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ABSTRACT 

In today's contemporary culture, the high incidence of stress and emotional disorders 

has developed into a major cause for worry, stressing the need for preventative 

screening and treatment. EEG signals provide helpful insights into these disorders 

because they capture patterns of brain wave activity that are related to different types 

of stress and emotional states. Nevertheless, categorizing EEG data for anticipatory 

detection in an effective manner continues to be a difficult task. 

In this thesis, we offer innovative methods for effective EEG categorization, to enable 

the early diagnosis of emotional disorders and stress-related conditions. The findings 

of the study are provided in the form of two separate publications, each of which 

focuses on a certain area of EEG data processing and categorization. 

The first piece of research presents a multispectral data representation engine to 

enhance the classification performance of EEG signals via the use of ensemble 

models. Traditional deep learning models often depend on data from a specific 

domain, which restricts their applicability to a wide range of illness classifications. In 

addition, the procedures for the selection of features and their extraction often lack 

transparency and control in these models. To circumvent these restrictions, the engine 

presented here makes use of Mel Frequency Cepstral Components (MFCC) in 

conjunction with iVector components to accurately represent EEG signals. While the 

iVector is built with the use of statistical entropy characteristics, the MFCC feature 

vector includes cepstrum, spectrum, power density, and other frequency domain 

datasets & samples. By using these supplementary sets of features, the engine can 

achieve improved feature representation efficiency, which ultimately results in 

improved classification performance. To determine how well it works, a unique 

ensemble classification model that is capable of categorizing EEG data into numerous 

illness categories, such as dementia, stroke, brain tumors, and sleep disorders, has 

been created. This model is built on multiple neural networks, which are referred to as 

MNNs. The results of our experiments show that our suggested model is more 

accurate than the state-of-the-art approaches in terms of accuracy, precision, recall, 

and delay performance. The model achieves a classification accuracy of over 98.5% 
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when applied to a variety of EEG illnesses. Because of these benefits, the suggested 

model is a good candidate for use in clinical applications that take place in real-time. 

The second body of study is on the development of a Transfer Learning-based 

Bioinspired Ensemble Model for the proactive diagnosis of emotional disorders and 

stress-related conditions. When applied to a wide variety of diseases, the currently 

available EEG processing models either have a high degree of complexity or a lesser 

degree of accuracy. To overcome these constraints, the model that we have suggested 

integrates transfer learning strategies as well as a bioinspired ensemble structure. EEG 

datasets of different types are processed to extract multispectral features. These 

features include MFCC, iVector, Cosine, Fourier, and Wavelet components. These 

characteristics are put through a feature selection procedure that is based on Grey 

Wolf Optimization (GWO), to increase the amount of inter-class feature variation 

across a variety of stress and emotional disorder classes. The chosen features are then 

converted into a two-dimensional representation and run through a transfer learning-

based Convolutional Neural Network (CNN) model. This model is a combination of 

the ResNet 101, Mobile V Net, and YoLo models. The classification results that were 

obtained are then placed through a process known as ensemble classification, which 

involves merging several types of models such as Naive Bayes (NB), Support Vector 

Machine (SVM), Deep Forest (RF), Logistic Regression (LR), and Multilayer 

Perceptron (MLP). Post-processing tasks, such as identifying the probability of illness 

transmission and estimating the likelihood of future infections, are also carried out by 

these classifiers. The experimental evaluations that were carried out on the DEAP 

(Database for Emotion Analysis Using Physiological Signals) and Interface datasets 

demonstrate that our proposed model has a superior performance in comparison to 

state-of-the-art methods. Specifically, our proposed model has an 8.5% higher 

accuracy, 8.3% higher precision, 5.9% better recall, 4.5% better area under the curve 

(AUC), and 14.9% faster classification performance. The significance of these 

findings lies in the fact that they highlight the clinical applicability of our paradigm. 

In general, this thesis makes a contribution to the development of effective EEG 

categorization for the early diagnosis of emotional disorders and stress-related 

conditions. Both the multispectral data representation engine that was suggested and 
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the bioinspired ensemble model that was based on transfer learning provide 

innovative answers to the problems that are caused by the limits of current methods. 

In addition, the performance tests show that the models that are suggested are 

effective and superior in properly identifying a variety of EEG datasets & samples. To 

further improve classification performance in context-sensitive settings, future 

research may concentrate on verifying the models on new datasets and investigating 

the possibility of integrating hybrid bioinspired models or advanced deep learning 

approaches. 

Keywords: EEG; Stress; Bioinspired; Ensemble; GWO; ResNet; YoLo; MobileVNet. 
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CHAPTER 1  

INTRODUCTION 

“Most advances in science come when a person for one reason or another is forced to change 

fields.” 

- Peter Borden 

 

Being in today‘s era, we are all surrounded by an environment that causes stress 

among various age groups of people. Mental pressure and stress have a wide adverse 

effect on an individual‘s life. It is very important to see if anyone is facing severe or 

acute stress because if it is kept unchecked then will be very hazardous. Stress 

recognition and emotion detection are pivotal in understanding human behavior and 

mental health. Traditional methods relying on subjective assessments or self-reports 

are often limited by biases and inconsistencies. In recent years, ML algorithms have 

emerged as powerful tools for objective and automated analysis of physiological and 

behavioral data, offering promising avenues for enhancing accuracy and scalability in 

stress and emotion assessment. These algorithms leverage features extracted from 

various physiological signals such as heart rate variability, skin conductance, facial 

expressions, and behavioral indicators including speech patterns and gesture analysis. 

Such multimodal data integration enables a holistic assessment of an individual's 

emotional state and stress levels. 

This thesis focuses on the development of an automated framework designed to 

harness the capabilities of ML for real-time stress recognition and emotion detection. 

The framework aims to integrate multiple ML algorithms, including but not limited to 

deep learning models and ensemble methods. Each algorithm contributes uniquely to 

the robustness and interpretability of the overall system, accommodating diverse 

datasets and contextual variations. 



2 

 
 

 

1.1 OVERVIEW AND BACKGROUND 

An electroencephalogram, or EEG for short, is a diagnostic examination that looks for 

deviations from typical brain electrical activity. Electrodes seen as metal discs having 

thin cables connecting to them, are applied to the scalp during this treatment. These 

electrodes detect diminutive electrical charges formed by the activation of brain cells. 

A graph is subsequently shown on a computer monitor by amplifying the electrical 

impulses that were captured. The comprehensive evaluation helps in identifying 

abnormalities or irregularities in the brain's electrical patterns. Evoked potential 

studies are related procedures that measure the brain's electrical activity in response to 

stimuli like sight, sound, or touch. These studies provide additional insights into 

specific aspects of brain function. EEG is particularly valuable in diagnosing various 

brain disorders [1] [2]. For instance, in cases of epilepsy, the EEG can reveal rapid 

spiking waves indicative of seizure activity. Individuals who have brain lesions due to 

disorders such as tumors or strokes may have EEG waves that are abnormally 

sluggish; the pattern will vary contingent on the lesion's size and location. 

Alzheimer's disease, several psychoses, and narcolepsy, a sleep disorder, are among 

the additional conditions that can be diagnosed using this test. Beyond diagnosis, EEG 

serves other purposes such as assessing overall electrical brain activity, which can 

help assess the degree of brain damage in comatose patients, drug intoxication, or 

trauma. Additionally, it can be utilized to track blood flow to the brain during surgery. 

EEG is a useful and adaptable instrument for assessing the activity caused by the 

brain, helping healthcare providers diagnose a range of neurological conditions and 

monitor brain function in various clinical scenarios [3]. 

Detecting stress in EEG signals involves analyzing the electrical activity of the brain 

to find patterns or changes associated with stress. One way to do this is by looking at 

the EEG signals' power spectrum, which displays the energy distribution over several 

frequency bands like delta wave, theta wave, beta wave, and alpha wave. Stress might 

be linked to increased beta activity (related to alertness) and decreased alpha activity 

(associated with relaxation). Examining the temporal dynamics of EEG signals helps 
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by identifying transient changes or spikes that might correspond to stress-inducing 

events. Features like statistical measures and spectral entropy, which capture the 

complexity of the signal, can be extracted from EEG data to indicate stress [1] [2] [3] 

[4]. 

Machine learning models that can be viewed to automate the procedure using SVM, 

DT, RF, or ANN can be instructed to classify EEG patterns into stressed and non-

stressed categories. Pattern recognition techniques further aid in identifying distinct 

patterns in space which is spatial or time which is temporal within the EEG data 

associated with stress. Real-time monitoring of EEG signals allows for timely 

feedback on stress levels, which is valuable for applications like stress management or 

biofeedback [5]. Validation of diverse datasets and calibration ensure that stress 

detection models perform well across different populations and contexts. Ethical 

considerations, including user privacy and consent, must be addressed when 

collecting and analyzing EEG data for stress detection, complying with relevant 

regulations and guidelines. 

Understanding that stress is a complex phenomenon, EEG signals provide only one 

aspect of the physiological responses to stress. Integrating information from various 

sources and considering contextual factors can amplify the stress detection models' 

precision and consistency. Collaboration with experts in neuroscience, psychology, 

and related fields contributes to a more comprehensive understanding of the patterns 

associated with stress in EEG signals. There are several ways to quantify stress, 

including EEG, ECG), EMG, T, BVP, SC, RSP, fMRI, GSR. Out of all the 

technologies that are accessible, EEG has been determined to be the most non-

invasive method that yields accurate results [6]. 

1.1.1 Introduction to EEG Processing 

The electroencephalogram is a method used in neurophysiology that does not need 

any intrusive procedures. This method captures the electrical activity of the brain 

using electrodes that are put on the scalp. EEG signals provide helpful insights into 
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how the brain works and have been applied in a wide range of disciplines, including 

clinical diagnostics, neuroscience research, and brain-computer interface systems, 

amongst others. The representation of EEG is shown in Fig. 1.1 and the brain is 

electroded using the 10-20 placement approach as demonstrated in Fig 1.2. The 

examination of electrical brain activity, or EEG, signals is a critical stage in the 

process of gaining an understanding of the patterns of brain activity, identifying 

anomalies, and creating diagnostic tools for neurological disorders [7] [8]. Processing 

an EEG entails going through several procedures to glean useful information from the 

patterns of brain waves that were recorded. Preprocessing the signal, selecting, 

extracting, and classifying features are the stages that make up these phases. The total 

process of evaluating and comprehending the underlying brain activity is made easier 

by each step's contribution[9].  

In a view of enhancing the signals' overall quality, Signal pre-processing is considered 

the first action in the EEG processing which is called pre-processing. This phase 

comprises eliminating noise and artifacts from the raw EEG datasets & samples[10]. 

EEG readings may be corrupted by a range of resources of noise, including ambient 

interference, muscle activity, eye blinks, and aberrations produced by electrodes. It is 

common practice to employ filtering techniques including notch, low-pass, and high-

pass filters in preprocessing. These filters are used to remove noise components, while 

other preprocessing techniques, such as baseline correction, are used to remove 

artifacts [11]. After the signal has been pre-processed, the next stage is the extraction 

of features. Because of the complexity and multidimensionality of EEG information, 

it is very necessary to extract key features that can accurately capture crucial aspects 

of brain activity. The raw EEG signals are compressed and simplified into a more 

realistic feature space via the use of feature extraction algorithms. A variety of 

techniques can be applied for feature extraction, including analysis in the frequency 

domain, time domain, and time-frequency domain. The statistical aspects of the 

signal, such as its mean, its variance, and its skewness, may be reconstructed using 

time-domain features [12] [13], [14]. Among the details of the signal's spectrum 

content that may be discovered through the application of frequency-domain 
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characteristics are power spectral density, spectral entropy, and specific frequency 

band power. The evolution of a signal's attributes over time can be observed with 

time-frequency analysis techniques like the WT or the STFT. 

 

Figure 1.1 The Electroencephalogram 

The next phase, which comes after extracting various features, is selecting features 

from them. Because EEG feature spaces have a high dimensionality, to reduce 

computing complexity and increase classification accuracy, it is imperative to select a 

subset of the most significant features. The valid intention of the many approaches 

used to choose characteristics is to determine which aspects are the most important in 

terms of discriminating between the various states or circumstances of the brain. 

These techniques may be based on statistical measurements, such as mutual 

information or t-tests, or they can apply optimization techniques including genetic 

algorithms or particle swarm optimization to locate the feature subset that has the 

greatest capacity for discrimination [15]. 
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Figure 1.2 10-20 placement systems for EEG 

In the last step, classification algorithms are used so that EEG signals may be placed 

into certain groups or classes based on the properties that were retrieved. The ability 

to classify data in EEG analysis is essential since it permits the identification of 

certain brain states as well as the diagnosis of neurological disorders. SVM, ANN, RF, 

and NB are only a few of the machine learning methods that are often utilized for 

EEG categorization. These algorithms generate models via the process of learning 

patterns from the labeled EEG data and can effectively categorize EEG signals that 

have not been observed [16], [17], [18]. Significant advancements have been made 

within the domain of EEG processing over the past few years. These advancements 

have been driven by the increased availability of computer resources, methods for 

machine learning, and the incorporation of domain knowledge. Because of these 

breakthroughs, the creation of more complex models and algorithms for EEG 

categorization has been made possible, which has led to increased diagnostic accuracy 

and the ability to implement these improvements in real-time [19]. 

In conclusion, several steps make up EEG processing, including feature extraction, 

feature selection, signal pre-processing, and classification, to evaluate and understand 

the complex brain wave patterns that are recorded by EEG datasets & samples. These 

procedures are described below. These processing phases are essential for establishing 
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diagnostic tools for stress and emotional disorders, as well as for comprehending the 

activity of the brain, which may be used to locate issues for real-time scenarios. In the 

realm of stress and emotional disorders, the combination of cutting-edge computing 

approaches and machine learning algorithms has opened up new possibilities for fast 

and accurate EEG processing, opening the way for proactive identification and 

intervention processes. 

1.1.2 Various components of EEG signals 

The intricate waveforms of EEG signals show the electrical activity that happens in 

the brain. The signals from EEG offer crucial details about the mental states of the 

brain, the cognitive processes involved, as well as neurological disorders. Correct 

elucidation and examination of brain action depend heavily on it to have a solid 

understanding of the different components of EEG signals [20], [21], [22]. Different 

EEG bands with their respective frequency are mentioned in Table 1 and EEG 

brainwaves have appeared in Fig 1.3. This part will talk about the various components 

of EEG signals as well as the relevance of those components when it comes to EEG 

processing scenarios [23].  

1. Delta Waves:  

Delta waves are oscillations of the EEG that occur at low frequencies and vary 

from 0.5 to 4 Hz. They are related to unconsciousness and the state of 

complete relaxation, and they are often seen during the deeper phases of sleep. 

The high amplitude and slow oscillations that are characteristic of delta waves 

are thought to be a reflection of the coordinated activity of huge groups of 

neurons. 

Table 1.1 The EEG bands with a frequency range. 

 

EEG Band 

Name  
Frequency 

Bandwidth  
Associated Brain State  

Delta (δ)  0.5Hz - 4Hz  Deep Sleep, Unconscious 

Theta (θ)  4Hz - 8Hz  Light sleep, Drowsy,  recall 
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Alpha (α)  8Hz - 13Hz  Awake & resting, Relaxed, light 

meditation, super  learning, 

conscious 

Beta (β)  13Hz - 30Hz  Normal waking state,  concentration, 

focus, Integrated, Engaged 

Gamma (¥)  30Hz - 54Hz  Deep Meditation, the fastest brain 

activity  

  

 

2. Theta Waves:  

Drowsiness, daydreaming, and light sleep are frequent times when the brain 

produces theta waves, which can range in frequency from 4 to 8 hertz. In 

addition, they are present during meditative states and certain mental 

activities. Memory formation, learning, and spatial navigation are all processes 

that are related to theta waves. 

3. Alpha Waves:  

The range of frequencies for alpha waves is 8–13 Hz which is best noticeable 

when the eyelids are closed and the subject is in a relaxed yet awake 

condition. They are often seen positioned over the back parts of the brain. 

Alpha waves are typically utilized as a sign of tranquillity and decreased 

mental activity because they are connected with a state of wakeful relaxation 

and because they are produced when there is less mental activity. 

4. Beta Waves:  

Beta waves are often noticed during active wakefulness and cognitive 

processing. Their frequency ranges from 13 to 30 hertz (Hz), and they are 

characterized by low amplitude. They are related to attentiveness, alertness, 

and active mental involvement on the participant's part. When doing activities 

that involve focus and the ability to solve problems, beta waves are often 

noticed. 

5. Gamma Waves:  

Gamma waves are high-frequency oscillations of the EEG that vary from 30 to 

100 Hz or even higher. They are linked to cognitive processes, sensory 
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perception, and the integration of information across the many areas of the 

brain. Gamma waves are thought to play a part in bringing together many 

facets of sensory information and promoting coherent functioning in the brain. 

6. The mu rhythm 

The mu rhythm is a distinct component of an EEG that may be seen across the 

sensorimotor cortex. It is distinguished by oscillations at alpha or beta 

frequencies (eight to thirteen hertz or thirteen to thirty hertz, respectively), and 

its activity decreases with voluntary movement or motor imagery. In the field 

of neurofeedback as well as brain-computer interface applications, the mu 

rhythm is often used. 

7. Artifacts:  

Several different artifacts might taint EEG readings. These artifacts originate 

from non-neural sources. Eye blinks, eye movements, muscular activity, 

electrode artifacts, surrounding noise, and heart activity are some examples of 

the artifacts that may be present. The quality of EEG signals as well as their 

interpretation may be severely impacted by artifacts, which is why they need 

to be correctly recognized and deleted during the pre-processing stage. 

Researchers and clinicians can evaluate patterns of brain activity, diagnose anomalies, 

and connect certain EEG components with cognitive processes or neurological 

disorders when they have a solid understanding of the many components that make up 

EEG signals. In the process of EEG processing, feature extraction techniques often 

entail examining the power, frequency, and temporal aspects of these components to 

collect significant information that can then be used for categorization and analysis 

[24], [25]. 

In conclusion, EEG signals are made up of a variety of components, such as delta-

type waves, theta-type waves, alpha-type waves, beta-type waves, gamma-type 

waves, mu rhythm, and artifacts. Every one of these components indicates a different 

state of the brain, a particular cognitive activity, or an artifact. It is necessary to 

analyze these components to derive relevant characteristics, recognize problems, and 
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gain knowledge of how the brain works. The proper identification and analysis of 

these components help the accurate processing of EEG data, which in turn makes it 

easier to diagnose and treat emotional disorders and stress-related conditions. 

 

Figure 1.3 EEG brainwaves: Delta, Theta, Alpha, Beta, and Gamma 

1.1.3 Use of EEG for various clinical applications 

The electroencephalogram, commonly referred to as EEG, is a method of 

neuroimaging that needs no invasive methods and looks at the electrical activity 

produced by the brain. Due to its capacity to provide useful insights into brain activity 

and diagnose a variety of neurological and psychiatric disorders, it has found 

widespread use in therapeutic settings [26], [27], [28], [29]. The following paragraphs 

talk about how EEG may be used for a variety of therapeutic purposes. 

1. Diagnosis and Treatment of Epilepsy:  

The EEG is one of the key instruments used in the diagnosis and treatment of 

epilepsy, which is a neurological illness that is characterized by repeated 

seizures. Recordings of an EEG may capture epileptic activity such as aberrant 
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spikes, sharp waves, or rhythmic discharges, all of which aid in defining the 

seizure and verifying the diagnosis of epilepsy. Long-term EEG monitoring is 

especially helpful when it comes to recording elusive or uncommon seizure 

occurrences and determining how well therapy is working. 

2. Sleep Disorders:  

The EEG is an important tool for the diagnosis and research of sleep disorders 

such as sleep apnea, narcolepsy, and insomnia. The phases of sleep may be 

categorized according to certain EEG patterns, such as the presence of delta 

waves in deep sleep or theta waves associated with rapid eye movement sleep. 

Sleep staging, which entails classifying distinct stages of sleep, is done based 

on these patterns. The EEG helps determine the structure of sleep, locate 

aberrant sleep patterns, and gauge the efficiency of various sleep therapies. 

3. Evaluation of Patients Suffering from a Brain Injury or Who Are in a Coma:  

The EEG is a very useful tool for evaluating patients who have suffered a 

brain injury or who are in a coma. It helps identify the patient's degree of 

awareness, find aberrant brain activity, and forecast the prognosis of the 

patient's condition. Certain patterns on an EEG, such as burst suppression or 

widespread slowing, might help clinicians gain insight into the severity of a 

brain injury and make more informed treatment decisions. 

4. Neurological Disorders:  

The EEG is used in the process of diagnosing and treating a wide variety of 

neurological disorders, such as stroke, multiple sclerosis, and movement 

disorders which can be Parkinson's disease. Patterns on an EEG may assist in 

differentiating between the various kinds of strokes and monitoring brain 

activity as the patient is recovering. Characteristic EEG abnormalities may 

often be seen in patients with movement disorders, which is helpful for both 

diagnosis and therapy planning. 

5. Cognitive Function and Brain Mapping:  

EEG is used in cognitive neuroscience research to investigate brain activity 

during cognitive activities such as attention, memory, language processing, 
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and decision-making. Researchers can explore cognitive processes and their 

underlying neural mechanisms by using ERPs, which are produced from EEGs 

and offer information on the brain's response to certain stimuli or events. 

6. Psychiatric Disorders: 

The EEG has shown promise in the diagnosis and research of psychiatric 

disorders such as attention deficit hyperactivity disorder (ADHD), depression, 

and schizophrenia. The diagnosis, comprehension, and treatment of these 

conditions have all benefited from the discovery of distinctive EEG patterns or 

anomalies associated with the disorders. Neurofeedback methods that are 

based on EEG may also be utilized in some instances to control brain activity 

and reduce symptoms. EEG has become a potential instrument for the pre-

emptive identification of stress and emotional disorders.  

7. Pre-emptive identification of Stress and Emotional Disorders: 

EEG has become a capable method that goes for the proactive detection of 

stress and emotional disorders. Machine learning algorithms may be taught to 

categorize and forecast these disorders if certain EEG signals related to stress 

or emotional states are analyzed. The earlier a disease is detected, the more 

options there are for prompt treatments and individualized treatment strategies. 

In conclusion, EEG is a flexible instrument that may be used in a broad variety of 

therapeutic settings. It is applied in the diagnosis, treatment, and research of 

conditions such as epilepsy, sleep disorders, brain injuries, neurological and 

psychiatric disorders, cognitive function, and the early identification of stress and 

emotional disorders. The EEG gives doctors and researchers significant insights into 

the activity of the brain, which enables them to better understand these illnesses, 

customize therapies, and enhance patient outcomes. The EEG continues to develop as 

a useful tool in clinical practice as a result of advances in signal processing and 

approaches for machine learning operations. 

1.1.4 Models used to process EEG signals 
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Signals from an EEG are rather complicated and may provide insightful information 

about a person's brain function. Utilizing a broad range of models and techniques is 

required to extract meaningful insights from the processing and analysis of these data. 

[30]. In the following paragraphs, we will talk about some of the models that are often 

used to analyze EEG information sets [31], [32], [33]. 

i. Models for the Preprocessing Step:  

The first phase in EEG signal analysis is called preprocessing, and its goal is to raise 

the signals' quality by eliminating undesired artifacts and noise and boosting their 

overall clarity. Several different preprocessing models are used, including the 

following: 

• Filtering: EEG readings are often tainted by noise originating from a variety of 

sources, such as interference from power lines or muscle movement. Filtering 

strategies, such as bandpass filtering, high-pass filtering, and notch filtering, are used 

in a view to eliminate noise and isolate the frequency bands that are of interest. 

• Artifact Removal: Eye blinks, muscle movements and electrode artifacts are all 

things that have the potential to impact EEG datasets & samples. To locate and 

eliminate these artifacts, prototypes like ICA and WT are used. This results in an 

improved quality of the EEG signal. 

ii. Feature Extraction Models:  

The method used to acquire pertinent data values detected from the EEG signals is 

referred to as feature extraction to define particular brain activities or situations [2]. 

These models are used to characterize specific brain activities or circumstances. To 

retrieve features, several models are used, including the following: 

• Time-domain Features: Time-domain statistical measures including mean, variance, 

and skewness are retrieved from the EEG data. All those characteristics are referred to 

as "time-domain features." The amplitude, duration, and temporal properties of the 

signal may all be determined from the information provided by these features. 
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• Characteristics of the frequency domain EEG data are converted into the frequency 

domain by applying transformation models like as the Fourier transform and the 

wavelet transform, among others. When analyzing the distribution of energy across 

several frequency bands, the power spectral density, band power ratios, and peak 

frequencies may be retrieved. 

• Time-Frequency Characteristics: Models like STFT or CWT are used to 

concurrently capture time and frequency information. Insights into the dynamic 

changes that occur in the EEG signal over time may be gained via the use of time-

frequency characteristics such as spectrograms or wavelet scalograms. 

iii. Classification Models:  

Classification models are used in interest to classify EEG signals into various groups 

or situations based on the retrieved properties [6]. Models of categorization that are 

often used include: 

• SVM: An established machine learning model is SVM that divides EEG signals into 

unique classes by using hyperplanes in a high-dimensional feature space. It is very 

useful when dealing with nonlinear classification issues because of its effectiveness. 

• ANN: ANN models, such as feedforward or RNN, may be trained to categorize EEG 

data based on the properties that have been retrieved from those signals. These models 

can represent intricate relationships seen in the data and have shown encouraging 

results in a variety of EEG applications. 

• Deep Learning Models: These modules include CNN or RNN with LSTM, viewed 

as getting a lot of interest in the realm of EEG data processing. These models are 

capable of autonomously learning hierarchical representations from raw EEG data, 

doing away with the need to manually extract features. 

4. Statistical Models: This kind of model is useful in the process of analyzing EEG 

data and deriving relevant information about activity in the brain. The following are 

some examples of statistical models that are often used: 
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• Event-related Potentials (ERPs): ERPs are computed employing the average of a 

person's EEG responses to a certain stimulus or event. To determine whether or not 

the changes between circumstances are significant, ERP components are subjected to 

statistical examinations like t-tests and analysis of variance (ANOVA). 

• Correlation Analysis: Correlation models, such as Pearson correlation or coherence 

analysis, are used in interest to investigate the connection that exists between EEG 

signals that were collected at various electrode positions. The functional connection 

patterns in the brain may be more easily identified with the aid of these models. 

• Hidden Markov Models (HMM): HMMs are probabilistic models used to assess 

temporal relationships in EEG datasets & samples. They are especially helpful for 

modeling dynamic processes or locating hidden states within EEG datasets and 

samples, both of which may be found in the database[22]. 

To summarize, the processing of EEG data makes use of some different models, each 

of which fulfills a distinct function at a different level of the analysis. Classification 

models sort signals into categories, preprocessing models enhance signal quality, 

feature extraction methods retrieve pertinent information, and statistical models 

provide light on how the brain functions. The properties of the EEG data that are 

being examined as well as the particular purpose of the research or clinical study 

determine which models should be used for clinical use cases [34], [35]. Utilizing 

more sophisticated machine learning and deep learning models has made a substantial 

contribution to the development of EEG signal processing operations. This has made 

it possible to conduct an analysis of brain activity levels that is both more accurate 

and more efficient for real-time scenarios. 

1.1.5 Clinical diseases identification process via EEG signals 

EEG signals are very important in the process of identifying and diagnosing a wide 

variety of neurological disorders as well as clinical conditions. The examination of 

EEG data might give very helpful information on aberrant patterns of brain activity 

that are linked with certain illnesses [36], [37], [38]. This section of the text will go 
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through the intricate process of diagnosing clinical disorders using EEG datasets and 

samples. 

1. Data gathering:  

The process of identifying clinical disorders begins with the gathering of EEG 

datasets and samples, which is the first stage in the process. Electrodes are 

positioned on the scalp in interest to capture EEG datasets & samples. These 

electrodes detect the electrical activity that is produced by the brain. The 

precise recording procedure and the particular brain areas of interest both have 

a role in determining the electrodes' locations as well as their overall quantity 

used. Amplification, digitization, and storage of the recorded signals are done 

in preparation for subsequent investigation[39]. 

 

2. Preprocessing:  

After the EEG data have been gathered, the next step is to apply the 

preprocessing techniques in an effort to raise the signals' quality and get rid of 

any artifacts or noise that can get in the way of the analysis. Preprocessing 

methods include: 

• Filtering: The noise in the EEG data is removed by filtering, which 

also helps to separate the frequency bands of interest. Bandpass filters, high-

pass filters, and notch filters are some of the most common types of filters 

[40]. 

• Artifact Removal: Eye blinks, muscle movements or electrode 

artifacts may contaminate EEG results. In interest to locate and eliminate these 

artifacts, methods such as ICA and wavelet transform are used [41]. 

3. Feature Extraction:  

The purpose of feature extraction is to get pertinent information from the 

preprocessed EEG data in interest to differentiate between various clinical 
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conditions. From the EEG waves, a variety of characteristics are retrieved, 

including the following: 

• Time-Domain properties: Insights into the amplitude and temporal 

properties of the EEG signals may be gained by the use of statistical measures 

such as the mean, variance, or peak amplitude [42]. 

• Characteristics Obtained from the Frequency Domain: like power 

spectral density, band power ratios, or dominant frequency, reflect the 

distribution of energy over many distinct frequency bands [43]. 

• Timing and Frequency Characteristics: The extraction of time-

frequency representations, such as spectrograms or wavelet scalograms, which 

capture both temporal and spectral variations in the EEG signals is made 

possible by techniques such as STFT or WT [44]. 

4. Classification and Diagnosis:  

After the relevant characteristics have been retrieved, classification models are 

used to categorize the EEG signals into various clinical illness categories. This 

step is followed by the diagnosis step. For classification purposes, machine 

learning methods such as SVM, ANN, and deep learning models are often 

used. These models are trained using labeled datasets, in which the EEG 

signals are linked to various illness classifications. During the phase of 

classification, the models make a diagnosis based on the extracted properties 

of the input EEG data to determine which illness group it belongs to. 

5. Validation and Performance Evaluation:  

The categorization models' performance in this phase is examined to see how 

accurate and reliable they are in diagnosing clinical disorders. This may be 

accomplished by testing the models on separate datasets or via means of cross-

validation methods. One way to assess the effectiveness of the categorization 

models is by using performance metrics such as accuracy, sensitivity, 

specificity, and precision, as well as ROC curve analysis. 
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6. Clinical Interpretation:  

This is the sixth and last phase in the procedure, and it includes the clinical 

interpretation of the categorization findings. The illness categories that have 

been established have the potential to give helpful insights into the 

neurological status of the patient. Neurologists and other medical experts 

analyze the categorization results and utilize them as a supporting source of 

information for the purposes of diagnosis, treatment planning, and monitoring 

the development of the condition. 

It is essential to keep in mind that the diagnosis of clinical conditions using EEG 

signals is an arduous undertaking in which physicians and researchers must 

collaborate who are knowledgeable in their respective fields. Research in this field is 

continuing, with the overarching goal of enhancing illness diagnosis, facilitating early 

detection, and improving patient care in a variety of clinical settings via the creation 

of accurate and reliable classification models [45], [46], [47]. 

In conclusion, the process of diagnosing clinical disorders using EEG signals 

encompasses data gathering, preprocessing, feature extraction, classification, 

validation, and clinical interpretation of the results. Extracting useful information 

from EEG signals and assisting in the diagnosis and treatment of neurological 

disorders may be accomplished with the help of this multi-stage procedure, which 

employs advanced signal processing techniques and machine learning algorithms. 

1.1.6 Brief review of disease identification models 

Numerous models for identifying diseases have been developed recently to assist in 

the diagnosis and monitoring of neurological disorders by analyzing EEG datasets & 

samples. These models have been developed to evaluate EEG signals. Complex ML 

and DL techniques are employed by these models to extract useful characteristics 

within EEG data and reliably categorize them into a variety of disease categories [48], 

[49], [50]. This area offers a concise overview of a variety of well-known disease 

detection models. 
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1. CNN:  

Based on EEG measurements, CNN models have been widely employed for 

disease diagnosis. Convolutional layers are used in these models so that the 

models may automatically learn hierarchical features based on the input 

signals. CNNs have exhibited outstanding execution across a range of jobs, 

including the detection of seizures, the categorization of Alzheimer's disease, 

and the identification of sleep stages. Their ability to identify patterns in the 

EEG data, both local and global, allows them to precisely categorize illnesses. 

[51] [52] [53] [54] [55] [56]. 

2. RNN:  

RNNs are appropriate for EEG signal analysis because they are especially 

good at identifying temporal relationships and sequential patterns in time-

series datasets & samples. The RNN variations known as LSTM and GRU are 

becoming more used in disease diagnosis models. In a range of applications, 

including the detection of emotions, the diagnosis of epilepsy, and the creation 

of brain-computer interface systems, RNNs have demonstrated positive results 

[57] [58] [59] [60]. 

3. SVM:  

A well-liked machine learning technique called SVM is utilized to diagnose 

diseases based on EEG readings. The goal of SVM models is to locate an ideal 

hyperplane in a high-dimensional feature space that can differentiate between 

various disease classifications. SVMs have been effectively used in a variety 

of applications, including the categorization of epilepsy, motor imagery-based 

brain-computer interfaces, and the detection of Alzheimer's disease [61] [62] 

[63] [64]. 

4. DBN:  

DBNs are generative models that develop hierarchical representations of 

datasets and samples by combining many layers of restricted Boltzmann 

machines (RBMs). They have been used in the diagnosis of diseases based on 

EEGs, such as the detection of epilepsy and the categorization of different 
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stages of sleep. DBNs have shown promising performance in a variety of 

clinical applications and have the ability to automatically extract important 

characteristics from EEG datasets & samples [65] [66] [67] [68] [69]. 

5. Ensemble Models: 

 Ensemble models are a way to increase overall disease detection performance 

by combining numerous separate classifiers into a single model. The creation 

of trustworthy and precise ensemble models for EEG signal processing has 

involved the application of techniques like bagging, boosting, and stacking, 

amongst others. Ensemble models have been applied in numerous contexts 

including motor imagery-based brain-computer interfaces, emotion 

identification, and the categorization of sleep stages [70] [71] [72] [73] [74] 

[75]. 

6. Transfer Learning:  

Within the field of EEG-based disease detection, transfer learning techniques 

have gained prominence recently. Transfer learning enables the application of 

information gained in one domain (for example, a dataset that has been well 

labeled) to another domain (the target domain) that has less labeled datasets 

and samples. Transfer learning improves the performance of disease detection 

models using smaller datasets by making use of previously trained models that 

have been run on large-scale datasets. This technique has demonstrated 

promise for application in the diagnosis of cognitive impairment, the 

identification of epilepsy, and the procedure for recognizing emotions [76] 

[77] [78] [79]. 

It is essential to keep in mind that the performance and applicability of disease 

identification models change depending on the nature of the disease in question, the 

features of the dataset, and the experimental configurations used. The choice of an 

acceptable model is determined by many considerations, including the characteristics 

of the disease, the data that are at hand, the amount of computing that is necessary, 

and the degrees of interpretability that are sought [80] [81]. 
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In conclusion, disease identification models based on CNNs, RNNs, SVMs, DBNs, 

ensemble methods, and Transfer learning have demonstrated a great deal of promise 

for precisely identifying EEG signals for various neurological disorders. The 

continuation of research and development efforts in this area holds a great deal of 

potential for enhancing the precision, clinical value, and operational cost-effectiveness 

of disease identification models in the foreseeable future scenarios. 

1.2 MOTIVATION OF THIS WORK 

Because of the enormous influence that stress and emotional disorders have on the 

overall quality of life and the well-being of persons, the motivation for doing this 

study on efficient EEG categorization for the preemptive diagnosis of stress and 

emotional disorders arises from this impact. In today's world, stress and disorders 

caused by emotions such as depression, anxiety, and PTSD are all too common [82]. 

If these problems are not handled, they may have serious psychological and 

physiological repercussions if they are allowed to go unchecked. In interest to 

effectively treat and manage these disorders, early identification and intervention are 

both very necessary components. 

The traditional techniques of diagnosing emotional disorders and stress depend 

mainly on subjective evaluations, self-reporting, and clinical interviews. These 

procedures may be time-consuming, expensive, and prone to biases. Signals from an 

EEG provide a one-of-a-kind chance to objectively measure and examine brain 

activity. As a result, this kind of investigation yields vital insights into the 

neurological causes of various disorders. EEG signals may be utilized as biomarkers 

to correctly diagnose and categorize a variety of emotional and stress-related 

disorders [83] [84] [85]. Because of the latest advancements in machine learning and 

signal processing techniques, this is feasible. 

The formation of effective EEG classification models for the early diagnosis of 

emotional disorders and stress is driven by many different variables, including the 

following: 
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1. Early Intervention: The early discovery of stress and emotional disorders allows 

immediate intervention, which may avoid the worsening of symptoms and enhance 

treatment results. Early detection of stress and emotional disorders enables timely 

intervention[86]. It is now feasible to intervene in the course of several disorders 

before they reach more severe phases, thanks to the discovery of unique EEG patterns 

that are connected with each condition. 

2. Personalized Treatment: Classification models based on EEG data may be used to 

help in the process of customizing treatment plans for particular patients. By gaining 

an awareness of the distinct EEG signatures associated with various disorders, it is 

possible to build individualized treatment strategies that take into consideration the 

particular neurological deregulations that are shown by each patient. 

3. Objective Assessment By reducing the dependence on subjective judgments and 

increasing the accuracy and reliability of diagnosis, objective measurements, which 

are supplied by EEG signals, are used. This objective evaluation is especially helpful 

in situations in which patients may have difficulties articulating their emotional 

experiences or in which patients' reports may not be credible. 

4. EEG is a neuroimaging method that is non-invasive and generally low-cost in 

contrast to alternative methods viewed in fMRI and positron emission tomography 

(PET) [87] [88]. Because of its accessibility, EEG is a practical instrument that may 

be used for mass screening and monitoring of emotional disorders and stress. 

5. Monitoring in real-time EEG data may be recorded in real-time, which enables 

continuous monitoring of brain activity during a variety of tasks, stimuli, or activities 

that are part of everyday life. Real-time monitoring allows the detection of 

instantaneous alterations in brain activity brought on by emotional or stressful 

situations, offering vital insights into the dynamics of these disorders. Real-time 

monitoring enables the detection of immediate variations in brain activity brought on 

by stressors or emotionally charged situations [89] [90] [91]. 
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Aim seeks to contribute to the progress of therapeutic procedures linked to stress and 

emotional disorders by building effective EEG classification models. These models 

will be used in clinical settings. The models that have been developed may provide 

physicians and researchers with assistance in making accurate diagnoses, creating 

individualized treatments, and evaluating the efficacy of interventions. In addition, 

these models have the potential to be integrated into wearable devices or mobile apps, 

which would make it possible for people to self-monitor their brain activity and 

proactively manage their stress and emotional well-being in response to a variety of 

events. 

The overarching aspiration of this line of research was to use the power of EEG 

signals and sophisticated data processing tools to develop a method that is objective, 

effective, and preventative in the diagnosis of emotional disorders and stress-related 

conditions. The aim is to have a significant effect on the lives of those who are 

afflicted by these disorders by strengthening early detection methods as well as 

individualized treatment techniques. The ultimate objective is to raise these people's 

general quality of life and well-being. 

1.3 PROBLEM STATEMENT 

The subject that is investigated in this thesis is the need for effective EEG 

classification algorithms that can be used in interest to facilitate the prompt detection 

of emotional disorders and stress. The psychological well-being and well-being of 

humans may be significantly impacted by factors such as stress and emotional 

disorders including anxiety, depression, and post-traumatic stress disorder (PTSD). In 

interest to effectively treat and manage these disorders, early identification and 

intervention are both very necessary components. However, conventional methods of 

diagnosis mainly depend on self-reporting and subjective judgments, both of which 

may be time-consuming, are prone to biases, and may not offer findings that are 

objective and reliable for clinical scenarios. 
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EEG data provide a potentially useful path toward the objective diagnosis and 

categorization of emotional disorders and states of stress. Signals from an EEG may 

shed light on the electrical activity caused by the brain and reflect the underlying 

neurological processes that are related to a variety of mental states and disorders. It is 

possible to find certain patterns and biomarkers that are symptomatic of a variety of 

emotional disorders and stress-related conditions by performing an analysis and 

interpretation of EEG datasets & samples. On the other hand, a precise and effective 

categorization of EEG data presents many issues that need to be tackled. 

To begin, EEG impulses are naturally complicated and noisy, which makes it difficult 

to get useful information from them. EEG recordings are susceptible to contamination 

from a wide variety of artifacts, including eye blinks, muscular activity, and external 

interference, all of which may result in a reduction in classification accuracy. In 

interest to raise the EEG signals' quality as well as their interpretability, preprocessing 

methods such as artifact removal, noise reduction, and feature extraction need to be 

developed. 

Second, the categorization of EEG data needs the creation of machine learning 

models that are both reliable and effective. Because EEG datasets and samples are 

both high-dimensional and temporal, it's possible that traditional classification 

methods won't be enough to work with them. In an interest to properly interpret and 

categorize EEG data, novel machine learning methods such as deep learning 

architectures, ensemble models, or transfer learning approaches need to be researched 

and adapted. 

In addition to this, the categorization models need to be adaptable enough to deal with 

numerous forms of stress as well as emotional disorders at the same time. It might be 

difficult to effectively discern between various disorders since they may display 

overlapping EEG patterns or have comparable underlying brain pathways. This can 

make it difficult to diagnose. The classification models need to be able to offer 

findings that are dependable and easy to comprehend, as well as reflect the nuances of 

difference that exist amongst various disorders. 
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In addition, the suggested categorization models have to be usable in clinical 

environments that take place in the real world. They have to have a high level of 

computing efficiency and be able to handle massive volumes of data in a reasonable 

length of time. In addition to this, the models need to be interpretable so that 

physicians may get an understanding of the underlying neurological processes that are 

contributing to the classification findings. The end objective is to build a useful tool 

that may aid physicians in early identification, tailored treatment planning, and 

tracking the development of stress and emotional disorders. 

In conclusion, the purpose is to investigate the topic of developing effective EEG 

classification algorithms for the early diagnosis of emotional disorders and stress. 

This requires resolving issues that arise during the preprocessing of EEG data, 

developing reliable ML models, managing several disorders at the same time, and 

guaranteeing that the solution can be used in real-world clinical situations. This seeks 

to equip doctors with reliable and objective strategies for early identification and 

action, to ultimately improve the overall well-being and quality of life for those who 

are impacted by stress and emotional disorders. This will be accomplished by 

addressing these issues. 

1.4 FUNDAMENTAL GOALS  

The fundamental goal is to create effective EEG classification approaches for the 

early diagnosis of emotional disorders and stress-related conditions. These broad aims 

may be broken down even further into the following particular objectives: 

1. Investigate and evaluate currently used EEG processing techniques. The first goal 

is to carry out a thorough assessment and analysis of the already used EEG processing 

methods. This entails researching the many preprocessing approaches, feature 

extraction strategies, and classification algorithms that are used in the relevant 

published literature. By analyzing the benefits and drawbacks of different 

methodologies, one may provide a strong groundwork for the creation of innovative 

and enhanced research strategies. 
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2. Conceive and put into practice advanced preprocessing methods. The second goal 

is to conceive of and put into practice advanced preprocessing techniques to raise the 

EEG signals' level of quality and their interpretability. In interest to do this, there‘s a 

need to solve difficulties such as artifact removal, noise reduction, and feature 

extraction. There will be an investigation of the use of cutting-edge techniques for the 

identification and elimination of artifacts, such as ICA and adaptive filtering. In 

addition, methodologies for the extraction of features from EEG signals that capture 

significant information, such as time-domain type, frequency-domain type, and time-

frequency type analysis, will be researched and put into practice. 

3. Create and implement innovative machine learning models especially geared 

toward the arrangement of EEG signals. The third intent is to produce and implement 

innovative ML models specifically geared toward the classification of EEG signals. 

The temporal structure and high-dimensional properties of EEG datasets and samples 

may not be completely exploited by conventional classification techniques such as 

SVM or RF. In interest to effectively handle EEG classification tasks, therefore, 

advanced techniques such as deep learning architectures, ensemble models, or transfer 

learning approaches will be explored and customized. These models will be capable 

of learning complex patterns and extracting discriminative features from EEG signals, 

which will lead to accurate and reliable classification results. 

4. Using datasets from real-world applications evaluate the developed EEG 

classification models. The fourth goal is to evaluate the effectiveness of the generated 

EEG classification models using real-world datasets. These databases need to include 

a broad spectrum of stress and emotional disorders, such as anxiety, depression, 

PTSD, and a variety of others. On these datasets, the models will be trained, verified, 

and tested in interest to evaluate the classification accuracy, precision, and recall, as 

well as any other performance metrics they may have. In interest to show that the 

suggested models are more effective than the state-of-the-art methodologies that are 

already in use, a comparison study will be carried out. 
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5. Give some insight into the interpretability of the classification findings. The fifth 

goal is to make sure that the classification results that were produced by the 

constructed models are interpretable. Clinical decision-making needs to have a solid 

understanding of the neurological processes and biomarkers that contribute to the 

categorization results. In interested giving insights into the areas or patterns within the 

EEG signals that contribute the most to the classification findings. Clinicians will 

benefit from this since it will make it easier for them to comprehend and make use of 

the categorization results. 

6. Validate the suggested models in a clinical context. The sixth and last goal is to 

validate the created EEG classification models in a clinical environment that is 

representative of the real world. In the interest of testing the models on patient data 

and collecting feedback on their usability, accuracy, and clinical relevance, there is a 

need to form collaborations with healthcare professionals and academics working in 

the area. Evaluations will be done to determine how well the models perform in terms 

of real-time processing, scalability, and simplicity of integration into pre-existing 

clinical processes. 

The main objective is to contribute to the area of EEG-based preemptive identification 

of stress and emotional disorders. This will be accomplished by completing the goals 

listed above. The methodologies and models that have been developed possess the 

capacity to raise the accuracy, efficiency, and clinical application of EEG 

categorization, which will eventually facilitate the early identification, tailored 

treatment, and better management of stress and emotional disorders, leading to 

improved patient outcomes. 
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1.5 OBJECTIVES 

1. To review and analyse the existing techniques and algorithms for stress 

recognition and emotion detection.   

2. To propose the novel feature extraction algorithm using suitable channels 

and bands for human stress recognition & emotion detection. 

3. To develop and implement an automated stress recognition & emotion 

detection system.  

4. To compare and evaluate the proposed work with existing methodologies. 

1.6 THESIS ORGANIZATION 

The flow of the thesis is arranged logically, beginning with a general introduction to 

EEG processing and progressively diving into particular components, applications, 

and models utilized in the area. The thesis also begins with a general introduction to 

EEG processing and ends with a conclusion. The identification of diseases employing 

EEG signals is the primary emphasis of this thesis, which also makes unique 

suggestions for methods of categorization and detection process. 

Chapter 1 presents an introduction to EEG Processing. This chapter provides a 

fundamental knowledge of the topic by introducing the idea of EEG processing and 

presenting examples of its use. The fundamentals of EEG signals, their collection, and 

the importance of EEG in clinical applications are all covered in this section. 

Different aspects of EEG signal composition, Utilization of EEG in some different 

therapeutic contexts, Models that are employed in the processing of EEG data, the 

technique of diagnosing clinical disorders using EEG data, a quick look at the various 

disease identification models, and the impetus for this study is being discussed in this 

chapter. Also covering the motivation of the work, problem statement, objectives, and 

covering flow of the thesis at the end. 

Chapter 2 covers the Literature review of this study. The Empirical analysis, model 

design, result analysis, and conclusions are covered. These chapters make up the meat 
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and potatoes of the thesis; they are the parts that provide and analyze the many 

recommended models and techniques. An empirical analysis of existing EEG 

processing techniques is presented in this chapter. 

Chapter 3 covers the layout of a multispectral data representation engine for the 

classification of EEG signals using ensemble models including the introduction, 

Existing models that perform multispectral data representation analysis, and the 

design part.   

Chapter 4 covers the layout of a Transfer Learning-based Bioinspired Ensemble 

Model for Preemptive Detection of Stress and Emotional Disorders is the main topic. 

Following the examination and comparison of the results in each chapter are the 

respective conclusions. 

Chapter 5 covers the result and discussion of the Multispectral Data Representation 

Engine for the Classification of EEG Signals passing through Ensemble Models and 

Transfer Learning Based Bioinspired Ensemble Model for Preemptive Detection of 

Stress & Emotional Disorders. 

Chapter 6 covers conclusions and prospects for the Future. The findings and 

interpretations of the study presented in the thesis are summarized in the concluding 

chapter. In it, the most important results, contributions, and limits are summed up. In 

addition to this, it explores potential avenues for future study and expansion in the 

part of EEG processing and disease diagnosis. 

The structure of the thesis as a whole is organized to facilitate the development of a 

thorough knowledge of EEG processing, the diagnosis of disease, and the proposal of 

creative models for analysis. It moves from the underlying principles to the suggested 

solutions and their assessments in a logical progression, finally leading to conclusions 

and potential possibilities for further study for different scenarios. 
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CHAPTER 2  

LITERATURE REVIEW 

“The greatest challenge to any thinker is stating the problem in a way that will allow a 

solution.” 

- Bertrand Russell 

 

The burgeoning interest in EEG stems from its non-invasive nature and high temporal 

resolution, making it indispensable in both clinical and research settings. This review 

aims to provide a comprehensive overview of these techniques, emphasizing 

empirical studies that have rigorously assessed their performance. By critically 

evaluating existing literature, this work seeks to identify gaps, challenges, and 

emerging trends in EEG signal processing. Furthermore, it aims to delineate 

benchmarks and best practices that can guide future research and clinical applications. 

 

2.1 EMPIRICAL ANALYSIS OF EXISTING EEG PROCESSING 

TECHNIQUES 

Jianhai Zhang et.al 2016 [92] conducted a study on the identification of emotions 

from EEG signals, a topic garnering significant interest due to advancements in 

wearable technology and the demand for more immersive human-computer interfaces. 

Their study aimed to demonstrate the effectiveness of their proposed methods, 

comparing them with similar strategies based on the F-score metric. Their 

experiments revealed that evaluating channels as a unified entity resulted in better 

performance in reducing the number of channels while maintaining acceptable 

accuracy levels. Specifically, by adjusting the channel weights according to how well 

they contribute to precision in classification, they were able to reduce and contrast 

using all 19 channels, the number of channels to eight with only a modest drop in 

accuracy. 
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Abeer Al-Nafjan et.al 2017 [93] examined the trends in research on EEG-based 

emotion recognition systems. Of the 285 publications they analyzed, 160 were from 

academic journals that have been published since the inception of emotional 

computing research. Their findings indicated a growing interest among researchers in 

utilizing EEG technology for emotion recognition. This tendency was influenced by 

some variables, such as the accessibility of wireless EEG equipment, developments in 

computational intelligence methods, and the application of machine learning 

algorithms. 

Xin Chai et.al 2017 [94] suggested a novel technique to solve the problem of 

combining marginal and conditional distributions in emotion recognition from EEG 

data: adaptive subspace feature matching (ASFM). The goal of this technique is to 

match the EEG data distributions from a source domain to a target domain. The 

disparities between the source and target domains' marginal and conditional 

distributions are lessened as a result of this alignment procedure. As a result, LR can 

be applied to the aligned source domain to train a classifier for use in the target 

domain, as the distribution of the aligned source domain becomes similar to that of 

the target domain. The authors used a public EEG dataset with three affective states—

positive, neutral, and negative to compare their ASFM method with six other 

methods. They carried out assessments both online and offline. The findings of the 

offline trial demonstrated that ASFM outperformed the state-of-the-art technique, the 

subspace alignment auto-encoder (SAAE), in terms of mean accuracy.  

Xiang Li et.al 2018 [95] proposed a novel approach for processing neurophysiological 

signals to recognize emotions. They presented a preprocessing method that uses 

scalograms and wavelet transforms to arrange these signals into frames that resemble 

grids. They also created a hybrid deep learning model that combines the architectures 

of RNN and CNN. This model aims to extract relevant features for the task, uncover 

inter-channel correlations within the signals, and incorporate contextual information 

from the frames. To validate their approach, they conducted experiments on the DEAP 

benchmarking dataset, focusing on trial-level emotion recognition. Their findings 
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highlighted the effectiveness of their methods, particularly in accurately identifying 

emotional dimensions such as Valence and Arousal. 

Barjinder Kaur et.al 2018 [96] investigated how emotions, both positive and negative, 

impact human behavior using a method called affective computing. In interest to carry 

out their study, they had ten participants watch different video clips meant to evoke 

different emotions while their EEG signals were being recorded in real-time. The 

EEG signals were then processed to extract a feature known as fractal dimension. The 

researchers used the RBF kernel in their SVM classification algorithm to figure out 

emotional states using this extracted feature. The results showed that emotions could 

indeed be recognized from EEG signals, with an average accuracy of 60%.  

Mi Li et. Al 2018 [95] aimed to figure out the way various frequency bands and 

various amounts of EEG channels affected the precision of emotion identification 

from EEG signals. The DWT was applied to divide the EEG signals into four bands of 

frequency after the DEAP dataset had been calibrated. Features such as entropy and 

energy were calculated from these bands and used in conjunction with the KNN 

classifier for classification. The results indicated that the classification accuracies 

varied depending on the number of EEG channels and the frequency band used. They 

also emphasized that the beta, alpha, and theta frequency ranges were of interest to 

yield the highest classification accuracy levels, with the gamma frequency band 

bending the highest results. 

J. X. CHEN et.al 2019 [97] implied a methodology leverages end-to-end automatic 

learning that could enhance the precise amount of recognizing emotions from EEG 

data. They proposed a method based on deep CNNs to automatically extract 

emotional features from EEG signals in both spatial and temporal dimensions. They 

exploited the DEAP dataset's EEG signals to retrieve temporal characteristics, 

frequential characteristics, and combinations of these characteristics. For binary 

emotional classification in both valence and arousal dimensions, they compared the 

effectiveness of deep CNN models with shallow machine learning models like BT, 

SVM, LDA, and Bayesian LDA. Specifically, when using combined temporal and 
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frequency features, the valence and arousal dimensions of the deep CNN models 

performed 3.58% and 3.29% more appealing as compared to the best standard BT 

classifier.  

Hao-Yan Chang et al.2020 [98] identified the components that regulate how well BCI 

functions while utilizing an SSVEP-based BCI which is integrated into a game with a 

purpose (GWAP). The purpose of this research was to collect data over extended 

periods, simultaneously in high- and low-stress scenarios. The researchers utilized a 

statistical technique called Canonical Correlation Analysis (CCA) was a tool to judge 

if players were able to find and concentrate on the appropriate target while playing the 

game. Time's repercussions for search accuracy and impact of time stress on SSVEP 

accuracy in which average accuracy in low-stress conditions was quite high at 98.6%, 

and accuracy approached 100% when the participants took more than three seconds to 

find the target. In high-stress scenarios, the SSVEP's grand average accuracy fell 

dramatically to 82.1% from 98.1%. Accuracy observed in low-stress conditions  

Po-Yuan Jeng et al.2020 [99] presented a low-dimensional representation of the data 

obtained from aspects during pre-trial EEG recordings which serves as an organizing 

principle for a transfer learning framework for EEG decoding. Researchers make use 

of existing EEG data from different users and only a small amount of data from a new 

user to create an accurate BCI. They tested their proposed method and adopted a 

LOSO cross-validation strategy as well, contrasted the outcomes with the most recent 

investigations in the field, and baseline performance. The key finding of their research 

is that their proposed method outperformed the random selection (baseline) in all 

scenarios they tested (indicated by p < 0.05), which implies that their approach can 

significantly improve performance in most situations. The suggested plan of action 

achieved an additional 17% prediction performance surpassing the baseline for 

random selection for transferring eight sessions of data. Their method performed 

substantially better despite fewer training data (again, p < 0.05) than the Riemannian 

manifold method when selecting eight or nine sessions.  
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Zhe Sun et al.2020 [100]  investigated the neural network's performance called WLnet 

which can accurately detect mental workload levels, both in stressful and non-

stressful situations. To evaluate the performance of WLnet, the researchers conducted 

tests using four different methods: CSP, TCSGSP, EEGNet, and WLnet itself. The 

researchers carried out the cross-entropy loss function in the Adam algorithm to 

optimize the neural networks. The results showed that all three models (CSP, 

TCSGSP, EEGNet) performed better as opposed to cross-context tasks, in within-

context tasks. This suggests the emotional or affective context plays a significant role 

in influencing mental workload levels, leading to differences in data distribution 

between the two contexts.  

Jung-Tai King et al.2020 [101]  investigated two virtual driving scenarios aimed at 

assessing response inhibition abilities and manipulating time limitation in one of these 

scenarios to induce stress, effectively making it more challenging. The primary focus 

of their study was on stop signal task (SST), which is a paradigm used to study 

response inhibition. To discover more regarding the neural mechanisms underpinning 

the inhibition and go tasks, the researchers applied an analysis called Event-Related 

Spectral Perturbation (ERSP) to study EEG activity in the frequency domain. 

Specifically, the Stop-Task (SST) showed boosted theta and delta power following the 

initial triggering of the stop signal compared to unsuccessful stop trials (USSTs). The 

findings highlighted the central brain region's beta (β) and gamma (γ) scores which 

prove to be noteworthy, particularly in high-pressure emergency driving scenarios.  

Ekansh Sareen et al. 2020 [102] conducted a study focusing on individuals with 

Intellectual and Developmental Disorders (IDD). The study aimed to uncover specific 

characteristics of the IDD group's brain networks and to investigate the effects of 

soothing music on these networks. They also compared the response of typically 

developing control (TDC) subjects to soothing music which includes participants 

involved seven individuals with IDD and seven typically developing control subjects 

(TDC the researchers collected raw EEG data using an Emotive EPOC 14-channel 

wireless EEG headset. The IDD group showed higher functional brain interaction in 
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the beta, gamma, theta, and alpha bands compared to the TDC group during both 

resting and music-listening states. The TDC group exhibited higher functional brain 

connectivity with little context to the IDD group in the resting and listening phases. 

The IDD group showed more modular clusters in the gamma and beta bands, 

suggesting a more organized and efficient brain network during music listening. The 

TDC group demonstrated differences in brain connectivity during music listening, 

indicating a unique response to music stimuli.  

Sung-Woo Kim et al. 2020 [103] proposed a multi-biosignal wearable wireless 

interface intended for sleep analysis. This innovative device allows for comfortable 

sleep monitoring with the added capability of directly classifying sleep stages, which 

sets it apart from conventional sleep analysis tools like Polysomnography (PSG). 

Their device employs four internal readout channels that are deployed by the Readout 

Integrated Circuit (ROIC) to acquire these bio-potential signals. The ROIC includes 

an analog feature extraction circuit which means that the device can automatically 

determine which sleep stage a person is in without the need for extensive post-

analysis or expert interpretation. They've integrated three circuits for extracting 

features for EEG, EMG, and EOG data within the ROIC. These features are used to 

estimate sleep stages directly by utilizing a decision tree algorithm. This classification 

happens in real-time, allowing for continuous monitoring of a person's sleep stages. 

Their study demonstrated promising results, achieving a classification correlation of 

74% for sleep stages.  

Haiyun Huang et.al 2021 [104] developed an EEG-based BCI system for recognizing 

emotions. In their study, they presented video clips representing positive and negative 

emotions to participants while simultaneously collecting and processing EEG data. 

The experiment involved ten healthy subjects, and the system achieved a high average 

online accuracy of 91.5% with a small standard deviation of 6.34%. This indicated 

that the system effectively evoked and recognized the emotions of the participants. 

The researchers also explored the clinical application of their BCI system for 

individuals struggling with disorders of consciousness (DOC), like vegetative state or 



36 

 
 

 

coma, who often have difficulty expressing emotions verbally or through physical 

movements. The results indicate that the postulated BCI system may be an effective 

tool to gauge the emotional states of DOC patients. 

Yang Li, et al. 2021 [105] proposed two neural network models, BiDANN and the 

improved BiDANN-S. These models were developed to recognize emotions from 

EEG data. BiDANN-S was specifically designed to make emotion recognition from 

EEG data less influenced by the unique characteristics of individual subjects which 

helps the model work well across different people. BiDANN-S performed better than 

a range of other methods when applied to EEG-based emotion recognition. These 

methods included KLIEP, ULSIF, STM, linear SVM, KPCA, TCA, TKL, SA, GFK, 

T-SVM, TPT, and DGCNN. In particular, BiDANN-S achieved an accuracy rate of 

63.01% in the δ frequency band and 73.72% in the γ frequency band. These results 

demonstrate that BiDANN-S significantly improved emotion recognition in EEG 

data, especially in these specific frequency bands.  

 Fatih Demir, et al. 2021 [106]  researchers investigated and explored an advanced 

method for automatically categorizing people's emotional states. The study introduced 

a hybrid method that combined CWT-based EEG signal processing with cutting-edge 

CNN models for stealing deep features. This approach achieved remarkable accuracy 

in categorizing a wide range of emotional states, surpassing the performance of 

previously employed methods in the field of EEG-based emotional classification. 

They used the CWT to extract rhythmic signals from EEG data and then transformed 

these signals into visual EEG rhythm images. Due to high accuracy rates of 90.6% 

hybrid approach stands out as one of the most effective approaches for accurately 

employing EEG data for categorizing emotions.  

Zhe Wang, et al. 2021 [107] adopted an entirely novel deep learning framework 

deemed as the frame-level distilling neural network (FLDNet), which is beneficial in 

predicting emotions since it can extract significant features from correlations between 

many frames. They compared FLDNet with several other deep learning-based 
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algorithms such as DNN, CNN, LSTM, CLSTM, attention-LSTM, RACNN, and 

ATDDLSTM to evaluate its performance. For DEAP, FLDNet achieved high 

accuracy rates for valence (83.85%), arousal (78.2%), and dominance (77.52%), 

surpassing all competing methods. Similarly, on the DREAMER datasets, FLDNet 

achieved average recognition accuracies of 89.91% for valence, 87.67% for arousal, 

and 90.28% for dominance, again outperforming other methods.  

Eyad Talal Attar et al. 2021 [108] explored a comprehensive approach to 

understanding and analyzing stress. They focused on delving into the relationship 

between heart rate variability (HRV) and EEG under stress conditions providing 

complementary information that can enhance understanding of stress. To induce stress 

in their subjects, they used a well-known Stroop Color-Word Test (SCWT), a 

neuropsychological evaluation measuring tool. This test is useful for measuring 

cognitive processing and provides valuable insights into brain function. The study 

revealed correlations between HRV features, such as rMSSD (root mean square of 

successive differences), LF/HF ratio, HF (high frequency), and LF (low frequency) 

with EEG traits, particularly the left hemisphere's alpha power band and alpha band 

power asymmetry. Their research identified five noteworthy connections between 

stress-related HRV characteristics and EEG.  

Jung Hwan Kim et al.2021 [109] experimented using a deep learning system based on 

EEG to evaluate the fatigue-induced drowsiness (FFD) of an operator. This 

experiment aimed to understand the patterns in EEG data when individuals perform 

cognitive activities prior to accessing the main control room (MCR) for safe nuclear 

reactor operations. They chose to design an Integrated Safety Management System 

(ISMS) that incorporates CNN and LSTM as ISMS can rapidly and securely process 

information related to results from FFD and PI used for scheduling daily tasks. For 

each of the 100 datasets, the researchers determined the average amount of time 

needed for pseudonymization, authenticated encryption, and decryption. 

Pseudonymization was executed via the SHA-256 hash function, while authenticated 

encryption and decryption were accomplished using the AES-256 algorithm and the 
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EAX mode. AES encryption is known for its ability to securely decrypt data without 

keys and accommodates 128, 192, or 256-bit key widths.  

Ibrahim L. Olokodana et al. 2021 [110]  and the team successfully applied Kriging 

methods to create an efficient seizure detection device, specifically designed for the 

context of edge computing by contemplating the brain as a spatial area. The research 

was to develop a wearable device capable of instinctual detection of seizures in real-

time utilizing EEG signals. To achieve this, they employed three different kinds of 

Kriging approaches: Universal, Ordinary, and Simple. The researchers evaluated the 

reliability of their technique for detecting seizures by comparing the three different 

Kriging methods. Simple and Ordinary Kriging demonstrated corresponding 

outcomes, achieving high confidence intervals of 99.7% and 95.4%, respectively. 

Simple Kriging outperformed Ordinary Kriging when considering a confidence 

interval of 68.2%.  

Cezary Sielu˙zycki et al. 2021 [111] focused on experimental paradigms using 

magnetoencephalography (MEG) and EEG to estimate brain-evoked responses. They 

introduced a novel approach called a "bootstrap framework" to substantially reduce 

the amount of assessments carried out for performing tests necessary for these 

experiments, particularly those emphasizing brain-evoked reviews. Despite the 

availability of various alternative models, the researchers chose to stick with the 

classical SPN (single-process neural) model. This model is widely used across a broad 

spectrum of experimental paradigms. The primary objective of their study was to 

develop a methodical framework that would enable the least number of stimulus 

repeats in MEG/EEG research. Reducing the number of repetitions minimizes the 

time burden on study subjects, thereby decreasing potential artifacts caused by factors 

such as tense muscles, jerky head motions, blinked eyes, and an intense alpha rhythm 

from fatigue.  

Abdelghafar R. Elshenaway et al.2021 [112] researchers developed a novel technique 

for Internet of Things (IoT) device authentication based on hand gestures and EEG 
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signals. They utilized an affordable NeuroSky MindWave headset to determine 

malleable meditation and concentration thresholds that act as the authentication key. 

To assess the viability of this method three key criteria were taken into consideration: 

usability, security, and authentication time. To evaluate usability, researchers 

conducted user testing to gauge the adaptability of participants through EEG signals 

and hand gestures for authentication. Security is vital to ensure that unauthorized 

access is prevented. Authentication time refers to user authentication in which the 

average authentication time for their prototype was 33 seconds, which was considered 

acceptable only if the method was based on selecting four adaptive threshold bits 

related to attention and meditation within that time frame. The proposed method is 

promising and compares favorably to existing BCI-based studies in terms of 

efficiency.  

Charalampos Saitis et al.2021 [113] introduced a novel approach that utilizes a 

multifaceted framework to focus on the particular urban environment that people are 

applying for random forest classifiers. They achieved this by monitoring real-time, 

non-invasive, and ambulatory brain and peripheral biosignals. The goal was to 

understand how people's brains and bodies react to different urban settings. With an 

accuracy of 93% for outdoor situations and 87% for inside environments, the model 

performed admirably. The fusion models combined different types of data (EEG, 

EDA, BVP) and identified the most predictive features for environment classification 

EDA (electrodermal activity) and HR (heart rate) signals recorded by the Empatica E4 

wristband Research presented an approach for evaluating visual impaired people's 

cognitive and emotional experiences in real-time as they maneuver various 

environments both inside and out. Robust multimodal classification trials and good 

prediction rates indicated a commitment to upgrading life quality in visually impaired 

individuals.  

Mahima Ma Weerasinghe et al. 2021 [114] conducted research focused on Spiking 

Neural Networks (SNNs) and the significance of methodically choosing the number 

of hidden layer neurons, particularly when learning with Spike Time Dependent 
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Plasticity (STDP). They aimed to develop learning algorithms for SNNs and 

demonstrate the potential applications of SNNs in processing spatiotemporal data, 

particularly EEG data with its temporal properties such as autocorrelation and 

heterogeneity. For an assignment involving three classes in the Wrist Flexion dataset, 

using an SNN with 111 hidden neurons, they achieved an average classification 

accuracy of approximately 94%. In a 2-class classification task for utilizing the 

Emotional Stress dataset for differentiation between stressed and composed brain 

states, using SNN as 130 hidden layer neurons yielded an average classification 

accuracy of about 92%. They also applied Spike Propagation (SP) for mental state 

recognition, achieving accuracy rates of 76.86% for arousal and 73.1% for valence 

classification under 10-fold cross-validation.  

Yang Li et al.2021 [115] investigated a novel model called the BiHDM (Bi-

Hemispheric Discrepancy Model) to capture the asymmetric disparities in the two 

hemispheres irrespective of the levels of brain activity during emotional expression.  

The research evaluated the proposed BiHDM model against other methods on three 

publicly available EEG emotion datasets. The outcomes proved the BiHDM model's 

superiority and efficacy. Notably, on one of the datasets (SEED-IV), the BiHDM 

approach performed 4% better than the previous cutting-edge technique (Emotion-

Meter). The model called BiDANN, which also considered differences between the 

left and right hemispheres, came closest to the performance of BiHDM, but BiHDM 

still outperformed it. This novel model offers improved accuracy in distinguishing 

emotional states from EEG data and contributes to the advancement of emotion 

recognition technology.  

Eanes Torres Pereira et al. 2021 [116] outperformed a research review with an 

emphasis on emotion recognition of three distinct EEG datasets: DEAP, MAHNOB, 

and STEED. These datasets were characterized by different durations of the stimuli or 

emotional triggers used during EEG recording. The study aimed to identify the key 

characteristics that make an EEG dataset suitable for emotion recognition. They 

highlighted the importance of two key characteristics for emotion classification 
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datasets: having publicly available and globally evaluated stimuli, similar to the 

LIRIS-ACCEDE dataset, and ensuring that the stimulus duration is sufficiently long 

to genuinely influence the subjects' emotional states. The research emphasized the 

need for standardized and well-structured EEG datasets for emotion recognition, as 

these datasets should ideally represent diverse responses and feature stimuli that are 

long enough to evoke genuine emotional reactions.  

Shuaiqi Liu, et al.2021 [117] developed an algorithm for subject-independent emotion 

recognition based on EEG  data. They introduced a novel feature extraction method 

called Dynamic Differential Entropy (DDE). DDE captures the dynamic changes in 

EEG signals over time and represents the time-frequency features associated with 

emotional states. This allows the algorithm to track how emotional states evolve. The 

DDE features were then placed as input data into a CNN for classification. To 

improve the convergence speed of the learning process, they used ReLu, a commonly 

used activation function in neural networks. The algorithm was tested on the SEED. It 

achieved high accuracy and sensitivity, outperforming existing emotion classification 

methods. The model obtained an accuracy of 97.56% and a sensitivity of 98.67%, 

indicating its effectiveness in recognizing emotions from EEG data. The researchers 

highlighted the clinical value of their algorithm, particularly in the diagnosis of 

conditions like schizophrenia and depression.  

Juan Cheng et al 2021 [118] investigated a unique approach for emotion identification 

using EEG data. This method is simpler and more efficient than traditional 

approaches as it lacks the need for feature extraction and is less susceptible to 

hyperparameter choices. Their classification model is not highly sensitive to 

hyperparameter settings. Selecting the appropriate collection of hyperparameters for 

deep learning or vintage algorithms for machine learning can be complex and time-

consuming. They tested their method on two publicly available EEG databases 

commonly used in EEG-based emotion recognition: DEAP and DREAMER. The 

average accuracy of the results on the DEAP database was 97.53% for arousal and 

97.69% for valence, respectively. The average accuracy for valence, arousal, and 
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dominance on the DREAMER database was 89.03%, 90.41%, and 89.89%, 

respectively.  

Zhen Liang et al.2021 [119] designed a model to capture both spatial and temporal 

dynamics in brain activity and does so through a combination of deep learning 

techniques, specifically deep convolutional recurrent generative adversarial networks 

(CNN-RNN-GAN). The primary goal of EEGFuseNet is to determine low-

dimensional and deep features in high-dimensional EEG data. It focuses on capturing 

the dynamics in both the spatial distribution of brain activity and how these dynamics 

change over time. The researchers evaluated the effectiveness of EEGFuseNet's deep 

feature extraction in the context of unsupervised emotion recognition. They used three 

publicly available emotion databases for this evaluation. The researchers compared 

the performance of their unsupervised EEGFuseNet with other supervised methods. 

They found that the unsupervised method yielded comparable results in emotion 

recognition, demonstrating its effectiveness even without the use of labeled data. The 

accuracy rates and F1 scores for recognizing dominance, predictability, valence, and 

arousal were competitive.  

Zhongke Gao et. al. 2021 [119] suggested the Channel-Fused Dense Convolutional 

Network (CDCN), a modern deep learning framework, for achieving the objective of 

EEG-based emotion identification. The researchers conducted extensive experiments 

on two well-known EEG emotion datasets, namely the SEED and DEAP datasets. On 

the SEED dataset and the DEAP dataset, the CDCN framework exhibited impressive 

average accuracies of 90.63% and 92.58%, respectively. These accuracies 

outperformed many other studies in the field. Moreover, the CDCN model remained 

consistently effective, surpassing 84% accuracy for within-subject tasks on the SEED 

dataset. The CDCN model was compared to six other methods, which achieved 

accuracy rates ranging from 67% to 89%. The CDCN model significantly 

outperformed these competing methods, particularly excelling on the DEAP dataset, 

where it achieved outstanding accuracy. The recommended framework is a viable 

method for emotion recognition tasks based on EEG data since it effectively extracts 
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features from EEG signals taking into consideration electrode correlations and 

temporal dependencies.  

Poomipat Boonyakitanont et al 2021 [120] Author focuses on improving the detection 

of epileptic seizure episodes in long EEG recordings and determining when these 

seizures start and end. This is an important task in epilepsy diagnosis and treatment. 

The researchers proposed a method called "ScoreNet" which involves two sequential 

steps. They tested their method using the CHB-MIT Scalp EEG database and 

contrasted it with other classifiers including logistic regression, CNN, and random 

forest. Comparing approaches that solely looked at individual EEG epochs, the results 

showed that Score Net greatly increased seizure detection performance. F1 scores 

went from 16–37% to 53–70%, and hourly false positive rates dropped from 0.53-

5.24 to 0.05-0.61. This means the method had better accuracy in identifying seizures 

and reduced the number of false alarms. They aimed to provide clinically acceptable 

latency in detecting the onset and offset of seizures, which they referred to as the 

"effective latency index" (EL-index). This index helped measure the delay between 

when a seizure started or ended and when it was detected.  

Tanvir Mahmud et al 2021 [121] present an innovative automated approach for 

detecting sleep apnoea frames in EEG signals. A person with sleep apnoea 

experiences frequent cessations and starts breathing while they are asleep. Traditional 

methods for detecting sleep apnoea often involve extracting features directly using the 

VMD algorithm which helps in separating the various modes of the EEG data from 

the signals. The decomposed EEG signals from the VMD are then processed by a 

deep learning model, specifically a fully convolutional neural network. This network 

operates in parallel on each VMD mode, extracting temporal features while 

maintaining their temporal dependencies. The results of their study show that their 

proposed method, which combines end-to-end deep learning with VMD, outperforms 

other approaches in all evaluation metrics. Specifically, it significantly improves 

sensitivity by more than 2%, which is a substantial improvement when it comes to 
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disease diagnosis schemes, as it means the method is better at identifying sleep apnea 

events.  

Feifei Qi et al 2021 [122] recommended an innovative strategy known as 

"spatiotemporal-filtering-based channel selection" or (STECS) which provided the 

objective of automatically determining the total number of informational EEG 

channels by taking advantage of both the spatial and temporal information present in 

EEG data. This involves jointly optimizing spatial and temporal filters, which 

collectively characterize the spatial and temporal patterns in the EEG data. The 

outcomes pointed out that the classification accuracies achieved by STECS were 

consistently higher than those obtained using another method called SSP-R, especially 

as the number of selected channels (k) increased. STECS is a method designed to 

automatically choose the most relevant EEG channels by leveraging the 

spatiotemporal characteristics of EEG data.  

Tahrat Tazrin et al 2021 [123] introduced a novel framework called "Logic-in-

Headbands based Edge Analytics" or LiHEA. The main objective of LiHEA is to 

seamlessly integrate EEG analysis with consumer-grade EEG headsets the researchers 

aim to make EEG analysis accessible and practical for everyday use by incorporating 

it into widely available consumer-grade EEG headsets. They adopted a special feature 

selection method for selecting the EEG signal features that are most important, 

particularly in cases of confusion. They also explored the performance of other 

models, such as KNN, SVM, and logistic regression on different datasets. These 

models achieved varying levels of accuracy, with the highest reaching 67% for KNN 

and 65% for logistic regression. They provided the LiHEA framework as a way to 

easily combine EEG analysis with EEG headbands that are easily accessible but have 

limited resources.  

Anthony D. Bateson et al 2021 [124] the researchers aimed to create and evaluate a 

versatile EEG platform that seamlessly incorporates a Smartphone. The primary goal 

was to create a 19-channel EEG device that might be used to store data on a 
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smartphone over a Wi-Fi network. They conducted a comparative analysis by pitting 

their Smartphone-based EEG system, known as "io: bio," against an FDA-approved 

clinical-grade EEG device. They designed and developed the io: bio Smartphone-

based EEG system, which is intended for a wide range of applications. This finding 

suggests that the Smartphone-based system has the potential to be used in various 

applications and environments, making EEG data collection and analysis more 

accessible and adaptable for a wide range of research and clinical purposes. 

Muhammad Yazid et. al. 2021 [125] a highly effective method for extracting features 

from EEG recordings to detect autism. Their method combines the Local Binary 

Pattern Mean Absolute Deviation (LBPMAD) and the recently suggested Local 

Binary Pattern Transition Histogram (LBPTH) with the DWT. Their method achieved 

remarkable classification accuracy. It achieved accuracy rates exceeding 99.6% for 

both SVM and KNN classifiers. Despite its high accuracy, the proposed method 

maintains a comparatively tiny feature vector size, with just 18 features. The method 

is versatile and capable of handling short input signals. Even with a reduced input 

signal length of only 512 data points (equivalent to 2.95 seconds), over 99.1% SVM 

classification accuracy was attained. Due to its high accuracy, small feature size, and 

low computational requirements, the proposed method is well-suited for integration 

into mobile, low-power, and cost-effective wearable medical devices.  

Benedetta Olmi et al 2021 [126]  present a summary of the technologies developed 

over the past ten years for neonatal seizure detection (NSD). The research indicates 

that EEG-based NSD systems tend to outperform those based on other 

electrophysiological signals. The study evaluates the performance of various expert 

systems, both EEG-based and ECG-based, using setups that are patient-specific and 

patient-independent. This evaluation helps determine the effectiveness and reliability 

of these systems as support tools for medical employees in NICUs. While EEG-based 

systems demonstrate superior performance, there is growing interest in exploring 

ECG as an additional marker for brain damage associated with neonatal seizures.  
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Tee Yi Wen et al. 2022 [127] investigate the occurrence of subjective bias in 

evaluating people's stress response when using clustering techniques and SVM 

classification to better understand and classify stress levels objectively. SVM was 

used to classify these pre-labeled stress levels, which was expected to lead to more 

accurate results compared to traditional subjective assessments. In this research, the 

researchers reported that while the KNN algorithm achieved an accuracy of 74.43% in 

classifying stress into three levels, SVM was not as effective for this task, achieving 

only 52.3% accuracy in a two-class classification. The most significant improvement 

came when the right prefrontal cortex's beta power data exhibited an astounding 98% 

accuracy, recommending that their hybrid strategy of combining SVM and k-means 

clustering was successful in minimizing individual variations in stress reactions, 

ultimately leading to more reliable and accurate mental stress detection. 

Ruiqi Fu et al.2022 [128] researchers adopted a novel deep neural network called the 

(SDCAN) Symmetric Deep Convolutional Adversarial Network for classifying stress 

levels based on EEG data. This innovative network combines CNN architecture with 

adversarial theory. The primary goal of this research was to manually distinguish 

discriminative and invariant characteristics from unprocessed EEG data using the 

adversarial inference technique which intends to boost the network's capacity and the 

precision of stress level classification to generalize its findings across different 

individuals. The results of their study demonstrated that the SDCAN network 

outperformed conventional CNN methods in classifying stress levels has achieved 

higher accuracies of 87.62% and 81.45% for classifying four and five different stress 

stages which indicates that the SDCAN network was more effective in distinguishing 

between various levels of stress based on EEG data when compared to traditional 

CNN approaches.  

Amir H. Ansari et al. 2022 [129]  identified a novel variation of the Inception block 

within CNN called "Sinc." This innovative Sinc block was designed to classify sleep 

stages in preterm infants utilizing EEG information. The principal characteristic of the 

stated Sinc block can perform multi-scale analysis, which allows it to focus on 
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sequential EEG information while being a reduced amount dependent on the number 

of EEG channels available for analysis. The results of their study demonstrated that 

the Sinc-based model outperformed existing state-of-the-art algorithms designed for 

detecting neonatal quiet sleep and achieved a mean Kappa value of 0.77 ± 0.01 when 

using 8-channel EEG data and 0.75 ± 0.01 when using a single bipolar channel EEG 

which indicates that the Sinc network was highly effective in accurately classifying 

sleep stages in premature newborns. The study employed statistical analyses, 

including 95% confidence intervals and bootstrap hypothesis testing, which further 

confirmed the statistical superiority of the Sinc model.  

Hanwen Wang et al. 2022 [129] propose presented a novel approach for concealed 

information detection using EEG data. Their framework aimed to elicit specific brain 

responses associated with concealed information ensuring that the subject remained 

attentive and focused using a technique called Rapid Serial Visual Presentation 

(RSVP) for detecting deception. The proposed framework, called RCIT (which stands 

for Rapid Serial Visual Presentation and Concealed Information Test), effectively 

induced distinctive brain wave patterns for deception detection and was resistant to 

countermeasures providing an accuracy rate of 87.13% in detecting concealed 

information that used RSVP and an autoencoder achieving promising results in 

detecting deceptive responses while maintaining subject focus.  

Parthana Sarma et al.2022 [130] proposed a technique for identifying emotions using 

EEG data. This method is designed to identify segments of EEG data associated with 

strong emotional responses, and it selects relevant EEG channels automatically for 

this purpose.  The results indicated that the higher frequency EEG sub-bands (beta 

and gamma) with 15 channels showed the highest classification accuracy, peaking up 

to 95%. These segments related to emotions were found to occur at specific times 

during the EEG recording: from the start to 75% of the experiment duration for both 

favorable and indifferent feelings, and from 25% to 75% for negative emotions.  The 

proposed method was also rigorously tested and validated, including assessing PLV 

values in channel selection, conducting (LOTO) Leave-One-Test-Out and LOSO 
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(Leave-One-Subject-Out)  experiments, subjective analysis, and considering various 

parameters for the k-NN algorithm. The results show a high level of accuracy in 

recognizing emotions, especially for higher-frequency EEG subbands.  

Guofa Li et al 2022 [131] investigated a motion recognition based on EEG data that 

offers several advantages. They conducted experiments using various classifiers to 

assess the effectiveness of their method. They selected specific features from EEG 

data and applied batch normalization (BN) to normalize these features. These 

classifiers employ algorithms to categorize EEG data according to various emotional 

states. One notable finding in their research was that using a small subset of the 

available electrode channels (fewer sensors) for emotion recognition can yield nearly 

identical or even better accuracy compared to using all available channels. This 

suggests that high accuracy can be achieved with a simplified EEG setup, which has 

practical implications for real-time emotion recognition systems. The application of 

batch normalization at the experiment level further improved recognition accuracy 

over which there is an increase from 73.33% to 89.63% through LR classifier.  

Alireza Samavat et al 2022 [132] proposed a distinctive approach for using raw EEG 

waves to identify emotions. Their approach is a deep learning model that combines 

both CNNs and Bi-LSTM. They introduced a deep learning model that handles 

several raw EEG data inputs. These EEG shows brain activity, which is normally 

obtained from 62 electrode channels. The combination of CNNs and Bi-LSTM allows 

their model to capture both temporal patterns and frequency components in the EEG 

signals. Their approach is a deep learning model that takes raw EEG signals as input 

and uses a combination of CNNs and Bi-LSTM to extract important features for 

emotion recognition. The adaptive regularization technique enhances the model's 

performance by considering the spatial aspects of the EEG channel electrode.  

Kin Ming Puk et al 2022 [133] Researchers presented an efficient pattern recognition 

framework for identifying discrete emotional states, specifically happy, angry, and 

neutral emotions, using EEG signals. Emotions are complex, and they wanted to 
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create an automated system that could accurately categorize these emotions based on 

brainwave data. EEG data provides a wealth of information, and many features can be 

extracted to capture different aspects of brain activity associated with emotions. They 

aimed to create a quantitative framework to characterize different emotional states 

based on EEG data. The proposed methodology in their study yielded the best 

performance compared to three other baseline models. They compared different 

models and found that Sparse Group Lasso (SGL) and SVM performed well in 

organizing emotions, with the sparse model (SGL) being particularly efficient in 

selecting relevant features.  

Yong Peng et al 2022 [134] introduced a novel approach called EEG-based emotion 

recognition which provides optimal graph-coupled semi-supervised learning 

(OGSSL). Their model integrates emotion identification and adaptive graph learning 

into a single, cohesive goal. They conducted experiments using the SEED-IV dataset 

to assess the performance of this approach and to analyze the relationship between 

brain regions and emotions. The OGSSL model demonstrated excellent average 

accuracy in a trio of obstacles for recognizing emotions across sessions, achieving an 

accuracy of 76.51%, 77.08%, and 81.29%. The results of the investigation concluded 

that the presence of emotions was more closely associated with the gamma frequency 

band as well as certain brain regions, including the left and right temporal, prefrontal, 

and (central) parietal lobes. OGSSL consistently outperformed the other models, with 

average accuracies ranging from 76.51% to 81.29%.  

Yong Peng et al 2022 [135] researchers proposed a model called S3LRR generally 

known as Semi-Supervised Sparse Low-Rank Regression for EEG-based emotion 

recognition which aims to integrate two critical aspects of the emotion recognition 

process of discriminative subspace identification and semi-supervised learning. This 

research evaluated the performance of S3LRR in recognizing specific emotional states 

which achieved the highest recognition accuracy of 83.96% for the "fear" condition 

and the lowest precision of 63.95% for the "sad" state. With comparatively low rates 

of misclassification for other emotional states, 83.96% of EEG samples were 
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classified as being in the "fear" state. In cross-session emotion recognition tests, the 

benefits of S3LRR were very noticeable. Compared to the outcomes of another model 

(RLSR), S3LRR showed significant improvements in accuracy, with increases of 

6.94%, 5.83%, and 5.22% for the three recognition tasks. 

Jia Wen Li et al 2022 [136] developed a technique called Brain Rhythm Sequencing 

(BRS) for interpreting EEG data based on the dominant brain rhythm at specific time 

intervals in interest to create a time-series sequence of EEG data, where each 

timestamp is associated with the most dominant brain rhythm occurring at that 

moment. The research they carried out, used three emotive datasets (SEED, DEAP, 

and MAHNOB) to examine music emotion recognition (MER), and showed 

classification accuracy ranging from 70% to 82%. When comparing their approach to 

existing state-of-the-art methods with the same number of channels, they found that 

their approach performed slightly better, with accuracies surpassing 70% for various 

test sets. However, the suggested strategy, which used a single channel with a 10-

second duration, outperformed approaches that aggregated multiple less significant 

channels by a small margin.  

Sun-Hee Kim et al 2022 [137] proposed a novel combination approach for analyzing 

emotional states, referred to as WeDea analysis. The dataset they compiled, named 

WeDea, is intended for use in emotion recognition studies. To validate the 

effectiveness of their new EEG dataset, the researchers developed an emotion 

recognition framework. When compared to the multi-SVM classifier, the LSTM 

classifier produced results that were 4% better. WeDea demonstrated substantially 

higher classification accuracy utilizing the multi-SVM classifier when compared to 

three other well-known datasets (DREAMER, DEAP, and SEED), with improvements 

of 10.7%, 15.7%, and 9.7%, respectively. Similarly, with the LSTM classifier, WeDea 

demonstrated improvements in classification accuracy of 10.4%, 14.3%, and 10.2% 

when compared to these datasets. One of the most distinctive features of EEG data is 

its capacity to track real-time human brain activity at a millisecond temporal 

resolution.  
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Guangyi Zhang et al 2022 [138] investigated a novel approach called "PARSE" for 

performing emotion recognition using EEG data. The primary goal of their research is 

to create a model that can effectively recognize emotions based on EEG signals, even 

when there is a limited amount of labeled data available. The results showed that 

PARSE consistently outperformed other methods, especially when there were very 

few labeled samples available (1, 3, 5, 7, 10, or 25 per class). The model's 

performance benefited from representation alignment, particularly when dealing with 

imbalanced class distributions. The proposed research for EEG-based emotion 

recognition excels at learning from limited labeled data. It combines several 

techniques, including label guessing, data augmentation, and representation 

alignment, to achieve impressive results in emotion classification tasks, 

outperforming other state-of-the-art methods.  

Busra T. Susam et al 2022 [139] The researchers emphasize adopting machine 

learning tools to differentiate between various resting states in young people with 

autism spectrum disorder (ASD) both before and after engaging in a quick 

mindfulness meditation activity known as "MF" (Mindfulness Meditation). The 

classifier achieved an average accuracy of 80.76%, sensitivity (correctly identifying 

Pre-MF) of 78.24%, and specificity (correctly identifying Post-MF) of 82.14%. These 

results show that machine learning is effective in distinguishing between different 

neural states in individuals with ASD. This indicates that specific patterns of brain 

activity in certain regions were informative in characterizing the resting states. The 

research verified that the distinction between the Pre-MF and Post-MF states was 

prompted by the MF meditation practice, as opposed to a linear-temporal drift.  

MD. Shafayet Hossain et al.2022 [140] proposed three innovative techniques for the 

correction of motion artifacts in single-channel EEG and fNIRS (functional Near-

Infrared Spectroscopy) signals. These techniques were designed to enhance the 

quality of these physiological signals by reducing the interference caused by motion 

artifacts. VMD was employed as the primary technique for motion artifact correction. 

VMD is paired with Canonical Correlation Analysis (CCA) to further enhance its 
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capability to reduce motion artifacts in these physiological signals. SNR and 

percentage reduction of motion artifacts were the metrics used by the researchers to 

assess the efficacy of these three innovative strategies. VMD-CCA demonstrated the 

best denoising performance for EEG data out of the three approaches when it was 

broken down into 15 IMFs. For all 23 EEG recordings, it produced an average SNR 

improvement of 23.81 dB and a 57.01% decrease in motion artifacts. Also, they found 

that all three VMD-based approaches provided significant artifact reduction, with 

average percentage reductions ranging from approximately 53.59% to 55.86% for all 

trials.  

Hanqi Wang et al 2023 [141] introduce an innovative approach based on EEG 

emotion recognition and explain how they've tested their idea using three well-known 

EEG-dependent models on the DEAP dataset. Researchers lent a method for limiting 

or defining the precise areas of interest in EEG data. This method uses context 

information when perturbing the input data, which is a way of introducing small 

changes or disturbances to the data to better understand how the model responds. To 

evaluate the effectiveness of their context-aware perturbation method, they adopted 

the Arousal dimension from the DEAP dataset to perform ablation research and a 

specific EEG-based model called "TSception." This study likely involves analyzing 

how the model performs when the context information is included or omitted from the 

perturbation process.  

Chunguang Chu, et al 2023 [142] Introduced an enhanced framework for the 

recognition of EEG microstates using deep neural networks. This framework achieves 

recognition rates ranging from 90% to 99%, making it highly accurate. Additionally, 

it effectively handles artifacts that often interfere with EEG data analysis. In interest 

to determine the activated functional brain areas connected to each microstate class, 

the study also makes use of a visualization method known as gradient-weighted class 

activation mapping. The primary goal of their research is to enhance the recognition 

of EEG microstates using deep learning. Microstates are brief and distinct patterns of 

neural activity that provide insights into the functioning of the brain. They employ 
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deep learning techniques to achieve optimal microstate identification and to map the 

activated brain regions corresponding to different microstates. The study explores the 

characteristics of EEG microstates and their clinical relevance.  

Kunyuan Zhao et al 2023 [143] propose an innovative approach to emotion 

classification using EEG data and food images as visual stimuli. What sets this 

research apart is its focus on using a portable single-electrode EEG device for 

emotion recognition, which is a significant breakthrough. The researchers used food 

images as visual stimuli to elicit emotional responses from participants. 

Simultaneously, they collected EEG data using a single-electrode EEG device. This 

technique efficiently retrieves single-channel EEG characteristics with Extreme 

gradient boosting (XGBoost) which was the classifier of choice for their emotion 

categorization system. The researchers achieved an optimal accuracy of 94.76% in 

their single-channel EEG classification model. This result was remarkable because it 

matched the performance of traditional multi-channel EEG classification models.  

Dong Wen et al 2023 [144] proposes a feature extraction method for EEG signals to 

improve cognitive training analysis. The key component of their approach is a feature 

extraction method called "permutation conditional mutual information common space 

pattern" (PCMICSP). PCMICSP is used to extract informative features from EEG 

signals. It's based on the concept of mutual information, which quantifies the 

statistical dependence between two variables. The primary novelty of PCMICSP is the 

mutual information matrix, which takes place alongside the covariance matrix utilized 

in the original CSP method. The linear and nonlinear relationships found in EEG 

signals are taken into consideration in this matrix. This change allows CSP to 

construct spatial filters based on both types of correlations.  

Xingyi Wang et al 2023 [145] researchers aimed to enhance the efficiency of 

resources in EEG-based emotion classification by employing self-supervised learning 

methods. To recognize emotions along with finishing the pretext task, they adopted a 

deep multi-task CNN.  Both the SEED dataset and the DEAP affective dataset, which 
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are widely used for EEG-based emotion classification tasks, are publicly available 

datasets on which they conducted significant experiments. For instance, with a 40% 

data volume, they achieved approximately 99% accuracy in valence and arousal 

classification. Their results demonstrated that self-supervised learning had a 

stabilizing effect on classification metrics. This methodology is an important addition 

to the field of emotion categorization using EEG signals since it demonstrates itself to 

be both efficient and successful, particularly when working with minimal data.  

Andreas Miltiadous et al. 2023 [146] the researcher provided a comprehensive 

evaluation of the signal processing and classification methodologies used in the 

context of different EEG databases. Their objective is to provide significant 

perspectives for upcoming investigations in the domain of EEG-based signal 

processing and categorization.  They meticulously evaluate the methodologies applied 

to various EEG databases. Notably, there's a strong connection between the Bonn and 

CHB-MIT databases, with almost half of the studies involving multiple databases 

utilizing this combination. Additionally, the combination of the Bonn database with 

the Neurology Sleep Center database is also significant, accounting for a substantial 

portion of multiple database studies.  

Table 2.1 Summary of literature review for various EEG techniques. 

Detail of the journal/ 

Book / Book chapter/ 

website link 

Year 

of 

Publication 

Main findings or conclusion relevant to 

the proposed research work 

Sensors 16, no. 10 (2016): 

1558. 

2016 Combining wavelet and scalogram 

transformations, neurophysiological inputs 

are processed to identify emotions and 

arranged into frames resembling a grid. 

IEEE international 

conference on 

bioinformatics and 

biomedicine (BIBM) (pp. 

352-359). IEEE. 

2016 The F-score metric method revealed that 

evaluating channels are a unified entity 

resulting in better performance in reducing 

the number of channels while maintaining 

acceptable accuracy levels. 

Applied Sciences 7, no. 12 

(2017): 1239. 

2017 Significant increase in the number of 

publications related to EEG-based 

emotion detection which suggests a 
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growing interest among researchers in 

utilizing EEG technology for emotion 

recognition 

Sensors 17, no. 5 (2017): 

1014. 

2017 Adaptive subspace feature matching 

(ASFM) to address the challenge of 

integrating marginal and conditional 

distributions in emotion recognition from 

EEG data which plans to align the 

allocation of data in EEG from a base 

domain with those of a target domain 

Technology and health care 

26, no. S1 (2018): 509-519. 

2018 The accuracy of emotion recognition from 

EEG signals is influenced by different 

frequency bands and varying numbers of 

EEG channels. 

Procedia computer science 

132 (2018): 752-758. 

2018 Feelings are essential to our day-to-day 

existence which sought to analyze their 

effects using EEG technology emotions 

could indeed be recognized from EEG 

signals, with an average accuracy of 60%. 

IEEE Access, 7, pp.44317-

44328. 

2019 Increase the precision of emotion 

identification with EEG data by 

employing an end-to-end automatic 

learning approach that can automatically 

extract emotional features from EEG 

signals in both spatial and temporal 

dimensions. 

IEEE Transactions on 

Affective Computing 12, 

no. 4 (2019): 832-842. 

2019 Participants' feelings were depicted in the 

video clips, both positive and negative, 

and simultaneously collecting and 

processing EEG data. And also received 

instant feedback after each clip. 

IEEE Transactions on 

Systems, Man, and 

Cybernetics: Systems, vol. 

50, no. 11, pp. 4408-4414, 

Nov. 2020, doi: 

10.1109/TSMC.2018.28503

23.) 

2020 Focused on stop signal task (SST), to learn 

more about the neural mechanisms 

underlying the inhibition and go tasks, 

called Event-Related Spectral Perturbation 

(ERSP) to study EEG. 

IEEE journal of biomedical 

and health informatics. PP. 

10.1109/JBHI.2020.302586

5.) 

2020 Proposed limited source data where the 

subject-transfer method is more effective 

than other methods in selecting 

informative training data for efficient 

transfer learning in EEG decoding 

IEEE Transactions on 2020 Focused on individuals with Intellectual 
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Neural Systems and 

Rehabilitation Engineering, 

vol. 28, no. 11, pp. 2420-

2430, Nov. 2020, doi: 

10.1109/TNSRE.2020.3024

937.) 

and Developmental Disorders (IDD) to 

uncover specific characteristics of the IDD 

group's brain networks to scrutinize the 

effects of soothing music on the networks 

IEEE Access, vol. 8, pp. 

46131-46140, 2020, doi: 

10.1109/ACCESS.2020.297

8391) 

2020 Introduced a multi-biosignal wearable 

wireless interface for sleep analysis that 

enables convenient sleep tracking using 

Polysomnography (PSG) 

IEEE Journal of Biomedical 

and Health Informatics, vol. 

25, no. 2, pp. 453-464, Feb. 

2021, doi: 

10.1109/JBHI.2020.299576

7.) 

2020 EEG-based emotion recognition 

differentiates itself from conventional 

methods as it doesn't necessitate feature 

extraction and is less sensitive to the 

hyperparameter. 

IEEE/ACM Transactions on 

Computational Biology and 

Bioinformatics, vol. 18, no. 

5, pp. 1710-1721, 1 Sept.-

Oct. 2021, doi: 

10.1109/TCBB.2020.30181

37.) 

2020 Brainwave signals based on EEG data are 

addressed to challenge identifying 

emotions in individuals. 

IEEE Access. PP. 1-1. 

10.1109/ACCESS.2020.304

4732.) 

2020 WLnet was conducted using four different 

methods: CSP, TCSGSP, EEGNet, and 

WLnet itself in both stressful and not 

stressful milieu for training and testing the 

models. 

IEEE Access, vol. 9, pp. 

117338-117348, 2021, doi: 

10.1109/ACCESS.2021.309

9492.) 

2021 Developed learning algorithms for SNNs 

and demonstrate the potential applications 

of SNNs in processing spatiotemporal 

data, particularly EEG data 

IEEE Transactions on 

Affective Computing, vol. 

12, no. 2, pp. 494-504, 1 

April-June 2021, doi: 

10.1109/TAFFC.2018.2885

474 

2021 Two neural network models, BiDANN 

and the improved BiDANN-S specifically 

designed to make emotion recognition 

from EEG data less which helps the model 

work well across different people 

IEEE Transactions on 

Affective Computing, vol. 

12, no. 1, pp. 203-214, 1 

Jan.-March 2021, doi: 

10.1109/TAFFC.2018.2866

865.) 

2021 Demonstrated the potential of using 

advanced sensors like the Empatica E4 

uses physiological information to 

anticipate human emotional states in real-

time. 
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IEEE Transactions on 

Affective Computing, vol. 

12, no. 1, pp. 154-164, 1 

Jan.-March 2021, doi: 

10.1109/TAFFC.2018.2854

168.) 

2021 Evaluated three different EEG datasets, 

namely DEAP, MAHNOB, and STEED, 

which focused on emotion recognition 

during EEG recording. 

IEEE Journal of Biomedical 

and Health Informatics, vol. 

25, no. 7, pp. 2533-2544, 

July 2021, doi: 

10.1109/JBHI.2021.304911

9.) 

2021 Embraced the FLDNet, a cutting-edge 

deep learning system intended to capture 

significant connections from different 

frames. 

IEEE Transactions on 

Cognitive and 

Developmental Systems, 

vol. 13, no. 2, pp. 354-367, 

June 2021, doi: 

10.1109/TCDS.2020.29993

37.) 

2021 BiHDM aims to capture the asymmetric 

variations in the two hemispheres' brain 

activity during emotional expressiveness. 

IEEE Sensors Journal, vol. 

21, no. 13, pp. 14923-

14930, 1 July1, 2021, doi: 

10.1109/JSEN.2021.307037

3.) 

2021 a hybrid method that combined CWT-

based EEG signal processing with 

forefront CNN models for extracting deep 

features 

IEEE Journal of 

Translational Engineering 

in Health and Medicine 9 

(2021): 1-7.) 

2021 Focused on the connection between EEG 

and HRV under stress conditions 

IEEE Access, vol. 9, pp. 

72535-72546, 2021, doi: 

10.1109/ACCESS.2021.307

8470.) 

2021 Design an Integrated Safety Management 

System (ISMS) that incorporates CNN 

and LSTM. 

IEEE Transactions on 

Consumer Electronics, vol. 

67, no. 2, pp. 166-175, May 

2021, doi: 

10.1109/TCE.2021.307939

9.) 

2021 Kriging methods were applied for efficient 

seizure detection devices, created 

especially for an environment of edge 

computing by viewing the brain as a 

spatial panorama. 

IEEE Transactions on 

Cognitive and 

Developmental Systems, 

vol. 14, no. 2, pp. 541-551, 

June 2022, doi 

10.1109/TCDS.2021.30534

2021 Framework ensured that the subject 

remained attentive and focused using a 

technique called Rapid Serial Visual 

Presentation (RSVP) to detect deception. 
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55.) 

IEEE Transactions on 

Neural Systems and 

Rehabilitation Engineering. 

PP. 1-1. 

10.1109/TNSRE.2021.3111

689.) 

2021 Designed a model to capture both spatial 

and secular dynamics in brain activity 

through a combination of deep 

convolutional recurrent generative 

adversarial networks (CNN-RNN-GAN). 

IEEE Transactions on 

Neural Systems and 

Rehabilitation Engineering, 

vol. 29, pp. 2474-2483, 

2021, doi: 

10.1109/TNSRE.2021.3129

467) 

2021 Improved the detection of epileptic 

seizures when to start and end which 

proves to be an important task in epilepsy 
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Table 2.1 represents the analysis of various techniques which are available for EEG. 

The fact that the methodologies being evaluated differ widely in terms of the 

characteristics gathered, the classification algorithm that is utilized, and the 

applicability of the system makes it far more difficult to choose algorithms for real-

time deployments. To assist in dispelling this uncertainty, the next section will 

categorize various methods according to their degree of accuracy, application domain, 

characteristics made use of, and level of computational complexity. Academics and 

system designers may find it easier to identify which algorithmic implementation is 

most appropriate for a certain job as a result of this. 

2.2 STATISTICAL EVALUATION OF THE COMPARED 

TECHNIQUES 

Accuracy and the amount of computational complexity are examined as part of the 

performance evaluation of the suggested models, which is based on the characteristics 

and application types that are used. Comparing EEG signals in both real-time and 

dataset modes indicates that they are comparable to one another. This comparison also 

demonstrates that CNN models and their modifications perform finer than the other 

models in terms of absolute levels of categorization accuracy. 

Figs 2.1 and 2.2 show this point by comparing the two techniques' accuracy in the 

context of EEG application. This makes it easier to pick acceptable algorithms for 

future research by highlighting the similarities and differences between the two 

approaches. In dataset-based classification, it has been found that FLDA, ANN, PNN, 

and LS-SVM all perform well; however, 2D CNNs employing KELM, kNN, and RF 

methods have shown to be more successful in real-time EEG classifications [147] 

[148] [149] [150] [151]. The following figure, which depicts algorithms and their 

degree of computational complexity, shows a comparison that is comparable 

concerning the level of computational complexity possessed by each of the systems. 
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Figure 2.1 Accuracy comparisons for dataset-based algorithms 

 

Figure 2.2 Accuracy comparisons for real-time algorithms 
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Along with other kinds of neural network models, CNNs, RNNs, and PNNs have an 

exceptionally high computational cost. This is due to the many feature extraction 

layers included inside these models. The figure elucidates this point for the reader 

clearly and convincingly. As can be seen in Figure 2.3, the majority of models belong 

to the category of having a degree of complexity that is somewhere in the middle, but 

kNN, SVM, and numerous other non-neural models have a level of complexity that is 

much lower [152] [153] [154] [155] [156]. The results demonstrate that, in terms of 

accuracy and computational complexity, the SVM, FLDA, and CNN models are the 

most appropriate choices for EEG classification. 

 

Figure 2.3 Computational complexity levels of different algorithms 
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2.3 CONCLUSIONS 

According to the findings, the CNN, SVM, and FLDA algorithms are superior 

to those of their competitors both in terms of accuracy and the level of complexity 

required to apply them. When it comes to modeling dynamic and static data in 

real-time, these approaches provide the system a significant advantage thanks to 

the advantages they bring. The use of these approaches has the potential to 

increase both the classification accuracy and the practicability of the existing 

transfer learning models. Combining these models with ECG and other body 

metrics allows for a high level of accuracy to be achieved in the data 

categorization process. It is probable that in the not-too-distant future, it may be 

feasible to improve these models by merging transfer learning with basic 

classifiers, which would result in an ensemble of these techniques that is more 

successful for real-time scenarios. 
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CHAPTER 3  

DESIGN OF A MULTISPECTRAL DATA 

REPRESENTATION ENGINE FOR CLASSIFICATION 

OF EEG SIGNALS VIA ENSEMBLE MODELS 

“An opinion should be the result of thought, not a substitute for it.” 

- Jef Mallett 

 

It is necessary to create multi-domain modules in interest to classify EEG signals. 

These modules need to conduct post-processing activities and comprise signal pre-

processing and filtering, signal segmentation, feature extraction from segmented 

signals, statistical modeling for feature reduction, signal classification into one of N 

brain illness classifications, and feature extraction. For researchers to achieve these 

objectives, they have built a wide range of deep learning models. The bulk of these 

models explain EEG data using single-domain features. When applied for a wide 

variety of illnesses, this reduces the performance options available. In addition, 

when deep learning models are utilized, the procedures of feature extraction and 

selection are encapsulated inside black-box containers, which means that these 

containers cannot be altered in any way without harming the classification 

performance. In an interest to circumvent these limits, the research presented here 

recommends developing an engine for the representation of multispectral data that 

can identify EEG signals using ensemble models. Input EEG signals are converted 

by the recommended engine into iVector and MFCC. While the iVector is formed 

with the help of statistical entropy characteristics, the MFCC feature vector is built 

with the assistance of cepstrum, spectrum, power density, and other frequency 

domain datasets & samples. By improving the effectiveness of feature 

representation, the amalgamation of various feature sets may perk up classification 

performance for input EEG datasets & samples [157] [158] [159] [160]. Assessing 

the effectiveness of an existing ensemble classification model, a custom model is 

developed by leveraging MNNs with varying sizes of their layering structures. 
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Because of this fluctuation, the suggested model can recognize EEG signals 

according to a wide range of conditions, including Alzheimer's disease, stroke, brain 

tumors, sleep disturbances, and many more. The proposed model was used to 

classify a wide range of EEG ailments, including epilepsy, dementia, Alzheimer's 

type disease, and Parkinson's type disease, amongst others. It was shown that the 

proposed model has an accuracy level of more than 98.5% in categorizing various 

illnesses. When the act of the model was also matched up with many modern looms, 

under a range of input situations, it was discovered that the suggested model 

surpassed the current models because of accuracy, precision, recall, and delay 

performance [161] [162] [163]. As a consequence of these advantages, the technique 

that was described is useful for real-time clinical applications. The work's general 

progression is revealed in Fig. 3.1. 

 

 

Figure 3.1 Implementation flow of proposed work. 

     3. 1 INTRODUCTION TO THE MULTISPECTRAL DATA 

REPRESENTATION MODEL 

In interest to develop EEG classification models effectively, it is important to 

construct filtering out the signal, pulling out the region of interest (RoI), feature 

depiction, feature assortment, stratification, and activities involved in post-

processing. For an EEG classification model to be considered highly successful, it 

must have both a low processing latency and a high efficacy of classification. 

Figure 3.2 is an illustration of a popular EEG classification model, which 

demonstrates how EEG data is interpreted into a variety of feelings. This approach 

reduces the effect of noise and other types of internal and external disturbances by 
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using EEG data that has been pre-processed and obtained from real-time headsets. 

Among the temporal features that are retrieved from the data after filtering, those 

based on angular, spatial, and frequency-based feature vectors are some of the 

most common [164] [165] [166] [167]. People may be placed into one of many 

categories of brain illnesses or brain states based on these features, which serve as 

time-domain interpretations of the present state of the brain and can be used to 

classify patients. 

In the model shown in Fig. 3.2, the SVM model is used in interest to 

categorize the collected data into a variety of different types of emotions. External 

systems can make use of these sensations in interest to identify user behavior and 

assist with psychometric analysis. It should come as no surprise that the processes 

of feature withdrawal, feature assortment, and categorizing blocks are major 

contributors to the overall performance of these models. The next part of this 

essay covers not only the layout of these blocks but also the performance 

attributes that came from a wide range of high-tech classification models as well 

[168] [169] [170]. Because of this conversation, it seems that these solutions 

either employ a black-box paradigm or are very general, together of which 

restricts how far they can scale in terms of how well they function in terms of 

latency and accuracy. 

The following issues for real-time EEG datasets are also brought to light by the 

models that are now available: 

These models' usage of uni-domain or bi-domain features, which in turn leads to a 

reduction in their real-time classification performance, have resulted in restricted 

feature representation capabilities for the models. Because deep learning models 

employ black-box methodologies, it is not possible to adjust or change their 

performance using linear optimization techniques. The model's applicability and 

scalability are both severely limited as a result of the dependence of classification 

accuracy on the density of the datasets & samples. 
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Figure 3.2 A general-purpose EEG classification model 

 

The next part will look into the structural design of the superior feature assortment 

engine that is used for multivariate EEG categorization. It leads to get around 
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issues with feature representation, sluggish performance, and limited precision. In 

the fourth part of this article, the outstanding accomplishment of this model is 

examined and matched up to a multiplicity of other approaches that are well 

thought-out to be high-tech methodologies. In conclusion, this study presents 

some insightful remarks on the proposed model as well as some ideas on ways to 

further improve the model's outstanding accomplishment for various 

circumstances. 

 

3.2 EXISTING MODELS THAT PERFORM MULTISPECTRAL 

DATA REPRESENTATION ANALYSIS 

In the course of research, numerous models have been constructed for a 

considerable length of time to characterize EEGs. What separates these models 

from one another is the applications they are most suited for, the degrees of 

precision and review provided, and the duration of time required to complete the 

task. For instance, the research that is presented in [101] [113] [114] investigates 

the use of an amalgamation of direct discriminant analysis (LDA), KNN, SVM, 

and ANN with normal spatial example (CSP) and Transfer TSK Fuzzy Classifier 

(TTFC) in interest to achieve improved characterization results. This investigation 

was carried out in interest to improve the accuracy of the characterization of the 

subject. Because these models include application-specific characterization 

qualities, the process of putting them into practice has to adhere to stringent 

accuracy standards in the interest of providing reliable results. Additional 

extensions to this model are investigated in [102] [103] concerning multidomain 

EEG groups. The Neuroglial Network Model (NNM) and low-force cantered 

ultrasound excitation (LIFUS) are cast off in these expansions. Because of the 

enormous computational complexity they have, these models are incapable of 

being scaled up for any substantial amount of time, despite the high degree of 

accuracy they have. This is the case although they have. The Multiple Recurrent 

Multilayer Neural Network (MFMBN) technique was reported in the study. 

MFMBN is an approach that, in contrast to previous models that have been 
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published, allows one to attain more accuracy and enhanced flexibility. As a 

consequence of this project, the adaptability of the organization to changing 

conditions is going to be strengthened. Using CNN in conjunction with cross 

wavelet change (XWT), Local Binary Pattern Transition Histogram (LBP TH), 

and Multivariable Scale Mixture Model (MSMM), Scholars have constructed 

theoretically comparable models. These models, which use extended element 

extraction strategies, are utilized in the process of diagnosing epilepsy [171] [172] 

[173]. As a result, execution is both improved and thoroughly described. 

As a direct consequence of the development of these element extraction 

models, a Hand-Crafted Deep Learning EEG model (HC DL), a quadratic 

classifier with wavelet highlights, and an MNN with Dilated Convolutions 

(MSNN DC) combination are now under consideration. Large-scale inclusion 

extractions are employed by these algorithms to handle EEG waveforms falling 

within a broad range and to obtain a more precise classification. In the interest of 

getting a more precise categorization, this step is taken. These models, on the 

other hand, only have a moderate degree of accuracy, which the study presented in 

[133] [134] [135] suggests has the potential to be enhanced. The study that is 

being discussed here examines a discriminatory progressive scanty depiction 

classifier, a temporal area successive components directly using an LSTM neural 

association and a DCNN neural structure. The precision of these models may 

increase as a direct consequence of our work. These models provide a contribution 

to the improvement of EEG highlights, which, in turn, facilitates order exactness 

manufacture for a wide range of remedial applications by making the process 

simpler to carry out. Comparable models are investigated in [120] [138] and the 

researchers who were responsible for writing those studies recommend using the 

Extended KNN and cooperative methods for dividing sources for the blind as a 

means of achieving more flexibility in terms of implementation. These are some 

of the strategies that may be of assistance to those who have vision impairment. 

These models make use of fairly basic approaches for highlight extraction; 

nevertheless, they are impossible to use in EEG datasets that have a 
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comprehensive scope because of the simplicity of these methods [174] [175] [176] 

[177] [178] [179]. Because of this, it is simple to demonstrate that models with a 

high level of accuracy are not crucial for extensive installations. Conversely, 

though, models with a high level of adaptability cannot be employed for 

applications that need a high degree of very accurate description. The next section 

is going to make use of multivariate research interest to provide a method for a 

quadratic model for EEG order based on wavelet pressure. The problems which 

people have expressed concern are intended to be solved by this paradigm. This 

model will aid in the efficient and adaptable EEG characterization of a broad 

range of clinical situations. It will do so by providing a framework for the 

analysis. 

 

3.3  DESIGN OF THE PROPOSED MULTISPECTRAL DATA 

REPRESENTATION ENGINE FOR CLASSIFICATION OF 

EEG SIGNALS VIA ENSEMBLE MODELS 

A survey of the relevant literature indicates that several different machine learning 

models for there have been an EEG categorization supplied; every single one of 

these models is employed in the process of diagnosing a particular category of 

brain illness. This is made abundantly clear by the many models that have been 

made accessible to choose from. As a consequence of this, their general-purpose 

classification performance is limited, and models with higher scalability 

performance exhibit worse accuracy, recall, and precision. In interest to get over 

the constraints that the aforementioned defect imposes, this part of the article 

introduces a more robust feature extraction engine that makes use of a quadratic 

classifier. This engine has a wide range of applications and may be used for 

several categorization tasks [180] [181] [182] [183]. The suggested model's 

general flow is shown in Figure 8, which may alternatively be viewed as a portrait 

that illustrates how the model functions internally.  

Data before being processed using MFCC and iVector-based blocks, the 

entering EEG signals are shown to be compressed using wavelet compression. 
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This is done in the interest of saving space. This sequence is available for viewing. 

With the help of these blocks, multispectral characteristics can be extracted, 

leading to a more accurate representation of the input signals. These attributes are 

handled using a variance maximization layer to enable intelligent class-based 

feature selection [184] [185] [186] [187]. This layer makes an important 

contribution to the process as a whole. A quadratic classifier is used to identify the 

specified criteria of interest to complete EEG stratification into several ailment 

groups. This helps to ensure that the correct diagnoses are assigned to each 

patient. The classification of EEG data is aided by this classifier, which is made 

up of many neural networks and plays a part in the process. The Overall flow of 

the proposed model is depicted in Fig. 3.3. 

It is feasible to conclude, according to the model, that one of the phases that 

helps with the feature diminution process is processing the incoming EEG waves 

via a wavelet compression block first. Equations 1 and 2 are viewed in the 

assessment of wavelet component extraction, 

𝐸𝐸𝐺𝑎𝑖 =
𝑥𝑖 + 𝑥𝑖+1

2
… (1) 

𝐸𝐸𝐺𝑑𝑖 =
𝑥𝑖 − 𝑥𝑖+1

2
… (2) 

Where, 𝐸𝐸𝐺𝑎 , 𝑎𝑛𝑑 𝐸𝐸𝐺𝑑  Viewed as estimated EEG & delineate EEG components 

dug up by the Haar wavelet transform, although 𝑥𝑖&𝑥𝑖+1 viewed as contemporary 

EEG & subsequent EEG sample values dig out from the input EEG signals. These 

signals are also processed via Hilbert transform, which can be observed via 

equation 3, 

𝐻𝑜𝑢𝑡  𝑥 = 2
𝑗
2𝐻𝑜𝑢𝑡  2𝑗𝑥 − 𝑘 … (3) 

 

Where 𝑘 represents wavelet constant and to acquire final Hilbert features, the 

output of this model is further enhanced using equation 4, 
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𝑓 𝑥 =  𝐸𝐸𝐺𝑎 ∗ 𝐻𝑜𝑢𝑡  𝐸𝐸𝐺𝑎 …  4 

𝑁

𝑗 ,𝑘=0

 

 

Where 𝑁 viewed as several features hauled out via the Haar wavelet transform‘s 

rough components. 

 

Figure 3.3 Overall flux of the proposed model 

 

The explanatory component is thrown away as a result of the Hilbert 

transform, and the approximation component is what is employed for feature 

extraction instead. The dimensions of EEG signals are going to be shrunk by this 

method, but the condition of their entropy will be preserved regardless of the 

signal strength. These approximation components cut in half the dimensions of the 
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input EEG data, which helps with quicker classification and provides richer 

feature representations [188] [189]. MFCCs are pulled out helping in the depiction 

of incoming signals in the frequency domain. This is done so that these 

components may be turned into features. In interest to carry out this activity, the 

Fourier transform of approximately component values is first retrieved using 

equation 5, 

 

𝐹𝑎𝑝𝑝𝑟𝑜𝑥 𝑖 =  𝐸𝐸𝐺𝑎 𝑗 ∗  cos  
2 ∗ 𝑝𝑖 ∗ 𝑖 ∗ 𝑗

𝑁
 −  −1 ∗ sin  

2 ∗ 𝑝𝑖 ∗ 𝑖 ∗ 𝑗

𝑁
  …  5 

𝑁−1

𝑗=0

 

 

Where 𝑁 represents the total number of pull-out tasters, and 𝑖 ∈ (0, 𝑁 − 1). 

Similar to Fourier, the discrete cosine components are estimated via equation 6 as 

follows, 

𝐷𝐶𝑇𝑜𝑢𝑡 =
1

 2𝑁
∗ 𝐶𝐷𝐶𝑇 ∗  𝐸𝐸𝐺 𝑥 ∗ cos   2 ∗ 𝑥 + 1 ∗ 𝑖 ∗

𝑝𝑖

2 ∗ 𝑁
 

𝑁−1

𝑥=0

…(6) 

 

Where, 𝑁 represents the number of EEG components, while 𝐶𝐷𝐶𝑇  is evaluated via 

equation 7 as follows, 

𝐶𝐷𝐶𝑇 =
1

 2
,𝑤ℎ𝑒𝑛 𝐸𝐸𝐺 > 0, 𝑒𝑙𝑠𝑒, 𝐶𝐷𝐶𝑇 = 1… (7) 

 

Together, the Fourier, Wavelet, and DCT components fashion the final feature 

vector that is viewed for classification. Through the use of equation 8, these 

coefficients are auxiliary routed in interest to assess MFCC for spectral analysis, 

 

𝑀𝐹𝐶𝐶𝑙 =  log 𝑆𝑖 ∗ cos⁡(
𝑝𝑖

𝑛
∗ 𝑙 ∗

𝑛

𝑖=1

 𝑖 − 0.5 )… (8) 
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Where, 𝑙 ∈ (1, 𝑛), 𝑛 viewed as the entire count of MFCC elements that need to be 

dug out, 𝑆 represents Mel power spectrum coefficients, and are viewed via 

equation 9, 

𝑆𝑖 =
 𝐹𝑎𝑝𝑝𝑟𝑜𝑥 𝑗 ∗ 𝑤𝑖
𝑁
𝑗=1

𝑁
…(9) 

 

In this case, i viewed as the number of MFCC components, and Wi viewed as the 

weight of each MFCC component. This weight is determined by the frequency 

and scale value of each input signal, and it may be altered according to the needs 

of the model. The MFCC feature vector that was created was made by linearly 

combining a total of 20 distinct MFCC components that had previously been 

extracted. This vector has been merged with iVector features that are effective. 

The iVectors were computed using equation 10, and the results are as follows, 

 

𝑖𝑉𝑒𝑐𝑡𝑜𝑟𝑖 =  
(1,1)𝑣𝑎𝑟 ⋯ (1, 𝑛)𝑣𝑎𝑟

⋮ ⋱ ⋮
(𝑛, 1)𝑣𝑎𝑟 ⋯  𝑛, 𝑛 𝑣𝑎𝑟

 ∗ 𝐹𝑎𝑝𝑝𝑟𝑜𝑥 𝑖 +𝑀𝐴𝑋  𝐹𝑎𝑝𝑝𝑟𝑜𝑥 𝑗

𝑁

𝑗=1

 …(10) 

 

Where, 𝑁, 𝐹𝑎𝑝𝑝𝑟𝑜𝑥  viewed as number of inputs and Fourier transform of that 

incoming data, while  𝑥, 𝑦 𝑣𝑎𝑟  Viewed as the variance between Fourier 

components 𝑥 & 𝑦, that was assessed via equation 11 as follows, 

 

 𝑥, 𝑦 𝑣𝑎𝑟 = exp 
𝑥2

2
 ∗  2 ∗ 𝑝𝑖 ∗ 𝑣𝑎𝑟 𝑦 ∗ 𝑣𝑎𝑟 𝑥  −1…(11) 

 

Where, 𝑣𝑎𝑟(𝑥) is viewed as the variance of input𝑥, and is employed to validate 

the consistency of inputs. This variance is viewed via equation 12, 

 

𝑣𝑎𝑟 𝑥 =  
 𝑥𝑖 −  

𝑥𝑗
𝑁

𝑁
𝑗=1  

2

𝑁 − 1
…  12 

𝑁

𝑖=1
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Based on these identities, the incoming EEG signal is pictured into feature 

vectors, which is appropriate for the last categorization and analysis. MFCC and 

iVector component visualization graphed in Fig. 3.4 (a), and 3.4 (b) respectively, 

wherein the feature vectors were appraised using the same EEG data. 

 

 

Fig. 3.4 (a) MFCC of EEG signal (b) iVector of the same signal 

 

These features are combined to form a consolidated feature vector comprising 

compound feature laying-off. A fresh inter-class variance threshold is assessed 

between these features in interest to lessening these repetitions. This variance is 

viewed via equation 13, whereby the estimation of the final variance is done using 

information between classes. 

 

𝑉𝑡ℎ =
 
  
  
  
  
 

 (𝐹𝑉𝑎 −
𝑚
𝑎=1

 
  (𝐹𝑉𝑗 −

 𝐹𝑉𝑘
𝑛
𝑘=1

𝑛 )2𝑛
𝑗=1

𝑛 − 1
𝑚
𝑖=1

𝑚 )2

𝑚 − 1
…(13) 

There, 𝑚 viewed as the total number of features in the recent class, 𝑛 viewed as 

the total number of features in other classes, 𝐹𝑉 viewed as feature vector data for 

the incoming group of features. Characteristics with variance less than 𝑉𝑡ℎ  are 
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surpluses, while residuals are used for the design of the Multiple Neural Network 

classifier. The following is how equation 14 is viewed in finding feature variance, 

 

𝑣𝑎𝑟 𝐹 =  
 𝐹𝑖 −  

𝐹𝑗
𝑁

𝑁
𝑗=1  

2

𝑁 − 1
…  14 

𝑁

𝑖=1

 

 

Where, 𝐹 & 𝑁 viewed as the count of the feature vector, and the total count of 

characteristics found in the feature vector in that order. For efficient EEG 

categorization, the recommended classifier uses a Quadratic Neural Network with 

escalating neurons, which is endowed with quality. To provide a range of output 

classes for the Neural Network, different layers are tied together via connections 

between neurons. NN models employ vast variable features to establish the final 

categorization. The pooled QNN model uses 𝑛, 2 ∗ 𝑛, 3 ∗ 𝑛, & 4 ∗ 𝑛 number of 

neurons in the resultant classifier plan. There, 𝑛 is viewed as the total number of 

features pulled out through variance-based collection. The final production of 

every NN is guarded through equation 15, wherein feature vectors, and the 

productivity class are created by exploiting their logarithmic ranges. 

 

𝐶𝑜𝑢𝑡 = −
1

2
∗ (𝑉𝐵𝐹𝑗 − 𝑉𝐵𝐹𝑙

𝑁

𝑙=1

𝑁

𝑗=1

) ∗  𝑉𝐵𝐹 − 𝑉𝐵𝐹𝑖

𝑁

𝑖=1

 

𝑇

+ log⁡( 𝑉𝐵𝐹𝑖

𝑁

𝑖=1

)… (15) 

 

There, 𝑉𝐵𝐹, & 𝑁 viewed as haul-out variance-based features and a summed 

number of diverse neural network topologies were employed to resolve the 

classification's ultimate result. Every classifier undergoes this classification 

resulting in the final output class originating by the appliance of equation 16, this 

exploits a mode operation to coalesce an assortment of classes.  
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𝐶𝑜𝑢𝑡
𝑓𝑖𝑛𝑎𝑙

=  𝐶𝑜𝑢𝑡𝑖 …(16)

𝑁

𝑖=1

 

 

To settle on the absolute classification result, the mode maneuver prefers the 

class from a collection of production classes that happens with more frequency. 

Presentation of this association route because of precision, recall, accuracy, and 

delay is conferred in the text's subsequent part. 

3.4 SUMMARY 

In summary, the improvement in classification accuracy comes from using a mix of 

advanced signal processing techniques like Wavelet, Hilbert, Fourier, and Cosine 

transforms, which enhance the quality of feature extraction. These techniques, 

combined with new approaches in feature selection and classification, lead to a model 

that can capture complex patterns in the data with high density. 

The AMVAFEx model exemplifies this approach by integrating multiple methods for 

feature extraction, selection, and classification. For instance, a variance-based model 

helps choose features with the highest variability, which minimizes redundant data 

and sharpens focus during classification. Additionally, MFCC (Mel-Frequency 

Cepstral Coefficients) and iVector methods are used to identify highly relevant 

features, further boosting performance. 

The model's precision and recall are almost equally high, suggesting it is highly 

adaptable and can be applied to various EEG classification tasks effectively. This 

balance shows the model can accurately identify relevant patterns without sacrificing 

sensitivity or specificity, making it versatile for different EEG applications. 
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CHAPTER 4  

DESIGN OF A TRANSFER LEARNING BASED 

BIOINSPIRED ENSEMBLE MODEL FOR 

PREEMPTIVE DETECTION OF STRESS & 

EMOTIONAL DISORDERS  

“As for the future, your task is not to foresee it, but to enable it.” 

- Antoine de Saint Exupery 

EEG signals may be used to depict stress and emotional problems via the scanning 

and analysis of patterns of brain wave change. The currently available EEG 

processing models either have a greater degree of complexity and lower accuracy 

levels for various illness types, or they are only appropriate for a restricted number of 

disorders related to stress and emotions. When applied to application-specific use 

cases, the performance of these models is hindered since they employ generalist 

Neural Network approaches for classification and post-processing. This article 

presents a unique Transfer Learning-based Bioinspired Ensemble Model for the Pre-

emptive Detection of Stress and Emotional Diseases in the interest of addressing the 

problems that have been identified. In the first step of its development, the model 

under consideration extracts multispectral feature sets from several EEG datasets. 

MFCC, iVector, Cosine, Fourier, and Wavelet components are some of the 

characteristics that fall under this category. The goal of the GWO-based feature 

selection model is to maximize variance across the various stress and emotional 

disorder classes. This model is used to process a mixture of these characteristics 

across multiple datasets in interest to complete the processing [190] [191]. The 

decided-upon characteristics are then transformed into a two-dimensional 

representation and put through a CNN model for processing. This model is based on 

transfer learning and integrates the ResNet 101, Mobile V Net, and YoLo models. The 

outputs of these models' classifications are then subjected to further cross-validation 

via the use of ensemble classification, which is a combination of several classification 
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models such as NB, SVM, RF, LR, and MLP. These classifiers are also used in the 

performance of a variety of post-processing jobs, including the determination of the 

likelihood of disease transmission, the estimate of future illnesses, and other similar 

activities. The Enterface and DEAP datasets were used to train the proposed model 

and then it was compared with a number of other state-of-the-art approaches in terms 

of its accuracy, recall, precision, AUC, and delay performance. It has been proven on 

the basis of this performance that the recommended model is capable of 

demonstrating 8.5% greater accuracy, 8.3% higher precision, 5.9% better recall, 4.5% 

better AUC, and 14.9% quicker classification performance, all of which make it very 

beneficial for clinical deployments. 

4.1 INTRODUCTION TO THE TRANSFER LEARNING-BASED 

BIOINSPIRED ENSEMBLE MODEL 

It is necessary to design multidomain processing engines that can perform the 

following tasks in interest to classify EEG signals into various Stress and Emotional 

categories. These engines must be able to pre-process EEG signals, extract useful 

segments, represent these segments as relevant feature sets, select highly variant inter-

class feature sets from these segments, classify the selected feature sets into multiple 

Stress and Emotional classes, and post-process the classified data based on 

application-specific rules. Denoising, filtering, and cleaning the EEG signals with the 

use of pre-processing models is necessary in interest to discard artifacts caused by the 

equipment and sensor noise. In the interest of extracting meaningful chunks from 

wave sets such as alpha, beta, gamma, and theta, segmentation models are necessary 

[192]. After that, methods such as wavelet analysis, Fourier analysis, cosine analysis, 

long-term memory, GRU, and other forms of feature extraction are used for these sub-

segments in interest to continue processing. These models make use of high-density 

feature sets in interest to improve feature representation. They are designed to work 

with certain kinds of EEG datasets & samples. These characteristics are evaluated 

using selection models with the hope of producing a greater degree of variation 

among the various groups. Fig. 4.1 depicts an example of such a model[15], which 
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makes use of stacked LSTMs and ICA-based techniques in interest to improve both 

the feature representation and classification performance levels. 

 

Figure 4.1 A typical EEG classification model using Stacked LSTM features 

 

By using fully connected layers, the model can manage the classification of 

the retrieved attributes into one of the N stress and emotional categories. These N 

categories may be chosen by the user. The next chapter in this book will examine 

models [121] [141] [139] [122] that are comparable to one another. These models are 

evaluated based on the nuances that are special to the application, the advantages that 

are specific to the context, the limits that are specific to the deployment, and the 

functional future scopes. Because the existing models either have a higher degree of 

complexity or lower accuracy levels for a variety of types of disease, it was revealed 

as a consequence of this argument that they are only able to be utilized for the 

diagnosis of a select few Stress and Emotional disorders. This information came about 

as a result of the debate that took place. This is due to the constraints that are imposed 

by the models that are now available. Because these models depend on generic Neural 

Network models for classification and post-processing, their performance is impeded 

when they are applied to application-specific use cases. These use cases are 

customized to the application. This is because these models employ standard Neural 

Network models. One-of-a-kind Transfer Learning-based Bioinspired Ensemble 

Model for the Pre-emptive Detection of Stress and Emotional Disease is provided in 

interest to offer solutions for the issues that have been discussed. Sets in interest to 
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provide answers to the questions that have been posed [193] [194] [195]. Section 4 

examines and discusses the model's recall, AUC, delay levels, and accuracy and 

precision. A comparison of the model to other approaches that are considered to be the 

most cutting-edge in their respective sectors is also included in this research. This 

article concludes with numerous context-specific observations on the framework that 

was provided along with some suggestions for tactics that could help the model 

perform even better under a variety of different circumstances. 

4.2 EXISTING MODELS THAT USE DEEP LEARNING FOR 

STRESS AND EMOTIONAL DISORDER IDENTIFICATION 

To classify different kinds of stress based on EEG signals, a large number of 

models have been developed, and each of these models has its own set of operational 

properties. For instance, the research presented in [142] [143] [144] [145] [146] 

suggests the use of analysis of variance, k Means, and canonical correlation analysis 

(CCA) for the estimate of the degree of similarity between EEG signal characteristics 

and brain illnesses. However, these models have a poor level of accuracy and cannot 

be expanded to include a wider variety of disorders. The research presented in [123] 

suggests using a Symmetric Deep Convolutional Adversarial Network (SDCAN), 

which may aid in increasing classification performance for a variety of illness kinds. 

This can be done as a solution to this problem. Using a deep learning network that is 

capable of adapting to signals in real time enhances the model's accuracy and 

precision. Similar models are proposed in [124] [140] [125] in which the researchers 

discuss the use of an MSIN (Multi-Scale Inception Network), FFD (fitness for duty 

features), and LDSR-TL (Low-Dimensional Subject Representation-based Transfer 

Learning), which assisted in improving classification performance by extracting a 

large number of Convolutional features and then selecting them using Max Pooling 

layers. Similar models are also proposed in [126] [147] [148] [149]. The work further 

broadens these models in [150] [151] [152] which proposes the use of Kriging 

methods, Rapid Serial Visual Presentation (RSVP), and Shallow CNN (SCNN), 

which all help in improving accuracy performance by identifying redundant features 
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and replacing them with their augmented counterparts. These models can be found in 

[153] [154] [155] [155]. The models that are addressed in [157] [158] [158] [160] 

further expand these procedures by incorporating Spatial and Temporal Matching 

(STM), Adaptive Thresholding, and Band Analysis. These three techniques allow 

context-sensitive feature extraction, which in turn improves overall classification 

performance when applied to real-time use cases.  

Work presented in [161] [162] [163] further recommends the use of Peripheral 

Bio-signals, Spiking Neural Networks (SNNs), and Brain Connectivity Analysis, all 

of which aid in strengthening the feature representation capacities of the EEG signals 

which results in reducing the complexity of categorization under clinical situations. 

The performance of these models is poor, but they may be improved by the use of 

polysomnography sensors [164], KNN classifiers [165] the bi-hemispheric 

discrepancy model (BiHDM) [166], and repeated dataset assessments [167] all of 

which contribute to the reduction of classification error across a variety of illness 

types. Similar models are explored in [168] [169]. These models suggest the use of 

Dynamic Empirical CNN (DECNN), DF, and Fusion Networks, which aid in boosting 

classification accuracy by integration of high-density feature extraction models for 

clinical EEG datasets & samples. [170] [171] [171] are references. Use of PSD 

features [27], CNNs with Bi-LSTM for extraction of temporal and frequency features 

[28] Alternating Direction Method of Multipliers (ADMM) [29] and Optimal Graph 

coupled Semi-Supervised Learning (OGSSL) [30], which assists in enhancing 

classification performance via integration of multidomain features with one another, 

are all ways in which the feature extraction capabilities These models intend to 

enhance their classification performance for large-scale EEG datasets by enhancing 

several feature sets in the hope that this would increase their accuracy. Similar 

methods are discussed in [31] [32] [33] [34]. These methods propose the use of Semi-

Supervised sparse low-rank regression (S3LRR), Channel-Fused Dense Convolutional 

Networks (CFDCN), Dynamic Time Warping (DTW), and CNN Models. These 

models offer support for the estimation of convolutional features from input datasets 

and improve their classification performance for multiple disease types. However, the 
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majority of these models either have a greater degree of complexity and a lower level 

of accuracy for numerous kinds of diseases or they can only be applied to a limited 

number of stress-related and emotional illness classes. The next part suggests an 

establishing entirely novel Transfer Learning-based Bioinspired Ensemble Model for 

Pre-emptive Detection of Stress and Emotional illnesses. Additionally, the model was 

evaluated alongside a variety of state-of-the-art approaches while being applied to 

clinical use cases. 

4.3 DESIGN OF THE PROPOSED TRANSFER LEARNING 

BASED BIOINSPIRED ENSEMBLE MODEL FOR PREEMPTIVE 

DETECTION OF STRESS & EMOTIONAL DISORDERS 

Reviewing the models that identify stress and emotions using EEG signal 

analysis led to the discovery that these models either have a greater level of 

complexity and a lower level of accuracy for numerous illnesses kinds, or they are 

only relevant for a limited number of Stress and Emotional disease classes. Because 

the bulk of them also utilize generalist Neural Network models for classification and 

post-processing activities, their performance is limited when it is used for application-

specific installations. This section addresses the construction of a unique transfer 

learning-based bioinspired ensemble model for proactive diagnosis of stress and 

emotional disorders in the interest of solving these difficulties. The model is intended 

for proactive detection of stress and emotional ailments. Fig. 4.2 depicts the flow of 

the model, and within that picture, it is possible to see that the suggested model first 

extracts multispectral feature sets. This can be seen in the figure. MFCC, iVector 

Components, Cosine Components, Fourier Components, and Wavelet Components are 

some examples of these. A feature selection approach based on GWO, which aims at 

variance maximization across distinct Stress & Emotional disorder classes, is used to 

process a combination of these characteristics across various emotional disorder 

classes. 



83 

 
 

 

In the proposed model as depicted in Fig. 4.3, the first stage is EMD-based 

noise reduction. Based on this briefly told methodology, raw EEG signals are 

decomposed into a set of intrinsic mode functions. In this research, by identifying and 

removing noise-related IMFs from the frequency and amplitude characteristics of the 

different IMFs obtained using this decomposition process, the de-noised EEG signals 

rise to a significant level concerning SNR. This enhanced SNR helps in the later 

stages of feature extraction and classification. After the reduction of noise, DWT is 

used to transform the de-noised EEG signals in interest to decompose them at 

different frequency bands and capture characteristics in both timestamp and frequency 

domains. Further, the wavelet-transformed signals will be input to a CNN to extract 

hierarchical features, from which it can utilize all the deep learning capabilities of the 

network to enhance feature representation and boost discriminative power between 

different emotional states. The last stage of the model is the one represented by ST-

GCN, which extracts high-dimensional features from the output of the CNN. ST-GCN 

effectively calculates the spatial dependencies of electrodes and temporal dynamics of 

the EEG with a graph formed by nodes representing EEG electrodes and edges 

showing functional connectivity. This rich modeling of spatial-temporal relationships 

within the EEG data guarantees accurate and robust emotion recognition. The 

integration of EMD, DWT, CNN, and ST-GCN is a serious step forward in developing 

a system for recognizing emotions from EEG signals. Generally, it seeks to improve 

the accuracy and reliability within which the recognition of emotions is undertaken 

through the prospective. 

 



84 

 
 

 

 

Figure 4.2 Overall flow of the proposed feature selection & classification 

model for different emotion types 
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Figure 4.3 Model architecture of the proposed classification process 

The goal of this model is to reduce the amount of variation that exists across 

the different stress and emotional disorder classes. A Convolutional Neural Network 

(CNN) model is then used to process the selected characteristics when they have been 

processed into a two-dimensional representation. This model is based on transfer 

learning and integrates ResNet 101, Mobile V Net2, and YoLo techniques. The 

categorized outputs from these models are further cross-validated via the use of 

ensemble classification, which mixes models such as NB, SVM, RF, LR, and MLP for 

continuous accuracy enhancements [196] [197] [198] [199] [200] [201]. These 

classifiers are also used in a variety of post-processing tasks, such as calculating the 
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probability that a disease will spread and predicting the sorts of diseases that may 

emerge in future sets. 

The proposed model for emotion recognition from EEG integrates noise 

reduction techniques with wavelet transforms deep learning, and graph neural 

networks to achieve a robust and accurate system. The EEG data by itself is noisy and 

complex; inherently, these methods are capable of capturing the temporal and spatial 

dependencies. EMD will start the process with its application in noise reduction. In 

the process, the EMD decomposes the raw signal S(t) into a set of intrinsic mode 

functions Ci(t) added to a residual component r(t). The decomposition may be 

expressed as: 

𝑆 𝑡 =  𝐶𝑖 𝑡 

𝑛

𝑖=1

+ 𝑟 𝑡 … (17) 

The IMFs selected, depending on their frequency and amplitude nature, are 

picked up for the identification and removal of noise-related components to enhance 

the signal-to-noise ratio sets. After this, the process of Discrete Wavelet Transform 

would be applied to the de-noised EEG signals. DWT decomposes the signal at 

different frequency bands, capturing the high and low-frequency components of the 

signal. Wavelet transform of a signal x(t) is defined as given below, 

𝑊𝑥 𝑎, 𝑏 =  𝑥 𝑡 𝜓 ∗  𝑡 − 𝑏𝑎 𝑑𝑡
∞

−∞

…(18) 

Here, is the mother wavelet, is the scaling parameter, and is the translation 

parameter for this process. The coefficients obtained from this process are then used 

to form a multi-resolution analysis of the signal at hand. It is very useful in capturing 

the dynamics along the time axis of EEG signals. These high-dimensional features 

obtained from wavelet coefficients are supplied to a Convolutional Neural Network. 

The CNN uses multiple layers of convolution and pooling to obtain hierarchical 

features. Using mathematical expressions, the convolutional operation for the k
th

 

feature map may be represented as, 
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ℎ𝑘 = 𝑓   𝑥𝑖 ∗ 𝑤𝑖𝑘 + 𝑏𝑘

𝑀

𝑖=1

 …(19) 

where xi is the input signal, wik is the weight matrix, bk is the bias term, ∗ 

denotes the convolution operation, and f denotes the activation function. By doing so, 

this process gives CNN the capability to learn complex features that capture local and 

global patterns in data samples. These features are then extracted from the CNN to 

construct a graph for the Spatial-Temporal Graph Convolutional Network. In this 

graph, nodes are EEG electrodes; edges represent functional connectivity. The 

adjacency matrix A can be defined by measures of functional connectivity or 

anatomical distances. The graph convolution operation is given by, 

𝐻 𝑙 + 1 = 𝜎  𝐷−
1
2𝐴𝐷−

1
2𝐻 𝑙 𝑊 𝑙  … (20) 

Where Hl refers to the input feature matrix at layer l, D is the degree matrix, A 

the adjacency matrix, Wl the weight matrix, and σ the activation function. Since this 

operation will be able to capture the spatial dependencies between the electrodes. 

Further, the ST-GCN models the temporal dynamics using temporal convolutions, 

which can be represented by, 

𝑧𝑡 =  𝛽𝑘 ⋅ 𝑥(𝑡 − 𝑘)

𝐾−1

𝑘=0

…(21) 

where zt denotes the output feature at timestamp t, βk are the temporal 

convolution coefficients, x(t-k) denotes an input feature at timestamp t−k, and K is the 

kernel size for this process. Temporal convolution may capture the dynamic changes 

in EEG signals over temporal instance sets. The last output of ST-GCN will be a set of 

emotion class labels. The class probabilities are then inferred by applying a softmax 

function to the final output of the ST-GCN. 

𝑦𝑖 =
𝑒𝑧𝑖

 𝑒𝑧𝑗
… (22) 
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Here, yi is the probability of i-th class and zi is the input to the softmax 

function. This will permit assigning emotion labels with the model based on the 

features the model has learned. This integrated model has not been chosen for a vain 

reason: it is capable of efficiently handling the shortcomings of the existing 

approaches. EMD adaptively reduces noise; DWT captures multi-resolution features, 

CNNs extract hierarchical patterns, and STGCNs model both spatial and temporal 

dependencies. 

As can be seen in Fig. 4.2, the first step of the modeling process involves the 

extraction of multidomain feature sets from the input EEG datasets & samples. At the 

beginning of the equalizing feature extraction procedure, all EEG signals are 

quantized into the range of [0,1]. This helps ensure that the features are extracted 

correctly. In interest to carry out this activity, equation 23 is used, 

Qe =
Ne −min⁡(Ne)

max Ne − min⁡(Ne)
… (23) 

Where, Qe , &Ne  represents EEG signals in their quantized & normal states. 

Based on these quantized signals, MFCC is extracted via equation 24, 

Me =
fs

0.25
∗ log10  1 +

Qe

fs
 … (24) 

Where, Me  represents extracted MFCC for quantized signal Qe , sampled at 

frequency fs . These components are used to augment cepstrum coefficients (Ce), 

which are extracted via equation 25, 

Ce = ifft log fft Me   … (25) 

To remove any DC offsets, these cepstrum components are normalized 

(Norme) via equation 26, 
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Norme =
 Ce −  

Cei

N
N
i=1  ∗  N − 1 

   Cej
−  

Cei

N
N
i=1

2

 N
j=1

… 26  

Where, Cei
 represents cepstrum coefficients of input signal for the ith  

frequency levels. The normalized signal is further filtered in interest to remove any 

noise levels via the triangular filtering process via equation 27, 

Te =   Normei
 

2
∗ Melh i

… 27 

N−1

i=0

 

Where, Melhi
 Represents a pre-set filter bank matrix for Mel Frequency 

Components. This is highly useful for the post-processing of EEG signals, and is 

evaluated via equation 28, 

Melh i =
i − f(h − 1)

f h − f(h − 1)
… (28) 

Where f represents the amplitude of the EEG signal for given frequency levels. 

Finally, the MFCC components are calculated by passing the triangular filtered signal 

through a Discrete Cosine Transform (DCT) process via equation 29, 

MFCCi =  log Te m  ∗ cos  i ∗  m −
1

2
 ∗

pi

M
 …  29 

M

m=1

 

Where, i indicates the MFCC feature index, and is dependent on some 

frequency components which are needed to be analyzed. Based on these components, 

iVectors are extracted, which assist in the identification of cepstral amplitude levels 

for different input types. These vectors are extracted via variance calculations as 

indicated by equation 30, 

iVectori = MAX  xj

N

j=1

 +  
(1,1)var ⋯ (1, n)var

⋮ ⋱ ⋮
(n, 1)var ⋯  n, n var

 ∗ xi …(30) 
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Where N represents the number of EEG samples, x represents the normalized 

EEG signal, while  x, y var  represents relative variance levels, and is estimated via 

equation 31, 

 x, y var =
exp  

x2

2  

2 ∗ pi ∗ var x ∗ var(y)
… (31) 

Where, var(x) indicates singular variance levels, and is estimated via equation 

32 as follows, 

var x =
1

N − 1
∗    xi − 

xj

N

N

j=1

 

2
N

i=1

…(32) 

After variance evaluation, Fourier components are extracted for representing 

EEG signals into multiple domains, via equation 33, 

Fi =  xj ∗  cos  2 ∗ pi ∗ i ∗
j

N
 − i ∗ sin  2 ∗ pi ∗ i ∗

j

N
  …  33 

N−1

j=0

 

Along with these features, wavelet components are extorted via equations 34 

& 35 as follows, 

wi approx
=

xi + xi+1

2
…  34  

widet ail
=

xi − xi+1

2
… (35) 

Where, wapprox  represents approximate Haar wavelet component, while 

wdetail  represents detailed Haar wavelet component, and i ∈ (1, N), where N 

represents the number of samples present in the EEG signal. Similarly, the DCT 

components are extracted via equation 36, which assists in representing EEG signals 

into Cosine domains, 
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DCT =
1

2 ∗  N
 xi ∗ cos  

 2 ∗ i + 1 ∗ j ∗ pi

2 ∗ N
 …  36 

N−1

i=1

 

All these features are combined, and given variance maximization operations 

are used in the GWO-based feature selection model to pick highly variable feature 

sets. The following procedure defines the way the model behaves: 

Initially, setup following GWO parameters, which will assist in controlling its 

performance, 

 Initialize total iterations for GWO (𝑁𝑖) 

 Initialize total wolves for GWO (𝑁𝑤 ) 

 Initialize the learning rate for all wolves (𝐿𝑟 ) 

 Setup all wolves as ‗Delta Wolves‘ 

 Setup total number of aggregated feature sets (𝑁𝑓), and total classes 

(𝑁𝑐) 

 Iterate through all wolves, and for each iteration perform the following 

tasks, 

 In this iteration, if the current wolf is marked as ‗Delta Wolf‘, then 

modify it, else skip the next wolf in sequence. 

For modification, perform the following tasks, 

Extract stochastic feature sets via equation 37, 

fext = STOCH Lw ∗ Nf , Nf … (37) 

Where STOCH represents a Markovian stochastic process. 

Based on these feature sets, evaluate inter-class variance levels via equation 38, 

Vavg =
 
  
  
  
  
 

 (xa −
m
a=1

 
  (xj −

 xk
n
k=1

n )2n
j=1

n − 1
m
i=1

m
)2

m − 1
…(38) 
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Where m represents some features in the current class, n represents the 

number of features in other classes. 

This variance is extracted for features of each class, and based on it, Wolf 

fitness is evaluated via equation 39, 

fw =
 Vav g i

NC
i=1

Nc
…(39) 

Where, Nc  represents the total number of classes presents in the input datasets. 

This vigor is evaluated for each Wolf, and a fitness threshold is evaluated via 

equation 40, 

fth =  fw i

Nw

i=1

∗
Lw

Nw
…(40) 

After evaluation of this threshold, mark each wolf into a different category via 

the following process, 

If fw > fth , then mark the wolf as ‗Alpha Wolf‘ 

If fw < Lw ∗ fth , then mark it as ‗Gamma Wolf‘ 

If fw < Lw ∗
fth

2
, then mark it as ‗Delta Wolf‘ 

Otherwise, mark it as ‗Beta Wolf‘ 

After completing each iteration, update the wolves according to their current 

level of fitness. 

After arriving at the final phase, select the wolf with the highest fitness levels 

and use its features to keep going with the classification process. These features 

represent maximum interclass variance and thus can be used for high-efficiency 

classification operations. To perform this classification, a combination of ResNet101, 

MobileVNet2, and YoLo models is used, which requires input data in the form of 2D 

arrays [202], [203] [204]. To perform this conversion, the following process is used, 
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Initialize an empty 2D array of size 224x224, which is required by most of the 

CNN models. 

Initialize row = 0, col = 0, & 𝑖𝑑𝑥 = 0 

Loop through each element in the selected feature vector, and produce the 

output 2D array via equation 41, 

Out2D row, col = fsel  idx … (41) 

Where, Out2D  represents output 2D array, while fsel  represents selected 

features from the GWO model process. 

After this assignment, increment the indices via equation 42, 

idx = idx + 1, 

                                                              and col = col + 1… (42) 

Check if c = 224,  perform the following operations as indicated by equation 

43,  

                              col = 0, & 𝑟𝑜𝑤 = 𝑟𝑜𝑤 + 1…(43) 

Repeat the process for all the selected features, and create new 2D arrays if the 

feature size is above 224x224 

Based on this process, 2D feature vectors are generated, and processed via 

different CNN models for classification into different emotional disorder classes. 

These models initially convert all 2D vectors into convolutional features via equation 

44, 

Convou ti ,j
=   Out2D i − a, j − b ∗ LReLU 

m

2
+ a,

n

2
+ b …  44 

n
2

b=−
n
2

m
2

a=−
m
2

 

Where, m, n represents window sizes of different convolutional blocks, a, b 

represents padding sizes which are decided by the convolutional model internal layer 
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structures. In this case, the Leaky ReLU is used to activate convolutional features via 

equation 45, 

LReLU x, y = la ∗ x + lb ∗ y, when x < 0 𝑜𝑟 𝑦 < 0, 𝑒𝑙𝑠𝑒 𝐿𝑅𝑒𝐿𝑈 x, y 

= x + y… (45) 

Where, la , lb  represents hyperparameters of the LReLU model, and are tuned 

via a continuous accuracy evaluation process. These attributes are extracted by the 

ResNet101, YoLoV2, and MobileVNet2 models, which assist in recognizing highly 

variance feature sets. The YoLoV2 model is depicted in Fig. 4.4 as follows, 

 

Figure 4.4 Internal design of the YoLoV2 Model 

Based on Fig. 4.4, it can be observed that the maximum Variance Pooling 

(MaxPool) layer cascades with convolutional layers to help acquire extremely diverse 

Convolutional feature sets. The MaxPool layer evaluates a variance threshold via 

equation 46, which assists in the selection of features that have higher variance levels. 
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fth =  
1

Nf
∗  xv

x∈N f

 

1/v

…(46) 

Where, Nf represents the total number of features extracted by the 

convolutional layer, while v represents their variance levels, which is evaluated via 

equation 47, 

v = vh ∗
  
  xi −  

xj

N
N
j=1  

2
N
i=1  

N + 1
… (47) 

Where, vh  is the MaxPool hyperparameter, and it is tuned individually by 

different CNN models for high accuracy performance which is similar to YoLo, the 

proposed model also uses ResNet101, which lends a hand in the identification of 

residual feature sets. The ResNet101 Model is portrayed in Fig. 4.5, wherein 

convolutional blocks are cascaded with different identity blocks for better feature 

extraction performance. 

 

Figure 4.5 Design of the ResNet101 Model for classification of EEG signals 

The identity block assists in the evaluation of variance-based feature sets, 

which are represented via equation 48, 

i = var xin ∗ Ui + ht ∗ Wi … (48) 
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Where, xin , ht represents EEG features, and a residual kernel matrix, which is 

initialized by the ResNet101 model for better feature representations. The ResNet101 

model is cascaded with MobileVNet2-based CNN, which is depicted in Fig 4.6 and 

assists in high-speed classification operations. 

 

Figure 4.6 Design of the MobileVNet2 model for the high-speed classification 

process 

Features from all the models are combined via a Purely Linear activation 

function for estimating final output emotion classes via equation 49, 

Cout = purelin  fout ∗ Wi

N

i=1

+ bi … (49) 

Where, Cout  represents the output class, fout  represents output feature vectors, 

Wi&bi represents weights of the Fully CNN (FCNN), and their respective bias value 

sets. These weights & biases are updated via hyper-parameter tuning which works via 

equation 50, 

HPi+1 = HPi + Lw , when Acci < 𝐴𝑐ci+1, else, HPi+1 = HPi − Lw …(50) 

Where, HP represents hyperparameter, while Acc represents accuracy due to 

given hyperparameter configurations. Results of the tuned hyperparameters are cross-
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validated via a combination of NB, SVM, LR, RF, and MLP models [205] [206] 

[207]. Table 2 describes the internal parameters for each classification model as 

follows, 

Table 4.1 Parameters used for each classification model 

Method Parameters Used 

NB Prior probabilities = Feature level Variances for each class 

Smoothing Factor = 0.5 

RF Total Estimators = Total features * Number of emotion-

based diseases 

Split criteria = Based on entropy levels 

Depth of Forest = 2 

Total samples used for splitting operations = Number of 

features / Total classes 

LR Use normalized features = No. 

Regression Jobs = 2 * Number of classes / Classes used 

on a per dataset basis 

MLP Total hidden layers = 4 

Total neurons used per layer = Index of layer * Total 

selected feature sets 

ANN Mode for Classifications = Backpropagation with 

Feedforward operations 

SVM Gamma ranges = Max (Var) / Mean (Var) 

C = Min (Var) / Mean (Var) 

 

Based on these parameters, the classification of input EEG signals is done for 

different emotion types, and the final class is evaluated via equation 51, 

cout = A NB ∗ c NB + A LR ∗ c LR + A RF ∗ c RF + A MLP ∗ c MLP 

+ A SVM ∗ c SVM … (51) 
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Where, A i  represents the accuracy of the ith  classifier and & 𝑐 i   represents 

the output class of the classifier which assists in ensembling these classifiers to obtain 

final emotion disease types. The classification accuracy of these classifiers is 

combined with the CNN model in interest to obtain the final disease types. Due to the 

combination of these models, classification performance is improved even under 

multiple EEG datasets. The subsequent segment of this manuscript delves into this 

performance and juxtaposes it with many innovative methods in diverse contexts. 

The output holds four classes of stress ranging from very low stressed, low 

stressed, high stressed, and very high stressed. Stress is the factor that is identified 

from high arousal and low valence. When emotions are discovered to be negative, 

sad, unpleasant, and tense, the person is more likely to experience stress [208]. 

Stress = (Valence < 3) and (Arousal > 5) 

These techniques complement one another to obtain a comprehensive, very 

accurate emotion recognition system. To sum up, the proposed model exploits the 

latest signal processing and deep learning techniques for the task of improved emotion 

recognition from EEG signals. EMD, DWT, CNN, and ST-GCN provide a robust 

framework for extracting complex information in EEG data, hence significantly 

improving classification accuracy and reliability. 

4.3.1 Data Collection and Data Preprocessing Layer 

The proposed methodology is used with two different kinds of data like the data 

which is obtained from medical authorities and also the data gathered from 

internet resources. Framework makes use of two datasets to work on which first 

dataset is collected from medical expertise which is EEG data gathered by using 

14 electrodes named AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and 

AF4 with five bands each like theta, alpha, low beta, high beta, and gamma. This 

data is visualized in Fig. 4.7. Data also includes the CQ value of each channel. CQ 

value is the quantification cycle value which is the PCR cycle number at which 

the sample's response curve crosses the threshold line. This figure indicates how 
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many cycles are necessary to discover a valid signal in the sample. The second 

dataset is the DEAP dataset which is available on the link 

https://github.com/Arka95/Human-Emotion-Analysis-using-EEG-from-DEAP-

dataset?tab=readme-ov-file#readme. The detail constraints of both the datasets are 

presented in table 4.2. 

 

 

 

Figure 4.7 DEAP dataset visualization 

 

Table 4.2 Comparative details of datasets 

 Original Data DEAP Data 

Number of 

participants 
86 32 

Stimuli Mental Mathematics 40 Number of videos 

Rating scales Arousal, Valence Arousal, Valence, Dominance 

No. of channels 14 32 

No. of samples 5146 12800 

 

https://github.com/Arka95/Human-Emotion-Analysis-using-EEG-from-DEAP-dataset?tab=readme-ov-file#readme
https://github.com/Arka95/Human-Emotion-Analysis-using-EEG-from-DEAP-dataset?tab=readme-ov-file#readme
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 The most crucial stage following data gathering is preprocessing the 

unprocessed data. Preprocessing in the context of EEG data entails the removal of 

noise and artifacts and various band separations with selection. DWT is used for 

preprocessing the EEG dataset.  

Discrete Wavelet Transform: Image pixels can be synthesized into wavelets via the 

DWT technique, which can then be applied to wavelet-based coding and compression. 

Slow trends are maintained and high-frequency variations are eliminated from the 

signal with lowpass filters. An estimate of the signal is provided by the lowpass filters' 

outputs. Highpass filters maintain high-frequency oscillations in the signal while 

eliminating sluggish patterns. Highpass filters' outputs offer detailed information 

about the signal. The approximation coefficients and detail coefficients are defined by 

the outputs of highpass and lowpass filters, respectively [208] [209] [210]. The 

working of DWT is depicted in Fig. 4.8. 

 

Figure 4.8 Discrete Wavelet Transform working 
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4.3.2 Feature Extraction Layer 

The technique known as "feature extraction" involves turning raw data into 

numerical features so that the original data set's contents may be processed. The 

process begins with the extraction of multispectral feature sets from the EEG data. 

Numerous feature types, including MFCC, iVector, Cosine, Fourier, and Wavelet 

components, are included in these feature sets. Wavelet compression is used to 

initially compress all incoming EEG signals before MFCC and iVector-based blocks 

are used to process them. These building blocks aid in the multispectral feature 

extraction process, which improves the accuracy of the input signal representation. In 

an interest to help represent input signals in the frequency domain and encode these 

components into features, MFCCs are extracted. The MFCC feature vector is created 

by extracting and linearly combining the MFCC components. Incredibly effective 

ivector characteristics are integrated with this vector. MFCCs are those coefficients, 

that capture pertinent information and are widely utilized in speech and audio 

processing [211] [212] [213]. They represent the spectrum features of the EEG signal. 

A feature representation technique frequently used in speech and speaker recognition 

is called iVector. It is adaptable and can be used to extract pertinent data from EEG 

signals [214] [215] [216]. Cosine, Fourier, and Wavelet components are the 

mathematical methods that allow the EEG signal to be transformed into other 

domains, including the frequency or time-frequency domain [217] [218] [220]. These 

elements may all point to distinct emotional state patterns. These features are used as 

inputs for further analysis because they identify patterns in EEG data that are 

characteristic of various emotional states. 

4.3.3 Feature Selection Layer 

Feature selection is an approach that helps alleviate the number of data used in 

the model by eliminating redundant information and only using relevant data. 

Depending on the type of problem being addressed, it entails automatically choosing 

relevant characteristics for a machine learning model. GWO is employed in the 

feature selection procedure. Using GWO, a subset of the first retrieved features that 
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are most useful in differentiating between various emotional disorder classifications 

are chosen. Maximizing the variation across these chosen features is the optimization 

goal [221] [221] [222]. GWO uses a routing strategy based on layers like Alpha, Beta, 

Delta, and Omega from highest to lowest priority depicted in Fig. 4.9 and the working 

is mentioned in an algorithm. 

 

Figure 4.9 Grey Wolf Optimizer algorithm 

Algorithm 1: Grey Wolf Optimizer 

ALGORITHM 

INPUT 

N, MAX 

OUTPUT 

             Best Position 

Step 1: Initialize the random position of the wolves. 

Step 2: Evaluate the Fitness function of each wolf.  

Step 3: Set MAX ← Maximum no of iterations. 

Step 4: While (iteration < MAX) 

Step 5: Find Wα, Wβ , Wδ 
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Step 6: Sort in ascending manner. 

Step 7: Update  Wα ← Lowest value  

             Wβ ← Second lowest value  

              Wδ← Third lowest value 

Step 8: for i = 1 to Ns 

        Evaluate Wα1 ← 2 * (Wα * r1 – α) 

                       Wβ1  ← 2 * (Wβ * r2 – β) 

                        Wδ1  ← 2 * (Wδ * r3 – δ) 

Step 9: New Position ← (Wα - Wα1 ) - (Wβ -Wβ1)- (Wδ - Wδ1) 

Step 10: Verify that the new position is contained within the search space perimeter. 

Step 11: if (new position fitness value < current fitness value) 

Update wolf Position ← New Position 

Step 12: End for 

Step 13: End while 

Step 14: Return the value of the Best Position 

 

Where, 

α – current α position             Wδ  –  Best position of δ 

β – current β position             Wα1 – updated position α wolf 

δ – current δ position             Wβ1  – updated position β wolf 

Wα – Best position of α          Wδ1  – updated position δ wolf              

Wβ – Best position of β  r1, r2, r3 – random position values within 0 to 1.   

                                                            

 

4.3.4 Classification Layer 

Soon after the final GWO iteration concludes, the wolf with the highest fitness 

levels is selected, and its traits are utilized for carrying out the categorization 

procedure. These characteristics indicate the highest interclass variance, making them 

suitable for very efficient classification processes. Features that are selected from the 



104 

 
 

 

feature selection layer are then converted into 2D representation using ResNet 101, 

MobileV Net, and YOLO [224] [225] [226] [227] [228] [229]. Different CNN models 

are used to produce and process 2D feature vectors, which are then classified into 

various groups of emotional disorders. 

4.3.5 Cross Validation Layer 

The machine learning pipeline includes validation as a necessary stage. It 

enables us to more effectively use our data. Cross-validation allows us to obtain more 

metrics and make significant inferences about our data and algorithms. Finally, the 

data is cross-validated through the ensemble of algorithms like SVM, NB, LR, RF, 

and MLP which provides the output in the form of how the individual is stressed with 

which level.  

i. Support Vector Machine  

A supervised ML technique used for regression and classification problems is 

called SVM. SVMs perform exceptionally well for both linear and non-linear decision 

boundaries, and they are especially effective in high-dimensional regions. It identifies 

the hyperplane that optimally divides the data into distinct classes while maximizing 

the margin between classes is the fundamental notion behind SVM. SVMs are widely 

utilized in many different fields, such as bioinformatics, text classification, picture 

classification, and more. They have a reputation for working well in high-dimensional 

environments and for generalizing effectively to fresh, untested data. However, SVMs 

may become computationally expensive on large datasets and the choice of the 

appropriate kernel and tuning parameters requires careful consideration. The working 

of SVM is depicted in Fig 4.10. 

ii. Naive Bayes  

The probabilistic machine learning algorithm Naive Bayes is based on the 

Bayes theorem. It is extensively employed in classification tasks like spam filtering 

and text classification. 
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Figure 4.10 Support Vector Machine working 

Despite its simplicity and certain "naive" assumptions, Naive Bayes often 

performs well in practice, particularly on tasks with high-dimensional data. During 

training, the model estimates the probabilities needed for Bayes' theorem based on the 

training data. In the prediction phase, the algorithm determines the class that 

possesses the highest probability after calculating the probability of each class for a 

given collection of features. Naive Bayes is computationally efficient, especially for 

high-dimensional data, and it can work well even with a relatively small amount of 

training data. While its "naive" assumption may not always reflect the true 

relationships between features, Naive Bayes classifiers can be surprisingly effective in 

practice, especially for text and document classification tasks. The working of NB is 

depicted in Fig. 4.11. 

iii. Linear Regression  

Statistically, a linear equation can be fitted to observed data using the linear 

regression method to represent the connection between a dependent variable and one 

or more independent variables. In interest to minimize the sum of squared 

discrepancies between the actual values and the values the model predicts, the best-

fitting line must be identified. For activities like forecasting sales, linear regression is 

frequently utilized in many different sectors, analyzing economic trends, and 

understanding the relationships between variables. 
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Figure 4.11 Naive Bayes working 

The method assumes a linear relationship between the variables, and its 

effectiveness depends on the underlying assumptions being met, such as the 

independence of errors and homoscedasticity. The working of LR is depicted in Fig. 

4.12. 

 

Figure 4.12 Linear Regression working 

iv. Random Forest  

In machine learning, Random Forest is an ensemble learning technique that is 

mostly applied to issues related to classification and regression. It is renowned for its 
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exceptional accuracy and resilience and is part of the tree-based model class. Building 

several decision trees and combining their predictions is the basic notion underlying 

Random Forest, which aims to produce a more reliable and accurate outcome. 

Random Forests are widely used in practice due to their high performance, ease of 

use, and ability to handle a variety of data types. They have applications in 

classification, regression, feature selection, and outlier detection, among others. 

Popular machine learning libraries such as sci-kit-learn in Python provide 

implementations of RF for easy integration into machine learning workflows. The 

working of RF is depicted in Fig 4.13. 

 

Figure 4.13 Random Forest working 

v. MultiLayer Perceptron  

MLP is a kind of artificial neural network used in machine learning. A 

computational model that draws inspiration from the functioning of biological neural 

networks in the human brain is known as an artificial neural network. MLPs are a 

particular kind of feedforward neural network, which means that data only moves 

from the input layer to the output layer in one way. Raining an MLP involves feeding 
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training examples through the network, computing the output, comparing it to the true 

output, and adjusting the weights and biases using the back propagation technique. 

Usually, gradient descent and other optimization methods are used for this process. 

MLPs are versatile and can be applied to a wide range of tasks, including 

classification, regression, and pattern recognition. However, they can be sensitive to 

the choice of hyperparameters and require careful tuning during training. The working 

of MLP is depicted in Fig 4.14. 

 

 

Figure 4.14 MultiLayer Perceptron working 

The k-fold cross-validation technique will be used as it is the less biased 

method as every data will be used somewhere for training and testing [229] [230] 

[231]. When a classification model yields probability or confidence of the prediction 

in addition to the expected class, can employ measures like AUC i.e. Area under the 

ROC Curve [232] [233] [234]. Also, there are measure that shows the degree of 

mistake or accuracy of the answer like Accuracy, Precision, and Recall [235] [236] 

[237] [238]. 
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4.4 SUMMARY 

To summarize, this model is designed to reduce variation among different stress and 

emotional disorder categories, helping to classify these states more accurately. It 

utilizes a Convolutional Neural Network (CNN) structure with a transfer learning 

approach, leveraging powerful pre-trained models like ResNet 101, Mobile V Net2, 

and YoLo. 

To improve accuracy consistently, the model uses ensemble classification, 

combining multiple classifiers, such as Naïve Bayes (NB), Support Vector Machine 

(SVM), Random Forest (RF), Logistic Regression (LR), and Multi-Layer Perceptron 

(MLP). This approach enhances the robustness of the model, as it benefits from the 

strengths of each classifier. 

Cross-validation plays a key role here by providing additional metrics to 

analyze the model's performance and make meaningful insights into the data and 

algorithms. Ultimately, the output reveals the individual‘s stress level, giving a clearer 

picture of their emotional state. 
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CHAPTER 5  

RESULTS AND DISCUSSION 

“Speculation and the exploration of ideas beyond what we know with certainty are what lead 

to progress.”  

– Lisa Randall 

 

The first proposed design of a multispectral data representation engine tailored 

specifically for the classification of EEG signals using ensemble learning models. 

Ensemble models have shown promise in combining multiple classifiers to achieve 

higher accuracy and reliability in EEG signal classification tasks. Integrating 

ensemble learning with multispectral data representation aims to leverage the 

complementary strengths of both methodologies. The effectiveness of our proposed 

approach is validated through extensive experimentation on benchmark EEG datasets. 

Results demonstrate significant improvements in classification accuracy compared to 

traditional single-frequency approaches. Furthermore, the ensemble framework 

enhances the model's ability to generalize across different subjects and experimental 

conditions, crucial for real-world applications in clinical settings. 

The second proposed novel approach utilizes transfer learning and bioinspired 

techniques to enhance the predictive capabilities of ensemble models in detecting 

stress and emotional disorders preemptively. By adapting pre-trained models and 

features extracted from bioinspired algorithms, it aims to capture nuanced patterns 

indicative of stress and emotional states. The efficacy of the proposed model is 

demonstrated through comprehensive experimentation on diverse datasets 

encompassing physiological, behavioral, and self-reported measures. Results indicate 

significant improvements in early detection accuracy compared to traditional machine 

learning approaches. Moreover, the bioinspired features enhance the model's 

interpretability and resilience to variations in individual responses and contextual 

factors. 
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5.1 PERFORMANCE STATISTICAL MEASURES 

A confusion matrix serves as a gauge for the system's efficacy. Accuracy, Precision, 

Recall, F-score, and Delay are computed for classification models, whereas the 

performance of a classification model at each classification threshold is displayed on a 

graph which is the ROC curve. It makes use of the confusion matrix parameters like 

TP, FP, TN, and FN. 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Precision = TP / (TP + FN) 

Recall = TN / (TN + FP) 

F-score = 2 * TP / (2tp + FP + FN) 

Delay and ROC Curve 

 

5.2 RESULT OF MULTISPECTRAL DATA REPRESENTATION 

ENGINE FOR CLASSIFICATION OF EEG SIGNALS VIA 

ENSEMBLE MODELS 

 

It has been shown that the AMVAFEx model makes use of a significant amount of 

neural networks to generate an accurate and definitive categorization of the EEG 

datasets and samples. This action was taken in interest to achieve the aimed-for 

outcome. As a direct result of this, this model is capable of obtaining a higher degree 

of accuracy, a better level of precision, and an improved level of recall in contrast to 

the approaches that came before it. This is because this model is more accurate and 

more precise levels. Utilizing a substantial number of EEG datasets, this performance 

was investigated to classify input waveforms into several distinct epileptic categories 

in interest to gain a deeper comprehension of epilepsy. These waveforms were 

obtained by accessing the Neuromed Epilepsy EEG Database, which is accessible at 
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https://clinicaltrials.gov/ct2/show/NCT04647825. The database was used to gather the 

waveforms for research and development purposes and is made available under an 

open-source license. The Neuromed Epilepsy EEG Database is available under open 

licenses. In addition to that, there is the opportunity to have unfiltered access to these 

databases & samples. The EEG dataset includes 15 unique leads, all of which were 

utilized at some point over the step-by-step process of gathering information from 500 

distinct patients. As a direct result of the results of this evaluation, it was necessary to 

exclude a total of 5000 one-of-a-kind objects from the dataset. After that, these 

objects were divided into two groups, one of which would be used for training, and 

the other of which would be used for testing, with a ratio of 60:40 maintained between 

the two groups throughout the process. 

The findings of the data were compared with those that were acquired from 

TTFC [238], NNM [239], and LBP TH [125], and they were examined in terms of 

accuracy, precision, recall, and latency. This was done in interest to offer proof that 

the method could be depended upon; therefore that was the motivation behind it. The 

following are the observations that were made concerning the accuracy, and they are 

shown in Fig. 5.1 and Table 5.1, which can be found here. The degree of accuracy of 

the suggested model was shown to be 5.25 percent higher than TTFC[237] 4.3 percent 

higher than NNM [238] and 6.75 percent higher than LBP TH [125] for the different 

kinds of EEG datasets & samples. Find Fig. 5.1 in this precise place. 

The most important factor contributing to this improvement in accuracy is the use of 

transforms such as Wavelet, Hilbert, Fourier, and Cosine, together with breakthroughs 

made in feature selection and classification. Other elements that contribute include the 

following. Because of this, the model's feature representation capabilities are 

increased when combined with the MFCC and iVector features, which eventually 

leads to better accuracy performance. The performance of classification was able to be 

significantly improved in this particular instance by the usage of a convolutional 

neural network. This was rendered possible through the network's high-density feature 

representation capability. 
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Table 5.1 Accuracy of distinct comparing models 

Number of 

EEGs 
A (%) A (%) A (%) A (%) 

 TTFC [238] NNM [239] LBP TH [125] AMV AFEX 

227 76.36 78.28 77.05 81.29 

455 80.19 81.1 79.44 84.47 

682 82.01 82.37 80.63 85.97 

909 82.72 83.48 81.9 87.05 

1136 84.23 85.35 83.57 88.83 

1364 86.46 86.61 84.57 90.4 

1591 86.76 86.91 84.86 90.72 

1818 87.06 87.21 85.31 91.08 

2045 87.37 88.16 86.32 91.88 

2273 88.97 89.43 87.47 93.28 

2727 89.88 90.34 88.35 94.24 

3182 90.8 91.25 89.25 95.19 

3636 91.71 92.17 90.14 96.15 

4091 92.63 93.08 91.04 97.1 

4545 93.55 94 91.93 98.06 

5000 94.46 94.91 92.82 99.01 
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Figure 5.1 Accuracy of different models 

To attain this level of performance, multiple neural networks had to be utilized 

in addition to the coupling of MFCC and iVector characteristics. Because of this, the 

categorization process was able to be carried out quite quickly. In the same vein, 

Table 5.2 and Fig. 5.2 can be used to assess the reliability and performance of these 

models. 

Based on this investigation, it could be achieved to prove that, for a wide 

variety of EEG signal types, the proposed framework is more accurate than 

TTFC[237] 4.95 percent more accurate than NNM [238], and 2.9 percent more 

accurate than LBP TH [125]. The adoption of an extensive variety of feature 

extraction algorithms, together with recent advancements in selection and 

classification, is the primary factor contributing to this accuracy gain.  
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Table 5.2 Precision of distinct comparing models 

Number of 

EEGs 

Pc Pc Pc Pc 

TTFC [238] NNM [239] LBP TH [125] AMV AFEX 

227 73.63 73.96 75.41 77.47 

455 76.81 76.45 78.04 80.64 

682 78.28 77.62 79.34 82.12 

909 79.14 78.75 80.45 83.09 

1136 80.75 80.44 82.09 84.79 

1364 82.42 81.52 83.31 86.41 

1591 82.7 81.8 83.61 86.71 

1818 82.99 82.15 84 87.04 

2045 83.59 83.09 84.86 87.73 

2273 84.95 84.23 86.07 89.11 

2727 85.82 85.09 86.95 90.03 

3182 86.69 85.95 87.83 90.94 

3636 87.57 86.82 88.71 91.86 

4091 88.44 87.68 89.59 92.77 

4545 89.3 88.54 90.48 93.68 

5000 90.17 89.4 91.35 94.6 
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Figure 5.2 Precision of distinct models 

As this is coupled with the MFCC and iVector characteristics, the model's 

ability to represent features is enhanced, which also improves the accuracy 

performance of the model. The total classification performance improved when a 

CNN was used, as it was in this instance. This was brought about by CNN's ability to 

depict features at a high density. Apart from the combination of MFCC and iVector 

properties, the use of MNN was essential to achieving such performance levels. 

Because of this, the categorization process was able to be carried out quite quickly for 

different use cases. Tabled in Fig. 5.3 and Table 5.3 is a comparison of how well 

various models perform in terms of recalling information sets. 

On the foundation of this evaluation, it can be revealed that the proposed 

model has a recall that is 5.3 percent greater than TTFC [238], 3.9 percent higher than 

NNM [239], and 4.5 percent higher than LBP TH [125] for a variety of EEG datasets 

and samples. These results can be found in [4, 5] and [9] respectively. 
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Table 5.3 Recall of distinct comparing models 

Number of 

EEGs 

Rc Rc Rc Rc 

TTFC [238] NNM [239] LBP TH [125] AMV AFEX 

227 74.99 76.12 76.23 79.38 

455 78.50 78.77 78.74 82.55 

628 80.14 79.99 79.98 84.04 

909 80.93 81.11 81.17 85.07 

1136 82.50 82.89 82.83 86.81 

1364 84.44 84.06 83.94 88.41 

1591 84.73 84.36 84.23 88.71 

1818 85.02 84.69 84.66 89.06 

2045 85.48 85.63 85.59 89.81 

2273 86.96 86.83 86.77 91.20 

2727 87.85 87.72 87.66 92.13 

3182 88.75 88.61 88.55 93.07 

3636 89.64 89.50 89.43 94.00 

4091 90.53 90.38 90.31 94.94 

4545 91.43 91.26 91.20 95.87 

5000 92.31 92.15 92.08 96.81 
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Figure 5.3 Recall of distinct models 

The combination of several different feature extraction transforms, such as 

Wavelet, Fourier, Hilbert, and Cosine, in addition to developments in selection and 

classification is the key factor that contributed to this rise in recall. When paired with 

the MFCC and iVector features, the model's ability to represent features is enhanced 

as a result, the model's recall performance is boosted. The use of a Convolutional 

Neural Network, which was applied in this case, increased the overall classification 

performance. This was due to the CNN's capability of representing features in a high 

density. In addition to the coupling of MFCC and iVector characteristics, the use of 

MNN was essential to achieving such performance levels. Because of this, the 

categorization process was able to be carried out at high-speed levels. 

Figure 5.4 and Table 5.4 present a tabular representation of the average delay 

required for the classification of a single EEG signal waveform. This value can be 
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used to infer that, for the various types of EEG signals, the suggested framework has a 

delay that is 6.1 percent less than that of TTFC [237] 4.9 percent less than that of 

NNM [238], and 5.5 percent less than that of LBP TH [125]. This information can be 

found in the table below. The key contributor to the reduction in length of this delay 

was the implementation of low-complexity classifier operations and variance-based 

feature selection. This allowed for the shorter duration of the delay. Combined with 

the MFCC and iVector capabilities, these advancements improve the model's feature-

describing capability and reduce computation time.  

The use of a CNN, as was done in this situation, was able to contribute to an 

improvement in classification performance. This was possible as a result of the CNN's 

capacity to both represent high-density features and eliminate duplicate information. 

This was enabled by the application of wavelet transformations in conjunction with a 

variance-based feature selection methodology. Discovering the most variable features 

could be improved by a variance-based feature selection approach, which could 

subsequently reduce duplication in the output feature sets. The wavelet transform can 

minimize duplication in output feature sets by reducing the size of the feature vector 

by up to fifty percent. This performance enhancement has placed the proposed model 

in a position where it can be utilized in an extensive range of real-time clinical 

applications. 
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Table 5.4 Delay of distinct comparing models 

Number of 

EEGs 

Dl Dl Dl Dl 

TTFC [238] NNM [239] LBP TH [125] AMV AFEX 

227 0.45 0.44 0.44 0.42 

455 0.87 0.86 0.87 0.83 

628 1.27 1.27 1.27 1.21 

909 1.68 1.68 1.68 1.60 

1136 2.06 2.05 2.05 1.96 

1364 2.41 2.42 2.43 2.31 

1591 2.81 2.82 2.83 2.69 

1818 3.20 3.21 3.21 3.05 

2045 3.58 3.58 3.58 3.40 

2273 3.91 3.92 3.92 3.73 

2727 4.65 4.66 4.66 4.42 

3182 5.36 5.37 5.37 5.11 

3636 6.07 6.08 6.08 5.79 

4091 6.76 6.78 6.78 6.44 

4545 7.44 7.45 7.45 7.09 

5000 8.10 8.12 8.12 7.73 

 



121 

 
 

 

 

Figure 5.4 Delay performances of different models 

 

5.2.1 Conclusion 

In an interest to attain superior performance to that of currently available models, the 

AMVAFEx model that was demonstrated combines several kinds of techniques to 

perform feature extraction, selection, and classification. Although the variance-based 

model assists in selecting features with the greatest variation, which helps minimize 

repetition during the classification phases, the MFCC and iVector techniques aid in 

the evaluation of highly relevant features. The given features are classified using a 

quadratic mode MNN classifier. This classifier contributes to high accuracy, high 

recall, and extremely accurate classification. When compared to several other models 

that are considered to be state-of-the-art, it was found that the suggested model can 

improve the accuracy of the categorization. Because of this, the model that was 
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suggested may be used in clinical settings that need a high level of accuracy. It was 

discovered that the suggested model had an accuracy that was over 5% higher than 

TTFC [238], over 4% higher than NNM [239], and over 6% higher than LBP TH 

[125] for the various kinds of EEG signals. Precision and recall were shown to have 

almost the same levels of performance, which indicates that the model is very 

adaptable to a broad range of possible EEG classification applications. In addition to 

this improvement in performance, the model that has been suggested also 

demonstrates a decrease in latency. The primary rationale for this is the fact that 

reduction was implemented using variance-based optimizations. Consequently, for 

different types of EEG signals, the latency of the proposed model is 5.5% lower than 

that of LBP TH [125] 4.9% lower than that of NNM [238], and 6.1% lower than that 

of TTFC [237]. In the future, a range of EEG datasets will be available for researchers 

to assess the performance of the suggested model, enabling them to ascertain the 

model's scalability. Additionally, for better survival in a variety of brain illnesses, 

researchers can combine deep learning models such as recurrent neural networks with 

LSTM and GRUs. 

 

5.3 RESULT OF TRANSFER LEARNING BASED BIOINSPIRED 

ENSEMBLE MODEL FOR PREEMPTIVE DETECTION OF 

STRESS & EMOTIONAL DISORDERS 

Efficiency classification of EEG signals requires the design of highly efficient feature 

representation & classification modules, which assist in categorizing input datasets 

into 1 of N classes. This section compares the classification of the proposed model 

with the work defined in SCNN [100], DE CNN [117], and CF DCN [240], under 

different emotion classes. Datasets for evaluating these models were collected from 

the following sources, 

DEAP Dataset, which is available at 

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/. The dataset was split up in the ratio 

65:20:15, with 65% of the entries used for training, 20% for testing, and the 

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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remaining 15% for cross-validation using ensemble classifiers. Considering this 

assessment approach, classification accuracy for different disease types was 

calculated via equation 46, 

Ac =
E_C

ET
… 46  

Where, EC&ET represents EEG records that were correctly classified, and the total 

number of EEG records that were used for evaluation purposes. This accuracy was 

evaluated w.r.t. NTEs, and can be observed from Table 5.5 as follows, 

Table 5.5 Accuracy of classification for different emotional disease types 

NTEs 
Ac 

SCNN [100] 

Ac 

DE CNN [117] 

Ac 

CF DCN [240] 

Ac 

TLBE MSE 

5k 84.06 80.68 78.45 86.85 

15k 85.51 82.16 79.85 88.4 

25k 85.66 83.42 80.52 89.15 

35k 85.97 84.03 80.96 89.63 

45k 86.57 84.94 81.67 90.42 

55k 86.84 85.58 82.1 90.89 

66k 87.22 86.53 82.73 91.59 

75k 87.52 87.2 83.18 92.09 

90k 87.97 88.18 83.87 92.85 

115k 88.4 89.17 84.56 93.6 

135k 88.7 89.83 85.02 94.1 

150k 88.99 90.49 85.48 94.61 

168k 89.14 90.82 85.71 94.86 

184k 89.29 91.14 85.94 95.11 

200k 89.44 91.47 86.17 95.36 



124 

 
 

 

 

Figure 5.5 Accuracy of classification for different emotional disease types 

Due to the integration of multiple feature extraction models with bioinspired 

feature selection & multiple models for classifications, when compared to different 

methods, the proposed framework may boost classification accuracy. Figure 5.5 

provides validation for showing that the suggested framework outperforms SCNN 

[100] DE CNN [117] and CF DCN [239] by 5.9%, 3.5%, and 9.2%, respectively, in 

various disease scenarios. Based on a similar strategy, the precision of classification 

(Pc) is evaluated via equation 47, and tabulated in Table 5.6 as follows, 

Pc =
RCI

RT
… 47  

 

Where, RCI &RT represents the total number of correctly classified EEG entries, which 

were categorized into incorrect groups, and the total number of entries used for the 



125 

 
 

 

classification process. These results can be observed from the following Fig. 5.6 as 

follows, 

Table 5.6 Precision of classification for different emotional disease types 

NTEs 
Pc 

SCNN [100] 

Pc 

DE CNN [117] 

Pc 

CF DCN [240] 

Pc 

TLBE MSE 

5k 79.88 79.07 77.67 83.38 

15k 81.25 80.53 79.05 84.86 

25k 81.38 81.76 79.72 85.58 

35k 81.67 82.34 80.16 86.05 

45k 82.24 83.22 80.87 86.82 

55k 82.47 83.87 81.3 87.29 

66k 82.84 84.82 81.93 87.97 

75k 83.13 85.45 82.37 88.44 

90k 83.57 86.4 83.05 89.15 

115k 83.97 87.38 83.71 89.86 

135k 84.32 88.1 84.23 90.42 

150k 84.71 88.84 84.78 91.02 

168k 84.91 89.21 85.07 91.32 

184k 85.11 89.59 85.35 91.62 

200k 85.29 89.94 85.61 91.95 

 

Due to the integration of multiple feature extraction models with bioinspired feature 

selection & multiple models for classifications, the proposed model is capable of 

improving classification precision when compared with other methods. This can be 

confirmed from Table 5.6, wherein it is observed that the proposed model is 6.5% 

more precise than SCNN [100], 1.9% more precise than DE CNN [117], and 5.9% 

more precise than CF DCN [240] under different disease scenarios. 
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Figure 5.6 Precision of classification for different emotional disease types 

This is possible due to the integration of multiple Neural Network models that 

assist in improving the consistency of the classification process. Similarly, the recall 

of classification (Rc) is evaluated via equation 48 as follows, 

Rf =
RCC

RT
… 48  

Where, RCC  and RT  represents the total number of correctly classified entries that 

belong to correct emotion types, and the total number of entries used during the 

classification process. These results are tabulated in Table 5.7, wherein recall of the 

proposed model is compared with other reference models. 
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Table 5.7 Recall of classification for different emotional disease types 

NTEs 
Rc 

SCNN [100] 

Rc 

DE CNN [117] 

Rc 

CF DCN [240] 

Rc 

TLBE MSE 

5k 65.56 72.61 65.03 81.06 

15k 66.7 73.93 66.18 82.51 

25k 66.81 75.08 66.75 83.2 

35k 67.06 75.62 67.11 83.65 

45k 67.52 76.44 67.72 84.39 

55k 67.72 77.02 68.08 84.82 

66k 68.02 77.87 68.62 85.49 

75k 68.27 78.45 69 85.97 

90k 68.63 79.35 69.55 86.68 

115k 68.86 80.25 70.11 87.38 

135k 68.94 80.92 70.55 87.93 

150k 69.2 81.59 71.02 88.5 

168k 69.37 81.93 71.25 88.79 

184k 69.55 82.28 71.49 89.08 

200k 69.75 82.6 71.71 89.36 
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Figure 5.7 Recall of classification for different emotional disease types 

Due to the integration of multiple feature extraction models with bioinspired feature 

selection & multiple models for classifications, the proposed model is capable of 

improving classification recall when compared with other methods. This can be 

confirmed by Fig. 5.7, wherein it is observed that the proposed model has 19.5% 

higher recall than SCNN [100], 6.5% higher recall than DE CNN [117], and 15.5% 

higher recall than CF DCN [240] under different disease scenarios. This is possible 

due to the integration of multiple Neural Network models that assist in improving the 

consistency of the classification process. Based on similar evaluations, the delay 

needed for the classification of different EEG signals is tabulated in Table 5.8, 

wherein different models along with their approximate delay values can be observed 

for a similar number of validation events, 
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Table 5.8 Delay needed for classification of different emotional disease types 

NTEs 
Dl 

SCNN [100] 

Dl 

DE CNN [117] 

Dl 

CF DCN [240] 

Dl 

TLBE MSE 

5k 7.71 8.11 7.59 6.17 

15k 7.85 8.26 7.72 6.28 

25k 7.86 8.39 7.79 6.33 

35k 7.89 8.45 7.83 6.36 

45k 7.95 8.54 7.9 6.42 

55k 7.97 8.61 7.94 6.45 

66k 8 8.7 8 6.5 

75k 8.03 8.77 8.05 6.54 

90k 8.07 8.87 8.11 6.59 

115k 8.11 8.96 8.18 6.65 

135k 8.15 9.04 8.23 6.69 

150k 8.18 9.12 8.28 6.73 

168k 8.2 9.16 8.31 6.75 

184k 8.22 9.19 8.33 6.78 

200k 8.24 9.23 8.36 6.8 
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The proposed model extracts a selective number of feature sets, which allows it to 

reduce the number of classification steps & iterations needed for the identification of 

emotional diseases.  

 

Figure 5.8 Delay needed for classification of different emotional disease types 

As a result of this, the suggested model exhibits, in Fig. 5.8, 6.5% lower latency when 

compared to SCNN [100] 8.3% lower delay when compared to DE CNN [117], and 

6.2% lower delay when compared to CF DCN [239] across various datasets. The 

proposed approach can be implemented for a broad range of real-time applications 

due to these improvements. 
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5.3.1 Conclusions 

In interest to represent EEG signals as multidomain vectors, the suggested model 

makes use of a mix of DCT, DFT, DWT, MFCC, and iVector characteristics. These 

vectors may then be used for high-efficiency classification procedures. In addition to 

this, the model makes use of GWO-based feature selection, which contributes to the 

maximization of inter-class feature variance levels across a variety of class types. 

Cascaded neural networks can perform operations with minimal latency and high 

accuracy across a variety of emotional class types as a result of combining several 

distinct models. Many EEG datasets were used to test the model, and the outcomes 

were compared to a wide range of state-of-the-art analytical methods. The suggested 

model was shown to be 5.9% more accurate than SCNN [100] 3.5% more accurate 

than DE CNN [117] and 9.2% more accurate than CF DCN [239] based on this 

comparison. Furthermore, it was found that the model outperforms SCNN [100] DE 

CNN [117], and CF DCN [239] by 6.5%, 1.9%, and 5.9%, respectively. Further 

research revealed that the model could achieve 19.5% higher recall than SCNN [100]. 

This is made feasible by the use of several different Neural Network models, all of 

which work together to make the categorization process more consistent. The 

proposed model extracts a limited number of feature sets, which enables it to decrease 

the number of classification steps as well as the number of iterations that are required 

for the diagnosis of emotional disorders. As a consequence of this, the suggested 

model exhibits a latency that is 6.5% lower when compared with SCNN [100], 8.3% 

lower when compared with DE CNN [117], and 6.2% lower when compared to CF 

DCN [240]  across a variety of datasets. As a result of these modifications, the model 

that has been provided is now capable of being used for a broad range of different 

real-time applications. In the future, it will be necessary to evaluate the suggested 

model using numerous datasets, and it will be possible to enhance it by integrating 

hybrid bio-inspired models. In addition, its performance may also be enhanced by 

integrating CNNs with Recurrent NNs, Q-Learning, Autoencoders, and other deep-

learning techniques. This is done to optimize its performance in a context-sensitive 

manner in a variety of different circumstances. 
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CHAPTER 6  

CONCLUSION AND FUTURE SCOPE 

“Everything is theoretically impossible until it is done. “ 

-Robert A. Heinlein 

6.1 CONCLUSION 

The primary emphasis of this thesis has been the development of effective 

EEG classification approaches that could be used to identify mental disorders and 

stress early on. New methods have been introduced and implemented in interest to 

address the constraints and challenges that exist in the field following a thorough 

analysis of the EEG processing techniques currently in use. The newly established 

preprocessing approaches, sophisticated machine learning models, and interpretability 

methodologies have shown some promising outcomes in enhancing the accuracy and 

reliability of illness detection based on EEG datasets and samples. 

Issues like artifact removal, noise reduction, and feature extraction have all 

been effectively handled by the preprocessing approaches that have been presented. 

The artifacts and noise in the EEG signals have been efficiently eliminated from the 

datasets and samples by using techniques such as ICA or adaptive filtering. As a 

result, the datasets and samples are now cleaner and more dependable. The EEG 

signals have been analyzed using the feature extraction approaches that have been 

used, such as time-domain analysis, frequency-domain analysis, and time-frequency 

analysis. This has resulted in the collection of significant information that has enabled 

the extraction of discriminative features that can be used for classification. 

Classification accuracy is improved by combining advanced signal processing 

techniques like Wavelet, Hilbert, Fourier, and Cosine transforms, along with robust 

feature extraction and selection methods, as seen in the AMVAFEx model. This 

model uses variance-based feature selection to minimize redundancy and employs 

MFCC and iVector methods to capture relevant features. With high precision and 
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recall, it‘s adaptable to diverse EEG applications. Additionally, a CNN-based model 

with transfer learning, using ResNet 101, Mobile V Net2, and YoLo, helps reduce 

variability among stress and emotional disorder classes. Ensemble classification, 

integrating classifiers like Naïve Bayes, SVM, Random Forest, Logistic Regression, 

and MLP, enhances accuracy by leveraging each classifier's strengths. Cross-

validation further refines performance, producing outputs that indicate an individual's 

stress level, providing insight into their emotional state. 

In comparison to other methods already in use, the newly created machine 

learning models have shown much better performance. Deep learning architectures, 

ensemble models, and transfer learning approaches have all been adapted specifically 

for EEG classification tasks and given optimal performance as a result. These models 

have shown that they can learn complicated patterns and extract relevant information 

from EEG data, which results in illness detection that is accurate and dependable. The 

clinical interpretability of the models was improved as a consequence of the 

interpretability approaches that were used in this study. These methods gave insights 

into the areas or patterns within the EEG signals that contributed the most to the 

classification findings. 

6.2 FUTURE SCOPE 

There are several potential routes for more study and development, although 

efficient categorization of EEG for the early identification of stress and emotional 

issues has advanced significantly thanks to thesis work. The following potential 

horizons have been identified: 

Validation on bigger and more diversified datasets: 

The suggested strategies and models need to be tested on larger and more diverse 

datasets that include a broad variety of emotional and stress-related diseases. This will 

guarantee that the suggested methods can be generalized to a variety of patient groups 

and therapeutic contexts and that they are resilient. 
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Integration of multimodal data:  

Although EEG signals give useful information on their own, merging them with data 

from other modalities, such as fMRI, heart rate variability, or subjective 

measurements, may improve the accuracy and reliability of illness detection. To 

increase the overall performance of the classification models, future research should 

investigate the possibility of fusing various modalities into a single model. 

Processing in real-time and online: 

Processing EEG data in real-time and online is essential for clinical applications 

because it allows continuous monitoring and rapid intervention. Further study should 

concentrate on the development of effective algorithms and models that are capable of 

processing EEG data in real-time, which would make it possible for instant feedback 

and action. 

Implementation and validation in the clinical context: 

It is vital to collaborate with medical experts and clinical institutions in interest to 

verify the created methods and models in actual clinical settings in the real world. To 

further prove the practicability and efficacy of the suggested methods, clinical trials 

should be carried out, and evaluations of their usability, accuracy, and therapeutic 

relevance should be carried out. 

Ethical issues and the preservation of personal privacy:  

EEG data provide sensitive information about the brain activity of people; hence, 

ethical concerns and privacy protection measures should be carefully considered. In 

the future, research should concentrate on building rigorous frameworks and 

recommendations for the ethical treatment of EEG datasets and samples, as well as for 

the anonymization and safe storage of datasets & samples. 

In conclusion, this thesis has made major advances in the area of efficient EEG 

categorization for the early diagnosis of emotional illnesses such as stress and anxiety. 

The newly established strategies and models have shown considerable improvements 
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in terms of their accuracy, dependability, and interpretability. However, further 

research is required to verify and enhance these methods on bigger datasets, integrate 

multimodal data, allow real-time processing, undertake longitudinal studies, validate 

in clinical settings, and address ethical problems. Moreover, these methods must be 

validated in real-world contexts. The area of EEG-based illness identification has the 

potential to continue to progress, provided that these future goals are addressed. This 

would result in improved early diagnosis, tailored therapy, and improved management 

of stress and emotional disorders. 
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Annexure I 

 Reference data set has been collected and authenticated by medical expert. 

 

 

 

 

 

 


