
DESIGN AND DEVELOPMENT OF A NOVEL FRAMEWORK

FOR MALWARE IDENTIFICATION AND CLASSIFICATION

Thesis submitted for the award of the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science and Engineering

By

Vikas Verma

Registration Number: 42100296

Supervised By

Dr. Arun Malik

Computer Science and Engineering

Professor

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

2024

ii

DECLARATION

I, hereby declared that the presented work in the thesis entitled “Design and

Development of a Novel Framework for Malware Identification and

Classification” in fulfilment of degree of Doctor of Philosophy (Ph. D.) is outcome

of research work carried out by me under the supervision of Dr. Arun Malik, working

as Professor, in the School of Computer Science and Engineering of Lovely

Professional University, Punjab, India. In keeping with general practice of reporting

scientific observations, due acknowledgements have been made whenever work

described here has been based on findings of other investigator. This work has not been

submitted in part or full to any other University or Institute for the award of any degree.

(Signature of Scholar)

Name of the scholar: Vikas Verma

Registration No.: 42100296

Department/school: School of Computer Science and Engineering

Lovely Professional University,

Punjab, India

iii

CERTIFICATE

This is to certify that the work reported in the Ph. D. thesis entitled “Design and

Development of a Novel Framework for Malware Identification and Classification”

submitted in fulfillment of the requirement for the award of degree of Doctor of

Philosophy (Ph.D.) in the School of Computer Science and Engineering, is a research

work carried out by Vikas Verma, 42100296, is bonafide record of his/her original

work carried out under my supervision and that no part of thesis has been submitted for

any other degree, diploma or equivalent course.

(Signature of Supervisor)

Name of supervisor: Dr. Arun Malik

Designation: Professor

Department/school: Computer Science and Engineering

University: Lovely Professional University

iv

ABSTRACT

In the present era of technology, the internet plays a central role in most activities.

Therefore, it is crucial to prioritize the protection of our applications, data, and

information from potential attackers who constantly create malicious programs and

make attempts in order to compromise our resources. Therefore, in the present era, the

examination of malware has become a significant focus due to the fact that attackers

continue to create a diverse array of malware that is constantly evolving in its

characteristics. In recent times the use of new technologies such as virtualization

technology and distribution tracking avoidance has made it difficult to track the latest

cybercrimes. Furthermore, in the realm of cyber research, the tracking of harmful code

distributors is more essential than analyzing malicious programs. Nowadays malware

is quite different in terms of properties as compared to the time of its starting era and

thus require different methods to trace. So, the detection of latest malware or the new

malware is quite crucial before it start impacting the system. An important area of study

that people want to learn more about is the malware used in Zero Day attacks that will

happen in the future. Hence this proposal is primarily focused on the development of a

novel technique for malware identification and classification.

Malware has to be discovered before it impacts a lot of systems to safeguard computer

systems and the internet from them. Several types of research on malware detection

techniques have recently been conducted. But it is still difficult to identify malware.

There exist two main processes for recognizing malware. One strategy is based on

signature detection, while the other technique is based on analyzing behavior. The

signature-based technique is fast as well as effective in recognizing known malware.

However, the behavior-based approach, which utilizes machine intelligence and other

methods, is capable of detecting unknown and intricate malware to some degree.

Nevertheless, this approach is more intricate in nature. However, none of the techniques

are capable of identifying every type of malicious software, particularly zero-day

attacks, especially when the number of malware instances continues to rise on a daily

basis. Previous iterations of malware were easily detectable due to their ability to

conceal their characteristics. However, modern malware employs many tactics, such as

obfuscation, to prolong their anonymity. Additionally, they can circumvent network

v

and system security measures, including firewalls and other security checks. In

addition, a variety of malwares are employed to initiate the attack, thereby amplifying

the impact and causing more severe damage.

It is also important to find the malware family like identification as if malware is

detected then what kind of malware category that is detected based on its properties

needs to finalize for understanding its functionality and to execute some

countermeasures for future to mitigate it. Malware classification can be done using

many methods, such as image based where binary values are converted into images or

by applying feature-based algorithms. To enhance the classification mechanism, the

inclusion of additional information will be advantageous. In order to get better results

when putting malware into groups, we need to make high-quality algorithms that use

modern machine intelligence techniques.

One another important thing that is useful for malware analysis is the development of

a framework or tool that helps to validate and test the files and other data items for

malware identification and classification. To defend and anticipate future attacks, there

is a need to utilize technologies for analyzing malware. The main choice is to use

generally open-source tools. But with the increase in complexity of malware variations,

it has become more difficult to understand and compare them. Thus, there is always a

need for new tools and integration of more features in tools for extensive malware

analysis. This motivates me for further research in the area of malware analysis and to

devise few novel approaches for malware analysis and classification especially the new

and unidentified malware through better framework development.

The challenges that we have perceived can be taken care of to some extent using the

new machine intelligence techniques that can speed up the process of identification and

classification to a larger extent. The fundamental idea of a machine learning approach

is provide training to the model to perform a certain task based on an algorithm, such

as classification, clustering, regression, etc. Training is carried out based on the input

data set and the model built in is then used to predict. The main steps in the execution

of the same are Intake of data, Transformation of data, Training of model, testing of the

model followed by deployment of model. One important thing which is applicable for

vi

all malware detection techniques is that the features that are used for the detection are

different for different techniques. In signature-based byte sequence analysis, Dynamic

Link Libraries (DLL) are utilized. Behavior-based analysis involves the usage of APIs

and system calls, while heuristic analysis focuses on operation codes and context-free

grammars.

Currently, Windows is one of the most extensively utilized operating systems. The

proliferation of malware presents a substantial menace to the integrity and security of

Windows operating systems. The aim of this research work is to devise a proficient

methodology for recognizing and categorizing various forms of malicious software on

the Windows operating system, with the purpose of tackling the prevalent problem of

malware. A proposed method for effectively detecting and categorizing malicious

software on Windows involves combining Support Vector Machine, Decision tree, and

Logistic Regression techniques in an ensemble approach. The proposed approach

utilizes methods of feature selection to identify the patterns and characteristics of many

malware clubs. The authentic dataset for malware will be utilized to evaluate and

appraise both proposed ensemble and the existing fundamental machine learning

methods. Ultimately, this will aid both inexperienced and skilled individuals in the field

of cyber security to understand and get ready for the always evolving dangers presented

by the latest type of malicious software on Windows personal computers.

vii

ACKNOWLEDGEMENT

Completing this Ph.D. thesis has been a challenging and rewarding journey, and it

would not have been possible without the invaluable support, guidance, and

encouragement of many individuals.

To my beloved mother Ms. Shashi Bala, who is no longer with me: your love, strength,

and belief in me have been my constant source of inspiration. Though you are not here

to witness this milestone, I carry your lessons and values in every step of this journey.

This achievement is a tribute to you. I am profoundly grateful to my family, especially

my father Mr. Sushil Kumar Verma, my wife Ms. Poonam and son Tanmay Verma,

for their unwavering support, understanding, and encouragement during the most

challenging phases of this journey.

I would like to express my heartfelt gratitude to my research supervisor Dr. Arun

Malik, Professor, Lovely Professional University, for his continuous immortal support,

motivation, and guidance. Without his support and kindness, I could not complete the

thesis successfully. I wholeheartedly thank him for his inspiration and encouragement

in providing valuable suggestions, from selecting the topic, clarifying doubts,

publishing, writing, and completing my thesis.

I wish to record my deep sense of gratitude and profound thanks to Dr. Rajeev Sobti,

Professor, Lovely Professional University, for inspiring guidance and constant

encouragement with my work during all stages, to bring this thesis into fruition. I thank

Prof. Dr. Isha Batra, Professor, Lovely Professional University for the invaluable

guidance to address various issues and challenges encountered, immeasurable

encouragement and kind cooperation during my research work.

My sincere thanks go to Shamneesh Sharma, Dr. Rahul Sharma, Awadhesh Kumar

Shukla, Aman Kumar and Aditya who provided me with continuous support,

stimulating discussions, and constructive feedback.

Finally, I wish to extend my appreciation to the countless individuals whose names

might not appear here but who played a part in this journey, including friends, mentors,

viii

and well-wishers. Your encouragement and contributions have left a lasting impact on

my life.

Vikas Verma

ix

TABLE OF CONTENTS

Declaration…………………………………………………………………………..ii

Certificate……………………………………………………………………………iii

Abstract………………………………………………………………………………iv

Acknowledgement…………………………………………………………………..vii

Table of Contents……………………………………………………………………ix

List of Figures……………………………….……………………………………….xi

List of Tables……………………………….…………………………………….…xii

List of Abbreviations……………..……………………………………………..…xiii

Chapter 1 Introduction……………………………………………………………..1

1.1 Overview………………………………………………………………….1

1.2 Types of Malwares………………………………………………………..3

1.3 Evolution of Malwares……………………………………………………9

1.4 Anatomy of Malware…………………………………………………….14

1.5 Approaches to Malware Detection………………………………………15

1.5.1 Signature-Based Detection…………………………………..16

1.5.2 Heuristic Analysis……………………………………………16

1.5.3 Behavioral Monitoring…………………………………….....16

1.5.4 Sandboxing…………………………………………………...16

1.5.5 Static Analysis………………………………………………..17

1.5.6 Network-Based Detection……………………………………17

1.6 Use of Machine Learning in Malware identification…………………….19

1.6.1 Feature Extraction……………………………………………19

1.6.2 Data Preprocessing…………………………………………...28

1.6.3 Model Training……………………………………………….28

1.6.4 Evaluating the model…………………………………………30

1.7 Problem Formulation……………………………………………………..30

x

1.8 Objectives………………………………………………………………...32

2 Review of Literature……………………………………………………………...33

3 Malware Identification and Classification………………………………………..75

3.1 Ensemble Approach for Malware Identification and Classification……...77

3.1.1 Ensemble Classifier Design…………………………………..77

4 Results and Discussion…………………………………………………………...83

5 Conclusion and Future Work…………………………………………………......97

References…………………………………………………………………………..100

List of Publications………………………………………………………………….110

xi

LIST OF FIGURES

1.1 Historical Timelines for the Evolution of Malware Detection Techniques……...18

1.2 Malware identification and classification approaches…………………………....31

3.1 Methodology depicting flow of proposed ensemble approach……………………76

3.2 Clustering and classifiers used in Hybrid ensemble approach for malware

detection………………………………………………………………………….81

4.1 Stages involved in model training and evaluation………………………………..85

4.2 Clustering of feature vectors obtained from malware and benign samples using K-

means clustering………………………………………………………………….86

4.3 Performance matrix for SVM Classifier………………………………………….88

4.4 Performance matrix for Decision Tree Classifier………………………………...89

4.5 Performance matrix for Logistic Regression Classifier…………………………..90

4.6 Performance matrix for SVM and Decision Tree at level 0 and for Logical

regression at Level 1…….………………………………………………………..92

4.7 Confusion matrix for SVM and Decision Tree at level 0 and for Logical

regression at Level 1…..………………………………………...………………..93

4.8 Training and validation accuracy……………………………………….………...94

4.9 Training and validation loss…………………………………………….………...95

xii

LIST OF TABLES

1.1 Malware types and their characteristics………………………………………….11

2.1 Research Evaluation Matrix for Malware Detection Techniques………………..33

2.2 Similar Work Done………………………………………………………………34

4.1 Comparative Analysis at both the levels…………………………………………91

4.2 Ensemble learning results with different meta-learners……………………….....96

xiii

LIST OF ABBREVATIONS

AI Artificial Intelligence

ANN Artificial Neural Networks

API Application Programming Interface

APT Advanced Persistent Threats

AUC Area Under Curve

BP Back Propagation

C&C Command and Control

CNN Convolutional Neural Networks

DBN Deep Belief Network

DL Deep Learning

DNN Deep Neural Network

DoS Denial of Service

DT Decision Tree

FDI False Data Injection

FL Federated Learning

GBM Gradient Boosting Machines

GNN Graph Neural Networks

GPSC Genetic Programming Symbolic Classifier

IDS Intrusion Detection Systems

IoT Internet of Things

IPS Intrusion Prevention Systems

KNN K-Nearest Neighbors

LR Logistic Regression

LSTM Long Short-Term Memory

ML Machine Learning

NFF Network Flow Feature

xiv

PCA Principal Component Analysis

PE Portable Executable

PSO Particle Swarm Optimization

RAT Remote Access Trojan

RF Random Forest

RNN Recurrent Neural Networks

ROC Receiver Operating Characteristic

SAE Stacked Auto Encoder

SE Symbolic Expressions

SVM Support Vector Machine

URL Uniform Resource Locator

1

Chapter 1

Introduction

1.1 Overview

The advancement in the field of cybersecurity faces a rising challenge in contending

the spread of malware, which continues to evolve in terms of complexity and erudition

[1]. Malware, or Malicious software, poses a substantial threat to the integrity, security,

privacy, and availability of digital systems, encompassing a lot of malicious software

designed to penetrate, interrupt, or exploit vulnerable systems and networks [2].

Malware, an abbreviation for malicious software, is purposely developed program that

disrupts, damages, or gains unauthorized entry to computer systems, networks, or

devices. Malware encompasses a wide range of malicious software, each possessing

distinct characteristics and capabilities. This includes viruses, worms, trojans,

ransomware, spyware, adware, and rootkits.

There are many bad things that malware can do, based on how it works and what the

attacker wants to do. These are some common things that malware can do [3]:

• Data Theft: Malware can steal important information such as personal

credentials, confidential documents. This information can be used for identity

the fraud related to finance or theft.

• System Interruption: Malware may interrupt the regular operation of digital

systems by causing crashes, freezes, or slowdowns. This disruption can affect

uptime, productivity, and damage to hardware or software components.

• File Modification or Deletion: Malware can modify, delete or encrypt the

contents of the files and data stored on infected systems. This action can lead to

data loss or irreparable damage to critical files and applications.

• Remote Control: There are certain types of malware, such as remote access

trojans (RATs) and backdoors that let criminals get into affected systems

without permission from afar.

• The user might know be knowing about the compromised systems and the

attackers would have the control on the compromised systems enabling the

2

possibility of executing commands, and exfiltrate data without the user's

knowledge.

• Botnet Formation: Malware can add computers that have been affected to a

botnet that is a group of infected devices managed by a bad person or group.

Users often connect botnets to work together to start organized attacks, send

spam emails, carry out Distributed Denial-of-Service (DDoS) attacks, or mine

cryptocurrency.

• Ransomware Attacks: Ransomware is a variant of malware that locks down the

system and encrypts the files, so only authorized users can get to them.

Attackers demand a ransom to get decryption keys or to open the system. If the

ransom is not paid, they say they will delete or leak the protected data forever.

• Espionage and Surveillance: Certain malware variants, such as spyware and

keyloggers, are designed to monitor and record user activity on systems. Such

software generally works behind the scenes usually as background processes.

This information can be used for espionage, surveillance, or corporate

espionage, allowing attackers to steal sensitive information or monitor user

behavior.

• Cryptocurrency Mining: Some malware strains, known as cryptojacking

malware, hijack the computing resources of infected systems to mine

cryptocurrencies such as Bitcoin or Monero. This activity consumes CPU and

GPU resources, slowing down system performance and increasing energy

consumption.

• Propagation: Malware often includes mechanisms for self-replication and

propagation to taint other devices and systems. This can be achieved through

email attachments, malicious links, network exploits, removable media, or

drive-by downloads.

• System Vulnerability Exploitation: Malware can exploit known vulnerabilities

in operating systems, software, or network protocols to acquire unauthorized

access to systems or execute arbitrary code. Exploiting vulnerabilities allows

malware to bypass security controls and escape detection mechanisms.

3

In summary, malware can have a wide range of detrimental effects on networks,

computer systems, and users, ranging from data theft and system disruption to

espionage and financial fraud. Detecting and mitigating malware threats are critical

components of cybersecurity strategies aimed at protecting against malicious activities

and safeguarding digital assets.

1.2 Types of Malware

Malware, which stands for "malicious software," is a broad term for a lot of different

bad programs that are made to get into computer systems and networks and take over

or damage them. Here are some common types of malware:

• Viruses: A virus is a program that replicates itself by infecting other files or

programs on your computer. It can do harm by messing up data, taking data, or

getting in the way of physical action. It is usually attached to an executable or

file and is launched when the file is opened or executed. For example, the

ILOVEYOU virus, which emerged in 2000, spread through e-mail links and

caused serious damage to systems and user data [4]. Viruses can reduce system

performance, cause invalid data, and cause frequent crashes. Some viruses, such

as Melissa, which infected Word files in 1999, use macros to perform malicious

operations. Preventing this virus includes using the latest anti-virus software,

avoiding suspicious downloads, and updating important files [5].

Examples: File-infecting viruses, macro viruses, boot sector viruses.

• Worms: Worms are autonomous programs that propagate via networks by

taking advantage of weaknesses in operating systems or network services.

These malicious programs have the ability to quickly infect a significant number

of machines and spread without requiring any action from the user. Unlike

viruses, worms can propagate without the need for user contact. An exemplary

instance is the SQL Slammer worm, which rapidly propagated in 2003 by

exploiting a flaw in Microsoft SQL Server, resulting in extensive network

disruptions [6]. Worms have the ability to use a substantial amount of bandwidth

and system resources, affecting the network performance. The Conficker worm,

identified in 2008, took use of Windows vulnerabilities and established a

network of compromised devices for a range of malevolent purposes [3].

4

Worms such as Stuxnet, which focused on industrial control systems in 2010,

can also possess a high level of complexity and target specific entities.

Preventive methods encompass the frequent upgrading of software, the

utilization of firewalls, and the implementation of network security protocols.

The Morris Worm, which emerged in 1988, caused significant disruption to

numerous computer systems, therefore highlighting the enduring menace posed

by worms. Efficient network surveillance and user consciousness are crucial in

identifying and reducing the impact of worm infections.

Examples: Internet worms, email worms, network worms.

• Trojans: Trojans are insidious software applications that masquerade as

genuine programs, yet harbor malevolent code. They frequently disguise

themselves as beneficial software or files and can be employed to pilfer

sensitive information, obtain unauthorized entry into systems, or aid other forms

of malware contaminations. An example of this is the extensive utilization of

the Zeus Trojan to illicitly acquire banking information through the process of

recording keystrokes and obtaining confidential data. Trojans, unlike viruses

and worms, do not have the ability to reproduce on their own, instead they

depend on users to propagate them [7]. Attackers have the ability to establish

backdoors in computer systems, which grants them remote access to computers

that have been compromised. The Emotet Trojan, originally designed as a

banking Trojan, has developed the capability to distribute many forms of

malware, including ransomware. Trojans have the ability to deactivate security

software, so granting attackers greater authority over the compromised system.

To prevent Trojan infestations, it is necessary to utilize powerful antivirus

software, exercise caution when dealing with email attachments, and

exclusively download software from reliable sources [7]. The FakeAV Trojan

masquerades as antivirus software, deceiving users into making payments for

counterfeit virus elimination services [8]. It is essential to have a well-informed

user and a high level of alertness in order to effectively recognize and prevent

Trojan threats.

Examples: Remote access Trojans (RATs), banking Trojans, spyware Trojans.

5

• Ransomware: Ransomware encrypts files or locks down whole systems so that

only authorized users can't get to them. Attackers demand ransom payments in

exchange for decryption keys, threatening to delete or leak the encrypted data if

the ransom is not paid. One notorious instance is the WannaCry ransomware

attack of 2017, which exploited a Windows vulnerability to infect thousands of

computers over the world. Ransomware often spreads through phishing emails,

malicious attachments, or by exploiting software vulnerabilities. Once infected,

victims typically see a ransom note demanding payment, usually in

cryptocurrency, to decrypt their files. The Petya ransomware, which emerged

in 2016, not only encrypted files but also prevented computers from booting by

encrypting the master boot record. Preventing ransomware involves regular data

backups, using robust antivirus solutions, and keeping software updated [9].

The Locky ransomware, which spread through email attachments disguised as

invoices, highlighted the importance of email security awareness [10].

Organizations and individuals should implement network segmentation and

educate users about phishing scams to mitigate ransomware risks. It is not

recommended to pay the fee because it does not guarantee file return and may

lead to more crime.

Examples: CryptoLocker, WannaCry, Ryuk.

• Spyware: Spyware is software that is meant to watch and record what a person

does on their computer without them knowing. It can track keystrokes, capture

screenshots, record browsing habits, and steal personal or financial data for

malicious purposes. An example of spyware is Keyloggers, which record

keystrokes to capture confidential information. Spyware can enter a system

through infected downloads, malicious websites, or bundled with legitimate

software. The CoolWebSearch spyware hijacked web browsers, redirecting

users to unwanted websites and collecting search queries. Spyware often

degrades system performance and compromises user privacy [11]. The

FinFisher spyware, used for surveillance, highlighted the risks of spyware in

targeted attacks. Preventing spyware involves using anti-spyware tools, keeping

software updated, and avoiding suspicious downloads. The DarkHotel spyware

6

targeted business executives through hotel Wi-Fi networks, showing the

sophistication of some spyware attacks [12]. Educating users about the dangers

of downloading untrusted software and practicing safe browsing habits are

crucial in combating spyware.

Examples: Keyloggers, screen capture spyware, webcam spyware.

• Adware: Without the user's permission, adware shows them ads they don't want

to see or sends them to harmful websites. It often comes bundled with legitimate

software and can degrade system performance or compromise user privacy.

This type of software, often disguised within seemingly innocuous downloads,

embeds itself into systems to inundate users with advertisements. A notorious

case is the Superfish adware, pre-installed on Lenovo laptops, which not only

flooded screens with ads but also compromised user security by intercepting

encrypted connections [13]. Adware's intrusive nature extends beyond mere

pop-ups, altering browser settings, redirecting searches, and clandestinely

tracking online behavior to deliver targeted ads. Despite its non-malicious

intent, adware can significantly degrade system performance, disrupt

workflows, and compromise user privacy by harvesting sensitive data without

consent. Uninstalling adware proves challenging, often requiring specialized

tools or expert intervention. As users navigate the digital landscape, vigilance

during software installations and regular security checks become paramount

defenses against the encroachment of adware and its disruptive consequences.

One example of adware is the notorious "Superfish" adware that made headlines

due to its intrusive nature and security implications. Superfish was pre-installed

on some Lenovo laptops between 2014 and 2015. It worked by injecting third-

party advertisements into web pages the user visited, often without their

consent.

Examples: Browser hijackers, pop-up adware, click fraud adware.

• Keyloggers: Keyloggers record keystrokes typed by a user, allowing attackers

to capture sensitive information such as passwords, credit card numbers, and

other confidential data. They operate covertly in the background, often evading

exposure by antivirus and security measures. One example of a keylogger is the

7

Zeus Trojan, which targeted financial institutions and harvested login

credentials to perpetrate banking fraud. Keyloggers can be spread in many ways,

such as through harmful email files, websites that are infected with malware, or

software downloads that have been tampered with. Once they are installed, they

quietly record keystrokes and send the information they collect to sites that are

controlled by hackers. Keyloggers can be used for more than just stealing

money. They can also be used for identity theft, business spying, and privacy

invasion. Detection and removal of keyloggers require specialized tools and

expertise, making them a persistent threat to both individuals and organizations.

Vigilance in practicing good cybersecurity hygiene, such as regularly updating

software and employing robust security measures, is essential to mitigate the

risk posed by these stealthy adversaries.

Examples: Hardware keyloggers, software keyloggers, memory injection

keyloggers [14].

• Rootkits: Rootkits are stealthy malware programs that conceal their presence

and activity on a compromised system. They often manipulate operating system

functions or system calls to bypass detection by antivirus software and security

mechanisms. One prominent example of a rootkit is the Sony BMG rootkit,

which was included in some Sony audio CDs in the mid-2000s. It installed itself

when users played the CDs on their computers, opening a backdoor for potential

exploitation by cybercriminals [3]. People often use rootkits for malicious

things, like spying, data theft, and making other types of computer operations

easier. Detecting and removing rootkits can be challenging due to their ability

to cloak themselves from antivirus programs and system scans. Advanced

security measures such as integrity checking and behavior analysis are

necessary to detect and combat these stealthy threats effectively.

Examples: Kernel-mode rootkits, user-mode rootkits, firmware rootkits.

• Botnets: A botnet is a group of computers that have been hacked and are

directed by a central command-and-control server. Spam emails, DDoS attacks,

coordinated strikes, and mining for cryptocurrencies are all things that can be

done with them. One notorious example of a botnet is the Mirai botnet, which

8

gained notoriety for launching massive DDoS attacks in 2016, disrupting

services of internet worldwide. Usually, computers are infected with malware,

which lets a person called the "botmaster" control them from afar and use them

for bad things like spamming, stealing private information, or coordinating

hacks. Infected devices often include computers, smartphones, and IoT devices,

making botnets a pervasive threat across multiple platforms. Detecting and

dismantling botnets require association between law enforcement agencies,

cybersecurity experts, and internet service providers due to their distributed and

resilient nature. Implementing strong security measures, such as using antivirus

software, regularly updating software, and securing network devices, can help

mitigate the risk of botnet infections and prevent machines from becoming

unwitting participants in these malicious networks [15].

Examples: Mirai, Zeus, Emotet.

• Fileless Malware: Fileless malware operates in system memory without

leaving traces on disk, making it hard to identify using traditional antivirus. It

leverages legitimate system tools and processes to execute malicious activities,

such as exploiting vulnerabilities or stealing data. A notable example of fileless

malware is Poweliks, which infected computers by exploiting vulnerabilities in

Windows and using PowerShell scripts to execute its commands directly in

memory [16]. Because fileless malware doesn't rely on traditional file-based

techniques, it can evade detection by many antivirus programs and security

mechanisms, making it particularly challenging to detect and mitigate. Its

stealthy nature makes it a preferred tool for cybercriminals seeking to infiltrate

networks, steal data, or carry out espionage with minimal risk of detection.

Protecting against fileless malware requires a multi-layered security approach

that includes behavioral analysis, Endpoint Detection and Response (EDR)

solutions, and user education to find and avoid phishing attempts and suspicious

activities.

Examples: PowerShell-based malware, memory-resident malware, in-memory

exploit payloads [17].

9

New variants and techniques of cyber threats keep coming out, which shows how

important it is to have strong cybersecurity means to protect yourself from malware

infections and cyberattacks.

1.3 Evolution of Malware

The historical development of malware spans several decades, evolving from

rudimentary viruses, spyware and worms to complex ransomware and advanced

persistent threats (APTs). This progression reflects the increasing sophistication and

diversity of malware variants over time, underscoring the critical importance of robust

detection and classification mechanisms in cybersecurity.

Initial Worms and Viruses [11]:

• The earliest forms of malware emerged in the 1970s and 1980s, primarily as

experiments or proofs of concept. Examples include the Creeper virus, one of

the first documented instances of malware, which spread through early

computer networks like ARPANET.

• In the 1980s, viruses such as the Brain virus and the Morris worm gained

notoriety for their ability to infect and propagate across computers, causing

disruptions and drawing attention to the emerging threat of malware.

Proliferation of Computer Viruses:

• The 1990s witnessed a proliferation of computer viruses, driven by the

widespread adoption of personal computers and the internet. Viruses like

Michelangelo and Melissa demonstrated the potential for widespread damage

and data loss, exploiting vulnerabilities in operating systems and applications

[5].

• Virus authors began employing more sophisticated techniques such as

polymorphic code and stealth mechanisms to evade detection and propagation,

challenging the efficacy of traditional antivirus software.

Emergence of Worms and Trojans:

10

• The early 2000s saw a shift towards self-propagating malware, exemplified by

worms like Code Red and SQL Slammer, which exploited vulnerabilities in

network services to spread rapidly and cause widespread disruption.

• Trojans, disguised as legitimate software, became increasingly prevalent,

enabling invaders to get illegitimate access to systems, launch targeted attacks,

or steal sensitive information against individuals and organizations.

Rise of Ransomware and APTs:

• The 2010s marked the rise of ransomware as a prominent form of malware,

leveraging encryption techniques to lock down systems and demand ransom

payments for decryption. CryptoLocker, WannaCry, and NotPetya are all well-

known examples of ransomware that caused broad problems and financial

losses in many areas.

• Advanced persistent threats (APTs) [Advanced Persistent Threats (APT):

evolution, anatomy, attribution] emerged as a sophisticated and stealthy form of

malware, often attributed to nation-state actors or organized cybercriminal

groups.

Diversity and Sophistication of Modern Malware:

• Today, malware variants exhibit a high degree of diversity and sophistication,

ranging from traditional viruses and worms to fileless malware and supply chain

attacks. Malware authors continuously innovate and adapt their tactics to evade

detection and exploit vulnerabilities in software and systems.

• The increasing use of encryption, obfuscation, and anti-analysis techniques

poses significant challenges for traditional detection methods, highlighting the

need for advanced detection and classification mechanisms capable of

identifying emerging threats in real-time.

In conclusion, the history of malware shows how cyber risks change over time and how

important it is to have strong detection and classification systems in cybersecurity.

Malware keeps getting smarter and more varied, so people who work in cybersecurity

need to stay alert and take the initiative to create defenses that can adapt to new threats.

11

Certainly, here's the extended table 1.1 with more years included [3], Twenty-five years

of cyber threats in the news:

Table 1.1: Malware types and their characteristics

Year Malware Type(s) Characteristics and Impact

1971 Creeper

It affected DEC PDP-10 computers that were using the

TENEX OS and is thought to be the first computer

virus. The message "I'm the creeper, catch me if you

can!" was shown.

1981 Elk Cloner

It was one of the first viruses to infect a

microcomputer. It spread through floppy files to

Apple II computers and showed a funny poem.

1986 Brain

The first IBM PC-compatible virus, it spread via

infected floppy disks and displayed the message

"Welcome to the Dungeon".

1988 Morris Worm

One of the first internet worms, it infected UNIX-

based systems and caused widespread congestion and

disruption.

1991 Michelangelo

Triggered on March 6th, it infected DOS-based

systems and overwrote the first 100 sectors of the hard

disk, potentially causing data loss and system

instability.

1999 Melissa

Spread via infected email attachments, causing email

servers to overload and leading to widespread

disruption. It could compromise personal and sensitive

information.

2000 ILOVEYOU

It spread through email and attacked millions of

computers around the world, damaging them badly

and costing a lot of money. Other things it did were

delete files, send copies of itself, and steal passwords.

12

2001 Code Red, Nimda

Code Red exploited vulnerabilities in Microsoft IIS

web servers, while Nimda spread via multiple vectors,

including email, websites, and network shares. It

caused massive downtime and financial losses.

2003 Blaster (MSBlast)

It has taken advantage of a flaw in Microsoft Windows

to spread quickly and hit important infrastructure with

DDoS attacks. It messed up systems all over the world

and caused crashes.

2004 Sasser

Exploited a vulnerability in Windows LSASS service

to spread and caused widespread disruption,

particularly in healthcare and transportation sectors. It

crashed systems and networks.

2007 Storm Worm

Distributed spam emails and formed one of the largest

botnets, demonstrating the power of botnets in

cybercrime operations. It stole personal and financial

information.

2010 Stuxnet

Targeted Iranian nuclear facilities, highlighting the

potential for cyber-physical attacks and espionage. It

sabotaged industrial systems and disrupted uranium

enrichment processes.

2011 Duqu, Flame

Sophisticated espionage malware, linked to Stuxnet,

targeting government and corporate networks. It stole

sensitive data and provided remote access to

compromised systems.

2013 CryptoLocker

Introduced ransomware as encrypting files, prominent

threat, and demanding payment for decryption keys. It

extorted money from individuals and organizations

worldwide.

2014
Gameover Zeus,

Heartbleed

Gameover Zeus operated as a banking Trojan, while

Heartbleed exploited a critical vulnerability in

13

OpenSSL, affecting millions of websites and systems.

It stole financial and personal data.

2015
Angler Exploit Kit,

Dyre

Angler Exploit Kit exploited vulnerabilities in web

browsers, while Dyre targeted online banking systems

and stole credentials. They facilitated widespread

cybercrime and financial fraud.

2016 Mirai

Targeted IoT devices and formed botnets for DDoS

attacks, leading to massive disruptions in internet

services. It exploited weak or default credentials in

IoT devices.

2017

WannaCry,

NotPetya, Bad

Rabbit

WannaCry exploited a Windows SMB vulnerability to

spread globally; NotPetya caused widespread

disruption, particularly in Ukraine; Bad Rabbit

targeted Eastern European countries. They caused

billions in damages and disrupted critical

infrastructure.

2018
VPNFilter,

Olympic Destroyer

VPNFilter infected routers and NAS devices, while

Olympic Destroyer targeted Olympic organizations

with destructive malware. They compromised

network infrastructure and disrupted operations.

2019 Emotet, Ryuk

Emotet operated as a modular banking Trojan, while

Ryuk targeted organizations with ransomware attacks.

They caused financial losses and disrupted operations

in various industries.

2020

COVID-19-themed

Malware,

SolarWinds Supply

Chain Attack

Malicious actors exploited the COVID-19 pandemic

with phishing campaigns and malware distribution;

the SolarWinds supply chain attack targeted

government and corporate networks. They

compromised government agencies, corporations, and

critical infrastructure, leading to data breaches and

espionage.

14

This extended table provides a comprehensive overview of malware evolutions over

a wider range of years, highlighting significant events and their impact on

cybersecurity and society.

1.4 Anatomy of Malware

The anatomy of malware refers to its internal structure and components, which are

designed to perform various malicious activities while evading detection and analysis.

While specific malware variants may vary in complexity and functionality, they

generally consist of several common components. Here's an overview of the typical

anatomy of malware [18]:

a. Propagation Mechanism: Malware often includes mechanisms to propagate

and spread to other systems or devices. This could mean taking advantage of

flaws in software, networks, or protocols, or it could mean using social

engineering methods like phishing emails, harmful links, or drive-by

downloads.

b. Payload: The payload of malware contains the core malicious functionality that

performs the intended attack or unauthorized activity. This may include code to

steal sensitive information, encrypt files for ransom, launch denial-of-service

attacks, or provide remote access to an attacker.

c. Loader: Many malware variants include a loader component responsible for

initiating the execution of the malicious payload. The loader may be designed

to evade detection by employing techniques such as code obfuscation, anti-

debugging, or anti-analysis measures.

d. Persistence Mechanism: Malware often incorporates persistence mechanisms

to ensure its longevity on an infected system. This may involve modifying

system settings, creating registry entries, or installing startup scripts to ensure

that the malware is executed automatically on every moment device boots up.

e. Command and Control (C2) Communication: Malware typically

communicates to a remotely located command-and-control server functioned by

the invader to receive instructions, exfiltrate stolen data, or download additional

payloads. This communication may be encrypted or obfuscated to evade

detection.

15

f. Evasion Techniques: Malware employs various evasion techniques to avoid

detection by antivirus software, intrusion detection systems, and other security

mechanisms. This may include polymorphism (changing its code signature),

metamorphism (restructuring its code), or using rootkit techniques to hide its

presence from security tools.

g. Anti-Analysis Measures: To thwart analysis by security researchers and

malware analysts, malware may include anti-analysis measures such as code

obfuscation, sandbox evasion, or the use of packers and crypters to encrypt or

compress the malicious payload.

h. Stealth Techniques: Malware often uses sneaky methods to avoid being found

by users and system admins. This may include hiding its presence in the file

system, masquerading as legitimate processes or files, or disabling security

features such as antivirus software and firewalls.

i. Exfiltration Mechanisms: If the goal of the malware is to steal sensitive

information, it may include mechanisms to exfiltrate data from the infected

system. This may involve uploading stolen data to remote servers, sending it via

email, or transmitting it over covert channels.

j. Self-Destruct Mechanism: Some malware variants include a self-destruct

mechanism to erase their presence from the infected system or render

themselves inoperable to avoid detection or analysis by security researchers.

Understanding how malware works is important for cybersecurity experts who want to

make effective defenses and response plans to stop and deal with attacks. By dissecting

malware samples and analyzing their components, researchers may get visions into the

tactics, methods, and procedures employed by attackers and develop better defences

against evolving cyber threats.

1.5 Approaches to Malware Detection

Traditional approaches to malware detection encompass a lot of mechanisms aimed at

identifying and mitigating malicious software threats. While these methods have been

effective to some extent, they also have limitations, particularly in detecting novel and

sophisticated malware variants. Here are some traditional approaches to malware

detection:

16

1.5.1 Signature-Based Detection:

 - Signature-based detection [19] makes use of predefined patterns or signatures of

known malware to recognize malicious files or activities. Antivirus software, for

example, maintains a database of malware signatures against which files are scanned

during routine scans or when accessed.

 - While signature-based detection is effective against known malware variants, it is

unable to detect zero-day threats or malware with polymorphic or metamorphic

characteristics that alter their signatures to evade detection.

1.5.2 Heuristic Analysis:

 - Heuristic analysis [19] involves identifying potentially malicious behavior or

attributes based on predetermined rules or heuristics. Instead of relying solely on known

signatures, heuristic analysis looks for suspicious activities such as code injection, self-

modification, or unusual network traffic patterns.

 - While heuristic analysis can detect previously unknown malware variants, it may

also generate false positives or miss sophisticated threats that employ evasion

techniques to mimic legitimate behavior.

1.5.3 Behavioral Monitoring:

 - Behavioral monitoring is the act of observing the actions of running programs or

processes in order to identify abnormal or malicious activity [20]. This technique

emphasizes activities such as alterations to the file system, revisions to the registry,

establishment of network connections, and utilization of system resources.

 - Behavioral monitoring can detect previously unknown malware based on its

behavior, making it more effective against polymorphic and zero-day threats. However,

it may also generate false positives and require significant computational resources to

analyze system behavior in real-time.

1.5.4 Sandboxing:

 - Sandboxing involves running potentially malicious files or programs in a well-

ordered environment, known as a sandbox, in order to witness their conduct and analyze

17

their impact on the device. Sandboxes isolate the execution of suspicious code from the

underlying operating system to prevent damage or compromise [21].

 - Sandboxing can identify malware type by observing its behavior in safe

surroundings, allowing security analysts to analyze its characteristics and determine its

intent.

1.5.5 Static Analysis:

 - Static analysis entails scrutinizing the code or structure of a file without actually

running it in order to detect possible signs of malicious activity. This approach includes

techniques such as file signature analysis, file hashing, and examination of metadata

[21].

 - Static analysis can quickly identify known malware based on static characteristics,

making it useful for triaging and prioritizing suspicious files. However, it is less

effective against polymorphic and obfuscated malware variants that alter their code to

evade detection.

1.5.6 Network-Based Detection:

 - Network-based detection entails the surveillance of network traffic to identify

indications of malicious activity, such as recognized malware signatures, dubious

patterns, or abnormal behavior. Intrusion Detection Systems (IDS) and Intrusion

Prevention Systems (IPS) are frequently employed for the examination of network flow

of traffic and the prevention of probable security breaches [22], [23].

 - Network-based detection can identify malware attempting to communicate with

command-and-control servers, exploit vulnerabilities, or propagate across the network.

However, it may be less effective against encrypted or obfuscated traffic and requires

continuous monitoring and analysis to detect emerging threats.

18

Figure 1.1: Historical Timelines for the Evolution of Malware Detection Techniques

While traditional approaches to malware detection have been instrumental in

identifying and mitigating known threats, they have limitations in detecting novel and

sophisticated malware variants that employ evasion techniques to evade detection. As

cyber threats continue to evolve, there is a growing need for more advanced and

adaptive detection mechanisms, such as machine learning-based approaches, to

effectively combat the ever-changing landscape of malware. The timelines for

evolution of malware detection techniques are shown in Figure 1.1.

19

1.6 Use of Machine Learning in Malware identification

Machine learning (ML) plays a crucial part in the identification and classification of

malware. Conventional techniques that heavily depend on detecting specific patterns

are not able to keep up with the fast-changing environment of malicious software.

Machine learning offers dynamic and adaptable techniques that can identify new and

unknown threats more effectively. Here’s a summary of use of machine learning in

malware identification and classification:

1.6.1 Feature Extraction

Feature extraction involves identifying characteristics of files that can be used to

distinguish between benign and malicious software. These features can be static

(derived from the code without executing it) or dynamic (observed during execution).

• Static Features: Static features are derived from the malware's code and binary

structure without executing the file [23].

A. File Metadata: These features include file metadata like file size, hashes, and

timestamps.

a. Basic File Attributes

i. File Name: The name of the file, which might contain hints

about its purpose or origin.

ii. File Path: The directory path where the file is located, which can

indicate how and where the malware was installed or executed.

iii. File Size: The size of the file in bytes, which can be compared

against known benign or malicious file sizes.

iv. File Type: The type of the file (e.g., executable, document,

image) determined by its extension or magic number.

b. File System Timestamps

i. Creation Time: The date and time when the file was created.

This can be useful for identifying when the malware was first

introduced to the system.

20

ii. Modification Time: The date and time when the file was last

modified. Frequent modifications might indicate active

malicious behavior.

iii. Access Time: The date and time when the file was last accessed.

Unusual access patterns can be a sign of malware.

iv. Executable File Metadata (Specific to Executables)

c. Headers: Metadata in the file headers such as the PE (Portable

Executable) header in Windows files, which includes:

i. Entry Point: The address where the execution starts, which can

be analyzed for unusual patterns.

ii. Sections: Details about different sections of the executable (e.g.,

.text, .data), which can indicate the structure and nature of the

executable.

iii. Import/Export Tables: Lists of functions and libraries the

executable imports or exports, revealing its dependencies and

potential functionality.

d. Digital Signatures

i. Publisher Information: Metadata about the publisher of the

file, obtained from digital signatures. Verified signatures from

trusted publishers indicate benign software, while unverified or

suspicious publishers suggest potential malware.

ii. Certificate Information: Details about the digital certificate

used to sign the file, including issuer and validity dates.

e. File Hashes

i. Checksums: The file is uniquely identified by cryptographic

hash values such as MD5, SHA-1, and SHA-256. These are used

to quickly compare files against known malware databases.

f. Permissions and Ownership

i. File Permissions: Metadata indicating who can read, write, or

execute the file. Unusual permissions can suggest malicious

intent.

21

ii. File Owner: The user or process that owns the file, which can

provide context about how the file was created or modified.

g. Embedded Metadata

i. Embedded Information: Metadata embedded within files, such

as author names, software version, and other details, commonly

found in document or media files.

The comparison of file metadata against known good and bad profiles helps

identify anomalies indicative of malware. The patterns in metadata (e.g.,

unusual creation times, suspicious file sizes) thus recognized aids in detecting

malicious files.

The metadata provides clues about the file’s intended use and behavior, such as

unusual execution paths or unexpected modifications. Also, the metadata such

as digital signatures and publisher information can help attribute the file to a

known entity, aiding in threat intelligence. However, there are certain

challenges because of which we can’t simply rely on finding benign and

malicious files. Such challenges are mentioned below.

Challenges

• Evasion: Malware authors can manipulate metadata to evade detection,

such as modifying timestamps or using fake digital signatures.

• Inconsistencies: Variations in metadata due to legitimate reasons (e.g.,

software updates) can complicate analysis, requiring sophisticated

techniques to distinguish between benign and malicious changes.

B. Opcode Sequences: An opcode, also known as an operation code, is the

segment of a machine language instruction that precisely indicates the operation

that needs to be executed [24]. In a binary executable, each instruction to the

CPU is represented by an opcode, which is part of the machine code. An opcode

sequence is a series of opcodes extracted from an executable file. This sequence

reflects the flow of operations that the program performs, providing a

"signature" of the program's behavior.

22

Extraction Process

a. Disassembly:

i. The first step in extracting opcode sequences is disassembling

the binary executable.

ii. Tools like IDA Pro, Radare2, and Ghidra convert the binary

code into assembly code, from which the opcodes can be

extracted.

b. Sequence Generation:

i. Once the binary is disassembled, the opcodes are extracted and

arranged in the order they appear in the code.

ii. This results in a sequence of opcodes that represents the

execution flow of the program.

Representation of Opcode Sequences: Typically, opcodes are expressed as N-

grams. A successive sequence of n elements extracted from a provided text or

audio sample is called as an N-gram. An n-gram in the context of opcodes

denotes to an arrangement of n consecutive opcodes.

 Example: For a sequence of opcodes [MOV, ADD, SUB, JMP], the 2-grams

would be [MOV ADD], [ADD SUB], [SUB JMP].

During malware identification process, the sequences or patterns of opcodes

are examined and analysed for malicious activity.

Opcode sequences can reveal patterns in the execution flow that are

characteristic of malicious behavior. For instance, certain sequences may

indicate operations like privilege escalation, keylogging, or network

communication.

a. Code Obfuscation:

o Malware often uses obfuscation techniques to avoid detection.

Opcode sequences can sometimes reveal hidden patterns even in

obfuscated code.

23

b. Signature Generation:

o Opcode sequences can be utilized to create signatures for recognized

malware, which can subsequently be employed to identify like risks

in subsequent instances.

Opcode Sequences [25]: Opcode sequences are used to create feature that act

like input for ML models. These vectors can be formed by considering the

presence, frequency, and patterns of opcodes. Machine learning algorithms

(Supervised learning and Unsupervised learning) can be used to identify

unusual opcode patterns of malware. Supervised Learning: Models like Support

Vector Machines (SVM), Decision Trees, Random Forests, and Neural

Networks can be trained using labeled datasets of opcode sequences from

benign and malicious binaries. Unsupervised Learning: Techniques like

clustering and anomaly detection can be used to identify unusual opcode

patterns indicative of new or unknown malware. In this process, the data is

collected in the form of binaries of both malware and benign software. Then, a

disassembler is used to convert binaries into opcode sequences followed by

feature extraction in the form of n-grams, frequency vector or sequence patterns.

This is followed by training the machine learning models and testing the model

using standard metrics.

Challenges

1. Code Obfuscation:

o Malware can use sophisticated obfuscation techniques to alter

opcode sequences and evade detection.

o Models must be robust to variations introduced by obfuscation.

2. High Dimensionality:

o Opcode sequences can be very long, leading to high-dimensional

feature spaces.

3. Execution Context:

o The same opcode sequence can have different implications based on

the execution context.

24

o Incorporating additional contextual features can improve detection

accuracy.

C. API Calls: API calls, short for Application Programming Interface calls, are

requests made by a program to the operating system or other software libraries

to perform specific tasks. API calls are essential as they reveal the interactions

between the malware and the system, providing insights into the malware's

behavior. Here's a detailed explanation of API calls and their significance in

feature extraction for malware identification:

• System APIs: These interact with the operating system, such as Windows

API, POSIX for Unix-based systems, etc.

• Library APIs: These interact with third-party libraries and frameworks.

Role of API Calls in Malware Analysis

API calls are critical in understanding what actions a piece of software performs.

By monitoring and analyzing these calls, one can infer the intentions and

behavior of the software, distinguishing between benign and malicious

activities.

Types of API Calls Analyzed

1. File System Operations: Malware might use the calls CreateFile,

ReadFile, WriteFile to create, read, and write files respectively.

2. Network Operations: Malware might use the calls InternetOpen,

InternetConnect, HttpSendRequest to initiate and manage

network connections.

3. Registry Operations: Malware might use the calls RegCreateKey,

RegSetValue, RegDeleteKey to manipulate the system registry and

to achieve persistence or modify system configurations.

4. Process and Memory Operations: Malware might use the calls

CreateProcess, OpenProcess, VirtualAlloc to create and manage

25

processes and memory allocation. This further may lead to launch

additional malicious processes or inject code into other processes.

5. System Information: Malware might use the calls GetSystemInfo,

GetUserName to retrieve system and user information and about the

environment it is running in.

Challenges

1. API Call Evasion:

o Advanced malware might use techniques to hide or obfuscate

API calls, making it harder to detect.

o Examples include direct system call invocation, dynamic

API resolution, or encryption of strings.

2. High Dimensionality:

o API call sequences can be very long and complex, leading to

high-dimensional feature spaces.

o Efficient feature selection and dimensionality reduction

techniques are crucial.

3. Behavior Variability:

o The same API call pattern might have different implications

depending on the context.

o Combining API calls with other features (e.g., system state,

file metadata) can improve detection accuracy.

D. Strings: Another feature that is looked upon is searching for suspicious strings

within the binary (e.g., URLs, IP addresses). Searching for suspicious strings

within a binary file is a common technique in malware detection and analysis.

Here’s how this process generally works:

i. String Extraction: First, you extract all ASCII and Unicode strings

from the binary file. These strings could include function names, URLs,

registry keys, API calls, or any other identifiable text data embedded

within the binary.

26

ii. Filtering: Filter out known benign strings or noise that are unlikely to

be indicators of malicious activity. This step helps reduce false positives

and focus on potentially suspicious strings.

iii. Pattern Matching: Use regular expressions or specific string patterns

to search for known malicious indicators. These patterns could include

- Command and Control (C&C) server URLs or IP addresses, Registry

keys associated with persistence mechanisms API calls known to be

used by malware (e.g., for file manipulation, network communication)

Encryption or obfuscation routines (e.g., base64 strings) Strings related

to system exploits or vulnerabilities.

iv. Contextual Analysis: Consider the context in which strings appear

within the binary. For example, strings that are obfuscated or encrypted

might indicate attempts to hide malicious behavior. Also, the

combination of multiple suspicious strings or their proximity within the

binary can strengthen the suspicion of malicious intent.

v. Behavioral Analysis: While string analysis is valuable, it’s essential to

combine it with behavioral analysis to understand the actual impact and

behavior of the binary when executed. Dynamic analysis in a controlled

environment (sandbox) can reveal runtime behaviors that static analysis

might miss.

vi. Manual Review: In complex cases, manual review by security analysts

is crucial. Analysts can identify subtle indicators or behaviors that

automated tools might overlook.

vii. Threat Intelligence: Compare identified strings against known

databases of malicious indicators and threat intelligence feeds to see if

any matches exist, indicating a known malware family or variant.

viii. Reporting and Action: Finally, report findings and take appropriate

action, which could include quarantining the binary, investigating

further, or applying mitigation strategies.

• Dynamic Features: Dynamic feature monitoring in malware detection entails the

observation and analysis of the runtime behavior of a program or binary in order to

identify possibly dangerous actions. In contrast to static analysis, which involves the

27

examination of the code or binary without executing it, dynamic analysis involves

the execution of the program in a controlled environment (sandbox) and the

observation of its behaviors as it executes. Dynamic feature monitoring operates

within the framework of malware detection to discover and analyze potential threats:

1. Execution Environment: The binary or software that is suspected of being

malware is run in a precise environment like a sandbox or virtual machine. This

environment enables analysts to observe the behavior of the system without

incurring any potential harm to the actual system.

2. Behavioral Monitoring: During execution, various system-level and

application-level activities are monitored in real-time. These activities may

include monitoring file system operations like file creation, modification,

deletion, changes being done in registry at run time, monitoring network

connections, data transfers and communication protocols, monitoring process

or thread creations, system and application programming interface calls made

by the program or threads.

3. Feature Extraction: Specific features of interest are extracted from the

monitored behavior. These features can include API Call Sequences, Network

Traffic, File System Activity, Process Behavior, Registry Changes [23].

4. Anomaly Detection: The extracted features are analyzed for deviations from

expected or normal behavior. This involves comparing observed behavior

against known good behavior (baseline) or established patterns of malicious

behavior (signatures or heuristics).

5. Machine Learning and Pattern Recognition: ML algorithms may be utilized

to examine the data retrieved and identify intricate patterns that are

characteristic of malware. This includes supervised learning (using labeled

datasets) or unsupervised learning (clustering or anomaly detection).

6. Behavioral Signatures: Based on observed behaviors, behavioral signatures or

profiles can be created. These signatures help in identifying similar malicious

behaviors in future instances or variants of malware.

28

7. Alerting and Reporting: If suspicious or malicious behavior is detected, alerts

are generated for further investigation by security analysts. Reports detailing the

observed behavior and potential threat are prepared for remediation steps.

Dynamic feature monitoring is essential in modern malware detection as it allows for

the detection of polymorphic and evasive malware that can bypass traditional signature-

based detection methods. By focusing on behavior rather than static attributes, dynamic

analysis provides a more robust approach to identifying and mitigating advanced

threats.

1.6.2 Data Preprocessing

After extracting the characteristics, the data undergoes pre-processing to make it

compatible with Machine learning algorithms. This involves normalizing the data,

converting the data using some standardization, handling missing values, refining the

data doing dimensionality reduction.

1.6.3 Model Training

Combining machine learning with traditional methods can enhance detection rates. For

instance, using ML for initial screening and traditional methods for deeper analysis can

provide a balanced approach.

Better malware detection and further classification can be performed using machine

learning tools can be developed that can adapt to new threats, handle large amounts of

data, and find minor trends that point to bad behavior. The continuous evolution of ML

techniques ensures that cybersecurity measures stay one step ahead in the ongoing

battle against malware. These methods can be used individually or in combination to

detect and classify malware effectively, subject to the specific necessities and

characteristics of the malware threat landscape. By leveraging a variety of detection

techniques, users can improve their ability to defend against evolving malware threats

and protect their systems and data from malicious attacks.

29

Machine learning algorithms, both supervised and unsupervised, play crucial roles in

malware detection and their classification by enhancing the accuracy and efficiency of

identifying malicious software.

A. Supervised Machine Learning: Supervised ML algorithms are trained using

labeled datasets, where each data point is tagged with the correct output. In the

context of malware detection and classification, these labels indicate whether a file

is benign or malicious and, in the case of classification, the specific type of

malware [26].

Key Algorithms:

1. Decision Trees and Random Forests: These algorithms create models that

predict the class of a file based on its features. Decision trees are simple and

interpretable, while random forests, an ensemble of decision trees that will

reduce overfitting and improve accuracy

2. Support Vector Machines (SVMs): SVMs are active in high-dimensional

spaces and can classify files by finding the hyperplane that best separates benign

from malicious files.

3. Neural Networks and Deep Learning: Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) possess significant

computational capabilities. CNNs are capable of analyzing byte sequences or

file structures, whereas RNNs excel in processing sequential data, such as API

call sequences [27].

4. Logistic Regression: This is a numerical model used for binary ordering,

providing a probability score for a file being malicious.

5. K-Nearest Neighbors (KNN): This algorithm employs a classification

technique that categorizes files by determining their proximity to the nearest

training samples in the feature space. This approach is straightforward and

highly efficient for certain jobs [28].

30

B. Unsupervised Machine Learning: Unsupervised learning algorithms do not require

labeled data. Instead, they find patterns and structures within the data to detect

anomalies or cluster similar data points [29].

Key Algorithms:

1. Clustering (e.g., K-Means, DBSCAN): These algorithms group files into

clusters based on feature similarity. Malicious files often cluster differently

from benign ones.

2. Anomaly Detection (e.g., Isolation Forests, One-Class SVMs): These

methods identify files that deviate significantly from the norm, which can

indicate new or unknown malware.

3. Autoencoders: These neural networks learn to compress data and then

reconstruct it. Files that reconstruct poorly compared to the training data

(typically benign files) are flagged as anomalies [30].

Figure 1.2 shows the various techniques of ML for detecting and further classifying

malware.

1.6.4 Evaluating the model

Assessing the effectiveness of the ML models is of utmost importance. Precision, recall,

accuracy, F1-score, and area under the receiver operating characteristic curve (AUC-

ROC) are commonly employed metrics in data analysis and machine learning. Utilizing

cross-validation and testing on data that has not been previously seen aids in

guaranteeing the model's resilience and capacity to apply to new data. After undergoing

training and validation, models are implemented in real-world settings where they

consistently assess incoming files and network traffic. Regular and ongoing monitoring

and upgrading of models are essential in order to adjust to emerging malware strategies

and approaches.

1.7 Problem Formulation

Malware identification and classification is a challenging task when limited features are

used for the same. For better identification and classification multimodal approaches

31

are required that are going to considered more factors using some machine learning

concepts.

Figure 1.2: Malware identification and classification approaches [31]

Attackers are generating polymorphic malware which is generated by combining the

features of metamorphic malware that usually change their features and these are not

even detectable by anti-virus software. So there is a need for efficient malware detection

schemes to take care of this malware which is part of the next generation family

Conventional methods of detecting malware based on signatures are ineffective in

identifying zero-day malware or malware that has not been previously identified. The

other method, behavior-based is efficient but lacks the ability to accurately define the

specific behaviors that a system should exhibit. Hence, the need of approach that will

consider the unknown malware is required.

Currently, there is no one method that is capable of identifying all categories of

malicious software. Furthermore, the task of real-time monitoring poses significant

challenges, since it primarily relies on data sets for analysis, which proves to be less

effective in obtaining genuine insights. Therefore, it is currently necessary to have an

32

effective method for detecting a wide range of malware varieties and their methods of

infiltration. The core purpose of this research work is to design a framework based on

some novel malware identification and classification technique especially for the new

malware that is arousing day by day. It requires proper background knowledge and an

in-depth analysis of various existing techniques.

Despite substantial advancements in cybersecurity study and technology, malware

remains an enduring and dynamic menace, requiring continuous research endeavors to

comprehend its fundamental principles, mechanisms, and behaviors. A comprehensive

understanding of malware is vital for designing and implementing effective defense

policies, enhancing incident response capabilities, and alleviating the impact of cyber-

attacks on individuals, organizations, and society as a whole.

1.8 Objectives

1. To study and analyze the existing malware identification and classification

techniques.

2. To propose a novel approach for malware identification and classification.

3. To design a framework for the proposed approach for malware analysis.

4. To validate and compare the proposed approach.

33

Chapter 2

Review of Literature

The predominant methods rely on signatures but they prove to be inadequate when

confronted with novel and unidentified types of malware. Machine learning approaches

necessitate a substantial quantity of data, together with expert-level expertise, to

construct precise models. Table 2.1 presents a comprehensive overview of research

articles from 2019 to 2023 that have utilized malware detection approaches to address

cyber security challenges in the field of information technology.

Table 2.1: Research Evaluation Matrix for Malware Detection Techniques

The following Table 2.2 shows the work done in the same area of identification and

classification of malware.

Research

Reference

Signature-

Based

Detection

Heuristic

Detection

Behavior

Based

Detection

Hybrid

Approaches

ML/AI-

Based

Detection

[32] ✓  ✓ ✓ 

[33] ✓    

[34]  ✓   

[35]   ✓  ✓

[36]     ✓

[37]     ✓

[38]     ✓

[39]    ✓ 

[40] ✓  ✓ ✓ 

34

Table 2.2: Similar Work Done

Reference Year

Nataraj et al. [41] 2011

Cui et al. [41], [42] 2018

Vinayakumar et al. [43] 2019

Abualhaj et al. [44] 2024

Wang et al. [45] 2023

Louk et al. [46] 2022

The study [26] explored ensemble approaches to find malware, focusing particularly on

recognizing novel and unfamiliar malware that traditional methods struggle to detect

accurately. The procedure involved two stages: feature extraction and classification

using machine learning techniques. The study employed a stacked ensemble of fully-

connected and one-dimensional convolutional neural networks (CNNs) to carry out the

first round of classification. Subsequently, a machine learning technique was utilized

for the ultimate phase of categorization. The meta-learner analysis entailed a direct

comparison of 15 machine learning classifiers. The most effective outcome was

obtained by combining seven neural networks and using the ExtraTrees classifier as the

final classifier. The experiments employed the Windows Portable Executable (PE)

malware dataset, and the results highlighted the effectiveness of the ensemble learning

method in detecting malware. This strategy significantly enhanced the detection of

novel and unfamiliar malware. The utilization of neural networks and machine learning

classifiers has shown promising results in improving the ability to detect malware. The

study's shortcomings included the need for further evaluation on diverse malware

datasets to ascertain the suitability of the proposed technique. Moreover, there is the

possibility of further research and enhancement in terms of increasing the scalability

and real-time usability of the ensemble learning-based technique.

The publication [44] discussed the MW-KNN model, which leveraged the KNN

method for effective malware detection, addressing the urgent need for accurate

identification and classification of dangerous software. The study emphasized the

importance of transformation and normalization of data for classification algorithms,

focusing on execution-level identification due to the rise of polymorphic and

35

metamorphic malware. It introduced a two-stage process using random projections with

the KNN method to enhance malware detection, demonstrating that increasing the

projected vectors' dimensions improved outcomes by reducing unpredictable samples

and false positives. Sahin et al. highlighted the increasing malware incidence on

Android devices and proposed a permission weight strategy, showing superior

outcomes compared to previous strategies. The study evaluated the MW-KNN model

using the CIC-MalMem-2022 dataset, showcasing improvements in accuracy and F-

score metrics with the KNN and NB methods, with the KNN method excelling in

accuracy and Gaussian NB in the F-score metric. The publication contributed to the

topic of malware detection by introducing innovative strategies like permission weight

mechanisms and random projections with the KNN method, enhancing detection

accuracy and performance on datasets like CIC-MalMem-2022. However, the research

paper did not explicitly discuss the limitations of the MW-KNN model or the proposed

strategies, leaving a gap in understanding the potential constraints or challenges faced

in real-world implementations.

The literature review [45] presented a comprehensive examination of NLP and API

sequence-based techniques for detecting and classifying malware, as well as

Transformer-based approaches and training procedures. The research article presented

the TTDAT (Two-step Training Dual Attention Transformer) as a solution for

classifying malware. The focus of the paper was on analyzing API call sequences to

tackle problems such as information loss and computational overhead. The proposed

model achieved an average F1 score of 0.90 and an accuracy of 0.96. The research

paper contributed by introducing a novel approach, TTDAT, for malware classification

that leveraged Transformer architecture and dual attention mechanisms to streamline

API sequence encoding and improve detection efficiency. One potential gap in research

could have been the detailed discussion on the specific datasets used for training and

testing TTDAT, which could have provided insights into the generalizability of the

model. The limitations of the publication might have included the lack of in-depth

analysis on the scalability of TTDAT to larger and more diverse malware datasets, as

well as the computational resources required for training and inference.

36

The publication [46] compared various tree-based ensemble learning methods used in

the analysis of PE malware and found that all tree-based ensembles performed well,

with no statistically significant performance differences between algorithms when

hyperparameters were properly configured. The publication contributed to the topic of

PE malware analysis by highlighting the effectiveness of tree-based ensemble learning

methods and their superior performance compared to other detectors. It emphasized the

importance of hyperparameter tuning for optimal results and generalizability across

different datasets. The limitations of the study included the focus on tree-based

ensemble methods, potentially excluding other machine learning approaches, and the

reliance on specific public datasets for evaluation, which might not cover the entire

spectrum of PE malware characteristics.

The publication [47] examined intrusion risks and Distributed Denial of Service

(DDoS) assaults in the Internet of Things (IoT). It proposed employing a sparse

convolute network as a defence against these threats and attacks. The authors also

explored the process of optimizing the network by employing evolutionary algorithms

to find and recognize regular, error, and intrusion efforts in various scenarios. The main

points of the publication included the utilization of machine learning techniques like

Passban intelligent intrusion detection system, genetic optimized deep belief network,

and other methods to detect and prevent intrusion activities in the IoT. It also

emphasized the importance of network intrusion detection systems in providing

network security. A gap in research could have been the need for further exploration of

real-time threat detection mechanisms and the development of more advanced intrusion

detection systems to address evolving cybersecurity challenges in the IoT environment.

The publication contributed significantly to the topic of IoT security by proposing

various intrusion detection models and techniques with high detection rates and

accuracy. The model was able to achieve detection rate of 98.98% and accuracy of

99.29%, demonstrating the effectiveness of the proposed system. The dataset used in

the research included UNSW-NB15 and NSL-KDD datasets for training and evaluating

the intrusion detection models. The results showed a high detection rate, accuracy, and

minimal processing complexity, with a performance ratio of 90.26%. The limitations

of the publication might have included the focus on specific types of attacks and

37

datasets, which might not cover the full spectrum of potential threats in the IoT

environment. Additionally, the proposed models might have required further validation

and testing in real-world scenarios to assess their practical applicability and scalability.

The publication [48] contributed to the domain of malware detection by emphasizing

lightweight models like ANNs, SVMs, and GBMs. The study's assessment of the ANN

design demonstrated a classification accuracy of more than 94% in distinguishing

between malware and genuine programs. This was achieved by reducing the number of

parameters by 40 compared to other ANNs, while still ensuring correct generalization.

The SVM and GBM architectures proposed in the study, although less effective than

the ANN architecture, offered valuable insights into machine learning behavior for

malware classification. The study's limitations included the focus on memory-

optimized machine learning solutions and the specific evaluation of ANNs, SVMs, and

GBMs, potentially leaving out other machine learning models or techniques that could

contribute to malware detection.

The publication [49] focused on the harmful impacts of Ransomware, which encrypts

user files to prevent access to infected systems. It emphasized the need to understand

the vulnerabilities prevalent in OT systems that enable such attacks, highlighting the

importance of Availability, Integrity, and Confidentiality in these systems. Patches had

to undergo extensive testing and approval before being implemented in the ICSOT

network. The main points of the publication revolved around the impact of

Ransomware, the distinctions between IT and OT setups, and the critical aspects of

safety, system integrity, and network diagram confidentiality in protecting against

cyber threats. A gap in research could have been the need for further exploration into

specific strategies or technologies that could effectively mitigate the risks posed by

Ransomware attacks on OT systems. The publication contributed by shedding light on

the vulnerabilities in OT systems, emphasizing the importance of security measures and

thorough testing of patches to safeguard critical infrastructure. The dataset used in the

publication was not explicitly mentioned in the provided contexts. The results on the

dataset and accuracy of the findings were not specified in the given information. One

limitation of the publication could have been the lack of detailed insights into specific

case studies or real-world examples to illustrate the concepts discussed.

38

The publication [50] proposed a novel approach using the BiTCN and SFCWGAN

methods. It involved the extraction of features from malware Opcode and API

sequences, using Word2Vec for representation, and combining Spearman correlation

coefficient and WOA-XGBoost algorithm for feature selection and simplification. The

proposed method involved generating malware samples using CWGAN to supplement

the imbalanced malware family dataset, enhancing the training process on BiTCN. The

model demonstrated accuracies of 99.56% and 96.93% on the Kaggle and DataCon

datasets, respectively, surpassing other approaches by 0.18% and 2.98%. However, the

study acknowledged limitations such as the need for further improvement in accuracy

and bias reduction, especially on the DataCon dataset, suggesting room for

enhancement in minimizing bias and improving detection accuracy.

The publication [51]proposed a rapid binary visualization technique employing Fuzzy

Set theory and the H-indexing space filling curve to overcome constraints in intrusion

detection systems (IDS). The main points of the publication included the development

of a signature-free IDS, testing the methodology on 5000 malicious and benign files.

The result showed that the model has accuracy rate of 91.94%, precision of 90.63%,

recall of 92.7%, and an F-score of 91.61% on average. Gaps in research included the

need for further optimization and tuning of the proposed methodology, as well as the

potential for exploring larger datasets and real-world applications to validate the

system's performance in diverse environments. The publication contributed to the topic

of malware detection by introducing a novel method that leveraged binary visualisation

and fuzzy sets, achieving high accuracy rates, and demonstrating potential for a

signature-free IDS. The limitations of the publication included the lack of optimal

tuning in the methodology, the need for further improvements in computation time, and

the necessity for validation in real-world scenarios to assess the system's robustness and

scalability.

The literature [52] discussed the use of different classifiers such as ELM (Extreme

Learning Machine), SVM (Support Vector Machine), K-nearest neighbour and others

in the classification scenarios. The paper highlighted the shift towards deep learning

approaches like Convolutional Neural Networks (CNN) for malware classification,

showcasing the application of unique CNN models and architectures. Various

39

researchers had proposed innovative MC methods combining different deep CNN

models like AlexNet, VGG16, ResNet50, and others, along with machine learning

classifiers like Softmax, Multiclass SVMs, and more. The research paper also

mentioned the use of ensemble classifiers, sequential multilayered Random Forest

ensemble techniques, and machine learning approaches like Random forests, Xgboost,

Extra trees classifier, and Logistic regression in malware classification. The proposed

malware classification method in the paper addressed the challenges of low

classification rates in existing techniques by achieving high accuracy rates,

outperforming other methods with an accuracy rate of 95.42% and 96.84%. The

research paper contributed significantly to the topic of malware classification by

presenting a robust method that involved dataset preparation, feature extraction, and

classification steps, leading to highly accurate results on the Malimg dataset. However,

a potential gap in research could be the need for further exploration of the scalability

and generalizability of the proposed method across different malware families and

datasets, which could be a limitation of the study.

The publication titled [53] addressed the topic of detecting malware intrusions by

utilizing machine learning techniques and analyzing system interactions. The paper

introduced a risk-based system-call sequence aggregation approach that assigned

riskiness values based on the risk value of the function. This method outperformed

previous findings by achieving improved classification accuracy when utilizing SVM

and DT methods. The research emphasized the importance of increasing malware

detection accuracy while utilizing lightweight machine learning methods for practical

applications. The paper proposed a risk-based system-call grouping strategy that

effectively utilized lightweight machine learning techniques for detecting malware

attacks, achieving accuracy levels comparable to deep learning methods. The dataset

used in the study was not explicitly mentioned in the provided contexts. The suggested

risk-based system-call grouping strategy yielded a 23.4% increase in classification

accuracy with the SVM method and a 7.6% increase with the DT method, compared to

earlier findings.

The publication [54] specifically addressed the identification of FDI (False Data

Injection) attacks in smart grids through application of machine learning

40

methodologies. It discussed the application of supervised learning and hybrid methods

to improve the performance of classification algorithms in detecting FDI assaults. The

study utilized a dataset to evaluate the effectiveness of various technologies in

identifying threats accurately. The gaps in research could include further exploration of

advanced machine learning models or feature selection techniques to enhance detection

accuracy and efficiency. The publication's contribution lay in improving the

performance of classification algorithms for FDI attack detection using supervised

learning and hybrid methods, which could be crucial for enhancing smart grid security.

The accuracy of the detection strategies was evaluated based on how effectively they

could identify different types of threats in the smart grid environment. Limitations of

the study included the need for real-world implementation and validation of the

proposed detection strategies to assess their practical applicability in smart grid security

scenarios.

The publication [55] focused on enhancing malware detection accuracy using machine

learning algorithms like K-Nearest Neighbours, Decision Tree, Logistic Regression,

and Random Forest. The study aimed to extract the best feature selection to improve

the detection of polymorphic malware. The main points of the publication included the

use of machine learning algorithms to address the rising number of malware threats, the

importance of feature selection in improving detection accuracy, and the comparison of

different classifiers in detecting polymorphic malware. Additionally, there was a focus

on reducing false positive and false negative rates to improve overall detection

accuracy. The publication contributed significantly to the topic of malware detection

by showcasing the effectiveness of the Random Forest algorithm with a detection

accuracy of 99% on a relatively small dataset. It emphasized the importance of feature

selection in enhancing the performance of polymorphic malware detection. The dataset

used in the study included unknown malware (0), known malware (1), and polymorphic

malware (2). The results on the dataset showed that the Decision Tree has accuracy of

93%, K-Nearest Neighbours has 94%, and Logistic Regression has an accuracy of 88%.

The limitations of the publication included the focus on a relatively small dataset, which

might not fully represent the complexity of real-world malware scenarios. Additionally,

41

the study acknowledged the importance of further research to address evolving malware

threats and improve detection accuracy on larger datasets.

The research paper [56] aimed to develop a lightweight malware detection method that

was multiclass and capable of identifying recent malware. This method was designed

to be executed in IoT devices, with a particular emphasis on smart city applications.

The processing model that is well-suited for implementation in IoT devices is a concise

and expedient solution that combines the feature-learning capabilities of convolutional

neural networks with the ability of bidirectional long short-term memory to describe

temporal information. It introduced a robust and resource-efficient detection algorithm

that outperformed other machine learning-based models in detecting obfuscated

malware and identifying specific attack types. The research paper used the CIC-

Malmem-2022 OMM dataset for extensive experiments. The results indicated that the

method excelled in detecting OMM and identifying specific attack types, showcasing

its effectiveness in defending against obfuscated malware. The proposed method

achieved 84.56% detection accuracy with the RobustCBL model and 84.22% with the

CompactCBL model, outperforming existing works in the field. Despite being smaller

in size, the CompactCBL model performed remarkably well showcasing that the

proposed approach is quite efficient. One limitation of the study was that it focused on

a specific dataset (CIC-Malmem-2022 OMM dataset), which might limit the

generalizability of the proposed method to other datasets or scenarios.

The publication [57] presented a novel approach for obfuscated malware detection in

IoT Android applications using Markov images and CNN models. The main points of

the publication included the rise of Android malware, the need for improved detection

methods due to obfuscation techniques, and the effectiveness of CNN models trained

on Markov images for malware detection and classification. A gap in research could

have been the need for further exploration of the scalability and real-world application

of the proposed system beyond the experimental setup with 12,000 Android

applications. The publication contributed to the topic by demonstrating high accuracy

rates in malware detection and classification: 99.41% for distinguishing malware from

benign apps, 99.65% for identifying obfuscated malware, 99.81% for distinguishing

obfuscated from non-obfuscated malware, and 99.67% for classifying obfuscated

42

malware into 14 categories. The limitations of the publication may have included the

need for further validation in real-world IoT environments, potential challenges in

scaling the system, and the generalizability of the results to diverse IoT systems beyond

the Android platform.

The research paper [58] proposed the model's ability to automatically learn

representations of network flow graphs that achieved high accuracy in detection. One

limitation of the publication could have been the lack of detailed information on the

dataset used, which could impact the reproducibility and generalizability of the results.

Additionally, the paper did not delve into the explainability of model decisions, which

could have been a valuable aspect to explore in future research.

The research paper [59] focused on image-based malware classification approaches.

The authors concentrated on developing a streamlined ensemble architecture. This was

accomplished by integrating a customized MLP-mixer with an Autoencoder to amplify

the characteristics r utilizing the encoder-decoder structure of the autoencoder. Gaps in

research could have included the need for further exploration of the optimal

preprocessing techniques for image-based malware tasks. The publication contributed

to the topic by introducing a novel lightweight ensemble architecture that outperformed

other cutting-edge techniques in malware classification, utilizing fewer parameters

compared to traditional models while achieving high performance through various

experiments. The datasets used in the study were the Malimg dataset containing 9939

samples from 25 malware families and the Malheur dataset with 3133 variant samples

from 24 malware families. The results indicated that ensemble method outperformed

CNN-free models and outperformed a variety of conventional pure CNN models,

thereby illustrating the efficacy of the approach in malware classification tasks. The

accuracy of the proposed ensemble architecture was highlighted through experimental

results, showcasing its superiority over other models and its ability to achieve high

performance in malware classification tasks. However, the scalability and

generalizability of the architecture require additional validation on a broader range of

datasets.

The publication [60] focused on the development of a distinctive approach to malware

classification that employed convolutional neural networks and dual attention. The

43

research paper highlighted gaps in existing malware detection techniques and

emphasized the requirement for more accurate malware detection methods to combat

modern automated malware creation methods. The publication's contribution to the

topic lay in introducing a different approach to malware classification using ML

frameworks, showcasing exceptional performance in malware detection and

classification. The dataset used for evaluation included the benchmark dataset where

the proposed model achieved accuracy rates of 98.14% and 98.95%, respectively. The

limitations of the study included the need for further validation on diverse datasets,

potential challenges in real-world implementation, and the necessity for continuous

updates to adapt to evolving malware creation techniques.

The research paper [61] focused on addressing cybersecurity concerns related to

Android platform. The authors discussed various existing techniques for Android

malware detection, such as optimizing and effective ensemble learning-based methods,

hybrid systems, DL models, and ML technique and hyperparameter tuning in enhancing

classification performance. The research paper contributed to the topic by introducing

the RHSODL-AMD model, which utilized Rock Hyrax Swarm Optimization and deep

learning for Android malware detection, achieving a maximum accuracy of 99.05% on

the Andro-AutoPsy dataset. The dataset used for experimental validation was the

Andro-AutoPsy dataset, and the results showed promising performance with a

maximum accuracy of 99.05% for the RHSODL-AMD technique. One limitation of the

publication was that it focused on a specific model and did not extensively cover a wide

range of existing techniques in Android malware detection, potentially leaving out other

relevant approaches in the field.

The publication [62] explored the secure data aggregation methods and

countermeasures against attacks in wireless sensor networks. The limitations of

previous studies were discussed that focused on modeling malware propagation without

considering the characteristics of WSNs, highlighting the need for more tailored models

for malware propagation in WSNs. The research presented a novel fractional order

model to accurately depict the dynamics of malware spread in WSNs. Gaps in research

identified in the publication included the limited discussion on malware propagation

based on fractional order models and the need for more studies focusing on the behavior

44

of different types of malware in WSNs. The dataset used in the publication was not

explicitly mentioned in the provided context. However, the paper discussed the results

of numerical simulations to evaluate the proposed model's performance and compare it

with classical models, indicating a focus on assessing the accuracy and effectiveness of

the new fractional order model for malware propagation in wireless sensor networks.

The limitations of the publication may have included the need for further empirical

validation of the proposed fractional order model, potential challenges in implementing

the adaptive model for determining optimal control strategies, and the generalizability

of the findings to diverse WSN environments. Additionally, the paper may not have

extensively discussed the practical implications of the proposed model in real-world

WSN scenarios.

The publication [63] highlighted the importance of memory analysis in detecting

malware. The publication's contribution lay in demonstrating that memory data could

be utilized for malware detection, achieving high accuracy levels with algorithms like

Logistic Regression (99.97%) and Gradient Boosted Tree (99.94%). The dataset used

was the balanced CIC-MalMem2022, and the results showed that memory analysis was

very useful in detecting malware, with various algorithms achieving successful results.

The limitations of the study included the specific characteristics of the dataset used,

potential biases in the algorithms, and the need for further research to address more

advanced malware detection challenges.

The publication [64] focused on malware detection using deep learning algorithms,

specifically Long-Short-Term Memory Network (LSTM), Convolutional Neural

Network (CNN), and Multitasking Deep Neural Network (DNN). Gaps in research

could have included the need for further exploration of other deep learning algorithms

or the investigation of different types of malware for detection. The publication

contributed to the topic by showcasing the effectiveness of deep learning algorithms in

malware detection, with an average accuracy of 96%, precision average of 97%, and

recall average of 97%. The limitations of the publication could involve the need for

further validation on larger datasets, exploration of real-time detection capabilities, or

the consideration of different types of malware for detection.

45

The research paper [65] focused on the development of a highly accurate and efficient

malware detection system based on one dimensional convolutional neural networks.

The main points of the publication included the comparison of the proposed CNN

detector with state-of-the-art techniques, such as a TF-IDF based benchmark detector

and an existing embedding-based CNN detector, showcasing improved accuracy and

training times. Gaps in research could have been related to the need for further

exploration of the impact of different types of malware on the detection system, as well

as the scalability of the model to larger datasets and more complex malware variants.

The publication contributed significantly to the topic of malware detection by

introducing a novel approach that outperformed existing techniques in terms efficiency

and accuracy. The dataset consisted of 11,130 binaries, and the results on this dataset

demonstrated the superior performance of the proposed CNN detector compared to

benchmark detectors. One limitation could have been the lack of exploration into the

generalizability of the model across different types of malware and the need for further

validation on diverse datasets to assess its robustness and reliability.

The publication [66] was a comprehensive review on malware detection. The main

points of the publication included the use of a dataset from Kaggle Data Set and

VirusShare, consisting of 17,845 data captures based on network traffic containing both

malware and non-malware, the training and testing process using TensorFlow Tools,

and the comparison of various algorithms for malware classification. One gap in

research could have been the exploration of more advanced Machine Learning

algorithms or hybrid models for malware detection to enhance accuracy and efficiency.

The publication contributed significantly to the topic of malware detection by achieving

high accuracy levels, with the RF algorithm showing the accuracy of 99.95%, precision

of 0.998, and recall of 0.999, enabling quick detection and mitigation of malware

threats. The results showed that the Random Forest algorithm had the highest accuracy

of 99.95%. The limitations of the study could include the need for further validation on

different datasets to ensure the generalizability of the results and the exploration of

more complex malware scenarios to test the robustness of the classification algorithms.

The publication [67] concentrated on utilizing machine learning (ML) and deep

learning (DL) techniques to detect and classify malware. The aim was to assist cyber

46

forensic investigators in countering the proliferation of harmful software that

specifically targets Android handsets, which store valuable and confidential

information. The main points of the publication included addressing cybersecurity

issues like intrusion detection and malware classification. The ECNN model presented

in the research had shown high accuracy rates of 96.92%, 96.14%, and 95.8% for

different Android Malware Datasets, with precision rates of 96%, 94%, and 94% on the

three datasets. The research contributed to the field by presenting the ECNN model,

which was faster and more accurate for smartphone malware analysis. The gaps in

research could have included further exploration of the scalability of the proposed

models across different types of malware and datasets, as well as the potential

challenges in real-world implementation and adaptability to evolving malware threats.

The publication's contribution to the topic lay in its innovative use of DL methods for

cybersecurity applications, particularly in malware identification and categorization.

The dataset used included Android Malware Dataset-1, 2, and 3, showcasing the

effectiveness of the ECNN model in achieving high accuracy and precision rates. The

limitations of the publication may have involved the need for extensive testing across a

wider range of malware samples and datasets to validate the robustness and

generalizability of the proposed models.

The research paper [68] focused on the detection and classification of malware in IoT

networks using Artificial Neural Networks (ANN). The publication's main points

included the challenges of protecting IoT networks from malware attacks, the need for

efficient techniques and the comparing ANN methodology with traditional ML

algorithms like k-NN and Naive Bayes. Gaps in research highlighted in the paper

included the limited work on malware identification in IoT networks, emphasizing the

substantial security threat posed by malware in IoT environments. The publication

contributed to the topic by proposing a novel ANN methodology for detecting and

classifying malware in IoT networks with high accuracy rates of 94.17% for detection

and 97.08% for classification. The dataset used in the study comprised a total of

461,043 records, with 300,000 benign and 161,043 malicious instances, demonstrating

the effectiveness of the proposed methodology. The limitations of the research included

the focus on network traffic analysis for malware detection and classification, which

47

may not cover all possible attack vectors in IoT networks, and the need for further

exploration of diverse malware types and behaviors in IoT environments.

The publication [69] specifically addressed the growing security risks faced by IoT

infrastructure, apps, and devices as a result of the integration of IoT technology with

5G and artificial intelligence technologies. The main points of the publication included

the challenges in detecting new and variant IoT malware quickly, the attractiveness of

IoT devices to cybercriminals due to weak authentication and outdated firmware, and

the development of a malware classification and detection system for IoT devices using

machine learning techniques. The dataset used for malware classification and detection

was not explicitly mentioned in the provided context. The publication emphasized the

importance of accuracy in detecting and identifying various types of malware using

static analysis with machine learning algorithms. One limitation of the publication

could have been the lack of detailed information on the specific dataset used, which

was crucial for evaluating the system's performance.

The publication [70] focused on proposing an automated way of classifying malware

based on behavior analysis, utilizing Back Propagation Neural Network model as a

classification technique. The authors emphasized the importance of automated tools in

dealing with the diversity and volume of malware variants on network systems. Gaps

in research could have included further exploration of advanced machine learning

techniques beyond Back Propagation Neural Network for malware classification,

enhancing feature extraction methods to capture more nuanced behavior patterns. The

publication contributed significantly to the topic of malware classification by

introducing an automated approach based on behavior analysis and neural network

models. It highlighted the effectiveness of the proposed technique in classifying

malware variants accurately, showcasing the potential of machine learning in

cybersecurity applications. The dataset used in the research was not explicitly

mentioned in the provided contexts. However, the results on the dataset demonstrated

that the classification technique was effective in classifying malware variants and

accurately detecting malware, as indicated by the experimental results. The limitations

of the publication may have included the need for further validation on diverse datasets

to ensure the generalizability of the proposed approach, potential challenges in feature

48

extraction from behavior analysis reports, and the necessity for continuous updates to

adapt to evolving malware behaviors.

The publication [71] is focused towards examination and execution of binary malware

classifier that is neural network based. It categorized Portable Executable (PE) files of

windows according to the introduced function calls present in library. The main points

of the publication included the limitations of traditional malware detection methods like

hash-based, signature-based, and heuristic-based techniques, leading to the exploration

of machine learning for malware detection. The research addressed the gap in achieving

high efficacy in malware detection by proposing a neural network classifier that

achieved an average accuracy of 97.8%, 97.6% precision, and 96.6% recall when

classifying files as malicious or benign based on imported library function calls. The

dataset used in the research was Windows Portable Executable (PE) files, and the

results showed an average accuracy of 97.8%, recall of 96.6% and precision of 97.6%

for classifying files as malicious or benign based on imported library function calls.

The limitations of the publication included the focus on a Portable Executable files and

the need for further exploration of new methods or approaches to enhance malware

detection beyond the achieved results.

The publication [72] focused on the development of a hybrid model based on API call

sequences. The main points of the publication included the significance of behavioral

malware analysis, the integration of ML and deep learning algorithms, and the use of

logistic regression to initialize neural network weights based on API call sequences.

Gaps in research identified in the publication included the need for further exploration

of weight initialization techniques in neural networks. The publication's contribution

lay in offering techniques in neural networks for malware detection, achieving 83%

accuracy and a 0.44 loss on a balanced dataset, and 98% accuracy with a 0.10 loss on

an imbalanced dataset, outperforming state-of-the-art models. The research utilized a

secondary dataset that contained API call sequences. The limitations of the publication

may have included the need for further validation on larger and more diverse datasets,

potential challenges in generalizing the model to different malware types, and the

necessity for continuous updates to adapt to evolving malware threats.

49

The publication [73] provided a comprehensive examination of methodologies for

scrutinizing and categorizing malware, with a particular focus on the difficulties

presented by metamorphic and polymorphic malware, that possess the aptitude to

modify the code in course of movement. The research highlighted the limitations of

traditional signature-based methods in detecting new malware samples, emphasizing

the importance of static and dynamic malware analysis techniques to understand risks

associated with malicious code and to group unknown malware into existing families.

The publication contributed to the topic of malware analysis by providing a

comprehensive survey of techniques, emphasizing the role of machine learning in

addressing the challenges posed by evolving malware variants, and highlighting the

significance of behavioral patterns in classifying malware into known families. The

dataset used in the research was not explicitly mentioned in the provided contexts, and

specific results on a dataset or accuracy metrics were not detailed. However, the focus

was on the methodologies and techniques used for malware analysis and classification,

rather than specific datasets or results. One limitation of the publication could have

been the lack of detailed discussion on specific case studies or real-world applications

of the analyzed techniques, which could have provided more practical insights into the

effectiveness of the proposed methodologies.

The publication [74] leveraged the CSE-CICIDS2018 dataset to employ techniques for

intrusion detection and network security. The research article investigated the

application of deep learning frameworks to identify attack categories and detect

network intrusion traffic. It employed datasets such as NSL-KDD, KDD Cup 1999,

CICIDS2017, and CICIDS2018. The publication provided insights into the

effectiveness of various algorithms in detecting attacks.

The research paper [75] focused on the rise of ransomware and the challenges faced by

the anti-malware industry due to the increasing malware threats. It discussed the

evaluation framework centered on machine learning, comprising various modules like

dataset compilation, file disassembly, data processing, decision making, and malware

identification. The study highlighted the limitations of orthodox signature-based

antivirus programs in identifying unfamiliar malware and tracking new forms of

malware, leading to the need for advanced techniques like machine learning for

50

malware detection and classification. The publication emphasized the use of artificial

learning and fundamental modeling techniques by academics and antivirus

organizations for researching and identifying malware, showcasing the shift towards

more sophisticated methods in the anti-malware industry. The research paper evaluated

the effectiveness of different classifiers in the detection and classification of malware

based on the accuracy of the complete process, demonstrating the importance of

machine learning in enhancing malware identification. The gaps in research could have

included further exploration of the specific machine learning algorithms used, the

scalability of the proposed malware evaluation framework, and the adaptability of the

system to evolving malware threats. The publication contributed significantly to the

topic of malware detection and classification by showcasing the advantages of machine

learning over traditional signature-based methods, providing insights into the

challenges faced by the anti-malware industry, and presenting a comprehensive

malware evaluation framework. The dataset used in the study consisted of two separate

classes: malicious and benign software, with modules like grey images, Opcode n-

gram, and decision-making mechanisms employed for malware identification. The

results of the research paper were based on the accuracy of the complete process, which

validated the effectiveness of the malware evaluation framework focused on machine

learning in detecting and classifying malware threats. The limitations of the publication

may have included the need for further real-world testing of the proposed framework,

the generalizability of the results to different types of malware, and the potential

challenges in implementing the system in diverse organizational settings.

The publication [76] examined the application of an adaptive genetic algorithm (AGA)

and a hybrid analysis-based particle swarm optimization (PSO) to identify Android

malware in autonomous vehicles. The study utilized the "CCCSCIC-AndMal-2020"

dataset, which included of 13 distinct malware categories and 9504 hybrid

characteristics, feature selection using PSO, and optimization of RF and XGBoost

classifiers using AGA. A gap in research could have been the need for further

exploration of the scalability and real-world applicability of the proposed approach.

The research work achieved a 99.82% accuracy and F-score with the XGBoost

classifier and 98.72% accuracy and F-score with the random forest classifier.

51

The research paper [77] suggested a two-level classification system, Macro and Micro,

for identifying and categorizing various files and API calls as benign or harmful. It

described data mining-based classification technique for malware discovery based on

the characteristics and behaviors of viruses, utilizing dynamic analysis techniques. A

virtual environment was used to run Cuckoo Sandbox to generate static and dynamic

analysis reports. This results in high rates of detection and classification using various

machine learning algorithms. Later on, the authors demonstrated performance

effectiveness by utilizing WEKA. Various classification techniques and algorithms like

K-nearest neighbor, Random Forest, and Light GBM were employed for malware

detection out of which regression classification approach performed the best. The study

discussed the categorization of malware samples based on characteristics and

behaviors, with a focus on API calls and a mix of features to achieve high categorization

rates. The dataset used in the research included malware samples from April 2020 to

June 2021, with different malware categories and benign samples from various sources.

The limitations of the research paper may have included the need for further exploration

of malware sample tagging methods, potential biases in the dataset, and the

generalizability of the proposed system to different malware types and behaviors.

The publication [78] focused on addressing the vulnerabilities and cyber-attacks faced

by IoT networks through the use of Artificial Intelligence. The study focused on the

creation of a method that utilized a Deep Neural Architecture called Pointer Networks

to automatically choose the most effective mitigation steps for countering assaults on

IoT networks. The proposed method aimed to optimize security-related Key

Performance Indicators (KPIs) and had shown optimal solutions. The publication

contributed to the topic by introducing an innovative approach that leveraged Artificial

Intelligence to enhance cybersecurity in IoT networks. It presented a mechanism that

optimized KPIs to select mitigation actions efficiently, showcasing promising results in

terms of performance and scalability. The dataset used in the research was not explicitly

mentioned in the provided contexts. However, the publication emphasized the

optimization of security-related KPIs to enhance cybersecurity in IoT networks. The

accuracy of the proposed method in selecting appropriate mitigation actions was

demonstrated through the optimization of security-related KPIs, leading to efficient

52

countermeasures against attacks faced by IoT networks. One limitation of the

publication was the lack of detailed information on the dataset used and the specific

experimental setup, which could provide more insights into the performance and

generalizability of the proposed method.

The publication [79] focused on addressing the challenges in malware detection by

proposing a vigorous ML based anti-malware resolution that employed a imagining

approach to epitomize malware as 2D images. The main points of the publication

included the inefficiency of conventional malware detection systems. The proposed

model made use of a layered ensemble approach that outperformed other deep learning

techniques. The results obtained have the accuracy of 0.98, 0.97, and 0.97 for Malimg,

BIG 2015, and MaleVis malware datasets, respectively. A gap in research highlighted

was the need to identify unknown samples of untrained families by using a threshold,

which could be a focus of future work. The stated work well performed with high

uncovering rates on different malware datasets. The limitations of the publication

included the need for further research on identifying unknown samples of untrained

families and potential enhancements to the model's performance.

The publication [80] sought to improve the robustness of ensemble classifiers against

adversarial assaults by utilizing varied feature selection and a stochastic aggregation

technique. The main points of the publication included conducting experiments using

Linear and Kernel SVMs on genuine datasets for spam filtering, malware detection,

and handwritten digit recognition. A gap in research could have been the need for

further exploration of the impact of the proposed ensemble approach on different types

of datasets and classifiers to assess its generalizability. The publication contributed to

the topic by demonstrating that the proposed ensemble approach significantly improved

classifier robustness against evasion attacks without compromising classification

accuracy, as evidenced by experiments on genuine datasets for spam filtering, malware

detection, and handwritten digit recognition. The results on the dataset indicated a

significant improvement in classifier robustness against evasion attacks, particularly

when using Linear and Kernel SVMs. The accuracy of the classifiers was enhanced

through the proposed ensemble approach, showcasing improved performance in terms

of robustness against evasion attacks. One limitation of the publication could have been

53

the focus on specific types of classifiers and datasets, warranting further research to

explore the generalizability of the proposed ensemble approach across a broader range

of classifiers and datasets.

The research paper [81] focused on malware detection using hybrid features and

artificial intelligence to enhance the process of identifying complex, polymorphic

malware that exhibited varied behaviors. The GPSC (Genetic Programming Symbolic

Classifier) algorithm was used to produce SE (Symbolic Expressions) in order to

achieve optimal classification performance on a publically available dataset. The

dataset employed in the investigation was divided into two categories: malicious and

benign software. The dataset's imbalance was the primary concern, and balanced

dataset was generated by employing oversampling techniques. The GPSC algorithm

underwent training using a five-fold cross-validation technique to attain great accuracy

in predicting SEs for each variation of the dataset. The study utilized multiple

assessment criteria, such as precision, recall, F1-score, confusion matrix, and area under

receiver operating characteristic curve (AUC), to evaluate the effectiveness of the

GPSC algorithm. The results showed that the proposed method achieved accuracy of

0.9962 in detecting malware software which is obviously a high classification. The

research contributed by demonstrating the effectiveness of combining hybrid features

with AI for malware detection, providing a detailed methodology for applying the

GPSC algorithm to achieve high classification accuracy. It addressed the issue of

imbalanced datasets and presented a solution through oversampling techniques, leading

to robust SEs with high accuracy. The limitations of the study included the need for

further validation on larger datasets to ensure the generalizability of the results.

Additionally, the research could have benefited from exploring the scalability of the

proposed method to handle larger and more diverse datasets in real-world scenarios.

The publication [82] introduced a technique for categorizing malware using photos and

deep learning. This involved representing malware binary files as color images and

employing data augmentation approaches to improve performance. The research

highlighted the need for further exploration in extracting more features for sample

classification, combining dynamic analysis with static analysis, and conducting

experiments on real-world malware datasets. The study evaluated the proposed method

54

against state-of-the-art classification models in the literature, showcasing significant

advantages in accuracy over existing techniques. The dataset used in the study included

the Microsoft malware dataset and the Google Code Jam dataset, achieving high

accuracy rates of up to 99.99% and 99.38%, respectively. The publication contributed

to the topic of malware classification by introducing a novel approach that

outperformed existing methods in accuracy, demonstrating the effectiveness of deep

learning and image-based techniques in this domain. The study has limitations such as

the utilization of a significant number of model parameters, the analysis of only one

feature of the sample, and the requirement for further investigation into additional

aspects to improve categorization.

The paper [83] discussed various approaches proposed by different researchers who

worked on the classification of Android malware apps using ML techniques. The

authors had previously proposed different approaches for Android malware

classification, including a hybrid approach integrating fuzzy C-means clustering with

LightGBM, an evolving hybrid neuro-fuzzy classifier, an approach using adaptive

neuro fuzzy inference systems. The research study introduced a new approach for

classifying malware using a fuzzy integral-based multi-classifier ensemble. The

experimental results showed that this approach achieved the maximum accuracy of

95.08%. The dataset used in the research consisted of 9476 Android goodware apps

which comes in the category of benign files and 5560 Android apps which comes in the

category of malicious software. The limitations of the research paper were not explicitly

mentioned in the provided contexts.

The research paper [84] focused on the use of Federated Learning (FL) and Federated

Transfer Learning (FTL) for NIDS (Network Intrusion Detection Systems) employing

deep learning for classification of images. The main points of the publication included

proposing novel methods for pre-processing Network Flow Feature (NTF) records,

transforming them into images, and utilizing FL to maintain data privacy while

achieving acceptable accuracy in DDoS attack identification. Gaps in research included

the need for further exploration of the scalability and applicability of FL and FTL in

diverse network environments and the potential challenges in implementing these

methods in real-world network security systems. The publication contributed

55

significantly by addressing the issue of data privacy in NIDS training, achieving

accuracy rates of 92.99% for FTL and 88.42% for FL in DDoS attack identification

compared to Traditional Transfer Learning. The BOUN DDoS dataset was used for

testing. The limitations of the study might have included the need for further validation

on larger and more diverse datasets, as well as the practical implementation challenges

of FL and FTL in complex network environments.

The publication [23] discussed the rapid development in Information Technology and

the increasing number of new malware, highlighting the ongoing battle between

attackers and defenders in the cybersecurity realm. The main points of the publication

included the need for abundant malware samples for training machine learning models,

the exponential growth of malware, the challenges faced by cybersecurity professionals

in maintaining security, and the utilization of sandboxes to detect malicious activity.

The paper made a substantial contribution to the field of cybersecurity by highlighting

the significance of machine learning in detecting malware, the use of different

characteristics such as call graphs and API calls for categorization, and the function of

sandboxes in evaluating the behavior of malware. It shed light on the ongoing

challenges in cybersecurity and the need for continuous innovation to combat cyber

threats effectively. The dataset used in the publication included abundant malware

samples for training machine learning models, with features such as call graphs, API

calls, and strings being utilized for detection and classification. The dataset findings

demonstrated the efficacy of machine learning in properly detecting malware and

categorizing various types of malware. The dataset's conclusions highlighted the

efficacy of machine learning in detecting and classifying malware, highlighting its

potential to enhance cybersecurity measures. However, limitations may have included

the need for more diverse datasets, the continuous evolution of malware techniques,

and the requirement for ongoing updates to machine learning algorithms to stay ahead

of cyber threats.

The publication [85] focussed on utilizing machine learning approaches to detect

malware in Android applications, with a specific emphasis on pre-processing of data

and reduction in dimensionality. The impact of various data pre-processing

methodologies was investigated using four distinct datasets, including real-world

56

Android applications, to enhance test scenarios beyond existing datasets. The study

identified support vector machines (SVM) and random forests (RF) as classifiers that

achieved better performance in detecting malware in Android apps, with feature

selection techniques playing a crucial role in reducing data dimensionality and

enhancing explainability. The research contributed by addressing the importance of

data pre-processing, identifying decisive features for malware detection, and evaluating

the performance of SVM and RF classifiers in this domain. However, there were gaps

in research related to the need for supplementary and weighty features beyond

permissions and intents for effective malware detection in Android apps. The study

utilized both publicly available datasets and custom-built applications to evaluate the

performance of classifiers in accurately detecting malware. The results demonstrated

the high accuracy of both classifiers in identifying malicious software. The limitations

of the publication might have included the need for further research on additional

features beyond permissions and intents for improved malware detection, as

highlighted by previous studies.

The research paper [86] emphasized the need to evaluate various malware family

classification methods fairly within a controlled environment. The research highlighted

the importance of assessing various techniques for classifying malware families in a

fair manner, with a specific focus on flow-level traffic classification approaches that

classify each encrypted flow separately. The paper highlighted the significance of

evaluating the sequential information of each TLS session for malware family

classification. A gap in research identified was the lack of proper evaluation of the

sequential information of TLS sessions for malware family classification. The dataset

used in the research was not explicitly mentioned in the provided contexts. The test

findings consistently showed that using a graph-based representation for sequential

information resulted in superior performance across several classification algorithms.

This provides valuable insights for researchers to develop enhanced machine learning

classifiers. The accuracy metrics or specific numerical results on the dataset were not

detailed in the provided contexts. One limitation of the publication could have been the

lack of detailed information on the dataset used, specific numerical results, and

57

accuracy metrics, which could have enhanced the comprehensiveness of the findings

and evaluation presented in the research paper.

The paper [87] examined the malware detection skills of different pretrained

Convolutional Neural Network (CNN) models. The main components involved in this

study were the application of feature extraction models including SqueezeNet , ResNet-

50, GoogLeNet, DenseNet-201, and AlexNet. Additionally, feature selection was

performed using PCA, classification was carried out using KNN, LR, SVM, GDA, RF,

and ensemble learning techniques. Gaps in research could have included the need for

further exploration of other CNN models, additional feature selection methods, and the

impact of different datasets on malware detection performance. The publication made

a substantial contribution by introducing DenseNet201-KNN algorithms that surpassed

the current leading approaches, achieving an accuracy rate of 96% and a minimal error

rate of 3.07%. The dataset used was the unbalanced Malimg datasets, and the results

showed that KNN was the best classifier and DenseNet201 was the best pretrained

model for malware detection. The limitations might have involved the need for more

diverse datasets, exploration of real-time detection scenarios, and further investigation

into the scalability of the proposed methods.

The research paper [88] focused on proposing an ensemble classification-based

methodology for detecting malware using neural networks and machine learning

models. The study emphasized the utilization of a stacked ensemble consisting of dense

and Convolutional Neural Networks for first categorization, followed by a meta-learner

utilizing 14 classifiers for the final categorization stage. Gaps in research included the

need for more general and robust methods for malware detection to improve

generalization potential and accuracy of classification. The studies were conducted

using the ClaMP dataset. The finest performance was obtained by utilizing an ensemble

of five dense and CNN neural networks, in addition to the ExtraTrees classifier. The

results obtained from the dataset demonstrated that the suggested methodology

surpassed alternative machine learning methods, attaining superior performance in the

identification of malware.

The research paper [89] focused on the development of a novel six-step framework for

identifying and categorizing IoT malware, addressing the challenges of detecting new

58

and modified malware strains in the context of increasing IoT adoption and

vulnerabilities. The study employed a combination of a Ghost-Net ensemble and the

Gated Recurrent Unit Ensembler (GNGRUE), which were trained on eight datasets of

malware attacks. The models were then fine-tuned using the Jaya Algorithm (JA) to

obtain exceptional performance in detecting malware. The literature review section of

the paper provided an overview of various techniques used in classifying malicious

software, covering dynamic, static, and AI-driven approaches. It discussed the

limitations of signature-based malware detection and the challenges posed by zero-day

malware, emphasizing the need for hybrid approaches that combine static and dynamic

evaluation methods with computational intelligence techniques. The research paper

contributed to the topic of IoT malware detection by introducing a novel framework

that outperformed existing models by around 15% across metrics like AUC, accuracy,

recall, and hamming loss, with a 10% reduction in time complexity. The gaps in

research identified in the literature review included the limitations of signature-based

techniques, the challenges of behavior analysis and anomaly detection methods, and the

need for hybrid approaches that amalgamate static and dynamic evaluation methods

with computational intelligence techniques to improve malware detection capabilities.

The evaluation of the publication's contribution to the topic highlighted the

development of a comprehensive framework that significantly enhanced smart IoT

malware detection, providing more performance compared to existing models. The

limitations of the research included the computational overhead associated with some

dynamic assessment methodologies, the challenges of dealing with changing malware

behavior within virtual environments, and the need for further research to address

evolving malware threats and enhance the efficiency of malware detection techniques.

The publication [90] proposed a machine learning approach that utilizes a neural

network to improve the accuracy of malware detection in response to insider threats.

The procedure involved feature extraction, anomaly detection, and classification using

the CERT4.2 dataset. The data was pre-processed by the authors through the encoding

of text strings and the distinction between threat and non-threat entries. The publication

focused on the creation of a machine learning model that included thick layers, ReLU

activation functions, and dropout layers for regularization. The purpose of this model

59

was to accurately identify and categorize internal threats. Gaps in research could have

included a more extensive exploration of various machine learning algorithms and their

effectiveness in detecting insider threats, as well as a deeper analysis of the limitations

of the proposed model in real-world scenarios. The publication contributed to the topic

of insider threat detection by introducing a novel machine learning model that enhanced

malware detection accuracy. The results on the dataset showed that the proposed

machine learning model could detect malware more effectively with 100% accuracy.

The limitations of the publication may have included the need for further validation of

the model in diverse real-world scenarios, potential biases in the dataset used, and the

scalability of the proposed method to larger and more complex datasets.

The research paper [91] aimed to improve the identification of Android malware and

classify them into families by analyzing conversation-level network traffic parameters.

The main points of the publication included the extraction of conversation-level

network traffic features for Android malware detection, categorization, and family

classification using an ensemble learning technique. Gaps in research could have

included the need for further exploration of the effectiveness of different machine

learning classifiers and feature selection algorithms in Android malware detection and

classification. The results showed Extra-trees classifier on the higher side with accuracy

percentage surpassing other classifiers. The accuracy of 87.75% was found for malware

detection, 79.97% for malware categorization, and 66.71% for malware family

classification. The dataset used in the study was the CICAndMal2017 dataset.

The research paper [92] focused on the integration of plant protection and information

systems, modernizing pest level monitoring, and enhancing control capabilities in plant

protection networks. The main points of the publication included the proposal of

malware analysis scheme based on bicubic interpolation to address image size

imbalance issues in malware images. The scheme utilized the Cycle-GAN model for

data augmentation to balance samples among malware families and built an efficient

malware classification model based on CNNs, resulting in significantly improved

malware classification efficiency. Experimental results showed high accuracy rates of

99.76% for RGB images and 99.62% for gray images using the Microsoft Malware

Classification Challenge Dataset (BIG2015). There may have been a lack of research

60

in investigating the scalability and flexibility of the proposed scheme for identifying

and classifying malware in real-world plant protection information systems.

The publication [93] explored B398n networks using a susceptible-unexposed-infected-

isolation-removed pandemic model developed by Ying Zhou, Yan Wang, and other

researchers. The model used a non-linear dynamic equation to describe the spread of

malware, and the basic reproduction number was derived using the next-generation

approach. The publication focused on three key aspects: devising optimal ways to

manage the proliferation of malware, conducting numerical simulations to examine the

spread of malware in wireless sensor networks (WSNs), and examining the

communication range of nodes to regulate the transmission of malware. One area that

was not adequately studied was the requirement for additional investigation into how

well the proposed model works in real-life situations and whether the control

mechanisms can be scaled up in larger networks. The publication contributed to the

topic by providing insights into malware propagation dynamics in wireless sensor

networks, offering a model for controlling malware spread, and designing optimal node

ranges to limit malware propagation.

The publication [94] examined malware by extracting common item sets in API call

sequences. The publication focused on three primary aspects: categorizing 266 API

requests into 23 unique categories for malware analysis, dividing the data into training

and testing sets, and assessing the performance of machine learning models such as

Naive Bayes, XGBoost, and K-Nearest Neighbor for detecting malware. The research

gaps may have encompassed the necessity for further investigation into various

machine learning techniques or the integration of supplementary attributes to enhance

the precision of virus identification. The publication enhanced the subject matter by

offering valuable perspectives on the utilization of different API categories by malware,

presenting a systematic approach for malware analysis employing machine learning

models. The specific dataset used in the study was not clearly stated in the given

information. However, it is likely that the article employed a dataset having API calls

for both malware and benign in order to train and evaluate the machine learning models.

The dataset analysis involved categorizing API requests into several classes, training

and testing machine learning models, and assessing model performance using metrics

61

such as accuracy, precision, recall, and F1 score. The paper may have been limited by

the absence of a commentary on the generalizability of the findings to various types of

malware, potential bias in the dataset utilized, or the necessity for further rigorous

empirical validation of the suggested technique.

The research paper [95] provided an overview of previous studies related to Android

malware detection and classification. The authors discussed the inadequacy of manual

techniques in dealing with the intricate nature of contemporary malware and the

constraints of static and dynamic evaluations. The evaluation emphasized the necessity

of employing a hybrid analysis strategy that integrates both static and dynamic malware

analysis in order to improve the detection and categorization of Android malware. The

article examined a suggested architecture consisting of three stages: pre-processing

which includes normalization and feature extraction, feature selection, and the

implementation of a detection model utilizing a neural network. The literature study

highlighted the enhanced precision attained by the hybrid technique in contrast to the

separate consideration of static and dynamic information. This underscores the

research's significant contribution to the domain of Android malware detection and

classification.

The publication [96] focused on employing machine learning techniques for

recommender systems-based IoT to forecast assaults in Android malware devices. The

publication highlighted several key findings, including the application of static analysis

to anticipate malware in Android apps, the development of a system to forecast and

suggest blocking malicious devices from transmitting data to the cloud server, and the

successful achievement of a 93% prediction rate using the K-Nearest Neighbor (KNN)

machine-learning model. The research article examined the deficiencies in existing

research by emphasizing the necessity for more sophisticated techniques to identify

Android malware in the Internet of Things. It underscored the significance of feature

selection and the utilization of machine-learning algorithms to achieve precise

predictions. The model also demonstrated high accuracy, precision, recall, and F1

measures, with values of 93%, 95%, 90%, and 92% correspondingly. The research

utilized a dataset consisting of over 10,000 Android applications. The purpose was to

identify and ban malicious nodes from the cloud server. The KNN model demonstrated

62

exceptional accuracy and performance metrics. The release may have been limited by

the requirement for additional validation on larger datasets, potential difficulties in

implementing it in real-time, and the need for ongoing updates to address the ever-

changing malware threats on Android devices.

The paper [97] discussed the limitations of traditional signature and heuristic-based

methodologies for detecting malicious software, highlighting the need for advanced

techniques like machine learning to achieve higher accuracy rates for unknown

malware detection. Various deep learning algorithms and transfer learning techniques

were explored to enhance malware detection resilience and accuracy, with different

models like ResNet, GoogleNet, VGG16, and LSTM hybrid networks being employed.

The researchers in the study employed a dataset including 8970 malicious and 1000

benign executable files. These files were pre-processed and transformed into pictures

for the purpose of analysis. The research paper proposed a architecture that utilized two

VGG-19 models but with certain modifications. First model was designed to determine

the maliciousness of a file, achieving a testing set accuracy of 99%. The second model

focused on identifying the specific type of malware, achieving an accuracy of 98.2%.

The research study made a significant contribution to the field of malware detection by

demonstrating the efficacy of deep learning approaches, particularly the VGG-19

models, in accurately detecting and classifying malware with a high level of accuracy.

An identified weakness in the literature assessment was the possibility of adversaries

avoiding detection if they knew the specific features utilized for feature extraction and

classification. This highlights the necessity for additional research to tackle this issue.

The publication [98] focused on implementing machine learning techniques for

identifying malware. It evaluated the performance of different algorithms, such as

Naïve Bayes, Support Vector Machine, K-Nearest Neighbor, Decision Tree, Random

Forest, and Logistic Regression, using a dataset that included both benign files and

malware. The study emphasized the capacity of machine learning methods to accurately

identify malware. The literature review portion analyzed multiple studies conducted by

previous researchers on machine learning classification methods, highlighting the

importance of choosing the right technique to accurately detect malware. The text also

emphasized the significance of feature selection and dimensionality reduction

63

approaches in improving the efficacy of classifiers. The study lacks in the areas of

advanced feature selection techniques to better depict malware features, as well as the

exploration of ensemble methods and deep learning approaches to increase malware

detection capabilities. The paper demonstrated that machine learning techniques may

effectively detect malware, with Decision Tree and Random Forest algorithms

exhibiting greater performance compared to other methods. The study yielded useful

insights into the efficacy of several algorithms in detecting malware, hence

emphasizing the potential of machine learning in this domain. The study utilized a

dataset obtained from Kaggle, and data pretreatment techniques were applied to ensure

the data's high quality. The dataset analysis revealed that machine learning techniques

achieved high levels of precision and reduced false positive rates. Specifically, the

Decision Tree and Random Forest algorithms demonstrated a remarkable accuracy of

100.00%. The study highlighted the significance of choosing pertinent and efficient

characteristics for the identification of malware. The publication's limitations

encompassed the requirement for additional study in augmenting feature engineering

techniques, investigating advanced ensemble methods, and employing deep learning

methodologies to enhance malware detection capabilities. Furthermore, the study

recognized the significance of choosing the suitable machine learning method for

efficient identification of malware.

The research paper [99] focused on malware identification and analysis, exploring

various methods and techniques used in the field. It provided a detailed discussion of

the approaches used for malware analysis, including signature-based identification,

behavior-based detection, supervised machine learning methods, and the utilization of

deep learning. The paper discussed the challenges faced in malware analysis, such as

the need for robust datasets and the limitations of current techniques. The study

assessed the impact of machine learning methods, specifically deep learning and

convolutional neural networks, on the detection of malware. The research utilized a

dataset comprising 1200 PDF samples, where 800 samples were allocated for training

and 400 for testing. The objective was to maintain a balanced ratio of benign to

dangerous files at 1:1. The dataset was analyzed using multiple machine learning

classification techniques, such as stochastic gradient boosting, random forest, decision

64

tree, support vector classifier, and logistic regression. The effectiveness of the proposed

work can be observed in the confusion matrix parameters. One of the study's

shortcomings was the difficulty in categorizing PDF files using JavaScript code.

The publication [100] explored the utilization of deep learning models in the

identification of malware in cyberspace, with a specific emphasis on their significance

and contributions to bolstering cybersecurity endeavors. The study assessed the

performance of various machine learning models, including Recurrent Neural

Networks, LSTM, Deep Autoencoders, and Deep Neural Networks, in the detection of

malware in cyberspace. It emphasized the specific advantages and practical uses of

these models in real-world scenarios. The study highlighted the efficacy of deep

learning models in autonomously categorizing malware samples into separate families

or categories by acquiring attributes from huge datasets. The publication did not

specifically address the research gaps in the given circumstances. The study highlighted

the substantial enhancement in malware detection models, demonstrating their high

precision and minimal occurrence of false positives in real-world situations. The

utilization of diverse deep learning models in the identification of malware has

emphasized their capacity to augment cybersecurity endeavors. The dataset used in the

publication was not specified in the provided contexts. The results on the dataset and

the accuracy achieved by the deep learning models were not explicitly mentioned in the

provided contexts. Limitations of the publication were not explicitly discussed in the

provided contexts.

The publication [101] focused on on creating an innovative malware detection model

with an autoencoder network that merged a grey-scale picture of malware image to

differentiate malware from harmless software. The study focused on using an

autoencoder network to assess the effectiveness of grey-scale picture representations of

malware by analyzing reconstruction errors. The study underscored the constraints of

existing malware detection systems that rely on deep learning models, underscoring the

necessity for more streamlined techniques for encoding malware feature images and

conducting data pre-processing in order to investigate novel ways to malware detection.

The paper made a significant contribution to the field by creating a detection model that

performed better than traditional machine learning techniques. This demonstrated the

65

efficiency of using an autoencoder-based design for malware detection. The study

utilized a dataset obtained from the Android platform. The findings of the study

showcased the higher performance of the proposed detection model compared to

existing machine learning approaches and specific deep learning malware detection

models that rely on malware images. The suggested model of detection achieved an

accuracy about 96% and a stable 96% F-score approximately, demonstrating the

model's stability and efficiency in separating malware from benign software. An issue

emphasized in the report was the need for human configuration in existing malware

detection methods, which presents difficulties in efficiently detecting new forms of

malware.

The publication [102] included an overview of malware detection nature (static,

dynamic, and hybrid approaches), an investigation of recent advanced works on

malware detection using deep learning frameworks, and the utilization of AI-based

frameworks like machine learning, deep learning, and hybrid frameworks to provide

solutions. The research paper discussed gaps in research by highlighting the importance

of developing robust malware-free devices due to critical security issues in the digital

world. The publication contributed to the topic of malware detection by providing a

comprehensive literature review on the subject, exploring various detection approaches,

and emphasizing the significance of security in the digital landscape. The dataset used

in the publication was not explicitly mentioned in the provided contexts. The results on

the dataset and accuracy metrics were not specified in the given contexts. The

limitations of the publication were not explicitly outlined in the provided contexts.

The publication [103] worked on enhancing the accuracy of machine learning classifier

for static PE malware detection through hyper-parameter optimization using covering

arrays (CAs). The main points of the publication included the introduction of cAgen, a

tool for generating covering arrays to tune ML approaches, the significance of covering

arrays in optimizing hyperparameters for machine learning algorithms, and the

promising results obtained in improving classification accuracy for malware detection.

A gap in research highlighted in the publication was the lack of convincing rationale

for specific parameter selections in machine learning algorithms, which could impact

their performance. The publication contributed to the topic by introducing a novel

66

approach using covering arrays for hyper-parameter optimization, addressing the curse

of dimensionality resulting from traditional systematic approaches like Grid Search.

The dataset used in the research was not explicitly mentioned in the provided contexts.

However, the publication emphasized the importance of parameter optimization for

machine learning algorithms to enhance their performance. The research findings

demonstrated that cAgen was a highly effective method for attaining optimal parameter

selections for machine learning approaches, resulting in enhanced accuracy in

classifying static PE malware for detection purposes. One limitation of the publication

was the lack of detailed information on the specific dataset used for experimentation

and validation of the proposed approach.

The publication [104] focused on the comparison of malware classification techniques

utilizing Convolutional Neural Network based on API call streams. The paper focused

on many key aspects, including the utilization of a database consisting of 7107 instances

of API call streams and 08 distinct types of malware for the purpose of classification.

Additionally, it involved the creation of a 1-Dimensional Convolutional Neural

Network (CNN) for classifying different types of malware. Furthermore, the

publication also entailed a comparative analysis of the obtained findings with other

classification techniques. Potential research gaps may involve the necessity for

additional investigation into various forms of malware and the creation of more

sophisticated categorization methodologies to efficiently identify novel and

unidentified malware. The publication demonstrated the efficacy of the suggested 1-D

CNN in classifying malware by reaching an overall accuracy of 91% for both

categorical and TF-IDF vectors. The dataset utilized included of API call streams and

various forms of malware, with the findings showcasing the supremacy of the CNN

methodology. The limitations of the publication may involve the need for more diverse

datasets, further validation of the results on larger datasets, and potential challenges in

real-time implementation of the proposed CNN model.

The publication [105] focused on risk management providing security business

methods that are cloud-based. The gaps in research identified in the publication

included the limited work done on cloud security risk management despite the

significant discourse on risk management in business processes. The study highlighted

67

the importance of conducting further research in systems that were identified as facing

difficulties, such as incorporating security risk management techniques into research

areas that lack support and effectively managing security risks during the modeling and

monitoring stages. The paper emphasized the significance of incorporating security risk

management, developing methodologies, and standards into corporate operations to

alleviate security concerns. Furthermore, it emphasized the necessity of validating

methods in real-time to evaluate their practicality and efficiency. The dataset utilized

for the literature study comprised esteemed conferences and journals that were

meticulously searched to identify papers pertaining to the management of risks of

security in cloud-based business methods. The search spanned from 2010 to October

2020. The review findings emphasized deficiencies in research and the significance of

incorporating security risk management into corporate operations. Nevertheless, the

context did not include precise information regarding the dataset utilized, the outcomes

obtained, and the level of accuracy achieved. The limitations of the publication may

involve the requirement for additional validation of methods and the investigation of

security risk management in real-time situations to improve practicality and efficiency.

The publication [106] proposed a framework that use an evolutionary algorithm to

generate adversarial samples and defend against them in deep learning-based Internet

of Things (IoT) malware detection models. The key aspects covered were the utilization

of evolutionary algorithms for sample rewriting to produce alterations, the procedure

of generating modified samples using the evolutionary algorithm, and the advantages

of this technique in enhancing the algorithm's speed and facilitating parallel computing.

Potential research gaps encompass the need for additional investigation into the

influence of various malware kinds on the efficacy of the suggested framework, the

ability of the technique to handle larger datasets, and the flexibility of the method to

address emerging malware threats. The study introduced an automated framework for

producing adversarial samples without human interaction. This approach can improve

the robustness and effectiveness of deep learning-based IoT malware detection models.

The specific dataset utilized for the study was not specifically stated within the given

context. The outcomes of the dataset were not explicitly stated within the provided

context. The context did not give information regarding the accuracy of the proposed

68

framework on the dataset. The paper may have limitations such as the requirement for

additional validation on distinct datasets, potential difficulties in implementing the

framework in real-world scenarios, and the applicability of the framework to various

types of malware.

The publication [107] included the necessity for effective malware detection

mechanisms, the limitations of signature-based detection systems and the emergence of

machine learning for rapid malware detection. The research enhanced knowledge by

integrating machine learning techniques to enhance security, doing a bibliometric

analysis, and delivering a full evaluation of anomaly detection approaches. The study

conducted a thorough analysis of machine learning-based classification techniques used

in anomaly detection over a period of almost twenty years. It focused on highlighting

the strengths and weaknesses of different machine learning methods for detecting

malware. The study highlighted the deficiencies in research by underscoring the

constraints of signature-based detection systems, the difficulties in identifying zero-day

assaults and polymorphic malware, and the necessity for more sophisticated detection

methods to successfully counteract malware attacks. The assessment of the

publication's impact on the topic encompassed its thorough examination of machine

learning techniques for identifying malware, the introduction of methods for extracting

and selecting relevant features, the comparative analysis of various machine learning

approaches, and the identification of potential areas for future research in utilizing

artificial intelligence for automated detection of malware at the system level. The

specific dataset used, the conclusions obtained from it, and the accuracy measures were

not specifically specified in the given situations.

The publication [108] addressed the difficulties encountered in detecting Android

malware, highlighting the structural and characteristic disparities between computer

malware and Android malware. Conventional detection techniques designed for PC

malware may not be efficacious in detecting Android malware. The paper focused on

the creation of a robust method for categorizing malware, specifically targeting Android

malware, with high accuracy in detection. The methodology employed consisted of

creating distinctive profiles based on signatures and behaviors for each application in

the dataset, which were subsequently utilized for categorization purposes. A gap in

69

research highlighted in the publication was the limited generalizability of suggested

detection approaches for Android malware, especially in detecting zero-day malware.

This limitation was attributed to factors like the availability of datasets with specific

examples. The publication's contribution to the topic was the introduction of a malware

classification approach that aimed to improve detection accuracy for Android malware.

The approach was evaluated using artificially generated examples to assess its

reliability and effectiveness. The dataset used in the publication was not explicitly

mentioned in the provided context. However, the publication evaluated the approach

using artificially generated examples to demonstrate its detection accuracy. The results

on the dataset were not explicitly mentioned in the provided context. Still, the

publication presented a malware classification approach with reliable detection

accuracy, indicating positive results in improving Android malware detection. The

accuracy of the detection approach proposed in the publication was highlighted as

reliable, aiming to address the challenges in detecting Android malware effectively.

One limitation of the publication was the potential lack of generalizability of the

suggested detection approaches for Android malware, particularly in detecting zero-

day malware due to constraints like dataset availability.

The research paper [109] focused to improve malware detection in order to mitigate the

detrimental effects of malware on performance, reliability, energy consumption, and

other quality aspects. The authors sought to enhance and refine the fundamental tools

for malware detection by employing a comprehensive dynamic ontology model that

incorporated a substantial volume of data, resulting in improved accuracy. The

publication contributed by summarizing existing approaches and presenting the

APKOWL method, which utilized SPARQL queries based on malware behavior to

detect malware at the design stage, showing promising results for SMS malware

detection. The results of the APKOWL method on the dataset CICMalDroid 2020

showed higher accuracy compared to other state-of-the-art methods, indicating the

effectiveness of using a full dynamic ontology model for Android malware detection.

The limitations of the publication included the focus on SMS malware detection and

the need for further evaluation on detecting other types of Android malware to assess

the method's broader applicability.

70

The publication [110] conducted an analysis on the efficacy of machine learning models

in detecting online malware. Specifically, it examined the explainability and

interpretability of ML models like SVM Linear, SVMRBF, Random Forest, Feed-

Forward Neural Net, and Convolutional Neural Network models. These models were

trained on an online malware dataset using the Shapley Additive exPlanations (SHAP)

technique. The publication addressed a number of critical topics, such as the challenges

that arise from the opaque nature of neural networks in the detection of malware, the

importance of transparency and explainability in the decision-making processes of

machine learning models, and the use of SHAP techniques to interpret the results of

various models that were trained on an online malware dataset. The research provided

valuable insights into the contributions of various machine learning models in detecting

online malware. It emphasized the significance of explainability in improving the

sharing of cyber threat intelligence. The study also demonstrated the performance of

different models, including SVM Linear, SVM-RBF, RF, FFNN, and CNN, on the

dataset. Notably, CNN achieved the highest accuracy rate of 97.01%. The study utilized

an online malware dataset and demonstrated that the CNN model had superior

performance compared to other models, with an accuracy rate of 97.01%. The study

also assessed the feature contributions of several models utilizing SHAP approaches

such as KernelSHAP, TreeSHAP, and DeepSHAP. The publication's limitations

encompassed the intricate nature of neural networks, the difficulty in reading black-box

models, and the necessity for more study to investigate supplementary techniques of

explainability and enhance the comprehensive comprehension of machine learning

models in online malware detection.

The publication [111] conducted an analysis and comparison of the efficacy of malware

detection utilizing contemporary machine learning techniques such as K-Nearest

Neighbors, Extra Tree, Random Forest, Logistic Regression, Decision Tree, and neural

network Multilayer Perceptron. The study utilized the UNSWNB15 dataset and

implemented feature encoding and selection techniques for classification purposes. The

study underscored the need of robust internet security in safeguarding users against

detrimental conduct and emphasized the escalating menace of malware in the realm of

cybersecurity. The paper demonstrated that Random Forest achieved the highest

71

accuracy of 97.68% among the machine learning models examined, offering valuable

insights into effective strategies for detecting malware. The study revealed constraints

in existing deep learning models for detecting and categorizing malware, highlighting

the necessity for more research to improve detection capabilities.

The research paper [112] discussed various malware detection methods, including

signature, behavior-based, and heuristic techniques using Deep Learning (DL)

approaches for malware detection. It highlighted the limitations of signature techniques,

behavior-based techniques, and heuristic approaches in detecting complex malware

variants. The review also mentioned the development of DL-based malware detection

frameworks, such as Stacked Auto-Encoder (SAE), Deep Belief Network (DBN), and

Transfer Learning models, to improve malware detection rates. Ensemble learning

techniques have been suggested in the literature for detecting malware. These

techniques involve mixing different machine learning algorithms such as Naive

Bayesian, Decision Tree, Random Forest, and Support Vector Machines. The review

highlighted the significance of ensemble learning in enhancing the efficacy of

individual malware detection algorithms. The research study presented a novel

approach to malware detection using an ensemble-based parallel deep learning

classifier. The classifier utilized five deep learning base models and a neural network

as a meta model, resulting in exceptional accuracy rates across five different malware

datasets. The proposed ensemble method enhanced deep learning models using a hybrid

optimization method that combines Back-Propagation (BP) and Particle Swarm

Optimization (PSO) algorithms. This approach showed effectiveness, efficiency, and

scalability in detecting malware. The parallel implementation of the ensemble method

greatly improved computational speed by a factor of 6.75, demonstrating its

effectiveness in handling enormous amounts of data.

The publication [113] focused on proposing a malware detection approach using a

modified DenseNet model for feature extraction and classification of binary images.

The model was trained by inputting images directly into the initial convolution layer,

leveraging CNNs to extract distinctive features and learn task-specific features. The

main points of the publication included illustrating the design of the malware detection

approach, showcasing the flow of the modified DenseNet model, emphasizing the use

72

of DenseNet for feature extraction from malware datasets, and training the model on

top of the extracted features to classify binary images. A gap in research identified in

the publication was the need for further exploration into the effectiveness of DenseNet

models for malware detection across different types of malware datasets. The

publication contributed to the topic of malware detection by introducing a novel

approach that utilized DenseNet for feature extraction and classification, showcasing

the potential of CNNs in extracting features from binary images for accurate

classification. The dataset used in the study was not explicitly mentioned in the

provided context. Nevertheless, the proposed DenseNet model's ability to accurately

classify binary images was demonstrated by the results of the dataset. This was

supported by the training and test accuracy and loss figures that were presented in the

publication. The limitations of the publication may have included the lack of detailed

information on the specific malware datasets used, potential biases in the training data,

and the need for further validation on diverse datasets to assess the generalizability of

the proposed malware detection approach.

The publication [114] examined the comparison of attribute extraction approaches and

machine learning algorithms for the purpose of static malware categorization and

detection. The study primarily focused on evaluating the efficacy of combining PCA

attribute extraction with SVM classifier for malware detection. This approach yielded

the highest accuracy rate while using the least number of attributes. The study also

explored advanced approaches for detecting sophisticated malware and tactics for

defending computer systems. The study noted a research gap in the absence of an

evaluation of current deep learning techniques and a comprehensive explanation of the

characteristics employed in data mining methods for identifying and tracking malware.

The publication made a significant contribution to the field of malware detection by

presenting a strategy that improved the accuracy of malware detection to 96% through

the use of PCA attribute extraction and SVM classifier. The specific dataset employed

in the study was not clearly stated in the given context. However, the findings obtained

from this dataset demonstrated superior performance in comparison to previous

methodologies, thereby emphasizing the effectiveness of the proposed technique. The

publication's drawbacks encompassed the absence of particular information regarding

73

the dataset employed, the lack of an evaluation of deep learning techniques, and a

comprehensive description of the attributes employed in data mining methods for

identifying and tracking malware.

The publication [115] focused on the Android platform and its impact on node feature

disparities in a function call graph (FCG) through the utilization of Graph Neural

Networks (GNNs). The publication highlighted several key aspects, including the

implementation of an API-based node feature, the extraction of FCG and function

features from decompiled APK files, the calculation of the API coefficient, the

extraction of a subgraph called S-FCSG that contains sensitive function calls, and the

utilization of a GCN model for feature extraction and classification. The research

emphasized the significance of augmenting node feature disparities in FCGs (Function

Call Graphs) for detecting Android malware. It demonstrated that the suggested

approach surpassed models utilizing alternative features, suggesting a promising

avenue for future investigations in malware detection that rely on graph structures and

GNNs (Graph Neural Networks). The research utilized a dataset consisting of 978

Application Programming Interfaces (APIs) that have robust security measures and are

often called upon. These APIs were used to construct a sensitive collection of APIs for

the purpose of detecting malware. The findings obtained from the dataset demonstrated

that the suggested methodology effectively increased the disparities in node

characteristics inside FCGs, resulting in improved accuracy in detecting compared to

models utilizing alternative features. The paper enhanced the field of Android malware

detection by bringing a unique methodology that utilized graph structures and GNNs,

offering valuable insights into the possibilities of graph-based methods for improving

detection accuracy. One gap in the research could have been the need for further

exploration of dynamic subgraph extraction methods and the evaluation of node

importance within the graph structure. The limitations of the publication may have

included the focus on node features and GCN model characteristics, potentially

overlooking other aspects of graph structures that could impact malware detection

effectiveness.

The publication [116] addressed the topic of detecting Android malware through the

utilization of machine learning-based methods. The publication primarily focused on

74

three key topics: the proliferation of Android malware, the efficacy of machine learning

and genetic algorithms in detecting Android malware, and the utilization of developing

Genetic Algorithms to enhance feature subsets for training machine learning

algorithms. The publication may have addressed research gaps such as the necessity for

additional investigation into the use of various machine learning algorithms in

combination with Genetic Algorithms, the influence of larger datasets on outcomes,

and the assessment of alternative machine learning methods for detecting Android

malware. The publication enhanced the field of Android malware detection by

conducting a comprehensive analysis of machine-learning-based methods, emphasizing

the efficacy of machine learning and genetic algorithms, and discussing the architecture

and security considerations of Android that are pertinent to malware detection. The

dataset utilized in the publication was not specifically specified in the given context.

The results pertaining to the dataset were not specifically specified within the given

context. The publication reported that Support Vector Machine and Neural Network

classifiers achieved a classification accuracy of over 90-91 percent when working with

lower dimension feature sets. This approach also reduced the complexity of the training

process. The publication may have been improved by addressing several limitations,

such as the requirement for additional study of the effects of various machine learning

techniques, the utilization of larger datasets, and the applicability of the findings to a

wider range of Android malware scenarios.

75

Chapter 3

Malware Identification and Classification

The exponential growth of internet-connected devices, particularly accelerated by the

Covid-19 pandemic, has brought forth a critical global challenge: safeguarding the

security of transmitted information. The integrity and functionality of these devices face

significant threats from various forms of malware, leading to behavioral distortions.

Consequently, a vital aspect of cybersecurity entails accurately identifying and

classifying such malware, enabling the implementation of appropriate

countermeasures. Existing literature has explored diverse approaches for malware

identification, encompassing static and dynamic analysis techniques like signature-

based, behavior-based, and heuristic-based methods. However, these approaches face a

key issue of inadequately identifying unknown malware variants, often resulting in

misclassifications of new strains as benign. To tackle this challenge, this study

introduces a novel ensemble-based approach for identifying and classifying malware

on Windows platforms, with a specific focus on detecting new and previously unknown

variants. The proposed methodogy leverages multiple machine learning schemes to

identify elusive unknown malware that proves challenging for existing methods.

The process of determining whether a suspicious entity is malware or benign involves

an array of stages, such as malware data acquisition, pre-processing, feature extraction,

transformation, selection, and classification. An overview of the methodology

employed in this work is presented in Figure 3.1.

• Data Collection: Samples are collected from Windows-based platforms in the

form of binary files. For this study, the malware classification dataset provided

by Quick Heal is utilized.

• Data Pre-processing: Unwanted data, such as digitally signed documents, is

removed from the collected dataset, focusing on images and files.

• Feature Extraction and Reduction: Execution traces are logged by analyzing the

malware samples. Data mining techniques are employed to extract malware

characteristics from these logs. Data mining involves the discovery of patterns

and previously unknown values in large databases. During the extraction of

76

malware features, various elements such as byte sequences, strings, opcodes,

assembly guidelines, system calls, API calls, and a variety of DLLs may be

utilized. The feature extraction process employs a classifier, and PCA (Principal

Component Analysis) is employed for feature reduction. This step identifies and

eliminates irrelevant features from the data.

Figure 3.1: Methodology depicting flow of proposed ensemble approach

Selection and Classification: The proposed ensemble approach is used to extract

malware features and perform accurate malware classification. PCA captured the data's

variability while reducing dimensionality. The primary components are determined by

combining the initial features. The top components (95%) that account for the majority

of the variance are used for further analysis. The reduced feature set is used to train the

proposed hybrid malware detection model. To confirm PCA's efficacy, performance

indicators are compared (such as accuracy and precision) before and after applying

77

feature selection. It eliminates unwanted features and enhances the accuracy of the

classification process.

3.1 Ensemble Approach for Malware Identification and Classification

Detecting and classifying malware poses significant challenges due to the objectives of

malware developers, which include information theft, extortion, and network attacks.

Traditional methods have been effective in identifying known malware, but they

struggle with newly emerged malware, known as zero-day malware. However, the

advancement of ML platforms has greatly enhanced the capabilities of malware

detection models in identifying threats. ML techniques enable malware detection to be

performed in two crucial steps: feature extraction and selection, followed by data

classification or clustering. This proposed approach focuses on ML techniques, which

can effectively identify both harmful and benign files and accurately predict the nature

of previously unseen files.

The proposed approach introduces an ensemble classifier strategy for malware

detection and classification. This strategy involves incorporating a base classifier into

each modified training dataset, resulting in a collection of base classifiers that form an

ensemble. This ensemble formation is the core principle of the approach. To achieve

this, the training datasets are reorganized using various resampling or weighting

methods, creating multiple variations.

3.1.1 Ensemble Classifier Design

It comprises several steps, including the clustering process and the implementation of

an ensemble-based classifier for malware identification and classification. The

clustering step is conducted prior to applying the ensemble classifier and utilizes the K-

means clustering approach to group similar information together. The clustering is

based on word frequency, where words with similar frequency indices are clustered into

the same group. The number of clusters represented by the centroids is determined

based on the desired quantity.

The K-means algorithm begins by selecting initial centers for the clusters from the data

patterns at k points. Subsequently, the distance between the center of each cluster and

the sample is determined, and the sample is assigned to the cluster that is closest. The

78

average value of the data objects within each newly formed cluster is computed to

determine the new center for that cluster. These steps are iteratively repeated until the

clustering centers of consecutive iterations do not significantly change, indicating

convergence and maximum achievement of the primary clustering function. The

ensemble approach consists of three phases:

Phase 1: Preparation of the ensemble involves selecting N base classifiers and choosing

a meta-learning algorithm.

Phase 2: The ensemble is trained by training each of the M base learners using the

training dataset. The predictions are recorded after each base learner undergoes K-fold

cross-validation.

Phase 3: Testing of the ensemble is conducted using new and unknown data. The

decisions made by the base learners are recorded, and the meta-learner ensemble

decisions are derived from these base-level decisions.

Selection of N Base Classifiers for Ensemble

The available literature provides a wide range of classifiers, each with its own

predictive capabilities. To leverage the strengths of these classifiers and create an

innovative ensemble classifier, we adopt the stacked ensemble technique. This

approach combines the predictions of diverse base models to achieve improved

classification accuracy and reduce the risk of misclassification. In the proposed

approach, we incorporate three specific base classifiers:

• Support Vector Machine (SVM): SVMs are a distinctive learning method rooted

in statistical learning theory. They are constructed based on a limited number of

samples from the training data, aiming to achieve optimal classification results.

Initially designed for binary classification tasks, SVMs have been extended to

handle large-scale data management and classification in the context of

advancements in computer, network, and database technologies.

• Decision Tree (DT): DT is a generally used classification technique with

applications in various real-world scenarios. This symbolic learning method

constructs a hierarchical structure by analyzing the training dataset. The

79

structure consists of nodes and branches representing different decisions based

on the attributes of the dataset.

• Logistic Regression (LR): LR is a fundamental statistical and data mining

technique widely utilized by statisticians and researchers for analyzing and

classifying binary and proportional response datasets. One of its key

characteristics is the ability to generate probabilities automatically, making it

applicable to both binary and multi-class classification problems.

Various ensemble techniques, including stacking, boosting, blending, and bagging, are

available for constructing ensemble models. In this study, we employ the stacking

method to create ensemble. At Level 0, SVM and DT models are built, while at Level

1, an LR model is constructed. The overall process is illustrated in Figure 3.2. Once the

data has undergone pre-processing, we utilize the term frequency-inverse document

frequency (TF-IDF) technique to calculate the frequency of a specific type of malware.

The RF model then works on the malware frequency, taking it into account. To generate

uncorrelated variables, the data is subjected to PCA, which involves dividing a set of

correlated variables into linearly independent subsets. The PCA algorithm processes

the malware data with the highest frequency as input and eliminates those with the

lowest frequency. This reduces the number of extracted features using the PCA

approach. By transforming the data into a lower-dimensional representation, PCA

evaluates the effective level of variation present in the data. The PCA technique

primarily intends to discover a linear transformation vector that capitalize on the data

variance in the projected space, as represented in Eq. (1).

 𝑡𝑘(𝑖) = 𝑤𝑙(𝑖)𝑇𝑥𝑖 (1)

where t is a sequence or vector of values, the subscript k_((i)) denotes the ith element

of a sequence, where k is another sequence or index that specifies the order or position

of the elements in t. w is a matrix, where w_I(i) represents the i-th row of the matrix.

The subscript l(ⅈ) refers to the i-th element of the sequence or index l. T_(x_i) denotes

the transpose of the vector x_i. x_i represents the i-th input vector.

To maximize the variance, the original weight vector w_i must satisfy the following

condition, as shown in Eq. (2).

80

 𝑤𝑖 = (∑(𝑥𝑖 ⋅ 𝑤)
2) (2)

where, wi represents the ith element of the vector w and xi represents the ith element of

the vector x.

To group similar information together, an additional clustering step is applied. Malware

samples with similar characteristics are clustered together, based on their frequency

indices. The number of centroids is equal to the number of clusters, as determined

during the calculation. The K-means algorithm starts by selecting k points as the initial

cluster centers from the data patterns. Then, the distance between each sample and the

center of its corresponding cluster is calculated. The sample is assigned to the closest

cluster based on this distance. Afterwards, the average value of each newly formed

cluster’s data objects is used to calculate the new center for that cluster. These steps are

iteratively repeated until the clustering centers of two consecutive iterations do not

significantly change. At this point, the clustering process has converged, and the

primary clustering objective has been maximized. The algorithm utilizes the Euclidean

distance to compute the distance between data samples. The clustering performance is

assessed using the sum of squared errors criterion. The K-means technique divides the

sample set D=(x_1,x_2,…,x_m) into C=(x_1,x_2,…,x_k) clusters to minimize the

squared error, as shown in Eq. (3):

𝐸 = ∑ ∑𝑥𝑘
𝑖=1 ∈ ‖𝑥 − 𝜇𝑖‖

2 (3)

where E represents the total sum or cumulative value of the expression on the right-

hand side of the equation. It is considered as the result or output of the equation. x

represents an individual value or observation in a dataset. In the equation, x is used as

a summation variable, indicating that the subsequent expression is evaluated for each

value of x. k represents the number of groups or clusters in the dataset. It defines the

range or limits of the summation in the equation, specifying that the expression is

evaluated for values of i ranging from 1 to k. Here, i represent the index of each group

or cluster in the dataset and is used as a summation variable, indicating that the

subsequent expression is evaluated for each group or cluster. μ_i ̇ represents the mean

or centroid of the ith group or cluster. It indicates the average or central value of the

observations within that particular group.

81

Figure 3.2: Clustering and classifiers used in Hybrid ensemble approach for malware

detection.

Incorporating all the steps, the ensemble approach is developed by combining the DT,

SVM, and LR classifiers. DT is used in ensemble as it supports interpretability. When

interpretability and transparency are crucial, DTs are a common option since they are

easy to comprehend and visualize. SVM is deployed as it has capability to handle high-

dimensional data effectively. Moreover, SVMs are very effective for issues when the

82

numbers of features are large as compared to the number of samples. LR generates

probability scores between 0 and 1, which represent the possibility of falling into a

specific class, rather than binary predictions (0 or 1). Depending on the needs of the

application, this probability score may be useful for making judgments, evaluating

forecasts, and establishing various decision thresholds.

83

Chapter 4

Results and Discussion

The malware detection pipeline is a systematic procedure that starts with data

preparation and encompasses duties such as data cleansing, processing of missing

values, normalization, and feature extraction. It then integrates characteristics from

both malicious and harmless samples into a comprehensive set of attributes. Feature

hashing is employed to decrease the dimensionality of the feature space, whilst K-

means clustering combines comparable data points together to create clusters. The

dataset is divided into two sets: a training set and a testing set. The training set has 80%

of the data, while the testing set contains 20%. The training process involves utilizing

Decision Tree and Support Vector Machine models to train the models, and

subsequently obtaining predictions from these trained models. The predictions from

various models are aggregated and used as inputs to a higher-level model. Logistic

Regression is trained by utilizing the stacked predictions to generate a conclusive

decision. Evaluation metrics are stored for the purpose of referencing and comparing,

while visualizations are generated to depict performance data. The models are retained

for future utilization without the need for retraining. The pipeline utilizes the taught

models to classify a fresh binary file and make predictions. Features are derived from

the binary file, and a K-means transformation is utilized to ensure consistency of the

features. Predictions are derived from the training models, and the stack predictions are

combined for the new binary file. The Logistic Regression model is used to obtain the

final prediction, and a final prediction label is constructed based on the stacked

predictions. The forecast result and level of certainty are stored for future use. The

primary data set for the proposed model is provided by Quick Heal and consists of

malware and benign files. The data set is divided into two major groups- one of benign

files and the other of malware files. The malware files are further divided into categories

of malware family: virus, worm, and ransomware for the purpose of training and testing

the proposed model.

84

Model Training and Evaluation

The sequence diagram presents a thorough procedure for training and evaluating

models in the field of malware detection. The process encompasses the steps involved

in preparing the data, saving the trained models, and evaluating the outcomes. The

process commences with data preparation, encompassing the collection and

preprocessing of unprocessed data, addressing any missing values, standardizing data,

and readying it for feature extraction. Feature extraction encompasses the process of

extracting significant features from the pre-processed data. This entails utilizing feature

hashing to decrease computational complexity, and subsequently performing clustering

using K-means clustering. Subsequently, the data is divided into separate training and

testing sets, facilitating enhanced generalization. The process of model training

includes training a Decision Tree model, a Support Vector Machine, generating stacked

predictions, and training a Logistic Regression model. The ultimate model is trained by

utilizing stacked predictions. Model evaluation entails assessing the performance of the

trained models using several measures, including accuracy, precision, and recall.

Metrics are computed for the purpose of comparing and visualizations are produced.

The collected data is saved for subsequent reference and reporting purposes. Models

are stored in files for the purpose of documentation and comparison, while the

computed metrics are also saved for documentation and comparison. This framework

provides a flexible and strong approach for machine learning applications, making it

appropriate for many kinds of data and models.

Prediction Process for New Binary

The flowchart shown in Figure 4.1 offers a methodical methodology for forecasting the

malignancy of a novel binary file. The procedure starts by initializing the prediction

phase, when pre-trained machine learning models such as Decision Tree, SVM, and

Logistic Regression are loaded from storage. The technique entails extracting pertinent

characteristics from the binary file, employing feature hashing to decrease the

dimensionality of the collected characteristics, and utilizing the pre-trained K-means

clustering model on the hashed characteristics. The Decision Tree model is utilized to

derive predictions by using its acquired decision rules. The SVM model is utilized to

85

derive predictions by utilizing the acquired decision boundary. The aggregated

forecasts are merged to generate a resilient collection of characteristics for the ultimate

model. The Logistic Regression model is employed to provide the ultimate forecast by

utilizing stacked predictions. Subsequently, the ultimate forecast is assessed to ascertain

whether the binary file is harmful or benign. If an item is categorized as malicious, it is

stored as malicious, and if it is categorized as benign, it is stored as benign. The result

is documented as "Malicious" for subsequent action or evaluation. When the binary file

is determined to be harmless, it is labelled as "Benign" to prevent it from being

identified as a security risk.

Figure 4.1: Stages involved in model training and evaluation

Through the utilization of the K-means clustering technique, it is possible to

differentiate between malicious software samples and benign software samples by

classifying them into distinct groups. Cluster 0 (purple) represents one group of

samples, and Cluster 1 (yellow) represents another group. The data is graphically

grouped according to its allocated clusters, with Cluster 0 (purple) representing one

86

specific set of samples. Two separate clusters can be formed from the data points that

have been collected. In the K-means clustering depicted in Figure 4.2, the arrangement

of data points shows a narrow dispersion with all of them clustered together. The color

bar transitions from red at a value of 0.0 to 1.0, but at the value of 0.0, it displays a

uniform yellow tone, indicating that all points in the plot are in one cluster. This

observed homogeneity indicates the absence of more refined clusters within the dataset.

Figure 4.2: Clustering of feature vectors obtained from malware and benign samples

using K-means clustering

The ability of the algorithm to differentiate between the two groups is demonstrated by

the fact that Cluster 0 and Cluster 1 will be distinguished from one another. The pattern

of clustering demonstrates that the selected features successfully separate the data into

significant groups, which is essential for the establishment of a classification system

that can be relied upon. To discriminating between the two clusters, it is vital to have

features that successfully capture large variance in the dataset. The smooth distribution

of feature values across the scatter plot is an indication that these features properly

capture this variance.

87

A comparison matrix is offered to enable a direct comparison of the Support Vector

Machine (SVM) and Decision Tree models predictions on a dataset. Results of the two

models' classification are shown in the matrix. With 198 samples in the cell at the top-

left corner (0,0), the models agree significantly. There were no situations in which both

models agreed to classify a sample as malware, as seen by the absence of samples in

the 1,1 cells. Four samples that show a misclassification make up the 1,0 cell. These

samples were classed as benign by the SVM but malware by the Decision Tree. This

difference implies that the SVM shows a different sensitivity to the features used for

classification, or that the Decision Tree may be more prone to generate false positive

results. A scatter plot of extended K-means clustering with additional noise is shown in

Figure 4.2. Various colors for the data points indicate different clusters. The data points

appear to be diagonally aligned and exhibit a linear relationship. To test the resilience

of the method, noise may have been inserted, particularly among the teal and yellow

points. The code demonstrates the process of training and evaluating a Decision Tree

classifier using TF-IDF vectorized features extracted from text data. The

train_decision_tree function loads malware and benign data paths, extracts features

using TF-IDF vectorization, and trains a Decision Tree classifier. The

evaluate_decision_tree function evaluates the classifier's performance by calculating

accuracy, precision, recall, and F1-score, and visualizes these metrics using a bar plot.

The latest deployment of sophisticated detection algorithm has shown remarkable

outcomes in detecting the existence of the specific malware category. Thorough testing

on datasets demonstrated that the system regularly identifies harmful activity with

considerable precision. The investigation demonstrates that the algorithm effectively

identifies unique patterns and behaviors that are specific to the malware family,

resulting in a notable enhancement in the speed and dependability of threat

identification. The results shown here showcase the strength and effectiveness of

method, highlighting its ability to improve cybersecurity measures by proactively

detecting and reducing the impact of malware threats. The proposed model categorizes

the identified malware into virus, worm and ransomware depending upon the model

trained.

88

Figure 4.3: Performance matrix for SVM Classifier

Figure 4.3 is the bar chart for SVM Classifier Performance Metrics which provides an

overview of the performance classifier by utilizing four essential assessment metrics.

These metrics are Accuracy, Precision, Recall, and F1-score. The accuracy value is

0.95, which indicates that a significant number of predictions were realized correctly.

Additionally, the precision score is 0.958, which indicates that the classifier is

successful at recognizing true positives within the data. It is clear that the classifier is

able to recognize the majority of true positive cases, as evidenced by the recall score,

which is somewhat lower than the precision score but is still rather high. In order to

ensure consistent performance in recognizing genuine positives while simultaneously

decreasing false positives and false negatives, the F1-score, which is the harmonic mean

of precision and recall, provides a comprehensive measure that strikes a balance

between the two metrics for assessment. The graphic allows for the interpretation of the

performance of the SVM classifier across all the metrics that were assessed, hence

proving its efficiency and dependability in classification tasks. The fact that the SVM

model has high values for metrics - accuracy, precision, recall, and F1-score jointly

show that it is well-suited for differentiating between various classes with a low amount

of error. Taking everything into consideration, the strong performance of the SVM

classifier indicates that it is suitable for applications that require classification

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Accuracy Precision Recall F1-Score

0.95
0.958

0.861

0.907

Sc
o

re

Metrics

SVM Classifier Performance Metrics

89

capabilities that are both exact and balanced. The utilization of tools like scikit-learn

for metric computation and Matplotlib for visualization highlights the methodological

rigor and clarity that is present in the presentation of the model's performance.

Figure 4.4: Performance matrix for Decision Tree Classifier

The performance of a DT classifier is evaluated using four crucial metrics: accuracy,

precision, recall, and F1-score. Figure 4.4 is the bar chart for Decision Tree Classifier

Performance Metrics which offers a comprehensive overview of the performance of a

Decision Tree classifier. The classifier achieved a high level of accuracy, as evidenced

by a score of 0.932, indicating that 93.2% of its predictions were correct. The precision

measurement yielded a value of 0.905. To clarify, this suggests that around 90.5% of

the instances identified as positive by the classifier were indeed positive. A recall value

of 0.848 means that the model successfully identified 84.81% of the actual positive

cases. Recall is a quantitative measure that assesses the classifier's capacity to

accurately detect all instances that are positive. The F1-score was calculated to be

0.876. This value suggests that the performance of both measures was well-balanced.

Overall, these performance measurements indicate that the Decision Tree classifier

achieves both high accuracy and maintains a good trade-off between identifying real

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Accuracy Precision Recall F1-Score

0.932

0.905

0.848

0.876

Sc
o

re

Metrics

Decision Tree Classifier Performance Metrics

90

positives and limiting false positives. This can be seen in the chart, where the bar

heights represent these measures. The classifier strikes a commendable balance.

Figure 4.5 is the representation for Logistic Regression Classifier Performance Metrics

and offers a comprehensive examination of the performance of a Logistic Regression

classifier in terms of four crucial metrics: Accuracy, Precision, Recall, and F1-score.

The classifier attained an Accuracy of 0.982, signifying that 98.2% of its predictions

were accurate. The precision, defined as the ratio of true positive predictions to all

positive predictions, was calculated to be 0.987, indicating that approximately 98.7%

of the cases labeled as positive were correct.

Figure 4.5: Performance matrix for Logistic Regression Classifier

The recall, which measures the classifier's ability to accurately identify all positive

occurrences, was 0.949. This indicates that the model successfully captured 94.9% of

the real positive examples. The F1-score was determined to be 0.968, indicating a very

balanced performance between these two metrics. In summary, the Logistic Regression

classifier showed outstanding performance based on these metrics. It achieved a high

level of accuracy and effectively balanced the identification of true positives with the

minimization of false positives, as shown by the bar heights in the chart.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Accuracy Precision Recall F1-Score

0.982

0.987

0.949

0.968

Sc
o

re

Metrics

Logistic Regression Classifier Performance Metrics

91

At Level 0, the models used are Support Vector Machine and Decision Tree. At Level

1, the output from Level 0 is used as input for Logistic Regression. Each performance

indicator, including Accuracy, Precision, Recall, and F1 Score, is displayed in

individual subplots. The accuracy of Level 1 (Logistic Regression) is the highest, that

is 0.982, suggesting that the combination of inputs from SVM and Decision Tree

improves the prediction performance of the model. Logistic Regression demonstrates

the best precision (0.987), indicating its superior capability to accurately identify

positive examples in comparison to individual models at Level 0. The recall has the

greatest F1 Score of 0.949, indicating its superior balance between precision and recall

compared to Level 0 models. Logistic Regression at Level 1, which incorporates the

results of SVM and Decision Tree from Level 0, exhibits exceptional performance in

all measurable parameters. The utilization of numerous models in a layered strategy

indicates that combining their individual strengths can result in improved predicted

accuracy and reliability.

Table 4.1 provides a comparative analysis of the performance of three machine learning

models based on Support Vector Machine (SVM), Decision Tree, and Logistic

Regression. All three models demonstrated great accuracy, with Logistic Regression

achieving the best accuracy of 0.982, followed by SVM with an accuracy of 0.95, and

Decision Tree with an accuracy of 0.932.

Table 4.1: Comparative Analysis at both the levels

Level Model Accuracy Precision Recall F1-Score

0 Support Vector Machine 0.95 0.958 0.861 0.907

0 Decision Tree 0.932 0.905 0.848 0.876

1 Logistic Regression 0.982 0.987 0.949 0.968

The Decision Tree accurately identified a substantial proportion of positive cases,

achieving a recall rate of 0.848. Nevertheless, when evaluating accuracy, both Support

Vector Machines (SVM) and Logistic Regression exhibited superior performance.

Logistic Regression slightly surpassed SVM in performance, with precision rates of

0.987 and 0.958, respectively. The recall rate for Logistic Regression was 0.949, which

92

was the highest among the three models. SVM had a recall rate of 0.861, while Decision

Tree had a rate of 0.848. The F1-score reached its peak value of 0.968 for Logistic

Regression, indicating exceptional overall performance. When comparing the two,

SVM and Decision Tree showed F1-scores of 0.876 and 0.907, respectively.

Figure 4.6: Performance matrix for SVM and Decision Tree at level 0 and for Logistic

regression at Level 1.

Figure 4.6 provides a clear visual representation of the comparative performance of

these models, underscoring Logistic Regression as the superior model among the three,

based on the evaluated metrics. However, it is important to consider additional factors

such as model interpretability, training time, and computational resources when making

a final decision on model selection. The figure depicts three confusion matrices, which

offer a comparative evaluation of the efficacy of three machine learning models:

Support Vector Machine (SVM), Decision Tree, and Logistic Regression. Each matrix

displays the number of true positives (located in the bottom-right), true negatives

(located in the top-left), false positives (located in the top-right), and false negatives

(located in the bottom-left) for the corresponding models. The Support Vector Machine

(SVM) model exhibits strong and reliable performance, correctly identifying 199

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F1
-S

co
re

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F1
-S

co
re

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F1
-S

co
re

SVM Decision Tree Logistic Regression

0.95 0.958

0.861

0.907

0.932

0.905

0.848

0.876

0.982 0.987

0.949
0.968

Sc
o

re

Metrics

Model Performance Metrics

93

instances as negatives and 68 instances as positives. It only misclassified 03 instances

as positive when it was actually a negative, and 11 instances as negatives when they

were actually positives. These measures demonstrate a low level of misclassification,

highlighting the model's strong precision and recall.

Figure 4.7: Confusion matrix for SVM and Decision Tree at level 0 and for Logistic

regression at Level 1.

By contrast, the Decision Tree model exhibits 195 instances of true negatives, 67

instances of true positives, 07 instances of false positives, and 12 instances of false

negatives. This model demonstrates a minor decrease in performance measures,

characterized by a notable rise in both false positives and false negatives, indicating a

modest decline in overall classification accuracy and dependability. The Logistic

Regression model yields a total of 201 true negatives, 75 true positives, 01 false

positive, and 04 false negatives. Although this model at level 1 has comparable

performance to the SVM (applied at level 0) in terms of true negatives and false

positives, it demonstrates a greater incidence of false negatives, suggesting a minor

compromise in sensitivity. The confusion matrices offer a detailed perspective on the

classification accuracy of each model, demonstrating how they handle both correct and

incorrect classifications. The Support Vector Machine (SVM) and Logistic Regression

models have higher performance in eliminating misclassification errors, specifically

false positives, when compared to the Decision Tree model. This comprehensive

comparative research highlights the significance of taking into account both accurate

94

and inaccurate categorization metrics when evaluating and choosing machine learning

models for particular applications.

The graph depicts the accuracy of a model during four epochs, both in terms of training

and validation. The accuracy measure is represented by the y-axis, while the number of

epochs is represented by the x-axis. The training accuracy is shown by blue dots,

whereas the validation accuracy is represented by a blue line. Both measures exhibit a

steady and consistent increase over the epochs, indicating the model's enhanced

performance. At the beginning, the training accuracy is roughly 0.75 and increases to

around 0.90 by the fourth epoch. Similarly, the validation accuracy starts at around 0.70

and gradually rises to about 0.85. This sequence of events indicates that the model is

successfully acquiring knowledge and applying it to new data, resulting in enhanced

precision on the validation set as well.

Figure 4.8: Training and validation accuracy.

The simultaneous enhancement of both the training and accuracy of validation suggests

that model is not excessively conforming to the training data and is improving its

performance on unknown data. This pattern indicates that the model is improving its

ability to make precise predictions as the training continues, which is a positive sign of

its ability to apply what it has learned to new situations and its overall effectiveness.

95

The bar chart displays the relative performance of three well-known machine learning

models, namely Decision Tree, Support Vector Machine (SVM), and Logistic

Regression, in terms of important evaluation. These metrics are essential for evaluating

the effectiveness of models in classification tasks, where larger scores indicate better

performance.

Figure 4.9: Training and validation loss.

Each model exhibited exceptional accuracy across all tested criteria, indicating its

overall proficiency in classification. Nevertheless, Support Vector Machines (SVM)

and Logistic Regression demonstrated a significant superiority in terms of Precision

and F1-Score. This superiority implies that these models attain a more advantageous

equilibrium between accurately detecting positive occurrences and reducing false

positives in comparison to the Decision Tree model. Based on the performance metrics,

SVM and Logistic Regression are identified as strong options for classification tasks,

showcasing their effectiveness in providing precise and dependable predictions across

several evaluation criteria.

96

Comparative Analysis with Existing Techniques

Table 4.2: Ensemble learning results with different meta-learners

Techniques Accuracy Precision Recall
F1

Score

Wang et al. [45] 0.96 N/A N/A 0.9606

Baker del Aguila et

al. [48]
0.947 N/A N/A 0.94

Saridou et al. [51] 0.918 0.893 0.943 0.918

Almaleh et al. [72] 0.98 0.99 1.00 0.99

Taha et al. [83] 0.951 0.924 0.946 0.935

Syeda et al. [94] 0.96 0.99 0.96 0.96

Cai et al. [117] 0.969 0.971 0.969 0.970

Aslan et al. [118] 0.978 N/A N/A 0.958

Zhang et al. [119] 0.986 0.954 0.976 0.956

Proposed approach 0.983 0.987 0.95 0.969

The proposed approach exhibits greater performance in comparison to existing models

as depicted in Table 4.2, attaining the high accuracy of 0.983 and the highest precision

of 0.987. This demonstrates its remarkable capacity to accurately detect affirmative

cases and achieve high accuracy. Nevertheless, its recall rate of 0.95, although

competitive, is not the highest. The F1 score of the suggested technique is 0.969, which

is comparable to that of Zhang et al. [119] (0.956), but lower than that of Cai et al. [117]

(0.969). However, the suggested technique's combination of high precision and overall

accuracy makes it a compelling choice for applications that require limiting false

positives. Nevertheless, the potential decrease in recall should be taken into account,

depending on the specific application's tolerance for false negatives.

97

Chapter 5

Conclusion and Future Work

In this research, we have delved into the evolving landscape of malware, identifying its

diverse types and the sophisticated techniques employed by attackers to evade

detection. The pervasive nature of malware poses significant challenges to the integrity,

confidentiality, and availability of digital systems. The study emphasizes the critical

need for robust malware analysis frameworks that can adapt to the rapidly changing

threat environment.

We have explored various malware types, including viruses, worms. Each of these

categories presents unique characteristics and threats, necessitating tailored detection

and mitigation strategies. The research highlights the limitations of traditional static

and dynamic analysis methods and underscores the need for more advanced techniques

that leverage machine learning and artificial intelligence to detect and classify new and

unknown malware. The development of a novel malware analysis framework provides

a more comprehensive solution for identifying and mitigating threats. This framework’s

ability to incorporate real-time data analysis and advanced machine learning algorithms

enhances its effectiveness in detecting sophisticated malware variants, including zero-

day attacks. The experiments were conducted on a dataset that included malware and

benign files from Windows Portable Executables (PE). The framework can be deployed

to detect indications of malware within Windows based Industrial Control Systems

including command injections and inappropriate communication patterns.

Additionally, it may employ sandboxing techniques to conduct a secure analysis of

questionable files. Another application would be in supply chain management software,

logistics tracking systems. The data exchanges may be monitored for any vulnerabilities

in the form of malware and thus, ensuring the integrity of sensitive data. Other industrial

areas where the framework is of use are Systems used for financial transactions, Web

Servers etc.

Future Scope

The discipline of malware analysis is characterized by its dynamic nature and constant

evolution, which is propelled by the ever-sophisticated nature of cyber threats.

98

Subsequent investigations should prioritize the subsequent domains to further augment

the proficiency in countering malware:

Enhanced Behavioral Analysis Techniques:

Future research should focus on enhancing behavioral analysis techniques to detect

subtle and complex malware behaviors. This involves the development of sophisticated

algorithms that can analyze system activities, network traffic, and user behaviors to

identify anomalies indicative of malware presence. By understanding the behavior of

malware in real-time, we can develop more proactive defenses. The future of malware

analysis lies in the integration of advanced machine learning techniques.

Development of Comprehensive Threat Intelligence Platforms:

The development of comprehensive threat intelligence platforms that aggregate data

from multiple sources, including honeypots, network sensors, and user reports, can

provide a holistic view of the threat landscape. These platforms should leverage big

data analytics and machine learning to identify emerging threats and predict future

attack vectors. Sharing threat intelligence across organizations can also enhance

collective cybersecurity resilience.

Focus on Mobile and IoT Security:

The distinctive security challenges posed by the IoT (Internet of Things) devices must

be the focus area of future research due to their increasing prevalence. Developing

malware detection and mitigation strategies specifically tailored for mobile and IoT

environments will be critical in safeguarding these devices from cyber threats.

Implementation of Blockchain Technology:

Blockchain technology can provide a decentralized and secure framework for sharing

threat intelligence and verifying the integrity of software and data. Future research

should explore the use of blockchain for enhancing malware detection and response

mechanisms, particularly in distributed environments where traditional security

measures may be insufficient.

Emphasis on User Awareness and Training:

99

As human error continues to be a significant factor in the success of cyber-attacks,

future research should focus on developing effective user awareness and training

programs. Educating operators about malware risks and best practices for cybersecurity

can help reduce the likelihood of malware infections and enhance the overall security

posture of organizations.

Exploration of Quantum Computing for Malware Analysis:

Quantum computing offers fresh prospects for the investigation of malware. Further

investigation is needed to explore the potential of quantum computing in improving the

efficiency and precision of malware detection, as well as its ability to overcome existing

encryption techniques employed by malware creators.

Regulatory and Policy Developments:

Policymakers and regulatory bodies must stay well-informed of the latest developments

in malware threats and adapt regulations to ensure robust cybersecurity frameworks.

Future research should focus on the impact of regulatory measures on malware analysis

and how policy can support the expansion of advanced security technologies.

Information Sharing and Collaboration:

Encouraging information sharing and collaboration among industry, academia, and

government organizations can lead to more effective malware analysis and mitigation

strategies. Future research should explore the benefits of collaborative approaches to

cybersecurity and develop frameworks for secure and efficient information sharing.

In conclusion, while noteworthy development has been added in the area of malware

analysis, the continuous evolution of cyber threats demands ongoing research and

innovation. By focusing on these future research areas, we can develop more robust and

adaptive defenses against the ever-present threat of malware, thereby enhancing the

security and resilience of the digital systems.

100

REFERENCES

[1] A. Khanan, Y. Abdelgadir Mohamed, A. H. H. M. Mohamed, and M. Bashir, “From Bytes

to Insights: A Systematic Literature Review on Unraveling IDS Datasets for Enhanced

Cybersecurity Understanding,” IEEE Access, vol. 12, pp. 59289–59317, 2024, doi:

10.1109/ACCESS.2024.3392338.

[2] Oluwasanmi Richard Arogundade, “Network Security Concepts, Dangers, and Defense

Best Practical,” Computer Engineering and Intelligent Systems, Mar. 2023, doi:

10.7176/ceis/14-2-03.

[3] M. N. Alenezi, H. Alabdulrazzaq, A. A. Alshaher, and M. M. Alkharang, “Evolution of

Malware Threats and Techniques: A Review,” International Journal of Communication

Networks and Information Security, vol. 12, no. 3, pp. 326–337, Dec. 2020, doi:

10.17762/ijcnis.v12i3.4723.

[4] M. Boholm, “Twenty-five years of cyber threats in the news: A study of Swedish

newspaper coverage (1995-2019),” J Cybersecur, vol. 7, no. 1, 2021, doi:

10.1093/cybsec/tyab016.

[5] F. Sulianta, “Comparison of The Computer Viruses from Time to Time,” ASIA AND THE

CAUCASUS English Edition, vol. 23, p. 2022, doi: 10.37178/ca-c.23.1.139.

[6] T. M. Chen and J.-M. Robert, “Worm epidemics in high-speed networks,” Computer

(Long Beach Calif), vol. 37, no. 6, pp. 48–53, Jun. 2004, doi: 10.1109/MC.2004.36.

[7] G. Ali, Maad M. Mijwil, Bosco Apparatus Buruga, and Mostafa Abotaleb, “A

Comprehensive Review on Cybersecurity Issues and Their Mitigation Measures in

FinTech,” Iraqi Journal for Computer Science and Mathematics, vol. 5, no. 3, pp. 45–91,

Jun. 2024, doi: 10.52866/ijcsm.2024.05.03.004.

[8] M. A. Rajab, L. Ballard, P. Mavrommatis, N. Provos, and X. Zhao, “The Nocebo * Effect

on the Web: An Analysis of Fake Anti-Virus Distribution,” in USENIX Conference on

Large-scale Exploits and Emergent Threats: Botnets, Spyware, Worms, and More

(Berkeley, CA, USA), LEET’10, USENIX Association, 2010.

[9] A. L. Y. Ren, C. T. Liang, I. J. Hyug, S. N. Brohi, and N. Z. Jhanjhi, “A Three-Level

Ransomware Detection and Prevention Mechanism,” EAI Endorsed Transactions on

Energy Web, vol. 7, no. 26, 2020, doi: 10.4108/eai.13-7-2018.162691.

[10] A. O. Almashhadani, M. Kaiiali, S. Sezer, and P. O’Kane, “A Multi-Classifier Network-

Based Crypto Ransomware Detection System: A Case Study of Locky Ransomware,”

IEEE Access, vol. 7, pp. 47053–47067, 2019, doi: 10.1109/ACCESS.2019.2907485.

[11] Val Saengphaibu, “A Brief History of The Evolution of Malware.” FortiGuard Labs Threat

Research, 2022.

[12] D. Yadav, G. Kumar, D. Lakshmi Kameshwari, V. K. Gunjan, and S. Kumar, “Malware

Techniques and Its Effect: A Survey,” in Lecture Notes in Electrical Engineering, vol. 828,

101

Springer Science and Business Media Deutschland GmbH, 2022, pp. 1215–1225. doi:

10.1007/978-981-16-7985-8_127.

[13] J. A. Reuben and N. Ware, “Approach to Handling Cyber Security Risks in Supply Chain

of Defence Sector,” Industrial Engineering Journal, vol. 12, no. 7, 2019.

[14] M. Bayzid, M. Shoikot, J. Hossain, and A. Rahman, “Keylogger Detection using Memory

Forensic and Network Monitoring,” Int J Comput Appl, vol. 177, no. 11, pp. 17–21, Oct.

2019, doi: 10.5120/ijca2019919483.

[15] X. Zhang, O. Upton, N. L. Beebe, and K. K. R. Choo, “IoT Botnet Forensics: A

Comprehensive Digital Forensic Case Study on Mirai Botnet Servers,” Forensic Science

International: Digital Investigation, vol. 32, Apr. 2020, doi:

10.1016/j.fsidi.2020.300926.

[16] Sudhakar and S. Kumar, “An emerging threat Fileless malware: a survey and research

challenges,” Cybersecurity, vol. 3, no. 1, Dec. 2020, doi: 10.1186/s42400-019-0043-x.

[17] O. Khalid et al., “An Insight into the Machine-Learning-Based Fileless Malware

Detection,” Sensors, vol. 23, no. 2, Jan. 2023, doi: 10.3390/s23020612.

[18] S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A Survey on malware analysis

and mitigation techniques,” May 01, 2019, Elsevier Ireland Ltd. doi:

10.1016/j.cosrev.2019.01.002.

[19] G. Nguyen, B. M. Nguyen, D. Tran, and L. Hluchy, “A heuristics approach to mine

behavioural data logs in mobile malware detection system,” Data Knowl Eng, vol. 115,

pp. 129–151, May 2018, doi: 10.1016/j.datak.2018.03.002.

[20] M. S. Akhtar and T. Feng, “Evaluation of Machine Learning Algorithms for Malware

Detection,” Sensors, vol. 23, no. 2, Jan. 2023, doi: 10.3390/s23020946.

[21] V. Kuriyal, D. Bordoloi, and V. Tripathi, “A Comprehensive Study on Malware Detection

Techniques Using Machine Learning,” International Journal of Scientific Engineering

and Applied Science (IJSEAS), no. 7, 2021, [Online]. Available: www.ijseas.com

[22] H. Y. Kwon, T. Kim, and M. K. Lee, “Advanced Intrusion Detection Combining Signature-

Based and Behavior-Based Detection Methods,” Electronics (Switzerland), vol. 11, no.

6, Mar. 2022, doi: 10.3390/electronics11060867.

[23] M. Goyal and R. Kumar, “A Survey on Malware Classification Using Machine Learning

and Deep Learning,” International Journal of Computer Networks and Applications, vol.

8, no. 6, pp. 758–775, Nov. 2021, doi: 10.22247/ijcna/2021/210724.

[24] A. Bensaoud and J. Kalita, “CNN-LSTM and transfer learning models for malware

classification based on opcodes and API calls,” Knowl Based Syst, vol. 290, p. 111543,

Apr. 2024, doi: 10.1016/J.KNOSYS.2024.111543.

[25] M. Sai, A. Tyagi, K. Panda, and S. Kumar, “Machine learning-based malware detection

using stacking of opcodes and bytecode sequences,” in PDGC 2022 - 2022 7th

International Conference on Parallel, Distributed and Grid Computing, Institute of

102

Electrical and Electronics Engineers Inc., 2022, pp. 204–209. doi:

10.1109/PDGC56933.2022.10053307.

[26] N. A. Azeez, O. E. Odufuwa, S. Misra, J. Oluranti, and R. Damaševičius, “Windows PE

Malware Detection Using Ensemble Learning,” Informatics, vol. 8, no. 1, Mar. 2021,

doi: 10.3390/informatics8010010.

[27] H. Manthena, S. Shajarian, J. Kimmell, M. Abdelsalam, S. Khorsandroo, and M. Gupta,

“Explainable Malware Analysis: Concepts, Approaches and Challenges,” Sep. 2024,

[Online]. Available: http://arxiv.org/abs/2409.13723

[28] V. Gazeau, K. Gupta, and M. K. An, “Advancements of Machine Learning in Malware

and Intrusion Detections,” in Proceedings of the 2024 IEEE International Conference on

Computer, Information, and Telecommunication Systems, CITS 2024, Institute of

Electrical and Electronics Engineers Inc., 2024. doi:

10.1109/CITS61189.2024.10608018.

[29] T. Zoppi, A. Ceccarelli, T. Capecchi, and A. Bondavalli, “Unsupervised Anomaly

Detectors to Detect Intrusions in the Current Threat Landscape,” ACM/IMS

Transactions on Data Science, vol. 2, no. 2, pp. 1–26, May 2021, doi: 10.1145/3441140.

[30] A. H. Salem, S. M. Azzam, O. E. Emam, and A. A. Abohany, “Advancing cybersecurity: a

comprehensive review of AI-driven detection techniques,” J Big Data, vol. 11, no. 1,

Dec. 2024, doi: 10.1186/s40537-024-00957-y.

[31] V. Singh et al., “Rising Threats in Expert Applications and Solutions,” in Advances in

Intelligent Systems and Computing, vol. 1187. [Online]. Available:

http://www.springer.com/series/11156

[32] H. Y. Kwon, T. Kim, and M. K. Lee, “Advanced Intrusion Detection Combining Signature-

Based and Behavior-Based Detection Methods,” Electronics (Switzerland), vol. 11, no.

6, Mar. 2022, doi: 10.3390/electronics11060867.

[33] T. Sommestad, H. Holm, and D. Steinvall, “Variables influencing the effectiveness of

signature-based network intrusion detection systems,” Information Security Journal,

vol. 31, no. 6, pp. 711–728, 2022, doi: 10.1080/19393555.2021.1975853.

[34] R. M. Sharma and C. P. Agrawal, “MH-DLdroid: A Meta-Heuristic and Deep Learning-

Based Hybrid Approach for Android Malware Detection,” International Journal of

Intelligent Engineering and Systems, vol. 15, no. 4, pp. 425–435, 2022, doi:

10.22266/ijies2022.0831.38.

[35] Kirubavathi G, “Behavioural Based Detection of Android Ransomware Using Machine

Learning Techniques,” 2023, doi: 10.21203/rs.3.rs-2555218/v1.

[36] K. Lee, S. Y. Lee, and K. Yim, “Machine Learning Based File Entropy Analysis for

Ransomware Detection in Backup Systems,” IEEE Access, vol. 7, pp. 110205–110215,

2019, doi: 10.1109/ACCESS.2019.2931136.

[37] I. Shhadat, B. Bataineh, A. Hayajneh, and Z. A. Al-Sharif, “The Use of Machine Learning

Techniques to Advance the Detection and Classification of Unknown Malware,” in

103

Procedia Computer Science, Elsevier B.V., 2020, pp. 917–922. doi:

10.1016/j.procs.2020.03.110.

[38] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S. Venkatraman,

“Robust Intelligent Malware Detection Using Deep Learning,” IEEE Access, vol. 7, pp.

46717–46738, 2019, doi: 10.1109/ACCESS.2019.2906934.

[39] P. Akshara and B. Rudra, “Study of a Hybrid Approach Towards Malware Detection in

Executable Files,” SN Comput Sci, vol. 2, no. 4, Jul. 2021, doi: 10.1007/s42979-021-

00672-y.

[40] S. Shukla, G. Kolhe, S. M. P. D, and S. Rafatirad, “MicroArchitectural Events and Image

Processing-based Hybrid Approach for Robust Malware Detection,” in Proceedings of

the International Conference on Compliers, Architectures and Synthesis for Embedded

Systems Companion, New York, NY, USA: ACM, Oct. 2019, pp. 1–2. doi:

10.1145/3349569.3351538.

[41] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images:

Visualization and automatic classification,” in ACM International Conference

Proceeding Series, 2011. doi: 10.1145/2016904.2016908.

[42] Z. Cui, F. Xue, X. Cai, Y. Cao, G. Wang, and J. Chen, “Detection of Malicious Code

Variants Based on Deep Learning,” IEEE Trans Industr Inform, vol. 14, no. 7, pp. 3187–

3196, Jul. 2018, doi: 10.1109/TII.2018.2822680.

[43] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S. Venkatraman,

“Robust Intelligent Malware Detection Using Deep Learning,” IEEE Access, vol. 7, pp.

46717–46738, 2019, doi: 10.1109/ACCESS.2019.2906934.

[44] M. M. Abualhaj, A. A. Abu-Shareha, Q. Y. Shambour, S. N. Al-Khatib, and M. O. Hiari,

“Tuning the k value in k-nearest neighbors for malware detection,” IAES International

Journal of Artificial Intelligence (IJ-AI), vol. 13, no. 2, p. 2275, Jun. 2024, doi:

10.11591/ijai.v13.i2.pp2275-2282.

[45] P. Wang, T. Lin, D. Wu, J. Zhu, and J. Wang, “TTDAT: Two-Step Training Dual Attention

Transformer for Malware Classification Based on API Call Sequences,” Applied Sciences,

vol. 14, no. 1, p. 92, Dec. 2023, doi: 10.3390/app14010092.

[46] M. H. L. Louk and B. A. Tama, “Tree-Based Classifier Ensembles for PE Malware

Analysis: A Performance Revisit,” Algorithms, vol. 15, no. 9, Sep. 2022, doi:

10.3390/a15090332.

[47] M. H. Ali et al., “Threat Analysis and Distributed Denial of Service (DDoS) Attack

Recognition in the Internet of Things (IoT),” Electronics (Switzerland), vol. 11, no. 3,

Feb. 2022, doi: 10.3390/electronics11030494.

[48] R. Baker del Aguila, C. D. Contreras Pérez, A. G. Silva-Trujillo, J. C. Cuevas-Tello, and J.

Nunez-Varela, “Static Malware Analysis Using Low-Parameter Machine Learning

Models,” Computers, vol. 13, no. 3, Mar. 2024, doi: 10.3390/computers13030059.

104

[49] K. Singh Sangher, A. Singh, and H. M. Pandey, “Signature based Ransomware detection

based on optimizations approaches using RandomClassier and CNN algorithms,”

International Journal of System Assurance Engineering and Management, doi:

10.21203/rs.3.rs-2716621/v1.

[50] B. Xuan, J. Li, and Y. Song, “SFCWGAN-BiTCN with Sequential Features for Malware

Detection,” Applied Sciences (Switzerland), vol. 13, no. 4, Feb. 2023, doi:

10.3390/app13042079.

[51] B. Saridou, J. R. Rose, S. Shiaeles, and B. Papadopoulos, “SAGMAD—A Signature

Agnostic Malware Detection System based on Binary Visualisation and Fuzzy Sets,”

Electronics (Switzerland), vol. 11, no. 7, Apr. 2022, doi: 10.3390/electronics11071044.

[52] B. T. Hammad, N. Jamil, I. T. Ahmed, Z. M. Zain, and S. Basheer, “Robust Malware

Family Classification Using Effective Features and Classifiers,” Applied Sciences

(Switzerland), vol. 12, no. 15, Aug. 2022, doi: 10.3390/app12157877.

[53] T. Vyšniūnas, D. Čeponis, N. Goranin, and A. Čenys, “Risk-Based System-Call Sequence

Grouping Method for Malware Intrusion Detection,” Electronics (Switzerland), vol. 13,

no. 1, Jan. 2024, doi: 10.3390/electronics13010206.

[54] S. Aziz, M. Irshad, S. A. Haider, J. Wu, D. N. Deng, and S. Ahmad, “Protection of a smart

grid with the detection of cyber- malware attacks using efficient and novel machine

learning models,” Front Energy Res, vol. 10, Aug. 2022, doi:

10.3389/fenrg.2022.964305.

[55] N. Syuhada Selamat and F. Hani Mohd Ali, “Polymorphic Malware Detection based on

Supervised Machine Learning,” Journal of Positive School Psychology, vol. 6, no. 3, pp.

8538–8547, 2022, [Online]. Available: http://journalppw.com

[56] S. S. Shafin, G. Karmakar, and I. Mareels, “Obfuscated Memory Malware Detection in

Resource-Constrained IoT Devices for Smart City Applications,” Sensors, vol. 23, no. 11,

Jun. 2023, doi: 10.3390/s23115348.

[57] D. K. A. et al., “Obfuscated Malware Detection in IoT Android Applications Using

Markov Images and CNN,” IEEE Syst J, vol. 17, no. 2, pp. 2756–2766, Jun. 2023, doi:

10.1109/JSYST.2023.3238678.

[58] J. Busch, A. Kocheturov, V. Tresp, and T. Seidl, “NF-GNN: Network Flow Graph Neural

Networks for Malware Detection and Classification,” in ACM International Conference

Proceeding Series, Association for Computing Machinery, Jul. 2021, pp. 121–132. doi:

10.1145/3468791.3468814.

[59] T. Van Dao, H. Sato, and M. Kubo, “MLP-Mixer-Autoencoder: A Lightweight Ensemble

Architecture for Malware Classification,” Information (Switzerland), vol. 14, no. 3, Mar.

2023, doi: 10.3390/info14030167.

[60] A. M. Alnajim, S. Habib, M. Islam, R. Albelaihi, and A. Alabdulatif, “Mitigating the Risks

of Malware Attacks with Deep Learning Techniques,” Electronics (Switzerland), vol. 12,

no. 14, Jul. 2023, doi: 10.3390/electronics12143166.

105

[61] A. Albakri, F. Alhayan, N. Alturki, S. Ahamed, and S. Shamsudheen, “Metaheuristics

with Deep Learning Model for Cybersecurity and Android Malware Detection and

Classification,” Applied Sciences (Switzerland), vol. 13, no. 4, Feb. 2023, doi:

10.3390/app13042172.

[62] Y. Zhou, B. T. Liu, K. Zhou, and S. F. Shen, “Malware propagation model of fractional

order, optimal control strategy and simulations,” Front Phys, vol. 11, 2023, doi:

10.3389/fphy.2023.1201053.

[63] M. Dener, G. Ok, and A. Orman, “Malware Detection Using Memory Analysis Data in

Big Data Environment,” Applied Sciences (Switzerland), vol. 12, no. 17, Sep. 2022, doi:

10.3390/app12178604.

[64] M. Altaiy, İ. Yıldız, and B. Uçan, “MALWARE DETECTION USING DEEP LEARNING

ALGORITHMS,” AURUM Journal of Engineering Systems and Architecture, vol. 7, no. 1,

pp. 11–26, 2023, doi: 10.53600/ajesa.1321170.

[65] A. Sharma, P. Malacaria, and M. Khouzani, “Malware Detection Using 1-Dimensional

Convolutional Neural Networks,” in 2019 IEEE European Symposium on Security and

Privacy Workshops (EuroS&PW), IEEE, Jun. 2019, pp. 247–256. doi:

10.1109/EuroSPW.2019.00034.

[66] C. Dike Chukunda, D. Matthias, E. Bennett, and C. Author, “Malware Detection and

Classification System Using Random Forest,” Quest Journals Journal of Software

Engineering and Simulation, vol. 8, no. 5, pp. 2321–3809, 2022.

[67] S. A. Hashmi, “Malware Detection and Classification on Different Dataset by

Hybridization of CNN and Machine Learning,” International Journal of Intelligent

Systems and Applications in Engineering, vol. 12, no. 6s, pp. 650–667.

[68] A. Jamal, M. Faisal Hayat, and M. Nasir, “Malware Detection and Classification in IoT

Network using ANN,” Mehran University Research Journal of Engineering and

Technology, vol. 41, no. 1, pp. 80–91, Jan. 2022, doi: 10.22581/muet1982.2201.08.

[69] Sayali Khirid, Sakshi Veer, Tanushika Gupta, Vishwajeet Waychal, and Mrs. Asmita R.

Kamble, “Malware Detection and Classification Framework for IOT Devices,”

International Journal of Advanced Research in Science, Communication and

Technology, pp. 1–8, May 2022, doi: 10.48175/ijarsct-3877.

[70] Z.-P. Pan, C. Feng, and C.-J. Tang, “Malware Classification Based on the Behavior

Analysis and Back Propagation Neural Network,” ITM Web of Conferences, vol. 7, p.

02001, Nov. 2016, doi: 10.1051/itmconf/20160702001.

[71] B. Bashari Rad, M. Kazem Hassan Nejad, and M. Shahpasand, “Malware Classification

and Detection using Artificial Neural Network,” 610 Journal of Engineering Science and

Technology Special Issue on ICCSIT, vol. 12, pp. 14–23, 2018.

[72] A. Almaleh, R. Almushabb, and R. Ogran, “Malware API Calls Detection Using Hybrid

Logistic Regression and RNN Model,” Applied Sciences (Switzerland), vol. 13, no. 9, May

2023, doi: 10.3390/app13095439.

106

[73] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and Classification: A Survey,”

Journal of Information Security, vol. 05, no. 02, pp. 56–64, 2014, doi:

10.4236/jis.2014.52006.

[74] R. Shrestha, A. Omidkar, S. A. Roudi, R. Abbas, and S. Kim, “Machine-learning-enabled

intrusion detection system for cellular connected uav networks,” Electronics

(Switzerland), vol. 10, no. 13, Jul. 2021, doi: 10.3390/electronics10131549.

[75] S. A. Habtor and A. H. H. Dahah, “Machine-Learning Classifiers for Malware Detection

Using Data Features,” Journal of ICT Research and Applications, vol. 15, no. 3, pp. 265–

290, Dec. 2021, doi: 10.5614/ITBJ.ICT.RES.APPL.2021.15.3.5.

[76] L. Hammood, İ. A. Doğru, and K. Kılıç, “Machine Learning-Based Adaptive Genetic

Algorithm for Android Malware Detection in Auto-Driving Vehicles,” Applied Sciences

(Switzerland), vol. 13, no. 9, May 2023, doi: 10.3390/app13095403.

[77] D. A. Kumar and S. K. Das, “Machine Learning Approach for Malware Detection and

Classification Using Malware Analysis Framework,” Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, vol.

2023, no. 1.

[78] A. Mpatziakas, A. Drosou, S. Papadopoulos, and D. Tzovaras, “IoT threat mitigation

engine empowered by artificial intelligence multi-objective optimization,” Journal of

Network and Computer Applications, vol. 203, p. 103398, Jul. 2022, doi:

10.1016/j.jnca.2022.103398.

[79] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, “Intelligent Vision-Based Malware

Detection and Classification Using Deep Random Forest Paradigm,” IEEE Access, vol. 8,

pp. 206303–206324, 2020, doi: 10.1109/ACCESS.2020.3036491.

[80] F. Zhang, K. Li, and Z. Ren, “Improving Adversarial Robustness of Ensemble Classifiers

by Diversified Feature Selection and Stochastic Aggregation,” Mathematics, vol. 12, no.

6, Mar. 2024, doi: 10.3390/math12060834.

[81] N. Anđelić, S. Baressi Šegota, and Z. Car, “Improvement of Malicious Software

Detection Accuracy through Genetic Programming Symbolic Classifier with Application

of Dataset Oversampling Techniques,” Computers, vol. 12, no. 12, Dec. 2023, doi:

10.3390/computers12120242.

[82] Z. Zhao, D. Zhao, S. Yang, and L. Xu, “Image-Based Malware Classification Method with

the AlexNet Convolutional Neural Network Model,” Security and Communication

Networks, vol. 2023, 2023, doi: 10.1155/2023/6390023.

[83] A. Taha, O. Barukab, and S. Malebary, “Fuzzy integral‐based multi‐classifiers ensemble

for android malware classification,” Mathematics, vol. 9, no. 22, Nov. 2021, doi:

10.3390/math9222880.

[84] J. Toldinas, A. Venčkauskas, A. Liutkevičius, and N. Morkevičius, “Framing Network

Flow for Anomaly Detection Using Image Recognition and Federated Learning,”

Electronics (Switzerland), vol. 11, no. 19, Oct. 2022, doi: 10.3390/electronics11193138.

107

[85] C. Palma, A. Ferreira, and M. Figueiredo, “Explainable Machine Learning for Malware

Detection on Android Applications †,” Information (Switzerland), vol. 15, no. 1, Jan.

2024, doi: 10.3390/info15010025.

[86] J. Ha and H. Roh, “Experimental evaluation of malware family classification methods

from sequential information of tls-encrypted traffic,” Electronics (Switzerland), vol. 10,

no. 24, Dec. 2021, doi: 10.3390/electronics10243180.

[87] F. A. Abdulazeez, I. T. Ahmed, and B. T. Hammad, “Examining the Performance of

Various Pretrained Convolutional Neural Network Models in Malware Detection,”

Applied Sciences, vol. 14, no. 6, p. 2614, Mar. 2024, doi: 10.3390/app14062614.

[88] R. Damaševičius, A. Venčkauskas, J. Toldinas, and Š. Grigaliūnas, “Ensemble‐based

classification using neural networks and machine learning models for windows pe

malware detection,” Electronics (Switzerland), vol. 10, no. 4, pp. 1–26, Feb. 2021, doi:

10.3390/electronics10040485.

[89] A. A. Almazroi and N. Ayub, “Enhancing Smart IoT Malware Detection: A GhostNet-

based Hybrid Approach,” Systems, vol. 11, no. 11, Nov. 2023, doi:

10.3390/systems11110547.

[90] M. H. Kabir, A. Hasnat, A. J. Mahdi, M. N. Hasan, J. A. Chowdhury, and I. M. Fahim,

“Enhancing Insider Malware Detection Accuracy with Machine Learning Algorithms †,”

Engineering Proceedings, vol. 58, no. 1, 2023, doi: 10.3390/ecsa-10-16234.

[91] M. Abuthawabeh and K. Mahmoud, “Enhanced android malware detection and family

classification, using conversation-level network traffic features,” International Arab

Journal of Information Technology, vol. 17, no. 4 Special Issue, pp. 607–614, 2020, doi:

10.34028/iajit/17/4A/4.

[92] Z. Chen, S. Xing, and X. Ren, “Efficient Windows malware identification and

classification scheme for plant protection information systems,” Front Plant Sci, vol.

14, 2023, doi: 10.3389/fpls.2023.1123696.

[93] Y. Zhou, Y. Wang, K. Zhou, S. F. Shen, and W. X. Ma, “Dynamical behaviors of an

epidemic model for malware propagation in wireless sensor networks,” Front Phys, vol.

11, 2023, doi: 10.3389/fphy.2023.1198410.

[94] D. Z. Syeda and M. N. Asghar, “Dynamic Malware Classification and API Categorisation

of Windows Portable Executable Files Using Machine Learning,” Applied Sciences, vol.

14, no. 3, p. 1015, Jan. 2024, doi: 10.3390/app14031015.

[95] F. Taher, O. AlFandi, M. Al-kfairy, H. Al Hamadi, and S. Alrabaee, “DroidDetectMW: A

Hybrid Intelligent Model for Android Malware Detection,” Applied Sciences

(Switzerland), vol. 13, no. 13, Jul. 2023, doi: 10.3390/app13137720.

[96] H. Babbar, S. Rani, D. K. Sah, S. A. AlQahtani, and A. Kashif Bashir, “Detection of Android

Malware in the Internet of Things through the K-Nearest Neighbor Algorithm,” Sensors,

vol. 23, no. 16, Aug. 2023, doi: 10.3390/s23167256.

108

[97] A. I. A. Alzahrani, M. Ayadi, M. M. Asiri, A. Al-Rasheed, and A. Ksibi, “Detecting the

Presence of Malware and Identifying the Type of Cyber Attack Using Deep Learning

and VGG-16 Techniques,” Electronics (Switzerland), vol. 11, no. 22, Nov. 2022, doi:

10.3390/electronics11223665.

[98] M. Azahari et al., “Detecting Malware with Classification Machine Learning

Techniques,” IJACSA) International Journal of Advanced Computer Science and

Applications, vol. 14, no. 6, p. 2023.

[99] S. S. Alshamrani, “Design and Analysis of Machine Learning Based Technique for

Malware Identification and Classification of Portable Document Format Files,” Security

and Communication Networks, vol. 2022, 2022, doi: 10.1155/2022/7611741.

[100] A. Redhu, P. Choudhary, K. Srinivasan, and T. K. Das, “Deep learning-powered malware

detection in cyberspace: a contemporary review,” 2024, Frontiers Media SA. doi:

10.3389/fphy.2024.1349463.

[101] Deepa K R and V. Bhavyashree, “Deep Learning Malware Detection Using Auto

Encoder,” Arts, Science and Humanities, vol. 11, no. 1, Jul. 2023, doi:

10.34293/sijash.v11iS1-July.6314.

[102] S. S. Hussain, M. F. A. Razak, and A. Firdaus, “Deep Learning Based Hybrid Analysis of

Malware Detection and Classification: A Recent Review,” 2024, River Publishers. doi:

10.13052/jcsm2245-1439.1314.

[103] F. T. ALGorain and J. A. Clark, “Covering Arrays ML HPO for Static Malware Detection,”

Eng, vol. 4, no. 1, pp. 543–554, Mar. 2023, doi: 10.3390/eng4010032.

[104] M. Schofield et al., “Comparison of Malware Classification Methods using

Convolutional Neural Network based on API Call Stream,” International Journal of

Network Security & Its Applications, vol. 13, no. 2, pp. 1–19, Mar. 2021, doi:

10.5121/ijnsa.2021.13201.

[105] T. E. Abioye, O. T. Arogundade, S. Misra, K. Adesemowo, and R. Damaševičius, “Cloud-

based business process security risk management: A systematic review, taxonomy, and

future directions,” Dec. 01, 2021, MDPI. doi: 10.3390/computers10120160.

[106] F. Wang, Y. Lu, C. Wang, and Q. Li, “Binary Black-Box Adversarial Attacks with

Evolutionary Learning against IoT Malware Detection,” Wirel Commun Mob Comput,

vol. 2021, 2021, doi: 10.1155/2021/8736946.

[107] N. K. Gyamfi, N. Goranin, D. Ceponis, and H. A. Čenys, “Automated System-Level

Malware Detection Using Machine Learning: A Comprehensive Review,” Applied

Sciences, vol. 13, no. 21, p. 11908, Oct. 2023, doi: 10.3390/app132111908.

[108] R. Khurram. Shahzad, “Automated Malware Detection and Classification Using

Supervised Learning,” Blekinge Institute of Technology, 2024.

[109] D. Aboshady, N. E. Ghannam, E. K. Elsayed, and L. S. Diab, “APKOWL: An Automatic

Approach to Enhance the Malware Detection,” Mobile Networks and Applications,

2023, doi: 10.1007/s11036-023-02159-x.

109

[110] H. Manthena, J. C. Kimmel, M. Abdelsalam, and M. Gupta, “Analyzing and Explaining

Black-Box Models for Online Malware Detection,” IEEE Access, vol. 11, pp. 25237–

25252, 2023, doi: 10.1109/ACCESS.2023.3255176.

[111] M. Azeem, D. Khan, S. Iftikhar, S. Bawazeer, and M. Alzahrani, “Analyzing and

comparing the effectiveness of malware detection: A study of machine learning

approaches,” Heliyon, vol. 10, no. 1, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23574.

[112] M. N. Al-Andoli, K. S. Sim, S. C. Tan, P. Y. Goh, and C. P. Lim, “An Ensemble-Based

Parallel Deep Learning Classifier With PSO-BP Optimization for Malware Detection,”

IEEE Access, vol. 11, pp. 76330–76346, 2023, doi: 10.1109/ACCESS.2023.3296789.

[113] J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R. Damaševičius, “An efficient

densenet‐based deep learning model for Malware detection,” Entropy, vol. 23, no. 3,

Mar. 2021, doi: 10.3390/e23030344.

[114] N. Albishry, R. Alghamdi, A. Almalawi, A. I. Khan, P. R. Kshirsagar, and Barudebtera, “An

Attribute Extraction for Automated Malware Attack Classification and Detection Using

Soft Computing Techniques,” Comput Intell Neurosci, vol. 2022, 2022, doi:

10.1155/2022/5061059.

[115] H. Wu, N. Luktarhan, G. Tian, and Y. Song, “An Android Malware Detection Approach

to Enhance Node Feature Differences in a Function Call Graph Based on GCNs,”

Sensors, vol. 23, no. 10, May 2023, doi: 10.3390/s23104729.

[116] R. Srinivasan, S. Karpagam, M. Kavitha, and R. Kavitha, “An Analysis of Machine

Learning-Based Android Malware Detection Approaches,” in Journal of Physics:

Conference Series, Institute of Physics, 2022. doi: 10.1088/1742-6596/2325/1/012058.

[117] L. Cai, Y. Li, and Z. Xiong, “JOWMDroid: Android malware detection based on feature

weighting with joint optimization of weight-mapping and classifier parameters,”

Comput Secur, vol. 100, p. 102086, Jan. 2021, doi: 10.1016/j.cose.2020.102086.

[118] O. Aslan and A. A. Yilmaz, “A New Malware Classification Framework Based on Deep

Learning Algorithms,” IEEE Access, vol. 9, pp. 87936–87951, 2021, doi:

10.1109/ACCESS.2021.3089586.

[119] Y. Zhang et al., “A Robust CNN for Malware Classification against Executable

Adversarial Attack,” Electronics (Switzerland), vol. 13, no. 5, Mar. 2024, doi:

10.3390/electronics13050989.

110

LIST OF PUBLICATIONS

1. V. Verma, A. Malik and I. Batra, “Assessing the Impact and Performance of

Malware Detection Systems,” 2023 10th IEEE Uttar Pradesh Section International

Conference on Electrical, Electronics and Computer Engineering (UPCON),

Gautam Buddha Nagar, India, 2023, pp. 106-109, doi:

10.1109/UPCON59197.2023.10434443.

2. Vikas Verma and Arun Malik, “Malware Detection and Classification: A

Comprehensive Review,” 7th International Joint Conference on Computing

Sciences (ICCS-2023) “KILBY100”.

3. Vikas Verma, Arun Malik, and Isha Batra, “Analyzing and Classifying Malware

Types on Windows Platform using an Ensemble Machine Learning Approach,” Int

J Performability Eng, 2024, 20(5): 312-318.

4. Vikas Verma, Arun Malik, Isha Batra and A. S. M. Sanwar Hosen, “A Novel

Ensemble-based Approach for Windows Malware Detection,” International

Journal of Artificial Intelligence (IJ-AI).

