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ABSTRACT 

 

The thesis is concerned with enhancing the area of analytical techniques through the creation 

of a hybrid approach that blends integral transformation methods such as Laplace and other 

pertinent transformations. This enhancement in analytical methodologies is envisioned to 

facilitate more effective problem-solving within the domains of mathematical physics and 

engineering. Furthermore, our study aims to apply these newly discovered methodologies to 

complex physical issues, including PDEs and FDEs, as well as to a various boundary 

conditions and restrictions. This goal has wide-ranging practical implications, including fluid 

dynamics, heat transport, and materials science. Moreover, our research includes a thorough 

examination of error and convergence in numerical simulations of the investigated models. 

Furthermore, we strive to corroborate our findings by thorough comparisons with well-

documented outcomes in the scientific literature. This essential validation stage establishes 

the dependability and precision of our suggested approaches, establishing them as invaluable 

instruments for future scientific investigations and academic activities. 

Chapter 1 presents an in-depth analysis of differential equations. We begin by explaining the 

basic concepts related to these equations. In this context, we dive into the complexities of 

partial differential equations, categorizing them to emphasize their diversity. In addition, we 

discuss a different form of integral transformation that we have used in our research work and 

also define some properties of integral transformation. Further, we go through the historical 

evolution of the Homotopy Perturbation Method (HPM) in the later half of chapter 1, tracking 

its growth alongside numerous analytical approaches used to solve partial differential 

equations and fractional differential equations. This historical framework not only 

contextualizes our study, but also emphasizes the long-term importance of these techniques. 

In chapter 2, the analysis delves into studies on PDEs, FDEs, and the utilization of semi-

analytical methodologies such as the Homotopy Perturbation Method (HPM), Homotopy 

Analysis Method (HAM), and Homotopy Perturbation Sumudu Transformation Method 

(HPSTM), among others, which have been discussed by some authors and are relevant to our 

research. Each method's strengths, adaptability, and limitations in dealing with nonlinear and 

fractional equations are meticulously examined. 

In chapter 3, the focus lies on solving nonlinear partial differential equations using a hybrid 

technique. An Accelerated Homotopy Perturbation Elzaki transformation Method (AHPETM) 
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is introduced for this purpose. The methodology aims to provide approximate series solutions. 

To evaluate their effectiveness, a rigorous comparison is conducted between the outcomes of 

this method, the exact solution, and approximate solutions found in available literature. The 

results are depicted using surface graphs and line graphs. 

In Chapter 4, two hybrid techniques are employed for solving nonlinear PDEs. These 

techniques are the accelerated Homotopy Perturbation transformation method and the 

Accelerated homotopy perturbation Sumudu transformation Method. Various equations are 

examined, including one-dimensional (1D) and two-dimensional (2D) Burgers equations, as 

well as the 1D BBMB equation. These methods offer approximate series solutions. To gauge 

their effectiveness, a rigorous comparison is made between the outcomes of these techniques 

and both the exact and approximate solutions already aviliable in literature. The results are 

presented using surface graphs and line graphs. 

Chapter 5 thoroughly explains the technique employed to address the research objectives of 

this study. The nonlinear fractional PDE in the Caputo sense is used to analyse a variety of 

equations, such as the Swift-Hohenberg equation, Inviscid Burger’s equation, the F-W 

equation, and Fisher’s equation. The technique is validated, and approximate solutions are 

obtained using rigorous computational procedures in Mathematica. The results are then 

presented into graphical representations, including surface and line graphs. 

In Chapter 6, the nonlinear fractional PDE is utilized in the Caputo-Fabrizio sense to analyze 

various equations, such as the Burgers’ equation, KdV equation, and K-G equation. In this 

chapter, AHPTM is employed to achieve the research goals in this study. Through rigorous 

computational procedures in Mathematica, approximate solutions are validated. The findings 

are then visually presented through graphical representations, including surface and line 

graphs. 

 In Chapter 7, the conclusions drawn from all chapters are presented. 
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Chapter 1 

 

1. INTRODUCTION 

 

1.1 Preliminary  

Differential Equation: 

Differential equations have been a significant part of mathematical research, contributing to 

the growth of mathematics and its implications, particularly in the domains of physics and 

engineering. A differential equation is an expression in mathematics that includes 

independent and dependent variables, along with their derivatives. It specifically explains the 

relationship between the rate of change of a dependent variable 'y' and one or more 

independent variables 'x'. 

                                                  
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) 

For example:  
𝑑𝑦

𝑑𝑥
= 3𝑥 + 2 

Differential equations are fundamental in modeling and understanding various phenomena in 

science, engineering, economics, and more. The study of the differential equations is divided 

into two categories. 

1. Ordinary differential equation (ODE) 

2. Partial differential equation (PDE) 

1.1.1 Ordinary Differential Equation 

If the unknown function of a differential equation depends only on one independent variable, 

the equation is defined as an ordinary differential equation. The generic form of the nth order 

ODE is presented as  

Ḟ(𝑤, 𝑣, 𝑣 , … … 𝑣𝑛) = 0;                𝑤 ∈ 𝐼                                                                              (1.1.1) 

Where 𝑣 represent an unknown function with regard to the single independent variable 𝑤  

over an interval I and Ḟ is a specified function. The equation (1.1) is called the nth ordinary 

differential equation. 
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1.1.2 Partial Differential Equation 

A PDE involves more than one independent variable, an unknown function (the dependent 

variable), and partial derivatives of the unknown function with regard to the independent 

variable. Such as  

              𝐹 (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛, 𝑦,
𝜕𝑦

𝜕𝑥1
,

𝜕𝑦

𝜕𝑥2
…

𝜕𝑦

𝜕𝑥𝑛
) = 0,                                                           (1.1.2) 

Here, 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛 represents the independent variables, whereas y represents the dependent 

variable. Solving PDEs is a challenging yet rewarding task, often requiring a combination of 

analytical, numerical, and computational methods. But these equations are really important 

for describing things that happen in nature, like in science and engineering. As a result, it's 

important to understand the several conventional and contemporary approaches of solving 

these mathematical problems and using them practically. Fluid dynamics, electromagnetic, 

thermodynamics, quantum mechanics, and many other engineering and science fields make 

use of PDEs. PDEs are used in fluid dynamics to explain the movement of fluids and the 

effect of forces acting on them. They are used in electromagnetism to describe the 

electromagnetic field that occurs in nature. PDEs are also used to represent chemical 

processes and to describe the mobility of heat and sound waves. PDEs are employed in 

quantum mechanics to describe particle behaviour and interactions with other particles. PDEs 

may also be used to tackle engineering challenges such as optimum structure and system 

design. 

The focus of our research being PDEs, we will provide a brief overview of them, including 

any conditions such as initial and boundary conditions. 

1.2 Basic Definitions: 

Definition 1.2.1 Order of PDE  

The order of a PDE is determined by the highest order of the partial derivative present in the 

equation. 

e.g. (1) 𝜑𝑥 − 𝜑𝑦 = 0, is the PDE of order one.  

      (2) 𝜑𝑥𝑥 − 𝜑𝑦𝑦 = 0, is the PDE of order two.  
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Definition 1.2.2 Linear PDE: 

A linear PDE is one in which both the dependent variable and its partial derivative is linear. 

e.g. (1) 𝜑𝑥𝑥 − 𝜑𝑦𝑦 = 0                                                                                  (Laplace equation) 

      (2) 𝜑𝑡 + 𝑉𝜑𝑥 = 0                                                                                 (Transport equation) 

Definition 1.2.3 Quasi-Linear PDE: 

If a PDE is linear in the highest-order derivative of an unknown function, it is said to be 

quasi-linear. 

e.g. (1)  𝜑𝑡 = 𝑘𝜑𝑥𝑥                                                                                              (Heat equation) 

       (2) 𝜑𝑥𝑥 = 𝑐2𝜑𝑦𝑦                                                                                         (Wave equation) 

Definition 1.2.4 Semi-Linear PDE: 

The equation is said to be semi-linear PDE if the coefficient of the highest order derivative of 

a PDE does not depend on the dependant variable or its derivatives. 

e.g. (1) 
𝜕𝜑

𝜕𝑡
+ 𝜑

𝜕𝜑

𝜕𝑥
+ 6

𝜕3𝜑

𝜕𝑥3 = 0                                                    (Korteweg-de Vries equation) 

       (2) 
𝜕𝜗

𝜕𝑡
+

𝜕𝜗

𝜕𝑥
+ 𝜗2 = 0                                                                           (Transport equation) 

Definition 1.2.5 Non-Linear PDE: 

A PDE is considered to be non-linear if the derivative of the highest order term in its equation 

is dependent on the dependent variable. 

e.g. (1) 𝜑𝑡 − 𝜑𝜑𝑥 = 𝛼𝜑𝑥𝑥                                                                            (Burgers equation) 

       (2) 𝜑𝑡𝑡 − 𝜑𝑥𝑥 + 3(𝜑2)𝑥𝑥−𝜑𝑥𝑥𝑥 = 0                                                 (Boussinesq equation) 

Definition 1.2.6 Initial condition: 

The initial condition is the state of the functions and their derivatives at the beginning of time 

(𝑡 = 0). For e.g. in a wave equation, the initial condition might be the displacement of the 

wave and its speed at the same time(𝑡 = 0). 
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Definition 1.2.7 Boundary condition: 

A PDE is used to express the mathematical behaviour of physical processes within a given 

space. The dependent variable, v, is typically given at the edges of the domain, D. this 

boundary data is known as boundary conditions. Boundary circumstances are classified into 

three categories: 

Definition 1.2.8 Dirichlet boundary condition: 

A Dirichlet boundary condition is defined as a set of conditions that establish the 

determination of the dependent variable’s value at the boundary (𝜕𝐶) of a given domain. 

Imagine the boundary value problem as an example. 

  𝜕2𝜗

𝜕𝑡2 − 𝑐2∇2𝜗 = 0, 𝑥, 𝑦 ∈ 𝑅, 𝑡 ≥ 0,                                                                                 (1.2.1) 

where                             𝐵(𝜗) = 0 on 𝜕𝐶                                                                          (1.2.2) 

If 𝐵(𝜗) = 0 denote for following boundary condition 

                         𝜗 = 0 on 𝜕𝐶                                                                      (Dirichlet condition) 

Definition 1.1.9 Neumann boundary condition: 

A Neumann boundary condition is described as a set of conditions that fulfil the value of the 

derivative of the dependent variable at the boundary (𝜕𝐶) of a given domain. For instance, if 

the boundary conditions in the problem (1.3) are 𝐵(𝜗) = 0 is of the form  

                                             
𝜕𝜗

𝜕𝑥
= 0  on 𝜕𝐶                                               (Neumann condition) 

Definition 1.1.10 Robin boundary condition: 

A Robin boundary condition, also referred to as mixed boundary conditions, is defined as a 

set of conditions that involve both the dependent variable and its derivative at the boundary 

(𝜕𝐶) of a given domain. 

For instance, if the boundary conditions in problem (1.3) are  𝐵(𝜗) = 0 is of the form 

                                  
𝜕𝜗

𝜕𝑥
+ 𝜗 = 0  on 𝜕𝐶                                                        (Robin condition)  
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1.3 Fractional Calculus [FC] 

The expansion of classical calculus to FC is a significant advancement that has opened up an 

endless number of new study options, with implications for both mathematics in general and 

particular topics or subjects. FC may be regarded of as an extension of classical calculus. FC 

is an area of mathematics that focuses on the study of differentiating and integrating functions 

at fractional orders, expanding beyond the constraints of traditional integer-order calculus. It 

provides tools for solving differential and integral problems involving arbitrary orders, 

enabling a more nuanced analysis of systems and phenomena with fractional dynamics. 

This branch of mathematics has been around since the beginning of calculus but has become 

increasingly important over the last few decades due to its wide application in fields such as 

fluid flow, viscoelasticity, probability, statistics, solid mechanics and signal processing.  

The calculus of fractional order is an expansion of the traditional calculus developed by 

Newton and Leinbitz to include positive and negative fractions. This concept is as old as 

conventional calculus, which was developed by Newton in 1665 and Leibnitz in 1674. 

Subsequent to this, Euler and others extended the calculus to include higher-order derivatives. 

L'Hôpital addressed a letter to Leibniz in 1695 describing derivatives of non-integer orders, 

including half derivatives. On September 30th of the same year, Leibniz responded, noting 

that this may lead to a paradox from which important conclusions could be formed. Since 

then, many prominent mathematicians, including Liouville, Riemann, Weyl, Fourier, 

Grunwald, Letnikov, Abel, Lacroix, and Leibniz, have made a contribution to the study of 

FC. 

In 1823, Niels Abel presented the first ever applications of fractional calculus by solving the 

tautochrone problem. This was followed by Joseph Liouville’s papers from 1832-1837, in 

which he developed a similar theory of fractional operators. Riemann also worked 

independently on the same, coming up with the RL fractional derivative, which is achieved 

by an integral approach. 

Grunwald and Letnikov (1867-68) proposed the concept of “differ-integral” as a 

generalization of the definition of an integer order derivative, which has been referred to as 

the limit of the difference quotient. This definition is an important milestone in fractional 

calculus, as it is algorithmic and thus useful in computations involving fractional derivatives. 

In 1967, Michele Caputo proposed a different formulation of fractional derivatives which is 
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more useful for practical applications as it requires initial conditions in terms of ordinary 

derivatives rather than fractional derivatives, which have an unclear physical interpretation. 

Therefore, Caputo derivatives have gained much attention in recent years. 

Fractional calculus has gained popularity in recent years mainly because of its application in 

a variety of scientific and technical domains, including electronics and signal processing, 

neural networks, bioengineering, cryptography, image processing, fluid mechanics, and 

electrodynamics. In contrast to their integer-order counterparts, fractional-order models have 

been seen to deliver improved results due to their inherently non-local nature, which allows 

them to take into account memory effects more accurately. As such, FC is now widely used 

in many domains of science and technology. Since then, important mathematicians have 

suggested various types of definitions of fractional-order derivatives, some of which are well-

known, including the Grunwald-Letnikov, RL, and Caputo derivatives. 

1.3.1 Definition: Grunwald-Letnikov: The Grunwald-Letnikov fractional derivative is a 

concept in mathematics that extends the theory of differentiation to non-integer orders. The 

mathematicians Anton Karl Grunwald and Aleksey Vasilievich Letnikov separately 

developed it around the beginning of the 20th century. 

𝐷𝛼𝑓(𝑡) = lim
ℎ→0

1

ℎ𝛼
∑(−1)𝑛

∞

𝑛=0

(
𝛼

𝑛
) 𝑓(𝑡 − 𝑛ℎ) 

Where 𝑛 ∈ ℕ, and the Gamma function is used to determine the binomial coefficient. 

(
𝛼

𝑛
) =

𝛼(𝛼 − 1)(𝛼 − 2) … (𝛼 − 𝑛 + 1)

𝑛!
 

1.3.2 Riemann-Liouville [R-L]: The basic ideas of differentiation and integration are 

expanded to non-integer orders using a mathematical framework called RL fractional 

calculus. Since its development in the 19th century by the mathematicians Bernhard Riemann 

and Joseph Liouville, it has demonstrated its utility across a multitude of academic 

disciplines, including but not limited to engineering, physics, and signal analysis. The process 

of determining the rate at which a function changes in relation to its independent variable is 

known as differentiation in classical calculus. The area under a curve is sought after during 

integration, on the other hand. The definition of these operations is restricted to integer 

orders, such as first-order (derivative) and second-order (integral). The differentiation and 

integration of non-integer orders is a feature of Riemann-Liouville fractional calculus, which 
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generalizes these operations. Fractional derivatives and integrals can be defined for any real 

or complex number, rather than just taking into account integer values for the order.  

An operator of fractional-order derivative is used on a function to obtain its fractional 

derivative. This operator generalizes the idea of differentiation to non-integer orders. For 

example, the fractional derivative operator D^(1/2) represents a derivative of order 1/2, 

indicating a fractional number of derivative operations applied to the function. The function 

having a fractional order is iteratively integrated to produce the fractional integral. There are 

numerous intriguing characteristics of the RL in fractional calculus. The fractional chain rule, 

according to which the derivative of a composite function may be represented in the context 

of the fractional derivatives of its constituent components, is one of the important features. 

Due to this fact, many mathematical identities and formulas may be used in fractional 

calculus. Additionally, fractional calculus offers a potent tool for modelling memory- or long-

range-dependent systems. It is employed in the study of fractional differential equations, 

anomalous diffusion, and viscoelasticity.  

RL can be defined as  

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜂)

(𝑡 − 𝜂)𝛼−𝑛+1

𝑡

𝑎

𝑑𝜂, (𝑛 − 1) ≤ 𝛼 < 1. 

The concept of R-L definition was developed by Leibniz in 1690, which was further extended 

by Letnikov in four papers from 1868 to 1872. Riemann formulated his theory of fractional 

integration as a student, but he didn't publish it during his lifetime. Instead, it was 

posthumously included in his Gesammelte Werke, published in 1892. The generalisation of 

Leibniz's nth derivative of product when n is not a positive integer was further discussed by 

C.J. Hargreave and Liouville.  

1.3.3 Caputo fractional derivative: The Caputo fractional derivative of a function 𝑓 of order 

𝛼 is defined as 

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(𝑛 − 𝛼)
∫

𝑓𝑛(𝜂)

(𝑡 − 𝜂)𝛼−𝑛+1

𝑡

𝑎

𝑑𝜂, (𝑛 − 1) ≤ 𝛼 < 1. 

1.3.4 Caputo-Fabrizio Fractional derivative[C-F]: A novel fractional methodology was 

presented in 2015 by Caputo and Fabrizio. This concept attracted attention because it was 
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necessary to explain a class of non-local systems that could not be adequately characterized 

by fractional models with a solitary kernel. 

𝐷𝑡
𝛼𝑓(𝑡) =

𝑀(𝛼)

(1 − 𝛼)
∫ 𝑓(𝜂)

𝑡

𝑎

exp [−
𝛼(𝑡 − 𝜂)

1 − 𝛼
] 𝑑𝜂, (𝑛 − 1) ≤ 𝛼 < 1. 

 𝑀(𝛼) denote the normalization function such that 𝑀(0) = 𝑀(1) = 1. 

Definition 1.3.5 Mittag-Leffler function [M-L function]: The M-L function serves as a 

generalization of the exponential function, playing a crucial role in both fractional calculus 

(FC) and fractional modeling. The M-L function [54] expressed as 

𝐸𝛼(𝑥) = ∑
𝑥𝑚

𝛤(𝛼𝑚 + 1)

∞

𝑚=0

, 𝛼 > 0. 

Definition 1.3.6 Gamma function: In the 18th century, Bernoulli and Goldbach, renowned 

mathematicians, endeavoured to extend the factorial function 𝑚!, where 𝑚 is a natural 

number. Nevertheless, it was Euler (1707–1783), a Swiss mathematician, who ultimately 

achieved success in this pursuit. [55]. 

𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡.
∞

0

 

1.4 Integral Transform: 

 Integral transform have a long history that began in the 18th century with the invention of 

mathematical methods for analyzing functions in many fields and solving differential 

equations. As mathematical understanding progressed, the concept of converting functions 

via integral operations developed, leading to the development of a variety of integral 

transforms and their uses in diverse areas of mathematics. One of the oldest examples of 

integral transforms may be found in the early 19th-century work of Jean-Baptiste Joseph 

Fourier. Fourier developed the Fourier series, which condensed trigonometric function to 

express periodic functions. Functions in the frequency domain can be studied using this form 

to determine their harmonic components. Another notable advancement in integral transforms 

occurred in the middle of the 19th century because to the work of Joseph Liouville and the 

pupil Michel Chasles. The French mathematician Augustin Louis Cauchy’s pupil Emile 

Mellin furthered their research and created what is known as the Millin transform. Different 

mathematicians and scientists developed the theory and uses of integral transforms during 
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19th and 20th centuries.  Application for these transformations may be found in tomography, 

wave propogation analysis, and picture reconstruction, among other fields. Since then, the 

study of integral transforms has developed, and it has been used in several areas of 

mathematics, physics, engineering, and other disciplines. Integral transforms are now 

regarded as important tools for mathematical analysis, offering strong methods for problem-

solving, function analysis, and mathematical structure exploration. 

1.4.1 Laplace Transform [LT]: 

The Laplace transform, which Pierre-Simon Laplace created in the late 18th century, made a 

substantial addition to integral transforms. Laplace used this technique to analyze systems 

with time-dependent variables and to solve differential equations. By converting differential 

equations into algebraic equations, the Laplace transform offers a potent tool for streamlining 

the solution of these problems. 

The Laplace transform is defined as 

ℒ[𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑡)
∞

0

 𝑑𝑡. 

Properties 

1. ℒ{1} =
1

𝑠
 

2. ℒ{𝑡𝑝} =
𝑝!

𝑠𝑝+1 , 𝑝 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

3. ℒ{sin𝑝𝑡} =
𝑝

𝑝2+𝑠2 

4. ℒ{cos𝑝𝑡} =
𝑠

𝑝2+𝑠2 

1.4.2. Sumudu Transform [ST]: 

G. K. Watugala [176] presented the Sumudu transformation 1993. It is defined as a 

transformation where differentiation and integration operations in the time domain (t-domain) 

correspond to division and multiplication by a variable u in the transform domain (u-domain). 

The Sumudu transform is defined as follows: 

𝑆[𝑓(𝑡)] =
1

𝑢
∫ 𝑓(𝑡)

∞

0

𝑒−
𝑡
𝑢 𝑑𝑡, 𝑡 > 0. 

Some basic properties are 
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1. S{1} = 1 

2. S{𝑡} = 𝑢 

3. S{𝑡𝑛} = 𝑛! 𝑢𝑛 

4. S{𝑒𝑎𝑡} =
1

1−𝑎𝑢
 

5. S{sin (𝑎𝑡)} =
𝑎𝑢

1+𝑎2𝑢2
 

6. S{cos (𝑎𝑡)} =
𝑢

1+𝑎2𝑢2 

 

1.4.3. Elzaki Transform [ET]: 

Tarig Elzaki invented the Elzaki Transform in 2011 as a tool for solving ODEs and PDEs in 

the time domain. The Elzaki transform is represented by the integral equation's operator E (.). 

𝐸[𝑓(𝑡)] = 𝑣 ∫ 𝑓(𝑡)
∞

0

𝑒−
𝑡
𝑣 𝑑𝑡, 𝑡 > 0. 

Some basic properties are 

1. 𝐸{1} = 𝑣2 

2. 𝐸{𝑡} = 𝑣3 

3. E{𝑡𝑛} = 𝑛! 𝑣𝑛+2 

4. E{𝑒𝑎𝑡} =
𝑣2

1−𝑎𝑣
 

5. E{sin (𝑎𝑡)} =
𝑎𝑣3

1+𝑎2𝑣2
 

6. E{cos (𝑎𝑡)} =
𝑣2

1+𝑎2𝑣2 

7. E{𝑓′(𝑡)} =
𝑇(𝑣)

𝑣
− 𝑣𝑓(0), 𝑖𝑓  E{𝑓(𝑡)} = 𝑇(𝑣). 

 

1.5 Semi-Analytical and Numerical Techniques for Non-Linear PDEs 

The solution of non-linear PDEs poses substantial challenges due to their complex nature, 

often lacking analytical solutions. In order to properly address these issues, researchers are 

now focusing on numerical and semi-analytical methodologies. These techniques provide 

useful insight on how to resolve challenging issues in science and engineering with increased 

precision and effectiveness. The solutions to non-linear, coupled, partial equation and 
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fractional differential equations have been found using a number of semi- analytical methods, 

including   

1. Homotopy Perturbation Method [HPM]  

2. Homotopy Analysis Method [HAM] 

3. Adomain Decomposition method [ADM] 

4. Variation Iteration Method [VIM] 

5. Laplace Decomposition Method [LDM] 

6. Finite Element Method [FEM] 

7. Differential Transform Method [DTM] 

8. Homotopy Perturbation Transformation Method [HPTM] 

9. Homotopy Perturbation  Sumudu Transformation Method [HPSTM] 

10. Homotopy Perturbation Elzaki  Transformation Method [HPETM] 

In this research endeavor, our primary emphasis lies on investigating methodologies 

employing the HPM. The subsequent section will provide an in-depth elucidation of the HPM 

and a thorough description of HPM variations, namely HPTM, HPETM and HPSTM. 

1.5.1 Homotopy 

Homotopy is a basic idea in topology that deals with the continuous transformation of one 

topological space into another. It offers a method for comprehending the “shape” of spaces 

without paying attention to more minute geometrical features. A homotopy, by definition, is a 

smooth transformation of one map into another that keeps the endpoint at each moment. 

Alternatively, the maps f and homotopy capture the continuous deformation of g into each 

other that can occur without any point being torn or adhered. Homotopy offers a method for 

categorizing topological spaces according to their “homotopy type.” Homotopy equivalent 

spaces have the same homotopy type, which denotes that they may continuously deform into 

one another. When separating spaces that have various topological aspects but nevertheless 

have some qualitative traits, this idea is especially helpful.   

A continuous transformation that smoothly connects 𝑓 and 𝑔 is described as a homotopy 

between two continuous functions 𝑠 and 𝑡 defined on a topological space 𝑅 and taking values 

in another topological space 𝑆. Formally,  𝑠 and 𝑡 consider homotopic if ∃ a continuous 

function 𝐻: 𝑅 × [0,1] → 𝑆 such that ∀ 𝑥 ∈ 𝑅, 𝐻(𝑥, 0) = 𝑠(𝑥) and 𝐻(𝑥, 1) = 𝑡(𝑥). The 
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function H is commonly referred to as a homotopy between 𝑠 and 𝑡, and it represents a 

continuous deformation or path between the two functions over the interval [0,1]. 

1.5.2 Perturbation Theory 

The use of perturbation techniques requires the presence of small or large parameters or 

variables, often known as perturbation quantities. The conversion of nonlinear problems into 

linear sub-problems using an infinite sequence of terms, approximated by solving the initial 

sub-problems, is a significant application of extensive perturbation techniques. 

However, perturbation techniques have several restrictions. The technique is severely 

constrained since not all nonlinear problems can be described by a perturbation quantity. 

Additionally, specialized analytic approximations for nonlinear issues frequently fail as 

nonlinearity grows stronger, making perturbation approximations only useful for nonlinear 

problems with nonlinearity discontinuities. 

1.6 Homotopy Perturbation Method 

The HPM, presented by Ji Huan He in 1999 and further refined in 2000, combines the 

principles of Homotopy theory and perturbation theory to solve nonlinear problems. 

Homotopy theory, derived from algebraic topology, involves continuous deformation of 

topological space. In HPM, a homotopy boundary is defined by an embedding 

parameter "𝑝 ∈ [0,1]", where “p” represents a small parameter. When "p" is set to 0, the issue 

is simplified, resulting in a comparatively simple solution. As "p" approaches 1, the system 

experiences a series of deformations, each of which closely resembles the preceding stage. At 

𝑝 = 0, the original problem is restored, and the desired solution is obtained. 

Notably, the HPM does not rely on a minor parameter in the equations, thereby eliminating 

the drawbacks of additional perturbation methods. This feature distinguishes the HPM from 

other techniques proposed in the late 1990s that aimed to solve nonlinear equations without a 

small parameter. 

The HPM has proven advantageous in various scientific and engineering computations. Its 

ability to bypass the requirement for a tiny parameter in the equations eliminates any 

restrictions of conventional perturbation approaches. Additionally, the computational 

procedures involved in the HPM are straightforward and direct.  
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 Ji-Huan He and other authors have successfully employed the Homotopy Perturbation 

Method (HPM) to analyze the nonlinear vibration behavior of N/MEMS (Nano/Micro-

Electro-Mechanical Systems) oscillators, including the Duffing oscillator, the Fangzhu 

oscillator, and nonlinear oscillators with coordinate-dependent mass. Ordinary differential 

equations (ODEs) [1, 2, 3, 4] can be used to characterise these systems. The use of HPM with 

Partial Differential Equations (PDEs) has also been thoroughly investigated by researchers 

[5-8, 11-12]. For instance, Kaur G., et al. [9] used HPM to solve population balance 

equations including fragmentation and aggregation, while Gupta S., et al. [10] used it to 

resolve convection-diffusion equations. Utilising HPM, Jassim H. K. [13] was able to solve 

the Newell-Whitehead Segel problem. 

Additionally, using the HPM, fractional equations, including those with fractional 

derivatives, is successfully solved [14-29]. Yasir Khan et al. broadened the utilisation of 

HPM to obtain analytical solutions for the Klein-Gordon fractional PDE [15]. The fractional 

Black-Scholes equation was investigated by Asma Ali Elbeleze et al. [16], and Chun-Fu WEI 

employed HPM to solve non-linear and singular fractional Lane-Emden type equations [19]. 

Additionally, with amazing effectiveness, the HPM has been expanded to address additional 

mathematical models including integral equations and delay differential equations [30-44]. 

To explore linear Volterra integral equations with discontinuous second-kind kernels, Samad 

Noeiaghdam et al. used HPM [45]. 

Furthermore, Fatemeh Shakeri and Mehdi Dehghan provided numerical examples to illustrate 

their solutions to delay differential equations using HPM [31]. 

To demonstrate the core concept behind this approach, we will use a general nonlinear 

differential equation. 

𝐾(𝜗) − 𝑓(𝑠) = 0, 𝑠 ∈ 𝛺                                                          (1.6.1) 

 with boundary condition 

𝐵 (𝜗,
𝜕𝜗

𝜕𝑛
) = 0, 𝑠 ∈ Г                                                      (1.6.2) 

Here, 𝐾 represent a differential operator of a general nature, B is an operator associated with 

the boundary, 𝑓(𝑠) is an analytic function and Г denotes the boundary of the domain 𝛺. The 

operator K usually has two parts: R and P. R is for the linear part, and P is for the nonlinear 

part.Equation (1.6.1) may so be expressed as below. 
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                                   𝑅(𝜗) + 𝑃(𝜗) − 𝑓(𝑠) = 0                                                              (1.6.3) 

By the Homotopy technique, we generate a homotopy 𝜑(𝑠, 𝑝) : 𝛺 × [0,1] → ℝ [84], which 

satisfies. 

𝐻(𝜑, 𝑝) = (1 − 𝑝)[𝑅(𝜑) − 𝑅(𝜗0)] + 𝑝[𝐾(𝜑) − 𝑓(𝑠)] = 0,   𝑝 ∈ [0,1], 𝑠𝜖𝛺 

      or     𝐻(𝜑, 𝑝) = 𝑅(𝜑) − 𝑅(𝜗0) + 𝑝𝑅(𝜗0) + 𝑝[𝑃(𝜑) − 𝑓(𝑠)] = 0                         (1.6.4) 

where p is parameter such that 0 ≤ 𝑝 ≤ 1, 𝑢0 is an initial approximation of equation (1.6.1), 

which satisfies the boundary condition, we have 

𝐻(𝜑, 0) = 𝑅(𝜑) − 𝑅(𝜗0) = 0 

                                                    𝐻(𝜑, 1) = 𝐾(𝜑) − 𝑓(𝑠) = 0, 

The procedure of changing of  𝑝 from zero to one is like transforming  𝜑(𝑠, 𝑝) from 𝜗0(𝑠) 

to 𝜗(𝑠). The main idea behind this method is that we can represent the solution of equation 

(1.6.1) as                                    

                                             𝜑 = 𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2 + 𝑝3𝜑3 + ⋯                                    (1.6.5) 

The approximate solution of the equation is found by setting equal  𝑝 to 1. 

𝜗 = lim
𝑝→1

𝜑 = 𝜑0 + 𝜑1 + 𝜑2 + 𝜑3 + ⋯ 

The Homotopy Perturbation Method combines the Perturbation method and the Homotopy 

method. It helps to avoid the limitations of traditional perturbation methods while still 

retaining their advantages. 

In general, the HPM proves to be a versatile and efficient approach for solving various types 

of mathematical problems, including fractional equations, integral equations, and differential 

equations, delay differential equations, and both ordinary and PDE. It is a useful tool for 

practitioners and researchers across a range of academic and scientific disciplines due to its 

efficacy and broad applications. 
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1.7 Existing Methods in the literature 

1.7.1 Homotopy Analysis Method [HAM]: 

The HAM is a semi-analytical approach employed to solve linear and nonlinear differential 

equations. In order to generate precise or convergent series-based solutions, it combines the 

traditional perturbation approach with topological principles. Both ODE and PDE have been 

used to illustrate the effectiveness of HAM. Liao originally introduced an approximation 

scheme within his doctoral dissertation, which served as a means to ascertain series solutions 

for nonlinear problems. Subsequently, he refined and expounded upon this methodology, 

culminating in the publication of the book titled “Beyond Perturbation: Introduction to the 

Homotopy Analysis Method” in 2003[46]. Abbasasbandy and Shivanian [47] successfully 

solved a difficult linear vibrational boundary value problem with singularity by using the 

HAM. The results of Ganjiani’s [48] application of HAM to a nonlinear fractional differential 

equation showed excellent congruence with precise solutions. This technique has attracted 

attention because of its favourable potential in calculation pertaining to quantum field theory 

and quantum statistical mechanics [51]. Furthermore, HAM [52] was successfully used to 

obtain analytical solutions controlling the radial oscillations of a multielectron bubble 

encased in liquid helium. The generalized Benjamin-Bona-Mahony equation and other 

problems requiring series based solutions are addressed by HAM in a novel way [53]. 

Notably, the practitioner can regulate the convergence zone for the series solution by using an 

auxiliary parameter. This achievement demonstrated the method’s effectiveness in tackling 

complex, severly nonlinear dynamical systems. Along with these successes, the research of 

Hassami et al. [49] and Nadeem and Lee [50] demonstrated the value of HAM in tackling the 

difficulties associated with boundary layer nanofluid flow across stretched surfaces. The 

predictor homotopy analysis method (PHAM), which expands the capabilities of the HAM to 

capture numerous solutions of nonlinear differential equations, also helped to expand the 

frontiers of the technique. 

1.7.2 Homotopy Perturbation Sumudu Transformation Method [HPSTM]:  

HPSTM is a technique for solving nonlinear equations that integrates the ST in combination 

with the HPM. Round-off errors are avoided by this method since it does not need 

discretization or restrictive assumptions. The HPSTM offers a clear and effective solution for 

a variety of nonlinear conditions by utilizing He’s polynomials to control nonlinear terms. 

Singh et al. concentrated on studying solutions for both linear and nonlinear partial 
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differential equations using the HPSTM. Equations containing fractional derivatives or 

integrals are particularly well-suited for its use. With regard to both linear and nonlinear K-G 

Equations, HPSTM has proven to be effective in solving initial value boundary problems. 

1.7.3 Homotopy Perturbation Elzaki Transformation Method [HPETM]:  

Tarig M. Elzaki and J. Biazar developed this approach in 2013. The suggested approach was 

developed by merging the ET with the HPM. This approach has been recognised for its high 

efficiency and simplicity in solving linear and nonlinear differential equations. Furthermore, 

it presents certain advantages over previous semi-analytical methodologies such as the HAM 

and the ADM, in that it avoids the requirement to construct Adomain Ploynomials and 

convergence parameters. 

1.7.4 Homotopy Perturbation Transformation Method [HPTM]: 

The HPTM is an incredibly powerful mathematical approach that has revolutionized the field 

of nonlinear differential equations. Combining the HPM and the LT resulted in the HPTM. 

The strength of the HPTM lies in its versatility. It has found applications in a wide array of 

fields, particularly in physics and engineering. One area where it has truly made its mark is in 

solving FDEs. Academician and researchers from all over the world have embraced the 

HPTM to solve a wide range of problems, both linear and non-linear. For example, Yasir 

Khan and Wu Q. used HPTM to solve nonlinear advection equations, obtaining exact closed-

form solutions for both homogeneous and non-homogeneous instances. Gupta and Gupta 

demonstrated how the HPTM can be used to tackle initial boundary value problems with 

variable coefficients. Furthermore, among other prominent uses in the literature, Devendra 

Kumar et al. utilized the HPTM to tackle linear and nonlinear Schrödinger equations. Using 

this effective strategy, they were able to find solutions that have significant implications in 

the field of quantum mechanics. 

1.8 Nonlinear Partial Differential Equation in Mathematical 

Physics: 

1.8.1 Burgers’ Equation: 

The development of dependable computational methodologies capable of addressing 

nonlinear PDEs frequently used in fluid mechanics and heat transfer applications has received 

significant attention in recent years. The Burgers’ equation stands out as a widely celebrated 
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example of an equation that incorporates both nonlinear propagation effects and diffusive 

effects. Burgers’ equation is applicable to a variety of challenging physical issues faced in 

engineering fields, but its non-linear character makes solving it difficult by nature [177].  

Harry Bateman (1882-1946), an English mathematician, introduced the Burgers’ equation 

and its accompanying initial and boundary conditions in a 1915 article, which is where the 

equation first appeared, and given as  

                                  
 𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝑣

𝜕2𝑢

𝜕𝑥2 , 0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝜏,                             (1.8.1) 

 

𝑢(𝑥, 0) = 𝜑(𝑥), 0 < 𝑥 < 𝐿, 

𝑢(0, 𝑡) = 𝜗1(𝑡) , 𝑢(𝐿, 𝑡) = 𝜗2(𝑡) , 0 < 𝑡 < 𝜏, 

 Here variables u, v, t, and x represent the velocity, spatial coordinate, and time, respectively. 

Depending on the specific conditions in which the problem must be solved, the variables 

𝜑, 𝜗1, 𝜗2 are provided as functions of variables. The equation (1.8.1) is known as inviscid 

Burgers’ equation when the viscosity v is equal to zero. Gas dynamics are modelled using 

this equation.  

         The mathematical modelling of turbulence was subsequently explained by Dutch 

scientist Johannes Martinus Burgers’ (1895-1981) using eq. (1.8.1), and as a result of his 

substantial contributions to the field of fluid mechanics, he gained renown. Burgers’ is 

recognised for his substantial contribution, hence this equation is often referred to as the 

Burgers' equation. 

       1.8.2 Korteweg-de Vries [KdV] Equation: 

The KdV equation is a dispersive, nonlinear mathematical model that is utilised to explain 

how shallow water surface wave’s respond. The KdV equation can be interpreted as 

𝜑𝑡 − 6𝜑𝜑𝑥 + 𝜑𝑥𝑥𝑥 = 0, 

 Boussinesq first proposed it in 1877, and Korteweg and de Vries later developed it in 1895 to 

simulate soliton events. Solitons are nonlinear waves that resemble pulses and are present in a 

variety of physical systems. They have special qualities including keeping their speed and 

form while travelling without distortion. Solitons are an important phenomenon in a variety 

of nonlinear media, such as plasma, optics, and fluid flow, and they stay stable even when 

they clash with one another. 

Subsequent research by Shi et al. [57] demonstrated that the modified KdV equation exhibits 

a fractal set of fragile amplitude, quasio-periodic solutions. Dutykh et al. [58] investigated the 
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energy transfer process in the modified KdV equation during the nonlinear stage of 

modulation instability, with an emphasis on Fourier space analysis. Triki H., & Wazwaz, A. 

M. [59] investigated two families of fifth-order KdV equations featuring time-varying 

coefficient and linear damping term, these equations are suitable for describing envelope 

wave dynamics in inhomogeneous systems governed by KdV-type equations. 

In order to handle the KdV problem, Gardner, C. S., [60] created a variational and 

Hamiltonian formulation, and Gardner et al. [61] provided a number of techniques. These 

advancements have helped to improve our understanding of the KdV equation and its 

application to the studyof shallow water wave dynamics and associated phenomena.  

1.8.3 Klein –Gordon equation [K-G equation]: 

The K-G equation is a fundamental PDE in physics and mathematics. It was developed 

independently in 1926 by scientists Oskar Klein and Walter Gordon, and is named after them. 

The Klein-Gordon equation is a relativistic wave equation used to describe the behavior of 

spinless particles, such as mesons, within the framework of quantum field theory. 

The K-G equation is written as described below: [62] 

𝜑𝑡𝑡(𝑥, 𝑡) + 𝑎𝜑(𝑥, 𝑡) + ℎ(𝜑(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡). 

With initial condition  

𝜑(𝑥, 0) = 𝑓(𝑥),   𝜑𝑡 = 𝑘(𝑥). 

Where '𝑎' represents the constant, the source term is denoted by 𝑔(𝑥, 𝑡), and ℎ(𝜑(𝑥, 𝑡)) is the 

nonlinear function of 𝜑(𝑥, 𝑡). The K-G equation has been used to simulate several problems 

in science and engineering, including those related to solitons, condensed physics, classical 

and quantum mechanics, and solitons. Numerous researchers have successfully solved the K-

G equation using a variety of techniques, like according to Birrell and Davies [63], it is likely 

to investigate how quantum fields, such as scalar fields governed by the K-G equation, 

interact with space time and how this affects particle behaviour and the evolution of the 

universe. Maireche A. [64] explains K-G equation in a noncommutative three-dimensional 

space with a modified Coulomb plus inverse-square potential. Detweiler S. [65] investigated 

K-G equation for a scalar field of mass in revolving black hole’s geometry. 

 

1.8.4 Fornberg-Whitham Equation [F-W Equation]: 

The F-W equation was designed for the purpose to investigate nonlinear shattering dispersive 

waves from the ocean. The F-W equation is defined as follows [66]: 
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𝜃𝑡 − 𝜃𝑥𝑥𝑡 + 𝜃𝑥 = 𝜃𝜃𝑥𝑥𝑥 − 𝜃𝜃𝑥 + 3𝜃𝑥𝜃𝑥𝑥. 

It is a highly significant mathematical model in the field of mathematical physics. The study 

of these waves is essential for a variety of practical applications since they frequently display 

complicated behaviours. The F-W equation can provide peak on solutions, which depict 

waves with restricted heights and wave breaking events. Many academicians, like Gupta and 

Singh [67] and Alderremy et al. [68], have studied this equation's fractional version, focusing 

on the fractional Caputo derivative. Additionally, this field of study has benefited from the 

work of other academicians including Haroon et al. [69], Alsidrani et al. [70], Sunthrayuth et 

al. [71], and Singh et al. [72]. The presence of a single kernel causes difficulties for the 

implementation of the fractional Caputo derivative, which restricts the scope of its practical 

use. 

 

1.8.5 Fisher’s Equation: 

The Fisher equation, 

𝜃𝑡 = 𝜃𝑥𝑥 + 𝜃(1 − 𝜃). 

It is also known as the Fisher-KPP equation or Kolmogorove Petrovsky-Piscounov equation 

and is a widely known mathematical expression applied in several scientific fields, including 

biology, chemistry, heat and mass transport, and ecology. Fishers’ equation describes the 

process of interaction between diffusion and reaction. Numerous studies of the Fisher 

equation have examined different facts in the literature. In their study, Bin Jebreen et al. [73] 

devised an effective algorithm that successfully solves the Fisher equation by combining the 

wavelet Galerkin technique with the finite difference approach. While this was going on, Lou 

et al. [74] investigated all of the solutions to the Fishers-KPP equation with the Dirichlet 

boundary condition, paying special attention to the half line. For the one-dimensional 

nonlinear Fisher equation, on the other hand, Chandraker et al. [75] created a semi-implicit 

finite difference method. Rose et al. [76] also investigated a generalised version of the Fisher 

problem and developed reductions to ordinary differential equations using the notion of 

symmetry reduction. 

1.8.6 Swift-Hohenberg Equation [S-H Equation]: 

The Swift-Hohenberg [S-H] equation, 

𝜕𝑡𝜑 = 𝑟𝜑 − (1 + ∇2)2𝜑 + 𝑁(𝜑). 
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Which was developed in 1977 by Jack Swift and Pierre Hohenberg, is a basic model that 

describes fluid velocity in thermal convection and the dynamics of temperature [77]. It has 

several purposes in science and engineering, such as fluid dynamics, hydrodynamics, laser 

research, and other domains such as biology and physics. Moreover, due to its nonlinear 

parabolic structure and its ability to elucidate pattern formation in fluid layers confined 

between well-conducting horizontal boundaries, the S-H equation holds significant 

importance. Numerous physical systems have been studied and described in terms of pattern 

generation using the S-H equation. It has been used in Rayleigh-Benard convection to mimic 

the formation and development of patterns like rolls and hexagons [78]. The equation 

hasnalso been used to represent wave-vector selection principles in the context of optical 

parametric oscillators, taking into account both degenerate and nondegenerate cases [79]. 

Extending the scalar version, the vector complex S-H equation has proved useful in analyzing 

pattern creation and structures in nonlinear optical systems, such as lasers. The study of 

travelling waves, spiral waves, flaws, and the rivalry between stable solutions has all been 

conducted using this method [80]. The cubic-quintic S-H equation has also been useful in 

explaining convective systems with reflection symmetry. This equation has provided insight 

into the behaviour of moving structures and possible collisions by analysing the impact of 

symmetry breakdown on spatially localised structures [81]. 

In addition, studies of the S-H equation on manifolds with conical singularities have revealed 

important insights into the existence, singularity, and regularity of solutions. These 

investigations have also emphasised the connection between the manifolds’ local geometry 

and the solutions [82]. The wide application and significance of the S-H equation in 

comprehending complex pattern generation and dynamics in many physical systems are 

shown by these diverse experiments across numerous areas. 
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1.9 Research Objectives: 

1. To develop semi-analytical techniques which is hybrid of the existing techniques using 

integral transformation methods like Laplace and other integral transformations. 

2. Implementation of developed techniques to find solutions of complex physical problems 

like partial differential equations and fractional differential equation under various conditions 

in view of applications. 

3. To perform the error analysis and convergence analysis for the numerical simulation of the 

considered model and validation of findings with available results in literature. 

 

1.9.1 Organisation of the Thesis 

This thesis is primarily concerned with creating a hybrid method for approximating series 

solutions to FDEs and PDEs. Throughout this study, we investigate the convergence of the 

solutions, perform error analysis, and compare our findings to the exact solution as well as 

the results that have previously been published in the literature. 

In the second chapter, we will discuss papers that are related to our research work. It also 

provides us with a wonderful starting point for planning and carrying out our study.  

In the third chapter, the novel technique employed, namely AHPETM, will be explored for 

addressing the PDEs.  

In the fourth chapter, two methods will be delved into: AHPTM and AHPSTM. These 

methods will be used to solve various nonlinear partial differential equations. 

In the fifth chapter, a demonstration of how the suggested technique solves FDEs in the 

Caputo sense will be presented. Convergence analysis will also be conducted, along with the 

presentation of surface and line graphs. 

In the sixth chapter, an illustration of how the suggested technique solves FDEs in the 

Caputo-Fabrizio sense will be provided. A comparison with the exact solution will be made, 

and surface and line graphs will be presented. 
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Chapter 2 

Literature Review 

Weerakoon, S. (1994) [83]. The research article gives a thorough analysis of the partial 

derivative derivation of the ST and discusses its possible use in solving PDEs. Firstly, the ST 

illustrates that it is a valuable technique for solving PDEs. The second proof of the research 

article is that ST of partial derivatives may be produced by integrating by parts. Last but not 

least, the Sumudu transform’s effectiveness in resolving three separate PDEs serve as an 

illustration of how broadly applicable it is. Overall, the study presents a fresh way for 

handling PDEs, providing a useful technique that may be used in a variety of scientific and 

technical fields. 

He, J.H. (1999) [84]. The author demonstrates a novel perturbation approach combined with 

a homotopy technique. This approach is appropriate not just for small parameters, but also for 

big values, and the constraints of the classic perturbation method are readily overcome. 

He, J.H. (2000) [85]. The author discussed the nonlinear problem, which is solved by 

proposing the merging approach of a homotopy technique with a perturbation methodology. 

The coupling approach fully utilises the conventional perturbation method. Some examples in 

this paper demonstrate the ease and success of the new technique. In this case, the starting 

approximation can be arbitrarily chosen with an unknown constant. 

He, J.H. (2003) [86]. In his study, the author makes the case that the HPM is a new 

perturbation approach that does not necessitate the inclusion of a minor parameter in an 

equation. It can fully utilise homotopy techniques and conventional perturbation methods. 

Compared to the conventional answer at the second order of approximation, the findings 

provided by this method at the first degree of approximation are significantly more accurate. 

Application of the approach to a duffing equation with high-order nonlinearity demonstrates 

the method’s efficacy and accuracy. The first order of approximation derived using the 

suggested method is more effective in comparison to the perturbation solution, and it is true 

uniformly even for large parameters. 

El-Sayed, S. M. (2003) [87]. In this study, the solution of linear and nonlinear K-G equations 

and Sine-Gordon equations employing ADM is demonstrated. Analytical and numerical 

researches are both provided, and the outcomes demonstrate advancements above the current 
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method. As shown through analytical and numerical studies, the paper comes to the 

conclusion that Adomain's decomposition methodology is effective for solving linear and 

nonlinear K-G and Sin-Gordon equations. 

Liao, S. (2004) [88]. They explain in this paper that the nonlinear problem is generally solved 

with an easy-to-use tool, namely the HAM, and that this method further improves and 

systematically describe a typical nonlinear problem, namely the algebraically decaying 

viscous boundary layer flow caused by moving sheets. Two rules are proposed in this paper: 

the first rule of solution expression and the second rule of coefficient ergodicity. Both play an 

important part in identifying the HAM and providing an analytical solution. 

He, J. H. (2004) [89]. In this research paper, the HPM and the HAM are compared, and it is 

found that HPM is more effective than HAM. A novel perturbation approach called HPM 

seeks an asymptotic solution with a minimal number of terms, whereas HAM is a generalised 

Taylor series method that seeks an infinite series solution. There is no requirement for 

convergence theory. The paper also describes how recent perturbation techniques are used to 

advance HPM. 

Liao, S. (2005) [90]. The author compared the HAM to the HPM. The homotopy perturbation 

method is just an extension of the HAM. The Taylor series with regard to an embedding 

parameter serves as the foundation for these two procedures. Both approaches are good in 

various ways, such as HPM having a sufficient initial estimate; however, this is not required 

for the homotopy analysis approach since HAM includes the auxiliary parameter ‘h’. And at 

the end of the result, it shows that HAM is more general as compared to HPM. 

Momani, S., and Odibat, Z. (2007) [14]. In this study, they present an enhanced version of 

the HPM for nonlinear PDEs with fractional time derivatives. An approximate solution is 

produced by the proposed strategy in the format of a simple-to-calculate convergent series. 

The results show that this strategy is resilient, successful, and simple, and they are consistent 

with previous findings in the literature. The technique performs more accurately than 

previous approaches like variational iteration and adomain decomposition. Furthermore, it 

has been proven that, given the right initial approximation, the modified HPM produces 

results that are equal to those of the variational iteration approach.  

Gorji, M. et al. (2007) [91]. The research shows that the coupled Schrödinger-KdV and 

shallow water equations may be efficiently and conveniently utilised by the HPM. Because it 

does not necessitate either large or tiny parameters, the technique is ideal for discovering 
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equations that are uniformly valid for both small and large parameters in nonlinear problems. 

The method has several uses in research and engineering. 

Rana, M. A., et al. (2007) [92]. In this article, the authors of the study conclude that He’s 

HPM was successfully employed to compute the ST. Instead of requiring integration, as is the 

case with conventional procedures, this method is a straightforward and effective 

mathematical tool.  

He, J.H. (2008) [93]. The paper titled ‘Recent Development of the Homotopy Perturbation 

Method’ offers a simple introduction to the homotopy perturbation method’s fundamental 

solution process. It places emphasis on creating an appropriate homotopy equation and 

understanding how to break down a difficult problem into a series of similar tasks. 

Mohyud-Din, S. T., and Noor, M. A. (2009) [5]. In their study, they employed the HPM to 

solve both linear and nonlinear PDEs. This approach finds the solution without the need of 

linearization, discretization, or constrictive assumptions. They include Helmholtz, Fisher’s, 

Boussinesq, unique fourth-order PDEs, systems of PDEs, and higher-dimensional initial 

boundary value issues. In this study, a method’s precision, dependability, and effectiveness 

are examined. One ingenious benefit of this approach is that it eliminates the requirement to 

locate Adomian’s polynomials. 

Kilicman, A., and Gadan, H. E. (2010) [94]. The ST and its link to the LT are discussed in 

this study. It also presents an example of the double ST to solve the wave equation in one 

dimension with singularity in the beginning circumstances. According to the article, the ST 

can be a useful tool for solving differential equations, especially those with singularities. 

Additionally, it draws attention to the connection between the PDE’s pre- and post-

convolution solutions. 

Dalir, M., & Bashour, M. (2010) [95]. The paper discusses several interpretations of 

fractional derivatives and integrals and then uses them to develop precise formulas and 

graphs for a few exceptional functions. Additionally, various applications of the theory of 

fractional calculus are reviewed. 

Abbasbandy, S., and Shirzadi, A. (2010) [96]. The first integral method, a method used to 

deal with nonlinear equations and resolve various nonlinear issues, is put into practice in this 

study.  New exact solutions to the modified Benjamin-Bona-Mahony (mBBM) problem were 

found when the approach was explicitly applied to it. Using hyperbolic and exponential 
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functions, two of these solutions are complex, and two are real. These solutions’ traits are 

consistent with those found in earlier research, supporting their validity. Importantly, these 

recently discovered solutions could have a big impact on how we understand real-world 

physical issues. 

Khan, Y., and Wu, Q. (2011) [97]. To solve nonlinear equations, the authors use the LT 

method with the HPM in this study. The HPTM is the name given to the technique. He's 

polynomials have made working with nonlinear terms easy to understand. The suggested 

approach finds the solution without requiring any assumptions about discretization and 

prevents round-off mistakes. The suggested strategy solves nonlinear problems without the 

need for Adomain’s polynomials, which is a significant benefit over the decomposition 

method. 

Gupta, P. K., and Singh, M. (2011) [67]. The HPM is used in this study to identify 

approximations of solutions to the nonlinear fractional F-W equation. In comparison to other 

perturbation approaches, the numerical results demonstrated that this method has good 

accuracy and decreases the number of calculations. The HPM is a strong, simple, and 

efficient method for a broad spectrum of nonlinear issues in science and engineering without 

a lot of presumptions or limitations. In real-world situations where intricate boundary 

conditions and nonlinear differential equations dominate the process, it can also be used. 

Singh, J. et al. (2011) [175]. In this manuscript, the authors put forward a novel approach 

referred to as the HPSTM to address nonlinear equations. This method amalgamates the ST 

with the HPM, thereby yielding a solution devoid of discretization or restrictive assumptions 

and circumventing round-off errors. The implementation of He's polynomials in the nonlinear 

term is presented, which is perceived as an advantageous departure from the application of 

Adomian's polynomials in the decomposition method. The proposed algorithm offers a 

prompt convergent series solution, potentially leading to a solution. The efficacy of the 

HPSTM is exhibited in resolving nonlinear advection equations, encompassing both 

homogeneous and non-homogeneous cases. 

Kilicman, A., and Eltayab, H. (2012) [98]. The authors compare and contrast the LT with 

the ST in this work. They solve the steady-state temperature distribution function for this, and 

after solving it with both the LT and ST, they come to the conclusion that while a solution to 

a differential equation found by the ST may exist, a solution obtained by the LT does not 

always imply that it does. 
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Vishal, K. et al. (2012) [99]. The authors employ the HAM to derive approximate analytical 

solutions for the nonlinear S-H equation with a fractional time derivative in the Caputo sense 

in this study. The study uses the residual error formula to analyse the effect of physical 

relevant elements on the probability density function and the convergence of the 

approximation series solution. The authors exhibit these effects in graphs and tables for 

numerous specific examples, including fractional Brownian movements and standard motion. 

 

Elzaki, T. M., & Hilal, E. M. A. (2012) [100]. In their research, they outline a reliable 

merging of the ET and the HPM to examine a few nonlinear PDEs. The suggested HPM is 

employed to rewrite the first- and second-order initial value problems, resulting in a solution 

in terms of changed variables. The inverse transformation is then used to find the series 

solution. According to the conclusion, the findings validated the methodology's efficacy. 

 

El-Sayed, A. M. et al. (2012) [101]. In this paper, the authors offer a HPM for solving 

initial-boundary condition problems related to fractional order PDE in finite domains. To 

demonstrate the efficacy of the suggested strategy, examples are given. The method can 

effectively address a category of initial-boundary value problems for partial differential 

equations with fractional orders within finite domains. The exact solution reported in prior 

works is compatible with the approximate solution derived by the HPM. 

Singh, J. et al. (2012) [102]. According to the study paper’s findings, the linear and 

nonlinear Klein-Gordon equations may be accomplished simply and effectively using the 

HPTM. This method avoids round-off error by combining the LT and the HPM to generate 

the solutions without using discretization or constraining assumptions. Another benefit of this 

approach is that, unlike the decomposition technique, it does not require Adomain’s 

polynomials to solve nonlinear problems. The study outcomes demonstrate how the proposed 

strategy may be utilised to handle a range of other nonlinear problems. 

 

Nazari-Golshan, A. et al. (2013) [103]. They use the modified HPM to solve nonlinear and 

singular Lane-Emden equations, including He’s polynomial with HPM and combining it with 

the Fourier transform. Using the approach, the suggested solutions to the three unique linear 

and nonlinear differential equations of Lone-Emden validated the physical property of the 

Lane-Emden problem's equilibrium, as 𝑥 → ∞ the solution approaches monotonically 

constant. 
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Kashuri, A. et al. (2013) [104]. In this study, they describe a new approach for solving 

nonlinear PDEs that combines the HPM and a new integral transform. In this paper, they 

solve a nonlinear PDEs with initial conditions and He’s polynomial is also used in this 

method for calculation.  Compare to previous approaches, this approach reduces computing 

work.   

Atangana, A., & Kilicman, A. (2013) [105]. In this research, they employed the Sumudu 

transform characteristics to solve nonlinear FDEs expressing heat-like equations with 

variable constants in this research. This approach combines the ST as well as the HPM, 

utilising He's polynomial. This technique is easy to use and does not require anything like 

Adomain polynomial. This approach is employed to solve a variety of linear and nonlinear 

FDEs encountered in many disciplines. The calculation used in this method is simple and 

easy to calculate. 

Bizara, J., & Eslami, M. (2013) [106]. The New Homotopy Perturbation Method was 

presented as a modified version of HPM. The nonlinear two-dimensional wave equation has 

been solved using NHPM in this research. In this study, they used the first approximation 

solution to arrive at the exact solution. The new technique that is used gives a better result 

than the HPM. 

Yousif, E. A., & Hamed, S. H. (2014) [107]. The authors have successfully derived precise 

analytical solutions for nonlinear FDEs by employing an integrated approach involving the 

HPM and the ST. These solutions are expressed in closed forms, utilising ML functions. The 

consideration of fractional derivatives is based on the Caputo sense. This method is simple, 

easy to apply, and effective for solving the nonlinear differential equation. 

Daga, A., and Pradhan, V. (2014) [108].  In their research articles, they used variational 

PDEs to solve the nonlinear generalised long wave (GRLW) problem. The combined 

technique was utilised, which is a mix of the variational iterative method and the HPM. To 

demonstrate the accuracy of this technology, an example of the propagation of a single 

soliton is shown. They create an analytical solution for the regularised wave equation. The 

study uses graphics to demonstrate solitons and waves. The method’s speedy convergence 

demonstrates its reliability and brings a considerable improvement in solving PDEs over 

prior approaches.  

Elzaki, T. M., and Kim, H. (2014) [109]. In this study, the authors propose a highly efficient 

method for solving Burger's equation by incorporating both the ET and the HPM. Burger’s 
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equation analytical conclusion has been expressed in terms of a convergent series with a 

calculable component, and PDE can be used to treat the equations nonlinear term. After 

solving Burger’s equation, they conclude that the proposed approach is more effective, and 

this approach yields results that are nearly exact. 

Ziane, D., and Cherif, M. H. (2015) [110]. The author’s primary objective in this article is 

to broaden the applicability of the ET decomposition technique by solving PDEs of the first, 

second, and third orders. Upon conducting this comparison, it is determined that the ET 

decomposition method produces highly precise approximate solutions with minimal 

iterations, especially in the equations of the third order, and the emergence of the 

decomposition series solution after calculating the two first terms only. 

Hamza, A. E., & Elzaki, T. M. (2015) [111]. In this study, the exact solution to Burger’s 

equation is obtained. For obtaining, the solution, the author’s combines two techniques: 

homotopy perturbation and the Sumudu transform. They demonstrate that the suggested 

technique is a refinement of an existing numerical technique. 

 

Gupta, S. et al. (2015) [10]. In this paper, the convection-diffusion problem was solved by 

using the HPTM to find the analytical solution. They use He’s polynomial, and show that 

He’s polynomial, is more powerful than the Adomain polynomial. By using He’s polynomial 

the solution converges very quickly, and negligible errors have been observed even with just 

a few terms of HPTM. They conclude that HPTM solves nonlinear problems without using 

Adomain polynomials.  

 

Touchent, K. A., & Belgacem, F. B. M. (2015) [112]. The authors use the HPSTM to solve 

a nonlinear FDE in this study. The HPSTM is turn out a significant technique over the 

Adomain decomposition method; it solves the nonlinear fractional PDEs without using the 

Adomain polynomial. Finally, based on the results obtained, the HPSTM is considered to 

clarify the existing numerical techniques, and it is also an effective way of solving the FDEs. 

Caputo, M., and Fabrizio, M. (2015) [113]. The presented paper introduces a novel 

definition of fractional derivative that possesses a smooth kernel. The temporal and spatial 

variables are represented in two distinct ways in this definition. Consequently, the utilisation 

of the Laplace transform becomes feasible for the temporal variables, while the spatial 

variables can be subjected to the Fourier transform. The novel non-local fractional derivative, 

proposed within the paper, offers the capability to describe material heterogeneities and 
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structures of varying scales. These characteristics are not adequately captured by 

conventional local theories. Thus, the spatial fractional derivative emerges as a potentially 

significant tool for investigating the macroscopic behaviours of materials featuring nonlocal 

interactions. Additionally, the paper encompasses applications and simulations of the novel 

derivatives, which are applied to classical functions, such as trigonometric functions. 

 

Ortigueira, M. D., and Machado, J. A. T. (2015) [114]. The idea of a fractional derivative 

is covered in this paper, along with the rules that an operator following it must abide by. The 

wide sense criterion is one of two sets of criteria for identifying a certain operator as an FD 

that were put forward. Several recent formulations of functional derivatives were examined 

based on those requirements. It was established that some topics are failed by the classical 

fractional derivatives. The derivatives of Grünwald-Letnikov, RL, and Caputo, on the other 

hand, were responded to and examined in the context of the suggested criteria. As a result, 

the paper’s conclusions are that the Grünwald-Letnikov, RL, and Caputo fractional 

derivatives satisfy the suggested requirements for being categorised as fractional derivatives, 

but the classical fractional derivative do not satisfy all of the proposed criteria. 

Baleanu, D. et al. (2016) [115].To solve an advection partial differential equation with time-

fractional Caputo and C-F derivatives, the authors of this article used the q-HAM and the 

variational homotopic perturbation method (VHPM). Both approaches’ results showed that 

both derivatives’ exhibit similarities.  

Neamaty, A. et al. (2016) [116]. They demonstrated the use of two methods: HPM and ET. 

They investigate certain nonlinear PDEs of fractional order in this study. This paper shows 

that ADM is simple for finding the solutions, but determining Adomian’s polynomial is 

difficult and complex. When there is a comparison between the decomposition method and 

HPET, the major advantage is that nonlinear problems can be solved without the need for 

Adomian’s polynomial. 

Tarasov, E. V. (2016) [117]. The paper put out a unique geometric interpretation of non-

integer orders' R-L and Caputo derivatives, based on jet bundle geometry and modern 

differential geometry. The idea of infinite jets of functions serves as the foundation for the 

suggested interpretation of fractional derivatives. The fractional-order derivatives are 

represented as infinite series with integer-order derivatives in the paper in order to establish a 

geometric interpretation of them. The study shows how certain types of infinite jets are 

related to non-integer-order derivatives. In terms of order, the proposed infinite jets are seen 
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as a rebuild of standard jets. The paper offers a viewpoint on the geometrical analysis of 

fractional order derivatives as an outcome. 

Sharma, D. et al. (2016) [118]. In order to solve fractional PDEs, the HPSTM is applied in 

this study. The method is seen to be very straightforward, very effective, and error–free. The 

paper gives instances of applying the HPSTM to solve several equations. The findings show 

that while solving nonlinear systems of PDEs, the HPSTM takes much less computing work 

and demonstrates quick convergence. The paper’s overall conclusion is that the HPSTM 

overcomes the drawbacks of existing approaches, such as the HPM, and is a powerful and 

simple method for solving fractional nonlinear PDEs. 

 

Zarebnia, M., and Parvaz, R. (2016) [119]. The Benjamin-Bona-Mahony-Burgers (BBMB) 

problem is solved using a cubic B-spline collection approach in this study. The method’s 

stability study demonstrates that it is infallibly stable. The order of convergence is 𝑜(ℎ
2 +

∆𝑡). The numerical results produced using the suggested approach show high accuracy and 

stability. As a result, the research draws the conclusion that the suggested approach works 

well for resolving the BBMB equation. 

 

Morales-Delgado, V. F., et al. (2016) [120]. By integrating the LT with homotopy 

approaches, the study provides a unique method for solving FPDEs. This technique works 

well for getting approximations for FPDEs, making it a useful tool for physicists and 

engineers working in a variety of scientific domains. Due to the Liouville-Caputo 

representation’s inaccurate depiction of memory effects, the CF formulation of the fractional 

operator is preferred. By contrasting the derived solutions with the exact solutions of the 

fractional equations, the research proposes a generic framework for locating approximations 

to FPDEs and illustrates its effectiveness. 

Gomez-Aguilar, J. F. et al. (2017) [121]. The authors provide the HPTM for solving 

nonlinear FPDEs with the C-F fractional operator in this paper. To get the infinite series 

solution, perturbative expansion polynomials are taken into account. To establish the efficacy 

of this method, the authors successfully tackle the fractional equations specified for the 

singular scenario, wherein the boundary of the integral degree of the temporal derivative is 

taken into account. The authors also provide a general scheme for approximating solutions of 

fractional equations, which quickly converges and is presented to a series form. 
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Singh, P., and Sharma, D. (2017) [122]. The authors of this article discuss the problem of 

convergence in the HPTM and provide a resolution. In addition, they calculate the series 

solution’s largest absolute truncation error. A non-linear fractional partial differential 

equation is also subjected to the HPTM, with an approximation of the solution produced. A 

surface graph of the fifth-order approximation solution is used by the authors to further 

analyze the results. In conclusion, the study contributes by providing a solution to the 

convergence issue in HPTM, calculating truncation error, using the approach on a non-linear 

equation, and interpreting the outcomes using a surface graph. 

Patel, M.A., & Desai, N.B. (2017) [123]. The author describes the HAM that was employed 

to solve a nonlinear PDE resulting from countercurrent imbibitions in a homogeneous porous 

medium. The HAM provides an approximate analytical solution to a nonlinear PDE.  

Khadar, M. M. (2017) [124]. The explained HPSTM is implemented to obtain the 

approximate solution of the multidimensional fractional heat equation. The major benefit of 

the HPSTM is that it finds solutions to the non-linear differential equation without the use of 

Adomain polynomials. By using the HPSTM, the approximate solution that is obtained is in 

coincides accurately with the exact solution and also illustrates the high potential and validity 

of the technique. 

Turkyilmazoglu, M. (2017) [125]. In this paper, the author presents a parametrized variation 

of the ADM, referred to as the optimum ADM. The objective of this method is to enhance the 

convergence and rate of convergence of the classical ADM. It exhibits that the optimum 

ADM achieves convergence to the precise solution in cases where the classical ADM fails to 

converge. The optimal ADM greatly broadens the conventional ADM's constrained domain 

of convergent physical solutions to a more refined interval. Consequently, the newly 

proposed algorithm, the optimum Adomian decomposition method, exhibits superior 

accuracy in comparison to the recently popular HAM. 

Li, W. & Pang, Y. (2018) [126]. The authors offer an iterative approach for obtaining both 

estimated and accurate solutions to time-FDEs in this paper. To demonstrate the potency of 

the technique, the authors apply it to linear and nonlinear S-H equations and come up with 

approximate analytic solutions backed up by numerical figures. This demonstrates that the 

iterative approach is both easy to apply and successful when dealing with Cauchy problems 

with time-fractional differential equations. 
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Elbadri, M. (2018) [127]. The author compares the HPTM and HPM. For comparison, they 

apply the methods to the inhomogeneous equation, the non-linear K-G equation, and the non-

homogeneous equation. After finding the series solution, it was concluded that the HPTM has 

a more rapid pace of convergence than the HPM. 

Elzaki, T. M., & Chamekh, M. (2018) [128]. The authors discussed the New 

Decomposition Method (NDM) introduced for solving nonlinear fractional initial value 

problems by applying a method that is proposed by both the Elzaki and Adomain 

decomposition method. The combined technique is a useful strategy for solving nonlinear 

fractional differential equations. 

Gad-Allah, M. R & Elzaki, T.M (2018) [129]. Discussed new novel technique, i.e., the new 

HPM, and how it is employed to solve of linear, nonlinear, and integral problems. In this 

article, they used two important steps: first, an appropriate homotopy equation, and second, 

choosing suitable initial conditions. To check the ability of the approach, some instances are 

provided. The NHPM is more reliable and efficient than the HPM, as well as easier to use as 

well as more precise in solving linear and nonlinear differential equations. 

Noeiaghdam, S. et al. (2018) [130]. In this paper, they investigate the susceptible-infected–

recovered model of computer viruses as a nonlinear system of ODE by applying the HAM. 

They have certain additional parameters and functions in this work, and one of them is 

convergent to the control parameter curves and identifies the convergence. They show the 

advantages of this method. The remaining errors were utilised to demonstrate the method's 

accuracy and effectiveness. 

Al-Nemrat, A., & Zainuddin, Z. (2018) [131]. In this paper, the author provides and 

examines the results. Examining different frequencies across approximate, HPSTM, HPLTM, 

and precise solutions reveals that the HPSTM approach is exceedingly efficient, 

straightforward, and applicable to different forms of nonlinear boundary value problems. 

Kharrat, B. N., and Toma, G. (2018) [132]. The authors offer a novel approximation 

approach in this study that is produced by merging Sumudu's transform with the HPM. This 

approach may be utilised to solve a variety of nonlinear PDE problems. The findings of this 

approach were then compared to those of ETHPM, and they determined that MHPSTM gives 

more successful results than ETHPM. 
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Singh, P., and Sharma, D. (2018) [133]. The article proposes a hybrid approach for solving 

nonlinear PDEs, which includes ST and HPM. He's polynomial, expressing the nonlinear 

terms, and provides the series solution. The study defines the convergence and uniqueness 

conditions, offers information on convergence, and analyses the solution’s error. The 

resolution of Newell-Whitehead Segel, and Fisher’s equations provides evidence for the 

established fact. Examples are provided to support HPSTM's Numerical and Error analysis. 

 Matlob, M. A., and Jamali, Y. (2019) [134]. The study investigates using fractional-order 

differential calculus to model viscoelastic systems, addressing its fundamentals and offering 

an overview of its use. In modelling viscoelastic systems, it emphasises the benefits of 

fractional order calculus, such as its ability to accurately capture system behaviour, and its 

advantages over traditional approaches.  

Singh, P., & Sharma, D. (2019) [135]. In this paper, the author presents the HPTM as an 

amalgamation of the HPM, the LT, and the HPETM, which are used to obtain a series of 

equations from a nonlinear fractional PDE.  After applying both strategies, namely HPTM 

and HPETM, to solve nonlinear homogeneous and non-homogeneous fractional PDEs, the 

outcomes demonstrate a high level of accuracy, simplicity, and efficiency in tackling 

challenging equations. 

Jena, R. M., & Chakraverty, S. (2019) [29]. In this study, two strategies are explained: one 

is the HPM, and the other is the ET, which is combined to make the HPETM. The HPETM is 

used to solve the Navier-Stokes equation of fractional order, and the results obtained are 

good. In lieu of Adomain polynomials, this is a powerful and efficient approach for getting 

analytical and approximation solutions for fractional order nonlinear PDEs. 

Kaya, F., & Yilmaz, Y. (2019) [136]. In this paper, they explaine that the integral transform 

is the solution method for ODEs and PDEs. This paper explains how newly introduced 

Sumudu transform properties and their application provide an effective tool for the study of 

some ODEs and PDEs. 

Turkyilmazoglu, M. (2019) [137]. The present paper offers a rigorous mathematical 

framework that validates the classical Adomain method. Specifically, it prevents divergence 

and accelerates convergence in the case of a least change in the interval of the approximate 

series and the optimal value of the added parameter, resulting in faster convergence. The 
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important outcome of the result generated after applying the Adomain decomposition method 

is that the ADM signals are no longer validated via other numerical means. 

Aggarwal, S., et al. (2019) [138] -The authors' goal in this paper is to present duality 

relations between the Elzaki transform and some useful integral transforms, such as the LT 

and the ST, and to show that the Elzaki transform and other transforms are strongly related 

and used in many advanced problems. 

Olubanwo, O. O., and Odetunde, O. S., (2019) [139] . The Laplace Homotopy Perturbation 

Method (LHPM), a new method for resolving nonlinear PDE, is presented in this study. The 

LHPM provides a powerful approach to solving problems by blending the LT method and the 

HPM. Since the results of LHPM are represented in terms of transformed variables, it is 

possible to drive a series solution by applying the inverse properties of the LT. The LHPM 

produces equivalent results, as shown by comparison with other approaches like HPETM. As 

a result, the research indicates that the LHPM is an appropriate and useful approach for 

dealing with such issues. In conclusion, the LHPM demonstrates its value in solving 

nonlinear PDEs.  

Singh, P., and Sharma, D. (2020) [56]. In the present article, the author employs the HPTM 

and the HPETM for the purpose of resolving nonlinear fractional PDEs.The HPTM is an 

amalgamation of the HPM and LT, whereas the HPETM entails the ET. The aforementioned 

techniques are employed in tackling the Fractional Fisher's equation, time-fractional F-W 

equation, and time-fractional Inviscid Burgers' equation. The outcomes attained through these 

methods manifest in the form of power series, which exhibit rapid convergence and furnish 

highly accurate solutions with a mere handful of iterations. By enabling the facile 

computation of additional terms, these methodologies effectively diminish the computational 

expense entailed by the resolution of intricate problems.  

Loyinmi, A. C., and Akinfe, T. K. (2020) [140]. In this research paper, the ETHPM and two 

novel hybrid algorithms are suggested to search for a precise solution. Fisher's equations are 

classified into three categories. The equations are well-known in mathematical biology and 

have many applications, including genetic transmission, population dynamics, stochastic 

processes, the combustion theorem, and a model for a spreading flame. Convergence and 

error analysis were used to provide the validity and usefulness of this approach, and EHPTM 

findings are an effective and dependable technique for offering an accurate solution to a 

broader range of nonlinear PDE in an easy-to-understand way without any discretization, 
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linearization, Adomain polynomial calculation, or erroneous. These results were compared to 

the precise results, homotopy results, and other existing literature results. 

Kharrat, B. N., & Toma, G. (2020) [141]. In this paper, they present the combination of two 

methods, i.e. the Sumudu transformation and the HPM. The main objective of this approach 

is to acquire an approximate solution. After applying the ST-HPM, the outcome demonstrates 

that it is a capable and efficient approach to finding precise and approximate equations. 

Li, W., & Pang, Y., (2020) [142]. This work illustrates a few nonlinear issues pertaining to 

the ADM, including its efficient and straightforward convergence analysis and iterative 

procedure. In this paper ADM is applying to find the approximate solution to the algebraic 

equation fractional differential equation (time-fractional Riccati equation), integero 

differential equation, differential equation, fractional PDE (time-fractional Kawahara 

equation, modified time-fractional Kawahara equation), and so on. 

Anjum, N. et al. (2020) [143]. In this paper, for the first time, the Elzaki transform of the 

variational iteration algorithm is used to identify the Lagrange multiplier. The iteration 

method that is used in this paper is converging rapidly and only one iteration results in a 

highly accurate solution. This approach to solve the nonlinear PDEs is incredibly effective. 

Dawood, L., et al. (2020) [144]. The article presents a novel approach, the Laplace Discrete 

Adomian Decomposition Method, developed based on discretization principles. This method 

is designed to address nonlinear Volterra-Fredholm integro-differential equations efficiently. 

By leveraging the inherent properties of discretization, the proposed technique offers a 

modified framework for solving such equations numerically. This method provides the 

approximate solution iteratively with less computation as compared to the ADM. 

Kumar , K. H., & Jiwari, R. (2020) [145] . In this paper, the authors present their work on 

the solution of time-dependent 1D, 2D, and 3D Benjamin-Bona-Mahony-Burgers (BBMB) 

and Sobolev equations. Legendre wavelets are employed in the proposed approach to resolve 

these equations. In this paper, they extend wavelet-based approaches for tying dependent 

three-dimensional (3D) issues in the temporal domain without using a finite difference 

approach. The Chebyshev wavelet is used to test all of the examples in this study. The 

sequence of errors is identical to that in the Legendre wavelet. In terms of grid size, it was 

discovered that the suggested technique is more efficient than the techniques existing in the 

literature. 
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Deepak, G. et al. (2020) [146]. In this paper, a novel semi-analytical approach called 

accelerated HPSTM is suggested to get approximate analytical solutions for non-linear PDE 

with proportionate delay. The suggested method merges the ST with the accelerated HPM. 

The approach provides a quickly convergent series and is observed to converge more quickly 

than HPM, VIM, and DTM, which are some additional semi-analytical approaches. In order 

to validate the proposed technique’s effectiveness and dependability, the condition of 

convergence and the approximations come quite close to the precise solutions of the models 

under consideration under the specified initial conditions. Therefore, the suggested approach 

is a reasonable and efficient way to resolve proportional nonlinear partial differential 

equations. 

Matwal, A. A. H., and Alkaeeli, S. (2020) [147], The Shehu transform homotopy method 

(STHM), which the authors propose, is an entirely novel method for proportionally resolving 

time-fractional PDEs. The process combines the HPM with the Shehu transform method. The 

fractional derivative is defined in the sense of Caputo. The series’ suggested solution quickly 

arrived at the exact solution. Three test problems are provided in the study to validate and 

demonstrate the effectiveness of the strategy. Under perturbation-restrictive conditions, the 

approximative solutions produced without any discretization converge fairly rapidly. The 

STHM is an effective and simple approach for solving TFPDEs with proportional delay. 

Ahmed, S., et al. (2021) [148]. In this research article, the authors present the Yang 

transform homotopy perturbation method (YTHPM), a new approach. They construct Yang 

transform equations for Caputo-Fabrizio fractional-order derivatives. The author next 

presents a technique for solving CF fractional-order PDEs, and evidence of its correctness is 

provided by demonstrating convergence to the precise solution when renowned in well-

known nonlinear PDEs with names like the KdV equation and Burger's problem. 

Nonlaopon, K., et al. (2021) [149]. The authors of this paper created a new technique, the 

Elzaki Transform Decomposition Method (ETDM), by combining the ET and the ADM. This 

method is used to resolve time-fractional S-H equations, which can be used to explain how 

liquid surfaces grow in the absence of horizontally well-conducting barriers. The Caputo 

sense is used for computing the fractional derivative. To show and validate the suggested 

technique's correctness, multiple figures are used to analyse linear and nonlinear S-H 

equations with varying beginning circumstances. 
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Alrabaiah, H. et al. (2021) [150]. The authors of this paper use the Laplace Adomain 

Decomposition Method (LADM) to drive approximate analytical solutions to fractional order 

‘S-H’. They explore the effects of different types of dispersive terms and Caputo fractional-

order derivatives. They conclude that the LADM is effective in dealing with both linear and 

nonlinear fractional-order PDEs and outperforms other analytical methods in terms of its 

convergence. However, it is slower when it comes to stability rate. Furthermore, they 

compare the results obtained via LADM with those obtained via the Homotopy Analysis 

Method (HAM) and determine that, when the Homotopy parameter h is chosen correctly, the 

solutions provided by the two methods are quite close. 

Kehaili, A., Benali, S., and Hakem, A. (2021) [151]. The homotopy perturbation 

transformation approach is used by the authors of this article to discover an approximate 

solution to a system of nonlinear fractional partial differential equations. A comprehensive 

examination is conducted to demonstrate the efficacy of the method by exploring individual, 

likewise interconnected equations that originate from wave phenomena in diverse disciplines, 

including but not limited to physics, geochemistry, chemical kinetics, and mathematical 

biology. 

  

Chu, Y. M., et al. (2021) [152]. To examine the fractional order of the Cauchy reaction-

diffusion equation, two analytical methodologies were employed: the HPTM and the 

innovative iterative transform method. They improved and steamlined the implementation 

process by utilising the ET. The accuracy of the current strategy is demonstrated by the 

results, which closely match the precise solution of the model. For solving fractional-order 

PDEs, the recommended approaches showed adequate convergence rates. Furthermore, the 

commutations required by these procedures were simple and easy to understand.  

He, W. et al. (2021) [153]. A hybrid approach called the Iteration Transform approach is 

proposed in the paper “Fractional System KdV Equation via ET” to deal with the fractional-

order linked KdV problem. This technique combines the ET with the new iteration approach 

to provide solutions in series form for assessing the analytical findings. A few numerical 

issues are also presented in this study to aid in comprehension of the iteration transform 

method’s analytical process. The numerical solutions demonstrate that just a small number of 

terms are required for efficiency, accuracy, and dependably arriving at an approximation. The 

analysis demonstrates that the results achieved with the present approach are extremely near 

to the actual ones. 
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Alrabaiah, H. (2021) [154]. This paper discusses the fractional order F-W equation under the 

non-singular kernel type derivative, as proposed by Atangana and Baleanu, along with a 

modified homotopy perturbation method (MHPM) to discover approximate solutions. No 

discretization is necessary for the straightforward procedure. Surface plot interpretations 

provide graphical representations that highlight the analytical dynamics of the problem. The 

study’s findings demonstrate the viability of the suggested method for estimating analytical 

solutions to nonlinear problems. 

Jani, H. P., and Singh, T. R. (2022) [155]. The fractional model of the Swift-Hohenberg 

equation was successfully solved using the Aboodh transform homotopy perturbation method 

(ATHPM), as detailed in the research. The Swift-Hohenberg equation was used to explain the 

formation and progression of patterns in a variety of systems, such as fluid dynamics, 

temperature, and thermal convection. To present the approximate analytical solutions to 

nonlinear differential equations, this approach was contrasted with the current approaches 

such as the q-HATM iterative method and ETDM, and was determined to be in excellent 

agreement. The problem’s convergence analysis was also presented. Additionally, 

convergence analysis is carried out, and accuracy is evaluated by comparing the ATHPM 

solution to the exact solution and LADM. Overall, the research indicates that ATHPM is an 

effective method for resolving the fractional model of the S-H problem, offering highly 

accurate solutions to nonlinear systems, and facilitating the exploration of various nonlinear 

scenarios. 

Mohamed, M. et al. (2022) [156]. In this study, the authors combine the Elzaki transform 

with a novel homotopy perturbation approach. By using this method, they solve a nonlinear 

fractional partial differential equation, and after solving the nonlinear problem, they represent 

their solution with the help of a surface and line graph. They compare their results with the 

exact solution. 

 

Obi, C. N. (2022) [157]. The author extends the utilisation of the HPM to the advection 

equation in one or two dimensions in the present research. It employs the HPM to provide a 

semi-analytic solution to nonlinear advection issues. Many writers have used the approach to 

tackle linear and nonlinear problems, and this study contributes to its utilisation in the 

detection equation. The work focuses on solving nonlinear PDEs with beginning and 

boundary conditions, which can have applications in a variety of domains. The HPM yields 

analytic and approximate solutions. 
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Salman, A. T. et al. (2022) [158]. In this article, the analytical solutions to the coupled 

Burger's equation and the time-fractional Burger's equation are obtained using the EHPM. 

Fractional derivatives are expressed using the Caputo sense. This approach is useful for 

solving fractional partial differential equations as the result is almost the precise solution. It is 

a very beneficial tool for fractional PDE solutions. 

Huseen, S., and Okposo, N. I. (2022) [159]. The fractional natural transform decomposition 

method (FNTDM), a modified integral transform technique, is presented in this paper as a 

means of obtaining approximate analytical solutions for certain time-fractional versions of 

the nonlinear Swift-Hohenberg (S-H) equation with fractional derivatives in the sense of 

Caputo. The Adomain decomposition method and natural transform are used in the FNTDM 

to provide series solutions with a high degree of accuracy and few calculations. There is no 

discretization, linearization, or perturbation involved in this method’s direct equation 

solution. The results of the simulations performed support the applicability of the proposed 

technique to even more difficult issues that arise in a variety of applications of applied 

mathematics and physics by demonstrating similarities with those in the related literature that 

has already been published. The technique of solution under consideration is acknowledged 

to have a significant capability to generate an optimal convergence area for the solution, 

which contributes to its dependability, effectiveness, and simplicity. 

Iqbal, S., et al. (2022) [160]. The conformable Elzaki Transform Homotopy Perturbation 

Method (CDETHPM), a new method for resolving nonlinear time-fractional partial 

differential equations (N-TFPDEs), is presented by the authors. In comparison to 

conventional techniques, the suggested method greatly decreases the amount of 

computational work necessary while maintaining excellent numerical precision. It is 

successful in locating precise and approximate solutions for N-TFPDEs. The solution’s 

uniqueness and convergence have also been determined by the results. Through the use of 

four distinct problems, the effectiveness and approximation of the suggested approach have 

been confirmed. 

Alshehry, A. S. et al. (2022) [161]. To solve real-world issues, they concentrate on 

developing numerical analytical solutions and building fractional-order mathematical models. 

It presents the Laplace residual-power-series method (LRPSM), an entirely novel and 

dependent approach for resolving fractional partial differential equations. The need for an 

effective approach to solving such equations is the fundamental problem this research 

attempts to address. The results of the study indicate that the use of LRPSM is a successful 
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strategy for resolving fractional PDEs, with a series solution that quickly converges to the 

exact solution. The method successfully resolves fractional PDE and manages the fractional 

derivative in the context of Caputo sense. The results obtained from LRPSM align with those 

of the natural homotopy perturbation approach, demonstrating their compatibility. 

Rahman, M. M., et al. (2022) [162]. The KdV equation was solved using both HAM and 

HPM in the study. For three separate examples, both approaches l2-error were determined 

using an appropriate exact solution. According to the results, HPM performed better than 

HAM when the time value (t) was small. In all three situations, there was an agreement 

between the two techniques on the exact solution. It was found that the HAM and HPM 

solutions coincided when ℋ and ℏ values met the requirement ℋℏ = −1  and the answer 

was computed using MATLAB algorithms. 

Saifullah, S., et al. (2022) [163]. The nonlinear K-G equation with the Caputo fractional 

derivative is investigated in this study. By combining the double LT with the decomposition 

technique, the authors were able to establish the general series solution of the system.  They 

observed that the resulting solution precisely matches the mathematical model’s solution. It is 

examined if the model holds up in the presence of the Caputo fractional derivative. With 

proper auxiliary circumstances and particular instances, the applicability and accuracy of the 

suggested approach are proven. The authors deduced that the suggested system permits 

soliton solution to the numerical solutions. The amplitude of the wave solution is observed to 

rise with time derivative, which leads to the conclusion that the factor significantly increases 

the amplitude and breaks the dispersion and nonlinearity features, potentially allowing the 

dynamical system to be excited. Additionally, they have shown the physical activity that 

demonstrates the development of localised mode excitation inside the system.  

He, Y., and Zhang, W. (2023) [164]. They investigated an iterative transformation approach 

for analysing PDEs that incorporates ET and iterative methods in their research article. The 

technique works well to produce series-based numerical solutions. The answers to the K-G 

problem obtained using the HPM and the method described in this paper are identical. 

Additionally, this method’s steps and outcomes for resolving the novel generalised fractional 

Hirota-Satusuma linked KdV equation are provided in the study. As a result, utilising the ET 

with an iterative technique for obtaining fractional PDEs is efficient. 

Chauhan, A., & Arora, R (2022) [165]. In this study, the fifth-order KdV equations of 

various forms were approximation-analytically solved using the HAM. These equations are 
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often used in the domains of fluid dynamics and mathematical physics. The derived solutions 

were carefully compared with exact solutions, and their correctness was shown by displaying 

the absolute errors graphically. The effectiveness of HAM as a reliable numerical method for 

resolving non-linear PDEs is highlighted in the paper. The method’s great precision in 

finding approximate solutions is due in part to its ability to adjust the rate of approximation 

series and the convergence zone. With a solid method to handle non-linear KdV, the reported 

findings offer an invaluable resource for researchers working in the field. 

Kapoor, M., & Joshi, V. (2023) [166]. Sumudu HPM and Elzaki HPM, two hybrid methods 

for solving coupled Burger’s equations, are compared by the authors. Applying these 

techniques to three separate instances of the problem shows their efficiency and accuracy. 

The study’s error and convergence assessments for the suggested approaches demonstrate 

their applicability and demonstrate. In comparison to complicated numerical systems, the 

analytical regimes suggested in the paper are more effective at handling partial differential 

equations. It is emphasised that precise and approximation solutions can coexist, and it is 

claimed that the suggested regimes have numerical convergence. Ultimately, the work offers 

a useful comparison of the two hybrid techniques for resolving coupled Burgers equations. 

Yasmin, H. (2023) [167]. In this paper, the author presents an efficient method for solving 

fractional nonlinear convection-diffusion equations: the Aboodh homotopy perturbation 

transformation method. Using the Aboodh transformation to make the presented issues 

simpler, this approach utilises the capabilities of the CD and AB operators. Fractional-order 

problem solutions are accurate representations of the issues’ actual dynamics. The paper also 

demonstrates the practical applicability of these techniques in a variety of fields, including 

combustion and detonation theory, heat transfer in dranning film, mathematical biology and 

population dynamics, fluid flow, finance, and transport chemistry in the atmosphere. 

Fractional nonlinear convection, reaction, and diffusion equations, including fractional 

Atangana-Baleanu and Caputo derivatives, are analysed using the Aboodh homotopy 

perturbation transform method. The research develops a modified method to approximate 

these derivatives, analyses the suggested model using graphical and tabular simulations, and 

emphasises the model’s usefulness in real-world applications in several domains. 

Naeem, M., et al. (2023) [168]. The study of fractional PDEs is made easier by these 

techniques, which combine the Yang transform, HPTM, and YTDM with the Caputo 

fractional derivative. It is shown that the HPTM and YTDM are used for solving both linear 
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and nonlinear FDEs. The key features of the YTDM and HPTM are highlighted in the study. 

The study possibly offers an alternative to current approaches and has extensive scientific and 

engineering implications. Future goals include putting the new method to the test on more 

fractional differential equation problems and testing quickly convergent realistic series.  

Albogami, D. et al. (2023) [169]. Time-fractional linear and nonlinear Klein-Gordon 

equations were solved analytically using the Adomain Decomposition method. A well-known 

and convergent approach was used to deal with linear and nonlinear time-fractional K-G 

equations. The efficiency of the process was confirmed by comparing the numerical solutions 

produced using the decomposition method with the exact solutions and finding that they were 

quite close to each other. These incredibly accurate results demonstrate the decomposition 

method’s capacity to quickly and effectively produce numerical results that match the exact 

solution. 

Elbadri, M., (2023) [170]. The linear and nonlinear time-fractional K-G equations are 

investigated in this study using the Natural Transform Decomposition Method (NTDM). The 

process combines two approaches: ADM and the natural transform method. In series form, 

the equation’s approximate solutions are obtained. Three examples are given in order to show 

the method’s effectiveness. The solutions have been developed for a variety of time power 

values. 

Naeem, M. et al. (2023) [171]. The HPTM and the Yang transform decomposition method 

(YTDM), are two different techniques for solving various forms of nonlinear PDEs, including 

fractional PDEs. To solve fractional PDEs, the Yang transform, HPTM, and YTDM are 

combined with the Caputo fractional derivative. In-depth analysis, illustrations, and tabular 

numerical data are provided for large strategies in the study. Using HPTM and YTDM, the 

authors have successfully solved an extensive number of linear and nonlinear FDEs. The 

research comes to the conclusion that these techniques may be used in place of present 

approaches and have an extensive variety of applications in research and engineering. The 

authors want to demonstrate rapid convergence in realistic series and use these methods for 

more fractional differential equation applications in the future. 

Conclusion: 

In conclusion, this literature review provided a comprehensive overview of semi-analytical 

techniques to perform analysis of FDEs and nonlinear PDEs. These ideas have grown in the 
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realm of mathematical modelling into strong tools with a broad variety of applications in 

science and engineering. In this study, we investigated a several types of semi-analytical 

methods, including HPM, HPSTM, HPTM, and many more, and the different equations on 

which these methods are applied. The advantages and disadvantages of each of these 

approaches were reviewed, as well as how well they handled nonlinear and fractional 

problems. 
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Chapter 3 

Solution of Nonlinear Partial Differential Equations using 

Accelerated Homotopy perturbation Elzaki Transformation 

Method 

 

3.1 Introduction  

This chapter provides a full explanation of the technique used to accomplish the research 

objectives set out in this study. The main aim of this study is to create a semi-analytical 

technique that combines traditional approaches with integral transformation theories, such as 

Laplace and other approaches of a similar kind. Accelerated algorithms are computational 

techniques designed to speed up the convergence or minimize the number of iterations 

needed to solve a specific problem. These algorithms often use advanced optimisation 

techniques or parallel processing to achieve faster results compared to traditional algorithms. 

Kalla, I. L. has introduced an approach that utilizes a formula based on He’s polynomial to 

construct accelerated He’s polynomials, thereby enhancing the convergence rate. Numerical 

examples are presented to demonstrate the approach's effectiveness. 

In our research work, we apply different types of semi-analytical techniques utilizing the 

accelerated He’s polynomial. After using this technique, we compare the findings with the 

precise answer and with results that have already been published in the literature. The 

research is primarily centred on addressing nonlinear partial differential equations. In this 

study, a variety of equations, including advection problems and non-homogeneous PDEs are 

utilised and subsequently verified using Mathematica. 

3.2 Convergence Analysis: 

Theorem: If ∃ ɳ varying from 0 < ɳ < 1 for the  𝜔 and 𝜔𝑛(𝑥, 𝑡) stated in Banach space, 

[56] thus the given series solution converges to the solution 

if ‖ 𝜔𝑛+1  ‖≤  ɳ‖ 𝜔𝑛 ‖. 

Proof: We determine that 𝑆𝑛 is a Cauchy sequence in (𝐶[0, 𝐾], ‖. ‖), to ascertain the 

convergence of sequence {𝑆𝑛} of the partial sums of the series. 

‖𝑠𝑛+1 − 𝑠𝑛‖ = ‖ 𝜔𝑛+1  ‖≤  ɳ‖ 𝜔𝑛 ‖, 

≤  ɳ2 ‖𝜔𝑛−1‖ ≤ ⋯ ≤ ɳ𝑛+1 ‖𝜔0‖, 
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Here ‖𝑠𝑛 − 𝑠𝑚‖ = ‖∑  𝜔𝑖‖ 𝑛
𝑖=𝑚+1 ≤ ∑ ‖𝑛

𝑖=𝑚+1  𝜔𝑖 ‖, 

≤ ɳ𝑚+1(∑ ɳ𝑖𝑛−𝑚
𝑖=0 ) ‖𝜔0 ‖, 

= ɳ𝑚+1
(1 − ɳ𝑛−𝑚)

(1 − ɳ)
‖𝜔0 ‖, 𝑛, 𝑚 ∈ ℕ 

As of  0 < ɳ < 1, we have 

‖𝑠𝑛 − 𝑠𝑚‖ ≤
ɳ𝑛+1

1−ɳ
‖𝜔0‖  , 

Moreover,  𝜔0 is bounded, so  ‖𝑠𝑛 − 𝑠𝑚‖ → 0 𝑎𝑠 𝑚, 𝑛 → ∞. so {𝑆𝑛} is a Cauchy sequence in 

𝐶[0, 𝐾]. As a result  ∑ 𝜔𝑛(𝜑, 𝑡)∞
𝑛=0  is convergent. 

 

3.3 Accelerated Homotopy Perturbation Elzaki Transformation Method 

Assume the nonlinear PDE [173] 

                     
𝜕𝑛𝜑

𝜕𝑡𝑛 + 𝐿𝜑(𝑥, 𝑡) + 𝑁𝜑(𝑥, 𝑡) = 𝐺(𝑥, 𝑡)                                             (3.3.1) 

With condition 𝜑𝑖(𝑥, 0) =  𝑘𝑖(𝑥), 𝑖 = 0,1,2 … … 𝑛 − 1. 

Using ET in equation (3.3.1) we obtain  

                𝐸 [
𝜕𝑛𝜑

𝜕𝑡𝑛 + 𝐿𝜑(𝑥, 𝑡) + 𝑁𝜑(𝑥, 𝑡)] = 𝐸[𝐺(𝑥, 𝑡)],                                      (3.3.2) 

When the Elzaki transformation characteristics are applied to equation (3.3.2), the result is 

𝐸[𝜑(𝑥, 𝑡)] = ∑ 𝑣𝑘+2𝜑𝑘(𝑥, 0) +𝑛−1
𝑘=0 𝑣𝑛 𝐸[𝐺(𝑥, 𝑡) − {𝐿𝜑(𝑥, 𝑡) + 𝑁𝜑(𝑥, 𝑡)}],                  (3.3.3) 

using the inverse ET to equation (3.3.3) 

𝜑(𝑥, 𝑡) =  ∑
𝑡𝑘

𝑘!
𝜑𝑘(𝑥, 0)𝑛−1

𝑘=0 +  𝐸−1{𝑣𝑛 𝐸[𝐺(𝑥, 𝑡) − {𝐿𝜑(𝑥, 𝑡) + 𝑁𝜑(𝑥, 𝑡)}]},                (3.3.4)               

Using the HPM on equation (3.3.4), we obtain 

0 = (1 − 𝑝)(𝜑(𝑥, 𝑡) − 𝜑(𝑥, 0) + 𝑝(𝜑(𝑥, 𝑡) − ∑
𝑡𝑘

𝑘!
𝜑𝑘(𝑥, 0)

𝑛−1

𝑘=0

 

+ 𝑝{𝐸−1{𝑣𝑛 𝐸[𝐺(𝑥, 𝑡) − {𝐿𝜑(𝑥, 𝑡) + 𝑁𝜑(𝑥, 𝑡)}]}}, 

Here, 𝑝 ∈ [0,1] defined the parameter. Let 

                                                    𝜑(𝑥, 𝑡) = ∑ 𝜑𝑛𝑝𝑛∞
𝑛=0 ,                                                    (3.3.5) 

                                                  𝑁𝜑(𝑥, 𝑡) = ∑ 𝐻̃𝑛𝑝𝑛,∞
𝑛=0                                                    (3.3.6) 

           Where 𝐻̃𝑛 represent accelerated He’s polynomial with  

                                  𝐻̃𝑛(𝜑0, 𝜑1, 𝜑2, … … . 𝜑𝑛) = 𝑁(𝑆𝑛) − ∑ 𝐻̃𝑖 ,𝑛−1
𝑖=0                                 (3.3.7) 
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𝐻̃𝑛 = 𝑁(𝜑(𝑥0),  and 𝑆𝑘 = (𝜑1 + 𝜑2 + 𝜑3 … … 𝜑𝑘) using equation (3.3.5), (3.3.6) and (3.3.7) 

in  equation (3.3.4) gives 

∑ 𝜑𝑛𝑝𝑛

∞

𝑛=0

= 𝜑(𝑥, 0)

+ 𝑝 { ∑
𝑡𝑘

𝑘!
𝜑𝑘(𝑥, 0)

𝑛−1

𝑘=0

+ 𝐸−1 {𝑣𝑛 𝐸 [𝐺(𝑥, 𝑡) − {𝐿 ∑ 𝜑𝑛𝑝𝑛

∞

𝑛=0

+  ∑ 𝐻̃𝑛𝑝𝑛

∞

𝑛=0

}]}} , 

                                                                                                                                 (3.3.8) 

When we compare the coefficients of the comparable powers of p, we obtain 

𝑝0 = 𝜑0 = 𝜑(𝑥, 0), 

𝑝1: 𝜑1 = ∑
𝑡𝑘

𝑘!
𝜑𝑘(𝑥, 0)

𝑛−1

𝑘=0

+ 𝐸−1 {𝑣𝑛 𝐸 {𝐺(𝑥, 𝑡) − {𝐿𝜑0 + 𝐻̃0}}}, 

𝑝2: 𝜑2  = −𝐸−1 {𝑣𝑛 𝐸{𝐿𝜑0 + 𝐻̃0}}, 

⋮  

As a result, when 𝑝 → 1 the solution of equation is obtained as 

                                                       𝜑(𝑥, 𝑡) = ∑ 𝜑𝑛.∞
𝑛=0                                                   (3.3.9)   

          

Example 3.3.1: Let us assume the homogenous advection problem [173] 

                                                  𝑢𝑡 + 𝑢𝑢𝑥 = 0.                                                     (3.3.10) 

with initial condition𝑢(𝑥, 0) = −𝑥. 

We have the Elzaki transform of equation (3.3.10) 

                                                      𝐸[𝑢(𝑥, 𝑡)] = −𝑥𝑣2 − 𝑣𝐸[𝑢𝑢𝑥],                                (3.3.11) 

Using the inverse Elzaki transform means that 

𝑢(𝑥, 𝑡) = −𝑥 − 𝐸−1{𝑣𝐸[𝑢𝑢𝑥]}, 

Applying AHPETM to equation (3.3.11) yields 

                                    ∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 𝑝𝑛 = −𝑥 − 𝑝 {𝐸−1{𝑣𝐸[∑ 𝐻̃𝑛𝑃𝑛] }},∞

𝑛=0                (3.3.12) 

 First terms of  𝐻̃𝑛 are given as  

𝐻̃0 = 𝑥; 
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𝐻̃1 = 𝑡(2 + 𝑡)𝑥; 

𝐻̃2 =
1

9
𝑡2(18 + 24𝑡 + 15𝑡2 + 6𝑡3 + 𝑡4)𝑥; 

𝐻̃3 =
1

3969
𝑡3(5292 + 10584𝑡 + 13230𝑡2 + 12348𝑡3 + 8946𝑡4 + 5418𝑡5 + 2772𝑡6 +

1155𝑡7 + 378𝑡8 + 91𝑡9 + 14𝑡10 + 𝑡11)𝑥; 

⋮ 

When we examine the like powers of p in equation (3.3.12), we obtain 

𝑝0: 𝑢0 = -𝑥, 

𝑝1: 𝑢1  =  −𝐸−1{𝑣𝐸[𝐻̃0𝑢]} = −𝑥𝑡, 

𝑝2: 𝑢2  = −𝐸−1{𝑣𝐸[𝐻̃1𝑢]} =  −𝑥𝑡 −
𝑥𝑡3

3
, 

𝑝3: 𝑢3  = −𝐸−1{𝑣𝐸[𝐻̃2𝑢]} =
1

63
(−42𝑡3𝑥 − 42𝑡4𝑥 − 21𝑡5𝑥 − 7𝑡6𝑥 − 𝑡7𝑥), 

𝑝4: 𝑢4  = −𝐸−1{𝑣𝐸[𝐻̃3𝑢]}

=
1

238140
(−79380𝑡4𝑥 − 127008𝑡5𝑥 − 132300𝑡6𝑥 − 105840𝑡7𝑥

− 67095𝑡8𝑥 − 36120𝑡9𝑥 − 16632𝑡10𝑥 − 6300𝑡11𝑥 − 1890𝑡12𝑥

− 420𝑡13𝑥 − 60𝑡14𝑥 − 4𝑡15𝑥), 

⋮ 

Taking 𝑝 →1 yields the solution of the problem. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛

∞

𝑛=0

= 𝑢𝑜 + 𝑢1 + 𝑢2 + ⋯ 

𝑢(𝑥, 𝑡) − 𝑥 − 𝑡𝑥 − 𝑡2𝑥 −
𝑡3𝑥

3
+

1

63
(−42𝑡3𝑥 − 42𝑡4𝑥 − 21𝑡5𝑥 − 7𝑡6𝑥 − 𝑡7𝑥)

+
1

238140
(−79380𝑡4𝑥 − 127008𝑡5𝑥 − 132300𝑡6𝑥 − 105840𝑡7𝑥

− 67095𝑡8𝑥 − 36120𝑡9𝑥 − 16632𝑡10𝑥 − 6300𝑡11𝑥 − 1890𝑡12𝑥

− 420𝑡13𝑥 − 60𝑡14𝑥 − 4𝑡15𝑥) + ⋯ 

The precise answer to equation (3.3.10) is  

𝑢(𝑥, 𝑡) =
𝑥

𝑡 − 1
. 

the approximate solution of eq.( 3.3.10) is given by 

𝑢(𝑥, 𝑡) = −𝑥 − 𝑡𝑥 − 𝑡2𝑥 − 𝑡3𝑥 − 𝑡4𝑥 − ⋯ 
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(a)                                                                                  (b) 

 

 

                             (c) 

Fig 3.3.1 (i): (a) surface graph of exact solution at 0 ≤ 𝑥 ≤ 4,0 ≤ 𝑡 ≤ 0.9, (b) surface graph HPTM at 

 0 ≤ 𝑥 ≤ 4,0 ≤ 𝑡 ≤ 0.9, (c) surface graph of AHPETM at  0 ≤ 𝑥 ≤ 4,0 ≤ 𝑡 ≤ 0.9. 

 

 

                                   (d) 

Fig.3.2.1 (ii) :(d) Line graph where D1= 𝑢𝐸𝑥𝑎𝑐𝑡 , E1=𝑢𝐻𝑃𝑇𝑀, F1=𝑢𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.25, 0 ≤ 𝑥 ≤ 4, ;  

D2= 𝑢𝐸𝑥𝑎𝑐𝑡 , E2=𝑢𝐻𝑃𝑇𝑀, F2=𝑢𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.5, 0 ≤ 𝑥 ≤ 4, ; D3= 𝑢𝐸𝑥𝑎𝑐𝑡 , E3=𝑢𝐻𝑃𝑇𝑀, F3=𝑢𝐴𝐻𝐸𝑇𝑀 at 

𝑡 = 0.75, 0 ≤ 𝑥 ≤ 4. 

 

Example 3.3.2: Assuming the system of PDE [21,173] 

                                                 
 𝜕𝑢

𝜕𝑡
− 𝑣(

𝜕𝑢

𝜕𝑥
)2 = 0,                                                          (3.3.13) 
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𝜕𝑣

 𝜕𝑡
+ 𝑢(

𝜕𝑣

𝜕𝑥
)2 = 0,                                                             (3.3.14) 

with initial conditions 

𝑢(𝑥, 0) = 𝑒𝑥, 𝑣(𝑥, 0) = 𝑒−𝑥 

Taking Elzaki transform of equations (3.3.13) and (3.3.14), we have   

𝐸[𝑢(𝑥, 𝑡)] = 𝑒𝑥𝑣2 + 𝑣𝐸[𝑣(𝑢𝑥)2], 

𝐸[𝑣(𝑥, 𝑡)] = 𝑒−𝑥𝑣2 − 𝑣𝐸[𝑢(𝑢𝑥)2], 

 Inverse Elzaki transform given as: 

𝑢(𝑥, 𝑡) = 𝑒𝑥 + 𝐸−1{𝑣𝐸[𝑣(𝑢𝑥)2]}, 

𝑣(𝑥, 𝑡) = 𝑒−𝑥 − 𝐸−1{𝑣𝐸[𝑢(𝑢𝑥)2]}, 

 Now apply AHPETM  

                                        ∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 𝑝𝑛 = 𝑒𝑥 + 𝑝 {𝐸−1{𝑣𝐸[∑ 𝐻̃𝑛𝑃𝑛] }},∞

𝑛=0             (3.3.15) 

                                        ∑ 𝑣𝑛(𝑥, 𝑡)∞
𝑛=0 𝑝𝑛 = 𝑒−𝑥 − 𝑝 {𝐸−1{𝑣𝐸[∑ 𝐻̃𝑛𝑃𝑛] }},∞

𝑛=0           (3.3.16) 

And the first few terms of  𝐻̃𝑛 are given as  

𝐻̃0(𝑢) =  𝑒𝑥, 

𝐻̃0 (𝑣) = 𝑒−𝑥, 

𝐻̃1(𝑢) = −𝑒𝑥𝑡(−1 + 𝑡 + 𝑡2), 

𝐻̃1(𝑣) = 𝑒−𝑥𝑡(−1 − 𝑡 + 𝑡2), 

𝐻̃2(𝑢) = −
1

1728
𝑒𝑥𝑡2(−2592 − 1152𝑡 − 288𝑡2 − 720𝑡3 + 264𝑡4 + 864𝑡5 + 384𝑡6

− 316𝑡7 − 210𝑡8 + 36𝑡9 + 27𝑡10), 

𝐻̃2(𝑣) = −
1

1728
𝑒−𝑥𝑡2(−2592 + 1152𝑡 − 288𝑡2 + 720𝑡3 + 264𝑡4 − 864𝑡5 + 384𝑡6

+ 316𝑡7 − 210𝑡8 − 36𝑡9 + 27𝑡10 

⋮ 

 When we examine the like powers of p in equations (3.3.15) and (3.3.16), we obtain 

𝑝0: 𝑢0(𝑥, 𝑡) =  𝑒𝑥, 

𝑝0: 𝑣0(𝑥, 𝑡) =  𝑒−𝑥, 

𝑝1: 𝑢1  =  𝐸−1{𝑣𝐸[𝐻̃0𝑢]} = 𝑡𝑒𝑥, 
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𝑝1: 𝑣1  = −𝐸−1{𝑣𝐸[𝐻̃0𝑣]} = −𝑡𝑒−𝑥, 

𝑝2: 𝑢2  =  𝐸−1{𝑣𝐸[𝐻̃1𝑢]} = −
1

12
𝑒𝑥𝑡2(−6 + 4𝑡 + 3𝑡2), 

𝑝2: 𝑣2  =  −𝐸−1{𝑣𝐸[𝐻̃1𝑣]} = −
1

12
𝑒−𝑥𝑡2(−6 − 4𝑡 + 3𝑡2), 

𝑝3: 𝑢3  =  𝐸−1{𝑣𝐸[𝐻̃2𝑢]}

= −
1

25945920
𝑒𝑥𝑡3(−12972960 − 4324320𝑡 − 864864𝑡2 − 1801800𝑡3

+ 566280𝑡4 + 1621620𝑡5 + 640640𝑡6 − 474474𝑡7 − 286650𝑡8

+ 45045𝑡9 + 31185𝑡10) 

𝑝3: 𝑣3  =  −𝐸−1{𝑣𝐸[𝐻̃2𝑣]}

=
1

25945920
𝑒−𝑥𝑡3(−12972960 + 4324320𝑡 − 864864𝑡2 + 1801800𝑡3

+ 566280𝑡4 − 1621620𝑡5 + 640640𝑡6 + 474474𝑡7 − 286650𝑡8

− 45045𝑡9 + 31185𝑡10)𝑒−𝑥 

⋮ 

Taking p→1 yields the solution to the problem. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛

∞

𝑛=0

= 𝑢𝑜 + 𝑢1 + 𝑢2 + ⋯ 

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛 = 𝑣0 + 𝑣1 + 𝑣3 + ⋯

∞

𝑛=0

 

𝑢(𝑥, 𝑡) = 𝑒𝑥 (1 + 𝑡 +
𝑡2

2
+

𝑡3

6
−

𝑡4

12
+

𝑡5

30
+

5𝑡6

72
−

11𝑡7

504
−

𝑡8

16
−

2𝑡9

81
+

79𝑡10

4320
+

35𝑡11

3168

−
𝑡12

576
−

𝑡13

832
) + ⋯ 

𝑣(𝑥, 𝑡) =
1

25945920
𝑒−𝑥(25945920 − 25945920𝑡 + 12972960𝑡2 − 4324320𝑡3

− 2162160𝑡4 − 864864𝑡5 + 1801800𝑡6 + 566280𝑡7 − 1621620𝑡8

+ 640640𝑡9 + 474474𝑡10 − 286650𝑡11 − 45045𝑡12 + 31185𝑡13) + ⋯ 

The exact solution of equation (3.3.13) and (3.3.14) is 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = 𝑒𝑥+𝑡

∞

𝑛=0

 

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡) = 𝑒𝑥−𝑡

∞

𝑛=0
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Approximate solution of (3.3.13) and (3.3.14) using HPTM [21] is  

𝑢(𝑥, 𝑡) = 𝑒𝑥 + 𝑒𝑥𝑡 +
𝑒𝑥𝑡2

2
+

𝑒𝑥𝑡3

6
+ ⋯  

𝑣(𝑥, 𝑡) = 𝑒−𝑥 − 𝑒−𝑥𝑡 +
1

2
𝑒−𝑥𝑡2 −

1

6
𝑒−𝑥𝑡3 + ⋯ 

                       

(a)                                                                                    (b) 

 

                                     (c)    

Fig. 3.3.2(i): (a) surface graph of 𝑢𝐸𝑥𝑎𝑐𝑡  of eq. (3.2.13) at 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1, (b) surface graph of  

𝑢𝐻𝑃𝑇𝑀 of   eq. (3.2.13) at 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1, (c) surface graph of 𝑢𝐴𝐻𝐸𝑇𝑀 of eq. (3.2.13) at 0 ≤

𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1. 

                    

(a)                                                                                         (b) 
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                             (c) 

Fig. 3.3.2(ii): (a) surface graph of 𝑣𝐸𝑥𝑎𝑐𝑡  of eq. (3.2.14) at 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1, (b) surface graph of  

𝑣𝐻𝑃𝑇𝑀 of   eq. (3.2.14) at 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1, (c) surface graph of 𝑣𝐴𝐻𝐸𝑇𝑀 of eq. (3.2.14) at 0 ≤

𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1. 

 

       

(a)                                                                      (b) 

 

                                 (c) 

Fig 3.3.2 (iii): (a)line graph of G1= 𝑢𝐸𝑥𝑎𝑐𝑡 , H1=𝑢𝐻𝑃𝑇𝑀, I1=𝑢𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.25, 0 ≤ 𝑥 ≤ 1, J1= 

𝑣𝐸𝑥𝑎𝑐𝑡 , K1=𝑣𝐻𝑃𝑇𝑀,  L1=𝑣𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.25, 0 ≤ 𝑥 ≤ 1, (b) G2= 𝑢𝐸𝑥𝑎𝑐𝑡 , H2=𝑢𝐻𝑃𝑇𝑀, I2=𝑢𝐴𝐻𝐸𝑇𝑀 at 

𝑡 = 0.5, 0 ≤ 𝑥 ≤ 1, J2= 𝑣𝐸𝑥𝑎𝑐𝑡 , K2=𝑣𝐻𝑃𝑇𝑀,  L2=𝑣𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.5, 0 ≤ 𝑥 ≤ 1, (c) : G3= 𝑢𝐸𝑥𝑎𝑐𝑡 , 

H3=𝑢𝐻𝑃𝑇𝑀, I3=𝑢𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.75, 0 ≤ 𝑥 ≤ 1,J3= 𝑣𝐸𝑥𝑎𝑐𝑡 , K3=𝑣𝐻𝑃𝑇𝑀,  L3=𝑣𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.75, 

0 ≤ 𝑥 ≤ 1. 
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Example 3.3.3:.Examine the problem of non-homogeneous advection. [97] 

                                          𝑢𝑡 + 𝑢𝑢𝑥 = 2𝑡 + 𝑥 + 𝑡3 + 𝑥𝑡2                                            (3.3.17) 

                With initial condition     𝑢(𝑥, 0) = 0 

Taking ET of eq. (3.3.17), we have   

                               𝐸[𝑢(𝑥, 𝑡)] = 𝑣𝐸[2𝑡 + 𝑥 + 𝑡3 + 𝑥𝑡2 − 𝑢𝑢𝑥]                                    (3.3.18) 

    Take the inverse of ET of equation (3.3.18) we get  

                           [𝑢(𝑥, 𝑡)] = 𝐸−1{𝑣𝐸[2𝑡 + 𝑥 + 𝑡3 + 𝑥𝑡2 − 𝑢𝑢𝑥]}                                 (3.3.19) 

Now, when we apply AHPETM to equation (3.3.19), we obtain  

                      ∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 𝑝𝑛 = 𝑝 {𝐸−1{𝑣𝐸[ ∑ 𝑢𝑛𝑝𝑛∞

𝑛=0 − ∑ 𝐻̃𝑛𝑃𝑛] }} ∞
𝑛=0                 (3.3.20) 

And the first few of terms of  𝐻̃𝑛 are represented as  

𝐻̃0(𝑢) =  0 

𝐻̃1(𝑢) = 𝑡3 +
7𝑡5

12
+

𝑡7

12
+ 𝑡2𝑥 +

2𝑡4𝑥

3
+

𝑡6𝑥

9
 

𝐻̃2(𝑢) =  −
7𝑡5

12
−

113𝑡7

360
−

53𝑡9

2016
+

7𝑡11

540
+

19𝑡13

6480
+

𝑡15

6048
−

2𝑡4𝑥

3
−

17𝑡6𝑥

45
−

2𝑡8𝑥

63
+

4𝑡10𝑥

225

+
4𝑡12𝑥

945
+

𝑡14𝑥

3969
 

⋮  

By contrasting the equivalent powers of p in equation (3.3.20), we obtain                                                            

𝑝0: 𝑢0(𝑥, 𝑡) =0 

𝑝1: 𝑢1(𝑥, 𝑡) = 𝑡2 +
𝑡4

4
+ 𝑡𝑥 +

𝑡3𝑥

3
 

𝑝2: 𝑢2(𝑥, 𝑡) = −
1

10080
𝑡3(2520𝑡 + 980𝑡3 + 105𝑡5 + 3360𝑥 + 1344𝑡2𝑥 + 160𝑡4𝑥) 

𝑝3: 𝑢3(𝑥, 𝑡) =
1

21794572800
(2118916800𝑡6 + 855134280𝑡8 + 57297240𝑡10

− 23543520𝑡12 − 4564560𝑡14 − 225225𝑡16 + 2905943040𝑡5𝑥

+ 1176215040𝑡7𝑥 + 76876800𝑡9𝑥 − 35223552𝑡11𝑥 − 7096320𝑡13𝑥

− 366080𝑡15𝑥) 

⋮ 

the solution of equation is obtained by taking 𝑝 → 1 
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𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛

∞

𝑛=0

= 𝑢𝑜 + 𝑢1 + 𝑢2 + ⋯ 

𝑢(𝑥, 𝑡) = 𝑡2 +
83𝑡8

2880
+

53𝑡10

20160
−

7𝑡12

6480
−

19𝑡14

90720
−

𝑡16

96768
+ 𝑡𝑥 +

4𝑡7𝑥

105
+

2𝑡9𝑥

567
−

4𝑡11𝑥

2475

−
4𝑡13𝑥

12285
−

𝑡15𝑥

59535
+ ⋯ 

The exact solution is  𝑢(𝑥, 𝑡) = 𝑡2 + 𝑥𝑡 

Also, the approximate HPTM [21] solution is given by 

𝑢(𝑥, 𝑡) = 𝑡2 −
7𝑡6

72
−

𝑡8

96
+ 𝑡𝑥 −

2𝑡5𝑥

15
−

𝑡7𝑥

63
… 

         

(a)                                                                                        (b)                                                               

 

      

                              (c) 

Fig 3.3.3 (i): (a) surface graph of Exact solution at  0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1, (b) surface graph HPTM at 

 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1, (c) Surface graph of AHPETM at  0 ≤ 𝑥 ≤ 1 ,0 ≤ 𝑡 ≤ 1. 
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                                        (d) 

Fig. 3.3.3(ii): (d) Line graph where D1= 𝑢𝐸𝑥𝑎𝑐𝑡 , E1=𝑢𝐻𝑃𝑇𝑀, F1=𝑢𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.25, 0 ≤ 𝑥 ≤ 1, ; 

D2= 𝑢𝐸𝑥𝑎𝑐𝑡 , E2=𝑢𝐻𝑃𝑇𝑀, F2=𝑢𝐴𝐻𝐸𝑇𝑀 at 𝑡 = 0.5, 0 ≤ 𝑥 ≤ 4, ; D3= 𝑢𝐸𝑥𝑎𝑐𝑡 , E3=𝑢𝐻𝑃𝑇𝑀, F3=𝑢𝐴𝐻𝐸𝑇𝑀 at 

𝑡 = 0.75, 0 ≤ 𝑥 ≤ 1. 

Conclusion:  

In summary, this chapter provides a comprehensive outline of the methodology employed to 

fulfill the objectives of the study. We utilized nonlinear Partial Differential Equations 

(PDEs), encompassing the homogeneous advection problem and the nonhomogeneous 

advection problem within the study's framework. Our approach involved extensive 

computations in Mathematica to verify the efficacy of our methods, yielding approximate 

solutions. Subsequently, we visually represented these findings through surface and line 

graphs. 
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Chapter 4 

Solution of Nonlinear Partial Differential Equations using 

Accelerated Homotopy Perturbation Transformation 

Method and Accelerated Homotopy Perturbation Sumudu 

Transformation Method 

 

4.1 Introduction: 

 

In this chapter, the investigation of nonlinear partial differential equations (PDEs) is further 

advanced using sophisticated semi-analytical methods. Building upon the hybrid techniques 

introduced in Chapter 3, this chapter presents a more extensive application of these methods 

to a diverse range of nonlinear equations, showcasing their versatility and adaptability. By 

broadening the scope of these techniques, a more comprehensive evaluation of their efficacy 

and utility is provided, demonstrating their potential and effectiveness in solving intricate 

mathematical problems. In this chapter, we delve into two distinct methodologies for tackling 

nonlinear PDEs. The first method is the Accelerated Homotopy Perturbation Transformation 

Method (AHPTM), a hybrid technique formed by merging the HPM with the LT. This 

method is applied to solve both one-dimensional (1D) and two-dimensional (2D) Burgers’ 

equations. The secondary method utilised is the Homotopy Perturbation Sumudu Transform 

Method (HPSTM), formed by combining the HPM with the ST. With this method, we 

address the 1D Benjamin-Bona-Mahoney-Burgers equation. Additionally, we conduct 

convergence analysis, presenting the results in a tabular format. Furthermore, we compare the 

obtained solutions with exact solutions and visualize the outcomes through surface and line 

graphs generated using Mathematica. 

4.2 Accelerated Homotopy Perturbation Transformation Method 

To understand the basic idea behind this method, examine the general problem of nonlinear, 

non-homogeneous partial differential equations with an initial condition.  

𝜕𝜃

𝜕𝑡
+ 𝑅𝜃(𝑥, 𝑡) + 𝑁𝜃(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),                                                                               (4.2.1) 

 𝜃(𝑥, 0) = ℎ(𝑥, 𝑡),   
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When we apply LT to both sides of the eq. (4.2.1), we obtain 

         ℒ {
𝜕𝜃

𝜕𝑡
+ 𝑅𝜃(𝑥, 𝑡) + 𝑁𝜃(𝑥, 𝑡)} = ℒ[𝑔(𝑥, 𝑡)] ,                                                          (4.2.2) 

Then, applying properties of LT to equation (4.2.2), we have  

𝜃(𝑥, 𝑠) =
1

𝑠
𝜃(𝑥, 0) +  

1

𝑠
ℒ[𝑔(𝑥, 𝑡)  − {𝑅𝜃(𝑥, 𝑡) + 𝑁𝜃(𝑥, 𝑡)}],                                         (4.2.3) 

Further, by applying the inverse LT to equation (4.2.3), we get 

𝜃(𝑥, 𝑡) = 𝜃(𝑥, 0) − ℒ−1{ 
1

𝑠
 ℒ[𝑔(𝑥, 𝑡) – {𝑅𝜃(𝑥, 𝑡) + 𝑁𝜃(𝑥, 𝑡)}]} ,                                      (4.2.4) 

Now, use the HPM. We have 

0 = (1 − 𝑝)(𝜃(𝑥, 𝑡) − 𝜃(𝑥, 0) + 𝑝 (𝜃(𝑥, 𝑡) − ℒ−1 { 
1

𝑠
 ℒ[𝑔(𝑥, 𝑡) – {𝑅𝜃(𝑥, 𝑡) + 𝑁𝜃(x, t)}]}, 

where 𝑝 ∈ [0,1] is a parameter. Let  

                                          𝜃(𝑥, 𝑡) = ∑ 𝑝𝑛𝜃𝑛
∞
𝑛=0 ,                                                           (4.2.5) 

and nonlinear can be decompose as 

                                         𝑁𝜃(𝑥, 𝑡) = ∑ 𝑝𝑛𝐻̃𝑛
∞
𝑛=0 (𝑉),                                                  (4.2.6) 

Where  𝐻̃𝑛 denotes accelerated He’s polynomial with 

𝐻̃n(𝜃0, 𝜃1, 𝜃2 … . 𝜃𝑛)  = 𝑁(𝑆𝑘) − ∑ 𝐻̃𝑗
𝑛−1
𝑗=0 , 𝑛 ≥ 1                                                         (4.2.7) 

𝐻̃𝑛 = 𝑁(𝜃(𝑥0)),  and 𝑆𝑘 = (𝜃0 + 𝜃1 + 𝜃2 … … . . +𝜃𝑘) using equation (4.2.5), (4.2.6) and 

(4.2.7) in  equation (4.2.4) gives 

∑ 𝑝𝑛𝜃𝑛
∞
𝑛=0 = 𝜃(𝑥, 0) − 𝑝 (ℒ−1 [

1

𝑠
ℒ[𝐺(𝑥, 𝑡) − [ 𝑅 ∑ 𝑝𝑛𝜃𝑛

∞
𝑛=0 + ∑ 𝑝𝑛𝐻̃𝑛

∞
𝑛=0 ]]]), 

    By comparing the coefficients of corresponding powers of 𝑝, we obtain 

𝑝0: 𝜃0(𝑥, 𝑡)  = 𝜃(𝑥, 0), 

                                                         𝑝1: 𝜃1 = ℒ−1 {
1

𝑠
ℒ[𝐺(𝑥, 𝑡) − {𝑅𝜃0 + 𝐻̃0}]}, 

                                                         𝑝2: 𝜃2 = −ℒ−1 {
1

𝑠
[𝑅𝜃1 + 𝐻̃1]}, 

⋮ 

Therefore, the Acc. HPTM series solution of equation (4.2.1) is obtained as 𝑝 → 1 
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𝜃(𝑥, 𝑡) = ∑ 𝜃𝑛

∞

𝑛=0

. 

 

Example 4.2.1: Consider the Burgers’ equation [111]  

                                          𝑉𝑡 + 𝑉𝑉𝑥 = 𝑉𝑥𝑥                                                                   (4.2.8) 

With initial condition  

                                                   𝑉(𝑥, 0) = 𝑥, 

and                                              𝑉(𝑥, 𝑡) =
𝑥

1+𝑡
, 

Apply the LT to equation (4.2.8), we get 

ℒ[𝑉(𝑥, 𝑡)] =
𝑥

𝑠
+ ℒ[𝑉𝑥𝑥 − 𝑉𝑉𝑥] 

Using the inverse of the LT, we get 

𝑉(𝑥, 𝑡) = 𝑥 +  ℒ−1 [
1

𝑠
(ℒ[𝑉𝑥𝑥 − 𝑉𝑉𝑥])] 

Now, use AHPTM 

∑ 𝑉𝑛

∞

𝑛=0

(𝑥, 𝑡) = 𝑥 + 𝑝ℒ−1 [
1

𝑠
(ℒ [∑ 𝑝𝑛𝑉(𝑥, 𝑡)

∞

𝑛=0

− ∑ 𝑝𝑛𝐻̃𝑛(𝑉)

∞

𝑛=0

])] 

Where 𝐻̃𝑛(𝑉)  denotes the polynomials that represent the nonlinear term. 

𝐻̃0(𝑉) = 𝑉0𝑉0𝑥 = 𝑥 

𝐻̃1(𝑉) = 𝑉0𝑉1𝑥 + 𝑉1𝑉0𝑥 + 𝑉1𝑉1𝑥 

𝐻̃2(𝑉) = 𝑉0𝑉2𝑥 + 𝑉1𝑉2𝑥 + 𝑉2𝑉0𝑥 + 𝑉2𝑉1𝑥 + 𝑉2𝑉2𝑥 

⋮ 

Contrasting the coefficient of  p  we have 

𝑝0: 𝑉0(𝑥, 𝑡) = 𝑥 
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     𝑝1: 𝑉1(𝑥, 𝑡) = −𝑥𝑡 

             𝑝2: 𝑉2(𝑥, 𝑡) = 𝑥𝑡2 −
𝑥𝑡3

3
 

𝑝3: 𝑉3(𝑥, 𝑡) =
1

63
(−42𝑥𝑡3 + 42𝑥𝑡4 − 21𝑥𝑡5 + 7𝑥𝑡6 − 𝑥𝑡7) 

⋮ 

Hence the solution of eq. (4.2.8) is 

𝑉(𝑥, 𝑡) = 𝑥(1 − 𝑡 + 𝑡2 − 𝑡3 + 𝑡4 − 𝑡5 + ⋯ ) 

𝑉(𝑥, 𝑡) =
𝑥

1 + 𝑡
 

               

                                        (a)                                                                            (b) 

 

                                            (c) 

Fig.4.2.1: (a) surface graph of  𝑉𝐸𝑋𝐴𝐶𝑇 when 𝑡 = .1  (b) surface graph of  𝑉𝐴𝐻𝑃𝑇𝑀 when 𝑡 = .1 (c) line 

graph of  𝑉𝐸𝑥𝑎𝑐𝑡, 𝑉𝐻𝑃𝑇𝑀  𝑎𝑡 𝑡 = .1, 0 ≤ 𝑥 ≤ 1.       
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Table 4.2.1: Error analysis equation (4.2.8) when 𝑡 = 0.1, 0.3, 0.5. 

t x 
Exact 

Solution 
AHPTM Abs. Error 

 

‖𝜔1‖ 

 

‖𝜔2‖ 

 

‖𝜔3‖ 

0.1 

0.2 0.1818182 0.1818127 5.49324E-06 0.02 0.0019333 0.0001206 

0.4 0.36363636 0.3636254 1.09865E-05 0.04 0.0038667 0.0002413 

0.6 0.54545455 0.5454381 1.64797E-05 0.06 0.0058 0.0003619 

0.8 0.72727273 0.7272508 2.1973E-05 0.08 0.0077333 0.0004826 

1 0.90909091 0.9090634 2.74662E-05 0.1 0.0096667 0.0006032 

0.3 

0.2 0.15384615 0.1535335 0.000312648 0.06 0.0162 0.0026665 

0.4 0.30769231 0.307067 0.000625296 0.12 0.0324 0.005333 

0.6 0.46153846 0.4606005 0.000937944 0.18 0.0486 0.0079995 

0.8 0.61538462 0.614134 0.001250593 0.24 0.0648 0.010666 

1 0.76923077 0.7676675 0.001563241 0.3 0.081 0.0133325 

0.5 

0.2 0.13333333 0.1315724 0.001760913 0.1 0.0416667 0.0100942 

0.4 0.26666667 0.2631448 0.003521825 0.2 0.0833333 0.0201885 

0.6 0.4 0.3947173 0.005282738 0.3 0.125 0.0302827 

0.8 0.53333333 0.5262897 0.007043651 0.4 1.67E-01 0.040377 

1 0.66666667 0.6578621 0.008804563 0.5 0.2083333 0.0504712 

                                 

Example .4.2.2: Consider the Burgers’ equation [111] 

                                𝑉𝑡 + 𝑉𝑉𝑥 = 𝑉𝑥𝑥                                                                                (4.2.9) 

With initial condition  

𝑉(𝑥, 0) = 1 −
2

𝑥
 , 𝑥 > 0        

and                                                   𝑉(𝑥, 𝑡) = 1 −
2

𝑥−𝑡
 

Apply the LT to equation (4.2.9), we obtain 

ℒ[𝑉(𝑥, 𝑡)] =
1

𝑠
(1 −

2

𝑥
) +

1

𝑠
(ℒ[𝑉𝑥𝑥 − 𝑉𝑉𝑥]) 

After applying the inverse of the LT, we get 

𝑉(𝑥, 𝑡) = (1 −
2

𝑥
) +  ℒ−1 [

1

𝑠
(ℒ[𝑉𝑥𝑥 − 𝑉𝑉𝑥])] 

Now apply AHPTM, 
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∑ 𝑉𝑛

∞

𝑛=0

(𝑥, 𝑡) = (1 −
2

𝑥
) + 𝑝ℒ−1 [

1

𝑠
(ℒ [∑ 𝑝𝑛𝑉(𝑥, 𝑡)

∞

𝑛=0

− ∑ 𝑝𝑛𝐻̃𝑛(𝑉)

∞

𝑛=0

])] 

Where 𝐻̃𝑛(𝑉) represent the polynomials that represent the nonlinear term. 

𝐻̃0(𝑉) = 𝑉0𝑉0𝑥 =
2(−2 + 𝑥)

𝑥3
 

𝐻̃1(𝑉) = 𝑉0𝑉1𝑥 + 𝑉1𝑈𝑉0𝑥 + 𝑉1𝑉1𝑥 

𝐻̃2(𝑉) = 𝑉0𝑉2𝑥 + 𝑉1𝑉2𝑥 + 𝑉2𝑉0𝑥 + 𝑉2𝑉1𝑥 + 𝑉2𝑉2𝑥 

⋮ 

By comparison the coefficient of p, we get 

𝑝0: 𝑉0(𝑥, 𝑡) = 1 −
2

𝑥
 

𝑝1: 𝑉1(𝑥, 𝑡) = −
2𝑡

𝑥2
 

            𝑝2: 𝑉2(𝑥, 𝑡) = −
2𝑡2

𝑥3 +
8𝑡3

3𝑥5 

𝑝3: 𝑉3(𝑥, 𝑡) = −
2𝑡3(4 + 3𝑥)

3𝑥5
+

𝑡4(36 + 25𝑥)

3𝑥7
+

4𝑡5(−28 + 9𝑥)

15𝑥8
−

64𝑡6

9𝑥9
+

320𝑡7

63𝑥11
 

⋮ 

Hence, the approximate series solution of eq. (4.2.9) is 

𝑉(𝑥, 𝑡) = 1 −
2

𝑥
−

2𝑡

𝑥2
−

2𝑡2

𝑥3
−

2𝑡3

𝑥4
− ⋯ 

𝑉(𝑥, 𝑡) = 1 −
2

𝑥
(1 +

𝑡

𝑥
+

𝑡2

𝑥2
+

𝑡3

𝑥3
+ ⋯ ) 

𝑉(𝑥, 𝑡) = 1 −
2

𝑥 − 𝑡
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(a)                                                                                 (b)         

 

                       (c) 

Fig 4.2.2: (a) surface graph of  𝑉𝐸𝑋𝐴𝐶𝑇 when 𝑡 = .1  (b) surface graph of  𝑉𝐴𝐻𝑃𝑇𝑀 when 𝑡 = .1 (c) line 

graph of  𝑉𝐸𝑥𝑎𝑐𝑡, 𝑉𝐻𝑃𝑇𝑀  𝑎𝑡 𝑡 = 0.1, 0 ≤ 𝑥 ≤ 1.       

 

Table 4.2.2 –Error analysis of equation (4.2.9) at t=0.1,0.2,0.3. 

t x Exact sol. AHPTM Absol. Error 
 

‖𝜔1‖ 

 

‖𝜔2‖ 

 

‖𝜔3‖ 

0.1 

1 1.2222222 1.2200239 0.002198286 0.2 0.01733333 0.0026906 

1.2 0.81818182 0.8174921 0.000689685 0.13888889 0.0105024 0.0014342 

1.4 0.53846154 0.5382001 0.000261446 0.10204082 0.0067928 0.000795 

1.6 0.33333333 0.3332196 0.000113774 0.078125 0.0046285 0.0004661 

1.8 0.17647059 0.1764156 5.49882E-05 0.05 0.00328823 0.0002879 

0.2 

1 1.5 1.4654781 0.034521905 0.4 0.05866667 0.0068114 

1.2 1 0.9890539 0.010946083 0.27777777 0.03772291 0.0068866 

1.4 0.66666667 0.6624898 0.00417689 0.20408163 0.02518792 0.0046488 

1.6 0.42857143 0.4267459 0.001825483 0.15625 0.01749674 0.0029992 

1.8 0.25 0.2491152 0.000884818 0.12345679 0.01258842 0.0019589 

0.3 

1 1.85714286 1.6856851 0.171457714 0.6 0.108 0.0223149 

1.2 1.22222222 1.1672566 0.054965609 0.41666667 0.07523148 0.0086918 

1.4 0.81818182 0.7970623 0.021119486 0.30612245 0.05221039 0.0101581 

1.6 0.53846154 0.5291901 0.009271464 0.234375 3.71E-02 0.0077362 

1.8 0.33333333 0.3288261 0.004507259 0.18518519 0.0270538 0.005476 
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Example 4.2.3: Given the (2+1)-dimensional Burgers’ equation 

                            𝑉𝑡 + 𝑉𝑉𝑥 + 𝑉𝑉𝑦 = 𝑉𝑥𝑥 + 𝑉𝑦𝑦                                                             (4.2.10) 

                                𝑉(𝑥, 𝑦, 0) = 𝑥 + 𝑦 

And                                  𝑉(𝑥, 𝑦, 𝑡) =
𝑥+𝑦

1+2𝑡
 

Apply the LT to equation (4.2.10), we get 

ℒ[𝑉(𝑥, 𝑦, 𝑡)] =
1

𝑠
(1 −

2

𝑥
) +

1

𝑠
(ℒ[(𝑉𝑥𝑥 + 𝑉𝑦𝑦) − (𝑉𝑉𝑥 + 𝑉𝑉𝑦)]), 

After applying the inverse of the LT, we obtain 

𝑉(𝑥, 𝑦, 𝑡) = (𝑥 + 𝑦) + ℒ−1 [
1

𝑠
(ℒ[(𝑉𝑥𝑥 + 𝑉𝑦𝑦) − (𝑉𝑉𝑥 + 𝑉𝑉𝑦)])], 

Now apply AHPTM, 

∑ 𝑉𝑛

∞

𝑛=0

(𝑥, 𝑦, 𝑡) = (𝑥 + 𝑦) + 𝑝ℒ−1 [
1

𝑠
(ℒ [∑ 𝑝𝑛𝑉(𝑥, 𝑡)

∞

𝑛=0

− ∑ 𝑝𝑛𝐻̃𝑛(𝑉)

∞

𝑛=0

])], 

𝐻̃𝑛(𝑉) denote the polynomials that represent the nonlinear terms. 

𝐻̃0(𝑉) = 𝑉0𝑉0𝑥 + 𝑉0𝑉0𝑦 = 2(𝑥 + 𝑦), 

𝐻̃1(𝑉) = 𝑉0𝑉1𝑥 + 𝑉1𝑉0𝑥 + 𝑉1𝑉1𝑥 + 𝑉0𝑉1𝑦 + 𝑉1𝑉0𝑦 + 𝑉1𝑉1𝑦, 

𝐻̃2(𝑉) = 𝑉0𝑉2𝑥 + 𝑉1𝑉2𝑥 + 𝑉2𝑉0𝑥 + 𝑉2𝑉1𝑥 + 𝑉2𝑉2𝑥 + 𝑉0𝑉2𝑦 + 𝑉1𝑉2𝑦 + 𝑉2𝑉0𝑦 + 𝑉2𝑉1𝑦

+ 𝑉2𝑉2𝑦, 

⋮ 

Comparing the coefficient of p, we obtain 

𝑝0: 𝑉0(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦, 

𝑝1: 𝑉1(𝑥, 𝑦, 𝑡) = −2𝑡(𝑥 + 𝑦), 

𝑝2: 𝑉2(𝑥, 𝑦, 𝑡) = 4𝑡2(𝑥 + 𝑦) −
8

3
𝑡3(𝑥 + 𝑦), 
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𝑝3: 𝑉3(𝑥, 𝑦, 𝑡) = −
16

3
𝑡3(𝑥 + 𝑦) +

32

3
𝑡4(𝑥 + 𝑦) −

32

3
t5(𝑥 + 𝑦) +

64

9
t6(𝑥 + 𝑦)

−
128

63
t7(𝑥 + 𝑦), 

⋮ 

Hence the solution of eq. (4.2.10) is 

𝑉(𝑥, 𝑦, 𝑡) = −
2

63
t(63 − 126t + 252t2 − 336t3 + ⋯ )(𝑥 + 𝑦), 

𝑉(𝑥, 𝑦, 𝑡) =
𝑥 + 𝑦

1 + 2t
 

                 

 (a)                                                                                        (b) 

Fig .4.2.3(a) surface graph of  𝑉𝐸𝑋𝐴𝐶𝑇, when 𝑡 = .1  (b) surface graph of  𝑉𝐴𝐻𝑃𝑇𝑀, when 𝑡 = .1      

 

4.3 Accelerated Homotopy Perturbation Sumudu Transformation Method 

Examine the nonlinear equations below to better understand the proposed technique. [56] 

   
𝜕𝑛𝜓

𝜕𝑡𝑛
+ 𝐿𝜓(𝑥, 𝑡) + 𝑁𝜓(𝑥, 𝑡) = 𝐾(𝑥, 𝑡)                                                                          (4.3.1) 

  With condition          𝜓𝑖(x, 0) =  ki(𝑥), i = 0,1,2 … … n − 1 

Using the ST in eq. (4.3.1) we get, 

𝑆 [
𝜕𝑛𝜓

𝜕𝑡𝑛 + 𝐿𝜓(𝑥, 𝑡) + 𝑁𝜓(𝑥, 𝑡)] = 𝑆[𝐾(𝑥, 𝑡)],                                                                  (4.3.2) 

Using properties of ST to eq. (4.3.2), gives 

𝑆{𝜓(𝑥, 𝑡)} = 𝑢𝑛 ∑
1

𝑢𝑛−𝑘
𝑘=𝑛−1
𝑘=0 𝑓𝑘(𝑥, 0) + 𝑢𝑛𝑆 (𝐾(𝑥, 𝑡) − (𝐿𝜓(𝑥, 𝑡) + 𝑁𝜓(𝑥, 𝑡))),        (4.3.3) 

Applying the inverse ST to eq.  (4.3.3), we have 



65 
 

{𝜓(𝑥, 𝑡)} = 𝑢𝑛 ∑
𝑡𝑘

𝑘!

𝑘=𝑛−1
𝑘=0 𝑓𝑘(𝑥, 0) + 𝑆−1(𝑢𝑛𝑆(𝐾(𝑥, 𝑡) − (𝐿𝜓(𝑥, 𝑡) + 𝑁𝜓(𝑥, 𝑡)))),     (4.3.4) 

Utilising the HPM on equation (4.3.4), we get 

0 = (1 − 𝑝)(𝜓(𝑥, 𝑡) − 𝜓(𝑥, 0) + 𝑝 (𝜓(𝑥, 𝑡) − ∑
𝑡𝑘

𝑘!
𝜓𝑘(𝑥, 0)

𝑛−1

𝑘=0

)

− 𝑝 {𝑆−1{𝑢𝑛 𝑆[𝐾(𝑥, 𝑡) − {𝐿𝜓(𝑥, 𝑡) + 𝑁𝜓(𝑥, 𝑡)}]}}, 

 

Where 𝑝 ∈ [0,1] is a parameter. Let 

                          𝜓(𝑥, 𝑡) = ∑ 𝜓𝑛𝑝𝑛∞
𝑛=0 ,                                                                            (4.3.5) 

and 

                         𝑁𝜓(𝑥, 𝑡) = ∑ 𝐻̃𝑛𝑝𝑛,∞
𝑛=0                                                                            (4.3.6) 

Where 𝐻̃𝑛 represents the accelerated He's polynomial with  

𝐻̃n (𝜓0, 𝜓1, 𝜓2, … … . 𝜓𝑛) = 𝑁(𝑆𝑘) − ∑ 𝐻̃𝑖,
𝑛−1
𝑖=0                                                                 (4.3.7) 

𝐻̃𝑛 = 𝑁(𝜓0),  and 𝑆𝑘 = (𝜓0 + 𝜓1 + 𝜓2 + 𝜓3 … … 𝜓𝑘). Using equation (4.3.5), (4.3.6) and 

(4.3.7) in equation (4.3.4) gives 

∑ 𝜓𝑛𝑝𝑛

∞

𝑛=0

= 𝜓(𝑥, 0)

+ 𝑝 {∑
𝑡𝑘

𝑘!
𝜓𝑘(𝑥, 0)

𝑛−1

𝑘=0

+ 𝑆−1 {𝑢𝑛 𝑆 [𝐾(𝑥, 𝑡) − {𝐿 ∑ 𝜓𝑛𝑝𝑛

∞

𝑛=0

+  ∑ 𝐻̃𝑛𝑝𝑛

∞

𝑛=0

}]}}, 

   on contrasting the coefficient of the similar powers of p, we get 

𝑝0 = 𝜓0 = 𝜑(𝑥, 0), 

𝑝1: 𝜑1 = ∑
𝑡𝑘

𝑘!
𝜑𝑘(𝑥, 0)

𝑛−1

𝑘=0

+ 𝑆−1 {𝑢𝑛 𝑆 {𝐺(𝑥, 𝑡) − {𝐿𝜑0 + 𝐻̃𝑛}}}, 

𝑝2: 𝜓2  = −𝑆−1 {𝑢𝑛 𝑆{𝐿𝜑1 + 𝐻̃1}}, 

⋮  

                 The equation's solution is achieved by choosing 𝑝 → 1 i.e.- 

𝜓(𝑥, 𝑡) = ∑ 𝜓𝑛

∞

𝑛=0

. 
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Example 4.3.1: Examine the one-dimensional (1D) time-dependent BBMB equation   

                                               
𝜕𝜑

𝜕𝑡
=

𝜕3𝜑

𝜕𝑥2𝜕𝑡
+

𝜕2𝜑

𝜕𝑥2
−

𝜕𝜑

𝜕𝑥
− 𝜑

𝜕𝜑

𝜕𝑥
+ 𝑓(𝑥, 𝑡) 

 with initial boundary conditions [172] 

                                                       φ(𝑥, 0) = sin 𝑥 ,     0 ≤ 𝑥 ≤ π                               (4.3.8) 

                                 φ(𝑥, 𝑡) = e−t sin 𝑥 , 𝑥 ∈ 0, π,   𝑡 ∈ (0, T]    

and                    f(𝑥, 𝑡) = e−t (cos 𝑥 − sin 𝑥 +
1

2
 e−t sin 2𝑥). 

By applying Sumudu transformation equation (4.3.8) subjected to the initial condition, we 

have 

𝑆 (
𝜕𝜑

𝜕𝑡
) = 𝑆 (

𝜕3𝜑

𝜕𝑥2𝜕𝑡
+

𝜕2𝜑

𝜕𝑥2
−

𝜕𝜑

𝜕𝑥
− 𝜑

𝜕𝜑

𝜕𝑥
) + 𝑆(𝑓(𝑥, 𝑡)), 

or   

S (
∂φ

∂𝑡
) = u (S (

∂3φ

∂𝑥2 ∂𝑡
+

∂2φ

∂𝑥2 −
∂φ

∂𝑥
+ φ

∂φ

∂𝑥
)) +

u

(1+u)
(e−t (cos 𝑥 − sin 𝑥 +

1

2
e−t sin 2𝑥)), 

(4.3.9) 

Apply inverse Sumudu transformation in equation (4.3.9) we get, 

∂φ

∂𝑡
= S−1 (u (

∂3φ

∂𝑥2 ∂𝑡
+

∂2φ

∂𝑥2
−

∂φ

∂𝑥
+ φ

∂φ

∂𝑥
)) + S−1 (

u

(1 + u)
(e−t (cos 𝑥 − sin 𝑥 +

1

2
e−t sin 2𝑥))), 

                                            (4.3.10)     

Now apply AHPSTM on equation (4.3.10) we get, 

∑ 𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

𝑝𝑛 = 𝜑(𝑥, 𝑜) + 𝑝 {𝑆−1 {𝑢 [∑ 𝐻̃𝑛𝑃𝑛

∞

𝑛=0

]}}, 

 

And the first few terms of  𝐻̃𝑛 are given as  

𝐻̃0 = cos 𝑥 sin 𝑥, 

𝐻̃1 = − cos 𝑥 sin 𝑥

+ 𝑒−2𝑡(1 + 𝑒𝑡(−1 + 𝑡) cos 𝑥 (−1 + sin 𝑥)

+ ((1 − 𝑒𝑡𝑡) sin 𝑥)((1 − 𝑒𝑡𝑡) cos 𝑥) + (1 + 𝑒𝑡(−1 + 𝑡))cos2 𝑥

− (1 + 𝑒𝑡(−1 + 𝑡))(−1 + sin 𝑥) sin 𝑥), 
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𝐻̃2 =   −𝑒−2𝑡((1 + 𝑒𝑡(−1 + 𝑡)) cos 𝑥 (−1 + sin 𝑥) + (1 − 𝑒𝑡𝑡) sin 𝑥)((1 − 𝑒𝑡𝑡) cos 𝑥

+ (1 + 𝑒𝑡(−1 +  𝑡))cos2 𝑥 − (1 + 𝑒𝑡(−1 + 𝑡))(−1 + sin 𝑥) sin 𝑥)

+
1

576
𝑒−4𝑡((3 + 42𝑒𝑡 + 𝑒2𝑡(−21 + 48𝑡 − 3𝑡2 + 2𝑡3)) cos 𝑥 … 

                                                                 ⋮                        

Comparing the similar powers of 𝑝 , we get 

𝑝0: 𝜑0 = sin 𝑥, 

p1: φ1 = −
1

2
𝑒−2𝑡 cos 𝑥 sin 𝑥 + 𝑒−𝑡(− cos 𝑥 + sin 𝑥) + 𝑡(− cos 𝑥 − sin 𝑥 − cos 𝑥 sin 𝑥)

+
1

2
(2 cos 𝑥 − 2 sin 𝑥 + cos 𝑥 sin 𝑥), 

𝑝2: 𝜑2 =
1

8
𝑒−2𝑡(−6cos2𝑥 − cos3𝑥 + 8 cos 𝑥 sin 𝑥 + 2cos2𝑥 sin 𝑥 + 6sin2𝑥 + 2 cos 𝑥 sin2𝑥

− sin3𝑥) +
1

6
𝑒−3𝑡(cos3𝑥 − 2cos2𝑥 sin 𝑥 − 2 cos 𝑥 sin2𝑥 + sin3𝑥)

+ 𝑒−𝑡𝑡cos3𝑥 − 4 cos 𝑥 sin 𝑥 − 2cos2𝑥 sin 𝑥 − 2 cos 𝑥 sin2𝑥 + sin3𝑥

+
1

2
𝑒−𝑡2 cos 𝑥 + 2cos2𝑥 + cos3𝑥 + 2 sin 𝑥 − 4 cos 𝑥 sin 𝑥 − 2cos2𝑥 sin 𝑥

− 2sin2𝑥 − 2 cos 𝑥 sin2𝑥 + sin3𝑥

+
1

4
𝑡2(4 cos 𝑥 + 4cos2𝑥 + 3cos3𝑥 + 4 cos 𝑥 sin 𝑥 + 2cos2𝑥 sin 𝑥

+ 2cos3𝑥 sin 𝑥 − 4sin2𝑥 − 6 cos 𝑥 sin2𝑥 − sin3𝑥 − 2 cos 𝑥 sin3𝑥)

+
1

4
𝑒−2𝑡𝑡(cos3𝑥 + 2cos2𝑥 sin 𝑥 2cos3𝑥 sin 𝑥 − 2 cos 𝑥 sin2𝑥 − sin3𝑥

− 2 cos 𝑥 sin3𝑥) +
1

16
𝑒−4𝑡(cos3𝑥 sin 𝑥 − cos 𝑥 sin3𝑥)

−
1

3
𝑡3(cos2𝑥 + cos3𝑥 + 2cos2𝑥 sin 𝑥 + cos3𝑥 sin 𝑥 − sin2𝑥 − 2 cos 𝑥 sin2𝑥

− sin3𝑥 − cos 𝑥)

+
1

4
𝑡(4 cos 𝑥 − 2cos2𝑥 − 2cos3𝑥 + 12 sin 𝑥 + 16 cos 𝑥 sin 𝑥 − cos3𝑥 sin 𝑥

+ 2sin2𝑥 + 4 cos 𝑥 sin2𝑥 + cos 𝑥 sin3𝑥)

+
1

48
(−48 cos 𝑥 − 12cos2𝑥 − 26cos3𝑥 − 48 sin 𝑥 + 48 cos 𝑥 sin 𝑥

+ 52cos2𝑥 sin 𝑥 − 3cos3𝑥 sin 𝑥 + 12sin2𝑥 + 52 cos 𝑥 sin2𝑥 − 26sin3𝑥

+ 3 cos 𝑥 sin3𝑥), 

 

𝑝3: 𝜑3 =
1

87091200
𝑒−8𝑡(87091200𝑒7𝑡 cos 𝑥 − 87091200𝑒8𝑡 cos 𝑥

+ 87091200𝑒8𝑡𝑡cos 𝑥 − 261273600𝑒8𝑡𝑡2 cos 𝑥 − 29030400𝑒8𝑡𝑡3 cos 𝑥

+ ⋯ 
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     ⋮                        

the solution of equation is obtained by taking 𝑝 → 1 

𝜑(𝑥, 𝑡) = ∑ 𝜑𝑛

∞

𝑛=0

= 𝜑𝑜 + 𝜑1 + 𝜑2 + ⋯ 

                              𝜑(𝑥, 𝑡) = sin 𝑥 −
1

2
𝑒−2𝑡 cos 𝑥 sin 𝑥 + 𝑒−𝑡(− cos 𝑥 + sin 𝑥) +

𝑡(− cos 𝑥 − sin 𝑥 − cos 𝑥 sin 𝑥) + ⋯    

The exact solution is      𝜑(𝑥, 𝑡) = e−t sin 𝑥.                                                                                                                  

        

           

                              

Fig.4.3.1: (a)surface graph of exact solution of example 3.1 at 0 ≤ 𝑥 ≤ 1, 𝑎𝑡 𝑡 = 0.01, (b) surface 

graph of AHPSTM solution of example 3.1 at 0 ≤ 𝑥 ≤ 1, 𝑎𝑡 𝑡 = 0.01, (c) line graph of :  𝜑𝐸𝑥𝑎𝑐𝑡 , 

𝜑𝐴𝐻𝑆𝑇𝑀 at 𝑡 = 0.01, 0 ≤ 𝑥 ≤ 1. 

Conclusion: 

 In conclusion, this chapter gives a thorough overview of the methods used to achieve the 

study’s objectives. To solve a number of problems, we employed nonlinear PDEs, including 

the Burgers’ equation, the homogeneous advection problem, the nonhomogeneous advection 

problem, and the BBMB equation, in the context of this study. We performed computations 

in Mathematica to validate our methods, producing approximate results. These findings were 

then visualised using surface and line graphs. 
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Chapter 5 

Solution of Nonlinear Fractional Partial Differential 

Equations using Accelerated Homotopy Perturbation 

Transformation Method in Caputo Sense 

5.1 Introduction: 

In this chapter, the focus shifts from solving regular nonlinear partial differential equations 

(PDEs) using hybrid techniques, such as the Accelerated Homotopy Perturbation 

Transformation Method (Acc. HPTM) and the Accelerated Homotopy Perturbation Sumudu 

Transformation Method (Acc. HPSTM), explored in the previous chapter, to addressing 

nonlinear fractional PDEs in the Caputo sense. The techniques previously employed for 

standard nonlinear PDEs are now adapted and extended in this chapter to solve fractional 

PDEs, demonstrating the continuity and versatility of the methodology while broadening its 

application to fractional calculus. This chapter provides a full explanation of the technique 

used to accomplish the research objectives set out in this study. We use nonlinear fractional 

PDEs in the Caputo sense to analyze different equations.  This chapter provides 

comprehensive details about the methods proposed for achieving the research objectives in 

this study. In this study, a variety of equations, including but not limited to the Burgers’ 

equation, Fisher’s equation, and S-H equation, F-W equation are utilized and subsequently 

verified using Mathematica and the approximate series solution is obtained by utillising the 

approaches, which are then represented in the forms of  surface and line graphs. 

5 .2 Fractional Partial Differential Equations in Caputo sense: 

To illustrate the core concept of this approach, consider a general nonlinear, non-

homogeneous fractional PDE.    

   𝐷𝑡
𝛼𝜔(𝜑, 𝑡) + 𝑅(𝜑, 𝑡) + 𝑁𝜔(𝜑, 𝑡) = 𝑔(𝜑, 𝑡), with condition 𝜔(𝜑, 0) = 𝑘(𝜑).         (5.2.1)                                                              

Where 𝐷𝑡
𝛼 =

𝜕𝛼

𝜕𝑡𝛼 denotes  fractional Liouville-Caputo derivative of the function 𝜔(𝜑, 𝑡), R is 

linear differential operator and N is nonlinear differential operator and 𝑔(𝜑, 𝑡)  represents the 

source term. 

 Apply LT on both side of eq. (5.2.1), we get  
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                                ℒ[𝐷𝑡
𝛼𝜔(𝜑, 𝑡)] +  ℒ𝜔[𝑅(𝜑, 𝑡)] + ℒ[𝑁𝜔(𝜑, 𝑡)] = ℒ[𝑔(𝜑, 𝑡)] ,          (5.2.2)                                                 

Apply basic properties LT to eq.  (5.2.2), we get 

        ℒ[𝜔(𝜑, 𝑡)] =
1

𝑠𝛼 𝜔(𝜑, 0) +
1

𝑠𝛼 ℒ(𝑔(𝜑, 𝑡) − 𝑅𝜔(𝜑, 𝑡) − 𝑁𝜔(𝜑, 𝑡)),                         (5.2.3)  

 Implementing the inverse of the LT to the equation (5.2.3), we obtain            

   𝜔(𝜑, 𝑡) = (𝜑, 0) + ℒ−1  {
1

𝑠𝛼 ℒ(𝑔(𝜑, 𝑡) − 𝑅𝜔(𝜑, 𝑡) − 𝑁𝜔(𝜑, 𝑡))} ,                              (5.2.4)  

 using HPM, we get 

0 = (1 − 𝑝)[𝜔(𝜑, 𝑡) − 𝜔(𝜑, 0)] +  𝑝 [𝜔(𝜑, 𝑡) − ℒ−1  {
1

𝑠𝛼
ℒ(𝑔(𝜑, 𝑡) − 𝑅𝜔(𝜑, 𝑡) −

𝑁𝜔(𝜑, 𝑡))}],                   (5.2.5) 

where 𝑝 ∈ [0,1] is a parameter. Let  

𝜔(𝜑, 𝑡) = ∑ 𝑝𝑛𝜔𝑛
∞
𝑛=0 (𝜑, 𝑡),                                                                    (5.2.6) 

and nonlinear term decompose as 

                                   𝑁𝜔(𝜑, 𝑡) = ∑ 𝑝𝑛𝐻̃𝑛,∞
𝑛=0                                                                 (5.2.7) 

Where 𝐻̃𝑛 indicate accelerated He’s polynomial with  

                                                                              𝐻̃n (𝜔0, 𝜔1, 𝜔2 … 𝜔𝑛) = 𝑁(𝑆𝑘) − ∑ 𝐻̃𝑛
𝑛−1
𝑖=0 ,                (5.2.8) 

                     where                  𝐻̃0 = 𝑁(𝜔(𝜑0)) ,  and 𝑆𝑘 = (𝜔0 + 𝜔1 + ⋯ + 𝜔𝑘), 

Substituting the equation (5.2.6), (5.2.7) in equation (5.2.5) we get, 

∑ 𝑝𝑛𝜔𝑛
∞
𝑛=0 (𝜑, 𝑡) = 𝜔(𝜑, 0) +  𝑝 [ℒ−1  {

1

𝑠𝛼
ℒ{∑ 𝑝𝑛𝜔𝑛

∞
𝑛=0 (𝜑, 𝑡) − ∑ 𝑝𝑛𝐻̃𝑛

∞
𝑛=0 (𝜔(𝜑, 𝑡))}}],                       

(5.2.9)   

compare same  powers of p, we obtain 

𝑝0: 𝜔0 =   𝜔(𝜑, 0),  

𝑝1: 𝜔1 = 𝜔1(𝜑, 𝑡) = ℒ−1 {
1

𝑠𝛼
ℒ[𝑔(𝜑, 𝑡) − 𝑅𝜔0 − 𝐻̃0𝜔]}, 
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𝑝2: 𝜔2 = 𝜔2(𝜑, 𝑡) = −ℒ−1 {
1

𝑠𝛼
ℒ[𝑅𝜔1 + 𝐻̃1𝜔]}, 

𝑝3: 𝜔3 = 𝜔3(𝜑, 𝑡) = −ℒ−1 {
1

𝑠𝛼
ℒ[𝑅𝜔2 + 𝐻̃2𝜔]}, 

⋮ 

Hence, when 𝑝 → 1the series solution of equation (5.2.1) is obtained as  

                                   𝜔(𝜑, 𝑡) = 𝜔0 + 𝜔1 + 𝜔3 …                                                          (5.2.10) 

 

Example 5.2.1:  In the Liouville-Caputo sense, consider the non-linear time fractional S-H 

equation.  [149,174]. 

 
𝜕𝛼𝜔(𝜑,𝑡)

𝜕𝑡𝛼 +
𝜕4𝜔(𝜑,𝑡)

𝜕𝜑4 + (1 − 𝛽)𝜔(𝜑, 𝑡) + 2
𝜕2𝜔(𝜑,𝑡)

𝜕𝜑2 − 𝜔2(𝜑, 𝑡) + (
𝜕𝜔(𝜑,𝑡)

𝜕𝜑
)

2

= 0 , 0 < 𝛼 ≤ 1, 

(5.2.11) 

with initial condition  𝜔(𝜑, 0) = 𝑒𝜑 . 

Using AHPTM, we get 

∑ 𝑝𝑛𝜔𝑛
∞
𝑛=0 = 𝑒𝜑 − 𝑝 [ℒ−1  {

1

𝑠𝛼 ℒ [{
𝜕4𝜔

𝜕𝜑4 + (1 − 𝛽)𝜔(𝜑, 𝑡) + 2
𝜕2𝜔(𝜑,𝑡)

𝜕𝜑2 } − {∑ 𝑝𝑛𝐻̃𝑛
∞
𝑛=0 (𝜔)}]}]              

(5.2.12) 

  the first few components of 𝐻̃𝑛 are given as                       

𝐻̃0 = (𝜔0)2 − (𝜔0𝜑)2, 

𝐻̃1 = 2𝜔0𝜔1 + 𝜔1
2 − 𝜔1𝜑(2𝜔0𝜑 + 𝜔1𝜑), 

𝐻̃2 = 2𝜔0𝜔2 + 2𝜔1𝜔2 + (𝜔2)2 − 2𝜔0𝜑𝜔2𝜑 − 2𝜔1𝜑𝜔2𝜑 − (𝜔2𝜑)2, 

⋮ 

When compared to the like power of p on each side of equation (5.2.12) yields the following 

result: 

𝜔0 =  e𝜑 , 

𝜔1 =  
e𝜑tα(𝛽 − 4)

Γ(α + 1)
, 

𝜔2 =  
e𝜑t2α(𝛽 − 4)2

Γ(2α + 1)
, 
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𝜔3 =  
e𝜑t3α(𝛽 − 4)3

Γ(3α + 1)
, 

⋮ 

 the solution   of equation (5.2.11)  obtained by AHPTM. 

𝜔(𝜑, 𝑡) = ∑ 𝜔𝑚(𝜑, 𝑡) =

∞

𝑚=0

𝜔0(𝜑, 𝑡) + 𝜔1(𝜑, 𝑡) + 𝜔2(𝜑, 𝑡) + ⋯ 

                             𝜔(𝜑, 𝑡) = e𝜑 +
e𝜑tα(𝛽−4)

Γ(α+1)
+

e𝜑t2α(𝛽−4)2

Γ(2α+1)
+

e𝜑t3α(𝛽−4)3

Γ(3α+1)
+ ⋯              (5.2.13)   

and exact solution of eq. (5.2.11) is  

𝜔(𝜑, 𝑡) = e𝜑Eα((𝛽 − 4)tα). 

                        

 

Fig. 5.2.1 (i):(a) surface graph of exact solution at 𝛼 = 1, (b) surface graph AHPTM at 𝛼 = 1, (c) line 

graph of exact solution and AHPTM at  𝛼 = 1, 𝛽 = 5,0 < 𝜑 ≤ 1 𝑎𝑛𝑑 𝑡 = 0.5. 
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                                      (d) 

Fig.5.2.1(ii)(d). the solution of AHPTM at various  fractional order 𝛼 = 1,0.75,0.5,0,25, 𝛽 = 5, 0 < 𝜑 ≤

1 𝑎𝑛𝑑 𝑡 = 0.5.  

Table 5.2.1:  Error analysis of Example (5.2.1) at  𝛼 = 1(upto the fourth order).   

t x  Exact   AHPTM  Abs. Error      ||𝜔1||      ||𝜔2||       ||𝜔3|| 

0.1 

0.1 1.2214027 1.2213981 4.6985E-06 0.11051709 0.0055259 0.00018419 

0.3 1.4918247 1.491819 5.7388E-06 0.13498588 0.0067493 0.00022497 

0.5 1.8221188 1.8221118 7.0093E-06 0.16487213 0.0082436 0.00024787 

0.7 2.2255409 2.2255324 8.56129E-06 0.20137527 0.0100688 0.00033563 

0.9 2.7182818 2.7182714 1.04568E-05 0.24596031 0.012298 0.00040993 

0.3 

0.1 1.4918247 1.4914282 0.00039654 0.33155128 0.0497327 0.00497327 

0.3 1.8221188 1.8216345 0.00048434 0.40495764 0.0607436 0.00607436 

0.5 2.2255409 2.2249494 0.00059157 0.49461638 0.0741925 0.00741925 

0.7 2.7182818 2.7175593 0.00072255 0.60412581 0.0906189 0.00906189 

0.9 3.3201169 3.3192344 0.00088252 0.73788093 0.1106821 0.01106821 

0.5 

0.1 1.8221188 1.8189271 0.00319166 0.55258546 0.1381464 0.0230244 

0.3 2.2255409 2.2216426 0.00389830 0.6749294 0.1687324 0.0281221 

0.5 2.7182818 2.7135204 0.00476140 0.82436064 0.2060902 0.0343484 

0.7 3.3201169 3.3143013 0.00581559 1.00687635 0.2517191 0.0419532 

0.9 4.0551999 4.0480968 0.00710318 1.22980156 0.3074504 0.0512417 

 

Example 5.2.2: Considering the time fractional nonlinear S-H equation. [149,174]. 

       
𝜕𝛼𝜔(𝜑,𝑡)

𝜕𝑡𝛼 +
𝜕4𝜔(𝜑,𝑡)

𝜕𝜑4 + (1 − 𝛽)𝜔(𝜑, 𝑡) + 2
𝜕2𝜔(𝜑,𝑡)

𝜕𝜑2 − 𝜌
𝜕3𝜔(𝜑,𝑡)

𝜕𝜑3 − 𝜔2(𝜑, 𝑡) + (
𝜕𝜔(𝜑,𝑡)

𝜕𝜑
)

2
= 0 ,

0 < 𝛼 ≤ 1,                   (5.2.13) 

With initial condition  𝜔(𝜑, 0) = 𝑒𝜑 . 
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Apply AHPTM , we get, 

∑ 𝑝𝑛𝜔𝑛
∞
𝑛=0 = 𝑒𝜑 − 𝑝 [ℒ−1  {

1

𝑠𝛼 ℒ [{
𝜕4𝜔

𝜕𝜑4 + (1 − 𝛽)𝜔(𝜑, 𝑡) + 2
𝜕2𝜔(𝜑,𝑡)

𝜕𝜑2 − 𝜌
𝜕3𝜔(𝜑,𝑡)

𝜕𝜑3 } − {∑ 𝑝𝑛𝐻𝑛
∞
𝑛=0 (𝜔)}]}],  

(5.2.14)                   

   the first components of 𝐻̃𝑛 are given as 

𝐻̃0 = (𝜔0)2 − (𝜔0𝜑)2, 

𝐻̃1 = 2𝜔0𝜔1 + 𝜔1
2 − 𝜔1𝜑(2𝜔0𝜑 + 𝜔1𝜑), 

𝐻̃2 = 2𝜔0𝜔2 + 2𝜔1𝜔2 + 𝜔2
2 − 2𝜔0𝜑𝜔2𝜑 − 2𝜔1𝜑𝜔2𝜑 − 𝜔2𝜑

2, 

⋮ 

Comparing the similar power of p on each sides of  the equation  (5.2.14) we obtain, 

𝜔0 =  e𝜑 , 

𝜔1 =
𝑒𝑥𝑡𝛼(𝜌 + 𝛽 − 4)

Γ(α + 1)
, 

𝜔2 =  
e𝜑t2α(𝜌 + 𝛽 − 4)2

Γ(2α + 1)
, 

𝜔3 =  
e𝜑t3α(𝜌 + 𝛽 − 4)3

Γ(3α + 1)
, 

⋮ 

 the approximate series solution  of equation (5.2.13)  obtained by AHPTM.                                       

𝜔(𝜑, 𝑡) = ∑ 𝜔𝑚(𝜑, 𝑡) =

∞

𝑚=0

𝜔0(𝜑, 𝑡) + 𝜔1(𝜑, 𝑡) + 𝜔2(𝜑, 𝑡) + ⋯ 

                𝜔(𝜑, 𝑡) = e𝜑 +
ⅇ𝑥𝑡𝛼(𝜌+𝛽−4)

Γ(α+1)
+  

e𝜑t2α(𝜌+𝛽−4)2

Γ(2α+1)
+

e𝜑t3α(𝜌+𝛽−4)3

Γ(3α+1)
+ ⋯              (5.2.15) 

and exact sol. of eq. (5.2.13) is 

𝜔(𝜑, 𝑡) = e𝜑Eα((𝜌 + 𝛽 − 4)tα).  
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Fig. 5.2.2(i). (a)the  surface graph of exact solution at 𝛼 = 1, (b) surface graph AHPTM at 𝛼 = 1, (c) 

line graph of exact solution and AHPTM at  𝛼 = 1, 𝛽 = 5, 𝜌 = 1, 0 < 𝜑 ≤ 1 𝑎𝑛𝑑 𝑡 = 0.2. 

 

                

                                                   (d) 

Fig. 5.2.2(ii) (d). solution of AHPTM at various  fractional order 𝛼 = 1,0.75,0.5,0.25, 𝛽 = 5, 𝜌 = 1, 0 <

𝜑 ≤ 1 𝑎𝑛𝑑 𝑡 = 0.2. 
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Table 5.2.2: Error analysis equation (5.2.13) at 𝛼 = 1(upto the fourth order) 

t x Exact AHPTM Abs. error ||𝜔1|| ||𝜔2|| ||𝜔3|| 

0.1 

0.1 1.349858808 1.3497821 0.000076726 0.2210342 0.022103418 0.001473561 

0.3 1.648721271 1.6486276 9.37137E-05 0.269972 0.026997176 0.001799812 

0.5 2.013752707 2.0136382 0.000114462 0.3297443 0.032974425 0.002198295 

0.7 2.459603111 2.4594633 0.000139804 0.4027505 0.040275054 0.002685 

0.9 3.004166024 3.0039953 0.000170758 0.4919206 0.049192062 0.003279471 

0.3 

0.1 2.013752707 2.0069904 0.00676232 0.6631026 0.198930765 0.039786153 

0.3 2.459603111 2.4513436 0.008259517 0.8099153 0.242974585 0.048594917 

0.5 3.004166024 2.9940778 0.010088196 0.9892328 0.296769829 0.059353966 

0.7 3.669296668 3.6569749 0.012321751 1.2082516 0.362475487 0.072495097 

0.9 4.48168907 4.4666392 0.01504982 1.4757619 0.44272856 0.088545712 

0.5 

0.1 3.004166023 2.9471224 0.057043576 1.1051709 0.552585459 0.184195153 

0.3 3.669296668 3.5996235 0.069673181 1.3498588 0.674929404 0.224976468 

0.5 4.48168907 4.3965901 0.085099015 1.6487213 0.824360635 0.274786878 

0.7 5.473947392 5.3700072 0.103940172 2.0137527 1.006876353 0.335625451 

0.9 6.685894442 6.5589416 0.126952813 2.4596031 1.229801556 0.409933852 

 

Example 5.2.3: Examine the non-linear time fractional S-H equation [149,174]. 

𝜕𝛼𝜔(𝜑,𝑡)

𝜕𝑡𝛼 +
𝜕4𝜔(𝜑,𝑡)

𝜕𝜑4 + 2
𝜕2𝜔(𝜑,𝑡)

𝜕𝜑2 − 𝜌
𝜕3𝜔(𝜑,𝑡)

𝜕𝜑3 + 𝛽𝜔(𝜑, 𝑡) − 2𝜔2(𝜑, 𝑡) + 𝜔3(𝜑, 𝑡) = 0 ,0 < 𝛼 ≤ 1,                 

(5.2.16) 

With initial condition  𝜔(𝜑, 0) = cos 𝑥. 

using AHPTM , we get, 

∑ 𝑝𝑛𝜔𝑛
∞
𝑛=0 = cosx − 𝑝 [ℒ−1  {

1

𝑠𝛼
ℒ [{

𝜕4𝜔

𝜕𝜑4
+ 2

𝜕2𝜔(𝜑,𝑡)

𝜕𝜑2
− 𝜌

𝜕3𝜔(𝜑,𝑡)

𝜕𝜑3
+ 𝛽𝜔(𝜑, 𝑡)} −

{∑ 𝑝𝑛𝐻̃𝑛
∞
𝑛=0 (𝜔)}]}],                                                                                                       (5.2.17)                 

   the first few components of 𝐻̃𝑛 are given as 

𝐻̃0 = 2(𝜔0)2 − (𝜔0)3, 

𝐻̃1 = 2𝜔1
2 + 4𝜔0𝜔1 − 3𝜔0

2𝜔1 − 3𝜔0𝜔1
3, 

𝐻̃2 = 4𝜔0𝜔2 + 4𝜔1𝜔2 + 2𝜔2
2 − 3𝜔0

2𝜔2 − 6𝜔0𝜔1𝜔2 − 3𝜔2
2𝜔0 − 3𝜔1

2𝜔2 − 3𝜔2
2

− 𝜔2
3, 
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⋮ 

   similar powers of p  comparing each sides of equation (5.2.17), we obtain 

𝜔0 = cos 𝑥, 

𝜔1 = ((1 + 𝛽) cos 𝑥 + 2cos2𝑥 − cos3𝑥 + 𝜌 sin 𝑥)
𝑡𝛼

Γ(𝛼 + 1)
, 

𝜔2 =
1

64
[−(4𝑡𝛼(−2 + 3 cos 𝑥) Γ(2𝛼

+ 1) (4 + cos 𝑥) + 4𝛽 cos 𝑥 + 4 cos 2𝑥 − cos 3𝑥

+ 4𝜌 sin 𝑥)2)] 
𝑡2𝛼

Γ(𝛼 + 1)2Γ(3𝛼 + 1)

− Γ(3𝛼

+ 1)(4 + cos 𝑥 + 4𝛽 cos 𝑥 + 4 cos 2𝑥 − cos 3𝑥

+ 4𝜌 sin 𝑥)3
𝑡2𝛼

Γ(α + 1)3Γ(4𝛼 + 1)

+
1

Γ(2𝛼 + 1)
64(−4(−5 + β) cos 𝑥3 − 10 cos 𝑥)4 + 3 cos 𝑥5

+ cos2𝑥(−4 + 6𝛽 − 24𝜌 sin 𝑥)

+ cos 𝑥 (−𝜌2 + (1 + 𝛽)2 + 20𝑘sin 𝑥 − 48 sin 𝑥2)

+ 2 sin 𝑥 (𝜌 + 𝜌𝛽 + 4 sin 𝑥 + 3ρ))], 

⋮ 

the approximate series solution  of equation (5.2.16)  obtained by AHPTM. 

𝜔(𝜑, 𝑡) = ∑ 𝜔𝑚(𝜑, 𝑡) =

∞

𝑚=0

𝜔0(𝜑, 𝑡) + 𝜔1(𝜑, 𝑡) + 𝜔2(𝜑, 𝑡) + ⋯ 

𝜔(𝜑, 𝑡) = cos 𝑥 + ((1 + 𝛽) cos 𝑥 + 2cos2 𝑥 − cos3𝑥 + 𝜌 sin 𝑥)
𝑡𝛼

Γ(1+𝛼)
+ ⋯         (5.2.18) 

In Fig. 5.2.3, we use ρ= 0.3 and β= 0.5 to approximate the solution of the fractional S-H 

equation up to three terms. 
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Fig. 5.2.3. Solution of AHPTM at various fractional order 𝛼 = 1,0.95,0.85,0.75, 𝛽 = 0.5, 𝜌 =

0.3 , 0 < 𝜑 ≤ 1 𝑎𝑛𝑑 𝑡 = 0.2.  

 

Example 5.2.4: Assume the time fractional nonlinear Fisher’s equation [56].  

𝜕𝛼𝜔

𝜕𝑡𝛼 =
𝜕2𝜔

𝜕𝑥2 + 6𝜔(1 − 𝜔), 𝑡 > 0, 𝑥 ∈ ℝ , 0 < 𝛼 ≤ 1.                                      (5.2.19) 

  Initial condition 𝜔(𝑥, 0) =
1

(1+ⅇ𝑥)2  

And 𝜔(𝑥, 𝑡) =
1

(1+ⅇ𝑥−5𝑡)2 

  Applying AHPTM on (5.2.19), we have 

 

∑ 𝑝𝑛𝜔𝑛
∞
𝑛=0 =

1

(1+ⅇ𝑥)2 − 𝑝 [ℒ−1  {
1

𝑠𝛼 ℒ{∑ (𝑝𝑛𝜔𝑛)𝑥𝑥
∞
𝑛=0 + 6{∑ 𝑝𝑛𝜔𝑛 − ∑ 𝑝𝑛𝐻̃𝑛

∞
𝑛=0

∞
𝑛=0 (𝜔)}}}], 

(5.2.20) 

The first few terms of 𝐻̃𝑛 are given as 

𝐻̃0 = (
1

(1 + 𝑒𝑥)2
)

2

 

 

𝐻̃1 =
20𝑒𝑥𝑡𝛼(5𝑒𝑥𝑡𝛼 + (1 + 𝑒𝑥)Γ[1 + 𝛼])

(1 + 𝑒𝑥)6Γ[1 + 𝛼]2
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 𝐻2

=
−

(1 + 𝑒𝑥)6(10𝑒𝑥𝑡𝛼 + (1 + 𝑒𝑥)Γ[1 + 𝛼])2

Γ[1 + 𝛼]2

(1 + 𝑒𝑥)12

+

((1 + 𝑒𝑥)4 +
10𝑒𝑥(1 + 𝑒𝑥)3𝑡𝛼

Γ[1 + 𝛼]
+

50𝑒 𝑥𝑡2𝛼 ((1 + 𝑒𝑥)2(−1 + 2𝑒 𝑥) −
12𝑒 𝑥𝑡𝛼Γ[1 + 2𝛼]2

Γ[1 + 𝛼]2Γ[1 + 3𝛼]
)

Γ[1 + 2𝛼]
)

2

(1 + 𝑒𝑥)12
 

 

⋮      

When the similar powers of p on both sides of (5.2.20) are compared, we get, 

𝑝0: 𝜔0 =
1

(1 + 𝑒𝑥)2
; 

𝑝1: 𝜔1 =  
10𝑒𝑥𝑡𝛼

(1 + 𝑒𝑥)3Γ[1 + 𝛼]
; 

𝑝2: 𝜔2 =
50𝑒𝑥𝑡2𝛼 ((1 + 𝑒𝑥)2(−1 + 2𝑒𝑥) −

12𝑒𝑥𝑡𝛼Γ[1 + 2𝛼]2

Γ[1 + 𝛼]2Γ[1 + 3𝛼]
)

(1 + 𝑒𝑥)6Γ[1 + 2𝛼]
 

𝑝3: 𝜔3

=
1

(1 + 𝑒𝑥)12
50𝑒𝑥𝑡3𝛼 (−

120𝑒𝑥(1 + 𝑒𝑥)5(−1 + 2𝑒𝑥)𝑡𝛼Γ[1 + 3𝛼]

Γ[1 + 𝛼]Γ[1 + 2𝛼]Γ[1 + 4𝛼]

−
300𝑒𝑥(1 − 2𝑒𝑥)2(1 + 𝑒𝑥)4𝑡2𝛼Γ[1 + 4𝛼]

Γ[1 + 2𝛼]2Γ[1 + 5𝛼]

−
24𝑒𝑥(1 + 𝑒𝑥)3𝑡𝛼Γ[1 + 2𝛼](−60𝑒𝑥𝑡𝛼Γ[1 + 4𝛼]2 + (−1 − 6𝑒𝑥 + 6𝑒2𝑥 + 11𝑒3𝑥)Γ[1 + 𝛼]Γ[1 + 3𝛼]Γ[1 + 5𝛼])

Γ[1 + 𝛼]3Γ[1 + 3𝛼]Γ[1 + 4𝛼]Γ[1 + 5𝛼]

+
1

Γ[1 + 3𝛼]
(1 + 𝑒𝑥)2 ((1 + 𝑒𝑥)4(5 − 6𝑒𝑥 − 15𝑒2𝑥 + 20𝑒3𝑥) +

7200𝑒2𝑥(−1 + 2𝑒 𝑥)𝑡3𝛼Γ[1 + 5𝛼]

Γ[1 + 𝛼]2Γ[1 + 6𝛼]
)

−
43200𝑒3𝑥𝑡4𝛼Γ[1 + 2𝛼]2Γ[1 + 6𝛼]

Γ[1 + 𝛼]4Γ[1 + 3𝛼]2Γ[1 + 7𝛼]
) 

⋮   

The solution to the problem is achieved by taking 𝑝 → 1 

𝜔(𝑥, 𝑡) = 𝜔0 + 𝜔1 + 𝜔3 … 

𝜔(𝑥, 𝑡) =
1

(1 + 𝑒𝑥)2
+

10𝑒𝑥𝑡𝛼

(1 + 𝑒𝑥)3Γ[1 + 𝛼]
+

50𝑒𝑥(2𝑒𝑥 − 1)𝑡2𝛼

(1 + 𝑒𝑥)4Γ[1 + 2𝛼]

+ (600𝑒2𝑥
Γ[1 + 2𝛼]

(1 + 𝑒𝑥)6Γ[1 + 𝛼]2Γ[1 + 3𝛼]
)

𝑡3𝛼

Γ[1 + 3𝛼]
… 
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                              (a)                                                                                                    (b) 

 

 

                                   (c)  

Fig. 5.2.4 (i): (a) surface graph of 𝜔𝐻𝑃𝑇𝑀 of eq. (5.2.19) when 𝛼 = 1 , (b) surface graph of  𝜔𝐴𝐻𝑃𝑇𝑀 

of eq. (5.2.19) when 𝛼 = 1 , (c) surface graph of Exact sol. of eq. (5.2.19) when 𝛼 = 1.                     

 

    

                            (d)                                                                                        (e)                               

 Fig. 5.2.4 (ii): (d) 𝜔ⅇ𝑥𝑎𝑐𝑡 , 𝜔𝐴𝐻𝑃𝑇𝑀 , 𝜔𝐻𝑃𝑇𝑀  𝑎𝑡 𝑥 = 0.3, 0 ≤ 𝑡 ≤ 0.16, (e) plot of  𝜔(𝑥, 𝑡)  of eq. 

(5.2.19) when x =2 and 𝛼 = 0.6. ,0.8 𝑎𝑛𝑑 1.  

 

Table 5.2.4 Approximate solution of Fisher’s equation upto fourth order (𝛼 = 1)   

x t 

𝜔(exact 

sol.) 
𝜔𝐴𝐻𝑃𝑇𝑀 Abs. Error 𝜔𝐻𝑃𝑇𝑀 Abs. error ‖𝜔1‖ ‖𝜔2‖ ‖𝜔3‖ 

0.3 

0.1 0.3023174 0.30222259 0.00009482 0.30469113 0.00237371 0.104031 0.016648 0.000445 

0.11 0.3160424 0.31590336 0.00013905 0.31929263 0.00325021 0.114434 0.019882 0.000488 

0.12 0.3299842 0.32978627 0.00019792 0.33431978 0.00433558 0.124837 0.023349 0.000501 

0.13 0.3441202 0.34384527 0.00027491 0.34977709 0.00565691 0.13524 0.027037 0.000469 
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0.14 0.3584269 0.35805283 0.00037408 0.36566905 0.00724213 0.145643 0.030932 0.000378 

0.4 

0.1 0.2756031 0.27552116 0.00008198 0.27661106 0.00100792 0.096419 0.01733 0.00072 

0.11 0.2888308 0.28871262 0.00011822 0.29026645 0.00143561 0.106062 0.020744 0.000856 

0.12 0.3023174 0.30215183 0.00016559 0.30430237 0.00198495 0.115704 0.024419 0.000977 

0.13 0.3160424 0.31581587 0.00022654 0.31871854 0.00267612 0.125345 0.028344 0.001074 

0.14 0.3299842 0.32968020 0.00030400 0.33351465 0.00353044 0.134987 0.032508 0.001133 

0.5 

0.1 0.25 0.24992567 0.00007432 0.24976552 0.00023449 0.088723 0.017665 0.001 

0.11 0.2626536 0.26254875 0.00010482 0.26243511 0.00021848 0.097596 0.021184 0.001232 

0.12 0.2756031 0.27545964 0.00014350 0.27544103 0.00016212 0.106468 0.024984 0.001471 

0.13 0.2888308 0.28863901 0.00019182 0.28877889 0.00005191 0.11534 0.029055 0.001706 

0.14 0.3023174 0.30206589 0.00025153 0.30244426 0.00012684 0.124213 0.033389 0.009273 

 

Example 5.2.5: Consider the time-fractional F-W equation [56] 

𝜕𝛼

𝜕𝑡𝛼
𝜔(𝑥, 𝑡) =  

𝜕3𝜔

𝜕𝑥2𝜕𝑡
−

𝜕𝜔

𝜕𝑥
+ 𝜔

𝜕3𝜔

𝜕𝑥3
− 𝜔

𝜕𝜔

𝜕𝑥
+ 3

𝜕𝜔

𝜕𝑥

𝜕2𝜔

𝜕𝑥2
, 

𝑡 > 0, 𝑥 ∈ ℝ , 0 < 𝛼 ≤ 1                                                   (5.2.21) 

With initial condition 𝜔(𝑥, 0) = 𝑒
𝑥

2 

And                             𝜔(𝑥, 𝑡) = 𝑒
1

2
(𝑥−

4𝑡

3
)
 

by applying AHPTM on (5.2.21), we have, 

∑ 𝑝𝑛𝜔𝑛
∞
𝑛=0 = 𝑒

𝑥

2 − 𝑝 [ℒ−1  {
1

𝑠𝛼 (ℒ {∑ (𝑝𝑛𝜔𝑛)𝑥𝑥𝑡 + ∑ 𝑝𝑛(−𝜔𝑛)𝑥
∞
𝑛=0

∞
𝑛=0 −

{∑ 𝑝𝑛𝐻̃𝑛
∞
𝑛=0 (𝜔)}})}]       (5.2.22) and the first few terms of 𝐻̃𝑛 are represented as 

𝐻̃0 = 𝜔0𝜔0𝑥𝑥𝑥 − 𝜔0𝜔0𝑥 + 3𝜔0𝑥𝜔0𝑥𝑥 = 0 

𝐻̃1 = 𝜔0𝜔1𝑥𝑥𝑥 + 𝜔1𝜔0𝑥𝑥𝑥 + 𝜔1𝜔1𝑥𝑥𝑥 − 𝜔0𝜔1𝑥𝑥 − 𝜔1𝜔0𝑥 − 𝜔1𝜔1𝑥 + 3𝜔0𝑥𝜔1𝑥𝑥

+ 3𝜔1𝑥𝜔0𝑥𝑥 + 3𝜔1𝑥𝜔1𝑥𝑥 

𝐻̃2 = 𝜔0𝜔2𝑥𝑥𝑥 + 𝜔1𝜔2𝑥𝑥𝑥 + 𝜔2𝜔0𝑥𝑥𝑥 + 𝜔2𝜔1𝑥𝑥𝑥 + 𝜔2𝜔2𝑥𝑥𝑥 − 𝜔0𝜔2𝑥 − 𝜔2𝜔0𝑥 − 𝜔2𝜔1𝑥

− 𝜔2𝜔2𝑥 + 3𝜔0𝑥𝜔2𝑥𝑥 + 3𝜔1𝑥𝜔2𝑥𝑥 + 3𝜔2𝑥𝜔0𝑥𝑥 + 3𝜔2𝑥𝜔1𝑥𝑥 + 3𝜔2𝑥𝜔2𝑥𝑥 

⋮ 

When similar powers of p on each side of (5.2.22) are compared, we get 

𝑝0: 𝜔0 =  e
𝑥
2 

𝑝1: 𝜔1 = −
e

𝑥
2

2

tα

Γ(1 + 𝛼)
; 

𝑝2: 𝜔2 =
−e

𝑥
2

8

t2α−1

Γ(2𝛼)
+

e
𝑥
2t2α

4Γ(2𝛼 + 1)
; 
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𝑝3: 𝜔3 = e
𝑥
2 (

3

32

t3α−2

Γ(3𝛼 − 1)
−

3

16

t3α−1

Γ(3𝛼)
−

t3α

8Γ(3𝛼 + 1)
) ; 

⋮   

Hence, the obatined solution is 

𝜔(𝑥, 𝑡) = e
𝑥

2 −
e

𝑥
2

2

tα

Γ(𝛼+1)
−

e
𝑥
2

8

t2α−1

Γ(2𝛼)
+

e
𝑥
2t2α

4Γ(2𝛼+1)
+ e

𝑥

2 (
3

32

t3α−2

Γ(3𝛼−1)
−

3

16

t3α−1

Γ(3𝛼)
−

t3α

8Γ(3𝛼+1)
) + ⋯ 

(5.2.23)  

                                                                                                               

                                 (a)                                                                                           (b) 

                                       

                                        (c) 

Fig. 5.2.5 (i): (a) surface graph of 𝜔𝐴𝐻𝑃𝑇𝑀 eq. (5.2.21), when = 1 , (b): surface graph of 𝜔𝐻𝑃𝑇𝑀 of eq. 

(5.2.21),when 𝛼 = 1, (c) surface graph of  𝜔(𝑥, 𝑡) eq.( 5.2.21), when 𝛼 = 1(exact sol.)   

 

        

             (d)                                                                                                           (e)  

 Fig. 5.2.5 (ii): (d) 𝜔(exact sol. ), 𝜔𝐴𝐻𝑃𝑇𝑀 , 𝜔𝐻𝑃𝑇𝑀  𝑎𝑡 𝑡 = 0.1, 0 ≤ 𝑥 ≤ 5.when 𝛼 = 1, (e) plot of  

𝜔(𝑥, 𝑡)  of eq. (5.2.21) when x=2 and 𝛼 = 0.6. ,0.8 𝑎𝑛𝑑 1. 
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Table 5.2.5. Approximate solution of time-fractional F-W equation upto fourth order (𝛼 = 1)  

t x Exact Sol. 𝜔𝐴𝐻𝑃𝑇𝑀 Abs. Error 𝜔𝐻𝑃𝑇𝑀 Abs. Error ‖𝜔1‖ ‖𝜔2‖ ‖𝜔3‖ 

0.1 
 

 

 

1 1.542390265 1.543580941 1.19E-03 1.543580941 1.19E-03 0.082436064 0.018548114 0.004156152 

2 2.542971638 2.544934731 1.96E-03 2.544934731 1.96E-03 0.135914091 0.030580671 0.006852335 

3 4.19265143 4.195888023 3.23E-03 4.195888024 3.24E-03 0.224084453 0.050419002 0.011297591 

4 6.912513593 6.917849834 5.33E-03 6.917849834 5.34E-03 0.369452804 0.083125881 0.018626578 

5 11.39680819 11.40560618 8.79E03 11.40560617 8.80E-03 0.609124698 0.137053057 0.030710037 

 0.3 
  

  

  

1 1.349858807 1.351024036 1.17E-03 1.351024036 1.17E-03 0.247308191 0.043278933 0.007110110 

2 2.225540928 2.227462065 1.92E-03 2.227462066 1.92E-03 0.407742274 0.07135549 0.011722590 

3 3.669296667 3.672464087 3.17E-03 3.672464088 3.17E-03 0.672253361 0.117644338 0.019327284 

4 6.049647464 6.054869657 5.22E-03 6.054869657 5.22E-03 1.108358415 0.193962723 0.031865304 

5 9.974182455 9.982792394 8.61E-03 9.982792395 8.61E-03 1.827374094 0.319790466 0.052537005 

 0.5 

  
  

  

1 1.181360413 1.180724868 6.36E-04 1.180724868 6.36E-04 0.412180318 0.05152254 0.004293544 

2 1.947734041 1.946686205 1.05E-03 1.946686205 1.05E-03 0.679570457 0.084946307 0.007078858 

3 3.211270543 3.209542954 1.73E-03 3.209542954 1.73E-03 1.120422268 0.140052783 0.011671065 

4 5.294400504 5.291641738 2.85E-03 5.291641738 2.85E-03 1.847264025 0.230908003 0.019242333 

5 8.729138364 8.72444229 4.70E-03 8.72444229 4.70E-03 3.04562349 0.380702936 0.031725244 

 

Example 5.2.6: Examine the nonlinear homogeneous time fractional Inviscid Burgers’   

equation [56]. 

                              𝐷𝑡
𝛼𝜔 + 𝜔𝜔𝑥 = 1 + 𝑥 + 𝑡,                                                               (5.2.24) 

With initial condition 𝜔(𝑥, 0) = 𝑥, 0 < 𝛼 ≤ 1 

and                               𝜔(𝑥, 𝑡) = 𝑥 + 𝑡 

By applying AHPTM on equation (5.2.24) we get, 

          ∑ 𝑝𝑛𝜔𝑛
∞
𝑛=0 = 𝑥 − 𝑝 (ℒ−1 {

1

𝑠𝛼 ℒ({1 + 𝑥 + 𝑡} − {∑ 𝑝𝑛𝐻̃𝑛
∞
𝑛=0 (𝜔)})})                     

(5.2.25) 

And the first few of terms of 𝐻̃𝑛 are represented as 

𝐻̃0 = 𝑥 

𝐻̃1 =
𝑡𝛼

Γ(𝛼 + 1)
+

𝑡𝛼+1

Γ(𝛼 + 2)
; 

𝐻̃2 = (
𝑡2𝛼

Γ(2𝛼 + 1)
+

𝑡2𝛼+1

Γ(2𝛼 + 2)
) ; 

                                                                      ⋮ 

When we compare comparable powers of p on both sides of (5.2.25), we get 

𝑝0: 𝜔0 = 𝑥 

𝑝1: 𝜔1 =
𝑡𝛼

Γ(𝛼 + 1)
+

𝑡𝛼+1

Γ(𝛼 + 2)
; 
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𝑝2: 𝜔2 = − (
𝑡2𝛼

Γ(2𝛼 + 1)
+

𝑡2𝛼+1

Γ(2𝛼 + 2)
) ; 

𝑝3: 𝜔3 = (
𝑡3𝛼

Γ(3𝛼 + 1)
+

𝑡3𝛼+1

Γ(3𝛼 + 2)
), 

⋮ 

Hence the solution of eq. (5.2.24) is 

𝜔(𝑥, 𝑡) = 𝑥 +
𝑡𝛼

Γ(𝛼 + 1)
+

𝑡𝛼+1

Γ(𝛼 + 2)
− (

𝑡2𝛼

Γ(2𝛼 + 1)
+

𝑡2𝛼+1

Γ(2𝛼 + 2)
) + (

𝑡3𝛼

Γ(3𝛼 + 1)
+

𝑡3𝛼+1

Γ(3𝛼 + 2)
) … 

or      𝜔(𝑥, 𝑡) = 𝑥 + (
𝑡𝛼

Γ(𝛼+1)
−

𝑡2𝛼

Γ(2𝛼+1)
+

𝑡3𝛼

Γ(3𝛼+1)
+ ⋯ ) + (

𝑡𝛼+1

Γ(𝛼+2)
−

𝑡2𝛼+1

Γ(2𝛼+2)
+

𝑡3𝛼+1

Γ(3𝛼+2)
+ ⋯ ) 

or          𝜔(𝑥, 𝑡) = 𝑥 − ∑
(−1)𝑛𝑡𝑛∝

Γ(𝑛𝛼+1)
∞
𝑛=1 − 𝑡 ∑

(−1)𝑛𝑡𝑛∝

Γ(𝑛𝛼+2)
∞
𝑛=1  

or          𝜔(𝑥, 𝑡) = 𝑥 + 1 + 𝑡 − 𝐸∝,1(−𝑡∝) − 𝑡𝐸∝,2(−𝑡∝) 

 

                   

(a)                                                                              (b)                    

 

                               (c)  

Fig. 5.2.6 (i): ( a) surface graph of  𝜔𝐴𝐻𝑃𝑇𝑀of eq. (5.2.24) ,when 𝛼 = 1 ,(b): surface graph of 𝜔𝐻𝑃𝑇𝑀 

of eq. (5.2.24) ,when 𝛼 = 1 ,(c) surface graph of  𝜔(𝑥, 𝑡) of eq.( 5.2.24) ,when 𝛼 = 1(exact sol.). 
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                    (d)                                                                                      (e)                 

Fig. 5.2.6 (ii): (d): 𝜔ⅇ𝑥𝑎𝑐𝑡 , 𝜔𝐴𝐻𝑃𝑇𝑀 , 𝜔𝐻𝑃𝑇𝑀  𝑎𝑡 𝑥 = 0.25, 0 ≤ 𝑡 ≤ 1. when = 1 , (e) plot of  𝜔(𝑥, 𝑡)  of eq. 

(4.2.21) ,when x=.25 and 𝛼 = 0.6. ,0.8 𝑎𝑛𝑑 1.     

 

Table 5.2.6. Approximate solution of Inviscid Burgers’ equation upto fourth order (𝛼 = 1)   

x t 

Exact 

solution 

  

𝜔𝐴𝐻𝑃𝑇𝑀
  Abs. Error 

  

𝜔𝐻𝑃𝑇𝑀
  Abs. Error 

  

‖𝜔1‖ 

  

‖𝜔2‖ 

  

‖𝜔3‖ 

0.25 

0.25 0.5 0.5001628 0.0001628 0.5001628 0.0001628 0.28125 0.0338542 0.002766927 

0.5 0.75 0.7526042 0.0026042 0.7526042 0.0026042 0.625 0.1458333 0.0234375 

0.75 1 1.0131836 0.0131836 1.0131836 0.0131836 1.03125 0.3515625 0.083496094 

1 1.25 1.2916667 0.0416667 1.2916667 0.0416667 1.5 0.6666667 0.208333333 

0.5 

0.25 0.75 0.7501628 0.0001628 0.7501628 0.0001628 0.28125 0.0338542 0.002766927 

0.5 1 1.0026042 0.0026042 1.0026042 0.0026042 0.625 0.1458333 0.0234375 

0.75 1.25 1.2631836 0.0131836 1.2631836 0.0131836 1.03125 0.3515625 0.083496094 

1 1.5 1.5416667 0.0416667 1.5416667 0.0416667 1.5 0.6666667 0.20833333 

0.75 

0.25 1 1.0001628 0.0001628 1.0001628 0.0001628 0.28125 0.0338542 0.002766927 

0.5 1.25 1.2526042 0.0026042 1.2526042 0.0026042 0.625 0.1458333 0.0234375 

0.75 1.5 1.5131836 0.0131836 1.5131836 0.0131836 1.03125 0.3515625 0.083496094 

1 1.75 1.7916667 0.0416667 1.7916667 0.0416667 1.5 0.6666667 0.20833333 

  

Conclusion: In conclusion, this chapter has offered a thorough explanation of the strategies 

used to achieve the study objectives. Within the scope of this investigation, we used the 

nonlinear fractional PDEs, as defined by the Caputo formulations, to address a variety of 

equations, including the Swift-Hohenberg equation, Inviscid Burgers’ equation, F-W 

equation, and Fisher’s equation. To validate our technique, rigorous computations were 

performed in Methematica, obtaining approximate results. These results were then visually 

rendered in surface and line graph forms. Furthermore, a thorough investigation of this 

method’s convergence qualities was carried out, adding to a better understanding of its 

effectiveness in solving complicated mathematical problems. 
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Chapter 6 

Nonlinear Fractional Partial Differential Equations using Accelerated 

Homotopy Perturbation Transformation Method in Caputo-Fabrizio 

Sense 

6.1 Introduction:  

In this chapter, the focus shifts from solving nonlinear fractional partial differential equations 

(PDEs) in the Caputo sense, explored in the previous chapter, to addressing nonlinear 

fractional PDEs in the Caputo-Fabrizio sense. While Chapter 5 applied the Accelerated 

Homotopy Perturbation Transformation Method (Acc. HPTM) to fractional PDEs using 

Caputo derivatives, this chapter expands the methodology to equations that incorporate the 

Caputo-Fabrizio fractional derivative, characterized by a non-singular kernel, thereby 

broadening the scope of application. This chapter provides a full explanation of the technique 

used to achieve the research aims specified in this study. Nonlinear fractional PDEs in the C-

F sense are used to solve a variety of problems, including the Burgers' equation, KdV 

equation, and K-G equation. The recommended techniques for achieving the study objectives 

are extensively detailed. The equations are used and validated in Mathematica, and the 

approximate solution is found using specific procedures. To provide a more precise depiction, 

the results are presented in the form of surface and line graphs. 

6 .2 Fractional Partial Differential Equations in Caputo-Fabrizio sense 

       We can describe the key concept of this technique by looking at a general nonlinear, non-

homogeneous fractional PDE 

Ɗ𝑡
𝛼

0
ℂҒ 𝜑(𝑥, 𝑡) + 𝑅𝜑(𝑥, 𝑡) + 𝑁𝜑(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ 𝚁, n − 1 < 𝛼 ≤ 𝑛,               (6.2.1)         

with differential operator initial condition        𝜑(𝑥, 0) = 𝑘(𝑥)                                                                

Where Ɗ𝑡
𝛼

0
ℂҒ  is represents the fractional C-F derivative with respect to t, R and N denotes the 

linear differential operator and non-linear differential operator and the source term is 

represented by 𝑔(𝑥, 𝑡)  .  

now, taking LT on both side of equation (6.2.1), 

ℒ[ Ɗ𝑡
𝛼

0
ℂҒ 𝜑(𝑥, 𝑡)] +  ℒ𝜑[𝑅(𝑥, 𝑡)] + ℒ[𝑁𝜑(𝑥, 𝑡)] = ℒ[𝑔(𝑥, 𝑡)] 
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Employing the differential property  

     ℒ[𝜑(𝑥, 𝑡)] =
1

𝑠
(𝜑(𝑥, 0)) +  (

𝑠+𝜇(1−𝑠)

𝑠
) ℒ(𝑔(𝑥, 𝑡) − 𝑅𝜑(𝑥, 𝑡) − 𝑁𝜑(𝑥, 𝑡))                (6.2.2) 

Now, applying both sides of eq. (6.2.1) inverse LT, we get 

 𝜑(𝑥, 𝑡) = 𝜑(𝑥, 0) + ℒ−1  {(
𝑠+𝜇(1−𝑠)

𝑠
) [ℒ(𝑔(𝑥, 𝑡) − 𝑅𝜑(𝑥, 𝑡) − 𝑁𝜑(𝑥, 𝑡))]} , 

 employing HPM, we obtain 

0 = (1 − 𝑝)[𝜑(𝑥, 𝑡) − 𝜑(𝑥, 0)]

+  𝑝 [𝜑(𝑥, 𝑡) + ℒ−1  {(
𝑠 + 𝜇(1 − 𝑠)

𝑠
) [ℒ(𝑔(𝑥, 𝑡) − 𝑅𝜑(𝑥, 𝑡) − 𝑁𝜑(𝑥, 𝑡))]}] 

 (6.2.3) 

Let  

                          𝜑(x, 𝑡) = ∑ 𝑝𝑛𝜑𝑛
∞
𝑛=0 (𝑥, 𝑡),                                                                       (6.2.4) 

and nonlinear term can be decompose as 

                       𝑁𝜑(𝑥, 𝑡) = ∑ 𝑝𝑛𝐻̃𝑛
∞
𝑛=0 (𝜑(𝑥, 𝑡))                                                               (6.2.5) 

Where 𝐻̃𝑛 represent accelerated He’s polynomial with  

                                          𝐻̃n (𝜑0, 𝜑1, 𝜑2 … 𝜑𝑛) = 𝑁(𝑆𝑘) − ∑ 𝐻̃𝑛
𝑛−1
𝑖=0                                            (6.2.6) 

                            𝐻̃𝑛 = 𝑁(𝜑(𝑥0)),  and 𝑆𝑘 = (𝜑0 + 𝜑1 + ⋯ + 𝜑𝑘) 

Substituting the equation (6.2.5), (6.2.6) in equation (6.2.3) we get, 

∑ 𝑝𝑛𝜑𝑛
∞
𝑛=0 (𝑥, 𝑡) = 𝜑(𝑥, 0)  −  𝑝 [ℒ−1  {(

𝑠+𝜇(1−𝑠)

𝑠
) [ℒ{𝑔(𝑥, 𝑡) − (∑ 𝑝𝑛𝜑𝑛

∞
𝑛=0 (𝑥, 𝑡) +

∑ 𝑝𝑛𝐻̃𝑛
∞
𝑛=0 (𝜑(𝑥, 𝑡)))}]}] , 

On comparing like powers of p we get  

𝑝0: 𝜑0 =   𝜑(𝑥, 0)  

𝑝1: 𝜑1(𝑥, 𝑡) = ℒ−1 {(
𝑠 + 𝜇(1 − 𝑠)

𝑠
) [ℒ[𝑔(𝑥, 𝑡) − (𝑅𝜑0 + 𝐻̃0𝜑)]]}, 
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𝑝2: 𝜑2(𝑥, 𝑡) = −ℒ−1 {(
𝑠 + 𝜇(1 − 𝑠)

𝑠
) [ℒ[𝑅𝜑1 + 𝐻̃1𝜑]]}, 

𝑝3: 𝜑3(𝑥, 𝑡) = −ℒ−1 {(
𝑠 + 𝜇(1 − 𝑠)

𝑠
) [ℒ[𝑅𝜑2 + 𝐻̃2𝜑]]}, 

⋮ 

Hence, when 𝑝 → 1 the solution of equation is obtained as 

𝜑(𝑥, 𝑡) = 𝜑0 + 𝜑1 + 𝜑3 … 

Example 6.2.1: In the Caputo-Fabrizio sense, consider the following nonlinear KdV equation 

[121]. 

                Ɗ𝑡
𝛼𝜑(𝑥, 𝑡) = −𝜑

𝜕𝜑

𝜕𝑥
− 𝜑

𝜕3𝜑

𝜕𝑥3 , 0 < 𝛼 ≤ 1,0
ℂҒ                                                     (6.2.7) 

With initial condition 

𝜑(𝑥, 0) = 𝑥, 

by operating  the LT, we get 

ℒ[𝜑(𝑥, 𝑡)] =
1

𝑠
𝜑(𝑥, 0) − (

𝑠 + 𝜇(1 − 𝑠)

𝑠
) ℒ [𝜑

𝜕𝜑

𝜕𝑥
+ 𝜑

𝜕3𝜑

𝜕𝑥3
] 

using the inverse of the LT to  

𝜑(𝑥, 𝑡) = 𝜑(𝑥, 0) −  ℒ−1 [(
𝑠 + 𝛼(1 − 𝑠)

𝑠
) ℒ [𝜑

𝜕𝜑

𝜕𝑥
+ 𝜑

𝜕3𝜑

𝜕𝑥3
]] 

Now apply AHPTM 

∑ 𝑝𝑛𝜑𝑛

∞

𝑛=0

(𝑥, 𝑡) = 𝑥 − 𝑝ℒ−1 [(
𝑠 + 𝛼(1 − 𝑠)

𝑠
) ℒ [∑ 𝑝𝑛𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

+ ∑ 𝑝𝑛𝐻̃𝑛(𝜑)

∞

𝑛=0

]] 

Where 𝐻̃𝑛(𝜑) are the polynomials that expressing the nonlinear terms 

𝐻̃0(𝜑) = 𝜑0𝜑0𝑥 − 𝜑0𝜑0𝑥𝑥𝑥 
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𝐻̃1(𝜑) = 𝜑0𝜑1𝑥 + 𝜑1𝜑0𝑥 + 𝜑1𝜑1𝑥 − 𝜑0𝜑0𝑥𝑥𝑥 − 𝜑1𝜑0𝑥𝑥𝑥 − 𝜑1𝜑1𝑥𝑥𝑥 

𝐻̃2(𝜑) = 𝜑0𝜑2𝑥 + 𝜑1𝜑2𝑥 + 𝜑2𝜑0𝑥 + 𝜑2𝜑1𝑥 + 𝜑2𝜑2𝑥 − 𝜑0𝜑2𝑥𝑥𝑥 − 𝜑1𝜑2𝑥𝑥𝑥 − 𝜑2𝜑0𝑥𝑥𝑥

− 𝜑2𝜑1𝑥𝑥𝑥 − 𝜑2𝜑2𝑥𝑥𝑥 

 ⋮ 

Comparing the similar power of p, we get 

𝜑0(𝑥, 𝑡) = 𝑥, 

𝜑1(𝑥, 𝑡) = −𝑥 + 𝑥𝛼 − 𝑥𝑡𝛼, 

𝜑2(𝑥, 𝑡) = 𝑥 − 𝑥α − 𝑥𝛼2 + 𝑥𝛼3 + 𝑡(𝑥𝛼 + 2𝑥𝛼2 − 3𝑥𝛼3) + 𝑡2(−𝑥𝛼2 + 2𝑥𝛼3) −
1

3
𝑡3𝑥α3, 

𝜑3(𝑥, 𝑡) = −𝑥 + 𝑥𝛼 + 3𝑥𝛼2 − 5𝑥𝛼3 + 𝑥𝛼4 + 3𝑥𝛼5 − 3𝑥𝛼6 + 𝑥𝛼7

+ 𝑡(−𝑥𝛼 − 6𝑥𝛼2 + 15𝑥𝛼3 − 4𝑥𝛼4 − 15𝑥𝛼5 + 18𝑥𝛼6 − 7𝑥𝛼7)

+ 𝑡2(3𝑥𝛼2 − 10𝑥𝛼3 + 𝑥𝛼4 + 26𝑥𝛼5 − 36𝑥𝛼6 + 16𝑥𝛼7)

−
1

3
𝑡3(−5𝑥𝛼3 − 6𝑥𝛼4 + 62𝑥𝛼5 − 100𝑥𝛼6 + 51𝑥𝛼7)

+
1

6
𝑡4(−5𝑥𝛼4 + 44𝑥𝛼5 − 90𝑥𝛼6 + 55𝑥𝛼7)

−
1

15
𝑡5(13𝑥𝛼5 − 46𝑥𝛼6 + 38𝑥𝛼7) +

1

9
𝑡6(−2𝑥𝛼6 + 3𝑥𝛼7) −

1

63
𝑡7𝑥𝛼7, 

⋮ 

So, the approximate solution is given by  

𝜑(𝑥, 𝑡) = ∑ 𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝜑0 + 𝜑1 + 𝜑2 + ⋯ 

𝜑(𝑥, 𝑡) = 𝑥(1 + 2𝛼2 − 4𝛼3 −
1

3
𝑡3𝛼3 + 𝛼4 + 3𝛼5 − 3𝛼6 + 𝛼7 + ⋯ )      

Hence, the resulting solution was obtained when 𝛼 → 1 i.e.  𝜑(𝑥, 𝑡) =
𝑥

1+𝑡
. 



90 
 

 

                               (a) 

           

                              (b) 

  

                      (c) 

Fig. 6.2.1(i): (a) surface graph of exact solution at 𝛼 = 1, (b) surface graph AHPTM at 𝛼 = 1, 

(c) line graph of exact solution and AHPTM at  𝛼 = 1,0 < 𝜑 ≤ 1 𝑎𝑛𝑑 𝑡 = 0.1. 

 

 

Fig. 6.2.1 (ii):  the solution of eq. (4.3.7) at different fractional order 𝛼 = 1,0.75,0.5,0,25,0 < 𝜑 ≤

1 𝑎𝑛𝑑 0 < 𝑡 ≤ 1. 
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Table: 6.2.1- Error analysis of example (4.3.7) at 𝑡 = 0.1,0.3,0.5 and 𝛼 = 1(upto fourth order) 

t x 𝜑Exact     𝜑𝐴𝐻𝑃𝑇𝑀  Abs. error 

  

‖𝜑1‖ 

  

‖𝜑2‖ 

  

‖𝜑3‖ 

0.1 

0.1 0.0909091 0.0909063 2.74E-06 0.01 0.000967 6.03224E-05 

0.3 0.2727273 0.272719 8.24E-06 0.03 0.0029 0.000180967 

0.5 0.4545455 0.4545317 1.373E-05 0.05 0.004833 0.000301612 

0.7 0.6363636 0.6363444 1.923E-05 0.07 0.006767 0.000422257 

0.9 0.8181818 0.8181571 2.472E-05 0.09 0.0087 0.000542901 

0.3 

0.1 0.0769231 0.0767668 0.0001563 0.03 0.020967 6.03224E-05 

0.3 0.2307692 0.2303003 0.000469 0.09 0.0629 0.000180967 

0.5 0.3846154 0.3838338 0.0007816 0.15 0.104833 0.000301612 

0.7 0.5384615 0.5373673 0.0010943 0.21 0.146767 0.000422257 

0.9 0.6923077 0.6909008 0.0014069 0.27 0.146767 0.000542901 

0.5 

0.1 0.0666667 0.0657862 0.0008805 0.05 0.040967 6.03224E-05 

0.3 0.2 0.1973586 0.0026414 0.15 0.1229 0.000180967 

0.5 0.3333333 0.3289311 0.0044023 0.25 0.204833 0.000301612 

0.7 0.4666667 0.4605035 0.0061632 0.35 0.286767 0.000422257 

0.9 0.6 0.5920759 0.0079241 0.45 0.3687 0.000542901 

 

  Example 6.2.2: Consider the nonlinear KdV Equation in the C-F sense [121]. 

Ɗ𝑡
𝛼𝜑(𝑥, 𝑡) = −𝜑

𝜕𝜑

𝜕𝑥
−

𝜕3𝜑

𝜕𝑥3 + 𝑥2 + 2𝑥3𝑡2, 0 < 𝛼 ≤ 1,0
ℂҒ                                                (6.2.8) 

with initial condition               𝜑(𝑥, 0) = 0, 

apply the L.T to equation (6.2.8), we have 

           ℒ[𝜑(𝑥, 𝑡)] = (
𝑠+𝛼(1−𝑠)

𝑠
) (

𝑥2

𝑠
+

4𝑥3

𝑠3 ) − (
𝑠+𝛼(1−𝑠)

𝑠
) ℒ [𝜑

𝜕𝜑

𝜕𝑥
+

𝜕3𝜑

𝜕𝑥3 ] 

using the inverse of the LT to  

𝜑(𝑥, 𝑡) = 𝑥2(1 − 𝛼 + 𝑡𝛼) + 𝑥3 (
2

3
𝑡3𝛼 + 2𝑡2 − 2𝑡2𝛼)

−  ℒ−1 [(
𝑠 + 𝛼(1 − 𝑠)

𝑠
) ℒ [𝜑

𝜕𝜑

𝜕𝑥
+

𝜕3𝜑

𝜕𝑥3
]] 

Now apply AHPTM 
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∑ 𝑝𝑛𝜑𝑛

∞

𝑛=0

(𝑥, 𝑡)

= 𝑥2(1 − 𝛼 + 𝑡𝛼) + 𝑥3 (
2

3
𝑡3𝛼 + 2𝑡2 − 2𝑡2𝛼)

− 𝑝ℒ−1 [(
𝑠 + 𝛼(1 − 𝑠)

𝑠
) ℒ [∑ 𝑝𝑛𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

+ ∑ 𝑝𝑛𝐻̃𝑛(𝜑)

∞

𝑛=0

]] 

where 𝐻̃𝑛(𝜑)  component given as, 

𝐻̃0(𝜑) = 𝜑0𝜑0𝑥 

𝐻̃1(𝜑) = 𝜑1𝜑0𝑥 + 𝜑0𝜑1𝑥 + 𝜑1𝜑1𝑥 

𝐻̃2(𝜑) = 𝜑0𝜑2𝑥 + 𝜑1𝜑2𝑥 + 𝜑2𝜑0𝑥 + 𝜑2𝜑1𝑥 + 𝜑2𝜑2𝑥 

⋮ 

Comparing the similar power of  p  we have 

𝜑0(𝑥, 𝑡) = 0 

𝜑1(𝑥, 𝑡) =
1

3
𝑥2(3 − 6𝑡2𝑥(−1 + 𝛼) − 3𝛼 + 3𝑡𝛼 + 2𝑡3𝑥𝛼) 

𝜑2(𝑥, 𝑡) = −
4

21
𝑡7𝑥5𝛼3 + 2(−𝑥3 + 3𝑥3𝛼 − 3𝑥3𝛼2 + 𝑥3𝛼3) − 6𝑡(𝑥3𝛼 − 2𝑥3𝛼2 + 𝑥3𝛼3)

+ 2𝑡2(−6 − 5𝑥4 + 12𝛼 + 15𝑥4𝛼 − 6𝛼2 − 2𝑥3𝛼2 − 15𝑥4𝛼2 + 2𝑥3𝛼3

+ 5𝑥4𝛼3) −
2

3
𝑡3(12𝛼 + 25𝑥4𝛼 − 12𝛼2 − 50𝑥4𝛼2 + 𝑥3𝛼3 + 25𝑥4𝛼3)

+
8

3
𝑡6(−𝑥5𝛼2 + 𝑥5𝛼3) +

1

3
𝑡4(−36𝑥5 + 108𝑥5𝛼 − 3𝛼2 − 20𝑥4𝛼2

− 108𝑥5𝛼2 + 20𝑥4𝛼3 + 36𝑥5𝛼3) −
2

15
𝑡5(78𝑥5𝛼 − 156𝑥5𝛼2 + 5𝑥4𝛼3

+ 78𝑥5𝛼3) 
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𝜑3(𝑥, 𝑡) = 2(6 − 5𝑥4(−1 + 𝛼) + 6𝑥5(−1 + 𝛼)3)(−1 + 𝛼)4

− 2𝑡(24 − 25𝑥4(−1 + 𝛼) + 42𝑥5(−1 + 𝛼)3)(−1 + 𝛼)3𝛼

+ 2𝑡2(−1 + 𝛼)2(132𝑥(−1 + 𝛼)2 − 36𝑥2(−1 + 𝛼)4 + 70𝑥6(−1 + 𝛼)5 + 21𝛼2

− 35𝑥4(−1 + 𝛼)𝛼2 + 6𝑥5(−1 + 𝛼)3(−7 + 16𝛼2)) − 4𝑡3(−1

+ 𝛼)𝛼(132𝑥(−1 + 𝛼)2 − 72𝑥2(−1 + 𝛼)4 + 175𝑥6(−1 + 𝛼)5 + 3𝛼2 − 10𝑥4(−1

+ 𝛼)𝛼2 + 𝑥5(−1 + 𝛼)3(−67 + 51𝛼2)) +
1

6
𝑡4(−2880𝑥3(−1 + 𝛼)6

+ 3552𝑥7(−1 + 𝛼)7 + 1728𝑥(−1 + 𝛼)2𝛼2 + 6𝛼4 − 55𝑥4(−1 + 𝛼)𝛼4

− 432𝑥2(−1 + 𝛼)4(−11 + 5𝛼2) + 12𝑥5(−1 + 𝛼)3𝛼2(−136 + 55𝛼2)

+ 28𝑥6(−1 + 𝛼)5(−48 + 265𝛼2)) −
2

15
𝑡5𝑥𝛼(−9120𝑥2(−1 + 𝛼)5

+ 16456𝑥6(−1 + 𝛼)6 + 402(−1 + 𝛼)𝛼2 − 5𝑥3𝛼4

+ 12𝑥4(−1 + 𝛼)2𝛼2(−69 + 19𝛼2) − 36𝑥(−1 + 𝛼)3(−178 + 41𝛼2)

+ 14𝑥5(−1 + 𝛼)4(−258 + 545𝛼2)) 

                       
1

 45
𝑡6𝑥(−32400𝑥3(−1 + 𝛼)6 + 48600𝑥7(−1 + 𝛼)7 − 48600𝑥2(−1 + 𝛼)4𝛼2

+ 135𝛼4 − 45𝑥(−1 + 𝛼)2𝛼2(−298 + 51𝛼2)

+ 28𝑥5(−1 + 𝛼)3𝛼2(−539 + 685𝛼2) + 96𝑥6(−1 + 𝛼)5(−90 + 1367𝛼2)

+ 90𝑥4𝛼4(9 − 9𝛼 − 2𝛼2 + 2𝛼3))

−
2

315
𝑡7𝑥2𝛼(−190080𝑥2(−1 + 𝛼)5 + 455220𝑥6(−1 + 𝛼)6

− 69240𝑥(−1 + 𝛼)3𝛼2 + 30𝑥3𝛼4(−5 + 𝛼2)

+ 28𝑥4(−1 + 𝛼)2𝛼2(−551 + 515𝛼2) + 72𝑥5(−1 + 𝛼)4(−564 + 4019𝛼2)

− 135𝛼2(46 − 46𝛼 − 7𝛼2 + 7𝛼3)) +
𝑡8𝑥2

1260
(907200𝑥7(−1 + 𝛼)7

− 975240𝑥2(−1 + 𝛼)4𝛼2 + 3606120𝑥6(−1 + 𝛼)5𝛼2

− 109620𝑥(−1 + 𝛼)2𝛼4 + 45𝛼4(47 − 7𝛼2) + 16𝑥5(−1 + 𝛼)3𝛼2(−9996

+ 47279𝛼2) + 1680𝑥4𝛼4(9 − 9𝛼 − 7𝛼2 + 7𝛼3))

+
2

105
𝑡10𝑥3𝛼2(51744𝑥6(−1 + 𝛼)5 − 1993𝑥(−1 + 𝛼)2𝛼2

+ 19020𝑥5(−1 + 𝛼)3𝛼2 − 14𝛼4 + 8𝑥4𝛼2(18 − 18𝛼 − 55𝛼2 + 55𝛼3)) 

  −
4𝑡11

3465
(327828𝑥9(−1 + 𝛼)4𝛼3 − 2475𝑥4(−1 + 𝛼)𝛼5 + 43524𝑥8(−1 +

𝛼)2𝛼5 + 20𝑥7𝛼5(−4 + 11𝛼2)) +
1

63
𝑡12(5064𝑥9(−1 + 𝛼)3𝛼4 − 5𝑥4𝛼6 +
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216𝑥8(−1 + 𝛼)𝛼6) −
8

819
𝑡13𝑥8𝛼5(956𝑥(−1 + 𝛼)2 + 9𝛼2) +

80

147
𝑡14𝑥9(−1 + 𝛼)𝛼6 −

16𝑡15𝑥9𝛼7

1323
                                                         

                                           ⋮ 

so, the approximate solution  are given as 

𝜑(𝑥, 𝑡) = ∑ 𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝜑0 + 𝜑1 + 𝜑2 + ⋯ 

𝜑(𝑥, 𝑡) = 𝑥2(1 − 𝛼 + 𝑡𝛼) + 𝑥3 (
2

3
𝑡3𝛼 + 2𝑡2 − 2𝑡2𝛼) + 2(−𝑥3 + 3𝑥3𝛼 − 3𝑥3𝛼2 + 𝑥3𝛼3) + ⋯ 

The preceding solution demonstrates that the approximate solution generated from the prior 

technique is quite close to the exact solution. i.e. 𝜑(𝑥, 𝑡) = 𝑥2t  when  𝛼 → 1. 

                                 

                (a)                                                                                               (b)             

 

    

 

                               (c) 

Fig 6.2.2(i): (a) surface graph of exact solution at 𝛼 = 1, (b) surface graph AHPTM at 𝛼 = 1, (c) 

line graph of exact solution and AHPTM at  𝛼 = 1,0 < 𝜑 ≤ 1 𝑎𝑛𝑑 𝑡 = .1. 
 



95 
 

 

 

                          (d) 

Fig 6.2.2 (ii):(d) the solution of eq. (4.3.8) at different fractional order 𝛼 = 1, 0.75, 0.5, 0.25, 0 < 𝜑 ≤

1 and 𝑡 = 0.1 

Table: 6.2.2- Error analysis of example (6.2.8) at 𝑡 = 0.1,0.2,0.3 and 𝛼 = 1(upto fourth order).                                                                                                                                               

          

t 

         

x 𝜑Exact     𝜑𝐴𝐻𝑃𝑇𝑀  Abs. Error 

  

‖𝜑1‖ 

  

‖𝜑2‖ 

  

‖𝜑3‖ 

0.1 

0.1 0.001 0.0010003 3.00143E-07 0.001001 0.000101 0.0001 

0.3 0.009 0.009000901 9.01423E-07 0.009018 0.000118 0.000101 

0.5 0.025 0.025001505 1.50536E-06 0.025083 0.000184 0.000102 

0.7 0.049 0.049002117 2.11661E-06 0.049229 0.00033 0.000104 

0.9 0.081 0.081002745 2.75E-06 0.081486 0.00059 0.000104 

0.2 

0.1 0.002 0.002019237 1.92366E-05 0.002005 0.001605 0.001619 

0.3 0.018 0.018057946 5.79462E-05 0.018144 0.001746 0.00166 

0.5 0.05 0.050097141 9.71406E-05 0.050667 0.00228 0.001711 

0.7 0.098 0.098137421 0.000137421 0.099829 0.003481 0.001789 

0.9 0.162 0.1621801 0.0001801 0.165888 0.005629 0.001922 

0.3 

0.1 0.003 0.003219637 0.000219637 0.003018 0.008118 0.00832 

0.3 0.027 0.027664798 0.000664798 0.027486 0.008599 0.008778 

0.5 0.075 0.076120681 0.001120681 0.07725 0.010453 0.009323 

0.7 0.147 0.148597599 0.001597599 0.153174 0.01467 0.010094 

0.9 0.243 0.245118246 0.002118246 0.256122 0.022309 0.011306 

 

Example 6.2.3: Consider the nonlinear Klein-Gordon equation [121]. 

Ɗ𝑡
𝛼+1𝜑(𝑥, 𝑡) =

𝜕2𝜑

𝜕𝑥2 − 𝜑2 + 𝑥2𝑡2, 0 < 𝛼 ≤ 1,0
ℂҒ                                           (6.2.9) 

with initial conditions                            
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                                   𝜑(𝑥, 0) = 0 ,           𝜑𝑡(𝑥, 0) = 𝑥 

operating the LT to equation (6.2.9), we have 

           ℒ[𝜑(𝑥, 𝑡)] =
1

𝑠2 𝜑𝑡(𝑥, 0) + 2 (
𝑠+𝛼(1−𝑠)

𝑠5 ) 𝑥2 + (
𝑠+𝛼(1−𝑠)

𝑠2 ) ℒ [
𝜕2𝜑

𝜕𝑥2 − 𝜑2]            (6.2.10) 

using the inverse  LT  to eq.( 6.2.10)  

𝜑(𝑥, 𝑡) = 𝑥𝑡 +
𝛼𝑡4𝑥2

12
+

(1 − 𝛼)𝑡3𝑥2

3
+  ℒ−1 [(

𝑠 + 𝛼(1 − 𝑠)

𝑠2
) ℒ [

𝜕2𝜑

𝜕𝑥2
− 𝜑2]] 

Now apply the AHPTM, 

∑ 𝑝𝑛𝜑𝑛

∞

𝑛=0

(𝑥, 𝑡) = 𝑥𝑡 +
𝛼𝑡4𝑥2

12
+

(1 − 𝛼)𝑡3𝑥2

3
− 𝑝ℒ−1 [(

𝑠 + 𝛼(1 − 𝑠)

𝑠2
) ℒ [∑ 𝑝𝑛𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

+ ∑ 𝑝𝑛𝐻𝑛(𝜑)

∞

𝑛=0

]], 

Where 𝐻̃𝑛(𝜑) express the nonlinear terms, 

𝐻̃0(𝜑) = (𝜑0)2, 

𝐻̃1(𝜑) = (𝜑0)2 + 2𝜑0𝜑1, 

𝐻̃2(𝜑) = (𝜑2)2 + 2𝜑0𝜑2 + 2𝜑1𝜑2, 

⋮ 

on comparing the similar power of  p  we have 

𝜑0(𝑥, 𝑡) = 𝑥𝑡 +
𝛼𝑡4𝑥2

12
+

(1 − 𝛼)𝑡3𝑥2

3
, 

𝜑1(𝑥, 𝑡) = −
𝑡10𝑥4𝛼3

12960
+

1

3
𝑡3(−𝑥2 + 𝑥2𝛼) −

1

12
𝑡4(−2 + 4𝛼 + 𝑥2𝛼 − 2𝛼2)

−
1

15
𝑡5(2𝑥3 − 𝛼 − 4𝑥3𝛼 + 𝛼2 + 2𝑥3𝛼2) +

1

180
𝑡6(−9𝑥3𝛼 + 𝛼2 + 9𝑥3𝛼2)

−
1

112
𝑡8(𝑥4𝛼 − 2𝑥4𝛼2 + 𝑥4𝛼3) +

1

648
𝑡9(−𝑥4𝛼2 + 𝑥4𝛼3)

+
1

252
𝑡7(−4𝑥4 + 12𝑥4𝛼 − 𝑥3𝛼2 − 12𝑥4𝛼2 + 4𝑥4𝛼3), 



97 
 

𝜑2(𝑥, 𝑡) = −
1

6
𝑡4(−1 + 𝛼)2 +

1

15
𝑡5(−1 + 𝛼)(2𝑥3(−1 + 𝛼) + 𝛼)

−
1

180
𝑡6(−34𝑥(−1 + 𝛼)3 + 9𝑥3(−1 + 𝛼)𝛼 + 𝛼2)

−
𝑡7𝑥(68𝑥3(−1 + 𝛼)3 + 112(−1 + 𝛼)2𝛼 − 5𝑥2𝛼2)

1260

+
𝑡8𝑥(−1 + 𝛼)(−120𝑥(−1 + 𝛼)3 + 132𝑥3(−1 + 𝛼)𝛼 + 61𝛼2)

5040

+
𝑡9

45360
(160𝑥5(−1 + 𝛼)4 + 140(−1 + 𝛼)5 + 660𝑥2(−1 + 𝛼)3𝛼 − 173𝑥4(−1 + 𝛼)𝛼2

− 22𝑥𝛼3)

−
1

453600
𝑡10(2016𝑥3(−1 + 𝛼)5 + 970𝑥5(−1 + 𝛼)3𝛼 + 1148(−1 + 𝛼)4𝛼

+ 1380𝑥2(−1 + 𝛼)2𝛼2 − 75𝑥4𝛼3) +
1

2494800
𝑡11(−1 + 𝛼)(4032𝑥6(−1 + 𝛼)4

+ 8820𝑥3(−1 + 𝛼)3𝛼 + 1105𝑥5(−1 + 𝛼)𝛼2 + 1932(−1 + 𝛼)2𝛼2 + 630𝑥2𝛼3) 

                       −
1

29937600
𝑡12(−13200𝑥4(−1 + 𝛼)6 + 37296𝑥6(−1 + 𝛼)4𝛼 + 31440𝑥3(−1 + 𝛼)3𝛼2

+ 1085𝑥5(−1 + 𝛼)𝛼3 + 3276(−1 + 𝛼)2𝛼3

+ 210𝑥2𝛼4)−
1

35380800
𝑡13(11520𝑥7(−1 + 𝛼)6 + 15060𝑥4(−1 + 𝛼)5𝛼

− 12708𝑥6(−1 + 𝛼)3𝛼2 − 5100𝑥3(−1 + 𝛼)2𝛼3 − 35𝑥5𝛼4 − 252(−1 + 𝛼)𝛼4)

+
1

123832800
𝑡14𝛼(37980𝑥7(−1 + 𝛼)5 + 20105𝑥4(−1 + 𝛼)4𝛼 − 5931𝑥6(−1 + 𝛼)2𝛼2

− 1128𝑥3(−1 + 𝛼)𝛼3 − 21𝛼4) 

                          +
1

28576800
𝑡15𝑥3(480𝑥5(−1 + 𝛼)7 − 3265𝑥4(−1 + 𝛼)4𝛼2 − 886𝑥(−1 + 𝛼)3𝛼3

+ 84𝑥3(−1 + 𝛼)𝛼4 + 6𝛼5)

−
1

228614400
𝑡16𝑥4𝛼(4290𝑥4(−1 + 𝛼)6 − 4874𝑥3(−1 + 𝛼)3𝛼2 − 707(−1 + 𝛼)2𝛼3

+ 15𝑥2𝛼4)

+
1

7772889600
𝑡17𝑥4(−1 + 𝛼)𝛼2(66950𝑥4(−1 + 𝛼)4 − 16151𝑥3(−1 + 𝛼)𝛼2 − 1176𝛼3)

−
1

69956006400
𝑡18(146045𝑥8(−1 + 𝛼)4𝛼3 − 6944𝑥7(−1 + 𝛼)𝛼5 − 196𝑥4𝛼6)

+
𝑡19𝑥7𝛼4(319𝑥(−1 + 𝛼)3 − 2𝛼2)

1116944640
−

487𝑡20𝑥8(−1 + 𝛼)2𝛼5

22338892800
+

𝑡21𝑥8(−1 + 𝛼)𝛼6

1175731200

−
𝑡22𝑥8𝛼7

77598259200
, 

⋮ 

So, the approximate solution of given by the equation 
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𝜑(𝑥, 𝑡) = ∑ 𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝜑0 + 𝜑1 + 𝜑2 + ⋯, 

𝜑(𝑥, 𝑡) = 𝑡𝑥 +
1

3
𝑡3𝑥2(1 − 𝛼) + ⋯. 

The result is the same as the closed form solution, when 𝛼 → 1, i.e. 

𝜑(𝑥, 𝑡) = 𝑥𝑡. 

 

                         (a) 

 

                            (b) 

 

                                     (c) 

Fig.6.2.3(i): (a) surface graph of exact solution at 𝛼 = 1, (b) surface graph AHPTM at 𝛼 = 1, (c) line 

graph of exact solution and AHPTM at  𝛼 = 1,0 < 𝜑 ≤ 1 and 𝑡 = .1. 
 

 

 

                                        (d) 

Fig. 6.2.3 (ii): (d). the solution of eq. (6.2.9) at different fractional order 𝛼 =

1,0.75,0.5,0,25,0 < 𝜑 ≤ 1 and 𝑡 = .1. 
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Table: 6.2.3 - Error  analysis of example (6.2.9) at 𝑡 = 0.2,0.4,0.6 and 𝛼 = 1(upto fourth order) 

t x 𝜑Exact     𝜑𝐴𝐻𝑃𝑇𝑀  Abs. Error 

  

‖𝜑1‖ 

  

‖𝜑2‖ 

  

‖𝜑3‖ 

0.2 

0.1 0.02 0.02 6.14E-16 9.77829E-07 3.5553E-07 2.48324E-11 

0.3 0.06 0.06 5.65E-15 1.16458E-05 3.54258E-07 7.44325E-11 

0.5 0.1 0.01 1.57E-14 3.29841E-05 3.49329E-07 1.23621E-10 

0.7 0.14 0.14 3.07E-14 6.49952E-05 3.38303E-07 1.71704E-10 

0.9 0.18 0.18 5.04E-14 0.000107681 3.18739E-07 2.17641E-10 

0.4 

0.1 0.04 0.04 2.37E-12 1.41572E-06 2.27618E-05 1.27173E-08 

0.3 0.12 0.12 2.30E-11 0.00016942 2.2618E-05 3.81018E-08 

0.5 0.2 0.2 6.40E-11 0.000511391 2.20054E-05 6.30868E-08 

0.7 0.28 0.28 1.25E-10 0.00102481 2.06104E-05 8.69612E-08 

0.9 0.36 0.36 2.02E-10 0.001709989 1.8119E-05 1.08657E-07 

0.6 

0.1 0.06 0.06 2.74E-10 0.000151089 0.000259578 4.89284E-07 

0.3 0.18 0.18 2.95E-09 0.000715803 0.00025766 1.46646E-06 

0.5 0.3 0.3 8.27E-09 0.002454715 0.0002477 2.42272E-06 

0.7 0.42 0.42 1.61E-08 0.005071014 0.000224286 3.31689E-06 

0.9 0.54 0.54 2.62E-08 0.008570088 0.000181973 4.08704E-06 

 

Example 6.2.4: Consider the nonlinear Burgers’ equation in the C-F sense [121]. 

                                  Ɗ𝑡
𝛼𝜑(𝑥, 𝑡) + 𝜑

𝜕𝜑

𝜕𝑥
= ɳ

𝜕2𝜑

𝜕𝑥2 , 0 < 𝛼 ≤ 1,0
 ℂҒ                                    (6.2.12) 

With initial condition                          

                                                       𝜑(𝑥, 0) = 𝑛𝑥, 

using  LT  to eq.  (6.2.12), we have 

                ℒ[𝜑(𝑥, 𝑡)] =
1

𝑠
𝜑(𝑥, 0) − (

𝑠+𝜇(1−𝑠)

𝑠
) ℒ [𝜑

𝜕𝜑

𝜕𝑥
− ɳ

𝜕2𝜑

𝜕𝑥2 ]                                    (6.2.13)      

on operating the inverse of the LT to eq. (6.2.13) 

𝜑(𝑥, 𝑡) = 𝜑(𝑥, 0) −  ℒ−1 [(
𝑠 + 𝛼(1 − 𝑠)

𝑠
) ℒ [𝜑

𝜕𝜑

𝜕𝑥
− ɳ

𝜕2𝜑

𝜕𝑥2
]] 

Now, apply AHPTM 
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∑ 𝑝𝑛𝜑𝑛

∞

𝑛=0

(𝑥, 𝑡) = 𝑛𝑥 + 𝑝ℒ−1 [(
𝑠 + 𝛼(1 − 𝑠)

𝑠
) ℒ [ɳ

𝜕2𝜑

𝜕𝑥2
∑ 𝑝𝑛𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

− ∑ 𝑝𝑛𝐻̃𝑛(𝜑)

∞

𝑛=0

]] 

 

Where first component of  𝐻̃𝑛(𝜑)  given as, 

𝐻̃0(𝜑) = 𝜑0𝜑0𝑥 

𝐻̃1(𝜑) = 𝜑0𝜑1𝑥 + 𝜑1𝜑0𝑥 + 𝜑1𝜑1𝑥 

𝐻̃2(𝜑) = 𝜑0𝜑2𝑥 + 𝜑1𝜑2𝑥 + 𝜑2𝜑0𝑥 + 𝜑2𝜑1𝑥 + 𝜑2𝜑2𝑥 

⋮ 

On comparing the similar power of p, we have 

𝜑0(𝑥, 𝑡) = 𝑛𝑥, 

𝜑1(𝑥, 𝑡) = −𝑛2𝑥(1 − 𝛼 + 𝑡𝛼), 

               𝜑2(𝑥, 𝑡)

=  2𝑛2𝑥(1 − 2𝛼 + 𝛼2) − 𝑛4𝑥(1 − 3𝛼 + 3𝛼2 − 𝛼3)

+ 𝑡(4𝑛3𝑥𝛼 − 3𝑛4𝑥𝛼 − 4𝑛3𝑥𝛼2 + 6𝑛4𝑥𝛼2 − 3𝑛4𝑥𝛼3)  

+ 𝑡2(𝑛3𝑥𝛼2 − 2𝑛4𝑥𝛼2 + 2𝑛4𝑥𝛼3) −
1

3
𝑛4𝑡3𝑥𝛼3, 
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          𝜑3(𝑥, 𝑡) = −4𝑛4𝑥 + 6𝑛5𝑥 − 6𝑛6𝑥 + 4𝑛7𝑥 − 𝑛8𝑥 + 12𝑛4𝑥𝛼 − 24𝑛5𝑥𝛼 + 30𝑛6𝑥𝛼

− 24𝑛7𝑥𝛼 + 7𝑛8𝑥

− 𝑛4𝑡𝑥(12 + 24𝑛(−1 + 𝛼) + 30𝑛2(−1 + 𝛼)2 + 24𝑛3(−1 + 𝛼)3

+ 7𝑛4(−1 + 𝛼)4)(−1 + 𝛼)2𝛼 − 12𝑛4𝑥𝛼2 + 36𝑛5𝑥𝛼2 − 60𝑛6𝑥𝛼2

+ 60𝑛7𝑥𝛼2 − 21𝑛8𝑥𝛼2

+ 𝑛4𝑡2𝑥(6 + 23𝑛(−1 + 𝛼) + 42𝑛2(−1 + 𝛼)2 + 44𝑛3(−1 + 𝛼)3

+ 16𝑛4(−1 + 𝛼)4)(−1 + 𝛼)𝛼2 + 4𝑛4𝑥𝛼3 − 24𝑛5𝑥𝛼3 + 60𝑛6𝑥𝛼3

− 80𝑛7𝑥𝛼3 + 35𝑛8𝑥𝛼3

−
1

3
𝑛4𝑡3𝑥(2 + 22𝑛(−1 + 𝛼) + 68𝑛2(−1 + 𝛼)2 + 104𝑛3(−1 + 𝛼)3

+ 51𝑛4(−1 + 𝛼)4)𝛼3 + 6𝑛5𝑥𝛼4 − 30𝑛6𝑥𝛼4 + 60𝑛7𝑥𝛼4— 35𝑛8𝑥𝛼4

+
 1

6
𝑛5𝑡4𝑥(4 + 29𝑛(−1 + 𝛼) + 75𝑛2(−1 + 𝛼)2 + 55𝑛3(−1 + 𝛼)3)𝛼4

+ 6𝑛6𝑥𝛼5   − 24𝑛7𝑥𝛼5 + 21𝑛8𝑥𝛼5

−
1

15
𝑛6𝑡5𝑥(5 + 30𝑛(−1 + 𝛼) + 38𝑛2(−1 + 𝛼)2)𝛼5 + 4𝑛7𝑥𝛼6 − 7𝑛8𝑥𝛼6

+
1

9
𝑛7𝑡6𝑥(1 + 3𝑛(−1 + 𝛼))𝛼6 + 𝑛8𝑥𝛼7 −

1

63
𝑛8𝑡7𝑥𝛼7, 

                                                                               ⋮ 

So the approximate solution of given by the equation 

𝜑(𝑥, 𝑡) = ∑ 𝜑𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝜑0 + 𝜑1 + 𝜑2 + ⋯ 

𝜑(𝑥, 𝑡) = 𝑛𝑥 + 2𝑛3𝑥 − 5𝑛4𝑥 + 6𝑛5𝑥 − 6𝑛6𝑥 + 4𝑛7𝑥 − 𝑛8𝑥 − 4𝑛3𝑥𝛼 … 

solution obtain when 𝛼 → 1, i.e.            

                                                     𝜑(𝑥, 𝑡) =
𝑛𝑥

1+𝑛𝑡
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                                 (a) 

        

                                    (b) 

    

                         (c) 

Fig 6.2.4 (i): (a) surface graph of exact solution at 𝛼 = 1, (b) surface graph AHPTM at 𝛼 = 1, (c) line 

graph of exact solution and AHPTM at  𝛼 = 1, 0 < 𝜑 ≤ 1 𝑎𝑛𝑑 𝑡 = 0.1. 

 

                                    (d) 

Fig 6.2.4(ii): (d) the solution of eq. (5.2.10) at different fractional order 𝛼 = 1, 0.75, 0.5, 0.25, 0 <

𝜑 ≤ 1 𝑎𝑛𝑑 𝑡 = 0.1. 
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Table: 6.2.4- Error analysis  of example (6.2.10) at 𝑡 = 0.2, 0.4, 0.6, 𝑛 = 1 and 𝛼 = 1(upto fourth 

order) 

t 

         

x 𝜑Exact     𝜑𝐴𝐻𝑃𝑇𝑀  Abs. error 

  

‖𝜑1‖ 

  

‖𝜑2‖ 

  

‖𝜑3‖ 

0.1 

0.1 0.090909091 0.090906344 2.74662E-06 0.01 0.006266667 0.000436643 

0.3 0.27272727 0.272719033 8.23987E-06 0.03 0.0188 0.001309928 

0.5 0.45454545 0.454531721 1.37E-05 0.05 0.031333333 0.002183213 

0.7 0.636363636 0.63634441 1.92E-05 0.07 0.043866667 0.003056498 

0.9 0.818181818 0.818157099 2.47E-05 0.09 0.0564 0.003929783 

0.3 

0.1 0.076923077 0.076766753 1.56E-04 0.03 0.0081 0.000436643 

0.3 0.230769231 0.230300259 4.69E-04 0.09 0.0243 0.001309928 

0.5 0.384615385 0.383833764 7.82E-04 0.15 0.0405 0.002183213 

0.7 0.538461538 0.53736727 1.09E-03 0.21 0.0567 0.003056498 

0.9 0.692307692 0.690900776 1.41E-03 0.27 0.0729 0.003929783 

0.5 

0.1 0.066666667 0.06578621 8.80E-04 0.05 0.020833333 0.005047123 

0.3 0.2 0.197358631 2.64E-03 0.15 0.0625 0.015141369 

0.5 0.333333333 0.328931052 4.40E-03 0.25 0.104166667 0.025235615 

0.7 0.466666667 0.460503472 6.16E-03 0.35 0.145833333 0.035329861 

0.9 0.6 0.592075893 7.92E-03 0.45 0.1875 0.045424107 

 Conclusion:  In conclusion, this chapter has provided a comprehensive explanation of the 

methodologies employed to fulfill the study objectives. Within the scope of this investigation, 

nonlinear fractional partial differential equations (PDEs), characterized by both Caputo and 

C-F formulations, were utilized to address various equations, including the Burgers’ 

Equation, KdV equation, and the K-G equation. To validate our approach, meticulous 

computations were conducted using Mathematica, yielding approximate results. These 

findings were then visually represented through surface and line graphs. Additionally, a 

thorough examination of the convergence properties of this method was undertaken, 

contributing to a deeper understanding of its efficacy in solving complex mathematical 

problems. 
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7. Conclusion 

The thesis titled “Semi- analytical Methods for Solution of Nonlinear Partial Differential 

Equations” focuses on extending analytical approaches by presenting a hybrid approach. The 

fundamental research goal is to create novel hybrid semi-analytical methods by combining 

integral transformation techniques, particularly Laplace and other integral transformations. 

These advanced methods are designed to solve complicated physical issues, notably PDEs 

and fractional differential equations. The ultimate objective is to enable the resolution of 

these complex problems under various circumstances in order to cater to real-life applications 

in diverse domain Finally, we validated the study's outcomes by comparing them to 

established results in the existing literature, confirming the accuracy and reliability of our 

findings. Our research focuses on the use of accelerated algorithms, specifically He’s 

polynomial, to improve convergence and reduce the number of iterations. We used a variety 

of semi-analytical methods, including the Accelerated Homotopy Perturbation Elzaki 

Transform Method (AHPETM), the Accelerated Homotopy Perturbation Sumudu Transform 

Method (AHPSTM), the Accelerated Homotopy Perturbation Transformation Method 

(AHPTM). In our research, we apply proposed method to the Burgers’ equation, the 

Advection problem, the Benjamin-Bona-Mahoney-Burgers equations (BBMBEs), Fisher’s 

equation, the KdV equation, and the K-G equation.  The approximate series solution was then 

represented and visually shown using surface and line graphs, providing insights into our 

approaches. In addition, we performed error analysis and convergence analysis for the 

numerical simulation of the given model, as well as confirmation of findings with published 

date. 

Finally, this thesis presents a comprehensive review of our study, divided into six distinct 

chapters. Chapter 1 lays the groundwork by providing a fundamental understanding of 

differential equations and approaches for solving nonlinear problems. Chapter 2 delves into a 

study of pertinent literature, providing a thorough framework for our work. Chapter 3 

outlines suggested methods, such as Acc. HPETM, for tackling PDEs, which are rigorously 

evaluated for efficacy. Chapter 4 applies two distinct methods to various equations, yielding 

approximate solutions. Chapter 5 implements a novel method for nonlinear fractional PDEs 

in the Caputo sense, introducing fractional calculus. Chapter 6 employs Acc. HPTM for 

nonlinear fractional PDEs in the C-F sense, demonstrating versatility. Each chapter builds 

upon the previous one, showcasing a logical progression in applying semi-analytical methods 

to increasingly complex nonlinear PDEs. Chapter 4 expands hybrid methods to solve broader 
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nonlinear equations, while Chapter 5 extends applications to nonlinear fractional PDEs in the 

Caputo sense. Chapter 6 further develops this by transitioning to the Caputo-Fabrizio sense, 

demonstrating the adaptability of these techniques. 
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Future Scope: 

Although our research accomplished its objectives, there are still unresolved issues that we 

want to address in future endeavors.  

1. We develop some other semi-analytical techniques that are novel to the existing 

techniques using different integral transformation methods like the Sehu transform, 

the Aboodh transform, etc., and find better and more accurate results than the 

existing techniques. 

2. In future work, we will obtain the results by using other fractional derivatives, like 

the Atangana-Baleanu fractional derivative. 
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