
i

A FAULT-TOLERANT HYBRID RESOURCE PROVISIONING

MODEL FOR CLOUD COMPUTING

Thesis Submitted for the Award of the Degree of

DOCTOR OF PHILOSOPHY

in

Computer Application

By

Sheikh Umar Mushtaq

Registration Number: 12021177

Supervised By

Dr. Sophiya sheikh (26298)

Associate Professor, School of Computer

Application,

Lovely Professional University, Punjab

Co- Supervised By

Dr. Sheikh Mohammad Idrees

Researcher, Norwegian University of

Science and Technology,

Norway

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

2025

ii

DECLARATION

I, hereby declared that the presented work in the thesis entitled, “A Fault-tolerant Hybrid

Resource Provisioning Model for Cloud Computing” in fulfillment of degree of Doctor of

Philosophy (Ph.D.) is the outcome of research work carried out by me under the

supervision of Dr. Sophiya sheikh, working as Associate Professor in Computer

Application, in the School of Computer Application of Lovely Professional University,

Punjab, India. In keeping with the general practice of reporting scientific observations, due

acknowledgements have been made whenever the work described here has been based on

the findings of another investigator. This work has not been submitted in part or full to any

other University or Institute for the award of any degree.

(Signature of Scholar)

Sheikh Umar Mushtaq

Registration No.:12021177

Department of Computer Applications,

School of Computer Application,

Lovely Professional University, Punjab, India

iii

CERTIFICATE

This is to certify that the work reported in the Ph. D. thesis entitled, “A Fault-tolerant Hybrid

Resource Provisioning Model for Cloud Computing” submitted in fulfillment of the

requirement for the reward of degree of Doctor of Philosophy (Ph.D.) in the School of

Computer Application of Lovely Professional University, Punjab, India, is a research work

carried out by Sheikh Umar Mushtaq, Registration No. 12021177, is Bonafide record of her

original work carried out under my supervision and that no part of thesis has been submitted

for any other degree, diploma or equivalent course.

(Signature of Supervisor)

Dr. Sophiya Sheikh

Associate Professor

Department of Computer Applications,

School of Computer Application,

Lovely Professional University, Punjab, India

iv

ACKNOWLEDGEMENT

This thesis marks the culmination of a journey that has been both challenging and

rewarding. It would not have been possible without the support, guidance, and

encouragement of many individuals to whom I am deeply indebted.

First and foremost, I would like to express my deepest gratitude to Allah, the Most Gracious,

the Most Merciful, for granting me the strength, knowledge, and perseverance to complete

this thesis.

I extend my deepest gratitude to my Supervisor, Dr Sophiya Sheikh whose wisdom,

expertise, and unwavering support have been the cornerstone of this work. Dr Sophiya

Sheikh, your insightful feedback, patience, and encouragement have guided me through

every step of this research. I am profoundly grateful for the countless hours you dedicated

to helping me shape this thesis.

I am with immense gratitude to my co-supervisor, Dr Sheikh Mohammad Idrees from

Department of Computer Science (IDI), Norwegian University of Science and Technology,

Gjøvik, 2815, Norway.

My gratitude extends to Dr. Manmohan Sharma, and Dr. Amar Singh for their tremendous

advice and support during the duration of my research. I am also grateful to Mr. Ajay

Kumar Bansal, HOD, School of Computer Applications, Lovely Professional University,

Punjab, as their leadership has created an inspiring and conducive environment for

research and learning, which has been instrumental in the successful completion of this

thesis. I am truly grateful for their unwavering support and the opportunities they have

provided. I would like to express my heartfelt appreciation to all the faculty members of the

School of Computer Applications, Lovely Professional University, Punjab.

To my RAC members, your constructive critiques and invaluable suggestions have

significantly enriched this research. Your diverse perspectives and expertise have been

instrumental in refining my ideas and pushing the boundaries of my work.

I am also deeply thankful to my colleagues and friends in Lovely Professional University.

Your camaraderie, collaborative spirit, and intellectual exchange have made this journey

enjoyable and intellectually stimulating. Special thanks to my roommate, Mohammad Irfan

ul Haq whose friendship and support have been a source of strength and motivation.

I would especially like to thank my research mates Umar Bashir, Dr Talib Iqbal, Dr Qurat

ul Ain, Ajay Nain, Rohit Malik, Ayaz Ahmad, Pawan, and Parvaz Ahmad Malla. It would

v

not have been possible to carry out this research without their emotional support and

invaluable assistance.

A heartfelt thanks to my family, whose unwavering love and belief in me have been my

foundation. To my parents, who instilled in me the values of perseverance and hard work,

your patience, love, and constant support have been my anchor. Your belief in me, even

when I doubted myself, gave me the courage to persevere. Thank you for being my rock

through this journey. To my siblings, for their constant encouragement and understanding,

I owe you everything. Your sacrifices and endless support have made this achievement

possible.

Lastly, I dedicate this thesis to my beloved family, Mushtaq Ahmad Sheikh (Father),

Rafiqa Akhter (Mother), Sheikh Mayesser Mushtaq (Brother), Dr Qurat ul Ain (Wife)

whose inspiration continues to guide me. Your legacy of passion and dedication is a

constant reminder of the values I strive to uphold. This journey has been a mosaic of

countless moments of learning, perseverance, and growth.

To everyone who has been a part of this journey, thank you for your faith, support, and

encouragement.

This thesis is as much yours as it is mine

vi

Abstract

The ongoing development of vast integration in various computational units and connected

components has made it possible to achieve economic performance that was difficult to

achieve with independent resources. Cloud computing is formed by the integration of these

independent, and dispersed resources technically termed virtual machines (VMs). In

addition, the grouping of these geographically scattered and heterogeneous VMs that can

be shared among several end-users is termed a cloud environment. Additionally, the

dynamic nature of the cloud may also make the entire system more prone to errors and faults

since the scheduler lacks precise knowledge of the incoming tasks. It is also evident that in

a dynamic environment, any of the accessible VMs might stop working or exit the system

at any time. Besides, a reliable cloud system also requires an effective failure management

approach known as fault tolerance. Apart from this, a cloud is only regarded as efficient if

it can make the best use of its resources. For this purpose, numerous scheduling and load-

balancing algorithms were introduced in the literature. Still, effective load balancing is one

of the main issues in any computational environment. It is important to achieve an

acceptable resource allocation across the computing resources so that the execution of the

task is completed on time. Furthermore, the dynamic and adaptive adjustments implemented

for reallocating to mitigate the risks and to ensure uninterrupted services could often result

in uneven utilization of resources in hand. Hence, ensuring monitored equilibrium between

fault tolerance and load distribution demands meticulous attention to avoid unintended

influences and associated overheads. Addressing this issue of non-uniform load distribution,

fault tolerance needs the support of effective load balancing. The main goal of this research

is to provide a hybrid resource provisioning model that not only focuses on fault-tolerant

scheduling but also integrates it with an efficient load balancing technique to reduce the

fault overheads. Since the cloud environment is dynamic, several issues might develop in

accomplishing the identified problem. To address these issues, we have introduced some

fault-tolerant algorithms incorporating resource provisioning that adapt load balancing for

efficient QoS optimization.

The thesis starts with an Introduction chapter, bordering the motivation, problem statement,

and objectives of the study. A thorough Literature Review follows, reviewing existing

scheduling with fault-tolerant and load-balancing techniques while recognizing gaps in

existing investigations. To enhance fault tolerance, RFRTS model is introduced in Chapter

3, aiming to maintain the system reliability and makespan. Building upon this, HFSLM is

proposed in Chapter 4, which integrates dynamic load balancing with fault tolerance to

optimize makespan, resource utilization and fault overheads. HFSLM is evaluated by

vii

comparing it with FTHRM, MAX MIN, MINMIN, OLB, ELISA, and MELISA on both

small and large task scales having task ranges from 250 to 1000 and 10000 to 50000

respectively. Further, the associated fault overheads have been reduced by accompanying

the model with a load balancing strategy. The associated overheads have been compared

after fault tolerance and after load balancing. A notable reduction in the associated

overheads was observed following the implementation of load balancing. Further, CRFTS

model proposed in chapter 5, which incorporates clustering mechanisms for improved task-

to-VM mapping. The scheduling has been performed by using the clustering approach and

the fault tolerance has been performed by reserving the nearest neighboring VM for the

affected task. CRFTS is evaluated by comparing it with HEFT, FTSA-1, DBSA, E-HEFT,

and LB-HEFT while varying task number from 25 to 1000. The thesis concludes in Chapter

6 with key findings, contributions, and future roadmap and research directions. This work

contributes to the advancement of cloud fault tolerance and load balancing, providing

scalable and efficient scheduling solutions for dynamic cloud environments.

Keywords: Advance Resource Reservation, Dynamism, QoS Parameter, Load Balancing,

Fault-Tolerance, Resource Utilization, Makespan

List of Tables

Table 1.1: Enlightenment of Reactive Fault Tolerant Techniques…………………….

Table 1.2: Enlightenment of Proactive Fault Tolerant Techniques…………………....

Table 1.3: Enlightenment of Resilient Fault Tolerant Techniques……………………

Table 1.4: Pros of Fault-Tolerant Strategies…………………………………………..

Table 1.5: Cons of Fault-Tolerant Strategies………………………………………….

Table 2.1: Comparative Analysis of the Top-Cited Study and the Proposed Study…..

Table 2.2: Comparative Analysis of Recent Scheduling-Based Fault Tolerance

Algorithms……………………………………………………………………………..

Table 2.3: Comparative Analysis of Various Fault Tolerance and Scheduling

Frameworks………..

Table 2.4: Comparative Analysis of Different Fault Tolerance and Load Balancing

Algorithms……………………………………………………………………………..

Table 2.5: Comparative Analysis of Fault Tolerant based Load Balancing

Algorithms…………..

Table 3.1: Comparative Analysis of Improvements in the Proposed RFRTS………....

Table 4.1: Comparative analysis of existing models and the proposed model………..

Table 4.2: Instance of Tasks and VMs………………………………………………...

17

17

18

19

19

33

38

46

47

49

63

68

80

viii

Table 4.3: Advance Reservation Matrix (ARM)……………………………………....

Table 4.4: Simulation Parameter used for HFSLM Evaluation……………………….

Table 5.1: Considered Instance of Tasks and VMs…………………………………....

Table 5.2: An Instance of Tasks and VMs after Sorting………………………………

Table 5.3: Experimental Environment and Parameters………………………………..

Table 5.4: Ppm Related to the Proposed CRFTS………………………………………

Table 5.5: Ppu Related to the Proposed CRFTS……………………………………….

84

88

115

116

121

123

126

List of Figures
Figure 1.1: Cloud Computing Architecture…………………………………………..

Figure 1.2: Overview of Cloud Computing…………………………………………..

Figure 1.3: Dynamism Aspects of Cloud……………………………………………..

Figure 1.4: Hybrid Resource Provisioning Framework for Cloud……………………

Figure 1.5. Showing Different Fault Categories……………………………………...

Figure 1.6. Showing Different Error Categories……………………………………...

Figure 1.7. Showing Different Failure Categories……………………………………

Figure 1.8. VM Provisioning and Scheduling (VPS)…………………………………

Figure 1.9: Layered Architecture Relation of Cloud Fault Tolerance ……………….

Figure 1.10. Showing the Categories of Fault Tolerance Techniques under Different

Approaches……………………………………………………………………………

Figure 1.11: Load Balancing in Cloud………………………………………………..

Figure 1.12: Thesis Organisation………………………………………………...…...

Figure 2.1. Percentage of the Included Papers (2009 to 2023)……………………….

Figure 2.2. Showing the Methodology of Inclusion and Exclusion Criteria of the

Studies………………...

Figure 2.3. Showing Fault-Tolerance Approaches Targeted by Researchers………...

Figure 2.4. Showing Category-Wise Percentage of Different Techniques used in

Fault Tolerance ……………………………………………………………………….

Figure 2.5. Showing the Percentage of Optimized Parameters in Surveyed

Scheduling and Fault Tolerance………………………………………………………

Figure 2.6. Showing the Percentage of Optimized Parameters in Surveyed Load

Balancing and Fault Tolerance………………………………………………………..

Figure 2.7. Showing the Percentage of Dynamism in Surveyed Hybrid Load

Balancing and Fault Tolerance Frameworks………………………………………….

Figure 2.8. Showing the Analyses of Parameter Optimizations for Cloud Reliability

………………………………………………………………………………………...

Figure 2.9. Showing the Percentage of Parameter Optimizations for Different Fault

Tolerant Approaches………………………………………………………………….

1

2

3

4

8

9

9

13

14

16

22

27

31

31

51

52

52

54

54

55

55

ix

Figure 2.10. Showing the Percentage of Tools used for Simulation by the

Researchers…………………………………………………………………………...

Figure 3.1: System Architecture of RFRTS…………………………………………..

Figure 3.2: Ranked Task Mapping……………………………………………………

Figure 3.3: Depiction of Reliability in Five Considered Task States………………...

Figure. 4.1: The Proposed System Architecture……………………………………...

Figure. 4.2: Mapping between Tasks and VMs………………………………………

Figure. 4.3: Allocation of Dynamically Arriving Tasks ……………………………..

Figure 4.4: Adding and Deleting VMs in/from the System Dynamically……………

Figure 4.5: Flow Chart of HFSLM…………………………………………………...

Figure 4.6: Task Allocation in the Proposed Strategy……………………………….

Figure 4.7: Allocation of Tasks in the Proposed Sorting Algorithm…………………

Figure 4.8: Random Fault Tolerance without Neighboring Reservation…………….

Figure 4.9: Fault Tolerance by Reserving Neighboring VMs………………………...

Figure 4.10: Load Balancing after Fault Tolerance…………………………………..

Figure 4.11: Makespan for Varying Tasks and VM (HH)……………………………

Figure 4.12: Avg. Resource Utilization for Varying Tasks and VM (HH)…………...

Figure 4.13: Makespan for Varying Tasks and VM (HL)……………………………

Figure 4.14: Avg. Resource Utilization for Varying Tasks and VM (HL)…………...

Figure 4.15: Makespan for Varying Tasks and VM (LH)……………………………

Figure 4.16: Avg. Resource Utilization for Varying Task and VM (LH)…………….

Figure 4.17: Makespan for Varying Tasks and VM (LL)…………………………….

Figure 4.18: Avg. Resource Utilization for Varying Task and VM (LL)…………….

Figure 4.19: Average makespan on Varying Heterogeneity………………………….

Figure 4.20: Avg. Resource Utilization on Varying Heterogeneity……………..........

Figure 4.21: Fault Makespan Overhead for Varying Tasks and VM (HH)…………..

Figure 4.22/4.23: Fault Average Resource Utilization Overhead for Varying Tasks

and VM (HH)…………………………………………………………………………

Figure 4.24: Fault Makespan Overhead for Varying Tasks and VM (HL)…………...

Figure 4.25/4.26: Fault Average Resource Utilization Overhead for Varying Tasks

and VM (HL)………………………………………………………………………….

Figure 4.27: Fault Makespan Overhead for Varying Tasks and VM (LH)…………...

Figure 4.28/4.29: Fault Average Resource Utilization Overhead for Varying Tasks

and VM (LH)………………………………………………………………………….

Figure 4.30: Fault Makespan Overhead for Varying Tasks and VM (LL)…………...

Figure 4.31/4.32: Fault Average Resource Utilization Overhead for Varying Tasks

and VM (LL)………………………………………………………………………….

56

59

61

63

69

70

71

72

78

81

82

83

85

87

89

90

91

91

92

93

93

94

95

95

97

97

98

98

99

99

100

100

x

Figure 5.1: System Architecture of CRFTS………………………………..................

Figure 5.2: Many-to-One Mapping of Tasks and VMs……………………………….

Figure 5.3: Task and VM Clustering………………………………………………….

Figure 5.4: Clustering Phenomenon………………………………..............................

Figure 5.5: Cluster-Wise mapping……………………………………………………

Figure 5.6: Flowchart of CRFTS……………………………………………………..

Figure 5.7: Mapping of Cluster-Less Allocation……………………………………..

Figure 5.8: Demonstration of Cluster-Less Allocation……………………………….

Figure 5.9: Mapping of Clustered Allocation………………………………………...

Figure 5.10: Demonstration of Clustered Allocation…………………………………

Figure 5.11: Makespan of Compared Approaches on 5, 10, 20, and 40 VMs (a-

d)………………………...

Figure 5.12: Average Resource Utilization of Compared Approaches on 5, 10, 20,

and 40 VM (a-d)………………………………………………………………………

Figure 5.13: Reliability of Compared Approaches on 5, 10, 20, and 40 VM (a-

d)……...

Figure 5.14: Makespan of Compared Approaches on 100 VMs……………………...

Figure 5.15: Average Resource Utilization of Compared Approaches on 100 VMs…

Figure 6.1: Showing the Proposed Structured Roadmap to Address the Cloud

Challenges…………………………………………………………………………….

106

107

108

109

110

114

115

117

117

118

123

125

128

129

130

140

List of Notions

Symbol Meaning

• T Set of Tasks

• N Number of Tasks at any Instance

• V Set of Virtual Machines

• m Number of VMs at any Instance

• t_id Task id

• t_size /L Task Size/Task Length

• V_id Virtual Machine id

• VMf / Vf Set of Failed Virtual Machines

• S Speed of VM

• W(ti) Weight/Length of ti

• MIPS Million Instruction Per Second

• M/ µ Mapping Between T and V

xi

• AR Advance Reservation

• RTj Ready time of VM

• TETj Total Execution Time of VM

• ESTij Early Start Time of ti on vj

• AR slot Advance Reservation Slot

• Tu / Tf Set of Unexecuted or Failed Task

• tu / tf Unexecuted Task or Failed task

• UT Average Resource Utilization

• ARM Advance Reservation Matrix

• LB Load Balancer

• Tr Ranked Task Set

• CT(tm,vk) Completion Time of tm on vk

• R(tm,vk) Reservation Window of tm on vk

• TET Total Execution Time

• Cl Low Cluster

• Cm Mid Cluster

• Ch High Cluster

• AFTij Actual Finish Time of ti on vj

• tp(ti, vj) / E(ti, vj) / PT(tm)/ P(ti, vj) Total Processing Time of ti on vj

• 𝑜(VMf) Order of Failed VM Set

• 𝑝 Number of Failed Resources in VMf

• Vf fth Failed VM in VMf

• 𝑜 (𝑇f) Order of Failed Tasks

• 𝑞 Number of Failed Tasks in Tf

• 𝑇𝐴𝑇 Turnaround Time

• r Response Rank Value

• Tp Prematurely Terminated Task set

• 𝑈𝑇 Average Utilization

• MCT Minimum Completion Time

• U/ Tu Tasks executing on minimum underloaded

VM/ least loaded VM

• € / Aload Average Execution Time of Tasks Allocated

over O

xii

• ti ith Task

• Vj jth Virtual Machine

• FTij Finish Time of ti on vj

• u Number of Unexecuted Tasks or Failed Tasks

• Vf Set of Failed VMs

• vf Failed VM

• f Number of failed VMs

• F Flowtime

• O / To Set of Tasks Allocated over the Most

Loaded/Overloaded VM

• Vu Least Loaded VM / Underloaded VM

• Vo Most loaded / Overloaded VM

• TC Task Cluster

• VC VM Cluster

• f Number of Failed VMs / |Vf|

• Pp Average Progress Percentage

• Vh Set of Healthy VMs

• Om Makespan Overhead

• Out Utilization Overhead

• 𝑀𝑎𝑓𝑡𝑒𝑟𝐹𝑇 Makespan after Fault Tolerance

• 𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇 Makespan before Fault Tolerance

• 𝑀𝑎𝑓𝑡𝑒𝑟𝐿𝐵 Makespan after Load Balancing

• 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐹𝑇 Utilization after Fault Tolerance

• 𝑈𝑇𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇 Utilization before Fault Tolerance

• 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐿𝐵 Utilization after Load Balancing

List of Abbreviations

CSP Cloud Service Provider

IaaS Infrastructure as a Service

SaaS Software as a Service

PaaS Platform as a Service

xiii

QoS Quality of Services

SLA Service Level Agreement

RPO Retrieval Point Objectives

RTO Recovery Time Objectives

VPS VM Provisioning and Scheduling

VMs Virtual Machines

MTTF Mean Time to Failure

MTBF Mean Time Between Failure

MTTR Mean Time to Reappear

 LB Load Balancing

DLB Dynamic Load Balancing

CC Cloud Computing

DCCWOA Dynamic Clustering Cuckoo Whale Optimization

Algorithm

GBFD Greedy-based Best Fit Decreasing

GWO Grey Wolf Optimization

FTHRM Fault-Tolerant Hybrid Resource Allocation

TAT Turn-around-Time

WSADF Workflow-scheduling applying -adaptable and dynamic-

fragmentation

CPLCA Checkpointed League Championship Algorithm

SDSC San Diego Supercomputer Center

DBSA Deadline Based Scheduling

PSO Particle Swarm Optimization

BAR Balance Reduce Algorithm

DCLCA Dynamic Clustering League Championship algorithm

MSMO Modified Sequential Minimal Optimization

CPSO Canonical Particle Swarm

https://doi.org/10.1002/ett.3539

xiv

FTDS Fault-Tolerant Dynamic Scheduling

NNCA_PSO Nearest Neighbour Cost-Aware Particle Swarm

Optimization

ACO Ant Colony Optimization

GA Genetic Algorithm

LCA League Championship Algorithm

HPC High-Performance Computing

VMM Virtual Machine Manager

DAG Direct Acyclic Graphs

AFTRC Adaptive Fault Tolerance in Real-time Cloud Computing

AT Acceptance Test

TC Time Checker

RA Reliability Assessor

DM Decision Mechanism

EFTT Efficient Fault Tolerance Technique

HBI-LB Honeybee-Inspired-Load Balancing

PFTF Proactive and Reactive Fault Tolerance Framework

ECB Elastic Cloud Balancer

PLBFT Proactive Load Balancing Fault Tolerance

DBPS Deadline Pre-emptive Scheduling

TLBC Throttled Load Balancing for Cloud

IVFS Integrated Virtualized Failover strategy

CLB Cloud Load Balancer

RR Round Robin

ESC Equally Spread Current

ESCEL Execution Load

AFTRC Adaptive Fault Tolerance in Real-Time Cloud

DBPS Deadline Based Pre-Emptive Scheduling

xv

VFT Virtualization and Fault Tolerance Approach

TA & ESCE Throttled algorithm and Equally Spread Current Execution

algorithms

STLB Starvation Threshold–based Load Balancing

GA-GEL Genetic Algorithm and the Gravitational Emulation Local

WAMLB Weighted Active Monitoring Load Balancing

CRUZE Cuckoo Optimization-based Energy-Reliability aware

resource scheduling technique

SIRI Single Intervention at Random Interval

RFRTS Reserved Fault Tolerance and Ranked Task Scheduling

FR-MOS Multi-Objective Scheduling Algorithm with Fuzzy

Resource Utilization

CWS Cost-effective Workflow Scheduling

FCWS Fault-tolerant Cost-effective Workflow Scheduling

HFSLM Hybrid Fault-tolerant Scheduling and Load Balancing

Model

MIPS Million Instructions Per Second

HH High task-High Machine Heterogeneity

HL High task-Low Machine Heterogeneity

LH Low task-High Machine Heterogeneity

LL Low task-Low Machine Heterogeneity

CRFTS Clustering and Reservation Fault-tolerant Scheduling

HEFT Heterogeneous Earliest Finish Time

FTSA Fault Tolerant Scheduling Algorithm

E-HEFT Deadline Based Scheduling Algorithm

E-HEFT Enhancement of Heterogeneous Earliest Finish Time

LB-HEFT Load balancing- Heterogeneous Earliest Finish Time

EFT Earliest Finish time

xvi

TABLE OF CONTENT

S.No. Content Page No.

 CHAPTER-1: Introduction to Cloud Efficiency: Scheduling, Fault-

tolerance, and Load Balancing Techniques

1 Introduction 1-28

1.1 Resource Provisioning in Cloud Computing 3-5

1.1.1 Task Scheduling 4-5

1.1.2 Load Balancing 5

1.2 Cloud Faults 6-10

1.2.1 Fault Tolerance in Cloud Computing 7

1.2.2 Fault, Error, and Failure Taxonomies 7-9

1.2.3 General Fault-tolerance Challenges in Cloud Computing 9-10

1.3 Measures for Effective Cloud Reliability- A need for the hybrid

framework

10-26

1.3.1 Cloud Scheduling Approach 12-14

1.3.2 Fault-Tolerant Approaches 14-22

1.3.3 Load Balancing in Cloud 22-26

1.4 Objectives of the Research 26

1.5 Thesis Organisation 27

1.6 Summary in Context 27-28

CHAPTER-2 Literature Review

2.1 Research Methodology and Data Analysis 30-32

2.2. Our Contribution and Features of the Study 32-34

2.3 Our Motivation and Main Focus of Study 34-35

2.4 Related Literature 35-50

2.4.1 Scheduling with Fault-tolerance 35-45

2.4.2 Load balancing with Fault tolerance 45-50

2.5 Discussions and Observations 50-56

2.5.1 Statistics of Hybrid Survey of Scheduling and Fault Tolerance Algorithms 51-53

2.5.2 Statistics of Hybrid Survey of Load Balancing and Fault Tolerance

Algorithms

53-56

2.6 Summary in Context 56-57

CHAPTER-3 Ranked Task Scheduling and Reservation in Fault

Tolerance for Cloud Computing

xvii

3.1 Proposed Model 58-64

3.1.1 The System Architecture 58-59

3.1.2 Problem Formulation 59-62

3.2 Results and Observations 62-63

3.3 Summary in Context 64

CHAPTER-4 Towards Fault Overheads in Cloud: Next Gen VM

Management using Hybrid Approach (HFSLM)
4.1 Main Focus and Contribution 66-68

4.2 Proposed Work 68-79

4.2.1 System Architecture 68-69

4.2.2 Problem Formulation 69-76

4.2.3 The Proposed HFSLM 76-77

4.2.4 Performance Metrics 77-78

4.2.5 Computational Complexity of HFSLM 78-79

4.3 Motivational Illustrative Example 79-87

4.3.1 Task Mapping 80-81

4.3.2 Fault-tolerance 81-84

4.3.3 Load Balancing 85-87

4.4 Results and Discussions 87-100

4.4.1 Varying heterogeneity over small task scale 87-94

4.4.2 Varying heterogeneity over large task scale 94-100

4.5 Summary in Context 100-101

CHAPTER-5 CRFTS (Clustered and Reservation based Fault Tolerant

Scheduling)
5.1 The Proposed Model 104-114

5.1.1 The System Architecture 104-106

5.1.2 System Modelling 106-107

5.1.3 Problem Formulation 107-114

5.2 Illustrative Example 114-117

5.2.1 Cluster-less Task Allocation 115-117

5.2.2 Proposed Clustered Task Allocation 116-118

5.3 Performance Metrics 119-120

5.4 Results and Observations 120-128

5.4.1 Experimental Setup 120-121

5.4.2 Small Task Scale 121-128

5.4.3 Large Task Scale 128-130

5.5 Summary in Context 130-131

xviii

CHAPTER-6: Conclusion and Future Directions

6.1 Conclusion 132-137

6.2 Forthcoming Research Directions and Open Issues 138-140

6.2.1 Future Work 138-139

6.2.2 Methodical Roadmap for Open Challenges 139-140

References 141-155

Publications 155-156

Conferences 156

Patent Publications 156-157

Copyrights 157

Pipeline Work 157

1

Chapter 1

Introduction to Cloud Efficiency: Scheduling, Fault-

tolerance, and Load Balancing Techniques

This chapter sets the stage for examining several aspects of cloud efficiency, focusing on

the crucial areas of scheduling, fault tolerance, load balancing, and the corresponding

Challenges.

1. Introduction

Over the last 10 years, the use of Cloud has grown substantially. More facilities are

incorporated into the cloud environment and are allowed to be accessed by everyone

globally. Likewise, Cloud Computing companies such as IBM, Yahoo, Amazon, and

Google are providing global access to services to customers [1]. Moreover, these are

metered services which we commonly term subscriptions, and are frequently applied in the

Software as a Service (SaaS) delivery simulation [2].

The cloud environment consists of two components i.e., the frontend, and the backend. The

front end is the main interface on the consumer side and is accessed through different

networks over the internet [3]. The services of the Backend side are the core component in

the cloud environment. The Backend side particularly deals with the CSP (Cloud Service

Provider) and provides services by utilizing data center resources. In these data centers,

different physical machines known as servers are being stored. These servers are being

separated into multiple virtual machines by using the concept known as virtualization to

deal with and handle the upcoming requests from the application dynamically as can be

seen in Figure 1.1.

Figure 1.1: Cloud Computing Architecture

Additionally, some important components of the backend side are presented below:

2

Virtualization: The simulated computers that run on physical servers are possible because

of virtualization. The technical term for these simulated computers is virtual machine (VM).

VMs host user applications and provide virtualized environment to the users. The

hypervisor is accountable for controlling the virtualization. It warrants that multiple VMs

can run on an individual physical server without influencing each other.

Storage Servers: These are the storage options offered by the cloud. These include block

storage for VMs, and object storage for different types of files and object data.

Computable Services: Different types of scalable and computing services are provided on a

demand basis. These include GPU, memory, and other CPU services. These services are

used by consumers to execute applications and other processing.

Database Services: CSPs provide various kinds of database management services. These

include relational DBMS (Database Management System) like NoSQL and SQL DBMS.

These services play an important role in the storage and retrieval of data.

CDN (Content Delivery Network): These are distributed networks that offer the storage and

retrieval of content to the consumers. CDN improves content delivery speed and minimizes

latency.

This concept allows users to purchase the services based on their needs and can be treated

as metered services which we commonly term subscriptions and is frequently used in the

SaaS delivery model[2]. The basic overview of Cloud Computing is shown in Figure 1.2.

All the components work with one another to handle the overall process of the cloud

environment. The Cloud Auditor acts as police to guarantee the top quality and integrity of

services in the cloud provided by the service providers.

 Figure 1.2: Overview of Cloud Computing

3

Figure 1.3: Dynamism Aspects of Cloud

In cloud architecture, there are mainly three services [4], Infrastructure (IaaS), Software

(SaaS), and Platform as a Service (PaaS) [5,6].

The cloud services are well known for its flexibility, adaptability, and agility. However, at

the same time, these contributions of cloud services make it a most dynamic environment.

Figure 1.3 shows the aspects of cloud dynamism.

In the era of cloud computing, Service Level Agreements (SLAs) represent formal and

negotiated agreements delineating the terms and conditions between customers and service

providers. These agreements ensure the provision and delivery of cloud services in a manner

that meets the expectations of customers, fostering satisfaction with the services provided.

Some of the SLAs in cloud computing are performance metrics, availability, time,

scalability, backup, security, recovery, etc. In the dynamic landscape of cloud computing,

SLAs serve as a cornerstone, fostering a mutual understanding of responsibilities and

expectations between providers and customers. This clarity in contractual terms enables

organizations to navigate the complex realm of cloud services with confidence and strategic

intent. The thesis focuses on some of the main challenges and resource provisioning

techniques that ensure SLAs and other QoS (Quality of Services) parameters.

1.1. Resource Provisioning in Cloud Computing

Optimizing performance in cloud computing is crucial to ensure that cloud-based

applications and services operate efficiently, providing optimal performance to users while

utilizing cloud resources effectively. These optimization techniques focus on improving

4

response times, minimizing latency, boosting throughput, and maximizing resource

utilization. Resource provisioning means opting for, installing, and operating the cloud

resources at runtime to confirm guaranteed execution for applications. The CSPs take

various steps for resource provisioning to follow the SLA with consumers. The hybrid

provisioning of cloud resources is achieved by strategies like Scheduling, fault tolerance

and, Load Balancing, etc. Besides this, the provisioning aims to enhance the QoS parameters

like Makespan, Flow Time, Average Resource Utilization, Reliability, etc. The hybrid

resource provisioning framework for the cloud has been presented in Figure 1.4.

Based on user needs, the component Cloud Controller maps all incoming requests to the

accessible VMs. The different components cooperate properly established on multi-

objective functions to optimise QoS parameters and increase the SLA between the CSP and

the user.

Figure 1.4: Hybrid Resource Provisioning Framework for Cloud

1.1.1. Task Scheduling

Scheduling in cloud computing entails the efficient and coordinated assignment of

resources to tasks or jobs to enhance system performance. The main objectives of

scheduling include ensuring fairness, optimizing resource utilization, and meeting Service

Level Agreements (SLAs). Effective scheduling ensures that resources are allocated

optimally, preventing underutilization or overloading of servers, which could otherwise

cause performance issues. The following are key aspects of scheduling:

5

• Task Queuing: Incoming tasks are placed in a queue and scheduled for execution

according to their priority, resource requirements, and several other constraints.

• Job Prioritization: Prioritizing jobs based on their importance or urgency is a crucial

aspect of task scheduling in cloud computing and other computational environments. This

process ensures that critical tasks are executed promptly, which can be vital for maintaining

system performance, meeting user expectations, and adhering to service level agreements

(SLAs).

• Fair Scheduling: Resource starvation occurs when certain tasks or users are

perpetually deprived of the necessary resources to execute their operations, typically

because those resources are consistently allocated to higher-priority tasks. This can lead to

significant performance issues, dissatisfaction, and failure to meet Service Level

Agreements (SLAs). To mitigate this, schedulers in cloud computing and other

computational environments aim to distribute resources equitably among all tasks and users.

• Distributed Scheduling: Distributed scheduling refers to the process of coordinating

and managing task execution across multiple data centers or clusters in different locations.

The primary goal is to optimize resource utilization, improve performance, and ensure that

tasks are executed in the most efficient manner possible, considering the distributed nature

of the infrastructure.

1.1.2. Load Balancing

Load balancing is a method engaged to evenly disperse incoming network traffic or

computational tasks across several resources, such as servers or virtual machines (VMs), to

achieve optimal resource utilization and maintain high availability. The following are key

aspects of load balancing:

• Even Distribution: Load balancing ensures that tasks or requests are evenly

distributed among available resources. This prevents any single resource from becoming

overloaded while others remain underutilized.

• Optimal Resource Utilization: By distributing workload efficiently, load balancing

maximizes the use of available resources. This helps in achieving better performance and

responsiveness from the system.

• Application Awareness: Some advanced load balancers can consider application-

specific metrics or content when distributing traffic. This ensures that requests are directed

to the most suitable server based on application requirements.

Load balancing plays a critical role in modern IT infrastructure, especially in cloud

computing environments, where dynamic scaling and efficient resource utilization are

essential for delivering reliable and responsive services to users.

6

1.2. Cloud Faults

There may be chances of faults in all these three layers in a similar way as they are possible

in any type of software. Therefore, the detection and removal of faults is necessary for

obtaining the best possible reliability as presented in [7], [8]. Moreover, the deficiencies in

the infrastructure of the cloud yield a direct impact on resource reliability and availability

[4]. These deficiencies need to be critically analyzed and treated to boost reliability and

robustness. DNN, a powerful deep learning tool exhibits is a promising solution for this [9].

Fault Tolerance is a significant technique that can notice, locate, and recover from faults

and failures in the cloud environment. It makes the cloud more robust and enhances the

efficiency of the environment [10]. Mainly, fault tolerance falls into two sub-areas i.e.,

Hardware Fault Tolerance and Software Fault Tolerance [11].

On the other hand, scheduling tasks appropriately is vital in delivering critical and essential

services of the cloud. The ineffective scheduling of tasks increases the task execution time

and waiting time. Besides, insignificant load balancing results in the under and over-

utilizing of resources where the under-utilization of resources can lead to the wastage of

resources, and over-utilization of resources can degrade the performance of cloud systems.

Hence, proficient load distribution is essential to boost the performance of cloud-based

applications.

There is a fundamental need to incorporate load balancing and scheduling in efficient fault-

handling mechanisms due to architectural challenges in the cloud system. Therefore, this

paper conducts a hybrid review employing fault tolerance with scheduling, load balancing,

and analysis of QoS parameters optimization. This comprehensive review primarily centers

on three core classifications of fault tolerance techniques, namely Reactive, Proactive, and

Resilient Approaches. The Reactive Procedures are the conventional techniques of fault

tolerance that include replication, detection, checkpointing/restarting, and recovery. In the

Proactive Methods, the system is prevented from reaching a defective state that includes

monitoring, prediction, and pre-emption. The actions are taken to minimize the defects, and

thereby the failure condition is avoided. The Resilient Methods have shown a recent take-

off in the literature and indicate a potential trajectory for the future of fault tolerance in

cloud environments. This is because these methods are grounded on artificial cleverness

and ML [10]. Besides, simulation toolkits play an analytical role in evaluating settings of

cloud computing. These toolkits allow us to simulate and evaluate the cloud set-ups cost-

efficiently without the requirement for massive infrastructure. Some of the most effective

and powerful simulators have been discussed in [12]. Comparative analysis has been

7

performed in among various simulators concerning various parameters to determine the

features and functions of each toolkit [13].

1.2.1. Fault Tolerance in Cloud Computing

Faults in any resource may affect the task execution time and QoS parameters of the cloud,

which will eventually reduce the deed of the system. The efficient fault tolerance policy

helps to identify and overcome errors in the cloud architecture, and thereby the performance

metrics are boosted. The fault tolerance capability should be considered with other

techniques like scheduling and load balancing for the effective performance of the system.

Moreover, the load balancing and scheduling approaches should do their respective

standardizes along with fault tolerance. In case of a crash or connection error, the system

should be capable enough to provide an alternative VM to handle these failures for smooth

and uninterrupted task execution. Because these crashes in any nodes will affect the

efficiency of the entire system. Therefore, handling faults enhances the utility of the system

to accomplish the tasks precisely and accurately resolving the occurrence of internal defects

[14]. An inclusion of fault tolerance with other reliability-related techniques like scheduling

and load balancing will make the cloud environment more efficient, specifically for the real-

time and dynamic processing of tasks [15]. Hence, fault tolerance is a major aspect that

ensures robustness, reliability, and other performance metrics in the cloud environment

[16], [17].

1.2.2. Fault, Error, and Failure Taxonomies

The fault is the condition of the system when it loses the ability to function for an expected

output due to an unexpected condition or defect in any of the internal or external

components. The main faults within the cloud environment are enumerated as follows:[18]

The Network Faults: These defects arise due to network interruption in any connection,

nodes, cluster, etc., [19], [20].

The Physical Faults: When any of the hardware resources like CPU, memory, storage, etc.,

fails, these types of faults will occur. The power failure also gives rise to these types of

faults [18].

The Process Faults: These are the common faults in a cloud environment that occur because

of the unavailability of any resource, software, etc., [19].

The Service Expiry Fault: This type of fault arises if the service clock of the resource runs

out when the application is in use [19].

The Media Fault: Any crash in the media of the cloud will lead to these types of faults [15].

The Processor Faults: This type of fault mainly occurs because of malfunctioning in the

operating system [21] .

8

The Restrictions Faults: This type of fault occurs when any fault arises and is unnoticed or

ignored by the controlling or any other responsible agent [22].

The Parametric Faults: If the optimizing parameters are ambiguous or do not differ and

remain unexplained, this type of fault occurs [22].

The Time Restriction Faults: These faults occur when the particular application is not

completed by the predefined deadline [22].

The fault tolerance mechanism makes the cloud environment efficient by providing

necessary services even in case of failure of one or multiple components. If there is any kind

of fault in the system, it leads to error, and error, in turn, culminates in failure.

Fault: The abnormal state of any coordination when assigned tasks cannot be performed.

Usually, the fundamental cause of this state is the presence of some bugs in single/multiple

components of the system [23], [24]. Faults are categorized into various groups, as depicted

in Figure 1.5.

Error: A system experiencing faults may transition into an error state. Compromised

performance due to errors can subsequently result in incomplete or complete failure of the

system. Errors have been classified into the following categories, as shown in Figure 1.6.

Failure: The presence of an error can takes the system to the failure state, and it has an

absolute effect on the user. Moreover, the failure is recognized by the user by seeing the

incorrect output of the system [23], [25], [26]. The failures have been classified into the

following categories, as exhibited in Figure 1.7.

Figure 1.5. Showing Different Fault Categories

9

Figure 1.6. Showing Different Error Categories

Figure 1.7. Showing Different Failure Categories

1.2.3. General Fault-tolerance Challenges in Cloud Computing

Ensuring a fault-tolerant cloud environment involves evaluating numerous challenges.

Some of these challenges are discussed below:

Task and failure heterogeneity: The cloud utilizes different hardware and operating systems

simultaneously and considers the underlying heterogeneous frameworks [27]. Resultantly,

in handling the heterogenous type of faults, and eventually increasing the complexity to

overcome them.

Automation: The extensive use of VMs in the cloud environment is increasing exponentially

and managing these platforms in real time is more difficult. Therefore, there is a good need

to automate fault tolerance strategies for complex networks [28].

Cloud halts: The main plan of fault tolerance is to provide uninterrupted service altogether

in case of any service interruption or malfunction of any host server or network system. The

Service Level Agreements [29] for all companies should be prepared accordingly.

10

Retrieval Points and Recovery Time Objectives targeting: This Point is established to

preserve the set of track records that may be at risk of loss in the event of a server error [29].

On the other hand, Recovery Time is the time required by the procedure to get back on track

or running after the failure [30]. The main aim is to decrease RPO (Retrieval Point

Objectives) and RTO (Recovery Time Objectives) at the minimum possible rate [10].

Cloud Workload: Cloud workloads are the specific applications-related tasks/services or

specific amounts of work executed on a cloud resource. The workloads could be of two

types, i.e., Enabled, and Native loads. The Native workloads are also labeled as “born on

the web” and are entirely cloud-developed applications. On the other hand, an enabled

workload pertains to the computational tasks generated by cloud applications. Moreover,

the Proactive and resilient approaches seem relevant [31] to fill the fault tolerance

conditions of both Active and Native concepts [10].

1.3. Measures for Effective Cloud Reliability- A need for the hybrid framework

The claim for the cloud computing standard has enlarged intensely in the past few years as

it allows the dynamic fetching and renouncing of computing resources that too in a device-

independent and cost-effective manner with slight effort or communication from the service

provider. Despite lots of enhancements in the cloud, it is still prone to many system failures

which results in growing apprehension regarding the reliability of cloud public services.

Reliability is the way of measuring the efficiency of the system and its value can be adjusted

accordingly after performing computation where the default reliability is 100% [32]. The

conditions of reliability must be met for stable and efficient processing of the cloud. It is

also one of the critical Quality of Service constraints. Moreover, optimized QoS parameters

play an important role in effective and adequate resource allocation and have been

extensively inspected in Cloud Computing standards. These parameters are used to consider

the efficiency of various Scheduling, Load Balancing, or Fault Tolerance techniques in the

cloud.

The hybrid framework provides several advantages in comparison to single schemed

framework discussed below:

• High Availability and Reliability

Reliability is the critical parameter that supports user trust by maintaining SLAs. The

mechanism of fault tolerance enables the system to continuously operate even in the

presence of faults and failures. Scheduling ensures the optimal allocation of computational

resources to the tasks. This prevents avoiding pauses and reduces the threats of failures.

11

Load balancing prevents the single resource from becoming the target by uniformly

distributing the load and thereby enhancing system reliability.

• Optimizing Resource Utilization

Unnecessary resource allocation for fault tolerance can lead to resource underutilization. A

hybrid model improves the use of these redundant resources by incorporating them into

scheduling and load-balancing strategies. Additionally, the overburden of resources is

prevented by load balancing to boost the utilization of resources while dynamically

adjusting the task distribution.

• Enhancing System Performance

Efficient scheduling with fault tolerance maintains the levels of performance and ensures

the timely completion of tasks. Moreover, load balancing prevents the overloading of a

single VM thereby escaping performance disgrace.

• SLA Requirements

Efficient scheduling with continuous operations even in the presence of failures is crucial

in maintaining SLAs and ensures time constraints, reliability, and other deadlines.

• Advancing Scalability

The scaling factor of the cloud environment necessitates the need for robust fault-tolerant

scheduling to ensure reliability throughout the system. Moreover, the growing number of

cloud users simultaneously increases cloud tasks. This requires the load balancing system

to ensure the corresponding scaling without performance degradation.

• Efficient Cost

Lowering the requirement for excessive redundancy via a hybrid model can lead to

minimum cost while ensuring reliability.

• Fault associated Overheads

The faults often lead to overheads even when handled. The load balancing integrated with

fault tolerance will reduce the overheads.

In conclusion, integrating these three factors provides a complete and comprehensive

approach to address the varied challenges faced in cloud environments, leading to extra

robust, efficient, and reliable cloud-essential services.

Below is presented an explanation that includes a real-world example illustrating the

necessity of hybrid models:

Illustrative Example

12

Consider the scenario, where the CSP hosts several services and applications for its clients,

utilizing solely fault tolerance mechanisms (single-model schemes). In often cases, fault

tolerance frequently results in redistributing the workload from faulty VMs to the unaffected

VMs. This redistribution often upsets the load equilibrium between VMs, which leads to an

unequal workload distribution and a deterioration in overall service performance. However,

if CSP implements the hybrid model which integrates multiple reliability measures would

enhance reliability and provide robust services to the clients. In our example, if CSPs

employ the hybrid model that performs load balancing after fault tolerant measures. This

will help CSPs to simultaneously minimize the risks of non-uniform load distributions and

other overheads associated with fault tolerance and progress the QoS.

Besides, to make this emerging domain more observable for future researchers, there is a

need to analyze the up-to-date methods concerning these factors [10], [29]. This review is

also inspired by peer surveys of the existing literature along with their limitations.

Moreover, it represented the analysis of some important aspects of the existing literature

such as QoS, static/dynamic, environmental setup used, fault tolerance approaches, and fault

models, and presented the results in the graphical visualization form. The analysis provided

offers a comprehensive perspective on the existing research efforts that have been the focal

point of existing studies. The overall comparison of the top-cited surveys with the proposed

survey is also illustrated in the subsequent sections.

1.3.1. Cloud Scheduling Approach

Cloud scheduling is performed by mapping the incoming task to the most suitable available

VM. The objective of ascertaining the sequence in which events or tasks should be executed

in the cloud and simultaneously analyzing the required QoS parameters is termed

Scheduling. Cloud Scheduling mainly includes the following:

Prediction of future incoming workloads and Normalizing the QoS parameters.

Selection of the most optimal VM and executing the particular task via, Heuristic/Meta-

Heuristic algorithms.

Generally, the VM/task scheduling is done in two ways:

On-Demand Scheduling: This scheduling considers the dynamic cloud workloads on

demand and VMs are provided quickly by cloud service providers as required. However, it

may lead to the problem of workload dispersal. In other words, multiple tasks may be

processed by a single VM at a time (Over-provisioning Problem) resulting in degrading the

performance of the system.

13

Figure 1.8. VM Provisioning and Scheduling (VPS)

Long-Term Reservation: This scheduling reserves the resources for the long term. However,

providing many VMs can lead to Under-provisioning problems in some situations.

These Under and Provisioning problems may cause the wastage of VMs and task execution

time, and thereby the overall cost of services may increase. Hence, a well-organized and

effective provisioning technique is essential that examines and schedules the cloud

workloads efficiently. Figure 1.8 explains the process of VM Provisioning and Scheduling

(VPS) [33].

The main aims of VM provisioning are:

• Fulfill the User’s demand without SLA violation.

• Prior prediction of user requirements based on incoming workload size.

In cloud provisioning, the SLA is settled between the end users and Cloud Service Providers

after fully analyzing the incoming workloads. Before scheduling (mapping) the incoming

workload (applications/tasks) to the particular VM/resources, the running VMs are

monitored regularly for load estimation [34]. If the VM is found overutilized, then that

particular VM is disabled temporarily for any future assignments and these VMs are not

allocated immediately after mapping. Afterward, the task executing capability of the VM is

also tested before any further allocation. This study also contains a review of various

research papers focusing on the principles of load-balancing and scheduling. In the cloud,

efficient scheduling of jobs is the main factor ensuring high-performance applications.

However, in the cloud, scheduling not only has to pact with the dynamism and the

widespread nature of the cloud, but it should also consider the optimization of other

important parameters. The matching of tasks to the corresponding machines and scheduling

the organization of execution of these tasks refers to mapping. Efficient mapping minimizes

14

the total execution time of the meta-task. The meta-task is identified as a collected work of

independent tasks having no inter-task dependencies. The mapping of such meta-tasks is

being achieved statically (i.e., offline or in an analytical manner). The general problem of

optimally mapping tasks to machines is NP-complete [35]. Task scheduling is the

fundamental step of VM management in the cloud. Task scheduling can be of two types:

Static and Dynamic Scheduling [36].

1.3.2. Fault-Tolerant Approaches

Cloud is a dynamic system that supports several dispersed resources i.e., VMs that are

heterogeneous and complete millions of user tasks. Nevertheless, this VM has the flexibility

to join or exit the system at any given time. Thus, achieving fault tolerance is a critical issue

in such dynamic systems. Additionally, the execution of a fault-tolerant system also leads

to the optimizations of various QoS parameters and cloud characteristics. Therefore,

significant benefits can be attained. It also assures task execution on time, in case of any

unexpected scenarios like failure, resource disconnection from the system, task migration,

any other unanticipated user operation, etc. Moreover, while numerous previous studies

have tackled fault tolerance and task allocation, only a limited number have examined issues

at the processor level. In recent literature, a handful of works have delved into extensive

research on scheduling and load balancing while incorporating fault tolerance [22]. The

concept of abstraction has been split into different layers, i.e., Infrastructure as a Service,

Platform as a Service, and Software as a Service layer. There is a necessity to implement

appropriate fault tolerance techniques for fault diagnosis to determine several faults in these

service levels. This chapter includes various fault diagnosis methods corresponding to these

service layers, along with fault categories. The defects in any layer can have an impact on

its top layer because of the layer interrelationships [22] as shown in Figure 1.9.

Figure 1.9: Layered Architecture Relation of Cloud Fault Tolerance

There are chances of faults in all these three layers. To identify and recover from these faults

some software-level algorithms are applied. The deficiencies in the infrastructure of the

15

cloud yield a direct impact on resource reliability [4]. These deficiencies in the cloud need

to be critically analyzed and treated to boost the reliability and robustness of the cloud

environment. Fault Tolerance is a significant technique that loads the cloud environment

with some important advantages like noticing, locating, and recovering from faults and

failures. This makes the cloud environment more robust and enhances the efficiency of

outcomes of the cloud environment [10]. Mainly, fault tolerance falls into two sub-areas

i.e., Hardware Fault Tolerance and Software Fault Tolerance [29].

This chapter mainly focuses on the methodologies of fault tolerance methods which are

reviewed based on three main strategies: Reactive Methods, Proactive Methods, and

Resilient Methods. The Reactive Methods are the conventional techniques of fault tolerance

that include replication, detection, checkpointing/restarting, and recovery. In the Proactive

Methods, the system is prevented from reaching the defective state. The actions are taken

to minimize the defects, and thereby the failure condition is avoided. These methods include

approaches like monitoring, prediction, and pre-emption. The Resilient Methods have

shown a recent take-off in the literature and are most probably the future of fault tolerance

in the cloud environment. These methods are based on artificial intelligence or machine

learning [10].

Moreover, to reach higher levels of strength in cloud computing, the failures need to be

accessed and handled effectively [25], [37]. Extensive work has been proposed in the

literature to make the cloud fault-proof. Some approaches proposed in the literature can be

labeled as mentioned in Figure 1.10.

1.3.2.1. Reactive fault tolerance:

 Once a defect has occurred, reactive fault tolerance is applied. Using this approach, we can

decrease the impact of the fault in the cloud and thereby increase the system's robustness

and reliability [30], [38]. The focus is on the device recovering in case of failure inside the

system [29]. Furthermore, data replication and data transfer are used for restoration [39].

These approaches address Byzantine Faults, Crash faults, Hardware faults, and Host failure.

Different fault-tolerant techniques that utilize a reactive approach are planned in Table 1.1.

1.3.2.2. Proactive fault-tolerance:

Predictionary provides pre-planned alternative solutions for the process of handling faults;

therefore, fault prediction is proactive. Moreover, the faulty component is substituted with

an alternative component runtime to avoid recovery from errors and faults [38], [40] [4],

[41]. This approach provides the effectiveness of cost with maximum efficiency and

reliability of the system [42] and addresses Software and Parametric faults. Some of the

proposed proactive fault-tolerant techniques in the literature are listed in Table 1.2.

16

1.3.2.3. Resilient Fault-tolerance:

These techniques have some similarities with the Proactive approach. The defects are

forecasted, and the effects are prevented or moderated by applying some methodologies.

The forecasting utilizes some intelligent learning, which makes Resilient techniques

different from Proactive ones. These approaches are adopted for general faults. In this

strategy, the system is continuously monitored for faults, which makes it adaptive fault

tolerance [10]. Some of the proposed Resilient fault-tolerant techniques in the literature are

presented in Table 1.3.

Figure 1.10. Showing the Categories of Fault Tolerance Techniques under Different

Approaches

17

Table 1.1: Enlightenment of reactive fault-tolerant techniques

Strategy of

Fault

Tolerance

Classification/

Category

Enlightenment Problems/

Issues Sheltered

Reactive

Strategy

Check-pointing

[22], [43]

The system state is saved periodically and in case of

failure, the job is restarted from the last checkpoint

rather than beginning. i.e., the job is restarted from the

recent state.

Byzantine Faults,

Crash faults,

Hardware faults

Host failure

Retry [25] In case of a fault in the task, we repeat the task with

the same resource until it succeeds without

consideration of the reason for the error.

Replication

[25], [42]

In this approach, replicas of tasks are created and

stored at diverse places. Until all these replicas are

destroyed, the execution of the task will continue even

in the presence of malfunctions and failures.

Task

Resubmission

[25], [43]

This approach submits and resubmits the failed task to

the identical or alternative resource [10]. There is a

resource loss in this technique by re-executing the

unsuccessful task repeatedly [44].

Job Migration

[26]

The failed job is migrated from the particular machine

to an additional machine.

Rescue Workflow

[26]

This approach lets the system continue working even

in the presence of fault until the fault will not allow the

system to progress further.

Load Balancing

[38],[45] [23]

The total load is distributed among machines

efficiently so that no machine will be under or

overloaded [10],[46]. Load balancing helps to

condense the hardware and time costs,

hardware costs [48] & thereby improving system

execution and efficiency [37], [38].

N-Version and

Recovery Block

[49]

These are the most commonly used methods of fault

tolerance in the software atmosphere where N-version

programming has N independent groups/developers

for developing N different versions of software

modules [50]. All these different individuals will try

to cover all likelihoods of fault.

Recovery blocks are used in case of conducting the

duplication of any job and are the boundless technique

to diminish the drain of any undesired incident [51].

Custom Exception

Handling [29]

In this approach, the developers purposively insert

some code or script into the software to handle certain

errors at running time [10].

Table 1.2: Enlightenment of Proactive Fault-Tolerant Techniques

Strategy of

Fault

Tolerance

Classification/

Category

Enlightenment Problems/

Issues Sheltered

Software

Rejuvenation

[25], [26]

In this strategy, the system is rebooted periodically,

and every time the system starts from the new state.

Mainly this strategy is used to address the issue of

aged devices [48]

18

Proactive Strategy

Pre-emptive

Migration

[41], [52]

This strategy involves the ongoing and constant

observation of an application to track crucial resources

like CPU and RAM [53]

Software and

Parametric faults

Prediction [54] This approach requires a basic knowledge of system

defects [55]

Monitoring [44] This strategy more actively participates in carrying

innovative resources such as planning, expanding, and

migration [56]

Self-Healing

[57], [58], [59]

This strategy mainly uses the divide-and-conquer

technique to improve the performance of the system.

It allows the system to classify, recognize, and heal the

problems itself without the intervention of any

administrator.

SGuard [49] The SGuard strategy primarily depends on the

recovery and rollback process and is mainly proposed

for sharing the video services [17]

Table 1.3: Enlightenment of Resilient Fault-Tolerant Techniques

Strategy

of Fault

Tolerance

Classification/

Category

Enlightenment Problems/

Issues Sheltered

Resilient

Strategy

Machine Learning

[10]

Machine learning techniques mainly reinforcement

learning [38] are involved in analyzing the features

and characteristics of machines. Such strategies help

the system to manage its faults according to its

surroundings.

Adapted to

General Faults

Fault Induction [10]

This strategy is a recent strategy used in cloud

environment [38] Failures are managed by making

assumptions based on the reaction of the system.

The reactive strategy does not require to enforcement of any qualification mechanism in the

system until and unless the fault occurs. In such a strategy, efforts are being made to

moderate the injurious effects only after the detection of faults in the machine. Efforts are

being made to moderate injurious effects in the machine after the faults have happened [48].

In a Proactive strategy, the system is in continuous tracking to analyze the faults and

eliminate them before they appear. The device state is continuously screened to guess the

coming faults in advance so that corresponding steps will be taken to eliminate these

upcoming faults. In Resilient strategies, the system operates even in the presence of faults,

and the faults are removed in the given timeframe.

The corresponding pros and cons of these strategies are presented in Table 1.4 and Table

1.5 respectively.

19

Table 1.4: Pros of Fault-Tolerant Strategies

Reactive Strategy Proactive Strategy Resilient Strategy

Can handle rare faults [10]

Methods like checkpointing, and

restarting work well for a lengthy

application [10]

Restoration from faults restricts the

susceptibility of the system.

The forecasting makes the system

more effective [10]

This strategy is more appropriate

for real-time applications [10]

These strategies seem the future of

Fault tolerance.

The faults are discovered and

eliminated continuously.

This reduces the resource

requirement as the system handles

faults efficiently [10]

 Table 1.5: Cons of Fault-Tolerant Strategies

Reactive Strategy Proactive Strategy Resilient Strategy

These strategies cannot be applied

to real-time applications.

Restoration from failure will

increase the response time

significantly [10].

As the prediction is required here,

and wrong predictions will degrade

the performance of the strategy [10]

Frequent modification is required as

the cloud itself is the most dynamic

environment.

Learning time is required for the

agent [10].

Reactive techniques have some similarities to the proactive approach. Moreover, the defects

are forecasted, and the effects are prevented/moderated by applying some methodologies.

The forecasting uses some intelligent learning that makes resilient techniques different from

proactive ones. Compared to conventional fault tolerance techniques, resilient fault

tolerance provides increased durability and adaptability in the event of system breakdowns.

Some of the advantages of resilient fault tolerance over traditional fault tolerance are:

1. Dynamic environment

Resilient systems can bounce back from errors without sacrificing functionality because

they can dynamically adjust according to shifting circumstances. They are made to respond

quickly to changing threats and difficulties. However, conventional fault tolerance

techniques could find it difficult to adjust to sudden or rapid shifts in the environment. They

might not react to new kinds of errors as well since they frequently rely on predetermined

rules.

2. Recovery

Often, automated recovery mechanisms found in resilient systems are capable of promptly

detecting and fixing errors without the need for human interaction. This reduces the effect

on coordinated functions and decreases downtime. On the other hand, to recover from

20

errors, traditional approaches might need more manual intervention as compared to

Resilient ones. This could result in longer time frames for recovery and a higher chance of

service interruption.

3. Real-time track reporting

Sophisticated analytics and tracking techniques that offer practical observations into the

health of the system are frequently integrated into resilient systems. Further, active defect

identification and prevention are made possible by these techniques. Unlikely, conventional

approaches might be less successful in locating and addressing errors as they depend on

frequent checks or event-generated reactions.

4. Optimization

Resilient systems are made to maximize the use of the resources at hand during fault

recovery, guaranteeing that resources are distributed effectively to sustain critical

operations. Besides, traditional techniques could use expensive strategies, which could

result in more inefficiency and lower effectiveness of the system all around.

5. Flexibility and adaptability

Improved adaptability and flexibility are frequently displayed by resilient designs, enabling

them to adjust to changing demands and adjust resources upward or downward in response

to consumption.

However, traditional approaches could find it difficult to adjust dynamically or regulate

shifting demands, which could result in inefficiencies during times of high consumption.

1.3.2.4. General Problem Formulation for Fault Tolerance Using Replication

Problem Statement: Problem formulation that focuses on the importance of fault tolerance

in the circumstances of clouds.

Problem Scope: The fault tolerance in the cloud is addressed for continuous service delivery

even in the event of failures or breakdowns.

Objectives: The main goal is to reduce fault-related service interruptions and downtime to

maximize cloud service availability. Additionally, increasing resource utilization, loss of

data, and maintaining SLA thresholds are also included in the formulation.

Problem Constraints: To guarantee that the efficiency effect of services is provided as

needed. The fault tolerance techniques should add as little overhead as possible. Moreover,

the solution should apply to the related computational resources.

Parameters: The parameters manipulated during fault tolerance are MTTF (Mean Time to

Failure), MTBF (Mean Time Between Failure), MTTR (Mean Time To Reappear), etc.

However, the parameters that are optimized are average resource utilization, makespan,

recovery rate, failure rate, success rate, etc. There can be some decision parameters in fault

21

tolerance such as selection of alternative resources, fault detection algorithm, recovery

mechanism, etc.

Problem Formulation: For fault tolerance in real-time systems, two important sets can be

considered i.e., tasks set (T), and VM set (V). T: {t1, t2…tn}, indicating that n real-time tasks

at any instance in the Cloud environment. For each actual-time task {ti | ti ∈T}, tI has some

set of attributes associated with it such as arrival time, dimensions, expected execution time,

anticipated finish time, anticipated harvest time, deadline limit, etc. Deadline and harvest

time can be related to each other as follows:

Exp HT = D – Min PT

V: { v1, v2…vm}, indicating that m number of accessible VMs in the Cloud environment.

For each accessible VM {vi | vi ∈V}, vI has some set of attributes associated with it such as

vm_id, capacity, cluster, etc.

Fault tolerance can be achieved by using any of the fault-tolerant approaches. Here we are

utilizing the replication Fault tolerant technique. Here, the scheduler should possess the

capability to generate the required amount of replicas separately for every real-time task.

For each {ti | ti ∈ T}

Enable the scheduler to generate replicas

Allocated VM to each replica,

Calculate the expected finish time fi,j,k for a given replica by the following equation:

Fi,j,k = A(ti) + w(ri) + e(ri,j,k)

Where, i, j, and k represent the key of the original real-time task, the key of the current

replica, and the key of the allotted VM, respectively. A is the arrival time for the real-time

task, w is the waiting time of the replica, and e is the expected execution time of the replica

over the allotted VM.

Further, e(ri,j,k) is computed by the following equation:

e(ri,j,k) =
𝑡𝑎𝑠𝑘 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙𝑜𝑡𝑒𝑑 𝑉𝑀

After e(ri,j,k) expires, the following condition is evaluated for every real-time task.

If ∀ replica(ti) = failed

Mark ti “failed”

Else Mark ti “Succeeded”

Additionally, a reservation mechanism can also be used to achieve Fault tolerance where

we reserve the VM in advance which will be allocated in case of fault.

22

Estimation Metrics: It comprises the estimation of some optimization parameters like

recovery time, reached reliability, and effectiveness of resource use for both fault and

regular operating conditions.

1.3.3. Load Balancing in Cloud

Load balancing is among the chief requirements of a cloud environment. Load balancing

usually shifts the load from the highly loaded VM to the minimum loaded VM to ensure the

uniform dispersal of load among VMs. It aimed to share the workload among computational

resources to maintain load equilibrium and allow each resource to function within its

designated efficiency threshold. The uneven distribution of load among VMs affects the

improvement of response time, interaction overhead, output, and resource utilization of the

system [46]. Furthermore, it improves VM availability and maintains reliability. Besides,

the load can be balanced by implanting resource redundancy that fulfills scalability. Figure

1.11 demonstrates the illustration of load balancing in the Cloud system. The load balancer

is responsible for adequately balancing the workload of several users among distinct VMs

located at diverse locations such as the U.S., the U.K., India, etc. Numerous strategies have

been proposed by researchers to attain the finest load balancing.

Figure 1.11: Load Balancing in Cloud

1.3.3.1. Types of Load Balancing

In the Cloud, VM can work independently or collectively as per the requirement and nature

of the task. Each VM is capable of processing workload as per its processing capabilities.

The main objective of load balancing is to attain adequate workload distribution among

available VMs. In general, any load balancing algorithms comprise two elementary policies,

i.e., the transfer policy and the location policy [43]. The transfer policy adjusts whether the

VM is overloaded or not. It further deals with the dynamic aspects of a system. The transfer

policy also elects if there is a necessity to initiate the load migration for the system. By

23

means of workload evidence, this policy determines when a node becomes suitable to act

as a sender i.e., transfers a task to another VM. It further determines when a node acts as a

receiver and retrieves a task from another VM. However, the location policy decides on a

suitably under-loaded VM. It locates complementary VM to/from which a VM can

send/receive workload to improve the overall performance of a system. Location-based

policies are further categorized as receiver-initiated, sender-initiated, or symmetrically

initiated. The location policy chooses an alternative VM for a job transmission transaction.

If the VM is identified as an eligible receiver, the location policy looks for an eligible sender

VM. If the VM is recognized as an eligible sender, the location policy seeks out a receiver

VM to receive the jobs. Once a VM becomes an eligible sender or receiver, a selection

policy will apply to prefer which of the queued jobs is to be moved now [46]. Based on the

information and implementation used by these two policies, load balancing mechanisms are

classified as mentioned below [60]:

• Static Load Balancing

In static load balancing, the task to be assigned to a VM is of fixed size. The system itself

has very minimum load variations.

• Dynamic Load Balancing

Dynamic load balancing (DLB) distributes load competently so that the overall workload

of the dynamic system is balanced efficiently, and maximum VM exploitation will be

achieved in case of joining and leaving of VM in the system.

• Adaptive Load Balancing

Adaptive algorithms are a distinct type of dynamic algorithm where the parameters of the

algorithm and the scheduling strategy itself are altered based on the global state of the

system.

• Periodic Load Balancing

Periodic load balancing usually employs distinguished agents to assemble and allocate load

information, reduces communicational overheads, and improves scalability. Periodic load

distribution policies impose less hindrance with centralized systems as compared to the

distribution system; therefore, they can support load distribution in larger systems.

• Non-Periodic Load Balancing

In a non-periodic load balancing, load information reaches the load balancer in a non-

periodic fashion, i.e., at irregular intervals of time purely as per the requirement of the

system. Thus, it is most suitable in a dynamic environment as a VM need not wait for its

allocation to a newly arrived task.

24

• Advance Load Balancing

In advance load allocation, the tasks are assigned to the VMs in advance before execution.

Generally speaking, load-balancing algorithms can also be categorized as hierarchical,

decentralized, or centralized depending on where migration decisions are prepared [61],

[62].

• Centralized Approach

In a centralized approach, a central controller VM is chosen among the VMs in the

distributed system. This central controller VM has the total sight of the system load

information. Furthermore, it elects the way to allocate jobs to other VM.

• Decentralized Approach

In a decentralized approach, all VMs in the distributed system contribute to making load-

balancing decisions. Since load-balancing decisions are distributed in nature, which makes

it is costly for each VM to obtain the dynamic state information of the total view.

Some of the advantages that inspire the implementation of load balancing in the Cloud are

as follows:

Efficient VM Utilization in a Cloud Environment: In the cloud, VMs may be inadequately

loaded further the general performance of the system will be affected. Moreover, the

selected competitive VM can be highly utilized while the other VM may remain idle

throughout the process and the underutilized VM may wait for a task. This scenario results

in higher processing time and maximizes waiting time. To overcome such inconsistencies,

VM utilization needs to be efficient by optimally balancing the load among resources.

Adequate Load Distribution: Ample Load distribution is necessary to attain the best

possible performance of the system. It leads to utilizing the maximum computing capability

of a particular VM and parallel task execution. Likewise, it ensures an adequate load

allocated to every single VM according to its capacity in all conditions. It is necessary to

dispense workload among all VMs uniformly according to their processing capacities to

diminish the task execution time to the meanest possible value.

Minimization of Response Time: Inappropriate load distribution leads to several disparities

resulting in higher response time which eventually results in an inconsistent state of the

system. Thus, it is crucial to realize optimal load balancing to minimize the response time

and achieve enhanced system throughput.

1.3.3.2. Challenges of Load Balancing in Cloud

CC encounters numerous challenges, with LB standing out as a particularly crucial issue

that requires focused consideration. This encompasses concerns like (VM) migration, the

25

security of virtual machines, and the equitable prioritization of user QoS security and

resource utilization. Efforts are directed toward finding optimal solutions to enhance the

efficiency of resource utilization in the cloud. Some of the LB issues and challenges faced

by the researchers are listed below [63]:

• Geographical Node Distribution

Cloud data centers are commonly dispersed across various locations to facilitate computing.

Within these centers, dynamically distributed nodes serve as a centralized network, ensuring

the effective processing of customer requests. While the literature provides various Load

Balancing (LB) approaches, many have limited applicability, as they often overlook factors

such as network delay, communication delay, the spatial distribution of computing nodes,

and the availability of space and resources within the customer environment. Nodes located

in extremely remote areas pose challenges due to the inadequacy of certain algorithms that

are not well-suited to such environments [63].

• Single Point of Failure

"In the literature, specific LB algorithms are suggested where decision-making is not

distributed across multiple nodes; instead, LB decisions are centralized to a single node.

The potential drawback of such an approach is that if the central node or key devices

experience malfunctions, it can significantly impact the overall performance of the

computing system [63].

• VM Migration

Virtualization enables the creation of multiple virtual machines on a single physical unit,

each with distinct settings and independent architectural structures. In cases of physical

device overload, it is advisable to employ an LB method to seamlessly transfer all VMs to

a remote setting, ensuring efficient resource allocation and system optimization [63].

• Node Heterogeneity

The use of homogeneous nodes for cloud load balancing is suggested in the literature.

However, for a more efficient network and reduced response time, there is a need for a

dynamic switch executed on heterogeneous nodes to cater to the diverse requirements of

cloud computing consumers [63].

• Data Handling

Cloud computing not only addresses the challenges posed by outdated storage infrastructure

but also introduces scalability and redundancy mechanisms. This transformative shift

allows users to harness the expanding storage capabilities efficiently while maintaining data

26

integrity through duplication strategies, thereby ensuring a reliable and resilient storage

environment [63].

• Scalability

The accessibility and on-demand scalability of cloud services empower individuals to

swiftly adjust resource allocation, enabling rapid downsizing or scaling up as needed. An

effective load balancing mechanism should take into account the dynamic changes in

computational requirements, memory usage, device topology, and other factors to ensure

optimal performance in response to evolving conditions [63].

• Computational Complexity

Cloud Computing (CC) algorithms should prioritize speed and simplicity for efficient

implementation. The primary goal of a robust algorithm is to enhance the efficiency and

quality of the cloud system, as outlined in [63].

• Programmed Service Provisioning

Central to cloud computing is its inherent flexibility that allows resources to be

automatically allocated or distributed. The challenge lies in leveraging and deploying cloud

services while maintaining productivity comparable to traditional systems and optimizing

the use of available resources [52].

• Energy Organization

Efficient energy management in cloud computing not only fosters cost-effectiveness but

also facilitates a collaborative approach to global resource utilization. By prioritizing

power-saving measures, the cloud enables businesses to contribute collectively to a shared

global capital pool, fostering sustainability and optimizing resource allocation [52].

1.4. Objectives of the Research

The following are the listed objectives formulated for the research:

• To study and analyze the existing VM reservation and fault-tolerance techniques

for resource provisioning in the cloud environment

• To design and implement an efficient scheduling technique with fault tolerance for

optimal workload and resource reservation.

• To optimize QoS parameters for the proposed approach under the cloud

environment.

• To execute the comparative analysis of the proposed approach with the existing

approaches.

27

1.5. Thesis Organization

The thesis is organized in different chapters. The flowchart of the thesis is presented in

Figure 1.12.

Figure 1.12: Thesis Organization

1.6. Summary in Context

In the realm of cloud computing, the seamless operation of systems hinges on effective task

scheduling, fault tolerance mechanisms, and load-balancing strategies. Task scheduling and

load balancing play an important role in resource provisioning in the cloud. Task scheduling

involves the efficient allocation of computational tasks to available resources, ensuring

optimal performance and resource utilization. Load balancing plays a critical role in

distributing workloads across multiple servers or virtual machines, preventing overloads,

and maximizing system efficiency.

Additionally, fault tolerance mechanisms are essential safeguards against system failures,

enabling continuous operation by detecting, isolating, and recovering from faults.

Together, these components form the backbone of reliable and efficient cloud services.

They enable scalable and resilient architectures that meet the demands of modern

applications and users, ensuring high availability, responsiveness, and adherence to service

28

level agreements (SLAs). As cloud environments evolve to handle diverse workloads and

dynamic resource demands, the integration of robust task scheduling, fault tolerance, and

load balancing becomes increasingly crucial for sustaining optimal performance and

reliability.

29

Chapter 2

Literature Review

A comprehensive review of the literature is essential to inspire the development and bridge

the gap between existing and proposed research. This chapter delves into various techniques

operating under similar conditions, examining their associated strategies to assess the issues

and limitations inherent in current research endeavors. Furthermore, it is imperative to

pinpoint the specific problem that future research endeavors can address to resolve or

mitigate existing issues. Despite numerous studies already conducted in the related area,

identifying gaps and potential avenues for further investigation remains essential. Hence,

the goal of the present study is to uncover the constraints that can enhance the global

productivity, execution, and accuracy of the cloud. Various algorithms have already been

reported in the literature to allocate resources dynamically in the cloud environment.

However, adding fault tolerance with scheduling and load balancing is also one of the

primary challenges to working in the cloud environment.

This chapter comprises an extensive literature survey with hybrid objectives. Firstly, it aims

to provide a literature review focusing on existing fault-tolerant techniques. Afterwards, it

explores the literature related to fault-tolerant techniques integrated with two primary

resource provisioning methods, namely scheduling and load balancing. The examination of

fault-tolerant algorithms in conjunction with scheduling and load distribution methods is

pivotal for optimizing task-resource mapping in the context of a dynamic and heterogeneous

environment. This comprehensive analysis contributes to the understanding of strategies

that can improve overall system efficiency and reliability.

Moreover, a kind of hybrid review is performed in this chapter by focusing on some other

aspects simultaneously, such as Load balancing and Scheduling with fault tolerance. Fault

tolerance techniques presented so far are reviewed based on considered parameters such as

techniques like fault tolerance with scheduling, fault tolerance with load balancing, fault

tolerance with QoS parameters, etc. Scheduling of tasks appropriately finds it good in

delivering critical and proper services of the cloud. The improper scheduling of tasks may

result in under and over-utilizing of resources where the under-utilization of resources can

lead to the wastage of resources and over-utilization of resources can degrade the

performance of cloud systems. Cloud Systems loaded with Load Balancing techniques

reduce receiving and sending delays and prevent the nodes from overloaded situations as

well [22]. So, there is a good need to solve the Load Balancing issues to boost the overall

performance of cloud-based applications.

30

The advancement in cloud computing technology has reformed the approach computing

assets are provisioned, utilized, and managed. Cloud computing offers a vast array of

services that are flexible, scalable, and cost-effective. To improve the utilization of cloud

resources, various dynamic resource allocation algorithms have been intended in the works.

However, ensuring fault-tolerant scheduling and load balancing is a critical challenge that

needs to be addressed to provide uninterrupted services in the cloud. Virtual machine

reservation is one of the promising approaches that can mitigate these challenges by

allocating reserved resources for fault tolerance and load balancing.

2.1. Research Methodology and Data Analysis

This section focuses on the setting of the methods that are used to perform the qualitative

opinion of the literature in the review and the sources of considered state-of-the-art works.

It also includes the incorporated methodology for the proposed research. In the end, we

specified our significant contributions to this review.

SLR and Kitchenham standards are employed for review which also includes the selection

and elimination of the published articles based on some aspects. The related articles were

selected after analyzing the abstract, and afterward, a critical review/analysis was

performed. The selection of the papers was achieved based on the standard in the database

and the article itself. Furthermore, the inclusion was done based on the following conditions.

Searching Strategy

A systematic survey of fault tolerance with efficient scheduling and load distribution

techniques proposed in the literature was conducted through well-known sources.

Several search keywords include Cloud Resources, Fault-tolerance, Task Scheduling, Load

Balancing, QoS Parameters, Resource Optimization, failure in a cloud, essential cloud

services, cloud architecture, scheduling techniques, etc., used in this study.

Duration and Validity of Study

• This review research mostly incorporates articles from 2009 to 2023 from well-believed

journals, books, and conferences.

• The statistics of the considered year for publications from 2009 to 2023 are depicted in

Figure 2.1.

• Very few studies are included from 2007 and 2008.

• The selected duration is chosen to capture a comprehensive range of data such as

technical progressions, economic sequences, and policy variations, and confirm data

availability pertinent to our study that replicates the evolution, progression, and trends

applicable to our study objectives.

31

Figure 2.1. Percentage of the Included Papers (2009 to 2023)

Language and Selection/Inclusion Criteria

• The decision for the language criterion was specified as English. Because English is

considered the primary language for scholarly and intellectual publications particularly

in the fields of computer science and distributed computing. Regulating criteria for

English articles ensured that we selected high-quality and broadly recognized studies,

smoothing a thorough and appropriate review.

• The primary priority was given to hybrid fault tolerance approaches including either

scheduling or load balancing.

• Hybrid fault tolerance approaches optimize some other QoS parameters as well. Figure

2.2 presents the detailed inclusion and exclusion of the studies.

Figure 2.2. Methodology of Inclusion and Exclusion Criteria of the Studies

Data Processing and Analysis

0%

2%

4%

6%

8%

10%

12%

14%

2005 2010 2015 2020 2025

Pe
rc

en
ta

ge
 (%

)

Year

32

• The data was initially organized into Excel and prepared for analysis.

• Data categorization was made based on different QoS parameters, the environment used

for simulation, types of faults considered, and other thematic considerations. This

categorization helps us to analyze the literature more clearly and precisely.

• The qualitative information was obtained by considering diverse QoS metrics, types of

faults addressed, and the range of simulation environments utilized across a timeframe.

• Furthermore, the analysis also highlights the various fault tolerance methods employed in

the existing literature.

Synthesis of the Analysis

• For meaningful conclusions and insights, the data was observed based on the objectives

of the study.

• The patterns and relationships among the various studies were discussed for

comparison and assessment.

Quality Assessment and Validation Procedure

The presented Methodology Adapted for this study can be summarized in four stages:

• Originally, the related articles were searched through the related keywords.

• Some articles were selected based on title, standards, and optimization parameters.

• Selected articles were gone through the abstract, and further inclusion and exclusion were

performed.

• Finally, inclusive articles were extensively reviewed, analyzed, and incorporated into this

survey.

2.2. Our Contribution and Features of the Study

The primary contributions of this survey include:

• This chapter presents an in-depth examination of the cloud environment. The main faults

and fault taxonomy in cloud systems are also discussed in detail.

• Various researchers have already addressed fault tolerance and load balancing

mechanisms, however, much of their work has focused on the employment of either fault

tolerance or load balancing separately. The presented survey incorporates a review of

fault tolerance with two other related aspects, i.e., load balancing and scheduling which

is the peak need of the time and was found missing in the current surveys.

• Moreover, Table 2.1 presents a comparative analysis of our contribution to the recent and

current top-cited studies respectively.

33

• The survey has been presented in two categories i.e., Fault tolerance with Scheduling and

Fault tolerance with Load balancing.

• The generalized problem formulation of fault tolerance has also been presented to

understand the workings of fault tolerance using the replication technique.

• We further outlined the difficulties associated with ensuring fault tolerance integrated

with scheduling and load balancing in cloud computing systems and comprised a

thorough examination of common problems faced. It will assist future researchers to

promptly recognize or understand the problems related to the study.

• The study also presents feasible graphical observations about the literature such as

parameters optimized, faults model addressed, the environmental tool used, etc. These

detailed observations are presented separately for both categories and were not found in

the existing surveys to the best of our knowledge. A dedicated discussion and observation

section is designed for that purpose.

• This hybrid review aids in investigating the potential challenges of hybrid fault-tolerant

models and provides a detailed roadmap for future research directions. The aim is to

enhance migration methods, thereby mitigating failures among nodes.

• Moreover, the overall study provides a platform for future researchers to analyze the

current state of the art regarding considered issues and find the appropriate future

research problems.

• At the end of this chapter, there is a dedicated section highlighting the future research

directions of the problem.

Table 2.1: Comparative analysis related to the contribution of the top-cited study and the

proposed study

Auth

ors

Year Fau

lt

Tax

ono

my

Fau

lt

Tol

era

nce

Fault

Toler

ance

Appr

oache

s

Load

Balan

cing

Load

Balan

cing

Appr

oache

s

Sc

he

dul

ing

Hybrid

review of

Scheduli

ng and

Fault

Toleranc

e

Hybrid

review of

Load

Balancin

g and

Fault

Toleranc

e

Fault

Tolera

nce

Proble

m

Formul

ation

Graphi

cal

Repres

entatio

n of

Results

 [29] 2021 √ √ √ × × × × × × √

 [28] 2021 × × × × × √ × × × ×

 [64] 2021 × × × √ × × × × × ×

 [58] 2018 √ √ × × × × × × × ×

[65] 2021 × √ √ × × × × × × ×

34

[66] 2022 × √ √ × × √ × × × √

[67] 2020 × × × √ × × × × √ √

[68] 2019 × × × √ √ × × × × √

Prese

nted

Surv

ey

_ √ √ √ √ √ √ √ √ √ √

2.3. Our Motivation and Main Focus of the Study

Faults can lead to malfunctions that worsen a system's overall performance. Failures result

in the breakdown/shutdown of a system, but occasionally, flaws cause performance to

decline rather than the entire shutdown of the system. Various fault tolerance solutions can

be employed to address different types of defects, such as network, physical, and process

problems. However, it is crucial to achieve without comprehending the existence of the

issue inside the architecture and the damage that the system flaw produced. Cloud is made

up of comprises levels, each of which takes services from the layers below it. The failure at

any layer has the potential to contaminate the layer right above it. Since faults at any one

layer may affect the services that any of the layers provide. Thus, for high-performance

computers, the appropriate fault tolerance system is needed to effectively handle these

faults. The faults should be managed critically and dynamically to make the cloud

environment more efficient and intelligent. Besides, in the cloud, efficient task scheduling

leads to the maximum utilization of virtual machines, reducing operational costs, thereby

revealing enhancements in the QoS parameters and eventually improving overall

performance. Also, load balancing techniques need to be addressed comprehensively in

different environments like static, dynamic, and nature-inspired cloud environments.

Moreover, it is essential to thoroughly examine load-balancing techniques across various

settings, including static, dynamic, and nature-inspired environments.

Various methods have been suggested in academic literature to address this concern and

multifarious reviews are available in the literature for future researchers. While studying the

existing surveys, it was observed that the surveys are not thorough enough, wide-ranging,

and sufficient in certain ways. Although the authors in reference [10] have presented a

comprehensive survey about fault tolerance, this survey does not focus on other aspects of

the cloud like efficient load balancing and scheduling. Besides, [64] presented a vast survey

focusing on load balancing across cloud resources but lacking in fault handling and cloud

optimization. Similarly, [22] also provides a survey emphasizing fault tolerance

frameworks, however, fails to significantly enhance the performance of the cloud

35

environment. In [65], only considering fault-tolerant approaches does not give prominence

to major cloud aspects such as scheduling and load balancing. Similarly, the most recent

survey presented in [66] focused on both scheduling and fault tolerance but no ways for

optimal load distribution. Additionally, the observations presented in [67] were limited to a

few aspects concerning fault-handling techniques, and only crash and byzantine fault

models were considered. Also, there is no consideration of QoS parameters. Similarly, the

recent survey was presented in [69] but was found limited to reliability. In other words,

these reviews were not significantly focused on the discussed issues of the cloud related to

fault tolerance with scheduling/load balancing simultaneously. After this comprehensive

analysis, it was observed that none of the mentioned surveys offer extensive consideration

of the above-mentioned scenarios of cloud computing. The QoS and other important aspects

related to the clouds' fault tolerance concerns are focused on by the researchers in the

existing surveys but are very limited. This renders the current review inadequate for

analyzing the current art in cloud systems. Hence, there is a dire need to present a survey

focusing on reliability-related aspects of the cloud. Therefore, we got motivated and moved

to present this systematic and hybrid review. In this survey, we try to discover and explore

the site of hybrid fault tolerance models that will focus not only on traditional fault tolerance

techniques but also integrate some other important cloud aspects like scheduling/load

balancing. This integration helps us to highlight the likely applications, challenges, and

incipient trends.

2.4. Related Literature

Fault tolerance techniques presented so far are reviewed based on considered parameters

such as techniques like fault tolerance with scheduling, fault tolerance with load balancing,

fault tolerance with QoS parameters, etc. Scheduling of tasks appropriately finds it good in

delivering critical and proper services of the cloud.

2.4.1. Scheduling with Fault-tolerance

Efficient scheduling in the cloud provides optimization of various Quality of Service

parameters, especially task completion time. Besides, scalability, availability, security, and

fault tolerance are the key features of cloud services. Instead of the complete breakdown of

the system, the faults in the cloud lead to performance degradation only. Without fault-

tolerant scheduling when one or more components of the system fail, the task execution,

waiting time, response time, etc. may increase. This leads to enhanced throughput as well.

However, Fault tolerance provides an alternative way for the process completion even if

some of the resources may not work properly [37], [38]. Few works of literature have

36

proposed fault-tolerant scheduling algorithms with optimized parameters. Recently, in [50],

the Dynamic Clustering Cuckoo Whale Optimization Algorithm (DCCWOA) has been

suggested for supporting effective fault-tolerant scheduling in the cloud. The algorithm was

tested for varying the tasks between 100 to 1000 with 8 virtual machines. The problem of

fault tolerance was also investigated in [51], and a greedy-based best fit decreasing (GBFD)

algorithm was proposed for increasing the success rate of task execution along with

optimization of other parameters. The model was valued with numerous loads of PUMA

datasets. Additionally, the computational complexity was claimed to be O(nm) where n is

the VM number in the data center, and m represents computing nodes. In [70], authors

proposed GWO (Grey Wolf Optimization) - based Task Scheduling evaluated on the

1000MI task dataset. Fault handling is carried out in the proposed work with efficient task

scheduling by employing the task resubmission technique. Extending the chain of work and

solving the problems of dependability relationships, learning automata was used and a self-

adapting scheduling strategy namely, ADATSA was proposed in [71]. The model was

experimentally evaluated on 53 servers with 3 Master nodes and 50 slaves. The complexity

was proposed to be O(NK) + O(MS) where N represents cluster nodes, K represents

resource category, M is average tasks on a node, and S is average state transitions. In [72],

a Fault-Tolerant Hybrid Resource Allocation Model (FTHRM) was recommended which

confirms fault tolerance and minimized Turn-around-Time (TAT). The proposed model

employs a prior reservation process to distribute resources to the respective tasks, ensuring

the guaranteed execution of tasks. Resource reservation is also enabled for time slots with

resource organization as needed by the task set with adjusting VM heterogeneity. In case of

resource failure, alternative resources are being supplied where the most preferred resource

has having least former workload and the smallest execution time. The authors in [73]

presented the framework for adaptive scheduling and fragmentation of tasks namely

(WSADF) Workflow-scheduling applying -adaptable and dynamic-fragmentation which

initially creates the fragments concerned with the number of VMs in the fragmentation

phase and later the scheduling phase pick out the VMs concerned to reduce the usage of

bandwidth. WSADF was evaluated on the workload ranging from 25 to 1000 and VMs

ranging from 5 to 25. While making the task scheduling adaptable to both heterogeneity and

homogeneous environments, CPSO and FIPS were proposed in [74]. The proposed task

scheduling was evaluated on 30 servers under 1000 iterations. In this chain to integrate

localized edge clouds with publicly accessible clouds and enhance scheduling effectiveness

and scalability, a hierarchy-based edge cloud concept was introduced in [75]. Additionally,

FTDS, a failure rescue technique is suggested to address the fears that arise while mobile

37

apps are being executed. For evaluation, the workflow was taken from 10 to 70 applications

while taking the length of the workflow from 10 to 60. Besides, some of the SLA (Service

level agreement) parameters like, CPU necessity, system bandwidth, and memory need to

be considered with appropriate scheduling. In this regard, the pre-emption-based algorithm

was proposed in [53] which pre-empts the resources from the low-priority task to the high-

priority task in case of unavailability of the resources and provides reservation of resources

reflecting numerous SLA parameters for facility deployment. The evaluations were carried

out via 4 cloud simulations by performing 10 consecutive runs and 60 requests having 10

to 15 subtasks. The cost and deadline of the tasks are considered for defining the priority of

the tasks. Moreover, it provides dynamic resource provisioning and an effective fault

tolerance process. In this chain, a fault-tolerance aware task scheduling scheme was

proposed in [55] namely Checkpointed League Championship Algorithm (CPLCA). This

algorithm provides fault tolerance using the checkpointing strategy along with task

migration and was evaluated by using workload in the form of Standard Workload Format

accessible via the San Diego Supercomputer Center (SDSC). Efficient scheduling and fault

handling mutually may ensure task execution and thereby fulfill the real-time environment

of the cloud. However, heterogeneous systems and their complexities are increasing

dramatically leading to failures. These failures can be eliminated by implementing efficient

scheduling approaches. Therefore, the task scheduling problem on heterogeneous systems

was addressed in [56]. Being an NP-hard problem, a heuristic algorithm Deadline Based

Scheduling Algorithm (DBSA) was proposed to resolve it. The DBSA approach

dynamically estimates the figure of permanent tolerating failures by calculating the

makespan first till the system tolerates a fixed number of failures. Afterward continuously

comparing the makespan with the specified deadline to get the successive number of

tolerating failures. The model was evaluated in the workload ranges from 20 to 100 with 4

and 8 VMs. Gaussian Elimination, Fast Fourier Transformation, and Molecular Dynamics

Code are used as a kind of application graphs for testing. Finally, the task is mapped to the

appropriate processor without violating precedence constraints. Further, in [76] Cost-

effective, NNCA_PSO was proposed by modifying Particle Swarm Optimization (PSO).

During evaluations, the workload was varied from 70 to 560 and VMs were used from 4 to

8. Further, the Advance Reservation Fault Tolerance Model (ARFTM) was proposed in

[77] which maps the tasks using MCT and tolerates faults using the advanced reservation

technique. ARFTM was evaluated by varying the workload from 1 to 300.

However, in [78], the fact that “the network bandwidth is limited” and the scheduling

policies should decrease the bandwidth usage in cloud computing was considered.

38

Moreover, the author proposes a data locality-based task scheduling approach, i.e., the

Balance Reduce Algorithm (BAR). It will reduce network access and thereby reduce

bandwidth usage and job completion time while not specifying the type and nature of

workload used for evaluation. Furthermore, an improved Balance Reduce Algorithm was

proposed with an improvement in machine failure handling. Later in [17], fault tolerance-

based scheduling was proposed namely the Dynamic Clustering League Championship

algorithm (DCLCA) to reduce the premature failure of the tasks. The model was evaluated

in two scenarios where a parallel workload archive containing 73,496 tasks in the form of

Standard Workload Format accessible via the San Diego Supercomputer Center (SDSC)

was used in the first scenario. In the second scenario, workloads were produced as of

CloudSim’s Workload PlanetLab. All the surveyed methods are brief in Table 2.2.

Table 2.2: Comparative analysis of recent scheduling-based fault tolerance algorithms

Method Year Parameters Comparison

Approaches

Outcomes Limitations Platform

/Environ

ment

HFSLM [34] 2024 Makespan,

Average

Resource

Utilization

Maxmin,

Minmin,

FTHRM, OLB,

ELISA,

MELISA

Efficient Resource

utilization and

makespan

No security

was

considered

Self

Simulator

ARFTM [142] 2023 Reliability MCT Highly Reliable Inadequate

Load

distribution

Self

Simulator

RFRTS [79] 2024 Reliability FCWS, FR-MOS Reliability with

varied load

No security Self

Simulator

DCCWOA

[50]

2023 Makespan,

Failure Ratio,

and Failure

Slowdown

ACO, GA, and

LCA

 58.19%, 19.88%,

and 29.32%

Makespan, Failure

Proportion, and

Failure Strike

parameters

respectively.

Limited

optimization

of QoS

parameters

Cloudsim

toolkit

(MSMO

classifier)

Modified

Sequential

Minimal

Optimization

accompanied

Delta-

Checkpoint

[80]

2023 Accuracy and

Prediction of

Faults with

reliability

Related ML-

based Classifiers

Enhanced

credibility for

reliability

Reliability

was not

proved while

comparing

with MSMO

cloud

simulatio

n 3.0.3

39

GBFD [51] 2022 SERoV, Average

Expenditure,

Average

Completion

Time

FCFS algorithm,

Cost-Greedy

Dynamic Price

Scheduling

(CGDPS)

algorithm [4],

Modified Best

Fit Decreasing

(MBFD)

algorithm

Optimizes

performance of the

cloud systems.

Lacks

dynamic

resource

utilization

and uniform

load

distribution

Cloudsim

toolkit

GWO-based

Task

Scheduling

[70]

2022 Makespan,

Execution time,

Communication

delay

ANGEL, TTSA

(Temporal Task

Scheduling

Algorithm),

MapReduce

Scheduling, and

Dynamic Slot

Scheduling

Effective task

scheduling with

fault tolerance is

achieved with

optimized

parameters.

Evaluations

were carried

out only on

four tasks

CloudSim

, JDK7.0

and

Eclipse

ADATSA

(Self-adapting

Task

Scheduling

algorithm)

[71]

2022 Adaptability in

circumstances,

optimization of

resources, and

QoS

LAEAS, PSOS,

and K8S

scheduling

engine

Better adaptability

and QoS

Lack of

heterogeneity

in VMs

Amazon

EC2 and

Apache

JMeter(v

5.4.0)

Fault-Tolerant

Hybrid

Resource

allocation

Model

(FTHRM) [72]

2021 Turnaround

Time, Flow

Time, Resource

Utilization

MCT FTHRM

improvises TAT

from 32 to 40%,

Lowers Flow Time

to 26 to 45%,

Provides 15 to

27% better average

resource utilization

than traditional

MCT

The proposed

system was

not fully

dynamic

concerning

the nature of

tasks.

Simulatio

n via C-

Language

WSADF [73] 2019 Adaptability,

Response time,

Throughput

FPD in the

fragmentation

phase, CTC,

SLV, and QDA

in the Scheduling

Phase

Adaptable to the

environment,

improvements in

response time and

Throughput.

Increased

delays and

average

response time

which

eventually

reduces

throughput

and

efficiency

CloudSim

Simulator

Canonical

Particle

Swarm

Optimization

(CPSO), Fully

informed

particle Swarm

Optimization

(FIPS) [74]

2019 Throughput,

Utilization,

Adaptability

CPSO in h-

DDSS

(Heterogenous

Dynamic

Dedicated Server

Scheduling) and

DDSS (Dynamic

Dedicated Server

Scheduling)

Scheduling is

adaptable to both

heterogenous and

homogenous

environments

May not

manage the

real-time data

Not

specified

https://doi.org/10.1002/ett.3539

40

FIPS in h-DDSS

and DDSS

Fault-Tolerant

Dynamic

Scheduling

(FTDS) [75]

2019 Scalability,

Success rate,

Competitive

Ratio

UES, IC-PCP in

LIGO and

Epigenomics

Improvement in

scalability and

performance,

Achieves the

trade-off between

cost and system

delay.

May

consume

energy

Amazon

T2, RWP

Model

Dynamic

Clustering

League

Championship

algorithm

(DCLCA) [17]

2018 Makespan MTCT,

MAXMIN, Ant

Colony

Optimization,

and Genetic

Algorithm-based

NSGA-II

In the case of 5

cloud users with 5

and 2 brokers and

data centers

respectively,

DCLCA lowers

makespan with an

improvement of

57.8, 53.6, 24.3,

and 13.4 %, and in

the case of 10 and

5 cloud users and

data centers,

DCLCA shows

improvement of

60.0, 38.9, 31.5

and 31.2 %

A limited

number of

cloud users,

brokers, and

data centers

were

considered.

CloudSim

3.0.3

toolkit

with

Eclipse

Luna

4.4.0

Deadline

Based

Scheduling

Algorithm

(DBSA)[56]

2018 Makespan,

Reliability, and

PSS (possibility

of Scheduling

Success)

HEFT and FTSA DBSA can

successfully

endure crashes and

enhance reliability

within time

constraints.

Limited

optimization

of QoS

parameters

Not

Specified

 Nearest

Neighbour

Cost-Aware

Particle

Swarm

Optimization

(NNCA_PSO)

[76]

2018 Scalability,

Makespan, and

Monetary Cost

PSO and

CA_PSO

High Scalability,

Low Makespan,

and Monetary cost

The model is

less reliable

CloudSim

toolkit

Checkpointed

League

Championship

Algorithm

(CPLCA) [55]

2017 Makespan,

and Response

Time

Ant Colony

Optimization

(ACO), Genetic

Algorithm (GA),

and the basic

League

Championship

Algorithm

(LCA)

CPLCA scheme

produces an

enhancement of

41%, 33%, and

23% on Makespan,

and

54%, 57%, and

30% improvement

in Response Time

Insufficient

load

balancing for

a dynamic

system.

CloudSim

3.0.3

toolkit

has a

modified

CloudAn

alyst GUI

interface.

41

than ACO, GA,

and LCA

respectively.

Improved

BAR (Balance

Reduce

Algorithm)

[78]

2012 Task Completion

Time

BAR (Balance

Reduce

Algorithm)

Minimizes

Makespan even in

case of failure by

fault tolerance.

Not suitable

for

heterogeneou

s

environment

Cloudsim

2.4.1.1. Scheduling and Fault Tolerance Frameworks

Various scheduling and fault tolerance frameworks are recommended in the literature. In

this section, these frameworks are surveyed and presented. Comparative analyses of

different scheduling and fault tolerance frameworks are presented in Table 2.3.

Proactive-based Scheduling and Fault Tolerance Frameworks

In this approach, the system can handle any disruptions or interruptions. The state of the

system is monitored continuously for breakdowns and failure. Some of the proactive-based

scheduling and fault tolerance frameworks found in the literature are mentioned below:

SHelp [81]: This approach was proposed by improving the existing framework namely,

ASSURE [82] which was implemented at the rescue points.

PFHC [83]: This is a proactive framework of fault tolerance proposed for HPC (High-

Performance Computing) applications in the cloud. This framework works on three chief

modules: Node Monitoring Module is prepared with some special Lm-sensors [84], [85] to

perform periodic monitoring for several parameters such as fan speed, CPU temperature,

etc., for wellness.

WSRC [86]: This framework contains a module namely, a failure detector that checks the

Virtual Machine Manager (VMM) periodically for any kind of variations such as delay in

response time or mismanagement of memory. If any fluctuation is found, the VM running

status is saved and VMM is repaired using the rejuvenation technique. Rejuvenation

generally leads to high overheads however, WSRC uses variable time rejuvenation to

control overheads.

SRFSC [87] : The software rejuvenation technique was used in this framework. This

framework primarily works in three phases: In the first phase, the packet that has the

information about the CPU and VM’s memory usage is received by Aging Failure

Detection. The other step is the evaluation of VM for failing grades. This step is known as

Aging Degree Evaluation.

42

FTDG [88]: FTDG is a fault-tolerant framework where the pre-emptive relocation is being

achieved. The architecture of this framework mainly comprises four functioning spaces.

User Space is used by the user to submit their data flows. Graph Space transforms the

submitted user data into Direct Acyclic Graphs (DAG). Moreover, the DAG is analyzed for

the critical and non-critical paths. In Storm Space, Scheduling and fault tolerance

mechanisms are applied. Hardware Space contains various data center resources.

Reactive-based Scheduling and Fault Tolerance Frameworks

In such frameworks, the faults are handled once they occur. Unlike proactive approaches,

monitoring of system behavior is not required in such frameworks. Some of the Reactive-

based scheduling and fault tolerance frameworks found in the literature are mentioned

below.

AFTRC [89]: In (Adaptive Fault Tolerance in Real-time Cloud Computing), the received

tasks are held in some input buffer and the task execution will be accomplished on a First

Come First Serve basis. This model also consists of the other modules. The Acceptance Test

(AT) is the module that checks the results of each embedded algorithm for accuracy and

verifies the results. The Time Checker (TC) checks whether the result is obtained within the

deadline or not. If not, then the specific task is sent back to the input buffer. The Reliability

Assessor (RA) adjusts the reliabilities of VMs based on obtained results. The decision

Mechanism (DM) takes the highest reliable node and selects the output from that.

BFTCloud [90]: This framework uses replication techniques and completes the user

requests timely even in the presence of faults. The amount of replicas/nodes is utilized by

employing the failure probability of all nodes. The failure likelihood of the replica group

should constantly be less than the top-level failure likelihood. The functioning of the

BFTCloud framework mainly works in five phases: Primary Selection: In this phase, the

basal node is designated based on the rating by adding the priority weight and QoS value

assigned to each node. The highest rating value node will be chosen as the primary node.

Replica Selection: In this phase, the number of replicas is selected by observing the QoS of

every node from the viewpoint of both the primary node and the cloud module. The new

QoS is calculated, and again rating will be done. Request Execution: This phase allows the

nodes to complete the request and react to the cloud module accordingly. The cloud, in turn,

checks the consistency of the obtained results based on different cases [91]. If the results

are consistent, then the primary replica is assigned to the next request. Primary Updating:

In case of a fault in the primary replica, this phase informs all other replicas to select the

alternative. Replica Updating: This phase removes the faulty replica and adds the new nodes

to decrease the failure probability.

43

FESTAL [92]: It is a fault-tolerant scheduling framework where the primary backup

technique is realized to handle the faults. In this framework, the user tasks are queued up in

some input buffer and assigned to the schedular having three controllers, i.e., Resource

Controller, Backup Copy Controller, and Real-time Controller.

The Backup Copy Controller takes the backup. Afterward, the Resource Controller explores

the two VMs, that can complete the task within the deadline. Based on the search results,

two decisions can be made.

• In case the two corresponding VMs are found, both task instances are scheduled on

the respective VMs.

• In case no such VM is found, the task is rejected.

In this framework, "If the anticipated end time is less than or identical to the task time-limit,

a passive backup is utilized; otherwise, an active backup is employed.

Resilient-Based Scheduling and Fault tolerance frameworks

These techniques have some similarities to the proactive approach. Moreover, the defects

are forecasted, and the effects are prevented/moderated by applying some methodologies.

The forecasting uses some intelligent learning that makes resilient techniques different from

proactive ones. Compared to conventional fault tolerance techniques, resilient fault

tolerance provides increased durability and adaptability in the event of system breakdowns.

Using resilient approaches, the system can recover swiftly and efficiently in dynamic

contexts due to resilient fault tolerance, which provides a more systematic and flexible

approach to addressing failures. When compared to conventional fault tolerance techniques,

this strategy frequently results in increased overall performance, decreased interruptions,

and enhanced system efficiency. In this context, EFTT (Efficient Fault Tolerance

Technique) is a type of resilient-based approach. In [93], the author used Machine Learning

to handle faults and generate solutions for FT.

Resilient Methods are of two types described below:

• Machine Learning:

ML was, nevertheless, applied as a sub-constituent of the general FT solution. Some

solutions have intensively employed ML to forecast faults using a set of specified variables.

Many applications have been working with ML while handling hardware faults. Here,

artificial intelligence, or machine learning, is used to create a system that can operate

autonomously like a human without the need for human concern. Machine learning

procedures can be used to increase a system's reliability even in the case of fault tolerance.

Such fault tolerance techniques are known as Resilient Fault-Tolerant Techniques as

44

discussed in Section 5.3. Machine learning techniques are typically used in proactive

approaches, predicting failures before they happen by using historical system data. The

Resilient techniques for fault tolerance are the emerging ones because the ML accesses data

and even can learn from data. One of the similar learning methods namely, reinforcement

learning was applied in [94] that studies the fitness of VMs in cloud environments. By using

such types of learning, every VM participates in the learning process independently. As

recommended in [95], fault tolerance in a distributed or parallel learning system is achieved

by constantly tracking the input parameters in the server. Here, the entire system returns to

the most recent checkpoint following an error. Checkpoints are not performed at every stage

by such systems, even in the presence of a high number of calls and activity in the network.

Forecasting defects are well-known in fault identification and handling, as stated in [96].

Quick error detection can prevent more serious system failures. Numerous processes make

up this operation, and some of the most recent research investigations include model-based

approaches that are quantitative, model-based approaches that are qualitative, and history-

based. Apart from reinforcement learning, unsupervised learning is an additional technique

for pattern recognition in the data without predefined output [97]. Such techniques do not

allow for the estimation of the outcome since unsupervised learning lacks an output target.

Instead, algorithms have chosen to depend on their expertise to pull out as much detail as

they can from the data. The deep learning techniques were proposed in [98] as a rapid way

to identify multicriteria errors in complicated industrialized analysis. Fault tolerance can

benefit from the application of such AI-related techniques.

• Fault Induction:

In this Resilient technique, failures are managed by making assumptions based on the

reaction of the system. Moving forward in this technique, [99] proposed that a hybrid energy

system be practically used to apply the multi-source power administration technique. The

analysis shows how to improve fault tolerance, scalability, efficiency, and dependability.

The concepts proposed in [93] are being used by some of the most well-known firms in the

world, including Google and Amazon, to increase their fault tolerance. Here the authors

have employed the software namely gameday. GameDay is software intended to highlight

significant shortcomings in methods for finding flaws and dependencies between different

components of the system. In a GameDay scenario, team members from every level of the

business must collaborate to find a solution. In the repeatable tests if everything went

perfectly, then the GameDay activity will be considered successful. Similarly, the authors

in [100], employed game theory and declared that the kind of smart grid operator will swiftly

45

supply electricity through a dispersed system. Additionally, several classifiers have been

compared for metrics like accuracy and fault predictions [101].

2.4.2. Load balancing with Fault tolerance

Load balancing with fault tolerance is a significant dispute in cloud computing. The efficient

load balancing techniques require the inclusion of fault tolerance capacity as well. It enables

the system to distribute the load to all the available nodes uniformly and simultaneously

deals with detecting and removing the faults to maximize the performance and efficiency

of the cloud environment. Various algorithms are surveyed and presented in Table 2.4. The

authors have introduced Honeybee Inspired-Load Balancing (HBI-LB) in [102], a reliable

and nature-inspired Fault Tolerant load-balancing approach. The assigned tasks in the

suggested method were in the range of 100 to 500 in number and 2000 to 10000 in length.

Further 10 and 15 fog centers and fog nodes were utilized respectively. The information of

scheduling the other in-progress tasks about the status and load on the resources is given by

other assigned tasks in the same way as the honeybees inform buddies about their position.

Besides, in [103], the Proactive and Reactive Fault Tolerance Framework (PFTF) was

proposed with ECB (Elastic Cloud Balancer). It avoids the situation in the cloud where

some nodes are idle or minimum loaded, and some are overloaded. The proposed ECB

enhances the scheduling quality in combination with the Job Shop Scheduling by

considering and optimizing QoS parameters. The model was evaluated by taking the tasks

in the range of 9 to 13 and task size in the range of 1000 MB to 8000 MB. Additionally, due

to the dynamic nature of cloud infrastructure, real-time features such as availability and

reliability need to be achieved. In this chain, Proactive Load Balancing Fault Tolerance

(PLBFT) was proposed in [104] as an efficient fault-tolerant load-balancing model

evaluated on the private cloud platform. This model relies on migrating the faulty VM to

another destination host directly. Besides, the load in the destination VM is managed (in

case of overload in the destination VM) before migrating the defective VM there.

Furthermore, this approach shows high reliability as compared to other similar techniques.

Load balancing and fault tolerance techniques are designed to provide highly reliable and

available services. For further growth in the availability of cloud services, a combination of

load-balancing and fault-tolerant techniques has been proposed [105]. The proposed model

is highly reliable in case of task failure while taking the task number between 13 to 18, task

execution time between 1 to 9, and task priority between 1 to 3 with four VMs. Moreover,

in [106], Deadline Pre-emptive Scheduling (DBPS) was proposed based on cloud

partitioning where the fault tolerance has been achieved by Throttled Load Balancing for

Cloud (TLBC). The model was tested on a workload of 10 to 300 while not specifying the

46

number of VMs. However, a Machine learning-based approach was proposed in [107],

namely, Fault-tolerance Load Balancing (FTLB), which embeds fault tolerance in load

balancing with the optimization of other QoS parameters. The evaluation was performed

using 100 computing cycles on three VMs. Furthermore, an Integrated Virtualized Failover

strategy (IVFS) similar to AFTRC was proposed in [108]. It employs replication and

checkpoint-restart in which Cloud Load Balancer (CLB) was added to AFTRC, and

checkpointing was carried out by implementing the Reward Renewal Process (RRP) [109].

Once the load was received, it was transferred to CLB by the Cloud Controller (CC). The

main job of CLB was to replicate the load on some suitable VM based on load information

in case of failure.

Table 2.3: Comparative analysis of various fault tolerance and scheduling frameworks

Framework Approach Used

Techniques

Parameters Features Limitation

Self-Healing

(SHelp

)

[81]

Proactive

Self-healing,

Restarting,

Checkpointing,

Response

time,

Throughput,

Availability

Speedy

functionality,

Fewer overheads

than ASSURE

Not suitable

for software

faults

PFHC [83]

Proactive

Replication Execution

Time,

Reliability

Lower cost,

More suitable

for HPC

Computation

al cost is

very high

WSRC [86]

Proactive

Rejuvenation

technique

Resource

availability

and other

overheads

Improved

availability and

improved

overheads using

variable time

rejuvenation

Restricted

suitability

SRFC [87]

Proactive

Software

Rejuvenation

Scalability,

Throughput,

Reliability

Improved

availability,

Multiple VM

rejuvenation

Limited to

software

rejuvenation

Fault

Tolerance

Scheduling

(FTDG) [88]

Proactive

Pre-emptive

Migration

Reliability,

Response

Time, and

Throughput.

Minimum

Response time

Restrictive

applications

AFTRC [89] Reactive Replication and

Checkpointing

Accuracy,

Reliability,

and

Availability

Applicable for

real-time

applications

Stunted

availability

of resources

47

when the

load is high

BFTCloud [90]

Reactive Replication Scalability,

Throughput,

Reliability

Highly Reliable

and is qualified

to tolerate all

byzantine faults

Low

Resource

Utilization

Fault-Tolerant

Scheduling

Mechanism

for Real-Time

Tasks

in Virtualized

Clouds

(FESTAL

) [92]

Reactive Replication Throughput,

Reliability,

Availability,

Usability

Energy-efficient

Resource

Utilization

Framework

Execution

can crash if

both central

and backup

fail

concurrently

Efficient Fault

Tolerance

Technique

(EFTT

) [107]

Resilient Machine

Learning

Throughput,

Availability,

Reliability,

Response time

High Response

time, High

Availability and

Reliability,

Adaptive in

nature

Insufficient

resource

utilization

 Table 2.4: Comparative analysis of different proposed fault tolerance and load balancing

algorithms

Model/Tec

hnique

Year Paramet

ers

Compared

with

Outcomes Advantage

s

Limitations Platform/

Environm

ent

Honeybee

Inspired‑L

oad

Balancing

(HBI-LB)

 [102]

2022 Average

Response

Time

Round

Robin (RR),

Throttled

(TH), and

Equally

Spread

Current

Execution

Load

(ESCEL).

Average

Response

time was

optimized

than

compared

approaches

Maintains

load

equilibrium

The model was

not evaluated

on a large task

scale. No fault-

tolerant

parameter was

considered.

CloudSim

3.0.3-

based

Cloud

Analyst

tool

Proactiv

e Load

Balance

Fault

2021 Executio

n Time,

Reliabilit

y

Adaptive

Fault

Tolerance in

Real-Time

PLBFT

achieved

the highest

reliability

Better Fault

prediction

and

tolerance

An increased

number of

migrations was

Cloud

Simulator

48

Toleranc

e

(PLBFT)

[104]

Cloud

(AFTRC)

calculations

than

AFTRC

observed which

maximized

execution time

Load

balancing

with fault

tolerance

algorithm

using

Replication

technique

[102]

2021 Availabili

ty,

Resource

Utilizatio

n

Fault

Tolerance

Workflow

Scheduling

the FTWS

[91]

Efficient

task

scheduling

along with

fault-

tolerance

Optimized

Availabilit

y and

System

Performanc

e

Poor resource

utilization

Amazon

EC2

Proactive

Fault

Tolerance

Framework

(PFTF)

[103]

2017 Executio

n Time,

Network

Congesti

on,

Cost

High-

Performance

Linpack

(HPL),

Honeybee

Foraging

Algorithm

Improved

Execution

Time

and Time

Delay.

Network

congestion

delay was

reduced by

47%,

Reducing

the cost

No

consideration

of Resilient

Fault Tolerance

CloudSim

3.0 tool

CLBC

(Load

Balancer),

Deadline

Based

Pre-

Emptive

Scheduling

(DBPS)

[106]

2014 Throughp

ut,

Completi

on Time,

Executio

n Time,

and

Computat

ional

costs

Traditional

related

algorithms

The

computatio

nal cost was

minimized

Effective

Load

Balancing

Not suitable for

deadline-based

task

accomplishmen

t

Cloudsim

FTLB

[107]

2017 Throughp

ut,

Availabili

ty,

Reliabilit

y,

Response

time

Ant Colony,

Osmosis LB,

Honeybee

Foraging,

Artificial

Bee Colony

High

Response

time, High

Availability

, and

Reliability

Adaptive

nature

Slow in

function

Not

specified

Integrated

Virtualized

Failover

strategy

(IVFS)

[108]

2016 Pass

Rate,

Task

Finish

Time

Virtualizatio

n and Fault

Tolerance

Approach

(VFT) [110]

High Node

Pass Rate

and Less

Service

Task Finish

Time

High fault-

tolerant,

both

forward

and

backward

recovery

Not suitable for

the large-scale

environment

The comparative analysis of different fault tolerance-based load-balanced algorithms is

presented in Table 2.5. These algorithms were proposed to distribute the workload

regardless of faults across the nodes, i.e., having the capacity to handle the faults.

49

Table 2.5: Comparative analysis of fault-tolerant-based load-balancing algorithms

Algorithm Year Parameters Outcomes Limitations Platform/E

nvironment

Hybrid Load

Balancing

[18]

2017 Response

Time

Minimizes response

time and

overloading

situations

Lacks migration in

case of failure

Cloudsim

Throttled

algorithm and

Equally Spread

Current

Execution

algorithms (TA &

ESCE) [64]

2017 Waiting

Time,

Turnaround

Time,

Resource

Utilization

Turnaround time

and wait time were

reduced and

resource utilization

was enhanced

Lacks migration

technique for

performance

optimization

Cloud

Simulator

Starvation

Threshold–based

Load Balancing

(STLB) [111]

2019 Response

Time

Increases in

resource utilization

rate, Minimizing

migration cost and

response time

Not suitable for

dependent tasks

CloudSim

Enhanced LB (TA

& ESCE) [3]

2017 Response

Time

Evades overloading,

reduced cost, and

response time

Not optimizing other

QoS parameter

CloudSim

 Genetic Algorithm

and the

gravitational

emulation local

search GA-GEL

[112]

2015 Makespan Reduced Makespan

Uneven Load

Distribution

CloudAnaly

st

LBHM [113] 2018 Response

Time,

Processing

Time

Processing and

response time were

reduced.

Increases Execution

Time of the VM

CloudSim

3.0.3

LB strategy based

on AC [114]

2014 Response

Time

Reduces response

time

Not optimizing other

QoS parameter

CloudAnaly

st

VM-Assign Load

Balancing [114]

2014 Resource

Utilization

Enhances Resource

utilization.

No Dynamism was

considered

CloudAnaly

st

Modified Optimize

Response

Time [68]

2021 Response

Time

Response time was

enhanced

Insufficient load

distribution

Not

Specified

 weighted active

monitoring load

balancing

(WAMLB) [115]

2018 Resource

Utilization

Effective resource

utilization

Not optimizing other

QoS parameters.

CloudAnaly

st

Priority-based

modified throttled

algorithm (PMTA)

[116]

2016 Response

Time

Balanced load

distribution and

minimized response

time

Starvation for low-

priority tasks.

CloudSim3.

0 and

CloudSim-

based tool

Enhanced LB (TA

& ESCE) [117]

2017 Response

Time &

Machine

Cost

Uniform load

distribution with

less cost

No considered

weakness found

CloudAnaly

st

50

Hybrid Approach

(TA & ESCE) [118]

2019 Response

Time,

Processing

Time, Cost

Cost-effective and

minimum response

time

Does not include any

fault-tolerant strategy

Cloud sim

Improved WRR

(weighted Round

Robin) [119]

2018 Processing

time, and

cost

Avoid starvation

and cost-efficient

The current workload

of VM is not studied

and lacks fault

handling

Eclipse

framework

STLB [107] 2019 Resource

Utilization

and overall

cost

Increased utilization

rate and Dropped

overall migration

cost

In-appropriate for

dependent workload

CloudSim

LB Strategy [120] 2014 Availability Uniform workload

distribution and

high availability

Increased response

time because of FCFS

allocation.

CloudSim

Token-bucket rate-

limiting technique

[121]

2023 Availability

and

Scalability

Good quality of

services to

customers

May cause load

imbalance

Zuul

gateway

cuckoo

optimization-based

energy-reliability

aware resource

scheduling

technique (CRUZE)

[121]

2020 Cloud

service

availability,

energy

consumption

Reducing energy

consumption and

increasing

availability

May cause load

imbalance

CloudSim

toolkit

Single intervention

at random interval

(SIRI) strategy

[122]

2023 Service

Availability,

penalty rate

Prevents SLA

violations and offers

high service

availability

May cause load

imbalance

Amazon

EC2

Backpropagation

(BP)-based OnlIne

hardware fault

Diagnosis System

has been built,

named BOIDS [123]

2020 Hardware-

faults

(transient,

intermittent,

and

permanent

faults)

More than 97%

accuracy in

diagnosing

hardware faults

Only hardware fault

models are considered

SpecInt200

0 and

MiBench set

to 1c1t (1

core 1

thread)

 PSO, Round Robin,

(ESCE) Equally

Spread Current

Execution,

Throttled Load

balancing [124]

2023 Response

time,

Processing

time of data

center

Identified the

valuable

relationship

between VMs and

tasks

Lacks the dynamism

of circumstances

cloud

analyst

platform

2.5. Discussions and Observations

The presented survey summarizes the focus of researchers on distinct hybrid fault tolerance-

related frameworks. The main emergent and developing methods of fault tolerance in a

cloud environment are categorized into three different categories: Reactive Methods,

Proactive Methods, and Resilient Methods. The survey was conducted on two main hybrid

fault-tolerant categories, i.e., scheduling with fault tolerance and load balancing with fault

tolerance. On surveying, several observations were gathered and listed below.

51

2.5.1. Statistics of Hybrid Survey of Scheduling and Fault Tolerance Algorithms

While dealing with hybrid frameworks of scheduling and fault tolerance, researchers have

focused on all three fault tolerance approaches, i.e., Reactive, Proactive, and Resilient.

However, it is observed that more emphasis is on Proactive and less on Resilient ones. The

related statistics of these approaches are depicted in Figure 2.3.

Figure 2.3. Showing Fault Tolerance Approaches Targeted by Researchers

Moreover, different techniques such as Replication, Migration, and Rejuvenation have also

been employed while dealing with this hybrid framework. Replication techniques are

mainly used for reactive approaches. On the other hand, Migration and Rejuvenation

techniques are utilized for proactive approaches. It is also observed from the literature that

replication and migration techniques were more frequently used to address the faults in the

cloud. Moreover, self-healing and checkpoint restart techniques are used by the SHelp

framework. The statistics of different approaches employed for Reactive, Proactive, and

Resilient strategies in this hybrid framework are depicted in Figure 2.4.

33%

55%

12%

Reactive Proactive Resilient

52

Figure 2.4. Showing Category-wise Percentage of Different Techniques used in Fault

Tolerance

It is also noticed from the presented survey that different types of faults have been handled

by using hybrid fault-tolerant scheduling and load-balancing frameworks. Moreover, it was

observed that software faults, hardware faults, parametric faults, and crashes were resolved

using a proactive approach. The reactive approach addressed configuration faults,

parametric faults, byzantine faults, participant faults, and host failures. Likewise, resilient

approaches are utilized to manage general faults. Additionally, the overall statistics of

different faults handled by considered hybrid frameworks are depicted in Figure 2.5.

53

Figure 2.5. Showing the Percentage of Optimized Parameters in Surveyed Scheduling and

Fault Tolerance

The statistics of the fault models focused in the surveyed articles show that researchers are

more motivated towards software faults but the transient, intermittent, and permanent faults

are found to be less in the eyes of the researchers. For several strong reasons, addressing

these kinds of faults is essential in distributed systems/applications. First, proactive steps to

guarantee system resilience are required due to the unpredictable nature of transient faults,

which are brief interruptions in system performance. To reduce downtime and provide a

consistent user experience, organizations must recognize and address transient issues.

Second, a major threat to system reliability is intermittent failures, which are defined by

irregular disruptions that might happen at any time. To avoid flowing failures and guarantee

the stability of necessary executions to preserve the system's overall integrity, intermittent

faults must be effectively managed. Furthermore, we cannot exaggerate the seriousness of

permanent faults. These enduring problems may cause the system to deteriorate over time,

impacting system operation and SLAs. Therefore, resolving permanent faults is essential

for maintaining the system's lifespan and functionality while ignoring them might cause

irrevocable harm and compromise the global sustainability of the system. Finally, the

maintenance of system continuity, robustness, and reliability is the primary reason for

managing the discussed hardware failures. In the end, proactive fault management

techniques contribute to uninterrupted system/application performance during unexpected

obstacles by protecting the integrity of crucial operations and improving SLAs and thereby

user experience and satisfaction.

2.5.2. Statistics of Hybrid Survey of Load Balancing and Fault Tolerance Algorithms

8%

13%

7%

8%

8%23%

8%

9%

7%

3%
3% 3%

Configuration faults Parametric faults Byzantine faults
Participant faults Host failure Software faults
Hardware faults Crashes General Faults
Transient Intermittent Permanent faults

54

It is also perceived in this survey that researchers have focused on the optimization of

various parameters simultaneously along with fault tolerance. The response time was

considered and optimized more frequently as compared to other QoS parameters. And least

consideration is on task waiting time and the computational cost. Based on this survey, the

statistics of various optimized parameters are presented in Figure 2.6. Besides, the

considered frameworks include both dynamic and static environments, and the researchers

are more motivated toward dynamism than static algorithms. Figure 2.7. depicts the

statistics of the surveyed models that support dynamism.

Figure 2.6. Showing the percentage of Optimized Parameters in Surveyed Load Balancing

and Fault Tolerance

Figure 2.7. Showing the Percentage of Dynamism in Surveyed Hybrid Load Balancing

and Fault Tolerance Frameworks

The analysis was carried out for the parameter optimization of the reliable cloud. Figure 2.8

presents the degree of optimization in metrics of scheduling with fault tolerance, scheduling

with load balancing, fault tolerance, load balancing, and scheduling. Additionally,

16%

15%

15%

15%

24%

15%
Response time

Execution time

Completion time

Wait time

Make span

Energy consumption

77%

23%

Dynamic Static

55

parameter optimization analysis of various fault-tolerant approaches from the literature was

also conducted and presented in Figure 2.9.

Figure 2.8. Showing the Analysis of Parameter Optimizations for Different Cloud

Reliability Measures

Figure 2.9. Showing the Percentage of Parameter Optimizations for Different Fault

Tolerant Approaches

Finally, the observations regarding the platform or environment used for simulation in the

presented surveys are statistically presented in Figure 2.10.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scheduling
and Fault
tolerance

Scheduling
and Load
Balancing

Fault
Tolerance

Load
Balancing

Scheduling

C
lo

ud
 P

ar
am

et
er

 O
pt

im
iz

at
io

n(
%

)

Cloud Reliabilty Measures

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%

Proactive
Approach

Reactive Approach Resilient
Approache

C
lo

ud
 P

ar
am

et
er

O

pt
im

iz
at

io
n(

%
)

Fault Tolerant Approaches

56

Figure 2.10. Showing the Percentage of Tools used for Simulation by the Researchers

2.6. Summary in Context

This chapter extensively reviews distinctive approaches and methodologies employed for

enhancing the cloud environment to find the research gap. After due estimation and

assessment, it is studied that several areas of research could be tracked to improve the efficiency

of cloud approaches and to improve the service performance of cloud computing.

The consideration of the dynamic character of the cloud motivated us to propose the hybrid

scheduling model integrated with fault tolerance, and load balancing for cloud setup.

Although there are many scheduling algorithms available in the literature, the researchers

are highly attracted and conservative towards developing various scheduling, fault

tolerance, and load balancing algorithms. However, it is observed that these can enhance

and optimize the cloud system up to a certain degree of scenarios. Moreover, the integration

of both fault tolerance and load balancing in dynamic scheduling algorithms to optimize the

QoS parameters has been overlooked in the literature. The integration of load balancing

models with fault tolerance is a peak demand of time. Because the fault tolerance

mechanisms may often reorder the prior scheduling VM assignment to fit and strong VMs

in the occasion of a failure or fault, leading to uneven VM reassignment. This uneven VM

reassignment becomes the cause of QoS degradation even if the prior Scheduling algorithm

is highly optimized.

Besides, there are various demanding reasons why the integration of load balancing is

important for optimal overall system performance. Some of the mounted demands are listed

below:

• Cloud settings frequently consist of varied and diverse VMs with random performance

characteristics. Task scheduling within these heterogeneous VMs to achieve optimal

performance can be complex.

42%

24%

27%

7%

CloudSim Amazon EC2 CloudAnalyst Other

57

• Scheduling always suffers from faults because of failures such as hardware and

software failures, resource conflicts, data distortion, human errors, etc. This could

lead to the premature termination of the corresponding tasks thereby disrupting the

continuity of cloud services. Handling these disruptions in the cloud is necessary and

critical to ensure the reliability and efficiency of task scheduling in cloud computing.

• Implementing fault tolerance can introduce the overheads associated with it.

However, using load balancing with fault tolerance can reduce operational burdens

and other complexities.

• Various bottlenecks and other congestion can be created on healthy VMs in fault-

tolerant systems. This can impact overall system performance. This can be eased by

intelligently distributing load flow across VM post to fault tolerance.

• Fault tolerance often necessitates redundant resources to grip failover circumstances,

which can lead to resource overprovisioning and over-cost. Load balancing can be

helpful in such cases as the integration of load balancing can dynamically adjust the

load over VMs thereby dropping the requirement of additional capacities.

Fault tolerance integrated with load balancing can help organizations overcome these

limitations and create stronger, more effectual, and mountable distributed systems that can

adapt to the altered loads because of fault tolerance. Therefore, we converge towards

developing the dynamic scheduling model which not only handles faults but also handles the

uneven VM reassignments by integrating effective load balancing constraints post to fault

tolerance.

58

Chapter 3

Ranked Task Scheduling and Reservation in Fault Tolerance for

Cloud Computing

A cloud computing platform has higher failure rates because of its highly dynamic nature

and running of concurrent applications. However, the outcomes of running concurrent

applications won't be accurate without VM synchronization. The issue of coordination

between many VMs is their synchronization in working is rarely considered by existing

solutions. Moreover, fault tolerance constitutes one of the most crucial components for

cloud computing architecture to ensure high reliability. In this Chapter, Reserved Fault

Tolerance and Ranked Task Scheduling (RFRTS) is proposed. Initially, the proposed

ranked-based scheduling approach is used for task allocation, and later the idea of a

reservation-based reactive fault tolerance method is suggested for a cloud system. To

achieve the highest level of cloud computing infrastructure reliability, the suggested

technique considers CPU faults and the VM reservation will ensure the assignment of an

alternative VM to the affected task. The proposed fault-tolerant approach has been

compared with three existing reliable fault-tolerant approaches namely multi-objective

scheduling algorithm with Fuzzy Resource utilization [125] (FR-MOS), Cost-effective

Workflow Scheduling Algorithm [126] (CWS), and Fault-tolerant Cost-effective Workflow

Scheduling Algorithm [127] (FCWS) based on reliability. The outcomes unequivocally

show that our suggested RFRTS algorithm surpasses the current FR-MOS, CWS, and

FCWS considering reliability in all the states.

3.1. Proposed Model

This section presents an effective allocation to map the incoming tasks and available VMs.

After the mapping of task and VM sets, we propose a framework that would estimate the

reservation window based on the size of the task and the VM’s capacities. This will move

the affected tasks from unstable VMs to reserved and trustworthy ones based on the

reservation window. The suggested model's primary goal is to increase system reliability

through assured task execution using advance resource reservations.

3.1.1. The System Architecture

The Proposed System Architecture is comprised of three main layers and is presented in

Figure. 3.1.

• Application Layer: The main interface for communication is provided by the

Application layer. Moreover, requests for VMs are also generated by the user in this

59

layer. Application Layer consists of Users and Requests.

• Middleware: Middleware is the main component of this architecture and is mainly

responsible for Task allocation and VM reservation.

Figure. 3.1: System Architecture of RFRTS

The user tasks first arrive at Middleware, where they are assigned the rank value by the

Rank Calculator. Later the tasks are sorted based on the decreased "r" value by the Sorter

component. Here, the tasks wait for the VM Matching module which controls, directs, and

observes the available VMs. Eventually, the Scheduler module handles user tasks to

determine scheduling decisions.

The Fault Handler is activated upon detecting a failure in any of the VMs and generates an

alternative VM for the affected task while utilizing the Reserved VMs.

Advance Time Manager: is responsible for reservation-related details such as AR slot, VM

allotment, fresh reservations, cancellation of requests, etc.

Reservation Producer: This component checks the schedule for user requirements and the

state of the VM. The required reservation is provided to the user if the user's requirement

matches the schedule for the AR slot produced by the Time manager.

• VM Layer/Host Layer: This layer contains different VMs that are used by users to

execute their tasks.

60

3.1.2. Problem Formulation

The VMs are assigned in set V={v1, v2, v3… vk}. while the tasks being taken as set T= {t1,

t2, t3… tm}. Every VM has VM capacity, i.e., (C(vk)), and every incoming task has task

length, i.e., (L(TM)).

Further, the various assumptions of the proposed allocation strategy are:

• The lower task heterogeneity metric is used by the model.

• Task sizes range from one to one hundred million instructions.

• The benchmark for low machine heterogeneity is used by the model.

• The speed of the machine varies between one to ten Million Instructions Per Second

(MIPS).

3.1.2.1. Ranked Task Scheduling

Every task (tm) has its task id (t_id) which is assigned to the task on an FCFS (First Come

First Serve) basis. That means the task having a smaller t_id is waiting for a longer time.

Initially, the incoming tasks have been ranked based on r (response rank value). The

response rank value (r) is calculated for every incoming task as below:

r =
−𝑡_𝑖𝑑 + PT

PT
 (1)

Where Burst time is calculated as:

 PT =
𝐿(𝑡𝑚)

𝐶(𝑣𝑘)

Further, the ranked tasks are taken as separate task sets, i.e., Tr. The tasks are distributed in

order of rank value to the corresponding VMs. The r value for the task is calculated by

adding the t_id and Processing Time of the task and dividing the obtained value by the

processing time of the task. The ranked allocation considers both the wait time and

processing time of the task. It also minimizes the wait time for large tasks and

simultaneously encourages the small tasks to get a higher rank thereby giving an optimized

QoS than that of Shortest Job First allocation.

The task allocation problem is mathematically represented as a mapping of each incoming

task to the VM as shown below:

 : T × r → V

The bipartite graph between the task set and the VM set may be used to describe the

suggested ranking approach. The set Tr contains the ranked tasks in descending order of r-

61

value rather than the t_id, hence the tasks in Tr
 may be arranged randomly concerning to

t_id as indicated in Figure. 3.2.

Figure. 3.2: Ranked Task Mapping

Proposed Pseudocode for the Ranked Task Scheduling

Using the proposed ranked scheduling approach, the system effectively maps the incoming

tasks with appropriate VMs.

i.e., Input: n(T), L(tn), n(V), C(vk), RT(vk), RM[]

 Output (Mapping (tn, vk), Reliability)

1. Above all, the RT of all VMs is taken as zero indicating the VM has no load history.

2.

3. The task lengths range between 1 MI to 100 MI, and the machine capacity runs from

1 MIPS to 10 MIPS, according to the model's low task and low machine

heterogeneity assumptions.

4. Rank tasks on the basis of Task_id, PT //task ranking algorithms.

5. Do

Map the ranked tasks to the VMs. //allocation algorithm

While ∀ v ks, (RT(vk) = 0))

Map task to VM having least RT.

6. Determine the ST and FT of the task.

7. Adjust the revised RT for vks after each allocation.

3.1.2.2. Reservation in Fault tolerance

Besides, the model also includes fault tolerance by utilizing resource reservation techniques,

where the VM is reserved for the task for a specific pre-estimated window known as a

reservation window (R).

62

If the advance reservation strategy is not employed, the task tu may fail to execute on VMf,

i.e., the failed VM, or if the VM leaves the system for a certain time will result in the

suffering of the corresponding task. To handle this situation, p failed VMs are defined as

VMf = {vf ∶ vf ∈ V & 𝑜(VMf) = 𝑝} and q corresponding affected tasks are defined which

were executing on these failed VMs. Now, these failed tasks need to be reallocated to some

other available suitable VMs. The set of failed tasks is defined as 𝑇f = {𝑡f ∶ 𝑡f ∈ 𝑇, 𝑜(𝑇f) = 𝑞

& 𝑞 <= 𝑁}. On reallocating, all the failed tasks Tf are migrated from VMf to VMj such that

VMj ∉ VMf.

Proposed Reservation based Fault tolerant algorithm

The proposed algorithm wins fault tolerance in case any of the VMs fail to execute the

task at any point in time. The VMs are reserved for the computed time slot to ensure task

execution. The reservations in the algorithm are done according to the following

Pseudocode:

1 Initialize the Input parameters i.e., the task number, size of the task, number of

VMs, the capacity of VM, etc.

2 Calculate the AR slot.

3 The initialization of the RM matrix with the tasks, Start time, and Finish time,

State flag, and the computed reservation window.

4 Reserve VMs for a predicted timeslot to continue the processing of the task in case

of VM failure.

5 Status=1 i.e., VMs are reserved for the calculated AR slot.

Repeat steps 2 to 5 for all tis.

Additionally, |𝑇𝑢| = Fault (%age) * |T|

 Reliability =
|𝑇| – |𝑇𝑝|

|𝑇|

(6)

3.2. Results and Observations

The proposed model was evaluated on reliability by comparing it with other reliable existing

models namely, FCWS, FR-MOS, and CWS. We selected five distinct states of task

numbers with varying lengths for the simulation we created: Small(S)[n = 50],

Medium(M)[n=100], Medium large(M-L)[n=200], Large(L) [n = 400], Extra-large (E-L)

[n=600].

63

Figure 3.3: Depiction of Reliability in Five Considered Task States

It can be seen from the depicted graph in Figure. 3.3 that the proposed model shows higher

reliability than all the considered models in all states afterward FCWS performs better.

Furthermore, it is evident from the figure that as the amount of tasks increases, the reliability

of the considered approach decreases. However, as can be seen in the Improvement

Percentage Table (Table 3.1), the suggested model exhibits a rise in the percentage of

reliability improvement as the task count increases. This is because the suggested Model

can efficiently handle various invoicing fault scenarios as the model is reserving the VMs

for the dedicated window.

Table 3.1: Comparative analysis of improvements in the proposed RFRTS

FCWS FR-MOS CWS Five states

0.30% 2.25% 2.04% S

1.32% 2.36% 1.84% M

1.53% 2.37% 1.84% M-L

1.65% 2.18% 1.97% L

1.26% 2.45% 2.56% E-L

In S, the minimum improvement by the model was seen to be 0.30% while the maximum

improvement was seen to be at 2.25%. In M, the minimum improvement by the model was

seen to be 1.32% while the maximum improvement was seen to be 2.36%. In M-L, the

minimum improvement by the model was seen to be 1.53% while the maximum

improvement was seen to be 2.37%. In L, the minimum improvement by the model was

seen to be 1.65% while the maximum improvement was seen to be 2.18%. In E-L, the

90

91

92

93

94

95

96

97

98

99

100

S S-M M L E-L

Re
lia

bi
lty

(%
)

Task Number

FCWS FR-MOS CWS PROPOSED RFRTS

64

minimum improvement by the model was seen to be 1.26% while the maximum

improvement was seen to be 2.45%.

3.3. Summary in Context

The research suggests a method for task ranking by considering task lengths and task wait

times. Besides, the algorithm implies an allocation strategy based on the determined rank

value. Also, we provide an idea of reservation for fault-tolerance in which VM reservations

are made based on a pre-calculated reservation AR slot. The reservations are deeply

explained in the later chapters. The focus of the proposed ranked task scheduling in the

chapter is on makespan, flowtime, and average resource utilization. However, system

reliability has also been focused on and enhanced by the proposed reservation. The major

drawback of the suggested allocation is that it does not consider any load-balancing strategy.

Hence the load may be inadequately distributed. However, it will unquestionably improve

the task response times by focusing on the wait time of the tasks. The study's plans demand

to consider response time for working with the suggested ranked scheduling technique.

Additionally, the load balancing strategy will be accompanied to consider resource

utilization as well.

65

Chapter 4

Towards Fault Overheads in Cloud: Next Gen VM Management using

Hybrid Approach (HFSLM)
The major goal of the computational system is to effectively allocate resources escorted

with fault tolerance to ensure the job execution is on time. The primary study concern is

also regarding the mechanism for even distribution of load among virtual machines for

further system improvements. Addressing all these issues simultaneously is a good need of

time. Several methods have been developed and proposed in the literature to overcome the

aforementioned research issues. However, very few researchers have included a significant

contribution to addressing all these issues simultaneously with optimized QoS parameters.

In this chapter, a novel Hybrid Fault-tolerant Scheduling and Load balancing Model

(HFSLM) has been proposed to optimize the makespan and average resource utilization.

Moreover, the model also provides solutions for several crucial concerns for a cloud system

including VM failure and VM/task heterogeneity by reserving neighboring VMs in the

event of failure. Furthermore, the model is escorted by a load-balancing algorithm for

further optimization of the considered QoS parameters. HFSLM is evaluated by comparing

it with FTHRM, MAX MIN, MINMIN, OLB, ELISA, and MELISA on both small and large

task scales. The evaluation results show that the proposed HFSLM outperforms the

compared approaches in all the considered cases.

The proposed hybrid model focuses on three issues i.e., efficient scheduling, fault tolerance,

and load balancing. The model initially schedules the arriving tasks and maps them to the

most suitable virtual machine thereby focusing on the optimized makespan and efficient

utilization of virtual machines. Moreover, the proposed model adapts the system to respond

to the faults by using the neighboring-based advance reservation technique. The

neighboring-based advance reservation technique is the technique where the reservation slot

is estimated in advance and the neighboring VM is reserved as an alternative VM for the

affected task to guarantee the execution of the task till completion. In this case, the

neighboring VM with the least history of the load (Ready Time) is preferred to be selected

as an alternative VM. Furthermore, the model also escorts the proposed fault tolerance and

scheduling algorithms with a load-balancing strategy to make further optimizations in

various QoS parameters. The proposed model was evaluated for parameters like makespan

and average resource utilization

by comparing it with FTHRM [128], MAX MIN [129], MINMIN [130], and OLB [50] on

a low task scale (less than 1000 tasks). The evaluation has been done by adjusting the

66

number of tasks, size of tasks, number of VMs, and capacities of VMs in four different

heterogeneity benchmarks given by Braun [35] i.e., low task-low machine heterogeneity,

low task-high machine heterogeneity, high task-low machine heterogeneity, and high task-

high machine heterogeneity. Besides, the proposed HFSLM was compared with ELISA

[131] and MELISA [46] on very high task scales (greater than 10,000 tasks) and was

evaluated using an average makespan, and the resource utilization was taken into

consideration for minimum, average, and maximum cases.

4.1. Main Focus and Contribution

The consideration of the dynamic character of the cloud motivated us to propose the hybrid

scheduling model integrated with fault tolerance, and load balancing for cloud setup.

Although there are many scheduling algorithms available in the literature, the researchers

are highly attracted and conservative towards developing various scheduling, fault

tolerance, and load balancing algorithms. However, it is observed that there are very few

dynamic scheduling algorithms that integrate both fault tolerance and load balancing models

to optimize the QoS parameters. The integration of load balancing models with fault

tolerance is a peak demand of time. Because the fault tolerance mechanisms may often

reorder the prior scheduling VM assignment to fit and strong VMs in the occasion of a

failure or fault, leading to uneven VM reassignment. This uneven VM reassignment

becomes the cause of QoS degradation even if the prior Scheduling algorithm is highly

optimized. Besides, there are various demanding reasons why the integration of load

balancing is important for optimal overall system performance. Some of the mounted

demands are listed below:

• Fault tolerance often necessitates redundant resources to grip failover circumstances,

which can lead to resource overprovisioning and over-cost. Load balancing can be

helpful in such cases as the integration of load balancing can dynamically adjust the load

over VMs thereby dropping the requirement of additional capacities.

• Implementing fault tolerance can introduce the overheads associated with it. However,

using load balancing with fault tolerance can reduce operational burdens and other

complexities.

• Various bottlenecks and other congestion can be created on healthy VMs in fault-tolerant

systems. This can impact overall system performance. This can be eased by intelligently

distributing load flow across VM post to fault tolerance.

67

• Similarly, other factors should be considered in fault-tolerant systems such as augmented

latency, partial scalability, suboptimal resource utilization, etc.

Fault tolerance integrated with load balancing can help organizations overcome these

limitations and create stronger, more effectual, and mountable distributed systems that can

adapt to the altered loads because of fault tolerance. Therefore, we converge towards

developing the dynamic scheduling model in this work which not only handles faults but also

handles the uneven VM reassignments by integrating effective load balancing constraints post

to fault tolerance.

The scheduling in the proposed model has been done by initially rearranging both arriving

tasks and available VMs. The newly incoming tasks and freshly installed or deleted VMs

are also taken into consideration while performing the recommended scheduling. This

consideration makes it the most suitable scheduling for fully dynamic computing

infrastructures. Additionally, the scheduler offers efficient allocation concerning the user's

needs at selected timeslots by using a reservation. Reservation is the technique where the

VMs are reserved for the task till it completes its execution thereby resulting in the

assurance of task completion. However, if the VMs are not reserved, they might fail

permanently or stop working at any time which may result in the termination or interruption

of the corresponding task. Therefore, the model delivers the system the fault tolerance that

it needs to manage runtime system errors after conducting effective scheduling. Apart from

fault tolerance, the model reallocates the load to reduce the imbalance caused by fault

tolerance. The evaluations are conducted by assessing the proposed model with existing

similar models such as MAX-MIN, MIN-MIN, OLB, FTHRM, ELISA, AND MELISA.

The MAX-MIN algorithm was found optimal for resource allocation. The makespan and

utilization obtained by MAX-MIN on low task heterogeneity were also found efficient.

However, for high task heterogeneity, MAX-MIN was not found significant. Furthermore,

the QoS parameters obtained in MIN-MIN were not optimized in varying task and machine

heterogeneities. Apart from this, these are allocation algorithms and do not support any fault

handling or load-balancing procedure. The most recent FTHRM model for fault tolerance

was using advance reservation. However, this model did focus on uniform load distribution.

Moreover, this has not migrated the tasks from the faulty VM to the reserved VM. For large

sizes, ELISA and MELISA were shown to be the best tests; however, for small scales, these

models were insignificant. Additionally, these models are load-balancing models and do not

support any fault tolerance mechanism. After analyzing the related literature, it was

determined that the models implemented so far, particularly the hybrid models, needed to

68

be improved for better QoS parameters. This is where we were motivated to propose a

neighboring-based reservation technique for fault tolerance for the real-time cloud. In this

work, we suggested the HFSLM model with effective fault tolerance and load-balancing

strategies for better outcomes. Table 4.1 shows a comparative analysis of all the considered

issues and parameters between the proposed HFSLM and related models.

Table 4.1: Comparative analysis of existing models and the proposed model

Technique/Parameters FTHRM MAX-

MIN

MIN-

MIN

OLB ELISA MELISA Proposed

HFSLM

Task scheduling √ √ √ √ √ √ √

Fault tolerance √ × × × × × √

Load balancing × × × × √ √ √

Task/VM Heterogeinity × × × × × × √

Makespan √ √ √ × √ √ √

Resource Utilization √ √ √ √ √ √ √

Dynamic scheme for

inserting and deleting

task/VM
× × × × × × √

4.2. Proposed Work

This section illustrates the demonstration of the Hybrid Fault-tolerant Scheduling and Load

Balancing Model for the considered cloud environment. The proposed work is presented in

four subsections. Initially, the System Model explains the System architecture of the

proposed model. The Problem Formulation provides the mathematical explanation for the

proposed HFSLM. The Proposed Algorithm and Pseudocode present the HFSLM in a semi-

formal form as an algorithm and pseudocode. Later, in the Motivational Illustrative

Example, the proposed model's operation is demonstrated as an example. The objective

function of HFSLM is to minimize the makespan while maximizing the average resource

utilization. Furthermore, the following list contains the notions that were utilized in the

illustration and demonstration.

4.2.1. System Architecture

This work considers the heterogeneous system with respect to both tasks and VMs. The

group of VMs has varying processing speeds and so do the sizes of the incoming tasks. The

system architecture of the proposed HFSLM is shown in Figure. 4.1.

69

Figure 4.1: The Proposed System Architecture

There are three basic levels in the HFSLM system architecture. Together, the Application

Layer, Middleware, and Host/VM Layer complete the model's functionality. The

application layer receives the user tasks (incoming), and the Task Sorter sorts them in the

ascending order of their size as they arrive. On the other hand, the VMs that are accessible

are in the Host/VM layer, the VM sorter sorts the VMs in the ascending order of their speed.

The middleware handles the primary allocation and fault tolerance. The middleware is made

up of two primary parts: the VM allocator, which creates the schedule for receiving task

information, and the Failure Handler, which reacts when any VM has a fault. Both works

effectively together to schedule incoming tasks and reserve VMs. The different components

in the VM allocator work in coordination and oversee the incoming task information for

selecting the appropriate VM for accomplishing tasks. The task of identifying every

accessible VM in the VM layer falls within the purview of the VM Discovery component.

Once the available VMs are discovered, the suitable VM for the task is selected by the VM

selector. After identifying the most suitable VM for the task, the VM Producer allocates the

specified VM to the task. Further, the VM Allocator communicates the schedule generated

by it to the AR Module and the Load Balancer. In response, the AR Module activates its

components and generates the reservation in case of faults and breakdowns. The Time

Manager component of the AR Module forecasts the AR Slot for the affected task and

reserves the suitable VM for the computed AR slot in advance. After calculating AR Slots,

the System Matching verifies if the task and VM are a good fit for generating reservations,

and the Reservation Producer commits the produced reservation for the estimated AR Slot

in the event of a fault. Additionally, the load balancer analyzes the generated schedule and

plays the key role in uniformly distributing the load among VMs by identifying the

70

maximum overloaded and minimum underloaded VM and reallocating the tasks between

them.

4.2.2. Problem Formulation

Initially, the set of incoming tasks represented by T={t1, t2,… tn} and the set of Virtual

Machines signified by V={ v1, v2,… vm} has been taken over the proposed HFSLM. Every

task (ti) is executed on the allocated VM till the execution of the task is completed. The task

is pre-empted, in case the assigned VM fails or becomes unavailable at any point in time.

The execution of an affected task will start from the beginning on an alternative VM

assigned to it. Further, each task has its parameters like t_id and t_size. However, each VM

has its parameters like V_id, and S. Apart from this, a few characteristics considered for

VMs are:

• The model considers “m” VMs for the mapping of “n” tasks.

• S of VM is taken in MIPS (Million Instructions Per Second)

• The available VMs do not apply to other applications.

• Each VM has its RTj associated with it. RTj is the time experienced to execute the load

history on the VM.

The problem modeled here is to generate a fault-tolerant allocation schedule in a dynamic

environment like the cloud in a way that will optimize makespan and increase the average

VM utilization. Mathematically, the problem can be viewed as an effective mapping (M)

(eq. 1) between two sets i.e., set T and set V, which will optimize the given parameters.

𝑀 ∶ 𝑇 → 𝑉 (1)

The mapping between tasks and VMs graphically can also be treated as a bipartite graph as

shown in Figure 4.2.

Figure. 4.2: Mapping between Tasks and VMs

71

4.2.2.1. Task to VM Mapping Model

The main difficulties in mapping between T and V are the dynamism of the system and the

limited number of available VMs. Achieving fault tolerance in such a dynamic system is a

challenging task. This section explains the detailed methodology to deal with the modeled

problem. Initially, in the first algorithm, the tasks are allocated to the available VMs. The

allocation process first sorts the incoming tasks and VMs based on task_size and VM speed

respectively. Thereafter maps the sorted task set to the sorted VM set. After sorting

incoming tasks and VMs, the VM is assigned to the tasks in the order until the ready time

of any one of the available VMs is zero. Once the ready time of all VMs becomes greater

than zero that means currently all the VMs have some load history. After this point, the

allocation of further arriving tasks will be done to the VM having the least ready time. Doing

this will again minimize its response time. The proposed allocation strategy handles the

dynamically arriving tasks by employing a Neighbouring insertion policy. The newly

arriving task will be inserted based on the arriving task size. i.e., the immediate greater and

immediate lesser task (neighboring tasks) than the arriving task is identified, and the newly

arriving task is allocated to that task’s VM which has less ready time as shown in Figure

4.3. This insertion policy of tasks will again play a critical role in allocating the most suitable

VM for the dynamically arriving task. Similarly, the newly added VMs are inserted in their

correct position by employing the same insertion policy as shown in Figure 4.4. This

insertion policy of incoming tasks and VMs in their respective positions allows the system

to handle tasks and VMs runtime.

Figure 4.3: Allocation of Dynamically Arriving Tasks

72

Figure 4.4: Adding and Deleting VMs in/from the System Dynamically

Because of the sorting and neighboring approach, every task will be allocated to the most

suitable VM. The allocation of VMs to tasks is done in this order until the ready time of any

one of the available VMs is zero. Once the ready time of all VMs becomes greater than zero

that means currently all the VMs have some load history. After this point, the allocation of

further arriving tasks will be done to the VM having the least ready time. Doing this will

again minimize its response time. The task allocation algorithm is presented in Algorithm

1.

Algorithm 1: Task to VM Mapping

Task Sorting:

def task_sort(incoming_tasks):

 // incoming_tasks is a list of tuples (task_id, task_size)

 incoming_tasks.sort(key=lambda x: x[1]) // Sort based on task_size in ascending order

 return incoming_tasks

VM Sorting:

def vm_sort(available_vms):

 // available_vms is a list of tuples (VM_id, VM_Speed)

 available_vms.sort(key=lambda x: x[1]) # Sort based on Speed in ascending order

 return available_vms

Task Mapping:

def task_mapping(incoming_tasks, available_vms):

 mapped_tasks = [] // List to store allocated tasks

73

 for task in incoming_tasks:

 if task_status[task] == 0:

 for vm in available_vms):

 if ready_time[vm] == 0:

 map_task_to_vm(task, vm) # Map task to VM

 mapped_tasks.append(task)

 break // Move to the next task

 # Map remaining tasks to VMs with the least ready time

 for task in incoming_tasks:

 if the task is not in mapped_tasks:

 min_ready_time = min(sorted_vms, key=lambda vm: ready_time[vm])

 map_task_to_vm(task, min_ready_time)

 # Update mapped_tasks

 mapped_tasks.append(task)

 # Update task status to 1 (mapped)

 for the task in mapped_tasks:

 task_status[task] = 1

Dynamically Arriving Task Mapping:

while (there are upcoming tasks):

 upcoming_task = get_next_upcoming_task()

 greater_task=find_right_neighbor(upcoming_task)

 lesser_task = find left neighbor(upcoming_task)

 greater_vm = find_vm(greater_task)

 lesser_vm = find_vm(lesser_task)

 if (greater_vm.ready_time<lesser_vm.ready_time):

 map_task_to_vm(upcoming_task, greater_vm)

 else:

 map_task_to_vm(upcoming_task, lesser_vm)

4.2.2.2. Neighbouring-based Reservation for Fault Tolerance

After VM allocation, a fault handling algorithm that enables the proposed work to win fault

tolerance if any VM fails or leaves the system is proposed. This fault handling algorithm

has been developed by employing the technique of advance reservation of neighboring

VMs. The advance reservation is the technique where the AR time slot is computed or

74

estimated and the VM is reserved for that predicted time slot to guarantee the task execution

till completion. In the beginning, the TETj for all VMs is taken as zero. It means that

currently, the particular VM has executed no task. Afterward, TETj is updated after the

finishing of each task on the VM. Moreover, every VM has some load history which is

termed as the ready time of the VM. Initially, RTj is taken as TETj as shown in eq. (2)

𝑇𝐸𝑇𝑗 = 𝑅𝑇𝑗 (2)

After the mapping of ti and vj as per the allocation algorithm explained above every ti will

start its execution on some vj. This starting time of the execution of ti on vj is termed as ESTij

and is calculated as in eq. (3)

𝐸𝑆𝑇𝑖𝑗 = 𝑇𝐸𝑇𝑗 (3)

After the execution of ti on vj is over, 𝐴𝐹𝑇ij is determined by adding the total processing

time of ti on vj {tp(ti, vj)} to the ESTij as shown in eq. (4)

 𝐴𝐹𝑇𝑖𝑗 = 𝐸𝑆𝑇𝑖𝑗 + 𝑡𝑝(𝑡𝑖, 𝑣𝑗) (4)

Where tp(ti, vj) is the time taken to process ti by vj and is calculated as in eq (5)

𝑡𝑝(𝑡𝑖, 𝑣𝑗) =
𝑡𝑠𝑖𝑧𝑒

𝑆
 (5)

Furthermore, TETj is updated after every execution of ti and will be equal to AFTij as shown

in eq. (6)

𝑇𝐸𝑇𝑗 = 𝐴𝐹𝑇𝑖𝑗 (6)

However, for calculating AR slots, the proposed algorithm takes Early Start Time and

Actual Finish Time as input parameters and estimates the AR slot as the difference between

ESTij and AFTij.

If the advance reservation strategy is not employed, the task (tu)may fail to execute on VMf

i.e., the failed VM, or if the VM leaves the system for a certain time will result in the

suffering of the corresponding task. To handle this situation, p failed VMs are defined as:

𝑉𝑀𝑓 = {𝑉𝑓: 𝑉𝑓 ∈ 𝑉 & 𝑜(𝑉𝑀𝑓) = 𝑝}

and q corresponding affected tasks are defined which were executing on these failed VMs.

The set of failed tasks is defined as:

𝑇𝑓 = {𝑡𝑓: 𝑡𝑓 ∈ 𝑇 & 𝑜(𝑇𝑓) = 𝑞 & 𝑞 <= 𝑛}

 Now, these failed tasks need to be reallocated to some other suitable healthy VMs so that

Tf will execute without any interruption. On reallocating, all the failed tasks Tf are migrated

from Vf to VMj such that:

𝑉𝑀𝑗 ∈ 𝑉 & 𝑉𝑀𝑗 ∉ 𝑉𝑓

75

The model reserves the neighboring VM of the corresponding failed task as an alternative

VM. Later, the TETj is again updated as shown in eq. (7):

𝑇𝐸𝑇𝑗 = 𝑇𝐸𝑇𝑗 + 𝑡𝑝(𝑡𝑓𝑉𝑀𝑗) where 𝑉𝑀𝑗Є𝑉&&𝑉𝑀𝑗 ∉ 𝑉𝑓 (7)

Detecting Failed VMs and tasks

The model supports fault tolerance by resource reservation technique to offer a backup VM

for the impacted task in the event of VM failure. Eq. (8) is used to determine the AR slot:

𝐴𝑅𝑖𝑗 = 𝐴𝐹𝑇𝑖𝑗 − 𝐸𝑆𝑇𝑖𝑗 (8)

NOT expected_performance_metrics (vj) function is operated for discovering failed VMs.

This confirms if the performing_metrics (vj) function returns False for any VM. The

expected_performing_metrics (vj) is believed to return True if the VM's performance

metrics such as ARij, E(ti, vj) are inside expected ranges, and False otherwise. By applying

Not, the condition happens to be True when the performance metrics are irregular or

abnormal.

For example: If the ARij is extended as expected period, indicating it might be frozen or

crashed.

The corresponding tasks of failed VMs will remain unexecuted and are represented by a set

𝑇u = {𝑡u ∶ 𝑡u ∈ 𝑇, |Tu| = u AND u <= n} and f failed VMs are represented as Vf = {vf ∶ vf ∈

V AND |Vf| = f }. To ensure uninterrupted operation of Tu, the task set tu must now be

redistributed from vf to other relevant healthy vj provided vj ∈ V AND vj ∉ Vf. After every

redistribution of task tu in Tu to vj in V, the TETj is updated as shown in eq. (7)

The proposed fault tolerance algorithm is presented in Algorithm 2.

Algorithm 2: Neighbouring-based Reservation Algorithm for Fault Tolerance

Identification of failed VMs and tasks

1. Load ARM (ti, vj, AR, Status) /*Advance Reservation Matrix initialize all slots as

zero

2. For all tis in T

Compute ESTij and AFTij using eq. 3 and 4

Compute AR slot using eq. 8

3. Identify_failed_VMs()

 Vf = []

 Tf = []

For all tis in T

if NOT expected_performing_metrics (ti)

76

Tf.append(ti)

Vf.append(vj|vj→ tf in Tf)

Neighbouring-based Reservation for Fault Tolerance

Initialize_ARM (incoming_tasks, Mapped VMs, task_size, VM_Speed, ESTij, AFTij, ARij,

Status)

Tf = {tf | tf ∈ Tf, o(tf) = q and q ≤ n}

for each tf in Tf:

 while Status(tf) = 1:

 if (ti-1, ti+1 ∈ T && RT(ti+1.VM) < RT(ti-1.VM)):

 Select ti+1.VM (right neighbor) as alternative VM for tf for ARij

 // Reserve the time slot for the selected task

 else if (ti+1 ∈ T && ti-1 ∉ T):

 Select ti+1.VM as alternative VM of tf for ARij

 // Reserve the time slot for the selected task

 else:

 Select ti-1.VM as alternative VM of tf for ARij

 // Reserve the time slot for the selected task

 Update_ARM (incoming_tasks, Mapped VMs, task_size, VM_Speed, ESTij, AFTij,

ARij, Status(tf) = 1)

 // Status(tf) = 1 implies the AR slot is reserved for tf

4.2.2.3. Load Balancing

Apart from all this, a load-balancing algorithm is also proposed which escorts the whole

system for uniform load distribution that might be disturbed after fault-handling throughout

the system and further improves the makespan and utilization. The under and overloaded

VMs are identified by the Load balancing algorithm and the load is shifted from the

overloaded VM to the underloaded VM for uniform distribution of load among VMs. The

VMs having the highest and lowest makespan are taken as maximum overloaded and

underloaded VMs respectively. Then (€), the average execution time of tasks assigned over

the maximum overloaded VM is calculated as in eq (9). The tasks with execution time less

than the € are taken as separate sets (𝛴).

i.e., 𝛴 = {𝑡𝑖|𝐸(𝑡𝑖, 𝑣𝑗) < €

€ = ∑
𝑡𝑝(𝑡𝑖,𝑣𝑗) && 𝑡𝑖 є 𝑂

|𝑂|

𝑜
𝑖=1 (9)

77

Finally, the load is shifted from an overloaded VM to the underloaded VM as described in

the load balancing algorithm. Figure 4.5 depicts the flowchart of the proposed work.

4.2.3 The Proposed HFSLM

The allocation in HFSLM is done in three phases: In the allocation phase, we perform Task

Sorting, VM Sorting, and Task Allocation. However, for dynamically arriving tasks,

HFSLM provides a distinct algorithm for the allocation. In the second phase: fault tolerance

is achieved by proposing an innovative fault-tolerant algorithm namely Neighbouring-based

Reservation Algorithm for Fault Tolerance. Following fault tolerance, the model addresses

the evenly distributed load among VMs by recommending a load-balancing technique.

HFSLM (O, €)

Call Algorithm 1;

Call Algorithm 2;

Σ = {ti | E(ti, vj) < €}

Sort set Σ in descending order of execution time

for each task ti in Σ:

 shift_task_to_underloaded_VM(ti)

 update_makespan()

 makespan.overloaded_VM = makespan. overloaded_VM - execution_time(ti)

 makespan.underloaded_VM = makespan.underloaded_VM +execution_time(ti)

if(makespan.underloaded_VM < makespan. overloaded_VM):

 continue // Take another task from Σ

 else:

 rollback (makespan.underloaded_VM, makespan. overloaded_VM) // To

the previous state

 ti = ti+1 //take next task from Σ

end for

Estimate the QoS parameters Makespan, UT, and Overheads // as per eq. (10, 11,

12, and 13)

78

Figure 4.5: Flow Chart of HFSLM

4.2.4. Performance Metrics

Makespan (M) is taken as the highest or maximum among all TETj and can be expressed

as eq. (10).

𝑀 = 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗), ∀𝑉𝑗 (10)

Finally, the Average VM utilization of the system is defined as in eq. (11).

𝑈𝑇 =
∑ (𝑇𝐸𝑇 − 𝑡𝑝(𝑡𝑓 Є 𝑉𝑓 ,𝑉𝑗 Є 𝑉𝑓))

𝑘

1

𝑘 ∗Makespan
 ∀𝑉𝑗 (11)

79

The Fault Overhead is the additional time or resources required to handle the faults to

recover from failures and faults in the system. Fault Overheads in this chapter are caused

by the following factors:

• Detecting AR Slot

• Reserving VM

• Reallocation etc.

Makespan Overhead (Om) is the additional time required to complete the task and can be

computed as follows:

𝑂𝑚 = {

𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇−𝑀𝑎𝑓𝑡𝑒𝑟𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇
 𝐴𝑓𝑡𝑒𝑟 𝐹𝑎𝑢𝑙𝑡 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑀𝑎𝑓𝑡𝑒𝑟𝐿𝐵−𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇
 𝐴𝑓𝑡𝑒𝑟 𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔

 (12)

Average Resource Utilization Overhead (Out) is the additional resource required to

complete the task and can be computed as follows:

𝑂𝑢𝑡 = {
𝑈𝑇𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐹𝑇 𝐴𝑓𝑡𝑒𝑟 𝐹𝑎𝑢𝑙𝑡 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐿𝐵 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐹𝑇 𝐴𝑓𝑡𝑒𝑟 𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 (13)

4.2.5. Computational Complexity of HFSLM

To compute the complexity of HFSLM, the basic operations are analyzed as a function of

input size. We will express the complexity of the presented HFSLM in Big O notation:

Task Sorting and VM Sorting:

Sorting a list of n tasks concerning task size using QuickSort, the complexity is typically O

(n log n)

Task Mapping:

• For n tasks and m VMs, we need to iterate through all VMs in the worst case for a suitable

mapping. i.e.,

 O (n * m) iterations

• Operations of each iteration will take constant time.

• Complexity is O (n * m)

Dynamically arriving Task Mapping (for n arriving tasks):

• For identifying neighboring tasks of the arrived task, the algorithm takes constant time.

• Total number of iterations equals the number of arriving tasks (n).

• Complexity is O (n)

Neighbouring-based Reservation Algorithm for Fault Tolerance:

• For q failed tasks, the algorithm iterates for each failed task and performs constant time

operations.

80

• The total sum of iterations depends on the number of failed tasks (q).

• Complexity is O (q)

Similarly, for the load balancing algorithm, if we assume k tasks in Σ have execution time

less than €, the complexity will be O (k)

HFSLM Algorithm Complexity:

The total complexity of the model is taken by adding all the individual complexities:

O (n log n) + O (n * m) + O (n) + O (q) + O (k)

As we can observe O (n * m) dominates other runtime operations because it depends on both

the number of tasks and VMs. Therefore, the complexity of the model can be estimated as O

(n * m).

4.3. Motivational Illustrative Example

This section demonstrates an explanatory and motivational example where the working of

the proposed reservation-based fault tolerance and load balancing model has been

expressed. An example to illustrate the model has been taken from the most recent paper

where FTHRM [72] has been proposed and we have related our proposed model with

FTHRM based on the same example.

Table 4.2: Instance of tasks and VMs

Task modeling for the

illustration

Task (𝑡𝑖) Task_size

𝑡0 120 MI

𝑡1 260 MI

𝑡2 380 MI

𝑡3 90 MI

𝑡4 100 MI

𝑡5 220 MI

𝑡6 400 MI

𝑡7 280 MI

𝑡8 350 MI

VM modeling for illustration

Virtual Machine (Vi) VM_speed (s)

V1 10 MIPS, Ready time = 2 µs

V2 12 MIPS, Ready time = 4 µs

V3 14 MIPS, Ready time = 6 µs

Nine different independent tasks and three VMs have been taken to demonstrate the working

of the proposed model. (Note: the proposed model supports run-time dealing with both tasks

and VMs as shown in Figures 4.3 and 4.4). But for simplicity of an example, we are taking

the instance of tasks and VMs as shown in Table 4.2. The Ready time of each VM is the

previous load on the VM. Now, the allocation of tasks to the VMs has been done by the

proposed strategy where the tasks and VMs are sorted initially according to increased

task_size and VM_speed, respectively as shown in Figure 4.6.

81

Figure 4.6: Task Allocation in the Proposed Strategy

The proposed allocation is illustrated in Figure 4.7. ESTij is the time when the execution of

ti on vj starts and AFTij is the time when the execution of ti on vj completes. AFT of the

previously executed task on any VM becomes the EST of the next task on the same VM as

explained in Figure 4.7. Furthermore, AFTij is computed by adding the execution time (tp(ti,

vj)) to the ESTij. Here, tp(ti, vj) is computed as shown in eq. 5. TET of each VM is initialized

to zero which indicates that no task has been executed on the particular VM.

However, in this example, each VM has its Ready time i.e., 𝑅𝑇(V1) = 2, 𝑅𝑇(V2) = 4, and

𝑅𝑇(V3) = 6. Now, the Ready time of Vj will be assigned to TETj. In other words, TET(V1)

= 2, TET(V2) = 4, TET(V3) = 6.

4.3.1. Task Mapping

After sorting tasks and VMs, VMs are allocated to the tasks in the sorting order as shown

in Figure 4.6. Initially, t4 is allocated to VM1 with EST = 2, t5 is allocated to V2 with EST=4,

and t1 is allocated to VM3 with EST = 6. For t4, EST41 = 2 because Ready time of VM1 is 2,

now to compute AFT41, 𝑡𝑝(𝑡4, 𝑣1) =
90

10
= 9 will be added to the EST41. In other words,

AFT41 = 2+9 =11. After the execution of t4 is over, RT(V1) will be updated to 11 and is the

EST of the next task.

Similarly, for t5, EST52 = 4 because Ready time of VM2 is 4, now to compute AFT52,

𝑡𝑝(𝑡5, 𝑣2) =
100

12
= 8.3 will be added to the EST52. In other words, 𝐴𝐹𝑇52 = 4 + 8.3 =

12.3. After the execution of t5 is over, RT(V2) will be updated to 12.3 and is the EST of the

next task.

For, t1, the same thing happens, and RT(V3) will be updated to 14.5 and is the EST of the

next task as illustrated in Figure 4.7.

The next task i.e., t6 will be allocated to that VM whose RT has been already computed i.e.,

the VM which is available or free. If RT has been computed for more than one VM, then

the next task will be allocated to the VM having minimum ready time. (Note: as the VMs

and task are sorted, RT for all the VMs will also come to be sorted. The same happens with

this example also, there will be some variation in case little or minimum variation in

82

arriving task size i.e., in low task heterogeneity cases). Finally, after the allocation of all

tasks is over, we compute the Makespan and Average VM Utilization.

Since, 𝑇𝐸𝑇(𝑣1) = 68, 𝑇𝐸𝑇(𝑣2) = 71.2, 𝑇𝐸𝑇(𝑣3) = 73. .7 as shown in Figure 4.7.

Now, Makespan is computed as 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗), ∀𝑣𝑗

i.e., 𝑚𝑎𝑥(68, 71.2, 73.7)

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝟕𝟑. 𝟕

Average VM Utilization(U) is computed as:

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

UT=
68+71.2+73.7

3𝑋73.7
=

213.1

221.1
= 𝟗𝟔. 𝟑%

Comparing the Makespan and Average VM Utilization with FTHRM, the Makespan of

FTHRM was found to be as 80 and utilization was 84.76% for the same example. The

allocation in FTHRM was done according to the MCT strategy. In other words, the proposed

allocation used in the model surpasses the MCT strategy as well on both makespan and

average VM utilization.

4.3.2. Fault-tolerance

As per the algorithmic flow of the model, after allocation, we are performing fault tolerance

of the system using a neighboring-based advance reservation. Before reservation--based

fault tolerance, we have assumed and illustrated the random fault tolerance first so that we

can compare our neighboring reservation fault tolerance with the assumed random fault

tolerance. The implementation results are also compared with FTHRM in the results section.

Figure 4.7: Allocation of Tasks in the Proposed Sorting Algorithm

83

4.3.2.1. Random Fault Tolerance without Neighboring Reservation:

Now, let’s suppose V3 failed at 34.5 as shown in Figure 4.8. Now if we randomly assign an

alternative VM to the affected task which here is t3. In Random allocation, we randomly

pick any of the VMs and allocate them to t3. Here we are migrating t3 to VM1 till t3 completes

its execution.

So, 𝐴𝐹𝑇31 = 68 + 55 = 123.

Hence, 𝑇𝐸𝑇(𝑣1) = 123, 𝑇𝐸𝑇(𝑣2) = 71.2, 𝑇𝐸𝑇(𝑣3) = 73.7 − 𝑡𝑝(𝑡3, 𝑣3) = 73.7 −

39.2 = 34.5 as shown in Figure 4.8.

Now, Makespan is computed as 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗), ∀𝑣𝑗

i.e., 𝑚𝑎𝑥(123. 71.2, 34.5)

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝟏𝟐𝟑

Average VM Utilization(U) is computed as:
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

i.e., UT =
123+71.2+34.5

3𝑋123
=

194.2

246
= 𝟕𝟖. 𝟗%

It is clear because of faults in any of the VMs, the makespan increases and utilization

decreases.

𝑂𝑚(𝐴𝑓𝑡𝑒𝑟 𝐹𝑎𝑢𝑙𝑡𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) =
𝑀𝑎𝑓𝑡𝑒𝑟 𝐹𝑇−𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇
 =

123−73.7

73.7

𝑶𝒎(𝑨𝒇𝒕𝒆𝒓 𝑭𝒂𝒖𝒍𝒕𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆) =0.66

It is clear because of faults in any of the VMs, the makespan increases and utilization

decreases.

Figure 4.8: Random Fault Tolerance without Neighboring Reservation

84

4.3.2.2. Proposed Neighbouring Based Reservation:

Now, we are going to use a neighboring-based reservation to provide an alternative VM to

the affected task. Neighboring-based reservation strategy selects the neighboring VM as an

alternative VM for the affected tasks. As we have already sorted the tasks and VMs,

therefore, reserving the neighboring VM will ensure that the same capacity of an alternative

VM is reserved for the affected task. For using an advance reservation, we need to estimate

the advance reservation slot represented as an ARij slot i.e., advance reservation slot for ti

on some VMj and we are reserving the neighboring VM for the same AR slot to ensure task

execution till completion of the task. ARij is estimated as the difference between AFTij and

ESTij given in eq 8.

Furthermore, all the information regarding tasks and VMs including AR slots are stored in

a Matrix known as ARM as shown in Table 4.3.

The illustration of fault tolerance by reserving Neighbouring VMs is given in Figure 4.9. It

is clear from the illustration, that, unlike random fault tolerance with reservation, VM2 has

been selected as an alternative VM because VM2 is the neighbor of failed VM i.e., VM3.

The affected task i.e., t3 has been migrated to VM2 which will be of the approximately same

capacity as that of VM3. The computational flow is shown in Figure 4.9.

Again, let’s suppose V3 failed at 34.5 as shown in Figure 4.9. Now, using a Neighbouring-

based reservation, we will select the Neighbouring VM for the affected task.

Table 4.3: Advance reservation matrix (ARM)

Task

(𝑡𝑖)
VM (V𝑗) Task_size

(𝑤(𝑡𝑖))
speed (s

)

𝐸𝑆𝑇(𝑖𝑗) 𝐴𝐹𝑇(𝑖𝑗) AR slot

(𝐴𝑅𝑠𝑗)

Status

𝑡1 VM3 120 14 6 14.5 8.5 1

𝑡2 VM2 260 12 12.3 33.9 21.9 1

𝑡3 VM3 380 14 71.2 117 45.8 1

𝑡4 VM1 90 10 2 11 9 1

𝑡5 VM2 100 12 4 12.3 8.3 1

𝑡6 VM1 220 10 11 33 22 1

𝑡7 VM2 400 12 33.9 71.2 37.3 1

𝑡8 VM3 280 14 14.5 34.5 20 1

𝑡9 VM1 350 10 33 68 35 1

(Note: here the failed VM3 has only one neighboring VM i.e., VM2. When the failing VM

has both neighbours that time an alternative VM will be selected with the least Ready time)

Here, we are migrating t3 to its neighboring VM (VM2) till t3 completes its execution.

Since, 𝑡𝑝(𝑡3, 𝑣2) =
550

12
= 45.8.

So, 𝐴𝐹𝑇32 = 71.2 + 45.8 = 117.

Hence, 𝑇𝐸𝑇(𝑣1) = 68, 𝑇𝐸𝑇(𝑣2) = 117, 𝑇𝐸𝑇(𝑣3) = 73.7 − 𝑡𝑝(𝑡3, 𝑣3) = 73.7 − 39.2 =

 34.5 as shown in Figure 4.9.

85

Now, Makespan is computed as 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗), ∀𝑣𝑗

i.e., 𝑚𝑎𝑥(68, 117, 34.5)

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝟏𝟏𝟕

Average VM Utilization(U) is computed as:
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

i.e., UT =
68+117

2𝑋117
=

185

234
= 𝟕𝟗. 𝟓%

𝑂𝑚(𝐴𝑓𝑡𝑒𝑟 𝐹𝑎𝑢𝑙𝑡𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) =
𝑀𝑎𝑓𝑡𝑒𝑟 𝐹𝑇−𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇
 =

117−73.7

73.7

𝑶𝒎(𝑨𝒇𝒕𝒆𝒓 𝑭𝒂𝒖𝒍𝒕𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆) =0.58

It is clear from the illustration that using reservation makespan and utilization improved.

Although, in this example, the utilization is found to be increased by only 1%. This is

because we have only three VMs here. Furthermore, the capacity of VMs varies only by

2MIPS. In real-time where we have a large number of VMs of extremely different

capacities, this strategy will show huge improvements in both makespan as well as

utilization. Same happens with 𝑂𝑢𝑡.

Figure 4.9: Fault Tolerance by Reserving Neighbouring VMs

86

4.3.3. Load Balancing

After performing fault tolerance, the model escorts the whole system with load balancing

for further optimization of the makespan and utilization. The load balancing algorithm

focuses on the maximum overloaded and minimum underloaded VM. After identifying the

overloaded and underloaded VM, the load is shifted according to the given algorithm and

depicted in Figure 4.10. In this example, after fault tolerance, the overloaded and

underloaded VMs are identified as VM2 and VM1 respectively. Tasks executing on

maximum overloaded VM and minimum underloaded VM are denoted as sets O and U

respectively. Then, the average execution time (€) of tasks allocated over the maximum

overloaded VM is calculated. The tasks having execution time less than the average

execution time are taken as separate sets (𝛴). I.e., 𝛴={ti | E(ti, vj) < €}

Overloaded and underloaded VMs are VM2 and VM1 respectively.

O : {t5, t2, t7, t3} && |O| = o , U : { t4, t6, t9} && |U| = u

€ = ∑
𝐸(𝑡𝑖,𝑣𝑜)&& 𝑡𝑖 є 𝑂

|O|

𝑜
𝑖=1 =

𝐸(𝑡5,𝑣2)+ 𝐸(𝑡2,𝑣2)+𝐸(𝑡7,𝑣2)+𝐸(𝑡3,𝑣2)

4
 =

8.3+21.6+37.3+45.8)

4
 =

113

4

€ = 28.5 as per eq. (9)

𝛴 ={t2, t5} E(𝑡5, 𝑣2) = 8.3 𝑎𝑛𝑑 𝐸(𝑡2, 𝑣2) = 21.6 (both are less than €)

Now 𝛴 will be sorted in descending order of their execution time.

𝛴 ={t5, t2}

Now the algorithm will shift the load from VM2 to VM1 till the makespan of underloaded

VM < makespan of overloaded VM (see load balancing algorithm). Here, we are migrating

t2 from VM2 to VM1. Now, Makespan is computed as:

max (𝑇𝐸𝑇j), ∀Vj i.e., max (94, 95.4, 34.5)

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝟗𝟓. 𝟒

Average VM Utilization(U) is computed as:
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

U =
94+95.4

2𝑋95.4
 =

189.4

190.8
 = 99.2%

Since, 𝑡𝑝(𝑡2, 𝑣1) =
260

10
= 26.

So, 𝐴𝐹𝑇21 = 68 + 26 = 94.

Hence, 𝑇𝐸𝑇(𝑣1) = 94, 𝑇𝐸𝑇(𝑣2) = 𝑇𝐸𝑇(𝑣2) − 𝑡𝑝(𝑡2, 𝑣2) = 117 − 21.6 =

95.4, 𝑇𝐸𝑇(𝑣3) will be the same i.e., 34.4 as it is a faulty VM as shown in Figure 4.10.

Now, Makespan is computed as 𝑚𝑎𝑥(𝑇𝐸𝑇𝑗), ∀𝑣𝑗

i.e., 𝑚𝑎𝑥(94, 95.4, 34.5)

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝟗𝟓. 𝟒

87

Average VM Utilization(U) is computed as:
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝐸𝑇

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑋 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

i.e., U =
94+95.4

2𝑋95.4
=

189.4

190.8
= 𝟗𝟗. 𝟐%

𝑂𝑚(𝐴𝑓𝑡𝑒𝑟 𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔) =
𝑀𝑎𝑓𝑡𝑒𝑟 𝐿𝐵−𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇

𝑀𝑏𝑒𝑓𝑜𝑟𝑒 𝐹𝑇
 =

95.4−73.7

73.7

𝑶𝒎(𝑨𝒇𝒕𝒆𝒓 𝑳𝒐𝒂𝒅 𝒃𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈) =0.29

The overhead of utilization (Out) is presented below:

𝑂𝑢𝑡(𝑡𝑜𝑡𝑎𝑙) = 𝑈𝑇𝑏𝑒𝑓𝑜𝑟𝑒𝐹𝑇 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑇 = 96.3 − 78.9 = 17.4

𝑂𝑢𝑡 reduced using neighbouring reservation-based fault tolerance:

 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝐹𝑇 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑇 = 79.5% − 78.9% = 0.6%

𝑂𝑢𝑡 reduced by accompanying load balancing:

 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝐿𝐵 − 𝑈𝑇𝑎𝑓𝑡𝑒𝑟𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑇 = 99.2% − 78.9% = 20.3%

Therefore, the proposed load balancing has reduced the overhead by 20.3%.

The above illustration demonstrates the working of the whole hybrid model. Comparing the

proposed model with FTHRM [72]. FTHRM shows the final utilization as 84.76 on the

other hand proposed model shows the final utilization as 99.2% in the same example. It is

because of escorting the proposed model with load balancing. Furthermore, FTHRM shows

a makespan of 80 but the proposed model shows a makespan of 95.4. It is because the

proposed model has reserved the neighboring VMs for the affected tasks and has also

migrated the affected task from the failed VM to the neighbouring reserved VM. It is clear

from the illustration that after load balancing the makespan and utilization have been

optimized up to 18.8% and 20% respectively than before load balancing.

Figure 4.10: Load Balancing after Fault Tolerance

88

4.4. Results and Discussions

The proposed HFSLM is compared with four different approaches based on two main

parameters i.e., makespan and average utilization. HFSLM is evaluated by comparing it

with FTHRM, OLB, MIN MIN, and MAX MIN for less than 1000 tasks. Also, compared

with ELISA and MELISA with greater than 10,000 tasks. The results were observed on

varying the number of tasks and the number of VMs. Furthermore, task and machine

heterogeneity are also varied to analyze the results of the proposed model more clearly. As

mentioned in [35], the range of Expected Time to Compute (ETC) for ti on vj is variable as

heterogeneity varies from low to high for both the arriving tasks and VMs. By altering the

heterogeneities of the incoming tasks and virtual machines, HFSLM is evaluated in this

section.

4.4.1. Varying heterogeneity over small task scale

The evaluation has been done by adjusting the number of tasks, size of tasks, number of

VMs, and capacities of VMs in four different heterogeneities given by [35], i.e., high task-

high machine heterogeneity (HH), high task-low machine heterogeneity (HL), low task-

high machine heterogeneity (LH), low task-low machine heterogeneity (LL). For all these

four cases the performance of the proposed model and compared strategies have been

analyzed and depicted graphically in the given figures. In comparison, the tasks have been

taken on a small scale varying from 250 to 1000. On the other hand, the virtual machines

have varied from 16 to 128. Additionally, the input parameters taken to analyze the

considered model are further shown in Table 4.4.

Table 4.4: Simulation parameter used for HFSLM evaluation

S.no. Input parameter Range

1 No of tasks (n) 250 to 1000

2 No of resources (m) 16 to 128

Task size (t_size)

2 Low task heterogeneity 1 MI to 100 MI

3 High task heterogeneity 100 MI to 3000 MI

VM Speed (S)

5 Low machine heterogeneity 1 MIPS to 10 MIPS

6 High machine heterogeneity 10 MIPS to 100 MIPS

89

4.4.1.1. High task – High machine heterogeneity (HH)

In high task heterogeneity, the task size ranges from 100 MI to 3000 MI, and high machine

heterogeneity ranges from 10 MIPS to 100 MIPS. A few observations regarding the

considered parameters, i.e., makespan and average resource utilization are depicted in

Figure 4.11 and 4.12 respectively. Further details of the observations are as follows:

• The proposed HFSLM is enhancing the makespan because of its planned features.

For all the ranges of task number and VM number considered, the model surpasses other

strategies by offering a minimum makespan. Apart from this, it is clearly seen in Figure

4.11, that at large task scale and small VM scale, the makespan shown is quite large but in

that case also, HFSLM offers an optimized makespan.

• Furthermore, on comparing average resource utilization, HFSLM beats about 80%

of the compared approaches. Additionally, for small-scale tasks, HFSLM shows better

utilization than MAXMIN and as the number of tasks and VMs are going towards extremely

large scales, HFSLM and MAXMIN go almost equally.

• Out of all the compared approaches, OLB performs worst in both makespan and

utilization. It is probably because of the fact that OLB does not follow any plans and

strategies.

Figure 4.11: Makespan for varying Tasks and VM (HH)

0

50

100

150

200

250

250*16 250*32 250*64 250*128 500*16 500*32 500*64 500*128 750*16 750*32 750*64 750*128 1000*16 1000*32 1000*64 1000*128

M
ak

es
p
an

(µ
s)

Number of tasks*Number of VMs
HFSLM FTHRM Max-Min Min-Min OLB

90

Figure 4.12: Avg. Resource Utilization for varying Tasks and VM (HH)

4.4.1.2. High task – Low machine heterogeneity (HL)

In high task heterogeneity, the task size ranges from 100 MI to 3000 MI, and low machine

heterogeneity ranges from 1 MIPS to 10 MIPS. A few observations regarding the considered

parameters i.e., makespan and average resource utilization are depicted in Figures 4.13 and

4.14. Further details of the observations are as follows:

• The proposed HFSLM is enhancing the makespan in HL because of its planned

features. For all the ranges of task number and VM number considered, the model surpasses

other strategies by offering a minimum makespan. Moreover, as depicted in Figure 4.13,

HFSLM provides an optimized makespan even in the case of large task numbers and small

available VMs. However, in such cases, MAXMIN offers the highest makespan.

• On comparing average resource utilization, HFSLM again efficiently beats about

80% of the compared approaches in HL also. In HL, the proposed model also beats

MAXMIN in the case of a small task scale, and as the task scale goes up, both HFSLM and

MAXMIN go with almost tie.

• Out of all the compared approaches, OLB provides the worst makespan. However,

in some cases, MAXMIN also did not show an optimized makespan. Additionally, in the

case of average resource utilization, OLB offers very limited utilization than all the

considered approaches.

0

10

20

30

40

50

60

70

80

90

100

250*16 250*32 250*64 250*128 500*16 500*32 500*64 500*128 750*16 750*32 750*64 750*128 1000*16 1000*32 1000*64 1000*128

A
v

er
ag

e
R

es
o

u
rc

e
U

ti
li

za
ti

o
n

(%
)

Number of tasks*Number of VMs

HFSLM FTHRM Max-Min Min-Min OLB

91

Figure 4.13: Makespan for varying Tasks and VM (HL)

Figure 4.14: Avg. Resource Utilization for Varying Tasks and VM (HL)

0

5000

10000

15000

20000

25000

250*16 250*32 250*64 250*128 500*16 500*32 500*64 500*128 750*16 750*32 750*64 750*128 1000*16 1000*32 1000*64 1000*128

M
ak

es
p
an

(µ
s)

Number of tasks*Number of VMs

HFSLM FTHRM Max-Min Min-Min OLB

0

10

20

30

40

50

60

70

80

90

100

250*16 250*32 250*64 250*128 500*16 500*32 500*64 500*128 750*16 750*32 750*64 750*128 1000*16 1000*32 1000*64 1000*128

A
v
er

ag
e

R
es

o
u
rc

e
U

ti
li

za
ti

o
n
(%

)

Number of tasks*Number of VMs

HFSLM FTHRM Max-Min Min-Min OLB

92

4.4.1.3. Low task – High machine heterogeneity (LH)

In low task heterogeneity, the task size ranges from 1 MI to 100 MI, and high machine

heterogeneity ranges from 10 MIPS to 100 MIPS. A few observations regarding the

considered parameters i.e., makespan and average resource utilization are depicted in

Figures 4.15 and 4.16. Further details of the observations are as follows:

• In this particular case, the proposed HFSM cannot beat MAXMIN with respect to the

makespan in some scenarios. As depicted in Figure 4.15, the makespan

provided by HFSLM and MAXMIN were equal. However, there are rare cases where

HFSLM showed a little better makespan than that of MAXMIN.

• On comparing average resource utilization, HFSLM again efficiently beats all the

compared approaches except MAXMIN. For a low task scale, HFSLM beats MAXMIN.

However, the performance of HFSLM in the mid-scale goes down than that of MAXMIN

but as the task scale goes up, HFSLM shows optimized utilizations.

Figure 4.15: Makespan for varying Tasks and VM (LH)

0

1

2

3

4

5

6

7

8

250*16 250*32 250*64 250*128 500*16 500*32 500*64 500*128 750*16 750*32 750*64 750*128 1000*16 1000*32 1000*64 1000*128

M
ak

es
p
an

(µ
s)

Number of tasks*Number of VMs

HFSLM FTHRM Max-Min Min-Min OLB

93

Figure 4.16: Avg. Resource Utilization for varying Tasks and VM (LH)

4.4.1.4. Low task – Low machine heterogeneity (LL)

In low task heterogeneity, the task size ranges from 1 MI to 100 MI, and low machine

heterogeneity ranges from 1 MIPS to 10 MIPS. A few observations regarding the considered

parameters i.e., makespan and average resource utilization are depicted in Figures 4.17 and

4.18. Further details of the observations are as follows:

• In the case of LL, the proposed HFSLM beats MAXMIN concerning the makespan.

As depicted in Figure 4.17, the makespan provided by HFSLM for small task scales goes

up, both HFSLM and MAXMIN are in a tie.

• On comparing average resource utilization, HFSLM utilizes the resource efficiently.

However, MAXMIN and HFSLM behave almost the same in all task scales.

Figure 4.17: Makespan for varying Tasks and VM (LL)

0

10

20

30

40

50

60

70

80

90

100

250*16 250*32 250*64 250*128 500*16 500*32 500*64 500*128 750*16 750*32 750*64 750*128 1000*16 1000*32 1000*64 1000*128

A
v
er

ag
e

R
es

o
u
rc

e

U
ti

li
za

ti
o
n
(%

)

Number of tasks*Number of VMs

HFSLM FTHRM Max-Min Min-Min OLB

0

100

200

300

400

500

600

700

800

250*16 250*32 250*64 250*128 500*16 500*32 500*64 500*128 750*16 750*32 750*64 750*128 1000*16 1000*32 1000*64 1000*128

M
ak

es
p

an
(µ

s)

Number of tasks*Number of VMs
HFSLM FTHRM Max-Min Min-Min OLB

94

Figure 4.18: Avg. Resource Utilization for varying Tasks and VM (LL)

Observations

The suggested technique outperforms FTHRM in terms of makespan and utilisation, which

go from 0.72% to 10.8% and 1.01% to more than 50%, respectively. When compared to

MAXMIN, HFSLM exhibits makespan improvements of -3.03% to 8.8% and average

resource utilisation gains of -2.15% to 6.7%. While comparing the suggested approach with

MINMIN, the model shows an improvement of 0.6% to 19% in makespan and 1.09% to

more than 45% in utilization. However, OLB was seen to perform very weakly among all

approaches where the suggested model shows improvements of more than 50% in both

makespan and utilization than OLB. Furthermore, it was observed that all the models

perform almost equal optimization in makespan in LH heterogeneity. However, in that case,

also OLB performs weakly among the compared approaches.

4.4.2. Varying heterogeneity over large task scale

The suggested model has also been contrasted with two other popular load-balancing

models. i.e., ELISA and MELISA, and was evaluated based on makespan and average

resource utilization.

4.4.2.1. Makespan and Average Resource Utilization

However, while comparing these HFSLM with these two models, the model was tested on

an extremely large task scale. This is because these two models are more suitable for large

task scales [46], [131]. Here, the tasks varied from 10000 to 50000. The average results of

the makespan are depicted in Figure 4.19. The results show that the makespan of the

proposed HFSLM is better than ELISA and MELISA. However, as the number of tasks

increases the average makespan of MELISA becomes optimized.

0

20

40

60

80

100

120

250*16 250*32 250*64 250*128 500*16 500*32 500*64 500*128 750*16 750*32 750*64 750*128 1000*16 1000*32 1000*64 1000*128A
v
er

ag
e

R
es

o
u

rc
e

U
ti

li
za

ti
o

n
(%

)

Number of tasks*Number of VMs
HFSLM FTHRM Max-Min Min-Min OLB

95

On comparing average utilization, the three models are compared on the basis of Min, Avg,

and Max average resource utilization. In Figure 4.20, it can be noted that there is a

significant variation in the range of virtual machine utilization for ELISA and MELISA.

However, for HFSLM, the range of variations between minimum, average, and maximum

utilization is almost negligible.

Figure 4.19: Average Makespan for varying Heterogeneity

The proposed model was seen to perform optimally in the case of utilization in all cases of

heterogeneity. However, the model could not perform optimally on makespan in a few

cases.

Figure 4.20: Avg. Resource Utilization for varying Heterogeneity

Observations: Additionally, Comparing HFSLM with ELISA and MELISA on a large tasks

scale, HFSLM shows improvements from -0.98% to 23.33% and from -3% to 8% on

0

200

400

600

800

1000

1200

10000 20000 30000 40000 50000

A
v
er

ag
e

M
ak

es
p

an
(µ

s)

Number of Tasks
HFSLM MELISA ELISA

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Min Avg Max Min Avg Max Min Avg Max

HFSLM ELISA MELISA

A
v
er

ag
e

R
es

o
u

rc
e

U
ti

li
za

ti
o
n
(%

)

96

makespan respectively. Besides, HFSLM shows 1.42% and 1.22% improvements in

minimum resource utilization as compared to ELISA and MELISA respectively. On

maximum resource utilization, the proposed model shows improvements of 39.1% and

48.8% respectively.

Remarks: The suggested approach outperforms another strategy for QoS parameters. A few

reasons are listed below:

• The proposed allocation considers both the upcoming tasks and newly added and

deleted VMs. Additionally, optimal load distribution and effective average resource

utilization occur simultaneously. As a result, it provides significant enhancement in all

considered parameters.

• As can be seen from the overall results the utilization of the proposed approach

remains optimized on varying the number of tasks and VMs. This is because of the fact that

the proposed allocation strategy focuses on distributing the arriving tasks throughout the

available VMs. Moreover, various strategic advancements in the proposed HFSLM play a

significant role in the same.

• Furthermore, the proposed model outperforms all the compared approaches in HH

and HL cases. It is because in high task heterogeneity the ready time of all the available

VMs will always be sorted in other words, whenever we have high task heterogeneity, the

ready time of all the VMs in the VM list will always be sorted. The sorted ready time of

VMs is the best case for the proposed allocation.

4.4.2.2. Associated Fault Overheads (Makespan and Average Resource Utilization)

The fault always suffers from overheads even if handled. Likewise, the proposed fault

tolerance also suffers from overheads. However, the proposed HFSLM reduces the

associated fault overheads by balancing the load after handling faults. This achieves

optimization in makespan and average resource utilization by reducing the associated

overheads. The reductions in associated overhead, concerning both makespan and average

resource utilization after load balancing, are illustrated across all four scenarios of task and

VM heterogeneities and are depicted in the following Figure 4.21 to Figure 4.28.

High task – High machine heterogeneity (HH)

• The HFSLM model proposed in this study achieves a notable optimization in

makespan overhead, reaching up to a significant level of 65.17% improvement by

adjusting both tasks and VMs in terms of makespan overhead post to the load

balancing, as depicted in Figure 4.21.

97

• By efficient re-distribution of load among VMs, a decrease of 8.93% in resource

utilization overhead is observed following the implementation of load balancing, as

illustrated in Figure 4.22 and the reduction of overhead of utilization is depicted in

Figure 4.23.

Figure 4.21: Fault Makespan Overhead for varying Tasks and VM (HH)

High task – Low machine heterogeneity (HL)

• The HFSLM demonstrates its efficacy in reducing makespan overhead across

various tasks and VMs after load balancing, achieving a substantial decrease of more

than 50% in makespan overhead, as depicted in Figure 4.24.

0

20000

40000

60000

80000

100000

120000

140000

Fa
ul

t M
ak

es
pa

n
O

ve
rh

ea
d

Number of Tasks * Number of VMs

HH

After Fault Tolerance After Load Balancing

98

• The overhead related to the resource utilization is shown in Figure 4.25 and the

reduction of utilization overhead is seen to be 4.49% after load balancing as depicted

in Figure 4.26.

Figure 4.24: Fault Makespan Overhead for varying Tasks and VM (HL)

Low task – High machine heterogeneity (LH)

• The proposed load balancing strategy optimizes the makespan overhead to a very

significant level up to 64.06% on widely varying tasks and VMs as can be seen in

Figure 4.27.

• Figure 4.28 shows the utilization overhead. Nonetheless, Figure 4.29 demonstrates

a significant reduction in resource utilization overhead, attributed to the effective

redistribution of workload among virtual machines. We note a reduction of up to

5.15% in utilization overhead after load balancing.

0
2000000
4000000
6000000
8000000

10000000
12000000

Fa
ul

t M
ak

es
pa

n
O

ve
rh

ea
d

Number of Tasks * Number of VMs

HL

After Fault Tolerance After Load Balancing

99

Figure 4.27: Fault Makespan Overhead for varying Tasks and VM (LH)

Low task – Low machine heterogeneity (LL)

• The proposed load balancing strategy achieves a remarkable level of reduction in

makespan overhead, reaching up to 34.12% across a diverse set of tasks and VM

configurations, as illustrated in Figure 4.30.

• As visualized in Figures 4.31 and 4.32, the average resource utilization overhead is

slightly decreased in some cases after load balancing particularly in cases of small

task range up to 2000 tasks. In this task and machine heterogeneity, we observe the

overall -0.75% changes in utilization after load balancing. The reason for this

degradation is that in low VM heterogeneity, very few VMs participate in the load-

shifting phase of the suggested load-balancing technique which results in less task

redistribution.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Fa
ul

t M
ak

es
pa

n
O

ve
rh

ea
d

Number of Tasks * Number of VMs

LH

After Fault Tolerance After Load Balancing

100

Figure 4.30: Fault Makespan Overhead for varying Tasks and VM (LL)

Observations

From Figures 4.21 to 4.24, we observe that the fault overheads for makespan have been

significantly reduced after load balancing. Particularly, as the task number is increasing, the

rate of reduction in overheads is also increasing. On the other hand, from Figures 4.25 to

4.28, we observe that the fault overheads for average resource utilization have been reduced

thereby increasing the resource utilization after load balancing. Particularly, for HH, the

rate of overhead reduction has been seen to be significant. This is because, for both high

task and high VM heterogeneity, the proposed load balancing involves high load shifts

while redistributing the load. However, for low VM heterogeneity, the proposed load

balancing involves fewer load shifts while redistributing the load which leads to less

reduction in the fault utilization overhead.

0
50000

100000
150000
200000
250000
300000
350000

Fa
ul

t M
ak

es
pa

n
O

ve
rh

ea
d

Number of Tasks * Number of VMs

LL

After Fault Tolerance After Load Balancing

101

4.5. Summary in Context

In the proposed study, a Hybrid Fault-tolerant Scheduling and Load balancing Model is

introduced employing neighboring-based VM to control failure in the cloud system with

high computational demands. HFSLM uses a proficient task allocation strategy and

distributes the arriving tasks among VMs at the arrival. In case of fault, the model uses the

neighboring VMs of the faulty VM as a substitute and allocates an alternate VM to the

affected task. Moreover, the proposed model escorts the whole system with an efficient

load-balancing algorithm and maintains load equilibrium post-to-fault tolerance. After the

implementation of the model in Python, performance evaluation was carried out by

comparing HFSLM with FTHRM, MIN-MIN, MAX-MIN, and OLB on a low task scale by

varying the task and VM in four different heterogeneities. The evaluations were performed

based on makespan and average VM utilization. On very large task scales, the model was

also contrasted with two other emerging models i.e., ELISA and MELISA.

The suggested approach outperformed other considered strategies for QoS parameters. A

few reasons are listed below:

• The proposed allocation considers both the upcoming tasks and newly added and deleted

VMs. Additionally, optimal load distribution and effective average resource utilization

occur simultaneously. As a result, it provides significant enhancement in all considered

parameters.

• As can be seen from the overall results the utilization of the proposed approach remains

optimized on varying the number of tasks and VMs. This is because the proposed allocation

strategy focuses on distributing the arriving tasks throughout the available VMs.

Moreover, various strategic advancements in the proposed HFSLM play a significant role

in the same.

• Furthermore, the proposed model outperforms all the compared approaches in HH and

HL cases. It is because in high task heterogeneity the ready time of all the available VMs

will always be sorted in other words, whenever we have high task heterogeneity, the ready

time of all the VMs in the VM list will always be sorted. The sorted ready time of VMs is

the best case for the proposed allocation.

• The fault overheads with respect to both the makespan and average resource utilization

have been reduced significantly in all four task and machine heterogeneities. However, in

the case of LL case, the reduction was not found much significant.

102

Chapter 5

CRFTS (Clustered and Nearest Neighbor Reservation

based Fault Tolerant Scheduling)

Cloud systems supply different kinds of on-demand services in accordance with client

needs. As the landscape of cloud computing undergoes continuous development, there is a

growing imperative for effective utilization of resources, task scheduling, and fault

tolerance mechanisms. To decrease the users' task execution time (shorten the makespan)

with reduced operational expenses, to improve the distribution of load, and to boost

utilization of resources, proper mapping of user tasks to the available VMs is necessary.

This study introduces a unique perspective in tackling these challenges by implementing

inventive scheduling strategies along with robust fault tolerance mechanisms in cloud

environments.

This chapter introduces the Clustering and Reservation Fault-tolerant Scheduling (CRFTS),

which maximizes the system reliability while making it fault-tolerant and optimizing other

Quality of Service (QoS) parameters, such as Makespan, Average Resource Utilization, and

Reliability. The study optimizes the allocation of tasks to improve the utilization of

resources and reduce the time required for their completion. At the same time, the

reservation-based fault tolerance framework is presented, emphasizing reactive strategies,

thus ensuring continuous service delivery throughout its execution without any interruption.

The effectiveness of the suggested model is illustrated through simulations and empirical

analyses, highlighting enhancements in QoS parameters while comparing with HEFT [132],

E-HEFT [133], and the latest LB-HEFT [134], FTSA-1 [135], and DBSA [56] for various

cases/conditions over both tasks and VMs.

The proposed CRFTS involves a novel VM allocation strategy, i.e., a clustered allocation

strategy. It initially sorts the tasks and VMs and then divides both tasks and VMs into three

clusters namely: low, mid, and high clusters. This clustering makes the allocation more

efficient by narrowing the domain of mapping and allocating each task to the most suitable

VM. The clustering restricts the domain of both tasks and VMs and thereby prevents the

task from getting mapped with the VM which is apparently not appropriate. Furthermore,

the proposed model is enforced with an effective fault-tolerant algorithm based on the prior

reservation of VMs. The proposed model estimates the AR slot for the tasks and reserves

the VM for tasks to guarantee the task execution till completion. The alternative VM is

selected based on the previous load of the VM and the clustering approach. While evaluating

103

the model, CRFTS was evaluated based on parameters like Reliability, Makespan, and

Average Resource Utilization on varying the number of tasks and number of VMs.

Some of the recent related fault-tolerant models like HEFT (Heterogeneous Earliest Finish

Time), FTSA-1 (Fault Tolerant Scheduling Algorithm), and DBSA (Deadline Based

Scheduling Algorithm), etc. were proposed in [38], [40], [45] respectively undoubtedly

made noteworthy contributions. However, it is imperative to acknowledge their inherent

limitations, creating a compelling need for targeted interventions to propel the field toward

further advancements. Among all these proposed approaches, the reliability of DBSA was

seen to be the most efficient. An innovative hybrid checkpointing and rollback recovery

mechanism is also stated by the author in [25]. In addition, the author claims that the main

requirement of today's dispersed environment is the optimized utilization of resources.

While the current fault-tolerant methods compromise makespan which eventually results in

increased task execution time. Moreover, the diverged environment raises the challenging

concern regarding the total reliability of the system while effectively addressing the fault

situations. In certain existing fault-tolerant approaches, inefficiencies in resource utilization

may arise, resulting in performance degradation and heightened effective rates. This

constraint holds particular significance in cloud environments, where the imperative of

efficient resource allocation is fundamental in achieving high resource utilization and

maintaining optimal service delivery. The cloud may undoubtedly introduce diverged fault

scenarios because of its dynamic nature and support of diverse applications. Addressing

them becomes a principal requirement for ensuring a seamless and reliable user experience

and thereby meeting service level expectations. After the extensive literature review, it was

noted that the work on some scheduling parameters like makespan and average utilization

of the resources can be addressed more. Here, we are motivated to propose the novel fault-

tolerant scheduling model, CRFTS that uses clustering-based allocation and reservation-

based fault tolerance. The CRFTS is compared with HEFT, FTSA-1, and DBSA and was

evaluated for Reliability and Makespan. This model has improved reliability and surpasses

all the compared approaches. Furthermore, the suggested model was compared with three

other models i.e., HEFT, E-HEFT (Enhancement of Heterogeneous Earliest Finish Time)

[27], and the most recent LB-HEFT (Load balancing- Heterogeneous Earliest Finish Time)

[136] for Average Resource Utilization and Makespan. The outcomes demonstrate that

CRFTS outperforms the compared state-of-art. Some of the enhancements of the

contributed work are listed below:

• Progress in Cloud Reliability

104

• Novel Task Scheduling

• Reduction of Service Interruptions and Makespan

• Efficient Utilisation of Resources

• Fault-administration

• Scalable and Adaptable Fault Handling.

Additionally, the primary contributions of this chapter can be encapsulated in the following

manner:

• In order to find some ideal and optimized task scheduling of user tasks on the accessible

VMs, we first introduced the problem of mapping between tasks and VMs.

• Secondly, to handle dynamically failed or affected tasks, we propose a reservation-

based fault tolerance and migrate the affected task to some healthy VM.

• To address the two identified challenges, we introduced the CRFTS approach,

incorporating two methodologies. Initially, it utilizes the clustered technique for

scheduling, and subsequently, for managing faults, the model incorporates the

reservation technique.

We established a system model to assess the effectiveness and efficacy of the proposed

CRFTS approach by conducting comparisons with five other related approaches. The

evaluation considered parameters such as Reliability, Makespan, and Average Resource

Utilization during the execution of a set of parallel applications on varying tasks and VM

heterogeneity.

5.1. The Proposed Model

In this section, we introduced the fault-tolerant-based scheduling algorithm. The incoming

tasks are taken as set T= {t1, t2, t3… tn} and the VMs are taken as set V= {v1, v2, v3… vk}.

This section explains the proposed CRFTS model which uses a clustering approach for

allocation and the advance reservation of VMs to handle the failure in a dynamic

computationally intensive cloud system. The proposed cluster-based allocation technique

can be represented as the bipartite graph between the task set and VM set as shown in Figure

5.2. The System Architecture and Problem Formulation are illustrated in the below

subsection.

5.1.1. The System Architecture

The system architecture of LB-CRFTS is comprised of three main layers as shown in Figure

5.1, i.e., Application, Middleware, and Host/VM Layer. Besides, the AR Module is an

105

important component of system architecture. The application layer and Host/VM layer

present and involve the assumptions related to the cloud computing infrastructure included

in the model. The considered cloud computing infrastructure involves:

Description of VMs: Describe the VMs used in the model comprising their capacities within

the system. The architecture also discusses how VMs are provisioned and administered.

Operational task flow: This defines how tasks are received and managed within the cloud

infrastructure, from their arrival till completion. The process includes Task and VM sorting,

Task and VM Clustering, Scheduling, Fault handling, and interaction between VMs and

other components.

Application Layer: This layer is responsible for the following operations:

• Interface for the User: This layer serves as the principal interface between the user

and the system. It is accountable for allowing and supervising user tasks and their

requirements.

• Task Management: After obtaining tasks from the user, task sorting will be performed

based on certain criteria of task size.

• Task Clustering: The sorted tasks are then processed by the task clustering component

within the Application Layer. The task clustering component of the Application Layer

is responsible for creating three task clusters, i.e., low, mid, and high clusters.

Host/VM Layer: Likewise, the VMs are sorted and clustered in three clusters, i.e., low, mid,

and high clusters in the Host/VM Layer using the VM clustering component.

Middleware: This component is comprised of four main sub-components.

• Cluster Matching is responsible for finding the corresponding VM cluster with respect

to the task cluster.

• After identifying the corresponding VM cluster, the suitable VM for the task is

discovered by VM Discovery.

• VM Mapping is responsible for matching the selected VM to the task or user

requirements.

• If the match is found, the Schedule Producer produces the generated schedule for the

user tasks to the Application Layer.

Furthermore, the Schedule Producer also communicates the generated schedule to the AR

module.

AR Module: When there is a fault or malfunctioning, the AR module kicks into gear,

computing the AR slot for the unsuccessful task using its Time Manager component. Based

on the computed AR slot, the VM Matching component identifies the reserved VM for the

106

affected task and ultimately the AR Module produces the reservation to the Application

Layer through its Reservation Producer component.

Figure 5.1: System Architecture of CRFTS

5.1.2. System Modelling

In the proposed system, the incoming tasks are taken as set T={t1, t2,t3,… tn} AND |T|=n are

regarded as having varying or identical task weights (w). Some of the additional

characteristics of the task are as follows:

• Each task has a time when it starts its execution on any VM, i.e., STij (Start Time).

• The completion time of ti on vj is termed as FTij (Finish Time).

• Execution time of ti i.e., E(ti,vj) is the time taken by ti to complete on vj.

• Besides, the scheduling is non-preemptive. The task is preempted only in case the

corresponding VM has a fault or malfunction.

Likewise, the available VMs with varied speed (s) are represented as a set V=[v1, v2, v3,

…vj] AND |V|=j. Moreover, each ti in T and vj in V belongs to one of the three clusters i.e.,

low, medium, and high clusters. The cluster of ti and vj depends on the weight and speed of

ti and vj respectively. Further, the model considers the VM with the following

characteristics.

• J is the number of heterogeneous computing VMs that will participate in the mapping

of the independently arriving tasks.

107

• Only compute-intensive tasks are ideally suited for the VMs.

• Each VM has its previous load which is termed the ready time of the VM. Initially, the

ready time of all VMs is taken as zero which implies that the VM has not executed any

task yet. (This factor measures the machine's prior workload).

The properties of the proposed mapping are listed below:

• The task is mapped to only one VM at a time.

• The VM is mapped with more than one t.

• Each mapping is performed in between the corresponding task and VM clusters.

Further, the mapping between set T and set V is considered as many-to-one mapping in a

bi-partite graph of T and V as shown in Figure 5.2.

Figure 5.2: Many-to-One Mapping of Tasks and VMs

Besides, the system model consists of two main algorithms—Task allocation, and Fault

tolerance.

5.1.3. Problem Formulation

The problem is modelled by effectively mapping (M) the arriving tasks (T) and available

VMs (V) with an optimized Makespan. The solution for an efficient “M” is to create an

allocation schedule that directs the arrival of tasks to be submitted for processing on VM in

a manner that optimizes the optimizing criterion, i.e., OC(M) where “M” is mapping for

generating the schedule. The mapping (M) is represented as follows:

 𝑀 = 𝑇 → 𝑉

TETj is the total execution time of any VM at any point (p) in time and is calculated as

follows:

𝑇𝐸𝑇𝑗,𝑝 = 𝑅𝑇𝑗,𝑝−1 (1)

From here we will define the equations with respect to the given point (p) in time. Because

tasks are of different size/weights (W) and VMs possess different speeds (S), therefore E(ti,

vj) is the execution time of task (ti) on VM (vj) and can be calculated as follows:

108

𝐸(𝑡𝑖, 𝑣𝑗) =
𝑊(𝑡𝑖)

𝑆(𝑣𝑗)
 (2)

STij,p is the Start time of ti at any point in time and is the time when ti is assigned to vj and

computed as:

𝑆𝑇𝑖𝑗,𝑝 = 𝑅𝑇𝑗,𝑝−1 (3)

In the demonstration, STij can also be calculated as shown in the following equation:

𝑆𝑇𝑖𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝−1 (4)

Furthermore, FTij is the time when ti completes its execution on vj and is computed as:

𝐹𝑇𝑖𝑗 = 𝑆𝑇𝑖𝑗 + 𝐸(𝑡𝑖, 𝑣𝑗) (5)

After finishing the current task, the FTij will become the ST of the next task and is defined

as:

𝑆𝑇𝑖+1,𝑗 = 𝐹𝑇𝑖𝑗 (6)

Besides, after completion of each ti, RT and TET are updated as shown below:

𝑅𝑇𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝−1 + 𝐸(𝑡𝑖, 𝑣𝑗) (7)

The procedural flow of the model is explained below:

5.1.3.1. Task Allocation

Task allocation starts with the sorting of both tasks and VMs in ascending order of their

weight and speed, respectively. After sorting, the allocation is performed in two main phases

as described below:

• Task and VM Clustering:

In this phase, three different clusters are created from both T and V based on their weight

and speed respectively. Clusters are specified and shown in Figure 5.3:

Figure 5.3: Task and VM Clustering

109

The average phenomenon is used for Task and VM Clustering. Where initially the global

average of size and speed for both the task and VM respectively is calculated in equations

8 and 9:

 𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑎𝑠𝑘𝑠) =
∑ 𝑊(𝑡𝑖)𝑛

𝑖=1

𝑛
 (8)

 𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑉𝑀𝑠) =
∑ 𝑆(𝑣𝑖)

𝑗
𝑖=1

𝑗
 (9)

The global average separates the set into two halves (Left half and Right half) as shown in

Figure 5.4. Similarly, the average of the index for the left half and the right half is calculated

and named as left average and right average, respectively.

Further, the cluster ranges are as follows:

• Task Low Cluster [TCl : 0 <= TCl <= Left Average],

• Task Mid Cluster [TCm : (Left Average +1 <= TCm <= Right Average],

• Task High Cluster [TCh : (Right Average + 1 < = TCh < = onwards].

Similarly, VM clusters are specified as :

• VM Low Cluster [VCl : 1 <= VCl <= Left Average],

• VM Mid Cluster [VCm : Left Average +1 <= VCm <= Right Average)],

• VM High Cluster [VCh : (Right Average +1 < = VCh < = onwards].

The main axiom for the classification of VM is that the VMs in high clusters take less time

to execute a particular task than subsequent cluster VMs. The clustering of tasks and VMs

restricts the domain of allocation and thereby limits the weight and speed variations in the

possible mapping. An easy way of understanding the clustering phenomenon is presented

in Figure 5.4.

Figure 5.4: Clustering Phenomenon

• Task to VM Mapping:

After creating task and VM clusters in the clustering phase, the one-to-one mapping is

performed between the corresponding T and V clusters unless all the VMs get their first

task to execute. The cluster-wise mapping is performed in two steps:

110

• Allocate the VM to the tasks in its corresponding cluster in order, until RT (any vj

in the corresponding cluster = 0).

• If the RT of all VMs is greater than 0, allocate the task to the VM in the

corresponding cluster with the least RT.

The same is explained and presented in Figure 5.5.

Figure 5.5: Cluster-Wise Mapping

There could be a case to allocate the tasks immediately after sorting. Such a type of

allocation is referred to as Cluster-less allocation. The proposed task allocation algorithm is

presented in Algorithm 1.

Algorithm 1: Task Allocation Algorithm

Input: (T, RT= 0, S, V, T_size) /*Task and resource components

Output (Makespan, Average Resource Utilization, Reliability,) /*computed by eq.

(13, 16, 21) respectively

Phase 1: Task Clustering(T)

1. Initialise the Task Clustering parameters:

Low Task cluster range, medium task cluster range, high task cluster range

2. Compute Global_Avg, Left_Avg, and Right_Avg

For all tasks ti in T

Int Global_ Avg, left_ Avg, Right_Avg

Do

Global_ Avg = Average of task size

left_ Avg = Average of the left half

111

Right_ Avg = Average of the right half

low task cluster range = 0 index to left_ Avg

medium task cluster range = left_ Avg +1 to right_ Avg

high task cluster range = right_ Avg +1 onwards

End for

Phase 2: VM Clustering(V)

3. Initialise the VM Clustering parameters:

Low VM cluster range, medium VM cluster range, high VM cluster range

4. Compute Global_ Avg, Left_ Avg, and Right_ Avg

For all vj in V

Int Global_ Avg, left_ Avg, Right_ Avg

Do

Global_ Avg = Average of VM Speed

left_ Avg = Average of the left half

Right_ Avg = Average of the right half

low VM cluster range = 0 index to left_ Avg

medium VM cluster range = left_ Avg +1 to right_ Avg

high VM cluster range = right_ Avg +1 onwards

End for

Phase 3: Task and VM Mapping

Input: (RT, Task and VM Clusters)

Output: Task to VM Mapping

5. For all clusters in Clusters

For all this in the cluster

Allocated [i] = false

If Allocated [i]= false

 While ∀ vjs, (RT (vj) = 0))

 Do

 Allocate ti to VM in the order

 Allocated [i]= True

 Allocate tasks to the VM with the least RT

 Allocated [i]= True

End for

End for

112

The RTj and TETj are dynamically updated as in eq. 7 after the completion of each task.

This implies that after a task gets completed on the VM with the recent least RT, the RT for

that VM is recalculated to consider and reflect the additional load. The sorting of both VMs

and Tasks before allocation and iterative updating of RT facilitates more adequate load

distribution across all VMs.

5.1.3.2. Fault Tolerance

In this phase, VMs are monitored for faults in that case, advance reservation is enabled and

an alternative VM is provided for the affected task. The model supports fault tolerance by

resource reservation technique to offer a backup VM for the impacted task in the event of

VM failure. Eq. (10) given below is used to determine the AR slot:

𝐴𝑅𝑖𝑗 = 𝐹𝑇𝑖𝑗 − 𝑆𝑇𝑖𝑗 (10)

NOT expected_performance_metrics (vj) function is operated for discovering failed VMs

and unexecuted tasks as discussed in Chapter 4.

If any VM leaves the system or fails at any point in time, and an alternative VM is not there,

the associated tasks will suffer premature termination. Let's suppose f VMs are failing and

these ‘f’ VMs are taken as the separate set of failed VMs (Vf) and are defined as Vf = {vf :

vf ∈ V and |Vf| =f}. This failing of VMs will affect the corresponding tasks and lead to the

unsuccessful execution of these tasks. Let ‘u’ the number of unsuccessful tasks. Similarly,

these ‘u’ unsuccessful tasks are taken as a separate set of unsuccessful tasks (Tu) and are

defined as Tu = {tu: tu ∈ T and |Tu| = u & u<=|T|}. Now, these unexecuted tasks need to be

reassigned to some alternative VM to complete their execution which is done by advance

reservation technique. To ensure the uninterrupted operation of Tu, the task set tu must now

be redistributed from vf to other relevant healthy vh in Vh.

Where, Vh: vh | vh ∈ V AND vh ∉ Vf.

The model reserves the nearest neighboring VM of the corresponding failed task as an

alternative VM.

After every redistribution of task tu from Tu to vj in V, the TETj is updated as shown below:

𝑇𝐸𝑇𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝−1 − 𝐸(𝑡𝑢, 𝑣𝑓) (11)

𝑇𝐸𝑇𝑗,𝑝 = 𝑇𝐸𝑇𝑗,𝑝−1 + 𝐸(𝑡𝑢, 𝑣𝑗) 𝑤ℎ𝑒𝑟𝑒 𝑣𝑗 ∈ 𝑉 𝐴𝑁𝐷 𝑣𝑗 ∉ 𝑉𝑓 (12)

All tasks in Tu are migrated to another VM (Vj) from (Vf) for the calculated AR slot. The

initial sorting helps the model to achieve a one-to-one suitable order. Thereafter, clustering

before allocation restricts the domain of allocation which helps the model to assign the most

suitable VM to the task. Lastly, the task from each cluster is allocated to the corresponding

113

VM clusters only which helps the model to avoid under and overutilization of the VM up

to a certain degree. However, still there are chances of over and underutilization of VMs

which will be handled by integrating the proposed approach with an efficient load-balancing

technique that is in consideration for future work which continuously monitors the under

and over utilising VMs and shifts the load between them.

The proposed fault tolerance algorithm is presented in Algorithm 2.

Algorithm 2: Nearest Neighboring Fault-tolerance Algorithm

1 Load ARM (ti, vj, AR, Status[T]) /*Advance Reservation Matrix initialize

all slots as zero

2 For all tis in T

Compute STij and FTij using eq. 3 and 5

Compute AR slot using eq. 10

3 Identify Vf and Tu as per Algorithm 2 in Chapter 4

4 Identify healthy VMs

Vh = vi|vi∈ V AND vi ∉ Vf

 5 Reserve nearest neighbor VM

for each tu in Tu:

while Status(tu) = 1:

for each tf.vi in V:

 for each tf.vi in V:

R= tu.vi +1

L= tu.vi -1

if (R, L ∈ Vh && RT(R) < RT(L)&& R ∈ Vh):

 Select R (right neighbor) as an alternative VM for tu for ARij

 // Reserve the time slot for the

selected task

else if (R, L ∈ Vh && RT(R) > RT(L)&& L ∈ Vh):

Select L (left neighbor) as an alternative VM for tu for ARij

else if (L ∈ V && R ∉ V&& L ∈ Vh) //First

VM fails

Select L (left neighbor) as an alternative VM for tu for ARij

else if (R ∈ V && L ∉ V&& R ∈ Vh) //Last

VM fails

114

Select R (right neighbor) as an alternative VM for tu for ARij

else R++, L- -

endfor

endfor

6 Update 𝑇𝐸𝑇j using eq. 11 and 12

7 Update ARM with parameters (ti, vj, AR, Status==1 means VM reserved)

End for

Figure 5.6 presents an apparent flowing depiction of the model in a flowchart.

Figure 5.6: Flowchart of CRFTS

5.2. Illustrative Example

This section presents the illustration of the model by comparing the proposed clustered

allocations with the normal allocation without clustering. The comparison has been carried

out by demonstrating the example in this section. Four VMs and an instance with nine

separate independent activities or tasks have been taken as shown in Table 5.1 to

115

demonstrate the functionality of the proposed model. Here, MI stands for Million

Instructions and MIPS for Million Instructions Per Second.

Table 5.1: Considered instance of tasks and VMs

Task (ti) Weight (ti) Vj Speed(Vj)

t1

t2

t3

t4

t5

t6

t7

t8

t9

120 MI

260 MI

480 MI

86 MI

100 MI

220 MI

450 MI

280 MI

350 MI

V1

V2

V3

V4

30 MIPS

40 MIPS

10 MIPS

20 MIPS

Note: The ready time of all VMs is initially taken as zero

First, the allocation is done by only sorting the tasks and VMs without clustering. The

example is demonstrated for both cluster-less allocation and clustered allocation to show

how clustered allocation offers optimized QoS as compared to cluster-less allocation. The

beginning and end of the execution of ti on vj are marked by the times called STij and FTij,

respectively. Additionally, the E (ti, vj) is added to the STij to compute FTij.

Figure 5.7: Mapping of Cluster-Less Allocation

5.2.1. Cluster-less Task Allocation

Initially, before the allocation, both tasks and VMs are sorted based on the weight of the

tasks and the speed of the VMs. The undertaken instance after sorting is presented in Table

116

5.2 while the cluster-less mapping is shown in Figure 5.7. It shows the task to VM mapping

by only the sorting of tasks and VMs without clustering them.

Table 5.2: An instance of tasks and VMs after sorting

Task (ti) Weight (ti) Vj Speed(Vj)

t4

t5

t1

t6

t2

t8

t9

t7

t3

86 MI

100 MI

120 MI

220 MI

260 MI

280 MI

350 MI

450 MI

480 MI

V3

V4

V1

V2

10 MIPS

20 MIPS

30 MIPS

40 MIPS

After sorting, the allocation begins by mapping the tasks and VMs in the same sorting order

until the RT of any VM is 0. Once the RT of all VMs becomes greater than 0, thereafter,

tasks are allocated to the VM having the least RT. Here, t4 is allocated to v3, t5 is allocated

to v4 so on. Here, the RT of each VM which is initially zero will become the ST of the

corresponding task allocated to that VM. Therefore, ST43, ST54, ST11 , ST62 is zero. After t4

, t5 , t1 and t6 completes its execution on the assigned VMs, the FT43 will be calculated by

adding the E(t4,v3) to the ST43 and E(t4,v3) =
86

10
 = 8.6. Therefore, FT43 will be 0 + 8.6 = 8.6.

Similarly, FT54, FT11, and FT62 will be 5, 4, and 5.5 respectively as shown in Figure 5.8.

Here, TETj and RTj will be updated and are taken as FT of the respective tasks. Now, the

next task will be allocated to the VM having the least RT and FTij will become ST for ti+1

assigned to vj. Hence, 8.6 will be ST73, 5 will be ST84, 4 will be ST21 and 5.5 will be ST92

as shown in Figure 5.8. Similarly, each task is allocated to the VM with the least RT and

both RT and TET will be updated after every completion of the task. After all the tasks are

completed the final TET of v1, v2, v3, and v4 will be 28.6, 14.25, 53.6, and 19 respectively

as shown in Figure 5.8.

Once the execution of all tasks is completed, the Makespan and Average Resource

Utilization are calculated from eq. 13 and 16 respectively.

Makespan will be calculated as Max (28.6, 14.25, 53.6, 19) as in eq. (13)

Makespan = 53.6

117

Average Resource Utilization will be calculated as:

UT=
28.6 +14.25+53.6+19

4 ∗ 53.6
 =

115.45

214.4
 = 53.8% as in eq. (16)

Figure 5.8: Demonstration of Cluster-Less Allocation

5.2.2. Proposed Clustered Task Allocation

The proposed clustering allocation is demonstrated in these phases.

5.2.2.1. Task and VM Clustering Phase

The clustered allocation narrows the domain of mapping by separating the tasks and VMs

into three different clusters after sorting as explained in Section 3.3.1.1. Following the

clustering, the task allocation is performed between the respective clusters only. The

mapping of clustered allocation of the undertaken example is shown in Figure 5.9.

Figure 5.9: Mapping of Clustered Allocation

118

5.2.2.2. Task and VM Mapping Phase

After clustering, the allocation begins in the same sorting order until the RT of any VM is

0 but only in the respective clusters. Here, t4 is allocated to v3. Once, the RT of all VMs in

the particular cluster becomes greater than 0, then the next task is allocated to the VM of

the same cluster having the least RT. Likewise, t5 and t1 are allocated to v3. Where, the ST43,

ST53, and ST13 will be 0, 8.6, and 18.6 respectively. In the mid cluster, t6 is allocated to v4,

and t2 is allocated to v1 both having RT equal to zero. Once t6 and t2 are completed, RT(v4)

= 11 and RT(v1) = 8.6 then t8 will be allocated to the VM with the least RT in the mid cluster

only. i.e., v1. After all the tasks are completed the final TET of v1, v2, v3, and v4 will be

17.93, 30, 30.6, and 28.5 respectively as shown in Figure 5.10.

In this example, the makespan will be calculated as Max (17.93, 27.62, 30.6, 28.5) as in

eq. (13)

Makespan = 30.6

In this example, Average Resource Utilization will be calculated as:

UT=
17.93 +27.62+ 30.6+28.5

4 ∗ 30.6
 =

104.2

122.4
 = 84.9% as in eq. (16)

Figure 5.10: Demonstration of Clustered Allocation

On comparing the makespan and average utilization with the cluster-less allocation, the

makespan was found to be 53.6 in the case of cluster-less allocation. However, in clustered

allocation, the makespan was optimized to 30.6. Similarly, average resource utilization was

found to be 53.8% in cluster-less allocation while the average utilization of clustered

scheduling was found to be 84.9%. Therefore, the proposed clustered allocation strategy

119

was found to be more optimized concerning both makespan and resource utilization than

that of cluster-less allocation.

5.3. Performance Metrics

After the successful task execution, the reliability of the system is checked. Additionally,

the Makespan is taken as the highest or maximum among all TETj and can be expressed as

eq. (13) [137].

Makespan = max (FTij), ∀Vj (13)

Progress percentage of Makespan (Ppm): It is the percentage of progress in makespan

offered in proposed CRFTS over the other existing approaches i.e., HEFT, E-HEFT, and

LB-HEFT approaches, and is calculated in eq. (14) [138].

 Ppm (%) =
𝑀 (𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)− 𝑀(𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)

𝑀(𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)
 * 100

(14)

Average of (Ppm): To calculate the deviation from the desired rate in percentage, divide

the sum of every Ppi for each tested VM by their respective tested numbers as shown in

eq. (15) [139].

Average of (Ppm) =
∑ 𝑃𝑝𝑚 (𝑒𝑎𝑐ℎ 𝑡𝑒𝑠𝑡𝑒𝑑 𝑉𝑀 𝑛𝑢𝑚𝑏𝑒𝑟)

𝑡

𝑖=1

𝑡

(15)

The Average VM utilization of the system is calculated in eq. (16) as [140].

 UT =
∑ (FT − p(tf Є Vf ,Vj Є Vf))

k

1

k ∗Makespan
 ∀Vj (16)

Progress percentage of UT (Ppu): It is the ratio defining the progress percentage of average

utilization of the proposed CRFTS and other compared approaches and is calculated in eq.

(17) as [141].

 Ppu (%) = -(
𝑈𝑇 (𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)− 𝑈𝑇(𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)

𝑈𝑇(𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)
) * 100

(17)

Average of (Ppm): To calculate the deviation from the desired rate in percentage, divide

the sum of every Ppu for each tested VM by their respective tested numbers as shown in

eq. (18) [142].

 Average of (Ppu) =
∑ 𝑃𝑝𝑢 (𝑒𝑎𝑐ℎ 𝑡𝑒𝑠𝑡𝑒𝑑 𝑉𝑀 𝑛𝑢𝑚𝑏𝑒𝑟)

𝑡

𝑖=1

𝑡
 (18)

The reliability of the model is derived in terms of the Mean Time Between Failure (MTBF)

and Failure rate (ʎ).

120

MTBF is the average time between two consecutive failures and is presented in eq. (19)

[104]:

 MTBF =
𝐹𝑙𝑜𝑤𝑡𝑖𝑚𝑒

|𝑇𝑢|
 (19)

Where, |𝑇𝑢| = Fault (%age) * |𝑇𝑛|

Where, Tn and Tu are the total number of tasks and total unexecuted tasks, respectively, at

any point in time

Failure rate (ʎ) is the reverse of MTBF and a measure of a system's effectiveness; the

equation for ʎ is calculated as in eq. (20) [104] :

ʎ =
1

𝑀𝑇𝐵𝐹
 (20)

Reliability is calculated in terms of the percentage and is the ratio between the failed tasks

and total tasks. Reliability is considered a maximization problem. It is defined as the

percentage of tasks that are successfully completed out of all incoming tasks and is

calculated in eq. (21):

 Reliability =
|𝑇𝑛| − | 𝑇𝑢|

|𝑇𝑛|
 * 100

(21)

The Model readily provides the reserved VM as an alternative VM for the impacted task to

ensure the successful execution of every task. Thereby, confirming maximum reliability in

the event of more than 50% of faulty VMs.

5.4. Results and Observations

The results obtained from this work are detailed in this section. These results are derived

from the algorithms outlined in the previous sections of this chapter and are presented in a

structured manner to ensure clarity and coherence.

5.4.1. Experimental Setup

An analysis of the performance of the proposed CRFTS algorithm has been conducted in

small and large task scales. The proposed model was compared based on Makespan and

Average Resource Utilization while competing with HEFT, E-HEFT, and the latest LB-

HEFT algorithm on a small task scale. The suggested CRFTS algorithm has been

implemented in a heterogeneous environment evaluated on 5, 10, 20, and 40 VMs for

varying the tasks from 25 to 1000. However, for large task scales, the task ranges are taken

from 25 to 4096 and the model was cultivated with the existing HEFT, FTSA-1, and DBSA

algorithms in terms of Makespan and Average Resource Utilization in the case of 100 VMs.

Furthermore, the model was evaluated in terms of Reliability while comparing with HEFT,

121

FTSA-1, and DBSA on a small task scale taking the VM number as 20. Additionally, the

size of task heterogeneity ranges from 1 to 100 MI while the speed of VM heterogeneity

ranges from 1 to 10 MIPS. Table 5.3 presents the experimental environment for better

understanding. The results show that the recommended model performs better than the

comparison techniques.

Table 5.3: Experimental Environment and Parameters

Parameters

Optimized

Experimental Setups /

Compared Approaches

Input parameter Range

Reliability HEFT, DBSA, FTSA-1

Small Task

Scale

Task Range 25 to 1000

Makespan,

Average Resource

Utilization
HEFT, E-HEFT, LB-HEFT VM Range 5 to 40

Makespan,

Average Resource

Utilization

HEFT, DBSA, FTSA-1
Large Task

Scale

Task Range 512 to 4096

VM Number 100

Task and VM Heterogeneity

Task

Heterogeneity

Range

1 MI to 100 MI

VM

Heterogeneity

Range

1 MIPS to 10 MIPS

5.4.2. Small Task Scale

It is used to implement the suggested CRFTS algorithm in a heterogeneous environment

evaluated on 5, 10, 20, and 40 VMs for varying the tasks from 25 to 1000.

5.4.2.1. Makespan

In Figure 5.11 (a-d), the implementation results of our suggested CRFTS are shown in

comparison to HEFT, E-HEFT, and LB-HEFT concerning makespan using task instances

of 25, 50,100, 500, and 1000 by considering 5, 10, 20, and 40 VMs, respectively. CRFTS

surpasses the other compared algorithms when it comes to the time needed to finish the

task for any number of VMs, according to the comparative results in Figure 5.11 (a-d). This

is because, while mapping, the CRFTS utilizes a clustering approach that restricts the

mapping domain of both tasks and VMs and thereby selects an appropriate VM for the task.

122

(a) 5 VMs

(b) 10 VMs

(c) 20 VMs

0
200
400
600
800

1000
1200
1400
1600

25 50 100 500 1000

M
ak

es
pa

n
(µ

s)

Number of Tasks

HEFT E-HEFT LB-HEFT Proposed CRFTS

0

200

400

600

800

1000

1200

1400

1600

25 50 100 500 1000

M
ak

es
pa

n
(µ

s)

Number of Tasks

HEFT E-HEFT LB-HEFT Proposed CRFTS

0

500

1000

1500

2000

2500

3000

3500

4000

25 50 100 500 1000

M
ak

es
pa

n
(µ

s)

Number of Tasks

HEFT E-HEFT LB-HEFT Proposed CRFTS

123

(d) 40 VMs

Figure 5.11: Makespan of Compared Approaches on 5, 10, 20, and 40 VMs (a-d)

Observations

Out of all methods, the E-HEFT algorithm offers the highest makespan. This may be due to

the Matching Game theory that is used in E-HEFT to assign tasks to the appropriate VMs.

However, the matching game theory selections take all tasks and VMs into consideration,

which requires a lengthy selection process and reduces makespan. The results demonstrate

that the proposed CRFTS algorithm outperforms the other algorithms. Specifically, as the

quantity of VMs increases to 40, the laid-out algorithm outperforms the HEFT, E-HEFT,

and LB-HEFT algorithms in terms of makespan for any number of tasks and VMs as seen

in Figure 5.11 (c and d).

Ppm over other compared approaches

Further, the results of comparing the proposed CRFTS algorithm's average enhancements

(average progress percentage (Ppm)) to the compared approaches with respect to the

makespan in percentage computed as in eq. 14 and 15 employing 5, 10, 20, and 40 VMs

using various task sizes with the HEFT, E-HEFT, and LB-HEFT existing algorithms are

shown in Table 5.4 for comparison.

Table 5.4: Ppm Related to the Proposed CRFTS
Tested VM numbers Ppm over HEFT Ppm over E-HEFT Ppm over LB-HEFT

5 12.06% 2.96% 9.42%

10 28.55% 32.2% 35%

20 61.72% 64.79% 60.50%

40 65.22% 67.42% 62.91%

The final average progress percentage shows that the optimization of the makespan is

increasing as the number of tasks and VMs are increasing which is expected because as the

0

500

1000

1500

2000

2500

3000

25 50 100 500 1000

M
ak

es
pa

n
(µ

s)

Number of Tasks

HEFT E-HEFT LB-HEFT Proposed CRFTS

124

number of task and VMs are increasing, the clustering gets optimized thereby optimizing

the makespan.

5.4.2.2. Average Resource Utilization

The performance of CRFTS has improved resource utilization per VM compared to other

methods, as shown by the findings in Figure 5.12 (a-d). As the number of virtual computers

rises, this tendency continues. However, as the number of tasks rises, the utilization shown

by the CRFTS increases dramatically. Besides, with an increase in task number, the

utilization of the other three models decreases. As can be seen from Figure 5.12 (b), the

proposed CRFTS offers very optimal utilization, especially in the case of high task numbers

and all other three comparing models perform very low utilization of resources. Moreover,

all the comparing approaches work well for the low range of task numbers. However, as the

task number increases, the utilization of the comparing models decreases. Unlikely the

proposed model shows a constant growth in the utilization with an increase in task number.

 (a) 5 VMs

(b) 10 VMs

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

25 50 100 500 1000

Av
er

ag
e

re
so

ur
ce

 u
til

iz
at

io
n(

%
)

Number of Tasks

HEFT E-HEFT LB-HEFT Proposed CRFTS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

25 50 100 500 1000Av
er

ag
e

re
so

ur
ce

 u
til

iz
at

io
n(

%
)

Number of Tasks

HEFT E-HEFT LB-HEFT Proposed CRFTS

125

(c) 20VMs

(d) 40 VMs

Figure 5.12: Average Resource Utilization of Compared Approaches on 5, 10, 20, and 40

VM (a-d)

Observation

CRFTS was shown to be heavily utilized across all VM ranges, particularly for more than

100 tasks. Furthermore, the utilization of CRFTS is found to be approximately constant on

varying tasks or VMs. This is because of sorting done before allocation. Moreover, CRFTS

is found optimal than the compared approaches in all three considered parameters.

Additionally, HEFT was shown to have the lowest average utilization among the other

techniques. Moreover, LB-HEFT was found to be the second-best model in the case of

utilization after CRFTS. However, when the number of tasks is less than 50, LB-HEFT

performs somewhat better than CRFTS. As compared with HEFT, the proposed approach

shows improvements in utilization from 3% to 33%. CRFTS shows improvements of 2% to

30% as compared to E-HEFT. This may be because, in this approach, the maximum number

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

25 50 100 500 1000

Av
er

ag
e

Re
so

ur
ce

 U
til

iz
at

io
n(

%
)

Number of Tasks

HEFT E-HEFT LB-HEFT Proposed CRFTS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

25 50 100 500 1000

Av
er

ag
e

Re
so

ur
ce

 U
til

iz
at

io
n(

%
)

Number of Tasks

HEFT E-HEFT LB-HEFT Proposed CRFTS

126

of servings per machine must be considered while choosing the suitable machine for each

job. While comparing CRFTS with LB-HEFT, the suggested model has shown

improvements of 0% to 30%.

Ppu over other compared approaches

Additionally, the results of comparing the proposed CRFTS algorithm's average

enhancements (Ppu) to the compared approaches with respect to the average resource

utilization in percentage computed as in eq. 17 and 18 employing 5, 10, 20, and 40 VMs

using various task sizes with the HEFT, E-HEFT, and LB-HEFT existing algorithms are

shown in Table 5.5 for comparison.

Table 5.5: Ppu related to the proposed CRFTS
Tested VM numbers Ppu over HEFT Ppu over E-HEFT Ppu over LB-HEFT

5 20.53% 22.11% 7.38%

10 30.42% 18.86% 16.94%

20 9.26% 6.60% 4.37%

40 17.26% 10.01% 5.40%

The final average progress percentage shows that improvements in average resource

utilization in HEFT are increasing as the number of VMs is increasing. However, the

average progress percentage of CRFTS is significant in E-HEFT and LB-HEFT.

5.4.2.3. Reliability

The model is compared with other fault-tolerant models like HEFT, DBSA, and FTSA-1

and was evaluated based on reliability where the number of tasks varied from 25 to 1000,

as can be seen in Figure 5.13. The performance of CRFTS has improved reliability as

compared to other methods, as shown by the findings in Figure 5.13 (a-d). As the number

of virtual computers rises, the reliability increases. However, as the number of tasks rises,

the reliability in most of the cases decreases. As can be seen from Figure 5.13 (a-d), the

proposed CRFTS offers increased reliability. However, when the number of VMs is 40,

FTSA-1, DBSA and the proposed CRFTS performed optimally. Besides, the tendency of

increased reliability offered by CRFTS continues as shown in Figure 5.13 (d).

The minimum reliability of HEFT, FTSA-1, and DBSA is 57.24%, 93.10%, and 89.20%

respectively. At the same time, the reliability of the proposed CRFTS ranges from 99.3% to

99.9% on varying both VM and task numbers.

127

(a) 5 VMs

(b) 10 VMs

(c) 20 VMs

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

25 50 100 500 1000

Re
lia

bi
lit

y
(%

)

Number of Tasks

HEFT FTSA-1 DBSA Proposed CRFTS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

25 50 100 500 1000

Re
lia

bi
lit

y
(%

)

Number of Tasks

HEFT FTSA-1 DBSA Proposed CRFTS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

25 50 100 500 1000

Re
lia

bi
lit

y
(%

)

Number of Tasks

HEFT FTSA-1 DBSA Proposed CRFTS

128

(d) 40 VMs

Figure 5.13: Reliability of Compared Approaches

Observations:

Additionally, with the increase in task number, the reliability of HEFT and FTSA-1

decreases while for DBSA and CRFTS, the reliability increases with the increase in task

number as can be seen in Figure 5.13. However, CRFTS shows better reliability than that

of DBSA. It was discovered that HEFT has extremely low reliability as compared to other

approaches. It may be because HEFT does not offer any fault handling mechanism and

thereby does not provide guaranteed task completion in case of faulty. Moreover, HEFT

always assigns tasks to the processor with the Earliest Finish time (EFT) without taking

load balancing across processors into account. Furthermore, the CRFTS shows an increase

of 12.71% to 71.06%, 1.12% to 3.95%, and 1.31% to 6.54% than HEFT, FTSA-1, and

DBSA, respectively. The improvements in the reliability of the proposed CRFTS are because

of the advance reservation employed for handling the faults.

5.4.3. Large Task Scale

Here, the task ranges are taken from 25 to 4096 and the model is cultivated with the existing

HEFT, FTSA-1, and DBSA algorithms in terms of Makespan and Average Resource

Utilization for 100 VMs.

5.4.3.1. Makespan:

Furthermore, Figure 5.14 displays the implementation outcomes of our suggested CRFTS

on comparison with HEFT, FTSA-1, and DBSA algorithms concerning makespan on

varying the number of tasks from 512 to 4096. The CRFTS model improves the other

comparing algorithms in terms of makespan to complete the workflow for any range of task

numbers, according to the comparative results in Figure 5.14.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

25 50 100 500 1000

Re
lib

ili
ty

 (%
)

Number of Tasks

HEFT FTSA-1 DBSA Proposed CRFTS

129

Figure 5.14: Makespan of Compared Approaches on 100 VMs

Observations:

Out of all the approaches, HEFT offers an optimized makespan after the proposed CRFTS.

However, FTSA-1 provides the highest makespan among all the approaches. It may be

because FTSA-1 is focusing more on reliability than that of makespan. According to the

results related to makespan, CRFTS shows 40%, 6.32%, 9.358%, and 25.870%

improvements over HEFT in 512, 1024, 2048, and 4096 tasks respectively. Comparing

CRFTS with DBSA and FTSA-1, the proposed CRFTS shows more than 40% improvements

in varying the number of jobs, respectively.

5.4.3.2. Average Resource Utilization:

Figure 5.15 displays the implementation outcomes of our suggested CRFTS in comparison

with HEFT, FTSA-1, and DBSA algorithms concerning average resource utilization on

varying the number of jobs from 512 to 4096. The CRFTS offers improved average resource

utilization than other compared algorithms to complete the workflow for any range of task

numbers, according to the comparative results in Figure 5.15.

0

5000

10000

15000

20000

25000

30000

35000

512 1024 2048 4096

M
ak

es
pa

n
(µ

s)

Number of Tasks

CRFTS HEFT DBSA FTSA-1

130

Figure 5.15: Average Resource Utilization of Compared Approaches on 100 VMs

Observations:

The average resource utilization provided by FTSA-1 was found to be very low compared

to the other approaches. The utilization offered by HEFT is second optimal after CRFTS.

CRFTS was found optimum as compared to other approaches. According to the results

concerning to average resource utilization, CRFTS shows 14.38624%, 2.415644%,

3.169663%, and 2.083104% improvements over HEFT, 36.55696%, 37.33824%,

30.07273%, and 19.15755% improvements DBSA and 19.05063%, 7.11148%,

8.54854%, and 8.130822% improvements over FTSA-1 in 512, 1024, 2048, and 4096

number of tasks respectively.

5.5. Summary in Context

To get around the overheads of the compared approaches, the work in this article introduces

the novel clustering approach for task scheduling namely CRFTS. The proposed CRFTS

allocates the tasks in such a way that makespan is minimized and utilization is maximized.

Out of all compared approaches, the optimal makespan is provided by the proposed CRFTS

because of the clustering approach used for task allocation. However, the longest makespan

is provided by the E-HEFT method. This is because each task is mapped by the E-HEFT

algorithm table using the optimal VM rules over matching game theory. Additionally,

CRFTS shows the increased resource utilization as the number of tasks is increasing.

Conversely, the utilization of all other compared approaches decreases as an increase in the

number of tasks. On the other hand, the LB-HEFT method performs better than HEFT in

terms of resource utilization for considered VMs, as shown by the comparative findings in

Fig. 6 (a-d). This is because, in contrast to the HEFT algorithm, which always selects the

device with the earliest finish time without taking the number of tasks on the machine into

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
512 1024 2048 4096

Av
er

ag
e

Re
so

ur
ce

 U
til

iz
at

io
n

(%
)

Number of Tasks

CRFTS HEFT DBSA FTSA-1

131

account, the LB-HEFT algorithm depends on the number of tasks assigned to each machine,

which influences consumption of the devices at a rate close to one another. Furthermore,

the progress percentage of both makespan (Ppm) and utilization (Ppu) revealed by LB-HEFT

is significantly related to the other compared algorithms and was also computed. The model

is also enhanced on other parameters like reliability and average resource utilization. The

reliability of the model was enhanced by making the proposed scheduling approach fault-

tolerant. The fault tolerance is incorporated in the model by using the reservation technique

where the VM is bound to the task for the pre-estimated time slot known as the reservation

slot. This bounding of VMs to the task manages the failure of any cloud-based VM. The

model was compared with 5 existing models i.e., HEFT, E-HEFT, LB-HEFT, FTSA-1, and

DBSA by varying the number of VMs and tasks. The evaluations are carried out for small

and large task scales. The outcomes demonstrate that the suggested model outperforms all

the considered methods. More particularly, as the number of tasks is increasing the model

shows the constant growth in the considered parameters.

132

Chapter 6

Conclusion and Future Directions

6.1. Conclusion

This research has navigated the complex environment of fault-tolerant resource provisioning in

cloud computing, aiming to strike a delicate balance between performance optimization and

user satisfaction. The journey originated with a systematic discovery of existing fault-tolerant

techniques, highlighting their role in enhancing the cloud computing landscape. QoS constraints

emerged as central elements influencing the equilibrium between resource utilization and SLAs.

The succeeding chapters revealed a description of innovation and observed exploration.

Existing approaches were inspected, and in response to the discovered gaps, novel frameworks

and models were introduced. The RFRTS model tackled task scheduling and reservation-based

fault tolerance, while the HFSLM model developed resource allocation, achieving a balanced

synergy between user satisfaction and performance metrics. Moreover, HFSLM is designed to

satisfy the load distribution equilibrium post-to-fault tolerance. This equilibrium is maintained

by integrating the load balancing with fault tolerance. CRFTS strategy further emphasized the

potential for significant reductions in Makespan and improved Resource Utilization. Producing

these contributions, the findings establish noticeable improvements in the effectiveness of

cloud computing settings. The proposed contexts have demonstrated not only theoretical

possibilities but also realistic feasibility, as demonstrated by empirical measurements. These

outcomes establish the efficiency of strategies in resource utilization, enhancing task

execution times, and improved reliability measures.

• Chapter 1 serves as the entry point into an extensive exploration of cloud computing.

It begins by offering a comprehensive introduction to the complex landscape of cloud

computing, laying the foundation for a detailed exploration of its broad-ranging impacts.

A pivotal focus of the chapter is the insightful dissection of methodologies and strategies

intricately woven into the fabric of cloud computing to achieve resource provisioning. By

delving into these approaches, the chapter not only elucidates their theoretical

underpinnings but also discerns their practical applications, shedding light on their pivotal

role in optimizing cloud performance and satisfying the SLAs.

In conclusion, Chapter 1 serves as a comprehensive introduction to the intricacies of cloud

computing and lays a robust groundwork for the succeeding chapters. By weaving together

theoretical insights, practical applications, and a keen awareness of environmental

133

implications, this chapter not only informs but also piques curiosity, setting the stage for a

thorough exploration of fault-tolerant resource provisioning in cloud computing.

• In Chapter 2, diverse models for analyzing the faults, and rectifying these faults by

implementing fault-tolerance integrated with scheduling and load-balancing strategies in

cloud environments are comprehensively surveyed. The main emergent and developing

methods regarding fault tolerance in the cloud environment are categorized into Proactive,

Reactive, and Resilient. In resilient approaches, the revolutionary technologies AI/ML are

considered and are observed to be more efficient than proactive and reactive techniques. It

is because the reactive and proactive techniques normally employ the traditional procedures

like, checkpoint restart, replication, migration, etc, which have limitations as these

procedures could find it difficult to adjust dynamically or regulate to shifting demands,

which could result in inefficiencies during times of high consumption.

After reviewing the literature, the below-mentioned conclusions can be drawn:

o Checkpoint, restarting, and replication were found to be the frequently used methods

to address the faults in the cloud.

o Scholars and researchers are more concerned with determining crash defects than

hardware faults such as transient, intermittent, or permanent faults.

o When it comes to the implementation tool for evaluating the presented algorithms,

research is mostly using the Cloudsim tool.

o Proactive approaches have been used more frequently than reactive and resilient.

o Researchers are more motivated toward response time and less towards makespan,

adaptability, accuracy, and crashes.

o Since the resilient approach utilized machine learning and artificial intelligence to

predict and handle faults; therefore, it is the forthcoming effort of fault tolerance in

the cloud.

• Chapter 3 proposes explorations of fault tolerance and task scheduling. The RFRTS

model is proposed in this chapter which is concluded below:

Response Ranked Task Scheduling and Advance Reservation:

Initially, the proposed ranked-based scheduling approach is used for task allocation, and

later reservation-based reactive fault tolerance method is suggested for a cloud system. To

achieve the highest level of cloud computing infrastructure reliability, the suggested

technique considers CPU faults and the VM reservation will ensure the assignment of an

134

alternative VM to the affected task. The proposed fault-tolerant approach has been

compared with three existing reliable fault-tolerant approaches namely multi-objective

scheduling algorithm with Fuzzy Resource utilization (FR-MOS), Cost-effective Workflow

Scheduling Algorithm (CWS), and Fault-tolerant Cost-effective Workflow Scheduling

Algorithm (FCWS) based on reliability. The outcomes unequivocally show that our

suggested RFRTS algorithm surpasses the current FR-MOS, CWS, and FCWS considering

reliability in all the states.

Since system reliability is one of the major issues in cloud systems, focusing on "execution

till completion" is a crucial factor in enhancing reliability, therefore fault tolerance is

necessary to achieve. The research suggests a method for task ranking by considering task

lengths and task wait times. Besides, the algorithm implies an allocation strategy based on

the determined rank value. Also, we provide a fault-tolerance strategy in which VM

reservations are made based on a pre-calculated reservation window. The paper's focus is

on the system’s reliability. The major drawback of the suggested allocation is that it could

not minimize the makespan. However, it will unquestionably improve the task response

times by focusing on the wait time of the tasks. The study's future demand for working with

the suggested ranked scheduling technique, where the VMs will also be ranked to work over

further optimizations of makespan and resource utilisation. The model will be extended by

accompanying load-balancing techniques for further optimization of the environment.

The proposed RFRTS was evaluated on reliability by comparing it with other reliable

existing models namely, FCWS, FR-MOS, and CWS. We selected five distinct states of

task numbers with varying lengths for the simulation we created: Small(S)[n = 50 approx],

Medium(M)[n=100 approx], Medium large(M-L)[n=200 approx], Large(L)[n = 400

approx], Extra large(E-L)[n=600 approx].

In S, the minimum improvement by the model was seen to be 0.30% while the maximum

improvement was seen to be at 2.25%. In M, the minimum improvement by the model was

seen to be 1.32% while the maximum improvement was seen to be 2.36%. In M-L, the

minimum improvement by the model was seen to be 1.53% while the maximum

improvement was seen to be 2.37%. In L, the minimum improvement by the model was

seen to be 1.65% while the maximum improvement was seen to be 2.18%. In E-L, the

minimum improvement by the model was seen to be 1.26% while the maximum

improvement was seen to be 2.45%.

135

• In Chapter 4, a Hybrid Fault-tolerant Scheduling and Load balancing Model is

introduced employing neighboring-based VM to control failure in the cloud system with

high computational demands. HFSLM uses a proficient task allocation strategy and

distributes the arriving tasks among VMs at the arrival. In case of fault, the model uses the

neighboring VMs of the faulty VM as a substitute and allocates an alternate VM to the

affected task. Moreover, the proposed model escorts the whole system with an efficient

load-balancing algorithm and maintains load equilibrium post-to-fault tolerance. After the

implementation of the model in Python, performance evaluation was carried out by

comparing HFSLM with FTHRM, MIN-MIN, MAX-MIN, and OLB on a low task scale by

varying the task and VM in four different heterogeneities. The evaluations were performed

based on makespan and average VM utilization. On very large task scales, the model was

also contrasted with two other emerging models i.e., ELISA and MELISA.

The evaluation has been done by adjusting the number of tasks and VMs, size of tasks, and

capacities of VMs in four different heterogeneities given by [35] i.e., HH, HL, LH, LL. For

all these four cases the working efficiency of the proposed model and compared strategies

have been analyzed and depicted graphically in the given figures. In comparison, the tasks

have been taken on a small scale varying from 250 to 1000. On the other hand, the VMs have

varied from 16 to 128.

The suggested technique outperforms FTHRM in terms of makespan and utilization, which

go from 0.72% to 10.8% and 1.01% to more than 50%, respectively. When compared to

MAX-MIN, HFSLM exhibits makespan improvements of -3.03% to 8.8% and average

resource utilization gains of -2.15% to 6.7%. While comparing the suggested approach with

MIN-MIN, the model shows an improvement of 0.6% to 19% in makespan and 1.09% to

more than 45% in utilization. However, OLB was seen to perform very weakly among all

approaches where the suggested model shows improvements of more than 50% in both

makespan and utilization than OLB. Furthermore, it was observed that all the models

perform almost equal optimization in makespan in LH heterogeneity. However, in that case,

also OLB performs weakly among the compared approaches.

Additionally, Comparing HFSLM with ELISA and MELISA on a large tasks scale, HFSLM

shows improvements from -0.98% to 23.33% and from -3% to 8% on makespan

respectively. Besides, HFSLM shows 1.42% and 1.22% improvements in minimum

resource utilization as compared to ELISA and MELISA respectively. On maximum

resource utilization, the proposed model shows improvements of 39.1% and 48.8%

respectively.

136

The suggested approach outperformed other considered strategies for QoS parameters. A

few reasons are listed below:

o The proposed allocation considers both the upcoming tasks and newly added and

deleted VMs. Additionally, optimal load distribution and effective average resource

utilization occur simultaneously. As a result, it provides significant enhancement in

all considered parameters.

o As can be seen from the overall results the utilization of the proposed approach

remains optimized on varying the number of tasks and VMs. This is because the

proposed allocation strategy focuses on distributing the arriving tasks throughout the

available VMs. Moreover, various strategic advancements in the proposed HFSLM

play a significant role in the same.

o Furthermore, the proposed model outperforms all the compared approaches in HH

and HL cases. It is because in high task heterogeneity the ready time of all the

available VMs will always be sorted in other words, whenever we have high task

heterogeneity, the ready time of all the VMs in the VM list will always be sorted. The

sorted ready time of VMs is the best case for the proposed allocation.

• In Chapter 5, Clustering and Reservation Fault-tolerant Scheduling (CRFTS) is

introduced, which maximizes the system reliability while making it fault-tolerant and

optimizing other Quality of Service (QoS) parameters, such as Makespan, Average Resource

Utilization, and Reliability. The study optimizes the allocation of tasks to improve the

utilization of resources and reduce the time required for their completion. At the same time,

the reservation-based fault tolerance framework is presented, emphasizing reactive strategies,

thus ensuring continuous service delivery throughout its execution without any interruption.

The effectiveness of the suggested model is illustrated through simulations and empirical

analyses, highlighting enhancements in QoS parameters while comparing with HEFT, FTSA-

1, DBSA, E-HEFT, and the latest LB-HEFT for various cases/conditions over both tasks and

VMs. An analysis of the performance of the proposed CRFTS algorithm has been conducted

in small and large task scales. The proposed model was compared based on Makespan and

Average Resource Utilization while competing with HEFT, E-HEFT, and the latest LB-HEFT

algorithm and based on Reliability while competing with HEFT, FTSA-1, and DBSA on a

small task scale. On a large task scale, CRFTS competed with HEFT, DBSA, and FTSA-1

based on makespan and average resource utilization. The conclusions drawn from the

evaluation are listed below:

137

o In the case of makespan, CRFTS achieved maximum progress of 65.22%, 67.42%,

and 62.91% on a small task scale while comparing with HEFT, E-HEFT, and the latest

LB-HEFT respectively.

o In the case of average resource utilization, CRFTS achieved maximum progress of

30.42%, 22.11%, and 16.94% in a small task scale while comparing with HEFT, E-

HEFT, and the latest LB-HEFT respectively.

o Furthermore, the CRFTS shows an increase of 12.71% to 71.06%, 1.12% to 3.95%,

and 1.31% to 6.54% than HEFT, FTSA-1, and DBSA, respectively.

o Additionally, CRFTS achieved maximum progress of 65.22%, 67.42%, and 62.91%

on a small task scale while comparing with HEFT, E-HEFT, and the latest LB-HEFT

respectively.

o In large task scale, HEFT offers an optimized makespan after the proposed CRFTS.

However, FTSA-1 provides the highest makespan among all the approaches. It may

be because FTSA-1 is focusing more on reliability than that of makespan. According

to the results related to makespan, CRFTS shows 40%, 6.32%, 9.358%, and 25.870%

improvements over HEFT in 512, 1024, 2048, and 4096 tasks respectively.

Comparing CRFTS with DBSA and FTSA-1, the proposed CRFTS shows more than

40% improvements in varying the number of jobs, respectively.

o In large task scales, the average resource utilization provided by FTSA-1 was found

to be very low compared to the other approaches. The utilization offered by HEFT is

second optimal after CRFTS. CRFTS was found optimum as compared to other

approaches. According to the results concerning average resource utilization, CRFTS

shows 14.38624%, 2.415644%, 3.169663%, and 2.083104% improvements over

HEFT, 36.55696%, 37.33824%, 30.07273%, and 19.15755% improvements DBSA

and 19.05063%, 7.11148%, 8.54854%, and 8.130822% improvements over FTSA-1

in 512, 1024, 2048, and 4096 number of tasks respectively.

• Chapter 6 acts as the pivotal nexus, synthesizing the results derived from the

contributions and key findings presented across this thesis. Providing a comprehensive

conclusion, it encapsulates the core of the research and articulates recommendations for

potential future avenues of exploration.

138

6.2. Forthcoming Research Directions and Open Issues

It can be examined from the reviewed state-of-art that some important QoS parameters,

except Response Time, are not being focused on. Other parameters, such as makespan,

turnaround time, waiting time, flowtime, resource utilization, and accuracy, also need to be

considered. Furthermore, various other faults, like byzantine and system crashes, etc., are

also not examined much in hybrid fault tolerance algorithms. Therefore, it is necessary to

enhance the performance of these hybrid fault tolerance algorithms by contemplating these

limitations in forthcoming research. Moreover, researchers should focus on some of the

below-mentioned aspects to overcome the limitations of existing techniques.

o Focus more on resilient fault tolerance.

o Focus on the computational cost along with fault tolerance.

o Identify and predict the faults accurately.

o Resolve faults with load balancing and scheduling.

o Fault handling with optimization of other QoS parameters.

6.2.1. Future works

After careful consideration and assessment, it is concluded that several research fields might

be followed to raise the performance of cloud computing and boost the optimization of QoS

parameters of cloud systems. They are listed below:

1. The researchers can make the scheduling efficient for better makespan and average

resource utilization.

2. The assessed state-of-the-art shows that, except for response time, certain crucial QoS

criteria are not being prioritized. It is also necessary to take into account additional factors

including turnaround time, waiting time, flow time, resource utilization, and accuracy.

3. To improve task execution time and scheduling, a large body of research is focused on

discovering resource and workload identification criteria. For workloads to be adaptive,

scalable, and optimal, under and overusing resources should be avoided.

4. A sender-initiated load balancing mechanism that assists in uniform load distribution

among dispersed nodes is necessary for task relocation.

5. Reservation can be used for fault tolerance as suggested in [72] for ensuring complete

execution of tasks where the resources are reserved well in advance and may be used in case

of faults.

6. It is essential to concentrate on limiting the penalty while taking into account system

failures to attain QoS optimization-based allocation.

139

7. Only a few scheduling methods include the availability parameter, and it's highly

dependent on VM failure and changes in the impact rate of users, therefore, to decrease VM

failure, it is important to take this parameter into further consideration in later algorithms.

8. The penalties on account of faults can be minimized by accompanying the models with

efficient load-balancing techniques.

9. It is clear from examining several methods that a task scheduling algorithm by itself

cannot address all the issues. Most algorithms base their work scheduling on a few factors.

One method, for instance, only considers the response time and execution time parameters

and overlooks other QoS principles like the execution cost, dependability, utilization, etc.

Therefore, by including more standards, an improved scheduling algorithm that can produce

better results may be developed.

10. Future studies should consider the factors of scalability, elasticity, and other fault

overheads which are the properties of the system to fit in a situation.

6.2.2. Methodical Roadmap for Open Challenges

A structured strategy or roadmap presented in Figure 6.1 that incorporates prioritization

based on influence and feasibility is needed to address the scheduling and load balancing

with fault tolerance challenges.

140

Figure 6.1. Showing the Proposed Structured Roadmap to Address the Cloud Challenges

141

References:

[1] R. Prasad and V. Rohokale, Cyber Security: The Lifeline of Information and

Communication Technology. in Springer Series in Wireless Technology. Cham:

Springer International Publishing, 2020. doi: 10.1007/978-3-030-31703-4.

[2] D. Lowe and B. Galhotra, “An Overview of Pricing Models for Using Cloud Services

with analysis on Pay-Per-Use Model,” IJET, vol. 7, no. 3.12, p. 248, Jul. 2018, doi:

10.14419/ijet.v7i3.12.16035.

[3] I. Odun-Ayo, M. Ananya, F. Agono, and R. Goddy-Worlu, “Cloud Computing

Architecture: A Critical Analysis,” in 2018 18th International Conference on

Computational Science and Applications (ICCSA), Melbourne, Australia, Australia:

IEEE, Jul. 2018, pp. 1–7. doi: 10.1109/ICCSA.2018.8439638.

[4] M. A. Mukwevho and T. Celik, “Toward a Smart Cloud: A Review of Fault-Tolerance

Methods in Cloud Systems,” IEEE Trans. Serv. Comput., vol. 14, no. 2, pp. 589–605,

Mar. 2021, doi: 10.1109/TSC.2018.2816644.

[5] O. Alzakholi, L. Haji, H. Shukur, R. Zebari, S. Abas, and M. Sadeeq, “Comparison

Among Cloud Technologies and Cloud Performance,” JASTT, vol. 1, no. 1, pp. 40–47,

Apr. 2020, doi: 10.38094/jastt1219.

[6] S. Smys, R. Bestak, and Á. Rocha, Eds., Inventive Computation Technologies, vol. 98.

in Lecture Notes in Networks and Systems, vol. 98. Cham: Springer International

Publishing, 2020. doi: 10.1007/978-3-030-33846-6.

[7] U. Samal and A. Kumar, “A software reliability model incorporating fault removal

efficiency and it’s release policy,” Comput Stat, vol. 39, no. 6, pp. 3137–3155, Sep.

2024, doi: 10.1007/s00180-023-01430-9.

[8] U. Samal and A. Kumar, “Metrics and trends: a bibliometric approach to software

reliability growth models,” Total Quality Management & Business Excellence, vol. 35,

no. 11–12, pp. 1274–1295, Aug. 2024, doi: 10.1080/14783363.2024.2366510.

[9] U. Samal and A. Kumar, “A Neural Network Approach for Software Reliability

Prediction,” Int. J. Rel. Qual. Saf. Eng., vol. 31, no. 03, p. 2450009, Jun. 2024, doi:

10.1142/S0218539324500098.

[10] S. Kumar and D. A. S. Kushwaha, “Future of Fault Tolerance in Cloud Computing,”

vol. 22, no. 17, 2019.

[11] V. Gupta, B. P. Kaur, and S. Jangra, “An efficient method for fault tolerance in cloud

environment using encryption and classification,” Soft Comput, vol. 23, no. 24, pp.

13591–13602, Dec. 2019, doi: 10.1007/s00500-019-03896-6.

142

[12] Sir Syed University of Engineering and Technology Karachi, Pakistan et al., “A

Systematic Survey of Simulation Tools for Cloud and Mobile Cloud Computing

Paradigm,” JISR-C, vol. 20, no. 1, Jun. 2022, doi: 10.31645/JISRC.22.20.1.10.

[13] M. A. Shahid, M. M. Alam, and M. M. Su’ud, “A Systematic Parameter Analysis of

Cloud Simulation Tools in Cloud Computing Environments,” Applied Sciences, vol. 13,

no. 15, p. 8785, Jul. 2023, doi: 10.3390/app13158785.

[14] H. Arabnejad, C. Pahl, G. Estrada, A. Samir, and F. Fowley, “A Fuzzy Load Balancer

for Adaptive Fault Tolerance Management in Cloud Platforms,” in Service-Oriented

and Cloud Computing, vol. 10465, F. De Paoli, S. Schulte, and E. Broch Johnsen, Eds.,

in Lecture Notes in Computer Science, vol. 10465. , Cham: Springer International

Publishing, 2017, pp. 109–124. doi: 10.1007/978-3-319-67262-5_9.

[15] M. K. Edemo, “DEVELOPING FAULT TOLERANCE ARCHITECTURE FOR

REAL-TIME SYSTEMS OF CLOUD COMPUTING”.

[16] T. Zaidi, “Modeling for Fault Tolerance in Cloud Computing Environment,” Journal

of Computer Sciences and Applications.

[17] S. M. Abdulhamid, M. S. Abd Latiff, S. H. H. Madni, and M. Abdullahi, “Fault

tolerance aware scheduling technique for cloud computing environment using dynamic

clustering algorithm,” Neural Comput & Applic, vol. 29, no. 1, pp. 279–293, Jan. 2018,

doi: 10.1007/s00521-016-2448-8.

[18] S. Sengupta and A. Negi, “Comparative Analysis of Contrast Enhancement

Techniques for MRI Images,” in Proceeding of the International Conference on

Computer Networks, Big Data and IoT (ICCBI - 2019), vol. 49, A. P. Pandian, R.

Palanisamy, and K. Ntalianis, Eds., in Lecture Notes on Data Engineering and

Communications Technologies, vol. 49. , Cham: Springer International Publishing,

2020, pp. 290–296. doi: 10.1007/978-3-030-43192-1_33.

[19] A. Ganesh, M. Sandhya, and S. Shankar, “A study on fault tolerance methods in

Cloud Computing,” in 2014 IEEE International Advance Computing Conference

(IACC), Gurgaon, India: IEEE, Feb. 2014, pp. 844–849. doi:

10.1109/IAdCC.2014.6779432.

[20] P. Gupta and P. K. Gupta, Trust & Fault in Multi Layered Cloud Computing

Architecture. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-

37319-1.

143

[21] P. KumarPatra, H. Singh, and G. Singh, “Fault Tolerance Techniques and

Comparative Implementation in Cloud Computing,” IJCA, vol. 64, no. 14, pp. 37–41,

Feb. 2013, doi: 10.5120/10705-5643.

[22] M. Hasan and M. S. Goraya, “Fault tolerance in cloud computing environment: A

systematic survey,” Computers in Industry, vol. 99, pp. 156–172, Aug. 2018, doi:

10.1016/j.compind.2018.03.027.

[23] G. Singh and S. Kinger, “A Survey On Fault Tolerance Techniques And Methods In

Cloud Computing,” International Journal of Engineering Research, vol. 2, no. 6, 2013.

[24] M. Khaldi, M. Rebbah, B. Meftah, and O. Smail, “Fault tolerance for a scientific

workflow system in a Cloud computing environment,” International Journal of

Computers and Applications, vol. 42, no. 7, pp. 705–714, Oct. 2020, doi:

10.1080/1206212X.2019.1647651.

[25] Z. Amin, H. Singh, and N. Sethi, “Review on Fault Tolerance Techniques in Cloud

Computing,” IJCA, vol. 116, no. 18, pp. 11–17, Apr. 2015, doi: 10.5120/20435-2768.

[26] S. Prathiba and S. Sowvarnica, “Survey of failures and fault tolerance in cloud,” in

2017 2nd International Conference on Computing and Communications Technologies

(ICCCT), Chennai, India: IEEE, Feb. 2017, pp. 169–172. doi:

10.1109/ICCCT2.2017.7972271.

[27] Z. Xia, Y. Zhu, X. Sun, Z. Qin, and K. Ren, “Towards Privacy-Preserving Content-

Based Image Retrieval in Cloud Computing,” IEEE Trans. Cloud Comput., vol. 6, no.

1, pp. 276–286, Jan. 2018, doi: 10.1109/TCC.2015.2491933.

[28] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan, “Task Scheduling in

Cloud Computing based on Meta-heuristics: Review, Taxonomy, Open Challenges, and

Future Trends,” Swarm and Evolutionary Computation, vol. 62, p. 100841, Apr. 2021,

doi: 10.1016/j.swevo.2021.100841.

[29] M. A. Shahid, N. Islam, M. M. Alam, M. S. Mazliham, and S. Musa, “Towards

Resilient Method: An exhaustive survey of fault tolerance methods in the cloud

computing environment,” Computer Science Review, vol. 40, p. 100398, May 2021,

doi: 10.1016/j.cosrev.2021.100398.

[30] G. P. Sarmila, N. Gnanambigai, and P. Dinadayalan, “Survey on fault tolerant

— Load balancing algorithmsin cloud computing,” in 2015 2nd International

Conference on Electronics and Communication Systems (ICECS), Coimbatore, India:

IEEE, Feb. 2015, pp. 1715–1720. doi: 10.1109/ECS.2015.7124879.

144

[31] K. Kotecha, V. Piuri, H. N. Shah, and R. Patel, Eds., Data Science and Intelligent

Applications: Proceedings of ICDSIA 2020, vol. 52. in Lecture Notes on Data

Engineering and Communications Technologies, vol. 52. Singapore: Springer

Singapore, 2021. doi: 10.1007/978-981-15-4474-3.

[32] M. Dhingra and N. Gupta, “ALGORITHMS TO ENHANCE THE RELIABILITY

OF VIRTUAL NODES USING ADAPTIVE FAULT TOLERANCE TECHNIQUES,”

COMPUTER SCIENCE, 2019.

[33] S. Singh and I. Chana, “Resource provisioning and scheduling in clouds: QoS

perspective,” J Supercomput, vol. 72, no. 3, pp. 926–960, Mar. 2016, doi:

10.1007/s11227-016-1626-x.

[34] S. Umar Mushtaq, S. Sheikh, and S. M. Idrees, “Next-Gen Cloud Efficiency: Fault-

Tolerant Task Scheduling With Neighboring Reservations for Improved Resource

Utilization,” IEEE Access, vol. 12, pp. 75920–75940, 2024, doi:

10.1109/ACCESS.2024.3404643.

[35] T. D. Braun et al., “A Comparison of Eleven Static Heuristics for Mapping a Class

of Independent Tasks onto Heterogeneous Distributed Computing Systems,” Journal of

Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–837, Jun. 2001, doi:

10.1006/jpdc.2000.1714.

[36] N. M. Reda, A. Tawfik, M. A. Marzok, and S. M. Khamis, “Sort-Mid tasks

scheduling algorithm in grid computing,” Journal of Advanced Research, vol. 6, no. 6,

pp. 987–993, Nov. 2015, doi: 10.1016/j.jare.2014.11.010.

[37] M. K. Gokhroo, M. C. Govil, and E. S. Pilli, “Detecting and mitigating faults in

cloud computing environment,” in 2017 3rd International Conference on

Computational Intelligence & Communication Technology (CICT), Ghaziabad: IEEE,

Feb. 2017, pp. 1–9. doi: 10.1109/CIACT.2017.7977362.

[38] T. J. Charity and G. C. Hua, “Resource reliability using fault tolerance in cloud

computing,” in 2016 2nd International Conference on Next Generation Computing

Technologies (NGCT), Dehradun, India: IEEE, Oct. 2016, pp. 65–71. doi:

10.1109/NGCT.2016.7877391.

[39] A. S. M. Noor, N. F. M. Zian, N. H. A. Rahim, R. Mamat, and W. N. A. W. Azman,

“Novelty circular neighboring technique using reactive fault tolerance method,” IJECE,

vol. 9, no. 6, p. 5211, Dec. 2019, doi: 10.11591/ijece.v9i6.pp5211-5217.

145

[40] G. Vallee et al., “A Framework for Proactive Fault Tolerance,” in 2008 Third

International Conference on Availability, Reliability and Security, IEEE, Mar. 2008, pp.

659–664. doi: 10.1109/ARES.2008.171.

[41] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott, “Proactive Fault

Tolerance Using Preemptive Migration,” in 2009 17th Euromicro International

Conference on Parallel, Distributed and Network-based Processing, Weimar, Germany:

IEEE, 2009, pp. 252–257. doi: 10.1109/PDP.2009.31.

[42] A. Ragmani, A. Elomri, N. Abghour, K. Moussaid, M. Rida, and E. Badidi,

“Adaptive fault-tolerant model for improving cloud computing performance using

artificial neural network,” Procedia Computer Science, vol. 170, pp. 929–934, 2020,

doi: 10.1016/j.procs.2020.03.106.

[43] S. M. Hosseini and M. G. Arani, “Fault-Tolerance Techniques in Cloud Storage: A

Survey,” IJDTA, vol. 8, no. 4, pp. 183–190, Aug. 2015, doi: 10.14257/ijdta.2015.8.4.19.

[44] S. K. Battula, S. Garg, J. Montgomery, and B. Kang, “An Efficient Resource

Monitoring Service for Fog Computing Environments,” IEEE Trans. Serv. Comput.,

vol. 13, no. 4, pp. 709–722, Jul. 2020, doi: 10.1109/TSC.2019.2962682.

[45] M. Nazari Cheraghlou, A. Khadem-Zadeh, and M. Haghparast, “A survey of fault

tolerance architecture in cloud computing,” Journal of Network and Computer

Applications, vol. 61, pp. 81–92, Feb. 2016, doi: 10.1016/j.jnca.2015.10.004.

[46] R. Shah, B. Veeravalli, and M. Misra, “On the Design of Adaptive and Decentralized

Load Balancing Algorithms with Load Estimation for Computational Grid

Environments,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 12, pp. 1675–1686,

Dec. 2007, doi: 10.1109/TPDS.2007.1115.

[47] B. Mohammed, “A FRAMEWORK FOR EFFICIENT MANAGEMENT OF

FAULT TOLERANCE IN CLOUD DATA CENTRES AND HIGH- PERFORMANCE

COMPUTING SYSTEMS”.

[48] M. Nazari Cheraghlou, A. Khademzadeh, and M. Haghparast, “New Fuzzy-Based

Fault Tolerance Evaluation Framework for Cloud Computing,” J Netw Syst Manage,

vol. 27, no. 4, pp. 930–948, Oct. 2019, doi: 10.1007/s10922-019-09491-2.

[49] M. R. Chinnaiah and N. Niranjan, “Fault tolerant software systems using software

configurations for cloud computing,” J Cloud Comp, vol. 7, no. 1, p. 3, Dec. 2018, doi:

10.1186/s13677-018-0104-9.

146

[50] J. A. Liakath, P. Krishnadoss, and G. Natesan, “DCCWOA: A multi-heuristic fault

tolerant scheduling technique for cloud computing environment,” Peer-to-Peer Netw.

Appl., vol. 16, no. 2, pp. 785–802, Mar. 2023, doi: 10.1007/s12083-022-01445-x.

[51] H. Xu, S. Xu, W. Wei, and N. Guo, “Fault tolerance and quality of service aware

virtual machine scheduling algorithm in cloud data centers,” J Supercomput, vol. 79,

no. 3, pp. 2603–2625, Feb. 2023, doi: 10.1007/s11227-022-04760-5.

[52] Dr. G. S. R. Dr.G.Sasikanth Reddy, “Fault Tolerance- Challenges, Techniques and

Implementation in Cloud Computing,” jst, vol. 7, no. 10, pp. 30–34, Dec. 2022, doi:

10.46243/jst.2022.v7.i010.pp30-34.

[53] S. Goutam and A. K. Yadav, “Preemptable priority based dynamic resource

allocation in cloud computing with fault tolerance,” in 2015 International Conference

on Communication Networks (ICCN), Gwalior, India: IEEE, Nov. 2015, pp. 278–285.

doi: 10.1109/ICCN.2015.54.

[54] B. Mohammed, I. Awan, H. Ugail, and M. Younas, “Failure prediction using

machine learning in a virtualised HPC system and application,” Cluster Comput, vol.

22, no. 2, pp. 471–485, Jun. 2019, doi: 10.1007/s10586-019-02917-1.

[55] S. M. Abdulhamid and M. S. A. Latiff, “A checkpointed league championship

algorithm-based cloud scheduling scheme with secure fault tolerance responsiveness,”

Applied Soft Computing, vol. 61, pp. 670–680, Dec. 2017, doi:

10.1016/j.asoc.2017.08.048.

[56] J. Liu, M. Wei, W. Hu, X. Xu, and A. Ouyang, “Task scheduling with fault-tolerance

in real-time heterogeneous systems,” Journal of Systems Architecture, vol. 90, pp. 23–

33, Oct. 2018, doi: 10.1016/j.sysarc.2018.08.007.

[57] D. L. P. Saikia and Y. L. Devi, “FAULT TOLEREANE TECHNIQUES AND

ALGORITHMS IN CLOUD COMPUTING,” vol. 4.

[58] S. M. A. Ataallah, S. M. Nassar, and E. E. Hemayed, “Fault tolerance in cloud

computing - survey,” in 2015 11th International Computer Engineering Conference

(ICENCO), Cairo, Egypt: IEEE, Dec. 2015, pp. 241–245. doi:

10.1109/ICENCO.2015.7416355.

[59] Jeongmin Park, Giljong Yoo, and Eunseok Lee, “Proactive self-healing system

based on multi-agent technologies,” in Third ACIS Int’l Conference on Software

Engineering Research, Management and Applications (SERA’05), Mount Pleasant, MI,

USA: IEEE, 2005, pp. 256–263. doi: 10.1109/SERA.2005.55.

147

[60] J. C. Patni, M. S. Aswal, O. P. Pal, and A. Gupta, “Load balancing strategies for Grid

computing,” in 2011 3rd International Conference on Electronics Computer

Technology, Kanyakumari, India: IEEE, Apr. 2011, pp. 239–243. doi:

10.1109/ICECTECH.2011.5941745.

[61] J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd, “Grid load balancing using

intelligent agents,” Future Generation Computer Systems, vol. 21, no. 1, pp. 135–149,

Jan. 2005, doi: 10.1016/j.future.2004.09.032.

[62] J. Balasangameshwara and N. Raju, “A hybrid policy for fault tolerant load

balancing in grid computing environments,” Journal of Network and Computer

Applications, vol. 35, no. 1, pp. 412–422, Jan. 2012, doi: 10.1016/j.jnca.2011.09.005.

[63] S. Talwani and I. Chana, “Fault tolerance techniques for scientific applications in

cloud,” in 2017 2nd International Conference on Telecommunication and Networks

(TEL-NET), Noida, India: IEEE, Aug. 2017, pp. 1–5. doi: 10.1109/TEL-

NET.2017.8343578.

[64] D. A. Shafiq, N. Z. Jhanjhi, and A. Abdullah, “Load balancing techniques in cloud

computing environment: A review,” Journal of King Saud University - Computer and

Information Sciences, vol. 34, no. 7, pp. 3910–3933, Jul. 2022, doi:

10.1016/j.jksuci.2021.02.007.

[65] P. Kumari and P. Kaur, “A survey of fault tolerance in cloud computing,” Journal of

King Saud University - Computer and Information Sciences, vol. 33, no. 10, pp. 1159–

1176, Dec. 2021, doi: 10.1016/j.jksuci.2018.09.021.

[66] S. Bharany et al., “Energy efficient fault tolerance techniques in green cloud

computing: A systematic survey and taxonomy,” Sustainable Energy Technologies and

Assessments, vol. 53, p. 102613, Oct. 2022, doi: 10.1016/j.seta.2022.102613.

[67] A. Kumar and P. Chawla, “A Systematic Literature Review on Load Balancing

Algorithms of Virtual Machines in a Cloud Computing Environment,” SSRN Journal,

2020, doi: 10.2139/ssrn.3564355.

[68] K. B. Et. Al., “Load balancing in Cloud Computing: Issues and Challenges,”

TURCOMAT, vol. 12, no. 2, pp. 3224–3231, Apr. 2021, doi:

10.17762/turcomat.v12i2.2380.

[69] U. Samal and A. Kumar, “Enhancing Software Reliability Forecasting Through a

Hybrid ARIMA-ANN Model,” Arab J Sci Eng, vol. 49, no. 5, pp. 7571–7584, May

2024, doi: 10.1007/s13369-023-08486-1.

148

[70] R. Indhumathi, K. Amuthabala, G. Kiruthiga, N. Yuvaraj, and A. Pandey, “Design

of Task Scheduling and Fault Tolerance Mechanism Based on GWO Algorithm for

Attaining Better QoS in Cloud System,” Wireless Pers Commun, vol. 128, no. 4, pp.

2811–2829, Feb. 2023, doi: 10.1007/s11277-022-10072-x.

[71] L. Zhu, K. Huang, Y. Hu, and X. Tai, “A Self-Adapting Task Scheduling Algorithm

for Container Cloud Using Learning Automata,” IEEE Access, vol. 9, pp. 81236–81252,

2021, doi: 10.1109/ACCESS.2021.3078773.

[72] S. Sheikh, A. Nagaraju, and M. Shahid, “A fault-tolerant hybrid resource allocation

model for dynamic computational grid,” Journal of Computational Science, vol. 48, p.

101268, Jan. 2021, doi: 10.1016/j.jocs.2020.101268.

[73] Z. Momenzadeh and F. Safi-Esfahani, “Workflow scheduling applying adaptable

and dynamic fragmentation (WSADF) based on runtime conditions in cloud

computing,” Future Generation Computer Systems, vol. 90, pp. 327–346, Jan. 2019,

doi: 10.1016/j.future.2018.07.041.

[74] F. Al-Turjman, The Cloud in IoT-enabled spaces. Boca Raton, FL: CRC Press, 2020.

[75] S. Meng, Q. Li, T. Wu, W. Huang, J. Zhang, and W. Li, “A fault‐tolerant dynamic

scheduling method on hierarchical mobile edge cloud computing,” Computational

Intelligence, vol. 35, no. 3, pp. 577–598, Aug. 2019, doi: 10.1111/coin.12219.

[76] J. Thaman and M. Singh, “Cost-effective task scheduling using hybrid approach in

cloud,” IJGUC, vol. 8, no. 3, p. 241, 2017, doi: 10.1504/IJGUC.2017.087813.

[77] S. Sheikh, M. Sharma, and A. Singh, Recent Advances in Computing Sciences:

Proceedings of RACS 2022, 1st ed. London: CRC Press, 2023. doi:

10.1201/9781003405573.

[78] S. Antony, S. Antony, A. S. A. Beegom, and M. S. Rajasree, “Task Scheduling

Algorithm with Fault Tolerance for Cloud,” in 2012 International Conference on

Computing Sciences, Phagwara, India: IEEE, Sep. 2012, pp. 180–182. doi:

10.1109/ICCS.2012.71.

[79] S. U. Mushtaq, S. Sheikh, and A. Nain, “The Response Rank based Fault-tolerant

Task Scheduling for Cloud System,” in Proceedings of the 2023 1st International

Conference on Advanced Informatics and Intelligent Information Systems (ICAI3S

2023), vol. 181, A. Putro Suryotomo and H. Cahya Rustamaji, Eds., in Advances in

Intelligent Systems Research, vol. 181. , Dordrecht: Atlantis Press International BV,

2024, pp. 37–48. doi: 10.2991/978-94-6463-366-5_5.

149

[80] M. A. Shahid, M. M. Alam, and M. M. Su’ud, “Achieving Reliability in Cloud

Computing by a Novel Hybrid Approach,” Sensors, vol. 23, no. 4, p. 1965, Feb. 2023,

doi: 10.3390/s23041965.

[81] G. Chen, H. Jin, D. Zou, B. B. Zhou, W. Qiang, and G. Hu, “SHelp: Automatic Self-

Healing for Multiple Application Instances in a Virtual Machine Environment,” in 2010

IEEE International Conference on Cluster Computing, Heraklion, Greece: IEEE, Sep.

2010, pp. 97–106. doi: 10.1109/CLUSTER.2010.18.

[82] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D. Keromytis,

“ASSURE: automatic software self-healing using rescue points,” SIGARCH Comput.

Archit. News, vol. 37, no. 1, pp. 37–48, Mar. 2009, doi: 10.1145/2528521.1508250.

[83] I. P. Egwutuoha, S. Chen, D. Levy, B. Selic, and R. Calvo, “A Proactive Fault

Tolerance Approach to High Performance Computing (HPC) in the Cloud,” in 2012

Second International Conference on Cloud and Green Computing, Xiangtan, Hunan,

China: IEEE, Nov. 2012, pp. 268–273. doi: 10.1109/CGC.2012.22.

[84] R. A. A.Vinnarasi, “Temperature Monitoring with the Linux Kernel on a Multi Core

Processor,” IJIRSET, vol. 04, no. 03, pp. 876–883, Mar. 2015, doi:

10.15680/IJIRSET.2015.0403011.

[85] K. Toshniwal and J. M. Conrad, “A web-based sensor monitoring system on a Linux-

based single board computer platform,” in Proceedings of the IEEE SoutheastCon 2010

(SoutheastCon), Concord, NC, USA: IEEE, Mar. 2010, pp. 371–374. doi:

10.1109/SECON.2010.5453851.

[86] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa, “Workload-Based

Software Rejuvenation in Cloud Systems,” IEEE Trans. Comput., vol. 62, no. 6, pp.

1072–1085, Jun. 2013, doi: 10.1109/TC.2013.30.

[87] J. Liu, J. Zhou, and R. Buyya, “Software Rejuvenation Based Fault Tolerance

Scheme for Cloud Applications,” in 2015 IEEE 8th International Conference on Cloud

Computing, New York City, NY, USA: IEEE, Jun. 2015, pp. 1115–1118. doi:

10.1109/CLOUD.2015.164.

[88] D. Sun, G. Zhang, C. Wu, K. Li, and W. Zheng, “Building a fault tolerant framework

with deadline guarantee in big data stream computing environments,” Journal of

Computer and System Sciences, vol. 89, pp. 4–23, Nov. 2017, doi:

10.1016/j.jcss.2016.10.010.

150

[89] S. Malik and F. Huet, “Adaptive Fault Tolerance in Real Time Cloud Computing,”

in 2011 IEEE World Congress on Services, Washington, DC, USA: IEEE, Jul. 2011, pp.

280–287. doi: 10.1109/SERVICES.2011.108.

[90] Y. Zhang, Z. Zheng, and M. R. Lyu, “BFTCloud: A Byzantine Fault Tolerance

Framework for Voluntary-Resource Cloud Computing,” in 2011 IEEE 4th International

Conference on Cloud Computing, Washington, DC, USA: IEEE, Jul. 2011, pp. 444–

451. doi: 10.1109/CLOUD.2011.16.

[91] M. Hasan and M. S. Goraya, “Fault tolerance in cloud computing environment: A

systematic survey,” Computers in Industry, vol. 99, pp. 156–172, Aug. 2018, doi:

10.1016/j.compind.2018.03.027.

[92] J. Wang, W. Bao, X. Zhu, L. T. Yang, and Y. Xiang, “FESTAL: Fault-Tolerant Elastic

Scheduling Algorithm for Real-Time Tasks in Virtualized Clouds,” IEEE Trans.

Comput., vol. 64, no. 9, pp. 2545–2558, Sep. 2015, doi: 10.1109/TC.2014.2366751.

[93] M. A. Shahid, N. Islam, M. M. Alam, M. M. Su’ud, and S. Musa, “A Comprehensive

Study of Load Balancing Approaches in the Cloud Computing Environment and a

Novel Fault Tolerance Approach,” IEEE Access, vol. 8, pp. 130500–130526, 2020, doi:

10.1109/ACCESS.2020.3009184.

[94] S. Bharany et al., “Energy-Efficient Clustering Scheme for Flying Ad-Hoc

Networks Using an Optimized LEACH Protocol,” Energies, vol. 14, no. 19, p. 6016,

Sep. 2021, doi: 10.3390/en14196016.

[95] F. Safara, A. Souri, T. Baker, I. Al Ridhawi, and M. Aloqaily, “PriNergy: a priority-

based energy-efficient routing method for IoT systems,” J Supercomput, vol. 76, no. 11,

pp. 8609–8626, Nov. 2020, doi: 10.1007/s11227-020-03147-8.

[96] A. N. Asadi, M. A. Azgomi, and R. Entezari-Maleki, “Analytical evaluation of

resource allocation algorithms and process migration methods in virtualized systems,”

Sustainable Computing: Informatics and Systems, vol. 25, p. 100370, Mar. 2020, doi:

10.1016/j.suscom.2019.100370.

[97] H. Yuan, H. Liu, J. Bi, and M. Zhou, “Revenue and Energy Cost-Optimized

Biobjective Task Scheduling for Green Cloud Data Centers,” IEEE Trans. Automat. Sci.

Eng., vol. 18, no. 2, pp. 817–830, Apr. 2021, doi: 10.1109/TASE.2020.2971512.

[98] T. Welsh and E. Benkhelifa, “On Resilience in Cloud Computing: A Survey of

Techniques across the Cloud Domain,” ACM Comput. Surv., vol. 53, no. 3, pp. 1–36,

May 2021, doi: 10.1145/3388922.

151

[99] S. Abapour, M. Nazari-Heris, B. Mohammadi-Ivatloo, and M. Tarafdar Hagh,

“Game Theory Approaches for the Solution of Power System Problems: A

Comprehensive Review,” Arch Computat Methods Eng, vol. 27, no. 1, pp. 81–103, Jan.

2020, doi: 10.1007/s11831-018-9299-7.

[100] K. Wang, J. Wu, X. Zheng, A. Jolfaei, J. Li, and D. Yu, “Leveraging Energy Function

Virtualization With Game Theory for Fault-Tolerant Smart Grid,” IEEE Trans. Ind. Inf.,

vol. 17, no. 1, pp. 678–687, Jan. 2021, doi: 10.1109/TII.2020.2971584.

[101] M. Asim Shahid, M. M. Alam, and M. Mohd Su’ud, “Improved accuracy and less

fault prediction errors via modified sequential minimal optimization algorithm,” PLoS

ONE, vol. 18, no. 4, p. e0284209, Apr. 2023, doi: 10.1371/journal.pone.0284209.

[102] R. Verma and S. Chandra, “HBI-LB: A Dependable Fault-Tolerant Load Balancing

Approach for Fog based Internet-of-Things Environment,” J Supercomput, vol. 79, no.

4, pp. 3731–3749, Mar. 2023, doi: 10.1007/s11227-022-04797-6.

[103] T. Tamilvizhi and B. Parvathavarthini, “A novel method for adaptive fault tolerance

during load balancing in cloud computing,” Cluster Comput, vol. 22, no. S5, pp. 10425–

10438, Sep. 2019, doi: 10.1007/s10586-017-1038-6.

[104] S. M. A. Attallah, M. B. Fayek, S. M. Nassar, and E. E. Hemayed, “Proactive load

balancing fault tolerance algorithm in cloud computing,” Concurrency and

Computation, vol. 33, no. 10, p. e6172, May 2021, doi: 10.1002/cpe.6172.

[105] T. Mohmmed and N. Abdalrahman, “A Load Balancing with Fault Tolerance

Algorithm for Cloud Computing,” in 2020 International Conference on Computer,

Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan: IEEE,

Feb. 2021, pp. 1–6. doi: 10.1109/ICCCEEE49695.2021.9429597.

[106] M. R. Sumalatha, C. Selvakumar, T. Priya, R. T. Azariah, and P. M. Manohar,

“CLBC - Cost effective load balanced resource allocation for partitioned cloud system,”

in 2014 International Conference on Recent Trends in Information Technology,

Chennai, India: IEEE, Apr. 2014, pp. 1–5. doi: 10.1109/ICRTIT.2014.6996174.

[107] M. A. Shahid, N. Islam, M. M. Alam, M. M. Su’ud, and S. Musa, “A Comprehensive

Study of Load Balancing Approaches in the Cloud Computing Environment and a

Novel Fault Tolerance Approach,” IEEE Access, vol. 8, pp. 130500–130526, 2020, doi:

10.1109/ACCESS.2020.3009184.

[108] B. Mohammed, M. Kiran, I.-U. Awan, and K. M. Maiyama, “An Integrated

Virtualized Strategy for Fault Tolerance in Cloud Computing Environment,” in 2016

Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted

152

Computing, Scalable Computing and Communications, Cloud and Big Data

Computing, Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse: IEEE, Jul. 2016, pp. 542–

549. doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0094.

[109] R. Geist, R. Reynolds, and J. Westall, “Selection of a checkpoint interval in a

critical-task environment,” IEEE Trans. Rel., vol. 37, no. 4, pp. 395–400, Oct. 1988,

doi: 10.1109/24.9847.

[110] P. Das and P. M. Khilar, “VFT: A virtualization and fault tolerance approach for

cloud computing,” in 2013 IEEE CONFERENCE ON INFORMATION AND

COMMUNICATION TECHNOLOGIES, Thuckalay, Tamil Nadu, India: IEEE, Apr.

2013, pp. 473–478. doi: 10.1109/CICT.2013.6558142.

[111] A. Semmoud, M. Hakem, B. Benmammar, and J. Charr, “Load balancing in cloud

computing environments based on adaptive starvation threshold,” Concurrency and

Computation, vol. 32, no. 11, p. e5652, Jun. 2020, doi: 10.1002/cpe.5652.

[112] S. Dam, G. Mandal, K. Dasgupta, and P. Dutta, “Genetic algorithm and gravitational

emulation based hybrid load balancing strategy in cloud computing,” in Proceedings of

the 2015 Third International Conference on Computer, Communication, Control and

Information Technology (C3IT), Hooghly, India: IEEE, Feb. 2015, pp. 1–7. doi:

10.1109/C3IT.2015.7060176.

[113] S. T. Mamta Khanchi*, “An Efficient Algorithm For Load Balancing In Cloud

Computing,” Jun. 2016, doi: 10.5281/ZENODO.55545.

[114] S. Dam, G. Mandal, K. Dasgupta, and P. Dutta, “An Ant Colony Based Load

Balancing Strategy in Cloud Computing,” in Advanced Computing, Networking and

Informatics- Volume 2, vol. 28, M. Kumar Kundu, D. P. Mohapatra, A. Konar, and A.

Chakraborty, Eds., in Smart Innovation, Systems and Technologies, vol. 28. , Cham:

Springer International Publishing, 2014, pp. 403–413. doi: 10.1007/978-3-319-07350-

7_45.

[115] A. N. Singh and S. Prakash, “WAMLB: Weighted Active Monitoring Load

Balancing in Cloud Computing,” in Big Data Analytics, vol. 654, V. B. Aggarwal, V.

Bhatnagar, and D. K. Mishra, Eds., in Advances in Intelligent Systems and Computing,

vol. 654. , Singapore: Springer Singapore, 2018, pp. 677–685. doi: 10.1007/978-981-

10-6620-7_65.

[116] S. Ghosh and C. Banerjee, “Priority based Modified Throttled Algorithm in Cloud

Computing,” in 2016 International Conference on Inventive Computation Technologies

153

(ICICT), Coimbatore, India: IEEE, Aug. 2016, pp. 1–6. doi:

10.1109/INVENTIVE.2016.7830175.

[117] S. Subalakshmi and N. Malarvizhi, “Enhanced Hybrid Approach for Load Balancing

Algorithms in Cloud Computing,” vol. 2, no. 2.

[118] A. N. Aliyu and P. B. Souley, “Performance Analysis of a Hybrid Approach to

Enhance Load Balancing in a Heterogeneous Cloud Environment,” IJASRE, vol. 5, no.

7, pp. 246–257, 2019, doi: 10.31695/IJASRE.2019.33430.

[119] M. N and P. A, “An Efficient Improved Weighted Round Robin Load Balancing

Algorithm in Cloud Computing,” IJET, vol. 7, no. 3.1, p. 110, Aug. 2018, doi:

10.14419/ijet.v7i3.1.16810.

[120] R. A. Haidri, C. P. Katti, and P. C. Saxena, “A load balancing strategy for Cloud

Computing environment,” in 2014 International Conference on Signal Propagation and

Computer Technology (ICSPCT 2014), Ajmer: IEEE, Jul. 2014, pp. 636–641. doi:

10.1109/ICSPCT.2014.6884914.

[121] V. L. Padma Latha, N. Sudhakar Reddy, and A. Suresh Babu, “RETRACTED:

Optimizing Scalability and Availability of Cloud Based Software Services Using

Modified Scale Rate Limiting Algorithm,” Theoretical Computer Science, vol. 943, p.

230, Jan. 2023, doi: 10.1016/j.tcs.2022.07.019.

[122] S. Yuan, S. Das, R. Ramesh, and C. Qiao, “Availability-Aware Virtual Resource

Provisioning for Infrastructure Service Agreements in the Cloud,” Inf Syst Front, vol.

25, no. 4, pp. 1495–1512, Aug. 2023, doi: 10.1007/s10796-022-10302-4.

[123] C. Wang, Z. Fu, and G. Cui, “A neural-network-based approach for diagnosing

hardware faults in cloud systems,” Advances in Mechanical Engineering, vol. 11, no. 2,

p. 1687814018819236, Feb. 2019, doi: 10.1177/1687814018819236.

[124] M. A. Shahid, M. M. Alam, and M. M. Su’ud, “Performance Evaluation of Load-

Balancing Algorithms with Different Service Broker Policies for Cloud Computing,”

Applied Sciences, vol. 13, no. 3, p. 1586, Jan. 2023, doi: 10.3390/app13031586.

[125] M. Farid, R. Latip, M. Hussin, and N. A. W. Abdul Hamid, “Scheduling Scientific

Workflow Using Multi-Objective Algorithm With Fuzzy Resource Utilization in Multi-

Cloud Environment,” IEEE Access, vol. 8, pp. 24309–24322, 2020, doi:

10.1109/ACCESS.2020.2970475.

[126] S. Kianpisheh, N. M. Charkari, and M. Kargahi, “Reliability-driven scheduling of

time/cost-constrained grid workflows,” Future Generation Computer Systems, vol. 55,

pp. 1–16, Feb. 2016, doi: 10.1016/j.future.2015.07.014.

154

[127] X. Tang, “Reliability-Aware Cost-Efficient Scientific Workflows Scheduling

Strategy on Multi-Cloud Systems,” IEEE Trans. Cloud Comput., vol. 10, no. 4, pp.

2909–2919, Oct. 2022, doi: 10.1109/TCC.2021.3057422.

[128] Y. Liu, Z. Wang, and D. Zhou, “Resilient Actuator Fault Estimation for Discrete-

Time Complex Networks: A Distributed Approach,” IEEE Trans. Automat. Contr., vol.

66, no. 9, pp. 4214–4221, Sep. 2021, doi: 10.1109/TAC.2020.3033710.

[129] A. Sheeba and B. Uma Maheswari, “An efficient fault tolerance scheme based

enhanced firefly optimization for virtual machine placement in cloud computing,”

Concurrency and Computation, vol. 35, no. 7, p. e7610, Mar. 2023, doi:

10.1002/cpe.7610.

[130] G. Chen, N. Guan, K. Huang, and W. Yi, “Fault-tolerant real-time tasks scheduling

with dynamic fault handling,” Journal of Systems Architecture, vol. 102, p. 101688, Jan.

2020, doi: 10.1016/j.sysarc.2019.101688.

[131] L. Anand, D. Ghose, and V. Mani, “ELISA: An estimated load information

scheduling algorithm for distributed computing systems,” Computers & Mathematics

with Applications, vol. 37, no. 8, pp. 57–85, Apr. 1999, doi: 10.1016/S0898-

1221(99)00101-7.

[132] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and low-

complexity task scheduling for heterogeneous computing,” IEEE Trans. Parallel

Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002, doi: 10.1109/71.993206.

[133] Y. Samadi, M. Zbakh, and C. Tadonki, “E-HEFT: Enhancement Heterogeneous

Earliest Finish Time algorithm for Task Scheduling based on Load Balancing in Cloud

Computing,” in 2018 International Conference on High Performance Computing &

Simulation (HPCS), Orleans: IEEE, Jul. 2018, pp. 601–609. doi:

10.1109/HPCS.2018.00100.

[134] H. Mahmoud, M. Thabet, M. H. Khafagy, and F. A. Omara, “An efficient load

balancing technique for task scheduling in heterogeneous cloud environment,” Cluster

Comput, vol. 24, no. 4, pp. 3405–3419, Dec. 2021, doi: 10.1007/s10586-021-03334-z.

[135] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of precedence task

graphs on heterogeneous platforms,” in 2008 IEEE International Symposium on

Parallel and Distributed Processing, Miami, FL, USA: IEEE, Apr. 2008, pp. 1–8. doi:

10.1109/IPDPS.2008.4536133.

155

[136] Y. M., “A Survey of Cloud Computing Fault Tolerance: Techniques and

Implementation,” IJCA, vol. 138, no. 13, pp. 34–38, Mar. 2016, doi:

10.5120/ijca2016909055.

[137] M. Sharma, M. Sharma, S. Sharma, and A. Kumar, “Flow Shop Scheduling Problem

of Minimizing Makespan with Bounded Processing Parameters,” in Soft Computing for

Problem Solving 2019, vol. 1138, A. K. Nagar, K. Deep, J. C. Bansal, and K. N. Das,

Eds., in Advances in Intelligent Systems and Computing, vol. 1138. , Singapore:

Springer Singapore, 2020, pp. 171–183. doi: 10.1007/978-981-15-3290-0_14.

[138] M. B. Shareh, S. H. Bargh, A. A. R. Hosseinabadi, and A. Slowik, “An improved bat

optimization algorithm to solve the tasks scheduling problem in open shop,” Neural

Comput & Applic, vol. 33, no. 5, pp. 1559–1573, Mar. 2021, doi: 10.1007/s00521-020-

05055-7.

[139] J.-P. Arnaout, “A worm optimization algorithm to minimize the makespan on

unrelated parallel machines with sequence-dependent setup times,” Ann Oper Res, vol.

285, no. 1–2, pp. 273–293, Feb. 2020, doi: 10.1007/s10479-019-03138-w.

[140] A. Al-Rahayfeh, S. Atiewi, A. Abuhussein, and M. Almiani, “Novel Approach to

Task Scheduling and Load Balancing Using the Dominant Sequence Clustering and

Mean Shift Clustering Algorithms,” Future Internet, vol. 11, no. 5, p. 109, May 2019,

doi: 10.3390/fi11050109.

[141] N. Garg, D. Singh, and M. S. Goraya, “Energy and resource efficient workflow

scheduling in a virtualized cloud environment,” Cluster Comput, vol. 24, no. 2, pp. 767–

797, Jun. 2021, doi: 10.1007/s10586-020-03149-4.

[142] R. Sookhtsaraei, M. Iraji, J. Artin, and M. S. Iraji, “Increasing the quality of services

and resource utilization in vehicular cloud computing using best host selection

methods,” Cluster Comput, vol. 24, no. 2, pp. 819–835, Jun. 2021, doi: 10.1007/s10586-

020-03159-2.

Publications:

• Mushtaq, Sheikh Umar, Sophiya Sheikh, and Sheikh Mohammad Idrees. "Next-Gen

Cloud Efficiency: Fault-Tolerant Task Scheduling with Neighboring Reservations

for Improved Cloud Resource Utilization." IEEE Access (2024). (Impact Factor:

3.9)

https://ieeexplore.ieee.org/document/10537159

156

• Published review paper entitled “In-depth analysis of fault tolerant approaches

integrated with load balancing and task scheduling” in Peer to Peer Networking and

Applications. (Impact Factor: 3.3)

 https://link.springer.com/article/10.1007/s12083-024-01798-5

• Mushtaq, Sheikh Umar, Sophiya Sheikh, and Ajay Nain. "The Response Rank based

Fault-tolerant Task Scheduling for Cloud System." 2023 1st International

Conference on Advanced Informatics and Intelligent Information Systems (ICAI3S

2023). Atlantis Press, 2024.

• Mushtaq, Sheikh Umar, and Sophiya Sheikh. "A fault-tolerant resource reservation

model in cloud computing." Recent Advances in Computing Sciences. CRC Press,

2023. 295-301.

Conferences Presented:

• Participated in the International conference titled “1st International Conference on

Recent Advances in Computing Sciences (RACS-2022) (4th – 5th Nov 2022),

organized by the School of Computer Application at Lovely Professional

University, Punjab.

• Participated in 1st International Conference on Futuristic Computation Technique:

Approaches, Implementations and Applications (ICFCT-2022) (16th – 17th Dec

2022), organized by Panipat Institute of Engineering and Technology, Haryana.

• Participated in 1st International Conference on Advanced Informatics and

Intelligent Information Systems (ICAI3S 2023) (29th – 30th Nov 2023) Organised

by Department of Informatic UPN “Veteran” Yogyakarta, Indonesia.

Patent Publications:

• Published Patent entitled “Novel Neighbouring and Reservation based fault

tolerant Dynamic Scheduling in Cloud Environments”

Application Number: 202311069888

Inventor: Sheikh Umar Mushtaq, Sophiya Sheikh

Status: Under Examination for Grant

Publication Date: 24/11/2023

• Published Patent entitled “QoS aware Clustered Task Scheduling for Cloud

environment”

Application Number: 202311079300

Inventor: Sheikh Umar Mushtaq, Sophiya Sheikh

Status: Published

Publication Date: 29/12/2023

157

• Published Patent entitled “An Efficient Load-Balancing System for Optimizing

QoS in Cloud Computing Environments”

Application Number: 202411052036

Inventor: Sheikh Umar Mushtaq, Sophiya Sheikh

Status: Published

Publication Date: 26/07/2024

Copyrights:

• Copyright entitled “An Analysis of Scheduling Techniques with Fault Tolerance

and Load Balancing in Cloud Computing”

• Copyright entitled “A Structured Roadmap to Address Reliability and QoS

Challenges in Cloud”

Pipeline Work:

• Extended version of CRFTS

• Copyright Submitted entitled “Organization to in-depth analysis of hybrid

models of fault tolerance and load balancing in the cloud”

