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Abstract 

The ongoing development of vast integration in various computational units and connected 

components has made it possible to achieve economic performance that was difficult to 

achieve with independent resources. Cloud computing is formed by the integration of these 

independent, and dispersed resources technically termed virtual machines (VMs). In 

addition, the grouping of these geographically scattered and heterogeneous VMs that can 

be shared among several end-users is termed a cloud environment. Additionally, the 

dynamic nature of the cloud may also make the entire system more prone to errors and faults 

since the scheduler lacks precise knowledge of the incoming tasks. It is also evident that in 

a dynamic environment, any of the accessible VMs might stop working or exit the system 

at any time. Besides, a reliable cloud system also requires an effective failure management 

approach known as fault tolerance. Apart from this, a cloud is only regarded as efficient if 

it can make the best use of its resources. For this purpose, numerous scheduling and load-

balancing algorithms were introduced in the literature. Still, effective load balancing is one 

of the main issues in any computational environment. It is important to achieve an 

acceptable resource allocation across the computing resources so that the execution of the 

task is completed on time. Furthermore, the dynamic and adaptive adjustments implemented 

for reallocating to mitigate the risks and to ensure uninterrupted services could often result 

in uneven utilization of resources in hand. Hence, ensuring monitored equilibrium between 

fault tolerance and load distribution demands meticulous attention to avoid unintended 

influences and associated overheads. Addressing this issue of non-uniform load distribution, 

fault tolerance needs the support of effective load balancing. The main goal of this research 

is to provide a hybrid resource provisioning model that not only focuses on fault-tolerant 

scheduling but also integrates it with an efficient load balancing technique to reduce the 

fault overheads. Since the cloud environment is dynamic, several issues might develop in 

accomplishing the identified problem. To address these issues, we have introduced some 

fault-tolerant algorithms incorporating resource provisioning that adapt load balancing for 

efficient QoS optimization. 

The thesis starts with an Introduction chapter, bordering the motivation, problem statement, 

and objectives of the study. A thorough Literature Review follows, reviewing existing 

scheduling with fault-tolerant and load-balancing techniques while recognizing gaps in 

existing investigations. To enhance fault tolerance, RFRTS model is introduced in Chapter 

3, aiming to maintain the system reliability and makespan. Building upon this, HFSLM is 

proposed in Chapter 4, which integrates dynamic load balancing with fault tolerance to 

optimize makespan, resource utilization and fault overheads. HFSLM is evaluated by 
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comparing it with FTHRM, MAX MIN, MINMIN, OLB, ELISA, and MELISA on both 

small and large task scales having task ranges from 250 to 1000 and 10000 to 50000 

respectively. Further, the associated fault overheads have been reduced by accompanying 

the model with a load balancing strategy. The associated overheads have been compared 

after fault tolerance and after load balancing. A notable reduction in the associated 

overheads was observed following the implementation of load balancing. Further, CRFTS 

model proposed in chapter 5, which incorporates clustering mechanisms for improved task-

to-VM mapping. The scheduling has been performed by using the clustering approach and 

the fault tolerance has been performed by reserving the nearest neighboring VM for the 

affected task. CRFTS is evaluated by comparing it with HEFT, FTSA-1, DBSA, E-HEFT, 

and LB-HEFT while varying task number from 25 to 1000. The thesis concludes in Chapter 

6 with key findings, contributions, and future roadmap and research directions. This work 

contributes to the advancement of cloud fault tolerance and load balancing, providing 

scalable and efficient scheduling solutions for dynamic cloud environments. 

 

Keywords: Advance Resource Reservation, Dynamism, QoS Parameter, Load Balancing, 

Fault-Tolerance, Resource Utilization, Makespan 
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Chapter 1 

Introduction to Cloud Efficiency: Scheduling, Fault-

tolerance, and Load Balancing Techniques 

This chapter sets the stage for examining several aspects of cloud efficiency, focusing on 

the crucial areas of scheduling, fault tolerance, load balancing, and the corresponding 

Challenges. 

1. Introduction 

Over the last 10 years, the use of Cloud has grown substantially. More facilities are 

incorporated into the cloud environment and are allowed to be accessed by everyone 

globally. Likewise, Cloud Computing companies such as IBM, Yahoo, Amazon, and 

Google are providing global access to services to customers [1]. Moreover, these are 

metered services which we commonly term subscriptions, and are frequently applied in the 

Software as a Service (SaaS) delivery simulation [2].  

The cloud environment consists of two components i.e., the frontend, and the backend. The 

front end is the main interface on the consumer side and is accessed through different 

networks over the internet [3]. The services of the Backend side are the core component in 

the cloud environment. The Backend side particularly deals with the CSP (Cloud Service 

Provider) and provides services by utilizing data center resources. In these data centers, 

different physical machines known as servers are being stored. These servers are being 

separated into multiple virtual machines by using the concept known as virtualization to 

deal with and handle the upcoming requests from the application dynamically as can be 

seen in Figure 1.1.  

 

Figure 1.1: Cloud Computing Architecture 

Additionally, some important components of the backend side are presented below: 
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Virtualization: The simulated computers that run on physical servers are possible because 

of virtualization. The technical term for these simulated computers is virtual machine (VM). 

VMs host user applications and provide virtualized environment to the users. The 

hypervisor is accountable for controlling the virtualization. It warrants that multiple VMs 

can run on an individual physical server without influencing each other. 

Storage Servers:  These are the storage options offered by the cloud. These include block 

storage for VMs, and object storage for different types of files and object data.  

Computable Services: Different types of scalable and computing services are provided on a 

demand basis. These include GPU, memory, and other CPU services. These services are 

used by consumers to execute applications and other processing. 

Database Services: CSPs provide various kinds of database management services. These 

include relational DBMS (Database Management System) like NoSQL and SQL DBMS. 

These services play an important role in the storage and retrieval of data. 

CDN (Content Delivery Network): These are distributed networks that offer the storage and 

retrieval of content to the consumers. CDN improves content delivery speed and minimizes 

latency. 

This concept allows users to purchase the services based on their needs and can be treated 

as metered services which we commonly term subscriptions and is frequently used in the 

SaaS delivery model[2]. The basic overview of Cloud Computing is shown in Figure 1.2. 

All the components work with one another to handle the overall process of the cloud 

environment. The Cloud Auditor acts as police to guarantee the top quality and integrity of 

services in the cloud provided by the service providers. 

 

 Figure 1.2: Overview of Cloud Computing 
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Figure 1.3: Dynamism Aspects of Cloud 

In cloud architecture, there are mainly three services [4], Infrastructure (IaaS), Software 

(SaaS), and Platform as a Service (PaaS) [5,6].  

The cloud services are well known for its flexibility, adaptability, and agility. However, at 

the same time, these contributions of cloud services make it a most dynamic environment. 

Figure 1.3 shows the aspects of cloud dynamism. 

In the era of cloud computing, Service Level Agreements (SLAs) represent formal and 

negotiated agreements delineating the terms and conditions between customers and service 

providers. These agreements ensure the provision and delivery of cloud services in a manner 

that meets the expectations of customers, fostering satisfaction with the services provided. 

Some of the SLAs in cloud computing are performance metrics, availability, time, 

scalability, backup, security, recovery, etc. In the dynamic landscape of cloud computing, 

SLAs serve as a cornerstone, fostering a mutual understanding of responsibilities and 

expectations between providers and customers. This clarity in contractual terms enables 

organizations to navigate the complex realm of cloud services with confidence and strategic 

intent. The thesis focuses on some of the main challenges and resource provisioning 

techniques that ensure SLAs and other QoS (Quality of Services) parameters. 

1.1.  Resource Provisioning in Cloud Computing  

Optimizing performance in cloud computing is crucial to ensure that cloud-based 

applications and services operate efficiently, providing optimal performance to users while 

utilizing cloud resources effectively. These optimization techniques focus on improving 
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response times, minimizing latency, boosting throughput, and maximizing resource 

utilization. Resource provisioning means opting for, installing, and operating the cloud 

resources at runtime to confirm guaranteed execution for applications. The CSPs take 

various steps for resource provisioning to follow the SLA with consumers. The hybrid 

provisioning of cloud resources is achieved by strategies like Scheduling, fault tolerance 

and, Load Balancing, etc. Besides this, the provisioning aims to enhance the QoS parameters 

like Makespan, Flow Time, Average Resource Utilization, Reliability, etc. The hybrid 

resource provisioning framework for the cloud has been presented in Figure 1.4. 

Based on user needs, the component Cloud Controller maps all incoming requests to the 

accessible VMs. The different components cooperate properly established on multi-

objective functions to optimise QoS parameters and increase the SLA between the CSP and 

the user. 

 

Figure 1.4: Hybrid Resource Provisioning Framework for Cloud 

1.1.1. Task Scheduling 

Scheduling in cloud computing entails the efficient and coordinated assignment of 

resources to tasks or jobs to enhance system performance. The main objectives of 

scheduling include ensuring fairness, optimizing resource utilization, and meeting Service 

Level Agreements (SLAs). Effective scheduling ensures that resources are allocated 

optimally, preventing underutilization or overloading of servers, which could otherwise 

cause performance issues. The following are key aspects of scheduling: 
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• Task Queuing: Incoming tasks are placed in a queue and scheduled for execution 

according to their priority, resource requirements, and several other constraints. 

• Job Prioritization: Prioritizing jobs based on their importance or urgency is a crucial 

aspect of task scheduling in cloud computing and other computational environments. This 

process ensures that critical tasks are executed promptly, which can be vital for maintaining 

system performance, meeting user expectations, and adhering to service level agreements 

(SLAs). 

• Fair Scheduling: Resource starvation occurs when certain tasks or users are 

perpetually deprived of the necessary resources to execute their operations, typically 

because those resources are consistently allocated to higher-priority tasks. This can lead to 

significant performance issues, dissatisfaction, and failure to meet Service Level 

Agreements (SLAs). To mitigate this, schedulers in cloud computing and other 

computational environments aim to distribute resources equitably among all tasks and users. 

• Distributed Scheduling: Distributed scheduling refers to the process of coordinating 

and managing task execution across multiple data centers or clusters in different locations. 

The primary goal is to optimize resource utilization, improve performance, and ensure that 

tasks are executed in the most efficient manner possible, considering the distributed nature 

of the infrastructure. 

1.1.2. Load Balancing 

Load balancing is a method engaged to evenly disperse incoming network traffic or 

computational tasks across several resources, such as servers or virtual machines (VMs), to 

achieve optimal resource utilization and maintain high availability. The following are key 

aspects of load balancing: 

• Even Distribution: Load balancing ensures that tasks or requests are evenly 

distributed among available resources. This prevents any single resource from becoming 

overloaded while others remain underutilized. 

• Optimal Resource Utilization:  By distributing workload efficiently, load balancing 

maximizes the use of available resources. This helps in achieving better performance and 

responsiveness from the system. 

• Application Awareness: Some advanced load balancers can consider application-

specific metrics or content when distributing traffic. This ensures that requests are directed 

to the most suitable server based on application requirements. 

Load balancing plays a critical role in modern IT infrastructure, especially in cloud 

computing environments, where dynamic scaling and efficient resource utilization are 

essential for delivering reliable and responsive services to users. 
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1.2. Cloud Faults 

There may be chances of faults in all these three layers in a similar way as they are possible 

in any type of software. Therefore, the detection and removal of faults is necessary for 

obtaining the best possible reliability as presented in [7], [8]. Moreover, the deficiencies in 

the infrastructure of the cloud yield a direct impact on resource reliability and availability 

[4]. These deficiencies need to be critically analyzed and treated to boost reliability and 

robustness. DNN, a powerful deep learning tool exhibits is a promising solution for this [9]. 

Fault Tolerance is a significant technique that can notice, locate, and recover from faults 

and failures in the cloud environment. It makes the cloud more robust and enhances the 

efficiency of the environment [10]. Mainly, fault tolerance falls into two sub-areas i.e., 

Hardware Fault Tolerance and Software Fault Tolerance [11].  

On the other hand, scheduling tasks appropriately is vital in delivering critical and essential 

services of the cloud. The ineffective scheduling of tasks increases the task execution time 

and waiting time. Besides, insignificant load balancing results in the under and over-

utilizing of resources where the under-utilization of resources can lead to the wastage of 

resources, and over-utilization of resources can degrade the performance of cloud systems. 

Hence, proficient load distribution is essential to boost the performance of cloud-based 

applications.  

There is a fundamental need to incorporate load balancing and scheduling in efficient fault-

handling mechanisms due to architectural challenges in the cloud system. Therefore, this 

paper conducts a hybrid review employing fault tolerance with scheduling, load balancing, 

and analysis of QoS parameters optimization. This comprehensive review primarily centers 

on three core classifications of fault tolerance techniques, namely Reactive, Proactive, and 

Resilient Approaches. The Reactive Procedures are the conventional techniques of fault 

tolerance that include replication, detection, checkpointing/restarting, and recovery. In the 

Proactive Methods, the system is prevented from reaching a defective state that includes 

monitoring, prediction, and pre-emption. The actions are taken to minimize the defects, and 

thereby the failure condition is avoided. The Resilient Methods have shown a recent take-

off in the literature and indicate a potential trajectory for the future of fault tolerance in 

cloud environments. This is because these methods are grounded on artificial cleverness 

and ML [10]. Besides, simulation toolkits play an analytical role in evaluating settings of 

cloud computing. These toolkits allow us to simulate and evaluate the cloud set-ups cost-

efficiently without the requirement for massive infrastructure. Some of the most effective 

and powerful simulators have been discussed in [12]. Comparative analysis has been 
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performed in among various simulators concerning various parameters to determine the 

features and functions of each toolkit [13]. 

1.2.1. Fault Tolerance in Cloud Computing 

Faults in any resource may affect the task execution time and QoS parameters of the cloud, 

which will eventually reduce the deed of the system. The efficient fault tolerance policy 

helps to identify and overcome errors in the cloud architecture, and thereby the performance 

metrics are boosted. The fault tolerance capability should be considered with other 

techniques like scheduling and load balancing for the effective performance of the system. 

Moreover, the load balancing and scheduling approaches should do their respective 

standardizes along with fault tolerance. In case of a crash or connection error, the system 

should be capable enough to provide an alternative VM to handle these failures for smooth 

and uninterrupted task execution. Because these crashes in any nodes will affect the 

efficiency of the entire system. Therefore, handling faults enhances the utility of the system 

to accomplish the tasks precisely and accurately resolving the occurrence of internal defects 

[14]. An inclusion of fault tolerance with other reliability-related techniques like scheduling 

and load balancing will make the cloud environment more efficient, specifically for the real-

time and dynamic processing of tasks [15]. Hence, fault tolerance is a major aspect that 

ensures robustness, reliability, and other performance metrics in the cloud environment 

[16], [17]. 

1.2.2. Fault, Error, and Failure Taxonomies 

The fault is the condition of the system when it loses the ability to function for an expected 

output due to an unexpected condition or defect in any of the internal or external 

components. The main faults within the cloud environment are enumerated as follows:[18]  

The Network Faults: These defects arise due to network interruption in any connection, 

nodes, cluster, etc., [19], [20]. 

The Physical Faults: When any of the hardware resources like CPU, memory, storage, etc., 

fails, these types of faults will occur. The power failure also gives rise to these types of 

faults [18]. 

The Process Faults: These are the common faults in a cloud environment that occur because 

of the unavailability of any resource, software, etc., [19]. 

The Service Expiry Fault: This type of fault arises if the service clock of the resource runs 

out when the application is in use [19]. 

The Media Fault: Any crash in the media of the cloud will lead to these types of faults [15]. 

The Processor Faults: This type of fault mainly occurs because of malfunctioning in the 

operating system [21] . 
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The Restrictions Faults: This type of fault occurs when any fault arises and is unnoticed or 

ignored by the controlling or any other responsible agent [22]. 

The Parametric Faults: If the optimizing parameters are ambiguous or do not differ and 

remain unexplained, this type of fault occurs [22]. 

The Time Restriction Faults: These faults occur when the particular application is not 

completed by the predefined deadline [22]. 

The fault tolerance mechanism makes the cloud environment efficient by providing 

necessary services even in case of failure of one or multiple components. If there is any kind 

of fault in the system, it leads to error, and error, in turn, culminates in failure.  

Fault: The abnormal state of any coordination when assigned tasks cannot be performed. 

Usually, the fundamental cause of this state is the presence of some bugs in single/multiple 

components of the system [23], [24]. Faults are categorized into various groups, as depicted 

in Figure 1.5. 

Error: A system experiencing faults may transition into an error state. Compromised 

performance due to errors can subsequently result in incomplete or complete failure of the 

system. Errors have been classified into the following categories, as shown in Figure 1.6. 

Failure:  The presence of an error can takes the system to the failure state, and it has an 

absolute effect on the user. Moreover, the failure is recognized by the user by seeing the 

incorrect output of the system [23], [25], [26]. The failures have been classified into the 

following categories, as exhibited in Figure 1.7. 

 

Figure 1.5. Showing Different Fault Categories 
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Figure 1.6. Showing Different Error Categories 

 

Figure 1.7. Showing Different Failure Categories 

1.2.3. General Fault-tolerance Challenges in Cloud Computing 

Ensuring a fault-tolerant cloud environment involves evaluating numerous challenges. 

Some of these challenges are discussed below: 

Task and failure heterogeneity: The cloud utilizes different hardware and operating systems 

simultaneously and considers the underlying heterogeneous frameworks [27]. Resultantly, 

in handling the heterogenous type of faults, and eventually increasing the complexity to 

overcome them.  

Automation: The extensive use of VMs in the cloud environment is increasing exponentially 

and managing these platforms in real time is more difficult. Therefore, there is a good need 

to automate fault tolerance strategies for complex networks [28].  

Cloud halts: The main plan of fault tolerance is to provide uninterrupted service altogether 

in case of any service interruption or malfunction of any host server or network system. The 

Service Level Agreements [29] for all companies should be prepared accordingly. 
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Retrieval Points and Recovery Time Objectives targeting: This Point is established to 

preserve the set of track records that may be at risk of loss in the event of a server error [29]. 

On the other hand, Recovery Time is the time required by the procedure to get back on track 

or running after the failure [30]. The main aim is to decrease RPO (Retrieval Point 

Objectives) and RTO (Recovery Time Objectives) at the minimum possible rate [10]. 

Cloud Workload: Cloud workloads are the specific applications-related tasks/services or 

specific amounts of work executed on a cloud resource. The workloads could be of two 

types, i.e., Enabled, and Native loads. The Native workloads are also labeled as “born on 

the web” and are entirely cloud-developed applications. On the other hand, an enabled 

workload pertains to the computational tasks generated by cloud applications. Moreover, 

the Proactive and resilient approaches seem relevant [31] to fill the fault tolerance 

conditions of both Active and Native concepts [10]. 

1.3. Measures for Effective Cloud Reliability- A need for the hybrid framework 

The claim for the cloud computing standard has enlarged intensely in the past few years as 

it allows the dynamic fetching and renouncing of computing resources that too in a device-

independent and cost-effective manner with slight effort or communication from the service 

provider. Despite lots of enhancements in the cloud, it is still prone to many system failures 

which results in growing apprehension regarding the reliability of cloud public services. 

Reliability is the way of measuring the efficiency of the system and its value can be adjusted 

accordingly after performing computation where the default reliability is 100% [32]. The 

conditions of reliability must be met for stable and efficient processing of the cloud. It is 

also one of the critical Quality of Service constraints. Moreover, optimized QoS parameters 

play an important role in effective and adequate resource allocation and have been 

extensively inspected in Cloud Computing standards. These parameters are used to consider 

the efficiency of various Scheduling, Load Balancing, or Fault Tolerance techniques in the 

cloud. 

The hybrid framework provides several advantages in comparison to single schemed 

framework discussed below: 

• High Availability and Reliability 

Reliability is the critical parameter that supports user trust by maintaining SLAs. The 

mechanism of fault tolerance enables the system to continuously operate even in the 

presence of faults and failures. Scheduling ensures the optimal allocation of computational 

resources to the tasks. This prevents avoiding pauses and reduces the threats of failures. 
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Load balancing prevents the single resource from becoming the target by uniformly 

distributing the load and thereby enhancing system reliability. 

• Optimizing Resource Utilization 

Unnecessary resource allocation for fault tolerance can lead to resource underutilization. A 

hybrid model improves the use of these redundant resources by incorporating them into 

scheduling and load-balancing strategies. Additionally, the overburden of resources is 

prevented by load balancing to boost the utilization of resources while dynamically 

adjusting the task distribution. 

• Enhancing System Performance 

Efficient scheduling with fault tolerance maintains the levels of performance and ensures 

the timely completion of tasks. Moreover, load balancing prevents the overloading of a 

single VM thereby escaping performance disgrace. 

• SLA Requirements 

Efficient scheduling with continuous operations even in the presence of failures is crucial 

in maintaining SLAs and ensures time constraints, reliability, and other deadlines.  

• Advancing Scalability 

The scaling factor of the cloud environment necessitates the need for robust fault-tolerant 

scheduling to ensure reliability throughout the system. Moreover, the growing number of 

cloud users simultaneously increases cloud tasks. This requires the load balancing system 

to ensure the corresponding scaling without performance degradation. 

• Efficient Cost 

Lowering the requirement for excessive redundancy via a hybrid model can lead to 

minimum cost while ensuring reliability. 

• Fault associated Overheads 

The faults often lead to overheads even when handled. The load balancing integrated with 

fault tolerance will reduce the overheads. 

In conclusion, integrating these three factors provides a complete and comprehensive 

approach to address the varied challenges faced in cloud environments, leading to extra 

robust, efficient, and reliable cloud-essential services. 

Below is presented an explanation that includes a real-world example illustrating the 

necessity of hybrid models: 

 

Illustrative Example 
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Consider the scenario, where the CSP hosts several services and applications for its clients, 

utilizing solely fault tolerance mechanisms (single-model schemes). In often cases, fault 

tolerance frequently results in redistributing the workload from faulty VMs to the unaffected 

VMs. This redistribution often upsets the load equilibrium between VMs, which leads to an 

unequal workload distribution and a deterioration in overall service performance. However, 

if CSP implements the hybrid model which integrates multiple reliability measures would 

enhance reliability and provide robust services to the clients. In our example, if CSPs 

employ the hybrid model that performs load balancing after fault tolerant measures. This 

will help CSPs to simultaneously minimize the risks of non-uniform load distributions and 

other overheads associated with fault tolerance and progress the QoS. 

Besides, to make this emerging domain more observable for future researchers, there is a 

need to analyze the up-to-date methods concerning these factors [10], [29]. This review is 

also inspired by peer surveys of the existing literature along with their limitations. 

Moreover, it represented the analysis of some important aspects of the existing literature 

such as QoS, static/dynamic, environmental setup used, fault tolerance approaches, and fault 

models, and presented the results in the graphical visualization form. The analysis provided 

offers a comprehensive perspective on the existing research efforts that have been the focal 

point of existing studies. The overall comparison of the top-cited surveys with the proposed 

survey is also illustrated in the subsequent sections. 

1.3.1. Cloud Scheduling Approach 

Cloud scheduling is performed by mapping the incoming task to the most suitable available 

VM. The objective of ascertaining the sequence in which events or tasks should be executed 

in the cloud and simultaneously analyzing the required QoS parameters is termed 

Scheduling. Cloud Scheduling mainly includes the following: 

Prediction of future incoming workloads and Normalizing the QoS parameters. 

Selection of the most optimal VM and executing the particular task via, Heuristic/Meta-

Heuristic algorithms. 

Generally, the VM/task scheduling is done in two ways: 

On-Demand Scheduling: This scheduling considers the dynamic cloud workloads on 

demand and VMs are provided quickly by cloud service providers as required. However, it 

may lead to the problem of workload dispersal. In other words, multiple tasks may be 

processed by a single VM at a time (Over-provisioning Problem) resulting in degrading the 

performance of the system. 
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Figure 1.8. VM Provisioning and Scheduling (VPS) 

Long-Term Reservation: This scheduling reserves the resources for the long term. However, 

providing many VMs can lead to Under-provisioning problems in some situations. 

These Under and Provisioning problems may cause the wastage of VMs and task execution 

time, and thereby the overall cost of services may increase. Hence, a well-organized and 

effective provisioning technique is essential that examines and schedules the cloud 

workloads efficiently. Figure 1.8 explains the process of VM Provisioning and Scheduling 

(VPS) [33]. 

The main aims of VM provisioning are: 

• Fulfill the User’s demand without SLA violation. 

• Prior prediction of user requirements based on incoming workload size. 

In cloud provisioning, the SLA is settled between the end users and Cloud Service Providers 

after fully analyzing the incoming workloads. Before scheduling (mapping) the incoming 

workload (applications/tasks) to the particular VM/resources, the running VMs are 

monitored regularly for load estimation [34]. If the VM is found overutilized, then that 

particular VM is disabled temporarily for any future assignments and these VMs are not 

allocated immediately after mapping. Afterward, the task executing capability of the VM is 

also tested before any further allocation. This study also contains a review of various 

research papers focusing on the principles of load-balancing and scheduling. In the cloud, 

efficient scheduling of jobs is the main factor ensuring high-performance applications. 

However, in the cloud, scheduling not only has to pact with the dynamism and the 

widespread nature of the cloud, but it should also consider the optimization of other 

important parameters. The matching of tasks to the corresponding machines and scheduling 

the organization of execution of these tasks refers to mapping. Efficient mapping minimizes 
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the total execution time of the meta-task. The meta-task is identified as a collected work of 

independent tasks having no inter-task dependencies. The mapping of such meta-tasks is 

being achieved statically (i.e., offline or in an analytical manner). The general problem of 

optimally mapping tasks to machines is NP-complete [35]. Task scheduling is the 

fundamental step of VM management in the cloud. Task scheduling can be of two types: 

Static and Dynamic Scheduling [36]. 

1.3.2. Fault-Tolerant Approaches 

Cloud is a dynamic system that supports several dispersed resources i.e., VMs that are 

heterogeneous and complete millions of user tasks. Nevertheless, this VM has the flexibility 

to join or exit the system at any given time. Thus, achieving fault tolerance is a critical issue 

in such dynamic systems. Additionally, the execution of a fault-tolerant system also leads 

to the optimizations of various QoS parameters and cloud characteristics. Therefore, 

significant benefits can be attained. It also assures task execution on time, in case of any 

unexpected scenarios like failure, resource disconnection from the system, task migration, 

any other unanticipated user operation, etc. Moreover, while numerous previous studies 

have tackled fault tolerance and task allocation, only a limited number have examined issues 

at the processor level. In recent literature, a handful of works have delved into extensive 

research on scheduling and load balancing while incorporating fault tolerance [22]. The 

concept of abstraction has been split into different layers, i.e., Infrastructure as a Service, 

Platform as a Service, and Software as a Service layer. There is a necessity to implement 

appropriate fault tolerance techniques for fault diagnosis to determine several faults in these 

service levels. This chapter includes various fault diagnosis methods corresponding to these 

service layers, along with fault categories. The defects in any layer can have an impact on 

its top layer because of the layer interrelationships [22] as shown in Figure 1.9. 

 

Figure 1.9: Layered Architecture Relation of Cloud Fault Tolerance 

There are chances of faults in all these three layers. To identify and recover from these faults 

some software-level algorithms are applied. The deficiencies in the infrastructure of the 
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cloud yield a direct impact on resource reliability [4]. These deficiencies in the cloud need 

to be critically analyzed and treated to boost the reliability and robustness of the cloud 

environment. Fault Tolerance is a significant technique that loads the cloud environment 

with some important advantages like noticing, locating, and recovering from faults and 

failures. This makes the cloud environment more robust and enhances the efficiency of 

outcomes of the cloud environment [10]. Mainly, fault tolerance falls into two sub-areas 

i.e., Hardware Fault Tolerance and Software Fault Tolerance [29].  

This chapter mainly focuses on the methodologies of fault tolerance methods which are 

reviewed based on three main strategies: Reactive Methods, Proactive Methods, and 

Resilient Methods. The Reactive Methods are the conventional techniques of fault tolerance 

that include replication, detection, checkpointing/restarting, and recovery. In the Proactive 

Methods, the system is prevented from reaching the defective state. The actions are taken 

to minimize the defects, and thereby the failure condition is avoided. These methods include 

approaches like monitoring, prediction, and pre-emption. The Resilient Methods have 

shown a recent take-off in the literature and are most probably the future of fault tolerance 

in the cloud environment. These methods are based on artificial intelligence or machine 

learning [10].  

Moreover, to reach higher levels of strength in cloud computing, the failures need to be 

accessed and handled effectively [25], [37]. Extensive work has been proposed in the 

literature to make the cloud fault-proof. Some approaches proposed in the literature can be 

labeled as mentioned in Figure 1.10. 

1.3.2.1.  Reactive fault tolerance: 

 Once a defect has occurred, reactive fault tolerance is applied. Using this approach, we can 

decrease the impact of the fault in the cloud and thereby increase the system's robustness 

and reliability [30], [38]. The focus is on the device recovering in case of failure inside the 

system [29]. Furthermore, data replication and data transfer are used for restoration [39]. 

These approaches address Byzantine Faults, Crash faults, Hardware faults, and Host failure. 

Different fault-tolerant techniques that utilize a reactive approach are planned in Table 1.1. 

1.3.2.2.  Proactive fault-tolerance:  

Predictionary provides pre-planned alternative solutions for the process of handling faults; 

therefore, fault prediction is proactive. Moreover, the faulty component is substituted with 

an alternative component runtime to avoid recovery from errors and faults [38], [40] [4], 

[41]. This approach provides the effectiveness of cost with maximum efficiency and 

reliability of the system [42] and addresses Software and Parametric faults. Some of the 

proposed proactive fault-tolerant techniques in the literature are listed in Table 1.2. 
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1.3.2.3.  Resilient Fault-tolerance:  

These techniques have some similarities with the Proactive approach. The defects are 

forecasted, and the effects are prevented or moderated by applying some methodologies. 

The forecasting utilizes some intelligent learning, which makes Resilient techniques 

different from Proactive ones. These approaches are adopted for general faults. In this 

strategy, the system is continuously monitored for faults, which makes it adaptive fault 

tolerance [10]. Some of the proposed Resilient fault-tolerant techniques in the literature are 

presented in Table 1.3. 

 

 

Figure 1.10. Showing the Categories of Fault Tolerance Techniques under Different 

Approaches 
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Table 1.1: Enlightenment of reactive fault-tolerant techniques 

Strategy of 

Fault 

Tolerance 

Classification/ 

Category 

Enlightenment Problems/ 

Issues Sheltered 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reactive 

Strategy 

Check-pointing 

[22], [43] 

The system state is saved periodically and in case of 

failure, the job is restarted from the last checkpoint 

rather than beginning. i.e., the job is restarted from the 

recent state. 

 

 

 

 

 

 

 

 

 

 

 

 

Byzantine Faults, 

Crash faults, 

Hardware faults 

Host failure 

 

 

 

 

 

 

 

Retry [25] In case of a fault in the task, we repeat the task with 

the same resource until it succeeds without 

consideration of the reason for the error. 

 

Replication  

[25], [42] 

In this approach, replicas of tasks are created and 

stored at diverse places. Until all these replicas are 

destroyed, the execution of the task will continue even 

in the presence of malfunctions and failures. 

Task 

Resubmission  

[25], [43] 

This approach submits and resubmits the failed task to 

the identical or alternative resource [10]. There is a 

resource loss in this technique by re-executing the 

unsuccessful task repeatedly [44]. 

 

Job Migration 

[26] 

The failed job is migrated from the particular machine 

to an additional machine. 

 

Rescue Workflow 

[26] 

This approach lets the system continue working even 

in the presence of fault until the fault will not allow the 

system to progress further. 

 

Load Balancing 

[38],[45] [23]  

The total load is distributed among machines 

efficiently so that no machine will be under or 

overloaded [10],[46]. Load balancing helps to 

condense the hardware and time costs, 

hardware costs [48] & thereby improving system 

execution and efficiency [37], [38]. 

 

N-Version and 

Recovery Block 

[49] 

These are the most commonly used methods of fault 

tolerance in the software atmosphere where N-version 

programming has N independent groups/developers 

for developing N different versions of software 

modules [50]. All these different individuals will try 

to cover all likelihoods of fault. 

Recovery blocks are used in case of conducting the 

duplication of any job and are the boundless technique 

to diminish the drain of any undesired incident [51]. 

Custom Exception 

Handling [29] 

In this approach, the developers purposively insert 

some code or script into the software to handle certain 

errors at running time [10]. 

Table 1.2: Enlightenment of Proactive Fault-Tolerant Techniques 

Strategy of 

Fault 

Tolerance 

Classification/ 

Category 

Enlightenment Problems/ 

Issues Sheltered 

 

 

 

 

 

Software 

Rejuvenation  

[25], [26]  

In this strategy, the system is rebooted periodically, 

and every time the system starts from the new state. 

Mainly this strategy is used to address the issue of 

aged devices [48] 
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Proactive Strategy 

Pre-emptive 

Migration  

[41], [52] 

This strategy involves the ongoing and constant 

observation of an application to track crucial resources 

like CPU and RAM [53] 

 

 

 

 

 

 

 

 

Software and 

Parametric faults 

Prediction [54] This approach requires a basic knowledge of system 

defects [55] 

Monitoring [44] This strategy more actively participates in carrying 

innovative resources such as planning, expanding, and 

migration [56] 

 

Self-Healing  

[57], [58], [59] 

This strategy mainly uses the divide-and-conquer 

technique to improve the performance of the system. 

It allows the system to classify, recognize, and heal the 

problems itself without the intervention of any 

administrator. 

 

SGuard [49] The SGuard strategy primarily depends on the 

recovery and rollback process and is mainly proposed 

for sharing the video services [17] 

 

 

 

Table 1.3: Enlightenment of Resilient Fault-Tolerant Techniques 

Strategy 

of Fault 

Tolerance 

Classification/ 

Category 

Enlightenment Problems/ 

Issues Sheltered 

 

 

 

 

 

Resilient 

Strategy 

Machine Learning  

[10] 

Machine learning techniques mainly reinforcement 

learning [38] are involved in analyzing the features 

and characteristics of machines. Such strategies help 

the system to manage its faults according to its 

surroundings. 

 

 

 

 

 

 

 

Adapted to  

General Faults 

Fault Induction [10]  

This strategy is a recent strategy used in cloud 

environment [38] Failures are managed by making 

assumptions based on the reaction of the system. 

 

The reactive strategy does not require to enforcement of any qualification mechanism in the 

system until and unless the fault occurs. In such a strategy, efforts are being made to 

moderate the injurious effects only after the detection of faults in the machine. Efforts are 

being made to moderate injurious effects in the machine after the faults have happened [48]. 

In a Proactive strategy, the system is in continuous tracking to analyze the faults and 

eliminate them before they appear. The device state is continuously screened to guess the 

coming faults in advance so that corresponding steps will be taken to eliminate these 

upcoming faults. In Resilient strategies, the system operates even in the presence of faults, 

and the faults are removed in the given timeframe. 

The corresponding pros and cons of these strategies are presented in Table 1.4 and Table 

1.5 respectively. 
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Table 1.4: Pros of Fault-Tolerant Strategies 

Reactive Strategy Proactive Strategy Resilient Strategy 

Can handle rare faults [10] 

Methods like checkpointing, and 

restarting work well for a lengthy 

application [10] 

Restoration from faults restricts the 

susceptibility of the system. 

The forecasting makes the system 

more effective [10] 

This strategy is more appropriate 

for real-time applications [10] 

These strategies seem the future of 

Fault tolerance. 

The faults are discovered and 

eliminated continuously. 

This reduces the resource 

requirement as the system handles 

faults efficiently [10] 

 Table 1.5: Cons of Fault-Tolerant Strategies 

Reactive Strategy Proactive Strategy Resilient Strategy 

These strategies cannot be applied 

to real-time applications. 

Restoration from failure will 

increase the response time 

significantly [10]. 

As the prediction is required here, 

and wrong predictions will degrade 

the performance of the strategy [10]  

Frequent modification is required as 

the cloud itself is the most dynamic 

environment. 

Learning time is required for the 

agent [10].  

 

Reactive techniques have some similarities to the proactive approach. Moreover, the defects 

are forecasted, and the effects are prevented/moderated by applying some methodologies. 

The forecasting uses some intelligent learning that makes resilient techniques different from 

proactive ones. Compared to conventional fault tolerance techniques, resilient fault 

tolerance provides increased durability and adaptability in the event of system breakdowns.  

Some of the advantages of resilient fault tolerance over traditional fault tolerance are: 

1. Dynamic environment 

Resilient systems can bounce back from errors without sacrificing functionality because 

they can dynamically adjust according to shifting circumstances. They are made to respond 

quickly to changing threats and difficulties. However, conventional fault tolerance 

techniques could find it difficult to adjust to sudden or rapid shifts in the environment. They 

might not react to new kinds of errors as well since they frequently rely on predetermined 

rules. 

2. Recovery 

Often, automated recovery mechanisms found in resilient systems are capable of promptly 

detecting and fixing errors without the need for human interaction. This reduces the effect 

on coordinated functions and decreases downtime. On the other hand, to recover from 
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errors, traditional approaches might need more manual intervention as compared to 

Resilient ones. This could result in longer time frames for recovery and a higher chance of 

service interruption. 

3. Real-time track reporting 

Sophisticated analytics and tracking techniques that offer practical observations into the 

health of the system are frequently integrated into resilient systems. Further, active defect 

identification and prevention are made possible by these techniques. Unlikely, conventional 

approaches might be less successful in locating and addressing errors as they depend on 

frequent checks or event-generated reactions. 

4. Optimization 

Resilient systems are made to maximize the use of the resources at hand during fault 

recovery, guaranteeing that resources are distributed effectively to sustain critical 

operations. Besides, traditional techniques could use expensive strategies, which could 

result in more inefficiency and lower effectiveness of the system all around. 

5. Flexibility and adaptability 

Improved adaptability and flexibility are frequently displayed by resilient designs, enabling 

them to adjust to changing demands and adjust resources upward or downward in response 

to consumption. 

However, traditional approaches could find it difficult to adjust dynamically or regulate 

shifting demands, which could result in inefficiencies during times of high consumption. 

1.3.2.4.  General Problem Formulation for Fault Tolerance Using Replication 

Problem Statement: Problem formulation that focuses on the importance of fault tolerance 

in the circumstances of clouds. 

Problem Scope: The fault tolerance in the cloud is addressed for continuous service delivery 

even in the event of failures or breakdowns. 

Objectives: The main goal is to reduce fault-related service interruptions and downtime to 

maximize cloud service availability. Additionally, increasing resource utilization, loss of 

data, and maintaining SLA thresholds are also included in the formulation. 

Problem Constraints: To guarantee that the efficiency effect of services is provided as 

needed. The fault tolerance techniques should add as little overhead as possible. Moreover, 

the solution should apply to the related computational resources. 

Parameters: The parameters manipulated during fault tolerance are MTTF (Mean Time to 

Failure), MTBF (Mean Time Between Failure), MTTR (Mean Time To Reappear), etc. 

However, the parameters that are optimized are average resource utilization, makespan, 

recovery rate, failure rate, success rate, etc. There can be some decision parameters in fault 
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tolerance such as selection of alternative resources, fault detection algorithm, recovery 

mechanism, etc. 

Problem Formulation: For fault tolerance in real-time systems, two important sets can be 

considered i.e., tasks set (T), and VM set (V). T: {t1, t2…tn}, indicating that n real-time tasks 

at any instance in the Cloud environment. For each actual-time task {ti | ti ∈T}, tI has some 

set of attributes associated with it such as arrival time, dimensions, expected execution time, 

anticipated finish time, anticipated harvest time, deadline limit, etc. Deadline and harvest 

time can be related to each other as follows: 

Exp HT = D – Min PT 

V: { v1, v2…vm}, indicating that m number of accessible VMs in the Cloud environment. 

For each accessible VM {vi | vi ∈V}, vI has some set of attributes associated with it such as 

vm_id, capacity, cluster, etc.  

Fault tolerance can be achieved by using any of the fault-tolerant approaches. Here we are 

utilizing the replication Fault tolerant technique. Here, the scheduler should possess the 

capability to generate the required amount of replicas separately for every real-time task. 

For each {ti | ti ∈ T} 

Enable the scheduler to generate replicas 

Allocated VM to each replica, 

Calculate the expected finish time fi,j,k for a given replica by the following equation: 

Fi,j,k = A(ti) + w(ri) + e(ri,j,k) 

Where, i, j, and k represent the key of the original real-time task, the key of the current 

replica, and the key of the allotted VM, respectively. A is the arrival time for the real-time 

task, w is the waiting time of the replica, and e is the expected execution time of the replica 

over the allotted VM. 

Further, e(ri,j,k) is computed by the following equation: 

e(ri,j,k) = 
𝑡𝑎𝑠𝑘 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙𝑜𝑡𝑒𝑑 𝑉𝑀
 

After e(ri,j,k) expires, the following condition is evaluated for every real-time task. 

If ∀ replica(ti) = failed 

Mark ti “failed” 

Else Mark ti “Succeeded” 

Additionally, a reservation mechanism can also be used to achieve Fault tolerance where 

we reserve the VM in advance which will be allocated in case of fault. 
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Estimation Metrics: It comprises the estimation of some optimization parameters like 

recovery time, reached reliability, and effectiveness of resource use for both fault and 

regular operating conditions. 

1.3.3. Load Balancing in Cloud 

Load balancing is among the chief requirements of a cloud environment. Load balancing 

usually shifts the load from the highly loaded VM to the minimum loaded VM to ensure the 

uniform dispersal of load among VMs. It aimed to share the workload among computational 

resources to maintain load equilibrium and allow each resource to function within its 

designated efficiency threshold. The uneven distribution of load among VMs affects the 

improvement of response time, interaction overhead, output, and resource utilization of the 

system [46]. Furthermore, it improves VM availability and maintains reliability. Besides, 

the load can be balanced by implanting resource redundancy that fulfills scalability. Figure 

1.11 demonstrates the illustration of load balancing in the Cloud system. The load balancer 

is responsible for adequately balancing the workload of several users among distinct VMs 

located at diverse locations such as the U.S., the U.K., India, etc. Numerous strategies have 

been proposed by researchers to attain the finest load balancing. 

 

Figure 1.11: Load Balancing in Cloud 

1.3.3.1.  Types of Load Balancing 

In the Cloud, VM can work independently or collectively as per the requirement and nature 

of the task. Each VM is capable of processing workload as per its processing capabilities. 

The main objective of load balancing is to attain adequate workload distribution among 

available VMs. In general, any load balancing algorithms comprise two elementary policies, 

i.e., the transfer policy and the location policy [43]. The transfer policy adjusts whether the 

VM is overloaded or not. It further deals with the dynamic aspects of a system. The transfer 

policy also elects if there is a necessity to initiate the load migration for the system. By 
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means of workload evidence, this policy determines when a node becomes suitable to act 

as a sender i.e., transfers a task to another VM. It further determines when a node acts as a 

receiver and retrieves a task from another VM. However, the location policy decides on a 

suitably under-loaded VM. It locates complementary VM to/from which a VM can 

send/receive workload to improve the overall performance of a system. Location-based 

policies are further categorized as receiver-initiated, sender-initiated, or symmetrically 

initiated. The location policy chooses an alternative VM for a job transmission transaction. 

If the VM is identified as an eligible receiver, the location policy looks for an eligible sender 

VM. If the VM is recognized as an eligible sender, the location policy seeks out a receiver 

VM to receive the jobs. Once a VM becomes an eligible sender or receiver, a selection 

policy will apply to prefer which of the queued jobs is to be moved now [46]. Based on the 

information and implementation used by these two policies, load balancing mechanisms are 

classified as mentioned below [60]: 

• Static Load Balancing 

In static load balancing, the task to be assigned to a VM is of fixed size. The system itself 

has very minimum load variations.  

• Dynamic Load Balancing 

Dynamic load balancing (DLB) distributes load competently so that the overall workload 

of the dynamic system is balanced efficiently, and maximum VM exploitation will be 

achieved in case of joining and leaving of VM in the system.  

• Adaptive Load Balancing 

Adaptive algorithms are a distinct type of dynamic algorithm where the parameters of the 

algorithm and the scheduling strategy itself are altered based on the global state of the 

system.  

• Periodic Load Balancing 

Periodic load balancing usually employs distinguished agents to assemble and allocate load 

information, reduces communicational overheads, and improves scalability. Periodic load 

distribution policies impose less hindrance with centralized systems as compared to the 

distribution system; therefore, they can support load distribution in larger systems.  

• Non-Periodic Load Balancing 

In a non-periodic load balancing, load information reaches the load balancer in a non-

periodic fashion, i.e., at irregular intervals of time purely as per the requirement of the 

system. Thus, it is most suitable in a dynamic environment as a VM need not wait for its 

allocation to a newly arrived task.  
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• Advance Load Balancing 

In advance load allocation, the tasks are assigned to the VMs in advance before execution.  

Generally speaking, load-balancing algorithms can also be categorized as hierarchical, 

decentralized, or centralized depending on where migration decisions are prepared [61], 

[62]. 

• Centralized Approach 

In a centralized approach, a central controller VM is chosen among the VMs in the 

distributed system. This central controller VM has the total sight of the system load 

information. Furthermore, it elects the way to allocate jobs to other VM.  

• Decentralized Approach 

In a decentralized approach, all VMs in the distributed system contribute to making load-

balancing decisions. Since load-balancing decisions are distributed in nature, which makes 

it is costly for each VM to obtain the dynamic state information of the total view.  

Some of the advantages that inspire the implementation of load balancing in the Cloud are 

as follows: 

Efficient VM Utilization in a Cloud Environment: In the cloud, VMs may be inadequately 

loaded further the general performance of the system will be affected. Moreover, the 

selected competitive VM can be highly utilized while the other VM may remain idle 

throughout the process and the underutilized VM may wait for a task. This scenario results 

in higher processing time and maximizes waiting time. To overcome such inconsistencies, 

VM utilization needs to be efficient by optimally balancing the load among resources. 

Adequate Load Distribution: Ample Load distribution is necessary to attain the best 

possible performance of the system. It leads to utilizing the maximum computing capability 

of a particular VM and parallel task execution. Likewise, it ensures an adequate load 

allocated to every single VM according to its capacity in all conditions. It is necessary to 

dispense workload among all VMs uniformly according to their processing capacities to 

diminish the task execution time to the meanest possible value.  

Minimization of Response Time: Inappropriate load distribution leads to several disparities 

resulting in higher response time which eventually results in an inconsistent state of the 

system. Thus, it is crucial to realize optimal load balancing to minimize the response time 

and achieve enhanced system throughput.  

1.3.3.2.  Challenges of Load Balancing in Cloud 

CC encounters numerous challenges, with LB standing out as a particularly crucial issue 

that requires focused consideration. This encompasses concerns like (VM) migration, the 
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security of virtual machines, and the equitable prioritization of user QoS security and 

resource utilization. Efforts are directed toward finding optimal solutions to enhance the 

efficiency of resource utilization in the cloud. Some of the LB issues and challenges faced 

by the researchers are listed below [63]: 

• Geographical Node Distribution 

Cloud data centers are commonly dispersed across various locations to facilitate computing. 

Within these centers, dynamically distributed nodes serve as a centralized network, ensuring 

the effective processing of customer requests. While the literature provides various Load 

Balancing (LB) approaches, many have limited applicability, as they often overlook factors 

such as network delay, communication delay, the spatial distribution of computing nodes, 

and the availability of space and resources within the customer environment. Nodes located 

in extremely remote areas pose challenges due to the inadequacy of certain algorithms that 

are not well-suited to such environments [63]. 

• Single Point of Failure 

"In the literature, specific LB algorithms are suggested where decision-making is not 

distributed across multiple nodes; instead, LB decisions are centralized to a single node. 

The potential drawback of such an approach is that if the central node or key devices 

experience malfunctions, it can significantly impact the overall performance of the 

computing system [63].  

• VM Migration 

Virtualization enables the creation of multiple virtual machines on a single physical unit, 

each with distinct settings and independent architectural structures. In cases of physical 

device overload, it is advisable to employ an LB method to seamlessly transfer all VMs to 

a remote setting, ensuring efficient resource allocation and system optimization [63]. 

• Node Heterogeneity 

The use of homogeneous nodes for cloud load balancing is suggested in the literature. 

However, for a more efficient network and reduced response time, there is a need for a 

dynamic switch executed on heterogeneous nodes to cater to the diverse requirements of 

cloud computing consumers [63]. 

• Data Handling 

Cloud computing not only addresses the challenges posed by outdated storage infrastructure 

but also introduces scalability and redundancy mechanisms. This transformative shift 

allows users to harness the expanding storage capabilities efficiently while maintaining data 
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integrity through duplication strategies, thereby ensuring a reliable and resilient storage 

environment [63]. 

• Scalability 

The accessibility and on-demand scalability of cloud services empower individuals to 

swiftly adjust resource allocation, enabling rapid downsizing or scaling up as needed. An 

effective load balancing mechanism should take into account the dynamic changes in 

computational requirements, memory usage, device topology, and other factors to ensure 

optimal performance in response to evolving conditions [63]. 

• Computational Complexity 

Cloud Computing (CC) algorithms should prioritize speed and simplicity for efficient 

implementation. The primary goal of a robust algorithm is to enhance the efficiency and 

quality of the cloud system, as outlined in [63]. 

• Programmed Service Provisioning  

Central to cloud computing is its inherent flexibility that allows resources to be 

automatically allocated or distributed. The challenge lies in leveraging and deploying cloud 

services while maintaining productivity comparable to traditional systems and optimizing 

the use of available resources [52]. 

• Energy Organization 

Efficient energy management in cloud computing not only fosters cost-effectiveness but 

also facilitates a collaborative approach to global resource utilization. By prioritizing 

power-saving measures, the cloud enables businesses to contribute collectively to a shared 

global capital pool, fostering sustainability and optimizing resource allocation [52]. 

1.4. Objectives of the Research 

The following are the listed objectives formulated for the research: 

• To study and analyze the existing VM reservation and fault-tolerance techniques 

for resource provisioning in the cloud environment  

• To design and implement an efficient scheduling technique with fault tolerance for 

optimal workload and resource reservation.   

• To optimize QoS parameters for the proposed approach under the cloud 

environment. 

• To execute the comparative analysis of the proposed approach with the existing 

approaches. 
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1.5. Thesis Organization 

The thesis is organized in different chapters. The flowchart of the thesis is presented in 

Figure 1.12. 

 

Figure 1.12: Thesis Organization 

1.6.   Summary in Context  

In the realm of cloud computing, the seamless operation of systems hinges on effective task 

scheduling, fault tolerance mechanisms, and load-balancing strategies. Task scheduling and 

load balancing play an important role in resource provisioning in the cloud. Task scheduling 

involves the efficient allocation of computational tasks to available resources, ensuring 

optimal performance and resource utilization. Load balancing plays a critical role in 

distributing workloads across multiple servers or virtual machines, preventing overloads, 

and maximizing system efficiency. 

Additionally, fault tolerance mechanisms are essential safeguards against system failures, 

enabling continuous operation by detecting, isolating, and recovering from faults. 

Together, these components form the backbone of reliable and efficient cloud services. 

They enable scalable and resilient architectures that meet the demands of modern 

applications and users, ensuring high availability, responsiveness, and adherence to service 
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level agreements (SLAs). As cloud environments evolve to handle diverse workloads and 

dynamic resource demands, the integration of robust task scheduling, fault tolerance, and 

load balancing becomes increasingly crucial for sustaining optimal performance and 

reliability.  
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Chapter 2 

Literature Review 

A comprehensive review of the literature is essential to inspire the development and bridge 

the gap between existing and proposed research. This chapter delves into various techniques 

operating under similar conditions, examining their associated strategies to assess the issues 

and limitations inherent in current research endeavors. Furthermore, it is imperative to 

pinpoint the specific problem that future research endeavors can address to resolve or 

mitigate existing issues. Despite numerous studies already conducted in the related area, 

identifying gaps and potential avenues for further investigation remains essential. Hence, 

the goal of the present study is to uncover the constraints that can enhance the global 

productivity, execution, and accuracy of the cloud. Various algorithms have already been 

reported in the literature to allocate resources dynamically in the cloud environment. 

However, adding fault tolerance with scheduling and load balancing is also one of the 

primary challenges to working in the cloud environment.  

This chapter comprises an extensive literature survey with hybrid objectives. Firstly, it aims 

to provide a literature review focusing on existing fault-tolerant techniques. Afterwards, it 

explores the literature related to fault-tolerant techniques integrated with two primary 

resource provisioning methods, namely scheduling and load balancing. The examination of 

fault-tolerant algorithms in conjunction with scheduling and load distribution methods is 

pivotal for optimizing task-resource mapping in the context of a dynamic and heterogeneous 

environment. This comprehensive analysis contributes to the understanding of strategies 

that can improve overall system efficiency and reliability. 

Moreover, a kind of hybrid review is performed in this chapter by focusing on some other 

aspects simultaneously, such as Load balancing and Scheduling with fault tolerance. Fault 

tolerance techniques presented so far are reviewed based on considered parameters such as 

techniques like fault tolerance with scheduling, fault tolerance with load balancing, fault 

tolerance with QoS parameters, etc. Scheduling of tasks appropriately finds it good in 

delivering critical and proper services of the cloud. The improper scheduling of tasks may 

result in under and over-utilizing of resources where the under-utilization of resources can 

lead to the wastage of resources and over-utilization of resources can degrade the 

performance of cloud systems. Cloud Systems loaded with Load Balancing techniques 

reduce receiving and sending delays and prevent the nodes from overloaded situations as 

well [22]. So, there is a good need to solve the Load Balancing issues to boost the overall 

performance of cloud-based applications. 
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The advancement in cloud computing technology has reformed the approach computing 

assets are provisioned, utilized, and managed. Cloud computing offers a vast array of 

services that are flexible, scalable, and cost-effective. To improve the utilization of cloud 

resources, various dynamic resource allocation algorithms have been intended in the works. 

However, ensuring fault-tolerant scheduling and load balancing is a critical challenge that 

needs to be addressed to provide uninterrupted services in the cloud. Virtual machine 

reservation is one of the promising approaches that can mitigate these challenges by 

allocating reserved resources for fault tolerance and load balancing.  

2.1.  Research Methodology and Data Analysis  

This section focuses on the setting of the methods that are used to perform the qualitative 

opinion of the literature in the review and the sources of considered state-of-the-art works. 

It also includes the incorporated methodology for the proposed research. In the end, we 

specified our significant contributions to this review. 

SLR and Kitchenham standards are employed for review which also includes the selection 

and elimination of the published articles based on some aspects. The related articles were 

selected after analyzing the abstract, and afterward, a critical review/analysis was 

performed. The selection of the papers was achieved based on the standard in the database 

and the article itself. Furthermore, the inclusion was done based on the following conditions. 

Searching Strategy 

A systematic survey of fault tolerance with efficient scheduling and load distribution 

techniques proposed in the literature was conducted through well-known sources. 

Several search keywords include Cloud Resources, Fault-tolerance, Task Scheduling, Load 

Balancing, QoS Parameters, Resource Optimization, failure in a cloud, essential cloud 

services, cloud architecture, scheduling techniques, etc., used in this study. 

Duration and Validity of Study  

• This review research mostly incorporates articles from 2009 to 2023 from well-believed 

journals, books, and conferences.  

• The statistics of the considered year for publications from 2009 to 2023 are depicted in 

Figure 2.1. 

• Very few studies are included from 2007 and 2008. 

• The selected duration is chosen to capture a comprehensive range of data such as 

technical progressions, economic sequences, and policy variations, and confirm data 

availability pertinent to our study that replicates the evolution, progression, and trends 

applicable to our study objectives. 
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Figure 2.1. Percentage of the Included Papers (2009 to 2023) 

Language and Selection/Inclusion Criteria 

• The decision for the language criterion was specified as English. Because English is 

considered the primary language for scholarly and intellectual publications particularly 

in the fields of computer science and distributed computing. Regulating criteria for 

English articles ensured that we selected high-quality and broadly recognized studies, 

smoothing a thorough and appropriate review. 

• The primary priority was given to hybrid fault tolerance approaches including either 

scheduling or load balancing.  

• Hybrid fault tolerance approaches optimize some other QoS parameters as well. Figure 

2.2 presents the detailed inclusion and exclusion of the studies. 

 

Figure 2.2. Methodology of Inclusion and Exclusion Criteria of the Studies 
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• The data was initially organized into Excel and prepared for analysis. 

• Data categorization was made based on different QoS parameters, the environment used 

for simulation, types of faults considered, and other thematic considerations. This 

categorization helps us to analyze the literature more clearly and precisely.  

• The qualitative information was obtained by considering diverse QoS metrics, types of 

faults addressed, and the range of simulation environments utilized across a timeframe.  

• Furthermore, the analysis also highlights the various fault tolerance methods employed in 

the existing literature. 

Synthesis of the Analysis 

• For meaningful conclusions and insights, the data was observed based on the objectives 

of the study. 

• The patterns and relationships among the various studies were discussed for 

comparison and assessment. 

Quality Assessment and Validation Procedure 

The presented Methodology Adapted for this study can be summarized in four stages: 

• Originally, the related articles were searched through the related keywords. 

• Some articles were selected based on title, standards, and optimization parameters. 

• Selected articles were gone through the abstract, and further inclusion and exclusion were 

performed. 

• Finally, inclusive articles were extensively reviewed, analyzed, and incorporated into this 

survey. 

2.2.  Our Contribution and Features of the Study 

The primary contributions of this survey include: 

• This chapter presents an in-depth examination of the cloud environment. The main faults 

and fault taxonomy in cloud systems are also discussed in detail. 

• Various researchers have already addressed fault tolerance and load balancing 

mechanisms, however, much of their work has focused on the employment of either fault 

tolerance or load balancing separately. The presented survey incorporates a review of 

fault tolerance with two other related aspects, i.e., load balancing and scheduling which 

is the peak need of the time and was found missing in the current surveys. 

• Moreover, Table 2.1 presents a comparative analysis of our contribution to the recent and 

current top-cited studies respectively. 
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• The survey has been presented in two categories i.e., Fault tolerance with Scheduling and 

Fault tolerance with Load balancing. 

• The generalized problem formulation of fault tolerance has also been presented to 

understand the workings of fault tolerance using the replication technique. 

• We further outlined the difficulties associated with ensuring fault tolerance integrated 

with scheduling and load balancing in cloud computing systems and comprised a 

thorough examination of common problems faced. It will assist future researchers to 

promptly recognize or understand the problems related to the study. 

• The study also presents feasible graphical observations about the literature such as 

parameters optimized, faults model addressed, the environmental tool used, etc. These 

detailed observations are presented separately for both categories and were not found in 

the existing surveys to the best of our knowledge. A dedicated discussion and observation 

section is designed for that purpose.  

• This hybrid review aids in investigating the potential challenges of hybrid fault-tolerant 

models and provides a detailed roadmap for future research directions. The aim is to 

enhance migration methods, thereby mitigating failures among nodes.  

• Moreover, the overall study provides a platform for future researchers to analyze the 

current state of the art regarding considered issues and find the appropriate future 

research problems. 

• At the end of this chapter, there is a dedicated section highlighting the future research 

directions of the problem. 

Table 2.1: Comparative analysis related to the contribution of the top-cited study and the 

proposed study 
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 [29] 2021 √ √ √ × × × × × × √ 

 [28] 2021 × × × × × √ × × × × 

 [64] 2021 × × × √ × × × × × × 

 [58] 2018 √ √ × × × × × × × × 

[65] 2021 × √ √ × × × × × × × 



34 
 

[66] 2022 × √ √ × × √ × × × √ 

[67] 2020 × × × √ × × × × √ √ 

[68] 2019 × × × √ √ × × × × √ 

Prese

nted 

Surv

ey 

_ √ √ √ √ √ √ √ √ √ √ 

 

2.3.   Our Motivation and Main Focus of the Study 

Faults can lead to malfunctions that worsen a system's overall performance. Failures result 

in the breakdown/shutdown of a system, but occasionally, flaws cause performance to 

decline rather than the entire shutdown of the system. Various fault tolerance solutions can 

be employed to address different types of defects, such as network, physical, and process 

problems. However, it is crucial to achieve without comprehending the existence of the 

issue inside the architecture and the damage that the system flaw produced. Cloud is made 

up of comprises levels, each of which takes services from the layers below it. The failure at 

any layer has the potential to contaminate the layer right above it. Since faults at any one 

layer may affect the services that any of the layers provide. Thus, for high-performance 

computers, the appropriate fault tolerance system is needed to effectively handle these 

faults. The faults should be managed critically and dynamically to make the cloud 

environment more efficient and intelligent. Besides, in the cloud, efficient task scheduling 

leads to the maximum utilization of virtual machines, reducing operational costs, thereby 

revealing enhancements in the QoS parameters and eventually improving overall 

performance. Also, load balancing techniques need to be addressed comprehensively in 

different environments like static, dynamic, and nature-inspired cloud environments. 

Moreover, it is essential to thoroughly examine load-balancing techniques across various 

settings, including static, dynamic, and nature-inspired environments. 

Various methods have been suggested in academic literature to address this concern and 

multifarious reviews are available in the literature for future researchers. While studying the 

existing surveys, it was observed that the surveys are not thorough enough, wide-ranging, 

and sufficient in certain ways. Although the authors in reference [10] have presented a 

comprehensive survey about fault tolerance, this survey does not focus on other aspects of 

the cloud like efficient load balancing and scheduling. Besides, [64] presented a vast survey 

focusing on load balancing across cloud resources but lacking in fault handling and cloud 

optimization. Similarly, [22] also provides a survey emphasizing fault tolerance 

frameworks, however, fails to significantly enhance the performance of the cloud 
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environment. In [65], only considering fault-tolerant approaches does not give prominence 

to major cloud aspects such as scheduling and load balancing. Similarly, the most recent 

survey presented in [66] focused on both scheduling and fault tolerance but no ways for 

optimal load distribution. Additionally, the observations presented in [67] were limited to a 

few aspects concerning fault-handling techniques, and only crash and byzantine fault 

models were considered. Also, there is no consideration of QoS parameters. Similarly, the 

recent survey was presented in [69] but was found limited to reliability. In other words, 

these reviews were not significantly focused on the discussed issues of the cloud related to 

fault tolerance with scheduling/load balancing simultaneously. After this comprehensive 

analysis, it was observed that none of the mentioned surveys offer extensive consideration 

of the above-mentioned scenarios of cloud computing. The QoS and other important aspects 

related to the clouds' fault tolerance concerns are focused on by the researchers in the 

existing surveys but are very limited. This renders the current review inadequate for 

analyzing the current art in cloud systems. Hence, there is a dire need to present a survey 

focusing on reliability-related aspects of the cloud. Therefore, we got motivated and moved 

to present this systematic and hybrid review. In this survey, we try to discover and explore 

the site of hybrid fault tolerance models that will focus not only on traditional fault tolerance 

techniques but also integrate some other important cloud aspects like scheduling/load 

balancing. This integration helps us to highlight the likely applications, challenges, and 

incipient trends.  

2.4.  Related Literature 

Fault tolerance techniques presented so far are reviewed based on considered parameters 

such as techniques like fault tolerance with scheduling, fault tolerance with load balancing, 

fault tolerance with QoS parameters, etc. Scheduling of tasks appropriately finds it good in 

delivering critical and proper services of the cloud. 

2.4.1. Scheduling with Fault-tolerance 

Efficient scheduling in the cloud provides optimization of various Quality of Service 

parameters, especially task completion time. Besides, scalability, availability, security, and 

fault tolerance are the key features of cloud services. Instead of the complete breakdown of 

the system, the faults in the cloud lead to performance degradation only. Without fault-

tolerant scheduling when one or more components of the system fail, the task execution, 

waiting time, response time, etc. may increase. This leads to enhanced throughput as well. 

However, Fault tolerance provides an alternative way for the process completion even if 

some of the resources may not work properly [37], [38]. Few works of literature have 
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proposed fault-tolerant scheduling algorithms with optimized parameters. Recently, in [50], 

the Dynamic Clustering Cuckoo Whale Optimization Algorithm (DCCWOA) has been 

suggested for supporting effective fault-tolerant scheduling in the cloud. The algorithm was 

tested for varying the tasks between 100 to 1000 with 8 virtual machines. The problem of 

fault tolerance was also investigated in [51], and a greedy-based best fit decreasing (GBFD) 

algorithm was proposed for increasing the success rate of task execution along with 

optimization of other parameters. The model was valued with numerous loads of PUMA 

datasets. Additionally, the computational complexity was claimed to be O(nm) where n is 

the VM number in the data center, and m represents computing nodes. In [70], authors 

proposed GWO (Grey Wolf Optimization) - based Task Scheduling evaluated on the 

1000MI task dataset. Fault handling is carried out in the proposed work with efficient task 

scheduling by employing the task resubmission technique. Extending the chain of work and 

solving the problems of dependability relationships, learning automata was used and a self-

adapting scheduling strategy namely, ADATSA was proposed in [71]. The model was 

experimentally evaluated on 53 servers with 3 Master nodes and 50 slaves. The complexity 

was proposed to be O(NK) + O(MS) where N represents cluster nodes, K represents 

resource category, M is average tasks on a node, and S is average state transitions. In [72], 

a Fault-Tolerant Hybrid Resource Allocation Model (FTHRM) was recommended which 

confirms fault tolerance and minimized Turn-around-Time (TAT). The proposed model 

employs a prior reservation process to distribute resources to the respective tasks, ensuring 

the guaranteed execution of tasks. Resource reservation is also enabled for time slots with 

resource organization as needed by the task set with adjusting VM heterogeneity. In case of 

resource failure, alternative resources are being supplied where the most preferred resource 

has having least former workload and the smallest execution time. The authors in [73] 

presented the framework for adaptive scheduling and fragmentation of tasks namely 

(WSADF) Workflow-scheduling applying -adaptable and dynamic-fragmentation which 

initially creates the fragments concerned with the number of VMs in the fragmentation 

phase and later the scheduling phase pick out the VMs concerned to reduce the usage of 

bandwidth. WSADF was evaluated on the workload ranging from 25 to 1000 and VMs 

ranging from 5 to 25. While making the task scheduling adaptable to both heterogeneity and 

homogeneous environments, CPSO and FIPS were proposed in [74]. The proposed task 

scheduling was evaluated on 30 servers under 1000 iterations. In this chain to integrate 

localized edge clouds with publicly accessible clouds and enhance scheduling effectiveness 

and scalability, a hierarchy-based edge cloud concept was introduced in [75]. Additionally, 

FTDS, a failure rescue technique is suggested to address the fears that arise while mobile 
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apps are being executed. For evaluation, the workflow was taken from 10 to 70 applications 

while taking the length of the workflow from 10 to 60. Besides, some of the SLA (Service 

level agreement) parameters like, CPU necessity, system bandwidth, and memory need to 

be considered with appropriate scheduling. In this regard, the pre-emption-based algorithm 

was proposed in [53] which pre-empts the resources from the low-priority task to the high-

priority task in case of unavailability of the resources and provides reservation of resources 

reflecting numerous SLA parameters for facility deployment. The evaluations were carried 

out via 4 cloud simulations by performing 10 consecutive runs and 60 requests having 10 

to 15 subtasks. The cost and deadline of the tasks are considered for defining the priority of 

the tasks. Moreover, it provides dynamic resource provisioning and an effective fault 

tolerance process. In this chain, a fault-tolerance aware task scheduling scheme was 

proposed in [55] namely Checkpointed League Championship Algorithm (CPLCA). This 

algorithm provides fault tolerance using the checkpointing strategy along with task 

migration and was evaluated by using workload in the form of Standard Workload Format 

accessible via the San Diego Supercomputer Center (SDSC). Efficient scheduling and fault 

handling mutually may ensure task execution and thereby fulfill the real-time environment 

of the cloud. However, heterogeneous systems and their complexities are increasing 

dramatically leading to failures. These failures can be eliminated by implementing efficient 

scheduling approaches. Therefore, the task scheduling problem on heterogeneous systems 

was addressed in [56]. Being an NP-hard problem, a heuristic algorithm Deadline Based 

Scheduling Algorithm (DBSA) was proposed to resolve it. The DBSA approach 

dynamically estimates the figure of permanent tolerating failures by calculating the 

makespan first till the system tolerates a fixed number of failures. Afterward continuously 

comparing the makespan with the specified deadline to get the successive number of 

tolerating failures. The model was evaluated in the workload ranges from 20 to 100 with 4 

and 8 VMs. Gaussian Elimination, Fast Fourier Transformation, and Molecular Dynamics 

Code are used as a kind of application graphs for testing. Finally, the task is mapped to the 

appropriate processor without violating precedence constraints. Further, in [76] Cost-

effective, NNCA_PSO was proposed by modifying Particle Swarm Optimization (PSO). 

During evaluations, the workload was varied from 70 to 560 and VMs were used from 4 to 

8. Further, the Advance Reservation Fault Tolerance Model (ARFTM) was proposed in 

[77] which maps the tasks using MCT and tolerates faults using the advanced reservation 

technique. ARFTM was evaluated by varying the workload from 1 to 300. 

However, in [78], the fact that “the network bandwidth is limited” and the scheduling 

policies should decrease the bandwidth usage in cloud computing was considered. 
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Moreover, the author proposes a data locality-based task scheduling approach, i.e., the 

Balance Reduce Algorithm (BAR). It will reduce network access and thereby reduce 

bandwidth usage and job completion time while not specifying the type and nature of 

workload used for evaluation. Furthermore, an improved Balance Reduce Algorithm was 

proposed with an improvement in machine failure handling. Later in [17], fault tolerance-

based scheduling was proposed namely the Dynamic Clustering League Championship 

algorithm (DCLCA) to reduce the premature failure of the tasks. The model was evaluated 

in two scenarios where a parallel workload archive containing 73,496 tasks in the form of 

Standard Workload Format accessible via the San Diego Supercomputer Center (SDSC) 

was used in the first scenario. In the second scenario, workloads were produced as of 

CloudSim’s Workload PlanetLab. All the surveyed methods are brief in Table 2.2. 

Table 2.2: Comparative analysis of recent scheduling-based fault tolerance algorithms 

Method Year  Parameters Comparison 

Approaches 

Outcomes Limitations Platform

/Environ

ment 

HFSLM [34] 2024 Makespan, 

Average 

Resource 

Utilization 

Maxmin, 

Minmin, 

FTHRM, OLB, 

ELISA, 

MELISA 

Efficient Resource 

utilization and 

makespan 

No security 

was 

considered 

Self 

Simulator 

ARFTM [142] 2023 Reliability MCT Highly Reliable Inadequate 

Load 

distribution 

Self 

Simulator 

RFRTS [79] 2024 Reliability FCWS, FR-MOS Reliability with 

varied load 

No security  Self 

Simulator 

DCCWOA 

[50] 

2023 Makespan, 

Failure Ratio, 

and Failure 

Slowdown 

ACO, GA, and 

LCA 

 58.19%, 19.88%, 

and 29.32% 

Makespan, Failure 

Proportion, and 

Failure Strike 

parameters 

respectively. 

Limited 

optimization 

of QoS 

parameters 

Cloudsim 

toolkit 

(MSMO 

classifier) 

Modified 

Sequential 

Minimal 

Optimization 

accompanied 

Delta-

Checkpoint 

[80] 

2023 Accuracy and 

Prediction of 

Faults with 

reliability 

Related ML-

based Classifiers 

Enhanced 

credibility for 

reliability 

Reliability 

was not 

proved while 

comparing 

with MSMO 

cloud 

simulatio

n 3.0.3 
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GBFD [51] 2022 SERoV, Average 

Expenditure, 

Average 

Completion 

Time 

FCFS algorithm, 

Cost-Greedy 

Dynamic Price 

Scheduling 

(CGDPS) 

algorithm [4], 

Modified Best 

Fit Decreasing 

(MBFD) 

algorithm 

Optimizes 

performance of the 

cloud systems. 

Lacks 

dynamic 

resource 

utilization 

and uniform 

load 

distribution 

Cloudsim 

toolkit 

GWO-based 

Task 

Scheduling 

[70] 

2022 Makespan, 

Execution time, 

Communication 

delay 

ANGEL, TTSA 

(Temporal Task 

Scheduling 

Algorithm), 

MapReduce 

Scheduling, and 

Dynamic Slot 

Scheduling  

Effective task 

scheduling with 

fault tolerance is 

achieved with 

optimized 

parameters. 

Evaluations 

were carried 

out only on 

four tasks 

CloudSim

, JDK7.0 

and 

Eclipse 

ADATSA 

(Self-adapting 

Task 

Scheduling 

algorithm) 

[71] 

2022 Adaptability in 

circumstances,  

optimization of 

resources, and 

QoS  

LAEAS, PSOS, 

and K8S 

scheduling 

engine 

Better adaptability 

and QoS 

Lack of 

heterogeneity 

in VMs 

Amazon 

EC2 and 

Apache 

JMeter(v 

5.4.0) 

Fault-Tolerant 

Hybrid 

Resource 

allocation 

Model 

(FTHRM) [72] 

 

 

2021 Turnaround 

Time, Flow 

Time, Resource 

Utilization 

MCT FTHRM 

improvises TAT 

from 32 to 40%, 

Lowers Flow Time 

to 26 to 45%, 

Provides 15 to 

27% better average 

resource utilization 

than traditional 

MCT 

The proposed 

system was 

not fully 

dynamic 

concerning 

the nature of 

tasks. 

Simulatio

n via C-

Language 

WSADF [73] 2019 Adaptability, 

Response time, 

Throughput 

FPD in the 

fragmentation 

phase, CTC, 

SLV, and QDA 

in the Scheduling 

Phase 

Adaptable to the 

environment, 

improvements in 

response time and 

Throughput. 

Increased  

delays and 

average 

response time 

which 

eventually  

reduces 

throughput 

and 

efficiency 

CloudSim 

Simulator 

Canonical 

Particle 

Swarm 

Optimization 

(CPSO), Fully 

informed 

particle Swarm 

Optimization 

(FIPS) [74] 

2019 Throughput, 

Utilization, 

Adaptability 

CPSO in h-

DDSS 

(Heterogenous 

Dynamic 

Dedicated Server 

Scheduling) and 

DDSS (Dynamic 

Dedicated Server 

Scheduling) 

Scheduling is 

adaptable to both 

heterogenous and 

homogenous 

environments 

May not 

manage the 

real-time data 

Not 

specified 

https://doi.org/10.1002/ett.3539
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FIPS in h-DDSS 

and DDSS 

Fault-Tolerant 

Dynamic 

Scheduling 

(FTDS) [75] 

2019 Scalability, 

Success rate, 

Competitive 

Ratio 

UES, IC-PCP in 

LIGO and 

Epigenomics 

Improvement in 

scalability and 

performance, 

Achieves the 

trade-off between 

cost and system 

delay. 

May 

consume 

energy 

Amazon 

T2, RWP 

Model 

Dynamic 

Clustering 

League 

Championship 

algorithm 

(DCLCA) [17] 

 

2018 Makespan MTCT, 

MAXMIN, Ant 

Colony 

Optimization, 

and Genetic 

Algorithm-based 

NSGA-II 

In the case of 5 

cloud users with 5 

and 2 brokers and 

data centers 

respectively, 

DCLCA lowers 

makespan with an 

improvement of 

57.8, 53.6, 24.3, 

and 13.4 %, and in 

the case of 10 and 

5 cloud users and 

data centers, 

DCLCA shows 

improvement of 

60.0, 38.9, 31.5 

and 31.2 % 

A limited 

number of 

cloud users, 

brokers, and 

data centers 

were 

considered.  

CloudSim 

3.0.3 

toolkit 

with 

Eclipse 

Luna 

4.4.0 

Deadline 

Based 

Scheduling 

Algorithm 

(DBSA)[56] 

2018 Makespan, 

Reliability, and 

PSS (possibility 

of Scheduling 

Success) 

HEFT and FTSA DBSA can 

successfully 

endure crashes and 

enhance reliability 

within time 

constraints. 

Limited 

optimization 

of QoS 

parameters 

Not 

Specified 

 Nearest 

Neighbour 

Cost-Aware 

Particle 

Swarm 

Optimization 

(NNCA_PSO) 

[76] 

2018 Scalability, 

Makespan, and 

Monetary Cost 

PSO and 

CA_PSO 

High Scalability, 

Low Makespan, 

and Monetary cost 

The model is 

less reliable 

CloudSim 

toolkit 

Checkpointed 

League 

Championship 

Algorithm 

(CPLCA) [55] 

2017 Makespan, 

and Response 

Time 

Ant Colony 

Optimization 

(ACO), Genetic 

Algorithm (GA), 

and the basic 

League 

Championship 

Algorithm 

(LCA) 

CPLCA scheme 

produces an 

enhancement of 

41%, 33%, and 

23% on Makespan, 

and  

54%, 57%, and 

30% improvement 

in Response Time 

Insufficient 

load 

balancing for 

a dynamic 

system. 

CloudSim 

3.0.3 

toolkit 

has a 

modified 

CloudAn

alyst GUI 

interface. 
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than ACO, GA, 

and LCA 

respectively. 

Improved 

BAR (Balance 

Reduce 

Algorithm) 

[78] 

2012 Task Completion 

Time 

BAR (Balance 

Reduce 

Algorithm) 

Minimizes 

Makespan even in 

case of failure by 

fault tolerance. 

Not suitable 

for 

heterogeneou

s 

environment  

Cloudsim 

2.4.1.1.   Scheduling and Fault Tolerance Frameworks 

Various scheduling and fault tolerance frameworks are recommended in the literature. In 

this section, these frameworks are surveyed and presented. Comparative analyses of 

different scheduling and fault tolerance frameworks are presented in Table 2.3. 

Proactive-based Scheduling and Fault Tolerance Frameworks 

In this approach, the system can handle any disruptions or interruptions. The state of the 

system is monitored continuously for breakdowns and failure. Some of the proactive-based 

scheduling and fault tolerance frameworks found in the literature are mentioned below: 

SHelp [81]: This approach was proposed by improving the existing framework namely, 

ASSURE [82] which was implemented at the rescue points.  

PFHC [83]: This is a proactive framework of fault tolerance proposed for HPC (High-

Performance Computing) applications in the cloud. This framework works on three chief 

modules: Node Monitoring Module is prepared with some special Lm-sensors [84], [85] to 

perform periodic monitoring for several parameters such as fan speed, CPU temperature, 

etc., for wellness.  

WSRC [86]: This framework contains a module namely, a failure detector that checks the 

Virtual Machine Manager (VMM) periodically for any kind of variations such as delay in 

response time or mismanagement of memory. If any fluctuation is found, the VM running 

status is saved and VMM is repaired using the rejuvenation technique. Rejuvenation 

generally leads to high overheads however, WSRC uses variable time rejuvenation to 

control overheads. 

SRFSC [87] : The software rejuvenation technique was used in this framework. This 

framework primarily works in three phases: In the first phase, the packet that has the 

information about the CPU and VM’s memory usage is received by Aging Failure 

Detection. The other step is the evaluation of VM for failing grades. This step is known as 

Aging Degree Evaluation. 
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FTDG [88]: FTDG is a fault-tolerant framework where the pre-emptive relocation is being 

achieved. The architecture of this framework mainly comprises four functioning spaces. 

User Space is used by the user to submit their data flows. Graph Space transforms the 

submitted user data into Direct Acyclic Graphs (DAG). Moreover, the DAG is analyzed for 

the critical and non-critical paths. In Storm Space, Scheduling and fault tolerance 

mechanisms are applied. Hardware Space contains various data center resources. 

Reactive-based Scheduling and Fault Tolerance Frameworks 

In such frameworks, the faults are handled once they occur. Unlike proactive approaches, 

monitoring of system behavior is not required in such frameworks. Some of the Reactive-

based scheduling and fault tolerance frameworks found in the literature are mentioned 

below. 

AFTRC [89]:  In (Adaptive Fault Tolerance in Real-time Cloud Computing), the received 

tasks are held in some input buffer and the task execution will be accomplished on a First 

Come First Serve basis. This model also consists of the other modules. The Acceptance Test 

(AT) is the module that checks the results of each embedded algorithm for accuracy and 

verifies the results. The Time Checker (TC) checks whether the result is obtained within the 

deadline or not. If not, then the specific task is sent back to the input buffer. The Reliability 

Assessor (RA) adjusts the reliabilities of VMs based on obtained results. The decision 

Mechanism (DM) takes the highest reliable node and selects the output from that. 

BFTCloud [90]: This framework uses replication techniques and completes the user 

requests timely even in the presence of faults. The amount of replicas/nodes is utilized by 

employing the failure probability of all nodes. The failure likelihood of the replica group 

should constantly be less than the top-level failure likelihood. The functioning of the 

BFTCloud framework mainly works in five phases: Primary Selection: In this phase, the 

basal node is designated based on the rating by adding the priority weight and QoS value 

assigned to each node. The highest rating value node will be chosen as the primary node.  

Replica Selection: In this phase, the number of replicas is selected by observing the QoS of 

every node from the viewpoint of both the primary node and the cloud module. The new 

QoS is calculated, and again rating will be done. Request Execution: This phase allows the 

nodes to complete the request and react to the cloud module accordingly. The cloud, in turn, 

checks the consistency of the obtained results based on different cases [91]. If the results 

are consistent, then the primary replica is assigned to the next request. Primary Updating: 

In case of a fault in the primary replica, this phase informs all other replicas to select the 

alternative. Replica Updating: This phase removes the faulty replica and adds the new nodes 

to decrease the failure probability. 
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FESTAL [92]: It is a fault-tolerant scheduling framework where the primary backup 

technique is realized to handle the faults. In this framework, the user tasks are queued up in 

some input buffer and assigned to the schedular having three controllers, i.e., Resource 

Controller, Backup Copy Controller, and Real-time Controller. 

The Backup Copy Controller takes the backup. Afterward, the Resource Controller explores 

the two VMs, that can complete the task within the deadline. Based on the search results, 

two decisions can be made. 

• In case the two corresponding VMs are found, both task instances are scheduled on 

the respective VMs. 

• In case no such VM is found, the task is rejected. 

In this framework, "If the anticipated end time is less than or identical to the task time-limit, 

a passive backup is utilized; otherwise, an active backup is employed. 

Resilient-Based Scheduling and Fault tolerance frameworks 

These techniques have some similarities to the proactive approach. Moreover, the defects 

are forecasted, and the effects are prevented/moderated by applying some methodologies. 

The forecasting uses some intelligent learning that makes resilient techniques different from 

proactive ones. Compared to conventional fault tolerance techniques, resilient fault 

tolerance provides increased durability and adaptability in the event of system breakdowns.  

Using resilient approaches, the system can recover swiftly and efficiently in dynamic 

contexts due to resilient fault tolerance, which provides a more systematic and flexible 

approach to addressing failures. When compared to conventional fault tolerance techniques, 

this strategy frequently results in increased overall performance, decreased interruptions, 

and enhanced system efficiency. In this context, EFTT (Efficient Fault Tolerance 

Technique) is a type of resilient-based approach. In [93], the author used Machine Learning 

to handle faults and generate solutions for FT. 

Resilient Methods are of two types described below: 

• Machine Learning:  

ML was, nevertheless, applied as a sub-constituent of the general FT solution. Some 

solutions have intensively employed ML to forecast faults using a set of specified variables. 

Many applications have been working with ML while handling hardware faults. Here, 

artificial intelligence, or machine learning, is used to create a system that can operate 

autonomously like a human without the need for human concern. Machine learning 

procedures can be used to increase a system's reliability even in the case of fault tolerance. 

Such fault tolerance techniques are known as Resilient Fault-Tolerant Techniques as 
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discussed in Section 5.3. Machine learning techniques are typically used in proactive 

approaches, predicting failures before they happen by using historical system data. The 

Resilient techniques for fault tolerance are the emerging ones because the ML accesses data 

and even can learn from data. One of the similar learning methods namely, reinforcement 

learning was applied in [94] that studies the fitness of VMs in cloud environments. By using 

such types of learning, every VM participates in the learning process independently. As 

recommended in [95], fault tolerance in a distributed or parallel learning system is achieved 

by constantly tracking the input parameters in the server. Here, the entire system returns to 

the most recent checkpoint following an error. Checkpoints are not performed at every stage 

by such systems, even in the presence of a high number of calls and activity in the network. 

Forecasting defects are well-known in fault identification and handling, as stated in [96]. 

Quick error detection can prevent more serious system failures. Numerous processes make 

up this operation, and some of the most recent research investigations include model-based 

approaches that are quantitative, model-based approaches that are qualitative, and history-

based. Apart from reinforcement learning, unsupervised learning is an additional technique 

for pattern recognition in the data without predefined output [97]. Such techniques do not 

allow for the estimation of the outcome since unsupervised learning lacks an output target. 

Instead, algorithms have chosen to depend on their expertise to pull out as much detail as 

they can from the data. The deep learning techniques were proposed in [98]  as a rapid way 

to identify multicriteria errors in complicated industrialized analysis. Fault tolerance can 

benefit from the application of such AI-related techniques. 

• Fault Induction:  

In this Resilient technique, failures are managed by making assumptions based on the 

reaction of the system. Moving forward in this technique, [99] proposed that a hybrid energy 

system be practically used to apply the multi-source power administration technique. The 

analysis shows how to improve fault tolerance, scalability, efficiency, and dependability. 

The concepts proposed in [93] are being used by some of the most well-known firms in the 

world, including Google and Amazon, to increase their fault tolerance. Here the authors 

have employed the software namely gameday. GameDay is software intended to highlight 

significant shortcomings in methods for finding flaws and dependencies between different 

components of the system. In a GameDay scenario, team members from every level of the 

business must collaborate to find a solution. In the repeatable tests if everything went 

perfectly, then the GameDay activity will be considered successful. Similarly, the authors 

in [100], employed game theory and declared that the kind of smart grid operator will swiftly 
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supply electricity through a dispersed system. Additionally, several classifiers have been 

compared for metrics like accuracy and fault predictions [101]. 

2.4.2. Load balancing with Fault tolerance 

Load balancing with fault tolerance is a significant dispute in cloud computing. The efficient 

load balancing techniques require the inclusion of fault tolerance capacity as well. It enables 

the system to distribute the load to all the available nodes uniformly and simultaneously 

deals with detecting and removing the faults to maximize the performance and efficiency 

of the cloud environment. Various algorithms are surveyed and presented in Table 2.4. The 

authors have introduced Honeybee Inspired-Load Balancing (HBI-LB) in [102], a reliable 

and nature-inspired Fault Tolerant load-balancing approach. The assigned tasks in the 

suggested method were in the range of 100 to 500 in number and 2000 to 10000 in length. 

Further 10 and 15 fog centers and fog nodes were utilized respectively. The information of 

scheduling the other in-progress tasks about the status and load on the resources is given by 

other assigned tasks in the same way as the honeybees inform buddies about their position. 

Besides, in [103], the Proactive and Reactive Fault Tolerance Framework (PFTF) was 

proposed with ECB (Elastic Cloud Balancer). It avoids the situation in the cloud where 

some nodes are idle or minimum loaded, and some are overloaded. The proposed ECB 

enhances the scheduling quality in combination with the Job Shop Scheduling by 

considering and optimizing QoS parameters. The model was evaluated by taking the tasks 

in the range of 9 to 13 and task size in the range of 1000 MB to 8000 MB. Additionally, due 

to the dynamic nature of cloud infrastructure, real-time features such as availability and 

reliability need to be achieved. In this chain, Proactive Load Balancing Fault Tolerance 

(PLBFT) was proposed in [104] as an efficient fault-tolerant load-balancing model 

evaluated on the private cloud platform. This model relies on migrating the faulty VM to 

another destination host directly. Besides, the load in the destination VM is managed (in 

case of overload in the destination VM) before migrating the defective VM there. 

Furthermore, this approach shows high reliability as compared to other similar techniques. 

Load balancing and fault tolerance techniques are designed to provide highly reliable and 

available services. For further growth in the availability of cloud services, a combination of 

load-balancing and fault-tolerant techniques has been proposed [105]. The proposed model 

is highly reliable in case of task failure while taking the task number between 13 to 18, task 

execution time between 1 to 9, and task priority between 1 to 3 with four VMs. Moreover, 

in [106], Deadline Pre-emptive Scheduling (DBPS) was proposed based on cloud 

partitioning where the fault tolerance has been achieved by Throttled Load Balancing for 

Cloud (TLBC). The model was tested on a workload of 10 to 300 while not specifying the 



46 
 

number of VMs. However, a Machine learning-based approach was proposed in [107], 

namely, Fault-tolerance Load Balancing (FTLB), which embeds fault tolerance in load 

balancing with the optimization of other QoS parameters. The evaluation was performed 

using 100 computing cycles on three VMs. Furthermore, an Integrated Virtualized Failover 

strategy (IVFS) similar to AFTRC was proposed in [108]. It employs replication and 

checkpoint-restart in which Cloud Load Balancer (CLB) was added to AFTRC, and 

checkpointing was carried out by implementing the Reward Renewal Process (RRP) [109]. 

Once the load was received, it was transferred to CLB by the Cloud Controller (CC). The 

main job of CLB was to replicate the load on some suitable VM based on load information 

in case of failure. 

Table 2.3: Comparative analysis of various fault tolerance and scheduling frameworks 

Framework Approach Used 

Techniques 

Parameters Features Limitation 

Self-Healing 

(SHelp 

) 

[81] 

Proactive 

 

Self-healing, 

Restarting, 

Checkpointing, 

Response 

time, 

Throughput, 

Availability 

Speedy 

functionality, 

Fewer overheads 

than ASSURE 

Not suitable 

for software 

faults 

PFHC [83] 

 

Proactive 

 

Replication Execution 

Time, 

Reliability 

Lower cost, 

More suitable 

for HPC 

Computation

al cost is 

very high 

WSRC [86] 

 

Proactive 

 

Rejuvenation 

technique 

Resource 

availability 

and other 

overheads 

Improved 

availability and 

improved 

overheads using 

variable time 

rejuvenation 

Restricted 

suitability 

SRFC [87] 

 

Proactive 

 

Software 

Rejuvenation 

Scalability, 

Throughput, 

Reliability 

Improved 

availability, 

Multiple VM 

rejuvenation 

Limited to 

software 

rejuvenation 

Fault 

Tolerance 

Scheduling 

(FTDG) [88] 

Proactive 

 

Pre-emptive 

Migration 

Reliability, 

Response 

Time, and 

Throughput. 

Minimum 

Response time 

Restrictive 

applications 

AFTRC [89] Reactive Replication and 

Checkpointing 

Accuracy, 

Reliability, 

and 

Availability 

Applicable for 

real-time 

applications 

Stunted 

availability 

of resources 
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when the 

load is high 

BFTCloud [90]                                     

 

 

Reactive Replication Scalability, 

Throughput, 

Reliability 

Highly Reliable 

and is qualified 

to tolerate all 

byzantine faults 

Low 

Resource 

Utilization  

Fault-Tolerant 

Scheduling 

Mechanism 

for Real-Time 

Tasks 

in Virtualized 

Clouds 

(FESTAL  

) [92] 

Reactive Replication Throughput, 

Reliability, 

Availability, 

Usability 

Energy-efficient 

Resource 

Utilization 

Framework  

Execution 

can crash if 

both central 

and backup 

fail 

concurrently 

Efficient Fault 

Tolerance 

Technique 

(EFTT 

) [107] 

Resilient Machine 

Learning 

Throughput, 

Availability, 

Reliability, 

Response time 

High Response 

time, High 

Availability and 

Reliability, 

Adaptive in 

nature 

Insufficient 

resource 

utilization 

 

     

 Table 2.4: Comparative analysis of different proposed fault tolerance and load balancing 

algorithms 

Model/Tec

hnique 

Year  Paramet

ers 

Compared 

with 

Outcomes Advantage

s 

Limitations Platform/

Environm

ent 

Honeybee 

Inspired‑L

oad 

Balancing 

(HBI-LB) 

 [102] 

2022 Average 

Response 

Time 

Round 

Robin (RR), 

Throttled 

(TH), and 

Equally 

Spread 

Current 

Execution 

Load 

(ESCEL). 

Average 

Response 

time was 

optimized 

than 

compared 

approaches 

Maintains 

load 

equilibrium 

The model was 

not evaluated 

on a large task 

scale. No fault-

tolerant 

parameter was 

considered. 

CloudSim 

3.0.3-

based 

Cloud 

Analyst 

tool 

Proactiv

e Load 

Balance 

Fault 

2021 Executio

n Time, 

Reliabilit

y 

Adaptive 

Fault 

Tolerance in 

Real-Time 

PLBFT 

achieved 

the highest 

reliability 

Better Fault 

prediction 

and 

tolerance  

An increased 

number of 

migrations was 

Cloud 

Simulator 
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Toleranc

e 

(PLBFT) 

[104] 

Cloud 

(AFTRC) 

calculations 

than 

AFTRC 

observed which 

maximized 

execution time 

 

Load 

balancing 

with fault 

tolerance 

algorithm 

using 

Replication 

technique 

[102] 

2021 Availabili

ty, 

Resource 

Utilizatio

n 

Fault 

Tolerance 

Workflow 

Scheduling 

the FTWS 

[91] 

Efficient 

task 

scheduling 

along with 

fault-

tolerance 

Optimized 

Availabilit

y and 

System 

Performanc

e 

Poor resource 

utilization 

Amazon 

EC2 

Proactive 

Fault 

Tolerance 

Framework 

(PFTF) 

[103] 

 

2017 Executio

n Time, 

Network 

Congesti

on, 

Cost 

 

High-

Performance 

Linpack 

(HPL), 

Honeybee 

Foraging 

Algorithm 

Improved 

Execution 

Time 

and Time 

Delay. 

Network 

congestion 

delay was 

reduced by 

47%, 

Reducing 

the cost 

No 

consideration 

of Resilient 

Fault Tolerance 

CloudSim 

3.0 tool 

CLBC 

(Load 

Balancer), 

Deadline 

Based 

Pre-

Emptive 

Scheduling 

(DBPS) 

[106] 

2014 Throughp

ut, 

Completi

on Time, 

Executio

n Time, 

and 

Computat

ional 

costs 

Traditional 

related 

algorithms 

The 

computatio

nal cost was 

minimized 

Effective 

Load 

Balancing 

Not suitable for 

deadline-based 

task 

accomplishmen

t 

Cloudsim 

FTLB 

[107] 

2017 Throughp

ut, 

Availabili

ty, 

Reliabilit

y, 

Response 

time 

Ant Colony, 

Osmosis LB, 

Honeybee 

Foraging, 

Artificial 

Bee Colony 

High 

Response 

time, High 

Availability

, and 

Reliability 

Adaptive 

nature 

Slow in 

function 

Not 

specified 

Integrated 

Virtualized 

Failover 

strategy 

(IVFS) 

[108] 

2016 Pass 

Rate, 

Task 

Finish 

Time 

Virtualizatio

n and Fault 

Tolerance 

Approach 

(VFT) [110] 

High Node 

Pass Rate 

and Less 

Service 

Task Finish 

Time 

High fault-

tolerant, 

both 

forward 

and 

backward 

recovery 

Not suitable for 

the large-scale 

environment 

 

The comparative analysis of different fault tolerance-based load-balanced algorithms is 

presented in Table 2.5. These algorithms were proposed to distribute the workload 

regardless of faults across the nodes, i.e., having the capacity to handle the faults. 
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Table 2.5: Comparative analysis of fault-tolerant-based load-balancing algorithms 

Algorithm Year  Parameters Outcomes Limitations Platform/E

nvironment 

Hybrid Load 

Balancing 

[18] 

 

2017 Response 

Time 

Minimizes response 

time and 

overloading 

situations 

Lacks migration in 

case of failure 

Cloudsim 

Throttled 

algorithm and 

Equally Spread 

Current 

Execution 

algorithms (TA & 

ESCE) [64] 

2017 Waiting 

Time, 

Turnaround 

Time, 

Resource 

Utilization 

Turnaround time 

and wait time were 

reduced and 

resource utilization 

was enhanced 

Lacks migration 

technique for 

performance 

optimization 

Cloud 

Simulator 

Starvation 

Threshold–based 

Load Balancing 

(STLB) [111] 

2019 Response 

Time 

Increases in 

resource utilization 

rate, Minimizing 

migration cost and 

response time  

Not suitable for 

dependent tasks 

CloudSim 

Enhanced LB (TA 

& ESCE) [3] 

 

2017 Response 

Time 

Evades overloading, 

reduced cost, and 

response time 

Not optimizing other 

QoS parameter 

CloudSim 

 Genetic Algorithm 

and the 

gravitational 

emulation local 

search GA-GEL 

[112] 

2015 Makespan Reduced Makespan 

 

Uneven Load 

Distribution 

CloudAnaly

st 

LBHM [113] 2018 Response 

Time, 

Processing 

Time 

Processing and 

response time were 

reduced. 

 

Increases Execution 

Time of the VM 

CloudSim 

3.0.3 

LB strategy based 

on AC [114]  

2014 Response 

Time 

Reduces response 

time 

Not optimizing other 

QoS parameter 

CloudAnaly

st 

VM-Assign Load 

Balancing [114] 

2014 Resource 

Utilization 

Enhances Resource 

utilization. 

No Dynamism was 

considered 

CloudAnaly

st 

Modified Optimize 

Response 

Time [68] 

2021 Response 

Time 

Response time was 

enhanced 

Insufficient load 

distribution 

Not 

Specified 

 weighted active 

monitoring load 

balancing 

(WAMLB) [115] 

2018 Resource 

Utilization 

Effective resource 

utilization 

 

Not optimizing other 

QoS parameters. 

CloudAnaly

st 

Priority-based 

modified throttled 

algorithm (PMTA) 

[116] 

2016 Response 

Time 

Balanced load 

distribution and 

minimized response 

time 

Starvation for low-

priority tasks. 

CloudSim3.

0 and 

CloudSim-

based tool 

Enhanced LB (TA 

& ESCE) [117] 

2017 Response 

Time & 

Machine 

Cost 

Uniform load 

distribution with 

less cost 

No considered 

weakness found 

CloudAnaly

st 
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Hybrid Approach 

(TA & ESCE) [118] 

2019 Response 

Time, 

Processing 

Time, Cost 

Cost-effective and 

minimum response 

time 

Does not include any 

fault-tolerant strategy 

Cloud sim 

Improved WRR 

(weighted Round 

Robin) [119] 

2018 Processing 

time, and 

cost  

Avoid starvation 

and cost-efficient 

The current workload 

of VM is not studied 

and lacks fault 

handling 

Eclipse 

framework 

STLB [107]  2019 Resource 

Utilization 

and overall 

cost 

Increased utilization 

rate and Dropped  

overall migration 

cost 

In-appropriate for 

dependent workload 

CloudSim 

LB Strategy [120] 2014 Availability Uniform workload 

distribution and 

high availability 

Increased response 

time because of FCFS 

allocation. 

CloudSim 

Token-bucket rate-

limiting technique 

[121] 

2023 Availability 

and 

Scalability 

Good quality of 

services to 

customers 

May cause load 

imbalance 

Zuul 

gateway 

 

cuckoo 

optimization-based 

energy-reliability 

aware resource 

scheduling 

technique (CRUZE) 

[121] 

2020 Cloud 

service 

availability, 

energy 

consumption 

Reducing energy 

consumption and 

increasing 

availability 

May cause load 

imbalance 

CloudSim 

toolkit 

 

 

Single intervention 

at random interval 

(SIRI) strategy 

[122] 

2023 Service 

Availability, 

penalty rate 

Prevents SLA 

violations and offers 

high service 

availability 

May cause load 

imbalance 

Amazon 

EC2 

 

Backpropagation 

(BP)-based OnlIne 

hardware fault 

Diagnosis System 

has been built, 

named BOIDS [123] 

2020 Hardware- 

faults 

(transient, 

intermittent, 

and 

permanent 

faults) 

More than 97% 

accuracy in 

diagnosing 

hardware faults 

Only hardware fault 

models are considered 

SpecInt200

0 and 

MiBench set 

to 1c1t (1 

core 1 

thread) 

 

 PSO, Round Robin, 

(ESCE) Equally 

Spread Current 

Execution, 

Throttled Load 

balancing [124] 

2023 Response 

time, 

Processing 

time of data 

center  

Identified the 

valuable 

relationship 

between VMs and 

tasks 

Lacks the dynamism 

of circumstances 

cloud 

analyst 

platform 

2.5.  Discussions and Observations 

The presented survey summarizes the focus of researchers on distinct hybrid fault tolerance-

related frameworks. The main emergent and developing methods of fault tolerance in a 

cloud environment are categorized into three different categories: Reactive Methods, 

Proactive Methods, and Resilient Methods. The survey was conducted on two main hybrid 

fault-tolerant categories, i.e., scheduling with fault tolerance and load balancing with fault 

tolerance. On surveying, several observations were gathered and listed below. 
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2.5.1. Statistics of Hybrid Survey of Scheduling and Fault Tolerance Algorithms 

While dealing with hybrid frameworks of scheduling and fault tolerance, researchers have 

focused on all three fault tolerance approaches, i.e., Reactive, Proactive, and Resilient. 

However, it is observed that more emphasis is on Proactive and less on Resilient ones. The 

related statistics of these approaches are depicted in Figure 2.3.  

 

Figure 2.3. Showing Fault Tolerance Approaches Targeted by Researchers 

Moreover, different techniques such as Replication, Migration, and Rejuvenation have also 

been employed while dealing with this hybrid framework. Replication techniques are 

mainly used for reactive approaches. On the other hand, Migration and Rejuvenation 

techniques are utilized for proactive approaches. It is also observed from the literature that 

replication and migration techniques were more frequently used to address the faults in the 

cloud. Moreover, self-healing and checkpoint restart techniques are used by the SHelp 

framework. The statistics of different approaches employed for Reactive, Proactive, and 

Resilient strategies in this hybrid framework are depicted in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

33%

55%

12%

Reactive Proactive Resilient
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Figure 2.4. Showing Category-wise Percentage of Different Techniques used in Fault 

Tolerance  

It is also noticed from the presented survey that different types of faults have been handled 

by using hybrid fault-tolerant scheduling and load-balancing frameworks. Moreover, it was 

observed that software faults, hardware faults, parametric faults, and crashes were resolved 

using a proactive approach. The reactive approach addressed configuration faults, 

parametric faults, byzantine faults, participant faults, and host failures. Likewise, resilient 

approaches are utilized to manage general faults. Additionally, the overall statistics of 

different faults handled by considered hybrid frameworks are depicted in Figure 2.5. 
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Figure 2.5. Showing the Percentage of Optimized Parameters in Surveyed Scheduling and 

Fault Tolerance 

The statistics of the fault models focused in the surveyed articles show that researchers are 

more motivated towards software faults but the transient, intermittent, and permanent faults 

are found to be less in the eyes of the researchers. For several strong reasons, addressing 

these kinds of faults is essential in distributed systems/applications. First, proactive steps to 

guarantee system resilience are required due to the unpredictable nature of transient faults, 

which are brief interruptions in system performance. To reduce downtime and provide a 

consistent user experience, organizations must recognize and address transient issues. 

Second, a major threat to system reliability is intermittent failures, which are defined by 

irregular disruptions that might happen at any time. To avoid flowing failures and guarantee 

the stability of necessary executions to preserve the system's overall integrity, intermittent 

faults must be effectively managed. Furthermore, we cannot exaggerate the seriousness of 

permanent faults. These enduring problems may cause the system to deteriorate over time, 

impacting system operation and SLAs. Therefore, resolving permanent faults is essential 

for maintaining the system's lifespan and functionality while ignoring them might cause 

irrevocable harm and compromise the global sustainability of the system. Finally, the 

maintenance of system continuity, robustness, and reliability is the primary reason for 

managing the discussed hardware failures. In the end, proactive fault management 

techniques contribute to uninterrupted system/application performance during unexpected 

obstacles by protecting the integrity of crucial operations and improving SLAs and thereby 

user experience and satisfaction. 

2.5.2. Statistics of Hybrid Survey of Load Balancing and Fault Tolerance Algorithms 

8%

13%

7%

8%

8%23%

8%
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It is also perceived in this survey that researchers have focused on the optimization of 

various parameters simultaneously along with fault tolerance. The response time was 

considered and optimized more frequently as compared to other QoS parameters. And least 

consideration is on task waiting time and the computational cost. Based on this survey, the 

statistics of various optimized parameters are presented in Figure 2.6. Besides, the 

considered frameworks include both dynamic and static environments, and the researchers 

are more motivated toward dynamism than static algorithms. Figure 2.7. depicts the 

statistics of the surveyed models that support dynamism.  

 

Figure 2.6. Showing the percentage of Optimized Parameters in Surveyed Load Balancing 

and Fault Tolerance 

 

Figure 2.7. Showing the Percentage of Dynamism in Surveyed Hybrid Load Balancing 

and Fault Tolerance Frameworks 

The analysis was carried out for the parameter optimization of the reliable cloud. Figure 2.8 

presents the degree of optimization in metrics of scheduling with fault tolerance, scheduling 

with load balancing, fault tolerance, load balancing, and scheduling. Additionally, 
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parameter optimization analysis of various fault-tolerant approaches from the literature was 

also conducted and presented in Figure 2.9. 

 

Figure 2.8. Showing the Analysis of Parameter Optimizations for Different Cloud 

Reliability Measures  

 

Figure 2.9. Showing the Percentage of Parameter Optimizations for Different Fault 

Tolerant Approaches 

Finally, the observations regarding the platform or environment used for simulation in the 

presented surveys are statistically presented in Figure 2.10.  
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Figure 2.10. Showing the Percentage of Tools used for Simulation by the Researchers 

2.6.   Summary in Context  

This chapter extensively reviews distinctive approaches and methodologies employed for 

enhancing the cloud environment to find the research gap. After due estimation and 

assessment, it is studied that several areas of research could be tracked to improve the efficiency 

of cloud approaches and to improve the service performance of cloud computing. 

The consideration of the dynamic character of the cloud motivated us to propose the hybrid 

scheduling model integrated with fault tolerance, and load balancing for cloud setup. 

Although there are many scheduling algorithms available in the literature, the researchers 

are highly attracted and conservative towards developing various scheduling, fault 

tolerance, and load balancing algorithms. However, it is observed that these can enhance 

and optimize the cloud system up to a certain degree of scenarios. Moreover, the integration 

of both fault tolerance and load balancing in dynamic scheduling algorithms to optimize the 

QoS parameters has been overlooked in the literature. The integration of load balancing 

models with fault tolerance is a peak demand of time. Because the fault tolerance 

mechanisms may often reorder the prior scheduling VM assignment to fit and strong VMs 

in the occasion of a failure or fault, leading to uneven VM reassignment. This uneven VM 

reassignment becomes the cause of QoS degradation even if the prior Scheduling algorithm 

is highly optimized.  

Besides, there are various demanding reasons why the integration of load balancing is 

important for optimal overall system performance. Some of the mounted demands are listed 

below:  

• Cloud settings frequently consist of varied and diverse VMs with random performance 

characteristics. Task scheduling within these heterogeneous VMs to achieve optimal 

performance can be complex. 

42%

24%
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• Scheduling always suffers from faults because of failures such as hardware and 

software failures, resource conflicts, data distortion, human errors, etc. This could 

lead to the premature termination of the corresponding tasks thereby disrupting the 

continuity of cloud services. Handling these disruptions in the cloud is necessary and 

critical to ensure the reliability and efficiency of task scheduling in cloud computing. 

• Implementing fault tolerance can introduce the overheads associated with it. 

However, using load balancing with fault tolerance can reduce operational burdens 

and other complexities. 

• Various bottlenecks and other congestion can be created on healthy VMs in fault-

tolerant systems. This can impact overall system performance. This can be eased by 

intelligently distributing load flow across VM post to fault tolerance.  

• Fault tolerance often necessitates redundant resources to grip failover circumstances, 

which can lead to resource overprovisioning and over-cost. Load balancing can be 

helpful in such cases as the integration of load balancing can dynamically adjust the 

load over VMs thereby dropping the requirement of additional capacities.  

Fault tolerance integrated with load balancing can help organizations overcome these 

limitations and create stronger, more effectual, and mountable distributed systems that can 

adapt to the altered loads because of fault tolerance. Therefore, we converge towards 

developing the dynamic scheduling model which not only handles faults but also handles the 

uneven VM reassignments by integrating effective load balancing constraints post to fault 

tolerance. 
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Chapter 3 

Ranked Task Scheduling and Reservation in Fault Tolerance for 

Cloud Computing 

A cloud computing platform has higher failure rates because of its highly dynamic nature 

and running of concurrent applications. However, the outcomes of running concurrent 

applications won't be accurate without VM synchronization. The issue of coordination 

between many VMs is their synchronization in working is rarely considered by existing 

solutions. Moreover, fault tolerance constitutes one of the most crucial components for 

cloud computing architecture to ensure high reliability. In this Chapter, Reserved Fault 

Tolerance and Ranked Task Scheduling (RFRTS) is proposed. Initially, the proposed 

ranked-based scheduling approach is used for task allocation, and later the idea of a 

reservation-based reactive fault tolerance method is suggested for a cloud system. To 

achieve the highest level of cloud computing infrastructure reliability, the suggested 

technique considers CPU faults and the VM reservation will ensure the assignment of an 

alternative VM to the affected task. The proposed fault-tolerant approach has been 

compared with three existing reliable fault-tolerant approaches namely multi-objective 

scheduling algorithm with Fuzzy Resource utilization [125] (FR-MOS), Cost-effective 

Workflow Scheduling Algorithm [126] (CWS), and Fault-tolerant Cost-effective Workflow 

Scheduling Algorithm [127] (FCWS) based on reliability. The outcomes unequivocally 

show that our suggested RFRTS algorithm surpasses the current FR-MOS, CWS, and 

FCWS considering reliability in all the states. 

3.1.  Proposed Model 

This section presents an effective allocation to map the incoming tasks and available VMs. 

After the mapping of task and VM sets, we propose a framework that would estimate the 

reservation window based on the size of the task and the VM’s capacities. This will move 

the affected tasks from unstable VMs to reserved and trustworthy ones based on the 

reservation window. The suggested model's primary goal is to increase system reliability 

through assured task execution using advance resource reservations. 

3.1.1. The System Architecture 

The Proposed System Architecture is comprised of three main layers and is presented in 

Figure. 3.1.  

• Application Layer: The main interface for communication is provided by the 

Application layer. Moreover, requests for VMs are also generated by the user in this 
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layer. Application Layer consists of Users and Requests.  

• Middleware: Middleware is the main component of this architecture and is mainly 

responsible for Task allocation and VM reservation.  

 

 

Figure. 3.1: System Architecture of RFRTS 

The user tasks first arrive at Middleware, where they are assigned the rank value by the 

Rank Calculator. Later the tasks are sorted based on the decreased "r" value by the Sorter 

component. Here, the tasks wait for the VM Matching module which controls, directs, and 

observes the available VMs. Eventually, the Scheduler module handles user tasks to 

determine scheduling decisions.  

The Fault Handler is activated upon detecting a failure in any of the VMs and generates an 

alternative VM for the affected task while utilizing the Reserved VMs. 

Advance Time Manager: is responsible for reservation-related details such as AR slot, VM 

allotment, fresh reservations, cancellation of requests, etc. 

Reservation Producer: This component checks the schedule for user requirements and the 

state of the VM. The required reservation is provided to the user if the user's requirement 

matches the schedule for the AR slot produced by the Time manager. 

• VM Layer/Host Layer: This layer contains different VMs that are used by users to 

execute their tasks. 



60 
 

 

 

3.1.2. Problem Formulation 

The VMs are assigned in set V={v1, v2, v3… vk}. while the tasks being taken as set T= {t1, 

t2, t3… tm}. Every VM has VM capacity, i.e., (C(vk)), and every incoming task has task 

length, i.e., (L(TM)).  

Further, the various assumptions of the proposed allocation strategy are: 

• The lower task heterogeneity metric is used by the model. 

• Task sizes range from one to one hundred million instructions. 

• The benchmark for low machine heterogeneity is used by the model. 

• The speed of the machine varies between one to ten Million Instructions Per Second 

(MIPS). 

3.1.2.1.  Ranked Task Scheduling 

Every task (tm) has its task id (t_id) which is assigned to the task on an FCFS (First Come 

First Serve) basis. That means the task having a smaller t_id is waiting for a longer time.  

Initially, the incoming tasks have been ranked based on r (response rank value). The 

response rank value (r) is calculated for every incoming task as below: 

r = 
−𝑡_𝑖𝑑 + PT

PT
       (1) 

Where Burst time is calculated as: 

                                                                    PT = 
𝐿(𝑡𝑚)

𝐶(𝑣𝑘)
   

Further, the ranked tasks are taken as separate task sets, i.e., Tr. The tasks are distributed in 

order of rank value to the corresponding VMs. The r value for the task is calculated by 

adding the t_id and Processing Time of the task and dividing the obtained value by the 

processing time of the task. The ranked allocation considers both the wait time and 

processing time of the task. It also minimizes the wait time for large tasks and 

simultaneously encourages the small tasks to get a higher rank thereby giving an optimized 

QoS than that of Shortest Job First allocation.  

The task allocation problem is mathematically represented as a mapping of each incoming 

task to the VM as shown below: 

    : T × r → V 

The bipartite graph between the task set and the VM set may be used to describe the 

suggested ranking approach. The set Tr contains the ranked tasks in descending order of r-
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value rather than the t_id, hence the tasks in Tr
 may be arranged randomly concerning to 

t_id as indicated in Figure. 3.2. 

 

Figure. 3.2: Ranked Task Mapping 

Proposed Pseudocode for the Ranked Task Scheduling 

Using the proposed ranked scheduling approach, the system effectively maps the incoming 

tasks with appropriate VMs.  

i.e., Input: n(T), L(tn), n(V), C(vk), RT(vk), RM[ ] 

             Output (Mapping (tn, vk), Reliability)  

1. Above all, the RT of all VMs is taken as zero indicating the VM has no load history. 

2.  

3. The task lengths range between 1 MI to 100 MI, and the machine capacity runs from 

1 MIPS to 10 MIPS, according to the model's low task and low machine 

heterogeneity assumptions. 

4. Rank tasks on the basis of Task_id, PT             //task ranking algorithms. 

5. Do 

Map the ranked tasks to the VMs.                     //allocation algorithm 

While ∀ v ks, (RT(vk) =  0)) 

Map task to VM having least RT. 

6. Determine the ST and FT of the task. 

7. Adjust the revised RT for vks after each allocation. 

3.1.2.2.  Reservation in Fault tolerance 

Besides, the model also includes fault tolerance by utilizing resource reservation techniques, 

where the VM is reserved for the task for a specific pre-estimated window known as a 

reservation window (R). 
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If the advance reservation strategy is not employed, the task tu may fail to execute on VMf, 

i.e., the failed VM, or if the VM leaves the system for a certain time will result in the 

suffering of the corresponding task. To handle this situation, p failed VMs are defined as 

VMf = {vf ∶ vf ∈ V & 𝑜(VMf ) = 𝑝} and q corresponding affected tasks are defined which 

were executing on these failed VMs. Now, these failed tasks need to be reallocated to some 

other available suitable VMs. The set of failed tasks is defined as 𝑇f = {𝑡f ∶ 𝑡f ∈ 𝑇, 𝑜(𝑇f) = 𝑞 

& 𝑞 <= 𝑁}. On reallocating, all the failed tasks Tf are migrated from VMf to VMj such that 

VMj ∉ VMf.  

Proposed Reservation based Fault tolerant algorithm  

The proposed algorithm wins fault tolerance in case any of the VMs fail to execute the 

task at any point in time. The VMs are reserved for the computed time slot to ensure task 

execution. The reservations in the algorithm are done according to the following 

Pseudocode: 

1      Initialize the Input parameters i.e., the task number, size of the task, number of 

VMs, the capacity of VM, etc. 

2 Calculate the AR slot. 

3 The initialization of the RM matrix with the tasks, Start time, and Finish time, 

State flag, and the computed reservation window. 

4 Reserve VMs for a predicted timeslot to continue the processing of the task in case 

of VM failure. 

5 Status=1 i.e., VMs are reserved for the calculated AR slot. 

Repeat steps 2 to 5 for all tis. 

Additionally, |𝑇𝑢| = Fault (%age) * |T| 

                                                   Reliability = 
|𝑇| – |𝑇𝑝|

|𝑇|
                                      

(6) 

3.2. Results and Observations 

The proposed model was evaluated on reliability by comparing it with other reliable existing 

models namely, FCWS, FR-MOS, and CWS. We selected five distinct states of task 

numbers with varying lengths for the simulation we created: Small(S)[n = 50], 

Medium(M)[n=100], Medium large(M-L)[n=200], Large(L) [n = 400], Extra-large (E-L) 

[n=600]. 
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Figure 3.3: Depiction of Reliability in Five Considered Task States 

It can be seen from the depicted graph in Figure. 3.3 that the proposed model shows higher 

reliability than all the considered models in all states afterward FCWS performs better. 

Furthermore, it is evident from the figure that as the amount of tasks increases, the reliability 

of the considered approach decreases. However, as can be seen in the Improvement 

Percentage Table (Table 3.1), the suggested model exhibits a rise in the percentage of 

reliability improvement as the task count increases. This is because the suggested Model 

can efficiently handle various invoicing fault scenarios as the model is reserving the VMs 

for the dedicated window. 

Table 3.1: Comparative analysis of improvements in the proposed RFRTS 

FCWS FR-MOS CWS Five states 

0.30% 2.25% 2.04% S 

1.32% 2.36% 1.84% M 

1.53% 2.37% 1.84% M-L 

1.65% 2.18% 1.97% L 

1.26% 2.45% 2.56% E-L 

In S, the minimum improvement by the model was seen to be 0.30% while the maximum 

improvement was seen to be at 2.25%. In M, the minimum improvement by the model was 

seen to be 1.32% while the maximum improvement was seen to be 2.36%. In M-L, the 

minimum improvement by the model was seen to be 1.53% while the maximum 

improvement was seen to be 2.37%. In L, the minimum improvement by the model was 

seen to be 1.65% while the maximum improvement was seen to be 2.18%. In E-L, the 
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minimum improvement by the model was seen to be 1.26% while the maximum 

improvement was seen to be 2.45%. 

3.3. Summary in Context 

The research suggests a method for task ranking by considering task lengths and task wait 

times. Besides, the algorithm implies an allocation strategy based on the determined rank 

value. Also, we provide an idea of reservation for fault-tolerance in which VM reservations 

are made based on a pre-calculated reservation AR slot. The reservations are deeply 

explained in the later chapters. The focus of the proposed ranked task scheduling in the 

chapter is on makespan, flowtime, and average resource utilization. However, system 

reliability has also been focused on and enhanced by the proposed reservation. The major 

drawback of the suggested allocation is that it does not consider any load-balancing strategy. 

Hence the load may be inadequately distributed. However, it will unquestionably improve 

the task response times by focusing on the wait time of the tasks. The study's plans demand 

to consider response time for working with the suggested ranked scheduling technique. 

Additionally, the load balancing strategy will be accompanied to consider resource 

utilization as well.  
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Chapter 4 

Towards Fault Overheads in Cloud: Next Gen VM    Management using 

Hybrid Approach (HFSLM) 
The major goal of the computational system is to effectively allocate resources escorted 

with fault tolerance to ensure the job execution is on time. The primary study concern is 

also regarding the mechanism for even distribution of load among virtual machines for 

further system improvements. Addressing all these issues simultaneously is a good need of 

time. Several methods have been developed and proposed in the literature to overcome the 

aforementioned research issues. However, very few researchers have included a significant 

contribution to addressing all these issues simultaneously with optimized QoS parameters. 

In this chapter, a novel Hybrid Fault-tolerant Scheduling and Load balancing Model 

(HFSLM) has been proposed to optimize the makespan and average resource utilization. 

Moreover, the model also provides solutions for several crucial concerns for a cloud system 

including VM failure and VM/task heterogeneity by reserving neighboring VMs in the 

event of failure. Furthermore, the model is escorted by a load-balancing algorithm for 

further optimization of the considered QoS parameters. HFSLM is evaluated by comparing 

it with FTHRM, MAX MIN, MINMIN, OLB, ELISA, and MELISA on both small and large 

task scales. The evaluation results show that the proposed HFSLM outperforms the 

compared approaches in all the considered cases. 

The proposed hybrid model focuses on three issues i.e., efficient scheduling, fault tolerance, 

and load balancing. The model initially schedules the arriving tasks and maps them to the 

most suitable virtual machine thereby focusing on the optimized makespan and efficient 

utilization of virtual machines. Moreover, the proposed model adapts the system to respond 

to the faults by using the neighboring-based advance reservation technique. The 

neighboring-based advance reservation technique is the technique where the reservation slot 

is estimated in advance and the neighboring VM is reserved as an alternative VM for the 

affected task to guarantee the execution of the task till completion. In this case, the 

neighboring VM with the least history of the load (Ready Time) is preferred to be selected 

as an alternative VM. Furthermore, the model also escorts the proposed fault tolerance and 

scheduling algorithms with a load-balancing strategy to make further optimizations in 

various QoS parameters. The proposed model was evaluated for parameters like makespan 

and average resource utilization  

by comparing it with FTHRM [128], MAX MIN [129], MINMIN [130], and OLB [50] on 

a low task scale (less than 1000 tasks). The evaluation has been done by adjusting the 
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number of tasks, size of tasks, number of VMs, and capacities of VMs in four different 

heterogeneity benchmarks given by Braun [35] i.e., low task-low machine heterogeneity, 

low task-high machine heterogeneity, high task-low machine heterogeneity, and high task-

high machine heterogeneity. Besides, the proposed HFSLM was compared with ELISA 

[131] and MELISA [46] on very high task scales (greater than 10,000 tasks) and was 

evaluated using an average makespan, and the resource utilization was taken into 

consideration for minimum, average, and maximum cases. 

4.1. Main Focus and Contribution 

The consideration of the dynamic character of the cloud motivated us to propose the hybrid 

scheduling model integrated with fault tolerance, and load balancing for cloud setup. 

Although there are many scheduling algorithms available in the literature, the researchers 

are highly attracted and conservative towards developing various scheduling, fault 

tolerance, and load balancing algorithms. However, it is observed that there are very few 

dynamic scheduling algorithms that integrate both fault tolerance and load balancing models 

to optimize the QoS parameters. The integration of load balancing models with fault 

tolerance is a peak demand of time. Because the fault tolerance mechanisms may often 

reorder the prior scheduling VM assignment to fit and strong VMs in the occasion of a 

failure or fault, leading to uneven VM reassignment. This uneven VM reassignment 

becomes the cause of QoS degradation even if the prior Scheduling algorithm is highly 

optimized. Besides, there are various demanding reasons why the integration of load 

balancing is important for optimal overall system performance. Some of the mounted 

demands are listed below:  

• Fault tolerance often necessitates redundant resources to grip failover circumstances, 

which can lead to resource overprovisioning and over-cost. Load balancing can be 

helpful in such cases as the integration of load balancing can dynamically adjust the load 

over VMs thereby dropping the requirement of additional capacities.  

• Implementing fault tolerance can introduce the overheads associated with it. However, 

using load balancing with fault tolerance can reduce operational burdens and other 

complexities. 

• Various bottlenecks and other congestion can be created on healthy VMs in fault-tolerant 

systems. This can impact overall system performance. This can be eased by intelligently 

distributing load flow across VM post to fault tolerance.  
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• Similarly, other factors should be considered in fault-tolerant systems such as augmented 

latency, partial scalability, suboptimal resource utilization, etc.  

Fault tolerance integrated with load balancing can help organizations overcome these 

limitations and create stronger, more effectual, and mountable distributed systems that can 

adapt to the altered loads because of fault tolerance. Therefore, we converge towards 

developing the dynamic scheduling model in this work which not only handles faults but also 

handles the uneven VM reassignments by integrating effective load balancing constraints post 

to fault tolerance. 

The scheduling in the proposed model has been done by initially rearranging both arriving 

tasks and available VMs. The newly incoming tasks and freshly installed or deleted VMs 

are also taken into consideration while performing the recommended scheduling. This 

consideration makes it the most suitable scheduling for fully dynamic computing 

infrastructures. Additionally, the scheduler offers efficient allocation concerning the user's 

needs at selected timeslots by using a reservation. Reservation is the technique where the 

VMs are reserved for the task till it completes its execution thereby resulting in the 

assurance of task completion. However, if the VMs are not reserved, they might fail 

permanently or stop working at any time which may result in the termination or interruption 

of the corresponding task. Therefore, the model delivers the system the fault tolerance that 

it needs to manage runtime system errors after conducting effective scheduling. Apart from 

fault tolerance, the model reallocates the load to reduce the imbalance caused by fault 

tolerance. The evaluations are conducted by assessing the proposed model with existing 

similar models such as MAX-MIN, MIN-MIN, OLB, FTHRM, ELISA, AND MELISA. 

The MAX-MIN algorithm was found optimal for resource allocation. The makespan and 

utilization obtained by MAX-MIN on low task heterogeneity were also found efficient. 

However, for high task heterogeneity, MAX-MIN was not found significant. Furthermore, 

the QoS parameters obtained in MIN-MIN were not optimized in varying task and machine 

heterogeneities. Apart from this, these are allocation algorithms and do not support any fault 

handling or load-balancing procedure. The most recent FTHRM model for fault tolerance 

was using advance reservation. However, this model did focus on uniform load distribution. 

Moreover, this has not migrated the tasks from the faulty VM to the reserved VM. For large 

sizes, ELISA and MELISA were shown to be the best tests; however, for small scales, these 

models were insignificant. Additionally, these models are load-balancing models and do not 

support any fault tolerance mechanism. After analyzing the related literature, it was 

determined that the models implemented so far, particularly the hybrid models, needed to 
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be improved for better QoS parameters. This is where we were motivated to propose a 

neighboring-based reservation technique for fault tolerance for the real-time cloud. In this 

work, we suggested the HFSLM model with effective fault tolerance and load-balancing 

strategies for better outcomes. Table 4.1 shows a comparative analysis of all the considered 

issues and parameters between the proposed HFSLM and related models. 

 

Table 4.1: Comparative analysis of existing models and the proposed model 
 

Technique/Parameters FTHRM MAX-

MIN 

MIN-

MIN 

OLB ELISA MELISA Proposed 

HFSLM 

Task scheduling √ √ √ √ √ √ √ 

Fault tolerance √ × × × × × √ 

Load balancing × × × × √ √ √ 

Task/VM Heterogeinity × × × × × × √ 

Makespan √ √ √ × √ √ √ 

Resource Utilization √ √ √ √ √ √ √ 

Dynamic scheme for 

inserting and deleting 

task/VM 
× × × × × × √ 

 

4.2.   Proposed Work 

This section illustrates the demonstration of the Hybrid Fault-tolerant Scheduling and Load 

Balancing Model for the considered cloud environment. The proposed work is presented in 

four subsections. Initially, the System Model explains the System architecture of the 

proposed model. The Problem Formulation provides the mathematical explanation for the 

proposed HFSLM. The Proposed Algorithm and Pseudocode present the HFSLM in a semi-

formal form as an algorithm and pseudocode. Later, in the Motivational Illustrative 

Example, the proposed model's operation is demonstrated as an example. The objective 

function of HFSLM is to minimize the makespan while maximizing the average resource 

utilization. Furthermore, the following list contains the notions that were utilized in the 

illustration and demonstration. 

4.2.1.   System Architecture 

This work considers the heterogeneous system with respect to both tasks and VMs. The 

group of VMs has varying processing speeds and so do the sizes of the incoming tasks. The 

system architecture of the proposed HFSLM is shown in Figure. 4.1.  
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Figure 4.1: The Proposed System Architecture 

There are three basic levels in the HFSLM system architecture. Together, the Application 

Layer, Middleware, and Host/VM Layer complete the model's functionality. The 

application layer receives the user tasks (incoming), and the Task Sorter sorts them in the 

ascending order of their size as they arrive. On the other hand, the VMs that are accessible 

are in the Host/VM layer, the VM sorter sorts the VMs in the ascending order of their speed. 

The middleware handles the primary allocation and fault tolerance. The middleware is made 

up of two primary parts: the VM allocator, which creates the schedule for receiving task 

information, and the Failure Handler, which reacts when any VM has a fault. Both works 

effectively together to schedule incoming tasks and reserve VMs. The different components 

in the VM allocator work in coordination and oversee the incoming task information for 

selecting the appropriate VM for accomplishing tasks. The task of identifying every 

accessible VM in the VM layer falls within the purview of the VM Discovery component. 

Once the available VMs are discovered, the suitable VM for the task is selected by the VM 

selector. After identifying the most suitable VM for the task, the VM Producer allocates the 

specified VM to the task. Further, the VM Allocator communicates the schedule generated 

by it to the AR Module and the Load Balancer. In response, the AR Module activates its 

components and generates the reservation in case of faults and breakdowns. The Time 

Manager component of the AR Module forecasts the AR Slot for the affected task and 

reserves the suitable VM for the computed AR slot in advance. After calculating AR Slots, 

the System Matching verifies if the task and VM are a good fit for generating reservations, 

and the Reservation Producer commits the produced reservation for the estimated AR Slot 

in the event of a fault. Additionally, the load balancer analyzes the generated schedule and 

plays the key role in uniformly distributing the load among VMs by identifying the 
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maximum overloaded and minimum underloaded VM and reallocating the tasks between 

them. 

4.2.2. Problem Formulation 

Initially, the set of incoming tasks represented by T={t1, t2,… tn} and the set of Virtual 

Machines signified by V={ v1, v2,… vm} has been taken over the proposed HFSLM. Every 

task (ti) is executed on the allocated VM till the execution of the task is completed. The task 

is pre-empted, in case the assigned VM fails or becomes unavailable at any point in time. 

The execution of an affected task will start from the beginning on an alternative VM 

assigned to it. Further, each task has its parameters like t_id and t_size. However, each VM 

has its parameters like V_id, and S. Apart from this, a few characteristics considered for 

VMs are: 

• The model considers “m” VMs for the mapping of “n” tasks. 

• S of VM is taken in MIPS (Million Instructions Per Second) 

• The available VMs do not apply to other applications. 

• Each VM has its RTj associated with it. RTj is the time experienced to execute the load 

history on the VM. 

The problem modeled here is to generate a fault-tolerant allocation schedule in a dynamic 

environment like the cloud in a way that will optimize makespan and increase the average 

VM utilization. Mathematically, the problem can be viewed as an effective mapping (M) 

(eq. 1) between two sets i.e., set T and set V, which will optimize the given parameters.  

𝑀 ∶ 𝑇 → 𝑉      (1) 

The mapping between tasks and VMs graphically can also be treated as a bipartite graph as 

shown in Figure 4.2. 

 

Figure. 4.2: Mapping between Tasks and VMs 
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4.2.2.1.  Task to VM Mapping Model 

The main difficulties in mapping between T and V are the dynamism of the system and the 

limited number of available VMs. Achieving fault tolerance in such a dynamic system is a 

challenging task. This section explains the detailed methodology to deal with the modeled 

problem. Initially, in the first algorithm, the tasks are allocated to the available VMs. The 

allocation process first sorts the incoming tasks and VMs based on task_size and VM speed 

respectively. Thereafter maps the sorted task set to the sorted VM set. After sorting 

incoming tasks and VMs, the VM is assigned to the tasks in the order until the ready time 

of any one of the available VMs is zero. Once the ready time of all VMs becomes greater 

than zero that means currently all the VMs have some load history. After this point, the 

allocation of further arriving tasks will be done to the VM having the least ready time. Doing 

this will again minimize its response time. The proposed allocation strategy handles the 

dynamically arriving tasks by employing a Neighbouring insertion policy. The newly 

arriving task will be inserted based on the arriving task size. i.e., the immediate greater and 

immediate lesser task (neighboring tasks) than the arriving task is identified, and the newly 

arriving task is allocated to that task’s VM which has less ready time as shown in Figure 

4.3. This insertion policy of tasks will again play a critical role in allocating the most suitable 

VM for the dynamically arriving task. Similarly, the newly added VMs are inserted in their 

correct position by employing the same insertion policy as shown in Figure 4.4. This 

insertion policy of incoming tasks and VMs in their respective positions allows the system 

to handle tasks and VMs runtime. 

 

Figure 4.3: Allocation of Dynamically Arriving Tasks 
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Figure 4.4: Adding and Deleting VMs in/from the System Dynamically 

Because of the sorting and neighboring approach, every task will be allocated to the most 

suitable VM. The allocation of VMs to tasks is done in this order until the ready time of any 

one of the available VMs is zero. Once the ready time of all VMs becomes greater than zero 

that means currently all the VMs have some load history. After this point, the allocation of 

further arriving tasks will be done to the VM having the least ready time. Doing this will 

again minimize its response time. The task allocation algorithm is presented in Algorithm 

1. 

Algorithm 1: Task to VM Mapping 

Task Sorting: 

def task_sort(incoming_tasks): 

    // incoming_tasks is a list of tuples (task_id, task_size) 

    incoming_tasks.sort(key=lambda x: x[1]) // Sort based on task_size in ascending order 

    return incoming_tasks 

VM Sorting: 

def vm_sort(available_vms): 

    // available_vms is a list of tuples (VM_id, VM_Speed) 

    available_vms.sort(key=lambda x: x[1]) # Sort based on Speed in ascending order 

    return available_vms 

Task Mapping: 

def task_mapping(incoming_tasks, available_vms): 

    mapped_tasks = []   // List to store allocated tasks 
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    for task in incoming_tasks: 

        if task_status[task] == 0: 

            for vm in available_vms): 

                if ready_time[vm] == 0: 

                    map_task_to_vm(task, vm)  # Map task to VM 

                    mapped_tasks.append(task) 

                    break   // Move to the next task               

 # Map remaining tasks to VMs with the least ready time 

    for task in incoming_tasks: 

        if the task is not in mapped_tasks: 

            min_ready_time = min(sorted_vms, key=lambda vm: ready_time[vm]) 

            map_task_to_vm(task, min_ready_time)  

 # Update mapped_tasks 

            mapped_tasks.append(task) 

 # Update task status to 1 (mapped) 

    for the task in mapped_tasks: 

        task_status[task] = 1 

 

Dynamically Arriving Task Mapping: 

while (there are upcoming tasks): 

   upcoming_task = get_next_upcoming_task() 

   greater_task=find_right_neighbor(upcoming_task) 

 lesser_task = find left neighbor(upcoming_task) 

   greater_vm = find_vm(greater_task) 

 lesser_vm = find_vm(lesser_task) 

    if (greater_vm.ready_time<lesser_vm.ready_time): 

              map_task_to_vm(upcoming_task, greater_vm) 

  else: 

          map_task_to_vm(upcoming_task, lesser_vm) 

4.2.2.2.  Neighbouring-based Reservation for Fault Tolerance 

After VM allocation, a fault handling algorithm that enables the proposed work to win fault 

tolerance if any VM fails or leaves the system is proposed. This fault handling algorithm 

has been developed by employing the technique of advance reservation of neighboring 

VMs. The advance reservation is the technique where the AR time slot is computed or 
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estimated and the VM is reserved for that predicted time slot to guarantee the task execution 

till completion. In the beginning, the TETj for all VMs is taken as zero. It means that 

currently, the particular VM has executed no task. Afterward, TETj is updated after the 

finishing of each task on the VM. Moreover, every VM has some load history which is 

termed as the ready time of the VM. Initially, RTj is taken as TETj as shown in eq. (2) 

𝑇𝐸𝑇𝑗 = 𝑅𝑇𝑗          (2) 

After the mapping of ti and vj as per the allocation algorithm explained above every ti will 

start its execution on some vj. This starting time of the execution of ti on vj is termed as ESTij 

and is calculated as in eq. (3) 

𝐸𝑆𝑇𝑖𝑗 = 𝑇𝐸𝑇𝑗            (3) 

After the execution of ti on vj is over, 𝐴𝐹𝑇ij is determined by adding the total processing 

time of ti on vj {tp(ti, vj)} to the ESTij as shown in eq. (4) 

   𝐴𝐹𝑇𝑖𝑗 = 𝐸𝑆𝑇𝑖𝑗 + 𝑡𝑝(𝑡𝑖, 𝑣𝑗)                             (4) 

Where tp(ti, vj) is the time taken to process ti by vj and is  calculated as in eq (5) 

𝑡𝑝(𝑡𝑖, 𝑣𝑗) =
𝑡𝑠𝑖𝑧𝑒

𝑆
      (5) 

Furthermore, TETj is updated after every execution of ti and will be equal to AFTij as shown 

in eq. (6) 

𝑇𝐸𝑇𝑗 = 𝐴𝐹𝑇𝑖𝑗       (6) 

However, for calculating AR slots, the proposed algorithm takes Early Start Time and 

Actual Finish Time as input parameters and estimates the AR slot as the difference between 

ESTij and AFTij.  

If the advance reservation strategy is not employed, the task (tu)may fail to execute on VMf 

i.e., the failed VM, or if the VM leaves the system for a certain time will result in the 

suffering of the corresponding task. To handle this situation, p failed VMs are defined as: 

𝑉𝑀𝑓 = {𝑉𝑓: 𝑉𝑓 ∈ 𝑉 & 𝑜(𝑉𝑀𝑓) = 𝑝} 

and q corresponding affected tasks are defined which were executing on these failed VMs. 

The set of failed tasks is defined as: 

𝑇𝑓 = {𝑡𝑓: 𝑡𝑓 ∈ 𝑇 & 𝑜(𝑇𝑓) = 𝑞 & 𝑞 <= 𝑛} 

 Now, these failed tasks need to be reallocated to some other suitable healthy VMs so that 

Tf will execute without any interruption. On reallocating, all the failed tasks Tf are migrated 

from Vf to VMj such that: 

𝑉𝑀𝑗 ∈ 𝑉 & 𝑉𝑀𝑗 ∉ 𝑉𝑓 
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The model reserves the neighboring VM of the corresponding failed task as an alternative 

VM. Later, the TETj is again updated as shown in eq. (7): 

𝑇𝐸𝑇𝑗 = 𝑇𝐸𝑇𝑗 + 𝑡𝑝(𝑡𝑓𝑉𝑀𝑗) where 𝑉𝑀𝑗Є𝑉&&𝑉𝑀𝑗 ∉ 𝑉𝑓        (7) 

Detecting Failed VMs and tasks 

The model supports fault tolerance by resource reservation technique to offer a backup VM 

for the impacted task in the event of VM failure. Eq. (8) is used to determine the AR slot: 

𝐴𝑅𝑖𝑗 = 𝐴𝐹𝑇𝑖𝑗 − 𝐸𝑆𝑇𝑖𝑗     (8) 

NOT expected_performance_metrics (vj) function is operated for discovering failed VMs. 

This confirms if the performing_metrics (vj) function returns False for any VM. The 

expected_performing_metrics (vj) is believed to return True if the VM's performance 

metrics such as ARij, E(ti, vj)  are inside expected ranges, and False otherwise. By applying 

Not, the condition happens to be True when the performance metrics are irregular or 

abnormal. 

For example: If the ARij is extended as expected period, indicating it might be frozen or 

crashed.  

The corresponding tasks of failed VMs will remain unexecuted and are represented by a set 

𝑇u = {𝑡u ∶ 𝑡u ∈ 𝑇, |Tu| = u AND u <= n} and f failed VMs are represented as Vf = {vf ∶ vf ∈ 

V AND |Vf| = f }. To ensure uninterrupted operation of Tu, the task set tu must now be 

redistributed from vf to other relevant healthy vj provided vj ∈ V AND vj ∉ Vf. After every 

redistribution of task tu in Tu to vj in V, the TETj is updated as shown in eq. (7) 

The proposed fault tolerance algorithm is presented in Algorithm 2. 

Algorithm 2: Neighbouring-based Reservation Algorithm for Fault Tolerance 

# Identification of failed VMs and tasks 

1. Load ARM (ti, vj, AR, Status)       /*Advance Reservation Matrix initialize all slots as 

zero 

2. For all tis in T 

Compute ESTij and AFTij using eq. 3 and 4 

Compute AR slot using eq. 8 

3. Identify_failed_VMs() 

  Vf = [] 

  Tf = []        

For all tis in T  

if NOT expected_performing_metrics (ti) 
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Tf.append(ti) 

Vf.append(vj|vj→ tf in Tf) 

# Neighbouring-based Reservation for Fault Tolerance 

Initialize_ARM (incoming_tasks, Mapped VMs, task_size, VM_Speed, ESTij, AFTij, ARij, 

Status) 

Tf = {tf | tf ∈ Tf, o(tf) = q and q ≤ n} 

for each tf in Tf: 

    while Status(tf) = 1: 

        if (ti-1, ti+1 ∈ T && RT(ti+1.VM) < RT(ti-1.VM)): 

            Select ti+1.VM (right neighbor) as alternative VM for tf for ARij 

            // Reserve the time slot for the selected task 

        else if (ti+1 ∈ T && ti-1 ∉ T): 

            Select ti+1.VM as alternative VM of tf for ARij 

            // Reserve the time slot for the selected task 

        else: 

            Select ti-1.VM as alternative VM of tf for ARij 

            // Reserve the time slot for the selected task 

        Update_ARM (incoming_tasks, Mapped VMs, task_size, VM_Speed, ESTij, AFTij, 

ARij, Status(tf) = 1) 

          // Status(tf) = 1 implies the AR slot is reserved for tf 

4.2.2.3.  Load Balancing 

Apart from all this, a load-balancing algorithm is also proposed which escorts the whole 

system for uniform load distribution that might be disturbed after fault-handling throughout 

the system and further improves the makespan and utilization. The under and overloaded 

VMs are identified by the Load balancing algorithm and the load is shifted from the 

overloaded VM to the underloaded VM for uniform distribution of load among VMs. The 

VMs having the highest and lowest makespan are taken as maximum overloaded and 

underloaded VMs respectively. Then (€), the average execution time of tasks assigned over 

the maximum overloaded VM is calculated as in eq (9). The tasks with execution time less 

than the € are taken as separate sets (𝛴).  

i.e., 𝛴 = {𝑡𝑖|𝐸(𝑡𝑖, 𝑣𝑗) < € 

€ =  ∑
𝑡𝑝(𝑡𝑖,𝑣𝑗) && 𝑡𝑖 є 𝑂

|𝑂|

𝑜
𝑖=1                                  (9) 
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Finally, the load is shifted from an overloaded VM to the underloaded VM as described in 

the load balancing algorithm. Figure 4.5 depicts the flowchart of the proposed work. 

4.2.3 The Proposed HFSLM  

The allocation in HFSLM is done in three phases: In the allocation phase, we perform Task 

Sorting, VM Sorting, and Task Allocation. However, for dynamically arriving tasks, 

HFSLM provides a distinct algorithm for the allocation. In the second phase: fault tolerance 

is achieved by proposing an innovative fault-tolerant algorithm namely Neighbouring-based 

Reservation Algorithm for Fault Tolerance. Following fault tolerance, the model addresses 

the evenly distributed load among VMs by recommending a load-balancing technique.  

HFSLM (O, €) 

Call Algorithm 1; 

Call Algorithm 2; 

Σ = {ti | E(ti, vj) < €} 

Sort set Σ in descending order of execution time 

for each task ti in Σ: 

    shift_task_to_underloaded_VM(ti) 

    update_makespan() 

    makespan.overloaded_VM = makespan. overloaded_VM - execution_time(ti) 

     makespan.underloaded_VM = makespan.underloaded_VM +execution_time(ti)    

if(makespan.underloaded_VM < makespan. overloaded_VM): 

        continue   // Take another task from Σ 

    else: 

        rollback (makespan.underloaded_VM, makespan. overloaded_VM)   // To 

the previous state 

        ti = ti+1     //take next task from Σ 

end for 

Estimate the QoS parameters Makespan, UT, and Overheads // as per eq. (10, 11, 

12, and 13) 
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Figure 4.5: Flow Chart of HFSLM 

4.2.4. Performance Metrics 

Makespan (M) is taken as the highest or maximum among all TETj and can be expressed 

as eq. (10). 

𝑀 =  𝑚𝑎𝑥(𝑇𝐸𝑇𝑗), ∀𝑉𝑗                                   (10) 

Finally, the Average VM utilization of the system is defined as in eq. (11). 

𝑈𝑇 =
∑ (𝑇𝐸𝑇 − 𝑡𝑝(𝑡𝑓 Є 𝑉𝑓 ,𝑉𝑗 Є 𝑉𝑓 ))

𝑘

1

𝑘 ∗Makespan
 ∀𝑉𝑗                                         (11)  
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The Fault Overhead is the additional time or resources required to handle the faults to 

recover from failures and faults in the system. Fault Overheads in this chapter are caused 

by the following factors: 

• Detecting AR Slot 

• Reserving VM 

• Reallocation etc. 

Makespan Overhead (Om) is the additional time required to complete the task and can be 

computed as follows: 

𝑂𝑚 = {

𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇−𝑀𝑎𝑓𝑡𝑒𝑟𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇
                                   𝐴𝑓𝑡𝑒𝑟 𝐹𝑎𝑢𝑙𝑡 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑀𝑎𝑓𝑡𝑒𝑟𝐿𝐵−𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇
                                  𝐴𝑓𝑡𝑒𝑟 𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 

         (12) 

Average Resource Utilization Overhead (Out) is the additional resource required to 

complete the task and can be computed as follows: 

𝑂𝑢𝑡 = {
𝑈𝑇𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐹𝑇                                  𝐴𝑓𝑡𝑒𝑟 𝐹𝑎𝑢𝑙𝑡 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐿𝐵 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐹𝑇                                  𝐴𝑓𝑡𝑒𝑟 𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔          (13)  

4.2.5. Computational Complexity of HFSLM 

To compute the complexity of HFSLM, the basic operations are analyzed as a function of 

input size. We will express the complexity of the presented HFSLM in Big O notation: 

Task Sorting and VM Sorting: 

Sorting a list of n tasks concerning task size using QuickSort, the complexity is typically O 

(n log n) 

Task Mapping: 

• For n tasks and m VMs, we need to iterate through all VMs in the worst case for a suitable 

mapping. i.e., 

 O (n * m) iterations 

• Operations of each iteration will take constant time. 

• Complexity is O (n * m) 

Dynamically arriving Task Mapping (for n arriving tasks): 

• For identifying neighboring tasks of the arrived task, the algorithm takes constant time. 

• Total number of iterations equals the number of arriving tasks (n). 

• Complexity is O (n) 

Neighbouring-based Reservation Algorithm for Fault Tolerance: 

• For q failed tasks, the algorithm iterates for each failed task and performs constant time 

operations. 
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• The total sum of iterations depends on the number of failed tasks (q). 

• Complexity is O (q) 

Similarly, for the load balancing algorithm, if we assume k tasks in Σ have execution time 

less than €, the complexity will be O (k)  

HFSLM Algorithm Complexity: 

The total complexity of the model is taken by adding all the individual complexities: 

O (n log n) + O (n * m) + O (n) + O (q) + O (k) 

As we can observe O (n * m) dominates other runtime operations because it depends on both 

the number of tasks and VMs. Therefore, the complexity of the model can be estimated as O 

(n * m). 

4.3. Motivational Illustrative Example 

This section demonstrates an explanatory and motivational example where the working of 

the proposed reservation-based fault tolerance and load balancing model has been 

expressed. An example to illustrate the model has been taken from the most recent paper 

where FTHRM [72] has been proposed and we have related our proposed model with 

FTHRM based on the same example.  

Table 4.2: Instance of tasks and VMs 

Task modeling for the 

illustration                                

Task (𝑡𝑖)          Task_size 

𝑡0            120 MI 

𝑡1            260 MI 

𝑡2            380 MI 

𝑡3            90 MI 

𝑡4            100 MI 

𝑡5            220 MI 

𝑡6            400 MI 

𝑡7           280 MI 

𝑡8            350 MI 

 

VM modeling for illustration 

Virtual Machine (Vi)       VM_speed (s) 

V1                10 MIPS, Ready time = 2 µs 

V2                                       12 MIPS, Ready time = 4 µs                                   

V3                14 MIPS, Ready time = 6 µs 

 

 

Nine different independent tasks and three VMs have been taken to demonstrate the working 

of the proposed model. (Note: the proposed model supports run-time dealing with both tasks 

and VMs as shown in Figures 4.3 and 4.4). But for simplicity of an example, we are taking 

the instance of tasks and VMs as shown in Table 4.2. The Ready time of each VM is the 

previous load on the VM. Now, the allocation of tasks to the VMs has been done by the 

proposed strategy where the tasks and VMs are sorted initially according to increased 

task_size and VM_speed, respectively as shown in Figure 4.6. 
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Figure 4.6:  Task Allocation in the Proposed Strategy 

The proposed allocation is illustrated in Figure 4.7. ESTij is the time when the execution of 

ti on vj starts and AFTij is the time when the execution of ti on vj completes. AFT of the 

previously executed task on any VM becomes the EST of the next task on the same VM as 

explained in Figure 4.7. Furthermore, AFTij is computed by adding the execution time (tp(ti, 

vj)) to the ESTij. Here, tp(ti, vj) is computed as shown in eq. 5. TET of each VM is initialized 

to zero which indicates that no task has been executed on the particular VM. 

However, in this example, each VM has its Ready time i.e., 𝑅𝑇(V1) = 2, 𝑅𝑇(V2) = 4, and 

𝑅𝑇(V3) = 6. Now, the Ready time of Vj will be assigned to TETj. In other words, TET(V1) 

= 2, TET(V2) = 4, TET(V3) = 6. 

4.3.1. Task Mapping 

After sorting tasks and VMs, VMs are allocated to the tasks in the sorting order as shown 

in Figure 4.6. Initially, t4 is allocated to VM1 with EST = 2, t5 is allocated to V2 with EST=4, 

and t1 is allocated to VM3 with EST = 6. For t4, EST41 = 2 because Ready time of VM1 is 2, 

now to compute AFT41, 𝑡𝑝(𝑡4, 𝑣1) =
90

10
= 9 will be added to the EST41. In other words, 

AFT41 = 2+9 =11. After the execution of t4 is over, RT(V1) will be updated to 11 and is the 

EST of the next task. 

Similarly, for t5, EST52 = 4 because Ready time of VM2 is 4, now to compute AFT52, 

𝑡𝑝(𝑡5, 𝑣2) =
100

12
= 8.3 will be added to the EST52. In other words, 𝐴𝐹𝑇52 = 4 + 8.3 =

12.3. After the execution of t5 is over, RT(V2) will be updated to 12.3 and is the EST of the 

next task. 

For, t1, the same thing happens, and RT(V3) will be updated to 14.5 and is the EST of the 

next task as illustrated in Figure 4.7. 

The next task i.e., t6 will be allocated to that VM whose RT has been already computed i.e., 

the VM which is available or free. If RT has been computed for more than one VM, then 

the next task will be allocated to the VM having minimum ready time. (Note: as the VMs 

and task are sorted, RT for all the VMs will also come to be sorted. The same happens with 

this example also, there will be some variation in case little or minimum variation in 
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arriving task size i.e., in low task heterogeneity cases). Finally, after the allocation of all 

tasks is over, we compute the Makespan and Average VM Utilization. 

Since, 𝑇𝐸𝑇(𝑣1) = 68, 𝑇𝐸𝑇(𝑣2) = 71.2, 𝑇𝐸𝑇(𝑣3) = 73. .7 as shown in Figure 4.7.  

Now, Makespan is computed as 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗), ∀𝑣𝑗  

i.e., 𝑚𝑎𝑥(68, 71.2, 73.7) 

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 =  𝟕𝟑. 𝟕 

Average VM Utilization(U) is computed as: 

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 

UT= 
68+71.2+73.7

3𝑋73.7
=

213.1

221.1
= 𝟗𝟔. 𝟑%  

Comparing the Makespan and Average VM Utilization with FTHRM, the Makespan of 

FTHRM was found to be as 80 and utilization was 84.76% for the same example. The 

allocation in FTHRM was done according to the MCT strategy. In other words, the proposed 

allocation used in the model surpasses the MCT strategy as well on both makespan and 

average VM utilization. 

4.3.2. Fault-tolerance 

As per the algorithmic flow of the model, after allocation, we are performing fault tolerance 

of the system using a neighboring-based advance reservation. Before reservation--based 

fault tolerance, we have assumed and illustrated the random fault tolerance first so that we 

can compare our neighboring reservation fault tolerance with the assumed random fault 

tolerance. The implementation results are also compared with FTHRM in the results section. 

 
Figure 4.7: Allocation of Tasks in the Proposed Sorting Algorithm 
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4.3.2.1.   Random Fault Tolerance without Neighboring Reservation:  

Now, let’s suppose V3 failed at 34.5 as shown in Figure 4.8. Now if we randomly assign an 

alternative VM to the affected task which here is t3. In Random allocation, we randomly 

pick any of the VMs and allocate them to t3. Here we are migrating t3 to VM1 till t3 completes 

its execution.   

So, 𝐴𝐹𝑇31 = 68 + 55 = 123. 

Hence, 𝑇𝐸𝑇(𝑣1) = 123, 𝑇𝐸𝑇(𝑣2) = 71.2, 𝑇𝐸𝑇(𝑣3) = 73.7 − 𝑡𝑝(𝑡3, 𝑣3) = 73.7 −

39.2 =  34.5 as shown in Figure 4.8.  

Now, Makespan is computed as 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗),  ∀𝑣𝑗  

i.e., 𝑚𝑎𝑥(123.  71.2,  34.5) 

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 =  𝟏𝟐𝟑 

Average VM Utilization(U) is computed as: 
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 

i.e., UT = 
123+71.2+34.5

3𝑋123
=

194.2

246
= 𝟕𝟖. 𝟗% 

It is clear because of faults in any of the VMs, the makespan increases and utilization 

decreases. 

𝑂𝑚(𝐴𝑓𝑡𝑒𝑟 𝐹𝑎𝑢𝑙𝑡𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) = 
𝑀𝑎𝑓𝑡𝑒𝑟 𝐹𝑇−𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇
 = 

123−73.7

73.7
  

𝑶𝒎(𝑨𝒇𝒕𝒆𝒓 𝑭𝒂𝒖𝒍𝒕𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆) =0.66 

It is clear because of faults in any of the VMs, the makespan increases and utilization 

decreases. 

 
Figure 4.8: Random Fault Tolerance without Neighboring Reservation 
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4.3.2.2.   Proposed Neighbouring Based Reservation:  

Now, we are going to use a neighboring-based reservation to provide an alternative VM to 

the affected task. Neighboring-based reservation strategy selects the neighboring VM as an 

alternative VM for the affected tasks. As we have already sorted the tasks and VMs, 

therefore, reserving the neighboring VM will ensure that the same capacity of an alternative 

VM is reserved for the affected task. For using an advance reservation, we need to estimate 

the advance reservation slot represented as an ARij slot i.e., advance reservation slot for ti 

on some VMj and we are reserving the neighboring VM for the same AR slot to ensure task 

execution till completion of the task. ARij is estimated as the difference between AFTij and 

ESTij given in eq 8. 

Furthermore, all the information regarding tasks and VMs including AR slots are stored in 

a Matrix known as ARM as shown in Table 4.3.  

The illustration of fault tolerance by reserving Neighbouring VMs is given in Figure 4.9. It 

is clear from the illustration, that, unlike random fault tolerance with reservation, VM2 has 

been selected as an alternative VM because VM2 is the neighbor of failed VM i.e., VM3. 

The affected task i.e., t3 has been migrated to VM2 which will be of the approximately same 

capacity as that of VM3. The computational flow is shown in Figure 4.9. 

Again, let’s suppose V3 failed at 34.5 as shown in Figure 4.9. Now, using a Neighbouring-

based reservation, we will select the Neighbouring VM for the affected task. 

Table 4.3: Advance reservation matrix (ARM) 

Task 

(𝑡𝑖) 
VM (V𝑗 ) Task_size 

(𝑤(𝑡𝑖)) 
speed (s 

) 

𝐸𝑆𝑇(𝑖𝑗) 𝐴𝐹𝑇(𝑖𝑗) AR slot 

(𝐴𝑅𝑠𝑗 ) 

Status 

𝑡1  VM3 120 14 6 14.5 8.5 1 

𝑡2   VM2 260 12 12.3 33.9 21.9 1 

𝑡3   VM3 380 14 71.2 117 45.8 1 

𝑡4   VM1 90 10 2 11 9 1 

𝑡5   VM2 100 12 4 12.3 8.3 1 

𝑡6   VM1 220 10 11 33 22 1 

𝑡7   VM2 400 12 33.9 71.2 37.3 1 

𝑡8   VM3 280 14 14.5 34.5 20 1 

𝑡9   VM1 350 10 33 68 35 1 

(Note: here the failed VM3 has only one neighboring VM i.e., VM2. When the failing VM 

has both neighbours that time an alternative VM will be selected with the least Ready time) 

Here, we are migrating t3 to its neighboring VM (VM2) till t3 completes its execution.   

Since, 𝑡𝑝(𝑡3, 𝑣2) =
550

12
= 45.8. 

So, 𝐴𝐹𝑇32 = 71.2 +  45.8 = 117. 

Hence, 𝑇𝐸𝑇(𝑣1) = 68, 𝑇𝐸𝑇(𝑣2) = 117, 𝑇𝐸𝑇(𝑣3) = 73.7 − 𝑡𝑝(𝑡3, 𝑣3) = 73.7 − 39.2 =

 34.5 as shown in Figure 4.9.  
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Now, Makespan is computed as 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗),  ∀𝑣𝑗  

i.e., 𝑚𝑎𝑥(68,  117,  34.5) 

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 =  𝟏𝟏𝟕 

Average VM Utilization(U) is computed as: 
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 

i.e., UT = 
68+117

2𝑋117
=

185

234
= 𝟕𝟗. 𝟓% 

𝑂𝑚(𝐴𝑓𝑡𝑒𝑟 𝐹𝑎𝑢𝑙𝑡𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) = 
𝑀𝑎𝑓𝑡𝑒𝑟 𝐹𝑇−𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇
 = 

117−73.7

73.7
  

𝑶𝒎(𝑨𝒇𝒕𝒆𝒓 𝑭𝒂𝒖𝒍𝒕𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆) =0.58 

It is clear from the illustration that using reservation makespan and utilization improved. 

Although, in this example, the utilization is found to be increased by only 1%. This is 

because we have only three VMs here. Furthermore, the capacity of VMs varies only by 

2MIPS. In real-time where we have a large number of VMs of extremely different 

capacities, this strategy will show huge improvements in both makespan as well as 

utilization. Same happens with 𝑂𝑢𝑡. 

 
Figure 4.9: Fault Tolerance by Reserving Neighbouring VMs 
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4.3.3. Load Balancing 

After performing fault tolerance, the model escorts the whole system with load balancing 

for further optimization of the makespan and utilization. The load balancing algorithm 

focuses on the maximum overloaded and minimum underloaded VM. After identifying the 

overloaded and underloaded VM, the load is shifted according to the given algorithm and 

depicted in Figure 4.10. In this example, after fault tolerance, the overloaded and 

underloaded VMs are identified as VM2 and VM1 respectively. Tasks executing on 

maximum overloaded VM and minimum underloaded VM are denoted as sets O and U 

respectively. Then, the average execution time (€) of tasks allocated over the maximum 

overloaded VM is calculated. The tasks having execution time less than the average 

execution time are taken as separate sets (𝛴). I.e., 𝛴={ti | E(ti, vj) < €}   

Overloaded and underloaded VMs are VM2 and VM1 respectively.  

O :  {t5, t2, t7, t3} &&  |O| = o   ,   U :  { t4, t6, t9} && |U| = u 

€ =  ∑
𝐸(𝑡𝑖,𝑣𝑜)&& 𝑡𝑖 є 𝑂

|O|

𝑜
𝑖=1   =  

𝐸(𝑡5,𝑣2)+ 𝐸(𝑡2,𝑣2)+𝐸(𝑡7,𝑣2)+𝐸(𝑡3,𝑣2)

4
  = 

8.3+21.6+37.3+45.8)

4
  = 

113

4
 

€ = 28.5 as per eq. (9) 

𝛴 ={t2, t5}            E(𝑡5, 𝑣2) = 8.3 𝑎𝑛𝑑  𝐸(𝑡2, 𝑣2) = 21.6 (both are less than €) 

Now 𝛴 will be sorted in descending order of their execution time. 

𝛴 ={t5, t2} 

Now the algorithm will shift the load from VM2 to VM1 till the makespan of underloaded 

VM < makespan of overloaded VM (see load balancing algorithm). Here, we are migrating 

t2 from VM2 to VM1.  Now, Makespan is computed as: 

max (𝑇𝐸𝑇j ), ∀Vj  i.e., max (94, 95.4, 34.5) 

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 =  𝟗𝟓. 𝟒 

Average VM Utilization(U) is computed as: 
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 

U = 
94+95.4

2𝑋95.4
 =

189.4

190.8
 = 99.2% 

Since, 𝑡𝑝(𝑡2, 𝑣1) =
260

10
= 26. 

So, 𝐴𝐹𝑇21 = 68 + 26 = 94. 

Hence, 𝑇𝐸𝑇(𝑣1) = 94, 𝑇𝐸𝑇(𝑣2) =  𝑇𝐸𝑇(𝑣2) −  𝑡𝑝(𝑡2, 𝑣2) = 117 − 21.6 =

95.4, 𝑇𝐸𝑇(𝑣3) will be the same i.e., 34.4 as it is a faulty VM as shown in Figure 4.10. 

Now, Makespan is computed as 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗),  ∀𝑣𝑗  

i.e., 𝑚𝑎𝑥(94,  95.4,  34.5) 

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 =  𝟗𝟓. 𝟒 
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Average VM Utilization(U) is computed as: 
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 

i.e., U = 
94+95.4

2𝑋95.4
=

189.4

190.8
= 𝟗𝟗. 𝟐% 

𝑂𝑚(𝐴𝑓𝑡𝑒𝑟 𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔) =
𝑀𝑎𝑓𝑡𝑒𝑟 𝐿𝐵−𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇
 = 

95.4−73.7

73.7
 

𝑶𝒎(𝑨𝒇𝒕𝒆𝒓 𝑳𝒐𝒂𝒅 𝒃𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈) =0.29 

The overhead of utilization (Out) is presented below: 

𝑂𝑢𝑡(𝑡𝑜𝑡𝑎𝑙) = 𝑈𝑇𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑇 = 96.3 − 78.9 = 17.4 

𝑂𝑢𝑡 reduced using neighbouring reservation-based fault tolerance: 

 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝐹𝑇 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑇 = 79.5% − 78.9% = 0.6% 

𝑂𝑢𝑡 reduced by accompanying load balancing: 

 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐿𝐵 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑇 = 99.2% − 78.9% = 20.3% 

Therefore, the proposed load balancing has reduced the overhead by 20.3%. 

The above illustration demonstrates the working of the whole hybrid model. Comparing the 

proposed model with FTHRM [72]. FTHRM shows the final utilization as 84.76 on the 

other hand proposed model shows the final utilization as 99.2% in the same example. It is 

because of escorting the proposed model with load balancing. Furthermore, FTHRM shows 

a makespan of 80 but the proposed model shows a makespan of 95.4. It is because the 

proposed model has reserved the neighboring VMs for the affected tasks and has also 

migrated the affected task from the failed VM to the neighbouring reserved VM. It is clear 

from the illustration that after load balancing the makespan and utilization have been 

optimized up to 18.8% and 20% respectively than before load balancing. 

 

Figure 4.10: Load Balancing after Fault Tolerance 
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4.4. Results and Discussions 

The proposed HFSLM is compared with four different approaches based on two main 

parameters i.e., makespan and average utilization. HFSLM is evaluated by comparing it 

with FTHRM, OLB, MIN MIN, and MAX MIN for less than 1000 tasks. Also, compared 

with ELISA and MELISA with greater than 10,000 tasks. The results were observed on 

varying the number of tasks and the number of VMs. Furthermore, task and machine 

heterogeneity are also varied to analyze the results of the proposed model more clearly. As 

mentioned in [35], the range of Expected Time to Compute (ETC) for ti on vj is variable as 

heterogeneity varies from low to high for both the arriving tasks and VMs. By altering the 

heterogeneities of the incoming tasks and virtual machines, HFSLM is evaluated in this 

section. 

4.4.1. Varying heterogeneity over small task scale 

The evaluation has been done by adjusting the number of tasks, size of tasks, number of 

VMs, and capacities of VMs in four different heterogeneities given by [35], i.e., high task-

high machine heterogeneity (HH), high task-low machine heterogeneity (HL), low task-

high machine heterogeneity (LH), low task-low machine heterogeneity (LL). For all these 

four cases the performance of the proposed model and compared strategies have been 

analyzed and depicted graphically in the given figures. In comparison, the tasks have been 

taken on a small scale varying from 250 to 1000. On the other hand, the virtual machines 

have varied from 16 to 128. Additionally, the input parameters taken to analyze the 

considered model are further shown in Table 4.4. 

Table 4.4: Simulation parameter used for HFSLM evaluation  

S.no. Input parameter Range 

1 No of tasks (n) 250 to 1000 

2 No of resources (m) 16 to 128 

Task size (t_size) 

2 Low task heterogeneity 1 MI to 100 MI 

3 High task heterogeneity 100 MI to 3000 MI 

VM Speed (S) 

5 Low machine heterogeneity 1 MIPS to 10 MIPS 

6 High machine heterogeneity 10 MIPS to 100 MIPS 
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4.4.1.1.  High task – High machine heterogeneity (HH) 

In high task heterogeneity, the task size ranges from 100 MI to 3000 MI, and high machine 

heterogeneity ranges from 10 MIPS to 100 MIPS. A few observations regarding the 

considered parameters, i.e., makespan and average resource utilization are depicted in 

Figure 4.11 and 4.12 respectively. Further details of the observations are as follows: 

• The proposed HFSLM is enhancing the makespan because of its planned features. 

For all the ranges of task number and VM number considered, the model surpasses other 

strategies by offering a minimum makespan. Apart from this, it is clearly seen in Figure 

4.11, that at large task scale and small VM scale, the makespan shown is quite large but in 

that case also, HFSLM offers an optimized makespan. 

• Furthermore, on comparing average resource utilization, HFSLM beats about 80% 

of the compared approaches. Additionally, for small-scale tasks, HFSLM shows better 

utilization than MAXMIN and as the number of tasks and VMs are going towards extremely 

large scales, HFSLM and MAXMIN go almost equally. 

• Out of all the compared approaches, OLB performs worst in both makespan and 

utilization. It is probably because of the fact that OLB does not follow any plans and 

strategies. 

 
Figure 4.11: Makespan for varying Tasks and VM (HH) 
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Figure 4.12: Avg. Resource Utilization for varying Tasks and VM (HH) 
 

4.4.1.2.  High task – Low machine heterogeneity (HL) 

In high task heterogeneity, the task size ranges from 100 MI to 3000 MI, and low machine 

heterogeneity ranges from 1 MIPS to 10 MIPS. A few observations regarding the considered 

parameters i.e., makespan and average resource utilization are depicted in Figures 4.13 and 

4.14. Further details of the observations are as follows: 

• The proposed HFSLM is enhancing the makespan in HL because of its planned 

features. For all the ranges of task number and VM number considered, the model surpasses 

other strategies by offering a minimum makespan.  Moreover, as depicted in Figure 4.13, 

HFSLM provides an optimized makespan even in the case of large task numbers and small 

available VMs. However, in such cases, MAXMIN offers the highest makespan. 

• On comparing average resource utilization, HFSLM again efficiently beats about 

80% of the compared approaches in HL also. In HL, the proposed model also beats 

MAXMIN in the case of a small task scale, and as the task scale goes up, both HFSLM and 

MAXMIN go with almost tie.  

• Out of all the compared approaches, OLB provides the worst makespan. However, 

in some cases, MAXMIN also did not show an optimized makespan. Additionally, in the 

case of average resource utilization, OLB offers very limited utilization than all the 

considered approaches. 
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Figure 4.13: Makespan for varying Tasks and VM (HL) 

 
Figure 4.14: Avg. Resource Utilization for Varying Tasks and VM (HL) 
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4.4.1.3.  Low task – High machine heterogeneity (LH) 

In low task heterogeneity, the task size ranges from 1 MI to 100 MI, and high machine 

heterogeneity ranges from 10 MIPS to 100 MIPS. A few observations regarding the 

considered parameters i.e., makespan and average resource utilization are depicted in 

Figures 4.15 and 4.16. Further details of the observations are as follows: 

• In this particular case, the proposed HFSM cannot beat MAXMIN with respect to the 

makespan in some scenarios. As depicted in Figure 4.15, the makespan  

provided by HFSLM and MAXMIN were equal. However, there are rare cases where 

HFSLM showed a little better makespan than that of MAXMIN. 

• On comparing average resource utilization, HFSLM again efficiently beats all the 

compared approaches except MAXMIN. For a low task scale, HFSLM beats MAXMIN. 

However, the performance of HFSLM in the mid-scale goes down than that of MAXMIN 

but as the task scale goes up, HFSLM shows optimized utilizations. 

  

Figure 4.15: Makespan for varying Tasks and VM (LH) 
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Figure 4.16: Avg. Resource Utilization for varying Tasks and VM (LH) 

4.4.1.4.  Low task – Low machine heterogeneity (LL) 

In low task heterogeneity, the task size ranges from 1 MI to 100 MI, and low machine 

heterogeneity ranges from 1 MIPS to 10 MIPS. A few observations regarding the considered 

parameters i.e., makespan and average resource utilization are depicted in Figures 4.17 and 

4.18. Further details of the observations are as follows: 

• In the case of LL, the proposed HFSLM beats MAXMIN concerning the makespan. 

As depicted in Figure 4.17, the makespan provided by HFSLM for small task scales goes 

up, both HFSLM and MAXMIN are in a tie. 

• On comparing average resource utilization, HFSLM utilizes the resource efficiently. 

However, MAXMIN and HFSLM behave almost the same in all task scales.  

 

Figure 4.17: Makespan for varying Tasks and VM (LL) 
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Figure 4.18: Avg. Resource Utilization for varying Tasks and VM (LL) 
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On comparing average utilization, the three models are compared on the basis of Min, Avg, 

and Max average resource utilization. In Figure 4.20, it can be noted that there is a 

significant variation in the range of virtual machine utilization for ELISA and MELISA. 

However, for HFSLM, the range of variations between minimum, average, and maximum 

utilization is almost negligible.  

 

Figure 4.19: Average Makespan for varying Heterogeneity 

The proposed model was seen to perform optimally in the case of utilization in all cases of 

heterogeneity. However, the model could not perform optimally on makespan in a few 

cases. 

 

Figure 4.20: Avg. Resource Utilization for varying Heterogeneity 
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makespan respectively. Besides, HFSLM shows 1.42% and 1.22% improvements in 

minimum resource utilization as compared to ELISA and MELISA respectively. On 

maximum resource utilization, the proposed model shows improvements of 39.1% and 

48.8% respectively. 

Remarks: The suggested approach outperforms another strategy for QoS parameters. A few 

reasons are listed below:  

• The proposed allocation considers both the upcoming tasks and newly added and 

deleted VMs. Additionally, optimal load distribution and effective average resource 

utilization occur simultaneously. As a result, it provides significant enhancement in all 

considered parameters.  

• As can be seen from the overall results the utilization of the proposed approach 

remains optimized on varying the number of tasks and VMs. This is because of the fact that 

the proposed allocation strategy focuses on distributing the arriving tasks throughout the 

available VMs. Moreover, various strategic advancements in the proposed HFSLM play a 

significant role in the same.  

• Furthermore, the proposed model outperforms all the compared approaches in HH 

and HL cases. It is because in high task heterogeneity the ready time of all the available 

VMs will always be sorted in other words, whenever we have high task heterogeneity, the 

ready time of all the VMs in the VM list will always be sorted. The sorted ready time of 

VMs is the best case for the proposed allocation. 

4.4.2.2.  Associated Fault Overheads (Makespan and Average Resource Utilization) 

The fault always suffers from overheads even if handled. Likewise, the proposed fault 

tolerance also suffers from overheads. However, the proposed HFSLM reduces the 

associated fault overheads by balancing the load after handling faults. This achieves 

optimization in makespan and average resource utilization by reducing the associated 

overheads. The reductions in associated overhead, concerning both makespan and average 

resource utilization after load balancing, are illustrated across all four scenarios of task and 

VM heterogeneities and are depicted in the following Figure 4.21 to Figure 4.28. 

High task – High machine heterogeneity (HH) 

• The HFSLM model proposed in this study achieves a notable optimization in 

makespan overhead, reaching up to a significant level of 65.17% improvement by 

adjusting both tasks and VMs in terms of makespan overhead post to the load 

balancing, as depicted in Figure 4.21. 
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• By efficient re-distribution of load among VMs, a decrease of 8.93% in resource 

utilization overhead is observed following the implementation of load balancing, as 

illustrated in Figure 4.22 and the reduction of overhead of utilization is depicted in 

Figure 4.23. 

 

Figure 4.21: Fault Makespan Overhead for varying Tasks and VM (HH) 

 

High task – Low machine heterogeneity (HL) 

• The HFSLM demonstrates its efficacy in reducing makespan overhead across 

various tasks and VMs after load balancing, achieving a substantial decrease of more 
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• The overhead related to the resource utilization is shown in Figure 4.25 and the 

reduction of utilization overhead is seen to be 4.49% after load balancing as depicted 

in Figure 4.26.  

 

Figure 4.24: Fault Makespan Overhead for varying Tasks and VM (HL) 

 

Low task – High machine heterogeneity (LH) 
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Figure 4.27: Fault Makespan Overhead for varying Tasks and VM (LH) 

 

Low task – Low machine heterogeneity (LL) 
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Figure 4.30: Fault Makespan Overhead for varying Tasks and VM (LL) 

 

Observations 
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4.5. Summary in Context 

In the proposed study, a Hybrid Fault-tolerant Scheduling and Load balancing Model is 

introduced employing neighboring-based VM to control failure in the cloud system with 

high computational demands. HFSLM uses a proficient task allocation strategy and 

distributes the arriving tasks among VMs at the arrival. In case of fault, the model uses the 

neighboring VMs of the faulty VM as a substitute and allocates an alternate VM to the 

affected task. Moreover, the proposed model escorts the whole system with an efficient 

load-balancing algorithm and maintains load equilibrium post-to-fault tolerance. After the 

implementation of the model in Python, performance evaluation was carried out by 

comparing HFSLM with FTHRM, MIN-MIN, MAX-MIN, and OLB on a low task scale by 

varying the task and VM in four different heterogeneities. The evaluations were performed 

based on makespan and average VM utilization. On very large task scales, the model was 

also contrasted with two other emerging models i.e., ELISA and MELISA. 

The suggested approach outperformed other considered strategies for QoS parameters. A 

few reasons are listed below:  

• The proposed allocation considers both the upcoming tasks and newly added and deleted 

VMs. Additionally, optimal load distribution and effective average resource utilization 

occur simultaneously. As a result, it provides significant enhancement in all considered 

parameters.  

• As can be seen from the overall results the utilization of the proposed approach remains 

optimized on varying the number of tasks and VMs. This is because the proposed allocation 

strategy focuses on distributing the arriving tasks throughout the available VMs. 

Moreover, various strategic advancements in the proposed HFSLM play a significant role 

in the same.  

• Furthermore, the proposed model outperforms all the compared approaches in HH and 

HL cases. It is because in high task heterogeneity the ready time of all the available VMs 

will always be sorted in other words, whenever we have high task heterogeneity, the ready 

time of all the VMs in the VM list will always be sorted. The sorted ready time of VMs is 

the best case for the proposed allocation. 

• The fault overheads with respect to both the makespan and average resource utilization 

have been reduced significantly in all four task and machine heterogeneities. However, in 

the case of LL case, the reduction was not found much significant. 
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Chapter 5 

CRFTS (Clustered and Nearest Neighbor Reservation 

based Fault Tolerant Scheduling) 

Cloud systems supply different kinds of on-demand services in accordance with client 

needs. As the landscape of cloud computing undergoes continuous development, there is a 

growing imperative for effective utilization of resources, task scheduling, and fault 

tolerance mechanisms. To decrease the users' task execution time (shorten the makespan) 

with reduced operational expenses, to improve the distribution of load, and to boost 

utilization of resources, proper mapping of user tasks to the available VMs is necessary. 

This study introduces a unique perspective in tackling these challenges by implementing 

inventive scheduling strategies along with robust fault tolerance mechanisms in cloud 

environments. 

This chapter introduces the Clustering and Reservation Fault-tolerant Scheduling (CRFTS), 

which maximizes the system reliability while making it fault-tolerant and optimizing other 

Quality of Service (QoS) parameters, such as Makespan, Average Resource Utilization, and 

Reliability. The study optimizes the allocation of tasks to improve the utilization of 

resources and reduce the time required for their completion. At the same time, the 

reservation-based fault tolerance framework is presented, emphasizing reactive strategies, 

thus ensuring continuous service delivery throughout its execution without any interruption. 

The effectiveness of the suggested model is illustrated through simulations and empirical 

analyses, highlighting enhancements in QoS parameters while comparing with HEFT [132], 

E-HEFT [133], and the latest LB-HEFT [134], FTSA-1 [135], and DBSA [56] for various 

cases/conditions over both tasks and VMs. 

The proposed CRFTS involves a novel VM allocation strategy, i.e., a clustered allocation 

strategy. It initially sorts the tasks and VMs and then divides both tasks and VMs into three 

clusters namely: low, mid, and high clusters. This clustering makes the allocation more 

efficient by narrowing the domain of mapping and allocating each task to the most suitable 

VM. The clustering restricts the domain of both tasks and VMs and thereby prevents the 

task from getting mapped with the VM which is apparently not appropriate. Furthermore, 

the proposed model is enforced with an effective fault-tolerant algorithm based on the prior 

reservation of VMs. The proposed model estimates the AR slot for the tasks and reserves 

the VM for tasks to guarantee the task execution till completion. The alternative VM is 

selected based on the previous load of the VM and the clustering approach. While evaluating 
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the model, CRFTS was evaluated based on parameters like Reliability, Makespan, and 

Average Resource Utilization on varying the number of tasks and number of VMs.  

Some of the recent related fault-tolerant models like HEFT (Heterogeneous Earliest Finish 

Time), FTSA-1 (Fault Tolerant Scheduling Algorithm), and DBSA (Deadline Based 

Scheduling Algorithm), etc. were proposed in [38], [40], [45] respectively undoubtedly 

made noteworthy contributions. However, it is imperative to acknowledge their inherent 

limitations, creating a compelling need for targeted interventions to propel the field toward 

further advancements. Among all these proposed approaches, the reliability of DBSA was 

seen to be the most efficient. An innovative hybrid checkpointing and rollback recovery 

mechanism is also stated by the author in [25]. In addition, the author claims that the main 

requirement of today's dispersed environment is the optimized utilization of resources. 

While the current fault-tolerant methods compromise makespan which eventually results in 

increased task execution time. Moreover, the diverged environment raises the challenging 

concern regarding the total reliability of the system while effectively addressing the fault 

situations. In certain existing fault-tolerant approaches, inefficiencies in resource utilization 

may arise, resulting in performance degradation and heightened effective rates. This 

constraint holds particular significance in cloud environments, where the imperative of 

efficient resource allocation is fundamental in achieving high resource utilization and 

maintaining optimal service delivery. The cloud may undoubtedly introduce diverged fault 

scenarios because of its dynamic nature and support of diverse applications. Addressing 

them becomes a principal requirement for ensuring a seamless and reliable user experience 

and thereby meeting service level expectations. After the extensive literature review, it was 

noted that the work on some scheduling parameters like makespan and average utilization 

of the resources can be addressed more. Here, we are motivated to propose the novel fault-

tolerant scheduling model, CRFTS that uses clustering-based allocation and reservation-

based fault tolerance. The CRFTS is compared with HEFT, FTSA-1, and DBSA and was 

evaluated for Reliability and Makespan. This model has improved reliability and surpasses 

all the compared approaches. Furthermore, the suggested model was compared with three 

other models i.e., HEFT, E-HEFT (Enhancement of Heterogeneous Earliest Finish Time) 

[27], and the most recent LB-HEFT (Load balancing- Heterogeneous Earliest Finish Time) 

[136] for Average Resource Utilization and Makespan. The outcomes demonstrate that 

CRFTS outperforms the compared state-of-art. Some of the enhancements of the 

contributed work are listed below: 

• Progress in Cloud Reliability 
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• Novel Task Scheduling 

• Reduction of Service Interruptions and Makespan 

• Efficient Utilisation of Resources 

• Fault-administration 

• Scalable and Adaptable Fault Handling. 

Additionally, the primary contributions of this chapter can be encapsulated in the following 

manner: 

• In order to find some ideal and optimized task scheduling of user tasks on the accessible 

VMs, we first introduced the problem of mapping between tasks and VMs. 

• Secondly, to handle dynamically failed or affected tasks, we propose a reservation-

based fault tolerance and migrate the affected task to some healthy VM. 

• To address the two identified challenges, we introduced the CRFTS approach, 

incorporating two methodologies. Initially, it utilizes the clustered technique for 

scheduling, and subsequently, for managing faults, the model incorporates the 

reservation technique. 

We established a system model to assess the effectiveness and efficacy of the proposed 

CRFTS approach by conducting comparisons with five other related approaches. The 

evaluation considered parameters such as Reliability, Makespan, and Average Resource 

Utilization during the execution of a set of parallel applications on varying tasks and VM 

heterogeneity. 

5.1. The Proposed Model 

In this section, we introduced the fault-tolerant-based scheduling algorithm. The incoming 

tasks are taken as set T= {t1, t2, t3… tn} and the VMs are taken as set V= {v1, v2, v3… vk}. 

This section explains the proposed CRFTS model which uses a clustering approach for 

allocation and the advance reservation of VMs to handle the failure in a dynamic 

computationally intensive cloud system. The proposed cluster-based allocation technique 

can be represented as the bipartite graph between the task set and VM set as shown in Figure 

5.2. The System Architecture and Problem Formulation are illustrated in the below 

subsection. 

5.1.1. The System Architecture 

The system architecture of LB-CRFTS is comprised of three main layers as shown in Figure 

5.1, i.e., Application, Middleware, and Host/VM Layer. Besides, the AR Module is an 
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important component of system architecture. The application layer and Host/VM layer 

present and involve the assumptions related to the cloud computing infrastructure included 

in the model. The considered cloud computing infrastructure involves:  

Description of VMs: Describe the VMs used in the model comprising their capacities within 

the system. The architecture also discusses how VMs are provisioned and administered.  

Operational task flow:  This defines how tasks are received and managed within the cloud 

infrastructure, from their arrival till completion. The process includes Task and VM sorting, 

Task and VM Clustering, Scheduling, Fault handling, and interaction between VMs and 

other components. 

Application Layer: This layer is responsible for the following operations:  

• Interface for the User: This layer serves as the principal interface between the user 

and the system. It is accountable for allowing and supervising user tasks and their 

requirements. 

• Task Management: After obtaining tasks from the user, task sorting will be performed 

based on certain criteria of task size. 

• Task Clustering: The sorted tasks are then processed by the task clustering component 

within the Application Layer. The task clustering component of the Application Layer 

is responsible for creating three task clusters, i.e., low, mid, and high clusters. 

Host/VM Layer: Likewise, the VMs are sorted and clustered in three clusters, i.e., low, mid, 

and high clusters in the Host/VM Layer using the VM clustering component.  

Middleware: This component is comprised of four main sub-components.  

• Cluster Matching is responsible for finding the corresponding VM cluster with respect 

to the task cluster.  

• After identifying the corresponding VM cluster, the suitable VM for the task is 

discovered by VM Discovery. 

• VM Mapping is responsible for matching the selected VM to the task or user 

requirements. 

• If the match is found, the Schedule Producer produces the generated schedule for the 

user tasks to the Application Layer.  

Furthermore, the Schedule Producer also communicates the generated schedule to the AR 

module.  

AR Module: When there is a fault or malfunctioning, the AR module kicks into gear, 

computing the AR slot for the unsuccessful task using its Time Manager component. Based 

on the computed AR slot, the VM Matching component identifies the reserved VM for the 
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affected task and ultimately the AR Module produces the reservation to the Application 

Layer through its Reservation Producer component. 

 

Figure 5.1: System Architecture of CRFTS 

 

5.1.2. System Modelling 

In the proposed system, the incoming tasks are taken as set T={t1, t2,t3,… tn} AND |T|=n are 

regarded as having varying or identical task weights (w). Some of the additional 

characteristics of the task are as follows: 

• Each task has a time when it starts its execution on any VM, i.e., STij (Start Time). 

• The completion time of ti on vj is termed as FTij (Finish Time). 

• Execution time of ti i.e., E(ti,vj) is the time taken by ti to complete on vj. 

• Besides, the scheduling is non-preemptive. The task is preempted only in case the 

corresponding VM has a fault or malfunction. 

Likewise, the available VMs with varied speed (s) are represented as a set V=[v1, v2, v3, 

…vj] AND |V|=j. Moreover, each ti in T and vj in V belongs to one of the three clusters i.e., 

low, medium, and high clusters. The cluster of ti and vj depends on the weight and speed of 

ti and vj respectively. Further, the model considers the VM with the following 

characteristics. 

• J is the number of heterogeneous computing VMs that will participate in the mapping 

of the independently arriving tasks. 
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• Only compute-intensive tasks are ideally suited for the VMs. 

• Each VM has its previous load which is termed the ready time of the VM. Initially, the 

ready time of all VMs is taken as zero which implies that the VM has not executed any 

task yet. (This factor measures the machine's prior workload). 

The properties of the proposed mapping are listed below: 

• The task is mapped to only one VM at a time. 

• The VM is mapped with more than one t. 

• Each mapping is performed in between the corresponding task and VM clusters. 

Further, the mapping between set T and set V is considered as many-to-one mapping in a 

bi-partite graph of T and V as shown in Figure 5.2. 

 

Figure 5.2: Many-to-One Mapping of Tasks and VMs 

Besides, the system model consists of two main algorithms—Task allocation, and Fault 

tolerance.  

5.1.3. Problem Formulation 

The problem is modelled by effectively mapping (M) the arriving tasks (T) and available 

VMs (V) with an optimized Makespan. The solution for an efficient “M” is to create an 

allocation schedule that directs the arrival of tasks to be submitted for processing on VM in 

a manner that optimizes the optimizing criterion, i.e., OC(M) where “M” is mapping for 

generating the schedule. The mapping (M) is represented as follows: 

                                                   𝑀 = 𝑇 →  𝑉        

TETj is the total execution time of any VM at any point (p) in time and is calculated as 

follows:  

𝑇𝐸𝑇𝑗,𝑝 = 𝑅𝑇𝑗,𝑝−1       (1) 

From here we will define the equations with respect to the given point (p) in time. Because 

tasks are of different size/weights (W) and VMs possess different speeds (S), therefore E(ti, 

vj) is the execution time of task (ti) on VM (vj) and can be calculated as follows: 
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𝐸(𝑡𝑖, 𝑣𝑗) = 
𝑊(𝑡𝑖)

𝑆(𝑣𝑗)
       (2) 

STij,p is the Start time of ti at any point in time and is the time when ti is assigned to vj and 

computed as: 

𝑆𝑇𝑖𝑗,𝑝 = 𝑅𝑇𝑗,𝑝−1         (3) 

In the demonstration, STij can also be calculated as shown in the following equation: 

𝑆𝑇𝑖𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝−1         (4) 

Furthermore, FTij is the time when ti completes its execution on vj and is computed as: 

𝐹𝑇𝑖𝑗 = 𝑆𝑇𝑖𝑗 + 𝐸(𝑡𝑖, 𝑣𝑗)      (5) 

After finishing the current task, the FTij will become the ST of the next task and is defined 

as: 

𝑆𝑇𝑖+1,𝑗 = 𝐹𝑇𝑖𝑗        (6) 

Besides, after completion of each ti, RT and TET are updated as shown below: 

𝑅𝑇𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝−1 + 𝐸(𝑡𝑖, 𝑣𝑗)     (7) 

The procedural flow of the model is explained below: 

5.1.3.1.  Task Allocation 

Task allocation starts with the sorting of both tasks and VMs in ascending order of their 

weight and speed, respectively. After sorting, the allocation is performed in two main phases 

as described below: 

•   Task and VM Clustering: 

In this phase, three different clusters are created from both T and V based on their weight 

and speed respectively. Clusters are specified and shown in Figure 5.3: 

 

Figure 5.3: Task and VM Clustering 
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The average phenomenon is used for Task and VM Clustering. Where initially the global 

average of size and speed for both the task and VM respectively is calculated in equations 

8 and 9:  

                             𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑎𝑠𝑘𝑠)  =
∑ 𝑊(𝑡𝑖)𝑛

𝑖=1

𝑛
              (8) 

                𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑉𝑀𝑠)  =
∑ 𝑆(𝑣𝑖)

𝑗
𝑖=1

𝑗
          (9) 

The global average separates the set into two halves (Left half and Right half) as shown in 

Figure 5.4. Similarly, the average of the index for the left half and the right half is calculated 

and named as left average and right average, respectively. 

Further, the cluster ranges are as follows: 

• Task Low Cluster [TCl : 0 <= TCl <= Left Average],       

• Task Mid Cluster [ TCm : ( Left Average +1 <= TCm <= Right Average],  

• Task High Cluster [TCh : (Right Average + 1 < = TCh < = onwards ].  

Similarly, VM clusters are specified as : 

• VM Low Cluster [VCl : 1 <= VCl <= Left Average],        

• VM Mid Cluster [ VCm : Left Average +1 <= VCm <= Right Average)],  

• VM High Cluster [VCh : (Right Average +1 < = VCh < = onwards ].  

The main axiom for the classification of VM is that the VMs in high clusters take less time 

to execute a particular task than subsequent cluster VMs. The clustering of tasks and VMs 

restricts the domain of allocation and thereby limits the weight and speed variations in the 

possible mapping. An easy way of understanding the clustering phenomenon is presented 

in Figure 5.4.  

 

Figure 5.4: Clustering Phenomenon 

• Task to VM Mapping: 

After creating task and VM clusters in the clustering phase, the one-to-one mapping is 

performed between the corresponding T and V clusters unless all the VMs get their first 

task to execute. The cluster-wise mapping is performed in two steps: 
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• Allocate the VM to the tasks in its corresponding cluster in order, until RT (any vj 

in the corresponding cluster = 0). 

• If the RT of all VMs is greater than 0, allocate the task to the VM in the 

corresponding cluster with the least RT. 

The same is explained and presented in Figure 5.5. 

 

Figure 5.5: Cluster-Wise Mapping 

There could be a case to allocate the tasks immediately after sorting. Such a type of 

allocation is referred to as Cluster-less allocation. The proposed task allocation algorithm is 

presented in Algorithm 1. 

Algorithm 1: Task Allocation Algorithm 

Input: (T, RT= 0, S, V, T_size)  /*Task and resource components 

Output (Makespan, Average Resource Utilization, Reliability,)           /*computed by eq. 

(13, 16, 21) respectively 

Phase 1: Task Clustering(T) 

1. Initialise the Task Clustering parameters: 

Low Task cluster range, medium task cluster range, high task cluster range 

2. Compute Global_Avg, Left_Avg, and Right_Avg 

For all tasks ti in T 

Int Global_ Avg, left_ Avg, Right_Avg 

Do 

Global_ Avg = Average of task size 

left_ Avg = Average of the left half 
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Right_ Avg = Average of the right half 

low task cluster range = 0 index to left_ Avg 

medium task cluster range = left_ Avg +1 to right_ Avg 

high task cluster range = right_ Avg +1 onwards 

End for 

Phase 2: VM Clustering(V) 

3. Initialise the VM Clustering parameters: 

Low VM cluster range, medium VM cluster range, high VM cluster range 

4. Compute Global_ Avg, Left_ Avg, and Right_ Avg 

For all vj in V 

Int Global_ Avg, left_ Avg, Right_ Avg 

Do 

Global_ Avg = Average of VM Speed 

left_ Avg = Average of the left half 

Right_ Avg = Average of the right half 

low VM cluster range = 0 index to left_ Avg 

medium VM cluster range = left_ Avg +1 to right_ Avg 

high VM cluster range = right_ Avg +1 onwards 

End for 

Phase 3: Task and VM Mapping 

Input: (RT, Task and VM Clusters)  

Output: Task to VM Mapping 

5. For all clusters in Clusters 

For all this in the cluster 

Allocated [i] = false 

If Allocated [i]= false 

        While ∀ vjs, (RT (vj) = 0)) 

      Do 

            Allocate ti to VM in the order 

            Allocated [i]= True 

    Allocate tasks to the VM with the least RT 

       Allocated [i]= True 

End for 

End for 
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The RTj and TETj are dynamically updated as in eq. 7 after the completion of each task. 

This implies that after a task gets completed on the VM with the recent least RT, the RT for 

that VM is recalculated to consider and reflect the additional load. The sorting of both VMs 

and Tasks before allocation and iterative updating of RT facilitates more adequate load 

distribution across all VMs. 

5.1.3.2.  Fault Tolerance 

In this phase, VMs are monitored for faults in that case, advance reservation is enabled and 

an alternative VM is provided for the affected task. The model supports fault tolerance by 

resource reservation technique to offer a backup VM for the impacted task in the event of 

VM failure. Eq. (10) given below is used to determine the AR slot:  

𝐴𝑅𝑖𝑗 = 𝐹𝑇𝑖𝑗 − 𝑆𝑇𝑖𝑗       (10) 

NOT expected_performance_metrics (vj) function is operated for discovering failed VMs 

and unexecuted tasks as discussed in Chapter 4.  

If any VM leaves the system or fails at any point in time, and an alternative VM is not there, 

the associated tasks will suffer premature termination. Let's suppose f VMs are failing and 

these ‘f’ VMs are taken as the separate set of failed VMs (Vf) and are defined as Vf = {vf : 

vf ∈ V and |Vf| =f}. This failing of VMs will affect the corresponding tasks and lead to the 

unsuccessful execution of these tasks. Let ‘u’ the number of unsuccessful tasks. Similarly, 

these ‘u’ unsuccessful tasks are taken as a separate set of unsuccessful tasks (Tu) and are 

defined as Tu = {tu: tu ∈ T and |Tu| = u & u<=|T|}. Now, these unexecuted tasks need to be 

reassigned to some alternative VM to complete their execution which is done by advance 

reservation technique. To ensure the uninterrupted operation of Tu, the task set tu must now 

be redistributed from vf to other relevant healthy vh in Vh. 

Where, Vh: vh | vh ∈ V AND vh ∉ Vf. 

The model reserves the nearest neighboring VM of the corresponding failed task as an 

alternative VM.  

After every redistribution of task tu from Tu to vj in V, the TETj is updated as shown below: 

𝑇𝐸𝑇𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝−1  −  𝐸(𝑡𝑢, 𝑣𝑓)      (11) 

𝑇𝐸𝑇𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝−1 + 𝐸(𝑡𝑢, 𝑣𝑗) 𝑤ℎ𝑒𝑟𝑒 𝑣𝑗 ∈  𝑉 𝐴𝑁𝐷 𝑣𝑗 ∉ 𝑉𝑓      (12) 

All tasks in Tu are migrated to another VM (Vj) from (Vf) for the calculated AR slot. The 

initial sorting helps the model to achieve a one-to-one suitable order. Thereafter, clustering 

before allocation restricts the domain of allocation which helps the model to assign the most 

suitable VM to the task. Lastly, the task from each cluster is allocated to the corresponding 
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VM clusters only which helps the model to avoid under and overutilization of the VM up 

to a certain degree. However, still there are chances of over and underutilization of VMs 

which will be handled by integrating the proposed approach with an efficient load-balancing 

technique that is in consideration for future work which continuously monitors the under 

and over utilising VMs and shifts the load between them. 

The proposed fault tolerance algorithm is presented in Algorithm 2. 

Algorithm 2: Nearest Neighboring Fault-tolerance Algorithm 

1 Load ARM (ti, vj, AR, Status[T])              /*Advance Reservation Matrix initialize 

all slots as zero 

2 For all tis in T 

Compute STij and FTij using eq. 3 and 5 

Compute AR slot using eq. 10 

3 Identify Vf and Tu as per Algorithm 2 in Chapter 4 

4 Identify healthy VMs  

Vh = vi|vi∈ V AND vi ∉ Vf 

 5   Reserve nearest neighbor VM 

for each tu in Tu: 

while Status(tu) = 1: 

for each tf.vi in V: 

 for each tf.vi in V: 

R= tu.vi +1 

L= tu.vi -1 

if (R, L ∈ Vh && RT(R) < RT(L)&& R ∈ Vh): 

            Select R (right neighbor) as an alternative VM for tu for ARij 

                                    // Reserve the time slot for the 

selected task 

else if (R, L ∈ Vh && RT(R) > RT(L)&& L ∈ Vh): 

Select L (left neighbor) as an alternative VM for tu for ARij 

else if (L ∈ V && R ∉ V&& L ∈ Vh)   //First 

VM fails 

Select L (left neighbor) as an alternative VM for tu for ARij 

else if (R ∈ V && L ∉ V&& R ∈ Vh)  //Last 

VM fails 
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Select R (right neighbor) as an alternative VM for tu for ARij 

else R++, L- - 

endfor 

endfor 

6 Update 𝑇𝐸𝑇j using eq. 11 and 12             

7 Update ARM with parameters (ti, vj, AR, Status==1 means VM reserved) 

End for 

Figure 5.6 presents an apparent flowing depiction of the model in a flowchart. 

 

Figure 5.6: Flowchart of CRFTS 

5.2. Illustrative Example 

This section presents the illustration of the model by comparing the proposed clustered 

allocations with the normal allocation without clustering. The comparison has been carried 

out by demonstrating the example in this section. Four VMs and an instance with nine 

separate independent activities or tasks have been taken as shown in Table 5.1 to 
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demonstrate the functionality of the proposed model. Here, MI stands for Million 

Instructions and MIPS for Million Instructions Per Second. 

Table 5.1: Considered instance of tasks and VMs 

Task (ti)                                 Weight (ti)                        Vj                Speed(Vj) 

t1 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

t9 

120 MI 

260 MI 

480 MI 

86 MI 

100 MI 

220 MI 

450 MI 

280 MI 

350 MI 

 

 

V1 

V2 

V3 

V4 

 

 

30 MIPS 

40 MIPS 

10 MIPS 

20 MIPS 

Note: The ready time of all VMs is initially taken as zero 

First, the allocation is done by only sorting the tasks and VMs without clustering. The 

example is demonstrated for both cluster-less allocation and clustered allocation to show 

how clustered allocation offers optimized QoS as compared to cluster-less allocation. The 

beginning and end of the execution of ti on vj are marked by the times called STij and FTij, 

respectively. Additionally, the E (ti, vj) is added to the STij to compute FTij.  

 

Figure 5.7: Mapping of Cluster-Less Allocation 

5.2.1. Cluster-less Task Allocation 

Initially, before the allocation, both tasks and VMs are sorted based on the weight of the 

tasks and the speed of the VMs. The undertaken instance after sorting is presented in Table 
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5.2 while the cluster-less mapping is shown in Figure 5.7. It shows the task to VM mapping 

by only the sorting of tasks and VMs without clustering them. 

Table 5.2: An instance of tasks and VMs after sorting 

Task (ti)                                 Weight (ti)                        Vj                Speed(Vj) 

t4 

t5 

t1 

t6 

t2 

t8 

t9 

t7 

t3 

86 MI 

100 MI 

120 MI 

220 MI 

260 MI 

280 MI 

350 MI 

450 MI 

480 MI 

 

 

V3 

V4 

V1 

V2 

 

 

10 MIPS 

20 MIPS 

30 MIPS 

40 MIPS 

 

After sorting, the allocation begins by mapping the tasks and VMs in the same sorting order 

until the RT of any VM is 0. Once the RT of all VMs becomes greater than 0, thereafter, 

tasks are allocated to the VM having the least RT. Here, t4 is allocated to v3, t5 is allocated 

to v4 so on. Here, the RT of each VM which is initially zero will become the ST of the 

corresponding task allocated to that VM. Therefore, ST43, ST54, ST11 , ST62 is zero. After t4 

, t5 , t1 and t6 completes its execution on the assigned VMs, the FT43 will be calculated by 

adding the E(t4,v3) to the ST43 and E(t4,v3) = 
86

10
 = 8.6. Therefore, FT43 will be 0 + 8.6 = 8.6. 

Similarly, FT54, FT11, and FT62 will be 5, 4, and 5.5 respectively as shown in Figure 5.8. 

Here, TETj and RTj will be updated and are taken as FT of the respective tasks. Now, the 

next task will be allocated to the VM having the least RT and FTij will become ST for ti+1 

assigned to vj. Hence, 8.6 will be ST73, 5 will be ST84, 4 will be ST21 and 5.5 will be ST92 

as shown in Figure 5.8. Similarly, each task is allocated to the VM with the least RT and 

both RT and TET will be updated after every completion of the task. After all the tasks are 

completed the final TET of v1, v2, v3, and v4 will be 28.6, 14.25, 53.6, and 19 respectively 

as shown in Figure 5.8. 

Once the execution of all tasks is completed, the Makespan and Average Resource 

Utilization are calculated from eq. 13 and 16 respectively. 

Makespan will be calculated as Max (28.6, 14.25, 53.6, 19) as in eq. (13) 

Makespan = 53.6 
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Average Resource Utilization will be calculated as: 

UT= 
28.6 +14.25+53.6+19 

4 ∗ 53.6
 = 

115.45

214.4
 = 53.8%   as in eq. (16) 

 

 

Figure 5.8: Demonstration of Cluster-Less Allocation 

5.2.2. Proposed Clustered Task Allocation 

The proposed clustering allocation is demonstrated in these phases. 

5.2.2.1. Task and VM Clustering Phase 

The clustered allocation narrows the domain of mapping by separating the tasks and VMs 

into three different clusters after sorting as explained in Section 3.3.1.1. Following the 

clustering, the task allocation is performed between the respective clusters only. The 

mapping of clustered allocation of the undertaken example is shown in Figure 5.9. 

 

Figure 5.9: Mapping of Clustered Allocation 
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5.2.2.2. Task and VM Mapping Phase 

After clustering, the allocation begins in the same sorting order until the RT of any VM is 

0 but only in the respective clusters. Here, t4 is allocated to v3. Once, the RT of all VMs in 

the particular cluster becomes greater than 0, then the next task is allocated to the VM of 

the same cluster having the least RT. Likewise, t5 and t1 are allocated to v3. Where, the ST43, 

ST53, and ST13 will be 0, 8.6, and 18.6 respectively. In the mid cluster, t6 is allocated to v4, 

and t2 is allocated to v1 both having RT equal to zero. Once t6 and t2 are completed, RT(v4) 

= 11 and RT(v1) = 8.6 then t8 will be allocated to the VM with the least RT in the mid cluster 

only. i.e., v1. After all the tasks are completed the final TET of v1, v2, v3, and v4 will be 

17.93, 30, 30.6, and 28.5 respectively as shown in Figure 5.10.  

In this example, the makespan will be calculated as Max (17.93, 27.62, 30.6, 28.5) as in 

eq. (13) 

Makespan = 30.6 

In this example, Average Resource Utilization will be calculated as: 

UT= 
17.93 +27.62+ 30.6+28.5  

4 ∗ 30.6
 = 

104.2

122.4
 = 84.9% as in eq. (16) 

 

 

Figure 5.10: Demonstration of Clustered Allocation 

On comparing the makespan and average utilization with the cluster-less allocation, the 

makespan was found to be 53.6 in the case of cluster-less allocation. However, in clustered 

allocation, the makespan was optimized to 30.6. Similarly, average resource utilization was 

found to be 53.8% in cluster-less allocation while the average utilization of clustered 

scheduling was found to be 84.9%. Therefore, the proposed clustered allocation strategy 
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was found to be more optimized concerning both makespan and resource utilization than 

that of cluster-less allocation.  

5.3. Performance Metrics 

After the successful task execution, the reliability of the system is checked. Additionally, 

the Makespan is taken as the highest or maximum among all TETj and can be expressed as 

eq. (13) [137]. 

Makespan = max (FTij), ∀Vj      (13) 

Progress percentage of Makespan (Ppm): It is the percentage of progress in makespan 

offered in proposed CRFTS over the other existing approaches i.e., HEFT, E-HEFT, and 

LB-HEFT approaches, and is calculated in eq. (14) [138]. 

                       Ppm (%) = 
𝑀 (𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)− 𝑀(𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)

𝑀(𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)
  * 100             

(14) 

Average of (Ppm): To calculate the deviation from the desired rate in percentage, divide 

the sum of every Ppi for each tested VM by their respective tested numbers as shown in 

eq. (15) [139]. 

Average of (Ppm) = 
∑ 𝑃𝑝𝑚 (𝑒𝑎𝑐ℎ 𝑡𝑒𝑠𝑡𝑒𝑑 𝑉𝑀 𝑛𝑢𝑚𝑏𝑒𝑟)

𝑡

𝑖=1

𝑡
                               

(15) 

The Average VM utilization of the system is calculated in eq. (16) as [140]. 

        UT =
∑ (FT − p(tf Є Vf ,Vj Є Vf ))

k

1

k ∗Makespan
 ∀Vj                                                           (16)  

Progress percentage of UT (Ppu): It is the ratio defining the progress percentage of average 

utilization of the proposed CRFTS and other compared approaches and is calculated in eq. 

(17) as [141]. 

                       Ppu (%) = -(
𝑈𝑇 (𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)− 𝑈𝑇(𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)

𝑈𝑇(𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)
)  * 100                   

(17) 

Average of (Ppm): To calculate the deviation from the desired rate in percentage, divide 

the sum of every Ppu for each tested VM by their respective tested numbers as shown in 

eq. (18) [142]. 

     Average of (Ppu) = 
∑ 𝑃𝑝𝑢 (𝑒𝑎𝑐ℎ 𝑡𝑒𝑠𝑡𝑒𝑑 𝑉𝑀 𝑛𝑢𝑚𝑏𝑒𝑟)

𝑡

𝑖=1

𝑡
                                          (18) 

The reliability of the model is derived in terms of the Mean Time Between Failure (MTBF) 

and Failure rate (ʎ). 
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MTBF is the average time between two consecutive failures and is presented in eq. (19) 

[104]: 

        MTBF =  
𝐹𝑙𝑜𝑤𝑡𝑖𝑚𝑒

|𝑇𝑢|
                              (19) 

Where, |𝑇𝑢| = Fault (%age) * |𝑇𝑛| 

Where, Tn and Tu are the total number of tasks and total unexecuted tasks, respectively, at 

any point in time  

Failure rate (ʎ) is the reverse of MTBF and a measure of a system's effectiveness; the 

equation for ʎ is calculated as in eq. (20) [104] : 

ʎ = 
1

𝑀𝑇𝐵𝐹
                          (20) 

Reliability is calculated in terms of the percentage and is the ratio between the failed tasks 

and total tasks. Reliability is considered a maximization problem. It is defined as the 

percentage of tasks that are successfully completed out of all incoming tasks and is 

calculated in eq. (21): 

                                     Reliability = 
|𝑇𝑛| − | 𝑇𝑢|

|𝑇𝑛|
   * 100                     

(21) 

The Model readily provides the reserved VM as an alternative VM for the impacted task to 

ensure the successful execution of every task. Thereby, confirming maximum reliability in 

the event of more than 50% of faulty VMs. 

5.4.   Results and Observations 

The results obtained from this work are detailed in this section. These results are derived 

from the algorithms outlined in the previous sections of this chapter and are presented in a 

structured manner to ensure clarity and coherence. 

5.4.1. Experimental Setup 

An analysis of the performance of the proposed CRFTS algorithm has been conducted in 

small and large task scales. The proposed model was compared based on Makespan and 

Average Resource Utilization while competing with HEFT, E-HEFT, and the latest LB-

HEFT algorithm on a small task scale. The suggested CRFTS algorithm has been 

implemented in a heterogeneous environment evaluated on 5, 10, 20, and 40 VMs for 

varying the tasks from 25 to 1000. However, for large task scales, the task ranges are taken 

from 25 to 4096 and the model was cultivated with the existing HEFT, FTSA-1, and DBSA 

algorithms in terms of Makespan and Average Resource Utilization in the case of 100 VMs. 

Furthermore, the model was evaluated in terms of Reliability while comparing with HEFT, 
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FTSA-1, and DBSA on a small task scale taking the VM number as 20. Additionally, the 

size of task heterogeneity ranges from 1 to 100 MI while the speed of VM heterogeneity 

ranges from 1 to 10 MIPS. Table 5.3 presents the experimental environment for better 

understanding. The results show that the recommended model performs better than the 

comparison techniques. 

Table 5.3: Experimental Environment and Parameters 

Parameters 

Optimized 

Experimental Setups / 

Compared Approaches 

Input parameter Range 

Reliability HEFT, DBSA, FTSA-1 

Small Task 

Scale 

Task Range 25 to 1000 

Makespan, 

Average Resource 

Utilization 
HEFT, E-HEFT, LB-HEFT VM Range 5 to 40 

Makespan, 

Average Resource 

Utilization 

HEFT, DBSA, FTSA-1 
Large Task 

Scale 

Task Range 512 to 4096 

VM Number 100 

Task and VM Heterogeneity 

Task 

Heterogeneity 

Range 

1 MI to 100 MI 

VM 

Heterogeneity 

Range 

1 MIPS to 10 MIPS 

5.4.2. Small Task Scale 

It is used to implement the suggested CRFTS algorithm in a heterogeneous environment 

evaluated on 5, 10, 20, and 40 VMs for varying the tasks from 25 to 1000. 

5.4.2.1.  Makespan 

In Figure 5.11 (a-d), the implementation results of our suggested CRFTS are shown in 

comparison to HEFT, E-HEFT, and LB-HEFT concerning makespan using task instances 

of 25, 50,100, 500, and 1000 by considering 5, 10, 20, and 40 VMs, respectively. CRFTS 

surpasses the other compared algorithms when it comes to the time needed to finish the 

task for any number of VMs, according to the comparative results in Figure 5.11 (a-d). This 

is because, while mapping, the CRFTS utilizes a clustering approach that restricts the 

mapping domain of both tasks and VMs and thereby selects an appropriate VM for the task.  
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(a) 5 VMs 

 

 

(b) 10 VMs 

 

 

(c) 20 VMs 
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(d) 40 VMs 

Figure 5.11: Makespan of Compared Approaches on 5, 10, 20, and 40 VMs (a-d) 
 

Observations 

Out of all methods, the E-HEFT algorithm offers the highest makespan. This may be due to 

the Matching Game theory that is used in E-HEFT to assign tasks to the appropriate VMs. 

However, the matching game theory selections take all tasks and VMs into consideration, 

which requires a lengthy selection process and reduces makespan. The results demonstrate 

that the proposed CRFTS algorithm outperforms the other algorithms. Specifically, as the 

quantity of VMs increases to 40, the laid-out algorithm outperforms the HEFT, E-HEFT, 

and LB-HEFT algorithms in terms of makespan for any number of tasks and VMs as seen 

in Figure 5.11 (c and d). 

Ppm over other compared approaches 

Further, the results of comparing the proposed CRFTS algorithm's average enhancements 

(average progress percentage (Ppm)) to the compared approaches with respect to the 

makespan in percentage computed as in eq. 14 and 15 employing 5, 10, 20, and 40 VMs 

using various task sizes with the HEFT, E-HEFT, and LB-HEFT existing algorithms are 

shown in Table 5.4 for comparison. 

Table 5.4: Ppm Related to the Proposed CRFTS 
Tested VM numbers Ppm over HEFT Ppm over E-HEFT Ppm over LB-HEFT 

5 12.06% 2.96% 9.42% 

10 28.55% 32.2% 35% 

20 61.72% 64.79% 60.50% 

40 65.22% 67.42% 62.91% 

 

The final average progress percentage shows that the optimization of the makespan is 

increasing as the number of tasks and VMs are increasing which is expected because as the 
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number of task and VMs are increasing, the clustering gets optimized thereby optimizing 

the makespan. 

5.4.2.2.  Average Resource Utilization 

The performance of CRFTS has improved resource utilization per VM compared to other 

methods, as shown by the findings in Figure 5.12 (a-d). As the number of virtual computers 

rises, this tendency continues. However, as the number of tasks rises, the utilization shown 

by the CRFTS increases dramatically. Besides, with an increase in task number, the 

utilization of the other three models decreases. As can be seen from Figure 5.12 (b), the 

proposed CRFTS offers very optimal utilization, especially in the case of high task numbers 

and all other three comparing models perform very low utilization of resources. Moreover, 

all the comparing approaches work well for the low range of task numbers. However, as the 

task number increases, the utilization of the comparing models decreases. Unlikely the 

proposed model shows a constant growth in the utilization with an increase in task number. 
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(c) 20VMs 

 

 

(d) 40 VMs 

Figure 5.12: Average Resource Utilization of Compared Approaches on 5, 10, 20, and 40 

VM (a-d) 

 

Observation 

CRFTS was shown to be heavily utilized across all VM ranges, particularly for more than 

100 tasks. Furthermore, the utilization of CRFTS is found to be approximately constant on 

varying tasks or VMs. This is because of sorting done before allocation. Moreover, CRFTS 

is found optimal than the compared approaches in all three considered parameters.  

Additionally, HEFT was shown to have the lowest average utilization among the other 

techniques. Moreover, LB-HEFT was found to be the second-best model in the case of 

utilization after CRFTS. However, when the number of tasks is less than 50, LB-HEFT 

performs somewhat better than CRFTS. As compared with HEFT, the proposed approach 

shows improvements in utilization from 3% to 33%. CRFTS shows improvements of 2% to 

30% as compared to E-HEFT. This may be because, in this approach, the maximum number 
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of servings per machine must be considered while choosing the suitable machine for each 

job. While comparing CRFTS with LB-HEFT, the suggested model has shown 

improvements of 0% to 30%.  

Ppu over other compared approaches 

Additionally, the results of comparing the proposed CRFTS algorithm's average 

enhancements (Ppu) to the compared approaches with respect to the average resource 

utilization in percentage computed as in eq. 17 and 18 employing 5, 10, 20, and 40 VMs 

using various task sizes with the HEFT, E-HEFT, and LB-HEFT existing algorithms are 

shown in Table 5.5 for comparison. 

Table 5.5: Ppu related to the proposed CRFTS 
Tested VM numbers Ppu over HEFT Ppu over E-HEFT Ppu over LB-HEFT 

5 20.53% 22.11% 7.38% 

10 30.42% 18.86% 16.94% 

20 9.26% 6.60% 4.37% 

40 17.26% 10.01% 5.40% 

The final average progress percentage shows that improvements in average resource 

utilization in HEFT are increasing as the number of VMs is increasing. However, the 

average progress percentage of CRFTS is significant in E-HEFT and LB-HEFT.  

5.4.2.3.  Reliability 

The model is compared with other fault-tolerant models like HEFT, DBSA, and FTSA-1 

and was evaluated based on reliability where the number of tasks varied from 25 to 1000, 

as can be seen in Figure 5.13. The performance of CRFTS has improved reliability as 

compared to other methods, as shown by the findings in Figure 5.13 (a-d). As the number 

of virtual computers rises, the reliability increases. However, as the number of tasks rises, 

the reliability in most of the cases decreases. As can be seen from Figure 5.13 (a-d), the 

proposed CRFTS offers increased reliability. However, when the number of VMs is 40, 

FTSA-1, DBSA and the proposed CRFTS performed optimally. Besides, the tendency of 

increased reliability offered by CRFTS continues as shown in Figure 5.13 (d).  

The minimum reliability of HEFT, FTSA-1, and DBSA is 57.24%, 93.10%, and 89.20% 

respectively. At the same time, the reliability of the proposed CRFTS ranges from 99.3% to 

99.9% on varying both VM and task numbers.  
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(d) 40 VMs 

Figure 5.13: Reliability of Compared Approaches 

Observations:  

Additionally, with the increase in task number, the reliability of HEFT and FTSA-1 

decreases while for DBSA and CRFTS, the reliability increases with the increase in task 

number as can be seen in Figure 5.13. However, CRFTS shows better reliability than that 

of DBSA. It was discovered that HEFT has extremely low reliability as compared to other 

approaches. It may be because HEFT does not offer any fault handling mechanism and 

thereby does not provide guaranteed task completion in case of faulty. Moreover, HEFT 

always assigns tasks to the processor with the Earliest Finish time (EFT) without taking 

load balancing across processors into account. Furthermore, the CRFTS shows an increase 

of 12.71% to 71.06%, 1.12% to 3.95%, and 1.31% to 6.54% than HEFT, FTSA-1, and 

DBSA, respectively. The improvements in the reliability of the proposed CRFTS are because 

of the advance reservation employed for handling the faults. 

5.4.3. Large Task Scale 

Here, the task ranges are taken from 25 to 4096 and the model is cultivated with the existing 

HEFT, FTSA-1, and DBSA algorithms in terms of Makespan and Average Resource 

Utilization for 100 VMs. 

5.4.3.1.  Makespan: 

Furthermore, Figure 5.14 displays the implementation outcomes of our suggested CRFTS 

on comparison with HEFT, FTSA-1, and DBSA algorithms concerning makespan on 

varying the number of tasks from 512 to 4096. The CRFTS model improves the other 

comparing algorithms in terms of makespan to complete the workflow for any range of task 

numbers, according to the comparative results in Figure 5.14.  
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Figure 5.14: Makespan of Compared Approaches on 100 VMs 

 

Observations: 

Out of all the approaches, HEFT offers an optimized makespan after the proposed CRFTS. 

However, FTSA-1 provides the highest makespan among all the approaches. It may be 

because FTSA-1 is focusing more on reliability than that of makespan. According to the 

results related to makespan, CRFTS shows 40%, 6.32%, 9.358%, and 25.870% 

improvements over HEFT in 512, 1024, 2048, and 4096 tasks respectively. Comparing 

CRFTS with DBSA and FTSA-1, the proposed CRFTS shows more than 40% improvements 

in varying the number of jobs, respectively. 

 

5.4.3.2.   Average Resource Utilization: 

Figure 5.15 displays the implementation outcomes of our suggested CRFTS in comparison 

with HEFT, FTSA-1, and DBSA algorithms concerning average resource utilization on 

varying the number of jobs from 512 to 4096. The CRFTS offers improved average resource 

utilization than other compared algorithms to complete the workflow for any range of task 

numbers, according to the comparative results in Figure 5.15.  
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Figure 5.15: Average Resource Utilization of Compared Approaches on 100 VMs 

Observations: 

The average resource utilization provided by FTSA-1 was found to be very low compared 

to the other approaches. The utilization offered by HEFT is second optimal after CRFTS. 

CRFTS was found optimum as compared to other approaches. According to the results 

concerning to average resource utilization, CRFTS shows 14.38624%, 2.415644%, 

3.169663%, and 2.083104% improvements over HEFT, 36.55696%, 37.33824%, 

30.07273%, and 19.15755% improvements DBSA and 19.05063%, 7.11148%, 

8.54854%, and 8.130822% improvements over FTSA-1 in 512, 1024, 2048, and 4096 

number of tasks respectively. 

5.5. Summary in Context 

To get around the overheads of the compared approaches, the work in this article introduces 

the novel clustering approach for task scheduling namely CRFTS. The proposed CRFTS 

allocates the tasks in such a way that makespan is minimized and utilization is maximized. 

Out of all compared approaches, the optimal makespan is provided by the proposed CRFTS 

because of the clustering approach used for task allocation. However, the longest makespan 

is provided by the E-HEFT method. This is because each task is mapped by the E-HEFT 

algorithm table using the optimal VM rules over matching game theory. Additionally, 

CRFTS shows the increased resource utilization as the number of tasks is increasing. 

Conversely, the utilization of all other compared approaches decreases as an increase in the 

number of tasks. On the other hand, the LB-HEFT method performs better than HEFT in 

terms of resource utilization for considered VMs, as shown by the comparative findings in 

Fig. 6 (a-d). This is because, in contrast to the HEFT algorithm, which always selects the 

device with the earliest finish time without taking the number of tasks on the machine into 
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account, the LB-HEFT algorithm depends on the number of tasks assigned to each machine, 

which influences consumption of the devices at a rate close to one another. Furthermore, 

the progress percentage of both makespan (Ppm) and utilization (Ppu) revealed by LB-HEFT 

is significantly related to the other compared algorithms and was also computed. The model 

is also enhanced on other parameters like reliability and average resource utilization. The 

reliability of the model was enhanced by making the proposed scheduling approach fault-

tolerant. The fault tolerance is incorporated in the model by using the reservation technique 

where the VM is bound to the task for the pre-estimated time slot known as the reservation 

slot. This bounding of VMs to the task manages the failure of any cloud-based VM. The 

model was compared with 5 existing models i.e., HEFT, E-HEFT, LB-HEFT, FTSA-1, and 

DBSA by varying the number of VMs and tasks. The evaluations are carried out for small 

and large task scales. The outcomes demonstrate that the suggested model outperforms all 

the considered methods. More particularly, as the number of tasks is increasing the model 

shows the constant growth in the considered parameters.  
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Chapter 6 

Conclusion and Future Directions 

6.1. Conclusion 

This research has navigated the complex environment of fault-tolerant resource provisioning in 

cloud computing, aiming to strike a delicate balance between performance optimization and 

user satisfaction. The journey originated with a systematic discovery of existing fault-tolerant 

techniques, highlighting their role in enhancing the cloud computing landscape. QoS constraints 

emerged as central elements influencing the equilibrium between resource utilization and SLAs. 

The succeeding chapters revealed a description of innovation and observed exploration. 

Existing approaches were inspected, and in response to the discovered gaps, novel frameworks 

and models were introduced. The RFRTS model tackled task scheduling and reservation-based 

fault tolerance, while the HFSLM model developed resource allocation, achieving a balanced 

synergy between user satisfaction and performance metrics. Moreover, HFSLM is designed to 

satisfy the load distribution equilibrium post-to-fault tolerance. This equilibrium is maintained 

by integrating the load balancing with fault tolerance. CRFTS strategy further emphasized the 

potential for significant reductions in Makespan and improved Resource Utilization. Producing 

these contributions, the findings establish noticeable improvements in the effectiveness of 

cloud computing settings. The proposed contexts have demonstrated not only theoretical 

possibilities but also realistic feasibility, as demonstrated by empirical measurements. These 

outcomes establish the efficiency of strategies in resource utilization, enhancing task 

execution times, and improved reliability measures. 

• Chapter 1 serves as the entry point into an extensive exploration of cloud computing. 

It begins by offering a comprehensive introduction to the complex landscape of cloud 

computing, laying the foundation for a detailed exploration of its broad-ranging impacts. 

A pivotal focus of the chapter is the insightful dissection of methodologies and strategies 

intricately woven into the fabric of cloud computing to achieve resource provisioning. By 

delving into these approaches, the chapter not only elucidates their theoretical 

underpinnings but also discerns their practical applications, shedding light on their pivotal 

role in optimizing cloud performance and satisfying the SLAs.  

In conclusion, Chapter 1 serves as a comprehensive introduction to the intricacies of cloud 

computing and lays a robust groundwork for the succeeding chapters. By weaving together 

theoretical insights, practical applications, and a keen awareness of environmental 
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implications, this chapter not only informs but also piques curiosity, setting the stage for a 

thorough exploration of fault-tolerant resource provisioning in cloud computing. 

• In Chapter 2, diverse models for analyzing the faults, and rectifying these faults by 

implementing fault-tolerance integrated with scheduling and load-balancing strategies in 

cloud environments are comprehensively surveyed. The main emergent and developing 

methods regarding fault tolerance in the cloud environment are categorized into Proactive, 

Reactive, and Resilient. In resilient approaches, the revolutionary technologies AI/ML are 

considered and are observed to be more efficient than proactive and reactive techniques. It 

is because the reactive and proactive techniques normally employ the traditional procedures 

like, checkpoint restart, replication, migration, etc, which have limitations as these 

procedures could find it difficult to adjust dynamically or regulate to shifting demands, 

which could result in inefficiencies during times of high consumption. 

After reviewing the literature, the below-mentioned conclusions can be drawn: 

o Checkpoint, restarting, and replication were found to be the frequently used methods 

to address the faults in the cloud. 

o Scholars and researchers are more concerned with determining crash defects than 

hardware faults such as transient, intermittent, or permanent faults. 

o When it comes to the implementation tool for evaluating the presented algorithms, 

research is mostly using the Cloudsim tool. 

o Proactive approaches have been used more frequently than reactive and resilient. 

o Researchers are more motivated toward response time and less towards makespan, 

adaptability, accuracy, and crashes. 

o Since the resilient approach utilized machine learning and artificial intelligence to 

predict and handle faults; therefore, it is the forthcoming effort of fault tolerance in 

the cloud. 

 

• Chapter 3 proposes explorations of fault tolerance and task scheduling. The RFRTS 

model is proposed in this chapter which is concluded below:  

Response Ranked Task Scheduling and Advance Reservation: 

Initially, the proposed ranked-based scheduling approach is used for task allocation, and 

later reservation-based reactive fault tolerance method is suggested for a cloud system. To 

achieve the highest level of cloud computing infrastructure reliability, the suggested 

technique considers CPU faults and the VM reservation will ensure the assignment of an 
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alternative VM to the affected task. The proposed fault-tolerant approach has been 

compared with three existing reliable fault-tolerant approaches namely multi-objective 

scheduling algorithm with Fuzzy Resource utilization (FR-MOS), Cost-effective Workflow 

Scheduling Algorithm (CWS), and Fault-tolerant Cost-effective Workflow Scheduling 

Algorithm (FCWS) based on reliability. The outcomes unequivocally show that our 

suggested RFRTS algorithm surpasses the current FR-MOS, CWS, and FCWS considering 

reliability in all the states. 

Since system reliability is one of the major issues in cloud systems, focusing on "execution 

till completion" is a crucial factor in enhancing reliability, therefore fault tolerance is 

necessary to achieve. The research suggests a method for task ranking by considering task 

lengths and task wait times. Besides, the algorithm implies an allocation strategy based on 

the determined rank value. Also, we provide a fault-tolerance strategy in which VM 

reservations are made based on a pre-calculated reservation window. The paper's focus is 

on the system’s reliability. The major drawback of the suggested allocation is that it could 

not minimize the makespan. However, it will unquestionably improve the task response 

times by focusing on the wait time of the tasks. The study's future demand for working with 

the suggested ranked scheduling technique, where the VMs will also be ranked to work over 

further optimizations of makespan and resource utilisation. The model will be extended by 

accompanying load-balancing techniques for further optimization of the environment. 

The proposed RFRTS was evaluated on reliability by comparing it with other reliable 

existing models namely, FCWS, FR-MOS, and CWS. We selected five distinct states of 

task numbers with varying lengths for the simulation we created: Small(S)[n = 50 approx], 

Medium(M)[n=100 approx], Medium large(M-L)[n=200 approx], Large(L)[n = 400 

approx], Extra large(E-L)[n=600 approx]. 

In S, the minimum improvement by the model was seen to be 0.30% while the maximum 

improvement was seen to be at 2.25%. In M, the minimum improvement by the model was 

seen to be 1.32% while the maximum improvement was seen to be 2.36%. In M-L, the 

minimum improvement by the model was seen to be 1.53% while the maximum 

improvement was seen to be 2.37%. In L, the minimum improvement by the model was 

seen to be 1.65% while the maximum improvement was seen to be 2.18%. In E-L, the 

minimum improvement by the model was seen to be 1.26% while the maximum 

improvement was seen to be 2.45%. 
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• In Chapter 4, a Hybrid Fault-tolerant Scheduling and Load balancing Model is 

introduced employing neighboring-based VM to control failure in the cloud system with 

high computational demands. HFSLM uses a proficient task allocation strategy and 

distributes the arriving tasks among VMs at the arrival. In case of fault, the model uses the 

neighboring VMs of the faulty VM as a substitute and allocates an alternate VM to the 

affected task. Moreover, the proposed model escorts the whole system with an efficient 

load-balancing algorithm and maintains load equilibrium post-to-fault tolerance. After the 

implementation of the model in Python, performance evaluation was carried out by 

comparing HFSLM with FTHRM, MIN-MIN, MAX-MIN, and OLB on a low task scale by 

varying the task and VM in four different heterogeneities. The evaluations were performed 

based on makespan and average VM utilization. On very large task scales, the model was 

also contrasted with two other emerging models i.e., ELISA and MELISA. 

The evaluation has been done by adjusting the number of tasks and VMs, size of tasks, and 

capacities of VMs in four different heterogeneities given by [35] i.e., HH, HL, LH, LL. For 

all these four cases the working efficiency of the proposed model and compared strategies 

have been analyzed and depicted graphically in the given figures. In comparison, the tasks 

have been taken on a small scale varying from 250 to 1000. On the other hand, the VMs have 

varied from 16 to 128. 

The suggested technique outperforms FTHRM in terms of makespan and utilization, which 

go from 0.72% to 10.8% and 1.01% to more than 50%, respectively. When compared to 

MAX-MIN, HFSLM exhibits makespan improvements of -3.03% to 8.8% and average 

resource utilization gains of -2.15% to 6.7%. While comparing the suggested approach with 

MIN-MIN, the model shows an improvement of 0.6% to 19% in makespan and 1.09% to 

more than 45% in utilization. However, OLB was seen to perform very weakly among all 

approaches where the suggested model shows improvements of more than 50% in both 

makespan and utilization than OLB. Furthermore, it was observed that all the models 

perform almost equal optimization in makespan in LH heterogeneity. However, in that case, 

also OLB performs weakly among the compared approaches. 

Additionally, Comparing HFSLM with ELISA and MELISA on a large tasks scale, HFSLM 

shows improvements from -0.98% to 23.33% and from -3% to 8% on makespan 

respectively. Besides, HFSLM shows 1.42% and 1.22% improvements in minimum 

resource utilization as compared to ELISA and MELISA respectively. On maximum 

resource utilization, the proposed model shows improvements of 39.1% and 48.8% 

respectively. 
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The suggested approach outperformed other considered strategies for QoS parameters. A 

few reasons are listed below:  

o The proposed allocation considers both the upcoming tasks and newly added and 

deleted VMs. Additionally, optimal load distribution and effective average resource 

utilization occur simultaneously. As a result, it provides significant enhancement in 

all considered parameters.  

o As can be seen from the overall results the utilization of the proposed approach 

remains optimized on varying the number of tasks and VMs. This is because the 

proposed allocation strategy focuses on distributing the arriving tasks throughout the 

available VMs. Moreover, various strategic advancements in the proposed HFSLM 

play a significant role in the same.  

o Furthermore, the proposed model outperforms all the compared approaches in HH 

and HL cases. It is because in high task heterogeneity the ready time of all the 

available VMs will always be sorted in other words, whenever we have high task 

heterogeneity, the ready time of all the VMs in the VM list will always be sorted. The 

sorted ready time of VMs is the best case for the proposed allocation. 

• In Chapter 5, Clustering and Reservation Fault-tolerant Scheduling (CRFTS) is 

introduced, which maximizes the system reliability while making it fault-tolerant and 

optimizing other Quality of Service (QoS) parameters, such as Makespan, Average Resource 

Utilization, and Reliability. The study optimizes the allocation of tasks to improve the 

utilization of resources and reduce the time required for their completion. At the same time, 

the reservation-based fault tolerance framework is presented, emphasizing reactive strategies, 

thus ensuring continuous service delivery throughout its execution without any interruption. 

The effectiveness of the suggested model is illustrated through simulations and empirical 

analyses, highlighting enhancements in QoS parameters while comparing with HEFT, FTSA-

1, DBSA, E-HEFT, and the latest LB-HEFT for various cases/conditions over both tasks and 

VMs. An analysis of the performance of the proposed CRFTS algorithm has been conducted 

in small and large task scales. The proposed model was compared based on Makespan and 

Average Resource Utilization while competing with HEFT, E-HEFT, and the latest LB-HEFT 

algorithm and based on Reliability while competing with HEFT, FTSA-1, and DBSA on a 

small task scale. On a large task scale, CRFTS competed with HEFT, DBSA, and FTSA-1 

based on makespan and average resource utilization. The conclusions drawn from the 

evaluation are listed below: 
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o In the case of makespan, CRFTS achieved maximum progress of 65.22%, 67.42%, 

and 62.91% on a small task scale while comparing with HEFT, E-HEFT, and the latest 

LB-HEFT respectively. 

o In the case of average resource utilization, CRFTS achieved maximum progress of 

30.42%, 22.11%, and 16.94% in a small task scale while comparing with HEFT, E-

HEFT, and the latest LB-HEFT respectively. 

o Furthermore, the CRFTS shows an increase of 12.71% to 71.06%, 1.12% to 3.95%, 

and 1.31% to 6.54% than HEFT, FTSA-1, and DBSA, respectively. 

o Additionally, CRFTS achieved maximum progress of 65.22%, 67.42%, and 62.91% 

on a small task scale while comparing with HEFT, E-HEFT, and the latest LB-HEFT 

respectively. 

o In large task scale, HEFT offers an optimized makespan after the proposed CRFTS. 

However, FTSA-1 provides the highest makespan among all the approaches. It may 

be because FTSA-1 is focusing more on reliability than that of makespan. According 

to the results related to makespan, CRFTS shows 40%, 6.32%, 9.358%, and 25.870% 

improvements over HEFT in 512, 1024, 2048, and 4096 tasks respectively. 

Comparing CRFTS with DBSA and FTSA-1, the proposed CRFTS shows more than 

40% improvements in varying the number of jobs, respectively. 

o In large task scales, the average resource utilization provided by FTSA-1 was found 

to be very low compared to the other approaches. The utilization offered by HEFT is 

second optimal after CRFTS. CRFTS was found optimum as compared to other 

approaches. According to the results concerning average resource utilization, CRFTS 

shows 14.38624%, 2.415644%, 3.169663%, and 2.083104% improvements over 

HEFT, 36.55696%, 37.33824%, 30.07273%, and 19.15755% improvements DBSA 

and 19.05063%, 7.11148%, 8.54854%, and 8.130822% improvements over FTSA-1 

in 512, 1024, 2048, and 4096 number of tasks respectively. 

• Chapter 6 acts as the pivotal nexus, synthesizing the results derived from the 

contributions and key findings presented across this thesis. Providing a comprehensive 

conclusion, it encapsulates the core of the research and articulates recommendations for 

potential future avenues of exploration. 
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6.2. Forthcoming Research Directions and Open Issues 

It can be examined from the reviewed state-of-art that some important QoS parameters, 

except Response Time, are not being focused on. Other parameters, such as makespan, 

turnaround time, waiting time, flowtime, resource utilization, and accuracy, also need to be 

considered. Furthermore, various other faults, like byzantine and system crashes, etc., are 

also not examined much in hybrid fault tolerance algorithms. Therefore, it is necessary to 

enhance the performance of these hybrid fault tolerance algorithms by contemplating these 

limitations in forthcoming research. Moreover, researchers should focus on some of the 

below-mentioned aspects to overcome the limitations of existing techniques. 

o   Focus more on resilient fault tolerance. 

o   Focus on the computational cost along with fault tolerance. 

o   Identify and predict the faults accurately. 

o   Resolve faults with load balancing and scheduling. 

o   Fault handling with optimization of other QoS parameters. 

6.2.1. Future works 

After careful consideration and assessment, it is concluded that several research fields might 

be followed to raise the performance of cloud computing and boost the optimization of QoS 

parameters of cloud systems. They are listed below: 

1. The researchers can make the scheduling efficient for better makespan and average 

resource utilization. 

2. The assessed state-of-the-art shows that, except for response time, certain crucial QoS 

criteria are not being prioritized. It is also necessary to take into account additional factors 

including turnaround time, waiting time, flow time, resource utilization, and accuracy. 

3.  To improve task execution time and scheduling, a large body of research is focused on 

discovering resource and workload identification criteria. For workloads to be adaptive, 

scalable, and optimal, under and overusing resources should be avoided. 

4.  A sender-initiated load balancing mechanism that assists in uniform load distribution 

among dispersed nodes is necessary for task relocation. 

5. Reservation can be used for fault tolerance as suggested in [72] for ensuring complete 

execution of tasks where the resources are reserved well in advance and may be used in case 

of faults. 

6.  It is essential to concentrate on limiting the penalty while taking into account system 

failures to attain QoS optimization-based allocation. 
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7.  Only a few scheduling methods include the availability parameter, and it's highly 

dependent on VM failure and changes in the impact rate of users, therefore, to decrease VM 

failure, it is important to take this parameter into further consideration in later algorithms. 

8.  The penalties on account of faults can be minimized by accompanying the models with 

efficient load-balancing techniques. 

9.  It is clear from examining several methods that a task scheduling algorithm by itself 

cannot address all the issues. Most algorithms base their work scheduling on a few factors. 

One method, for instance, only considers the response time and execution time parameters 

and overlooks other QoS principles like the execution cost, dependability, utilization, etc. 

Therefore, by including more standards, an improved scheduling algorithm that can produce 

better results may be developed. 

10.  Future studies should consider the factors of scalability, elasticity, and other fault 

overheads which are the properties of the system to fit in a situation. 

6.2.2. Methodical Roadmap for Open Challenges 

A structured strategy or roadmap presented in Figure 6.1 that incorporates prioritization 

based on influence and feasibility is needed to address the scheduling and load balancing 

with fault tolerance challenges. 
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Figure 6.1. Showing the Proposed Structured Roadmap to Address the Cloud Challenges 
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