is also

transversely isotropic) medium in the context of fractional order theory. The impact of

Hall current was studied by Lata and Kaur [55] in a homogeneous magnetothermoelas-

tic rotating medium by taking fractional order theory into consideration. In 2022, a 2D

problem was addressed by Abouelregal et al. [56] in generalized micropolar thermoelas-

ticity and hence established a novel heat transfer model. A 2D model was established

in magneto-micropolar thermoelasticity by Abouelregal et al. [57] and the higher order

DPL model along with two-temperature theory (2TT) has been utilized. The differ-

ent physical quantities has been obtained by adapting the technique of normal mode

analysis.
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A mathematical model [58] for an isotropic thermoelastic homogeneous solid placed in

the externally applied magnetic field is usually taken as,

σij = λuk,kδij + µ(ui,j + uj,i) + k(uj,i − εijkφk)− νTδij ,

µij = αφkδij + βφi,j + γφj,i,

K∇2T =

(
∂

∂t
+ τ0

∂2

∂t2

)
(ρCeT + T0νe) + π0Ji,i,

(µ+ k)ui,jj + (λ+ µ)uj,ji + kεijkφk,j + εijkJjBk − νT,i = ρüi,

kεijkuk,j − 2kφi + (α+ β)φj,ji + γφi,jj = ρjφ̈i.

Again, because of its applications in various fields, it has captured the attention of

thousands of researchers, resulting in a significant amount of research in this field and

related areas.

1.3 Memory dependent derivative

The introduction of fractional calculus to the world was made possible by a letter ex-

change between Leibniz and de lHospital [59] in 1695. Due to its countless applications

in various fields, fractional calculus has a very long history and has been utilised for

decades. Since both fractional derivatives (FDs) and memory-dependent derivatives

(MDDs) are employed to reflect processes with memory, it has been found that MDDs

are significantly more useful than FDs when both derivatives are taken into account. One

of the most notable differences between MDD and FD is that MDD has only one form,

which is the most important feature, whereas FDs have several. In the context of MDDs

definition, it has been observed that the physical meaning of MDDs is much clearer

than that of FDs, which is their second distinguishing feature. Furthermore, MDDs can

be represented by integer order differentials and integrals, making them easier to use,

particularly when numerical calculations are required. In FDs, the kernel remains fixed,

and we know that different processes need different kernels, which requires freedom in

the kernel selection depending upon the nature of the problem. This requirement is also

fulfilled by MDDs, in which the kernels and time delays can be randomly chosen. As a

result, memory dependent derivatives are more effective in analysing material memory

responses.

The α-order fractional derivative for a function f(t) (Caputo [60] derivative) is taken as:

Dα
a f(t) =

∫ t

a
Kα(t− r)fm(r)dr, (1.1)
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with kernel function,

Kα(t− r) =
(t− r)m−α−1

Γ(m− α)
. (1.2)

In the equations (1.1) and (1.2), the kernel function, which remains constant for a real

number α (which is given), is represented by Kα(t− r) and fm represents the mth order

derivative.

Since one of the most important property of fractional calculus is that it can be used to

study processes possessing memory with a fixed kernel. However, due to the fixed nature

of kernel, it becomes quite difficult to study the processes possessing memory because

different processes require different kernels. As such the kernels should be chosen freely.

So, to address this drawback, a novel derivative was proposed by Wang and Li [61] in

2011, known as a memory-dependent derivative, and in this derivative the kernel can

be selected freely according to the problem’s nature. In this,“the first order derivative

of a function f”has been described“in an integral form of a common derivative with a

kernel”function K(t− r) on an interval [t− τ, t] in the following form

Dτf(t) =
1

τ

∫ t

t−τ
K(t− r)f ′(r)dr.

here, K(t− r) denotes the kernal function and τ(> 0) denotes time delay.

In general, the weight required by memory effect is“0 ≤ K(t−r) ≤ 1” for rε[t−r, t] such

that the MDD’s magnitude Dτf(t) is typically lesser than that of f
′
(t), which is the

common derivative. The kernel function K(t− r) can be taken randomly, for instance 1,

r− t+1,
[
r−t
τ+1

]p
, where p = 0.25, 1, 2 etc, which may be more practical. If, K(t−r) = 1,

then

Dτf(t) =
1

τ

∫ t

t−τ
f
′
(r)dr =

f(t)− f(t− τ)

τ
→ f

′
(t),

This makes it clear that d
dt (which is a common derivative) is the limit of Dτ as τ

approaches to 0.

Because of the countless and fascinating applications of fractional calculus in different

fields, it has captured a lot of interest over the last decade. A mathematical model in

thermoelasticity theory was introduced by Youssef [62] in the context of a heat conduc-

tion equation with fractional order. Sherief and Latief [63] employed a fractional order

thermoelastic model for a spherical cavity which is subjected to a thermal shock. In [64]-

[72], there have been certain important developments that are specifically connected to

fractional calculus.
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To explore the notion of MDD, the following fascinating and remarkable research works

([73], [74], [75], and [76]) can be reviewed. In an infinite space, a 2D problem was investi-

gated by Purkait et al. [77] by using the Green-Naghdi model III with MDD. In addition

to this, the authors have recognized the graphical analysis of different physical quantities

w.r.t the time parameter. In elastic solid with voids, the MDD model was established

by Sur and Kanoria [78] on thermal wave propagation. The Laplace transform along

with the EVA have been adapted so as to get the desired solution of the problem. In a

generalized thermoelastic medium, a 2D model was examined by Othman and Mondal

[79] in the framework of the LordShulman model with MDD. A new model with higher-

order MDD was examined by Abouelregal et al. [80] in generalized thermoelasticity

theory. Sun et al. [81] developed a new generalized thermoelastopiezoelectric model in

the context of MDD. In 2021, a quality factor of a microbeam was studied by Kumar

[82] by using three-phase-lag thermoelasticity with MDD. In 2022, the quality factor was

analyzed by Kumar et al. [83] of a micro-beam resonator in the framework of MDD. The

impact of kernel function and delay time was also analyzed on the micro-beam resonator

parameters. In addition to this, the normal mode technique was utilized to figure out the

problem’s required solution. In 2022, a model of thermoelasticity was investigated by

Abouelregal [84] with higher order MDDs and with two delay-time parameters. For the

solution of the problem, the Laplace transform technique has been utilized. The TPL

model with MDD was used by Bayones et al. [85] to study the thermoelastic interaction

in magneto-thermoelasticity. Laplace transform has been utilized by the authors for

finding the solution of the required problem. In 2023, the thermoelastic behavior was

investigated by Abouelregal et al. [86] of rotating size-dependent nanobeams in the con-

text of MDD. Moreover, the impact of memory-dependent parameters (kernel function

and delay time) has also been recognized graphically for different physical quantities.

1.4 Research Gap and Objectives

While undergoing a literature survey, it has been observed that thermoelasticity and

generalized thermoelasticity involving memory-dependent derivatives are active area of

the research. So, in the proposed research work, the main objective has been to study the

plain-strain problems of micropolar elasticity by employing memory-dependent deriva-

tives. Moreover, most of the work is available in the“classical elasticity theory,“thus

leaving scope for the study of plain-strain problems in the field of micropolar elasticity.

Furthermore, the response of micropolar materials under magnetic and thermal fields

can be studied, which can be useful for modern-day engineering. We have studied the

impact of different effects such as thermal, rotational, or electromagnetic effects as well

as memory-dependent derivatives in problems of micropolar/classical theory of elasticity
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in order to explore new results. Based on these research gaps, the objectives of the thesis

were framed as follows:

1. To formulate a mathematical model for problems on micropolar theory of elasticity

using memory dependent derivative.

2. Analyse the response of material by including and excluding micropolar effect.

3. To study the response of micropolar elastic material when subjected to thermal,

electromagnetic or rotation effect.
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Chapter 2

Elastodynamic responses of magneto micropolar

isotropic media under the gravitational influence

2.1 Introduction

Since each object possessing mass exerts a gravitational force on other objects with mass,

the magnitude of this pull (force) is determined by the masses of the objects involved.

Moreover, it’s because of this gravity that keeps the moon in orbit around the earth

and other planets around the sun. Thus, gravity can be defined as the type of force

that attracts an object (with mass) towards the earth’s centre or towards any other

object (with mass). Keeping gravity under consideration, it has been observed that

insufficient attention has been paid to the classical elasticity theory with gravitational

effects. So, in order to study the impact of gravity in elasticity, Bromwich [87] was the

first to study its impact on wave propagation in elastic solids, in 1898. Then in 1974,

De and Sengupta [88] examined the gravitational impact on wave propagation in an

elastic layer. In 2010, Ailawalia et al. [89] established a new mathematical model of

rotating generalized thermoelasticity under hydrostatic initial stress and gravity. The

authors have also analyzed the rotational and gravitational impacts on the obtained

outcomes graphically. For three different theories, a problem was developed by Othman

et al. [90] for the generalized thermoelastic medium under the gravitational effect.

They have also compared the outcomes of the three different theories in the absence

and presence of temperature dependence. Othman and Hilal [91] explored a 2D problem

of a thermoelastic rotating media with voids while taking the gravitational field into

account. For the required solution of the problem, the normal mode technique along with

the Helmholtz potentials has been utilized. On the plane waves, the impact of gravity

and magnetic fields were explored by Othman and Hilal [92] imposed to laser pulse

heating. A significant impact of gravitational and magnetic fields were also recognized
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graphically by authors on thermoelastic material (porous). Othman and Elaziz [93] used

the DPL model in order to examine the impact of gravitational and rotational fields on

the micropolar magneto-thermoelastic solid. Taking LS-theory (Lord-Shuman model)

and the DPL model under consideration, the authors have discussed and compared the

obtained outcomes graphically with and without magnetic, roational, and gravitational

fields. Othman et al. [94] used the II and III types of the Green-Naghdi theory to

examine the effects of gravity on plane waves in a micropolar thermoelastic medium.

The obtained outcomes were compared not only with and without gravitational effects

but also for distinct values of inclination angle. On a rotating magneto-micropolar

thermoelastic medium, the effect of gravitation and magnetic fields were studied by

Hilal [95] with temperature dependency. For the desired solution of the problem, the

authors have utilized normal mode technique along with the Helmholtz potentials. A 2D

model was developed to study the gravitational impact in micropolar thermoelasticity

by Kumar et al. [96] by using Dual-phase-lag theory.

This chapter investigates a 2D mathematical model of magneto-micropolar thermoelas-

ticity with two temperatures under the impact of gravity. For deriving the solution of

the required problem, the normal mode analysis (NMA) along with the potential dis-

placement approach (PDA) are utilized. Finally, for various values of gravity acquired

outside the mesosphere, the components of stress, strain, and temperature distribution

have been compared and illustrated graphically.

2.2 Basic equations

Following [97], the equations of electromagnetism for a perfectly conducting, homoge-

neous, and slowly moving elastic medium, along with the equations of motion and con-

stitutive relations in micropolar generalized thermoelasticity, in the context of Lorentz

and gravitational forces, are as follows: “

∇×
−→
h =

−→
J + ε0

∂
−→
E

∂t
, (2.1)

∇×
−→
E = −µ0

∂
−→
h

∂t
, (2.2)

−→
E = −µ0

(
∂−→u
∂t
×
−→
H0

)
, (2.3)

∇.
−→
h = 0, (2.4)

“(λ+ µ)∇(∇.−→u ) + (µ+ κ)∇2−→u + κ(∇×
−→
φ )− ν∇T +

−→
F +

−→
G = ρ

∂2−→u
∂t2

, (2.5)

(α+ β + γ)∇(∇.
−→
φ )− γ∇× (∇×

−→
φ ) + κ(∇×−→u )− 2κ

−→
φ = ρj

∂2−→φ
∂t2

, (2.6)
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σij = λur,rδij + µ(ui,j + uj,i) + κ(uj,i − εijrφr)− ν
(

1 + τ1
∂

∂t

)
Tδij , (2.7)

mij = αφr,rδij + βφi,j + γφj,i. (2.8)

Heat conduction equation is

K∇2ϕ = ρCe

(
∂

∂t
+ τ0

∂2

∂t2

)
T + νT0

(
∂

∂t
+ τ0n0

∂2

∂t2

)
(∇.−→u ), (2.9)

where,

ϕ− T = a∗∇2ϕ. (2.10)

Moreover,
−→
F and

−→
G has been defined as follows

−→
F = µ0(

−→
J ×

−→
H0),

−→
G = ρg(wx, 0,−ux). (2.11)

The equations of motion (2.5)-(2.6) along with heat equation (2.9) in Cartesian coordi-

nates (x, y, z) in component form can be written as

(λ+ µ)

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+ (µ+ κ)

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ κ

(
∂φ3

∂y
− ∂φ2

∂z

)
−

ν
∂T

∂x
+ (J2H3 − J3H2) + ρg

∂w

∂x
= ρ

∂2u

∂t2
, (2.12)

(λ+ µ)

(
∂2u

∂y∂x
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+ (µ+ κ)

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ κ

(
∂φ1

∂z
− ∂φ3

∂x

)
−

ν
∂T

∂y
+ (J3H1 − J1H3) = ρ

∂2v

∂t2
, (2.13)

(λ+ µ)

(
∂2u

∂z∂x
+

∂2v

∂z∂y
+
∂2w

∂z2

)
+ (µ+ κ)

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ κ

(
∂φ2

∂x
− ∂φ1

∂y

)
−

ν
∂T

∂z
+ (J1H2 − J2H1)− ∂u

∂x
= ρ

∂2w

∂t2
, (2.14)

(α+ β)

(
∂2φ1

∂x2
+
∂2φ2

∂x∂y
+
∂2φ3

∂x∂z

)
+ γ

(
∂2φ1

∂x2
+
∂2φ1

∂y2
+
∂2φ1

∂z2

)
+ κ

(
∂w

∂y
− ∂v

∂z

)
− 2κφ1

= ρj
∂2φ1

∂t2
, (2.15)

(α+ β)

(
∂2φ1

∂y∂x
+
∂2φ2

∂y2
+
∂2φ3

∂y∂z

)
+ γ

(
∂2φ2

∂x2
+
∂2φ2

∂y2
+
∂2φ2

∂z2

)
+ κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2

= ρj
∂2φ2

∂t2
, (2.16)
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(α+ β)

(
∂2φ1

∂z∂x
+
∂2φ2

∂z∂y
+
∂2φ3

∂z2

)
+ γ

(
∂2φ3

∂x2
+
∂2φ3

∂y2
+
∂2φ3

∂z2

)
+ κ

(
∂v

∂x
− ∂u

∂y

)
− 2κφ3

= ρj
∂2φ3

∂t2
, (2.17)

K

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)
= ρCe

(
∂T

∂t
+ τ0

∂2T

∂t2

)
+ υT0

(
∂

∂t
+ τ0n0

∂2

∂t2

)(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,

(2.18)

where,

ϕ− T = a∗
(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)
. (2.19)

where, (u, v, w), (φ1, φ2, φ3), (J1, J2, J3) and (H1, H2, H3) are the components of dis-

placement“vector −→u , microrotation vector
−→
φ ,” current density vector

−→
J and magnetic

field vector
−→
H respectively.

2.3 Formulation and Solution of the problem

A generalized micropolar thermoelastic medium with gravity is considered. In addition

to this, the considered medium is isotropic, homogeneous, and permeated by
−→
H0 which

acts along the y-axis. The“origin of a rectangular cartesian co-ordinate system (x, y, z)

is taken at”any“point on the plane surface of half-space”z = 0, as shown in figure 2.1.

Moreover, −→u and
−→
φ for the considered plane strain problem are defined as

−→u = (u, 0, w),
−→
φ = (0, φ2, 0), u(x, z, t), and w(x, z, t). (2.20)

Figure 2.1: Material geometry
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After plugging equation (2.20) in equations (2.1)-(2.3), we get

−→
E = µ0H0(ẇ, 0,−u̇), (2.21)
−→
h = −H0(0, e, 0), (2.22)
−→
J = ((H0e,z − µ0H0ε0ẅ), 0, (−H0e,x + µ0H0ε0ü)), (2.23)

where,

e = ux + wz. (2.24)

represents the cubical dilatation.

After some simplification, equation (2.11) turns into

−→
F = (µ0H

2
0 (e,x − ε0µ0ü), 0, µ0H

2
0 (e,z − ε0µ0ẅ)). (2.25)

Using equation (2.20) and under the influence of Lorentz and gravitational forces, the

above equations (2.12)-(2.19), along with equations (2.7)-(2.8), can be expressed as

(λ+ µ)
∂

∂x

(
∂u

∂x
+
∂w

∂z

)
+ (µ+ κ)∇2u− κ∂φ2

∂z
− ν ∂T

∂x
− µ0H0J3 + ρg

∂w

∂x
= ρ

∂2u

∂t2
,

(2.26)

(λ+ µ)
∂

∂z

(
∂u

∂x
+
∂w

∂z

)
+ (µ+ κ)∇2w + κ

∂φ2

∂x
− ν ∂T

∂z
+ µ0H0J1 − ρg

∂u

∂x
= ρ

∂2w

∂t2
,

(2.27)

γ∇2φ2 + κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2 = ρj

∂2φ2

∂t2
, (2.28)

K∇2ϕ = ρCe

(
∂

∂t
+ τ0

∂2

∂t2

)
T + νT0

(
∂

∂t
+ τ0n0

∂2

∂t2

)
e, (2.29)

ϕ− T = a∗
(
∂2ϕ

∂x2
+
∂2ϕ

∂z2

)
, (2.30)

σxx = (λ+ 2µ+ κ)
∂u

∂x
+ λ

∂w

∂z
− ν

(
1 + τ1

∂

∂t

)
T, (2.31)

σzz = (λ+ 2µ+ κ)
∂w

∂z
+ λ

∂u

∂x
− ν

(
1 + τ1

∂

∂t

)
T, (2.32)

σxz = (µ+ κ)
∂w

∂z
+ µ

∂u

∂z
+ κφ2, (2.33)

σzx = (µ+ κ)
∂u

∂z
+ µ

∂w

∂x
− κφ2, (2.34)

mxy = γ
∂φ2

∂x
, (2.35)

mzy = γ
∂φ2

∂z
. (2.36)
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Now, the non-dimensional quantities are defined below as

(x′, z′) =
ω∗
c1

(x, z), (u′, w′) =
ρc1ω

∗

νT0
(u,w), σ′i,j =

σij
νT0

, (t
′
, τ
′
0, τ

′
1) = ω∗(t, τ0, τ1), T

′
=

T

T0
,

φ2
′ =

ρc2
1

νT0
φ2, m

′
ij =

ω∗

c1νT0
mij , g

′
=

g

c1ω∗
, ϕ

′
=

ϕ

T0
, (2.37)

where, ω∗ = ρCec12

K , c2
1 = λ+2µ+κ

ρ .

After using equation (2.37), equations (2.26)-(2.30) turn into (dropping the dashes for

convenience)

a1∇2u+ a2
∂e

∂x
− a3

∂φ2

∂z
− a4

∂T

∂x
+ ga5

∂w

∂x
= a6

∂2u

∂t2
, (2.38)

a1∇2w + a2
∂e

∂z
+ a3

∂φ2

∂x
− a4

∂T

∂z
− ga5

∂u

∂x
= a6

∂2w

∂t2
, (2.39)

a7∇2φ2 + a8

(
∂u

∂z
− ∂w

∂x

)
− a9φ2 = a10

∂2φ2

∂t2
, (2.40)

a12

(
∂

∂t
+ τ0

∂2

∂t2

)
T + a13

(
∂

∂t
+ τ0n0

∂2

∂t2

)
e = a11∇2ϕ, (2.41)

ϕ− T = η1∇2ϕ, (2.42)

where,∇2 = ∂2

∂x2 + ∂2

∂z2 , a1 = (µ+κ)ω∗

ρc21
, a2 =

(λ+µ)ω∗+µ0H2
0ω
∗

ρc21
, a3 = κω∗

ρc21
, a4 = ω∗,

a5 = 1
c1

, a6 =
µ2

0H
2
0ε0ω

∗

ρ +ω∗, a7 = γω∗2

ρc12 , a8 = κ
ρ , a9 = 2κ

ρ , a10 = jω∗2, a11 = Kω∗

c21
,

a12 = ρc∗, a13 = γνT0

ρc21
, η1 = a∗ω∗2

c21
.

Now, for obtaining solution of the required problem, the potential displacements q(x, z, t)

and ψ(x, z, t) which are defined below, are introduced as

u =
∂q

∂x
+
∂ψ

∂z
, w =

∂q

∂z
− ∂ψ

∂x
. (2.43)

Using equation (2.43) in equations (2.38), (2.40), (2.41), we obtain[
(a1 + a2)∇2 − a6

∂2

∂t2

]
q − a4T − a5g

∂ψ

∂x
= 0, (2.44)[

a1∇2 − a6
∂2

∂t2

]
ψ − a3φ2 + ga5

∂q

∂x
= 0, (2.45)[

a7∇2 − a9 − a10
∂2

∂t2

]
φ2 + a8∇2ψ = 0, (2.46)

a12

[
∂

∂t
+ τ0

∂2

∂t2

]
T + a13

[
∂

∂t
+ τ0n0

∂2

∂t2

]
∇2q = a11∇2ϕ. (2.47)
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Using equation (2.42) in equations (2.44) and (2.47), we obtain[
(a1 + a2)∇2 − a6

∂2

∂t2

]
q − a4(1− η1∇2)ϕ− a5g

∂ψ

∂x
= 0, (2.48)

a12

[
∂

∂t
+ τ0

∂2

∂t2

]
(1− η1∇2)ϕ+ a13

[
∂

∂t
+ τ0n0

∂2

∂t2

]
∇2q = a11∇2ϕ. (2.49)

2.4 Normal mode analysis

The solution of the considered physical variables“can be decomposed in terms of normal

modes”as follows “

[u,w, q, ψ, φ2,mij , σij , ϕ](x, z, t) = [ū, w̄, q̄, ψ̄, φ̄2, m̄ij , σ̄ij , ϕ̄](z)exp(bt+ iax). (2.50)

” After using equation (2.50), equations (2.45), (2.46), (2.48) and (2.49) turns into

[D2 −A1]ψ̄ −A2φ̄2 +A3q̄ = 0, (2.51)

[D2 −A6]q̄ −A7[1− η1(D2 − a2)]ϕ̄−A8ψ̄ = 0, (2.52)

[D2 −A6]q̄ −A7[1− η1(D2 − a2)]ϕ̄−A8ψ̄ = 0, (2.53)

[A9(D2 − a2)−A10]ϕ̄− [A11(D2 − a2)]q̄ = 0, (2.54)

where,

D = ∂
∂z , A1 = a1a2+a6b2

a1
, A2 = a3

a1
, A3 = ga5ia

a1
, A4 = a7a2+a9+a10b2

a7
, A5 = a8

a7
,

A6 = (a1+a2)a2+a6b2

(a1+a2) , A7 = a4
a1+a2

, A8 = a5gia
a1+a2

A9 = a11 + η1a12b(1 + τ0b), A10 =

a12b(1 + τ0b), A11 = a13b(1 + τ0n0b).

After some simplification, equations (2.51)-(2.54) can be expressed as

[D4 +A
′
D2 +B

′
]ψ̄ + [C

′
D2 −D′ ]q̄ = 0, (2.55)

[A
′′
D4 −B′′D2 + C

′′
]q̄ − [D

′′
D2 − E′ ]ψ̄ = 0, (2.56)

where,

A
′

= A2A5 − A4 − A1, B
′

= A4A1 − A2A5a
2, C

′
= A3, D

′
= A3A4, A

′′
=

A9 +A7A11η1, B
′′

= A9A6 +A9a
2 +A10, C

′′
= A9A6a

2 +A10A6 −A7 − η1A7A11a
4,

D
′′

= A9A8, E
′

= A9A8a
2 +A10A8.

Eliminating ψ̄ from equations (2.55) and (2.56), we get

[D8 +AD6 +BD4 + CD2 + F ]q̄(z) = 0,
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where, A = A
′
A
′′−B′′

A′′
, B = D

′′
C
′
+C
′′−A′B′′+B′A′′

A′′
, C = A

′
C
′′−D′′D′−E′C′−B′B′′

A′′
, F =

E
′
D
′
+B
′
C
′′

A′′
.

Similarly,

[D8 +AD6 +BD4 + CD2 + F ][φ̄2(z), ψ̄(z), q̄(z), ϕ̄(z)] = 0, (2.57)

Rewriting equation (2.57), in the factored form as

[(D2 − k1
2)(D2 − k2

2)(D2 − k3
2)(D2 − k4

2)][φ̄2, ψ̄, q̄, ϕ̄] = 0, (2.58)

here, kn
2(n = 1, 2, 3, 4) represents characteristic roots of the equation (2.57).

The general solution of equation (2.58), has the form

φ̄2(z) =

4∑
n=1

Mne
−knz, (2.59)

ψ̄(z) =

4∑
n=1

Mn
′
e−knz, (2.60)

q̄(z) =

4∑
n=1

Mn
′′
e−knz, (2.61)

ϕ̄(z) =
4∑

n=1

Mn
′′′
e−knz, (2.62)

Here, Mn, Mn
′
, Mn

′′
, Mn

′′′ are parameters that depends on a and b.

Using equations (2.59) - (2.62) in equations (2.51) - (2.54), we get

ψ̄(z) =
4∑

n=1

H1nMne
−knz, (2.63)

q̄(z) =

4∑
n=1

H2nMne
−knz, (2.64)

ϕ̄(z) =

4∑
n=1

H3nMne
−knz, (2.65)

where, H1n = − (kn
2−A4)

A5(kn
2−a2)

, H2n =
[
−A2A5(k2

n−a2)
A3(k2

n−A4)
− (kn

2−A1)
A3

]
H1n,

H3n =
[
A11(kn

2−a2)H2n

A9(kn
2−a2)−A10

]
.

In general, equations (2.59)-(2.62), can be written as

(φ̄2, ψ̄, q̄, ϕ̄)(z) =
4∑

n=1

(1, H1n, H2n, H3n)Mnexp(−knz). (2.66)

20



Now, using equations (2.37) and (2.43) in equations (2.32), (2.34), (2.36), we get

σzz =

(
a14

∂2

∂z2
+ a15

∂2

∂x2

)
q + (a15 − a14)

∂2ψ

∂x∂z
−
[
1 + τ1

∂

∂t

]
(1− η1∇2)ϕ, (2.67)

σzx = (a16 + a17)
∂2q

∂x∂z
− a17

∂2ψ

∂x2
+ a16

∂2ψ

∂z2
− a18φ2, (2.68)

mzy = a19
∂φ2

∂z
, (2.69)

where,

a14 = λ+2µ+κ
ρc21

, a15 = λ
ρc12 , a16 = µ+κ

ρc21
, a17 = µ

ρc21
, a18 = κ

ρc21
, a19 = γω∗2

ρc41
.

Applying equation (2.50) in equations (2.67) - (2.69), we get

σ̄zz = [D2 −A12a
2]q̄ + iaA13Dψ̄ +A14[η1(D2 − a2)− 1]ϕ̄, (2.70)

σ̄zx = iaA15Dq̄ + [A16a
2 +A17D

2]ψ̄ −A18φ̄2, (2.71)

m̄zy = a19Dφ̄2, (2.72)

where,

A12 = a15
a14

, A13 = a15−a14
a14

, A14 = 1+τ1b
a14

, A15 = (a16 + a17), A16 = a17, A17 = a16,

A18 = a18.

Using equation (2.90) in equations (2.43), (2.70) - (2.72), we get

ū =

4∑
n=1

MnH4ne
−knz, (2.73)

w̄ =

4∑
n=1

MnH5ne
−knz, (2.74)

σ̄zz =

4∑
n=1

MnH6ne
−knz, (2.75)

σ̄zx =
4∑

n=1

MnH7ne
−knz, (2.76)

m̄zy =
4∑

n=1

MnH8ne
−knz, (2.77)
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where,

H4n = iaH2n −H1nkn,

H5n = −H2nkn − iaH1n,

H6n = (k2
n − a2A12)H2n − iaA13knH1n +A14(η1k

2
n − η1a

2 − 1)H3n,

H7n = −iaA15H2nkn + (A16a
2 +A17kn)H1n −A18,

H8n = −a19kn.

2.5 Boundary conditions

The following boundary conditions have been taken at z = 0 to figure out the Mn,

(where, n = 1, 2, 3, 4) parameters. The thermal boundary condition is taken as

ϕ = B1e
bt+iax, (2.78)

and the mechanical boundary conditions are taken such that the bounding plane z = 0

is traction-free i.e.,

σzz = 0, (2.79)

σzx = 0, (2.80)

mzy = 0. (2.81)

here, B1 represents a constant.

After using equation (2.50) and after some simplification, we get

ϕ̄ = B1, (2.82)

σ̄zz = 0, (2.83)

σ̄zx = 0, (2.84)

m̄zy = 0, (2.85)
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Using equations (2.82)-(2.85) along with (2.62), (2.75)-(2.77), and after some simplifi-

cation, we obtain

4∑
n=1

H3nMn = B1, (2.86)

4∑
n=1

H6nMn = 0, (2.87)

4∑
n=1

H7nMn = 0, (2.88)

4∑
n=1

H8nMn = 0. (2.89)

The equations (2.86)-(2.89) have been solved for Mn, (n = 1, 2, 3, 4) to figure out the

solution of the required problem and by making use of Inverse matrix method, which is

as:
M1

M2

M3

M4

 =


H31 H32 H33 H34

H61 H62 H63 H64

H71 H72 H73 H74

H81 H82 H83 H84


−1 

B1

0

0

0

 .

2.6 Validity of the Problem

When the gravitational effect is ignored, we obtain the following results

(q̄, ϕ̄, ψ̄, φ̄2)(z) =
4∑

n=1

(1,H1n,H2n,H3n)Mnexp(−knz). (2.90)

where,

H1n = A11(k2
n−a2)

A9(k2
n−a2)

, H2n = (k2
n−A6)
A8

− A7[1−η1(k2
n−a2)]A11(k2

n−a2)
A8A9(k2

n−a2)
, H3n =

(k2
n−A

′
1)

A
′
2

H2n, A
′
1 =(

a2 + a6b2

a1

)
, A

′
2 = a3.

which are in sync with the results explained in the study [98] considered in the context

of magneto-micropolar generalized thermoelasticity.

2.7 Numerical results and Discussion

The numerical computations were done for distinct values of gravity, g particularly

for g = 4, 6, and 8, acquired outside the earth’s mesosphere. Then the graphical
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representation of different physical quantities, such as the components of displacement,

force stresses, and the conductive temperature distribution, is done, as shown in figures

2.2-2.6. Moreover, while performing numerical computations, the following material

properties of magnesium [106] are considered:

ρ = 1.74× 103kg m−3, j = 0.2× 10−19m2, γ = 0.779× 10−9kg ms−2,

λ = 9.4× 1010kg m−1s−2, κ = 1.0× 1010kg m−1s−2 µ = 4.0× 1010kg m−1s−2

K = 1.7× 102Jm−1s−1deg−1, a∗ = 0.074× 10−15m2, Ce = 1.04× 103Jkg−1deg−1,

T0 = 298K, αt = 7.403× 10−7K−1, τ1 = 1s, τ0 = 0.02s, B1 = 1, n0 = 0.

Figure 2.2 clearly demonstrates that the displacement component u reduces when the

value of gravity is increased, and the maximum displacement distribution is observed,

which is attained at g = 4, and it reduces when the value of gravity is increased, i.e.,

at g = 6. At g = 8, we observe the least displacement distribution. In other words, the

amplitude of displacement component u reduces when the value of gravity is increased.

From Figure 2.3, it is clear that the displacement component w is less sensitive to the

changes in value of g. Moreover, figure 2.3 shows that the displacement component w

is least at g = 8 in terms of amplitude, and then it increases when g is reduced. Figure

2.4 demonstrates that the stress component σzx is maximum at g = 6, then the stress

distribution is reduced when gravity is increased, i.e., at g = 8, and the least normal

stress is observed at g = 4.

From figure 2.5, we observe that the Normal stress σzz shows the same variation as that

of tangential stress σzx. Figure 2.6, demonstrates the impact of gravity on temperature

distribution ϕ and describes the variation of conductive temperature w.r.t z. We notice

that the temperature distribution is highest at g = 4, and it reduces when the value of

gravity is increased, i.e., at g = 6, and we observe that it is least when the value of g is

further increased, i.e., at g = 8. In other words, temperature distribution ϕ decreases

when gravity is increased.
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Figure 2.2: Variation of u at distinct values of gravity g

Figure 2.3: Variation of w at distinct values of gravity g
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Figure 2.4: Variation of tangential stress σzx at distinct values of gravity g

Figure 2.5: Variation of σzz at distinct values of gravity g
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Figure 2.6: Variation of ϕ at distinct values of gravity g

2.8 Conclusion

In this study, the response of micropolar elastic material has been investigated by includ-

ing magnetic and thermal effects. The solution of the required problem has been derived

by using the Normal mode technique. Matlab software along with MS-Excel were used

for numerical calculations and for graphical representations of physical quantities such

as force stresses, temperature distributions, and displacement components. The major

highlights of the study may be pointed out as follows:

1. The response of different physical quantities, namely, force stresses, couple stresses,

temperature distributions, and displacement components, has been investigated for

distinct values of “g”, obtained outside the earth’s mesosphere.

2. It has been observed that both the displacement components “u” and tangential

stress “σzx” exhibit oscillatory behaviour. Moreover, it has been seen that the

displacement component “u” has a negative correlation with the values of “g”.
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Chapter 3

Study of memory response in the presence and

absence of micropolar effect under the

framework of Green-Lindsay model

3.1 Introduction

In this chapter, a 2D model has been investigated in the presence and absence of mi-

cropolar effect in order to investigate the processes which possess memory with the help

of a memory-dependent derivative (MDD) for a rotating medium. In generalised ther-

moelasticity, innumerable interesting results have been examined so far in the light of

the memory-dependent derivatives ([73], [74], [75], [76]). The phase-lag models were

utilized by Othman and Mondal [100] in order to study the impact of MDD and laser

pulse on wave propagation of micropolar thermoelastic medium. In this investigation,

different thermoelasticity theories, viz., LS, DPL, and TPL, have also been compared by

the authors. In addition to this, they have also recognized an observable effect on differ-

ent physical quantities with and without MDD. In generalized thermoelasticity, Biswas

[101] studied a 2D problem under the framework of MDD. The integral transforms have

been utilized for obtaining the desired solution of the problem, along with the eigen-

value approach. In magneto-micropolar thermoelastic media, the impact of MDD was

studied by Said [102] by using the dual-phase lag (DPL) model. In a generalized ther-

moelastic medium, which is assumed to be orthotropic, the impact of a laser pulse and

magnetic field for distinct values of delay time and for kernel functions was studied by

Singh and Pal [103] in the context of Green-Naghdi theory with MDD. Taking MDD into

consideration, the transient response of a half space was studied by Li and He [104] in

generalized thermoelasticity. They have also investigated and discussed the behaviour of

the obtained outcomes graphically for distinct values of delay time, kernel function, and

gradient parameter. In this study, the authors have discussed and analyzed the obtained
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outcomes graphically for distinct values of delay time and for a fixed kernel function.

Horgan and Murphy [105] investigated the classic deformation“within the framework

of”nonlinear elasticity for isotropic, incompressible hyperelastic materials.

In the current study, a novel problem has been undertaken in which a two dimensional

model has been developed to investigate the elastic response of an elastic media in

the presence and absence of micropolar effect under the context of heat conduction

equation possessing memory-dependent derivative. Moreover, the Helmholtz potential’s

along with the normal mode analysis (NMA) were utilized for finding the analytical

solution of the required problem. Finally, Matlab software has been utilized in order to

graphically demonstrate the components of displacement, force stresses, couple stresses,

as well as the temperature distribution.

3.2 Basic equations

For a homogenous (which is perfectly conducting) elastic solid, the linearized equations

of electrodynamic medium, which is moving slowly defined in [106], are taken as:

∇×
−→
h =

−→
J + ε0

∂
−→
E

∂t
, (3.1)

∇×
−→
E = −µ0

∂
−→
h

∂t
, (3.2)

−→
E = −µ0

(
∂−→u
∂t
×
−→
H0

)
, (3.3)

∇.
−→
h = 0. (3.4)

The“field equations of motion and constitutive relations are added in equations (3.1)-

(3.4), in micropolar theory of generalized thermoelasticity, by taking Lorentz force under

consideration,

(λ+ 2µ+ κ)∇(∇.−→u )− (µ+ κ)∇× (∇×−→u ) + κ(∇×
−→
φ ) +

−→
F − υ

(
1 + τ1

∂

∂t

)
∇T

= ρ

[
∂2−→u
∂t2

+
−→
Ω × (

−→
Ω ×−→u ) + 2

(
−→
Ω × ∂−→u

∂t

)]
, (3.5)

(α+ β + γ)∇(∇.
−→
φ )− γ∇× (∇×

−→
φ ) + κ(∇×−→u )− 2κ

−→
φ = ρj

(
∂2−→φ
∂t2

+
−→
Ω × ∂

−→
φ

∂t

)
.

(3.6)
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The constitutive relations are

σij = λur,rδij + µ(ui,j + uj,i) + κ(uj,i − εijrφr)− ν
(

1 + τ1
∂

∂t

)
Tδij , (3.7)

mij = αφr,rδij + βφi,j + γφj,i. (3.8)

” The“heat conduction equation under Green-Lindsay model with MDD”as defined in

[99]

K∇2T = ρCe(1 + τDτ )Ṫ + γ
′
T0ė (3.9)

The Lorentz force
−→
F is defined as

−→
F = µ0(

−→
J ×

−→
H0), (3.10)

The equations of motion (3.5)-(3.6) along with heat equation (3.9) in Cartesian coordi-

nates (x, y, z) in component form can be written as

(λ+ µ)

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+ (µ+ κ)

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ κ

(
∂φ3

∂y
− ∂φ2

∂z

)
+

(J2H3 − J3H2)− ν
(

1 + τ1
∂

∂t

)
∂T

∂x
= ρ

(
∂2u

∂t2
+ (Ω2Ω1v − Ω2

2u− Ω2
3u+ Ω3Ω1w) + 2(Ω2ẇ − Ω3v̇)

)
,

(3.11)

(λ+ µ)

(
∂2u

∂y∂x
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+ (µ+ κ)

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ κ

(
∂φ1

∂z
− ∂φ3

∂x

)
+

(J3H1 − J1H3)− ν
(

1 + τ1
∂

∂t

)
∂T

∂y
= ρ

(
∂2v

∂t2
+ (Ω1Ω2u+ Ω3Ω2w − Ω2

1v − Ω2
3v) + 2(Ω3u̇− Ω1ẇ)

)
,

(3.12)

(λ+ µ)

(
∂2u

∂z∂x
+

∂2v

∂z∂y
+
∂2w

∂z2

)
+ (µ+ κ)

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ κ

(
∂φ2

∂x
− ∂φ1

∂y

)
+

(J1H2 − J2H1)− ν
(

1 + τ1
∂

∂t

)
∂T

∂z
= ρ

(
∂2w

∂t2
+ (Ω1Ω3u− Ω2

1w − Ω2
2w + Ω2Ω3v) + 2(Ω1v̇ − Ω2u̇)

)
,

(3.13)

(α+ β)

(
∂2φ1

∂x2
+
∂2φ2

∂x∂y
+
∂2φ3

∂x∂z

)
+ γ

(
∂2φ1

∂x2
+
∂2φ1

∂y2
+
∂2φ1

∂z2

)
+ κ

(
∂w

∂y
− ∂v

∂z

)
− 2κφ1

= ρj

(
∂2φ1

∂t2
+ (Ω2φ̇3 − Ω3φ̇2)

)
, (3.14)

(α+ β)

(
∂2φ1

∂y∂x
+
∂2φ2

∂y2
+
∂2φ3

∂y∂z

)
+ γ

(
∂2φ2

∂x2
+
∂2φ2

∂y2
+
∂2φ2

∂z2

)
+ κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2

= ρj

(
∂2φ2

∂t2
+ (Ω3φ̇1 − Ω1φ̇3)

)
, (3.15)
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(α+ β)

(
∂2φ1

∂z∂x
+
∂2φ2

∂z∂y
+
∂2φ3

∂z2

)
+ γ

(
∂2φ3

∂x2
+
∂2φ3

∂y2
+
∂2φ3

∂z2

)
+ κ

(
∂v

∂x
− ∂u

∂y

)
− 2κφ3

= ρj

(
∂2φ3

∂t2
+ (Ω1φ̇2 − Ω2φ̇1)

)
, (3.16)

K

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
= ρCe(1 + τDτ )Ṫ + γ

′
T0

∂

∂t

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
. (3.17)

where, (u, v, w), (φ1, φ2, φ3), (J1, J2, J3), (H1, H2, H3) and (Ω1,Ω2,Ω3) are the compo-

nents of displacement vector −→u , microrotation vector
−→
φ , current density vector

−→
J ,

magnetic field vector
−→
H and rotation vector, respectively.

3.3 Formulation and solution of the problem

A micropolar generalized thermoelastic medium, which is homogenous, isotropic and

perfectly conducting, is taken into account and in which the initial magnetic field
−→
H0 is

permeated along the y-axis. The“origin of a rectangular cartesian co-ordinate system

(x, y, z) is taken”at“any point on the plane surface of half-space”z = 0, as shown in

figure 3.1. For the 2D problem, we have taken displacement, rotation, and microrotation

vectors as

−→u = (u, 0, w),
−→
Ω = (0,Ω, 0),

−→
φ = (0, φ2, 0), u(x, z, t), and w(x, z, t). (3.18)

Using equation (3.18) in equations (3.1) - (3.3), we get

Figure 3.1: Rotating material geometry

−→
E = µ0H0(ẇ, 0,−u̇), (3.19)
−→
h = −H0(0, e, 0), (3.20)
−→
J = ((H0e,z − ε0µ0H0ẅ), 0, (−H0e,x + ε0µ0H0ü)), (3.21)
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where e is cubical dilatation, defined as

e =
∂u

∂x
+
∂w

∂z
.

Thus from equation (3.10), we obtain

−→
F = (µ0H

2
0 (e,x − ε0µ0ü), 0, µ0H

2
0 (e,z − ε0µ0ẅ)). (3.22)

From equations (3.19)–(3.22), it is clear“that the components of the induced electric

field, induced magnetic field,”and the Lorentz force are functions of the displacement

components and the externally applied constant magnetic field.

After using equation (3.18) in equations (3.11)-(3.17) and in equations (3.7)-(3.8), we

obtain the following components

(λ+ 2µ+ κ)
∂2u

∂x2
+ (µ+ κ)

∂2u

∂z2
+ (λ+ µ)

∂2w

∂x∂z
− κ∂φ2

∂z
+ µ0H

2
o (ex − ε0µ0ü)− ν(

1 + τ1
∂

∂t

)
∂T

∂x
= ρ(ü− Ω2u+ 2Ωẇ), (3.23)

(λ+ µ)
∂2u

∂x∂z
+ (λ+ 2µ+ κ)

∂2w

∂z2
+ (µ+ κ)

∂2w

∂x2
+ κ

∂φ2

∂x
+ µ0H

2
0 (ez − ε0µ0ẅ)− ν(

1 + τ1
∂

∂t

)
∂T

∂z
= ρ(ẅ − Ω2w − 2Ωu̇), (3.24)

γ∇2φ2 + κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2 = ρjφ̈2. (3.25)

K∇2T = ρCe(1 + τDτ )
∂T

∂t
+ γ

′
T0
∂e

∂t
. (3.26)

σxx = (λ+ 2µ+ κ)
∂u

∂x
+ λ

∂w

∂z
− ν

(
1 + τ1

∂

∂t

)
T, (3.27)

σyy = λe− ν
(

1 + τ1
∂

∂t

)
T, (3.28)

σzz = λ
∂u

∂x
+ (λ+ 2µ+ κ)

∂w

∂z
− ν

(
1 + τ1

∂

∂t

)
T, (3.29)

σxz = µ
∂u

∂z
+ (µ+ κ)

∂w

∂x
+ κφ2, (3.30)

σzx = µ
∂w

∂x
+ (µ+ κ)

∂u

∂z
− κφ2, (3.31)

mxy = γ
∂φ2

∂x
, (3.32)

mzy = γ
∂φ2

∂z
. (3.33)

where, ∇2 =
(
∂2

∂x2 + ∂2

∂y2

)
and e =

(
∂u
∂x + ∂w

∂z

)
.
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Introducing non-dimensional quantities as mentioned below in equations (3.23)-(3.33),

(x′, z′) =
ω̄

c0
(x, z), (u′, w′) =

ρc0ω̄

νT0
(u,w), σ′i,j =

σij
νT0

, (τ
′
1, τ
′, t
′
) = ω̄(τ1, τ, t), T

′ =
T

T0
,

φ2
′ =

ρc2
0

νT0
φ2, Ω

′
=

Ω

ω̄
, m

′
ij =

ω̄

c0νT0
mij , (3.34)

we get

∇2u+ a1
∂e

∂x
− a2

∂φ2

∂z
− a3

(
1 + τ1

∂

∂t

)
∂T

∂x
= a4

∂2u

∂t2
− a5u+ a6

∂w

∂t
, (3.35)

∇2w + a1
∂e

∂z
+ a2

∂φ2

∂x
− a3

∂T

∂z

(
1 + τ1

∂

∂t

)
= a4

∂2w

∂t2
− a5w − a6

∂u

∂t
, (3.36)

∇2φ2 + a7

(
∂u

∂z
− ∂w

∂x

)
− 2a7φ2 = a8

∂2φ2

∂t2
, (3.37)

σxx =
∂u

∂x
+ a9

∂w

∂z
−
(

1 + τ1
∂

∂t

)
T, (3.38)

σyy = a9e−
(

1 + τ1
∂

∂t

)
T, (3.39)

σzz = a9
∂u

∂x
+
∂w

∂z
−
(

1 + τ1
∂

∂t

)
T, (3.40)

σxz = a10
∂u

∂z
+ a11

∂w

∂x
+ a12φ2, (3.41)

σzx = a11
∂u

∂z
+ a10

∂w

∂z
+ a12φ2, (3.42)

mxy = a13
∂φ2

∂x
, (3.43)

mzy = a14
∂φ2

∂z
, (3.44)

a14∇2T = a15(ω̄ + τDτ )
∂T

∂t
+ a16

∂e

∂t
. (3.45)

where, ω̄ = ρCec02

K , c2
0 = λ+2µ+κ

ρ , a1 =
λ+µ+µ0H2

0
µ+κ , a2 = κ

µ+κ , a3 = λ+2µ+κ
µ+κ ,

a4 = a3

(
1 +

ε0µ2
0H

2
0

ρ

)
, a5 = a3Ω2, a6 = 2a3Ω, a7 =

κc20
γω̄2 , a8 =

ρjc20
γ , a9 = λ

λ+2µ+κ ,

a10 = µ
ρc20

, a11 = µ+κ
ρc20

, a12 = κ
ρc20

, a13 = γ2ω̄2

νρc40
, a14 = Kω̄

c20
, a15 = ρce

ω̄ and a16 = γ
′
T0ν
ρc20

.

Now, for obtaining the desired solution of the required problem, the potential displace-

ments“q(x, z, t) and ψ(x, z, t), which are”defined below, are introduced as

u =
∂q

∂x
+
∂ψ

∂z
, w =

∂q

∂z
− ∂ψ

∂x
. (3.46)

33



which lead equations (3.35), (3.37) and (3.45) to the following form(
(a1 + 1)∇2 − a4

∂2

∂t2
+ a5

)
q − a3

(
1 + τ1

∂

∂t

)
T + a6

∂ψ

∂t
= 0, (3.47)(

∇2 − a4
∂2

∂t2
+ a5

)
ψ − a2φ2 − a6

∂q

∂t
= 0, (3.48)(

∇2 − 2a7 − a8
∂2

∂t2

)
φ2 + a7∇2ψ = 0, (3.49)

a14∇2T = a15 (ω̄ + τDτ )
∂T

∂t
+ a16

∂

∂t
∇2q. (3.50)

3.4 Normal mode analysis

The solution of the considered physical variables“can be decomposed in terms of nor-

mal”mode as follows

[u,w, T, σij , q, ψ, φ2,mij ](x, z, t) = [ū, w̄, T̄ , σ̄ij , q̄, ψ̄, φ̄2, m̄ij ](z)exp(bt+ iax). (3.51)

Use“of equation (3.51) transforms equations (3.47)-(3.50) to

[D2 −A1]q̄ −A2T̄ +A3ψ̄ = 0, (3.52)

[D2 −A4]ψ̄ −A5φ̄2 −A6q̄ = 0, (3.53)

[D2 −A7]φ̄2 + [A8D
2 −A9]ψ̄ = 0, (3.54)

[D2 −A10]T̄ − [A11D
2 −A12]q̄ = 0. (3.55)

” where, D = ∂
∂z , A1 = (a1+1)a2+a4b2−a5

a1+1 , A2 = a3(1+τ1b)
a1+1 , A3 = a6b

a1+1 , A4 = a2 +

a4b
2 − a5, A5 = a2, A6 = a6b, A7 = a2 + 2a7 + a8b

2, A8 = a7, A9 = a7a
2,

A10 = a14a2+a15b(ω̄+τG(τ,b))
a14

, A11 = a16b
a14

, A12 = a16a2b
a14

,

G(τ, b) = −(b2(m2−2n+1)τ2+2bτ(m2−n)+2m2)exp[b(t−τ)]+(b2τ2−2bnτ+2m2)exp(bt)
b2τ2 and the kernel

function K(t− r) is defined as [61]

K(t− r) = 1− 2n

τ
(t− r) +

m2

τ2
(t− r2) =



1; if,m = n = 0

1− (t−r)
τ ; if,m = 0, n = 1

2

1− (t− r); if,m = 0, n = τ
2(

1− t−r
τ

)2
; if,m = n = 1.
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After some simplification, equations (3.52)-(3.55) become

[D4 −B1D
2 +B2]ψ̄ − [B3D

2 −B4]q̄ = 0, (3.56)

[D4 −B5D
2 +B6]q̄ + [B7D

2 −B8]ψ̄ = 0. (3.57)

where, B1 = A7 + A4 − A8A5, B2 = A4A7 − A9A5, B3 = A6, B4 = A6A7, B5 =

A10 +A1 +A11A2, B6 = A1A10 +A2A12, B7 = A3, B8 = A3A10.

Simplifying equations (3.56) and (3.57), we obtain,

[D8 −AD6 +BD4 − CD2 + F ]ψ̄(z) = 0, (3.58)

Similarly,

[D8 −AD6 +BD4 − CD2 + F ][q̄(z), φ̄2(z), T̄ (z)] = 0, (3.59)

where, A = B5 +B1, B = B6 +B1B5 +B2 +B3B7, C = B1B6 +B2B5 +B3B8 +B4B7,

F = B2B6 +B4B8.

In factored form equations (3.58) and (3.59) can be written as

[(D2 − k1
2)(D2 − k2

2)(D2 − k3
2)(D2 − k4

2)][ψ̄(z), q̄(z), φ̄2(z), T̄ (z)] = 0, (3.60)

where, kn(n = 1, 2, 3, 4) represents the characteristic“roots of the equation” (3.60).

The general solution of equation (3.60), has the form

ψ̄(z) =

4∑
n=1

Mne
−knz, (3.61)

φ̄2(z) =

4∑
n=1

Mn
′
e−knz, (3.62)

q̄(z) =

4∑
n=1

Mn
′′
e−knz, (3.63)

T̄ (z) =
4∑

n=1

Mn
′′′
e−knz, (3.64)

Here, Mn, Mn
′
, Mn

′′
, Mn

′′′ represents parameters that depends on a and b.

Using equations (3.61)-(3.64) in equations (3.52)-(3.55), we get

(φ̄2(z), q̄(z), T̄ (z)) =
4∑

n=1

Mn(H1n, H2n, H3n)e−knz, (3.65)
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where, H1n = −(A8k2
n−A9)

k2
n−A7

, H2n = − (k2
n−A4)(k2

n−A7)−A5(A8k2
n−A9)

(A8k2
n−A9)A6

H1n andH3n = A11k2
n−A12

k2
n−A10

H2n.

In general, equations (3.61) and (3.65), can be re-written as

(ψ̄, φ̄2, q̄, T̄ )(z) =

4∑
n=1

(1, H1n, H2n, H3n)Mnexp(−knz). (3.66)

Using equation (3.51) in equation (3.46) and after some simplification, the displacement

components are obtained as

(ū, w̄)(z) =
4∑

n=1

Mn(H4n, H5n)e−knz, (3.67)

where, H4n = H2nia− kn and H5n = −H2nkn − ia.

Using equations (3.46) and (3.51) in equation (3.38) and in equations (3.40)-(3.44), we

obtain the force and couple stress components

(σ̄xx, σ̄xz, σ̄zz, σ̄zx, m̄xy, m̄zy)(z) =
4∑

n=1

Mn(H6n, H7n, H8n, H9n, H10n, H11n)e−knz.

(3.68)

where, H6n = −H2na
2−iakn+a9(H2nk

2
n+iakn)−(1+τ1b)H3n, H7n = [a10(−iaH2nkn+

k2
n) +a11(−H2niakn+a2)], H8n = a9(−H2na

2− iakn) + (H2nk
2
n+ iakn)− (1 + τ1b)H3n,

H9n = a11(−kniaH2n + k2
n) + a10(H2nk

2
n + iakn) + a12H1n, H10n = a13H1nia and

H11n = −H1nkn.

3.5 Boundary conditions

To find out the Mn (where n = 1, 2, 3, 4) parameters, the boundary conditions has been

imposed at z = 0, and are as

σzz = σzx = mxy = 0, (3.69)

(i.e., the bounding plane z = 0 is traction-free)

and the thermal boundary condition is

T = f(x, t), (3.70)

where f(x, t) = θ0e
bt+iax and θ0 represents the amplitude of the function f(x, t).
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Using equation (3.51) in equations (3.69) and (3.70), and after some simplification, we

obtain

4∑
n=1

H3nMn = θ0, (3.71)

4∑
n=1

H8nMn = 0, (3.72)

4∑
n=1

H9nMn = 0, (3.73)

4∑
n=1

H10Mn = 0. (3.74)

Now, solving equation (3.71)-(3.74) for Mn where n = 1, 2, 3, 4 by making use of Inverse

matrix method which is given below:


M1

M2

M3

M4

 =


H31 H32 H33 H34

H81 H82 H83 H84

H91 H92 H93 H94

H101 H102 H103 H104


−1 

θ0

0

0

0

 .

3.6 Particular case

The field equations can be obtained from the above mentioned cases for the generalized

micropolar thermoelasticity medium without micropolar constants, by taking:

κ = α = β = γ = j = 0, (3.75)

After plugging equation (3.75) into equations (3.5)-(3.9) and using equations (3.34),

(3.46) and (3.51), we get

[D2 −A′ ]q̄ −A′′ T̄ +A
′′′
ψ̄ = 0, (3.76)

[D2 −B′ ]ψ̄ −B′′ q̄ = 0, (3.77)

[D2 −A10]T̄ − [A11D
2 −A12]q̄ = 0, (3.78)

where, A
′

= (1+c1)a2+c3b2−c4
1+c1

, A
′′

= c2(1+τ1b)
1+c1

, A
′′′

= c5b
1+c1

, B
′

= a2 + c3b
2 − c4,

B
′′

= c5b, c1 =
λ+µ+µ0H2

0
µ , c2 = λ+2µ

µ , c3 = c2

(
ρ+ε0µ2

0H
2
0

ρ

)
, c4 = c2Ω2 and c5 = 2c2Ω.
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Eliminating T̄ and ψ̄ from above equations (3.76)-(3.78), we get

[D6 − α1D
4 + α2D

2 − α3]q̄(z) = 0, (3.79)

Similarly, for different physical quantities, we have

[D6 − α1D
4 + α2D

2 − α3](ψ̄(z), T̄ (z)) = 0, (3.80)

α1 = B
′
+ A

′
+ A10 + A11A

′′
, α2 = B

′
(A10 + A

′
+ A11A

′′
) + A

′
A10 + A

′′
A12 + B

′′
A
′′′

and α3 = B
′
(A
′
A10 +A

′′
A12)−B′′A′′′A12.

Thus equations (3.79) and (3.80) in factored form“can be written as

[(D2 − l21)(D2 − l22)(D2 − l23)][q̄(z), ψ̄(z), T̄ (z)] = 0. (3.81)

where, lı(ı = 1, 2, 3) represents the characteristic roots of the equation (3.81).

The solution of above equation (3.81) has the form

(ψ̄(z), q̄(z), T̄ (z)) =
3∑
ı=1

(1, L1ı, L2ı)Rıexp(−lnz). (3.82)

where, L1ı = l2ı−B
′

B′′
, L2ı =

(
A11l2ı−A12

l2ı−A10

)
L1ı and Rı, ı = 1, 2, 3 are some parameters

depending on a and b.”

Now, using equations (3.75) and (3.51) in equation (3.46), and equations (3.75), (3.34),

(3.46) and (3.51) in equations (3.27)-(3.33), and after some simplification, we get

(ū, w̄, σ̄xx, σ̄zz, σ̄zx) =

3∑
ı=1

Rı(L3ı, L4ı, L5ı, L6ı, L7ı)e
−lız, (3.83)

where, L3ı = L1ıia − lı, L4ı = −L1ılı − ia, L5ı = −L1ıa
2 + c6(L1ıl

2
ı + lıia) −

ialı − L2ı(1 + τ1b), L6ı = −c6(L1ıa
2 + ialı) + L1ıl

2
ı + lıia − L2ı(1 + τ1b), L7ı =

c7(−iaL1ılı + l2ı (1 + L1ı) + lıia), c6 = λ
λ+2µ and c7 = µ

ρc20
.
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Now using equations (3.75) and (3.51) in equations (3.69) and (3.70) and after some

simplification, we obtain

3∑
ı=1

L2ıRı = θ0, (3.84)

3∑
ı=1

L6ıRı = 0, (3.85)

3∑
ı=1

L7ıRı = 0, (3.86)

Now, solving equation (3.84)-(3.86) for Rı where ı = 1, 2, 3 by making use of Inverse

matrix method which is given below:
R1

R2

R3

 =


L21 L22 L23

L61 L62 L63

L71 L72 L73


−1 

θ0

0

0

 .

3.7 Validity of the Problem

When the memory effect is ignored, we obtain the following results

(ψ̄, φ̄2, q̄, T̄ )(z) =
4∑

n=1

(1, H1n, H2n, H3n)Mnexp(−knz).

where,

H1n = −(A8k2
n−A9)

k2
n−A7

, H2n = − (k2
n−A4)(k2

n−A7)−A5(A8k2
n−A9)

(A8k2
n−A9)A6

H1n andH3n = A11k2
n−A12

k2
n−

a14a
2+a15bω̄
a14

H2n.

which are in sync with the results explained in the study [106] considered in the context

of magneto-micropolar generalized thermoelasticity.

3.8 Numerical Results and Discussion

The material properties of magnesium [106] are taken in order to demonstrate the nu-

merical computations, which are as follows:

λ = 9.4 × 1010 kgm−1s−2, κ = 1.0 × 1010kg m−1s−2, µ = 4.0 × 1010kg m−1s−2,

j = 0.2 × 10−19m2, ρ = 1.74 × 103kg m−3, γ = 0.779 × 10−9kg ms−2, K∗ = 1.7 ×
102Jm−1s−1deg−1, Ce = 1.04× 103Jkg−1deg−1, T0 = 298K, αt = 7.403× 10−7K−1,

τ1 = 1s, τ = 0.1s, θ0 = 1, µ0 = 4π × 10−7Hm−1, ε0 = 1/36π × 10−9Fm−1.
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A graphic analysis has been done for the components of displacement, force stresses,

couple stress components, and the temperature distribution. Results have been com-

pared with and without micropolar effect for distinct values of time, t = 0.2, 0.4, 0.6

and for the fixed kernel, K(t− r) =
(
1− t−r

τ

)2
.

Figures 3.2-3.7 illustrate the graphical results for magneto micropolar thermoelastic-

ity (MMT), and figures 3.8-3.12 illustrate the graphical results for (WMMT) (without

magneto micropolar thermoelasticity).

Figure 3.2 and 3.3 demonstrate the effect of time, t, on the displacement components u

and w with respect to distance z. Figure 3.2, clearly demonstrates that the displacement

component u reduces when the value of time is decreased and the maximum displacement

distribution is attained at t = 0.6. In other words, the displacement component u reduces

when the value of time is decreased, in terms of magnitude.

From figure 3.3, it has been observed that the displacement component w shows the same

variation as that of u. Figure 3.4 shows that the stress component σzz is maximum at

t = 0.2, then it is reduced when time is increased, i.e., at t = 0.4, and least normal stress

is observed at t = 0.6. In nutshell, σzz reduces when the value of time is increased.

From figure 3.5, we observe that the tangential stress σzx shows the same variation as

that of σzz. Figure 3.6 depicts the variation of couple stress mzx with respect to distance

z, and the maximum couple stress is attained for t = 0.6. Figure 3.7 demonstrates the

impact of time on temperature distribution T and describes the variation of temperature

w.r.t z. It is evident from the figure that the temperature distribution T is highest at

t = 0.2, and it decreases when the value of time is increased, i.e., at t = 0.4, and we

observe the least temperature distribution at t = 0.6.

Figure 3.8 demonstrates the variation of u in the case of WMMT. Comparing the vari-

ation of u in the cases of MMT and WMMT, it is clearly noticed that the amplitude

of displacement component u is larger when the micropolar influence is excluded (i.e.,

in case of WMMT). From figure 3.9, we observe that the variation of the displacement

component w w.r.t z, and it is apparent that w decreases with an increase in time t.

Figures 3.10 and 3.11, demonstrate the effect of time on stress components σzz and σzx

and describe the variation of stress components w.r.t distance z. We noticed that the

stress component σzz is maximum for t = 0.2, then the stress distribution is reduced

when time is increased, i.e., for t = 0.4, and

40



Figure 3.2: Variation of u at distinct values of time t in the presence of micropolar
effect

Figure 3.3: Variation of w at distinct values of time t in the presence of micropolar
effect
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Figure 3.4: Variation of σzz at distinct values of time t in the presence of micropolar
effect

Figure 3.5: Variation of σzx at distinct values of time t in the presence of micropolar
effect

42



Figure 3.6: Variation of mzx at distinct values of time t in the presence of micropolar
effect

Figure 3.7: Variation of T at distinct values of time t in the presence of micropolar
effect
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Figure 3.8: Variation of u at distinct values of time t in the absence of micropolar
effect

Figure 3.9: Variation of w at distinct values of time t in the absence of micropolar
effect

44



Figure 3.10: Variation of σzz at distinct values of time t in the absence of micropolar
effect

Figure 3.11: Variation of σzx at distinct values of time t in the absence of micropolar
effect

when time is further increased, we observe the least normal stress, i.e., for t = 0.6.

From figure 3.11 shows that the amplitude of σzx is much higher in the absence of

micropolarity.
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Figure 3.12: Variation of temperature T at distinct values of time t in the absence of
micropolar effect

Figure 3.12 shows that the variation of temperature distribution T in case of WMMT,

and it has been observed that the micropolarity has a significant effect on T in case of

MMT, as it enhances the magnitude of T in the case of MMT.

If we compare Figure 3.2 with Figure 3.8, we learn that the addition of the micropolar

effect leads to a significant decrease in the amplitude of displacement component u. It

can be seen by comparing Figures 3.3 and 3.9 that when the micropolar effect is absent,

the displacement component’s (w) amplitude sharply declines. It is apparent from Fig-

ures 3.4 and 3.10 that when the micropolar effect is not considered, the amplitude of

normal stress σzz drastically decreases. When the micropolar effect is present, Figures

3.7 and 3.12 reveals a significant change in the temperature amplitude.

3.9 Conclusion

A mathematical model for magneto-micropolar thermoelasticity problem has been de-

veloped in the framework of the Green-Lindsay model with MDD to examine the elastic

behaviour of materials in the presence and absence of the micropolar effect. More-

over, the components of displacement, force stresses, couple stresses, and temperature

distribution are illustrated graphically by making use of Matlab software.

46



Following the above numerical discussion, it can be concluded that,

1. It has been observed that the time parameter is causing significant effect on the

elastic response of the considered material.

2. Micropolar nature plays a significant role in the elastic response of the material.
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Chapter 4

A study of thermo-mechanical interactions in the

rotating micropolar elastic solid with two

temperatures using memory-dependent

derivative

4.1 Introduction

A new approach to two-temperature micropolar thermoelasticity has been studied in

the framework of the Green-Nagdhi theory (type III) with memory-dependent deriva-

tive for a rotating medium. The two - temperature thermoelasticity theory for the first

time was proposed by Chen and Gurtin [108] and Chen et al. [109]-[110] in deformable

bodies. This theory relies upon the conductive ϕ and thermodynamic temperature θ

and is used to figure out the phonon and electron temperature distributions in ultra-

short laser processing of metals. The difference between the above two temperatures,

viz., ϕ and θ for time-independent situations, is proportional to heat supply, and both

parameters can be treated as identical when heat supply is excluded [109]. In 2006, a

generalized theory of thermoelasticity was established by Youssef [112] by using heat

conduction theory in deformable bodies. Youssef [113] in 2008, examined a 2D model

of generalized two-temperature thermoelastic half space. For obtaining the desired so-

lution, the author has adapted the integral transform technique. For distinct values of

the ramp parameter, the author has shown the variation of different physical quantities

graphically. Abbas and Youssef [114] studied a transient phenomena in thermoelastic

solids. The authors have also utilized copper material for numerical purposes. Another

2D problem in generalized magneto-micropolar thermoelastic medium was examined by

Singh and Kumar [97] with a rotating effect. Radaev [115] studied a factorization of the

main hyperbolic differential operator of the micropolar elasticity theory. The effect of
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three theories of thermoelasticity was studied in [116] on the propagation of a set of two

coupled transverse waves and a set of two coupled longitudinal waves.

In this chapter, the memory response of a rotating micropolar elastic media under the

thermo-mechanical effect has been investigated. The Helmholtz potential’s along with

the normal mode technique, is utilized for finding the desired solution of the required

problem. Additionally, the Matlab software is used for numerical computations. The be-

haviour of the field quantities is studied for a fixed kernel K̃(t−r) and for distinct values

of time, t. Finally, the material properties of magnesium are considered to demonstrate

the components of displacement, force stress, couple stress, thermodynamic tempera-

ture, as well as the conductive temperature distribution graphically.

4.2 Basic equations

“The system of governing equations of a linear micropolar”thermoelastic medium (which

is rotating) with two temperatures and without body forces has been taken [107] as

(λ+ µ)∇(∇.−→u ) + (µ+ κ)∇2−→u + κ(∇×
−→
φ )− ν∇T

= ρ

[
∂2−→u
∂t2

+
−→
Ω × (

−→
Ω ×−→u ) + 2

(
−→
Ω × ∂−→u

∂t

)]
, (4.1)

(α+ β + γ)∇(∇.
−→
φ )− γ∇× (∇×

−→
φ ) + κ(∇×−→u )− 2κ

−→
φ = ρj

[
∂2−→φ
∂t2

+
−→
Ω × ∂

−→
φ

∂t

]
.

(4.2)

The constitutive relations are

σij = λur,rδij + µ(ui,j + uj,i) + κ(uj,i − εijrφr)− νTδij , (4.3)

mij = αφr,rδij + βφi,j + γφj,i. (4.4)

Under Green-Naghdi theory [22], the heat conduction equation free from heat sources is

given by

K∗∇2ϕ+K∇2ϕ̇ = ρCeT̈ + γ
′
T0ë. (4.5)

Furthermore, superposed dot represents the time derivative and e is cubical dilatation,

defined as

e = ux + wz.
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In the context of MDD, equation (4.5) of G-N type III is written as

K∗∇2ϕ+K∇2ϕ̇ = Dτ

[
ρCe

∂T

∂t
+ γ

′
T0
∂e

∂t

]
, (4.6)

Also,

T = (1− a∗∇2)ϕ. (4.7)

where, T and ϕ represents thermodynamic and conductive temperatures.

The equations of motion (4.1)-(4.2) along with the equations (4.6) and (4.7) in Cartesian

coordinates (x, y, z) in component form can be written as

(λ+ µ)

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+ (µ+ κ)

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ κ

(
∂φ3

∂y
− ∂φ2

∂z

)
−

ν
∂T

∂x
= ρ

(
∂2u

∂t2
+ (Ω2Ω1v − Ω2

2u− Ω2
3u+ Ω3Ω1w) + 2(Ω2ẇ − Ω3v̇)

)
, (4.8)

(λ+ µ)

(
∂2u

∂y∂x
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+ (µ+ κ)

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ κ

(
∂φ1

∂z
− ∂φ3

∂x

)
−

ν
∂T

∂y
= ρ

(
∂2v

∂t2
+ (Ω1Ω2u+ Ω3Ω2w − Ω2

1v − Ω2
3v) + 2(Ω3u̇− Ω1ẇ)

)
, (4.9)

(λ+ µ)

(
∂2u

∂z∂x
+

∂2v

∂z∂y
+
∂2w

∂z2

)
+ (µ+ κ)

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ κ

(
∂φ2

∂x
− ∂φ1

∂y

)
−

ν
∂T

∂z
= ρ

(
∂2w

∂t2
+ (Ω1Ω3u− Ω2

1w − Ω2
2w + Ω2Ω3v) + 2(Ω1v̇ − Ω2u̇)

)
, (4.10)

(α+ β)

(
∂2φ1

∂x2
+
∂2φ2

∂x∂y
+
∂2φ3

∂x∂z

)
+ γ

(
∂2φ1

∂x2
+
∂2φ1

∂y2
+
∂2φ1

∂z2

)
+ κ

(
∂w

∂y
− ∂v

∂z

)
− 2κφ1

= ρj

(
∂2φ1

∂t2
+ (Ω2φ̇3 − Ω3φ̇2)

)
, (4.11)

(α+ β)

(
∂2φ1

∂y∂x
+
∂2φ2

∂y2
+
∂2φ3

∂y∂z

)
+ γ

(
∂2φ2

∂x2
+
∂2φ2

∂y2
+
∂2φ2

∂z2

)
+ κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2

= ρj

(
∂2φ2

∂t2
+ (Ω3φ̇1 − Ω1φ̇3)

)
, (4.12)

(α+ β)

(
∂2φ1

∂z∂x
+
∂2φ2

∂z∂y
+
∂2φ3

∂z2

)
+ γ

(
∂2φ3

∂x2
+
∂2φ3

∂y2
+
∂2φ3

∂z2

)
+ κ

(
∂v

∂x
− ∂u

∂y

)
− 2κφ3

= ρj

(
∂2φ3

∂t2
+ (Ω1φ̇2 − Ω2φ̇1)

)
, (4.13)

K∗
(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)
+K

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)
ϕ̇ = Dτ

[
ρCe

∂T

∂t
+ γ

′
T0

∂

∂t

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
,

(4.14)

T =

(
1− a∗

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

))
ϕ. (4.15)
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where, (u, v, w), (φ1, φ2, φ3), and (Ω1,Ω2,Ω3) are the components of displacement vector
−→u , microrotation vector

−→
φ and rotation vector

−→
Ω , respectively.

4.3 Formulation and solution of the problem

A homogeneous micropolar thermoelastic rotating half-space with two temperatures is

taken into account and rotation acts along the y-axis. Also, the origin of a rectangular

cartesian coordinate system (x, y, z) is taken at any point on the plane surface of half-

space z = 0, as shown in figure 4.1.

The considered medium rotates“with a uniform angular velocity Ω = Ωn,”here n repre-

sents a unit vector which denotes the direction of rotation axis. The dynamic displace-

ment“vector −→u , rotation vector
−→
Ω and microrotation vector

−→
φ ”for the considered 2D

problem are taken as

−→u = (u, 0, w),
−→
Ω = (0,Ω, 0),

−→
φ = (0, φ2, 0), u(x, z, t), and w(x, z, t). (4.16)

Using equation (4.16) in equations (4.8)-(4.15) and in equations (4.3)-(4.4), we get the

Figure 4.1: Rotating material geometry
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following components

(λ+ µ)

(
∂2u

∂x2
+

∂2w

∂x∂z

)
+ (µ+ κ)∇2u− κ∂φ2

∂z
− ν(1− a∗∇2)

∂ϕ

∂x
= ρ[ü− Ω2u+ 2Ωẇ]

(4.17)

(λ+ µ)

(
∂2u

∂z∂x
+
∂2w

∂z2

)
+ (µ+ κ)∇2w + κ

∂φ2

∂x
− ν(1− a∗∇2)

∂ϕ

∂z
= ρ[ẅ − Ω2w − 2Ωu̇]

(4.18)

κ

(
∂u

∂z
− ∂w

∂x

)
+ γ∇2φ2 − 2κφ2 = jρφ̈2. (4.19)

K∗
(
∂2ϕ

∂x2
+
∂2ϕ

∂z2

)
+K

(
∂2ϕ

∂x2
+
∂2ϕ

∂z2

)
ϕ̇ = Dτ

[
ρCe

∂T

∂t
+ γ

′
T0

∂

∂t

(
∂u

∂x
+
∂w

∂z

)]
,

(4.20)

T =

(
1− a∗

(
∂2

∂x2
+

∂2

∂z2

))
ϕ, (4.21)

σxx = λ

(
∂u

∂x
+
∂w

∂z

)
+ (2µ+ κ)

∂u

∂x
− νT, (4.22)

σyy = λ

(
∂u

∂x
+
∂w

∂z

)
− νT, (4.23)

σzz = λ

(
∂u

∂x
+
∂w

∂z

)
+ (2µ+ κ)

∂w

∂z
− νT, (4.24)

σxz = µ
∂u

∂z
+ (µ+ κ)

∂w

∂x
+ κφ2, (4.25)

σzx = (µ+ κ)
∂u

∂z
+ µ

∂w

∂x
− κφ2, (4.26)

mxy = γ
∂φ2

∂x
, (4.27)

mzy = γ
∂φ2

∂z
. (4.28)

Introducing the below mentioned non-dimensional quantities in equations (4.17)-(4.21),

(x′, z′) =
η0

c0
(x, z), (u′, w′) =

ρη0c0

γ1T0
(u,w), σ′i,j =

σij
νT0

, (τ ′, t
′
) = η0(τ, t), ϕ′ =

ϕ

T0
,

φ2
′ =

ρc2
0

νT0
φ2, Ω

′
=

Ω

η0
, m

′
ij =

η0

c0νT0
mij , T

′
=

T

T0
, (4.29)
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where, η0 = ρCec02

K∗ , c2
0 = λ+2µ+κ

ρ .

we get

(λ+ µ)

ρc2
0

(
∂2u

∂x2
+

∂2w

∂x∂z

)
+

(
µ+ κ

ρc2
0

)
∇2u− κ

ρc2
0

∂φ2

∂z
− (1− a1∇2)

∂ϕ

∂x
= ü− Ω2u+ 2Ωẇ,

(4.30)

(λ+ µ)

ρc2
0

(
∂2u

∂x∂z
+
∂2w

∂z2

)
+

(
µ+ κ

ρc2
0

)
∇2w +

κ

ρc2
0

∂φ2

∂x
− (1− a1∇2)

∂ϕ

∂z
= ẅ − Ω2w − 2Ωu̇,

(4.31)

κ

(
∂u

∂z
− ∂w

∂x

)
+
γη2

0

c2
0

∇2φ2 − 2κφ2 = jρη2
0

∂2φ2

∂t2
, (4.32)

Dτ

(
(1− a1∇2)

∂ϕ

∂t
+ a4

∂e

∂t

)
= a2∇2ϕ+ a3∇2ϕ̇, (4.33)

T = (1− a1∇2)ϕ, (4.34)

where, a1 =
a∗η2

0

c20
, a2 = K∗η0

ρCec20
, a3 =

Kη2
0

ρCec20
, and a4 = γ

′
νT0

ρ2Cec20
.

Now, to obtain the solution, the displacement potentials“q(x, z, t) and ψ(x, z, t) are”introduced

as

u =
∂q

∂x
+
∂ψ

∂z
, w =

∂q

∂z
− ∂ψ

∂x
. (4.35)

which leads equations (4.30), (4.32), (4.33) to(
∇2 − ∂2

∂t2
+ Ω2

)
q + 2Ω

∂ψ

∂t
− (1− a1∇2)ϕ = 0, (4.36)((

µ+ κ

ρc2
0

)
∇2 + Ω2 − ∂2

∂t2

)
ψ − κ

ρc2
0

φ2 − 2Ω
∂q

∂t
= 0, (4.37)(

γη2
0

c2
0

∇2 − jρη2
0

∂2

∂t2
− 2κ

)
φ2 + κ∇2ψ = 0, (4.38)

Dτ

(
(1− a1∇2)

∂ϕ

∂t
+ a4

∂

∂t
∇2q

)
= a2∇2ϕ+ a3∇2ϕ̇, (4.39)

4.4 Normal mode analysis

In term of normal modes,“the solution of the considered physical variables can be de-

composed”as

[u,w, q, ψ, T, φ2,mij , σij , ϕ](x, z, t) = [ū, w̄, q̄, ψ̄, T̄ , φ̄2, m̄ij , σ̄ij , ϕ̄](z)exp(bt+ iax).

(4.40)
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Use of equation (4.40) transforms equations (4.36)-(4.39) to

[D2 −A1]q̄ +A2ψ̄ + [a1D
2 −A3]ϕ̄ = 0, (4.41)

[A4D
2 −A5]ψ̄ −A6φ̄2 −A2q̄ = 0, (4.42)

[A7D
2 −A8]φ̄2 + κ[D2 − a2]ψ̄ = 0, (4.43)

[A9D
2 −A10]ϕ̄− [A11D

2 −A12]q̄ = 0, (4.44)

where, D = ∂
∂z , A1 = a2 + b2 − Ω2, A2 = 2Ωb, A3 = a1a

2 + 1, A4 = µ+κ
ρc20

, A5 =

A4a
2−Ω2+b2, A6 = κ

ρc20
, A7 =

γη2
0

c20
, A8 = A7a

2+jρη2
0b

2+2κ, A9 = a2+a3b+a1bG(τ, b),

A10 = a2a
2 + a3a

2b+G(τ, b)(1 + a1a
2)b, A11 = G(τ, b)a4b, A12 = a4bG(τ, b)a2,

G(τ, b) = −(b2(m2−2n+1)τ2+2bτ(m2−n)+2m2)exp[b(t−τ)]+(b2τ2−2bnτ+2m2)exp(bt)
b2τ2 .

After some simplification, equations (4.41)-(4.44) can be reduced to

[A13D
4 −A14D

2 +A15]ψ̄ − [A16D
2 −A17]q̄ = 0, (4.45)

[A18D
4 −A19D

2 +A20]q̄ + [A21D
2 −A22]ψ̄ = 0, (4.46)

where, A13 = A4A7, A14 = A4A8 + A5A7 − κA6, A15 = A5A8 − κA6a
2, A16 = A2A7,

A17 = A2A8, A18 = A9 + A11a1, A19 = A9A1 + A10 + A11A3 + A12a1, A20 = A10A1 +

A12A3, A21 = A2A9, A22 = A2A10.

Simplifying equations (4.45) and (4.46), we obtain,

[D8 −AD6 +BD4 − CD2 + F ]ψ̄(z) = 0, (4.47)

Similarly,

[D8 −AD6 +BD4 − CD2 + F ][q̄(z), φ̄2(z), ϕ̄(z)] = 0, (4.48)

where, A = A13A19+A14A18
A13A18

, B = A13A20+A14A19+A15A18+A21A16
A13A18

, C = A14A20+A15A19+A21A17+A22A16
A13A18

,

F = A15A20+A22A17
A13A18

.

Rewriting equation (4.47) and (4.48), in the factored form“as

[(D2 − k1
2)(D2 − k2

2)(D2 − k3
2)(D2 − k4

2)][ψ̄(z), q̄(z), φ̄2(z), ϕ̄(z)] = 0, (4.49)

here, kn
2(n = 1, 2, 3, 4) represents the characteristic roots of the equation (4.47) and

(4.48).
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The general solution of equation (4.49), has the form

φ̄2(z) =
4∑

n=1

Mne
−knz, (4.50)

ψ̄(z) =
4∑

n=1

Mn
′
e−knz, (4.51)

q̄(z) =
4∑

n=1

Mn
′′
e−knz, (4.52)

ϕ̄(z) =

4∑
n=1

Mn
′′′
e−knz, (4.53)

Here, Mn, Mn
′
, Mn

′′
, Mn

′′′ are parameters that depends on a and b.

Using equations (4.50)-(4.53) in equations (4.41)-(4.44), we get

ψ̄(z) =

4∑
n=1

H1nMne
−knz, (4.54)

q̄(z) =

4∑
n=1

H2nMne
−knz, (4.55)

ϕ̄(z) =
4∑

n=1

H3nMne
−knz, (4.56)

where, H1n = − (A7kn
2−A8)

κ(kn
2−a2)

, H2n =
[

(A4kn
2−A5)
A2

+ A6κ(k2
n−a2)

(A7k2
n−A8)A2

]
H1n, H3n =

[
A11kn

2−A12

A9kn
2−A10

]
H2n.

In general, equations (4.50) and (4.54)-(4.56), can be written as

(φ̄2, ψ̄, q̄, ϕ̄)(z) =

4∑
n=1

(1, H1n, H2n, H3n)Mnexp(−knz). (4.57)
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By making use of equations (4.29) and (4.40), equations (4.22)-(4.28), (4.34) and (4.35)

yield to

ū =
4∑

n=1

MnH4ne
−knz, (4.58)

w̄ =
4∑

n=1

MnH5ne
−knz, (4.59)

T̄ =
4∑

n=1

MnH6ne
−knz, (4.60)

σ̄xx =
4∑

n=1

MnH7ne
−knz, (4.61)

σ̄yy =

4∑
n=1

MnH8ne
−knz, (4.62)

σ̄zz =

4∑
n=1

MnH9ne
−knz, (4.63)

σ̄xz =

4∑
n=1

MnH10ne
−knz, (4.64)

σ̄zx =
4∑

n=1

MnH11ne
−knz, (4.65)

m̄zy =
4∑

n=1

MnH12ne
−knz, (4.66)

where,

H4n = iaH2n −H1nkn,

H5n = −H2nkn − iaH1n,

H6n = (1− a1k
2
n + a1a

2)H3n

H7n = (a5k
2
n − a2)H2n − (1− a5)iaH1nkn −H6n,

H8n = (a5k
2
n − a5a

2)H2n −H6n,

H9n = (k2
n − a5a

2)H2n − ia(a5 − 1)H1nkn −H6n,

H10n =
1

ρc2
0

[
−(2µ+ κ)iaH2nkn + µH1nk

2
n + (µ+ κ)a2H1n + κ

]
,

H11n =
1

ρc2
0

[
−(2µ+ κ)iaH2nkn + (µ+ κ)H1nk

2
n + µa2H1n − κ

]
,

H12n = −η
2
0γkn
ρc4

0

,
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Also, here a5 = λ
ρc20

.

4.5 Boundary conditions

To“find out the Mn parameters (where n = 1, 2, 3, 4),”the boundary conditions are taken

as

Mechanical boundary conditions.

The normal and tangential stress conditions (which are mechanically stressed by constant

forces R1 and R2) for the plane z = 0 can be taken as

σzz = −R1ψ1(x, t) (4.67)

σzx = −R2ψ1(x, t) (4.68)

mzy = 0, (4.69)

Thermal boundary conditions.

Since, the plane z = 0 is taken to be isothermal, therefore the thermal boundary condi-

tion is taken as

ϕ = 0, (4.70)

where, ψ1(x, t) = ebt+iax, R1 and R2 are constants.

Now using equation (4.40) in the above equations, (4.67)-(4.70), and after some simpli-

fication, we get

4∑
n=1

H9nMn = −R1, (4.71)

4∑
n=1

H11nMn = −R2, (4.72)

4∑
n=1

H12nMn = 0, (4.73)

4∑
n=1

H3nMn = 0. (4.74)

Now, to solve the system of equations (4.71)-(4.74), matrix Inversion method is deployed

as
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
M1

M2

M3

M4

 =


H31 H32 H33 H34

H91 H92 H93 H94

H111 H112 H113 H114

H121 H122 H123 H124


−1 

0

−R1

−R2

0

 .

For inversion matrix method matlab software has been utilized.

4.6 Validity of the Problem

When the memory effect is ignored, we obtain the following results

(φ̄2, ψ̄, q̄)(z) =
4∑

n=1

(1, H1n, H2n)Mnexp(−knz).

where, H1n = − (A7kn
2−A8)

κ(kn
2−a2)

, H2n =
[

(A4kn
2−A5)
A2

+ A6κ(k2
n−a2)

(A7k2
n−A8)A2

]
H1n

which are in sync with the results explained in the study [107] considered in the context

of micropolar generalized (two-temperature) thermoelasticity.

4.7 Numerical results and Discussion

The material properties of magnesium [106] has been considered for numerical simula-

tions, which are as:

ρ = 1.74× 103kg m−3, j = 0.2× 10−19m2, γ = 0.779× 10−9kg m−2,

κ = 1.0× 1010kg m−1s−2, λ = 9.4× 1010kg m−1s−2 µ = 4.0× 1010kg m−1s−2

K∗ = 1.7× 102Jm−1s−1deg−1, K = 0.1Wm−1K−1, a∗ = 0.15× 10−14m2,

Ce = 1.04× 103Jkg−1deg−1, T0 = 298K, αt = 7.403× 10−7K−1, τ = 1s.

The numerical computations were accomplished for a fixed kernel, K(t − r) = 1 − t−r
τ

(as defined in [61]) and for a time-delay, τ = 1s as well as for different values of time t,

i.e., for t = 0.2, 0.3, 0.4. The graphical analysis of components of displacement, force

stress, couple stress, thermodynamic temperature as well as conductive temperature

distributions has been done, as shown in figures 4.2-4.8.

Figure 4.2 shows that u is significantly influenced by the time t and it decreases with z.

The least displacement distribution is observed for t = 0.4, and it increases when time

is reduced. Figure 4.3 shows the variation of w w.r.t z, and the maximum displacement
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Figure 4.2: Variation of u at distinct values of time t

Figure 4.3: Variation of w at distinct values of time t
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Figure 4.4: Variation of σzz at distinct values of time t

Figure 4.5: Variation of σzx at distinct values of time t
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Figure 4.6: Variation of mzy at distinct values of time t

Figure 4.7: Variation of T at distinct values of time t
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Figure 4.8: Variation of ϕ at distinct values of time t

is attained for t = 0.3, and it reduces when time is increased, i.e., for t = 0.4, and

for t = 0.2, we observe the least displacement distribution. It is observed that all

curves begin with distinct negative values, then increase, and eventually converge to

zero. Figure 4.4 demonstrates that the similar variation is shown by the normal stress

σzz and by the displacement component w.

Figure 4.5 clearly shows that the σzx increases when time t is increased and hence

tangential stress σzx is maximum for t = 0.4. It has also been noticed that all curves

begin with distinct values and then eventually converge to zero for distinct values of t.

Figure 4.6 shows that when t = 0.2, the couple stress, mzy, is the lowest.

Figure 4.7 clearly shows that T (thermodynamic temperature) is maximum for t = 0.2

and then it reduces with increase in time i.e, for t = 0.3. For t = 0.4, we observe the

least temperature distribution. In other words, its clear that T reduces with increasing

time t. From figure 4.8, it has been noticed that ϕ (conductive temperature) is highest

for t = 0.2.
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4.8 Conclusion

A new mathematical model of micropolar thermoelasticity has been established in the

context of Green-Naghdi theory using a memory-dependent derivative. The thermo-

mechanical interactions using two-temperature theory (2TT) with memory-dependent

derivative have been demonstrated in the micropolar media. Using magnesium, the

impact of time t on the components of displacement, force“stress, couple stress, ther-

modynamic temperature, and conductive temperature distribution has been graphically

explained.” Following observations has been made in the following study:

1. Significant variation is shown by different physical quantities such as force stresses,

couple stresses, displacement components and temperature distribution for differ-

ent values of time “t”.

2. All the physical quantities converge to zero as the distance z increases.
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Chapter 5

Interactions of magneto micropolar

thermoelastic rotating medium with Memory

dependent derivative

5.1 Introduction

A 2D mathematical model has been established in micropolar elasticity theory, subjected

to magnetic and thermal effects in the context of memory-dependent derivatives. On

a nanoscale thermoelastic micropolar material, the impact of the memory effect has

been studied by Abouelregal et al. [131] under varying pulsed heating flow. By making

use of dual-phase-lag model with memory-dependent derivative, a 2D problem has been

studied by Kumar et al. [132] for micropolar elastic plate. The impact of rotation has

been studied by authors in [133] on a micro-stretch medium under dual-phase-lag model

model with memory-dependent derivative. The three-phase lag model has been explored

by Jojare and Gaikwad [134] in isotropic semiconductors in order to study the memory

effect. The MDD concept has been utilized by Bhattacharya and Kanoria [135] in order

to examine the generalized magneto-thermo-diffusion relations in an isotropic medium.

The laplace transforms along with the finite element method has been utilized for finding

the required solution of the considered problem. The fractional heat conduction theory

has been adopted by Xue et al. [136] to study the transient thermoelastic response in a

porous half-space in the context of memory-dependent derivative. In order to solve the

problem analytically, the authors have adopted Integral transforms.

The current chapter is concerned with the effect of the time parameter on a magneto-

micropolar thermoelastic solid with a memory-dependent derivative. Furthermore, the

medium is analyzed using the Lord-Shulman’s model with memory-dependent derivative.

The normal mode technique has been adopted to analytically solve the problem. The
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variation of various physical quantities, such as temperature distribution, displacement,

force stress, and couple stress components, has been discussed w.r.t the time ‘t’.In

addition to this, the potential displacement approach along with the normal analysis

technique has been used to figure out the desired solution of the problem. For numerical

computations, Matlab software along with the MS-excel has been utilized.

5.2 Basic equations

Following [137], the equations of electromagnetism for a perfectly conducting, homoge-

neous, slowly moving elastic medium along with the motion equations, the constitutive

relations in micropolar generalized thermoelasticity in the context of Lorentz force are

taken as

∇×
−→
h =

−→
J + ε0

∂
−→
E

∂t
, (5.1)

∇×
−→
E = −µ0

∂
−→
h

∂t
, (5.2)

−→
E = −µ0

(
∂−→u
∂t
×
−→
H0

)
, (5.3)

∇.
−→
h = 0. (5.4)

(λ+ 2µ+ κ)∇(∇.−→u )− (µ+ κ)∇× (∇×−→u ) + κ(∇×
−→
φ ) +

−→
F − υ∇T

= ρ

[
∂2−→u
∂t2

+
−→
Ω × (

−→
Ω ×−→u ) + 2(

−→
Ω × ∂−→u

∂t
)

]
, (5.5)

(α+ β + γ)∇(∇.
−→
φ )− γ∇× (∇×

−→
φ ) + κ(∇×−→u )− 2κ

−→
φ = ρj

(
∂2−→φ
∂t2

+
−→
Ω × ∂

−→
φ

∂t

)
,

(5.6)

σij = λur,rδij + µ(ui,j + uj,i) + κ(uj,i − εijrφr)− νTδij , (5.7)

mij = αφr,rδij + βφi,j + γφj,i. (5.8)

and

−→
F = µ0(

−→
J ×

−→
H0). (5.9)

The heat conduction equation with MDD [138] has been taken as

K∇2T = (1 + τDτ )(ρCeṪ + γ
′
T0ė). (5.10)
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The equations of motion (5.5)-(5.6) along with the equations (5.10) in Cartesian coor-

dinates (x, y, z) in component form can be written as

(λ+ µ)

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+ (µ+ κ)

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ κ

(
∂φ3

∂y
− ∂φ2

∂z

)
+

(J2H3 − J3H2)− ν ∂T
∂x

= ρ

(
∂2u

∂t2
+ (Ω2Ω1v − Ω2

2u− Ω2
3u+ Ω3Ω1w) + 2(Ω2ẇ − Ω3v̇)

)
,

(5.11)

(λ+ µ)

(
∂2u

∂y∂x
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+ (µ+ κ)

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ κ

(
∂φ1

∂z
− ∂φ3

∂x

)
+

(J3H1 − J1H3)− ν ∂T
∂y

= ρ

(
∂2v

∂t2
+ (Ω1Ω2u+ Ω3Ω2w − Ω2

1v − Ω2
3v) + 2(Ω3u̇− Ω1ẇ)

)
,

(5.12)

(λ+ µ)

(
∂2u

∂z∂x
+

∂2v

∂z∂y
+
∂2w

∂z2

)
+ (µ+ κ)

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ κ

(
∂φ2

∂x
− ∂φ1

∂y

)
+

(J1H2 − J2H1)− ν ∂T
∂z

= ρ

(
∂2w

∂t2
+ (Ω1Ω3u− Ω2

1w − Ω2
2w + Ω2Ω3v) + 2(Ω1v̇ − Ω2u̇)

)
,

(5.13)

(α+ β)

(
∂2φ1

∂x2
+
∂2φ2

∂x∂y
+
∂2φ3

∂x∂z

)
+ γ

(
∂2φ1

∂x2
+
∂2φ1

∂y2
+
∂2φ1

∂z2

)
+ κ

(
∂w

∂y
− ∂v

∂z

)
− 2κφ1

= ρj

(
∂2φ1

∂t2
+ (Ω2φ̇3 − Ω3φ̇2)

)
, (5.14)

(α+ β)

(
∂2φ1

∂y∂x
+
∂2φ2

∂y2
+
∂2φ3

∂y∂z

)
+ γ

(
∂2φ2

∂x2
+
∂2φ2

∂y2
+
∂2φ2

∂z2

)
+ κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2

= ρj

(
∂2φ2

∂t2
+ (Ω3φ̇1 − Ω1φ̇3)

)
, (5.15)

(α+ β)

(
∂2φ1

∂z∂x
+
∂2φ2

∂z∂y
+
∂2φ3

∂z2

)
+ γ

(
∂2φ3

∂x2
+
∂2φ3

∂y2
+
∂2φ3

∂z2

)
+ κ

(
∂v

∂x
− ∂u

∂y

)
− 2κφ3

= ρj

(
∂2φ3

∂t2
+ (Ω1φ̇2 − Ω2φ̇1)

)
, (5.16)

K

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
= (1 + τDτ )

(
ρCeṪ + γ

′
T0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

))
(5.17)

where, (u, v, w), (φ1, φ2, φ3), (J1, J2, J3), (H1, H2, H3) and (Ω1,Ω2,Ω3) are the compo-

nents of displacement vector −→u , microrotation vector
−→
φ , current density vector

−→
J ,

magnetic field vector
−→
H and rotation vector, respectively.

5.3 Formulation and Solution of the problem

A generalized micropolar thermoelastic medium is considered, which is perfectly con-

ducting, homogeneous, and isotropic. In addition to this,
−→
H0 is also permeated along

the y-axis. The“origin of a rectangular cartesian co-ordinate system (x, y, z)”is“taken
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at any point on the plane surface of half-space”z = 0, as shown in Fig 5.1. As we are

considering a 2D plane strain problem, −→u ,
−→
Ω , and

−→
φ are taken as

−→u = (u, 0, w),
−→
Ω = (0,Ω, 0),

−→
φ = (0, φ2, 0), u(x, z, t), and w(x, z, t). (5.18)

Using equation (5.18) in equations (5.1)-(5.3), we get

Figure 5.1: Rotating material geometry

−→
E = µ0H0(ẇ, 0,−u̇), (5.19)
−→
h = −H0(0, e, 0), (5.20)
−→
J = ((H0e,z − ε0µ0H0ẅ), 0, (−H0e,x + ε0µ0H0ü)), (5.21)

where

e =
∂u

∂x
+
∂w

∂z
.

represents the cubical dilatation.

Now, simplifying equation (5.9), we get

−→
F = (µ0H

2
0 (e,x − ε0µ0ü), 0, µ0H

2
0 (e,z − ε0µ0ẅ)). (5.22)

The following components are obtained after using the expression (5.18) in (5.11)-(5.17)

and (5.7)-(5.8),

(λ+ 2µ+ κ)
∂2u

∂x2
+ (µ+ κ)

∂2u

∂z2
+ (λ+ µ)

∂2w

∂x∂z
− κ∂φ2

∂z
+ µ0H

2
o (ex − ε0µ0ü)− ν ∂T

∂x

= ρ(ü− Ω2u+ 2Ωẇ), (5.23)
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(λ+ µ)
∂2u

∂x∂z
+ (λ+ 2µ+ κ)

∂2w

∂z2
+ (µ+ κ)

∂2w

∂x2
+ κ

∂φ2

∂x
+ µ0H

2
0 (ez − ε0µ0ẅ)− ν ∂T

∂z

= ρ(ẅ − Ω2w − 2Ωu̇), (5.24)

γ∇2φ2 + κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2 = ρjφ̈2. (5.25)

K

(
∂2T

∂x2
+
∂2T

∂z2

)
= (1 + τDτ )

(
ρCeṪ + γ

′
T0

(
∂u

∂x
+
∂w

∂z

))
(5.26)

σxx = (λ+ 2µ+ κ)
∂u

∂x
+ λ

∂w

∂z
− νT, (5.27)

σyy = λe− νT, (5.28)

σzz = λ
∂u

∂x
+ (λ+ 2µ+ κ)

∂w

∂z
− νT, (5.29)

σxz = µ
∂u

∂z
+ (µ+ κ)

∂w

∂x
+ κφ2, (5.30)

σzx = µ
∂w

∂x
+ (µ+ κ)

∂u

∂z
− κφ2, (5.31)

mxy = γ
∂φ2

∂x
, (5.32)

mzy = γ
∂φ2

∂z
. (5.33)

The below non-dimensional quantities are introduced in equations (5.23)-(5.33),

(x′, z′) =
ω̄

c1
(x, z), (u′, w′) =

ρc1ω̄

νT0
(u,w), σ′i,j =

σij
νT0

, (τ ′, t
′
) = ω̄(τ, t), T ′ =

T

T0
,

φ2
′ =

ρc2
1

νT0
φ2, Ω

′
=

Ω

ω̄
, m

′
ij =

ω̄

c1νT0
mij , (5.34)

we obtain (dropping the dashes for convenience)

∇2u+ a1
∂e

∂x
− a2

∂φ2

∂z
− a3

∂T

∂x
= a4

∂2u

∂t2
− a5u+ a6

∂w

∂t
, (5.35)

∇2w + a1
∂e

∂z
+ a2

∂φ2

∂x
− a3

∂T

∂z
= a4

∂2w

∂t2
− a5w − a6

∂u

∂t
, (5.36)

∇2φ2 + a7

(
∂u

∂z
− ∂w

∂x

)
− 2a7φ2 = a8

∂2φ2

∂t2
, (5.37)

σxx =
1

ρc2
1

(
λe+ (2µ+ κ)

∂u

∂x

)
− T, (5.38)

σyy =
λ

ρc2
1

(
∂u

∂x
+
∂w

∂z

)
− T, (5.39)

σzz =
1

ρc2
1

[
λe+ (2µ+ κ)

∂w

∂z

]
− T, (5.40)

σzx =
1

ρc2
1

(
(µ+ κ)

∂u

∂z
+ µ

∂w

∂x
− κφ2

)
, (5.41)

σxz =
1

ρc2
1

(
µe+ κ

∂w

∂x
+ κφ2

)
(5.42)
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mxy = α6
∂φ2

∂x
, (5.43)

α3∇2T = (ω̄ + τDτ )

(
α4
∂T

∂t
+ α5

∂e

∂t

)
(5.44)

where, a1 = λ+µ
µ+κ + α1, a2 = κ

µ+κ , a3 = λ+2µ+κ
µ+κ , a4 = λ+2µ+κ

µ+κ (1 + α2), a5 = Ω2a3,

a6 = 2Ωa3, a7 = κc12

γω̄2 , a8 = ρijc12

γ , α1 = µ0H0
2

µ+κ , α2 = ε0µ0
2H0

2

ρ , α3 = Kω̄2T0
c12 , α4 = ρCeT0,

α5 = T0
2νγ
′

ρc12 .

Now, to obtain the solution, we now introduce the displacement potentials q(x, z, t) and

ψ(x, z, t), as described in [139]

u =
∂q

∂x
+
∂ψ

∂z
, w =

∂q

∂z
− ∂ψ

∂x
. (5.45)

Using equation (5.45) in equations (5.35), (5.37), (5.44), we obtain(
(a1 + 1)∇2 − a4

∂2

∂t2
+ a5

)
q − a3T + a6

∂ψ

∂t
= 0, (5.46)(

∇2 − a4
∂2

∂t2
+ a5

)
ψ − a2φ2 − a6

∂q

∂t
= 0, (5.47)(

∇2 − 2a7 − a8
∂2

∂t2

)
φ2 − a7∇2ψ = 0, (5.48)

α3∇2T = (ω̄ + τDτ )

(
α4
∂T

∂t
+ α5∇2∂q

∂t

)
(5.49)

5.4 Normal mode analysis

In term of normal modes,“the solution of the considered physical variables can be de-

composed”as

[u,w, T, σij , q, ψ, φ2,mij ](x, z, t) = [ū, w̄, T̄ , σ̄ij , q̄, ψ̄, φ̄2, m̄ij ](z)exp(bt+ iax). (5.50)

Use of equation (5.50) transforms equations (5.46)-(5.49) to

[A1D
2 −A2]q̄ +A3ψ̄ −A4T̄ = 0, (5.51)

[D2 −A5]ψ̄ −A6q̄ −A7φ̄2 = 0, (5.52)

[D2 −A8]φ̄2 − [A9D
2 −A10]ψ̄ = 0, (5.53)

[A11D
2 −A12]T̄ − [A13D

2 −A14]q̄ = 0, (5.54)

where, D = ∂
∂z , A1 = 1 + a1, A2 = a2 + a1a

2 + a4b
2 − a5, A3 = a6b, A4 = a3, A5 =

a2 +a4b
2−a5, A6 = a6b, A7 = a2, A8 = a2 +2a7 +a8b

2, A9 = a7, A10 = A9a
2, A11 = α3,

A12 = α3a
2 + α4b(ω̄ + τG(τ, b)), A13 = α5b(ω̄ + τG(τ, b)), A14 = α5ba

2(ω̄ + τG(τ, b)).
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and G(τ, b) = −(b2(m2−2n+1)τ2+2bτ(m2−n)+2m2)exp[b(t−τ)]+(b2τ2−2bnτ+2m2)exp(bt)
b2τ2 ,

and the kernel function K(t− r) is defined as [61]

K(t− r) = 1− 2n

τ
(t− r) +

m2

τ2
(t− r2) =



1; if,m = n = 0

1− (t−r)
τ ; if,m = 0, n = 1

2

1− (t− r); if,m = 0, n = τ
2(

1− t−r
τ

)2
; if,m = n = 1.

After some simplification, equations (5.51)-(5.54) become

[D4 −A′D2 +A
′′
]ψ̄ + [A

′′′
D2 −A′′′′ ]q̄ = 0, (5.55)

[B
′
D4 −B′′D2 +B

′′′
]q̄ + [B

′′′′
D2 −B′′′′′ ]ψ̄ = 0, (5.56)

where, A
′

= (A8+A5−A7A9), A
′′

= A5A8+A7A10, A
′′′

= A6, A
′′′′

= A8A6, B
′

= A11A1,

B
′′

= A11A2 +A12A1 +A4A3, B
′′′

= A12A2 −A4A14, B
′′′′

= A11A3, B
′′′′′

= A12A3.

Simplifying equations (5.55) and (5.56), we obtain,

[D8 −AD6 +BD4 − CD2 + F ]ψ̄(z) = 0, (5.57)

Similarly,

[D8 −AD6 +BD4 − CD2 + F ][ψ̄(z), q̄(z), φ̄2(z), T̄ (z)] = 0, (5.58)

where, A = B
′′

+A
′
B
′

B′
, B = B

′′′
+A
′
B
′′

+A
′′
B
′
+A
′′′
B
′′′′

B′
, C = A

′
B
′′′

+A
′′
B
′′

+A
′′′
B
′′′′′

+A
′′′′
B
′′′′

B′
,

F = A
′′
B
′′′

+A
′′′′
B
′′′′′

B′
.

Rewriting equation (5.58), in the factored form as

[(D2 − k1
2)(D2 − k2

2)(D2 − k3
2)(D2 − k4

2)][ψ̄(z), q̄(z), φ̄2(z), T̄ (z)] = 0, (5.59)

where, kn
2(n = 1, 2, 3, 4) represents the characteristic roots of the equation (5.59).

The general solution of equation (5.59), has the form

ψ̄(z) =

4∑
n=1

Pne
−knz, (5.60)

φ̄2(z) =

4∑
n=1

Pn
′
e−knyz, (5.61)
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q̄(z) =
4∑

n=1

Pn
′′
e−knz, (5.62)

T̄ (z) =
4∑

n=1

Pn
′′′
e−knz, (5.63)

Here, Pn, Pn
′
, Pn

′′
, Pn

′′′ are parameters that depends on a and b.

Using equations (5.60)-(5.63) in equations (5.51)-(5.54), we get

φ̄2(z) =

4∑
n=1

L1nPne
−knz, (5.64)

q̄(z) =

4∑
n=1

L2nPne
−knz, (5.65)

T̄ (z) =
4∑

n=1

L3nPne
−knz, (5.66)

where, L1n = A9kn
2−A10

kn
2−A8

, L2n =
[

(k2
n−A5)(k2

n−A8)
A6(A9k2

n−A10)
− A7

A6

]
L1n, L3n =

[
A13k2

n−A14

A11k2
n−A12

]
L2n.

In general, equation (5.60) along with equations (5.64)-(5.66), can be written as

(ψ̄, φ̄2, q̄, T̄ )(z) =

4∑
n=1

(1, L1n, L2n, L3n)Pnexp(−knz). (5.67)

Using equations (5.50) and (5.67) in equation (5.45), we obtain the components of dis-

placement as

ū =

4∑
n=1

PnL4ne
−knz, (5.68)

w̄ =

4∑
n=1

PnL5ne
−knz, (5.69)

where, L4n = [iaL2n − kn] and L5n = [−L2nkn − ia].

Using equations (5.50) and (5.67) into equations (5.38)-(5.43), we obtain the force stress

components

σ̄xx =

4∑
n=1

PnL6ne
−knz, (5.70)

σ̄zz =

4∑
n=1

PnL7ne
−knz, (5.71)

σ̄xz =

4∑
n=1

PnL8ne
−knz, (5.72)
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m̄xy =
4∑

n=1

PnL9ne
−knz, (5.73)

where,

L6n =
1

ρc2
1

[λ(L4nia− L5nkn) + (2µ+ κ)iaL4n]− L3n,

L7n =
1

ρc2
1

[(λiaL4n − knL5n)− (2µ+ κ)knL5n]− L3n,

L8n =
1

ρc2
1

[µ(L4nia− knL5n) + κ(L5nia+ L1n)],

L9n = α6iaL1n

5.5 Boundary conditions

The following boundary conditions have been taken at z = 0 to figure out the Pn

(n = 1, 2, 3, 4) parameters

Thermal boundary conditions:

A thermal shock has been employed to the plane’s isothermal boundary z = 0, which is

given as

T = B1e
bt+iax, (5.74)

Mechanical boundary conditions:

The normal stress condition (which is mechanically stressed by constant force B2), is

taken as

σzz = −B2e
bt+iax, (5.75)

The tangential stress σxz condition (which is stress free) is taken as

σxz = 0, (5.76)

The couple stress condition (the couple stress is constant in x-direction) is taken as

mxy = 0. (5.77)
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Now, using equation (5.50) along with equations (5.67), (5.71), (5.72) in equation (5.74)-

(5.77), we get

4∑
n=1

L3nPn = B1, (5.78)

4∑
n=1

L7nPn = −B1, (5.79)

4∑
n=1

L8nPn = 0, (5.80)

4∑
n=1

L9nPn = 0. (5.81)

The equations (5.78)-(5.81) have been solved for Pn, (n = 1, 2, 3, 4) to figure out the

solution of the required problem and by making use of Inverse matrix method, which is

as follows:
P1

P2

P3

P4

 =


L31 L32 L33 L34

L71 L72 L73 L74

L81 L82 L83 L84

L91 L92 L93 L94


−1 

B1

−B2

0

0

 .

5.6 Validity of the Problem

When the micropolar and magnetic effects are ignored, we obtain the following results

(ψ̄, q̄, T̄ )(z) =
4∑

n=1

(1, V1n, V2n)Tnexp(−knz).

where, V1n = −−(k2
n−X4)
X5

, V2n = 1− (k2
n−1)(k2

n−X4)
X3X5

,

X3 =
a
′
6b

a
′
1+1

, X5 = a
′
6b, a

′
1 = λ+µ

µ + α1, a
′
6 = 2Ωλ+2µ

µ

which are in sync with the results explained in the study [79] considered in the context

of the generalized thermoelasticity with memory effect.

5.7 Numerical results and Discussion

Analysis has been conducted for aluminium epoxy, using [140]. A graphical analysis

of variation in displacement components, stress components, couple stress components,
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Figure 5.2: Variation of u at distinct values of t and for K(t− r) = 1− t−r
τ

and temperature distribution has been done. Results have been compared for three

distinct values of t viz., t = 0.4, t = 0.5, and t = 0.6 w.r.t distance z, as shown in below

figures.

From the figure 5.2, it is clear that the displacement component u is influenced by the

time t. The maximum displacement distribution is observed and is attained for t = 0.4.

It reduces when the time is increased to t = 0.5. For t = 0.6, we observe the least

displacement. From the figure 5.3, it is clearly observed that the variation of w is same

as that of u for different values of time t. From figure 5.4, it is observed that the stress

component σxz is maximum for t = 0.6, and it reduces with decrease in time. As such,

the least tangential stress is observed for t = 0.4.

From figure 5.5, we observe that the normal stress σzz is maximum for t = 0.6. Then

it reduces when the value of t is reduced, as shown in figure. Figure 5.6 demonstrates

that the maximum couple stress mxy is attained for t = 0.4.

From figure 5.7, we noticed that the temperature distribution T is highest for t = 0.6

and it reduces when time is reduced, i.e., for t = 0.5. Also it can be seen that T is

smallest for t = 0.4.
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Figure 5.3: Variation of w at distinct values of t and for K(t− r) = 1− t−r
τ

Figure 5.4: Variation of σxz at distinct values of t and for K(t− r) = 1− t−r
τ
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Figure 5.5: Variation of σzz at distinct values of t and for K(t− r) = 1− t−r
τ

Figure 5.6: Variation of mxy at distinct values of t and for K(t− r) = 1− t−r
τ
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Figure 5.7: Variation of T at distinct values of t and for K(t− r) = 1− t−r
τ

5.8 Conclusion

Potential displacement approach along with the normal mode technique has been utilized

for obtaining the solution of the required 2D problem in magneto micropolar thermoelas-

ticity using memory-dependent derivatives. Significant variation is shown by different

physical quantities, viz., displacement components, stress components, couple stress

components, and temperature distribution for distinct values of time. Matlab software

and MS-Excel have been used for graphical representation.

Following observations has been made in this study:

1. A new mathematical model has been developed in magneto-micropolar thermoelas-

ticity in the framework of a heat conduction equation having a memory-dependent

derivative for a rotating medium.

2. The time parameter has a strong impact on the elastic response of all physical

quantities except u.
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Chapter 6

Photo-thermo-elastic interactions in micropolar

generalized thermoelasticity theory in the

framework of Green-Naghdi theory

6.1 Introduction

Semiconducting materials serve an important role in modern engineering, and the elec-

trical conductivity of these materials lies between conductors and insulators. One of

the most important characteristics of semiconducting materials is that they possess op-

tical properties. Therefore, when they are subjected to sunlight or a laser beam, some

of the energy will be soaked up, whereas some of the energy will be liberated in the

form of heat or thermal energy. This phenomenon is known as the photothermal effect.

This effect is often utilized to measure thermal properties of materials, especially in

the semiconductor industry. Furthermore, when a laser beam or sunlight is imposed

on an elastic medium, a free charge carrier emerges on the surface, which creates the

plasma waves. In other words, plasma waves are developed due to the excited electrons

which move randomly on the surface of semiconducting material. The photothermal

method was first established by Gordon et al. [117] when an intracavity spherical semi-

conducting material sample was subjected to a beam of laser. Employing spectroscopy

analysis, Kreuzer [118] investigated photoacoustic waves generated by a laser source

of light. The equations of plasmaelastic and thermoelastic waves were investigated by

Todorovic [119] in a semiconducting plate. A thermoelastic interaction was considered

by Abo-Dahab and Lotfy [120] in order to investigate the photothermal effects on a semi-

conductor structure. The photothermal interactions were investigated by Hobiny and

Abbas [121] in a 2D semiconducting half-space by employing Green and Naghdi theory.

The photo-thermal waves were studied by Mabrouk et al. [122] in a magneto-rotating
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semiconducting elastic medium by making use of dual-phase-lag model. A novel mathe-

matical model of a rotating elastic semiconducting medium is developed by Lotfy [123]

in the context of photothermal excitation. Another mathematical model was examined

by Raddadi et al. [124] in the microstretch photo-thermoelasticity theory.

The current field of study requires more work due to its numerous applications in the

scientific field. At present, a very few researchers are working in this field. So in

the current study, a new mathematical model has been developed in the micropolar

theory of thermoelasticity which includes the photothermal effect. The components

of displacements, force and couple stresses, carrier density, as well as the temperature

distribution are obtained by utilizing the technique of Laplace and Fourier transforms

along with the potential displacement approach.

6.2 Basic equations

The“field equations of motion and constitutive relations”for the micropolar theory of

generalized thermoelasticity in the context of photothermal theory is given by

(λ+ µ)∇(∇.−→u ) + (µ+ κ)∇2−→u + κ(∇×
−→
φ )− ν∇T − γn∇

−→
N = ρ−̈→u , (6.1)

(α+ β + γ)∇(∇.
−→
φ )− γ∇× (∇×

−→
φ ) + κ∇×−→u − 2κ

−→
φ = ρj

∂2−→φ
∂t2

, (6.2)

σij = (λur,r − νT − γnN)δij + µ(ui,j + uj,i) + κ(uj,i − εijrφr), (6.3)

mij = αφr,rδij + βφi,j + γφj,i. (6.4)

The heat conduction equation in the presence of photothermal theory under Green-

Naghdi theory as defined in [121], is given by(
K∗ +K

∂

∂t

)
∇2T +

Eg
τp
N − ρCe

∂2T

∂t2
− γ′T0

∂2e

∂t2
= 0. (6.5)

The coupling between plasma and thermoelastic waves, as defined in [121], can be written

as

De∇2N − ∂N

∂t
− N

τp
+
δT

τp
= 0, (6.6)
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The equations of motion (6.1)-(6.2) along with the equations (6.5) and (6.6) in Cartesian

coordinates (x, y, z) in component form can be written“as

(λ+ µ)

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+ (µ+ κ)

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ κ

(
∂φ3

∂y
− ∂φ2

∂z

)
−

ν
∂T

∂x
− γn

∂N

∂x
= ρ

∂2u

∂t2
, (6.7)

(λ+ µ)

(
∂2u

∂y∂x
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+ (µ+ κ)

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ κ

(
∂φ1

∂z
− ∂φ3

∂x

)
−

ν
∂T

∂y
− γn

∂N

∂y
= ρ

∂2v

∂t2
, (6.8)

(λ+ µ)

(
∂2u

∂z∂x
+

∂2v

∂z∂y
+
∂2w

∂z2

)
+ (µ+ κ)

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ κ

(
∂φ2

∂x
− ∂φ1

∂y

)
−

ν
∂T

∂z
− γn

∂N

∂z
= ρ

∂2w

∂t2
, (6.9)

(α+ β)

(
∂2φ1

∂x2
+
∂2φ2

∂x∂y
+
∂2φ3

∂x∂z

)
+ γ

(
∂2φ1

∂x2
+
∂2φ1

∂y2
+
∂2φ1

∂z2

)
+ κ

(
∂w

∂y
− ∂v

∂z

)
− 2κφ1

= ρj
∂2φ1

∂t2
, (6.10)

(α+ β)

(
∂2φ1

∂y∂x
+
∂2φ2

∂y2
+
∂2φ3

∂y∂z

)
+ γ

(
∂2φ2

∂x2
+
∂2φ2

∂y2
+
∂2φ2

∂z2

)
+ κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2

= ρj
∂2φ2

∂t2
, (6.11)

(α+ β)

(
∂2φ1

∂z∂x
+
∂2φ2

∂z∂y
+
∂2φ3

∂z2

)
+ γ

(
∂2φ3

∂x2
+
∂2φ3

∂y2
+
∂2φ3

∂z2

)
+ κ

(
∂v

∂x
− ∂u

∂y

)
− 2κφ3

= ρj
∂2φ3

∂t2
, (6.12)(

K∗ +K
∂

∂t

)(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
T +

Eg
τp
N − ρCe

∂2T

∂t2
− γ′T0

∂2

∂t2

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0, (6.13)

De

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
N − ∂N

∂t
− N

τp
+
δT

τp
= 0. (6.14)

where, (u, v, w) and (φ1, φ2, φ3) are the components of displacement vector −→u and mi-

crorotation vector
−→
φ , respectively.”

6.3 Formulation and solution of the problem

A homogeneous, isotropic, elastic semiconducting material in micropolar generalized

thermoelasticity is taken into consideration under the Green-Naghdi theory. The“origin

of a rectangular cartesian co-ordinate system (x, y, z)”is“taken at any point on the

plane surface of half-space”z = 0, as shown in Figure 6.1. For the 2D problem, the
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displacement vector −→u and microrotation vector
−→
φ is given by

−→u = (u, 0, w),
−→
φ = (0, φ2, 0), u = u(x, z, t), w = w(x, z, t), N = N(x, z, t)

and T = T (x, z, t). (6.15)

Using equation (6.15) in equations (6.7)-(6.14) and in (6.3)-(6.4), the following compo-

Figure 6.1: Material geometry

nents are obtained

(λ+ µ)

(
∂2u

∂x2
+

∂2w

∂x∂z

)
+ (µ+ κ)∇2u− κ∂φ2

∂z
− ν ∂T

∂x
− γn

∂N

∂x
= ρ

∂2u

∂t2
, (6.16)

(λ+ µ)

(
∂2u

∂z∂x
+
∂2w

∂z2

)
+ (µ+ κ)∇2w + κ

∂φ2

∂x
− ν ∂T

∂z
− γn

∂N

∂z
= ρ

∂2w

∂t2
, (6.17)

γ∇2φ2 + κ

(
∂u

∂z
− ∂w

∂x

)
− 2κφ2 = ρj

∂2φ2

∂t2
, (6.18)(

K∗ +K
∂

∂t

)(
∂2T

∂x2
+
∂2T

∂z2

)
= −Eg

τp
N +

∂2

∂t2

(
ρCeT + γ

′
T0

(
∂u

∂x
+
∂w

∂z

))
, (6.19)

De

(
∂2N

∂x2
+
∂2N

∂z2

)
− ∂N

∂t
− N

τp
+ δ

T

τp
= 0. (6.20)

σxx = (λ+ 2µ+ κ)
∂u

∂x
+ λ

∂w

∂z
− νT − γnN, (6.21)

σzz = (λ+ 2µ+ κ)
∂w

∂z
+ λ

∂u

∂x
− νT − γnN, (6.22)

σxz = µ
∂u

∂z
+ (µ+ κ)

∂w

∂x
+ κφ2, (6.23)

σzx = µ
∂w

∂x
+ (µ+ κ)

∂u

∂z
− κφ2, (6.24)

mzy = γ
∂φ2

∂z
, (6.25)

mxy = γ
∂φ2

∂x
, (6.26)
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Initial and Boundary conditions The initial conditions are as

u(x, z, 0) = w(x, z, 0) = T (x, z, 0) = N(x, z, 0) = 0,
∂N(x, z, 0)

∂t
=
∂T (x, z, 0)

∂t
=

∂u(x, z, 0)

∂t
=
∂w(x, z, 0)

∂t
= 0 (6.27)

Also, the boundary conditions on x = 0, are defined as

(i)σxx = σxz = mxy = 0, (i.e., the bounding plane z = 0 is traction-free)

(ii)−K ∂T (x,z,t)
∂x = q0

t2e
− t
tp

16t2p
H(â− |z|),

(i.e., the surface x = 0 is caused by the heating flux with the exponentially decaying pulses [125])

(iii)De
∂N
∂x − s0N = 0,

(which is the boundary conditions of the carrier density)

(6.28)

Now, the non-dimensional quantities are defined as“follows

(x
′
, z
′
) =

ω∗

c1
(x, z), (u

′
, w
′
) =

ρω∗c1

T0ν
(u,w), T

′
=

T

T0
, σ

′
ij =

σij
T0ν

, φ
′
2 =

ρc2
1

T0ν
φ2,

m
′
ij =

ω∗

c1T0ν
mij , (t

′
, τ
′
p, t
′
p) = ω∗(t, τp, tp), N

′
=
N

n0
, q

′
0 =

q0c1

ω∗T0K
(6.29)

where, ω∗ =
ρc21ce
K , c2

1 = λ+2µ+κ
ρ .

Using equation (6.29) in equations (6.16)-(6.26), we get (dropping the dashes for conve-

nience)

∇2u+ a1
∂e

∂x
− a2

∂φ2

∂z
− a3

∂T

∂x
− a4

∂N

∂x
= a3

∂2u

∂t2
, (6.30)

∇2w + a1
∂e

∂z
+ a2

∂φ2

∂x
− a3

∂T

∂z
− a4

∂N

∂z
= a3

∂2w

∂t2
, (6.31)

∇2φ2 + a5

(
∂u

∂z
− ∂w

∂x
− 2φ2

)
= a6

∂2φ2

∂t2
, (6.32)

σxx =
∂u

∂x
+ a7

∂w

∂z
− T − a8N, (6.33)

σzz =
∂w

∂z
+ a7

∂u

∂x
− T − a8N, (6.34)

σxz = a9
∂u

∂z
+ a10

∂w

∂x
+ a11φ2, (6.35)

σzx = a9
∂w

∂x
+ a10

∂u

∂z
− a11φ2, (6.36)

mzy = a12
∂φ2

∂z
, (6.37)

mxy = a12
∂φ2

∂x
, (6.38)
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(
a13 +

∂

∂t

)
∇2T = a14

∂2T

∂t2
+ a15

∂2

∂t2

(
∂u

∂x
+
∂w

∂z

)
− a16

N

τp
, (6.39)(

∂2N

∂x2
+
∂2N

∂z2

)
= a17

(
∂N

∂t
+
N

τp

)
− a18

T

τp
. (6.40)

Using equation (6.29) in equation (6.28), we get

∂T

∂x
= −q0

t2e
− t
tp

16t2p
H(â− |z|) ,

∂N

∂x
− a19N = 0,

σxx = σxz = 0, mxy = 0. (6.41)

where, a1 = λ+µ
µ+κ , a2 = κ

µ+κ , a3 =
ρc21
µ+κ , a4 =

ρc21γnn0

T0ν(µ+κ) , a5 =
κc21
ω∗2γ

, a6 =
ρjc21
γ ,

a7 = λ
ρc21

, a8 = γnn0

T0ν
, a9 = µ

ρc21
, a10 = µ+κ

ρc21
, a11 = κ

ρc21
, a12 = γω∗2

ρc41
, a13 =

K∗

Kω∗ , a14 =
ρcec21
Kω∗2

, a15 = γ
′
T0ν

Kρc1ω∗2
, a16 =

Egn0c21
T0Kω∗2

, a17 =
n0c21

Deω∗n0
, a18 =

δT0c21
Deω∗n0

,

a19 = s0c1
Deω∗

.

Now, for obtaining the desired solution of the required problem, the“potential displace-

ments q(x, z, t) and ψ(x, z, t) are introduced as”

u =
∂q

∂x
+
∂ψ

∂z
, w =

∂q

∂z
− ∂ψ

∂x
. (6.42)

Plugging equation (6.42) in equations (6.30), (6.32) and (6.39), we obtain

∇2(a1 + 1)q − a3T − a4N − a3
∂2q

∂t2
= 0, (6.43)(

∇2 − a3
∂2

∂t2

)
ψ − a2φ2 = 0, (6.44)(

∇2 − 2a5 − a6
∂2

∂t2

)
φ2 + a5∇2ψ = 0, (6.45)((

a13 +
∂

∂t

)
∇2 − a14

∂2

∂t2

)
T − a15∇2∂

2q

∂t2
+ a16

N

τp
= 0, (6.46)

Laplaces transforms

For any function f(x, z, t), the Laplace transform has been described as

L[f(x, z, t)] =

∫ ∞
0

f(x, z, t)e−stdt = f̄(x, z, s), (6.47)

where, s represents laplace transforms parameter.
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Using equation (6.47) in equations (6.43)-(6.46) and in equation (6.40), we get

[∇2(a1 + 1)− a3s
2]q̄ − a3T̄ − a4N̄ = 0, (6.48)

[∇2 − a3s
2]ψ̄ − a2φ̄2 = 0, (6.49)

[∇2 − 2a5 − a6s
2]φ̄2 + a5∇2ψ̄ = 0, (6.50)

[(a13 + s)∇2 − a14s
2]T̄ − a15∇2s2q̄ + a16

N̄

τp
= 0, (6.51)[

∇2 − a17

(
s+

1

τp

)]
N̄ + a18

T̄

τp
= 0. (6.52)

Fouriers transforms

For any function f̄(x, z, s), the Fourier transform has been described as

F [f̄(x, z, s)] =

∫ ∞
−∞

f(x, ζ, s)e−iζzdz = f̄∗(x, ζ, s). (6.53)

Using equation (6.53) in equations (6.48)-(6.52), we get

[(D2 − ζ2)(a1 + 1)− a3s
2]q̄∗ − a3T̄

∗ − a4N̄
∗ = 0, (6.54)

[(D2 − ζ2)− a3s
2]ψ̄∗ − a2φ̄

∗
2 = 0, (6.55)

[(D2 − ζ2)− 2a5 − a6s
2]φ̄∗2 + a5[D2 − ζ2]ψ̄∗ = 0, (6.56)

[(a13 + s)(D2 − ζ2)− a14s
2]T̄ ∗ − a15[D2 − ζ2]s2q̄∗ +

a16

τp
N̄∗ = 0, (6.57)[

(D2 − ζ2)− a17

(
s+

1

τp

)]
N̄∗ +

a18

τp
T̄ ∗ = 0. (6.58)

The 4th order ordinary differential equation (ODE) is obtained after removing φ̄∗2 and

ψ̄∗ between (6.55)-(6.56), which in turn is satisfied by φ̄∗2 and ψ̄∗, is as

[D4 −AD2 +B][ψ̄∗(x), φ̄∗2(x)] = 0, (6.59)

The other quantities N̄∗, q̄∗, T̄ ∗ can be eliminated between equations (6.54), (6.57)

and (6.58), the following 6th order ODE (satisfied by N̄∗, q̄∗ and T̄ ∗) can be obtained

as follows

[D6 − CD4 + ED2 − F ][N̄∗(x), q̄∗(x), T̄ ∗(x)] = 0, (6.60)

where, D = ∂
∂x , A = 2ζ2 + (a3 + a6)s2 + a5(2 + a2), B = (ζ2 + 2a5 + a6s

2)(ζ2 + a3s
2)−

a2a5ζ
2, C =

−a3a15a18s2+a18(a1+1)
[
(a13+s)ζ2+a14s2+

(
ζ2+a17

(
s+ 1

τp

))
(a13+s)

]
+[a18(ζ2(a1+1)+a3s2)](a13+s)

a18(a1+1)(a13+s) ,

E = −α1α2−α3−α4α5+α6α7
α8

, F = −α1α2ζ2−α6α5

α8

α1 = a15a18s2

τp
, α2 = 1

τp
(a4a18 + a3(ζ2τp + a17sτp + a17)), α3 = a3a15a18ζ2s2

τp
, α4 =
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a18(a1+1)
τp

,

α5 = a16a18
τ2
p
−
[
ζ2 + a17

(
s+ 1

τp

)]
[(a13 + s)ζ2 + a14s

2], α6 = a18ζ2(a1+1)+a18a3s2

τp
,

α7 = (a13 + s)ζ2 + a14s
2 +

[
ζ2 + a17

(
s+ 1

τp

)]
[a13 + s], α8 = a18(a1+1)(a13+s)

τp
.

In factored form equations (6.59) and (6.60) can be written as

[(D2 − h2
1)(D2 − h2

2)][ψ̄∗(x), φ̄∗2(x)] = 0, (6.61)

[(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)][N̄∗(x), q̄∗(x), T̄ ∗(x)] = 0, (6.62)

here, h
2( = 1, 2) and kn

2(n = 1, 2, 3) represents characteristic roots of the equations

(6.61) and (6.62).

The general solution of equations (6.61) and (6.62), has the form

ψ̄∗(x) =

2∑
=1

Me
−hx, (6.63)

φ̄2
∗
(x) =

2∑
=1

M
′
e−hx, (6.64)

N̄∗(x) =
3∑

n=1

Hne
−knx, (6.65)

T̄ ∗(x) =
3∑

n=1

Hn
′
e−knx, (6.66)

q̄∗(x) =

3∑
n=1

Hn
′′
e−knx, (6.67)

Here, M, M
′
 , Hn, Hn

′
and Hn

′′
are some parameters.

Using equations (6.63)-(6.67) in (6.54)-(6.58), we get

ψ̄∗(x) =

2∑
=1

Me
−hx, (6.68)

φ̄2
∗
(x) =

2∑
=1

L1Me
−hx, (6.69)

N̄∗(x) =

3∑
n=1

Hne
−knx, (6.70)

T̄ ∗(x) =

3∑
n=1

P1nHne
−knx, (6.71)

q̄∗(x) =

3∑
n=1

P2nHne
−knx, (6.72)
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where, L1 =
h2
−(ζ2+a3s2)

a2
, P1n =

−τp
[
k2
n−ζ2−a17

(
s+ 1

τp

)]
a18

, P2n = a3P1n+a4
(a1+1)[k2

n−ζ2]−a3s2
.

Using equations (6.47) and (6.53) in equations (6.42), (6.33)-(6.41) and (6.33) we get

ū∗ =
dq̄∗

dx
+ iζψ̄∗, (6.73)

w̄∗ = iζq̄∗ − dψ̄∗

dx
(6.74)

σ̄∗xx =
dū∗

dx
+ a7iζw̄

∗ − T̄ ∗ − a8N̄
∗, (6.75)

σ̄∗zz = iζw̄∗ + a7
dū∗

dx
− T̄ ∗ − a8N̄

∗, (6.76)

σ̄∗xz = a9iζū
∗ + a10

dw̄∗

dx
+ a11φ̄

∗
2, (6.77)

σ̄∗zx = a9
dw̄∗

dx
+ a10iζū

∗ − a11φ̄
∗
2, (6.78)

m̄∗zy = a12iζφ̄
∗
2, (6.79)

m̄∗xy = a12
dφ̄∗2
dx

, (6.80)
dT̄ ∗

dx =
−q0tp

8(1+stp)3
2sinζâ
ζ ,

dN̄∗

dx = a19N̄
∗,

σ̄∗xx = σ̄∗xz = m̄∗xy = 0,

(6.81)

Using equations (6.68)-(6.72) in equations (6.73)-(6.80), we get

ū∗ = −
3∑

n=1

P2nknHne
−knx + iζ

2∑
=1

Me
−hx, (6.82)

w̄∗ = iζ
3∑

n=1

P2nHne
−knx +

2∑
=1

hMe
−hx, (6.83)

σ̄∗xx =
3∑

n=1

{(k2
n − a7ζ

2)P2n − (P1n + a8)}Hne
−knx − iζ

2∑
=1

h{1− a7}Me
−hx, (6.84)

σ̄∗zz =

3∑
n=1

{−ζ2P2n + a7P2nk
2
n − (P1n + a8)}Hne

−knx + iζ

2∑
=1

{1 + h}Me
−hx, (6.85)

σ̄∗xz =
3∑

n=1

{−(a9 + a10)iζP2nkn}Hne
−knx −

2∑
=1

{(a9ζ
2 − a11L1 − h)}Me

−hx, (6.86)

σ̄∗zx =
3∑

n=1

{−(a9 + a10)iζP2nkn}Hne
−knx −

2∑
=1

{a9h
2
 + a10ζ

2 + a11L1}Me
−hx,

(6.87)
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m̄∗zy = a12iζ
2∑
=1

L1Me
−hx, (6.88)

m̄∗xy = −a12

2∑
=1

L1hMe
−hx. (6.89)

Using equations (6.71), (6.70), (6.84), (6.86) and (6.89) in equation (6.81) for x = 0, we

obtain

3∑
n=1

P1nknHn = A1, (6.90)

3∑
n=1

P3nHn = 0, (6.91)

3∑
n=1

P4nHn −
2∑
=1

L2M = 0, (6.92)

3∑
n=1

P5nHn −
2∑
=1

L3M = 0, (6.93)

2∑
=1

L4M = 0 (6.94)

where A1 =
q0tp

8(1+stp)3
2sinζâ
ζ , P3n = −kn − a19, P4n = (k2

n − a7ζ
2)P2n − (P1n + a8),

L2 = iζ(1 − a7)h, P5n = −(a9 + a10)iζP2nkn, L3 = a9ζ
2 − h − a11L1, L4 =

−a12L1h.

Now, solving equations (6.90)-(6.94) for Hn and M (where, n = 1, 2, 3 and  = 1, 2) by

making use of the Inverse matrix method, which is given below:

H1

H2

H3

M1

M2


=



P11k1 P12k2 P13k3 0 0

P31 P32 P33 0 0

P41 P42 P43 −L21 −L22

P51 P52 P53 −L31 −L32

L41 L42 0 0 0



−1 

A1

0

0

0

0


.

Inversion of the Transformation

For any function f̄∗(x, ζ, s), the inversion of the Fourier transform can be defined as

follows

F−1[f̄∗(x, ζ, s)] = f̄(x, z, s) =
1

2π

∫ ∞
−∞

f̄∗(x, ζ, s)eiζzdζ. (6.95)
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Consequently, with respect to x, z and s, the solutions of field variables can be obtained

by using equation (6.95) in equations (6.82)-(6.89), (6.70) and (6.71), as follows

ū(x, z, s) =
1

2π

∫ ∞
−∞

− 3∑
n=1

P2nknHne
−knx + iζ

2∑
=1

Me
−hx

 eiζzdζ, (6.96)

w̄(x, z, s) =
1

2π

∫ ∞
−∞

iζ 3∑
n=1

P2nHne
−knx +

2∑
=1

hMe
−hx

 eiζzdζ, (6.97)

σ̄xx(x, z, s) =
1

2π

∫ ∞
−∞

 3∑
n=1

{(k2
n − a7ζ

2)P2n − (P1n + a8)}Hne
−knx − iζ

2∑
=1

h{1− a7}Me
−hx


eiζzdζ, (6.98)

σ̄zz(x, z, s) =
1

2π

∫ ∞
−∞

 3∑
n=1

{−ζ2P2n + a7P2nk
2
n − (P1n + a8)}Hne

−knx + iζ
2∑
=1

{1 + h}Me
−hx


eiζzdζ, (6.99)

σ̄xz(x, z, s) =
1

2π

∫ ∞
−∞

 3∑
n=1

{−(a9 + a10)iζP2nkn}Hne
−knx −

2∑
=1

{(a9ζ
2 − a11L1 − h)}Me

−hx


eiζzdζ, (6.100)

σ̄zx(x, z, s) =
1

2π

∫ ∞
−∞

 3∑
n=1

{−(a9 + a10)iζP2nkn}Hne
−knx −

2∑
=1

{a9h
2
 + a10q

2 + a11L1}Me
−hx


eiζzdζ, (6.101)

m̄zy(x, z, s) =
1

2π

∫ ∞
−∞

a12iζ
2∑
=1

L1Me
−hx

 eiζzdζ, (6.102)

m̄xy(x, z, s) =
1

2π

∫ ∞
−∞

−a12

2∑
=1

L1hMe
−hx

 eiζzdζ, (6.103)

N̄(x, z, s) =
1

2π

∫ ∞
−∞

[
3∑

n=1

Hne
−knx

]
eiζzdζ, (6.104)

T̄ (x, z, s) =
1

2π

∫ ∞
−∞

[
3∑

n=1

P1nHne
−knx

]
eiζzdζ. (6.105)

Following Honig and Hirdes [126], the Laplace transform function f̄(x, z, s) can be in-

verted to f(x, z, t) by

f(x, z, t) =
1

2πi

∫ d+i∞

d−i∞
f̄(x, z, s)e−stds. (6.106)
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where d is an arbitrary real number greater than all the real parts of the singularities of

f̄(x, z, s).

The last step is to calculate the integral in equation (6.106). The method for evaluating

this integral is described by Press [127].

6.4 Validity of the Problem

When the plasma wave (which is illustrated by carrier density
−→
N (r, t)) is ignored, we

obtain the following results

ψ̄∗(x) =

2∑
=1

Me
−hx,

φ̄2
∗
(x) =

2∑
=1

L1Me
−hx,

T̄ ∗(x) =

3∑
n=1

P1nHne
−knx,

q̄∗(x) =

3∑
n=1

P2nHne
−knx,

where, L1 =
h2
−(ζ2+a3s2)

a2
, P1n =

−τp
[
k2
n−ζ2−a17

(
s+ 1

τp

)]
a18

, P2n = a3P1n+a4
(a1+1)[k2

n−ζ2]−a3s2
.

which are in sync with the results explained in the study [128] considered in the context

of micropolar generalized thermoelasticity.

6.5 Numerical results and Discussion

The material properties of Silicon as in [129, 130] are taken under consideration for

numerical simulations, which are as:

λ = 3.64× 1010Nm−2, µ = 5.46× 1010Nm−2, κ = 1010Nm−2, ρ = 2330 kg m−3

γ = 0.779× 10−9N, j = 0.2× 10−19m2, K = 150Wm−1K−1, K∗ = 3Wm−1K−1,

Ce = 695Jkg−1K−1, T0 = 800K, τp = 5× 10−5s, Eg = 1.11eV, De = 2.5× 10−3m2s−1,

dn = −9× 10−31m3, s0 = 2ms−1, n0 = 1020m−3, αt = 3× 10−6K−1, â = 0.25, q0 = 10.

The impact of characteristic time of pulse heat flux tp“is illustrated on the behavior of

the field”quantities such as the components of displacement, force stresses, couple stress
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components, temperature distribution, and carrier density. The graphical analysis has

been done for different values of tp, i.e., for tp = 0.3, 0.4, 0.5 w.r.t x, as shown in the

below figures.

The following analysis depicts that, except the displacement component w which is less

sensitive towards the changes in characteristic time tp, rest of the parameters namely

displacement component u, normal stress σxx, tangential stress σxz, couple stress mxy,

temperature distribution T , and carrier density N are highly sensitive towards changes

in tp.

Figures 6.2 and 6.3 demonstrate the influence of characteristic time tp on the displace-

ment components u and w with respect to distance x. Figure 6.2 clearly reveals that

the displacement component u exhibits oscillatory behavior in the region 0 ≤ x ≤ 8 and

is greatly influenced by tp. Due to the photothermal effect, the elastic waves (described

by displacement component u) on the surface are generated with a positive amplitude,

which starts reducing when moving away from the source. After that, the elastic waves

start showing periodic nature. It is clearly evident that the amplitude of the displace-

ment component is maximum for tp = 0.5, and it reduces when the value of tp is reduced,

i.e., for tp = 0.4. For tp = 0.3, we observe the least amplitude of the displacement dis-

tribution. In other words, the displacement component u reduces when the value of tp

is reduced in terms of amplitude.

From figure 6.3, we observe that the displacement component w exhibits oscillatory

behavior in the region 0 ≤ x ≤ 8 and is moderately influenced by the characteristic

time tp. In terms of amplitude, the displacement component w attains its maximum for

tp = 0.5. Then it reduces when the value of characteristic time is reduced.

Figures 6.4 and 6.5 demonstrate the impact of tp on stress components σxx and σxz w.r.t.

distance x. It is noticed that both the normal and tangential stresses start from zero,

and hence the boundary conditions are satisfied. In figure 6.4, the normal stress σxx

describes the mechanical wave inside the semiconductor medium. From the graph, it is

clearly observed that the mechanical waves are highly sensitive towards the characteristic

time tp.

Figures 6.5 and 6.6 illustrates that similar observations are exhibited by the tangential

stress σxz and couple stress mxy with a higher amplitude. Moreover, it is also clear from

figure 5 that the couple stress mxy starts from zero, and hence satisfies the boundary

condition.
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Figure 6.2: Variation of displacement component u at distinct values of tp

Figure 6.3: Variation of displacement component w at distinct values of tp
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Figure 6.4: Variation of normal stress σxx at distinct values of tp

Figure 6.5: Variation of tangential stress σxz at distinct values of tp
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Figure 6.6: Variation of couple stress mxy at distinct values of tp

Figure 6.7: Variation of temperature T at distinct values of tp
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Figure 6.8: Variation of Carrier density N at distinct values of tp

Figure 6.7 and 6.8 demonstrates the impact of the characteristic time tp on tempera-

ture distribution T and carrier density N . The temperature distributions expresses the

thermal waves w.r.t the distance x. The thermal waves starts from positive values near

the source of application, thus satisfying the thermal boundary conditions.

The amplitude of thermal waves is observed to be maximum for tp = 0.3, and it decreases

when the value of characteristic time tp is increased, i.e., for tp = 0.5. Both the physical

quantities viz. T and N show similar sensitivity towards tp. Starting from a positive

value, then showing an oscillatory nature with increasing amplitude as x keeps increasing.

For higher values of x, graphs depict that for tp = 0.4, amplitude shows significantly

lower variations. Thus, it can be said that for higher values of x, we can find the same

values of tp, which can keep the amplitude in a controlled range.

6.6 Conclusion

In this study, a homogeneous, isotropic, semiconducting material (Silicon) has been

taken into consideration, and a new mathematical model suitable for the micropolar

thermoelastic media which includes the photothermal effect, is developed. The effect

of“coupling of thermal, plasma, and elastic waves”has been studied under the Green-

Naghdi theory. The study reveals a strong influence“of the characteristic time of pulse
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heat flux”tp on different physical quantities, which has been discussed numerically and

depicted graphically.

From the above study, we can conclude that

1. In the context of the Green-Naghdi theory with photothermal effect, a new math-

ematical model for the micropolar theory of generalized thermoelasticity has been

constructed.

2. The boundary conditions are satisfied by all the field variables, therefore the de-

formation of an elastic body depends both on the type of boundary conditions as

well as on the type of applied force.

3. The physical quantities namely, temperature T and carrier density N , have been

found to exhibit a similar sensitivity towards tp.

4. The analytical solutions are obtained by using normal mode technique along with

Integral transforms.
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Conclusion and Future work

In this thesis, mathematical models for plain-strain problems in micropolar elasticity

have been studied. Using the potential displacement approach in conjunction with the

normal mode technique and/or integral transforms, each problem has been analytically

addressed. Matlab software and Microsoft Excel were used to create graphical demon-

strations of the results obtained in each problem. Taking into account both thermal

and magnetic forces, Chapter 2 explores the behavior of micropolar elastic materials.

Furthermore, the fluctuation of several physical quantities was demonstrated for various

gravity values. The Green-Lindsay model with MDD has been used in Chapter 3rd to

build a mathematical model for the magneto-micropolar thermoelasticity problem, and

a considerable impact on the elastic response of the material has been found to be caused

by the time parameter. In the 4th chapter of the thesis, a 2D mathematical model has

been established for the micropolar thermoelasticity in the context of MDD. In order

to determine the appropriate solution to the required problem, the Helmholtz poten-

tials are used in conjunction with the normal mode technique. The subject of the fifth

chapter is to study the impact of the time parameter on a magneto-micropolar thermoe-

lastic solid (with MDD). Furthermore, the problem has been solved analytically using

the normal mode technique. In chapter 6, a novel mathematical model, incorporating

the photothermal effect, is devised for micropolar thermoelastic media. The required

problem has been solved analytically and depicted graphically.

As the photo-thermo-elastic interactions in micropolar generalized thermoelasticity were

covered in chapter 6. More research is required because this field of study has numerous

applications in the scientific domain. Thus, in subsequent research, the focus will be

on expanding the breadth of this topic to include the fields of classical elasticity and

micropolar elasticity under the photothermal theory, which are not covered in the thesis.

These models will be helpful in analyzing the stress-strain bodies having microstructure

subjected to mechanical, thermal or electromagnetic forces.
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