
DETECTION AND MITIGATION OF NETWORK ATTACKS

USING FEATURE GROUPING IN CROSS LAYER

NETWORKS

Thesis Submitted for the Award of the Degree of

 DOCTOR OF PHILOSOPHY

in

 Computer Science and Engineering

By

 Ravishanker

Registration Number: 41500075

Supervised By

Dr. Prateek Agrawal (13714)

(Professor and Associate Dean)

Computer Science and Engineering

Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

2024

ii

DECLARATION

I, hereby declared that the presented work in the thesis entitled “DETECTION AND

MITIGATION OF NETWORK ATTACKS USING FEATURE GROUPING IN CROSS

LAYER NETWORKS” in fulfilment of degree of Doctor of Philosophy (Ph. D.) is outcome

of research work carried out by me under the supervision Dr. Prateek Agrawal, working as

Professor and Associate Dean, in the School of Computer Science and Engineering of Lovely

Professional University, Punjab, India. In keeping with general practice of reporting scientific

observations, due acknowledgements have been made whenever work described here has been

based on findings of other investigator. This work has not been submitted in part or full to any

other University or Institute for the award of any degree.

(Signature of Scholar)

Name of the scholar: Ravishanker

Registration No.: 41500075

Department/school: School of Computer Science and Engineering

Lovely Professional University,

Punjab, India

iii

CERTIFICATE

This is to certify that the work reported in the Ph.D. thesis entitled “DETECTION AND

MITIGATION OF NETWORK ATTACKS USING FEATURE GROUPING IN CROSS

LAYER NETWORKS” submitted in fulfillment of the requirement for the reward of degree

of Doctor of Philosophy (Ph.D.) in the School of Computer Science and Engineering, is a

research work carried out by Ravishanker, 41500075, is bonafide record of his/her original

work carried out under my supervision and that no part of thesis has been submitted for any

other degree, diploma or equivalent course.

(Signature of Supervisor)

Name of supervisor: Dr. Prateek Agrawal

Designation: Professor and Associate Dean

Department/school: School of Computer Science and Engineering

University: Lovely Professional University

iv

Abstract: Information is generated every second because of the expansion of online platforms,

and there is an immediate need to collect the massive volume of data and then safeguard it.

Every day, the level of complexity rises, and with it, the need for extreme computational power,

backups and other resources also rising. As a result of technological improvements and the

emergence of globalization, the necessity to share information is becoming increasingly vital.

Intrusion Detection Systems (IDS) have a lot of features, but it can be hard to figure out which

ones are the best and requires regular updating of its signature. Unnecessary features in a

dataset will make it harder to use and slow down the rate at which information is transferred.

To monitor the attack at different layer of TCP/IP model, a layered approach is

followed starting from physical layer to application layer. IDS tools are available to capture

packets in the form of datasets, and various well-known datasets are now accessible for

benchmarking network attacks for IDS, which has attracted researchers to analyze current and

potential attacks. To recognize cross-layer attacks, these datasets contain a variety of attributes.

Cross-layer refers in context to the data link layer, network layer, transport layer, and

application layer. These databases can be used to identify new attacks. This work is more

focused on the feature grouping, recognition of attack types and classification of network

attacks. Physical layer attack related to interception or jamming of signal in case of wireless

network or capturing of packet in monitor mode can be possible. Same applies for wired

network by tapping of wire. In the research more effort is made on analysis of frame and

packets at data link layer and network layer respectively because a packet or frame is the only

PDU which comes in or out from a network to end system or end system to the network and

this makes an attacker easier to identify the target and attack by modifying, intercepting,

replaying, or sending attack packet. Transport layer provide end to end communication and

many application layer tools are available for detection of transport layer-based attack by

monitoring TCP or UDP ports and related services.

In the beginning, investigation started with the data link layer (DLL) for checking the

feasibility of employing Snort as tool for identifying DLL attacks. The conclusion was the IDS

cannot identify all data link layer attacks since Snort typically operates at network layer and

above. Snort can be used to analyze attacks at the data connection layer using a variety of

solutions that have already been developed. This analysis helped in comprehending the

v

possibilities of identifying all network attacks by combining multiple attack at the data link

layer using Snort as a tool.

In next section, analysis on different machine learning model is used to select best

approach for effective network attack detection by training and testing using CICIDS2017 and

KDD'99 dataset. The system first gets the feature subset of each classifier, which depends on

the normal weight and at later stage the strategy is applied for combining other subsets. After

conducting research, it was reduced to only14 features for finding DDoS attacks in the

CICIDS2017 data set. Overall performance using this method was effective in term of

identification time based on selection of feature weightage. During the analysis phase it was

found that some of the features in the dataset was duplicates or it had almost nothing to relate

with the identification of an attack. This was an additional task as it was just adding more

computational process and harder to compute. In our research, all such consideration was taken

care of that was not used and added only added relevant features that were being counted when

building the machine learning model. Considering this has shown a great computationally

effective performance.

The accuracy has been computed as a three-step process: (1) collecting and pre-

processing data, (2) training a ML model, and (3) Analysis of performance of the model. Nine

ML approach is used in this work and accuracy is compared. This work is further extended by

using IG-Feature Selection Subset, CR-Feature Selection Subset, and ReF-Feature Selection

Subset, when using 48, 28, and 14 feature selection subsets, the respective results were

99.9981%, 99.9873%, and 99.9974%. The results show that the selection of key information

for features is crucial for planning IDS that is simple, effective, and feasible for intrusion

detection systems. This concludes that, choosing key attributes for features is important for

planning IDS. Network attacks have a different set of parameters compared to datalink,

transport or physical layer attacks, so an individual approach needs to be applied for the

detection of particular attacks so cross layer detection using a single tool is not feasible but

with the help of careful planning, accurate and quick analysis can be done.

vi

ACKNOWLEDGEMENT

First of all, I would like to express my thanks to the Lord Almighty for his grace and blessings,

without which this study would not have been possible.

I want to convey my gratitude and admiration to Prof. (Dr.) Prateek Agrawal, Associate Dean

in the computer science and engineering department, whose advice, assistance, and

encouragement have been really helpful for me during my research. For the technical assistance

and supporting time to time, I like to thank Dr. Vishu and Dr. Usha Mittal.

Additionally, I would like to thank Lovely Professional University for continuing to support

my Ph.D's thesis on "DETECTION AND MITIGATION OF NETWORK ATTACKS USING

FEATURE GROUPING IN CROSS LAYER NETWORKS".

Last but not the least, I must express my gratitude to my family and friends for their unwavering

support throughout this extremely demanding academic year.

vii

List of Abbreviations

ANN Artificial neural network

ART Adaptive Resonance Theory

BN Bayesian Network

BNN BAT-Neural Network

CICIDS Canadian Institute for Cybersecurity-Intrusion Detection Systems

CPS Cyber-physical systems

CR Correlation

CSRF Cross-site request forgery

CVM Cluster Variation Method

DARPA Defense Advanced Research Projects Agency

DDoS Distributed denial-of-service

DMIFS Dynamic mutual information feature selection

DPI Deep Packet Inspection

DT Decision tree

EFS Ensemble Feature Selection

FGLCC Feature grouping combined with linear correlation coefficient

FGMMI Feature grouping based on multivariate mutual information

FNN Feedforward Neural Networks

FPR False Positive Rate

FRNN Feedback recurrent neural network

FSS-PART Feature Selection Subset - Projective Adaptive Resonance Theory

HCA Hierarchical cluster analysis

IANA Internet Assigned Numbers Authority

ID3 Iterative Dichotomiser 3

IG Information Gain

IPFIX IP Flow Information Export

KISS Chi-Square Signatures

LGP Linear genetic programs

MARS Multivariate adaptive regression splines

MaxEnt Maximum Entropy

viii

MLP Multilayer Perceptron

NB Naive Bayes

NSL-KDD Network Security Laboratory-Knowledge Discovery and Data Mining

PCA Principal component analysis

QDA Quadratic Discriminant Analysis

ReF ReliefF

REP Reduced error pruning

SMLC Semi-supervised Multi-Layer Clustering

SMOTE Synthetic Minority Oversampling Technique

SVR Support Vector Regression

TPR True Positive Rate

ix

Contents

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Issues and Challenges ... 4

1.3 Thesis Organization .. 5

2 Literature Review .. 6

2.1 Attack analysis at physical layer .. 6

2.2 Attack analysis at data link layer .. 7

2.3 Attack analysis at Network, Transport and Application layer 17

2.4 Anomaly and misuse detection techniques .. 38

2.5 Data filtering and feature selection .. 42

2.6 Datasets for Intrusion Detection System .. 44

2.6.1 DARPA 1998 .. 44

2.6.2 KDD Cup 1999 (KDD'99) .. 45

2.6.3 NSL-KDD ... 45

2.6.4 UNSW-NB15 .. 46

2.6.5 ISCX 2012 .. 46

2.6.6 CICIDS2017 ... 46

2.7 Network Attacks and its categories .. 48

2.8 Machine Learning .. 59

3. Hypothesis, objectives, and methods .. 63

3.1 Hypothesis .. 63

3.2 Objectives of this work .. 64

3.3 Approach for achievement of the objectives .. 66

3.4 Tools selection .. 68

3.4.1 Python ... 68

3.4.2 Sklearn .. 69

3.4.3 Pandas ... 69

3.4.4 Matplotlib .. 69

3.4.5 Weka ... 70

x

3.5 Hardware platform selection .. 71

3.6 Data collection process ... 71

4 Implementation ... 73

4.1 Data Cleansing ... 76

4.2 Creation of Training and Test Data .. 82

4.3 Feature Selection .. 82

4.4 Implementation of Machine Learning Algorithms ... 93

5 Result and Conclusion .. 118

5.1 Using FSS-PART feature selection approach on CICIDS-2017 dataset 118

5.2 Using KDD'99 for attack analysis .. 124

5.3 Framework of new attack detection through packet inspection 129

5.4 Conclusion .. 132

Bibliography .. 134

xi

List of Tables

Table 1. List of attacks on different layers ..9

Table 2. Strategies to address and minimize attack at DLL using Snort15

Table 3. Review of various work done on different datasets and ML techniques35

Table 4. Comparison of Anomaly and Misuse detection technique ..40

Table 5. Dataset and number of features in it ..48

Table 6. Comparative analysis of various attack methodology/detection techniques57

Table 7. Methodology/ Tools/ Instruments used ...66

Table 8. Overview of the CICIDS2017 dataset. ..76

Table 9. CICIDS 2017 dataset with number of attacks after correction78

Table 10. Weightage based on the 50:50 ratio of "Benign" vs. “Attack"84

Table 11. Weightage based on the 80:20 ratio of "Benign" vs. “Attack"87

Table 12. Top 20 feature weightage of all data of CICIDS 2017 ..90

Table 13. Feature Importance with 80% dataset for "Attack or Benign"92

Table 14. Attack types with top 5 important features ..95

Table 15. 50% Attack data with 50:50 training and testing data split96

Table 16 Performance and accuracy of ML approach for specific attack98

Table 17. 50% Attack data with 80:20 training and testing data split99

Table 18. 80% Attack data with 50:50 training and testing data split102

Table 19. 80% Attack data with 80:20 training and testing data split104

Table 20. 17 top features after aggregating best 5 features from each attack category.107

Table 21. 100% dataset consideration with 50%:50 training and testing data split107

Table 22. Performance on 100% dataset of 50:50 training and testing ratio108

Table 23. 100% dataset consideration with 80% training and 20% testing data split108

Table 24. Performance on 100% dataset of 80:20 training and testing ratio109

Table 25. A subset of 79 features of CICIDS 2017 dataset. ..118

Table 26. Strategies for combining subsets for feature selection. ...119

Table 27. Feature reduction in CICIDS2017 ...121

Table 28. Features, datasets and result on various ML techniques ..123

Table 29. Distribution of attacks in the KDD'99 data set ..125

Table 30. Attributes ranking for feature selection of KDD'99 ...126

xii

Table 31. List of KDD features ..126

Table 32. Types of attacks in KDD’99 dataset ..127

Table 33. Most useful features for attacks detection in KDD’99 dataset.128

Table 34. Useful features for different attacks in KDD’99 ...128

List of Figures

Figure 1. Internet Users (World) in 10 years from 2012-2022 [1] ..1

Figure 2. Internet Users (India) in 10 years from 2012-2022 [1] ..2

Figure 3. IDS placement and monitoring ...8

Figure 4. An attacker overflowing CAM table. ...10

Figure 5. An attacker sends fake DHCP request to DHCP server. ..11

Figure 6. Flow diagram for identification of attack ...75

Figure 7. Attack instance in the CICIDS2017 dataset (Greater than 20000)79

Figure 8. Attack instance in the CICIDS2017 dataset (Between 500 to 20000)79

Figure 9. Attack instance in the CICIDS2017 dataset (Less than 500)80

Figure 10. Distribution of attack vs. benign percentage ..80

Figure 11. Overall Attack instance in the CICIDS2017 datasets ...81

Figure 12. Feature weightage for 50:50 ratio of "Benign" vs. “Attack"87

Figure 13. Feature weightage for 80:20 ratio of "Benign" vs. “Attack"90

Figure 14. Feature weightage of all data of CICIDS 2017 ..91

Figure 15. Attributes with number of BENIGN and DDoS attack count.112

Figure 16. Integrated IDS models developed for different attack categories.113

Figure 17. Accuracy rate in (%) for different feature selection subsets.119

Figure 18. Recognize rate in (%) for different feature selection subsets.120

Figure 19. Built-up Time in (s) for different feature selection subsets.120

Figure 20. Accuracy Comparison of Bayesian-Rough Set, AdaBoost and FSS-PART.122

Figure 21. Execution time examination on BRS, AdaBoost and FSS-PART.122

Figure 22. Framework showing the packet along with the packet label130

Figure 23. Selection of protocol type for searching attack through KNN algorithm130

Figure 24. Graph showing the attack and attribute count ..131

Figure 25. Comparison between KNN and K-mean and attack detection count ratio132

xiii

1

Chapter-1

1. Introduction

1.1 Motivation

 The internet has experienced exponential growth since its beginning, evolving from a

limited network to a global infrastructure connecting billions of users worldwide. It unites

people from across the globe, demonstrating the vast potential achievable through collective

effort towards a common objective. It has revolutionized communication, commerce, and

access to information, enabling instant connectivity and collaboration across geographical

boundaries. Each day, billions of individuals utilize the internet to explore emerging trends and

technologies, with millions of young people viewing it as their playground - a space for

learning and generating novel ideas to foster personal growth and potentially benefit society.

The proliferation of internet-enabled devices, including smartphones and IoT devices, has led

to ubiquitous internet access and integration into various aspects of daily life. Internet

technologies have driven digital transformation across industries, fostering innovation,

economic growth, and new opportunities for businesses and individuals. In short, the Internet

is the start of a new era as a transformative power just like how fire helped people learn in the

ancient time. Internet is a wild, raging fire that lights the way for future innovations and will

34.30%
39.00%

42.30% 45.00%
49.50% 51.70%

55.10% 56.80%
62.00%

65.60%
69.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

2,405
millions

2,802
millions

3,035
millions

3,270
millions

3,631
millions

3,885
millions

4,208
millions

4,383
millions

4,833
millions

5,168
millions

5,473
millions

June,
2012

Dec,
2013

June,
2014

June,
2015

Jun. 2016 June,
2017

July,
2018

March,
2019

Jun, 2020 Mar,
2021

July,
2022

Population %

Figure 1. Internet Users (World) in 10 years from 2012-2022 [1]

2

help a lot of people work together to make their dreams come true. The volume of internet

users in world has surpassed 5.4 billion where as in India this count to 1.06 billon, and this

number is quickly growing each day as millions of individuals use it [1].

Figure 2. Internet Users (India) in 10 years from 2012-2022 [1]

Growth of Internet also brings certain disadvantages such as cybersecurity threats, privacy

concerns, digital divide, misinformation, cyberbullying, online harassment, internet

dependency, disruption of traditional industries etc. The internet's growth has led to an increase

in cyber threats such as hacking, malware, phishing, and data breaches, posing risks to

individuals, businesses, and governments. With the vast amount of personal data being

collected and shared online, privacy breaches and unauthorized surveillance have become

major concerns, compromising individuals' privacy rights. Despite increased internet access,

disparities in connectivity, affordability, and digital literacy persist, exacerbating inequalities

between urban and rural areas, as well as among different socio-economic groups. The internet

facilitates the rapid spread of misinformation and fake news, leading to social polarization,

erosion of trust, and manipulation of public opinion. Social media platforms and online forums

have become breeding grounds for cyberbullying, harassment, and hate speech, affecting

individuals' mental health and well-being. Excessive internet usage, particularly among youth,

can lead to addiction, social isolation, and negative impacts on physical and mental health. The

rise of the internet economy has disrupted traditional industries such as retail, publishing, and

0.00

10.00

20.00

30.00

40.00

50.00

60.00

160.33
millions

194.96
millions

253.85
millions

305.29
millions

346.3
millions

427.09
millions

499.93
millions

644.51
millions

757.96
millions

900.32
millions

1060.08
millions

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Population %

3

media, leading to job displacement and economic disturbance in some sectors. As a result of

these developments, there are more attacks on the Internet. The internet offers immense

benefits, addressing these disadvantages requires concerted efforts from governments,

businesses, and civil society to mitigate risks and maximize its positive impact on society.

With respect to the above challenges, India is facing more and more cyberattacks,

which are a major threat to national security, businesses, people, and critical infrastructure.

India has seen a rise in cybercrime, from data breaches and ransomware attacks to espionage

and state-sponsored cyberwarfare, as more and more areas become digital. Some of the most

known cyber-attack India has faced in recent years is Mirai Botnet Attack, WannaCry

Ransomware, SolarWinds Supply Chain Attack, COVID-19 Vaccine Data Breach etc.

In October 2016, a massive Distributed Denial of Service (DDoS) attack targeted Dyn,

a major Domain Name System (DNS) provider, disrupting internet services for millions of

users worldwide. This attack utilized the Mirai botnet, which infected IoT devices such as

cameras and routers. It proved the global impact of cyber threats, raising concerns about the

vulnerability of India's rapidly expanding IoT ecosystem.

The WannaCry ransomware attack in May 2017 affected over 150 countries, including

India. It exploited a vulnerability in Microsoft Windows systems, encrypting data and

demanding ransom payments in Bitcoin. Indian organizations across various sectors, including

healthcare and banking, were disrupted, highlighting the susceptibility of outdated software

and the need for robust cybersecurity measures.

In December 2020, the SolarWinds cyberattack came to light, affecting numerous

organizations worldwide, including those in India. Hackers compromised SolarWinds' Orion

software updates, allowing them to infiltrate networks and conduct espionage activities. While

the full extent of the breach in India remains unclear, it underscored the risks associated with

supply chain vulnerabilities and the need for enhanced cybersecurity frameworks.

To combat the COVID-19 pandemic, reports arisen of a cyber espionage operation

targeting organizations involved in vaccine research and distribution. The incident raised

concerns about the security of sensitive medical data and intellectual property. India has crucial

role in vaccine production and distribution, such attacks could have severe implications for

public health and national security.

4

These examples highlight the diverse range of cyber threats facing India as well as

world, including malware, ransomware, espionage, and supply chain attacks. To mitigate these

risks, India needs to prioritize cybersecurity by investing in technology, infrastructure,

workforce training, and international collaboration.

1.2 Issues and Challenges

The current research work is focused more on cross layer attack for which there are

two primary ways for detecting it: signature and anomaly-based detection. Signature based

totally dependent on signature of known attack database and cannot detect novel attack unless

the database is up to date. In certain case these updated databases are also inefficient like zero-

day attacks and to prevent these attacks, the database needs information about them. There is

also an ever-increasing percentage of internet traffic that is encrypted with SSL/TLS protocols.

In such case of encrypted internet traffic, signature-based approaches are inoperable because

it is impossible to see what is in the stream. In such cases data is analyzed using general

attributes like packet/frame size, connection time, and packet count and measured under

anomaly-based approach.

Recently, hackers and network programmers have used a range of methods to flood the

packets and take over devices to attack an organization's services. Example of such attack at

the transport layer is flooding attack, which can produce a lot of malicious packets. Attacks at

the application layer have entirely different features from those at the datalink, network, and

transport layers. Determining attack is crucial so IDS offers defense against different attacks.

Each packet contains a several features, and combinations of these features allow each packet

to uniquely identify the protocols and data packets it is carrying, some of which may be attack

data packets and others just regular data packets. Internet traffic carrying packets comprises

attributes such as source IP address, destination IP address, protocols, flag bits, etc. These

attributes assist IDS in identifying attacks. However, the performance of IDS in terms of

accuracy and timeliness may be compromised by improperly configured or unwanted

attributes, leading to the consumption of additional computational resources. To address this

issue, various characteristics or feature grouping approaches can be employed through machine

learning approach to identify relevant or irrelevant attributes within the packet or stored

dataset. This approach reduces the time required to detect attacks and improves the likelihood

of detecting an attack accurately.

5

1.3 Thesis Organization

To find features relevant to attack detection, various cross layer attack analysis is done.

There are several attacks, but this research is limited to identifying such attack for future

detection. The creation of sustainable infrastructure is one of the ways to prevent from the

attacks. An approach for DLL based attack uses different approach compared to network,

transport and application layer attack. DLL related work is discussed literature survey part only

as implementation of these attack is specific to hardware and its environment. Other layers of

attack are commonly covered by considering a real-life datasets CICIDS 2017 and its detection

using machine learning approach. Also, a synthetic dataset KDD'99 is considered for creating

a framework for detection of attack specific to transport layer protocol. Most of the attacks

happened from ingress or egress on the network layer so more focus is given on the other layer

attack instead of DLL.

For network and above layer attack packet need to be captured and then requires a

three-step method that entails (I) data collection and pre-processing, (II) machine learning

model selection and training, and (III) performance model evaluation has been taken into

consideration. For the simulation for the same a real-life dataset CICIDS 2017 is considered.

The selection of CICIDS 2017 datasets serves as the initial step in the process. The ranker

algorithm is used to consider appropriate feature selection processes. Here is a list of the tasks

performed in the later section:

I. Observing attacks using feature grouping.

II. Employ function to speed up comparison and testing with CICIDS2017 and KDD'99

dataset.

III. Examine the performance of suggested model.

A new model is also proposed FSS-PART (Feature Selection Subset - Projective

Adaptive Resonance Theory) to justify the performance and accuracy for justifying the benefits

of feature grouping. In last a framework is designed that may help an administrator of the

network to analyze the network traffic.

6

Chapter-2

2 Literature Review

2.1 Attack analysis at physical layer

Attack analysis at physical layer: These attacks are hardware-centric and, despite being

easy to conduct, require some form of hardware to be effective. Attacks on other layers can be

seen as simple alterations of packets and vulnerability of applications of already-in-use

technology. These attacks can be easily conducted without comprehensive understanding of

the technology [2], [3]. Such threats at this layer include eavesdropping, interference, and

jamming [4], [5] which include intercepting communications without permission i.e.,

eavesdropping. In MANET, mobile hosts use a wireless medium to communicate and access

the naturally broadcast RF band. With receivers tuned to the correct frequency, it is simple to

intercept signals transmitted over the wireless medium. Thus, transmitted messages can be

intercepted and forged messages can be introduced into the network. Jamming or interfering

with radio transmissions can result in message corruption or loss. If the attacker has a strong

transmitter, he or she can send out a signal strong enough to block communications and block

up the intended signals. Jamming attacks can even be launched from places far from the target

networks. Frequency hopping can be considered for the defensive approach against jamming

attacks. The WEP protocol utilized by IEEE 802.11 is WEP uses a relatively weak encryption

algorithm as well as WEP requires manual configuration of encryption keys on both the access

point and client devices. This process is cumbersome and prone to errors. Additionally, the use

of static keys makes it difficult to revoke or change encryption keys, especially in large-scale

deployments. This lack of efficient key management increases the risk of unauthorized access.

WEP does not offer forward secrecy, meaning that if an attacker captures encrypted network

traffic and later obtains the encryption key, they can decrypt the entire captured data. This lack

of forward secrecy compromises the confidentiality of past communications if the encryption

key is compromised in the future. It has been widely replaced by more secure alternatives such

as WPA (Wi-Fi Protected Access) and WPA2. [6]. In VANET, the attacker stays near the other

moving vehicle and intercept or interrupt communication[7]. These attacks are mor feasible on

static topologies such as sensor networks and rather than in dynamic topologies such as

VANET to chase a moving vehicle.

7

2.2 Attack analysis at data link layer

Data link layer is an important component of network communication, as it oversees

ensuring the reliable transport of data between linked devices. It is, nevertheless, vulnerable to

a variety of security attacks that jeopardize integrity, confidentiality, and availability of

network resources. Attack analysis at the data link layer entails identifying, comprehending,

and mitigating these threats to provide a safe and strong network infrastructure. Attack analysis

in this context refers to the examination and evaluation of various attack vectors and tactics

that target the data connection layer. It entails investigating the flaws and vulnerabilities

inherent in data link layer protocols, devices, and setups, as well as the potential implications

of successful attacks.

Purpose of data link layer attack analysis is to improve network security by evaluating

the data connection layer, security experts may discover and comprehend the numerous attack

vectors that bad actors can use. This includes investigating protocols like Ethernet and Wi-Fi,

as well as the accompanying methods for data encapsulation, error detection, and flow

management.

The current study looks at the attack at the data link layer using different tools to look

into the protocol and procedure. These approaches are not new, still they will assist with further

study and identifying the issues using available tools. They can also be employed to automate

tasks within the fields of machine learning and deep learning, respectively.

SNORT [8] is not capable of identifying every possible form of network attack at the

cross layer due to configuration and signature updating related specific limitations.

8

Figure 3. IDS placement and monitoring

In Figure 3 IDS placement is shown where the IDS collector is gathering all the logs

and IDS manager is for configuring and monitoring purpose. IDS sensors are placed in between

the firewall to detect malicious activity for incoming and outgoing traffic connected to the

outside server and from internet. These all activities can be monitored at application layer and

an administrator can configure security rules at this layer. Data link layer devices serve a

crucial role in network communication by filtering unwanted frames based on source and

destination addresses, controlling frame access, and authenticating devices. However, their

scope is limited to self and neighbor connected devices, making it challenging to prevent

attacks depends on IP addresses, protocols, or end-to-end connectivity. The primary security

parameter for the DLL to work is the verifying neighboring MAC addresses, establishing trust

between already linked devices [9].

Research attention towards data link layer security has been relatively limited in

contrast to other cross-layer security aspects and due to this result, new attack types have not

been extensively identified recently. Some common attacks in wired networks include CAM

table overflow, ARP spoofing, DHCP starvation, and VLAN jumping. In wireless networks,

attacks such as Wi-Fi de-authentication, hidden-terminal, rogue access point, malicious

behavior of nodes, and selfish behavior of nodes are prevalent.

While attacks do occur at the network layer due to its accessibility and availability of

open-source tools, most attacks target the network layer. These attacks can be categorized as

either active or passive. Active attacks disrupt communication, modify packets, and provide

the attacker full access to network resources. Passive attacks involve the observation of traffic

Servers IDS Manager

IDS Collector Sensor Tap Sensor Tap

IDS Sensor IDS Sensor Servers

Switch

Router Internet Firewall

Switch

9

patterns without making changes. Network layer attacks include IP spoofing, network

hijacking, link withholding, smurf attacks, tear drop attacks, ICMP floods, ping floods, and

replay attacks.

Transport layer attacks primarily occur during connection setup or ongoing

communication. Examples include TCP sequence prediction/session hijacking, SYN floods,

UDP flooding, and TCP flooding. Application layer threats encompass GET floods, Slowloris

attacks, invite floods, SQL injections, SMTP attacks, malware attacks, Slow read attacks, and

FTP bounce attacks. These attacks exploit vulnerabilities in system or application

configurations, and they can often be mitigated through patches and recommended security

measures.

Table 1. List of attacks on different layers

Several research has already been done on DLL attack and authors has suggested their counter

measures also. In this section all such methods are discussed along with the possible solutions

suggested by them. Trabelsi, Z. [10] has effectively illustrated the practical execution of a

OSI Layer Attack Type

Data Link Layer CAM table overflow attack, ARP spoofing, DHCP starvation

attack, Virtual LAN hopping attack, Wi-Fi de-authentication

attack, hidden-terminal attack, rouge access point attack,

malicious behavior of nodes and selfish behavior of nodes

Network Layer IP spoofing, network hijacking, link withholding, smurf attack,

tear drop, ICMP flood, ping flood, replay

Transport Layer TCP sequence prediction/session hijacking, SYN floods, UDP

flooding, TCP flooding

Application Layer GET flood, Slowloris, invite flood, SQL injection, SMTP attack,

Malware attacks, Slow read and FTP bounce

10

CAM table overflow attack. Through his efforts, he has presented the process by which a

switch constructs its MAC table, and how an attacker can exploit this by transmitting numerous

messages, each carrying distinct MAC addresses. Consequently, this manipulation causes an

influx of entries into the switch's CAM table. As the table reaches its capacity, an overflow

situation occurs. One of the prominent tools recognized for executing such an attack is macof.

Figure 4. An attacker overflowing CAM table.

In this case, the attacker will try to send a frame with more than one MAC address. The

switch will pick up on this and start flooding. This will make it impossible for PC1 and PC2

to talk to each other. Since SNORT only records packets at the network layer, it can't find this

kind of event at the switch and stop it from causing it to overflow. Switchport port-security

can be configured to protect against this kind of attack. Ghazi A. et al. [11] and X. Hou [12]

has shown the procedure of ARP spoofing in his research paper. ARP spoofing is a malicious

technique where the attacker sends forged messages containing their forged MAC address

along with genuine IP address of sender. By associating forged MAC address with legitimate

IP, an attacker can capture all messages intended for actual host. Once the attacker gains access,

they can eavesdrop, modify, or even block the entire communication. This type of attack is

typically executed within a local LAN, but it can be further extended to enable denial-of-

service (DoS) attacks, session hijacking, and Man-in-the-Middle (MITM) attacks by utilizing

network tools such as Arpspoof, Cain & Abel, Arpoison, and Ettercap.

Mukhtar et. al. [13] in his work shown how DHCP starvation attack can be carried out

and procedure for its mitigation. The attacker attempts to exhaust all IP addresses that a DHCP

server reserves for allocation to legitimate hosts. The attackers attempt to submit requests using

multiple fabricated identities.

CAM Table on

Switch S

MAC Addresses

Gig0/1 1111:2222:3333

Gig0/2 2222:3333:4444

Gig0/3 4444:5555:6666

11

Figure 5. An attacker sends fake DHCP request to DHCP server.

Another form of attack related to DHCP involves the setup of a forged DHCP server.

In this scenario, when a host requests an IP address from a DHCP server, the deceptive DHCP

server responds more rapidly than the legitimate one. Consequently, the host becomes

connected to the fraudulent DHCP server, which then becomes the exclusive point of

communication. This imposter DHCP server can exploit this situation to intercept and retrieve

all transmitted data. In a study by Rouiller [14] a technique was presented illustrating how an

unauthorized individual can breach into a separate VLAN. This approach involves the intruder

initially gaining access to the switch and subsequently leveraging a trunking protocol like

IEEE802.1Q or DTP to facilitate communication between two distinct VLANs. Ordinarily, a

host is restricted to conversing solely with other hosts within its designated VLAN and cannot

establish connections with hosts in different VLANs. However, employing tactics such as

switch spoofing or double tagging, the attacker endeavors to foster communication across other

VLANs. This involves the manipulation of trunking protocols and frame tagging, which are

conventionally employed to uphold VLAN maintenance.

Agarwal et al. [15] in their research showed the method that execute Wi-Fi de-

authentication attack between the host access point. Wi-Fi de-authentication has similarity with

denial-of-service attack. Attackers often intercept the data transmitted between a server and an

access point, employing various techniques to compromise the security of the wireless

network. One common approach involves the manipulation of the host's MAC address and the

transmission of a "de-authentication frame," which exploits a feature in the IEEE 802.11

protocol. This type of attack can lead to the exploitation of two specific vulnerabilities: “evil

Fake DHCP

Request

Fake DHCP Request

LAN Switch
DHCP Server

IP Address

pool Exhausted

Wired LAN

12

twin access point” and “password” attack. In an evil twin, an attacker creates a fake access

point that impersonate the legitimate one. By enticing the host to connect to the fake access

point instead of the genuine one, the attacker gains unauthorized access to the host's

communications and sensitive information. A password attack, on the other hand, targets the

WPA or WPA2 handshake process used for authentication. The attacker leverages brute force

or dictionary attacks to obtain the password. Numerous methods exist to execute such attacks,

and popular tools like Aircrack-ng, Scapy, and Zulu are commonly utilized by attackers for

these purposes.

It is important to note that these attacks can have serious security implications.

Organizations and individuals should employ robust security measures, such as strong

encryption, regular password updates, and network monitoring, to mitigate the risks associated

with these attacks. Milliken et al. [16] in their work, used machine learning to stop "de-

authentication attacks," which worked 96% of the time and suggested to use SHA-512 and

UUID to mitigate such attack. Chang S and Hu C [17] identified hidden terminal attack

mitigation technique by RTS timer and CTS timer validation. A duration field is included in

the MAC frame of the early network allocation vector in IEEE 802.11 standard. It contains

NAV with counter whose value drops when the channel is idle until it reaches zero, which only

serves to validate the communication by holding back all frame transmission time. Studies

conducted by other researchers demonstrate work of a similar nature based on RTS, CTS

timers, and NAV duration counters. An illustration of such study may be seen in Jamal et al.

[18]. Shetty et al. [19] In their work, had shown how to find and stop attacks from rogue

access point with MAC filtering. There are two parts to the work. The first one is based on the

difference between how traffic moves on a wired LAN and a wireless LAN. The second one

is based on straight access attempt and cross access attempt threshold factors. Other

researchers, who worked on MAC filtering with different approach can be found in [20].

Attack mitigation analysis: Several data link layer attacks have already been addressed above,

and numerous researchers have come up with several ways to prevent them. This part will

discuss about how to stop a data link layer attack, with the CAM table [21] overflow attack,

ARP spoofing, DHCP starvation attack and Virtual LAN hopping attack. CAM table overflow

attack: To defend such attack, switchport security can be configured on the switch. Multiple

13

manufacturers of switches have implemented security by binding ports with restricted MAC

address learning. This protects the switch from CAM table overload by allowing only a desired

number of ports to learn. Example to configure on Cisco switch for such security is by putting

static access port:

Switch(config-if)# switchport mode access

Switch(config-if)# switchport port-security

Switch(config-if)# switchport port-security maximum 2 //It allow only 2 MAC address

Switch(config-if)# switchport port-security mac-address sticky

Or

Switch(config-if)# switchport port-security mac-address 1111.2222.3333 // Using static host MAC entry

In the configuration displayed above, port-security is set to a maximum of 2, allowing only the

first two learned MAC addresses to associate with the switch. Manually binding a static host

MAC entry is another way to do the configuration.

ARP spoofing: With packet filtering, a trust relationship, arp spoofing detection tools, and

cryptographic protocols such as SSL/TLS, SSH, and HTTPS, this type of attack can be

countered. Since ARP spoofing [22] impact the higher layer protocols so it can be easily

configured for detection in SNORT as described by X Hou [12]. Since the attacker tries to set

itself up as the default gateway, frame from the attacker only goes to the real gateway switch,

so a host does not notice that anything has changed. For example, to stop this kind of attack on

a Cisco-based switch, we need to set the port-security limit to 1, so that it will only let in the

first MAC address it learns.

Switch(config-if)# switchport port-security maximum 1 //Set as 1 to learn only initial learnt MAC address

DHCP spoofing attack / DHCP starvation attack: Researchers have come up with many ways

to solve this problem, such as making a static allocation where an administrator can bind an IP

address to a MAC address and store the record on a DHCP server. This method won't work for

a large group of network users. The other way is to look for a DHCP rate request [23], [24].

14

Their work was mostly centered on dynamic IP allocation under the need of fair allocation.

Cisco has also demonstrated their strategy for defending from starvation attacks as elaborated

in given example:

switch(config)# ip dhcp snooping

switch(config)# ip dhcp snooping vlan number 10 // Give the VLAN number

switch(config)# ip verify source vlan dhcp-snooping port-security

switch(config)# switchport port-security limit rate invalid-source-mac 15

switch(config)# ip source binding 10.1.0.2 aaaa.bbbb.cccc vlan 5 interface eth0/0

switch (config-if)# ip dhcp snooping trust

VLAN hopping attack: Switch Spoofing/Double Tagging: To mitigate the VLAN hopping

[25], [26] authors have suggested proper switch configuration. Snort can only keep track on

VLAN devices, so VLAN hopping, which uses frame encapsulation at the data link layer, can't

be tracked. Switch configuration commands have been developed by Cisco as a defense against

switch spoofing attacks is shown below:

A. Disabling DTP by changing trunk port to nonegotiate:

Switch (config-if)# switchport nonegotiate

B. Unused port must be set as access ports especially unallocated trunk port by:

Switch (config-if)# switchport mode access

Solution to prevent double tagging attack by switch configuration command as shown:

A. Changing default VLAN i.e. VLAN 1 to access VLAN.

 Switch (config-if)# switchport access vlan 2

B. Changing native VLAN on all trunk ports to any unimplemented VLAN ID.

Switch (config-if)# switchport trunk native vlan 800

C. All trunk ports must be tagged explicitly with native VLAN.

15

Switch(config)# vlan dot1q tag native

Wi-Fi de-authentication attack: Wi-Fi de-authentication can be done in many ways, but this

paper focuses on the data link layer attack and use of Snort as an IDS. Wi-Fi de-authentication

attacks are all about the data link layer, so snort needs to use the latest patch snort-wireless

2.3.3-sgracia [27]. It can set up alerts on Snort to notice this kind of attack as shown below:

 alert wifi any -> any (msg:"de-authentication"; stype:STYPE_DEAUTH;)

Other rules in Snort-wireless facilitate the detection of rogue access points on the wireless

medium, programs that search for access points, and de-authentication or authentication floods

that lead to the access point and wireless hosts.

Only a passive technique to hijack a session while using the RTS-CTS handshake has

been studied for the hidden terminal problem, it becomes apparent after glancing at a few

sources. There is no method for Snort IDS to detect a hidden terminal attack. Future research

will be done on Snort-wireless to determine its applicability. How to locate a rogue access

point has not been covered in much detail up to this point. However, MAC screening, which

will be the focus of my upcoming work in this sector, can find it to some extent. An effort can

be made to learn more about this subject using Snort-wireless.

Detection capabilities using snort: The prospect of employing Snort for attack detection at the

data link layer was investigated by studying various literature surveys. It was discovered that

Snort typically performs well at the network, transport, and application layers, concluded that,

all types of attack detection at the data link layer cannot be detected by IDS. After consulting

a number of articles, it is discovered that numerous solutions have already been investigated.

This section will focus on a summary of all known attack types and the potential application

of Snort at the data link layer.

Table 2. Strategies to address and minimize attack at DLL using Snort

Attack at Data link layer Strategies to address and minimize using Snort

CAM table overflow attack Due to Snort's limitation in capturing packets solely at the network layers, it

remains unable to identify and prevent overflow incidents occurring at the

switch level. Although the examination of Snort's configuration for countering

16

such attacks has not been validated during the analysis, it is conceivable to

enhance protection by incorporating a static MAC address list within its

configuration file. This measure could potentially generate alerts and enhance

the system's ability to address such scenarios.

ARP spoofing ARP spoofing directly affects higher-layer protocols, making it feasible to

configure SNORT for its detection as described by X. Hou [11].

DHCP starvation attack The attack's detection relies on the proper placement of an IDS. However, no

conclusive research has yet been identified in this regard.

Virtual LAN hopping attack Snort's monitoring capabilities are limited to VLAN devices, thus restricting

its ability to effectively monitor VLAN hopping due to its reliance on frame

encapsulation at the data link layer.

Wi-Fi de-authentication

attack

By utilizing the Snort-wireless patch extension, it becomes feasible to identify

this type of attack. Snort-wireless not only offers the potential to detect such

attacks but also includes additional rules that strengthen its capabilities as an

IDS. These extended functionalities encompass the detection of rogue access

points within the wireless medium, the identification of programs scanning

for access points, and the recognition of de-authentication or authentication

floods targeting both the access point and its wireless hosts.

Hidden-terminal attack The current Snort IDS lacks the capability to detect hidden terminal attacks,

prompting future exploration in the domain of Snort-wireless for addressing

this concern.

Rouge access point attack Properly placed IDS configurations can potentially detect the attack; however,

there is a dearth of relevant literature on this particular attack, indicating a

potential avenue for future investigation using Snort-wireless.

Several authors suggested the defenses against DLL attacks and their mitigating

strategy was comparatively unique. When compared to a wireless network attack, wired

approach needs a different strategy. The characterization of attacks was influenced by the

specific devices in use, including the host computer, switch, and DHCP server. These reasons

led to the conclusion that it is challenging to create a single point of attack detection or

gathering all attack detection in one location. The focus of this investigation was to pinpoint

the attack at DLL and determine whether it was possible to use Snort to consolidate all attacks

in one place. Typically, Snort operates at or above the network layer. IDS cannot always detect

data connection layer attacks. In the current effort, Snort will be used to investigate attacks at

the data connection layer using a variety of previously developed solutions. Cyber-attacks are

17

becoming more advanced every day, and the major difficulty is to implement algorithms that

can distinguish unknown attacks [28], [29], [30], i.e., attacks for which a preset set of signature

patterns is not specified for new attacks. Apart from this, data is generated from number of

network sources, and it is not necessary that the captured would be useful in identifying an

attack. Algorithms for intrusion detection, such as signature and anomaly detection, have been

developed by several researchers [31], [32], [33].

2.3 Attack analysis at Network, Transport and Application layer

Attacks are detected by comparing the present activities to the desired activities of an

attacker. An anomaly detection mechanism creates an activity profile. Misuse detection

necessitates the labeling of training observations as either normal or malicious. During the

training phase of anomaly detection, only valid behavior is considered. In the test data,

anomalous behavior is detected if it deviates significantly from the modeled behavior. For the

following reasons [34], labeled data are not easy to train. It is possible that different data

sources generated the records needed to identify an attack. There are no publicly available

datasets that include actual user traffic. Researchers often lack access to comprehensive data

regarding the frequencies and impact of cyberattacks. Nonetheless, it remains crucial to

evaluate the scalability of machine learning-based solutions in handling large volumes of data,

numerous equipment, and diverse applications for addressing various network-related issues.

Currently, only a limited number of machine learning techniques for fault and security

management can be effectively applied to multitenant and multi-layer networks. To effectively

manage faults and security in future networks, it will be necessary to integrate the concept of

multi-tenancy in multi-layer networks into existing machine learning approaches. This

adaptation will enable more robust fault and security management capabilities. [35], [36]. In

general, machine learning combined with large datasets provides effective solutions for

predicting and addressing various problems. ML techniques can uncover hidden patterns

within data, allowing for clustering, classification, regression, and rule extraction. This can be

particularly useful in the field of networking, where classification challenges such as denial-

of-service, user-to-root, root-to-local, and probing attacks can be grouped together to predict

the type of attack. To anticipate future failures, regression problems can be developed using

machine learning algorithms. Although machine learning has a broad scope in addressing

18

various problems, a consistent approach is often followed in constructing ML-based solutions.

This involves data collection, which encompasses the gathering, generation, or definition of a

relevant dataset and associated classes. Feature grouping is a technique that can reduce the

dimensionality of datasets while identifying distinguishing characteristics. This not only saves

computation time but also enhances the accuracy of predictions. By utilizing machine learning

and appropriate data preprocessing techniques, organizations can leverage the power of big

datasets to extract valuable insights, make informed decisions, and improve various aspects of

their operations. [37], [38], [39]. As a result, once the ML model has been developed, it may

be used to predict results from new data. To avoid "concept drifting," which is the gradual

deterioration of a concept over time, results are checked on a regular basis. When this happens,

the machine learning model can be re-trained, and its incremental learning can be monitored.

Khalil El-Khatib [40] has this a novel approach to picking the optimal attributes for

802.11-based intrusion detection. To pick relevant features, the strategy employs a hybrid

approach that incorporates both filter and wrapper models. The total number of characteristics

was decreased from 38 to 8 because of this strategy. They have also investigated how different

classifiers powered by neural networks perform when features are selected. The classifiers'

learning time is slashed by 33% while detection accuracy is increased by 15% because of the

smaller range of possibilities. Their upcoming investigation is on comparing performance of

classifier based ANNs with models supported by SVMs, MARSs, and LGPs to see how the

decreased feature set affects those models.

Song J et. al. [41] has this a new strategy for grouping features based on mutual

knowledge. Fuzzy C-means algorithmic rules are used to form groups or teams in the proposed

algorithmic rules. When selecting an attribute from a group, the shared knowledge between a

feature and its class labels is utilized. Experiment findings on the KDD’99 dataset show that

the strategy this by them beats the DMIFS algorithm in most cases. An additional benefit of

using separate classification methods to compare 10 and 41 features is that the performance

indicators are now more accurate. The work provides a starting point for additional inquiry. It

is possible to create a novel algorithm based on features and class labels and a variety of

categorization methods are used to form group.

19

An IDPS based on Machine Learning (ML) requires an enormous volume of labeled

and training data to identify intrusions and generalize to fresh attacks, as indicated by Omar Y.

Al-Jarrah et al. [42]. Labeling information, on the other hand, is expensive and cannot be done

with big amounts of data, like those created by IOT applications. For the present effect, it is

important to build an ML model that can learn from data that is not labeled or is only partially

labeled. In this study, Semi-supervised Multi-Layer Clustering (SMLC) is used to find and

stop network intrusions. When learning from partially labeled data, SMLC can be compared

to supervised ML-based IDPS in terms of how well it can find things. The NSL and Kyoto

2006+ datasets are widely recognized benchmarks for evaluating the performance of SMLC

(Semi-Supervised Learning Classifier) models. These datasets serve as standards to compare

the effectiveness of SMLC against other established semi-supervised models, such as tri-

training, as well as ensemble machine learning models like Random Forest and Bagging. By

utilizing these datasets, researchers can objectively assess and compare the performance of

different models to determine their effectiveness in handling semi-supervised learning tasks.

The result concluded that, SMLC performed better in terms of accuracy of detection while

using 20% less labeled training sample. Their results show that this method is accurate at

identifying problems as guided ensemble models.

It has been attempted by Chandrashekar and Sahin [43] that an introduction to feature

selection methods be provided. Machine learning and pattern recognition are only two

examples of feature selection approaches that have been studied extensively. One dataset is the

only way to compare feature selection techniques since each algorithm can react differently

when applied to multiple datasets. In machine learning, feature selection algorithms indicate

that a lot of information is not necessarily helpful. They tested several methods on the data at

hand before settling on a final feature selection algorithm based on classification performance

metrics. They used feature selection to enhance accuracy of predictors and to analyze fault

prediction based on information about fault modes, which has worked well.

To reduce the modeling complexity, [44] stated that, in data mining or pattern

recognition, one of the most important preprocessing steps is choosing groups of attributes

based on rough sets. To deal with new technology line "big data," new ways need to be identify.

In this paper, the authors look at new work on using decision theory to choose subsets of

20

attributes in rough set models. In this study, research on selecting feature sets and supporting

rough sets was reviewed. Author proposed MapReduce version of parallel genetic algorithm

to find least feature reduction. Parallel GA model focuses on three key areas: the construction

of distinction tables, the evaluation of the GA population, and the administration of the GA.

For constructing the distinction table, they frequently employ several mappers. It was during

this phase that all the genetic operations occurred. Using a set of criteria, the driver code selects

the simplest and best candidate. Using intrusion detection datasets as a test bed, it was found

that the MapReduce technique will speed up execution without sacrificing solution quality.

The number of attributes and instances has also been examined, as have the successive and

MapReduce implementations. Due to our propensity to work in increasingly complex datasets,

the studies revealed that the MapReduce implementation consistently produced better results

than the other approaches. The planned approach will be tested in additional areas in the future.

The problem of high dimensionality in bio-medical data classification was tackled in a

novel way by Yonghong Peng et al. [45]. Research in the disciplines of pattern recognition and

machine learning has been extensive. Filter, wrapper, and hybrid feature selection strategies

have been discussed in their work. When evaluating feature subsets, filter strategies use an

independent test, whereas wrapper strategies require a specified learning procedure. They all

have their own set of drawbacks, yet they all complement each other in some way. Their work

includes filter and wrapper algorithms as part of a sequential search process to improve how

well the hand-picked options can be grouped. The main parts of the planned method are pre-

selecting feature subsets with better classification performance and misusing ROC curves to

describe each option and subgroup within the classification.

To keep the classifiers' performance results intact while reducing the number of

alternatives, Bolón-Canedo et al. [46] present a solution to enable a mix of wrapper, filter, and

classification algorithms. The winner of the KDD'99 Competition and other writers have used

it to reduce the number of options in two different techniques by a contrasting difference. The

best ways to classify things are into two categories or into more than two classes. Using 17%

of all features, the binary approach did better than the KDD winning result. More than that, the

approach was used on several big binary datasets with the same results, which means that

machine learning algorithms have fewer options. This method seems to be good for big datasets

21

like the KDD'99 dataset because it saves time and memory. KDD'99 has also been looked at

as a setback that fits into more than one group, like traditional connections and four other kinds

of attacks. People often suggest using a multiple class method or multiple binary classifiers to

deal with many category problems. This work changes the KDD winner result, even though it

only uses 17% of the traits. This method works with large databases because it uses naive

Bayes or C4.5 classifiers instead of SVMs, multilayer perceptrons, or functional networks.

These machine learning algorithms are faster and use less computing power than other

classifiers used in the literature. When compared to other methods, it looks like ours did better

than those of the other authors, especially in the areas that were hard to tell apart. Because they

did not have enough data, applied math could not use the work of other writers. During a

comparison, it was found that, based on the category, some combinations were much more

effective than others. In the future, they suggested to put together completely different

combinations to make sure that the smaller categories are taken care of and enhancing the

performance at larger scale.

In one of the research, IDS feature selection problem has been highlighted by Sara

Mohammadi et al. [47] due to additional and unused features containing in a dataset, as a result

these systems are prone to inaccurate categorization and a poor rate of detection. They

discussed FGMMI, FGLCC, and try-wise MI as possible solutions to the problem. There was

a lower rate of false-positive detection and accuracy with the projected feature choice strategies

compared to try-wise linear parametric statistics and thus the try-wise MI used in many

previous algorithms, as demonstrated by experimenting NSL and KDD'99 datasets. The

FGLCC and FGPMI algorithms have introduced a novel approach, enhancing the FGMI

algorithm through strategic structural adjustments. In KDD'99 and NSL, the FGMMI

algorithm produced the best results with AR and F values of 95.65 and 96.12 percent,

respectively and have high detection and accuracy rates.

According to Mowei Wang et al. [48], A reliable ML model for networking problems

necessitates representative and unbiased data. The process of data collection is crucial, as

datasets vary across different problems and time periods. Data can be gathered through two

methods: in-person and online. Offline data collection enables the accumulation of extensive

22

legacy data, which could be utilized for enhancing model training. During the live phase, real-

time network data can be used to retrain the model and incorporated into a feedback loop.

Monitoring network activity can be done actively or passively. Active monitoring

involves sending probe packets into the network to gather useful information, while passive

monitoring observes network behavior without injecting additional traffic. Active monitoring

incurs additional costs due to bandwidth usage and the need for extra equipment, whereas

passive monitoring avoids these issues. After gathering the data, it is partitioned into sets

designated for training, validation, and testing purposes. The training dataset plays a pivotal

role in refining model parameters, such as the neural network's connection weights, to achieve

optimization. The validation dataset aids in the choice of an optimal model configuration, like

determining the ideal number of hidden layers in a neural network from a range of potential

models. The test dataset serves the purpose of impartially assessing the model's performance.

The split percentages for training, validation and testing can vary with ratio of 60/20/20

or 70/30, depending on the need for validation. Rule-of-thumb ratios work well for smaller

collections, while extreme ratios like 98/1 or 99/0.4/0.1 are useful for large datasets. It is crucial

to ensure that training datasets are not skewed towards specific groups of interest, to prevent

overfitting or poor generalization of the model. Validation and test datasets should have the

same distribution as the training set and remain separate from it. To assess the model's ability

to handle changes in time and location, training and validation datasets from different periods

or networks can be used. Models that accurately predict results from datasets collected over a

year or from different networks demonstrate stability across both time and space.

Using machine learning, Moore and Zuev [49] proposed solution to network traffic

classification challenge. Before utilizing collected data for learning purposes, it is essential to

address any inaccuracies or missing information through a data cleaning process. Feature

extraction is a crucial step that precedes model learning or training, as it helps simplify the

learning process and enables drawing meaningful conclusions. When dealing with networking

tasks, there are various options available, which can be categorized into coarse, medium, and

fine levels of detail.

23

At the packet-level, statistics such as mean, root mean square (RMS), and variance can

be computed from the collected packets. Time series data, such as hurst, can also be derived

from the packets. One benefit of using packet-level analysis is that they are not affected by

packet sampling, which are sometimes employed to collect data but may alter the behavior of

features. Flow-level features, such as average flow length, average packet flow count, and

average bytes flow count, can be calculated using simple statistical methods. Additionally,

characteristics at the transport layer, like throughput and window size mentioned in TCP

connection headers, can provide further insights into connections. However, these features may

require more setup time and are inclined to sampling and route asymmetries.

The selection and extraction of features play a vital role in machine learning. The

primary objectives of this process are to reduce the dimensionality of large datasets and

recognize distinctive features that minimize computational overhead while enhancing the

correctness of ML models. "Feature selection" involves removing unnecessary or redundant

features, as utilizing irrelevant characteristics that have little or no impact on accuracy can lead

to overfitting. Feature extraction is a complex computational process that leverages methods

for instance entropy, Fourier transform, and principal component analysis (PCA) to obtain

additional or transformed features from existing ones. Tools like NetMate and WEKA can be

employed to assist in the selection and extraction of features. By carefully selecting and

extracting relevant features, the dimensionality of datasets can be effectively reduced,

computational efficiency can be improved, and ML models can achieve higher accuracy in

networking tasks.

According to Jun Zhang et al. [50], data can be labeled using the features in many ways.

Manual labeling by field experts with DPI assistance is primarily required. To help with

classification when there is a lack of training data, this research offers a new traffic

classification scheme. Uses discretized statistical features to describe traffic flows, and bag-

of-flow correlation information to model flow correlation in this approach (BoF). They use a

classifier combination framework to solve the BoF-based traffic classification and then

conduct an analysis of the function. The NB predictions combined using a novel BoF-based

traffic classification algorithm, they examine the aggregation strategies' sensitivity to

prediction error. This strategy was put to the test two real traffic datasets. According to the

24

experimental results, this technique outperformed current traffic classification algorithms in

terms of accuracy. This new traffic classification technique increased classification

performance in absence of insufficient training data. Using the new BoF-NB approach, NB

predictions were efficiently aggregated. The success of the suggested strategy was proved

through testing on two real network traffic datasets. In this study, traffic classification was

achieved with less time for labeling of training samples.

The performance of the model was shown to be impacted by the amount of the training

data for different classes, as demonstrated by Soysal Schmidt [51]. Traffic classification

accuracy is critical for network administration and monitoring as well as network provisioning.

Consideration must also be given to scalability, processing costs for classification and user

privacy when selecting a classification method. Based on accuracy and execution cost like

classification and system buildup time, the study suggests that BN, DT, and MLP is best for

flow-based traffic classification. Several categories of data were taken into account, including

P2P, HTTP, Akamai content delivery, FTP, bulk uploads, DNS, and SMTP email. A piece of

software called WEKA is used to run the tests. There hasn't been much research on ML

algorithms for traffic classification because earlier studies used flow traces that were labeled

with likely mistakes because of payload inspection or port-based methods. Also, the data sets

don't include internet flows that can't be found with these methods, which limits how useful

the results are. They used more than a million recent flow traces that were correctly labeled to

train and test the ML systems. Peer-to-peer (P2P) traffic is an example of this kind of traffic.

P2P traffic can move ports or pretend to be something else. Flow-based classification is being

used for the first time to classify Akamai content delivery data.

For BNs, DTs, and MLPs, their work was to look at how training data was put together

in an organized way. Experiments show a link between volume of training data related to each

traffic type and how it affects accuracy of classification. Volume of training data for a specified

traffic categories can influence how well it can classify traffic. Because of how we do things,

there are some training sets that give the most accurate results. Traffic which associates to

well-known default ports for a port-based classifiers work better. ML approach, on the other

hand, are useful for classifying traffic, especially for types of traffic like P2P that do not use

system ports.

25

The National Academic Network of Turkey was used to get a big set of correctly

labeled data that was used to test BNs, DTs, and MLPs. According to the test results, DTs are

more accurate and have a better categorization rate than BNs. DTs, on the other hand, are

longer to create and are more vulnerable to inaccurate or insufficient training data. Researchers

have conducted a thorough investigation on traffic classification using MLPs trained using

back propagation to detect any shortcomings. They discovered that the sorting of web traffic,

bulk traffic, and email traffic is highly dependent on one another and significant to amount of

training data. When using the MLP method, we cannot get good recall numbers for these types

of traffic at the same time. For instance, they demonstrate how P2P programs that masquerade

(that is, utilizing ports from other applications, like port 80) and FTP programs that run in

passive mode (that is, use random port assignments in a certain range) may impair the

performance of other programs. While FTP applications that are running in the background

may adversely affect the accuracy of the BN algorithm, same is not applicable with the DT

approach.

Support Vector Regression (SVR) can be used to estimate link load forecasts in traffic

prediction, according to Bermolen and Rossi [52]. With a hands-on approach, the researchers

tinker with the SVR performance and compare it to that of the MA and AR models. For short-

term link load predictions, the improvement that SVR has over basic prediction methods like

MA or AR is not enough to support its use, even though the actual data matches the predictions

made by SVR well. It's important to note that SVR models have some advantages over other

forecasting methods. For example, they aren't too sensitive to change in the parameters, their

computational complexity isn't too high, and the forecasting horizon can be further extended

with only a modest loss in accuracy using a cascaded SVR model. This paper serves as a

springboard for subsequent research, the directions of which are briefly discussed below.

Different network traces from various scenarios should be used to validate the outcomes of the

research in order to get more robust data. Preliminary results suggest that changing the time

series (such as by changing its differentiation or statistical features) could improve forecast

accuracy by a large amount. This would require a comparison to more advanced methods for

forecasting time series. Also, it remains to be seen if the accuracy of SVR can be improved by

using different kernels (such as multi-linear or others can account for characteristics of the time

series) to reduce need for expensive time-series manipulation. To wrap up, this study could

26

look at other possible paths, such as evaluating different forecast targets (like peak load) and

analyzing longer timescales. It could be worthwhile to investigate whether the SVR can better

anticipate load changes by including information about the duration in a day or a week.

It has been claimed that traffic prediction is a non-TSF problem and that an alternative

model for inter-DC network traffic prediction. Inter-DC traffic, in contrast to typical network

traffic, is driven by a few numbers of large applications that produce huge traffic flow. The

key to traffic forecasting is to break down the traffic pattern into its component parts. The

primary objective is to predict the volume of traffic traversing an inter-data center link, with a

particular emphasis on handling substantial traffic flows. To achieve this, models employ

Feedforward Neural Networks (FNNs) trained using Backpropagation (BP) with basic gradient

descent. Additionally, wavelet transforms are employed to capture temporal and frequency

characteristics inherent in time series form for traffic data. By incorporating these techniques,

the models can effectively analyze and interpret the complex patterns present in the traffic data,

enabling accurate traffic volume prediction for inter-data center links. The estimate considers

more factors, such as traffic flows. But it costs more to count the number of byte-volumes than

to gather all traffic flows at high rates. So, to reduce the cost of gathering traffic flow data, it

is done less often and then the missing numbers are filled in by interpolation. For six weeks,

SNMP counters were used to check Baidu's DC routers as well as inter-DC connection every

30 seconds to record a consolidated amount of egress and ingress traffic. Most of data on egress

and ingress traffic are gathered every 5 minutes, and lost data count are estimated every 30

seconds using interpolation. A level 10 wavelet transform are used to consolidate time series,

resulting in 120 features per timestamp [53].

Bakhshi and Ghita [54] addressed traffic classification in their article for task

performed by the network administrator on various operation activities. Numerous important

aspects need to be considered in networking, which include infrastructure allocation, quality

of service (QoS) and service categorization, ensuring security, detecting malicious intrusions,

tracking logs, and evaluating performance. These factors collectively contribute to the efficient

functioning and management of networks, ensuring optimal resource allocation, reliable

service delivery, robust security measures, and effective monitoring of network performance.

Pre-defined classes of interest must be appropriately linked to network traffic to achieve traffic

27

classification. HTTP, FTP, WWW, DNS and P2P are all examples of types of applications.

Other examples include services such as Skype, YouTube, and Netflix. When it comes to QoS

(Quality of Service), for example, a class of service covers everything that falls under the same

QoS specifications. This means that applications with seemingly disparate functionality may

have a common set of service characteristics despite their outward differences. It is possible to

categorize all types of network traffic by port number, payload, host behavior, or flow

characteristics in four major categories. Use of flow measurement to classify traffic allows

network operators to perform crucial network management. Classification approaches like

NetFlow, which require extra packet-level information and host behavior analysis as well as

specific hardware requirements are regarded as insufficient for flow accounting. Dealing with

such issues, two-stage machine learning classification technique is proposed which has input

data from NetFlow. C5.0 decision tree classifiers are trained using k-means clustering on flow

classes derived per application. Unsupervised flow data from 15 major Internet sources were

used in the initial round of validation to define distinct flow classes created by each application

individually using k-means clustering. After that, a supervised C5.0 decision tree was trained

and tested using the generated flow classes. Adaptive boosting increased accuracy from 92.37

percent to 96.67 percent on about 3.4 million test cases with the resulting classifier. Between

98.37 percent and 99.57 percent of the time, the specification agent of classifier, that

differentiate content-specific from additional flows, was found as a result, they suggested that

this methodology is applicable to a vast array of instances, including traffic classification,

because of its computational efficiency and accuracy.

Dainotti et al. [55], stated that the assignment of port numbers to programs is a

responsibility handled by IANA. However, it has been observed that port numbers alone do

not hold much significance owing to widespread usage of dynamic negotiation, tunneling and

the allocation of ports to commonly used programs for the purpose of masking traffic and

bypassing firewalls. To enhance the efficiency of classifiers, it becomes crucial to combine

port numbers with additional methods. In the forthcoming sections, various ML-based traffic

classification methods are discussed. Employing a multiclassifier system or integrating

multiple techniques has the potential to yield higher accuracy compared to a single classifier,

as different techniques excel in different traffic categories. With recent advancements in

machine learning, multi-classifier systems have emerged, which harness the expertise of

28

multiple classifiers trained on the same flow objects. As a result, these systems are more

accurate than a single classifier and can better withstand variations in the sample population,

such as shifts in the types and combinations of applications. However, traffic categorization

tools have only dabbled in simplified techniques, such as relying on hosts or machine learning

if payload inspection fails. This strategy has been successfully utilized by network anomaly

and intrusion detection systems.

Haffner et al. [56], suggested to use first some bytes to reduce computational work for

unencrypted traffic containing TCP packets which are unidirectional as binary feature vectors.

This is another approach which is in addition to port-specific this type of traffic classification,

which uses the contents of the payload. Due to its high computational and storage

requirements, it is not the most cost-effective method. Sources of data and their dynamics are

constantly changing, maintaining, and adapting signatures manually is time-consuming.

Additionally, because to growing security and privacy issues, encryption is required to the

payload and privacy rule is applied to access it. As a result, extracting signature from a payload

is not an easy task. TCP encryption settings are negotiated by extracting information from the

unencrypted handshake in encrypted communication such as SSH and HTTPS. For traffic

classification, they make use of NB, AdaBoost, and MaxEnt. Overall, AdaBoost surpasses NB

(99 percent accuracy) and MaxEnt (less than 0.5 percent error rate). Author used ML

techniques in this research to recognize signatures for a variety of applications automatically.

According to the results, this method is highly accurate and may be used on high-speed

networks to identify online applications. Content signatures continue to function even when

encrypted, according to a recent discovery. In these cases, they talk about the encryption

settings for a specific link to get content signatures for handshakes that aren't encrypted.

Their ML models are scalable and reliable because they can handle partial packages,

one-way flows, and a variety of usage patterns. Asymmetric routing problems are avoided by

flows that only go in one way. Residential network data is more varied in terms of age, social

group, and interests, and there are less connections between usage trends in space and time.

For the AdaBoost traffic analyzer to work well with noisy data, it needs to know ahead of time

about the protocols in the application classes.

29

There is no need for prior knowledge of the application classes to achieve payload-

based traffic classification using unsupervised clustering, according to Ma et al. [57]. They

train their classifiers to identify structure in packet by giving them label of one case of a

protocol and the partial correlations between several protocols. For every pair of sessions, there

are source to destination one-way flows and its reverse. Their work contained, a hierarchical

cluster analysis (HCA) was used to order the protocols that were seen and to find the classes

of interest. The distance measure for PD and MP is weighted relative entropy, but for CSG it

is approximate graph similarity. The PD-based protocol models were the most accurate when

it came to the total number of wrong classifications. Because of this, binary and text systems

like DNS and XML have a high degree of invariance at fixed offsets. Using HTTP, which is

the Internet Protocol. Even though the CSG had a higher rate of wrong classification (about

7%), it was still the best choice for SSH-encrypted communication. Encryption, on the other

hand, makes the data less predictable, which slows it down.

Finamore et al. [58] uses another approach where signature extraction part is not

necessary for the encrypted traffic. With the rise of streaming apps, they are focusing on packet

payload analysis to get application fingerprints from UDP data that has been sent for a long

time. Using Pearson's chi-square test, author first took some bytes from packet and compared

with randomness of other uniformly distributed experimental data with several grouping some

consecutive bits in a set of some set of packets. With the signatures, an SVM classifier is

trained to make a 99.6 percent accurate distinction between the classes of interest. FP, on the

other hand, is more affected by the length of considered bytes and is only reduced by 5% for

windows larger than 80. Despite the drawbacks, payload-based classifiers are frequently used

to establish ground truth despite their high accuracy. Chi-Square Signatures are derived from

the test findings and reflect application fingerprints compactly. As fingerprints derived from

packet inspection, Chi-square Signatures have several advantages over traditional DPI

signatures. No arduous and time-consuming reverse-engineering is necessary to come up with

them. They can be used to sort data based on both where it goes and where it ends up. Online

categorization is possible because of their small computational and memory needs. Although

KISS and DPI classifiers both need to look at application layer signals, they are quite different

tools. The disadvantage of both approaches is that they are rendered useless when dealing with

encrypted payloads. The behavior patterns of the network hosts are used to identify these

30

classes. Focusing on how different application interact end to end with much concern on

encrypted traffic and port-based flow. As an example, a P2P host may use a separate port

number to communicate with each of its peers [59].

Several viewers could connect to a web server through the same port. Timing and

protocol connections are used to find HTTPS webmail traffic. They use the following in their

favor: Most SMTP, IMAP, and POP servers, which can be found by their port numbers, are in

the same domain or subnet as webmail services. (ii) Users of IMAP, POP, and webmail all use

their accounts in different ways on a daily and weekly basis. For example, POP and IMAP

users are more likely to leave the web client open to check for new messages, while IMAP

users are more likely to stop the web client to check for new messages. Application timers

cause webmail traffic to have regular trends (iv), like when AJAX-based clients check for new

messages at different times. Using an SVM classifier, the authors show that these

characteristics can be used to tell the difference between webmail traffic and other types of

traffic. Author has used 5-fold cross validation with 93.2% accuracy. Value of FN came out

was large because the classifier did not know how to tell the difference between VPN and

webmail sites. It is important to remember that info from P2P apps is very selective. A P2P

application can be designed to download video with large size chunk from a fellow peer and

similarly a short flow can grab fixed-size chunks of video at the same time.

P2P application signatures can be derived from the packets transmitted between peers

in small time frames proposed by Bermolan et al. [60]. The authors look at the sensitivity of

the parameters so they can improve their settings, which means a higher True Positive Rate

(TPR) and a lower False Positive Rate (FPR) for getting the best result. On applying their

proposed algorithm, the TPR is about 95% and the FPR is less than 0.1%. Signatures are also

shown to be portable across time and place with only a small drop in performance. Still,

observed communication patterns can be changed by routing differences in the network core,

so the position of the monitoring system has a lot to do with how accurate host behavior-based

traffic classification is. Support Vector Machines are used to accurately identify P2P-TV traffic

and traffic from other types of apps in this classification framework. This means that almost

no wrong categorizations happen. In this work, the reliability of the rejection criterion is

calculated by identifying rate of false alarms in worst-case scenario. The conclusive part was

31

signatures used by two peers gets the result (62% in CAMPUS and 82% in ISP) for real traffic,

which is used to measure how many false positives there are: There is a match between 72%

and 84% of the UDP traffic. The categorization framework is more robust because this traffic

cannot be misclassified.

Jun Zhang et al. [61] suggested RTC which is based on supervised full flow feature-

based traffic classification. They use both supervised and unsupervised ML techniques that

classify previously unidentified zero-day traffic to improve accuracy. The reason is that zero-

day activity is in unlabeled data. This RTC structure is made up of three parts: figuring out

what is unknown, putting traffic into categories based on the BoF, and keeping the system up

to date. The BoF module makes sure that zero-day samples are clean and puts flows that are

related together. The system update module adds to what is already known by learning new

classes from zero-day data that has already been found. RTC is special because it can use

correlated flows to show real-world scenarios and find zero-day applications. In case of

considering a least size of labeled trained datasets also, RTC can be up to 15% more accurate

with flow and up to 10% more accurate with bytes than the second-best method also using the

discriminative MLP-NN classifier, increases the accuracy of traffic classification with 99%. A

study of travel data from the real world has shown that this plan works. For zero-day attack

their work performed better. In another approach by Auld et al. [62], classifier's temporal

accuracy was increased to 95% by MLP-NN with BNN approach.

Este et al. [63] sorts traffic using both single-class and multi-class SVM for

categorizing traffic in IP networks is Support Vector Machines (SVM). There are still certain

issues to be resolved before SVMs are routinely employed as traffic classifiers. It is still being

investigated how to apply them to problems with more than two classes because they were

primarily designed for situations with two classes. Additionally, how well their functioning

parameters are tuned greatly affects how well they perform. In this study, we discuss the traffic

classification capabilities of SVM. The author classified statistical traffic using an approach

for solving multi-class issues by considering SVM classifier before describing a

straightforward optimization strategy that enables the classifier to function properly with as

few as a few hundred examples of training data. Even though the results are still very recent,

they demonstrate that even with a limited training set, SVM-based classifiers were effective

32

for traffic from various sources. However, for encrypted communication, the performance is

not as good because it was relying on the port-based labeling, which degrades its throughput

but with the increase in computation costs.

Jing et al. [64] suggests an SVM approach for context-based traffic. At each round

during SVM design, the candidate classes are paired at random. A binary SVM classifier then

selects one class from each combination, thereby halving the number of potential classes which

reduces count of support vectors that rely on two-pair classes. Using multi-class classification

in SVM significantly reduces the cost of classification compared to complete training dataset.

Traditional and multi-class SVM are not as effective as they could be at managing large

datasets. It is essential to remember that the best classification could be removed, resulting in

more incorrect classifications with increase computational cost. The authors contrast the

existing SVM with the basic and FT-SVM schemes they have developed with 96% accuracy

while reducing classification error by 2.35 and computation by 7.65 times. It is uncommon to

have information about all the programs operating on a network, so supervised learning cannot

always be applied to network traffic.

Liu et al. [65], to achieve up to 90% accuracy with k-Means. Unsupervised training

was part of the experimental analysis that utilized full traffic flows and log transformations of

characteristics to fetch features to get as close as feasible to achieve stable distribution,

removing anomalies from the data. However, it would be illogical to use rigid clustering to

determine membership because flow characteristics from sources like HTTP and FTP may

match.

Yang et al. [66] built and showed first convolutional neural network that automatically

extract features from short strings for cyber security problems. Using embeddings and

convolutions as the top layers of our neural network and training it under supervision lets us

automatically get a set of features that are directly optimized for classification. Even though

similar approaches have been this for natural language processing (NLP), eXpose is the first

approach that shows how top-to-bottom deep-learning methods resolve several important

cyber security problems in an adversarial environment where strings are purposely messed up

to stop obvious feature extraction. During our experiments, one of the biggest problems was

that training on longer strings took a lot of computing power, so we could not try out more

33

complex architectures. With recent improvements in hardware and the addition of distributed

training modules to modern frameworks, the results of some of the more expensive

architectures may be able to get even better. For end-to-end learning, these ideas are built into

eXpose by using labeled datasets that already exist. As hardware and data sets get better, the

difference between automatically extracted features and traditional ways of extracting features

will only get bigger.

Huda [67] proposed new malware detection system for CPS which is semi-supervised.

The new thing about this system is that it can protect CPS against new types of malwares

without the manual work needed to create signatures and keep the repository of antimalware

tools up to date. This technique can compensate for the inability of CPS to be utilized with

older control software or operating systems (OS) due to impossibility of updating organization

(due to time constraints, personnel costs, and anticipated asset loss). In this system, the hidden

data structure's geometric information that was recovered also contains current details on any

new variations. Unsupervised learning is used to accomplish this, and the supervised detection

engine is subsequently updated with the new data. So, this method protects against new

malware without requiring the database to be manually updated or labeled.

Kamarudin et al. [68] Anomalies and invasions have been studied extensively. Still,

recognizing invisible threats and reducing false alarms is difficult. The Logitboost-based

classifier detects known and unknown online attack activity in this work. Their approach used

NSL-KDD and UNSW-NB15, two publicly accessible labeled intrusion detection testing

datasets, to create diverse integration testing scenarios. Preprocessing eliminated redundant or

unimportant elements. Data mining with the Logitboost classification algorithm yielded high

detection rates and low false alarms. This study found that ensemble technique may detect

unknown attack and their results used to signed and stored in a database. Since new traffic may

be matched with signatures of good or bad traffic from prior detection, finding something is

much faster. Finally, this ensemble approach can be tested online utilizing previously

intercepted and current encrypted traffic.

Ziyang Guo et al. [69], proposed residue-based detection technique that detect sensor

communication pattern by the malicious attacker to alter sensor data. They recommend a linear

deception attack technique and display the associated feasibility constraint. Due to its rapid

34

growth and safety-critical applications, CPS security has drawn more attention recently. These

systems are susceptible to cyber threats because CPS frequently sends measurement and

control data across unencrypted communication networks. Any successful CPS attack might

result in a few negative outcomes, including the disclosure of consumer information, harm to

the national economy, destruction of infrastructure, and even the risk to people's lives.

Offline data fetched from numerous archives can be utilized for research purpose as

long as its validity exist in networking. Some most common are the UNSW-NB15 [70], the

UCI KDD Archive [71], MAWI [72], and IMPACT Archive [73]. Using monitoring and

measurement tools is a good way to get data from both offline and online sources. These tools

give more control over different parts of data collection, like the rate of data sampling, the

length of monitoring, and the position of network core and edges. Monitoring networks is

usually done with SNMP [74], Cisco Net-Flow [75], and IPFIX [76].

Apart from the above data several other researchers also worked on the known datasets

and achieved certain level of accuracy. Ambusaidi et al. [77] It gives general data that can be

changed for IDS feature description. Using SVM with 19 selected features, KDD'99 record got

the highest accuracy of 99.79 percent. The model applies code correlation analysis to find the

required attributes and the ideal attributes (depending on the value below the upper limit of the

CCA upper limit in the NSL-KDD dataset) with a 98.9% accuracy [78]. How well different

groups of features work in KDD datasets, Khammassi and Krichen [79] came up with a way

to find outages and fix them using repeated calculations, genetic calculations, and strict

research methods increased their accuracy of DTC by 99.9% and 0.105% for the KDD'99

dataset with 18 features. Akashdeep et al. [80] suggested correlation and data retrieval will

reduce if wrong artificial neural network classifiers for detection is used. The system is the

most accurate in the KDD'99 dataset, with a 99.9% accuracy rate. It is used for DoS attacks on

ANNs with 25 features.

Divyasree and Sherly [81] proposed a screening technique for network IDS, that uses

chi-square tests to suggest many simplified KDD'99 functions. This method reduces 10

features that could be used in DoS attacks. Using CVM, the detection rate is 99.12%. For the

definition of the logical dependence of IDS, it is best to use rough and well-thought-out

calculations. In the research [82], 22 attributes were used, and fuzzy rules were added to the k-

35

nearest neighbor classifier (FRNN). It gives 99.87 percent of the detection area in a dataset

with only one direction and half the types of data. The framework [83] has a 99.79%

recognition rate because it uses 26 functions from a one-time dataset. Yulianto et al. [84] used

an intrusion detection system based on Adaboost to come up with a plan to cut down on the

number of parts in an IDS. With 25 functions and the PCA feature combination along with

Ensemble Feature Selection (EFS), it can be accurate 81.83 percent of the time. Using a

selection-based Bayesian and roughset approach, Prasad et al. [85] came up with a way to cut

down on noise. With a random population structure calculated with negative definitions for the

NSL-KDD dataset [86], it can improve accuracy by up to 99 percent. Also, REP Tree [87] uses

10 features from the global identifier and the small dataset, which can give the highest accuracy

of 99.73%. Only small differences can be seen between the signatures of different attacks and

is the best approach to identify who is breaking into the system [88].

Numerous authors have worked on different datasets with different machine learning

approach and found variation in result. Different methodologies such as FGLCC-CFA, C4.5

DMIFS, PKID + Cons + C4.5, SVM, GA-LR wrapper, ANN, CVM, Ensemble of C5 DTs, NN

and C4.5 DT, BN and CART, NB, and others have been applied. Performance metrics vary

across methodologies and features, with detection rates ranging from 80% to 100% for normal

instances and varying rates for different types of attacks such as DoS, Probe, U2R, R2L, and

Satan while using KDD Cup datasets.

Using CICIDS 2017 dataset, multiple methodologies such as Bayesian Rough set, Ensemble

MPML, TCM K-NN, Random Forest, Information Gain + Random Forest, and AdaBoost have

been employed. Detection rates for different types of attacks like DoS are consistently high,

reaching up to 99.96%. The number of features used in each methodology according to

selection of features varies and affecting the performance metrics.

Table 3. Review of various work done on different datasets and ML techniques

Paper Title [Ref]

Dataset Methodology Features Performance Limitation

Cyber intrusion

detection by combined

feature selection

algorithm [39]

KDD Cup FGLCC-CFA

FGLCC

10Fold -

FGLCC-CFA

10 Features

15 Features

15 Features

95.03

92.59

99.84

Low detection

Low detection

High detection

36

Feature Grouping for

Intrusion Detection

Based on Mutual

Information [41]

KDD Cup C4.5 DMIFS

FGMI

13 features Normal: 99.3

Anomaly:

91.4

Low detection

Feature selection and

classification in

multiple class datasets:

An application to KDD

Cup 99 dataset [46]

KDD Cup PKID + Cons

+ C4.5

13 Features Normal: 99.3

U2R: 25

DoS: 96.08

R2L:8.12

Probe:73.62

Low detection

then KDD

Winner 99.45

Building an Intrusion

Detection System

Using a Filter-Based

Feature Selection

Algorithm [77]

KDD Cup SVM 19 Features 99.79 High

Accuracy

A GA-LR wrapper

approach for feature

selection in network

intrusion detection [79]

KDD Cup GA-LR

wrapper

18 Features 99.9 High

Accuracy with

delay

A feature reduced

intrusion detection

system using ANN

classifier [80]

KDD Cup ANN 25 Features 99.9 High

Accuracy with

25 features

A Network Intrusion

Detection System

Based On Ensemble

CVM Using Efficient

Feature Selection

Approach [81]

KDD Cup CVM 10 Features DoS:99.12 High

Accuracy for

DoS attack

only

An efficient feature

selection based

Bayesian and Rough

set approach for

intrusion detection [85]

CICIDS

2017

Bayesian

Rough set

40 Features 96.38 Low accuracy

as 40 features

used.

Artificial neural

networks for misuse

detection [89]

RealSecure

Supervised

NN

Payload, header

of TCP, IP, and

ICMP

Detection

Ration: 89-91

Low Detection

Winning the KDD99

classification cup [90]

KDD Cup Supervised

Ensemble of

C5 DTs

41 features Normal:99.5

Probe:83.3

DoS:97.1

U2R:13.2

R2L:8.4

Normal:High

Probe:Medium

DoS:High

U2R:Low

R2L:Low

Using all

features

Hybrid neural network

and C4.5 for misuse

detection [91]

KDD Cup Supervised

NN and C4.5

DT

41 features Normal:99.5

DoS:97.3

Satan:95.3

Portsweep:

94.9

U2R:72.7

High

Detection for

R2L attack

37

R2L: 100

A neural network-

based system for

intrusion detection and

classification of attacks

[92]

KDD Cup Supervised

NN

35 features MLP:80

ESVM:90

ESVM

DR:87

Low Detection

Feature deduction and

ensemble design of

intrusion detection

systems [93]

KDD Cup Supervised

BN and CART

41 features Normal:100

Probe:100

DoS:100

U2R:84

R2L:99.47

High detection

for Normal,

DoS and R2L

Naive Bayes vs

decision trees in

intrusion detection

systems [94]

KDD Cup Supervised

NB

41 features Normal:

97.68

DoS: 96.65

R2L: 8.66

U2R: 11.84

Probing:

88.33

Low

Performance

Decision tree classifier

for network intrusion

detection with GA-

based feature selection

[95]

KDD Cup Supervised

C4.5 DT

GA-based

Feature

Selection

DoS:97.88

Probe: 98.33

R2L: 80.01

U2R: 99.99

High

performance

for U2R

Feature deduction and

ensemble design of

intrusion detection

systems

et al. [96]

KDD Cup Supervised

Ensemble of

SVM,

DT, and SVM-

DT

all 41 features Normal: 99.7

Probe:100

DoS: 99.92

U2R: 68

R2L: 97.16

High detection

for Probe and

DoS

Practical real-time

intrusion detection

using machine learning

approaches [97]

RLD09 Supervised

C4.5 DT

Header of TCP,

UPD, and

ICMP

Normal:

99.43

DoS: 99.17

Probe: 98.73

High detection

Multi-Perspective

Machine Learning a

Classifier Ensemble

Method for Intrusion

Detection [98]

NSL-KDD Supervised

Ensemble

MPML

all 41 features 84.137 Low accuracy

An active learning

based TCM-KNN

algorithm for

KDD Cup Supervised

TCM K-NN

Chi-square

41 features

8 features

99.7

99.6

High accuracy

38

supervised network

intrusion detection [99]

Kshirsagar et al. [100] CICIDS

2017

IGR-SCS1

CR-SCS2

ReF-SCS3

48 Features

24 Features

12 Features

DoS:99.9586

DoS:99.9593

DoS:98.8698

High accuracy

CICIDS-2017 Dataset

Feature Analysis With

Information Gain for

Anomaly Detection

[101]

CICIDS

2017

Random

Forest

15 Features 99.81 High accuracy

with only 15

features used

An efficient feature

reduction method for

the detection of DoS

attack [102]

CICIDS

2017

Information

Gain +

Random

Forest

22 Features

28 Features

99.83

99.79

High accuracy

but more

features used

Development of a

Method for Detecting

Network Attack on

Machine Learning

Algorithms [103]

CICIDS

2017

AdaBoost 10 Features 99 High accuracy

with less

features

These research outcomes by various authors demonstrate the effectiveness of various

methodologies for intrusion detection across different datasets. Performance metrics vary

based on the methodology, features used, and the specific dataset characteristics. High

detection rates for normal instances and different types of attacks indicate the potential of these

methodologies in effectively identifying and mitigating these cross-layer attacks.

2.4 Anomaly and misuse detection techniques

Anomaly detection technique reflects any deviations in the normal pattern. Mismatches

can be found by looking for both static and dynamic deviations [104]. The static deviation

exception works because it is known that the part of the network that needs to be checked won't

change. Most static detectors look at the software part in networked system because it is

thought that there is no need to check the hardware. The part of the frame that doesn't change

is the frame structure and the consistent information segment. This information is important

for the situation to work right. For example, the system information and PC startup information

39

will never change. This information is stored in system for long duration of time unless a new

hardware is added and software has changed. However, the system can deviate from its unique

structure at any time if an error happens or if an attacker changes the static parts of the system.

The framework that finds the log does not keep track of every case. All they do is keep track

of interesting cases.

Misuse detection: Information about framework weaknesses and actual attack designs

can help find misuse. Misuse detection tries to find deviation a hacker who are trying to break

into a framework by misusing a weakness that is already known. If there are no outside

protections, a misuse detection framework tries to find out about every known weakness and

fix it. If it does not, it could lead to a system attack [105]. An intrusion detection framework

constantly checks a running process for known intrusions. This is done to make sure that at

least one attacker is not trying to take advantage of known weaknesses, so every intrusion

should be found. Misuse detection systems uses rules to detect events for unauthorized activity

that a security module checks in system. It can be hard to keep track of and explain complicated

rules. Because there are many ways to find intrusions, it is unlikely that the rules will not be

caught. In this way, changes to the standard rate can be complicated because the rules that are

affected are spread out over the whole standard rate. The new stratification strategy in the guide

links model-based principles to government progress to deal with these problems. As part of

figuring out when someone is misusing something, these principles are used to find situations

that might be good for doing something bad. It can be seen in real time by looking at the packets

coming in or later by looking at the log.

Anomaly detection and misuse detection techniques have their advantages and

disadvantages. Often, new, or unknown attacks, as well as variations of normal attacks, go

unnoticed by traditional abuse detection strategies. Responding to such attacks with

conventional methods may not effectively mitigate the harm they cause. Irregular identification

methods can identify novel or undisclosed attacks in the programming environment, detect

variations of known attacks, and identify deviations from the typical usage patterns of a project,

whether they originate from authorized internal users or unauthorized external users. However,

attacks that are observable may not appear distinct, especially if they align with established

client profiles. Understanding the motives behind launching attacks for scientific purposes can

40

also be challenging to explain. Additionally, certain unique identification methods are prone

to manipulation by malicious clients who gradually modify their profiles over time, altering

the breach detection framework to reveal the attacker's personal profile. This tactic is

commonly employed as a means of seeking retribution. The false alarm rate in intrusion

detection can be influenced by well-trained methods for estimating targets or determining

uniqueness.

Table 4. Comparison of Anomaly and Misuse detection technique

 Anomaly Detection Misuse Detection

Motivation Identifying deviations from normal

behavior or patterns within a system

Focuses malicious activity or

specific attack signatures

Methodology Baseline of normal behavior using

historical data or statistical models

and flags any data points or

activities that significantly deviate

from this baseline as anomalies

Relies on predefined

signatures, rules, or patterns of

known attacks to identify

malicious behavior

Resource Intensity Regular updates to its signature

database

Require more computational

resources to keep baseline of

normal behavior

Use case Detect novel attacks or previously

unseen threats, such as zero-day

exploits or insider threats

Effective at catching known

threats, such as viruses,

worms, or known types of

cyberattacks

False Positives Generate more false positives

because it flags any deviation from

normal behavior

May have fewer false positives

but may miss new, unknown

threats

Example Unusual login times or locations,

unexpected spikes in network

traffic, unusual file access patterns

Matching network traffic

against a database of known

malware signatures,

identifying specific command

41

sequences indicative of a

known attack

In terms of intrusion detection systems, there are two main categories. Host-based

intrusion detection systems count on data sourced from individual hosts, typically for

monitoring purposes. On the other hand, network-based intrusion detection systems analyze

network traffic within the organization to which the host is connected, providing a broader

view of potential intrusions.

A. A Host-based Intrusion Detection System (HIDS) is a cybersecurity tool designed to

monitor and analyze the activities occurring on a single host or endpoint within a network.

HIDS focuses on detecting unauthorized or malicious actions that occur directly on a specific

host. HIDS operates by continuously monitoring various aspects of a host's activities, such as

file system changes, log entries, process executions, and system calls. It compares observed

behavior against known patterns of malicious activity or predefined rules to identify potential

security breaches or anomalies. By providing real-time monitoring and detection capabilities

at the host level, HIDS can help organizations identify and respond to security incidents

promptly, protecting against threats such as unauthorized access, malware infections, insider

attacks, and system vulnerabilities [106].

B. Network-based IDS: A Network Intrusion Detection System (NIDS) is a cybersecurity

tool designed to monitor and analyze network traffic for signs of suspicious or malicious

activity. NIDS operates at the network level, inspecting traffic as it flows across the network.

As use of Internet increases with number of hosts but if there is misconfiguration in the

organization then chances of intrusion may happened [107]. By continuously monitoring

network traffic, NIDS can identify various types of threats, including malware infections,

denial-of-service (DoS) attacks, port scans, intrusion attempts, and unauthorized access

attempts. Upon detecting suspicious activity, NIDS can generate alerts or trigger automated

responses to mitigate the threat and protect the network infrastructure [108].

Data mining method for detecting intruders: Data mining techniques are increasingly being

applied to intrusion detection systems (IDS) to improve their ability to detect and respond to

42

cyber threats. leverage large datasets to identify patterns, anomalies, and indicators of

malicious activity within network traffic or system logs [100]. The information retrieval

method is a new strategy in a data mining method for detecting intrusions. It changes how rare

information is, how rules and designs are made, and how much information there is. The goal

of intelligent analysis of information is to get rid of information that cannot be seen well with

the usual methods [109]. Mining calculations come in many forms, such as sequence,

repetition, grouping, membership rule retrieval, checking for differences, and array

exploration. Different mining strategies are used to avoid being found because they have

important benefits. The large summary information is used to index information about how the

client or program acts [110]. By default, known attacks and errors are written into NIDS.

Because of this, it is not sensitive to certain actions and can only tell between a limited number

of types of intrusions. A SVM can map vector training in a space with many elements and

figure out which group each vector belongs to. Support vector machines have been a good way

to find intrusions because they are fast and easy to change.

2.5 Data filtering and feature selection

The aim of data filtering corresponds to cut down undesired information that the IDS

must deal with directly. Some information may not help the IDS, so it can be discarded before

it is handled. This has the benefit of reducing the amount of space needed for storage, cutting

down on preparation time, and improving the rate of identification [111].

Feature selection plays a crucial role in the detection of network attacks as it helps

identify the most relevant attributes for differentiating between normal and malicious network

traffic. By selecting a subset of features, the complexity of the data is reduced, leading to

improved accuracy and efficiency in the classification models employed for attack detection.

This process is essential for enhancing the overall effectiveness of network security measures.

For the feature selection process following steps were followed:

a. Define the problem: To define the problem and identify specific type of network attacks

that need to be detected. This will help determine the relevant features that need to be selected

for the analysis.

43

b. Data collection: The second step is to collect data related to network traffic, which

includes various features like source and destination IP addresses, packet size, protocol, and

timestamps, among others. This data can be obtained from network sensors, firewalls, or

intrusion detection systems.

c. Data pre-processing: The collected data is often noisy, incomplete, and inconsistent,

which can affect identification of correct feature selection process. Therefore, a data needs pre-

processing to remove irrelevant or redundant features, fill missing values, and standardize the

data.

d. Feature ranking: After the pre-processing of data, it becomes necessary to prioritize the

features according to their significance in solving the problem at hand. Several techniques can

be employed for feature ranking, such as correlation, information gain, and chi-square feature

selection, among others. These methods help identify the most influential features that

contribute to the desired outcomes, enabling more effective decision-making and problem-

solving in the given context.

e. Feature subset selection: After the features have been ranked, the subsequent stage

entails choosing the most pertinent subset of features. This selection process involves

employing a feature selection algorithm, such as greedy forward selection, greedy backward

elimination, or genetic algorithms. These algorithms aim to identify the finest subset of features

which can maximizes performance of classification model, thereby enhancing the accuracy

and efficiency of the analysis. By carefully selecting the subset of features, the subsequent

classification or prediction tasks can be significantly improved.

f. Classification model: After the relevant feature subset has been selected, the next step

involves training a classification model on the data to effectively differentiate between normal

and malicious traffic. Various models can be employed for this purpose, such as decision trees,

neural networks, support vector machines (SVM), or any other suitable model that aligns with

the specific problem at hand. These models are trained using the selected features to learn

patterns and create a reliable framework for classifying incoming network traffic accurately.

g. Evaluation: Finally performance of feature selection process and classification model

needs to be evaluated using a range of metrics for instance accuracy, precision, recall, and F1

44

score. Such evaluation measures offer insights into effectiveness and reliability of chosen

features as well as the classification model in accurately identifying and classifying network

traffic. By assessing these metrics, researchers and practitioners can gauge the overall

performance and effectiveness of their approach, allowing for further refinement and

optimization if necessary.

Feature selection process involves selecting the most relevant feature subsets from

available data for enhancing the accuracy and efficiency of the classification models used for

attack detection. The process involves several steps, including defining the problem, data

collection, data pre-processing, feature ranking, feature subset selection, classification model,

and evaluation. By following this process, network administrators can detect and prevent

network attacks in real-time, ensuring the security and integrity of their network infrastructure.

Some features can be used more than once because the data they add is already in other features

[112]. This makes IDS less accurate. Defined functions improve characterization by finding

subsets of features that can better group information such as IP address destination packet,

protocol, timestamp etc.

In conclusion, many IDS relies on a database of known attack signatures to identify

malicious activity. As a result, they can only detect attacks for which signatures are available.

Zero-day attacks or variants of known attacks that deviate from existing signatures may go

undetected. Also, making new signatures requires expensive and time-consuming manual

review by human experts. This means that there is often a gap between finding a new attack

and making a signature for it by selecting appropriate features for reduced computation.

2.6 Datasets for Intrusion Detection System

IDS were developed to find and stop hackers before they could cause any damage to a

computer network. There are several datasets available that can be used for IDS research and

evaluation.

2.6.1 DARPA 1998

In connection with a DARPA IDS Evaluation program, this dataset was compiled and

includes network traffic data from various sources, including LAN and WAN. The dataset

45

contains processes like FTP, browsing the internet, sending/receiving e-mail, IRC data etc.

Aside from normal network traffic, there are 38 attacks classified as DoS, U2R, Probe, and

R2L [113]. DARPA dataset is out-of-date with non-real-world network traffic. It contains

some flows that also interprets as false positive because it interprets some of the benign as

attack [114]. It is longer used but importance of DARPA98 dataset still exist because it was

used to create datasets like KDD'99 and NSL-KDD.

2.6.2 KDD Cup 1999 (KDD'99)

For research, its most used IDS dataset that contains appropriate number of network

traffic instances, both normal and anomalous to train and test IDS algorithms, derived from

DARPA98 dataset[115]. Training and a testing portion are provided on the website where

training section contains 4898431 data streams, while the testing section contains 311029 data

streams. A total of 38 different attack types can be found within the KDD'99 dataset out of

which 14 were newly added unknown attacks. As a result, it is possible to regulate for

identifying novel attack using test section. Many studies have used the KDD'99 dataset instead

of DARPA99 because of it contain selected 41 features with training and test parts, which are

more suitable for machine learning methods [116].

2.6.3 NSL-KDD

An extension of the KDD'99 dataset that addressed some of its limitations. It contains

a more balanced distribution of normal and anomalous instances, as well as more realistic

attack scenarios. It was found that the number of repetitions in KDD'99 adversely affects the

results of studies and desired output of algorithms for applied ML approach. Apart from this,

researchers have attempted to use only a portion of the KDD'99 dataset due to its large size.

When a portion of dataset is considered, it does not cover all the dataset's features, so selecting

dataset need proper attention.

For addressing these issues, Siddique et al. [117] came up with NSL-KDD dataset in

2009. Errors and repetitions in KDD'99 were eliminated in this version. This proposed NSL-

KDD dataset was partitioned into two main categories: KDDTrain+ and KDDTest+ with

KDDTrain+ 20Percent for training.

46

2.6.4 UNSW-NB15

This dataset contains network traffic instances generated in a realistic environment that

contains attacks such as DoS, probing, and exploitation.

2.6.5 ISCX 2012

This dataset includes network traffic data captured in a realistic environment that

contains several attack categories such as DoS, DDoS and botnet. On the Canadian Institute

for Cybersecurity testbed, a seven-day Internet stream was used to create ISCX 2012 IDS

dataset [118]. This dataset was built in real scenario, which contains both malicious and normal

flow like “FTP”, “HTTP”, “IMAP”, “POP3”, “SMTP” and “SSH” protocols (Infiltration, DoS,

DDoS and SSH Brute Force). According to ISCX 2012, more than half of all Internet traffic is

made up of SSL/TLS traffic, not included in the ISCX 2012 dataset [119]. These datasets can

be used for a variety of purposes, including training and testing IDS algorithms, evaluating

performance of different IDS techniques along with comparing effective IDS systems.

When using machine learning to identify network anomalies, it must contain a

substantial amount of malicious and normal traffic for training and testing. Privacy issue is the

major concern due to this an actual network traffic cannot be used. Several datasets have been

and continue to be developed in order to accommodate this demand. For analyzing attack in

other than datalink and network layer of TCP/IP model, KDD'99 and CICIDS dataset is

selected for final implementation.

2.6.6 CICIDS2017

This dataset contains network traffic data captured in a realistic environment that

includes new attacks and malware. This dataset contains five days of data. The Canadian

Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017) is a standard

dataset for network security intrusion detection systems (IDS) that covers large set of actual

and variety of network traffic scenarios. The dataset was created by capturing real network

traffic and conducting series of attacks on test network. The traffic was then processed to

remove any sensitive information and anonymized to protect the privacy of individuals and

organizations involved. The resulting dataset contains approximately 2.5 million network

47

flows, including both benign and malicious traffic, and a total of 79 features or attributes for

each flow.

The CICIDS2017 dataset is composed of two parts:

Training set: This set contains approximately 560,000 network flows, including both benign

traffic and covering several attacks at different layers of TCP/IP model, such as DoS (Denial

of Service), DDoS (Distributed Denial of Service), and Brute Force attacks, among others by

conducting attacks using a variety of tools, including Metasploit, Nmap, and Hping3, among

others. Its testing set contains approximately 1.9 million network flows.

Features in CICIDS2017 dataset are clustered into six categories:

Basic flow features: These features describe basic information about the flow, like source and

destination IP addresses, the protocol used, and packet flow count.

Content features: Describe the content such as the payload size and the occurrence of definite

keywords or patterns.

Traffic features: These features describe the traffic patterns, such as the inter-arrival time

between packets flow intervals.

Time-based features: Describe the timing characteristics of flow, such as start and end times

and flow interval.

Connection-based features: These features describe the characteristics of the connection, like

count of packets and bytes exchanged, count of packets and bytes per second, and number of

connections between the same source and destination IP addresses.

Network behavior features: This describes overall behavior of the network, such as number of

flows and connections per second and the overall network throughput.

The CICIDS2017 dataset provides a comprehensive and realistic benchmark for

evaluating the performance of IDS in detecting several network attacks. Diverse features and

attack ranges in the dataset makes it asset for investigators associated in area of network

48

security. It contains more protocols than any other data set. Apart from protocol such as FTP,

HTTP, SSH, and e-mail, it supports HTTPS (Hypertext Transfer Protocol Secure) but in

contrast to KDD'99 and NSL-KDD, this dataset does contain separate files for training and

testing.

Table 5. Dataset features and attack types

Datasets No. of Features Attack types Remarks

DARPA 1998 41 DoS, R2L, U2R,
Probe

Combined Non real traffic, irregular

attack instance

KDD Cup 99 41 DoS, R2L, U2R,
Probe

Contains many duplicate data

samples

NSL-KDD 41 DoS, R2L, U2R,
Probe

non-redundant instances from KDD

Cup, Limited count of attack

UNSW-NB15 49 DoS, R2L, U2R,
Probe, Reconnaissance

Data collected from realistic

virtualized environment

ISCX 2012 42 DoS, PortScan, and DDoS Network traffic from medium sized

organization

CICIDS2017 79 DoS, DDoS, Brute force,
Portscan, Botnet,
Web,
Infiltration

Data collected from real-world

network traffic

2.7 Network Attacks and its categories

In this section, the various attack types found in the data set are discussed in depth.

DoS HULK: Denial-of-Service HULK [120] attack falls under category of distributed DoS

attack which attempts to interrupt web server with huge volume of HTTP requests with the

goal of consuming server resources which interrupt the service to legitimate users. DoS HULK

attack uses botnet that are controlled by command-and-control center hosted by an attacker

with a huge number of compromised computers. The botnet is used to flood target server by

high volume of HTTP GET and POST requests, targeting specific pages or resources on the

server. The requests are sent in rapid succession, overwhelming the server and causing it to

become unresponsive or crash. The requests are often designed to be malformed or include

49

invalid parameters, which can consume additional server resources and make it more difficult

for the server to process legitimate requests. The HULK attack is particularly effective against

web servers that have limited resources and are not designed to handle high levels of traffic. It

can be difficult to mitigate the attack once it has started, as the botnet can be distributed across

many different computers and IP addresses, making it difficult to block all the traffic.

To mitigate a HULK attack, web server administrators can implement various

techniques, including rate limiting, filtering out suspicious traffic, and using load balancers to

distribute the traffic across multiple servers. Additionally, network administrators can use

intrusion prevention systems (IPS) and firewalls to detect and block suspicious traffic coming

from known malicious IP addresses.

GET Flooding via the Internet: A GET Flooding via the Internet attack is category of DoS

attack which attempts to interrupt web server with huge volume of HTTP GET requests. The

botnet is used to flood target server by high volume of GET requests, targeting specific pages

or resources on the server. The requests are sent in rapid succession, consuming the server's

resources and causing it to become unresponsive or crash. The requests are typically targeted

towards a specific page or resource on the server, such as a login page, and are designed to

mimic legitimate user requests. However, since the requests are coming from a botnet and are

being sent at a much higher rate than legitimate users, the server is unable to keep up with the

request volume and is overwhelmed. One of the challenges of defending against a GET

Flooding via the Internet attack is that the requests are typically legitimate HTTP requests,

making it difficult to filter them out without also blocking legitimate user traffic. Additionally,

the botnet can be distributed across many different computers and IP addresses, making it

difficult to block all the traffic.

To mitigate a GET Flooding via the Internet attack, web server administrators can implement

various techniques, including rate limiting, filtering out suspicious traffic, and using load

balancers to distribute the traffic across multiple servers. Additionally, network administrators

can use intrusion prevention systems (IPS) and firewalls to detect and block suspicious traffic

coming from known malicious IP addresses [121].

50

PortScan: Nmap [122] is responsible for the PortScan attack on the CICIDS2017 dataset. A

PortScan attack does network reconnaissance by scanning target host or network for open ports

and services. The purpose of a PortScan attack is to collect information specific to target

network that for identification of potential vulnerabilities or to plan further attacks. The

attacker typically uses a tool such as Nmap to send a customized set of network packets to the

target network, with the goal of identifying running services and open ports. The attacker may

use several PortScan techniques, like TCP SYN scans, UDP scans, or FIN scans, for such

running services or open ports. Attackers further plans for attacks once these running service

or open port vulnerability is identified. For example, if attacker identifies an open SSH port,

they may attempt to brute force the login credentials to get unauthorized access to target

system. Alternatively, if an attacker identifies an open web server port, they may attempt to

exploit known vulnerabilities in the web server software to gain access to sensitive data or to

launch further attacks.

To defend against PortScan attacks, network administrators can implement various

techniques, such as network segmentation, firewall rules, and IDS, to identify and block

suspicious network traffic. Additionally, system administrators can reduce the attack surface

of their systems by closing unnecessary ports and disabling unused services. It is important to

monitor network traffic for unusual patterns and keep update with security patches to prevent

exploitation of known vulnerabilities [123]. Categorization port scanning methods into the

following categories:

Port scanning methods can be categorized by type of network packets that are sent to the target

network to identify open ports and services. Some common categories of port scanning

methods include:

a. TCP SYN Scans: This is the most common category of PortScan attack where in an

attacker sends SYN packet to selected network's ports. When the port is open in response to

the SYN packet it replies with SYN-ACK. RST (reset) packet is sent by an attacker after this

to close this connection. This technique is stealthy because it only initiates a partial connection,

and the target network may not log the event.

51

b. UDP Scans: In this method, the attacker sends a UDP (user datagram protocol) packet

to selected network's ports. When a port found to be open, the target network may reply with

a UDP packet and when a closed port, the target network may respond with an ICMP (Internet

control message protocol) packet. UDP scanning is typically slower than TCP SYN scans, as

UDP packets are not guaranteed to be delivered and may require multiple attempts.

c. FIN Scans: In this method, the attacker pushes FIN (finish) packet to desired network's

ports. When a port found to be open, the target network may reply with an RST (reset) packet.

and when a closed port, the target network may not respond at all. This technique can be

effective against older systems, but many modern operating systems have implemented

defenses against FIN scans.

d. XMAS Scans: In this method, the attacker pushes packet with the FIN, URG (urgent),

and PUSH flags set to desired network's ports. When a port found to be open, the target network

may reply with an RST (reset) packet. and when a closed port, the target network may not

respond at all. XMAS scans can be effective against some systems that are vulnerable to this

type of attack.

e. NULL Scans: In this method, the attacker pushes packet with no flags set to desired

network's ports. When a port found to be open, the target network may reply with an RST

(reset) packet. and when a closed port, the target network may not respond at all. NULL scans

can be effective against some systems that are vulnerable to this type of attack.

Overall, there are various types of PortScan techniques, each with their own strengths and

weaknesses, and network administrators need to be aware of these techniques to detect and

prevent PortScan attacks.

DOS: The program LOIC [124] is responsible for the DDoS attack on the CICIDS2017 dataset,

which sent HTTP, TCP, and UDP requests. DoS attack intended to deny normal operations of

a target system, network, or service by sending huge volume of traffic. The requests are sent

in rapid succession, overwhelming the server and causing it to become unresponsive or crash.

The requests are often designed to be malformed or include invalid parameters, which can

52

consume additional server resources and make it challenging for server to process legitimate

requests. DoS attacks are executed by a variety of techniques, like flooding the target system

with traffic, exploiting vulnerabilities in the system to crash it, or overwhelming the system's

resources by consuming its memory or CPU. Some common types of DoS attacks include:

a. DDoS: It involves compromised sources or "bots" to flood the destined system or

network with traffic. DDoS attacks can be difficult to defend against, as the traffic can originate

from many different sources.

b. Application-layer DoS: This type of DoS attack targets specific applications or services

by exploiting their vulnerabilities. For example, an attacker may flood many requests to a web

server, overwhelming its capacity for reacting legitimate requests. These attacks are referred

as a "HTTP flood" or "Slowloris" attack.

c. Network-layer DoS: This type of DoS attack targets the network infrastructure, such as

routers or switches, by pushing a huge traffic to consume their resources. Such attack is also

termed as "ping flood" or "smurf" attack.

Some common DoS attack types are:

a. TCP SYN Flood: It exploits the three-way handshake mechanism of TCP that flood

server with connection requests that are never completed, causing the server to become

unavailable to legitimate users.

b. UDP Flood: This attack involves overwhelming a server with a flood of UDP packets

that crashes or inactivate targeted server.

c. Smurf Attack: The broadcast address on the network receives an ICMP echo request

and in response to this all host replies back which creates flooding of request on targeted server.

d. Ping of Death: Attackers sends a large size packet to a server or network, which can

cause the system that crashes or inactivate targeted server.

e. HTTP Flood: On target server an attacker sends huge volume of HTTP requests with

the aim of consuming its resources and denying services to users.

f. Slowloris: Attackers sends an incomplete HTTP request to targeted server, results in

holding connections open that denying services to legitimate requests.

53

g. DNS Amplification: Attackers send DNS request to a server including spoofed source

IP address, causing server to respond with a larger packet size than the original request and

overwhelming the targeted system.

h. NTP Amplification: This attack involves sending a request to a vulnerable NTP server

including spoofed source IP address, causing server to respond with a larger packet size than

the original request and overwhelming the targeted system.

DoS attacks can have serious consequences, such as disrupting critical services or

causing financial losses for businesses. Organizations can put in place several defenses against

DoS attacks, including firewalls, IDPS, and CDNs that guard against traffic overload.

Additionally, organizations can use traffic filtering and monitoring tools to detect and block

suspicious traffic patterns, and regularly update their software and systems to address known

vulnerabilities.

DoS Goldeneye: GoldenEye is a DoS tool that was developed in Python and is often used by

hackers to launch DoS attacks against web servers. It is designed to flood a target server with

HTTP GET and POST requests, which can overload the server and cause it to crash or become

unresponsive. The GoldenEye tool uses several techniques to make it more effective at causing

damage to a target server. For example, it can randomly generate User-Agents and referrer

headers to mimic the behavior of legitimate users, making it harder for the target server to

distinguish between genuine requests and malicious traffic. A single TCP connection can

transmit a larger file size by using the Keep-Alive method. Because of this, it disables HTTP

Cache Control with the 'No Cache' option. System resources are depleted quickly when either

of these two features is activated.

To protect against GoldenEye and other types of DoS attacks, website administrators can take

steps such as applying firewalls, load balancers, and various security approaches which can

identify and prevent suspicious traffic. Additionally, using a Content Delivery Network (CDN)

can help to distribute the load of incoming requests, reducing the risk of a single server being

overwhelmed [125].

FTP-Patator: Python-based FTP-Patator is a type of cyber-attack that targets File Transfer

Protocol (FTP) servers using automated brute-force techniques. The attack is carried out using

54

a tool called FTP-Patator, which is designed to test thousands of usernames and passwords in

very less time to gain unauthorized access to the FTP server. The FTP-Patator tool works by

sending login attempts to the target FTP server using database of pre-defined usernames and

passwords. The tool can also generate custom password with different set of character,

numbers, and alphabet combination along with common password patterns or word

combinations. If the tool is successful in finding a valid username and password combination

form the database of password or self-created password list, attacker can access FTP server

and potentially compromise the system. To protect against FTP-Patator, it is recommended to

use a strong password along with two-factor authentication, IP-based access controls, and

intrusion detection systems. It is also recommended to monitor FTP server logs for suspicious

activity and to regularly update and patch the server software to address any known

vulnerabilities [126].

SSH-Patator: The Patator, a multithreaded Python program and SSH-Patator is a type of

brute-force attack that targets systems using the SSH protocol. The attack involves an

automated tool called "Patator," which is used to launch a massive number of logins attempts

with combinations of username and password to take advantage of unauthorized access to the

target system. SSH protocol is a widely used method for remotely accessing and managing

systems, especially in the context of servers and cloud infrastructure. SSH relies on secure

cryptographic keys and encrypted communication to prevent unauthorized access. However,

if an attacker can guess the correct username and password combination, they can gain access

to targer system. The SSH-Patator attack is designed to automate this guessing process,

typically using a large list of common usernames and passwords, or even using dictionary

attacks to guess potential passwords based on words found in the system or user data. The tool

uses target's IP address along with list of username and password combinations to test against

the SSH server.

Aim of SSH-Patator attack is to gain access to SSH enabled system, which can then be used to

execute further attacks, install malware, or steal sensitive data. To prevent such attacks, it is

important to use strong passwords, disable password authentication for SSH, limit SSH access

to authorized users, and monitor SSH logs for suspicious activity.

55

Slowloris DoS: An attacker overwhelms the target server by keeping many connections open

simultaneously. A huge number of partial HTTP requests are sent by attacker to destination

server and keep on hold long as possible, without completing the request. This causes the

server's resources to be tied up, and it cannot accept any new connections, eventually causing

the server to become unavailable. Slowloris DoS is called "slow" because the attack is carried

out slowly and steadily, rather than in a sudden and quick burst. The attacker sends requests

slowly, and each request is incomplete, so the server cannot close the connection. By doing

this, the attacker can keep many connections open simultaneously with little bandwidth,

thereby overwhelming the server's capacity to handle incoming connections. Slowloris can be

difficult to detect because it uses legitimate HTTP requests and appears to be normal traffic. It

is effective against servers with limited resources or configurations that allow many

connections to be open simultaneously. Slowloris attacks are prevented by restricting number

of connections request per IP address, and by configuring the server to time out incomplete

requests after a certain period.

DoS SlowHTTPTest: It is an application layer DoS attack aiming to keep connection open as

long as possible by slowly and exhausting server resources by sending HTTP requests [127].

The following are the steps involved in a Slow HTTP Test attack:

a. Target selection: The attacker identifies the target server that they want to attack.

b. Initial connection: HTTP request is sent to creates connection with targeted server. It’s

request typically contains large headers size in attempt to take more server processing time.

c. Slow data transfer: Once connected, the attacker starts sending the HTTP request data

very slowly. Attacker sends small chunks of data at a time, with long delays between each

chunk. This makes it difficult for the server to process the request efficiently and can cause the

server to keep the connection open for a long time.

d. Connection keep-alive: The attacker sends a "keep-alive" header with the request,

which instructs the server to remain open its connection for long time. This allows the attacker

to keep the connection open and continue sending data slowly.

e. Exhaustion: The attacker continues to send slow HTTP requests with keep-alive

headers for exhausting server's resources so that it cannot handle new connection request. This

results in the server becoming unavailable to legitimate users.

56

Slow HTTP Test attacks can be prevented or mitigated by implementing security measures

such as rate limiting, load balancing, and using tools such as firewalls and IDS/IPS.

Botnet: A network of internet-connected devices injected with malicious software, called

"bots" or "zombies." These infected devices, which can include computers, servers,

smartphones, and Internet of Things (IoT) devices, managed by single server. The operators of

a botnet use the compromised devices to perform several malicious activities, like "DDoS"

attacks, "spamming", "phishing", "click fraud", and "data theft". They can also be used to

spread malware, such as ransomware, across the internet. Botnets are typically created through

malware infections, which can occur through a variety of methods such as phishing emails,

software vulnerabilities, and social engineering. Once infected, the device becomes a part of

the botnet and can be controlled remotely by the botnet operator. Botnets can be difficult to

detect and take down due to their distributed nature and the use of encryption and other

techniques to evade detection.

Ares [128], a Python-based attack tool, is used to conduct a botnet attack. "Ares" is the name

of a specific botnet that was active between 2008 and 2016. It was a peer-to-peer botnet that

primarily spread through file sharing networks such as Ares Galaxy, hence its name. The Ares

botnet was primarily used for unethical purpose like distributed denial-of-service (DDoS)

attacks, spamming, and stealing confidential information such as usernames and passwords. It

was also capable of downloading and executing additional malware on infected machines. The

Ares botnet was eventually taken down in a joint operation between law enforcement agencies

and cybersecurity researchers. However, botnets continue to be a significant threat to

cybersecurity and can cause significant harm to individuals, organizations, and even entire

countries.

Web-based Attack: A web-based attack [129] targets a website or web application, exploiting

vulnerabilities in the software and infrastructure that underpins the site. Web-based attacks can

be carried out using a range of techniques, including:

Cross-site scripting (XSS): Attackers inject malicious code inside web page accessed by users,

potentially stealing sensitive information or executing arbitrary commands on the user's

computer.

57

a. SQL injection: Inserting malicious code inside web form, which can then be used to

manipulate a website's database and gain unauthorized access to sensitive data.

b. Cross-site request forgery (CSRF): Attackers tricks user to perform any activity on

webpage, like clicking any link or submitting a form, without knowledge of user.

c. Distributed denial-of-service (DDoS): It involve overwhelming a website using data

packets, causing it to become unavailable to users.

d. Man-in-the-middle (MITM) attacks: This involves eavesdropping user

communications, potentially stealing login credentials or other sensitive information.

Web-based attacks can have serious consequences, including data theft, financial

losses, and reputational damage. To protect against web-based attacks, website owners and

developers should ensure that their software is up to date, implement strong authentication

mechanisms, and use encryption to protect sensitive data. Users should also be vigilant when

browsing the web, avoiding suspicious links and keeping their software up to date.

Infiltration: An infiltration [130] attack has goal to identify security flaws that could be

misused by a real attacker and getting recommendations for further improving security. In an

infiltration attack, a team of ethical hackers or security professionals attempts to take control

of system or network using a variety of techniques, including social engineering, malware,

password cracking, and network scanning. The attackers then attempt to exploit any

vulnerabilities they find to access entry to crucial data or resources. Infiltration attacks are

conducted by numerous methodologies, such as "white box", "gray box", and "black box"

testing. Infiltration is an important part of a comprehensive security testing program, allowing

organizations to identify and remediate vulnerabilities before they can be exploited by

attackers. However, it is important to conduct infiltration attacks only with proper

authorization and with appropriate safeguards in place to avoid causing unintended harm to the

system or network being tested.

Table 6. Comparative analysis of various attack methodology/detection techniques

Attack Type Description Attack methodology/detection techniques Target

Bot Malicious software

designed to perform

automated tasks

Infiltrates systems, often part of a botnet,

used for various purposes such as DDoS

attacks, data theft, or spamming

Various

58

DDoS Distributed Denial of

Service

Overwhelms a target system or network with

a flood of traffic from multiple sources,

causing a service outage

Websites,

Networks

DoS GoldenEye Denial of Service attack

using the GoldenEye

tool

Employs HTTP and HTTPS flooding to

overwhelm the target, disrupting services

Websites,

Servers

DoS Hulk Denial of Service attack

using the Hulk tool

Utilizes a large number of HTTP GET/POST

requests to exhaust server resources, leading

to service unavailability

Web Servers

DoS

Slowhttptest

Denial of Service attack

testing tool for slow

HTTP

Exploits slow POST requests to consume

server resources gradually, leading to a

potential service outage

Web Servers

DoS Slowloris Denial of Service attack

using the Slowloris tool

Keeps multiple connections to the target web

server open, preventing them from serving

other legitimate requests

Web Servers

FTP-Patator Brute-force attack

targeting FTP servers

Attempts to gain unauthorized access by

systematically trying different username and

password combinations

FTP Servers

Heartbleed OpenSSL vulnerability

allowing unauthorized

access

Exploits a vulnerability in the OpenSSL

cryptographic software library, potentially

leaking sensitive data from servers

Servers

Infiltration Unauthorized access or

penetration into a

system

Involves gaining entry into a secure system

or network with the intent of extracting or

manipulating data

Networks,

Systems

PortScan Systematic probing of a

network for open ports

Scans for open ports on a target system to

identify potential vulnerabilities or entry

points

Networks

SSH-Patator Brute-force attack

targeting SSH servers

Tries multiple username and password

combinations to gain unauthorized access to

secure shell (SSH) servers

SSH Servers

Web Attack Various attacks

targeting web

applications

Includes SQL injection, cross-site scripting

(XSS), and other methods to exploit

vulnerabilities in web applications

Websites,

Servers

Back Unauthorized access to

a system using a Trojan

Involves compromising a system and creating

a backdoor for future access

Systems

Land Spoofed packet causing

a system to reply to

itself

Exploits a vulnerability where the target

system responds to a maliciously crafted

packet

Systems

Neptune Denial of Service attack

using the Neptune tool

Floods a target network with TCP packets,

causing service unavailability

Networks

Pod Denial of Service attack

using the Pod tool

Overwhelms a target system with a high

volume of traffic, leading to service

disruption

Systems

Smurf ICMP echo request

flood with a spoofed

source

Amplifies a single ICMP echo request into a

flood, causing network congestion and

service disruption

Networks

Teardrop Fragmented packet

attack causing system

crashes

Sends overlapping, fragmented packets to the

target, causing the system to crash

Systems

Satan Network vulnerability

scanner and exploit tool

Scans networks for vulnerabilities and

exploits them to gain unauthorized access

Networks,

Systems

Ipsweep Network scanning for

active IP addresses

Probes a network to identify active IP

addresses, mapping the network structure

Networks

59

Nmap Network scanning and

discovery tool

Scans a target network to discover hosts,

open ports, and services, aiding in

penetration testing

Networks

Portsweep Scanning for open ports

on multiple systems

Identifies open ports on multiple systems

within a network, potentially indicating

vulnerabilities

Networks

Guess_passwd Brute-force attack

targeting password

guessing

Repeatedly attempts different password

combinations to gain unauthorized access

User

Accounts

ftp_write Unauthorized write

access to FTP server

Exploits vulnerabilities to gain unauthorized

write access to an FTP server

FTP Servers

Imap Unauthorized access to

an IMAP server

Gains unauthorized access to an Internet

Message Access Protocol (IMAP) server

Email

Systems

Phf Exploitation of the

"phf" CGI vulnerability

Exploits a vulnerability in the "phf" CGI

script to gain unauthorized access

Web Servers

Multihop Unauthorized use of

multiple hosts for

attacks

Uses multiple hosts to launch attacks, making

it challenging to trace the origin

Networks

Warezmaster Distribution of pirated

software and files

Involves the distribution of copyrighted or

unauthorized software and files

File Sharing

Warezclient Downloading pirated

software and files

Involves downloading copyrighted or

unauthorized software and files

Individuals,

Systems

Spy Unauthorized

monitoring or espionage

Involves spying on user activities, capturing

sensitive information

Individuals,

Systems

Buffer_overflow Exploiting buffer

overflow vulnerabilities

Overflows buffer memory to execute

malicious code, potentially leading to system

compromise

Systems

Load_module Unauthorized loading of

kernel modules

Attempts to load unauthorized kernel

modules, potentially leading to system

compromise

Systems

Perl Exploitation of Perl

interpreter

vulnerabilities

Exploits vulnerabilities in the Perl interpreter,

allowing execution of malicious code

Systems

Rootkit Stealthy software for

unauthorized access

Installs malicious software to gain

unauthorized access and maintain control

over a system

Systems

2.8 Machine Learning

Machine learning is a powerful tool for detecting and mitigating network attacks. Here

are some ways in which machine learning is helpful in the research of network attacks:

a. Automated detection: This ML approach automate identification of network attacks by

analyzing network traffic in real-time. The algorithms can train large datasets of both

benign and malicious traffic to learn the patterns of different attack categories. Once

trained, the algorithms can identify and flag any suspicious network activity that

deviates from these patterns, enabling quick detection and response to potential threats.

60

b. Improved accuracy: Machine learning algorithms can analyze vast amounts of network

traffic data and detect subtle patterns that may be difficult for humans to detect. This

can lead to more accurate detection of network attacks and fewer false positives, which

can save time and resources.

c. Speed and scalability: ML algorithms can synthesize large volumes of network traffic

data effectively and quickly, that make possible to evaluate vast real-time data. This

scalability allows network administrators to monitor and respond to network attacks

quickly, reducing the potential impact of these attacks.

d. Continuous learning: It can adapt to new network threats and adjust their detection

patterns as new threats emerge. This continuous learning capability makes machine

learning-based detection systems more robust and adaptable to evolving threat

landscapes.

e. Predictive analysis: It can predict future network attacks associated with historical data

and patterns. This can help network administrators prepare for potential threats and

implement proactive measures to prevent attacks from occurring.

Machine learning approaches has its own strengths and weaknesses. Some common ML

approach are listed below:

Supervised learning: This type of approach uses labeled dataset for training a model, where the

desired output is already known. The model learns to relate input variables to validated output

variable, allowing to make predictions on new and previously uncovered data. This technique

is applied for classification and regression problems. Each dataset flow must be accurately

identified and labeled in training data with a description of its characteristics (such as normal

or malicious). At this point, the algorithm's performance is evaluated using these tags, which

are then compared to what it predicted. The method's performance is excellent. When using an

external service (such as manual tagging) for labeling, the cost of supervised learning is high.

Decision Trees, K-Nearest Neighbors, and Random Forests are a few examples of this type of

algorithm.

Examples are:

a. Classification: Predicting whether an email is spam or not spam

b. Regression: Predicting the price of a house based on its features

61

Unsupervised learning: This method trains a model on an unlabeled dataset with unknown

output. The model detects data patterns and outliers. Clustering and anomaly detection are

major area for conducting unsupervised learning. Methods that do not use labels are known as

unsupervised learning. Algorithms use various properties to categorize the data into groups

and look for correlations between them. Accuracy detection and relationship learning are just

two of the many areas where it has been used extensively. Labeling, on the other hand, requires

specialized expertise that is expensive to outsource. Examples are:

a. Clustering: Grouping customers into segments based on their purchasing habits

b. Anomaly Detection: Identifying fraudulent credit card transactions based on patterns

in the data

Semi-supervised learning: It includes both labeled and unlabeled data. It learns from labeled

data and apply this knowledge for predicting on the unlabeled data and used when labeled data

is scarce or expensive to obtain. Unsupervised and supervised learning methods are combined

to create semi-supervised learning: method. In most cases, only small percentage of data are

labeled. This approach combines advantages of supervised and unsupervised learning,

resulting in a high level of performance at a lower cost.

a. Text classification: Labeling news articles like politics or sports containing only few

labeled and large unlabeled dataset

b. Medical diagnosis: Identifying diseases in medical images containing only few labeled

and large unlabeled dataset

Reinforcement learning: It involves decision making consideration by feedback from its

surroundings. Reinforcement learning is commonly used in robotics and gaming applications.

a. Robotics: Teaching a robot to navigate a maze by rewarding it for taking the correct

path and penalizing it for taking the wrong path

b. Gaming: Training a computer to play chess by rewarding it for making good moves

and penalizing it for making bad moves

Deep learning: It requires training the model on neural networks, which are complex

mathematical models. Deep learning has proficiency of learning complex patterns and

associations in data, making it well-suited for image and speech recognition applications.

62

a. Image recognition: Classifying images of animals, objects, or people based on their

features

b. Speech recognition: Transcribing spoken words into written text

63

Chapter-3

3. Hypothesis, objectives, and methods

3.1 Hypothesis

To analyze, how a better and efficient system can be formed that secures the network from

attacks, below are the hypotheses that lead to the firm statement of how current research work

proceeded:

Several authors have proposed various methods to detect attack at DLL, network, transport

and application layer along with its prevention techniques. Attack analysis at the physical layer

involves attacks like eavesdropping and jamming. While conducting cross layer analysis it is

found that the physical layer does not have any much to do with software part as intruders

generally capture packet by tapping or intercepting signals or do the jamming for interrupting

service as discussed in section 2.1.

Attack analysis at the data link layer is crucial for network security, as it helps ensure

reliable data transport between devices. However, it is vulnerable to various security attacks

that compromise network integrity, confidentiality, and resource availability. Research on data

link layer security is limited compared to other cross-layer aspects. However, there is no

method for tools like Snort to detect hidden terminal attacks, and further research is needed to

determine its applicability. Tools like Snort typically performs well at network, transport, and

application layers, but cannot detect all types of attack as discussed in section 2.2.

Most of the attacks happened inside or outside of the network at network, transport, and

application layer only and can be identified based on signature or anomalies. Attack at these

three layers can be easily detected if the signature database is properly configured but it will

be inefficient in case of zero-day attack or novel attack. Machine learning (ML) can be used to

detect anomalies, clustering, classification, regression, and rule extraction. However, labelled

data is challenging to train due to various factors, such as lack of publicly available datasets

and access to comprehensive data on cyberattack frequency and impact. It is assumed that,

integrating cross layer network attack dataset together in into existing machine learning

approaches will enable more robust fault and security management capabilities. Also, it is

64

needed to improve the utilization of feature grouping by applying existing clustering

algorithms for efficient detection of known/unknown attacks along with the need for unbiased

data to train in ML. These issues are discussed in section 2.3.

3.2 Objectives of this work

a. To improve the utilization of feature grouping and applying existing clustering

algorithms for detecting known/unknown attacks.

In our increasingly connected society, network attacks are a major challenge. Recent

studies have used traditional machine learning to find network attacks. They did this by looking

at the patterns of how networks interact and training a classification model. Most of the time,

these models use large, labeled datasets. However, due to the speed and unpredictability of

cyber-attacks, this labeling is unlikely to happen in real time. Many researchers have suggested

using the "feature grouping" method to find new and unknown attacks by transferring

information about known attacks. The feature grouping approach can find the different kinds

of attacks and learn an optimized representation that is not affected by changes in how the

attacks behave.

By feature grouping, we can automatically find the link between the new attack and the

known attack. This grouping can be used to simulate situations in which different attack styles

or subtypes from the training set are included in the testing dataset. Traditional classification

models like decision trees, random forests, KNN, and other approaches to grouping features

can be used for this. In the present work, nine ML approach is used and applied on 77 features

and reducing up to 14 to increase performance and accuracy in detecting attack.

b. To design the fault and security management framework for future networks with

existing machine learning approaches.

To achieve the objective, a selective ML algorithm are employed along with feature

grouping, performance analysis, training and testing, and identification of known or unknown

attacks in the future. Existing frameworks for intrusion detection systems (IDS) typically

consider all information features to differentiate between interruption and misuse patterns.

However, some of these features may be redundant or contribute minimally to network attack

65

identification. Hence, the aim of this research was to determine the crucial feature groups for

developing an effective and easily programmable IDS.

To address this, we propose the FSS-PART model, which utilizes Adaptive Resonance

Theory (ART) to identify similarities and patterns in network traffic. By leveraging machine

learning algorithms, predictive models capable of detecting network attacks can be

automatically generated. In this research, an attempt is done to implement an application of the

K-means and KNN methods within a web-based framework to identify network attacks based

on protocol type TCP, UDP and ICMP.

To facilitate the identification of new network attacks in a specific domain, we included

source and target parameters that accurately reflect distinct or similar network environments.

Additionally, we ensure that different attacks are recorded at various times and in separate

instances. The approach for detecting novel network threats involves the following steps:

i. Extraction of features from collected data

ii. Classification of the extracted data

iii. Representation of the data in graph for attack analysis

By following this framework, it aimed to streamline the identification of new network threats

as well as improving the overall effectiveness of intrusion detection systems.

c. Comparative analysis of this method with existing methods using standards

datasets and parameters.

For network model or intrusion detection systems (IDS) to figure out the best functions,

selecting or removing functions is a complex task. Calculations based on filters, especially for

information gain (IG), correlation (CR), and relief F (ReF). The system first gets the feature

subset of each classifier. Depending full features and the strategy for combining other subsets,

and after many tests, it was found that reducing the number of features improves performance,

while adding more features outperformed but makes it easier to identify attacks. InfoGain,

Coorelation and ReliefF were analyzed, and the result is included in Table 25.

66

3.3 Approach for achievement of the objectives

Table 7. Methodology/ Tools/ Instruments used

Objective Analysis Processes/ software used

To improve the utilization of

feature grouping and applying

existing clustering algorithms

for detecting known/unknown

attacks.

Dataset analysis and its

features along with

grouping of features for

effective detection of

attack

KDD'99 datasets, python,

Weka

To design the fault and security

management framework for

future networks with existing

machine learning approaches.

Feature grouping,

analysing performance,

training, and testing using

selective machine learning

algorithm

KDD'99, CICIDS 2017

datasets, python, Weka

Comparative analysis of this

method with existing methods

using standards datasets and

parameters.

Analysing the impact of

feature grouping based on

number of features taken

by earlier approach and

impact on the

performance.

KDD'99, CICIDS 2017

datasets, python, Weka

In recent years, cyberattacks have become a significant threat to government, military,

and industrial networks. These attacks are increasingly complex and diverse, including zero-

day attacks and Denial of Service (DoS). Traditional signature-based detection methods often

lack to keep up with the evolving nature of cyberattacks. It is crucial to explore new approaches

that can identify anomalies, enable network learning and adaptation and detect threats in

various network settings.

Machine learning and data mining have been employed to enhance the detection rate

of network attacks in networked environments. Supervised data-driven models have shown

higher accuracy compared to unsupervised methods, but they require a large number of labeled

malicious examples. As attack patterns change, the distribution of functions can also shift,

rendering the training models less effective in identifying new attacks.

Obtaining enough identified data for continuously emerging attacks is challenging.

Additionally, when new attacks are discovered, incorporating new functions from different

network levels becomes necessary. Since these functions have varying variables, it becomes

possible to retrain the models. To address these challenges, we propose a method known as

67

"feature grouping" to facilitate the identification of new threats. The "feature grouping

approach" is a novel machine learning technique that adapts features in a "target domain"

where labeled data is limited by leveraging knowledge attained from an associated "source

domain." Present work inspired by the fact that most network attacks are variations of well-

known attack families, sharing similar features that align with the feature grouping approach.

The data from the source and destination networks are of different time periods within the same

network setting. The assumption is that attacks on the source network are previously known

and recorded, while attacks on the target network are new and distinct from those in the source

network. The feature grouping method is examined in this thesis through parameter

adjustments and various sizes of training sets. Furthermore, this method can be applied to other

machine learning techniques.

Existing network Intrusion Detection Systems (IDS) primarily rely on signature-based

systems, which utilize collections of attack signatures created manually by experts. This

process is slow and computing intensive. Machine learning models have been developed to

predict and detect network attacks, reducing the reliance on manual analysis by experts. While

IDS technology is beneficial, there is a need for improved detection of hidden or complex

attack patterns. Building an effective intrusion detection system relies on a robust IDS dataset,

which is used for model construction and testing to detect intrusions. Machine learning

approaches leverage this data to build predictive models, where incorporating diverse and

interesting data enhances the model's capabilities. It is significant to thoroughly evaluate both

normal and malicious packets to identify and address vulnerabilities. Testing the system's

ability to detect and minimize false alarms is critical. Ensuring low false alarm rates provides

crucial information to programs, protocols, and lower-level network entities, enabling them to

detect and respond to attacks. Creating and simulating realistic profiles aids in obtaining

accurate information, as profiles can be described and executed by individuals, autonomous

agents, or random distributions. Current intrusion detection tools often fail to accurately

represent network traffic as it occurs in the real world. Collecting intrusion detection data as

part of the process for developing and reviewing detection methods for computer network

attacks is essential. Such datasets should encompass real-world network situations to ensure

their effectiveness. Such a dataset is needed to show how this method for finding network

threats works in real life. Study various forms of attacks, and various methods of machine

68

learning, including classification, identification of anomalies and selection mechanisms for

building host and network level detection models, the following are the outcome:

• Use of ML approach for understanding attacks at different layers.

• For each attack to be found, there should be a thorough review and consideration for

ML method.

• How data is collected, missing data are taken out, and the data is analyzed.

• For each attack, get representative data from a live university network ex. CICIDS

2017, such as network traffic or server logs. Data collection for each attack is well

thought out so that the gaps in the available databases can be fixed.

• Considering all attack in the dataset, research done on these collected datasets are

correct.

• This work also justifies how ML approach is helpful in building host and network-

based detection model.

• Feature selection approach is used to reduce attack detection time under different ML

approach.

3.4 Tools selection

3.4.1 Python

A high-level programming language which is used for diverse tasks, such as building websites,

analyzing data, creating AI, doing scientific computing, and more. Guido van Rossum made it

public for the first time in 1991. Since then, it has become most used computer languages in

the world. It is a great language for learning because its code is simple and easy to understand.

It has an active community of developers involved in making third-party libraries and tools

that make it even more powerful and flexible. Some of the key features of Python include

dynamic typing, automatic memory management, object-oriented programming, and support

for multiple programming paradigms. Python code can run on several platform such as

Windows, macOS, Linux, and more.

69

3.4.2 Sklearn

Sklearn, better known as scikit-learn, is a renowned open-source machine learning library

created on top of "NumPy," "SciPy" and "matplotlib." It offers a convenient and efficient

platform for applying a diverse array of machine learning algorithms, together with

classification, regression, clustering, and dimensionality reduction. Sklearn offers a wealth of

tools for data preprocessing, model selection, and evaluation. Additionally, it offers access to

several widely used datasets that serve as benchmarks for testing and comparing different

machine learning methods. Within Sklearn, popular methods for instance "linear regression,"

"logistic regression," "k-nearest neighbors," "decision trees," "random forests," "SVM" and

"neural networks" are frequently employed to address various machine learning tasks.

3.4.3 Pandas

An open-source tool for Python which analyzes data and supports other tools for working with

organized data, such as tools for loading, cleaning, transforming, and displaying data. Pandas

is built on top of NumPy, which is another popular scientific computing tool for Python. It has

an interface that is made to make data analysis easier and more intuitive. Pandas adds Series

and DataFrame, two new data formats that make it easier to work with tabular data. The Series

object is basically a one-dimensional array with a labeled index, while the DataFrame object

is a two-dimensional table with named rows and columns. Pandas makes it easy to index, filter,

and manipulate these data structures. It also lets us do more complicated things with data, like

grouping, pivoting, and merging. Pandas also has a lot of tools for working with missing data,

data in a time series, and data that can be put into different groups. It also works with other

popular Python tools, like Matplotlib for displaying data and Scikit-learn for teaching

computers how to do things.

3.4.4 Matplotlib

The Python tool Matplotlib makes it easier to see how data looks. Matplotlib is a useful

Python library for plotting data. It has many tools for making plots, charts, and graphs of high

quality, like line plots, scatter plots, bar plots, histograms, and more. NumPy is another popular

scientific computing library for Python, and Matplotlib is built on top of it. It works well with

70

other tools for data analysis and machine learning, like Pandas and Scikit-learn. It has an easy-

to-use interface for making custom plots and visualizations, and it has a lot of customization

choices for fine-tuning how plots look. Matplotlib are used for data visualization jobs, such as

exploratory data analysis, making figures that are good enough for publication, and telling

stakeholders about the results. It also supports a wide range of output files, such as PNG, PDF,

SVG, and more.

NumPy: Scientific computing, math and logic operations were made faster and easier by using

this library. It can do a lot of things with arrays, such as indexing, slicing, sorting, and changing

multidimensional arrays. NumPy is built on top of optimized C and Fortran tools and is meant

to be fast and efficient. It has a lot of math features, such as linear algebra, Fourier transforms,

and making random numbers. NumPy also works well with other scientific computer libraries

such as Pandas, Scikit-learn, and Matplotlib. One of NumPy's most important parts is its

multidimensional array object, which makes it easy to work with big data sets. We can make

these arrays from Python lists or tuples, and they can have any number of dimensions. NumPy

offers a variety of methods for doing math operations on these arrays, including vectorized

operations that can be done on the whole array at once.

3.4.5 Weka

Weka is an open-source software that helps with data mining and machine learning

along with giving us a full set of tools for preprocessing data, classifying, regressing,

clustering, and finding associations between rules. Weka is written in Java and has both a

graphical user interface and a command-line interface for running batch tasks. It also offers a

extensive array of machine learning methods, such as "decision trees", "support vector

machines", "random forests", "k-nearest neighbors", and "neural networks", as well as tools

for feature selection, ensemble learning, and model evaluation. Weka's ease of use is one of its

best features. This makes it a good choice for both beginners and pros. It also has a lot of

information about how to use it and a big, active community of developers and users who work

together to improve the software and help new users.

71

3.5 Hardware platform selection

The time it takes for a machine learning algorithm to run is one way to judge its

performance. It is, however, possible that the execution time will be affected by the computer's

performance. In this research work following are the hardware configuration considered.

Operating System: Windows 11

Processor: Intel Core i7-1065G7

Clock Rate: 1.30GHz (8 CPUs), ~1.5GHz

Memory (RAM): 16384MB

Card name: NVIDIA GeForce MX350 with Display Memory: 10064 MB

Card name: Intel Iris Plus Graphics with Display Memory: 8212 MB

Solid State Drive: 1 TB (3400 MB/s reading and 3100 MB/s writing)

* Machine learning Training and Testing part is done on Google Colab with 12 GB

RAM and allocated GPU.

3.6 Data collection process

KDD'99 and CICIDS 2017 datasets were analyzed for any improvement by selecting

and reducing different features. As these datasets were large and features in these datasets were

41 for KDD'99 and 79 for CICIDS 2017 respectively so selection of important features and

detection of attack with accuracy and putting the provision for improving the efficiency of

detecting the attack were a challenging task.

The first task in the process was to select the datasets on which feature grouping need to be

done. Following is the description regarding the datasets:

Synthetic datasets: To meet condition or specific needs synthetic datasets are generated that

satisfy real data. When we design any system for theoretical analysis, we use this dataset, and

this dataset can be refined accordingly. It is used for creating different types of test scenarios.

Designers utilize datasets to analyze and create realistic profiles for evaluating the

72

effectiveness of methods and techniques. However, it is often challenging to determine how

well algorithms perform in real-world scenarios using these datasets.

Benchmark datasets: These datasets are systematic and well-defined. They rectify the

strengths and weaknesses of various algorithm. These given below the available benchmark

datasets produced using simulated environment or by different attack scenarios:

NSL-KDD dataset: It is most used benchmarked dataset derived from DARPA98.

Several other datasets include KDD'99, DARPA 2000 dataset, DEFCON dataset, CAIDA

dataset, LBNL dataset etc.

Benchmark datasets are not effective for real world traffic as they do not represent

dataset for simulating real time network. As DARPA dataset does not represent real network

traffic as it is produced synthetically.

Real life datasets:

Example of some real-life datasets includes CICIDS 2017, UNIBS dataset, ISCX-UNB

dataset, TUIDS dataset etc. In this work KDD'99 and CICIDS 2017 datasets is taken. Different

datasets are available for research purpose, and this can be implemented for training and testing

purpose for future attack. Most famous among these datasets are KDD'99 & CICIDS2017

dataset. KDD'99 is most well-known benchmark and researched datasets in IDS development.

It is a statistically pre-processed datasets available by DARPA since 1999. KDD'99 is mainly

used for offline intrusion detection, but can it be used for online datasets. Presently, by

comparing the structure of KDD'99 Dataset to that of any simulated attack, it’s clear that

KDD'99 model is showing its age. It is not the best choice to train any machine learning

algorithm using KDD'99 for any real-life datasets but it can be taken for reference purpose for

benchmarking, and this is the reason CICIDS 2017 dataset is considered for further analysis of

work.

73

Chapter-4

4 Implementation

Utilizing machine learning approaches for attack detection has proven to be effective

in the domain of network security. However, the success of these models heavily depends on

the quality of the data used for training and testing. To ensure the reliability and accuracy of

the results, data cleansing plays a vital role in the initial phase.

During the data cleansing process, various techniques are employed to eliminate errors,

inconsistencies, and incomplete records from the dataset. This step is crucial as it helps to

remove noise and ensure that the subsequent analysis is conducted on reliable and high-quality

data. By fixing problems with data integrity early on, the performance and usefulness of the

machine learning models can be greatly improved. Following data cleansing, the dataset

divides in two distinct categories: training and testing set. The training set train the machine

learning models, enabling them to learn and identify patterns within the data. On the other

hand, the testing set is used to evaluate the performance of the trained models by assessing

their ability to accurately detect and classify attacks.

Feature selection is a crucial aspect of the machine learning process. It involves

identifying the most relevant properties from dataset applied by ML algorithms for attack

detection. Purpose of feature selection is to optimize performance and efficiency of models by

selecting most informative and discriminative features. By carefully choosing these features,

the models can focus on the most relevant aspects of the data, improving their ability to

accurately identify and differentiate between normal network behavior and potential attacks.

Once the feature selection process is complete, the machine learning algorithms are ready to

implement with dataset. These algorithms utilize the chosen features and leverage their

underlying mathematical and statistical properties to detect and classify attacks. They analyze

the patterns, relationships, and characteristics present in the data to identify any anomalies or

suspicious activities that may indicate a potential attack.

By following this approach, which involves data cleansing, feature selection and

applying machine learning algorithms, attack detection accuracy and effectiveness can be

74

significantly enhanced. The combination of these steps allows for the creation of robust and

efficient models that can successfully differentiate between normal network behavior and

malicious activities. The goal is to provide network administrators and security analysts with

reliable tools to detect and mitigate potential threats in real-time, safeguarding the integrity

and security of network systems. The entire procedure is shown in greater detail in Figure 6.

Two different datasets are used. In the first approach CICIDS 2017 datasets are used and

another using KDD'99.

75

Figure 6. Flow diagram for identification of attack

76

4.1 Data Cleansing

Preprocessing eliminated redundant or unimportant elements.

Following data preprocessing steps were done:

i. Imports necessary libraries and modules, including pandas, os, sklearn.preprocessing,

and time.

ii. Define list of CSV file names and a list of main labels representing column headers.

iii. Write the main labels as the header in each CSV file, based on the given file names.

iv. For each CSV file, read the file line by line, checks if the line starts with a number,

replaces any instances of " – " with " - ", and write the line to a temporary CSV file.

v. Read the temporary CSV file using pandas, fills any missing values with 0, and

performs the following steps for specific string features:

 Replace 'Infinity' with -1.

 Replace 'NaN' with 0.

 Convert string representations of numbers to their corresponding numerical values.

vi. Identify string features by checking the data type of each column and stores them in

the variable string_features.

vii. Initialize a label encoder from sklearn.preprocessing.

viii. Encode the string features using the label encoder, replacing the original values with

encoded values.

ix. Drop unnecessary column from the DataFrame.

x. Write the preprocessed DataFrame to the file final CVS file and remove temporary cvs

file.

Flow

Recording

Day

pcap

File size

Duration CSV File

Size

Attack Name Flow Count

Table 8. Overview of the CICIDS2017 dataset.

77

Monday 10 GB All Day 257 MB No Attack 529918

Tuesday 10 GB All Day 166 MB SSH-Patator, FTP-

Patator

445909

Wednesday 12 GB All Day 272 MB DoS Slowhttptest,

DoS Hulk, DoS

slowloris, Heartbleed,

DoS GoldenEye

692703

Thursday 7.7GB Morning 87.7 MB Web Attacks (XSS,

Brute Force, Sql

Injection)

170366

Afternoon 103 MB Infiltration 288602

Friday 8.2GB Morning 71.8 MB Bot 192033

 Afternoon 92.7 MB DDoS 225745

 Afternoon 97.1 MB PortScan 286467

Before putting the dataset to use, it's possible that some alterations will be required to make it

more effective. Considering CICIDS2017 dataset all the incomplete records and errors have

been corrected.

78

There are 3119345 records in the dataset. Table 9 shows numerical distribution of these

records. A closer look at these records reveals that the 288602 record is incorrect or incomplete.

After Removing these unnecessary records as the first step in pre-processing total count is

2830743. The provided analysis includes the count of different types of network activities or

attacks observed in a dataset. Here is a breakdown of the occurrences:

The majority of the network activity in the dataset is classified as "BENIGN,"

representing normal network traffic with 2,359,289 occurrences. However, it is worth noting

that there are several different types of attacks present in the dataset as well. Among the attacks,

the most frequent ones are "DoS Hulk" with 231,073 occurrences, followed by "PortScan" with

158,930 occurrences. These attacks involve overwhelming the target network or scanning it

for vulnerabilities, respectively. The "DDoS" (Distributed Denial of Service) attack is also

significant, with 41,835 occurrences. This attack involves multiple sources overwhelming a

target with traffic to disrupt its normal functioning.

Table 9. CICIDS 2017 dataset with number of attacks after correction

79

Figure 7. Attack instance in the CICIDS2017 dataset (Greater than 20000)

Less frequent attacks include "Infiltration," "Web Attack - SQL Injection," and "Heartbleed."

These attacks involve unauthorized access to networks, exploitation of SQL vulnerabilities in

web applications, and exploiting a vulnerability in the OpenSSL encryption library,

respectively.

Figure 8. Attack instance in the CICIDS2017 dataset (Between 500 to 20000)

80

Figure 9. Attack instance in the CICIDS2017 dataset (Less than 500)

Figure 10. Distribution of attack vs. benign percentage

Understanding the distribution and frequency of these attacks within the dataset can

help in developing and enhancing network security measures. It provides insights into the types

of threats that networks may face and the areas that require attention to strengthen the overall

security posture.

The dataset consists of 86 columns, with a total of 85 columns dedicated to features.

However, there is an error in the feature columns where the "Fwd Header Length" attribute is

duplicated in both the 41st and 62nd columns. To rectify this error, the repeated column

(column 62) should be deleted. To utilize the dataset for machine learning algorithms, certain

properties need to be converted into numerical data. These properties include Flow ID, Source

IP, Destination IP, Timestamp and External IP. To achieve this, the "LabelEncoder()" class

from the Sklearn library can be utilized. By applying the LabelEncoder(), string values within

these columns can be transformed into corresponding integer values. The integers will range

between 0 and j-1, where j represents total count of unique attributes within the column.

81

Figure 11. Overall Attack instance in the CICIDS2017 datasets

Even though the "Label" field is a categorical one, it should not be changed. This is because

the original categories within the "Label" column are required during the processing stage.

Different attack types can take on various forms and approaches, making it necessary to retain

the original categories for accurate analysis and classification. By addressing the error in the

duplicated column and converting relevant properties into numerical data using the

LabelEncoder() class, the dataset will be prepared for machine learning operations. The

numerical representation of the data will allow machine learning algorithms to effectively

analyze and classify the network activities, enabling the detection and identification of

different attack types based on their characteristic patterns and behaviors. Attack instance in

the dataset clearly shows only three attacks are dominant compared to remaining 11 attack

categories. Further research will require on the same for balance between the attack count and

benign data. Individual attack based data extraction from whole dataset for training and testing

is another aspect when a model is designed instead of training model with all attack together

in the initial phase of machine learning process.

82

4.2 Creation of Training and Test Data

A significant amount of data is required to train and evaluate the performance of

algorithms in algorithm learning process. Testing the algorithm's performance goes beyond the

training data and requires additional data specifically for evaluation purposes. The algorithm

learns from the training data and then put on its learned knowledge to the test data, allowing

for an assessment of its performance based on unseen examples.

In the case of the CICIDS2017 dataset, there is no predefined separation of dedicated training

and testing datasets. Instead, it is provided as a single, unpartitioned dataset. To address this,

it is necessary to partition the dataset into distinct training and testing sections. This can be

achieved using a command from the Sklearn library called "train_test_split." This command

allows users to specify the desired sizes or proportions of the training and testing data.

The separation of data into training and testing sets typically follows a general rule of

thumb. For instance, common proportions include 20:80, 30:70, 35:65, 40:60 and 50:50

respective percentage ratio for testing and training. These proportions ensure a balance

between having enough data for training the algorithm and a sufficient amount for evaluating

its performance.

When creating these data groups using the train_test_split command, the selection

process is randomized to avoid any biases. This procedure is identified as cross-validation,

which helps in obtaining reliable and unbiased performance results. To ensure the adequacy of

results gained during running the model, training and test data creation is repeated multiple

times. In this case, the process is repeated 10 times consecutively. By averaging the results of

these repeated operations, a more accurate and robust assessment of the algorithm's

performance can be obtained. The application of cross-validation and the averaging of results

across multiple iterations provide a more comprehensive evaluation of the machine learning

algorithm's capabilities. It helps mitigate the impact of randomness and variability in the

dataset, ensuring that the results are reliable and representative of the algorithm's performance

across different data splits.

4.3 Feature Selection

This process encompasses computing the importance of features in the training dataset,

categorized based on different "Benign" and "Attack" ratios. Three ratios are considered:

83

50:50, 80:20, and All. Additionally, this process is performed for the complete dataset. In this

research work, attack types considered include "Bot", "DDoS", "DoS GoldenEye", "DoS

Hulk", "DoS Slowhttptest", "DoS slowloris", "FTP-Patator", "Heartbleed", "Infiltration",

"PortScan", "SSH-Patator" and "Web Attack". For the Web Attack category, Brute Force, XSS,

and SQL Injection are merged into a single file due to their minimal occurrence compared to

other attacks.

The feature selection process utilizes the Random Forest Regressor algorithm and set

the value 250 for the n_estimators parameter, which specifies the number of trees to be built.

By combining the predictions of multiple trees, the algorithm determines the maximum voting

or averages of predictions, with higher values leading to better performance. To perform this

calculation, it is necessary to separate each type of attack from the rest of the attacks, ensuring

that all data streams categorized as "Benign" and "Attack" are included.

To calculate the importance weights for features, the Sklearn library's Random Forest

Regressor class is used. The weight assigned to a feature for decision tree is determined through

sum of weights of all parameters. By evaluating the score of a specific feature against the total

tree score, it becomes possible to determine the feature's significance within the decision tree.

Although there are 85 properties available, only 8 of them are considered in calculating the

importance: "Flow ID", "source IP", "source port", "destination IP", "destination port",

"protocol, timestamp", and "external IP". Despite all prevalence of these features in classical

approaches, attackers may attempt to bypass operating system restrictions or evade detection

by using unfamiliar ports or generating/faking IP addresses. Furthermore, dynamic port usage

is common, and multiple applications can be sent over the same port simultaneously. Thus,

relying solely on port numbers can be misleading.

In such scenarios, effectiveness will be enhanced by eliminating ambiguous features

like IP address, port number and timestamp. As a substitute, the focus is shifted towards

utilizing more common and constant attributes that describe the attack. The profile and

characteristics of data provide valuable insights into whether it represents an attack or not,

enabling better detection and classification.

84

I. Feature importance when file stream is kept in ratio of 50:50 for "Benign" and

"Attack", following results were achieved:

Table 10. Weightage based on the 50:50 ratio of "Benign" vs. “Attack"

85

In Table 10. Weightage based on the 50:50 ratio of "Benign" vs. “Attack" shows the feature

weightage. Weightage importance for each type of attack is calculated with the Random

Forest Regressor classifier. Each type of attacks has different feature importance which can

be seen in table for respective type of attack. The result shown in table is showing only top

20 most important features out of 79 features.

86

87

Figure 12. Feature weightage for 50:50 ratio of "Benign" vs. “Attack"

Figure 12 shows its equivalent graph. Top 20 features are displayed in the output. In

the observation it is found that most of the attacks are using mostly three to six dominant

features which is highly correlated for the attack detection. The Heartbleed attack, on the other

hand, have quite different properties and their more than ten attributes are of similar

dominance. Top 5 features from all 12 attack categories are taken which counts to total of 60

features. Many features were redundant in each attack categories, so after removing duplicate

features only 17 most used features were extracted.

II. Feature importance when file stream is kept in ratio of 80:20 for "Benign" and "Attack",

following results were achieved:

Table 11. Weightage based on the 80:20 ratio of "Benign" vs. “Attack"

88

89

90

Figure 13. Feature weightage for 80:20 ratio of "Benign" vs. “Attack"

When the file stream was kept in the ratio of 80:20 for the "Benign" vs. “Attack", it is found

that the similar features were identified as shown in Figure 12 and Figure 13. This experiment

given the similar output for the top 17 features after removing duplicates from the 60 identified

features from all the 12 attack categories.

Table 12. Top 20 feature weightage of all data of CICIDS 2017

91

In Table 12 representing top 20 features that covers almost all the attack also, it can be seen

that the "Bwd Packet Length Std, Flow Bytes/s", "Total Length of Fwd Packets", "Subflow

Fwd Bytes", "Init_Win_bytes_forward" and "Fwd Packet Length Std" are the most used

feature that almost covers 85% of the attacks.

Figure 14. Feature weightage of all data of CICIDS 2017

In Figure 14 representing all the 77 features used for the feature selection and its distribution

in the data stream. This graph clearly shows that there are only few features which are most

dominant and capable to represent maximum of the attack categories detection. Data stream

representing very a smaller number of attacks with these few dominant features may have less

chances to identify and need to carefully train such attack types. All the top 20 features from

the 77 features taken from the complete dataset and then comparing with all 12 individual

attack categories of 50:50 and 80:20 for the "Benign" vs. “Attack" data stream given only 6

most dominant features. These features are:

i. Bwd Packet Length Std

ii. Flow Bytes/s

iii. Total Length of Fwd Packets

iv. Fwd Packet Length Std

v. Flow IAT Std

vi. Flow IAT Min

92

The feature selection process plays a crucial role in machine learning, especially when

considering the distinction between attacks and benign instances. It involves identifying the

features that carry the most significant weight and have high importance scores within the

dataset. In this study, a weight threshold of 80 percent is employed to determine the relevance

of features. By setting the weight threshold at 80 percent, the focus is placed on selecting

features that possess substantial importance in distinguishing between attacks and benign

instances. This threshold acts as a criterion for filtering out features that may have lower

predictive power or contribute less to the classification task at hand. The feature selection

methodology aims to prioritize those features that demonstrate a strong influence on

determining whether an instance belongs to an attack or benign category. These features, with

their high weighting and importance scores, are deemed more influential in accurately

classifying instances.

By selecting features based on their importance scores and applying a weight threshold of

80 percent, the feature selection process in this study ensures that the most informative and

influential features are retained. This approach enhances the performance and efficiency of the

machine learning model by focusing on such features that contribute the maximum towards

the classification task, ultimately leading to improved accuracy and robustness in

distinguishing between attacks and benign instances.

Table 13. Feature Importance with 80% dataset for "Attack or Benign"

Top 20 Features (80% Dataset considered)

Feature Importance

Bwd Packet Length Std 0.246626 Flow IAT Mean 0.003275

Flow Bytes/s 0.17872 Total Length of Bwd Packets 0.001325

Total Length of Fwd Packets 0.102369 Fwd Packet Length Min 0.000686

Fwd Packet Length Std 0.063899 Flow Packets/s 0.000541

Flow IAT Std 0.009879 Fwd Packet Length Mean 0.000537

Flow IAT Min 0.006946 Bwd Packet Length Mean 0.000526

Fwd IAT Total 0.005136 Total Backward Packets 0.000177

Flow Duration 0.00415 Fwd Packet Length Max 0.000138

Bwd Packet Length Max 0.004014 Total Fwd Packets 0.000127

Flow IAT Max 0.003534 Bwd Packet Length Min 0.000076

Total Length of Fwd Packets 0.102369 Total Length of Fwd Packets 0.102369

93

The provided analysis results show the importance scores for various features in the

dataset. The higher the importance score, the more influential the feature is in distinguishing

between different classes or making predictions. Here is a brief analysis of the given results:

• Bwd Packet Length Std: This feature has a relatively high importance score of

0.246626, indicating that it carries significant information for classification or

prediction tasks.

• Flow IAT Mean: Although this feature has a lower importance score of 0.003275, it

still contributes to the overall classification process.

• Flow Bytes/s: With an importance score of 0.17872, this feature demonstrates its

significance in differentiating between classes or making predictions.

• Total Length of Bwd Packets: This feature has a relatively low importance score of

0.001325, suggesting that it may have a lesser impact on the classification process

compared to other features.

• Total Length of Fwd Packets: This feature appears twice in the results, indicating its

importance. With an importance score of 0.102369, it plays a significant role in

classification tasks.

The analysis highlights that feature like Bwd Packet Length Std, Flow Bytes/s, and Total

Length of Fwd Packets are among the top influential features for the classification or prediction

task at hand. Meanwhile, features with lower importance scores, such as Flow IAT Mean and

Total Length of Bwd Packets, may have a relatively smaller impact on the overall classification

performance. It is essential to consider these importance scores when selecting the most

relevant features for the ML model to enhance accuracy and efficiency in distinguishing

between different classes or making predictions.

4.4 Implementation of Machine Learning Algorithms

To examine the implementation of different ML algorithms on the dataset, the data was

divided into testing and training sets using ratios of 50:50 and 80:20. Nine machine learning

algorithms were employed for this purpose, namely "Bagging," "Naive Bayes," "QDA"

(Quadratic Discriminant Analysis), "Random Forest," "ID3," "AdaBoost," "GradientBoost,"

"MLP" (Multi-Layer Perceptron), and "Nearest Neighbors."

94

Each algorithm was trained and tested using specific parameters to optimize their

performance. The parameters were carefully selected to ensure efficient learning and accurate

predictions. By tuning these parameters, the algorithms can adapt to the characteristics of the

dataset and improve their predictive capabilities. Use of diverse algorithms allows for a

comprehensive evaluation of their performance on the specified dataset. Each algorithm has

its own strengths and weaknesses, and by evaluating them, we can identify the most suitable

algorithm for the task at hand.

By conducting experiments with various algorithms and parameter settings, valuable

insights can be gained regarding their effectiveness in handling the dataset. The performance

metrics obtained from these experiments will provide a basis for selecting the most appropriate

algorithm for future applications or further optimization. Overall, this approach enables a

systematic and rigorous analysis of the dataset using a diverse set of machine learning

algorithms, leading to informed decision-making and potentially improving the accuracy and

reliability of predictions in various domains.

i. "Bagging": n estimators = 5, K Neighbors Classifier = 5, max samples = 1.0, max

features = 1.0

ii. "Naive Bayes": priors = none, var smoothing = .20

iii. "QDA": priors = None, reg param=0.0

iv. "Random Forest": max depth = 5, n estimators = 100, max features=5,

v. "ID3": Decision Tree – max depth = 5, criterion = "entropy"

vi. "AdaBoost": estimator = None, n estimators = 50, learning rate = 1.0, algorithm =

'SAMME.R', random state = None, base estimator = 'deprecated'

vii. "GradientBoost": n estimators = 100, learning rate=0.1, max depth = 3,

random_state = 0.

viii. "MLP": hidden layer sizes=100, max iter = 200

ix. "Nearest Neighbors": n neighbors = 5, weights = 'uniform', algorithm = 'auto',

leaf_size=30

Parameters for these were also changed while conducting the experiment but the result was

quite similar with slight change in the fraction part. Machine learning implementation is done

based on considering the top 5 features weightage for each attack categories.

95

Table 14. Attack types with top 5 important features

Bot
BwdPacketLengthMean, FlowIATMean, FlowIATStd, Flow

IATMin, FlowIATMax

DDoS
FwdPacketLengthMax, TotalLengthofFwdPackets, FwdIAT

Total, FlowIATMin, FlowDuration

DoS GoldenEye
FlowIATMax, FlowPackets/s, TotalBackwardPackets, Flow

IATMin, FlowIATMean

DoS Hulk
FwdPacketLengthMin, BwdPacketLengthStd, FwdPacket

LengthStd, FlowIATMin, FlowBytes/s

DoS Slowhttptest
FlowIATMean, BwdPacketLengthMean, FwdPacketLength

Mean, FwdPacketLengthStd, Fwd Packet Length Min

DoS slowloris
Bwd PacketLengthMean, FlowIATStd, FwdPacketLength Min,

FwdPacketLengthMax, FwdIATTotal

FTP-Patator
FwdPacketLengthMax, FwdPacketLengthStd, FlowIATMin,

BwdPacketLengthStd, BwdPacketLengthMean

Heartbleed
FwdIATTotal, FlowIATStd, FlowIATMax, FlowDuration, Bwd

Packet Length Mean

Infiltration
TotalLengthofFwdPackets, FwdPacketLengthStd, FwdPacket

LengthMax, FlowDuration, FlowIATMax

PortScan
TotalLengthofFwdPackets, Flow Bytes/s, FlowDuration, Flow

IAT Mean, FwdIATTotal

SSH-Patator
FlowIATMin, FwdPacketLengthMax, FlowIATMean, Flow

IATMax, FlowPackets/s

Web Attack
BwdPacketLengthStd, BwdPacketLengthMax, FlowIATMin,

FlowDuration, FlowIATMax

The provided analysis results show the importance of specific features for different

attack types. Each attack type is listed with the corresponding important features. The analysis

highlights the specific features that are significant for distinguishing each attack type. These

important features can be utilized in developing effective detection and prevention mechanisms

for various types of cyber-attacks.

I. Implementation with 50% Benign and 50% attack data with testing and training ratio

of 50:50.

In this method, the files and attributes established in the Feature Selection section are used, as

well as the attributes retrieved from the same part. Each of these files is labeled after the sort

of attack it contains, with just 50% being malicious and 50% being benign. For each form of

96

attack, the nine machine learning approaches are applied with the ten times replications to the

same file. Effectiveness and performance of ML approach is the goal of this work.

Table 15. 50% Attack data with 50:50 training and testing data split

97

98

By analyzing the Table 15 the Naïve Bayes, QDA and MLP algorithm has less accuracy

compared to other algorithm. The dataset uses 50% of the random selected data stream with

50% training and 50% testing data split. As there are imbalances in the dataset because each

attack is not evenly distributed and not unequal number of instances per attack, so F1-score is

best approach to evaluate. Result confirms the data stream selected randomly has even

distribution from the result obtained in the accuracy vs. F1-score column. The major

differences came in Heartbleed and infiltration attack as total number of attack instance in

dataset is only 11 and 36. Based on the given data, here is a summarized result in terms of

accuracy, precision, recall, and F1-score:

Table 16 Performance and accuracy of ML approach for specific attack

Attack File

Considered

Algorithm

Performance

Accuracy Precision Recall F1-score

Bot Best AdaBoost 0.983137455 0.983214786 0.983330896 0.983137015

Worst Naive Bayes

DDoS Best GradientBoost 0.980777038 0.981257813 0.980750869 0.980771416

Worst Naive Bayes

DoS GoldenEye Best GradientBoost 0.982740231 0.982741572 0.982743605 0.982740223

Worst Naive Bayes

DoS Hulk Best GradientBoost 0.974996679 0.975051023 0.975092273 0.974996526

Worst Naive Bayes

DoS Slowhttptest Best GradientBoost 0.994139194 0.994139194 0.994140255 0.994139191

Worst Naive Bayes

DoS slowloris Best GradientBoost 0.994816862 0.994819372 0.994813936 0.994816535

Worst QDA

99

FTP-Patator Best Random Forest 0.997764662 0.997762195 0.997767571 0.997764603

Worst Naive Bayes

Heartbleed Best Random Forest 1.0 1.0 1.0 1.0

Worst MLP

Infiltration Best Naive Bayes 0.939393939 0.9375 0.947368421 0.938888889

Worst MLP

PortScan Best Random Forest 0.996501913 0.996522386 0.996476833 0.996498983

Worst Naive Bayes

SSH-Patator Best Random Forest 0.972406814 0.972938575 0.97252005 0.972402789

Worst MLP

Web Attack Best Bagging 0.949680365 0.949845032 0.949558647 0.949653407

Worst Naive Bayes

II. Implementation with 50% benign and 50% attack data with testing and training ratio

of 80:20.

Table 17. 50% Attack data with 80:20 training and testing data split

100

101

Comparing the result of Table 15 and Table 17 it is found that the results are quite similar for

all the respective attacks, and it is hardly varying with all the applied machine learning

approaches. On analyzing the floating value up to 4 digit it is found that the result on 50:50%

training and testing data giving a better result than using 50%:50% training and testing data.

Comparing above two table confirms the data stream selected randomly has even distribution

from the result obtained in the accuracy vs. F1-score column.

III. Implementation with 80% Benign and 20% attack data with testing and training ratio

of 50:50.

102

Table 18. 80% Attack data with 50:50 training and testing data split

103

104

By analyzing the Table 18 similar result is achieved as Naïve Bayes, QDA and MLP algorithm

has less accuracy compared to other algorithm. The accuracy of these attacks is calculated

based on the considering best 5 features selected for each attack using feature grouping

approach. The result obtained outperformed compared with Table 15 and Table 17. The dataset

uses 80% of the random selected data stream with 50% training and 50% testing data split. The

result confirms the data stream selected randomly has even distribution from the result obtained

in the accuracy vs. F1-score column. In this experiment also the major differences came in

Heartbleed and infiltration attack. This result can be improved by including a greater number

of features for identifying selective attacks, but it will result in degradation in the performance

of the system.

 IV. Implementation with 80% Benign and 20% attack data with testing and training ratio

of 80:20.

Table 19. 80% Attack data with 80:20 training and testing data split

105

106

By analyzing the Table 19 it can be seen that Naïve Bayes has outperformed but QDA and

MLP algorithm has gained better accuracy by referring Table 15, Table 17 and Table 18. The

accuracy of these attacks is calculated based on the considering best 5 features selected for

each attack using feature grouping approach. The dataset uses 80% of the random selected data

stream with 80% training and 20% testing data split.

Based on this analysis, it is recommended to use the Bagging algorithm for DDoS and

Web Attack files, Random Forest for DoS Slowhttptest, ID3 for DoS slowloris, and AdaBoost

for FTP-Patator. The selection of algorithms relies on the particular dataset and the trade-off

between performance and execution time.

All the experiment is done by selecting individual top 5 features that are obtained from

each of the 12 attack types. As each 12 attacks are based on their own individual features so

combining all together result in a list of features containing 60 attributes. By removing

redundancy, only 17 features represent most important attack attributes as shown in Table 20:

107

Table 20. 17 top features after aggregating best 5 features from each attack category.

The last part of the experiment is to use all these 17 features and apply in the 100%

dataset and 80% dataset with training and testing ratio of 80:20. The training and testing ratio

is considered based on the best result achieved through 50% and 80% data consideration with

respective testing and training ratio.

Table 21. 100% dataset consideration with 50%:50 training and testing data split

This is the overall outcome of the experiment where complete dataset is taken with

50%:50 training and testing data split. Result obtained has much better accuracy compared to

conducting experiment using just 5 features for each individual attack. With increasing number

of attacks to 17 the result is much better using all the selected algorithm except QDA. Detection

of attack using Naïve Bayes and MLP has also increased comparatively. In Table 23 a complete

dataset of CICIDS 2017 is taken with 50% training and 50% testing data split.

Based on the provided data, the performance metrics for different ML algorithms on complete

dataset with the "all_data" file is shown in the table below with respect to the true positive rate

and its execution time:

Bwd Packet Length Mean Total Length of Fwd Packets Bwd Packet Length Std

Flow IAT Mean Fwd IAT Total Fwd Packet Length Std

Flow IAT Std Flow Duration Flow Bytes/s

Flow IAT Min Flow Packets/s Fwd Packet Length Mean

Flow IAT Max Total Backward Packets Bwd Packet Length Max

Fwd Packet Length Max Fwd Packet Length Min

108

Table 22. Performance on 100% dataset of 50:50 training and testing ratio

ML Algorithm True Positive Rate Execution Time

Bagging High High

Naïve Bayes Moderate Low

QDA Low Low

Random Forest High High

ID3 High Moderate

AdaBoost Moderate High

GraidentBoost High High

MLP Moderate High

Nearest Neighbors High High

Based on this analysis, the Bagging, Random Forest, and GradientBoost algorithms perform

well in terms of accuracy, precision, recall, and F1-score. However, they have higher execution

times compared to other algorithms. Naive Bayes and ID3 also perform reasonably well with

lower execution times. The QDA algorithm shows low performance across all metrics. The

choice of the algorithm depends on the specific requirements of the application, considering

the trade-off between performance and execution time.

Table 23. 100% dataset consideration with 80% training and 20% testing data split

In Table 23 showing the overall outcome of the experiment where complete dataset is

taken along with 80%:20% training and testing data split. Result obtained has much better

accuracy except the QDA algorithm. Hence the algorithm needs some parameters to estimate.

Also, QDA algorithm is not suitable for dimensionality reduction as in our case the data is

more dimensionally distributed. The result obtained has much better accuracy compared to

109

conducting experiment using just 5 features for each individual attack. With increasing number

of attacks to 17 the result is much better using all the selected algorithm.

Based on the provided data, the performance metrics for different ML algorithms on the

"all_data" file:

Table 24. Performance on 100% dataset of 80:20 training and testing ratio

ML Algorithm True Positive Rate Execution Time

Bagging High High

Naïve Bayes Moderate Low

QDA Low Low

Random Forest High High

ID3 High Moderate

AdaBoost Moderate High

GraidentBoost High High

MLP Moderate High

Nearest Neighbors High High

Based on this analysis, the Bagging, Random Forest, GradientBoost, and Nearest

Neighbors algorithms perform well in terms of accuracy, precision, recall, and F1-score.

However, they have significantly higher execution times compared to other algorithms. Naive

Bayes and ID3 also perform reasonably well with lower execution times. The QDA algorithm

shows low performance across all metrics. The choice of the algorithm depends on the specific

requirements of the application, considering the trade-off between performance and execution

time.

Comparing the two sets of results, it is found that Table 22 and Table 24 performed similar

output by changing the training and testing ratio of the dataset. On evaluating with 3 precision

point or more, the result was slight varying and giving better result in 80:20 ratio.

Bagging: The accuracy slightly improved from 0.9686 to 0.9699, while precision decreased

from 0.9495 to 0.9414. However, recall improved xefrom 0.9359 to 0.9522, resulting in a

110

higher F1-score of 0.9467. The execution time significantly increased from 5459.83 to

10100.74.

Naive Bayes: The accuracy remained almost the same (0.8096 vs. 0.8096). There was a slight

increase in precision from 0.6542 to 0.6561. Recall also increased from 0.6492 to 0.6529,

leading to a slightly higher F1-score of 0.6545. The execution time slightly increased from

8.27 to 9.29.

QDA: The accuracy showed a slight improvement from 0.3134 to 0.3136. Precision remained

similar (0.579 vs. 0.5788), while recall also remained almost the same (0.5754 vs. 0.5751).

The F1-score remained stable at around 0.3134. The execution time decreased from 9.60 to

7.55.

Random Forest: There was a marginal increase in accuracy from 0.9534 to 0.9535. Precision

improved from 0.9659 to 0.9665, while recall remained similar (0.8655 vs. 0.8657). The F1-

score showed a slight improvement from 0.9064 to 0.9067. The execution time increased from

300.98 to 563.09.

ID3: The accuracy decreased from 0.9565 to 0.9511. Precision improved significantly from

0.9385 to 0.9665. Recall decreased from 0.9005 to 0.8576, resulting in a lower F1-score of

0.9010. The execution time increased from 15.08 to 29.99.

AdaBoost: The accuracy decreased from 0.9458 to 0.9435. Precision also decreased from

0.9480 to 0.9379. Recall remained almost the same (0.8520 vs. 0.8523). The F1-score slightly

decreased from 0.8911 to 0.8878. The execution time increased from 166.06 to 340.55.

Gradient Boost: The accuracy showed a marginal improvement from 0.9643 to 0.9651.

Precision improved from 0.9465 to 0.9473, while recall remained similar (0.9227 vs. 0.9249).

The F1-score improved from 0.9340 to 0.9356. The execution time significantly increased

from 707.41 to 1260.53.

MLP: The accuracy slightly decreased from 0.8337 to 0.8333. Precision remained similar

(0.8280 vs. 0.8303), while recall also remained similar (0.5011 vs. 0.5011). The F1-score

111

remained stable at around 0.4570. The execution time significantly increased from 367.57 to

956.27.

Nearest Neighbors: The accuracy showed a slight improvement from 0.9663 to 0.9665.

Precision improved from 0.9383 to 0.9574, while recall decreased from 0.9405 to 0.9198. The

F1-score remained almost the same (0.9394 vs. 0.9373). The execution time significantly

increased from 777.71 to 3172.90.

Based on this comparison:

Bagging and Random Forest consistently performed well in terms of accuracy,

precision, recall, and F1-score. However, their execution times significantly increased

compared to the previous results. Naive Bayes and QDA showed relatively stable performance,

with minor improvements in some metrics. ID3, AdaBoost, and Gradient Boost had mixed

results, with some metrics improving and others declining. MLP and Nearest Neighbors had a

decrease in accuracy and precision while showing varied results for recall and F1-score.

Consider the trade-off between performance metrics and execution time when selecting the

ML algorithm for our specific use case. If execution time is a critical factor, we need to

prioritize algorithms with faster processing. These results needed cross-validation on different

datasets or using additional evaluation techniques to ensure the robustness of the findings.

This works extended by considering another approach in which a random sample of

the dataset, which has a total of 225745 cases of BENIGN and DDoS attack, is taken. It also

has records with infinite values or values that are missing. In the collected datasets, missing

values are filled in with zeros. Lastly, data pre-processing makes sure that all the data are same.

The final sampled dataset has a feature called Label that has an DDoS count of 128027 and a

BENIGN count of 97718. This sampled data with number of instances, attributes, with total

count of BENIGN and DDoS count is shown in Figure 15. Weka 3.9 tool is used for this

purpose.

112

Figure 15. Attributes with number of BENIGN and DDoS attack count.

In the feature selection and reduction process, three filter methods are utilized. These

methods, that are Information-Gain Ratio (IGR), Correlation (CR), and ReliefF (ReF), aim to

select the most relevant features. Each feature is assigned a score and weight based on

statistical criteria determined by these selection algorithms. To obtain a more refined set of

features, the aggregated weight of each approach is calculated. This is done by summing up

the scores of all features and dividing it by the total count of features in smaller dataset. Using

the average weight for threshold, a new subset of features is generated for each method. Only

features that have scores equal to or higher than the threshold is included in the subsets.

Additionally, a Feature Selection Subset (FSS) analysis is conducted on the three

subsets obtained. This analysis determines how frequently the features appear across the

subsets. Three subsets, namely FSS-1, FSS-2, and FSS-3, are created based on whether a

feature appears in at least one, two, or all three subsets, respectively. To train and test the

model, FSS-1, FSS-2, and FSS-3 subsets are fed into a chosen classifier. Among these subsets,

the one that requires the least amount of time to build the model without compromising its

performance is selected. This chosen feature subset consists of weighted selected features that

are utilized for identifying DDoS attacks. By using this subset, the model-building time is

reduced while enhancing its performance.

113

The current work employs the PART model with a 90:10 ratio cross-validation

approach. The estimation of the model's performance is measured by means of metrics such as

accuracy, recognition rate, and timing. The research is divided into three phases: I. Feature

reduction, II. The preparation phase, and III. The testing phase.

Figure 16. Integrated IDS models developed for different attack categories.

Complete process is as followed:

Step1: selection of CICIDS 2017 DoS dataset

Step2: dataset pre-processing is done with following approach:

a. data understanding for structure, variable or meaning in context to benign or

attack

 b. data cleaning for inconsistent or missing values

Processed dataset

CICIDS 2017 DDoS dataset

Data pre-processing

Information Gain Ratio Correlation ReliefF

Information Gain Ratio -

FS >= Average Weight

Correlation - FS >=

Average Weight

ReliefF - FS >=

Average Weight

Feature Selection Subset (FSS)

 FSS-PART classifier – Cross Validation 10-fold

Analysis of the Findings

FSS-1 FSS-2 FSS-3

114

c. removing duplicate or irrelevant features which is not contributing to model

training and attack detection

 d. categorize variable such as string to numerical data for label encoding

e. sampling for imbalances in the dataset to prevent outweigh the number of

benign and attack instances

Step3: data split of 90 train and 10 test is applied which makes building model for training

data

Step4: applying all 79 features on IGR, CR and ReF to get the top weighed subset features

Step5: reducing the number of features to 48, 28 and 14 compared to all 79 features based on

step 4 if selected feature >= average weight of the frequency of occurrence in step 4

then accepts those reduced features else discard

Step7: processing of datasets as per reduced features for IGR, CR and ReF

Step 8: apply for best fit attributes selection and use ranker for feature's weightage

Step8: cross validation with 10-fold applied for separation of testing and training

Step9: analysis of the findings for IGR, CR and ReF using FSS-1, FSS-2 and FSS-3

respectively

Step10: best fit attribute selection applied in FSS-PART from step 9

Step11: comparison of result of FSS-PART with all features, Bayesian-Rough Set and

AdaBoost predictive methods.

The algorithm uses supervised attribute selection for attribute Ab for ‘m’ distinct values. A

supervised attribute filter that can be used to select attributes uses IG (Information Gain), CR

(Correlation) and ReF (ReliefF) for feature selection. Features are selected if their relevance is

greater than a threshold τ equivalent to average weight. Raw data captured through libpcap,

WinPcap, or Npcap or well-known datasets and considered as T training dataset. These datasets

contain Fs features in form of Ab Attribute.

115

A. Algorithm for Information Gain (IG) attribute selection with attribute weightage

using ranker algorithm:

Input:

• A dataset D with n instances and m attributes.

• A set of attribute weights, T = {t1, t2, ..., tm}, where ti is weight for attribute i.

 (1)

Output:

• A ranked list of attributes based on their information gain and weighted

importance.

Algorithm:

I. Calculate the information gain of every attribute in the dataset:

• For each attribute i, calculate its entropy using the formula:

entropy(i) = - sum(pj * log2(pj)), (2)

where pj is the proportion of instances in D that belong to the jth class for

attribute i.

• Calculate the overall entropy of the dataset using the same formula:

entropy(D) = - sum(pk * log2(pk)), (3)

where pk is the part of instances in D which belong to the kth class.

• For each attribute i, calculate its information gain using the formula:

IG(i) = entropy(D) - entropy(i). (4)

II. Multiply each attribute's information gain by its corresponding weight, and store the

results in a new list, IG_weighted:

• For each attribute i, calculate its weighted information gain using the formula:

IG_weighted(i) = IG(i) * ti. (5)

III. Sort the IG_weighted list in descending order:

• Sort the CR_weighted list in descending order using merge sort.

116

IV. Return the sorted list as the ranked list of attributes:

• Return the sorted IG_weighted list as the ranked list of attributes, where

attribute with the uppermost weighted information gain is ranked first, attribute with

second-highest weighted information gain is ranked second, and so on.

V. Apply threshold limit to set limit to attributes, other will be discarded.

B. Algorithm for Correlation (CR) attribute selection with attribute weightage using

ranker algorithm:

Input:

• A dataset D with n instances and m attributes.

• A set of attribute weights, T = {t1, t2, ..., tm}, where ti is weight for attribute i.

Output:

• A ranked list of attributes based on their correlation and weighted importance.

Algorithm:

Here's the step-by-step breakdown of the algorithm:

I. Calculate the correlation coefficient between each attribute and the target attribute in

the dataset:

• For each attribute i, calculate its correlation coefficient with the target attribute

using the formula:

𝐶𝑅(𝑖) =
𝑛∗𝑠𝑢𝑚(𝑥𝑖∗𝑦𝑖)−𝑠𝑢𝑚(𝑥𝑖)∗𝑠𝑢𝑚(𝑦𝑖)

√(𝑛∗𝑠𝑢𝑚(𝑥𝑖
2)−𝑠𝑢𝑚(𝑥𝑖)2− (𝑛∗𝑠𝑢𝑚(𝑦𝑖

2)−𝑠𝑢𝑚(𝑦𝑖)2)

 (6)

where xi is the value of attribute i for instance j, yi is the value of the target attribute for

instance j, and n is the number of instances in the dataset.

II. Multiply each attribute's correlation coefficient by its corresponding weight, and store

the results in a new list, CR weighted:

• For each attribute i, calculate its weighted correlation coefficient using the

formula:

CR_weighted = {CR1t1, CR2t2, ..., CRm*tm}. (7)

CR_weighted(i) = CRi * ti. (8)

117

III. Sort the CR_weighted list in descending order with ranker approach:

• Sort the CR_weighted list in descending order using merge sort.

IV. Return the sorted list as the ranked list of attributes:

• Return the sorted CR weighted list as the ranked list of attributes, where

attribute with highest weighted correlation coefficient is ranked first, attribute with the

second-highest weighted correlation coefficient is ranked second, and so on.

V. Apply threshold limit to set limit to attributes, other will be discarded.

C. Algorithm for RefleF attribute selection with attribute weightage using ranker

algorithm:

I. Initialize the weight vector for each feature to zero.

II. For every instance in dataset:

a. Randomly select another instance from the same class (positive instance) and another

instance from a different class (negative instance).

b. Calculate the difference between feature values of present instance and positive and

negative instances for each feature.

c. Update the weights of the features as follows:

If feature values of present instance and positive instance are different, increase the

weight of the feature.

If feature values of present instance and negative instance are different, decrease the

weight of the feature.

III. Repeat Step 2 for a predefined number of iterations or until convergence.

IV. Normalize the weights by dividing each weight by total number of instances.

V. Sort features based on their weights in descending order.

VI. Select top-k features with uppermost weights as concluding feature subset.

118

Chapter-5

5 Result and Conclusion

5.1 Using FSS-PART feature selection approach on CICIDS-2017 dataset

Execution and analysis are done in Python 3 and used the API of Weka 3.8. The function

is selected manually, and content written in Python retains a copy of the input and missing

attributes. The Weka widget is open source, and the contains rule-based classifiers. This

framework has been tested on the CICIDS-2017 dataset, which contains 79 functions,

including label. It ends with a data log with 79 important features which limits the research

after removing errored or null records.

Some of the duplicate instances were also removed and the final dataset contains 223112

records, 90% of which are classified according to the training work, and 10% are classified for

the testing. The calculations of IG-Feature Selection, CR-Feature Selection and ReF-Feature

Selection found to be faster and are used to calculate the rating of every component. In this, all

attributes selected and performed a classification test with PART; after that, they were applied

with (IGR), Correlation (CR) and ReliefF (ReF). Then reduce the dataset and check whether it

gets the same accuracy with fewer features. Using (IGR) with 33 attributes, Association (CR)

with 28 attributes, and ReliefF (ReF) with 23 attributes, it gives better accuracy.

Table 25. A subset of 79 features of CICIDS 2017 dataset.

For subsets IG-Feature Selection, CR-Feature Selection, and ReF-Feature choice shown in

Table 25, the features are organized by the number of subsets for each event, even if it had

some selected set of features.

Methods Used Total

Features

Numbers of Features

Information gain -Feature Selection 33 64,5,53,66,6,13,55,1,35,56,11,67,9,54,7,36,24,21,22,68,63,3

,41,69,23,42,43,10,14,29,26,38,65

Correlation-Feature Selection 28 15,16,13,55,11,14,1,49,41,53,42,39,40,70,43,9,54,12,7,5,64,

26,52,10,29,28,47,45

ReF-Feature Selection 23 15,16,48,11,1,40,14,42,49,43,55,13,41,53,52,26,7,67,54,9,2

9,2,45

119

In Table 26, a Feature Selection Subset-3 is obtained by observing number of feature

weightage in the 2 and 3 subsets, respectively. The Feature Selection Subset is composed of

48, 28, and 14 elements. Feature Selection Subset-2 and Feature Selection Subset-3 correspond

to the standard half classifier. Machine learning for training and testing, cross-validation of ten

times is done. Attribute selection in three subsets is done and got the accuracy for this proposed

method. Then, the half classifier prepares the model and tests it ten times. Use half to check

Feature Selection Subset-2, and Feature Selection Subset-3 and the result is shown in form of

accuracy and time of occurrence.

Table 26. Strategies for combining subsets for feature selection.

Method Used Total Features Numbers of Features

FSS -1 48 64,5,53,66,6,13,55,1,35,56,11,67,9,54,7,36,24,21,22,68,6

3,3,41,69,23,42,43,10,14,29,26,38,65,4,27,40,37,12,28,18

,15,19,2,16,17,30,74,25

FSS-2 28 15,16,13,55,11,14,1,49,41,53,42,39,40,70,43,9,54,12,7,5,

64,26,52,10,29,28,47,45

FSS-3 14 15,16,48,11,1,40,14,42,49,43,55,13,41,53

Figure 17. Accuracy rate in (%) for different feature selection subsets.

Feature Selection Subset-2 provides higher accuracy and uses vital chance and half to

make models. Finally, Feature Selection Subset-2 was designated as a perfect subset of

elements with 28 functions. After analysis for the performance of the 2017 CICIDS dataset,

when using all 79 features, it has accuracy rate better than the Information Gain which is using

33 features and has accuracy rate slight lesser than using all features but is better than

Correlation which is using 28 features has accuracy difference of 0.0045. ReF with 23 features

has better accuracy than Correlation but has similar accuracy compared with Information Gain.

With the feature selection subset method, Feature Selection Subset-1 using 48 features has

99.9956

99.9866

99.9821
99.9…

99.9911

99.9734

99.9867

99.96

99.97

99.98

99.99

100

All Features (F) Information

Gain

Correlation ReF FSS-1 FSS-2 FSS-3

Exactness (Accuracy) rate in (%)

120

accuracy of 99.9911. Feature Selection Subset-2 with 28 features has accuracy of 99.9734 and

Feature Selection Subset-3 with using 14 features has accuracy of 99.9867.

Figure 18. Recognize rate in (%) for different feature selection subsets.

Similarly, in Figure 18 when using all 79 features, it has recognized rate in percentage came

out to be 99.9982, similarly for Information Gain using 33 features it has recognized rate of

99.9876, Correlation using 28 features has recognized rate of 99.9821, ReF with 23 features is

99.9977. With the feature selection subset method, Feature Selection Subset-1 using 48

features has recognized rate of 99.9981. Feature Selection Subset-2 with 28 features has

recognized rate of 99.9873 and Feature Selection Subset-3 with using 14 features has

recognized rate of 99.9974.

It shows that compared with the first functions such as Feature Selection Subset-1 and Feature

Selection Subset-3, the development time of these 14 simplified features is 10.2 seconds in

Figure 19, have increase in the accuracy by 99.9867% which has only slight decreased in

99.9982

99.9876
99.9861

99.9977
99.9981

99.9873

99.9974

99.98

99.985

99.99

99.995

100

All Features (F) Information
Gain

Correlation ReF FSS-1 FSS-2 FSS-3

Recognize rate in (%)

69.68

16.88
16.6

26.87

29.55

16.71
10.2

0

20

40

60

80

All Features (F) Information
Gain

Correlation ReF FSS-1 FSS-2 FSS-3

Built-up Time in (s)

Figure 19. Built-up Time in (s) for different feature selection subsets.

121

accuracy when using all 79 features with the accuracy level of 99.9956% considered for the

experiment. It can be seen from the graph that using more feature selection accuracy will be

better but built-up time also increases. With careful selection of features as taken in Feature

Selection Subset-3 with built-up time of 10.2 second with accuracy of 99.9867 and for Feature

Selection Subset-1 and Feature Selection Subset-2 accuracy is 99.9911 and 99.9734, built-up

time is 29.55 and 16.71, respectively.

Considering the current working state, the relevant research on this test was carried out.

Figure 19 and Figure 20 depict similar inspections of existing structures using the proposed

strategies introduce the accuracy and timing of applying PART with 10 cross-folds. The

accuracy of this model at critical moment is increased by 99.9867% and compared with

different algorithm applied.

Table 27. Feature reduction in CICIDS2017

99.9956

99.9402
99.9372

99.9867

99.9

99.92

99.94

99.96

99.98

100

All Features Bayesian-Rough Set AdaBoost FSS-PART

Accuracy

Algorithm Used Total Features Features

Bayesian-Rough Set 37 3-13, 15, 20, 26, 28-30, 35, 36, 39, 40, 52, 54,

55,62-73, 75

AdaBoost 25 6, 8, 12, 14, 17, 20, 25-28, 30, 37-39, 43, 47, 48,52-

54, 63, 66, 67, 70, 77

FSS-PART 28 15,16,13,55,11,14,1,49,41,53,42,39,40,70,43,9,54,

12,7,5,64,26,52,10,29,28,47,45

122

Figure 20. Accuracy Comparison of Bayesian-Rough Set, AdaBoost and FSS-PART.

Using the CICIDS 2017 dataset, using all 79 features, it has accuracy rate in percentage

came out to be 99.9956, similarly for Bayesian-Rough Set using 37 features it has recognized

rate of 99.9402, AdaBoost using 25 features has accuracy rate of 99.9372, Where as in the

proposed method with 28 features is 99.9867 as shown in Figure 20 and number of features

selected for respective algorithm as per weightage in Table 27.

When using all 79 features, it has recognized rate came out to be 483.35 seconds,

similarly for Bayesian-Rough Set using 37 features it has time execution of 310.56 seconds,

AdaBoost using 25 features has accuracy rate of 190.56 seconds, whereas in the proposed

method with 28 features is 10.2 seconds. In summary, a total of 79 required features is selected

which represent a total of 14 different network attacks in the CICIDS datasets. Other unused

features were removed in the data-preprocessing part. Using all the 79 features for detecting

the attacks was a time taking task. A feature selection approach is applied with attribute

selection for InfoGain, Correlation, ReliefF attribute evaluation and along with the searching

of important features using ranker method. This given the important feature weightage as a

subset of all the 79 features and the respective features were 33, 28 and 23. These reduced

features taken lesser time for training and testing purpose with little degradation in the accuracy

compared to considering all the 79 attributes. For reducing the time consumption and attains a

similar accuracy, top 48 features are selected from the 79 all features and then reduced to 28

features to implement in FSS-2. Features in FSS-3 is selected by reducing half of the important

14 features from FSS-2. The result obtained in FSS-3 taken lesser time when using supervised

approach with Correlation Attribute Evaluation with ranker attribute selection. The time taken

483.35

310.56
190.56

10.20

200

400

600

All Features Bayesian-Rough Set AdaBoost FSS-PART

Time

Figure 21. Execution time examination on BRS, AdaBoost and FSS-PART.

123

in Correlation method is very less compared to Relief, so the final consideration for predicting

the accuracy is features used in FSS-2 and applied the same approach for prediction with

supervised leaning approach of Bayesian-Rough Set, AdaBoost and this implemented

approach of FSS-PART. The FSS-PART uses the Correlation method with ranker approach

along with the 28 features to get the near accuracy of 99.9867 compared with the all 79 features

99.9956 with reduction in accuracy of 0.0089% but the most important part is the time taken

is much lesser using the FSS-PART method.

Various authors have previously worked on the different datasets and uses machine

learning approach that achieved accuracy based on experiment they had done or based on the

feature selection they had taken is shown in .

Table 28. Features, datasets and result on various ML techniques

Ref

ML Technique Dataset Features Results in %

Cannady [89] Supervised

NN
RealSecure

Payload, header of

TCP, IP, and

ICMP

Detection Ration:

89-91

Pfahringer [90]

Supervised

Ensemble of C5 DTs

KDD Cup 41 features Normal:99.5

Probe:83.3

DoS:97.1

U2R:13.2

R2L:8.4

Zhi-Song et al. [91] Supervised

NN and C4.5 DT
KDD Cup 41 features Normal:99.5

DoS:97.3

Satan:95.3

Portsweep: 94.9

U2R:72.7

R2L: 100

Moradi and

Zulkernine [92]

Supervised

NN

KDD Cup 35 features MLP:80

ESVM:90

ESVM DR:87

Thomas et al. [93] Supervised

BN and CART
KDD Cup 41 features Normal:100

Probe:100

DoS:100

U2R:84

R2L:99.47

Elouedi et al. [94] Supervised

NB
KDD Cup 41 features Normal: 97.68

DoS: 96.65

R2L: 8.66

U2R: 11.84

124

Probing: 88.33

Chen et al. [95] Supervised

C4.5 DT

KDD Cup GA-based

Feature

Selection

DoS:97.88

Probe: 98.33

R2L: 80.01

U2R: 99.99

Abraham

et al. [96]
Supervised

Ensemble of

SVM,

DT, and SVM-DT

KDD Cup all 41 features Normal: 99.7

Probe:100

DoS: 99.92

U2R: 68

R2L: 97.16

Sangkatsanee et al.

[97]

Supervised

C4.5 DT
RLD09 Header of TCP,

UPD, and

ICMP

Normal: 99.43

DoS: 99.17

Probe: 98.73

Miller and Busby

[98]

Supervised

Ensemble MPML
NSL-KDD all 41 features 84.137

Li and Guo [99] Supervised

TCM K-NN

Chi-square

KDD Cup 41 features

8 features
99.7

99.6

Kshirsagar et al.

[100]

IGR-SCS1

CR-SCS2

ReF-SCS3

CICIDS

2017

48 Features

24 Features

12 Features

DoS:99.9586

DoS:99.9593

DoS:98.8698

Kurniabudi et al.

[101]

Random Forest CICIDS

2017

15 Features 99.81

Kurniabudi et al.

[102]

Information Gain +

Random Forest

CICIDS

2017

22 Features

28 Features
99.83

99.79

Habtamu [103] AdaBoost CICIDS

2017

10 Features 99

Prasad et al. [85] Bayesian Rough set CICIDS

2017

40 Features 96.38

Proposed FSS-PART Supervised IGR, CR

and RelifF

CICIDS

2017

77 Features

48 Features

28 Features

14 Features

DDoS: 99.9982

FSS-1: 99.9981

FSS-2: 99.9872

FSS-3: 99.9974

5.2 Using KDD'99 for attack analysis

In another approach, KDD'99 dataset is used as the above dataset was very large and taking a

day or more to execute all the instance of machine learning approach.

The most broadly utilized and freely accessible attack dataset is the KDD'99. The

informational index is separated into two subsets; the preparation set contains 5 million

125

informational collections, and the test set contains 3 million informational indexes. The

accompanying table shows the specific number of assaults of each sort in the KDD'99 record.

Also, labels that order association records as typical or extraordinary attack types. The

attributes of information records can be isolated into four classifications: Internal qualities e.

Association span, convention type (tcp, udp, and so on), network administration (http, telnet,

and so on), and so on the quantity of fizzled login endeavors, and so on A similar host work

checks the associations set up just now with a similar objective host as the flow association,

and computes factual data on convention practices, administrations, etc. The same comparable

help capacity will look for associations that have similar assistance as the current association

just now.

The KDD'99 informational collection comprises of profoundly repetitive informational

collections, which implies that learning calculations are outfitted towards regular informational

collections, subsequently keeping them from learning uncommon informational indexes that

are generally more ruinous to the organization, for example, U2R and R2L attacks. This

eliminates redundant records and reduces the possibility of system errors in the classifier.

Table 29 below shows the total packet count along with the 10% of the randomly

selected dataset. These 10% dataset contains various redundancy, so this further corrected that

made the total count of 311029. These datasets are also showing the total number of an attack

count.

Table 29. Distribution of attacks in the KDD'99 data set

In each of the three forms of the data index i.e 10% KDD, Corrected KDD and Whole KDD

attacks can be categorized as one of four classifications of attack.

Dataset DoS U2R R2L Probe Normal Total

10% KDD 391458 4107 52 1126 97277 494020

Corrected KDD 229853 4166 70 16347 60593 311029

Whole KDD 3883370 41102 52 1126 972780 4898430

126

Table 30. Attributes ranking for feature selection of KDD'99

In the dataset, three protocols TCP, UDP, and ICMP are used to simulate attacks. 10%

of corrected KDD'99 dataset contains with the four DoS, U2R, R2L and probe. There are 22

diverse attacks.

Table 31. List of KDD features

Sr. No. Features Sr. No. Features Sr. No. Features

1 Duration 15 su_attempted 29 same_srv_rate

2 protocol_type 16 num_root 30 diff_srv_rate

3 Service 17 num_file_creations 31 srv_diff_host_rate

4 Flag 18 num_shells 32 dst_host_count

5 src_bytes 19 num_access_files 33 dst_host_srv_count

6 dst_bytes 20 num_outbound_cmds 34 dst_host_same_srv_rate

7 Land 21 is_host_login 35 dst_host_diff_srv_rate

8 wrong_fragment 22 is_guest_login 36 dst_host_same_src_port_rate

127

9 Urgent 23 Count 37 dst_host_srv_diff_host_rate

10 Hot 24 srv_count 38 dst_host_serror_rate

11 num_failed_logins 25 serror_rate 39 dst_host_srv_serror_rate

12 logged_in 26 srv_serror_rate 40 dst_host_rerror_rate

13 num_compromised 27 rerror_rate 41 dst_host_srv_rerror_rate

14 root_shell 28 srv_rerror_rate

Table 30 gives a total portrayal of all the attributes along with its weightage. Some of these

weightages with very less values can be removed unless it relates with any attack parameter.

Table 32. Types of attacks in KDD’99 dataset

Category Attack type

Probe mscan, portsweep, nmap satan, saint, ipsweep

DoS apache, Back, land, neptune,teardrop, smurf, mailbomb, teardrop, udpstorm,

pod

U2R rootkit, ps, loadmodule, attack, Perl, buffer overflow, xterm

R2L imap, ftp_write, multihp, phf, named, warezmaster, worm, xsnoop,

snmpgetattack, httptunnel, imap, snmp_guess , Guess_password,

Attacks which can be analyzed with features of this dataset are as below:

Denial of Service (DoS): this type of attack involves back, Neptune, land, pod, smurf and

teardrop. Mostly used features are source bytes (5), land (7) and wrong fragment (8) to detect

DoS type of attack.

Probe: it involves ipsweep, nmap, satan and portsweep type of attacks. To detect Probe attack

diff_srv_rate (30), dst_host_same_src_port_rate (36), source bytes (5), srv_rerror_rate (28)

features are used.

Normal: Normal attacks are detected by features of KDD cup dataset but the most preferred

feature is same_srv_rate (29). This is used to analysis normal attack.

Remote-to-Local (R2L): R2L is the basic category of these guess_passwd, Imap, Phf,

warezmaster, warezclient, multihop and spy attacks. num_failed_logins (11), count (23),

service (3), destination bytes (6), dst_host_srv_serror_rate (39) features are used to analyse

R2L attacks.

128

User-to-Root (U2R): Perl, rootkit, load module and buffer_overflow attacks come under U2R

attack category. The mostly used features are service (3), dst_host_same_src_port_rate (36),

root shell (14), srv_count (24) to detect U2R attack.

Useless features: Information gain is calculated to check whether the features are relevant to

intrusion detection or not. Feature 20 (num_outbound_cmds) is always 0 and 21

(is_host_login) do not reflect any change in training set they both are not relevant to intrusion

detection technique and their information gain is negligible that is why they are irrelevant

features for detection. And other features are 13 (num_compromised), 15 (num_root), 17

(num_file_creations), 22 (is_guest_login), 40 (dst_host_rerror_rate). Information gain from

these features is very less. These features are not at all contributing to detection any of attacks.

So, above paragraph mentioned have a total of 7 features that have information gain less than

0.0001 which have almost negligible contributing nature.

Table 33. Most useful features for attacks detection in KDD’99 dataset.

Class Total Name of features

DoS 11 3,5,6,7,8,23,29,30,32,34,35

Probe 25 1,3,4,5,6,10,12,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41

R2L 23 1,3,5,6,9,10,11,12,19,22,23,28,30,31,32,33,34,35,36,37,38,39,40

U2R 16 3,5,6,11,12,14,16,17,24,32,33,35,36,37,40,41

Normal 25 1, 2, 3, 4, 5, 6, 7,12, 15,16,17,18,19, 23, 24, 14, 15, 19, 20, 21, 23, 25, 26, 27,

28, 30,31, 32, 33, 34, 36, 37, 38

After detail analysis following was the summary table which shows the exact reason

responsible for detection of attacks.

Table 34. Useful features for different attacks in KDD’99

Sr.

No.

Category Attacks Useful Features

1 DoS Back 1, 2, 4, 5, 6, 10, 11, 12, 13, 15, 17, 18, 21, 22, 23, 26, 27, 28,

30, 31, 34, 35, 37, 41

2 DoS Land 1, 2, 3, 4, 7, 13, 18, 25, 29, 35, 38

3 DoS Neptune 1, 3, 4, 5, 6, 7, 13, 15, 17, 19, 20,25, 26, 28, 29, 30, 31, 33, 34,

35, 38, 39

4

DoS

Pod

2, 3, 5, 7, 8, 9, 10, 11, 17, 19, 21, 23, 26, 33, 34, 39, 40

129

5 DoS Smurf 2,3,5,8,17,23,24,25,26,27,28,29,33,35,36,38,39

6 DoS Teardrop 3,4,5,6,8,10,13,23,24,25,26,32,34,35,36,37,39,40

7 Probe Satan 1, 3, 5, 11, 15, 19, 23, 24, 25, 27, 28, 29, 30, 31, 32, 35, 39, 40,

41

8 Probe Ipsweep 2, 3, 5, 12, 13, 14, 16, 17, 21, 23, 24, 25, 28, 31, 32, 33, 37, 38

9 Probe Nmap 1, 2, 3,4, 5, 18, 21, 22, 28, 29, 31, 32, 34, 35, 36, 37

10 Probe Portsweep 3, 4, 10, 24, 27,28, 29, 34, 35, 36, 37, 41

11 R2L Guess_passwd 2, 3, 4,5, 6, 9, 10, 11, 13, 14, 17, 21, 23, 24, 37, 38, 39, 40, 41

12 R2L ftp_write 5,9,23

13 R2L Imap 3, 4, 5, 6, 10, 12, 20, 23, 25, 27, 29, 30, 32,33, 34, 36, 38, 39,

41

14 R2L Phf 3, 4, 6, 8, 9, 10, 13, 14, 19, 28, 29, 36

15 R2L Multihop 3, 4,6, 10, 12, 13, 14, 16, 17, 18, 19, 22, 26, 27, 30, 35, 37

16 R2L Warezmaster 1, 2, 3, 4, 6, 12, 13, 14, 16, 17, 19, 22, 23, 24, 31, 35, 36, 37, 39

17 R2L Warezclient 3, 4, 5, 6, 10, 12, 14, 16,22, 24, 27, 28, 29, 30, 32, 33, 34, 35,

37, 38, 39, 40, 41

18 R2L Spy 2, 3, 4, 5, 9, 15, 18, 22, 16, 39

19 U2R Buffer_overflow 1, 2, 3, 5, 6, 7, 8, 9, 10, 14, 21, 23, 29, 30, 31, 32, 33, 36, 38,

39, 40

20 U2R Load_module 1, 2, 3, 4, 6,7, 8, 14, 27, 36, 39, 40

21 U2R Perl 5,14,16,18

22 U2R Rootkit 3, 5,6, 9, 11, 13, 14, 16, 17, 18, 23, 28, 31, 32, 33, 34, 35, 37,

39, 41

5.3 Framework of new attack detection through packet inspection

A Framework for the attack detection is made using a small dataset using KDD'99. The

framework only covers the attack at higher layer of TCP/IP model instead of attack at DLL

and physical layer due to the nature of an attack.

130

Figure 22. Framework showing the packet along with the packet label

Figure 23. Selection of protocol type for searching attack through KNN algorithm

In the given figure, user can select the particular protocol to detect specific attack category.

131

Figure 24. Graph showing the attack and attribute count

This graph shows an attack and number of parameters count of all the packet received that can

be used to benchmark the threshold level and detecting any anomaly in the traffic.

132

Figure 25. Comparison between KNN and K-mean and attack detection count ratio

This graph clearly shows the attack detection by K-mean is better than KNN. On receiving a

greater number of packets, the value will vary and can be analyzed easily by an administrator.

5.4 Conclusion

The current research improved the utilization of feature grouping by selecting best

features from the CICIDS2017 datasets that include 12 attack categories as Bot, DDoS, DoS

GoldenEye, DoS Hulk, DoS Slowhttptest, DoS slowloris, FTP-Patator, Heartbleed,

Infiltration, PortScan, SSH-Patator and Web Attack. These feature grouping is done with

benign and attack ratio of 50:50 and 80:20 percent respectively and top 20 features were taken

out whose features were most common. All the top 20 features from complete dataset was then

compared with all 12 individual attack categories of 50:50 and 80:20 for the "Benign" vs.

“Attack" data stream given only 6 most dominant common features was Bwd Packet Length

Std, Flow Bytes/s, Total Length of Fwd Packets, Fwd Packet Length Std, Flow IAT Std and

Flow IAT Min. Nine machine learning algorithms were employed for this purpose, namely

Bagging, Naïve Bayes, QDA, Random Forest, ID3, AdaBoost, GraidentBoost, MLP and

Nearest Neighbors. Bagging and Random Forest consistently performed well in terms of

accuracy, precision, recall, and F1-score. Experiment shows that the Naive Bayes and QDA

133

showed relatively stable performance while ID3, AdaBoost, and Gradient Boost had average

performance in term of accuracy and precision. MLP and Nearest Neighbors had a decrease in

accuracy and precision while showing varied results for recall and F1-score.

The research further extended with applying a novel approach of FSS-PART with efficient

feature grouping approach. Using all 79 features of CICIDS2017 dataset, it’s attack detection

rate was 99.9982. Similarly, using Information Gain using 48 features detection accuracy was

99.9981, Correlation using 28 features was 99.9872 and ReF with 14 features was 99.9974.

 In future, we have decided to implement similar methodology to identify attack in

distributed environment and at top layer of cloud where authentication and API logs are the

only ways to identify attacks while reducing the computational complexity.

134

Bibliography

[1] Miniwatts Marketing Group, “Internet Growth Statistics.” Accessed: Jan. 03, 2023.

[Online]. Available: https://www.internetworldstats.com/emarketing.htm.

[2] S. Ganu, K. Ramachandran, M. Gruteser, I. Seskar, and J. Deng, “Methods for restoring

MAC layer fairness in IEEE 802.11 networks with physical layer capture,” in

Proceedings of the 2nd international workshop on Multi-hop ad hoc networks: from

theory to reality, New York, NY, USA: ACM, May 2006, pp. 7–14. doi:

10.1145/1132983.1132986.

[3] E. Bayraktaroglu, C. King, X. Liu, G. Noubir, R. Rajaraman, and B. Thapa,

“Performance of IEEE 802.11 under Jamming,” Mobile Networks and Applications, vol.

18, no. 5, pp. 678–696, Oct. 2013, doi: 10.1007/s11036-011-0340-4.

[4] J. T. Chiang and Y.-C. Hu, “Dynamic Jamming Mitigation for Wireless Broadcast

Networks,” in IEEE INFOCOM 2008 - The 27th Conference on Computer

Communications, IEEE, Apr. 2008, pp. 1211–1219. doi: 10.1109/INFOCOM.2008.177.

[5] M. Soroushnejad and E. Geraniotis, “Probability of capture and rejection of primary

multiple-access interference in spread-spectrum networks,” IEEE Transactions on

Communications, vol. 39, no. 6, pp. 986–994, Jun. 1991, doi: 10.1109/26.87188.

[6] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile communications,” in

Proceedings of the 7th annual international conference on Mobile computing and

networking, New York, NY, USA: ACM, Jul. 2001, pp. 180–189. doi:

10.1145/381677.381695.

[7] V. Gupta, S. Krishnamurthy, and M. Faloutsos, “Denial of service attacks at the MAC

layer in wireless ad hoc networks,” in MILCOM 2002. Proceedings, IEEE, 2002, pp.

1118–1123. doi: 10.1109/MILCOM.2002.1179634.

[8] M. Roesch, “Snort-Lightweight Intrusion Detection for Networks,” 1999.

[9] R. Shanker and A. Singh, “Analysis of Network Attacks at Data Link Layer and its

Mitigation,” in 2021 International Conference on Computing Sciences (ICCS), IEEE,

Dec. 2021, pp. 274–279. doi: 10.1109/ICCS54944.2021.00061.

[10] Z. Trabelsi, “Switch’s CAM Table Poisoning Attack: Hands-on Lab Exercises for

Network Security Education,” Australia, 2012.

[11] G. Al Sukkar, R. Saifan, S. Khwaldeh, M. Maqableh, and I. Jafar, “Address Resolution

Protocol (ARP): Spoofing Attack and Proposed Defense,” Communications and

Network, vol. 08, no. 03, pp. 118–130, 2016, doi: 10.4236/cn.2016.83012.

135

[12] X. Hou, Z. Jiang, and X. Tian, “The detection and prevention for ARP Spoofing based

on Snort,” in 2010 International Conference on Computer Application and System

Modeling (ICCASM 2010), IEEE, Oct. 2010, pp. V5-137-V5-139. doi:

10.1109/ICCASM.2010.5619113.

[13] H. Mukhtar, K. Salah, and Y. Iraqi, “Mitigation of DHCP starvation attack,” Computers

& Electrical Engineering, vol. 38, no. 5, pp. 1115–1128, Sep. 2012, doi:

10.1016/j.compeleceng.2012.06.005.

[14] S. A. Rouiller, “Virtual LAN Security: weaknesses and countermeasures GIAC Security

Essentials Practical Assignment Version 1.4b,” 2003.

[15] M. Agarwal, S. Biswas, and S. Nandi, “Detection of De-authentication Denial of Service

attack in 802.11 networks,” in 2013 Annual IEEE India Conference (INDICON), IEEE,

Dec. 2013, pp. 1–6. doi: 10.1109/INDCON.2013.6726015.

[16] J. Milliken, V. Selis, K. M. Yap, and A. Marshall, “Impact of Metric Selection on

Wireless DeAuthentication DoS Attack Performance,” IEEE Wireless Communications

Letters, vol. 2, no. 5, pp. 571–574, Oct. 2013, doi: 10.1109/WCL.2013.072513.130428.

[17] S.-Y. Chang and Y.-C. Hu, “SecureMAC: Securing Wireless Medium Access Control

Against Insider Denial-of-Service Attacks,” IEEE Trans Mob Comput, vol. 16, no. 12,

pp. 3527–3540, Dec. 2017, doi: 10.1109/TMC.2017.2693990.

[18] T. Jamal, M. Alam, and M. M. Umair, “Detection and prevention against RTS attacks

in wireless LANs,” in 2017 International Conference on Communication, Computing

and Digital Systems (C-CODE), IEEE, Mar. 2017, pp. 152–156. doi: 10.1109/C-

CODE.2017.7918920.

[19] S. Shetty, M. Song, and L. Ma, “Rogue Access Point Detection by Analyzing Network

Traffic Characteristics,” in MILCOM 2007 - IEEE Military Communications

Conference, IEEE, Oct. 2007, pp. 1–7. doi: 10.1109/MILCOM.2007.4455018.

[20] O. Nakhila and C. Zou, “User-side Wi-Fi evil twin attack detection using random

wireless channel monitoring,” in MILCOM 2016 - 2016 IEEE Military Communications

Conference, IEEE, Nov. 2016, pp. 1243–1248. doi: 10.1109/MILCOM.2016.7795501.

[21] M. A. Chan Aung and K. P. Thant, “Detection and mitigation of wireless link layer

attacks,” in 2017 IEEE 15th International Conference on Software Engineering

Research, Management and Applications (SERA), IEEE, Jun. 2017, pp. 173–178. doi:

10.1109/SERA.2017.7965725.

[22] V. Ramachandran and S. Nandi, “Detecting ARP Spoofing: An Active Technique,”

2005, pp. 239–250. doi: 10.1007/11593980_18.

136

[23] J. Bi, J. Wu, G. Yao, and F. Baker, “Source Address Validation Improvement (SAVI)

Solution for DHCP,” May 2015. doi: 10.17487/RFC7513.

[24] J. Zhao, J. Gu, and J. Liu, “Research on Layer 2 Attacks of 802.11-Based WLAN,”

2011, pp. 503–509. doi: 10.1007/978-3-642-27503-6_69.

[25] R. O. Verma and S. S. Shriramwar, “Effective VTP Model for Enterprise VLAN

Security,” in 2013 International Conference on Communication Systems and Network

Technologies, IEEE, Apr. 2013, pp. 426–430. doi: 10.1109/CSNT.2013.95.

[26] Z. Balogh, Š. Koprda, and J. Francisti, “LAN security analysis and design,” in 2018

IEEE 12th International Conference on Application of Information and Communication

Technologies (AICT), IEEE, Oct. 2018, pp. 1–6. doi: 10.1109/ICAICT.2018.8746912.

[27] A. Makanju, P. LaRoche, and A. N. Zincir-Heywood, “A Comparison Between

Signature and GP-Based IDSs for Link Layer Attacks on WiFi Networks,” in 2007 IEEE

Symposium on Computational Intelligence in Security and Defense Applications, IEEE,

Apr. 2007, pp. 213–219. doi: 10.1109/CISDA.2007.368156.

[28] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “NICE: Network Intrusion

Detection and Countermeasure Selection in Virtual Network Systems,” IEEE Trans

Dependable Secure Comput, vol. 10, no. 4, pp. 198–211, Jul. 2013, doi:

10.1109/TDSC.2013.8.

[29] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel, “k-Zero Day Safety: A Network

Security Metric for Measuring the Risk of Unknown Vulnerabilities,” IEEE Trans

Dependable Secure Comput, vol. 11, no. 1, pp. 30–44, Jan. 2014, doi:

10.1109/TDSC.2013.24.

[30] M. Kallitsis, S. A. Stoev, S. Bhattacharya, and G. Michailidis, “AMON: An Open

Source Architecture for Online Monitoring, Statistical Analysis, and Forensics of Multi-

Gigabit Streams,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 6,

pp. 1834–1848, Jun. 2016, doi: 10.1109/JSAC.2016.2558958.

[31] B. Bose, B. Avasarala, S. Tirthapura, Y.-Y. Chung, and D. Steiner, “Detecting Insider

Threats Using RADISH: A System for Real-Time Anomaly Detection in Heterogeneous

Data Streams,” IEEE Syst J, vol. 11, no. 2, pp. 471–482, Jun. 2017, doi:

10.1109/JSYST.2016.2558507.

[32] V. Matta, M. Di Mauro, M. Longo, and A. Farina, “Cyber-Threat Mitigation Exploiting

the Birth–Death–Immigration Model,” IEEE Transactions on Information Forensics

and Security, vol. 13, no. 12, pp. 3137–3152, Dec. 2018, doi:

10.1109/TIFS.2018.2838084.

137

[33] A. F. Taha, J. Qi, J. Wang, and J. H. Panchal, “Risk Mitigation for Dynamic State

Estimation Against Cyber Attacks and Unknown Inputs,” IEEE Trans Smart Grid, vol.

9, no. 2, pp. 886–899, Mar. 2018, doi: 10.1109/TSG.2016.2570546.

[34] R. S. M. Carrasco and M.-A. Sicilia, “Unsupervised intrusion detection through skip-

gram models of network behavior,” Comput Secur, vol. 78, pp. 187–197, Sep. 2018,

doi: 10.1016/j.cose.2018.07.003.

[35] Kuypers, Marshall A, Maillart, and Thomas, “An empirical analysis of cyber security

incidents at a large organization,” Department of Management Science and

Engineering, Stanford University, School of Information, vol. 30, 2016.

[36] R. Boutaba et al., “A comprehensive survey on machine learning for networking:

evolution, applications and research opportunities,” Journal of Internet Services and

Applications, vol. 9, no. 1, p. 16, Dec. 2018, doi: 10.1186/s13174-018-0087-2.

[37] J. Li et al., “Feature Selection,” ACM Comput Surv, vol. 50, no. 6, pp. 1–45, Nov. 2018,

doi: 10.1145/3136625.

[38] R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao, “A fast string-matching algorithm

for network processor-based intrusion detection system,” ACM Transactions on

Embedded Computing Systems, vol. 3, no. 3, pp. 614–633, Aug. 2004, doi:

10.1145/1015047.1015055.

[39] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and H. Karimipour, “Cyber

intrusion detection by combined feature selection algorithm,” Journal of Information

Security and Applications, vol. 44, pp. 80–88, Feb. 2019, doi:

10.1016/j.jisa.2018.11.007.

[40] K. El-Khatib, “Impact of Feature Reduction on the Efficiency of Wireless Intrusion

Detection Systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 21,

no. 8, pp. 1143–1149, Aug. 2010, doi: 10.1109/TPDS.2009.142.

[41] J. Song, Z. Zhu, and C. Price, “Feature Grouping for Intrusion Detection Based on

Mutual Information,” Journal of Communications, vol. 9, no. 12, pp. 987–993, 2014,

doi: 10.12720/jcm.9.12.987-993.

[42] O. Y. Al-Jarrah, Y. Al-Hammdi, P. D. Yoo, S. Muhaidat, and M. Al-Qutayri, “Semi-

supervised multi-layered clustering model for intrusion detection,” Digital

Communications and Networks, vol. 4, no. 4, pp. 277–286, Nov. 2018, doi:

10.1016/j.dcan.2017.09.009.

138

[43] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers &

Electrical Engineering, vol. 40, no. 1, pp. 16–28, Jan. 2014, doi:

10.1016/j.compeleceng.2013.11.024.

[44] E.-S. M. El-Alfy and M. A. Alshammari, “Towards scalable rough set based attribute

subset selection for intrusion detection using parallel genetic algorithm in MapReduce,”

Simul Model Pract Theory, vol. 64, pp. 18–29, May 2016, doi:

10.1016/j.simpat.2016.01.010.

[45] Y. Peng, Z. Wu, and J. Jiang, “A novel feature selection approach for biomedical data

classification,” J Biomed Inform, vol. 43, no. 1, pp. 15–23, Feb. 2010, doi:

10.1016/j.jbi.2009.07.008.

[46] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “Feature selection and

classification in multiple class datasets: An application to KDD Cup 99 dataset,” Expert

Syst Appl, vol. 38, no. 5, pp. 5947–5957, May 2011, doi: 10.1016/j.eswa.2010.11.028.

[47] S. Mohammadi, H. Mirvaziri, and M. Ghazizadeh-Ahsaee, “Multivariate correlation

coefficient and mutual information-based feature selection in intrusion detection,”

Information Security Journal: A Global Perspective, vol. 26, no. 5, pp. 229–239, Sep.

2017, doi: 10.1080/19393555.2017.1358779.

[48] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine Learning for Networking:

Workflow, Advances and Opportunities,” IEEE Netw, vol. 32, no. 2, pp. 92–99, Mar.

2018, doi: 10.1109/MNET.2017.1700200.

[49] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian analysis

techniques,” in Proceedings of the 2005 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, New York, NY, USA: ACM, Jun.

2005, pp. 50–60. doi: 10.1145/1064212.1064220.

[50] Jun Zhang, Chao Chen, Yang Xiang, Wanlei Zhou, and Yong Xiang, “Internet Traffic

Classification by Aggregating Correlated Naive Bayes Predictions,” IEEE Transactions

on Information Forensics and Security, vol. 8, no. 1, pp. 5–15, Jan. 2013, doi:

10.1109/TIFS.2012.2223675.

[51] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate flow-based

network traffic classification: Evaluation and comparison,” Performance Evaluation,

vol. 67, no. 6, pp. 451–467, Jun. 2010, doi: 10.1016/j.peva.2010.01.001.

[52] P. Bermolen and D. Rossi, “Support vector regression for link load prediction,”

Computer Networks, vol. 53, no. 2, pp. 191–201, Feb. 2009, doi:

10.1016/j.comnet.2008.09.018.

139

[53] Y. Li, H. Liu, W. Yang, D. Hu, and W. Xu, “Inter-data-center network traffic prediction

with elephant flows,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations and

Management Symposium, IEEE, Apr. 2016, pp. 206–213. doi:

10.1109/NOMS.2016.7502814.

[54] T. Bakhshi and B. Ghita, “On Internet Traffic Classification: A Two-Phased Machine

Learning Approach,” Journal of Computer Networks and Communications, vol. 2016,

pp. 1–21, 2016, doi: 10.1155/2016/2048302.

[55] A. Dainotti, A. Pescape, and K. Claffy, “Issues and future directions in traffic

classification,” IEEE Netw, vol. 26, no. 1, pp. 35–40, Jan. 2012, doi:

10.1109/MNET.2012.6135854.

[56] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS,” in Proceeding of the 2005

ACM SIGCOMM workshop on Mining network data - MineNet ’05, New York, New

York, USA: ACM Press, 2005, p. 197. doi: 10.1145/1080173.1080183.

[57] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker, “Unexpected means

of protocol inference,” in Proceedings of the 6th ACM SIGCOMM conference on

Internet measurement, New York, NY, USA: ACM, Oct. 2006, pp. 313–326. doi:

10.1145/1177080.1177123.

[58] A. Finamore, M. Mellia, M. Meo, and D. Rossi, “KISS: Stochastic Packet Inspection

Classifier for UDP Traffic,” IEEE/ACM Transactions on Networking, vol. 18, no. 5, pp.

1505–1515, Oct. 2010, doi: 10.1109/TNET.2010.2044046.

[59] D. Schatzmann, W. Mühlbauer, T. Spyropoulos, and X. Dimitropoulos, “Digging into

HTTPS,” in Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement, New York, NY, USA: ACM, Nov. 2010, pp. 322–327. doi:

10.1145/1879141.1879184.

[60] P. Bermolen, M. Mellia, M. Meo, D. Rossi, and S. Valenti, “Abacus: Accurate

behavioral classification of P2P-TV traffic,” Computer Networks, vol. 55, no. 6, pp.

1394–1411, Apr. 2011, doi: 10.1016/j.comnet.2010.12.004.

[61] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust Network Traffic

Classification,” IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp. 1257–1270,

Aug. 2015, doi: 10.1109/TNET.2014.2320577.

[62] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet Traffic

Classification,” IEEE Trans Neural Netw, vol. 18, no. 1, pp. 223–239, Jan. 2007, doi:

10.1109/TNN.2006.883010.

140

[63] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector Machines for TCP traffic

classification,” Computer Networks, vol. 53, no. 14, pp. 2476–2490, Sep. 2009, doi:

10.1016/j.comnet.2009.05.003.

[64] N. Jing, M. Yang, S. Cheng, Q. Dong, and H. Xiong, “An efficient SVM-based method

for multi-class network traffic classification,” in 30th IEEE International Performance

Computing and Communications Conference, IEEE, Nov. 2011, pp. 1–8. doi:

10.1109/PCCC.2011.6108074.

[65] Y. Liu, W. Li, and Y. Li, “Network Traffic Classification Using K-means Clustering,”

in Second International Multi-Symposiums on Computer and Computational Sciences

(IMSCCS 2007), IEEE, Aug. 2007, pp. 360–365. doi: 10.1109/IMSCCS.2007.52.

[66] W. Yang, W. Zuo, and B. Cui, “Detecting Malicious URLs via a Keyword-Based

Convolutional Gated-Recurrent-Unit Neural Network,” IEEE Access, vol. 7, pp. 29891–

29900, 2019, doi: 10.1109/ACCESS.2019.2895751.

[67] S. Huda et al., “Defending unknown attacks on cyber-physical systems by semi-

supervised approach and available unlabeled data,” Inf Sci (N Y), vol. 379, pp. 211–228,

Feb. 2017, doi: 10.1016/j.ins.2016.09.041.

[68] M. H. Kamarudin, C. Maple, T. Watson, and N. S. Safa, “A LogitBoost-Based

Algorithm for Detecting Known and Unknown Web Attacks,” IEEE Access, vol. 5, pp.

26190–26200, 2017, doi: 10.1109/ACCESS.2017.2766844.

[69] Z. Guo, D. Shi, K. H. Johansson, and L. Shi, “Optimal Linear Cyber-Attack on Remote

State Estimation,” IEEE Trans Control Netw Syst, vol. 4, no. 1, pp. 4–13, Mar. 2017,

doi: 10.1109/TCNS.2016.2570003.

[70] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set),” in 2015 Military Communications

and Information Systems Conference (MilCIS), IEEE, Nov. 2015, pp. 1–6. doi:

10.1109/MilCIS.2015.7348942.

[71] S. and B. S. D. Hettich, “The UCI KDD Archive,” University of California, Department

of Information and Computer Science.

[72] K. Cho, K. Mitsuya, and A. Kato, “Traffic Data Repository at the WIDE Project,” San

Diego, California: USENIX Association, 2000, p. 51.

[73] S. IMPACT, “Information Marketplace for Policy and Analysis of Cyber-Risk & Trust.”

Accessed: Mar. 04, 2023. [Online]. Available: https://www.impactcybertrust.org/

141

[74] D. Harrington, R. Presuhn, and B. Wijnen, “An Architecture for Describing Simple

Network Management Protocol (SNMP) Management Frameworks,” Dec. 2002. doi:

10.17487/rfc3411.

[75] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta, “Analysis

of the impact of sampling on NetFlow traffic classification,” Computer Networks, vol.

55, no. 5, pp. 1083–1099, Apr. 2011, doi: 10.1016/j.comnet.2010.11.002.

[76] Benoît Claise, “Specification of the IP Flow Information Export (IPFIX) Protocol for

the Exchange of IP Traffic Flow Information,” Jan. 2008. doi: 10.17487/rfc5101.

[77] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an Intrusion Detection

System Using a Filter-Based Feature Selection Algorithm,” IEEE Transactions on

Computers, vol. 65, no. 10, pp. 2986–2998, Oct. 2016, doi: 10.1109/TC.2016.2519914.

[78] V. Jyothsna and V. V. Rama Prasad, “FCAAIS: Anomaly based network intrusion

detection through feature correlation analysis and association impact scale,” ICT

Express, vol. 2, no. 3, pp. 103–116, Sep. 2016, doi: 10.1016/j.icte.2016.08.003.

[79] C. Khammassi and S. Krichen, “A GA-LR wrapper approach for feature selection in

network intrusion detection,” Comput Secur, vol. 70, pp. 255–277, Sep. 2017, doi:

10.1016/j.cose.2017.06.005.

[80] Akashdeep, I. Manzoor, and N. Kumar, “A feature reduced intrusion detection system

using ANN classifier,” Expert Syst Appl, vol. 88, pp. 249–257, Dec. 2017, doi:

10.1016/j.eswa.2017.07.005.

[81] T. H. Divyasree and K. K. Sherly, “A Network Intrusion Detection System Based On

Ensemble CVM Using Efficient Feature Selection Approach,” Procedia Comput Sci,

vol. 143, pp. 442–449, 2018, doi: 10.1016/j.procs.2018.10.416.

[82] K. Selvakumar et al., “Intelligent temporal classification and fuzzy rough set-based

feature selection algorithm for intrusion detection system in WSNs,” Inf Sci (N Y), vol.

497, pp. 77–90, Sep. 2019, doi: 10.1016/j.ins.2019.05.040.

[83] K. Selvakumar, L. Sairamesh, and A. Kannan, “Wise intrusion detection system using

fuzzy rough set-based feature extraction and classification algorithms,” International

Journal of Operational Research, vol. 35, no. 1, p. 87, 2019, doi:

10.1504/IJOR.2019.099545.

[84] A. Yulianto, P. Sukarno, and N. A. Suwastika, “Improving AdaBoost-based Intrusion

Detection System (IDS) Performance on CIC IDS 2017 Dataset,” J Phys Conf Ser, vol.

1192, p. 012018, Mar. 2019, doi: 10.1088/1742-6596/1192/1/012018.

142

[85] M. Prasad, S. Tripathi, and K. Dahal, “An efficient feature selection based Bayesian and

Rough set approach for intrusion detection,” Appl Soft Comput, vol. 87, p. 105980, Feb.

2020, doi: 10.1016/j.asoc.2019.105980.

[86] S. Hosseini and H. Seilani, “Anomaly process detection using negative selection

algorithm and classification techniques,” Evolving Systems, vol. 12, no. 3, pp. 769–778,

Sep. 2021, doi: 10.1007/s12530-019-09317-1.

[87] S. Alabdulwahab and B. Moon, “Feature Selection Methods Simultaneously Improve

the Detection Accuracy and Model Building Time of Machine Learning Classifiers,”

Symmetry (Basel), vol. 12, no. 9, p. 1424, Aug. 2020, doi: 10.3390/sym12091424.

[88] I. F. Kilincer, F. Ertam, and A. Sengur, “Machine learning methods for cyber security

intrusion detection: Datasets and comparative study,” Computer Networks, vol. 188, p.

107840, Apr. 2021, doi: 10.1016/j.comnet.2021.107840.

[89] J. CANNADY, “Artificial neural networks for misuse detection,” Proc. of the 1998

National Information Systems Security Conference, pp. 443–456, 1998, Accessed: Apr.

15, 2023. [Online]. Available:

https://cir.nii.ac.jp/crid/1572261551239315584.bib?lang=en

[90] B. Pfahringer, “Winning the KDD99 classification cup,” ACM SIGKDD Explorations

Newsletter, vol. 1, no. 2, pp. 65–66, Jan. 2000, doi: 10.1145/846183.846200.

[91] Zhi-Song Pan, Song-Can Chen, Gen-Bao Hu, and Dao-Qiang Zhang, “Hybrid neural

network and C4.5 for misuse detection,” in Proceedings of the 2003 International

Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), IEEE,

May 2003, pp. 2463–2467. doi: 10.1109/ICMLC.2003.1259925.

[92] Mehdi Moradi and Mohammad Zulkernine, “A neural network-based system for

intrusion detection and classification of attacks,” IEEE Lux-embourg-Kirchberg,

Luxembourg, pp. 15–18, Nov. 2004.

[93] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature deduction and ensemble design

of intrusion detection systems,” Comput Secur, vol. 24, no. 4, pp. 295–307, Jun. 2005,

doi: 10.1016/j.cose.2004.09.008.

[94] N. Ben Amor, S. Benferhat, and Z. Elouedi, “Naive Bayes vs decision trees in intrusion

detection systems,” in Proceedings of the 2004 ACM symposium on Applied computing,

New York, NY, USA: ACM, Mar. 2004, pp. 420–424. doi: 10.1145/967900.967989.

[95] G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Decision tree classifier for network

intrusion detection with GA-based feature selection,” in Proceedings of the 43rd annual

143

Southeast regional conference - Volume 2, New York, NY, USA: ACM, Mar. 2005, pp.

136–141. doi: 10.1145/1167253.1167288.

[96] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas, “Modeling intrusion

detection system using hybrid intelligent systems,” Journal of Network and Computer

Applications, vol. 30, no. 1, pp. 114–132, Jan. 2007, doi: 10.1016/j.jnca.2005.06.003.

[97] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, “Practical real-time

intrusion detection using machine learning approaches,” Comput Commun, vol. 34, no.

18, pp. 2227–2235, Dec. 2011, doi: 10.1016/j.comcom.2011.07.001.

[98] S. T. Miller and C. Busby-Earle, “Multi-Perspective Machine Learning a Classifier

Ensemble Method for Intrusion Detection,” in Proceedings of the 2017 International

Conference on Machine Learning and Soft Computing, New York, NY, USA: ACM,

Jan. 2017, pp. 7–12. doi: 10.1145/3036290.3036303.

[99] Y. Li and L. Guo, “An active learning based TCM-KNN algorithm for supervised

network intrusion detection,” Comput Secur, vol. 26, no. 7–8, pp. 459–467, Dec. 2007,

doi: 10.1016/j.cose.2007.10.002.

[100] D. Kshirsagar and S. Kumar, “An efficient feature reduction method for the detection

of DoS attack,” ICT Express, vol. 7, no. 3, pp. 371–375, Sep. 2021, doi:

10.1016/j.icte.2020.12.006.

[101] Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Idris, A. M. Bamhdi, and R. Budiarto,

“CICIDS-2017 Dataset Feature Analysis With Information Gain for Anomaly

Detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020, doi:

10.1109/ACCESS.2020.3009843.

[102] K. Kurniabudi, D. Stiawan, D. Darmawijoyo, M. Y. Bin Idris, B. Kerim, and R.

Budiarto, “Important Features of CICIDS-2017 Dataset For Anomaly Detection in High

Dimension and Imbalanced Class Dataset,” Indonesian Journal of Electrical

Engineering and Informatics (IJEEI), vol. 9, no. 2, May 2021, doi:

10.52549/ijeei.v9i2.3028.

[103] G. T. Habtamu, “Development of a Method for Detecting Network Attack on Machine

Learning Algorithms,” SSRN Electronic Journal, 2020, doi: 10.2139/ssrn.4106481.

[104] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,” ACM Comput Surv,

vol. 41, no. 3, pp. 1–58, Jul. 2009, doi: 10.1145/1541880.1541882.

[105] G. Kim, S. Lee, and S. Kim, “A novel hybrid intrusion detection method integrating

anomaly detection with misuse detection,” Expert Syst Appl, vol. 41, no. 4, pp. 1690–

1700, Mar. 2014, doi: 10.1016/j.eswa.2013.08.066.

144

[106] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and static

behavioral models,” Pattern Recognit, vol. 36, no. 1, pp. 229–243, Jan. 2003, doi:

10.1016/S0031-3203(02)00026-2.

[107] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of network-

based intrusion detection data sets,” Comput Secur, vol. 86, pp. 147–167, Sep. 2019,

doi: 10.1016/j.cose.2019.06.005.

[108] A. Thakkar and R. Lohiya, “A Review of the Advancement in Intrusion Detection

Datasets,” Procedia Comput Sci, vol. 167, pp. 636–645, 2020, doi:

10.1016/j.procs.2020.03.330.

[109] A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang, “Benchmark for filter

methods for feature selection in high-dimensional classification data,” Comput Stat

Data Anal, vol. 143, p. 106839, Mar. 2020, doi: 10.1016/j.csda.2019.106839.

[110] Al Tobi and Duncan, “Improving Intrusion Detection Model Prediction by Threshold

Adaptation,” Information, vol. 10, no. 5, p. 159, Apr. 2019, doi: 10.3390/info10050159.

[111] R. Vaarandi, “Real-time classification of IDS alerts with data mining techniques,” in

MILCOM 2009 - 2009 IEEE Military Communications Conference, IEEE, Oct. 2009,

pp. 1–7. doi: 10.1109/MILCOM.2009.5379762.

[112] A. H. Sung and S. Mukkamala, “Identifying important features for intrusion detection

using support vector machines and neural networks,” in 2003 Symposium on

Applications and the Internet, 2003. Proceedings., IEEE Comput. Soc, pp. 209–216.

doi: 10.1109/SAINT.2003.1183050.

[113] G. C. Tjhai, M. Papadaki, S. M. Furnell, and N. L. Clarke, “The Problem of False

Alarms: Evaluation with Snort and DARPA 1999 Dataset,” in Trust, Privacy and

Security in Digital Business, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 139–

150. doi: 10.1007/978-3-540-85735-8_14.

[114] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “An Evaluation

Framework for Intrusion Detection Dataset,” in 2016 International Conference on

Information Science and Security (ICISS), IEEE, Dec. 2016, pp. 1–6. doi:

10.1109/ICISSEC.2016.7885840.

[115] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD

CUP 99 data set,” in 2009 IEEE Symposium on Computational Intelligence for Security

and Defense Applications, IEEE, Jul. 2009, pp. 1–6. doi:

10.1109/CISDA.2009.5356528.

145

[116] M. S. Al-Daweri, K. A. Zainol Ariffin, S. Abdullah, and M. F. E. Md. Senan, “An

Analysis of the KDD99 and UNSW-NB15 Datasets for the Intrusion Detection System,”

Symmetry (Basel), vol. 12, no. 10, p. 1666, Oct. 2020, doi: 10.3390/sym12101666.

[117] K. Siddique, Z. Akhtar, F. Aslam Khan, and Y. Kim, “KDD Cup 99 Data Sets: A

Perspective on the Role of Data Sets in Network Intrusion Detection Research,”

Computer (Long Beach Calif), vol. 52, no. 2, pp. 41–51, Feb. 2019, doi:

10.1109/MC.2018.2888764.

[118] M. A. Siddiqi and W. Pak, “Optimizing Filter-Based Feature Selection Method Flow

for Intrusion Detection System,” Electronics (Basel), vol. 9, no. 12, p. 2114, Dec. 2020,

doi: 10.3390/electronics9122114.

[119] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards a Reliable

Intrusion Detection Benchmark Dataset,” Software Networking, vol. 2017, no. 1, pp.

177–200, Jan. 2017, doi: 10.13052/jsn2445-9739.2017.009.

[120] N. Meti, D. G. Narayan, and V. P. Baligar, “Detection of distributed denial of service

attacks using machine learning algorithms in software defined networks,” in 2017

International Conference on Advances in Computing, Communications and Informatics

(ICACCI), IEEE, Sep. 2017, pp. 1366–1371. doi: 10.1109/ICACCI.2017.8126031.

[121] Z. Chen et al., “A Cloud Computing Based Network Monitoring and Threat Detection

System for Critical Infrastructures,” Big Data Research, vol. 3, pp. 10–23, Apr. 2016,

doi: 10.1016/j.bdr.2015.11.002.

[122] C. Birkinshaw, E. Rouka, and V. G. Vassilakis, “Implementing an intrusion detection

and prevention system using software-defined networking: Defending against port-

scanning and denial-of-service attacks,” Journal of Network and Computer

Applications, vol. 136, pp. 71–85, Jun. 2019, doi: 10.1016/j.jnca.2019.03.005.

[123] M. Almseidin, M. Al-Kasassbeh, and S. Kovacs, “Detecting Slow Port Scan Using

Fuzzy Rule Interpolation,” in 2019 2nd International Conference on new Trends in

Computing Sciences (ICTCS), IEEE, Oct. 2019, pp. 1–6. doi:

10.1109/ICTCS.2019.8923028.

[124] K. Bicakci and B. Tavli, “Denial-of-Service attacks and countermeasures in IEEE

802.11 wireless networks,” Comput Stand Interfaces, vol. 31, no. 5, pp. 931–941, Sep.

2009, doi: 10.1016/j.csi.2008.09.038.

[125] T. Shorey, D. Subbaiah, A. Goyal, A. Sakxena, and A. K. Mishra, “Performance

Comparison and Analysis of Slowloris, GoldenEye and Xerxes DDoS Attack Tools,” in

2018 International Conference on Advances in Computing, Communications and

146

Informatics (ICACCI), IEEE, Sep. 2018, pp. 318–322. doi:

10.1109/ICACCI.2018.8554590.

[126] M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, and R. Zuech, “Machine

Learning for Detecting Brute Force Attacks at the Network Level,” in 2014 IEEE

International Conference on Bioinformatics and Bioengineering, IEEE, Nov. 2014, pp.

379–385. doi: 10.1109/BIBE.2014.73.

[127] S. Tayama and H. Tanaka, “Analysis of Slow Read DoS Attack and Communication

Environment,” in Mobile and Wireless Technologies 2017, Springer, Singapore., 2018,

pp. 350–359. doi: 10.1007/978-981-10-5281-1_38.

[128] A. Dimitriadis, J. L. Flores, B. Kulvatunyou, N. Ivezic, and I. Mavridis, “ARES:

Automated Risk Estimation in Smart Sensor Environments,” Sensors, vol. 20, no. 16,

p. 4617, Aug. 2020, doi: 10.3390/s20164617.

[129] P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript detection using

classification techniques,” in 2009 4th International Conference on Malicious and

Unwanted Software (MALWARE), IEEE, Oct. 2009, pp. 47–54. doi:

10.1109/MALWARE.2009.5403020.

[130] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed 101,” IEEE Secur

Priv, vol. 12, no. 4, pp. 63–67, Jul. 2014, doi: 10.1109/MSP.2014.66.

147

List of publications:

1. “Analysis of information security service for internet application” Ravi Shanker, Dr.

Kavita, Dr. Sahil Verma, International Journal of Engineering & Technology 7 (12),

58-62

2. “To Enhance the Security in Wireless Nodes using Centralized and Synchronized IDS

Technique” Ravi Shanker, et al., Indian Journal of Science and Technology 9 (32)

3. “Efficient Feature Grouping for IDS Using Clustering Algorithms in Detecting

Known/Unknown Attacks” in Information Security Handbook 1st Edition by CRC

press.

4. “Analysis of Network Attacks at Data Link Layer and its Mitigation.”, Ravi Shanker et

al. 2021 International Conference on Computing Sciences (ICCS). IEEE, 2021.

5. “Framework for identifying network attacks through packet inspection using machine

learning”, in Nonlinear Engineering. Modeling and Application (Degruyter), 2023.

6. “FSS-PART: Feature Grouping Subset Model for Predicting Network Attacks”, in SN

Computer Science.

7. “Machine Learning enabled Security Parameter selection to Identify Attacks on Cloud

and Host”, in ICCET 2023.

