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Abstract: Information is generated every second because of the expansion of online platforms, 

and there is an immediate need to collect the massive volume of data and then safeguard it. 

Every day, the level of complexity rises, and with it, the need for extreme computational power, 

backups and other resources also rising. As a result of technological improvements and the 

emergence of globalization, the necessity to share information is becoming increasingly vital. 

Intrusion Detection Systems (IDS) have a lot of features, but it can be hard to figure out which 

ones are the best and requires regular updating of its signature. Unnecessary features in a 

dataset will make it harder to use and slow down the rate at which information is transferred.  

To monitor the attack at different layer of TCP/IP model, a layered approach is 

followed starting from physical layer to application layer. IDS tools are available to capture 

packets in the form of datasets, and various well-known datasets are now accessible for 

benchmarking network attacks for IDS, which has attracted researchers to analyze current and 

potential attacks. To recognize cross-layer attacks, these datasets contain a variety of attributes. 

Cross-layer refers in context to the data link layer, network layer, transport layer, and 

application layer. These databases can be used to identify new attacks. This work is more 

focused on the feature grouping, recognition of attack types and classification of network 

attacks. Physical layer attack related to interception or jamming of signal in case of wireless 

network or capturing of packet in monitor mode can be possible. Same applies for wired 

network by tapping of wire. In the research more effort is made on analysis of frame and 

packets at data link layer and network layer respectively because a packet or frame is the only 

PDU which comes in or out from a network to end system or end system to the network and 

this makes an attacker easier to identify the target and attack by modifying, intercepting, 

replaying, or sending attack packet. Transport layer provide end to end communication and 

many application layer tools are available for detection of transport layer-based attack by 

monitoring TCP or UDP ports and related services.  

In the beginning, investigation started with the data link layer (DLL) for checking the 

feasibility of employing Snort as tool for identifying DLL attacks. The conclusion was the IDS 

cannot identify all data link layer attacks since Snort typically operates at network layer and 

above. Snort can be used to analyze attacks at the data connection layer using a variety of 

solutions that have already been developed. This analysis helped in comprehending the 
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possibilities of identifying all network attacks by combining multiple attack at the data link 

layer using Snort as a tool. 

In next section, analysis on different machine learning model is used to select best 

approach for effective network attack detection by training and testing using CICIDS2017 and 

KDD'99 dataset. The system first gets the feature subset of each classifier, which depends on 

the normal weight and at later stage the strategy is applied for combining other subsets. After 

conducting research, it was reduced to only14 features for finding DDoS attacks in the 

CICIDS2017 data set. Overall performance using this method was effective in term of 

identification time based on selection of feature weightage. During the analysis phase it was 

found that some of the features in the dataset was duplicates or it had almost nothing to relate 

with the identification of an attack. This was an additional task as it was just adding more 

computational process and harder to compute. In our research, all such consideration was taken 

care of that was not used and added only added relevant features that were being counted when 

building the machine learning model. Considering this has shown a great computationally 

effective performance.  

The accuracy has been computed as a three-step process: (1) collecting and pre-

processing data, (2) training a ML model, and (3) Analysis of performance of the model. Nine 

ML approach is used in this work and accuracy is compared. This work is further extended by 

using IG-Feature Selection Subset, CR-Feature Selection Subset, and ReF-Feature Selection 

Subset, when using 48, 28, and 14 feature selection subsets, the respective results were 

99.9981%, 99.9873%, and 99.9974%. The results show that the selection of key information 

for features is crucial for planning IDS that is simple, effective, and feasible for intrusion 

detection systems. This concludes that, choosing key attributes for features is important for 

planning IDS. Network attacks have a different set of parameters compared to datalink, 

transport or physical layer attacks, so an individual approach needs to be applied for the 

detection of particular attacks so cross layer detection using a single tool is not feasible but 

with the help of careful planning, accurate and quick analysis can be done.  
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Chapter-1 

1. Introduction 

1.1 Motivation 

 The internet has experienced exponential growth since its beginning, evolving from a 

limited network to a global infrastructure connecting billions of users worldwide. It unites 

people from across the globe, demonstrating the vast potential achievable through collective 

effort towards a common objective. It has revolutionized communication, commerce, and 

access to information, enabling instant connectivity and collaboration across geographical 

boundaries. Each day, billions of individuals utilize the internet to explore emerging trends and 

technologies, with millions of young people viewing it as their playground - a space for 

learning and generating novel ideas to foster personal growth and potentially benefit society. 

The proliferation of internet-enabled devices, including smartphones and IoT devices, has led 

to ubiquitous internet access and integration into various aspects of daily life. Internet 

technologies have driven digital transformation across industries, fostering innovation, 

economic growth, and new opportunities for businesses and individuals. In short, the Internet 

is the start of a new era as a transformative power just like how fire helped people learn in the 

ancient time. Internet is a wild, raging fire that lights the way for future innovations and will 
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help a lot of people work together to make their dreams come true. The volume of internet 

users in world has surpassed 5.4 billion where as in India this count to 1.06 billon, and this 

number is quickly growing each day as millions of individuals use it [1]. 

 

 

Figure 2. Internet Users (India) in 10 years from 2012-2022 [1] 

 

Growth of Internet also brings certain disadvantages such as cybersecurity threats, privacy 

concerns, digital divide, misinformation, cyberbullying, online harassment, internet 

dependency, disruption of traditional industries etc. The internet's growth has led to an increase 

in cyber threats such as hacking, malware, phishing, and data breaches, posing risks to 

individuals, businesses, and governments. With the vast amount of personal data being 

collected and shared online, privacy breaches and unauthorized surveillance have become 

major concerns, compromising individuals' privacy rights. Despite increased internet access, 

disparities in connectivity, affordability, and digital literacy persist, exacerbating inequalities 

between urban and rural areas, as well as among different socio-economic groups. The internet 

facilitates the rapid spread of misinformation and fake news, leading to social polarization, 

erosion of trust, and manipulation of public opinion. Social media platforms and online forums 

have become breeding grounds for cyberbullying, harassment, and hate speech, affecting 

individuals' mental health and well-being. Excessive internet usage, particularly among youth, 

can lead to addiction, social isolation, and negative impacts on physical and mental health. The 

rise of the internet economy has disrupted traditional industries such as retail, publishing, and 
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media, leading to job displacement and economic disturbance in some sectors. As a result of 

these developments, there are more attacks on the Internet. The internet offers immense 

benefits, addressing these disadvantages requires concerted efforts from governments, 

businesses, and civil society to mitigate risks and maximize its positive impact on society.  

With respect to the above challenges, India is facing more and more cyberattacks, 

which are a major threat to national security, businesses, people, and critical infrastructure. 

India has seen a rise in cybercrime, from data breaches and ransomware attacks to espionage 

and state-sponsored cyberwarfare, as more and more areas become digital. Some of the most 

known cyber-attack India has faced in recent years is Mirai Botnet Attack, WannaCry 

Ransomware, SolarWinds Supply Chain Attack, COVID-19 Vaccine Data Breach etc.  

In October 2016, a massive Distributed Denial of Service (DDoS) attack targeted Dyn, 

a major Domain Name System (DNS) provider, disrupting internet services for millions of 

users worldwide. This attack utilized the Mirai botnet, which infected IoT devices such as 

cameras and routers. It proved the global impact of cyber threats, raising concerns about the 

vulnerability of India's rapidly expanding IoT ecosystem.  

The WannaCry ransomware attack in May 2017 affected over 150 countries, including 

India. It exploited a vulnerability in Microsoft Windows systems, encrypting data and 

demanding ransom payments in Bitcoin. Indian organizations across various sectors, including 

healthcare and banking, were disrupted, highlighting the susceptibility of outdated software 

and the need for robust cybersecurity measures.  

In December 2020, the SolarWinds cyberattack came to light, affecting numerous 

organizations worldwide, including those in India. Hackers compromised SolarWinds' Orion 

software updates, allowing them to infiltrate networks and conduct espionage activities. While 

the full extent of the breach in India remains unclear, it underscored the risks associated with 

supply chain vulnerabilities and the need for enhanced cybersecurity frameworks.  

To combat the COVID-19 pandemic, reports arisen of a cyber espionage operation 

targeting organizations involved in vaccine research and distribution. The incident raised 

concerns about the security of sensitive medical data and intellectual property. India has crucial 

role in vaccine production and distribution, such attacks could have severe implications for 

public health and national security. 
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These examples highlight the diverse range of cyber threats facing India as well as 

world, including malware, ransomware, espionage, and supply chain attacks. To mitigate these 

risks, India needs to prioritize cybersecurity by investing in technology, infrastructure, 

workforce training, and international collaboration.  

1.2 Issues and Challenges  

The current research work is focused more on cross layer attack for which there are 

two primary ways for detecting it: signature and anomaly-based detection. Signature based 

totally dependent on signature of known attack database and cannot detect novel attack unless 

the database is up to date. In certain case these updated databases are also inefficient like zero-

day attacks and to prevent these attacks, the database needs information about them. There is 

also an ever-increasing percentage of internet traffic that is encrypted with SSL/TLS protocols. 

In such case of encrypted internet traffic, signature-based approaches are inoperable because 

it is impossible to see what is in the stream. In such cases data is analyzed using general 

attributes like packet/frame size, connection time, and packet count and measured under 

anomaly-based approach. 

Recently, hackers and network programmers have used a range of methods to flood the 

packets and take over devices to attack an organization's services. Example of such attack at 

the transport layer is flooding attack, which can produce a lot of malicious packets. Attacks at 

the application layer have entirely different features from those at the datalink, network, and 

transport layers. Determining attack is crucial so IDS offers defense against different attacks. 

Each packet contains a several features, and combinations of these features allow each packet 

to uniquely identify the protocols and data packets it is carrying, some of which may be attack 

data packets and others just regular data packets. Internet traffic carrying packets comprises 

attributes such as source IP address, destination IP address, protocols, flag bits, etc. These 

attributes assist IDS in identifying attacks. However, the performance of IDS in terms of 

accuracy and timeliness may be compromised by improperly configured or unwanted 

attributes, leading to the consumption of additional computational resources. To address this 

issue, various characteristics or feature grouping approaches can be employed through machine 

learning approach to identify relevant or irrelevant attributes within the packet or stored 

dataset. This approach reduces the time required to detect attacks and improves the likelihood 

of detecting an attack accurately. 
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1.3 Thesis Organization 

To find features relevant to attack detection, various cross layer attack analysis is done. 

There are several attacks, but this research is limited to identifying such attack for future 

detection. The creation of sustainable infrastructure is one of the ways to prevent from the 

attacks. An approach for DLL based attack uses different approach compared to network, 

transport and application layer attack. DLL related work is discussed literature survey part only 

as implementation of these attack is specific to hardware and its environment. Other layers of 

attack are commonly covered by considering a real-life datasets CICIDS 2017 and its detection 

using machine learning approach. Also, a synthetic dataset KDD'99 is considered for creating 

a framework for detection of attack specific to transport layer protocol. Most of the attacks 

happened from ingress or egress on the network layer so more focus is given on the other layer 

attack instead of DLL.  

For network and above layer attack packet need to be captured and then requires a 

three-step method that entails (I) data collection and pre-processing, (II) machine learning 

model selection and training, and (III) performance model evaluation has been taken into 

consideration. For the simulation for the same a real-life dataset CICIDS 2017 is considered. 

The selection of CICIDS 2017 datasets serves as the initial step in the process. The ranker 

algorithm is used to consider appropriate feature selection processes. Here is a list of the tasks 

performed in the later section:  

I. Observing attacks using feature grouping.  

II. Employ function to speed up comparison and testing with CICIDS2017 and KDD'99 

dataset.  

III. Examine the performance of suggested model.  

A new model is also proposed FSS-PART (Feature Selection Subset - Projective 

Adaptive Resonance Theory) to justify the performance and accuracy for justifying the benefits 

of feature grouping. In last a framework is designed that may help an administrator of the 

network to analyze the network traffic. 
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Chapter-2 

2 Literature Review 

2.1 Attack analysis at physical layer 

Attack analysis at physical layer: These attacks are hardware-centric and, despite being 

easy to conduct, require some form of hardware to be effective. Attacks on other layers can be 

seen as simple alterations of packets and vulnerability of applications of already-in-use 

technology. These attacks can be easily conducted without comprehensive understanding of 

the technology [2], [3]. Such threats at this layer include eavesdropping, interference, and 

jamming [4], [5] which include intercepting communications without permission i.e., 

eavesdropping. In MANET, mobile hosts use a wireless medium to communicate and access 

the naturally broadcast RF band. With receivers tuned to the correct frequency, it is simple to 

intercept signals transmitted over the wireless medium. Thus, transmitted messages can be 

intercepted and forged messages can be introduced into the network. Jamming or interfering 

with radio transmissions can result in message corruption or loss. If the attacker has a strong 

transmitter, he or she can send out a signal strong enough to block communications and block 

up the intended signals. Jamming attacks can even be launched from places far from the target 

networks. Frequency hopping can be considered for the defensive approach against jamming 

attacks. The WEP protocol utilized by IEEE 802.11 is WEP uses a relatively weak encryption 

algorithm as well as WEP requires manual configuration of encryption keys on both the access 

point and client devices. This process is cumbersome and prone to errors. Additionally, the use 

of static keys makes it difficult to revoke or change encryption keys, especially in large-scale 

deployments. This lack of efficient key management increases the risk of unauthorized access. 

WEP does not offer forward secrecy, meaning that if an attacker captures encrypted network 

traffic and later obtains the encryption key, they can decrypt the entire captured data. This lack 

of forward secrecy compromises the confidentiality of past communications if the encryption 

key is compromised in the future. It has been widely replaced by more secure alternatives such 

as WPA (Wi-Fi Protected Access) and WPA2. [6]. In VANET, the attacker stays near the other 

moving vehicle and intercept or interrupt communication[7]. These attacks are mor feasible on 

static topologies such as sensor networks and rather than in dynamic topologies such as 

VANET to chase a moving vehicle. 
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2.2 Attack analysis at data link layer 

Data link layer is an important component of network communication, as it oversees 

ensuring the reliable transport of data between linked devices. It is, nevertheless, vulnerable to 

a variety of security attacks that jeopardize integrity, confidentiality, and availability of 

network resources. Attack analysis at the data link layer entails identifying, comprehending, 

and mitigating these threats to provide a safe and strong network infrastructure. Attack analysis 

in this context refers to the examination and evaluation of various attack vectors and tactics 

that target the data connection layer. It entails investigating the flaws and vulnerabilities 

inherent in data link layer protocols, devices, and setups, as well as the potential implications 

of successful attacks. 

Purpose of data link layer attack analysis is to improve network security by evaluating 

the data connection layer, security experts may discover and comprehend the numerous attack 

vectors that bad actors can use. This includes investigating protocols like Ethernet and Wi-Fi, 

as well as the accompanying methods for data encapsulation, error detection, and flow 

management. 

The current study looks at the attack at the data link layer using different tools to look 

into the protocol and procedure. These approaches are not new, still they will assist with further 

study and identifying the issues using available tools. They can also be employed to automate 

tasks within the fields of machine learning and deep learning, respectively. 

SNORT [8] is not capable of identifying every possible form of network attack at the 

cross layer due to configuration and signature updating related specific limitations.  
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Figure 3. IDS placement and monitoring 

In Figure 3 IDS placement is shown where the IDS collector is gathering all the logs 

and IDS manager is for configuring and monitoring purpose. IDS sensors are placed in between 

the firewall to detect malicious activity for incoming and outgoing traffic connected to the 

outside server and from internet. These all activities can be monitored at application layer and 

an administrator can configure security rules at this layer. Data link layer devices serve a 

crucial role in network communication by filtering unwanted frames based on source and 

destination addresses, controlling frame access, and authenticating devices. However, their 

scope is limited to self and neighbor connected devices, making it challenging to prevent 

attacks depends on IP addresses, protocols, or end-to-end connectivity. The primary security 

parameter for the DLL to work is the verifying neighboring MAC addresses, establishing trust 

between already linked devices [9]. 

Research attention towards data link layer security has been relatively limited in 

contrast to other cross-layer security aspects and due to this result, new attack types have not 

been extensively identified recently. Some common attacks in wired networks include CAM 

table overflow, ARP spoofing, DHCP starvation, and VLAN jumping. In wireless networks, 

attacks such as Wi-Fi de-authentication, hidden-terminal, rogue access point, malicious 

behavior of nodes, and selfish behavior of nodes are prevalent.  

While attacks do occur at the network layer due to its accessibility and availability of 

open-source tools, most attacks target the network layer. These attacks can be categorized as 

either active or passive. Active attacks disrupt communication, modify packets, and provide 

the attacker full access to network resources. Passive attacks involve the observation of traffic 
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patterns without making changes. Network layer attacks include IP spoofing, network 

hijacking, link withholding, smurf attacks, tear drop attacks, ICMP floods, ping floods, and 

replay attacks.  

Transport layer attacks primarily occur during connection setup or ongoing 

communication. Examples include TCP sequence prediction/session hijacking, SYN floods, 

UDP flooding, and TCP flooding. Application layer threats encompass GET floods, Slowloris 

attacks, invite floods, SQL injections, SMTP attacks, malware attacks, Slow read attacks, and 

FTP bounce attacks. These attacks exploit vulnerabilities in system or application 

configurations, and they can often be mitigated through patches and recommended security 

measures. 

Table 1. List of attacks on different layers 

Several research has already been done on DLL attack and authors has suggested their counter 

measures also. In this section all such methods are discussed along with the possible solutions 

suggested by them. Trabelsi, Z. [10] has effectively illustrated the practical execution of a 

OSI Layer Attack Type 

Data Link Layer CAM table overflow attack, ARP spoofing, DHCP starvation 

attack, Virtual LAN hopping attack, Wi-Fi de-authentication 

attack, hidden-terminal attack, rouge access point attack, 

malicious behavior of nodes and selfish behavior of nodes 

Network Layer IP spoofing, network hijacking, link withholding, smurf attack, 

tear drop, ICMP flood, ping flood, replay 

Transport Layer TCP sequence prediction/session hijacking, SYN floods, UDP 

flooding, TCP flooding 

Application Layer GET flood, Slowloris, invite flood, SQL injection, SMTP attack, 

Malware attacks, Slow read and FTP bounce 
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CAM table overflow attack. Through his efforts, he has presented the process by which a 

switch constructs its MAC table, and how an attacker can exploit this by transmitting numerous 

messages, each carrying distinct MAC addresses. Consequently, this manipulation causes an 

influx of entries into the switch's CAM table. As the table reaches its capacity, an overflow 

situation occurs. One of the prominent tools recognized for executing such an attack is macof. 

 

Figure 4. An attacker overflowing CAM table.

In this case, the attacker will try to send a frame with more than one MAC address. The 

switch will pick up on this and start flooding. This will make it impossible for PC1 and PC2 

to talk to each other. Since SNORT only records packets at the network layer, it can't find this 

kind of event at the switch and stop it from causing it to overflow. Switchport port-security 

can be configured to protect against this kind of attack. Ghazi A. et al. [11] and X. Hou [12] 

has shown the procedure of ARP spoofing in his research paper. ARP spoofing is a malicious 

technique where the attacker sends forged messages containing their forged MAC address 

along with genuine IP address of sender. By associating forged MAC address with legitimate 

IP, an attacker can capture all messages intended for actual host. Once the attacker gains access, 

they can eavesdrop, modify, or even block the entire communication. This type of attack is 

typically executed within a local LAN, but it can be further extended to enable denial-of-

service (DoS) attacks, session hijacking, and Man-in-the-Middle (MITM) attacks by utilizing 

network tools such as Arpspoof, Cain & Abel, Arpoison, and Ettercap. 

Mukhtar et. al. [13] in his work shown how DHCP starvation attack can be carried out 

and procedure for its mitigation. The attacker attempts to exhaust all IP addresses that a DHCP 

server reserves for allocation to legitimate hosts. The attackers attempt to submit requests using 

multiple fabricated identities.  

CAM Table on 

Switch S 

MAC Addresses 

Gig0/1 1111:2222:3333 

Gig0/2 2222:3333:4444 

Gig0/3 4444:5555:6666 
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Figure 5. An attacker sends fake DHCP request to DHCP server. 

Another form of attack related to DHCP involves the setup of a forged DHCP server. 

In this scenario, when a host requests an IP address from a DHCP server, the deceptive DHCP 

server responds more rapidly than the legitimate one. Consequently, the host becomes 

connected to the fraudulent DHCP server, which then becomes the exclusive point of 

communication. This imposter DHCP server can exploit this situation to intercept and retrieve 

all transmitted data. In a study by Rouiller [14] a technique was presented illustrating how an 

unauthorized individual can breach into a separate VLAN. This approach involves the intruder 

initially gaining access to the switch and subsequently leveraging a trunking protocol like 

IEEE802.1Q or DTP to facilitate communication between two distinct VLANs. Ordinarily, a 

host is restricted to conversing solely with other hosts within its designated VLAN and cannot 

establish connections with hosts in different VLANs. However, employing tactics such as 

switch spoofing or double tagging, the attacker endeavors to foster communication across other 

VLANs. This involves the manipulation of trunking protocols and frame tagging, which are 

conventionally employed to uphold VLAN maintenance. 

Agarwal et al. [15] in their research showed the method that execute Wi-Fi de-

authentication attack between the host access point. Wi-Fi de-authentication has similarity with 

denial-of-service attack. Attackers often intercept the data transmitted between a server and an 

access point, employing various techniques to compromise the security of the wireless 

network. One common approach involves the manipulation of the host's MAC address and the 

transmission of a "de-authentication frame," which exploits a feature in the IEEE 802.11 

protocol. This type of attack can lead to the exploitation of two specific vulnerabilities: “evil 
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twin access point” and “password” attack. In an evil twin, an attacker creates a fake access 

point that impersonate the legitimate one. By enticing the host to connect to the fake access 

point instead of the genuine one, the attacker gains unauthorized access to the host's 

communications and sensitive information. A password attack, on the other hand, targets the 

WPA or WPA2 handshake process used for authentication. The attacker leverages brute force 

or dictionary attacks to obtain the password. Numerous methods exist to execute such attacks, 

and popular tools like Aircrack-ng, Scapy, and Zulu are commonly utilized by attackers for 

these purposes. 

It is important to note that these attacks can have serious security implications. 

Organizations and individuals should employ robust security measures, such as strong 

encryption, regular password updates, and network monitoring, to mitigate the risks associated 

with these attacks. Milliken et al. [16] in their work, used machine learning to stop "de-

authentication attacks," which worked 96% of the time and suggested to use SHA-512 and 

UUID to mitigate such attack.  Chang S and Hu C [17] identified hidden terminal attack 

mitigation technique by RTS timer and CTS timer validation. A duration field is included in 

the MAC frame of the early network allocation vector in IEEE 802.11 standard. It contains 

NAV with counter whose value drops when the channel is idle until it reaches zero, which only 

serves to validate the communication by holding back all frame transmission time. Studies 

conducted by other researchers demonstrate work of a similar nature based on RTS, CTS 

timers, and NAV duration counters. An illustration of such study may be seen in Jamal et al. 

[18]. Shetty et al. [19] In their work, had shown how to find and stop attacks from rogue 

access point with MAC filtering. There are two parts to the work. The first one is based on the 

difference between how traffic moves on a wired LAN and a wireless LAN. The second one 

is based on straight access attempt and cross access attempt threshold factors. Other 

researchers, who worked on MAC filtering with different approach can be found in [20].  

Attack mitigation analysis: Several data link layer attacks have already been addressed above, 

and numerous researchers have come up with several ways to prevent them. This part will 

discuss about how to stop a data link layer attack, with the CAM table [21] overflow attack, 

ARP spoofing, DHCP starvation attack and Virtual LAN hopping attack.  CAM table overflow 

attack: To defend such attack, switchport security can be configured on the switch. Multiple 
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manufacturers of switches have implemented security by binding ports with restricted MAC 

address learning. This protects the switch from CAM table overload by allowing only a desired 

number of ports to learn. Example to configure on Cisco switch for such security is by putting 

static access port: 

Switch(config-if)# switchport mode access  

Switch(config-if)# switchport port-security 

Switch(config-if)# switchport port-security maximum 2   //It allow only 2 MAC address 

Switch(config-if)# switchport port-security mac-address sticky 

Or 

Switch(config-if)# switchport port-security mac-address 1111.2222.3333 // Using static host MAC entry 

 

In the configuration displayed above, port-security is set to a maximum of 2, allowing only the 

first two learned MAC addresses to associate with the switch. Manually binding a static host 

MAC entry is another way to do the configuration.  

ARP spoofing: With packet filtering, a trust relationship, arp spoofing detection tools, and 

cryptographic protocols such as SSL/TLS, SSH, and HTTPS, this type of attack can be 

countered. Since ARP spoofing [22] impact the higher layer protocols so it can be easily 

configured for detection in SNORT as described by X Hou [12]. Since the attacker tries to set 

itself up as the default gateway, frame from the attacker only goes to the real gateway switch, 

so a host does not notice that anything has changed. For example, to stop this kind of attack on 

a Cisco-based switch, we need to set the port-security limit to 1, so that it will only let in the 

first MAC address it learns. 

Switch(config-if)# switchport port-security maximum 1  //Set as 1 to learn only initial learnt MAC address 

DHCP spoofing attack / DHCP starvation attack: Researchers have come up with many ways 

to solve this problem, such as making a static allocation where an administrator can bind an IP 

address to a MAC address and store the record on a DHCP server. This method won't work for 

a large group of network users. The other way is to look for a DHCP rate request [23], [24]. 
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Their work was mostly centered on dynamic IP allocation under the need of fair allocation. 

Cisco has also demonstrated their strategy for defending from starvation attacks as elaborated 

in given example: 

switch(config)# ip dhcp snooping 

switch(config)# ip dhcp snooping vlan number 10 // Give the VLAN number 

switch(config)# ip verify source vlan dhcp-snooping port-security 

switch(config)# switchport port-security limit rate invalid-source-mac 15 

switch(config)# ip source binding 10.1.0.2 aaaa.bbbb.cccc vlan 5 interface eth0/0  

switch (config-if)# ip dhcp snooping trust 

VLAN hopping attack: Switch Spoofing/Double Tagging: To mitigate the VLAN hopping 

[25], [26] authors have suggested proper switch configuration. Snort can only keep track on 

VLAN devices, so VLAN hopping, which uses frame encapsulation at the data link layer, can't 

be tracked. Switch configuration commands have been developed by Cisco as a defense against 

switch spoofing attacks is shown below: 

A. Disabling DTP by changing trunk port to nonegotiate:  

Switch (config-if)# switchport nonegotiate 

B.  Unused port must be set as access ports especially unallocated trunk port by: 

Switch (config-if)# switchport mode access 

Solution to prevent double tagging attack by switch configuration command as shown: 

A. Changing default VLAN i.e. VLAN 1 to access VLAN.   

 Switch (config-if)# switchport access vlan 2 

B. Changing native VLAN on all trunk ports to any unimplemented VLAN ID.  

Switch (config-if)# switchport trunk native vlan 800 

C. All trunk ports must be tagged explicitly with native VLAN.  
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Switch(config)# vlan dot1q tag native 

 

Wi-Fi de-authentication attack: Wi-Fi de-authentication can be done in many ways, but this 

paper focuses on the data link layer attack and use of Snort as an IDS. Wi-Fi de-authentication 

attacks are all about the data link layer, so snort needs to use the latest patch snort-wireless 

2.3.3-sgracia [27]. It can set up alerts on Snort to notice this kind of attack as shown below: 

 alert wifi any -> any (msg:"de-authentication"; stype:STYPE_DEAUTH;) 

Other rules in Snort-wireless facilitate the detection of rogue access points on the wireless 

medium, programs that search for access points, and de-authentication or authentication floods 

that lead to the access point and wireless hosts. 

Only a passive technique to hijack a session while using the RTS-CTS handshake has 

been studied for the hidden terminal problem, it becomes apparent after glancing at a few 

sources. There is no method for Snort IDS to detect a hidden terminal attack. Future research 

will be done on Snort-wireless to determine its applicability. How to locate a rogue access 

point has not been covered in much detail up to this point. However, MAC screening, which 

will be the focus of my upcoming work in this sector, can find it to some extent. An effort can 

be made to learn more about this subject using Snort-wireless. 

Detection capabilities using snort: The prospect of employing Snort for attack detection at the 

data link layer was investigated by studying various literature surveys. It was discovered that 

Snort typically performs well at the network, transport, and application layers, concluded that, 

all types of attack detection at the data link layer cannot be detected by IDS. After consulting 

a number of articles, it is discovered that numerous solutions have already been investigated. 

This section will focus on a summary of all known attack types and the potential application 

of Snort at the data link layer.  

Table 2. Strategies to address and minimize attack at DLL using Snort 

Attack at Data link layer Strategies to address and minimize using Snort 

CAM table overflow attack  Due to Snort's limitation in capturing packets solely at the network layers, it 

remains unable to identify and prevent overflow incidents occurring at the 

switch level. Although the examination of Snort's configuration for countering 
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such attacks has not been validated during the analysis, it is conceivable to 

enhance protection by incorporating a static MAC address list within its 

configuration file. This measure could potentially generate alerts and enhance 

the system's ability to address such scenarios. 

ARP spoofing ARP spoofing directly affects higher-layer protocols, making it feasible to 

configure SNORT for its detection as described by X. Hou [11]. 

DHCP starvation attack The attack's detection relies on the proper placement of an IDS. However, no 

conclusive research has yet been identified in this regard. 

Virtual LAN hopping attack Snort's monitoring capabilities are limited to VLAN devices, thus restricting 

its ability to effectively monitor VLAN hopping due to its reliance on frame 

encapsulation at the data link layer. 

Wi-Fi de-authentication 

attack 

By utilizing the Snort-wireless patch extension, it becomes feasible to identify 

this type of attack. Snort-wireless not only offers the potential to detect such 

attacks but also includes additional rules that strengthen its capabilities as an 

IDS. These extended functionalities encompass the detection of rogue access 

points within the wireless medium, the identification of programs scanning 

for access points, and the recognition of de-authentication or authentication 

floods targeting both the access point and its wireless hosts. 

Hidden-terminal attack The current Snort IDS lacks the capability to detect hidden terminal attacks, 

prompting future exploration in the domain of Snort-wireless for addressing 

this concern. 

Rouge access point attack Properly placed IDS configurations can potentially detect the attack; however, 

there is a dearth of relevant literature on this particular attack, indicating a 

potential avenue for future investigation using Snort-wireless. 

Several authors suggested the defenses against DLL attacks and their mitigating 

strategy was comparatively unique. When compared to a wireless network attack, wired 

approach needs a different strategy. The characterization of attacks was influenced by the 

specific devices in use, including the host computer, switch, and DHCP server. These reasons 

led to the conclusion that it is challenging to create a single point of attack detection or 

gathering all attack detection in one location. The focus of this investigation was to pinpoint 

the attack at DLL and determine whether it was possible to use Snort to consolidate all attacks 

in one place. Typically, Snort operates at or above the network layer. IDS cannot always detect 

data connection layer attacks. In the current effort, Snort will be used to investigate attacks at 

the data connection layer using a variety of previously developed solutions. Cyber-attacks are 
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becoming more advanced every day, and the major difficulty is to implement algorithms that 

can distinguish unknown attacks [28], [29], [30], i.e., attacks for which a preset set of signature 

patterns is not specified for new attacks. Apart from this, data is generated from number of 

network sources, and it is not necessary that the captured would be useful in identifying an 

attack. Algorithms for intrusion detection, such as signature and anomaly detection, have been 

developed by several researchers [31], [32], [33]. 

2.3 Attack analysis at Network, Transport and Application layer 

Attacks are detected by comparing the present activities to the desired activities of an 

attacker. An anomaly detection mechanism creates an activity profile. Misuse detection 

necessitates the labeling of training observations as either normal or malicious. During the 

training phase of anomaly detection, only valid behavior is considered. In the test data, 

anomalous behavior is detected if it deviates significantly from the modeled behavior. For the 

following reasons [34], labeled data are not easy to train. It is possible that different data 

sources generated the records needed to identify an attack. There are no publicly available 

datasets that include actual user traffic. Researchers often lack access to comprehensive data 

regarding the frequencies and impact of cyberattacks. Nonetheless, it remains crucial to 

evaluate the scalability of machine learning-based solutions in handling large volumes of data, 

numerous equipment, and diverse applications for addressing various network-related issues. 

Currently, only a limited number of machine learning techniques for fault and security 

management can be effectively applied to multitenant and multi-layer networks. To effectively 

manage faults and security in future networks, it will be necessary to integrate the concept of 

multi-tenancy in multi-layer networks into existing machine learning approaches. This 

adaptation will enable more robust fault and security management capabilities. [35], [36]. In 

general, machine learning combined with large datasets provides effective solutions for 

predicting and addressing various problems. ML techniques can uncover hidden patterns 

within data, allowing for clustering, classification, regression, and rule extraction. This can be 

particularly useful in the field of networking, where classification challenges such as denial-

of-service, user-to-root, root-to-local, and probing attacks can be grouped together to predict 

the type of attack. To anticipate future failures, regression problems can be developed using 

machine learning algorithms. Although machine learning has a broad scope in addressing 



18 

  

various problems, a consistent approach is often followed in constructing ML-based solutions. 

This involves data collection, which encompasses the gathering, generation, or definition of a 

relevant dataset and associated classes. Feature grouping is a technique that can reduce the 

dimensionality of datasets while identifying distinguishing characteristics. This not only saves 

computation time but also enhances the accuracy of predictions. By utilizing machine learning 

and appropriate data preprocessing techniques, organizations can leverage the power of big 

datasets to extract valuable insights, make informed decisions, and improve various aspects of 

their operations. [37], [38], [39]. As a result, once the ML model has been developed, it may 

be used to predict results from new data. To avoid "concept drifting," which is the gradual 

deterioration of a concept over time, results are checked on a regular basis. When this happens, 

the machine learning model can be re-trained, and its incremental learning can be monitored. 

Khalil El-Khatib [40] has this a novel approach to picking the optimal attributes for 

802.11-based intrusion detection. To pick relevant features, the strategy employs a hybrid 

approach that incorporates both filter and wrapper models. The total number of characteristics 

was decreased from 38 to 8 because of this strategy. They have also investigated how different 

classifiers powered by neural networks perform when features are selected. The classifiers' 

learning time is slashed by 33% while detection accuracy is increased by 15% because of the 

smaller range of possibilities. Their upcoming investigation is on comparing performance of 

classifier based ANNs with models supported by SVMs, MARSs, and LGPs to see how the 

decreased feature set affects those models. 

Song J et. al. [41] has this a new strategy for grouping features based on mutual 

knowledge. Fuzzy C-means algorithmic rules are used to form groups or teams in the proposed 

algorithmic rules. When selecting an attribute from a group, the shared knowledge between a 

feature and its class labels is utilized. Experiment findings on the KDD’99 dataset show that 

the strategy this by them beats the DMIFS algorithm in most cases. An additional benefit of 

using separate classification methods to compare 10 and 41 features is that the performance 

indicators are now more accurate. The work provides a starting point for additional inquiry. It 

is possible to create a novel algorithm based on features and class labels and a variety of 

categorization methods are used to form group. 
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An IDPS based on Machine Learning (ML) requires an enormous volume of labeled 

and training data to identify intrusions and generalize to fresh attacks, as indicated by Omar Y. 

Al-Jarrah et al. [42]. Labeling information, on the other hand, is expensive and cannot be done 

with big amounts of data, like those created by IOT applications. For the present effect, it is 

important to build an ML model that can learn from data that is not labeled or is only partially 

labeled. In this study, Semi-supervised Multi-Layer Clustering (SMLC) is used to find and 

stop network intrusions. When learning from partially labeled data, SMLC can be compared 

to supervised ML-based IDPS in terms of how well it can find things. The NSL and Kyoto 

2006+ datasets are widely recognized benchmarks for evaluating the performance of SMLC 

(Semi-Supervised Learning Classifier) models. These datasets serve as standards to compare 

the effectiveness of SMLC against other established semi-supervised models, such as tri-

training, as well as ensemble machine learning models like Random Forest and Bagging. By 

utilizing these datasets, researchers can objectively assess and compare the performance of 

different models to determine their effectiveness in handling semi-supervised learning tasks. 

The result concluded that, SMLC performed better in terms of accuracy of detection while 

using 20% less labeled training sample. Their results show that this method is accurate at 

identifying problems as guided ensemble models. 

It has been attempted by Chandrashekar and Sahin [43] that an introduction to feature 

selection methods be provided. Machine learning and pattern recognition are only two 

examples of feature selection approaches that have been studied extensively. One dataset is the 

only way to compare feature selection techniques since each algorithm can react differently 

when applied to multiple datasets. In machine learning, feature selection algorithms indicate 

that a lot of information is not necessarily helpful. They tested several methods on the data at 

hand before settling on a final feature selection algorithm based on classification performance 

metrics. They used feature selection to enhance accuracy of predictors and to analyze fault 

prediction based on information about fault modes, which has worked well. 

To reduce the modeling complexity, [44] stated that, in data mining or pattern 

recognition, one of the most important preprocessing steps is choosing groups of attributes 

based on rough sets. To deal with new technology line "big data," new ways need to be identify. 

In this paper, the authors look at new work on using decision theory to choose subsets of 
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attributes in rough set models. In this study, research on selecting feature sets and supporting 

rough sets was reviewed. Author proposed MapReduce version of parallel genetic algorithm 

to find least feature reduction. Parallel GA model focuses on three key areas: the construction 

of distinction tables, the evaluation of the GA population, and the administration of the GA. 

For constructing the distinction table, they frequently employ several mappers. It was during 

this phase that all the genetic operations occurred. Using a set of criteria, the driver code selects 

the simplest and best candidate. Using intrusion detection datasets as a test bed, it was found 

that the MapReduce technique will speed up execution without sacrificing solution quality. 

The number of attributes and instances has also been examined, as have the successive and 

MapReduce implementations. Due to our propensity to work in increasingly complex datasets, 

the studies revealed that the MapReduce implementation consistently produced better results 

than the other approaches. The planned approach will be tested in additional areas in the future. 

The problem of high dimensionality in bio-medical data classification was tackled in a 

novel way by Yonghong Peng et al. [45]. Research in the disciplines of pattern recognition and 

machine learning has been extensive. Filter, wrapper, and hybrid feature selection strategies 

have been discussed in their work. When evaluating feature subsets, filter strategies use an 

independent test, whereas wrapper strategies require a specified learning procedure. They all 

have their own set of drawbacks, yet they all complement each other in some way. Their work 

includes filter and wrapper algorithms as part of a sequential search process to improve how 

well the hand-picked options can be grouped. The main parts of the planned method are pre-

selecting feature subsets with better classification performance and misusing ROC curves to 

describe each option and subgroup within the classification.  

To keep the classifiers' performance results intact while reducing the number of 

alternatives, Bolón-Canedo et al. [46] present a solution to enable a mix of wrapper, filter, and 

classification algorithms. The winner of the KDD'99 Competition and other writers have used 

it to reduce the number of options in two different techniques by a contrasting difference. The 

best ways to classify things are into two categories or into more than two classes. Using 17% 

of all features, the binary approach did better than the KDD winning result. More than that, the 

approach was used on several big binary datasets with the same results, which means that 

machine learning algorithms have fewer options. This method seems to be good for big datasets 
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like the KDD'99 dataset because it saves time and memory. KDD'99 has also been looked at 

as a setback that fits into more than one group, like traditional connections and four other kinds 

of attacks. People often suggest using a multiple class method or multiple binary classifiers to 

deal with many category problems. This work changes the KDD winner result, even though it 

only uses 17% of the traits. This method works with large databases because it uses naive 

Bayes or C4.5 classifiers instead of SVMs, multilayer perceptrons, or functional networks. 

These machine learning algorithms are faster and use less computing power than other 

classifiers used in the literature. When compared to other methods, it looks like ours did better 

than those of the other authors, especially in the areas that were hard to tell apart. Because they 

did not have enough data, applied math could not use the work of other writers. During a 

comparison, it was found that, based on the category, some combinations were much more 

effective than others. In the future, they suggested to put together completely different 

combinations to make sure that the smaller categories are taken care of and enhancing the 

performance at larger scale. 

In one of the research, IDS feature selection problem has been highlighted by Sara 

Mohammadi et al. [47] due to additional and unused features containing in a dataset, as a result 

these systems are prone to inaccurate categorization and a poor rate of detection. They 

discussed FGMMI, FGLCC, and try-wise MI as possible solutions to the problem. There was 

a lower rate of false-positive detection and accuracy with the projected feature choice strategies 

compared to try-wise linear parametric statistics and thus the try-wise MI used in many 

previous algorithms, as demonstrated by experimenting NSL and KDD'99 datasets. The 

FGLCC and FGPMI algorithms have introduced a novel approach, enhancing the FGMI 

algorithm through strategic structural adjustments. In KDD'99 and NSL, the FGMMI 

algorithm produced the best results with AR and F values of 95.65 and 96.12 percent, 

respectively and have high detection and accuracy rates. 

According to Mowei Wang et al. [48], A reliable ML model for networking problems 

necessitates representative and unbiased data. The process of data collection is crucial, as 

datasets vary across different problems and time periods. Data can be gathered through two 

methods: in-person and online. Offline data collection enables the accumulation of extensive 
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legacy data, which could be utilized for enhancing model training. During the live phase, real-

time network data can be used to retrain the model and incorporated into a feedback loop. 

Monitoring network activity can be done actively or passively. Active monitoring 

involves sending probe packets into the network to gather useful information, while passive 

monitoring observes network behavior without injecting additional traffic. Active monitoring 

incurs additional costs due to bandwidth usage and the need for extra equipment, whereas 

passive monitoring avoids these issues. After gathering the data, it is partitioned into sets 

designated for training, validation, and testing purposes. The training dataset plays a pivotal 

role in refining model parameters, such as the neural network's connection weights, to achieve 

optimization. The validation dataset aids in the choice of an optimal model configuration, like 

determining the ideal number of hidden layers in a neural network from a range of potential 

models. The test dataset serves the purpose of impartially assessing the model's performance. 

The split percentages for training, validation and testing can vary with ratio of 60/20/20 

or 70/30, depending on the need for validation. Rule-of-thumb ratios work well for smaller 

collections, while extreme ratios like 98/1 or 99/0.4/0.1 are useful for large datasets. It is crucial 

to ensure that training datasets are not skewed towards specific groups of interest, to prevent 

overfitting or poor generalization of the model. Validation and test datasets should have the 

same distribution as the training set and remain separate from it. To assess the model's ability 

to handle changes in time and location, training and validation datasets from different periods 

or networks can be used. Models that accurately predict results from datasets collected over a 

year or from different networks demonstrate stability across both time and space. 

Using machine learning, Moore and Zuev [49] proposed solution to network traffic 

classification challenge. Before utilizing collected data for learning purposes, it is essential to 

address any inaccuracies or missing information through a data cleaning process. Feature 

extraction is a crucial step that precedes model learning or training, as it helps simplify the 

learning process and enables drawing meaningful conclusions. When dealing with networking 

tasks, there are various options available, which can be categorized into coarse, medium, and 

fine levels of detail. 
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At the packet-level, statistics such as mean, root mean square (RMS), and variance can 

be computed from the collected packets. Time series data, such as hurst, can also be derived 

from the packets. One benefit of using packet-level analysis is that they are not affected by 

packet sampling, which are sometimes employed to collect data but may alter the behavior of 

features. Flow-level features, such as average flow length, average packet flow count, and 

average bytes flow count, can be calculated using simple statistical methods. Additionally, 

characteristics at the transport layer, like throughput and window size mentioned in TCP 

connection headers, can provide further insights into connections. However, these features may 

require more setup time and are inclined to sampling and route asymmetries. 

The selection and extraction of features play a vital role in machine learning. The 

primary objectives of this process are to reduce the dimensionality of large datasets and 

recognize distinctive features that minimize computational overhead while enhancing the 

correctness of ML models. "Feature selection" involves removing unnecessary or redundant 

features, as utilizing irrelevant characteristics that have little or no impact on accuracy can lead 

to overfitting. Feature extraction is a complex computational process that leverages methods 

for instance entropy, Fourier transform, and principal component analysis (PCA) to obtain 

additional or transformed features from existing ones. Tools like NetMate and WEKA can be 

employed to assist in the selection and extraction of features. By carefully selecting and 

extracting relevant features, the dimensionality of datasets can be effectively reduced, 

computational efficiency can be improved, and ML models can achieve higher accuracy in 

networking tasks. 

According to Jun Zhang et al. [50], data can be labeled using the features in many ways. 

Manual labeling by field experts with DPI assistance is primarily required. To help with 

classification when there is a lack of training data, this research offers a new traffic 

classification scheme. Uses discretized statistical features to describe traffic flows, and bag-

of-flow correlation information to model flow correlation in this approach (BoF). They use a 

classifier combination framework to solve the BoF-based traffic classification and then 

conduct an analysis of the function. The NB predictions combined using a novel BoF-based 

traffic classification algorithm, they examine the aggregation strategies' sensitivity to 

prediction error. This strategy was put to the test two real traffic datasets. According to the 
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experimental results, this technique outperformed current traffic classification algorithms in 

terms of accuracy. This new traffic classification technique increased classification 

performance in absence of insufficient training data. Using the new BoF-NB approach, NB 

predictions were efficiently aggregated. The success of the suggested strategy was proved 

through testing on two real network traffic datasets. In this study, traffic classification was 

achieved with less time for labeling of training samples. 

The performance of the model was shown to be impacted by the amount of the training 

data for different classes, as demonstrated by Soysal Schmidt [51]. Traffic classification 

accuracy is critical for network administration and monitoring as well as network provisioning. 

Consideration must also be given to scalability, processing costs for classification and user 

privacy when selecting a classification method. Based on accuracy and execution cost like 

classification and system buildup time, the study suggests that BN, DT, and MLP is best for 

flow-based traffic classification. Several categories of data were taken into account, including 

P2P, HTTP, Akamai content delivery, FTP, bulk uploads, DNS, and SMTP email. A piece of 

software called WEKA is used to run the tests. There hasn't been much research on ML 

algorithms for traffic classification because earlier studies used flow traces that were labeled 

with likely mistakes because of payload inspection or port-based methods. Also, the data sets 

don't include internet flows that can't be found with these methods, which limits how useful 

the results are. They used more than a million recent flow traces that were correctly labeled to 

train and test the ML systems. Peer-to-peer (P2P) traffic is an example of this kind of traffic. 

P2P traffic can move ports or pretend to be something else. Flow-based classification is being 

used for the first time to classify Akamai content delivery data. 

For BNs, DTs, and MLPs, their work was to look at how training data was put together 

in an organized way. Experiments show a link between volume of training data related to each 

traffic type and how it affects accuracy of classification. Volume of training data for a specified 

traffic categories can influence how well it can classify traffic. Because of how we do things, 

there are some training sets that give the most accurate results. Traffic which associates to 

well-known default ports for a port-based classifiers work better. ML approach, on the other 

hand, are useful for classifying traffic, especially for types of traffic like P2P that do not use 

system ports. 



25 

  

The National Academic Network of Turkey was used to get a big set of correctly 

labeled data that was used to test BNs, DTs, and MLPs. According to the test results, DTs are 

more accurate and have a better categorization rate than BNs. DTs, on the other hand, are 

longer to create and are more vulnerable to inaccurate or insufficient training data. Researchers 

have conducted a thorough investigation on traffic classification using MLPs trained using 

back propagation to detect any shortcomings. They discovered that the sorting of web traffic, 

bulk traffic, and email traffic is highly dependent on one another and significant to amount of 

training data. When using the MLP method, we cannot get good recall numbers for these types 

of traffic at the same time. For instance, they demonstrate how P2P programs that masquerade 

(that is, utilizing ports from other applications, like port 80) and FTP programs that run in 

passive mode (that is, use random port assignments in a certain range) may impair the 

performance of other programs. While FTP applications that are running in the background 

may adversely affect the accuracy of the BN algorithm, same is not applicable with the DT 

approach. 

Support Vector Regression (SVR) can be used to estimate link load forecasts in traffic 

prediction, according to Bermolen and Rossi [52]. With a hands-on approach, the researchers 

tinker with the SVR performance and compare it to that of the MA and AR models. For short-

term link load predictions, the improvement that SVR has over basic prediction methods like 

MA or AR is not enough to support its use, even though the actual data matches the predictions 

made by SVR well. It's important to note that SVR models have some advantages over other 

forecasting methods. For example, they aren't too sensitive to change in the parameters, their 

computational complexity isn't too high, and the forecasting horizon can be further extended 

with only a modest loss in accuracy using a cascaded SVR model. This paper serves as a 

springboard for subsequent research, the directions of which are briefly discussed below. 

Different network traces from various scenarios should be used to validate the outcomes of the 

research in order to get more robust data. Preliminary results suggest that changing the time 

series (such as by changing its differentiation or statistical features) could improve forecast 

accuracy by a large amount. This would require a comparison to more advanced methods for 

forecasting time series. Also, it remains to be seen if the accuracy of SVR can be improved by 

using different kernels (such as multi-linear or others can account for characteristics of the time 

series) to reduce need for expensive time-series manipulation. To wrap up, this study could 
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look at other possible paths, such as evaluating different forecast targets (like peak load) and 

analyzing longer timescales. It could be worthwhile to investigate whether the SVR can better 

anticipate load changes by including information about the duration in a day or a week.  

It has been claimed that traffic prediction is a non-TSF problem and that an alternative 

model for inter-DC network traffic prediction. Inter-DC traffic, in contrast to typical network 

traffic, is driven by a few numbers of large applications that produce huge traffic flow. The 

key to traffic forecasting is to break down the traffic pattern into its component parts. The 

primary objective is to predict the volume of traffic traversing an inter-data center link, with a 

particular emphasis on handling substantial traffic flows. To achieve this, models employ 

Feedforward Neural Networks (FNNs) trained using Backpropagation (BP) with basic gradient 

descent. Additionally, wavelet transforms are employed to capture temporal and frequency 

characteristics inherent in time series form for traffic data. By incorporating these techniques, 

the models can effectively analyze and interpret the complex patterns present in the traffic data, 

enabling accurate traffic volume prediction for inter-data center links. The estimate considers 

more factors, such as traffic flows. But it costs more to count the number of byte-volumes than 

to gather all traffic flows at high rates. So, to reduce the cost of gathering traffic flow data, it 

is done less often and then the missing numbers are filled in by interpolation. For six weeks, 

SNMP counters were used to check Baidu's DC routers as well as inter-DC connection every 

30 seconds to record a consolidated amount of egress and ingress traffic. Most of data on egress 

and ingress traffic are gathered every 5 minutes, and lost data count are estimated every 30 

seconds using interpolation. A level 10 wavelet transform are used to consolidate time series, 

resulting in 120 features per timestamp [53]. 

Bakhshi and Ghita [54] addressed traffic classification in their article for task 

performed by the network administrator on various operation activities. Numerous important 

aspects need to be considered in networking, which include infrastructure allocation, quality 

of service (QoS) and service categorization, ensuring security, detecting malicious intrusions, 

tracking logs, and evaluating performance. These factors collectively contribute to the efficient 

functioning and management of networks, ensuring optimal resource allocation, reliable 

service delivery, robust security measures, and effective monitoring of network performance. 

Pre-defined classes of interest must be appropriately linked to network traffic to achieve traffic 
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classification. HTTP, FTP, WWW, DNS and P2P are all examples of types of applications. 

Other examples include services such as Skype, YouTube, and Netflix. When it comes to QoS 

(Quality of Service), for example, a class of service covers everything that falls under the same 

QoS specifications. This means that applications with seemingly disparate functionality may 

have a common set of service characteristics despite their outward differences. It is possible to 

categorize all types of network traffic by port number, payload, host behavior, or flow 

characteristics in four major categories. Use of flow measurement to classify traffic allows 

network operators to perform crucial network management. Classification approaches like 

NetFlow, which require extra packet-level information and host behavior analysis as well as 

specific hardware requirements are regarded as insufficient for flow accounting. Dealing with 

such issues, two-stage machine learning classification technique is proposed which has input 

data from NetFlow. C5.0 decision tree classifiers are trained using k-means clustering on flow 

classes derived per application. Unsupervised flow data from 15 major Internet sources were 

used in the initial round of validation to define distinct flow classes created by each application 

individually using k-means clustering. After that, a supervised C5.0 decision tree was trained 

and tested using the generated flow classes. Adaptive boosting increased accuracy from 92.37 

percent to 96.67 percent on about 3.4 million test cases with the resulting classifier. Between 

98.37 percent and 99.57 percent of the time, the specification agent of classifier, that 

differentiate content-specific from additional flows, was found as a result, they suggested that 

this methodology is applicable to a vast array of instances, including traffic classification, 

because of its computational efficiency and accuracy. 

Dainotti et al. [55], stated that the assignment of port numbers to programs is a 

responsibility handled by IANA. However, it has been observed that port numbers alone do 

not hold much significance owing to widespread usage of dynamic negotiation, tunneling and 

the allocation of ports to commonly used programs for the purpose of masking traffic and 

bypassing firewalls. To enhance the efficiency of classifiers, it becomes crucial to combine 

port numbers with additional methods. In the forthcoming sections, various ML-based traffic 

classification methods are discussed. Employing a multiclassifier system or integrating 

multiple techniques has the potential to yield higher accuracy compared to a single classifier, 

as different techniques excel in different traffic categories. With recent advancements in 

machine learning, multi-classifier systems have emerged, which harness the expertise of 
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multiple classifiers trained on the same flow objects. As a result, these systems are more 

accurate than a single classifier and can better withstand variations in the sample population, 

such as shifts in the types and combinations of applications. However, traffic categorization 

tools have only dabbled in simplified techniques, such as relying on hosts or machine learning 

if payload inspection fails. This strategy has been successfully utilized by network anomaly 

and intrusion detection systems. 

Haffner et al. [56], suggested to use first some bytes to reduce computational work for 

unencrypted traffic containing TCP packets which are unidirectional as binary feature vectors.  

This is another approach which is in addition to port-specific this type of traffic classification, 

which uses the contents of the payload. Due to its high computational and storage 

requirements, it is not the most cost-effective method. Sources of data and their dynamics are 

constantly changing, maintaining, and adapting signatures manually is time-consuming. 

Additionally, because to growing security and privacy issues, encryption is required to the 

payload and privacy rule is applied to access it. As a result, extracting signature from a payload 

is not an easy task. TCP encryption settings are negotiated by extracting information from the 

unencrypted handshake in encrypted communication such as SSH and HTTPS. For traffic 

classification, they make use of NB, AdaBoost, and MaxEnt. Overall, AdaBoost surpasses NB 

(99 percent accuracy) and MaxEnt (less than 0.5 percent error rate). Author used ML 

techniques in this research to recognize signatures for a variety of applications automatically. 

According to the results, this method is highly accurate and may be used on high-speed 

networks to identify online applications. Content signatures continue to function even when 

encrypted, according to a recent discovery. In these cases, they talk about the encryption 

settings for a specific link to get content signatures for handshakes that aren't encrypted. 

Their ML models are scalable and reliable because they can handle partial packages, 

one-way flows, and a variety of usage patterns. Asymmetric routing problems are avoided by 

flows that only go in one way. Residential network data is more varied in terms of age, social 

group, and interests, and there are less connections between usage trends in space and time. 

For the AdaBoost traffic analyzer to work well with noisy data, it needs to know ahead of time 

about the protocols in the application classes. 
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There is no need for prior knowledge of the application classes to achieve payload-

based traffic classification using unsupervised clustering, according to Ma et al. [57]. They 

train their classifiers to identify structure in packet by giving them label of one case of a 

protocol and the partial correlations between several protocols. For every pair of sessions, there 

are source to destination one-way flows and its reverse. Their work contained, a hierarchical 

cluster analysis (HCA) was used to order the protocols that were seen and to find the classes 

of interest. The distance measure for PD and MP is weighted relative entropy, but for CSG it 

is approximate graph similarity. The PD-based protocol models were the most accurate when 

it came to the total number of wrong classifications. Because of this, binary and text systems 

like DNS and XML have a high degree of invariance at fixed offsets. Using HTTP, which is 

the Internet Protocol. Even though the CSG had a higher rate of wrong classification (about 

7%), it was still the best choice for SSH-encrypted communication. Encryption, on the other 

hand, makes the data less predictable, which slows it down. 

Finamore et al. [58] uses another approach where signature extraction part is not 

necessary for the encrypted traffic. With the rise of streaming apps, they are focusing on packet 

payload analysis to get application fingerprints from UDP data that has been sent for a long 

time. Using Pearson's chi-square test, author first took some bytes from packet and compared 

with randomness of other uniformly distributed experimental data with several grouping some 

consecutive bits in a set of some set of packets. With the signatures, an SVM classifier is 

trained to make a 99.6 percent accurate distinction between the classes of interest. FP, on the 

other hand, is more affected by the length of considered bytes and is only reduced by 5% for 

windows larger than 80. Despite the drawbacks, payload-based classifiers are frequently used 

to establish ground truth despite their high accuracy. Chi-Square Signatures are derived from 

the test findings and reflect application fingerprints compactly. As fingerprints derived from 

packet inspection, Chi-square Signatures have several advantages over traditional DPI 

signatures. No arduous and time-consuming reverse-engineering is necessary to come up with 

them. They can be used to sort data based on both where it goes and where it ends up. Online 

categorization is possible because of their small computational and memory needs. Although 

KISS and DPI classifiers both need to look at application layer signals, they are quite different 

tools. The disadvantage of both approaches is that they are rendered useless when dealing with 

encrypted payloads. The behavior patterns of the network hosts are used to identify these 
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classes. Focusing on how different application interact end to end with much concern on 

encrypted traffic and port-based flow. As an example, a P2P host may use a separate port 

number to communicate with each of its peers [59]. 

Several viewers could connect to a web server through the same port. Timing and 

protocol connections are used to find HTTPS webmail traffic. They use the following in their 

favor: Most SMTP, IMAP, and POP servers, which can be found by their port numbers, are in 

the same domain or subnet as webmail services. (ii) Users of IMAP, POP, and webmail all use 

their accounts in different ways on a daily and weekly basis. For example, POP and IMAP 

users are more likely to leave the web client open to check for new messages, while IMAP 

users are more likely to stop the web client to check for new messages. Application timers 

cause webmail traffic to have regular trends (iv), like when AJAX-based clients check for new 

messages at different times. Using an SVM classifier, the authors show that these 

characteristics can be used to tell the difference between webmail traffic and other types of 

traffic. Author has used 5-fold cross validation with 93.2% accuracy. Value of FN came out 

was large because the classifier did not know how to tell the difference between VPN and 

webmail sites. It is important to remember that info from P2P apps is very selective. A P2P 

application can be designed to download video with large size chunk from a fellow peer and 

similarly a short flow can grab fixed-size chunks of video at the same time. 

P2P application signatures can be derived from the packets transmitted between peers 

in small time frames proposed by Bermolan et al. [60]. The authors look at the sensitivity of 

the parameters so they can improve their settings, which means a higher True Positive Rate 

(TPR) and a lower False Positive Rate (FPR) for getting the best result. On applying their 

proposed algorithm, the TPR is about 95% and the FPR is less than 0.1%. Signatures are also 

shown to be portable across time and place with only a small drop in performance. Still, 

observed communication patterns can be changed by routing differences in the network core, 

so the position of the monitoring system has a lot to do with how accurate host behavior-based 

traffic classification is. Support Vector Machines are used to accurately identify P2P-TV traffic 

and traffic from other types of apps in this classification framework. This means that almost 

no wrong categorizations happen. In this work, the reliability of the rejection criterion is 

calculated by identifying rate of false alarms in worst-case scenario. The conclusive part was 
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signatures used by two peers gets the result (62% in CAMPUS and 82% in ISP) for real traffic, 

which is used to measure how many false positives there are: There is a match between 72% 

and 84% of the UDP traffic. The categorization framework is more robust because this traffic 

cannot be misclassified.  

Jun Zhang et al. [61] suggested RTC which is based on supervised full flow feature-

based traffic classification. They use both supervised and unsupervised ML techniques that 

classify previously unidentified zero-day traffic to improve accuracy. The reason is that zero-

day activity is in unlabeled data. This RTC structure is made up of three parts: figuring out 

what is unknown, putting traffic into categories based on the BoF, and keeping the system up 

to date. The BoF module makes sure that zero-day samples are clean and puts flows that are 

related together. The system update module adds to what is already known by learning new 

classes from zero-day data that has already been found. RTC is special because it can use 

correlated flows to show real-world scenarios and find zero-day applications. In case of 

considering a least size of labeled trained datasets also, RTC can be up to 15% more accurate 

with flow and up to 10% more accurate with bytes than the second-best method also using the 

discriminative MLP-NN classifier, increases the accuracy of traffic classification with 99%. A 

study of travel data from the real world has shown that this plan works. For zero-day attack 

their work performed better. In another approach by Auld et al. [62], classifier's temporal 

accuracy was increased to 95% by MLP-NN with BNN approach. 

Este et al. [63] sorts traffic using both single-class and multi-class SVM for 

categorizing traffic in IP networks is Support Vector Machines (SVM). There are still certain 

issues to be resolved before SVMs are routinely employed as traffic classifiers. It is still being 

investigated how to apply them to problems with more than two classes because they were 

primarily designed for situations with two classes. Additionally, how well their functioning 

parameters are tuned greatly affects how well they perform. In this study, we discuss the traffic 

classification capabilities of SVM. The author classified statistical traffic using an approach 

for solving multi-class issues by considering SVM classifier before describing a 

straightforward optimization strategy that enables the classifier to function properly with as 

few as a few hundred examples of training data. Even though the results are still very recent, 

they demonstrate that even with a limited training set, SVM-based classifiers were effective 
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for traffic from various sources. However, for encrypted communication, the performance is 

not as good because it was relying on the port-based labeling, which degrades its throughput 

but with the increase in computation costs. 

Jing et al. [64] suggests an SVM approach for context-based traffic. At each round 

during SVM design, the candidate classes are paired at random. A binary SVM classifier then 

selects one class from each combination, thereby halving the number of potential classes which 

reduces count of support vectors that rely on two-pair classes. Using multi-class classification 

in SVM significantly reduces the cost of classification compared to complete training dataset. 

Traditional and multi-class SVM are not as effective as they could be at managing large 

datasets. It is essential to remember that the best classification could be removed, resulting in 

more incorrect classifications with increase computational cost. The authors contrast the 

existing SVM with the basic and FT-SVM schemes they have developed with 96% accuracy 

while reducing classification error by 2.35 and computation by 7.65 times. It is uncommon to 

have information about all the programs operating on a network, so supervised learning cannot 

always be applied to network traffic.  

Liu et al. [65], to achieve up to 90% accuracy with k-Means. Unsupervised training 

was part of the experimental analysis that utilized full traffic flows and log transformations of 

characteristics to fetch features to get as close as feasible to achieve stable distribution, 

removing anomalies from the data. However, it would be illogical to use rigid clustering to 

determine membership because flow characteristics from sources like HTTP and FTP may 

match.  

Yang et al. [66] built and showed first convolutional neural network that automatically 

extract features from short strings for cyber security problems. Using embeddings and 

convolutions as the top layers of our neural network and training it under supervision lets us 

automatically get a set of features that are directly optimized for classification. Even though 

similar approaches have been this for natural language processing (NLP), eXpose is the first 

approach that shows how top-to-bottom deep-learning methods resolve several important 

cyber security problems in an adversarial environment where strings are purposely messed up 

to stop obvious feature extraction. During our experiments, one of the biggest problems was 

that training on longer strings took a lot of computing power, so we could not try out more 
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complex architectures. With recent improvements in hardware and the addition of distributed 

training modules to modern frameworks, the results of some of the more expensive 

architectures may be able to get even better. For end-to-end learning, these ideas are built into 

eXpose by using labeled datasets that already exist. As hardware and data sets get better, the 

difference between automatically extracted features and traditional ways of extracting features 

will only get bigger. 

Huda [67] proposed new malware detection system for CPS which is semi-supervised. 

The new thing about this system is that it can protect CPS against new types of malwares 

without the manual work needed to create signatures and keep the repository of antimalware 

tools up to date. This technique can compensate for the inability of CPS to be utilized with 

older control software or operating systems (OS) due to impossibility of updating organization 

(due to time constraints, personnel costs, and anticipated asset loss). In this system, the hidden 

data structure's geometric information that was recovered also contains current details on any 

new variations. Unsupervised learning is used to accomplish this, and the supervised detection 

engine is subsequently updated with the new data. So, this method protects against new 

malware without requiring the database to be manually updated or labeled. 

Kamarudin et al. [68] Anomalies and invasions have been studied extensively. Still, 

recognizing invisible threats and reducing false alarms is difficult. The Logitboost-based 

classifier detects known and unknown online attack activity in this work. Their approach used 

NSL-KDD and UNSW-NB15, two publicly accessible labeled intrusion detection testing 

datasets, to create diverse integration testing scenarios. Preprocessing eliminated redundant or 

unimportant elements. Data mining with the Logitboost classification algorithm yielded high 

detection rates and low false alarms. This study found that ensemble technique may detect 

unknown attack and their results used to signed and stored in a database. Since new traffic may 

be matched with signatures of good or bad traffic from prior detection, finding something is 

much faster. Finally, this ensemble approach can be tested online utilizing previously 

intercepted and current encrypted traffic. 

Ziyang Guo et al. [69], proposed residue-based detection technique that detect sensor 

communication pattern by the malicious attacker to alter sensor data. They recommend a linear 

deception attack technique and display the associated feasibility constraint. Due to its rapid 
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growth and safety-critical applications, CPS security has drawn more attention recently. These 

systems are susceptible to cyber threats because CPS frequently sends measurement and 

control data across unencrypted communication networks. Any successful CPS attack might 

result in a few negative outcomes, including the disclosure of consumer information, harm to 

the national economy, destruction of infrastructure, and even the risk to people's lives.  

Offline data fetched from numerous archives can be utilized for research purpose as 

long as its validity exist in networking. Some most common are the UNSW-NB15 [70], the 

UCI KDD Archive [71], MAWI [72], and IMPACT Archive [73]. Using monitoring and 

measurement tools is a good way to get data from both offline and online sources. These tools 

give more control over different parts of data collection, like the rate of data sampling, the 

length of monitoring, and the position of network core and edges. Monitoring networks is 

usually done with SNMP [74], Cisco Net-Flow [75], and IPFIX [76]. 

Apart from the above data several other researchers also worked on the known datasets 

and achieved certain level of accuracy. Ambusaidi et al. [77] It gives general data that can be 

changed for IDS feature description. Using SVM with 19 selected features, KDD'99 record got 

the highest accuracy of 99.79 percent. The model applies code correlation analysis to find the 

required attributes and the ideal attributes (depending on the value below the upper limit of the 

CCA upper limit in the NSL-KDD dataset) with a 98.9% accuracy [78]. How well different 

groups of features work in KDD datasets, Khammassi and Krichen [79] came up with a way 

to find outages and fix them using repeated calculations, genetic calculations, and strict 

research methods increased their accuracy of DTC by 99.9% and 0.105% for the KDD'99 

dataset with 18 features. Akashdeep et al. [80] suggested correlation and data retrieval will 

reduce if wrong artificial neural network classifiers for detection is used. The system is the 

most accurate in the KDD'99 dataset, with a 99.9% accuracy rate. It is used for DoS attacks on 

ANNs with 25 features. 

Divyasree and Sherly [81] proposed a screening technique for network IDS, that uses 

chi-square tests to suggest many simplified KDD'99 functions. This method reduces 10 

features that could be used in DoS attacks. Using CVM, the detection rate is 99.12%. For the 

definition of the logical dependence of IDS, it is best to use rough and well-thought-out 

calculations. In the research [82], 22 attributes were used, and fuzzy rules were added to the k-
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nearest neighbor classifier (FRNN). It gives 99.87 percent of the detection area in a dataset 

with only one direction and half the types of data. The framework [83] has a 99.79% 

recognition rate because it uses 26 functions from a one-time dataset. Yulianto et al. [84] used 

an intrusion detection system based on Adaboost to come up with a plan to cut down on the 

number of parts in an IDS. With 25 functions and the PCA feature combination along with 

Ensemble Feature Selection (EFS), it can be accurate 81.83 percent of the time. Using a 

selection-based Bayesian and roughset approach, Prasad et al. [85] came up with a way to cut 

down on noise. With a random population structure calculated with negative definitions for the 

NSL-KDD dataset [86], it can improve accuracy by up to 99 percent. Also, REP Tree [87] uses 

10 features from the global identifier and the small dataset, which can give the highest accuracy 

of 99.73%. Only small differences can be seen between the signatures of different attacks and 

is the best approach to identify who is breaking into the system [88]. 

Numerous authors have worked on different datasets with different machine learning 

approach and found variation in result. Different methodologies such as FGLCC-CFA, C4.5 

DMIFS, PKID + Cons + C4.5, SVM, GA-LR wrapper, ANN, CVM, Ensemble of C5 DTs, NN 

and C4.5 DT, BN and CART, NB, and others have been applied. Performance metrics vary 

across methodologies and features, with detection rates ranging from 80% to 100% for normal 

instances and varying rates for different types of attacks such as DoS, Probe, U2R, R2L, and 

Satan while using KDD Cup datasets.  

Using CICIDS 2017 dataset, multiple methodologies such as Bayesian Rough set, Ensemble 

MPML, TCM K-NN, Random Forest, Information Gain + Random Forest, and AdaBoost have 

been employed. Detection rates for different types of attacks like DoS are consistently high, 

reaching up to 99.96%. The number of features used in each methodology according to 

selection of features varies and affecting the performance metrics.   

Table 3. Review of various work done on different datasets and ML techniques 

Paper Title [Ref] 

 

Dataset Methodology Features Performance Limitation 

Cyber intrusion 

detection by combined 

feature selection 

algorithm [39] 

KDD Cup FGLCC-CFA 

FGLCC 

10Fold - 

FGLCC-CFA 

10 Features 

15 Features 

15 Features 

 

95.03 

92.59 

99.84 

Low detection 

Low detection 

High detection 
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Feature Grouping for 

Intrusion Detection 

Based on Mutual 

Information [41] 

KDD Cup C4.5 DMIFS 

FGMI 

13 features Normal: 99.3 

Anomaly: 

91.4 

Low detection 

Feature selection and 

classification in 

multiple class datasets: 

An application to KDD 

Cup 99 dataset [46] 

KDD Cup PKID + Cons 

+ C4.5 

13 Features Normal: 99.3 

U2R: 25 

DoS: 96.08 

R2L:8.12 

Probe:73.62 

Low detection 

then KDD 

Winner 99.45 

Building an Intrusion 

Detection System 

Using a Filter-Based 

Feature Selection 

Algorithm [77] 

KDD Cup SVM 19 Features 99.79 High 

Accuracy 

A GA-LR wrapper 

approach for feature 

selection in network 

intrusion detection [79] 

KDD Cup GA-LR 

wrapper 

18 Features 99.9 High 

Accuracy with 

delay 

A feature reduced 

intrusion detection 

system using ANN 

classifier [80] 

KDD Cup ANN 25 Features 99.9 High 

Accuracy with 

25 features 

A Network Intrusion 

Detection System 

Based On Ensemble 

CVM Using Efficient 

Feature Selection 

Approach [81] 

KDD Cup CVM 10 Features DoS:99.12 High 

Accuracy for 

DoS attack 

only 

An efficient feature 

selection based 

Bayesian and Rough 

set approach for 

intrusion detection [85] 

CICIDS 

2017 

Bayesian 

Rough set 

40 Features 96.38                             Low accuracy 

as 40 features 

used. 

Artificial neural 

networks for misuse 

detection [89]      

RealSecure               

 

Supervised              

NN 

Payload, header   

of TCP, IP, and 

ICMP                                     

 

Detection 

Ration: 89-91            

Low Detection 

Winning the KDD99 

classification cup [90]         

 

 

KDD Cup          Supervised             

Ensemble of 

C5   DTs                        

 

41 features             Normal:99.5           

Probe:83.3          

DoS:97.1          

U2R:13.2           

R2L:8.4           

Normal:High           

Probe:Medium        

DoS:High          

U2R:Low           

R2L:Low      

Using all 

features     

Hybrid neural network 

and C4.5 for misuse 

detection [91]               

KDD Cup          Supervised  

NN and C4.5 

DT 

41 features           Normal:99.5              

DoS:97.3              

Satan:95.3           

Portsweep: 

94.9       

U2R:72.7              

High 

Detection for 

R2L attack 
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R2L: 100              

A neural network-

based system for 

intrusion detection and 

classification of attacks 

[92] 

KDD Cup            Supervised               

NN               

 

35 features           MLP:80             

ESVM:90             

ESVM 

DR:87         

Low Detection 

Feature deduction and 

ensemble design of 

intrusion detection 

systems [93] 

KDD Cup         Supervised           

BN and CART          

41 features            Normal:100          

Probe:100            

DoS:100            

U2R:84            

R2L:99.47         

High detection 

for Normal, 

DoS and R2L 

Naive Bayes vs 

decision trees in 

intrusion detection 

systems [94] 

KDD Cup               Supervised           

NB                   

41 features            Normal: 

97.68          

DoS: 96.65        

R2L: 8.66       

U2R: 11.84      

Probing: 

88.33      

Low 

Performance 

Decision tree classifier 

for network intrusion 

detection with GA-

based feature selection 

[95] 

KDD Cup          Supervised              

C4.5 DT              

 

GA-based               

Feature              

Selection              

DoS:97.88        

Probe: 98.33        

R2L: 80.01       

U2R: 99.99      

High 

performance 

for U2R 

Feature deduction and 

ensemble design of 

intrusion detection 

systems 

et al. [96] 

KDD Cup Supervised          

Ensemble of             

SVM,            

DT, and SVM-

DT 

all 41 features         Normal: 99.7     

Probe:100       

DoS: 99.92       

U2R: 68       

R2L: 97.16       

High detection 

for Probe and 

DoS 

Practical real-time 

intrusion detection 

using machine learning 

approaches [97] 

RLD09 Supervised 

C4.5 DT           

Header of TCP, 

UPD, and         

ICMP              

Normal: 

99.43      

DoS: 99.17       

Probe: 98.73     

High detection 

Multi-Perspective 

Machine Learning a 

Classifier Ensemble 

Method for Intrusion 

Detection [98] 

NSL-KDD Supervised 

Ensemble 

MPML 

all 41 features 84.137              Low accuracy 

An active learning 

based TCM-KNN 

algorithm for 

KDD Cup Supervised 

TCM K-NN 

Chi-square 

41 features 

8 features 

99.7               

99.6                  

High accuracy 
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supervised network 

intrusion detection [99] 

Kshirsagar et al. [100] CICIDS 

2017 

IGR-SCS1 

CR-SCS2 

ReF-SCS3 

48 Features 

24 Features 

12 Features 

DoS:99.9586  

DoS:99.9593             

DoS:98.8698               

High accuracy 

CICIDS-2017 Dataset 

Feature Analysis With 

Information Gain for 

Anomaly Detection 

[101] 

CICIDS 

2017 

Random 

Forest 

15 Features 99.81                      High accuracy 

with only 15 

features used 

An efficient feature 

reduction method for 

the detection of DoS 

attack [102] 

CICIDS 

2017 

Information 

Gain + 

Random 

Forest 

22 Features 

28 Features 

99.83                     

99.79                    

High accuracy 

but more 

features used 

Development of a 

Method for Detecting 

Network Attack on 

Machine Learning 

Algorithms [103] 

CICIDS 

2017 

AdaBoost 10 Features 99                     High accuracy 

with less 

features 

 

These research outcomes by various authors demonstrate the effectiveness of various 

methodologies for intrusion detection across different datasets. Performance metrics vary 

based on the methodology, features used, and the specific dataset characteristics. High 

detection rates for normal instances and different types of attacks indicate the potential of these 

methodologies in effectively identifying and mitigating these cross-layer attacks. 

 

2.4 Anomaly and misuse detection techniques 

Anomaly detection technique reflects any deviations in the normal pattern. Mismatches 

can be found by looking for both static and dynamic deviations [104]. The static deviation 

exception works because it is known that the part of the network that needs to be checked won't 

change. Most static detectors look at the software part in networked system because it is 

thought that there is no need to check the hardware. The part of the frame that doesn't change 

is the frame structure and the consistent information segment. This information is important 

for the situation to work right. For example, the system information and PC startup information 
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will never change. This information is stored in system for long duration of time unless a new 

hardware is added and software has changed. However, the system can deviate from its unique 

structure at any time if an error happens or if an attacker changes the static parts of the system. 

The framework that finds the log does not keep track of every case. All they do is keep track 

of interesting cases. 

Misuse detection: Information about framework weaknesses and actual attack designs 

can help find misuse. Misuse detection tries to find deviation a hacker who are trying to break 

into a framework by misusing a weakness that is already known. If there are no outside 

protections, a misuse detection framework tries to find out about every known weakness and 

fix it. If it does not, it could lead to a system attack [105]. An intrusion detection framework 

constantly checks a running process for known intrusions. This is done to make sure that at 

least one attacker is not trying to take advantage of known weaknesses, so every intrusion 

should be found. Misuse detection systems uses rules to detect events for unauthorized activity 

that a security module checks in system. It can be hard to keep track of and explain complicated 

rules. Because there are many ways to find intrusions, it is unlikely that the rules will not be 

caught. In this way, changes to the standard rate can be complicated because the rules that are 

affected are spread out over the whole standard rate. The new stratification strategy in the guide 

links model-based principles to government progress to deal with these problems. As part of 

figuring out when someone is misusing something, these principles are used to find situations 

that might be good for doing something bad. It can be seen in real time by looking at the packets 

coming in or later by looking at the log. 

Anomaly detection and misuse detection techniques have their advantages and 

disadvantages. Often, new, or unknown attacks, as well as variations of normal attacks, go 

unnoticed by traditional abuse detection strategies. Responding to such attacks with 

conventional methods may not effectively mitigate the harm they cause. Irregular identification 

methods can identify novel or undisclosed attacks in the programming environment, detect 

variations of known attacks, and identify deviations from the typical usage patterns of a project, 

whether they originate from authorized internal users or unauthorized external users. However, 

attacks that are observable may not appear distinct, especially if they align with established 

client profiles. Understanding the motives behind launching attacks for scientific purposes can 
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also be challenging to explain. Additionally, certain unique identification methods are prone 

to manipulation by malicious clients who gradually modify their profiles over time, altering 

the breach detection framework to reveal the attacker's personal profile. This tactic is 

commonly employed as a means of seeking retribution. The false alarm rate in intrusion 

detection can be influenced by well-trained methods for estimating targets or determining 

uniqueness. 

Table 4. Comparison of Anomaly and Misuse detection technique 

 Anomaly Detection Misuse Detection 

Motivation Identifying deviations from normal 

behavior or patterns within a system 

Focuses malicious activity or 

specific attack signatures 

Methodology Baseline of normal behavior using 

historical data or statistical models 

and flags any data points or 

activities that significantly deviate 

from this baseline as anomalies 

Relies on predefined 

signatures, rules, or patterns of 

known attacks to identify 

malicious behavior 

Resource Intensity Regular updates to its signature 

database 

Require more computational 

resources to keep baseline of 

normal behavior 

Use case Detect novel attacks or previously 

unseen threats, such as zero-day 

exploits or insider threats 

Effective at catching known 

threats, such as viruses, 

worms, or known types of 

cyberattacks 

False Positives Generate more false positives 

because it flags any deviation from 

normal behavior 

May have fewer false positives 

but may miss new, unknown 

threats 

Example Unusual login times or locations, 

unexpected spikes in network 

traffic, unusual file access patterns 

Matching network traffic 

against a database of known 

malware signatures, 

identifying specific command 
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sequences indicative of a 

known attack 

 

In terms of intrusion detection systems, there are two main categories. Host-based 

intrusion detection systems count on data sourced from individual hosts, typically for 

monitoring purposes. On the other hand, network-based intrusion detection systems analyze 

network traffic within the organization to which the host is connected, providing a broader 

view of potential intrusions. 

A. A Host-based Intrusion Detection System (HIDS) is a cybersecurity tool designed to 

monitor and analyze the activities occurring on a single host or endpoint within a network. 

HIDS focuses on detecting unauthorized or malicious actions that occur directly on a specific 

host. HIDS operates by continuously monitoring various aspects of a host's activities, such as 

file system changes, log entries, process executions, and system calls. It compares observed 

behavior against known patterns of malicious activity or predefined rules to identify potential 

security breaches or anomalies. By providing real-time monitoring and detection capabilities 

at the host level, HIDS can help organizations identify and respond to security incidents 

promptly, protecting against threats such as unauthorized access, malware infections, insider 

attacks, and system vulnerabilities [106].  

B. Network-based IDS:  A Network Intrusion Detection System (NIDS) is a cybersecurity 

tool designed to monitor and analyze network traffic for signs of suspicious or malicious 

activity. NIDS operates at the network level, inspecting traffic as it flows across the network. 

As use of Internet increases with number of hosts but if there is misconfiguration in the 

organization then chances of intrusion may happened [107]. By continuously monitoring 

network traffic, NIDS can identify various types of threats, including malware infections, 

denial-of-service (DoS) attacks, port scans, intrusion attempts, and unauthorized access 

attempts. Upon detecting suspicious activity, NIDS can generate alerts or trigger automated 

responses to mitigate the threat and protect the network infrastructure [108]. 

Data mining method for detecting intruders: Data mining techniques are increasingly being 

applied to intrusion detection systems (IDS) to improve their ability to detect and respond to 
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cyber threats. leverage large datasets to identify patterns, anomalies, and indicators of 

malicious activity within network traffic or system logs [100]. The information retrieval 

method is a new strategy in a data mining method for detecting intrusions. It changes how rare 

information is, how rules and designs are made, and how much information there is. The goal 

of intelligent analysis of information is to get rid of information that cannot be seen well with 

the usual methods [109]. Mining calculations come in many forms, such as sequence, 

repetition, grouping, membership rule retrieval, checking for differences, and array 

exploration. Different mining strategies are used to avoid being found because they have 

important benefits. The large summary information is used to index information about how the 

client or program acts [110]. By default, known attacks and errors are written into NIDS. 

Because of this, it is not sensitive to certain actions and can only tell between a limited number 

of types of intrusions. A SVM can map vector training in a space with many elements and 

figure out which group each vector belongs to. Support vector machines have been a good way 

to find intrusions because they are fast and easy to change. 

2.5 Data filtering and feature selection 

The aim of data filtering corresponds to cut down undesired information that the IDS 

must deal with directly. Some information may not help the IDS, so it can be discarded before 

it is handled. This has the benefit of reducing the amount of space needed for storage, cutting 

down on preparation time, and improving the rate of identification [111]. 

Feature selection plays a crucial role in the detection of network attacks as it helps 

identify the most relevant attributes for differentiating between normal and malicious network 

traffic. By selecting a subset of features, the complexity of the data is reduced, leading to 

improved accuracy and efficiency in the classification models employed for attack detection. 

This process is essential for enhancing the overall effectiveness of network security measures. 

For the feature selection process following steps were followed: 

a. Define the problem: To define the problem and identify specific type of network attacks 

that need to be detected. This will help determine the relevant features that need to be selected 

for the analysis. 
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b. Data collection: The second step is to collect data related to network traffic, which 

includes various features like source and destination IP addresses, packet size, protocol, and 

timestamps, among others. This data can be obtained from network sensors, firewalls, or 

intrusion detection systems. 

c. Data pre-processing: The collected data is often noisy, incomplete, and inconsistent, 

which can affect identification of correct feature selection process. Therefore, a data needs pre-

processing to remove irrelevant or redundant features, fill missing values, and standardize the 

data. 

d. Feature ranking: After the pre-processing of data, it becomes necessary to prioritize the 

features according to their significance in solving the problem at hand. Several techniques can 

be employed for feature ranking, such as correlation, information gain, and chi-square feature 

selection, among others. These methods help identify the most influential features that 

contribute to the desired outcomes, enabling more effective decision-making and problem-

solving in the given context. 

e. Feature subset selection: After the features have been ranked, the subsequent stage 

entails choosing the most pertinent subset of features. This selection process involves 

employing a feature selection algorithm, such as greedy forward selection, greedy backward 

elimination, or genetic algorithms. These algorithms aim to identify the finest subset of features 

which can maximizes performance of classification model, thereby enhancing the accuracy 

and efficiency of the analysis. By carefully selecting the subset of features, the subsequent 

classification or prediction tasks can be significantly improved. 

f. Classification model: After the relevant feature subset has been selected, the next step 

involves training a classification model on the data to effectively differentiate between normal 

and malicious traffic. Various models can be employed for this purpose, such as decision trees, 

neural networks, support vector machines (SVM), or any other suitable model that aligns with 

the specific problem at hand. These models are trained using the selected features to learn 

patterns and create a reliable framework for classifying incoming network traffic accurately. 

g. Evaluation: Finally performance of feature selection process and classification model 

needs to be evaluated using a range of metrics for instance accuracy, precision, recall, and F1 
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score. Such evaluation measures offer insights into effectiveness and reliability of chosen 

features as well as the classification model in accurately identifying and classifying network 

traffic. By assessing these metrics, researchers and practitioners can gauge the overall 

performance and effectiveness of their approach, allowing for further refinement and 

optimization if necessary. 

Feature selection process involves selecting the most relevant feature subsets from 

available data for enhancing the accuracy and efficiency of the classification models used for 

attack detection. The process involves several steps, including defining the problem, data 

collection, data pre-processing, feature ranking, feature subset selection, classification model, 

and evaluation. By following this process, network administrators can detect and prevent 

network attacks in real-time, ensuring the security and integrity of their network infrastructure. 

Some features can be used more than once because the data they add is already in other features 

[112]. This makes IDS less accurate. Defined functions improve characterization by finding 

subsets of features that can better group information such as IP address destination packet, 

protocol, timestamp etc.  

In conclusion, many IDS relies on a database of known attack signatures to identify 

malicious activity. As a result, they can only detect attacks for which signatures are available. 

Zero-day attacks or variants of known attacks that deviate from existing signatures may go 

undetected. Also, making new signatures requires expensive and time-consuming manual 

review by human experts. This means that there is often a gap between finding a new attack 

and making a signature for it by selecting appropriate features for reduced computation.  

2.6 Datasets for Intrusion Detection System 

IDS were developed to find and stop hackers before they could cause any damage to a 

computer network. There are several datasets available that can be used for IDS research and 

evaluation.  

2.6.1 DARPA 1998 

In connection with a DARPA IDS Evaluation program, this dataset was compiled and 

includes network traffic data from various sources, including LAN and WAN. The dataset 
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contains processes like FTP, browsing the internet, sending/receiving e-mail, IRC data etc. 

Aside from normal network traffic, there are 38 attacks classified as DoS, U2R, Probe, and 

R2L [113]. DARPA dataset is out-of-date with non-real-world network traffic. It contains 

some flows that also interprets as false positive because it interprets some of the benign as 

attack [114]. It is longer used but importance of DARPA98 dataset still exist because it was 

used to create datasets like KDD'99 and NSL-KDD. 

2.6.2 KDD Cup 1999 (KDD'99) 

For research, its most used IDS dataset that contains appropriate number of network 

traffic instances, both normal and anomalous to train and test IDS algorithms, derived from 

DARPA98 dataset[115]. Training and a testing portion are provided on the website where 

training section contains 4898431 data streams, while the testing section contains 311029 data 

streams. A total of 38 different attack types can be found within the KDD'99 dataset out of 

which 14 were newly added unknown attacks. As a result, it is possible to regulate for 

identifying novel attack using test section. Many studies have used the KDD'99 dataset instead 

of DARPA99 because of it contain selected 41 features with training and test parts, which are 

more suitable for machine learning methods [116]. 

2.6.3 NSL-KDD 

An extension of the KDD'99 dataset that addressed some of its limitations. It contains 

a more balanced distribution of normal and anomalous instances, as well as more realistic 

attack scenarios. It was found that the number of repetitions in KDD'99 adversely affects the 

results of studies and desired output of algorithms for applied ML approach. Apart from this, 

researchers have attempted to use only a portion of the KDD'99 dataset due to its large size. 

When a portion of dataset is considered, it does not cover all the dataset's features, so selecting 

dataset need proper attention. 

For addressing these issues, Siddique et al. [117] came up with NSL-KDD dataset in 

2009. Errors and repetitions in KDD'99 were eliminated in this version. This proposed NSL-

KDD dataset was partitioned into two main categories: KDDTrain+ and KDDTest+ with 

KDDTrain+ 20Percent for training. 
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2.6.4 UNSW-NB15 

This dataset contains network traffic instances generated in a realistic environment that 

contains attacks such as DoS, probing, and exploitation. 

2.6.5 ISCX 2012 

This dataset includes network traffic data captured in a realistic environment that 

contains several attack categories such as DoS, DDoS and botnet. On the Canadian Institute 

for Cybersecurity testbed, a seven-day Internet stream was used to create ISCX 2012 IDS 

dataset [118]. This dataset was built in real scenario, which contains both malicious and normal 

flow like “FTP”, “HTTP”, “IMAP”, “POP3”, “SMTP” and “SSH” protocols (Infiltration, DoS, 

DDoS and SSH Brute Force). According to ISCX 2012, more than half of all Internet traffic is 

made up of SSL/TLS traffic, not included in the ISCX 2012 dataset [119]. These datasets can 

be used for a variety of purposes, including training and testing IDS algorithms, evaluating 

performance of different IDS techniques along with comparing effective IDS systems.  

When using machine learning to identify network anomalies, it must contain a 

substantial amount of malicious and normal traffic for training and testing. Privacy issue is the 

major concern due to this an actual network traffic cannot be used. Several datasets have been 

and continue to be developed in order to accommodate this demand. For analyzing attack in 

other than datalink and network layer of TCP/IP model, KDD'99 and CICIDS dataset is 

selected for final implementation. 

2.6.6 CICIDS2017 

This dataset contains network traffic data captured in a realistic environment that 

includes new attacks and malware. This dataset contains five days of data. The Canadian 

Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017) is a standard 

dataset for network security intrusion detection systems (IDS) that covers large set of actual 

and variety of network traffic scenarios. The dataset was created by capturing real network 

traffic and conducting series of attacks on test network. The traffic was then processed to 

remove any sensitive information and anonymized to protect the privacy of individuals and 

organizations involved. The resulting dataset contains approximately 2.5 million network 
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flows, including both benign and malicious traffic, and a total of 79 features or attributes for 

each flow. 

The CICIDS2017 dataset is composed of two parts: 

Training set: This set contains approximately 560,000 network flows, including both benign 

traffic and covering several attacks at different layers of TCP/IP model, such as DoS (Denial 

of Service), DDoS (Distributed Denial of Service), and Brute Force attacks, among others by 

conducting attacks using a variety of tools, including Metasploit, Nmap, and Hping3, among 

others. Its testing set contains approximately 1.9 million network flows. 

Features in CICIDS2017 dataset are clustered into six categories: 

Basic flow features: These features describe basic information about the flow, like source and 

destination IP addresses, the protocol used, and packet flow count. 

Content features: Describe the content such as the payload size and the occurrence of definite 

keywords or patterns. 

Traffic features: These features describe the traffic patterns, such as the inter-arrival time 

between packets flow intervals. 

Time-based features: Describe the timing characteristics of flow, such as start and end times 

and flow interval. 

Connection-based features: These features describe the characteristics of the connection, like 

count of packets and bytes exchanged, count of packets and bytes per second, and number of 

connections between the same source and destination IP addresses. 

Network behavior features: This describes overall behavior of the network, such as number of 

flows and connections per second and the overall network throughput. 

The CICIDS2017 dataset provides a comprehensive and realistic benchmark for 

evaluating the performance of IDS in detecting several network attacks. Diverse features and 

attack ranges in the dataset makes it asset for investigators associated in area of network 
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security. It contains more protocols than any other data set. Apart from protocol such as FTP, 

HTTP, SSH, and e-mail, it supports HTTPS (Hypertext Transfer Protocol Secure) but in 

contrast to KDD'99 and NSL-KDD, this dataset does contain separate files for training and 

testing.  

Table 5. Dataset features and attack types 

Datasets No. of Features Attack types  Remarks 

DARPA 1998 41 DoS, R2L, U2R, 
Probe 

Combined Non real traffic, irregular 

attack instance 

KDD Cup 99 41 DoS, R2L, U2R, 
Probe 

Contains many duplicate data 

samples 

NSL-KDD 41 DoS, R2L, U2R, 
Probe 

non-redundant instances from KDD 

Cup, Limited count of attack 

UNSW-NB15 49 DoS, R2L, U2R, 
Probe, Reconnaissance 

Data collected from realistic 

virtualized environment 

ISCX 2012 42 DoS, PortScan, and DDoS Network traffic from medium sized 

organization  

CICIDS2017 79 DoS, DDoS, Brute force, 
Portscan, Botnet, 
Web, 
Infiltration 

Data collected from real-world 

network traffic 

 

2.7 Network Attacks and its categories  

In this section, the various attack types found in the data set are discussed in depth. 

DoS HULK: Denial-of-Service HULK [120] attack falls under category of distributed DoS 

attack which attempts to interrupt web server with huge volume of HTTP requests with the 

goal of consuming server resources which interrupt the service to legitimate users. DoS HULK 

attack uses botnet that are controlled by command-and-control center hosted by an attacker 

with a huge number of compromised computers. The botnet is used to flood target server by 

high volume of HTTP GET and POST requests, targeting specific pages or resources on the 

server. The requests are sent in rapid succession, overwhelming the server and causing it to 

become unresponsive or crash. The requests are often designed to be malformed or include 
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invalid parameters, which can consume additional server resources and make it more difficult 

for the server to process legitimate requests. The HULK attack is particularly effective against 

web servers that have limited resources and are not designed to handle high levels of traffic. It 

can be difficult to mitigate the attack once it has started, as the botnet can be distributed across 

many different computers and IP addresses, making it difficult to block all the traffic. 

 

To mitigate a HULK attack, web server administrators can implement various 

techniques, including rate limiting, filtering out suspicious traffic, and using load balancers to 

distribute the traffic across multiple servers. Additionally, network administrators can use 

intrusion prevention systems (IPS) and firewalls to detect and block suspicious traffic coming 

from known malicious IP addresses. 

 

GET Flooding via the Internet: A GET Flooding via the Internet attack is category of DoS 

attack which attempts to interrupt web server with huge volume of HTTP GET requests. The 

botnet is used to flood target server by high volume of GET requests, targeting specific pages 

or resources on the server. The requests are sent in rapid succession, consuming the server's 

resources and causing it to become unresponsive or crash. The requests are typically targeted 

towards a specific page or resource on the server, such as a login page, and are designed to 

mimic legitimate user requests. However, since the requests are coming from a botnet and are 

being sent at a much higher rate than legitimate users, the server is unable to keep up with the 

request volume and is overwhelmed. One of the challenges of defending against a GET 

Flooding via the Internet attack is that the requests are typically legitimate HTTP requests, 

making it difficult to filter them out without also blocking legitimate user traffic. Additionally, 

the botnet can be distributed across many different computers and IP addresses, making it 

difficult to block all the traffic. 

To mitigate a GET Flooding via the Internet attack, web server administrators can implement 

various techniques, including rate limiting, filtering out suspicious traffic, and using load 

balancers to distribute the traffic across multiple servers. Additionally, network administrators 

can use intrusion prevention systems (IPS) and firewalls to detect and block suspicious traffic 

coming from known malicious IP addresses [121]. 
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PortScan: Nmap [122] is responsible for the PortScan attack on the CICIDS2017 dataset. A 

PortScan attack does network reconnaissance by scanning target host or network for open ports 

and services. The purpose of a PortScan attack is to collect information specific to target 

network that for identification of potential vulnerabilities or to plan further attacks. The 

attacker typically uses a tool such as Nmap to send a customized set of network packets to the 

target network, with the goal of identifying running services and open ports. The attacker may 

use several PortScan techniques, like TCP SYN scans, UDP scans, or FIN scans, for such 

running services or open ports. Attackers further plans for attacks once these running service 

or open port vulnerability is identified. For example, if attacker identifies an open SSH port, 

they may attempt to brute force the login credentials to get unauthorized access to target 

system. Alternatively, if an attacker identifies an open web server port, they may attempt to 

exploit known vulnerabilities in the web server software to gain access to sensitive data or to 

launch further attacks.  

To defend against PortScan attacks, network administrators can implement various 

techniques, such as network segmentation, firewall rules, and IDS, to identify and block 

suspicious network traffic. Additionally, system administrators can reduce the attack surface 

of their systems by closing unnecessary ports and disabling unused services. It is important to 

monitor network traffic for unusual patterns and keep update with security patches to prevent 

exploitation of known vulnerabilities [123]. Categorization port scanning methods into the 

following categories: 

Port scanning methods can be categorized by type of network packets that are sent to the target 

network to identify open ports and services. Some common categories of port scanning 

methods include: 

a. TCP SYN Scans: This is the most common category of PortScan attack where in an 

attacker sends SYN packet to selected network's ports. When the port is open in response to 

the SYN packet it replies with SYN-ACK. RST (reset) packet is sent by an attacker after this 

to close this connection. This technique is stealthy because it only initiates a partial connection, 

and the target network may not log the event. 
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b. UDP Scans: In this method, the attacker sends a UDP (user datagram protocol) packet 

to selected network's ports. When a port found to be open, the target network may reply with 

a UDP packet and when a closed port, the target network may respond with an ICMP (Internet 

control message protocol) packet. UDP scanning is typically slower than TCP SYN scans, as 

UDP packets are not guaranteed to be delivered and may require multiple attempts. 

 

c. FIN Scans: In this method, the attacker pushes FIN (finish) packet to desired network's 

ports. When a port found to be open, the target network may reply with an RST (reset) packet. 

and when a closed port, the target network may not respond at all. This technique can be 

effective against older systems, but many modern operating systems have implemented 

defenses against FIN scans. 

 

d. XMAS Scans: In this method, the attacker pushes packet with the FIN, URG (urgent), 

and PUSH flags set to desired network's ports. When a port found to be open, the target network 

may reply with an RST (reset) packet. and when a closed port, the target network may not 

respond at all. XMAS scans can be effective against some systems that are vulnerable to this 

type of attack. 

 

e. NULL Scans: In this method, the attacker pushes packet with no flags set to desired 

network's ports. When a port found to be open, the target network may reply with an RST 

(reset) packet. and when a closed port, the target network may not respond at all. NULL scans 

can be effective against some systems that are vulnerable to this type of attack. 

 

Overall, there are various types of PortScan techniques, each with their own strengths and 

weaknesses, and network administrators need to be aware of these techniques to detect and 

prevent PortScan attacks. 

DOS: The program LOIC [124] is responsible for the DDoS attack on the CICIDS2017 dataset, 

which sent HTTP, TCP, and UDP requests. DoS attack intended to deny normal operations of 

a target system, network, or service by sending huge volume of traffic. The requests are sent 

in rapid succession, overwhelming the server and causing it to become unresponsive or crash. 

The requests are often designed to be malformed or include invalid parameters, which can 
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consume additional server resources and make it challenging for server to process legitimate 

requests. DoS attacks are executed by a variety of techniques, like flooding the target system 

with traffic, exploiting vulnerabilities in the system to crash it, or overwhelming the system's 

resources by consuming its memory or CPU. Some common types of DoS attacks include: 

a. DDoS: It involves compromised sources or "bots" to flood the destined system or 

network with traffic. DDoS attacks can be difficult to defend against, as the traffic can originate 

from many different sources. 

b. Application-layer DoS: This type of DoS attack targets specific applications or services 

by exploiting their vulnerabilities. For example, an attacker may flood many requests to a web 

server, overwhelming its capacity for reacting legitimate requests. These attacks are referred 

as a "HTTP flood" or "Slowloris" attack. 

c. Network-layer DoS: This type of DoS attack targets the network infrastructure, such as 

routers or switches, by pushing a huge traffic to consume their resources. Such attack is also 

termed as "ping flood" or "smurf" attack. 

Some common DoS attack types are: 

a. TCP SYN Flood: It exploits the three-way handshake mechanism of TCP that flood 

server with connection requests that are never completed, causing the server to become 

unavailable to legitimate users. 

b. UDP Flood: This attack involves overwhelming a server with a flood of UDP packets 

that crashes or inactivate targeted server. 

c. Smurf Attack: The broadcast address on the network receives an ICMP echo request 

and in response to this all host replies back which creates flooding of request on targeted server.  

d. Ping of Death: Attackers sends a large size packet to a server or network, which can 

cause the system that crashes or inactivate targeted server. 

e. HTTP Flood: On target server an attacker sends huge volume of HTTP requests with 

the aim of consuming its resources and denying services to users. 

f. Slowloris: Attackers sends an incomplete HTTP request to targeted server, results in 

holding connections open that denying services to legitimate requests. 
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g. DNS Amplification: Attackers send DNS request to a server including spoofed source 

IP address, causing server to respond with a larger packet size than the original request and 

overwhelming the targeted system. 

h. NTP Amplification: This attack involves sending a request to a vulnerable NTP server 

including spoofed source IP address, causing server to respond with a larger packet size than 

the original request and overwhelming the targeted system. 

DoS attacks can have serious consequences, such as disrupting critical services or 

causing financial losses for businesses. Organizations can put in place several defenses against 

DoS attacks, including firewalls, IDPS, and CDNs that guard against traffic overload. 

Additionally, organizations can use traffic filtering and monitoring tools to detect and block 

suspicious traffic patterns, and regularly update their software and systems to address known 

vulnerabilities. 

DoS Goldeneye: GoldenEye is a DoS tool that was developed in Python and is often used by 

hackers to launch DoS attacks against web servers. It is designed to flood a target server with 

HTTP GET and POST requests, which can overload the server and cause it to crash or become 

unresponsive. The GoldenEye tool uses several techniques to make it more effective at causing 

damage to a target server. For example, it can randomly generate User-Agents and referrer 

headers to mimic the behavior of legitimate users, making it harder for the target server to 

distinguish between genuine requests and malicious traffic. A single TCP connection can 

transmit a larger file size by using the Keep-Alive method. Because of this, it disables HTTP 

Cache Control with the 'No Cache' option. System resources are depleted quickly when either 

of these two features is activated. 

To protect against GoldenEye and other types of DoS attacks, website administrators can take 

steps such as applying firewalls, load balancers, and various security approaches which can 

identify and prevent suspicious traffic. Additionally, using a Content Delivery Network (CDN) 

can help to distribute the load of incoming requests, reducing the risk of a single server being 

overwhelmed [125].  

FTP-Patator: Python-based FTP-Patator is a type of cyber-attack that targets File Transfer 

Protocol (FTP) servers using automated brute-force techniques. The attack is carried out using 
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a tool called FTP-Patator, which is designed to test thousands of usernames and passwords in 

very less time to gain unauthorized access to the FTP server. The FTP-Patator tool works by 

sending login attempts to the target FTP server using database of pre-defined usernames and 

passwords. The tool can also generate custom password with different set of character, 

numbers, and alphabet combination along with common password patterns or word 

combinations. If the tool is successful in finding a valid username and password combination 

form the database of password or self-created password list, attacker can access FTP server 

and potentially compromise the system. To protect against FTP-Patator, it is recommended to 

use a strong password along with two-factor authentication, IP-based access controls, and 

intrusion detection systems. It is also recommended to monitor FTP server logs for suspicious 

activity and to regularly update and patch the server software to address any known 

vulnerabilities [126].  

SSH-Patator: The Patator, a multithreaded Python program and SSH-Patator is a type of 

brute-force attack that targets systems using the SSH protocol. The attack involves an 

automated tool called "Patator," which is used to launch a massive number of logins attempts 

with combinations of username and password to take advantage of unauthorized access to the 

target system. SSH protocol is a widely used method for remotely accessing and managing 

systems, especially in the context of servers and cloud infrastructure. SSH relies on secure 

cryptographic keys and encrypted communication to prevent unauthorized access. However, 

if an attacker can guess the correct username and password combination, they can gain access 

to targer system. The SSH-Patator attack is designed to automate this guessing process, 

typically using a large list of common usernames and passwords, or even using dictionary 

attacks to guess potential passwords based on words found in the system or user data. The tool 

uses target's IP address along with list of username and password combinations to test against 

the SSH server. 

Aim of SSH-Patator attack is to gain access to SSH enabled system, which can then be used to 

execute further attacks, install malware, or steal sensitive data. To prevent such attacks, it is 

important to use strong passwords, disable password authentication for SSH, limit SSH access 

to authorized users, and monitor SSH logs for suspicious activity. 



55 

  

Slowloris DoS: An attacker overwhelms the target server by keeping many connections open 

simultaneously. A huge number of partial HTTP requests are sent by attacker to destination 

server and keep on hold long as possible, without completing the request. This causes the 

server's resources to be tied up, and it cannot accept any new connections, eventually causing 

the server to become unavailable. Slowloris DoS is called "slow" because the attack is carried 

out slowly and steadily, rather than in a sudden and quick burst. The attacker sends requests 

slowly, and each request is incomplete, so the server cannot close the connection. By doing 

this, the attacker can keep many connections open simultaneously with little bandwidth, 

thereby overwhelming the server's capacity to handle incoming connections. Slowloris can be 

difficult to detect because it uses legitimate HTTP requests and appears to be normal traffic. It 

is effective against servers with limited resources or configurations that allow many 

connections to be open simultaneously. Slowloris attacks are prevented by restricting number 

of connections request per IP address, and by configuring the server to time out incomplete 

requests after a certain period. 

DoS SlowHTTPTest: It is an application layer DoS attack aiming to keep connection open as 

long as possible by slowly and exhausting server resources by sending HTTP requests [127]. 

The following are the steps involved in a Slow HTTP Test attack: 

a. Target selection: The attacker identifies the target server that they want to attack. 

b. Initial connection: HTTP request is sent to creates connection with targeted server. It’s 

request typically contains large headers size in attempt to take more server processing time. 

c. Slow data transfer: Once connected, the attacker starts sending the HTTP request data 

very slowly. Attacker sends small chunks of data at a time, with long delays between each 

chunk. This makes it difficult for the server to process the request efficiently and can cause the 

server to keep the connection open for a long time. 

d. Connection keep-alive: The attacker sends a "keep-alive" header with the request, 

which instructs the server to remain open its connection for long time. This allows the attacker 

to keep the connection open and continue sending data slowly. 

e. Exhaustion: The attacker continues to send slow HTTP requests with keep-alive 

headers for exhausting server's resources so that it cannot handle new connection request. This 

results in the server becoming unavailable to legitimate users. 
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Slow HTTP Test attacks can be prevented or mitigated by implementing security measures 

such as rate limiting, load balancing, and using tools such as firewalls and IDS/IPS. 

Botnet: A network of internet-connected devices injected with malicious software, called 

"bots" or "zombies." These infected devices, which can include computers, servers, 

smartphones, and Internet of Things (IoT) devices, managed by single server. The operators of 

a botnet use the compromised devices to perform several malicious activities, like "DDoS" 

attacks, "spamming", "phishing", "click fraud", and "data theft". They can also be used to 

spread malware, such as ransomware, across the internet. Botnets are typically created through 

malware infections, which can occur through a variety of methods such as phishing emails, 

software vulnerabilities, and social engineering. Once infected, the device becomes a part of 

the botnet and can be controlled remotely by the botnet operator. Botnets can be difficult to 

detect and take down due to their distributed nature and the use of encryption and other 

techniques to evade detection. 

Ares [128], a Python-based attack tool, is used to conduct a botnet attack. "Ares" is the name 

of a specific botnet that was active between 2008 and 2016. It was a peer-to-peer botnet that 

primarily spread through file sharing networks such as Ares Galaxy, hence its name. The Ares 

botnet was primarily used for unethical purpose like distributed denial-of-service (DDoS) 

attacks, spamming, and stealing confidential information such as usernames and passwords. It 

was also capable of downloading and executing additional malware on infected machines. The 

Ares botnet was eventually taken down in a joint operation between law enforcement agencies 

and cybersecurity researchers. However, botnets continue to be a significant threat to 

cybersecurity and can cause significant harm to individuals, organizations, and even entire 

countries. 

Web-based Attack: A web-based attack [129] targets a website or web application, exploiting 

vulnerabilities in the software and infrastructure that underpins the site. Web-based attacks can 

be carried out using a range of techniques, including: 

Cross-site scripting (XSS): Attackers inject malicious code inside web page accessed by users, 

potentially stealing sensitive information or executing arbitrary commands on the user's 

computer. 
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a. SQL injection: Inserting malicious code inside web form, which can then be used to 

manipulate a website's database and gain unauthorized access to sensitive data. 

b. Cross-site request forgery (CSRF): Attackers tricks user to perform any activity on 

webpage, like clicking any link or submitting a form, without knowledge of user. 

c. Distributed denial-of-service (DDoS): It involve overwhelming a website using data 

packets, causing it to become unavailable to users. 

d. Man-in-the-middle (MITM) attacks: This involves eavesdropping user 

communications, potentially stealing login credentials or other sensitive information. 

Web-based attacks can have serious consequences, including data theft, financial 

losses, and reputational damage. To protect against web-based attacks, website owners and 

developers should ensure that their software is up to date, implement strong authentication 

mechanisms, and use encryption to protect sensitive data. Users should also be vigilant when 

browsing the web, avoiding suspicious links and keeping their software up to date. 

Infiltration: An infiltration [130] attack has goal to identify security flaws that could be 

misused by a real attacker and getting recommendations for further improving security. In an 

infiltration attack, a team of ethical hackers or security professionals attempts to take control 

of system or network using a variety of techniques, including social engineering, malware, 

password cracking, and network scanning. The attackers then attempt to exploit any 

vulnerabilities they find to access entry to crucial data or resources. Infiltration attacks are 

conducted by numerous methodologies, such as "white box", "gray box", and "black box" 

testing. Infiltration is an important part of a comprehensive security testing program, allowing 

organizations to identify and remediate vulnerabilities before they can be exploited by 

attackers. However, it is important to conduct infiltration attacks only with proper 

authorization and with appropriate safeguards in place to avoid causing unintended harm to the 

system or network being tested. 

Table 6. Comparative analysis of various attack methodology/detection techniques 

Attack Type Description Attack methodology/detection techniques Target 

Bot Malicious software 

designed to perform 

automated tasks 

Infiltrates systems, often part of a botnet, 

used for various purposes such as DDoS 

attacks, data theft, or spamming 

Various 
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DDoS Distributed Denial of 

Service 

Overwhelms a target system or network with 

a flood of traffic from multiple sources, 

causing a service outage 

Websites, 

Networks 

DoS GoldenEye Denial of Service attack 

using the GoldenEye 

tool 

Employs HTTP and HTTPS flooding to 

overwhelm the target, disrupting services 

Websites, 

Servers 

DoS Hulk Denial of Service attack 

using the Hulk tool 

Utilizes a large number of HTTP GET/POST 

requests to exhaust server resources, leading 

to service unavailability 

Web Servers 

DoS 

Slowhttptest 

Denial of Service attack 

testing tool for slow 

HTTP 

Exploits slow POST requests to consume 

server resources gradually, leading to a 

potential service outage 

Web Servers 

DoS Slowloris Denial of Service attack 

using the Slowloris tool 

Keeps multiple connections to the target web 

server open, preventing them from serving 

other legitimate requests 

Web Servers 

FTP-Patator Brute-force attack 

targeting FTP servers 

Attempts to gain unauthorized access by 

systematically trying different username and 

password combinations 

FTP Servers 

Heartbleed OpenSSL vulnerability 

allowing unauthorized 

access 

Exploits a vulnerability in the OpenSSL 

cryptographic software library, potentially 

leaking sensitive data from servers 

Servers 

Infiltration Unauthorized access or 

penetration into a 

system 

Involves gaining entry into a secure system 

or network with the intent of extracting or 

manipulating data 

Networks, 

Systems 

PortScan Systematic probing of a 

network for open ports 

Scans for open ports on a target system to 

identify potential vulnerabilities or entry 

points 

Networks 

SSH-Patator Brute-force attack 

targeting SSH servers 

Tries multiple username and password 

combinations to gain unauthorized access to 

secure shell (SSH) servers 

SSH Servers 

Web Attack Various attacks 

targeting web 

applications 

Includes SQL injection, cross-site scripting 

(XSS), and other methods to exploit 

vulnerabilities in web applications 

Websites, 

Servers 

Back Unauthorized access to 

a system using a Trojan 

Involves compromising a system and creating 

a backdoor for future access 

Systems 

Land Spoofed packet causing 

a system to reply to 

itself 

Exploits a vulnerability where the target 

system responds to a maliciously crafted 

packet 

Systems 

Neptune Denial of Service attack 

using the Neptune tool 

Floods a target network with TCP packets, 

causing service unavailability 

Networks 

Pod Denial of Service attack 

using the Pod tool 

Overwhelms a target system with a high 

volume of traffic, leading to service 

disruption 

Systems 

Smurf ICMP echo request 

flood with a spoofed 

source 

Amplifies a single ICMP echo request into a 

flood, causing network congestion and 

service disruption 

Networks 

Teardrop Fragmented packet 

attack causing system 

crashes 

Sends overlapping, fragmented packets to the 

target, causing the system to crash 

Systems 

Satan Network vulnerability 

scanner and exploit tool 

Scans networks for vulnerabilities and 

exploits them to gain unauthorized access 

Networks, 

Systems 

Ipsweep Network scanning for 

active IP addresses 

Probes a network to identify active IP 

addresses, mapping the network structure 

Networks 
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Nmap Network scanning and 

discovery tool 

Scans a target network to discover hosts, 

open ports, and services, aiding in 

penetration testing 

Networks 

Portsweep Scanning for open ports 

on multiple systems 

Identifies open ports on multiple systems 

within a network, potentially indicating 

vulnerabilities 

Networks 

Guess_passwd Brute-force attack 

targeting password 

guessing 

Repeatedly attempts different password 

combinations to gain unauthorized access 

User 

Accounts 

ftp_write Unauthorized write 

access to FTP server 

Exploits vulnerabilities to gain unauthorized 

write access to an FTP server 

FTP Servers 

Imap Unauthorized access to 

an IMAP server 

Gains unauthorized access to an Internet 

Message Access Protocol (IMAP) server 

Email 

Systems 

Phf Exploitation of the 

"phf" CGI vulnerability 

Exploits a vulnerability in the "phf" CGI 

script to gain unauthorized access 

Web Servers 

Multihop Unauthorized use of 

multiple hosts for 

attacks 

Uses multiple hosts to launch attacks, making 

it challenging to trace the origin 

Networks 

Warezmaster Distribution of pirated 

software and files 

Involves the distribution of copyrighted or 

unauthorized software and files 

File Sharing 

Warezclient Downloading pirated 

software and files 

Involves downloading copyrighted or 

unauthorized software and files 

Individuals, 

Systems 

Spy Unauthorized 

monitoring or espionage 

Involves spying on user activities, capturing 

sensitive information 

Individuals, 

Systems 

Buffer_overflow Exploiting buffer 

overflow vulnerabilities 

Overflows buffer memory to execute 

malicious code, potentially leading to system 

compromise 

Systems 

Load_module Unauthorized loading of 

kernel modules 

Attempts to load unauthorized kernel 

modules, potentially leading to system 

compromise 

Systems 

Perl Exploitation of Perl 

interpreter 

vulnerabilities 

Exploits vulnerabilities in the Perl interpreter, 

allowing execution of malicious code 

Systems 

Rootkit Stealthy software for 

unauthorized access 

Installs malicious software to gain 

unauthorized access and maintain control 

over a system 

Systems 

 

2.8 Machine Learning 

Machine learning is a powerful tool for detecting and mitigating network attacks. Here 

are some ways in which machine learning is helpful in the research of network attacks: 

a. Automated detection: This ML approach automate identification of network attacks by 

analyzing network traffic in real-time. The algorithms can train large datasets of both 

benign and malicious traffic to learn the patterns of different attack categories. Once 

trained, the algorithms can identify and flag any suspicious network activity that 

deviates from these patterns, enabling quick detection and response to potential threats. 
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b. Improved accuracy: Machine learning algorithms can analyze vast amounts of network 

traffic data and detect subtle patterns that may be difficult for humans to detect. This 

can lead to more accurate detection of network attacks and fewer false positives, which 

can save time and resources. 

c. Speed and scalability: ML algorithms can synthesize large volumes of network traffic 

data effectively and quickly, that make possible to evaluate vast real-time data. This 

scalability allows network administrators to monitor and respond to network attacks 

quickly, reducing the potential impact of these attacks. 

d. Continuous learning: It can adapt to new network threats and adjust their detection 

patterns as new threats emerge. This continuous learning capability makes machine 

learning-based detection systems more robust and adaptable to evolving threat 

landscapes. 

e. Predictive analysis: It can predict future network attacks associated with historical data 

and patterns. This can help network administrators prepare for potential threats and 

implement proactive measures to prevent attacks from occurring. 

Machine learning approaches has its own strengths and weaknesses. Some common ML 

approach are listed below: 

Supervised learning: This type of approach uses labeled dataset for training a model, where the 

desired output is already known. The model learns to relate input variables to validated output 

variable, allowing to make predictions on new and previously uncovered data. This technique 

is applied for classification and regression problems. Each dataset flow must be accurately 

identified and labeled in training data with a description of its characteristics (such as normal 

or malicious). At this point, the algorithm's performance is evaluated using these tags, which 

are then compared to what it predicted. The method's performance is excellent. When using an 

external service (such as manual tagging) for labeling, the cost of supervised learning is high. 

Decision Trees, K-Nearest Neighbors, and Random Forests are a few examples of this type of 

algorithm. 

Examples are: 

a. Classification: Predicting whether an email is spam or not spam 

b. Regression: Predicting the price of a house based on its features 
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Unsupervised learning: This method trains a model on an unlabeled dataset with unknown 

output. The model detects data patterns and outliers. Clustering and anomaly detection are 

major area for conducting unsupervised learning. Methods that do not use labels are known as 

unsupervised learning. Algorithms use various properties to categorize the data into groups 

and look for correlations between them. Accuracy detection and relationship learning are just 

two of the many areas where it has been used extensively. Labeling, on the other hand, requires 

specialized expertise that is expensive to outsource. Examples are: 

a. Clustering: Grouping customers into segments based on their purchasing habits 

b. Anomaly Detection: Identifying fraudulent credit card transactions based on patterns 

in the data 

Semi-supervised learning: It includes both labeled and unlabeled data. It learns from labeled 

data and apply this knowledge for predicting on the unlabeled data and used when labeled data 

is scarce or expensive to obtain. Unsupervised and supervised learning methods are combined 

to create semi-supervised learning: method. In most cases, only small percentage of data are 

labeled. This approach combines advantages of supervised and unsupervised learning, 

resulting in a high level of performance at a lower cost. 

a. Text classification: Labeling news articles like politics or sports containing only few 

labeled and large unlabeled dataset 

b. Medical diagnosis: Identifying diseases in medical images containing only few labeled 

and large unlabeled dataset 

Reinforcement learning: It involves decision making consideration by feedback from its 

surroundings. Reinforcement learning is commonly used in robotics and gaming applications. 

a. Robotics: Teaching a robot to navigate a maze by rewarding it for taking the correct 

path and penalizing it for taking the wrong path 

b. Gaming: Training a computer to play chess by rewarding it for making good moves 

and penalizing it for making bad moves 

Deep learning: It requires training the model on neural networks, which are complex 

mathematical models. Deep learning has proficiency of learning complex patterns and 

associations in data, making it well-suited for image and speech recognition applications. 
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a. Image recognition: Classifying images of animals, objects, or people based on their 

features 

b. Speech recognition: Transcribing spoken words into written text 
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Chapter-3 

3. Hypothesis, objectives, and methods 

3.1 Hypothesis 

To analyze, how a better and efficient system can be formed that secures the network from 

attacks, below are the hypotheses that lead to the firm statement of how current research work 

proceeded: 

 

Several authors have proposed various methods to detect attack at DLL, network, transport 

and application layer along with its prevention techniques. Attack analysis at the physical layer 

involves attacks like eavesdropping and jamming. While conducting cross layer analysis it is 

found that the physical layer does not have any much to do with software part as intruders 

generally capture packet by tapping or intercepting signals or do the jamming for interrupting 

service as discussed in section 2.1.  

Attack analysis at the data link layer is crucial for network security, as it helps ensure 

reliable data transport between devices. However, it is vulnerable to various security attacks 

that compromise network integrity, confidentiality, and resource availability. Research on data 

link layer security is limited compared to other cross-layer aspects. However, there is no 

method for tools like Snort to detect hidden terminal attacks, and further research is needed to 

determine its applicability. Tools like Snort typically performs well at network, transport, and 

application layers, but cannot detect all types of attack as discussed in section 2.2.  

Most of the attacks happened inside or outside of the network at network, transport, and 

application layer only and can be identified based on signature or anomalies. Attack at these 

three layers can be easily detected if the signature database is properly configured but it will 

be inefficient in case of zero-day attack or novel attack. Machine learning (ML) can be used to 

detect anomalies, clustering, classification, regression, and rule extraction. However, labelled 

data is challenging to train due to various factors, such as lack of publicly available datasets 

and access to comprehensive data on cyberattack frequency and impact. It is assumed that, 

integrating cross layer network attack dataset together in into existing machine learning 

approaches will enable more robust fault and security management capabilities. Also, it is 
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needed to improve the utilization of feature grouping by applying existing clustering 

algorithms for efficient detection of known/unknown attacks along with the need for unbiased 

data to train in ML. These issues are discussed in section 2.3.  

3.2 Objectives of this work  

a.  To improve the utilization of feature grouping and applying existing clustering 

algorithms for detecting known/unknown attacks.  

In our increasingly connected society, network attacks are a major challenge. Recent 

studies have used traditional machine learning to find network attacks. They did this by looking 

at the patterns of how networks interact and training a classification model. Most of the time, 

these models use large, labeled datasets. However, due to the speed and unpredictability of 

cyber-attacks, this labeling is unlikely to happen in real time. Many researchers have suggested 

using the "feature grouping" method to find new and unknown attacks by transferring 

information about known attacks. The feature grouping approach can find the different kinds 

of attacks and learn an optimized representation that is not affected by changes in how the 

attacks behave. 

By feature grouping, we can automatically find the link between the new attack and the 

known attack. This grouping can be used to simulate situations in which different attack styles 

or subtypes from the training set are included in the testing dataset. Traditional classification 

models like decision trees, random forests, KNN, and other approaches to grouping features 

can be used for this. In the present work, nine ML approach is used and applied on 77 features 

and reducing up to 14 to increase performance and accuracy in detecting attack. 

b.  To design the fault and security management framework for future networks with 

existing machine learning approaches.  

To achieve the objective, a selective ML algorithm are employed along with feature 

grouping, performance analysis, training and testing, and identification of known or unknown 

attacks in the future. Existing frameworks for intrusion detection systems (IDS) typically 

consider all information features to differentiate between interruption and misuse patterns. 

However, some of these features may be redundant or contribute minimally to network attack 
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identification. Hence, the aim of this research was to determine the crucial feature groups for 

developing an effective and easily programmable IDS. 

To address this, we propose the FSS-PART model, which utilizes Adaptive Resonance 

Theory (ART) to identify similarities and patterns in network traffic. By leveraging machine 

learning algorithms, predictive models capable of detecting network attacks can be 

automatically generated. In this research, an attempt is done to implement an application of the 

K-means and KNN methods within a web-based framework to identify network attacks based 

on protocol type TCP, UDP and ICMP. 

To facilitate the identification of new network attacks in a specific domain, we included 

source and target parameters that accurately reflect distinct or similar network environments. 

Additionally, we ensure that different attacks are recorded at various times and in separate 

instances. The approach for detecting novel network threats involves the following steps: 

i. Extraction of features from collected data 

ii. Classification of the extracted data 

iii. Representation of the data in graph for attack analysis 

By following this framework, it aimed to streamline the identification of new network threats 

as well as improving the overall effectiveness of intrusion detection systems. 

c.  Comparative analysis of this method with existing methods using standards 

datasets and parameters. 

For network model or intrusion detection systems (IDS) to figure out the best functions, 

selecting or removing functions is a complex task. Calculations based on filters, especially for 

information gain (IG), correlation (CR), and relief F (ReF). The system first gets the feature 

subset of each classifier. Depending full features and the strategy for combining other subsets, 

and after many tests, it was found that reducing the number of features improves performance, 

while adding more features outperformed but makes it easier to identify attacks. InfoGain, 

Coorelation and ReliefF were analyzed, and the result is included in Table 25. 
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3.3 Approach for achievement of the objectives  

Table 7. Methodology/ Tools/ Instruments used 

Objective  Analysis  Processes/ software used  

To improve the utilization of 

feature grouping and applying 

existing clustering algorithms 

for detecting known/unknown 

attacks. 

Dataset analysis and its 

features along with 

grouping of features for 

effective detection of 

attack  

KDD'99 datasets, python, 

Weka 

To design the fault and security 

management framework for 

future networks with existing 

machine learning approaches. 

Feature grouping, 

analysing performance, 

training, and testing using 

selective machine learning 

algorithm    

KDD'99, CICIDS 2017 

datasets, python, Weka 

Comparative analysis of this 

method with existing methods 

using standards datasets and 

parameters. 

Analysing the impact of 

feature grouping based on 

number of features taken 

by earlier approach and 

impact on the 

performance. 

KDD'99, CICIDS 2017 

datasets, python, Weka 

In recent years, cyberattacks have become a significant threat to government, military, 

and industrial networks. These attacks are increasingly complex and diverse, including zero-

day attacks and Denial of Service (DoS). Traditional signature-based detection methods often 

lack to keep up with the evolving nature of cyberattacks. It is crucial to explore new approaches 

that can identify anomalies, enable network learning and adaptation and detect threats in 

various network settings. 

Machine learning and data mining have been employed to enhance the detection rate 

of network attacks in networked environments. Supervised data-driven models have shown 

higher accuracy compared to unsupervised methods, but they require a large number of labeled 

malicious examples. As attack patterns change, the distribution of functions can also shift, 

rendering the training models less effective in identifying new attacks. 

Obtaining enough identified data for continuously emerging attacks is challenging. 

Additionally, when new attacks are discovered, incorporating new functions from different 

network levels becomes necessary. Since these functions have varying variables, it becomes 

possible to retrain the models. To address these challenges, we propose a method known as 
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"feature grouping" to facilitate the identification of new threats. The "feature grouping 

approach" is a novel machine learning technique that adapts features in a "target domain" 

where labeled data is limited by leveraging knowledge attained from an associated "source 

domain." Present work inspired by the fact that most network attacks are variations of well-

known attack families, sharing similar features that align with the feature grouping approach. 

The data from the source and destination networks are of different time periods within the same 

network setting. The assumption is that attacks on the source network are previously known 

and recorded, while attacks on the target network are new and distinct from those in the source 

network. The feature grouping method is examined in this thesis through parameter 

adjustments and various sizes of training sets. Furthermore, this method can be applied to other 

machine learning techniques. 

Existing network Intrusion Detection Systems (IDS) primarily rely on signature-based 

systems, which utilize collections of attack signatures created manually by experts. This 

process is slow and computing intensive. Machine learning models have been developed to 

predict and detect network attacks, reducing the reliance on manual analysis by experts. While 

IDS technology is beneficial, there is a need for improved detection of hidden or complex 

attack patterns. Building an effective intrusion detection system relies on a robust IDS dataset, 

which is used for model construction and testing to detect intrusions. Machine learning 

approaches leverage this data to build predictive models, where incorporating diverse and 

interesting data enhances the model's capabilities. It is significant to thoroughly evaluate both 

normal and malicious packets to identify and address vulnerabilities. Testing the system's 

ability to detect and minimize false alarms is critical. Ensuring low false alarm rates provides 

crucial information to programs, protocols, and lower-level network entities, enabling them to 

detect and respond to attacks. Creating and simulating realistic profiles aids in obtaining 

accurate information, as profiles can be described and executed by individuals, autonomous 

agents, or random distributions. Current intrusion detection tools often fail to accurately 

represent network traffic as it occurs in the real world. Collecting intrusion detection data as 

part of the process for developing and reviewing detection methods for computer network 

attacks is essential. Such datasets should encompass real-world network situations to ensure 

their effectiveness. Such a dataset is needed to show how this method for finding network 

threats works in real life. Study various forms of attacks, and various methods of machine 
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learning, including classification, identification of anomalies and selection mechanisms for 

building host and network level detection models, the following are the outcome: 

• Use of ML approach for understanding attacks at different layers.  

• For each attack to be found, there should be a thorough review and consideration for 

ML method. 

• How data is collected, missing data are taken out, and the data is analyzed.  

• For each attack, get representative data from a live university network ex. CICIDS 

2017, such as network traffic or server logs. Data collection for each attack is well 

thought out so that the gaps in the available databases can be fixed.  

• Considering all attack in the dataset, research done on these collected datasets are 

correct. 

• This work also justifies how ML approach is helpful in building host and network-

based detection model. 

• Feature selection approach is used to reduce attack detection time under different ML 

approach.  

3.4 Tools selection 

3.4.1 Python 

A high-level programming language which is used for diverse tasks, such as building websites, 

analyzing data, creating AI, doing scientific computing, and more. Guido van Rossum made it 

public for the first time in 1991. Since then, it has become most used computer languages in 

the world. It is a great language for learning because its code is simple and easy to understand. 

It has an active community of developers involved in making third-party libraries and tools 

that make it even more powerful and flexible. Some of the key features of Python include 

dynamic typing, automatic memory management, object-oriented programming, and support 

for multiple programming paradigms. Python code can run on several platform such as 

Windows, macOS, Linux, and more. 
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3.4.2 Sklearn 

Sklearn, better known as scikit-learn, is a renowned open-source machine learning library 

created on top of "NumPy," "SciPy" and "matplotlib." It offers a convenient and efficient 

platform for applying a diverse array of machine learning algorithms, together with 

classification, regression, clustering, and dimensionality reduction. Sklearn offers a wealth of 

tools for data preprocessing, model selection, and evaluation. Additionally, it offers access to 

several widely used datasets that serve as benchmarks for testing and comparing different 

machine learning methods. Within Sklearn, popular methods for instance "linear regression," 

"logistic regression," "k-nearest neighbors," "decision trees," "random forests," "SVM" and 

"neural networks" are frequently employed to address various machine learning tasks. 

3.4.3 Pandas 

An open-source tool for Python which analyzes data and supports other tools for working with 

organized data, such as tools for loading, cleaning, transforming, and displaying data. Pandas 

is built on top of NumPy, which is another popular scientific computing tool for Python. It has 

an interface that is made to make data analysis easier and more intuitive. Pandas adds Series 

and DataFrame, two new data formats that make it easier to work with tabular data. The Series 

object is basically a one-dimensional array with a labeled index, while the DataFrame object 

is a two-dimensional table with named rows and columns. Pandas makes it easy to index, filter, 

and manipulate these data structures. It also lets us do more complicated things with data, like 

grouping, pivoting, and merging. Pandas also has a lot of tools for working with missing data, 

data in a time series, and data that can be put into different groups. It also works with other 

popular Python tools, like Matplotlib for displaying data and Scikit-learn for teaching 

computers how to do things. 

3.4.4 Matplotlib 

The Python tool Matplotlib makes it easier to see how data looks. Matplotlib is a useful 

Python library for plotting data. It has many tools for making plots, charts, and graphs of high 

quality, like line plots, scatter plots, bar plots, histograms, and more. NumPy is another popular 

scientific computing library for Python, and Matplotlib is built on top of it. It works well with 
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other tools for data analysis and machine learning, like Pandas and Scikit-learn. It has an easy-

to-use interface for making custom plots and visualizations, and it has a lot of customization 

choices for fine-tuning how plots look. Matplotlib are used for data visualization jobs, such as 

exploratory data analysis, making figures that are good enough for publication, and telling 

stakeholders about the results. It also supports a wide range of output files, such as PNG, PDF, 

SVG, and more. 

NumPy:  Scientific computing, math and logic operations were made faster and easier by using 

this library. It can do a lot of things with arrays, such as indexing, slicing, sorting, and changing 

multidimensional arrays. NumPy is built on top of optimized C and Fortran tools and is meant 

to be fast and efficient. It has a lot of math features, such as linear algebra, Fourier transforms, 

and making random numbers. NumPy also works well with other scientific computer libraries 

such as Pandas, Scikit-learn, and Matplotlib. One of NumPy's most important parts is its 

multidimensional array object, which makes it easy to work with big data sets. We can make 

these arrays from Python lists or tuples, and they can have any number of dimensions. NumPy 

offers a variety of methods for doing math operations on these arrays, including vectorized 

operations that can be done on the whole array at once. 

3.4.5 Weka 

Weka is an open-source software that helps with data mining and machine learning 

along with giving us a full set of tools for preprocessing data, classifying, regressing, 

clustering, and finding associations between rules. Weka is written in Java and has both a 

graphical user interface and a command-line interface for running batch tasks. It also offers a 

extensive array of machine learning methods, such as "decision trees", "support vector 

machines", "random forests", "k-nearest neighbors", and "neural networks", as well as tools 

for feature selection, ensemble learning, and model evaluation. Weka's ease of use is one of its 

best features. This makes it a good choice for both beginners and pros. It also has a lot of 

information about how to use it and a big, active community of developers and users who work 

together to improve the software and help new users. 
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3.5 Hardware platform selection 

The time it takes for a machine learning algorithm to run is one way to judge its 

performance. It is, however, possible that the execution time will be affected by the computer's 

performance. In this research work following are the hardware configuration considered. 

Operating System: Windows 11 

Processor: Intel Core i7-1065G7  

Clock Rate: 1.30GHz (8 CPUs), ~1.5GHz 

Memory (RAM): 16384MB 

Card name: NVIDIA GeForce MX350 with Display Memory: 10064 MB 

Card name: Intel Iris Plus Graphics with Display Memory: 8212 MB 

Solid State Drive: 1 TB (3400 MB/s reading and 3100 MB/s writing) 

* Machine learning Training and Testing part is done on Google Colab with 12 GB 

RAM and allocated GPU. 

3.6 Data collection process   

KDD'99 and CICIDS 2017 datasets were analyzed for any improvement by selecting 

and reducing different features. As these datasets were large and features in these datasets were 

41 for KDD'99 and 79 for CICIDS 2017 respectively so selection of important features and 

detection of attack with accuracy and putting the provision for improving the efficiency of 

detecting the attack were a challenging task.  

The first task in the process was to select the datasets on which feature grouping need to be 

done. Following is the description regarding the datasets: 

Synthetic datasets: To meet condition or specific needs synthetic datasets are generated that 

satisfy real data. When we design any system for theoretical analysis, we use this dataset, and 

this dataset can be refined accordingly. It is used for creating different types of test scenarios. 

Designers utilize datasets to analyze and create realistic profiles for evaluating the 
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effectiveness of methods and techniques. However, it is often challenging to determine how 

well algorithms perform in real-world scenarios using these datasets. 

Benchmark datasets: These datasets are systematic and well-defined. They rectify the 

strengths and weaknesses of various algorithm. These given below the available benchmark 

datasets produced using simulated environment or by different attack scenarios: 

NSL-KDD dataset: It is most used benchmarked dataset derived from DARPA98.  

Several other datasets include KDD'99, DARPA 2000 dataset, DEFCON dataset, CAIDA 

dataset, LBNL dataset etc.      

Benchmark datasets are not effective for real world traffic as they do not represent 

dataset for simulating real time network. As DARPA dataset does not represent real network 

traffic as it is produced synthetically. 

Real life datasets:  

Example of some real-life datasets includes CICIDS 2017, UNIBS dataset, ISCX-UNB 

dataset, TUIDS dataset etc. In this work KDD'99 and CICIDS 2017 datasets is taken. Different 

datasets are available for research purpose, and this can be implemented for training and testing 

purpose for future attack. Most famous among these datasets are KDD'99 & CICIDS2017 

dataset. KDD'99 is most well-known benchmark and researched datasets in IDS development. 

It is a statistically pre-processed datasets available by DARPA since 1999. KDD'99 is mainly 

used for offline intrusion detection, but can it be used for online datasets. Presently, by 

comparing the structure of KDD'99 Dataset to that of any simulated attack, it’s clear that 

KDD'99 model is showing its age. It is not the best choice to train any machine learning 

algorithm using KDD'99 for any real-life datasets but it can be taken for reference purpose for 

benchmarking, and this is the reason CICIDS 2017 dataset is considered for further analysis of 

work.  
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Chapter-4 

4 Implementation 

Utilizing machine learning approaches for attack detection has proven to be effective 

in the domain of network security. However, the success of these models heavily depends on 

the quality of the data used for training and testing. To ensure the reliability and accuracy of 

the results, data cleansing plays a vital role in the initial phase.  

During the data cleansing process, various techniques are employed to eliminate errors, 

inconsistencies, and incomplete records from the dataset. This step is crucial as it helps to 

remove noise and ensure that the subsequent analysis is conducted on reliable and high-quality 

data. By fixing problems with data integrity early on, the performance and usefulness of the 

machine learning models can be greatly improved. Following data cleansing, the dataset 

divides in two distinct categories: training and testing set. The training set train the machine 

learning models, enabling them to learn and identify patterns within the data. On the other 

hand, the testing set is used to evaluate the performance of the trained models by assessing 

their ability to accurately detect and classify attacks. 

Feature selection is a crucial aspect of the machine learning process. It involves 

identifying the most relevant properties from dataset applied by ML algorithms for attack 

detection. Purpose of feature selection is to optimize performance and efficiency of models by 

selecting most informative and discriminative features. By carefully choosing these features, 

the models can focus on the most relevant aspects of the data, improving their ability to 

accurately identify and differentiate between normal network behavior and potential attacks. 

Once the feature selection process is complete, the machine learning algorithms are ready to 

implement with dataset. These algorithms utilize the chosen features and leverage their 

underlying mathematical and statistical properties to detect and classify attacks. They analyze 

the patterns, relationships, and characteristics present in the data to identify any anomalies or 

suspicious activities that may indicate a potential attack. 

By following this approach, which involves data cleansing, feature selection and 

applying machine learning algorithms, attack detection accuracy and effectiveness can be 
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significantly enhanced. The combination of these steps allows for the creation of robust and 

efficient models that can successfully differentiate between normal network behavior and 

malicious activities. The goal is to provide network administrators and security analysts with 

reliable tools to detect and mitigate potential threats in real-time, safeguarding the integrity 

and security of network systems. The entire procedure is shown in greater detail in Figure 6. 

Two different datasets are used. In the first approach CICIDS 2017 datasets are used and 

another using KDD'99.  
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Figure 6. Flow diagram for identification of attack 
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4.1 Data Cleansing 

Preprocessing eliminated redundant or unimportant elements. 

Following data preprocessing steps were done: 

i. Imports necessary libraries and modules, including pandas, os, sklearn.preprocessing, 

and time. 

ii. Define list of CSV file names and a list of main labels representing column headers. 

iii. Write the main labels as the header in each CSV file, based on the given file names. 

iv. For each CSV file, read the file line by line, checks if the line starts with a number, 

replaces any instances of " – " with " - ", and write the line to a temporary CSV file. 

v. Read the temporary CSV file using pandas, fills any missing values with 0, and 

performs the following steps for specific string features: 

  Replace 'Infinity' with -1. 

  Replace 'NaN' with 0. 

 Convert string representations of numbers to their corresponding numerical values. 

vi. Identify string features by checking the data type of each column and stores them in 

the variable string_features. 

vii. Initialize a label encoder from sklearn.preprocessing. 

viii. Encode the string features using the label encoder, replacing the original values with 

encoded values. 

ix. Drop unnecessary column from the DataFrame. 

x. Write the preprocessed DataFrame to the file final CVS file and remove temporary cvs 

file. 

 

Flow              

Recording      

Day              

pcap      

File size  

Duration             CSV File 

Size              

Attack Name                     Flow Count  

Table 8. Overview of the CICIDS2017 dataset. 



77 

  

Monday         10 GB  All Day  257 MB  No Attack  529918  

Tuesday        10 GB  All Day  166 MB  SSH-Patator, FTP-

Patator  

445909  

Wednesday   12 GB  All Day  272 MB  DoS Slowhttptest,         

DoS Hulk, DoS             

slowloris, Heartbleed, 

DoS GoldenEye           

692703  

Thursday       7.7GB  Morning  87.7 MB  Web Attacks (XSS, 

Brute Force, Sql           

Injection)                     

170366  

Afternoon  103 MB  Infiltration                 288602  

Friday            8.2GB  Morning  71.8 MB  Bot                             192033  

  Afternoon  92.7 MB  DDoS                      225745  

  Afternoon  97.1 MB  PortScan                   286467  

 

Before putting the dataset to use, it's possible that some alterations will be required to make it 

more effective. Considering CICIDS2017 dataset all the incomplete records and errors have 

been corrected. 
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There are 3119345 records in the dataset. Table 9 shows numerical distribution of these 

records. A closer look at these records reveals that the 288602 record is incorrect or incomplete. 

After Removing these unnecessary records as the first step in pre-processing total count is 

2830743. The provided analysis includes the count of different types of network activities or 

attacks observed in a dataset. Here is a breakdown of the occurrences: 

The majority of the network activity in the dataset is classified as "BENIGN," 

representing normal network traffic with 2,359,289 occurrences. However, it is worth noting 

that there are several different types of attacks present in the dataset as well. Among the attacks, 

the most frequent ones are "DoS Hulk" with 231,073 occurrences, followed by "PortScan" with 

158,930 occurrences. These attacks involve overwhelming the target network or scanning it 

for vulnerabilities, respectively. The "DDoS" (Distributed Denial of Service) attack is also 

significant, with 41,835 occurrences. This attack involves multiple sources overwhelming a 

target with traffic to disrupt its normal functioning. 

 

Table 9. CICIDS 2017 dataset with number of attacks after correction 
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Figure 7. Attack instance in the CICIDS2017 dataset (Greater than 20000) 

Less frequent attacks include "Infiltration," "Web Attack - SQL Injection," and "Heartbleed." 

These attacks involve unauthorized access to networks, exploitation of SQL vulnerabilities in 

web applications, and exploiting a vulnerability in the OpenSSL encryption library, 

respectively.  

 

Figure 8. Attack instance in the CICIDS2017 dataset (Between 500 to 20000) 
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Figure 9. Attack instance in the CICIDS2017 dataset (Less than 500) 

 

Figure 10. Distribution of attack vs. benign percentage 

Understanding the distribution and frequency of these attacks within the dataset can 

help in developing and enhancing network security measures. It provides insights into the types 

of threats that networks may face and the areas that require attention to strengthen the overall 

security posture. 

The dataset consists of 86 columns, with a total of 85 columns dedicated to features. 

However, there is an error in the feature columns where the "Fwd Header Length" attribute is 

duplicated in both the 41st and 62nd columns. To rectify this error, the repeated column 

(column 62) should be deleted. To utilize the dataset for machine learning algorithms, certain 

properties need to be converted into numerical data. These properties include Flow ID, Source 

IP, Destination IP, Timestamp and External IP. To achieve this, the "LabelEncoder()" class 

from the Sklearn library can be utilized. By applying the LabelEncoder(), string values within 

these columns can be transformed into corresponding integer values. The integers will range 

between 0 and j-1, where j represents total count of unique attributes within the column. 
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Figure 11. Overall Attack instance in the CICIDS2017 datasets 

Even though the "Label" field is a categorical one, it should not be changed. This is because 

the original categories within the "Label" column are required during the processing stage. 

Different attack types can take on various forms and approaches, making it necessary to retain 

the original categories for accurate analysis and classification. By addressing the error in the 

duplicated column and converting relevant properties into numerical data using the 

LabelEncoder() class, the dataset will be prepared for machine learning operations. The 

numerical representation of the data will allow machine learning algorithms to effectively 

analyze and classify the network activities, enabling the detection and identification of 

different attack types based on their characteristic patterns and behaviors. Attack instance in 

the dataset clearly shows only three attacks are dominant compared to remaining 11 attack 

categories. Further research will require on the same for balance between the attack count and 

benign data. Individual attack based data extraction from whole dataset for training and testing 

is another aspect when a model is designed instead of training model with all attack together 

in the initial phase of machine learning process. 
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4.2 Creation of Training and Test Data 

A significant amount of data is required to train and evaluate the performance of 

algorithms in algorithm learning process. Testing the algorithm's performance goes beyond the 

training data and requires additional data specifically for evaluation purposes. The algorithm 

learns from the training data and then put on its learned knowledge to the test data, allowing 

for an assessment of its performance based on unseen examples.  

In the case of the CICIDS2017 dataset, there is no predefined separation of dedicated training 

and testing datasets. Instead, it is provided as a single, unpartitioned dataset. To address this, 

it is necessary to partition the dataset into distinct training and testing sections. This can be 

achieved using a command from the Sklearn library called "train_test_split." This command 

allows users to specify the desired sizes or proportions of the training and testing data. 

The separation of data into training and testing sets typically follows a general rule of 

thumb. For instance, common proportions include 20:80, 30:70, 35:65, 40:60 and 50:50 

respective percentage ratio for testing and training. These proportions ensure a balance 

between having enough data for training the algorithm and a sufficient amount for evaluating 

its performance. 

When creating these data groups using the train_test_split command, the selection 

process is randomized to avoid any biases. This procedure is identified as cross-validation, 

which helps in obtaining reliable and unbiased performance results. To ensure the adequacy of 

results gained during running the model, training and test data creation is repeated multiple 

times. In this case, the process is repeated 10 times consecutively. By averaging the results of 

these repeated operations, a more accurate and robust assessment of the algorithm's 

performance can be obtained. The application of cross-validation and the averaging of results 

across multiple iterations provide a more comprehensive evaluation of the machine learning 

algorithm's capabilities. It helps mitigate the impact of randomness and variability in the 

dataset, ensuring that the results are reliable and representative of the algorithm's performance 

across different data splits. 

4.3 Feature Selection 

This process encompasses computing the importance of features in the training dataset, 

categorized based on different "Benign" and "Attack" ratios. Three ratios are considered: 
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50:50, 80:20, and All. Additionally, this process is performed for the complete dataset. In this 

research work, attack types considered include "Bot", "DDoS", "DoS GoldenEye", "DoS 

Hulk", "DoS Slowhttptest", "DoS slowloris", "FTP-Patator", "Heartbleed", "Infiltration", 

"PortScan", "SSH-Patator" and "Web Attack". For the Web Attack category, Brute Force, XSS, 

and SQL Injection are merged into a single file due to their minimal occurrence compared to 

other attacks. 

The feature selection process utilizes the Random Forest Regressor algorithm and set 

the value 250 for the n_estimators parameter, which specifies the number of trees to be built. 

By combining the predictions of multiple trees, the algorithm determines the maximum voting 

or averages of predictions, with higher values leading to better performance. To perform this 

calculation, it is necessary to separate each type of attack from the rest of the attacks, ensuring 

that all data streams categorized as "Benign" and "Attack" are included. 

To calculate the importance weights for features, the Sklearn library's Random Forest 

Regressor class is used. The weight assigned to a feature for decision tree is determined through 

sum of weights of all parameters. By evaluating the score of a specific feature against the total 

tree score, it becomes possible to determine the feature's significance within the decision tree. 

Although there are 85 properties available, only 8 of them are considered in calculating the 

importance: "Flow ID", "source IP", "source port", "destination IP", "destination port", 

"protocol, timestamp", and "external IP". Despite all prevalence of these features in classical 

approaches, attackers may attempt to bypass operating system restrictions or evade detection 

by using unfamiliar ports or generating/faking IP addresses. Furthermore, dynamic port usage 

is common, and multiple applications can be sent over the same port simultaneously. Thus, 

relying solely on port numbers can be misleading. 

In such scenarios, effectiveness will be enhanced by eliminating ambiguous features 

like IP address, port number and timestamp. As a substitute, the focus is shifted towards 

utilizing more common and constant attributes that describe the attack. The profile and 

characteristics of data provide valuable insights into whether it represents an attack or not, 

enabling better detection and classification. 
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I. Feature importance when file stream is kept in ratio of 50:50 for "Benign" and 

"Attack", following results were achieved: 

Table 10. Weightage based on the 50:50 ratio of "Benign" vs. “Attack" 
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In Table 10. Weightage based on the 50:50 ratio of "Benign" vs. “Attack" shows the feature 

weightage. Weightage importance for each type of attack is calculated with the Random 

Forest Regressor classifier. Each type of attacks has different feature importance which can 

be seen in table for respective type of attack. The result shown in table is showing only top 

20 most important features out of 79 features.   
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Figure 12. Feature weightage for 50:50 ratio of "Benign" vs. “Attack" 

Figure 12 shows its equivalent graph. Top 20 features are displayed in the output. In 

the observation it is found that most of the attacks are using mostly three to six dominant 

features which is highly correlated for the attack detection. The Heartbleed attack, on the other 

hand, have quite different properties and their more than ten attributes are of similar 

dominance. Top 5 features from all 12 attack categories are taken which counts to total of 60 

features. Many features were redundant in each attack categories, so after removing duplicate 

features only 17 most used features were extracted.  

II. Feature importance when file stream is kept in ratio of 80:20 for "Benign" and "Attack", 

following results were achieved: 

Table 11. Weightage based on the 80:20 ratio of "Benign" vs. “Attack" 
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Figure 13. Feature weightage for 80:20 ratio of "Benign" vs. “Attack" 

When the file stream was kept in the ratio of 80:20 for the "Benign" vs. “Attack", it is found 

that the similar features were identified as shown in Figure 12 and Figure 13. This experiment 

given the similar output for the top 17 features after removing duplicates from the 60 identified 

features from all the 12 attack categories. 

Table 12. Top 20 feature weightage of all data of CICIDS 2017 
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In Table 12 representing top 20 features that covers almost all the attack also, it can be seen 

that the "Bwd Packet Length Std, Flow Bytes/s", "Total Length of Fwd Packets", "Subflow 

Fwd Bytes", "Init_Win_bytes_forward" and "Fwd Packet Length Std" are the most used 

feature that almost covers 85% of the attacks.  

 

Figure 14. Feature weightage of all data of CICIDS 2017 

In Figure 14 representing all the 77 features used for the feature selection and its distribution 

in the data stream. This graph clearly shows that there are only few features which are most 

dominant and capable to represent maximum of the attack categories detection. Data stream 

representing very a smaller number of attacks with these few dominant features may have less 

chances to identify and need to carefully train such attack types. All the top 20 features from 

the 77 features taken from the complete dataset and then comparing with all 12 individual 

attack categories of 50:50 and 80:20 for the "Benign" vs. “Attack" data stream given only 6 

most dominant features. These features are:   

i. Bwd Packet Length Std                

ii. Flow Bytes/s                            

iii. Total Length of Fwd Packets                           

iv. Fwd Packet Length Std                            

v. Flow IAT Std                                      

vi. Flow IAT Min                                
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The feature selection process plays a crucial role in machine learning, especially when 

considering the distinction between attacks and benign instances. It involves identifying the 

features that carry the most significant weight and have high importance scores within the 

dataset. In this study, a weight threshold of 80 percent is employed to determine the relevance 

of features. By setting the weight threshold at 80 percent, the focus is placed on selecting 

features that possess substantial importance in distinguishing between attacks and benign 

instances. This threshold acts as a criterion for filtering out features that may have lower 

predictive power or contribute less to the classification task at hand. The feature selection 

methodology aims to prioritize those features that demonstrate a strong influence on 

determining whether an instance belongs to an attack or benign category. These features, with 

their high weighting and importance scores, are deemed more influential in accurately 

classifying instances. 

By selecting features based on their importance scores and applying a weight threshold of 

80 percent, the feature selection process in this study ensures that the most informative and 

influential features are retained. This approach enhances the performance and efficiency of the 

machine learning model by focusing on such features that contribute the maximum towards 

the classification task, ultimately leading to improved accuracy and robustness in 

distinguishing between attacks and benign instances. 

Table 13. Feature Importance with 80% dataset for "Attack or Benign" 

Top 20 Features (80% Dataset considered) 

Feature Importance 

Bwd Packet Length Std           0.246626 Flow IAT Mean                   0.003275 

Flow Bytes/s                    0.17872 Total Length of Bwd Packets     0.001325 

Total Length of Fwd Packets     0.102369 Fwd Packet Length Min           0.000686 

Fwd Packet Length Std           0.063899 Flow Packets/s                  0.000541 

Flow IAT Std                    0.009879 Fwd Packet Length Mean          0.000537 

Flow IAT Min                    0.006946 Bwd Packet Length Mean          0.000526 

Fwd IAT Total                   0.005136 Total Backward Packets          0.000177 

Flow Duration                   0.00415 Fwd Packet Length Max           0.000138 

Bwd Packet Length Max           0.004014 Total Fwd Packets               0.000127 

Flow IAT Max                    0.003534 Bwd Packet Length Min           0.000076 

Total Length of Fwd Packets     0.102369 Total Length of Fwd Packets     0.102369 
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The provided analysis results show the importance scores for various features in the 

dataset. The higher the importance score, the more influential the feature is in distinguishing 

between different classes or making predictions. Here is a brief analysis of the given results: 

• Bwd Packet Length Std: This feature has a relatively high importance score of 

0.246626, indicating that it carries significant information for classification or 

prediction tasks. 

• Flow IAT Mean: Although this feature has a lower importance score of 0.003275, it 

still contributes to the overall classification process. 

• Flow Bytes/s: With an importance score of 0.17872, this feature demonstrates its 

significance in differentiating between classes or making predictions. 

• Total Length of Bwd Packets: This feature has a relatively low importance score of 

0.001325, suggesting that it may have a lesser impact on the classification process 

compared to other features. 

• Total Length of Fwd Packets: This feature appears twice in the results, indicating its 

importance. With an importance score of 0.102369, it plays a significant role in 

classification tasks. 

The analysis highlights that feature like Bwd Packet Length Std, Flow Bytes/s, and Total 

Length of Fwd Packets are among the top influential features for the classification or prediction 

task at hand. Meanwhile, features with lower importance scores, such as Flow IAT Mean and 

Total Length of Bwd Packets, may have a relatively smaller impact on the overall classification 

performance. It is essential to consider these importance scores when selecting the most 

relevant features for the ML model to enhance accuracy and efficiency in distinguishing 

between different classes or making predictions. 

4.4 Implementation of Machine Learning Algorithms 

To examine the implementation of different ML algorithms on the dataset, the data was 

divided into testing and training sets using ratios of 50:50 and 80:20. Nine machine learning 

algorithms were employed for this purpose, namely "Bagging," "Naive Bayes," "QDA" 

(Quadratic Discriminant Analysis), "Random Forest," "ID3," "AdaBoost," "GradientBoost," 

"MLP" (Multi-Layer Perceptron), and "Nearest Neighbors." 
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Each algorithm was trained and tested using specific parameters to optimize their 

performance. The parameters were carefully selected to ensure efficient learning and accurate 

predictions. By tuning these parameters, the algorithms can adapt to the characteristics of the 

dataset and improve their predictive capabilities. Use of diverse algorithms allows for a 

comprehensive evaluation of their performance on the specified dataset. Each algorithm has 

its own strengths and weaknesses, and by evaluating them, we can identify the most suitable 

algorithm for the task at hand. 

By conducting experiments with various algorithms and parameter settings, valuable 

insights can be gained regarding their effectiveness in handling the dataset. The performance 

metrics obtained from these experiments will provide a basis for selecting the most appropriate 

algorithm for future applications or further optimization. Overall, this approach enables a 

systematic and rigorous analysis of the dataset using a diverse set of machine learning 

algorithms, leading to informed decision-making and potentially improving the accuracy and 

reliability of predictions in various domains. 

i. "Bagging": n estimators = 5, K Neighbors Classifier = 5, max samples = 1.0, max 

features = 1.0 

ii. "Naive Bayes": priors = none, var smoothing = .20 

iii. "QDA": priors = None, reg param=0.0 

iv. "Random Forest": max depth = 5, n estimators = 100, max features=5, 

v. "ID3":  Decision Tree – max depth = 5, criterion = "entropy" 

vi. "AdaBoost": estimator = None, n estimators = 50, learning rate = 1.0, algorithm = 

'SAMME.R', random state = None, base estimator = 'deprecated' 

vii. "GradientBoost": n estimators = 100, learning rate=0.1, max depth = 3, 

random_state = 0. 

viii. "MLP": hidden layer sizes=100, max iter = 200 

ix. "Nearest Neighbors": n neighbors = 5, weights = 'uniform', algorithm = 'auto', 

leaf_size=30 

Parameters for these were also changed while conducting the experiment but the result was 

quite similar with slight change in the fraction part. Machine learning implementation is done 

based on considering the top 5 features weightage for each attack categories.  



95 

  

Table 14. Attack types with top 5 important features 

Bot 
BwdPacketLengthMean, FlowIATMean, FlowIATStd, Flow 

IATMin, FlowIATMax 

DDoS 
FwdPacketLengthMax, TotalLengthofFwdPackets, FwdIAT 

Total, FlowIATMin, FlowDuration   

DoS GoldenEye 
FlowIATMax, FlowPackets/s, TotalBackwardPackets, Flow 

IATMin, FlowIATMean   

DoS Hulk 
FwdPacketLengthMin, BwdPacketLengthStd, FwdPacket 

LengthStd, FlowIATMin, FlowBytes/s   

DoS Slowhttptest 
FlowIATMean, BwdPacketLengthMean, FwdPacketLength 

Mean, FwdPacketLengthStd, Fwd Packet Length Min   

DoS slowloris 
Bwd PacketLengthMean, FlowIATStd, FwdPacketLength Min, 

FwdPacketLengthMax, FwdIATTotal   

FTP-Patator 
FwdPacketLengthMax, FwdPacketLengthStd, FlowIATMin, 

BwdPacketLengthStd, BwdPacketLengthMean   

Heartbleed 
FwdIATTotal, FlowIATStd, FlowIATMax, FlowDuration, Bwd 

Packet Length Mean   

Infiltration 
TotalLengthofFwdPackets, FwdPacketLengthStd, FwdPacket 

LengthMax, FlowDuration, FlowIATMax   

PortScan 
TotalLengthofFwdPackets, Flow Bytes/s, FlowDuration, Flow 

IAT Mean, FwdIATTotal   

SSH-Patator 
FlowIATMin, FwdPacketLengthMax, FlowIATMean, Flow 

IATMax, FlowPackets/s   

Web Attack 
BwdPacketLengthStd, BwdPacketLengthMax, FlowIATMin, 

FlowDuration, FlowIATMax  

The provided analysis results show the importance of specific features for different 

attack types. Each attack type is listed with the corresponding important features. The analysis 

highlights the specific features that are significant for distinguishing each attack type. These 

important features can be utilized in developing effective detection and prevention mechanisms 

for various types of cyber-attacks. 

I. Implementation with 50% Benign and 50% attack data with testing and training ratio 

of 50:50. 

In this method, the files and attributes established in the Feature Selection section are used, as 

well as the attributes retrieved from the same part. Each of these files is labeled after the sort 

of attack it contains, with just 50% being malicious and 50% being benign. For each form of 
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attack, the nine machine learning approaches are applied with the ten times replications to the 

same file. Effectiveness and performance of ML approach is the goal of this work. 

Table 15. 50% Attack data with 50:50 training and testing data split 
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By analyzing the Table 15 the Naïve Bayes, QDA and MLP algorithm has less accuracy 

compared to other algorithm. The dataset uses 50% of the random selected data stream with 

50% training and 50% testing data split. As there are imbalances in the dataset because each 

attack is not evenly distributed and not unequal number of instances per attack, so F1-score is 

best approach to evaluate. Result confirms the data stream selected randomly has even 

distribution from the result obtained in the accuracy vs. F1-score column. The major 

differences came in Heartbleed and infiltration attack as total number of attack instance in 

dataset is only 11 and 36. Based on the given data, here is a summarized result in terms of 

accuracy, precision, recall, and F1-score: 

Table 16 Performance and accuracy of ML approach for specific attack 

Attack File 

Considered 

Algorithm 

Performance 

Accuracy Precision Recall F1-score 

Bot Best AdaBoost 0.983137455 0.983214786 0.983330896 0.983137015 

Worst Naive Bayes 

DDoS Best GradientBoost 0.980777038 0.981257813 0.980750869 0.980771416 

Worst Naive Bayes 

DoS GoldenEye Best GradientBoost 0.982740231 0.982741572 0.982743605 0.982740223 

Worst Naive Bayes 

DoS Hulk Best GradientBoost 0.974996679 0.975051023 0.975092273 0.974996526 

Worst Naive Bayes 

DoS Slowhttptest Best GradientBoost 0.994139194 0.994139194 0.994140255 0.994139191 

Worst Naive Bayes 

DoS slowloris Best GradientBoost 0.994816862 0.994819372 0.994813936 0.994816535 

Worst QDA 
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FTP-Patator Best Random Forest 0.997764662 0.997762195 0.997767571 0.997764603 

Worst Naive Bayes 

Heartbleed Best Random Forest 1.0 1.0 1.0 1.0 

Worst MLP 

Infiltration Best Naive Bayes 0.939393939 0.9375 0.947368421 0.938888889 

Worst MLP 

PortScan Best Random Forest 0.996501913 0.996522386 0.996476833 0.996498983 

Worst Naive Bayes 

SSH-Patator Best Random Forest 0.972406814 0.972938575 0.97252005 0.972402789 

Worst MLP 

Web Attack Best Bagging 0.949680365 0.949845032 0.949558647 0.949653407 

Worst Naive Bayes 

 

II. Implementation with 50% benign and 50% attack data with testing and training ratio 

of 80:20. 

Table 17. 50% Attack data with 80:20 training and testing data split 
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Comparing the result of Table 15 and Table 17 it is found that the results are quite similar for 

all the respective attacks, and it is hardly varying with all the applied machine learning 

approaches. On analyzing the floating value up to 4 digit it is found that the result on 50:50% 

training and testing data giving a better result than using 50%:50% training and testing data. 

Comparing above two table confirms the data stream selected randomly has even distribution 

from the result obtained in the accuracy vs. F1-score column.   

III. Implementation with 80% Benign and 20% attack data with testing and training ratio 

of 50:50. 
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Table 18. 80% Attack data with 50:50 training and testing data split 
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By analyzing the Table 18 similar result is achieved as Naïve Bayes, QDA and MLP algorithm 

has less accuracy compared to other algorithm. The accuracy of these attacks is calculated 

based on the considering best 5 features selected for each attack using feature grouping 

approach. The result obtained outperformed compared with Table 15 and Table 17. The dataset 

uses 80% of the random selected data stream with 50% training and 50% testing data split. The 

result confirms the data stream selected randomly has even distribution from the result obtained 

in the accuracy vs. F1-score column. In this experiment also the major differences came in 

Heartbleed and infiltration attack. This result can be improved by including a greater number 

of features for identifying selective attacks, but it will result in degradation in the performance 

of the system. 

 IV. Implementation with 80% Benign and 20% attack data with testing and training ratio 

of 80:20. 

Table 19. 80% Attack data with 80:20 training and testing data split 
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By analyzing the Table 19 it can be seen that Naïve Bayes has outperformed but QDA and 

MLP algorithm has gained better accuracy by referring Table 15, Table 17 and Table 18. The 

accuracy of these attacks is calculated based on the considering best 5 features selected for 

each attack using feature grouping approach. The dataset uses 80% of the random selected data 

stream with 80% training and 20% testing data split.  

Based on this analysis, it is recommended to use the Bagging algorithm for DDoS and 

Web Attack files, Random Forest for DoS Slowhttptest, ID3 for DoS slowloris, and AdaBoost 

for FTP-Patator. The selection of algorithms relies on the particular dataset and the trade-off 

between performance and execution time. 

All the experiment is done by selecting individual top 5 features that are obtained from 

each of the 12 attack types. As each 12 attacks are based on their own individual features so 

combining all together result in a list of features containing 60 attributes. By removing 

redundancy, only 17 features represent most important attack attributes as shown in Table 20: 
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Table 20. 17 top features after aggregating best 5 features from each attack category. 

 

The last part of the experiment is to use all these 17 features and apply in the 100% 

dataset and 80% dataset with training and testing ratio of 80:20. The training and testing ratio 

is considered based on the best result achieved through 50% and 80% data consideration with 

respective testing and training ratio. 

Table 21. 100% dataset consideration with 50%:50 training and testing data split 

 

This is the overall outcome of the experiment where complete dataset is taken with 

50%:50 training and testing data split. Result obtained has much better accuracy compared to 

conducting experiment using just 5 features for each individual attack. With increasing number 

of attacks to 17 the result is much better using all the selected algorithm except QDA. Detection 

of attack using Naïve Bayes and MLP has also increased comparatively. In Table 23 a complete 

dataset of CICIDS 2017 is taken with 50% training and 50% testing data split. 

Based on the provided data, the performance metrics for different ML algorithms on complete 

dataset with the "all_data" file is shown in the table below with respect to the true positive rate 

and its execution time: 

Bwd Packet Length Mean Total Length of Fwd Packets Bwd Packet Length Std 

Flow IAT Mean Fwd IAT Total Fwd Packet Length Std 

Flow IAT Std Flow Duration Flow Bytes/s 

Flow IAT Min Flow Packets/s Fwd Packet Length Mean 

Flow IAT Max Total Backward Packets Bwd Packet Length Max 

Fwd Packet Length Max Fwd Packet Length Min  
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Table 22. Performance on 100% dataset of 50:50 training and testing ratio 

ML Algorithm True Positive Rate Execution Time 

Bagging High High 

Naïve Bayes Moderate Low 

QDA Low Low 

Random Forest High High 

ID3 High Moderate 

AdaBoost Moderate High 

GraidentBoost High High 

MLP Moderate High 

Nearest Neighbors High High 

Based on this analysis, the Bagging, Random Forest, and GradientBoost algorithms perform 

well in terms of accuracy, precision, recall, and F1-score. However, they have higher execution 

times compared to other algorithms. Naive Bayes and ID3 also perform reasonably well with 

lower execution times. The QDA algorithm shows low performance across all metrics. The 

choice of the algorithm depends on the specific requirements of the application, considering 

the trade-off between performance and execution time. 

Table 23. 100% dataset consideration with 80% training and 20% testing data split 

 

In Table 23 showing the overall outcome of the experiment where complete dataset is 

taken along with 80%:20% training and testing data split. Result obtained has much better 

accuracy except the QDA algorithm. Hence the algorithm needs some parameters to estimate. 

Also, QDA algorithm is not suitable for dimensionality reduction as in our case the data is 

more dimensionally distributed. The result obtained has much better accuracy compared to 
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conducting experiment using just 5 features for each individual attack. With increasing number 

of attacks to 17 the result is much better using all the selected algorithm. 

Based on the provided data, the performance metrics for different ML algorithms on the 

"all_data" file: 

Table 24. Performance on 100% dataset of 80:20 training and testing ratio 

ML Algorithm True Positive Rate Execution Time 

Bagging High High 

Naïve Bayes Moderate Low 

QDA Low Low 

Random Forest High High 

ID3 High Moderate 

AdaBoost Moderate High 

GraidentBoost High High 

MLP Moderate High 

Nearest Neighbors High High 

Based on this analysis, the Bagging, Random Forest, GradientBoost, and Nearest 

Neighbors algorithms perform well in terms of accuracy, precision, recall, and F1-score. 

However, they have significantly higher execution times compared to other algorithms. Naive 

Bayes and ID3 also perform reasonably well with lower execution times. The QDA algorithm 

shows low performance across all metrics. The choice of the algorithm depends on the specific 

requirements of the application, considering the trade-off between performance and execution 

time. 

Comparing the two sets of results, it is found that Table 22 and Table 24 performed similar 

output by changing the training and testing ratio of the dataset. On evaluating with 3 precision 

point or more, the result was slight varying and giving better result in 80:20 ratio. 

Bagging: The accuracy slightly improved from 0.9686 to 0.9699, while precision decreased 

from 0.9495 to 0.9414. However, recall improved xefrom 0.9359 to 0.9522, resulting in a 
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higher F1-score of 0.9467. The execution time significantly increased from 5459.83 to 

10100.74. 

Naive Bayes: The accuracy remained almost the same (0.8096 vs. 0.8096). There was a slight 

increase in precision from 0.6542 to 0.6561. Recall also increased from 0.6492 to 0.6529, 

leading to a slightly higher F1-score of 0.6545. The execution time slightly increased from 

8.27 to 9.29. 

QDA: The accuracy showed a slight improvement from 0.3134 to 0.3136. Precision remained 

similar (0.579 vs. 0.5788), while recall also remained almost the same (0.5754 vs. 0.5751). 

The F1-score remained stable at around 0.3134. The execution time decreased from 9.60 to 

7.55. 

Random Forest: There was a marginal increase in accuracy from 0.9534 to 0.9535. Precision 

improved from 0.9659 to 0.9665, while recall remained similar (0.8655 vs. 0.8657). The F1-

score showed a slight improvement from 0.9064 to 0.9067. The execution time increased from 

300.98 to 563.09. 

ID3: The accuracy decreased from 0.9565 to 0.9511. Precision improved significantly from 

0.9385 to 0.9665. Recall decreased from 0.9005 to 0.8576, resulting in a lower F1-score of 

0.9010. The execution time increased from 15.08 to 29.99. 

AdaBoost: The accuracy decreased from 0.9458 to 0.9435. Precision also decreased from 

0.9480 to 0.9379. Recall remained almost the same (0.8520 vs. 0.8523). The F1-score slightly 

decreased from 0.8911 to 0.8878. The execution time increased from 166.06 to 340.55. 

Gradient Boost: The accuracy showed a marginal improvement from 0.9643 to 0.9651. 

Precision improved from 0.9465 to 0.9473, while recall remained similar (0.9227 vs. 0.9249). 

The F1-score improved from 0.9340 to 0.9356. The execution time significantly increased 

from 707.41 to 1260.53. 

MLP: The accuracy slightly decreased from 0.8337 to 0.8333. Precision remained similar 

(0.8280 vs. 0.8303), while recall also remained similar (0.5011 vs. 0.5011). The F1-score 
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remained stable at around 0.4570. The execution time significantly increased from 367.57 to 

956.27. 

Nearest Neighbors: The accuracy showed a slight improvement from 0.9663 to 0.9665. 

Precision improved from 0.9383 to 0.9574, while recall decreased from 0.9405 to 0.9198. The 

F1-score remained almost the same (0.9394 vs. 0.9373). The execution time significantly 

increased from 777.71 to 3172.90. 

Based on this comparison: 

Bagging and Random Forest consistently performed well in terms of accuracy, 

precision, recall, and F1-score. However, their execution times significantly increased 

compared to the previous results. Naive Bayes and QDA showed relatively stable performance, 

with minor improvements in some metrics. ID3, AdaBoost, and Gradient Boost had mixed 

results, with some metrics improving and others declining. MLP and Nearest Neighbors had a 

decrease in accuracy and precision while showing varied results for recall and F1-score. 

Consider the trade-off between performance metrics and execution time when selecting the 

ML algorithm for our specific use case. If execution time is a critical factor, we need to 

prioritize algorithms with faster processing. These results needed cross-validation on different 

datasets or using additional evaluation techniques to ensure the robustness of the findings. 

This works extended by considering another approach in which a random sample of 

the dataset, which has a total of 225745 cases of BENIGN and DDoS attack, is taken. It also 

has records with infinite values or values that are missing. In the collected datasets, missing 

values are filled in with zeros. Lastly, data pre-processing makes sure that all the data are same. 

The final sampled dataset has a feature called Label that has an DDoS count of 128027 and a 

BENIGN count of 97718. This sampled data with number of instances, attributes, with total 

count of BENIGN and DDoS count is shown in Figure 15. Weka 3.9 tool is used for this 

purpose. 
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Figure 15. Attributes with number of BENIGN and DDoS attack count. 

In the feature selection and reduction process, three filter methods are utilized. These 

methods, that are Information-Gain Ratio (IGR), Correlation (CR), and ReliefF (ReF), aim to 

select the most relevant features. Each feature is assigned a score and weight based on 

statistical criteria determined by these selection algorithms. To obtain a more refined set of 

features, the aggregated weight of each approach is calculated. This is done by summing up 

the scores of all features and dividing it by the total count of features in smaller dataset. Using 

the average weight for threshold, a new subset of features is generated for each method. Only 

features that have scores equal to or higher than the threshold is included in the subsets. 

Additionally, a Feature Selection Subset (FSS) analysis is conducted on the three 

subsets obtained. This analysis determines how frequently the features appear across the 

subsets. Three subsets, namely FSS-1, FSS-2, and FSS-3, are created based on whether a 

feature appears in at least one, two, or all three subsets, respectively. To train and test the 

model, FSS-1, FSS-2, and FSS-3 subsets are fed into a chosen classifier. Among these subsets, 

the one that requires the least amount of time to build the model without compromising its 

performance is selected. This chosen feature subset consists of weighted selected features that 

are utilized for identifying DDoS attacks. By using this subset, the model-building time is 

reduced while enhancing its performance. 
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The current work employs the PART model with a 90:10 ratio cross-validation 

approach. The estimation of the model's performance is measured by means of metrics such as 

accuracy, recognition rate, and timing. The research is divided into three phases: I. Feature 

reduction, II. The preparation phase, and III. The testing phase.  

 

Figure 16. Integrated IDS models developed for different attack categories. 

Complete process is as followed: 

Step1: selection of CICIDS 2017 DoS dataset 

Step2:  dataset pre-processing is done with following approach: 

a. data understanding for structure, variable or meaning in context to benign or 

attack 

 b. data cleaning for inconsistent or missing values  

Processed dataset 

CICIDS 2017 DDoS dataset 

Data pre-processing 

Information Gain Ratio Correlation ReliefF 

Information Gain Ratio - 

FS >= Average Weight 

Correlation - FS >= 

Average Weight 

ReliefF - FS >= 

Average Weight 

Feature Selection Subset (FSS) 

 

 FSS-PART classifier – Cross Validation 10-fold 

Analysis of the Findings 

FSS-1 FSS-2 FSS-3 
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c. removing duplicate or irrelevant features which is not contributing to model 

training and attack detection 

 d. categorize variable such as string to numerical data for label encoding 

e. sampling for imbalances in the dataset to prevent outweigh the number of 

benign and attack instances 

Step3:  data split of 90 train and 10 test is applied which makes building model for training 

data 

Step4: applying all 79 features on IGR, CR and ReF to get the top weighed subset features  

Step5:  reducing the number of features to 48, 28 and 14 compared to all 79 features based on 

step 4 if selected feature >= average weight of the frequency of occurrence in step 4 

then accepts those reduced features else discard  

Step7:  processing of datasets as per reduced features for IGR, CR and ReF 

Step 8: apply for best fit attributes selection and use ranker for feature's weightage 

Step8:  cross validation with 10-fold applied for separation of testing and training 

Step9: analysis of the findings for IGR, CR and ReF using FSS-1, FSS-2 and FSS-3 

respectively 

Step10: best fit attribute selection applied in FSS-PART from step 9  

Step11: comparison of result of FSS-PART with all features, Bayesian-Rough Set and 

AdaBoost predictive methods. 

The algorithm uses supervised attribute selection for attribute Ab for ‘m’ distinct values. A 

supervised attribute filter that can be used to select attributes uses IG (Information Gain), CR 

(Correlation) and ReF (ReliefF) for feature selection. Features are selected if their relevance is 

greater than a threshold τ equivalent to average weight. Raw data captured through libpcap, 

WinPcap, or Npcap or well-known datasets and considered as T training dataset. These datasets 

contain Fs features in form of Ab Attribute. 



115 

  

A. Algorithm for Information Gain (IG) attribute selection with attribute weightage 

using ranker algorithm: 

Input: 

• A dataset D with n instances and m attributes. 

• A set of attribute weights, T = {t1, t2, ..., tm}, where ti is weight for attribute i.

          (1) 

Output: 

• A ranked list of attributes based on their information gain and weighted 

importance. 

Algorithm: 

I. Calculate the information gain of every attribute in the dataset: 

• For each attribute i, calculate its entropy using the formula:  

entropy(i) = - sum(pj * log2(pj)),    (2) 

where pj is the proportion of instances in D that belong to the jth class for 

attribute i. 

• Calculate the overall entropy of the dataset using the same formula:  

entropy(D) = - sum(pk * log2(pk)),    (3) 

where pk is the part of instances in D which belong to the kth class. 

• For each attribute i, calculate its information gain using the formula:  

IG(i) = entropy(D) - entropy(i).    (4) 

 

II. Multiply each attribute's information gain by its corresponding weight, and store the 

results in a new list, IG_weighted: 

• For each attribute i, calculate its weighted information gain using the formula:  

IG_weighted(i) = IG(i) * ti.     (5) 

III. Sort the IG_weighted list in descending order: 

• Sort the CR_weighted list in descending order using merge sort. 



116 

  

IV. Return the sorted list as the ranked list of attributes: 

• Return the sorted IG_weighted list as the ranked list of attributes, where 

attribute with the uppermost weighted information gain is ranked first, attribute with 

second-highest weighted information gain is ranked second, and so on. 

V. Apply threshold limit to set limit to attributes, other will be discarded. 

B. Algorithm for Correlation (CR) attribute selection with attribute weightage using 

ranker algorithm: 

Input: 

• A dataset D with n instances and m attributes. 

• A set of attribute weights, T = {t1, t2, ..., tm}, where ti is weight for attribute i. 

Output: 

• A ranked list of attributes based on their correlation and weighted importance. 

 

Algorithm: 

Here's the step-by-step breakdown of the algorithm: 

I. Calculate the correlation coefficient between each attribute and the target attribute in 

the dataset: 

• For each attribute i, calculate its correlation coefficient with the target attribute 

using the formula:  

𝐶𝑅(𝑖) =
𝑛∗𝑠𝑢𝑚(𝑥𝑖∗𝑦𝑖)−𝑠𝑢𝑚(𝑥𝑖)∗𝑠𝑢𝑚(𝑦𝑖)

√(𝑛∗𝑠𝑢𝑚(𝑥𝑖
2)−𝑠𝑢𝑚(𝑥𝑖)2− (𝑛∗𝑠𝑢𝑚(𝑦𝑖

2)−𝑠𝑢𝑚(𝑦𝑖)2)

  (6)  

where xi is the value of attribute i for instance j, yi is the value of the target attribute for 

instance j, and n is the number of instances in the dataset. 

II. Multiply each attribute's correlation coefficient by its corresponding weight, and store 

the results in a new list, CR weighted: 

• For each attribute i, calculate its weighted correlation coefficient using the 

formula:  

CR_weighted = {CR1t1, CR2t2, ..., CRm*tm}.    (7) 

CR_weighted(i) = CRi * ti.      (8) 
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III. Sort the CR_weighted list in descending order with ranker approach: 

• Sort the CR_weighted list in descending order using merge sort. 

IV. Return the sorted list as the ranked list of attributes: 

• Return the sorted CR weighted list as the ranked list of attributes, where 

attribute with highest weighted correlation coefficient is ranked first, attribute with the 

second-highest weighted correlation coefficient is ranked second, and so on. 

V. Apply threshold limit to set limit to attributes, other will be discarded. 

C. Algorithm for RefleF attribute selection with attribute weightage using ranker 

algorithm: 

I. Initialize the weight vector for each feature to zero. 

II. For every instance in dataset: 

a. Randomly select another instance from the same class (positive instance) and another 

instance from a different class (negative instance). 

b. Calculate the difference between feature values of present instance and positive and 

negative instances for each feature. 

c. Update the weights of the features as follows: 

If feature values of present instance and positive instance are different, increase the 

weight of the feature. 

If feature values of present instance and negative instance are different, decrease the 

weight of the feature. 

III. Repeat Step 2 for a predefined number of iterations or until convergence. 

IV. Normalize the weights by dividing each weight by total number of instances. 

V. Sort features based on their weights in descending order. 

VI. Select top-k features with uppermost weights as concluding feature subset. 
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Chapter-5 

5 Result and Conclusion 

5.1 Using FSS-PART feature selection approach on CICIDS-2017 dataset 

Execution and analysis are done in Python 3 and used the API of Weka 3.8. The function 

is selected manually, and content written in Python retains a copy of the input and missing 

attributes. The Weka widget is open source, and the contains rule-based classifiers. This 

framework has been tested on the CICIDS-2017 dataset, which contains 79 functions, 

including label. It ends with a data log with 79 important features which limits the research 

after removing errored or null records.  

Some of the duplicate instances were also removed and the final dataset contains 223112 

records, 90% of which are classified according to the training work, and 10% are classified for 

the testing. The calculations of IG-Feature Selection, CR-Feature Selection and ReF-Feature 

Selection found to be faster and are used to calculate the rating of every component. In this, all 

attributes selected and performed a classification test with PART; after that, they were applied 

with (IGR), Correlation (CR) and ReliefF (ReF). Then reduce the dataset and check whether it 

gets the same accuracy with fewer features. Using (IGR) with 33 attributes, Association (CR) 

with 28 attributes, and ReliefF (ReF) with 23 attributes, it gives better accuracy.  

Table 25. A subset of 79 features of CICIDS 2017 dataset. 

 

For subsets IG-Feature Selection, CR-Feature Selection, and ReF-Feature choice shown in 

Table 25, the features are organized by the number of subsets for each event, even if it had 

some selected set of features. 

Methods Used Total 

Features 

Numbers of Features 

Information gain -Feature Selection 33 64,5,53,66,6,13,55,1,35,56,11,67,9,54,7,36,24,21,22,68,63,3

,41,69,23,42,43,10,14,29,26,38,65  

Correlation-Feature Selection 28 15,16,13,55,11,14,1,49,41,53,42,39,40,70,43,9,54,12,7,5,64,

26,52,10,29,28,47,45 

ReF-Feature Selection 23 15,16,48,11,1,40,14,42,49,43,55,13,41,53,52,26,7,67,54,9,2

9,2,45 
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In Table 26, a Feature Selection Subset-3 is obtained by observing number of feature 

weightage in the 2 and 3 subsets, respectively. The Feature Selection Subset is composed of 

48, 28, and 14 elements. Feature Selection Subset-2 and Feature Selection Subset-3 correspond 

to the standard half classifier. Machine learning for training and testing, cross-validation of ten 

times is done. Attribute selection in three subsets is done and got the accuracy for this proposed 

method. Then, the half classifier prepares the model and tests it ten times. Use half to check 

Feature Selection Subset-2, and Feature Selection Subset-3 and the result is shown in form of 

accuracy and time of occurrence. 

Table 26. Strategies for combining subsets for feature selection. 

Method Used Total Features Numbers of Features 

FSS -1 48 64,5,53,66,6,13,55,1,35,56,11,67,9,54,7,36,24,21,22,68,6

3,3,41,69,23,42,43,10,14,29,26,38,65,4,27,40,37,12,28,18

,15,19,2,16,17,30,74,25 

FSS-2 28 15,16,13,55,11,14,1,49,41,53,42,39,40,70,43,9,54,12,7,5,

64,26,52,10,29,28,47,45 

FSS-3 14 15,16,48,11,1,40,14,42,49,43,55,13,41,53 

 

 

Figure 17. Accuracy rate in (%) for different feature selection subsets. 

Feature Selection Subset-2 provides higher accuracy and uses vital chance and half to 

make models. Finally, Feature Selection Subset-2 was designated as a perfect subset of 

elements with 28 functions. After analysis for the performance of the 2017 CICIDS dataset, 

when using all 79 features, it has accuracy rate better than the Information Gain which is using 

33 features and has accuracy rate slight lesser than using all features but is better than 

Correlation which is using 28 features has accuracy difference of 0.0045. ReF with 23 features 

has better accuracy than Correlation but has similar accuracy compared with Information Gain. 

With the feature selection subset method, Feature Selection Subset-1 using 48 features has 
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accuracy of 99.9911. Feature Selection Subset-2 with 28 features has accuracy of 99.9734 and 

Feature Selection Subset-3 with using 14 features has accuracy of 99.9867. 

 

Figure 18. Recognize rate in (%) for different feature selection subsets. 

Similarly, in Figure 18 when using all 79 features, it has recognized rate in percentage came 

out to be 99.9982, similarly for Information Gain using 33 features it has recognized rate of 

99.9876, Correlation using 28 features has recognized rate of 99.9821, ReF with 23 features is 

99.9977. With the feature selection subset method, Feature Selection Subset-1 using 48 

features has recognized rate of 99.9981. Feature Selection Subset-2 with 28 features has 

recognized rate of 99.9873 and Feature Selection Subset-3 with using 14 features has 

recognized rate of 99.9974.  

 

 

It shows that compared with the first functions such as Feature Selection Subset-1 and Feature 

Selection Subset-3, the development time of these 14 simplified features is 10.2 seconds in 

Figure 19, have increase in the accuracy by 99.9867% which has only slight decreased in 
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Figure 19. Built-up Time in (s) for different feature selection subsets. 
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accuracy when using all 79 features with the accuracy level of 99.9956% considered for the 

experiment. It can be seen from the graph that using more feature selection accuracy will be 

better but built-up time also increases. With careful selection of features as taken in Feature 

Selection Subset-3 with built-up time of 10.2 second with accuracy of 99.9867 and for Feature 

Selection Subset-1 and Feature Selection Subset-2 accuracy is 99.9911 and 99.9734, built-up 

time is 29.55 and 16.71, respectively. 

Considering the current working state, the relevant research on this test was carried out. 

Figure 19 and Figure 20 depict similar inspections of existing structures using the proposed 

strategies introduce the accuracy and timing of applying PART with 10 cross-folds. The 

accuracy of this model at critical moment is increased by 99.9867% and compared with 

different algorithm applied. 

Table 27. Feature reduction in CICIDS2017 

 

 

99.9956

99.9402
99.9372

99.9867

99.9

99.92

99.94

99.96

99.98

100

All Features Bayesian-Rough Set AdaBoost FSS-PART

Accuracy

Algorithm Used Total Features Features 

Bayesian-Rough Set 37 3-13, 15, 20, 26, 28-30, 35, 36, 39, 40, 52, 54, 

55,62-73, 75 

AdaBoost 25 6, 8, 12, 14, 17, 20, 25-28, 30, 37-39, 43, 47, 48,52-

54, 63, 66, 67, 70, 77 

FSS-PART 28 15,16,13,55,11,14,1,49,41,53,42,39,40,70,43,9,54,

12,7,5,64,26,52,10,29,28,47,45 
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Figure 20. Accuracy Comparison of Bayesian-Rough Set, AdaBoost and FSS-PART. 

Using the CICIDS 2017 dataset, using all 79 features, it has accuracy rate in percentage 

came out to be 99.9956, similarly for Bayesian-Rough Set using 37 features it has recognized 

rate of 99.9402, AdaBoost using 25 features has accuracy rate of 99.9372, Where as in the 

proposed method with 28 features is 99.9867 as shown in Figure 20 and number of features 

selected for respective algorithm as per weightage in Table 27.  

 

 

When using all 79 features, it has recognized rate came out to be 483.35 seconds, 

similarly for Bayesian-Rough Set using 37 features it has time execution of 310.56 seconds, 

AdaBoost using 25 features has accuracy rate of 190.56 seconds, whereas in the proposed 

method with 28 features is 10.2 seconds. In summary, a total of 79 required features is selected 

which represent a total of 14 different network attacks in the CICIDS datasets. Other unused 

features were removed in the data-preprocessing part. Using all the 79 features for detecting 

the attacks was a time taking task. A feature selection approach is applied with attribute 

selection for InfoGain, Correlation, ReliefF attribute evaluation and along with the searching 

of important features using ranker method. This given the important feature weightage as a 

subset of all the 79 features and the respective features were 33, 28 and 23. These reduced 

features taken lesser time for training and testing purpose with little degradation in the accuracy 

compared to considering all the 79 attributes. For reducing the time consumption and attains a 

similar accuracy, top 48 features are selected from the 79 all features and then reduced to 28 

features to implement in FSS-2. Features in FSS-3 is selected by reducing half of the important 

14 features from FSS-2. The result obtained in FSS-3 taken lesser time when using supervised 

approach with Correlation Attribute Evaluation with ranker attribute selection. The time taken 
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10.20
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Figure 21. Execution time examination on BRS, AdaBoost and FSS-PART. 
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in Correlation method is very less compared to Relief, so the final consideration for predicting 

the accuracy is features used in FSS-2 and applied the same approach for prediction with 

supervised leaning approach of Bayesian-Rough Set, AdaBoost and this implemented 

approach of FSS-PART. The FSS-PART uses the Correlation method with ranker approach 

along with the 28 features to get the near accuracy of 99.9867 compared with the all 79 features 

99.9956 with reduction in accuracy of 0.0089% but the most important part is the time taken 

is much lesser using the FSS-PART method. 

Various authors have previously worked on the different datasets and uses machine 

learning approach that achieved accuracy based on experiment they had done or based on the 

feature selection they had taken is shown in . 

Table 28. Features, datasets and result on various ML techniques 

Ref 

 
ML Technique Dataset Features Results in % 

Cannady [89]      Supervised              

NN 
RealSecure               

 
Payload, header   of 

TCP, IP, and 

ICMP                                     

 

Detection Ration: 

89-91            

Pfahringer [90]         

 

 

Supervised             

Ensemble of C5   DTs                        

 

KDD Cup          41 features             Normal:99.5           

Probe:83.3          

DoS:97.1          

U2R:13.2           

R2L:8.4           

Zhi-Song et al. [91]               Supervised  

NN and C4.5 DT 
KDD Cup          41 features           Normal:99.5              

DoS:97.3              

Satan:95.3           

Portsweep: 94.9       

U2R:72.7              

R2L: 100              

Moradi and 

Zulkernine   [92] 

Supervised               

NN               

 

KDD Cup            35 features           MLP:80             

ESVM:90             

ESVM DR:87         

Thomas et al. [93] Supervised           

BN and CART          
KDD Cup         41 features            Normal:100          

Probe:100            

DoS:100            

U2R:84            

R2L:99.47         

Elouedi et al. [94] Supervised           

NB                   
KDD Cup               41 features            Normal: 97.68          

DoS: 96.65        

R2L: 8.66       

U2R: 11.84      
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Probing: 88.33      

Chen et al. [95] Supervised              

C4.5 DT              

 

KDD Cup          GA-based               

Feature              

Selection              

DoS:97.88        

Probe: 98.33        

R2L: 80.01       

U2R: 99.99      

Abraham 

et al. [96] 
Supervised          

Ensemble of             

SVM,            

DT, and SVM-DT 

KDD Cup all 41 features         Normal: 99.7     

Probe:100       

DoS: 99.92       

U2R: 68       

R2L: 97.16       

Sangkatsanee et al. 

[97] 

Supervised 

C4.5 DT           
RLD09 Header of TCP, 

UPD, and         

ICMP              

Normal: 99.43      

DoS: 99.17       

Probe: 98.73     

Miller and Busby 

[98] 

Supervised 

Ensemble MPML 
NSL-KDD all 41 features 84.137              

Li and Guo [99] Supervised 

TCM K-NN 

Chi-square 

KDD Cup 41 features 

8 features 
99.7               

99.6                  

Kshirsagar et al. 

[100] 

IGR-SCS1 

CR-SCS2 

ReF-SCS3 

CICIDS 

2017 

48 Features 

24 Features 

12 Features 

DoS:99.9586  

DoS:99.9593             

DoS:98.8698               

Kurniabudi et al. 

[101] 

Random Forest CICIDS 

2017 

15 Features 99.81                      

Kurniabudi et al. 

[102] 

Information Gain + 

Random Forest 

CICIDS 

2017 

22 Features 

28 Features 
99.83                     

99.79                    

Habtamu [103] AdaBoost CICIDS 

2017 

10 Features 99                     

Prasad et al. [85] Bayesian Rough set CICIDS 

2017 

40 Features 96.38                             

Proposed FSS-PART Supervised IGR, CR 

and RelifF 

CICIDS 

2017 

77 Features 

48 Features  

28 Features  

14 Features 

DDoS: 99.9982             

FSS-1: 99.9981 

FSS-2: 99.9872 

FSS-3: 99.9974 

  

5.2 Using KDD'99 for attack analysis  

In another approach, KDD'99 dataset is used as the above dataset was very large and taking a 

day or more to execute all the instance of machine learning approach. 

The most broadly utilized and freely accessible attack dataset is the KDD'99. The 

informational index is separated into two subsets; the preparation set contains 5 million 
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informational collections, and the test set contains 3 million informational indexes. The 

accompanying table shows the specific number of assaults of each sort in the KDD'99 record. 

Also, labels that order association records as typical or extraordinary attack types. The 

attributes of information records can be isolated into four classifications: Internal qualities e. 

Association span, convention type (tcp, udp, and so on), network administration (http, telnet, 

and so on), and so on the quantity of fizzled login endeavors, and so on A similar host work 

checks the associations set up just now with a similar objective host as the flow association, 

and computes factual data on convention practices, administrations, etc. The same comparable 

help capacity will look for associations that have similar assistance as the current association 

just now. 

The KDD'99 informational collection comprises of profoundly repetitive informational 

collections, which implies that learning calculations are outfitted towards regular informational 

collections, subsequently keeping them from learning uncommon informational indexes that 

are generally more ruinous to the organization, for example, U2R and R2L attacks. This 

eliminates redundant records and reduces the possibility of system errors in the classifier. 

Table 29 below shows the total packet count along with the 10% of the randomly 

selected dataset. These 10% dataset contains various redundancy, so this further corrected that 

made the total count of 311029. These datasets are also showing the total number of an attack 

count.  

Table 29. Distribution of attacks in the KDD'99 data set 

In each of the three forms of the data index i.e 10% KDD, Corrected KDD and Whole KDD 

attacks can be categorized as one of four classifications of attack. 

Dataset DoS U2R R2L Probe Normal Total 

10% KDD 391458 4107 52 1126 97277 494020 

Corrected KDD 229853 4166 70 16347 60593 311029 

Whole KDD 3883370 41102 52 1126 972780 4898430 
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Table 30. Attributes ranking for feature selection of KDD'99 

 

In the dataset, three protocols TCP, UDP, and ICMP are used to simulate attacks. 10% 

of corrected KDD'99 dataset contains with the four DoS, U2R, R2L and probe. There are 22 

diverse attacks.  

Table 31. List of KDD features 

Sr. No. Features Sr. No. Features Sr. No. Features 

1 Duration 15 su_attempted 29 same_srv_rate 

2 protocol_type 16 num_root 30 diff_srv_rate 

3 Service 17 num_file_creations 31 srv_diff_host_rate 

4 Flag 18 num_shells 32 dst_host_count 

5 src_bytes 19 num_access_files 33 dst_host_srv_count 

6 dst_bytes 20 num_outbound_cmds 34 dst_host_same_srv_rate 

7 Land 21 is_host_login 35 dst_host_diff_srv_rate 

8 wrong_fragment 22 is_guest_login 36 dst_host_same_src_port_rate 
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9 Urgent 23 Count 37 dst_host_srv_diff_host_rate 

10 Hot 24 srv_count 38 dst_host_serror_rate 

11 num_failed_logins 25 serror_rate 39 dst_host_srv_serror_rate 

12 logged_in 26 srv_serror_rate 40 dst_host_rerror_rate 

13 num_compromised 27 rerror_rate 41 dst_host_srv_rerror_rate 

14 root_shell 28 srv_rerror_rate   

Table 30 gives a total portrayal of all the attributes along with its weightage. Some of these 

weightages with very less values can be removed unless it relates with any attack parameter.    

Table 32. Types of attacks in KDD’99 dataset 

Category                  Attack type                                           

Probe                mscan, portsweep, nmap satan, saint, ipsweep              

DoS                      apache, Back, land, neptune,teardrop, smurf, mailbomb, teardrop, udpstorm, 

pod                                  

U2R                 rootkit, ps, loadmodule, attack, Perl, buffer overflow, xterm                

R2L                        imap, ftp_write, multihp, phf, named, warezmaster, worm, xsnoop, 

snmpgetattack, httptunnel, imap, snmp_guess , Guess_password, 

Attacks which can be analyzed with features of this dataset are as below: 

Denial of Service (DoS): this type of attack involves back, Neptune, land, pod, smurf and 

teardrop. Mostly used features are source bytes (5), land (7) and wrong fragment (8) to detect 

DoS type of attack. 

Probe: it involves ipsweep, nmap, satan and portsweep type of attacks. To detect Probe attack 

diff_srv_rate (30), dst_host_same_src_port_rate (36), source bytes (5), srv_rerror_rate (28) 

features are used.  

Normal: Normal attacks are detected by features of KDD cup dataset but the most preferred 

feature is same_srv_rate (29). This is used to analysis normal attack. 

Remote-to-Local (R2L): R2L is the basic category of these guess_passwd, Imap, Phf, 

warezmaster, warezclient, multihop and spy attacks. num_failed_logins (11), count (23), 

service (3), destination bytes (6), dst_host_srv_serror_rate (39) features are used to analyse 

R2L attacks. 
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User-to-Root (U2R): Perl, rootkit, load module and buffer_overflow attacks come under U2R 

attack category. The mostly used features are service (3), dst_host_same_src_port_rate (36), 

root shell (14), srv_count (24) to detect U2R attack.  

Useless features: Information gain is calculated to check whether the features are relevant to 

intrusion detection or not. Feature 20 (num_outbound_cmds) is always 0 and 21 

(is_host_login) do not reflect any change in training set they both are not relevant to intrusion 

detection technique and their information gain is negligible that is why they are irrelevant 

features for detection. And other features are 13 (num_compromised), 15 (num_root), 17 

(num_file_creations), 22 (is_guest_login), 40 (dst_host_rerror_rate). Information gain from 

these features is very less. These features are not at all contributing to detection any of attacks. 

So, above paragraph mentioned have a total of 7 features that have information gain less than 

0.0001 which have almost negligible contributing nature. 

Table 33. Most useful features for attacks detection in KDD’99 dataset. 

Class Total Name of features 

DoS 11 3,5,6,7,8,23,29,30,32,34,35 

Probe 25 1,3,4,5,6,10,12,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 

R2L 23 1,3,5,6,9,10,11,12,19,22,23,28,30,31,32,33,34,35,36,37,38,39,40 

U2R 16 3,5,6,11,12,14,16,17,24,32,33,35,36,37,40,41 

Normal 25 1, 2, 3, 4, 5, 6, 7,12, 15,16,17,18,19, 23, 24, 14, 15, 19, 20, 21, 23, 25, 26, 27, 

28, 30,31, 32, 33, 34, 36, 37, 38 

After detail analysis following was the summary table which shows the exact reason 

responsible for detection of attacks. 

Table 34. Useful features for different attacks in KDD’99 

Sr. 

No. 

Category Attacks Useful Features  

1 DoS Back 1, 2, 4, 5, 6, 10, 11, 12, 13, 15, 17, 18, 21, 22, 23, 26, 27, 28, 

30, 31, 34, 35, 37, 41 

2 DoS Land 1, 2, 3, 4, 7, 13, 18, 25, 29, 35, 38 

3 DoS Neptune 1, 3, 4, 5, 6, 7, 13, 15, 17, 19, 20,25, 26, 28, 29, 30, 31, 33, 34, 

35, 38, 39 

4 

 

DoS 

 

Pod 

 

2, 3, 5, 7, 8, 9, 10, 11, 17, 19, 21, 23, 26, 33, 34, 39, 40 
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5 DoS Smurf 2,3,5,8,17,23,24,25,26,27,28,29,33,35,36,38,39 

6 DoS Teardrop 3,4,5,6,8,10,13,23,24,25,26,32,34,35,36,37,39,40 

7 Probe Satan 1, 3, 5, 11, 15, 19, 23, 24, 25, 27, 28, 29, 30, 31, 32, 35, 39, 40, 

41 

8 Probe Ipsweep 2, 3, 5, 12, 13, 14, 16, 17, 21, 23, 24, 25, 28, 31, 32, 33, 37, 38 

9 Probe Nmap 1, 2, 3,4, 5, 18, 21, 22, 28, 29, 31, 32, 34, 35, 36, 37 

10 Probe Portsweep 3, 4, 10, 24, 27,28, 29, 34, 35, 36, 37, 41 

11 R2L Guess_passwd 2, 3, 4,5, 6, 9, 10, 11, 13, 14, 17, 21, 23, 24, 37, 38, 39, 40, 41 

12 R2L ftp_write 5,9,23 

13 R2L Imap 3, 4, 5, 6, 10, 12, 20, 23, 25, 27, 29, 30, 32,33, 34, 36, 38, 39, 

41 

14 R2L Phf 3, 4, 6, 8, 9, 10, 13, 14, 19, 28, 29, 36 

15 R2L Multihop 3, 4,6, 10, 12, 13, 14, 16, 17, 18, 19, 22, 26, 27, 30, 35, 37 

16 R2L Warezmaster 1, 2, 3, 4, 6, 12, 13, 14, 16, 17, 19, 22, 23, 24, 31, 35, 36, 37, 39 

17 R2L Warezclient 3, 4, 5, 6, 10, 12, 14, 16,22, 24, 27, 28, 29, 30, 32, 33, 34, 35, 

37, 38, 39, 40, 41 

18 R2L Spy 2, 3, 4, 5, 9, 15, 18, 22, 16, 39 

19 U2R Buffer_overflow 1, 2, 3, 5, 6, 7, 8, 9, 10, 14, 21, 23, 29, 30, 31, 32, 33, 36, 38, 

39, 40 

20 U2R Load_module 1, 2, 3, 4, 6,7, 8, 14, 27, 36, 39, 40 

21 U2R Perl 5,14,16,18 

22 U2R Rootkit 3, 5,6, 9, 11, 13, 14, 16, 17, 18, 23, 28, 31, 32, 33, 34, 35, 37, 

39, 41 

 

5.3 Framework of new attack detection through packet inspection 

A Framework for the attack detection is made using a small dataset using KDD'99. The 

framework only covers the attack at higher layer of TCP/IP model instead of attack at DLL 

and physical layer due to the nature of an attack. 
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Figure 22. Framework showing the packet along with the packet label 

 

 

Figure 23. Selection of protocol type for searching attack through KNN algorithm 

In the given figure, user can select the particular protocol to detect specific attack category. 
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Figure 24. Graph showing the attack and attribute count 

This graph shows an attack and number of parameters count of all the packet received that can 

be used to benchmark the threshold level and detecting any anomaly in the traffic.  
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Figure 25. Comparison between KNN and K-mean and attack detection count ratio 

This graph clearly shows the attack detection by K-mean is better than KNN. On receiving a 

greater number of packets, the value will vary and can be analyzed easily by an administrator. 

5.4 Conclusion 

The current research improved the utilization of feature grouping by selecting best 

features from the CICIDS2017 datasets that include 12 attack categories as Bot, DDoS, DoS 

GoldenEye, DoS Hulk, DoS Slowhttptest, DoS slowloris, FTP-Patator, Heartbleed, 

Infiltration, PortScan, SSH-Patator and Web Attack. These feature grouping is done with 

benign and attack ratio of 50:50 and 80:20 percent respectively and top 20 features were taken 

out whose features were most common. All the top 20 features from complete dataset was then 

compared with all 12 individual attack categories of 50:50 and 80:20 for the "Benign" vs. 

“Attack" data stream given only 6 most dominant common features was Bwd Packet Length 

Std, Flow Bytes/s, Total Length of Fwd Packets, Fwd Packet Length Std, Flow IAT Std and 

Flow IAT Min. Nine machine learning algorithms were employed for this purpose, namely 

Bagging, Naïve Bayes, QDA, Random Forest, ID3, AdaBoost, GraidentBoost, MLP and 

Nearest Neighbors. Bagging and Random Forest consistently performed well in terms of 

accuracy, precision, recall, and F1-score. Experiment shows that the Naive Bayes and QDA 
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showed relatively stable performance while ID3, AdaBoost, and Gradient Boost had average 

performance in term of accuracy and precision. MLP and Nearest Neighbors had a decrease in 

accuracy and precision while showing varied results for recall and F1-score.  

The research further extended with applying a novel approach of FSS-PART with efficient 

feature grouping approach. Using all 79 features of CICIDS2017 dataset, it’s attack detection 

rate was 99.9982. Similarly, using Information Gain using 48 features detection accuracy was 

99.9981, Correlation using 28 features was 99.9872 and ReF with 14 features was 99.9974.  

 In future, we have decided to implement similar methodology to identify attack in 

distributed environment and at top layer of cloud where authentication and API logs are the 

only ways to identify attacks while reducing the computational complexity. 
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