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ABSTRACT 

The Himalayan region's cities will grow exponentially in the next two decades. The 

situation could be challenging owing to seismo-geographical complexities and limited 

resources in these regions. Population growth and popularity as tourist destinations 

have led to dispersed, inefficient, and haphazard urban development. Implementing 

monitoring systems for urban expansion can facilitate the adoption of sustainable 

development approaches that consider societal and environmental factors equally. The 

region chosen for the research study is the city of Dharamshala, located in the Western 

Himalayas and an important tourist and administrative centre of the state of Himachal 

Pradesh. The city has witnessed notable transformations in the past few decades, 

especially in the built-up areas. It requires immediate and proactive attention and 

intervention strategies to address the evolving landscape changes. The research aims to 

quantify the land cover changes occurring in the region and suggest effective 

intervention measures to manage and foster resilient and inclusive urban development 

while preserving the region's natural and cultural assets. 

Leveraging geospatial data within a Geographic Information System (GIS) interface 

holds substantial potential for effectively tracking and quantifying Land Use and Land 

Cover (LULC) changes, facilitating the formulation of necessary interventions and 

strategies to achieve a sustainable ecosystem. The integrated use of remote sensing and 

GIS in the past few decades has increased substantially and has been instrumental in 

understanding the dynamic changes occurring in land use at a regional or global scale. 

Remote sensing (RS)  and GIS have helped generate LULC thematic maps, which have 

proven immensely valuable in resource and land-use management, facilitating 

sustainable development by balancing developmental interests and conservation 

measures. This has helped to frame the interventions and management strategies to 

ensure sustainable development.   

The availability of free satellite data coupled with open-source GIS platforms has 

significantly contributed to the progress in LULC change studies. Various studies have 

focussed on choosing a proper classification algorithm suited for a particular purpose, 

but choosing proper satellite data has not received attention. The satellite's spatial, 

temporal, and, most importantly, spectral configuration could have severe implications 
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for the Land cover classification of a region. The research study utilized three satellite 

imageries, Sentinel 2, Landsat 8 OLI (Operational Land Imager), and Landsat 7 ETM+ 

(Enhanced Thematic Mapper) for the research, and the performance of all the satellite 

imageries was judged based on accuracy metrics. The overall accuracy for Sentinel 2, 

Landsat 8 OLI, and Landsat 7 ETM+ was 83.40%, 80.06%, and 74.32%, respectively, 

while Kappa hat was 0.72, 0.65, and 0.53, respectively. The significant variations in the 

satellite performance show the importance of choosing a proper satellite source for 

LULC classification studies. The performance of Landsat 8 OLI demonstrated parity to 

Sentinel 2 with the added advantage of having historical satellite imageries from 2013, 

enhancing its suitability for remote sensing applications within this context. 

The spatio-temporal changes occurring in the region are essential in understanding the 

complex interactions between the causative factors and/or driving change. A temporal 

scale of three years was chosen, and LULC maps were obtained for 2016, 2019, and 

2022. Traditionally, classification algorithms, such as supervised, unsupervised, hybrid, 

or machine learning, have been used for land cover classification. The geographical and 

topographical complexities in Himalayan regions may contribute to the erroneous 

classification of the land cover, especially when working with satellite data. A simple 

classification approach could not yield the desired results and necessitates the use of 

post-classification correction measures. The research utilized an innovative approach 

involving the use of the Digital Elevation Model (DEM) and the use of Spectral 

Vegetation indices, like Enhanced Vegetation Index (EVI), Modified Normalized 

Difference Water Index (MNDWI), and Normalized Difference Built-up index (NDBI) 

as post classification correction measure. The river drainage network was extracted 

using the Strahler Order Algorithm. The Maximum Likelihood Classifier (MLC), a 

Supervised Classification technique, was performed on the three Landsat 8 OLI images 

for 2016, 2019, and 2022. Five land cover classes, viz. Protected areas, Agricultural 

areas, built-up areas, barren land, and water bodies were created using the Classification 

technique. The results indicate that the accuracy of the classified map increased from 

75.90% to 93.48%, and kappa khat improved from 0.64 to 0.89 after the post-

classification corrections were incorporated. The Producer Accuracy of the agricultural 

areas and built-up areas increased by 15.3% and 85.8%, respectively, while the User 
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Accuracy increased by 29.2% and 68.8%, respectively. The findings substantiate the 

necessity of post-classification correction measures in LULC studies.  

The spatio-temporal analysis after adopting post-classification correction measures 

found that the built-up dynamic index had increased to 23.3% from 2016 to 2022. The 

built-up growth rate for the study period was found to be 145% for elevations less than 

and equal to 1000m, 143% for elevations ranging from 1000-1500m, and 119% for 

elevations greater than 1500m. The built-up growth rate for a distance up to 100 m from 

the streams was 119% from the year 2016 to 2022. The geospatial risk assessment 

highlights potential threats in the region due to increased built-up activities, 

emphasizing the need for prompt intervention by policy-makers, administrators, and 

environmentalists to advocate for a sustainable development model. The area at an 

altitude of less than 1500 m remained the most critical, with maximum changes in land 

use and land cover classes witnessed there. The built-up, agricultural, and protected 

areas exhibited the highest degree of transition in this region. This transformation can 

be attributed to improved transportation infrastructure, enhanced road networks, 

favourable climatic conditions conducive to habitation and agricultural pursuits, 

burgeoning commercial enterprises, and heightened population density within this 

geographical expanse. 

The modelling and accurate prediction of land cover classes help to understand the 

complex linkages between spatial patterns and processes responsible for change. The 

research utilized socio-economic and spatial variables such as slope, elevation, distance 

from streams, distance from roads, distance from built-up areas, and distance from the 

centre of town to predict the future land cover classes. The research integrates Artificial 

Neural Networks with Cellular Automata to forecast and establish potential Land Use 

changes for 2025 and 2040. Comparison between the predicted and actual Land Use 

Land cover maps of 2022 indicates high agreement with kappa hat of 0.77 and a 

percentage of correctness of  86.83%. The study demonstrates that the built-up area will 

increase by 8.37 km2 by 2040, reducing 7.08 km2 and 1.16 km2 in protected and 

agricultural areas, respectively. This signifies the impact of anthropogenic and socio-

economic activities in the city and the rapid conversion of this hill station into a concrete 

jungle. The results also indicate widespread encroachments and abeyance of legislation.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to LULC change 

The development of a region is a continuous and dynamic process. Information about 

various activities or the factors responsible for change must be available for the region's 

sustainable development, which may help in the decision-making and implementation 

of intervention strategies. The socio-economic growth of a region in any developing 

region has witnessed an increased demand for built-up areas, which in turn has come at 

the cost of vegetated and barren lands [1]. The various features present on the earth’s 

surface, such as crops, water, barren land, built-up areas, etc., are known as “Land 

Cover (LC)”, and their use by humans for various purposes, be it social, economic, 

recreational etc. is known as “Land use (LU)”[2]. The unorganised, unsystematic and 

uncontrolled construction, accompanied by the destruction of wetlands, loss of 

agricultural land, degrading air quality, and changes in wildlife habitat, are some of the 

problems witnessed in developing regions, which requires a holistic approach and 

knowledge of Land use Land cover (LULC) change. For better land management, 

information about the current land use patterns and the changes happening temporally 

must be available [3]. The remote sensing data can help understand the environmental 

process, especially when studying the patterns and changes occurring in the regions [4]. 

However, for a detailed analysis, it is also necessary to use a modern tool that can deal 

with spatio-temporal data and help analyse them so that the information can be used to 

implement land management practices better [5]. A Geographic Information System 

(GIS) is a platform that can help analyse spatio-temporal changes. The thematic 

information derived from Remote Sensing (RS) data, usually LULC classification, can 

be used as an input in the GIS for further analysis. The LC change has modified the 

micro and macro ecosystems and contributed significantly to climate change. The use 

of Remote sensing and GIS has proven to be a robust, efficient, and cost-effective 

solution for understanding the complex interactions between factors affecting these 

changes and the physical environment [6–8], which can lead to framing of the 

management/ intervention strategies promptly [9–11].  
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The quality of thematic maps should be good such that the actual LC on the ground is 

represented and accurate information on the transitions can be obtained [3]. Urban 

sprawl has become a significant challenge and concern for developing countries, and 

Himalayan regions pose more complexities because of the geographical, topographical, 

and seismic constraints [12–14]. Landscape heterogeneity and similar spatial 

characteristics of LULC classes are other significant challenges typical of Himalayan 

regions [15–18].  The classification approach applicable to one region can’t be used as 

such in a different region because of the spatial heterogeneity in areas [19,20]. Each 

region is different in terms of geographical, topographical or soil conditions. The 

complexities are increasing in Himalayan regions as the issues of seismicity, landslides, 

and topography also become essential for land use management [21,22]. The rapid 

urbanisation and growing population have been a cause of concern in the cities of the 

Himalayan regions. The anthropogenic activities have resulted in increased built-up 

activities and a rapid decrease in vegetated or forested areas [17,18,23,24]. The call for 

sustainable development is getting more and more louder. 

The availability of free data sets from various satellites has allowed the researchers to 

study the changes from a remote place, provided they have the necessary resources in 

the form of hardware and software. Landsat data is entirely free and can be downloaded 

from https://earthexplorer.usgs.gov/. Sentinel data is also free and is one of the most 

widely used data sources. However, any particular satellite data usage depends on many 

factors, not just limited to spectral, spatial, temporal and radiometric resolution [25,26]. 

The remote sensing data allows one to remotely interpret the phenomenon or changes/ 

transformations occurring in a particular area or region [2]. Free Landsat satellite data 

has been available since 1972, when a Multi-Spectral Scanner (MSS) was used, and 

four bands were available, which provided a relative advantage over other satellite data 

products for extensive temporal studies. There have been many improvements in the 

sensors thereafter. Finer spatial, temporal, spectral, and radiometric resolutions are 

available, improving the observation, interpretation, and analysis of changes occurring 

in the land masses. As per the information available from the United States Geological 

Survey (USGS),  Landsat 1 satellite, launched in the year 1972,  earlier known as the 

https://earthexplorer.usgs.gov/
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Earth Resource Technology Satellite (ERTS) program, had only four bands (Red, green 

and 2 Infra-Red) and spatial resolution of 80m; while Landsat 8 launched in the year 

2013 had nine bands and spatial resolution of 30m is available.  

Landmasses generally show different spectral signatures when viewed through 

different Electromagnetic spectrum wavelengths. Typically, the Optical spectrum, 

which includes UV, visible, IR and thermal IR wavelengths, falling in the range of 0.3 

to 14 μm, is commonly used for determining land features. Hyperspectral sensing, 

however, involves various bands in other regions of the Electromagnetic spectrum.  But, 

before the images can be used for further image analysis, the related errors arising from 

atmospheric disturbances need to be corrected for atmospheric, topological and sun 

angle corrections. Such features are already available in the commonly used software 

for image classification, such as ERDAS Imagine, ENVI and Q-GIS. Also, to interpret 

the changes, it is equally essential that the images obtained from datasets are geo-

referenced or converted into a geographic coordinate system from a geometric 

coordinate system, which requires accurate latitudes and longitudes of Ground control 

point (GCP). These ground control points must be easily distinguishable in the image, 

and the Global Positioning System (GPS) could be used to determine the latitude and 

longitude of the point in the actual site. It needs to be ensured that such GCPs are 

distributed throughout the image for accurate geographic registration of the images. 

1.2 LULC Classification Scheme 

The LULC change dynamics are essential for understanding the trend and direction of 

urban sprawl [27]. The increase in population coupled with anthropogenic activities 

[28,29] has resulted in urban sprawl, characterized by the rapid expansion of cities and 

towns into previously undeveloped areas [30–32]. The integrated use of Remote 

Sensing [RS] and GIS has helped researchers and policymakers identify urban 

expansion patterns, assess the impact of anthropogenic activities on the environment, 

and develop sustainable policies and strategies for the region [5,33–35].  

The Anderson Land Use Land Cover Classification System, developed by the U.S. 

Geological Survey (USGS), is a widely applied framework for systematically 
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categorizing and mapping land cover and land use. It offers a standardized approach to 

delineate various land cover and land use types, serving diverse purposes, including 

environmental monitoring, urban planning, and natural resource management. 

This classification system comprises multiple hierarchical levels, commencing with 

Level I, which encompasses overarching categories, and progressing to more refined 

levels with increased granularity up to Level IV. Level I encompasses significant land 

cover types such as water bodies, forests, agricultural land, and urban areas. Subsequent 

levels offer more detailed classifications within each broader category. Fig. 1.1 shows 

the Anderson LULC system in the Level I and Level II categories, which is extensively 

used in remote sensing. The USGS classification system allows for more detailed land 

use and land cover categorisation at Levels III and IV, which are particularly useful for 

regional, county, or local planning purposes. While Levels I and II offer nationwide, 

interstate, or state-wide analysis, Levels III and IV provide finer resolution tailored to 

specific regions. Local users can design categories for Levels III and IV, ensuring they 

aggregate into higher-level categories. Mapping at these levels often requires additional 

supplemental information beyond imagery, with a resolution of 1 to 5 meters (Level 

III) or finer (Level IV) being suitable. Aerial photographs and high-resolution satellite 

data are commonly used for this purpose. For example, the Built-up area in Level I may 

be further classified into Residential, Commercial, Industrial, etc., in Level II and 

Residential may be further classified into Single-family, multi-family, group quarters, 

others, etc. in Level III. The urban sprawl analysis generally incorporates Level I 

Classification, while the vegetation studies usually incorporate Level II Classification.  

The urban sprawl analysis generally incorporates Level I Classification, while the 

vegetation studies usually incorporate Level II Classification. Most of the LULC 

studies have been carried out by the researchers using Anderson Level-I classification.  
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Fig. 1.1 LULC classification Scheme for use with RS data [2] 

 

1.3 LULC Classification Algorithm and Error Matrix 

Image classification combines pre-installed algorithms with the expertise of the 

interpreter. Various techniques are employed, including those that compare spectral 

responses across different timeframes and others that assess the spatial proximity of 
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pixels [2]. However, different classification systems can yield diverse land 

classification outcomes, even with similar input data [36]. The effectiveness of any 

algorithm depends on the specific scope and objectives of the research study, as well as 

the available resources. LULC classification is thus a synergistic blend of artistic 

interpretation and scientific methodology. 

Supervised and unsupervised classification methods have been widely used in RS and 

GIS. The difference between the classification procedure adopted lies in the fact that in 

supervised classification, the training sites are selected and land types identified priori 

to the classification of the test sites, while in unsupervised classification, the clusters 

are formed by the algorithm itself based on spectral characteristics and then land class 

types identified by the classifier. 

Maximum Likelihood Classifier (MLC) has been widely used as a supervised 

classification algorithm for LULC identification and classification [6,17,30,33]. The 

algorithm works on the Bayes theorem and uses class mean vectors and covariance 

matrix as the inputs for classification, with the pixel being assigned to a particular class 

having the highest probability [37,38]. The MLC considers the variance-covariance in 

a specific land use class and assumes normally distributed data. The performance is 

better than other parametric classifiers [39,40].  

On completion of the LULC classification, its accuracy must be judged. Accuracy 

assessment for a classified map is vital to substantiate the appropriateness and 

usefulness of the classified thematic map [2,3]. Error matrix and kappa-hat are widely 

used parameters for accurately assessing classified thematic maps [7,41]. Error matrix 

compares the classification of ground points (reference points) with the test points, and 

the results are presented in tabular form. The reference data is presented as columns 

and classification data as rows in the error matrix, with the total of columns under each 

class category showing the actual number of that class type while the total of rows 

showing the number of class types identified by the classifier. Error matrix is 

represented in the matrix form wherein the number of sample units assigned to a 

particular class in a classified map is expressed relative to the number of sample units 

assigned to a specific class in reference classification [2]. 
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The overall accuracy (OA) is computed using diagonal elements of the error matrix, 

while the non-diagonal elements correspond to errors of omission and commission [2]. 

Accuracy metrics, Producer Accuracy (PrA), and User Accuracy (UA) can provide 

greater detail related to individual classified land cover by including these errors. PA 

represents the errors of omission and states how well the test pixels are classified in a 

land cover map. UA represents the errors of commission and indicates the probability 

of whether a pixel being assigned a land cover type in a classified map is represented 

accurately on the ground.  

However, the error matrix does not confirm the accuracy as it extracts the statistics from 

the results and tells the homogeneity of classes chosen (reference points) and identified 

by the classifier [41]. To measure whether the accuracy is by chance or actual, Kappa-

hat, also known as kappa statistics, is used, the value of which measures between 0 and 

1. A higher value denotes a true agreement, and a value approaching 0 represents 

chance agreement. 

Kappa-hat is a good indicator for measuring the percentage of correct values of an error 

matrix due to a “true” agreement versus a “chance” agreement [1]. [7] used Table 1.1 

for rating the Kappa-hat according to their values. 

Table 1.1 Rating Criteria of Kappa- hat 

S. No Kappa-hat Strength of agreement 

1 0.41 - 0.60 Moderate 

2 0.61 - 0.80 Substantial 

3 0.81 - 1.00 Almost perfect 

 

The sample design is an essential aspect of accuracy assessment [41,42]. The following 

formula (i) was used to determine the sample size. 

n = 
[∑ 𝑊𝑖 𝑆𝑖]2

[𝑆[ô]]2 + (1
𝑁⁄ ) ∑𝑊𝑖 𝑆𝑖2  …………………………..(i) 

n= number of pixels in the study area, S[ô] is the standard error of estimated overall 

accuracy that is supposed to be achieved 
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i = number of class types, 4 in this case. 

Wi is the mapped proportion of the area of each of the four classes, and Si is the standard 

deviation of each of the four classes. Si =  √𝑈i [1 − 𝑈𝑖] 

1.4 Post-Classification correction approaches 

The RS data embedded in the GIS interface offers a reliable and cost-effective approach 

in Himalayan regions, especially the inaccessible and far-flung areas [43]. However, 

the automatic digital classification techniques provide more challenges in the hilly areas 

characterized by rugged topography, cloud cover, narrow valleys, mixed spectral 

characteristics, and shadows [24,44]. All these factors limit the accuracy of the thematic 

map and, thus, restrict its applicability. Therefore, it becomes imperative that data from 

multiple sources be included in the classification approach. The mountainous regions 

offer more complexities in decoding the thematic features using the remote sensing data 

[13,18,44,45] in digital image analysis, as streams, built-up areas and rocky mountains 

may be classified as a single land cover type. Further, the shadow areas also pose a 

challenge to the classifiers, and thus, the use of ancillary data like the Digital Elevation 

Model (DEM) becomes all-important in Himalayan regions [43,46].  

Post-classification accuracy measures are essential in improving the accuracy metrics. 

Ancillary data can support the post-classification correction measures [47,48]. The 

performance of MLC is not satisfactory with the data, which is not normally distributed 

[40]. However, research has shown that using ancillary data to support MLC can 

improve classification accuracy [30,47,49,50]. [51] performed MLC on satellite images 

and assisted with Survey of India topo-sheets to classify seven land cover classes, 

achieving higher accuracy. Ancillary data in the form of Digital (DEM has also been 

integrated with the classification algorithm to improve the classification accuracy 

[18,32,52,53]. [46] in his research in Nepal found that including DEM as one of the 

component bands during image classification substantially improves accuracy.  

The spatial information, like slope, aspect, elevation, etc., can be used to create a 

conditional raster for better land cover classification. The river networks in Himalayan 

regions are generally characterized by the presence of boulders, rocks, and cobbles 
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[54,55], and thus, their misclassification with built-up areas is very probable [47]. DEM 

can also be used for drainage network generation through Strahler Stream order in GIS 

[56,57]. [58] devised a system assigning orders to a stream network while moving from 

the catchment boundary towards the outlet. Strahler's stream order in GIS has been 

efficiently used to derive the drainage networks of streams [59–61].   

The Himalayan regions offer more complexity than other flat regions of India. The 

spectral characteristics of non-vegetated areas, rivers, and built-up areas may overlap 

in these regions, and thus, the simple classification algorithms may not be suited for 

this purpose. Post-classification correction measures involving creating a mask for each 

land cover type can be constructive in the accurate land cover classifications [62]. Due 

to the overlapping spectral characteristics of built-up areas and streams, the Strahler 

order algorithm available in SAGA was used to delineate the rivers accurately. 

Spectral vegetation indices and the Digital Elevation model greatly help classify the 

areas more accurately. Enhanced Vegetation Index (EVI) is more robust as compared 

to the Normalised Difference Vegetation Index (NDVI) in minimizing the biases 

resulting from canopy background and aerosol variations [63–65]. The satellite images 

were chosen for November, and they were characterised by crops of low height in 

agricultural areas. By carefully selecting threshold values for EVI, it is possible to 

generate a forest mask that effectively distinguishes densely vegetated areas from those 

with lower vegetation density and is used to separate Protected Areas from Agricultural 

Areas. Modified Normalised Difference Water Index (MNDWI) is handy in removing 

built-up noises [66] when applied to open water areas and can be used advantageously 

to mask built-up areas. [67] proposed the Normalised Difference Built-up Index 

(NDBI) while studying the built-up areas in Nanjing, China and achieved an accuracy 

of 92.6% in classifying built-up areas. Three spectral vegetation indices, EVI, NDBI, 

and MNDWI, were used to improve the overall accuracy of the classified map resulting 

from unsupervised classification. These parameters were calculated using eq (ii), (iii), 

and (iv) respectively.  

EVI = 2.5 * 
𝑁𝐼𝑅−𝑅

𝐿+𝑁𝐼𝑅+𝐶1∗𝑅−𝐶2∗𝐵
   ………………………….(ii) 
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NDBI = 
𝑀𝐼𝑅−𝑁𝐼𝑅

𝑀𝐼𝑅+𝑁𝐼𝑅
    ………………………….(iii) 

and 

MNDWI = 
𝐺−𝑀𝐼𝑅

𝐺+𝑀𝐼𝑅
    ………………………….(iv) 

NIR = Near Infrared Band  

MIR = Mid Infrared Band  

R = Red Band  

B = Blue Band  

G = Green Band  

L is the soil adjustment factor, C1 and C2 are the aerosols resistance weights (L = 1, C1= 6, and C2 =7.5)  

The field visits, Google Earth imagery, and knowledge of the study area were helpful 

in the validation of classified data products.  

The drainage patterns of rivers remain camouflaged under the thick vegetation cover 

and represent a great challenge in identifying riverine sources [24]. Further, the 

morphological characteristics of high-altitude rivers, characterized by the presence of 

boulders and cobbles, closely resemble the built-up areas and increase the complexity 

of the classification algorithm to predict the class type accurately. Thus, using DEM to 

obtain stream networks can immensely help obtain the rivers' drainage patterns. The 

research done by [58], [61], [68] and [69] can give insights into the criteria used by 

algorithms to calculate drainage patterns. Different researchers have incorporated this 

method to derive the drainage networks of the rivers [14,61]. This approach can be 

beneficial for correctly classifying the water bodies in Himalayan regions. 

Another challenge in Himalayan regions is the mixed spectral characteristics of built-

up and agricultural areas. The band ratio method, MNDWI, can suppress built-up areas 

from a region [70]. Thus, with other band ratio methods, NDBI can separate built-up 

features and agricultural areas [67]. 
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1.5 LULC prediction and intervention strategies 

The Population projection indicates that Central and South Asia will likely become the 

world’s most populous region by 2037 [71]. India has overtaken China to become the 

most populated country, and the demographic trend is anticipated to continue for 

several decades. The immediate developmental pressures accompanied by pressing 

built-up demand have increased the population, catapulting LULC changes [72–74].   

The notable features of urban sprawl involve a decline in plantation areas [17,33], 

unsystematic and irregular expansion spatially [75,76], developmental pressures in 

higher elevations [18,77,78], change in agricultural practices [44,52,79,80], and 

upsurge in urban heat island [81–83]. The urban sprawl has resulted in socioeconomic 

and cultural challenges [76].  The spatio-temporal changes in the hilly areas require 

special attention due to the landscape, geological, and seismic factors [17,18,43,84]. 

Thus, monitoring and precise prognostication of LULC transformations is vital for 

implementing safe and sustainable development practices in the Himalayan cities [85].  

The integrated use of RS and GIS has helped immensely in developing a framework of 

sustainable management practices and understanding the intricacies between patterns 

and the processes driving the changes [17,47,86,87].  The simulation and development 

of future maps have been gaining the attention of the research community [88,89]. 

Modern Self-Learning algorithms have further improved the accuracy of these 

simulation models [34,90–92]. Understanding dynamic changes occurring in the region 

and incorporating driving factors can help in simulation capabilities [89].   

Cellular Automata (CA) based models are spatially explicit models (SEM) in which the 

future state of a LULC category relies on the past local interactions between LULC 

categories [85,89]. The model’s popularity in GIS grew immensely in the 1980s, 

catalyzed by pivotal contributions from [93], [94] and [95]. The model's accuracy 

depended upon the spatio-temporal data, the LULC category in the adjacent cells, and 

transition rules [96,97]. [95], [98] and [99] demonstrated their application as a robust 

spatial dynamic model. The open structure, simplicity, good spatial resolution, and 

integration feature render it suitable for urban sprawl studies [85,89,96,100]. Since the 

model only considers spatial attributes, it has an inherent disadvantage of not including 

socio-economic variables, limiting the simulation and prediction capabilities [85,89]. 
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The non-uniform cell space, dynamic neighbourhood classes, and non-stationary 

transition rules present avenues for adapting the original CA framework to facilitate 

real-time investigations into complex urban sprawl dynamics [85,96]. Consequently, 

integrating CA with other models becomes imperative to capture the nuanced dynamics 

of urban sprawl effectively.  

To mitigate the limitations inherent in stand-alone models, researchers have adopted 

hybrid approaches, like the CA-Markov Model [101] and the CA-ANN model [102] to 

synergise the strength of different models. Incorporating spatial patterns with the 

mechanisms inducing changes in LULC categories is vital for precise simulation and 

forecasting of LULC maps [87]. Artificial Neural Network (ANN) possess the ability 

to discern and analyze the intricate interplay among driving factors and induced 

changes [89,103]. ANN's architecture simulates and behaves similarly to the human 

brain and nervous system [104–106]. ANN can deal with incomplete data, does not 

assume input data distribution, and can detect interlinkages between spatial and socio-

economic variables [107,108]. Multi-layer perceptron (MLP)- ANN, comprising input, 

hidden and output layers, is among the prevalent models in ANN due to its rapidity, 

precision and capability to predict outcomes from stochastic events. Thus, it exhibits 

the fidelity and realism of modelling for precise forecasting and assessment of LULC 

transitions [109]. Researchers have utilized CA-ANN models to tackle spatial-dynamic 

changes and incorporated the driving factors responsible for these changes, enabling 

precise prediction and assessment of LULC changes [8,82,100,103,110].   

The study endeavours to employ MLP-ANN and CA simulation methodologies to 

simulate LULC changes in Dharamshala, an expeditiously expanding city in Himachal 

Pradesh, India. Anticipated outcomes are poised to assist urban planners and policy-

makers in implementing a strategic framework built on a sustainable development 

model. Utilizing LULC maps from 2016 and 2019, the model seeks to simulate and 

validate the LULC map for 2022, subsequently extrapolating projections for future 

LULC maps of 2025 and 2040.   

1.6 Motivation  

The city of Dharamshala has been designated as a renowned hill station. It serves as the 

state's winter capital and headquarters of the Central Tibetan Administration, attracting 
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domestic and international visitors. Additionally, it functions as the administrative seat 

of Kangra district, housing various governmental offices. Following its declaration as 

a Municipal Corporation in 2015, Dharamshala underwent rapid urbanization, 

facilitated by the amalgamation of nine adjacent villages. Notably, it was selected as 

one of the 100 cities in India and the sole representative from Himachal Pradesh for 

development under the National Smart Cities Mission initiated by the Government of 

India in 2016. 

A notable surge in urban expansion has been observed within the city since 2016, 

prompting a compelling need to scrutinize the recent transformations within this 

geographical region through a scientific framework. The selection of 2016 as the study's 

baseline year symbolizes the onset and manifestation of socio-economic shifts within 

the city, attributed to the establishment of Municipal Limits, the hosting of international 

cricket matches, and its significance as the residence of His Holiness the Dalai Lama. 

Being a popular tourist destination, the city has witnessed remarkable changes in the 

areal extent (urban sprawl) and land cover changes, especially in built-up areas [23]. 

The unplanned development in the region [45], mixed with rugged topography, 

seismicity, and increasing population, offers a complex problem to urban planners, 

which requires immediate attention and the adoption of management strategies. The 

research study is aimed at addressing these concerns. 

1.7 Contribution of the study 

Comparison of satellite imagery on a global/regional scale with the coarser spatial 

resolution is well-documented [111–115]. The results have shown inconsistent 

classification results since they were produced from different satellite sources and/or 

the researchers adopted different class definitions. [116] compared the results of Digital 

Elevation Models from three different sources of different resolutions, finding the 

maximum basin delineation error in a finer spatial resolution data source. For the 

comparison of classified products, the aggregation of different data products (having 

different spatial resolutions) into a uniform spatial scale may involve the use of 

statistical measures, which may cause inconsistencies in classifying land cover types 

[117,118]. [36], [80] and [119–123] discussed various classification algorithms and 

change detection analysis techniques adeptly used in optical remote sensing. Due to the 
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availability of free remotely sensed data products, the suitability of remote sensing data 

from different satellites also needs to be compared, and the best-performing satellite 

data need to be chosen for further analysis, be it change detection studies or simulation 

of future land cover types. Thus, the study contributes to the existing knowledge by 

providing insight into the importance of satellite data-products before LULC 

classification. This adds to the existing knowledge and shall contribute to the research 

community. 

The study also tries to measure the trend and direction of LULC transitions occurring 

in Dharamshala city and predict the future LULC classes. The same will help to 

understand the complex spatio-temporal dynamics occurring in the region and propose 

intervention strategies for optimum utilisation of resources based on the Sustainable 

development model. This will be the contribution of the proposed research work on 

society and nature.  

1.8 Research Objectives  

The research aimed to identify LULC changes in Dharamshala, as shown in Fig. 1.2, 

located in Himachal Pradesh, India. The study area is a part of the Lesser Western 

Himalayan range, covering an area of 42.5 km2. The research locale lies between 

latitudes 32°9’52” N to 32°15’58” N and longitudes 76°17’22” E to 76°23’09” E. The 

topographic relief exhibits substantial variation, spanning from an altitude of 790 

meters in the southwestern sector to 2130 meters above mean sea level (AMSL) in the 

northern expanse of the territory. During winter, the northern part of the region 

experiences moderate to heavy snowfall. 

The city encounters a moderate mean annual temperature of approximately 19.1 ± 

0.5°C. June emerges as the warmest month, registering a peak average temperature of 

32°C, while January represents the coldest month, recording a minimum average 

temperature of 10°C  [21] — furthermore, the annual precipitation averages around 

2900 mm, contributing to its relatively wet climate.  
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Fig. 1.2 Study area, the city of Dharamshala 

 

Land use records from 2016 reveal that more than half of the area is covered under 

forests. The dominant soil order, as per USDA soil taxonomy, is Alfisols, primarily due 

to the extensive forest cover in the region. The city of Dharamshala exhibits diverse 

topographical and climatic characteristics, with significant variations in elevation, 

temperature, and precipitation. Its substantial forest coverage and prevalence of Alfisols 

highlight the importance of understanding the ecological dynamics and implications for 

land management and environmental conservation in this region. 

The city serves as the winter capital of Himachal Pradesh and hosts the Central Tibetan 

Administration. Renowned as a sought-after hill station, it attracts tourists from across 

the nation and around the globe. Additionally, it acts as the administrative centre for 

Kangra district of the sate of Himachal Pradesh. In 2015, the city attained Municipal 

Corporation status through the amalgamation of nine adjacent villages, marking the 



16 

 

onset of rapid urbanization. Selected in 2016 as the sole representative from Himachal 

Pradesh, it joined the National Smart Cities Mission initiated by the Indian 

Government. However, the region faces challenges stemming from haphazard 

development, compounded by its rugged terrain, seismic activity, and burgeoning 

population. Addressing these issues necessitates urgent attention and the 

implementation of effective intervention strategies [45].  

Since 2016, the city has experienced a significant surge in urban development, 

prompting a pressing need to analyze recent changes in the area from a scientific 

perspective. The study's chosen time-frame of 2016 aligns with a period marked by 

substantial socio-economic transformations, including the establishment of Municipal 

Limits, an international cricket ground, and the presence of His Holiness the Dalai 

Lama's residence. 

The objectives of the research study are summarized below:- 

1. To analyse the accuracy of land use land cover classification using Multi-temporal and 

Multi–sensor satellite images for urban land use mapping. 

2. To quantify the dynamics of ‘change detection’ at the spatio-temporal scale in a non-

stationary set up. 

3. To predict the impact of land use change in future along with the identification and 

quantification of driving factors responsible for it. 

1.9 Organisation of the Thesis 

The research study covers three crucial aspects signifying the three objectives of the 

proposed work. 

 a) Comparison of satellite data products. 

 b) Spatio-temporal LULC transitions from 2016 to 2022. 

c) Modelling and simulation of LULC maps. 

The entire thesis has been organised into six Chapters. The first Chapter is the 

Introduction, as elucidated above. The organisation of the thesis into the other five 

chapters is mentioned below in the following sub-sections. 
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1.9.1 Chapter 2: Review of Literature 

The review of literature has been divided into four distinct sections that depict the 

design and workflow of the proposed work. Section 2.1 covers Digital Image analysis 

and geo-spatial data, 2.2 LULC change studies and assessment of driving factors, 2.3 

Post-classification corrections and integration of remote sensing data, and 2.4 

Modelling and simulation of LULC change. Based on the review of the Literature, three 

research objectives were identified for the research area. 

1.9.2 Chapter 3: Methods and Materials 

Chapter 3 includes the design methodology for the proposed research work. The design 

methodology for the three objectives chosen for the study has been elucidated in the 

sub-sections of this Chapter. 3.2.1 incorporates Objective 1, i.e. comparison of satellite 

data products. 3.2.2 includes Spatio-temporal LULC transitions from 2016 to 2022, and 

3.2.3 includes Modelling and simulation of future LULC maps for 2025 and 2040. 

1.9.3 Chapter 4: Results and Discussion 

Chapter 4 covers the results from the three objectives. A detailed discussion of the 

findings from the three objectives has been summarised in the three sections of Chapter 

4. The suitability of satellite data for a particular research study has been justified in 

Section 4.1. The LULC transitions and geo-spatial analysis of the region under study 

from 2016 to 2022 have been performed in Section 4.2. The LULC maps for 2025 and 

2040 were predicted, and the trend of further city expansion has been discussed in 

Section 4.3. 

1.9.4 Chapter 5: Conclusion 

Sections 5.1, 5.2 and 5.3 present the conclusion from the three objectives chosen for 

the research study. Section 5.4 presents the proposed intervention strategies that will 

help environmentalists, policy-makers, and administrators balance the needs and 

conservation of resources in alignment with the Sustainable Development Goals 

(SDG).  
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CHAPTER 2 

REVIEW OF LITERATURE 

The literature review is essential in establishing the contextual framework, identifying 

research gaps, and presenting the research design. It serves as the foundation upon 

which new research is built, ensuring scientific rigour and relevance. It helps the 

researchers to synthesize existing findings, validate hypotheses, and refine research 

questions. Additionally, it enables the identification of methodologies, theoretical 

frameworks, and analytical techniques employed in similar studies, facilitating 

informed decision-making during the research process.  

A comprehensive literature review demonstrates scholarly competence and contributes 

to the advancement of scientific knowledge by situating the research within the broader 

academic discourse. Thus, integrating a thorough literature review is imperative for the 

thesis's credibility, validity, and scholarly impact. 

In the thesis, the literature review has been presented in tabulated form. The review has 

been organised into four Sections: 2.1 Digital image analysis and geo-spatial data, 2.2 

LULC change studies and assessment of driving factors, 2.3 Post Classification 

corrections and integration of remote sensing data, and 2.4 Modelling and Simulation 

of LULC changes. 
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2.1  Digital image analysis and geo-spatial data 

S. No. Name of author (s) 

& Year 

Data source/ Data 

inventory 

Instrument used Abstract/ Findings 

2.1.1 John F. O Callaghan 

(1984) 

- United States 

Geological Survey 

(USGS) 

- Gestalt 

Photomapper II 

- [124] presented a methodology, D-8, for extracting 

drainage network from digital elevation data, working 

on the premises of movement of water from higher to 

lower elevation. 

- The algorithm consisted of a series of steps, including 

identifying the outlet points, delineating the catchment 

areas, and determining the stream network 

- Useful for studying hydrology, erosion, and other 

related fields. Three test areas were used in the study to 

represent different terrain types.  

- The authors noted that the proposed method is 

computationally efficient and produced accurate 

results, making it suitable for large-scale studies 
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2.1.2 Ashbindu Singh  

(1989) 

- USGS - Landsat Multi-

Spectral Scanner 

(MSS)  

- [36] reviewed various change detection techniques 

and suggested that registering images and selecting 

threshold values were essential for accurately 

classifying images. 

- Pre-processing of the image, such as edge 

enhancement or image soothing, didn’t improve 

classification accuracy.   

- The researcher opined developing those techniques 

that don’t require image registration. 

2.1.3 Yong Du et al. (2002) - USGS - Landsat 5 Thematic 

Mapper (TM) 

- [125] selected three Landsat images from 1986, 1987, 

and 1991 and performed relative radiometric 

correction using Pseudo-invariant features (PIF). 

Quality control measures improved their accuracy. 

- Quality control measures for the selection of PIFs 

included removal of cloudy pixels, threshold values or 

a range defined based on PCA and removal of PIFs 

breaching those selected / defined ranges. 
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- After radiometric correction, NDVI was calculated 

for the chosen periods, wherein a patch of fire could be 

easily discerned, and the recovery of the same in 

different time-period could also be observed. 

2.1.4 Sumira Nazir Zaz 

and Shakil Ahmad 

Romshoo (2012) 

- USGS 

- Geological Map of 

India 

- Earthdata 

- Soil field data 

- Landsat TM and 

Landsat ETM 

(Enchanced 

Thematic Mapper) 

- Shuttle         Radar 

Topographic 

Mission (SRTM) - 

DEM 

 

- [126] studied land degradation in the Kashmir valley 

from 1992 to 2001. and 80 Ground Control Points 

(GCPs) were chosen, and Root mean squared error 

(RMSE) was achieved equal to one pixel.  

- MLC was used for classification into five land use 

land cover classes based on National Resources 

Management system (NRMS) standards. 

- Slope classified as flat 0-3%, gentle 3–15 %, 

moderate 15–25 %, steep 25–35 % and very steep >35. 

- NDVI was used for assessing the amount of 

vegetation in the region, and Kappa was used for 

accuracy assessment. 
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2.1.5 Brijesh Kumar et al. 

(2017) 

-  Consultative 

Group on 

International 

Agricultural 

Research (CGIAR) 

- Intergraph 

- USGS 

-Ganga Flood 

Control Commission 

- Google Earth 

- SRTM 90m 

- SRTM 30m 

-Advanced 

Spaceborne Thermal 

Emission and 

Reflection 

Radiometer 

(ASTER) 30m 

 

 

- [116] evaluated the acceptability and the significance 

of adequate resolution of datasets from different 

satellites. 

- The results were compared with the digitized river 

network derived from Google Earth and basin 

boundary digitized using Ganga Flood Control 

Commission map.  

- It was concluded that the automatic delineation model 

overestimated the basin area in flat slopes while 

underestimating the area in steep slopes. 

- The performance of lesser spatial resolution of SRTM 

90m was found to be the best, and the delineation error 

was found to be significant for the high spatial 

resolution DEMs. 

2.1.6 Cláudia M. Viana et 

al. (2019) 

- USGS - Landsat 5 TM 

- Landsat 8 OLI 

- [127] demonstrated a methodology to use RS and GIS 

to study urban sprawl in Beja, south-eastern Portugal, 

covering an area of 12 km2 using spectral indices. 
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- The study demonstrated monitoring, measuring and 

simulating urban sprawl and identifying biophysical 

and socio-economic factors. 

- The research study found that Ecosystem function 

and structure had been disturbed based on the demands 

and satisfaction of humans, resulting in vulnerability 

associated with places, people, economic dynamics 

and climate. 

2.1.7 Naghmeh Nazarnia 

et al. (2019) 

- Geospatial data 

used for the creation 

of buffer zones, six in 

number. 

- NIL - [128] described urban sprawl as a phenomenon 

visually perceived in the landscape. 

- Reasoned that urban sprawl has three dimensions: 

built-up area (amount), its dispersion in the landscape 

(spatial configuration) and the utilization of area per 

inhabitant or job.  

- The choice of the city's urban centre holds 

considerable ramifications for accurate quantification 

of urban transformations. 
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2.1.8 Prabuddh Kumar 

Mishra et al. (2019) 

- Copernicus 

(European Space 

Agency, ESA) 

- USGS 

- Topographical Map 

(Survey of India, 

SOI) 

 

- Sentinel 2A 

- Landsat 5 TM 

- ASTER DEM 

- [23] conducted the study in the Rani Khola watershed 

of Sikkim state lying in Eastern Himalayas using  

Landsat imagery for 1988, 1996 and 2008 and Sentinel 

imagery for 2017.  

- Image pre-processing achieved using the SCP  plugin 

in QGIS 

- Re-sampling of 10 m Sentinel imagery into 30m 

satellite imagery. MLC was used for classification, and 

accuracy was assessed using 3.9 m spatial resolution 

Planet Scope with 300 stratified random points. 

- Found that the dense forests had increased in the study 

area due to massive afforestation programmes and 

stringent law enforcement in the hill state. 

2.1.9 K. Dhanaraj and  

Dasharatha P. 

Angadi (2020) 

- USGS 

-Topographical Map 

(SOI) 

- Landsat MSS, TM, 

ETM+ and 

Operational Land 

Imager (OLI)- 

- [129] studied the urban growth dynamics in 

Mangaluru, Karnataka, using change detection and 

spatial trend analysis. 
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- Demographic data 

from the Census of 

India Handbook 

 - Field observation 

Thermal Infra-red 

sensor (TIRS) 

- RS images chosen depended upon availability, cloud-

free conditions, and the season the features were 

exposed to maximum. 

- The radiometric correction was performed using the 

SCP plugin in QGIS to convert digital numbers into 

reflectance values using Dark Object Subtraction. 

- Anderson Level-1 classification was used for land 

cover classification. 

- Dynamic degree was calculated for each land cover 

type and was found to be maximum for the built-up 

areas, especially along highways.  

2.1.10 Sandipta Das and 

Dasharatha P Angadi 

(2020) 

- USGS 

- Topographical 

sheet maps (SOI) 

- Census of India 

Handbook 

- Landsat MSS, TM 

and ETM+ 

- [48] described the utility of   Remote Sensing and GIS 

in understanding land cover transformations in data-

scarce regions. 

- Landsat images were used in the study area, and MLC 

was used for LULC classification. 
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-Anderson LULC classification scheme adopted in the 

study. 

- A positive correlation between population and urban 

expansion was found. Elucidated the negative impact 

of urban expansion, including increased slum 

environment degradation in water and air quality.   

- The study suggested sustainable town development 

focusing on vertical rather than horizontal expansion. 

2.1.11 Nguyen Thanh Son, 

Nguyen Thi Thu 

Trang, Xuan Thanh 

Bui & Chau Thi Da 

(2021) 

- USGS 

- LULC maps from 

the World Bank and 

Asian Disaster 

Preparedness Centre  

- Flood map from 

United Nations 

Institute for Training 

and Research  

- Landsat TM 

-ASTER DEM 

- [130] used satellite imageries and geospatial data for 

the spatio-temporal evaluation of the decadal urban 

sprawl and flood risk assessment. 

- 30 GCPs were used for image registration in 1986 and 

2001 by achieving RMSE of less than 15m. 

- Ancillary data included in the form of LULC maps, 

flood maps, DEM, shapefiles of rivers and canals, and 

demographic density.  20% of the area was found to be 

very vulnerable to floods.  
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2.2 LULC change studies and assessment of driving factors  

S. No. Name of author(s) 

& Year 

Data source/ Data 

inventory 

Instrument used Abstract/ Findings 

2.2.1 S Ghosh et al.  (1996)  - Indian Remote 

Sensing Satellite 

(IRS) 

-  

Topographical Map 

(SOI) 

- Field data related to 

roads, soil, 

administrative 

boundaries, 

vegetation, altitude, 

settlements 

 

- IRS-1B - [77] carried out the study in the Pranmati watershed, 

a part of the Ganga river catchment, in Chamoli district, 

Uttarakhand. 

- Found out that the forests and pasture lands were 

converted into agricultural land. Also, a small portion 

of agricultural land was converted into forests. 

- The extension of agriculture was more near 

settlements, possibly due to the encroachment of 

nearby land. 

-The extension of agriculture was maximum at an 

altitude of 2200 m – 2400 m and slope between 20o – 

30o, with potato being grown as a cash crop.Forest 

regeneration was observed to be maximum at 

elevations between 1600 m – 2000 m and slopes 
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between 20o – 30o and was concentrated in southern 

parts of the watershed. 

2.2.2 Muh Dimyati et al. 

(1996) 

 

- USGS - Landsat MSS - [131] studied LULC changes in Yogyakarta, located 

on Java island of Indonesia. The effect of road 

accessibility in the settlement was also investigated. 

- The settlement was increasing and had occupied the 

areas from paddy fields and open/barren land. 

- A good correlation existed between road accessibility 

and settlement, with new settlements coming around 

areas near roads.  

- For the years 1972 to 1984, a large portion of paddy 

fields were converted into roads, while for the years 

1984 to 1990, a large portion of open barren land was 

converted to settlements. Land changes observed were 

from paddy fields to open barren land and to 

settlement. 
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2.2.3 J.F. Mas (1999) - USGS - Landsat MSS - [122] compared Change detection techniques in 

Mexico by using the North American Landscape 

Characterization Project and comparing from different 

times of the year. 

- The region had witnessed changes due to cattle 

rearing, rice farming, aquaculture and petroleum 

exploration and the six change detection techniques 

were compared with aerial photographs  

- Found the Post-classification Method to be the 

optimal approach to detect LULC changes captured at 

different times and for radiometric corrections. 

2.2.4 Shahab Fazal (2012) - USGS 

- NASA Earthdata 

- Topographical 

sheet (SOI) 

- Landsat  

- ASTER -DEM 

- [75] found that vacant land, commercial area, 

unplanned residential area and planned residential area 

increased considerably at the cost of agricultural land. 

- An increase in vacant land observed due to subsidence 

in land rates and expectations of the owners for land 

price hikes. 
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- An increase in plantation (tree crops) was also 

observed because of the availability of reasonable 

prices in the near market. 

- Around 40% loss in food-grain production was 

expected due to a decrease in agricultural area. Around 

35% of agricultural land is non-recoverable. 

2.2.5 B S Bisht and B P 

Kothyari (2001) 

- USGS 

- Topographical 

Sheet (SOI) 

- Landsat 5 TM - [78] studied LULC changes for the years 1963-1986 

and 1986-1996 in the Garur Ganga watershed of 

Bagheswar district in Uttarakhand using the satellite 

data of LANDSAT TM accompanied by ground 

verification and interpretation of images in GIS. 

- The agricultural area and settlement increased from 

1963-1986 and 1986-1996, while the forests were 

converted into open forests; barren land also decreased 

mainly due to encroachments.                                                     

- The maximum agricultural area witnessed in 

elevations of 1200-1800 m and slopes of 7-21%. 
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2.2.6 Rao and Pant (2001) - USGS 

- Topographical 

Sheet (SOI) 

- Slope inclination 

maps and Land use 

maps from the World 

Bank-funded 

Integrated 

Watershed 

Development 

Programme 

- Landsat 5 TM - [32] prepared DEM to study the disturbances slope-

wise; field interviews and workshops were conducted 

to determine the factors responsible for LULCC. 

- Forest cover had been reduced dramatically in the 

region, and half of the forests had been eliminated at 

slopes less than 15o. Agriculture expansion was found 

to be 75% at slopes of 10o -15o. 

- Population growth in the region was found to be a 

primary reason for change in the study area. The 

demand for wood, manure, and grazing pastures had 

put the region’s forest resources under stress, as well as 

those of humans and the government.  

2.2.7 Civco et al. (2002) - USGS - Landsat TM and 

ETM+ 

- [119] compared four LULCC detection methods. 

Chose two sites within the Stoney Brook Millstone 

watershed in New Jersey for study. 

- Cluster busting technique was used in Traditional post 

classification, Z – statistics in cross-correlational 
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analysis, NIPS (NAUTILUS Image Processing system) 

& Neural SIM Program used for Neural network and e-

Cognition was used in Image Segmentation & Object 

Oriented Classification. 

- All the methods, except neural networks, could detect 

changes in urban growth. The neural network better-

detected changes from barren to urban areas than 

others. Image segmentation and object-oriented 

classification results were overall promising. 

2.2.8 H. Alphan (2003) - USGS - Landsat TM and 

ETM+ 

- [132] used satellite data (Landsat TM, Landsat 

ETM+) from 1984 to 2000 to study the effects of 

urbanisation and migration on the agricultural and 

built-up areas in the city of Adana, Turkey. 

-Geo-referencing and supervised classification were 

performed while ERDAS IMAGINE was used for 

image processing. 
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- Found that the urban area almost doubled, whereas 

agricultural areas and semi-natural areas had 

decreased. 

- The agricultural land was converted into urban areas 

while semi-natural areas into agricultural areas. 

2.2.9 Nagendra et al. 

(2004) 

- - - [87] gave the rationale to integrate spatial patterns 

with the underlying processes driving landform 

alterations.  

- The tropical countries faced significant issues related 

to the transition of forest land into agricultural land, 

whereas, in Western developed countries, issues of 

urban sprawl and city planning were dominant. 

- Suggested that the bio-physical factors, such as 

wildlife, biodiversity, etc and socio-economic factors 

both need to be considered while studying the impact 

of landscape fragmentation. 
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- Edge density for urban areas was a valuable criterion 

for studying the extent of urban sprawl, and private 

land use management practices were needed in 

Western countries. 

2.2.10 Dwivedi et al. (2005) - USGS 

- Topographical 

Sheet (SOI) 

- Landsat TM - [49] used ancillary data such as topographical maps, 

published reports and maps for geo-referencing in 

ERDAS Imagine.  

- Unsupervised classification was performed, and 

spectral clusters were formed and converted into class 

ts using separability analysis. 

- The grass area, scrub lands, and croplands had 

increased while a decrease was noticed in barren land.  

- Soil and water conservation measures, thereby 

improving the vegetation cover, were the main driving 

forces of changes. 
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2.2.11 Li et al.  (2006) 

 

- USGS 

- Soil data from RS 

Application Institute 

of Chinese Academy 

of Sciences 

- Topographical map 

- Climatological data 

from the Chinese 

Academy of 

Agricultural 

Sciences  

- Landsat MSS and 

TM 

- [133] SPCA was used to determine the Environment 

Vulnerability Index for the region, and five levels were 

defined. 

- It was found in the study that overall, the region is 

medial in terms of vulnerability, but there had been an 

increase in the percentage of area under medial and 

heavy vulnerability from 1972 to 2000. 

- The region at elevations greater than 3500 was more 

vulnerable, and vulnerability was more in the Northern 

region than the Southern region. 

- Socio-economic impact on the region was considered 

to be the primary driver of change. 

2.2.12 Xiao et al. (2006) - NASA  

- Maps of the city by 

the Department of 

Defence, China 

- Landsat 5 TM and 

Landsat 7 ETM+ 

 

- [134]  found that the urban area expanded from 6.31 

km2 in the year 1934 to 165.5 km2 in the year 2001 at 

an average rate of expansion of 2.4 km2 / year. High-

speed expansion in terms of urban growth rate was 

observed from the period 1991 to 2001.                                      
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- Bureau of Land 

Resources, Survey 

and Cartography, 

China 

- Urban area, vegetable field, water and grass had 

increased from 1987 to 2001. Socio-economic factors, 

higher returns for crops, better land use policies, and 

better parks were the primary reasons for this. 

- Further, residential, crop fields, trees, orchards, and 

sandy/bare soil had decreased, with the increasing 

population being a major driving factor. 

- An increase in urbanised areas showed a strong 

correlation between population growth and 

improvement in traffic conditions, while a complex 

relation was found between gross industrial products 

and investment in urban infrastructure. 

2.2.13 Yu et al. (2007) 

 

- NASA (USGS) 

- IRS 

- Land use patterns 

and socio-economic 

- Landsat MS and 

TM 

- [28] found a surge in dense forests and agricultural 

areas with decreased open forests and grasslands.  

SPCA was performed to evaluate vulnerability, which 

was higher in warm areas, steep slopes and lower 

elevations. 
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data through 

questionnaire  

- LISS (Linear 

Imaging and Self 

Scanning Sensor) -III 

- Human activities showed a positive correlation to 

environment vulnerability.  

2.2.14 Dong et al. (2007) - NASA (USGS) - Landsat TM and 

ETM+ 

 

- [19] studied the changes at Modoi County in the 

Qinghai-Tibetean Plateau, China, from 1990-2000. 

- The study found a decrease in grasslands, marshy 

areas, and water bodies. At the same time, an upsurge 

was witnessed in Sand-Gobi and barren land, 

indicating the region's deteriorating geo-climate and 

the need for proper management strategies. 

- Climatic factors, frozen soil changes, hydrological 

changes, and anthropogenic activities, such as rats, 

insects, and pests, were the main contributing factors in 

the study. 

2.2.15 Berberoglu and   

Akin (2009) 

- NASA (USGS) - Landsat TM - [80] used four different change detection techniques, 

and their suitability was checked in terms of accuracy 

in one of the coastal regions of Turkey, and accuracy 
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- Topographical and 

agricultural maps, 

Turkey 

assessment was made using Khap statistics and an error 

matrix. 

- Before applying Change Detection techniques, NDVI 

was derived, and 12 LULC classes were identified for 

the study; and high-resolution imagery, aerial 

photographs and field surveys were conducted for 

corrections of classification results 

- Change Vector Analysis, which was time-consuming 

and computationally exhaustive, gave the best results 

for the Mediterranean region, while Image Rationing 

was the least accurate. 

- No detection technique could detect wetland and sand 

vegetation changes, as they had similar spectral 

signatures. 

2.2.16 Onur et al. (2009) - USGS 

- DEM 

- Landsat MSS and 

TM 

- [29] performed the pre-processing of images using 

image enhancement techniques like histogram 

equalisation, standard deviation stretch, brightness/ 
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- Digital Globe  - ASTER 

- IKONOS  

  

contrast adjustment, and geo-referencing using 

topographic sheets. MLC was used as the change 

detection method. 

- Open spaces with little or no vegetation and the urban 

fabric had increased in the region, while forests, 

heterogeneous agricultural areas and permanent crops 

had decreased throughout the study period.  

- The population explosion and urbanisation were 

considered significant factors for LULC change. 

2.2.17 Laxmikant et al. 

(2012) 

- Global Land cover 

Facility (GLCF) 

- IRS- P5 and P-6 

- Census data  

- Landsat MSS and 

ETM+ 

- LISS- IV and 

Cartosat- I 

- [135] used Land Absorption Coefficient (LAC) and 

Land consumption rate (LCR) to determine qualitative 

assessment change. 

- Ground truth points and GPS were used for location 

accuracy. Image segmentation approach to extract 

built-up areas. The built-up area in the region increased 

from 15.26 km2 to 25.87 km2  
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-  LCR (quantifying the variation in the utilization of 

urban territory for each incremental rise in population) 

was high in 1976, decreased from 1976-1999 and 

further increased from 1999-2008, with population 

growth and development activities being the significant 

contributors to land change. 

- LAC (a measure of the spatial extent of a city) 

decreased from 1976 to 1999 and then increased from 

1999 to 2008, showing that the population that was 

earlier concentrated in the city showed signs of urban 

sprawl later on. 

2.2.18 Mushtaq and Pandey 

(2013) 

- NASA (USGS) 

- IRS 

- Topographical 

sheets (SOI) 

- - Landsat TM and 

ETM+ 

- LISS- III 

- [74] used the geo-spatial data to study LULC change 

at Wular Lake. False Color Composite (FCC) was used 

for visual inspection, supported by ground validation. 

Lake area decreased from 24 km2 to 9 km2, thus 

reducing the flood-resisting capacity of the lake. 
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- The aquatic vegetation, built-up area, and scrubs 

increased during the study period, resulting in 

increased erosion, runoff, sedimentation, and a change 

in the lake from oligotrophic to eutrophic. 

- Anthropogenic activities (socio-economic pressure) 

were the primary factor for LULC change, 

supplemented by urbanisation, deforestation, increased 

demand for fuel wood and change of cropland to 

horticulture.  

2.2.19 El-Asmar (2013) -NASA (USGS) 

- French Space 

Agency CNES 

- Landsat MSS, TM, 

ETM+  

- SPOT +4 

- [136] used six satellite images to investigate the 

extent of change for 38 years in Burullus Lagoon, 

Egypt, a site protected by the Ramsar Convention.  

- The water indices, NDWI and MNDWI were used. 

Due to the absence of an MIR band in MSS, NDWI 

was used to calculate the area of water bodies for the 

1973 image, while MNDWI was used for the rest of the 
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satellite images. Dark Object Subtraction (DOS) was 

performed for atmospheric correction 

- The construction of dams and better irrigation 

facilities resulted in increased sedimentation and 

further discharge of agricultural waste into the lagoon, 

which was the primary cause of the decrease in the 

lagoon area. Land conversion into agriculture & 

aquaculture and the construction of highways were also 

the driving forces of change.  

2.2.20 Hegazy and  Kaloop 

(2015) 

- USGS 

- Topo sheets by 

Survey of Egypt 

- - [79] studied LULC changes from 1985 to 2010 and 

predicted LULC for 2035 using Markov Analysis. A 

large portion of agricultural land was transformed into 

a built-up area and barren land. The water also 

decreased during the period. 

- Urbanization was considered the primary factor for 

LULC change, and a large portion of cultivatable land 

was converted into infertile and barren land. 
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- It was forecasted that in 2035, the same trend would 

follow, with decreased agricultural land and water and 

increased built-up areas and barren land. 

2.2.21 Rawat & Kumar 

(2015) 

- GLCF 

- Earthexplorer 

- Landsat TM - [17] used remotely sensed data for 1990 and 2010.  

MLC used for supervised classification in ERDAS 

9.3NDVI, NDWI and NDBI were used to classify the 

images. - Accuracy assessment was found to be 

90.29% and 92.13% for 1990 and 2010, respectively. 

- Quantitative and qualitative changes determined 

using cross-tabulation. Agriculture, barren land, and 

water bodies decreased while there was an increase in 

vegetation and built-up areas. 

- A large portion of agricultural land was transformed 

into vegetation, barren land, and built-up areas. The 

increase in vegetation was mainly due to afforestation 

programmes initiated in the region. 
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2.2.22 Meshesha et al. 

(2016) 

- Earth explorer 

- DEM 

- LULC changes 

through informal 

interviews and 

focused discussions 

- Landsat 5 and 

Landsat 8 

- [52] used Landsat satellite imagery for 1984, 1999 

and 2015 to study the changes in 31 years in the 

Beressa Watershed of Ethiopia. Supervised 

Classification followed. Histogram equalization was 

performed for image enhancement.  DEM was 

prepared to study the slope, length, width, and stream 

network. 

- An increase in farmland, forest land, plantations, 

settlements, and water bodies was witnessed. 

Afforestation and awareness programmes at the 

regional level and better water harvesting techniques 

followed by farmers to conserve water for agriculture 

were the reasons for the increase in Farmland and 

Water Bodies. However, agriculture on steep slopes 

had increased erosion, and land cover degradation was 

anticipated.  

2.2.23 Hassan et al. (2016) - USGS - Landsat 5 - [137] used Supervised classification and Stratified 

Random Method accompanied by the Kappa method 
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- Space and Upper 

Atmosphere 

Research 

Commission, 

Pakistan 

- Aerial Photographs 

- Topographical 

maps 

- SPOT 5 and obtained good accuracy. The barren area, which 

occupied 55% of the land area in 1992, was reduced to 

1.87% in 2012. The built-up area showed the maximum 

increase, followed by agriculture and water. Decrease 

in forest area too.  

- Urbanization and economic development in the 

region were the significant causes of land change. A 

close relationship existed between the geometric centre 

of the city and the availability of substantial roads with 

urbanization.  

2.2.24 D Kumar (2017) - GLCF 

- Topographical 

sheets (SOI) 

- Landsat MSS, TM 

and ETM+ 

 

- [28] used Landsat Remotely sensed images to study 

LULC changes from 1977 to 2010 in Kamrup, Assam.  

Six LULC categories were used, which included open 

forests, dense forests, settlements, sand areas, 

agricultural land and water bodies. 

- Due to anthropogenic activities, a reduction in the 

dense forests and agricultural land and an increase in 
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open forest and settlement were observed. In contrast, 

a slight change was observed in the sand and water 

bodies area. 

2.2.25 Debnath et al. (2017) - GLCF 

- SOI Topographical 

sheet 

- Landsat MSS and 

TM 

- [51] divided the river into five reaches, from 

Chakmaghat up to Khowai, and 23 reference sites were 

selected. Determination of LULC classes on ArcGIS 

and accuracy assessment made using Confusion Matrix 

by randomly selecting a minimum of 30 points for each 

class. 

- Cultivated land showed decreased area due to bank 

migration and increased barren land (210%) and dense 

forests (66%) observed, influenced by deposition of 

sand and afforestation policies, respectively. Around 

60% of cultivated land and 59% of open forests 

remained unchanged, while 66% of water bodies were 

converted into cultivated land. 
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2.2.26 Mondal et al. (2019) - GLCF - Landsat MSS and 

OLI 

- [73] used Landsat Remote sensing data to study 

LULC changes in Sagar Island located in Hooghly 

estuary, India. Overall accuracy was 79.53%, and 

Kappa hat was calculated to be 0.74. 

- Agriculture (mono-crop) land decreased by 5.67% 

and was mostly converted into agricultural land and 

settlements. Settlement in the region had increased by 

9.8 %. 

2.2.27 Deka et al. (2019) - GLCF 

- IRS 

- Landsat MSS 

- LISS – I and LISS- 

III 

- [18] studied three districts of Arunachal Pradesh 

using the RS data from three satellites. Error matrix 

used for accuracy assessment. 

- Cultivated and built-up area gained from evergreen 

broad-leaf forest and mixed forest categories. Using 

DEM, it was found that cultivated land and built-up 

land gained maximum at 0-500 m elevation. The 

forests were stable at altitudes greater than 1500 m, 



48 

 

while disturbances were witnessed in all types of 

forests at elevations less than 1500 m. 

- Forest depreciation, swift urbanization and 

agricultural expansion were supposedly the main 

drivers of LULC changes.   

2.2.28 Chowdhury at al. 

(2020) 

- USGS 

- GDEM 

- Landsat MSS, TM 

and OLI 

-ASTER 

 

- [33] used RS images and analyzed LULC changes for 

40 years (1978-2017) for the watershed region of the 

Halda river in Bangladesh. MLC was used for LULC 

classification. 

- The accuracy assessment was found to be satisfactory, 

and a random sampling method along with Kappa 

Statistics was used. Quantification of classification 

performed using QGIS. Vegetation decreased by 35%, 

while the settlement and agricultural land rose by 182.5 

% and 83.3%, showing increased anthropogenic 

activities in the region. 
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2.2.29 Negi & Irfan (2022) - USGS 

- SOI Topo sheets 

DEM 

- Landsat 5 TM, 

Landsat 7 ETM+ and 

Landsat 8 OLI/TIRS 

- [138] observed LULC transformations occurring in 

upper Kullu valley, HP from 1990 to 2020. MLC used 

to classify the study area into eight classes and DEM to 

avoid misclassification of agricultural land. 

- Increase in barren land, agricultural land, built-up 

areas while decrease in forest cover and snow cover 

found. Horticulture, hydropower projects and tourism 

were the major driving factors. 

- Soil degradation, loss of water bodies, traditional 

houses either disappeared or rendered obsolete and 

expansion of fruit cultivation alongwith better road 

connectivity observed during this period. 

2.2.30 Mehra and Swain 

(2023) 

- USGS 

- Earthdata DEM 

- Google Earth 

imagery 

- Landsat 8 OLI 

-Phased Array Type 

L-Band Synthetic 

Aperture Radar 

- [65] demonstrated the use of EVI to create zonation 

of Dharmashala city into four land cover types: Stable 

zone, dynamic zone, rivers and lake.  

- Validation using Ground truth points and Google 

Earth imagery. Maximum percentage of dynamic class 
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(PALSAR), 12.5m 

DEM 

was at an altitude less than 1500m and at a slope less 

than 20o. 

- The overall accuracy of the classified land cover using 

Landsat-EVI was found to be 88.51%, and kappa hat 

was 0.83. 

2.2.31 Chowdhury Md. 

(2024) 

- USGS 

- Google Earth 7.2.0 

- Landsat 8 OLI - [139] compared the accuracy of four algorithms for 

LULC calssfication of Dhaka city. Two were  ML 

based algorithms, Random Forest and Support Vector 

Machine, one deep learning based ANN and the fourth 

being traditional MLC  

- The performance of ANN was found to be the best, 

however, the results of traditional MLC was also found 

to be satisfactory.  

- The overall accuracy and kappa hat of MLC found to 

be higher than SVM and the results showed slight 

variation as compared to other advanced alogirthm.  
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2.3 Post Classification corrections and Integration of remote sensing data 

S. No. Name of author(s) 

& Year 

Data source/ Data 

inventory 

Instrument used Abstract/ Findings 

2.3.1 Kumar and Lal 

(2007) 

- IRS, National 

Remote Sensing 

Centre (NRSC), 

Hyderabad 

- SOI Toposheets 

- LISS III - [140] performed Digital Image Processing using 

ERDAS Imagine and forest density was calculated. 

- Forest density calculation cross-checked with NDVI 

analysis and showed a positive correlation. Overall 

accuracy was 88.17 % 

- The forest density was maximum in the central and 

western regions (Baroh) of Kangra, while it was least 

for the eastern region (Baijnath). 

- It was found that there was a 5.8% increase in forest 

as compared to the Forest Survey of India Report 

(1999), and this could be due to the reforestation 

programmes by the State Forest Department and 

awareness programmes for locals.  
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2.3.2 Thakkar et al. (2016) - IRS NRSC, 

Hyderabad and 

BISAG, 

Gandhinagar 

- SOI Toposheets 

- LISS-III and LISS-

IV 

- [47] used MLC to classify the images, and after that, 

post-classification corrections were adopted to 

improve the accuracy. 

- The ancillary data included texture imagery, NDWI 

and Drainage network used. Statistical analysis to 

compare MLC with post-classification corrections 

using the McNemar Test, a non-parametric test. 

- Agriculture, forest land, settlement, quarry, water 

bodies and barren land had increased in the region. 

Watershed development programmes by various 

agencies and the region's economic development due 

to the granite mines' location were the major reasons. 

2.3.3 Shi et al. (2019) - High resolution 

ZiY-3 

- ZiYuan-3 

- Landsat 8 OLI 

- Sentinel 1A 

- [141] integrated multi-source remote sensing data 

from satellites with a social media platform (WeChat), 

which helped improve the accuracy of land cover 

classes. 
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 - Radiation and atmospheric correction was performed 

on the Landsat image to convert the digital numbers 

(DN) into spectral radiance values. The accuracy 

metrics were improved by the integration of multi-

source data, with Landsat 8 being the most significant 

addition and resulting in the improvement of all land 

cover classes. 

2.3.4 Xu et al. (2019) - National Center for 

Air-borne Laser 

Mapping, University 

of Houston 

- Multispectral- 

Light detection and 

ranging (LIDAR) 

- High-resolution 

imagery 

- Hyperspectral 

imagery 

- [142] used post-classification measures and Neural 

Networks, which achieved more remarkable accuracy 

and was adopted by all the winning teams in the 2018 

IEEE Geoscience and Remote Sensing Society (GRSS) 

Data Fusion contest.  

- Post-classification corrections can help improve 

unclassified/misclassified pixels.  

2.3.5 Pech-May et al. 

(2022) 

- European Space 

Agency  

- Sentinel 2 

- Landsat 

- [143] used microwave sensors that operate at long 

wavelengths and are little affected by clouds and noise 

to produce high-resolution images, inferring that this 
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- USGS 

- Google Earth 

Engine 

required sophisticated and complex image processing 

mechanisms. 

- Optical sensors, although having inherent 

deficiencies related to noise, clouds but were 

abundantly used as the spectral data is highly correlated 

with earth and image analysis algorithms dependent on 

visual data and were generally preferred for land cover 

studies.  EVI and NDWI were used to detect vegetation 

and water bodies.   Sentinel 2 satellite imagery used, 

which has inherently cumulus clouds and thus restricts 

image usage 

2.3.6 Mehra and Swain 

(2024) 

- USGS 

- Earthdata DEM 

- Google Earth 

imagery 

- Landsat 8 OLI 

- Advanced Land 

Observing Satellite 

(ALOS) PALSAR 

12.5m DEM 

- [62] used Spectral vegetation indices, ancillary data 

and DEM as post-classification correction measures. 

- MLC was performed initially, and four land cover 

categories were formed. Landsat satellite images were 

used, and Random stratified sampling was conducted. 
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- Post-classification corrections resulted in 

improvement in overall accuracy and kappa hat  

2.3.7 Kumar et al. (2023) - ESA 

- USGS 

- SOI 

- Sentinel – 2  

- Landsat – 7 ETM+ 

- [144] used MLC to study ecological degradation in 

Sarbari Khad watershed of Kullu from 2000 to 2021.  

MLC used for LULC classification of the study area 

into seven classes and post-classifcation correction 

measures included class recoding and accuracy 

assessment through ground truth points.  

- Forest land degradation alongwith soil erosion was 

evident through the findings. The open forests and 

agricultural practices intensified during this period. 

- The expansion in tourist inflow, horticulture and 

population were the major driving factors. LULC 

transitions if not managed sustainably, could pose 

significant challenges for the locals in near future, in 

the form of  Snow cover retreat induced climate 
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change, water insecurity, Glacial lake outburst floods 

and landslide vulnerability.  

2.4 Modelling and Simulation of LULC change 

S. No. Name of author(s) 

& Year 

Data source/ Data 

inventory 

Instrument used Abstract/ Findings 

2.4.1 Li and Yeh (2001) - - - [145] described the CA approach as a neighbourhood 

based in which the state of the central cell depends 

upon the neighbourhood cells. 

- Compacted zones were created which are suitable for 

urban and agricultural areas based on temporal 

dynamics. 

- Compared to traditional methods, an integrated 

approach involving GIS, remote sensing, and CA was 

used for zoning.  

- The model was tested in the Pearl River Delta, China, 

and results indicated the model's better ability to 
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explore alternatives and zoning patterns conveniently 

and quickly. 

2.4.2 Myint and Wang 

(2006) 

- USGS 

- Drainage and road 

layers from the GIS 

unit of Norman city. 

- Landsat MSS, TM 

and ETM+ 

-  [146] demonstrated the integration of Markov Chain 

Analysis with the Cellular Automata technique for 

future prediction, resulting in the removal of the salt-

pepper effect and better interpretation of future images. 

- Suitability criteria were used to construct areas using 

multi-criteria decision-making and fuzzy 

standardization approaches in IDRISI. 

- Classification accuracy was 86% for the projected 

map. 

- Errors in classifying temporally different images have 

a bearing on the overall accuracy of projected images. 

2.4.3 Thota and 

Changalasetty (2013) 

- National Institute of 

Diabetes and 

Digestive and 

- - [147] used MLP feed-forward type. 

- Reasoned that the meticulous selection of the learning 

rate parameter is imperative for optimizing the 
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Kidney Diseases 

USA 

percentage of correctly classified instances in any 

classification problem. The optimal learning rate gives 

the most negligible value for the root mean squared 

error.                                                                                                                    

-  Low learning rate, the network will take a longer time 

to converge, while for a high learning rate, the network 

will not converge. 

- 0.0001 to 0.02 was found to be a good range for 

selecting the LR as it gave Relative absolute error % 

and Root relative squared error % values increased 

correct pixel values. 

2.4.4 Deep and Saklani 

(2014) 

- NRSC, Hyderabad - IRS-LISS-IV - [148] used LISS-IV data to study Dehradun City, 

Uttarakhand, India. 

- Post-classification change analyses were performed 

using the CA-Markov  Model, which facilitated the 

identification, measurement and examination of 
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dynamic transformations. - Unsupervised classification 

was performed to create LULC  of 2004 and 2009. 

- Clock tower, roads and railway line used as the spatial 

or driving factors in transitional potential modelling      

- Optimal outcomes were achieved by utilizing 12 

iterations and 17*17 neighbourhood configuration.  

2.4.5 Mohammady et al.  

(2014) 

- USGS - Landsat TM and 

ETM+ 

- [149] explained that the increasing world population 

was responsible for urban sprawl, and the urban 

planners’ task was to check and suggest measures to 

check urban growth. 

- Anderson Level I Classification system adopted. The 

model's performance was evaluated using various 

metrics, such as the mean absolute error and RMSE. 

- Six datasets in the study were related to proximity to 

roads, residential areas, green spaces, region centre, 

elevation, and slope.  
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2.4.6 Liping et al.  (2018) - USGS 

- Fujian 

Environmental 

Bulletin  

- Fujian Statistical 

Yearbook 

- Landsat TM and 

OLI 

 

- [44] used the CA–Markov Model and validated it by 

comparing the observed changes for the year 2014 with 

the forecasted, and Kappa hat of 0.81 was obtained. 

Barren land and construction land had increased at the 

cost of woodland, which occupied the maximum area, 

and the same trend is anticipated for 2025 and 2036, 

thus requiring attention to the conservation of ecology. 

- The changes in woodland were due to timber 

harvesting and urban expansion, whereas human 

activities were considered significant causes for the 

rise in construction land and barren land. 

2.4.7 Das and  Sarkar 

(2019) 

- USGS 

- SOI Topo sheets 

- Google maps 

- Landsat TM and 

ETM+ 

 

- [150] used DOS in SCP plugin of QGIS for 

atmospheric correction and performed MLC for LULC 

classification using ERDAS.  

- The Markov Chain was used for future prediction, and 

the MMULT function in MS Excel was used for the 

transition probability matrix. 
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- For validation of the model, a chi-square test was 

performed, and the simulated and actual values were 

checked to see whether or not the simulated values 

were significantly different. 

2.4.8 Hakim et al. (2019) - USGS - Landsat 7 ETM+ 

and Landsat 8 

OLI/TIRS 

-  [110] focussed on applying spatial dynamic 

modelling techniques to anticipate land use land cover 

change. MLC was used for LULC classification.  

- Images captured by the Landsat satellite in 2008, 

2013, and 2018, and the analysis forecasted the future 

LULC change for the sub-district. 

- Spatial dynamic Modelling techniques, Markov 

Chain and CA were used. 

- Input data included land use maps, demographic data, 

and geospatial parameters like slope, aspect and 

proximity from roads. 
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2.4.9 Saputra and Lee 

(2019) 

- USGS 

- Distance from the 

road by Ministry of 

Environment and 

Forestry, Indonesia 

- Soil type from the 

Food and Agriculture 

Organisation (FAO) 

- ASTER DEM 30m - [103] created future LULC maps by simulating and 

predicting them using an ANN-based CA model. 

- Five criteria were used as exploratory data, including 

altitude, slope, proximity to road, aspect and soil type. 

- The study found that altitude and distance from the 

road significantly impact LULC  changes in the region. 

- A decrease in Forests and an increase in Plantations 

is anticipated in the years 2050 and 2070. 

2.4.10 Buğday (2019) - USGS  - Landsat 5 TM and 

Landsat 8 OLI/ TIRS 

- [90] performed MLC and used Landsat imageries to 

model and simulate LULC changes occurring in the 

Sinop province of Turkey. 

- Months so chosen that the cloud rate was less than ten 

per cent. The MOLUSCE plugin was used for 

simulation, and MLC for the LULC classification. 
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- Proximity to roads and streams was chosen as the 

input variable driving LULC changes, and zonation 

was done on the roads as 10m, 50m, and 100m. 

- Learning rate 0.001 and 0.050 momentum value used 

in the MLP for simulation purposes. Five iterations 

were selected for simulation. 

2.4.11  Mzava et al. (2019) - USGS 

- Toposheets 

- Google Earth 

images 

 - Landsat MSS, TM, 

OLI/TIRS 

- [7] used Image correction measures as pre-processing 

of satellite images. The SCP plugin in QGIS used for 

LULC classification into five categories. 

- The histogram equalization technique was used to 

enhance the image and improve the perceptual 

capability of images. The elevation and slope input 

data chosen in the study were used as the independent 

variables, while LULC maps were used as the 

dependent variables. 
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- MOLUSCE plugin used in QGIS 2.10.1.  The analysis 

of LULC changes showed an increase in built-up areas 

fuelled by the increasing population in the study area. 

- The developmental pressures indicated by the 

improved economy had resulted in the transition from 

thick vegetation to urban areas. 

2.4.12 Ramachandran et al. 

(2020) 

- Socio-economic 

data from the Office 

of Census 

Commissioner 

-  Roads, railways 

and rivers from Open 

Street Map 

- USGS 

- Soil data from the 

International Soil 

- Landsat TM, ETM+ 

and OLI 

- SRTM DEM 30m 

- [151] used LULC maps, DEM, soil data, plant species 

data and climate data used as exploratory maps. 

Compound growth rate used for population 

forecasting.  

- The MOLUSCE plugin was used for future LULC 

simulations. The Intergovernmental Panel on Climate 

Change-AR5 Representative Concentration Pathways 

used for climate simulation; Maximum Entropy 

Bioclimatic modelling technique used for plant species 

simulation. 
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Reference and 

Information Centre 

(ISRIC) 

- The study employed an integrated model to simulate 

future LULC maps, potential species distributions, and 

human population.  A decrease in forest cover and an 

increase in agricultural land, built-up areas, and barren 

land were witnessed from 2005 to 2050. 

2.4.13 Gharaibeh et al.  

(2020) 

- USGS (Earth 

explorer) 

- Landsat 7 ETM+    - [85] included four spatial cum socio-economic 

variables comprising slope, proximity to roads and 

urban centres, and soil fertility responsible for LULC 

transformations.  

- The Anderson Level-I classification system was 

adopted for LULC classification. The learning rate was 

set at 0.0003, and the momentum factor was set at 0.5 

in ANN architecture. 

- The CA model was used because of its simplicity, 

flexibility and integration with other models, but it had 

limitations in modelling the driving factors and was 

dependent only on spatial data. MCA model had the 
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advantages of depending on spatio-temporal factors 

and working on transition matrices.  

- CA-MCA assumed a linear trend among the spatial-

temporal process. The ANN model was incorporated to 

include driving factors, which could capture non-linear 

inter-relationships between the factors and complex 

patterns. 

2.4.14 Tariq and Shu (2020) - USGS 

- City boundary from 

Urban Unit RS, 

Faisalabad 

- Toposheets 

- Aerial Imagery 

- Landsat TM, ETM+ 

and OLI 

 

 

- [152] described that CA offered an economical 

approach to predict and analyse future LULC 

transformations.   

- Scan line errors in ETM+ corrected using triangular 

approach in ENVI. The months were chosen, so the 

cloud cover percentage was less than 10%. 

- The transition probability map was used as an input 

to CA, and CA could expose spatio-temporal shifts 

occurring in a landscape. 
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2.4.15 Kafy et al.  (2021) -  USGS - Landsat 5 TM and 

Landsat 8 OLI 

- SRTM DEM 

- [34] used the Support Vector Machine algorithm to 

predict and analyse future LULC and Land surface 

temperature (LST) at Chattogram, Bangladesh. 

- Each satellite scene chosen had cloud coverage of less 

than 10%. MOLUSCE was used to simulate LST in the 

future.  The area was divided into five classes based on 

LST with max LST at 36o C and minimum set at 20o C  

- Seven driving factors responsible for LULC 

transformations in the region chosen. Geographical 

variables derived from DEM. Spatial variables were 

calculated using Euclidean Distance, while LULC 

maps acted as independent variables. 

2.4.16 Kamaraj and 

Rangarajan (2022) 

- NRSC, Hyderabad 

- Roads from 

OpenStreetMap 

- Bhuvan, India 

- Carto DEM - [100] used the CA model for analysing land-use 

change dynamics in spatial and temporal contexts and 

provided insights for sustainable land management 

practices in the region. 
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- The study was conducted in the Bhavani river basin 

and used the MOLUSCE tool, which leveraged various 

datasets such as DEM, distances from roads and built-

up areas, and three LULC maps. The proximity spatial 

variables were created using Euclidean distance. 

-The investigation established criteria for simulating 

future LULC maps using ANN-CA Model, including a 

neighbourhood size of 1, 1000 iterations, ten hidden 

layers, a momentum value of 0.06, and a learning rate 

of 0.001.  

2.4.17 Muhammad et al. 

(2022) 

- USGS 

- Resources And 

Environment 

Science Data Centre, 

China 

- WorldClim DEM 

- Landsat  TM, ETM+ 

and OLI 

 

- [82] analyzed spatiotemporal LULC changes in Linyi 

City, China, using Landsat data. Three spatial 

variables, DEM, slope, and distance from roads, were 

used.  

- Proximity factors calculated using Euclidean 

Distance. The ANN Model was set with 100 iterations, 

a neighbourhood value of 3 x 3 pixels, a learning rate 
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- Roads from 

Socioeconomic Data 

and Application 

Centre , NASA 

- Administrative 

boundaries from 

Global 

Administrative 

Areas  

of 0.001, and a momentum value of 0.05 and used for 

future LULC map for 2020.  

- The model validation showed satisfactory results, 

having a kappa value of 0.51, and it was used to 

forecast LULC maps for the years 2030, 2040, and 

2050 after running iterations. A significant increase in 

impervious areas and a decline in forest areas was 

witnessed during the study period. 

2.4.18 Atef et al. (2023) - Satellite images 

from USGS 

- DEM from the 

Japanese Aerospace 

Exploration Agency, 

JAXA  

 

- Landsat TM and 

OLI 

- [101] included biophysical and socio-economic 

variables, including the use of Distance variables and  

DEM. Manipulation of RS images done using Google 

Earth Engine. 

- The findings assisted in the implementation of proper 

land management strategies based on a sustainable 

development model.  
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- Used the CA-Markov Model for simulation and 

validation of the model, which was performed with the 

actual LULC map for 2020. Agriculture and built-up 

areas were found to have a greater tendency for 

transformation. 

2.4.19 Phinzi et al. (2023) - Satellite images 

from the South 

African National 

Space Agency  

- SPOT 7 - [153] studied the importance of training pixels on 

Overall Accuracy (OA). 

-LULC classification was performed for 9 LULC 

classes on Level 1 and Level 2 using Anderson 

Classification-based USGS Level Classification. 

- The models which had more training samples 

outperformed those with smaller training samples in 

Random Forest Classification.  The same trend was 

applicable to  UA, but variability was observed for 

PrA. 
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2.4.20 Madhavi Jain (2024) - Landsat 

- IRS 

-ASTER DEM 

- Socio-economic 

Data and 

Applications Center 

(SEDAC) 

 

- Landsat MSS, TM 

and OLI 

- LISS-III 

- MOLUSCE 3.0.13 

- [154] used CA based ANN to predict future LULC 

map of Delhi city for the year 2030.  

- Slope, elevation, aspect, distance from road/rail 

network and distance from built-up areas were taken as 

dependent variables. 

- Different number of iterations were tested in 

increments of 50 and, finally, 300 iterations were 

chosen as more than this no improvement was 

witnessed in ANN learning curve. 

- Structural similarity index used for quantitative 

assessment of  pixel based similarity between the 

predicted and actual LULC map showed 0.83, with 

values close to 1 indicating perfect similarity. 
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2.5 Summary of the Literature Review 

The synthesis of the literature survey is essential in deciding the further discourse of 

research and providing the road map for the study in focus. The summary of the 

Literature Survey has been shown in Fig. 2.1.  

 

Fig. 2.1 Summary of Literature Survey 

 

 

• Image Pre-processing techniques

• Selection of Ground Control Points

• Geometric Registration of Images

• Selection of satellite images

• Analysis of Accuracy Assessment 

Digital Image Analysis 
and Geospatial data

• Choosing Classification Algorithm

• Choosing Classification Scheme and Level 
of Classfication

• Error Matrix Calcualtion and analysis

• Validation of classification results

• Change Detection Methodology 

• Assessment of Driving Factors

LULC change studies 
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driving factors

• Post Classification Correction Approach by 
integrating Vegetation Indices, Digital Elevaton 
Model and ancillary data

• Use of Accuracy metrics to compare the pre 
and post classification  results

Post Classification 
corrections and 

integration of RS data

• Selection of socio-economic and independent 
variables for ANN

• Validation of simulation results.

• Prediction of future LULC maps

• Suggestive Intervention strategies 

Modelling and 
Simulation of LULC 

change
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CHAPTER 3 

METHODS AND MATERIALS 

3.1 Overview  

The research study involves three significant aspects;  

a) To illustrate the difference in the classification results using three different satellite 

products. 

b) Identify the trend and direction of LULC transitions. 

c) Modelling and simulation of  LULC maps.  

The emphasis in a) is to check whether the results from different satellites are 

significantly different or using the different satellite data –product yield similar results. 

The results have been compared using the accuracy metrics prevalent in RS and GIS. 

This forms the core research gap identified in Chapter 2, Review of Literature.   

In b), the focus is to understand the complex LULC transitions occurring in the research 

area by creating LULC maps for 2016, 2019 and 2022. 

In c), the research incorporated the driving factors for predicting the future LULC maps 

for the years 2025 and 2040. Further, intervention strategies that will help policy-

makers, administrators, and environmentalists have been proposed concerning the 

research area.  

3.2 Methodology 

The methodology and work-flow structure adopted in the research study have been 

demonstrated in Fig. 3.1. The methodology has been sub-divided into three sections 

covering the three aspects of the research study as mentioned above. In the succeeding 

sections, the break-up of the methodology covering these three aspects has been done 

as 1) Comparison of satellite data–products, 2) Spatio-temporal LULC transitions from 

2016 to 2022, and 3) Modelling and simulation of LULC maps. 
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Fig. 3.1 Methodology and work-flow structure 

3.2.1 Comparison of satellite data –products 

This study integrated satellite and ancillary data to achieve a robust and accurate 

Classification procedure.  The satellite data products of Sentinel 2, Landsat 8 OLI, and 

Landsat 7 ETM+ were downloaded from USGS (http://earthexplorer.usgs.gov/). The 

specifications of satellite imagery are given in Table 3.1. Further, three indices, EVI, 

MNDWI, and NDBI, were used to improve the classification. The ancillary data 

included the DEM, draft Town and Country Planning (TCP) Report of Dharamshala 

city, and remotely sensed images using Google Earth and Planet Scope for aid and 

support in image classification and analysis. The shapefile of the study area was 

generated using the TCP report, while the slope and aspect layers were generated using 

the DEM. The process followed in the creation of the shape file has been elucidated in 

Fig. 3.2. 

http://earthexplorer.usgs.gov/
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October is characterized by less or no rainfall in the research locale, and the cloud cover 

percentage in each satellite image was less than 10%. The selection of a similar month 

in the three different remotely sensed data products is essential to reduce phenological 

effects [155]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.1 Image Pre-processing 

The scan line errors in ETM+ were corrected using the FillNoData module available in 

QGIS, which uses the Inverse Distance Weighting (IDW) Interpolation algorithm to 

find the no-data values. IDW is based upon a simple but promising technique that the 

similarity between two points is inversely related to their distances. In addition, weights 

are applied to model spatial interactions between the points [156]. 

 

Ancilalry data in the 

form of draft  TCP 

report of Dharamshala 

Selecting GCP 

[Geo-referencer plugin ] 

Open Street 

Map 

Google Earth 

Engine 

Is RMSE less 

than 1 pixel 

Geo-referencing 

YES  

NO 

Creation of shape file in vector format 

Fig. 3.2 Creation of shape file of the study area 

Research Area selection 
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Table 3.1 Satellite specifications (Source: USGS Earth Explorer) 

Satellite Sensor Path/Row 

or Tile 

number 

Date of 

Acquisition 

Number 

of 

Spectral 

bands 

Spatial 

Resolution 

Cloud 

Cover 

Percentage 

Landsat 

7 

ETM+ 148/38 30.11.2020 8 30m  

(1,2,3,4,5,7) 

3.00 

Landsat 

8 

OLI/TIRS 148/38 06.11.2020 11 30 m  

(1,2,3,4,5,6,7,9) 

1.41 

Sentinel 

2 

Multi-

Spectral 

Instrument  

T43SFR 08.11.2020 12 10 m (B,G,R, 

NIR) 

20.31 

 

3.2.1.2 LULC Classification Scheme 

Tea plantations are protected under Section 5 of the Himachal Pradesh Ceiling on Land 

Holdings Act, 1972 while forests are protected under Indian Forest Act, 1927, and thus 

both these land cover types were included in one category. There are several 

classification schemes available, such as IGBP, GLC2000, USGS, and others, that can 

be adapted to meet the specific requirements and objectives of a given project [43,157]. 

A modified Anderson Scheme was adopted to classify the study area into four major 

classes, viz., Protected areas, Built-up areas, agricultural areas, and water bodies, as 

shown in Table 3.2. 

Table 3.2 Classes delineated based on unsupervised classification 

Class Name Description 

Protected areas Includes Forests and tea plantations 

Agricultural areas Croplands and pastures 

Built-up areas Isolated and clustered dwellings 

(residential, commercial, government, 

etc), roads. 

Water bodies Streams and lakes 
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Unsupervised K-means clustering was performed to work out LULC classification for 

the study area. Since the algorithm does not require the setting up of training areas 

before classification, and there’s no requirement of masking or setting of thresholds 

[36,126], it was an appropriate approach to prepare the thematic maps with the slightest 

manipulation and ideally suited for comparison.  

The Himalayan regions offer more complexity than other flat regions of India. The 

spectral characteristics of non-vegetated areas, rivers, and built-up areas may overlap 

in these regions, and thus, the simple classification algorithms may not be suited for 

this purpose. Post-classification correction measures involving creating a mask for each 

land cover type can be constructive in the accurate land cover classifications [62]. Due 

to the overlapping spectral characteristics of built-up areas and streams, which are 

primarily characterized by the presence of boulders and cobbles in this region, the 

Strahler order algorithm available in SAGA was used to accurately delineate the rivers 

The use of spectral vegetation indices and the Digital Elevation model provides a great 

help in classifying the areas with more accuracy. EVI is more robust than NDVI in 

minimizing the biases resulting from canopy background and aerosol variations [63–

65]. The satellite images were chosen for the month of November, characterised by 

crops of low height in agricultural areas. By carefully selecting threshold values for 

EVI, it is possible to generate a forest mask that effectively distinguishes densely 

vegetated areas from those with lower vegetation density. It was used to separate 

Protected Areas from Agricultural Areas. MNDWI is very useful in removing built-up 

noises [66] when applied to open water areas and can be used advantageously to mask 

built-up areas. [67] proposed the Normalised Difference Built-up indices while 

studying the built-up areas in Nanjing City of China and achieved an accuracy of 92.6% 

for classifying built-up areas. Three spectral vegetation indices, EVI, NDBI, and 

MNDWI, were used to improve the overall accuracy of the classified map resulting 

from unsupervised classification. These parameters were calculated using eq (i), (ii), 

and (iii) respectively.  

EVI = 2.5 * 
𝑁𝐼𝑅−𝑅

𝐿+𝑁𝐼𝑅+𝐶1∗𝑅−𝐶2∗𝐵
   ………………………….(i) 
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NDBI = 
𝑀𝐼𝑅−𝑁𝐼𝑅

𝑀𝐼𝑅+𝑁𝐼𝑅
    ………………………….(ii) 

and 

MNDWI = 
𝐺−𝑀𝐼𝑅

𝐺+𝑀𝐼𝑅
    ………………………….(iii) 

NIR = Near Infrared Band (Band 4 for ETM+, Band 5 for Landsat 8, and Band 8 for 

sentinel) 

MIR = Mid Infrared Band (Band 5 for ETM+, Band 6 for Landsat 8, and Band 11 for 

sentinel) 

R = Red Band (Band 3 for ETM+, Band 4 for Landsat 8, and Band 4 for sentinel) 

B = Blue Band (Band 1 for ETM+, Band 2 for Landsat 8, and Band 2 for sentinel) 

G = Green Band (Band 2 for ETM+, Band 3 for Landsat 8, and Band 3 for sentinel) 

L is the soil adjustment factor, C1 and C2 are the aerosols resistance weights (L = 1, 

C1= 6, and C2 =7.5) 

3.2.1.3 Accuracy Assessment 

Accuracy assessment for a classified map is essential to substantiate the appropriateness 

and usefulness of the classified thematic map [2,3]. Error matrix and kappa-hat are 

widely used parameters for accurately assessing classified thematic maps [7,41]. Error 

matrix is represented in the matrix form wherein the number of pixels assigned to a 

particular class in a classified map is expressed corresponding to the number of pixels 

assigned to a specific class in actual classification (41]. 

The OA is computed using diagonal elements of the error matrix, while the other 

elements correspond to omission and commission errors [2]. Accuracy metrics, such as 

Producer Accuracy (PrA) and User Accuracy (UA), can provide greater detail related 

to individual classified land cover by including these errors. Producer accuracy 

represents the errors of omission and evaluates the effectiveness of classifying test 

pixels in a land cover map. User Accuracy represents the errors of commission and is 
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indicative of the probability of a pixel being assigned a land cover type in a classified 

map that is represented accurately on the ground.  

The Kappa-hat statistic is a robust metric for assessing the proportion of correct values 

within an error matrix attributable to genuine agreement versus agreement occurring by 

chance. The sample design is also important for accuracy assessment [41,42]. The 

following formula (iv) was used for the determination of sample size [Cochran, 1977] 

n = 
[∑ 𝑊𝑖 𝑆𝑖]2

[𝑆[ô]]2 + (1
𝑁⁄ ) ∑𝑊𝑖 𝑆𝑖2  …………………………..(iv) 

where, 

where N= number of pixels in the study area,  

S[ô] is the standard error of estimated overall accuracy  

i = number of class types, four here. 

Wi is the proportional area of each class, and Si is the standard deviation of each class. 

Si =  √𝑈i [1 − 𝑈𝑖] 

The sample allocation for each land cover type in the satellites is shown in Table 3.3.  

Table 3.3 Sample allocation for the satellites 

Land cover type Sentinel-2 Landsat-8 OLI Landsat-7 ETM+ 

Protected areas 247 250 286 

Built-Up areas 67 48 55 

Agricultural areas 78 78 52 

Water Bodies 12 11 12 

Total samples 404 387 405 

 

Random stratified sampling was performed in QGIS, and the error matrix and kappa-

hat statistic were calculated for each satellite.  
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3.2.2 Spatio-temporal LULC transitions from 2016 to 2022 

Landsat 8 OLI remotely sensed images, clipped to the shapefile of the study area, for 

2016, 2019, and 2022 used in the study. The description of the data used in the study is 

shown in Table 3.4.  

Table 3.4 Description of satellite imageries used for spatiotemporal LULC transitions  

(Source: USGS Earth Explorer) 

Satellite Sensor Path/ Row Date of Acquisition 

Landsat 8  OLI/TIRS 148/38 19-05-2016, 12-05-2019 and 20-05-2022 

 

In addition to this, ALOS-PALSAR DEM was used to create a drainage network for 

the major streams in the area. May usually has little or no rainfall in the study area, and 

all temporal images were selected for May, with a cloud percentage of less than ten per 

cent. Ancillary data comprised a Town and Country Planning Report, DEM, and 

statistical data from the Department of Economics and Statistics, Government of 

Himachal Pradesh, aiding in image classification and accuracy validation stages. The 

methodological framework adopted for studying spatio-temporal LULC transitions 

from 2016 to 2022 has been elucidated in Fig. 3.3. 

3.2.2.1 Image Pre-processing 

The temporal remotely sensed images of three years underwent a conversion process to 

obtain spectral radiance values. Atmospheric correction was then carried out using DOS 

within the SCP plugin in QGIS software. Subsequently, the images were merged into a 

mosaic, and a subset was generated using the municipal corporation limits shapefile of 

Dharamshala City. 
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Fig. 3.3 Methodological workflow for LULC transitions 

3.2.2.2 LULC classification 

Various Land cover classification schemes are available, and a specific project's scope 

and demands govern the selection of land cover classes [18,43]. In this particular study, 

Modified Anderson’s Land use land cover classification system was adopted to 

examine multi-temporal LULC changes in the region. [17], [24], [28], [43], and [126] 

used the Maximum Likelihood Classifier (MLC) for creating LULC maps in the 

Himalayan regions. The ancillary information from reliable sources and the author’s 

acquaintance with the area under study were also helpful in classifying the area, Five 

LULC classes, viz. Protected Areas (PA), Agricultural areas (AA), Built-up areas (BA), 

Barren Land (BL), and water bodies (WB) were chosen, as shown in Table 3.5. The 

reason for including Forests and Tea plantations under the Category of Protected Areas 

was that both are protected entities under the legislation. The forests and tea plantations 
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were clubbed under PA due to legislative protection provided to them under Central 

and state rules, respectively. 

Table 3.5 Delineation of LULC classes 

LULC class A broad description of the classes included 

Protected areas (PA) covers forest areas and tea plantations 

Agricultural areas (AA) Those areas represent crops 

Built-up areas (BA) Residential/ commercial establishments and roads 

Barren land (BL) 

Areas without vegetation, such as rocks, landslide zones, 

uncultivable area 

Water bodies (WB) Streams and lake 

 

3.2.2.3 Post-classification corrections 

The accuracy of MLC depends upon the training inputs and is a prerequisite for the 

normal distribution of data [37,158,159]. Thus, the post-classification accuracy 

improvement measures are imperative after the initial MLC [47]. Three spectral 

vegetation indices, namely, EVI, NDBI, and MNDWI, were used along with slope, 

aspect, and elevation raster layers generated from DEM. The image segmentation 

approach was also followed to improve the classification accuracy.  

Most of the noises were in built-up areas and agricultural areas. The region's spectral 

characteristics of built-up areas and agricultural land were similar. MNDWI can remove 

built-up noises [70]. An integrated approach consisting of threshold values for EVI and 

MNDWI was used to create a built-up mask and underpin the agricultural areas. Image 

segmentation and DEM parameters like slope, aspect, and elevation were also used to 

create protected area masks. NDBI was used mainly for the built-up areas in tandem 

with EVI, as some of the built-up features were covered under thick forest cover, and 

thorough investigation was required with visual inspection and local knowledge of the 

region.  

The spectral characteristics of rivers and built-up areas were also similar, and further, 

the rivers were covered under thick forest cover. DEM was used to create a drainage 

network for the rivers in the region.  
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3.2.2.4 Built-up area distribution trend and direction  

LULC built-up maps for the years 2016, 2019, and 2022 were created using MLC, 

which utilizes the class statistics derived from labelled training samples and assigns 

each pixel to the most probable class membership given the pixel's spectral values and 

the statistical information of the classes. Thus, a LULC map consisting of two classes, 

built-up and non-built-up areas, was created.  

The built-up dynamic index (k) measures the degree of change in built-up areas for a 

certain period [135] and is calculated using the formula in eq. (v) 

k = 
 𝑈𝑏  − 𝑈𝑎

𝑈𝑎
∗  

1

𝑇
∗ 100                                                ……………………………….  (v) 

Ub represents the land area of that specific LULC class in the succeeding year 

Ua represents the land area of that specific LULC class in the preceding year  

T refers to the time between preceding and succeeding year  

3.2.2.5 Geo-spatial parameters 

DEM comprises a gridded dataset of elevation values, where each pixel represents the 

height relative to a reference point. Elevation and slope are critical geophysical factors 

influencing urban sprawl. Elevation influences micro-climate, soil characteristics, and 

vegetation types, while slope affects settlement patterns [17]. Analyzing slope and 

elevation alongside satellite imagery offers valuable insights into urban sprawl 

dynamics. Areas with lower slopes and elevations tend to be more conducive to 

development and typically experience higher rates of urban sprawl [18]. 

Slope involves assessing the steepness or inclination of the terrain at each point on the 

Earth's surface. The inclination of the terrain to the horizontal plane is represented by 

the slope, which is then expressed as a percentage or in degrees. The slope is classified 

as gentle if less than and equal to 15%, moderate if it varies from 15-25%, and steep if 

greater than 25% [126] 

Elevation is calculated by measuring the vertical distance between the Earth's surface 

and a reference point, usually the mean sea level.  

3.2.2.6 Spatio-temporal Proximity near Streams 

The proximity of built-up to natural streams may become a severe cause of concern in 

urban flooding scenarios [79]. The situation may become critical in Himalayan cities 
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due to extreme rainfall-induced flash floods, landslides, and cloud bursts. The built-up 

activities near the streams impact the geomorphological and hydrological 

characteristics, making these regions more vulnerable than before [5]. The 

anthropogenic activities and urbanization have been considered to be major reasons in 

Dharamshala for constricting the natural drainage of streams, thus causing more 

damage to life and property [21]. Spatio-temporal proximity analysis around the 

streams can help monitor and identify areas with such threats. 

3.2.2.7 Accuracy assessment 

The quality of thematic maps must be assessed qualitatively and meaningfully [2,3].  

An optimum sample design for testing data is essential in determining the accuracy of 

classified maps [42]. The stratified random samples as shown in Table 3.6 were 

selected based on the sampling design by Cochran, 1977. 

Table 3.6 Sample size for spatiotemporal LULC transitions 

LULC class 

2016   2019   2022 

Area (km2)   Area (km2)   Area (km2) 

PA 232  218  209 

AA 57  60  52 

BA 38  65  93 

BL 30  30  30 

WB 20  20  20 

Total 377   394   404 

  

3.2.3 Modelling and simulation of LULC maps 

3.2.3.1 Inputs  

LULC maps for 2016 and 2019, which acted as independent variables for the modelling 

and simulation of future LULC maps, were used in the study. The approach for image 

pre-processing of the RS imageries of 2016 and 2019 has been described in 3.2.2.1 

Image Pre-processing. The LULC classification scheme as adopted in 3.2.2.2 LULC 

classification was used and shown in Table 3.5. 
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The study utilizes LULC maps corresponding to 2016 and 2019 to examine the LULC 

transformations within the designated research area. The transition map is generated to 

depict the percentage variations observed across the five distinct land cover categories 

from 2016 to 2019. 

For the spatial explicit CA model, each pixel must be assigned a particular LULC class. 

The independent variables used in the study included LULC maps for 2016 and 2019, 

as illustrated in Section 3.2.2 Spatio-temporal LULC transitions from 2016 to 2022. 

These LULC maps of 2016 and 2019 were used in the CA model. The driving factors 

included spatial variables and socio-economics variables, which have an essential role 

in deciding the trend and direction of LULC transitions in the study area [160]. The 

distance parameters covered under spatial variables encompass measurements from 

various features relevant to that area and responsible for LULC transitions. The distance 

parameters are evaluated from Euclidean distance [88,109,144]. Apart from spatial 

variables, physical attributes, including slope and elevation, derived from DEM can 

also provide relevant neighbourhood associations to help evaluate the transitional 

probability surrounding the focal cell. All these driving factors are converted into raster 

format before being imported into the MOLUSCE plugin of QGIS. 

However, the LULC transitions in a particular area are stochastic and generally non-

linear [89,100]. The Artificial Neural Network (ANN) model can include non-linear 

relationships between the driving factors and, subsequently, facilitate the establishment 

of transition probabilities for the CA model. Thus, physical, spatial and socio-economic 

variables were included in the learning stage of the ANN model to simulate the impact 

of driving factors on LULC transitions. Forecasting conversion probabilities from the 

present LULC to a future state involves considering the present LULC category 

assigned to a particular pixel and neighbouring cells' state. 

With the integration of the CA-ANN model and inclusion of physical, spatial and socio-

economic driving factors, the simulation will be conducted to create the LULC map 

2022. Subsequently, leveraging the model's performance based on accuracy metrics, 

the predictions are extrapolated for 2025 and 2040. 
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3.2.3.2 Evaluating correlation and transition analysis 

Different combinations of variables, including distance from built-up areas (DBA), 

distance from roads (DR), distance from the town centre (DTC), distance from streams 

(DST), distance from Agricultural areas (DAA), Aspect (AS), elevation (EL) and slope 

(SL) were performed and their accuracy checked to forecast land LULC map for 2022. 

Table 3.7 shows the different combinations performed, and the best accuracy was 

achieved by considering five driving factors in S. No. 4, indicating substantial 

agreement between the simulated and LULC map with an accuracy of 86.83%. This 

suggests that the chosen explanatory variables significantly influenced the prediction 

of LULC classes. 

Table 3.7 Simulation results for different combinations of dependent variables 

S. No. Dependent variables combination Accuracy (%) Kappa  

1 DBA, DR, EL, SL, AS, DST 86.29 0.77 

2 DR, SL, DST, AS, EL 86.77 0.77 

3 DAA, AS, DBA,  EL, SL, DST, DR 86.62 0.77 

4 DBA, DTC, EL, SL, DST 86.83 0.77 

  

The correlation between the dependent variables was assessed using the Cramer 

Coefficient, which is well-suited for contingency tables larger than 2x2. Results range 

from 0 to 1, with higher values indicating stronger correlations among the dependent 

variables. A value exceeding 0.15 signifies significant explanatory power of the 

variables [110]. The values calculated using this index are shown in Table 3.8.  

The LULC transitions from 2016 to 2019 that occurred in the study areas using 

LULC maps of 2016 and 2019 are illustrated in  

Table 3.9. As presented in Table 3.10, the transition matrix facilitates the analysis and 

comprehension of temporal changes within the region. Along the diagonal of matrix, 

the values represent the degree of class stability, indicating how consistently specific 

land cover categories remain over time. The values near to 1 signify more dominance 
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of stable class and vice-versa. Similarly, the off-diagonal entries represent magnitude 

of transitions occurring in the respective classes. 

Table 3.8 Dependent variables with Cramer's V 

  
DBA DR DTC EL SL DST 

DBA - 0.3475 0.1284 0.2131 0.314 0.1929 

DR - - 0.2599 0.006 0.2382 0.3653 

DTC - - - 0.2878 0.2321 0.4231 

EL - - - - 0.5143 0.4029 

SL - - - - - 0.366 

DST - - - - - - 

 

Table 3.9 LULC transition from 2016 to 2019 

 LULC class 

2016  

(sq km) 

2019 

 (sq km) Δ (sq km) 2016 (%) 2019 (%) Δ (%) 

PA  29.37 26.26 -3.11 69.1 61.79 -7.31 

AA  6.88 6.97 0.09 16.19 16.41 0.22 

BA  4.41 7.51 3.10 10.38 17.66 7.28 

BL  0.27 0.19 -0.08 0.64 0.45 -0.19 

WB 1.57 1.57 0.00 3.69 3.69 0 

 

Table 3.10 Transition Probability matrix  

  PA AA BA BL WB 

PA 0.852 0.073 0.073 0.001 0.0000 

AA 0.174 0.691 0.133 0.002 0.0000 

BA 0.000 0.000 1.000 0.000 0.0000 

BL  0.129 0.252 0.106 0.513 0.0000 

WB 0.000 0.000 0.000 0.000 0.0000 

 

The explanatory maps/ driving factors so chosen in the study are shown in Fig. 3.4. The 

predictive modelling using the ANN-CA integrated model for future maps of 2025 and 
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2040 was achieved after undergoing 2 and 7 iterations, respectively. 

 

Fig. 3.4 Explanatory Map: Slope, Distance from streams, Distance from roads, 

Distance from built-up areas, Distance from centre and elevation 
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 3.2.3.3 Transition Potential Modeling 

The evolution of any area involves intricate dynamics influenced by both spatial and 

temporal variations, as well as the driving forces underlying these transformations 

[34,89]. Although the LULC transitions are complex and dynamic, they also follow a 

particular pattern [161], and Machine learning algorithms hold significant utility in 

discerning and identifying these patterns [4,105]. The transition function governing 

changes in LULC categorizes the association between dependent variables and the 

likelihood of LULC conversion, determining whether cells will transition to specific 

classifications. The model employs a multi-layer feed-forward approach trained with 

Error Back Propagation, where network parameters are adjusted based on output error 

requirements [109,162,163]. The ANN learning curve is shown in Fig. 3.5. 

 

Fig. 3.5 ANN Learning curve 

3.2.3.4 Validation 

In LULC simulation, an Error matrix is a widely employed method for assessing results 

[164]. In this matrix, each row represents the predicted category, and each column 

represents the actual category, highlighting differences in the cells, commonly depicted 

as errors expressed in percentages or areas [2,88]. OA and kappa hat were used to 

validate LULC maps. In assessing overall accuracy, only the confusion matrix's 

diagonal elements are considered. However, the kappa hat extends its consideration to 

non-diagonal elements, incorporating both omission and commission errors. [2].   
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Comparison of satellite data–products  

One study objective was to determine which satellite data provided the best results for 

urbanization studies in Dharamshala. The four land cover types were chosen for this 

purpose, as these were the major land cover types supposed to be impacted by 

urbanization. The inconsistency in the thematic maps derived from the different 

satellites was evident from the classified results. The land cover classification of the 

three satellites is shown in Fig. 4.1. The land cover type, in percentage, is shown in Fig. 

4.2.  

 

Fig. 4.1 LULC classification results using three satellite data products 
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Fig. 4.2 Land cover classification of each land cover type ( in %age) 

 

The error matrix for Sentinel 2 classified imagery, Landsat 8 OLI classified imagery, 

and Landsat 7 ETM+ classified imagery after adopting post-classification correction 

measures are shown in Table 4.1, Table 4.2 and Table 4.3, respectively.  

Table 4.1 Error matrix for LULC map using RS imagery from Sentinel 2 

  Reference data           

Classified PA BA AA WB Total PrA (%) UA (%) 

PA 205 12 29 1 247 97.6 83.0 

BA 3 56 7 1 67 73.7 83.6 

AA 2 8 68 0 78 62.8 87.2 

WB 0 0 4 8 12 80.4 66.7 

Total 210 76 108 10 404     

  Overall accuracy  83.40 %         

  Kappa hat 0.72         
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Table 4.2 Error matrix for LULC map using RS imagery from Landsat 8 OLI 

  Reference data           

Classified PA BA AA WB Total PrA (%) UA (%) 

PA 204 18 28 0 250 94.6 81.6 

BA 2 35 11 0 48 59.0 72.9 

AA 8 7 62 1 78 61.7 79.5 

WB 1 0 1 9 11 90.2 81.8 

Total  215 60   102 10   387     

  Overall accuracy 80.06 %         

  Kappa hat 0.65         

 

Table 4.3 Error matrix for LULC map using RS imagery from Landsat 7 ETM+ 

  Reference data           

Classified PA BA AA WB Total PrA (%) UA (%) 

PA 223 32 29 2 286 97.38 77.97 

BA 5 31 19 0 55 40.22 56.36 

AA 1 13 38 0 52 43.12 73.08 

WB 0 1 2 9 12 82.37 75 

Total 229 77 88 11 405     

  Overall accuracy [%] 74.32         

  Kappa hat 0.53         

 

It was evident that there was significant inconsistency in the results. The overall 

accuracy for Sentinel 2, Landsat 8 OLI, and Landsat 7 ETM+ was 83.40%, 80.06%, and 

74.32%, respectively, while Kappa hat was 0.72, 0.65, and 0.53, respectively, as found 

out in Table 4.1, Table 4.2 and Table 4.3, respectively. The study used the same 

methodology for a similar area but used different satellite data. The inconsistency in 

classifying the land cover type is evident in the three satellite data chosen for the study. 

The results indicate significant variation in the thematic maps produced from the 

different satellite sources.  

The OA, Kappa hat, Producer accuracy (PA) and user accuracy (UA) were found to be 

maximum in Sentinel 2 compared to Landsat 8 OLI and Landsat 7. PA can be used as 

an indicator of omission error, while UA can be used as an indicator of commission 
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error. The significant land cover type for urbanisation studies, built-up areas, had the 

best PA and UA from the Sentinel-2 data product.  A substantial variation of 15% in 

PA and 11% in UA for Built-up areas was found in Sentinel-2 and Landsat 8. The 

variation was 19% in PA and 27% in UA for the built-up land cover type in the 

classified maps of Sentinel-2 and Landsat 7, despite employing a consistent 

methodology for land cover classification across all satellite data products. A similar 

analysis could be performed for each land cover type depending upon a specific land 

cover type of interest in a particular study.  

The research findings and accuracy metrics indicate that Sentinel-2 satellite imagery is 

highly suitable for this region's urbanisation studies. The spatial resolution proves 

especially advantageous in discerning the built-up areas, as the hill architecture 

promotes vertical expansion rather than lateral expansion due to topographical 

constraints. In contrast, the coarser spatial resolution of 30m found in Landsat 7 and 

Landsat 8 may result in mixed land cover classes within a single 30m x 30m grid, 

leading to a higher potential for errors in classification. Additionally, the Scan Line 

errors present in Landsat 7 resulted in low accuracy due to the use of interpolation to 

fill gaps or no-data values. These limitations of Landsat 7 were very significant as the 

study area was small, leading to misleading results. 

Another important finding from the research was that Landsat 7 and Landsat 8 

performed better than Sentinel 2 in classifying the water bodies, as evidenced by PA 

and UA. The reason for this could be attributed to the fact that they both consider a 

30x30 m grid and the chances of misclassification being less as the water bodies cover 

more area laterally. However, in finer spatial resolution, they may be misclassified into 

other land cover types owing to the finer spatial resolution. The agricultural areas and 

reserved/ protected areas (illegal encroachments) have more probability of transition 

into built-up regions; thus, it becomes imperative that the other land cover types (apart 

from urban areas) are also appropriately classified to understand land cover change 

dynamics and suggest intervention strategies.  
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The findings necessitate using multiple satellite data in urban studies, and the best 

satellite source and a classification algorithm for achieving good classification accuracy 

and improving the quality and applicability of the produced thematic map are proposed. 

Satellite imagery having finer spatial resolution may not always give the best results 

for studying a phenomenon or trend in an area [116].  A significant variance was 

observed in LULC classification results from the different satellites, justifying the need 

to choose a reliable satellite data product. The satellite sensor characteristics, spatial, 

spectral, radiometric and temporal resolution, bandwidth, mode of image acquisition, 

etc., may differ for the satellites and thus impact the quality of the data product, 

affecting the image classification.  

4.2 Spatio-temporal LULC transitions from 2016 to 2022  

The multi-temporal land use land cover classified map for the five land cover types 

obtained after Post classification corrections are shown in Fig. 4.3. Confusion matrix 

and non-parametric metric kappa hat have been used by the researchers for the accuracy 

assessment of classified maps [2,42]. The error matrix computed for 2016, 2019, and 

2022 is shown in Table 4.4,  Table 4.5 and Table 4.6, respectively.  

 

Fig. 4.3 LULC map of Dharamshala city for 2016, 2019 and 2022 
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Table 4.4 Error matrix of LULC map 2016 

  Reference data 

Classified PA AA BA BL WB Total PrA (%) UA (%) 

PA 204 12 15 1 0 232 97.1 87.9 

AA 3 49 4 1 0 57 77.8 86.0 

BA 2 1 34 0 1 38 63.0 89.5 

BL  1 1 1 27 0 30 93.1 90.0 

WB 2 0 0 0 18 20 94.7 90.0 

Total 210 63 54 29 19 377     

  Overall accuracy (%) 88.06         
 

  Kappa hat 80.40           

 

Table 4.5 Error matrix of LULC map 2019 

 
Reference data  

Classified PA AA BA BL WB Total PrA (%) UA (%) 

PA 188 18 12 0 0 218 96.9 86.2 

AA 0 56 4 0 0 60 65.9 93.3 

BA 3 8 54 0 0 65 77.1 83.1 

BL 2 1 0 27 0 30 100.0 90.0 

WB 1 2 0 0 17 20 100.0 85.0 

Total 194 85 70 27 17 393     

  Overall accuracy (%) 87.02         
 

  Kappa hat 80.23           

    

Table 4.6 Error matrix of LULC map 2022 

  Reference data             
 

Classified PA AA BA BL WB Total PrA (%) UA (%) 

PA 190 11 7 1 0 209 97.4 90.9 

AA 1 51 0 0 0 52 72.9 98.1 

BA 2 7 82 1 1 93 90.1 88.2 

BL  1 0 2 27 0 30 93.1 90.0 

WB 1 1 0 0 18 20 94.7 90.0 

Total 195 70 91 29 19 404     

  Overall accuracy (%) 91.09         
 

  Kappa hat 86.67           
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4.2.1 LULC statistics from 2016, 2019 and 2022 

The LULC change matrix for 2016-2019, 2019-2022, and 2016-2022 is shown in Table 

4.7, Table 4.8 and Table 4.9 respectively. The values in bold indicate no transition or 

stability in those classes for that period. The LULC distribution of classes, according to 

elevation, for the years 2016, 2019, and 2022 are shown in Table 4.10, Table 4.11 and 

Table 4.12, respectively. The thematic map showing the from-to conversion of LULC 

temporally is demonstrated in Fig. 4.4. 

Table 4.7 LULC transition matrix from 2016 to 2019 
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2016 (area, in km2) 

LULC Class PA AA BA BL WB Grand Total  

PA 25.03 2.15 2.15 0.04 0.00 29.36 

AA 1.19 4.76 0.92 0.02 0.00 6.88 

BA 0.00 0.00 4.41 0.00 0.00 4.41 

BL  0.04 0.07 0.03 0.14 0.00 0.27 

WB 0.00 0.00 0.00 0.00 1.57 1.57 

Grand Total  26.26 6.97 7.51 0.19 1.57 42.49 

 

Table 4.8 LULC transition matrix from 2019 to 2022 
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2019 (area, in km2) 

LULC Class PA AA BA BL WB Grand Total  

PA 22.90 0.83 2.47 0.07 0.00 26.26 

AA 1.41 4.87 0.61 0.08 0.00 6.97 

BA 0.00 0.00 7.51 0.00 0.00 7.51 

BL  0.02 0.02 0.01 0.14 0.00 0.19 

WB 0.00 0.00 0.00 0.00 1.57 1.57 

Grand Total  24.33 5.72 10.59 0.29 1.57 42.49 
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Table 4.9 LULC transition matrix from 2016 to 2022 
2
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2016 (area, in km2) 

LULC Class PA AA BA BL WB Grand Total  

PA 23.27 1.51 4.49 0.09 0.00 29.36 

AA 1.05 4.16 1.63 0.05 0.00 6.88 

BA 0.00 0.00 4.41 0.00 0.00 4.41 

BL  0.01 0.05 0.06 0.16 0.00 0.27 

WB 0.00 0.00 0.00 0.00 1.57 1.57 

Grand Total 24.33 5.72 10.59 0.29 1.57 42.49 

 

Table 4.10 Land use/ Land cover distribution elevation-wise in 2016 

LULC <1000m 1000-1500m 1500-2000m >2000m 

Protected areas 2.95 16.30 9.26 0.93 

Agricultural areas 0.46 5.77 0.64 0.01 

Built up areas 0.14 3.70 0.57 - 

Barren land  0.01 0.22 0.04 - 

Water bodies 0.21 1.17 0.14 - 

Table 4.11 Land use/ Land cover distribution elevation-wise in 2019 

LULC <1000m 1000-1500m 1500-2000m >2000m 

Protected areas 2.94 13.71 8.76 0.93 

Agricultural areas 0.40 5.78 0.79 0.01 

Built up areas 0.21 6.34 0.95 0.01 

Barren land  0.02 0.17 0.004 - 

Water bodies 0.21 1.17 0.14 - 

Table 4.12 Land use/ Land cover distribution elevation-wise in 2022 

LULC <1000m 1000-1500m 1500-2000m >2000m 

Protected areas 2.84 11.90 8.73 0.92 

Agricultural areas 0.35 4.88 0.48 0.01 

Built up areas 0.34 9.00 1.25 0.01 

Barren land  0.03 0.04 0.04 - 

Water bodies 0.21 1.17 0.14 - 
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Fig. 4.4 Temporal LULC transitions in the study area 

 

4.2.2 LULC trend from 2016 to 2019 

From 2016 to 2019, the maximum transition was observed in Protected Areas. Around 

2.15 km2 of the Protected areas was converted into agricultural and built-up areas. The 

decrease in protected areas was maximum at 1000-1500m elevation. This signifies the 

population shift towards higher heights as the region below 1000 m is already stressed 
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with built-up areas and agricultural areas. The habitation is now moving towards higher 

heights in search of agricultural land and accommodation; thus, the areas protected by 

law are seeing encroachments. Around 1.19 km2 of the agricultural area was converted 

into protected areas, which could be due to afforestation/ plantation drives and anti-

encroachment drives conducted by the Forest Department. The increasing trend of 

agriculture was witnessed at an elevation of 1500-2000m. Around 0.92 km2 of the 

agricultural area was converted into built-up areas. The barren land was predominantly 

converted into agricultural areas. 

4.2.3 LULC trend from 2019 to 2022 

Similar to the pattern observed in built-up areas, from 2016 to 2019, around 2.5 km2 of 

Protected areas were converted into built-up areas. Elevations of 1000-1500m remained 

a critical spot for Protected and agricultural areas, with significant transitions occurring 

in this elevation. The built-up areas increased at an elevation of 1500-2000m, thus 

justifying the trend of the population shift towards higher areas, as observed from 2016 

to 2019. Around 1.4 km2 of the agricultural area was converted into Protected Areas, 

while 0.6 km2 was converted into built-up areas.  

4.2.4 Spatio-temporal built-up area Analysis  

The increase in built-up areas during the study period is shown in Fig. 4.5. The built-

up dynamic index calculated using eq. (iv) is shown in Table 4.13 and was found to be 

23.4, 13.7, and 23.3 for 2016-2019, 2019-2022 and 2016-2022, respectively. The study 

area substantially transformed non-built-up regions into built-up areas from 2016 to 

2022. A noticeable reduction from 2019 to 2022 could be attributed to COVID-19-

related restrictions, which otherwise might have resulted in a more significant 

escalation of built-up areas. 
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Fig. 4.5 Spatio-temporal built-up area analysis 

 

Table 4.13 Built-up dynamic index calculation for different years 
LULC  Area in km2       Built-up dynamic Index (k) 

Category 2016   2019   2022   2016-2019   2019-2022   2016-2022 

Built up areas 4.4   7.5   10.6   23.4   13.7   23.3 

 

4.2.5 Geo-spatial parameters analysis  

The urban sprawl during the study period according to elevation and slope is shown in 

Fig. 4.6 and Fig. 4.7, respectively. The LULC built-up area distribution according to 

elevation and slope is shown in Table 4.14 and Table 4.16, respectively, signifying a 

higher concentration of built-up areas at altitudes less than 1500 m and on slopes less 

than 25%.   

The urban sprawl increase in percentage, elevation and slope criteria is shown in Table 

4.15 and Table 4.17, respectively. Agricultural areas lying predominantly in lower 

elevations, less than 1500 m, and slopes less than 25% have been converted into built-

up regions with a growth rate of around 140% in each, signifying the shift in occupation 

of the city-dweller and the study area rapidly turning into a concrete jungle. An increase 

in built-up areas at higher altitudes (more than 1500m) and steep slopes (>25%) is a 
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severe cause of concern, given the fact that most of these regions are covered under 

forests. The urban sprawl in these regions indicates illegal encroachments.   

 

Fig. 4.6 Urban sprawl elevation wise 

 

 

Fig. 4.7 Urban Sprawl slopewise 
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Table 4.14 LULC built-up area distribution as per elevation 

Year 

LULC Built up area distribution as per elevation (in metres) 

≤ 1000m 1000-1500m > 1500m 

2016 0.14 3.70 0.57 

2019 0.21 6.34 0.96 

2022 0.34 9.00 1.26 

 

Table 4.15 Urban sprawl as per elevation 
Year (from-to) LULC Built up growth rate (%) distribution (Elevation) 

 

≤ 1000m 1000-1500m > 1500m 

2016-2019 51.5 71.2 68.2 

2019-2022 61.9 42.0 31.3 

2016-2022 145.3 143.0 120.8 

 

Table 4.16 LULC built-up area distribution as per slope 

Year 

LULC Built up area distribution as per slope (in percentage) 

Gentle Slope  Moderate Slope  Steep Slope  

2016 3.66 0.55 0.19 

2019 6.23 0.94 0.30 

2022 8.72 1.35 0.46 

 

Table 4.17 Urban sprawl as per slope 

Year (from-to) 

LULC Built up growth rate (%) distribution (Slope) 

Gentle Slope  Moderate Slope  Steep Slope  

2016-2019 70.2 70.9 57.9 

2019-2022 40.0 43.6 53.3 

2016-2022 138.3 145.5 142.1 

 

4.2.6 Spatio-temporal proximity analysis near Streams 

The built-up area distribution at a distance of 100m from the streams is shown in Fig. 

4.8 Built-up distribution near the streams, and the built-up growth rate calculated is 

shown in Table 4.18 Urban Sprawl near streams An increase of 23.3% from the year 

2016 to 2022 was witnessed in the built-up areas near the streams, indicating a 
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possibility of a major catastrophe in the future. Increased built-up activities near the 

streams have severe implications for the aquatic and ecological balance of the region, 

thus impacting the overall socio-ecological process. The urban sprawl near streams also 

requires attention from the risk arising due to landslides and loss of life and property 

on account of cloud-burst conditions in the region. 

 

 

Fig. 4.8 Built-up distribution near the streams 

Table 4.18 Urban Sprawl near streams 

LULC  Area in km2   

Built up growth rate near streams 

(Distance ≤ 100m) 

Category 

20

16   

20

19   

20

22   

2016-

2019   

2019-

2022   

2016-

2022 

Built-up areas at a distance ≤ 100 m 

from streams 
4.4   7.5   

10.

6   23.4   13.7   23.3 

 

4.2.7 Overall gain and loss 

Table 4.9 indicates the gain and loss for the period 2016 to 2022 in Dharamshala city. 

The corresponding percentage changes occurring in the study site for the period are 
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shown in Fig. 4.9. The built-up areas increased by 140% from 2016 to 2022. Around 

4.5 km2 of protected areas and 1.6 km2 of the agricultural areas were converted into 

built-up areas. Also, an escalation at the rate of 7% has been witnessed in barren land 

since 2016, and the maximum area of barren land has been transformed into built-up 

areas. Around 1.5 km2 of the Protected areas was converted into agricultural areas.  

The escalation of built-up areas and expansion of barren land between 2016 and 2022 

can be predominantly attributed to the rising human population and the influx of tourists 

into the city. This surge has amplified the demand for residential and commercial 

spaces, exerting significant pressure on protected areas and agricultural lands. 

Consequently, these areas have experienced substantial degradation during this period, 

reflecting the direct impact of anthropogenic activities on the landscape. 

The region below an altitude of 1500 m emerged as the most critical area experiencing 

significant changes in land use and land cover (LULC) classes. Notably, built-up areas, 

agricultural lands, and protected areas exhibited the most pronounced transitions within 

this zone. This phenomenon can be attributed to several factors, including improved 

transportation infrastructure, enhanced road connectivity, favourable climatic 

conditions conducive to habitation and agriculture, proliferation of commercial 

establishments, and higher population density in this region. Conversely, higher altitude 

areas are less susceptible to urban sprawl due to terrain complexities and geographical 

constraints.  

These changes reflect the influence of human activities and socio-economic factors on 

the landscape, indicating the rapid urbanization of this hill station. Additionally, the 

findings suggest widespread encroachment and lax enforcement of regulations. The 

increased tourist inflow, higher socio-economic activities, and growing population can 

be the main drivers of the LULC change in Dharamshala city. 
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Fig. 4.9 Percentage Change in areas of LU/LC classes of Dharamshala city 

 

4.3 Modelling and simulation of LULC maps 

The future LULC maps produced through the integrated use of prediction models can 

prove helpful in understanding urban sprawl trends. Utilizing CA modelling, LULC 

maps for 2025 and 2040 were generated, incorporating six key driving factors: DBA, 

DR, DTC, EL, SL, and DST. Fig. 4.10 demonstrates the future LULC maps for 2025 

and 2040, illustrating the spatial distribution of different LULC classes and can aid 

informed decision-making and urban planning processes. 

 

Fig. 4.10 Future LULC maps for 2025 and 2040 
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The LULC transitions from 2016 to 2025 and 2016 to 2040 are shown in Table 4.19 

and Table 4.20, respectively. The findings indicate a consistent trajectory characterized 

by augmentation and demand of developed areas and decrement in areas designated for 

conservation measures by 2025. However, the built-up is anticipated to decelerate or 

saturate after 2025, resulting in a lower percentage increase. This phenomenon can be 

attributed to the depletion of available and fertile land suitable for construction 

purposes. 

Table 4.19 LULC transition from 2016 to 2025 

LULC  2016   2025   Change (2016-2025) 

Category Area (km2) %age   Area (km2) %age   Area (km2) %age 

PA 29.36 69.10  23.10 54.36  -6.27 -14.75 

AA 6.88 16.19  5.69 13.39  -1.19 -2.81 

BA 4.41 10.38  11.99 28.22  7.58 17.84 

BL 0.27 0.64  0.15 0.35  -0.12 -0.29 

WB 1.57 3.69   1.57 3.69   0.00 0.00 

 

Table 4.20 LULC transition from 2016 to 2040 

LULC  2016   2040   Change (2016-2040) 

Category Area (km2) %age   Area (km2) %age   Area (km2) %age 

PA 29.36 69.10  22.28 52.44  -7.08 -16.66 

AA 6.88 16.19  5.72 13.47  -1.16 -2.72 

BA 4.41 10.38  12.78 30.07  8.37 19.69 

BL  0.27 0.64  0.14 0.33  -0.13 -0.31 

WB 1.57 3.69   1.57 3.69   0.00 0.00 

 

Hilly terrains present inherent geographic and topographic limitations for construction 

activities, favouring mid-altitude locations with moderate slopes. However, these areas 

often contend with seismic hazards, complicating development endeavours. 

Consequently, construction efforts may inadvertently concentrate in high seismic and 

landslide-prone zones, posing significant risks to the safety and well-being of 

inhabitants. Additionally, the temporal evolution of built-up areas tends to be 

concentrated primarily in mid and south-eastern regions, indicating a localized pattern 

of urban sprawl. These regions have experienced a notable expansion in built-up areas, 

highlighting their ongoing significance as critical areas for future urban development. 
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The rapid proliferation of urban areas, driven by population growth and increased 

tourism, underscores the urgent need to adopt sustainable urban planning frameworks. 

Policymakers and urban planners must prioritize implementing effective management 

strategies to promote optimal land utilization, mitigate urban sprawl, and safeguard 

green spaces. These efforts align with the overarching objective of achieving 

Sustainable Development Goal (SDG) 11, which centres on fostering the 

development of sustainable cities and communities through concerted actions and 

policies. 

The diminishing extent of Protected Areas represents a significant issue, as it 

jeopardizes biodiversity and ecosystem integrity. Addressing this challenge 

necessitates rigorous enforcement of legislative measures facilitated through 

collaborative engagement among environmental stakeholders and policymakers. This 

initiative is intricately linked to Sustainable Development Goal (SDG) 15, which 

emphasizes preserving and enhancing terrestrial ecosystems and biodiversity. 

Effective land-use planning is instrumental in promoting sustainable consumption and 

production practices. Policymakers can facilitate sustainable resource utilization and 

minimize the ecological footprint of human endeavours by judiciously allocating land 

and mitigating encroachment on protected areas. These actions align with the 

aspirations of Sustainable Development Goal (SDG) 12, which seeks to foster 

responsible consumption and production patterns, thereby advancing the overarching 

goal of sustainable development. 

The reduction in agricultural areas signals a notable shift in agrarian practices, 

reflecting a recent preference among residents for alternative occupations. 

Concurrently, the diminishing extent of protected areas underscores persistent 

encroachments and regulatory non-compliance challenges. Addressing the decline in 

agricultural land necessitates a concerted effort to promote sustainable farming 

methodologies and enhance agricultural productivity. This objective can be achieved 

by adopting innovative agrarian techniques, providing support to small-scale farmers, 

and ensuring universal access to food security initiatives. These initiatives are integral 

to advancing the objectives of Sustainable Development Goal 2 (SDG-2), aimed at 

eradicating hunger and ensuring food security for all. 
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CHAPTER 5 

CONCLUSIONS 

5.1 Comparison of satellite data products 

The methodology in the thesis touches upon an important aspect: the need to check the 

suitability of remote-sensing products from different sources. The interpretation of the 

results shows the disagreement between different satellites in classifying the areas. The 

study advocates that choosing proper satellite imagery is equally essential as selecting 

the classification algorithm, ground truth points, and ancillary data. Although many 

remote sensing data products from different satellites are available freely, an image of 

a particular date may not always be available from multiple sources. Thus, comparing 

the datasets from various sources will continue to be a significant challenge, especially 

regarding phenological effects. Further, the 1970s – 1980s data products may not 

necessarily be available in most of the satellite missions, which gives a clear advantage 

to the Landsat mission, with the added benefit of being available free of cost and at 

moderately good spatial resolution. However, the study advocates comparing multiple 

satellite data sources, if available (for a particular period), and checks whether their 

results are significantly different. 

Further, temporal and radiometric resolution will also play an essential role in future 

missions. The study tries to focus on the importance of choosing a proper satellite 

source for thematic classification (on a micro scale) of smaller regions. It was evident 

that Sentinel 2 performed better based on overall accuracy and Kappa hat, and also 

equally suited if a researcher is interested in identifying the built-up areas only. Due to 

the easy availability of data products (even free) from multiple satellite sources, it is 

essential to check the suitability of a particular satellite data for studying a specific 

phenomenon.  

However, further spatio-temporal studies in the research area utilized Landsat 8 OLI 

images since their performance was at par with that of Sentinel 2 satellite images. 

Furthermore, the Landsat images are adaptable in various software, like the Q-GIS and 

MOLUSCE plugin used for modelling and simulation of future LULC maps. 
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5.2 Spatio-temporal LULC transitions from 2016 to 2022 

The study assessed and monitored the changes in Dharamshala city from 2016 to 2022 

through remote sensing and GIS. The study revealed that the protected areas, primarily 

forests and agricultural areas, had decreased while the built-up areas had risen 

dramatically. The results are similar to those observed in other Himalayan cities in the 

state of Himachal Pradesh [22,164,165,166]. The significant factors contributing to 

changed land cover are anthropogenic and economic activities, high tourist inflow, 

illegal encroachments, and increasing population.  

A sharp increase in built-up activities has been witnessed in this Himalayan city as it 

has become the hub of tourism in the state of Himachal Pradesh (HP) with increased 

demands for commercial complexes and recreational activities. To boost the region's 

macro-economic activities and promote the tourism and hospital sector, the demand for 

infrastructural development has risen. Around 55% increase in domestic and foreign 

tourist footfall has been witnessed in the state of HP from 2008 to 2022, while a rise of 

168% from 2021 to 2022 as per the statistics revealed by the Economics & Statistics 

Department, Government of HP. Around 168 hectares of forest area were lost in HP 

from 2010 to 2022, equivalent to 78,800 tons of CO2 emissions per Global Forest 

Watch. 

The unregulated tourism activity through the Himachal Pradesh Home Stay Scheme, 

2008 has resulted in mushrooming of Homestays and the depletion of land resources. 

A 27% increase in the bed capacity registered under Himachal Tourism had been 

witnessed from 2017 to 2019. Further, the recent provisions in the Forest Conservation 

Amendment Bill, 2023, which mandate the government to utilize forest land and non-

classified forest land for non-forestry purposes, will promote environmental 

degradation in the name of development works and eco-tourism projects. An enormous 

scope and opportunity lies in hydroelectric power generation and tourism-related 

service sectors in the Himalayan regions. Still, it should not be due to environmental 

degradation and ecosystem imbalance. The Amendment Bill seeks exemption on forest 

land recorded as a “forest” but not notified as a “forest” before 1980. The sustainable 

development model is the need of the hour, and specific legislative/ administrative 
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reforms are required to prepare an action plan for managing and conserving land 

resources. 

The research also found that the built-up dynamic index was 23.3% in six years from 

2016 to 2022. The situation could have been worse had there not been Covid-related 

restrictions. It revealed that areas situated above 1500 m altitude with slopes exceeding 

25% necessitate meticulous monitoring due to their geographical-seismic attributes, 

which significantly elevate the vulnerability of built-up structures to heightened risks 

of loss of life and property. The increased built-up activities at high altitudes indicate 

possible regional encroachments, as most of these areas are covered under forests. 

Additionally, the escalating concentration of built-up areas close to streams is projected 

to severely impede aquatic ecosystems and micro-climatic conditions. Further, an 

action plan for regulating the built-up activities is required. 

The trend of urbanization has now shifted northwards in this region. The transitioned 

LULC will seriously impact the region's biodiversity and bio-resources. Further, 

increased urbanisation activities will also affect the region's micro-climate, and the city 

will lose its relevance as a hill station shortly. Thus, the present study is a clarion call 

for urban planners and policy-makers to identify the critical areas and frame 

management/ intervention strategies as soon as possible so that the city can develop 

smartly and sustainably. 

5.3 Modelling and simulation of LULC maps  

The study applied a knowledge-based Learning model to create future LULC maps of 

the region under study. The kappa hat value of  0.77 was achieved, representing a 

reasonable simulation probability of the model and adequate inclusion and 

representation of driving factors used in the model. A total of six driving factors were 

utilised in the study, including socio-economic, spatial and geographical parameters. 

The findings indicate a projected increase in BA by 7.58 km2 from 2016 to 2025 and a 

decline in PA by 6.27 km2. The area of  BA increased by 8.37 km2, and a decline in the 

area of PA by 7.08 km2 was projected from 2016 to 2040.  

The swift population growth and burgeoning tourism industry had added pressure to 

the limited resources of this hill station and resulted in increased demand for urban 

spaces and commercial activities. There is an inherent need to implement strict 
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measures involving an efficient land management system with the knowledge based on 

the LC inventory created in this study. It will enable legislators, administrators, 

environmentalists, city-dwellers, and other stakeholders to frame management policies 

aligned with the sustainable development model.  

5.4 Proposed Intervention Strategies 

The increasing population and change in occupation can have severe implications for 

the city shortly. Dharmashala City recorded the highest population growth rate of 61% 

from 2001-2011 in all the Class –III cities (having populations from 20,000 to 50,000) 

of Himachal Pradesh. The ongoing and projected surge in road construction and 

recreational pursuits, coupled with the persistent expansion of urban areas into 

increasingly challenging and complex terrains, is anticipated to render the entire city 

susceptible to the potential hazards of landslides, earthquakes, and cloud-bursts, leading 

to significant risks of loss of life and property. Integrating remote sensing and 

Geographic Information System (GIS) makes it feasible to conduct a comprehensive 

geospatial evaluation of an urban area, facilitating the formulation of an actionable 

strategy that effectively harmonizes developmental needs with environmental 

conservation objectives.  

The findings in this research underscore the urgency of formulating an action plan based 

on a sustainable development model that effectively harmonizes developmental 

requirements with environmental preservation imperatives. A Sustainable Model that 

includes various stakeholders in the decision-making process will foster a sense of 

ownership and encourage collaborative approaches. Engaging local communities and 

considering their perspectives can lead to more inclusive and equitable land-use 

planning, ensuring that the benefits and burdens of land-use changes are shared among 

all members of society. Activities such as afforestation and awareness programmes, 

enforcement of strict laws to check illegal encroachments, restoration and incentivizing 

agricultural practices as a measure to check the built-up concentration and ensuring 

proper drainage in the area to check peak flow conditions as a consequence of increased 

built-up areas and implementation of effective land use/ resource management 

strategies need to be implemented in the region.   
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The escalating expansion of built-up areas, driven by population growth and tourism, 

and the identification of the vulnerable regions through this research will help in taking 

into account factors such as infrastructure development, resource efficiency, and the 

integration of green spaces to foster the creation of urban environment characterized by 

livability, thereby enhancing the overall quality of life for the resident population. The 

study advocates environment conservation strategies in the region involving 

afforestation programs, environment protection campaigns, and identifying areas 

vulnerable to landslides, earthquakes, and cloudbursts.  
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