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ABSTRACT 

Breast cancer kills many women worldwide. Early detection reduces breast 

cancer fatalities. An automated cancer detection method can identify abnormal breast 

tissue earlier. Due to noise and distortion, misdiagnosis might harm health. Detecting 

breast cancer faster is difficult. Breast cancer images have many qualities that can help 

locate the disease. However, diagnosing cancer's key traits might be difficult. This 

complicates breast cancer detection. Breast cancer early detection has used several 

classification and optimization techniques in recent years. However, correct 

identification took time and effort. 

Recent years have witnessed the proliferation of research projects aimed at 

identifying breast images that have been damaged by cancer. Since there was 

interference in the environment, the efficacy of the methods that were available was 

insufficient. In this article, many screening procedures and segmentation techniques are 

discussed in order to identify the tumour at an earlier stage. Yet, a precise and 

trustworthy diagnosis is required for early identification.  

The diagnosis of breast cancer by thermographic imaging is widely regarded as 

the most effective method for both mass screening and early identification of the 

disease. In the present study, a unique deep learning method is proposed. This approach 

makes use of beta entropy-based features and a newly constructed Hybrid Harris Hawks 

Jaya Optimization (HHHJO) algorithm for hyper parameter tuning in deep neural 

networks. In recent years, entropy-based characteristics have become more prevalent in 

the field of medical diagnostics. The beta divergence method has been shown to have 

the virtue of being resilient against outliers. This has seen significant use in a variety of 

statistical calculations, as well as deep learning. Yet, the beta entropy-based 

characteristics have never previously been investigated for their use in medical 

diagnostics. Deep learning algorithms have shown their usefulness in a variety of 

applications, particularly in the detection job. The effectiveness of a deep learning 

algorithm is very dependent on the hyperparameter tuning, which is traditionally 

performed with human skill via a system of trial and error. Various concatenated 

features were offered to classification stage and classification was performed with the 

help of Optimized DNN and some parameter like learning rate of DNN, epochs count 



of DNN and hidden neuron count of DNN was tuned by utilizing developed HHHJO 

for maximizing the accuracy to offer effective classification rate. The HHO method is 

used for global search, while the Jaya optimization is used for local search. The Hybrid 

Harris Hawks Jaya Optimization (HHHJO) algorithm is derived in this article. At both 

the segmentation and the categorization phases, the resulting method is put to use to 

make an estimate of the best possible collection of hyperparameters. As was to be 

predicted, the newly developed method using beta entropy as a feature was able to 

produce an increase in breast cancer diagnosis accuracy that was more than 5% when 

compared to the state-of-the-art accuracy acquired using a standard dataset. In 

conclusion, the suggested method has the potential to be used for the identification of 

breast cancer via thermographic images with better degrees of accuracy. 
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CHAPTER 1 

INTRODUCTION 

As the most frequent form of cancer in females, breast cancer must be diagnosed 

at an early stage to have any chance of being treated effectively. Mammography is the 

gold standard for screening for breast cancer, however detecting tiny tumours may be 

challenging for radiologists. To detect breast cancer, an X-ray image of the breast is 

taken, and this procedure is known as a mammogram. Qualified medical experts depend 

heavily on mammograms to detect breast cancer in its earliest stages. Routine 

mammograms are the most reliable method doctors have for identifying breast cancer 

in its early stages. In rare cases, a mammography may not identify breast cancer for an 

entire year. By automatically detecting suspicious areas in mammograms, image 

processing methods may improve the precision of breast cancer diagnosis. 

The breast lump or mass or tumour feel is depending on its cause, location, and growth 

and symptoms of breast tumour that changes from person to person. Lumps in the breast 

do not cause any pain hencae they are not noticeable. Symptoms of breast cancer 

includes persistent changes in the shape of the breast, increase in size of the breast, 

changes in the appearance of the breast, pain, changes in the nipple of the breast. 

Invasive breast cancer has a normal breast cancer symptom while ductal carcinoma in 

situ rarely causes symptoms that nipple discharge or may feel lump and it can be 

detectable by the mammogram. Thankfully, there is software designed specifically for 

this purpose. Several image processing methods are applicable to the diagnosis of breast 

cancer. There are two primary groups to which these methods belong: Feature 

extraction: This involves identifying and extracting features from mammograms that 

can be used to classify tumours as benign or malignant. Common features extracted 

from mammograms include texture, shape, and size.  

Advantages of Image Processing for Breast Cancer Detection in Present Times 

When compared to more conventional methods of breast cancer diagnosis like 

mammography, image processing techniques have some benefits. Some of the benefits 

are: 
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Increased accuracy: Image processing techniques can increase the accuracy of 

BC detection by automatically identifying suspicious regions in mammograms. This 

can assist to lower the amount of false-positive and false-negative results, which in turn 

can lead to earlier breast cancer diagnosis and treatment. 

Reduced cost: Image processing techniques can be used to screen large numbers 

of mammograms quickly and efficiently, which can help to reduce the cost of breast 

cancer screening. 

Improved patient experience: Image processing techniques can be used to create 

3D models of the breast, which can help radiologists to better visualize tumours\ and 

make more accurate diagnoses. This can help to reduce anxiety and stress for patients 

who are perusing a breast cancer diagnosis. 

Challenges in Image Processing for Breast Cancer Detection 

While processing has many potential benefits for detecting breast cancer, there 

are also many obstacles that must be overcome. Problems may be seen in: 

Data scarcity: There is a limited amount of data available for training and testing 

image processing algorithms for breast cancer detection. This is for the reason that 

breast cancer is a relatively infrequent disease, and it can be difficult to obtain high-

quality mammograms of tumours. 

Variability in mammograms: Mammograms can vary significantly in terms of 

quality and contrast, which can make it difficult for image processing algorithms to 

identify tumours. 

Heterogeneity of tumours: Tumours can vary significantly in the form of 

magnitude, contour, and grain, which can make it difficult for image processing 

algorithms to classify tumours as benign or malignant. 

Anyhow the use of image processing methods in the screening for breast cancer 

is an exciting new development. However, a numerous obstacle must be overcome 

before these methods may be extensively used. The development of more precise and 

reliable image processing algorithms for breast cancer diagnosis requires further study. 

In addition to the challenges mentioned above, there are also ethical considerations that 
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need to be taken into account when using Digital signal processing for breast cancer 

diagnosis. For example, it is vital to ensure that the privacy of patients is protected and 

that their images are not used without their consent. Despite the challenges and ethical 

considerations, image processing is a promising new technology that has the power to 

increase the premature detection and management of breast cancer. 

1.1  Background of the Brest Cancer Diagnosis 

The most common kind of malignancy seen in women worldwide is breast 

cancer. The breast cancer mortality rate among women is rising overall, and this trend 

can be seen across all cancer types. At any time, any tissue inside the breast has the 

potential to develop cancer, which could lead to the amputation of the affected breast 

portion. Cancer cells most commonly originate in the breast duct; if they spread to other 

parts of the breast, such as the lobule or tissue, this occurs very rarely. Almost eighty 

percent of women diagnosed with breast cancer have a form known as invasive ductal 

carcinoma. This form of the disease indicates that the malignancy has spread to other 

breast tissues in the immediate vicinity. Breast cancer typically begins in the duct area 

and spreads by breaching the duct wall and reaching the fatty tissue, both of which 

increase the severity of the disease. Ultimately, this can cause the malignant cells to 

spread to other parts of the body through the lymphatic system. 

Because of this, it is important for clinical professionals to undergo screenings 

for the identification and recognition of cancer at an early stage. To improve the chances 

of survival, appropriate prognostic measures are essential. These measures should 

minimize the need for breast removal as well as the adverse effects of chemotherapy 

and radiation. Since there is a risk to human life, we must use the most precise methods 

possible to identify potentially harmful cancerous cells using breast imaging. 

Computer-aided detection software is an examination technique used to assist 

radiologists in locating malignancies, which will reduce the number of incorrect 

predictions. This technique involves re-reading the image, which enables the radiologist 

to see details more clearly. As a result, the development of a computer-aided tool that 

may assist oncologists has been a topic of significant interest. 

One of the developing subspecialties in the realm of medical applications is 

digital image processing DIP which is another branch of DSP digital signal processing 

technology. Acquiring images, storing them, processing them, communicating the 
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results, and displaying them are all crucial steps in the image processing workflow. 

Imaging procedures in medicine are beneficial for providing an early diagnosis as well 

as early illness detection. This thesis examines the possibility of locating and 

categorising breast cancer using a computer-aided strategy. Such a method might 

provide the radiologist with assistance in locating tumours in the breast using images 

obtained from mammograms and thermal imaging. The features that were extracted 

from a picture utilising a computer-aided design (CAD) system that was constructed 

may be used to classify the image as either benign or malignant. This determination is 

made based on the characteristics. This chapter includes a summary of the broad scope 

of the thesis, as well as its research aim, thesis statement, contributions, and 

organisational structure. It is the first chapter in the thesis. 

 

Fig 1.1: A chart showing various races, sexes of cancer diagnosis as per stats of 

SEER 21 2013–2017. Credit: National Cancer Institute [8]. 

It is seen from figure Fig.1.1, Growing older is the another most significant risk 

factor for developing cancer in general as well as for several specific forms of cancer. 

The overall prevalence rates for cancer ride up gradually as individuals age, from a rate 

of less than 25 incidents per lakh people in age groups under the age of twenty years to 

a rate of approximately 350 per one lakh people in age categories 45–49 to a rate of 

more than thousand cases per one-lakh people in age groups sixties and older. 

1.2  BC- Breast Cancer Statistics 

The development of female chest cancer, like the growth of other cancer, is 

caused by the interaction of a genetically vulnerable host and a factor in the 
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surroundings (external factor). The division of normal cells stops when it has occurred 

the required number of times. They do this by affiliating with other cells in the tissue, 

which allows them to remain in situ. When cells lose the capacity to stop proliferating, 

adhere to other cells, remain where they belong, and die when it is appropriate, this may 

lead to the development of carcinoma. A tumour in the breast, a change in the look of 

the breast, puckering of the skin, rejection of breast milk, liquid pouring from the nipple, 

a newly inverted nipple, or a small area of skin that is red or scaly are some of the 

warning signals that may point to breast cancer. Other warning indications include a 

change in the shape of the breast, a rejection of breast milk, fluid spilling from the 

nipples, and a change in the form of the breast (Ali Salem Ali Bin et al. 2017) [9].  

 

 

Fig 1.2: Rate of New Cases and Deaths per one lakh women and % of fresh Cases by 

Age: Breast Cancer [10]. 
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Survival rates are high among women detected with BC as shown in the Fig 1.3. 

On the other hand, it's possible that older women who are diagnosed with the condition 

have a higher risk of passing away from it than younger women do. In the America, 

female this cancer ranks as the 4th largest origin of mortality in the diseases overall. 

According to data collected between 2016 and 2020, the annual mortality rate was at 

19.6 per one-lakh women as shown in the Fig 1.3 [8]. 

1.3  Signs and symptom of Breast Cancer 

The existence of a lump in the breast that is different in consistency from the 

breast tissue that surrounds it is the most common sign that a woman has breast cancer. 

More than eighty percent of the time, a malignant tumour will be discovered by a 

woman when she feels a lump with her fingertips. On the other hand, mammograms 

have the ability to detect breast cancer in its earlier stages (Boyd, N. F.et al. 2007) [13]. 

The presence of lumps in the lymph nodes that may be seen under the arms is another 

possible indicator of breast cancer. These nodes are located under the armpits. 

Other signs of BC, in addition to the presence of a bulge, may comprise breast 

matter that has become thicker than just the remained of the breast, one side that has 

become bigger or lesser, a nipple that has changed stance or structure or that has become 

reversed, epidermis that has become puckered or cellulite, a reddishness on or around 

a chest-nipple, expulsion from body nipple/s, physical discomfort in a portion of the 

breast-position or underarms, and inflammation  The sensation of ache in the chest (also 

known as "mastodynia") is an inconsistent indicator of whether or not a woman has BC, 

but it may point to other concerns related to breast health (Boyd, N. F. et al. 2007) 

[13][14] (Gage, M. et al. 2012)[16]. It is considered that 5–10% of all cases are caused 

by genetics as the key factor. Women whose mothers were detected with the cancer 

previously the 50’s had a more than one and a half times the chance of developing the 

disease in females whose parents were diagnosed at age 50 or later have a greater than 

one and a half times the risk (Gage, M. et al. 2012) [16]. 

The levels of hormones in a woman's body are one of the most noteworthy 

contributors to her hazard of rising spontaneous breast cancer. Estrogen hormone is a 

factor that contributes to breast cancer. Throughout puberty, menstrual cycles, and 

pregnancy, this hormone is responsible for stimulating the growth of breast tissue. 

During in the menstrual episodes, cell growth is brought on by an oestrogen and 
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progesterone discrepancy. In addition, oxidative metabolites of oestrogen have been 

shown to increase the risk of DNA alterations and degradation. 

Patients who have the disease spread to their limbs may experience signs such   

or yellowing of the skin. Other symptoms may include the disease progressing to other 

organs. Starting menstruation at a younger age, having children later in life or not at all, 

reaching advanced years, having a personal or family history of breast cancer, and 

having a family history of breast cancer are all factors that can increase the likelihood 

of developing breast cancer. Other factors that can increase the likelihood of developing 

breast cancer include being overweight, not getting enough exercise, being addicted to 

alcohol, receiving hormone replacement therapy after menopause, being exposed to 

ionising radiation, starting menstruation at a younger age, and starting Having a 

personal or family history of the illness as well as having a family history of breast 

cancer are also additional factors that raise the risk that a person may acquire breast 

cancer in their lifetime [5]. An intrinsic genetic predisposition is responsible for around 

5–10% of cases. This genetic predisposition may include mutations in BRCA genes, 

also known as the breast cancer gene, in addition to abnormalities in other kinds of 

genes. The cells that line milk ducts and the lobules that feed milk to these ducts are the 

most frequent areas where breast cancer starts. Lobules are another typical place where 

breast cancer starts. Other areas of the mammary gland are also potential starting points 

for the development of breast cancer. Cancers that develop inside the ducts are often 

referred to as ductal carcinomas, while cancers that begin within the lobules are 

typically referred to as lobular carcinomas. Ductal carcinomas are more prevalent. Both 

forms of cancer have the potential to be lethal. Breast cancer may be further classified 

into more than 18 distinct subtypes. These subtypes can also be further subdivided. 

Some forms of cancer, such as ductal carcinoma in situ, start off as pre-invasive lesions 

on some part of the body. A breast biopsy is the only method that can definitively 

diagnose breast cancer. This is because it is performed directly on the breast. After the 

suspicious tissue has been removed, it is subjected to a further inspection under a 

microscope. After a diagnosis has been made, more tests are performed to determine 

whether or not the cancer has spread to other parts of the body, as well as which 

therapies have the best chance of being successful in the long run. 
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1.4  Literature on Diagnosis Tool:  

Mammography is gold standard as a breast cancer screening tool. It is one type 

of low-dose x-ray picture of breast used to detect breast cancer. However, 

mammography screening tool is not accurate and a mammography screening which 

show abnormal result may have a false negative or false positive rate about 1 in 10 

women. It is specifically not accurate to the woman having dense breast tissue and near 

about 50% women undergoes screening have dense breast. There is also a risk of 

causing radiation induced breast cancer as younger women are more susceptible to 

effect of radiation compared to olden women. Clinical breast exam and self-breast exam 

is also used to detect breast cancer which are manual exams carried out by clinician or 

patient by self. Clinical breast exam performed by experienced clinician may use in 

detection of cancer that may not be detected by mammography.  

A digital tomosynthesis is a 3D mammography which is a three-dimensional 

image. Tomosynthesis is typically performed along with mammography and due to this 

the radiation exposure to patient increases by twice. When tomosynthesis is used with 

the combination of mammography it increases the detection rate and reduces the false 

positive rate of mammography compared to mammography screening alone.  

Sonography or ultrasound is another technique is used for further investigation 

to find suspicious area of breast in the mammograms to distinguish between cyst and 

solid masses [5]. Thus, sonography used in combination of mammography improves 

the sensitivity of mammography. 

Breast MRI helps to find the size of the tumour, to find out the presence of other 

tumours, to check the spread of the tumour after detection of cancer, to check whether 

the chemotherapy is working or not and also as a part of follow up after removing the 

breast lump. MRI is not suggested as a single screening test for breast cancer detection 

because it has high false positive rate [5].  

Though mammography is gold standard for breast cancer detection technique 

among all the available techniques, there is not available any single technique which is 

capable for detecting all the abnormalities of breast. Hence there is a need of more 

reliable technique. In many medical applications, thermography as a scanning tool has 

attracted attention. It is used to analyse the physiological function related to the body 
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temperature. It has capability of providing very important information of the breast that 

is used to detect early-stage tumours in the breast. As a scanning tool, thermography is 

safe as it is radiation, non-invasive, non-contact, as well, pain free as there is no 

compression of breast in between plates. The principle of thermography depends on 

black body radiation law which states that all objects above absolute zero temperature 

emits infrared radiations. Infrared thermography scanning for breasts is a screening 

method which searches for changes in temperature of the breast and captures them as 

an image. Due to the blood vessel activity and chemical in precancerous tissue, the 

temperature in the area surrounding the cancerous tissue is always higher than normal 

tissue. Hence, it needs a large amount of nutrition for their growth that result in 

increasing surface temperature of the breast. This indicates the presence of tumour 

which can only see through the thermography. 

Thermography is an adjunctive technique that might potentially discover early 

signs of pre-cancerous and malignant cells eight to ten years earlier than other 

modalities for the early identification of these conditions. According to Aghdam et al. 

(2013) [36], finding cancer at an earlier stage is associated with a lower risk of 

mortality. It was predicted that areas of a patient's body that dried first would indicate 

underlying organ disease. This was observed by monitoring the distribution of slime on 

the patient. Over time, it has become evident that specific temperatures associated with 

certain regions of the human body are definitive indicators of both normal and abnormal 

physiological processes carried out by those organs. 

1.5  Inspiration behind Choosing Research Area 

It is challenging to detect breast cancer using the extensive thermal dataset. 

Identifying breast cancer at an early stage is crucial. Thermographic approaches are 

used in the treatment of breast cancer. The temperature of a breast cancer patient's body 

varies in different sections due to the disease. Methods of pre-treatment and detection 

are employed to recognize breast cancer in its early stages. Optimization results in 

improved classification effectiveness. Breast thermographic images were categorized 

as either normal or malignant. The detection approach identifies the portion of the 

image with the most malignant characteristics with minimal pre-processing. The pre-

processing and detection methods have formed the foundation of the research produced. 
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Current approaches do not improve PSNR, false negative rate, false positive rate, or 

detection time. 

The method of image analysis was used to increase the overall lifespan of the 

person with disease via the procedure of early diagnosis. Therapy in the correct manner 

extends life expectancy. Digital mammography is one of the newer detection 

technologies that developed recently. An identification of the cancer in its earlier stages 

may be made using this approach. Yet, there were several downsides to using this 

strategy. Biopsy, M-R-I, and IR-imaging are some of the several alternative methods 

that may be used. Because of the shifts in frequency and intensity, it's possible that this 

approach won't provide accurate findings (Yasmin et al. 2013) [24]. 

Image processing served as the foundation for the development of a method 

known as Sequential Quadratic Programming (SQP). The observational source used to 

take the measurement, and the significance of the human being cannot be overstated. 

The approach was enhanced so that it could assess the parameters based on the highest 

temperature and the data obtained via the surface of the breast infrared images. In 

landing at a more correct estimation for the specified parameter, the unnecessary 

information is omitted. The addition of supplementary data based on the malignant data 

aides in the rapid diagnosis of illness. This approach does not make use of all of the 

data on malignant measurements acquired by thermogram (Bezerra, L. A et al. 2013) 

[25]. 

In order to accomplish the goal of recognising unregistered multi-view and 

multi-modal input mammograms and segmentation maps, a deep learning approach was 

made accessible as one of the possible options. In order to improve the accuracy of 

breast cancer diagnoses, this was done. This strategy exhibits the deep learning 

techniques that are used for feature selection methods and gives aid for classification 

via the utilisation of models that had a pre-trained set making use of computer vision 

datasets. Additionally, this strategy displays the deep learning approaches that are 

utilised for feature extraction methods. In addition, this methodology demonstrates the 

methods that are utilized in the process of picking features. The databases included 

millions of medical breast images that proved to be quite helpful when compared to one 

another. This technique is used as a standard for locating datasets and breast 

thermographic images that are available to the public. Due to the fact that it included 
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the interpretation of multimodal and unregistered Multiview medical images, this topic 

was considered to be of universal scientific interest in the area of healthcare. The FPR 

is not brought down by using this procedure, and the picture quality are worse (Gustavo 

Carneiro et al. 2017) [33]. This assisted the clinical person in obtaining data that was 

suited for their needs. This procedure does not have agreement since the information is 

not presented to the doctor in a clear manner, and these processes need to enhance both 

patients' and health professionals' engagement in order to be successful (Melissa Kool 

et al. 2018) [35]. 

 

Fig. 1.3: Statistics on Breast Cancer in India, Broken Down by Age Group 

(http://www.breastcancerindia.net) 

In a nutshell, the traditional pre-treatment and optimization techniques proved 

to be effective in the premature finding of the cancer. Nevertheless, it has a number of 

drawbacks, the most notable of which are a poor PSNR, a lengthy clinical diagnostic 

time, a low cancer detection rate, and an inaccurate classification. Because of this, there 

is a pressing need for an effective strategy to enhance the process of early breast cancer 

identification. 

The statistics facts on breast cancer in India is shown in Figure 1.3. Yet, once it 

relates to the breast area, the majority of people have a concept that women acquire 

breast cancer, therefore the debate mostly centred on breast cancer in women. Since 

both male and female have breast tissue, it is possible for it to occur in either gender. 

During the years 1993 and 1997, there was an alarmingly high incidence of breast 
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cancer. In India, there are around 356,256 women who have been tested positive for 

breast cancer. Dissimilarities in hormone intensities that arise during a lady's menstrual 

rotation may cause her breasts to feel misshapen, and studies have shown that about 

nine out of ten women develop breast lumps. Women in positions of age bracket of 45 

to 49 years old are affected by breast cancer. In addition, there is a diverse population 

of younger women in their mid-40s that appears to have cancer. It is estimated that 

around 270 Chinese, Malays, and Indian women will succumb to breast cancer each 

and every year. This vast demographic group also includes other ethnicities, such as 

Indians. India has the highest rate of breast cancer incidence in Asia. This is mostly 

attributable to the impacts of urbanisation as well as changes in individual lifestyles. 

The process of urbanisation has directly led to this effect. Mammography is the usual 

method that is now being used for the typical approach that is being employed today 

for the identification of cancer by clinical examination. This method is utilised for the 

detection of breast cancer. In spite of the fact that cancer is sometimes found in persons 

with thick breasts, which is a source of tension for folks, we want an additional system 

that may assist the radiologist in avoiding making incorrect predictions so that we can 

alleviate this stress. The patterns at which these systems are applied are not only 

implausible for the many different kinds of information, but they also cannot be 

replicated. This technique does not work for women since it produces inaccurate results 

when used to women with enormous breasts. 

1.6  Research Objectives 

The primary purpose of the study that was carried out for this thesis was to build 

a framework that was based on the characteristics of breast cells to enhance the earliest 

diagnosis of the cancer and categorise any anomalies that were found. The framework 

is meant to detect signs of malignancy by extracting characteristics from mammograms 

and thermal imaging. These images may be used. The study is carried out with the 

purpose of identifying cancerous tumours in breast thermographic images acquired 

through DITI. 

1. To test and analyse alternative entropy definitions and recent robust divergences 

for classification of breast lumps or tumours as benign, pathological or 

suspicious using thermographic images.  
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2. To apply and analyze deep learning approaches for the classification of breast 

lumps or tumours as benign, pathological or suspicious using thermographic 

images.  

3. To employ a novel heuristic optimization technique for hyperparameter tunning 

in deep learning algorithm 

4. To evaluate the performance of the proposed solution for the classification of 

breast lumps or tumours as benign, pathological or suspicious using 

thermographic images.   

1.7  Research Methodology: 

The basic framework for BC detection through thermographic images has four 

stages: image pre-processing, segmentation, region of interest (ROI) extraction, feature 

extraction and classification with three classes identified as normal denoting without 

any tumour, benign denoting with non-cancerous tumour and malignant denoting 

cancerous tumour. Various approaches differ based on the approaches used at various 

stages.  

The thermogram raw images utilized for the analysis of breast cancer are 

acquired from standard resources, and they are directly provided as the input to pre-

processing stage. The raw images are processed in the pre-processing phase using 

grayscale conversion, adaptive mean filtering and contrast enhancement. Then, breast 

segmentation is performed with the help of GVF (Gradient Vector Flow) to attain 

segmented breast images. To exploit the robustness against outliers’ characteristics of 

Beta divergence we have uses them as features. The classifier outcomes in DNN highly 

depends upon the used features. Motivated from the fact that Beta divergence has a 

proven characteristic of robustness, we propose use of it as features, specifically in 

medical image, for classification and other machine learning tasks.  HHO algorithm 

imitates the hunting mechanism of Harris Hawks. They follow various steps and 

mechanisms to hunt in a group, instead individually. Repeated mechanism of 

exploration and exploitation boost HHO performance. On the contrary, JA is simple 

and requires no additional parameter for initialization. This motivates to combine the 

community-based hunting mechanism of HHO and the simplicity of JA to achieve the 

best optimization algorithm which would be more efficient at finding the optimal. The 
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novel algorithm is identified as HHHJO algorithm used for tuning the hidden neuron 

count of DNN, the learning rate of DNN and DNN epochs count. 

The thesis work proposes a solution balancing both accuracy and computational 

requirements by providing the accuracy equivalent to those of the deep learning and 

computations equivalent to the ML algorithm. 

1.8  Research Contribution 

The work has the following novel contributions:  

1. Beta divergence has a proven property of robustness and is been explored 

successfully in various applications in Robust Statistics, as well, Machine 

Learning. The thesis work successfully employs entropy definition induced by 

Beta divergence as features for the first time in a medical diagnosis and 

classification task. It gave almost 5% better accuracy than other features, 

including conventional entropy definitions. 

2. A novel hybrid meta hubristic algorithm, identified as HHHJO, has been 

developed using Jaya Optimization to improve the local search and HHO 

algorithm to improve the global search based on community-based hunting 

approach. 

3. The thermographs were segmented using gradient vector flow snakes (GVF) 

algorithm followed by an Optimized FCM (OFCM) algorithm, where the 

optimal hyperparameters were derived using the newly designed HHHJO 

algorithm identified effective. 

4. A novel Optimized DNN (ODNN) with hyperparameters tuned using HHJO has 

achieved better detection for thermographic BC detection.  

5. A novel solution combining ODNN with Beta entropy and other features, GVF 

(Gradient Vector Flow) and OFCM for tumour segmentation and HHHJO for 

hyperparameter tuning in DNN and FCM has been developed for BC detection 

using thermograms. The solution achieves almost 99% accuracies, comparable 

to that of CNN, just with two hidden layers. 
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1.9  Thesis Data Flow 

The remaining chapters of this thesis are  

Chapter 2, a detailed assessment of several current methods and techniques for breast 

cancer early detection is presented. These methods and techniques include deep 

learning strategies. 

Chapter 3 Explains fundamentals of Information theory entropy and divergence and 

techniques useful in machine learning and data science. 

Chapter 4 offers the HHHJO method. The suggested HHHJO aims to obtain better 

results in terms of increasing entropy while simultaneously reducing variance as much 

as possible. After that, the abnormality segmented breast thermographic images, where 

the features were extracted with the assistance of GLCM, first-order and second-order 

textural descriptors, LBP, entropy feature, and beta entropy. Some parameters, such as 

the learning rate of DNN, the epoch’s count of DNN, and the concealed neuron sum of 

DNN, were tuned by utilising developed HHHJO in order to maximise accuracy and 

provide an effective classification rate.  

Chapter 5 presents the overall solution. The suggested deep neural network based 

proposed novel solution is described for the detection of breast cancer to detect whether 

it is normal or cancerous. 

Chapter 6 presents the observations of the proposed methods HHHJO and compares 

with existing methods. The performance metrics are evaluated with respect to CA, FPR, 

FNR, Precision, Sensitivity, NPV and MCC. This thesis's most important findings and 

conclusions are outlined in Chapter 6, along with prospective directions for further 

research. 

Chapter 7 Conclusion, discussion and future scope 

1.10  Summary 

This Chapter included an explanation of the research's context, although in a 

condensed form. In addition to this, the reasons for doing this study, a description of 

the issue, research contributions, and the arrangement of the thesis are discussed. 
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CHAPTER 2 

THE PROBLEM STATEMENT AND LITERATURE 

SURVEY 

 To improve the survival rate early detection is necessary. The problem is 

majority of women are diagnosed with later stages and survival at these stages is 

difficult.  So, there is a need for early diagnosis which is possible by making the people 

aware of early signs and symptoms.  Also, there is a need for accurate diagnosis, easily 

available and cost-effective treatment. The target of the research is to focus on reducing 

the cancer death by creating the awareness among the people so that it will help them 

to detect the symptoms at early stage. Though mammography is best for breast cancer 

uncovering technique among all available techniques, there is not available any single 

technique which is capable for detecting all the abnormalities of breast. Hence there is 

a need of more reliable technique. In many medical applications, thermography as a 

scanning tool has attracted attention. It is used to analyse the physiological function 

related to the body temperature. It has capability of providing very important 

information of the breast that is used to detect early-stage tumours in the breast. As a 

scanning tool, thermography is safe as it is radiation, non-invasive, non-contact, as well, 

pain less as there is no compression of breast in between plates. The principle of 

thermography depends on black body radiation law which states that all objects above 

absolute zero temperature emits infrared radiations. Infrared thermography scanning 

for breasts is a screening method which searches for changes in temperature of the 

breast and captures them as an image. Due to the blood vessel activity and chemical in 

precancerous tissue, the heat signature in the area neighbouring the bad tissue is always 

higher than common body-tissue. Hence, its prerequisites a large quantity of nutrition 

for their growth that result in increasing surface temperature of the breast. This indicates 

the presence of tumour which can only see through the thermography. 

2.1  Review on Available Literature  

The most awful illness, cancer, is really a collection of disorders that are tied to 

one another. With every kind of cancer, some tissues in the body begin to divide in an 

unrestrained manner and blow-out the disease to the tissues in the immediate area. A 

diverse illness is what we mean when we talk about cancer. In order to assist the 
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subsequent clinical evaluation of individuals, the early detection and prevention of a 

cancer type are essential. The premature finding of cancer may be aided by determining 

the protein sequences and structural motifs that are present in a cancerous cell. The 

discovery of cancer is dependent on investigation at the molecular level, and a 

systematic, accurate, and accurate diagnosis is recommended for the many different 

forms of cancer. 

The human body is responsible for the development of a variety of cancers. BC 

is one of the greatest common causes of significant concern for health in females. 

Because of the way their bodies are structured, females possess a greater risk of 

catching cancer around chest than males do. Aging, having a history of the developing 

cancer around breast in one's family, having dense breasts, being overweight, and 

drinking alcohol are all potential causes of breast cancer. In order to identify cancer 

from breast thermographic images from a variety of angles and vantage points, 

researchers are using a variety of detection and classification strategies. These strategies 

are differentiated by the stage of the illness and the quality of the images. On the other 

hand, there is still an alarmingly high percentage of incorrect breast cancer detection. 

Inaccurate diagnoses of cancer may lead to overtreatment, while failure to recognise 

malignant tumours might result in inadequate treatment. Both of these outcomes are 

undesirable. As a result, a handful of study articles are being studied and investigated 

for the purpose of cancer identification at an earlier period. 

The lump that is already present in the cell might become cancerous if it invades 

surrounding breast tissue or spreads across it. Breast cancer may be more frequent in 

women, but males may still be affected by the disease. Cancer of the breast will often 

begin in the ducts that are responsible for milk production and then spread to the nipple 

area. This kind of cancer is referred to as ductal carcinoma, while cancer that begins in 

the glands that are responsible for milk production is known as lobular carcinoma. 

Sarcomas and lymphomas, both of which may be seen in various breast tissues, are 

considered to be benign tumours. Lumps in the breast are not usually a sign of cancer; 

sometimes they are benign. Benign tumours are abnormal growths that occur in the 

breast but do not feast to other parts of the human body. 
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Fig. 2.1: Cells in blood flow or the lymph system spread breast cancer. 

 

Small and bean-shaped, lymph nodes are part of the immune system and are 

responsible for storing tissue fluid and debris. Cancer tissues mobile through the –nodes 

network and begin to develop in the lymph-network of human body. Auxiliary nodes, 

supraclavicular and infra-clavicular nodes, and chest nodes around the breast constitute 

these lymph nodes (internal mammary lymph nodes). Normal cells develop cancerous 

owing to DNA abnormalities, genetics, or lifestyle factors, but the specific cause is 

unknown. 

As shown in Figure 2.2 both invasive and non-invasive carcinomas can be 

further subdivided into subcategories, one of which is adenoid cystic carcinoma. 

Apocrine carcinoma, Cancer that has a stromal giant that looks like osteoclasts, 

Invasive lobular carcinoma, Cancer showing features of the medullary glands, 

Metaplastic carcinoma, Invasive micro-papillary carcinoma, Mucinous carcinoma, 

Neuroendocrine carcinoma, Tubular carcinoma (Horlings et al., 2013) [37]. 
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Fig. 2.2: Classification of various B-Cancers reported in various countries time to 

time. 

 

Around 30% of malignancies are detected early. Breast cancer has four stages. 

Stage I is just DNA changes, Stage II is blow-out to the axillary lymph nodes under the 

arms, Stage III is creeping to the lymph-network near the chest bone, or on the wall of 

the chest and/or the membrane of the breast with or without evidence, lymph nodes 

above or below the collarbone, and Stage IV spreads to other organs, including the 

brain, liver, lungs, and bones [38].  
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Fig. 2.3: Breast Cancer Imaging 

There was discussion of monitoring for early breast cancer diagnosis in 

conjunction with classification in order to identify breast cancer. This study led to the 

development of a wide variety of other medical research projects as well as medical 

procedures. The detection rate of abnormal cancer portions was low during 

categorization. It has a very poor sensitivity for screening. Since the operation was 

employing a bigger database, which makes it more difficult to identify a suitable one 

from the database, the development of an early detection sign has shown to be highly 

beneficial. During the period of the study, there was a consistent detection rate for either 

the interval of cancer or the subsequent screening round. This technique exhibited an 

unacceptably high FPR and an excessive amount of invasive medical testing (Mordang 

JJ et al. 2017) [87].  

An accelerator that is used in microwave imaging for the purpose of diagnosing 

breast cancer was provided as a means of fulfilling the conditions for the unique design 

in the field of space exploration. The two microwave imaging algorithms that are used 

for the early detection of breast cancer are put through their paces here. This is one of 

the ways that breast cancer may be detected. The design recommendation arrives at the 

conclusion that beam forming is still an attractive outcome designed for low-cost 

installations. The work that was available provided dependable adaptability and a high 

degree of adaptability to changes in the parameters of the system, but the high-level 
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synthesis provided productivity improvements in design. While there was an 

improvement in terms of power usage, no analysis was done on accuracy since we were 

considering two algorithms and synthesis at the same time (Daniele Jahier Pagliari et 

al. 2017) [3]. 

It was decided to use an algorithm based on machine learning in order to rise 

both the exactness and sensitiveness of the cancer decision process. In improving the 

accuracy of the forecast, this approach takes into account six accelerators rather than 

the more traditional two accelerators. The findings of each of the machine learning 

algorithms are shown to have a high level of performance. The results of these were 

obtained using binary classification algorithms. The approach was helpful for 

forecasting what breast thermographic images would be normal and what would be 

aberrant. This also helps a great deal in reducing the categorization difficulty, but at the 

expense of the findings' accuracy (Abien Fred M et al. 2018) [12]. 

2.2  Feature Extraction for Breast Cancer Detection 

In Acharya, U R et al. (2012) [6] attempted to verify the rate of the thermal 

imaging apparatus for the identification of the cancer. Their goal was to decide whether 

or not the instrument was effective. The infrared breast thermographic images were 

acquired from Singapore General Hospital and utilised in validation process. The run 

distance and the co-incidence matrix were used in order to achieve the features of the 

image's texture. After that, these characteristics were sent to the SVM classifier so that 

it could automatically differentiate between cancerous and normal breast states. As a 

result, the newly constructed model achieved a higher rate of accuracy in comparison 

to both its specificity and its sensitivity. 

A supervised model for identifying the mitotic signature in breast 

histopathology Full Sliding breast thermographic images was reported by Monjoy Saha 

et al. (2018) [47] (WSI). A deep learning framework was built, and characteristics that 

were handmade and obtained through prior medical difficulties were employed in the 

design process. The convolution layers, the 4 max-pooling sheets, the 4 rectified linear 

units (ReLU), and the 2 fully linked sheets were the components that made up the deep 

learning framework. The morphological, textural, and intensity aspects that were 

handcrafted made up the handcrafted features. Recognition and evaluation of the stage 

of breast cancer have both been given a greater degree of precision. 
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Subrata Kumar Mandal et al. (2018) [48] addressed several methods for 

identifying breast cancer, including information extraction, feature collection, feature 

taking out, data discretization, and categorization. In order to get a cancer classification 

that is very accurate, the lowest group of characteristics possible was identified. A 

number of different techniques to cancer classification were investigated, and the 

amount of time required by each classifier was calculated and examined. Based on the 

findings of the study, it was determined that the logistic-regression-classifier is the one 

that achieves the greatest results and has the highest level of accuracy. On the other 

hand, there was no attempt made to determine the precise stage of the patient's breast 

cancer. In  Al Fayez et al. (2020) [50] performed preprocessing with the assistance of 

adaptive histogram equalisation, top-hat transform, and homomorphism filtering; 

achieved segmentation of ROI with K-mean clustering; used binary masking, which 

was utilised to extract the features presented in signature boundary; and classified the 

data using Multilayer Perceptron (MLP) and Extreme Learning Machine (ELM). Al 

Fayez et al. (2020) [50] also used binary masking, which was utilised to extract the 

features presented in signature boundary. The newly developed model was calculated 

making use of a dataset that is used often, and the ELM-based procedures achieved 

improved outcomes in comparison to those of the models that are already in use. Ekici 

and Jawzal et al. (2020) [51] applied CNN in order to successfully accomplish the task, 

and as a result, they were able to achieve an accuracy rate of 66%. 

Automatic segmentation based on Otsu's approach and automated network 

recognition were the goals of Sánchez et al. (2020) [56]. A strategy to classification that 

makes use of bispectral invariant was proposed by Gomathi et al. (2020) [43]. These 

classifications were carried out in breast thermal images utilising an unsupervised 

anisotropic-feature transformation method to efficiently categorise characteristics such 

as benign, standard types, participants, and malignant. The created model was 

successful in accurately classifying both abnormal and normal women. The proposed 

framework reduces the amount of noise that is visible in the picture, which results in an 

improvement in image quality. 

Schaefer et al. (2014) [44] suggested a breast thermogram analysing model to 

collect the set of bilateral symmetry image characteristics among right and left breast 

areas. These features were then employed for the classification phase of the research. 
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Throughout the classification procedure, the Ant Colony Optimization (ACO) based 

pattern identification algorithms were applied. This particular classifier was applied in 

order to examine the produced picture characteristics. The traditional Ant-Miner 

classifier was able to attain a higher classification performance rate based on a briefer 

rule. The results of the simulation have shown that the model that was constructed is 

capable of accurately extracting picture characteristics and also providing an efficient 

classification rate. 

Automatic anomaly identification in a breast thermogram was first attempted 

by Francis et al. (2014) [53]. Their method included performing a curvelet transform 

according to features extraction methodologies. In order to carry out automated 

classification, the texture as well as the statistical characteristics were extracted from 

the thermogram in the curvelet basis and presented in SVM. Both the suggested 

classifiers and the textural characteristics are capable of recognising abnormalities in 

breast thermograms. The proposed classifiers were able to efficiently recognise aberrant 

thermograms with a high accuracy rate. Yadav and Jadhav et al. (2020) [52] have 

developed a software application that uses machine learning as a statistical approach to 

learn the characteristics without the need for direct coding to be performed. The primary 

purpose of the computational intelligence algorithms was to learn how to read the 

thermal scans and identify the potentially suspicious region. Thermal photography was 

a somewhat superior method to those that were used before, and it was simple enough 

to be used in medical facilities such as clinics and hospitals. An improved performance 

rate has been achieved by the CNN-based CAD model that was built in terms of 

enhancing data augmentation, network intricacy, and fine-tuning in the breast cancer 

dataset. 

Images obtained by logical thermography were shown in order to diagnose 

breast cancer. This technique investigates the prospect of a rational thermograph and 

contributes to the development of automatic identification. Both the first-order 

statistical feature and the Haralick texture feature were derived from the data in the 

spatial domain. These characteristics were gleaned through a sequence of reasonable 

thermograms taken from the stage that came before it as well as the present standing of 

the application challenge. This technique brings about a considerable reduction in the 

internal body temperature while having no impression on the breast normalcy detecting 
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system. In order to determine how the procedure stacks up against other methodologies 

already in use, a comparison was carried out. Ultrasound is the auxiliary tool that is 

employed here. This approach proved beneficial in determining which areas of the body 

had cancer and which did not have cancer. This method does not provide any 

mechanisms that are dependable or beneficial for the automated detection algorithm 

(Sheeja Francis et al. 2014) [33].  

2.3 Region of Interest (ROI) Based Breast Cancer Diagnosis 

 The procedure of classification is carried out through optimization. The breast 

thermographic images are allocated into two groups: healthy and sick, grounded on the 

categorization method. The scaling of the picture and the production of an image of 

good quality are both important functions that need pre-processing. The breast 

thermographic images that are created as a consequence of the optimization approach 

yield accurate results. The optimization procedure results in an increase in PSNR as 

well as a decrease in FPR (False positive rate). 

In order to improve the overall efficacy of breast cancer discovery for the goal 

of early illness diagnosis, a number of pre-processing and detection procedures are 

used. The development of effective improvement and identification strategies is now 

the subject of a significant amount of study. The discussion will focus on some of the 

more recent relevant efforts that have been done on optimization and detections. For 

the purpose of early cancer identification using thermal imaging, a bio spectral invariant 

feature selection approach has been developed. The characteristics that have been 

chosen are insufficient for making an accurate finding of the cancer (Mahnaz Etihad 

Tavakol et al. 2013) [17]. In order to gain superior performance and analyse breast 

thermograms based on picture characteristics while maintaining the same level of 

prediction performance, hybrid multiple classifier systems were developed and 

implemented (Bartosz Krawczyk et al. 2016) [18]. A failed pre-processing attempt is 

made via a new weighted algorithm that is provided in the Naive Bayes Classifier 

(Shweta Kharya et al. 2016) [64]. The Mega-Trend Diffusion (MTD) method was 

developed for the purpose of spotting the cancer in its premature stages. According to 

Abdul Majid et al. (2014) [19] the accuracy of cancer prediction was not enhanced by 

integrating a greater number of protein sequences or feature spaces. 
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Random Under-Sampling Boosting or RUSBoost, introduced to deliver an 

effective taxonomy of breast imageries by conjoining weak classifiers into solid ones 

with less dependability (Ehsan Kozegar et al. 2017) [21]. RUSBoost was developed to 

achieve this goal by integrating weak classifiers into superior using random under 

sampling. The Stacked Sparse Auto Encoder, or SSAE, was developed so that DNA 

identification on high-resolution images could be done more effectively. There is a 

decrease in accuracy and dependability (Jun Xu et al. 2016) [21]. With the purpose of 

reducing the error rate as much as possible in the breast cancer detection system, a 

three-dimensional convolutional neural network and prioritised candidate aggregation 

were provided. Dynamic neural network from the thermal pattern was developed, which 

helps a great deal for lowering the mortality rate of women. The system's degree of 

precision was not investigated (Tsung-Chen Chiang et al, 2019) [22]. These currently 

available techniques take into account a number of preprocessing and optimization 

procedures in order to detect the cancer at an earlier time frame. The performance of 

these approaches is negatively impacted by a variety of problems, including a lengthy 

period of time required to diagnose breast cancer, a low PSNR, and a high FPR. 

Wenqing Sun et al. (2016) [58] presented a technique for the uncovering of 

cancer that was established on graph-based Semi Supervised Learning (SSL) and made 

use of deep Convolutional Neural Networks (CNN). For training purposes as well as 

for fine-tuning the variables, CNN needs a substantial quantity of labelled data. The 

labelled data in the training set were only required to make up a tiny portion of the total, 

and the diagnostic system was expanded to include more modules. Many regions of 

interest (ROIs), each of which was comprised of mass mined from mammography 

images, were used for the purpose of analysis. The results obtained from some of the 

ROIs were categorised as labelled data, whereas the results obtained from the other 

ROIs were termed unlabelled. Yet, there was little thought given to improving the SSL 

protocol's performance. 

Isikli Esener et al. (2017) [59] proposed a useful feature ensemble with 

multistage organisation in a CAD methodology for the cancer finding in breast cancer. 

The mammography images were gathered into a dataset that was made publicly 

available, and a multistage classification was carried out. The mammography 

underwent the process of having its features extracted. The histograms of the ROI 



26 | P a g e  

images are then equalised using nonlocal means filtering as part of the pre-processing. 

The ensemble of features was produced by combining local configuration pattern-based 

features with quantitative and frequency domain characteristics. After that came the 

phase of classifying these traits according to their respective categories. The multistage 

classification procedure was carried out with the purpose of performing a better breast 

cancer diagnosis while simultaneously consuming a significant amount of time. 

2.4 Optimization Techniques for Breast Cancer Detection 

Particle Swarm Optimizer (PSO) is analysed by Mei-Ling Huang et al. (2012) 

[60]. PSO is dependent on Artificial Neural Network Adaptive Neuro-Fuzzy Inference 

System and a Case-Based Reasoning classifier that makes use of both a decision tree 

model and a logistic regression model. Classification approaches were utilized on the 

mammographic mass data set, which resulted in an improvement to the classification 

as well as the identification of additional mistakes. A constructed model of ANN known 

as ANFIS was used. It investigates the features of resilient and truthful learning with 

the assistance of both language and data sets, and it has a greater capacity for 

generalisation than other methods. In order to chart formerly extracted words and events 

from files, the rule-based ANFIS approach might be helpful. Also, it was used to aid in 

the decision-making process for oncologists with less expertise. 

A support vector machine classifier that is built on swarm intelligence 

techniques (PSO-SVM) was introduced by Hui-Ling Chenet al. (2012) [61] as a 

structure for the revealing of the cancer. Under the framework of the particle swarm 

architecture, both the issue of model collection and the issue of feature collection were 

handled. Next, in order to build the objective of PSO, a weighted function was utilised. 

This function takes into consideration the specified features, the number of support 

vectors (SVs), and the average accuracy rates of the support vector machine (SVM). In 

addition to that, the time-varying acceleration coefficients and the inertia weight were 

included into the PSO algorithm so that it could successfully maintain both the local 

and the global search. This was done in order to maximise efficiency. The right model 

parameters and a discriminative feature subset were readily retrieved with the aid of a 

decreased collection of SVs for training, which resulted in higher prediction accuracy. 

This was achieved by reducing the number of SVs used for training. Categorization was 

completed in a manner that was both accurate and effective thanks to the contribution 
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of five informative qualities. In consequence, this assisted to reach better diagnostic 

judgements in clinical breast cancer diagnosis despite the increased amount of time 

spent classifying patients. 

 In order to accomplish efficient gene selection throughout the process of 

identifying cancers Kun-Huang Chen. et al. (2014) [62] integrated PSO with a decision 

tree and produced a new algorithm. A comparison was made between the SVM self-

organizing map, the backpropagation neural network, the C4.5 decision tree, the Naive 

Bayes algorithm, the CART decision tree, and the artificial immune recognition system 

in order to assess the effectiveness of each. 

Krawczyk, B., & Schaefer, G.et al. (2014) [82] article presents the Ant Colony 

Optimization (ACO) classification for used while evaluating breast thermograms. The 

thermographs illustrate the functional information of cancer, which may be used to spot 

the cancer at an earlier phase. This approach employs the ACO method in order to get 

the desired categorization outcomes. On the basis of the characteristics that were chosen 

in the earlier sections, the breast thermograms were sorted into two categories: normal 

and malignant. The colony ant miner method was used as the foundation for the feature 

selection operations. A heuristic based on ant colonies, combined with an on-the-fly 

entropy standard, is used in this method. The discretization is carried out. ACO suffered 

from various inadequacies in its probability distribution, and accurate diagnostic 

findings could not be discovered (Krawczyk, B., & Schaefer, G.et al., 2014) [82]. 

2.5 Classifiers for Thermography Breast Cancer Identification 

M. M. Mehdy et al. (2017) [63] conducted a review that focused on the use of 

neural networks (NN) to medical imaging procedures. A look was taken at how neural 

networks may be used in a variety of medical imaging techniques. After that step, the 

categories of NN with the various categories of feeding data were examined. In 

furthermore, the use of hybrid NN adaptation in the identification of the cancer was 

investigated. 

In study of Kharya, S. & Soni, S. et al. (2016) [64] compared the superiority 

requirements of a machine learning techniques known as the Naive Bayes Classifier to 

a novel weighted technique for classifying BC. Most fruitful methodologies to 

classification are called the Naive Bayes system. Instead of focusing on categorization, 
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the ranking performance was deemed to be the key notion. The traditional 

implementation of the Naive Bayes algorithm saw improved results with the 

incorporation of the weighted notion. Despite this, the medical prognosis was not 

carried out in an effective manner. 

Nicandro et al. (2013) [65] introduced Bayesian network classifiers with the 

purpose of evaluating the investigative potential of thermography in the cancer. The 

information that obtained from the thermal picture was used to portray people who had 

cancer. The data that was obtained from the participants and used to distinguish unwell 

people from otherwise healthy individuals ultimately determined a score. In addition to 

this, Bayesian network classifiers were used as an efficient supplemental tool for the 

diagnosing process. 

An approach for an aggregation that is based on support vectors was described. 

This technique diagnoses cancer by exploiting the support vector machine (SVM) 

algorithm as a learning prototypical. This approach is the norm in the composite 

algorithm for the area beneath the characteristics curve. The variety of the basic model 

set was improved with the help of the C-SVM and v-SVM prototypes, each having six 

different support vectors. The Area That Will Be Weighted comparison is made 

between the five different fusion procedures and the receiver operating Characteristic 

Curve Ensemble (WAUCE). They were conceived with the purpose of deriving the 

choice from the foundational models. The outcome is assessed using two standard 

datasets in addition to one substantial actual dataset. This was determined by looking 

at the model's efficiency as well as its reliability in terms of its performance. Conferring 

to the discoveries of Haifeng Wang et al. (2017) [34], whereas WAUCE significantly 

boosts cancer detection, the variation involved in these techniques was shown to be 

reduced. The identification of breast cancer was accomplished by the use of multiple 

logistic regression analyses. The accuracy of the data that was self-reported by the 

patient about the sentinel node biopsy and the auxiliary lymphatic nodal segmentation 

is much less and only exhibits modest conformity. 

In an article Ebrahim Edriss Ebrahim Ali et al. (2016) [66] provided a 

description of the tests that were carried out with the assistance of the hospital registry 

in order to classify the cancer. For the determination of doing classification on breast 

cancer datasets, the Supervised Learning Algorithm known as SVM was used in 
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conjunction with kernels such as Linear and Neural Network (NN). In contrast to the 

SVM method, the Neural Network methodology provides more "accurate" and 

"precision." 

Gustavo Carneiro et al. (2017) [33] automated the investigation of unregistered 

Cranio-Caudal (CC) and Medio-Lateral Oblique (MLO) mammography images. This 

determined the patient's breast cancer risk. Deep Learning models classified 

unregistered mammography images and breast lesion segmentation maps. This 

comprehensive technique categorised mammographic exams and segmentation maps. 

The automated technique accurately used segmentation maps from automated mass and 

micro-classification detection systems. Automatic detection did not lower FPR. 

Abien Fred M. Agarap et al. (2018) [68] evaluated ordering test accuracy, 

sensitivity, and specificity using ML algorithms on the (WDBC) dataset. Digitized 

images of breast mass FNA tests form the dataset. All classifiers were hyper-

parameterized and classified. ML algorithms boost classification test accuracy. 

Maryam Mahsal Khan et al. (2018) [69] described Evolving Wavelet Neural 

Network ensembles. The fitness function embedded classifier accuracy alone and as 

part of the ensemble to find the best ensemble. A higher CA island-based model reduced 

training time. This model was created by studying migration topologies. 

Cuong et al. (2013) [70] used accidental forest classifier and piece collection to 

diagnose and prognosticate breast cancer. Weighting condition solved diagnostic 

problems and kept important characteristics by removing extraneous dataset elements. 

Random forest classifiers improved classification accuracy and addressed various 

breast cancer diagnoses. 

Higher-order spectrum properties were derived from the thermograms and 

shown in order to facilitate the categorization of thermograms into normal and abnorm 

al categories. The higher-order spectral features were retrieved and put into a Feed-

Forward Artificial Neural Network (FFANN) classifier in addition to a Support Vector 

Machine (SVM) for the purpose of increasing the accuracy and precision of the 

analysis. The ANN classifier that follows it also provides stronger values of sensitivity 

and specificity than the one that came before it did. A more accurate automated 

classification of normal and abnormal breast thermograms was carried out without 
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resorting to any form of subjective inspection. This allowed for a higher level of 

diagnostic precision. Using this technique, thermograms as a diagnostic tool for 

automatically diagnosing breast cancer cannot be demonstrated (U. R. Acharya et al. 

2014) [32].  

2.6 Deep Learning Approach for Classification: 

It was shown that deep learning based on histopathological image categorization 

might be used as a technique for premature identification of this cancer utilising the 

deep learning technology. The clinical histopathological tissue slides are of abundant 

use in the classification of the various subtypes of this cancer. Both the microarray 

tissue dataset and the ation of the various subtypes of this cancer. Both the microarray 

tissue dataset and the Break His dataset were used in the collection of these data. They 

were helpful in distinguishing normal cancer cells from aberrant cancer tissues. In order   

a relatively tiny window. This approach lands into account the sparseness of the 

datasets, cuts down on the total number of measures, and speeds up the training process. 

In addition to that, it prevents overfitting. The dataset also considered more extensive 

and deeper sparse networks, which were able to do analysis on the extensive and 

complicated dataset. The subsequent layers were able to obtain the performance about 

the information that was compared to the subsequent high-level levels. According to 

Mehdi Habibzadeh and his colleagues' research Carneiro et al. (2018) [33], despite the 

presence of picture complexity in the dataset, both techniques performed better for 

digital image processing. 

Mohammad A. et al. (2019) [42] propose a novel method to model the changes 

on temperatures in normal and abnormal breasts using a representation learning 

technique called learning-to-rank and texture analysis methods. The proposed method 

generates a compact representation for the infrared images of each sequence, which is 

then exploited to differentiate between normal and cancerous cases.  They introduced a 

model the changes in breast temperatures during the dynamic thermography procedures 

using the LTR and texture analysis methods. This method generates a compact yet 

descriptive representation for the whole sequence of thermograms of each case, then 

input the representation extracted from normal and cancerous cases into the MLP 

classifier to build a classification model. The proposed method obtains outstanding 

classification results in terms of AUC, accuracy, recall, precision and F-score.  



31 | P a g e  

Ekici and Jawzal et al. (2020) [51] developed software to automate breast 

thermograms’ BC detection. Their method consists of a CNN optimized by a Bayes 

Algorithm. The dataset used had a cohort of 140, of which 95 were benign and the rest 

malignant. Due to the class disparity, the data augmentation technique was used to 

balance the two. Also, object-oriented image segmentation was used for the ROI 

extraction. The model’s performance was then compared with those from the literature 

on the same dataset from which some used statistical features but used various 

classifiers, namely, SVM, ANN, RBF, etc. Dataset used was very small. More number 

of images should be used for classification algorithm. 

Soner C. et al. (2023) [42] propose to utilize Mask R-CNN technique on images 

by first assigning bounding boxes and then creating a border for each tumour volume 

to differentiate it from adjacent tissues and structures. The results indicate that the 

classification and segmentation performances of Mask R-CNN method on ResNet-50 

architecture are better than the data reported in the literature for thermal breast image 

studies. Two network architectures (ResNet-50 and ResNet-101) were trained for 60 

epochs and were then evaluated based on their classification and segmentation 

performances. Detection and segmentation performances of this model were also 

higher with mAP of 0.921 and overlap score of 0.868. In this manner, thermal 

images  handled by a single DL model to successfully perform detection, classification, 

and segmentation of normal and abnormal breast tissues. There is problem of 

resemblance arises that causes overfitting. More number of images to be used to avoid 

the problem. 

  

https://www.sciencedirect.com/topics/engineering/bounding-box
https://www.sciencedirect.com/topics/computer-science/network-architecture
https://www.sciencedirect.com/topics/computer-science/segmentation-performance
https://www.sciencedirect.com/topics/computer-science/segmentation-performance
https://www.sciencedirect.com/topics/computer-science/segmentation-performance
https://www.sciencedirect.com/topics/computer-science/thermal-image
https://www.sciencedirect.com/topics/computer-science/thermal-image
https://www.sciencedirect.com/topics/computer-science/deep-learning-model
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Table 2.1: Landscapes and challenges of conventional thermogram-based BC 

recognition prototypes 

 [citation] Methodology Features Experiments 

Francis et al. 

(2009) [7] 

SVM It attains a high classification 

rate regarding accuracy. 

• This model is not appropriate 

for large-scale datasets. 

Acharya et al. 

(2012) [6] 

SVM It enhances the performance 

concerning different metrics 

like precision, accuracy and 

sensitivity. 

• Although it attains 80% 

accuracy, it has to be 

improved by extracting 

superior texture features. 

Gomathi et al. 

(2016) [4] 

Logistic 

regression 

It has attained a low false 

classification ratio. 

• Conversely, it suffers from an 

incorrect classification ratio. 

Schaefer  (2017) 

[5] 

ACO It provides better detection 

performance on large-scale 

datasets. 

• It suffers from convergence 

speed and takes more time to 

get the optimal solutions. 

Ekici and Jawzal  

(2020) [51] 

CNN It improves the early diagnosis 

rate. It gets a better accuracy 

rate. 

• It cannot identify the level of 

cancer. 

Sánchez et al. 

(2020) [3] 

ANN It offers a better diagnosis rate 

using low-cost methodologies. 

• This model does not apply to 

complex features. 

Yadav and 

Jadhav  (2020) 

[52] 

CNN It gets better classification 

performance for small-scale 

datasets. 

• However, it is not suitable for 

larger datasets and the use of 

feature aggregation 

approaches. 

Al et al. (2023) 

[1] 

ELM, MLP It provides promising 

detection results with superior 

accuracy. 

• The performance is affected 

due to the quality of protocols 

utilized for capturing the 

thermograms. 
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Table 2.2: Structures and encounters of conventional thermogram-based cancer 

recognition prototypes 

Author [citation] Pre-processing 
Segmentation 

Method 

Classificati

on 

algorithm 

Dataset used, Accuracy 

achieved, other remarks 

Acharya  et al. 

(2012) [6] 
Pre-processing - SVM 

Singapore General Hospital, 

Singapore and 88.1% of 

accuracy. 

Francis et al. (2014) 

[53] 
Image enhancement 

K-Means 

clustering 
SVM 90.9% accuracy. 

Schaefer  (2014) 

[44] 

ACO classification 

of thermogram 
- ACO 

dataset of 146 images (29 

cancerous and 117 early 

detection cases) 79.52% 

accuracy 

Santiago Tello-

Mijares et al. (2019) 

[45] 

Image denoising and 

curvature function 

Gradient Vector 

flow 
CNN 

DMR-IR database and 97% 

accuracy achieved 

Mohamed Abdel-

Nasser,  et al. (2019) 

[42] 

Anisotrophic diffusion 

flter 
- CNN 

DMR-IR database dynamic 

images(37 cancerous and 19 

healthy) 

Yadav and Jadhav  

(2020) [52] 
Contrast enhancement - CNN 

project database PROENG 

and 98.5% accuracy 

Gomathi et al. 

(2020) [43] 
Adaptive median filter 

Multi-Model 

Subspace 

Clustering 

Logistic 

regression 
DMR-IR database 97.774 

Sánchez et al. 

(2020) [3] 
RGB image Otsu’s method ANN 

Database for Mastology 

Research (DMR) and 

accuracy attains between 

90.17% and 98.33% 

Ekici and Jawzal  

(2020) [51] 
Image filtering 

 (VPP) and 

(HPP) 
CNN 

Static dataset, 98.95% 

accuracy achieved 

Al Fayez  (2020) 

[50] 

A homomorphic 

filtering technique 

Binary masking 

and K-mean 

clustering 

ELM and 

MLP 

DMR-IR database and 

99.1% accuracy achieved 

Esraa A Mohammad 

et al. (2022) [46] 
Not mentioned U-net network 

 Two -class 

CNN based 

deep 

learning 

DMR_IR database accuracy 

= 99.33%, sensitivity = 

100% and specificity = 

98.67% 

Sonar Civilibar [42    

b] (2023) 
Not mentioned - 

Mask R-

CNN 

DMR IR dataset, 97.1% 

testing accuracy 
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 The research has been shown that the proper combination of type of 

segmentation technique followed by feature extraction and then good classifiers may 

improve the results. Other than Shannon entropy, there are many alternative definitions 

of entropy and divergences based on them, like, Renyi entropy, sample entropy, beta-

divergence and others. Shannon entropy has been specifically designed for 

communication problems and works there better. But for machine learning task the 

alternative definitions of entropy are expected to do better. These new entropy 

definitions are more robust and have proven to give better results for regression tasks. 

Similar results are expected for classification task and need be tested. Deep learning 

approaches are showing extraordinary results for classification problem in other tasks, 

including medical diagnosis.  Till now for breast cancer detection using thermography 

only CNN has been used and the approach was overfitting there (Soner C. et al. 2023) 

[42]. So, there is a large scope of applying other DNN approaches, specifically those 

requiring low resources and are robust. So, we have tried to use simplest structure that 

needs less computations. Following figure shows basic block diagram of the deep 

neural network. We stick to the concept that one or more than one hidden layer in neural 

network called as the Deep Network. We have employed this concept for the 

implementation of our deep neural network. Following figure shows basic deep neural 

network structure which consist of input layer, output layer, and number of hidden 

layers. 

 

Figure 2.4: Basic block diagram of Deep Neural Network 
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2.7  Summary  

The data set that support the findings of this study are openly available in Visual 

Lab at http:// visual. ic. uff. br/ dmi/. Mammogram-based breast cancer detection 

models have a high false classification ratio and poor accuracy, and as a result, 

thermography is essential to grow a new automated diagnostic prototype. In spite of the 

fact that thermography-based breast cancer diagnosis provides greater performance, it 

is still lacking in accuracy owing to a variety of factors including menstruation, 

physiological status, and stable temperature. Table 1 contains a number of different 

breast cancer detection algorithms that are based on thermograms. Both ELM and MLP 

(Al Fayez et al.2020) [50] provide very accurate and promising detection findings. 

Nevertheless, the performance is negatively impacted because of the poor standard of 

the methods that were used to record the thermograms. CNN (Abdel-Nasser et al.2019) 

[42] both increases the pace at which early diagnoses are made and achieves a higher 

accuracy rate. Yet, it is unable to determine the stage of the malignancy. ANN 

(Sánchez-Ruiz et al. 2020) [3] provides a higher percentage of accurate diagnosis with 

methods that are more cost-effective. On the other hand, this paradigm does not apply 

to characteristics that are complicated. Logistic regression (Gomathi et al. 2020) [43] 

has achieved a low false classification ratio thanks to its improved accuracy. On the 

other hand, it has a problem with the classification ratio being inaccurate. ACO 

(Schaefer et al. 2014) [44] enables superior detection performance on large-scale 

datasets. Nevertheless, it has issues with convergence speed and takes a longer amount 

of time to arrive at ideal answers. The performance of an SVM (Acharya et al. 2012) 

[6] is improved in terms of a variety of various criteria including precision, accuracy, 

and sensitivity. Even though it has an accuracy of 80%, it still has to be enhanced by 

the extraction of more sophisticated texture information. SVM (Francis, et al. 2014) 

[53] is capable of achieving great classification performance in terms of accuracy. 

Nonetheless, this approach is not appropriate for use with datasets of a large size. When 

used to small-scale datasets, CNN (Sánchez-Ruiz, D. et al. 2020) [56] achieves superior 

classification performance. On the other hand, it is not appropriate for use with bigger 

datasets or methodologies that aggregate features. These issues enable the researchers 

in presenting a novel CAD structure for the purpose of assisting radiologists and for 

decreasing the human factor associated via the use of infrared breast thermographic 

images by applying deep learning methodologies. 
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CHAPTER 3 

BETA ENTROPY FROM BETA DIVERGENCE 

In image processing, entropy is a statistical measure used to quantify the amount 

of information or randomness in an image. It provides insights into the complexity or 

uncertainty of the pixel intensities within an image. Entropy is computed by considering 

the probability distribution of pixel intensities. The entropy value is highest when the 

pixel intensities are uniformly distributed across all possible intensity levels, indicating 

a high degree of randomness or complexity in the image. Conversely, if the image has 

a very narrow or concentrated intensity distribution, the entropy value will be low. In 

image processing, entropy is used for various purposes, including image segmentation, 

thresholding, and feature extraction. For example, in thresholding, entropy can be 

utilized to automatically determine an optimal threshold value for separating 

foreground and background regions in an image. By maximizing the entropy, we can 

find a threshold that effectively captures the significant information in the image. 

Overall, entropy serves as a useful measure in image processing to characterize the 

information content and complexity of an image, enabling various analysis and 

processing techniques to be applied based on its value. 

3.1  Introduction:  

 Information theory (Thomas M. Cover and Joy A. Thomas. (n.d.). Book: 

Entropy and Information Theory) [20] and probability theory are two closely related 

fields of mathematics that deal with the quantification, storage, and communication of 

data. Probability theory is the study of randomness and uncertainty, while information 

theory is the study of how to measure and transmit information. The fields of exchange, 

interpreting, the extraction procedure, and exploitation of information are all topics that 

are investigated by information theory. In a more general sense, one can consider data 

to be the solution to the problem of ambiguity. The aforementioned abstract notion was 

further developed in 1948 by Claude-Shannon in an article titled A Mathematical 

Theory of Communication. In this framework, information is conceived of as a set of 

feasible correspondence, and the aim is to transmit such communications over an 

unstable route, as well as to have the receiver recreate the contents of the message with 

a low likelihood of error, in regardless of the medium's noise.  
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 Entropy, which can be thought of as a measurement of a system's degree of 

uncertainty or unpredictability, is one of the most vital ideas in the field of evidence 

theory. The greater a system's entropy, the greater the degree of uncertainty that exists 

inside that system. Measurement of the degree of ambiguity associated with a random 

parameter is another application of entropy's use in probability theory. 

 There are various points of connection between information theory and 

probability theory. The idea of entropy, which is central to probability theory, is the 

inspiration behind, for instance, the Shannon entropy, which is a metric for determining 

the amount of information contained inside a message. In addition, a significant number 

of the procedures that are utilized in information theory, such as data compression and 

error correction, are founded on probabilistic approaches. 

 Here mentioned how information theory and probability theory are used in 

Machine learning: Information theory is used in machine learning algorithms, such as 

those used for classification and prediction. 

3.2  Information Definition – Entropy Definition – Shannon Entropy: 

 Information theory deals with extracting information from data or signals. 

Information is a measure of the amount of uncertainty that is reduced when a new piece 

of data is received. The more uncertain the data was before it was received, the more 

information it contains. 

3.2.1 Entropy 

 Entropy is a measure of statistics contained in data and signal. An organism's 

entropy can be thought of as an indicator of how disordered or unpredictable it is. The 

higher a system's entropy value is, the greater the degree to which it is disorganized. 

Information theory is built upon the disciplines of probability theory and statistics, 

which serve as its foundation. In these fields, quantifiable information is often referred 

to in the sense of bits. Units of information that are connected with random variable 

dispersion are often the focus of information theory. One of the most essential metrics 

is known as entropy, and it serves as the fundamental constituent of a great deal of other 

measurement terminology. Entropy is a useful tool for quantifying the amount of 

evidence contained in a single random parameter. It is used to portray the quality of the 

input. 
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 The following equation can be used to define the entropy of X that has a 

probability mass function of the p(y): 

𝐻 (𝑌)  =  −⅀ 𝑝(𝑦) 𝑙𝑜𝑔2 𝑝(𝑦).    (1)  

3.2.2 Shannon Entropy: 

 Shannon entropy is a degree of the info content of a communication. It is 

demarcated as the average volume of info that is contained in each symbol of a message. 

The formula for Shannon entropy is:  

𝐻 =  − ∑𝑝𝑖 𝑙𝑜𝑔₂(𝑝𝑖)   (2) 

where:  𝐻 is the Shannon-entropy 

𝑝𝑖 is the probability of symbol i occurring 

 The choice of logarithmic base determines the unit of measurement for the 

entropy (e.g. bits, nats or decimals). Using  𝑙𝑜𝑔₂ gives the entropy in bits, which is most 

common choice in information theory. 

 In Image processing domain, Entropy is a degree of ambiguity or randomness 

in a random parameter. Information-entropy or Shannon entropy𝑆, proposed by 

Shannon et al. (1949), is defined as: 

𝑆ℎ𝐸𝑛(𝑀𝑡
𝑎𝑠) =  − ∑ 𝑝𝑏(𝑀−1

𝑤𝑗
𝑤𝑗) 𝑙𝑜𝑔₂(𝑝𝑏(𝑤𝑗) )  (3) 

 Here, 𝑀 =  2𝑟 shows the distinct grey level count, the original image is shown 

by 𝑀𝑡
𝑎𝑠, and the probability of occurrence of the 𝑤𝑗 value in the 𝑀𝑡

𝑎𝑠 image is shown 

by 𝑝𝑏(𝑤𝑗) respectively.  

 The fact that the Shannon entropy has led to a extensive variety of extensions 

and presentations is one of the best ways to comprehend the importance of this concept.  

3.2.3  Properties of Shannon Entropy:  

1.  Information gain: Shannon entropy is used to quantify the information gain or 

reduction in uncertainty when a new attribute is considered in decision trees or 

feature selection algorithms. It helps assess the relevance and importance of 

different features for classification and regression task. 
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2.  Image Compression: Shannon entropy provides a theoretical basis for data 

compression. It indicates the minimum quantity of bits mandatory to encode the 

outcomes of a random variable. Efficient data compression algorithms aim to 

exploit the redundancy in the data and reduce the average code length close to 

the entropy. 

3.  Decision Making and prediction: Shannon entropy is used in decision theory 

and machine learning to measure the uncertainty or impurity in classification 

problems. It helps determine the optimal features or attributes to split data, build 

decision trees, or train models such as random forests and gradient boosting 

algorithms. 

4.  Channel Capacity: In communication theory, Shannon entropy represents the 

maximum data transmission rate or channel capacity of a noisy channel. It 

provides an upper bound on the info rate that can be reliably conveyed through 

the network. 

5.  Invariance: Shannon entropy is invariant under permutations of the outcomes. 

That is, the entropy remains the same regardless of the order or labeling of the 

outcomes. It depends only on the probabilities assigned to the outcomes 

6.  Maximum Entropy: For a discrete Y with n conceivable outcomes, the 

maximum entropy is achieved when all out puts are alike, i.e.,𝑃(𝑌) =  1 𝑛⁄    for 

all y. In this case, H(Y) is maximized and equals 𝑙𝑜𝑔2(𝑛). It represents the 

highest possible uncertainty or randomness. 

7.  Non-negativity: Shannon entropy is always non-negative. It is zero when the 

random variable has a single outcome with probability 1, indicating no 

uncertainty or perfect predictability. Higher entropy values indicate more 

uncertainty or randomness. 

 Overall, Shannon entropy plays a fundamental role in quantifying uncertainty, 

information content, and randomness. Its properties and applications have made it a 

central concept in information theory and related fields. 
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3.3 KL Divergence from Entropy 

 The term "Kullback-Leibler divergence" is another name for this notion. It is 

defined as the subtraction among the actual entropy of a distribution and the value that 

would be anticipated for the entropy of that distribution if it were subjected to another 

distribution. This difference may be calculated by subtracting the actual entropy from 

the value that would be predicted.  

 Cross entropy is one of the most commonly used loss function in classification. 

KL divergence = Cross Entropy – Entropy  

DKL(P||Q) = H (P, Q) – H (P)     (4) 

DKL(P||Q)  = -∑ Pi*log (Qi) – [-∑ Pi*log (Pi)]  (5) 

DKL(P||Q)  = E [log P -log Q]    (6) 

DKL(P||Q)  = ∑ 𝑃𝑖(log 𝑃𝑖 − log 𝑄𝑖𝑁
𝑖=1  )   (7) 

DKL(P||Q)  =  ∑Pi ∗ log 
𝑃𝑖

𝑄𝑖
     (8) 

 The KL divergence cannot take on a negative value and will always be equal to 

0 in the event that P and Q are identical to one another. In light of this, we may 

understand that the KL divergence is a measurement of the amount of information that 

is lost when Q is represented by P. 

 The KL divergence distributions P and Q is defined as: 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃 ∗ log
𝑃

𝑄
     (9) 

Where, P and Q probabilities distributions and summation is taken over all possible 

outcomes. 

 In simple terms, KL divergence is a measure of how different two probability 

distributions are from each other. It is used in machine learning and information theory 

to compare models and to help select the best model for a given problem. In machine 

learning, one of the very commonly used techniques is the Maximum Likelihood 

estimation, which basically tries to learn parameters which maximize the Likelihood or 

the Conditional Likelihood. KL divergence is a “distance” between probability 

distributions, and measures the how different two probability distributions are.  



41 | P a g e  

If the KL divergence D_KL(P || Q) is small, it indicates that the two distributions P and 

Q are similar, with a small additional information needed to encode outcomes from P 

using a code optimized for Q. Conversely, if the KL divergence is large, it suggests a 

significant difference between the distributions, implying a larger amount of additional 

information required. 

3.3.1  Applications of KL Divergence: 

Feature selection: KL divergence can be utilized in feature selection algorithms to 

measure the relevance and redundancy of features. By computing the divergence 

between the feature distribution and the target variable, one can identify the most 

informative features for a given task.  

Model selection and comparison: KL divergence can be used to compare and select 

between different statistical models or hypothesis. It can measure the discrepancy 

between the observed data and the predicted data from different models, allowing for 

model selection based on goodness-of-fit. 

Optimization: KL deviation can be used as a loss function or a regularization term in 

optimization problems. For instance, in variational inference, it is minimized to find the 

closest approximation to the true posterior distribution. It is also used in maximum 

likelihood estimation and maximum a posteriori estimation.  

 Here is an illustration of how KL deviation and entropy can be utilized. Suppose 

we have P and Q, that represent the probability of rain tomorrow. P is the actual 

distribution, and Q is a prediction of the distribution. The KL divergence between P and 

Q can be used to measure the accuracy of the prediction. If the KL divergence is low, 

then the prediction is accurate. If the KL divergence is high, then the prediction is 

inaccurate. 

3.4 Alternative Entropy Definitions 

 There are Alternative entropy definitions in the literature [20]:  

3.4.1 Minimum entropy, Maximum entropy: 

 The quantity of entropy that is considered to be "minimum" for a particular 

probability distribution is the value that is the lowest feasible for that distribution. When 

all of the probability are exactly the same, it has been accomplished. The value of 
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entropy that is considered to be at its maximum for a particular probability distribution 

is referred to as maximum entropy. The minimum entropy and maximum entropy are 

concepts related to the info content or ambiguity of a chance distribution. 

The minimum entropy refers to the lowest possible level of uncertainty or 

information content in a probability distribution. It occurs when all events in the 

distribution have equal probabilities. In other words, the distribution is maximally 

uniform. The minimum entropy is achieved when the distribution has maximum 

entropy but with a uniform or equally likely assignment of probabilities to all events. 

The minimum entropy is achieved when all events in a discrete probability distribution 

have equal probabilities, resulting in a maximally uniform distribution. For a discrete 

probability distribution with N possible events, the minimum entropy 𝐻𝑚𝑖𝑛 is given by: 

𝐻𝑚𝑖𝑛 =  −𝑙𝑜𝑔2 (
1

𝑁
) = =  𝑙𝑜𝑔2(𝑁)    (10) 

where: 

𝐻𝑚𝑖𝑛 is the minimum entropy. 

𝑁: possible trials in the distribution. 

 Mathematically, if a discrete probability distribution has 𝑁 possible events, the 

minimum entropy occurs when each event has a probability of 
1

𝑁
. In this case, the 

entropy value is at its minimum, indicating the least amount of uncertainty. 

Maximum Entropy: 

 The maximum entropy, on the other hand, refers to the highest possible level of 

uncertainty or information content in a probability distribution. It occurs when all 

events in the distribution are equally unpredictable or have the maximum possible 

entropy. In this case, the distribution represents the most diverse or least biased set of 

events. 

 For a discrete probability distribution with N possible events, the maximum 

entropy is achieved when all events are equally unpredictable, meaning the probabilities 

are distributed uniformly. The maximum entropy distribution is often considered as the 

least informative or most uncertain distribution, as it provides no additional knowledge 

about the underlying events. 
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 The idea of maximum entropy is commonly used in evidence theory and 

statistical modeling, where it serves as a benchmark or reference for deriving 

probability distributions based on limited information or constraints. 

 The maximum entropy occurs when all events in a discrete probability 

distribution are equally unpredictable or have the maximum possible entropy. For a 

discrete probability distribution with N possible events, the max-entropy 𝐻_𝑚𝑎𝑥 is 

given by: 

𝐻_ max = − ∑ 𝑙𝑜𝑔2𝑥 𝑝(𝑥)    (11) 

where: 

𝑝(𝑥)  is  the likelihood assigned to event x in the distribution. 

 The max-entropy distribution is considered by having the highest entropy value 

among all possible distributions with the same number of events. It represents the least 

biased or most diverse set of events, providing the least amount of information or 

certainty about the underlying events. It's important to note that the logarithm used in 

the formulas can be of any base, such as 2 for binary entropy or natural logarithm (ln) 

for natural entropy, as long as the same base is used consistently throughout the 

calculations. 

3.4.2 Sample entropy  

 Sample entropy is a measure used to quantify the amount of symmetry or 

unpredictability in a time series data. It is often used as a feature in various applications, 

including signal processing, time series analysis, and biomedical signal analysis. Unlike 

Shannon entropy, which processes the average amount of uncertainty in a probability 

distribution, sample entropy focuses on the patterns within a data sequence. The steps 

to compute sample entropy are as follows: 

 Sample entropy is calculated based on the concept of approximate entropy 

(ApEn). Given a time series data sequence of distance N, symbolised as 

𝑦(1), 𝑦(2), . . . , 𝑦(𝑁), the sample entropy 𝑆𝐸𝑛(𝑚, 𝑟) is well-defined as: 

𝑆𝐸𝑛(𝑚, 𝑟)  =  −𝑙𝑜𝑔(𝐶𝑚(𝑟 + 1) / 𝐶𝑚(𝑟))   (12) 
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 Here, m is the distance of the template pattern, r is the maximum lenience or 

radius of the similarity criterion, 𝐶𝑚(𝑟) represents the count of m-distance forms that 

are alike (within the tolerance r), and 𝐶𝑚(𝑟 + 1) represents the total of 

(𝑚 + 1)distance outlines that are analogous.  

 Similarity criterion: The similarity standard is determined by the tolerance or 

radius parameter, 𝑟. It specifies the maximum acceptable difference between patterns 

to be considered similar. If the difference between two patterns is greater than r, they 

are considered dissimilar. 

 Template pattern: The template pattern, of length m, serves as a reference for 

comparison. It is a subsequence of the original data sequence, and all subsequent 

patterns of the same length are compared to this template pattern. 

 Counting similar patterns: Sample entropy counts the quantity of alike patterns 

of length 𝑚 and (𝑚 + 1) in the data sequence. The similarity is determined by the 

tolerance parameter, 𝑟. Similar patterns have differences (Euclidean distance, for 

example) within the tolerance range. 

 Calculating the sample entropy: is calculated as the logarithm of the ratio of the 

counts of (𝑚 + 1)-length patterns and m-length patterns. The negative sign is used to 

make the entropy positive. 

 Interpretation: A lower sample entropy value indicates more regularity or 

predictability in the data sequence, suggesting that similar patterns occur more 

frequently. Conversely, a higher sample entropy value indicates more irregularity or 

randomness, indicating that similar patterns are less likely to occur. 

3.4.3  Approximate entropy: 

 It (ApEn) is an amount used to quantify the intricacy or abnormality of a time 

series data sequence. It is particularly useful in analysing biomedical signals, such as 

electroencephalograms (EEG) and heart rate unpredictability (HRV), to assess the 

regularity or predictability of physiological processes. Here's how approximate entropy 

works: 



45 | P a g e  

Definition: Given a time series data sequence of distance N, as 𝑝(1), 𝑝(2), . . . , 𝑝(𝑁), 

the approximate entropy 𝐴𝑝𝐸𝑛(𝑚, 𝑟) is calculated as follows: 

𝐴𝑝𝐸𝑛(𝑚, 𝑟)  =  −𝑙𝑜𝑔(𝐴𝑚(𝑟 + 1) / 𝐴𝑚(𝑟))  (13) 

 In this case, m refers to the total length of the template structure, r is the greatest 

possible tolerance or radius of the similarity criteria, 𝐴𝑚(𝑟) is the average number of 

patterns of length m that are similar (within the tolerance r), and 𝐴𝑚(𝑟 + 1) is the 

average number of patterns of length 𝑚 + 1 that are similar. 

Calculating the approximate entropy: ApEn is then computed as the logarithm of the 

ratio of the average counts of (𝑚 + 1) length patterns and m-length patterns. The 

negative sign is used to make the entropy positive. Interpretation: A lower approximate 

entropy value indicates more regularity or predictability in the data sequence, 

suggesting that similar patterns occur more frequently. Conversely, a higher 

approximate entropy value indicates more irregularity or complexity, indicating that 

similar patterns are less likely to occur. Approximate entropy provides a amount of the 

complication or indiscretion of a time series, capturing the degree of predictability or 

randomness in the data. It used in the examination of bodily signals, as well as in other 

domains where assessing the complexity or regularity of sequential data is of interest. 

 Approximate entropy (ApEn) can be utilized in machine learning in various 

ways to analyse and process time series data. Here are a few applications of 

approximate entropy in machine learning: 

1. Classification and prediction: ApEn can be used as a feature or similarity 

measure in classification and prediction tasks involving time series data. For 

instance, in activity recognition from sensor data or gesture recognition, ApEn 

can capture the complexity or regularity of different activities or gestures, 

allowing for accurate classification. In addition, ApEn can be employed as a 

similarity metric for time series comparison, enabling tasks such as time series 

clustering or nearest neighbor classification. 

2. Assessing model performance: ApEn can serve as an evaluation metric for 

machine learning models that deal with time series data.  
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3. Hyperparameter tuning: ApEn can be utilized as a criterion for hyperparameter 

tuning in machine learning algorithms. By tuning these hyperparameters based 

on the ApEn measure, it is possible to improve the model's performance. 

 These are some of the ways in which approximate entropy can be applied in 

machine learning for time series data analysis. By capturing complexity, irregularity, 

and temporal patterns, ApEn can enhance the understanding and modeling of time-

dependent processes, contributing to improved performance in various tasks. 

3.4.4 Alpha entropy:  

 A time series’ randomness can be measured using a concept called alpha 

entropy. The Shannon entropy is a well-known measure of randomness; the a-entropy 

of a multivariate distribution is a generalization of this concept that assesses the 

randomness of a set of variables. Alfred Re'nyi introduced the concept of a-entropy for 

the very first time in a study that was published in 1961. Since then, numerous 

fundamental aspects of the a-entropy have been isolated and characterized (Heidari, A. 

A. et al. 2019) [26] (Venkata Rao, R. et al. 2016) [27]. It is based on the probability that 

a given symbol will be followed by another symbol. 

 The concept of Alpha -entropy in the context of a multivariate distribution 

serves as an extension to the more commonly recognized Shannon entropy. The alpha-

entropy can yield another valuable measure known as a Jensen difference. This 

difference is an extension of the traditional Jensen difference and will play an important 

part in our efforts to expand entropic pattern matching approaches to accommodate high 

feature dimensions. This difference is an extension of the conventional Jensen 

difference. 

 Alpha or Renyi entropy is a concept in information theory and statistical physics 

that generalizes Shannon entropy. It is named after Alfréd Rényi, a Hungarian 

mathematician. Renyi entropy provides a family of entropy measures that encompass 

Shannon entropy as a special case: 

𝑅𝑒𝑛 =
1

1−𝛼
𝑙𝑜𝑔2 ∑ 𝑝( 𝑥𝑖)

𝛼𝑛
𝑖=1    (14) 

where α is a parameter that determines the order of the Renyi entropy. 
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Some key properties and characteristics of Renyi entropy are: 

1. Parameter α: The value of α determines the properties of the Renyi entropy. 

When α approaches 1. As α deviates from 1, Renyi entropy captures different 

aspects of the distribution. For example, when α is larger than 1, Renyi entropy 

gives more weight to the most probable events, while smaller values of α 

emphasize the contribution of less probable events. 

2. Generalization of Shannon: Shannon is a different phase of Renyi when α is 

equal to 1. It provides a degree of the average ambiguity or info content of a 

random parameter. Renyi entropy generalizes this notion by considering a 

broader range of orders. 

3. Order dependence: Renyi entropy exhibits order dependence, meaning that 

different orders of Renyi entropy can lead to different interpretations and 

characterizations of the distribution. Higher orders emphasize the importance of 

high-probability events, while lower orders give more weight to the tails of the 

distribution. 

4. Additivity: Unlike Shannon entropy, Renyi entropy is not necessarily additive 

for independent random variables. The additivity property holds for certain 

specific values of α, such as α = 0 and α = 2. 

5. Applications: Renyi entropy has found applications in various fields, including 

information theory, statistical physics, signal processing, machine learning, and 

complex systems examination. It is used to measure diversity, 

distinguishability, and information content in probability distributions. It has 

also been applied in clustering, feature selection, and anomaly detection tasks. 

 Renyi entropy provides a flexible framework for characterizing the uncertainty 

and information content of random variables. By varying the parameter α, it captures 

different aspects of the distribution and offers a range of entropy measures beyond 

Shannon entropy. 

 When α is set to 1, Renyi entropy touches to Shannon’s. However, for other 

values of α, Renyi entropy captures additional information about the distribution. Alpha 

entropy, also known as Renyi entropy, captures different aspects of the probability 

distribution by varying the parameter α. The value of α determines the order of the 
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Renyi entropy and influences how information and uncertainty are measured. Here's 

how different values of α capture distinct aspects of the probability distribution: 

1. 𝛼 =  0: When α is set to 0, Renyi entropy represents the min-entropy. It 

measures the uncertainty associated with the least probable event in the 

distribution.  

2. 𝛼 =  1: 𝐴𝑡 𝛼 =  1, Renyi entropy meets to Shannon, which measures the 

average uncertainty or information content of the distribution. Shannon is 

widely used in information theory and provides a measure of the overall 

randomness or unpredictability of the distribution. 

3. 0 <  𝛼 <  1: For values of α between 0 and 1, Renyi entropy emphasizes the 

contribution of less probable events in the distribution. It gives more weight to 

the tail of the distribution, capturing the information in the rare events. Lower 

values of α focus more on the tails, providing insights into the extreme events 

or outliers. 

4. 𝛼 =  2: 𝐴𝑡 𝛼 =  2, Renyi entropy is known as collision entropy. It is related to 

collision probabilities and collision theory. Collision entropy quantifies the 

degree of overlap or collision between elements of the distribution, measuring 

the redundancy or clustering of events. 

5. 𝛼 >  1: For values of α greater than 1, Renyi entropy gives more weight to the 

most probable events in the distribution. It emphasizes the concentration of 

probabilities and captures the information contained in the highly probable 

events. Larger values of α concentrate the information in the most likely 

outcomes. 

 By varying the parameter 𝛼, alpha entropy offers a range of entropy measures 

that highlight different characteristics of the probability distribution. It allows for a 

nuanced analysis of uncertainty, information content, and the concentration of 

probabilities, providing insights into different aspects of the distribution's behavior. 

3.5 Density Power divergence or Beta divergence 

 The beta divergence is a metric that may be used to determine the distance that 

exists between two probability distributions. It is an extension of the Kullback-Leibler 

divergence, and it is commonly used in the process of statistical inference that is 
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resilient. Due to the fact that it contains a variety of characteristics, the beta divergence 

is an extremely useful tool for estimating the relative distance that exists between two 

probability distributions. First, it is impossible for it to have a value that is less than 

zero, and it will always have a value of zero if and only if the equation 𝑝 = 𝑞 is correct. 

Second, it is symmetric, so 

𝐷𝛽 (𝑝 ∣∣ 𝑞) = 𝐷𝛽 (𝑞 ∣∣ 𝑝).   (15) 

 Third, it is parameterized by 𝛽, which allows us to control the amount of 

robustness to outliers. 

Beta divergence applications: 

 Robust statistical inference 

 Non-negative matrix factorization 

 Image processing 

 Natural language processing 

 Here are some of the advantages of using beta divergence: 

a) It is a reliable method for determining the gap in probability distributions 

between two sets. 

b) It can be utilized in the process of determining the distance that exists between 

two probability distributions that have distinct supports. 

c) It is a parameterized measure of distance, which allows us to control the amount 

of robustness to outliers. 

  It has also been used for Nonnegative Matrix Factorization [80] to achieve 

robustness. The generalized alpha-Beta divergence has been recently used for 

dimensionality reduction in and to derive a robust Variational Auto-Encoder. Also, the 

free parameter significantly rises the litheness to handle diverse types and amount of 

clatter in data. But according to the author’s knowledge the entropy definition induced 

from Beta divergence has not been used in classification task. To exploit the robustness 

against outliers’ characteristics of Beta divergence this article uses them as features and 

expects them to be able to achieve class separation among the thermal variations due to 

cancer class and those due to noise in either a normal class or a benign tumor class 

thermographic image of breast.  
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 The beta divergence is defined as follows:  

𝐷𝛽(𝑃||𝑄) =
1

𝛽
 ∫ (𝑃𝛽(𝑥) − 𝑄𝛽(𝑥)) 𝑃(𝑥)𝑑𝑥,   (16) 

 The density power divergence can be calculated between two probability 

distributions by comparing their power-transformed PDFs and weighting the 

divergence by the original PDF of the reference distribution. The parameter β allows 

you to control the emphasis on different aspects of the divergence and the overall 

magnitude of the divergence measure.  

Where, 𝑃(𝑥) 𝑎𝑛𝑑 𝑄(𝑥) These are the probability density functions (PDFs) of the two 

distributions, The PDF represents the probability of a random variable taking a 

specific value. 

𝑃𝛽(𝑥) 𝑎𝑛𝑑 𝑄𝛽(𝑥)These terms raise the PDFs 𝑃(𝑥) 𝑎𝑛𝑑 𝑄(𝑥) to the power of 

𝛽. This is known as the power transformation. The power transformation is 

applied to emphasize or de-emphasize certain aspects of the distributions, 

depending on the value of 𝛽. By adjusting 𝛽, you can control the sensitivity to 

differences between the distributions. 

1/𝛽, this term scales the integral by dividing the entire expression by 𝛽. This 

scaling factor adjusts the magnitude of the divergence measure. Larger values 

of 𝛽 tend to increase the sensitivity to differences between the distributions. 

3.6 Deriving Beta entropy from Beta divergence 

 To begin deriving the entropy of the Beta distribution from the Beta divergence, 

we can begin with the meaning of the Beta divergence. This will allow us to deduce the 

entropy of the Beta distribution. The Beta divergence is an indicator of the dissimilarity 

between two probability density functions, whereas the entropy of a Beta is a metric of 

the ambiguity or unpredictability linked with the distribution. To derive beta entropy 

from beta divergence, we can start with the formula for beta divergence: 

𝐷𝛽 (𝑃||𝑄) =  
1

1−𝛽
 [∑𝑥(𝑃𝑖(𝑥)𝛽 ∗ 𝑄𝑖(𝑥)1−𝛽 ) − 1]   (17) 

where: 

𝐷𝛽 (𝑃||𝑄) is the beta divergence between the probability distributions 𝑃 𝑎𝑛𝑑 𝑄. 

𝛽 is the parameter of the beta divergence. 
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To convert beta divergence into entropy: 

𝐻𝛽(𝑃) =
1

𝛽
 ∫(𝑃𝛽(𝑥) − 1)𝑃(𝑥)𝑑𝑥.    (18) 

where: 

𝐻𝛽 (𝑃) is the beta entropy of the probability distribution P. 

𝑃(𝑥): probability density function (PDF) distribution 𝑃(𝑥).  

𝑃𝛽(𝑥): This term raises the PDF 𝑃(𝑥) to the power of 𝛽. This is known as the 

power transformation. The power transformation is applied to emphasize or de-

emphasize certain aspects of the distribution, depending on the value of 𝛽. 

Advantages of Beta Divergence: 

1. Parameterization and Flexibility 

• Adjustable Sensitivity (𝛽): Beta divergence includes a parameter 𝛽  that can 

be adjusted to emphasize different aspects of the data distribution. This 

flexibility allows it to generalize various divergence measures: 

• 𝛽 = 1 yields KL divergence, which measures the relative entropy 

between two distributions. 

• 𝛽 = 2 corresponds to the squared Euclidean distance, focusing on 

the absolute differences. 

• 𝛽 = 0 results in Itakura-Saito divergence, which is more sensitive 

to small values in the distribution. 

• Tailored Feature Sensitivity: By tuning 𝛽, beta divergence can be made 

more sensitive to certain features of the data, such as tails or central 

tendencies, depending on the classification task. 

2. Adaptability to Data Characteristics 

• Handling Different Distributions: Different datasets might have varying 

distributions, such as heavy-tailed, skewed, or multimodal distributions. 

Beta divergence can adapt to these characteristics by selecting an 

appropriate 𝛽, which is not possible with fixed measures like KL 

divergence. 

• Robustness to Outliers: Higher values of 𝛽 make beta divergence less 

sensitive to outliers, improving robustness in noisy datasets. This 
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adaptability can result in better performance in real-world scenarios where 

data often contains noise. 

3. Enhanced Discrimination Power 

• Capturing Complex Structures: Beta divergence can capture complex 

structures in the data more effectively. For example, in image classification, 

textures and patterns can be better distinguished by tuning β to focus on 

relevant features. 

• Improved Feature Extraction: By providing a more nuanced measure of 

divergence, beta divergence can enhance the feature extraction process, 

leading to more discriminative features for classification models. 

 By converting beta divergence into beta entropy, can be use to quantify the 

uncertainty or information content in a more interpretable manner. 

 Beta entropy can offer greater robustness compared to Shannon entropy and 

other entropies for classification tasks due to several factors related to its formulation 

and flexibility. 

3.7 Summary  

 Various entropy measures discussed in this chapter provide valuable tools for 

quantifying uncertainty, similarity, dissimilarity, and information content within 

probability distributions and data. Entropy measures play a crucial role in statistical 

inference and model selection. They provide a way to assess the goodness-of-fit 

between observed data and a model, allowing researchers to compare and choose the 

most appropriate distribution or model. Divergence metrics, such as Kullback-Leibler 

divergence, quantify the dissimilarity between probability distributions, enabling tasks 

like density estimation, model fitting, and hypothesis testing. Entropy and divergence 

metrics are extensively used in machine learning algorithms. They serve as objective 

functions or regularization terms in training models, aiding in tasks such as 

classification, clustering, and feature selection. These measures provide a basis for 

quantifying uncertainty, model complexity, and similarity between data samples. They 

offer quantitative insights into the nature of data, facilitate model development and 

evaluation, and enable the extraction of meaningful information from complex systems. 

Beta divergence's key advantage lies in its parameter β, which allows it to adapt to 

different data distributions and focus on various aspects of the data, such as tails or 
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central values. This adaptability makes it more robust to noise and outliers, enhances 

feature extraction, and improves the discrimination power of the features used for 

classification. By carefully tuning 𝛽 and integrating beta divergence into the feature 

extraction process, you can achieve more accurate and robust classification outcomes 

compared to using fixed divergence measures. Similarly, Beta entropy's robustness 

stems from its flexibility and adaptability. The parameter 𝛽 allows for fine-tuning the 

entropy measure to better capture the characteristics of the data, making it a powerful 

tool for improving classification accuracy, especially in tasks involving complex or 

noisy data. By effectively leveraging beta entropy, the discriminative power of features 

can be enhanced, leading to more accurate and robust classification outcomes. 
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CHAPTER 4 

HYBRID HARRIS-HAWK JAYA OPTIMIZATION 

ALGORITHM 

It is known that the performance of a Deep Learning algorithm highly depends 

upon the hyperparameter tuning. Metaheuristic algorithms are increasingly used for 

parameter tuning in Deep Neural Networks (DNNs) due to their ability to efficiently 

search large, complex, and non-convex hyperparameter spaces. DNNs have many 

hyperparameters, including learning rates, batch sizes, number of layers, number of 

neurons per layer, activation functions, and regularization parameters. The 

hyperparameter space is high-dimensional and difficult to explore exhaustively. These 

algorithms are designed to handle high-dimensional spaces efficiently, offering a 

practical way to find good solutions without exhaustive search. The performance 

landscape of DNNs is often non-convex with multiple local minima and saddle points. 

Traditional optimization methods may struggle to navigate this complex landscape 

effectively. Exhaustive search methods like grid search become impractical for large 

hyperparameter spaces due to their high computational cost. These algorithms use 

intelligent sampling and search strategies to explore the hyperparameter space more 

efficiently, often requiring fewer evaluations to find good solutions compared to 

exhaustive methods. As DNNs and datasets grow in size, the hyperparameter tuning 

process becomes more challenging and computationally expensive. They scale better 

with problem size and can be parallelized to further enhance efficiency, making them 

suitable for large-scale hyperparameter tuning. Metaheuristic algorithms can adapt their 

search strategies based on the progress of the search, dynamically adjusting to the 

characteristics of the problem. 

We have incorporated newly developed metaheuristic algorithm Hybrid Harris 

Hawk JAYA optimization (HHHJO) to fine tune these DL algorithm parameters 

including the learning rate, number of epochs and hidden neuron count, as well, the 

parameters in FCM including epsilon, maximum iteration count in fuzzy and fuzziness 

parameter. HHHJO is a combination of two optimization algorithms HHO (Harris 

Hawk Optimization) and JA (Jaya Algorithm). HHO [84] holds repeated mechanisms 

of exploration and exploitation to enhance the system performance. It requires good 
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number of algorithmic parameters to be decided for better performance. Too many 

algorithms specific parameters not only increase the computational effort. But it may 

suffer in population diversity and local optima space. Compare to it, JA (Venkata Rao, 

R. et al. 2016) [27] is simple and do not require any additional parameters for the 

initialization. This motivates to combine both HHO and JA to overcome these issues, 

and a novel hybrid HHHJO algorithm is developed. 

4.1  Introduction 

 Hyperparameter modification strongly impacts Deep Learning algorithm 

performance. Trial-and-error hyperparameter tweaking requires skill and often fails. 

We constructed a new heuristic optimization algorithm HHHJO to fine tune DL 

algorithm parameters learning rate, number of epochs and hidden neuron count, as well, 

three FCM parameters epsilon, maximum iteration count in fuzzy, and fuzziness.  

 In the proposed HHHJO, the final update is attained by the below condition by 

using the condition if num≥0.5 and then updating the position using JA; otherwise, 

updating the position using HHO. 

4.2  HHO Algorithm:   

 HHO stands for Harris Hawks Optimization. It is a metaheuristic algorithm that 

was developed by Heidari in 2019. HHO is motivated by the chasing conduct of Harris 

hawks. HHO works by iteratively probing for the best resolution to a problem. In each 

repetition, HHO updates the positions of the hawks in the search space. The hawks are 

attracted to the finest answers that have been establish so far, and they are also repelled 

by the worst solutions. HHO has been exposed to be active in cracking a variety of 

optimization complications: 

Stage-1 Exploration (Tracing): Typically, Harris Hawks make their homes on 

telegraph poles or enormous trees. This allows them to maintain the ideal position to 

hunt their prey by looking for it, waiting for it, and locating it with their keen eyesight. 

The search behavior of Harris Hawks is referred to as global exploration, and it is 

equated in Eq. (1)) with two different strategies: perch when the other members of the 

family are close by, which is indicated by 𝑦 ≥ 0.5 , and rabbit when they are far away, 

which is denoted by 𝑦 < 0.5 as in the equation. 
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𝐴𝑗
𝑣+1 = {

𝐴𝑟𝑛𝑑
𝑣 − 𝑠1|𝐴𝑟𝑛𝑑

𝑣 − 2 ∗  𝑠2 ∗  𝐴𝑗
𝑣  |,                                𝑦 ≥ 0.5

(𝐴𝑟𝑏𝑡 − 𝐴𝑀𝑛
𝑣  ) − 𝑠3 ∗ (𝑚𝑣 − 𝑠4 ∗  (𝑛𝑣 − 𝑚𝑣)),    𝑦 < 0.5

 (19) 

Where a random Harris hawk presented in 𝑣𝑡ℎ iteration of the population is indicated 

as 𝐴𝑟𝑛𝑑
𝑣 , the term 𝐴𝑗

𝑣denotes the population of 𝑗𝑡ℎindividual in 𝑣𝑡ℎ  iteration, the 

individual attained in current optimal position is termed as 𝐴𝑟𝑏𝑡, the factor utilized for 

conversion is given as 𝑦and its random numbers are equally distributed as 1s , 2s , 3s and 

4s  and  𝐹 in the range of(0, 1),  the upper limit is denoted as 𝑛𝑣 and the lower limit is 

given as mv  and the position mean value in current population is given as 𝐴𝑚𝑛
𝑣 . The 

expected value of the present position is formulated in Eq. (2) as under 

𝐴𝑚𝑛
𝑣 =

1

𝑝 ∑ 𝐴𝑗
𝑣𝑝

𝑗−1

      (20) 

 The term 𝑝 indicates the size of the population 

Stage 2-Transition from exploration to exploitation: The transition process achieved 

from global exploration to local exploration in HHO is highly organized by escaping 

energy factor and is showcased in Eq. (3) as under:    

𝐹 = 2 ∗ 𝐹0 ∗ (1 − 𝑣/𝑣𝑚𝑥)     (21) 

Where, 

The fleeing energy is represented by the value F0, the simple random sample provided 

in the limit (-1,1) is represented by the value, the max number of repetitions is shown 

by the value 𝑣𝑚𝑥, and the current repetition is shown by the value 𝑣, respectively. When 

the escaping energy is less than one, the hawks search various regions to discover where 

the rabbits are hiding, which is recognized as the investigation phase. On the other hand, 

when the escaping energy is equal to one, the hawks search only within the immediate 

region, which is known as the exploitation stage. 

Stage 3-Exploitation (Attack):  

 After the Harris hawks have determined that the intended prey is nearby, they 

will begin to circle the prey and patiently wait for an opportunity to attack. 

Nevertheless, the real process of prediction is quite complicated, and as a result, the 

hawks need to make certain modifications in accordance with the actions of their prey. 
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The criteria 𝑠 ∈ (0,1)is used to determine whether or not the prey is successful in 

breaking out of the encirclement. The phase of attacking, also known as exploitation, 

may be approached in four distinct ways, each of which is explained in more detail 

below. 

Soft besiege: In this procedure when 𝑠 ≥ 0.5 and |𝐹| ≥ 0.5, the victim is unable to run 

away, despite the fact that it has enough energy to get away from the ring. As a result, 

while pursuing their prey, Harris Hawks used a tactic known as "soft beige," which is 

represented by the existing component in Equation (22), which is expressed in the 

following format: 

𝐴𝑗
𝑣+1 =  ∆𝐴𝑗

𝑣 − 𝐹 ∗ |𝐾 ∗ 𝐴𝑟𝑏𝑡 − 𝐴𝑗
𝑣|   (22) 

∆𝐴𝑗
𝑣 =  𝑥𝑟𝑏𝑡 − 𝐴𝑗

𝑣.     (23) 

 The vector distance away from the prey is provided by 𝐴𝑗
𝑣, and the equation for 

determining the prey's jumping length, denoted by the variable 𝐾, while it is trying to 

escape is written as follows in Eq. (24):  

𝐾 = 2 ∗ (1 − 𝑠5)      (24) 

 The  𝑠5 is spread in the range of (0,1), respectively. |𝐹| < 0.5 

Hard besiege: At the time when |𝐹| < 0.5 and. 𝑠 ≥ 0.5, i.e., The hunting strategy used 

by Harris hawks is known as "hard besieges," and it consists of surrounding their victim 

with a great number of obstacles in reducing the prey's ability to flee and the number 

of opportunities it has to do so. Harris hawks typically hunt in groups of two to four 

individuals. The mathematical representation of this is as follows: 

𝐴𝑗
𝑣 =  𝑥𝑟𝑏𝑡 − 𝐹 ∗ |∆𝐴𝑗

𝑣|      (25) 

 In the condition of mild besiege, the energy of the prey has not been depleted to 

the point where it is unable to move or escape, in contrast to the state of hard besiege, 

in which the energy of the prey has been depleted to the point where it is unable to 

move or break free. 
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Soft surround with advanced rapid dives: When|𝐹| ≥ 0.5 and. 𝑠 < 0.5, the target is 

able to break out of the encirclement circle, and it has the strength to do so. The Harris 

hawks have two different implementation techniques for their intelligent assault, which 

may be derived from the following equations (Eq. 26) and (Eq.27) 

𝐵 =  𝐴𝑟𝑏𝑡 −  𝐹 ∗   𝐴𝑟𝑏𝑡  −   𝐴𝑗
𝑣                 (26) 

𝐶 =  𝐵 +  𝑡 ∗ 𝑙𝑣𝑦(𝑑𝑚)          (27) 

 The optimization dimension is given as 𝑑𝑚 and the random vector is 𝑡 and 𝑙𝑣𝑦 

is represented in Eq. (28) as 

𝑙𝑣𝑦(𝐴) = 0.01 ×
𝑏×𝜎

|𝜇|
1
𝛽

       (28) 

Where, 𝜎 = (
𝜏(1+𝛽)×sin (

𝜋𝛽

2
)

𝜏(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2
)
)

1

𝛽

      (29) 

 The term 𝑏 𝑎𝑛𝑑 𝜇 be the random variable in the range (0,1) 𝑎𝑛𝑑 𝛽 be the 

default constant and it is fixed as 1.5. The depreciation of the optimization problem is 

given in Eq. (30) as 

𝐴𝑗
𝑣+1 =  {

𝐵, 𝑖𝑓 𝑔(𝐵) < 𝑔(𝐴𝑗
𝑣 ),

                𝐶, 𝑖𝑓 𝑔(𝐶) < 𝑔(𝐴𝑗
𝑣 )                

  (30) 

in which case the word in question is the fitness function. As a result, the hawks evaluate 

the results of the prospective movement 𝐵 in evaluation to the consequences of past 

dive, and if the results are not reasonable, the hawks engage in dives that are erratic, 

abrupt, and quick. 

Hard surround with advanced rapid dives: When  |𝐹| < 0.5 and. 𝑠 < 0.5,, the prey 

can escape but its energy level is low. So, the Harris hawks form a hard sphere formerly 

performing the attack. The strategy is expressed again as Eq. (12) but now 𝐴𝑗
𝑣 in Eq. 

(25) is replaced by  𝐴𝑚𝑛
𝑣  in Eq. (20) to obtain 𝐵. 
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4.3 JAYA Algorithm:  

 The JAYA (Venkata Rao, R. et al. 2016) [27] algorithm is a metaheuristic 

algorithm that is inspired by the behaviour of ants. It is a population-based algorithm 

that works by iteratively searching for the best solution to a problem. The JAYA 

algorithm has been used in a variety of applications, including breast cancer diagnosis. 

In this application, the JAYA algorithm is used to optimize the parameters of a support 

vector machine (SVM) classifier. The SVM classifier is a machine learning algorithm 

that is used to classify data into two or more categories. The JAYA algorithm has been 

shown to be effective in improving the accuracy of SVM classifiers for breast cancer 

diagnosis. In one study, the JAYA algorithm was used to optimize the parameters of an 

SVM classifier on the Breast Cancer Wisconsin (Diagnostic) dataset. The results 

showed that the JAYA optimized SVM classifier achieved an accuracy of 97.18%, 

which was significantly higher than the accuracy of the SVM classifier without the 

JAYA algorithm (96.49%). 

 Here are some of the advantages of using the JAYA algorithm in breast cancer 

diagnosis: 

• The JAYA system is a relatively simple system to implement. 

• The JAYA system is a robust system that is not easily trapped in local minima. 

• The JAYA algorithm has been shown to be active in refining the accuracy of SVM 

classifiers for cancer diagnosis. 

 However, there are also some disadvantages to using the JAYA algorithm in 

breast cancer diagnosis: 

• The JAYA algorithm can be computationally expensive. 

• The JAYA algorithm may not be suitable for all breast cancer datasets. 

 The JA (Venkata Rao, R. et al. 2016) [27] optimization technique is deceptively 

simple despite its considerable capability. It is a population-oriented iterative method 

that is based on a basic concept: the idea that the best answer might be reached by 

advancing near the present finest resolution and fleeing gone from the poorest option. 

Let the term ℎ(𝑒) be the objective function that should be minimized or maximized, the 

generation be indicated as 𝑘, the design variables be given as 𝑓 and the size of a 

population be presented as 𝑚. The finest worth attained for the function in the 
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𝑘𝑡ℎ iteration is given as ℎ(𝑒)𝑏𝑠𝑡,𝑘 and the worst value for the same is presented 

as ℎ(𝑒)𝑤𝑠𝑡,𝑘. The symbol 𝐸𝑓,𝑐,𝑘 denote the value in 𝑓𝑡ℎ design parameter value in 𝑐𝑡ℎ 

population and 𝑘
𝑡ℎgeneration are getting updated in Eq. (31) as 

𝐸′𝑓,𝑐,𝑘 =  𝐸𝑓,𝑐,𝑘 + 𝑠1𝑓,𝑐(𝐸𝑓,𝑏𝑠𝑡,𝑘 − |𝐸𝑓,𝑐,𝑘|) −  𝑠2𝑓,𝑐 (𝐸𝑓,𝑤𝑠𝑡,𝑘 − |𝐸𝑓,𝑐,𝑘|)  (31).       

Here, the term 𝐸𝑓,𝑏𝑠𝑡,𝑘 indicates the best population and 𝐸𝑓,𝑤𝑠𝑡,𝑘 denote the worst 

population in fth the region. The term 𝐸′𝑓,𝑐,𝑘 is the improved value of 𝐸𝑓,𝑐,𝑘 and the 

random variables are indicated as 𝑠1𝑓,𝑐and 𝑠2𝑓,𝑐in the range (0,1). The term 

𝑠1𝑓,𝑐(𝐸𝑓,𝑏𝑠𝑡,𝑘 − |𝐸𝑓,𝑐,𝑘|) represents the movement towards the best solution and 

𝑠2𝑓,𝑐 (𝐸𝑓,𝑤𝑠𝑡,𝑘 − |𝐸𝑓,𝑐,𝑘|) indicates the movement away from the worst solution. The 

term 𝐸𝑓,𝑐,𝑘 gets accepted if it offers superior functional value. In final generation, all 

the accepted functional values are considered as the input for upcoming generation.   

4.4  Novel HHHJO Algorithm Proposal 

 It is common knowledge that the hyperparameter tweaking of a Deep Learning 

algorithm has an important effect on the effectiveness of the procedure. The traditional 

method for tuning hyperparameters is called trial and error, which needs a significant 

amount of knowledge and competence, and even then, the level of performance that can 

be reached is not always optimal. Therefore, in order to fine tune these deep learning 

algorithm parameters, which include the learning rate, number of epochs, and hidden 

neuron count, and the additional parameters in FCM, which include epsilon, maximum 

number of iterations number in fuzzy, and fuzziness parameter, we have incorporated 

the recently designed HHHJO. This has allowed us to fine tune these Deep Learning 

optimization algorithms. 

 HHO [84] has many processes of exploration and exploitation, with the end goal 

of improving the system's overall performance. In order to get higher effectiveness, it 

is required to decide on a significant quantity of algorithmic factors. Having an 

excessive number of algorithm-specific parameters not only makes the calculation more 

difficult. Nonetheless, it may have negative effects on population diversity and the 

availability of local optimal space. In contrast to it, JA(Venkata Rao, R. et al. 2016)  

[27] is uncomplicated and does not call for the inclusion of any extra parameters during 

the start-up process. This provides the impetus for combining HHO and JA in order to 
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solve these challenges, and as a result, a novel hybrid algorithm known as HHHJO is 

devised. 

 

Fig. 4.1: Flow diagram of developed HHHJO 

Algorithm 1: Developed HHHJO 

Initialize II the population II of IIHHO and JA 

Parameters determination   

For all solution  

validate fitness for several solutions 

 If (num≥0.5) 

  Upgrade the position using JA 

             Else  

  Upgrade the position using HHO 

 End if   

End for  

Find the optimal best solution 

End 

 The flow chart for the developed HHHJO is given in Fig.4.1 
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 The flow chart shown in figure has the steps population initialization and 

parameters initialization and it is crucial step in evolutionary and optimization 

algorithms. This process involves creating an initial set of potential solutions 

represented as individuals in populations. Here we incorporate two optimization 

algorithms i.e Jaya optimization and Harris Hawk optimization. The Jaya optimization 

is a simple optimization technique that aims to improve the objective function 

iteratively. Initialization of population in Jaya algorithm involves setting up the initial 

solution for optimization process. To initialize the population in the Jaya algorithm we 

first start by defining the search space, which includes the lower and upper bounds for 

each parameter of the problem. Then, create a population of potential solutions 

randomly within this search space. The size of the population is typically specified in 

advance and can vary depending on the problem’s complexity. Each individual in the 

population represents a possible solution to the problem, with its set of parameters 

values. 

1. Initialize the Population: Create an initial population of solutions. Each solution 

is a candidate set of hyperparameters for the deep neural network. The 

population is initialized with random values within the specified ranges for each 

hyperparameter. 

2. Parameter Determination: Set the parameters for the optimization process. 

Iterative Optimization 

3. Evaluate Fitness: For each solution in the population, compute the fitness value. 

(since optimization algorithms generally minimize the objective function). 

4. Update Solutions: For each solution in the population, perform the following 

steps: Generate a random number. 

If the random number is greater than or equal to 0.5: Use the JAYA 

Optimization Algorithm (JA) to update the position of the solution. JA is known 

for its simplicity and effectiveness, driving the search towards better solutions 

by minimizing the difference between the current solution and the best solution 

in the population. 

Else: Use the Harris Hawk Optimization (HHO) to update the position of the 

solution. HHO simulates the hunting behavior of Harris hawks, involving 
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strategies such as surprise pounce and encircling prey, which helps balance 

exploration and exploitation. 

5. Iteration: Repeat the process of fitness evaluation and position updating for a 

number of iterations or until a convergence criterion is met. 

6. Final Selection: Find the Optimal Solution: After completing all iterations, 

identify the best solution from the population. This solution should have the 

highest fitness value. 

 In the flow chart shown above there is a decision variable num with the 

threshold of ≥0.5 to choose between the two optimization algorithms, Jaya 

Optimization and Haaris Hawk optimization. This threshold-based decision point 

serves as a key component in determining which algorithm employ based on output 

probabilistic mechanism. The decision variable num is crucial in guiding the flow of 

the process and is based on threshold of ≥0.5. This threshold is applied to a probabilistic 

or scoring outcome generated by the algorithm. When the outcome is equal to or 

exceeds 0.5, flow chart directs the process towards the utilization of Jaya optimization 

algorithm. Conversely, if the outcome falls below the 0.5 threshold, the flow chart steers 

the process towards implementation of Harris Hawk optimization algorithm.  The 

threshold of 0.5 is chosen because it divides the probability space into two equal parts. 

This means there is an equal chance (50%) of selecting either JA or HHO. The choice 

of Num and the threshold of 0.5 are used to introduce a random but balanced decision-

making process to select between the two optimization algorithms (JA and HHO). This 

approach leverages the strengths of both algorithms and can help in achieving a more 

robust optimization by probabilistically alternating between them. 

4.5  Summary: 

  Harris Hawk Optimization (HHO) is a powerful metaheuristic algorithm for 

hyperparameter tuning in deep neural networks, particularly for classification tasks. Its 

ability to balance exploration and exploitation, handle high-dimensional and complex 

search spaces, and adapt dynamically to the optimization landscape makes it an 

effective tool for improving classification performance. By leveraging HHO, we can 

achieve better-tuned models that generalize well to unseen data, leading to more 
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accurate and robust classification results. This hybrid approach leverages the strengths 

of both HHO and JA to efficiently navigate the search space and find optimal solutions 

for hyperparameter tuning. By balancing exploration and exploitation, the algorithm 

can effectively explore new regions leading to better performance in classification tasks 

with deep neural networks.  
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CHAPTER 5 

OVERALL SOLUTION 

The Deep Neural Network with the novel beta entropy for feature extraction and 

HHHJO for optimized hyperparameter selection is the solution provided by the work 

reported in this thesis. Hyperparameter tuning plays a critical role in determining the 

performance of deep learning algorithms. Achieving optimal performance requires 

careful consideration of several algorithm-specific parameters. While algorithmic 

adjustments can significantly improve computational efficiency, challenges such as 

reduced population diversity and the risk of becoming trapped in local optima remain. 

The JAYA Optimization (JA) algorithm, which requires no initialization, is integrated 

into the hybrid HHHJO framework to address these challenges. By combining these 

techniques with HHO, the proposed hybrid algorithm effectively enhances performance 

and resolves key optimization issues. The newly developed HHHJO algorithm is 

employed to fine-tune key parameters of deep learning algorithms, including the 

learning rate, number of epochs, and the number of hidden neurons. Additionally, it 

optimizes Fuzzy C-Means (FCM) parameters, such as epsilon, maximum iteration 

counts, and the fuzziness coefficient. The HHHJO algorithm leverages exploration and 

exploitation mechanisms to enhance the performance of the Harris Hawks Optimization 

(HHO) algorithm. 

5.1 Optimized Deep Neural Network for the Breast Cancer Detection in 

Thermographic Images. 

  In order to diagnose breast cancer in people, a novel thermograph breast cancer 

detection model that uses mathematical model backed deep learning algorithm has been 

created [73].  The thermogram raw pictures that are utilized for the examination of 

breast cancer are obtained from conventional resources, and they are immediately 

delivered as the input to the pre-treating step. This phase analyses the images to 

determine whether or not breast cancer is present. During the pre-processing step, the 

raw pictures go through a series of transformations, including grayscale conversion, 

adaptive mean filtering, and contrast enhancement. After that, the collected pre-

processed pictures are transferred to the breast subdivision phase, where breast 

image subdivision is passed out with the assistance of GVF (Gradient Vector Flow) in 
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order to get segmented chest images. Later on, during the abnormality segmentation 

phase, breast segmented images are used as the input for OFCM to segment the 

irregularity images. During this phase, developed HHHJO performs optimization by 

tuning the parameters including epsilon, maximum iteration count, and the fuzziness 

parameter in fuzzy in order to improve the anomalies by segmentation efficiency. The 

segmented abnormality pictures may be obtained by first decreasing the variance 

between the segmented deformity images and then growing the entropy of the 

segmented abnormalities imageries. In next step, the segmented abnormal pictures are 

put through a phase that is called feature extraction. During this phase, the features are 

extracted with the assistance of GLCM, first-order and second-order texture 

descriptors, LBP, entropy feature, and beta entropy. After this, the extracted 

characteristics that were gathered are brought into the categorization step. The newly 

developed ODNN is put to use in the process of breast cancer detection. This process 

involves optimization, which is carried out with the assistance of the newly designed 

HHHJO method. We have employed DNN with 2 hidden layers and with optimized 

hyperparameters, including the concealed neuron count, the learning rate and the 

number of epochs, for training. It is tested for the improvement in the outcome in 

Chapter 6. This method is used to tune the concealed neuron count of DNN, the learning 

rate of DNN, and the number of epochs for DNN. Increasing the accuracy rate and 

getting a superior breast cancer detection rate both contribute to the achievement of the 

detection result.  

  A separate feature extraction process is needed in a DNN to handle the 

complexity of raw data. Improved feature extraction reduces the amount of data to be 

processed, leading to significant savings in computational resources. Reduced data 

dimensionality translates to faster training and enhanced learning efficiency, improving 

model performance. It also leverages domain-specific insights and allows for effective 

processing of different data types. In this approach, we have not employed the concept 

of transfer learning, which is important for reducing feature inference times, especially 

in applications requiring real-time processing. 

  We have employed feature extraction separately. Our aim was not to reduce 

features but to combine them. When we combined all four types of features together, 

we observed improved accuracy and needed to verify the significance of beta entropy 
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as a feature. We adapted the strategy by adding features incrementally and checking the 

impact of the beta entropy feature. We first examined the results for statistical features, 

then combined statistical and texture features. Next, we combined three types of 

features: statistical, texture, and entropy. Finally, we combined all the features—

statistical, texture, entropy, and beta entropy—to see how much the results improved 

with these additions. The architectural view of the thermogram-based breast cancer 

detection ideal is presented in Fig. 5.1. 

 

Fig. 5.1: Architectural view of developed thermogram-based breast cancer detection 

model 

 An IR database, nominated by us as the Database for Mastological Research 

with Infrared Images (DMR-IR), has been developed. The DMR-IR contains IR 

images, digitized mammograms, and clinical data obtained from patients at the Antônio 

Pedro University Hospital. These patients are from the screening department as well as 

the gynecologic department. Therefore, the DMR-IR includes data from both healthy 

patients and those with breast diseases, including cancer. The IR images are captured 
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using a FLIR thermal camera, model SC620, which has a sensitivity of less than 0.04°C 

and a capture range of −40°C to 500°C. The IR images have a resolution of 640×480 

pixels. The acquisition of the images and their use in research have been approved by 

the Ethical Committee of the hospital and registered with the Brazilian Ministry of 

Health under number [insert number]. The DMR-IR is accessible through an online, 

user-friendly interface (http://visual.ic.uff.br/dmi) for managing and retrieving 

information from breast exams and clinical data of voluntary patients. 

5.2 Input Image Pre-processing 

 The collected breast thermograph raw images 𝐼𝑀𝐺𝑦
𝑖𝑛𝑝

are offered as the input 

for pre-processing phase. Here, it utilized grayscale conversion, adaptive mean filtering 

and contrast enhancement approach to perform pre-processing in the raw thermograph 

breast images.   

Conversion to grey scale: While capturing the picture, it distributes the illumination 

restrictions in a random manner and at various times or places, which results in the 

creation of non-uniform grayscale photographs. The routine procedure of transforming 

a color picture into a grayscale image is known as "grayscale conversion." After it is 

done, the value that is utilized to represent one hue out of an image's 3-color channels 

is given its average value. The pre-fabricated data that was obtained from the grayscale 

conversion are referred to as and then supplied to the breast image segmentation step 

of the procedure. 

Adaptive mean filtering: The adaptive Wiener filter is what gets rid of the high 

frequency noise while keeping the edges intact, and this is how it is able to accomplish 

this goal. The data that was obtained and processed by adaptive mean filtering are 

denoted as  and then passed on to the breast segmentation step afterwards. 

Enhancement of contrast of the digital image: Several different techniques for 

enhancing contrast are used in order to improve the quality of a parameter that has a 

low contrast. The primary goal of this method is to maintain the average brightness of 

the picture that is being read in, and it also adjusts the contrast of thermogram breast 

images in the specific places where they are being shown. In the outset, the RGB picture 

input channel is converted into the HSI color channel. After that, the value of the 

pre

YIMG

http://visual.ic.uff.br/dmi
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intensity is split into two sub-parameters, which are referred to as the high group and 

the low group. These sub-parameters are calculated with the assistance of the golden 

section search model, and their results are described in Eq. (32,33) as 

𝛾ℎℎ = {𝛾(𝑛)|𝑥 > 𝛾𝑞},    (32) 

𝛾𝑙𝑙 = {𝛾(𝑛)|𝑦 ≤ 𝛾𝑞},    (33) 

 The higher intensity is given as 𝛾ℎℎ and the lower intensity is indicated as 𝛾𝑙𝑙, 

the threshold intensity value is presented as 𝛾𝑞 and it can separate the input image into 

two sub-images. Once the image intensity estimation for two sub-parameters is 

received, a new combination is performed among them to achieve an enhanced intensity 

rate and it is represented in Eq. (34). 

𝛾𝑒ℎ𝑛𝑐(𝑛) = 𝛾𝑙𝑙 + (𝛾ℎℎ − 𝛾𝑙𝑙) ×ς(n)    (34) 

 The cumulative intensity is represented as 𝜍(𝑛) for 𝑛𝑡ℎ pixel. The enhanced 

basic value of saturation as well as hue and intensity level are integrated and converted 

into an RGB channel to offer the final output image. The pre-processed data attained 

from contrast enhancement is given 𝐼𝑀𝐺𝑦
𝑝𝑟𝑒

 and they are further provided to the breast 

segmentation stage.  

5.3  GVF (Gradient Vector Flow) -based breast segmentation with optimized 

abnormality segmentation for breast cancer detection: GVF-based Breast 

Segmentation 

 The picture 𝐼𝑀𝐺𝑦
𝑝𝑟𝑒

 that has been pre-processed is used as the input for the 

breast segmentation step of the GVF [45] approach, which is used to segment the breast 

area. The fundamental presumption is that both of the breast areas are substantially 

round and similar in shape. The GVF is built with two ellipses serving as the starting 

point each time. The traditional snakes are shown as curves (𝑎(𝑢) = [𝑑(𝑢), 𝐼(𝑢)], 𝑢 ∈

[0,1])  , and both the outside and the inner image domains are taken into account. It is 

able to navigate the internal forces that were formed by the external resources, and the 

curve that it follows is certified by the picture data. The ranges of contour capture in 

binary image counters may be improved with the use of the GVF. The preliminary 



70 | P a g e  

results are presented here based on a number of previous studies and our current body 

of information foriibothiibreasts. 

 The elasticityiiof theiisnake is shown asiiand merged with the second derivative 

term in this presentation. In this case, the step size is denoted by the symbol gamma 𝛾. 

The energy-related component of the sailing factor is denoted by the symbol 𝑘. The 

intensity-oriented potential term 𝑤𝐸𝑙𝑖𝑛𝑒  makes use of the weighting component. “For 

the edge-oriented potential term, the weighting factor is what's going to be utilised. The 

weighting factor is used for the prospective period of termination. An illustration of the 

iteration count is provided so that the location of the counter may be determined. The 

gradient 𝑤𝐸𝑙𝑖𝑛𝑒  is then validated using the edge map that was provided before. A 

significant amount of reliance is placed on the GVF in order to convey the deformation 

of snakes at the boundary edges. The abnormality-segmented phase receives its input 

from the breast-segmented pictures 𝐼𝑀𝐺𝑦
𝑠𝑒𝑔

 that have been obtained before. 

5.4 Optimized FCM-based Abnormality Segmentation 

  The abnormality-segmented phase receives its input 𝐼𝑀𝐺𝑦
𝑠𝑒𝑔

  in the form of the 

pictures that were obtained from the breast segmentation process. The FCM [74] is a 

well-organized technique to segmentation that enables clustering via the use of a 

membership value function. The objective function is the FCM clustering objective, 

which measures the quality of the clustering. Lower values indicate better clustering. 

The HHHJO algorithm will be used to optimize the solution vector by iteratively 

updating it to minimize the FCM objective function. We utilize FCM for abnormality 

segmentation using a variety of algorithmic parameters including epsilon, fuzziness 

parameter, and maximum iteration, all of which are ideally optimized with the 

assistance of constructed HHHJO.  The fuzziness parameters are tuned in the range of 

[2,5], epsilon is tuned by the range of [0.01,0.99] and the maximum iteration count of 

fuzzy is tuned in the range of [5,50]. 

 The name of the newly developed technique is the Optimized FCM (OFCM). 

The following expression is the minimization objective function that must be used in 

order to assign a pixel to a certain cluster: 

𝑈𝑐𝑓(𝐺, 𝐻, 𝐼) = ∑ ∑ 𝑔𝑟,𝑝
𝑤𝐸

𝑝−1 𝑒2(𝑖𝑟, ℎ𝑝)𝐷
𝑟−1   1<w<∞  (35) 
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where the vector 𝐼 = {𝑖1, 𝑖2, … … … , 𝑖𝐷}consists of D pixels, multidimensional cluster 

center with 𝐸 clusters is given as 𝐻 = {ℎ1, ℎ2, … … . . , ℎ𝐸}, the Euclidean distance of ir 

from the center of pth cluster is presented as 𝑒2(𝑖𝑟 , 𝑖𝑝) , the fuzzy membership matrix 

is given as 𝐺 and the blur exponent is given as𝑤, 𝑤 > 1. The membership degrees 

denoted as gr,p fulfills the following conditions presented in Eq. (36) as 

{

0 ≤ 𝑔𝑟,𝑝 ≤ 1

∑ 𝑔𝑟,𝑝 = 1𝐸
𝑝−1

∑ 𝑔𝑟,𝑝 ≤ 𝐷, 𝑟 = 1,2, … … , 𝐷, 𝑝 = 1,2, … … . , 𝐸𝐷
𝑝−1

  (36) 

 The cluster center, as well, the membership degrees are updated iteratively.  The 

formulation of membership matrix and the cluster center is given in Eq. (37) and Eq. 

(38) as under: 

𝑔𝑔𝑟,𝑝 =
1

∑ (
𝑒𝑟,𝑝

𝑒𝑟,𝑣
)

2
𝑤−1𝐸

𝑣−1

    (37) 

and        

 ℎ𝑝 =  
∑ 𝑔𝑟𝑝

𝑤  𝑖𝑟
𝐷
𝑟=1

∑ 𝑔𝑟,𝑝
𝑤𝐷

𝑟=1
     (38). 

  The fitness function to decide the parameters in OFCM is based on 

minimization of the variance and maximization of the entropy and given below in Eq. 

(39): 

𝐹𝑡1 =  𝑎𝑟𝑔 min
𝐹𝑝𝑛

𝐹𝐶𝑀,𝐸𝑝𝑒
𝐹𝐶𝑀,𝐼𝐶𝑤

𝐹𝐶𝑀
(𝑣𝑎𝑟 + (

1

𝑒𝑡𝑝𝑦
))   (39) 

Where var → the variance, etpy → theiientropy between theiisegmented 

images,𝐹𝑝𝑛
𝐹𝐶𝑀is the fuzziness parameters, 𝐸𝑝𝑒

𝐹𝐶𝑀is the epsilon parameters and 𝐼𝐶𝑤
𝐹𝐶𝑀 

is the maximum iteration. 

Variance is presented in Eq. (40) as  

 𝐾2 =
∑(𝑣𝑔𝑖− ῡ𝑔)2

𝐿−1
       (40)     
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where K2 is the sample variance,  ῡ𝑔 is the whole means of observation value shown 

as, the value of one observation is provided by vgi, and the number of observations is 

presented as correspondingly. The expression for entropy, which can be found in Eq. 

(41), reads as "the degree of randomness achieved in a picture." 

𝑒𝑡𝑝𝑦 =  − ∑ ∑ 𝑇𝑑(𝐶𝑖)𝑙𝑛𝑇𝑑(𝐶𝑖)𝑖ℎ                        (41) 

where Td represents the probability, and ln Td (natural log) denotes the logarithmic 

magnitude of the probability (Ci). The abnormally segmented pictures that were able to 

be obtained afterwards serve as the input for the phase that is dedicated 𝐼𝑀𝐺𝑦
𝐴𝑠𝑔

  to the 

process of feature extraction. On display in Figure 5.2 is a diagrammatic representation 

of the improved FCM-based BC segmentation. 

 

 

 

 

 

 

Fig. 5.2: Diagramatic representation of optimized FCM-aided breast cancer 

segmentation 

5.5 Enhanced thermogram breast cancer detection using weight-optimized 

deep neural network: Feature Extraction 

 The pictures 𝐸𝑝𝑒
𝐹𝐶𝑀 that have been segmented based on abnormalities are given 

as the input for the phase of feature extraction. During this phase, properties such as 

GLCM, first-order & second-order texture descriptors, LBP, entropy feature, and beta 

entropy are applied to obtain the extracted features. These features, along with others, 

will be detailed in the following paragraphs. 
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GLCM features [37]:  

The abnormalities segmentation pictures 𝐸𝑝𝑒
𝐹𝐶𝑀 are used as the input for this 

procedure, and the breast textural characteristics are then extracted. To obtain the object 

texture, which represents the pixel display in spatial connection, the GLCM is put to 

extensive use and is widely employed. The co-variance matrix is validated with the 

pixel value in order to get the object textures. The feature vectors of the input pictures 

are verified with respect to contrast, difference, equality, vitality, correlation, and 

angular 2nd moment (ASM), all of which are expounded on as described in the 

following: 

Contrast: It estimates the local variation in images. When the nearby pixel is changed 

with a superior value, then the contrast is validated by Eq. (42) as 

𝑐𝑛𝑡𝑟𝑠𝑡 =  ∑ 𝑄𝑑𝑒
𝑞−1
𝑑,𝑒=0 (𝑑 − 𝑒)2        (42) 

Where 𝑄𝑑𝑒is the pixel of the given copy for the position & variance d and e, 

respectively. 

  Attained inconsistencies are used to verify the weights, and they are provided 

in Eq. (43), as follows: Similarity: It is estimated that "by computing the weights in the 

contrast quantity as pixel travels away from the diagonal the weights rises 

substantially." 

𝐷𝑖𝑠𝑠𝑚𝑙𝑟𝑡𝑦 =  ∑ 𝑄𝑑𝑒|𝑑 − 𝑒|𝑞−1
𝑑,𝑒=0     (43) 

Homogeneity: is calculated "when numerous pixels shown in the picture have the same 

colours," and its results are confirmed in the equation (44).                    

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 =  ∑
𝑄𝑑𝑒

1+|𝑑−𝑒|2

𝑞−1
𝑑,𝑒=0     (44) 

Energy: It is "the uniformness the picture with square elements summing in the 

GLCM," and it is calculated by using the equation (45).                                   

𝑒𝑛𝑔𝑦 =  ∑ (𝑄𝑑𝑒)2𝑞−1
𝑑,𝑒=0     (45) 

Correlation: ii It shows "how to attach a pixel to its neighbor pixels in the complete 

picture," and the estimates are given in the form of an equation (46).                
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𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑
𝑄𝑑𝑒(𝑑−𝜇)(𝑒−𝜇)

𝜎2

𝑞−1
𝑑,𝑒=0     (46) 

ASM: It highlights "the homogeneity qualities of a digital image size or the size of the 

vicinity of each element of the occurrence matrix," and those features are stated in the 

equation below (47).                             

𝐴𝑆𝑀 =  ∑
𝑄𝑑𝑒

1+|𝑑−𝑒|

𝑞−1
𝑑,𝑒=0      (47) 

 In the GLCM matrix, the quantities of grey values are expressed as, and the 

average value of the whole pixel is displayed as μ. The characteristics that were 

obtained from the GLCM 𝐹𝑇𝑐
𝑔𝑙𝑐𝑚

  are then sent to the concatenation step.  

Ist-order and 2nd-order textural descriptors [75]: Iniithe interest of obtaining the 

textural aspects of first-order and second-order descriptors, it takes the abnormality 

segmented features  𝐼𝑀𝐺𝑦
𝐴𝑠𝑔

  as its input. The following is an explanation of the 

characteristics that are included inside the first-order descriptor. These features are as 

follows: minimum, maximum, mean, median, and standard deviation. 

Minimum: it is defined as “the minimum value in a set of values” and it is provided in 

Eq. (48),    

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 =  ∑ 𝑄𝑑𝑒
𝑞−1
𝑑,𝑒=0 (𝑑 − 𝑒)   (48) 

 The word in this context both d refers to the variance of the picture and e denotes 

the location of the image. 

Maximum: It is termed as “a highest number for a set of data” and given in Eq. (49) 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 =  ∑ 𝑄𝑑𝑒
𝑞−1
𝑑,𝑒=0 (𝑑 + 𝑒)                     (49) 

Mean: it is refer “the size of the dispersion of an image” and given in Eq. (50) 

𝜇 = ∑ 𝑄𝑑𝑒
𝑞−1
𝑑,𝑒=0       (50) 

Median: It is “the mid-value of the set ofiidata, when organised in order and provided 

in Eq. (51).    
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𝑀𝑒𝑑𝑖𝑎𝑛 =  ∑ 𝑄𝑑𝑒
𝑞−1
𝑑,𝑒=0 (

𝜇

2
) + 1    (51) 

Standard deviation: It is “a measure of how dispersed the data is with the mean” and 

is offered in Eq. (52).    

𝜎 =  ∑ √𝑄𝑑𝑒(𝑄𝑑𝑒 − 𝜇)𝑞−1
𝑑,𝑒=0     (52) 

 The second-order descriptors hold features like variance, kurtosis and skewness, 

which are explained below. 

Variance: It is already discussed in Eq. (53). 

Kurtosis: It is defined as “the level of sharpness relatively curves on the histogram of 

an image” and it is presented in Eq. (53) 

𝛼4 = ∑
1

𝜎4
(𝑄𝑑𝑒 − 3)(𝑄𝑑𝑒 − 𝜇)4  𝑞−1

𝑑,𝑒=0    (53) 

Skewness: It is referred as “the relative level of slope of the curve on the histogram of 

an image” and it is represented in Eq. (54)   

𝛼3 = ∑
1

𝜎3
(𝑄𝑑𝑒)(𝑄𝑑𝑒 − 𝜇)3𝑞−1

𝑑,𝑒=0        (54) 

 The acquired features from first-order and second-order descriptors 𝐹𝑇𝑣
𝑓𝑠

are 

further provided to concatenation.  

LBP [39]: It is a very productive technique for extracting the features, and it 

incorporated the local intensity variation of the abnormality segmented picture  𝐼𝑀𝐺𝑦
𝐴𝑠𝑔

 

that was supplied. This resulted in improved discriminating characters being extracted. 

The intensity of the segmented picture J is shown as a range of pixels (𝑡𝑧 , 𝑢𝑧) and does 

not take into account the centre-pixel. The value of the LBP for the picture pixel (𝑡𝑧, 𝑢𝑧) 

may be found in the equation (55).    

   In this case, the features based on entropy are obtained from the pictures 

 𝐼𝑀𝐺𝑦
𝐴𝑠𝑔

 that have been segmented based on abnormalities. The following is an 

explanation of the many types of acquired entropy-based attributes: minimum entropy, 



76 | P a g e  

sample entropy, maximum entropy, Shannon entropy, and approximation entropy. 

Renyi entropy, maximum entropy, and sample entropy are also included. 

Renyi entropy: It is otherwise said to be collision entropy. They are satisfied with the 

condition 𝛼 = 2 and equated in Eq. (56).,            

𝑅𝐸𝑝(𝑉) =  − log ∑ 𝑞3(𝑞𝑐(𝑣𝑘))
2𝑁

𝑣𝑘=1     (56) 

Where 𝑐(𝑣𝑘) defines the probability distribution function. 

Minimum entropy: In minimum entropy, the order 𝛼 is denoted as ∞ i.e.𝛼 = ∞. The 

order 𝛼 move towards ∞ then, the attained probability for Renyi entropy for 𝑉 probable 

result is showcased in Eq. (57) 

𝐽𝐸𝑝1 lim
𝛼→1

𝐽𝐸𝑝∞(𝑉) =  − log2 𝑚𝑎𝑥𝑞𝑐(𝑣𝑘)   (57) 

Sample entropy: It indicates the complexity measures and the sample entropy are 

presented as 𝑆𝑚𝐸𝑝 and given in Eq. (58). The template vector with length is given as 

𝛼 for 𝑉𝑎(𝑘) = {𝑣𝑘, 𝑣𝑘+1, 𝑣𝑘+2, … … . . , 𝑣𝑘+𝑎−1} and the distance is indicated as 

𝐷𝑖𝑠[𝑉𝑎(𝑘), 𝑉𝑎(𝑝)](𝑘 ≠ 𝑝) later considered for Chebyshev distance.    

𝑆𝑚𝐸𝑝 =  − log
𝑋

𝑌
     (58) 

 Here, the term indicates the template vector pair count 

𝐷𝑖𝑠[𝑉𝑎+1(𝑘), 𝑉𝑎+1(𝑝)] < 𝑛 and the term presents the template vector pair count 

𝐷𝑖𝑠[𝑉𝑎(𝑘), 𝑉𝑎(𝑝)] < 𝑛  , respectively.  

Maximum entropy: Here, the order 𝛼 is denoted as 0 and so, 𝛼 = 0. Here, the overall 

probability is given as qc and max entropy or Hartley is represented by 𝐻𝑒0. The log 

count is given log2 𝑚 and the positive probability is presented , respectively.  

Shannon entropy: It is utilized to validate the uncertainty presented in the information 

source and also it is represented 𝑆𝐻𝐸𝑝 in Eq. (59).  

𝑆𝐻𝐸𝑝(𝐹𝑡
𝑎𝑠) =  − ∑ 𝑞𝑐(𝑣𝑘) log2(𝑞𝑐(𝑣𝑘))𝑁−1

𝑣𝑗=0
   (59) 

X

Y

V
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 Here, the distant gray-level count is indicated by 𝐹 = 2𝑟, the original image 

presented as  𝐼𝑀𝐺𝑦
𝐴𝑠𝑔

 and the term 𝑣𝑘  the probability of occurrence.  

Approximate Entropy: The approximation entropy is denoted by 𝐴𝑃𝐸𝑛. The number 

sequence is given as 𝑏 = {𝑏(1), 𝑏(2), … … , 𝑏(𝑁) for the length N, and the non-negative 

integer is denoted as 𝛼 and uses the condition  𝛼 ≤ 𝑁. The positive real numbers are 

represented as 𝑠 then the blocks are illustrated as ℎ(𝑘) = {𝑏(𝑘), 𝑏(𝑘 +

1), … … … . , 𝑏(𝑘 + 𝑎 − 1) and ℎ(𝑝) = {𝑏(𝑝), 𝑏(𝑝 + 1), … … … . , 𝑏(𝑝 + 𝑎 − 1) also the 

distances presented within them are validated as 𝐷𝑖𝑠[ℎ(𝑘), ℎ(𝑝) =

𝑚𝑎𝑥𝑠=1,2,……,𝑛 (|𝑏(𝑘 + 𝑠 − 1) − 𝑏(𝑝 + 𝑠 − 1) .  

Later, the value 𝐺𝑘
𝑎 = (𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝 ≤ 𝑁 − 𝑎 + 1  and 𝐷𝑖𝑠[ℎ(𝑘), ℎ(𝑝)] ≤ 𝑛/(−𝑎 +

1) is used to validate. The numerator is given as  𝐺𝑘
𝑎  and it is counted between the 

solutions n and the block length a and the identical blocks are given in Eq. (60). 

𝜑𝑎(𝑛) =
1

𝑁−𝑎+1
∑ log 𝐺𝑘

𝑎 (𝑛)𝑁−𝑎+1
𝑘=1    (60) 

  It is useful for interpreting 𝐴𝑝𝐸𝑛(𝑎, 𝑛, 𝑁)(𝑏) =  𝜑𝑎(𝑛) − 𝜑𝑎+1(𝑛) having 𝑎 

≥1iiand also 𝐴𝑝𝐸𝑛(𝑎, 𝑛, 𝑁)(𝑏) =  −𝜑1(𝑛). The frequency of logarithmic is validated 

𝐴𝑝𝐸𝑛(𝑎, 𝑛, 𝑁)(𝑏) through the longitude blocks 𝑎 which stay near the subsequent 

position and the negative value of 𝐴𝑝𝐸𝑛 is presented as −𝐴𝑝𝐸𝑛(𝑎, 𝑛, 𝑁)(𝑏) =

 𝜑𝑎+1(𝑛) − 𝜑𝑎(𝑛) is the average over of the logarithm conditional probability of 

|𝑣(𝑘 + 𝑛) − 𝑣(𝑗 + 𝑛)| ≤ 𝑠, and they are checked |𝑏(𝑝 + 𝑠) − 𝑏(𝑘 + 𝑠)| ≤ 𝑛for the 

range of (𝑠 = 0,1, … … , 𝑎 − 1). 𝐴𝑝𝐸𝑛(𝑎, 𝑛, 𝑁)Showcase the statistical estimator for 

the parameter 𝐴𝑝𝐸𝑛(𝑎, 𝑛)in Eq. (61). 

𝐴𝑝𝐸𝑛(𝑎, 𝑛) = lim
𝑁→∞

[ 𝜑𝑎(𝑛) − 𝜑𝑎+1(𝑛)]   (61) 

 The acquired features from entropy features  𝐹𝑇𝑘
𝐸𝑝𝑓

are further provided to 

concatenation.   

Beta entropy: The beta entropy [38] is mainly utilized to increase the entropy measure 

with the consideration of probability value because the outlier trail is weighted by itself 

and it is considered for β >0 in Eq. (62). 

j
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𝐷𝛽(𝑃||𝑄) =
1

𝛽
 ∫ (𝑃𝛽(𝑥) − 𝑄𝛽(𝑥)) 𝑃(𝑥)𝑑𝑥                 (62) 

  The two-probability distribution is given as 𝑔(𝑥)and 𝑤(𝑥) in the above 

equation. The extracted features from beta entropy 𝐹𝑇𝑧
𝐵𝑑are further provided to 

concatenation. The different values of 𝛽 can emphasize different aspects of beta 

distribution, making it more flexible tool for various application of machine learning 

statistics and information theory. 𝛽 > 1 has a robust similarity measure against outliers 

between two probability distribution. Here, outliers have low probability and exist near 

zero probability.  For 𝛽 > 1, the beta entropy becomes more sensitive to the tail 

behavior of the distribution. This means it can better handle outliers and heavy-tailed 

distributions, which is essential for robustness in various applications. 𝛽 > 1, the beta 

entropy puts more emphasis on larger probabilities in the distribution. This can help in 

scenarios where the focus is on the dominant features or events in the data, leading to a 

more robust analysis against noise and small fluctuations. As 𝛽 varies, beta entropy 

smoothly transitions between different entropy measures, allowing for a controlled and 

gradual adjustment. This smooth transition provides a robust mechanism to fine-tune 

the entropy measure to specific data characteristics and noise levels. 

  In this phase, the features {𝐹𝑇𝑐
𝑔𝑙𝑐𝑚

, 𝐹𝑇𝑣
𝑓𝑠

, 𝐹𝑇𝑑
𝐿𝑏𝑝, 𝐹𝑇𝑘

𝐸𝑝𝑓
, 𝐹𝑇𝑧

𝐵𝑑} are extracted 

from GLCM, first-order and second-order texture descriptors, LBP, entropy feature and 

beta entropy are provided for concatenation. The concatenated features are indicated by 

𝐹𝑇𝑦
𝐶𝑓

= {𝐹𝑇𝑐
𝑔𝑙𝑐𝑚

, 𝐹𝑇𝑣
𝑓𝑠

, 𝐹𝑇𝑑
𝐿𝑏𝑝, 𝐹𝑇𝑘

𝐸𝑝𝑓
, 𝐹𝑇𝑧

𝐵𝑑} and they are further provided to 

classification phase.  

5.6 Basic DNN Model 

The Feedforward Neural Network (FFN) and the Multilayer Perceptron (MLP) 

methods are combined in the DNN [76] methodology. The DNN is made up of multiple 

neurons, all of which are linked to the other neurons in the network in a path that is 

forward and  it is an acceptable representation for the DNN. The input vector of the 

DNN is shown as 𝑧 = 𝑧1, 𝑧2, 𝑧2, . . . 𝑧𝑙, and their sizes are given as. In addition, the input 

is supplied as 𝑊(𝑧), and their size is. The validation of the hidden neuron is shown in 

Equation (63) and Equation (64). 
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𝑢𝑔(𝑑𝑔
𝑞+1) = 𝑧(𝑆𝑖𝑔 + 𝐼𝑔

𝑞+1)   (63) 

 𝑆𝑖𝑔 =  𝑗𝑖
𝑞𝑦𝑖𝑔

(𝑞,𝑞+1)
    (64) 

 The entire lower layers presented in the neurons are connected towards the 

𝑔𝑡ℎneuron and the term 𝑗𝑖
𝑞
is the neuron of 𝑖𝑡ℎactivation function in the 𝑞𝑡ℎlayer. The 

contribution function is given as 𝑆𝑖𝑔 in 𝑖𝑡ℎactivation region of 𝑞𝑡ℎlayer. The non-linear 

activation function is as 𝑧 , the function weight is given as 𝑦𝑖𝑔
(𝑞,𝑞+1)

and the neuron bias 

is presented as 𝐼𝑔
𝑞+1

. A huge number of stacking hidden layers presented in MLP is said 

to be DNN and the mathematical representation of DNN with multiple hidden layers is 

presented in Eq. (65). 

𝑇𝑞(𝑦) =  𝑇𝑞 (𝑇𝑞−1(𝑇𝑞−2) (… … (𝑇𝑞(𝑦))))   (65)  

The normal DNN design holds multiple hidden layers. The ReLU performance 

rate is fast and easy to train large number of hidden layers and the outcome achieved in 

the DNN is the trust value for node. 

5.7 Optimized DNN-based Detection 

The collected input features 𝐹𝑇𝑦
𝑐𝑓

from the feature concatenation phase are used 

in the process of creating DNN with hyperparameter tweaking produced using HHHJO 

for the uncovering of the cancer. This particular approach is referred to as Optimized 

DNN (ODNN). DNN offers a higher level of reliability and performance to the network 

than other providers. Because of the versatility with which it presents itself in the 

network input layer, it is able to readily engage itself in the querying of features, 

therefore assisting the user in obtaining particular features and offering a suggestion 

based on their requirements. Yet, an enormous quantity of data is necessary in order to 

obtain a high level of accuracy throughout the training phase. In order to address all of 

these problems, a new ODNN has been designed to classify breast cancer. This new 

ODNN was created by modifying the parameters of DNN using the HHHJO method, 

such as the number of hidden neurons, the learning rate, and the number of epochs. The 

classification results are obtained by using the fitness function described in Equation 

(66), which is written as    
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𝐹𝑡1 =  𝑎𝑟𝑔 min
𝐻𝐷𝑚

𝐷𝑁𝑁,𝐿𝑅𝑓
𝐷𝑁𝑁,𝐸𝐶𝑥

𝐷𝑁𝑁
((

1

𝐴𝐶𝐶𝑌
))      (66) 

  where the 𝐻𝐷𝑚
𝐷𝑁𝑁 →  the hidden neuron count of DNN, 𝐿𝑅𝑓

𝐷𝑁𝑁 → the learning 

rate of DNN and 𝐸𝐶𝑥
𝐷𝑁𝑁referred the epochs count of DNN. Optimization of 

hyperparameters such as the number of hidden neurons, learning rate, and the number 

of epochs in a Deep Neural Network (DNN) involves selecting the best set of values 

from the given ranges that minimize the loss function or maximize the performance 

metric on the validation set. An initial population with random hyperparameter 

combinations is selected, they are tuned in the range of [200,255], [0.01,0.99]and 

[50,100] respectively. The training and evaluation of DNN is carried out for each 

combination of population with the help of developed HHHJO. Select the best-

performing combinations to form a new population. Repeat the process for a set number 

of generations or until convergence.  We called it as an optimized DNN (ODNN). 

 Accuracy 𝐴𝐶𝐶𝑌 is dignified as the nearness of the measurements to a specific 

value and given by the Eq. (67) as 

𝐴𝐶𝐶𝑌 =  
(𝑑𝑝+ 𝑓𝑝)

(𝑑𝑝+𝑓𝑝+𝑔𝑛+ℎ𝑛)
    (67) 

  where the true +𝑣𝑒 and true −𝑣𝑒 values are revealed as 𝑑𝑝and  𝑓𝑝 respectively 

& false +𝑣𝑒 and false −𝑣𝑒 are given as 𝑔𝑛 & ℎ𝑛iirespectivelyii. The developed ODNN-

based cancer revealing model is represented inIFig. 5.3. 
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Fig. 5.3: Developed ODNN-based breast cancer detection model 
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5.8 Conclusion 

The problems that arise in Computer Aided Diagnosis (CAD) systems that use 

computer technology for abnormality level prediction in breast cancer images were 

covered in this chapter's discussion. The usefulness of the suggested approach in 

medical diagnosis was validated by an investigation that compared it to other 

segmentation and feature extraction techniques already in use. This investigation 

focused on the metrics of accuracy, sensitivity, specificity, and probability (both 

positive and negative). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



83 | P a g e  

CHAPTER 6 

RESULT AND ANALYSIS 

In order to diagnose breast cancer in people, a novel thermograph breast cancer 

detection model has been built by the use of heuristic methods in addition to deep 

learning techniques. The thermogram raw pictures that are used for the analysis of 

breast cancer are obtained from standard resources, and they are immediately delivered 

as the input to the pre-processing step. This stage analyses the images for breast cancer. 

During the phase known as "pre-processing," the breast thermographic pictures that 

were entered are subjected to various processing techniques such as grayscale 

conversion, adaptive mean filtering, and contrast enhancement. After that, the collected 

pre-processed pictures are transferred to the breast segmentation phase, where breast 

segmentation is carried out with the assistance of IGVF (Gradient Vector Flow) in order 

to get breast segmented images. Later, in the abnormality segmentation phase, breast 

segmented images are offered as the input for optimized FCM to generate abnormality 

segmented images, where optimization is performed by developed HHHJO by tuning 

the parameters such as epsilon, maximum iteration count and fuzziness parameter in 

fuzzy to enhance the abnormality segmentation efficiency. The developed WO-DNN is 

utilized to detect breast cancer, where the optimization is performed with the help of 

the developed HHHJO approach for tuning the hidden neuron count of DNN, the 

learning rate of DNN and DNN epochs count. The detection outcome is attained by 

maximizing the accuracy rate and achieving a better breast cancer detection rate.  

We have employed the DNN structure keeping the concept that number of 

hidden layers more than one can be called as Deep Neural Network. A simple DNNs 

can be more appropriate for non-spatial data, offering benefits in terms of 

computational efficiency, lower risk of overfitting, ease of implementation, and 

versatility. For the given problem CNN has been implemented with HHHJO 

optimization algorithm. The HHHJO is used to iteratively search the hyperparameter 

space that identifies the combination learning rate, epochs and performance matrix. 

6.1 Experimental Set-up 

The experiment was done with total 1315 breast thermograms images 0f 

640*480 which has 870 healthy and 445 sick patients and 5 images for each patient. 
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The camera used to capture images was FLIR SC-620. The model analysis done on the 

proposed thermogram breast cancer identification model was developed in python. The 

efficacy analysis was executed in the developed model with the help of existing 

approaches. The maximum iteration count was kept 20 and the number of population 

count was kept 10 for experimental analysis. Distinct algorithms have been considered 

like (HHO) (Heidari, A. A. et al 2019) [26] and JAYA (Venkata Rao, R. et al. 2016) 

[27]. Various baseline classifiers like Decision Tree (DT) (Hu, Q., Che, X et al. 2012) 

[28], KNN (Zhang, S., Li, X et al. 2018) [29], SVM (Acharya, U R et al.2012) [6], NN 

(Liu, Y., Wang et al. 2011) [30] and DNN (Narayana Rao, K et al. 2021) [31] were 

considered for performance comparison.  

6.2 Efficiency Metrics 

The recommended thermogram breast cancer recognition model is computed 

with diverse qualitative metrics. 

(a) Precision, 𝑃𝑠, is referred as the fraction of true positive instances over the total 

instances and presented below in Eq. II (68) as     

𝑃𝑠 =  
𝑑𝑝

𝑑𝑝+𝑔𝑛
      (68) 

 (b) F1-score, 𝐽𝑁, is presented as the dimension of the accurateness in the showed 

test and showcased in Eq. (69) as    

𝐽𝑁 = 2 × 
2𝑑𝑝

2𝑑𝑝+𝑔𝑛+ℎ𝑛
     (69) 

(c) False Negative Rate (FNR), 𝑅𝐹, is the proportion of positives which yield 

negative test outcomes with the examination as explained in Eq. II (70) below:   

𝑅𝐹 =  
ℎ𝑛

ℎ𝑛+𝑑𝑝
       (70) 
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(d) False Positive Rate (FPR), 𝑅𝑛, is referred as the ratio between the numbers of 

negative events wrongly characterized as positive (false positives) and the aggregate 

number of real negative events and it is represented as in Eq. (71) below:            

𝑅𝑛 =  
𝑔𝑛

𝑔𝑛+𝑓𝑝
      (71) 

(e) Specificity, 𝑆𝑓, is the proportion of negatives that are correctly identified and 

given in Eq. (72) as                      

𝑆𝑓 =  
𝑝

𝑓𝑝+𝑔𝑛
      (72) 

(f) Negative Predictive Value (NPV), 𝐺𝑆, is known as the totality of all peoples 

without illness in analysis and it is mentioned in Eq. (73) as    

𝐺𝑆 =  
𝑓𝑝

𝑓𝑝+ℎ𝑛
       (73) 

 (g) Sensitivity  𝐵𝐴 is the proportion of positives that are properly recognized and 

given in Eq. II (74) as       

𝐵𝐴 =  
𝑑𝑝

𝑑𝑝+ℎ𝑛
        (74) 

(h) Matthew’s correlation coefficient MCC, 𝐷𝑁 , is a portion of the quality of binary 

categorizations of analysis and it is represented in Eq. (75).   

𝐷𝑁 =  
𝑑𝑝×𝑓𝑝−𝑔𝑛×ℎ𝑛

√(𝑑𝑝+𝑔𝑛)(𝑑𝑝+ℎ𝑛)(𝑓𝑝+𝑑𝑝)(𝑓𝑝+ℎ𝑝)
    (75) 

6.3  Thermogram Dataset Description 

The dataset named ‘Database for Mastology Research’ (DMR) [71] is utilized 

to acquire the thermographic image dataset for the analysis in this section. The link 

preserves and handles mastological images through various imaging techniques to 

perform early breast cancer detection in individuals. Fig.6.1 shows a healthy and 

cancerous breast static thermograms from the dataset available from five different 

viewpoints. The five different thermographic images showing different orientations 

front image, left 900, left 450, right 900 and right 450. 
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Fig. 6.1: Samples of breast cancer-affected and healthy images from thermogram 

dataset 
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The acquired breast cancer thermograph raw images are denoted as 𝐼𝑀𝐺𝑦
𝑖𝑛𝑝

 and 

they are offered as the input for the pre-processing stage. Here,𝑦 = 1,2, … … , 𝑌, where 

𝑌 is the total number of breast thermograph images acquired for breast cancer detection. 

The acquired segmented images from the OFCM for the developed breast cancer 

detection model are displayed in Fig.6.2 This figure represents the original image, pre-

processed image and abnormality segmented images in three consecutive rows. The 

columns are obtained by three different image samples.  
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Fig. 6.2: Resultant abnormality segmented images from the Optimized FCM 

technique 
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(a)  
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(e) 

 

(f) 

 



92 | P a g e  

 

(g) 

 

(h) 
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(i) 

 

(j)

Fig. 6.3:.Evaluation on proposed thermogram-based breast cancer detection model 

with multiple classifier  over “(a) accuracyII, (b) F1-score, II (c ) FDR, (d) FNR, (e) 

FPR, (f) MCC, (g) IINVP, (h) IIprecision, (i) IIsensitivity & (j) specificity” 
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6.4 Convergence Examination of Established Model with Diverse 

Optimization Algorithms 

The convergence analysis of the suggested detection model is shown in Fig. 6.4 

and compared against other heuristic approaches. It is evaluated for four different 

feature-sets and plotted as the value of the loss function against varying number of 

iterations. The convergence rate of recommended model attains as 2% more than TSA-

ODNN 1% more than ITSA-ODNN and HHO-ODNN as well as 1.5% more than 

JAYA-ODNN, accordingly. Thus, the higher convergence rate ensures to enhance the 

detection performance for early diagnosing the breast cancer disorder. Higher 

convergence rates enhance detection rates by enabling faster, more accurate, and more 

efficient learning processes. This leads to better model performance, timely detection, 

and improved adaptability to changing data patterns and larger datasets. As a result, 

models with high convergence rates are more effective in identifying true positives 

while minimizing false positives, thereby ensuring robust and reliable detection in 

various applications. 

Combining JAYA and HHO into a hybrid metaheuristic algorithm introduces 

additional computational overhead due to initialization, evaluation, iteration, update, 

and synchronization complexities. Whether it is worth using depends on the specific 

optimization problem, the performance gains achieved, and the available computational 

resources. Empirical testing on the target problem is crucial to determine the 

effectiveness and efficiency of the hybrid approach compared to individual algorithms.  

Combining JAYA and Harris Hawk Optimization (HHO) into a hybrid 

metaheuristic can be worthwhile due to several potential benefits. These benefits can 

outweigh the computational overhead, especially in complex optimization problems 

where finding a high-quality solution is more important than computational speed 

alone. Here is detailed explanation why hybrid approach is valuable. 

1. Complementary Strength: 

Jaya Algorithm focuses on exploitation by iteratively moving solutions towards the 

best and away from the worst solutions in the population. This helps in fine-tuning the 

solutions and converging towards an optimum. Harris Hawk optimization balances 

exploration and exploitation dynamically through different phases (e.g., surprise 

pounce, soft besiege, hard besiege). HHO’s adaptive behavior can escape local optima 

and explore the search space more thoroughly. 



95 | P a g e  

2. Improved Solution Quality: 

 The hybrid algorithm leverages JAYA’s strong local search capabilities and 

HHO’s effective global search mechanisms. This combination increases the chances of 

finding a better global optimum by avoiding premature convergence and exploring 

more diverse areas of the search space. 

3. Dynamic Adjustment: 

The dynamic adjustment between JAYA and HHO strategies allows the algorithm to 

switch focus based on the current state of the search process. For example, it can start 

with a broad exploration using HHO and gradually shift towards exploitation using 

JAYA as it converges towards potential solutions. 

4. Increased Convergence Speed and Solution Accuracy:  

 The complementary nature of JAYA and HHO can lead to faster convergence 

rates by effectively combining their strengths. This synergy can result in more efficient 

search processes, reducing the total number of iterations required to reach an optimal 

or near-optimal solution. Higher convergence speed does not only mean fewer 

iterations but also better utilization of each iteration, as both algorithms contribute to 

refining the solutions.  

 The hybrid approach can improve the precision and accuracy of the solutions. 

JAYA’s focus on the best and worst solutions helps in fine-tuning, while HHO’s 

adaptive strategies ensure a broad and effective search. 

5. Adaptability: 

 Complex problems often require adaptive methods to handle changing 

landscapes and dynamic constraints. The hybrid algorithm’s ability to adjust its search 

strategy dynamically ensures better adaptability to such complexities. 

  Using a hybrid JAYA and Harris Hawk Optimization algorithm can be highly 

beneficial due to enhanced exploration and exploitation, robustness across different 

problem types, increased convergence speed, and improved solution quality. While the 

computational overhead is higher, the potential gains in efficiency, accuracy, and 

adaptability can make this approach worthwhile for complex and large-scale 

optimization problems. Empirical testing and practical application evidence are 

essential to quantify these benefits and justify the additional computational costs.  
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(A) 

 

(B) 
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(C) 

 

 

(D)

Fig.6.4: Convergence examination onIIthermogram-based breast cancer detection 

using proposedmodel with multiple classifier uisng (a) GLCM featuresF, (b) 1st and 

2nd order features, (c ) LBP features and (d) Entropy features 
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 The convergence plot in figure 6.4 have been achieved using DNN acted as a 

binary classifier with sigmoid as activation function and with the hyperparameters 

number of hidden layers, number of neurons in these hidden layers and learning rate as 

optimized using the specified optimization algorithm

 

 

6.5  Overall performance analysis of developed model with diverse classifier:

All the results mentioned below are with the 75% of training and 25% of testing 

breast thermogram images. Similarly, the statistical and textural feature-based analysis 

on the developed thermogram-based breast cancer recognition model over the 

classifiers is presented in Table 6.2 The developed thermogram based breast cancer 

detection model statistical, texture and entropy feature analysis performed over the 

classifiers are represented in Table 6.3 Then, the analysis of statistical, texture, entropy 

and beta-entropy are displayed in Table 6.4. The overall efficiency analysis achieved 

over the developed thermogram breast cancer identification model with conventional 

approaches is given in Table 6.5.  
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Table 6.1:  Statistical feature analysis with developed thermogram-based breast cancer 

detection model over classifier

Measures SVM [6] NN [30] DNN [31] HHHJO-ODNN 

Accuracy 93.51% 93.82% 94.89% 95.19% 

Sensitivity 93.48% 93.71% 95.06% 95.28% 

Specificity 93.53% 93.87% 94.80% 95.14% 

Precision 88.14% 88.72% 90.38% 90.99% 

FPR 6.47 6.13 5.20 4.86 

FNR 6.52 6.29 4.94 4.72 

NPV 93.53% 93.87% 94.80% 95.14% 

FDR 11.86 11.28 9.62 9.01 

F1-Score 90.73% 91.15% 92.66% 93.08% 

MCC 85.83 86.48 88.81 89.46 

 

The statistical features are only considered for this analysis over the developed 

HHHJO-WO-DNN-based thermogram breast cancer detection model with 

conventional classifiers that are presented in Table 6.1 The F1-score analysis of the 

developed model achieved 2.5% better than SVM, 2.1% superior to NN and 4.5 

enhanced than DNN. Similarly, the recommended model achieved enhanced accuracy 

rate than other classifiers. Thus, the developed thermogram-based breast cancer 

detection model HHHJO - ODNN attain effective detection rate than existing breast 

cancer detection model by considering the analysis only with the statistical features. 
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Table 6.2:  Statistical and textural feature analysis executed on the established breast 

cancer detection model with already existing classifiers 

Measures SVM [6] NN [30] DNN [31] HHHJO-ODNN 

Accuracy 93.59% 93.97% 95.11% 95.73% 

Sensitivity 93.48% 93.71% 95.28% 95.96% 

Specificity 93.64% 94.10% 95.03% 95.61% 

Precision 88.32% 89.10% 90.79% 91.83% 

FPR 6.36 5.90 4.97 4.39 

FNR 6.52 6.29 4.72 4.04 

NPV 93.64% 94.10% 95.03% 95.61% 

FDR 11.6 10.90 9.21 8.17 

F1-Score 90.83% 91.35% 92.98% 93.85% 

MCC 85.99 86.79 89.30 90.63 

The statistical and textural feature-based analysis on the developed 

thermogram-based breast cancer detection model over the classifiers are presented in 

Table 6.2.  The developed HHHJO-ODNN-based thermogram breast cancer 

recognition model achieved 2.6%, 2.3% and 0.2% superior than SVM, NN and DNN, 

respectively. Thus, the developed HHHJO-ODNN achieved effective breast cancer 

detection rate in individuals than the existing classifiers by considering the statistical 

and textural features.
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Table 6.3: Statistical, texture and entropy feature analysis on developed 

thermogram breast cancer detection model over classifiers 

Measures SVM [6] NN [30] DNN [31] HHHJO-ODNN 

Accuracy 93.89% 94.12% 95.19% 96.03% 

Sensitivity 93.93% 94.38% 95.06% 95.96% 

Specificity 93.87% 93.99% 95.26% 96.07% 

Precision 88.75% 88.98% 91.16% 92.62% 

FPR 6.13 6.01 4.74 3.93 

FNR 6.07 5.62 4.94 4.04 

NPV 93.87% 93.99% 95.26% 96.07% 

FDR 11.25 11.02 8.8 7.38 

F1-Score 91.27% 91.60% 93.07% 94.26% 

MCC 86.66 87.18 89.44 91.26 

The developed thermogram-based breast cancer detection model statistical, 

texture and entropy feature analysis performed over the classifiers are represented in 

Table 6.3. The developed HHHJO-ODNN-based thermogram breast cancer detection 

model achieved efficient breast cancer detection rate than the existing approaches. The 

accuracy analysis performed over the developed HHHJO-WO-DNN model attained 

2.14%, 1.91% and 0.84% enhanced performance rate than SVM, NN and DNN. So, the 

developed breast cancer detection model achieved effective detection rate than existing 

approaches by considering the statistical, textural and entropy features. 
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Table 6.4:  Statistical, texture, entropy and beta-entropy analysis over the breast cancer 

identification model with several classifiers 

Measures  SVM [6] NN [30] DNN [31] HHHJO-ODNN 

Accuracy 96.50% 97.10% 95.34% 99.08% 

Sensitivity 97.84% 98.46% 95.28% 99.10% 

Specificity 97.42% 97.24% 95.38% 99.08% 

Precision 98.55% 98.56% 91.38% 98.22% 

FPR 50.00 50.00 4.62 0.92 

FNR 2.16 1.54 4.72 0.90 

NPV 95.06% 95.18% 95.38% 99.08% 

FDR 1.45 1.44 8.62 1.78 

F1-Score 98.19% 98.51% 93.29% 98.66% 

MCC 42.94 47.64 89.77 97.96 

 

 

The developed thermogram breast cancer detection model is weighed up with 

classifiers for the analysis of statistical, texture, entropy and beta-entropy features are 

displayed in Table 6.4. The sensitivity analysis achieved over the developed HHHJO 

WO-DNN acquired enhanced performance rate 1.26%, 0.45% and 3.82% than SVM, 

NN and DNN, respectively.  Thus, the developed breast cancer identification model 

achieved efficient recognition rate than existing approaches by considering the 

statistical, textural, entropy and beta entropy features.   
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Table 6.5:  Overall performance analysis on developed breast cancer detection model 

with classifier approaches 

Measures  DT 
[28] 

KNN 
29] 

SVM 
[6] 

NN 
[30] 

DNN 
[31] 

HHHJO-ODNN 

Accuracy 94.27% 94.20% 96.50% 97.10% 95.34% 99.08% 

Sensitivity 94.38% 94.16% 97.84% 98.46% 95.28% 99.10% 

Specificity 94.22% 94.22% 50.00% 50.00% 95.38% 99.08% 

Precision 89.36% 89.34% 98.55% 98.56 91.38% 98.22% 

FPR 5.78 5.78 50.00% 50.00% 4.62 0.92 

FNR 5.62 5.84 2.16 1.54 4.72 0.90 

NPV 94.22% 94.22% 50.00% 50.00% 95.38% 99.08% 

FDR 10.64 10.66 1.45 1.44 8.62 1.78 

F1-Score 91.80% 91.68% 98.19% 98.51% 93.29% 98.66% 

MCC 87.49% 87.31% 42.94% 47.64% 89.77% 97.96% 

 

The overall analysis over the developed HHHJO-ODNN-based breast cancer 

detection model with several classifiers is displayed in table 6.5. The BC detection 

model performed 4.81% better than DT, 4.88% better than KNN, 2.58% better than 

SVM, 1.98% better than NN, and 3.74% better than DNN. Thus, the thermogram BC 

detection model classified individuals better than other models. Beta entropy can 

increase detection rates in breast thermographic images classification and medical 

diagnosis applications. 
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Table 6.6: Statistical feature analysis with developed thermogram-based breast cancer 

detection model over classifier

Measures CNN CNN with optimization HHHJO-ODNN 

Accuracy 94.64% 96.1% 99.08% 

Sensitivity 96.27% 97.67% 99.10% 

Specificity 48.61% 47.85% 98.21% 

Precision 98.15% 99.28% 9.28% 

FPR 5.13 5.21 9.2 

FNR 3.72 2.32 8.9 

NPV 48.61% 47.85% 99.07% 

FDR 11.86 11.28 9.62 

F1-Score 97.20% 97.97% 98.65% 

MCC 36.57% 42.50% 97.97% 

 

 

  The developed thermogram breast cancer detection model is weighted up with 

different neural network classifier like CNN, CNN with optimization and HHHJO-

ODNN shown in table 6.6. The overall accuracy of developed HHHJO-ODNN is better 

than the all classifiers which is 99.08%. 
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6.6  Summary 

  This experiment was to analyse the performance of the Beta entropy as features. 

It used all the classifiers in the test against consecutively adding the feature-sets and 

thereby measuring the performance improvement to decide the importance. The 

experimental results are tabulated in Table 6.1 using statistical features and 6.2 using 

statistical and texture features combined in 6.3 together using statistical, texture and 

entropy features combined together and table 6.4 using statistical, texture, entropy and 

Beta entropy features combined. 

 The table entries denote that in all the cases, the proposed HHHJO-ODNN 

classifier is giving the best performance with respect to all other classifiers and all the 

metrics used. Gradually with addition of every new set of features, the performance 

metrics are improving, but the maximum improvement came with the addition of Beat 

entropy. To take an example, the improvements in classification accuracy metric with 

addition of texture features over statistical features for HHHJO-ODNN is 0.54, further 

addition of entropy features improves the metric by 0.3 and finally the addition of Beta 

entropy feature improves the metric by 3.06. Similarly, the improvements in F1-score 

metric with addition of texture features over statistical features for HHHJO-ODNN is 

0.77, further addition of entropy features improves the metric by 0.41 and finally the 

addition of Beta entropy feature improves the metric by 4.4. The overall efficiency 

analysis achieved over the developed thermogram breast cancer identification model 

with conventional approaches is given in Table 6.5. The accuracy analysis performed 

over the suggested breast cancer detection model acquired 4.81% better than DT, 4.88% 

enhanced than KNN, 2.58% improved than SVM, 1.98% higher than NN and 

3.74superior than DNN. Also, CNN with optimization gives accuracy 96.1% which  3% 

less than developed HHHJO-ODNN. The result of comparison of all classifiers is 

shown in table 6.5 in which the HHHJO-ODNN gives the improved result over all 

classifiers. Thus, the developed model achieved effective early detection rate in 

individuals than existing models. The observation denotes that Beta entropy as features 

most significantly improved the classification performance and demonstrated that it can 

be successfully used for medical diagnosis and detection. 
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CHAPTER 7 

CONCLUSION, FUTURE WORK AND DISCUSSION 

7.1 Conclusion 

An optimization algorithm approach known as HHHJO has been presented as a 

means of enhancing the cancer detection. The HHHJO approach that has been 

developed incorporates a variety of techniques, such as a pre-processing technique 

known as the methodology, an optimization strategy. The breast thermal dataset serves 

as the source for the breast thermographic images used as input. The newly proposed 

thermographic breast cancer detection model with heuristic and deep learning 

approaches has offered an effective early detection rate in individuals. Using different 

thermographic images as the input, image pre-processing was performed with the help 

of greyscale conversion, adaptive mean filtering and contrast improvement. Then, the 

acquired pre-processed imageries were offered to the segmentation phase, where the 

GVF (Gradient Vetor Flow) technique was utilized to segment the pre-processed image 

and exposed it to the abnormality segmentation phase. The abnormalities were 

segmented with the help of optimized FCM and parameter optimization was performed 

to tune the maximum iteration in fuzzy, epsilon and fuzziness parameter with the help 

of developed HHHJO. The fitness function to decide the parameters in optimized FCM 

is based on minimization of the variance and maximization of the entropy. Later, the 

abnormality segmented images were provided to the feature extraction phase and the 

features were acquired with the help of GLCM, 1st-order and 2nd-order textural 

descriptor, LBP, entropy feature and beta entropy. The parameter β in beta entropy 

allows for fine-tuning the entropy measure to better capture the characteristics of the 

data, making it a powerful tool for improving classification accuracy. Further, the 

concatenated features were offered to the classification stage that was performed with 

the help of ODNN and some parameter like learning rate of DNN, epoch’s count of 

DNN and hidden neuron count of DNN was adjusted by utilizing developed HHHJO 

for get the best out of the accuracy to offer effective classification rate. The accuracy 

analysis achieved over the developed breast cancer detection model acquired 5.1% 

better than DT, 5.18% enhanced than KNN, 2.6% improved than SVM, 2.03% higher 
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than NN than DNN and 3.9% superior and 3%  higher than CNN. Thus, the developed 

thermogram breast cancer detection model offered enhanced classification in the 

individuals than other conventional models.  

7.2 Future Work 

In future research will be devoted to locate the affected regions accurately, and 

analyze the possibility of predicting breast cancer development in very early stages. 

The design of reliable and economical non-invasive methods of diagnosis and 

prevention is very important to increase the survival rates of women with breast cancer 

and lowering the costs of treatment in public healthcare systems. Further work is needed 

to produce breast thermogram datasets or make them publicly accessible for research, 

as only a few are easily accessible. Also, since the previous work was focused primarily 

on frontal breast thermograms, more work on the segmentation and classification of 

lateral breast thermograms is required to cater to lesions that may develop on lateral 

breast sides. In future the study would involve experimenting with datasets of huge 

sizes by combining different datasets and investigating various augmentation methods. 

The suggested models will be assessed in further work using various biomedical 

imaging datasets. Another future work direction would be exploring the use of other 

pre-trained DL models. 

7.3 Discussion  

The suggested approaches are developed with the goal of enabling efficient 

breast cancer diagnosis while maintaining a high accuracy. A number of different 

screening methods are used in order to identify cancer in breast thermographic images 

with a lower false positive rate. As a result, it helps women lower their chance of 

developing breast cancer and improves the overall health of their breasts. Hence, effort 

may be done in the future to create a variety of screening tools in order to achieve earlier 

breast cancer identification. It is not possible to produce improved performance when 

the sizes of the breast thermograms are changed. During the process of identifying 

thermograms that include a tumour, however, it is impossible to differentiate between 

images that are quite similar. In addition, there are strategies for the extraction of 

characteristics that may be tailored to extract the features that are more pertinent to the 

identification of breast cancer detection as benign and malignant masses with a better 
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level of accuracy and precision. In a future improvement, the constraints that were 

mentioned with regard to the lowest detection time would be the primary emphasis.  

Thermography, being less expensive and potentially more accessible, could and 

middle-income countries, access to conventional breast cancer screening technologies 

like mammography or MRI may be limited due to cost, infrastructure, or lack of trained 

fill an important gap in early cancer detection in these regions. With the rise of mobile 

health applications and telemedicine, thermographic data could be uploaded remotely 

to central databases for analysis by experts, improving accessibility to high-quality 

diagnostics in underserved regions. There is a renewed wave of interest in 

thermography because of the improvement of IR cameras sensors, though the 

development of such cameras still does not provide a more quantitative and robust 

procedure to detect the breast tumour. Thermography can have a significant impact on 

developing countries, where there is less availability of healthcare workers. Due to the 

low cost involved in thermography, communities with limited resources will benefit 

from providing the modality for early breast malignancy detection. Early cancer 

identification will reduce the burden on undeveloped communities with inadequate 

health infrastructure. 
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