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ABSTRACT 
 

 
The process, which is designed as 3D digital data to create component layers using 

depositing elements are termed as Additive Manufacturing (AM). Moreover, this AM 

mechanism is the competitive model for the conventional manufacturing scheme, 

because several complex design processes are widely difficult and impossible using 

conventional model. Fused deposition modeling (FDM) is a model of AM which uses 

layer by layer-based methodology to fabricate a component. Today in the digital 

manufacturing era FDM process is widely used as it can construct intricate and 

complex part geometries in short time as compared to conventional manufacturing, its 

simplicity and economical bahaviour. Hence, the FDM strategy is primarily used to 

fabricate the products in an attractive manner; these kinds of products are mainly 

worn in real life. FDM is well-known with guests in a type of industries, from 

automotive sector to items bought by consumer’s production. These guests use FDM 

throughout their output growth, prototyping and manufacturing processes. FDM is 

having uniqueness in term of no loose powder and material used in the form of 

filament offers adaptability and reduces the resident time into sight the melting 

chamber. In FDM the process parameters are dominant determinants for 

reconstructing the part characteristics and minimizing the build time and cost. Though 

evidently several researches have been carried out regarding optimisation of input 

parameters to enhance the mechanical properties of FDM printed parts, eventually 

various studies reported the flimsy nature of 3D printed materials which should be 

taken care of. Despite of many advantages, literature argued various machine learning 

approaches adopted to increase the performance of FDM addressing the issues of 

irregularities in part properties, accuracy, and reliability due to challenging task of 

best parametric selection. 

Nowadays, AM process is incorporated with several real-time applications and 

rapidly increased in many fields. Considering other methods, the AM with FDM 

printing technology is low cost and easy to use. However, compare the existing 

techniques various complexity and lower prediction capabilities were reviewed. In 



 

 

addition, mismatch connection during the designing process may reduce the 

prediction accuracy rate; therefore, the prediction is very important regarding those 

issues and parameter selection. The main aim of this ML with AM technique is to 

select the best parameter combination in the 3D printing design. During the printing 

process, the input data is carried randomly then it leads to cause the overflow issue. 

These problems have been motivated this present research work. 

In this context, the present study proposed a deep neural network strategy to predict 

the best parametric combination with optimized mechanical properties of printed 

parts. In the present research, less analysed design variables parameters like nozzle 

diameter, width of print line, layer thickness and print speed were considered as input 

parameters with their levels values that were trained to the proposed system. The 

selection of values was based on previous literature and customized 3D printed FDM 

machine. Adhering to ASTM standards with predefined dimensions total 256 

experiments have been carried for each output, in which 204 result data used for 

training and 52 for testing the model using PYTHON programming language. 

Subsequently, the proposed model has gained the accuracy of 88.46% and RMSE 

value 0.3396 and R2 value 0.8796 is validated by relating the performance with 

existing models. Nozzle diameter was influential parameter for tensile strength, 

flexural strength and layer thickness dominates compressive strength predicted by 

Taguchi analysis. 

In this research, a deep learning model was developed for detecting the best 

connection between process parameters. For example, high dimensional accuracy, 

high surface finish and better tensile strength can be achieved by setting low layer 

thickness but can affect the compressive strength adversely. Print speed affects the 

mechanical properties; build time affects the overall cost of product. Hence, the 

efficient outcomes of the developed model have been verified by gaining the best 

combination of process parameters and Taguchi analysis interpreted their influence on 

the mechanical strength of FDM printed parts. 

 

Taguchi L16 array of specific subset of input parameters combinations was utilized to 

conduct the experimentation for case study. Tensile strength, compressive strength 



 

 

and flexural strength were analysed by multi optimization using Taguchi and Grey 

relation analysis combined with principal component analysis. PCA assigns weight to 

each measurable significant response which affects the GRG. PCA determined the 

contribution of tensile strength (43.22%), flexural strength (30.52%) and compressive 

strength (26.26%) respectively. WGRG values depicted the most influential factor as 

print speed followed by nozzle diameter, layer thickness and width of each print layer 

successively. Optimum combination of input parameters was analysed by GRA 

associated with PCA approach as nozzle diameter 0.3 mm, print speed 60 mm/s, layer 

thickness 0.2 mm and width of each layer 0.9 mm which was classified into class 1 in 

DNN. Confirmatory experimental values for flexural strength were 60.7 Mpa, tensile 

strength 37.7 Mpa and compressive strength 26.1 Mpa which demonstrated 4.71 % 

improvement in predicted WGRG. Validation of proposed case study was carried out 

with experimental confirmation to find out significance of optimized parameters to 

enhance the mechanical behaviour of printed parts. 

When the data fed is more this model will gain higher prediction accuracy. Limitation 

of this study is huge number of data is needed to accurately process the neural 

network model. This could be challenging and resource-intensive, particularly in 

cases where obtaining sufficient data may be difficult or expensive. In future this 

model can be used analyse the best combination for the optimization of other 

mechanical properties. Theoretically speaking depending upon the objective of the 

application this model can be processed and tuned (like number of neurons and layers, 

activation functions, optimizers, dropouts, normalization, batch size) to select 

optimized parametric combination to achieve different aims in terms of part quality 

characteristics, build time, cost etc. In futuristic direction other AI techniques like Big 

data, Cloud computing, IoT (Internet of Things) can be implemented. This study 

limits its use as standard test parts fabrication was used adhering to ASTM standards. 

In futuristic direction the optimum combination of FDM process design variables can 

be used to build smart manufacturing based real time components using highly 

customized 3D printers. 

Keywords: Additive manufacturing (AM), Fused deposition modelling (FDM), Grey 

relation analysis (GRA), Principal component analysis (PCA), Artificial intelligence 



 

 

(AI), Machine learning (ML), Deep neural network (DNN), IoT (Internet of Things), 

American society of testing materials (ASTM), Taguchi analysis, Mechanical 

properties, Big data, Cloud computing. 
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CHAPTER 1 

INTRODUCTION 

1.1 Pretext 

 
The process, which is designed as 3D digital data to create component layers using 

depositing elements is termed Additive Manufacturing (AM) [1]. Moreover, this AM 

mechanism is the competitive model for the conventional manufacturing scheme, 

because several complex design processes are widely difficult and impossible using 

the traditional model [2]. Nowadays, AM is a distinguished boom-driving force in 

some of the biggest international industries Aeronautical, medical, and protection 

industries are also utilizing AM production in spiralling costs. Figure 1.1 depicts the 

fundamental concept of the FDM process which comes under AM processes for 

effective implementation of process parameters depending upon the various aims to 

make the product compatible in the working environment. 

Even in the remaining decade, additive production solutions have come in an 

extended manner. The advancements in today's 3D printing systems have 

revolutionized AM, offering numerous benefits and capabilities compared to earlier 

technologies. Modern 3D printing systems boast enhanced energy efficiency and 

reliability, resulting in more consistent and dependable performance. Improved print 

speeds enable faster production of parts, contributing to increased efficiency and 

productivity. Larger maximum part sizes allow for the creation of larger and more 

complex components, expanding the range of applications for 3D printing technology. 

Enhanced surface finishes contribute to higher-quality printed parts, reducing the need 

for post-processing and improving overall aesthetics. Today's 3D printing software is 

designed to be user-friendly, with intuitive interfaces and streamlined workflows. 

Unlike earlier AM systems that required specialized knowledge and training, modern 

3D printing software does not demand extensive expertise, lowering the learning 

curve for users. Modern 3D printing systems offer various compatible materials, 

including traceable and aerospace-grade composite substances. 
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Rapid prototyping 

Manufacturing in less time 

duration 

Manufacturing concepts 

 

 

The introduction of metal fused filament fabrication (FFF) technology has made it 

possible to 3D print metal parts faster, safer, and more cost-effective than ever before. 

Cloud connectivity enables seamless communication between users and sets of 

printers, facilitating distributed manufacturing operations. Users can initiate print jobs 

across multiple 3D printers located in different geographic locations, ensuring 

accessibility and availability of parts whenever and wherever needed. Industry 4.O 

connectivity allows for integration with core systems in manufacturing facilities, 

enabling automated and data-driven production workflows. Requests for component 

manufacturing can be initiated directly from factory systems, streamlining the 

production process and enhancing overall efficiency. The scalability of modern 3D 

printing systems is facilitated by cloud-enabled interconnectivity and the availability 

of diverse printers tailored to different production needs. From metal and industrial- 

grade 3D printers to desktop 3D printers, a wide range of options is available. 

 

Prototyping Manufacturing 

              application       
                               

 

 
 

 

 

Figure 1.1 Fundamentals of FDM (Source: Developed by own) 

 
1.2 AM techniques 

 
AM falls under different categories, 

• AM based on liquid 

• AM based solid state substances 

• AM based powder particles 

 

 

 

 

 

 

 
Technique 

3D Additive 

Manufacturing 
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Stereo lithography (SLA) or Vat Photo polymerization 

 
This technique is known for its speed and affordability, remained a popular and 

widely used 3D printing technology It operates by utilizing a bath of photosensitive 

liquid, which solidifies layer by layer through exposure to a computer-monitored 

ultraviolet (UV) light [3]. 

 

Selective Laser Sintering (SLS) 

 
Compatible with metal as well plastic prototyping, SLS constructs prototypes using a 

powder bed, with each layer built up using a laser to heat and sinter the powder based 

material. However, the strength of SLS parts is typically inferior to those produced by 

SLA, and the surface finish may be rough, often requiring additional finishing work 

[3]. 

 

FDM or Material Jetting 

 
This cost-effective and user-friendly process is prevalent in non-industrial type 

desktop 3D printers. FDM employs a spool of thermoplastic material after melting 

within a printing nozzle before being deposited layer wise according to a 

computerized print program [3]. While early results of FDM had less resolution and 

strength, advancements have rapidly improved its performance making it ideal for 

product development due to its speed and affordability. 

 

Selective Laser Melting (SLM) or Powder Bed Fusion 

 
This process is commonly used in aeronautical, automotive, and medical industries, 

SLM is favoured for producing high-strength, intricate parts. The fusion process using 

powder bed utilizes a finely dispersed metal powder melted layer wise using a higher 

initiation of electron or laser operated beam to construct prototype or production 

parts. Generalised materials in SLM include titanium, aluminum, stainless steel and 

cobalt chrome alloys [3]. 
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Laminated Object Manufacturing (LOM) 

 
LOM is a cost-effective method that doesn't require controlled conditions. It builds up 

thin laminates accurately part off using laser beams or other cutting devices to form 

the CAD design. Each layer is delivered and bonded atop the previous one until the 

part is complete. 

 

Continuous Liquid Interface Production (CLIP) 

 
A variant of DLP, CLIP continuously pulls the part from a vat without using layers. 

As the part emerges it leads to cross a light, altering its set up to create the required 

dimensional design pattern over the plastic [3]. 

 

Binder Jetting 

 
This technique allows for the simultaneous printing of one or multiple parts, although 

the resulting parts may not be as strong as those from SLS. Then an inkjet printhead 

selectively deposits liquid binding agents onto the powdered layer, binding the 

particles together to form the desired shape of the part. After compaction the part may 

be cured in an oven to fuse the powder into a coherent final part [3]. 

 

1.3 Fused Deposition Modelling 

 
In FDM process, STL file is importing into pre-processing software, slicing the model 

into thin layers and generating a control file for the machine as shown in Figure 1.2. 

 
 

 
Figure1.2 Basic steps for FDM process (Source: Developed by own) 
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The FDM is a kind of 3D printing process that employs filament-type thermoplastics. 

In this technique a printer head heats the filament to melting temperatures enabling 

the creation of a structure layer by layer from the bottom up. The printer nozzle 

moves in accordance with the design specified in the STL file format progressively 

adding filament until the entire structure is formed. Notably, FDM serves as a 

precursor to one of the most widely used bio printing methods, known as extrusion- 

based printing. Figure 1.3 shows the illustration of FDM process. In FDM, 3D 

structures are constructed layer by layer by heating both the build material and 

supporting material through extrusion nozzle attached to the liquefier head. Initially, 

supporting material is deposited to establish a foundation for the main polymeric 

material. The nozzle moves along predefined paths, depositing the melted material 

layer by layer to build up the object. The material solidifies almost immediately after 

extrusion forming each layer of the object. 

 

Figure 1.3 Illustration of FDM Process [3] 

 
Support structures may also be generated during the printing process to provide 

stability for overhanging features. These supports are typically made of the same 

material as the main object and are removed after printing is complete, often by 

manually breaking them away or using tools. After the printing process is finished, 
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the object is allowed to cool and harden before being removed from the build 

platform. There's typically no need for a water-based cleaning solution to remove 

supporting material as FDM printers generally do not use support structures that 

require post-processing removal in the same way as vat polymerization. 

The FDM process involves dispensing two materials, one for building the part and the 

other for a disposable support structure, from plastic filament rolls. The filament is 

fed into a temperature-controlled extrusion head heated to a semi-liquid state and 

extruded in ultra-thin layers onto a base. FDM operates in x, y and z axes building the 

model layer by layer. Support structures are generated automatically for overhanging 

geometries and removed later. 

The primary material for FDM is Polylactic acid (PLA) and acrylonitrile butadiene 

styrene (ABS), a commonly used thermoplastic found in numerous consumer 

products, ranging from LEGO bricks to white-water canoes. Additionally, FDM 

machines can use other thermoplastics like Polycarbonate (PC) or Polyetherimide 

(PEI), with support materials typically being water-soluble wax or brittle 

thermoplastics like Polyphenylsulfone (PPSF). Thermoplastics, known for their 

ability to withstand heat, chemicals and mechanical stress make them ideal for 

printing prototypes subjected to testing. 

Polylactic acid (PLA) is extensively employed in a diverse array of engineering and 

medical applications owing to its distinctive advantage of biodegradability. Despite 

PLA being a conventional material widely utilized in engineering applications 

compatible with most open-source FDM machines [4], several studies have 

highlighted the inherent frailty of 3D-printed materials, warranting careful 

consideration. Established in the late 1980, FDM has evolved with machines like 

FDM Titan, FDM Dimension, FDM Vantage, FDM Maxum, FDM 3000, and FDM 

Prodigy Plus. 

1.4 Why FDM? 

 
FDM has gained popularity across various industries, including automotive (Hyundai, 

BMW, Lamborghini) and consumer goods manufacturing (Nestle, Black and Decker, 
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Dial). Industries in these sectors leverage FDM throughout their product development, 

prototyping and manufacturing processes. FDM has capability to produce highly 

detailed objects also makes it a preferred choice for engineers testing parts for fit for 

use. Beyond prototyping, FDM is employed to manufacture customer end parts, 

specifically fine, detailed components and special production tools. Some 

thermoplastics used in FDM can even meet food and drug packaging standards, 

making it a prevalent 3D printing method in the medical industry. Professional FDM 

printers positioning them as cost-effective choice for businesses investing in complete 

3D printing systems. FDM serves various purposes, including the creation of concept 

models in early product development, fabrication of functional prototypes for testing, 

production of end-use parts, and manufacturing tools. The technology significantly 

reduces the time and cost associated with traditional tooling or machining processes. 

The technique is also applied in the field of tissue engineering scaffold production 

through the melt extrusion method, using a layer-by-layer approach with 

thermoplastic polymers. While FDM presents advantages such as no unbound loose 

powder and flexibility in material processing [3]. 

FDM, well known material extrusion method, is the most popular AM technology, 

allowing the manufacturing of products using higher strength thermoplastics such as 

polycarbonate, polyphenylsulfone, polylactic acid, ULTEM and ABS. The aerospace 

industry has adopted FDM for producing lightweight yet durable parts, demonstrating 

its versatility from rapid prototyping to end-use applications. FDM's economic 

advantages and the absence of chemical post-processing make it an ideal choice for 

various applications. 

1.5 FDM process parameters 

 
The significant process parameters in the FDM are being highlighted through Figure 

1.4. All the process parameters of FDM can be changed to achieve different goals. 

While changing these parameters (e.g. print speed, layer height, filament extrusion 

speed and path distance in a layer), the connection between paths (lines) in a layer 

will be changed. 
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Figure 1.4 Dominant process parameters in FDM process [5] 

 
Nozzle diameter: The diameter of the extruder tip, known as the nozzle diameter, is a 

crucial factor influenced by the type of nozzle utilized. It directly affects the 

behaviour of the extruded melt flow [6]. 

Extrusion temperature: The extrusion temperature refers to the temperature required 

to covert the solid-state filament into a melting stage prior to the process of extrusion. 

This temperature is contingent upon both the material type being used and the printing 

speed. It is typically determined based on the melting point of the filament material 

[7]. 

Print speed: The print speed in FDM refers to the distance travelled by the nozzle tip 

per unit time, usually measured in millimetres per second (mm/s), during the printing 

process. The ideal print speed is associated with various factors including the material 

being used, the extrusion temperature, and the desired resolution. Finding the 

optimum printing speed involves balancing these factors to achieve the desired print 

quality and structural integrity of the final object [8]. 

Build orientation: The build orientation in AM refers to the position of the part on the 

build platform relative to the X, Y, and Z axes. It can be represented as either a 

quantitative parameter, such as the angle of the axis or a categorical parameter 

indicating specific orientations (e.g. upright, flat, angled). 
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Layer thickness: The layer thickness in AM refers to the vertical resolution of each 

printed layer and is determined by factors such as the material being used, the 

diameter and type of the nozzle, and the printing parameters. It plays a crucial role in 

influencing various aspects of the printed object, including mechanical strength, 

quality of surface, dimensional accuracy, and build time [7]. 

Raster width: The raster width in AM, also known as road width, refers to the width 

of each extruded filament or line deposited by the printer's nozzle. It is determined 

primarily by the diameter of the nozzle. A smaller raster width, achieved with a 

smaller nozzle diameter, results in finer details and higher resolution in the printed 

object. However, using a smaller raster width typically requires more manufacturing 

time due to the increased number of passes required to cover the build area. 

Additionally, smaller raster widths generally consume less material. 

Raster angle: The raster angle in AM refers to the orientation of the raster path 

relative to the X-axis on the printing platform. It determines the internal structure of 

the final printed product and can have a significant impact on both surface roughness 

and mechanical strength. 

Air gap: An air gap in AM denotes the separation between two consecutive deposited 

beads or lines within the same layer of the printed object. These gaps are crucial in 

determining structural integrity, surface quality, and dimensional accuracy [9]. 

Infill density: The infill density in AM represents the proportion of material utilized to 

construct the internal structure of a printed object, typically expressed as a percentage. 

Parameters such as air gap and raster width enable users to regulate the infill density 

during the printing process. The density of the infill significantly impacts the weight 

and mechanical strength of a part produced through FDM. 

Infill pattern: The infill pattern plays a crucial role in determining various aspects of 

the 3D printed part, including its structural integrity, mechanical properties, and 

overall performance. [5]. 

A fishbone diagram, presented in Figure 1.5, visually depicts the impacts of various 

process factors on various part qualities. This diagram serves as an initial overview of 

the survey's findings, compiled from various recent studies. It is noteworthy that 
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certain process variables overlap with part qualities, functioning as essential process 

parameters. 

 

 

 
 

 
Figure 1.5 Fishbone diagram to indicate the effect of process parameters [10] 

 

 

 
1.6 Need of study 

 
Various process parameters in FDM can be adjusted to attain specific objectives. For 

instance, modifying parameters such as print speed, filament extrusion speed, layer 

thickness and path travel within a layer can impact the outcome of the fabricated 

parts. Lowering the print speed, for instance may result in higher strength in the final 

components. When these parameters are altered, the connectivity within paths lines in 

a layer is also affected, emphasizing the dynamic relationship between the chosen 

printing parameters and the structural characteristics of the printed object. 
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The AM process involves numerous data-related issues and factors, which are often 

assessed using machine learning (ML) or deep learning (DL) models [3, 15]. Post- 

manufacturing, DL and ML techniques play a crucial role in the validation process 

[11, 16]. Various methodologies in the past have introduced techniques such as fuzzy 

systems [12], DL models [13], decision trees [14] and others. However, these 

techniques have demonstrated suboptimal results, primarily attributed to the inherent 

complexity of the design. 

 

1.7 Organization of thesis 

 
Chapter 1 describes the background of AM process flow, different techniques, recent 

advancements in AM, FDM process, materials and methods, FDM process 

parameters, research need. Chapter 1 sets the stage for the subsequent chapters by 

providing readers with a comprehensive understanding of AM, particularly focusing 

on FDM and highlighting the context, significance and scope of the research. 

Chapter 2 of the research manuscript delves into a comprehensive exploration of 

existing studies, techniques and algorithms relevant to the current investigation which 

is commonly referred to as "Literature Survey." This section aims to convey readers 

with a thorough understanding of the background and context surrounding the 

research topic. It reviews previous research, methodologies and findings in the field, 

highlighting key insights, trends and gaps in knowledge. Additionally, Chapter 2 

delineates the objectives and scope of the research work, providing clarity on the 

specific goals, aims and boundaries of the study. 

Chapter 3 is exhibiting the proposed methodology with detailing the approach, 

techniques, and methodologies to be employed in the research. This section elucidates 

the steps and procedures that will be undertaken to achieve the research objectives 

effectively. This helps to contextualize the research within a defined framework and 

elucidates what the study aims to achieve and the extent to which it will be pursued. 

Chapter 4 provides a comprehensive overview of the fabrication and testing 

procedures conducted as part of the research study offering insights into the methods 
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used and the outcomes obtained. This part of the research manuscript focuses on the 

first experimental phase aimed at optimizing the process parameters. 

Chapter 5 of the research manuscript is dedicated to the optimization and validation 

of the proposed algorithm. This chapter elaborates on various aspects related to 

algorithm development and its execution. A detailed exploration of the algorithm 

development and implementation process is included here by providing readers with 

insights into the methodologies, techniques, and tools employed to realize the 

proposed solution It serves as a critical component of the research manuscript, 

providing valuable insights into the practical implementation of the proposed 

methodology and the effectiveness of the optimized process parameters. It 

demonstrates the technical aspects of translating theoretical concepts into practical 

applications, laying the groundwork for the subsequent evaluation and analysis of the 

developed algorithm. This part of the research manuscript is also dedicated to 

discussing the findings and analysing the performance of the proposed work with 

existing researches. Overall, this chapter serves as a critical component of the research 

manuscript, providing a comprehensive evaluation and interpretation of the research 

findings. It helps readers understand the significance of the proposed work in the 

broader context of the field and provides valuable insights for advancing knowledge 

and practice in the relevant area of study. 

Chapter 6 depicts the concluded remarks of the research work and provides a concise 

summary of the key findings, contributions and implications of the research. Further it 

is pointed towards future directions for continued exploration and inquiry. 
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CHAPTER 2 

LITERATURE REVIEW 

The literature review aims to convey a chronological overview of research efforts in 

the field of AM, particularly focusing on FDM technology. Over the last decade, there 

has been a significant expansion in the applications of FDM technology across 

various sectors such as automotive, medical, domestic and small industrial products. 

Despite these advancements, challenges persist in achieving desired part quality 

without the need for new materials. 

 

This chapter examines the progressive development of FDM technology and 

highlights the challenges associated with different aspects of AM, especially focusing 

on the FDM process. It discusses the need for process optimization to achieve the 

desired properties of FDM products. Additionally, the chapter explores the impact of 

various FDM process parameters. 

 

Furthermore, the chapter delves into modeling and optimization methods utilized to 

evaluate FDM process parameters. By reviewing existing literature, this chapter 

provides insights into the current state of knowledge and identifies areas for further 

research and improvement in FDM processes. 

 

2.1 Overview 

 
AM is the vying model for the common manufacturing blueprint, because various 

complex design processes are widely difficult utilizing conventional model. In FDM 

the process parameters are dominant determinants for reconstructing the part 

characteristics and minimizing the build time and cost. FDM is well-known with 

guests in a type of industries, from automotive sector to items bought by consumer’s 

production. These guests use FDM throughout their output growth, prototyping and 

manufacturing processes. FDM is having uniqueness in term of no loose powder and 

material used in the form of filament offers adaptability and reduces the resident time 

into sight the melting chamber [17]. In this context, this study aims to explore the 
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materials and their increased limits to resolve enhanced parametric optimization and 

potentials. 

 

Moreover, the designing process of 3D digital statistics is to generate the layers using 

FDM components, which are termed, AM. Here, the fabricated products are mainly 

damaged by real-life AM systems [18]. Part characteristics are influenced by slicing 

parameters, building orientation, temperature conditions of FDM manufacturing 

process. Many parameters like layer thickness, print speed, infill percentage, nozzle 

diameter, flow rate, raster angle and extrusion temperature can be changed to achieve 

best line connection while depositing the material which will lead to optimize part 

properties [8]. 

 

FDM) is a model of AM which uses layer by layer-based methodology to fabricate a 

component. Today in the digital manufacturing era FDM process is widely used as it 

can construct intricate and complex part geometries in short time as compared to 

conventional manufacturing, its simplicity and economical bahaviour. Despite of such 

advantages, literature argued various ML approaches adopted to increase the 

performance of FDM addressing the issues of irregularities in part properties, 

accuracy, and reliability due to challenging task of best parametric selection. In this 

context, the present study proposed strategy to predict the best parametric 

combination with optimized mechanical properties of printed parts. 

 

2.2 Historical background 

 
The concept of AM traces back to the 1960s, with early attempts made by institutions 

like Battelle Memorial Institute and Dynell Electronics Corp. In the late 1970s and 

early 1980s, researchers like H. Kodama and Charles Hull further contributed to the 

development of AM technologies, leading to the commercialization of the first AM 

systems by 3D Systems in 1987. 

 

Throughout the 1990s, various AM techniques, such as Stereolithography (SLA), 

Selective Laser Sintering (SLS), and Laminated Object Manufacturing (LOM), were 
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commercialized by companies like Stratasys, Cubital and Helisys. The emergence of 

these systems marked significant milestones in the evolution of AM technologies. 

 

In the early 2000s, advancements in AM continued with the introduction of new 

systems capable of processing a wider range of materials and producing multi-colour 

prints. Open-source initiatives like RepRap also gained momentum during this time, 

contributing to the democratization of AM technology. 

 

The focus on metal AM (MAM) gained prominence in the mid-2010s, with 

companies like ExOne announcing capabilities for printing metal materials such as 

Inconel 625. Alongside technological advancements, there was a growing emphasis 

on environmental sustainability, waste reduction, and customization in AM processes 

[19]. 

 

In recent years, the AM industry has witnessed a surge in research and development 

efforts aimed at addressing diverse applications across sectors such as medical, 

automotive, aerospace, electronics and defence. The focus has shifted towards 

enhancing process efficiency, expanding material options, and exploring novel AM 

techniques. Overall, the trajectory of AM evolution reflects a continuous drive 

towards innovation, with advancements driven by both technological breakthroughs 

and market demands. The future of AM holds promise for further advancements, 

fuelled by ongoing research, industry collaborations, and the adoption of AM 

technologies in diverse applications. 

 

It is evident from Figure 2.1 the ongoing research in extrusion-based AM is driving 

innovation and pushing the boundaries of what is possible, paving the way for new 

applications, materials, and manufacturing paradigms. 
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Figure 2.1 Number of publications on extrusion-based AM per year (as per Scopus 

database, Accessed on June 2023) 

 

2.3 Glance at an interface between ML and AM 

 
ML techniques offer several opportunities to enhance various aspects of the FDM 

process: 

 

Process Optimization: ML algorithms can analyse sensor data from FDM machines to 

optimize parameters like temperature, speed, layer height, and material flow rate. By 

correlating these parameters with print quality, ML models can recommend optimal 

settings to improve efficiency and reduce defects. 

 

Predictive Maintenance: ML models can predict equipment failures by analysing 

historical sensor data for patterns indicative of potential issues. This enables proactive 

maintenance, minimizing downtime and preventing costly breakdowns. 

 

Quality Control: ML algorithms can inspect images of printed parts to detect defects 

such as warping or delamination. Trained on a dataset of defective and non -defective 
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parts, ML models can classify parts automatically and reject those not meeting quality 

standards. 

 

Material Selection: ML techniques can analyse material properties and object 

requirements to recommend the most suitable material for a specific application. This 

helps optimize material usage and ensures printed parts meet performance criteria 

[20]. 

 

Support Structure Optimization: ML algorithms can analyse 3D models to predict 

where support structures are needed during printing. By optimizing support 

placement, ML models reduce material usage, post-processing efforts, and improve 

surface finish. 

 

Energy Efficiency: ML models can analyse energy consumption data to identify 

opportunities for reducing energy usage without compromising print quality. This 

involves optimizing heating and cooling cycles and minimizing energy consumption 

during idle periods. 

 

Customized Printing: ML techniques can analyse large datasets of 3D designs and 

user preferences to generate customized printing recommendations. By understanding 

user preferences and past designs, ML models can suggest modifications or generate 

entirely new designs tailored to specific requirements. By leveraging ML, FDM 

processes can be optimized for efficiency, quality, and customization, driving 

innovation in AM [21]. 

 

Figure 2.2 shows various data that can be used and processed through ML to 

determine process structure property (PSP) chain relationship. 
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Figure 2.2 Taxonomy of ML applications in the AM field [20] 

 
2.4 Literature review in FDM 

 
FDM process limitations were recorded due to inconsistency in process repeatability 

and part characteristics [3]. Part characteristics are influenced by slicing parameters, 

building orientation, temperature conditions of FDM manufacturing process. To 

achieve different aims in terms of part quality characteristics, build time, mechanical 

properties, cost etc. various influential parameters like nozzle diameter, build 

orientation, flow rate, raster angle, extrusion temperature, layer thickness, print speed, 

infill percentage, air gap can be changed [22]. The selection of best combination of 

optimized parameters is challenging task. Carrying out more number of experiments 

or 3D simulations is inefficient to meticulously optimize the FDM process which is 

possible by integration of ML with FDM process [2]. Moreover, the AM procedure 

includes a lot of data issues and factors, which are estimated based on ML models 

[11, 16]. After completion of manufacturing, DL and ML techniques are used for 

validation purposes [12, 23]. 
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In past, several techniques have been introduced in various methodologies like fuzzy 

systems [13], Image processing, decision tree [15], etc. Mohamed et al [24] has 

developed the fabrication of part dimension optimization and modelling scheme. To 

analyse the design properties, the artificial neural framework (ANF) was used. 

 

V. Chowdary Boppana et al. [1] utilized an ANN coupled with Genetic Algorithms 

(GA) to establish the non-linear relationship between selected process parameters and 

tensile strength in AM. The findings indicate that these process parameters 

significantly impact tensile strength, with raster angle emerging as the most influential 

factor. Specifically, increasing the build orientation about the Y-axis resulted in 

specimens with more compact structures, leading to enhanced fracture resistance and 

ultimately higher tensile strength. This suggests that optimizing the build orientation 

can positively influence the mechanical properties of printed parts, particularly in 

terms of tensile strength. 

 

N. Naveed et al. [7] determined the optimal raster orientation for fabricating 3D parts 

using thermoplastic material, specifically polylactic acid (PLA), by investigating the 

tensile properties of the printed parts. In addition to tensile testing, microstructural 

analyses are conducted on the fracture interface, outer surfaces, and inner surfaces of 

the 3D parts using scanning electron microscopy (SEM) to examine material failure 

modes, defects, and reasons for failure. 

 

By varying the raster angles, the study explored five different orientations to 

understand their impact on the strength and quality of the printed parts. The objective 

is to identify the raster orientation that results in the strongest 3D printing parts. This 

information can then be used to optimize the printing process and enhance the 

mechanical performance of printed components. 

 

Through detailed analysis of the microstructure and tensile properties, the study aims 

to provide insights into the relationship between raster orientation and part strength. 

By identifying the best raster orientation, manufacturers can improve the quality and 

reliability of their 3D printed parts, leading to better overall performance in various 

applications. 
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Chamil Abeykoon et al. [9] carried experimentation using DSC, SEM, TGA with 

various material combinations as PLA, ABS, CFR-PLA, CFR-ABS, CNT-ABS 

commented as tensile, compressive, flexural properties were best at print temperature 

of 215°C , infill density of 100%, print speed of 90 mm/s, and linear infill pattern. 

 

High strength material was CFR-PLA (J Mogan. [37]). Ganesh Chate et al.[38] 

investigated the effect on strain, elastic modulus stated that moisture content 10% and 

raster angle 90% show optimum result. 

 

R.K Gupta et al. [13] have developed the adaptive fuzzy logic to analyse the 

parameters, which are used in the 3D-based FDM printing substances. Here, the fuzzy 

logic is initiated to the neural model to monitor the parameters of the 3D printing. 

 

A. Gupta et al. [18] phrased product strengthening model based on ANN algorithm. 

The developed ANN model demonstrates its capability to predict lower average error 

values under various conditions, including different processing conditions, materials, 

and machine setups. 

 

B.M. Castro et al. [25] have introduced the 3D printing strategy for a web-based 

replica to accelerate the pharmaceutical application of the ML model. Method-ML, to 

detect the characteristics of printing 3D design, one of the datasets was constructed. In 

this study, a total of 614 drug-loaded combinations were designed using 145 various 

pharmaceutical excipients. These formulations were 3D printed and evaluated in- 

house. To develop a predictive tool, a dataset was compiled, and ML models were 

trained and tested using a 75:25 split. Notably, the AI models achieved accuracies of 

76% and 67% for predicting key fabrication parameters related to printability and 

filament characteristics, respectively. By the implementing this method, the 

fabrication data of 3D model was obtained for that particular drug. 

 

Ravi Butola et al. [26] analysed comparison of RSM and ANN for prediction of the 

tensile properties of friction stir-processed surface composites, concluded that the 

ANN model’s predictive capability is observed to be better than the RSM model in 

regards with tensile strength. 
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Ashutosh Kumar Gupta et al. [27] investigated the effect of process parameters on 

dimensional accuracy of FDM printed parts and results show that ANN model 

predicts the results with very less error in comparison of existing models. 

 

Jayant Giri et al. [28] optimized critical process parameters like layer thickness, air 

gap, raster width, build orientation, raster angle, and the number of contours for 

enhancing the properties of FDM printed part such as tensile strength, surface 

roughness, and build time using ANN and concluded that the tensile strength 

improves with the 0º build orientation of the object, low layer thickness and raster 

width with high range. 

 

Mohammad Shirmohammadi et al. [29] investigated the effect of FDM 3D printing 

process parameters on the surface roughness of printed parts using ANN Hybrid 

algorithm and RSM, concluded that 0.3 mm of nozzle diameter achieves the best 

surface quality. 

 

M. A. Mahmood et al. [30] reviewed ML technique has been recently validated for 

intricate pattern identification and the development of deterministic relationships, 

which eliminates the necessity of constructing and solving physical models. Among 

ML methods, ANN stand out as the most commonly used model as having capability 

to be play with large datasets and robust computational capabilities. Study provided 

an overview of the progress made with ANN in various aspects of 3D printing. Also 

addressed the challenges encountered when applying ANN in 3D printing and 

proposed potential solutions to overcome these challenges. 

 

O.A.Mohmed et al. [31] investigated how various fabrication conditions in FDM 

affect the dimensional accuracy of cylindrical parts. To achieve this, a novel approach 

combining integrated second-order definitive screening design (DSD) and ANN 

techniques was evolved. The experimental design involved evaluating six significant 

operating variables that impact dimensional accuracy in FDM to determine the 

optimal fabrication conditions that result in improved dimensional accuracies for 

cylindrical parts. 
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Demei Lee et al. [32] the study investigated the impact of processing parameters on 

the mechanical properties of FDM-printed carbon fibre-filled polylactide (CFR-PLA) 

composites using an L18 orthogonal array model. Tensile and impact strengths were 

measured post-printing, and the effects of different parameters on these strengths were 

analysed. Experimental findings revealed that 3D-printed CFR-PLA exhibited a 

rougher surface morphology compared to virgin PLA. Among the selected variables, 

bed temperature was identified as the most influential parameter affecting the tensile 

strength of CFR-PLA-printed parts. This suggests that controlling the bed temperature 

during printing is critical for achieving desired tensile properties in CFR-PLA 

composites. Furthermore, bed temperature and print orientation were found to be the 

key parameters affecting the impact strengths of the printed composites. Parts printed 

at a 45° orientation demonstrated superior mechanical strengths compared to those 

printed at a 90° orientation. This indicates that optimizing print orientation can 

significantly impact the impact resistance of CFR-PLA parts, with oblique 

orientations yielding better performance. Print speed 55mm/s, bed temperature 70°C, 

infill density 60%, orientation 45°, nozzle temperature 220°C yield to optimum 

combination. 

 

M. Ajay Kumar et al. [33] confirmed 0.1 mm layer height, 80% infill density, 

80mm/s print speed were the best parameters for the optimisation of tensile strength. 

Tensile strength is inversely proportional to number of layers but directly proportional 

to infill density and bed temperature was insignificant parameter. 

 

100 % infill density and hexagonal pattern print exhibits best tensile strength amongst 

print pattern is dominant factor (Harsh Vardhan et al [38], Ge Gao et al [70], K.N. 

Gunasekaran et al [24], Vishal Wankhede et al [31] ). 

 

A. R. Kafshgar et al. [34] found out optimum combination as 0/90° raster angle, 

220°C extrusion temperature, 60% infill rate, 0.1 mm layer thickness for better tensile 

strength and toughness. Higher layer thickness part was stronger. Thermal behaviour 

was influenced by printing speed and infill density (N. A. Fountasa et al [74]). 
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P. K. Farayibi et al. [35] investigated 0.2, 0.4, 0.3 mm layer thickness, 210°C, 

220°C, 215°C extrusion temperature, 50%, 30%, 50% infill density were best for 

impact, tensile, hardness respectively. 

 

Pooja patil et al. [36] investigated surface roughness, printing time and filament 

length using grey relational analysis commented as layer thickness of 0.2 mm , 

triangular pattern, printing speed 100 mm/s and infill % seventy were the optimum 

parameters. 

 

Various optimization techniques were utilised by researchers like, Response surface 

methodology (RSM) [54,55], Genetic algorithm (GA) [54,56], Taguchi orthogonal 

array[58,50,32-34,61,64,], Full factorial[57], Fuzzy system[59,60], Analysis of 

variance (ANOVA)[58,34,62], Scanning Electron Microscopy (SEM)[63], Grey 

regression analysis [35,36,66], ANN [56], KNN,RF,SVM [67] to optimize the design 

parameters to yield better mechanical properties. 

 

Table 2.1 illustrates about the author with publication year, the specific area of focus, 

such as process optimization, mechanical properties, etc., the methods used in the 

research, including the algorithms, techniques, or strategies (e.g., machine learning, 

deep learning, and statistical methods). Further it incorporates the parameters that 

were controlled or optimized during the study (e.g., nozzle diameter, print speed, 

layer height) and the outcomes that were measured to evaluate performance, such as 

mechanical properties (e.g., tensile strength, compressive strength, accuracy). Finally 

it depicts the key results or conclusions drawn from the study. 
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Table 2.1 Literature of FDM 
 

 

 

 

 
 

Reference of 

research, year 

Work Area (Methods, 

Input and Output) 

 

Findings 

 

V. C. Bopanna 

et al. [1], (2023) 

 

The ANN-GA approach is 

evolved to generate the 

non-linear performance 

relationship between the 

input process parameters 

and tensile strength. 

 

Study demonstrates that the selected 

process parameters had prominent 

effect on response variable. Most 

influential factor was raster angle. 

Raising the Y axis build orientation 

fabricated objects with compact 

structures which lead to enhanced 

fracture resistance. 

 

A.Karad, P. 

Sonawwanay 

[2], (2023) 

 

The chosen infill pattern 

for the flexural test study 

was the triangular pattern, 

which incorporates various 

densities of infill 

percentages, specifically 

25%, 50%, 75%, and 

100%.. 

 

With linear patterns with 100% infill 

density, scanning electron microscopy 

analysis revealed a clear relationship 

between the microstructures and the 

rasters. The analysis showed various 

features such as porosity, voids, gaps 

between beads, and holes due to 

polymer being pulled out. 

 

Wenxin Lao et 

al [4], (2020) 

 

Artificial neural 

mechanism was utilized to 

recognize the finest nozzle 

shapes. The quantity of 

printing procedure was 

enhanced. 

 

Finally, the finest shapes of nozzle 

were detected. 
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Steffen 

Esslinger and 

Rainer Gadow 

[10], (2020) 

 

Technique:  FDM-Slip 

casting, to  design 

thermoplastic moulds 

using 3D printing scheme. 

 

The measure of compressive strength 

was found. 

 

D.Yadav, 

D.Chhabra et al 

[13], (2020). 

 

3D experiments were done 

to test the tensile strength, 

the method used to 

observe the 3D printing 

parameter     is     Adaptive 

based neural fuzzy system 

 

Several parameters have been 

validated like density, fabrication layer 

thickness and tensile strength 

 

M.Goudswaard, 

B. Hicks, and 

A.Nassehi [14], 

(2021) 

 

Decision models were 

executed using artificial 

neural model to value the 

capacity of 3D design 

 

The capability of Artificial neural 

model was evaluated and the 

mechanical properties was reported for 

that specific 3D object 

 

Kaushik 

Yanamandra, et 

al [15], (2020) 

 

Imaging strategy to 

reconstruct the tool path. 

Original model was 

trained as input; finally, 

the reconstruction model 

was compared with 

original model. 

 

High quality of composite parts was 

equipped successfully. 

 

S.Dev, and 

R.Srivastava et 

al [16], (2020) 

 

Taguchi mechanism was 

worn to do the 

experimental works. Also, 

genetic algorithm was 

used to optimize the 

design    parameters.    The 

optimized parameters were 

 

At final, an intelligent model was 

determined to utilize in 3D design 

process for attaining high tensile 

strength 

https://www.sciencedirect.com/science/article/abs/pii/S0266353820313452#!
https://www.sciencedirect.com/science/article/abs/pii/S0266353820313452#!
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 gained as o/p.  

 

K. Rajan, 

M. Samykano, 

K. Kadirgama 

[17], (2022) 

 

Parameters and 

mechanical properties with 

different materials have 

been discussed. 

 

Various materials and their effects on 

mechanical properties shown PLA is 

flexible material for FDM processes. 

 

Luis Suárez and 

Manuel 

Domínguez 

[23], (2020) 

 

The environmental issues 

in fabricating AM was 

systematically reviewed 

 

Finally, the issues are separated and 

the difficulties of equipping 3D design 

were described. 

 

O.A. Mohamed, 

S.H.Masood, 

and 

J.L.Bhowmik 

[24], (2021) 

 

For analysing the design 

properties Artificial neural 

model with screening 

design was utilized. Here, 

3D object properties like 

thickness dimension, etc. 

was trained as input and 

the dimension accuracy 

was obtained as output. 

 

The robustness score of Artificial 

neural scheme was found with wide 

measure of exactness rate. 

 

M.Elbadawi, 

B.M. Castro et 

al [25], (2020) 

 

Method-ML, To detect the 

characteristics of printing 

3D design, one of the 

datasets was constructed. 

In the following steps that 

constructed dataset was 

trained to the system then 

the 3D painting design in 

medicines were worn as 

tested samples. 

 

By the implementing this method, the 

fabrication data of 3D model was 

obtained for that particular drug 
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S. Garzon- 

Hernandez et al 

[26], (2020) 

 

Technology FDM was 

utilized. If any fault 

function was recognized 

then       an       innovative 

constitutive was designed. 

 

Printing parameters was calculated 

using numerical analysis and the fault 

process was recognized. 

 

A. Gupta, 

M.Taufiq [27], 

(2022) 

 

The part strength 

modeling technique based 

on ANN involved the 

development of a 

predictive model that 

correlates input 

parameters (such as 

process parameters, 

material properties, 

geometry) 

 

The developed ANN model has 

demonstrated its capability to predict 

lower average error values under 

various conditions, including different 

processing conditions, materials, and 

machines. 

 

M. Birosz, M. 

Ando [39], 

(2023) 

 

The versatile infill scaling 

technique for FDM aims to 

optimize the infill pattern 

and density to improve the 

mechanical properties of 

printed parts, particularly 

in terms of tensile 

strength. 

 

Adjusting the infill pattern and density 

based on specific scaling factors to 

achieve desired mechanical properties 

while minimizing material usage and 

print time. 

 

Jianjing Zhang, 

Peng Wang, 

Robert X. Gao 

[40], (2019) 

 

Measuring temperature 

and vibration data 

provides valuable insights 

into the layer-wise thermal 

and mechanical activities 

 

Experimental evaluation has 

demonstrated that the Long Short- 

Term Memory (LSTM)-based 

predictive     model     surpasses     the 

performance       of       various       ML 

https://www.sciencedirect.com/science/article/pii/S0264127519308524#!
https://www.sciencedirect.com/science/article/pii/S0264127519308524#!
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 during the AM process, 

while also helping to 

identify process variations. 

techniques, including Support Vector 

Regression (SVR) and Random 

Forest. 

 

Mohammad 

Farhan Khan, et 

al [41], (2020) 

 

Convolution based neural 

approach to value the 

quality of the designed 3D 

parts. The function of DL 

has monitored via 3D 

printer. 

 

The process was optimized to diminish 

the cost and time. 

 

Jorge Manuel et 

al [42], (2020) 

 

Numerical analyses are 

designed to evaluate the 

mechanical characteristics 

of plastic materials. 

Moreover, the plastic 

Nylstrong GF-PA6 was 

manufactured using FDM 

approach. 

 

Compressive strength was attained at 

high range by FDM. Also, achieved 

less error and high accuracy. 

 

S. Garzon- 

Hernandez et al 

[43], (2020) 

 

Here, FDM technology 

was used and the 

experimental data was 

worn as dataset. 

 

The properties of manufactured 3D 

design were validated. 

 

Vigneshwaran 

Shanmugam et 

al [45], (2021) 

 

After manufacturing the 

composite, fatigue 

properties were calculated 

by FDM technique. Hence, 

the significant scores of 

fatigue properties were 

calculated. 

 

Mechanical strength and fatigue 

properties was analysed successfully. 

https://www.sciencedirect.com/science/article/pii/S2214785320381037#!
https://www.sciencedirect.com/science/article/pii/S2214785320381037#!
https://www.sciencedirect.com/science/article/pii/S0264127519308524#!
https://www.sciencedirect.com/science/article/pii/S0264127519308524#!
https://www.sciencedirect.com/science/article/pii/S0142112320305399#!
https://www.sciencedirect.com/science/article/pii/S0142112320305399#!
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RuChen et al 

[46], (2020) 

 

FDM technology with 

inversion stress model was 

modelled to estimate the 

chief parameters like layer 

number and thickness, 

direction of printing and 

density, Here, stress and 

strain was monitored 

frequently. 

 

Residual stress measure of the 

designed 3D printing model was 

evaluated. 

 

Luca Di Angelo 

et al [47], 

(2020) 

 

The utilized algorithm was 

based on multi objective 

model, which is known as 

S-metric selection. Here, 

the data of designed 3D 

object has taken as input 

and the optimal orientation 

has obtained as output. 

 

Finally, the manufacturing cost and 

quality of designed object was 

estimated with high exactness 

measure. 

 

Zeqing Jin et al 

[48], (2019) 

 

Autonomous correction 

scheme was upgrade in 

AM system to correct the 

fault automatically during 

the manufacturing process. 

 

Faults are detected and corrected 

automatically in short duration and 

less energy cost. 

 

Arfan Majeed et 

al [49], (2021) 

 

Smart AM for better 

decision-making function, 

application utilized for 

FDM was AlSi10Mg alloy 

and   the   process,   which 

worn   for   manufacturing 

 

Manufacturing emission was reduced, 

the process can execute in short 

period. 

https://www.sciencedirect.com/science/article/pii/S0142941820321735#!
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 process is sensor melting 

strategy. 

 

 

Vishal 
 

Method: Taguchi’s. An 
 

Variance analysis was developed to 

Wankhede et al engineering design has study the chief behaviour of variable 

[50], (2020) taken for the experimental process. Also, density and layer 

 process, the input variables thickness were calculated. 

 of engineering model were  

 trained as input and the  

 output was obtained for  

 each variable.  

 

2.5 Research gap and problem identification 

 
AM process is incorporated with several real-time applications and rapidly increased 

in many fields. While FDM has become a prevalent method for additive 

manufacturing due to its cost-effectiveness and ease of use, the process is still 

hindered by challenges in achieving consistent part properties. Traditional approaches 

often fail to capture the complex and nonlinear relationships between process 

parameters and part performance, particularly under varying conditions. However, 

compared with the existing ML techniques various complexity and lower prediction 

capability issues are reviewed. In addition, mismatch connection during the designing 

process may reduce the prediction accuracy rate; therefore, the prediction is very 

important regarding those issues and parameter selection. The main aim of this ML 

with AM technique is to select the best parametric combination in the 3D printing 

design. During the printing process, the input data is carried randomly then it leads to 

cause the overflow issue. The integration of machine learning, especially deep 

learning (DL), into additive manufacturing remains underexplored, with limited 

studies investigating how DL can dynamically enhance performance characteristics in 

real-time. 

While deep learning has proven effective in fields such as image recognition and 

natural language processing, its application in fault detection for FDM is still in its 

https://www.sciencedirect.com/science/article/pii/S2214785319333218#!
https://www.sciencedirect.com/science/article/pii/S2214785319333218#!
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infancy. Very few studies have developed deep learning models specifically tailored 

to monitor FDM processes and predict potential failures in real-time. 

 

Various optimization techniques were utilised by researchers like, Response surface 

methodology (RSM), Genetic algorithm (GA), Taguchi orthogonal array, Full 

factorial, Fuzzy system, Analysis of variance (ANOVA), Scanning Electron 

Microscopy (SEM), Grey regression analysis, ANN, KNN,RF,SVM to optimize the 

design parameters to yield better part properties. However, these approaches often 

focus on specific aspects of the process, such as dimensional accuracy or surface 

roughness, without fully addressing the complex interactions between multiple 

mechanical properties and process parameters. 

 

To bridge the research gap and to enhance the performance characteristics of FDM by 

providing strong interface between AM & ML, various FDM areas where ML 

applications have been implemented is shown in Fig.2.3 The pie chart shows almost 

75% studies have been carried out related to quality monitoring system, mixed studies 

and surface roughness in the FDM process. It is evident from the chart that there is 

scope to analyse the effect of process parameters to improve mechanical properties of 

parts produced by FDM process using ML applications. 

 

 
Figure 2.3 ML applications in FDM areas [21] 
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The primary challenge lies in establishing an effective interface between additive 

manufacturing processes and deep learning models that can predict and optimize key 

performance metrics. Existing research lacks of adjusting FDM process parameters 

dynamically based on real-time data to optimize mechanical properties, thereby 

hindering advancements in producing high-quality, reliable parts. There is a need to 

bridge this gap by developing models that learn from large datasets to predict and 

enhance the performance characteristics of FDM, ultimately improving part 

consistency, quality, and process efficiency. 

 

There is a pressing need to develop an optimized deep learning model that can 

efficiently detect faults, monitor process behaviour and predict issues before they 

arise. This model should be able to handle the complexity of FDM processes and 

improve part quality by reducing defects and optimizing performance. Parameters 

such as nozzle diameter, layer thickness, print speed and extrusion temperature have 

received less attention compared to others like infill density, infill pattern, build 

orientation, raster width, or raster orientation. Future research could focus on 

investigating these less analyzed parameters to understand their impact on part quality 

and performance better. 

A critical challenge is the lack of comprehensive comparative studies that evaluate 

deep learning-based optimization methods against traditional optimization techniques 

for FDM in terms of multiple performance metrics, such as prediction accuracy, 

tensile strength, and compressive strength. 
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2.6 Objectives of study 

 
1] To study and enhance the performance characteristics of FDM by providing strong 

interface between AM & DL. 

 

2] To develop the optimized deep learning model (SMbDBNS) to start the detection 

process for both fault and behaviour. 

 

3] To compare the obtained parameter results with other existing approaches in terms 

of over flow rate, prediction accuracy, tensile strength, compressive strength etc. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Problem formulation 

 
Today in the digital manufacturing era FDM process is widely used as it can construct 

intricate and complex part geometries in short time as compared to conventional 

manufacturing, its simplicity and economical bahaviour. Despite of such advantages, 

literature argued various machine learning approaches adopted to increase the 

performance of FDM addressing the issues of irregularities in part properties, 

accuracy, and reliability due to challenging task of best parametric selection. In 

several strategies, FDM technique was suffered a lot because of complex product 

design and less prediction measure. So, to enhance the AM mechanism a machine 

learning model is suited to implement to maximize the defeat detection rate and 

designed object behaviour. In this context, the present study proposed a DNN strategy 

to predict the best parametric combination with optimized mechanical properties of 

printed parts. 

 

3.2 Research plan 

 
This chapter represents the overview of research steps that have been followed to 

comply with research objectives. Many studies have delved into optimizing process 

parameters in FDM using a variety of methodologies. Traditional optimization 

methods typically involve experimental design, trial and error, or heuristic 

approaches. However current developments in machine learning (ML) have provided 

novel opportunities for process optimization in FDM. Diverse researches have 

evolved with the machine learning (ML) techniques, including artificial neural 

networks (ANNs), genetic algorithms (GAs), support vector regression (SVR), and 

reinforcement learning (RL), to optimize FDM process parameters. 

 

To accomplish the research objectives certain steps were followed as shown in Figure 

3.1. Based on the identified gap in the literature regarding the optimization of process 
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parameters in FDM associated with the ML techniques, the research objectives were 

formulated. 

 

 
Figure 3.1 Research methodology 

 
PLA is used in wide range engineering and medical applications due its unique 

advantage of biodegradability. Though conventional material like PLA is used in wide 

range engineering applications; was used in most of the open source FDM machines. 

The characteristics of part manufactured by FDM processes are influenced by 

different process variables such as slicing parameters (layer thickness flow rate, 

deposition speed, infill percentage, raster angle, raster orientation, contour width, air 
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gap, nozzle diameter), Build orientation, temperature condition (environmental 

temperature, extrusion temperature, platform temperature) [17]. In the present 

research, less analysed design variables parameters like nozzle diameter, width of 

print line and layer thickness, print speed are considered as input parameters with 

their levels values. The selection of values was based on previous literature and 

customized 3D printed FDM machine. These specific values were chosen because 

they cover a broad range of commonly used settings in FDM printing. The ranges 

allow for comprehensive experimentation to determine optimal settings that strike a 

balance between competing factors like surface finish, dimensional accuracy, 

mechanical strength, and print time. The goal is to optimize the process parameters 

such that the final printed part meets the desired performance standards (e.g., tensile, 

compressive, and flexural strength) while minimizing production time and material 

waste. 

 

Figure 3.2 depicts the schematic architecture of proposed model used to optimise the 

FDM process parameters. The test specimens have been manufactured with 

predetermined dimensions strictly adhering to ASTM standards followed by standard 

operating procedure for manufacturing (CAD modelling, conversion to .stl file 

format, slicing, generation of tool path, printing for final prototype).Experiments 

carried out to test the mechanical properties of manufactured parts and collected 

dataset from the experimental results were inscribed for training the proposed 

machine learning model. 
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Figure 3.2 FDM with ML architecture 

 
Proposed DNN algorithm was developed to aim the enhancement in prediction 

accuracy regarding best parametric selection to optimize the mechanical properties. 

The available dataset was converted into training 70% and rest testing sets to evaluate 

the performance of the model. The specific splitting ratio is around 70-80% of the 

data for training and rest 20-30% for testing. Then it assures that the model is trained 

on a enough amount of dataset to learn the underlying patterns and relationships, 

while also allowing for an independent evaluation of its performance on unrevealed 

data. Additionally, the integration of machine learning techniques allows for more 

efficient exploration of the parameter space and identification of optimal settings. 

 

Training dataset was handed to fit the model's parameters, while testing data was fed 

to assess how well the trained model generalizes to new, unseen data. This split helps 

to avoid overfitting, in which though the algorithm performs best on the training 

dataset but may fail to reveal to new data. 

 

DNN is characterized by its depth, which refers to the existence of various hidden 

layers within the input and output layers [24]. Network to learn intricate patterns and 

representations from the input data can be enabled by hidden layers, leading to more 
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sophisticated feature extraction and higher-level abstractions. DNNs consist of three 

or more hidden layers stacked between the input and output layers. Each hidden layer 

contains numerous neurons (nodes) that perform computations on the input data [40]. 

 

Activation functions like ReLU (Rectified Linear Unit), sigmoid were implied to the 

output of each neuron to hidden layers for introducing non-linearity and activate the 

network to learn complex mappings between inputs and outputs. DNNs can 

automatically learn hierarchical representations of the input data. Lower layers 

typically catch simple features such as edges and textures, while higher layers arrest 

increasingly abstract and intricate features such as shapes and objects. 

 

The hyperparameters (number of neurons and layers, normalization, batch size, 

activation functions, optimizers, dropouts,), were tuned to find the optimal 

combination that maximizes the performance metrics of the model, such as accuracy, 

precision. Evaluation of trained model on the test set using the predefined 

performance metrics using classification technique. 

 

Validation of model performance was performed using statistical analysis well in 

addition of performance matrix using experimental dataset. Documentation of the 

entire validation process was done, including data pre-processing steps, model 

architecture, hyperparameter tuning, and performance evaluation results. 

 

Finally, study summarized the key findings obtained from the experimental analysis 

conducted. Comparison of the findings was evaluated with previous studies or 

literature to identify similarities, differences, or contradictions. Discussion covered 

how the results contribute to addressing gaps in knowledge and advancing the 

understanding of the research area. Limitations of the study and their potential impact 

on the interpretation of results stated to engrave the future research direction. 

Methodology also suggested potential extensions or refinements to the methodology 

used. 
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CHAPTER 4 

FABRICATION AND TESTING 

4.1 Overview 

 
The adopted experimental methodology in this study is shown in Figure 4.1. The key 

motive of utilizing ML in AM is to find out best combination of process parameters 

and analyse the mechanical properties of the proposed design. In this present research 

work, the design variables are based on nozzle diameter, layer thickness, print speed, 

distance from each print line used as an input parameters to train the developed model 

in Deep Neural Network. Their level values were based on previous literature and 

customized 3D printed FDM machine. Rest parameters were kept constant. Full 

factorial experiments with 4 parameters and 4 levels, 4 x 4 x 4 x 4= 256 has been 

carried out for each output value in terms of tensile and compressive strength 

respectively, as more data requirement to execute deep neural network and to attain 

the best prediction accuracy for the continuous monitoring process. 

 

 
Figure 4.1 Experimental Methodology 
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Table 4.1 Significant Materials in FDM Process PLA and ABS [42] 

 
 

Property 
 

PLA 
 

ABS 

 

Printing temperature (° C) 
 

180 to 230 
 

210 to 250 

 

Build platform temperature (° C) 
 

20 to 60 
 

80 to 110 

 

Raft 
 

Optional 
 

Mandatory 

 

Strength 
 

High 
 

Medium 

 

Flexibility 
 

Brittle 
 

Moderately flexible 

 

Heat resistance 
 

Low 
 

Moderate 

 

Biodegradability 
 

Yes 
 

No 

 

Moisture absorption 
 

Yes 
 

Yes 

 

Table 4.1 elaborates the significance of discrimination of PLA (Polylactic Acid) and 

ABS (Acrylonitrile Butadiene Styrene) which are indeed two common thermoplastic 

materials used in FDM and other AM processes. PLA is a biodegradable and 

environmentally friendly thermoplastic derived from renewable resources such as 

corn starch or sugarcane. It has a relatively low melting temperature (around 180- 

220°C) and exhibits good dimensional stability, stiffness, and surface finish. ABS is a 

petroleum-based thermoplastic known for its high strength, toughness, and impact 

resistance. It has a higher melting temperature (around 210-250°C) compared to PLA 

[11]. 

 

PLA is easier to print with compared to ABS due to its lower printing temperature and 

minimal warping tendency. It adheres well to the print bed and typically does not 

require a heated build platform. PLA offers good stiffness and dimensional accuracy. 

PLA is easier to post-process compared to ABS. It can be sanded, painted, and glued 
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easily, and it does not emit strong odours during printing. Specific properties are 

shown in Table 4.2 [30]. 

 

PLA is considered more environmentally friendly than ABS due to its 

biodegradability and renewable sourcing. It is compostable under certain conditions 

and has a lower carbon footprint compared to ABS [11]. 

 

Table 4.2 Properties of PLA [30] 

 
 

Property 
 

Values 

 

Specific Gravity 
 

1–1.5 

 

Surface Energy (dynes) 
 

36–40 

 

Melting Temperature (◦C) 
 

140–210 

 

Molecular Weight (Daltons) 
 

Approx. 1.6 × 

105
 

Melt Flow Index (g/ min) 4–22 

 

Crystallinity (%) 
 

5–35 

Glass Transition 

Temperature (◦C) 

 

50–75 

 

Solubility Parameters (J/cm) 
 

21 

 

 

 
4.2 Experimental details 

 
The test specimens have been manufactured with PLA Material with 1.75 mm 

diameter with predetermined dimensions strictly adhering to ASTM 638(type IV), 

ASTM D695 and ASTM 790. Figure 4.2 shows the material used for fabrication with 
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different colours confronting for experimentation. Density of PLA was 1.24 gm/cm3. 

Test parts were fabricated using FDM Printer D 300 3DeoMetry Make: Build 300 X 

300. Figure 4.3 shows the machine tool used for fabrication of parts. 

 

 

 

 

Tensile specimens 

 
 

 

 

Compression specimens 

 
 

 

 
Flexural specimens 

 

Figure 4.2 PLA material used for experimentation 

 

 
Figure 4.3 FDM printer used for fabrication 
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The detailed specifications of printer are depicted in Table 4.3. 

 
Table 4.3 Specifications of FDM system 

 
 

 

Typical 

Specifications 

Print technology FFF 

Type Material extrusion 

Manufacturer 3DeoMetry 

 

 

 

 

Process 

specifications 

Build size 300 mm x 300 mm x 205 mm 

Layer resolution 0.05 mm 

Extruder Single 

Enclosed chamber No 

Extruder temperature limit 350°C 

Bed temperature 100°C 

Connection media USB, SD 

Raw material 

 

Specifications 

Filament diameter 1.75 mm 

Materials can be print PLA, ABS, PETG, PC 

 

Software 

Slicer (recommended) Cura 

Allowed operating systems Windows, Mac OSX, Linux 

Electrical 

requirements 

 

Input 

 

220-240 V 

 

Drafting of tested parts was done using CATIA 5.0 software as shown in Fig.4.4, 4.6 

and 4.8.Ultimaker Cura 4.0 was used for slicing & generating G codes to adjust the 

mentioned parameters precisely. 



44 
 

 

 

 

 

 

Figure 4.4 Tensile test specimen CAD model 
 
 

 
Figure 4.5 Tensile test specimens 
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Figure 4.6 Compressive test specimen CAD model 
 
 

 
Figure 4.7 Compressive test specimens 
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Figure 4.8 Flexural test specimen CAD model 
 
 

 
Figure 4.9 Flexural test specimens 
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4.2.1 Tensile test set up 

 
Tensile testing of Type I specimens was carried out as per ASTM D638 using a 

Unitek 94100 universal testing machine. Type I specimens are dogbone-shaped with a 

narrowed central section. 

 

Specimen Dimensions: 

 
Gauge Length: 165 mm (6.5 inches) 

 
Width: 19 mm (0.75 inches) 

 
Thickness: 3.2 mm (0.125 inches) 

 
The grips were provided for sufficient clamping force without causing premature 

failure or slippage during testing. The testing speed settings utilized on the Unitek 

94100 machine to meet the requirements specified in ASTM D638. A common testing 

speed for plastics is 5 mm/min at a constant strain rate of 0.01 per sec. Tensile testing 

was carried out at standard temperature and humidity conditions (23°C ± 2°C and 

50% ± 5% relative humidity) as recommended by ASTM D638 ensuring that the 

testing environment meets these conditions to ensure consistency and reproducibility 

of results. 

 

Tensile strength can be calculated using the equation 4.1 given below: 

 

Tensile strength 𝑇𝑆 = F 
A𝐶𝑆 

-------------- (4.1) 

 

Where F is load applied and ACS is area of cross section before loading. 
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Figure 4.10 Test set up for tensile properties 
 
 

 
Figure 4.11 Tensile specimens after testing 
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4.2.2 Compression test set up 

 
The compression strength test is conducted to evaluate how a material responds to 

compressive forces under specific parameter settings. In this test, cylindrical 

specimens are prepared according to the ASTM D695 standard. The dimensions of 

the specimens consist of a diameter of 12.7 mm and a height of 25.4 mm, ensuring a 

length-to-diameter ratio of 2:1. These specimens are subjected to compressive loads to 

determine their resistance to compression, providing valuable insights into the 

material's behaviour under such conditions. The compression test is performed on 

Zwick type 1474 testing machine with an initial strain rate of 10-2 s -1 with speed of 

testing 1.5 mm/min. 

 

 
Figure 4.12 Test set up for compressive properties 
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Figure 4.13 Compressive specimens after testing 

 
4.2.3 Flexural test set up 

 
Bending test based three point technique was also performed on Tinius Olsen machine 

at a constant strain rate of 0.01 per sec. The specimen size followed by ASTM D790 

standard with the dimensions of length = 127mm, width = 12.7mm and thickness = 

3.2mm. 

 

The calculation of stresses and Strains were done according to the loads obtained by 

3-point bending machine mechanism. The equations 4.2 and 4.3 can be used for 

calculation of the stress and strain respectively. 

 

Flexural stress 𝐹𝑆 = 
3𝐹𝐿

 
2𝑏𝑡2 

------- (4.2) 

 

Strain =  
6 𝛿 𝑡

 
𝐿2 ------- (4.3) 
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Figure 4.14 Test set up for flexural properties 
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Figure 4.15 Flexural specimens after testing 

 
Drafting of tested parts was done using CATIA 5.0 software as shown in Figure 4.4, 

4.6 and 4.8.Ultimaker Cura 4.0 was used for slicing & generating G codes to adjust 

the mentioned parameters precisely. Their level values are represented in Table 4.4. 

Layer thickness, nozzle diameter, print speed, width of layer was considered as input 

parameters with four levels of each parameter. Nozzle diameter, width of each print 

line was less analysed parameters than others. The selection of parameter values was 

based on previous literature and customized 3D printed FDM machine. Rest 

parameters were kept constant is given as per Table 4.5. These specific values were 

chosen because they cover a broad range of commonly used settings in FDM printing. 

The ranges allow for comprehensive experimentation to determine optimal settings 

that strike a balance between competing factors like surface finish, dimensional 

accuracy, mechanical strength, and print time. The goal is to optimize the process 

parameters such that the final printed part meets the desired performance standards 

(e.g., tensile, compressive, and flexural strength) while minimizing production time 

and material waste. 
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Table 4.4 Experimental parameters and their level values 

 
 

Parameters 
 

Level 1 
 

Level 2 
 

Level 3 
 

Level 4 

 

Layer thickness (mm) 
 

0.1 
 

0.2 
 

0.3 
 

0.4 

 

Nozzle diameter (mm) 

 

0.15 

 

0.2 

 

0.25 

 

0.3 

 
Distance of each layer(mm) 

 
0.3 

 
0.5 

 
0.7 

 
0.9 

 

Print speed (mm/s) 

 

20 

 

40 

 

60 

 

80 

 

Table 4.5 Constant experimental parameters 

 
Parameter Value 

Air gap 0 

Raster angle 0º 

Extrusion Temperature 210º C 

Infill density 100% 

Infill Pattern Linear 

Wall thickness 1 mm 

Top thickness 1 mm 

Bottom thickness 1 mm 

 

4.3 Experimental values 

 
The Table 4.6 depicts the different combinations of selected input parameters and the 

experimental values of mechanical properties namely Tensile and compressive 

strength. Full factorial experiments with 4 parameters and 4 levels, 4 x 4 x 4 x 4= 256 

has been carried out for each output value in terms of tensile and compressive strength 

respectively, as more data requirement to execute DNN and to attain the best 

prediction accuracy for the continuous monitoring process. Experimental results were 

classified accordingly in two classes. Maximum Tensile strength in the experimental 

results obtained was 38.13 N/mm² and Compressive strength 27.36 N/mm².The best 

combinations of Tensile and Compressive strength both greater than its midrange and 

average values correspondingly 35.49 MPa and 25.30 MPa are taken as Class 1 



54 
 

 

 

combination and rest are Class 2. Class 1 was for good connection status and Class 2 

for others. 

 

Table 4.6 Experimental values for various combinations of input parameters 

 
Nozzle 

diameter 
(mm) 

Print 

speed 
(mm/s) 

Layer 

thickness 
(mm) 

Distance 

print 
line(mm) 

Tensile 

strength 
(MPa) 

Compressive 

Strength 
(Mpa) 

 

Class 

0.15 20 0.1 0.3 33.87 26.07 2 

0.15 20 0.1 0.5 36.15 26.05 1 

0.15 20 0.1 0.7 34.44 25.34 2 

0.15 20 0.1 0.9 34.68 24.41 2 

0.15 20 0.2 0.3 34.75 25.07 2 

0.15 20 0.2 0.5 32.93 25.67 2 

0.15 20 0.2 0.7 34.21 24.89 2 

0.15 20 0.2 0.9 34.44 25.34 2 

0.15 20 0.3 0.3 34.28 25.62 2 

0.15 20 0.3 0.5 35.25 24.19 2 

0.15 20 0.3 0.7 34.63 24.55 2 

0.15 20 0.3 0.9 35.04 24.10 2 

0.15 20 0.4 0.3 34.96 23.28 2 

0.15 20 0.4 0.5 34.10 23.95 2 

0.15 20 0.4 0.7 35.31 27.36 2 

0.15 20 0.4 0.9 35.24 25.75 2 

0.15 40 0.1 0.3 32.87 24.57 2 

0.15 40 0.1 0.5 35.20 24.72 2 

0.15 40 0.1 0.7 33.09 24.23 2 

0.15 40 0.1 0.9 33.81 25.33 2 

0.15 40 0.2 0.3 35.12 26.13 2 

0.15 40 0.2 0.5 33.66 24.54 2 

0.15 40 0.2 0.7 33.22 26.96 2 

0.15 40 0.2 0.9 34.75 26.40 2 

0.15 40 0.3 0.3 34.43 26.43 2 

0.15 40 0.3 0.5 35.19 24.43 2 

0.15 40 0.3 0.7 33.93 26.64 2 

0.15 40 0.3 0.9 34.69 25.38 2 

0.15 40 0.4 0.3 34.63 25.47 2 

0.15 40 0.4 0.5 35.18 26.59 2 

0.15 40 0.4 0.7 34.41 24.29 2 

0.15 40 0.4 0.9 33.69 24.54 2 

0.15 60 0.1 0.3 35.42 25.59 2 

0.15 60 0.1 0.5 32.87 25.18 2 
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0.15 60 0.1 0.7 34.67 26.14 2 

0.15 60 0.1 0.9 34.49 24.70 2 

0.15 60 0.2 0.3 35.12 26.10 2 

0.15 60 0.2 0.5 34.99 25.23 2 

0.15 60 0.2 0.7 34.75 24.61 2 

0.15 60 0.2 0.9 34.93 26.52 2 

0.15 60 0.3 0.3 34.28 24.65 2 

0.15 60 0.3 0.5 34.93 24.95 2 

0.15 60 0.3 0.7 32.89 26.64 2 

0.15 60 0.3 0.9 32.93 25.99 2 

0.15 60 0.4 0.3 35.35 26.36 2 

0.15 60 0.4 0.5 33.42 24.17 2 

0.15 60 0.4 0.7 34.79 24.92 2 

0.15 60 0.4 0.9 34.08 25.15 2 

0.15 80 0.1 0.3 34.15 25.10 2 

0.15 80 0.1 0.5 33.82 24.65 2 

0.15 80 0.1 0.7 34.91 25.23 2 

0.15 80 0.1 0.9 33.80 25.95 2 

0.15 80 0.2 0.3 35.41 25.20 2 

0.15 80 0.2 0.5 34.79 24.89 2 

0.15 80 0.2 0.7 34.17 24.28 2 

0.15 80 0.2 0.9 34.92 25.60 2 

0.15 80 0.3 0.3 33.45 26.14 2 

0.15 80 0.3 0.5 34.02 24.54 2 

0.15 80 0.3 0.7 34.82 26.28 2 

0.15 80 0.3 0.9 34.87 25.64 2 

0.15 80 0.4 0.3 33.58 26.57 2 

0.15 80 0.4 0.5 34.57 26.22 2 

0.15 80 0.4 0.7 34.74 24.03 2 

0.15 80 0.4 0.9 34.62 23.79 2 

0.2 20 0.2 0.7 36.95 25.57 1 

0.2 40 0.1 0.9 37.00 26.01 1 

0.2 60 0.1 0.7 36.96 25.88 1 

0.2 60 0.2 0.3 35.86 26.27 1 

0.2 60 0.2 0.5 36.89 26.31 1 

0.2 80 0.1 0.7 35.51 25.85 1 

0.2 80 0.2 0.3 36.48 26.04 1 

0.2 80 0.3 0.3 36.92 26.78 1 

0.2 20 0.1 0.3 34.30 26.42 2 

0.2 20 0.1 0.5 34.43 26.31 2 

0.2 20 0.1 0.7 32.97 25.95 2 

0.2 20 0.1 0.9 36.96 24.36 2 

0.2 20 0.2 0.3 35.86 24.91 2 
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0.2 20 0.2 0.5 34.52 25.07 2 

0.2 20 0.2 0.9 32.89 23.81 2 

0.2 20 0.3 0.3 34.58 23.88 2 

0.2 20 0.3 0.5 34.05 25.55 2 

0.2 20 0.3 0.7 35.28 25.57 2 

0.2 20 0.3 0.9 33.45 25.67 2 

0.2 20 0.4 0.3 36.10 25.33 2 

0.2 20 0.4 0.5 35.45 24.94 2 

0.2 20 0.4 0.7 34.62 25.15 2 

0.2 20 0.4 0.9 32.93 25.21 2 

0.2 40 0.1 0.3 35.10 26.79 2 

0.2 40 0.1 0.5 34.95 26.73 2 

0.2 40 0.1 0.7 35.03 24.81 2 

0.2 40 0.2 0.3 37.78 25.05 2 

0.2 40 0.2 0.5 34.96 27.18 2 

0.2 40 0.2 0.7 34.67 24.85 2 

0.2 40 0.2 0.9 36.00 24.98 2 

0.2 40 0.3 0.3 34.66 25.94 2 

0.2 40 0.3 0.5 35.05 25.95 2 

0.2 40 0.3 0.7 34.99 26.83 2 

0.2 40 0.3 0.9 33.19 26.91 2 

0.2 40 0.4 0.3 34.94 24.13 2 

0.2 40 0.4 0.5 35.33 24.66 2 

0.2 40 0.4 0.7 33.26 25.25 2 

0.2 40 0.4 0.9 35.44 25.28 2 

0.2 60 0.1 0.3 33.43 26.46 2 

0.2 60 0.1 0.5 35.25 26.24 2 

0.2 60 0.1 0.9 34.82 26.74 2 

0.2 60 0.2 0.7 37.45 24.87 2 

0.2 60 0.2 0.9 35.76 24.24 2 

0.2 60 0.3 0.3 35.39 24.70 2 

0.2 60 0.3 0.5 36.18 25.32 2 

0.2 60 0.3 0.7 38.02 24.97 2 

0.2 60 0.3 0.9 37.42 23.56 2 

0.2 60 0.4 0.3 35.42 23.24 2 

0.2 60 0.4 0.5 36.10 24.90 2 

0.2 60 0.4 0.7 33.08 25.03 2 

0.2 60 0.4 0.9 36.43 25.22 2 

0.2 80 0.1 0.3 35.19 26.28 2 

0.2 80 0.1 0.5 37.79 25.22 2 

0.2 80 0.1 0.9 34.19 25.24 2 

0.2 80 0.2 0.5 35.27 26.94 2 

0.2 80 0.2 0.7 33.42 25.38 2 



57 
 

 

 
0.2 80 0.2 0.9 34.28 24.80 2 

0.2 80 0.3 0.5 34.96 26.95 2 

0.2 80 0.3 0.7 33.70 24.22 2 

0.2 80 0.3 0.9 34.30 25.46 2 

0.2 80 0.4 0.3 34.91 25.12 2 

0.2 80 0.4 0.5 33.73 25.47 2 

0.2 80 0.4 0.7 34.37 25.41 2 

0.2 80 0.4 0.9 34.71 25.83 2 

0.25 20 0.1 0.3 37.02 26.19 1 

0.25 20 0.2 0.3 36.88 26.38 1 

0.25 40 0.2 0.7 37.00 27.00 1 

0.25 60 0.3 0.7 35.60 26.44 1 

0.25 80 0.1 0.3 36.03 26.12 1 

0.25 80 0.2 0.3 36.78 26.35 1 

0.25 80 0.2 0.5 38.13 25.86 1 

0.25 80 0.3 0.7 35.87 26.97 1 

0.25 20 0.1 0.5 33.92 25.45 2 

0.25 20 0.1 0.7 34.06 26.91 2 

0.25 20 0.1 0.9 34.73 26.27 2 

0.25 20 0.2 0.5 36.59 24.21 2 

0.25 20 0.2 0.7 36.72 24.55 2 

0.25 20 0.2 0.9 35.72 24.98 2 

0.25 20 0.3 0.3 34.65 26.88 2 

0.25 20 0.3 0.5 34.54 25.78 2 

0.25 20 0.3 0.7 36.30 24.30 2 

0.25 20 0.3 0.9 33.15 26.56 2 

0.25 20 0.4 0.3 35.65 24.17 2 

0.25 20 0.4 0.5 35.22 25.54 2 

0.25 20 0.4 0.7 33.39 26.80 2 

0.25 20 0.4 0.9 34.32 25.44 2 

0.25 40 0.1 0.3 35.05 23.72 2 

0.25 40 0.1 0.5 33.30 25.89 2 

0.25 40 0.1 0.7 35.46 25.04 2 

0.25 40 0.1 0.9 33.80 24.97 2 

0.25 40 0.2 0.3 34.67 24.79 2 

0.25 40 0.2 0.5 35.12 24.44 2 

0.25 40 0.2 0.9 36.43 24.69 2 

0.25 40 0.3 0.3 37.23 24.75 2 

0.25 40 0.3 0.5 32.86 26.49 2 

0.25 40 0.3 0.7 34.36 24.95 2 

0.25 40 0.3 0.9 34.11 23.83 2 

0.25 40 0.4 0.3 33.41 27.14 2 

0.25 40 0.4 0.5 36.66 24.79 2 
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0.25 40 0.4 0.7 37.27 24.23 2 

0.25 40 0.4 0.9 34.20 23.70 2 

0.25 60 0.1 0.3 34.04 26.36 2 

0.25 60 0.1 0.5 37.38 24.77 2 

0.25 60 0.1 0.7 34.52 23.98 2 

0.25 60 0.1 0.9 36.78 24.49 2 

0.25 60 0.2 0.3 36.06 24.94 2 

0.25 60 0.2 0.5 34.08 27.30 2 

0.25 60 0.2 0.7 33.21 24.93 2 

0.25 60 0.2 0.9 34.76 26.38 2 

0.25 60 0.3 0.3 33.83 26.30 2 

0.25 60 0.3 0.5 34.76 24.77 2 

0.25 60 0.3 0.9 36.48 23.83 2 

0.25 60 0.4 0.3 33.41 25.55 2 

0.25 60 0.4 0.5 33.97 26.22 2 

0.25 60 0.4 0.7 35.61 24.99 2 

0.25 60 0.4 0.9 35.79 24.61 2 

0.25 80 0.1 0.5 36.01 24.25 2 

0.25 80 0.1 0.7 35.33 26.22 2 

0.25 80 0.1 0.9 34.65 25.15 2 

0.25 80 0.2 0.7 37.33 25.25 2 

0.25 80 0.2 0.9 35.36 25.45 2 

0.25 80 0.3 0.3 35.29 25.16 2 

0.25 80 0.3 0.5 35.21 25.15 2 

0.25 80 0.3 0.9 35.96 24.95 2 

0.25 80 0.4 0.3 34.79 24.45 2 

0.25 80 0.4 0.5 34.88 24.40 2 

0.25 80 0.4 0.7 34.58 25.66 2 

0.25 80 0.4 0.9 36.71 24.58 2 

0.3 20 0.1 0.3 36.05 25.80 1 

0.3 20 0.1 0.5 36.05 26.04 1 

0.3 20 0.2 0.3 37.32 26.25 1 

0.3 40 0.2 0.5 37.67 25.78 1 

0.3 40 0.4 0.7 36.69 26.59 1 

0.3 60 0.2 0.9 37.60 26.12 1 

0.3 80 0.2 0.3 36.05 25.93 1 

0.3 80 0.3 0.7 35.79 26.49 1 

0.3 20 0.1 0.7 36.40 24.16 2 

0.3 20 0.1 0.9 37.00 24.34 2 

0.3 20 0.2 0.5 33.22 24.57 2 

0.3 20 0.2 0.7 36.11 24.90 2 

0.3 20 0.2 0.9 36.04 24.70 2 

0.3 20 0.3 0.3 35.35 25.41 2 
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0.3 20 0.3 0.5 35.52 24.09 2 

0.3 20 0.3 0.7 35.28 25.45 2 

0.3 20 0.3 0.9 32.94 23.91 2 

0.3 20 0.4 0.3 33.79 26.54 2 

0.3 20 0.4 0.5 35.85 25.02 2 

0.3 20 0.4 0.7 33.92 24.46 2 

0.3 20 0.4 0.9 34.76 25.01 2 

0.3 40 0.1 0.3 36.91 23.45 2 

0.3 40 0.1 0.5 36.92 24.26 2 

0.3 40 0.1 0.7 34.08 26.84 2 

0.3 40 0.1 0.9 35.20 26.17 2 

0.3 40 0.2 0.3 35.11 26.07 2 

0.3 40 0.2 0.7 36.21 24.12 2 

0.3 40 0.2 0.9 36.53 23.69 2 

0.3 40 0.3 0.3 35.38 23.73 2 

0.3 40 0.3 0.5 35.61 24.87 2 

0.3 40 0.3 0.7 32.88 23.73 2 

0.3 40 0.3 0.9 36.15 24.73 2 

0.3 40 0.4 0.3 34.21 25.20 2 

0.3 40 0.4 0.5 36.53 24.42 2 

0.3 40 0.4 0.9 33.16 24.04 2 

0.3 60 0.1 0.3 35.83 23.93 2 

0.3 60 0.1 0.5 35.87 24.43 2 

0.3 60 0.1 0.7 33.58 25.04 2 

0.3 60 0.1 0.9 35.80 24.91 2 

0.3 60 0.2 0.3 34.42 26.31 2 

0.3 60 0.2 0.5 34.06 23.97 2 

0.3 60 0.2 0.7 36.37 24.21 2 

0.3 60 0.3 0.3 35.00 24.93 2 

0.3 60 0.3 0.5 36.61 24.35 2 

0.3 60 0.3 0.7 35.78 24.73 2 

0.3 60 0.3 0.9 36.62 24.71 2 

0.3 60 0.4 0.3 35.06 24.75 2 

0.3 60 0.4 0.5 34.98 25.42 2 

0.3 60 0.4 0.7 33.23 24.89 2 

0.3 60 0.4 0.9 33.33 26.90 2 

0.3 80 0.1 0.3 33.06 24.91 2 

0.3 80 0.1 0.5 36.36 24.48 2 

0.3 80 0.1 0.7 34.78 27.03 2 

0.3 80 0.1 0.9 35.16 25.01 2 

0.3 80 0.2 0.5 35.02 25.05 2 

0.3 80 0.2 0.7 33.55 26.12 2 

0.3 80 0.2 0.9 36.14 24.75 2 
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0.3 80 0.3 0.3 33.39 26.42 2 

0.3 80 0.3 0.5 34.07 26.35 2 

0.3 80 0.3 0.9 35.92 25.15 2 

0.3 80 0.4 0.3 34.14 24.44 2 

0.3 80 0.4 0.5 34.89 25.17 2 

0.3 80 0.4 0.7 34.98 25.66 2 

0.3 80 0.4 0.9 33.19 24.73 2 
 

4.4 Deep neural network 

 
Some of the limitations with other optimisation techniques are Genetic Algorithms 

(GA); computationally expensive and slow convergence for large datasets, requires 

careful tuning of parameters like population size and mutation rate. Particle Swarm 

Optimization (PSO); Prone to premature convergence, performance highly dependent 

on parameter settings (e.g., inertia weight, cognitive and social 

coefficients).Simulated Annealing (SA); Slow convergence rate, performance 

depends on the cooling schedule and initial temperature. Response Surface 

Methodology (RSM); Not suitable for high-dimensional problems with many 

variables, assumes a specific functional form (usually quadratic), which may not 

capture complex relationships. Taguchi Method assumes independence of input 

variables, limited in handling interactions between variables. 

 

The DNN is a prominent technique in the computer version to optimize the 

parameters of any manufacturing processes [24]. The use of DL models in the 

optimization of process parameters offers several advantages over traditional 

optimization methods in FDM and other AM processes. 

 

Capturing Complex Non-linear Relationships: DL models excel at capturing intricate 

non-linear behaviour between response variables and process parameters. In FDM, 

where parameters like nozzle temperature, print speed, and layer height interact in 

complex ways, deep learning models can effectively model these relationships. 

 

Data-Driven Approach: DL models learn from large datasets, including experimental 

trials or simulations, to make predictions or optimize processes. This data-driven 
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approach allows deep learning models to identify optimal parameter settings based on 

desired outcomes such as print quality, mechanical properties, and material usage. 

 

Flexibility and Adaptability: DL models are highly flexible and adaptable to different 

types of data and optimization tasks. They can handle high-dimensional input data, 

accommodate various process parameters and output variables, and adapt to changing 

conditions or requirements. 

 

Automation and Efficiency: Deep learning-based optimization approaches automate 

parameter tuning and optimization, reducing the need for manual intervention and 

trial-and-error experimentation. By continuously learning from data, these models 

optimize manufacturing processes more efficiently, saving time and resources. 

 

Scalability and Generalization: Well-trained DL models can scale across different 

manufacturing setups, materials, and applications. Once trained on a specific FDM 

setup, a DL model can generalize to similar setups and materials, enabling the 

transferability of optimization strategies across different environments. 

 

Exploration of Novel Solutions: DNN can explore novel solutions and identify 

optimal parameter combinations that may not be apparent through traditional 

optimization methods. By exploring the entire parameter space and learning from 

data, DNN uncover hidden patterns and insights that lead to innovative process 

improvements and enhanced performance. 

 

Supervised learning algorithms offer significant advantages for optimizing process 

parameters in FDM. 

 

Supervised learning algorithms can construct predictive models that link process 

parameters (inputs) with desired outcomes or performance metrics (outputs). By 

training on historical data with known parameter-outcome relationships, these 

algorithms can accurately predict outcomes for new parameter settings. Once trained, 

supervised learning models can guide parameter optimization efforts. Engineers can 

input various parameter combinations into the model to quickly assess predicted 
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outcomes and identify optimal settings to achieve specific objectives, such as 

improving print quality or mechanical strength. 

 

Supervised learning algorithms streamline parameter tuning by automating the search 

for optimal settings. Instead of relying on manual trial and error, engineers can use 

these models to systematically explore the parameter space and identify promising 

candidates for further testing. FDM processes involve numerous interrelated 

parameters that impact the quality of printed parts. Supervised learning, particularly 

DL models, can capture critical non-linear correlation between output variables and 

input parameters, enabling more accurate modeling of FDM dynamics. 

 

Supervised learning models can adapt to new data and evolving process conditions, 

continuously improving their predictions over time. Engineers can update the model 

with new information as it becomes available, ensuring its relevance and effectiveness 

in guiding parameter optimization efforts. Supervised learning algorithms provide 

insights into the factors influencing process outcomes. Analysing model coefficients 

or feature importance can help engineers understand which parameters have the 

greatest impact, guiding optimization priorities. 

 

Supervised learning models can be integrated with optimization techniques like 

Bayesian optimization or genetic algorithms to perform advanced optimization tasks. 

This integration enables efficient exploration of the parameter space while minimizing 

the number of experiments needed. 

 

Supervised learning technique was used to execute the DL. This technique utilizes 

part of experimental data for training the model. Once the ML algorithm is trained it 

updates the parameters and the rest data can be used for testing. Prediction accuracy 

can be tested after validating the model. In this study, the training procedure of the 

DNNs is defined by using eqn. (4.4) 

 

𝑚 

𝑃 = ℎ ∑ 𝑉𝐽𝑥𝑗 
𝑗=1 

 

+ 𝑎 -------------- (4.4) 
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Here, output of the training layer was determined by P, layer weight is represented as 

Vj, xj was mentioned to denote the input values and the parameters of neural layer 

was expanded using the variable a. The sum of weights Vjxj, bias a, and activation 

function h (Softmax, RELU) shown in equation (4.4). In every neuron which is 

connected to previous one input variable xj is multiplied by weights and bias ‘a’ is 

added to control neuron activation. Output will be obtained after passing the weighted 

sum and bias to activation function. Figure 4.16 explains the inner layer of neural 

network model. 

 

 

Figure 4.16 Inner layer of neural model 

 
Here input variables are print speed, distance from each print line, layer thickness, and 

nozzle diameter. One input layer, 5 hidden layers and 1 output layer. Using a DL with 

five hidden layers, one input layer, and one output layer can be beneficial for tasks 

that require learning complex, hierarchical representations from data, such as image 

classification, natural language processing, and time-series prediction. 

 

Rectified Linear Unit (RELU), activation function was used for hidden layers as it 

reaches to the convergence faster and no gradient vanishing issues [69] and Softmax 
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for output layer as it adds to sum 1 by normalizing the values in the range (0,1). The 

equations for computations of these activation functions are expressed by equations 

4.5 and 4.6 respectively. Prediction accuracy in training data and testing data will be 

evaluated in. Categorical cross entropy was used as an objective function, Adam as an 

optimizer, batch size 10 for epochs 500. 

 

RELU (x)= max (x,0) = {
𝑥, 𝑥 > 0

 
0,   𝑒𝑙𝑠𝑒 

-------------- (4.5) 

 

 

 

 

𝑒𝑥𝑘 

Softmax (xk) = 𝑛 
𝑖=1 𝑒

𝑥𝑖 --------------- (4.6) 

 

Leveraging the features of Python with Jupyter Notebook in Anaconda, DL algorithm 

development process was effectively documented. 

 

4.5 Developed algorithm 

 
Adhering to ASTM standards with predefined dimensions total 256 experiments have 

been carried for each output, in which 204 result data used for training and 52 for 

testing the model using PYTHON programming language. 

 

For the data preparation experimental data was organized by ensure that each 

experiment was properly labelled and contains all necessary input and output 

variables according to ASTM standards. Best performances were revealed by 

empirical studies that when we use 20-30% of the data for testing, and the remaining 

70-80% for training [78]. Splitting of dataset we have divided the dataset into training 

and testing sets allocating 204 experiments for training and 52 experiments for 

testing. Data pre-processing was carried out by converting the dataset into a suitable 

format for training DL models using NumPy, arrays. 

 

For defining model structure as per the model's architecture the number of input 

features, hidden layers, neurons per layer and activation functions were included. The 

loss function optimizer and evaluation metrics for training defined for compilation of 
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model. Model training has been carried out by fitting the model to the training data 

using the fit () method, specifying the number of epochs and batch size. Model 

Evaluation was further assessed by the trained model's performance on the testing 

data using evaluation metrics RM squared error. For visualization of predictions 

model predictions were tested against true values to visually inspect the model's 

performance and identify any discrepancies. 

 

Figure 4.17 shows the developed neural network algorithm for the optimization of 

process parameters of FDM process. 
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Figure 4.17 Developed DNN algorithm 
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CHAPTER 5 

OPTIMIZATION AND VALIDATION 

5.1 Optimization overview 

 
The mechanical properties of the printed parts directly affect their ability to perform 

specific functions. For example, in engineering applications, parts may need to 

withstand certain loads, pressures, or temperatures without failure. Optimizing 

process parameters to enhance mechanical properties ensures that the printed parts 

meet these performance requirements. 

 

Tensile strength, compressive strength and flexural properties determine the structural 

integrity and durability of printed parts. By optimizing process parameters to improve 

these properties, we can ensure that the parts can withstand mechanical stresses and 

environmental conditions over their intended lifespan. Mechanical properties are 

closely related to dimensional accuracy and part quality in FDM printing. Optimizing 

process parameters can help minimize defects such as warping, delamination, and 

dimensional inaccuracies, which can negatively impact mechanical properties. 

Optimizing process parameters to improve mechanical properties can also lead to 

more efficient use of materials. By producing parts with higher strength and 

durability, you can reduce material waste and minimize the need for post-processing 

or reinforcement techniques. Parts with optimized mechanical properties are less 

likely to fail prematurely or require frequent replacement or repair. This can lead to 

cost savings in terms of reduced downtime, maintenance, and replacement costs, 

making the manufacturing process more cost-effective in the long run. 

 

Consistency in mechanical properties is essential for ensuring the reliability and 

repeatability of printed parts. By optimizing process parameters to achieve consistent 

mechanical properties across different batches or printing conditions, you can 

maintain high-quality standards and meet customer expectations. Prioritizing the 

optimization of mechanical properties in FDM process parameters is essential for 

producing high-quality, functional parts that meet performance requirements and 
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withstand real-world conditions. By focusing on enhancing mechanical properties, 

manufacturers can ensure the success and competitiveness of FDM manufacturing in 

various industries. 

 

Flow for implementation of DNN model is followed by following process. Start → 

Data Collection & Pre-processing → DNN Model Initialization → Hyperparameter 

Tuning → Training → Evaluation → Optimization of Parameters → Real-Time 

Implementation → Validation → End 

 

5.2 Parametric optimization using DNN model 

 
Outlined steps for optimizing a DL model with 256 experiments were breakdown 

comprehensively for analyse the data. 

 

Dataset is properly formatted with 256 samples, each containing the input parameters 

(nozzle diameter, print speed, layer thickness, width of each layer) and the 

corresponding output labels (connection status).Successively dividing the dataset into 

training and testing datasets, allocating 204 samples for training and 52 samples for 

testing DNN model has been defined the architecture according 5 hidden layers, 1 

input layer, and 1 output layer. 

 

The layers were designed with appropriate activation functions ReLU (Rectified 

linear unit) for hidden layers and Softmax for the output layer for binary classification 

with suitable numbers of neurons. RELU activation reaches to the convergence faster 

and no gradient vanishing issues [85] and Softmax function sum up to 1 with the 

normalization of the concerned values in the range zero to one. Model was compiled 

by specifying the appropriate loss function binary cross-entropy, optimizer Adam. 

After training the model using the training dataset, the hyperparameters are adjusted 

such as the number of epochs, batch size, and learning rate to achieve optimal 

convergence and performance. Training loss and validation accuracy as a function of 

the number of epochs were monitored to decide the number of epochs. The batch size 

conveys the count of samples used in each forward and backward pass during 

training. Smaller batch size 10 numbers was utilized can lead to faster convergence 
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and better generalization. The trained model was accessed using the testing dataset by 

compute relevant performance indices namely accuracy and precision to appraise its 

performance on unrevealed data. Visualisation of the model's predictions versus the 

true labels was done to identify any discrepancies or areas where the model may need 

improvement. 

 

Experimentation carried out with model architecture by varying the number of hidden 

layers, activation functions and per layer neurons to find the configuration that yields 

the best performance. After tuning hyperparameters such as batch size, learning rate 

and regularity strength using techniques like grid search or random search to optimize 

the model's performance further. 

 

5.3 Validation of DNN model 

 
The obtained results during 256 experiments which consisting seventy percent data 

for training the proposed model and remaining for testing. The experimental results 

have been classified in classes on the basis of tensile & compressive strength 

measured with different combinations. Class 1 was for good connection status and 

Class 2 for others. Actual connection status and predicted connection status was 

interpreted as shown in Figure 5.1 and Figure 5.2.The real class and predicted class 

was shown by blue and orange points respectively. Overlaying points can be 

considered as no discrimination between actual and predicted class. Prediction 

accuracies after 500 epochs 0.8654 were obtained on trained data and 0.8846 achieved 

for test data. 
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Figure 5.1 Performance of Prediction data after Training 
 

 

 
Figure 5.2 Performance of Prediction data after Testing 

 
The training accuracy of 86.54% and testing accuracy of 88.46% indicate that the 

model has performed reasonably well and has generalized effectively to unseen data. 

Interpretation of the fit of the model based on these accuracies depicted below. 

 

5.3.1 Training Accuracy (86.54%) 

 
The training accuracy shows the proportion of properly classified samples within the 

training dataset. In this case, the model gained an accuracy of 86.54% on the training 
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dataset, indicating that it correctly classified approximately 86.54% of the samples. A 

training accuracy of 86.54% was relatively high, suggesting that the model has 

learned the underlying patterns and relationships present in the training data 

reasonably well. 

 

However, it's important to note that the training accuracy was not excessively high, 

which indicates that the model has not memorized the training data or overfit to it. 

 

5.3.2 Testing Accuracy (88.46%) 

 
The testing accuracy depicts the proportion of precisely classified samples within the 

testing dataset, which consists of unseen data. The model achieved an accuracy of 

88.46% on the testing dataset, indicating that it correctly classified approximately 

88.46% of the samples. A testing accuracy of 88.46% was slightly higher than the 

training accuracy, which was generally an approving sign. This recommends that the 

model is fit for use on the training dataset and capability of generalizing well to 

unseen samples. The fact that the testing accuracy was close to the training accuracy 

further supports the notion that the model was not only memorizing the training data 

but also learning to generalize effectively. 

 

5.3.3 Interpretation 

 
The high training and testing accuracies suggest that the model has successfully 

learned to discriminate between the different classes based on the input parameters 

(nozzle diameter, print speed, layer thickness, width of each layer).The small 

difference between the training and testing accuracies indicates that the model is 

performing consistently well on both datasets, without exhibiting significant 

overfitting or underfitting behaviours. Overall, the fit of the model appeared to be 

satisfactory, as evidenced by the high accuracies on both the training and testing 

datasets. It suggests that the model was well-suited for predicting the connection 

status placed on the provided input parameters, and it can be deployed with 

confidence for future predictions. 
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5.3.4 RMSE value 

 
RMSE depicts for Root Mean Squared Error. It is a metric can be used to evaluate the 

performance of models. RMSE measures the average magnitude of the errors between 

predicted values and actual values depicted in equation 5.1. 

 

 

  (equation 5.1) 

 

n = count of samples in the dataset 

yi = ith sample actual value. 

ŷi = i
th sample predicted value. 

 
5.3.5 R2 value 

 
R-squared (R²) is a statistical metric that evaluates the contribution of the variance in 

the dependent variable that could be determined by the independent variables in a 

model. In other words, R-squared quantifies the wellness-of-fit of the model to the 

dataset. 

 

Total Sum of Squares (SST): Computed the sum of squared differences between each 

perceived value and the mean of the dependent variable by equation 5.2 

 

        (equation 5.2) 

ȳ = mean of dependent variable. 

Residual Sum of Squares (SSE): Computed the sum of squared differences between 

each perceived value and the estimated value from the model by equation 5.3 

 
  (equation 5.3) 
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  (equation 5.4) 

 

The values range of R-squared from 0-1. A higher R-squared value determines a 

wellness of the model fit to the data, with 1 indicating a perfect fit (the model explains 

all the variance) and 0 indicating that the model does not explain any variance beyond 

the mean of the dependent variable. 

 

 
(a) 

 

 
(b) 
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Figure 5.3 Part program to calculate the a) RMSE value b) R2 value 

 
Python code snippet was utilized to calculate RMSE and R2 value after obtaining the 

predicted classes from DNN model for the test dataset. 

 

 
 

Table 5.1 Ranges of various error values matrices for discrimination [70] 

 

 
As per Table 5.1 RMSE ≤ 0.75 and R2 > 0.85 shows very good fitting of the 

classification model. RMSE value for tested model observed is 0.3396 and R2 value 

0.8796 shown in Figure 5.3 which validates the performance of model and can predict 

the results under random circumstances. 

 
5.4 Experimental validation by addition of performance matrix 

 
Though evidently several researches have been carried out regarding optimisation of 

input parameters to upgrade the mechanical properties of FDM printed parts, 

eventually various studies reported the flimsy nature of 3D printed materials which 

should be taken care of. Flexural strength was less analysed compared to tensile and 

compressive strength. Grey relational analysis (GRA) associated with Principle 

component analysis (PCA) method fits for use to optimize multiple response 
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characteristics and can be further utilized for guidelines in design for manufacturing 

(DFM) in practical applications. 

 

This study focuses the effect of input process parameters on the mechanical properties 

of PLA printed parts. Layer thickness, nozzle diameter, print speed, width of layer 

was considered as input parameters with four levels of each parameter. Subsequently, 

specimens were manufactured considering combinations of design variables strictly 

adhering to ASTM standards. 4 factors each of 4 levels Taguchi L16 orthogonal array 

of specific subset of input parameters combinations formed using MINITAB 16.0 

were utilized to conduct the experimentation. Tensile strength, compressive strength 

and flexural strength were analysed by multi optimization using Taguchi and GRA 

combined with PCA. PCA assigns weight to each measurable significant response 

which affects the Grey relational grade (GRG). Validation of proposed study was 

carried out with experimental confirmation to find out significance of optimized 

parameters to enhance the mechanical behaviour of printed parts. 

 

Table 5.2 depicts sixteen experiments have been carried out to investigate the effects 

of process parameters nozzle diameter (ND), print speed (PS), layer thickness (LT), 

width of each layer (DL) on each of the output parameter namely flexural strength 

(FS), tensile strength (TS), compressive strength (CS). 

 

Table 5.2 Design of experiments L16 orthogonal array 

 
A 

ND 

(mm) 

B 

PS 

(mm/s) 

C 

LT 

(mm) 

D 

DL 

(mm) 

Experimental results 

FS 

(MPa) 

TS 

(MPa) 

CS 

(MPa) 

0.15 20 0.1 0.3 52.3 33.9 26.07 

0.15 40 0.2 0.5 51.5 33.7 24.54 

0.15 60 0.3 0.7 49.4 32.9 26.64 

0.15 80 0.4 0.9 50.1 35.6 23.79 

0.2 20 0.2 0.7 54.2 37.0 25.57 

0.2 40 0.1 0.9 54.2 37.0 26.01 

0.2 60 0.4 0.3 51.1 37.4 26.24 

0.2 80 0.3 0.5 52.8 35.0 26.95 
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0.25 20 0.3 0.9 53.9 33.2 26.56 

0.25 40 0.4 0.7 53.3 37.3 24.23 

0.25 60 0.1 0.5 57.9 37.38 24.77 

0.25 80 0.2 0.3 58.7 36.78 24.35 

0.3 20 0.4 0.5 52.6 35.85 26.02 

0.3 40 0.3 0.3 54.6 35.38 23.73 

0.3 60 0.2 0.9 60.5 37.6 26.12 

0.3 80 0.1 0.7 58.7 34.78 27.03 
 

5.4.1 GRA associated with PCA 

 
Figure 5.4 details about the statistical approach of proposed methodology. Multiple 

response optimisations using statistical approach GRA associated with PCA shown as 

in was utilized. L16 orthogonal Taguchi array was used to carry out for 

experimentation and measurement of responses. Signal to noise ratio calculation 

carried out for quality response characteristics it possesses with greater value is better 

criterion for optimization. Normalization of S/N ratios in linear way leads to 

conversion reference sequence to comparable sequence in range of (0, 1). GRG and 

WGRG using first PC components values were calculated as discussed detailed in 

equation 3 and 5.Identical optimal conditions of process parameters using GRG and 

Weighted grey relational grade (WGRG) were used for individual response 

optimization. 
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Figure 5.4 Statistical approach GRA associated with PCA 

 
Combined optimization was validated through confirmatory experiment using 

optimized process parameters. 

 

S/N ratio were calculated with larger the better criterion by equation 5.5, 

 
S Ratio = −10 x log 

 

1 
∑𝑥 1 

 

------------------------------- (equation 5.5) 
N 10 𝑥 𝑖=1 𝑦𝑖𝑗2 

 

Table 5.3 S/N Ratio calculation for L16 orthogonal array 

 

ND 

(mm) 

PS 

(mm/s) 

LT 

(mm) 

DL 

(mm) 

S/N Ratio 

FS 

(MPa) 

TS 

(MPa) 

CS 

(MPa) 

0.15 20 0.1 0.3 34.363 30.596 28.323 

0.15 40 0.2 0.5 34.233 30.542 27.797 

0.15 60 0.3 0.7 33.868 30.341 28.511 

0.15 80 0.4 0.9 34.000 31.034 27.528 

0.2 20 0.2 0.7 34.683 31.352 28.155 

0.2 40 0.1 0.9 34.678 31.364 28.303 
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0.2 60 0.4 0.3 34.170 31.462 28.379 

0.2 80 0.3 0.5 34.449 30.871 28.611 

0.25 20 0.3 0.9 34.632 30.410 28.485 

0.25 40 0.4 0.7 34.535 31.427 27.687 

0.25 60 0.1 0.5 35.254 31.453 27.879 

0.25 80 0.2 0.3 35.373 31.312 27.730 

0.3 20 0.4 0.5 34.420 31.090 28.306 

0.3 40 0.3 0.3 34.744 30.975 27.506 

0.3 60 0.2 0.9 35.635 31.504 28.339 

0.3 80 0.1 0.7 35.373 30.827 28.637 

 

As proposed area of interest was to maximize the flexural strength, tensile strength 

and compressive strength, the normalized results were interpreted by Larger the better 

criterion as shown in equation 5.6 for maximization. 

 

x∗j(p) =
  𝑥𝑗 (𝑝)−min 𝑥𝑗 (𝑝) -------------------------------------------------- 

(equation 5.6) 
max 𝑥𝑗 (𝑝)−min 𝑥𝑗 (𝑝) 

 

Where, x∗j(p) is grey relational value, max 𝑥𝑗 (𝑝) and min 𝑥𝑗 (𝑝) are maximum and 

minimum values of 𝑥𝑗 (𝑝)for pth observation respectively. Here, response variables 

p=3 and sequential responses for 𝑥𝑗 (𝑝)for 16 experiments. j=1. 2, 3…..16. The best 

normalization will yield to the value 1, for good results normalized value should be 

high. The data is normalized to ensure comparability across different metrics and the 

scale effect has been removed. 

 

Grey relational coefficient (GRC) is calculated by equation 5.7 which describes the 

discrimination between real normalization and desired normalized values. 

 

ξj(p) = 
Δ𝑚𝑖𝑛+ 𝜉Δ𝑚𝑎𝑥 

Δ𝑜𝑖(𝑝)+ 
𝜉Δ𝑚𝑎𝑥 

------------------------------- (equation 5.7) 

 

Deviation sequence is denoted by Δ𝑜𝑖(𝑝) and distinguishing coefficient 𝜉 is taken 0.5 

in this study and calculations are shown in Table 5.4. 

 

1 𝑛 
j= ∑ (𝜉𝑗(𝑝) ) ------------------------------- (equation 5.8) 

𝑛 𝑝=1 
γ 
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𝑝=1 

 
 
 
 
 

Table 5.4 Normalization and deviation sequences of S/N Ratio responses 

 

S/N Ratio response Normalization Deviation Delta 

FS TS CS FS TS CS FS TS CS 

34.363 30.596 28.323 0.2603 0.2081 0.7091 0.7397 0.7919 0.2909 

34.233 30.542 27.797 0.1903 0.1635 0.2455 0.8097 0.8365 0.7545 

33.868 30.341 28.511 0.0000 0.0000 0.8818 1.0000 1.0000 0.1182 

34.000 31.034 27.528 0.0682 0.5796 0.0182 0.9318 0.4204 0.9818 

34.683 31.352 28.155 0.4363 0.8620 0.5576 0.5637 0.1380 0.4424 

34.678 31.364 28.303 0.4336 0.8726 0.6909 0.5664 0.1274 0.3091 

34.170 31.462 28.379 0.1571 0.9618 0.7606 0.8429 0.0382 0.2394 

34.449 30.871 28.611 0.3070 0.4395 0.9758 0.6930 0.5605 0.0242 

34.632 30.410 28.485 0.4075 0.0552 0.8576 0.5925 0.9448 0.1424 

34.535 31.427 27.687 0.3537 0.9299 0.1515 0.6463 0.0701 0.8485 

35.254 31.453 27.879 0.7666 0.9533 0.3152 0.2334 0.0467 0.6848 

35.373 31.312 27.730 0.8384 0.8259 0.1879 0.1616 0.1741 0.8121 

34.420 31.090 28.306 0.2908 0.6285 0.6939 0.7092 0.3715 0.3061 

34.744 30.975 27.506 0.4704 0.5287 0.0000 0.5296 0.4713 1.0000 

35.635 31.504 28.339 1.0000 1.0000 0.7242 0.0000 0.0000 0.2758 

35.373 30.827 28.637 0.8384 0.4013 1.0000 0.1616 0.5987 0.0000 

 

GRG γj was calculated by equation 5.8 which depicts the correlation between 

normalized value and corresponding experimental response value. Higher the GRG 

indicates ideal case. 

 

Weights obtained from PCA were assigned to each quality response modifies this 

equation 5.9 to WGRG as below 

 

1 𝑛 
j = ∑ 𝑤𝑞(𝜉𝑗(𝑝) ) ------------------------------- (equation 5.9) 

𝑛 𝑝=1 

 

Where n is number of runs and ∑𝑛 𝑤𝑞 = 1 

γ 
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5.4.2 PCA (Principal component analysis) 

 
PCA applies linear transformations to the original data to find new orthogonal axes 

(principal components) that capture the maximum variance in the data. These 

transformations aim to preserve the original information as much as possible while 

reducing the dimensionality of the dataset. PCA can be used to simplify multi- 

response optimization problems by transforming them into single-response 

optimization problems. By representing the data in terms of its principal components, 

PCA reduces the number of variables to be optimized while retaining essential 

information. This transformation helps in streamlining the optimization process. 

 

Eigenvalues and Principal Components: After performing PCA, the eigenvalues and 

corresponding eigenvectors (principal components) are computed. These eigenvalues 

are arranged in descending order, indicating the amount of variance captured by each 

PC. The first eigenvalue associated with the first PC indeed accounts for the largest 

variance contribution in the data. [82]. The GRC’s calculated for response variables 

was utilized to create a matrix, presented in equation 5.10 

 

 

 

 

 

 

 
 

  (equation 5.10) 

 

Here, yp(q) represents GRC of each quality responses, p = 1, 2, 3, . . . j, experiments 

and q = 1,2, 3, . . . k, quality responses. Values of study here were j = 16 and k = 3. 

The correlation matrix coefficient was calculated as follows: 

 

 ------------- (equation 5.11) 
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𝑖=1 

 

 

Cov(yp(q), yp(l) represents the covariance of sequences yp(q) and yp(l). σyp(q) is 

standard deviation of sequence yp(q) and σyp (l) is standard deviation of sequence yp 

(l). The eigen vectors and eigen values were calculated from Rjl array as per equation 

5.12 

(R − λkIj) Vpk = 0 ----------------------------- (equation 5.12) 

 
Successively, eigenvectors (Vpk) and eigenvalues (λk) of square matrix R were used 

to calculate the conflicting principal components (PC’s) by using equation 5.13 

 

Zjk = ∑
𝑛
 Yj(p) × Vpk ------------------------------- (equation 5.13) 

 

Here, Zjk relates to kth PC. 

 

 

Table 5.5 Eigen analysis of the Correlation Matrix 

 
Eigenvalue 1.6701 0.8409 0.4890 

Proportion 0.557 0.280 0.163 

Cumulative 0.557 0.837 1.000 

 

 

 

 

 
Table 5.6 Eigenvectors 

 

Variable PC1 PC2 PC3 

 0.552 -0.654 0.517 

 0.657 -0.039 -0.753 

 -0.512 -0.755 -0.408 
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Equal weights are assigned to response variables in GRA may lead to ambiguity in 

governing the process. PCA method assigns weight fraction for each individual 

characteristic [83]. For PCA, Eigen values and Eigen vectors of respective PCs were 

presented in Table 5.5 and 5.6. As shown in Table 5.5 first PC contribution was 

highest 55.7% for all quality characteristics. Contribution of each response variable 

was determined for PCA as shown in Table 5.7. Eigen vectors of first PC were 

squared to determine the relative weights of individual quality characteristic. 

 

Table 5.7 Contribution of variance for first PC response variables. 
 

Response Variable Contribution 

Flexural strength 0.3052 

Tensile strength 0.4322 

Compressive strength 0.2626 

 

Sample calculation for contribution of response variable: 

 
Flexural strength = (0.552)² = 0.3052 

Tensile strength = (0.657)² = 0.4322 

Compressive strength = (-0.512)² = 0.2626 

GRG and Weighted GRG were calculated using equation 5.8 and 5.9 respectively. 

Successively according to their statistical values ranking of the experiments was done 

as depicted in Table 5.8 

 

 

 
Table 5.8 GRG and WGRG for experimental results 

 

Experiment 
No. 

 
GRC 

 
GRG 

 
RANK 

 
WGRG 

 
RANK 

1 0.410 0.390 0.643 0.481 13 0.463 13 

2 0.387 0.377 0.403 0.389 16 0.387 16 

3 0.333 0.333 0.818 0.495 12 0.460 14 

4 0.351 0.553 0.338 0.414 15 0.435 15 
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5 0.481 0.793 0.540 0.605 8 0.632 7 

6 0.480 0.806 0.629 0.638 5 0.660 6 

7 0.376 0.933 0.687 0.665 4 0.699 3 

8 0.427 0.479 0.956 0.621 7 0.589 9 

9 0.468 0.347 0.788 0.534 11 0.500 11 

10 0.445 0.884 0.373 0.567 9 0.616 8 

11 0.698 0.919 0.427 0.682 3 0.723 2 

12 0.771 0.752 0.384 0.636 6 0.661 5 

13 0.421 0.584 0.631 0.545 10 0.547 10 

14 0.498 0.524 0.333 0.452 14 0.466 12 

15 1.000 1.000 0.655 0.885 1 0.909 1 

16 0.771 0.462 1.000 0.744 2 0.698 4 

 

GRCs were calculated as per equation 5.7 and average of three GRC were used to 

calculate the GRG. Higher the GRG, better the overall performance of that set of 

process parameters as depicted in experiment number 15. 

 

Sample calculation for experiment 1 GRG= 1/3 (0.410+0.390+0.643) = 0.481 

 
WGRG was then calculated by assigning weights to each response variable. 

 
Sample calculation for experiment 1 WGRG = (0.410*0.3052 + 0.390*0.4322 + 

0.643*0.2626) = 0.463 

 

The experiments were ranked according to their corresponding values of GRG and 

WGRG respectively. 

 

5.5 Response variable objective optimization 

 
Table 5.9 S/N ratio results using L16 OA 

 

S/N Ratio responses 

FS TS CS 

34.363 30.596 28.323 

34.233 30.542 27.797 

33.868 30.341 28.511 
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 LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 

ND (A) 0.445 0.632 0.605 *0.657 

PS (B) 0.541 0.511 *0.682 0.604 

LT (C) *0.636 0.629 0.525 0.548 

DL (D) 0.558 0.559 0.603 *0.618 

 

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 

0.358 0.645 0.625 *0.655 

0.535 0.532 *0.698 0.596 

0.636 *0.647 0.509 0.574 

0.572 0.561 0.601 *0.626 

 

 

 
34.000 31.034 27.528 

34.683 31.352 28.155 

34.678 31.364 28.303 

34.170 31.462 28.379 

34.449 30.871 28.611 

34.632 30.410 28.485 

34.535 31.427 27.687 

35.254 31.453 27.879 

35.373 31.312 27.730 

34.420 31.090 28.306 

34.744 30.975 27.506 

* 35.635 * 31.504 28.339 

35.373 30.827 * 28.637 

A4B3C2D4 A4B3C2D4 A4B4C1D3 
 

Optimized setting for every single objective was found was shown in Table 5.9. 

 
The highest value for S/N ratio for flexural strength was 35.635, for tensile strength 

31.504 and for compressive strength 28.637 respectively. 

 
Nozzle diameter (ND) at level 4, print speed (PS) at level 3, layer thickness (LT) at 

level 2, width of each layer (DL) at level 4 was found to be highest for achieving good 

flexural as well as tensile strength. 

 

Nozzle diameter (ND) at level 4, print speed (PS) at level 4, layer thickness (LT) at 

level 1, width of each layer (DL) at level 3 was found to be highest for achieving good 

compressive strength. 

 

Table 5.10 Response table for average values of GRG and WGRG 

 
AVG GRG AVG WGRG 
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An average value of GRG and WGRG of each input parameter at different levels is 

calculated in Table 5.10 determines means of GRG and W-GRG for unique optimal 

conditions. 

 

Sample calculation of GRG for nozzle diameter at level 4: 

 
AVG GRG = 1/4 (0.545 + 0.452 + 0.885 + 0.744) = 0.657 

 
Sample calculation of WGRG for print speed at level 3: 

 
AVG WGRG = 1/4 (0.460 + 0.699 + 0.723 + 0.909) = 0.698 

 
Highest values of average WGRG were 0.655, 0.698, 0.647 and 0.626 for nozzle 

diameter (ND), print speed (PS), layer thickness (LT) and width of each layer (DL) 

respectively. Optimum set of input parameters can be concluded by the Table 5.10 as 

A4B3C2D4 namely nozzle diameter 0.3 mm, printing speed 60 mm/s, layer height 0.2 

mm, width of each layer 0.7 mm. 

 

5.6 Confirmatory experiment 

 
Optimum parametric combination was found to enhance the mechanical properties of 

FDM process using GRA-PCA approach. 

 

Predicted value of WGRG was calculated by equation 5.14 
 

𝑛 
ᵞ𝑝𝑟𝑒𝑑 = ᵞ𝑎 + ∑ (ᵞ𝑖 − ᵞ𝑎) ) -------------------------------- (equation 5.14) 

𝑖=1 

 

Sample calculation of predicted value of WGRG: 
 
 

ᵞi ᵞi-ᵞa 
0.570588 0.084 

0.590132 0.108 

0.591289 0.056 
0.590132 0.036 

 
 

ᵞ𝑎 = 0.585535   and 
𝑛 

∑ (ᵞ𝑖 − γ 𝑎) ) = 0.284 
𝑖=1 
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Where ᵞ𝑝𝑟𝑒𝑑 is predicted value of WGRG, ᵞ𝑎 is average value of WGRG and ᵞ𝑖 is 

average WGRG at optimum value of ith input parameter and n are total number of 

significant input parameters. 

 

Table 5.11 Comparison of Experimental confirmation 
 
 

 

 

ᵞpred value was observed as 0.869. Successively experimental verification was carried 

out for optimum combination of input parameters. Table 5.11 depicts confirmatory 

experimental values for flexural strength 60.7 Mpa, tensile strength 37.7 Mpa and 

compressive strength 26.1 Mpa respectively which shows 4.71 % improvement in 

WGRG was observed. The optimized parameters suggested by the DNN model through 

physical experimentation, confirming improvements in the mechanical properties. 

 

5.7 Results and discussion 

 
Present study proposed a DNN strategy to predict the best parametric combination with 

optimized mechanical properties (Flexural, tensile and compressive strength) of printed 

parts. In the present research, less analysed design variables parameters like nozzle 

diameter, width of print line and layer thickness, print speed are considered as input 

parameters with their levels values that are trained to the proposed system. Adhering to 

ASTM standards with predefined dimensions total 256 experiments have been carried for 

each output, in which 204 result data used for training and 52 for testing the model using 

PYTHON programming language. Subsequently, Prediction accuracies after 500 epochs 

0.8654 were obtained on trained data and 0.8846 achieved for test data. RMSE value 

0.3396 and R2 value 0.8796 is validated by relating the performance with existing 

models. Hence, the efficient outcomes of the developed model have been verified by 
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gaining the best combination of process parameters and Taguchi analysis interpreted their 

influence on the flexural, tensile and compressive strength of FDM printed parts. 

 

 

5.7.1 Taguchi Analysis 

 
5.7.1.1 Flexural strength analysis 

 
Table 5.12 Response table for means 

 

 Level  ND  PS  LT  DL 

1 50.80 53.24 55.76 54.17 

2 53.07 53.39 56.22 53.69 

3 55.95 54.72 52.66 53.89 

4 56.60 55.08 51.78 54.68 

Delta 5.79 1.83 4.44 0.99 

Rank 1 3 2 4 

 

Table 5.13 Response table for S/N ratio 

Larger is better 

 Level  ND  PS  LT  DL 

1 34.12 34.52 34.92 34.66 

2 34.50 34.55 34.98 34.59 

3 34.95 34.73 34.42 34.61 

4 35.04 34.80 34.28 34.74 

Delta 0.93 0.27 0.70 0.15 

Rank 1 3 2 4 

 

 
The mean effect plot in Figure 5.5 illustrates the effects of input variables on the response 

variable, showing both the mean values and signal-to-noise (S/N) ratios. From this plot, 

we can observe the impact of each input parameter on the response variable, providing 

insights into their relative importance. Table 5.12 presents the rank-wise influential 

parameters based on their effects on the response variable. The parameters are ranked in 

terms of their impact on the response variable as nozzle diameter, layer thickness, print 

speed, width of print layer respectively. The analysis indicates that the nozzle diameter 

has a significant impact on the response variable, particularly flexural strength. An 

increment in the nozzle diameter range leads to a drastic increase in flexural strength. 

The layer thickness is identified as the second most influential parameter affecting 
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flexural strength. Lower layer thickness and higher print speed contribute to higher 

flexural strength. However, a decrement in layer thickness from 0.2 to 0.3 mm results in a 

drop in part strength. This implies that optimizing the layer thickness within a specific 

range is crucial for achieving the desired strength characteristics. The analysis indicates 

that print speed also plays a significant role in determining flexural strength. Higher print 

speeds contribute to higher flexural strength, suggesting that adjusting the print speed 

parameter can impact the mechanical properties of the printed parts. While the width of 

each print layer is included as a parameter, the analysis suggests that it does not have a 

dominant effect on flexural strength. This indicates that variations in the width of each 

print layer may not significantly influence the strength characteristics of the printed parts 

compared to other parameters. 

 

 

 

 
(a) 
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(b) 
 

Figure 5.5 Main effect plots for (a) means (b) SN ratios of FS 
 

5.7.1.2 Tensile strength analysis 

 
Table 5.14 Response table for means 

 

 
Level ND PS LT DL 

1 34.01 34.95 35.76 35.86 

2 36.58 35.83 36.16 35.46 

3 36.15 36.23 34.09 35.47 

4 35.81 35.53 36.54 35.76 

Delta 2.57 1.28 2.45 0.40 

Rank 1 3 2 4 

 

Table 5.15 Response table for S/N ratio 

Larger is better 

 Level  ND  PS  LT  DL 

1 30.63 30.86 31.06 31.09 

2 31.26 31.08 31.16 30.99 

3 31.15 31.17 30.65 30.99 

4 31.08 31.01 31.25 31.06 

Delta 0.63 0.31 0.60 0.10 

Rank 1 3 2 4 

 

Figure 5.6 depicts for tensile strength Nozzle diameter is most influential parameter and 

then after layer thickness, print speed, width of each print line respectively. Tensile 

strength increased by raising the value of nozzle diameter from 0.15 to 0.2 mm and 
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further decreased. Layer thickness is identified as the second most influential parameter 

affecting tensile strength. The analysis reveals a significant increase in tensile strength as 

the layer thickness value transitions from the low range to the higher range. However, 

there is a decrease in tensile strength observed when the layer thickness falls from 0.2 to 

0.3 mm. Tensile strength increased from varying print speed from 20 to 60 mm/s while 

distance of each print line has no significant effect. 

 

(a) 

 

(b) 

 
Figure 5.6 Main effect plots for (a) means (b) SN ratios of TS 
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5.7.1.3 Compressive strength analysis 

 
Table 5.16 Response table for means 

 

 Level  ND  PS  LT  DL 

1 25.26 26.05 25.97 25.10 

2 26.19 24.63 24.76 25.57 

3 24.98 25.56 25.97 25.87 

4 25.34 25.53 25.07 25.23 

Delta 1.21 1.43 1.21 0.77 

Rank 2 1 3 4 

 

 
Table 5.17 Response table for S/N ratio 

Larger is better 

 Level  ND  PS  LT  DL 

1 28.04 28.32 28.29 27.98 

2 28.36 27.82 27.87 28.15 

3 27.95 28.15 28.28 28.25 

4 28.07 28.13 27.98 28.03 

Delta 0.42 0.49 0.41 0.26 

Rank 2 1 3 4 

 

Figure 5.7 depicts for compressive strength print speed is dominant parameter and 

nozzle diameter, layer thickness, width successively. The analysis identifies print 

speed as the dominant parameter affecting compressive strength. It reveals a decrease 

in compressive strength as print speed increases. This suggests that higher print 

speeds may negatively impact the structural integrity and compressive strength of 

printed parts. Part strength shows highest at the nozzle diameter at 0.2 mm, layer 

thickness at 0.1 and 0.3 mm. While included as a parameter, the width of each print 

layer shows a relatively lower influence on compressive strength compared to print 

speed, nozzle diameter, and layer thickness. Nonetheless, the analysis suggests that 

optimizing the width of each print layer, particularly at a value of 0.7 mm, can 

contribute to improved compressive strength characteristics. 



92 
 

 

 

 
 

(a) 

 

 
(b) 

 
Figure 5.7 Main effect plots for (a) means (b) SN ratios of CS 

 

5.7.2 Probability plots 

 
Normally probability plots are the graphical presentation to interpret the data set is 

distributed normally or not. Outlier detection from normal distribution can be 

significantly tested by the Anderson Darling (ADT) test. In a probability plot, each data 

point from the sample is plotted against its corresponding percentile (probability) within 

the dataset. The percentile represents the proportion of data points in the sample that are 

less than or equal to the value being plotted. This creates a scatter plot where each point 

represents a data value and its associated percentile. 
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The probability plot often includes curved blue lines, which represent the approximate 

95% confidence intervals for a normal distribution. These lines help assess the goodness 

of fit of the data to a normal distribution. Points falling within these confidence intervals 

indicate agreement with the expected distribution, while points outside the intervals 

suggest deviations from normality. Points that fall outside the confidence intervals, 

particularly in the tails of the distribution, represent extreme values or outliers in the 

dataset. These outliers may indicate deviations from the expected distribution or the 

presence of unusual data points that warrant further investigation. 

By examining the arrangement of points relative to the confidence intervals and the 

overall pattern of the plot, analysts can assess the distributional characteristics of the 

dataset. A close alignment of points with the confidence intervals suggests that the data 

closely follows the expected distribution, while deviations may indicate departures from 

normality or other distributional assumptions. 

From Figure 5.8 it was evident that ADT values are in lower range .P value for flexural 

strength was 0.178, for tensile strength 0.095 and 0.140 for compressive strength 

successively. P-values were greater than 0.05 depicts the normal distribution was 

followed by the data set. Also all the data points lay beside the fitted line. Hence it was 

feasible to perform optimization and analysis on this data further. 

 

 
(a) 
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(b) 

 

 
(c) 

 
Figure 5.8 Normal probability plots for mechanical strength (a) Flexural (b) 

Tensile (c) Compressive 

 

5.7.3 Contour plots 
 

Figure 5.9 depicts the contour maps which visualize the correlation between two 

continuous variables and one dependent variable. 

 

Figure 5.9 (a) illustrates the impact of two influential parameters, nozzle diameter and 

layer thickness, on flexural strength. It's evident from the plot that a higher range of 
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nozzle diameter (0.25 to 0.3 mm) and a lower layer thickness (0.1 to 0.2 mm) lead to 

higher flexural strength. 

 

When the nozzle diameter increases, fewer extruded strands are needed to fill a given 

specimen width. This results in wider extruded lines per layer. While wider lines 

reduce the number of intralayer bonds, they can actually enhance interstrand 

interaction, leading to stronger bonds. The increased spacing between strands within a 

layer due to wider extruded lines facilitates better interlayer bonding, which 

contributes to overall part strength. 

 

Flexural strength, which measures a material's resistance to deformation under 

bending, is influenced by layer thickness as well. Thicker layers tend to produce 

rougher surface finishes and weaker interlayer bonding compared to thinner layers. 

Therefore, thinner layers often result in better flexural strength due to improved 

interlayer adhesion and surface quality. Poor interlayer bonding can lead to 

delamination between layers and reduced flexural strength. Additionally, thicker 

layers may have more pronounced layer lines, which can act as stress concentrators 

and reduce flexural strength. 

 

 

(a) 
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Figure 5.9 (b) shows the effect of most influential parameters nozzle diameter and layer 

thickness on tensile strength. Here it is evident that higher range of nozzle diameter 0.2 to 

0.3 mm and lower layer thickness 0.1 to 0.2 mm results in higher tensile strength. 

 
The observed trend can be attributed to several factors. Firstly, the larger nozzle hole 

allows for greater overlap between raster or infill lines, resulting in stronger interfacial 

bonding. When raster or infill lines overlap more extensively, they create a denser and 

more interconnected structure, enhancing horizontal bonds and overall part strength. 

 

Conversely, smaller nozzle holes lead to barely touching or minimal overlap between 

infill lines within plane, weakening horizontal bonds and reducing interfacial bonding. 

This can result in a less robust structure and lower mechanical properties. Moreover, by 

lowering the ratio of layer thickness to nozzle size, it is possible to enhance bonding 

between layers and reduction in voids and interstitial gaps as well to minimize 

anisotropy. This optimization strategy promotes better adhesion between adjacent layers, 

resulting in improved tensile strength. 

 

Tensile strength, which exhibits capability of material to withstand maximum stress 

before breaking under tension, is influenced by layer thickness. Thicker layers typically 

yield reduced tensile strength compared to thinner layers due to several reasons. Firstly, 

thicker layers create larger interfaces between adjacent layers, which can lead to weaker 

interlayer bonding and lower tensile strength. Additionally, thicker layers may contain 

more voids or trapped air pockets within the material, acting as defects that can 

compromise tensile strength. 
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(b) 
 

Figure 5.9 (c) shows the effect of most influential parameters print speed and nozzle 

diameter on compressive strength. Here it is evident that higher range of nozzle 

diameter 0.15 to 0.2 mm and higher print speed 60 to 80 mm/s results in higher 

compressive strength. 

 

Finer layer resolution achieved with smaller nozzle diameters can contribute to higher 

compressive strength in FDM-printed parts. Smaller nozzles allow for the deposition 

of thinner layers, resulting in smoother surfaces and better interlayer bonding. This 

improved bonding between layers enhances the overall structural integrity of the part, 

making it more resistant to compressive forces. Factors such as infill pattern, infill 

density, and print orientation may have graceful traces on compressive strength. 
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(c) 

 
Figure 5.9 Contour plots for mechanical strength (a) Flexural (b) Tensile (c) 

Compressive 

After applying the optimized parameters provided by the DNN model, the results 

from the experiments were compared with the model’s predictions. Accuracy of the 

DNN model was assessed by calculating the difference between predicted and 

experimental results. A close match indicates that the model accurately optimized the 

parameters. It has been analysed whether the optimized parameters consistently yield 

improved performance across multiple experiments. 

 

 

5.8 State of art of comparison 

 
B.M. Castro et al. [25] utilized 3D printing scheme using ML web-based pharmaceutical 

software for pharmaceutical application which helps to improve the fabrication 

procedure. But it lacks in predicted key fabrication parameters with low accuracies of 

76% and 67% for the printability and the filament characteristics. Proposed model of 

Adaptive fuzzy logic by R.K Gupta et al [13] error rate recorded during the design 
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process. Grace et al [48] proposed autonomous correction structure but the design process 

is complex. Mohamed et al [24] proposed Dimension optimization of modeling scheme 

and Artificial neural network (ANN) Optimization Definitive screening design (DSD). 

This study confirmed the capability of an integrated DSD and the ANN for optimizing 

AM conditions to avoid problems typically encountered in multiple experiments. Error 

recorded in Predicted and actual results 8.7%.Kaushik Yanamandra, et al [53] utilized 

Imaging strategy where high similarity rates was recorded for original and reconstruction 

model but it takes more duration to execute the function. M. Samie Tootooni et al [51] 

utilized Laser-Scanned 3D Point Cloud Data using ML. Here Sampling was done with 

Sparse Representation-based Classification (SRC), k-Nearest Neighbors (kNN), Naïve 

Bayes (NB), Neural Network (NN), Support Vector Machine (SVM), Decision Tree 

(Tree) but required large real time data. Scanning an entire part, which can be time 

consuming and inefficient. For sample size 500 the maximum accuracy was 84.71%. 

John M. Gardner et al [52] implemented Image classification; here experiments were 

performed to improve the part quality in better extent. This work focuses on using the 

tool to optimize for visible print flaws, but other metrics, such as road width and 

dimensional stability, could also be addressed assuming the effects can be measured 

locally. Correlations between local flaws and overall part performance, such as 

mechanical properties can be addressed. Ashutosh Kumar Gupta et al. [27] investigated 

the effect of process parameters on dimensional accuracy of FDM printed parts and 

results show that ANN model predicts the results with very less error in comparison of 

existing models. Jayant Giri et al. [28] optimized critical process parameters using ANN, 

Mohammad Shirmohammadi et al. [29] investigated the effect of FDM 3D printing 

process parameters on the surface roughness of printed parts using ANN Hybrid 

algorithm and RSM. Jingchao Jiang et al [8] proposed DL model where Different 

complex problems are studied with short duration and wide range of accuracy. Accuracy 

rate recorded was 83%. Proposed using DNN is trained with less analysed input variables 

as nozzle diameter, width of each print line helped to gain better result 88.64% in terms 

of prediction accuracy by detecting the finest combination in the printing layer. 
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Table 5.18 State of art of comparison 

 
Reference Methods Merits Limitations 

Jianjing 

Zhang et al. 

[40] 

Deep learning 

(LSTM) 

Layer-wise Relevance 

Propagation (LRP) was 

found useful for 

interpreting the 

prediction result. 

Predictive model RMSE 

values are at satisfactory 

levels. 

Grace et al 

[48] 

Autonomous 

correction 

structure using 

computer vision 
and deep learning 

Attain high 

performance like 

accuracy and fast 

response 

Design process is too 

complex 

M. Samie 

Tootooni et 

al [51] 

Sparse 

Representation- 

based 

Classification 

(SRC), k-Nearest 

Neighbors (kNN), 

Naïve Bayes 

(NB), Neural 

Network (NN), 

Support Vector 

Machine (SVM), 

Decision Tree 
(Tree) 

Utilized Laser-Scanned 

3D Point Cloud Data 

using ML. 

Scanning an entire part, 

which can be time 

consuming and inefficient. 

For sample size 500 the 

maximum accuracy was 

84.71%. 

Jingchao 

Jiang et al 

[8] 

DL model Different 

complex problems are 

studied with short 

duration and wide range 
of accuracy. 

Accuracy rate recorded was 

83%. 

B.M. Castro 

et al. [25] 

3D printing 

scheme using ML 

for 

pharmaceutical 

application 

Helps to improve the 

fabrication procedure 

It lacks in predicted key 

fabrication parameters with 

low accuracies of 76% and 

67% for the printability and 

the filament characteristics. 

R.K Gupta 

et al [13] 

Adaptive fuzzy 

logic 

Error rate recorded 

during the design 

process and attained 

high accuracy 

Design process is complex 

John M. 

Gardner et 

al [52] 

Image 

classification 

This work focuses on 

using the tool to 

optimize for visible 

print flaws 

Correlations between local 

flaws and overall part 

performance, such as 

mechanical properties can be 
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   addressed. 

Ashutosh 

Kumar 

Gupta et al. 

[27] 

ANN model Effect of process 

parameters on 

dimensional accuracy 

of FDM printed parts 

visualised. Results 

show that ANN model 

predicts the results with 

very less error in 

comparison of existing 
models. 

Prediction on unseen data 

achieving different aims 

could be concentrated due to 

flimsy nature of FDM 

printed parts. 

Kaushik 

Yanamandra 

[53] 

Imaging strategy High similarity rates 

was recorded for 

original and 

reconstruction model 

Takes more duration to 

execute the function. 

Ru Chen et 

al [46] 

FDM based 3D 

printing design 

used to enhance the 3D 

printing parts by 

combining the in-situ 

strain calculation 

But the fabrication process 

is difficult 

Mohamed et 

al [24] 

Dimension 

optimization of 

modeling scheme 

and ANF 

Study confirmed the 

capability of an 

integrated DSD and the 

ANN for optimizing 

AM conditions to avoid 

problems typically 
encountered in multiple 

experiments. 

Error recorded in Predicted 

and actual results 8.7%. 

Design properties are not 

suitable for ANF module 

Proposed Deep learning 

model 

It has helped to gain 

better result by 

detecting the finest 

connection lines in the 

printing layer. Also 

faults were detected 

with good accuracy 

This study limits its use as 

standard test parts 

fabrication were done 

adhering to ASTM 

standards. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

By including a comprehensive summary of results, conclusive remarks, and 

thoughtful recommendations for future work, this chapter aims to provide a 

comprehensive overview of the study's findings and contribute to the advancement of 

knowledge in the field of AM and process optimization. 

 

6.1 Brief 

 
FDM is a model of AM which uses layer by layer-based methodology to fabricate a 

component. Today in the digital manufacturing era FDM process is widely used as it 

can construct intricate and complex part geometries in short time as compared to 

conventional manufacturing, its simplicity and economical bahaviour. Despite of such 

advantages, literature argued various machine learning approaches adopted to increase 

the performance of FDM addressing the issues of irregularities in part properties, 

accuracy, and reliability due to challenging task of best parametric selection. In this 

context, the present study proposed a DNN strategy to predict the best parametric 

combination with optimized mechanical properties of printed parts. In the present 

research, less analysed design variables parameters like nozzle diameter, width of 

print line and layer thickness, print speed are considered as input parameters with 

their levels values that are trained to the proposed system. Adhering to ASTM 

standards with predefined dimensions total 256 experiments have been carried for 

each output, in which 204 result data used for training and 52 for testing the model 

using PYTHON programming language. Subsequently, the proposed model has 

gained the accuracy of 88.46% and RMSE value 0.3396 is validated by relating the 

performance with existing models. Hence, the efficient outcomes of the developed 

model have been verified by gaining the best combination of process parameters and 

ANOVA analysis interpreted their influence on the tensile and compressive strength 

of FDM printed parts. 
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Case study utilized which aims to optimize multiple responses of FDM process of 

PLA printed parts through best combination of selected design variables using Grey 

regression Taguchi based method associated with PCA. Taguchi L16 array of specific 

subset of input parameters combinations was utilized to conduct the experimentation. 

Tensile strength, compressive strength and flexural strength were analysed by multi 

optimization adopting Taguchi and Grey relation analysis combined with PCA. 

Validation of proposed study was carried out with experimental confirmation to find 

out significance of optimized parameters to enhance the mechanical behaviour of 

printed parts. 

 

6.2 Summary of results 

 
• Though evidently several researches have been carried out regarding 

optimisation of input parameters to optimize the mechanical properties of 

FDM printed parts, eventually various studies reported the flimsy nature of 3D 

printed materials which should be taken care of. 

• AM mechanism is the process of fabrication, which includes the connection of 

materials commonly layer-by-layer to generate the structure from FDM. 

Advantages of this technology involve new design structures, low economic 

volumes, etc. Moreover, the AM mechanism includes numerous types of 

machinery to manufacture flexible materials. Nevertheless, during the 3D 

printing process, if the printing parameter selection at the same time is 

mismatched, the raise of faulty connection is tremendously affecting the entire 

performance. Therefore, in this research, a DL model was developed for 

detecting the best connection between process parameters. 

• For example, high dimensional accuracy, high surface finish and better tensile 

strength can be achieved by setting low layer thickness but can affect the 

compressive strength adversely. Print speed affects the mechanical properties; 

build time affects the overall cost of product. Multi response optimisation of 

FDM process based PLA components was investigated using design variables 

as nozzle diameter, print speed, layer thickness and width of each print layer 
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with the selection of level values based on previous literature and customized 

3D printed FDM machine. 

• Experimentation carried out with model architecture by varying the number of 

hidden layers, neurons per layer, and activation functions to find the 

configuration that yields the best performance. After tuning hyperparameters 

such as learning rate, batch size; prediction accuracies after 500 epochs 0.8654 

were obtained on trained data and 0.8846 achieved for test data. The training 

accuracy was not excessively high, which indicates that the model has not 

memorized the training data or overfit to it. A testing accuracy of 88.46% was 

slightly higher than the training accuracy, which was generally an approving 

sign. This recommends that the model is fit for use on the training dataset and 

capability of generalizing well to unseen samples. It interprets that the model 

is well-suited for predicting the connection status based on the provided input 

parameters, and it can be deployed with confidence for future predictions. 

• RMSE value for tested  model observed  was 0.3396 and R2 value 0.8796 

which validates the performance of model and can predict the results under 

random circumstances. 

• The rank-wise influential parameters based on their effects on the response 

variable were nozzle diameter, layer thickness, print speed, width of print 

layer respectively for flexural and tensile strength analysed by Taguchi 

analysis. For compressive strength print speed is dominant parameter and 

nozzle diameter, layer thickness, width successively. 

• From probability plots it was evident that ADT values are in lower range .P 

value for flexural strength was 0.178, for tensile strength 0.095 and 0.140 for 

compressive strength successively. P-values were greater than 0.05 depicts the 

normal distribution was followed by the data set. Also all the data points lay 

beside the fitted line. Hence it was feasible to perform optimization and 

analysis on this data further. 

• To investigate the relationship between nozzle diameter, layer thickness and 

flexural strength contour plots were mapped which revealed that a higher 

range of nozzle diameter (0.25 to 0.3 mm) and a lower layer thickness (0.1 to 
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0.2 mm) lead to higher flexural strength. When the nozzle diameter increases, 

fewer extruded strands are needed to fill a given specimen width. This may 

results in wider extruded lines per layer. While wider lines reduce the number 

of intralayer bonds, they can actually enhance interstrand interaction, leading 

to stronger bonds. Thinner layers often result in better flexural strength due to 

improved interlayer adhesion and surface quality. 

• In the context of impact of nozzle diameter and layer thickness on tensile 

strength; the higher range of nozzle diameter 0.2 to 0.3 mm and lower layer 

height 0.1 to 0.2 mm showed higher tensile strength. Larger nozzle hole 

allows for greater overlap between raster or infill lines, resulting in stronger 

interfacial bonding. When raster or infill lines overlap more extensively, they 

create a denser and more interconnected structure, enhancing horizontal bonds 

and overall part strength. Thicker layers create larger interfaces between 

adjacent layers, which may lead to weaker interlayer bonding and lower 

tensile strength. 

• The effect of most influential parameters print speed and nozzle diameter on 

compressive strength depicted that higher range of nozzle diameter 0.15 to 0.2 

mm and higher print speed 60 to 80 mm/s results in higher compressive 

strength. Finer layer resolution achieved with smaller nozzle diameters may 

contribute to higher compressive strength in FDM-printed parts. 

• Tensile strength, compressive strength and flexural strength were analysed by 

multi optimization using Taguchi and Grey relation analysis associated with 

PCA. PCA assigns weight to each measurable significant response which 

affects the GRG. PCA determined the contribution of tensile strength 

(43.22%), flexural strength (30.52%) and compressive strength (26.26%) 

respectively. 

• WGRG values depicted the most influential factor as print speed followed by 

nozzle diameter, layer thickness and width of each print layer successively. 

• Optimum combination of input parameters was analysed by GRA associated 

with PCA approach as nozzle diameter 0.3 mm, print speed 60 mm/s, layer 

thickness 0.2 mm and width of each layer 0.9 mm which was classified into 
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class 1 in DNN. Confirmatory experimental values for flexural strength were 

60.7 Mpa, tensile strength 37.7 Mpa and compressive strength 26.1 Mpa 

which demonstrated 4.71 % improvement in predicted WGRG. 

• GRA associated with PCA is graceful optimisation technique which can be 

used to determine best combination of design variables of FDM process to 

improve significant quality responses. GRA associated with PCA method fits 

for use to optimize multiple response characteristics and can be further utilized 

for guidelines in design for manufacturing (DFM) for practical applications. 

• By establishing a robust interface between AM and DL, we have shown that 

machine learning models can effectively predict and optimize key parameters 

influencing mechanical properties such as tensile, compressive, and flexural 

strengths. This approach not only improves the quality and consistency of 

FDM-printed parts but also paves the way for the use of intelligent systems to 

automate and enhance additive manufacturing processes. Through continuous 

learning from experimental data, the model offers real-time adaptability, 

reducing trial-and-error in parameter selection and enhancing the efficiency of 

the FDM process. 

• The developed deep learning model successfully performed fault detection and 

behaviour analysis during the FDM process, providing a substantial 

advancement over traditional methods. The model was able to identify 

potential faults and deviations in the manufacturing process in real-time, 

which helped to mitigate errors and reduce material wastage. By training the 

model on a comprehensive dataset, it achieved high accuracy in detecting 

faults and predicting the behaviour of the system, which translated into 

improved part quality and consistency. This optimized model opens new 

avenues for deploying smart monitoring systems in FDM processes, which can 

self-correct and ensure reliable production of high-quality parts. 

• The results obtained from the optimized deep learning model were compared 

with existing optimization techniques, including traditional statistical methods 

and machine learning approaches. The deep learning model outperformed 

these methods in terms of prediction accuracy, mechanical strength 
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optimization, and control of overflow rates. In particular, the optimized 

parameters yielded significant improvements in tensile, compressive and 

flexural strength, enhancing prediction accuracy compared to traditional 

approaches. This comprehensive comparison highlights the superiority of deep 

learning-based optimization for FDM, offering a more accurate and efficient 

approach to achieving desired mechanical properties in printed parts. 

 

 

 
6.3 Limitations and future scope 

 
The model is expected to achieve higher prediction accuracy as more data is fed into 

it. This indicates that the model has the capability to learn from a large dataset and 

make more accurate predictions. The model can be applied to analyse and optimize 

other mechanical properties beyond those studied in the current research. This 

suggests the versatility and scalability of the model for addressing different objectives 

and requirements. 

 

One limitation mentioned is the need for a large amount of data to accurately train and 

process the neural network model. This could be challenging and resource-intensive, 

particularly in cases where obtaining sufficient data may be difficult or expensive. 

 

GRA associated with PCA is graceful optimisation technique which can be used to 

determine best combination of design variables of FDM process to improve 

significant quality responses. GRA associated with PCA method fits for use to 

optimize multiple response characteristics and can be further utilized for guidelines in 

design for manufacturing (DFM) for practical applications. 

This study limits its use as standard test parts fabrication were done adhering to 

ASTM standards. In futuristic direction the optimum combination of FDM process 

design variables can be used to build smart manufacturing based real time 

components using highly customized 3D printers. The model can be further optimized 

and tuned by adjusting parameters such as the number of neurons and layers, 

activation functions, optimizers, dropouts, normalization techniques, and batch size. 
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Ongoing refinement and improvement of the model can enhance performance. 

Depending on the specific objectives of an application, the model can be customized 

and fine-tuned to achieve different aims, such as improving part quality 

characteristics, reducing build time, or minimizing costs. This highlights the 

adaptability and flexibility of the model for various applications. The study suggests 

the integration of other artificial intelligence (AI) techniques such as cloud 

computing, big data analytics and Internet of Things (IoT) technologies. This 

indicates a broader scope for future research and potential synergies between different 

AI methodologies. 
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LIST OF WORKSHOPS/ FDP/ COURSES 

 
1) Faculty development programme on “Artificial Intelligence”, organized by AICTE 

Training and Learning (ATAL) Academy from 14.09.2020 to 18.09.2020 

2) Faculty development programme on “3D Printing and design”, organized by 

AICTE Training and Learning (ATAL) Academy from 01.02.2021 to 05.02.2021 

3) NPTEL Course on “Fundamentals of Additive Manufacturing Technologies”, from 

Jul-Oct 2023, (12 week course). 

4) Training course on “Generative AI”, at Pantech Learning Pvt Ltd from 08.01.2024 

to 27.01.2024. 


