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ABSTRACT 

Intuitionistic Fuzzy Set (IFS) is a complex function 𝑓 = (𝑓1, 𝑓2) whose domain is the 

universal set 𝑋 and the range set is [0,1] × [0,1], with the condition that 𝑓1(𝑥) + 𝑓2(𝑥) ≤

1, for all 𝑥 ∈ 𝑋, where the coordinate functions 𝑓1, 𝑓2: 𝑋 → [0,1] are called membership 

function and non-membership function respectively. The study of these functions was 

first proposed and dealt with by K.T. Atanassov [4] in 1983 and as a result, a new theory 

on sets has come into existence which is known as the IFS (Intuitionistic fuzzy set) 

theory. This theory has captivated the attention of many researchers all over the world 

who have contributed particularly to its development and application. In recent years, the 

rapid growth of IFS theory and its applications have been witnessed worldwide and 

extensive research has been done to study the comparison of the theory of IFS with other 

theories of uncertainties and vagueness. Some authors replaced an algebraic structure 

with the universal set and studied the notion of intuitionistic fuzzy algebraic structures. 

Nobusawa [39] coined the concept of 𝛤-Ring. Barnes [8] weakened slightly the 

conditions in the definition of the 𝛤-Ring in the sense of Nobusawa. Since then, a lot of 

studies has been undertaken by researchers to inquire about the different properties of this 

𝛤-Ring. By choosing 𝛤 suitably a part of the ring may be seen as a 𝛤-Ring. Numerous 

results which are based on ring theory have been put forth in 𝛤-Ring. 

The work of intuitionistic fuzzify of ideals of 𝛤-Ring was first determined by Kim et al. 

in [34] and further many relevant results and intuitionistic fuzzification of ideals of 𝛤-

Ring can be seen in the work of Palaniappan et al. in [42,43,44,45,46]. The thesis aims to 

intuitionistic fuzzify some other concepts such as Characteristic Ideal, Primary Ideal, 

Irreducible ideal, 2-Absorbing Ideal, 2 −Absorbing Primary Ideal, Prime radical, Primary 

decomposition of an ideal in the 𝛤-Ring. Furthermore, we also investigate the topological 

aspects of the set of all IFPIs (intuitionistic fuzzy prime ideals) of 𝛤-Ring. An attempt has 

been made to unify the concepts of the intuitionistic fuzzy prime ideal (2-absorbing ideal) 

and (IFPrI) intuitionistic fuzzy primary ideal (2 −absorbing primary ideal) into (IFf-PrI) 

intuitionistic fuzzy f-primary ideal (2-𝑓-absorbing primary ideals) and studied their 

properties, where 𝑓 is a function from set of all IFIs (Intuitionistic Fuzzy Ideals) of 𝛤-
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Rings to itself satisfying certain properties. Also, the concept of extension of an ideal 

with respect to an arbitrary point of the 𝛤-Ring has been explored and many properties of 

it has been also studied.  

In Chapter 3, the concept of IFCI (Intuitionistic Fuzzy Characteristic Ideal) in Γ-Rings 

is examined. An illustrative example is provided to demonstrate an IFI that does not 

qualify as an IFCI. The relationship between IFCI and its level cut sets is explored, 

alongside investigations into the correspondence between the set of all automorphisms of 

a Γ-Ring and the corresponding automorphisms of its operator rings. Furthermore, it is 

demonstrated that a one-to-one map exists between IFCIs(H) (the set of all intuitionistic 

fuzzy characteristic ideals of a Γ-ring) and IFCIs(OR) (the set of all intuitionistic fuzzy 

characteristic ideals of an operator-ring). These structures prove valuable in developing 

concepts such as IFPI (Intuitionistic Fuzzy Prime Ideal), IFPrIs (Intuitionistic Fuzzy 

Primary Ideals), and IFSPI (Intuitionistic Fuzzy Semi-Prime Ideal) in a Γ-Ring 

framework. 

In Chapter 4, the foundational concepts of IFPrI and IFPR (Intuitionistic Fuzzy Prime 

Radical) in Γ-Ring H are thoroughly examined. It is proven that IFPrI of a Γ-Ring 

constitutes a two-valued IFS, with the base set defined as a primary ideal (The base set of 

IFS Q is defined as the set{ℎ ∈ 𝐻: 𝜇𝑄(ℎ) = 1, 𝜈𝑄(ℎ) = 0}). The concept of IFPR in Γ-

Ring H is introduced, demonstrating that the IFPR of an IFPrI yields an IFPI. 

Furthermore, the homeomorphic behaviour of IFPrI as well as IFPR in Γ-Ring is 

investigated. The study of these notions lays the foundation for a crucial property in Γ-

ring theory: the decomposition of ideals into primary ideals in the intuitionistic fuzzy 

environment for Γ-Ring. 

In Chapter 5, introduces and explores the concept of irreducibility of an IFI in a Γ-Ring. 

It is proven that every IFI in a Noetherian Γ-Ring can be expressed as an intersection of a 

finite number of IFIrIs (Intuitionistic Fuzzy Irreducible Ideals). Additionally, the IF 

version of the Lasker-Noether theorem for a commutative Noetherian Γ-Ring is 

established, demonstrating that every IFI G in such a ring can be decomposed into a finite 

intersection of IFPrIs. This decomposition is referred to as an IF primary decomposition. 
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The independence of the set of all IF-associated prime ideals of G in the case of minimal 

intuitionistic fuzzy primary decomposition is also shown. The chapter sets a new horizon 

in the study of IF primary decomposition, paving the way for further research in other 

algebraic structures. 

In Chapter 6, a topology is defined on 𝒳 = 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻), which represents the collection 

of all IFPIs of a commutative Γ-Ring H with unity, referred to as the Zariski topology. 

The compactness of the subspace 𝒴 of 𝒳 is established using bases for the Zariski 

topology. It is demonstrated that the space 𝒳 is always T0 but not T2, though it becomes a 

T2 space when H is a Boolean Γ-Ring. It has been also shown that subspace 𝒴 is 𝑇1 if and 

only if every singleton element of 𝒴 is IF maximal ideal of H. Further for a 

homomorphism 𝑓 from a 𝛤-Ring 𝐻1 onto a 𝛤-Ring 𝐻2, it is shown that 𝒳′ =

𝐼𝐹𝑆𝑝𝑒𝑐(𝐻2) is homeomorphic to the subset 𝒳∗ = {𝐺 ∈ 𝒳: 𝐺 is 𝑓- invariant } consisting 

of 𝑓-invariant elements of 𝒳 = 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻1). Also, the space 𝒳 is irreducible if and only 

if the intersection of all the elements of 𝒳 is also an element of 𝒳. However the space 𝒳 

is connected iff 0𝐻 and e are the only idempotent elements in H. 

In Chapter 7, the concept of IFf-PrIs (2-absorbing f-primary ideals) is introduced, which 

unifies the notions of IFPIs (2-absorbing ideals) and IFPrIs (2-APrIs) in a Γ-Ring. This 

study sets the foundation for the exploration of the decomposition property for IFf-PrI (2-

absorbing f-primary ideal). 

In Chapter 8, the notion of extensions of IFI with respect to an element in the Γ-Ring is 

investigated, and characterizations of IFPI and IFSPI are developed, providing valuable 

insights into the properties of these structures. 

                                 

                        

 

 

 

 



vii 
 

                 ACKNOWLEDGEMENT 

First and foremost, I would like to thank almighty God, most Gracious, and most 

Merciful, who gave me strength, ability, and opportunity to undertake this research work 

and to complete it. He has showered His blessings upon me by spinning a web of support 

around me and helping me to get through all odds with His endless grace. Without His 

blessings, this journey would not have been possible. 

I cannot find suitable words to express my sincere appreciation and indebtedness to my 

Supervisor, Dr. Nitin Bhardwaj, Professor, Department of Mathematics, Lovely 

Professional University, Phagwara, Punjab, for introducing and clearing my doubts while 

deciding the topic for the thesis to me and especially for his guidance and 

encouragement. His deep insights helped me at various stages of my research. 

During this amazing journey, I have found a role model, a supporting pillar, and a 

continuous motivator in my Co-Supervisor, Dr. Poonam Kumar Sharma, Associate 

Professor, Post-Graduate Department of Mathematics, D.A.V. College, Jalandhar, 

Punjab, for his guidance and all the useful discussions and brainstorming sessions, 

especially during the difficult conceptual development stage. During the entire period of 

my research work and throughout my thesis writing period, he provided encouragement, 

sound advice, good teaching, excellent company, and a lot of thought-provoking ideas. It 

has been a great opportunity to work under such an experienced and caring teacher. 

My acknowledgment would be incomplete without thanking the biggest source of my 

strength, my Family, and the Blessings of my mother Smt. Kanta Kumari, and father 

Late Sh. Sham Sunder Goyal always motivates, helps and encourages me. This thesis 

will turn the dream of my parents, into reality which is to see my name with the prefix 

Dr. as Dr. Hem Lata. 

I would like to thank my role model, my Husband Mr. Ankur Aggarwal and his family 

for their unwavering support during the demanding phases in the realm of my research 

journey. It was my husband, whose dreams for me, of excelling in education have 

resulted in this achievement. There were times during the past four years when 

everything seemed hopeless. I can honestly say that it was only his determination and 



viii 
 

constant encouragement that took me here. His constant and unconditional support both 

emotionally and financially. He has been a constant source of strength and inspiration 

(and sometimes a kick on my backside when I needed one) and of course. 

I would like to thank my loving daughters Ipshita and Inaaya, your presence brought 

joy to my academic journey, and you never let things get dull. They cooperated with me 

through my struggling time and understood me when I was failed to give them proper 

time which they deserve. They are the person who saw my journey of  Ph.D. very closely 

and always kept praying for me.   

Words fail to thank my loving brother Mr. Deepak Goyal, and sister-in-law Ms. Shruti 

Goyal whose moral support and conviction in my abilities helped me in starting Ph.D. It 

was my brother who always dreams something big for me. 

I owe my heartfelt appreciation to my sister Dr. Lata Goyal and brother-in-law Dr. 

Tarun Goyal for their sincere, invaluable efforts and unconditional support in the 

realization of this thesis and research work compilation. I feel blessed to have them in my 

life. 

I would like to acknowledge the cooperation extended by Dr. Gagan Preet Kour 

Marwah, the official staff member of CRDP of Lovely Professional University, 

Phagwara, Punjab and providing the apt information throughout the course of this work. 

She has been beacon of light during the entire time-line. 

Special thanks to the Management, General Secretary SD Pratinidhi Sabha (Pb.) Dr. 

Gurdip Kumar Sharma and Principal Dr. Rajiv Kumar of my College for allowing me 

to do Ph.D along with my academic responsibilities. 

I extend my heartfelt thanks and profound respect to my mother in law Smt. Vinod Bala 

Gupta and Late Sh. Ram Kumar Aggarwal, for persistent inspiration in completing this 

work. 

I admiringly and gratefully acknowledge Dr. Anil Kumar, from Computer Department 

of my college, for their technical support during research work compilation. 

I would like to acknowledge all those who directly or indirectly have lent their helping 

hand to me in this venture of research. I seek an earnest apology from the people I could 



ix 
 

not mention individually one by one. Words can never be enough to express how grateful 

I am to those incredible people who made this thesis possible. 

At last but not the least, I bow to Almighty for blessing me with perseverance, patience 

and strength to go through this challenging phase of life. 

Immense thanks to all for their help, support, guidance and motivation... 

 

 

Hem Lata 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

TABLE OF CONTENTS 

Chapter 1 ....................................................................................................................... 1 

Introduction ................................................................................................................... 1 

1.1 History And Development ...................................................................................... 1 

1.1.1 𝜞-Rings  .......................................................................................................... 1 

1.1.2 Fuzzification Of Some Of The Concepts Analyzed In 𝜞-Rings  ....................... 2 

1.1.3 Intuitionistic Fuzzification Of Some Of The Concepts Analyzed In 𝜞-Rings  ... 3 

1.2 Chapter Wise Summary .......................................................................................... 4 

1.3 Applications Of Intuitionistic Fuzzy Logic In 𝜞-Ring ............................................ 5 

Chapter 2 ....................................................................................................................... 8 

Literature Review .......................................................................................................... 8 

2.1 Introduction To 𝜞-Ring Theory And Some Important Results ............................. 8 

2.2 Intuitionistic Fuzzification Of Some Results In 𝜞-Ring ..................................... 12 

Chapter 3 ..................................................................................................................... 17 

On Intuitionistic Fuzzy Characteristic Ideal Of A 𝜞-Ring......................................... 17 

3.1 Introduction  ..................................................................................................... 17 

3.2 Intuitionistic Fuzzy Characteristic Ideal Of 𝜞-Ring  .......................................... 17 

3.3 Operator Rings And Corresponding IFI Of 𝜞-Ring ........................................... 21 

3.4 Conclusion ....................................................................................................... 34 

Chapter 4 ..................................................................................................................... 35 

Intuitionistic Fuzzy Prime Radicals, Intuitionistic Fuzzy Primary Ideals And 

Intuitionistic Fuzzy 2-Absorbing Primary Ideals Of 𝜞-Ring  .................................... 35 

4.1 Introduction  ..................................................................................................... 35 

4.2 Intuitionistic Fuzzy Prime Radical Of An Intuitionistic Fuzzy Ideal Of A 𝜞-Ring 

 ............................................................................................................................... 35 

4.3 Intuitionistic Fuzzy Primary Ideal Of A 𝜞-Ring  ............................................... 41 

4.4 Homomorphic Behaviour Of Intuitionistic Fuzzy Primary Ideals And 

Intuitionistic Fuzzy Prime Radical Of 𝜞-Ring …………………. …………….........51 

4.5 Intuitionistic Fuzzy 2-Absorbing Primary Ideals Of A 𝜞-Ring  ......................... 55 

       4.6 Conclusion ........................................................................................................ 63 

 



xi 
 

Chapter 5 ..................................................................................................................... 64 

Decomposition of Intuitionistic Fuzzy Primary Ideal Of 𝜞-Ring  .............................. 64 

5.1 Introduction  ..................................................................................................... 64 

5.2 Intuitionistic Fuzzy Irreducible Ideals  .............................................................. 64 

5.3 Decomposition of IFPrI Of 𝜞-Ring ................................................................... 68 

5.4 Conclusion ....................................................................................................... 74 

Chapter 6 ..................................................................................................................... 75 

Intuitionistic Fuzzy Structure Space Of 𝜞-Ring  ........................................................ 75 

6.1 Introduction  ..................................................................................................... 75 

6.2 Intuitionistic Fuzzy Structure Space Of 𝜞-Ring  ................................................ 75 

6.3 Separation Axioms Of IF Spec(H) .................................................................... 81 

6.4 Intuitionistic Fuzzy Prime Radical And Algebraic Nature Of Intuitionistic Fuzzy 

Prime Ideal Under 𝛤-Homomorphism .................................................................... 85 

6.5 Irreducibility And Connectedness Of IF Spec(H)  ............................................. 88 

6.6 Conclusion ....................................................................................................... 89 

Chapter 7 ..................................................................................................................... 91 

On Intuitionistic Fuzzy f-Primary Ideals Of Commutative 𝜞-Rings ......................... 91 

7.1 Introduction ...................................................................................................... 91 

7.2 Intuitionistic Fuzzy f-Primary Ideals Of 𝜞-Rings  ............................................. 91  

7.3 Intuitionistic Fuzzy 2-Absorbing f-Primary Ideal Of A 𝜞-Ring …...………..... 96 

7.4 Conclusion ……………………...……………………………………………....99 

Chapter 8 ................................................................................................................... 100 

Extensions Of Intuitionistic Fuzzy Ideal Of 𝜞-Rings…..………..……....……..…....100 

8.1 Introduction  ................................................................................................... 100 

8.2 Extensions Of Intuitionistic Fuzzy Ideal Of 𝛤-Rings…………………...……..100 

8.3 Conclusion……………………………………………………….……….…....109 

Overall Conclusion …………...…………….…………….……………..…..…..........110 

Bibliography …..………………………….……………...……………..…...….……. 112 

Copyright/Patent …..……………………….………………..………...…..………….117 



xii 
 

List Of Publications ..……………………….………..……………..…...…...……….117 

List Of Conferences ..….………………………………………….….……………….118 

List Of Workshops …………………………………………………...……………….118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

LIST OF ABBREVIATIONS AND SYMBOLS USED 

𝑰𝑭𝑺 Intuitionistic fuzzy set 

𝑰𝑭𝑺(𝑿) Set of all intuitionistic fuzzy sets of 𝑋 

IFP(H) Intuitionistic fuzzy point of 𝛤-ring 𝐻 

𝝁𝑮(𝒙) Degree of membership of the element 𝑥 in the IFS 𝐺 

𝝂𝑮(𝒙) Degree of non-membership of the element 𝑥 in the IFS 

𝐺 

Aut(H) or Aut(OR) Set of all automorphism of 𝛤-ring H or Set of all 

automorphism of operator ring of 𝛤-ring H 

𝑯𝒐𝒎𝑯𝟏

 𝑯𝟐 Homomorphism of a Γ-Ring H1 into a Γ-Ring H2 

𝜞-𝑯𝒐𝒎𝑯𝟏

𝑯𝟐  𝛤-Homomorphism 𝑓𝑟𝑜𝑚 H1 to H2 where H1 

and H2 are 𝛤 − 𝑟𝑖𝑛𝑔𝑠 

𝑰𝑭𝑰(𝑯) or 𝑰𝑭𝑰(𝑳) 𝒐𝒓 𝑰𝑭𝑰(𝑹)  Set of intuitionistic fuzzy ideals of 𝛤-ring H or Set of 

intuitionistic fuzzy ideals of  left operator ring L or Set 

of intuitionistic fuzzy ideals of  right operator ring R 

𝑭𝑰(𝑯) or 𝑰(𝑯) Set of fuzzy ideals of 𝛤-ring H or Set of ideals of 𝛤-

ring H 

𝑭𝑳𝑰(𝑯) or 𝑭𝑹𝑰(𝑯) Set of fuzzy left ideals of 𝛤-ring H or Set of fuzzy 

right ideals of 𝛤-ring H 

𝑭𝑰(𝑶𝑹) or 𝑰(𝑳) or 𝑰(𝑹) Set of fuzzy ideals of operator ring of 𝛤-ring H or Set 

of ideals of left operator ring of 𝛤-ring H or Set of 

ideals of right operator ring of 𝛤-ring H 

𝑰𝑭𝑪𝑰 or 𝑭𝑪𝑰 or 𝑪𝑰 Intuitionistic fuzzy characteristic ideal or fuzzy 

characteristic ideal or characteristic ideal 

𝑰𝑭𝑪𝑰(𝑯) or 𝑪𝑰(𝑯) 𝒐𝒓 𝑪𝑰(𝑳)  Set of all intuitionistic fuzzy characteristic ideals of 𝛤-

ring H or Set of all characteristic ideals of 𝛤-ring H or 

Set of all characteristic ideals of left operator ring of 

𝛤-ring H 

𝑰𝑭𝑪𝑰(𝑶𝑹) Set of all intuitionistic fuzzy characteristic ideals of 

operator-ring  

𝑰𝑭𝑪𝑭 Intuitionistic fuzzy characteristic function 

𝑰𝑭𝑷𝑰 or 𝑰𝑭𝑺𝑷𝑰 𝒐𝒓 𝑭𝑷𝑰 or 𝑭𝑺𝑷𝑰 

𝑷𝑰 or 𝑺𝑷𝑰 

Intuitionistic fuzzy prime ideal or Intuitionistic fuzzy 

semi prime ideal  or fuzzy prime ideal or fuzzy semi 

prime ideal or prime ideal or semi prime ideal 

𝑰𝑭𝑷𝑹 𝒐𝒓 𝑰𝑭𝑹𝑰 Intuitionistic fuzzy prime radical or intuitionistic 

fuzzy radical ideal 

𝑰𝑭𝑷𝒓𝑰 or 𝑭𝑷𝒓𝑰 or 𝑷𝒓𝑰 Intuitionistic fuzzy primary ideal or fuzzy primary 

ideal or primary ideal 

𝑰𝑭𝑴𝑰 or 𝑴𝑰 Intuitionistic fuzzy Maximal ideal or Maximal ideal 

𝑰𝑭𝟐 − 𝑨𝑰 or 𝟐 − 𝑨𝑰 Intuitionistic fuzzy 2-absorbing ideal or 2-absorbing 

ideal 



xiv 
 

𝑰𝑭𝟐 − 𝑨𝑷𝑰 or 𝟐 − 𝑨𝑷𝑰 Intuitionistic fuzzy 2-absorbing prime ideal or 2-

absorbing prime ideal 

𝑰𝑭𝟐 − 𝑨𝒇 − 𝑷𝑰 or 𝟐 − 𝑨𝒇 − 𝑷𝑰 Intuitionistic fuzzy 2-absorbing f-prime ideal or 2-

absorbing f-prime ideal 

𝑰𝑭𝟐 − 𝑨𝑷𝒓𝑰 or 𝑰𝑭𝟐 − 𝑨𝑺𝑷𝒓𝑰 or 

𝟐 − 𝑨𝑷𝒓𝑰 

Intuitionistic fuzzy 2-absorbing primary ideal or 

Intuitionistic fuzzy 2-absorbing semi primary ideal or 

2-absorbing primary ideal 

𝑰𝑭𝟐 − 𝑨𝒇 − 𝑷𝒓𝑰 or  𝑰𝑭𝟐 − 𝑨𝒈 −
𝑷𝒓𝑰 𝐨𝐫 𝟐 − 𝑨𝒇 − 𝑷𝒓𝑰  

Intuitionistic fuzzy 2-absorbing f-primary ideal or 

Intuitionistic fuzzy 2-absorbing g-primary ideal or 2-

absorbing f-primary ideal  

IF𝑷 −PrI or  IF𝒇 −PrI or  

IF𝒈 −PrI 
Intuitionistic fuzzy P-primary ideal or Intuitionistic 

fuzzy f-primary ideal or Intuitionistic fuzzy g-primary 

ideal 

IF𝑷 − 𝟐 − 𝑨PrI or 𝟐 − 𝑨𝜹 −
𝑷𝒓𝑰 

Intuitionistic fuzzy P-2-absorbing primary ideal or 2-

absorbing 𝛿-primary ideal 

𝑰𝑭𝑰𝒓𝑰 or 𝑰𝒓𝑰 Intuitionistic fuzzy irreducible ideal or irreducible 

ideal 

𝑮(𝜼,𝜽) (𝜂, 𝜃)-cut set of the IFS 𝐺 

𝑮∗ Support of the intuitionistic fuzzy set 𝐺 

𝑮∗ 𝐺(𝜂,𝜃), where 𝜂 = 𝜇𝐺(0) and 𝜃 = 𝜈𝐺 (0) 

⟨𝑮⟩ Intuitionistic fuzzy ideal generated by 𝐺 

√𝑮 Intuitionistic fuzzy radical of 𝐺 

𝒇(𝑮) Image of the IFS 𝐺 under the map 𝑓 

𝒇−𝟏(𝑮) Inverse image of the IFS 𝐺 under the map 𝑓 

𝑲𝒆𝒓𝒇 Kernal of the map 𝑓 

𝑰𝒎𝒈(𝑮) Set of values of the IFS 𝐺 

𝑺𝒖𝒑(𝜦) Supremum of the index set 𝛬 

𝑰𝒏𝒇(𝜦) Infimum of the index set 𝛬 

𝝌𝒀 Intuitionistic fuzzy characteristic function on a subset 

𝑌 of 𝑋 

𝒉(𝜼,𝜽) Intuitionistic fuzzy point (IFP) of 𝑋 with support ℎ 

𝑺𝒑𝒆𝒄(𝑯) Set of all prime ideals of 𝛤-ring H 

𝑰𝑭𝑺𝒑𝒆𝒄(𝑯) Set of all IFPIs of the 𝛤-ring H 

𝑰𝑭𝑺𝒑𝒆𝒄(𝑶𝑹) Set of all IFPIs of the operator ring of 𝛤-ring H 

(₲𝟏: ₲𝟐) IF residual quotient of ₲1 by ₲2 

₲𝟏𝜞₲𝟐 𝛤-product of IFSs ₲1 and ₲2 

ℕ Set of natural numbers 

ℤ Set of integers 

ℝ Set of real numbers 

𝐙𝐧 Additive (multiplicative) group of integers modulo 𝑛 

< 𝑮, 𝒉 > Extension of an IFS 𝐺 with respect to ℎ 

 



1 
 

Chapter 1 

 

Introduction 

In this chapter, the history and chronological development of 𝛤-Ring, fuzzification of 

some ring theoretic structures in 𝛤-Ring has been given briefly, and also some results on 

IFI in 𝛤-Ring obtained so far. A subsequent chapter-wise summary of the research 

carried out in the thesis is discussed. 

 

1.1 History and Development 

𝟏. 𝟏. 𝟏 𝜞-Rings 

Among generalizations of rings, the concept of Γ-Ring holds a unique position. Algebraic 

structure of all rectangular matrices of the same type over a division ring under addition 

have a crucial role in classical ring theory. Although a binary multiplication on this set is 

possible but it lacks suitable interpretations. To address this, M.R. Hestenes [25], in 1962, 

introduced a ternary multiplication on the set of all m×n matrices over the division ring 

D, defined as 𝑎𝑏𝑐 = 𝑎𝑏𝑡 . 𝑐, where 𝑏𝑡 denotes the transpose of matrix b. This ternary 

multiplication involves the usual multiplication of three matrices, as further developed by 

N. Nobusawa [39], in 1964 and the algebraic structure defined was more generalized than 

a ring. Additionally, Γ was endowed with a ternary multiplication that meets the same 

conditions as explained by Hesten 

The conditions described by Nobusawa in the definition of 𝛤-Ring was slightly weakened 

by W. E. Barnes [8], in 1966. After that, J. Luh [38], in the year 1969 and S. Kyuno [36], 

in 1978, deliberated the structure of 𝛤-Rings and discovered various generalized results 

parallel to ring theory. Z. K. Warsi [68] in 1978, explored the decomposition of primary 
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ideals on 𝛤-Ring. In 1982, S. Kyuno [37] gave complete notes on the Jacobson radical of 

𝛤-Rings. In 2009, A.C. Paul and M.S. Uddin [47] further extended the work of S.Kyuno 

for Jacobson radical of 𝛤-Rings and in 2011, A.C. Paul and M.S. Uddin [48] also 

developed the decomposition in Neotherian 𝛤-Rings using sub 𝛤𝐻-modules. In 2015, R. 

Paul [49] deliberated various types of ideals of 𝛤-Rings and the corresponding ORs. In 

2016, M. Y. Elkettani and A. Kasem [19] introduced the notion of 𝛿-primary 𝛤-ideals of 

𝛤-Rings and studied the properties of these classes of 𝛤-ideals. In 2018, A. H. Rezaei and 

B. Davvaz [54] have constructed 𝛤-algebra and 𝛤-Lie admissible algebras. 

1.1.2 Fuzzification of some of the concepts analyzed in 𝜞-Rings 

The notion of FIs in 𝛤-Rings was introduced by Y. B. Jun and C. Y. Lee [30]  in 1992 

and they also studied preliminary properties of FIs. Further, the concept of fuzzy 

characteristic 𝛤-ideals and FPI of a 𝛤-Ring was introduced by S.M Hong and Y.B Jun 

[26,27] in 1994 and 1995, they elucidated numerous characterizations for an FI to be an 

FPI. Ozturk et al. [41] in the year 2002, gave a result for a 𝛤-Ring to be Artinian by 

characterizing Noetherian 𝛤-Rings with a use of fuzzy ideals. In the year 2005, T.K. 

Dutta and T. Chanda [15] defined some compositions of FIs of a 𝛤-Ring and studied the 

structures of FI(H). They established an analogous between FI(H) and the FI(OR) of the 

𝛤-Ring. Also, they characterized 𝛤-field and Noetherian 𝛤-Ring. 

In year 2007, different depictions for an FI to be an FPI which was obtained by Jun was 

given by T.K. Dutta and T. Chanda [16] and also they proved a few more new depictions 

of an FPI. M. Dumitru [17] in 2009, has given a direct way to study some kinds of 

radicals in 𝛤-Rings. One can study the same radicals in the associated rings to a 𝛤-Ring, 

namely the ring of left and right operators over the 𝛤-Ring. Interestingly, there exists a 

correspondence between the ideals of these operator rings and the ideals of the 𝛤-Ring. In 

2010, B.A. Erosy [21] defined FSPIs of a 𝛤-Ring via operator rings and obtained a few 

more characterizations of FSPIs. In the year 2017, Serkan et al. [57] introduced the 

concept of F2-APr gamma ideals in 𝛤-Rings which is an abstraction of the idea of FPI 

and FPrI in 𝛤-Rings. Also in year 2017, Yesilkurt et al. [67] introduced the notion of a 
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fuzzy weakly & partial weakly prime ideals and fuzzy semiprime 𝛤-ideals of a 𝛤-Ring 

and obtained their characterization. In 2018, the concept of extensions of fuzzy ideal 

w.r.t. an element in the 𝛤-semiring was introduced by B. Venkateshwarlu, M.M.K. Rao, 

and Y.A. Narayana in [70]. In 2019, A. K. Agrawal, P. K. Mishra, Sandhya Verma, and 

Roopali Saxena [1] studied some theorems on FPI of 𝛤-Ring and found a characterization 

of FPrI of a 𝛤-Ring. In 2019, Goswami et al. [24] in year 2019 studied the Fuzzy 

Structure Space of Semirings and 𝛤-Semirings and examined many separation axioms of 

this space. 

 

1.1.3 Intuitionistic fuzzification of some of the concepts analyzed in 𝜞-

Rings 

In 1986, K.T. Atanassov, have defined the concept of IFSs as a generalization of Fuzzy 

sets, an example was given to support the definition and its generalization. In 2001, K.H. 

Kim, Y.B. Jun, and M.A. Ozturk [34] coined the concept of IFIs of 𝛤-Ring and have seen 

various properties of them. In 2008, K.H. Kim, and J.G. Lee [35] studied the notion of 

intuitionistic (T, S)-normed FI of 𝛤-Ring. Palaniappan et al. [43], in 2010, had given a 

suitable characterization of IFI of a -rings and many related results were proved. 

Palaniappan et al. [46] in 2011, introduced the concept of IFPI (IFSPI) in 𝛤-Ring. They 

also established a relation between the 𝐼𝐹𝑆𝑝𝑒𝑐(H) and 𝐼𝐹𝑆𝑝𝑒𝑐(OR). A characterization 

of IF Artinian and noetherian 𝛤-Rings has been established. In 2017, D. Ezhilmaran and 

A. Dhandapani [22] studied IF bi-ideals in 𝛤-near rings. In 2018, S. Yavuza, D. Onara, 

B.A. Ersoya, G. Yesilot [69] introduced the concept of IF2-APrIs of commutative rings. 

In 2020, Y.A. Bhargavi, [9] introduced the concepts of translational invariant vague set 

and ideals generated by it in a 𝛤-semiring.  

     The main objectives of the thesis are 

1. To enrich the knowledge of intuitionistic fuzzy set on algebraic structures of 𝛤-Rings. 

2. To extend the concepts of ring theory to intuitionistic fuzzy ring theory associated with 

𝛤-Rings. 

3. To define new concepts in 𝛤-rings in the intuitionistic fuzzy environment. 
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4. To study the topological aspect of the set of all intuitionistic fuzzy prime ideals 

associated with 𝛤-Rings. 

5. To unifying some ideals in the intuitionistic fuzzy environment associated            with 𝛤-

Rings. 

 

1.2 Chapter Wise Summary 

During the voyage of research, the compilation of work done is a major part. In this thesis 

the work has been tried to compile as follows:  

 

     In Chapter 1, a brief history and the subsequent advancement in the concept of 𝛤-Ring 

is furnished. The details of work done on the intuitionistic fuzzification of some algebraic 

structures in 𝛤-Rings have been given. Also, the research work carried out in the thesis is 

presented concisely.  

 

    In Chapter 2, some basic definitions, results, and properties of 𝛤-rings, ideals in 𝛤-

rings, and IFI in 𝛤-rings which are mandatory for the research work are accentuated.         

  

    In Chapter 3, the concept of IFCI of a 𝛤-Ring which was an analog of a characteristic 

ideal in the ordinary ring theory has been defined, and various new results has been 

derived. The correlation between the Aut(H) and the corresponding Aut(OR) have been 

innovated. Then a one-to-one correlation between IFCI(H) and that of its operator ring 

has been constituted. This is used to obtain a similar bijection for characteristic ideals. 

 

    In Chapter 4, The notion of IFPR of an IFI in 𝛤-Rings has been introduced. The IFPrI 

of 𝛤-Rings have also been characterized. The homomorphic behavior of IFPrI and IFPR 

of 𝛤-Rings have also been analyzed. The study of these notions laid down the foundation 

of the most important property in ring theory: the decomposition of ideals in terms of 

primary ideals in the IF environment for 𝛤-Ring. 
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    In Chapter 5, the IF version of the Lasker-Noether theorem for a commutative 𝛤-Ring 

has been established. It has been proved that in a commutative Noetherian 𝛤-Ring, every 

IFI 𝐺, can be broken down as an intersection of a finite number of IFIrIs (PrIs). This 

decomposition is called an IF primary decomposition. Further, in the case of a minimal IF 

primary decomposition of 𝐺, it has been proved that the set of all IF-associated PI of 𝐺, is 

independent of the particular decomposition. Some other fundamental results of this 

concept have also been discussed. 

 

    In Chapter 6, The IF structure space of a 𝛤-Ring set up by the class of IFPIs of 𝛤-Ring 

called the IF prime spectrum of 𝛤-Ring has also been investigated and deliberated. Apart 

from studying the basic properties of this structure space, some important properties like 

separation axioms, compactness, irreducibility, and connectedness in this structure space 

have also been explored. 

 

    In chapter 7, the notion of expansion of IFIs of a commutative 𝛤-Ring has been 

introduced and using this concept, the notion of IF𝑓-PrIs (2-Af-PrIs) has been developed 

which unifies the concept of IFPIs (2-AIs) and IFPrIs (2 −APrIs) of a 𝛤-Ring. Several 

important results about IFPIs (2-AIs) and IFPrIs (2-APrIs) have been extended into this 

general framework. 

 

     In chapter 8, extension of IFI w.r.t. to a point of 𝛤-Ring was investigated and 

characterization of IFPIs and IFSPIs has been innovated. 

1.3 Applications of Intuitionistic fuzzy logic in 𝜞-ring  

Intuitionistic fuzzy logic and Gamma-ring theory are sophisticated mathematical 

frameworks employed across domains such as computer science, decision-making, and 

logic. Integrating intuitionistic fuzzy logic with Gamma-ring theory creates innovative 

possibilities for tackling intricate problems characterized by uncertainty, imprecision, and 

complex mathematical structures. Some potential applications include: 
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1. Decision-Making in Uncertain Environments 

      Intuitionistic fuzzy logic is well-suited for decision-making problems involving 

uncertainty, as it incorporates both membership and non-membership functions. 

Meanwhile, gamma-ring theory offers a structural framework to mathematically operate 

on these sets, providing powerful tools for making optimized decisions in uncertain 

environments. 

2. Multi-Criteria Optimization Problems 

     In challenges such as resource allocation, product design, or financial portfolio 

optimization, decision-makers often face competing criteria that are not precisely defined. 

Intuitionistic fuzzy logic enables the management of degrees of truth, uncertainty, and 

hesitation in these scenarios. Gamma-rings provide a mathematical framework to model 

the algebraic relationships among these criteria, facilitating the development of effective 

optimization strategies. 

3. Fuzzy Relational Databases and Information Retrieval 

     Intuitionistic fuzzy logic improves relational databases' capacity to manage vague or 

imprecise data. Simultaneously, Gamma-rings can define operations such as union, 

intersection, and complement within this fuzzy relational model, enabling queries and 

information retrieval under uncertainty while ensuring algebraic consistency. 

 

4. Fault Diagnosis in Complex Systems 

     Intuitionistic fuzzy logic is effective for assessing the degree of fault in components of 

complex systems, such as power grids, manufacturing plants, or transportation networks. 

Gamma-ring theory aids in modeling the relationships between different components and 

diagnostic tests, enabling the development of more robust diagnostic algorithms. 
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5. Image Processing and Pattern Recognition 

     Intuitionistic fuzzy logic facilitates the segmentation and classification of images with 

uncertain pixel data, while Gamma-ring theory offers algebraic tools to manage 

operations on such image data structures. It can model processes like image 

transformations, blurring, or noise reduction, ensuring consistent algebraic operations 

within intuitionistic fuzzy sets. This combination can enhance pattern recognition 

accuracy in applications such as medical imaging and automated inspection systems. 

 

6. Knowledge Representation and Reasoning 

     Intuitionistic fuzzy logic is valuable for representing knowledge in expert systems 

where certainty levels are not absolute. Gamma-rings can structure and integrate diverse 

sources of fuzzy knowledge, ensuring logical consistency and supporting more efficient 

inference and decision-making processes. 

 

7. Control Systems and Automation 

     In industrial control systems, sensor data may be imprecise due to noise or 

environmental influences. Intuitionistic fuzzy logic aids in handling these uncertainties 

during decision-making. Gamma-ring theory models the algebraic relationships between 

control actions and environmental factors, enabling optimal control strategies while 

accounting for system imprecision. 

Conclusion: 

     The integration of intuitionistic fuzzy logic and gamma-ring theory provides robust 

mathematical tools for addressing uncertainty and imprecision across diverse 

applications. Intuitionistic fuzzy sets enable the handling of vague or incomplete 

information, while gamma-ring theory facilitates the organization and processing of 

intricate relationships. This combined approach can enhance solutions in areas such as 

decision-making, optimization, database management, fault diagnosis, and beyond. 
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Chapter 2 

 

Literature Review 

This chapter is divided into two sections. In the first section, an introduction to Γ-Ring 

theory has been provided and crucial definitions and results pertinent to Γ-Rings, which 

are imperative for subsequent chapters has been articulated. In the second section, 

fundamental definitions and concepts related to IFS theory, as introduced by K.T. 

Atanassov—an abstraction of the theory of fuzzy sets has been provided. Outline of 

elementary operations on IFSs has been provided and instances where the notion of IFS 

has been applied to various algebraic concepts has been explored. This exploration 

naturally leads to the introduction of IF subrings and ideals within the context of Γ-Ring. 

 

2.1 Introduction To 𝜞-Ring Theory And Some Important 

Results 

This section contains some definitions and results on 𝛤-Ring which are mainly taken 

from [8,13,17,36,37,39,49,68]. 

Definition 2.1.1 [8,39] “(𝛤-Ring) If (𝐻, +) and (𝛤, +) are additive Abelian groups, then 

H is called a 𝛤-Ring if there exists mapping 𝐻 × 𝛤 × 𝐻 → 𝐻 [image of (ℎ1, 𝛼, ℎ2) is 

denoted by ℎ1𝛼ℎ2, where ℎ1, ℎ2 ∈ 𝐻, and 𝛼 ∈ 𝛤 satisfying the following conditions:                    

    1.  ℎ1𝛼ℎ2 ∈ 𝐻. 

   2. (ℎ1 + ℎ2)𝛼ℎ3 = ℎ1𝛼ℎ3 + ℎ2𝛼ℎ3, ℎ1(𝛼 + 𝛽)ℎ2 = ℎ1𝛼ℎ2 + ℎ1𝛽ℎ2, ℎ1𝛼(ℎ2 + ℎ3) =

        ℎ1𝛼ℎ2 + ℎ1𝛼ℎ3 

    3.  (ℎ1𝛼ℎ2)𝛽ℎ3 = ℎ1𝛼(ℎ2𝛽ℎ3) for all ℎ1, ℎ2, ℎ3 ∈ 𝐻, and 𝛼, 𝛽 ∈ 𝛤.” 

Definition 2.1.2. [68] “(Commutative 𝛤-Ring) A 𝛤-Ring H is said to be commutative if 

ℎ𝛾𝑘 = 𝑘𝛾ℎ for all ℎ, 𝑘 ∈ 𝐻, 𝛾 ∈ 𝛤.” 
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Example 2.1.3. [8,49] “(1) Let us take H = {[𝑎𝑖𝑗]: 𝑎𝑖𝑗 ∈ 𝑍, 𝑖 = 1,2, . . . , 𝑚; 𝑗 = 1,2, . . . , 𝑛}, 

the set of (𝑚 × 𝑛) matrices whose entries are from 𝑍 and 𝛤 = {[𝑎𝑖𝑗]: 𝑎𝑖𝑗 ∈ 𝑍, 𝑖 =

1,2, . . . , 𝑛; 𝑗 = 1,2, . . . , 𝑚}, the set of (𝑛 × 𝑚) matrices whose entries are from 𝑍, then H 

will become a 𝛤-Ring. 

 

    (2) Consider 𝐻 = 𝑍2 × 𝑍2 = {(0,0), (1,0), (0,1), (1,1)}, 𝛤 = {(0,0), (1,1)}. Clearly, H 

and 𝛤 are additive Abelian groups, and that H is 𝛤-Ring. 

 

    (3) If 𝑅 and 𝑅′ are two additive Abelian groups, 𝐻 = 𝐻𝑜𝑚(𝑅, 𝑅′), 𝛤 = 𝐻𝑜𝑚(𝑅′, 𝑅) 

then H will be a 𝛤-Ring w.r.t. pointwise addition and composition of mappings.” 

Definition 2.1.4. [8,49]  “(Ideal in 𝛤-Ring) A subset 𝑁 of a 𝛤-Ring H is a left (right) 

ideal of H if 𝑁 is an additive subgroup of H and 𝐻𝛤𝑁 = {ℎ𝛼𝑘|ℎ ∈ 𝐻, 𝛼 ∈ 𝛤, 𝑘 ∈ 𝑁}, 

(𝑁𝛤𝐻) is contained in 𝑁. If 𝑁 is both a left and a right ideal then 𝑁 is a two-sided ideal, 

or simply an ideal of H. 

Example 2.1.5. (1) Let us take 𝐻 = 𝑍2 × 𝑍2 = {(0,0), (1,0), (0,1), (1,1)}, 𝛤 =

{(0,0), (1,1)} and 𝐾 = 𝑍2 × {0} = {(1,0), (0,0)}. Clearly, H and 𝛤 are additive Abelian 

groups, and that H is 𝛤-Ring. Also, here 𝐾 is the 𝛤-ideal of H. 

 

     (2) Let 𝑍 be the set of all integers. Take H = 𝛤 = 𝑍. Then 𝑍 is a 𝛤-Ring. Let 𝑎, 𝑏 ∈

𝐻, 𝛼 ∈ 𝛤. Suppose 𝑎𝛼𝑏 ∈ 𝐻 is the product of 𝑎, 𝛼, and 𝑏. Then H is a 𝛤-Ring. Take 𝑁 =

2𝑍 be a subset of H. Then 𝑁 is an ideal of H.” 

Definition 2.1.6. [8,49] “(Prime Ideal in 𝛤-Ring) Let H be a 𝛤-Ring. A proper ideal 𝐿 of 

H is called prime if, for all pair of ideals 𝑆 and 𝑇 of H, 𝑆𝛤𝑇 ⊆ 𝐿 implies that 𝑆 ⊆ 𝐿 or 

𝑇 ⊆ 𝐿. 

Remark 2.1..7.  If 𝐿 is an ideal of a 𝛤-Ring H. Then 𝐿 is a PI iff 𝑎 ∉ 𝐿, 𝑏 ∉ 𝐿 implies ∃ 

𝛾 ∈ 𝛤 such that 𝑎𝛾𝑏 ∉ 𝐿.” 

Theorem 2.1.8. [8] “ If 𝐿 is an ideal of a 𝛤-Ring H, the following conditions are 

equivalent: 
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    1.  𝐿 is a prime ideal of H 

    2. If 𝑎, 𝑏 ∈ 𝐻 and 𝑎𝛤𝐻𝛤𝑏 ⊆ 𝐿 then 𝑎 ∈ 𝐿 or 𝑏 ∈ 𝐿.” 

Definition 2.1.9. [49] “(Semi-prime ideal in 𝛤-Ring) Let H be a 𝛤-Ring. A proper ideal 𝐿 

of H is called semi-prime if, for any ideal 𝑆 of H, 𝑆𝛤𝑆 ⊆ 𝐿 implies that 𝑆 ⊆ 𝐿. 

Remark 2.1.10.  For an ideal 𝐿 of a 𝛤-Ring H, 𝐿 is SPI iff 𝑎 ∉ 𝐿 implies there exists 𝛾 ∈

𝛤 such that 𝑎𝛾𝑎 ∉ 𝐿.” 

Theorem 2.1.11. “If 𝐿 is an ideal of a 𝛤-Ring H, the following conditions are equivalent: 

    1. 𝐿 is a SPI of H   

    2. If 𝑎 ∈ 𝐻 s.t. 𝑎𝛤𝐻𝛤𝑎 ⊆ 𝐿, then 𝑎 ∈ 𝐿.” 

Definition 2.1.12. [8,49,68]  “Let H be a 𝛤-Ring. Then the radical of an ideal 𝐾 of H is 

denoted by √𝐾 and is defined as the set 

√𝐾 = {ℎ ∈ 𝐻: (ℎ𝛾)𝑛−1ℎ ∈ 𝐾, for some 𝑛 ∈ 𝐍 and for all 𝛾 ∈ 𝛤 } 

where (ℎ𝛾)𝑛−1ℎ = ℎ for 𝑛 = 1.” 

Definition 2.1.13. [8,49,68] “An ideal 𝐾 of a commutative 𝛤-Ring H is said to be 

primary if, for any two ideals 𝑀 and 𝐽 of H, 𝑀𝛤𝐽 ⊆ 𝐾 implies either 𝑀 ⊆ 𝐾 or 𝐽 ⊆ √𝐾, 

where √𝐾 is the prime radical of 𝐾.” 

Definition 2.1.14. [6] “A proper ideal 𝑀 of 𝛤-Ring H is called 𝑡ℎ𝑒 2-absorbing ideal of 

H if whenever ℎ1, ℎ2, ℎ3 ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤 and ℎ1𝛾1ℎ2𝛾2ℎ3 ∈ 𝑀, then ℎ1𝛾1ℎ2 ∈ 𝑀 or 

ℎ1𝛾2ℎ3 ∈ 𝑀 or ℎ2𝛾2ℎ3 ∈ 𝑀.” 

Definition 2.1.15. [7] “A proper ideal 𝑀 of 𝛤-Ring H is called 2-absorbing primary ideal 

of H if whenever ℎ1, ℎ2, ℎ3 ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤 and ℎ1𝛾1ℎ2𝛾2ℎ3 ∈ 𝑀, then ℎ1𝛾1ℎ2 ∈ 𝑀 or 

ℎ1𝛾2ℎ3 ∈ √𝑀 or ℎ2𝛾2ℎ3 ∈ √𝑀. 

Remark 2.1.16.  Every 2-absorbing ideal in H is a 2 −APrI in H. 

     However, the converse of the above remark does not hold. 

For example: Consider 𝐻 = ℤ, 𝛤 = 5ℤ. Then H is a 𝛤-Ring. Consider 𝑀 = 12ℤ. Take 

𝛾1, 𝛾2 ∈ 𝛤 such that 2𝛾12𝛾23 ∈ 𝑀 implies 2𝛾12 ∉ 𝑀, but 2𝛾23 ∈ √𝑀. Thus 𝑀 is a 
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2 −APrI of H, however, 𝑀 is not the 2-absorbing ideal of H, for 2𝛾12𝛾23 ∈ 𝑀, but 

2𝛾12 ∉ 𝑀 and 2𝛾23 ∉ 𝑀.” 

Definition 2.1.17. [8] “A function 𝜎: 𝐻1 → 𝐻2, where 𝐻1 and 𝐻2 are 𝛤-Rings, is said to 

be a 𝛤-homomorphism if for all ℎ, 𝑘 ∈ 𝐻1, 𝛾 ∈ 𝛤, the following holds 

    1. 𝜎(ℎ + 𝑘) = 𝜎(ℎ) + 𝜎(𝑘) 

    2. 𝜎(ℎ𝛾𝑘) = 𝜎(ℎ)𝛾𝜎(𝑘). 

A surjective 𝛤-homomorphism 𝜎: 𝐻 → 𝐻 is called a 𝛤-endomorphism and an injective 𝛤-

endomorphism is called a 𝛤-automorphism. The set of all 𝛤-automorphisms is denoted by 

𝐴𝑢𝑡(𝐻).” 

Definition 2.1.18. ([39,56]) “An ideal 𝑀 of a 𝛤-Ring H is called a characteristic ideal of 

H if 𝑓(𝑀) = 𝑀, for all 𝑓 ∈ 𝐴𝑢𝑡(𝐻).” 

Definition 2.1.19. ([39,56]) “Let for a 𝛤-Ring H. Let us signify a relation 𝜎 on 𝐻 × 𝛤 as 

given below: 

(ℎ, 𝛼)𝜎(𝑘, 𝛽) iff ℎ𝛼𝑚 = 𝑘𝛽𝑚, ∀𝑚 ∈ 𝐻 and 𝛾ℎ𝛼 = 𝛾𝑘𝛽, ∀𝛾 ∈ 𝛤. 

Thus 𝜎 is an equivalence relation on 𝐻 × 𝛤. Set [ℎ, 𝛼] be the equivalence class 

containing (ℎ, 𝛼). Let 𝐿 = {[ℎ, 𝛼]: ℎ ∈ 𝐻, 𝛼 ∈ 𝛤}. Then 𝐿 is a ring with respect to the 

compositions 

[ℎ, 𝛼] + [𝑘, 𝛼] = [ℎ + 𝑘, 𝛼] ; [ℎ, 𝛼] + [ℎ, 𝛽] = [ℎ, 𝛼 + 𝛽] ; 

∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∑ [𝑘𝑗, 𝛽𝑗]𝑗 = ∑ [ℎ𝑖𝛼𝑖𝑘𝑗, 𝛽𝑗]𝑖,𝑗 . 

This ring 𝐿 is called the left operator ring of 𝛤-Ring H. Dually the right operator ring R of 

𝛤-Ring H is formed where the compositions on R are defined as: 

[𝛼, ℎ] + [𝛽, ℎ] = [𝛼 + 𝛽, ℎ]; [𝛼, ℎ] + [𝛼, 𝑘] = [𝛼, ℎ + 𝑘]; 

∑ [𝛼𝑖 , ℎ𝑖]𝑖 ∑ [𝛽𝑗 , 𝑘𝑗]𝑗 = ∑ [𝛼𝑖 , ℎ𝑖𝛽𝑗𝑘𝑗]𝑖,𝑗 . 

Remark 2.1.20.  [56] 

(1) If there exists an element 1𝐿 = ∑ [𝑒𝑖, 𝛿𝑖]𝑖 ∈ 𝐿 ( or 1𝑅 = ∑ [𝛾𝑖 , 𝑎𝑖]𝑖 ∈ 𝑅) such that ∑𝑖

𝑒𝑖 𝛿𝑖ℎ = ℎ (resp. ∑ ℎ𝑖 𝛾𝑖𝑎𝑖 = ℎ) for all ℎ ∈ 𝐻 then ∑ [𝑒𝑖, 𝛿𝑖]𝑖  (resp. ∑ [𝛾𝑖 , 𝑎𝑖]𝑖 ) is called 

the left (resp. right) unity of H.  

(2) If we define a mapping 𝐿 × 𝐻 → 𝐻 by (∑ [ℎ𝑖, 𝛼𝑖]𝑖 , 𝑘) → ∑ ℎ𝑖𝑖 𝛼𝑖𝑘, then we can show 

that the above mapping is well defined and 𝐻 is a left 𝐿-module, and we call 𝐿 the left 
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operator ring of the 𝛤-Ring 𝐻. Similarly, we can construct a right operator ring R of 𝐻 so 

that 𝐻 is a right R-module. 

     Let H be a 𝛤-Ring with the left operator ring 𝐿. For 𝑃 ⊆ 𝐿 and 𝑄 ⊆ 𝐻, we define 

𝑃+ = {ℎ ∈ 𝐻: [ℎ, 𝛼] ∈ 𝑃, ∀𝛼 ∈ 𝛤} and 𝑄+′
= {[ℎ, 𝛼] ∈ 𝐿: ℎ𝛼𝑘 ∈ 𝑄, ∀𝑘 ∈ 𝐻}. 

Similarly, if H is a 𝛤-Ring with right operator ring R. For 𝑃 ⊆ 𝑅 and 𝑄 ⊆ 𝐻, we define 

𝑃∗ = {ℎ ∈ 𝐻: [𝛼, ℎ] ∈ 𝑃, ∀𝛼 ∈ 𝛤} and 𝑄∗′
= {[𝛼, ℎ] ∈ 𝑅: 𝑘𝛼ℎ ∈ 𝑄, ∀𝑘 ∈ 𝐻}. 

     Then in [10], it was shown that if 𝑃 (resp. 𝑄) is a right ideal of 𝐿 (resp. H), then 𝑃+ 

(resp. 𝑄+′
) is a right ideal of H (resp. 𝐿) and there exists an inclusion preserving mapping 

𝑄 → 𝑄+′
. Also if 𝑃 (resp. 𝑄) is a left ideal of R (resp. H), then 𝑃∗ (resp. 𝑄∗′

) is a left 

ideal of H (resp. R) and there exists an inclusion preserving mapping 𝑄 → 𝑄∗′
.” 

Definition 2.1.21. [56] “Let H be a 𝛤-Ring and 𝐿 be the left operator ring of H. Then the 

bijection 𝑓: 𝐿 → 𝐿 is said to be automorphism if for all [ℎ, 𝛼] , [ℎ, 𝛽], [𝑘, 𝛼], [𝑘, 𝛽] ∈ 𝐿 

   1.  𝑓([ℎ, 𝛼] + [𝑘, 𝛼]) = 𝑓([ℎ, 𝛼]) + 𝑓([𝑘, 𝛼]) and  𝑓([ℎ, 𝛼] + [ℎ, 𝛽]) = 𝑓([ℎ, 𝛼]) + 𝑓([ℎ, 𝛽]) , 

   2.  𝑓(∑ [ℎ𝑖 , 𝛼𝑖]𝑖 ∑ [𝑘𝑗 , 𝛽𝑗]𝑗 ) = 𝑓(∑ [ℎ𝑖 , 𝛼𝑖]𝑖 )𝑓(∑ [𝑘𝑗 , 𝛽𝑗]𝑗 ), 

   3.  𝑓(∑ [𝑒𝑖 , 𝛿𝑖]𝑖 ) = ∑ [𝑒𝑖 , 𝛿𝑖]𝑖 , if ∑ [𝑒𝑖 , 𝛿𝑖]𝑖  is the left unity of H, 

   4.  𝑓(∑ [𝑎𝑖 , 𝛾𝑖]𝑖 ) = ∑ [𝑎𝑖 , 𝛾𝑖]𝑖 , if ∑ [𝑎𝑖 , 𝛾𝑖]𝑖  is the right unity of H. 

     Similarly, we can define the automorphism on the right operator ring R of the 𝛤-Ring 

H.” 

Proposition 2.1.22.  ([43]) “Every left (or right) ideal of 𝛤-Ring H defines a left (or 

right) ideal of the right operator ring R and conversely.” 

 

2.2 Intuitionistic Fuzzification Of Some Results In 𝜞-Ring 

This section contains some definitions and results on IFSs on 𝛤-Ring which are mainly 

taken from [4,5,34,40,42,43,46,50]. 

Definition 2.2.1.  [4,5] “(Intuitionistic Fuzzy Set) An IFS 𝐺 in 𝑋 can be represented as an 

object of the form 𝐺 = {< 𝑥, 𝜇𝐺(𝑥), 𝜈𝐺(𝑥) >: 𝑥 ∈ 𝑋}, where the functions 𝜇𝐺 : 𝑋 → [0,1] 

and 𝜈𝐺 : 𝑋 → [0,1] denote the degree of membership (namely 𝜇𝐺(𝑥)) and the degree of 
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non-membership (namely 𝜈𝐺(𝑥)) of each element 𝑥 ∈ 𝑋 to 𝐺 respectively and 0 ≤

𝜇𝐺(𝑥) + 𝜈𝐺(𝑥) ≤ 1 for each 𝑥 ∈ 𝑋.” 

Remark 2.2.4. [4,5,71]“1. When 𝜇𝐺(𝑥) + 𝜈𝐺(𝑥) = 1, i.e., 𝜈𝐺(𝑥) = 1 − 𝜇𝐺(𝑥) =

𝜇𝐺𝑐(𝑥), ∀ 𝑥 ∈ 𝑋. Then 𝐺 is called a fuzzy set. 

    2. An IFS 𝐺 = {< 𝑥, 𝜇𝐺(𝑥), 𝜈𝐺(𝑥) >: 𝑥 ∈ 𝑋} is shortly denoted by 𝐺(𝑥) = (𝜇𝐺(𝑥), 𝜈𝐺(𝑥)), for 

all 𝑥 ∈ 𝑋. 

 

    3. The set of all IFS on 𝑋 is denoted by 𝐼𝐹𝑆(𝑋).” 

    “If ₲1, ₲2 ∈ 𝐼𝐹𝑆(𝑋), then ₲1 ⊆ ₲2 if and only if 𝜇₲1
(𝑥)  ≤ 𝜇₲2

(𝑥) and 𝜈₲1
(𝑥) ≥

𝜈₲2
(𝑥) ∀ 𝑥 ∈ 𝑋 and ₲1 = ₲2 ⇔ ₲1 ⊆ ₲2 𝑎𝑛𝑑 ₲2 ⊆ ₲1. For any subset Y of X, the IFCF 

𝜒𝑌 is an IFS of X, defined as 𝜒𝑌(𝑥) = (1,0), ∀𝑥 ∈ 𝑌 and 𝜒𝑌(𝑥) = (0,1), ∀𝑥 ∈ 𝑋\𝑌. Let 

𝜂, 𝜃 ∈ [0,1] with 𝜂 + 𝜃 ≤ 1. Then the crisp set 𝐺(𝜂,𝜃) = {𝑥𝜖𝑋: 𝜇G(𝑥) ≥ 𝜂 𝑎𝑛𝑑 𝜈G(𝑥) ≤

𝜃} is called the (𝜂, 𝜃) − level cut subset of G. Also the IFS 𝑥(𝜂,𝜃) of X defined as 

𝑥(𝜂,𝜃)(𝑦) = (𝜂, 𝜃), 𝑖𝑓 𝑦 = 𝑥, otherwise (0, 1) is called intuitionistic fuzzy point (IFP) in X 

with support x. By  𝑥(𝜂,𝜃) ∈ 𝐺 we mean 𝜇G(𝑥) ≥ 𝜂  and 𝜈G(𝑥) ≤ 𝜃. Further if 𝑓: 𝑋 ⇾ 𝑌 is 

a mapping  and ₲1, ₲2be respectively IFS of X and Y, then the image f (₲1) is an IFS of 

Y is defined as 𝜇𝑓(₲1)(𝑦) = Sup {𝜇₲1
(𝑥): 𝑓(𝑥) = 𝑦}, 𝜈𝑓(₲1)(𝑥): f(x) = y}, for all y ∈ 𝑌 and 

the inverse image 𝑓−1(₲2) is an IFS of X is defined as 𝜇𝑓−1(₲2) = 𝜇₲2
(𝑓(𝑥)), 

𝜈𝑓−1(₲2)(𝑥) =  𝜈₲2
(𝑓(𝑥)) for all 𝑥 ∈ 𝑋, 𝑖. 𝑒., 𝑓−1(₲2)(x) =B(f(x)), for all x∈ 𝑋. 

Also the IFS ₲1 of X is said to be f − invariant if for any x, y ∈ X, whenever f(x) =f(y) 

implies ₲1(x) =  ₲1(y)” 

Definition 2.2.3. [34,42,50]  “Let ₲1 and ₲2 be two IFSs of a 𝛤-Ring H and 𝛾 ∈ 𝛤. Then 

the product ₲1𝛤₲2 and the composition ₲1 ∘ ₲2 of ₲1 and ₲2 are defined by 

(𝜇₲1𝛤₲2
(ℎ), 𝜈₲1𝛤₲2

(ℎ))

= {
(∨ℎ=𝑘𝛾𝑝 (𝜇₲1

(𝑘) ∧ 𝜇₲2
(𝑝)) ,∧ℎ=𝑘𝛾𝑝 (𝜈₲1

(𝑘) ∨ 𝜈₲2
(𝑝)) , if ℎ = 𝑘𝛾𝑝

(0,1), otherwise
 

                                         

and 
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(𝜇₲1∘₲2
(ℎ), 𝜈₲1∘₲2

(ℎ))

= {
(∨ℎ=∑ 𝑘𝑖

𝑛
𝑖=1 𝛾𝑝𝑖

(𝜇₲1
(𝑘𝑖) ∧ 𝜇₲2

(𝑝𝑖)) ,∧ℎ=∑ 𝑘𝑖
𝑛
𝑖=1 𝛾𝑝𝑖

(𝜈₲1
(𝑘𝑖) ∨ 𝜈₲2

(𝑝𝑖))) , if ℎ = ∑ 𝑘𝑖

𝑛

𝑖=1

𝛾𝑝𝑖

(0,1), otherwise

 

” 

Remark 2.2.4. [42]  “If ₲1 and ₲2 are two IFSs of a 𝛤-Ring H, then ₲1𝛤₲2 ⊆ ₲1 ∘ ₲2 ⊆

₲1 ∩ ₲2.” 

Definition 2.2.5. [34,42]  “Let 𝐺 be an IFS of a 𝛤-Ring H, then 𝐺 is called an IFI of H if 

for all 𝑟, 𝑛 ∈ 𝐻, 𝛾 ∈ 𝛤, the following are satisfied: 

    1. 𝜇𝐺(𝑟 − 𝑛) ≥ 𝜇𝐺(𝑟) ∧ 𝜇𝐺(𝑛); 

    2. 𝜇𝐺(𝑟𝛾𝑛) ≥ 𝜇𝐺(𝑟) ∨ 𝜇𝐺(𝑛); 

    3. 𝜈𝐺(𝑟 − 𝑛) ≤ 𝜈𝐺(𝑟) ∨ 𝜈𝐺(𝑛); 

    4. 𝜈𝐺(𝑟𝛾𝑛) ≤ 𝜈𝐺(𝑟) ∧ 𝜈𝐺(𝑛). 

    The set of all IFI of 𝛤-Ring H is denoted by 𝐼𝐹𝐼(𝐻). Note that if 𝐺 ∈ 𝐼𝐹𝐼(𝐻), then 

𝜇𝐺(0𝐻) ≥ 𝜇𝐺(ℎ) and 𝜈𝐺(0𝐻) ≤ 𝜈𝐺(ℎ), ∀ℎ ∈ 𝐻.” 

Definition 2.2.6. [46] “(Intuitionistic fuzzy prime ideal) Let H be a 𝛤-Ring. A non-

constant IFI 𝑃 of H is called an IFPI of H, if for all pair of IFIs ₲1, ₲2 of H, ₲1𝛤₲2 ⊆ 𝑃 

implies that ₲1 ⊆ 𝑃 or ₲2 ⊆ 𝑃.” 

Theorem 2.2.7.  ([46,50]) “Let H be a commutative 𝛤-Ring and 𝐺 be an IFI of H, then 

the following are equivalent: 

   (i) ℎ(𝜂,𝜃)𝛤𝑘(ϐ,𝜗) ⊆ 𝐺 ⇒ ℎ(𝜂,𝜃) ⊆ 𝐺 or 𝑘(ϐ,𝜗) ⊆ 𝐺, where ℎ(𝜂,𝜃) , 𝑘(ϐ,𝜗) ∈ 𝐼𝐹𝑃(𝐻). 

  (ii) 𝐺 is an IFPI of H.” 

Theorem 2.2.8. ([42,43,50]) “Let 𝐺 be an IFI of 𝛤-Ring H. Then each (𝜂, 𝜃)-level cut set 

𝐺(𝜂,𝜃) is either empty or an ideal of H, where 𝜂 ≤ 𝜇𝐺(0𝐻) and 𝜃 ≥ 𝜈𝐺(0𝐻). In particular, 

𝐺(1,0) which is denoted by 𝐺∗, i.e., the set 𝐺∗ = {ℎ ∈ 𝐻: 𝜇𝐺(ℎ) = 𝜇𝐺(0𝐻) and 𝜈𝐺(ℎ) =

𝜈𝐺(0𝐻)} is ideal of H. If 𝐺 ∈ 𝐼𝐹𝑃𝐼(𝐻), then 𝐺∗ is a prime ideal of H.” 

Theorem 2.2.9. [46,50]  “If 𝑃 is an IFPI of a 𝛤-Ring H, then the following conditions 

hold: 

     1.𝑃(0𝐻) = (1,0), 
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    2. 𝑃∗ is a prime ideal of H, 

    3. 𝐼𝑚𝑔(𝑃) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1.” 

Definition 2.2.10. [46,50] “(Intuitionistic fuzzy semi-prime ideal) A non-constant IFI 𝑃 

of a 𝛤-Ring H is said to be an IFSPI if for any IFI 𝐺 of H, 𝐺𝛤𝐺 ⊆ 𝑃, implies that 𝐺 ⊆ 𝑃.” 

Proposition 2.2.11. [46]   “Let 𝑃 be a non-constant IFI of a 𝛤-Ring H, then the following 

conditions are equivalent: 

   (i) 𝑃 is an IFSPI of H 

  (ii)For any 𝑎 ∈ 𝐻, 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝑃(𝑎𝛾1𝑟𝛾2𝑎)} = 𝜇𝑃(𝑎) and 

𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝑃(𝑎𝛾1𝑟𝛾2𝑎)} = 𝜈𝑃(𝑎).” 

Proof. (i) ⇒ (ii) Let 𝑃 be an IFSPI of H. Since 𝑃 is IFI of H, it follows that 

𝜇𝑃(𝑎𝛾1𝑚𝛾2𝑎) ≥ 𝜇𝑃(𝑎) and 𝜈𝑃(𝑎𝛾1𝑟𝛾2𝑎) ≤ 𝜈𝑃(𝑎), ∀𝑟 ∈ 𝐻, 𝛾1 , 𝛾2 ∈ 𝛤. If possible let us 

suppose that 𝜇𝑃(𝑎𝛾1𝑟𝛾2𝑎) > 𝜇𝑃(𝑎) and 𝜈𝑃(𝑎𝛾1𝑟𝛾2𝑎) < 𝜈𝑃(𝑎), for some 𝑎 ∈ 𝐻. Let  

<  𝑎 > be the ideal generated 𝑎. Define the IFS 𝐶 on H by 

           𝜇𝐶(ℎ) = {
𝑡, if ℎ ∈< 𝑎 >
0, otherwise

;   

𝜈𝐶(ℎ) = {
𝑠, if ℎ ∈< 𝑎 >
1, otherwise.

 

Where, 𝑡, 𝑠 ∈ (0,1) such that 𝑡 + 𝑠 ≤ 1. Then 𝐶 is an IFI of H. Consider ℎ ∈ 𝐻 s.t. ℎ ≠

𝑢𝛾𝑣, for some 𝑢, 𝑣 ∈< 𝑎 >, then 𝐶𝛤𝐶(ℎ) = (0,1) and 𝐶𝛤𝐶(ℎ) =

(𝑆𝑢𝑝ℎ=𝑢𝛾𝑣,𝑢,𝑣∈<𝑎>{𝜇𝐶(𝑢) ∧ 𝜇𝐶(𝑣)}, 𝐼𝑛𝑓ℎ=𝑢𝛾𝑣,𝑢,𝑣∈<𝑎>{𝜇𝐶(𝑢) ∨ 𝜇𝐶(𝑣)}). 

 

       Now any 𝑢 ∈< 𝑎 > is of the form 𝑢 = ∑ 𝑟𝑖
′𝑝

𝑖=1 𝛾𝑖
′𝑎𝛾𝑖

″𝑟𝑖
″, 𝑟𝑖

′, 𝑟𝑖
″ ∈ 𝐻, 𝛾𝑖

′, 𝛾𝑖
″ ∈ 𝛤 and 

𝑝 ∈ 𝑍+. Similarly,𝑣 = ∑ 𝑟𝑗
′𝑞

𝑗=1 𝛾𝑗
′𝑎𝛾𝑗

″𝑟𝑗
″, 𝑟𝑗

′, 𝑟𝑗
″ ∈ 𝐻, 𝛾𝑗

′, 𝛾𝑗
″ ∈ 𝛤 and 𝑞 ∈ 𝑍+. 

Now, 𝑢𝛾𝑣 = (∑ 𝑟𝑖
′𝑝

𝑖=1 𝛾𝑖
′𝑎𝛾𝑖

″𝑟𝑖
″)(∑ 𝑟𝑗

′𝑞
𝑗=1 𝛾𝑗

′𝑎𝛾𝑗
″𝑟𝑗

″, 𝑟𝑗
′). Since 𝑃 is an IFI of H, it follows 

that 

𝜇𝑃(ℎ) = 𝜇𝑃(𝑢𝛾𝑣) ≥ 𝜇𝑃(𝑎𝜉1𝑟′𝜉2𝑎) ≥ 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝑃(𝑎𝛾1𝑟𝛾2𝑎)} > 𝑡 = 𝜇𝐶𝛤𝐶(ℎ), for 

some 𝑟′ ∈ 𝐻. Similarly, we can show 𝜈𝑃(ℎ) < 𝜈𝐶𝛤𝐶(ℎ). So, we get 𝐶𝛤𝐶 ⊆ 𝑃. As 𝑃 is an 

IFSPI of H, it follows that 𝐶 ⊆ 𝑃. 



16 
 

Hence 𝑡 = 𝜇𝐶(𝑎) ≤ 𝜇𝑃(𝑎) and 𝑠 = 𝜈𝐶(𝑎) ≥ 𝜈𝑃(𝑎), a contradiction. Consequently we 

have 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝑃(𝑎𝛾1𝑟𝛾2𝑎)} = 𝜇𝑃(𝑎) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝑃(𝑎𝛾1𝑟𝛾2𝑎)} = 𝜈𝑃(𝑎). 

 

      (𝑖𝑖) ⇒ (𝑖), Let us assume that 𝑃 be an IFI of H satisfying for any 𝑎 ∈ 𝐻, 

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝑃(𝑎𝛾1𝑟𝛾2𝑎)} = 𝜇𝑃(𝑎) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝑃(𝑎𝛾1𝑟𝛾2𝑎)} = 𝜈𝑃(𝑎). 

Let 𝐶 be an IFI of H s.t. 𝐶𝛤𝐶 ⊆ 𝑃 and 𝐶 ⊈ 𝑃. Then there exist 𝑏 ∈ 𝐻 s.t. 𝜇𝐶(𝑏) > 𝜇𝑃(𝑏) 

and 𝜈𝐶(𝑏) < 𝜈𝑃(𝑏). 

      Now 𝜇𝑃(𝑏𝛾1𝑟𝛾2𝑏) ≥ 𝜇𝐶𝛤𝐶(𝑏𝛾1𝑟𝛾2𝑏) ≥ 𝜇𝐶(𝑏) and 𝜈𝑃(𝑏𝛾1𝑟𝛾2𝑏) ≤

𝜈𝐶𝛤𝐶(𝑏𝛾1𝑟𝛾2𝑏) ≤ 𝜈𝐶(𝑏), for all 𝑟 ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤. Therefore 

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝑃(𝑏𝛾1𝑟𝛾2𝑏)} ≥ 𝜇𝐶(𝑏) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝑃(𝑏𝛾1𝑟𝛾2𝑏)} ≤ 𝜈𝐶(𝑏). Thus 

 

     𝜇𝑃(𝑏) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝑃(𝑏𝛾1𝑟𝛾2𝑏)} ≥ 𝜇𝐶(𝑏) > 𝜇𝑃(𝑏) and 𝜈𝑃(𝑏) =

𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝑃(𝑏𝛾1𝑟𝛾2𝑏)} ≤ 𝜈𝐶(𝑏) < 𝜈𝑃(𝑏), a contradiction. So 𝑃 is an IFSPI of H.” 

Definition 2.2.12. ([40,57])  “Let 𝑄 be a non-constant IFI of a 𝛤-Ring H. Then 𝑄 is 

called an IF2 −AI of H if for any 𝐼𝐹𝑃𝑠 ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) of H and 𝛾1, 𝛾2 ∈ 𝛤 such that 

ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄 implies that either ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊆ 𝑄 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄 or 

𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄.” 

Theorem 2.2.13. ([34]) “Let 𝐽 be a subset of a 𝛤-Ring H, then the IFCF 𝜒𝐽 be an IFI of H 

iff 𝐽 is an ideal of H.” 

Theorem 2.2.14. [50] “A 𝛤-Ring H is Noetherian iff the set of values of any IFI of H is a 

well-ordered subset of [0,1].” 

Theorem 2.2.15. [50] “Let every decreasing chain of ideals terminate at a finite step in 

𝛤-Ring H. For an IFI 𝐺 of H, 𝐺 has a finite number of intuitionistic values, that is, 𝜇𝐺  

and 𝜈𝐺  have a finite number of value.” 
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Chapter 3 

 

On Intuitionistic Fuzzy Characteristic 

Ideal Of A 𝜞-Ring 

 

3.1 Introduction 

The significance of characteristic ideals stands out prominently in ring theory, 

constituting a distinct class among various types of ideals. These ideals exhibit invariance 

under any automorphism, highlighting their fundamental role. This chapter introduces 

and examines the concept of IFCI in a Γ-Ring, delving into its properties and discussing 

its various attributes. Additionally, it explores the relationship between the IFCI of a Γ-

Ring and its level cut sets. Furthermore, it delineates a connection between the Aut(H) 

and the corresponding Aut(OR). Lastly, it delves into the correspondence between 

IFCI(H) and IFCI(OR), thoroughly investigating their interrelation. 

 

3.2 Intuitionistic Fuzzy Characteristic Ideal Of A 𝜞-Ring 

Definition 3.2.1.  Suppose for an IFS 𝐺 in a 𝛤-Ring H, 𝜎: 𝐻 → 𝐻 be a 𝛤-endomorphism, 

then 𝐺𝜎 is an IFS on H defined as 𝐺𝜎(ℏ) = 𝐺(𝜎(ℏ)), ∀ ℏ ∈ 𝐻, i.e., 𝜇𝐺𝜎(ℏ) = 𝜇𝐺(𝜎(ℏ)) 

and 𝜈𝐺𝜎(ℏ) = 𝜈𝐺(𝜎(ℏ)), for all ℏ ∈ 𝐻. 

Theorem 3.2.2.  Let 𝐺 be an IFI of 𝛤-Ring H and 𝜎 be a 𝛤-endomorphism, then 𝐺𝜎 is 

also an IFI of H. 

Proof. Let 𝐺 be an IFI of 𝛤-Ring H. Let ℎ1, ℎ2 ∈ 𝐻, 𝛼 ∈ 𝛤. Then 
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𝜇𝐺𝜎(ℎ1 − ℎ2) = 𝜇𝐺(𝜎(ℎ1 − ℎ2))

= 𝜇𝐺(𝜎(ℎ1) − 𝜎(ℎ2))

≥ 𝜇𝐺(𝜎(ℎ1)) ∧ 𝜇𝐺(𝜎(ℎ2))

= 𝜇𝐺𝜎(ℎ1) ∧ 𝜇𝐺𝜎(ℎ2).

 

Thus, 𝜇𝐺𝜎(ℎ1 − ℎ2) ≥ 𝜇𝐺𝜎(ℎ1) ∧ 𝜇𝐺𝜎(ℎ2). Similarly, we can prove 𝜈𝐺𝜎(ℎ1 − ℎ2) ≤

𝜈𝐺𝜎(ℎ1) ∨ 𝜈𝐺𝜎(ℎ2). Also, 

 

𝜇𝐺𝜎(ℎ1𝛼ℎ2) = 𝜇𝐺(𝜎(ℎ1𝛼ℎ2))

= 𝜇𝐺(𝜎(ℎ1)𝛼𝜎(ℎ2))

≥ 𝜇𝐺(𝜎(ℎ1)) ∨ 𝜇𝐺(𝜎(ℎ2))

= 𝜇𝐺𝜎(ℎ1) ∨ 𝜇𝐺𝜎(ℎ2).

 

i.e., 𝜇𝐺𝜎(ℎ1𝛼ℎ2) ≥ 𝜇𝐺𝜎(ℎ1) ∨ 𝜇𝐺𝜎(ℎ2). Similarly, we can prove 𝜈𝐺𝜎(ℎ1𝛼ℎ2) ≤ 𝜈𝐺𝜎(ℎ1) ∧

𝜇𝐺𝜎(ℎ2). 

Hence 𝐺𝜎 is an IFI of 𝛤-Ring H.  

Definition 3.2.3.  An IFI 𝐺 of 𝛤-Ring H is said to be an IFCI if 𝐺𝜎(ℏ) = 𝐺(ℏ), ∀ℏ ∈ 𝐻 

and ∀ 𝜎 ∈ 𝐴𝑢𝑡(𝐻), i.e., 𝜇𝐺𝜎(ℏ) = 𝜇𝐺(ℏ) & 𝜈𝐺𝜎(ℏ) = 𝜈𝐺(ℏ) ∀ ℏ ∈ 𝐻 and ∀ 𝜎 ∈

𝐴𝑢𝑡(𝐻). 

Example 3.2.4.  [62] “Consider the 𝛤-Ring H, where 𝐻 = ℤ, the ring of integers, and 𝛤 =

2ℤ, the ring of even integers, and ℎ1𝛾ℎ2 denote the usual product of integers” ℎ1, ℎ2 ∈ 𝐻, 

𝛾 ∈ 𝛤. Let 𝐺 = (𝜇𝐺 , 𝜈𝐺) be an IF subset of H defined by 

 

𝜇𝐺(ℎ1) = {
1, if ℎ1 is even integer

0.5, if ℎ1 is odd integer
;  𝜈𝐺(ℎ1) = {

0, if ℎ1 is even integer

0.3, if ℎ1 is odd integer.
 

 

It can be easily checked that 𝐺 is an IFCI of 𝛤-Ring H. 

Example 3.2.5. [62] “Consider the 𝛤-Ring H, where 𝐻 = {[𝑎𝑖𝑗]: 𝑎𝑖𝑗 ∈ ℤ, 𝑖 = 1,2, 𝑗 =

1,2,3}, the set of (2 × 3) matrices and 𝛤 = {[𝑎𝑖𝑗]: 𝑎𝑖𝑗 ∈ ℤ, 𝑖 = 1,2,3, 𝑗 = 1,2}, the set of 

(3 × 2) matrices whose entries are from the ring of integers ℤ.” Let 𝐺 = (𝜇𝐺 , 𝜈𝐺) be an 

IFS of H defined by 
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𝐺([𝑎𝑖𝑗]) = {
(0.7,0.2),  if 𝑎𝑖𝑗 = 0, ∀𝑖, 𝑗

(0.3,0.5),  if 𝑎𝑖𝑗 ≠ 0 for at least one 𝑖 and 𝑗
 

 

Then it can be easily checked that 𝐺 is an IFCI of 𝛤-Ring H. 

Example 3.2.6. [62] “Consider “𝐻 = 𝐙2 × 𝐙2 = {(0,0), (1,0), (0,1), (1,1)}, 𝛤 =

{(0,0), (1,1)} and Ѿ = 𝐙2 × {0} = {(1,0), (0,0)}, where 𝐙2 be the ring of integers 

modulo 2.” Clearly, H and 𝛤 are additive abelian groups and H is 𝛤-Ring. Also, here Ѿ is 

𝛤-ideal of H. Consider the IFS 𝐺 defined on H a 

 

                      𝜇𝐺(ѿ) = {
1, if ѿ ∈ Ѿ

0.5, if ѿ ∉ Ѿ
;  𝜈𝐺(ѿ) = {

0, if ѿ ∈ Ѿ

0.3, if ѿ ∉ Ѿ
 

 

It can be verified with ease that 𝐺 is an IFI of 𝛤-Ring H, but it is not an IFCI, as there 

exists a 𝛤-automorphism 𝜎: 𝐻 → 𝐻 defined by 𝜎(ѿ, ѽ) = (ѽ, ѿ), for all (ѿ, ѽ) ∈ 𝐻 s.t. 

𝐺𝜎((ѿ, ѽ)) ≠ 𝐺((ѿ, ѽ)), for all (ѿ, ѽ) ∈ 𝐻. 

       For example 𝐺𝜎((1,0)) = (0.5,0.3) ≠ (1,0) = 𝐺((1,0)). 

Theorem 3.2.7.  Suppose 𝐺 is an IFCI of 𝛤-Ring H. Then for each 𝜂, 𝜃 ∈ [0,1] s.t. 𝜂 +

𝜃 ≤ 1 the level cut set 𝐺(𝜂,𝜃) is a CI of 𝛤-Ring H. 

Proof. Assume that 𝐺 is an IFCI of 𝛤-Ring H. We want to prove that 𝜎(𝐺(𝜂,𝜃)) = 𝐺(𝜂,𝜃) 

i.e. image of level cut set under 𝜎 is equal to level cut set ∀ 𝜂, 𝜃 ∈ [0,1] s.t. 𝜂 + 𝜃 ≤ 1. 

      Let ℎ ∈ 𝐺(𝜂,𝜃). Since 𝐺 be an IFCI of 𝛤-Ring H, we have 𝜇𝐺𝜎(ℎ) = 𝜇𝐺(ℎ) ≥ 𝜂 and 

𝜈𝐺𝜎(ℎ) = 𝜈𝐺(ℎ) ≤ 𝜃 implies 𝜇𝐺(𝜎(ℎ)) ≥ 𝜂 and 𝜈𝐺(𝜎(ℎ)) ≤ 𝜃, i.e., 𝜎(ℎ) ∈ 𝐺(𝜂,𝜃). Thus 

𝜎(𝐺(𝜂,𝜃)) ⊆ 𝐺(𝜂,𝜃). 

For the reverse inclusion, let 𝑗 ∈ 𝐺(𝜂,𝜃) and let ℎ ∈ 𝐻 be s.t. 𝜎(ℎ) = 𝑗. Then 

𝜇𝐺(ℎ) = 𝜇𝐺𝜎(ℎ) = 𝜇𝐺(𝜎(ℎ)) = 𝜇𝐺(𝑗) ≥ 𝜂. In the same manner, it can be shown that 

𝜈𝐺(ℎ) ≤ 𝜃 implies ℎ ∈ 𝐺(𝜂,𝜃) and so 𝑗 = 𝜎(ℎ) ∈ 𝜎(𝐺(𝜂,𝜃)) gives that 𝐺(𝜂,𝜃) ⊆ 𝜎(𝐺(𝜂,𝜃)). 

Therefore by using the above two equations it can be seen that 𝜎(𝐺(𝜂,𝜃)) = 𝐺(𝜂,𝜃). 

Therefore 𝐺(𝜂,𝜃) is a characteristic ideal of 𝛤-Ring H.  
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Lemma 3.2.8.  Let 𝐺 be an IFI of 𝛤-Ring H and let ℎ1 ∈ 𝐻. Then 𝐺(ℎ1) = (𝜂, 𝜃) iff ℎ1 ∈

𝐺(𝜂,𝜃) and ℎ1 ∉ 𝐺(𝑐,𝑑) ∀ 𝑐 > 𝜂 and 𝑑 < 𝜃. 

Proof. Directly can be proved with the help of above stated theorem (3.2.7.) Converse of 

Theorem (3.2.7) can be seen in theorem (3.2.9.) 

Theorem 3.2.9.  Suppose 𝐺 is an IFI of 𝛤-Ring H. If for each 𝜂, 𝜃 ∈ [0,1] s.t. 𝜂 + 𝜃 ≤ 1 

the level cut set 𝐺(𝜂,𝜃) is a CI of H, then 𝐺 is an IFCI of 𝛤-Ring H. 

Proof. Suppose 𝐺 be an IFI of 𝛤-Ring H. Let ℎ ∈ 𝐻, 𝜎 ∈ 𝐴𝑢𝑡(𝐻) and 𝐺(ℎ) = (𝜂, 𝜃). By 

Lemma (3.2.8), ℎ ∈ 𝐺(𝜂,𝜃) and ℎ ∉ 𝐺(𝑐,𝑑) ∀ 𝑐 > 𝜂 and 𝑑 < 𝜃. 

From hypothesis it follows that 𝜎 𝑖𝑚𝑎𝑔𝑒 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙 𝑐𝑢𝑡 𝑠𝑒𝑡 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 𝑙𝑒𝑣𝑒𝑙 𝑐𝑢𝑡 𝑠𝑒𝑡. 

Therefore 𝜎(ℎ) ∈ 𝜎(𝐺(𝜂,𝜃)) = 𝐺(𝜂,𝜃), and so 𝜇𝐺(𝜎(ℎ)) ≥ 𝜂, 𝜈𝐺(𝜎(ℎ)) ≤ 𝜃. 

        Suppose 𝜇𝐺(𝜎(ℎ)) = 𝑐 and 𝜈𝐺(𝜎(ℎ)) = 𝑑 and we assume that 𝑐 > 𝜂 and 𝑑 < 𝜃. 

Then 𝜎(ℎ) ∈ 𝐺(𝑐,𝑑) = 𝜎(𝐺(𝑐,𝑑)). Since 𝜎 is one one implies ℎ ∈ 𝐺(𝑐,𝑑). This is a 

contradiction. Therefore 𝜇𝐺𝜎(ℎ) = 𝜇𝐺(𝜎(ℎ)) = 𝜂 = 𝜇𝐺(ℎ) and 𝜈𝐺𝜎(ℎ) = 𝜈𝐺(𝜎(ℎ)) = 

𝜃 = 𝜈𝐺(ℎ), showing that 𝐺 is an IFCI of 𝛤-Ring H.  

Theorem 3.2.10.  Suppose Ѿ is a non-empty subset which is also a characteristic ideal 

of a 𝛤-Ring H then its IFCF 𝜒Ѿ is an IFCI of 𝛤-Ring H and the converse is also true. 

Proof. Suppose Ѿ is a CI of 𝛤-Ring H. According to definition 𝜎(Ѿ) = Ѿ, ∀𝜎 ∈

𝐴𝑢𝑡(𝐻). Let 𝜒Ѿ be the IFCF w.r.t. Ѿ. Then by Theorem (2.2.13) 𝜒Ѿ be an IFI of 𝛤-Ring 

H. 

If ℎ ∈ Ѿ then 𝜎(ℎ) ∈ 𝜎(Ѿ) = Ѿ and so 𝜒Ѿ(𝜎(ℎ)) = (1,0) = 𝜒Ѿ(ℎ). 

If ℎ ∉ Ѿ then 𝜎(ℎ) ∉ 𝜎(Ѿ) = Ѿ and so 𝜒Ѿ(𝜎(ℎ)) = (0,1) = 𝜒Ѿ(ℎ). 

Thus we see that 𝜒Ѿ(𝜎(ℎ)) = 𝜒Ѿ(ℎ), ∀ℎ ∈ 𝐻, ∀𝜎 ∈ 𝐴𝑢𝑡(𝐻), i.e., 𝜇𝜒Ѿ
𝜎 (ℎ) = 𝜇𝜒Ѿ

(ℎ) and 

𝜈𝜒Ѿ
𝜎 (ℎ) = 𝜈𝜒Ѿ

(ℎ), ∀ℎ ∈ 𝐻, ∀𝜎 ∈ 𝐴𝑢𝑡(𝐻). Hence 𝜒Ѿ is an IFCI of 𝛤-Ring H. 

Conversely, let us suppose that 𝜒Ѿ is an IFCI of 𝛤-Ring H. Using Theorem (2.2.13) Ѿ is 

an 𝛤-ideal of H. So, we need only to show that 𝜎(Ѿ) = Ѿ ∀𝜎 ∈ 𝐴𝑢𝑡(𝐻). Let 𝜎 ∈

𝐴𝑢𝑡(𝐻) and ℎ ∈ Ѿ, then 𝜇𝜒Ѿ
𝜎 (ℎ) = 𝜇𝜒Ѿ

(ℎ) = 1 and 𝜈𝜒Ѿ
𝜎 (ℎ) = 𝜈𝜒Ѿ

(ℎ) = 0 implies 

𝜇𝜒Ѿ
(𝜎(ℎ)) = 1 and 𝜈𝜒Ѿ

(𝜎(ℎ)) = 0 implies 𝜎(ℎ) ∈ Ѿ. Thus, we obtain 𝜎(Ѿ) ⊆ Ѿ, for 
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all 𝜎 ∈ 𝐴𝑢𝑡(𝐻). Since 𝜎 ∈ 𝐴𝑢𝑡(𝐻) implies 𝜎−1 ∈ 𝐴𝑢𝑡(𝐻) and so 𝜎−1(Ѿ) ⊆ Ѿ. Hence 

Ѿ ⊆ 𝜎(Ѿ) and so by using the above two equations we have 𝜎(Ѿ) = Ѿ, i.e., Ѿ is CI of 

H. 

 

3.3 Operator Rings And Corresponding IFI Of 𝜞-Ring 

In this section 𝐿 is used for left operator ring (OR) and R is used for right operator ring 
(OR) of 𝛤-Ring H. 

Definition 3.3.1.  For any fixed IFS 𝐺 of 𝐿 (or R) and any fixed IFS 𝐵 of H we define 

IFSs 𝐺+,  𝐺∗ of H and 𝐵+′
 of 𝐿, 𝐵∗′

 of R by 

(i) 𝜇𝐺+(ℎ) = 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ, 𝛼])) and 𝜈𝐺+(ℎ) = 𝑆𝑢𝑝𝛼∈𝛤(𝜇𝐺([ℎ, 𝛼])), where ℎ ∈ 𝐻. 

 

(ii) 𝜇𝐺∗(ℎ) = 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([𝛼, ℎ])) and 𝜈𝐺∗(ℎ) = 𝑆𝑢𝑝𝛼∈𝛤(𝜇𝐺([𝛼, ℎ])), where ℎ ∈ 𝐻. 

 

(iii) 𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝐼𝑛𝑓𝑟∈𝐻(𝜇𝐵(∑ ℎ𝑖𝑖 𝛼𝑖𝑟)) and 𝜈

𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝑆𝑢𝑝𝑟∈𝐻(𝜇𝐵(∑𝑖

ℎ𝑖 𝛼𝑖𝑟)), where [ℎ𝑖, 𝛼𝑖] ∈ 𝐿. 

 

(iv)  𝜇
𝐵∗′(∑ [𝛼𝑖, ℎ𝑖]𝑖 ) = 𝐼𝑛𝑓𝑟∈𝐻(𝜇𝐵(∑ 𝑟𝑖 𝛼𝑖ℎ𝑖))  and 𝜈

𝐵∗′(∑ [𝛼𝑖, ℎ𝑖]𝑖 ) = 𝑆𝑢𝑝𝑟∈𝐻(𝜇𝐵(∑𝑖

 r 𝛼𝑖ℎ𝑖)), where [𝛼𝑖, ℎ𝑖] ∈ 𝑅. 

Proposition 3.3.2. Let 𝐺 is an IFI of 𝐿 of a 𝛤-Ring H then 𝐺+ is an IFI of H. 

Proof. Here 𝜇𝐺(0𝐿) = 1, 𝜈𝐺(0𝐿) = 0 as 𝐺 is an IFI of 𝐿.. 

Now 𝜇𝐺+(0𝐻) = 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([0𝐻, 𝛼])) = 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺(0𝐿)) = 1. Similarly, we can show 

that 𝜈𝐺+(0𝐻) = 0. So 𝐺+ is non-empty. 

Let ℎ1, ℎ2 ∈ 𝐻, 𝛼, 𝛽 ∈ 𝛤 be any elements, then we have 
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𝜇𝐺+(ℎ1 − ℎ2) = 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ1 − ℎ2, 𝛼]))

= 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ1, 𝛼] − [ℎ2, 𝛼]))

≥ 𝐼𝑛𝑓𝛼∈𝛤{𝜇𝐺([ℎ1, 𝛼]) ∧ 𝜇𝐺([ℎ2, 𝛼])}

= 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ1, 𝛼])) ∧ 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ2, 𝛼]))

= 𝜇𝐺+(ℎ1) ∧ 𝜇𝐺+(ℎ2).

 

 

Thus 𝜇𝐺+(ℎ1 − ℎ2) ≥ 𝜇𝐺+(ℎ1) ∧ 𝜇𝐺+(ℎ2). In the same manner it can be shown that 

𝜈𝐺+(ℎ1 − ℎ2) ≤ 𝜈𝐺+(ℎ1) ∨ 𝜈𝐺+(ℎ2). Also, 

 

𝜇𝐺+(ℎ1𝛽ℎ2) = 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ1𝛽ℎ2, 𝛼]))

= 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ1, 𝛽][ℎ2, 𝛼]))

≥ 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ1, 𝛽]))[ and ≥ 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ2, 𝛼]))]

= 𝐼𝑛𝑓𝛽∈𝛤(𝜇𝐺([ℎ1, 𝛽])) ∨ 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([ℎ2, 𝛼]))

= 𝜇𝐺+(ℎ1) ∨ 𝜇𝐺+(ℎ2).

 

 

Thus 𝜇𝐺+(ℎ1𝛼ℎ2) ≥ 𝜇𝐺+(ℎ1) ∨ 𝜇𝐺+(ℎ2). In the same manner it can be shown that 

𝜈𝐺+(ℎ1𝛼ℎ2) ≤ 𝜈𝐺+(ℎ1) ∧ 𝜈𝐺+(ℎ2). Hence 𝐺+ is an IFI of H.  

Proposition 3.3.3.  Let 𝐵 is an IFI of H Then 𝐵+′
 is an IFI of 𝐿. 

Proof. Let 𝐵 be an IFI of H. Then 𝜇𝐵(0𝐻) = 1, 𝜈𝐵(0𝐻) = 0. 

Now 𝜇
𝐵+′([0𝐻, 𝛼]) = 𝐼𝑛𝑓𝑟∈𝐻(𝜇𝐵(0𝐻𝛼𝑟)) = 𝜇𝐵(0𝐻) = 1. Similarly, we can show that  

𝜈
𝐵+′([0𝐻, 𝛼]) = 0. So 𝐵+′

 is non-empty. 

Let  ∑ [ℎ𝑖, 𝛼𝑖]𝑖 , ∑ [𝑘𝑗, 𝛽𝑗]𝑗 ∈ 𝐿 , 𝑟 ∈ 𝐻, 𝛼𝑖 , 𝛽𝑗 ∈ 𝛤 be any elements, then we have 

 

𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 − ∑ [𝑘𝑗, 𝛽𝑗]𝑗 ) = 𝐼𝑛𝑓𝑟∈𝐻 (𝜇𝐵(∑ ℎ𝑖𝑖 𝛼𝑖𝑟 − ∑ 𝑘𝑗𝑗 𝛽𝑗𝑟))

≥ 𝐼𝑛𝑓𝑟∈𝐻{𝜇𝐵(∑ ℎ𝑖𝑖 𝛼𝑖𝑟) ∧ 𝜇𝐵(∑ 𝑘𝑗𝑗 𝛽𝑗𝑟)}

= (𝐼𝑛𝑓𝑟∈𝐻(𝜇𝐵(∑ ℎ𝑖𝑖 𝛼𝑖𝑟))) ∧ (𝐼𝑛𝑓𝑟∈𝐻 (𝜇𝐵(∑ 𝑘𝑗𝑗 𝛽𝑗𝑟)))

= 𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ∧ 𝜇

𝐵+′(∑ [𝑘𝑗, 𝛽𝑗]𝑗 ).
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Thus  𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 − ∑ [𝑘𝑗, 𝛽𝑗]𝑗 ) ≥ 𝜇

𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ∧ 𝜇
𝐵+′(∑ [𝑘𝑗, 𝛽𝑗]𝑗 ). Similarly, 

we can show 𝜈
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 − ∑ [𝑘𝑗, 𝛽𝑗]𝑗 ) ≤ 𝜈

𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ∨ 𝜇
𝐵+′(∑ [𝑘𝑗, 𝛽𝑗]𝑗 ) Also 

 

          

𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∑ [𝑘𝑗, 𝛽𝑗]𝑗 ) = 𝜇

𝐵+′(∑ [ℎ𝑖𝛼𝑖𝑘𝑗, 𝛽𝑗]𝑖,𝑗 )

= 𝐼𝑛𝑓𝑟∈𝐻 (𝜇𝐵(∑ ℎ𝑖𝑖,𝑗 𝛼𝑖𝑘𝑗𝛽𝑗𝑟))

= 𝐼𝑛𝑓𝑟∈𝐻 (𝜇𝐵 (∑ (ℎ𝑖𝛼𝑖)𝑖,𝑗 (𝑘𝑗𝛽𝑗𝑟)))

= 𝐼𝑛𝑓𝑟𝑗
′∈𝐻 (𝜇𝐵(∑ ℎ𝑖𝑖,𝑗 𝛼𝑖𝑟𝑗

′)) [ where 𝑟𝑗
′ = 𝑦𝑗𝛽𝑗𝑟 ∈ 𝐻]

= 𝐼𝑛𝑓𝑟𝑗
′∈𝐻[𝜇𝐵(∑ ℎ𝑖𝑖 𝛼𝑖𝑟1

′ + ∑ ℎ𝑖𝑖 𝛼𝑖𝑟2
′+. . . )]

≥ 𝐼𝑛𝑓𝑟𝑗
′∈𝐻[∨𝑗 𝜇𝐵(∑ ℎ𝑖𝑖 𝛼𝑖𝑟𝑗

′)]

=∨𝑗 [𝐼𝑛𝑓𝑟𝑗
′∈𝐻(∑ ℎ𝑖𝑖 𝛼𝑖𝑟𝑗

′)]

=∨𝑗 [𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 )]

= 𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) .

  

 

Also, we can prove that 𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∑ [𝑘𝑗, 𝛽𝑗]𝑗 ) ≥ 𝜇

𝐵+′(∑ [𝑘𝑗, 𝛽𝑗]𝑗 ). Thus we have 

𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∑ [𝑘𝑗, 𝛽𝑗]𝑗 ) ≥ 𝜇

𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ∨ 𝜇
𝐵+′(∑ [𝑘𝑗, 𝛽𝑗]𝑗 ). In the same manner, 

it can be shown that 𝜈
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∑ [𝑘𝑗, 𝛽𝑗]𝑗 ) ≤ 𝜈

𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ∧ 𝜈
𝐵+′(∑ [𝑘𝑗, 𝛽𝑗]𝑗 ). 

Hence 𝐵+′
 is an IFI of 𝐿. 

Using the same logic following propositions can be proved. 

Proposition 3.3.4.  Let 𝐺 be an IFI of R of a 𝛤-Ring H then 𝐺∗an IFI of H. 

Proposition 3.3.5.  Let 𝐵 an IFI of H. Then 𝐵∗′
 an IFI of R. 

Theorem 3.3.6.  Suppose H is a 𝛤-Ring having unities & 𝐿 is its left operator ring. Then 

∃ an inclusion preserving one-to-one map 𝐺 → 𝐺+′
 between IFI(H) and the IFI(L). 

Proof. First we show that ((𝐺+)′)+ = 𝐺, where 𝐺 is an IFI of H. Let ℎ ∈ 𝐻. Then 
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𝜇
((𝐺+)

′
)

+(ℎ) = 𝐼𝑛𝑓𝛼∈𝛤 (𝜇
(𝐺+)

′([ℎ, 𝛼]))

= 𝐼𝑛𝑓𝛼∈𝛤[𝐼𝑛𝑓𝑟∈𝐻(𝜇𝐺(ℎ𝛼𝑟))]

≥ 𝐼𝑛𝑓𝛼∈𝛤[𝐼𝑛𝑓𝑟∈𝐻(𝜇𝐺(ℎ))]

= 𝜇𝐺(ℎ).

 

 

Thus 𝜇
((𝐺+)

′
)

+(ℎ) ≥ 𝜇𝐺(ℎ).In the same manner, it can be shown that 𝜈
((𝐺+)

′
)

+(ℎ) ≤

𝜈𝐺(ℎ). Thus 𝐺 ⊆ ((𝐺+)′)+. 

Suppose ∑ [𝛾𝑖 ,  𝑎𝑖]𝑖  be the right unity of H. Then ∑ ℎ𝑖 𝛾𝑖𝑎𝑖 = ℎ, ∀ ℎ ∈ 𝐻. Now, 

 

𝜇𝐺(ℎ) = 𝜇𝐺 (∑ ℎ

𝑖

𝛾𝑖𝑎𝑖)

≥ 𝐼𝑛𝑓𝑖[𝜇𝑖(ℎ𝛾𝑖𝑎𝑖)]

≥ 𝐼𝑛𝑓𝛾∈𝛤[𝐼𝑛𝑓𝑟∈𝐻(𝜇𝐺(ℎ𝛾𝑟))]

= 𝐼𝑛𝑓𝛾∈𝛤 (𝜇
(𝐺+)

′([ℎ, 𝛾]))

= 𝜇
((𝐺+)

′
)

+(ℎ)

 

In the same manner, it can be shown that 𝜈𝐺(ℎ) ≤ 𝜈
((𝐺+)

′
)

+(ℎ). So ((𝐺+)′)+ ⊆ 𝐺. Hence 

𝐺 = ((𝐺+)′)+. 

Again, let 𝐺 be an IFI of 𝐿. Now, 
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𝜇
((𝐺+)

+
)

′ (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

) = 𝐼𝑛𝑓𝑟∈𝐻 (𝜇𝐺+ (∑ ℎ𝑖

𝑖

𝛼𝑖𝑟))

= 𝐼𝑛𝑓𝑟∈𝐻 [𝐼𝑛𝑓𝛽∈𝛤 (𝜇𝐺 ([∑ ℎ𝑖

𝑖

𝛼𝑖𝑟, 𝛽]))]

= 𝐼𝑛𝑓𝑟∈𝐻 [𝐼𝑛𝑓𝛽∈𝛤 (𝜇𝐺 (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

[𝑟, 𝛽]))]

≥ 𝜇𝐺 (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

) .

 

Thus 𝜇
((𝐺+)

+
)

′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ≥ 𝜇𝐺(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ). Similarly, we can prove 𝜈
((𝐺+)

+
)

′(∑𝑖

[ℎ𝑖, 𝛼𝑖] ≤ 𝜈𝐺(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ). So 𝐺 ⊆ ((𝐺+)+)′. 

Let ∑ [𝑎𝑗, 𝛾𝑗]𝑗  be the right unity of H, then 

 

𝜇𝐺 (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

) = 𝜇𝐺 (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

∑ [𝑎𝑗, 𝛾𝑗]

𝑗

)

≥∧𝑗 [𝜇𝐺 (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

[𝑎𝑗, 𝛾𝑗])]]

≥ 𝐼𝑛𝑓𝑟∈𝐻 [𝐼𝑛𝑓𝛾∈𝛤 (𝜇𝐺([ℎ𝑖, 𝛼𝑖][𝑎𝑗, 𝛾𝑗]))]

= 𝜇
((𝐺+)

+
)

′ (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

) .

 

Thus 𝜇𝐺(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ≥ 𝜇
((𝐺+)

+
)

′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ). Similarly, we can prove 

𝜈𝐺(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ≤ 𝜈
((𝐺+)

+
)

′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) and so ((𝐺+)+)′ ⊆ 𝐺 and hence 𝐺 = ((𝐺+)+)′. 

Thus, the correspondence 𝐺 → 𝐺+′
 is a bijection. Now let ₲1,  ₲2 be IFI of H s.t. ₲1 ⊆ ₲2. 

Then ∀ ∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∈ 𝐿, we have 
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𝜇
₲1

+′ (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

) = 𝐼𝑛𝑓𝑟∈𝐻 (𝜇₲1
(∑ ℎ𝑖

𝑖

𝛼𝑖𝑟))

≤ 𝐼𝑛𝑓𝑟∈𝐻 (𝜇₲2
(∑ ℎ𝑖

𝑖

𝛼𝑖𝑟))

= 𝜇
₲2

+′ (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

) .

 

Thus 𝜇
₲1

+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ≤ 𝜇
₲2

+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ). Similarly, we can show 𝜈
₲1

+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) ≥

𝜈
₲2

+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ). Thus ₲1
+′

⊆ ₲2
+′

. Similarly, we can show that if ₲1 𝑎𝑛𝑑 ₲2 are IFIs of 𝐿 

s.t. ₲1 ⊆ ₲2, then ₲1
+ ⊆ ₲2

+. Hence 𝐺 → 𝐺+′
 is an inclusion-preserving one to one map.  

Theorem 3.3.7.  For R of a 𝛤-Ring H with unities, ∃ an inclusion preserving one-to-one 

map 𝐵 → 𝐵∗′
 between the IFIs(H) and the IFIs(R). 

Proof. The proof of the theorem directly follows from theorem (3.3.6.) 

Lemma 3.3.8.  Let 𝐾 be an ideal of 𝐿 of a 𝛤-Ring H. Then (𝜒 𝐾)+ = 𝜒 𝐾+, where 𝜒 𝐾  

denotes the IFCF of  𝐾. 

Proof. Let ℎ1 ∈  𝐾+. Then [ℎ1, 𝛼] ∈  𝐾 for all 𝛼 ∈ 𝛤. This mean 

𝐼𝑛𝑓𝛼∈𝛤 (𝜇𝜒 𝐾
([ℎ1, 𝛼])) = 1 and 𝑆𝑢𝑝𝛼∈𝛤 (𝜈𝜒 𝐾

([ℎ1, 𝛼])) = 0. Also 𝜇𝜒
 𝐾+

(ℎ1) = 1 and 

𝜈𝜒
 𝐾+

(ℎ1) = 0. Thus 𝐼𝑛𝑓𝛼∈𝛤 (𝜇𝜒 𝐾
([ℎ1, 𝛼])) = 𝜇𝜒

 𝐾+
(ℎ1) and 𝑆𝑢𝑝𝛼∈𝛤 (𝜈𝜒 𝐾

([ℎ1, 𝛼])) =

𝜈𝜒
 𝐾+

(ℎ1), ∀ ℎ1 ∈  𝐾+, i.e., (𝜒 𝐾)+(ℎ1) = 𝜒 𝐾+(ℎ1), ∀ ℎ1 ∈  𝐾+. 

         Now suppose ℎ1 ∉  𝐾+. Then ∃ 𝛽 ∈ 𝛤 s.t. [ℎ1, 𝛽] ∉  𝐾. Therefore 𝜇𝜒 𝐾
([ℎ1, 𝛽]) =

0, 𝜈𝜒 𝐾
([ℎ1, 𝛽]) = 1 and so 𝐼𝑛𝑓𝛼∈𝛤 (𝜇𝜒 𝐾

([ℎ1, 𝛼])) = 0 and 𝑆𝑢𝑝𝛼∈𝛤 (𝜈𝜒 𝐾
([ℎ1, 𝛼])) = 1. 

Thus 𝐼𝑛𝑓𝛼∈𝛤 (𝜇𝜒 𝐾
([ℎ1, 𝛼])) = 𝜇𝜒

 𝐾+
(ℎ1) and 𝑆𝑢𝑝𝛼∈𝛤 (𝜈𝜒 𝐾

([ℎ1, 𝛼])) =

𝜈𝜒
 𝐾+

(ℎ1), ∀ ℎ1 ∉  𝐾+, i.e., (𝜒 𝐾)+(ℎ1) = 𝜒 𝐾+(ℎ1), ∀ ℎ1 ∉  𝐾+. Hence (𝜒 𝐾)+ = 𝜒 𝐾+.  

Lemma 3.3.9.  Suppose for an ideal 𝐾 of 𝐿 of a 𝛤-Ring H. Then (𝜒 𝐾)+′
= 𝜒

 𝐾+′ . 

Proof.  Let  ∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∈  𝐾+′
. Then ∑ ℎ𝑖𝑖 𝛼𝑖𝑟 ∈  𝐾, ∀𝑟 ∈ 𝐻. 

This means 𝐼𝑛𝑓𝑟∈𝐻𝜇𝜒 𝐾
(∑ ℎ𝑖𝑖 𝛼𝑖𝑟) = 1 and  𝑆𝑢𝑝𝑟∈𝐻𝜈𝜒 𝐾

(∑ ℎ𝑖𝑖 𝛼𝑖𝑟) = 0, 
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i.e., 𝜇
(𝜒 𝐾)+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 1 and 𝜈

(𝜒 𝐾)+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 0. 

Also 𝜇
(𝜒

 𝐾+′)
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 1 and 𝜈

(𝜒
 𝐾+′)

(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 0. Then 

𝜇
(𝜒

 𝐾+′)
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝜇

(𝜒 𝐾)+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) and 𝜈
(𝜒

 𝐾+′)
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝜈

(𝜒 𝐾)+′(∑𝑖

[ℎ𝑖, 𝛼𝑖]). So (𝜒 𝐾)+′
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = (𝜒

 𝐾+′)(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ). 

 

       Let ∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∉  𝐾+′
. Then ∑ ℎ𝑖𝑖 𝛼𝑖𝑟 ∉  𝐾, ∀𝑟 ∈ 𝐻. 

This means 𝐼𝑛𝑓𝑟∈𝐻𝜇𝜒 𝐾
(∑ ℎ𝑖𝑖 𝛼𝑖𝑟) = 0 and 𝑆𝑢𝑝𝑟∈𝐻𝜈𝜒 𝐾

(∑ ℎ𝑖𝑖 𝛼𝑖𝑟) = 1, 

i.e., 𝜇
(𝜒 𝐾)+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 0 and 𝜈

(𝜒 𝐾)+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 1. 

 

        Also 𝜇
(𝜒

 𝐾+′)
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 0 and 𝜈

(𝜒
 𝐾+′)

(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 1. Thus we have 

𝜇
(𝜒

 𝐾+′)
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝜇

(𝜒 𝐾)+′(∑ [ℎ, 𝛼𝑖]𝑖 ) and 𝜈
(𝜒

 𝐾+′)
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝜈

(𝜒 𝐾)+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ). 

So (𝜒 𝐾)+′
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = (𝜒

 𝐾+′)(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ). 

        Thus from both cases, we get (𝜒 𝐾)+′
= 𝜒

 𝐾+′. 

Remark 3.3.10.  Similar results can be seen for R of Γ-Ring H by using an analogy that 

follows in previously mentioned Lemmas. 

Theorem 3.3.11.  Suppose H is a 𝛤-Ring with unities. Then ∃ an inclusion preserving 

one-to-one between I(H) and that of its I(L) via the mapping 𝐾 → 𝐾+′
. 

Proof. Suppose 𝜙: 𝐾 → 𝐾+′
 is the mapping. This is a mapping that is used in Proposition 

(3.3.5). Let 𝜙(𝐾1) = 𝜙(𝐾2). So 𝐾1
+′

= 𝐾2
+′

. This implies 𝜒
𝐾1

+′ = 𝜒
𝐾2

+′  (where 𝜒𝐾  is the 

IFCF of 𝐾). Hence by Lemma (3.3.9), (𝜒𝐾1
)

+′

= (𝜒𝐾2
)

+′

. This together with Theorem 

(3.3.6) gives 𝜒𝐾1
= 𝜒𝐾2

, hence 𝐾1 = 𝐾2. Consequently, 𝜙 is one-to-one. 

         Let 𝐾 be an ideal of 𝐿. Then its IFCF 𝜒𝐾  is an IFI of 𝐿. Hence by Theorem (3.3.6), 

((𝜒𝐾)+)+′
= 𝜒𝐾 . This implies that 𝜒

(𝐾+)
+′ = 𝜒𝐾  [ by Lemma (3.3.8) and (3.3.9)]. Hence 

(𝐾+)+′
= 𝐾, i.e., 𝜙(𝐾+) = 𝐾. Now since 𝐾+ is an ideal of H, then it states that 𝜙 is 
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onto. Let 𝐾1,  𝑎𝑛𝑑 𝐾2 be two ideals of H with 𝐾1 ⊆ 𝐾2. Then 𝜒𝐾1
⊆ 𝜒𝐾2

. Hence by 

Theorem (3.3.6), we see that (𝜒𝐾1
)

+′

⊆ (𝜒𝐾2
)

+′

, i.e., 𝜒
𝐾1

+′ ⊆ 𝜒
𝐾2

+′  [ by Lemma (3.3.9)] 

which gives 𝐾1
+′

⊆ 𝐾2
+′

.  

Remark 3.3.12.  We can prove the same for R that ()∗′
 is an inclusion preserving one-to-

one map (with ()∗ as above) between the I(H) and that of I(R) using Lemmas (3.3.8.) and 

(3.3.9), Remark (3.3.10) and Theorem (3.3.11)  

Definition 3.3.13. For 𝐿 of a 𝛤-Ring H and 𝜎 ∈ 𝐴𝑢𝑡(𝐻), we define 𝜎+′
: 𝐿 → 𝐿 by 

𝜎+′
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = ∑ [𝜎(ℎ𝑖), 𝛼𝑖]𝑖 . 

We first show that the map 𝜎+′
 is well-defined. 

Suppose ∑ [ℎ1𝑖
, 𝛼𝑖]𝑖 = ∑ [ℎ2𝑗

, 𝛽𝑗]𝑗 , then [ℎ1𝑖
, 𝛼𝑖] = [ℎ2𝑗

, 𝛽𝑗], so, ℎ1𝑖
𝛼𝑖𝑟 = ℎ2𝑗

𝛽𝑗𝑟, ∀𝑟 ∈

𝐻. Thus ∑ ℎ1𝑖𝑖 𝛼𝑖𝑟 = ∑ ℎ2𝑗𝑗 𝛽𝑗𝑟. This implies 𝜎(∑ ℎ1𝑖𝑖 𝛼𝑖𝑟) = 𝜎 (∑ ℎ2𝑗𝑗 𝛽𝑟) , ∀ 𝑟 ∈ 𝐻. 

Now for 𝑎 ∈ 𝐻, we have 𝜎(ℎ1𝑖
)𝛼𝑖𝑎 = 𝜎(ℎ1𝑖

)𝛼𝑖𝜎(𝑎′) [As 𝜎 is onto so ∃ 𝑎′ ∈ 𝐻 s.t. 

𝜎(𝑎′) = 𝑎] = 𝜎(ℎ1𝑖
𝛼𝑖𝑎

′) = 𝜎 (ℎ2𝑗
𝛽𝑗𝑎′) = 𝜎 (ℎ2𝑗

) 𝛽𝑗𝜎(𝑎′) = 𝜎 (ℎ2𝑗
) 𝛽𝑗𝑎. This implies 

𝜎(ℎ1𝑖
)𝛼𝑖𝑎 = 𝜎 (ℎ2𝑗

) 𝛽𝑗𝑎. So [𝜎(ℎ1𝑖
), 𝛼𝑖] = [𝜎 (ℎ2𝑗

) , 𝛽𝑗] ⇒ ∑ [𝜎(ℎ1𝑖
), 𝛼𝑖]𝑖 = ∑𝑗

[𝜎 (ℎ2𝑗
) , 𝛽𝑗] . Hence 𝜎+′

(∑ [ℎ1𝑖
, 𝛼𝑖]𝑖 ) = 𝜎+′

(∑ [ℎ2𝑗
, 𝛽𝑗]𝑗 ). Therefore, the map 𝜎+′

 is 

well-defined. 

Proposition 3.3.14.  For 𝐿 of a 𝛤-Ring H let 𝜎 ∈ 𝐴𝑢𝑡(𝐻). Then 𝜎+′
∈ 𝐴𝑢𝑡(𝐿). 

Proof. Let 𝜎 ∈ 𝐴𝑢𝑡(𝐻) and [ℎ1, 𝛼], [ℎ2, 𝛼], [ℎ1, 𝛽] ∈ 𝐿. Then 

𝜎+′
([ℎ1, 𝛼] + [ℎ2, 𝛼]) = 𝜎+′

([ℎ1 + ℎ2, 𝛼]) = [𝜎(ℎ1 + ℎ2), 𝛼] = [𝜎(ℎ1) + 𝜎(ℎ2), 𝛼] =

[𝜎(ℎ1), 𝛼] + [𝜎(ℎ2), 𝛽]  

𝜎+′
([ℎ1, 𝛼] + [ℎ1, 𝛽]) = 𝜎+′

([ℎ1, 𝛼 + 𝛽]) = [𝜎(ℎ1), 𝛼 + 𝛽] = [𝜎(ℎ1), 𝛼] + [𝜎(ℎ1), 𝛽]. 
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𝜎+′
(∑ [ℎ1𝑖

, 𝛼𝑖]

𝑖

. ∑ [ℎ2𝑗
, 𝛽𝑗]

𝑗

) = 𝜎+′
(∑ [ℎ1𝑖

𝛼𝑖ℎ2𝑗
, 𝛽𝑗]

𝑖,𝑗

)

= ∑ [𝜎 (ℎ1𝑖
𝛼𝑖ℎ2𝑗

) , 𝛽𝑗]

𝑖,𝑗

= ∑ [𝜎(ℎ1𝑖
)𝛼𝑖𝜎 (ℎ2𝑗

) , 𝛽𝑗]

𝑖,𝑗

= ∑ [𝜎(ℎ1𝑖
), 𝛼𝑖]

𝑖

. ∑ [𝜎 (ℎ2𝑗
) , 𝛽𝑗]

𝑗

= 𝜎+′
(∑ [ℎ1𝑖

, 𝛼𝑖]

𝑖

) 𝜎+′
(∑ [ℎ2𝑗

, 𝛽𝑗]

𝑗

 

Hence 𝜎+′
 is an endomorphism of 𝐿. As 𝜎+′

 is well-defined implies 𝜎+′
 is one to one 

map. Further, let ∑ [ℎ1𝑖
, 𝛼𝑖]𝑖 ∈ 𝐿. Then ∃, ℎ1𝑖

′ ∈ 𝐻 s.t. 𝜎(ℎ1𝑖
′) = ℎ1𝑖

. So ∑ [ℎ1𝑖
′ , 𝛼𝑖]𝑖 ∈ 𝐿 

s.t. 𝜎+′
(∑ [ℎ1𝑖

′, 𝛼𝑖]𝑖 ) = ∑ [𝜎(ℎ1𝑖
′), 𝛼𝑖]𝑖 = ∑ [ℎ1𝑖

, 𝛼𝑖]𝑖 . Consequently, 𝜎+′
 is onto. 

Suppose 𝐿 has the left unity ∑ [𝑒𝑖, 𝛿𝑖]𝑖 . Then for any 𝛼𝑖 ∈ 𝛤, we have 𝜎+′
∑ [𝑒𝑖, 𝛼𝑖]𝑖 = ∑𝑖

[𝜎(𝑒𝑖), 𝛼𝑖] = ∑ [𝑒𝑖, 𝛼𝑖]𝑖 . Again if H has the right unity ∑ [𝛾𝑖 ,  𝑎𝑖]𝑖 . Then for any 𝛼𝑖 ∈ 𝛤, 

we have 𝜎+′
∑ [𝛾𝑖 , 𝛼𝑖]𝑖 = ∑ [𝜎(𝛾𝑖), 𝛼𝑖]𝑖 = ∑ [𝛾𝑖, 𝛼𝑖]𝑖 . Hence 𝜎+′

∈ 𝐴𝑢𝑡(𝐿).  

           We use the Remark (3.3.10) to frame the following precision and also to 

demonstrate the subsequent Propositions. 

Definition 3.3.15.  Let H be a 𝛤-Ring with right unity ∑ [𝛾𝑖 ,  𝑎𝑖]𝑖  and 𝐿 be its left 

operator ring. Then for 𝜎 ∈ 𝐴𝑢𝑡(𝐿), we set 𝜎+: 𝐻 → 𝐻 by 𝜎+(ℎ) = ∑ 𝜎𝑖 ([ℎ, 𝛾𝑖])𝑎𝑖. 

         We first show that the map 𝜎+ is well-defined. Let ℎ1, ℎ2 ∈ 𝐻, 𝛾𝑖 , 𝛽𝑖 ∈ 𝛤 be s.t. 

𝜎+(ℎ1) = 𝜎+(ℎ2), then ∑ 𝜎𝑖 ([ℎ1, 𝛾𝑖])𝑎𝑖 = ∑ 𝜎𝑖 ([ℎ2, 𝛾𝑖])𝑎𝑖 

⇒ ∑ [𝜎([ℎ1, 𝛾𝑖])𝑎𝑖, 𝛾𝑖]𝑖 = ∑ [𝜎([ℎ2, 𝛾𝑖])𝑎𝑖, 𝛾𝑖]𝑖   

⇒ ∑ ([ℎ1, 𝛾𝑖])𝑖 . ∑ [𝑎𝑖 , 𝛾𝑖]𝑖 = ∑ ([ℎ2, 𝛾𝑖])𝑖 . ∑ [𝑎𝑖 , 𝛾𝑖]𝑖   

⇒ ∑ 𝜎𝑖 ([ℎ1, 𝛾𝑖]). 𝜎(∑ [𝑎𝑖, 𝛾𝑖]𝑖 ) = ∑ 𝜎𝑖 ([ℎ2, 𝛾𝑖]). 𝜎(∑ [𝑎𝑖, 𝛾𝑖]𝑖 ) [Using Definition 

(2.1.21)] 

⇒ 𝜎(∑ [ℎ1, 𝛾𝑖]𝑖 . ∑ [𝑎𝑖, 𝛾𝑖]𝑖 ) = 𝜎(∑ [ℎ2, 𝛾𝑖]𝑖 . ∑ [𝑎𝑖, 𝛾𝑖]𝑖 )  

⇒ 𝜎(∑ [ℎ1𝛾𝑖𝑎𝑖, 𝛾𝑖]𝑖 ) = 𝜎(∑ [ℎ2𝛾𝑖𝑎𝑖 , 𝛾𝑖]𝑖 )  

⇒ ∑ [ℎ1𝛾𝑖𝑎𝑖, 𝛾𝑖]𝑖 = ∑ [ℎ2𝛾𝑖𝑎𝑖 , 𝛾𝑖]𝑖  [Since 𝜎 is one to one ] 
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⇒ ∑ [ℎ1, 𝛾𝑖]𝑖 . ∑ [𝑎𝑖, 𝛾𝑖]𝑖 = ∑ [ℎ2, 𝛾𝑖]𝑖 . ∑ [𝑎𝑖 , 𝛾𝑖]𝑖   

⇒ ∑ [ℎ1, 𝛾𝑖]𝑖 = ∑ [ℎ2, 𝛾𝑖]𝑖   

⇒ [ℎ1, 𝛾𝑖] = [ℎ2, 𝛾𝑖] ⇒ ℎ1𝛾𝑖𝑟 = ℎ2𝛾𝑖𝑟, ∀𝑟 ∈ 𝐻. 

In particular, take 𝑟 = 𝑎𝑖 , we get ∑ ℎ1𝑖 𝛾𝑖𝑎𝑖 = ∑ ℎ2𝑖 𝛾𝑖𝑎𝑖 ⇒ ℎ1 = ℎ2. Hence 𝜎+ is well-

defined. 

Proposition 3.3.16.  Let H be a 𝛤-Ring with right unity ∑ [𝛾𝑖 ,  𝑎𝑖]𝑖  and 𝐿 be its left 

operator ring. Assume 𝜎 ∈ 𝐴𝑢𝑡(𝐿), then 𝜎+ ∈ 𝐴𝑢𝑡(𝐻). 

Proof. Let ℎ1, ℎ2 ∈ 𝐻, 𝜂 ∈ 𝛤. Then 

 

𝜎+(ℎ1 + ℎ2) = ∑ 𝜎

𝑖

([ℎ1 + ℎ2, 𝛾𝑖])𝑎𝑖

= ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖] + [ℎ2, 𝛾𝑖])𝑎𝑖

= ∑ (𝜎([ℎ1, 𝛾𝑖])𝑎𝑖 + 𝜎([ℎ2, 𝛾𝑖])𝑎𝑖)

𝑖

)

= ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖])𝑎𝑖 + ∑ 𝜎

𝑖

([ℎ2, 𝛾𝑖])𝑎𝑖

= 𝜎+(ℎ1) + 𝜎+(ℎ2)

 

 

𝜎+(ℎ1𝜂ℎ2) = ∑ 𝜎

𝑖

([ℎ1𝜂ℎ2, 𝛾𝑖])𝑎𝑖 = ∑ 𝜎

𝑖

([ℎ1, 𝜂][ℎ2, 𝛾𝑖])𝑎𝑖

= ∑ 𝜎

𝑖

([ℎ1, 𝜂]). ∑ 𝜎

𝑖

([ℎ2, 𝛾𝑖])𝑎𝑖 = ∑ 𝜎

𝑖

([ℎ1𝛾𝑖𝑎𝑖, 𝜂]). ∑ 𝜎

𝑖

([ℎ2, 𝛾𝑖])𝑎𝑖

= ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖][𝑎𝑖, 𝜂]). ∑ 𝜎

𝑖

([ℎ2, 𝛾𝑖])𝑎𝑖 = ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖]). ∑ 𝜎

𝑖

([𝑎𝑖, 𝜂]). ∑ 𝜎

𝑖

([ℎ2, 𝛾𝑖])𝑎𝑖

= ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖]). ∑ [𝑎𝑖, 𝜂]

𝑖

. ∑ 𝜎

𝑖

([ℎ2, 𝛾𝑖])𝑎𝑖 = ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖])𝑎𝑖𝜂 ∑ 𝜎

𝑖

([ℎ2, 𝛾𝑖])𝑎𝑖

= (∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖])𝑎𝑖) 𝜂 (∑ 𝜎

𝑖

([ℎ2, 𝛾𝑖])𝑎𝑖)

= 𝜎+(ℎ1)𝜂𝜎+(ℎ2). .
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Hence 𝜎+ is an endomorphism of H. As 𝜎+ is well-defined implies that 𝜎+ is one to one 

map. 

Further, let ℎ2 ∈ 𝐻. Since 𝜎: 𝐿 → 𝐿 is onto, ∃ ∑ [ℎ1, 𝛾𝑖]𝑖 ∈ 𝐿 s.t. 𝜎(∑ [ℎ1, 𝛾𝑖]𝑖 ) = ∑𝑖

[ℎ2, 𝛾𝑖]. 

 

𝜎+(ℎ1) = ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖])𝑎𝑖 = ∑ 𝜎

𝑖

([ℎ1𝛾𝑖𝑎𝑖 , 𝛾𝑖])𝑎𝑖

= ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖]. [𝑎𝑖, 𝛾𝑖])𝑎𝑖 = ∑ 𝜎

𝑖

([ℎ1, 𝛾𝑖]). ∑ 𝜎

𝑖

([𝑎𝑖, 𝛾𝑖])𝑎𝑖

= ∑ [ℎ2, 𝛾𝑖]

𝑖

. ∑ [𝑎𝑖, 𝛾𝑖]

𝑖

𝑎𝑖 = ∑ [ℎ2, 𝛾𝑖]

𝑖

. [𝑎𝑖, 𝛾𝑖]𝑎𝑖

= ∑ [ℎ2𝛾𝑖𝑎𝑖 , 𝛾𝑖]

𝑖

𝑎𝑖 = ∑ [ℎ2, 𝛾𝑖]

𝑖

𝑎𝑖

= ∑ ℎ2

𝑖

𝛾𝑖𝑎𝑖 = ℎ2 .

 

Hence 𝜎+ is onto. Again if ∑ [𝑒𝑖, 𝛿𝑖]𝑖  is the left unity of H then 

𝜎+(𝑒) = ∑ 𝜎𝑖 ([𝑒, 𝛿𝑖])𝑎𝑖 = ∑ [𝑒, 𝛿𝑖]𝑖 𝑎𝑖 = ∑ 𝑒𝑖 𝛿𝑖𝑎𝑖 = 𝑒. Consequently, 𝜎+ ∈ 𝐴𝑢𝑡(𝐻).  

Proposition 3.3.17.  Let H be a 𝛤-Ring with left unity ∑ [𝑒𝑖, 𝛿𝑖]𝑖  and right unity ∑𝑖

[𝛾𝑖 ,  𝑎𝑖] and 𝐿 be its left operator ring. Assume 𝜎 ∈ 𝐴𝑢𝑡(𝐿), then (𝜎+′
)

+
= 𝜎. 

Proof. By Proposition (3.3.14), 𝜎+′
∈ 𝐴𝑢𝑡(𝐿) whence by Proposition (3.3.16), (𝜎+′

)
+

∈

𝐴𝑢𝑡(𝐻). Let ℎ ∈ 𝐻. Then (𝜎+′
)

+
(ℎ) = 𝜎+′

(∑ [ℎ, 𝛾𝑖]𝑖 )𝑎𝑖 = ∑ [𝜎(ℎ), 𝛾𝑖]𝑖 𝑎𝑖 =

∑ 𝜎𝑖 (ℎ)𝛾𝑖𝑎𝑖 = 𝜎(ℎ). 

Hence (𝜎+′
)

+
= 𝜎. 

Proposition 3.3.18.  Let H be a 𝛤-Ring with left unity ∑ [𝑒𝑖, 𝛿𝑖]𝑖  and right unity ∑𝑖

[𝛾𝑖 ,  𝑎𝑖] and 𝐿 be its left operator ring. Let 𝜎 ∈ 𝐴𝑢𝑡(𝐻). Then (𝜎+)+′
= 𝜎. 

Proof. By Proposition (3.3.16), 𝜎+ ∈ 𝐴𝑢𝑡(𝐻) whence by Proposition (3.3.14), (𝜎+)+′
∈

𝐴𝑢𝑡(𝐿). Let ∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∈ 𝐿. Then 
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(𝜎+)+′
(∑ [ℎ𝑖, 𝛼𝑖]

𝑖

) = ∑ [𝜎+(ℎ𝑖), 𝛼𝑖]

𝑖

= ∑ [𝜎([ℎ𝑖, 𝛾𝑖])𝑎𝑖, 𝛼𝑖]

𝑖

= ∑ 𝜎

𝑖

([ℎ𝑖, 𝛾𝑖]) ∑ [𝑎𝑖, 𝛼𝑖]

𝑖

= ∑ 𝜎

𝑖

([ℎ𝑖, 𝛾𝑖])𝜎 (∑ [𝑎𝑖 , 𝛼𝑖]

𝑖

)

= ∑ 𝜎

𝑖

([ℎ𝑖, 𝛾𝑖][𝑎𝑖, 𝛼𝑖]) = ∑ 𝜎

𝑖

([ℎ𝑖𝛾𝑖𝑎𝑖, 𝛼𝑖]) = ∑ 𝜎

𝑖

([ℎ𝑖, 𝛼𝑖])

= 𝜎 (∑ [ℎ𝑖, 𝛼𝑖]

𝑖

) .

 

Hence (𝜎+)+′
= 𝜎.  

Theorem 3.3.19.  For L of a  𝛤-Ring H there exists a bijection between the Aut(H) and 

the Aut(L). 

Proof. Let us define the map 𝜙: 𝐴𝑢𝑡(𝐻) → 𝐴𝑢𝑡(𝐿) by 𝜙(𝜎) = 𝜎+′
, ∀𝜎 ∈ 𝐴𝑢𝑡(𝐻). 

Consider 𝜎, 𝜏 ∈ 𝐴𝑢𝑡(𝐻) s.t. 𝜙(𝜎) = 𝜙(𝜏). Then 𝜎+′
= 𝜏+′

 

⇒ 𝜎+′
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝜏+′

(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ),∀ ∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∈ 𝐿 ⇒ ∑ [𝜎(ℎ𝑖), 𝛼𝑖]𝑖 = ∑ [𝜏(ℎ𝑖), 𝛼𝑖]𝑖  

⇒ 𝜎(ℎ𝑖)𝛼𝑖𝑟 = 𝜏(ℎ𝑖)𝛼𝑖𝑟, ∀𝑟 ∈ 𝐻, 𝛼𝑖 ∈ 𝛤. In particular, 𝜎(ℎ𝑖)𝛾𝑖𝑎𝑖 = 𝜏(ℎ𝑖)𝛾𝑖𝑎𝑖 ⇒

𝜎(ℎ𝑖) = 𝜏(ℎ𝑖).  

So 𝜎 = 𝜏. Hence 𝜙 is one to one. 

Suppose 𝜎 ∈ 𝐴𝑢𝑡(𝐿). Then by Proposition (3.3.16), 𝜎+ ∈ 𝐴𝑢𝑡(𝐻). Now 𝜙(𝜎+) = 𝜎+′
=

𝜎 (by Proposition (3.3.18)). Consequently, 𝜙 is onto. Hence 𝜙 is a bijection. 

Proposition 3.3.20.  For 𝐿 of a 𝛤-Ring H with unities and 𝐺 be an IFCI of 𝐿. Then 𝐺+ is 

an IFCI of H, where 𝐺+ is explained in Definition (3.3.1). 

Proof. By Proposition (3.3.2), 𝐺+ is an IFI of 𝛤-Ring H. Let ℎ ∈ 𝐻 and 𝜎 ∈ 𝐴𝑢𝑡(𝐻). 

Then by Proposition (3.3.14), 𝜎+′
∈ 𝐴𝑢𝑡(𝐿). Hence by using Definition (3.3.1) and 

(3.3.13) we obtain 

 

𝜇
(𝐺+)

𝜎(ℎ) = 𝜇𝐺+(𝜎(ℎ)) = 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝐺([𝜎(ℎ), 𝛼]))

= 𝐼𝑛𝑓𝛼∈𝛤 (𝜇𝑖(𝜎+([ℎ, 𝛼]))) = 𝐼𝑛𝑓𝛼∈𝛤(𝜇𝑖([ℎ, 𝛼]))

= 𝜇𝐺+(ℎ).
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Similarly, we can prove 𝜈
(𝐺+)

𝜎(ℎ) = 𝜈𝐺+(ℎ), i.e., (𝐺+)𝜎(ℎ) = 𝐺+(ℎ), ∀𝜎 ∈ 𝐴𝑢𝑡(𝐻). 

Hence 𝐺+ is an IFCI of H.  

Proposition 3.3.21.  For 𝐿 of a 𝛤-Ring H with unities and 𝐵 be an IFCI of H. Then 𝐵+′
 

is an IFCI of 𝐿, where 𝐵+′
 is explained in Definition (3.3.1). 

Proof. By Proposition (3.3.3), 𝐵+′
 is an IFI of 𝐿. Let ∑ [ℎ𝑖, 𝛼𝑖]𝑖 ∈ 𝐿 and 𝜏 ∈ 𝐴𝑢𝑡(𝐿). 

Then by Theorem (3.3.19) ∃, 𝜎 ∈ 𝐴𝑢𝑡(𝐻) s.t. 𝜎+′
= 𝜏. Now  

 

𝜇
(𝐵+′

)
𝜏(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝜇

𝐵+′(𝜏(∑ [ℎ𝑖, 𝛼𝑖]𝑖 )) = 𝜇
𝐵+′ (𝜎+′

(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ))

= 𝜇
𝐵+′(∑ [𝜎(ℎ𝑖), 𝛼𝑖]𝑖 ) = 𝐼𝑛𝑓𝑟∈𝐻(𝜇𝐵(∑ 𝜎𝑖 (ℎ𝑖)𝛼𝑖𝑟))

= 𝑛𝑓𝑛∈𝐻(𝜇𝐵 (∑ 𝜎𝑖 (ℎ𝑖𝛼𝑖𝜎(𝑛))) [ As 𝜎 is a bijection so 𝜎(𝑛) = 𝑟 ]

= 𝐼𝑛𝑓𝑛∈𝐻 (𝜇𝐵(∑ 𝜎𝑖 (ℎ𝑖𝛼𝑖𝑛))) = 𝐼𝑛𝑓r∈𝐻(𝜇𝐵(∑ ℎ𝑖𝑖 𝛼𝑖𝑛))[ As 𝐵 is IFCI of H ]

= 𝜇
𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ).

  

Similarly, we can prove 𝜈
(𝐵+′

)
𝜏(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝜈

𝐵+′(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ), i.e., 

(𝐵+′
)

𝜏
(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ) = 𝐵+′

(∑ [ℎ𝑖, 𝛼𝑖]𝑖 ),∀𝜏 ∈ 𝐴𝑢𝑡(𝐿). Hence 𝐵+′
 is an IFCI of 𝐿.  

Theorem 3.3.22.  For 𝐿 of a 𝛤-Ring H with unities ∃ a one-to-one map between the 

IFCIs(H) and the IFCIs(L). 

Proof. Let 𝜙 be a mapping from the IFCIs(H) to that of 𝐿. Let 𝐷 be an IFCI of H. Let us 

define 𝜙(𝐷) = 𝐷+′
. Then by Proposition (3.3.21), 𝜙(𝐷) is an IFCI of 𝐿. Let 𝐺 be an 

IFCI of 𝐿. Then by Proposition (3.3.20), 𝐺+ is an IFCI of H. Then by Theorem (3.3.6), 

(𝐺+)+′
= 𝐺, i.e., 𝜙(𝐺+) = 𝐺. Thus 𝜙 is onto. Again if for 𝐷1, 𝐷2 of H s.t. 𝜙(𝐷1) =

𝜙(𝐷2) then 𝐷1
+′

= 𝐷2
+′

⇒ (𝐷1
+′

)
+

= (𝐷2
+′

)
+

⇒ 𝐷1 = 𝐷2 (by Theorem (3.3.6)). 

Therefore 𝜙 is one-to-one, hence the proof.  

Proposition 3.3.23.  For L of a 𝛤-Ring H with left unity ∑ [𝑒𝑖, 𝛿𝑖]𝑖 , right unity ∑ [𝛾𝑖 ,  𝑎𝑖]𝑖  

let Ѿ be a CI of 𝐿. Then  Ѿ + is a CI of H. 

Proof. Let 𝜎 ∈ 𝐴𝑢𝑡(𝐻). Then by Proposition (3.3.14), 𝜎+′
∈ 𝐴𝑢𝑡(𝐿). Hence 𝜎+′

( Ѿ ) =

 Ѿ . Let 𝜎(ℎ) ∈ 𝜎( Ѿ +)), where ℎ ∈  Ѿ +. Then [ℎ, 𝛼] ∈  Ѿ , ∀ 𝛼 ∈ 𝛤. Hence 
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𝜎+′
([ℎ, 𝛼]) ∈ 𝜎+′

( Ѿ ), for all 𝛼 ∈ 𝛤 ⇒ [𝜎(ℎ), 𝛼] ∈  Ѿ , ∀ 𝛼 ∈ 𝛤 ⇒ 𝜎(ℎ) ∈  Ѿ +. Thus 

𝜎( Ѿ +) ⊆  Ѿ +. Hence 𝜎−1( Ѿ +) ⊆  Ѿ + (since 𝜎 ∈ 𝐴𝑢𝑡(𝐻) ⇒ 𝜎−1 ∈ 𝐴𝑢𝑡(𝐻) ⇒

 Ѿ + ⊆ 𝜎( Ѿ +). Hence 𝜎( Ѿ +) =  Ѿ +. Consequently,  Ѿ + is a CI of H. 

Theorem 3.3.24.  For 𝐿 of a 𝛤-Ring H with unities ∃ an inclusion preserving one-to-one 

between the CI(H) and the CI(L) via the mapping  Ѿ →  Ѿ +
′
. 

Proof. Suppose we define the mapping 𝜓: Ѿ →  Ѿ +
′
. Let Ѿ, Ŵ be two characteristic 

ideals of H s.t. 𝜓(Ѿ) = 𝜓(Ŵ). Then Ѿ+′
= Ŵ+′

⇒ (Ѿ+′
)

+
= (Ŵ+′

)
+

⇒ Ѿ = Ŵ (by 

Theorem (3.3.11). So 𝜓 is one-one. 

Let Ѿ be a CI of 𝐿, then by proposition (3.3.23), Ѿ+ is a CI of H. Also (Ѿ+′
)

+′

= Ѿ. 

Thus 𝜓(Ѿ+) = (Ѿ+)+′
= Ѿ. Hence 𝜓 is onto. From Theorem (3.3.11), it follows that 𝜓 

is inclusion preserving. 

 

3.4 Conclusion 

This chapter, explores the concept of IFCI in a Γ-Ring, examining specific examples to 

illustrate instances where an IFI is not an IFCI. The relationship between IFCI and its 

level cut sets is thoroughly analyzed. Furthermore, the connections between Aut(H) and 

the corresponding Aut(OR) are investigated. The chapter establishes a one-to-one 

mapping between IFCI(H) and IFCI(OR). These structures play a crucial role in the 

development of concepts such as IFPIs, IFPrIs, and IFSPIs in a Γ-Ring framework. 
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Chapter 4 

 

Intuitionistic Fuzzy Prime Radicals, 

Intuitionistic Fuzzy Primary Ideals And 

Intuitionistic Fuzzy 𝟐-Absorbing Primary 

Ideals Of 𝜞-Ring 

 

4.1 Introduction 

Primary ideals hold significance in commutative Γ-Ring theory, primarily due to the fact 

that every ideal of a Noetherian Γ-Ring can be decomposed into primary ideals, a 

principle known as the Lasker-Noether theorem, initially established by Z.K. Warsi in 

[66]. The first section of this chapter introduces and investigates the concept of IFPR in a 

Γ-Ring, which subsequently serves as the basis for defining IFPrI in the next section. 

Numerous characterizations associated with these concepts are derived and explored. 

 

4.2 Intuitionistic Fuzzy Prime Radical Of An Intuitionistic 

Fuzzy Ideal Of A 𝜞-Ring 

While discussing this paper we will consider H as a commutative 𝛤-Ring with unity. 

Definition 4.2.1 Suppose 𝐺 ≠ ∅ IFS of a 𝛤-Ring H. Define a set ℘(𝐺) of all IFPI of H 

which contains 𝐺, i.e., 

                                     ℘(𝐺) = {𝐵: 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻), 𝐺 ⊆ 𝐵}. 
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Proposition 4.2.2.  Consider ₲1 𝑎𝑛𝑑 ₲2 to be two non-empty IFSs in a 𝛤-Ring H, then: 

(i) ₲1 ⊆ ₲2 implies that ℘(₲2) ⊆ ℘(₲1); 

(ii) ℘(₲1) ∪ ℘(₲2) ⊆ ℘(₲1 ∩ ₲2); 

(iii) ℘(₲1) ∪ ℘(₲2) = ℘(₲1𝛤₲2), if ₲1, ₲2 are two IFIs of H; 

(iv) ℘(₲1) ∪ ℘(₲2) = ℘(₲1 ∘ ₲2), if ₲1, ₲2 are two IFIs of H 

(v) ℘(𝜒Ɨ) ∪ ℘(𝜒Ɉ) = ℘(𝜒Ɨ∩Ɉ) if Ɨ and Ɉ are ideals of H. 

Proof. (i) Let B ∈ ℘(₲2). So B will be an IFPI of H and ₲2 ⊆ B. Since ₲1 ⊆ ₲2, ₲1 ⊆ B. 

So B ∈ ℘(₲1). Hence ℘(₲2) ⊆ ℘(₲1). 

 

(ii) Since ₲1 ∩ ₲2 ⊆ ₲1 and ₲1 ∩ ₲2 ⊆ ₲2. Therefore by (i) we have 

℘(₲1) ⊆ ℘(₲1 ∩ ₲2) and ℘(₲2) ⊆ ℘(₲1 ∩ ₲2). Thus ℘(₲1) ∪ ℘(₲2) ⊆ ℘(₲1 ∩ ₲2). 

 

(iii) Since ₲1 and ₲2 are IFIs of the Γ-Ring H, then ₲1Γ₲2 ⊆ ₲1 ∩ ₲2 [ by Remark 

(2.2.4)]. Therefore by (i), we have ℘(₲1 ∩ ₲2) ⊆ ℘(₲1Γ₲2). So by (ii) we have ℘(₲1) ∪

℘(₲2) ⊆ ℘(₲1Γ₲2). 

 

        Again, let B ∈ ℘(₲1Γ₲2). Then ₲1Γ₲2 ⊆ B and B ∈ IFPI(H), so either ₲1 ⊆ B or 

₲2 ⊆ B. Therefore ℘(B) ⊆ ℘(₲1) or ℘(B) ⊆ ℘(₲2). 

 

        Now B ∈ IFPI(H) and B ⊆ B so B ∈ ℘(B). Therefore B ∈ ℘(₲1) or B ∈ ℘(₲2). 

Therefore B ∈ ℘(₲1) ∪ ℘(₲2). Hence ℘(₲1Γ₲2) ⊆ ℘(₲1) ∪ ℘(₲2). Hence ℘(₲1) ∪

℘(₲2) = ℘(₲1Γ₲2). 

 

(iv) Since ₲1 and ₲2 are IFIs of the Γ-Ring H, then ₲1Γ₲2 ⊆ ₲1 ∘ ₲2 [ by Remark (2.2.4)]. 

Then by (i) we have ℘(₲1 ∘ ₲2) ⊆ ℘(₲1Γ₲2). 

 

       Again, let B ∈ ℘(₲1Γ₲2). Then ₲1Γ₲2 ⊆ B and B ∈ IFPI(H). This implies that ₲1 ∘

₲2 ⊆ B, B ∈ IFPI(H) [by Remark (2.2.4)]. So B ∈ ℘(₲1 ∘ ₲2). Thus ℘(₲1Γ₲2) ⊆

℘(₲1 ∘ ₲2). Thus ℘(₲1Γ₲2) = ℘(₲1 ∘ ₲2). Hence from (iii) we get 
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℘(₲1) ∪ ℘(₲2) = ℘(₲1 ∘ ₲2). 

(v) Assume that Ɨ and Ɉ are two ideals of the Γ-Ring H. Clearly χƗ ∩ χɈ = χƗ∩Ɉ. Thus 

℘(χƗ) ∪ ℘(χɈ) ⊆ ℘(χƗ ∩ χɈ) ⊆ ℘(χƗ∩Ɉ). 

 

      Again, let B ∈ ℘(χƗ∩Ɉ). Then χƗ∩Ɉ ⊆ B. So χƗΓχɈ ⊆ χƗ ∩ χɈ = χƗ∩Ɉ ⊆ B. 

       

      Since B ∈ IFPI(H), we have χƗ ⊆ B or χɈ ⊆ B. Thus B ⊆ ℘(χƗ) or B ⊆ ℘(χɈ). 

Therefore,B ⊆ ℘(χƗ) ∪ ℘(χɈ).Thus ℘(χƗ∩Ɉ) ⊆ ℘(χƗ) ∪ ℘(χɈ). 

Hence ℘(χƗ) ∪ ℘(χɈ) = ℘(χƗ∩Ɉ).  

Definition 4.2.3.  Consider an IFI 𝐺 in a 𝛤-Ring H. Then the IFS √𝐺 of H defined by 

√𝐺 =∩ (℘(𝐺)) =∩ {𝐵: 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵} 

is said to be the IFPR of 𝐺. 

Proposition 4.2.4.  Consider an IFI 𝐺 in a 𝛤-Ring H. So √𝐺 is a non-constant IFI of H 

with √𝐺(0𝐻) = (1,0). 

Proof. Consider an IFI 𝐺 in a 𝛤-Ring H. Therefore 

 

𝜇√𝐺(0𝐻) = 𝜇∩(℘(𝐺))(0𝐻)

= 𝐼𝑛𝑓{𝜇𝐵(0𝐻): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}

= 1.

 

Similarly, we can show 𝜈√𝐺(0𝐻) = 0. Thus √𝐺(0𝐻) = (1,0). 

       Let 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻). So ∃ at least one ℎ ∈ 𝐻 s.t. 𝐵(ℎ𝐻) ≠ (1,0). Therefore √𝐺(ℎ𝐻) ≠

(1,0). Thus √𝐺 is a non-constant IFS of H. Now ∀ ĥ, ħ ∈ 𝐻, we have 

 

𝜇√𝐺(ĥ − ħ) = 𝜇∩(℘(𝐺))(ĥ − ħ) = 𝐼𝑛𝑓{𝜇𝐵(ĥ − ħ): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}

≥ 𝐼𝑛𝑓{𝜇𝐵(ĥ) ∧ 𝜇𝐵(ħ):𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}

= (𝐼𝑛𝑓{𝜇𝐵(ĥ): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}) ∧ (𝐼𝑛𝑓{𝜇𝐵(ħ): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵})

= 𝜇∩(℘(𝐺))(ĥ) ∧ 𝜇∩(℘(𝐺))(ħ)

= 𝜇√𝐺(ĥ) ∧ 𝜇√𝐺(ħ).
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Thus 𝜇√𝐺(ĥ − ħ) ≥ 𝜇√𝐺(ĥ) ∧ 𝜇√𝐺(ħ). Similarly, we can prove 𝜈√𝐺(ĥ − ħ) ≤ 𝜇√𝐺(ℎ1) ∨

𝜈√𝐺(ℎ2). 

       Again for any ĥ, ħ ∈ 𝐻 and 𝛾 ∈ 𝛤, we have 

 

𝜇√𝐺(ĥ𝛾ħ) = 𝜇∩(℘(𝐺))(ĥ𝛾ħ) = 𝐼𝑛𝑓{𝜇𝐵(ĥ𝛾ħ): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}

≥ 𝐼𝑛𝑓{𝜇𝐵(ĥ): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}

= 𝜇∩(℘(𝐺))(ĥ)

= 𝜇√𝐺(ĥ).

 

Similarly, we can show 𝜇√𝐺(ĥ𝛾ħ) ≥ 𝜇√𝐺(ħ). Thus, we have 𝜇√𝐺(ĥ𝛾ħ) ≥ 𝜇√𝐺(ĥ) ∨

𝜇√𝐺(ħ). 

Similarly, we can prove 𝜈√𝐺(ĥ𝛾ħ) ≤ 𝜈√𝐺(ĥ) ∧ 𝜈√𝐺(ħ). Hence √𝐺 is a non-constant IFI 

of H.  

Proposition 4.2.5.  Consider an IFI 𝐺 in a 𝛤-Ring H. So √𝐺 is an IFSPI of H. 

Proof. We have already shown that √𝐺 is a non-constant IFI of H. Now ∀ 𝑟 ∈ 𝐻, we 

have 

 

𝐼𝑛𝑓{𝜇√𝐺(𝑟𝛾1ℎ𝛾2𝑟):

ℎ ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤} = 𝐼𝑛𝑓{𝜇∩(℘(𝐺))(𝑟𝛾1ℎ𝛾2𝑟): ℎ ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤}

= 𝐼𝑛𝑓{𝐼𝑛𝑓{𝜇𝐵(𝑟𝛾1ℎ𝛾2𝑟): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}, ℎ ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤}

= 𝐼𝑛𝑓{𝜇𝐵(𝑟): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}[ As 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻)]

= 𝜇∩(℘(𝐺))(𝑟)

= 𝜇√𝐺(𝑟).

 

𝜇√𝐺(𝑟)  

Similarly, we can prove 𝑆𝑢𝑝{𝜈√𝐺(𝑟𝛾1ℎ𝛾2𝑟): ℎ ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤} = 𝜈√𝐺(𝑟). 

      Hence √𝐺 is an IFSPI of H (by Proposition (2.2.11)).  

Proposition 4.2.6.  Suppose ₲1 𝑎𝑛𝑑 ₲2 be two IFIs of a 𝛤-Ring H. Then 

(i) √₲1(ℎ) = (1,0) if ℎ ∈ (√₲1)
∗
 

(ii) ₲1 ⊆ √₲1 
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(iii) If ₲1 ⊆ ₲2 then √₲1 ⊆ √₲2 

(iv) √√₲1 = √₲1 

(v) √₲1 ⊕ ₲2 = √√₲1 ⊕ √₲2, where ₲1(0𝐻) = ₲2(0𝐻) = (1,0). 

Proof. (i) Let ℎ ∈ (√₲1)
∗
. Then 

 

𝜇
√₲1

(ℎ) = 𝜇
√₲1

(0𝐻) = 𝜇∩(℘(₲1))(0𝐻)

= 𝐼𝑛𝑓{𝜇B(0𝐻): B ∈ 𝐼𝐹𝑃𝐼(𝐻); ₲1 ⊆ B}

= 1.

 

In the same manner, it can be shown that 𝜈
√₲1

(ℎ) = 0. Thus √₲1(ℎ) = (1,0). 

 

(ii) For any ℎ ∈ 𝐻 

𝜇
√₲1

(ℎ) = 𝜇∩(℘(₲1))(ℎ)

= 𝐼𝑛𝑓{𝜇₲2
(ℎ): ₲2 ∈ 𝐼𝐹𝑃𝐼(𝐻); ₲1 ⊆ ₲2}

≥ 𝜇₲1
(ℎ).

 

In the same manner, it can be shown that 𝜈
√₲1

(ℎ) ≤ 𝜈₲1
(ℎ). Thus ₲1 ⊆ √₲1. 

 

(iii) Consider two IFIs ₲1 and ₲2 in a  𝛤-Ring H s.t. ₲1 ⊆ ₲2. Then ℘(₲2) ⊆ ℘(₲1). 

Thus ∩ (℘(₲1)) ⊆∩ (℘(₲2)), i.e., √₲1 ⊆ √₲2. 

 

(iv) Since ₲1 ⊆ √₲1, it follows that √₲1 ⊆ √√₲1 and ℘(₲1) ⊆ ℘(√₲1). Thus  

∩ (℘(√₲1)) ⊆∩ (℘(₲1)), i.e., √√₲1 ⊆ √₲1. Hence √√₲1 = √₲1. 
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(v) Since ₲1 ⊆ √₲1 and ₲2 ⊆ √₲2, so ₲1 ⊕ ₲2 ⊆ √₲1 ⊕ √₲2. Thus √₲1 ⊕ ₲2 ⊆

√√₲1 ⊕ √₲2. 

      Again ₲1 ⊆ ₲1 ⊕ ₲2 and ₲2 ⊆ ₲1 ⊕ ₲2 so √₲1 ⊆ √₲1 ⊕ ₲2 and √₲2 ⊆ √₲1 ⊕ ₲2 

implies √₲1 ⊕ √₲2 ⊆ √₲1 ⊕ ₲2. Thus √√₲1 ⊕ √₲2 ⊆ √√₲1 ⊕ ₲2 = √₲1 ⊕ ₲2. 

Hence √₲1 ⊕ ₲2 = √√₲1 ⊕ √₲2.  

Proposition 4.2.7.  Let 𝐺 be an 𝐼𝐹𝑃𝐼 of a 𝛤-Ring H. Therefore √𝐺 = 𝐺 and so every 

𝐼𝐹𝑃𝐼 is IFSPI. 

Proof. Assume that 𝐺 is an 𝐼𝐹𝑃𝐼 of 𝛤-Ring H. Therefore 𝐺 ∈ 𝐼𝐹𝑃𝐼(𝐻). 

√𝐺 =∩ (℘(𝐺)) =∩ {𝐵: 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵} ⊆ 𝐺. Again 𝐺 ⊆ √𝐺. So √𝐺 = 𝐺. 

The second assertion follows from Proposition (4.2.5).  

Lemma 4.2.8.  Consider an IFI 𝐺 in H s.t. 𝐺(0𝐻) = (1,0), then √𝐺∗ ⊆ (√𝐺)
∗
, where 

√𝐺∗ =∩ {𝐿: 𝐿 is a PI of H s.t. 𝐺∗ ⊆ 𝐿}. 

Proof. Let ℎ ∈ √𝐺∗. So ℎ ∈ 𝐿 ∀ PI 𝐿 of H s.t. 𝐺∗ ⊆ 𝐿. Suppose 𝐵 is an IFPI of H s.t. 𝐺 ⊆

𝐵. Let 𝑟 ∈ 𝐺∗. Then 𝜇𝐺(𝑟) = 𝜇𝐺(0𝐻) = 1 = 𝜇𝐵(𝑟) and 𝜈𝐺(𝑟) = 𝜈𝐺(0𝐻) = 0 = 𝜈𝐵(𝑟). 

So 𝑟 ∈ 𝐵∗. Hence 𝐺∗ ⊆ 𝐵∗. As 𝐵 is an IFPI of H, and 𝐵∗ is a PI of H (By Theorem 

(2.2.9)). Also 𝐺∗ ⊆ 𝐵∗ so ℎ ∈ 𝐵∗. Hence 𝐵(ℎ) = 𝐵(0𝐻) = (1,0). Now 

 

𝜇√𝐺(ℎ) = 𝜇∩(℘(𝐺))(ℎ)

= 𝐼𝑛𝑓{𝜇𝐵(ℎ): 𝐵 ∈ 𝐼𝐹𝑃𝐼(𝐻); 𝐺 ⊆ 𝐵}

= 1 = 𝜇√𝐺(0𝐻).

 

Similarly, we can prove that 𝜈√𝐺(ℎ) = 𝜈√𝐺(0𝐻). So ℎ ∈ (√𝐺)
∗
. Thus √𝐺∗ ⊆ (√𝐺)

∗
.  

Lemma 4.2.9.  If 𝐺 is an IFI of H s.t. |𝐼𝑚𝑔(𝐺)| = 2 = {(1,0), (𝜆, 𝜁)}, where 0 ≤ 𝜆, 𝜁 <

1 s.t. 𝜆 + 𝜁 ≤ 1. Then (√𝐺)
∗

⊆ √𝐺∗. 
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Proof. Let ℎ ∈ (√𝐺)
∗
. Then 𝜇√𝐺(ℎ) = 𝜇√𝐺(0𝐻) = 1 and 𝜈√𝐺(ℎ) = 𝜈√𝐺(0𝐻) = 0. 

Therefore, √𝐺(ℎ) = (1,0). This implies that 𝑃(ℎ) = (1,0) for all IFPI 𝑃 with the 

condition that 𝐺 ⊆ 𝑃. Thus ℎ ∈ 𝑃∗ whenever 𝑃 ∈ 𝐼𝐹𝑃𝐼(𝐻), 𝐺 ⊆ 𝑃. 

       Let 𝛺 be a PI of H s.t. 𝐺∗ ⊆ 𝛺. Now we define an IFS 𝐵 of H as 

𝜇𝐵(𝛾) = {
1, if 𝛾 ∈ 𝛺
𝜆1, if 𝛾 ∈ 𝐻 ∖ 𝛺

; 𝜈𝐵(𝛾) = {
0, if 𝛾 ∈ 𝛺
𝜁1, if 𝛾 ∈ 𝐻 ∖ 𝛺.

 

where 𝜆1, 𝜁1 ∈ (0,1) such that 𝜆1 > 𝜆 and 𝜁1 < 𝜁. Then 𝐵 is an IFPI of H [by Theorem 

(2.2.9)] s.t. 𝐺 is contained in 𝐵. Hence ℎ ∈ 𝐵∗ = 𝛺. So ℎ ∈ ⋂{𝛺: 𝛺 is a PI of H s.t. 𝐺∗ ⊆

𝛺}. Hence ℎ belongs to radical of 𝐺∗. Thus we have (√𝐺)
∗

⊆ √𝐺∗.  

 

4.3 Intuitionistic Fuzzy Primary Ideal Of A 𝜞-Ring 

Definition 4.3.1.  Consider 𝐺 to be any IFI in 𝛤-Ring H. Then IFS √𝐺 which is defined 

as 

𝜇√𝐺(ℎ) =∨ {𝜇𝐺((ℎ𝛾)𝑛−1ℎ):𝑛 ∈ 𝐍} and 𝜈√𝐺(ℎ) =∧ {𝜈𝐺((ℎ𝛾)𝑛−1ℎ): 𝑛 ∈ 𝐍)} is called the 

IFPR of 𝐺, where (ℎ𝛾)𝑛−1ℎ = ℎ, for 𝑛 = 1, 𝛾 ∈ 𝛤. 

Proposition 4.3.2.  ∀ IFIs ₲ and Ğ of  𝛤-Ring H, we have 

(i) ₲ ⊆ √₲; 

(ii) ₲ ⊆ Ğ ⇒ √₲ ⊆ √Ğ; 

(iii) √√₲ = √₲. 

Proof. Straightforward.  

Theorem 4.3.3.  For any IFI 𝐺 of 𝛤-Ring H, √𝐺 is an IFI of H. 

Proof. Let ℎ1, ℎ2 ∈ 𝐻, 𝛾 ∈ 𝛤. 
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𝜇√𝐺(ℎ1 + ℎ2) =∨𝑘≥1 [𝜇𝐺{((ℎ1 + ℎ2)𝛾)
𝑘
(ℎ1 + ℎ2)}]

≥ 𝜇𝐺{((ℎ1 + ℎ2)𝛾)
ɱ+ɳ

(ℎ1 + ℎ2)}

= 𝜇𝐺{(ℎ1𝛾)ɱ+ɳℎ1} ∧ 𝜇𝐺{(ℎ2𝛾)ɱ+ɳℎ2} ∧𝑝+𝑞=ɱ+ɳ 𝜇𝐺{(ℎ1𝛾)𝑝(ℎ2𝛾)𝑞ℎ1}

                                                                        ∧𝑝+𝑞=ɱ+ɳ 𝜇𝐺{(ℎ2𝛾)𝑝(ℎ1𝛾)𝑞ℎ2}

≥ 𝜇𝐺{(ℎ1𝛾)ɳℎ1} ∧ 𝜇𝐺{(ℎ2𝛾)ɳℎ2}

= 𝜇√𝐺(ℎ1) ∧ 𝜇√𝐺(ℎ2).

 

[As ((ℎ1 + ℎ2)𝛾)
ɱ+ɳ

(ℎ1 + ℎ2) may be seen as the sum of the terms of the forms 

(ℎ1𝛾)ɱ+ɳℎ1, (ℎ2𝛾)ɱ+ɳℎ2, (ℎ1𝛾)𝑝(ℎ2𝛾)𝑞ℎ1, and (ℎ2𝛾)𝑝(ℎ1𝛾)𝑞ℎ2, for some 𝑝, 𝑞 ∈ 𝐍 s.t. 

𝑝 + 𝑞 = ɱ + ɳ.] 

In the same manner it can be shown that 𝜈√𝐺(ℎ1 + ℎ2) ≤ 𝜈√𝐺(ℎ1) ∨ 𝜈√𝐺(ℎ2). Further, 

since 

 

𝜇𝐺{(ℎ1𝛾)ɳℎ1} ∨ 𝜇𝐺{(ℎ2𝛾)ɳℎ2} ≤ 𝜇𝐺{(ℎ1𝛾)ɳℎ1𝛾(ℎ2𝛾)ɳℎ2}

≤∨𝑘≥1 [𝜇𝐺{(ℎ1𝛾ℎ2)𝑘ℎ1𝛾ℎ2}]

= 𝜇√𝐺(ℎ1𝛾ℎ2).

 

 

Thus 𝜇√𝐺(ℎ1𝛾ℎ2) ≥ 𝜇𝐺{(ℎ1𝛾)ɳℎ1} ∨ 𝜇𝐺{(ℎ2𝛾)ɳℎ2}. Similarly, we can show that 

𝜈√𝐺(ℎ1𝛾ℎ2) ≤ 𝜈𝐺{(ℎ1𝛾)ɳℎ1} ∧ 𝜈𝐺{(ℎ2𝛾)ɳℎ2}. Hence √𝐺 is an IFI of H.  

Proposition 4.3.4.  Let ₲1,  𝑎𝑛𝑑 ₲2 be two IFIs of a 𝛤-Ring H. Then 

√₲1𝛤₲2 = √₲1 ∩ ₲2 = √₲1 ∩ √₲2 

Proof. Since ₲1 ∩ ₲2 ⊆ ₲1 and ₲1 ∩ ₲2 ⊆ ₲2 implies √₲1 ∩ ₲2 ⊆ √₲1 and √₲1 ∩ ₲2 ⊆

√₲2 and so √₲1 ∩ ₲2 ⊆ √₲1 ∩ √₲2. 

For the reverse inclusion, let ℎ ∈ 𝐻, 𝛾 ∈ 𝛤 be any element. Now 

 



43 
 

𝜇
√₲1∩√₲2

(ℎ) = 𝜇
√₲1

(ℎ) ∧ 𝜇
√₲2

(ℎ)

= [∨ {𝜇₲1
((ℎ𝛾)ɱℎ): ɱ > 0}] ∧ [∨ {𝜇₲2

((ℎ𝛾)ɳℎ):ɳ > 0}]

=∨ {𝜇₲1
((ℎ𝛾)ɱℎ) ∧ 𝜇₲2

((ℎ𝛾)ɳ): ɱ, ɳ > 0}

≤∨ {𝜇₲1
((ℎ𝛾)ɱ+ɳℎ) ∧ 𝜇₲2

((ℎ𝛾)ɱ+ɳℎ): ɱ + ɳ > 0}

=∨ {𝜇₲1∩₲2
((ℎ𝛾)ɱ+ɳℎ): ɱ + ɳ > 0}

= 𝜇
√₲1∩₲2

(ℎ).

 

 

Similarly, we can show that 𝜈
√₲1∩√₲2

(ℎ) ≥ 𝜈
√₲1∩₲2

(ℎ). Thus √₲1 ∩ √₲2 ⊆ √₲1 ∩ ₲2. 

Hence √₲1 ∩ ₲2 = √₲1 ∩ √₲2. 

Further, as ₲1𝛤₲2 ⊆ ₲1 ∩ ₲2 implies √₲1𝛤₲2 ⊆ √₲1 ∩ ₲2. For the other inclusion, let 

ℎ ∈ 𝐻, 𝛾 ∈ 𝛤 be any element. Now 

 

𝜇
√₲1∩√₲2

(ℎ) = 𝜇
√₲1

(ℎ) ∧ 𝜇
√₲2

(ℎ)

= [∨ {𝜇₲1
((ℎ𝛾)ɱℎ): ɱ > 0}] ∧ [∨ {𝜇₲2

((ℎ𝛾)ɳℎ):ɳ > 0}]

=∨ {𝜇₲1
((ℎ𝛾)ɱℎ) ∧ 𝜇₲2

((ℎ𝛾)ɳ): ɱ, ɳ > 0}

≤∨ {𝜇₲1
((ℎ𝛾)ɱ+ɳℎ) ∧ 𝜇₲2

((ℎ𝛾)ɱ+ɳℎ): ɱ + ɳ > 0}

=∨ {𝜇₲1∩₲2
((ℎ𝛾)ɱ+ɳℎ): ɱ + ɳ > 0}

= 𝜇
√₲1∩₲2

(ℎ).

 

In the same manner, it can be shown that 𝜈
√₲1∩₲2

(ℎ) ≥ 𝜈
√₲1𝛤₲2

(ℎ). Thus √₲1 ∩ ₲2 ⊆

√₲1𝛤₲2. 

Thus √₲1 ∩ ₲2 = √₲1𝛤₲2. Hence √₲1𝛤₲2 = √₲1 ∩ ₲2 = √₲1 ∩ √₲2.  

Corollary 4.3.5.  If {₲𝑖: 1 ≤ 𝑖 ≤ ɳ} is a finite number of IFIs of a 𝛤-Ring H, then 

√₲1𝛤₲2𝛤₲3. . . . . . 𝛤₲𝑛 = √₲1 ∩ ₲2 ∩ ₲3 ∩. . . . .∩ ₲𝑛 = √₲1 ∩ √₲2 ∩ √₲3 ∩. . . . .∩ √₲𝑛. 

Definition 4.3.6.  A non-constant IFI 𝑄 in a 𝛤-Ring H is called an IFPrI of H if, for any 

two IFIs ₲ andĞ of H s.t. ₲𝛤Ğ ⊆ 𝑄 ⇒ either ₲ ⊆ 𝑄 or Ğ ⊆ √𝑄. 

Theorem 4.3.7. Let 𝑄 ∈ 𝐼𝐹𝐼(𝐻). Then 𝑄 is an IFPrI of H iff 𝑄 is non-constant and ₲ ∘

Ğ ⊆ 𝑄 ⇒ either ₲ ⊆ 𝑄 or Ğ ⊆ √𝑄, where ₲, Ğ ∈ 𝐼𝐹𝐼(𝐻). 
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Proof. By using Remark (2.2.4) the proof is straightforward, since ₲ ∘ Ğ ⊆ 𝑄 iff ₲𝛤Ğ ⊆

𝑄, where ₲, Ğ ∈ 𝐼𝐹𝐼(𝐻).  

Theorem 4.3.8.  Let 𝑄 be an IFI of comm. 𝛤-Ring H. Then for any two IFPs 

ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗) ∈ 𝐼𝐹𝑃(𝐻) the following are equivalent to each other: 

(i) 𝑄 is an IFPrI of H 

(ii) ℎ(𝜂,𝜃)𝛤𝑘(ϐ,𝜗) ⊆ 𝑄 implies ℎ(𝜂,𝜃) ⊆ 𝑄 or 𝑘(ϐ,𝜗) ⊆ √𝑄. 

Proof. (i) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 (ii) Let 𝑄 is an IFPrI of H. 

Let ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗) ∈ 𝐼𝐹𝑃(𝐻) s.t. ℎ(𝜂,𝜃)𝛤𝑘(ϐ,𝜗) ⊆ 𝑄. This implies (ℎ𝛤𝑘)(𝜂∧ϐ,𝜃∨𝜗) ⊆ 𝑄, 

i.e., 𝜇𝑄(ℎ𝛾𝑘) ≥ 𝜂 ∧ ϐ and 𝜈𝑄(ℎ𝛾𝑘) ≤ 𝜗 ∧ 𝑠, for every 𝛾 ∈ 𝛤. 

Define two IFSs ₲1,  𝑎𝑛𝑑 ₲2 of H as follows 

 

₲1(𝑝) = {
(𝜂, 𝜃), if 𝑝 ∈< ℎ >
(0,1), otherwise

; ₲2(𝑝) = {
(ϐ, 𝜗), if 𝑝 ∈< 𝑘 >
(0,1), otherwise

 

 

Clearly ₲1, ₲2 are IFIs of H and ℎ(𝜂,𝜃) ⊆ ₲1 and 𝑘(ϐ,𝜗) ⊆ ₲2. Now 

𝜇₲1𝛤₲2
(𝑝) =∨𝑝=𝑢𝛾𝑣 [𝜇₲1

(𝑢) ∧ 𝜇₲2
(𝑣)] = 𝜂 ∧ ϐ and 𝜈₲1𝛤₲2

(𝑝) =∧𝑝=𝑢𝛾𝑣 [𝜈₲1
(𝑢) ∨

𝜈₲2
(𝑣)] = 𝜃 ∨ 𝜗, where 𝑢 ∈< ℎ >, 𝑣 ∈< 𝑘 >. Thus 𝜇₲1𝛤₲2

(𝑝) = 𝜂 ∧ ϐ ≤ 𝜇𝑄(ℎ𝛾𝑘) and 

𝜈₲1𝛤₲2
(𝑝) = 𝜃 ∨ 𝜗 ≥ 𝜈𝑄(ℎ𝛾𝑘). 

Thus when 𝑝 = 𝑢𝛾𝑣, where 𝑢 ∈< ℎ >, 𝑣 ∈< 𝑘 >. (₲1𝛤₲2)(𝑝) ⊆ 𝑄(𝑝) otherwise 

(₲1𝛤₲2)(𝑝) = (0,1). Thus get ₲1𝛤₲2 ⊆ 𝑄. As 𝑄 is IFPrI of H, so either ₲1 ⊆ 𝑄 or ₲2 ⊆

√𝑄. Thus we have ℎ(𝜂,𝜃) ⊆ ₲1 ⊆ 𝑄 or 𝑘(ϐ,𝜗) ⊆ ₲2 ⊆ √𝑄, i.e., ℎ(𝜂,𝜃) ⊆ 𝑄 or 𝑘(ϐ,𝜗) ⊆ √𝑄. 

 

(𝑖𝑖) ⇒ (𝑖), Let ₲1 and ₲2 be two IFIs of 𝛤-Ring H s.t. ₲1𝛤₲2 ⊆ 𝑄. Suppose that ₲1 ⊈ 𝑄. 

Then ∃ℎ ∈ 𝐻 s.t. 𝜇₲1
(ℎ) > 𝜇𝑄(ℎ) and 𝜈₲1

(ℎ) < 𝜈𝑄(ℎ). Let 𝜇₲1
(ℎ) = ɱ, 𝜈₲1

(ℎ) = ɳ. 

Let 𝑘 ∈ 𝐻 and 𝜇₲2
(𝑘) = 𝜏, 𝜈₲2

(𝑘) = 𝜔. 

If 𝑝 = ℎ𝛾𝑘 for some 𝛾 ∈ 𝛤, then (ℎ(ɱ,ɳ)𝛤𝑘(𝜏,𝜔))(𝑝) = (ɱ ∧ 𝜏, ɳ ∨ 𝜔). Hence 

𝜇𝑄(𝑝) = 𝜇𝑄(ℎ𝛾𝑘) ≥ 𝜇₲1𝛤₲2
(ℎ𝛾𝑘) ≥ [𝜇₲1

(ℎ) ∧ 𝜇₲2
(𝑘)] = ɱ ∧ 𝜏 = 𝜇𝑥(ɱ,ɳ)𝛤𝑦(𝜏,𝜔)

(ℎ𝛾𝑘) =

𝜇ℎ(ɱ,ɳ)𝛤𝑦(𝜏,𝜔)
(𝑝)  
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𝜈𝑄(𝑝) = 𝜈𝑄(ℎ𝛾𝑘) ≤ 𝜈₲1𝛤₲2
(ℎ𝛾𝑘) ≤ [𝜈₲1

(ℎ) ∨ 𝜈₲2
(𝑘)] = ɳ ∨ 𝜔 = 𝜈ℎ(ɱ,ɳ)𝛤𝑦(𝜏,𝜔)

(ℎ𝛾𝑘) =

𝜈ℎ(ɱ,ɳ)𝛤𝑦(𝜏,𝜔)
(𝑝). 

If 𝜇ℎ(ɱ,ɳ)𝛤𝑦(𝜏,𝜔)
(𝑝) = 0, 𝜈ℎ(ɱ,ɳ)𝛤𝑦(𝜏,𝜔)

(𝑝) = 1, then 𝜇𝑄(𝑝) ≥ 𝜇ℎ(ɱ,ɳ)𝛤𝑦(𝜏,𝜔)
(𝑝), 𝜈𝑄(𝑝) ≤

𝜈ℎ(ɱ,ɳ)𝛤𝑘(𝜏,𝜔)
(𝑝). Hence ℎ(ɱ,ɳ)𝛤𝑘(𝜏,𝜔) ⊆ 𝑄. By (i) either ℎ(ɱ,ɳ) ⊆ 𝑄 or 𝑘(𝜏,𝜔) ⊆ √𝑄. 

i.e., either 𝜇𝑄(ℎ) ≥ ɱ, 𝜈𝑄(ℎ) ≤ ɳ or 𝜇
√𝑄

(𝑘) ≥ 𝜏, 𝜈
√𝑄

(𝑘) ≤ 𝜔. 

Since ɱ ≰ 𝜇𝑄(ℎ), ɳ ≱ 𝜈𝑄(ℎ) implies that ℎ(ɱ,ɳ) ⊈ 𝑄 and so 𝑘(𝜏,𝜔) ⊆ √𝑄. This implies 

that 𝜇
√𝑄

(𝑘) ≥ 𝜏 = 𝜇₲2
(𝑘) and 𝜈

√𝑄
(𝑘) ≤ 𝜔 = 𝜈₲2

(𝑘), ∀𝑘 ∈ 𝐻. Which implies that ₲2 ⊆

√𝑄. Hence 𝑄 is an IFPrI of H.  

Proposition 4.3.9.  Let 𝑄 be an IFI in a 𝛤-Ring H. If 𝑄 is an IFPrI of H, then for all 

ℎ1, ℎ2 ∈ 𝐻, 𝛾 ∈ 𝛤 such that 𝜇𝑄(ℎ1𝛾ℎ2) > 𝜇𝑄(ℎ1), 𝜈𝑄(ℎ1𝛾ℎ2) < 𝜈𝑄(ℎ1) implies that 

𝜇𝑄(ℎ1𝛾ℎ2) < 𝜇
√𝑄

(ℎ2), 𝜈𝑄(ℎ1𝛾ℎ2) > 𝜈
√𝑄

(ℎ2). 

Proof. 𝜇𝑄(ℎ1𝛾ℎ2) = 𝑟 > 𝜇𝑄(ℎ1), 𝜈𝑄(ℎ1𝛾ℎ2) = 𝑠 < 𝜈𝑄(ℎ1). Then (ℎ1𝛾ℎ2)(𝑟,𝑠) ∈ 𝑄 and 

ℎ1(𝑟,𝑠) ∉ 𝑄. Since Q is an IFPrI of H then ℎ2(𝑟,𝑠) ∈ √𝑄. Thus 𝜇
√𝑄

(ℎ2) ≥ 𝑟 = 𝜇𝑄(ℎ1𝛾ℎ2) 

and 𝜈
√𝑄

(ℎ2) ≤ 𝑠 = 𝜈𝑄(ℎ1𝛾ℎ2). This completes the proof.  

Theorem 4.3.10.  Assume that 𝑄 is an IFPrI of 𝛤-Ring H. Then 

𝑄∗ = {ℎ ∈ 𝐻: 𝜇𝑄(ℎ) = 𝜇𝑄(0𝐻) and 𝜈𝑄(ℎ) = 𝜈𝑄(0𝐻)} will be a PrI of H. 

Proof. Suppose ℎ1, ℎ2 ∈ 𝑄∗. So 𝜇𝑄(ℎ1) = 𝜇𝑄(ℎ2) = 𝜇𝑄(0𝐻) and 𝜈𝑄(ℎ1) = 𝜈𝑄(ℎ2) =

𝜈𝑄(0𝐻). Now 

𝜇𝑄(ℎ1 − ℎ2) ≥ 𝜇𝑄(ℎ1) ∧ 𝜇𝑄(ℎ2) = 𝜇𝑄(0𝐻) and 𝜈𝑄(ℎ1 − ℎ2) ≤ 𝜈𝑄(ℎ1) ∨ 𝜈𝑄(ℎ2) =

𝜈𝑄(0𝐻) implies that 𝜇𝑄(ℎ1 − ℎ2) = 𝜇𝑄(0𝐻) and 𝜈𝑄(ℎ1 − ℎ2) = 𝜈𝑄(0𝐻). So ℎ1 − ℎ2 ∈

𝑄∗. 

       Further, let ℎ1 ∈ 𝐻 and ℎ2 ∈ 𝑄∗, then 𝜇𝑄(ℎ2) = 𝜇𝑄(0𝐻) and 𝜈𝑄(ℎ2) = 𝜈𝑄(0𝐻). 

Let 𝛾 ∈ 𝛤 be any element, then 𝜇𝑄(ℎ1𝛾ℎ2) ≥ 𝜇𝑄(ℎ1) ∨ 𝜇𝑄(ℎ2) = 𝜇𝑄(ℎ1) ∨ 𝜇𝑄(0𝐻) =

𝜇𝑄(0𝐻). 

But 𝜇𝑄(0𝐻) ≥ 𝜇𝑄(ℎ1𝛾ℎ2) always implies 𝜇𝑄(ℎ1𝛾ℎ2) = 𝜇𝑄(0𝐻). Similarly, 

𝜈𝑄(ℎ1𝛾ℎ2) = 𝜈𝑄(0𝐻). 



46 
 

Thus ℎ1𝛾ℎ2 ∈ 𝑄∗. This shows that 𝑄∗ is the right ideal of 𝛤-Ring H. In the same manner, 

it can be shown that 𝑄∗ is a left ideal of 𝛤-Ring H. Thus 𝑄∗ is an ideal of 𝛤-Ring H. 

Further, let ℎ1, ℎ2 ∈ 𝐻, 𝛾 ∈ 𝛤 s.t. ℎ1𝛾ℎ2 ∈ 𝑄∗,i.e., 𝜇𝑄(ℎ1𝛾ℎ2) = 𝜇𝑄(0𝐻) and 

𝜈𝑄(ℎ1𝛾ℎ2) = 𝜈𝑄(0𝐻). Suppose that ℎ1 ∉ 𝑄∗,then we claim that ℎ2 ∈ √𝑄∗, i.e.,∃ some 

𝑚 ∈ 𝐍 and 𝛾 ∈ 𝛤 s.t. (ℎ2𝛾)𝑚ℎ2 ∈ 𝑄∗. 

        As ℎ1 ∉ 𝑄∗ ⇒ 𝜇𝑄(ℎ1) < 𝜇𝑄(0𝐻) and 𝜈𝑄(ℎ1) > 𝜇𝑄(0𝐻). Thus we have 

𝜇𝑄(ℎ1𝛾ℎ2) > 𝜇𝑄(ℎ1), 𝜈𝑄(ℎ1𝛾ℎ2) < 𝜈𝑄(ℎ1). Then by above proposition (4.3.9) we have 

𝜇𝑄(ℎ1𝛾ℎ2) < 𝜇
√𝑄

(ℎ2), 𝜈𝑄(ℎ1𝛾ℎ2) > 𝜈
√𝑄

(ℎ2), i.e., 𝜇
√𝑄

(ℎ2) > 𝜇𝑄(0𝐻), 𝜈
√𝑄

(ℎ2) <

𝜈𝑄(0𝐻) implies that ∨ {𝜇𝑄((ℎ2𝛾)𝑚ℎ2): 𝑚 > 0} > 𝜇𝑄(0𝐻),∧ {𝜈𝑄((ℎ2𝛾)𝑚ℎ2): 𝑚 > 0} <

𝜈𝑄(0𝐻).Thus ∃ some 𝑚 ∈ 𝐍, 𝛾 ∈ 𝛤 such that 𝜇𝑄((ℎ2𝛾)𝑚ℎ2) > 𝜇𝑄(0𝐻) and 

𝜈𝑄((ℎ2𝛾)𝑚ℎ2) < 𝜈𝑄(0𝐻) , i.e., 𝜇𝑄((ℎ2𝛾)𝑚ℎ2) = 𝜇𝑄(0𝐻) and 𝜈𝑄((ℎ2𝛾)𝑚ℎ2) = 𝜈𝑄(0𝐻) 

and so (ℎ2𝛾)𝑚ℎ2 ∈ 𝑄∗. Thus ℎ2 ∈ √𝑄∗. This complete the proof.  

Theorem 4.3.11.  Let 𝑄 be an IFS of a 𝛤-Ring H. If 𝑄(0𝐻) = (1,0), 𝑄∗ is a PrI of H and 

𝐼𝑚𝑔(𝑄) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. Then 𝑄 is an IFPrI of H. 

Proof. 𝑄 is a non-constant IFI of H as 𝑄∗ is an ideal of H. Assume that ₲1,  ₲2 ∈ 𝐼𝐹𝐼(𝐻) 

s.t. ₲1𝛤₲2 ⊆ 𝑄. Suppose ₲1 ⊈ 𝑄 and ₲2 ⊈ √𝑄. Then ∃, ℎ1, ℎ2 ∈ 𝐻 s.t. 𝜇₲1
(ℎ1) >

𝜇𝑄(ℎ1), 𝜈₲1
(ℎ1) < 𝜈𝑄(ℎ1) and 𝜇₲2

(ℎ2) > 𝜇
√𝑄

(ℎ2), 𝜈₲2
(ℎ2) < 𝜈

√𝑄
(ℎ2). Since 𝑄(0𝐻) =

(1,0) = √𝑄(0𝐻) gives that ℎ1 ∉ 𝑄∗ and ℎ2 ∉ (√𝑄)
∗
. Again since √𝑄∗ ⊆ (√𝑄)

∗
, so 

ℎ2 ∉ √𝑄∗. 

Therefore ℎ1𝛤𝐻𝛤ℎ2 ⊈ 𝑄∗ (by Theorem 9,[8]) as 𝑄∗ is a PrI of H. 

Therefore 𝜇𝑄(ℎ1𝛾1𝑚𝛾2ℎ2) = 𝜆 ≠ 1, 𝜈𝑄(ℎ1𝛾1𝑚𝛾2ℎ2) = 𝜁 ≠ 0, for some 𝛾1, 𝛾2 ∈ 𝛤, 𝑚 ∈

𝐻. 

       Since ℎ1 ∉ 𝑄∗, 𝜇𝑄(ℎ1) ≠ 𝜇𝑄(0𝐻) = 1, 𝜈𝑄(ℎ1) ≠ 𝜈𝑄(0𝐻) = 0. So 𝜇𝑄(ℎ1) =

𝜆, 𝜈𝑄(ℎ1) = 𝜁. Thus 𝜇₲1
(ℎ1) > 𝜇𝑄(ℎ1) = 𝜆, 𝜈₲1

(ℎ1) < 𝜈𝑄(ℎ1) = 𝜁. 

        

Again since 𝜇𝑄(ℎ2) ≤ 𝜇
√𝑄

(ℎ2) < 𝜇₲2
(ℎ2) and 𝜈𝑄(ℎ2) ≥ 𝜈

√𝑄
(ℎ2) > 𝜈₲2

(ℎ2), 𝑄(ℎ2) ≠

(1,0). So 𝜆 = 𝜇𝑄(ℎ2) < 𝜇₲2
(ℎ2) and 𝜁 = 𝜈𝑄(ℎ2) > 𝜈₲2

(ℎ2). Now we will have 
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𝜆 = 𝜇𝑄(ℎ1𝛾1𝑚𝛾2ℎ2)

≥ 𝜇₲1𝛤₲2
(ℎ1𝛾1𝑚𝛾2ℎ2)

≥ 𝜇₲1
(ℎ1) ∧ 𝜇₲2

(ℎ2)

> 𝜆.

 

 

which is not possible as per our supposition. Therefore 𝑄 is an IFPrI of H.  

Example 4.3.12.  For a PrI 𝑊 of 𝛤-Ring H, the IFCF 𝜒𝑊 is an IFPrI of H. 

Proof. Here we have 

 

𝜇𝜒𝑊
(ℎ) = {

1, if ℎ ∈ 𝑊
0, otherwise

; 𝜈𝜒𝑊
(ℎ) = {

0, if ℎ ∈ 𝑊
1, otherwise.

 

Clearly, 𝜇𝜒𝑊
(0𝐻) = 1, 𝜈𝜒𝑊

(0𝐻) = 0 and (𝜒𝑊)∗ = 𝑊 is a PrI of H. Hence 𝜒𝑊  is an IFPrI 

of H.  

Proposition 4.3.13.  Assume that 𝑄 is a non-constant IFPrI in 𝛤-Ring H. Then there 

exists an IFPI 𝑃 of H s.t. 𝑃 ∈ ℘(𝑄). 

Proof. As 𝑄 is non-constant, then ∃ ɱ ∈ 𝐻 s.t. 𝜇𝑄(ɱ) ≠ 𝜇𝑄(0𝐻) and 𝜈𝑄(ɱ) ≠ 𝜈𝑄(0𝐻). 

Let 𝜇𝑄(ɱ) < 𝜏 < 𝜇𝑄(0𝐻) and 𝜈𝑄(ɱ) > 𝜔 > 𝜈𝑄(0𝐻). Then 𝑄(𝜏,𝜔) ≠ 𝐻, and 𝑄(𝜏,𝜔) is an 

ideal of H. So ∃ a prime Ѿ of H s.t. 𝑄(𝜏,𝜔) ⊂ Ѿ ⊂ 𝐻. 

Let 𝑃 be an IFS on H which is defined as 

 

𝜇𝑃(ѿ) = {1, if ѿ ∈ Ѿ
𝜏, otherwise

; 𝜈𝑃(ѿ) = {0, if ѿ ∈ Ѿ
𝜔, otherwise.

 

Then 𝑃 is an IFPI of H (by Theorem (2.2.9)) 

 

        Let ѿ ∈ 𝐻. Then either 𝜇𝑄(ѿ) ≥ 𝜏, 𝜈𝑄(ѿ) ≤ 𝜔 or 𝜇𝑄(ѿ) > 𝜏, 𝜈𝑄(ѿ) < 𝜔. 

In the second case we get 𝜇𝑄(ѿ) ≤ 𝜇𝑃(ѿ), 𝜇𝑄(ѿ) ≥ 𝜇𝑃(ѿ). 

In the first case, we get ѿ ∈ 𝑄(𝜏,𝜔) ⊂ Ѿ, so 𝜇𝑃(ѿ) = 1, 𝜈𝑃(ѿ) = 0. Hence in both cases, 

we get same result. Thus 𝑄 ⊆ 𝑃. Hence 𝑃 ∈ ℘(𝑄).  
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Proposition 4.3.14.  Let H be a 𝛤-Ring and ∑ [𝑒𝑖, 𝛿𝑖]
𝑛
𝑖 , 𝑒𝑖 ∈ 𝐻, 𝛿𝑖 ∈ 𝛤, for 𝑖 =

1,2,3. . . . . , ɳ be the left unity of H and 𝐺 be a non-constant IFI of H. Let 𝑟 ∈ 𝐻 be s.t. 

𝑚𝑖𝑛{𝜇𝐺(𝑒𝑖): 𝑖 = 1,2, . . . . ɳ} < 𝜇𝐺(𝑟) and 𝑚𝑎𝑥{𝜈𝐺(𝑒𝑖): 𝑖 = 1,2, . . . . ɳ} > 𝜈𝐺(𝑟). Then ∃ 

𝑒 ∈ {𝑒𝑖: 𝑖 = 1,2, . . . . ɳ} s.t. 𝜇√𝐺(𝑒) < 𝜇𝐺(𝑟) and 𝜈√𝐺(𝑒) > 𝜈𝐺(𝑟). 

Proof. Let 𝜇𝐺(𝑟) = 𝑠1, 𝜈𝐺(𝑟) = 𝑠2 and 𝑚𝑖𝑛{𝜇𝐺(𝑒𝑖): 𝑖 = 1,2, . . . . ɳ} = 𝑡1 = 𝜇𝐺(𝑒′), 

𝑚𝑎𝑥{𝜈𝐺(𝑒𝑖): 𝑖 = 1,2, . . . . ɳ} = 𝑡2 = 𝜈𝐺(𝑒′), where 𝑒′ ∈ {𝑒𝑖: 𝑖 = 1,2, . . . . ɳ}. 

Suppose that 𝑟1, 𝑟2 ∈ [0,1) s.t. 𝑡1 < 𝑟1 < 𝑠1 and 𝑡2 > 𝑟2 > 𝑠2. Then (𝑟1, 𝑟2)-cut set 𝐺(𝑟1,𝑟2) 

is an ideal of H. Since 𝑒′ ∉ 𝐺(𝑟1,𝑟2). Let 𝐿 be a PI of H s.t. 𝐺(𝑟1,𝑟2) ⊆ 𝐿, and 𝐿 ≠ 𝐻. 

Let 𝐵 be an IFS of H which is defined as 

 

𝜇𝐵(𝑙) = {
1, if 𝑙 ∈ 𝐿
𝑟1, if 𝑙 ∉ 𝐿

; 𝜈𝐵(𝑙) = {
0, if 𝑙 ∈ 𝐿
𝑟2, if 𝑙 ∉ 𝐿.

 

Then by proposition (4.3.13), we can prove that 𝐵 ∈ ℘(𝐺). Now as 𝐿 is a proper ideal of 

H, ∃ at least one 𝑒 ∈ {𝑒𝑖: 𝑖 = 1,2, . . . . ɳ} s.t. 𝑒 ∉ 𝐿, for if 𝑒𝑖 ∈ 𝐿 for all 𝑖 = 1,2,3, . . . . , ɳ, 

then ℎ = ∑ 𝑒𝑖𝑖 𝛿𝑖ℎ ∀ ℎ ∈ 𝐻 that is 𝐿 = 𝐻, a contradiction. 

Hence 𝜇𝐵(𝑒) = 𝑟1 and 𝜈𝐵(𝑒) = 𝑟2. As 𝐵 ∈ ℘(𝐺), √𝐺 ⊆ 𝐵, 

Now 𝜇√𝐺(𝑒) ≤ 𝜇𝐵(𝑒) = 𝑟1 < 𝜇𝐺(𝑟) and 𝜈√𝐺(𝑒) ≥ 𝜈𝐵(𝑒) = 𝑟2 > 𝜈𝐺(𝑟). 

This completes the result.  

          Now we have the converse of Theorem (4.3.11) 

Theorem 4.3.15.  Let H be a 𝛤-Ring and 𝑄 be an IFPrI of H. Then 𝑄(0𝐻) = (1,0), 

|𝐼𝑚𝑔(𝑄)| = 2, and 𝑄∗ is a PrI of H. 

Proof. Let us assume that 𝜇𝑄(0𝐻) = 𝜆 < 1 and 𝜈𝑄(0𝐻) = 𝜁 > 0. 

Let 𝑚𝑖𝑛𝑖{𝜇𝑄(𝑒𝑖)} = 𝛼 < 𝜇𝑄(0𝐻) and 𝑚𝑎𝑥𝑖{𝜈𝑄(𝑒𝑖)} = 𝛽 > 𝜈𝑄(0𝐻). Then ∃ 𝑒 ∈ {𝑒𝑖: 𝑖 =

1,2, . . . . ɳ} s.t. 𝜇
√𝑄

(𝑒) = 𝜆1 < 𝜆 and 𝜈
√𝑄

(𝑒) = 𝜁1 < 𝜁 (by Proposition (4.3.14)). 

Let 𝜆 < 𝑝 ≤ 1 and 𝜁 > 𝑞 ≥ 0. Then 𝛼 < 𝜆1 < 𝑝 ≤ 1 and 𝛽 > 𝜁1 > 𝜁 ≥ 0. 

Let ₲1,  𝑎𝑛𝑑 ₲2 be two IFSs on H defined by 

 

𝜇₲1
(ℎ) = {

𝑝, if ℎ ∈ 𝑄∗

𝛼, if ℎ ∉ 𝑄∗
; 𝜈₲1

(ℎ) = {
𝑞, if ℎ ∈ 𝑄∗

𝛽, if ℎ ∉ 𝑄∗ .
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and ₲2(ℎ) = (𝜆, 𝜁), ∀ ℎ ∈ 𝐻. Then ₲1 and ₲2 are IFIs of H. Let ℎ1 ∈ 𝐻 be any element. 

If ℎ1 ∈ 𝑄∗, then 𝑄(ℎ1) = 𝐺2(ℎ1) = (𝜆, 𝜁) and so 𝜇₲1𝛤₲2
(ℎ1) =∨ℎ1=ℎ2𝛾ℎ3

[𝜇₲1
(ℎ2) ∧

𝜇₲2
(ℎ3)] ≤ 𝜆 = 𝜇𝑄(ℎ1) and 𝜈₲1𝛤₲2

(ℎ1) =∧ℎ1=ℎ2𝛾ℎ3
[𝜈₲1

(ℎ2) ∨ 𝜈₲2
(ℎ3)] ≥ 𝜁 = 𝜈𝑄(ℎ1). 

If ℎ1 ∉ 𝑄∗, then ₲1(ℎ1) = (𝛼, 𝛽), then 𝜇₲1𝛤₲2
(ℎ1) = 𝛼 = 𝑚𝑖𝑛𝑖{𝜇𝑄(𝑒𝑖)} ≤ 𝜇𝑄(ℎ1) and 

𝜈₲1𝛤₲2
(ℎ1) = 𝛽 = 𝑚𝑎𝑥𝑖{𝜈𝑄(𝑒𝑖)} ≥ 𝜈𝑄(ℎ1). So ₲1𝛤₲2 ⊆ 𝑄. 

Also 𝜇₲1
(0𝐻) = 𝑝 > 𝜆 = 𝜇𝑄(0𝐻) and 𝜈₲1

(0𝐻) = 𝑞 < 𝜁 = 𝜈𝑄(0𝐻). So ₲1 ⊈ 𝑄. 

Again for some 𝑒 ∈ {𝑒𝑖: 𝑖 = 1,2, . . . , ɳ}, 𝜇𝐺2
(𝑒) = 𝜆 > 𝜆1 = 𝜇

√𝑄
(𝑒) and 𝜈₲2

(𝑒) = 𝜁 <

𝜁1 = 𝜈
√𝑄

(𝑒) implies that ₲2 ⊈ √𝑄. This is a contradiction since 𝑄 is an IFPrI of H. 

Hence 𝜇𝑄(0𝐻) = 1 and 

 𝜈𝑄(0𝐻) = 0, i.e., 𝑄(0𝐻) = (1,0). 

Since 𝑄 is non-constant, so |𝐼𝑚𝑔(𝑄)| ≥ 2. Suppose that |𝐼𝑚𝑔(𝑄)| ≥ 3. Let 

𝑚𝑖𝑛𝑖{𝜇𝑄(𝑒𝑖)} = 𝛼 and 𝑚𝑎𝑥𝑖{𝜈𝑄(𝑒i)} = 𝛽. Then ∃ (𝜆, 𝜁) ∈ 𝐼𝑚𝑔(𝑄) s.t. 𝛼 < 𝜆 < 1 and 

𝛽 > 𝜁 > 0. Let 𝑟 ∈ 𝐻 be s.t. 𝜇𝑄(𝑟) = 𝜆, 𝜈𝑄(𝑟) = 𝜁. Then ∃ 𝑒 ∈ {𝑒𝑖: 𝑖 = 1,2, . . . . ɳ} s.t. 

𝜇
√𝑄

(𝑒) < 𝜇𝑄(𝑟), 𝜈
√𝑄

(𝑒) > 𝜈𝑄(𝑟). 

Let ₲1,  𝑎𝑛𝑑 ₲2 be two IFSs of H s.t. 

 

𝜇₲1
(ℎ) = {

1, if ℎ ∈ 𝑄(𝜆,𝜁)

𝛼, if ℎ ∉ 𝑄(𝜆,𝜁)
; 𝜈₲1

(ℎ) = {
0, if ℎ ∈ 𝑄(𝜆,𝜁)

𝛽, if ℎ ∉ 𝑄(𝜆,𝜁).
 

and ₲2(ℎ) = (𝜆, 𝜁), for all ℎ ∈ 𝐻. Then ₲1 and ₲2 are IFIs of H and ₲1𝛤₲2 ⊆ 𝑄. 

Now 𝜇₲1
(𝑟) = 1 > 𝜆 = 𝜇𝑄(𝑟) and 𝜈₲1

(𝑟) = 0 < 𝜁 = 𝜈𝑄(𝑟). Thus ₲1 ⊈ 𝑄. Also for 

some 𝑒 ∈ {𝑒𝑖: 𝑖 = 1,2, . . . , ɳ} 𝜇₲2
(𝑒) = 𝜆 = 𝜇𝑄(𝑟) > 𝜇

√𝑄
(𝑒) and 𝜈₲2

(𝑒) = 𝜁 = 𝜈𝑄(𝑟) <

𝜇
√𝑄

(𝑒). Hence ₲2 ⊈ √𝑄. Thus we see that ₲1 ⊈ 𝑄 and ₲2 ⊈ √𝑄, which is a 

contradiction. Hence |𝑄(𝐻)| = 2. 
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Let 𝐼𝑚𝑔(𝑄) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1. Let Ɨ, Ɉ be two 

ideals of H s.t. Ɨ𝛤Ɉ ⊆ 𝑄∗. Let ₲1 = 𝜒Ɨ, ₲2 = 𝜒Ɉ. Then ₲1𝛤₲2 ⊆ 𝑄. Since 𝑄 is IFPrI, either 

₲1 ⊆ 𝑄 or ₲2 ⊆ √𝑄. 

If ₲1 ⊆ 𝑄, then Ɨ ⊆ 𝑄∗, and if ₲2 ⊆ √𝑄, then Ɉ ⊆ (√𝑄)
∗

⊆ √𝑄∗ (by Lemma (4.2.9)). 

Hence 𝑄∗ is PrI of H.  

Corollary 4.3.16.  Assume that Ɨ is an ideal of the 𝛤-Ring H s.t. 𝜒Ɨ is an IFPrI of H, then 

Ɨ is a PrI of H. 

Proof. As 𝜒Ɨ is an IFPrI of H, so Ɨ = (𝜒Ɨ)∗ = 𝜒Ɨ∗  is a PrI of H.  

From Theorem (4.3.11) and Theorem (4.3.15) we have 

Theorem 4.3.17.  If 𝑄 is an IFPrI of a 𝛤-Ring H, then the following conditions hold: 

(i) 𝑄(0𝐻) = (1,0), 

(ii) 𝑄∗ is a primary ideal of H, 

(iii) 𝐼𝑚𝑔(𝑄) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1. 

Example 4.3.18.  Consider 𝐻 = 𝛤 = 𝑍, the ring of integers. Then H is a 𝛤-Ring. Let us 

take IFS 𝑄 on H which is defined as 

 

𝜇𝑄(ℎ) = {
1, if ℎ ∈< 𝑝𝑛 >

𝜆, if ℎ ∉< 𝑝𝑛 >
; 𝜈𝑄(ℎ) = {

0, if ℎ ∈< 𝑝𝑛 >

𝜁, if ℎ ∉< 𝑝𝑛 >.
 

where 𝑝 is a prime number and 𝑛 > 1 a positive integer, 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. So it 

can be easily verified that 𝑄 is an IFPrI of H. 

Remark 4.3.19.  Every IFPI of a 𝛤-Ring H is an IFPrI but the converse is not true. 

Proof. It follows from definition (4.3.6) and Proposition (4.2.7). For the converse part, the 

IFS 𝑄 as defined in Example (4.3.18) is an IFPrI but it is not an IFPI (as 𝑄∗ =< 𝑝𝑛 > is 

not a PI of H).  

Theorem 4.3.20.  For an IFPrI 𝑄 of a 𝛤-Ring H √𝑄 will be an IFPI of H. 

Proof. As 𝑄 is an IFPrI of H, 𝑄(0𝐻) = (1,0), 𝑄∗ is a PrI of H and 𝐼𝑚𝑔(𝑄) =

{(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. (by Theorem (4.3.15)). Now support of 
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radical of Q is equals to radical of support of Q is a PI of H and √𝑄(ℎ) = (1,0) for ℎ ∈

𝑄∗. 

Let 𝐺 be an IFS of H s.t. 

 

𝜇𝐺(ℎ) = {
1, if ℎ ∈ (√𝑄)

∗

𝜆, if ℎ ∉ (√𝑄)
∗

; 𝜈𝐺(ℎ) = {
0, if ℎ ∈ (√𝑄)

∗

𝜁, if ℎ ∉ (√𝑄)
∗
.
 

Then 𝐺 ∈ ℘(𝐺) and 𝐺∗ = (√𝑄)
∗

= √𝑄∗. 

       Let ℎ ∉ (√𝑄)
∗
. Then 

𝜆 = 𝜇𝑄(ℎ) ≤ 𝜇
√𝑄

(ℎ) ≤ 𝜇𝐺(ℎ) = 𝜆 and 𝜁 = 𝜈𝑄(ℎ) ≥ 𝜈
√𝑄

(ℎ) ≥ 𝜈𝐺(ℎ) = 𝜁. 

Thus 𝐼𝑚𝑔(√𝑄) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1, √𝑄(0𝐻) =

(1,0) and (√𝑄)
∗
 is a PI of H. Hence √𝑄 is an IFPI of H (By Theorem (2.2.9)).  

 

4.4 Homomorphic Behaviour Of Intuitionistic Fuzzy Primary 

Ideals And Intuitionistic Fuzzy Prime Radical Of 𝜞-Ring 

Lemma 4.4.1. If  𝜎 be a 𝐻𝑜𝑚𝐻1

 𝐻2and 𝐺 is an 𝜎-invariant IFI of H, then 𝜎(𝐺∗) = (𝜎(𝐺))
∗
. 

Proof. Clearly,𝜇𝜎(𝐺)(0𝐻2
) = 𝑆𝑢𝑝{𝜇𝐺(ℎ1): 𝜎(ℎ1) = 0𝐻2

} = 𝑆𝑢𝑝{𝜇𝐺(ℎ1): 𝜎(ℎ1) =

𝜎(0𝐻1
)} = 𝜇𝐺(0𝐻1

). Similarly, we can show that 𝜈𝜎(𝐺)(0𝐻2
) = 𝜈𝐺(0𝐻1

). Thus 

𝜎(𝐺)(0𝐻2
) = 𝐺(0𝐻1

). 

Let ℎ2 ∈ 𝜎(𝐺∗). Then ℎ2 = 𝜎(ℎ1) for some ℎ1 ∈ 𝐺∗. Hence 𝐺(ℎ1) = 𝐺(0𝐻1
) =

𝜎(𝐺)(0𝐻2
). 

 

𝜇𝜎(𝐺)(ℎ2) = 𝑆𝑢𝑝{𝜇𝐺(𝑧): 𝜎(𝑧) = ℎ2} = 𝑆𝑢𝑝{𝜇𝐺(𝑧): 𝜎(𝑧) = 𝜎(ℎ1)} = 𝜇𝐺(ℎ1)

= 𝜇𝜎(𝐺)(0𝐻2
).

 

In the same manner, it can be seen that 𝜈𝜎(𝐺)(ℎ2) = 𝜈𝜎(𝐺)(0𝐻2
). So ℎ2 ∈ (𝜎(𝐺))

∗
. Hence 

𝜎(𝐺∗) ⊆ (𝜎(𝐺))
∗
. Again let 𝜎(ℎ1) ∈ (𝜎(𝐺))

∗
. 
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𝜇𝜎(𝐺)(0𝐻2
) = 𝜇𝜎(𝐺)(𝜎(ℎ1)) = 𝑆𝑢𝑝{𝜇𝐺(𝑡): 𝜎(𝑡) = 𝜎(ℎ1)} = 𝜇𝐺(ℎ1). In the same 

manner, it can be shown that 𝜈𝜎(𝐺)(0𝐻2
) = 𝜈𝐺(ℎ1). So 𝐺(ℎ1) = (𝜎(𝐺))(0𝐻2

) = 𝐺(0𝐻1
) 

implies that ℎ1 ∈ 𝐺∗, i.e., 𝜎(ℎ1) ∈ 𝜎(𝐺∗). Thus (𝜎(𝐺))
∗

⊆ 𝜎(𝐺∗). Hence the result 

proves.  

Lemma 4.4.2.  ([34]) Let 𝜎 be a 𝐻𝑜𝑚𝐻1

 𝐻2. If 𝐺 is an 𝜎-invariant IFI of 𝐻1, then 𝜎(𝐺) is 

an IFI of 𝐻2. 

Theorem 4.4.3.  Let 𝜎 be a 𝐻𝑜𝑚𝐻1

 𝐻2. If 𝐺 is an 𝜎-invariant IFPrI of 𝐻1, then 𝜎(𝐺) is an 

IFPrI of 𝐻2. 

Proof. Let 𝐺 be an 𝜎-invariant IFPrI of 𝐻1. Then 𝜎(𝐺) is IFI of 𝐻2 (by Lemma (4.4.2)). 

Since 𝐺 is IFPrI of 𝐻1, then 𝐺(0𝐻1
) = (1,0), 𝐺∗ is a PrI of 𝐻1 and 𝐺(𝐻1) =

{(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. From the proof of the Lemma (4.4.1), 

we have 𝜎(𝐺)(0𝐻2
) = 𝐺(0𝐻1

) = (1,0). Also (𝜎(𝐺))
∗

= 𝜎(𝐺∗) is a PrI of 𝐻2. Now we 

prove 𝜎(𝐺(𝐻1)) = {(1,0), (𝜆, 𝜁)} where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. 

       Assume that ℎ ∈ 𝐻1 be s.t. 𝜇𝐺(ℎ) = 𝜆, 𝜈𝐺(ℎ) = 𝜁. Then 𝜇𝜎(𝐺)(𝜎(ℎ)) =

𝑆𝑢𝑝{𝜇𝐺(𝑧): 𝜎(𝑧) = 𝜎(ℎ)} = 𝜇𝐺(ℎ) = 𝜆 and 𝜈𝜎(𝐺)(𝜎(ℎ)) = 𝐼𝑛𝑓{𝜈𝐺(𝑧): 𝜎(𝑧) = 𝜎(ℎ)} =

𝜈𝐺(ℎ) = 𝜁. As 𝐺 is 𝜎-invariant also 𝜎(𝐺)(0𝐻2
) = (1,0). So 𝜎(𝐺(𝐻1)) = {(1,0), (𝜆, 𝜁)}. 

By Theorem (4.3.11) it follows that 𝜎(𝐺) is an IFPrI of 𝐻1. 

Example 4.4.4.  Assume that 𝐻 = 𝛤 = 𝑍, the ring of integers, and 𝜎 be a 𝛤-

homomorphism from H to H defined by 𝜎(ℎ) = 2ℎ, and let 

 

𝜇𝐺(ℎ) = {
1, if ℎ ∈ 3𝑍
0.2, if otherwise

; 𝜈𝐺(𝑥) = {
0, if ℎ ∈ 3𝑍
0.7, otherwise.

 

be an IFPrI of H. Then 

𝜎(𝐺)(0) = (𝑆𝑢𝑝{𝜇𝐺(ℎ): 𝜎(𝑛) = 0}, 𝐼𝑛𝑓{𝜈𝐺(ℎ): 𝜎(𝑛) = 0}) = (𝜇𝐺(0), 𝜈𝐺(0)) = (1,0) 

and 𝜎(𝐺)(1) = (𝑆𝑢𝑝{𝜇𝐺(ℎ):𝜎(𝑛) = 1}, 𝐼𝑛𝑓{𝜈𝐺(ℎ):𝜎(𝑛) = 1}) = (0,1) [ As 𝜎−1(1) =

∅]. Similarly, we can find that 𝜎(𝐺)(3) = 𝜎(𝐺)(5) = (0,1) and 𝜎(𝐺)(2) = 𝜎(𝐺)(4) =

(0.2,0.7) and so on we get 
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𝜇𝜎(𝐺)(ℎ) = {
1, if ℎ ∈ 6𝑍
0.2, if ℎ ∈ 2𝑍 − 6𝑍
0, if ℎ ∈ 𝑍 − 2𝑍

; 𝜈𝜎(𝐺)(𝑥) = {
0, if ℎ ∈ 6𝑍
0.7, if ℎ ∈ 2𝑍 − 6𝑍
1, if ℎ ∈ 𝑍 − 2𝑍,

 

is not an IFPrI of H ( As |𝐼𝑚𝑔(𝐺)| = 3 ≠ 2). This shows that the assumption that 𝜎 is an 

epimorphism in Theorem (4.4.3) cannot be dropped. 

Lemma 4.4.5.  Assume that 𝜎 be a 𝐻𝑜𝑚𝐻1

 𝐻2. If 𝐵 is an IFI of 𝐻2, then (𝜎−1(𝐵))
∗

=

𝜎−1(𝐵∗). 

Proof. Assume that 𝑦 ∈ (𝜎−1(𝐵))
∗

⇔ (𝜎−1(𝐵))(𝑦) = (𝜎−1(𝐵))(0𝐻1
) 

⇔ 𝐵(𝜎(𝑦)) = 𝐵 (𝜎(0𝐻1
)) = 𝐵(0𝐻2

) = (1,0)  

⇔ 𝜎(𝑦) ∈ 𝐵∗ ⇔ 𝑦 ∈ 𝜎−1(𝐵∗). 

Hence (𝜎−1(𝐵))
∗

= 𝜎−1(𝐵∗).  

Lemma 4.4.6.  ([34,43]) Assume that 𝜎 be a 𝐻𝑜𝑚𝐻1

 𝐻2. If 𝐵 is an IFI of 𝐻2, then 𝜎−1(𝐵) is 

an IFI of 𝐻1. 

Theorem 4.4.7.  Let 𝜎 be a 𝐻𝑜𝑚𝐻1

 𝐻2. If 𝐵 is an IFPrI of 𝐻2, then its inverse image will be 

an IFPrI of 𝐻1. 

Proof. By lemma (4.4.6) 𝜎−1(𝐵) is an IFI of 𝐻1. Also (𝜎−1(𝐵)(0𝐻1
) = 𝐵 (𝜎(0𝐻1

)) =

𝐵(0𝐻2
) = (1,0). As 𝐵 is an IFPrI of 𝐻2. Now 𝐵(𝐻2) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈

[0,1) s.t. 𝜆 + 𝜁 ≤ 1. Let ℎ2 ∈ 𝐻2 be s.t. 𝜇𝐵(ℎ2) = 𝜆, 𝜈𝐵(ℎ2) = 𝜁, then ∃ ℎ1 ∈ 𝐻1 s.t. 

𝜎(ℎ1) = ℎ2. Now 𝜎−1(𝐵)(ℎ1) = 𝐵(𝜎(ℎ1)) = (𝜆, 𝜁). Thus 𝜎−1(𝐵(𝐻1)) =

{(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. Also, by lemma (4.4.5) we have 

(𝜎−1(𝐵))
∗

= 𝜎−1(𝐵∗) is a PrI of 𝐻1. Hence by Theorem (4.3.11), 𝜎−1(𝐵) is an IFPrI of 

𝐻1.  

Theorem 4.4.8.  Let 𝜎 be a 𝐻𝑜𝑚𝐻1

 𝐻2. If 𝐺 is an IFI of 𝐻1 s.t. 𝐺 is constant on 𝐾𝑒𝑟𝜎, then 

√σ(G)=σ(√G). 

Proof. Clearly, √𝜎(𝐺) and 𝜎(√𝐺) are IFIs of 𝐻2. Let ℎ2 ∈ 𝐻2, 𝛾 ∈ 𝛤 be any element, as 

𝜎 is onto so ∃ some ℎ1 ∈ 𝐻1 s.t. 𝜎(ℎ1) = ℎ2. Now 𝜎((ℎ1𝛾)𝑟ℎ1) = (𝑦𝛾)𝑟ℎ2. 
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𝜇𝜎(√𝐺)(ℎ2) = 𝑆𝑢𝑝{𝜇√𝐺(ℎ1): ℎ1 ∈ 𝜎−1(ℎ2)}

= 𝑆𝑢𝑝{∨ {𝜇𝐺((ℎ1𝛾)𝑟ℎ1): 𝑟 > 0}: ℎ1 ∈ 𝜎−1(𝑣)}

=∨ {𝑆𝑢𝑝{𝜇𝐺((ℎ1𝛾)𝑟ℎ1): ℎ1 ∈ 𝜎−1(ℎ2)}: 𝑟 > 0}

≤∨ {𝑆𝑢𝑝{𝜇𝐺((ℎ1𝛾)𝑟ℎ1): (ℎ1𝛾)𝑟ℎ1 ∈ 𝜎−1((ℎ2𝛾)𝑟ℎ2)}: 𝑟 > 0}

=∨ {𝑆𝑢𝑝{𝜇𝐺((ℎ1𝛾)𝑟ℎ1): (ℎ1𝛾)𝑟ℎ1 ∈ 𝜎−1((ℎ2𝛾)𝑟ℎ2)}: 𝑟 > 0}

=∨ {𝜇𝜎(𝐺)((ℎ2𝛾)𝑟ℎ2): 𝑟 > 0}

= 𝜇
√𝜎(𝐺)

(ℎ2).

 

 

In the same manner it can be shown that 𝜈𝜎(√𝐺)(ℎ2) ≥ 𝜈
√𝜎(𝐺)

(ℎ2). Thus 𝜎(√𝐺) ⊆

√𝜎(𝐺). 

        

         Further, if 𝐺 is constant on 𝐾𝑒𝑟𝜎 and ℎ10
∈ 𝜎−1(ℎ2) be a fixed element of H. Then 

𝜇𝐺((𝑥𝛾)𝑟ℎ1) = 𝜇𝐺((ℎ10
𝛾)

𝑟
ℎ10

) and 𝜈𝐺((ℎ1𝛾)𝑟ℎ1) = 𝜈𝐺((ℎ10
𝛾)

𝑟
ℎ10

) for all ℎ1 ∈

𝜎−1(𝑦), 𝛾 ∈ 𝛤, 𝑚 ∈ 𝐍 and 𝜇𝐺(ℎ1) = 𝜇𝐺((ℎ10
𝛾)

𝑟
ℎ10

) and 𝜈𝐺(ℎ1) = 𝜈𝐺((ℎ10
𝛾)

𝑟
ℎ10

) 

for all ℎ1 ∈ 𝜎−1(ℎ2), 𝛾 ∈ 𝛤, 𝑚 ∈ 𝐍. Hence 

 

𝜇
√𝜎(𝐺)

(ℎ2) =∨ {𝜇𝜎(𝐺)((ℎ2𝛾)𝑟ℎ2): 𝑟 > 0}

=∨ {𝑆𝑢𝑝{𝜇𝐺((ℎ1𝛾)𝑟ℎ1): (ℎ1𝛾)𝑟ℎ1 ∈ 𝜎−1((ℎ2𝛾)𝑟ℎ2)}: 𝑟 > 0}

= S𝑢𝑝{∨ {𝜇𝐺((ℎ1𝛾)𝑟ℎ1): 𝑟 > 0}: (𝑥𝛾)𝑟𝑥 ∈ 𝜎−1((ℎ2𝛾)𝑟ℎ2)}

≥ 𝑆𝑢𝑝{∨ {𝜇𝐺((ℎ10
𝛾)

𝑟
ℎ10

): 𝑟 > 0}: ℎ1 ∈ 𝜎−1(ℎ2)}

= 𝑆𝑢𝑝{∨ {𝜇𝐺((ℎ1𝛾)𝑟ℎ1): 𝑟 > 0}: ℎ1 ∈ 𝜎−1(ℎ2)}

= 𝑆𝑢𝑝{𝜇√𝐺(ℎ1): ℎ1 ∈ 𝜎−1(ℎ2)}

= 𝜇𝜎(√𝐺)(ℎ2) .

 

Similarly, we can show that 𝜈
√𝜎(𝐺)

(ℎ2) ≤ 𝜈𝜎(√𝐺)(ℎ2). Thus √𝜎(𝐺) ⊆ 𝜎(√𝐺). 

Hence by using above two equations √𝜎(𝐺) = 𝜎(√𝐺) is proved.  

Theorem 4.4.9.  Let 𝜎 be a 𝐻𝑜𝑚𝐻1

 𝐻2. If 𝐺 is an IFI of 𝐻1, then "√𝜎−1(𝐺) = 𝜎−1(√𝐺)". 

Proof. Clearly, √𝜎−1(𝐺) and 𝜎−1(√𝐺) are IFIs of 𝐻1. Let ℎ ∈ 𝐻1, 𝛾 ∈ 𝛤 be any element, 

then 
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𝜇𝜎−1(√𝐺)(ℎ) = 𝜇√𝐺(𝜎(ℎ)) =∨ {𝜇𝐺((𝜎(ℎ)𝛾)𝑟𝜎(ℎ)): 𝑟 > 0}

=∨ {𝜇𝐺(𝜎((ℎ𝛾)𝑟ℎ)): 𝑟 > 0}

=∨ {𝜇𝜎−1(𝐺)((ℎ𝛾)𝑟ℎ): 𝑟 > 0}

= 𝜇
√𝜎−1(𝐺)

(ℎ) .

 

 

In the same manner, it can be shown that 𝜈𝜎−1(G)(ℎ) = 𝜈
√𝜎−1(𝐺)

(ℎ), ∀ ℎ ∈ 𝐻1, 𝛾 ∈ 𝛤. 

Hence √𝜎−1(𝐵) = 𝜎−1(√𝐵).  

 

4.5 Intuitionistic Fuzzy 𝟐-Absorbing Primary Ideals Of A 𝜞-

Ring 

The notion of a 2-absorbing ideal, an extension of the PI, was pioneered by Badawi in 

[6], while the concept of a 2-APrI, a generalization of the PrI, was introduced and 

analyzed by Badawi in [7]. Presently, research on 2-absorbing ideal theory is rapidly 

advancing. Elkettani and Kasem [20] have unified the concepts of 2-AIs and 2A-PrI into 

2-Aδ-PrI within the realm of Γ-Rings, yielding numerous compelling findings. Yavuza, 

Onara, and Ersoya in [69, 70] investigated IF2-APrI and IF2-SPrI within commutative 

rings. In this section, the notion of IF2-APrIs is extended to Γ-Rings. 

Definition 4.5.1.  For a non-constant IFI 𝑄 in a 𝛤-Ring 𝐻 to be an IF2 −APrI of 𝐻 the 

condition is as follows that for any 𝐼𝐹𝑃𝑠 ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) of H and 𝛾1, 𝛾2 ∈ 𝛤 such that 

ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄 implies that 

either ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊆ 𝑄 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ √𝑄 or 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ √𝑄. 

Proposition 4.5.2.  Every IFPrI in a 𝛤-Ring H will be an IF2 −APrI of H. 

Proof. The proof is straightforward.  

Theorem 4.5.3.  Suppose 𝑄 is an IFI in a 𝛤-Ring H. If 𝑄 is an IF2 −APrI of H then 

𝑄(𝜂,𝜃) is a 2-APrI of 𝛤-Ring H for all 𝜂 ∈ [0, 𝜇𝑄(0)], and 𝜃 ∈ [𝜈𝑄(0), 1] with 𝜂 + 𝜃 ≤ 1 

and 𝑄(𝜂,𝜃) ≠ 𝐻. 
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Proof. Let 𝑄 be an IF2 −APrI of H and suppose that ℎ, 𝑘, 𝑝 ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤 are such that 

ℎ𝛾1𝑘𝛾2𝑝 ∈ 𝑄(𝜂,𝜃) for all 𝜂 ∈ [0, 𝜇𝑄(0)] and 𝜃 ∈ [𝜈𝑄(0), 1] with 𝜂 + 𝜃 ≤ 1 and 𝑄(𝜂,𝜃) ≠

𝐻. Then 

𝜇𝑄(ℎ𝛾1𝑘𝛾2𝑝) ≥ 𝜂, 𝜈𝑄(ℎ𝛾1𝑘𝛾2𝑝) ≤ 𝜃 implies 𝜇(ℎ𝛾1𝑘𝛾2𝑝)(𝜂,𝜃)
(ℎ𝛾1𝑘𝛾2𝑝) = 𝜂 ≤

𝜇𝑄(ℎ𝛾1𝑘𝛾2𝑝) and 𝜈(ℎ𝛾1𝑘𝛾2𝑝)(𝜂,𝜃)
(ℎ𝛾1𝑘𝛾2𝑝) = 𝜃 ≥ 𝜈𝑄(ℎ𝛾1𝑘𝛾2𝑝) and so we have 

 

      (ℎ𝛾1𝑘𝛾2𝑝)(𝜂,𝜃) ⊆ 𝑄, i.e., ℎ(𝜂,𝜃)𝛾1𝑘(𝜂,𝜃)𝛾2𝑝(𝜂,𝜃) ⊆ 𝑄. Since 𝑄 is an IF2-APrI of 𝛤-

Ring H, we have 

 

      ℎ(𝜂,𝜃)𝛾1𝑘(𝜂,𝜃) ⊆ 𝑄 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜂,𝜃) ⊆ √𝑄 or 𝑘(𝜂,𝜃)𝛾2𝑝(𝜂,𝜃) ⊆ √𝑄. 

i.e., (ℎ𝛾1𝑘)(𝜂,𝜃) ⊆ 𝑄 or (ℎ𝛾2𝑝)(𝜂,𝜃) ⊆ √𝑄 or (𝑘𝛾2𝑝)(𝜂,𝜃) ⊆ √𝑄. 

    

  Thus ℎ𝛾1𝑘 ∈ 𝑄(𝜂,𝜃) or ℎ𝛾2𝑝 ∈ (√𝑄)
(𝜂,𝜃)

= √𝑄(𝜂,𝜃) or 𝑘𝛾2𝑝 ∈ √𝑄(𝜂,𝜃). 

Therefore 𝑄(𝜂,𝜃) is a 2 −APrI of 𝛤-Ring H.  

     The non-validation of the converse of the above-stated theorem is justified with the 

help of the following example. 

Example 4.5.4.  Let 𝐻 = ℤ and 𝛤 = 2ℤ, so that H is a 𝛤-Ring. Define the IFI 𝑄 of H by 

𝜇𝑄(ℎ) = {
1, if ℎ = 0
1/3, if ℎ ∈ 15ℤ − {0}
0, if ℎ ∈ ℤ − 15ℤ

; 𝜈𝑄(ℎ) = {
0, if ℎ = 0
1/2, if ℎ ∈ 15ℤ − {0}
1, if ℎ ∈ ℤ − 15ℤ.

 

Since 𝑄(0,1) = ℤ,  𝑄(1/3,1/2) = 15ℤ,  𝑄(1,0) = {0}, then we get 𝑄(𝜂,𝜃) is a 2-APrI of 𝛤-

Ring H. But for 𝛾1, 𝛾2 ∈ 2ℤ, we get 

3(1/2,1/3)𝛾15(1/2,1/3)𝛾21(1/3,1/2) = (3𝛾15𝛾21)(1/2∧1/2∧1/3,1/3∨1/3∨1/2) =

(3𝛾15𝛾21)(1/3,1/2) ⊆ 𝑄 and 𝜇3(1/2,1/3)𝛾15(1/2,1/3)
(3𝛾15) = 𝜇(3𝛾15)(1/2,1/3)

(3𝛾15) = 1/2 >

1/3 = 𝜇𝑄(3𝛾15). 

Similarly, we get 𝜈3(1/2,1/3)𝛾15(1/2,1/3)
(3𝛾15) < 𝜈𝑄(3𝛾15). This implies that 

3(1/2,1/3)𝛾15(1/2,1/3) ⊈ 𝑄. 

𝜇3(1/2,1/3)𝛾21(1/3,1/2)
(3𝛾21) = 𝜇(3𝛾21)(1/3,1/2)

(3𝛾21) = 1/3 > 0 = 𝜇
√𝑄

(3𝛾21). 
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Similarly, 𝜈3(1/2,1/3)𝛾21(1/3,1/2)
(3𝛾21) < 𝜈

√𝑄
(3𝛾21). This implies 3(1/2,1/3)𝛾21(1/3,1/2) ⊈

√𝑄. In the same way, we can show that 5(1/2,1/3)𝛾21(1/3,1/2) ⊈ √𝑄. Thus 𝑄 is not an 

IF2-APrI of 𝛤-Ring H. 

Corollary 4.5.5.  If 𝑄 is an IF2 −APrI of 𝛤-Ring H, then 𝑄∗ = {ℎ ∈ 𝐻: 𝜇𝑄(ℎ) =

𝜇𝑄(0) and 𝜈𝑄(ℎ) = 𝜈𝑄(0)} is a 2-APrI of 𝛤-Ring H. 

Proof. Since 𝑄 is a non-constant IFI of 𝛤-Ring H, then 𝑄∗ ≠ 𝐻. The proof is 

straightforward by using the above theorem.  

      In the sequel of the paper, for the sake of simplicity, we denote ℎ𝑟 =

ℎ𝛾1ℎ𝛾2ℎ. . . . . . . 𝛾𝑟−1ℎ for some 𝛾1, 𝛾2 , . . . . . . . , 𝛾𝑟−1 ∈ 𝛤 and for some 𝑟 ∈ ℤ+. 

Theorem 4.5.6.  Suppose Ѿ be a 2 −APrI of 𝛤-Ring H. Then the IFCF 𝜒Ѿ w.r.t. Ѿ 

defined by 

                            𝜇𝜒Ѿ
(ℎ) = {1, if h ∈ Ѿ

0,  otherwise
; νχѾ

(h) = {0, if h ∈ Ѿ
1,  otherwise .

  

is an IF2 −APrI of 𝛤-Ring H. 

Proof. We have Ѿ ≠ 𝐻 and so 𝑄 = 𝜒Ѿ is non-constant because Ѿ is a 2-APrI of H. 

Assume that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄, but ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊈ 𝑄 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊈ √𝑄 or 

𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊈ √𝑄, where ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) are 𝐼𝐹𝑃𝑠 of H and 𝛾1, 𝛾2 ∈ 𝛤. Then 

𝜇𝑄(ℎ𝛾1𝑘) < 𝜂 ∧ ϐ, 𝜈𝑄(ℎ𝛾1𝑘) > 𝜃 ∨ 𝜗 and 

𝜇𝑄{(ℎ𝛾2𝑝)𝑟} < 𝜇
√𝑄

(ℎ𝛾2𝑝) = 𝜂 ∧ 𝜏 , 𝜈𝑄{(ℎ𝛾2𝑝)𝑟} > 𝜈
√𝑄

(ℎ𝛾2𝑝) = 𝜃 ∨ 𝜔 and 

𝜇𝑄{(𝑘𝛾2𝑝)𝑟} < 𝜇
√𝑄

(𝑘𝛾2𝑝) = ϐ ∧ 𝜏, 𝜈𝑄{(𝑘𝛾2𝑝)𝑟} > 𝜇
√𝑄

(𝑘𝛾2𝑝) = 𝜗 ∨ 𝜔 for all 𝑟 ∈ ℤ. 

Hence 𝜇𝑄(ℎ𝛾1𝑘) = 0, 𝜈𝑄(ℎ𝛾1𝑘) = 1 and so ℎ𝛾1𝑘 ∉ Ѿ; 

𝜇𝑄{(ℎ𝛾2𝑝)𝑟} = 0, 𝜈𝑄{(ℎ𝛾2𝑝)𝑟} = 1 and so (ℎ𝛾2𝑝)𝑟 ∉ 𝑄 implies that ℎ𝛾2𝑝 ∉ √𝑄; 

𝜇𝑄{(𝑘𝛾2𝑝)𝑟} = 0, 𝜈𝑄{(𝑘𝛾2𝑝)𝑟} = 1 and so (𝑘𝛾2𝑝)𝑟 ∉ 𝑄 implies that 𝑘𝛾2𝑝 ∉ √𝑄. 

 

       Since Ѿ is a 2 −AI of H, we have ℎ𝛾1𝑘𝛾2𝑝 ∉ Ѿ and so 𝜇𝑄(ℎ𝛾1𝑘𝛾2𝑝) =

0, 𝜈𝑄(ℎ𝛾1𝑘𝛾2𝑝) = 1 ∀ ℎ, 𝑘, 𝑝 ∈ 𝐻 and 𝛾1, 𝛾2 ∈ 𝛤. 
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By our hypothesis, we have (ℎ𝛾1𝑘𝛾2𝑝)(𝜂∧ϐ∧𝜏,𝜃∨𝜗∨𝜔) = ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄 and 

𝜂 ∧ ϐ ∧ 𝜏 < 𝜇𝑄(ℎ𝛾1𝑘𝛾2𝑝) = 0, 𝜃 ∨ 𝜗 ∨ 𝜔 > 𝜈𝑄(ℎ𝛾1𝑘𝛾2𝑝) = 1. Hence 𝜂 ∨ ϐ = 0, 𝜃 ∨

𝜗 = 1 or 𝜂 ∨ 𝜏 = 0, 𝜃 ∨ 𝜔 = 1 or ϐ ∨ 𝜏 = 0, 𝜗 ∨ 𝜔 = 1, which is a contradiction. Hence 

ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊆ 𝑄 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ √𝑄 or 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ √𝑄 and 𝑄 = 𝜒Ѿ is an 

IF2 −APrI of 𝛤-Ring H.  

Theorem 4.5.7.  Every IF2 −AI of 𝛤-Ring H is an IF2 −APrI of H. 

Proof. The proof is straightforward.  

      The non-validation of the converse of the above-stated theorem may be seen using the 

following example. 

Example 4.5.8.  Let 𝐻 = ℤ and 𝛤 = 5ℤ, so H is a 𝛤-Ring. Let 𝑄 = 𝜒12ℤ. Then 𝑄 is an IFI 

of 𝛤-Ring H. It can be easily verified that 𝑄 is an IF2 −APrI of H, but it is not an 

IF2 −AI of H for 𝛾1, 𝛾2 ∈ 𝛤 such that 2(𝜂,𝜃)𝛾12(ϐ,𝜗)𝛾23(τ,ω) = (2𝛾12𝛾23)(𝜂∧ϐ∧𝜏,𝜃∨𝜗∨𝜔) ⊆

𝑄 implies 2(𝜂,𝜃)𝛾12((ϐ,𝜗)) = (2𝛾12)(𝜂∧ϐ,𝜃∨𝜗) ⊈ 𝑄, 2(𝜂,𝜃)𝛾23(τ,ω) = (2𝛾23)(𝜂∧𝜏,𝜃∨𝜔) ⊈ 𝑄, 

2(ϐ,𝜗)𝛾23(τ,ω) = (2𝛾23)(ϐ∧𝜏,𝜗∨𝜔) ⊈ 𝑄. 

Proposition 4.5.9.  √𝑄 will be an IF2 −AI of H if 𝑄 is an IF2 −APrI of 𝛤-Ring H. 

Proof. Suppose that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(τ,ω) ⊆ √𝑄 and ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊈ √𝑄, where 

ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(τ,ω) ∈ 𝐼𝐹𝑃𝑠(𝐻) and 𝛾1, 𝛾2 ∈ 𝛤. 

Since ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(τ,ω) = (ℎ𝛾1𝑘𝛾2𝑝)(𝜂∧ϐ∧𝜏,𝜃∨𝜗∨𝜔) ⊆ √𝑄 

⇒ 𝜇
√𝑄

(ℎ𝛾1𝑘𝛾2𝑝) ≥ 𝜂 ∧ ϐ ∧ 𝜏 and 𝜈
√𝑄

(ℎ𝛾1𝑘𝛾2𝑝) ≤ 𝜃 ∨ 𝜗 ∨ 𝜔 

From the definition of √𝑄, we have 

𝜇
√𝑄

(ℎ𝛾1𝑘𝛾2𝑝) = 𝐼𝑛𝑓{𝜇𝑄((ℎ𝛾1𝑘𝛾2𝑝)𝑚):𝑚 ∈ ℕ} ≥ 𝐼𝑛𝑓{𝜇𝑄(ℎ𝑚𝛾3𝑘𝑚𝛾4𝑝𝑚): 𝑚 ∈ ℕ} ≥

𝜂 ∧ ϐ ∧ 𝜏, for some 𝛾3, 𝛾4 ∈ 𝛤. Similarly, we can show that 𝜈
√𝑄

(ℎ𝛾1𝑘𝛾2𝑝) ≤ 𝜃 ∨ 𝜗 ∨ 𝜔. 

Then ∃ 𝑛 ∈ ℤ+ s.t. for some 𝛾1
′ , 𝛾2

′ ∈ 𝛤, 

𝜇𝑄((ℎ𝛾1𝑘𝛾2𝑝)𝑛) ≥ 𝜇𝑄(ℎ𝛾1𝑘𝛾2𝑝) ≥ 𝜂 ∧ ϐ ∧ 𝜏 and 𝜈𝑄((ℎ𝛾1𝑘𝛾2𝑝)𝑛) ≤ 𝜈𝑄(ℎ𝛾1𝑘𝛾2𝑝) ≤

𝜃 ∨ 𝜗 ∨ 𝜔. This implies that (ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(τ,ω))
𝑛

∈ 𝑄. If ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ∉ √𝑄, then 

for all 𝑛 ∈ ℤ+ and for some 𝛾 ∈ 𝛤, we have 𝜇𝑄(ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗))
𝑛

≥ 𝜇𝑄(ℎ(𝜂,𝜃)
𝑛 𝛾𝑘(ϐ,𝜗)

𝑛 ) and 
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𝜈𝑄(ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗))
𝑛

≤ 𝜈𝑄(ℎ(𝜂,𝜃)
𝑛 𝛾𝑘(ϐ,𝜗)

𝑛 ) implies that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊈ √𝑄. Since 𝑄 is an 

IF2 −APrI of H, then ℎ(𝜂,𝜃)𝛾2𝑝(τ,ω) ⊆ √𝑄 or 𝑘(ϐ,𝜗)𝛾2𝑝(τ,ω) ⊆ √𝑄. Hence √𝑄 is an 

IF2 −AI of H.  

Definition 4.5.10.  Suppose 𝑄 is an IF2 −APrI of 𝛤-Ring H and 𝑃 = √𝑄 which is an 

IF2 −AI of H. Then 𝑄 is called an IF𝑃 − 2 −APrI of H. 

Theorem 4.5.11.  Assume that 𝑄1,  𝑄2, . . . . . . ,  𝑄𝑛 be IF𝑃 − 2 −APrIs of 𝛤-Ring H for 

some IF2 −AI 𝑃 of H. Then 𝑄 = ⋂𝑖=1
𝑛 𝑄𝑖 is an IF𝑃 − 2 −APrI of H. 

Proof. Assume that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄 and ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊈ 𝑄, for any 

ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) ∈ 𝐼𝐹𝑃(𝐻) and 𝛾1, 𝛾2 ∈ 𝛤. Then ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊈ 𝑄𝑗 , for some 𝑗 ∈

{1,2, . . . . . , 𝑛} and ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄𝑗, for all 𝑗 ∈ {1,2, . . . . . , 𝑛}. Since 𝑄𝑗 is an 

IF𝑃 − 2 −APrIs of H, we have 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ √𝑄𝑗 = 𝑃 = ⋂𝑖=1
𝑛 √𝑄𝑖 = √⋂ 𝑄𝑖

𝑛
𝑖=1 =

√𝑄 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ √𝑄𝑗 = 𝑃 = ⋂𝑖=1
𝑛 √𝑄𝑖 = √⋂ 𝑄𝑖

𝑛
𝑖=1 = √𝑄. Thus 𝑄 is an IF𝑃 −

2 −APrIs of H.  

In the following example, we show that if 𝑄1 𝑎𝑛𝑑 𝑄2 are two IF2 −APrIs of a 𝛤-Ring H, 

then 𝑄1 ∩ 𝑄2 need not be an IF2 −APrI of H. 

Example 4.5.12.  Let 𝐻 = ℤ and 𝛤 = 𝑝ℤ, where 𝑝 > 5 is a prime integer. So that H is a 

𝛤-Ring. Take 𝑄1 = 𝜒50ℤ, 𝑄2 = 𝜒75ℤ. Clearly 𝑄1 𝑎𝑛𝑑 𝑄2 are IF2 −APrIs of H. But 𝑄1 ∩

𝑄2 = 𝜒150ℤ  and as such √𝑄1 ∩ 𝑄2 = 𝜒30ℤ, then for 𝛾1, 𝛾2 ∈ 𝛤 s.t. 

25(𝜂,𝜃)𝛾13(ϐ,𝜗)𝛾22(𝜏,𝜔) ⊆ 𝑄1 ∩ 𝑄2, but 25(𝜂,𝜃)𝛾13(ϐ,𝜗) ⊈ 𝑄1 ∩ 𝑄2, 25(𝜂,𝜃)𝛾22(𝜏,𝜔) ⊈

√𝑄1 ∩ 𝑄2 and 3(ϐ,𝜗)𝛾22(𝜏,𝜔) ⊈ √𝑄1 ∩ 𝑄2. Therefore, 𝑄1 ∩ 𝑄2 is not an IF2 −APrI of H. 

Theorem 4.5.13.  Assume that 𝑄 is an IFI of a 𝛤-Ring H. If √𝑄 is an IFPI of H, then 𝑄 is 

an IF2 −APrI of H. 

Proof. Suppose that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑄 and ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊈ 𝑄, for any 

ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) ∈ 𝐼𝐹𝑃(𝐻) and 𝛾1, 𝛾2 ∈ 𝛤. 

Since ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ∈ 𝑄 and H is commutative 𝛤-Ring, we have 
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ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔)𝛾2𝑝(𝜏,𝜔) = (ℎ(𝜂,𝜃)𝛾1𝑝(𝜏,𝜔))𝛾2(𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔)) ⊆ 𝑄 ⊆ √𝑄. Thus 

ℎ(𝜂,𝜃)𝛾1𝑝(𝜏,𝜔) ⊆ √𝑄 or 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ √𝑄. Since √𝑄 is an IFPI of H. Therefore we 

conclude that 𝑄 is an IF2-APrI of H.  

Theorem 4.5.14.  Let 𝜎 be a surjective 𝛤-𝐻𝑜𝑚𝐻1

𝐻2. If 𝑄 is an IF2 −APrI of 𝐻1 which is 

constant on 𝐾𝑒𝑟𝜎, then 𝜎(𝑄) is an IF2 −APrI of 𝐻2. 

Proof. Suppose that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) = (ℎ𝛾1𝑘𝛾2𝑝)(𝜂∧ϐ∧𝜏,𝜃∨𝜗∨𝜔) ⊆ 𝜎(𝑄), where 

ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) ∈ 𝐼𝐹𝑃(𝐻2) and 𝛾1, 𝛾2 ∈ 𝛤. Since 𝜎 is a surjective 𝛤-homomorphism, 

then ∃ 𝑎, 𝑏, 𝑐 ∈ 𝐻1 s.t. 𝜎(𝑎) = ℎ, 𝜎(𝑏) = 𝑘, 𝜎(𝑐) = 𝑝. Thus 

 

𝜇𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,ω)
(𝑎𝛾1𝑏𝛾2𝑐) = 𝜇(𝑎𝛾1𝑏𝛾2𝑐)(𝜂∧ϐ∧𝜏,𝜃∨𝜗∨𝜔)

(𝑎𝛾1𝑏𝛾2𝑐)

= 𝜂 ∧ ϐ ∧ 𝜏

≤ 𝜇𝜎(𝑄)(ℎ𝛾1𝑘𝛾2𝑝))

= 𝜇𝜎(𝑄)(𝜎(𝑎)𝛾1𝜎(𝑏)𝛾2𝜎(𝑐))

= 𝜇𝜎(𝑄)(𝜎(𝑎𝛾1𝑏𝛾2𝑐))

= 𝜇𝜎−1(𝜎(𝑄))(𝑎𝛾1𝑏𝛾2𝑐)[ As 𝑄 is constant on 𝐾𝑒𝑟𝜎, so 𝜎−1(𝜎(𝑄)) = 𝑄]

= 𝜇𝑄(𝑎𝛾1𝑏𝛾2𝑐)

 

Thus 𝜇𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,𝜔)
(𝑎𝛾1𝑏𝛾2𝑐) ≤ 𝜇𝑄(𝑎𝛾1𝑏𝛾2𝑐). Similarly, we can show that 

𝜈𝑎(𝜂,𝜃)𝛾1𝑏((ϐ,𝜗))𝛾2𝑐(𝑢,𝑣)
(𝑎𝛾1𝑏𝛾2𝑐) ≥ 𝜈𝑄(𝑎𝛾1𝑏𝛾2𝑐). Then we get 𝑎(𝜂,𝜃)𝛾1𝑏(𝜗,𝜗)𝛾2𝑐(𝜏,𝜔) ⊆ 𝑄. 

Since 𝑄 is an IF2 −APrI of 𝐻1, then 

𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗) ⊆ 𝑄 or 𝑎(𝜂,𝜃)𝛾2𝑐(𝜏,𝜔) ⊆ √𝑄 or 𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,𝜔) ⊆ √𝑄. Thus 

 

𝜂 ∧ ϐ ≤ 𝜇𝑄(𝑎𝛾1𝑏) = 𝜇𝜎(𝑄)(𝜎(𝑎𝛾1𝑏))

= 𝜇𝜎(𝑄)(𝜎(𝑎)𝛾1𝜎(𝑏))

= 𝜇𝜎(𝑄)(ℎ𝛾1𝑘).

 

Similarly, we can show that 𝜃 ∨ 𝜗 ≥ 𝜇𝜎(𝑄)(ℎ𝛾1𝑘) and so (ℎ𝛾1𝑘)(𝜂∧ϐ,𝜃∨𝜗) ⊆ 𝜎(𝑄). 

Thus ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊆ 𝜎(𝑄) or 
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𝜂 ∧ 𝜏 ≤ 𝜇
√𝑄

(𝑎𝛾2𝑐) = 𝜇𝜎(√𝑄)(𝜎(𝑎𝛾2𝑐))

= 𝜇𝜎(√𝑄)(𝜎(𝑎)𝛾2𝜎(𝑐))

= 𝜇𝜎(√𝑄)
(ℎ𝛾2𝑝).

 

Similarly, we can show that 𝜃 ∨ 𝜔 ≥ 𝜈𝜎(√𝑄)
(ℎ𝛾2𝑝) and so (ℎ𝛾2𝑝)(𝜂∧𝜏,𝜃∨𝜔) ⊆ 𝜎(√𝑄). 

Thus ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ 𝜎(√𝑄) or 

 

ϐ ∧ 𝜏 ≤ 𝜇
√𝑄

(𝑏𝛾2𝑐) = 𝜇𝜎(√𝑄)(𝜎(𝑏𝛾2𝑐))

= 𝜇𝜎(√𝑄)(𝜎(𝑏)𝛾2𝜎(𝑐))

= 𝜇𝜎(√𝑄)
(𝑘𝛾2𝑝).

 

Similarly, we can show that 𝜗 ∨ 𝜔 ≥ 𝜈𝜎(√𝑄)
(𝑘𝛾2𝑝) and so (𝑘𝛾2𝑝)(ϐ∧τ,𝜗∨𝜔) ⊆ 𝜎(√𝑄). 

Thus 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝜎(√𝑄). Hence 𝜎(𝑄) is an IF2 −APrI of 𝐻2.  

Corollary 4.5.15.  Let 𝜎 be a surjective 𝛤-𝐻𝑜𝑚𝐻1

𝐻2 . If 𝑄 is an IF2 −APrI of 𝐻1 which is 

constant on 𝐾𝑒𝑟𝜎, then 𝜎(√𝑄) is an IF2 −AI of 𝐻2. 

Proof. The result follows from Proposition (4.5.9), Theorem (4.5.14), and Theorem 

(4.4.9).  

Theorem 4.5.16.  Let 𝜎 𝑏𝑒 𝑎 𝛤-𝐻𝑜𝑚𝐻1

𝐻2. If 𝑄′ is an IF2 −APrI of 𝐻2, then 𝜎−1(𝑄′) is an 

IF2 −APrI of 𝐻1. 

Proof. Suppose that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝜎−1(𝑄′), where ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) ∈

𝐼𝐹𝑃(𝐻) and 𝛾1, 𝛾2 ∈ 𝛤. 

 

𝜂 ∧ ϐ ∧ 𝜏 ≤ 𝜇𝜎−1(𝑄′)(ℎ𝛾1𝑘𝛾2𝑝)

= 𝜇𝑇′(𝜎(ℎ𝛾1𝑘𝛾2𝑝))

= 𝜇𝑄′(𝜎(ℎ)𝛾1𝜎(𝑘)𝛾2𝜎(𝑝))

 

𝜂 ∧ ϐ ∧ 𝜏 ≤ 𝜇𝑄′(𝜎(ℎ)𝛾1𝜎(𝑘)𝛾2𝜎(𝑝)). Similarly, we can show that 𝜃 ∨ 𝜗 ∨ 𝜔 ≥

𝜈𝑄′(𝜎(ℎ)𝛾1𝜎(𝑘)𝛾2𝜎(𝑝)). Let 𝜎(ℎ) = 𝑎, 𝜎(𝑘) = 𝑏, 𝜎(𝑝) = 𝑐. Hence we have that 𝜂 ∧

ϐ ∧ 𝜏 ≤ 𝜇𝑄′(𝑎𝛾1𝑏𝛾2𝑐) and 𝜃 ∨ 𝜗 ∨ 𝜔 ≥ 𝜈𝑄′(𝑎𝛾1𝑏𝛾2𝑐) and as such 
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𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,𝜔) ⊆ 𝑄′. Since 𝑄′ is an IF2 −APrI of 𝐻1, then 𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗) ⊆ 𝑄′ or 

𝑎(𝜂,𝜃)𝛾2𝑐(𝜏,𝜔) ⊆ √𝑄′ or 𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,𝜔) ⊆ √𝑄′. If 𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗) ⊆ 𝑄′, then 

 

𝜂 ∧ ϐ ≤ 𝜇𝑄′(𝑎𝛾1𝑏) = 𝜇𝑄′(𝜎(ℎ)𝛾1𝜎(𝑘))

= 𝜇𝑄′(𝜎(ℎ𝛾1𝑘))

= 𝜇𝜎−1(𝑄′)(ℎ𝛾1𝑘).

 

i.e., 𝜂 ∧ ϐ ≤ 𝜇𝜎−1(𝑄′)(ℎ𝛾1𝑘). Similarly, we can show that 𝜃 ∨ 𝜗 ≥ 𝜈𝜎−1(𝑄′)(ℎ𝛾1𝑘). Thus 

we get ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) = (ℎ𝛾1𝑘)(𝜂∧ϐ,𝜃∨𝜗) ⊆ 𝜎−1(𝑄′). If 𝑎(𝜂,𝜃)𝛾2𝑐(𝜏,𝜔) ⊆ √𝑄′, then 

 

𝜂 ∧ 𝜏 ≤ 𝜇
√𝑄′(𝑎𝛾2𝑐) = 𝜇

√𝑄′(𝜎(ℎ)𝛾2𝜎(𝑝))

= 𝜇
√𝑄′(𝜎(ℎ𝛾2𝑝))

= 𝜇
𝜎−1(√𝑄′)

(ℎ𝛾2𝑝).

 

i.e., 𝜂 ∧ 𝜏 ≤ 𝜇
𝜎−1(√𝑄′)

(ℎ𝛾2𝑝). Similarly, we can show that 𝜃 ∨ 𝜔 ≥ 𝜈
𝜎−1(√𝑄′)

(ℎ𝛾2𝑝). 

Thus we get ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) = (ℎ𝛾2𝑝)(𝜂∧𝜏,𝜃∨𝜔) ⊆ 𝜎−1(√𝑄′). If 𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,𝜔) ⊆ √𝑄′, then 

 

ϐ ∧ 𝜏 ≤ 𝜇
√𝑄′(𝑏𝛾2𝑐) = 𝜇

√𝑄′(𝜎(𝑘)𝛾2𝜎(𝑝))

= 𝜇
√𝑄′(𝜎(𝑘𝛾2𝑝))

= 𝜇
𝜎−1(√𝑄′)

(𝑘𝛾2𝑝).

 

i.e., ϐ ∧ 𝜏 ≤ 𝜇
𝜎−1(√𝑄′)

(𝑘𝛾2𝑝). Similarly, we can show that 𝜗 ∨ 𝜔 ≥ 𝜈
𝜎−1(√𝑄′)

(𝑘𝛾2𝑝). 

Thus we get 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) = (𝑘𝛾2𝑝)(ϐ∧𝜏,𝜗∨𝜔) ⊆ 𝜎−1(√𝑄′). Therefore, we see that 

𝜎−1(𝑄′) is an IF2-APrI of 𝐻1.  

Corollary 4.5.17.  Suppose 𝜎: 𝐻1 → 𝐻2 be a 𝛤-homomorphism. If 𝑄′ is an IF2 −APrI of 

𝐻2, then 𝜎−1(√𝑄′) is an IF2-AI of 𝐻1. 

Proof. The proof of the corollary comes from Proposition (4.5.9), Theorem (4.5.16), and 

Theorem (4.4.9). 
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4.6 Conclusion 

In this chapter, the foundational concepts of IFPrI and IFPR in Γ-Ring H are thoroughly 

examined. It has been demonstrated that IFPrI of a Γ-Ring forms a two-valued IFS, with 

the base set defined as the primary ideal (The base set of IFS Q is defined as the set {ℎ ∈

𝐻: 𝜇𝑄(ℎ) = 1, 𝜈𝑄(ℎ) = 0}). The concept of IFPR in Γ-Ring H has been introduced, 

establishing that the IFPR of an IFPrI yields an IFPI. The homeomorphic characteristics 

of IFPrI and IFPR in Γ-Ring are investigated. The findings presented in this paper 

represent a significant advancement beyond classical ring theory within the IF 

framework. Furthermore, these results not only enhance prior research but also lay the 

groundwork for more robust future investigations, such as the decomposition of ideals 

into primary ideals within the IF environment—a generalization akin to prime 

factorization in number theory. 
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Chapter 5 

 

Decomposition Of Intuitionistic Fuzzy 

Primary Ideal Of 𝜞-Ring 

 

5.1 Introduction 

An ideal decomposition in terms of primary ideals serves as a fundamental aspect of ideal 

theory, providing the algebraic groundwork for breaking down an algebraic variety into 

its irreducible components. Alternatively, it offers a broader perspective akin to the 

factorization of an integer into prime powers. An ideal K in a ring H undergoes a primary 

decomposition if 𝐾 = ⋂𝑖=1
𝑘 𝑇𝑖, where each Ti represents a primary ideal in H. Moreover, 

if no 𝑇𝑗 ⊃ ⋂𝑖=1,𝑗≠𝑖
𝑛 𝑇𝑖, ∀𝑗, 1 ≤ 𝑗 ≤ 𝑘, and if the prime ideals 𝑃𝑖 = √𝑇𝑖 are all distinct, then 

the primary decomposition is termed minimal, and the set 𝐴𝑠𝑠(𝐾) = {𝑃1,  𝑃2, . . . . . . . ,  𝑃𝑘}  

is identified as the set of associated prime ideals of K. (For further details, refer to [14, 

55]). This chapter delves into the study of IF primary decomposition and minimal IF 

primary decomposition of an IFI within a Noetherian Γ-Ring 

 

5.2 Intuitionistic Fuzzy Irreducible Ideals 

In this section, the irreducibility of an IFI has been studied and some relations between 

IFPIs, IFIrIs, and IFPrIs has been proved. Firstly it has been proved that every IFI in a 

Noetherian 𝛤-ring can be written as a finite intersection of IFIrIs, where the IFI takes 

only two values. 

Definition 5.2.1.  Let 𝐺 be an IFI of a 𝛤-Ring H. We say that 𝐺 is an IFIrI if 𝐺 cannot be 

expressed as the intersection of two IFIs of H properly containing 𝐺; otherwise, 𝐺 is 

called reducible. 
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        Thus 𝐺 is an IFIrI iff, whenever 𝐺 = ₲1 ∩ ₲2 with ₲1,  ₲2 IFIs of H, then either 𝐺 =

₲1 or 𝐺 = ₲2. 

Proposition 5.2.2.  Let 𝐺 be a non-constant IFI of a 𝛤-Ring H. Then 𝐺 is an IFIrI of H if 

and only if the following hold: 

1.  𝐺∗ is an IrI of H 

2.  𝐼𝑚(𝐺) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1. 

3.  𝐺 is of the form 

                                           𝜇𝐺(ℎ) = {
1, if ℎ ∈ 𝐺∗

𝜆, if ℎ ∈ 𝐻\𝐺∗
; 𝜈𝐺(ℎ) = {

0, if ℎ ∈ 𝐺∗

𝜁, if ℎ ∈ 𝐻\𝐺∗.
 

Proof. Firstly suppose that 𝐺 is an IFIrI of H. Let 𝐺∗ = Ɨ1 ∩ Ɨ2 for some ideals Ɨ1,  Ɨ2 of H. 

We have 𝐺∗ ⊆ Ɨ1 and 𝐺∗ ⊆ Ɨ2. If possible, let 𝐺∗ ≠ Ɨ1 and 𝐺∗ ≠ Ɨ2. 

Then (Ɨ1 \𝐺∗) ∩ (Ɨ2 \𝐺∗) is empty. Let us define two IFSs ₲1 and ₲2 as follows: 

 

𝜇₲1
(ℎ) = {

1, if ℎ ∈ 𝐺∗

𝜆1, if ℎ ∈ Ɨ1\𝐺∗

𝜆2, if ℎ ∈ 𝐻\Ɨ1

; 𝜈₲1
(ℎ) = {

0, if ℎ ∈ 𝐺∗

𝜁1, if ℎ ∈ Ɨ1\𝐺∗

𝜁2, if ℎ ∈ 𝐻\Ɨ1.
 

and 

𝜇₲2
(ℎ) = {

1, if ℎ ∈ 𝐺∗

𝜆1, if ℎ ∈ Ɨ2\𝐺∗

𝜆2, if ℎ ∈ 𝐻\Ɨ2

; 𝜈₲2
(ℎ) = {

0, if ℎ ∈ 𝐺∗

𝜁1, if ℎ ∈ Ɨ2\𝐺∗

𝜁2, if ℎ ∈ 𝐻\Ɨ2.
 

Now, it is a straightforward case study to verify that ₲1 and ₲2 are IFIs of H and 𝐺 =

₲1 ∩ ₲2. Though we have 𝐺 ≠ ₲1 and 𝐺 ≠ ₲2. This contradicts the fact that 𝐺 is an IFIrI 

of H. Consequently, 𝐺∗ = Ɨ1 or 𝐺∗ = Ɨ2, and hence 𝐺∗ is an irreducible ideal of H. 

       Next, we show that (1,0) ∈ 𝐼𝑚(𝐺). If possible, suppose that (1,0) ∉ 𝐼𝑚(𝐺). Then 

𝜇𝐺(0) < 1, 𝜈𝐺(0) > 0. Let us define two IFSs ₲3 and ₲4 as follows: 

𝜇₲3
(ℎ) = {

1, if ℎ ∈ 𝐺∗

𝜇𝐺(0), if otherwise
; 𝜈₲3

(ℎ) = {
0, if ℎ ∈ 𝐺∗

𝜈𝐺(0), if otherwise.
 

and ₲4(ℎ) = 𝐺(0), ∀ ℎ ∈ 𝐻. It is easy to verify that ₲3 and ₲4 are IFIs of H s.t. 𝐺 = ₲3 ∩

₲4. But 𝐺 ⊂ ₲3 and 𝐺 ⊂ ₲4. Thus we arrive at a contradiction since 𝐺 is an IFIrI of H. 

Consequently (1,0) ∈ 𝐼𝑚(𝐺). 
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Further, to show that |𝐼𝑚(𝐺)| = 2. It is sufficient to show that the chain of the level-cut 

set ideals is given by 𝐺∗ ⊆ 𝐻. If possible, let the chain of the level-cut set ideals be 𝐺∗ ⊆

𝐺(𝜆1,𝜁1) ⊆ 𝐻, where 𝜆1, 𝜁1 ∈ (0,1) with 𝜆1 + 𝜁1 ≤ 1. Then 𝐺 is given by 

 

𝜇𝐺(ℎ) = {

1, if ℎ ∈ 𝐺∗

𝜆1, if ℎ ∈ 𝐺(𝜆1,𝜁1)\𝐺∗

𝜆2, if ℎ ∈ 𝐻\𝐺(𝜆1,𝜁1)

; 𝜈𝐺(ℎ) = {

0, if ℎ ∈ 𝐺∗

𝜁1, if ℎ ∈ 𝐺(𝜆1,𝜁1)\𝐺∗

𝜁2, if ℎ ∈ 𝐻\𝐺(𝜆1,𝜁1).
 

where 𝜆2 < 𝜆1 and 𝜁2 > 𝜁1. Let us construct two IFSs 𝐺5 and 𝐺6 as follows: 

𝜇₲5
(ℎ) = {

1, if ℎ ∈ 𝐺(𝜆1,𝜁1)

𝜇𝐺(ℎ), if ℎ ∈ 𝐻\𝐺(𝜆1,𝜁1)
; 𝜈₲5

(ℎ) = {
0, if ℎ ∈ 𝐺(𝜆1,𝜁1)

𝜈𝐺(ℎ), if ℎ ∈ 𝐻\𝐺(𝜆1,𝜁1).
 

and 

𝜇₲6
(ℎ) = {

1, if ℎ ∈ 𝐺∗

𝜆1, if ℎ ∈ 𝐺(𝜆1,𝜁1)\𝐺∗

𝜆3, if ℎ ∈ 𝐻\𝐺(𝜆1,𝜁1)

; 𝜈₲6
(ℎ) = {

0, if ℎ ∈ 𝐺∗

𝜁1, if ℎ ∈ 𝐺(𝜆1,𝜁1)\𝐺∗

𝜁3, if ℎ ∈ 𝐻\𝐺(𝜆1,𝜁1).
 

where 𝜆2 < 𝜆3 < 𝜆1 and 𝜁2 > 𝜁3 > 𝜁1. It is a routine case study to check that ₲5 and ₲6 

are IFIs of H and 𝐺 = ₲5 ∩ ₲6. But 𝐺 ⊂ ₲5 and 𝐺 ⊂ ₲6. It contradicts the fact that 𝐺 is 

an IFIrI of H. Consequently the chain of level cut-set ideal is 𝐺∗ ⊆ 𝐻 and hence 𝐺 is 

given by 

𝜇𝐺(ℎ) = {
1, if ℎ ∈ 𝐺∗

𝜆1, if ℎ ∈ 𝐻\𝐺∗
; 𝜈𝐺(ℎ) = {

0, if ℎ ∈ 𝐺∗

𝜁1, if ℎ ∈ 𝐻\𝐺∗.
 

Hence |𝐼𝑚(𝐺)| = 2. 

 

       Conversely, let the conditions hold. Let us consider that 𝐺 is not an IFIrI of H. 

Suppose that 𝐺 = ₲7 ∩ ₲8 for some IFIs ₲7,  ₲8 of H with 𝐺 ⊂ ₲7 and 𝐺 ⊂ ₲8. Then ∃ 

ℎ, 𝑘 ∈ 𝐻 s.t. 𝜇𝐺(ℎ) < 𝜇₲7
(ℎ), 𝜈𝐺(ℎ) > 𝜈₲7

(ℎ) and 𝜇𝐺(𝑘) < 𝜇₲8
(𝑘), 𝜈𝐺(𝑘) > 𝜈₲8

(𝑘). It 

follows that ℎ, 𝑘 ∉ 𝐺∗. Now, if ℎ = 𝑘, then 𝜇𝐺(ℎ) < 𝜇₲7∩₲8
(ℎ) and 𝜈𝐺(ℎ) > 𝜈₲7∩₲8

(ℎ), 

i.e., 𝐺 ⊂ ₲7 ∩ ₲8, which is a contradiction. So ℎ ≠ 𝑘 implies 𝐺∗ ⊆ ⟨𝐺∗, ℎ⟩ and 𝐺∗ ⊆

⟨𝐺∗, 𝑘⟩. Therefore 𝐺∗ ⊆ ⟨𝐺∗, ℎ⟩ ∩ ⟨𝐺∗, 𝑘⟩. Let 𝑧 ∈ ⟨𝐺∗, ℎ⟩ ∩ ⟨𝐺∗, 𝑘⟩, then 𝑧 = 𝑚 + 𝑟1𝛾1ℎ =

𝑛 + 𝑟2𝛾2𝑘, for some 𝑚, 𝑛 ∈ 𝐺∗, 𝑟1, 𝑟2 ∈ 𝐻, 𝛾1, 𝛾2 ∈ 𝛤. 
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      Therefore, 𝜇𝐺(𝑚 − 𝑛) = 𝜇𝐺(−𝑟1𝛾1ℎ + 𝑟2𝛾2𝑘) = 1 and 𝜈𝐺(𝑚 − 𝑛) = 𝜈𝐺(−𝑟1𝛾1ℎ +

𝑟2𝛾2𝑘) = 0 implies that 𝜇𝐺7
(−𝑟1𝛾1ℎ + 𝑟2𝛾2𝑘) = 𝜇𝐺8

(−𝑟1𝛾1ℎ + 𝑟2𝛾2𝑘) = 1 and 

𝜈𝐺7
(−𝑟1𝛾1ℎ + 𝑟2𝛾2𝑘) = 𝜈𝐺8

(−𝑟1𝛾1ℎ + 𝑟2𝛾2𝑘) = 0. This imply 𝜇𝐺7
(𝑟1𝛾1ℎ) =

𝜇𝐺7
(𝑟2𝛾2𝑘), 𝜈𝐺7

(𝑟1𝛾1ℎ) = 𝜈𝐺7
(𝑟2𝛾2𝑘) and 

𝜇𝐺8
(𝑟1𝛾1ℎ) = 𝜇𝐺8

(𝑟2𝛾2𝑘), 𝜈𝐺8
(𝑟1𝛾1ℎ) = 𝜈𝐺8

(𝑟2𝛾2𝑘). 

      But 𝜇𝐺7
(𝑟1𝛾1ℎ) ≥ 𝜇𝐺7

(𝑟1) ∨ 𝜇𝐺7
(ℎ) ≥ 𝜇𝐺7

(ℎ) > 𝜇𝐺(ℎ) = 𝛼. 

Similarly 𝜈𝐺7
(𝑟1𝛾1ℎ) ≤ 𝜈𝐺7

(𝑟1) ∧ 𝜈𝐺7
(ℎ) ≤ 𝜈𝐺7

(ℎ) < 𝜈𝐺(ℎ) = 𝛽. This gives 

𝑟1𝛾1ℎ, 𝑟2𝛾2𝑘 ∈ 𝐺∗. Hence 𝑧 ∈ 𝐺∗. Thus, we have 𝐺∗ = ⟨𝐺∗, ℎ⟩ ∩ ⟨𝐺∗, 𝑘⟩ with 𝐺∗ ⊂ ⟨𝐺∗, ℎ⟩ 

and 𝐺∗ ⊂ ⟨𝐺∗, 𝑘⟩. This implies that 𝐺∗ is not an IrI of H, which is a contradiction. 

Corollary 5.2.3.  Let 𝐼1 be an ideal of 𝛤-Ring H. Then 𝐼1 is an IrI iff 𝜒𝐼1 is an IFIrI of H. 

Corollary 5.2.4.  If 𝐺 is an IFPI of 𝛤-Ring H. Then 𝐺 is an IFIrI of H. 

Proof. By Theorem (2.2.9) and Proposition (5.2.2) and the fact that every PI in 𝛤-Ring is 

an IrI.  

Note that the converse of Corollary (5.2.4) may not be true. See the following example: 

Example 5.2.5.  Consider 𝐻 = 𝛤 = ℤ to be the additive group of integers. Then H is a 𝛤-

Ring. Consider the IFI 𝐺 of H defined by 

𝜇𝐺(ℎ) = {
1, if ℎ ∈ ⟨4⟩
0.4, if otherwise

; 𝜈𝐺(ℎ) = {
0, if ℎ ∈ ⟨4⟩
0.3, if otherwise.

 

As in the above example it can be seen with ease that 𝐺 is an IFIrI of H, but it is not an 

IFPI of H, as 𝐺∗ = ⟨4⟩ is not a PI in H. 

Corollary 5.2.6.  If 𝐺 is an IFIrI of a Noetherian 𝛤-Ring H, then 𝐺 is an IFPrI in H. 

Proof. From [[68],  Lemma(4.2)] we see that every IrI in a Noetherian 𝛤-Ring is a PrI. 

Then the result follows by Proposition (5.2.2) and Theorem (4.3.11). 

Proposition 5.2.7. Suppose 𝐺 be an IFI of a Noetherian 𝛤-Ring H with 𝐼𝑚𝑔(𝐺) =

{(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. Then 𝐺 may be seen as a finite 

intersection of IFIrIs of H. 

Proof. By [[68], “Lemma(4.1)], every ideal in a Noetherian 𝛤-Ring is a finite intersection 

of IrIs.” Therefore, suppose that 𝐺∗ = ⋂𝑖=1
ɳ

𝐽𝑖, 𝐽𝑖 be an IrI of H. Define the IFIs 

₲1, ₲2, . . . . , ₲𝑛 by 
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𝜇₲𝑖
(ℎ) = {

1, if ℎ ∈ 𝐽𝑖
𝜆, if ℎ ∉ 𝐽𝑖

; 𝜈₲𝑖
(ℎ) = {

0, if ℎ ∈ 𝐽𝑖
𝜁, if ℎ ∉ 𝐽𝑖 .

 

Where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. Then by Proposition (5.2.2), ∀ 𝑖 = 1,2, . . . , ɳ, ₲𝑖 is an 

IFIrI of H and it can be also verified with ease that 𝐺 = ⋂𝑖=1
ɳ

₲𝑖.  

Proposition 5.2.8.  Suppose 𝐺 be an IFI of a Noetherian 𝛤-Ring H with 𝐼𝑚𝑔(𝐺) =

{(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. Then 𝐺 may be seen as a finite 

intersection of IFPrIs of H. 

Proof. This follows from Proposition (5.2.7) and Corollary (5.2.6). 

 

5.3 Decomposition Of IFPrI Of 𝜞-Ring 

In this section, the decomposability of an IFI in a Noetherian 𝛤-Ring will be studied, in 

terms of IFPrIs that the set of their respective IFRIs are independent of the particular 

decomposition. 

       To begin this section, we first recall the definition of the residual quotient (₲1: ₲2) of 

an IFI ₲1 by an IFS ₲2 in a 𝛤-Ring H. 

Definition 5.3.1.  For any IFI ₲1 of a 𝛤-Ring H and any IFS ₲2 of H, the IF residual 

quotient of ₲1 by ₲2 is denoted by (₲1: ₲2) and is defined as 

(₲1: ₲2) = ⋃{ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻): ℎ(𝜂,𝜃)𝛤₲2 ⊆ ₲1} 

      For any IFP ℎ(𝜂,𝜃) of 𝛤-Ring H,  

we use a streamlined notation (𝐺: ℎ(𝜂,𝜃)) for (𝐺: ⟨ℎ(𝜂,𝜃)⟩), where ⟨ℎ(𝜂,𝜃)⟩ =

⋂{𝐶: 𝐶 is an IFI of H s.t. ℎ(𝜂,𝜃) ⊆ 𝐶}, be an IFI generated by ℎ(𝜂,𝜃). There is no difficulty 

in seeing that (𝐺: ℎ(𝜂,𝜃)) is an IFI of H and 𝐺 ⊆ (𝐺: ℎ(𝜂,𝜃)). 

Proposition 5.3.2 Let 𝑇 be an IF𝑃-PrI of 𝛤-Ring H, where 𝑃 = √𝑇. If ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻) 

be any IFP of H. Then 

(i) If ℎ(𝜂,𝜃) ∈ 𝑇, then (𝑇: ℎ(𝜂,𝜃)) = 𝜒𝐻; 

(ii) If ℎ(𝜂,𝜃) ∉ 𝑇, then (𝑇: ℎ(𝜂,𝜃)) is an IF𝑃 −PrI and √(𝑇: ℎ(𝜂,𝜃)) = 𝑃; 
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(iii) If ℎ(𝜂,𝜃) ∉ √𝑇, then (𝑇: ℎ(𝜂,𝜃)) = 𝑇. 

Proof. Let ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻), 𝑇 be an IFPrI of H such that 𝑃 = √𝑇. 

 

     (i) If ℎ(𝜂,𝜃) ∈ 𝑇, then (𝑇: ℎ(𝜂,𝜃)) = ⋃{𝑘(ϐ,𝜗) ∈ 𝐼𝐹𝑃(𝐻): 𝑘(ϐ,𝜗)𝛤ℎ(𝜂,𝜃) ⊆ 𝑇}. 

Now (𝑇: ℎ(𝜂,𝜃)) ⊆ 𝜒𝐻 always. For other inclusion. 

Let 𝑘(ϐ,𝜗) ∈ 𝜒𝐻 then 𝑘(ϐ,𝜗)𝛤ℎ(𝜂,𝜃) = (𝑘𝛤ℎ)(ϐ∧𝜂,𝜗∨𝜃) ⊆ 𝑇. This implies 𝑘(ϐ,𝜗) ∈

(𝑇: ℎ(𝜂,𝜃)). Thus 𝜒𝐻 ⊆ (𝑇: ℎ(𝜂,𝜃)). Hence (𝑇: ℎ(𝜂,𝜃)) = 𝜒𝐻. 

 

     (ii) Obviously 𝑇 ⊆ (𝑇: ℎ(𝜂,𝜃)). Let 𝑘(ϐ,𝜗) ∈ (𝑇: ℎ(𝜂,𝜃)). So 𝑘(ϐ,𝜗)𝛤ℎ(𝜂,𝜃) ⊆ 𝑇. Since 

ℎ(𝜂,𝜃) ∉ 𝑇 imply that𝑘(ϐ,𝜗) ∈ √𝑇 = 𝑃. This means that 𝑇 ⊆ (𝑇: ℎ(𝜂,𝜃)) ⊆ 𝑃 and so √𝑇 ⊆

√(𝑇: ℎ(𝜂,𝜃)) ⊆ √𝑃 = 𝑃. This imply that √(𝑇: ℎ(𝜂,𝜃)) = 𝑃. 

 

      Now we show that (𝑇: ℎ(𝜂,𝜃)) is an IFPrI of H. Assume that for any 𝛾1 ∈ 𝛤 such that 

𝑎(𝑢1,𝑣1)𝛾1𝑏(𝑢2,𝑣2) ∈ (𝑇: ℎ(𝜂,𝜃)) and 𝑏(𝑢2,𝑣2) ∉ √(𝑇: ℎ(𝜂,𝜃)), then 

𝑎(𝑢1,𝑣1)𝛾1𝑏(𝑢2,𝑣2)𝛾2ℎ(𝜂,𝜃) ∈ 𝑇, i.e., (𝑎(𝑢1,𝑣1)𝛾1ℎ(𝜂,𝜃))𝛾2𝑏(𝑢2,𝑣2) ∈ 𝑇 and 𝑇 is IF𝑃 −PrI of 

H, This implies that either 𝑎(𝑢1,𝑣1)𝛾1ℎ(𝜂,𝜃) ∈ 𝑇 or 𝑏(𝑢2,𝑣2) ∈ √𝑇 = 𝑃 = √(𝑇: ℎ(𝜂,𝜃)). This 

imply 𝑎(𝑢1,𝑣1)𝛾1ℎ(𝜂,𝜃) ∈ 𝑇. Thus 𝑎(𝑢1,𝑣1) ∈ (𝑇: ℎ(𝜂,𝜃)). Hence (𝑇: ℎ(𝜂,𝜃)) is an IFPrI of H. 

 

      (iii) Since 𝑇 ⊇ ℎ(𝜂,𝜃) ∩ 𝑇 ⊇ ℎ(𝜂,𝜃)𝛤𝑇, i.e., ℎ(𝜂,𝜃)𝛤𝑇 ⊆ 𝑇. Therefore by the properties 

of the residual quotient, we have 𝑇 ⊆ (𝑇: ℎ(𝜂,𝜃)). Further, ℎ(𝜂,𝜃)𝛤(𝑇: ℎ(𝜂,𝜃)) ⊆ 𝑇. Is 𝑇 is 

an IFPrI of H and ℎ(𝜂,𝜃) ∉ √𝑇 implies that (𝑇: ℎ(𝜂,𝜃)) ⊆ 𝑇. Hence (𝑇: ℎ(𝜂,𝜃)) = 𝑇. 

Proposition 5.3.3.  If 𝑇1, 𝑇2, . . . . . . , 𝑇𝑛 be IFIs of 𝛤-Ring H and ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻), then 

(⋂𝑖=1
𝑛 𝑇𝑖: ℎ(𝜂,𝜃)) = ⋂𝑖=1

𝑛 (𝑇𝑖: ℎ(𝜂,𝜃)). 

Proof. Now 𝑘(ϐ,𝜗) ∈ (⋂𝑖=1
𝑛 𝑇𝑖: ℎ(𝜂,𝜃)) 

⇔ 𝑘(ϐ,𝜗)𝛤ℎ(𝜂,𝜃) ⊆ ⋂ 𝑖=1
𝑛

𝑇𝑖  
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⇔ 𝑘(ϐ,𝜗)𝛤ℎ(𝜂,𝜃) ⊆ 𝑇𝑖, ∀𝑖 = 1,2, … . , 𝑛  

⇔ 𝑘(ϐ,𝜗) ∈ (𝑇𝑖: ℎ(𝜂,𝜃)), ∀ 𝑖 = 1,2, … . , 𝑛  

⇔ 𝑘(ϐ,𝜗) ∈ ⋂𝑖=1
𝑛 (𝑇𝑖: ℎ(𝜂,𝜃)). 

Hence (⋂𝑖=1
𝑛 𝑇𝑖: ℎ(𝜂,𝜃)) = ⋂𝑖=1

𝑛 (𝑇𝑖: ℎ(𝜂,𝜃)).  

        In the following example, we show that if 𝑇1 𝑎𝑛𝑑 𝑇2 are two IFPrIs of a 𝛤-Ring H, 

then 𝑇1 ∩ 𝑇2 need not be an IFPrI of H. 

Example 5.3.4.  Suppose 𝐻 = 𝛤 = ℤ, be the additive group of integers. Then H is a 𝛤-

Ring. Let  𝐼1 = 2ℤ, 𝐼2 = 3ℤ. Clearly,  𝐼1 𝑎𝑛𝑑 𝐼2 are primary (in fact prime) ideal in H. 

Define 𝑇1 = 𝜒𝐼1,  𝑇2 = 𝜒𝐼2. Then by Example (4.3.12), 𝑇1,  𝑎𝑛𝑑 𝑇2 are IFPrIs of H. Also, 

𝑇1 ∩ 𝑇2 = 𝜒𝐼1∩𝐼2 = 𝜒6ℤ, which is not an IFPrI of H (by Example (4.3.12)). 

Theorem 5.3.5.  Let 𝑇1,  𝑇2, . . . . . . ,  𝑇𝑛 be IF𝑃 −PrIs of 𝛤-Ring H with 𝑃 = √𝑇𝑖, ∀𝑖 =

1,2, . . . , 𝑛, an IFPI of H. Then 𝑇 = ⋂𝑖=1
𝑛 𝑇𝑖 is an IF𝑃 −PrI of H. 

Proof. Let ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗) ∈ 𝐼𝐹𝑃(𝐻) be s.t. ℎ(𝜂,𝜃)𝛤𝑘(ϐ,𝜗) ⊆ 𝑇 = ⋂𝑖=1
𝑛 𝑇𝑖 and ℎ(𝜂,𝜃) ∉ 𝑇. 

Then ℎ(𝜂,𝜃) ∉ 𝑇𝑗, for few 𝑗 ∈ {1,2, . . . . . , 𝑛} also ℎ(𝜂,𝜃)𝛤𝑘(ϐ,𝜗) ⊆ 𝑇𝑗, ∀ 𝑗 ∈ {1,2, . . . . . , 𝑛}. 

Since each 𝑇𝑗 is an IF𝑃 −PrI of H, we have 

𝑘(ϐ,𝜗) ∈ √𝑇𝑗 = 𝑃 = ⋂𝑖=1
𝑛 √𝑇𝑖 = √⋂ 𝑇𝑖

𝑛
𝑖=1 = √𝑇. 

Hence 𝑇 is an IF𝑃 −PrIs of H.  

Definition 5.3.6.  A primary decomposition of an IFI 𝐺 in a 𝛤-Ring H is an expression of 

𝐺 as a finite intersection of IFPrIs 𝑇𝑖, say 𝐺 = ⋂𝑖=1
𝑛 𝑇𝑖. 

Definition 5.3.7.  In IF primary decomposition of an IFI 𝐺 = ⋂𝑖=1
𝑛 𝑇𝑖 of 𝛤-Ring H is 

called as minimal if: 

1. all IFPrI  𝑇𝑖 have distinct √𝑇𝑖; 

2.      ⋂𝑗≠𝑖=1
𝑛 𝑇𝑗 ⊈ 𝑇𝑖. 

Remark 5.3.8.  If IF primary decomposition 𝐺 = ⋂𝑖=1
𝑛 𝑇𝑖 is not minimal, that is if √𝑇𝑗 =

√𝑇𝑘 = 𝑃 for 𝑗 ≠ 𝑘, then we may achieve (1) of definition (5.3.7) by replacing 𝑇𝑗 and 𝑇𝑘 

by 𝑇′ = 𝑇𝑗 ∩ 𝑇𝑘 which is an IF𝑃 −PrI of H by Theorem (5.3.5). Repeating this process, 

we get will arrive at an IF primary decomposition in which all √𝑇𝑖 are distinct. If 
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⋂𝑗≠𝑖=1
𝑛 𝑇𝑗 ⊆ 𝑇𝑖, we may simply omit 𝑇𝑖. Repeating this process, we will achieve (2) of 

definition (5.3.7). 

Lemma 5.3.9.  Let ₲1, ₲2, . . . . , ₲𝑛 be IFIs of 𝛤-Ring H and let 𝑃 be an IFPI of H. Then 

  1. If ⋂𝑖=1
𝑛 ₲𝑖 ⊆ 𝑃, then ₲𝑖 ⊆ 𝑃 for some 𝑖; 

 2. If ⋂𝑖=1
𝑛 ₲𝑖 = 𝑃, then ₲𝑖 = 𝑃 for some 𝑖. 

Proof. (1) Suppose ₲𝑖 ⊈ 𝑃 for all 𝑖. Then ∃𝑠, (ℎ𝑖)(𝑝𝑖,𝑞𝑖)
∈ ₲𝑖 s.t. (ℎ𝑖)(𝑝𝑖,𝑞𝑖)

∉ 𝑃 for 1 ≤

𝑖 ≤ 𝑛. Therefore (ℎ1)(𝑝1,𝑞1)𝛤(ℎ2)(𝑝2,𝑞2)𝛤. . . . . 𝛤(ℎ𝑛)(𝑝𝑛,𝑞𝑛) ⊆ ₲1𝛤₲2𝛤. . . . 𝛤₲𝑛 ⊆

⋂𝑖=1
𝑛 ₲𝑖 ⊆ 𝑃. 

But, since 𝑃 is an IFPI and ₲1𝛤₲2𝛤. . . . 𝛤₲𝑛 ⊆ 𝑃, then ₲𝑖 ⊆ 𝑃 for some 𝑖. 

 

    (2) If 𝑃 = ⋂𝑖=1
𝑛 ₲𝑖, then 𝑃 ⊆ ₲𝑖 for some 𝑖, and from part (1), ₲𝑖 ⊆ 𝑃 for some 𝑖. 

Hence 𝑃 = 𝐺𝑖, for some 𝑖.  

Definition 5.3.10.  An IFPI 𝑃 in a 𝛤-Ring H is called an IF-associated prime ideal of an 

IFI 𝐺 if 𝑃 = √(𝐺: ℎ(𝜂,𝜃)) for some ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻). 

 

      Moreover, for an IFI 𝐺 of a 𝛤-Ring H. We define 𝐼𝐹 − 𝐴𝑆𝑆(𝐺) to be the set of all 

IFPIs associated with the IFI 𝐺, i.e., 

𝐼𝐹 − 𝐴𝑆𝑆(𝐺) = {√(𝐺: ℎ(𝜂,𝜃)): √(𝐺: ℎ(𝜂,𝜃)) is an IFPI of H, ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻)}. 

Theorem 5.3.11.  For IFI 𝐺 of a Noetherian 𝛤-Ring H Let 𝐺 = ⋂𝑖=1
𝑛 𝑇𝑖, be a minimal IF 

primary decomposition of 𝐺. Let 𝑃𝑖 = √𝑇𝑖, 1 ≤ 𝑖 ≤ 𝑛. Then 𝐼𝐹 − 𝐴𝑆𝑆(𝐺) = {𝑃𝑖, 𝑖 =

1,2, . . . , 𝑛} and these, are independent of the particular decomposition. 

Proof. Let 𝐺 = ⋂𝑖=1
𝑛 𝑇𝑖 with 𝑃𝑖 = √𝑇𝑖, 1 ≤ 𝑖 ≤ 𝑛 be the minimal IF primary 

decomposition of 𝐺. Consider any ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻), we have 

       (𝐺: ℎ(𝜂,𝜃)) = (⋂𝑖=1
𝑛 𝑇𝑖: ℎ(𝜂,𝜃)) = ⋂𝑖=1

𝑛 (𝑇𝑖: ℎ(𝜂,𝜃)). Hence √(𝐺: ℎ(𝜂,𝜃)) =

⋂𝑖=1
𝑛 √(𝑇𝑖: ℎ(𝜂,𝜃)). 
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        Also, by Proposition (5.3.2), if ℎ(𝜂,𝜃) ∈ 𝑇𝑗 then √(𝑇𝑗: ℎ(𝜂,𝜃)) = 𝜒𝐻 and if, ℎ(𝜂,𝜃) ∉

𝑇𝑗, then √(𝑇𝑗: ℎ(𝜂,𝜃)) = 𝑃𝑗, be an IFPI of H. So 

√(𝐺: ℎ(𝜂,𝜃)) = ⋂𝑖=1
𝑛 √(𝑇𝑖: ℎ(𝜂,𝜃)) = ⋂ℎ(𝜂,𝜃)∉𝑇𝑗

𝑃𝑗 

. 

Now, suppose that 𝑃 ∈ 𝐼𝐹 − 𝐴𝑆𝑆(𝐺), then 𝑃 = √(𝐺: ℎ(𝜂,𝜃)) be an IFPI of H, for some 

ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻). 

Since √(𝐺: ℎ(𝜂,𝜃)) = ⋂ℎ(𝜂,𝜃)∉𝑇𝑗
𝑃𝑗, then by Lemma (5.3.9)(2) we have √(𝐺: ℎ(𝜂,𝜃)) = 𝑃𝑗 

for some 𝑗. So, 𝑃 ∈ {𝑃𝑖, 𝑖 = 1,2, . . . , 𝑛}. Therefore, 𝐼𝐹 − 𝐴𝑆𝑆(𝐺) ⊆ {𝑃𝑖 , 𝑖 = 1,2, . . . , 𝑛}. 

Conversely, as the decomposition is minimal so ⋂𝑗≠𝑖=1
𝑛 𝑇𝑗 ⊈ 𝑇𝑖. Then ∀ 𝑖 ∈ {1,2, . . . , 𝑛}, ∃ 

(ℎ𝑖)(𝜂𝑖,𝜃𝑖)
∈ ⋂𝑗≠𝑖=1

𝑛 𝑇𝑗 and (ℎ𝑖)(𝜂𝑖,𝜃𝑖)
∉ 𝑇𝑖, we have 

√(𝐺: (ℎ𝑖)(𝜂𝑖,𝜃𝑖)
) = ⋂𝑗=1

𝑛
√(𝑇𝑗: (ℎ𝑗)(𝜂𝑗,𝜃𝑗)

) = 𝑃𝑖 

(Since all other’s √(𝑇𝑗: (ℎ𝑗)(𝜂𝑗,𝜃𝑗)
) = 𝜒𝐻, for 𝑗 ≠ 𝑖 by Proposition (5.3.2)). 

So, 𝑃𝑖 ∈ 𝐼𝐹 − 𝐴𝑆𝑆(𝐺). Therefore, {𝑃𝑖 , 𝑖 = 1,2, . . . , 𝑛} ⊆ 𝐼𝐹 − 𝐴𝑆𝑆(𝐺). 

Hence, 𝐼𝐹 − 𝐴𝑆𝑆(𝐺) = {𝑃𝑖, 𝑖 = 1,2, . . . , 𝑛}. Thus 𝐼𝐹 − 𝐴𝑆𝑆(𝐺) are independent of the 

particular decomposition.  

Example 5.3.12.  Let 𝐻 = 𝛤 = 𝑍𝑝1
𝑛1 × 𝑍𝑝2

𝑛2 × … . .× 𝑍
𝑝

𝑘

𝑛𝑘  be a comm. ring of order 𝑛 =

𝑝1
𝑛1𝑝2

𝑛2 … 𝑝𝑘
𝑛𝑘, where 𝑝𝑖 are distinct primes. Then H is a 𝛤-Ring. Let 𝐻 = ⟨ℎ1, ℎ2, … . , ℎ𝑘⟩ 

such that 𝑜(ℎ𝑖) = 𝑝𝑖
𝑛𝑖 , for 1 ≤ 𝑖 ≤ 𝑘. Let 𝑈0 = ⟨0⟩, 𝑈1 = ⟨ℎ1⟩, 𝑈2 = ⟨ℎ1, ℎ2⟩,........,𝑈𝑘 =

⟨ℎ1, ℎ2, . . . . . . . . . . , ℎ𝑘⟩ = 𝐻 be the chain of ideals of H such that 𝑈0 ⊂ 𝑈1 ⊂. . . . . . . . . ⊂

𝑈𝑘−1 ⊂ 𝑈𝑘 . 

Let 𝐺 be any IFI of H defined by 
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𝜇𝐺(ℎ) =

{
 
 

 
 

1 if ℎ ∈ 𝑈0

𝛼1 if ℎ ∈ 𝑈1 ∖ 𝑈0

𝛼2 if ℎ ∈ 𝑈2 ∖ 𝑈1

… … … . .
𝛼𝑘 if ℎ ∈ 𝑈𝑘 ∖ 𝑈𝑘−1

;  𝜈𝐺(ℎ) =

{
 
 

 
 

0 if ℎ ∈ 𝑈0

𝛽1 if ℎ ∈ 𝑈1 ∖ 𝑈0

𝛽2 if ℎ ∈ 𝑈2 ∖ 𝑈1

. . . . . . . . . . .
𝛽𝑘 if ℎ ∈ 𝑈𝑘 ∖ 𝑈𝑘−1.

 

 

where 1 = 𝛼0 ≥ 𝛼1 ≥. . . . . ≥ 𝛼𝑘  and 0 = 𝛽0 ≤ 𝛽1 ≤. . . . ≤ 𝛽𝑘  and the pair (𝛼𝑖, 𝛽𝑖) are 

called double pins, and the set ∧ (𝐺) = {(𝛼0, 𝛽0), (𝛼1, 𝛽1), . . . . . . , (𝛼𝑘, 𝛽𝑘)} is called the 

set of double pinned flags for the IFI 𝐺 of H (by Theorem (2.2.15)). 

Define IFSs ₲𝑖 on H as follows: 

𝜇₲𝑖
(ℎ) = {

1, if ℎ ∈ 𝐻𝑖

𝛼𝑖+1, if otherwise
; 𝜈₲𝑖

(𝑥) = {
0, if ℎ ∈ 𝐻𝑖

𝛽𝑖+1, otherwise.
 

where 𝛼𝑖, 𝛽𝑖 ∈ (0,1) s.t. 𝛼𝑖 + 𝛽𝑖 ≤ 1, for 1 ≤ 𝑖 ≤ 𝑘 and 𝛼𝑘+1 = 𝛼1, 𝛽𝑘+1 = 𝛽1 and 𝐻𝑖 =

𝑍𝑝1
𝑛1 ×. . . . .× 𝑍

𝑝
𝑖−1

𝑛𝑖−1 × ⟨0⟩ × 𝑍
𝑝

𝑖+1

𝑛𝑖+1 ×. . . . . . .× 𝑍
𝑝

𝑘

𝑛𝑘  is a PrI of H. ₲𝑖 are IFPrI of H. It can 

be easily checked that 𝐺 =∩𝑖=1
𝑛 ₲𝑖 is an IF primary decomposition of 𝐺. 

Example 5.3.13.  Consider 𝐻 = 𝛤 = ∏ 𝐙𝟐
∞
𝑖=1 , a direct product of infinitely many copies 

of the field 𝐙𝟐 = {0⃐ , 1⃐ } be a boolean ring. Then H is a 𝛤-Ring, which is not a Noetherian 

ring, as the strictly ascending chain of ideals 𝟎 ⊂ 𝐙𝟐 × 𝟎 ⊂ 𝐙𝟐 × 𝐙𝟐 × 𝟎 ⊂. . . . .. is not 

stationary. 

For every 𝜆𝑖 , 𝜁𝑖 ∈ [0,1) such that 𝜆𝑖 + 𝜁𝑖 ≤ 1, define 𝐺𝑖 ∈ 𝐼𝐹𝑆(𝐻) as 

𝜇₲𝑖
(ℎ) = {

1, if ℎ = ∏ 0⃐ 

∞

𝑖=1

𝜆𝑖 , if otherwise

; 𝜈₲𝑖
(ℎ) = {

0, if ℎ = ∏ 0⃐ 

∞

𝑖=1

𝜁𝑖 , if otherwise.

 

for all ℎ ∈ 𝐻. Then by Theorem (2.2.9), ₲𝑖 is an IFPI and hence the primary ideal of H. 

        Consider the IFI 𝐺 of H defined by 𝐺(ℎ) = (0,1), ∀ℎ ∈ 𝐻. Then 𝐺 has no IF 

primary decomposition in H, i.e., 𝐺 ≠ ⋂𝑖=1
𝑛 ₲𝑖, for any 𝑛 ∈ ℕ. 
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5.4 Conclusion 

This chapter, introduces and investigates the irreducibility of an IFI in a Γ-Ring. It is 

demonstrated that every IFI in a Noetherian Γ-Ring can be expressed as an intersection of 

a finite number of IFIrIs. Moreover, the IF version of the Lasker-Noether theorem is 

established for a commutative Noetherian Γ-Ring, demonstrating that every IFI G in such 

a ring can be decomposed into a finite intersection of IFPrIs. This decomposition is 

termed an IF primary decomposition. Additionally, it is shown that in the case of a 

minimal IF primary decomposition of an IFI G, the set of all IF-associated PIs of G 

remains independent of the specific decomposition. The potential extension of the IF 

primary decomposition theorem to other algebraic structures beyond commutative Γ-

Rings opens new avenues for research. In this context, our investigation of IF primary 

decomposition in a commutative Noetherian Γ-Ring establishes a new horizon and 

contributes to the advancement of further research endeavors. 
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Chapter 6 

 

Intuitionistic Fuzzy Structure Space Of 𝜞-

Ring 

 

6.1 Introduction 

This chapter, introduces a topology on IFPIs(H) of a commutative Γ-Ring H with 

identity, which results in a structure space named as IFSpec(H). The study further 

explores separation axioms, compactness, irreducibility, and connectedness in this 

structured space. 

 

6.2 Intuitionistic Fuzzy Structure Space Of 𝜞-Ring 

In this section, we introduce a topological structure on the collection 𝒳 of all IFPI of 𝛤-

Ring H and investigate some of its properties. 

Remark 6.2.1.  (i) 𝒳 = {𝑃: 𝑃 is an IFPI of 𝛤-Ring H} 

(ii) 𝒱(𝐺) = {𝑃 ∈ 𝒳: 𝐺 ⊆ 𝑃}, where 𝐺 is any 𝐼𝐹𝑆 of H. 

(iii) 𝒳(𝐺) = 𝒳\𝒱(𝐺),the complement of 𝒱(𝐺) in 𝒳, i.e., = { P ∈ 𝒳 : G ⊈ P } 

(iv) For any IFS 𝐵 of H, < 𝐵 > denotes the 𝐼𝐹𝐼 generated by 𝐵. 

Theorem 6.2.2.  Let H be a 𝛤-Ring and 𝜏 = {𝒳(𝐺): 𝐺 is an IFPI of 𝐻} = {𝑃 ∈ 𝒳: 𝐺 ⊈

𝑃}. Then, 𝜏 is a topology on 𝒳 and the pair (𝒳, 𝜏) is a topological space. 

Proof. Consider the trivial IFIs 𝐺 = 0̃ and 𝐵 = 1̃ of H. Then, 𝒱(𝐺) = 𝒱(0̃) = 𝒳 and 

𝒱(𝐵) = 𝒱(1̃) = ∅, so that 𝒳(0̃) = ∅ and 𝒳(1̃) = 𝒳 implies ∅, 𝒳 ∈ 𝜏. 

Next, let ₲1 and ₲2 be any two IFIs of H. Then 

𝐵 ∈ 𝒱(₲1) ∪ 𝒱(₲2) ⇒ ₲1 ⊆ 𝐵 or ₲2 ⊆ 𝐵 ⇒ ₲1 ∩ ₲2 ⊆ 𝐵 ⇒ 𝐵 ∈ 𝒱(₲1 ∩ ₲2) and  
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𝐵 ∈ 𝒱(₲1 ∩ ₲2) ⇒ ₲1 ∩ ₲2 ⊆ 𝐵 ⇒ ₲1𝛤₲2 ⊆ 𝐵 [ As ₲1𝛤₲2 ⊆ ₲1 ∩ ₲2 ] 

⇒ ₲1 ⊆ 𝐵 or ₲2 ⊆ 𝐵 [ As 𝐵 is IFPI of H] 

⇒ 𝐵 ∈ 𝒱(₲1) or 𝐵 ∈ 𝒱(₲2) ⇒ 𝐵 ∈ 𝒱(₲1) ∪ 𝒱(₲2). 

Hence, 𝒱(₲1) ∪ Ʋ(₲2) = 𝒱(₲1 ∩ ₲2) ⇒ 𝒳\(𝒱(₲1) ∪ 𝒱(₲2)) = 𝒳\𝒱(₲1 ∩ ₲2) ⇒

(𝒳\𝒱(₲1)) ∩ (𝒳\𝒱(₲2)) = 𝒳\𝒱(₲1 ∩ ₲2), i.e., 𝒳(₲1) ∩ 𝒳(₲2) = 𝒳(₲1 ∩ ₲2). 

From this, we conclude that 𝜏 is closed under finite intersections. 

Now, suppose that {₲𝑖: 𝑖 ∈ 𝛬} be any family of IFIs of H. It can be verified that 

∩ {𝒱(₲𝑖): 𝑖 ∈ 𝛬} = 𝒱(<∪ {₲𝑖: 𝑖 ∈ 𝛬} >). In another way, 

{𝒳(₲𝑖): 𝑖 ∈ 𝛬} = 𝒳(<∪ {₲𝑖: 𝑖 ∈ 𝛬} >). Hence, 𝜏 is closed under arbitrary unions. 

Hence, 𝜏 defines a topology on 𝒳.  

Remark 6.2.3.  The topological space (𝑋, 𝜏) defined in Theorem (6.2.2) is called the IF 

prime spectrum of H and is denoted by 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻), or, for convenience, we denote it by 

𝒳 only. 

Example 6.2.4.  (1) Consider 𝐻 = 𝛤 = ℤ, the ring of integers. Then H is a 𝛤-Ring. 

Suppose that 𝑝 ∈ ℤ is a prime integer. Then for every 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1, define 

𝑃𝜆,𝜁 ∈ 𝐼𝐹𝑆(𝐻) as 

𝜇𝑃𝜆,𝜁
(ℎ) = {

1, if ℎ ∈< 𝑝 >
𝜆, if otherwise

; 𝜈𝑃𝜆,𝜁
(𝑥) = {

0, if ℎ ∈< 𝑝 >
𝜁, otherwise.

 

for all ℎ ∈ 𝐻. Then by Theorem (2.2.9), 𝑃𝜆,𝜁 is an IFPI of H. 

Thus, 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻) = {𝑃𝜆,𝜁 , where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1 and 𝑝 is prime element of ℤ}. 

(2) Consider 𝐻 = 𝛤 = 𝐙𝟐, where 𝐙𝟐 = {0⃐ , 1⃐ } be a boolean ring. Then H is a 𝛤-Ring and 

for every 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1, define 𝑃𝜆,𝜁 ∈ 𝐼𝐹𝑆(𝐻) as 

𝜇𝑃𝜆,𝜁
(ℎ) = {

1, if ℎ = 0⃐ 

𝜆, if ℎ = 1⃐ 
; 𝜈𝑃𝜆,𝜁

(𝑥) = {
0, if ℎ = 0⃐ 

𝜁, if ℎ = 1⃐ .
 

for all ℎ ∈ 𝐻. Then by Theorem (2.2.9), 𝑃𝜆,𝜁 is an IFPI of H. 

Thus, 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻) = {𝑃𝜆,𝜁 , where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1}. 

Proposition 6.2.5.  If 𝑓 is a 𝐻𝑜𝑚𝐻1

 𝐻2, then 𝑓(ℎ(ϐ,𝜗)) = (𝑓(ℎ))
(ϐ,𝜗)

, ∀ℎ ∈ 𝐻1, ϐ, ϑ ∈

(0,1] s.t. ϐ+ϑ ≤ 1. 
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Proof. Let 𝑘 ∈ 𝐻2 be any element, then 𝑓(ℎ(ϐ,𝜗))(𝑘) = (𝜇
𝑓(ℎ((ϐ,𝜗)))

(𝑘), 𝜈𝑓(ℎ(ϐ,𝜗))
(𝑘)),  

Where 

 

𝜇𝑓(ℎ(ϐ,𝜗))
(𝑘) = 𝑆𝑢𝑝{𝜇ℎ(ϐ,𝜗)

(𝑝):𝑓(𝑝) = 𝑘}={
  ϐ, 𝑖𝑓 𝑝 = ℎ (𝑖. 𝑒. , 𝑘 = 𝑓(ℎ));

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
=𝜇(𝑓(ℎ))

(ϐ,𝜗)
(𝑘)                     

and 

𝜈𝑓(ℎ(ϐ,𝜗))
(𝑘) = 𝐼𝑛𝑓{𝜈ℎ(ϐ,𝜗)

(𝑝):𝑓(𝑝) = 𝑦} = {
  𝜗, 𝑖𝑓 𝑝 = ℎ (𝑖. 𝑒. , 𝑘 = 𝑓(ℎ))
1                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

=𝜈(𝑓(ℎ))
(ϐ,𝜗)

(𝑘)  

 

Hence 𝑓(ℎ(ϐ,𝜗)) = (𝑓(ℎ))
(ϐ,𝜗)

.  

Theorem 6.2.6.  Let H be a 𝛤-Ring and ℎ, 𝑘 ∈ 𝐻 and ϐ, 𝜗 ∈ (0,1] s.t.ϐ+ϑ ≤ 1. Then the 

following statements are true: 

(i) 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒳(𝑘(ϐ,𝜗)) = 𝒳((ℎ𝛾𝑘)(ϐ,𝜗)), for all 𝛾 ∈ 𝛤. 

(ii) 𝒳(ℎ(ϐ,𝜗)) = ∅ iff ℎ is nilpotent. 

(iii) 𝒳(ℎ(ϐ,𝜗)) = 𝒳 if ℎ is a unit in H. 

Proof. (i) Let ℎ, 𝑘 ∈ 𝐻, 𝛾 ∈ 𝛤 and and ϐ, 𝜗 ∈ (0,1] s.t .ϐ+ϑ ≤ 1. Let 𝑃 ∈ 𝒳. Then 

𝜇𝑃(0𝐻) = 1, 𝜈𝑃(0𝐻) = 0, 𝐼𝑚𝑔(𝑃) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤

1, 𝑃∗ is a PI of H ( by Theorem (2.2.9)). 

Suppose 𝑃 ∈ 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒳(𝑘(ϐ,𝜗)), then 𝑃 ∈ 𝒳(ℎ(ϐ,𝜗)) and 𝑃 ∈ 𝒳(𝑘(ϐ,𝜗)) 

⇔ ℎ(ϐ,𝜗) ⊈ 𝑃 , 𝑘(ϐ,𝜗) ⊈ 𝑃 ⇔ 𝜇𝑃(ℎ) < ϐ, 𝜈𝑃(ℎ) > 𝜗 and 𝜇𝑃(𝑘) < ϐ, 𝜈𝑃(𝑘) > 𝜗 

⇔ ϐ = 𝜇ℎ(ϐ,𝜗)
(ℎ) > 𝜇𝑃(ℎ), 𝜗 = 𝜈ℎ(ϐ,𝜗)

(ℎ) < 𝜈𝑃(ℎ) and ϐ = 𝜇𝑘(ϐ,𝜗)
(𝑘) > 𝜇𝑃(𝑘), 𝜗 =

𝜈𝑘(ϐ,𝜗)
(𝑘) < 𝜈𝑃(𝑘) 

⇔ ℎ, 𝑘 ∉ 𝑃∗, for if ℎ, 𝑘 ∈ 𝑃∗, then ϐ > 𝜇𝑃(ℎ) = 𝜇𝑃(𝑘) = 1 and 𝜗 < 𝜈𝑃(ℎ) = 𝜈𝑃(𝑘) = 0 

⇔ ℎ𝛾𝑘 ∉ 𝑃∗, for all 𝛾 ∈ 𝛤, as 𝑃∗ is a PI of H. 

⇔ ϐ > 𝜇𝑃(ℎ𝛾𝑘) and 𝜗 < 𝜈𝑃(ℎ𝛾𝑘), since 𝐼𝑚𝑔(𝑃) = {(1,0), (𝜆, 𝜁)}, 𝜆, 𝜁 ∈ [0,1) such 

that 𝜆 + 𝜁 ≤ 1 
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⇔ (ℎ𝛾𝑘)(ϐ,𝜗) ⊈ 𝑃 ⇔ 𝑃 ∈ 𝒳((ℎ𝛾𝑘)(ϐ,𝜗)). 

This proves that 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒳(𝑘(ϐ,𝜗)) = 𝒳((ℎ𝛾𝑘)(ϐ,𝜗)), for all 𝛾 ∈ 𝛤. 

      (ii) Suppose 𝐽 be any PI of H and 𝜒𝐽 be the IFCF of 𝐽, then from Theorem (2.2.9) we 

have 𝜒𝐽 ∈ 𝒳. Further, if 𝒳(ℎ(ϐ,𝜗)) = ∅ then 𝒱(ℎ(ϐ,𝜗)) = 𝒳 that implies ℎ(ϐ,𝜗) ⊆ 𝜒𝐽 and 

therefore, 𝜇𝜒𝐽
(ℎ) ≥ ϐ > 0 and 𝜈𝜒𝐽

(ℎ) ≤ 𝜗 < 1 so that 𝜇𝜒𝐽
(ℎ) = 1 and 𝜈𝜒𝐽

(ℎ) = 0 and 

so ℎ ∈ 𝐽. Thus ℎ ∈∩ {𝐽: J is  PI of H }. As the prime radical is subset of the nil radical so 

ℎ is nilpotent. 

      Conversely, assume that 𝑥 is nilpotent, then for every 𝛾 ∈ 𝛤, ∃ 𝑛 ∈ ℕ depending on 𝛾 

so that 

(ℎ𝛾)𝑛ℎ = 0𝐻. Let 𝑃 ∈ 𝒳 be any element. Then 𝜇𝑃((ℎ𝛾)𝑛ℎ) = 𝜇𝑃(0𝐻) = 1 and 

𝜈𝑃((ℎ𝛾)𝑛ℎ) = 𝜈𝑃(0𝐻) = 0. Therefore 1 = 𝜇𝑃((ℎ𝛾)𝑛ℎ) ≥ 𝜇𝑃(ℎ) and 0 = 𝜈𝑃((ℎ𝛾)𝑛ℎ) ≤

𝜈𝑃(ℎ) implies that 𝜇𝑃(ℎ) = 1 and 𝜈𝑃(ℎ) = 0. So ℎ ∈ 𝑃∗. But 𝑃∗ is a PI of H. Hence ϐ =

𝜇ℎ(ϐ,𝜗)
(ℎ) ≤ 𝜇𝑃(ℎ) and 𝜗 = 𝜈ℎ(ϐ,𝜗)

(ℎ) ≥ 𝜈𝑃(ℎ), whence ℎ(ϐ,𝜗) ⊆ 𝑃, ∀𝑃 ∈ 𝒳. Thus 

𝒱 (ℎ((ϐ,𝜗))) = 𝒳, i.e., 𝒳(ℎ(ϐ,𝜗)) = ∅. 

 

      (iii) Suppose 𝐽 and 𝜒𝐽 be same as in part (ii). Now if 𝒳(ℎ(ϐ,𝜗)) = 𝒳 then 𝒱(ℎ(ϐ,𝜗)) =

∅ that implies ℎ(ϐ,𝜗) ⊈ 𝜒𝐽 and thus 𝜇𝜒𝐽
(ℎ) < ϐ and 𝜈𝜒𝐽

(ℎ) > 𝜗 so that ℎ ∉ 𝐽. Hence ℎ ∉

∪ {𝐽: J is a PI of H }. This shows that ℎ is a unit. 

     The following example shows that the converse of Theorem (6.2.6)(iii) is not true in 

general. This is a deviation of the result from the crisp theory. 

Example 6.2.7.  Consider H, 𝛤, and 𝒳 = 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻) as in Example (6.2.4)(1). 

Define 𝐺 ∈ 𝒳 as follows: 

𝜇𝐺(ℎ) = {
1, if ℎ ∈< 2 >
0.6, if otherwise

; 𝜈𝐺(ℎ) = {
0, if ℎ ∈< 2 >
0.3, otherwise.

 

Take ϐ = 0.5, 𝜗 = 0.4 and ℎ = 1. Then we see that IFP ℎ(ϐ,𝜗) ⊆ 𝐺, hence 𝐺 ∉ 𝒳(ℎ(ϐ,𝜗)), 

and consequently 𝒳 ≠ 𝒳(ℎ(ϐ,𝜗)). 

Proposition 6.2.8.  The subfamily {𝒳(ℎ(ϐ,𝜗)): ℎ ∈ 𝐻, ϐ, 𝜗 ∈ (0,1] s.t. ϐ + 𝜗 ≤ 1} of 𝜏 is a 

base for 𝜏. 
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Proof. Let 𝒳(𝐺) ∈ 𝜏, where 𝐺 is an IFI of H. Let 𝐵 ∈ 𝒳(𝐺). Then 𝐺 ⊈ 𝐵 
 

⇒ there exit 

ℎ ∈ 𝐻 s.t. 𝜇𝐺(ℎ) > 𝜇𝐵(ℎ) and 𝜈𝐺(ℎ) < 𝜈𝐵(ℎ). Thus ℎ ∉ 𝐵∗ and hence 𝜇𝐵(ℎ) = 𝜆 and 

𝜈𝐵(ℎ) = 𝜁, for some 𝜆, 𝜁 ∈ [0,1) with 𝜆 + 𝜁 ≤ 1. 

Let 𝜇𝐺(ℎ) = 𝛼 > 0, 𝜈𝐺(ℎ) = 𝛽 < 1. Clearly ℎ(ϐ,𝜗) ⊈ 𝐵 and so 𝐵 ∈ 𝒳(ℎ(ϐ,𝜗)). 

       Now, 𝒱(𝐺) ⊆ 𝒱(ℎ(ϐ,𝜗)), because if 𝑃 ∈ 𝒱(𝐺) then 𝐺 ⊆ 𝑃 and so 𝜇ℎ(ϐ,𝜗)
(ℎ) = ϐ =

𝜇𝐺(ℎ) < 𝜇𝑃(ℎ) and 𝜈ℎ(ϐ,𝜗)
(ℎ) = 𝜗 = 𝜈𝐺(ℎ) > 𝜈𝑃(ℎ). This implies that ℎ(ϐ,𝜗) ⊆ 𝑃 and 

thus 𝑃 ∈ 𝒱(ℎ(ϐ,𝜗)). Hence 𝒳(ℎ(ϐ,𝜗)) ⊆ 𝒳(𝐺). Thus 𝐵 ∈ 𝒳(ℎ(ϐ,𝜗)) ⊆ 𝒳(𝐺). Hence the 

subfamily {𝒳(ℎ(ϐ,𝜗)): ℎ ∈ 𝐻, ϐ, 𝜗 ∈ (0,1] s.t. ϐ + 𝜗 ≤ 1} is a base for 𝜏.  

Proposition 6.2.9.  The subset  𝒴 = {P ∈ 𝒳: Img(P) = {(1,0), (λ, 𝜁)}, where λ, 𝜁 ∈ [0,1) 

s.t. λ + 𝜁 ≤ 1}, is compact w.r.t. the subspace topology. 

Proof. The family {𝒳 (ℎ((ϐ,𝜗))) ∩ 𝒴: ℎ ∈ 𝐻, and ϐ ∈ (𝜆, 1] and 𝜗 ∈ [0, 𝜁) such that ϐ +

𝜗 ≤ 1} forms a base for 𝒴 in the same way as explained in previous Theorem. Now, let 

us consider that {𝒳((ℎ𝑖)(ɱ,ɳ)) ∩ 𝒴: 𝑖 ∈ 𝛬 and (ɱ, ɳ) ∈ 𝐾 × 𝑆 ⊆ (𝜆, 1] × [0, 𝜁)} is a 

covering of 𝒴 taken from the basic open sets. Suppose ϐ = 𝑆𝑢𝑝{ɱ: ɱ ∈ 𝐾} and 𝜗 =

𝐼𝑛𝑓{ɳ: ɳ ∈ 𝑆}. Then the family {𝒳((ℎ𝑖)(ϐ,𝜗)) ∩ 𝒴: 𝑖 ∈ 𝛬} also covers 𝒴. Now, 

 

𝒴 =∪ {𝒳((ℎ𝑖)(ϐ,𝜗)) ∩ 𝒴: 𝑖 ∈ 𝛬}

= (∪ {𝒳((ℎ𝑖)(ϐ,𝜗)): 𝑖 ∈ 𝛬}) ∩ 𝒴

= (𝒳\𝒱(∪ {(ℎ𝑖)(ϐ,𝜗): 𝑖 ∈ 𝛬})) ∩ 𝒴

= (𝒳 ∩ 𝒴) ∖ (𝒱(∪ {(ℎ𝑖)(ϐ,𝜗): 𝑖 ∈ 𝛬}) ∩ 𝒴)

= 𝒴 ∖ (𝒱(∪ {(ℎ𝑖)(ϐ,𝜗): 𝑖 ∈ 𝛬}) ∩ 𝒴).

 

This shows that 𝒱(∪ {(ℎ𝑖)(ϐ,𝜗): 𝑖 ∈ 𝛬}) ∩ 𝒴 = ∅. Further, suppose that 𝐽 be any PI of 𝛤-

Ring H. Consider an IFI 𝐺 of H given by 

𝜇𝐺(ℎ) = {
1, if ℎ ∈ 𝐽
𝛼, if otherwise

; 𝜈𝐺(ℎ) = {
0, if ℎ ∈ 𝐽
𝛽, if otherwise

. 

Clearly, 𝐺 is an IFPI of H and 𝐺 ∈ 𝒴. So 𝐺 ∉ 𝒱(∪ {(ℎ𝑖)(ϐ,𝜗): 𝑖 ∈ 𝛬}). Hence 

(ℎ𝑗)(ϐ,𝜗)
is not proper subset of 𝐺 for some 𝑗 ∈ 𝛬. Thus 𝛾 > 𝜇𝐺(ℎ𝑗) and 𝛿 < 𝜈𝐺(ℎ𝑗) for 
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some 𝑗 ∈ 𝛬. As a result, ℎ𝑗 ∉ 𝐽. This proves that there is no PI of H containing the set 

{ℎ𝑖: 𝑖 ∈ 𝛬}. So this implies, < {ℎ𝑖: 𝑖 ∈ 𝛬} >= 𝐻. Let ∑ [𝛿𝑙, 𝑒𝑙]
𝑛
𝑙=1  be the right unity of 𝛤-

Ring H, where 𝛿𝑙 ∈ 𝛤, 𝑒𝑙 ∈ 𝐻 for all 𝑙 = 1,2, . . . . , 𝑛 and 𝑒𝑙 = ∑ 𝑚𝜃𝑙

𝑛𝑙
𝜃=1 𝛾𝜃𝑙

ℎ𝜃𝑙
, where 𝑛𝑙 

is a finite positive integer, 𝑚𝜃𝑙
∈ 𝐻, ℎ𝜃𝑙

∈ {ℎ𝑗: 𝐽 ∈ 𝛬}, 𝛾𝑞𝑙
∈ 𝛤 for all 𝜃 = 1,2, . . . , 𝑛𝑙 and 

𝑙 = 1,2, . . . . 𝑛. Now we claim that 𝒱 (∪𝑙=1
𝑛 ∪𝜃=1

𝑛𝑙 (ℎ𝜃𝑙
)

(ϐ,𝜗)
) ∩ 𝒴 = ∅, as 𝐺 ∈

𝒱 (∪𝑙=1
𝑛 ∪𝜃=1

𝑛𝑙 (ℎ𝜃𝑙
)

(ϐ,𝜗)
) ∩ 𝒴 implies ∪𝑙=1

𝑛 ∪𝜃=1
𝑛𝑙 (ℎ𝜃𝑙

)
(ϐ,𝜗)

⊆ 𝐺 and 𝐼𝑚𝑔(𝐺) =

{(1,0), (𝛼, 𝛽)}. This imply 

ϐ = 𝜇
(ℎ𝜃𝑙

)
(ϐ,𝜗)

(ℎ𝜃𝑙
) ≤ 𝜇𝐺(ℎ𝜃𝑙

) and 𝜗 = 𝜈
(ℎ𝜃𝑙

)
(ϐ,𝜗)

(ℎ𝜃𝑙
) ≥ 𝜈𝐺(ℎ𝜃𝑙

), ∀ 𝜃 = 1,2, . . , 𝑛𝑙 , 𝑙 =

1,2, . . , 𝑛. 

⇒ 𝜇𝐺(ℎ𝜃𝑙
) = 1, 𝜈𝐺(ℎ𝜃𝑙

) = 0, ∀ 𝜃 = 1,2, . . . , 𝑛𝑙, 𝑙 = 1,2, . . . , 𝑛, since ϐ > 𝛼, 𝜗 < 𝛽. 

⇒ ℎ𝜃𝑙
∈ 𝐺∗ ∀ 𝜃 = 1,2, . . . , 𝑛𝑙 , 𝑙 = 1,2, . . . , 𝑛 

⇒ 𝑒𝑙 ∈ 𝐺∗ ∀ 𝑙 = 1,2, . . . , 𝑛 

⇒ ℎ𝑗 = ∑ ℎ𝑗
𝑛
𝑖=1 𝛿𝑙𝑒𝑙 ∈ 𝐺∗ = 𝐽, which is a contradiction. Thus we have 

 

𝒴 = 𝒴\ (𝒱 (∪𝑙=1
𝑛 ∪𝜃=1

𝑛𝑙 (ℎ𝜃𝑙
)

(ϐ,𝜗)
) ∩ 𝒴)

= (𝒳 ∩ 𝒴)\ (𝒱 (∪𝑙=1
𝑛 ∪𝜃=1

𝑛𝑙 (ℎ𝜃𝑙
)

(ϐ,𝜗)
) ∩ 𝒴)

= (𝒳\𝒱 (∪𝑙=1
𝑛 ∪𝜃=1

𝑛𝑙 (ℎ𝜃𝑙
)

(ϐ,𝜗)
)) ∩ 𝒴

= (∪𝑙=1
𝑛 ∪𝜃=1

𝑛𝑙 𝒳(ℎ𝜃𝑙
)

(ϐ,𝜗)
) ∩ 𝒴

=∪𝑙=1
𝑛 ∪𝑞=1

𝑛𝑙 (𝒳(ℎ𝜃𝑙
)

(ϐ,𝜗)
∩ 𝒴) .

 

 

This proves that {𝒳 ((ℎ𝜃𝑙
)

(ϐ,𝜗)
) ∩ 𝒴: 𝜃 = 1,2,...,𝑛𝑙, l = 1,2,..., 𝑛 } covers 𝒴. Hence 𝒴 is 

compact.  
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6.3 Separation Axioms Of IF Spec(H) 

In this section the conditions for a topological space 𝒳 to be a 𝑇0 space and 𝑇1 space in 

intuitionistic fuzzy environment are discussed.  

Proposition 6.3.1.  The topological space 𝒳 is 𝑇0. 

Proof. Suppose ₲1, ₲2 ∈ 𝒳 s.t. ₲1 ≠ ₲2. Then either ₲1 ⊈ ₲2 or ₲2 ⊈ ₲1. Let ₲2 ⊈ ₲1. 

Then ₲2 ∈ 𝒳(₲1). Also, ₲1 ∉ 𝒳(₲1) and 𝒳(₲1) are open. Therefore, 𝒳 is 𝑇0 space.  

        In the following examples, we depict that ∃𝑠 some element of the basis of 𝒳 that is 

not closed, and it is even possible that 𝒳 is not 𝑇1 and hence not 𝑇2. These results are also 

deviations from the results in crisp theory. 

Example 6.3.2.  Consider H and 𝛤 as in Example (6.2.4)(2). 

Then 𝒳 = {𝑃𝜆,𝜁 , where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1}, where 𝑃𝜆,𝜁 is defined as 

𝜇𝑃𝜆,𝜁
(ℎ1) = {

1, if ℎ1 = 0⃐ 

𝜆, if ℎ1 = 1⃐ 
; 𝜈𝑃𝜆,𝜁

(ℎ1) = {
0, if ℎ1 = 0⃐ 

𝜁, if ℎ1 = 1⃐ .
 

∀ ℎ1 ∈ 𝐻. Now we show that if ℎ1 = 1⃐  and ϐ = 0.6, 𝜗 = 0.3, then 𝒳(1⃐ (ϐ,𝜗)) is not 

closed. Suppose on the contrary that 𝒳(1⃐ (ϐ,𝜗)) is closed. Then ∃ subset 𝐾 × 𝑆 of [0,1] ×

[0,1] s.t. 𝒳(1⃐ (ϐ,𝜗)) =∩ {𝒱(𝑘(ɱ,ɳ)): (ɱ, ɳ) ∈ 𝐾 × 𝑆, 𝑘 ∈ 𝐙𝟐}. If 𝑘 = 1⃐  and (ɱ, ɳ) ∈ 𝐾 ×

𝑆 = (ϐ, 1] × [0, 𝜗) s.t. ɱ + ɳ ≤ 1, then it is not difficult to check that 𝒳(1⃐ (ϐ,𝜗)) ⊈

𝒱(1⃐ (ɱ,ɳ)) and if 𝑘 = 1⃐  and ɱ = 0, ɳ = 1 or 𝑘 = 0⃐ , (ɱ, ɳ) ∈ [0,1] × [0,1], then it is seen 

that 𝒱(𝑘(ɱ,ɳ)) = 𝒳. Thus 𝒳(1⃐ (ϐ,𝜗)) must be equal to 𝒳, which is a contradiction. 

Therefore 𝒳(1⃐ (ϐ,𝜗)) is not closed. 

Example 6.3.3.  Consider the space 𝒳 as in Example (6.3.2). Choose 𝑃0.6,0.3, 𝑃0.5,0.4 ∈ 𝒳. 

Let 𝑊 be an open set containing 𝑃0.6,0.3. Then 𝑊 =∩ {𝒳(1⃐ (ɱ,ɳ)): (ɱ, ɳ) ∈ 𝐾 × 𝑆} for 

some 𝐾 × 𝑆 ⊆ (0,1] × (0,1]. Thus there exists (ɱ, ɳ) ∈ 𝐾 × 𝑆 such that 𝑃0.6,0.3 ∈

𝒳(1⃐ (ɱ,ɳ)). So ɱ > 0.6 > 0.5 and ɳ < 0.3 < 0.4. Consequently 𝑃0.5,0.4 ∈ 𝒳(1⃐ (ɱ,ɳ)) ⊆

𝑊. In other words, any open neighborhood of 𝑃0.6,0.3 also contains 𝑃0.5,0.4. Thus 𝒳 is not 

𝑇1. 
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Proposition 6.3.4.  Let H be a 𝛤-Ring and  ₲1 ∈ 𝒳 then 𝒱(₲1) = 𝑐𝑙{₲1}, the closure of 

₲1 in 𝒳. Further ₲2 ∈ 𝑐𝑙{₲1} iff ₲1 ⊆ ₲2, where ₲1, ₲2 ∈ 𝒳. 

Proof. Since 𝒱(₲1) is a closed subset of 𝒳 containing ₲1. Therefore 𝑐𝑙{₲1} ⊆ 𝒱(₲1) 

For the reverse inclusion, consider ₲2 ∈ 𝒳 s.t. ₲2 ∉ 𝑐𝑙{₲1}. Then, ∃ an open set 𝒳(𝐶) 

where 𝐶 is an IFI of H containing ₲2 but not ₲1. Therefore, 𝐶 ⊈ ₲2 but 𝐶 ⊆ ₲1. So ₲1 ⊈

₲2 and hence ₲2 ∉ 𝒱(₲1). Thus 𝒱(₲1) ⊆ 𝑐𝑙{₲1}. Hence 𝒱(₲1) = 𝑐𝑙{₲1}. 

      Further, ₲2 ∈ 𝑐𝑙{₲1} iff ₲2 ∈ 𝒱(₲1), which is equivalent to ₲1 ⊆ ₲2.  

Proposition 6.3.5.  Let 𝒴 be the same as in proposition (6.2.9). If ₲1 ∈ 𝒴, then {₲1} is 

closed in 𝒴 iff  ₲1 is an IFMI of H. ( In other words, 𝒴 is 𝑇1 iff every singleton element of 

𝒴 is an IFMI of H). 

Proof. Let ₲1 ∈ 𝒴 and {₲1} be closed. Then 𝒱(₲1) = 𝑐𝑙{₲1} = {₲1}. Hence 𝒱(₲1) ∩ 𝒴 =

{₲1}, by proposition (6.3.4). Now, we show that ₲1 is an IFMI. As ₲1 ∈ 𝒴, 𝐼𝑚𝑔(₲1) =

{(1,0), (𝜆, 𝜁)}. So it is left to prove that the ideal ₲1∗
= {ℎ ∈ 𝐻: 𝜇₲1

(ℎ) = 1 and 𝜈₲1
(ℎ) =

0} is maximal. For this, it is enough to show that there is no PI of H properly containing 

₲1∗
. Let 𝐽 be a PI of H properly containing ₲1∗

. 

     Let ₲2 be an IFI of H defined by 

 

              𝜇₲2
(ℎ) = {

1, if ℎ ∈ 𝐽
𝜆, if otherwise

; 𝜈₲2
(ℎ) = {

0, if ℎ ∈ 𝐽
𝜁, if otherwise

, where 𝜆 + 𝜁 ≤ 1. 

Then ₲2 ∈ 𝒴 and ₲1 are properly contained in ₲2. So this cannot happen that 𝒱(₲1) ∩

𝒴 = {₲1}. This proves that ₲1∗
 is a MI of H and so ₲1 is an IFMI of H. 

 

       Conversely, let ₲1 ∈ 𝒴 and ₲1 be an IFMI. Then the ideal ₲1∗
= {ℎ ∈ 𝐻: 𝜇₲1

(ℎ) =

1 and 𝜇₲1
(ℎ) = 0} is the MI of H. We claim that 𝒱(₲1) ∩ 𝒴 = {₲1}. Clearly, {₲1} ⊆

𝒱(₲1) ∩ 𝒴. Next 

₲2 ∈ 𝒱(₲1) ∩ 𝒴 ⇒ 𝐺∗ ⊆ ₲2∗
 ⇒ ₲1∗

= ₲2∗
 

since ₲1∗
 is a maximal ideal. Thus we have ₲1 = ₲2, since 𝐼𝑚𝑔(₲1) = 𝐼𝑚𝑔(₲2) =

{(1,0), (𝜆, 𝜁)}. Therefore, 𝒱(₲1) ∩ 𝒴 = {₲1}. Consequently, {₲1} is a closed subset of 𝒴.  
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      We know that a topological space 𝒳 is Hausdorff (or 𝑇2 space), if and only if for ℎ ≠

𝑘 be two points of 𝒳, then ∃ two disjoint open sets one containing 𝑥 and another 

containing 𝑦. 

 Theorem 6.3.6.  Let H be a 𝛤-Ring whose every PI is MI. Then the space 𝒳 =

𝐼𝐹𝑆𝑝𝑒𝑐(𝐻) is not 𝑇2. 

Proof. For the proof, we show that ∃ two distinct elements ₲1,  𝑎𝑛𝑑 ₲2 of 𝒳 =

𝐼𝐹𝑆𝑝𝑒𝑐(𝐻) cannot be separated by two disjoint basic open sets. 

Consider a prime ideal 𝐽 and two IFPI ₲1 and ₲2 of H as follows 

 

              𝜇₲1
(ℎ) = {

1, if ℎ ∈ 𝐽
0.1, if otherwise

;  𝜈₲1
(ℎ) = {

0, if ℎ ∈ 𝐽
0.2, if otherwise

; 

 

             𝜇₲2
(ℎ) = {

1, if ℎ ∈ 𝐽
0.3, if otherwise

;  𝜈₲2
(ℎ) = {

0, if ℎ ∈ 𝐽
0.4, if otherwise

. 

 

Consider 𝒳(ℎ(ϐ,𝜗)), and 𝒳(𝑘(ϐ,𝜗)) be two basic open sets in 𝒳 containing ₲1 and ₲2 

respectively, where ℎ, 𝑘 ∈ 𝐻 and ϐ,ϑ ∈ (0,1] s.t. ϐ+ϑ ≤ 1. Then ℎ(ϐ,𝜗) ⊈ ₲1 and 𝑘(ϐ,𝜗) ⊈

₲2 and so ℎ ∉ ₲1∗
= 𝐽 and 𝑘 ∉ ₲2∗

= 𝐽. Since 𝐽 is a PI in H, so ℎ𝛾𝑘 ∉ 𝐽, for every 𝛾 ∈ 𝛤. 

Then ℎ𝛾𝑘 is not nilpotent and so by Theorem (6.2.6) (i) and (ii) we have 𝒳(ℎ(ϐ,𝜗)) ∩

𝒳(𝑘(ϐ,𝜗)) = 𝑋((ℎ𝛾𝑘)(ϐ,𝜗)) ≠ ∅. Hence 𝒳 is not 𝑇2.  

Theorem 6.3.7.  Let H be a Boolean 𝛤-Ring with unity e. Let 𝜆, 𝜁 ∈ [0,1) be s.t. 𝜆 + 𝜁 ≤

1 and suppose 𝒴 = {𝑃 ∈ 𝒳: 𝐼𝑚𝑔(𝑃) = {(1,0), (𝜆, 𝜁)}}, ℎ, 𝑘 ∈ 𝐻, and ϐ, 𝜗 ∈

(0,1] s.t. ϐ + 𝜗 ≤ 1. Then: 

(i) The set 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒴 is a clopen set in 𝒴, provided ϐ > 𝜆 and 𝜗 < 𝜁. 

(ii) 𝒳(ℎ(ϐ,𝜗)) ∪ 𝒳(𝑘(ϐ,𝜗)) = 𝒳(𝑝(ϐ,𝜗)) for some 𝑝 ∈ 𝐻. 

(iii)  𝒴 is 𝑇2 𝑠𝑝𝑎𝑐𝑒. 

Proof. (i) As 𝒳(ℎ(ϐ,𝜗)) is an open set in 𝒳, then 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒴 will also be an open set 

in 𝒴. We now show that 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒴 = 𝒱((e − ℎ)(ϐ,𝜗)) ∩ 𝒴. [ This would simply 

imply that 𝒳(ℎ(ϐ,𝜗)) is closed set in 𝒴. 
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      If 𝐺 ∈ 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒴 then 𝜇𝐺(ℎ) < ϐ, 𝜈𝐺(ℎ) > 𝜗, but 𝐼𝑚𝑔(𝐺) = {(1,0), (𝜆, 𝜁)} so 

that 𝜇𝐺(ℎ) = 𝜆, 𝜈𝐺(ℎ) = 𝜁. Hence ϐ > 𝜆 and 𝜗 < 𝜁 and 𝑥 ∉ 𝐺∗. This implies that ϐ > 𝜆 

and 𝜗 < 𝜁 and e − ℎ ∈ 𝐺∗, since ℎ𝛤(e − ℎ) = ℎ𝛤e − ℎ𝛤ℎ = ℎ − ℎ = 0 ∈ 𝐺∗ and the 

ideal 𝐺∗ is prime implies that (e − ℎ) ∈ 𝐺∗. Is a result, 𝜇𝐺(e − ℎ) = 1 and 𝜈𝐺(e − ℎ) = 0 

so that (e − ℎ)(ϐ,𝜗) ⊆ 𝐺 and thus 𝐺 ∈ 𝒱 ((e − ℎ)((ϐ,𝜗))) ∩ 𝒴. 

 

      Conversely, let 𝐺 ∈ 𝒱((e − ℎ)(ϐ,𝜗)) ∩ 𝒴 then (e − ℎ)(ϐ,𝜗) ⊆ 𝐺 and 𝐼𝑚𝑔(𝐺) =

{(1,0), (𝜆, 𝜁)} which implies that 𝜂 ≤ 𝜇𝐺(e − ℎ) and 𝜃 ≥ 𝜈𝐺(e − ℎ). Hence 𝜆 <

𝜇𝐺(e − ℎ) and 𝜁 > 𝜇𝐺(e − ℎ) and thus 𝜇𝐺(e − ℎ) = 1 and 𝜈𝐺(e − ℎ) = 0. It follows that 

e − ℎ ∈ 𝐺∗ and hence ℎ ∈ 𝐺∗ so that 𝜇𝐺(ℎ) = 𝜆 < ϐ and 𝜈𝐺(ℎ) = 𝜁 > 𝜗. This means that 

ℎ(ϐ,𝜗) ⊈ 𝐺 and thus 𝐺 ∈ 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒴. Hence 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒴 = 𝒱((e − ℎ)(ϐ,𝜗)) ∩ 𝒴. 

 

     (ii) If 𝐺 ∈ 𝒳(ℎ(ϐ,𝜗)) ∪ 𝒳(𝑘(ϐ,𝜗)) then ℎ(ϐ,𝜗) ⊈ 𝐺 or 𝑘(ϐ,𝜗) ⊈ 𝐺 (which mean that 

𝜇𝐺(ℎ) < ϐ and 𝜈𝐺(ℎ) > 𝜗 or 𝜇𝐺(𝑘) < ϐ and 𝜈𝐺(𝑘) > 𝜗 ). This implies that ℎ ∉ 𝐺∗ or 

𝑘 ∉ 𝐺∗ and thus e − ℎ ∉ 𝐺∗ or e − 𝑘 ∉ 𝐺∗. As a result, (e − ℎ)𝛤(e − 𝑘) = e − ℎ − 𝑘 +

ℎ𝛤𝑘 ∉ 𝐺∗, so that ℎ + 𝑘 − ℎ𝛤𝑘 ∉ 𝐺∗. Hence 𝐺 ∈ 𝒳(𝑝(𝜂,𝜃)), where 𝑝 = ℎ + 𝑘 − ℎ𝛤𝑘. 

 

    (iii) Let ₲1, ₲2 ∈ 𝒳, ₲1 ≠ ₲2. Then ₲1 and ₲2 are IFPIs of H and 𝐼𝑚𝑔(₲1) = 𝐼𝑚𝑔(₲2) 

= {(1,0), (𝜆, 𝜁)}. As we know that every PI in a Boolean 𝛤-Ring is MI. It follows that 

₲1∗
, ₲2∗

 are maximal ideals of H. So ₲1∗
⊈ ₲2∗

, since ₲1 ≠ ₲2. Choose ℎ ∈ ₲1∗
 and ℎ ∉

₲2∗
. Then e − ℎ ∈ ₲2∗

 and e − ℎ ∉ ₲1∗
. Now, 𝜇₲2

(ℎ) = 𝜇₲1
(e − ℎ) = 𝜆 and 𝜈₲2

(ℎ) =

𝜈₲1
(e − ℎ) = 𝜁 and 𝜇₲1

(ℎ) = 1 = 𝜇₲2
(e − ℎ) and 𝜈₲1

(ℎ) = 0 = 𝜈₲2
(e − ℎ). Let ϐ ∈

(𝜆, 1) and 𝜗 ∈ (0, 𝜁) s.t. ϐ + 𝜗 ≤ 1. Then 𝜇ℎ(ϐ,𝜗)
(ℎ) = ϐ > 𝜆 = 𝜇𝐵(ℎ) and 𝜈ℎ(ϐ,𝜗)

(ℎ) =

𝜗 < 𝜁 = 𝜈₲2
(ℎ) so that ℎ(ϐ,𝜗) ⊈ ₲2. Hence ₲2 ∈ 𝒳(ℎ(ϐ,𝜗)). Also, 𝜇(e−ℎ)(ϐ,𝜗)

(e − ℎ) =

ϐ > 𝜆 = 𝜇₲1
(e − ℎ) and 𝜈(e−ℎ)(ϐ,𝜗)

(e − ℎ) = 𝜗 < 𝜁 = 𝜈₲1
(e − ℎ), so that (e − ℎ)ϐ,𝜗 ⊈

₲1. Hence ₲1 ∈ 𝒳((e − ℎ)(ϐ,𝜗)). Then, by theorem (6.2.6)(i), we have 𝒳(ℎ(ϐ,𝜗)) ∩
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𝒳((e − ℎ)(ϐ,𝜗)) = 𝒳 ((ℎ𝛤(e − ℎ))
(ϐ,𝜗)

) = 𝒳((0)(ϐ,𝜗)) = ∅ [ As H is Boolean 𝛤-Ring]. 

Consequently, 𝒴 is Hausdorff.  

Theorem 6.3.8.  If H is Boolean 𝛤-Ring, 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1 and 𝒴 = {𝑃 ∈

𝒳: 𝐼𝑚𝑔(𝑃) = {(1,0), (𝜆, 𝜁)}}, then the space 𝒴 is compact, Hausdorff and zero-

dimensional. 

Proof. For proof of the Theorem refer Proposition (6.2.9) and Theorem (6.3.7)(i),(iii). 

 

6.4 Intuitionistic Fuzzy Prime Radical And Algebraic Nature 

Of Intuitionistic Fuzzy Prime Ideal Under 𝜞-Homomorphism 

Definition 6.4.1.  ([64]) Let H be a 𝛤-Ring. For any IFI 𝐺 of H. The IFS √𝐺 defined by 

𝜇√𝐺(ℎ) =∨ {𝜇𝐺((ℎ𝛾)𝑛−1ℎ):𝑛 ∈ 𝐍} and 𝜈√𝐺(ℎ) =∧ {𝜈𝐺((ℎ𝛾)𝑛−1): 𝑛 ∈ 𝐍)} is called the 

IFPR of 𝐺, where (ℎ𝛾)𝑛−1ℎ = ℎ, for 𝑛 = 1, 𝛾 ∈ 𝛤. Further, √𝐺 is the smallest IFSPI of 

H containing 𝐺. 

Proposition 6.4.2.  ([64]) Let 𝐺 be an 𝐼𝐹𝑃𝐼 of a 𝛤-Ring H. Then √𝐺 = 𝐺 and hence 

every 𝐼𝐹𝑃𝐼 is IFSPI. 

Theorem 6.4.3.  Let ₲1 be any IFI of a 𝛤-Ring H. Then 

(i) 𝒱(₲1) = 𝒱(√₲1) 

(ii) 𝒳(ℎ(ϐ,𝜗)) = 𝒳(𝑘(ϐ,𝜗)) iff √< ℎ(ϐ,𝜗) >= √< 𝑘(ϐ,𝜗) >, where ϐ, 𝜗 ∈ (0,1] with ϐ +

𝜗 ≤ 1. 

Proof. (i) Let ₲2 ∈ 𝒱(₲1) be any element. Then ₲1 ⊆ ₲2, where ₲2 is an IFPI of H, from 

proposition (4.3.2) we have √₲2 = ₲2, therefore we have ₲1 ⊆ √₲2. Hence ₲2 ∈

𝒱(√₲1), so that 𝒱(₲1) ⊆ 𝒱(√₲1). The reverse inclusion is clear-cut. 

 

    (ii)If 𝒳(ℎ(ϐ,𝜗)) = 𝒳(𝑘(ϐ,𝜗)), then 𝒱(ℎ(ϐ,𝜗)) = 𝒱(𝑘(ϐ,𝜗)) which implies 

𝒱(< ℎ(ϐ,𝜗) >) = 𝒱(< 𝑘(ϐ,𝜗) >). This mean ∩ {₲2: ₲2 ∈ 𝒱(< ℎ(ϐ,𝜗) >)} =∩ {₲2: ₲2 ∈

𝒱(< 𝑘(ϐ,𝜗) >)} and therefore, √< ℎ(ϐ,𝜗) >= √< 𝑘(ϐ,𝜗) >. 
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Conversely, let √< ℎ(ϐ,𝜗) >= √< 𝑘(ϐ,𝜗) >. Then 

₲2 ∈ 𝒱(ℎ(ϐ,𝜗)) ⇔ ℎ(ϐ,𝜗) ⊆ ₲2

⇔< ℎ(ϐ,𝜗) >⊆ ₲2

⇔ √< 𝑘(ϐ,𝜗) >⊆ ₲2

⇔ √< 𝑘(ϐ,𝜗) >⊆ ₲2

⇔ 𝑘(ϐ,𝜗) ⊆ ₲2 as before  

⇔ ₲2 ∈ 𝒱(𝑘(ϐ,𝜗)).

 

 

Hence 𝒱(ℎ(ϐ,𝜗)) = 𝒱(𝑘(ϐ,𝜗)) so that 𝒳(ℎ(ϐ,𝜗)) = 𝒳(𝑘(ϐ,𝜗)). 

Definition 6.4.4.  ([46]) Let 𝐻1 and 𝐻2 be any sets and let 𝑓:  𝐻1 → 𝐻2 be a function. An 

IFS 𝐺 of 𝐻1 is called an 𝑓 - invariant if 𝑓(ℎ) = 𝑓(𝑘) ⇒ 𝐺(ℎ) = 𝐺(𝑘), i.e., 𝜇𝐺(ℎ) =

𝜇𝐺(𝑘) and 𝜈𝐺(ℎ) = 𝜈𝐺(𝑘), where ℎ, 𝑘 ∈ 𝐻1. 

For any 𝑓 - invariant IFS 𝐺 of 𝐻1, we have 𝑓−1(𝑓(𝐺)) = 𝐺. 

Theorem 6.4.5. ([46]) Let 𝑓 be an onto 𝛤-𝑯𝒐𝒎𝐻1

 𝐻2 . Let ₲1 be any 𝑓 - invariant IFPI of 

𝐻1 and ₲2 be any IFPI of 𝐻2. Then 𝑓(₲1) and 𝑓−1(₲2) are IFPI of 𝐻2 and 𝐻1 

respectively. 

Theorem 6.4.6.  Let 𝑓 be an onto 𝛤 − 𝑯𝒐𝒎𝐻1

 𝐻2 and 𝒳 = 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻1), 𝒳′ =

𝐼𝐹𝑆𝑝𝑒𝑐(𝐻2), 𝒳∗ = {₲1 ∈ 𝒳:  ₲1 is 𝑓- invariant }, 𝒳′(₲2) = 𝒳′\𝒱(₲2), where ₲2 is any 

IFI of 𝐻2, and 𝜉 be a map from 𝒳′ to 𝒳∗ defined by 𝜉(₲1
′) = 𝑓−1(₲1

′),  ₲1
′
∈ 𝒳′. Then 

the following statements are equivalent 

(i) 𝜉 is continuous 

(ii) 𝜉 is open, and 

(iii) 𝜉 is a homeomorphism of 𝒳′ onto 𝒳∗ in other words the map 𝜉 is an embedding that 

maps 𝒳′ onto 𝒳∗. 

Proof. (i) Suppose ₲1
′
∈ 𝒳′. Then by using Theorem (6.4.5) 𝑓−1(₲1

′) ∈ 𝒳. 

Also, 𝑓−1(₲1
′) is 𝑓 -invariant, since for all 𝑎 𝑏 ∈ 𝐻, if 𝑓(𝑎) = 𝑓(𝑏), then 
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𝜇₲1
′(𝑓(𝑎)) = 𝜇₲1

′(𝑓(𝑏)) and 𝜈₲1
′(𝑓(𝑎)) = 𝜈₲1

′(𝑓(𝑏)) ⇒ 𝜇𝑓−1(₲1
′
)
(𝑎) = 𝜇𝑓−1(₲1

′
)
(𝑏) 

and 𝜈𝑓−1(₲1
′
)
(𝑎) = 𝜈𝑓−1(₲1

′
)
(𝑏), i.e., 𝑓−1(₲1

′)(𝑎) = 𝑓−1(₲1
′)(𝑏). Hence 𝜉(𝐺′) =

𝑓−1(𝐺′) ∈ 𝒳∗. 

Next we show that 𝜉−1(𝒳(ℎ(ϐ,𝜗)) ∩ 𝒳∗) = 𝒳′ ((𝑓(ℎ))
(ϐ,𝜗)

). 

Since ₲1
′
∈ 𝜉−1(𝒳 (ℎ((ϐ,𝜗))) ⇔ 𝜉(₲1

′) ∈ 𝒳(ℎ(ϐ,𝜗)) 

⇔ ℎ(ϐ,𝜗) ⊈ 𝜉(₲1
′) = 𝑓−1(₲1

′) ⇔ (𝑓(ℎ))
(ϐ,𝜗)

= 𝑓(ℎ(ϐ,𝜗)) ⊈ ₲1
′
, by proposition (6.2.5) 

⇔ ₲1
′
∈ 𝒳′ ((𝑓(ℎ))

((ϐ,𝜗))
). 

This shows that the inverse image of any basic open set in 𝒳∗ is an open set in 𝒳′. Hence 

𝜉 is continuous. 

       (ii) 𝐿𝑒𝑡 𝒳′ ((𝑓(ℎ))
(ϐ,𝜗)

) , ℎ ∈ 𝐻1𝑎𝑛𝑑 (ϐ, 𝜗) ∈ (0,1]𝑠. 𝑡. ϐ + 𝜗 ≤ 1, 𝑏𝑒 𝑎𝑛𝑦 𝑏𝑎𝑠𝑖𝑐    

open set in 𝒳′. 𝐿𝑒𝑡 ₲2 ∈ 𝒳′ ((𝑓(ℎ))
(ϐ,𝜗)

) . 𝑇ℎ𝑒𝑛 ₲2 = 𝜉(₲1
′) = 𝑓−1(₲1

′) for some 

₲1
′
∈ 𝒳′ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑓(ℎ))

(ϐ,𝜗)
⊈ ₲1

′
. 𝐴𝑠 𝑖𝑛 𝑝𝑎𝑟𝑡 (1)𝑤𝑒 𝑐𝑎𝑛 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 ₲2 𝑖𝑠 𝑓 −

𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡.                            𝑁𝑒𝑥𝑡, 𝜉 (𝒳′ ((𝑓(ℎ))
(ϐ,𝜗)

)) = 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒳∗, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒  

₲1 ∈ 𝜉 (𝑋′ ((𝑓(ℎ))
(ϐ,𝜗)

)) ⇔ 𝜉−1(₲1) ∈ 𝑋′ ((𝑓(ℎ))
(ϐ,𝜗)

)  𝑎𝑛𝑑 ₲1 𝑖𝑠 𝑓 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡  

⇔ 𝑓(ℎ(ϐ,𝜗)) = (𝑓(ℎ))
(ϐ,𝜗)

⊈ 𝜉−1(₲1) = 𝑓(₲1)  

⇔ ℎ(ϐ,𝜗) ⊈ 𝑓−1(𝑓(₲1)) = ₲1, 𝑠𝑖𝑛𝑐𝑒 ₲1 𝑖𝑠 𝑓 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡  

⇔ ₲1 ∈ 𝒳(ℎ(ϐ,𝜗)) ∩ 𝒳∗.  

Hence the direct image of every basic open set in 𝒳′ is open in 𝒳∗ and so 𝜉 is open. 

      (iii) In the light of part (i) and part (ii), it is enough to prove that ℎ is one-one and 

onto. 

Let ₲1,  ₲2
′
∈ 𝒳′. Then 𝜉(₲1

′) = 𝜉(₲2
′) ⇒ 𝑓−1(₲1

′) = 𝑓−1(₲2
′) ⇒ 𝑓 (𝑓−1(₲1

′)) =

𝑓 (𝑓−1(₲2
′)). As 𝑓 is onto, therefore, we get ₲1

′
= ₲2

′
. Thus 𝑓 is one-one. Finally, let 

₲1 ∈ 𝒳∗. Then ₲1 is an 𝑓 -invariant IFPI of 𝐻1 and Therefore by Theorem (6.4.5), 𝑓(₲1) 
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is an IFPI of 𝐻2. Further, 𝜉(𝑓(₲1)) = 𝑓−1(𝑓(₲1)) = ₲1. Since ₲1 is 𝑓 -invariant. 

Therefore 𝜉 is onto. 

 

6.5 Irreducibility And Connectedness Of IF Spec(H) 

In this section the conditions for irreducibility and connectedness of topological space 𝒳 

are discussed. 

Definition 6.5.1.  The intersection of all IFPI of H is called the IF nil radical of 𝛤-Ring H 

and is written as 𝐼𝐹𝑛𝑖𝑙(𝐻). 

Theorem 6.5.2.  The space 𝒳 is irreducible iff  𝐼𝐹𝑛𝑖𝑙(𝐻) ∈ 𝒳. 

Proof. Let 𝒳 be irreducible and let 𝒩 be the nil radical of 𝛤-Ring H. Then 

 

𝜇𝐼𝐹𝑛𝑖𝑙(𝐻)(𝑥) = {
1, if ℎ ∈ 𝒩
0, if 𝐻\𝒩

; 𝜈𝐼𝐹𝑛𝑖𝑙(𝐻)(𝑥) = {
0, if ℎ ∈ 𝒩
1, if 𝐻\𝒩

. 

Next, let ℎ, 𝑘 ∈ 𝐻 and let ϐ, 𝜗 ∈ (0,1] s.t. ϐ + 𝜗 ≤ 1. Then ℎ𝛾𝑘 ∈ 𝒩 ⇒ ℎ𝛾𝑘 is nilpotent 

and thus 𝒳((ℎ𝛾𝑘)(ϐ,ϑ)) = ∅ by Theorem (6.2.6)(ii). Therefore,𝒳(ℎ(ϐ,ϑ)) ∩ 𝒳(𝑘(ϐ,ϑ)) =

∅, since 𝒳 is irreducible. Hence either ℎ or 𝑘 is nilpotent, and thus ℎ ∈ 𝒩 or 𝑘 ∈ 𝒩. 

Consequently, 𝒩 is the prime ideal of H, whence it follows from Theorem (2.2.9) that 

 𝐼𝐹𝑛𝑖𝑙(𝐻) ∈ 𝒳. 

          Conversely, suppose that 𝐼𝐹𝑛𝑖𝑙(𝐻) ∈ 𝒳. Then  𝒩 is the PI of H. Let ℎ, 𝑘 ∈ 𝐻 and 

let ϐ, 𝜗 ∈ (0,1] s.t. ϐ + 𝜗 ≤ 1. Then 𝒳(ℎ(ϐ,ϑ)) ∩ 𝒳(𝑘(ϐ,ϑ)) = ∅ implies that 

𝒳((ℎ𝛤𝑘)(ϐ,ϑ)) = ∅, by Theorem (6.2.6)(i), and thus ℎ𝛾𝑘 is nilpotent for every 𝛾 ∈ 𝛤, by 

Theorem (6.2.2)(ii). Then ℎ𝛾𝑘 ∈ 𝒩 and so ℎ ∈ 𝒩 or 𝑘 ∈ 𝒩, which means 𝑥 is nilpotent 

or 𝑦 is nilpotent. Hence 𝒳(ℎ(ϐ,ϑ)) = ∅ or 𝒳(𝑘(ϐ,ϑ)) = ∅, by Theorem (6.2.6)(ii). This 

shows that the intersection of any two non-empty basic open sets is non-empty. Hence, 𝒳 

is irreducible.  

Theorem 6.5.3. The space 𝒳 is disconnected iff H has a non-trivial idempotent element. 

Proof. Let 𝒳 be disconnected. Then ∃ IFIs ₲1 and ₲2 of H  s.t.  𝒳 = 𝒱(₲1 ) ∪

𝒱(₲2 ), 𝒱(₲1 ), 𝒱(₲2 ) ≠ ∅, 𝒱(₲1 ) ∩ 𝒱(₲2 ) = ∅. 
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        Now, 𝒱(₲1 ) ∩ 𝒱(₲2 ) = ∅ implies 𝒱(₲1  ⊕ ₲2 ) = ∅ so that 𝜇₲1⊕₲2
(𝑥) = 1 and 

𝜈₲1⊕₲2
(𝑥) = 0; for all 𝑥 ∈ 𝐻. So, 𝑆𝑢𝑝e=𝑚+𝑛{𝑚𝑎𝑥{𝜇₲1

(𝑚), 𝜇₲2
(𝑛)}} = 1 and 

𝐼𝑛𝑓e=𝑚+𝑛{𝑚𝑖𝑛{𝜈₲1  (𝑚), 𝜈₲2 (𝑛)}} = 0, where e is the unity of H ⇒ 𝜇₲1  (𝑚) = 𝜇₲2  (𝑛) =

1 and 𝜈₲1  (𝑚) = 𝜈₲2 (𝑛) = 0, for all 𝑚, 𝑛 ∈ 𝐻 s.t.  e = 𝑚 + 𝑛. Let 𝐼 = ₲1 ∗ and  𝐽 =

₲2 ∗. Let 𝐾 be the prime ideal of H and 𝜒𝐾  be its IFCF. Then 𝜒𝐾 ∈ 𝒳. Since 𝒳 =

𝒱(₲1 ) ∪ 𝒱(₲2 ) = 𝒱(₲1  ∩ ₲2 ), it follows that ₲1  ∩ ₲2  ⊆ 𝜒𝐾 . 

Next, if ℎ ∈ 𝐼 ∩ 𝐽, then 𝜇₲1 ∩₲2
(ℎ) = 1 and 𝜈₲1 ∩₲2

(ℎ) = 0 ⇒ 𝜇𝜒𝐾
(ℎ) = 1 and 𝜈𝜒𝐾

(ℎ) =

0 and then ℎ ∈ 𝐾. Thus ℎ ∈∩ {𝐾: 𝐾 is a PI of 𝐻} ⇒ 𝑥 is a nilpotent element. This shows 

that every element of 𝐼 ∩ 𝐽 is nilpotent. 

          Clearly, 𝐻/(𝐼 ∩ 𝐽) = 𝐼/(𝐼 ∩ 𝐽) ⊕ 𝐽/(𝐼 ∩ 𝐽), Therefore, e + (𝐼 ∩ 𝐽) = 𝑖 + (𝐼 ∩ 𝐽) +

𝑗 + (𝐼 ∩ 𝐽), for some 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽. So that 𝑖𝛾(e − 𝑖) ∈ (𝐼 ∩ 𝐽) for every 𝛾 ∈ 𝛤 and hence 

𝑖𝛾(e − 𝑖) is nilpotent. Thus (𝑖𝛾(e − 𝑖)𝛾)𝑚𝑖𝛾(e − 𝑖) = 0 for some 𝑚 ∈ 𝑍+. Consequently, 

(𝑖𝛾(e − 𝑖)𝛾)𝑚 = (𝑖𝛾(e − 𝑖)𝛾)𝑚+1𝑄 ((𝑖𝛾(e − 𝑖))), for some polynomial 𝑄(𝑖𝛾(e − 𝑖)) in 

(𝑖𝛾(e − 𝑖)). Let 𝑥 = (𝑖𝛾(e − 𝑖)𝛾)𝑚𝑄(𝑖𝛾(e − 𝑖)). It is now a simple matter to verify that 

ℎ ≠ 0, ℎ ≠ e, and ℎ𝛾ℎ = ℎ. 

Conversely, for any non-trivial idempotent element 𝑥 of H, it can be easily verified that  

𝒳 = 𝒱 (ℎ(ϐ,𝜗))  ∪ 𝒱((𝑒 − ℎ)(ϐ,𝜗)), 𝒱 (ℎ(ϐ,𝜗)) ≠ ∅ , 𝒱(𝑒 − ℎ)(ϐ,𝜗)) ≠ ∅  , 𝒱 (ℎ(𝛼,𝛽)) ∩

𝒱((𝑒 − ℎ)(ϐ,𝜗)) =  ∅ where ϐ, 𝜗 ∈ (0,1] s.t.  ϐ + 𝜗 ≤ 1. 

This establishes that 𝒳 is disconnected.  

Corollary 6.5.4.  The space 𝒳 is connected iff 0H and e are the only idempotent in H. 

 

6.6 Conclusion 

This chapter, establishes a topology on 𝒳 = IFSpec(H), representing the collection of all 

IFPIs of a commutative Γ-Ring H with unity, known as the Zariski topology. Using the 

bases for the Zariski topology, it is demonstrated that the subspace 𝒴 of 𝒳 is compact. 

Furthermore, it is shown that space 𝒳 is always T0 but not T2; however, when H is a 

Boolean Γ-Ring, it becomes a T2 space. It is also proven that subspace 𝒴 is T1 iff every 
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singleton element of 𝒴 is an IFMI of H. For f which is a  

𝐻𝑜𝑚𝐻1

 𝐻2, it is established that 𝒳′ = 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻2) is homeomorphic to the subset 𝒳∗ =

{𝐺 ∈ 𝒳: 𝐺 is 𝑓- invariant }, consisting of f-invariant elements of 𝒳 = 𝐼𝐹𝑆𝑝𝑒𝑐(𝐻1). 

Additionally, the space 𝒳 is irreducible iff the intersection of all elements of 𝒳 is also an 

element of 𝒳. However, the space 𝒳 is connected iff 0H and e are the only idempotent 

elements in H. 
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Chapter 7 

 

On Intuitionistic Fuzzy f-Primary Ideals 

Of Commutative 𝜞-Rings 

 

7.1 Introduction 

In the first section, the chapter introduces the concept of IFI expansion and defines IFPrIs 

concerning such an expansion. Alongside well-established expansions, a novel expansion 

denoted as ℳ, defined through IFMIs, is explored. Additionally, IFI expansions meeting 

certain additional conditions are examined, and further properties of generalized IFPrIs 

concerning such expansions are investigated. 

     In the second section, the concept of IF2-AI expansion is introduced, and IF2-APrIs 

regarding such an expansion are defined. In addition to familiar expansions, a new 

expansion denoted as ℋ, defined by IFMIs, is studied. Moreover, IF2-AI expansions 

fulfilling specific additional conditions are explored, and more properties of generalized 

IF2-APrIs concerning such expansions are investigated. 

 

7.2 Intuitionistic Fuzzy f-Primary Ideals Of 𝜞-Rings 

The notion of expansion of IFIs of a commutative 𝛤-Ring has been introduced in this 

section, and using this concept, we developed the notion of IFf-PrIs, where 𝑓 is a map 

satisfying additional conditions, and proved more results w.r.t. such expansions. 

Definition 7.2.1.  Let 𝒢(𝐻) denote the set of all IFIs of 𝛤-Ring H. Then the map 

𝑓: 𝒢(𝐻) → 𝒢(𝐻) is called an expansion of IFIs of H (or briefly as IFI expansion) if 

following properties are satisfied: 
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(i) 𝐺 ⊆ 𝑓(𝐺), ∀𝐺 ∈ 𝒢(𝐻) 

(ii) ₲1 ⊆ ₲2 ⇒ 𝑓(₲1) ⊆ 𝑓(₲2), ∀₲1, ₲2 ∈ 𝒢(𝐻). 

Example 7.2.2.   

(1) The identity map 𝑖: 𝒢(𝐻) → 𝒢(𝐻) defined by 𝑖(𝐺) = 𝐺 is an expansion of IFIs of H. 

(2) The map 𝑓: 𝒢(𝐻) → 𝒢(𝐻) defined by 𝑓(𝐺) = √𝐺 is an expansion of IFIs of H. 

(3) Denote ℳ(𝐺) = ⋂{𝑄: 𝑄 ⊇ 𝐺 and 𝑄 is an IFMI of 𝐻}. Then the map 

𝑔: 𝒢(𝐻) → 𝒢(𝐻) defined by 𝑔(𝐺) = ℳ(𝐺) is an expansion of IFIs of H. 

(4) The constant map 𝑐: 𝒢(𝐻) → 𝒢(𝐻) defined as 𝑐(𝐺) = 𝜒𝐻 = (1,0) ∀ ℎ ∈

𝐻 𝑎𝑛𝑑 (0,1) ∀ ℎ ∉ 𝐻 is an expansion of IFIs of H. 

Definition 7.2.3.  Given an expansion 𝑓 of IFIs of H. An IFI 𝐺 ∈ 𝒢(𝐻) is said to be an IF 

𝑓-primary if it satisfies the condition 

     ℎ(𝜂,𝜃)𝛾𝑘(𝑡,𝑠) ⊆ 𝐺 ⇒ ℎ(𝜂,𝜃) ⊆ 𝐺 or 𝑘(𝑡,𝑠) ⊆ 𝑓(𝐺), ∀ℎ(𝜂,𝜃) , 𝑘(𝑡,𝑠) ∈ 𝐼𝐹𝑃(𝐻), 𝛾 ∈ 𝛤. 

Example 7.2.4.  Every IFI 𝐺 ∈ 𝒢(𝐻) is an IF 𝑐-primary, where 𝑐 is a constant expansion 

of IFIs of H. 

Theorem 7.2.5.  Let 𝑓, 𝑔 be two expansions of IFIs of 𝛤-Ring H. If 𝑓(𝐺) ⊆ 𝑔(𝐺), ∀𝐺 ∈

𝒢(𝐻), then every IFf-PrI is also an IF𝑔 −PrI. 

Proof. Let 𝐺 ∈ 𝒢(𝐻) be an IFfPrI of 𝛤-Ring H. Let ℎ(𝜂,𝜃), 𝑘(𝑡,𝑠) ∈ 𝐼𝐹𝑃(𝐻), 𝛾 ∈ 𝛤 s.t. 

ℎ(𝜂,𝜃)𝛾𝑘(𝑡,𝑠) ⊆ 𝐺, ℎ(𝜂,𝜃) ⊈ 𝐺 implies that 𝑘(𝑡,𝑠) ⊆ 𝑓(𝐺) ⊆ 𝑔(𝐺), by using assertion. 

Hence 𝐺 is an IF𝑔-PrI of H.  

Theorem 7.2.6.  Let 𝑓1,  𝑎𝑛𝑑 𝑓2 be two expansions of IFIs of 𝛤-Ring H. Let 𝑓: 𝒢(𝐻) →

𝒢(𝐻) defined by 𝑓(𝐺) = 𝑓1(𝐺) ∩ 𝑓2(𝐺), ∀𝐺 ∈ 𝒢(𝐻). Then 𝑓 is an IFI expansion of H. 

Proof. ∀𝐺 ∈ 𝒢(𝐻), using definition 𝐺 ⊆ 𝑓1(𝐺)and 𝐺 ⊆ 𝑓2(𝐺) and so 𝐺 ⊆ 𝑓1(𝐺) ∩

𝑓2(𝐺) = 𝑓(𝐺). Thus 𝐺 ⊆ 𝑓(𝐺). Further let 𝐵, 𝐶 ∈ 𝒢(𝐻) s.t. 𝐵 ⊆ 𝐶. Then 𝑓1(𝐵) ⊆ 𝑓1(𝐶) 

and 𝑓2(𝐵) ⊆ 𝑓2(𝐶) and so 𝑓(𝐵) = 𝑓1(𝐵) ∩ 𝑓2(𝐵) ⊆ 𝑓1(𝐶) ∩ 𝑓2(𝐶) = 𝑓(𝐶), i.e., 𝑓(𝐵) ⊆

𝑓(𝐶). Hence 𝑓 is an IFI expansion of 𝛤-Ring H.  

Theorem 7.2.7.  Let 𝑓 be an expansion of IFIs of 𝛤-Ring H. For any subset 𝑆 of H. 

Denote 

𝒢𝑓(𝑆) = ⋂{𝑄: 𝑄 is an IFf-PrI of H s.t. 𝜒𝑆 ⊆ 𝑄}. Then the map 
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𝜉: 𝒢(𝐻) → 𝒢(𝐻) defined by 𝜉(𝐺) = 𝒢𝑓(𝐺∗), ∀𝐺 ∈ 𝒢(𝐻) is an expansion of IFIs of H. 

Proof.  Obviously 𝐺 ⊆ 𝒢𝑓(𝐺∗) = 𝜉(𝐺),∀𝐺 ∈ 𝒢(𝐻). 

Let ₲, Ğ ∈ 𝒢(𝐻) s.t. ₲ ⊆ Ğ. Then 

 

𝜉(₲) = 𝒢𝑓(₲∗) = ⋂{𝑄: 𝑄 ∈ 𝒢(𝐻) s.t. 𝜒₲∗
⊆ 𝑄 and 𝑄 is an IF 𝑓-primary Ideal}  

⊆ ⋂{𝑄: 𝑄 ∈ 𝒢(𝐻) s.t. 𝜒Ğ∗
⊆ 𝑄 and 𝑄 is an IF 𝑓-primary }

= 𝒢𝑓(Ğ∗)

= 𝜉(Ğ).

 

Hence 𝜉 is an expansion of IFIs of H.  

Theorem 7.2.8.  Let 𝑓 be an expansion of IFIs of 𝛤-Ring H. If {₲𝑖: 𝑖 ∈ 𝛬} is a directed 

collection of IFf-PrIs of H, where 𝛬 is an index set, then 𝐺 = ⋃𝑖∈𝛬₲𝑖 is an IFf-PrI of H. 

Proof.  Let ℎ(𝜂,𝜃), 𝑘(𝑡,𝑠) ∈ 𝐼𝐹𝐼(𝐻), 𝛾 ∈ 𝛤 be s.t. ℎ(𝜂,𝜃)𝛾𝑘(𝑡,𝑠) ⊆ 𝐺 and ℎ(𝜂,𝜃) ⊈ 𝐺 =

⋃𝑖∈𝛬₲𝑖. Then ∃₲𝑖 s.t. ℎ(𝜂,𝜃)𝛾𝑘(𝑡,𝑠) ⊆ ₲𝑖 and ℎ(𝜂,𝜃) ⊈ ₲𝑖. As each ₲𝑖 is an IFf-PrI and ₲𝑖 ⊆

𝐺. It follows that 𝑘(𝑡,𝑠) ⊆ 𝑓(₲𝑖) ⊆ 𝑓(𝐺). Hence 𝐺 will be an IFf-PrI of H.  

Theorem 7.2.9.  Let 𝑓 be an expansion of IFIs of 𝛤-Ring H. If 𝑄 is an IFf-PrI of H, then 

for every ₲1,  ₲2 ∈ 𝒢(𝐻) s.t. ₲1𝛤₲2 ⊆ 𝑄 and ₲1 ⊈ 𝑄 implies that ₲2 ⊆ 𝑓(𝑄). 

Proof. Let us suppose 𝑄 is an IFf-PrI of H and let ₲1,  ₲2 ∈ 𝒢(𝐻) s.t. ₲1𝛤₲2 ⊆ 𝑄, and 

₲1 ⊈ 𝑄. Suppose that ₲2 ⊈ 𝑓(𝑄). Then ∃ ℎ, 𝑘 ∈ 𝐻 s.t. 𝜇₲1
(ℎ) > 𝜇𝑄(ℎ), 𝜈₲1

(ℎ) < 𝜈𝑄(ℎ) 

and 𝜇₲2
(𝑘) > 𝜇𝑓(𝑄)(𝑘), 𝜈₲2

(𝑘) < 𝜈𝑓(𝑄)(𝑘). Let 𝜇₲1
(ℎ) = 𝜂, 𝜈₲1

(ℎ) = 𝜃 and 𝜇₲2
(ℎ) =

𝑡, 𝜈₲2
(ℎ) = 𝑠. Then 𝜇𝑄(ℎ) < 𝜂, 𝜈𝑄(ℎ) > 𝜃 and 𝜇𝑓(𝑄)(𝑘) < 𝑡, 𝜈𝑓(𝑄)(𝑘) > 𝑠. This implies 

that ℎ(𝜂,𝜃) ⊆ ₲1 and 𝑘(𝑡,𝑠) ⊆ ₲2, but ℎ(𝜂,𝜃) ⊈ 𝑄 and 𝑘(𝑡,𝑠) ⊈ 𝑓(𝑄). Now 

 

      𝜇𝑄(ℎ𝛾𝑘) ≥ 𝜇₲1𝛤₲2
(ℎ𝛾𝑘) ≥ {𝜇₲1

(ℎ) ∧ 𝜇₲2
(𝑘)} = 𝜂 ∧ 𝑡 = 𝜇ℎ(𝜂,𝜃)𝛾𝑘(𝑡,𝑠)

(𝑥𝛾𝑦) and 

𝜈𝑄(ℎ𝛾𝑘) ≤ 𝜈₲1𝛤₲2
(ℎ𝛾𝑘) ≤ {𝜈₲1

(ℎ) ∨ 𝜈₲2
(𝑘)} = 𝜃 ∨ 𝑠 = 𝜈ℎ(𝜂,𝜃)𝛾𝑘(𝑡,𝑠)

(ℎ𝛾𝑘). Hence 

ℎ(𝜂,𝜃)𝛾𝑘(𝑡,𝑠) ⊆ 𝑄. But ℎ(𝜂,𝜃) ⊈ 𝑄 and 𝑘(𝑡,𝑠) ⊈ 𝑓(𝑄). This contradicts the assumption that 

𝑄 is IFf-PrI of H. Consequently the result is valid.  
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Remark 7.2.10.  In the definition of IFf-PrIs, the statement ″₲1𝛤₲2 ⊆ 𝑄″ and ₲1 ⊈ 𝑄 

implies that ₲2 ⊆ 𝑓(𝑄). In Theorem (7.2.9)  this can be replaced as ″₲1𝛤₲2 ⊆ 𝑄″ and 

₲1 ⊈ 𝑓(𝑄) implies that ₲2 ⊆ 𝑄. 

      For any IFI ₲1 of a 𝛤-Ring H and any IFS ₲2 of H, the IF residual quotient of ₲1 by 

₲2 is denoted by (₲1: ₲2) = ⋃{ℎ(𝜂,𝜃) ∈ 𝐼𝐹𝑃(𝐻): ℎ(𝜂,𝜃)𝛤₲2 ⊆ ₲1}. It can be easily seen 

that (₲1: ₲2) is an IFI of H s.t. ₲1 ⊆ (₲1: ₲2). 

Theorem 7.2.11.  Suppose 𝑓 be an expansion of IFIs of 𝛤-Ring H. Then 

(i) If 𝑄 is an IFf-PrI and 𝐺 is an IFI of H s.t. 𝐺 ⊈ 𝑓(𝑄), then (𝑄: 𝐺) = 𝑄. 

(ii) For any IFf-PrI 𝑄 and any subset 𝑁 of H, (𝑄: 𝜒𝑁) is also an IFf-PrI. 

Proof. (i) Since 𝑄 ⊇ 𝐺 ∩ 𝑄 ⊇ 𝐺𝛤𝑄, i.e., 𝐺𝛤𝑄 ⊆ 𝑄, so 𝑄 ⊆ (𝑄: 𝐺). Also by definition, 

we have 𝐺𝛤(𝑄: 𝐺) ⊆ 𝑄. Since 𝐺 ⊈ 𝑓(𝑄) we have (𝑄: 𝐺) ⊆ 𝑄 [Using Remark 7.2.10]. 

Therefore (𝑄: 𝐺) = 𝑄. 

 

    (ii) Let ℎ(𝜂,𝜃)𝛤𝑘(𝑡,𝑠) ⊆ (𝑄: 𝜒𝑁) and ℎ(𝜂,𝜃) ⊈ (𝑄: 𝜒𝑁). Then ℎ(𝜂,𝜃)𝛤𝜒𝑁 ⊈ 𝑄. Therefore 

∃, 𝑛 ∈ 𝑁, 𝛾1 ∈ 𝛤 s.t. 𝜇ℎ(𝜂,𝜃)𝛤𝜒𝑁
(ℎ𝛾1𝑛) > 𝜇𝑄(ℎ𝛾1𝑛) and 𝜈ℎ(𝜂,𝜃)𝛤𝜒𝑁

(ℎ𝛾1𝑛) < 𝜈𝑄(ℎ𝛾1𝑛), 

i.e., 𝜂 > 𝜇𝑄(ℎ𝛾1𝑛) and 𝜃 < 𝜈𝑄(ℎ𝛾1𝑛) and so (ℎ𝛾1𝑛)(𝜂,𝜃) ⊈ 𝑄, i.e., ℎ(𝜂,𝜃)𝛾1𝑛(𝜂,𝜃) ⊈ 𝑄. 

But ℎ(𝜂,𝜃)𝛾1𝑛(𝜂,𝜃)𝛾2𝑘(𝑡,𝑠) = (ℎ𝛾1𝑛𝛾2𝑘)(𝜂∧𝑡,𝜃∨𝑠) = (ℎ𝛾3𝑘)(𝜂∧𝑡,𝜃∨𝑠) ⊆ 𝑄, where 𝛾3 =

𝛾1𝑛𝛾2. As 𝑄 is an IFf-PrI so 𝑘(𝑡,𝑠) ⊆ 𝑓(𝑄) ⊆ 𝑓((𝑄: 𝜒𝑁)). Hence (𝑄: 𝜒𝑁) is an IFf-PrI.  

Definition 7.2.12.  Let 𝑓 be an expansion of IFIs of 𝛤-Ring H. Then 𝑓 is said to be 

intersection preserving if it satisfies "𝑓(₲1 ∩ ₲2) = 𝑓(₲1) ∩ 𝑓(₲2)", for every ₲1,  ₲2 ∈

𝒢(𝐻). 

 

      Also, 𝑓 is said to be global if for each 𝜎 which is 𝛤-𝐻𝑜𝑚𝐻1

𝐻2, the following hold: 

 

                                    𝑓(𝜎−1(𝐺)) = 𝜎−1(𝑓(𝐺)) ∀ 𝐺 ∈ 𝒢(𝐻2). 

Note that an expansion 𝑖 of IFIs of 𝛤-Ring H in example (7.2.2) (i) is both intersection 

preserving as well as global. 
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Theorem 7.2.13.  ∀𝐺 ∈ 𝒢(𝐻), let 𝒫(𝐺) : = ⋂{𝐵: 𝐵 ⊇ 𝐺 and 𝐵 is IFPI of 𝐻}. Then the 

map 𝑓: 𝒢(𝐻) → 𝒢(𝐻) given by 𝑓(𝐺) = 𝒫(𝐺) is an intersection preserving expansion of 

IFIs of 𝛤-Ring H. 

Proof. Obviously, 𝑓 is an expansion of IFIs of 𝛤-Ring H. For every ₲1, ₲2 ∈ 𝒢(𝐻), let us 

denote  

𝒫1 : = {𝑃: 𝑃 ⊇ ₲1 ∩ ₲2, 𝑃 is IFPI of 𝐻} ; 𝒫2 : = {𝑃: 𝑃 ⊇ ₲1 or 𝑃 ⊇ ₲2, 𝑃 is IFPI of 𝐻}. 

Then ⋂𝒫1 = 𝒫(₲1 ∩ ₲2) and ⋂𝒫2 = 𝒫(₲1) ∩ 𝒫(₲2). Obviously 𝒫2 ⊆ 𝒫1. If 𝑃 ∈ 𝒫1 

then ₲1𝛤₲2 ⊆ ₲1 ∩ ₲2 ⊆ 𝑃. As 𝑃 is IFPI, so ₲1 ⊆ 𝑃 or ₲2 ⊆ 𝑃. i.e., 𝑃 ∈ 𝒫2 and so 𝒫1 ⊆

𝒫2, then 𝒫1 = 𝒫2. Thus 𝑓(₲1 ∩ ₲2) = 𝒫(₲1 ∩ ₲2) = ⋂𝒫1 = ⋂𝒫2 = 𝒫(₲1) ∩ 𝒫(₲2) =

𝑓(₲1) ∩ 𝑓(₲2). Hence proved.  

Theorem 7.2.14.  Let 𝑓 be an expansion of IFIs of 𝛤-Ring H which is intersection 

preserving. If ₲1, ₲2, . . . . . . . ₲𝑛 are IFf-PrIs of H and 𝐵 = 𝑓(₲𝑘) ∀  𝑘 = 1,2, . . . . . . . 𝑛, then 

𝐺 : = ⋂𝑘=1
𝑛 ₲𝑘 is an IFf-PrI of H. 

Proof. Obviously, 𝐺 : = ⋂𝑘=1
𝑛 ₲𝑘 is an IFI of H. Let 𝐶, D are IFIs of H s.t. 𝐶𝛤𝐷 ⊆ 𝐺 and 

𝐶 ⊈ 𝐺. Then 𝐶 ⊈ ₲𝑘 for some ₲𝑘, where 𝑘 ∈ {1,2, . . . , 𝑛}. But 𝐶𝛤𝐷 ⊆ 𝐺 ⊆ ₲𝑘 and ₲𝑘 are 

IFf-PrI of H, which imply that 𝐷 ⊆ 𝑓(₲𝑘). Since 𝑓 is intersection preserving, so 

 

𝑓(𝐺) = 𝑓(⋂𝑘=1
𝑛 ₲𝑘) = ⋂𝑘=1

𝑛 𝑓(₲𝑘) = 𝐵 = 𝑓(₲𝑘) 

 

and so 𝐷 ⊆ 𝑓(𝐺). Therefore 𝐺 is an IFf-PrI of H.  

 

        Let 𝜎 𝑏𝑒 𝑎 𝛤-𝐻𝑜𝑚𝐻1

𝐻2  . Note that if 𝐺 is an IFI of 𝐻2, then 𝜎−1(𝐺) is an IFI of 𝐻1 and 

that if 𝜎 is surjective and 𝐺 is an IFI of 𝐻1, then 𝜎(𝐺) is an IFI of 𝐻2. 

Theorem 7.2.15.  Let 𝑓 be an expansion of IFIs which is global and let 𝜎 𝑏𝑒 𝑎 𝛤-𝐻𝑜𝑚𝐻1

𝐻2. 

If 𝐵 is an IFf-PrI of 𝐻2. then 𝜎−1(𝐵) is an IFf-PrI of 𝐻1. 

Proof. Let ₲, Ğ be two IFIs of 𝐻1 s.t. ₲𝛤Ğ ⊆ 𝜎−1(𝐵) and ₲ ⊈ 𝜎−1(𝐵). Then 

𝜎(₲)𝛤𝜎(Ğ) = 𝜎(₲𝛤Ğ) ⊆ 𝐵 and 𝜎(₲) ⊈ 𝐵, which implies that 𝜎(Ğ) ⊆ 𝑓(𝐵). Since 𝑓 is 

global, it follows that Ğ ⊆ 𝜎−1(𝑓(𝐵)) = 𝑓(𝜎−1(𝐵)). Hence 𝜎−1(𝐵) is an IFf-PrI of 𝐻1.  
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       By using the same argument it may be easily seen that if 𝜎 𝑏𝑒 𝑎 𝛤-𝐻𝑜𝑚𝐻2

𝐻1, then 

𝜎−1(𝜎(𝐺)) = 𝐺 for each 𝐺 ∈ 𝒢(𝐻1) that contains 𝐾𝑒𝑟(𝜎). 

Theorem 7.2.16.  Let 𝜎 𝑏𝑒 𝑎 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝛤-𝐻𝑜𝑚𝐻1

𝐻2and let 𝐺 be an IFI of 𝐻1 that 

contains 𝐾𝑒𝑟(𝜎). Then 𝐺 is an IFf-PrI of 𝐻1 iff 𝜎(𝐺) is an IFf-PrI of 𝐻2, where 𝑓 is a 

global IFI expansion. 

Proof. If 𝜎(𝐺) is an IFf-PrI of 𝐻2, then 𝐺 is an IFf-PrI of H, by Theorem (7.2.15) and 

𝐺 = 𝜎−1(𝜎(𝐺)). Suppose that 𝐺 is an IFf-PrI of 𝐻1 and let 𝐵, 𝐶 be IFIs of 𝐻2 s.t. 𝐵𝛤𝐶 ⊆

𝜎(𝐺) and 𝐵 ⊈ 𝜎(𝐺). Since 𝜎 is surjective we have 𝜎(𝐷) = 𝐵 and 𝜎(𝐸) = 𝐶 for some 

IFIs 𝐷 and 𝐸 in 𝐻1. Then 𝜎(𝐷𝛤𝐸) = 𝜎(𝐷)𝛤𝜎(𝐸) = 𝐵𝛤𝐶 ⊆ 𝜎(𝐺) and 𝜎(𝐷) = 𝐵 ⊈

𝜎(𝐺), which imply that 𝐷𝛤𝐸 ⊆ 𝜎−1(𝜎(𝐺)) = 𝐺 and 𝐷 ⊈ 𝜎−1(𝜎(𝐺)) = 𝐺. Since 𝐺 is an 

IFf-PrI of 𝐻1, it follows that 𝐸 ⊆ 𝑓(𝐺) so that 𝐶 = 𝜎(𝐸) ⊆ 𝜎(𝑓(𝐺)). Using the fact that 

𝑓 is global, we have 

𝑓(𝐺) = 𝑓 (𝜎−1(𝜎(𝐺))) = 𝜎−1(𝑓(𝜎(𝐺)) 

 

and so 𝜎(𝑓(𝐺)) = 𝜎 (𝜎−1 (𝑓(𝜎(𝐺)))) = 𝑓(𝜎(𝐺)). Since 𝜎 is surjective, therefore 𝐶 ⊆

𝑓(𝜎(𝐺)) and so 𝜎(𝐺) is an IFf-PrI of 𝐻2. This completes the proof.  

 

7.3 Intuitionistic Fuzzy 𝟐-Absorbing 𝒇 −Primary Ideals Of 𝜞-

Ring 

In this section, we investigated IF2 −A𝑓 −PrIs of 𝛤-Ring, where 𝑓 is an expansion of 

IFIs of 𝛤-Ring H. 

Definition 7.3.1.  Given an expansion 𝑓 of IFIs of H. An IFI 𝐺 ∈ 𝒢(𝐻) is said to be IF2-

A𝑓 −PrI if for any 𝐼𝐹𝑃𝑠  ℎ(𝜂,𝜃) , 𝑘(ϐ,ϑ), 𝑝(𝜏,𝜔) of H and 𝛾1, 𝛾2 ∈ 𝛤 s.t. 

      ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,ϑ)𝛾2𝑝(𝜏,𝜔) ⊆ 𝐺 ⇒ ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,ϑ) ⊆ 𝐺 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(𝐺) or 

𝑘(ϐ,ϑ)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(𝐺) 

. 
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Example 7.3.2.  (1) The map defined in example (1) of (7.2.2), IF2 −A𝑓 −PrI is just 

IF2 −AI as defined in definition (2.2.12). 

(2) The map defined in example (2) of (7.2.2), IF2 −A𝑓 −PrI is just IF2 −APrI as 

defined in definition (4.5.1). 

       In the following we will give a list of results, they are an extension of some results. 

Theorem 7.3.3.  Let 𝑓, 𝑔 be two expansions of IFIs of 𝛤-Ring H. If 𝑓(𝐺) ⊆ 𝑔(𝐺), ∀𝐺 ∈

𝒢(𝐻), then every IF2 −A𝑓 −PrI is also an IF2 −A𝑔 −PrI. 

Proof. Let 𝐺 ∈ 𝒢(𝐻) be IF2 −A𝑓 −PrI of 𝛤-Ring H. Let ℎ(𝜂,𝜃), 𝑘(ϐ,ϑ), 𝑝(𝜏,𝜔) of H and 

𝛾1, 𝛾2 ∈ 𝛤 s.t. ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,ϑ)𝛾2𝑝(𝜏,𝜔) ⊆ 𝐺 ⇒ ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,ϑ) ⊆ 𝐺 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆

𝑓(𝐺) ⊆ 𝑔(𝐺) or 𝑘(ϐ,ϑ)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(𝐺) ⊆ 𝑔(𝐺), by assertion. Hence 𝐺 is IF2 −A𝑔 −PrI 

of H.  

Theorem 7.3.4.  Let 𝑓 be an expansion of IFIs of 𝛤-Ring H. For any subset 𝑆 of H. 

Denote 

𝒢𝑓(𝑆) = ⋂{𝑄: 𝑄 is an IF2 − A𝑓 − PrI of H s.t. 𝜒𝑆 ⊆ 𝑄}. Then the map 𝜉: 𝒢(𝐻) → 𝒢(𝐻) 

defined by 𝜉(𝐺) = 𝒢𝑓(𝐺∗), ∀𝐺 ∈ 𝒢(𝐻) is an expansion of IFIs of H. 

Proof.  Obviously 𝐺 ⊆ 𝒢𝑓(𝐺∗) = 𝜉(𝐺),∀𝐺 ∈ 𝒢(𝐻). 

Let ₲, Ğ ∈ 𝒢(𝐻) s.t. ₲ ⊆ Ğ. Then 

 

𝜉(₲) = 𝒢𝑓(₲∗) = ⋂{𝑄: 𝑄 ∈ 𝒢(𝐻) s.t. 𝜒₲∗
⊆ 𝑄 and 𝑄 is IF2 − A𝑓 − PrI}

⊆ ⋂{𝑄: 𝑄 ∈ 𝒢(𝐻) s.t. 𝜒Ğ∗
⊆ 𝑄 and 𝑄 is IF2 − A𝑓 − PrI }

= 𝒢𝑓(Ğ∗)

= 𝜉(Ğ).

 

Hence 𝜉 is an expansion of IFIs of H.  

Theorem 7.3.5.  Let 𝑓 be an expansion of IFIs of 𝛤-Ring H. If  {₲𝑖: 𝑖 ∈ 𝛬} is a directed 

collection of IF2 −A𝑓 −PrIs of H, where 𝛬 is an index set, then 𝐺 = ⋃𝑖∈𝛬₲𝑖 is IF2-A𝑓-

PrI of H. 

Proof.  Let ℎ(𝜂,𝜃), 𝑘(ϐ,ϑ), 𝑝(𝜏,𝜔) of H and 𝛾1, 𝛾2 ∈ 𝛤 s.t. ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,ϑ)𝛾2𝑝(𝜏,𝜔) ⊆ 𝐺. Then 

∃ 𝑖 ∈ 𝛬 s.t. ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,ϑ)𝛾2𝑝(𝜏,𝜔) ⊆ ₲𝑖. Since each ₲𝑖 is IF2 −A𝑓 −PrI and ₲𝑖 ⊆ 𝐺. It 

follows that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,ϑ) ⊆ ₲𝑖 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(₲𝑖) or 𝑘(ϐ,ϑ)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(₲𝑖). Since 
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₲𝑖 ⊆ 𝑓(₲𝑖) ⊆ 𝑓(𝐺), ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,ϑ) ⊆ 𝐺 or ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(𝐺) or 𝑘(ϐ,ϑ)𝛾2𝑝(𝜏,𝜔) ⊆

𝑓(𝐺), so that 𝐺 is IF2 −A𝑓 −PrI of H.  

Theorem 7.3.6.  Let 𝑓 be an expansion of IFIs of 𝛤-Ring H which is intersection 

preserving. If ₲1, ₲2, . . . . . . . ₲𝑛 are IF2 −A𝑓 −PrIs of H and 𝐵 = 𝑓(₲𝑚) for all 𝑚 =

1,2, . . . . . . . 𝑛, then 𝐺 : = ⋂𝑚=1
𝑛 ₲𝑚 is an IF2 −A𝑓-PrI of H. 

Proof. Obviously, 𝐺 : = ⋂𝑚=1
𝑛 ₲𝑚 is an IFI of H. Let ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) ∈ 𝐼𝐹𝐼(𝐻) and 

𝛾1, 𝛾2 ∈ 𝛤 such that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝐺 and ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊈ 𝐺. Then 

ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊈ ₲𝑚 for some 𝑚 ∈ {1,2, . . . , 𝑛}. But ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝐺 ⊆ ₲𝑚 and 

₲𝑚 is an IF2 −A𝑓 −PrI of H, which imply that ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(₲𝑚) or 

𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(₲𝑚). Since 𝑓 is intersecting preserving, so 

 

𝑓(𝐺) = 𝑓(⋂𝑚=1
𝑛 ₲𝑚) = ⋂𝑚=1

𝑛 𝑓(₲𝑚) = 𝐵 = 𝑓(₲𝑚) 

 

and so ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(𝐺) or 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝑓(𝐺). Therefore 𝐺 is an IF2 −A𝑓 −PrI 

of H.  

Theorem 7.3.7.  Let 𝑓 be an expansion of IFIs which is global and let 𝜎 𝑖𝑠 𝛤-𝐻𝑜𝑚𝐻1

𝐻2. If 

Ğ is an IF2 −A𝑓-PrI of 𝐻2, then 𝜎−1(Ğ) is an IF2 −A𝑓 −PrI of 𝐻1. 

Proof. Let ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝑢,𝑣) ∈ 𝐼𝐹𝑃(𝐻1) and 𝛾1, 𝛾2 ∈ 𝛤 s.t. ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆

𝜎−1(Ğ). Then 𝜎(𝑥(𝜂,𝜃))𝛾1𝜎(𝑦(ϐ,𝜗))𝛾2𝜎(𝑧(𝜏,𝜔)) ⊆ Ğ, i.e., 

(𝜎(ℎ))
(𝜂,𝜃)

𝛾1(𝜎(𝑘))
(ϐ,𝜗)

𝛾2(𝜎(𝑝))
(𝜏,𝜔)

⊆ Ğ, which imply that 

(𝜎(ℎ))
(𝜂,𝜃)

𝛾1(𝜎(𝑘))
(ϐ,𝜗)

⊆ Ğ or (𝜎(ℎ))
(𝜂,𝜃)

𝛾2(𝜎(𝑝))
(𝜏,𝜔)

⊆ 𝑓(Ğ) or 

(𝜎(𝑘))
(ϐ,𝜗)

𝛾2(𝜎(𝑝))
(𝜏,𝜔)

⊆ 𝑓(Ğ). Since 𝑓 is global, it follows that ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊆

𝜎−1(Ğ) or ℎ(𝜂,𝜃)𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝜎−1 (𝑓(Ğ)) = 𝑓 (𝜎−1(Ğ)) or 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆

𝜎−1 (𝑓(Ğ)) = 𝑓 (𝜎−1(Ğ)). Hence 𝜎−1(Ğ) is an IF2 −A𝑓 −PrI of 𝐻1. 

        It can be easily verified that if 𝜎 is a 𝛤-𝐻𝑜𝑚𝐻1

𝐻2, then 𝜎−1(𝜎(𝐺)) = 𝐺 for every 𝐺 ∈

𝒢(𝐻) that contains 𝐾𝑒𝑟(𝜎). 
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Theorem 7.3.8.  Let 𝜎 𝑖𝑠 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒  𝛤-𝐻𝑜𝑚𝐻1

𝐻2 of 𝛤-Rings and let 𝐺 be an IFI of 𝐻1 that 

contains 𝐾𝑒𝑟(𝜎). Then 𝐺 is an IF2 −A𝑓 −PrI of 𝐻1 iff 𝜎(𝐺) is an IF2 −A𝑓 −PrI of 𝐻2, 

where 𝑓 is a global IFI expansion. 

Proof. If 𝜎(𝐺) is an IF2 −A𝑓 −PrI of  𝐻2, then 𝐺 is an IF2 −A𝑓 −PrI of 𝐻1, by Theorem 

(7.3.7) and 𝐺 = 𝜎−1(𝜎(𝐺)). Suppose that 𝐺 is an IF2 −A𝑓 −PrI of 𝐻1. Let 

ℎ(𝜂,𝜃), 𝑘(ϐ,𝜗), 𝑝(𝜏,𝜔) ∈ 𝐼𝐹𝑃(𝐻2) and 𝛾1, 𝛾2 ∈ 𝛤 s.t. ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝜎(𝐺). Since 𝜎 

is surjective we have 𝜎(𝑎) = ℎ, 𝜎(𝑏) = 𝑘, 𝜎(𝑐) = 𝑝, for some 𝑎, 𝑏, 𝑐 ∈ 𝐻1.Then 

𝜎(𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,𝜔)) = (𝜎(𝑎))
(𝜂,𝜃)

𝛾1(𝜎(𝑏))
(ϐ,𝜗)

𝛾2(𝜎(𝑐))
(𝜏,𝜔)

=

ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝜎(𝐺), which imply that 𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,𝜔) ⊆ 𝜎−1(𝜎(𝐺)) =

𝐺. Since 𝐺 is an IF2 −A𝑓 −PrI of 𝐻1, it follows that 𝑎(𝜂,𝜃)𝛾1𝑏(ϐ,𝜗) ⊆ 𝐺 or 

𝑎(𝜂,𝜃)𝛾2𝑐(𝜏,𝜔) ⊆ 𝑓(𝐺) or 𝑏(ϐ,𝜗)𝛾2𝑐(𝜏,𝜔) ⊆ 𝑓(𝐺), i.e., ℎ(𝜂,𝜃)𝛾1𝑘(ϐ,𝜗) ⊆ 𝜎(𝐺) or 

ℎ(𝜂,𝜃)𝛾2𝑝(𝜏,𝜔) ⊆ 𝜎(𝑓(𝐺)) or 𝑘(ϐ,𝜗)𝛾2𝑝(𝜏,𝜔) ⊆ 𝜎(𝑓(𝐺)). As 𝑓 is global, we have 

 

𝑓(𝐺) = 𝑓 (𝜎−1(𝜎(𝐺))) = 𝜎−1(𝑓(𝜎(𝐺)) 

 

and so 𝜎(𝑓(𝐺)) = 𝜎 (𝜎−1 (𝑓(𝜎(𝐺)))) = 𝑓(𝜎(𝐺)). Since 𝜎 is surjective. Therefore 

𝜎(𝐺) is an IF2 −A𝑓 −PrI of 𝐻2. This completes the proof.  

 

7.4 Conclusion 

This chapter, introduces the concept of IFf-PrIs (2-absorbing f-primary ideals), which 

serves as a unification of the notions of IFPIs (2-absorbing ideals) and IFPrIs (2-APrIs) 

within a Γ-Ring. The exploration of these concepts signifies a new direction towards 

establishing the foundation for studying the decomposition property for IFf-PrI (2-

absorbing f-primary ideal). 
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Chapter 8 

 

Extensions Of Intuitionistic Fuzzy Ideal 

Of 𝜞-Rings 

 

8.1 Introduction 

The concept of extensions of fuzzy ideal with respect to an element in the 𝛤-semiring was 

introduced by Venkateshwarlu, Rao, and Narayana in [67]. By using this concept, they 

characterized FPI and FSPI. In this chapter, notion of extension of IFI with respect to an 

element of 𝛤-Ring is investigated and characterization of IFPIs and IFSPIs has been 

innovated. 

 

8.2 Extensions Of Intuitionistic Fuzzy Ideal Of 𝜞-Rings 

The concept of extensions of IFI of 𝛤-Rings has been coined and characterization of IFPI 

and IFSPI has been done in this section. 

Definition 8.2.1.  Suppose H is a 𝛤-Ring. Take any IFS 𝐺 of H and ℎ ∈ 𝐻. The IFS  

< ℎ, 𝐺 > defined by 𝜇<ℎ,𝐺>(𝑘) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} and 𝜈<ℎ,𝐺>(𝑘) =

𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} is said to be extension of 𝐺 by ℎ, where 𝑘 ∈ 𝐻. 

Proposition 8.2.2.  Let H be a commutative 𝛤-Ring. Take 𝐺 is an IFI of H and ℎ ∈ 𝐻, 

then the extension < ℎ, 𝐺 > of 𝐺 by ℎ is an IFI of H. 

Proof. Clearly < ℎ, 𝐺 > is an IFS of H. Let 𝑟1, 𝑟2 ∈ 𝐻, 𝛾 ∈ 𝛤, we have 
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𝜇<ℎ,𝐺>(𝑟1 − 𝑟2) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2(𝑟1 − 𝑟2))}

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑟1 − ℎ𝛾1𝑟𝛾2𝑟2))}

≥ 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑟1) ∧ 𝜇𝐺(ℎ𝛾1𝑟𝛾2r2)}

= {𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤(𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑟1))} ∧ {𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤(𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑟1))}

= 𝜇<ℎ,𝐺>(𝑟1) ∧ 𝜇<ℎ,𝐺>(𝑟2).

 

Thus 𝜇<ℎ,𝐺>(𝑟1 − 𝑟2) ≥ 𝜇<ℎ,𝐺>(𝑟1) ∧ 𝜇<ℎ,𝐺>(𝑟2). In the same manner this can seen that 

𝜈<ℎ,𝐺>(𝑟1 − 𝑟2) ≤ 𝜈<ℎ,𝐺>(𝑟1) ∨ 𝜈<ℎ,𝐺>(𝑟2). Also, 

 

𝜇<ℎ,𝐺>(𝑟1𝛾𝑟2) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2(𝑟1𝛾𝑟2))}

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺((ℎ𝛾1𝑟𝛾2𝑟1)𝛾𝑟2)}

≥ 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑟1)}}

= 𝜇<ℎ,𝐺>(𝑟1).

 

Since H is a comm. 𝛤-Ring 𝑟1𝛾𝑟2 = 𝑟2𝛾𝑟1, for all 𝑟1, 𝑟2 ∈ 𝐻, 𝛾 ∈ 𝛤. 

 

𝜇<ℎ,𝐺>(𝑟1𝛾𝑟2) = 𝜇<ℎ,𝐺>(𝑟2𝛾𝑟1) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2(𝑟2𝛾𝑟1))}

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺((ℎ𝛾1𝑟𝛾2𝑟2)𝛾𝑟1)}

≥ 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑟2)}

= 𝜇<ℎ,𝐺>(𝑟2)

 

Thus 𝜇<ℎ,𝐺>(𝑟1𝛾𝑟2) ≥ 𝜇<ℎ,𝐺>(𝑟1) ∨ 𝜇<ℎ,𝐺>(𝑟2). Similarly, we can show 

𝜈<ℎ,𝐺>(𝑟1𝛾𝑟2) ≤ 𝜇<ℎ,𝐺>(𝑟1) ∧ 𝜈<ℎ,𝐺>(𝑟2). Hence < ℎ, 𝐺 > is an IFI of H.  

Example 8.2.3.  Consider 𝐻 = 𝛤 = 𝑍9 = {0,1,2,3, . . . . ,8} under the operations addition 

modulo 9 and multiplication modulo 9. Then H is a 𝛤-Ring. Define an IFS 𝐺 of H as 

𝜇𝐺(ℎ) = {
1, if ℎ = 0
0.4, if ℎ ∈ {3,6}
0.7, otherwise

; 𝜈𝐺(ℎ) = {
0, if ℎ = 0
0.5, if ℎ ∈ {3,6}
0.2, otherwise.

 

It is easy to verify that 𝐺 is not an IFI of H, for 𝜇𝐺  (4 − 1) = 𝜇𝐺(3) = 0.4 ≱ 0.7 = 𝜇𝐺(4) ∧ 

𝜇𝐺(1). However, the extension of 𝐺 by 3, i.e., the IFS < 3 + 𝐺 > is defined as 

𝜇<3+𝐺>(ℎ) = {
1,  if ℎ ∈ {0,3,6}
0.4,  otherwise

; 𝜈<3+𝐺>(ℎ) = {
0,  if ℎ ∈ {0,3,6}
0.5,  otherwise.

 

is an IFI of H. 
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Proposition 8.2.4.  Suppose H is a commutative 𝛤-Ring. If 𝐺 is an IFI of H and ℎ ∈ 𝐻. 

Then these axioms are true 

1. 𝐺 ⊆< ℎ, 𝐺 > 

2. < (ℎ𝛾)𝑛−1ℎ, 𝐺 >⊆< (ℎ𝛾)𝑛ℎ, 𝐺 >, where 𝛾 ∈ 𝛤 

3. If  ℎ ∈ 𝑆𝑢𝑝𝑝(𝐺), then 𝑆𝑢𝑝𝑝(< ℎ, 𝐺 >) = 𝐻, where 𝑆𝑢𝑝𝑝(𝐺) is eloborated as 

            𝑆𝑢𝑝𝑝(𝐺) = {ℎ ∈ 𝐻: 𝜇𝐺(ℎ) > 0, 𝜈𝐺(ℎ) < 1}. 

Proof. (1) Let 𝑘 ∈ 𝐻. Since 𝐺 is an IFI of H, so 𝜇<ℎ,𝐺>(𝑘) =

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} ≥ 𝜇𝐺(𝑘) and 𝜈<ℎ,𝐺>(𝑘) = 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} ≤

𝜈𝐺(𝑘), ∀𝑘 ∈ 𝐻 

Thus 𝐺 ⊆< ℎ, 𝐺 >. 

(2) Let 𝑛 ∈ 𝐍, 𝑘 ∈ 𝐻. Since 𝐺 is an IFI of H, we have 

 

𝜇<(ℎ𝛾)𝑛ℎ,𝐺>(𝑘) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺((ℎ𝛾)𝑛ℎ𝛾1𝑟𝛾2𝑘)}

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺((ℎ𝛾(ℎ𝛾)𝑛−1ℎ𝛾1𝑟𝛾2𝑘)}

≥ 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺((ℎ𝛾)𝑛−1ℎ𝛾1𝑟𝛾2𝑘)}

= 𝜇<(ℎ𝛾)𝑛−1ℎ,𝐺>(𝑘).

 

Thus 𝜇<(ℎ𝛾)𝑛ℎ,𝐺>(𝑘) ≥ 𝜇<(ℎ𝛾)𝑛−1ℎ,𝐺>(𝑘). In the same manner, it can be shown that 

𝜈<(ℎ𝛾)𝑛ℎ,𝐺>(𝑘) ≤ 𝜈<(ℎ𝛾)𝑛−1ℎ,𝐺>(𝑘), for all 𝑘 ∈ 𝐻. Thus < (ℎ𝛾)𝑛−1ℎ, 𝐺 >⊆<

(ℎ𝛾)𝑛ℎ, 𝐺 >. 

(3) Since < ℎ, 𝐺 > is an IFI of H, so for 𝑘 ∈ 𝐻 

𝜇<ℎ,𝐺>(𝑘) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} ≥ 𝜇𝐺(ℎ) > 0 and 

𝜈<ℎ,𝐺>(𝑘) = 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} ≤ 𝜈𝐺(ℎ) < 1. This implies 𝑘 ∈ 𝑆𝑢𝑝𝑝(<

ℎ, 𝐺 >). So 𝐻 ⊆ 𝑆𝑢𝑝𝑝(< ℎ, 𝐺 >). But 𝑆𝑢𝑝𝑝(< ℎ, 𝐺 >) ⊆ 𝐻 always implies that 

𝑆𝑢𝑝𝑝(< ℎ, 𝐺 >) = 𝐻.  

Theorem 8.2.5.  Suppose H is a 𝛤-Ring and 𝐺 is an IFPI of H. Then for all ℎ, 𝑘 ∈ 𝐻 

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} =

𝜈𝐺(ℎ) ∧ 𝜈𝐺(𝑘). Conversely, suppose 𝐺 is an IFI of a 𝛤-Ring H s.t. 𝐼𝑚𝑔(𝐺) =

{(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1 and 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} =
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𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 𝜈𝐺(ℎ) ∧ 𝜈𝐺(𝑘) holds ∀ℎ, 𝑘 ∈ 𝐻, 

then 𝐺 is an IFPI of H. 

Proof. Let 𝐺 be an IFPI of H. Then (i) 𝐺(0𝐻) = (1,0) (ii) 𝐺∗ is a PI of H (iii) 𝐼𝑚𝑔(𝐺) =

{(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. 

Clearly 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 1 or 𝜆 and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 0 or 

𝜁. 

 

      Case(i) Let 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) = 1. Suppose 𝜇𝐺(ℎ) = 1, then 𝜈𝐺(ℎ) = 0. This implies 

that ℎ ∈ 𝐺∗. Since 𝐺∗ is an ideal of H so ℎ𝛾1𝑟𝛾2𝑘 ∈ 𝐺∗, for all 𝛾1, 𝛾2 ∈ 𝛤 and for all 𝑟, 𝑘 ∈

𝐻. Therefore 𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘) = 1 and 𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘) = 0, for all 𝛾1 , 𝛾2 ∈ 𝛤, 𝑟, 𝑘 ∈ 𝐻. 

Hence 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 1 = 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) and 

𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 0 = 𝜈𝐺(ℎ) ∧ 𝜈𝐺(𝑘). 

 

       Case(ii) Let 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) = 𝜆. Then atleast one of 𝜇𝐺(ℎ) or 𝜇𝐺(𝑘) is 𝜆. Suppose 

𝜇𝐺(ℎ) = 𝜆 and so 𝜈𝐺(ℎ) = 𝜁. This implies ℎ ∉ 𝐺∗. Hence ℎ𝛤𝐻𝛤𝑘 ⊈ 𝐺∗. Thus ∃′𝑠, 

𝛾1, 𝛾2 ∈ 𝛤 and 𝑟 ∈ 𝐻 such that ℎ𝛾1𝑟𝛾2𝑘 ∉ 𝐺∗. Hence 𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘) ≠ 1 and 

𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘) ≠ 0. As 𝐼𝑚𝑔(𝐺) = {(1,0), (𝜆, 𝜁)}, so we have 𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘) = 𝜆 and 

𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘) = 𝜁. Thus 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 𝜆 = 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) and 

𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 𝜁 = 𝜈𝐺(ℎ) ∧ 𝜈𝐺(𝑘). 

 

     Conversely, to prove the converse it is sufficient to show that 𝐺∗ is a PI of H. Suppose 

ℎ, 𝑘 ∈ 𝐻 s.t. ℎ𝛤𝐻𝛤𝑘 ⊆ 𝐺∗. Therefore for all 𝛾1, 𝛾2 ∈ 𝛤, 𝑟 ∈ 𝐻, ℎ𝛾1𝑟𝛾2𝑘 ∈ 𝐺∗. So 

𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘) = 1 and 𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘) = 0, for all 𝛾1, 𝛾2 ∈ 𝛤 and 𝑟 ∈ 𝐻. 

Hence 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 1 and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 0. 

Therefore 

𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) = 1 and 𝜈𝐺(ℎ) ∧ 𝜈𝐺(𝑘) = 0. This indicates that 𝜇𝐺(ℎ) = 1, 𝜈𝐺(ℎ) = 0 or 

𝜇𝐺(𝑘) = 1, 𝜈𝐺(𝑘) = 0, i.e., ℎ ∈ 𝐺∗ or 𝑘 ∈ 𝐺∗. Thus 𝐺∗ is a PI of H. Hence 𝐺 is an IFPI of 

H.  
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Proposition 8.2.6.  Suppose H be a 𝛤-Ring and 𝐺 is an IFPI of H and ℎ ∈ 𝐻, then 

𝜇<ℎ,𝐺>(𝑘) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇<ℎ𝛾1𝑟𝛾2ℎ,𝐺>(𝑘)} and 𝜈<ℎ,𝐺>(𝑘) =

𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈<ℎ𝛾1𝑟𝛾2ℎ,𝐺>(𝑦)}, ∀𝑘 ∈ 𝐻. 

Proof. Now 

 

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤 (𝜇<ℎ𝛾1𝑟𝛾2ℎ,𝐺>(𝑘)) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝐼𝑛𝑓𝑟∈𝐻(ℎ′𝛾1
′𝑟𝛾2

′𝑘)}, where ℎ′ = ℎ𝛾1𝑟𝛾2ℎ

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ′) ∨ 𝜇𝐺(𝑘)} as 𝐺 is an IFPI  

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2ℎ) ∨ 𝜇𝐺(𝑘)}}

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2ℎ)} ∨ 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(𝑘)}

= 𝜇𝐺(ℎ) ∨ 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) = 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘)

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾3,𝛾4∈𝛤{𝜇𝐺(ℎ𝛾3𝑟𝛾4𝑘)} as 𝐺 is an IFPI 

= 𝜇<ℎ,𝐺>(𝑘).

 

The same argument can be used to prove other results.  

Definition 8.2.7.  Suppose H be a 𝛤-Ring and 𝑁 ⊆ 𝐻 and ℎ ∈ 𝐻, we define 

< ℎ, 𝑁 >= {𝑘 ∈ 𝐻|ℎ𝛤𝐻𝛤𝑘 ⊆ 𝑁} 

Proposition 8.2.8.  Suppose H is a 𝛤-Ring and ∅ ≠ 𝑁 ⊆ 𝐻. Then < ℎ, 𝜒𝑁 >= 𝜒<ℎ,𝑁> for 

every ℎ ∈ 𝐻. 

Proof. Suppose 𝑘 ∈ 𝐻. Now 𝜇<ℎ,𝜒𝑁>(𝑘) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝜒𝑁
(ℎ𝛾1𝑟𝛾2𝑘)} = 1 or 0 and 

𝜈<ℎ,𝜒𝑁>(𝑘) = 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝜒𝑁
(ℎ𝛾1𝑟𝛾2𝑘)} = 0 or 1. 

 

        Case(i) If 𝜇<ℎ,𝜒𝑁>(𝑘) = 1 and so 𝜈<ℎ,𝜒𝑁>(𝑘) = 0 and therefore, 

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝜒𝑁
(ℎ𝛾1𝑟𝛾2𝑘)} = 1 and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝜒𝑁

(ℎ𝛾1𝑟𝛾2𝑘)} = 0. This implies 

ℎ𝛾1𝑟𝛾2𝑘 ∈ 𝑁, for all 𝛾1, 𝛾2 ∈ 𝛤, 𝑟 ∈ 𝐻 and so 𝑘 ∈< ℎ, 𝑁 >. Hence 𝜇𝜒<ℎ,𝑁>
(𝑘) =

1, 𝜈𝜒<ℎ,𝑁>
(𝑘) = 0. So here in case (i), this is true that < ℎ, 𝜒𝑁 >= 𝜒<ℎ,𝑁>. 

 

       Case(ii) If 𝜇<ℎ,𝜒𝑁>(𝑘) = 0 and so 𝜈<ℎ,𝜒𝑁>(𝑘) = 1 and therefore, 

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝜒𝑁
(ℎ𝛾1𝑟𝛾2𝑘)} = 0 and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝜒𝑁

(ℎ𝛾1𝑟𝛾2𝑘)} = 1. Hence 

ℎ𝛾1𝑟𝛾2𝑘 ∉ 𝑁, for some 𝛾1, 𝛾2 ∈ 𝛤, 𝑟 ∈ 𝐻. This implies 𝑘 ∉< ℎ, 𝑁 >. Hence 
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𝜇𝜒<ℎ,𝑁>
(𝑘) = 0, 𝜈𝜒<𝑥,𝑁>

(𝑦) = 1. So here in case (ii) also this is true that < ℎ, 𝜒𝑁 >=

𝜒<ℎ,𝑁>. Hence the result proved.  

Theorem 8.2.9.  Suppose H is a 𝛤-Ring. If 𝐺 is an IFPI of H and ℎ ∈ 𝐻 be s.t. ℎ ∉ 𝐺∗, 

then  

< ℎ, 𝐺 >= 𝐺. Conversely, let 𝐺 be an IFI of H s.t. 𝐼𝑚𝑔(𝐺) = {(1,0), (𝜆, 𝜁)}, where 

𝜆, 𝜁 ∈ [0,1) s.t. 𝜆 + 𝜁 ≤ 1. If < ℎ, 𝐺 >= 𝐺, for some ℎ ∈ 𝐻 for which 𝐺(ℎ) = (𝜆, 𝜁), 

then 𝐺 is an IFPI of H. 

Proof. Let 𝐺 be an IFPI of H. Then (i) 𝐺(0𝐻) = (1,0) (ii) 𝐺∗ is a PI of H (iii) 𝐼𝑚𝑔(𝐺) =

{(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1. Let ℎ ∈ 𝐻 

 

       Case(i) If ℎ ∈ 𝐺∗, then ℎ𝛾1𝑟𝛾2ℎ ∈ 𝐺∗ for all 𝛾1, 𝛾2 ∈ 𝛤, 𝑟, ℎ ∈ 𝐻. So 

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2ℎ)} = 1 = 𝜇𝐺(𝑘) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 0 =

𝜈𝐺(𝑘). That is 𝜇<ℎ,𝐺>(𝑘) = 𝜇𝐺(𝑘) and 𝜈<ℎ,𝐺>(𝑘) = 𝜈𝐺(𝑘), i.e., < ℎ, 𝐺 > (𝑘) = 𝐺(𝑘). 

 

      Case(ii) Let 𝑘 ∉ 𝐺∗. Is 𝐺∗ is a PI of H, ℎ𝛾1𝑟𝛾2𝑘 ∉ 𝐺∗, for some 𝛾1, 𝛾2 ∈ 𝛤, 𝑟, ℎ ∈ 𝐻. 

So 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 𝜆 = 𝜇𝐺(𝑘) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 𝜁 =

𝜈𝐺(𝑘), i.e., 𝜇<ℎ,𝐺>(𝑘) = 𝜇𝐺(𝑘) and 𝜈<ℎ,𝐺>(𝑘) = 𝜈𝐺(𝑘), i.e., < ℎ, 𝐺 > (𝑘) = 𝐺(𝑘). So in 

both the cases we get < ℎ, 𝐺 >= 𝐺. 

      Conversely, let ℎ, 𝑘 ∈ 𝐻. 

 

      Case(i) Let 𝜇𝐺(ℎ) = 𝜆, 𝜈𝐺(ℎ) = 𝜁. Now 𝜇𝐺(𝑘) = 𝜇<ℎ,𝐺>(𝑘) =

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} and 𝜈𝐺(𝑘) = 𝜈<ℎ,𝐺>(𝑘) = 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)}. 

Since 𝐼𝑚𝑔(𝐺) = {(1,0), (𝜆, 𝜁)}, where 𝜆, 𝜁 ∈ [0,1) such that 𝜆 + 𝜁 ≤ 1. Now 𝜇𝐺(𝑘) ≥

𝜆 = 𝜇𝐺(ℎ) and 𝜈𝐺(𝑘) ≤ 𝜁 = 𝜈𝐺(ℎ). So 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) = 𝜇𝐺(𝑘) and 𝜈𝐺(ℎ) ∧ 𝜈𝐺(𝑘) =

𝜈𝐺(𝑘). Therefore we have 

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} =

𝜈𝐺(ℎ) ∧ 𝜈𝐺(𝑘). 
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         Case(ii) Let 𝜇𝐺(ℎ) = 1, 𝜈𝐺(ℎ) = 0, then ℎ ∈ 𝐺∗. As 𝐺 is an IFI of H, 𝐺∗ is an ideal 

of H. Hence ℎ𝛾1𝑟𝛾2𝑘 ∈ 𝐺∗, ∀𝛾1, 𝛾2 ∈ 𝛤, 𝑟, 𝑘 ∈ 𝐻. So 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} =

1 = 𝜇𝐺(ℎ) ∨ 𝜇𝐺(𝑘) and 𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜈𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 0 = 𝜈𝐺(ℎ) ∧ 𝜈𝐺(𝑘), ∀ℎ, 𝑘 ∈ 𝐻. 

Hence using the converse of Theorem (8.2.5) 𝐺 is an IFPI of H.  

Theorem 8.2.10.  Suppose H is a 𝛤-Ring. If 𝐺 is an IFPI of H  & ℎ ∈ 𝐻 be s.t. ℎ ∈ 𝐺∗, 

then  

< ℎ, 𝐺 >= 𝜒𝐻. 

Proof. Suppose 𝐺 be an IFPI of H. Then (i) 𝐺(0𝐻) = (1,0) (ii) 𝐺∗ is a prime ideal of H 

(iii) 𝐼𝑚𝑔(𝐺) = {(1,0), (𝜆, 𝜁)}, where 0 ≤ 𝜆, 𝜁 < 1 s.t. 𝜆 + 𝜁 ≤ 1. Let 𝑦 ∈ 𝐻. As ℎ ∈ 𝐺∗, 

then ℎ𝛾1𝑟𝛾2𝑘 ∈ 𝐺∗, for all 𝛾1, 𝛾2 ∈ 𝛤, 𝑟, 𝑘 ∈ 𝐻. So 𝜇<ℎ,𝐺>(𝑘) =

𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 1 = 𝜇𝜒𝐻
(𝑘) and 𝜈<ℎ,𝐺>(𝑘) =

𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 0 = 𝜈𝜒𝐻
(𝑘), ∀𝑘 ∈ 𝐻. Hence < ℎ, 𝐺 >= 𝜒𝐻.  

Corollary 8.2.11. Suppose 𝑀 is an ideal of a 𝛤-Ring H. If 𝑀 is a PI of H then for ℎ ∈ 𝐻, 

< ℎ, 𝜒𝑀 >= 𝜒𝑀. 

Proof. Suppose 𝑀 be a PI of H. Then 𝜒𝑀 is an IFPI of H Now ℎ ∉ 𝐻 implies ℎ ∉ (𝜒𝑀)∗, 

we have by Theorem (8.2.9) < ℎ, 𝜒𝑀 >= 𝜒𝑀.  

Theorem 8.2.12.  Let H be a commutative 𝛤-Ring and 𝐺 be an IFS of H s.t. < ℎ, 𝐺 >= 𝐺 

for every ℎ ∈ 𝐻. Then 𝐺 is constant. 

Proof. For ℎ, 𝑘 ∈ 𝐻 we have 

 

𝜇𝐺(ℎ) = 𝜇<𝑘,𝐺>(ℎ), as < ℎ, 𝐺 >= 𝐺 for every ℎ ∈ 𝐻

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(𝑘𝛾1𝑟𝛾2ℎ)} = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)}

= 𝜇<ℎ,𝐺>(𝑘) = 𝜇𝐺(𝑘).

 

Thus 𝜇𝐺(ℎ) = 𝜇𝐺(𝑘). Similarly, this can be depicted 𝜈𝐺(ℎ) = 𝜈𝐺(𝑘), for all ℎ, 𝑘 ∈ 𝐻. 

Hence 𝐺 is constant.  

Proposition 8.2.13.  Let H be a 𝛤-Ring and 𝐺 is an IFPI of H. Then either < ℎ, 𝐺 > is an 

IFPI of H or < ℎ, 𝐺 > is constant. 

Proof. Let 𝐺 be an IFPI of H and ℎ ∈ 𝐻  
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      Case(i) If ℎ ∉ 𝐺∗. By Theorem (8.2.9) < ℎ, 𝐺 >= 𝐺. This proves that < ℎ, 𝐺 > is an 

IFPI of H.  

 

      Case(ii) If ℎ ∈ 𝐺∗. Then ℎ𝛾1𝑟𝛾2𝑘 ∈ 𝐺∗, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾1, 𝛾2 ∈ 𝛤, 𝑟, 𝑘 ∈ 𝐻. Hence 

𝜇<ℎ,𝐺>(𝑘) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 1; 𝜈<ℎ,𝐺>(𝑘) =

𝑆𝑢𝑝𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)} = 0, for all 𝑘 ∈ 𝐻. This proves < ℎ, 𝐺 > is a constant.  

Proposition 8.2.14.  Suppose H is a commutative 𝛤-Ring and 𝐺 is an IFSPI of H iff 

 𝐺(ℎ𝛾ℎ) = 𝐺(ℎ), ∀ℎ ∈ 𝐻, and ∀𝛾 ∈ 𝛤. 

Proof. Let ₲1be an IFI of 𝛤-Ring H such that  ₲1(ℎ𝛾ℎ) = ₲1(ℎ), ∀ℎ ∈ 𝐻 and ∀𝛾 ∈ 𝛤. 

Let ₲2 be an IFI of H s.t. ₲2𝛤₲2 ⊆ ₲1. Let ₲2 ⊈ ₲1. Then ∃𝑘 ∈ 𝐻 s.t. 𝜇₲2
(𝑘) > 𝜇₲1

(𝑘) 

and 𝜈₲2
(𝑘) < 𝜈₲1

(𝑘). 

 

       Now 𝜇₲2𝛤₲2
(𝑘𝛾𝑘) ≥ 𝜇₲2

(𝑘) > 𝜇₲1
(𝑘) and 𝜈₲2𝛤₲2

(𝑘𝛾𝑘) ≤ 𝜈₲2
(𝑘) < 𝜇₲1

(𝑘). Again 

𝜇₲1
(𝑘) = 𝜇₲1

(𝑘𝛾𝑘) ≥ 𝜇₲2𝛤₲2
(𝑘𝛾𝑘) and 𝜈₲1

(𝑘) = 𝜈₲1
(𝑘𝛾𝑘) ≤ 𝜈₲2𝛤₲2

(𝑘𝛾𝑘). This implies 

that ₲2𝛤₲2 = ₲1, which is not true. Hence ₲2 ⊆ ₲1. Thus ₲1 is an IFSPI of H. 

 

       Conversely, let G be an IFSPI of H. Now for any ℎ ∈ 𝐻, we have 

 

𝜇𝐺(ℎ) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇G(ℎ𝛾1𝑟𝛾2ℎ)}( from prop. (2.2.11))

≥ 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇G(ℎ𝛾1𝑥𝛾2ℎ)}

≥ 𝜇G(ℎ𝛾𝑖ℎ).

 

Again 𝜇𝐺(ℎ𝛾𝑖ℎ) ≥ 𝜇G(ℎ). Thus  𝜇𝐺(ℎ𝛾𝑖ℎ) = 𝜇G(ℎ). In the same manner it can be shown 

that 𝜈𝐺(ℎ𝛾𝑖ℎ) = 𝜈G(ℎ). That is 𝐺(ℎ𝛾ℎ) = 𝐺(ℎ)∀ℎ ∈ 𝐻, 𝛾 ∈ 𝛤.  

Proposition 8.2.15.  Let H be a commutative 𝛤-Ring and 𝐺 be an IFSPI of H. Then  

< ℎ, 𝐺 > is an IFSPI of H for every ℎ ∈ 𝐻. 

Proof. Suppose 𝐺 is an IFSPI of H and ℎ ∈ 𝐻. Now by Proposition (8.2.2) < ℎ, 𝐺 > is an 

IFI of H. For every 𝑘 ∈ 𝐻, 𝛾 ∈ 𝛤, this is true 
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𝜇<ℎ,𝐺>(𝑘) = 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘)}

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺{(ℎ𝛾1𝑟𝛾2𝑘)𝛾(ℎ𝛾1𝑟𝛾2𝑘)}}( as 𝐺 is IFSPI )

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺{(ℎ𝛾1𝑚𝛾2𝑘)𝛾(𝑘𝛾1ℎ𝛾2𝑟)}}

≥ 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2𝑘𝛾)}

= 𝐼𝑛𝑓𝑟∈𝐻,𝛾1,𝛾2∈𝛤{𝜇𝐺(ℎ𝛾1𝑟𝛾2(𝑘𝛾𝑘))}

= 𝜇<ℎ,𝐺>(𝑘𝛾𝑘).

 

Again 𝜇<ℎ,𝐺>(𝑘𝛾𝑘) ≥ 𝜇𝐺(𝑘), as < ℎ, 𝐺 > is IFI of H. Thus 𝜇<ℎ,𝐺>(𝑘𝛾𝑘) = 𝜇𝐺(𝑘). 

Similarly, we can show 𝜈<ℎ,𝐺>(𝑘𝛾𝑘) = 𝜈𝐺(𝑘) for all 𝑘 ∈ 𝐻, 𝛾 ∈ 𝛤, by proposition 

(8.2.14) < ℎ, 𝐺 > will be an IFSPI of H.  

Corollary 8.2.16.  Suppose H is a commutative 𝛤-Ring and {𝐺𝑖: 𝑖 ∈ 𝐽} be a non-empty 

family of IFSPIs of H. If 𝜇𝐺(ℎ) = 𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖
(ℎ)} and 𝜈𝐺(ℎ) = 𝑆𝑢𝑝𝑖∈𝐽{𝜈𝐺𝑖

(ℎ)}. Then take 

any ℎ ∈ 𝐻, < ℎ, 𝐺 > will be an IFSPI of H. 

Proof. Clearly, 𝐺 is an IFS of H. Let 𝑟1, 𝑟2 ∈ 𝐻, 𝛾 ∈ 𝛤, then 

 

𝜇𝐺(𝑟1 − 𝑟2) = 𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖
(𝑟1 − 𝑟2)}

≥ 𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖
(𝑟1) ∧ 𝜇𝐺𝑖

(𝑟1)}

= {𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖
(𝑟1)}} ∧ {𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖

(r2)}}

= 𝜇𝐺(r1) ∧ 𝜇𝐺(𝑟2).

 

Similarly, we can show that 𝜈𝐺(𝑟1 − 𝑟2) ≤ 𝜈𝐺(r1) ∨ 𝜈𝐺(r2). Also 

 

𝜇𝐺(𝑟1𝛾𝑟2) = 𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖
(𝑟1𝛾𝑟2)}

≥ 𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖
(r) ∨ 𝜇𝐺𝑖

(𝑟1)}

= {𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖
(𝑟1)}} ∨ {𝐼𝑛𝑓𝑖∈𝐽{𝜇𝐺𝑖

(𝑟2)}}

= 𝜇𝐺(𝑟1) ∨ 𝜇𝐺(𝑟2).

 

In the same way, we prove that 𝜈𝐺(𝑟1𝛾𝑟2) ≥ 𝜈𝐺(𝑟1) ∧ 𝜈𝐺(𝑟2). Thus 𝐺 will be an IFI of H. 

Let 𝑎 ∈ 𝐻, 𝛾 ∈ 𝛤, we have 𝜇𝐺(𝑎) = 𝐼𝑛𝑓𝑖∈𝐽{𝜇₲𝑖
(𝑎)} = 𝐼𝑛𝑓𝑖∈𝐽{𝜇₲𝑖

(𝑎𝛾𝑎)} = 𝜇𝐺(𝑎𝛾𝑎), as 

each ₲𝑖 is IFSPIs of H. In the same way, we prove that 𝜈𝐺(𝑎) = 𝜈𝐺(𝑎𝛾𝑎), for all 𝛾 ∈ 𝛤. 

Then by proposition (2.2.11), < 𝑥, 𝐺 > is an IFSPI of H.  
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Corollary 8.2.17.  Let H be a comm. 𝛤-Ring and {𝑃𝑖: 𝑖 ∈ 𝐽} is a family of SPI of H with at 

least one element and 𝑃 = ⋂𝑖∈𝐽𝑃𝑖 ≠ ∅. Them < 𝑥, 𝜒𝑃 > is an IFSPI of H for every 𝑥 ∈

𝐻. 

Proof.  Since 𝑃 = ⋂𝑖∈𝐽𝑃𝑖, is IPI of H. Then 𝜒𝑃 will be an IFSPI of H. Thus by 

proposition (8.2.15) < 𝑥, 𝜒𝑃 > will become an IFSPI of H.  

 

8.3 Conclusion 

In the last chapter, the notion of extensions of IFI with respect to an element in the 𝛤-

Ring is investigated and characterization of IFPI and IFSPI has been innovated. 
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Overall Conclusion 

In this thesis, an attempt has been made to study IFIs within the 𝛤-Ring, with particular 

emphasis on their structure. The concept of IFCI within a 𝛤-Ring has been explored, 

establishing a connection between IFCI and its level cut sets (3.2.7) and (3.2.9). A 

relationship between Aut(H) and Aut(OR) has been derived (3.3.19), along with a one-to-

one mapping between IFCI(H) and IFCI(OR) (3.3.22). 

 

               Furthermore, the fundamental concepts of IFPrI and IFPR in 𝛤-Ring have been 

investigated, demonstrating that IFPrI of a 𝛤-Ring forms a two-valued IFS with the base 

set being a PrI (4.3.17). It has also been shown that the IFPR of an IFPrI is an IFPI 

(4.3.20). The homeomorphic behavior of IFPrI and IFPR in 𝛤-Ring was established 

(4.4.3), (4.4.7), (4.4.8), (4.4.9). The notion of (IF2−APrI) in 𝛤-Ring has been explored, 

proving that every IF2−AI of 𝛤-Ring is an IF2−APrI (4.5.7), but the converse is not true 

(4.5.8). Additionally, it has been established that the intersection of two IF2-APrIs of a 𝛤-

Ring may not be an IF2−APrIs (4.5.12); however, the intersection of a finite number of 

IF𝑃−2−APrIs of a 𝛤-Ring is an IF𝑃−2−APrI (4.5.11). 

 

                   Furthermore, the IF version of the Lasker-Noether theorem for a commutative 

Noetherian 𝛤-Ring has been established, proving that every IFI 𝐺 in a commutative 

Noetherian 𝛤-Ring can be decomposed as the intersection of a finite number of IFPrIs 

(5.2.8). This decomposition is called an IF primary decomposition. In addition to 

exploring the IF primary decomposition, it has been demonstrated that, in the case of the 

minimal IF primary decomposition of an IFI 𝐺, the set of all IF associated PIs of G is 

independent of the particular decomposition (5.3.11). 

 

                    The structure space on the IFPIs(H) of commutative 𝛤-Ring with unity 

(6.2.2) has also been investigated. It has been shown that this structured space is always 
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𝑇0 (6.3.1) but not 𝑇2 (6.3.6); however, when H is a Boolean 𝛤-Ring, then it is a 𝑇2 space 

(6.3.7). Furthermore, a subspace of the structure space, which is always compact (6.3.8), 

has been identified. Additionally, a relationship between the two different structure 

spaces has been established when there is a 𝛤-Ring homomorphism between two 𝛤-Rings 

(6.4.6). Moreover, the structure space is connected if and only if 0 and 𝑒 are the only 

idempotent elements in H (6.5.4). 

 

               Further, the two notions of IFPIs (2-AIs) and IFPrIs (2A-PrIs) of a 𝛤-Ring have 

been unified into IFf-PrI (2-A𝑓-PrIs)), where 𝑓 is a map from the set of all IFIs (2-AIs) 

into itself called the ideal expansion map. It has also been shown that the intersection of a 

finite number of IFf-PrIs (2-A𝑓-PrIs) of a 𝛤-Ring is again an IFf-PrI (2-A𝑓-PrIs) 

provided the mapping 𝑓 is an intersection-preserving (7.2.14) and (7.3.6). Additionally, it 

has been proven that the image and pre-image of an IF𝑓−PrI (2-A𝑓-PrIs) under the 𝛤-

Ring homomorphism between two 𝛤-rings are IFf-PrIs (2-A𝑓-PrIs), provided the 

mapping 𝑓 is both intersection-preserving and globally expansive (7.2.16), (7.2.15), 

(7.3.7) and (7.3.8). 

 

                 Finally, the notion of extensions of intuitionistic fuzzy ideals with respect to an 

element in the 𝛤-ring has been introduced, and the characterization of intuitionistic fuzzy 

prime ideals (8.2.13) and intuitionistic fuzzy semi-prime ideals has been undertaken 

(8.2.15). 

 

                 Nevertheless, there remain results in crisp set theory related to the topics 

covered in this thesis that need investigation in the IF setting over 𝛤-Ring. Many ideas in 

algebra related to the theory of 𝛤-Ring, such as the “structure of primitive 𝛤-Ring” and 

“higher separation axioms for the structure space on the set of prime ideals”, have yet to 

be defined or explored in the IF analogs. 
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