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ABSTRACT

In this thesis, we study the category of intuitionistic fuzzy modules by exploring its interac-

tion with various mathematical structures. This research investigates how intuitionistic fuzzy

modules relate to concepts in category theory, such as functors, natural transformations, and

universal properties. Our focus is on establishing a categorical framework for intuitionistic

fuzzy modules. In this framework, the objects represent intuitionistic fuzzy modules over

a given commutative ring R, and morphisms preserve the intuitionistic fuzzy structure. We

explore the properties of this category, including the existence of products, coproducts, equal-

izers, coequalizers, pullbacks, images, and inverse images. Furthermore, we investigate the

relationships between intuitionistic fuzzy modules and other categorical structures, such as

Hom functors, and tensor product functors. The outcomes of this investigation contribute to

a more comprehensive understanding of intuitionistic fuzzy modules and their interconnected

roles in various mathematical frameworks.

The introduction of fuzzy sets by Zadeh in 1965 marked a significant advancement due

to their ability to handle uncertainty and vagueness, which classical crisp sets could not ad-

dress. Atanassov proposed a generalization of fuzzy sets as intuitionistic fuzzy sets (IFS) in

the 1980s, incorporating the degree of non-membership. This extension has found meaning-

ful applications in various fields such as logic programming and medical diagnosis. Biswas

was the first to apply the criterion of intuitionistic fuzzy sets in Algebra which led to the in-

troduction of an intuitionistic fuzzy subgroup of a group in [10]. Later on, Hur and others

in [19] and [20] brought the perception of intuitionistic fuzzy subring and ideals. B. Davaaz

and others in [11] delivered the perception of intuitionistic fuzzy submodule of a module.
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Later on, many mathematicians contributed much to the study of intuitionistic fuzzy submod-

ules see [8, 11, 22, 42, 43, 45]. Golan [15] pioneered the research on fuzzy modules, while

Lopez-Permouth and Malik [33] dealt with the category of fuzzy modules. Category theory is

a general theory of mathematical structures and their relations that was introduced by Samuel

Eilenberg and Saunders Mac Lane [13] in the middle of the 20th century in their founda-

tional work on algebraic topology. The category theory is concerned with the mathematical

entities and the relationship between them. Categories also emerge as a unifying concept in

many fields of mathematics, particularly in all other areas of computer technology and math-

ematical physics. This thesis explores the concept of universal construction within category

theory, a foundational branch of abstract mathematics. Universal constructions provide a pow-

erful framework for understanding mathematical structures and relationships in a broad range

of contexts. By investigating the general principles and methodologies underlying universal

constructions, this study aims to elucidate their significance and applicability across diverse

mathematical landscapes. A systematic examination of key concepts such as initial and ter-

minal objects, equalizers, coequalizers, pullback and intersection, establishes a foundation for

comprehending the universal nature of these constructions. The insights derived from this

exploration not only deepen our understanding of category theory but also pave the way for in-

sightful applications in various branches of mathematics. Hom-functors of intuitionistic fuzzy

modules, which extend the classical notion of homomorphisms to the fuzzy setting, where

uncertainties play a crucial role. The abstract investigation navigates through the categorical

structure, emphasizing how Hom-functors facilitate the study of relationships, transforma-

tions, and compositions among intuitionistic fuzzy modules. This exploration deepens our

understanding of fuzzy algebraic structures, offering insights into their versatile applications
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and theoretical implications. The tensor product in the context of intuitionistic fuzzy modules

involves a mathematical operation that combines elements from two such modules to produce

a new module. This construction extends the notion of tensor products in classical algebra to

the fuzzy domain, accommodating uncertainties inherent in intuitionistic fuzzy domains. The

abstract framework of tensor products allows for exploring module interactions, providing a

versatile tool for mathematical analysis and modelling in fuzzy algebraic structures. Forgetful

functors are mathematical mappings between categories that "forget" some of the structure

of objects in one category while preserving others. In the context of algebraic structures, a

forgetful functor typically maps objects and morphisms from a more algebraic category to a

less algebraic one. In the case of intuitionistic fuzzy modules, a forgetful functor might map

these modules to a category of more general mathematical structures, discarding certain spe-

cific features of intuitionistic fuzzy modules while retaining others. This process simplifies the

analysis or comparison of these modules within a broader mathematical context.

Our present study focuses on intuitionistic fuzzy modules over a commutative ring R with

an identity element. During the study, we attempted to develop a parallel theory of category

by applying intuitionistic fuzzy techniques. This thesis aims to provide a comprehensive in-

vestigation into the category of intuitionistic fuzzy modules, with a focus on advancing both

theoretical understanding and practical applications. Through rigorous mathematical analysis,

the research aims,

1. To enrich the knowledge of intuitionistic fuzzy sets on algebraic structures like rings and

modules.

2. To extend the concepts of module theory to the category theory associated with intu-
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itionistic fuzzy theory.

3. To introduce the notion of Kernels and Cokernels in the Category of intuitionistic fuzzy

modules.

4. To define new concepts in modules in intuitionistic fuzzy environment.

5. To define zero object associated with the IF module.

6. To define new concepts of coproduct, product, covariant and contravariant functor asso-

ciated with the IF module.

7. To determine the free, injective and projective modules in the Category of intuitionistic

fuzzy modules.

Through these endeavours, the thesis aims to deepen the scholarly understanding of intuition-

istic fuzzy modules and broaden their impact on both theoretical mathematics and applied

domains.

The research conducted by Hur, Kang, and Song on intuitionistic fuzzy subgroups and

subrings expands the understanding of algebraic structures by incorporating the principles of

intuitionistic fuzzy logic. By investigating the properties and characteristics of intuitionistic

fuzzy subgroups and subrings, their work sheds light on how uncertainty and imprecision

can be represented and manipulated within the framework of algebraic systems. This not

only deepens our comprehension of intuitionistic fuzzy sets but also broadens the application

of fuzzy algebraic structures to various mathematical domains. Consequently, their findings

contribute significantly to enriching the knowledge of intuitionistic fuzzy sets on algebraic
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structures like rings and modules, paving the way for further exploration and advancement in

this area of study.

Throughout this thesis, R represents a commutative ring with unity, denoted by 1, where

1 ̸= 0. M is a unitaryR-module and θ is a zero element ofM and I represents the unit interval

[0, 1].

In Chapter 2, we extend the concepts of module theory to the category theory associated

with intuitionistic fuzzy theory by defining a category (CR-IFM) of intuitionistic fuzzy modules

where the classes of all intuitionistic fuzzy modules and intuitionistic fuzzyR-homomorphisms

constitute objects and morphisms. The composition of morphisms is the ordinary composition

of functions. Also, we reveal that Hom(A,B) is an abelian group under the ordinary addition

of R-homomorphisms, where A and B are any intuitionistic fuzzy submodules. In the context

of the additive composition, this structure appears to have a distributive influence on the left

and even on the right. We are implementing an important technological tool to "optimally

intuitionistic fuzzify" the R-homomorphism families. This capability to intuitionistic fuzzify

provides CR-IFM with the top category structure over CR-M. We prove that the category of in-

tuitionistic fuzzy modules has kernels, Cokernels and define the zero object associated with

IF module. Further, we show that CR-IFM seems to be an additive category, even though it is

not an abelian category. Finally, we have shown that the category of fuzzy modules CR-FM

is a subcategory of the category of intuitionistic fuzzy modules CR-IFM and we established a

contravariant functor from the category CR-IFM to the category CLat (= union of all CLat(R-IFM),

corresponding to each object in CR-M).

In Chapter 3, we extend the notion of intuitionistic fuzzy modules and intuitionistic fuzzy R-

homomorphism to intuitionistic fuzzy coretracts (retracts) and intuitionistic fuzzy coretraction
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(retraction), and various properties are being investigated. We study free, projective and in-

jective objects in CR-IFM and establish their relation with IF-retraction and IF-coretraction in

CR-IFM.

In Category theory, there are many interesting universal objects such as products, coproducts,

equalizers, coequalizers, pullbacks and intersections. In Chapter 4, we have introduced the

concept of Intuitionistic fuzzy products, Intuitionistic fuzzy coproducts, Intuitionistic fuzzy

equalizers, Intuitionistic fuzzy coequalizers, Intuitionistic fuzzy pullbacks and Intuitionistic

fuzzy intersections and has tried to get the result about universal objects. We even characterize

zero objects, kernels, Cokernels in CR-IFM.

In Chapter 5, we have explored the concept of the tensor product, Hom-functors, and exact

sequences of intuitionistic fuzzy modules which sets the stage for exploring advanced alge-

braic structures within the framework of fuzzy mathematics. These concepts provide powerful

tools for understanding relationships, transformations, and algebraic connections between in-

tuitionistic fuzzy modules. We examine the properties of two Hom functors in the category

CR-IFM. We investigate the relationship between intuitionistic fuzzy projective modules and

Hom functors.
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Chapter 1

Preliminaries

1.1 Introduction

Categories, functors, and intuitionistic fuzzy modules indeed form the backbone of many

mathematical frameworks, particularly in areas like abstract algebra, category theory, and

fuzzy logic. This Chapter emphasizes fundamental definitions and outcomes concerning cate-

gories, functors, and intuitionistic fuzzy modules, all of which are pivotal to the thesis’s devel-

opment. The work of Eilenberg[13], Mitchell[29], Schubert[40], and others is the framework

for this Chapter. The fundamental definition of categories and pertinent findings as outlined

by Tom[25], MacLane[27], Rotman[39], and others are covered in section 1.2. The definition

of functors and several instances are covered in section 1.3. Functors are defined as structure-

preserving maps across categories. In section 1.4, the discussion revolves around the findings

regarding the category of R-modules, while in the final section 1.5, the focus shifts to present-

ing the concept of intuitionistic fuzzy modules.
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2 Chapter 1. Preliminaries

1.2 Category

Mathematical entities and their relationships are the core topic of category theory. Categories

also develop as unifying concepts in numerous other fields of mathematics, especially in math-

ematical physics and computer science. "A category comprises three essential elements: a

composition rule, a collection of morphisms, and a set of objects." As a result, category the-

ory offers a framework for methodically investigating those characteristics and constructs that

are only expressible in terms of maps. Category is modeled by the characteristics of the col-

lection of all objects of a certain kind (sets, rings, spaces, modules, graphs) together with

the collection of all structure-preserving maps(functions, ring homomorphisms, continuous

maps, R-homomorphisms) between them. In 1945, Harvard algebraist Saunders Mac Lane

and topologist Samuel Eilenberg published a paper [13] titled "General Theory of Natural

Equivalences," which served as a significant milestone in bringing category theory to the at-

tention of the other researcher. To define natural transformations, functors were developed,

and to define functors, categories were developed. For conceptual concepts about Category

theory and related areas, we follow Awodey [7], Tom Leinster [25], Mitchell [29], Riehl [37],

Wyler [55], and others [39, 40, 54].

Definition 1.2.1. [29] A category C is a quadruple (Ob,Hom, id, o) consisting of:

(Cl) Ob, an object class;

(C2) a set of morphisms HomC(X, Y ) is associated with each ordered object pair (X, Y );

(C3) a morphism idX ∈ HomC(X,X), with every object X;

(C4) a composition law holds i.e., if f ∈ HomC(X, Y ) and g ∈ HomC(Y, Z), gof ∈
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HomC(X,Z);

such that it satisfies the following axioms:

(M1) ho(gof) = (hog)of , ∀f ∈ HomC(X, Y ), g ∈ HomC(Y, Z) and h ∈ HomC(Z,W );

(M2) idY of = fo idX = f , ∀f ∈ HomC(X, Y );

(M3) a set of HomC(X, Y ) morphisms are pairwise disjoint.

Example 1.2.2. (1) Set, the category with sets to be objects, functions to be morphisms, and

the usual compositions of functions for compositions.

(2) Grp, the category with groups to be objects, group homomorphisms to be morphisms,

and their compositions as compositions.

(3) Ab, the category with abelian groups to be objects, group homomorphisms to be mor-

phisms, and their compositions as compositions.

Definition 1.2.3. [29] The opposite category Cop of the specified category C is constructed

when reversing the arrows, i.e., for each ordered object pair (X, Y )

HomCop(Y,X) = HomC(X, Y )

Definition 1.2.4. [29] CategoryD is said to be a subcategory of the category C when ob(D) ⊆

Ob(C), HomD(X, Y ) ⊆ HomC(X, Y ) ∀ ordered object pair (X, Y ) and composition of mor-

phisms, and the identity of D should be the same as that of C.

Definition 1.2.5. [29] For the ordered object pair (X, Y ) ofD, a full subcategory of a category

C is a category D if ob(D) ⊆ Ob(C) and HomD(X, Y ) = HomC(X, Y ).
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Definition 1.2.6. [29] Let f ∈ HomC(X, Y ) be a morphism in C. Then f is said to be a

coretraction in C if g ◦ f = IX for a unique morphism g ∈ HomC(Y,X). In this case, X is

said to be a retract of Y . Dually, a morphism f is said to be a retraction if f ◦ h = IY for a

unique morphism h ∈ HomC(Y,X).

Proposition 1.2.7. [29] Composition of two coretraction(retraction) is coretraction(retraction).

Definition 1.2.8. [29] A morphism f ∈ HomC(X, Y ) is said to be an isomorphism in a

category C when f is both a retraction and a coretraction.

Definition 1.2.9. [29] Let f ∈ HomC(X, Y ) be morphism in C. Then f is said to be a

monomorphism if f ◦ g = f ◦ h implies that g = h; ∀g, h ∈ HomC(Z,X). Similarly, f is

said to be an epimorphism if g ◦ f = h ◦ f implies that g = h, ∀g, h ∈ HomC(Y, Z).

Definition 1.2.10. [29] A category C is called abelian if

1. C does have a zero object.

2. There is a product and a co-product for any pair of objects of C.

3. Each morphism in C does have a kernel and a cokernel.

4. Each monomorphism in C seems to be the kernel of its cokernel.

5. Any epimorphism in C seems to be the cokernel of its kernel.

Example 1.2.11. The category Ab is an example of an abelian category.

Definition 1.2.12. [29] A category is said to be balanced if every morphism which is both a

monomorphism and an epimorphism is also an isomorphism.
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Example 1.2.13. The category Set is an example of a balanced category.

Proposition 1.2.14. If f ∈ HomC(X, Y ) is a coretraction (retraction) and is also an epimor-

phism (respectively monomorphism) then it is an isomorphism.

Emily Riehl in the book "Category Theory in Context" [37] introduced the concept of a

complete and cocomplete category. The study of complete and cocomplete categories enriches

our understanding of mathematical structures and their interconnections.

Definition 1.2.15. [37] A category C is said to be

(i) complete if it has products and equalizers.

(ii) cocomplete if it has coproducts and coequalizers.

(iii) bicomplete category if it is both complete and cocomplete.

1.3 Functor

Functors are used in all branches of modern mathematics to relate various categories. Conse-

quently, functors are important in all areas of mathematics that make use of category theory.

A structure-preserving mapping across categories is known as a functor in category theory. It

maps morphisms of one category to morphisms of the other, and objects of one category to

objects of the another, while maintaining the identity and composition of morphisms.

Definition 1.3.1. [13] Let C = (Ob(C), Hom(C), id, o) and D = (Ob(D), Hom(D), id, o)

be two categories and let F1 : Ob(C) → Ob(D) and F2 : Hom(C) → Hom(D) be maps.

Then the quadruple F = (C,D, F1, F2) is a functor provided:
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(i) X ∈ Ob(C) implies F1(X) ∈ Ob(D);

(ii) f ∈ Hom(X, Y ) implies F2(f) ∈ Hom(F1(X), F1(Y )), ∀ X, Y ∈ Ob(C);

(iii) F2 preserves composition, i.e., F2(gof) = F2(g)oF2(f), ∀ f ∈ Hom(X, Y ) and g ∈

Hom(Y, Z);

(iv) F preserves identities, i.e., F2(eX) = eF1(X), ∀ X ∈ Ob(C).

Remark 1.3.2. (i) The notation F (X) is used instead of F1(X).

(ii) The notation F (f) is used instead of F2(f).

(iii) Functors from C to D are denoted by the notation F : C → D.

(iv) A functor defined above is called a covariant functor that preserves:

• The domains, the co-domains, and identities.

• The composition of arrows, it especially retains the path of the arrows.

(v) A contravariant functor F is similar to the covariant functor in addition to the other side

of the arrow, F (f) : F (Y ) → F (X) and F (gof) = F (f)oF (g),∀f ∈ Hom(X, Y ), g ∈

Hom(Y, Z).

Definition 1.3.3. [13] The category CS formed from a given category C is called a top cat-

egory over C, if corresponding to every object A in C, the collection s(A) of elements of C

with the ordered relation defined on it, form a complete lattice, and the inverse image map

s(f), s(B) → s(A), form a contravariant functor.
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Definition 1.3.4. [14] For a category C, assigning every object X to X and every morphism

f to the same morphism f in C, we can define a functor IC : C → C such that IC(X) = X

and IC(f) = f . This functor is known as identity functor.

Definition 1.3.5. [14] Let C ′ be a subcategory of C. Define a covariant functor I : C
′ → C

as I(X) = X; ∀X ∈ Ob(C
′
) and I(f) = f for all morphisms f ∈ C

′ . This functor is known

as inclusion functor.

1.4 Category of R-modules

Modules generalize the notion of vector spaces and extend the concept of group actions, of-

fering a versatile tool for studying algebraic objects. This section delves into the foundational

aspects of the category of modules, exploring its structure, morphisms, and interconnections

with other algebraic categories. By examining key concepts such as homomorphisms, di-

rect sums, and submodules, this study aims to establish a comprehensive understanding of

the categorical properties of modules. The insights gained not only contribute to the broader

field of abstract algebra but also have far-reaching implications in areas such as linear alge-

bra, ring theory, and representation theory. A significant cornerstone of abstract algebra is the

“category of R-modules”, which provides a unifying framework for understanding diverse al-

gebraic structures. For conceptual concepts about module theory and related areas, we follow

[1, 4, 39, 53, 54, 55].

Proposition 1.4.1. [46] The collection of all R-modules and R-homomorphisms form a cate-

gory. This category is denoted by CR-M.

Proof. A category of R-modules CR-M consisting of:
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(Cl) a class of objects = Ob(CR-M) = all R-modules;

(C2) a set of Hom(M,N)CR-M morphisms for each ordered object pair (M,N) = all R-

homomorphisms;

(C3) for each object M an identity R-homomorphism idM ∈ HomCR-M(M,M);

(C4) Composition law: For f ∈ HomCR-M(M,N) and g ∈ HomCR-M(N,P ), there exists a

R-homomorphism g o f ∈ Hom(M,P ) in order for the subsequent diagram commutes

M N

P

gof

f

g

(M1) h o (g o f) = (h o g) o f, ∀f ∈ HomCR-M(M,N), g ∈ HomCR-M(N,P ) and h ∈

HomCR-M(P,Q);

in order for the subsequent diagram commutes

M N

Q P

hog

hogof

f

g
gof

h

Therefore associativity of the composition holds.

(M2) idNof = fo idM = f , ∀ f ∈ HomCR-M(M,N);

(M3) all sets HomCR-M(M,N) are pairwise disjoint.

Thus, a category of R-modules CR-M = (Ob(CR-M), Hom(CR-M), o) consisting of two classes:

(i) a class of objects = Ob(CR-M) = all R-modules;
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(ii) a class of morphisms Hom(CR-M) =
⋃
{HomCR-M(M,N) :M,N ∈ Ob(CR-M)}

where HomCR-M(M,N) are pairwise disjoint sets for each ordered object pair (M,N).

Example 1.4.2. Consider C = {M,N,P} as a category with three R-modules M = {0̄},

N = {0̄, 2̄}, and P = Z4. The Hom-sets are defined as follows: HomCR-M(M,M) = {iM},

HomCR-M(N,N) = {iN}, HomCR-M(P, P ) = {iP}, HomCR-M(M,N) = {f}, HomCR-M(N,P ) =

{g}, HomCR-M(P,M) = {h} where f, g, h are inclusion R-homomorphisms and i denotes the

identity R-homomorphism.

It is evident that CR-M constitutes a category of R-modules.

Proposition 1.4.3. [39] CR-M is equipped with products and coproducts.

Proposition 1.4.4. [4] In CR-M,

(i) every monomorphism is the kernel of its cokernels.

(ii)every epimorphism is the cokernels of its kernel.

Proposition 1.4.5. [4] CR-M is an additive category.

Proposition 1.4.6. [4] CR-M is an abelian category.

Lemma 1.4.7. [35] For a fixed M ∈ Ob(CR-M), the R-homomorphism ϕ : N → P induces

a) an R-homomorphism ϕ∗ : HomCR-M(M,N) → HomCR-M(M,P ) defined as ϕ∗(α) = ϕ ◦ α,

∀α ∈ HomCR-M(M,N).

b) an R-homomorphism ϕ∗ : HomCR-M(P,M) → HomCR-M(N,M) defined by ϕ∗(β) = β ◦ ϕ,

∀β ∈ HomCR-M(P,M).

Lemma 1.4.8. [35] Let M,N,P ∈ Ob(CR-M) and α : M → N and β : N → P be R-

homomorphisms. Then for any R-module Q
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a) (β ◦α)∗ : HomCR-M(Q,M) → HomCR-M(Q,P ) is anR-homomorphism such that (β ◦α)∗ =

β∗ ◦ α∗;

b) (β ◦α)∗ : HomCR-M(P,Q) → HomCR-M(M,Q) is an R-homomorphism such that (β ◦α)∗ =

α∗ ◦ β∗.

Definition 1.4.9. [4] Let S is subset of an R-module M . Then the smallest submodule of M

that contains S is L(S), which is the set of all finite linear combinations of the elements of S.

Definition 1.4.10. [4] Let M , N and P ∈ Ob(CR-M). An R-homomorphism ψ :M ×N → P

is said to be an R-biadditive provided that for all a, a1, a2 ∈M , b, b1, b2 ∈ N and r ∈ R,

(i) ψ(a1 + a2, y) = f(a1, y) + f(a2, b);

(ii) ψ(a, b1 + b2) = f(a, y1) + f(a, b2);

(iii) ψ(ar, b) = f(x, ry) = rf(a, y).

Definition 1.4.11. [4] A tensor product of M and N over R is denoted by M ⊗N and defined

as

M ⊗N =M ×N/L(S)

Being the quotient module of R-module by its submodule, the tensor product M ⊗ N is also

an R-module. Then there exists an R-homomorphism τ : M × N → M ⊗ N such that

τ(a, b) = (a, b) + L(S), for all a ∈M, b ∈ N . We will denote τ(a, b) by a⊗ b.

Definition 1.4.12. [1, 4] A tensor product of N and K over R is an R-module N ⊗K which

is equipped with an R-biadditive

τ : N ×K → N ⊗K
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such that for each R-module P and each R-biadditive θ : N × K → P , there is a unique

R-homomorphism ϕ : N ⊗K → P such that ϕ ◦ τ = θ.

N ×K N ⊗K

P

θ

τ

ϕ

Theorem 1.4.13. [1, 4] The tensor product of two R-modules in CR-M exists and it is unique

upto isomorphism.

1.5 Intuitionistic fuzzy modules

K.T. Atanassov [5, 6] suggested the interpretation of intuitionistic fuzzy sets that could be a

generalized form of fuzzy sets. The exploration towards intuitionistic fuzzy characteristics

within module theory has seen significant development. Despite this progress, there remain

ample opportunities for additional research in extending these algebraic structures into the do-

main of intuitionistic fuzzification. Davaaz, in reference [12], expanded upon the idea of an

intuitionistic fuzzy set to include H-v-modules. This extension led to the introduction of the

theoretical framework for intuitionistic fuzzy H-v-submodules within H-v-modules, prompt-

ing the investigation of various associated properties. Later on, numerous mathematicians in

[11, 16, 22, 41, 42, 43, 45] made significant contributions to the study of intuitionistic fuzzy

submodules.

Definition 1.5.1. [5, 6] A mapping A = (µA, νA) : X → I × I is called an intuitionistic

fuzzy set(IFS) on X where the mappings µA : X → I and νA : X → I denotes the degree
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of membership (namely µA(x)) and the degree of non-membership (namely νA(x)) of each

element x ∈ X to A, respectively with the condition that µA(x) + νA(x) ≤ 1 for each x ∈ X .

An intuitionistic fuzzy set A in X can be represented as an object of the form

A = {< x, µA(x), νA(x) >: x ∈ X}.

Remark 1.5.2.

(i) When µA(x) + νA(x) = 1, i.e., νA(x) = 1− µA(x). Then A is called a fuzzy set.

(ii) We denote the IFS A = {< x, µA(x), νA(x) >; ∀x ∈ X} by A = (µA, νA).

Definition 1.5.3. [22, 44] An IFS A of an R-module M is called an intuitionistic fuzzy sub-

module (IFSM) of M, if for every x, y ∈M and r ∈ R the following conditions are satisfied:

(i) µA(x+ y) ≥ µA(x) ∧ µA(y) and νA(x+ y) ≤ νA(x) ∨ νA(y);

(ii) µA(rx) ≥ µA(x) and νA(rx) ≤ νA(x);

(iii) µA(θ) = 1 and νA(θ) = 0, where θ is a zero element of M.

Condition (i) and (ii) can be combined to a single condition µA(rx + sy) ≥ µA(x) ∧ µA(y)

and νA(rx+ sy) ≤ νA(x) ∨ νA(y), where r, s ∈ R and x, y ∈M.

Remark 1.5.4.

(i) The set of intuitionistic fuzzy submodules of R-module M is denoted by IFSM(M).

(ii) We denote the IFSM A of an R-module M by (µA, νA)M .

Example 1.5.5. Let M = R2. Then IFS A = (µA, νA)M defined as

µA(c, d) =


0.65, if (c, d) ̸= (0, 0)

1, if (c, d) = (0, 0)

; νA(c, d) =


0.25, if (c, d) ̸= (0, 0)

0, if (c, d) = (0, 0).



1.5. Intuitionistic fuzzy modules 13

is an IFSM of M .

Definition 1.5.6. [46] Let K as a submodule of an R-module M . The intuitionistic fuzzy

characteristic function of K is defined by χK , described by χK(a) = (µχK
(a), νχK

(a)), where

µχK
(a) =


1, if a ∈ K

0, if a /∈ K

; νχK
(a) =


0, if a ∈ K

1, if a /∈ K.

Clearly, χK is an IFSM of M . The IFSMs χ{θ}, χM are called trivial IFSMs of module M .

Any IFSM of the module M apart from this is called proper IFSM.”

Definition 1.5.7. [46] “Let A = (µA, νA), B = (µB, νB) are IFSM of R-modules M and N

respectively. Then the map f : A→ B is called an intuitionistic fuzzy R-homomorphism ( or

IF R-homomorphism ) from A to B if

(i) f :M → N is R-homomorphism and

(ii) µB(f(a)) ≥ µA(a) and νB(f(a)) ≤ νA(a),∀a ∈M .

To avoid confusion between an R-homomorphism f : M → N and an intuitionistic fuzzy

R-homomorphism f : A → B. We denote the latter by f̄ : A → B. So, given an IF

R-homomorphism f̄ : A→ B, f :M → N is the underlying R-homomorphism of f̄ .

Example 1.5.8. LetM = ({0, 1, 2, 3, 4},+4) andN = ({0, 1},+2) be two Z-modules. Define



14 Chapter 1. Preliminaries

IFSs A = (µA, νA)M and B = (µB, νB)N as

µA(a) =



0.85, if a = 0

0.65, if a = 2

0.45, if a = 1, 3

; νA(a) =



0, if a = 0

0.35, if a = 2

0.5, if a = 1, 3

µB(b) =


0.95, if b = 0

0.35, if b = 1

; νB(b) =


0, if b = 0

0.5, if b = 1.

Then A and B are IFSMs of M and N, respectively.

Define the R-homomorphism f : M → N as f(a) = 0,∀a ∈ M . Consider µB(f(0)) =

µB(0) = 0.9 ≥ 0.8 = µA(0), µB(f(1)) = µB(0) = 0.9 ≥ 0.4 = µA(1), µB(f(2)) =

µB(0) = 0.9 ≥ 0.6 = µA(2), µB(f(3)) = µB(0) = 0.9 ≥ 0.4 = µA(3). Also,νB(f(0)) =

µB(0) = 0 = 0 = νA(0), νB(f(1)) = µB(0) = 0 ≤ 0.5 = νA(1), νB(f(2)) = µB(0) =

0 ≤ 0.3 = νA(2), νB(f(3)) = µB(0) = 0 ≤ 0.5 = νA(3). Thus, µB(f(a)) ≥ µA(a) and

νB(f(a)) ≤ νA(a),∀a ∈M .

Hence, f̄ : A→ B is an IF R-homomorphism.

Definition 1.5.9. [46] Let A = (µA, νA) and B = (µB, νB) are IFSMs of R-modules M and

N respectively and f : M → N is R-homomorphism. With the help of A and f , we can

provide an IF module structure on N by

µf(A)(b) = sup{µA(a) : f(a) = b} and νf(A)(b) = inf{ν(a) : f(a) = b}.

It is clear that f(A) = (µf(A), νf(A)) is an IFSM of and f̄ : A→ f(A) is an IFR-homomorphism.

With the help of B and f , we can provide an IF module structure on M by
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µf−1(B)(a) = µB(f(a)) and νf−1(B)(a) = νB(f(a)).

Hence, f−1(B) = (µf−1(B), νf−1(B)) is an IFSM of M and f̄ : f−1(B) → B is an IF R-

homomorphism.

Lemma 1.5.10. [47] Let M and N are R-modules and f : M → N be R-homomorphism.

Let A = (µA, νA) and B = (µB, νB) are IFSM of R-modules M and N respectively and

f̄ : A→ B is an IF R-homomorphism. Then

(i) A ⊆ f−1(f(A)).

(ii) A = f−1(f(A)) if and only if both f and f̄ are one-one functions.

(iii)f(f−1(B)) ⊆ B.

(iv)f(f−1(B)) = B if and only if both f and f̄ are onto functions.

If f ∈ Hom(M,N) and f̄ ∈ Hom(A,B), define

Kerf̄ = {a ∈M : µB(f(a)) = 1; νB(f(a)) = 0}

and

Imf̄ = {f̄(a) : a ∈M}

As Kerf is the pre-image of {θ} under f , we have Kerf ⊆ Kerf̄ . Especially, if B = χN ,

then we have Kerf̄ = A, for all f̄ ∈ Hom(A,B).

Proposition 1.5.11. Let A and B are IFSM of R-modules M and N , respectively, and f̄ :

A→ B is IF R-homomorphism, then:

(i) Kerf̄ is a submodule of M ;
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(ii) The restriction of A to Kerf̄ i.e., A|Kerf̄ is an IFSM of A.

Proof. (i) Given that f̄ : A → B is IF R-homomorphism. For zero element θ of M ,

θ ∈ Kerf̄ . If r ∈ R and x ∈ Kerf̄ , so µA(f̄(rx)) = µA(rf̄(x)) ≥ µA(f̄(x)) = 1

and νA(f̄(rx)) = νA(rf̄(x)) ≤ νA(f̄(x)) = 0 implies that rx ∈ Kerf̄ . It follows,

−x ∈ Kerf̄ . Further, if x, y ∈ Kerf̄ , Conveniently, we can predict x + y ∈ Kerf̄ ,

which proves the result.

(ii) Let A|Kerf̄ = C = (µC , νC), where µC(x) = µA(x) and νC(x) = νA(x),∀x ∈ Kerf̄ .

Now it is simple to prove that C is an IFSM of M and C ⊆ A.

Definition 1.5.12. [44] Let A, B and C are IFSMs of R-modules M , N and P respectively.

Then an IFSMA is called an intuitionistic fuzzy projective module (IF-projective), if for every

IF R-homomorphism ϕ̄ : A → B and IF-epimorphism p̄ : C → B, there exists an IF R-

homomorphism ψ̄ : A→ C such that p̄ ◦ ψ̄ = ϕ̄, i.e., the subsequent diagram commutes

C

A

B

p̄

ψ̄

ϕ̄

Definition 1.5.13. [44] Let A, B and C are IFSMs of R-modules M , N and P respectively.

Then an IFSM A is called an intuitionistic fuzzy injective module (IF-injective), if for every

IF R-homomorphism ϕ̄ : B → A and IF-monomorphism k̄ : B → C, there exists an IF

R-homomorphism ψ̄ : C → A such that ψ̄ ◦ k̄ = ϕ̄, i.e., the subsequent diagram commutes
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B C

A

ϕ̄

k̄

ψ̄

Theorem 1.5.14. [44] Every intuitionistic fuzzy free submodule of anR-module is IF-projective.

Throughout our thesis, we will denote intuitionistic fuzzy modules using the symbols A,

B, C, D, E, F and G, corresponding to R-modules M , N , K, P , Q, S and T , respectively.

Notably, f̄ : A→ B represents IF R-homomorphism.



Chapter 2

Intuitionistic fuzzy modules: categorical

perspectives

2.1 Introduction

Fuzzy algebra, a structure deeply ingrained in various fields including computer science, in-

formation technology, theoretical physics, and control engineering, stands as a cornerstone in

mathematics. Many ideas of abstract algebra within the framework of fuzzy sets have been

extensively studied by researchers since the introduction of fuzzy sets in 1965 [56] . One such

researcher is Rosenfeld [38], who became the first person to define the notion of fuzzy sub-

groups in 1971. Since then, other extensions of this concept have been put forth, particularly

in the last few decades. Fuzzy set theory was introduced to the concept of modules in 1975

by Relescu and Nagoita [30]. Atanassov [5, 6] introduced intuitive fuzzy sets in 1986, which

are based on the degree of membership and non-membership, adhering to the constraint that

their total should not exceed unity. Using the conceptual framework of intuitionistic fuzzy

18
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sets, Biswas [10] investigated the intuitionistic fuzzy subsets of a group in 1989 and applied

group theory to it.

In recent years, extensive research has focused on fuzzy and intuitionistic fuzzy modules

and main submodules, as well as fuzzy and intuitionistic fuzzy prime modules. Hur K. et al.

[19, 20] introduced the idea of intuitionistic fuzzy subgroups and ideals, expanding the scope

of fuzzy algebraic structures. Mashinchi and Zahedi [28] explored concepts of fuzzy prime

and fuzzy primary submodules, contributing to the evolving landscape of fuzzy module theory.

Golan [15] and Lopez-Permouth and Malik [33] made significant contributions to the

study of fuzzy modules, examining categories and exact sequences in fuzzy complexes. Cat-

egories develop as a unifying concept in many domains of mathematics, particularly in com-

puter technology and mathematical physics. Several other researchers [3, 15, 26, 31, 32,

34, 35, 41, 52, 57, 58] have established and explored theories of fuzzy modules, fuzzy ex-

act sequences of fuzzy complexes, and fuzzy homology of fuzzy chain complexes. More-

over, several mathematicians researched intuitionistic fuzzy submodules and their properties

[11, 16, 22, 42, 43, 44, 45]. In this Chapter, we

1. form the category of intuitionistic fuzzy modules (CR-IFM) in the section 2.2.

2. explore the relationship between the category of R-modules (CR-M) and the category of

intuitionistic fuzzy modules (CR-IFM) in the section 2.3.

3. examine Optimal intuitionistic fuzzification and investigate that CR-IFM is not an abelian

category in the section 2.4.

4. develop some categories of IFMs in the section 2.5.
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2.2 Category of intuitionistic fuzzy modules CR-IFM

Proposition 2.2.1. [46] The set Hom(A,B) of all IF R-homomorphisms from A to B forms

an additive abelian group. Furthermore, it constitutes a unitary R-module when R is a com-

mutative ring with unity.

Theorem 2.2.2. Let A = (µA, νA) and B = (µB, νB) are two IF modules of R-modules M

and N respectively. The function β : Hom(A,B) → I × I on R-module Hom(A,B) is then

defined by

β(f̄) = (µβ(f̄), νβ(f̄))

where µβ(f̄) = ∧{µB(f̄(a)) : z ∈ M} and νβ(f̄) = ∨{νB(f̄(z)) : z ∈ M} is an IFSM of

Hom(A,B).

Proof. As shown in Proposition 2.2.1, Hom(A,B) is an R-module and the scalar multipli-

cation on Hom(A,B) is defined by (r.f̄)(z) = r f̄(z),∀z ∈ M . For r ∈ R and f̄ ∈

Hom(A,B), Consider

µβ(r.f̄) = ∧{µB((r.f̄)(z)) : z ∈M}

= ∧{µB((r.f̄(z)) : z ∈M}

≥ ∧{µB(f̄(z)) : z ∈M}

= µβ(f̄).

Thus µβ(r.f̄) ≥ µβ(f̄). Likewise, we are able to exhibit that νβ(r.f̄) ≤ νβ(f̄).
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Further, let ξ̄1, ξ̄2 ∈ Hom(A,B) and z ∈M . Consider

µβ(ξ̄1+ξ̄2) = ∧{µB((ξ̄1 + ξ̄2)(z)) : z ∈M}

= ∧{µB(ξ̄1(z) + ξ̄2(z)) : z ∈M}

≥ ∧{{µB(ξ̄1(z) ∧ ξ̄2(z))} : z ∈M}

= {∧{µB(ξ̄1(z)) : z ∈M}} ∧ {∧{µB(ξ̄2(z)) : z ∈M}}

= µβ(ξ̄1) ∧ µβ(ξ̄2).

Thus, µβ(ξ̄1+ξ̄2) ≥ µβ(ξ̄1)∧µβ(ξ̄2). Likewise, we are able to exhibit that νβ(ξ̄1+ξ̄2) ≤ νβ(ξ̄1)∨νβ(ξ̄2).

Also, µβ(0̄) = ∧{µB(0̄(z)) : z ∈M} = ∧{µB(0) : z ∈M} = 1.

Likewise, we can demonstrate that νβ(0̄) = 0.

Hence, β is IFSM of R-module Hom(A,B).

Definition 2.2.3. The category CR-M = (Ob(CR-M),Hom(CR-M), o) has objects as R-modules

and morphisms R-homomorphisms, with composition of morphisms defined as the composi-

tion of mappings. An IF-module category CR-IFM over the base category CR-M is completely

described by two mappings:

α : Ob(CR-M) → I × I;

β : Hom(CR-M) → I × I

IF-module category CR-IFM consists of

(C1) Ob(CR-IFM) the set of objects as IFSMs on Ob(CR-M), that is, the objects will be α :

Ob(CR-M) → I × I;
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(C2) Hom(CR-IFM) the set of IFR-homomorphisms corresponding to underlyingR-homomorphisms

from Hom(CR-M), i.e., IF R-homomorphisms of the form β : Hom(CR-M) → I × I , so that

for f ∈ HomCR-M(M,N),

β(f̄) = (µβ(f̄), νβ(f̄))

as defined in Theorem 2.2.2, a composition law associating to each f ∈ HomCR-M(M,N) and

g ∈ HomCR-M(N,K), an R-homomorphism gof ∈ HomCR-M(M,K) exists, so that each of the

ensuing axioms holds:

(M1) Associativity: ho(gof) = (hog)of , ∀f ∈ HomCR-M(M,N), g ∈ HomCR-M(N,K) and

h ∈ HomCR-M(K,P );

(M2) Preservation of morphisms: β(g ◦ f) = β(g)oβ(f);

(M3) Existence of identity: ∀M ∈ Ob(CR-M), identity iM ∈ HomCR-M(M,M) exists satisfying

β(iM) = α(M). Thus, the category of IF R-modules can be constructed as

CR-IFM = (Ob(CR-IFM),Hom(CR-IFM), o)

Remark 2.2.4. Throughout this thesis, we use the notation CR-IFM to represent the category of

intuitionistic fuzzy R-modules along with intuitionistic fuzzy R-homomorphisms and the set

of all IF R-homomorphism from A to B is denoted by HomCR-IFM(A,B).



2.3. Mapping between CR-M and CR-IFM 23

2.3 Mapping between CR-M and CR-IFM

In this section, we analyze the relationship between category of R-modules CR-M with cate-

gory of IF R-modules CR-IFM and the existence of the covariant functor between these two

categories.

Proposition 2.3.1. CR-M is a subcategory of CR-IFM.

Proof. This can be deduced from Definition 1.2.4, Proposition 2.2.1 and Theorem 2.2.2.

Proposition 2.3.2. There exists a covariant functor from CR-M to CR-IFM.

Proof. Define β = (µβ, νβ) : CR-M → CR-IFM by β(M) = (µβ(M), νβ(M)), if for every

a ∈M , µβ(a) + νβ(a) ≤ 1.

Let f ∈ HomCR-M(M,N). Thus β(f) ∈ Hom(CR-IFM), where β(f) : β(M) → β(N) de-

scribed by

β(f)(µβ, νβ) = (µβ ◦ f−1, νβ ◦ f−1) ; where

(i) µβ(a+ b) ≥ µβ(a) ∧ µβ(b)

(ii) νβ(a+ b) ≤ νβ(a) ∨ νβ(b)

(iii) µβ(−a) = µβ(a)

(iv) νβ(−a) = νβ(a)

(v) µβ(ra) = µβ(a)

(vi) νβ(ra) = νβ(a)

(vii) µβ(0) = 1
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(viii) νβ(0) = 0,∀a, b ∈M, r ∈ R.

Our aim is to prove that β preserves object, composition, domain, and codomain identity. Let

(µβ, νβ), (µβ1 , νβ1) ∈ Ob(CR-IFM) such that (µβ ◦ f−1, νβ ◦ f−1) = (µβ1 ◦ f−1, νβ1 ◦ f−1)

⇒ µβ ◦ f−1 = µβ1 ◦ f−1 and νβ ◦ f−1 = νβ1 ◦ f−1

⇒ µβ = µβ1 and νβ = νβ1 ⇒ (µβ, νβ) = (µβ1 , νβ1)

⇒ β is well defined.

Let f ∈ HomCR-M(M,N), g ∈ HomCR-M(N,K) then gof ∈ HomCR-M(M,K). Then, β(f) ∈

HomCR-IFM(β(M), β(N)), β(g) ∈ HomCR-IFM(β(N), β(K)) and β(gof) ∈ HomCR-IFM(β(M), β(K)).

For any (µβ, νβ) ∈ β(M), we have

β(g ◦ f)(µβ, νβ) = (µβ ◦ (g ◦ f)−1, νβ ◦ (g ◦ f)−1)

= (µβ ◦ (f−1 ◦ g−1), νβ ◦ (f−1 ◦ g−1))

= ((µβ ◦ f−1) ◦ g−1, (νβ ◦ f−1) ◦ g−1)

= β(g)(µβ ◦ f−1, νβ ◦ f−1)

= β(g)β(f)(µβ, νβ).

Therefore, β(g ◦ f) = β(g) ◦ β(f).

Moreover, β(iM)(µβ, νβ) = (µβ ◦ i−1
M , νβ ◦ i−1

M ) = (µβ, νβ) implies that β(iM) is the identity

element in Hom(CR-IFM). Hence, β : CR-M → CR-IFM is a covariant functor.



2.4. Optimal intuitionistic fuzzification 25

2.4 Optimal intuitionistic fuzzification

In this section, we show that the category CR-IFM forms a top category over the category CR-M.

To prove this, we first construct a category CLat(R-IFM) of complete lattices corresponding to

every object in CR-M and then show that corresponding to each morphism in CR-M, there exists

a contravariant functor from CR-IFM to the category CLat (=union of all CLat(R-IFM), correspond-

ing to each object in CR-M) that preserve infima. Finally, we define the notion of kernel and

cokernel for the category CR-IFM and show that CR-IFM is not an abelian category.

Lemma 2.4.1. Let M and N are R-modules and f :M → N be R-homomorphism.

(i) If A = (µA, νA) is an IFSM of M , then there exists an IFSM f(A) = (µf(A), νf(A)) of N

such that for any IFSM (µB, νB) of N , the map f̄ : A → B is an IF R-homomorphism

if and only if f(A) ⊆ B.

(ii) IfB = (µB, νB) is an IFSM ofN , then there exists an IFSM f−1(B) = (µf−1(B), νf−1(B))

of M such that for any IFSM A of M , the map f̄ : A→ B is an IF R-homomorphism if

and only if A ⊆ f−1(B).

Proof. (i) Now, f̄ : A → B is an IF R-homomorphism if and only if for each z ∈ M ,

µB(f(z)) ≥ µA(z) and νB(f(z)) ≤ νA(z). Let t ∈ N be any element, then µf(A)(t) =

∨{µA(z) : f(z) = t} ≤ µA(z) ≤ µB(f(z)). Likewise, we are able to exhibit that νf(A)(t) ≥

νB(f(z)) i.e., f(A) ⊆ B.

(ii)Now, f̄ : A → B is an IF R-homomorphism if and only if for each z ∈ M , µB(f(z)) ≥

µA(z) and νB(f(z)) ≤ νA(z). Now, µf−1(B)(z) = µB(f(z)) ≥ µA(z) and νf−1(B)(z) =

νB(f(z)) ≤ νA(z) implies that A ⊆ f−1(B).
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Observe that if f ∈ Hom(M,N), now for each IFSM A [B] on M [N ] one will have

IFSMs f(A) [f−1(B)], we conclude that f is trivially intuitionistic fuzzified relative to A

[B]. In particular, we will say that for each IFSM A [B] of M [N ], we have obtained IF

R-homomorphism f̄ : A→ χN [f̄ : χM → B].

Lemma 2.4.2. The set s(M) = {(µ, ν) :M → I × I : (µ, ν) is IF module of R-module M }

form a complete lattice associated with the order relation (µ1, ν1) ≤ (µ2, ν2) if µ1(a) ≤ µ2(a)

and ν1(a) ≥ ν2(a), ∀a ∈M .

Proof. Let {(µi, νi) : i ∈ J} be a collection of elements of s(M). Then infimum and supre-

mum on s(M) are explicitly specified as:

∧i∈J(µi, νi)(a) = (Infi∈J{µi(a)}, Supi∈J{νi(a)})

and

∨i∈J(µi, νi)(a) = (Infi∈J{µ(a) : (µi, νi) ∈ s(M) and µi ≤ µ, ∀i ∈ J}, Supi∈J{ν(a) :

(µi, νi) ∈ s(M) and νi ≥ ν,∀i ∈ J}).

Then s(M) form a complete lattice.

Remark 2.4.3.

(i) The least element of s(M) is 0̄ and the greatest element of s(M) is 1̄.

(ii) s(M) under the order relation defined above form a category where

Ob(s(M)) = all IFSMs of M and Hom(s(M)) = order relation defined above.

(iii) Supremum can also be defined as ∨i∈J(µi, νi)(a) = (Supi∈J{µi(a)}, Infi∈J{νi(a)}),

which only holds for IFSs but does not hold for IFSMs including when J is finite.
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For e.g., let M = Z-module Z and IFSMs (µ1, ν1) and (µ2, ν2) of M described as:

(µ1, ν1)(t) =


(1, 0), if t is even

(0, 1), if t is odd

; (µ2, ν2)(t) =


(1, 0), if 3|t

(0, 1), if 3 ∤ t.

Take (µ1, ν1)∨ (µ2, ν2) = (µ3, ν3), where µ3(t) = max{µ1(t), µ2(t)} and ν3(t) = min{ν1(t),

ν2(t)}. Here we can check that (µ3, ν3)) is not an IFSM of M , for 0 = µ3(1) = µ3(3 − 2) ⩾̸

µ3(3) ∧ µ3(2) = 1 and 1 = ν3(1) = ν3(3− 2) ≰ ν3(3) ∨ ν3(2) = 0.

Lemma 2.4.4. The set t(M) = {(µ, ν) : M → I × I : (µ, ν) is IF module of R-module M }

form a complete lattice associated with the order relation (µ1, ν1) ≤ (µ2, ν2) if µ1(a) ≥ µ2(a)

and ν1(a) ≤ ν2(a) ∀a ∈M .

Proof. Let {(µi, νi) : i ∈ J} be a collection of elements of t(M). Then infimum and supre-

mum on t(M) are explicitly specified as :

∧i∈J(µi, νi)(a) = (Supi∈J{µi(a)}, Infi∈J{νi(a)})

and

∨i∈J(µi, νi)(a) = (Infi∈J{µ(a) : (µi, νi) ∈ t(M) and µi ≤ µ,∀i ∈ J}, Supi∈J{ν(a) :

(µi, νi) ∈ t(M) and νi ≥ ν,∀i ∈ J}).

Then t(M) forms a complete lattice.

Remark 2.4.5. t(M) under the order relation defined above form a category where Ob(t(M))

= all IFSMs of M and Hom(t(M)) = order relation as defined above.

Theorem 2.4.6. CR-IFM is a top category over CR-M.

Proof. This becomes sufficient to prove that, with every M ∈ Ob(CR-M), the corresponding
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complete lattice s(M) specified in Lemma 2.4.2. For each f ∈ HomCR-M(M,N), s(f) :

s(N) → s(M) defined as s(f)(µB, νB) = (µf−1(B), νf−1(B)),∀(µB, νB) ∈ s(N) determine a

contravariant functor s : CR-IFM → CLat. Thus, we are trying to prove that

(i) s(f) preserve infima, for all f ∈ HomCR-M(M,N);

(ii) s(g ◦ f) = s(f) ◦ s(g), for each f ∈ HomCR-M(M,N) and g ∈ HomCR-M(N,K), and

(iii) the identity function s(iM) : s(M) → s(M) exists for every identity R-homomorphism

iM :M →M .

Consider {(µBi
, νBi

) : i ∈ J} ⊂ s(N) is a non-empty subfamily of s(N), and let a ∈ M .

Then,

s(f)[∧(µBi
, νBi

)](a) = (Inf{µf−1(Bi)}, Sup{νf−1(Bi)})(a)

= (Inf{µf−1(Bi)(a)}, Sup{νf−1(Bi)(a)})

= (Inf{µBi
(f(a))}, Sup{νBi

(f(a))})

= (Inf{µBi
}, Sup{νBi

})(f(a))

= ∧(µBi
, νBi

)(f(a))

= ∧(µBi
(f(a)), νBi

(f(a)))

= ∧(µf−1(Bi)(a), νf−1(Bi)(a))

= ∧(µf−1(Bi), νf−1(Bi))(a)

= ∧[s(f)(µBi
, νBi

)](a).

Thus, s(f) preserves infima. Let f : M → N, g : N → K is homomorphism, and let
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(µC , νC) ∈ s(K) and k ∈ K, then

s(gof)(µC , νC)(k) = (µ(gof)−1(C), ν(gof)−1(C))(k)

= (µ(f−1og−1)(C)(k), ν(f−1og−1)(C)(k))

= (µ(f−1(g−1(C)))(k), ν(f−1(g−1(C)))(k))

= s(f)(µg−1(C)(k), νg−1(C)(k))

= s(f)(s(g)(µC(k), νC(k)))

= s(f)s(g)(µC , νC)(k).

Thus, s(gof) = s(f) ◦ s(g).

Further, iM : M → M is the identity R-homomorphism, such that iM(a) = a,∀a ∈ M . Then

s(iM) be the identity element in Hom(CR-IFM), for if (µA, νA) ∈ s(M) be any element, then

s(iM)(µA, νA)(a) = (µi−1
M (A)(a), νi−1

M (A)(a)) = (µiM (A)(a), νiM (A)(a)) = (µA(a), νA(a)) =

(µA, νA)(a). Hence proved.

Remark 2.4.7. There exists a covariant functor t : CR-IFM → CLat so t(f) : t(M) → t(N)

preserves suprema and is defined by t(f)(µA, νA) = (µf(A), νf(A)), ∀(µA, νA) ∈ t(M) so that

t(g ◦ f) = t(g) ◦ t(f),∀f :M → N, g : N → K.

Proof. It is very simple to find that t(f) preserves suprema and t(iM) is an identity element in

Hom(CR-IFM). Furthermore, we have
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t(gof)(µA, νA)(a) = (µ(gof)(A)(a), ν(gof)(A)(a))

= (µg(f(A))(a), νg(f(A))(a))

= t(g)(µf(A)(a), µf(A)(a))

= t(g)(t(f)(µA(a), νA(a)))

= t(g)t(f)(µA(a), νA(a))

= t(g)t(f)(µA, νA)(a)

Thus t(gof) = t(g) ◦ t(f). Hence, the result is proved.

Lemma 2.4.8. (i) Let {Mi : i ∈ J}, N are R-modules and A = {fi : Mi → N : i ∈ J} be

a collection of R-homomorphisms. If {Ai : i ∈ J} is a collection of IFSMs of Mi, then there

exists a smallest IFSM B = (µB, νB) of N so that f̄i : Ai → B is an IF R-homomorphism,

∀i ∈ J , where (µB, νB) = (µ, ν)A = (µA, νA), here µB = µA = ∨{µfi(Ai) : i ∈ J} and

νB = νA = ∧{νfi(Ai) : i ∈ J}.

(ii) Let M and {Ni : i ∈ J} are R-modules and B = {gi : M → Ni : i ∈ J} be a

collection of R-homomorphisms. If {Bi : i ∈ J} are IFSMs of Ni, then there exists a largest

IFSM A = (µA, νA) of M so that ḡi : A → Bi is an IF R-homomorphism, ∀i ∈ J , where

(µA, νA) = (µ, ν)B = (µB, νB), here µA = µB = ∧{µg−1
i (Bi)

: i ∈ J} and νA = νB =

∨{νg−1
i (Bi)

: i ∈ J}.

Proof. (i) Using Lemma 2.4.1(i), for each i ∈ J , Ai is IFSM of Mi, there exists IFSM fi(Ai)

on N so that for every IFSM B = (µB, νB) of N , f̄i : Ai → B is an IF R-homomorphism if
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and only if fi(Ai) ⊆ B, i.e., µB ≥ µfi(Ai) and νB ≤ νfi(Ai). Let µA = ∨{µfi(Ai) : i ∈ J} and

νA = ∧{νfi(Ai) : i ∈ J}. Subsequently, the consequence follows.

(ii) Using Lemma 2.4.1(ii), for each i ∈ J , Bi is IFSM of N , then there exists an IFSM

g−1
i (Bi) of M , such that for any IFSM A = (µA, νA) of M , ḡi : A → Bi is an IF R-

homomorphism if and only if A ⊆ g−1
i (Bi), i.e., µA ≤ µg−1

i (Bi)
and νA ≥ νg−1

i (Bi)
. Let

µB = ∧{(µg−1
i (Bi)

: i ∈ J} and νB = ∨{(νg−1
i (Bi)

: i ∈ J}. Subsequently, the consequence

follows.

Lemma 2.4.9. (i) Let {Ai : i ∈ J} are IFSMs of Mi, i ∈ J and A = {fi : Mi → N : i ∈ J}

be a family of R-homomorphisms and R-homomorphism g : N → K then

(µ, ν)A1 = t(g)(µ, ν)A, where A1 = {gofi :Mi → K : i ∈ J}.

(ii) Let {Bi : i ∈ J} are IFSMs of Ni,∀i ∈ J and B = {gi : M → Ni : i ∈ J} be a family of

R-homomorphisms and h : K →M an R-homomorphism then

(µ, ν)B1 = s(h)(µ, ν)B, where B1 = {gioh : K → Ni : i ∈ J}.

Proof.

(i) Let A1 = {gi = gofi : Ni → K : i ∈ J} be the collection of R-homomorphisms.

Then, by Lemma 2.4.8(i), there exists IFSM C = (µC , νC) of K such that gi : Ai → C

is IF R-homomorphism, ∀i ∈ J , where (µC , νC) = (µ, ν)A1 = (µA1 , νA1), here µA1 =

∨{µgi(Ai) : i ∈ J} and νA1 = ∧{νgi(Ai) : i ∈ J}. Consider
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(µ, ν)A1 = ∨{(µgi(Ai), νgi(Ai)) : i ∈ J}

= ∨{(µ(gofi)(Ai), ν(gofi)(Ai)) : i ∈ J}

= ∨{(µ(g(fi(Ai))), ν(g(fi(Ai)))) : i ∈ J}

= ∨{t(g)(µfi(Ai), νfi(Ai)) : i ∈ J}

= t(g) ∨ {(µfi(Ai), νfi(Ai)) : i ∈ J}

= t(g)(µ, ν)A.

(ii) Let B1 = {hi = gioh : K → Ni : i ∈ J} be the collection of R-homomorphisms.

Then by Lemma 2.4.8(ii), there exists IFSM A = (µA, νA) of K such that hi : A → Ci

is IF R-homomorphism, ∀i ∈ J , where (µA, νA) = (µ, ν)B1 = (µB1 , νB1), here µB1 =

∧{µh−1
i (Ci)

: i ∈ J} and νB1 = ∨{νh−1
i (Ci)

: i ∈ J}. Now, we have

(µ, ν)B1 = ∧{(µh−1
i (Ci)

, νh−1
i (Ci)

) : i ∈ J}

= ∧{(µ(gioh)−1(Ci), ν(gioh)−1(Ci)) : i ∈ J}

= ∧{(µ(h−1og−1
i )(Ci)

, ν(h−1og−1
i )(Ci)

) : i ∈ J}

= ∧{(µh−1(g−1
i (Ci))

, νh−1(g−1
i (Ci))

) : i ∈ J}

= ∧{s(h)(µg−1
i (Ci)

, νg−1
i (Ci)

) : i ∈ J}

= s(h) ∧ {(µg−1
i (Ci)

, νg−1
i (Ci)

) : i ∈ J}

= s(h)(µ, ν)B.
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Thus, (µ, ν)B1 = s(h)(µ, ν)B.

Remark 2.4.10. From Lemma 2.4.8 and Lemma 2.4.9, we are able to optimally intuitionisti-

cally fuzzify fi [gi], in respect to the family of IFSMs {Ai : i ∈ J} [{Bi : i ∈ J}].

Theorem 2.4.11. The category of IF modules CR-IFM has kernels and cokernels.

Proof. “Let A = (µA, νA) and B = (µB, νB) be IFSM of R-modules M and N , respectively.

Let f̄ : A→ B be an IF R-homomorphism corresponding to the R-homomorphism f :M →

N .” For Ker f, there exists an inclusion map g : ker f → M in order for the subsequent

diagram commutes

Kerf M

N

fog=0

g

f

Kerf M N

I × I

(µg−1(A),νg−1(A))

g f

(µA,νA)
(µB ,νB)

For Ker f̄ , there exists an inclusion map ḡ : g−1(A) → A in order for the subsequent diagram

commutes

g−1(A) A

B

f̄oḡ=0̄

ḡ

f̄

Therefore, the kernel of f̄ is defined as g−1(A) with the inclusion map ḡ : g−1(A) → A.

Thus, the kernel of f̄ is given as ((ker f, g−1(A)), ḡ), where the inclusion map is g : ker f →
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M .

Similarly, the cokernel of f̄ is defined as ((N/Imf, π(B)), π̄), where the projection map π :

N → N/Imf and π̄ : B → BN/Imf .

Remark 2.4.12. Although the category of IF modules CR-IFM has kernels and cokernels even

then it is not an abelian category. By definition of the abelian category, every monomor-

phism should be normal, i.e, every monomorphism is a kernel of some morphism. An IF R-

homomorphism h̄ : C → A of IFSM C of M on being normal (i.e., being a kernel) C should

be identical to g−1(A). Consequently, for M ̸= {θ}, the IF R-homomorphism 1̄ : χ{θ} → χM

is a sub-object of χM , which is not a kernel. Thus, CR-IFM is not an abelian category.

Theorem 2.4.13. CR-IFM has zero object.

Proof. Define the R-module Z comprising only the identity element θ and an IFS A0 : Z →

I × I as

µA0(θ) = 1 and νA0(θ) = 0

Since there is exactly one IF R-homomorphism ϕ0 : A0 → A satisfying ϕ0(θ) = θ, µA0(θ) =

µA(ϕ0(θ)) and νA0(θ) = νA(ϕ0(θ)), CR-IFM has initial object A0. Also, CR-IFM has terminal

object A0 as there is exactly one IF R-homomorphism ψ̄0 : A → A0 such that ψ0(x) = θ,

µA0(ψ0(x)) = µA(x) = 1 and νA0(ψ0(x)) = νA(x) = 0. Thus, A0 is both initial as well as

terminal object. Hence, A0 is zero object in the category CR-IFM.
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2.5 Exploring distinct categories of IFMs

Within this section, we exploring distinct categories of intuitionistic fuzzy modules, aiming

to elucidate its unique properties and theoretical implications. By delving into its distinct

characteristics, we deepen our understanding of IFM theory. We also discuss the relationship

between these categories.

Theorem 2.5.1. The collection of IFSMs together with IF R-homomorphisms and their com-

position form a category. It is denoted by CR-IFM.

Proof. The proof is a consequence of definition 2.2.3.

Definition 2.5.2. [42] Let M and N be two R-modules and let A,B be two IFSMs of M

and N respectively. Let f : M → N be a R-homomorphism. Then f̄ is called a weak

intuitionistic fuzzyR-homomorphism(WIFR-homomorphism) ofA ontoB if f(A) ⊆ B. The

R-homomorphism f is called an intuitionistic fuzzyR-homomorphism(IFR-homomorphism)

of A onto B if f(A) = B. We say that A is an intuitionistic fuzzy homomorphic to B and we

write it as A ≈ B. If f :M → N be an R-isomorphism, then f is called a weak intuitionistic

fuzzy R-isomorphism(WIF R-isomorphism) from A onto B if f(A) ⊆ B and f is called an

intuitionistic fuzzy R-isomorphism(IF R-homomorphism) if f(A) = B and we write it as

A ∼= B.

Remark 2.5.3. Every IF R-homomorphism is a WIF R-homomorphism; but converse does not

hold

Example 2.5.4. Let M = (Z18,+18) be Z-module and N = (< 3 >,+18) be submodule of
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M . Define IFSs A and B on M and N respectively as:

µA(x) =



1, if x = 0

0.8, if x = 3, 15

0.6, if x = 6, 12

0.5, if x = 9

0.3, if x = 2, 4, 8, 10, 14, 16

0, if x = 1, 5, 7, 11, 13, 17

; νA(x) =



0, if x = 0

0.1, if x = 3, 15

0.2, if x = 6, 12

0.4, if x = 9

0.6, if x = 2, 4, 8, 10, 14, 16

0.8, if x = 1, 5, 7, 11, 13, 17.

µB(y) =



1, if y = 0

0.3, if y = 3, 15

0.6, if y = 6, 12

0.4, if y = 9

; νB(y) =



0, if y = 0

0.6, if y = 3, 15

0.3, if y = 6, 12

0.5, if y = 9

ϕ(y) =



0, if x = 0

3, if x = 3

6, if x = 6

9, if x = 9

12, if x = 12

15, if x = 15.
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We can verify that A and B are IFSMs of M and N respectively and the mapping ϕ :

N → M defined above is an R-homomorphism. We can verify that this defines a WIF R-

homomorphism from B into A, which is not an IF R-homomorphism.

Proposition 2.5.5. Composite of two WIF R-homomorphisms is also WIF R-homomorphism.

Proof. Let A ∈ IFSM(M), B ∈ IFSM(N), andC ∈ IFSM(K) and let f̄ : A → B and

σ̄ : B → C be WIF R-homomorphisms respectively. Therefore, f(A) ⊆ B and σ(B) ⊆ C.

We seek to establish that (σ̄ ◦ f̄)(A) ⊆ C.

Let k ∈ K. Then µσ(B)(k) ≤ µC(k) and νσ(B)(k) ≥ νC(k). Also, corresponding to this k ∈

K, we have σ−1(k) ∈ N which implies µf(A)(σ−1(k)) ≤ µB(σ
−1(k)) and νf(A)(σ−1(k)) ≥

νB(σ
−1(k)). Thus, µσ(f(A))(k) ≤ µσ(B)(k) and νσ(f(A))(k) ≥ νσ(B)(k). From this, we

conclude that µσf(A)(k) ≤ µσ(B)(k) ≤ µC(k) and νσf(A)(k) ≥ νσ(B)(k) ≥ νC(k). Thus,

σ ◦ f(A) ⊆ C, concluding that σ̄ ◦ f̄ is WIF R-homomorphism from A onto C.

Theorem 2.5.6. The collection of intuitionistic fuzzy modules together with weak intuitionistic

fuzzy R-homomorphisms and their composition form a category.

Proof. Associativity: Let A ∈ IFSM(M), B ∈ IFSM(N), C ∈ IFSM(K) and D ∈

IFSM(P ). Also, let f̄ : A → B, σ̄ : B → C and h̄ : C → D be WIF R-homomorphisms

corresponding to the R-homomorphisms f : M → N, σ : N → K and h : K → P respec-

tively. Then f ◦ (σ ◦ h) = (f ◦ σ) ◦ h as R-homomorphisms from M into P . For z ∈M

µ(f◦(σ◦h))A(z) = µf◦(σ(h(A)))(z) = µσ(h(A))(f
−1(z)) = µh(A)(σ

−1(f−1(z)))

= µh(A)((f ◦ σ)−1(z)) = µA(h
−1((f ◦ σ)−1(z))) = µA(((f ◦ σ) ◦ h)−1(z)) = µ((f◦σ)◦h)A(z).

Likewise, we are able to exhibit that ν(f◦(σ◦h))A(z) = ν((f◦σ)◦h)A(z). Hence, f̄ ◦ (σ̄ ◦ h̄) and

(f̄ ◦ σ̄) ◦ h̄ are equal as WIF R-homomorphisms from A into D.
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Identity: Let A ∈ IFSM(M) and B ∈ IFSM(N) be IFSMs and IM : M → M be the

identity R-isomorphism on M . Then, IA : A → A is the corresponding IF R-isomorphism.

For any z ∈M , µIA(A)(z) = µA(I
−1
A (z)) = µA(z).

Likewise, we are able to exhibit that νIA(A)(z) = νA(z). Further, let f̄ : A → B, σ̄ : B → C

be WIF R-homomorphism corresponding the R-homomorphism f :M → N, σ : N → K re-

spectively. Then µ(f◦IA)A(z) = µA((f ◦ IA)−1(z)) = µA((IA)
−1 ◦ (f−1(z))) = µA(f

−1(z)) =

µf(A)(z). Likewise, we are able to exhibit that ν(f◦IA)(A)(z) = νf(A)(z). Therefore, we have

f̄ ◦ IA = f̄ . Likewise, we are able to exhibit that IA ◦ σ̄ = σ̄. Hence, IA is the identity IF

R-isomorphism of A.

Remark 2.5.7. We shall denote the above category by CWR-IFM.

Theorem 2.5.8. The collection of intuitionistic fuzzy modules together with weak intuitionistic

fuzzy R-isomorphisms and their composition form a category.

Remark 2.5.9. We shall denote the above category by CWRI-IFM.

Theorem 2.5.10. The collection of intuitionistic fuzzy modules together with intuitionistic

fuzzy R-isomorphisms and their composition form a category.

Remark 2.5.11. We shall denote the above category by CRI-IFM.

We have formed four categories of intuitionistic fuzzy modules, viz., CWR-IFM, CR-IFM,

CWRI-IFM and CRI-IFM. Of these, CRI-IFM is a subcategory of both CWRI-IFM and CR-IFM. Both

CWRI-IFM and CR-IFM are subcategories of CWR-IFM. None is a full subcategory. CWRI-IFM is

not a subcategory of CR-IFM, and CR-IFM is not a subcategory of CWRI-IFM.



Chapter 3

Some special morphisms in the category

CR-IFM

Within the category CR-IFM, the study of special morphisms emerges as a focal point, provid-

ing a nuanced understanding of the relationships between these mathematical structures. Spe-

cial morphisms play a pivotal role in capturing the unique characteristics and transformations

within intuitionistic fuzzy modules, offering insights into their behavior and interactions. This

Chapter investigates various types of special morphisms, including coretractions, retractions,

monomorphisms, epimorphisms, and isomorphisms, within the context of intuitionistic fuzzy

modules. Through a systematic exploration of their properties and significance, the research

aims to shed light on the categorical structure of intuitionistic fuzzy modules and enhance our

ability to discern and characterize their distinctive features.
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3.1 Introduction

Agnes [2] explored the special morphisms in the category of fuzzy sets and delineated the nec-

essary conditions for a morphism to be deemed a coretraction or retraction. In this Chapter, we

extend the notion of intuitionistic fuzzy modules and intuitionistic fuzzy R- homomorphism

to intuitionistic fuzzy coretracts (retracts) and intuitionistic fuzzy coretraction (retraction), and

various properties are being investigated.

This Chapter turns its attention to the investigation of specific special types of morphisms. In

this Chapter, we

1. introduce two special type of morphisms, namely Retraction and Coretraction in the

category (CR-IFM) of intuitionistic fuzzy modules.

2. obtain the condition under which an intuitionistic fuzzy R-homomorphism in CR-IFM to

be a retraction or a coretraction.

3. acquire some equivalent statements for these two morphisms.

4. study free, projective and injective objects in CR-IFM and establish their relation with

retraction and coretraction in CR-IFM.

3.2 Some special morphisms

In this section, we study and define some special morphisms like coretraction, retraction,

monomorphism, epimorphism, isomorphism etc. in the category CR-IFM.

Definition 3.2.1. An IF R-homomorphism f̄ : A → B is said to be an intuitionistic fuzzy
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coretraction(IF-coretraction) if there exists an IF R-homomorphism σ̄ : B → A such that

σ̄ ◦ f̄ = IA.

In other words, f̄ is an IF-coretraction, if it is left invertible. In this case , the IFR-homomorphism

σ̄ is called a left inverse of f̄ .

Lemma 3.2.2. Composite of two IF-coretractions is also an IF-coretraction in CR-IFM.

Proof. Let f̄ : A → B and σ̄ : B → C be two IF-coretractions in CR-IFM. So, IF R-

homomorphisms ū : B → A and v̄ : C → B exists such that

ū ◦ f̄ = IA and v̄ ◦ σ̄ = IB.

Now, (ū ◦ v̄) ◦ (σ̄ ◦ f̄) = ū ◦ (v̄ ◦ σ̄) ◦ f̄ [Using associativity of composition]

= ū ◦ IB ◦ f̄

= ū ◦ f̄

= IA.

Thus ū ◦ v̄ : A→ C is left inverse of σ̄ ◦ f̄ . Hence, σ̄ ◦ f̄ is an IF-coretraction in CR-IFM.

Proposition 3.2.3. LetA andB are IFSMs ofR-modulesM andN respectively and f :M →

N be a R-homomorphism. If an IF R-homomorphism f̄ : A → B is an IF-coretraction in

CR-IFM, then both f and f̄ are one-one functions.

Proof. Since f̄ : A → B is an IF-coretraction in CR-IFM. Therefore, an IF R-homomorphism

σ̄ : B → A exists such that σ̄ ◦ f̄ = IA. By lemma 1.5.10 , both f and f̄ are one-one
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functions.

The converse of Proposition 3.2.3 does not hold. Refer to the example provided below for

elucidation:

Example 3.2.4. Assume M = Z2 and N = Z4. Clearly, M,N are Z-modules. Consider

A = χM and B = χN . Then A and B are IFSMs of Z-modules M and N respectively. Define

the mapping f : M → N by f(0) = 0, f(1) = 2. Clearly, f is one one Z-homomorphism.

Also, µB(f(z)) ≥ µA(z) and νB(f(z)) ≤ νA(z),∀z ∈ M . Note that f̄ is one one IF Z-

homomorphism. However, there exists no IF Z-homomorphism σ̄ : B → A such that σ̄ ◦ f̄ =

IA. That is, f̄ : A→ B is not an IF-coretraction.

Definition 3.2.5. An IF R-homomorphism f̄ : A → B is said to be an intuitionistic fuzzy

retraction (IF-retraction), if an IF R-homomorphism σ̄ : B → A exists that satisfies

f̄ ◦ σ̄ = IB.

An IFSM B is said to be retract of an IFSM A. In other words, an IF R-homomorphism f̄

is an intuitionistic fuzzy retraction if it is right invertible. An IF R-homomorphism σ̄ in the

above definition is called a right inverse of f̄ .

Lemma 3.2.6. Composite of two intuitionistic fuzzy retractions is also an intuitionistic fuzzy

retraction in CR-IFM.

Proof. Similar to the proof of Lemma 3.2.2, this can also be demonstrated.

Proposition 3.2.7. Let A and B are IFSM of R-modules M and N respectively and f :M →
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N is R-homomorphism. If an IF R-homomorphism f̄ : A → B is an IF-retraction in CR-IFM,

then both f and f̄ are onto functions.

Proof. It can be easily prove by using Lemma 1.5.10.

The converse of Proposition 3.2.7 does not hold. Refer to the example provided below for

elucidation:

Example 3.2.8. Assume M = Z2 and N = Z2. Clearly, M,N are Z-modules. Define IFS A

and B on M and N respectively as

µA(z) =


1, if z = 0

0.5, if z = 1

, νA(z) =


0, if z = 0

0.4, if z = 1

,

and µB(t) = 1, νB(t) = 0,∀t ∈ N . Clearly, A and B are IFSM of M and N respectively.

Define f : M → N as f(0) = 0, f(1) = 1. Clearly, f is an onto Z-homomorphism. Also,

µB(f(z)) ≥ µA(z) and νB(f(z)) ≤ νA(z), ∀z ∈M . Note that f̄ is onto IF Z-homomorphism.

However there exists no IF Z-homomorphism σ̄ : B → A such that f̄ ◦ σ̄ = IB. Thus,

f̄ : A→ B is not an IF-retraction.

Definition 3.2.9. An IF-homomorphism f̄ ∈ HomCR−IFM
(A,B) is said to be an intuitionistic

fuzzy monomorphism (IF-monomorphism) if f̄ ◦ σ̄ = f̄ ◦ h̄ implies that σ̄ = h̄ for all σ̄, h̄ ∈

HomCR-IFM(C,A); i.e. left cancellation holds in CR-IFM.

Definition 3.2.10. An IF-homomorphism f̄ ∈ HomCR-IFM(A,B) is said to be an intuitionistic

fuzzy epimorphism (IF-epimorphism) if σ̄ ◦ f̄ = h̄ ◦ f̄ implies that σ̄ = h̄ for all σ̄, h̄ ∈

HomCR-IFM(B,C); i.e. right cancellation holds in CR-IFM.
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Lemma 3.2.11. Composite of two IF-monomorphisms is also an IF-monomorphism in CR-IFM.

Lemma 3.2.12. Composite of two IF-epimorphisms is also an IF-epimorphism in CR-IFM.

Remark 3.2.13. (i) Since every IF-coretraction has a left inverse, it implies that left cancel-

lation holds in CR-IFM. Then, it follows that every IF-coretraction is an IF-monomorphism.

(ii) Since every IF-retraction has a right inverse, it implies that right cancellation holds in

CR-IFM. Then, it follows that every IF-retraction is an IF-epimorphism.

(iii) An IF R-homomorphism is an IF R-isomorphism if and only if it is both IF-coretraction

and IF-retraction.

Lemma 3.2.14. In CR-IFM,

(i) underlying maps of epimorphisms are surjective, and

(ii) underlying maps of monomorphisms are injective.

Proof. (i) Suppose f̄ : A → B be IF-epimorphism in CR-IFM, and let g, h : N → K in CR-M

such that g◦f = h◦f . The IFR-homomorphisms ḡ, h̄ : B → 1̄K derived by straightforwardly

applying intuitionistic fuzzification to g and h with respect to B, following that, ḡ ◦ f̄ = h̄ ◦ f̄ .

Consequently, ḡ = h̄, leading to g = h. Hence, f is an epimorphism in CR-M. Since epimor-

phisms are surjective in abelian categories and CR-M is an abelian category, f is surjective.

(ii) The proof is similar.

Let’s recall the definition of balanced category

Definition 3.2.15. “A category C is said to be balanced if every morphism is an isomorphism.”

Theorem 3.2.16. The category CR-IFM is not balanced category.
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Proof. In example 3.2.8, we prove that f̄ is not an IF-retraction even though f̄ is an IF R-

homomorphism. Thus, every IF R-homomorphism is not an IF R-isomorphism. Hence, the

category CR-IFM is not balanced category.

3.3 Exploring special morphisms in the context of intuition-

istic fuzzy projective and injective modules

We will study free, projective and injective objects in CR-IFM and establish their relation with

morphism in CR-IFM and retraction (coretraction) in this section.

Theorem 3.3.1. A ∈ Ob(CR-IFM) is IF-projective if and only if, M ∈ Ob(CR-M) is projective

and A = 0̄M .

Proof. Firstly, let A be a projective object in CR-IFM. Let N and K be two R-modules and

f :M → N be R-homomorphism and ϕ : K → N be epimorphism.

Take B = χN and C = χK such that B,C becomes IFSMs of R-modules N and K re-

spectively. Thus, f̄ : A → B becomes an IF R-homomorphism and ϕ̄ : C → B becomes an

IF-epimorphism obtained by trivially intuitionistic fuzzifying f and ϕ in CR-IFM. AsA is a pro-

jective object in CR-IFM, an IF R-homomorphism ψ̄ : A → C exists that satisfies ϕ̄ ◦ ψ̄ = f̄ .

This implies the existence of an R-homomorphism ψ : M → K that satisfies ϕ ◦ ψ = f .

Hence, M is projective object in CR-M.

If A ̸= 0̄M , then there exist no IF R-homomorphism ψ̄ : A → χK i.e., A will no longer be a

projective object in CR-IFM as the following diagram fails to commute
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A χK

χM

f̄

ψ̄

ϕ̄

Theorem 3.3.2. Retraction of projective objects in CR-IFM are projective.

Proof. Suppose that A be a projective object in CR-IFM and let B be retract of A.

For an IF R-homomorphism f̄ : A → B, an another IF R-homomorphism ϕ̄ : B → A exists

so that f̄ ◦ ϕ̄ = 1B. We claim that B is an IF-projective in CR-IFM.

Consider an arbitrary IF R-homomorphism ψ̄ : B → C and an IF-epimorphism p̄ : D → C in

CR-IFM.

Now, µC ◦ (ψ̄ ◦ f̄) = (µC ◦ ψ̄) ◦ f̄ = µB ◦ f̄ = µA. Similarly, we can prove νC ◦ (ψ̄ ◦ f̄) = νA.

As a result, ψ̄ ◦ f̄ ∈ HomCR-IFM(A,C) becomes an IF R-homomorphism. As A is an IF-

projective, an IF R-homomorphism q̄ : A→ D exists that satisfies p̄ ◦ q̄ = ψ̄ ◦ f̄ .

Then, (p̄◦ q̄)◦ ϕ̄ = (ψ̄◦ f̄)◦ ϕ̄ = ψ̄◦(f̄ ◦ ϕ̄) = ψ̄◦IB = ψ̄. Consequently, p̄◦ r̄ = ψ̄, where r̄ =

q̄ ◦ ϕ̄.

B

A B

D C

r̄=q̄◦ϕ̄

ϕ̄

p̄

q̄ ψ̄

ϕ̄
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Consider µD ◦ r̄ = µD ◦ (q̄ ◦ ϕ̄) = (µD ◦ q̄) ◦ ϕ̄ = µA ◦ ϕ̄ = µB.

Thus, r̄ : B → D becomes an IF R-homomorphism satisfying p̄ ◦ r̄ = ψ̄.

Hence, B is an IF-projective in CR-IFM.

Theorem 3.3.3. If A is a projective object in CR-IFM, then every IF-epimorphism ψ̄ : B → A

is an intuitionistic fuzzy retraction, where B ∈ CR-IFM.

Proof. Since A is a projective object in CR-IFM and ψ̄ : B → A be an IF-epimorphism, it

follows that the depicted diagram commutes

A

B A

ϕ̄

IA

ψ̄

Consequently, an IF R-homomorphism ϕ̄ : A→ B exists that satisfies

ψ̄ ◦ ϕ̄ = IA

Hence, ψ̄ is an IF-retraction.

Theorem 3.3.4. A ∈ Ob(CR-IFM) is free if and only if, M ∈ Ob(CR-M) is free and A = 0̄M .

Proof. Let A be a free object in CR-IFM. Then A is free IFSM of an R-module M . As every IF

free submodule of a module is IF projective in CR-IFM,A is an IF-projective. Further, according

to Theorem [3.3.1], M is a projective module and A = 0̄M . So, it suffices to demonstrate that

M is a free R-module.

For P ̸= ∅, let i : P →M be a R-homomorphism. For any R-module N , let f : P → N be a

R-homomorphism. Let B = 0̄N be an IFSM of N and D = 0̄P be an IFSM of P such that D



48 Chapter 3. Some special morphisms in the category CR-IFM

is a basis of an IFSM A. So, ī : D → A and f̄ : D → B are IF R-homomorphisms obtained

by trivially intuitionistic fuzzifying i and f .

As A is a free IFSM, then ϕ̄ ◦ ī = f̄ for a unique IF R-homomorphism ϕ̄ : A→ B.

D A

B

f̄

ī

ϕ̄

Consequently, ϕ ◦ i = f for each R-homomorphism ϕ :M → N .

Thus, M is a free R-module.

Theorem 3.3.5. (µ0, ν0)M is an IF-projective if and only if, (µ0, ν0)M is a direct summand of

a free object in CR-IFM.

Proof. Firstly, let (µ0, ν0)M be an IF-projective object in CR-IFM. Then, according to Theorem

[3.3.1], M is a projective module in CR-M. Since projective object is a direct summand of free

module in CR-M, a free R-module F and an R-module K exists satisfying F = K ⊕M . Then

(µ0, ν0)F = (µ0, ν0)K ⊕ (µ0, ν0)M .

Conversely, if (µ0, ν0)F = (µ′, ν ′)K ⊕ (µ′′, ν ′′)M with the inclusion maps iK : K → F and

iM : M → F , then µ0(iK(z)) ≥ µ′(z), ν0(iK(z)) ≤ ν ′(z) hence µ′ = µ0 and ν ′ = ν0 and

similarly, we can have µ′′ = µ0 and ν ′′ = ν0. Thus, (µ0, ν0)M is an IF-projective.

Theorem 3.3.6. A ∈ Ob(CR-IFM) is an IF-injective if and only, if M ∈ Ob(CR-M) is an

injective and A = 1̄.

Proof. Let A be an injective object in CR-IFM. Let N and K be two R-modules and an R-

homomorphism f : M → N and a monomorphism g : N → K in CR-M. Take B = χN
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and C = χK such that B and C becomes IFSMs of N and K respectively, f̄ : B → A

becomes IF R-homomorphism and ḡ : B → C becomes IF-monomorphism obtained by

trivially intuitionistic fuzzifying f and g in CR-IFM. As A is an injective object in CR-IFM, an

IF R-homomorphism ψ̄ : C → A exists that satisfying ψ̄ ◦ ḡ = f̄ .

B C

A

f̄

ḡ

ψ̄

Thus, ψ ◦ g = f for a R-homomorphism ψ : K →M . Hence, M is injective object.

If A ̸= 1̄, then there is no existence of an IF R-homomorphism ψ̄ : χM → A i.e., A will no

longer be an injective object CR-IFM as the following diagram fails to commute

χM χM

A

ψ̄

ḡ

f̄

Theorem 3.3.7. Let f̄ : A→ B be a IF-coretraction. If B is an IF-injective, then so is A.

Proof. Since f̄ : A → B is an IF-coretraction. Therefore, ḡ ◦ f̄ = 1A for a unique IF R-

homomorphism ϕ̄ : B → A. Now, we will show that A is an IF-injective.

Let h̄ : C → D be a IF-monomorphism and p̄ : C → A be any IF R-homomorphism in

CR-IFM. Then f̄ ◦ p̄ : C → B is an IF R-homomorphism. For an IF-injective module B,

an IF R-homomorphism q̄ : D → B exists such that q̄ ◦ h̄ = f̄ ◦ p̄ which implies that

ϕ̄ ◦ q̄ ◦ h̄ = ϕ̄ ◦ f̄ ◦ p̄ = p̄. This gives us r̄ ◦ h̄ = p̄, where r̄ = ϕ̄ ◦ q̄.
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D

C B A

A

q̄

r̄=ϕ̄◦q̄

h̄

p̄

ϕ̄

f̄

Hence, A is an IF-injective.

Theorem 3.3.8. If A ∈ Ob(CR-IFM) is IF-injective, then every IF-injective f̄ : A → B is an

intuitionistic fuzzy coretraction, where B ∈ Ob(CR-IFM).

Proof. Since A is an injective object in CR-IFM and f̄ : A → B be an IF-injective. Thus, we

obtain

A B

A

IA

f̄

ϕ̄

As the above diagram is commutative, an IF R-homomorphism ϕ̄ : B → A exists that satisfy-

ing ϕ̄ ◦ f̄ = IA. Hence, f̄ is an intuitionistic fuzzy coretraction.



Chapter 4

Construction of some universal objects in

CR-IFM

4.1 Introduction

The concept of intuitionistic fuzzy modules has since become a focal point in category the-

ory, offering a framework for addressing universal contractions. We will start with some basic

definitions as presented in [48]. For more sources on category theory, readers can consult on

of [1, 27]. Maclane introduced various universal objects such as product, equalizer, pullback

and dual, namely coproduct, coequalizer, and pushout in general topology. Behera [9] intro-

duced fuzzy equalizers, fuzzy coequalizers, fuzzy pullbacks, and fuzzy pushouts for fuzzy

topological spaces. Results related to these universal objects were also studied. Rashmanlou,

Hamouda, and others [17, 18, 36] respected researchers in the field of category theory made a

significant contribution by introducing the concept of intuitionistic fuzzy topological spaces.

This study aims to extend the foundational concepts of category theory, such as pullback, inter-

51
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sections, images, and inverse-images, into the domain of intuitionistic fuzzy modules. These

constructions, are essential for elucidating relationships between mathematical entities, and

find a natural adaptation within the context of intuitionistic fuzzy modules, encapsulates the

uncertainty and vagueness inherent in many real-world phenomena. Our exploration delves

into the universal construction of these categorical concepts, unveiling their significance and

applicability within the framework of intuitionistic fuzzy modules. The construction of uni-

versal objects in the CR-IFM category represents a burgeoning area of research with promising

applications across diverse domains.

4.2 Equalizers and coequalizers

Theorem 4.2.1. For a given family of IFSMs {Ai|i ∈ J} of R-modules {Mi|i ∈ J} respec-

tively, the following properties hold:

(i) An IFSMA exists on
∏

i∈JMi with a family of IFR-homomorphisms {p̄i ∈ HomCR-IFM(A,Ai)|i ∈

J};

(ii) For any IFSM B of R-module N , equipped with a family of IF R-homomorphisms {ϕ̄i ∈

HomCR-IFM(B,Ai)|i ∈ J}, then ∀i ∈ J; p̄i ◦ θ̄ = ϕ̄i for a unique IF R-homomorphism

θ̄ : B → A.

Proof. (i) Let pi : M → Mi be the canonical projection mapping, where M =
∏

i∈JMi. An

IFS A on M is defined as:

µA(z) = ∧{µAi
(pi(z))|i ∈ J} and νA(z) = ∨{νAi

(pi(z))|i ∈ J}, ∀z =
∏

i∈J zi ∈M .

It can be verify thatA is an IFSM onM . Moreover, since {pi :M →Mi|i ∈ J} are projection
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mappings and µA(z) = ∧{µAi
(pi(z))|i ∈ J} ≤ µAi

(pi(z)) ; νA(z) = ∨{νAi
(pi(z))|i ∈ J} ≥

νAi
(pi(z)), ∀i ∈ J , implies that p̄i : A→ Ai is an IF R-homomorphism.

(ii) Consider the family of IF R-homomorphisms {ϕ̄i : B → Ai|i ∈ J} in CR-IFM. Then, the

corresponding R-homomorphisms {ϕi : N → Mi|i ∈ J} are in the CR-M. By the universal

property of product in CR-M, for each i ∈ J , pi ◦ θ = ϕi for a unique R-homomorphism

θ : N →M .

For each y ∈ N , let θ(y) ∈M with pi(θ(y)) = ϕi(y), yielding p̄i ◦ θ̄ = ϕ̄i,∀i ∈ J . Now,

µB(y) ≤ µAi
(ϕi(y))

= µAi
(pi(θ(y)))

= (µAi
◦ pi)(θ(y))

= µA(θ(y)).

i.e., µB(y) ≤ µA(θ(y)). Additionally, νB(y) ≥ νA(θ(y)), implying that θ̄ : B → A is an IF

R-homomorphism.

N M =
∏
Mi

Mi

ϕi

θ

pi

B A

Ai

ϕ̄i

θ̄

p̄i

For Uniqueness, suppose ξ̄ : B → A is another IF R-homomorphism satisfying p̄i ◦ ξ̄ = ϕ̄i.

So, we have p̄i ◦ ξ̄ = p̄i ◦ θ̄. Since each pi :M →Mi, i ∈ J is a projection mapping, it follows

ξ̄ = θ̄.

Hence, θ̄ : B → A is a unique IF R-homomorphism with p̄i ◦ θ̄ = ϕ̄i, ∀i ∈ J .
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Therefore, the category CR-IFM has product
∏

i∈J Ai.

Remark 4.2.2. Above theorem highlights that the IFSM A on M =
∏

i∈JMi can be viewed as

the direct product of the IFSMs Ai. This is denoted as A =
∏

i∈J Ai. Consequently, it implies

that the category of intuitionistic fuzzy modules indeed possesses a product.

Theorem 4.2.3. For a given family of IFSMs {Ai|i ∈ J} of R-modules {Mi|i ∈ J} respec-

tively, the following properties hold:

(i) An IFSMA exists on
∐

i∈JMi, along with a set of IFR-homomorphisms {q̄i : HomCR-IFM(Ai, A)|i ∈

J};

(ii) For any IFSM B of R-module N , equipped with a family of IF R-homomorphisms {ψ̄i :

Ai → B|i ∈ J}, for each i ∈ J , then θ◦q̄i = ψ̄i for a unique IFR-homomorphism θ̄ : A→ B.

Proof. (i) LetM =
∐

i∈JMi be the coproduct of disjoint union ofR-modules {Mi|i ∈ J} and

let qi :Mi →M be the canonical injection mapping such that qi(xi) = xi;∀xi ∈Mi, i ∈ J .

An IFS A on M is defined as:

µA(xi) = ∧{µAi
(xi)|i ∈ J} and νA(xi) = ∨{νAi

(xi)|i ∈ J},∀xi ∈Mi, i ∈ J .

Then, A is an IFSM on M . Moreover, for each i ∈ J and ∀xi ∈Mi, we have

µA(xi) ≤ µAi
(xi) = µAi

(qi(xi)) and νA(xi) ≥ νAi
(xi) = νAi

(qi(xi)) indicating that q̄i : Ai →

A is an IF R-homomorphism. Therefore, q̄i ∈ HomCR-IFM(Ai, A),∀i ∈ J .

(ii) Let B is an IFSM of an R-module N with a family of IF R-homomorphisms {ψ̄i :

Ai → B|i ∈ J} in CR-IFM. Define ψi : Mi → N as an R-homomorphism by ψi(xi) = y,

where y ∈ N .
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Ai A

B

ψ̄i

q̄i

θ̄

Mi M =
∐

i∈JMi

N

ψi

qi

θ

Define an R-homomorphism θ :M → N as θ(xi) = y,∀y ∈ N . This implies θ ◦ qi = ψi and

µB(θ(xi)) = µB(y)

= µB(ψi(xi))

≥ µAi
(xi).

Further, µB(θ(xi)) ≥ µAi
(xi) and νB(θ(xi)) ≤ νAi

(xi). Thus, θ̄ : A → B is an IF R-

homomorphism satisfying θ̄ ◦ q̄i = ψ̄i; ∀i ∈ J . Hence, the category CR-IFM has coproduct∐
i∈J Ai.

Remark 4.2.4. The IFSM A on M =
∐

i∈JMi, serves as the coproduct of the IFSMs of Ai.

This is denoted s A =
∐

i∈J Ai. Therefore, it confirms that the category of intuitionistic fuzzy

modules indeed possess a coproduct.

Definition 4.2.5. Let f̄ , ḡ : A → B are IF R-homomorphisms. An intuitionistic fuzzy equal-

izer (IF-equalizer) is defined as a pair (E, ē), where E = (µE, νE)Q is an IFSM of R-module

Q and ē ∈ HomCR-IFM(E,A), the following properties hold:

i) f̄ ◦ ē = ḡ ◦ ē, and

ii) For any IFSM E1 = (µE1 , νE1)Q1 of an R-module Q1 and ē1 ∈ HomCR-IFM(E1, A), if

(E1, ē1) is another pair satisfying f̄ ◦ ē1 = ḡ ◦ ē1, then ē ◦ p̄ = ē1 for a unique IF R-

homomorphism p̄ : E1 → E.
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E1

E A B

p̄

ē1

ē
f̄

ḡ

Figure 4.1: Equalizer

Remark 4.2.6. In particular, for an IFSME of anR-moduleQ to be considered an IF-equalizer,

it must possess an element ē ∈ HomCR-IFM(E,A) that satisfies the aforementioned condition.

Additionally, E must satisfy the conditions µE(z) = µA(ē(z)); νE(z) = νA(ē(z)), ∀z ∈ Q.

Proposition 4.2.7. Let ē : E → A be an IF-equalizer for IF R-homomorphisms f̄ , ḡ : A →

B. Then, ē is an IF-monomorphism. Additionally, any two IF-equalizers for f̄ and ḡ are

isomorphic as IFSMs.

Proof. Given that ē : E → A is an IF-equalizer for f̄ , ḡ : A→ B, f̄ ◦ ē = ḡ ◦ ē.

Now, suppose ψ̄1, ψ̄2 : E1 → E are IF R-homomorphisms such that ē ◦ ψ̄1 = ē ◦ ψ̄2.

E1

E A B

ψ̄1

ψ̄2 ē◦ψ̄1

ē
f̄

ḡ

Considering f̄ ◦(ē◦ ψ̄1) = f̄ ◦(ē◦ ψ̄2) = (f̄ ◦ ē)◦ ψ̄2 = (ḡ◦ ē)◦ ψ̄2 = ḡ◦(ē◦ ψ̄2) = ḡ◦(ē◦ ψ̄1).

By the uniqueness of an IF-equalizer, ψ̄1 = ψ̄2, thus ē is an IF-monomorphism.

Let ē1 : D → A be another IF-equalizer for f̄ , ḡ : A→ B, then there exist IFR-homomorphisms

χ̄1 : D → E and χ̄ : E → D to maintain the commutativity of the diagram
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D

E A B

χ̄1

ē1
χ̄

ē
f̄

ḡ

ē ◦ χ̄1 = ē1 and ē1 ◦ χ̄ = ē. Therefore, we have

ē ◦ (χ̄1 ◦ χ̄) = (ē ◦ χ̄1) ◦ χ̄ = ē1 ◦ χ̄ = ē = ē ◦ IE .

Thus, χ̄1 ◦ χ̄ = IE . Similarly, we can show that χ̄ ◦ χ̄1 = ID. Hence, χ̄1 and χ̄ are IF

R-isomorphisms. Consequently, E and D are isomorphic as IFSMs.

Remark 4.2.8. In Proposition 4.2.7, the status of ē or ē1 as a strong monomorphism is undeter-

mined. Nevertheless, if one of them qualifies as a strong monomorphism, then the other must

also be a strong monomorphism. Consequently, E and D would be isomorphic as IFSMs.

Proposition 4.2.9. Let ē : C → A be an IF-equalizer for f̄ , ḡ : A→ B and let D be an IFSM

isomorphic to an IFSM C. Then, D is also an IF-equalizer for f̄ and ḡ.

Proof. Let p̄ : D → C be an IF R-isomorphism. Firstly, we claim that ē ◦ p̄ : D → A forms

an IF-equalizer for f̄ and ḡ. Since ē is an IF-equalizer for f̄ and ḡ, ḡ ◦ ē = f̄ ◦ ē.

Condition (i) for an IF-equalizer is satisfied as f̄ ◦(ē◦ p̄) = (f̄ ◦ ē)◦ p̄ = (ḡ◦ ē)◦ p̄ = ḡ◦(ē◦ p̄).

Suppose that there exists ē1 : E → A satisfying f̄ ◦ ē1 = ḡ ◦ ē1. Since ē is an IF-equalizer,

ē ◦ ψ̄ = ē1 for a unique IF R-homomorphism ψ̄ : E → C.

D E

C A B

p̄

ē◦p̄

(p̄)−1◦ψ̄

ē1ψ̄

ē
f̄

ḡ

By the commutativity of above diagram and p̄ is an IFR-isomorphism, then (p̄)−1◦ψ̄ : E → D

becomes an IFR-homomorphism. Consider (ē◦p̄)((p̄)−1◦ψ̄) = ē◦(p̄◦(p̄)−1)◦ψ̄ = ē◦ID◦ψ̄ =
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ē ◦ ψ̄ = ē1.

For uniqueness, let t̄ : E → D such that ē ◦ p̄ ◦ t̄ = ē1, which implies ē ◦ p̄ ◦ t̄ = ē ◦ ψ̄.

Since ē is an IF monomorphism, we have p̄ ◦ t̄ = ψ̄, implying t̄ = (p̄)−1 ◦ ψ̄.

This proves the uniqueness.

Also, for z ∈ P , µD(z) = µC(p̄(z)) = µA(ē(p̄(z))) = µA((ē ◦ p̄)(z)).

Similarly, we can show νD(z) = νA((ē ◦ p̄)(z)). Hence, D is also an IF-equalizer of f̄ and

ḡ.

Proposition 4.2.10. IA is an IF-equalizer for f̄ , ḡ : A→ B if and only if f̄ = ḡ.

Proof. Firstly, let f̄ = ḡ. This implies, f̄ ◦ IA = ḡ ◦ IA.

Let h̄ : C → A be an IF R-homomorphism satisfying f̄ ◦ h̄ = ḡ ◦ h̄, ensuring commutativity

of the figure 4.2 The commutativity implies IA ◦ h̄ = h̄ demonstrating the uniqueness. Thus,

C

A A B

h̄ h̄

IA
f̄

ḡ

Figure 4.2: Equalizer:IA

IA is an IF-equalizer.

Conversely, let IA be an IF-equalizer, then f̄ ◦ IA = ḡ ◦ IA, implying f̄ = ḡ.

Proposition 4.2.11. Let ē : C → A is an IF-equalizer of f̄ , ḡ : A → B. If ē is an IF-

epimorphism, then ē is an IF R-isomorphism.
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Proof. Since ē : C → A is an IF-equalizer for f̄ and ḡ, we have f̄ ◦ ē = ḡ ◦ ē. Additionally

as, ē is an IF-epimorphism, therefore it is right cancellable. Therefore, f̄ = ḡ. By Proposition

[4.2.10], IA is an IF-equalizer for f̄ and ḡ, implying that ē ◦ k̄ = IA for a unique IF R-

homomorphism k̄ : A→ C. Hence, ē = (k̄)−1 , demonstrating that ē is an IF R-isomorphism.

Proposition 4.2.12. Every IF-coretraction is an IF-equalizer in CR-IFM.

Proof. Let D = (µD, νD)P and E = (µE, νE)Q are IFSMs of R-modules P and Q respec-

tively, with ē : D → E being an IF-coretraction, an IF R-homomorphism ē1 : E → D exists

that satisfying ē1 ◦ ē = ID, implying the next diagram commutes:

D E

D

ID

ē

ē1

To prove that ē is an IF-equalizer for IE and ē◦ ē1, firstly we will show that IE ◦ ē = (ē◦ ē1)◦ ē.

Now (ē ◦ ē1) ◦ ē = ē ◦ (ē1 ◦ ē) = ē ◦ ID = ē = IE ◦ ē. Therefore, the first condition of

IF-equalizer is satisfied.

Let k̄ : C → E be an IF R-homomorphism such that IE ◦ k̄ = (ē ◦ ē1) ◦ k̄. This implies that k̄

= ē ◦ (ē1 ◦ k̄). As a result, subsequent diagram commutes

C

D E E

ē1◦k̄
k̄

ē

ē1

ē◦ē1

ĪE

, confirming the uniqueness. Hence, ē is an IF-equalizer for IE and ē ◦ ē1.
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Example 4.2.13. Let P = Q = Z2 be two Z-modules. Define IFSs D = (µD, νD)P and

E = (µE, νE)Q on P and Q respectively as

µD(d) =


1, if d = 0

0.5, if d = 1

; νD(d) =


0, if d = 0

0.4, if d = 1

µE(b) = 1, νE(b) = 0, for every b ∈ Z2. Then it’s straightforward to confirm that D and E

are IFSMs of P and Q respectively. Define h, h1 : P → Q as h(0) = 0, h(1) = 1, h1(0) =

0, h1(1) = 0. Clearly h, h1 are R-homomorphism, for

µE(h(0)) = µE(0) = 1 ≥ 1 = µD(0), νE(h(0)) = νE(0) = 0 ≤ 0 = νD(0),

µE(h(1)) = µE(1) = 1 ≥ 0.5 = µD(1), νE(h(1)) = νE(1) = 0 ≤ 0.4 = νD(1).

Thus, µE(h(d)) ≥ µD(d) and νE(h(d)) ≤ νD(d),∀d ∈ P .

Also, µE(g(0)) = µE(0) = 1 ≥ 1 = µD(0), νE(h1(0)) = νE(0) = 0 ≤ 0 = νD(0),

µE(h1(1)) = µE(0) = 1 ≥ 0.5 = µD(1), νE(h1(1)) = νE(0) = 0. ≤ 0.4 = νD(1).

Thus, µE(h1(d)) ≥ µD(d) and νE(h1(d)) ≤ νD(d),∀d ∈ P .

Hence, h̄, h̄1 : D → E are IF R-homomorphisms.

Let K = {z ∈ P : h(z) = h1(z)} be a submodule of P . Then K = {0}. Define an

R-homomorphism e : K → P as e(z) = z,∀z ∈ K. It is easy to verify that ē is an IF

R-homomorphism satisfying h̄ ◦ ē = h̄1 ◦ ē. Let E is an IFSM on K defined as µE(0) =

1, νe(0) = 0. Thus we have µD(0) = µE(e(0)) and νD(0) = νE(e(0)). Hence, the pair (E, ē)

forms an IF-equalizer.

Proposition 4.2.14. CR-IFM has equalizers.
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Proof. Let f̄ , ḡ : A → B be an IF R-homomorphisms. Define M1 = {c ∈ M : f(c) =

g(c)} which is clearly a submodule of M . Let A1 be the restriction of A to M1, defined as

µA1(c) = µA(c) and νA1(c) = νA(c); ∀c ∈ M1, implying A1 becomes an IFSM of M1 and

inclusion mapping i : M1 → M yields a strong IF R-homomorphism īA1 : A1 → A, defined

as µA(̄iA1(c)) = µA1(c) = µA(c) and νA(̄iA1(c)) = νA1(c) = νA(c).

Now, it’s claimed that īA1 : A1 → A is an IF-equalizer for f̄ and ḡ.

For d ∈M , (f̄ ◦ īA1)(d) = f̄ (̄iA1(d)) = f̄(d) = ḡ(d) = ḡ(̄iA1(d)) = (ḡ ◦ īA1)(d) implying

f̄ ◦ īA1 = ḡ ◦ īA1 .

C

A1 A B

ξ̄

h̄

īA1
f̄

ḡ

Let h̄ ∈ HomCR-IFM(C,A) satisfying f̄ ◦ h̄ = ḡ ◦ h̄. Define ξ̄ : C → A1 as ξ̄(k) = h̄(k),

∀k ∈ K. For k ∈ K, (f̄ ◦ h̄)(k) = (ḡ ◦ h̄)(k), implying f̄(h̄(k)) = ḡ(h̄(k)). Thus, ξ̄ is

well-defined. Furthermore, (̄iA1 ◦ ξ̄)(k) = īA1(ξ̄(k)) = ξ̄(k) = h̄(k) shows that īA1 ◦ ξ̄ = h̄.

Since īA1 is a strong IF R-homomorphism, ξ̄ is unique. Finally, to demonstrate that ξ̄ is

an IF R-homomorphism, consider µC(k) ≤ µA(h̄(k)) = µA(ξ̄(k)) = µA1(ξ̄(k)), showing

µA1(ξ̄(k)) ≥ µC(k). Similarly, it can be shown that νA1(ξ̄(k)) ≤ νC(k). Hence, ξ̄ is an IF

R-homomorphism, concluding that CR-IFM possesses IF-equalizers.

Remark 4.2.15. In CR-IFM, every strong IF R-homomorphism is an IF-equalizer.
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Definition 4.2.16. [21] Let ρ be an intuitionistic fuzzy equivalence relation on R-module M .

For each a ∈M , the IFS ρa = (µρa , νρa) :M → I × I on M defined as

µρa(x) = µρ(a, x) and νρa(x) = νρ(a, x),∀x ∈M .

is called an intuitionistic fuzzy equivalence class of ρ containing a. The set {ρa : a ∈ M}

is called the IF quotient set of M by ρ and is denoted by M/ρ. We can also write M/ρ =

{[a] : a ∈ M}. In fact M/ρ form an R-module with respect to the operations defined by

ρa + ρb = ρa+b and rρa = ρra, ∀a, b ∈M, r ∈ R called the quotient submodule induced by ρ.

Definition 4.2.17. Let f̄ , ḡ : A → B are IF R-homomorphisms. An intuitionistic fuzzy

coequalizer (IF-coequalizer) is defined as a pair (C, q̄), where C = (µC , νC)K is an IFSM of

an R-module K and q̄ ∈ HomCR-IFM(B,C), if the following conditions hold:

(i) q̄ ◦ f̄ = q̄ ◦ ḡ and

(ii) For any IFSM E = (µE, νE)Q and q̄1 ∈ HomCR-IFM(B,E), if (E, q̄1) is another pair satis-

fying q̄1 ◦ f̄ = q̄1 ◦ ḡ, then ū ◦ q̄ = q̄1 for a unique IF R-homomorphism ū : C → E.

A B C

D

f̄

ḡ

q̄1

q̄

ū

Proposition 4.2.18. Every IF-retraction is an IF-coequalizer in CR-IFM.

Proposition 4.2.19. CR-IFM have coequalizers.

Proof. Let A,B ∈ Ob(CR-IFM) and f̄ , ḡ : A→ B be IF R-homomorphisms. Assume that ρ is

the smallest IF-equivalence relation on N satisfying f̄(c) ∼ ḡ(c), ∀c ∈M .
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Let K = N/ρ ={[y] : y ∈ N}, ϕ : N → K is the canonical mapping.

Now, construct an IFS C on K as

µC([k]) = ∨{µB(z) : z ∈ [k]} and νC([k]) = ∧{νB(z) : z ∈ [k]}

It is easy to confirm that C is an IFSM on K. Define ϕ̄ : B → C as

ϕ̄(y) = [y], for each y ∈ N .

Clearly, ϕ̄ is IF R-homomorphism as µB(y) ≤ ∨{µB(z) : z ∈ [y]} = µC([y]) = µC(ϕ̄(y))

and νB(y) ≥ ∧{νB(z) : z ∈ [y]} = νC([y]) = νC(ϕ̄(y)).

To show that ϕ̄ is IF-coequalizer of f̄ and ḡ, observe that for each d ∈ M , f̄(d) ∼ ḡ(d) thus

ϕ̄(f̄(d)) = [f̄(d)] = [ḡ(d)] = ϕ̄(ḡ(d)), i.e. ϕ̄ ◦ f̄ = ϕ̄ ◦ ḡ.

Let D be an IFSM on P and q̄ : B → D be an IF R-homomorphism satisfying q̄ ◦ f̄ = q̄ ◦ ḡ.

Define ρ1 = {(y, y1) ∈ N × N : q(y) = q(y1)} as an IF equivalence relation on N . As

q ◦ f = q ◦ g implies (f(d), g(d)) ∈ ρ1 for d ∈ M , concluding that ρ ⊆ ρ1. Therefore, ρ is

the smallest IF equivalence relation contain {(f(d), g(d)) : d ∈ M}. Define q′ : K → P by

q
′
([y]) = q(y),∀[y] ∈ K.

Let y, y1 ∈ N such that [y] = [y1]. If (y, y1) ∈ ρ, then (y, y1) ∈ ρ1, we have q(y) = q(y1)

implies that q′([y]) = q
′
([y1]). Thus, q′ is well-defined. For y ∈ N , (q̄′ ◦ ϕ̄)(y) = q̄

′
(ϕ̄(y)) =

q̄
′
([y]) = q̄(y) implying q̄′ ◦ ϕ̄ = q̄. There is only need to prove that q̄′ : C → D an IF

R-homomorphism.

As q̄ is an IF R-homomorphism, for [y] ∈ K, we have

µC([y]) = ∨{µB(z) : z ∈ [y]} ≤ ∨{µD(q̄(z)) : z ∈ [y]} = µD(q̄
′
([y])), indicating that

µD(q
′
([y])) ≥ µC([y]). Similarly, νD(q

′
([y])) ≤ νC([y]).
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Consequently, q̄′ is a unique IF R-homomorphism from C to D, concluding that ϕ̄ is IF-

coequalizer of f̄ and ḡ.

M N K

P

f

g

q

ϕ

q
′

A B C

D

f̄

ḡ

q̄

ϕ̄

q̄′

This completes the proof.

Theorem 4.2.20. CR-IFM is complete and cocomplete.

Proof. The completeness and cocompleteness of the category CR-IFM are demonstrated by

Theorem 4.2.1, Theorem 4.2.3, Proposition 4.2.14, and Proposition 4.2.19.

Remark 4.2.21. According to Theorem 4.2.20, it can be inferred that the category of intuition-

istic fuzzy modules, CR-IFM, is indeed bicomplete.

4.3 Intersections and pullbacks

Definition 4.3.1. Let σ̄ : A→ C and τ̄ : B → C are IFR-homomorphisms. Then, for these IF

R-homomorphisms, the intuitionistic fuzzy pullback(IF-pullback) is a triplet (D, σ̄1, τ̄1) with

D = (µD, νD)P , σ̄1 ∈ HomCR-IFM(D,A), and τ̄1 ∈ HomCR-IFM(D,B) if Figure-4.3 commutes

and the following properties hold:

(i) σ̄ ◦ σ̄1 = τ̄ ◦ τ̄1 and

ii) Universal Property: if another triplet (E, ϕ̄, ψ̄) with E = (µE, νE)P , ϕ̄ ∈ HomCR-IFM(E,A)

and ψ̄ ∈ HomCR-IFM(E,B) satisfying σ̄ ◦ ϕ̄ = τ̄ ◦ ψ̄, then ϕ̄ = σ̄1 ◦ θ̄ and ψ̄ = τ̄1 ◦ θ̄ for a unique

IF R-homomorphism θ̄ : E → D.
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E

D B

A C

ψ̄

ϕ̄

θ̄

τ̄1

σ̄1 τ̄

σ̄

Figure 4.3: IF-Pullback

Proposition 4.3.2. CR-IFM have pullbacks.

Proof. Let σ̄ ∈ HomCR-IFM(A,C) and τ̄ ∈ HomCR-IFM(B,C) in CR-IFM.

As a subset of M × N , consider P = {(d1, d2) ∈ M × N |σ(d1) = τ(d2)}. Define IFSM

D = (µD, νD) on R-module P as µD = (µA ∧ µB)|P and νD = (νA ∨ νB)|P such that

µD(d1, d2) = {µA(d1)∧µB(d2)|σ(d1) = τ(d2)} and νD(d1, d2) = {νA(d1)∨νB(d2)|σ(d1) = τ(d2)}

Define the projection maps σ1(d1, d2) = d1 and τ1(d1, d2) = d2; ∀(d1, d2) ∈ P .

We want to claim that the triplet (D, σ̄1, τ̄1) is IF-pullback.

Consider σ(σ1(d1, d2)) = σ(d1) = τ(d2) = τ(τ1(d1, d2)).

By intuitionistic fuzzification, σ̄ ◦ σ̄1 = τ̄ ◦ τ̄1.

We now need to prove the universal property.

Consider the another triplet (E, ϕ̄, ψ̄) with E = (µE, νE)Q, ϕ̄ ∈ HomCR-IFM(E,A) and

ψ̄ ∈ HomCR-IFM(E,B) satisfying σ̄ ◦ ϕ̄ = τ̄ ◦ ψ̄. Define R-homomorphism θ : Q→ P as

θ(c) = (ϕ(c), ψ(c))
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For (ϕ(c), ψ(c)) ∈ P , σ(ϕ(c)) = τ(ψ(c)). Therefore, θ is well-defined.

Since the category CR-M has pullbacks. Then θ is unique R-homomorphism which satisfies

ϕ = σ1 ◦ θ and ψ = τ1 ◦ θ. Subsequently, it is sufficient to show that θ̄ ∈ HomCR-IFM(E,D) is

an IF R-homomorphism.

Q

P N

M K

ψ

ϕ

theta

τ1

σ1 τ

σ

E

D B

A C

ψ̄

ϕ̄

θ̄

τ̄1

σ̄1 τ̄

σ̄

Consider µD(θ(z)) = µD(ϕ(z), ψ(z)) = µA(ϕ(z)) ∧ µB(ψ(z)) ≥ µE(z) ∧ µE(z) = µE(z)

which implies µD(θ(z)) ≥ µE(z). Likewise, we are able to show that νD(θ(z)) ≤ νE(z).

Thus, θ̄ ∈ HomCR-IFM(E,D) is an IF R-homomorphism that satisfies ϕ̄ = σ̄1 ◦ θ̄.

Hence, pullbacks exists in the CR-IFM.

Remark 4.3.3. If σ̄ : A → C and τ̄ : B → C are IF R-homomorphisms then IF-pullback can

be constructed by defining IFSM D = (µD, νD) on R-module P as

µD = (µA ∧ µB)|P and νD = (νA ∨ νB)|P

where P = {(d1, d2) ∈M ×N |σ(d1) = τ(d2)} with the projection maps σ1(d1, d2) = d1 and

τ1(d1, d2) = d2, ∀(d1, d2) ∈ P . This is characteristic of IF-pullback with IF-product and D is

sub-object of A×B in CR-IFM .
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D B

A C

τ̄1

σ̄1 τ̄

σ̄

Definition 4.3.4. For a given IFSM A of R-module M equipped with a family of IF R-

homomorphisms {σ̄i : Ai → A : i ∈ J} . Then, a strong IF R-homomorphism ϕ̄ : B → A is

said to be an intuitionistic fuzzy intersection(IF-intersection) of the family if figure-4.4 com-

mutes and the following properties are satisfied:

(i) for each i ∈ J , there exist IF R-homomorphisms τ̄i : B → Ai such that ϕ̄ = σ̄i ◦ τ̄i and

(ii) Universal Property: For any IFSMC = (µC , νC)K and IFR-homomorphism h̄ ∈ HomCR-IFM(C,A)

satisfying h̄ = σ̄i ◦ γ̄i for IF R-homomorphisms γ̄i : C → Ai for i ∈ J then h̄ = ϕ̄ ◦ θ̄ for a

unique IF R-homomorphism θ̄ : C → B.

B

Ai A

C

ϕ̄
τ̄i

σ̄i

γ̄i
h̄

θ̄

Figure 4.4: IF-Intersection

Proposition 4.3.5. CR-IFM have intersections.

Proof. We aim to demonstrate the existence of an IF-intersection for any family of subobjects

of the IFSM A, which is an R-module M in CR-IFM.
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Consider the family of IFSMs {Ai = (µAi
, νAi

)|i ∈ J} of R-modules {Mi|i ∈ J}, along with

a family of IF R-homomorphism {σ̄i : Ai → A|i ∈ J} representing sub-objects of A. Each

σ̄i is IF-monomorphism, implying σi : Mi → M is injective mapping in CR-M for each i ∈ J .

Consequently, σi(Mi) forms a submodule of M , isomorphic to Mi.

Let N = ∩i∈Jσi(Mi) ⊆M .

Assume N = ∅. It follows that there is a unique R-homomorphism from N to any other R-

module, and is evident as ∅ : ∅ → A, serving as the IF-intersection.

Let us assume that N = ∩i∈Jσi(Mi) ̸= ∅.

Define an IFSM B = (µB, νB) on R module N , where

µB(y) = µA(y) and νB(y) = νA(y), ∀y ∈ N .

Consequently, īB : B → A is strong IF R-homomorphism in CR-IFM.

To establish (B, īB) as the IF-intersection of the family {σ̄i : Ai → A}i∈J , observe that if

y ∈ N = ∩i∈Jσi(Mi) then a unique xi ∈Mi exists so that y = σi(xi) ∀i ∈ J .

Let σi|Mi is the corestriction of σi on σi(Mi), with (σi|Mi)−1 denoting its inverse mapping. Let

τi = (σi|Mi)−1|N : N →Mi as the restriction of (σi|Mi)−1 on N for each i ∈ J .

Thus, we obtain a well-defined function τi : N →Mi defined as

τi(y) = xi if y = σi(xi); ∀i ∈ J .

Consider µAi
(τi(y)) = µAi

(xi) = µAi
(σi(xi)) = µA(y) = µB(y).

Similarly, νAi
(τi(y)) = νB(y).

Therefore, τ̄i ∈ HomCR-IFM(B,Ai) and īB = σ̄i ◦ τ̄i for each i ∈ J .

For the universal property verification, consider an IFSMC = (µC , νC)K and h̄ ∈ HomCR-IFM(C,A)
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such that h̄ = σ̄i ◦ γ̄i for IF R-homomorphisms γ̄i : C → Ai.

N

Mi M

K

iB
τi

σi

γi
h

θ

B

Ai A

C

īB
τ̄i

σ̄i

γ̄i
h̄

θ̄

Define θ̄ : C → B such that for z ∈ K, h(z) = σi ◦ γi(z) = σi(γi(z)) ∈ σi(Mi) for all i ∈ J .

Hence, h(z) ∈ ∩i∈Jσi(Mi) = N .

Take θ as a restriction mapping of h on N . Therefore, θ : K → N is defined as θ(z) = h(z)

∀z ∈ K.

Since the category CR-M has intersection, R-homomorphism θ : K → N is unique, satisfying

iN ◦ θ = h. We only need to demonstrate that θ̄ is IF R-homomorphism.

For z ∈ K, µB(θ(z)) = µB(h(z)) = µA(h(z)) ≥ µC(z).

Likewise, we are able to show that νB(θ(z)) ≤ νC(z).

Thus, θ̄ is IF R-homomorphism satisfying īB ◦ θ̄ = h̄.

Therefore, (B, īB) is the IF-intersection of the family {σ̄i : Ai → A}i∈J .

4.4 Images and inverse- images

Definition 4.4.1. Let f̄ : A → B be IF R-homomorphism and σ̄ : I → B be IFSM of B.

Then, I is said to be an IF-image of f̄ if figure-4.5 commutes, and the following conditions
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hold:

(i) f̄ = σ̄ ◦ f̄1 for some IF R-homomorphism f̄1 : A→ I;

(ii) Universal Property: for any IFSM τ̄ : J → B of B satisfying f̄ = τ̄ ◦ f̄2 for some IF

R-homomorphism f̄2 : A→ J then σ̄ = τ̄ ◦ θ̄ for a unique IF R-homomorphism θ̄ : I → J .

I

A B

J

σ̄

θ̄
f̄

f̄2

f̄1

τ̄

Figure 4.5: IF-image

Lemma 4.4.2. CR-IFM have images.

Proof. Let f̄ : A → B be any given IF R-homomorphism. We define f(M) = {f(x)|x ∈

M}.

Define f1 :M → f(M) as f1(x) = f(x); ∀x ∈M .

The IFSM f̄(A) of f(M) is defined as µf̄(A)(f(x)) = µB(f(x)) and νf̄(A)(f(x)) = νB(f(x)).

Let if(M) : f(M) → N and īf̄(A) : f̄(A) → B be respective inclusion mappings. Thus, f̄(A)

is IFSM of B. Indeed, īf̄(A) is a strong IF-monomorphism.

Now, we aim to prove that īf̄(A) : f̄(A) → B is an IF-image of f̄ .

(i) For all x ∈ M , if(M)(f1(x)) = if(M)(f(x)) = f(x), so if(M) ◦ f1 = f . By intuitionistic

fuzzification, īf̄(A) ◦ f̄1 = f̄ .

(ii) Next, we need to verify the universal property.

Suppose there exists an IF R-homomorphism f̄2 : A→ C and a strong IF-monomorphism
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τ̄ : C → B such that f̄ = τ̄ ◦ f̄2. Define θ : f(M) → K by θ(f(x)) = f2(x). It is well-defined

as

f(x1) = f(x2)

(τ ◦ f2)(x1) = (τ ◦ f2)(x2)

⇒ f2(x1) = f2(x2) (Since τ is injective)

⇒ θ(f(x1)) = θ(f(x2)).

Since CR-M has images, then θ is uniqueR-homomorphism such that τ ◦θ = if(M). Hence,

it is sufficient to show that θ̄ ∈ HomCR-IFM(f(A), C) is an IF R-homomorphism. Consider

µf(A)(f(x)) ≤ µB(if(x)f(x))

= µB(τ ◦ θ)(f(x))

= µC(θ(f(x))

Thus, µC(θ(f(x)) ≥ µf̄(A)(f(x)).

Likewise, we are able to show that νC(θ(f(x)) ≤ νf̄(A)(f(x)).

f(M)

A B

K

if(M)

θ

f

f2

f1

τ

f(A)

A B

C

¯if(A)

θ̄

f̄

f̄2

f̄1

τ̄
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Thus, θ̄ : f(A) → C is an IF R-homomorphism which satisfies τ̄ ◦ θ̄ = īf(A).

Hence, īf̄(A) : f̄(A) → B is an IF-image of f̄ .

Definition 4.4.3. Let f̄ : A → B be given IF R-homomorphism and σ̄ : C → B be IFSM

of B. An object I ∈ CR-IFM is said to be an IF-inverse image of C by f̄ if there exists IF R-

homomorphisms τ̄1 : I → C and τ̄2 : I → A such that figure-6 commutes and the following

conditions hold:

(i) σ̄ ◦ τ̄1 = f̄ ◦ τ̄2 and

(ii) Universal Mapping: for any IF R-homomorphisms δ̄1 : J → C and δ̄2 : J → A such that

σ̄ ◦ δ̄1 = f̄ ◦ δ̄2 then τ̄1 ◦ θ̄ = δ̄1 and τ̄2 ◦ θ̄ = δ̄2 for a unique IF R-homomorphism θ̄ : J → I .

J

I C

A B

δ̄1

δ̄2

θ̄

τ̄1

τ̄2 σ̄

f̄

Figure 4.6: IF-inverse image

Lemma 4.4.4. CR-IFM have inverse images.

Proof. Let f̄ : A→ B be any IF R-homomorphism and σ̄ : C → B be IFSM of B.

Then σ̄ is strong IF R-homomorphism. Let P = {x ∈M |f(x) ∈ σ(K)}.

Let x1, x2 ∈ P such that f(x1) = σ(k1) and f(x2) = σ(k2) for k1, k2 ∈ K.

Consider f(ax1+ bx2) = af(x1)+ bf(x2) = aσ(k1)+ bσ(k2) = σ(ak1+ bk2) ∈ σ(K) which

implies that ax1 + bx2 ∈ P . Consequently, P is submodule of M .

Define IFS I of an R-module P as µI(x) = µA(x) and νI(x) = νA(x), ∀x ∈M .
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From this, we have I is an IFSM ofA. Let īI : I → A be an inclusion mapping. For all x ∈ P ,

µA(iI(x)) = µA(x) = µI(x) and νA(iI(x)) = νA(x) = νI(x).

Hence, īI : I → A is a strong IF R-homomorphism. Therefore, īI : I → A is an IFSM of A.

Now, we want to prove that I is an IF-inverse image of A.

Define an IF R-homomorphism τ̄1 : I → C as follows:

Since σ is injective , x ∈ P implies that there is a unique k ∈ K such that f(x) = σ(k).

Define τ1 : P → K as

τ1(x) = k if f(x) = σ(k)

Consider

σ(τ1(x)) = σ(k), iff(x) = σ(k)

= f(x)

= f(ip(x)).

Thus, σ ◦ τ1 = f ◦ iP .

For x ∈M , µI(x) = µA(x) ≤ µB(σ(k)) = µC(k) = µC(τ1(x)).

Consequently, µC(τ1(x)) ≥ µI(x). Similarly, νC(τ1(x)) ≤ µI(x). Hence, τ̄1 : I → C is an IF

R-homomorphism satisfying σ̄ ◦ τ̄1 = f̄ ◦ īP .

Next, we have to verify the universal property.

Suppose there exists IF R-homomorphisms δ̄1 : J → C and δ̄2 : J → A such that σ̄ ◦ δ̄1 =

f̄ ◦ δ̄2, where J is an IFSM of R-module Q.

Now, we define θ̄ : J → I as follows:
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Let t ∈ Q. Then δ2(t) ∈ M and δ1(t) ∈ K such that f(δ2(t)) = σ(δ1(t)) ∈ σ(K) which

implies δ2(t) ∈ P and τ1(δ2(t)) = δ1(t). Define θ : Q → P as θ(t) = δ2(t). Since, category

CR-M has inverse image. As a result, θ : Q → P is unique R-homomorphism which satisfies

τ1 ◦ θ = δ1 and τ1 ◦ θ = δ1.

We only need to show that θ̄ is an IF R-homomorphism. For t ∈ Q

µJ(t) ≤ µA(δ2t)

= µI(iI(δ2t)) (Since iI is an IF R-homomorphism)

= µI(δ2(t))

= µI(θ(t)).

Hence, µI(θ(t)) ≥ µJ(t). Likewise, we are able to show that νI(θ(t)) ≤ νJ(t).

Q

P K

M N

δ1

δ2

θ

τ1

iA σ

f

J

I C

A B

δ̄1

δ̄2

θ̄

τ̄1

īA σ̄

f̄

Then θ̄ : J → I is a unique IF R-homomorphism that satisfies τ̄1 ◦ θ̄ = δ̄1 and τ̄1 ◦ θ̄ = δ̄1.

Hence, īI : I → A is an IF-inverse image of A.

Remark 4.4.5.

(i) In any category, any two images/inverse-images are isomorphic.
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(ii) IF-inverse image of IFSM īC : C → B by f̄ : A → B can be taken as f−1(C) whose

membership and non-membership functions are inclusion mappings.

4.5 Some implications

We now show how IF-equalizer, IF-intersection, IF-monomorphism, and IF-inverse image

relate to IF-pullback.

Proposition 4.5.1. Consider the following square-1

D C

B A

f̄2

f̄1

Figure 4.7: Square-1

where f̄2 is strong IF-monomorphism then the above square is IF-pullback if and only if

D = (f̄1)
−1(C).

Proof. From the definitions of IF-inverse image and IF-pullbacks, the result follows straight-

forwardly.

Example 4.5.2. Let M = (Z6,+6) be Z-module, N = (Z4,+4) be Z-module and K =
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({0, 3},+6) be submodule of M . Define IFSs A, B and C on M , N and K respectively as:

µA(x) =



1, if x = 0

0.3, if x = 2, 4

0.2, if x = 1, 3, 5

; νA(x) =



0, if x = 0

0.5, if x = 1, 3, 5

0.6, if x = 2, 4.

µB(y) =



1, if y = 0

0.6, if y = 2

0.3, if y = 1, 3

; νB(y) =



0, if y = 0

0.3, if y = 2

0.6, if y = 1, 3.

and µC = µA|K and νC = νA|K . It is easy to verify that A, B and C are IFSMs.

D C

B A

¯iK

f̄1

Figure 4.8: Square-2

Define f1 : N → M as f1(0) = f1(2) = 0 and f1(1) = f1(3) = 1 and iK : K → M as

inclusion mapping.

Therefore, īK is a strong IF-monomorphism.

Suppose that P = (f1)
−1(K) = N . The IF-inverse image of f̄1 is then D = (f̄1)

−1(C) and

hence it represents the IF-pullback of f̄1 and īK .

Theorem 4.5.3. In CR-IFM, IF-pullbacks exists if and only if IF-equalizers exists.

Proof. Firstly, suppose that IF-pullbacks exists in CR-IFM.



4.5. Some implications 77

Let f̄ , ḡ : A→ B be IF R-homomorphisms. Define

δ̄1 :M → N ×N as δ1(x) = (f(x), g(x))

and

δ̄2 : N → N ×N as δ2(y) = (y, y).

Our aim to claim that δ̄1 and δ̄2 are IF R-homomorphisms.

µB×B(δ1(x)) = µB×B(f(x), g(x)) ≥ (µB(f(x)) ∧ µB(g(x))) ≥ (µA(x) ∧ µA(x)) = µA(x).

Thus, µB×B(δ1(x)) ≥ µA(x). Likewise, we are able to show that νB×B(δ1(x)) ≤ νA(x).

Consequently, δ̄1 is an IFR-homomorphism. In similar argument, δ̄2 is an IFR-homomorphism.

Let the triplet (D, σ̄1, τ̄1) be IF-pullback with D = (µD, νD)P , σ̄1 ∈ HomCR-IFM(D,A) and

τ̄1 ∈ HomCR-IFM(D,B) such that the following square-3 commutes and satisfies

δ̄1 ◦ σ̄1 = δ̄2 ◦ τ̄1 (4.5.1)

We now want to prove that D is an IF-equalizer. Consider the following figure-10:

D A

B BXB

σ̄1

τ̄1 δ̄1

δ̄2

Figure 4.9: Square-3

First, we will prove that f̄ ◦ σ̄1 = ḡ ◦ σ̄1. Let {ρ̄i : B×B → B; i = 1, 2} are the IF-projective

mappings. From the square-4, we have
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D A B
σ̄1

f̄

ḡ

Figure 4.10: D as IF-equalizer

C

A D A B

B BXB

ϕ̄

θ̄

θ̄

ḡ

σ̄1

τ̄1

f̄

ḡ

δ̄1

δ̄2

IB

ρ̄1

ρ̄2

Figure 4.11: Square-4

ρ̄1 ◦ δ̄1 = f̄

ρ̄2 ◦ δ̄1 = ḡ

ρ̄1 ◦ δ̄2 = IB

ρ̄2 ◦ δ̄2 = IB


(4.5.2)

By the associativity property of CR-IFM and equation (4.1) and (4.2) holds , we have

f̄ ◦ σ̄1 = ρ̄1 ◦ δ̄1 ◦ σ̄1 = ρ̄1 ◦ δ̄2 ◦ τ̄1 = IB ◦ τ̄1 = τ̄1 and

ḡ ◦ σ̄1 = ρ̄2 ◦ σ̄ ◦ σ̄1 = ρ̄2 ◦ τ̄ ◦ τ̄1 = IB ◦ τ̄1 = τ̄1.

Consequently, we have f̄ ◦ σ̄1 = ḡ ◦ σ̄1.

Next, we have to verify the universal property.

Let C = (µC , νC)K be an IFSM and θ̄ : C → A be an IF R-homomorphism such that

f̄ ◦ θ̄ = ḡ ◦ θ̄.
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Consider ρ̄1 ◦ δ̄1 ◦ θ̄ = f̄ ◦ θ̄ = ḡ ◦ θ̄ = IB ◦ ḡ ◦ θ̄ = ρ̄1 ◦ δ̄2 ◦ ḡ ◦ θ̄ and

ρ̄2 ◦ δ̄1 ◦ θ̄ = ḡ ◦ θ̄ = IB ◦ ḡ ◦ θ̄ = ρ̄2 ◦ δ̄2 ◦ ḡ ◦ θ̄. As {ρ̄i|i = 1, 2} are projection mappings.

Thus, δ̄1 ◦ θ̄ = δ̄2 ◦ ḡ ◦ θ̄. Since D is the IF-pullback of σ̄1 and τ̄1, there exists a unique IF

R-homomorphism ϕ̄ : C → D such that θ̄ = σ̄1 ◦ ϕ̄ and which further establishes the universal

property of IF-equalizer. Hence, IF-equalizers exists in CR-IFM.

Conversely, suppose that IF-equalizers exist in CR-IFM. Let f̄ : A → C and ḡ : B → C

are IF R-homomorphisms and let t̄1 : A × B → A and t̄2 : A × B → B are the IF-

projective mappings. Consider an IF R-homomorphism ē : E → A× B with an IF-equalizer

E = (µE, νE)P for IFR-homomorphisms f̄ ◦ t̄1, ḡ◦ t̄2 : A×B → C that satisfies (f̄ ◦ t̄1)◦ ē =

(ḡ ◦ t̄2) ◦ ē (refer to figure-12).

B

E AXB C

A

ḡ

ē
ḡ◦t̄2

f̄◦t̄1

t̄1

t̄2

f̄

B

E AXB C

A

ḡ

ē

t̄2◦ē

t̄1◦ē

ḡ◦t̄2

f̄◦t̄1

t̄1

t̄2

f̄

Figure 4.12: IF-equalizer-E

We want to claim that (E, t̄1 ◦ ē, t̄2 ◦ ē) is an IF-pullback for the IF R-homomorphisms f̄ and

ḡ. By associativity, we have

f̄ ◦ (t̄1 ◦ ē) = ḡ ◦ (t̄2 ◦ ē) (4.5.3)

Then, first condition of IF-pullback satisfied.

For Universal mapping
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Let D = (µD, νD)Q ∈ Ob(CR-IFM), σ̄ ∈ HomCR-IFM(D,A) and τ̄ ∈ HomCR-IFM(D,B) satisfy-

ing f̄ ◦ σ̄ = ḡ ◦ τ̄ , i.e. the following square-5 commutes. By uniqueness property of projection

D B

E AXB C

A

σ̄

τ̄

ḡ

ē

t̄2◦ē

t̄1◦ē

ḡ◦t̄2

f̄◦t̄1

t̄1

t̄2

f̄

(a) Square-5

D B

E AXB C

A

σ̄

τ̄

θ̄ϕ̄
ḡ

ē

t̄2◦ē

t̄1◦ē

ḡ◦t̄2

f̄◦t̄1

t̄1

t̄2

f̄

(b) Square-6

maps and theorem (4.2.1), a unique IF R-homomorphism ξ̄ : D → A×B sexists that satisfies

t̄1 ◦ ξ̄ = σ̄ and t̄2 ◦ ξ̄ = τ̄ .

Consider (f̄ ◦ t̄1) ◦ ξ̄ = f̄ ◦ (t̄1 ◦ ξ̄) = f̄ ◦ σ̄ = ḡ ◦ τ̄ = ḡ ◦ (t̄2 ◦ ξ̄) = (ḡ ◦ t̄2) ◦ ξ̄. By uniqueness

of IF-equalizer, a unique IF R-homomorphism ϕ̄ : D → E exists that satisfies ē◦ ϕ̄ = ξ̄. From

this, we can conclude that (t̄1 ◦ ē) ◦ ϕ̄ = σ̄ and (t̄2 ◦ ē) ◦ ϕ̄ = τ̄ . Hence, E is IF-pullback.

Proposition 4.5.4. Consider the following square-7

D C

B A

f̄2

f̄1

Figure 4.14: Square-7

where f̄1 and f̄2 are strong IF-monomorphisms then the above square is IF-pullback if and

only if D is the IF-intersection of B and C.
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Proof. Since f̄1 and f̄2 are strong IF-monomorphism then B and C are IFSMs of A. From the

definitions of IF-intersection and IF-pullback, it conclude that D is an IF-pullback if and only

if D is the IF-intersection of B and C.

Example 4.5.5. Let M = (Z6,+6) be Z-module. Take N = M , K = ({0, 3},+6) and

P = ({0},+6) as submodules of M . Define IFSs A, B, C and D on M , N , K and P

respectively as:

µA(x) =



1, if x = 0

0.3, if x = 2, 4

0.2, if x = 1, 3, 5

; νA(x) =



0, if x = 0

0.5, if x = 1, 3, 5

0.6, if x = 2, 4.

µB = µA|N and νB = νA|N , µC = µA|K and νC = νA|K and µD = µA|P and νD = νA|P .

It can be easily verify that B, C and D are IFSMs of M . Then the mappings f̄N : B → A,

D C

B A

īP

īP ¯iK

f̄N

Figure 4.15: Square-8

īK : C → A are strong IF-monomorphism. Then D is the IF-intersection of B and C and

hence the IF-pullback of f̄N and īK .

Proposition 4.5.6. Consider the IF-pullback diagram
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D C

A B

ϕ̄2

ϕ̄1 f̄2

f̄1

Figure 4.16: Square-9

(i) If f̄1 is an IF monomorphism then ϕ̄2 is also an IF monomorphism.

(ii) If f̄1 is an IF-retraction then ϕ̄2 is also an IF-retraction.

(iii) If f̄1 is an IF R-isomorphism then ϕ̄2 is also an IF R-isomorphism.

(iv) If f̄1 is an IF-equalizer then ϕ̄2 is also an IF-equalizer.

Proof. (i) Let f̄1 : A → B is an IF-monomorphism. Since the square-9 is an IF-pullback in

CR-IFM, we have

f̄1 ◦ ϕ̄1 = f̄2 ◦ ϕ̄2
(4.5.4)

Suppose there exists IF R-homomorphisms ξ̄1, ξ̄2 : E → D such that the square-10 is com-

mutative and

ϕ̄2 ◦ ξ̄1 = ϕ̄2 ◦ ξ̄2 (4.5.5)
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E

D C

A B

ϕ̄2◦ξ̄2

ϕ̄1◦ξ̄1

ξ̄2

ξ̄1

ϕ̄2

ϕ̄1 f̄2

f̄1

Figure 4.17: Square-10

Then

f̄1 ◦ (ϕ̄1 ◦ ξ̄1) = (f̄1 ◦ ϕ̄1) ◦ ξ̄1

= (f̄2 ◦ ϕ̄2) ◦ ξ̄1

= f̄2 ◦ (ϕ̄2 ◦ ξ̄1).

using (4.5.5) implies

f̄1 ◦ (ϕ̄1 ◦ ξ̄1) = f̄2 ◦ (ϕ̄2 ◦ ξ̄2) (4.5.6)

using (4.5.4) implies

f̄1 ◦ (ϕ̄1 ◦ ξ̄1) = f̄1 ◦ (ϕ̄1 ◦ ξ̄2) (4.5.7)

Since f̄1 : A→ B is an IF-monomorphism, then

ϕ̄1 ◦ ξ̄1 = ϕ̄1 ◦ ξ̄2 (4.5.8)

Since Square-10 is IF-pullback and equation(4.5.6) holds in CR-IFM, a unique IFR-homomorphism
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h̄ : E → D exists that satisfies

ϕ̄1 ◦ h̄ = ϕ̄1 ◦ ξ̄1

ϕ̄2 ◦ h̄ = ϕ̄2 ◦ ξ̄2

 (4.5.9)

From equations (4.5.5) and (4.5.8), concludes that h̄ = ξ̄1 and h̄ = ξ̄2 both satisfying (4.9).

By uniqueness of IF-pullback in CR-IFM, ξ̄1 = ξ̄2. Hence, ϕ̄2 is IF-monomorphism.

(ii) Let f̄1 : A → B is an IF-retraction. So, an IF R-homomorphism ḡ1 : B → A exists that

satisfy

f̄1 ◦ ḡ1 = IA. (4.5.10)

For ḡ1 ◦ f̄2 : C → A,

f̄1 ◦ (ḡ1 ◦ f̄2) = (f̄1 ◦ ḡ1) ◦ f̄2

= IA ◦ f̄2

= f̄2

= f̄2 ◦ IC .

Since the Square-11 is IF-pullback, a unique IF R-homomorphism h̄ : C → D exists which

satisfy

ϕ̄1 ◦ h̄ = ḡ1 ◦ f̄2

ϕ̄2 ◦ h̄ = IC

 (4.5.11)

Thus, ϕ̄2 is IF-retraction in CR-IFM.

(iii) Let f̄1 : A → B is an IF R-isomorphism, which indicates both IF-coretraction and



4.5. Some implications 85

C

D C

A B

IC

ḡ1◦f̄2

h̄

ϕ̄2

ϕ̄1 f̄2

f̄1

ḡ1

Figure 4.18: Square-11

IF-retraction. Since every IF-coretraction is IF-monomorphism, f̄1 is IF-monomorphism and

IF-retraction. ϕ̄2 is both IF-monomorphism and IF-retraction by (i) and (ii). ϕ̄2 is both IF-

monomorphism and IF-epimorphism since every IF-retraction is IF-epimorphism. Hence, ϕ̄2

is IF R-isomorphism in CR-IFM.

(iv) Let f̄1 : A→ B is an IF-equalizer of ξ̄1, ξ̄2 : B → E.

ξ̄1 ◦ f̄1 = ξ̄2 ◦ f̄1 (4.5.12)

We want to claim that ϕ̄2 is IF-equalizer for ξ̄1 ◦ f̄2 and ξ̄2 ◦ f̄2.

D C

A B E

ϕ̄2

ϕ̄1

ξ̄1◦f̄2

ξ̄2◦f̄2
f̄2

f̄1
ξ̄1

ξ̄2

Figure 4.19: Square-12
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Consider

(ξ̄1 ◦ f̄2) ◦ ϕ̄2 = ξ̄1 ◦ (f̄2 ◦ ϕ̄2)

= ξ̄1 ◦ (f̄1 ◦ ϕ̄1)

= (ξ̄1 ◦ f̄1) ◦ ϕ̄1

= (ξ̄2 ◦ f̄1) ◦ ϕ̄1

= ξ̄2 ◦ (f̄1 ◦ ϕ̄1)

= ξ̄2 ◦ (f̄2 ◦ ϕ̄2).

Thus

(ξ̄1 ◦ f̄2) ◦ ϕ̄2 = (ξ̄2 ◦ f̄2) ◦ ϕ̄2. (4.5.13)

which proves the first condition of IF-equalizer.

For Uniqueness, suppose s̄ : F → C such that

F

D C

A B E

s̄

r̄

h̄

ϕ̄2

ϕ̄1

ξ̄1◦f̄2

ξ̄2◦f̄2
f̄2

f̄1
ξ̄1

ξ̄2

Figure 4.20: Square-13
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(ξ̄1 ◦ f̄2) ◦ s̄ = (ξ̄2 ◦ f̄2) ◦ s̄ (4.5.14)

ξ̄1 ◦ (f̄2 ◦ s̄) = ξ̄2 ◦ (f̄2 ◦ s̄) (4.5.15)

By the universal mapping property of IF-equalizer, r̄ : F → A a unique IF R-homomorphism

exists such that

f̄1 ◦ r̄ = f̄2 ◦ s̄ (4.5.16)

Since square-13 is IF-pullback and equation(4.14) holds, a unique IF R-homomorphism h̄ :

F → D exists such that

ϕ̄2 ◦ h̄ = s̄ (4.5.17)

which proves the uniqueness. Hence, ϕ̄2 is an IF-equalizer for ξ̄1 ◦ f̄2 and ξ̄2 ◦ f̄2.

Proposition 4.5.7. Consider the square-14

A A

A B

IA

IA f̄

f̄

Figure 4.21: Square-14

An IF R-homomorphism f̄ : A → B is an IF-monomorphism if and only if the square-14 is a

IF-pullback.

Proof. Firstly, let f̄ : A → B is an IF-monomorphism. Clearly, f̄ ◦ IA = f̄ ◦ IA. Thus,

square-14 is commutative which implies that the first condition of IF-pullback holds.

For Universal mapping
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C

A A

A B

ḡ1

ḡ2

ḡ1

ḡ2

IA

IA f̄

f̄

Figure 4.22: Square-15

Let (G, ḡ1, ḡ2) is a triplet with C = (µC , νC)K , ḡ1, ḡ2 ∈ HomCR-IFM(C,A) satisfying

f̄ ◦ ḡ1 = f̄ ◦ ḡ2.

Since f̄ is an IF-monomorphism. Thus

ḡ1 = ḡ2 (4.5.18)

It is simple to verify from Square-15 that

IA ◦ ḡ1 = ḡ1 and IA ◦ ḡ2 = ḡ2

where IA is the identity IF R-homomorphism from A to A. From (4.5.18), it proves that ḡ1 is

a unique IF R-homomorphism from C to A. Thus the square-14 is IF-pullback.

Conversely, let the given square-14 be IF-pullback. Suppose there exists IF R-homomorphism

ḡ1, ḡ2 : C → A that satisfies

f̄ ◦ ḡ1 = f̄ ◦ ḡ2.

Then, a unique IF R-homomorphism h̄ : C → A that satisfies
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C

A A

A B

ḡ1

ḡ2

h̄

IA

IA f̄

f̄

Figure 4.23: Square-16

IA ◦ h̄ = ḡ1

and IA ◦ h̄ = ḡ2

⇒ ḡ1 = ḡ2.

Hence, f̄ is an IF-monomorphism.

Proposition 4.5.8. Let the right square-II in the following commutative diagram be IF-pullback.

Then the outer rectangle is IF-pullback if and only if the left square-I is IF-pullback.

Figure 4.24: rectangle
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Proof. Firstly, let the left square-I is IF-pullback. We want to prove that outer rectangle is

IF-pullback. The commutativity of Figure-4.24 makes it possible to obtain

k̄3 ◦ ḡ2 ◦ ḡ1 = f̄2 ◦ f̄1 ◦ k̄1.

Consequently, in the outer rectangle, the first IF-pullback condition is satisfied.

For Universal mapping

G

F E D

A B C

h̄2
h̄1 t̄1

t̄2

k̄1

ḡ1 ḡ2

k̄2 k̄3

f̄1 f̄2

Figure 4.25: Square-17

Let (G, t̄1, t̄2) is a triplet withG = (µG, νG)T , t̄1 ∈ HomCR-IFM(G,D) and t̄2 ∈ HomCR-IFM(G,A)

satisfying

k̄3 ◦ t̄1 = (f̄2 ◦ f̄1) ◦ t̄2

⇒ k̄3 ◦ t̄1 = f̄2 ◦ (f̄1 ◦ t̄2)

As the right square-II is IF-pullback, then h̄1 : G → E is a unique IF R-homomorphism such
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that

ḡ2 ◦ h̄1 = t̄1

k̄2 ◦ h̄1 = f̄1 ◦ t̄2

 (4.5.19)

Since the right square-I is IF-pullback, then h̄2 : G → F is a unique IF R-homomorphism

such that

ḡ1 ◦ h̄2 = h̄1

k̄1 ◦ h̄2 = t̄2

 (4.5.20)

We can determine that

ḡ2 ◦ ḡ1 ◦ h̄2 = ḡ2 ◦ h̄1(by (4.20))

= t̄1(by (4.5.19))

As the consequence, h̄2 : G→ F is a unique IF R-homomorphism satisfying

k̄1 ◦ h̄2 = t̄2 and ḡ2 ◦ ḡ1 ◦ h̄2 = t̄1.

Thus, the outer rectangle is IF-pullback.

Conversely, let us consider that the outer rectangle is IF-pullback. Moreover, the right square-

II is assumed to be IF-pullback.

We now want to prove that the left square-I is IF-pullback. The commutativity of Figure-4.24

makes it possible to derive

f̄1 ◦ k̄1 = k̄2 ◦ ḡ1 (4.5.21)

which shows that the first condition of IF-pullback in left square-I.
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For Universal mapping

Let (H, s̄1, s̄2) be a triplet withH = (µH , νH)T , s̄1 ∈ HomCR-IFM(H,E) and s̄2 ∈ HomCR-IFM(H,A)

satisfying

k̄2 ◦ s̄1 = f̄1 ◦ s̄2 (4.5.22)

Consider

(k̄3 ◦ ḡ2) ◦ s̄1 = (f̄2 ◦ k̄2) ◦ s̄1

= f̄2 ◦ (k̄2 ◦ s̄1)

= f̄2 ◦ (f̄1 ◦ s̄2)

= (f̄2 ◦ f̄1) ◦ s̄2

Consequently, we obtain

k̄3 ◦ (ḡ2 ◦ s̄1) = (f̄2 ◦ f̄1) ◦ s̄2 (4.5.23)

The outer rectangle being IF-pullback implies that a unique IF R-homomorphism

h̄ : H → F exists satisfying

(ḡ2 ◦ ḡ1) ◦ h̄ = ḡ2 ◦ s̄1 (4.5.24)

k̄1 ◦ h̄ = s̄2 (4.5.25)

Since both ḡ1 ◦ h̄, s̄1 : H → E satisfy ḡ2 ◦ (ḡ1 ◦ h̄) = ḡ2 ◦ s̄1 and given that the right square-II

forms an IF-pullback, according to uniqueness, we obtain

ḡ1 ◦ h̄ = s̄1. (4.5.26)
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H

F E D

A B C

h̄
s̄1 ḡ2◦s̄1

s̄2

k̄1

ḡ1 ḡ2

k̄2 k̄3

f̄1 f̄2

Figure 4.26: Square-18

As a result of (4.5.25) and (4.5.26), we are able to determine that h̄ ∈ HomCR-IFM(H,F ) is a

unique satisfying

k̄1 ◦ h̄ = s̄2 and ḡ1 ◦ h̄ = s̄1.

Hence, the left square-I is an IF-pullback.



Chapter 5

Some functors in the category CR-IFM

5.1 Introduction

Hom-functors for intuitionistic fuzzy modules extend traditional module theory to account for

uncertainty. They capture morphisms between modules, considering both membership and

non-membership degrees. This abstraction facilitates a formalized understanding of structure-

preserving transformations in scenarios of ambiguity. Pan [31, 32] gave fuzzy moduleHom(µA, νB)

and examined the functors Hom(µA,−) and Hom(−, νA). Properties of the two functors

Hom(µA,−), Hom(−, νA) in the fuzzy module category explored by Liu in [26]. Addi-

tionally researcher studied the connection between fuzzy projective module and Hom-functor

and also between the Hom-functors and tensor product functors. Rana [35] studied the func-

tors associated with fuzzy modules. For fuzzy module categories, Permouth [33] examined

Morita theory and provided a definition for tensor products. In this Chapter, we investigate

some functors in the category CR-IFM. For a commutative ring R, we present the concept of

Hom functors- HomCR-IFM(A,−) and HomCR-IFM(−, A) in the category CR-IFM and investigate

94
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their properties. We elucidate completely the characterization of intuitionistic fuzzy projective

modules through Hom functor and show that an IFSM A is projective if and only if the func-

tor HomCR-IFM(A,−) preserves the short exact sequence 0̄ A B C 0̄
f̄ ḡ

in CR-IFM.

Furthermore, we investigate the functor HomCR-IFM(ŌRe,−) by defining an intuitionistic fuzzy

R-homomorphism ΓA : HomCR-IFM(ŌRe, A) → eA, where e is an idempotent element of the

semi-perfect commutative ring R. Also, we analyse the existence of the tensor product of two

IFSMs. Finally, we investigate the association between Hom-functor and tensor functor in the

category CR-IFM.

5.2 Hom-functors in CR-IFM

In this section, we study Hom functors- HomCR-IFM(A,−) and HomCR-IFM(−, A) associated

with the category CR-IFM of intuitionistic fuzzy modules.

Lemma 5.2.1. For a fixed IFSM A, an IF R-homomorphism ḡ : B → C induces

a) an IF R-homomorphism ḡ∗ : HomCR-IFM(A,B) → HomCR-IFM(A,C) defined by

ḡ∗(f̄) = ḡ ◦ f̄ ∀ f̄ ∈ HomCR-IFM(A,B).

b) an IF R-homomorphism ḡ∗ : HomCR-IFM(C,A) → HomCR-IFM(B,A) defined as

ḡ∗(ϕ̄) = ϕ̄ ◦ ḡ ∀ ϕ̄ ∈ HomCR-IFM(C,A).

Proof. LetA andB are IFSM ofR-modulesM andN respectively and f̄ ∈ HomCR-IFM(A,B).

According to Theorem(2.2.2), HomCR-IFM(A,B) is IFSM ofR-module, which is defined by the
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function β : Hom(A,B) → I × I as

β(f̄) = (µβ(f̄), νβ(f̄))

where µβ(f̄) = ∧{µB(f̄(a)) : a ∈M} and νβ(f̄) = ∨{νB(f̄(a)) : a ∈M}.

(a)

µHomCR-IFM (A,C)(ḡ∗(f̄)) = µHomCR-IFM (A,C)(ḡ ◦ f̄)

= ∧{µC((ḡ ◦ f̄)(a)) : a ∈M}

= ∧{µC(ḡ(f̄(a))) : a ∈M}

≥ ∧{µB(f̄(a)) : a ∈M}

= µHomCR-IFM (A,B)(f̄)

⇒ µHomCR-IFM (A,C)(ḡ∗(f̄)) ≥ µHomCR-IFM (A,B)(f̄).

Likewise, we can exhibit that

νHomCR-IFM (A,C)(ḡ∗(f̄)) ≤ νHomCR-IFM (A,B)(f̄).

Thus, ḡ∗ is an IF R-homomorphism.

(b)

µHomCR-IFM (B,A)(ḡ
∗(ϕ̄)) = µHomCR-IFM (B,A)(ϕ̄ ◦ ḡ)
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∴ µHomCR-IFM (B,A)(ḡ
∗(ϕ̄)) = ∧{µA((ϕ̄ ◦ ḡ))(b)) : b ∈ N}

= ∧{µA(ϕ̄(ḡ(b))) : b ∈ N}

≥ ∧{µA(ϕ̄(c)) : c = g−1(b) ∈ K}

= µHomCR-IFM (C,A)(ϕ̄)

⇒ µHomCR-IFM (B,A)(ḡ
∗(ϕ̄)) ≥ µHomCR-IFM (C,A)(ϕ̄).

Likewise, we can exhibit that

νHomCR-IFM (B,A)(ḡ
∗(ϕ̄)) ≤ νHomCR-IFM (C,A)(ϕ̄).

Hence, ḡ∗ is an IF R-homomorphism.

Proposition 5.2.2. For anyA ∈ Ob(CR-IFM), ᾱ ∈ HomCR-IFM(B,C) and β̄ ∈ HomCR-IFM(C,D),

there exists an IF R-homomorphism

a) (β̄ ◦ ᾱ)∗ : HomCR-IFM(A,B) → HomCR-IFM(A,D) such that

(β̄ ◦ ᾱ)∗ = β̄∗ ◦ ᾱ∗

b) (β̄ ◦ ᾱ)∗ : HomCR-IFM(D,A) → HomCR-IFM(B,A) such that

(β̄ ◦ ᾱ)∗ = ᾱ∗ ◦ β̄∗

Definition 5.2.3. (Covariant Functor HomA )

For a fixed IFSM A, Let HomA = HomCR-IFM(A,−) is set of all IF R-homomorphisms from
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IFSM A to any other IFSM. Additionally, for each IF R-homomorphism ḡ : B → C, let

HomA(ḡ) = ḡ∗ : HomCR-IFM(A,B) → HomCR-IFM(A,C) be an IF R-homomorphism defined

as

ḡ∗(f̄) = ḡ ◦ f̄ ∀ f̄ ∈ HomCR-IFM(A,B).

Lemma [5.2.1] and Proposition [5.2.2] thus make it straightforward to prove that HomA =

HomCR-IFM(A,−) is a covariant functor.

Proposition 5.2.4. Let ḡ ∈ HomCR-IFM(B,C). Then ḡ is IF-monomorphism in CR-IFM if and

only if HomA(ḡ) = ḡ∗ : HomCR-IFM(A,B) → HomCR-IFM(A,C) is IF-monomorphism for each

A ∈ ob(CR-IFM).

Proof. Let ḡ is IF-monomorphism in CR-IFM.

Suppose ᾱ1, ᾱ2 ∈ HomCR-IFM(A,B) such that ḡ∗(ᾱ1) = ḡ∗(ᾱ2). From the definition of covari-

ant functor HomA, we have

ḡ ◦ ᾱ1 = ḡ ◦ ᾱ2

ᾱ1 = ᾱ2 ; Since ḡ is IF-monomorphism.

Thus, HomA(ḡ) is IF-monomorphism.

Conversely, suppose that HomA(ḡ) is IF-monomorphism for each A ∈ Ob(CR-IFM).

Let ᾱ1, ᾱ2 ∈ HomCR-IFM(A,B) such that ḡ ◦ ᾱ1 = ḡ ◦ ᾱ2. Then ḡ∗(ᾱ1) = ḡ∗(ᾱ2). By

assumption, ᾱ1 = ᾱ2. Thus, ḡ is IF-monomorphism in CR-IFM.

Corollary 5.2.5. HomA is a monofunctor for each A ∈ Ob(CR-IFM).
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Proposition 5.2.6. Let ḡ ∈ HomCR-IFM(B,C) be an IF-coretraction in CR-IFM. Then HomA(ḡ)

is IF-coretraction in CR-IFM for each A ∈ Ob(CR-IFM).

Proof. Let ḡ : B → C be an IF-coretraction in CR-IFM. Therefore, an IF R-homomorphism

ϕ̄ : C → B exists in CR-IFM such that ϕ̄ ◦ ḡ = IB. Since every IF-coretraction is IF-

monomorphism in CR-IFM, ḡ is an IF-monomorphism in CR-IFM. By proposition [5.2.4],

HomA(ḡ) is IF-monomorphism in CR-IFM. Consider

((ϕ̄ ◦ ḡ)∗)(f̄) = (ϕ̄ ◦ ḡ) ◦ f̄

= (IB) ◦ f̄

= IB(f̄)

Thus, ((ϕ̄ ◦ ḡ)∗)(f̄) = IB(f̄)

which implies that (ϕ̄ ◦ ḡ)∗ = IB. By proposition 5.2.2(a), ϕ̄∗ ◦ ḡ∗ = IB. Hence, HomA(ḡ) :

HomCR-IFM(A,B) → HomCR-IFM(A,C) is IF-coretraction for each A ∈ Ob(CR-IFM).

Corollary 5.2.7. The functor HomA preserves coretraction.

Definition 5.2.8. (Contravariant Functor HomA )

For a fixed IFSM A, Let HomA = HomCR-IFM(−, A) is set of all IF R-homomorphisms from

any other IFSM to IFSM A. Additionally, for each IF R-homomorphism ḡ : B → C, define

an IF R-homomorphism HomA(ḡ) = ḡ∗ : HomCR-IFM(C,A) → HomCR-IFM(B,A) as

ḡ∗(ϕ̄) = ϕ̄ ◦ ḡ ∀ ϕ̄ ∈ HomCR-IFM(C,A).
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Lemma [5.2.1] and Proposition [5.2.2] thus make it straightforward to prove that HomA=HomCR-IFM(−, A)

is a contravariant functor.

Proposition 5.2.9. Let ḡ ∈ HomCR-IFM(B,C) be an IF R-homomorphism. Then ḡ is IF-

epimorphism in CR-IFM if and only if HomA(ḡ) = ḡ∗ : HomCR-IFM(C,A) → HomCR-IFM(B,A) is

IF-epimorphism for each A ∈ Ob(CR-IFM).

Proof. Let ḡ is IF-monomorphism in CR-IFM.

Suppose ϕ̄1, ϕ̄2 ∈ HomCR-IFM(C,A) such that ḡ∗(ϕ̄1) = ḡ∗(ϕ̄2). Then ϕ̄1 ◦ ḡ = ϕ̄2 ◦ ḡ. Since ḡ

is IF-epimorphism, ϕ̄1 = ϕ̄2. Thus, HomA(ḡ) is IF-epimorphism.

Conversely, HomA(ḡ) is IF-epimorphism for allA ∈ Ob(CR-IFM). Suppose ϕ̄1, ϕ̄2 ∈ HomCR-IFM(C,A)

such that ϕ̄1 ◦ ḡ = ϕ̄2 ◦ ḡ. Then ḡ∗(ϕ̄1) = ḡ∗(ϕ̄2) implies ϕ̄1 = ϕ̄2 by assumption. Thus, ḡ is

IF-epimorphism in CR-IFM.

Corollary 5.2.10. HomA is a epifunctor for each A ∈ Ob(CR-IFM).

Proposition 5.2.11. Let ḡ : B → C be an IF-retraction in CR-IFM. Then HomA(ḡ) : HomCR-IFM(C,A) →

HomCR-IFM(B,A) is IF-retraction for all A ∈ Ob(CR-IFM).

Proof. Let ḡ : B → C be an IF-retraction in CR-IFM. Therefore, an IF R-homomorphism h̄ :

C → B exists in CR-IFM such that ḡ ◦ h̄ = IA. Since every IF-retraction is IF-epimorphism in

CR-IFM, ḡ is an IF-epimorphism in CR-IFM. By Proposition [5.2.9], HomA(ḡ) is IF-epimorphism
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in CR-IFM. Consider

((ḡ ◦ h̄)∗)(ϕ̄) = ϕ̄ ◦ (ḡ ◦ h̄)

= ϕ̄ ◦ (IA)

= (ϕ̄)(IA)

Thus, ((ḡ ◦ h̄)∗)(ϕ̄) = (ϕ̄)(IB)

which implies that (ḡ ◦ h̄)∗ = IA. By Proposition [5.2.2], ḡ∗ ◦ h̄∗ = IA. Hence, HomA(ḡ) =

ḡ∗ : HomCR-IFM(C,A) → HomCR-IFM(B,A) is IF-retraction for all A ∈ Ob(CR-IFM).

Corollary 5.2.12. The functor HomA preserves retraction.

Proposition 5.2.13. HomA preserves isomorphism in CR-IFM.

Proof. Let ḡ : B → C be an IF R-isomorphism in CR-IFM. We have to prove that HomA(ḡ) is

an IF R-isomorphism in CR-IFM. By assumption, there exists h̄ : C → B such that h̄ ◦ ḡ = IB

and ḡ ◦ h̄ = IC , implying that HomA[h̄ ◦ ḡ] = HomA(IB) and HomA[ḡ ◦ h̄] = HomA(IC).

This implies that HomA(h̄) ◦HomA(ḡ) = IHomA(B) and HomA(ḡ) ◦HomA(h̄) = IHomA(C).

Hence, HomA preserves isomorphism in CR-IFM.

Remark 5.2.14. From above results, we can conclude that

(i) HomCR-IFM(A,−) is a covariant functor.

(ii) HomCR-IFM(−, A) is a contravariant functor.

(iii) HomCR-IFM : CR-IFM → CR-IFM is an invariant functor, exhibiting properties of both co-

variant and contravariant functors.
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5.3 Forgetful functors

Explore connections between the category of intuitionistic fuzzy modules and other math-

ematical structures, providing insights into how these relationships can enhance our under-

standing of both intuitionistic fuzzy modules and the broader mathematical landscape. "This

section explores three forgetful functors originating from the CR-IFM category and analyzes

their preservation properties."

Proposition 5.3.1. There exists a forgetful functor from the category of intuitionistic fuzzy

modules to the category of intuitionistic fuzzy sets.

Proof. Let CIFS denote the category of intuitionistic fuzzy sets. We define a forgetful functor

F1 : CR-IFM → CIFS such that

(i) for each object A ∈ Ob(CR-IFM), F1 associates it with an object F1(A) ∈ Ob(CIFS) by

retaining the underlying set structure along with its degree of membership as well as its degree

of non-membership, while discarding the module structure.

(ii) F1 preserves morphisms between objects, meaning that if IF R-homomorphism f̄ : A →

B exists in CR-IFM, then the corresponding morphism between their underlying intuitionistic

fuzzy sets A and B is preserved under F1.

Therefore, a forgetful functor F1 from CR-IFM to CIFS, mapping structures from CR-IFM to CIFS

by retaining the essential set properties while discarding the module structure.

Proposition 5.3.2. There exists a forgetful functor from the category of intuitionistic fuzzy

modules to the category of sets.
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Proof. Let CS denote the category of sets. We define a forgetful functor F2 : CR-IFM → CS

such that

(i) for each object A ∈ Ob(CR-IFM), F2 associates it with a set F2(A) = X ∈ Ob(CS) by

discarding the module structure while retaining only the underlying set.

(ii) F2 preserves morphisms between objects, meaning that if IFR-homomorphism f̄ : A→ B

exists in CR-IFM, then the corresponding morphism between their underlying sets X and Y is

preserved under this functor F2.

Therefore, a forgetful functor F2 from CR-IFM to CS, discarding the module structure of

IFSMs and retaining only its underlying set structure.

Proposition 5.3.3. There exists a forgetful functor from CR-IFM to CR-M.

Proof. Define a forgetful functor F3 : CR-IFM → CR-M such that

(i) for each object A ∈ Ob(CR-IFM), F3 associates it with a module F3(A) = M ∈ Ob(CR-M)

by discarding the intuitionistic fuzzy structure while retaining only the underlying module

structure.

(ii)F3 preserves morphisms between objects, meaning that if IF R-homomorphism f̄ : A →

B exists in CR-IFM, then the corresponding R-homomorphism between their underlying R-

modules M and N is preserved under this functor F3.

Therefore, a forgetful functor F3 from CR-IFM to CR-M, discarding the intuitionistic fuzzy

characteristics and retaining only its underlying module structure.

Definition 5.3.4. The forgetful functor
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(a) F1 : CR-IFM → CIFS that assigns every IFSM A to the underlying IFS A and every IF

R-homomorphism f̄ : A→ B to the corresponding IFS morphism.

(b) F2 : CR-IFM → CS that assigns every IFSM A to the underlying set M and every IF

R-homomorphism f̄ : A→ B to the corresponding set map f :M → N .

(c) F3 : CR-IFM → CR-M that assigns every IFSM A to the underlying R-module M and

every IF R-homomorphism f̄ : A → B to the corresponding underlying R-homomorphism

f :M → N .

The forgetful functor preserves various important properties of morphisms from the CR-IFM

category to the other categories.

Proposition 5.3.5. The forgetful functor F1 : CR-IFM → CIFS preserves

(i) coretraction,

(ii) monomorphisms,

(iii) retractions,

(iv) epimorphisms.

Proposition 5.3.6. The forgetful functor F2 : CR-IFM → CS preserves

(i) coretraction,

(ii) monomorphisms,

(iii) retractions,

(iv) epimorphisms.

Proposition 5.3.7. The forgetful functor F3 : CR-IFM → CR-M preserves
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(i) coretraction,

(ii) monomorphisms,

(iii) retractions,

(iv) epimorphisms.

5.4 Intuitionistic fuzzy exact sequences in CR-IFM

Throughout the Chapter, we will take A = (µA, νA)M , B = (µB, νB)N , C = (µC , νC)K ,

D = (µD, νD)P , E = (µE, νE)Q and F = (µF , νF )S be IFSMs of R-modules M , N , K, P , Q

and S respectively.

In the theory of R-modules, a sequence of the form

0 M N P 0
f g

is said to be short exact sequence in CR-M when f is a monomorphism, g is an epimorphism

and Im(f) = ker(g). In this section, we extend this notion to intuitionistic fuzzy modules

and establish several results.

Definition 5.4.1. An intuitionistic fuzzy short exact sequence in CR-IFM is a sequence of the

form

0̄ A B C 0̄
f̄ ḡ

when Im(f̄) = ker(ḡ), ḡ is an IF-epimorphism and f̄ is a IF-monomorphism. We abbreviate

an intuitionistic fuzzy short exact sequence as IFSE sequence.

Example 5.4.2. Let A = χZ , B = χnZ and C = χ Z
nZ

then
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0̄ A B C 0̄ī π̄

is a IFSE sequence where ī and π̄ are IF-inclusion map and natural IF-epimorphism respec-

tively.

Remark 5.4.3. HomCR-IFM(A,−) is not left exact in CR-IFM; i.e., we want to claim that the IFSE

sequence

0̄ HomCR-IFM(A, 0̄) HomCR-IFM(A,A) HomCR-IFM(A,B)
F f̄=f̄∗ F ḡ=ḡ∗

is not exact, where F = HomCR-IFM(A,−). However the sequence given in above example is

exact. Define ρ̄1 : Z → Z as ρ̄1(n) = 6n and ρ̄2 : Z → Z as ρ̄2(n) = 12n. Clearly, ρ̄1

and ρ̄2 are in KerF ḡ. Thus, |KerF ḡ| ≥ 2. Since HomCR-IFM(A, 0M) contains only zero IF

R-homomorphism, so we obtain ImF f̄ ̸= KerF ḡ. Hence, HomCR-IFM(A,−) is not left exact.

Definition 5.4.4. Let A = (µA, νA), B = (µB, νB) are IFSM of R-modules M and N re-

spectively and HomCR-IFM(A,B) is the set of IF R-homomorphisms from A to B. An IF-R

homomorphism f̄ ∈ HomCR-IFM(A,B) is said to be an Intuitionistic fuzzy split(IF-split), if

there is an IF R-homomorphism ḡ ∈ HomCR-IFM(B,A) such that ḡ ◦ f̄ = IA.

Theorem 5.4.5. For A be any IFSM, let 0̄ B C D 0̄
f̄ ḡ

be IFSE se-

quence. Then

0̄ HomCR-IFM(A,B) HomCR-IFM(A,C) HomCR-IFM(A,D)
f̄∗ ḡ∗

is IFSE sequence if and only if for any ϕ ∈ Hom(M,N) which f∗(ϕ) = ψ, where ψ̄ ∈ kerḡ∗,

ϕ−1(µB) ⩾ µA and ϕ−1(νB) ⩽ νA.

Proof. Firstly, let
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0̄ HomCR-IFM(A,B) HomCR-IFM(A,C) HomCR-IFM(A,D)
f̄∗ ḡ∗

is IFSE sequence. Thus, Imf̄∗ = Kerḡ∗. For ϕ̄ ∈ HomCR-IFM(A,B), we have

ϕ−1(µB) ⩾ µA, ϕ
−1(νB) ⩽ νA

and also f̄∗(ϕ) = ψ̄, where ψ̄ ∈ kerḡ∗ which is lifted toR-homomorphism ϕ ∈ HomCR-M(M,N)

with the result that f∗(ϕ) = ψ.

Conversely, let ϕ ∈ HomCR-M(M,N) with f∗(ϕ) = ψ, where ψ̄ ∈ kerḡ∗ and ϕ−1(µB) ⩾ µA

and ϕ−1(νB) ⩽ νA. This shows that ϕ̄ ∈ HomCR-IFM(A,B). Since f∗(ϕ) = ψ which gives

f ◦ ϕ = ψ. By intuitionistic fuzzification, we have f̄ ◦ ϕ = ψ̄, stating that f̄∗(ϕ) = ψ̄. Thus,

Imf̄∗ = Kerḡ∗.

Theorem 5.4.6. Let A, B, C and D be IFSMs of R-modules M ,N ,K and P respectively. Let

0̄ B C D
ḡ h̄

is IFSE sequence in CR-IFM, where ḡ is IF split. Then HomCR-IFM(A,−) preserves the sequence.

Proof. Let F = HomCR-IFM(A,−). We will show that the sequence

0̄ HomCR-IFM(A,B) HomCR-IFM(A,C) HomCR-IFM(A,D)
F ḡ=ḡ∗ F h̄=h̄∗

is exact. Clearly F ḡ = ḡ∗ is monic as ḡ is IF split. We claim that Imḡ∗ = Kerh̄∗,i.e.

Imḡ∗ ⊆ Kerh̄∗ and Imḡ∗ ⊇ Kerh̄∗. Let ϕ̄ ∈ Imḡ∗ such that ϕ̄ .
= ḡ∗(ψ̄) = ḡ ◦ ψ̄ ; where
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ψ̄ ∈ HomCR-IFM(A,B).

µHom(A,D)(h̄ ◦ ϕ̄) = µHom(A,D)(h̄ ◦ ḡ ◦ ψ̄)

= ∧{µD((h̄ ◦ ḡ ◦ ψ̄)(a)) : a ∈M}

= ∧{µD(h̄ ◦ ḡ)(ψ̄(a)) : a ∈M}

= ∧{µD(h̄ ◦ ḡ)(b) : ψ̄(a) = b ∈ N}

= {1}[∵ Imḡ = Kerh̄]

= 1.

So, Imḡ∗ ⊆ Kerh̄∗. Now, we will prove that Imḡ∗ ⊇ Kerh̄∗.

Let ϕ̄ ∈ Kerh̄∗. Then we have

(i) µHom(A,D)(h̄∗(ϕ̄)) = 1 which implies that ∧{µD((h̄ ◦ ϕ̄)(a)) : a ∈M} = 1. Thus,

µD(h̄(ϕ̄(a))) = 1, ∀a ∈M (5.4.1)

(ii) νHom(A,D)(h̄∗(ϕ̄)) = 0 which implies that ∨{νD((h̄ ◦ ϕ̄)(a)) : a ∈M} = 0. Thus,

νD(h̄(ϕ̄(a))) = 0,∀a ∈M (5.4.2)

From equation (5.4.1) and (5.4.2), Imϕ̄ ∈ Kerh̄ = Imḡ.

As ḡ is monic, ḡ(b) = ϕ̄(a) for a unique b ∈ N . Define k̄ : A → B as k̄(a) = b. Now,

we will prove that k̄ is an IF R-homomorphism. As ḡ is IF split, ρ̄ ◦ ḡ = IB for a unique IF

R-homomorphism ρ̄ : C → B. For every a ∈M , we have
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µB(k̄(a)) = µB(b) = µB(ρ̄ ◦ ḡ(b)) ≥ µC(ḡ(b)) = µC(ϕ̄(a)) ≥ µA(a).

Consider ḡ∗(k̄) = ḡ ◦ k̄ = ϕ̄. Then ϕ̄ ∈ Imḡ∗. Thus Imḡ∗ ⊇ Kerh̄∗. That concludes the

proof.

Theorem 5.4.7. Let

B C D 0̄
ḡ h̄

be a IFSE sequence in CR-IFM, where ḡ is IF-split. LetG = HomCR-IFM(−, A). Then the induced

sequence

0̄ HomCR-IFM(D,A) HomCR-IFM(C,A) HomCR-IFM(B,A)
Gh̄=h̄∗ Gḡ=ḡ∗

is IFSE sequence.

Proof. The demonstration exhibits a resemblance to Theorem [5.4.6].

Andersen and Fuller [4] explored the connection between projective modules and semi-

perfect rings. Theorem 27.11 [4] states that if P is a projective R-module, there exists a

set of idempotent elements (ei) for i ∈ J in a commutative semi-perfect ring R, such that

P ∼=
∐

i∈J Rei, where each ei belongs to E(R), the set of idempotent elements of the ring

R. By theorem 3.3.1, every IF projective module is a zero IFSM, we can derive the following

result:

Proposition 5.4.8. Let R be a commutative semi-perfect ring. For a IF-projective module

A = 0̄M , there exists a set of idempotent elements ei in R such that 0̄M ∼=
∐

i∈J ŌRei .

Proposition 5.4.9. [22] Let A = (µA, νA)M be IFSM of the R-module M , and let e ∈ E(R).

Then, we define eA as an IFSM of eM , denoted by eA = (µeA, νeA)M , where: µeA(z) =

∨{µA(y) : z = ey, y ∈M} and νeA(z) = ∧{νA(y) : x = ey, z ∈M} for every z in M.
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Let E(R) denote the set of idempotent elements in the commutative semi-perfect ring R.

Now, we will study the functor HomCR-IFM(ŌRe,−) where e ∈ E(R).

Define a map

ΓA : Hom(ŌRe, A) → eA

ϕ̄ 7→ ϕ̄|eA.

Lemma 5.4.10. ΓA is an IF R-isomorphism, where A ∈ Ob(CR-IFM).

Proof. Suppose ex ∈ eM . Define mapping ϕ̄ : ŌRe → A as ϕ̄(re) = rex; where r ∈ R

and x ∈ M . For ϕ̄ ∈ Hom(ŌRe, A), ΓA(ϕ̄) = ex demonstrating that ΓA is surjective. If

ϕ̄ ∈ Hom(ŌRe, A), we observe that ϕ̄ is determined by ϕ̄|eA, establishing ΓA is an injective

mapping. Also, for ϕ̄ ∈ Hom(ŌRe, A),

β1(ϕ̄) = µA(ϕ̄(e)), β2(ϕ̄) = νA(ϕ̄(e))

where HomCR-IFM(ŌRe, A) = (β1, β2).

Consider µeA(ΓA(f)) = µeA(ex) = ∨{µA(ey) : x = ey, y ∈ M} = {µA(ϕ̄(e))} = β1(ϕ̄) and

νeA(ΓA(f)) = νeA(ex) = ∧{νA(ey) : x = ey, y ∈ M} = {νA(ϕ̄(e))} = β2(ϕ̄). Thus, we

conclude that

µeA(ΓA(f)) = β1(ϕ̄), νeA(ΓA(f)) = β2(ϕ̄).

Hence, ΓA is an intuitionistic fuzzy R-isomorphism.

Proposition 5.4.11. Consider the following commutative figure [5.1] for ᾱ, γ̄ are IF-isomorphisms

and β̄ is IF quasi-isomorphisms :
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0̄ D E F 0̄

0̄ A B C 0̄

ϕ̄

ᾱ

ψ̄

β̄ γ̄

f̄ ḡ

Figure 5.1: IFSE

Then bottom row forms an IFSE sequence in CR-IFM if and only if the top row does.

Proof. Firstly, Let the bottom row be an IFSE sequence. Then Imf̄ = Kerḡ, ḡ is IF-

epimorphism and f̄ is IF-monomorphism. We want to show that

(i) ϕ̄ is IF-monomorphism;

(ii) ψ̄ is IF-epimorphism;

(iii) Im(ϕ̄) = Ker(ψ̄).

Let p1, p2 ∈ P such that ϕ̄(p1) = ϕ̄(p2). As the figure 5.1 is commutative, we have

f̄(ᾱ(p1)) = β̄(ϕ̄(p1))

= β̄(ϕ̄(p2)) [By Assumption]

= f̄(ᾱ(p2)) [By Commutativity]

⇒ p1 = p2 [As f̄ᾱ is IF−monomorphism].

Thus, ϕ̄ is IF-monomorphism.

Let s ∈ S and γ̄(s) = k, where k ∈ K. Since ḡ is IF-epimorphism, ḡ(n) = k for n ∈ N . As

β̄ is an IF quasi-isomorphisms, n = β̄(q) for some q ∈ Q.

Consider k = ḡ(n) = ḡ(β̄(q)) = γ̄(ψ̄(q)), implying γ̄(s) = γ̄(ψ̄(q)). Since γ̄ is IF-

monomorphism, ψ̄(q) = s, concluding ψ̄ is an IF-epimorphism.
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Let p1 ∈ P . Now, we aim to show that ϕ̄(p1) ∈ Ker(ψ̄). Since f̄(ᾱ(p1)) ∈ Im(f̄) =

Ker(ḡ), µC(ḡ(f̄(ᾱ(p1)))) = 1 and νC(ḡ(f̄(ᾱ(p1)))) = 0. So, µC(γ̄(ψ̄(ϕ̄(p1)))) = 1 and

νC(γ̄(ψ̄(ϕ̄(p1)))) = 0. Since γ̄ is IF-isomorphism, µF (ψ̄(ϕ̄(p1))) = µC(γ̄(ψ̄(ϕ̄(p1)))) = 1 and

νF (ψ̄(ϕ̄(p1))) = νC(γ̄(ψ̄(ϕ̄(p1))) = 0, implying ϕ̄(p1) ∈ Ker(ψ̄). Thus, Im(ϕ̄) ⊆ Ker(ψ̄).

Let q ∈ Ker(ψ̄), so µF (ψ̄(q)) = 1 and νF (ψ̄(q)) = 0. As a result, µC(γ̄(ψ̄(q))) = 1 and

νC(γ̄(ψ̄(q))) = 0. According to commutativity, µC(ḡ(β̄(g))) = 1 and νC(ḡ(β̄(q))) = 0, which

implies that β(q) ∈ Ker(ḡ) = Im(f̄) and so, there exists m ∈ M satisfying f̄(m) = β(q),

along with p1 ∈ P such that ᾱ(p1) = m.

β̄(ϕ̄(p1)) = f̄(ᾱ(p1))

= f̄(m)

= β̄(q)

⇒ q = ϕ̄(p1) [As β̄ is IF− isomorphism].

Thus, Ker(ψ̄) ⊆ Im(ϕ̄). Hence, Ker(ψ̄) = Im(ϕ̄).

Lemma 5.4.12. Let the IFSE sequence

0̄ A B C 0̄
f̄ ḡ

within CR-IFM and for e ∈ E(R), ef̄ = f̄ |eA and eḡ = ḡ|eB be the restriction mappings on f̄

and ḡ respectively. Then the sequence

0̄ eA eB eC 0̄
ef̄ eḡ

is IFSE sequence CR-IFM.
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Proof. Let ek ∈ eK. As ḡ is an IF-epimorphism, it follows that ḡ(b) = k for b ∈ N . Consider,

eḡ(eb) = e2ḡ(b)

= eḡ(b)

= e(k)

= ek

Thus eḡ is an IF-epimorphism. Since Im(f̄) ⊆ Ker(ḡ), it is clear that Im(ef̄) ⊆ Ker(eḡ).

Let eb ∈ Ker(eḡ). Since Ker(eḡ) ⊆ Ker(ḡ), therefore there exists x ∈ M such that f̄(x) =

eb. For e2 = e and ex ∈ eM , we have ef̄(ex) = e2f̄(x) = ef̄(x) = e.eb = eb. Thus,

Ker(eḡ) ⊆ Im(ef̄). This concludes the proof.

Proposition 5.4.13. The functor HomCR-IFM(ŌRe,−) preserves the IFSE-sequence

0̄ A B C 0̄
f̄ ḡ

in CR-IFM, where e ∈ E(R).

Proof. Take into account the following commutative diagram within CR-IFM.

0̄ HomCR-IFM(ŌRe, A) HomCR-IFM(ŌRe, B) HomCR-IFM(ŌRe, C) 0̄

0̄ eA eB eC 0̄

f̄∗

ΓA

ḡ∗

ΓB ΓC

ef̄ eḡ

By lemma [5.4.10], ΓA, ΓB and ΓC are IF-isomorphisms. By Proposition 5.4.11, bottom row

is IFSE sequence iff top row is IFSE sequence. By lemma [5.4.12], the sequence

0̄ eA eB eC 0̄
ef̄ eḡ
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is a IFSE sequence. Hence, bottom row is exact. Hence, the functor HomCR-IFM(ŌRe,−)

preserves the sequence in CR-IFM.

Lemma 5.4.14. Let A = (µA, νA)M be IFSM of R-module M and ei ∈ E(R), where i ∈ J .

Then,

HomCR-IFM(
∐
i∈J

ŌRei , A)
∼=

∏
i∈J

(eiA)

Proof. Since HomCR-M(−,M) converts coproducts into products. Let

ϕ : HomCR-M(
∐
i∈J

Rei,M) →
∏
i∈J

HomCR-M(Rei,M)

defined by

τ 7→ (τ ◦ ρi = τi)i∈J

be an R-isomorphism, where ρj is the injection mapping Rej →
∐

i∈J Rei.

Let HomCR-IFM(ŌRei , A) = (β1i, β2i) and HomCR-IFM(
∐

i∈J ŌRei , A) = (β1, β2). Based on the

evidence presented in lemma [5.4.10], it follows that

β1i(τ̄i) = µA(τ̄i(ei)), β2i(τ̄i) = νA(τ̄i(ei));∀i ∈ J.

Consider µA(
∑

i∈J τ̄i(riei)) = ∧i∈JµA(τ̄i(riei)) = ∧i∈JµA(riτ̄i(ei)) ⩾ ∧i∈JµA(τ̄i(ei)), where
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ri,ei ∈ R, i ∈ J . For τ̄ ∈ HomCR-IFM(
∐

i∈J ŌRei , A), we obtain

β1(τ̄) = ∧{µA ◦ τ̄i(riei) : (riei)i∈J ∈
∐
i∈J

Rei}

= {µA(
∑
i∈J

τ̄i(riei)) : (riei)i∈J ∈
∐
i∈J

Rei}

= ∧{µA(τ̄i(ei)) : i ∈ J}

= ∧{β1i(τ̄i) : i ∈ J}

=
∏
i∈J

β1i((τ̄i)i∈J)

=
∏
i∈J

β1i ◦ ϕ(τ̄).

So, it implies

HomCR-IFM(
∐
i∈J

ŌRei , A)
∼=

∏
i∈J

HomCR-IFM(ŌRei , A) (5.4.3)

By lemma [5.4.12],

Hom(ŌRei , A)
∼= eiA

⇒
∏
i∈J

Hom(ŌRei , A)
∼=

∏
i∈J

eiA

(5.4.4)

From equation (5.4.3) and (5.4.4), we can conclude that

HomCR-IFM(
∐
i∈J

ŌRei , A)
∼=

∏
i∈J

(eiA) (5.4.5)

Theorem 5.4.15. Let A,B,C and D be IFSMs of R-modules M , N , K and P respectively.

Let

0̄ B C D 0̄
ϕ̄ ψ̄
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is IFSE sequence in CR-IFM. Then the functor HomCR-IFM(A,−) preserves the sequence if and

only if A is an IF-projective module.

Proof. First, suppose ψ̄ is an IF-epimorphism and HomCR-IFM(A,−) preserves the IFSE se-

quence.

Let C ′
= C|K , where K = kerψ̄ = {b ∈ N : µD(ψ̄(b)) = 1, νD(ψ̄(b)) = 0}. Then C ′ is

IF-submodule of C, and we obtain the IFSE sequence

0̄ C
′

C D 0̄ī ψ̄

where ī is the inclusion map.

Since HomCR-IFM(A,−) preserves the IFSE sequence, HomCR-IFM(A,−) preserves the IF-epimorphism

ψ̄, implying that A is IF-projective.

Conversely, assume that A is an IF-projective. With respect to ei ∈ E(R) and Proposition

[5.4.8], we have

A ∼=
∐
i∈J

ŌRei

Let the sequence

0̄ B C D 0̄
ϕ̄ ψ̄

be an IFSE sequence in CR-IFM. The sequence

0̄
∏

i∈J eiB
∏

i∈J eiC
∏

i∈J eiD 0̄

is also IFSE sequence based on lemma [5.4.12]. By employing Lemma [5.4.14], we can con-

struct the subsequent commutative diagram:
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0̄ HomCR-IFM(
∐

i∈J ŌRei , B) HomCR-IFM(
∐

i∈J ŌRei , C) HomCR-IFM(
∐

i∈J ŌRei , D) 0̄

0̄
∏

i∈J eiB
∏

i∈J eiC
∏

i∈J eiD 0̄

Given that the bottom row constitutes an IFSE sequence, it follows that the top row also rep-

resents an IFSE sequence. Thus, it is established that HomCR-IFM(A,−) preserves the IFSE

sequence.

5.5 Tensor product functor in CR-IFM

Tensor product structure provides the most innovative approach to connecting two modules.

The structure and characteristics of tensor products constructed from two intuitionistic fuzzy

modules in the CR-IFM category are covered in this section. In addition, we investigate whether

there is a connection between Hom functor and tensor product functor in this category.

Definition 5.5.1. Define D × E : P ×Q→ I × I as an IFS on P ×Q by

D × E = {< (p, q), (µD×E)(p, q), (νD×E)(p, q) >: (p, q) ∈ P ×Q} where

µD×E(p, q) = (µD×µE)(p, q) = ∨{µD(p), µE(q)}, νD×E(p, q) = (νD×νE)(p, q) = ∧{νD(p), νE(q)},

µD×E(
∑

(pi, qi)) = (µD × µE)(
∑

(pi, qi)) = ∧{∨{µD(pi), µE(qi)|i ∈ J}}

and

νD×E(
∑

(pi, qi)) = (νD × νE)(
∑

(pi, qi)) = ∨{∧{νD(pi), νE(qi)|i ∈ J}}
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Proposition 5.5.2. A×B is an IFSM on M ×N .

Definition 5.5.3. An intuitionistic fuzzy biadditive (IF-biadditive) is a mapping ϕ̄ : A×B →

C satisfies

(i) ϕ :M ×N → K is R-biadditive and

(ii) µC(ϕ̄(
∑

(xi, yi))) ≥ (µA×µB)(
∑

(xi, yi)) and νC(ϕ̄(
∑

(xi, yi))) ≤ (νA×νB)(
∑

(xi, yi));

∀
∑

(xi, yi) ∈M ×N .

Definition 5.5.4. An intuitionistic fuzzy tensor product of two IFSMs, A and B, denoted as

A ⊗ B, is endowed with an IF-biadditive mapping τ̄ : A × B → A ⊗ B, which satisfies the

property that for any IFSM C over an R-module K, along with every IF-biadditive function

ψ̄ : A × B → C, then ϕ̄ ◦ τ̄ = ψ̄ for a unique IF R-homomorphism ϕ̄ : A ⊗ B → C and the

subsequent diagram commutes:

A×B A⊗B

C

ψ̄

τ̄

ϕ̄

and

µC(ϕ̄(x⊗ y)) ≥ (µA × µB)(x, y)

νC(ϕ̄(x⊗ y)) ≤ (νA × νB)(x, y)

Remark 5.5.5. We will denote intuitionistic fuzzy tensor product by IFT-product.

Theorem 5.5.6. The intuitionistic fuzzy tensor product exists in CR-IFM and is uniquely deter-

mined up to isomorphism.



5.5. Tensor product functor in CR-IFM 119

Proof. Let A = (µA, νA), B = (µB, νB) and C = (µC , νC) be IFSM’s of R-modules M , N

and K respectively. Let τ̄ : A×B → A⊗B be the IFT-product of A and B.

Define the mapping A⊗B :M ⊗N → I × I as

(µA ⊗ µB)(
∑

(xi ⊗ yi)) = ∨{(µA × µB)(
∑

(x
′

i, y
′

i))|
∑

(x
′

i ⊗ y
′

i) =
∑

(xi ⊗ yi)}

and

(νA ⊗ νB)(
∑

(xi ⊗ yi)) = ∧{(νA × νB)(
∑

(x
′

i, y
′

i))|
∑

(x
′

i ⊗ y
′

i) =
∑

(xi ⊗ yi)}

From this, it can be easily check that τ̄ is IF-biadditive. Let ψ̄ : A × B → C be IF-

biadditive. Since the tensor product of two R-modules exists and is unique up to isomorphism

in CR-M, it follows that for any R-biadditive map ψ : M × N → K, there exists a unique

R-homomorphism ϕ :M ⊗N → K such that ϕ ◦ τ = ψ.

M ×N M ⊗N

K

ψ

τ

ϕ

We only need to show that ϕ̄ : A⊗ B → C is an IF R-homomorphism, i.e., we want to claim

that, ∀
∑

(xi ⊗ yi) ∈M ×N

µC(ϕ̄(
∑

(xi ⊗ yi))) ≥ (µA ⊗ µB)(
∑

(xi ⊗ yi))

νC(ϕ̄(
∑

(xi ⊗ yi))) ≤ (νA ⊗ νB)(
∑

(xi ⊗ yi))
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Let
∑

(x
′
i ⊗ y

′
i) =

∑
(xi ⊗ yi). Consider

µC(ϕ(
∑

(x
′

i ⊗ y
′

i))) = µC(
∑

ϕ(x
′

i ⊗ y
′

i))

≥ ∧{µC(ϕ(x
′

i ⊗ y
′

i))}

= ∧{µC(ϕ ◦ τ)(x′
, y

′
))}

= ∧{µC(ψ)(x
′
, y

′
))}

≥ ∧{(µA × µB)(x
′
, y

′
)}

= (µA × µB)(
∑

(x
′

i ⊗ y
′

i))

⇒ µC(ϕ̄(
∑

(xi ⊗ yi))) ≥ (µA ⊗ µB)(
∑

(xi ⊗ yi)).

In the similar manner, we have νC(ϕ̄(
∑

(xi ⊗ yi))) ≤ (νA ⊗ νB)(
∑

(xi ⊗ yi)).

Hence, the IFT-product exists in CR-IFM and it is unique upto isomorphism.

In CR-M, R ⊗M ∼= M if M ∈ Ob(CR−M). We can get the following result in CR-IFM by

using this fact:

Proposition 5.5.7. Let A ∈ Ob(CR-IFM). Then, we have 0̄⊗ A ∼= 0̄.

The preservation of epimorphisms by tensor product functors is a crucial property in the

study of intuitionistic fuzzy modules, as its ensures that certain algebraic structures and prop-

erties are maintained under tensor product operations, facilitating their application in various

mathematical contexts. For M ∈ Ob(CR−M), M ⊗− is right exact. In the domain of CR-IFM,

we have now reached the following finding:

Proposition 5.5.8. Let A ∈ Ob(CR-IFM). Then A⊗− preserves epimorphisms in CR-IFM.
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Proof. Consider the IFSE sequence B C 0̄
ḡ

in CR-IFM, thus establishing ḡ is an

IF-epimorphism. Since M ⊗− is right exact, we have

A⊗B A⊗ C 0̄
IA⊗ḡ

Now, we only need to prove that IA⊗ ḡ is IFR-homomorphism. For any
∑

(xi⊗yi) ∈M×N ,

we have

(µA ⊗ µC)((IA ⊗ ḡ)(
∑

(xi ⊗ yi)))

= (µA ⊗ µC)(
∑

(xi ⊗ ḡ(yi)))

= ∨{(µA × µC)(
∑

(x
′
i, k

′
i))|

∑
(x

′
i ⊗ k

′
i) =

∑
(xi ⊗ ḡ(yi))}

≥ ∨{(µA × µB)(
∑

(x
′
i, y

′
i))|ḡ(y

′
i) = k

′
i and

∑
(x

′
i ⊗ k

′
i) =

∑
(xi ⊗ ḡ(yi))}

≥ ∨{(µA × µB)(
∑

(x
′′
i , y

′′
i ))|

∑
(x

′′
i ⊗ y

′′
i ) =

∑
(xi ⊗ yi)}

= (µA ⊗ µB)(
∑

(xi ⊗ yi)).

Thus (µA ⊗ µC)((IA ⊗ ḡ)(
∑

(xi ⊗ yi))) ≥ (µA ⊗ µB)(
∑

(xi ⊗ yi)).

Similarly, we can show that (νA ⊗ νC)((IA ⊗ ḡ)(
∑

(xi ⊗ yi))) ≤ (νA ⊗ νB)(
∑

(xi ⊗ yi)).

We therefore obtain the desired result.

Proposition 5.5.9. Let A ∈ Ob(CR-IFM). Then −⊗ A preserves epimorphisms in CR-IFM.

We’ll now examine how the tensor product functor and the Hom-functor are related in

the category CR-IFM. This connection is established through a natural isomorphism known as

the Hom-Tensor adjunction. It establishes a relationship between HomCR-IFM(B ⊗ A,C) and

HomCR-IFM(A,HomCR-IFM(B,C)).

Theorem 5.5.10. (Adjoint Isomorphism)
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In CR-IFM, there exists IF quasi-isomorphisms

τ : HomCR-IFM(E ⊗D,C) ∼=Q HomCR-IFM(D,HomCR-IFM(E,C));

τ
′
: HomCR-IFM(D ⊗ E,C) ∼=Q HomCR-IFM(D,HomCR-IFM(E,C)).

Proof. We demonstrate the existence of the initial quasi-isomorphism. ForD,E,C ∈ Ob(HomCR-IFM)

and by existence of tensor product in CR-IFM, a unique IFR-homomorphism ϕ ∈ HomCR-IFM(E⊗

D,C) exists such that

µC(ϕ(q ⊗ p)) ≥ (µE ⊗ µD)(q ⊗ p)

νC(ϕ(q ⊗ p)) ≤ (µE ⊗ µD)(q ⊗ p).

With due reference to Theorem 2.75 [20], we will define the following IF R-homomorphisms:

For p ∈ P and q ∈ Q, define ϕp : E → C as ϕp(q) = ϕ(q ⊗ p),

ϕ̄ : D → HomCR-IFM(E,C) as ϕ̄(q) = ϕp and

τ : HomCR-IFM(E ⊗D,C) → HomCR-IFM(D,HomCR-IFM(E,C)) as τ(ϕ) = ϕ̄.

It is therefore necessary to prove that ϕp, ϕ̄ are IFR-homomorphisms and τ are IFR-isomorphism.

(i) To begin with, we will show that ϕp is IF R-homomorphism. For q ∈ Q, we have

µC(ϕp(q)) = µC(ϕ(q⊗p)) ≥ (µE⊗µD)(q⊗p) ≥ (µE×µD)(q, p) = ∨{µE(q), µD(p)} ≥ µE(q).

Likewise, we can exhibit that νC(ϕp(q)) ≤ νE(q). Thus, ϕp is an IF R-homomorphism.
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(ii) Secondly, we will proceed to establish that ϕ̄ acts as an IF R-homomorphism. For p ∈ P ,

µHomCR-IFM (E,C)(ϕ̄(p)) = µHomCR-IFM (E,C)(ϕp)

= ∧{µC(ϕp(q))|q ∈ Q}

= ∧{µC(ϕ(q ⊗ p)|q ∈ Q}

≥ ∧{(µE ⊗ µD)(q ⊗ p)|p ∈ P, q ∈ Q}

≥ ∧{∨{µE(q), µD(p)}|p ∈ P, q ∈ Q}

≥ µD(p).

Likewise, we can exhibit that νHomCR-IFM (E,C)(ϕ̄(p)) ≤ νD(p).

(iii) Finally, we will show that τ is an IF R-isomorphism. For ϕ ∈ HomCR-IFM(E ⊗ D,C),

Consider

µHomCR-IFM (D,HomCR-IFM (E,C))(τ(ϕ)) = µHomCR-IFM (D,HomCR-IFM (E,C))(ϕ̄)

= ∧{µHomCR-IFM (E,C)(ϕ̄(p))|p ∈ P}

= ∧{µHomCR-IFM (E,C)(fp)|p ∈ P}

= ∧{∧{µC(ϕp(q))|q ∈ Q}|p ∈ P}

= ∧{∧{µC(ϕ(q ⊗ p))|q ∈ Q}|p ∈ P}

= ∧{µC(ϕ(q ⊗ p))|q ∈ Q, p ∈ P}

= µHomCR-IFM (E⊗D,C)(ϕ).
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Similarly,we can prove νHomCR-IFM (D,HomCR-IFM (E,C))(τ(ϕ)) = νHomCR-IFM (E⊗D,C)(ϕ).

This is called adjoint isomorphism.

Remark 5.5.11. Natural isomorphism can be obtained by the adjoint isomorphism theorem

(5.5.10) as

HomCR-IFM(E ⊗D,C) ∼=Q HomCR-IFM(D,HomCR-IFM(E,C))

Thus, E ⊗□ is the right adjoint of Hom(□, E).

Fixing any two IF-modules D, E, C, each τ = τD,E,C is a natural isomorphism:

HomCR-IFM(E ⊗□, C) ∼=Q HomCR-IFM(□,HomCR-IFM(E,C));

HomCR-IFM(E ⊗D,□) ∼=Q HomCR-IFM(D,HomCR-IFM(E,□));

HomCR-IFM(□⊗D,C) ∼=Q HomCR-IFM(D,HomCR-IFM(□, C))

The below figure is commutative for θ : D → D
′

HomCR-IFM(E ⊗D
′
, C) HomCR-IFM(D

′
,HomCR-IFM(E,C))

HomCR-IFM(E ⊗D,C) HomCR-IFM(D,HomCR-IFM(E,C))

τD′ ,E,C

(IE⊗θ)∗ θ∗

τD,E,C
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Overall conclusion

This thesis delves into the category of intuitionistic fuzzy modules, investigating their math-

ematical properties and applications. Through systematically exploring the category of in-

tuitionistic fuzzy modules, the study establishes fundamental definitions and theorems that

contribute to the theoretical foundation of this mathematical structure. Furthermore, applica-

tions of intuitionistic fuzzy modules in diverse fields exemplify their versatility and relevance.

The findings of this research enhance our understanding of the category of intuitionistic fuzzy

modules and pave the way for their effective utilization in various mathematical and computa-

tional contexts.

Building upon the framework of the category of intuitionistic fuzzy modules, this study

extends its focus to intricate aspects, such as special morphisms and the construction of some

universal objects within this category. The investigation involves the development of novel

concepts and methodologies to characterize the relationships between intuitionistic fuzzy mod-

ules, providing deeper insights into their structural properties.

In the Chapter 2, we studied the category of intuitionistic fuzzy modules CR-IFM over the

125
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category of R-modules CR-M by constructing a contravariant functor from the category CR-IFM

to the category CLat (= union of all CLat(R-IFM), corresponding to each object in CR-M). We

showed that CR-M is a subcategory of CR-IFM. Further, we showed that CR-IFM is a top category

is not an abelian.

Within the CR-IFM category, the study of special morphisms emerges as a focal point, pro-

viding a nuanced understanding of the relationships between these mathematical structures.

Special morphisms are pivotal in capturing the unique characteristics and transformations

within intuitionistic fuzzy modules, offering insights into their behaviour and interactions.

This work investigated various types of special morphisms, including coretractions, retrac-

tions, monomorphisms, epimorphisms, and isomorphisms, within the context of intuitionis-

tic fuzzy modules. Through systematically exploring their properties and significance, the

research aims to shed light on the categorical structure of intuitionistic fuzzy modules and

enhance our ability to discern and characterize their distinctive features. In Chapter 3, we

have proved that the CR-IFM is not a balanced category. Further, we proved that if an IF R-

homomorphism f̄ : A → B is a coretraction (respectively, retraction), then both f and f̄

are one-one (respectively, onto) functions; but the converse does not hold. Exploring special

morphisms of intuitionistic fuzzy modules provides valuable insights into the algebraic struc-

tures of these modules. By investigating the properties and behaviours of these morphisms,

researchers can enhance the theoretical foundations and implications of intuitionistic fuzzy

modules, fostering advancements in mathematical and computational fields.

In Chapter 4, we established the existence of IF-products, IF-coproducts, IF-equalizers

and IF-coequalizers in the category CR-IFM. Using these outcomes, we demonstrated the com-

pleteness and cocompleteness of the category CR-IFM. Consequently, we established CR-IFM as
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a bicomplete category which shows the categorical goodness of intuitionistic fuzzy modules.

This research contributes a thorough examination of constructing universal objects in the cat-

egory of intuitionistic fuzzy modules, with a particular emphasis on pullbacks, intersections,

images, and inverse images.

Hom functors play a crucial role by capturing morphisms between intuitionistic fuzzy mod-

ules, facilitating a deeper understanding of their interplay. Additionally, the study of exact

sequences offers a systematic way to analyze the relationships and structures in sequences

of intuitionistic fuzzy modules. In Chapter 5, we have established that HomCR-IFM(A,−) is

a covariant and HomCR-IFM(−, A) is a contravariant functor. Additionally, when researching

the intuitionistic fuzzy short exact sequence(IFSE sequence), we have defined an intuitionistic

fuzzy R-isomorphism ΓA : Hom(ŌRe, A) → A determined by f̄ → f̄(e); where e ∈ E(R).

Using this, we have studied the relationship between the Hom-functors and IF-projective mod-

ules. The tensor product, a key focus, allows us to extend module operations to accommodate

uncertainties, reflecting the nuanced nature of intuitionistic fuzzy environments. Furthermore,

we established the existence of the tensor product in the category CR-IFM. We then investigated

the relation between Hom functor and tensor product functor in this category.

This thesis aims to delve into the theoretical foundations and applications of these con-

cepts, offering insights into the intricate algebraic nature of intuitionistic fuzzy modules and

their role in addressing uncertainty within mathematical structures. Through this exploration,

we aim to provide a comprehensive understanding of these structures and their significance in

the broader context of fuzzy mathematics.

One significant direction for future research is the extension of cohomology concepts to

intuitionistic fuzzy modules. In the future, investigating special morphisms within intuition-
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istic fuzzy modules can provide insights into their homological properties. For instance, con-

structing injective resolutions via these morphisms aids in computing Ext and Tor functors,

which is crucial for understanding module structures. Additionally, utilizing special mor-

phisms between projective intuitionistic fuzzy modules enables the construction of projective

resolutions, vital for computing Hom and Ext functors, thus enhancing comprehension of al-

gebraic and homological properties. A key future direction is extending cohomology concepts

to intuitionistic fuzzy modules, potentially bridging fuzzy logic with established mathemati-

cal theories. This extension enriches intuitionistic fuzzy module theory and broadens under-

standing of cohomological methods, fostering interdisciplinary collaborations and advancing

mathematical research.
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