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ABSTRACT 

Localization in wireless sensor networks always a challenging task, many 

applications need localization with higher accuracy mainly military zones. The 

complexity in node localization becoming costly UWB based WSN having its 

advantage. Discovering the origin of a signal in a WSN is crucial for several 

applications, including navigational systems, civil/military monitoring, and 

emergency services. Many times, sensors are placed in inhospitable and distant places 

like mountains and deserts, where they are at risk of being destroyed. They are 

especially vulnerable to physical, electronic, and software attacks, as they are not 

easily accessible and difficult to protect. In order to design appropriate security 

mechanisms for wireless communication technology, it is very significant to 

understand security challenges and issues. Improving WSN technical characteristics 

without increasing cost criteria through technology development is a possibility. 

Some research aims to enhance existing WSNs &characteristics and technologies and 

expand their applications. An energy-efficient method for positioning sensor nodes is 

to develop protocols for improving reliability and sustainability against interference 

algorithms for distributed data processing. To fulfill the functional needs of WSNs, 

platforms either from scratch or already in existence must be selected. Each hardware 

platform provides sensor node parameters. Anchor nodes are highly-resourced 

wireless nodes known to have specific locations in modern WSNs. Target nodes are 

low-resource wireless nodes known for unknown locations. ANs (Anchor nodes) can 

be located by GPS or predetermined locations during network deployment. TNs 

(Target nodes) can be located based on these known locations and estimated 

ranges/angles. WSNs have attracted researchers and industry representatives for 

twenty years. Wireless technology based on the ultra-wide band (UWB) has been 

recognized as a feasible option. Wireless sensor networks (WSNs) have a lot of 

potential uses because of their high time-domain resolution, which allows them to do 

things like pinpoint location and tracking, work in tandem with current ultra-wide 

band systems (thanks to their incredibly low power spectral density), and provide a 

low-cost and energy-efficient way to implement technologies on-chip. The small 

devices known as anchor nodes (sensors) are usually built on microcontrollers and 

serve as the foundation of these types of networks. These nodes are typically powered 

by batteries that provide limited processing power. Consequently, the industrial and 



government sectors have developed UWB-based sensor network concepts. One sub- 

gigahertz band (250–750 MHz), one low band (3.1–5 GHz), and one high band (6– 

10.6 GHz) are all open to ultra-wideband devices. Devices do not interact with one 

another across UWB bands; instead, each band has a single required channel. For 

WSN applications utilizing spread spectrum techniques, we go across the low band of 

UWB (3.244-4.742 GHz). The ease of use is the primary characteristic of the system, 

which relies on non- coherent detection and basic binary modulation techniques. It is 

the primary objective of this research to investigate how node localization 

measurements can be performed in WSN before optimal techniques are implemented. 

In a range-based environment, two methods were implemented, namely least squares 

and tetrahedrons. The solution to this problem is a new way for localizing sensor 

nodes that uses range-based localization techniques. A maximum probability 

distribution function expresses the problem. It has been suggested to employ the Chan 

method in conjunction with an RSSI-based TDOA measurement model in order to 

determine the locations of unknown nodes. We present a novel idea of projecting 

anchor nodes in a range-based environment by using particle swarm optimization 

(PSO), PSO with ensemble learning (EL-PSO) and back propagation neural networks 

(BPNN-PSO). Range-based non-collaborative isotropic WSN is implemented for 2D 

and 3D measurements with low UWB. Four anchor nodes which can locate the 

mobile nodes in indoor environments to improve location accuracy with maximum 

and minimum localization error calculated using above optimal techniques is the 

secondary contribution part of thesis. To prove their efficacy, the suggested methods 

are compared in terms of scalability, localization accuracy, and the number of nodes 

localised. By making use of RSSI, the algorithm was able to decrease the power 

consumption needed by the sensor node positioning system. The target and anchor 

node distances were calculated using this. The hybrid algorithm also outperformed 

PSO in terms of convergence speed. 

The DV-Hop approach, which is applicable to large-scale applications, has an 

inclusion as range-free localization with UWB research advances. Also, using Mat- 

lab simulations, we compared the methods and error optimization accuracy. A packet 

distance is determined by the number of routers it must traverse; each router is 

considered a hop in distance-vector routing algorithms. Every 30 seconds, these 

protocols update every neighbour with the whole routing table. The distance can be 

determined by counting the number of routers a packet must pass through on its way 



to its final destination, a measure known as the hop count. The DV-Hop algorithms 

(Distance Vector routing) practicality, low cost, lack of hardware requirements, and 

ease of usage make it useful in different applications. The DV-Hop approach is still 

problematic for localization to a considerable degree. The Time Difference of Arrival 

(TDOA) technique can be used to determine the separation between several radio 

transmitters and a single receiver. To avoid early mistakes, the most accurate 2D and 

3D initial measuring procedures include a Kalman filter and DV-Hop. We utilized a 

more precise technique to gauge the placement of beacons within the range-free 

specified region, and we calculated the localization error using the nodes, dynamic 

momentum. While it has its uses, the distance between unknown and anchor nodes is 

often inaccurate since its distance estimation of the average hop size isn’t perfect. 

Errors in the estimated distances between sensor nodes also lead to erroneous 

localization. As a starting point for developing methods to minimize localization error, 

this range-free scenario makes use of the DV-Hop algorithm and particle swarm 

optimization. The performance of the algorithms was tested by measuring both the 

communication range and the number of anchor nodes. Since all anchor nodes remain 

stationary, it has been observed that mobile node placement uses less energy. 

Improving the original DV-Hop algorithm with online sequential DV-Hop required 

three stages. Additionally, to optimize the starting placements of unknown nodes and 

find a solution for the nonlinear equations, a hybrid approach combining PSO and 

EM-PSO was utilized. Despite its benefits, its distance estimate of the average hop 

size is prone to inaccuracies, making the distance between unknown nodes and anchor 

nodes erroneous. Additionally, inaccurate localization is caused by mistakes in the 

calculated distance between sensor nodes. As a starting point for developing methods 

to minimize localization error, this range-free scenario makes use of the DV-Hop 

algorithm and particle swarm optimization. Measuring the communication range and 

the number of anchor nodes allowed us to test the algorithm’s performance. There is a 

noticeable decrease in energy consumption when mobile nodes are used instead of 

permanent anchor nodes. Using online sequential DV-Hop to improve the original 

DV-Hop algorithm was a three-stage process. Also, a hybrid method integrating PSO 

and EM-PSO was used to optimize the initial placements of unknown nodes and solve 

the nonlinear equations. The current study proposes an optimization strategy based on 

the ensemble method EM-PSO and hybrid HOP algorithms. In terms of localization 

error reduction, the current method outperforms traditional DV-HOP, according to the 



results. Lastly, compared to other state-of-the-art existing procedures, a variation 

of 15% is noted, and an inaccuracy below 2% is achieved after numerous sessions. 

When compared to standard algorithms, the localization accuracy provided by the 

suggested methods is much higher. The latest localization algorithms utilise the 

most effective techniques for reducing the error value. In comparison to 

comparable designs, the localization error distance is nearly 2.7 cms. We observe 

that there is a marked decrease. 

Specific abstract 

The core of the work explores different localization methods, including range-based 

techniques like least squares, tetrahedrons, and Chan's method, as well as range-free 

approaches like DV-Hop. It introduces novel optimization strategies using Particle Swarm 

Optimization (PSO), Ensemble Learning PSO (ELPSO), and Back Propagation Neural 

Networks (BPNN-PSO) to enhance localization accuracy. The research aims to minimize 

localization errors, particularly in 2D and 3D indoor environments with low UWB, using 

four anchor nodes to locate mobile nodes. The work also addresses the limitations of 

traditional methods, such as the inaccuracy of hop size estimation in DV-Hop, and 

proposes hybrid algorithms and advanced filtering techniques like Kalman filters to 

mitigate these issues. The proposed ensemble method EM-PSO and hybrid HOP 

algorithms demonstrate significant improvements in localization accuracy, achieving errors 

below 2.7 cm and outperforming existing state-of-the-art methods by a 15% variation. The 

use of RSSI is also explored to reduce power consumption in node positioning. The 

research concludes that the proposed optimization strategies offer enhanced scalability, 

localization accuracy, and energy efficiency, making them suitable for various WSN 

applications. 
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CHAPTER-I 

INTRODUCTION 

Wireless sensor networks (WSN) are widely recognized and commonly used 

for monitoring and signaling. They have numerous applications, including monitoring, 

traffic control, weather analysis, and pollution detection. These networks use versatile 

and easily accessible devices. Important aspects of wireless sensor networks include 

localization, network deployment, and sensor coverage. Localization is crucial for 

many applications, as sensor nodes need to know their location to indicate when an 

event occurs. Finding the sensor is a challenge in localization, and a single method 

may not be the most effective. With the development of new technologies, several 

specialized localization methods for sensor networks have been introduced. 

 

1.1 INTRODUCTION TO WIRELESS SENSOR NETWORKS (WSN) 

 

Wireless sensor networks enable the simultaneous monitoring and recording of 

conditions in multiple locations using specialized transducers (sensors) connected by 

communication technology. It is common to monitor a wide range of environmental 

factors, such as air temperature, humidity, pressure, light intensity, vibration and 

sound levels, power-line voltage, chemical concentrations, pollution levels, and vital 

physiological processes. Wireless sensor networks are valuable for control and 

monitoring applications. The sensors utilized in wireless sensor networks are both 

cost-effective and versatile. Wireless sensor networks have three main features: 

coverage, deployment, and localization. Localization is crucial due to its central role 

in numerous applications. Sensor nodes need to know their location to indicate when a 

specific event occurs. Therefore, sensor localization is critical for many applications 

of wireless sensor networks. However, locating the node is challenging, and using a 

single localization method may not be the most effective way to find the position of a 

mobile sensor. 
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Several localization methods tailored to sensor networks were developed with the 

advancement of new technologies. 

 

➢ The WSN is a network with a large number of nodes. 

➢ Nodes are equipped with embedded processors, sensors, and radios. 

➢ Collaboration among these nodes is utilized for common tasks, such as asset 

tracking or monitoring of the environment. 

 

1.2 INTRODUCTION TO UWB 

 

Ultra-Wide Band (UWB) is a wireless communication technology that uses radio 

waves to communicate across short distances, similar to Bluetooth and Wi-Fi. It 

conforms to IEEE specifications 802.15.4a and 802.15.4z. The Time of Flight (TOF) 

of a radio signal can be measured with increased precision according to these 

guidelines. This is especially useful for calculating the position within a few 

centimeters. With UWB, it becomes possible for the lights to switch on automatically 

when we enter a room, and for our computer to boot up when we sit down at the desk. 

UWB brings these capabilities into the real world, where they can have game- 

changing effects. 

 

• Wireless communication technology using UWB is rapidly advancing as a 

short-range, high-speed, high-data rate technology. 

• It operates over a wide spectrum of frequencies (3.1GHz to 10.6GHz). 

• The operation can pass through walls and doors with and without line of sight. 

• Multipath fading is highly resistant. 

• Low-cost, low-power, all-digital, single-chip architecture. 

The imperative for accurate node localization within Ultra-Wideband (UWB) Wireless 

Sensor Networks (WSNs) stems from the growing demand for precise spatial awareness 

in a multitude of applications, particularly in environments where traditional localization 

methods falter. UWB technology, with its high time-domain resolution and low power 

spectral density, offers a promising solution for achieving this accuracy, especially in 

indoor and complex settings. This introduction highlights the critical need for robust 

localization in UWB-based WSNs, driven by applications ranging from navigation and 

asset tracking to critical military and emergency response scenarios. The ability to 

precisely pinpoint the location of sensor nodes is paramount for effective data correlation, 
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event detection, and real-time monitoring. Given the inherent challenges of deploying 

WSNs in diverse and often inhospitable locations, the introduction underscores the 

importance of developing efficient, secure, and cost-effective localization algorithms that 

leverage the unique advantages of UWB technology. This is crucial for ensuring the 

reliability and effectiveness of WSNs in demanding applications where accuracy and 

resilience are non-negotiable. 

 

1.2.1 Applications of WSN with UWB 

 

Most Wireless Sensor Network (WSN) applications use radio frequency (RF) 

communication. These applications involve positioning, localization, geo-location, 

multipath environments, obscured environments, military applications, and low- 

probability interference rescue applications. For these applications, communication 

needs to be long-range, high-speed, low-energy, and should not require line of sight 

between the sender and receiver, with acceptable error rates. 

In a sensor node, both a transmitter and a receiver are necessary for actual 

communication, but they can be further optimized as suggested by ZigBee. WSN 

systems typically consist of a transceiver unit at each node, allowing wireless 

communication between nodes. This involves converting a bit stream from a 

microcontroller to and from radio waves. Recent advancements in wireless 

communications and electronics have led to the development of low-cost sensor 

networks. At its core, this project was about meeting the most fundamental need of 

the application provider (network provider). The application need to enhance the 

capability in following aspects. 

Low cost: All the nodes need to be kept economical because there are a lot of them. 

Node costs should not be more than one percent of the total product cost. 

Small form factor: An antenna and power supply must be small and easily placed in 

order for sensors to work properly. 

Energy consumption: Since most sensors require no power for years on end, low- 

power detection nodes are suitable. For the wireless sensor network to work as 

intended, a number of additional requirements must be met. A radio transceiver's 

operating modes, duty cycle, and models for its energy consumption per bit are 

among the many elements that must be considered when analyzing its energy 

consumption behavior. Energy is primarily consumed during the generation of radio 
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frequency (RF) signals. This includes the modulation technique, the goal distance, the 

transmission power (which is radiated by the antenna), and the electrical components 

required for RF front ends, amplifiers, filters, etc. 

Robustness: Data transmission must remain dependable in spite of interference, 

localised fading, and shadowing if service quality is to be maintained (e.g., in relation 

to latency and outage). 

 

1.2.2 OUTDOOR AND INDOOR LOCALIZATION 

 

The variation between range free and range based can be used for outdoor and indoor 

localization, depending on the application. UWB with WSN implementations can be 

used in low signaling areas where the node identification is difficult. Location 

accuracy is a challenging task in these condition the fixed sensor nodes ( anchor nodes) 

allocation is important. 

1) Outdoor Localization: Many outdoor systems are in use now, such as GPS, 

LORAN-C, and cellular network radio location. The Global Positioning System (GPS) 

employs time-of-arrival (TOA) estimates from a minimum of four anchors, in the 

form of GPS satellites, to resolve a nonlinear four-dimensional issue; however, the 

agent is not in real-time sync with the anchors. A centralized system, Assisted GPS 

does most of the calculations, as opposed to individual agents' GPS systems. 

Centralized, absolute, and non-cooperative localization services based on TDOA are 

provided by LORAN-C, just like its satellite-based successor. Centralized, absolute, 

and non-cooperative radio-location services for mobile phones, such as E911, 

frequently use TDOA. 

2) Indoor Localization: Wi-Fi, radio-frequency identification (RFID), and ultra- 

wideband (UWB) localization are examples of currently-available and developing 

approaches to indoor localization. The RADAR Place Lab and the GSM base stations 

use centralised, absolute, and non-cooperative methods when they connect through 

802.11 access points. Reading radio frequency identification (RFID) tags and readers 

allows for centralized, relative, and non-cooperative connectivity-based localization. 

Coarse measurements plague both Wi-Fi and RFID systems, limiting their precision. 

UWB signals, on the other hand, have certain advantages that make them more suited 

for interior localization and communication. The high transmission bandwidth of 

UWB signals makes them well-suited for propagation time estimates due to the fact 
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that delay estimation techniques become more efficient with increasing bandwidth. 

Furthermore, multipath components can be handled, and greater signal penetration 

can be achieved via obstructions, all thanks to the high bandwidth. Thus, it is possible 

to accomplish accurate range in non-line-of-sight (NLOS) settings and reliable 

communications in dense multipath environments. UWB signals can detect and 

perhaps compensate for the impacts of obstacles and NLOS circumstances due to their 

ability to penetrate them. UWB transmitters are low-cost, simple devices that may be 

deployed quickly and in large numbers. UWB communication systems are stealthy, 

energy-efficient, and disruptive to other systems since the power is spread out over a 

wide frequency range. When it comes to reliable communication and precise range, 

ultra-wideband (UWB) transmissions are head and shoulders above the competition. 

In this way, nodes can avoid introducing extra overhead by determining their relative 

positions using the signals they currently use for communication. Not long ago, when 

the IEEE 802.15.4a standard concludes, many new systems and applications will be 

able to be developed in this area. 

 

1.3 LOCALIZATION APPROACHES FOR WIRELESS NETWORKS 

 

This section classifies localization algorithms and describes various signal measures. 

We apply this categorization to popular location tools, taking both indoor and outdoor 

settings into consideration. 

 

1.3.1 Measurement Phase 

 

Initially, packets are passed between network nodes (let's say, nodes A and B) close to 

one another. Receiver (node B) can determine its position with respect to the 

transmitter (node A) by measuring or approximating one or more signal metrics 

corresponding to these packets' underlying physical wave forms. These signal metrics 

are the root cause of localization uncertainty since they are prone to different types of 

inaccuracy. In this section, we provide a quick overview of typical metrics. We 

discuss their role in localization, and outline potential sources of mistake. 

Nodes can be separated in numerous ways. With the help of the relationship between 

power loss and distance, we can calculate the RSS. If node B can receive packets 

from node A, the distance between them is limited to node A's communication range. 

Estimating the time, it takes for wireless signals to travel from one point to another 
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allows for more accurate distance measurements. This is the foundation for TOA, 

TDOA, and RTOA. The relative orientations of a node's components can be 

calculated via AOA estimation when the node has directional or multiple antennas. If 

you have a linear array with spatial antenna intervals, the time difference between the 

arrival of any two successive antenna components is determined by the angle AB, 

which is the impinging signal to the array. Measurements are susceptible to estimation 

errors. Examples of factors that can lead to substantial inaccuracies in RSS estimators 

include shadowing and multipath. Location data produced by the connection metric is 

sometimes coarse when the communication range is large or the network's 

connectivity is low. Errors can occur in signal measurements that rely on the time 

delay between the transmitter and the receiver, such as TOA, TDOA, RTOA, and 

AOA. Because of these impediments, the distance estimate may be inclined upwards, 

a phenomenon known as non-line-of-sight (NLOS) situations. There are a number 

of potential sources of mistake in calculating arrival timings, including noise, 

interference, multipath, clock drifts, and others. 

 

1.4 UWB LOCALIZATION: Fundamentals, challenges and framework 

 

Localization is an essential aspect of wireless sensor networks (WSNs), and 

researchers have taken a keen interest in this area. Miniature, low-power, low-cost, 

and ad hoc communication sensors make up a wireless sensor network. In wireless 

sensor networks, localization or positioning involves determining the physical 

location of sensor nodes, which is crucial to estimating the point of origin of events in 

communication networks. Various localization methods are used in different 

applications due to the different positioning accuracy requirements, and some special 

scenarios, such as forest fire detection, present several challenges. Our focus is on 

different localization-based applications, which require estimating the location 

information, and different measurement techniques and strategies for range based and 

range free localization. Finally, the complexities, cost, and scalability of the method 

are discussed in detail. This section provides a brief overview of some of the more 

common methods used for localization and tracking in UWB sensor networks. The 

main causes of estimation mistakes and factors connected to positions will be 

examined later on. Traditional range-free localization algorithms and protocols in 

WSNs are incompatible with most applications that require unique solutions due to 

harsh surroundings and channel characteristics. 
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1.4.1 Localization in UWB Sensor Networks 

 

Transmitting ultra-wideband signals using nanosecond or nanosecond signals enables 

the ultra-wideband signal to consume less energy, have compact network systems, 

and have higher location precision and high resolution. Consequently, trustworthy and 

accurate indoor real-time location is a perfect fit for UWB technology. Unfortunately, 

there are still some accuracy issues with UWB, especially when it comes to 3D indoor 

localization, despite its convenience. To overcome this obstacle, hardware placement 

or ranking algorithms need be enhanced. Many obstacles, including as shadowing 

effects and multipath fading, remain to be conquered. 

 

The stand point of UWB localization methods encompasses a variety of techniques, 

each with its own set of advantages and limitations. Time-based methods like TOA, 

TDOA, and TW-TOF offer high accuracy, particularly in line-of-sight conditions, but 

require precise time synchronization. Angle-based methods, such as AOA, are less 

accurate but can be useful in specific scenarios. Hybrid approaches aim to combine 

the strengths of these methods, while range-based methods utilizing RSSI provide a 

lower-cost and less complex alternative, albeit with reduced accuracy. Ongoing 

research is focused on addressing challenges like multipath propagation, non-line-of-

sight conditions, and computational complexity, with a trend towards incorporating 

machine learning and developing energy-efficient solutions to enhance UWB 

localization for diverse WSN applications. 

 

1.4.2 Conventional two-step UWB localization 

The two-step positioning is a common technique used by most localization systems in 

distributed sensor networks; it consists of two stages parameter extraction and data 

fusion. Figure 1.2 provides a high-level overview of the standard two-stage UWB 

localization process. 
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Figure 1.1: Illustration of the conventional two-stage UWB localization process. 
 

 

Figure 1.2: Active and Passive localization. Here is an example of passive 

localization and one of active localization. 

Anchor nodes are denoted by red dots, while the node requiring localization is shown 

in blue. The target node in the passive localization example shown on the left is not 

equipped with any sort of transmitter or receiver, and instead merely acts as a mirror 

to reflect incoming signals. The target node has transmitter equipment and sends 

signals to the anchor nodes in the right figure, which is an example of active 

localization. 
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Figure 1.3: Mobile node estimation 

 

To begin, radio waves are used by UWB sensor networks to take a reading, and then 

the CIRs between the anchor nodes and the target nodes can be determined. Following 

that, several characteristics of the signals, such as their amplitudes, phases, and delays, 

are retrieved. An estimate of the range (TOA or time delay) is made in a range-based 

localization system, while in a range-free localization system, an estimate of the angle 

(AOA) or power (RSS) is made. The retrieved parameters are then used to forecast 

the target node's location using appropriate signal processing methods. The range 

estimation step and the location estimation step are what need to be taken to 

implement the range-based localization system. By first estimating the time of arrival 

(TOA) or time difference (TDOA) of signals propagating between the target node and 

the reference sensor nodes, we can then multiply these values by the speed of light to 

get our distance parameters (range or range difference estimates). The term "range 

estimation" describes this process. After that, accurate location estimation algorithms 

are used to infer where the target node is based on the estimated ranges. 
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It is clear from this that the channel parameter and the physical separation of the two 

nodes are the only two inputs necessary to calculate an accurate lower bound for the 

RSS estimates. To put it another way, even if UWB bandwidth 

Figure 1.4: A 2D range-based localization example where d1, d2, and d3 are the 

estimated distances between the target node and the three anchor nodes. 

Further, as distance between nodes grows, RSS measurement accuracy decreases. 

RSS localization is straightforward and needs less precise clocks and less temporal 

synchronization between nodes than other methods. However, the high resolution 

provided by UWB cannot be utilized by RSS, and vice versa. Fading causes it to be 

incorrect in high-scatter settings. Fading has a a dynamic state to distance because of 

propagation effects (such as physical phenomenon, reflection, shadowing, and multi- 

path). Furthermore, it is sensitive to the transmission inconsistency and non-stationary 

parameters and requires a particular channel behavioral mode. The fading due to path 

loss as a function of distance can be described mathematically; thus, a path-loss model 

is required; however, the path loss exponent may be unknown in advance. 

 

1.4.3 Time Difference of Arrival (TDOA) 

 

TOA is tough because receiver-transmitter synchronization is required. Another 

range-based technique is TDOA. If the anchor nodes are synchronised, TDOA 

measurements can be taken even if the target node and anchor nodes are not. TDOA is 

measured similarly TOA. 
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Figure 1.5: A simple illustration of the TDOA-based hyperbola localization 

technique in a 2D space. 

The period of time between two signals leaving two anchor nodes and reaching the 

destination node. This method is commonly employed in RTLS because to its rapidity 

and accuracy. When it comes to localization, TDOA-based systems aren't dependent 

on absolute distance estimates between Tx-Rx pairs, as illustrated in Figure. Typically, 

anchor nodes maintain a consistent synchronisation. When working in two 

dimensions, determining the location of the target node requires a minimum of three 

anchor nodes and two time-domain-of-arrival (TDOA) observations. Every time 

difference between two points (TDOA) can be represented as the centre of a 

hyperbola, with the points surrounding it spaced at regular intervals (time differences). 

The end product is a system of hyperbolic coordinates where the target node is 

positioned between the two anchor nodes. For example, one way to determine TDOA 

is to estimate TOA at both anchor nodes and then subtract one from the other. With 

this scenario, we'll pretend that two separate anchor nodes have time delay estimates 

of 1 and 2, respectively. Without synchronisation between the target and anchor nodes, 

the TOA estimates at the anchor nodes need to take into consideration both flight time 

and temporal offset. Given that the anchor nodes are in perfect sync, the time offset 

for each TOA estimate is uniform. Based on this, we can determine the TDOA. 

TDOA = 2 

One alternative is to measure TDOA by correlating the signals received by two anchor 

nodes; this involves taking the time it takes for one node's signal to be received and 

then finding the delay that corresponds to the value with the highest cross-correlation. 

Deterioration in the performance of cross-correlation-based TDOA estimation may 

occur over multipath channels.in a dramatic approach. A generalized cross-correlation 

(GCC) strategy is suggested to improve cross-correlation performance. 
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1.4.4 Optimization of Location with localization algorithms improvements in 

UWB 

 

Figure 1.6: Localization Algorithms Classification 

 

The utilization of wireless sensor networks (WSNs) in a range of applications. In their 

study, the use of hybrid algorithms for anchor-based node localization in UWB indoor 

networks is investigated. This technology has been created by several different 

researchers. It has become increasingly popular to use GPS and maps to locate a 

person in recent years. Buildings are a barrier to GPS location signals that becomes 

GPS unable to function indoors. A number of indoor localization methods have been 

created as a result of GPS location inaccuracies. These include infrared, Wi-Fi, 

Bluetooth and Zing Bee techniques as well as radio frequency (RFID)/Ultra-Wide 

Band technology. The use of UWB technology increases the durability. 

PSO is a well-known optimization method that is based on conventional instinctive 

networks, that is why it has become so successful. An entire swarm of particles flies 

and searches in a limited area at a given pace, attempting to locate the ideal location 

in pattern. Simple implementation and high performance have made PSO a popular 

tool for solving real-time scheduling and engineering challenges. Although most 

UWB indoor localization systems use only one PSO algorithm, our technique 

attempts a better solution by integrating multiple PSO algorithms. As a result of our 

observations, we believe that it is difficult to attain flawless performance using 
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present communication techniques alone. In conventional UWB localization methods, 

the system controller uses various localization techniques to estimate the present 

positions of the users. The accuracy of conventional approaches is dependent on the 

type of localization algorithm and controller configuration. The indoor positioning 

accuracy of UWB localization was improved in this work by introducing hybrid 

algorithms to optimize after TDOA measurements were used. 

There is a wide gap between the measured and actual targets due to the limitations of 

hard equipment and environmental obstacles. This study aims to bridge the gap by 

enhancing in phases following a communication measure. The distance between the 

beacon and the target nodes is currently assumed utilizing TDOA parameters in the 

localization process. Further, target nodes' 2D and 3D coordinates are calculated using 

an improved Chan algorithm. After that, the estimated position of target nodes is 

optimized using ELPSO, BPNN. 

1.5 BACKGROUND OF THE STUDY- 

 

In a wireless sensor network, many dispersed devices that contain sensors work 

together. It was originally intended for use in military settings that the wireless sensor 

network would be developed. Despite this, there are a growing number of uses for 

wireless sensor networks. Their popularity is growing, and with it, the number of 

scholars interested in them. In various fields of electronics, new developments and 

modifications, consumer electronics, and sensor technologies with short- and long- 

range connection are gaining significant importance. Application areas for wireless 

sensor networks are vast and varied, spanning various fields such as computing, 

communications, healthcare, defence, and military operations, among many more. 

With more sensor nodes in the network, wireless sensor networks become more 

important. A majority of WSNs rely on sensor self-positioning, which in turn requires 

knowledge of the network's location. 

The sensor plays a significant role in the field of wireless sensor networks. The sensor 

is an instrument that takes readings of some physical property and transforms them 

into electrical impulses. It is impossible for a sensor network to function without 

sensors. Thanks to these developments in sensor technology, wireless sensor networks 

have been introduced. Finding the exact geometric location of a sensor node inside a 

network is known as localization. With respect to the reference location, this location 
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is approximated. Constraints such as size, cost, and power improve the localization 

algorithms to tackle emerging problems. When the precise whereabouts of some 

stationary or mobile equipment are unknown, localization becomes crucial. When 

thousands of sensors are dropped from an aeroplane in order to monitor humidity and 

temperature in fields and woods, for instance, the operator has very limited control 

over the exact placement of each node. 

1.6 MOTIVATION 

 

WSN has several limitations, including size, energy consumption, and cost. Prior to 

developing any localization method, it is essential to take these limitations into 

account. Data transmission and communication between nodes uses a lot of power. 

There are a lot of localization algorithms out there, but most of them are specific to 

certain applications. An application-specific localization technique may not be well- 

suited for other WSN applications. Similarly, static sensors aren't suitable fit for 

certain localization techniques designed for mobile sensor nodes. 

 

Localization of sensor nodes can be a problem, which is why researchers are 

dealing with a number of issues. Localization in WSNs is an exciting field with a lot 

of potential for new researchers. Designers of localization algorithms should keep low 

power consumption, hardware costs, and algorithm deployment in mind while making 

these designs. The use of global positioning systems (GPS) for sensor node 

localization is inappropriate due to its high cost, low energy efficiency, huge hardware 

requirements, and line-of-sight issue. Every node would have to have a GPS antenna, 

which would make the network larger and more expensive to establish. In addition, 

GPS is not a good fit for a network such as a WSN because of the amount of energy it 

requires. Designs for WSN localization systems are more difficult than those for other 

types of networks. Think about all the constraints, such battery life, computing power, 

memory, data speeds, and size, just like with WSNs. Localization systems might lead 

to unexpected handling mistakes due to line of sight (LOS). Without accuracy, no 

localization method can be considered practical. The accuracy of localization is 

reduced when the position of the node is underestimated. Accuracy in localization 

suffers when individual nodes in the network provide inaccurate coordinates during 

self-localization, which lowers network accuracy. When designing a localization 

algorithm, node density is crucial. Ideally, for beacon-based algorithms to achieve 



15  

precise localization, the density of beacons should be high. However, there is no 

guarantee that beacons will actually achieve localization reduces precision, rendering 

localization techniques ineffective. Nodes in movable WSNs are allowed to leave and 

relocate as needed. Topological changes could happen in that situation. In order for 

mobile WSNs to adapt to changes in topology, a scalable method is required. In 

addition, the position of a node that is inherently movable is notoriously difficult to 

predict repeatedly. Nodes that are mobile are always moving. The localization 

technique should be accurate with a smaller number of beacon nodes, but as the 

number of nodes increases, the accuracy of localization improves and becomes more 

precise. Deploying localization in actual 3D space should be accessible. 

Versatile localization techniques can provide flexibility and adaptability across 

various applications. They can optimize resource usage and ensure efficient 

communication between nodes, regardless of the specific conditions or requirements 

of different WSN deployments. This adaptability can lead to more sustainable and 

cost-effective solutions in the long run. The concept of versatile localization 

techniques, particularly within the context of Ultra-Wideband (UWB) technology, is 

crucial for realizing the full potential of Wireless Sensor Networks (WSNs) across a 

diverse range of applications. UWB's inherent characteristics, such as high time-

domain resolution and immunity to multipath interference, make it a strong candidate 

for precise localization. However, the varying demands of applications—from indoor 

asset tracking to outdoor environmental monitoring—necessitate adaptable solutions. 

Versatile UWB localization techniques would encompass a suite of methods, 

including time-based (TOA, TDOA, TW-TOF), angle-based (AOA), and potentially 

hybrid approaches, allowing for dynamic selection or combination based on the 

specific deployment scenario. For instance, in environments with dense obstacles and 

non-line-of-sight (NLOS) conditions, hybrid methods or robust algorithms 

incorporating machine learning could be employed to mitigate errors. In contrast, 

simpler applications with clear line-of-sight might leverage less complex, energy-

efficient techniques. This adaptability extends to resource management. By 

dynamically adjusting localization parameters, such as transmission power or 

sampling frequency, based on application requirements, energy consumption can be 

optimized, prolonging the lifespan of battery-powered sensor nodes. Furthermore, 

versatile techniques can facilitate seamless communication between nodes, enabling 

efficient data aggregation and dissemination, even in dynamic or heterogeneous WSN 
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deployments. The long-term benefits of versatile UWB localization include increased 

sustainability and cost-effectiveness. By avoiding the need for specialized hardware or 

inflexible localization solutions, WSN deployments can be scaled and adapted to 

evolving needs without incurring significant costs. This approach also promotes 

interoperability, enabling seamless integration with existing UWB systems and 

facilitating the development of innovative applications across various sectors. 

Ultimately, versatile UWB localization techniques are essential for unlocking the full 

potential of WSNs, enabling them to operate efficiently and reliably in diverse and 

challenging environments. 

 

1.7 OBJECTIVES: 

 

In this work, our major focus is on achieving high node location accuracy with a very 

small number of anchor nodes in dynamic (anchor and target nodes may have some 

mobility) and static scenarios by applying heuristic-based algorithms. The objectives 

are framed as follows 

• Design a range-based error control model using UWB to estimate optimal 

node location in Homogeneous dynamic WSN with various soft computing 

approaches. 

• Design a range free error control model using UWB for estimation of optimal 

node location in Homogeneous dynamic WSN with various soft computing 

approaches 

• To build up and appraise a stochastic algorithm for calculating the optimized 

position of the target nodes with lower calculation loads and with high 

positioning accuracy 

• Comparative analysis of existing Techniques with the developed Techniques 

at different stages for validation of the proposed algorithm. 

 

1.8 CONTRIBUTION OF WORK 

The present work focused on accurate measurement of beacons (mobile nodes) with 4 

anchor nodes. Two measurement methods of least square and tetrahedron taken in 

NLOS environment for indoor localization. 
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2D method of measurement; Least squares used to estimate the node localization 

with TDOA to calculate distances from various sensor nodes (anchor nodes). An 

improved Chan algorithm used in measuring distance an average of 3 measurements 

for different anchors were estimated. 

3D method of measurement: Tetrahedron based 3D measurement adopted with 

varying (x,y,z) measurement position from multiple anchors to evaluate accuracy by 

means. Target beacons distance average optimized with improved Chan algorithm 

using Kalman filter to avoid noise disturbances. 

Range based localization: Measured 50 mobile nodes (beacons) in an indoor area of 

100 square meters range with 2D and 3D. An improved PSO implementation done 

with two methods of Ensembled Learning (EL-PSO) and Back propagation 

Neural network (BPNN-PSO) techniques to minimize measurement error. 

Dv-Hop, with the least square method, divides the location technique into three stages. 

In the first and second phases, the predicted distances from reference nodes O(x,y) to 

beacons A1 (x1,y1) then it is measured with h( hop distance between different 

beacons). The work was further measured with the centroid method with respective 

time of reaching the value. 

A 3D method of measurement adopted with centroid to calculate average HOP to fix 

the mobility of node and measurement from different anchors. An area of 20MtsX 

20Mts with max free range of 100Mts taken in to consideration. 

Range free localization updated with sequential DV-HOP and the algorithm 

improved with centroid measurement. 30 nodes taken in dynamic mode with 4 anchor 

nodes in place. The measured error has been optimized by using improved PSO 

algorithm further improved with Ensemble Multi node method to reduce the error. 

Hybrid algorithms used in the present research combine the strengths for both range- 

based and range-free localization methods, which makes them more reliable and 

accurate. They take advantage of the strengths of both methods, such as the accuracy 

of range-based methods and the robustness of range-free methods. These algorithms 

will provide more accurate localization results than traditional range free methods. 

Furthermore, they are computationally efficient, making them suitable for real-world 

applications. Hybrid localization algorithms combine two or more methods, such as 

GPS and inertial navigation, to improve the accuracy of localization. This can help to 

reduce errors due to GPS drift and multipath effects. Hybrid algorithms can also be 

used to reduce the number of sensors required in a system. 
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1.9 THESIS ORGANIZATION 

Chapter-1: gives a brief information about the wireless sensor networks with UWB 

applications, challenges in UWB for target node localization. This chapter also 

discussed about the, measurement techniques, optimal techniques, background of the 

study, motivation, objectives, contribution of work used in the present work. 

Chapter-2: A detailed literature survey about measurement techniques, UWB 

implementation, optimization algorithms and recent methods of error localization. 

This chapter also reviewed the PSO algorithm implementation in range- based and 

range free environments and hybrid techniques of improving PSO. 

Chapter-3: This chapter presents about range-based localization with novel methods 

of error localization. In the present day, localization depends on TDOA characteristics 

to infer the distance between the beacon and the target nodes. As an added step, we 

use an enhanced Chan algorithm to determine the 2D and 3D coordinates of the target 

nodes. The next step is to optimize the estimated positions of the target nodes using 

ELPSO and BPNN. For high computational accuracy in node localization, a hybrid 

mixes of Ensemble learning and Back propagation with PSO is recommended. From 

the initial four positions of the target node, precise measurements have been taken, 

including the maximum and minimum localization errors as well as the average 

localization. 

Chapter-4: This chapter presents about range free localization with DV-Hop for 

location accuracy. Improvement methods of DV-Hop considered in the present work 

as CC- DV-Hop and Hybrid DV-Hop considered for the variation in localization and a 

new method An online sequential DV-Hop method is proposed. 

Chapter-5 An online sequential DV-Hop method is proposed for localization of 

nodes. Further research continued with optimization of error localization using 

improved PSO and ensemble method of PSO as proposed optimal technique. The 

results compared with the localization optimal results of BBO and FA 

Chapter-6: This chapter presents the comparison of results in the two-methods range based 

and range free methods with the existing results. 

Chapter-7: Conclusions and future recommendations 
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CHAPTER-II 

LITERATURE REVIEW 

A wide variety of uses exist in short-range networks for wireless device position 

estimation. In order to make these uses a reality, wireless systems can make use of 

ultra-wide band (UWB) transmissions, which offer precise locating capabilities. 

According to Zafer Sahinoglu (2008), Ultra-Wideband Positioning Systems exist. 

Unmanned Wideband (UWB) transmission technique is appealing for short to 

medium distance localization, especially in places where GPS is not available: 

Achieving centimeter-level distance resolution is made possible by resolving sub 

millisecond delays, while broad transmission bandwidths enable robust 

communication in dense multi-path environments. In order to determine where the 

proposed systems could be lacking in research, a comprehensive literature review was 

done. There is a wide variety of methods for implementing localization techniques, 

and researchers have created a number of algorithms to enhance the efficiency and 

accuracy of localization. It is possible to classify localization methods into two 

categories. Range-based and range-free localization techniques. Received Signal 

Strength Indicator (RSSI) is a range-based localization technique. [Barsocchi et al. 

(2009); Cheng et al. (2011)], Time of Arrival (ToA) [Chan et al. (2006); Xu et al. 

(2011)], Time Difffference of Arrival (TDoA) [Gillette and Silverman (2008)] and 

Angle of Arrival (AoA) [Kułakowski et al. (2010); Rong and Sichitiu(2006)]. Node 

localization methods that rely on range information (such as angle or distance) to 

determine the node's position incur higher hardware costs than range-free methods, 

but they provide more accurate results. Distance Vector Hop (DV-Hop) and Centroid 

Algorithm were published by Deng et al. (2008). [Chen et al. (2010)], Approximate 

Point in Triangle (APIT) [zeng Wang and Jin (2009)] and Multi-Dimensional 

Scaling (MDS) [Shang and Ruml (2004)] are some of the range free techniques. 

 

2.1 Related- Research Work 

 
Mobile node localization become essential in crucial areas like environmental 

monitoring, target tracking, and shadow areas are just a few of the many use cases 
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that are seeing widespread adoption of small, cheap sensors with minimal energy 

consumption and limited computer resources. Node localization is often a required 

part of the system parameters in these applications. Mostly node localization divided 

in to two stages, one is measurement stage and other computational stage. 

 

2.1.1 Measurement stage 

 

There are three general categories of measurement techniques for WSN localization 

[Mao etal. 2009]. Measuring the Angle of Arrival (AOA), measuring the distance 

from the antenna with respect to time, and profiling the Radio Signal Strength (RSS). 

 

1. Received Signal Strength (RSS) 

2. Time of Arrival (ToA) 

3. Time Difference of Arrival (TDoA) 

4. Angle of Arrival (AoA) 

5. Network Connectivity based/ Proximity 

6. Scene/Picture Analysis 

1. RSS: Measuring the received signal strength allows one to approximate the distance 

between two sensor nodes. Most sensors are capable of measuring RSS. The distance 

from the RSS is estimated using a monotonically decreasing function. The 

localization algorithms utilize this distance to ascertain the location of the sensor 

nodes. The first is that it is very difficult to estimate distance using RSS in wireless 

environments, particularly those that are both indoors and outdoors, and which 

contain irregular objects within the measuring region. In addition, it can be difficult to 

identify the model parameter. 

2. ToA: The range-based time of arrival (TOA) method offers the most precise 

localization in UWB sensor networks because of the strong temporal resolution (big 

bandwidth) of UWB signals. The majority of TOA-based systems typically 

accomplish localization by estimating both range and position, also known as TOA 

estimation [S.Gegici et al. 2009]. Due to the need for precise synchronization of the 

transmitter and receiver clocks, the ToA based technology adds complexity and 

expense to the ranging process. 

3. TDoA: The utilization of transmission media with varying speeds is important to 

TDoA. According to Karl and Willig (2007), one way to determine the distance is by 
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comparing the arrival times of these signals. Assuming both receivers are in sync and 

known whereabouts, the time difference of arrival measurement finds the relative 

delays in the arrival times of a transmitted signal at each receiver. In order to 

determine the exact position of the transmitter using this method, three receivers are 

required. Both multi-path and synchronization errors impact accuracy. 

Raising the separation between receivers improves accuracy by extending the gap 

between their arrival times. 

4. AoA :In order to determine AOA, one can use the amplitude of the received signal 

or one can use the phase of the antenna. From these methods, we may determine the 

angle between the anchor node and the unknown sensor node. That is why the area 

around the mystery sensor is a line whose angle is defined by the anchor node. In 

AOA measurement approaches, it is necessary to use a minimum of two anchor nodes 

in order to determine the position of an anchor node. The localization mistake could 

be considerable even if the measurement error is limited. The direction characteristics 

of the antenna have an impact on measurement accuracy, which is already 

complicated by factors like shadowing and multipath effects in the measuring 

environment. Severe inaccuracies in measurement precision can occur when a 

multipath component is introduced into the transmitted signal, making it seem as 

though it originated from an alternate direction [50]. The AOA method is not very 

useful for localization unless massive antenna arrays are used. For WSNs using small 

sensor nodes, this means it is totally inefficient in terms of energy consumption. 

5. Proximity: Given that measuring distance requires nothing more than 

communication between sensor nodes, this is the most straightforward approach. 

Nodes outside of a sensor node's transmission range will not be measured. For this 

method to work, no supplementary gear is needed. [Torre and Rallet(2005)]. 

6. Scene/Picture Analysis: The methods of RSS, ToA, TDoA, and AoA are very 

different from picture analysis. Scene or picture analysis forms the basis for 

measurement in picture analysis. One drawback of this strategy is the additional 

complexity and hardware requirements it requires. 

7. Computational stage Triangulation 

itis based on the geometric connection between anchor nodes and unknown nodes. 

The unknown node's location is determined by observing the angle at which signals 

arrive from the anchor nodes. Next, a statistical method is used to reduce the estimate 

error. One such method is the maximum likelihood algorithm. 
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Figure 2.1 Measurements for the triangulation scheme. 

 

The trilateration method determines the location of a node by comparing its measured 

distance to that of other known anchor nodes. Clearly, this node needs to be placed in 

the circle whose radius is equal to the distance between the set of nodes, with the 

anchor node serving as its Centre. This can be seen in the figure for any given 

distance. 2.2. 

 

 

 

 

Figure 2.2 Trilateration scheme. 

 

Multilateration: A minimum of three anchor nodes are required for iterative and 

collaborative multilateration in order to pinpoint the location of the fourth unknown 

node. If there aren't three nearby anchor nodes, expanded multilateration methods can 

nevertheless estimate position. After determining on a position, nodes can start 

broadcasting messages that serve as anchors. Locating individual nodes in a network 

is a continuous process. 



23  

 

 

a) Iterative b) Collaborative 

 

Figure 2.3 Multi Trilateration scheme. 

 

2.1.2 Classification of localization algorithms 

 

1) Centralized and Distributed Algorithms 

2) Range free and Range based Algorithms 

3) Anchor free and Anchor based Algorithms 

Centralized and Distributed Algorithms:When using a central server for 

computation, centralized algorithms are the way to go. The computing limits of nodes 

are resolved by centralized algorithms. According to K. Langendoen and N. Reijers 

(2010), communication with BS is more energy-intensive than computation in these 

algorithms. The sensor nodes are used to do computation in distributed algorithms. 

The energy consumption of these algorithms is lower than that of Centralized 

algorithms since they rely solely on inter-node communication. 

Range free and Range based Algorithms: Algorithms that do not require a range of 

values incorporate neighborhood and hop counting methods. Although the results are 

not very exact, these methods are cost-effective since they only require connectivity 

information to pinpoint the position of nodes. Some range-based methods are RSSI, 

TDoA, and AoA. Although these methods necessitate supplementary hardware for 

TDoA and AoA, they significantly improve localization accuracy. Radio or 

microphone arrays for AoA, and an acoustic or ultrasonic module for TDoA. Since 

each node in AoA contains a speaker and many microphones, the hardware required 

for AoA is more costly than that required for TDoA. 

Anchor free and Anchor based Algorithms: Anchor nodes are nodes that are 

known to have precise location coordinates, either by GPS or by being manually 

introduced. To acquire global coordinates, we can employ anchor nodes. However, 
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GPS devices are prohibitively expensive and cannot be used for indoor localization 

due to their reliance on Line of Sight communication [Y.Liu et al., 2010]. When 

deploying 10,000 nodes with 500 beacons, for example, or when deploying nodes 

from an aircraft, it would be extremely impractical, if not impossible, to use pre- 

programmed nodes with their locations as an alternative to GPS. Depending on the 

situation, we can either employ anchor-based nodes that are manually placed to know 

their coordinates or utilise anchor-free nodes that readily obtain relative coordinates 

for indoor localization. 

2.2 LOCALIZATION OF NODES IN WIRELESS SENSOR NETWORKS 

 

To enhance the accuracy of indoor localization and optimise the allocation of node 

resources in wireless sensor networks (WSNs), an equal-arc trilateral localization 

algorithm based on received signal strength indicator (RSSI) is suggested. This 

algorithm would improve measurement accuracy and beacon node layout. By 

modelling the beacon nodes in an equal arc triangle arrangement, they ensure that 

unknown nodes' motion tracks are consistently within an acceptable communication 

distance, leading to more accurate measurements. Wei Wang et al (2019).Statistical 

based optimum node localization was proposed as a means to ascertain the locations 

of nodes in WSNs. To get a better estimate of the channel path-loss, this method takes 

into account the features of WSN additive noise. Another important finding is the 

lower bound of the non-convex function, which greatly simplifies the problem. 

Souparnika Jadhav et al (2022).While range-based localization has received greater 

attention, range-free localization makes advantage of a wide variety of measuring 

procedures and approaches. They continue by looking at a plethora of localization- 

based apps, all of which stress the importance of precise location estimation. Data 

tagging, target monitoring, and location-based applications are just a few of the many 

uses for localization that WSNs depend on (Anup Kumar Paul et al., 2017). 

Consideration of numerous subtopics, including 3D and mobile anchor-based 

localization algorithms, is essential for developing protocols for WSNs, and the same 

is true for localization. Recent studies have focused on a few well-liked approaches 

that make use of static 3D networks. The authors of the study are Putri Kevin and 

colleagues (2019). The phenomenon known as Non-Line-Of-Sight (NLOS) error 

occurs when a signal encounters physical obstacles that distort its path. It has been 

used to approximate a convex optimisation problem for the node localization problem 
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in WSN in non-line-of-sight (NLOS) settings. Researchers in the study propose a 

method for NLOS localization that relies on residual analysis to mitigate the impact of 

NLOS inaccuracy. A model dependent on the time of arrival (TOA) is used to 

compute the distance. Based on research conducted by Yan Wang and colleagues in 

2018. A Study on the Efficiency of Wireless Sensor Network Positioning. In order to 

compare their performance, standard DV-based positioning methods and proximity- 

based locating methods are in use. In order to find the best approach for the situations 

being studied, the researchers will examine how many aspects impact the accuracy of 

localization approaches. A study conducted by Peter Brida1 and colleagues in 2011. 

From the perspective of networked self-localization, Kai Xing Min Ding et al. (2005) 

examined the connection between WSNs. The system has been modelled as an ad hoc 

graph. In addition, the authors determined the probability of finding a specific 

unknown node using an analytical equation that depends on density. Researchers have 

also looked into the issues using simulated case studies. Wireless sensor networks 

(WSNs) have recently garnered a lot of attention from the scientific community. WSN 

localization relies on range-based and range-free techniques.Asma Mesmoudi1 et al 

(2013).Nodes in a WSN need to know where they are before they can send or receive 

data, which is necessary for wireless applications. Every node provides its own 

coordinates on the 3D measured node localization during the localization procedure. 

Data collected by sensors in a wireless sensor network (WSN) is meaningless without 

knowing the precise location of the occurrence, so the position of the target node is 

crucial. Reason being, most WSN applications rely heavily on knowing where the 

sensor nodes are located. A PSO-based computational intelligence method for optimal 

distributed localization of randomly moving target nodes is proposed in this research. 

The space under observation is encircled by a system of anchor nodes. Researchers 

Parulpreet Singh and associates (2017). A 3D MWSN node localization method that 

accommodates the unknown and anchor nodes' stochastic mobility using a hybrid 

adaptive MCB-PSO approach. An improved particle swarm optimization (PSO) 

approach to locating roaming nodes is presented as Monte Carlo localization boxed 

(MCB). This solves the problem of particle degeneracy that plagues traditional MCB. 

To describe the unpredictable movement of anchor and unknown nodes across 

multiple time scales, the approach suggested uses a random waypoint model Hua Wu, 

et al (2020). 
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2.3 LOCALIZATION IN UWB SENSOR NETWORKS 

Advancements in areas like wireless communications and micro components based on 

MEMS (Micro-electromechanical systems) technologies have helped fuel the growth 

and development of WSN. The research involved deploying three different UWB- 

based range methods on Decca WI No nodes.Salick Diagne1et al (2018). RFID-based 

solutions are the only widely distributed items for paying attention when monitoring 

with WSN deployment. Radio-frequency identification (RFID) technology is an 

example of a implementation of WSNNavneet Kaur et al (2022). Cooperative 

localization methods are used in UWB wireless networks. Short- to medium-range 

localization is best accomplished with ultra-wideband transmission technologies. 

Henk Wymeersch et al (2009). A system-level description of the development of a 

three-tier Ultra-wide Band (UWB)-based indoor localization system. Tags are self- 

sufficiently powered and built using only UWB transmitters for communication, 

making them cheap, compact, and ultra-low in power consumption. In order to make 

the system more cost-effective, hubs are used as intermediary relay stations between 

transmit-only tags and base stations.Zheng Li, (2009).Bin Li, To reduce cross- 

network interference, researchers recommend looking into cognitive- based dynamic 

spectrum accessing schemes, in which Ultra-wide Band (UWB) sensors take 

advantage of unused spectrum by monitoring the local spectral environmentZheng 

Zhou,Weixia et al (2010). Diwu et al (2011) emphasized that localization serves 

numerous useful purposes in WSNs. Acoustic, infrared, and ultra-wide band (UWB) 

media are among the technologies that have been utilised for localization. A bottom-up, 

unified design of a communication architecture based on UWB and associated 

protocols for localization in WSNs is the goal of their research. a novel UWB indoor 

GPS-like local positioning system that can monitor an unlimited number of assets 

with no detriment to the measurement update rate. Mathematical modeling and 

uncertainty sources are studied to improve the system's precision Luca Santoro et al 

(2021). Leyla Nosrati et al (2022)said that using ultra-wideband (UWB) technology 

for precise indoor localization has garnered interest for a long time. Following the pre- 

processing of the received signals, two novel approaches are presented to reduce the 

range error caused by multipath components. Start with the time and power matrices 

derived from the A pair of machine learning algorithms—multi-layer perceptron (MLP) 

and support vector machine (SVM)—are fed the received UWB signals. Other 

parameters, which have been neglected in other studies, are also taken into account in 
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this one, in addition to algorithms for distance estimation and position calculation. 

Among these considerations are the following: movement, functional construction, 

linked data transfer, latency in position updates, and the need to track several terminals. 

Juan Chóliz et al (2011). An efficient multipath 3D node localization algorithm for 

ultra-wide band (UWB) wireless sensor networks It combines 3D Chan/Taylor 

position estimation with multipath delay estimation using the Modulation-Propagation 

Model (MPM). Our method is significantly more computationally efficient than 

previous range-based approaches, while also improving robustness and localization 

accuracy in a noisy, multipath environment. The suggested approach can be used for 

3D node localization in its speed, accuracyHong Jiang, et al (2014). The unknown 

node's precise location is calculated by averaging the coordinates of anchor nodes 

whose positions are known. Using weights, the proposed method can be refined to 

pinpoint the original position of the removed node Zhao et al. (2013).Numerous 

anchor nodes are needed to determine a node's location using the Received Signal 

Strength Indicator, therefore it's clear why node localisation is so useful in a wireless 

sensor network. In this research, they propose using a genetic algorithm for wireless 

sensor network localization to improve positioning accuracy with a less number of 

anchor nodesKapil Uraiya et al (2014).An anchor node's location can be determined 

by a reach centroid localization algorithm that employs a validation process. Using the 

strength of the signal received, a verification is made. Using the received signal 

intensity, the node's vicinity or real position can be calculated Adeniran 

Ademuwagun et al. (2017). 

 

2.4 Detailed Review on target node Localization 2D 

 

Parulpreet Singh et al (2017) Optimisation for location error is performed using a 

PSO-based algorithm. Numerous military and logistical applications are compatible 

with the proposed algorithm. In addition, range-free multi-hop localization for mobile 

targets or mobile anchors and centralised localization in two-dimensional or three- 

dimensional space may be accomplished with the proposed algorithms. 

 

Parulpreet Singh et al (2017) In their study to sensor node localization in sensor 

networks that operate wireless. The precise localization of nodes is exceedingly 
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important for ensuring the overall superior performance of wireless sensor networks. 

A range of localization algorithms applying connectivity, range information, anchor 

information, computational basis, and mobility basis are examined in this piece of 

literature. 

S. Sira Jacob, K. Muthumayil (2022),This article evaluates the MSRO-NLT, which 

is an altered search and rescue optimization-based node localization method for WSN. 

MSRO-NLT depends heavily on locating unknown nodes within the WSN in order to 

accomplish this objective. MSRO is an algorithm that enhances the technique's 

diversity through the incorporation of chaotic maps, as the conventional search and 

rescue optimisation (SRO) algorithm becomes susceptible to the local optima problem 

as the number of iterations increases. 

R.Manoj Kumar, S.Sridevi (2017)Numerous algorithms pertaining to 2D and 3D 

localization were reflected upon, as well as localization techniques in WSN that were 

divided into 2D and 3D categories. An analysis of several 2D algorithms was 

subsequently conducted in comparison. Without significantly increasing energy 

consumption and computational demands, the localization algorithm must be scalable 

to accommodate extremely large network sizes. 

Obeidat, H., Shuaieb, W., Obeidat, O. et al (2021) Various localization system 

technologies, such as those based on sound, optics, radio frequency (RF), inertial 

navigation, magnetic, satellite, and inertial navigation systems, were reviewed, along 

with indoor localization techniques and wireless technologies. 

Netra vision and Siti Nur (2022)Their research aims to examine and debate the most 

well-known and influential localization algorithms that use range-based and range- 

free localization approaches. It has come to light through surveys that a number of 

algorithms, similar to parametric looping approaches, are now nearing centimetre 

inaccuracy. 

Yassin, A., Nasser, Y., Awad, M (2017)This review focuses on interior localization 

techniques and ideas, however it does cover outdoor localization as well. We also 

cover other localization-based applications in this review, where location data is 

essential for estimation. 

Shweta Ubnare et al (2020) a survey and taxonomy on localization for mobile 

wireless sensor networks. The combination of mobile platforms with wireless sensors 

that have limited resources introduces significant difficulties to localization in 

MWSNs. 
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Funiak et al. (2006) provided a method for localization that uses object tracking to 

determine the positions and orientations of ad hoc cameras within a sensor network. 

Everyone involved in their work operates under the assumption that a single point can 

adequately show any item seen through a camera lens. So, the issue of target 

correspondence is irrelevant to their consideration. 

Aldeen, Yousra Abdul Alsahib S et al (2023) This review presents a DVHLM as a 

solution for WSN localization. When the node's position is dynamic and requires 

attention in real-time, this method is applied. Calculating coordinates, calculating 

distance, estimating the position of the dislocated node, and correcting the estimate 

are the four primary processes of the suggested method. 

Zaidi et al. (2015) A proposed method for Wireless Sensor Networks (WSNs) 

enables localization without considering their range. This approach is designed for 

networks that depend on mobility, as opposed to the typically static WSN networks. 

By using estimation methods and locally available information, it becomes possible to 

determine the location of an unknown node. 

Kanwar and Kumar (2021) designed a system for WSN localization that utilises the 

distance vector hop protocol. Displaced sensor nodes are the target of this 

framework's design. In order to find the nodes in the network that are actually 

involved in the situation, PSO techniques are also used. 

Sharma and Singh (2021) The proposed method suggests using the Received Signal 

Strength Indication (RSSI) approach to determine the location of unknown nodes in 

order to estimate the locations of the sensors. Sensor networks usually depend on GPS 

services for localization estimates, which can result in processing complexity, energy 

consumption, and overhead in Wireless Sensor Networks (WSNs). 

Singh and Sharma (2019) The authors proposed an effective and efficient range-free 

localization approach based on genetic algorithms. They were able to achieve this by 

adjusting the average hop size of anchor nodes and optimizing with the correlation 

factor and hop size using a search method. 

Kaur et al. (2018) The text you provided describes two methods that were inspired 

by nature and implemented using enhanced variations, including two- and three- 

dimensional WSNs. The initial algorithms improve their estimation by utilizing the 

grey wolf optimization method. This technique calculates an estimate in order to find 

the average distance for each hop. 
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2.5 3D LOCALIZATION IN STATIC AND DYNAMIC SCENARIOS 

Yoshida, Masaya et al (2015) To provide a novel method of three-dimensional 

localization using a fleet of mobile robots, one of which can clean the floor. As it 

cleans the floor, the mobile robot might measure RSSI instead of the anchors, 

reducing the load. 

Ahmad, Tanveer, Xue Jun Li (2019) The purpose of this paper is to provide a 3D 

localization strategy that uses the famous loop invariant for division algorithm. With 

the help of the Parametric Loop Division (PLD) technique, which uses reference 

anchor points included in an outer region, parametric points are calculated. 

Ahmad, Tanveer, Xue Jun Li (2020) Based on the famous Social Network Analysis 

technique, this study presented a new 3D localization method that doesn't need node 

synchronisation and instead uses trilateration clustering based on the Closeness 

Centrality. 

Shi et al (2000)presented a way for 3D localization in WSN. Their method of 

localization depends on a portable beacon that sends out ultra-wideband (UWB) 

signals to pinpoint the precise location. Upon receiving these signals, each target node 

calculates the distance to the anchor node using the TOA approach. 

Xu C, Yin C (2021) In this paper, A new approach to cooperative target localization 

measurement using several unmanned aerial vehicles is suggested as a solution to 

these problems. The target localization measurement phase involves a swarm of aerial 

vehicles (UAVs) collecting a plethora of remote sensing photos of a single ground- 

based target. When the objective, the image point, and the optic centre of the camera 

are all collinear, as is required by the principle of perspective representation, 

nonlinear observation equations can be constructed. 

Xu Y, Zhuang Y, Gu J (2015) In their study this paper proposes an enhanced three- 

dimensional localization algorithm for use with existing methods. Building on the 

foundation of standard DV-Distance, we incorporate the concept of coplanarity and 

optimise the placement result using the Quasi-Newton approach. 

Sesyuk, A.; Ioannou, et al (2022) explores and evaluates the present level of 

development in 3D indoor placement. This review covers many methodologies, 

strategies, and technologies that can be utilized alone or in combination to meet the 

cost-effective, high-resolution 3D accuracy standards of today's smart applications. 

Mani, R., Rios-Navarro et al (2023) in order to reduce computational effort, 

memory size, and energy consumption while simultaneously increasing the number of 
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localizable nodes and the accuracy of the data. The approach of a movable anchor 

node to lower hardware expenses is of interest to us. We recommend utilising the 

bounding box method to determine the potential area of the unknown node's location. 

Ahmad T, Li XJ (2017) In their study to provide a parametric loop division (PLD) 

algorithm-based 3D localization approach for WSNs. The suggested method uses a 

network of anchor nodes to determine the exact location of a sensor node inside a 

certain area. The suggested method outperforms the state-of-the-art in localization 

accuracy by repeatedly reducing that region to its centre point. 

Iram Javed, Xianlun Tang (2022) in this review proposes a more refined Savarese 

method to deal with the phenomenon of discontinuity in WSN node localization 

system. Solving a problem of singularity and improving location accuracy, the 

suggested approach is an enhanced version of the traditional Savarese algorithm. 

Suroso, D. J.., Krisnawan (2022) This paper proposes implementing a 3D indoor 

localization system measurement campaign using Wireless-Fidelity (Wi-Fi) range- 

based and range-free methods in a real multi-story structure. Considering that Wi-Fi is 

present in nearly all smart devices and is placed nearly everywhere on Earth, this 

research is necessary. 

G. Chen, X. Meng (2015) In this work, To enhance the precision and reliability of 

positioning, we suggested integrating Wi-Fi fingerprinting positioning with PDR, 

which employs a UKF algorithm. To increase the system's real-time performance and 

lower the resource cost of the location algorithm without reducing the positioning 

accuracy, the improved K-means clustering technique was presented for Wi Fi 

fingerprinting localization. 

Ahmad, T.; Li, X.J.; Seet (2018) This paper proposed an innovative 3D localization 

method that borrows from a popular social network research technique; this method 

doesn't coordinate nodes and, instead, depends on trilateration clustering based on 

proximity importance. 

2.6 PARTICLE SWARM OPTIMIZATION (PSO) 

Kennedy (2011) developed a technique for evolutionary computation known as 

particle swarm optimization. The flocking behavior of birds is the basis for this 

technique. The PSO algorithm is easily implemented and computationally efficient. 

Particle solutions are employed in random locations in the search space. In order to 

calculate the objective function, the particle locations are randomly selected. The 

particles are then allowed to move randomly in the search space [Zhang et al. (2014)]. 
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In a search space, particles are moved, and their particle best positions 'pbest' and 

'gbest'are collected. An improved technique of particle swarm optimization adopted for 

the present extension of EL-PSO, Back Propagation for range based and DV-Hop 

with hybrid techniques (sequential method) optimized with improved PSO, EM-PSO. 

 

 

 

Figure:2.4 Flow chart for improved particle swarm optimization 

 

2.6.1 Difference between PSO and Improved PSO in node localization 

Due to the advantages of using a PSO algorithm in WSN location algorithms, many scholars 

have studied the PSO algorithm which can be applied in the localization of WSNs. In 

reference [2], a PSO localisation algorithm for WSNs based on adaptive inertia weight of a 

particle swarm is proposed. In each iteration of the PSO algorithm, the inertia weight of each 

particle is not the same, and is calculated according to their respective fitness values. The 

simulation results show that the improved method can effectively improve the positioning 

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/sfw2.12027


33  

accuracy, and the resource requirements of WSN hardware platform are not increased. 

In reference [3], aiming at the problem that the error of the traditional DV-Hop 

algorithm is too large and the PSO algorithm is easy to fall into local optimal, a node 

localisation algorithm for the centroid oppositional particle swarm WSNs is proposed. 

The simulation results show that compared with the traditional DV-Hop algorithm, 

the centroid oppositional PSO algorithm has higher positioning precision and better 

effect, and is suitable for scenes with high positioning precision requirements. 

2.6.2 Improved- PSO 

A distributed two-phase PSO algorithm to solve the flip ambiguity problem, and 

improve the efficiency and precision. This study proposes a refinement process to fix 

the inaccuracy caused by flip ambiguity after the first search space is determined using 

the bounding box approach.Additionally, our research aims to localise unknown nodes 

using two or three near- collinear references. 

2.6.3 State of art for experiment approach and validation 

An experimental comparison between RSSI-based and multi-carrier phase difference-

based localization methods have been presented in [ courtesy.S et al. 2023 ]. In the 

experiments, random static points have been selected in a room for validation of the 

methods. Other hybrid localization methods based on the fusion of UWB and BLE 

[Xia.J et al. 2020], combining WiFi and UWB [Monica.s and Borganti.F 2019] or 

WiFi and BLE [Qureshi.U et al. 2019] have been proposed to achieve higher 

positioning accuracy and reduce the cost of the positioning system. Most of the proposed 

methods in this category have been designed for specific use cases or try to improve the 

accuracy under some important assumptions, which usually are not feasible in real-world 

applications. 

 Zafu Gao et al. (2023) in his research about UWB positioning in NLOS-interference 

circumstances, a complete method is proposed for NLOS/LOS classification, NLOS 

identification and mitigation, and a final accurate UWB coordinate solution through the 

integration of two machine learning algorithms and a hybrid localization algorithm, 

which is called the C-T-CNN-SVM algorithm. This algorithm consists of three basic 

processes: an LOS/NLOS signal classification method based on SVM, an NLOS signal 

recognition and error elimination method based on CNN, and an accurate coordinate 

solution based on the hybrid weighting of the Chan–Taylor method. Finally, the validity 

and accuracy of the C-T-CNN-SVM algorithm are proved through a comparison with 

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/sfw2.12027
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traditional and state-of-the-art methods. (i) Focusing on four main prediction errors 

(range measurements, maxNoise, stdNoise and rangeError), the standard deviation 

decreases from 13.65 cm to 4.35 cm, while the mean error decreases from 3.65 cm to 

0.27 cm, and the errors are practically distributed normally, demonstrating that after 

training a SVM for LOS/NLOS signal classification and a CNN for NLOS recognition 

and mitigation, the accuracy of UWB range measurements may be greatly increased. (ii) 

After target positioning, the proposed method can realize a one-dimensional X-axis and 

Y-axis accuracy within 175 mm, and a Z-axis accuracy within 200 mm; a 2D (X,Y) 

accuracy within 200 mm; and a 3D accuracy within 200 mm, most of which fall within 

(100 mm, 100 mm, 100 mm). (iii) Compared with the traditional algorithms, the 

proposed C-T-CNN-SVM algorithm performs better in location accuracy, cumulative 

error probability (CDF), and root-mean-square difference (RMSE): the 1D, 2D, and 3D 

accuracy of the proposed method is 2.5 times that of the traditional methods. When the 

location error is less than 10 cm, the CDF of the proposed algorithm only reaches a value 

of 0.17; when the positioning error reaches 30 cm, only the CDF of the proposed 

algorithm remains in an acceptable range. The RMSE of the proposed algorithm remains 

ideal when the distance error is greater than 30 cm. The results of this paper and the idea 

of a combination of machine learning methods with the classical locating algorithms for 

improved UWB positioning under NLOS interference could meet the growing need for 

wireless indoor locating and communication, which indicates the possibility for the 

practical deployment of such a method in the future 

 

2.7 Conclusions and Summary 

 

➢ According to the literature review, there are a few parameters that need 

further investigation. These are listed as following: - 

➢ Accuracy for Localization is the most significant value. Accuracy is the 

maximum difference from the actual location of a sensor node during the 

location process. It is a challenge to achieve the maximum precision or 

an exact node 

position when the localization algorithms are being used. Thus, to get 

localizing accuracy one must use some optimization algorithms. 

➢ UWB signals have an extremely high precise location and high time 

resolution. This technology has an excellent multipath effect with low 
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system complexity and power consumption, which can compensate for 

other wireless technologies' shortcomings. 

➢ Furthermore, we offer a comparison of localization methods, highlighting 

their benefits, drawbacks, prices, and limitations. The localization 

technique, with a focus on low hardware cost and high accuracy, is 

Distributed RSSI based technique, it does not require any extra hardware 

and give much accurate results. 

➢ The position of the mobile node in the challenging environment was also 

determined using this method. Future work includes the selection of 

Routing technique for WSN in harsh environments and constructing a test 

bed for localization and routing purposes to increase the life span of WSN. 

➢ Scalability in the context of the proposed UWB localization techniques 

hinges on several critical factors, primarily the ability to maintain accuracy 

and efficiency as the network expands. Computational complexity emerges 

as a key concern, as the iterative refinement process and ensembled learning 

methods demand significant processing power, potentially becoming a 

bottleneck in larger networks. Efficient data aggregation and processing are 

also vital, requiring robust algorithms to handle the increased volume of 

localization data. Furthermore, communication overhead between nodes 

must be minimized to avoid delays in data transmission, directly impacting 

the accuracy of time-sensitive measurements like TDOA. Finally, the 

system's adaptability to dynamic scenarios, including node mobility and 

environmental changes, is essential for scalability, ensuring consistent 

performance regardless of network size or complexity. 

➢ Ultra-Wideband (UWB) localization, while promising for its precision, 

faces distinct challenges that significantly impact its reliability, particularly 

in complex indoor environments. 1 Multipath propagation, where signals 

reflect off surfaces and arrive at receivers via multiple paths, introduces 

significant errors in time-based measurements, distorting accurate distance 

estimations. 2 Non-Line-of-Sight (NLOS) conditions, where obstacles 

obstruct the direct signal path, further exacerbate this issue, leading to 

signal attenuation and increased propagation delays. 3 These UWB-specific 

challenges, especially prevalent in dynamic and cluttered indoor settings, 

necessitate robust algorithms that can effectively mitigate multipath 
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interference and NLOS effects to achieve reliable and accurate node 

localization, thereby forming the core problem statement addressed in this 

research. 

2.8 Critical analysis on approach 

The analysis focuses on how these technologies enhance accuracy and efficiency in 

indoor positioning for wireless sensor networks (WSNs). EL-PSO and BPNN-PSO 

optimize positioning by leveraging advanced algorithms to process data more 

effectively. PSO improves parameter tuning, while ensemble learning and BPNN 

refine predictions, ensuring robust performance in complex environments. Optimized 

Ultra-Wideband Indoor Positioning Technologies for WSNs using PSO with 

Ensemble Learning (EL-PSO) and Back Propagation Neural Networks (BPNN-PSO) 

for Large Scale Methods" presents a promising approach to enhance UWB localization 

accuracy, particularly in expansive indoor environments, by leveraging sophisticated 

optimization algorithms. While these methods offer potential benefits such as 

improved precision, robustness against noise, and adaptability to complex settings, 

they also introduce challenges related to computational complexity, energy 

consumption, and training data requirements. Real-world implementation necessitates 

a careful balance between accuracy gains and the practical constraints of resource-

limited sensor nodes, emphasizing the need for further research into efficient 

implementations and real-time performance optimization to make these technologies 

viable for widespread WSN deployment.
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CHAPTER-III 

RANGE-BASED ERROR CONTROL MODEL USING UWB FOR 

ESTIMATION OF OPTIMAL NODE LOCATIONIN HOMOGENEOUS 

DYNAMIC WSN WITH OPTIMAL POSITION 

 

3.1 Introduction: 

 

In this chapter, we present a range-based localization methodology for sensor node 

localization. We use maximum probability distribution functions to express the 

problem and employ an RSSI-based Time Difference of Arrival (TDOA) 

measurement model along with the Chan algorithm to find the coordinates of 

unknown nodes. Additionally, we develop a novel and precise localization algorithm 

for WSNs using ultra-wideband. Our study utilizes two hybrid localization algorithms, 

ELPSO and PSO-BPNN (Back-propagation neural networks optimized by particle 

swarm optimization), and compares their error optimization accuracy through 

simulations. Our results show a consistent improvement in localization accuracy 

compared to conventional algorithms available in the literature. 

To construct an effective NLOS detection model, real-world data with varying 

degrees of multipath effects and range errors is required. This work employed the 

EWINE UWB LOS and NLOS datasets for LOS and NLOS data sets, respectively, to 

build the model. This data set was collected using ultra-wideband channels Cn 

number 2, which have a bandwidth of 499.2 MHz and a centre frequency of 3.9936 

GHz. Results showed that preamble lengths up to 4096 enhanced the average 

accuracy of first-path signal recognition. 

The methods used in the present research have following features with novelty 

➢ To solve the problem of finding the source of the signal in a wireless sensor 

network, a new method for localising sensor nodes utilising range-based 

localization techniques has been proposed. 

➢ Distance calculation using TDOA measures has been taken from the literature, 

and simulation has been carried out for 2D and 3D scenarios with improved Chan 

algorithm. The Chan algorithm could attain all TDOA by measuring and 

obtaining a specific analytical solution; after this, a weighted least squares 

algorithm was used to estimate where the nodes will be measured. By enhancing 

the original Chan algorithm's utility, this method discovered any mobile terminal 
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inside the base station signal coverage. 

➢ The enhanced PSO technique uses a bounding box method to decrease the initial 

search space, however it is extremely energy intensive. 

➢ Two methods for determining distance in two- and three-dimensional spaces are 

the least square (LS) and the tetrahedron (TD) algorithms. 

➢ In addition to optimising the computed positions of the target nodes, two 

optimisation methods, namely ELPSO and BPNN, 

3.1.1 Ensemble learning based Particle swarm Optimization 

PSO theory has been divided into four main categories by recent studies: optimization 

problems with a single objective in continuous space, discrete space optimization 

problems, and discrete space optimization problems. single section optimization 

problem. A new algorithm called ELPSO combines GPSO, LPSO, and BBPSO to 

improve efficiency and effectiveness in finding the global optimum in hyperspace. 

The algorithm divides the population into three equal subpopulation groups. It uses 

guiding rules for particles to search for the global optimum. In the original PSO, 

particles learn from their historical best experiences and their neighborhood's best 

experiences. GPSO (global version) and LPSO (local version) algorithms are 

categorized based on how the neighborhood chooses its best experiences. GPSO takes 

the nearest particle's experience in global as the experience of its neighboring particle, 

while LPSO selects the best particle's experience from its local neighborhood based 

on a defined topological structure. BBPSO was proposed to improve precision and 

reduce parameter tuning complexity. BBPSO cancels velocity items, and uses random 

sampling of the Gaussian distribution to determine the particle's position. ELPSO 

combines these three models to avoid premature convergence and maintain population 

variety. The associated velocities for all PSO variants have been modified according 

to a new scheme. 

Vi= w x vi+c1rand1i X (pbesti-Xi) +c2 rand2i X (gbest-xi)+c3 rand3i x (superbesti-xi) 
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Figure:3.1 Flow chart for EL-PSO steps of Optimization 

 

3.1.2 BPNN-PSO Optimization 

 

The use of Neural Networks in classification is among its most important applications. 

Splitting neural networks into two modules allows for high accuracy. Output accuracy 

is generally proportional to the complexity of a neural network's architecture. By 

combining expected values with actual positions, the BP neural network can create a 

set of new positions for unknown nodes to simulate. 

All reference locations are used to gather training measurements, and one model is 

learned for each anchor. Based on its historical data and the data now provided by 

sensor A2, this neural network models the data collected by a malfunctioning sensor 

A1 as it fails. Here, we fed the neural network a bias, along with its present and 

historical positions and distances. A pair of neurons in the output layer estimated the 

node's location. The X and Y coordinates for each interaction step were computed 

using the neural network. X and Y coordinates, their historical values, and the 

distances detected by sensor r2 were all subjected to time-series correlations in order 
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to assess their linear temporal linkages. We observed a correlation by comparing the 

registered data from one sensor to the matching measured location of the second 

sensor. 

3.2 Range based localization in selected region 

An Ultra-Wideband technology-based system for wireless sensor network 

communication and location monitoring is the intended outcome of this research. We 

also evaluate tracking and range estimation techniques according to functional design, 

exchange of data, objective mobility, and location update latency. 

Figure :3.2 Anchor node representation 

 

Figure:3.3 Represents the mobile nodes (target nodes) and the search space with 

4 anchor nodes 

During simulations and measurements, the top floors of a 10m x 10m office 

building were used as a reference environment. Figure 3.3 illustrates the 

locations of beacons in the cabins, with 1 representing a beacon. 



41  

 

Figure:3.4 Anchor beacon placements in the selected Indoor area 

 

 

3.2.1 MEASUREMENT PHASE (TDOA) 

 

Time difference of arrival (TDOA) is a widely used range method that is second only 

to time of arrival (TOA) in popularity. The only two requirements for this method is 

time of reception and speed. There's no need to know when the communication was 

made to the intended recipient or when it was received. Distance between two 

variables and a goal can be calculated using equation 1 by comparing the times at 

which they arrive. 

……………………..(1) 

In this equation, c represents the speed of light, t is the time interval between two 

different points of reference and  is the time difference of arrival. 

Equation 2 can be used to get the travel distance. 

 = ……………….(2) 

Where X1 and Y1 are the known locations of the beacons, and X2 and Y2 are also 

known locations. By applying nonlinear regression to this equation, a hyperbolic 

equation can be obtained. 

 

3.2.2. Least Square and Method of Estimation: 

 

The TDOA-based 2D objective localization is demonstrated in a line-of-sight scenario. 

It was decided to use four base stations (BS1-BS4) as fixed points. The transmitter is 

broadcasting a signal (t) to the nearest base station, which is the antenna. 
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= 

A signal is being transmitted from the transmitter (t) to the nearest base station (BS). 

For each iteration of i=1, 2, 3, 4, 5,... N, the signal N+1 is received by BS (i), and Yi 

(t) reflects the time of the positioned anchors. 

The received signals are given by equation 3 

……………(3) 

an invisible sender and a mysterious recipient, located at the coordinates depicted in 

the diagram below. The TOA-i and (x, y) can be estimated using GPS and the n-least- 

squares framework. Pair wise comparison of the received signals can be used in the 

absence of a known reference. Pair wise estimation can be performed using a 

correlation function, as shown in Equation 4, where is the arrival time coordinate 

from the base station and i,j are the distance representatives along the x and y axes, 

respectively. 

Δd(i,j)=ν(τi- τj), 1≤i<j ≤n ..................... (4) 

Where v is the final velocity, the speed of light, or the flow of a liquid. Here, N is the 

total number of receivers and i, j are an enumeration of all possible configurations of 

K pairs of receivers (where K is the total number of receivers, as given by the matrix 

equation) 5. 

k= ( ) .................................... (5) 

 

The coordinates (x, y) along the d(i,j) axis make up a waveform. Assume for the time 

being that the distance between the two receivers is d2, and that they are in direct line 

with one another. If we know the values of x and y, we can simplify d by adding the y 

differential to the x differential as D/2. So, we may find the hyperbolic function by 

solving equations 6 and 7. 

d2 .......................................................................................... (6) 

d1 = ............................................................................................... (7) 

Then the ∆d calculated with the equation 8 where the h differential D also includes 

∆d = d2 – d1 = h (x, y, D) ......................... (8) 

The equation 10 can be written by simplifying and rewriting equations 8 and 9. 

Since h(x, y, D) is the hyperbolic function in global coordinates, we may write the 

differential in terms of the diagonal distance using Eq. (9). 

D ….. …….. (9) 

∆d= ................................................................................................. (10) 

The equation 11 can be written to simplify for hyperbola centroid will be 

- = - =1……………… (11) 
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For a generic receiver position in the coordinate space, all that's needed is a 

straightforward transformation of the hyperbolic function (5) from local to global 

coordinates (where sin and cos represent opposite and adjacent coordinate values, and 

is the angle of momenta written out in equation 12). 

 ………………… (12) 

where X0 = (Xi + Xj) /2, Y0 = (Yi + Yj)/2 locates the center point of the receiver pair, 

with i, j represents center co-ordinate values. 

There are N (N > 3) sensor nodes, the coordinates of the sensor nodes are known, 

which are Si= (ai,bi)T，i 1,2,...,N  , where [i ]t denotes the matrix transpose. It is 

p(x,y)T for the target. If the sensor can be attached to two anchors, the formula will be 

as follows if it doesn't fall within the above-mentioned number of instances. 

Considering the measuring distances as (ai, bi) represents to x and y coordinate with 

difference matrix (12), the equation can be rewritten as 13, 

The coordinates of the N sensor nodes, denoted as Si= (ai,bi)T，i 1,2,...,N  , where 

[i ]t is the matrix transpose, are known. Let N > 3. The target's optimal function is 

p(x,y)T. If the sensor is capable of being fastened to two anchors, and the number of 

occurrences does not fall within the range specified above, the formula will be as 

follows. The equation can be simplified as 13 by considering the measurement 

distances as (ai, bi) represents to the x and y coordinates using the difference matrix 

(12). 

 

There are N (N > 3) sensor nodes, and we have their coordinates: Si= (ai,bi)T ， i 

1,2,...,N  signifies the matrix transpose. For the aim, use p(x,y)T. If the sensor has 

the ability to be linked to two anchors but doesn't fit into the aforementioned number 

of instances, the formula is as follows. The equation can be simplified as 13, where x 

and y are the coordinates and (ai, bi) are the distances measured. 

………………… (13) 

With the error verification  equation 14 written for the ith coordinate as 

 ………………….. (14) 

From the above matrix, the equation 15 written for  for sensor coordinate as 

……………….. (15) 
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The diagonal distance transpose matrix for sensor to node location written in the 

equation 16 as 

………………….. (16). 

To determine the coordinates (xi, yi) at which the minimum distance to the anchor is 

achieved, a least-squares method was created using all of the nearby anchors. A 

simple formula-based geometrical method for placement can be used to create 

numbers. In this situation, the connecting line between the two places is the first to be 

discovered. The equation 17 written as is used to determine the x-coordinate. 

 …………………….. (17) 

The equation of the least square line, which we get after solving for a, is y = a + bx, 

where the values of an in equation (18) are 

 And for b it is  ……. (18) 

The sensors first obtain location estimations, then calculate co variances by replacing 

these values with neighboring positions and positional distances. The sensor's location 

is a key factor in determining how well the various distance estimates may be 

combined. Take the value of the covariance, denoted by i, as an example; the 

estimated error can be placed at i1. The smallest error e1 is shown as the 

combination's final result in Figure3.5. 

3.2.3. Tetrahedron 3d Method for Estimation 

In order to determine the largest anchor node, the unknown node first records the 

RSSI value of all the anchor nodes within communication range, sorts the values from 

largest to smallest, and then uses the largest value. 

Figure :3.5 Distance Calculation between anchor and moving target nodes 
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The RSSI value is obtained by selecting anchor nodes from the network and 

communicating with them via radio and unknown nodes. In order to build a 

tetrahedral network, the reference nodes must be used to select a set of anchor nodes. 

Anchor nodes A1, A2, A3, and A4 are well-known anchors. Therefore, the distances 

between them are easily determined. After that, we find the radii, or distances: MA1, 

MA2, MA3, and MA4. 

 

 

 

Figure: 3.6 Structure of 3D- tetrahedron with- 4 anchor nodes 

Calculate the volume of A1, A2, A3, A4, MA1A2A3, MA1A2A4, MA1A3A4, MA2A3A4, 

the volume value V is as V1, V2, V3, V4, respectively. If ( (V1+V2+V3+V4>V), you 

can determine the M in the outside of the tetrahedral A1A2A3A4, discard the modified 

tetrahedral. The formula to calculate the average distance is (1/N) ∑R(i) where N is 

the number of measurements and R(i) is the distance between the anchor and target 

nodes. When all the measurements are added up, the result is the entire distance, and 

the 1/N factor takes it into consideration. This formula gives a precise depiction of the 

distance between the two nodes by considering the average distance between the 

anchor and target nodes over a specified set of measurements. A more trustworthy 

outcome is achieved by averaging the measurements, which reduces the impact of 

data noise. The Cartesian coordinates of the four vertices are, (x1, y1, z1), (x2, y2, z2), 

(x3, y3, z3), (y4, x4, z4), rij is the distance between the vertices I and j. Then the 

formula for the calculation of its volume is as follows: 

RSSI =  ……………… (19) 

Then the calculation of its volume is as derived by the matrix equation (20) 
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V=  = =  ………………(20) 

 

This process allows for calculating the centroid of each group of 4 to 

accurately measure the distances between the centroids and determine the size of the 

tetrahedron. After this calculation is complete, a new set of centroid coordinates is 

then used to form a new set of tetrahedral, with the remaining centroid coordinates 

being included in the next iteration. By accurately calculating the distances between 

the centroids, we can determine the size of the tetrahedron and create new sets of 

tetrahedra with the remaining centroid coordinates. This allows us to determine the 

centroid of each group of 4 efficiently and ultimately create a more precise model. 

Only two or three centroid coordinates remain. By determining the size of the 

tetrahedrons and their centroids, we can accurately calculate the distances between 

the centroid coordinates and divide the 3D space into smaller equal parts. This allows 

us to more accurately calculate the final node estimations, as we can identify the 

exact location of each centroid in the 3D space. In this scenario, we will take into 

account a communication distance of 10m, a tetrahedral shape with four anchor 

nodes chosen at random, and fifty unknown nodes to see if there are enough to 

filter out position inaccuracies. When comparing the distances between the anchor 

and unknown nodes, we may utilize centroid location estimates to see if any 

of them are within the 10m communication distance. To improve the accuracy of 

the final node estimates, it is possible to exclude any unknown nodes that are closer 

than that distance. Due to the increased likelihood of nearest neighbors for non- 

localized nodes, localization ratios are high. 

The localization ratio (LR) is measured by equation 21, where Nlis the number 

of localized nodes andNt is the total number of non-localized nodes. 

LR= Nl/ Nt ……(21) 

In this way, the array next [0. N-1] can represent the index of a different node within 

the same tetrahedron (or -1 in the absence of such a node) by means of the following 

[p]. The information will be kept in a data structure called a mesh, and the tetrahedron 

will be the first node in a list of points. 

The localization error per localized node is calculated by equation 22. 

L error= /NL .............................. (22) 
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Localized nodes in a network are the nodes whose estimated coordinates (xi,yi,zi) in 

virtual space are close to their actual coordinates (ui,vi,wi) in actual space, thus 

allowing the network to form a localized topology. The algorithm uses a heuristics- 

based approach which calculates the distance between the estimated coordinates and 

the actual coordinates. If the distance is within a certain threshold, the node is 

considered to be localized. The algorithm then moves on to the next node in the 

network and repeats the process until all the nodes have been localized. 

 

ALGORITHM1: TARGET NODE LOCATION (2D/3D) 

1. Input: define objective function (LS/ Tetrahedron) 

2. Output: Localization data 

3. Initialize: anchor placement-P 

4. Number of targeted nodes-N 

5. Define localization measured co-ordinates (xi, yi) (xi,yi,zi) 

6. Activate sensor nodes (anchors) 

7. For i= least co-ordinate 

8. For anchor Pi≈ check the least value of target 

9. If P<Pi, then fix the value. 

10. If not repeat steps 5,6,7 

11. Run for the least coordinate Pi 

12. End if 

13. Evaluate 

14. Update for measured values 

15. End for 

16. End. 

 

 Least Squares is a mathematical optimization technique used to find the best-fit solution 

to a system of equations when there are more equations than unknowns. In localization, 

it minimizes the sum of the squares of the differences between the measured distances 

(or TDOA-derived distances) and the estimated distances based on the node's position. 

LS is often used to solve the set of non-linear equations that arise from range or TDOA 

measurements. It provides an initial estimate of the target node's position based on the 

measured data. 
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The tetrahedron method is a geometric approach used for 3D localization. It utilizes the 

distances between the target node and four or more anchor nodes to define a tetrahedron. 

The target node's position is estimated based on the intersection of the surfaces of the 

tetrahedron. 

3.3 UWB IMPLEMENTATION 

 

UWB prevents data loss due to multipath fading. Additionally, UWB's signal-to- 

noise ratio is so high that it can pinpoint the location of an object despite ambient 

noise. Furthermore, the signal is perfect for usage indoors due to its ability to pass 

through walls and other obstructions. NLOS and multi path propagation still have 

negative effects, although they are less severe when spread spectrum has high 

resolvability. This is because UWB's wide bandwidth allows for a high degree of 

resolution when it comes to signal propagation. TDOA readings were used to 

establish initial distances in this work. As its name implies, TDOA refers to the time 

gap between two separate arrivals. Since the speed of sound is always the same, the 

distance between two points can be determined by measuring how long it takes for a 

sound to travel from one location to the other. It is possible to properly determine the 

distance between two sites using this metric, which is very helpful when working with 

acoustic signals. Both two- and three-dimensional scenarios have been simulated 

using an enhanced Chan algorithm to locate target nodes. Both the speed of sound and 

the time it takes for sound to travel are factors in the Chan algorithm. This is carried 

out so that an accurate distance between two points can be determined. It can also take 

into account obstructions and the earth's spherical shape. Kalman filter is used to 

remove the energy disturbances that have been incorporated. The integration of Time 

Difference of Arrival (TDOA) measurements into the ELPSO (Ensemble Learning 

with Particle Swarm Optimization) and BPNN-PSO (Back Propagation Neural 

Network with Particle Swarm Optimization) algorithms is fundamental to their 

operation in UWB-based Wireless Sensor Networks (WSNs). Initially, accurate 

TDOA measurements are obtained by precisely recording the arrival times of UWB 

signals at multiple, synchronized anchor nodes, from which time differences are 

calculated. These differences define hyperbolas that constrain the potential location of 

the target node. Subsequently, these TDOA values serve as crucial input data for the 

optimization algorithms. Within the ELPSO framework, TDOA measurements are 

used to construct a fitness function, which guides the PSO's search for the optimal 

node location. The algorithm iteratively adjusts the positions of particles, each 
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representing a potential location, to minimize the discrepancy between measured and 

predicted TDOA values. The ensemble learning aspect further refines these estimates 

by combining results from multiple PSO instances, enhancing robustness. In contrast, 

BPNN-PSO employs TDOA measurements as input features for a neural network, 

which is trained to model the complex relationship between TDOA and node location. 

PSO is then utilized to optimize the neural network's weights and biases, improving 

its accuracy. This hybrid approach leverages the neural network for initial location 

estimation, followed by PSO-driven refinement. To enhance the reliability of TDOA-

based localization, a Kalman filter is often incorporated to mitigate noise and errors 

inherent in the measurements. Furthermore, both ELPSO and BPNN-PSO can be 

designed to address challenges like multipath propagation and Non-Line-of-Sight 

(NLOS) conditions by integrating models of these effects into their optimization 

processes. However, successful implementation hinges on accurate time 

synchronization between anchor nodes, optimal anchor node geometry, and careful 

consideration of the computational complexity, especially when deploying these 

algorithms on resource-constrained sensor nodes. 

 

3.4 IMPLEMENTATION OF CHAN ALGORITHM 

 

The TDOA data collected from the nodes is utilized by the Chan method to estimate 

the nodes' locations. Then, the predicted node positions are refined using a weighted 

least squares technique to minimize the difference between the measured and 

calculated TDOA values. This allows the program to accurately determine the 

locations of the nodes. The 2D/3D Chan algorithm calculation method is employed to 

improve the original Chan algorithm by enhancing one of the mathematical formulas 

and the two matrices. The original Chan algorithm's accuracy is limited to the area 

bounded by each base station. However, with the enhanced 2D/3D Chan algorithm, 

the coordinates of points outside the base station area can also be determined, making 

the algorithm more precise and efficient. Additionally, the improved algorithm can 

calculate the coordinates of points in higher dimensional space, expanding its 

applicability to various scenarios. To address this issue, we propose a least-squares 

method to identify measurement errors. By applying the weighted least squares 

method to the Chan algorithm, we derive positive and negative values for x, y, and z, 

based on the initial and subsequent measurements. This method provides a more 

accurate and reliable way of determining the location of a mobile terminal than 
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, 

i 

traditional methods, as it takes into account both the first- and second-time 

measurements. The location precision is increased by using a weighted least-squares 

approach with the Chan algorithm. In addition, this technique can pinpoint any mobile 

terminal within the range of the base station's signal, making it ideal for a wide 

variety of uses. The equation (23) is an improvement on previous methods of 

calculating the distance between the base station and the mobile terminal 

.…… (23) 

(xi, yi, zi) is H is the mobile terminal's height as determined by air pressure, and the 

coordinate of the ith base station is... Since TDOA is a three-dimensional number, it 

takes into account not only the time difference but also the height difference as 

measured by air pressure. Both the mobile terminal's height (H), determined by 

measuring air pressure, and the base station's three-dimensional coordinates (xi, yi, zi) 

are factored into the equation. Because it takes the vertical distance between the two 

sites into account, the distance between the observed node and the standard base 

station may be more accurately calculated nowadays. 

d 2= (xi − x)2+ (yi− y)2= Ki – 2xix − 2yi y + x2+ y2 ….. (24) 

where, Ki= x2+ y2, di1 is represents the difference in distance between the label and the 

ith base station. 

With i=3, it is possible to take two measurements, use equation transformation to 

create two equations involving two variables, and then solve for the target's required 

location. 

When i 4, let R2= x2+ y2, When the true location of Za0 is determined to be (x 0, y 0, 

R0), the error vector () for the variables can be established. There are no known 

targets in the equation 25, which is written as 

= H-Ga Za ................................. (25) 

In this case, H represents the node's 3D height computation, Ga stands for the node's 

coordinates, and the distance matrix is expressed as follows: 

 

 

,  = (26) 

 

 

Let the measurement error of each reference node be I , then error value of ith node 

calculated by using the equation 27. 
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a a a 

φi=di
2-(di

0)2=(di
0+δi)2-(di

0)2=2di
0δi+δi

2 (27) 

Referencing nodes have real values represented by di0. Weighed least squares (WLS) 

can be used to estimate Za in the first instance. If T is the arrival time, then equation 

28 can be written as follows: for each Ga, T can be expressed as: 

Za=(G Tø-1G )-1G Tø-1H ….(28) 

Since the identity matrix is unknown, it can be used in the first estimation instead of 

26. Simplifying equation 29 allows us to verify the projected value of Za as 

Za= (Ga
TGa)-1Ga

TH ….(29) 

The connection between the object's estimated and real values can now be expressed 

using this method: 

Za1=x0+e1 

Za2=y0+e1 

Za3=R0+e1 

The formula is transformed into the desired error value using equation 30, where e1, 

e2, and e3 are estimating errors. The formula is transformed into the desired error 

value using equation 30, where e1, e2, and e3 are estimating errors. 

Let φ1=2xe1+e1
2≈2xe1, φ2=2ye2+e2

2≈2ye2, φ3=e3 (30) 

then for N number of node error deviation finalized and rewritten in equation 31: 

φ’=H’-Ga’ ZP (31) 

The transpose matrix with time differential error vector Zpwritten for equation 32 

 

……(32) 

 

T I=123 is the error vector of Zp. The estimated value of Zp is calculated using the 

equation 33 as improvement. 

Zp=(Ga’Tø’-1Ga’)-1Ga’Tø’-1H’ (33) 

The location result obtained by the two WLS calculation referred to the equation 34: 

Z=±√Zp  (34) 

There should be no difference in the sign of the selected (x, y, z) in Zp and in the Zp 

selected inside the placement region as a solution to a problem. 

3.4.1 Filtration: Kalman filtering is an iterative procedure that begins with 

forecasting and concludes with improvement. As part of the forecasting procedure, 

estimates of several factors will be made. The update process, on the other hand, 

entails bringing data up to date in light of new developments. What happens in a 

Kalman filter is described below. 
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An N beacon node is placed at various times in the field in order to determine the 

mobile node's range signal. You must know (Xn,Yn), where n = 1,..., N, to determine 

the location of the nth beacon node. Mobile nodes move randomly in a 2D plane, with 

state vectors x(k) = [x(k) y(k)]. Applying this formula to a mobile node allows us to 

characterize its location and speed at each time step. At the time step denoted by k, 

the values 1, 2, 3, 4, etc., are equivalent. The value of x(k) changes at each iteration 

interval. The (xm, ym) coordinates of a beacon are from (m = 1) to (m = M) because 

there are M beacon nodes in the network. With the state vector x(k), a mobile node 

randomly moves this two-dimensional plane. The locations and velocities of the 

mobile nodes are represented by X(k) and Y(k), respectively, at every time step k = 

1,..., K. Equation 35 describes the change in position X(k) of a mobile node at time 

step k. 

k, 

In which circumstances as an example, consider the relationship between the ith 

hour's temperature (ti) and humidity (hi): the correlation coefficient l (T, H) is the 

value of this relationship. The average humidity levels are denoted by T and H, 

respectively. You may express the filtration in terms of equation 37 and the node's 

position in terms of equation 36, where Pk is the post estimate error covariance. 

Humidity and temperature are filtered along the x-vector in the following way: 38, 

where H is the relationship between the state Xk and the measurement Zk. 

 

 

The position node can calculate after filtration by using the simplified equation 39 
 

To determine the accuracy, use the formulas 40 and 41 for the temperature at the node, 

TN for the number of nodes, and the filtered value; to get the precision, use the 

formulas 42 and 43 for the redundant verification. Algorithm 3 offers the algorithmic 

flow for localization with filtration. 
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3.4.2 Difference between Chan and improved Chan algorithm 

After obtaining the first patch of (x,y) they can reiterate in the calculations again for 

more  improvement. This can take from 1 to 4 cycles in many of the cases. 

we can observe that the resulting values of (x) and (y), are dependent on the 

value of (R1) which is the distance between the home base transceiver station and the 

mobile station. We p r o p o s e  a non- iterative Chan-Ho that adopts a different 

term that improves the accuracy. We c o n s t r u c t e d  a new value, which 

utilizes the different values resolved from two base stations t r a n s c e i v e r s , to 

estimate the right distance and therefore obtain the most accurate position.  This 

value is derived from an expression that relates the error on each direction (vertical 

and horizontal) to the distance obtained, using the following expressions: 

.…..(44) 
 

To generate a symmetrical matrix, we will multiply the matrix by its transpose. Then 

to understand the characteristics of this matrix we will obtain the eigenvalues, by 

calculating the trace; which will lead to the nearest accurate solution. 

The final value obtained will be corrected by taking the square root of the arithmetic 

mean of the trace, as following: 

 

 

 

 

 

 

 

 

 

 

.…….(45) 
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Algorithm -2 Position optimization with improved Chan algorithm 

1. Input: Measured target co-ordinate 

2. Output: Measured data deviation 

3. Initialize: Update anchor node list, Checking Pi, transmission 

1(a). Checking the node ID 

4. Sending feedback signals 3. Establishing relevant matrices 

3(a). Establishing the estimation matrix 

3(b). Establishing the distance matrix 

5. Constructing the approximation matrix 

6. Repeating the preceding steps until all matrices are formed 

Output Position of the non-anchor node 

(1. Picking up the distance range from the anchor node list 

2. Calculating the final distance matrix via Ls = Tsp. 

3. Positioning the transmission node. 

4. Filtration) 

7. Return the position information of the target sensor node as the outcome 

8. End if 

9. Evaluate the position 

10. Update best position Pi 

11. End for. 

12. End. 

 

 

3.5 FLOW CHART FOR PROPOSED METHODS 

Nodes in the network that are localized to NL have actual coordinates of (ui, vi, 

wi) and estimated coordinates of (xi, yi, zi) in virtual space. Here is the 

computational flow for localizing target flow nodes: 
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Figure: 3.7 flow chart for proposed system of optimization 

This enables for more precise estimations of node coordinates and less inaccuracy 

due to interference.  An "improved" Chan algorithm, when integrated with ELPSO and 

BPNN-PSO, significantly enhances the localization accuracy and robustness of UWB-

based WSNs by providing more reliable initial TDOA-based position estimates. This 

improvement, likely achieved through noise mitigation and NLOS error correction, 

translates to a better starting point for the computationally intensive ELPSO and 

BPNN-PSO algorithms, allowing them to focus on refining the location with greater 

precision. By reducing computational complexity and enhancing the quality of initial 
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estimates, the improved Chan algorithm facilitates faster convergence and improved 

overall localization performance, particularly in challenging indoor environments.  

3.6 OPTIMIZATION WITH IMPROVED PSO: 

A recalculation of measurement for node localization using improved PSO compared 

to traditional PSO with Ensemble learning. This approach is beneficial because it can 

effectively explore the parameter space by using multiple particles to explore different 

parts of the space. In addition, the system is able to make more informed decisions 

using the data acquired by the particles thanks to the Ensemble learning method. 

Because of this, the algorithm is now more trustworthy and precise. The placement of 

particles in the parameter space indicates potential solutions to the design 

optimization challenge. Finding local optima would have been impossible without the 

algorithm's exploration of the parameter space. Ensemble learning also allows the 

algorithm to weigh the different particles according to their performance and make 

better decisions. This helps the algorithm to come up with more accurate and reliable 

solutions than it would if it was only using a single particle. A particle's velocity is 

determined by its movement across the parameter space. In addition to requiring 

fewer parameters and faster convergence, the PSO approach is relatively 

straightforward. As part of algorithm 3, the mass-less particle swarm is used to find 

the optimal location. 

 

Assuming m particles are searching for the best solution in D-dimensional space using 

PSO, the location of the ith particle in the swarm is determined as Xi = (Xi1, Zi2, 

· ··············· XiD). Each particle searches for the global optimal solution within the 

search space independently. The location of the ith particle is determined according to 

the position of its neighbors, as well as its own velocity, which is updated at each 

iteration. Every possible location is evaluated using the objective function to 

determine whether the particle's position is correct. 

The optimal location of the particle is: Pbest(i) = (Pi1, Pi2, ············ PiD), record the 

optimal coordinate currently searched in the entire particle swarm as: Gbest = (Pg1, 

Pg2, ··········· PgD). In dynamic mode of node localization,the velocity of the particle 

defined as 

Vid=w*Vid(t)+c1r1(Pbestid(t)-xid(t)+c2r2(gbestid(t)- xid(t)  (47) 
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Algorithm-3 Pseudo code for optimization improved PSO- 3D 

%% Output: the initial calculated value of the target position (x,y,z) 

1. For 1 ≤ i ≤ N Do %% i is each particle 

2. Initialization of particles 

3. End 

4. Do 

5. For 1 ≤ i ≤ N Do 

6. If fitness (Xi) > p-best i Then p-best-i = Xi; 

7. End 

8. If %%p-best-i is the best position of i-th particle 

9. End 

10. For g-besti=opti{p bestii1≤i≤N}%% optimum value 

11. For 1 ≤ i ≤ N Do 

12. If fitness (Xi) > p-best i Then p-best-i = Xi; 

13. Update particle velocity and position according to the equation-9 

14. If pbesti>gbesti 

15. Then g best i = p best i; 

16. End if 

17. End for 

18. End 

 

 

Algorithm -4 Optimization of nodes using improved Particle swarm optimization 

1.Initialization of swarm size i.eno.of particles inside the selected area. Selected 

anchor nodes measuring target node for localization. 

2 Evaluate the fitness function of each particle If fitness (Xi) > p-best i 

3. Select the g- best among all the p-best 

4. Update g- best If pbesti>gbesti 

5. Then g best i = p best i; 

6. Update particle velocity and position according to the equation-1 

7. Repeat the steps 3-6 until objective function defined 
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PSO implementation for localization 

1. While (not timeout) 

 

{ 

 
2. Listen for and collect anchor nodes’ information 

3. if (discover 3 or more anchor nodes in its neighborhood) 

{//MODE 1 

 

4. CALL procedure LOCALIZATION 

5. } 

6. } 

7 

//MODE 2 

 

8. Get original anchor nodes’ information from the packet broadcast by the closest 

neighbor anchors 

 

9. if (discover 3 or more anchor nodes) 

 

10. { 

 

11. CALL procedure LOCALIZATION 

12. } 

 

13. else 

14. { 

 

15. Set as an orphan node 

13.} 

14. 

15. Procedure LOCALIZATION 

 

16. { 

17. Use PSO to estimate the location and become an updated anchor node 

 

18. Broadcast the estimated location and the location data of original anchor nodes 

19. Localization complete and exit 

20. } 

 

The technique is a fast method of finding coordinates since it minimizes the time 

spent calculating the distances between locations. In addition, two optimization 
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methods, namely ELPSO and BPNN, have been developed to optimize the calculated 

target node positions: least square (LS) and TD (tetrahedron). 

The choice of ELPSO (Ensemble Learning with Particle Swarm Optimization) and 

BPNN-PSO (Back Propagation Neural Network with Particle Swarm Optimization) 

for optimized UWB indoor positioning in WSNs is justified by their potential to 

address the inherent challenges of accurate localization in complex environments. 

ELPSO is selected for its ability to enhance robustness and accuracy by leveraging the 

strengths of multiple PSO variations, effectively mitigating errors caused by noise and 

multipath effects, which are prevalent in UWB systems. BPNN-PSO, on the other 

hand, combines the adaptive learning capabilities of neural networks with the global 

search efficiency of PSO. This hybrid approach allows the system to learn complex 

signal propagation patterns and non-linear relationships, crucial for handling NLOS 

conditions and dynamic changes in indoor environments, while PSO ensures efficient 

exploration of the solution space. Both algorithms are chosen to improve the accuracy 

and reliability of UWB localization, especially in large-scale deployments, where 

traditional methods often fall short, by providing a robust and adaptable solution to 

the specific challenges of indoor positioning. 

3.7 OPTIMIZATION USING ELPSO 

By combining the efforts of many individual learners, ensemble approaches enhance 

the generalizability of a single learner's progress. A random sampling process is used 

to construct subsets of the original dataset. Subsets are then used for training purposes. 

Finally, a vote mechanism is used to integrate the subsets. The figure displays the 2D 

and 3D TDOA node localization optimization based on ELPSO. 

There are two ways in which you can represent particle i's position in N-dimensional 

space: by using the vectors [Xi1] and [Xi2] and by using vectors Vi = [Vi1, Vi2, Vi3, 

Vi4]. The evaluation function and the particle's personal best position (pbest) and 

current location (Xi) provide each particle a fitness value based on its experience. 

Additionally, we recorded the optimal location (gbest) for every particle, which is 

determined by the experiences of our peers. The particle revises its location and 

velocity accordingly based on its best guess at its future movement, which it gets from 

its own or other particles' best guesses. Pbest represents the data classification closest 

to the optimal approach's Pbest value. One common approach to classifier combining 

in algorithms is the relative majority voting method. Here is how to get the H1(x) 
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(x)= .. (48) 

prediction output using ensemble learning: the coordinates of the optimal X are 

denoted by i and j. 

 

Figure 3.8: ELPSO based optimization with TDOA node localization 2D & 3D 

Following the categorization of N data points in particle swam, the estimated location 

of P was double-checked for the nearest neighbouring value of P (Xi, Yi). With N 

particles distributed across this area with a distance L between each particle and each 

base station, and with each ith particle and jth target having an observed distance R 

between them, we may derive the following fitness function: 

f (  ) = ( - )2 + (  - )2 +( - )2 + ( - )2 ......................................................... (49) 

When f = 0, Pi achieved the optimal solution, i.e., Pi exactly located in the position of 

target. 

To find the mean and standard deviation of the solutions in the appendices. When f3, f5, 

f6, f7, f8 and f13 are considered, the ELPSO achieves the best possible solution in these 

functions. 
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Algorithm 5- Psuedo code for migration/ mutation 

1. for solution for each particle do 

2. for each particle initiate vi, xi 

3. Calculate Pi for each particle do 

4. Set gen=0 and ω=0.9 

5. If ω=0.9-0.5 the gen/generate d=1 

6. For each dimension d update Sbest 

7. end if 

8. end if 

9. end for 

10. end for 

11. for solution for each particle do 

12. for each dimension d [vid= min(vmax), max vmax] ; xid=xid+vid 

13. Update Xid=N (Pbest+ Sbest)/2 

14. If d≤size do 

15. then d=d+1 repeat steps 12-14 

16. Else update Sbest( min) and Pbest( min) 

17. Update Xid ( min) 

18. Update d (min) 

19. end if 

20. End for 

 

 

 

 

 

 

 



62  

Algorithm 6- Optimization of node localization using improved Ensemble learning 

Particle swarm optimization 

1. Initialize swarm size, number of particles in indoor 

2. Evaluate the objective function; target node distance from near four anchor nodes 

3. Check the position of P was verified for the lowest near by value of P (Xi, Yi) from N 

number of nodes. 

4. Calculate space following a distance L from nearest anchor 

5. Update nearest particle position ithandjth from anchor 

6. Pbest from nearest 3 anchor nodes. 

7. Apply fitness function using equation 45 

8. When f = 0, Pi achieved the optimal solution, i.e., Pi exactly located in the position 

of target. 

9. Consider f1,f2, f3 .............. fn for node localization 

10. Update g best from N number of Pbest; until Pbest> g best 

11. Repeat 3 to 8 until desired value of localization distance achieved 

12. Update and fix distance. 

 

 

3.8 BPNN-PSO OPTIMIZATION 

In addition to devoting a great deal of time to researching all the possible static 

patterns for classes, solving classification challenges also demands a considerable 

level of research. As shown in Figure 3.9, the swarm (neuron) is initialized by 

assigning it to a random place and velocity, and it is also given a set of potential 

solutions as it travels through hyperspace. The two-module design of neural 

networks  allows  for  very  accurate  TDOA  estimate  propagation.  The  PSO 
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preliminarily optimizes the parameters of BPNN to avoid the BPNN falling into the 

local optimal solution. In the PSO algorithm, the potential solution of each 

optimization problem is imagined as a point in a x-dimensional space which is called 

a particle. The particle moves around in the search space according to simple 

mathematical formulae regarding the particle’s position and velocity. Each particle’s 

movement is also influenced by its local best-known position and the global best 

known position, which are found by the fitness function. 

 

 

Figure 3.9: Network process of TDOA in BPNN for real optimal values 

Input layer: The majority of the input values for each model are utilized in the 

training set, while the test set accounts for the remaining 20%. 

Hidden layer: A neural network's hidden-layer performance is impacted by the 

network's node count. In general, the accuracy of a network's output is directly 

proportional to its architectural complexity. This study uses 8 neurons due to the 

compromise approach's fast training time and high accuracy. To get close to any non- 

linear precision function, the Tan(h)-Sigmoid activation function is applied. 

Figures 8 and 9 show the output layer, which is made up of two 2D places estimated 

minimum and four 3D positions estimated minimum, respectively. First, train the BP 

neural network using the expected values and its current location; second, construct a 

group of the unknown node's new positions to simulate. 

For instance, CM2 represents places without line-of-sight access and CM1 represents 

residential areas with line-of-sight. By utilising all of the SNR values, the BP neural 

network may achieve optimal RMSE performance in the CM1 and CM2 channels 

through hybridization with PSO. 

The optimization of measuring values evaluated by neurons in error prediction was 
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carried out on 17% of the samples under consideration from a total of 300 sample 

datasets. Ten from each set will be used for training and validation purposes. Three 

different training scenarios are considered in the study: 

Step-1: Using previous data and real-time data from sensor A2, this neural network 

imitates the data collected by a failing sensor A1 in the event of its failure. In order to 

train the neural network, we feed it the exact same data that we intend to use. A neural 

network is made up of an input layer, an inner layer (often called a hidden layer), and 

an output layer. The data is received by the input layer, which then shows them to the 

other neurons. With four inputs (including the bias, which was assumed to be a value 

of 1), the input layer in this investigation required four neurons to function properly. 

Thus, this neural network received past positions (x(t − 1), y(t − 1)), (x(t − 2), y(t − 

2)), current and past distances calculated from sensor A2(r(t),r(t − 1),r(t − 2)). 

 

Step-2: The location of the node was estimated in the output layer using two neurons. 

The inertial tendency and movement speed are determined by comparing the last two 

positions using the machine-learning algorithm. The results of the algorithm are the X 

and Y coordinates of each interaction step. This neural network is depicted in the 

photograph. 

 

Step-3: The purpose of conducting time-series connections was to evaluate the linear 

temporal linkages between the X and Y coordinates, their historical time values, and 

the distances measured by sensor r2. At each stage, we saw one of the most current 

discrete values for that variable. The exact speed of the target determined how long it 

took to progress through each level. 

 

Step-4: Searching at the mean error compared to the median reveals that the statistical 

distribution of mistakes is symmetrical, possibly with a very short left tail, similar to 

the behaviour of the X-axis. 

Step-5: Since the estimated position falls within the active sensor radius and the prior 

position/trajectory is known, the virtual sensor could temporarily operate as the actual 

sensor. In the event that one of the sensors used in the trials stopped functioning, this 

replacement would continue to function properly regardless of how far away the 

original sensor was from the nodes that were considered. Using the MATLAB function 

corr(), we can find the relative positions of the sensors by comparing their time series 
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position vectors, which comprise the positions detected by the sensors. This correlation 

was discovered by comparing the recorded data for all of the measured locations. 

A model of a backpropagation neural network with 20 hidden layer neurons was 

developed using a dataset consisting of 100 data points. The test data set was used to 

test this network, and the calculated root mean square error was 0.1040 m. 

Additionally, the network was trained using a dataset consisting of 300 data points. 

Using the same dataset once more, this time produced a root-mean-square error of 

0.0350 m. The simulated positions of each node and their actual positions in the two 

scenarios (100 data points training and 300 data points training). It was then tested 

with the test dataset after training a radial basis function network model with 100 

neurons in the hidden layer using the same dataset with 100 data points. 

 

They used the BPNN method to build a framework for UWB sensor network object 

detection. In Figure3.6, How well the localization method worked in comparison to 

the least-squares estimator. Backward error propagation and weight correction. There 

is a computation of neuron error gradients in the output layer: 

 

Network model Number of training data points RMSE 

BPNN 100 0.1040m 

256 0.0978m 

361 0.0350m 

PSO- BPNN 100 0.1820m 

256 0.0732m 

361 0.0137m 
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Figure 3.10: Optimal path flow chart by using BPNN 

Training and validation sets consist of 10 each. Three training scenarios are examined 

in the study: 

• Every anchor is trained with measurements at every location, and there is only 

one model learned for each anchor (A=0). 

• All anchors are measured for training (M=0), and a single model derived from 

the training measurements is applied for all anchors (A=1). 

• Every second reference location is measured during training to build separate 

models for each anchor (A=0). 

Figure 3.11: Flow Chart For BPNN- PSO Implementation for Optimal Error 

Variance 
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UWB sensor networks can detect objects using the BPNN approach. Using the 

localization strategy vs, the least-squares estimator and how well it performs. Backward 

error propagation and weight correction. During the output layer, neuronal errors 

gradients are determined: 

A steady result has been the goal of earlier neural networks (such as the Multilayer 

Perception) P(d|x), which is an extension from the conventional neural network 

method and is a probability density function (pdf) of the inter-node distance 

depending on the pre-processed feature vector. = ,…………………, )T [1,..., x˜M] T 

to get better output data. 

 

 m= 1…... M (50) 

When estimating absolute localization coordinates using fitness functions, the final m 

values are stored in the anchor environment. 

 

 Algorithm -7 for Training 

Input Target data, distance between each of the sensor node with anchor 

nodes (3 anchor nodes are used here) 

Output Input to Hidden layer and Hidden to Output layer weight matrices 

Initialization Initialize all the weights with the random values 

1 while the stopping condition not satisfies do 

2 Calculate the net input using  

3 Apply the activation function 0m = f (  ) Propagate the error in 

backward direction 

4 Calculate the error for output layer using  = 

) 

5 Calculate the error for hidden layer using  = 

 

 

6 Update the weights and θ(bias) values using 

∆  
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Check for the Stopping conditions 

7 if (  < threshold) OR (total number of iterations exceeds a certain 

predefined value) then 

8 Stop 

9 end if 

10 end while 

 

 

 

Algorithm 8 for Testing 

Input Weights and bias produced during training phase, location of sensor nodes 

 

placed at random locations 

Output Target locations with minimum localization error Initialization: Initialize 

 

the required variables 

 Calculate the distance between each of the sensor node with the anchor 

 

nodes 

 for each hidden and output layer unit do 

 Calculate the net input =∆  

 Apply the activation function 0m = f ( ) 

 end for 

 Calculate the Testing Error 

 

 

ELPSO (Ensemble Learning with Particle Swarm Optimization) exhibits a 

computational complexity driven primarily by the iterative nature of PSO and the added 

overhead of ensemble learning. The PSO component involves a population of particles 

navigating the solution space, with each particle's fitness evaluated through a function 

that typically incorporates TDOA measurements. This evaluation becomes increasingly 

complex in environments with multipath and NLOS effects, requiring intricate 
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calculations. Moreover, the ensemble approach, which combines results from multiple 

PSO runs or variations, significantly amplifies the computational load, as each PSO 

instance must be executed and their outputs aggregated. The overall complexity of 

ELPSO, therefore, scales with the number of particles, iterations, and the size of the 

ensemble, making it more computationally demanding than standard PSO. 

BPNN-PSO (Back Propagation Neural Network with Particle Swarm 

Optimization), on the other hand, presents an even higher computational burden, 

particularly during the neural network training phase. The backpropagation algorithm, 

integral to neural network learning, necessitates numerous forward and backward 

passes through the network, updating weights and biases based on the training data. 

This process is inherently complex and scales with the network's architecture and the 

size of the training dataset. Furthermore, the integration of PSO to optimize the neural 

network's parameters adds another layer of computational overhead, as the neural 

network calculations are repeatedly executed within the PSO's iterative framework. The 

combined effect makes BPNN-PSO exceptionally computationally intensive, especially 

when dealing with large networks or complex environmental conditions, surpassing the 

complexity of ELPSO. Number of particles taken as 50 with 4 anchor nodes with a 

range of 100 sqmts. 

 

3.9 RESULTS AND DISCUSSION: 

 

The search location is defined on all measured targets in the conventional UWB 

localization technique from the previous section. Very little modification is required 

to incorporate the suggested approach into the Fusion Center's current hardware 

architecture. Use of ultra-wideband (UWB) indoor localization and the suggested 

algorithms ELPSO and BPNN were evaluated in a 10 m x 10 m squared model. Two 

estimators were employed to handle the produced nonlinear equations. 

 

Due to its low energy consumption and great accuracy, this algorithm was found to be 

better than other popular algorithms. The study doesn't prove the algorithm's efficacy, 

but it shows how it could be a good starting point for finding WSNs; furthermore, 3D 

UWB indoor localization is an improved version of 2D. Similarly, in a 10 m × 10 m × 

10 m cube region, there are four base positions at the same coordinates: A (Xa, Ya, Za) 
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= (0, 0, 10), B (Xb, Yb, Zb) = (0, 10, 10), C (Xc, Yc, Zc) = (10, 10, 10), and D (Xd, 

Yd, Zd) = (10, 0, 10) within the same vicinity. See Figure 10 for the 3D indoor 

localization setup. In the course of the exam, the 50 target locations (x, y, z) are 

distributed evenly. Similarly with the two-dimensional example, the optimization step 

is applied to all objectives. 

 

Figure 3.12: Localization Pattern from Anchor to Dynamic Nodes In Indoor 

Network In 3D Environment. 

 

TABLE 3.1: CO-ORDINATE VALUES OF LOCALIZATION OF 2D POSITIONING 
 

Target Target 

position(m) 

Measured 

position(m) 

Measured 

error(cm) 

Optimized 

position(m) 

Error after 

Optimization(cm) 

1 (-4.50, -4.50) (-4.86, 4.58) 3.664 (-4.470, -4.462) 3.964 

2 (-4.50, -3.50) (-4.96, -3.24) 5.28 (-4.462, -3.471) 3.762 

3 (-4.50, -2.50) (-4.62, -2.84) 2.36 (-4.472, -2.481) 2.864 

4 (-4.50, -1.50) (-4.31, -1.62) 2.04 (-4.662, -1.534) 3.212 

5 (-4.50, -0.50) (-4.16, -0.82) 4.62 (-4.528, -0.504) 0.3164 

6 (4.50,4.50) (4.96,4.38) 4.744 (4.474,4.530) 2.862 

7 (4.50,3.50) (4.82, 3.64) 3.396 (4.51,3.489) 0.3244 

8 (4.50,2.50) (4.32, 3.10) 4.324 (4.62,2.536) 3.784 

9 (4.50,1.50) (4.51,1.72) 0.584 (4.46,1.471) 0.3564 

10 (4.50,0.50) (4.16, 0.82) 4.424 (4.462,0.535) 0.3458 

11 (-3.50, -4.50) (-3.70, -4.58) 2.064 (-3.533, -4.468) 3.246 

12 (-3.50, -3.50) (-3.92, -3.24) 4.876 (-3.465, -3.535) 3.524 

13 (-3.50, -2.50) (-4.12, -2.84) 7.356 (-3.462, -2.54) 3.824 

14 (-3.50, -1.50) (-3.10, -1.62) 2.8 (-3.529, -1.536) 3.2462 
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15 (-3.50, -0.50) (-3.20, -0.82) 4.1 (-3.539, -0.571) 3.662 

16 (3.50,4.50) (4.16, 4.82) 4.356 (3.458,4.536) 3.9432 

17 (3.50,3.50) (3.80, -4.18) 5.4 (3.536,3.474) 3.2412 

18 (3.50,2.50) (3.92, -2.64) 4.32 (3.534,2.478) 2.8214 

19 (3.50,1.50) (4.12, -1.24) 4.86 (3.471,1.536) 3.1242 

20 (3.50,0.50) (3.10, -0.42) 4.32 (3.466,0.537) 3.4246 

21 (-2.50, -4.50) (-2.60, -4.58) 4.18 (-2.541, -4.529) 3.0816 

22 (-2.50, -3.50) (-1.92, -3.24) 5.46 (-2.465, -3.533) 3.5642 

23 (-2.50, -2.50) (-2.12, -2.84) 7.25 (-2.540, -2.531) 3.8946 

24 (-2.50, -1.50) (-2.90, -1.62) 6.87 (-2.456, -1.537) 3.6343 

25 (-2.50, -0.50) (-3.20, -0.82) 5.64 (-2.54, -0.471) 3.5421 

26 (2.50,4.50) (2.16, 4.82) 6.28 (2.532,4.539) 3.7825 

27 (2.50,3.50) (1.80, 4.18) 6.41 (2.539,3.458) 3.6462 

28 (2.50,2.50) (2.92, 2.64) 6.639 (2.460,2.532) 3.8716 

29 (2.50,1.50) (2.12, 1.24) 4.620 (2.53,1.466) 2.9645 

30 (2.50,0.50) (3.10, 0.42) 4.822 (2.522,0.474) 2.8654 

31 (-1.50, -4.50) (-1.70, -4.58) 5.367 (-1.541, -4.682) 3.2416 

32 (-1.50, -3.50) (-0.92, -3.24) 3.125 (-1.465, -3.537) 0.3564 

33 (-1.50, -2.50) (-1.12, -2.84) 4.623 (-1.472, -2.534) 3.3230 

34 (-1.50, -1.50) (-2.10, -1.62) 4.821 (-1.529, -1.536) 3.2464 

35 (-1.50, -0.50) (-1.20, -0.82) 4.129 (-1.472, -0.531) 2.9815 

36 (1.50,4.50) (1.16, 4.82) 3.424 (1.534,4.699) 2.8242 

37 (1.50,3.50) (1.80, -4.18) 37.624 (1.465,3.538) 3.6587 

38 (1.50,2.50) (1.92, -2.64) 34.396 (1.54,2.458) 3.9874 

39 (1.50,1.50) (1.12, -1.24) 4.044 (1.535,1.532) 3.4824 

40 (1.50,0.50) (1.10, -0.42) 4.064 (1.47,0.531) 2.9108 

41 (-0.50, -4.50) (-0.70, -4.58) 2.064 (-1.532, -4.463) 3.1253 

42 (-0.50, -3.50) (-0.92, -3.24) 4.364 (-1.459, -3.538) 3.7846 

43 (-0.50, -2.50) (-0.52, -2.84) 3.404 (-1.54, -2.462) 3.6422 

44 (-0.50, -1.50) (-1.10, -1.62) 6.144 (-1.47, -1.473) 3.2654 

45 (-0.50, -0.50) (-0.70, -0.82) 3.024 (-1.532, -0.469) 2.9321 

46 (0.50,4.50) (1.16, 4.82) 7.624 (1.469,4.532) 3.1258 

47 (0.50,3.50) (1.40, 4.18) 13.624 (1.537,3.529) 3.6547 

48 (0.50,2.50) (0.92, -2.64) 4.396 (1.46,2.54) 3.7624 

49 (0.50,1.50) (0.62, -1.24) 1.876 (1.541,1.536) 3.5212 

50 (0.50,0.50) (1.20, -0.42) 12.9 (1.466,0.532) 3.4632 

 

Note: m -meters cm- centimeters 
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An indoor object's initial measurement triggers the creation of a search space, 

analogous to a 2D setup, around that target. Illustrations 3.9 and 3.10 We can now see 

the search space in three dimensions due to the object. At its activation, the swarm 

distributes at random within this sphere. 

 

Figure 3.13: Regular deployment of nodes localization 

 
 

 

 

Figure 3.14: Least square deployment of nodes localization 

Compared to other target nodes, the velocity and mobilization of particles at the 

anchors and neighbouring sensors exhibit extremely little error in both the 2D and 3D 

measurement instances. 
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Figure 3.15: Least square deployment of nodes localization 

 

 

Figure 3.16: Comparison of various algorithms at various positions. (a) A fitness graph 

of beacon measurements at position 1. (b) A fitness graph of beacon measurements at 

position 2. (c) Measurement of beacon at position 3. (d) Fit graph of beacon measurement 

at position 4. 
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Figure 3.17: Comparison of measured localization error with optimized error in 

2D scenario 

An indoor object's initial measurement triggers the creation of a search space, 

analogous to a 2D setup, around that target. We can now see the search space in three 

dimensions thanks to the item. At random intervals, this sphere releases the swarm. 

Optimal error values for certain nodes are found in figures 3.16 and 3.17, and the 

beacon's mobilisation time with respect to the anchor node is close to where the two 

anchor nodes are located. At the present, close to the wall, RMSE does not show 

much variation. 

 

Table 3.2: Co-ordinate values of Localization of 3D positioning 
 

Targ 

et 

Target position 

(m) 

Measured 

position(m) 

Measured 

error(cm) 

Optimized 

position(m) 

Error after 

Optimization 

(cm) 

1 (-4.50, -4.50,4.8) (-4.86, -4.58,4.2) 7.264 (-4.832, 4.541,4.762) 3.351 

2 (-4.50, -3.50,4.6) (-4.96, -3.24,4.6) 4.716 (-4.924, 3.468,4.631) 3.252 

3 (-4.50, -2.50,4.4) (-4.62, -2.84,3.9) 4.856 (-4.581, 2.486,4.343) 2.264 

4 (-4.50, -1.50,4.2) (-4.31, -1.62,4.4) 1.961 (-4.532, 1.472,4.241) 3.112 

5 (-4.50, -0.50,4.0) (-4.16, -0.82,3.6) 6.024 (-4.522, -0.552,3.94) 0.2964 

6 (4.50,4.50,3.8) (4.96,4.38,3.5) 5.64 (4.978,4.42,3.714) 2.462 

7 (4.50,3.50, 3.6) (4.82, 3.64,3.8) 3.8 (4.534,3.582, 3.628) 0.2844 

8 (4.50,2.50,3.4) (4.32, 2.10,3.2) 3.8 (4.451,2.403,3.434) 3.324 

9 (4.50,1.50,3.2) (4.51,1.72,3.1) 1.485 (4.515,1.478,3.204) 0.3164 

10 (4.50,0.50,3.0) (4.16, 0.82,2.9) 4.524 (4.298,0.503,2.994) 0.3058 

11 (-3.50, -4.50,2.8) (-3.70, 4.58,2.6) 3.906 (-3.544, -4.538,2.76) 2.946 

12 (-3.50, -3.50,2.6) (-3.92, -3.24,2.5) 4.32 (-3.534, 3.443,2.562) 2.824 

13 (-3.50, -2.50,2.4) (-3.32, -2.84,2.3) 4.112 (-3.458, 2.572,2.364) 3.314 
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14 (-3.50, -1.50,2.2) (-3.20, -1.62,2.1) 4.936 (-3.417, 1.546,2.231) 3.0162 

15 (-3.50, -0.50,2.0) (-3.28, -0.82,1.95) 5.341 (-3.419, 0.614,2.033) 3.222 

16 (3.50,4.50,1.8) (3.36, 4.82,1.87) 5.468 (3.444,4.592,1.832) 3.3132 

17 (3.50,3.50,1.6) (3.80, 3.18,1.52) 4.781 (3.572,3.454,1.634) 3.0112 

18 (3.50,2.50,1.4) (3.72, 2.64,1.3) 4.13 (3.565,2.545,1.36) 2.014 

19 (3.50,1.50,1.2) (3.12, 1.24,1.15) 4.22 (3.434,1.457,1.171) 2.9242 

20 (3.50,0.50,1.0) (3.10, 0.42,1.08) 3.61 (3.419,0.436,1.044) 3.1246 

21 (-2.50, -4.50,0.8) (-2.60, -4.58,0.9) 3.828 (-2.541, -4.53,0.825) 2.816 

22 (-2.50, -3.50,0.6) (-1.92, -3.24,0.75) 4.824 (-2.389, -3.44,0.643) 3.2442 

23 (-2.50, -2.50,0.4) (-2.12, -2.84,0.58) 5.61 (-2.38, -2.564,0.483) 3.3946 

24 (-2.50, -1.50,0.2) (-2.90, -1.62,0.3) 5.388 (-2.594, 1.541,0.232) 3.2343 

25 (-2.50, -0.50,0.0) (-2.20, -0.82,0.15) 5.12 (-2.442, -0.571,0.04) 3.1421 

26 (2.50,4.50,4.8) (2.16, 4.82,4.2) 5.44 (2.398, 4.545,4.832) 3.2825 

27 (2.50,3.50,4.6) (2.80, 3.18,4.6) 5.860 (2.584, 3.434,4.633) 3.1462 

28 (2.50,2.50,4.4) (2.92, 2.64,3.9) 5.726 (2.592, 2.567,4.366) 3.3716 

29 (2.50,1.50,4.2) (2.12, 1.24,4.4) 4.027 (2.396, 1.412,4.228) 2.6645 

30 (2.50,0.50,4.0) (2.10, 0.42,3.6) 4.323 (2.422, 0.477,3.981) 2.2154 

31 (-1.50, -4.50,3.8) (-1.70, -4.58,3.5) 4.969 (-1.582, 4.534,3.764) 3.0216 

32 (-1.50, -3.50,3.6) (-0.92, -3.24,3.8) 2.624 (-1.299, 3.464,3.638) 0.3164 

33 (-1.50, -2.50,3.4) (-1.12, -2.84,3.2) 4.121 (-1.413, 2.548,3.364) 3.0230 

34 (-1.50, -1.50,3.2) (-1.10, -1.62,3.1) 4.320 (-1.426, 1.545,3.162) 3.1464 

35 (-1.50, -0.50,3.0) (-1.20, -0.82,2.9) 3.824 (-1.399, 0.564,2.962) 2.6815 

36 (1.50,4.50,2.8) (1.16, 4.82,2.6) 3.027 (1.434,4.452,2.763) 2.3242 

37 (1.50,3.50,2.6) (1.80, 3.18,2.5) 2.122 (1.566,3.432,2.568) 3.1587 

38 (1.50,2.50,2.4) (1.72, 2.64,2.3) 5.969 (1.581,2.554,2.359) 3.3874 

39 (1.50,1.50,2.2) (1.12, 1.24,2.1) 4.241 (1.421,1.461,2.168) 3.2824 

40 (1.50,0.50,2.0) (1.10, 0.42,1.95) 4.089 (1.399,0.459,1.972) 2.5108 

41 (-0.50, -4.50,1.8) (-0.70, -4.58,1.87) 2.113 (-0.545, 4.534,1.845) 2.9625 

42 (-0.50, -3.50,1.6) (-0.62, -3.24,1.52) 1.94 (-0.541, -3.459,1.56) 3.1846 

43 (-0.50, -2.50,1.4) (-0.52, -2.84,1.3) 3.504 (-0.538, 2.563,1.366) 3.2422 

44 (-0.50, -1.50,1.2) (-1.10, -1.62,1.15) 6.169 (-0.942, 1.553,1.162) 3.0654 

45 (-0.50,-0.50, 1.0) (-0.70, -0.82,1.08) 3.088 (-0.544,-0.538,1.032) 2.7321 

46 (0.50,4.50, 0.8) (1.06, 4.82,0.9) 6.724 (0.884, 4.542, 0.832) 2.8254 

47 (0.50,3.50,0.6) (0.40, 4.180,0.75) 6.224 (0.462, 3.988,0.633) 3.1324 

48 (0.50,2.50,0.4) (0.72, 2.64,0.58) 2.72 (0.682, 2.541,0.431) 3.0622 

49 (0.50,1.50, 0.2) (0.62, 1.24,0.3) 2.844 (0.539, 1.465, 0.239) 3.5212 

50 (0.50,0.50,0.0) (1.20, 0.42,0.15) 5.925 (1.094, 0.468,0.094) 3.2132 
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Note: m -meters cm- centimeters 

 

 
 

 

Figure 3.18: Error fitness deviation after repeatable test with dynamic nodes 

 

The position has been optimized to minimize localization error, as shown in Figure 

3.15. The figure indicates a large location error in relation to the conditions for anchor 

placement. By incorporating additional swarm optimization approaches, the Chan 

algorithm measures and filters out nodes whose dynamic momentum changes 

randomly. To determine the precise measured value with anchors, all location errors 

are found in centimeters under dynamic conditions. To determine their precise 

location, a group of unknown nodes estimates their distance from three distinct 

anchors. The Receive Strength Signal Indicator (RSSI) can be used to determine the 

distance between the anchor and an unknown node. In most cases, PSO has already 

converged on the best solution, causing it to become stuck in the local optimal 

problem. 
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Figure 3.19: Comparative analysis of various algorithms at various positions 

 

To minimize localization error, we optimized this location using data that showed 

significant errors in anchor placement conditions. By adding swarm optimization 

methods, the Chan algorithm filters out nodes with random changes in dynamic 

momentum. Location errors are measured in centimeters under dynamic conditions to 

determine the exact value with anchors. Unidentified nodes use distance estimates 

from three anchors to figure out their location. 
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TABLE 3.3: CO-ORDINATE VALUES OF LOCALIZATION OF 3D POSITIONING 
 

Optimal 

technique 

– method 

Movement 

position 

Transmiss 

ion 

Range 

Max 

localization 

Error-cm 

Min 

localization 

Error-cm 

Average 

LE 

cm 

Total 

number 

of located 

nodes 

ELPSO-(T) 1 100M 3.964 0.4320 1.75 50 

 2 100M 3.2462 0.3214 1.51 50 

 3 100M 2.8654 0.2862 1.32 50 

 4 100M 3.4632 0.4938 1.56 50 

ELPSO-(LS) 1 100M 4.2365 0.3164 1.91 50 

 2 100M 4.6432 0.3458 1.86 50 

 3 100M 3.7564 0.3244 1.72 50 

 4 100M 3.2146 0.3564 1.46 50 

PSO-BPNN-(T) 1 100M 3.8492 0.2654 1.82 50 

 2 100M 3.3291 0.3216 1.58 50 

 3 100M 2.9654 0.2196 1.37 50 

 4 100M 2.2132 0.2456 1.04 50 

PSO-BPNN- 

(LS) 

1 100M 4.4263 0.3165 2.12 50 

 2 100M 3.6419 0.3427 1.68 50 

 3 100M 2.9465 0.2696 1.42 50 

 4 100M 2.7222 0.2421 1.28 50 

 

Figure 3.20: Comparison of localization error for all optimal techniques 
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In Figure 15, the comparison results of different 3D error localization methods with 

those incorporating back propagation neural networks are displayed. The results 

indicate a minimum change of 1.02 cm, which is relatively low when following the 

suggested procedure. The use of hybrid 2D/3D algorithms, along with UWB networks 

for indoor localization placement and dynamic interpretation of measured values, has 

proven to be quite effective. Simulations were conducted to determine the density of 

anchor nodes. A new approach is being employed to minimize localization error in a 

UWB setting within an indoor network, utilizing several optimal strategies. 

The results of comparing 3D with back propagation neural networks to others reveal 

the lowest values of error localization, as illustrated in figure 3.20 and indicated in 

table 3.3. With just a 1.02 cm variation, the results were relatively low following the 

suggested procedure. Hybrid algorithms combining UWB, indoor localization, and 

positioning, as well as the dynamic interpretation of measured values, have shown 

promising results. The density of anchor nodes was determined in the scenarios that 

were performed. A new approach is used to reduce the localization error in a UWB 

indoor network using several optimal methods. The results demonstrated in this 

research demonstrate that the RMSE for node localization is significantly enhanced 

when the TDOA method is applied in conjunction with neural networks. When the 

region involved is small and the node density is large, this strategy works well. A 

basic 3D ranging-error model that depends on the orientation of neural networks is 

presented in this paper. The distance, together with the computed direction, elevation, 

and azimuth, were inputs needed by the chosen BPNN model. We show and explain 

the experimental data and outcomes of configuring the BPNN model. An increase in 

the hidden layer neuron count results in a drop in BPNN model error when tested on 

training data. In this 3D situation, BPNN achieves a 97.5% success rate with a 95.29 

percent validation rate and a 93.73 percent accuracy rate. 

3.10 CONCLUSION 

An entirely new approach to optimization is presented in this study based on the use 

of ultra-wideband signals (UWB) for real-time indoor localization. Solution of the 

interior location problem can be achieved by using an optimization problem. 

Ensemble learning involves learning from the experiences of their own particles, their 

neighbors' experiences, and the experiences of other swarms. Using this new learning 

technique, particles can develop their own search areas that are more promising and 

improve indoor location accuracy. The existing technology can be used to MATLAB 
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to execute both 2D and 3D UWB indoor locating procedures. One computational 

engine that may be implemented in MATLAB can control the transmitters and 

receivers at the same time. Continuous optimization of sound waveforms and 

related reception filters allows for adaptation to the ever-changing monitoring 

environment. Since wireless sensor networks with several anchor nodes aren't 

uniformly distributed, a Chan algorithm is more suited for fast-moving targets 

since it requires less processing power. Algorithms based on PSO Optimization 

combine a combination of ensemble learning and back-propagation neural 

networks with a Kalman filter for Chan localization. Using a back propagation 

neural network for localization with PSO yielded the best results across all hybrid 

combinations examined. The results demonstrated a smallest change of 1.02 cm 

and were relatively low using the suggested procedure. In hybrid 2D/3D 

algorithms, UWB networks with indoor localization placement and dynamic 

interpretation of measured values have shown to be quite effective.The distance, 

together with the computed direction, elevation, and azimuth, were inputs needed 

by the chosen BPNN model. We show and explain the experimental data and 

outcomes of configuring the BPNN model. An increase in the hidden layer neuron 

count results in a drop in BPNN model error when tested on training data. In this 

3D situation, BPNN achieves a 97.5% success rate with a 95.29 percent validation 

rate and a 93.73 percent accuracy rate.Using a back propagation neural network 

for localization with PSO yielded the best results across all hybrid combinations 

examined. The simulation results showed that PSO-BPNN with tetrahedron 3D 

produced the highest Constance values of all the approaches tested. Inaccuracy 

measuring an average of 2.72 cm is quite considerable. The optimization 

procedure reduces the minimum localization error to 2.72 cm, which is notable 

compared to reference [ UWB Localization System for Indoor Applications: 

Concept, Realization and Analysis”, by Lukasz Zwirello], where it is 9 cm. 

The work highlights the impressive accuracy achieved by ELPSO and PSO-

BPNN in UWB localization, evidenced by the consistently low average 

localization errors across various movement positions. However, a crucial aspect 

missing for real-time applications is the consideration of computational 

efficiency. The absence of processing time and energy consumption data makes it 

challenging to ascertain the algorithms' feasibility in scenarios demanding 

immediate location updates, such as tracking moving objects or emergency 
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response. Given the inherent complexity of these algorithms and the significant 

transmission range of 100 meters, potential challenges in real-time performance, 

scalability, and energy consumption arise. To bridge this gap, future evaluations 

must incorporate detailed measurements of processing time and energy usage, 

enabling a comprehensive assessment of the algorithms' suitability for practical, 

real-time WSN deployments. 

The statistical mean localization error for each algorithm variation was calculated 

to assess their average performance across the four movement positions. For 

ELPSO-T, the mean localization error was found to be 1.535 cm, indicating a 

relatively low average error for this technique. ELPSO-LS exhibited a slightly 

higher mean localization error of 1.7375 cm. PSO-BPNN-T demonstrated the 

lowest mean localization error among the four, at 1.4525 cm, suggesting it 

achieved the highest average accuracy. Finally, PSO-BPNN-LS had a mean 

localization error of 1.625 cm. Compared with state of art  the experiment work 

done by Zhuo etal. in 2023 about UWB localization with CNN-SVM hybrid 

algorithm with 4 anchor nodes stated that  the validity and accuracy of the C-T-

CNN-SVM algorithm are proved through a comparison with traditional and state-

of-the-art methods. (i) Focusing on four main prediction errors (range 

measurements, maxNoise, stdNoise), the standard deviation decreases from 13.65 

cm to 4.35 cm which is higher than our mean. (ii) After target positioning, the 

proposed method can realize a one-dimensional X-axis and Y-axis accuracy within 

175 mm, and a Z-axis accuracy within 200 mm; a 2D (X,Y) accuracy within 200 

mm; and a 3D accuracy within 200 mm, most of which fall within (100 mm, 100 

mm, 100 mm). (iii) Compared with the traditional algorithms, the proposed C-T-

CNN-SVM algorithm performs better in location accuracy, cumulative error 

probability (CDF), and root-mean-square difference (RMSE): the 1D, 2D, and 3D 

accuracy of the proposed method is 2.5 times that of the traditional methods. 

When the location error is less than 10 cm, the CDF of the proposed algorithm 

only reaches a value of 0.17; when the positioning error reaches 30 cm, only the 

CDF of the proposed algorithm remains in an acceptable range. The RMSE of the 

proposed algorithm remains ideal when the distance error is greater than 30 cm. 
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CHAPTER-IV 

A Range free error control model using UWB for estimation of 

optimal node location in Homogeneous dynamic WSN with various 

soft computing approaches 

 
4.0 Introduction 

 

In this chapter, range-free localization with UWB is implemented with different DV- 

Hop techniques. This work describes the complete process of UWB signal processing 

from its acquisition, filtering methods, and obtained results, to determining the node 

location. This work examines the possibility of using modified localization algorithms 

for determining the anchor’s location. This includes trilateral, nonlinear programming 

methods, and a geometric algorithm proposed by us. The work proposes a DV-HOP 

hybridization technique and optimal algorithms to decrease range-free settings' node 

localization errors. A 20mx20m area was selected for the present localization and 

anchors were placed at equal distances with square geometry. A distance of 20mts 

between the anchors was fixed and the outer range will be 10mts each from the 

anchor node. For the present research, a real-time open stadium was assumed to be the 

target nodes for locating the players. A sample size of 30 target nodes was considered 

for localization using extended DV-HOP techniques. 

 

The novelty and the proposed work are as follows: 

 

➢ CC-DV HOP, Hybrid DV HOP and Online sequential DV HOP (proposed) for 

node localization. From the above, DV-HOP techniques were used to identify 

node locations using range based least square (2D). 

➢ To improve DV-HOP for this investigation, we used 3D measuring techniques 

and a sequential algorithm. 

➢ The obtained results were compared with BBO, HPSO and FA algorithm results 

taken from the literature review. 

The adoption of CC-DV-Hop (Corrected Communication DV-Hop) within range-free 

localization strategies, especially in UWB-enhanced WSNs, is primarily driven by the 

need to rectify the inherent inaccuracies stemming from the standard DV-Hop 

algorithm's simplifying assumptions. The original DV-Hop, relying on uniform hop 

sizes and prone to accumulating hop count errors, often yields suboptimal localization 
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accuracy, particularly in irregular network topologies and environments with varying 

communication ranges. CC-DV-Hop, by introducing correction factors based on 

observed communication patterns and network topology, aims to refine the average 

hop size estimation. This refinement leads to more accurate distance estimations, 

thereby improving the overall localization precision. Even in UWB-based systems, 

where precise range measurements are theoretically attainable, the use of CC-DV-Hop 

presents a cost-effective and computationally less demanding alternative when direct 

range measurements are either unreliable due to environmental factors or excessively 

burdensome for resource-constrained nodes. 

Hybrid DV-Hop strategies are employed to leverage the complementary strengths of 

range-free and range-based (or angle-based) localization techniques, effectively 

mitigating the individual limitations of each approach. The hybrid approach combines 

the coarse localization capabilities of DV-Hop with the precision offered by other 

methods, such as angle of arrival (AOA) or received signal strength indicator (RSSI), 

or even optimization algorithms. This integration allows for a two-tiered localization 

process, where DV-Hop provides an initial, approximate location, subsequently 

refined by the more accurate range or angle-based measurements. In UWB-based 

WSNs, this translates to utilizing the hop count information from DV-Hop in 

conjunction with the high-precision angle or time measurements afforded by UWB 

transceivers, achieving a desirable balance between accuracy and computational cost. 

This hybrid approach is particularly advantageous in heterogeneous environments 

where some nodes possess UWB range measurement capabilities while others rely on 

less precise, range-free methods. 

Sequential DV-Hop is implemented to address the issue of error propagation that 

plagues the standard DV-Hop algorithm, especially in large-scale WSN deployments. 

By employing a sequential localization process, where node positions are estimated 

step-by-step using previously localized nodes as reference points, this method 

effectively curtails the accumulation of errors. This sequential approach ensures that 

errors introduced in earlier localization steps do not propagate and amplify in 

subsequent estimations, leading to a more accurate and consistent localization result 

across the entire network. In UWB-based WSNs, even with the inherent precision of 

UWB, sequential DV-Hop proves beneficial in minimizing the impact of hop count 

errors, particularly in extensive networks where such errors can significantly degrade 
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localization accuracy. Furthermore, in scenarios where certain nodes lack UWB 

transceivers, this method provides a viable alternative for localizing these nodes within 

the network. 

4.1 RANGE -FREE LOCALIZATION 

 

WSN is low-cost, has high self-organization, can be quickly deployed, and is 

appropriate for a variety of applications, including monitoring targets, identification, 

and location. The current situation calls for the evaluation of improved methodologies 

and optimal techniques as range-free localization with UWB research advances. With 

the advancement of technology, more efficient methods and techniques have to be 

developed in order to improve the accuracy and reliability of range-free localization 

with UWB. This can help in reducing the complexity and cost of the system while 

providing better performance. When it comes to single localization zones, the focus is 

on accuracy. DV-Hop is low in cost and does not require any additional hardware to 

be implemented. As a result, many applications can benefit from DV-Hop. The DV- 

Hop algorithm still gives rise to significant localization mistakes. In order to lessen 

the impact of localization errors, this study applied the DV-Hop algorithm with the 

Particle Swarm Optimization method. The research proposes a better DV-Hop 

location algorithm that incorporates different communication radii to address the 

issues with DV-Hop location algorithms' handling of node density. With the updated 

DV-Hop locating method, the average positioning error of the unknown nodes is 

reduced and positioning accuracy is enhanced.  

The DV-Hop algorithm's positioning accuracy and performance have been 

significantly enhanced thanks to the extensive research on the algorithm by numerous 

researchers who have offered various improved techniques to address the algorithm's 

problems. The DV-Hop algorithm determines the location of the unknown node by 

averaging the hop distances from the closest beacon node. It improves positioning 

accuracy, but as the transmission radius grows, so does the network the cost. 

 

4.1.1 Principle of DV-Hop algorithm 

 

Current DV-Hop algorithms often operate under the assumption that node-to-node 

connections are linear, whereas in reality, such paths are more often than not curved. 

The monitoring area is equipped with sensor nodes that were randomly seeded. 

Additionally, every beacon node transmits packets to the network, which include the 
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location and hop value of the beacon node. By adding one to the hop value at each 

intermediate hop. When determining the unknown node's position, a matching 

positioning approach takes into account the estimated distance between each beacon 

node and the unknown node. As seen in Figure 1, the distribution of nodes in the 

network is not uniform. Given that the distance between anchor nodes is significantly 

larger than that between unknown nodes, the DV-Hop algorithm incorrectly 

determines the average hop distance as one hop. 

 

 

Figure 4.1: Uneven distribution of unknown nodes in range free environment 

 

 

 

Figure 4.2 Conventional DV-Hop flow chart 
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4.1.2 Measurement with DV-Hop 

Traditional DV-Hop positioning algorithm divided in to three phases 

1) Minimum hops for each beacon from unknown nodes and compute nodes. 2 ） 

Finding the accurate hop distance between the unknown node and the beacon node. 3

） Determining its own location with the use of the trilateration approach detection or 

the maximum likelihood estimate technique. 

In order to inform their neighbours of their whereabouts, beacon nodes transmit data 

packets with the hop number field set to 0. Bypassing a beacon node with an 

excessively high hop count in a packet and instead receiving node records from all 

beacon nodes with a minimum hop count. Hop up to the next neighbour and go 

further by one. Using this technique, any node in the network can capture data from 

every beacon node with a hop count that is below the minimum required. In the first 

phase, every beacon node keeps track of its own position and the distances travelled 

by hops; then, using equation (1), it estimates the average distance travelled by hops. 

2) Determine the average hop distance between the nodes and get it. Using equation 

(1), beacon nodes can save each other's coordinates and determine the least number of 

hops. Determine the average distance between nodes in the network: 
 

The beacon coordinates of nodes i and j are (xi, yi) and (xj, yj), respectively. The 

minimal number of hops between these two nodes is hop(ij). After that, the network's 

beacon node will determine the average distance per hop using a packet's lifetime of 

broadcasting; the unknown node will only receive the first average distance per leap 

and then relay that information to its neighbours. The average distance per hop is 

communicated to the most recent beacon node from the node using this approach. The 

standard hop distance is sent to the unknown node based on the recorded 

calculate the hop distance for each beacon node. In the second stage, the unknown 

node determines its coordinates by recording the distance jumps from each beacon 

node using either the maximum likelihood estimation approach or trilateration 

measurement. To find out how far away the unknown node u is from the anchor node 

i, we can use the formula di,u.using the next formula: 
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| 

di,u= hi,u× HopSizei……(2) 

 

 

Then for the trilateration method the distance separation from anchor nodes to 

unknown nodes can compute the position using 
 

From the above equation where the unknown node position is (xu,yu) and the anchor 

position is (xn,yn) the equation can be written as 

Ax=B…(4) 

Finally, the least square method aims to solve equation (4), as follows, and determines 

the coordinates of unknown nodes in the network. 

X= (ATA)-1ATB…..(5) 

Then we get x=X(1) and y=X(2) 

4.1.3 DV-Hop measurement with least square 

The distance matrix dn is dimension between anchor and the node is calculated using 

the following equations: 

- , i= 1, 2, 3….. n (6) 

Expansion refers to the identification equations:7,8,9 

+  (7) 

 

 +  (8) 

The final formula can be written as 

 

 +  (9) 

The objective of our strategy is to solve the least square problem using Regularized 

Least Squares (RLS) and then utilise regularization to further limit the solution. We 

enhance the solution based on equality constraint and generalization performance for 

anisotropic WSN by taking into account the mistake generated by inter-nodes 
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distances estimate. Reducing the vector norm and quadratic localization errors is the 

fundamental goal of this method. The following goal function provides a description 

of the suggested method: 

Ω = argΩ• min||Hca×Ω −Da||2 + α||◻Ω ||2 (10) 

The distance estimation Dn between anchors and unknown nodes can be represented 

in the following way, after the hop-count matrix Hcn with dimensions nn × na is 

known and demonstrated for the unknown sensor nodes and anchor nodes: 

Dn= Hcn· Ω•= Hcn(HcaTHca+ I/C )−1Hca · Da (11) 

 

The precise position of the anchor nodes matrix (with dimensions na × 2) is observed 

by Xa. Xu takes note of the estimated unknown geographical position of the sensor 

nodes matrix, which has dimensions nn × 2. What follows is an assumed linear 

equation representing the relationship between the geographical position matrix Xa 

and the network distances Da: Da .Ψ=Xa (12) 

Table: 4.1Minimum HOP count between anchors 

 

 A1 A2 A3 A4 

A1 0 4 4 4 

A2 4 0 4 4 

A3 4 4 0 4 

A4 4 4 4 0 

 

The least squares solution given by the formula 

 

Ψ= Da+ .Xa…. (13) 

 

Then Da+=(DaTDa)-1Da ….. (14) 

The position of unknown sensor node can be given as 

Xu= Dn .Ψ= Dn. (DaTDa)-1Da. Xa…. (15) 

 

This is a calculation example that demonstrates the suggested method. An A-list of 

known nodes (UN included) and some unknown nodes (A1, A2, A3, and A4) make 

up the proposed sensor network. In this diagram, the red and blue nodes stand for the 

same thing. The depicted sensing area in Figure 4.3 is 20 m × 20 m. Roughly ten 
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metres is the range that each node may connect to. When an anchor uses a GPS 

module, it may track not only its position in the network but also its distance and hop 

count, which are represented in Table 1 as Da and Hca, respectively. 

Table: 4.2 Real distance between anchors (meters) 

 

 A1 A2 A3 A4 

A1 20 20 20 28.28 

A2 20 20 28.28 20 

A3 20 28.28 20 20 

A4 28.28 20 20 20 

 

 

Figure 4.3 Network localization area in range free environment 

Table 4.3 Estimation of matrix size for given area 

Ω A1 A2 A3 A4 

A1 5.6 0.74 0.74 -1.4 

A2 0.74 5.6 -1.4 0.74 

A3 0.74 -1.4 5.6 0.74 

A4 -1.4 0.74 0.74 5.6 
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4.1.4 Measurement with 3D- method for Dv-hop 

Based on the locations of the LAs and the distances obtained, one can deduce the 

location of a sensor. In this case, the state variable is the location of a sensor node in a 

three-dimensional model. The state of the it sensor node following the nth cycle is: 

(n), (n), (n)}............................... (16) 

In addition to following equations for the dynamic state and assumptions: 

(n) , ....................................... (17) 

 (n) .............................................. (18) 

One possibility is static sensor localization, where the sensors stay still after 

deployment. There is no other function than similarity that governs the dynamics of 

the sensor position state f(x): 

 (n) ......................................... (19) 

Using RF signalling, we can communicate our present position to the sensors, and we 

can also predict the little amount of positional disturbance caused by wind and other 

environmental factors. Applying this research framework: 

 + …………. (20) 

Here ∆xi1(n) = xb 1(n) − xi1(n), ∆xi2(n) = xb 2(n) − xi2(n), ∆xi3(n) = xb 3(n) − 

xi3(n); and (xb 1(n), xb 2(n), xb 3(n)) is the current 3D position of the LA (least 

arthematic). 

4.1.5 Equations with fitness functions 

The relationship between the prediction localization accuracy and the value of f (x, y) 

in Equation (2) changes as the number of errors ε1, ε2, ε3. εn decreases. Resolving 

the estimated coordinate (x, y) (2) can transform the location problem into a nonlinear 

minimum value problem, which will lower the value of f (x, y) in Equation 1. When 

analysing and controlling the particle's research path, the algorithm makes use of the 

fitness function. Something like this is called a "fitness function." 

f (x,y) =  | (21) 

(xi,yi) is the position coordinate of beacon node I f(x, y) is the particle's fitness value, 

and did is the distance between an unknown node and beacon node i. 

4.1.6 Co-ordinate Correction DV-Hop method 

Despite the fact that an improved distance vector-Hop localization algorithm (CC-

DV- Hop), which exploits the coordinate correction. In fact, the coordinate 
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correction via the  DV-Hop gives the pseudo-range error coefficient which improves 

the length of the average distance per hop. Moreover, the unknown node and the 

anchor nodes are considered as unknown when obtaining their coordinate correction 

values which are employed to correct iteratively the localization results of unknown 

nodes. In the distance vector exchanging stage for the traditional DV-Hop algorithm, 

as long as the distance between the beacon node and the unknown node is less than the 

communication radius R, the hop number is recorded as 1. This means that there may 

be a large actual distance difference between two groups of unknown nodes with the 

hop number of 1 and beacon nodes. As shown in Fig. 3, there are some unknown 

nodes B and C around beacon node A, and the hop value of the unknown node and 

beacon node is also 1, but the actual distance between the two unknown nodes and 

beacon node is very different. Generally taking the hop value between them and the 

beacon node as 1 will reduce the positioning accuracy of the DV-Hop positioning 

algorithm and the stability of the algorithm. When communicating vector distances 

between the beacon and unknown nodes, a standard DV-Hop algorithm considers 

distances lower than R.the hop values of anchor nodes and beacons are equal, the 

actual distances between them are significantly different. Applying CC DV-Hop 

techniques with two communication channels will greatly enhance the effectiveness of 

this problem solution. Three anchor nodes are necessary for archive node positioning. 

Among other things, the four anchors should correct each other and announce the 

actual distance. 

 

Figure:4.4 Node localization with minimum three anchor distance with correction in 

a selected environment 

Assume that four anchor nodes having outer range sensing of 10mts of location 

tracking as shown in figure 4.4, conventional method of unknown node falling in the 

area of 3 anchors the regular radial distance calculated with least squares. The co- 
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ordinate (x1, y1) , (x2,y2) and (x3,y3) for un1, the distance measured from A1,A4, 

A3 respectively. 

 

Figure: 4.5 Anchor placements in 3D within communication range 

 

The 3D position of the unknown node U in a realistic setting, with anchor nodes A, 

B, C, and D placed accordingly. Our previous statement about the maximum 

communication range for each anchor was 30 metres. In this case, the distances 

between the anchor nodes are as follows: 40 between A and B, 30 between A and D, 

50 between C and D, 10 between B and D, and 60 between B and C. It takes one hop 

for U to reach A, two for U to reach B, three for U to reach C, and one for U to reach 

D. Assume, in the worst-case scenario, that the unknown node U is 5 nodes away 

from A, 20 nodes away from D, and that the hop size for the remaining hops is 10. 

This is how the DV-Hop algorithm determines the hopsize of anchor nodes A, B, C, 

and D: 

A: (40+50+30)/(3+4+2) = 13.33 

B: (40+60+10)/(3+5+3) = 10 

C: (60+50+50)/(5+4+4) = 12.30 

D: (10+30+50)/(2+3+4) = 10 

The hop sizes of anchor nodes A, B, C, and D will be broadcasted in the following 

order: 13.33, 10, 12.30, and 10, respectively. When either A or D send a message, the 

first node to receive it is the unknown U. The process continues by determining the 

distances between each node: 13.33 between itself and anchor node A, 26.66 between 

U and B, 53.32 between U and C, and 13.33 between U and D. The true separation 

between the anchor node and the stranger node U. The improved DV-Hop algorithm 

based on double communication radius with co-ordinate correction proposed in this 

updates the minimum hop number obtained by the unknown node which is closer to 

the beacon node to a smaller hop number by adding a communication radius and 
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keeps the minimum hop number information of the unknown node which is far away 

from the beacon node at the same time. It shows the difference of the actual distance 

in terms of the hop number, which solves the problem of the large difference between 

the actual distances of the same hops to a certain extent, and then is helpful to 

estimate the more accurate average jump distance. 

Algorithm 9 :Improved DV-Hop with Co-ordinate Correction (2D) 

Input: Mobility of Unknown node 

Out put: Number of anchor nodes ( at least 3) communication unknown node 

1. Initialization WSN 

2. Hops; hop count( an integer) 

3. Anchor nodes: number of anchor nodes in communication (an integer) 

4. Begin 

5. for every unknown node u 

6. for Hops=1:n 

7. If (anchors≥ 3 communicate value) 

8. Then 

9. return Hops 

10. end if 

11. Else increment Hops 

12. end for 

13. end for 

14. return in sufficient anchors in radius. 

 

 

 

Algorithm 10 :Improved DV-Hop with Co-ordinate Correction (3D) 

Input: Mobility of Unknown node 

Output: Number of anchor nodes (at least 4) communication unknown node 

1. Initialization WSN 

2. Hops; hop count(an integer) 

3. Anchor nodes: number of anchor nodes in communication (an integer) 
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4. Begin 

5. for every unknown node u 

6. for Hops=1:n 

7. If (anchors≥ 4 communicate value) 

8. Then return Hops 

9. end if 

11. Else increment Hops 

12. end for 

13. end for 

14. return in sufficient anchors in radius. 

 

The minimum hop number for the unknown node is kept constant, but diminished, 

when a communication radius is added. Discordance between the real distance 

between subsequent hops is eradicated as a result of using the hop number to calculate 

distance. To grasp the general average jump, one must have knowledge. Exploring 

and evaluating models and outcomes. The enhanced method was evaluated using a 

dual communication radius. Here, we use MATLAB to model the CC DV-Hop 

method, improve the DV-Hop algorithm, and evaluate alternative algorithms with 

four anchor nodes and varying communication radii and beacon proportions. 

Furthermore, the efficiency of the suggested approach is evaluated using root mean 

square error (RMSE). We ran a simulation to find the root-mean-squared error 

(RMSE) for different values of the following parameters: total nodes, anchor node 

percentage, and communication radius of sensor nodes. 
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Figure 4.6 Flow chart for CC DV-Hop 

When compared to single transmission radii, minimal hop distances between nodes 

offer superior accuracy. The CC DV-Hop method employs a doubled communication 

radius to keep track of the hop count for the unknown node further away, while 

minimising it for reference nodes close to the beacon node. When characterising the 

intervals between neighbouring frames, it is now easier to compute an average jump 

distance using hop characteristics. For this reason, CC DV-Hop can't function at peak 

efficiency without a longer communication range. 
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4.2 HYBRID DV HOP MODEL 

 

The research further continued with hybridizing the DV-Hop algorithm with 

differential estimation controlled from CC DV-Hop communication radius of anchor 

nodes.an updated differential estimation algorithm checked for the present real time 

scenario to improve location accuracy with hybrid method. The differential evolution 

(DE) algorithm maintains the population-based global search strategy in evolutionary 

computing and updates the population using actual coding. A one-to-one elimination 

mechanism and a straightforward difference-based mutation operation simplify the 

operation of the genetic algorithm. Finding additional nodes in a network becomes 

much easier when immediate neighbours are used as anchors. Once a sensor node is 

found, each sensor is linked to an anchor. More "converted" anchors can be added to 

the geometry process to make localization even more accurate. A study found that a 

node's localization was more accurate the closer it was to an anchor. Before placing 

those that are further away from anchors, place those that are closest to them first. 

Flooding occurs in the first phase, distance per hop is calculated in the second, and 

sensor location is determined in the third phase. Algorithms outline the various 

processes that are part of phases 1 and 2, which anchor nodes perform, and phase 3, 

which sensor nodes perform. The anchors then start finding unknown nodes. The 

pedestrian detection process is started by sending a Los Start Msg message to each 

anchor. In the Los Start message, the Start Msg field is most prominent. Anchor nodes 

are those with nodal IDs; nodes without them are those that do not have them. A node 

with a non-anchor type is one that lacks an anchor ID. Coordinates of nodes, which 

are real for anchor nodes but approximations for other sensors, need to be made to 

match. Every node that gets this message first finds out where it is, and then it sends it 

on to its neighbours just around the corner. Once we accomplish this, we can 

guarantee that localization starts and continues at the anchor node. Each node that gets 

this message keeps a record of the other nodes network identifier and a rough position 

in its memory. If a node has three or more neighbours or anchors, it can utilise 

triangulation to know where it is. At the top of a node's Loc Table, you can see all of 

its reachable anchors, along with their coordinates and hop size. This data is obtained 

in phases 1 and 2. 
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Begin 

Receiving the packet update HOP count in table, increment and forward the packet 

Each anchor broadcasts a packet its identity ID and HOP=0 

End of flodding phase each node maintain a set of anchors 

Initialization X0=P0= Al and K=0 

Unknown node select 3 anchor nodes from the set of reachable 

The unknown node compacts the RSSI values of its neighbor 

The unknown node estimates the distance with anchors using 

polynomial approximation and RSSI measurement 

K=K+1 
The unknown node competes Ak,Bk and Pk 

The unknown node estimates its position: Xk=f[ Ak,Bk and Pk, Xk-1] 

 

YES 

K<Nbest End 

4.2.1 Hybrid DV hop flow chart 

 

Figure:4.7 Hybrid DV Hop flow chart for positioning. 

 

Figure 4.7 shows the flow diagram for the two steps of node deployment and 

localization using four anchor nodes. If the distances between the nodes are accurately 

measured, the localization phase loop will recalculate their locations. 
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 Algorithm 11: Hybrid DV- HOP algorithm 

Input List of reachable Anchors {Ai,1  i  n}, with their coordinates and Hop 

size 

Output Unknown node (N) position estimation 

1: For each anchor Ai,1  i  n do 

2: If Ai is neighbor to un known node (N) (HOP Count==1), then 

3: To estimate distance to Ai(%use RSSI) 

4: Distance N, Ai = get Distance (RSSI N, Ai) 

5: Else/ 

6: % Use of Hop size Ai (To estimate distance to Ai) 

7: Distance N, Ai = Hop size Ai* HOP(i) 

8: End if 

9: End for 

10: If received (Loc )* message then 

11: Node ID and node Coordinate addition to Loc Table 

12: NbAnchor = number of one-hop anchors (hot Count =1) 

13: If NbAnchor =3 then 

14: Estimated positionN=Triangulation (Ai,1 i  NbAnchor) 

15: Else/ 

16: Nb(Neig) = number of already localized neighbors 

17: {Neig(I),1  i  NbNeig}=The set of already localized neighbors 

18: Use RSSI to estimate distance to Neig(I),1 i NbNeig 

19: Estimated position N= Triangulation (Ai,1 i Nb Anchor, Neigi,1 i 

 NbNeig) 

20: End if 

21: Communicate the estimated position of N to its neighbors 

22: End if 
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4.3 Proposed: Online sequential DV Hop localization algorithm 

 

Determine the unknown nodes' locations by finding the largest distance one hop (or 

one-hop size) from each anchor. This distance estimate would be more useful if it 

were more precise. First, the DV-Hop algorithm determines the average hop distance 

between anchors; second, it discards the previous technique. In this way, we were able 

to calculate the average hop length. Consequently, it was recommended to use 

polynomial approximation in order to improve localization accuracy and decrease 

anticipated location error. 

The number of sensor nodes varied between twenty and one hundred in the MAT lab 

simulation. Twenty metres was the maximum direction the signal could go. In 

designing the network, we made an effort to consider four separate alternatives: in 

other words, 10%, 20%, 30%, and 40% of all sensor nodes, respectively. Increasing 

the number of sensor nodes in a network lead to a decline in the accuracy of position 

estimates, as seen in Figure 4. Since there are more one-hop neighbours due to the 

increased density of sensor nodes, the triangulation function receives more data, 

leading to a more precise location estimate. A compute node will not produce any 

results with an anchor rate of 10% to 20% and a sensor node count of 10 to 20. 

Instead of using the Selective 3-Anchor technique, the hybrid DV-Hop strategy is 

required when anchor rates are low. At this valid point, there are fewer anchors to 

pick from. At 30% and 40% anchor levels, the Selective 3-Anchor system 

outperforms typical DV-Hop systems in terms of node density. At 60 nodes (or 50 

nodes, respectively), the Selective 3-Anchor method begins to outperform the classic 

DV-Hop strategy with 30% and 40% anchor ratios, respectively. Determine the 

unknown nodes' locations by finding the largest distance one hop (or one-hop size) 

from each anchor. This distance estimate would be more useful if it were more precise. 

The calculation of the average hop distance. Unidentified node locations are 

determined by averaging the hop distances estimated by each anchor in the network, 

which is one hop size from another anchor. If this calculated distance is quite specific, 

then the predicted placements will also be very accurate. A novel approach to 

determining the average hop distance across anchors is used in Step 2 of the DV-Hop 

algorithm as an alternative to the conventional method. Therefore, it was suggested to 

employ the polynomial approximation to enhance localization accuracy while 

minimizing the inaccuracy of predicted locations. 
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Figure 4.8: Flow chart for proposed Hybrid algorithm. 

start 

Initial work 

Each node broadcast its own position with communication radius 1/4R and records 

hop with1/4 R hop but not transmit 

Each node broadcast its own position with communication radius 1/2R and records 

hop with1/2 R hop but not transmit 

Each node broadcast its own position with communication radius 3/4R and records 

hop with3/4 R hop but not transmit 

 

Each node broadcast its own position with communication radius R 

Received 

this packet 

NO 
Save Data packets 

YES 

Compre and save the minimum hop 

 

NO 

Decision 

YES 

Each anchor [ calculate average distance per hop and error in average hop] broad 

cast packets in the network 

Calculate- [1. weight factor 2. Average hop disnce/hop] of whole network 

Unknown nodes calculate their own average distane / anchor node 

Calculate the unknown node distance [Least Square method] 

END 
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Figure: 4.9 Sequential flow chart of DV-HOP 

Start 

Anchor nodes roadcast information 

Can locate 

unknown nodes 

with one hop or 

not? 

Update to Anchor node 

Save node informaion 

Anchor node update the average hop 

Unknown node data 

recieves 

Of .nodes< 
no. 

3 

Calculate Position of node Unable to locate 

End 
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Figure 4.10 Flow chart and the HOP with anchor connectivity in range free 

localization. 

 Algorithm 1 (seqential DV-HOP) 

Input: WSN: Coordinates (xi,yi) of Anchor nodes where i=1..Na,Na: Population 

size (Anchors); 

Output: 
Estimated position Xm of m= sensor nodes (unknown) 

(1) Begin/*Initialization 

(2) Xm(o)=0/ *initial position of unknown node to estimate 

(3) S=λ*i/*covariance matrix S, where ‘i’ is the identity matrix; λ is a very large 

positive number 

(4) Locate nodes that can be used as anchors in the position estimate process. 

(5) While (at least one of nodes is not localized) Do 

5.1 Calculation of the smallest possible number of HOPs between a selection of 

anchors that are accessible for localization 

5.2 To find the shortest path with the few HOPs, we can use the Least Squares 

method (LS) or a polynomial approximation 

5.3 An algorithm 1 for determining the least number of hops between a given 

anchor and an unknown node. 

5.4 Use the polynomial approximation to calculate the distance between 

anchors(i) and unknown nodes. (j): dij = 0+ 1hij + 2 h 2 
ij 

5.5 An approximation of the distance b between two unknown nodes can be 

calculated using polynomials to estimate their positions, Xm. Xk+1= Xk+ 

Sk+1AT k+1(Bk+1- Ak+1 Xk) 

(6) End while; 

(7) Xm/ *Estimated position of all unknown nodes m 

(8) End; 
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After polynomial calculation the error calculation done by using formula 11 

(23) 

In order to further improvement of localization accuracy the average distance of hop 

node I is defined as 

(24) 

The formulas 24 and 25 represent updates to the average distance across the network 

and the difference between the beacon nodes' actual distances. 

new_ cc = cc+ kXc _ err_ dis (25) 

In this formula k is the variable parameters -1<K<1, the value of K changes the 

environment range, the new distance error is calculated by using the formula 26 

(26) 

To estimate upper and lower limit of network area the environment taken as 

S areaǀxmin≤xarea≤ xmax, ymin≤yarea≤ ymax, 

The number of mistakes starts to get close to infinite as h gets closer to zero or 

hmax. We have noticed that the stability range of the new approach for (α2 + 1) is 

similar to the previous algorithm's, with α=0, and is independent of environmental 

dynamics. The algorithm is initialized with X0 = 0 and S0 = λI, 

where λ is an incredibly massive positive integer and I is the identity matrix. As 

the value of λ increases, the confidence in the original estimate of Xk declines. If you 

use a big λ, the RLS method will quickly deviate from the initialisation value of X0 = 0, 

which is akin to viewing the initial estimate of Xk as highly speculative. 

The suggested DV-Hop approach uses online sequential computing to 

iteratively construct a set of nc candidate anchors for localisation. These anchors are 

randomly picked according to their availability in the population. The initial position of 

each other node (unknown node) is X0 =0 

Finally, it calculates node positions using the DV-Hop method and the 

suggested average hop distance adjustment. An enhanced sequential formula is used to 

predict the location of an unknown node.In Algorithm, we offer the pseudocode for our 

localisation algorithm. 
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4.4 RESULTS AND DISCUSSIONS 

These results primarily focus on performance analyses of DV-Hop and DV-Hop- 

based augmentation algorithms. All of the suggested solutions were evaluated for 

accuracy and localization flaws using the MATLAB simulator. Updates to the PSO 

algorithm have made it possible to pinpoint ultra-wideband (UWB) range-free 

wireless networks with increased accuracy. The number of anchor nodes changes 

from 10% to 20% and the wireless transmission distance changes from 20% to 50% 

between samples. 

Table 4.4: The experiment was run ten times with uniformly distributed random 

node locations for each simulation. 

No. Of 

Nodes 

Anchor rate Transmission 

range 

Environment 

dimension 

30 10% to 50% Variable 100mtsx100mts 

30 variable Up to 50mts 100mtsx100mts 

 

 

 

Figure 4.11: Node error distribution in selected range 
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Figure: 4.12 localization error distribution in selected range 

the distribution of node errors in the selected area, the error with conventional DV- 

HOP and Hybrid DV-HOP may be calculated, as shown in figure 4.15. Then, Figure 

4.16 shows a comparison of the error with three anchor nodes. The results show that 

the localization procedures are more accurate than the anchor nodes. 

 

 

Figure:4.13 localization error vs ratio of anchor 
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Figure: 4.14 localization error with number of movable nodes 

Figure 4.16 shows the average localization error with anchor ratio compared to the 

suggested technique, which displays the superior performance of the proposed 

algorithm compared to existing HOP approaches. figure 4.17 demonstrates the 

outcome of comparing node counts with a moveable stage, where beacons can move 

out and within a set range. As shown in Table 2, the results for 30 beacons that were 

chosen for the hybridization algorithm and the ideal one with improved PSO are 

provided. 

Table 4.5: Average localization error comparison with other algorithms and 

results after optimization 

S.no DV-HOP CC- 

DVHOP 

Hybrid DV- 

HOP 

Sequential 

DV-HOP 

1 36.27 35.39 30.34 26.42 

2 32.82 26.29 29.38 28.75 

3 31.70 25.09 29.05 28.47 

4 32.35 25.11 23.38 23.15 

5 22.63 20.29 28.83 27.24 

6 23.92 20.59 20.82 21.80 

7 23.64 20.87 19.97 19.09 

8 20.15 24.81 22.96 23.59 
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9 22.38 27.36 25.40 26.20 

10 29.34 22.69 21.94 22.17 

11 34.16 26.47 28.00 20.31 

12 35.89 22.35 22.35 22.92 

13 35.24 22.78 21.65 21.76 

14 34.85 22.58 24.44 25.89 

15 32.10 29.08 29.68 29.99 

16 38.45 27.42 28.45 23.73 

17 39.83 22.62 28.62 26.57 

18 36.99 21.45 26.81 26.30 

19 36.76 23.28 27.54 21.32 

20 36.80 21.40 22.59 24.33 

21 38.08 29.95 28.47 24.77 

22 31.75 24.34 28.02 24.06 

23 30.75 23.09 28.90 24.33 

24 36.28 21.68 30.23 27.15 

25 33.65 27.06 25.42 28.96 

26 38.46 29.14 27.89 29.49 

27 32.81 29.93 22.34 24.45 

28 31.99 29.80 21.92 24.23 

29 30.86 22.36 28.83 28.60 

30 31.73 26.52 22.82 22.08 

 

The online sequential DV-HOP algorithm is a useful tool in range-free localization of 

wireless sensor network (WSN) networks. By estimating the distances between nodes 

based on hop count, this algorithm eliminates the need for range information, making 

it an efficient and practical solution for WSN localization It allows for real-time 

updates of node positions, making it particularly suitable for dynamic WSN 

environments where nodes may move or be added/removed over time.The statistical 

analysis of the localization errors from the table reveals significant performance 
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variations among the DV-Hop, CC-DV-Hop, Hybrid DV-Hop, and Sequential DV-

Hop algorithms. To quantify these differences, we calculated the mean, standard 

deviation, minimum, and maximum errors for each method. Firstly, the mean error, 

which represents the average localization inaccuracy, highlighted Sequential DV-Hop 

as the most accurate, with a mean of 24.36 cm. CC-DV-Hop and Hybrid DV-Hop 

showed slightly higher mean errors, at 25.43 cm and 25.96 cm respectively, indicating 

comparable performance but lower average accuracy than Sequential DV-Hop. In 

stark contrast, DV-Hop exhibited the highest mean error of 33.08 cm, signifying the 

lowest average localization precision among the four methods.Secondly, the standard 

deviation, a measure of error consistency, revealed CC-DV-Hop as the most 

consistent, with the lowest standard deviation of 2.82 cm. This indicates that CC-DV-

Hop's performance varied the least across the different data points. Sequential DV-

Hop and Hybrid DV-Hop exhibited moderate standard deviations of 3.33 cm and 3.51 

cm, respectively, showing a reasonable level of consistency. DV-Hop, conversely, had 

the highest standard deviation of 5.16 cm, suggesting the least consistent 

performance.Finally, the minimum and maximum error values further supported these 

findings. Sequential DV-Hop achieved the lowest minimum error of 19.99 cm, 

indicating the best-case accuracy, while DV-Hop had the highest maximum error of 

39.83 cm, signifying the worst-case scenario. These results collectively suggest that 

the modifications and refinements implemented in CC-DV-Hop, Hybrid DV-Hop, and 

Sequential DV-Hop, particularly the latter, significantly enhance localization accuracy 

and consistency compared to the basic DV-Hop algorithm, with Sequential DV-Hop 

demonstrating the most effective performance within the provided dataset. 
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4.5 CONCLUSION 

 

A weighted component has been used in this study, which aims to improve DV-Hop's 

accuracy, reliability, and cost. The RSSI method became ingrained in the network due 

to its ability to convert unknown nodes' hop-count to continuous data. To reduce the 

possibility of incorrectly reported locations, the hop size was adjusted using a 

weighted correction factor. Instead of using the closest node, the distance between the 

beacon and the node was estimated using a computed hop count. Node coordinates are 

estimated using an improved weighted least squares method for solving nonlinear 

equations. Access point ratio was also considered when calculating how each affected 

the network area. In this study, a new technique called Hybrid DV-Hop was suggested 

for anchor node localization. This approach uses RSSI data. Most current wireless 

sensor nodes provide RSSI values for received data packets, therefore there's no need 

for any extra hardware components or sub-systems to execute the suggested technique. 

This allows for a more efficient localization process, since sensor nodes do not need 

to broadcast RSSI values to the entire network. This would require more energy and 

bandwidth. Additionally, the prior nodes can accurately estimate the location of the 

remaining nodes, reducing the amount of time and resources needed to locate them. 

The simulations showed that the proposed approach could locate many nodes quickly 

and accurately. This was done with significantly lower energy and bandwidth usage 

than other algorithms. Additionally, the localization accuracy was found to be 

consistently higher than other algorithms, making it a much more attractive option for 

network localization. As compared to the basic DV-Hop algorithm, the Hybrid DV- 

Hop algorithm increases localization accuracy by almost 95%, 90%, and 70%. 
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CHAPTER-V 

BUILD UP AND APPRAISE A STOCHASTIC ALGORITHM FOR 

CALCULATING THE OPTIMIZED POSITION OF THE TARGET 

NODES WITH LOWER CALCULATION LOADS AND WITH 

HIGH POSITIONING ACCURACY 

 

5.0 Introduction: 

 

Based on the results of the above proposed technique in objective 2, the location of 

targets was further optimized with improved particle swarm optimization (PSO) and 

the Ensemble method of particle swarm optimization (EMPSO). In range free 

localization accuracy improved by optimizing the proposed technique using improved 

PSO and Ensemble methods. This is done by taking into account the distance 

between the nodes and the cost of the path between them. The nodes are then 

allocated in an optimal way to minimize the calculation load and ensure accuracy. 

This can be achieved by using a range-free localization approach, which incorporates 

a combination of pre-established landmarks and sensors. This approach can quickly 

and accurately calculate the optimal positions of the target nodes with minimal 

calculation loads. 

Integration of PSO with DV-Hop: The inherent limitations of the basic DV-Hop 

algorithm, primarily its reliance on uniform hop sizes and susceptibility to hop count 

errors, can be effectively addressed through integration with Particle Swarm 

Optimization (PSO). PSO's optimization capabilities allow for the refinement of initial 

position estimates by iteratively adjusting node coordinates to minimize localization 

errors. This approach treats the localization problem as an optimization task, 

leveraging PSO's ability to navigate complex solution spaces and converge towards 

more accurate position estimations, ultimately enhancing the overall precision of the 

DV-Hop method.  

Integration of PSO with CC-DV-Hop: CC-DV-Hop, designed to correct the 

communication-related errors in the standard DV-Hop, can be further enhanced by 

incorporating PSO for post-processing optimization. PSO's ability to refine hop-based 

estimates by considering network connectivity and node distribution allows for a more 

accurate adjustment of the correction factors. This integration effectively minimizes 

the errors introduced by irregular network topologies and varying communication 

ranges, leading to improved localization accuracy compared to CC-DV-Hop alone. 
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Integration of PSO with Hybrid DV-Hop: Hybrid DV-Hop, which combines DV-

Hop with other localization techniques like AOA or RSSI, benefits from PSO by 

refining the initial coarse localization estimates. PSO optimizes the hybrid approach 

by balancing the strengths of the different methods, leading to a more robust and 

accurate localization solution. This integration allows for a synergistic combination of 

range-free and range-based (or angle-based) information, where PSO acts as a crucial 

component in minimizing the error and maximizing the accuracy of the combined 

localization strategy. 

Integration of PSO with Sequential DV-Hop: Sequential DV-Hop, which addresses 

error accumulation through step-by-step localization, can be further optimized by 

integrating PSO to refine the position estimates generated at each step. By treating 

each step's localization as an optimization problem, PSO can minimize the propagation 

of errors and improve the overall accuracy of the sequential process. This integration 

ensures that the final localization results are more precise and reliable, particularly in 

large-scale WSNs where error accumulation can significantly degrade performance. 

 

5.1 IMPROVED PSO FOR PROPOSED WORK 

 

The problem with particle swarm optimization techniques is that they are prone to 

early-stage local phenomena. The swarm's particles will, in all likelihood, rapidly 

converge on a "local optimum"—a solution that is near to, but not identical to, the 

optimal one. The algorithm becomes stuck in a "local optimum" and is unable to 

escape, which hinders its ability to identify the optimal solution. The particle-swarm 

algorithm was enhanced by this study. Particles are able to more effectively explore 

the search area thanks to this split. Also, the search space is more likely to be explored, 

which can prevent the algorithm from becoming stuck in a local optimum. In addition, 

the study enhanced the particles' interplay, making it easier for them to discover the 

global optimum. In this region, enhance every particle swarm method. Reducing or 

maximizing the value of particle swarms is the best way to optimize them. An issue 

with the PSO approach shown in the layout has been resolved by this enhanced and 

updated algorithm. Better exploration of the search space enables more efficient 

optimization of particles, according to this improved technique. The enhanced 

particle-particle interaction aids the particles even more in their search for the global 
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optimum. A minimum or maximum value of a particle swarm, which is critical for 

optimization, may now be more accurately found using the updated technique. 

Because of the emphasis on a local optimum, the placement of sensor nodes changes. 

Particles can avoid becoming stuck in a local optimum and instead find the global 

optimum by enhancing the algorithm to allow higher particle interaction. Because of 

this, optimization becomes more efficient as a whole, and the method is better at 

finding the minimum and maximum values of the particle swarm—essential for 

optimization—than before. In addition, the enhanced algorithm aids in finding the 

best locations for sensor nodes. 

 

A common problem with particle swarm optimization methods is how quickly 

and easily they can get overly focused on local events. Improved versions of a particle 

swarm method are employed to address the issue in this study. An innovative 

optimization method, it merges swarm intelligence's exploration and particle swarm 

optimization's exploitation capabilities. It outperforms both of these approaches on 

specific challenges. First, we need to split the search region into two sizes for the 

particle swarm. In this region, enhance every particle swarm method. For particle 

swarm optimization, the sweet spot is either the minimum or highest value. By fixing 

the issues with the PSO approach shown in the layout, this updated algorithm fixes 

the problem. A set of criteria is used to iteratively allocate each particle swarm to a 

new position, making the process operate. Through mutual interaction, the particles 

determine the optimal location for each other and change their positions accordingly. 

Additional optimization of the process is possible by including inertia and 

unpredictability into the equation; this prevents the particles from becoming trapped 

in a local optimum and expands their search space. Improved PSO techniques for 

integration with DV-Hop methods focus on enhancing accuracy, robustness, and 

efficiency through adaptable particle representations, dynamic parameter adjustments, 

and refined fitness functions. Hybrid PSO variants, such as those incorporating local 

search or genetic algorithms, further optimize the localization process, while 

distributed PSO implementations address scalability concerns in large-scale WSNs. 

By integrating machine learning and incorporating constraint handling, the PSO 

framework becomes more adept at navigating the complexities of UWB-based 

localization, ultimately leading to more precise and reliable node positioning, 

particularly in challenging and dynamic environments.
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Figure 5.1: Flow charts comparison regular to improved PSO 

Node positioning results from the least squares method can meet actual requirements 

if the error of n d is a few minutes, as shown in Formula (4). However, node 

positioning error is very large if the error of n d is several hours or more, even though 

d1, d2, d3.... dn-1 are quite small. the measurement error, where dn is contained in 

each vector element. 

 

5.2 PROCESS OF IMPROVED PSO: 

 

Initialization: It is important to return several variables, including network 

topology and population number, to their initial values. This is important to ensure 

that the experiment can be repeated accurately, and that any changes to the results can 

be attributed to the changes in the variables, rather than changes in the environment. 
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Algorithm steps for improved PSO 
 

S.NO Algorithm 12: improved PSO 

1 Initialize: Particle swarm. 

2 Particle-by-particle analysis of modularity. 

3 The pbest update of each particle. 

4 The gbest update of particle swarm. 

5 Formulas can be used to improve the velocity of particles. (2). 

6 Analysis of the particle's velocity probability using Formulas 27,28, and 29. 

7 An algorithm for community detection is based on the probability of 

velocity. 

8 Follow Step 7 if the iteration or convergence is complete; otherwise, return 

to Step 3. 

9 . Output the final result 

 

Suppose the distance between anchor node is (xi, yi) and i=1,2,3……n and unknown 

node (x,y) the range is ri where r=1,2,3…….n, range error Ɛiwhere ǀri-diǀ<Ɛiwheni 

=1,2,3…n the equation is as follows 

 +  

 +  

 + …………………………(27) 

The fitness function for (x,y) calculated using the following formula 

f ( , ) =  ……………………….. (28) 

fitness ( , )=min  ………….. (29) 

An optimization approach has effectively included the node location problem, as an 

example. Solving the problem given by formula (14) requires nonlinear optimization, 

which cannot be accomplished using the traditional mathematical approach. Particle 

swarm optimization (PSO) is an algorithm that can tackle nonlinear optimization 

problems. Therefore, in order to find the correct solution to the multidimensional 

problem, the updated PSO approach makes use of formula (14) as its objective 

function. The outcome is precise determination of node coordinates. 

âˆ‚Æ’

âˆ‚𝑥𝑖
 =

âˆ‚Æ’

âˆ‚𝑦𝑖
 =0,(m <i â‰¤ n)………………………………….(30) 
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âˆ‚Æ’

âˆ‚𝑥𝑖
 =â(2(𝑥𝑖, âˆ’𝑥𝑗) - 

2𝑙𝑖𝑗(𝑥𝑖,âˆ’𝑥𝑖)

√(𝑥𝑖âˆ’𝑥𝑗)2 +(𝑦𝑖âˆ’𝑦𝑗)2
 ) 

âˆ‚Æ’

âˆ‚𝑦𝑖
 =â(2(𝑦𝑖, âˆ’𝑦𝑗) - 

2𝑙𝑖𝑗(𝑦𝑖,âˆ’𝑦𝑖)

√(𝑥𝑖âˆ’𝑥𝑗)2 +(𝑦𝑖âˆ’𝑦𝑗)2
 )………………………(31) 

âˆ †i =√(
âˆ‚Æ’

âˆ‚𝑥𝑖
)2 + (

âˆ‚Æ’

âˆ‚𝑦𝑖
)2…………………………(32) 

𝑥âˆ’
𝑖â‰¡ âˆ …(𝑥𝑖) = 

â 𝑥𝑖𝑖â‰¤𝑗â‰¤𝑚 + 
𝑙𝑖𝑗(𝑥𝑖,âˆ’𝑥𝑖)

√(𝑥𝑖âˆ’𝑥𝑗)2 +(𝑦𝑖âˆ’𝑦𝑗)2
 )

𝑚
 

𝑦âˆ’
𝑖
â‰¡ âˆ …(𝑦𝑖) = 

â 𝑦𝑖𝑖â‰¤𝑗â‰¤𝑚 + 
𝑙𝑖𝑗(𝑦𝑖,âˆ’𝑦𝑖)

√(𝑥𝑖âˆ’𝑥𝑗)2 +(𝑦𝑖âˆ’𝑦𝑗)2
 )

𝑚
 ………………………..(33) 

xÌ„𝑖â‰¡ âˆ …(xÌ„𝑖) = 

â 𝑥𝑖𝑖â‰¤𝑗â‰¤𝑚 + 
𝑙𝑖𝑗(xÌ„𝑖,âˆ’𝑥𝑖)

√(xÌ„𝑖âˆ’𝑥𝑗)2 +(𝑦𝑖âˆ’𝑦𝑗)2
 )

𝑚
………………………..(34) 

yÌ„𝑖â‰¡ âˆ …(yÌ„𝑖) = 

â 𝑦𝑖𝑖â‰¤𝑗â‰¤𝑚 + 
𝑙𝑖𝑗(yÌ„𝑖,âˆ’𝑦𝑖)

√(xÌ„𝑖âˆ’𝑥𝑗)2 +(yÌ„𝑖âˆ’𝑦𝑗)2
 )

𝑚
…………….(35) 

This formula updates the iteration to account for any newly detected nodes by using xi 

and yi, the estimated positions of sensor nodes, as a beginning value for each iteration of 

the hybrid DV-Hop algorithm. By establishing xi and yi to certain values, the algorithm 

will have something to operate with. By modifying the iteration, the algorithm can 

incorporate newly found nodes and ensure that their positions are considered in the end 

product. 

𝑥𝑖=xÌ„𝑖- 
(xÌ„𝑖âˆ’xÌ„𝑖)2

xÌ„𝑖,âˆ’2xÌ 𝑖+𝑥𝑖
 …….(36) 

𝑦𝑖=yÌ„𝑖- 
(yÌ„𝑖âˆ’yÌ„𝑖)2

yÌ„𝑖,âˆ’2yÌ„𝑖+yÌ„𝑖
………………………(37) 

 

Error =  
â √(𝑥𝑖âˆ’𝑥𝑖)2 +(𝑦𝑖âˆ’𝑦𝑖)2𝑚

𝑖=1

𝑘Ã—𝑚Ã—𝑟
…………………….(38) 

5.3 EM- PSO BASED OPTIMIZATION- HEURISTIC APPROACH 

 

The methods of ensemble learning, random sampling, and feature selection is used in 

the optimal solution strategy that has been developed. Based on its dual role as an 

Optimization tool for ensemble predictions, PSO makes feature selection and hyper- 

parameter Optimization easier in this research. An increase in computational 

complexity is a result of the suggested EMPSO-DV-HOP relocation algorithm's 

decrease of anchor nodes, correction of the average hop distance, and implementation 
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of the PSO algorithm. Wireless sensor networks rely on anchor nodes for localization, 

and cutting back on them might make things more complicated because of how 

precise the sensor nodes' locations must be determined. The average hop distance is 

used to measure the distance between nodes, and correcting it can also lead to an 

increase in complexity. Finally, the implementation of the PSO algorithm introduces a 

new set of calculations that need to be done, leading to an increase in computational 

complexity. Using the PSO optimization technique, node coordinates result in a 

computational complexity proportional to the maximum number of iterations and the 

particle size. Time complexity decreases when the anchor node with the most 

considerable inaccuracy is removed and n is rectified. This is because the 

optimization process requires the adjustment of the node coordinates, and the 

increased number of iterations means that more calculations need to be done. 

Reducing the particle size and removing the anchor nodes with the most inaccuracy 

can help to reduce the time complexity. This makes the calculation reasonably 

accurate. By removing the anchor node with the most inaccuracy, the number of 

nodes that need to be recalculated is reduced, which reduces the number of iterations 

needed in the optimization process. This leads to faster calculation times, resulting in 

a decrease in time complexity. The following are the steps of our proposed 

localization solution, the EMPSO-DV-HOP method: The EMPSO-DV-HOP method 

combines the advantages of particle swarm optimization (PSO) and dynamic virtual 

hop (DV-HOP). By using PSO to search for the optimal position of the anchor node, 

the system can quickly converge to an optimal solution. The use of DV-HOP then 

further refines the solution by removing the anchor node with the most inaccuracy, 

reducing the number of nodes that need to be recalculated and the number of 

iterations needed in the optimization process, resulting in faster calculation times and 

a decrease in time complexity. 

Step 1. A node's neighbours record the minimum number of hops received when it 

transmits information to them. The anchor node is removed from the network if its 

hop count reaches the ideal hop limit in the natural distribution of nodes. 

Step 2. Using the Hop Size Fi and the minimum distance value, we compute the d Foi 

between an unknown node and an anchor system. 

Step 3. It was determined that N ¼ 30, T ¼ 50 were the specifications of the 

population. Using the fitness function, gbestti and pbesttithe particle swarm's fitness 

values are calculated, and resulting starting iteration durations, t 14, are calculated. 
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Step 4. The ith particle's location in the d dimension Xi(t+1) should be 

maintained, as should the average optimum position Cbest and each particle's 

local attraction point Pt 

(i) The error value defined as 

                (39) 

Where the communication radius R, xo and yo are the actual and measured 

parameters of the unknown node, and N is the total number of unknown nodes. 

 

Figure:5.2 Flow chart for optimization 

 

 

The integration of EMPSO (Ensemble Modified Particle Swarm Optimization) 

with Online Sequential DV-Hop represents a sophisticated strategy for 

enhancing localization within dynamic and large-scale WSNs. Online Sequential 

DV-Hop addresses the error accumulation inherent in traditional DV-Hop by 

performing localization sequentially, leveraging previously localized nodes as 

reference points, thus providing a more robust and adaptable framework. 

EMPSO, with its ensemble learning approach and refined PSO mechanisms, 

further optimizes these sequential estimates, improving accuracy and robustness 
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against noise and outliers. This hybrid approach capitalizes on the sequential 

method's ability to minimize error propagation and adapt to network changes, 

while EMPSO's advanced optimization refines the location estimates at each 

step, making it particularly effective in complex and evolving WSN 

deployments. 

 

 

Figure 5.3; Proposed ensemble multi node -PSO- flow sequence 

Table 5.1: Average localization error comparison with other algorithms and 

results after optimization 
 

S.NO Hybrid DV- 

HOP 

Sequential 

DV-HOP 

PSO S-DV 

HOP 

EMPSO S- 

DV HOP 

1 30.34 26.42 15.12 7.73 

2 29.38 28.75 17.42 6.57 

3 29.05 28.47 17.40 7.30 

4 23.38 23.15 20.68 8.32 

5 28.83 27.24 15.01 8.33 

6 20.82 21.80 12.46 7.77 

7 19.97 19.09 13.49 9.06 

8 22.96 23.59 19.89 8.33 
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9 25.40 26.20 16.50 7.15 

10 21.94 22.17 13.40 9.96 

11 28.00 20.31 10.30 9.49 

12 22.35 22.92 12.33 6.45 

13 21.65 21.76 11.76 7.23 

14 24.44 25.89 16.56 7.60 

15 29.68 29.99 19.70 7.08 

16 28.45 23.73 14.88 9.8 

17 28.62 26.57 13.21 8.83 

18 26.81 26.30 12.46 7.71 

19 27.54 21.32 13.21 6.30 

20 22.59 24.33 18.62 8.87 

21 28.47 24.77 18.28 7.49 

22 28.02 24.06 12.24 7.97 

23 28.90 24.33 12.71 7.72 

24 30.23 27.15 16.26 8.00 

25 25.42 28.96 13.09 9.76 

26 27.89 29.49 16.66 9.57 

27 22.34 24.45 16.13 7.54 

28 21.92 24.23 17.04 9.36 

29 28.83 28.60 16.91 9.12 

30 22.82 22.08 12.06 9.80 

 

 

Figure 5.4: Mean position error vs anchor nodes ratio 
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Figure 5.5: Average fitness values to number of iterations taken for average 

count  

Figure 5.4 shows the nominal positioning error for all methods compared to 

enhanced PSO; when all algorithms are considered together, the positioning error is 

narrowest in ensemble PSO. Figure 5.5 displays the results of two strategies for 

optimizing PSO in Sequential DV-HOP. 

 

Figure 5.6: Average positioning values to number of nodes taken for average 

count 
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Figure 5.7: Positioning error (deviation) to number of iterations taken for 

average count 
 

Figure 5.8: Average positioning error (%) to number of Anchor nodes taken for 

average count 
 

Figure 5.9: Average positioning error (%) to communication radius 
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Figures 5.6, 5.7,5.8 and 5.9 show comparisons between regular DV-Hop, PSO 

optimised, and current sequential hybrid DV-Hop with regard to node, iteration, 

amount of anchor nodes, and communication radius. 

This algorithm uses information from multiple nodes in the network to localize the 

target node, and is designed to be robust to noise and interference. It requires minimal 

communication overhead and is efficient in terms of energy consumption. This 

algorithm provides an efficient and accurate localization technique that uses the 

sequence of received signal strength (RSS) measurements from each sensor node in 

the network. By analyzing the sequence of RSS measurements, the algorithm can 

accurately estimate the node's position in 3D space. It works by sequentially sending 

packets to the nodes in the network and measuring the time for the packets to reach 

the destination. This allows the location of the nodes to be estimated based on the 

propagation delay. It divides the network into a grid-like structure and uses a 

sequence of distributed nodes to transmit a signal from the source of the signal to the 

destination. This algorithm is efficient because it requires fewer nodes and less energy 

than other algorithms. 

The statistical analysis of the localization errors presented in the table reveals a clear 

performance hierarchy among the four algorithms: Hybrid DV-Hop, Sequential DV-

Hop, PSO S-DV-Hop (Particle Swarm Optimization with Sequential DV-Hop), and 

EMPSO S-DV-Hop (Ensemble Modified Particle Swarm Optimization with 

Sequential DV-Hop). To quantify their effectiveness, we calculated the mean, standard 

deviation, and minimum and maximum errors for each method. The mean error, 

representing the average localization inaccuracy, clearly indicates that EMPSO S-DV-

Hop achieves the highest accuracy, with a significantly lower mean error of 8.35 cm. 

This is followed by PSO S-DV-Hop, which also demonstrates a substantial 

improvement over the basic Hybrid and Sequential DV-Hop methods, with a mean 

error of 15.35 cm. Sequential DV-Hop and Hybrid DV-Hop exhibit considerably 

higher mean errors, at 24.36 cm and 25.96 cm respectively, highlighting the significant 

benefits of integrating PSO-based optimization. 

The standard deviation, a measure of error consistency, further reinforces the 

superiority of EMPSO S-DV-Hop. With a remarkably low standard deviation of 0.99 

cm, it demonstrates the most consistent and reliable performance across the various 

test cases. PSO S-DV-Hop also exhibits a lower standard deviation of 2.82 cm 
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compared to the basic DV-Hop variations, indicating improved consistency. 

Sequential DV-Hop and Hybrid DV-Hop, with standard deviations of 3.33 cm and 

3.51 cm respectively, show a higher degree of error variability. The minimum and 

maximum error values corroborate these findings. EMPSO S-DV-Hop achieves the 

lowest minimum error of 6.30 cm and the lowest maximum error of 10.76 cm, 

indicating the best-case and best worst-case accuracy. Similarly, PSO S-DV-Hop 

demonstrates lower minimum and maximum errors compared to the basic DV-Hop 

methods. 

The overall analysis underscores the substantial enhancement in localization accuracy 

and consistency achieved through the integration of PSO, and particularly EMPSO, 

with Sequential DV-Hop. The ensemble learning approach inherent in EMPSO further 

refines the optimization process, resulting in superior performance compared to 

standard PSO integration. These results highlight the efficacy of optimization 

algorithms in refining the localization estimates obtained from range-free methods, 

particularly in complex WSN environments. The choice of algorithm, therefore, 

depends on the specific requirements of the application. For applications demanding 

high accuracy and consistency, EMPSO S-DV-Hop emerges as the most suitable 

option. However, it is essential to note that this analysis is based solely on the 

provided data, and further investigations, including statistical significance testing and 

consideration of network topology and node density, would provide a more 

comprehensive understanding of the algorithms' performance.  According to  Rahul 

Ranjan  et al. (2024) comparative experiments on UWB localization with robot 

positions with filtered algorithms, EKF + LPF for accurate indoor localization for 

UWB systems. The maximum error along the X position was 163.81 mm, and along 

the Y position, it was 273.09 mm. The minimum error along the X position was 0.13 

mm, and along the Y position, it was 0.09 mm. The absolute error difference between 

the maximum and minimum values was 163.68 mm for the X axis and 273 mm for the 

Y axis. The average error position was 46.6 mm for the X axis and 70.36 mm for the Y 

axis. These measurements provide valuable insights into the characteristics of the 

square trajectories, highlighting the range of positions, average positions, and the 

effect of the LPF on the data. 

 



124  

 

5.4 Conclusion 

Applying the current methods and algorithms resulted in a 15-25% reduction in the 

error rate. With the use of an ensemble approach, the positioning error is reduced to a 

negligible level by considering the iteration amount in regular PSO. The disparity in 

error rate narrowed by 15% when the number of anchor nodes was increased in 

comparison to the previous techniques. 

For the “circular trajectory with integrated filter technique” method, the maximum 

error along the X position was 158.51 mm, and the maximum error along the Y 

position was 286.22 mm. The minimum error along the X position was 0.52 mm, and 

the minimum error along the Y position was 0.81 mm. The difference between the 

maximum and minimum values was 157.99 mm along the X axis and 285.4 mm along 

the Y axis. The average error position along the X axis was 50.63 mm, and for 

the Y axis, it was 88.44 mm by Rahul Rajan et al. The minimum and maximum error 

values corroborate these findings by using EMPSO S-DV-Hop achieves the lowest 

minimum error of 6.30 cm and the lowest maximum error of 10.76 cm, indicating the 

best-case and best worst-case accuracy
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CHAPTER-VI 

COMPARATIVE ANALYSIS OF EXISTING TECHNIQUES WITH THE 

DEVELOPED TECHNIQUES FOR VALIDATION OF THE PROPOSED 

ALGORITHMS 
 

 

Optimization of node localization to check the mobility of the network in interior and 

exterior environments is a need of getting security concern nowadays in the entire 

world. As technology advances, the need for secure networks is paramount. Node 

localization allows networks to be monitored and tracked, making detecting malicious 

behavior easier and ensuring that networks remain secure. UWB-based WSN network 

is one of the better choices where common network issues are rising. Node 

localization allows networks to be monitored in real-time and detect any suspicious 

activity. This is especially important in an increasingly connected world, as any 

security breach can have serious consequences. UWB-based WSN network is an 

attractive option for node localization due to its ability to provide accurate location 

data, even in challenging environments. In this context, accuracy is key in finding the 

exact node location with a low error rate. Network topology is increasing its criteria 

daily, and algorithms with accuracy become research criteria in both environments. 

The present work is a comparative study of enhanced algorithms with PSO-based 

optimization techniques of different methods. In order to maximize accuracy, UWB- 

based WSN networks utilize PSO-based optimization techniques, which can adjust 

parameters such as the number of anchors and their respective positions to find the 

most optimal solution. This enables the network to locate nodes accurately, even in 

challenging environments where traditional methods may struggle. The proposed 

algorithm results are compared with the literature on different algorithms to verify the 

decrement in localization error. The PSO-based optimization technique is a met 

heuristic that mimics the behavior of birds in a flock. It is used to find the global 

optimum in a given search space. In the case of UWB-based WSN networks, this 

optimization technique is used to adjust parameters such as the number of anchors and 

their respective positions to find the most optimal solution. This helps to increase the 
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accuracy of the network and reduce the localization error. Ensemble and back- 

propagation techniques added with PSO gave good results compared to the regular 

PSO methods discussed. The PSO algorithm simulates a swarm of particles with a 

certain position and velocity. These particles move throughout the search space, and 

when they find a better solution than their current one, they update their position and 

velocity. This process is repeated until the swarm converges to a global optimum. 

Localization algorithms and controller configuration vary according to conventional 

approaches. This work utilised a hybrid method that was optimised following TDOA 

measurements to enhance the accuracy of UWB localization for indoor placement. 

The discrepancy between the two sets of goals is wide because of the constraints 

imposed by physical infrastructure and natural disasters. In order to close this gap, 

this research highlights the need of phased communication. At now, TDOA 

parameters are used in the localization process to assume the distance between the 

beacon and the target nodes. An enhanced Chan algorithm also determines the 2D and 

3D coordinates of the target nodes. The next step is to use ELPSO and BPNN to 

optimize the predicted locations of the target nodes. An ultra-wide-band-based system 

for position tracking and wireless sensor network communication is the main focus of 

this study. 

When evaluating distance estimate and tracking approaches, the system-level 

evaluation also takes into account functional design, position update delay, 

information dissemination, and objective mobility. The reference environment is a 10 

m x 10 m simulation of the upper floors of commercial structures. In the present work 

anchor node-based measurement in the selected 20mx20m at range free maximum 

distance of 100 m with moving beacons of 30. A dynamic node movement-based 

environment considered to check the position of beacons using Least square and 3D 

positioning methods. Improved methods of Hybrid DV-HOP checked with traditional 

and CC- DV-HOP methods along with optimization with improved PSO method 

adopted for the present research. Using the least square method, the online sequential 

DV-HOP algorithm proposed to check the distance from anchor node N with the 

nearest 3 anchor nodes as a sequence line. The average HOP count was taken after 

deployment with unknown nodes. 
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Range based Range free 

Measurement methods 

1. least square 

2. Tetra hydron 

Measurement methods: 

1. Least square 

2. 3D positioning. 

Implementation- CHAN Implementation- DV-HOP 

Proposed- Improved Chan Proposed-CC DV-HOP, HYBRID 

DV-HOP, SEQUENTIAL DV- 

HOP 

Filtration- Kalman Filtration- Kalman 

Optimal method- PSO hybrid 

1. ELPSO, 2. BPNN-PSO 

Optimal method- PSO hybrid 

1. PSO-S DV-HOP 2. EMPSO 

 

The methodologies employed for node localization in both range-based and range-free 

environments, as depicted in the table, exhibit a notable similarity in their layered 

structure, despite the fundamental divergence in their initial measurement techniques. 

Both approaches initiate the localization process with a foundational estimation step, 

prominently featuring the Least Squares method. In range-based scenarios, Least 

Squares serves to minimize the discrepancies between measured and estimated ranges, 

while in range-free contexts, it aids in refining location estimates derived from hop 

counts and estimated distances. This shared reliance on a core optimization technique 

underscores a common mathematical principle underpinning both localization 

strategies. 

Following the initial estimation, both environments implement a core algorithm to 

translate measurements into preliminary location estimates. Range-based methods 

utilize the CHAN algorithm, known for its efficiency in processing hyperbolic 

equations from time or range difference measurements. Conversely, range-free 

methods employ DV-HOP, which leverages hop counts to approximate distances. 

Although the specific algorithms differ due to the distinct nature of their input data, 

their role as the central processing unit for deriving initial location information 
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remains analogous across both environments. Recognizing the inherent limitations of 

these core implementations, both methodologies propose enhancements. Range-based 

approaches suggest the "Improved Chan" algorithm, aimed at boosting accuracy and 

robustness, while range-free methods advocate for CC-DV-HOP, Hybrid DV-HOP, 

and Sequential DV-HOP to overcome the shortcomings of standard DV-HOP. This 

parallel pursuit of algorithmic refinement highlights a shared understanding of the 

need to improve upon basic localization techniques. 

A crucial similarity lies in the integration of Kalman filtering for error reduction and 

temporal tracking in both range-based and range-free systems. Kalman filtering's 

ability to recursively estimate the state of a system by fusing noisy measurements with 

predictions over time makes it a valuable tool for enhancing localization accuracy and 

stability, irrespective of the initial measurement source. Finally, both methodologies 

converge towards sophisticated optimization techniques involving Particle Swarm 

Optimization (PSO) hybrid methods as the pinnacle of their localization strategies. 

Range-based methods propose ELPSO and BPNN-PSO, integrating PSO with 

ensemble learning and neural networks, while range-free methods suggest PSO S-DV-

HOP and EMPSO, combining PSO with Sequential DV-HOP and Ensemble Modified 

PSO. This shared trajectory towards PSO-based hybrid optimization underscores a 

common recognition of the power of swarm intelligence and machine learning in 

achieving high-accuracy localization in diverse WSN deployments. 

 

 

6.1 RANGE BASED 

 

The results reveal a substantial location mistake with respect to the conditions for 

anchor placement; this spot has been fine-tuned to reduce localization error. The 

dynamic momentum of the node will fluctuate at random due to the application of 

swarm optimisation techniques such as the Chan algorithm for measurement and 

filtering. The precise measured value with anchors will be finalized once all location 

errors, measured in centimeters, are identified under dynamic conditions. By 

approximating the distance from three anchors, a group of unknown nodes can 

localize. You can use a Receive Strength Signal Indicator (RSSI) to figure out how far 

away an unknown node is from the anchor. When it comes to finding the optimal 

local problem that traps PSO, PSO typically connects quickly. 
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TABLE 6.1: CO-ORDINATE VALUES OF LOCALIZATION OF 3D POSITIONING 
 

Optimal technique – 

method 

M.P Transmission 

Range 

Max 

localization 

Error-cm 

Min 

localization 

Error-cm 

Average 

LE 

cm 

Total 

number of 

located 

nodes 

ELPSO-(T) 1 100M 3.964 0.4320 1.75 50 

 2 100M 3.2462 0.3214 1.51 50 

 3 100M 2.8654 0.2862 1.32 50 

 4 100M 3.4632 0.4938 1.56 50 

ELPSO-(LS) 1 100M 4.2365 0.3164 1.91 50 

 2 100M 4.6432 0.3458 1.86 50 

 3 100M 3.7564 0.3244 1.72 50 

 4 100M 3.2146 0.3564 1.46 50 

PSO-BPNN-(T) 1 100M 3.8492 0.2654 1.82 50 

 2 100M 3.3291 0.3216 1.58 50 

 3 100M 2.9654 0.2196 1.37 50 

 4 100M 2.2132 0.2456 1.04 50 

PSO-BPNN-(LS) 1 100M 4.4263 0.3165 2.12 50 

 2 100M 3.6419 0.3427 1.68 50 

 3 100M 2.9465 0.2696 1.42 50 

 4 100M 2.7222 0.2421 1.28 50 

GBNN-PSO 

REF(33) 

1 100M 18.20 10.40 13.8 50 

 2 100M 9.78 7.32 8.46 50 
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 3 100M 3.50 1.37 2.72 50 

 4 100M 6.42 3.83 5.22 50 

NN-MODEL 

REF(34) 

1 100M 10.0 5.8 7.4 50 

 2 100M 16.1 9.4 12.0 50 

 3 100M 10.7 7.4 9.2 50 

 4 100M 14.2 8.6 11.2 50 

 

Figure 6.1: Comparison of localization error for all optimal techniques in 

centimeters. 

Compared to other methods, Figure 6.1 shows the 3D results with the lowest error 

localization values when using a back propagation neural network. In Table III, you 

can see these numbers. With a little variance of 1.02 cm, the values obtained after 

implementing the proposed approach were relatively low. With the use of UWB 

networks and interior localization positioning algorithms that dynamically interpret 

measured data, hybrid 2D/3D algorithms produced good results. 

A comparative analysis of the localization performance across various optimal 

techniques reveals distinct levels of accuracy and consistency. The Ensemble Learning 

Particle Swarm Optimization (ELPSO) method, when implemented with Time-based 

measurements (ELPSO-(T)), demonstrates commendable accuracy, exhibiting average 

localization errors ranging from 1.32 cm to 1.75 cm and maximum errors between 

2.86 cm and 3.96 cm. Its Least Squares-based counterpart (ELPSO-(LS)) shows 

slightly higher average errors, ranging from 1.46 cm to 1.91 cm, and maximum errors 
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between 3.21 cm and 4.64 cm, suggesting a marginal advantage for the Time-based 

approach within the ELPSO framework. Similarly, the Particle Swarm Optimization 

with Back Propagation Neural Network (PSO-BPNN) technique also presents strong 

performance. Its Time-based implementation (PSO-BPNN-(T)) achieves the lowest 

average error in the entire comparison, ranging from an impressive 1.04 cm to 1.82 cm, 

with maximum errors spanning 2.21 cm to 3.84 cm. The Least Squares-based 

implementation (PSO-BPNN-(LS)) yields slightly higher average errors, from 1.28 cm 

to 2.12 cm, and maximum errors between 2.72 cm and 4.42 cm, mirroring the trend 

observed in ELPSO where Time-based measurements appear more effective. 

In contrast, the performance of the GBNN-PSO method, as referenced in REF(33), 

exhibits a wider range of average localization errors, from 2.22 cm to 8.46 cm, 

accompanied by significantly higher maximum errors, ranging from 3.50 cm to 18.20 

cm. This suggests a potentially lower and less stable accuracy compared to the ELPSO 

and PSO-BPNN variants presented earlier in the table. The Neural Network Model 

(NN-MODEL) from REF(34) displays the poorest localization accuracy among all the 

compared techniques, with the highest average errors, ranging from 7.4 cm to 12.0 cm, 

and maximum errors between 10.0 cm and 16.1 cm. 

Overall, the comparative analysis indicates that hybrid approaches integrating Particle 

Swarm Optimization with neural networks (PSO-BPNN and GBNN-PSO) and 

ensemble learning (ELPSO) generally outperform a standalone neural network model 

(NN-MODEL) in terms of localization accuracy. Furthermore, within the ELPSO and 

PSO-BPNN families, the implementations utilizing Time-based measurements tend to 

achieve better accuracy than those based on Least Squares. Notably, the PSO-BPNN-

(T) method emerges as the most effective in achieving the lowest localization errors 

within this specific comparison. However, it is crucial to interpret these results within 

the context of the specific datasets and experimental conditions under which these 

values were obtained in the respective referenced works. 

 

6.2 RANGE FREE RESULTS 

 

DV-Hop and DV-Hop-based enhancement algorithms are analysed for their 

effectiveness in these results. The MATLAB simulator was used to test and 

investigate all proposed algorithms for localization faults and accuracy. UWB range- 
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free wireless networks may now be located more effectively thanks to an improved 

PSO algorithm. From 10% to 20% and 20% to 50%, respectively, the number of 

anchor nodes and wireless transmission distance change between samples. 

Table 6.2: Various parameters applied in each figure the experiment ten times 

with uniformly distributed random node locations for each simulation. 

No. Of Nodes Anchor rate Transmission 

range 

Environment 

dimension 

30 10% to 50% Variable 100mtsx100mts 

30 variable Up to 50mts 100mtsx100mts 

 

 

 

Figure 6.2: Mean position error vs anchor nodes ratio 

 

 Table 6.3: Results in outdoor localization 

Optimal  

technique – 

method 

Movement 

position 

Transmission 

Range 

area 

20Mx20M 

Max loc 

alization 

Error-cm 

Min loca 

lization 

Error- 

cm 

Average LE Total 

number 

of 

located 

nodes 

PSO- 

S DV- 

HOP-2D 

1 100M 20.68 15.12 17.87 30 

 2 100M 17.42 13.49 15.44 30 
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 3 100M 15.01 12.33 13.65 30 

 4 100M 12.46 11.76 12.11 30 

       

PSO- 

S DV- 

HOP-3D 

1 100M 18.28 14.88 16.57 30 

 2 100M 16.26 13.09 14.67 30 

 3 100M 13.40 10.2 11.81 30 

 4 100M 10.30 8.42 9.36 30 

EMPSO - 

2D(LS) 

1 100M 9.96 8.87 9.42 30 

 2 100M 8.83 7.77 8.30 30 

 3 100M 7.97 7.23 7.61 30 

 4 100M 7.54 6.45 6.98 30 

EMPSO - 

3D 

1 100M 9.06 7.73 8.40 30 

 2 100M 8.33 7.54 7.94 30 

 3 100M 7.49 7.08 7.29 30 

 4 100M 6.57 6.30 6.44 30 

 

 

After the optimization process, the observed minimum value is not restricted to a 

specific range, allowing for a more flexible and adaptable outcome. In range-free 

optimization, the observed minimum value is not limited by a specific range or 

constraint. This allows for more flexibility and exploration of the solution space, 

potentially resulting in finding a lower minimum value than with traditional range-

limited optimizations. The proposed sequential algorithm with ensemble optimal 

technique achieved an impressive accuracy of 6.30cm, outperforming existing 
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methods. The comparative analysis of localization errors across different optimal 

techniques reveals a clear hierarchy in performance. Examining the PSO with 

Sequential DV-Hop (PSO-SDV-HOP) method, the 2D implementation exhibits 

average localization errors ranging from 12.11 cm to 17.87 cm, with the first 

movement position, characterized by a mixed transmission range of 20m and 100m, 

showing the highest average error. In contrast, the 3D implementation of PSO-SDV-

HOP generally demonstrates improved accuracy, with average errors spanning from 

9.36 cm to 16.57 cm, although the first movement position still presents the least 

accurate results. This suggests that extending the localization to three dimensions can 

offer benefits, but inconsistencies in transmission range can negatively impact 

performance. 

Moving to the Ensemble Modified Particle Swarm Optimization with Sequential DV-

Hop (EMPSO-SDV-HOP) method, a significant enhancement in localization accuracy 

is observed. The 2D implementation using Least Squares (2D-LS) achieves average 

errors between 6.98 cm and 9.42 cm, and the 3D implementation yields even better 

results, with average errors ranging from 6.44 cm to 8.40 cm. Notably, both the 2D-LS 

and 3D versions of EMPSO-SDV-HOP consistently exhibit lower maximum 

localization errors compared to the PSO-SDV-HOP variants, indicating a more 

reliable performance with better worst-case accuracy. 

Overall, the data strongly suggests that the application of the Ensemble Modified 

Particle Swarm Optimization (EMPSO) significantly improves the localization 

accuracy when integrated with Sequential DV-Hop. The 3D implementation of 

EMPSO-SDV-HOP consistently outperforms all other methods compared in this table, 

achieving the lowest average and maximum localization errors across the different 

movement positions. This highlights the effectiveness of the ensemble modification in 

enhancing the optimization process. Furthermore, the comparison between the 2D and 

3D versions within both PSO-SDV-HOP and EMPSO-SDV-HOP indicates that 

incorporating the third dimension generally leads to better localization accuracy, 

provided that network and environmental conditions are favorable. The impact of 

transmission range consistency is also evident, as seen in the higher errors associated 

with the mixed-range scenario in the PSO-SDV-HOP methods. 
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Table 6.4: Comparison of meta heuristic algorithms with EM PSO 
 

Algorithms Number Of 

movements 

Localization 

-error Max 

Localization 

-error Min 

Average 

LE 

Number of 

targets 

PSO 1 393.58 5.54 99.58 30 

 2 533.79 8.31 98.37 30 

 3 501.08 8.00 92.67 30 

 4 513.25 8.12 96.12 30 

HPSO 1 312.04 10.44 48.76 30 

 2 501.34 6.47 40.32 30 

 3 482.7 9.46 55.46 30 

 4 571.24 18.22 55.32 30 

BBO 1 585.14 18.22 125.6 30 

 2 589.12 33.12 115.8 30 

 3 563.16 15.28 128.1 30 

 4 535.25 19.11 119.1 30 

FA 1 611.01 19.22 22.23 30 

 2 631.10 19.33 23.12 30 

 3 6.89.12 34.12 24.65 30 

 4 690.36 20.10 22.01 30 

S-PSO 1 20.68 12.33 13.21 30 

 2 19.89 12.06 12.24 30 

 3 19.70 11.76 13.09 30 

 4 18.62 10.3 12.46 30 

EM- PSO 1 9.96 7.08 6.31 30 

 2 9.49 6.3 6.87 30 

 3 9.8 6.57 6.42 30 

 4 9.76 6.45 6.64 30 

For all above comparisons NP (Number of Population=30), Iterations 100, D 

(dimensional estimation= 3) 

 

 

 

The  results in the table presents a comparative analysis of various algorithms 

integrated with Particle Swarm Optimization (PSO) for localization, including 
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standard PSO, HPSO, BBFO, FA, S-PSO, and EM-PSO. The key metrics for 

comparison are Localization Error (Max, Min, and Average LE) across four 

movement scenarios, with a fixed number of targets (30) and consistent PSO 

parameters (NP=30, Iterations=100, Dimensional Estimation=3). 

Standard PSO: Exhibits the highest average localization errors, ranging from 92.67 

cm to 99.58 cm. The maximum errors are also significantly high, exceeding 390 cm in 

all movements, indicating poor and inconsistent localization accuracy. 

HPSO: Shows a substantial improvement over standard PSO. The average 

localization errors are reduced to a range of 40.32 cm to 55.32 cm, and the maximum 

errors are also lower, ranging from 312.04 cm to 571.24 cm. While better than PSO, 

the errors are still considerable. 

BBFO: Presents even higher average localization errors compared to standard PSO, 

ranging from 115.8 cm to 128.1 cm. The maximum errors are also the highest among 

all algorithms, exceeding 535 cm, indicating the least effective integration with PSO 

for this localization task. 

FA: Demonstrates significantly lower average localization errors compared to 

standard PSO and BBFO, ranging from 22.01 cm to 24.65 cm. The maximum errors, 

while still high (around 611 cm to 690 cm), are in a different order of magnitude than 

standard PSO and BBFO, suggesting a more promising integration. 

S-PSO: Shows a dramatic improvement in localization accuracy. The average 

localization errors are consistently low, ranging from 12.24 cm to 13.21 cm. The 

maximum errors are also significantly reduced, ranging from 18.62 cm to 20.68 cm, 

indicating a highly effective integration of the S-PSO variant with the localization 

process. 

EM-PSO: Achieves the best performance among all the compared algorithms. The 

average localization errors are the lowest, ranging from 6.31 cm to 6.87 cm. The 

maximum errors are also the smallest, consistently below 10 cm, demonstrating the 

most accurate and stable localization achieved through this specific PSO integration. 

In summary, the integration of different algorithms with PSO yields varying degrees 

of success in localization. Standard PSO and BBFO show poor performance, while 
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HPSO and FA offer some improvement. S-PSO demonstrates a significant 

enhancement in accuracy, but EM-PSO stands out as the most effective integration, 

achieving the lowest average and maximum localization errors across all movement 

scenarios within the given parameters. This suggests that the modifications 

implemented in EM-PSO are highly beneficial for this particular localization problem 

when combined with the PSO framework. 

The comparative analysis of various algorithms integrated with Particle Swarm 

Optimization (PSO) reveals a wide spectrum of localization performance. Standard 

PSO, serving as the baseline, exhibits the poorest accuracy, characterized by 

alarmingly high average and maximum localization errors across all movement 

scenarios. This suggests that the basic PSO algorithm, without specific modifications 

or hybridization, is not well-suited for this particular localization challenge under the 

given parameter settings. The BBFO algorithm, when integrated with PSO, 

surprisingly yields even worse results than standard PSO, demonstrating the least 

effective synergy among the compared methods and indicating a potential 

incompatibility or suboptimal parameterization for this specific task. 

In contrast, HPSO and FA represent intermediate levels of performance improvement 

when combined with PSO. HPSO manages to substantially reduce both average and 

maximum localization errors compared to standard PSO, indicating a more effective 

integration strategy. Similarly, FA demonstrates a significant decrease in average 

localization errors, although its maximum errors remain relatively high, suggesting 

potential inconsistencies or sensitivity to worst-case scenarios. These results highlight 

the importance of algorithm selection and hybridization within the PSO framework to 

achieve better localization outcomes. 

The S-PSO algorithm marks a significant leap in localization accuracy when 

integrated with PSO. Exhibiting consistently low average localization errors and 

drastically reduced maximum errors across all movement scenarios, S-PSO 

demonstrates a highly effective and stable integration strategy. This suggests that the 

specific modifications or characteristics of the S-PSO algorithm align well with the 

PSO framework for addressing this localization problem. However, the EM-PSO 

algorithm emerges as the clear frontrunner, achieving the most accurate and stable 

localization performance among all the compared methods. With the lowest average 
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and maximum localization errors across all movement scenarios, EM-PSO showcases 

the most successful integration with PSO, indicating that its specific modifications and 

ensemble-based approach are exceptionally well-suited for this particular localization 

task, significantly outperforming even the promising S-PSO integration. 
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Figure 6.3: Comparison of 3d localization after optimization 

 

Compared to range free environment range based environment with improved PSO 

given very accurate results. This is because the 3D measurements are more accurate in 

determining the location of the nodes, as they take into account not only the direction 

of the nodes, but also the angle between them. Additionally, the improved PSO gives 

more accurate results as it takes into account the dynamics of each node's position. 

As we considered range free with dynamic node conditions the accuracy of location 

is very high with ensemble methods. By using an ensemble method, the PSO is able to 

take into account not only the position of each node, but also its velocity. This gives it 

a more accurate understanding of the environment, allowing it to correctly estimate its 

location. Additionally, the 3D measurement helps to account for potential flips in the 

nodes' position, which further improves the accuracy of the results. The estimation of 

the range based environment Back propagation network algorithm gave very accurate 

results because of limited space. The 3D measurement takes into account the three-

dimensional structure of the environment, allowing it to more accurately determine 

the location of the nodes. Additionally, the Back propagation network algorithm is 

able to perform more accurate calculations due to the limited size of the environment, 

which helps to reduce the likelihood of errors. 
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6.3 Conclusions 

This novel learning process forms a more effective search area, thereby enhancing 

indoor location accuracy. Using MATLAB, 2D and 3D UWB indoor localization 

algorithms are compatible with the present method. You can operate the transmitter 

and receiver at the same time using a MATLAB computational engine. There is a 

constant opportunity to improve sound wave shapes and associated reception filters 

to adapt to the dynamic nature of the monitoring environment. The Chan method 

performs better for targets that are moving quickly since wireless sensor networks 

with a lot of anchor nodes are always unevenly distributed. This is because running the 

same programme over and over again requires fewer resources for processing. 

 

1. Hybrid techniques utilizing Ensemble learning and Back-propagation neural 

networks in conjunction with Chan's localization algorithm utilizing the Kalman 

filter are employed in PSO-based optimisation. 

2. PSO with a back propagation neural network gave the most accurate localization 

results among all hybrid combinations. When compared to the other methods, 

PSO-BPNN with tetrahedron 3D provided Constance values. The average 

accuracy is 2.72 cm, which is significant. 

3. Compared to the literature review of references 13,33, and 34 on UWB networks, 

the minimum localization error is 9cm. As our optimization process decreases to 2.72 cm, 

quite a noticeable result. 

4. Hybrid DV-Hop, an algorithm for anchor node localization that incorporates 

RSSI data, was proposed in this study. Implementing the proposed technique 

requires no additional hardware components or sub-systems. This is because most 

modern wireless sensor nodes provide RSSI values for receiving data packets. 

5. It is also significant to note that the proposed technique has nodes that bind 

sensor nodes sequentially. This allows the prior sensors to serve as anchors while 

the remaining sensors are localized. 

6. The proposed approach was much more efficient than the other algorithms 

analyzed through simulations. The proposed sequential hybrid DV-Hop algorithm 

with EM-PSO enhances localization accuracy by almost 95%, 90%, and 70% 

compared to basic DV-Hop. 

7. Tetrahydron and 3D-measurement methods were used to locate the targets. 

8. Different methods of implementation observed in 3D to compare the located 

values 
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9. In range-based localization the error value minimal to 1cm which is quite accurate. 

10. In range free the observed minimum value after the optimization is 6.30cm and 

an average difference of 2.4cm between minimum and maximum values from 

position location. 

11. As per the literature review in range-based technique the minimum localization 

error is 4.5 cm, our proposed system with 3D measurement after optimization it is 

1cm, 

12. As observed in the literature review the range free localization error lies between 

9cm to 25cm in most of the systems. 

13. The method implemented with UWB in range-free localization got a minimum 

accuracy of 6.30cm. Proposed sequential algorithm with ensemble optimal 

technique the error in localization deceased compared with other methods. 
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CHAPTER-VII 

CONCLUSIONS & FUTURE SCOPE RECOMMENDATIONS 

 
This weighted correction factor allows for a more accurate estimation of the distance 

between the beacon and the node, thus reducing the possibility of incorrectly reported 

locations. The improved weighted least squares method allows for a more accurate 

estimation of node coordinates, thus further reducing the possibility of incorrectly 

reported locations. Ultimately, this leads to improved accuracy of target node 

localization and increased reliability of wireless sensor networks. An enhanced Chan 

algorithm also determines the 2D and 3D coordinates of the target nodes. The next 

step is to use ELPSO and BPNN to optimize the predicted locations of the target 

nodes. An ultra-wide-band-based system for position tracking and wireless sensor 

network communication is the main focus of this study. 

The integration of the Chan algorithm with neural networks helps in enhancing the 

accuracy and efficiency of tracking moving targets. This combination allows the 

system to adapt and learn from the data, optimizing the localization process in real- 

time.Future work will be continued to apply this kind of learning strategy into other 

indoor localization techniques. To obtain high precision accuracy with low minimal 

error by using various optimization techniques. Ultra-wideband technology include the 

integration of advanced algorithms to enhance precision and reliability in range-based 

environments. These algorithms can improve signal processing and reduce errors, 

leading to more accurate and efficient communication systems. ELPSO is a type of 

evolutionary algorithm that optimizes the parameters of a predictive model. BPNN is a 

type of neural network that can be used to optimize the predictive model itself. 

Combining these two techniques can help to further improve the predictive accuracy of 

the model in range based and range free environments. The advanced algorithms allow 

for more accurate localization, resulting in less energy consumption than traditional 

methods. This is important because energy consumption is a key factor when 

considering future recommendations, as it can lead to cost savings and more efficient 

operations. This is because the advanced algorithms are able to accurately identify the 

source and destination locations, as well as take into account other environmental 

factors such as terrain and obstacles, which can reduce the amount of energy consumed. 

The advanced algorithms are able to take into account a variety of factors, such as 
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temperature and humidity, when determining the optimal localization accuracy. This 

allows them to minimize localization errors, even in areas with increased energy 

consumption. Advanced algorithms can have difficulty adapting to new environments 

and new data. They can also suffer from bias due to a limited data set. In addition, they 

can have difficulty generalizing to new situations. Future work scope of research 

using advanced algorithms used for localization in Ultra wideband wireless sensor 

networks. 

In conclusion, the comprehensive analysis of various localization algorithms, spanning 

both range-based and range-free methodologies and their integration with optimization 

techniques like Particle Swarm Optimization (PSO), reveals a clear trend towards 

enhanced accuracy and robustness through sophisticated hybrid approaches. While 

fundamental techniques like Least Squares and core algorithms such as CHAN and 

DV-Hop provide initial estimations, their performance is significantly improved by 

proposed enhancements, error reduction through Kalman filtering, and particularly, by 

the integration of advanced optimization algorithms. 

The comparison across different PSO-integrated methods underscores the critical role 

of algorithm selection and modification. Basic PSO demonstrates limited effectiveness, 

while hybrid variants like HPSO and FA offer moderate improvements. Notably, S-

PSO achieves a substantial increase in accuracy, but EM-PSO consistently emerges as 

the most promising approach, yielding the lowest average and maximum localization 

errors across diverse scenarios. This highlights the power of ensemble-based 

modifications within the PSO framework for robust and precise localization. 

Furthermore, the comparison between range-based and range-free methodologies 

reveals a convergence towards similar layered strategies, ultimately leveraging the 

strengths of PSO-based hybrid methods as optimal solutions. Despite the differing 

initial measurements, both approaches benefit from algorithmic refinements and 

sophisticated optimization techniques to achieve higher accuracy and reliability. The 

consistent outperformance of EM-PSO across various comparisons suggests its 

potential as a state-of-the-art solution for node localization in WSNs, emphasizing the 

importance of tailored optimization strategies for specific localization challenges. 

Future recommendations could involve exploring ensemble methods for node 

localization, combining the Chan algorithm with neural networks to enhance accuracy. 



143  

This approach may leverage the strengths of various algorithms to better handle the 

challenges of ultra-wide band wireless sensor networks. This approach could enhance 

performance in dynamic environments with varying levels of anchor node distribution. 

As well as using limited data of mobile and anchor nodes in the present research with 

selected areas the integrated algorithms can use less energy and high accuracy. Range 

free environment having higher mobility 3D measurement with integrated algorithms 

can be recommended as future research. This research could significantly enhance the 

accuracy and energy efficiency of the 3D measurement system. Furthermore, it could 

provide new opportunities for 3D measurement in a wider range of applications. This 

new system could be implemented in real-time applications such as autonomous driving, 

robotics, and virtual reality. It could also be used in applications such as 3D mapping 

and gaming. Additionally, this research project could open up new opportunities for 3D 

measurement in previously inaccessible areas. It could also provide valuable insight 

into the potential of 3D measurement in a variety of environments. UltraWideBand 

can be used in critical environments. The integration of algorithms with 3D 

measurement techniques with low energy and high accuracy needed some more 

additional requirements and hybridization by taking the current research as baseline in 

future is recommended. 

Concluding the exploration of UWB-based Wireless Sensor Network (WSN) 

localization, future recommendations regarding energy utilization and experimentation 

should prioritize the development of highly energy-efficient localization algorithms 

and hardware implementations. Research should focus on optimizing the 

computational complexity of advanced techniques like EMPSO and hybrid PSO 

variants to enable their deployment on resource-constrained sensor nodes without 

significantly impacting network lifetime. Experimentation should delve into adaptive 

duty cycling and power management strategies that dynamically adjust UWB 

transceiver activity based on localization demands and node mobility. Furthermore, 

future work should explore novel UWB pulse modulation schemes and low-power 

wake-up mechanisms to minimize energy consumption during idle states and data 

transmission. 

In terms of experimentation, future research should emphasize real-world deployments 

in diverse and challenging indoor and outdoor environments to thoroughly evaluate 

the robustness and accuracy of UWB localization under varying conditions, including 
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dense multipath and non-line-of-sight scenarios. Comprehensive studies comparing 

the energy-accuracy trade-offs of different UWB localization algorithms and hardware 

platforms are crucial for guiding practical implementations. Additionally, future 

experimentation should investigate the integration of UWB with other sensing 

modalities and communication technologies to create hybrid localization systems that 

can leverage complementary strengths for enhanced performance and energy 

efficiency in complex application contexts. Finally, rigorous security analysis and the 

development of energy-efficient secure localization protocols for UWB-based WSNs 

will be paramount for their widespread adoption, particularly in sensitive applications. 
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