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ABSTRACT 

Leukemia is a cancer of the blood and bone marrow that affects how blood cells are 

made and work in the body. Leukemia is complex, varies from person to person and it 

can be hard to diagnose it in the early stages. Current diagnosis methods are effective 

but take a lot of time and require expert knowledge, which can delay treatment. This 

research work focuses to solve these problems by creating new approaches that use 

intelligent techniques to detect leukemia more quickly and accurately. 

The study started by reviewing existing leukemia diagnosis methods and identifying 

their main problems, showing the need for automated and reliable systems. To address 

this, new soft computing-based approaches namely, VGG16-PCA-PB3C, VGG19-

PCA-BBBC, and HP3PGA-3PGA are proposed in this thesis. A detailed comparison 

of these approaches is done using four performance metrics. The proposed approaches 

are compared with existing approaches for leukemia detection.  

The research work was focused on the following initially set objectives:  

1. To study, analyze and evaluate the performance of the various existing soft 

computing-based approaches for detection of Leukemia disease.  

2. To propose a novel soft-computing based approach for detection of Leukemia 

disease.  

3. To compare the proposed approach with existing approaches using few 

performance metrics.  

The research was done based on the above-mentioned objectives. This thesis covers all 

the work completed during the research. The thesis has six chapters, and the details of 

each chapter are explained below: 

Chapter 1 presents the background of the research. It introduces leukemia, the causes 

of leukemia, its symptoms, types, and the challenges of the traditional leukemia 

diagnosis methods. This chapter presents the research problem and objectives. It 

highlights the approaches that can be used to diagnose leukemia. It also shows the main  
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contributions of the research and explains the structure of the thesis. 

Chapter 2 provides a review of the current state of the art associated with literature. 

The review is mainly split into two parts. Part 1 contains traditional leukemia detection 

methods. The part 2 was focused on the review of artificial intelligence-based leukemia 

detection approaches. Further, the artificial intelligence-based approaches are divided 

into three categories: machine learning based approaches, deep learning-based 

approaches, and soft computing-based hybrid approaches. This chapter also presents 

the research gap found after the review of the existing approaches.  

Chapter 3 proposes a new hybrid approach for leukemia detection. This approach 

combines Visual Geometry Group 16 (VGG16), Principal Component Analysis (PCA), 

and Parallel Big Bang Big Crunch (PB3C). In the proposed approach, VGG16 is used 

to extract features. The dimensionality of the extracted features is reduced using PCA 

technique. Further, the PB3C algorithm is used to select the best features. PB3C is a 

multipopulation based search and optimization algorithm. For the leukemia detection 

purpose, the deep neural network is trained on optimal features provided by PB3C 

algorithm. To evaluate that how well the proposed approach works, we tested it on 

CNMC_2019 leukemia dataset. The proposed approach is done in Python and 

compared with 13 other methods: Inception V3, VGG16, VGG19, SVM, Logistic 

Regression, Random Forest, Decision Tree, K Nearest Neighbor, and Bagging etc. It 

was observed that the proposed VGG16-PCA-PB3C based approach outperformed all 

the other 13 approaches on leukemia detection problem. 

Chapter 4 proposes a new hybrid approach based on soft computing for leukemia 

detection. This approach combines Visual Geometry Group 19 (VGG19), Principal 

Component Analysis (PCA), and the Big Bang Big Crunch (BBBC) algorithm. In this 

approach, the deep features are extracted using VGG19 encoder. The dimensionality of 

the extracted features is reduced by PCA. After reducing the dimensions, a single-

population-based BBBC algorithm is used to select the best principal components. The 

BBBC algorithm uses the best features to train a deep neural network for leukemia 

detection. The proposed algorithm was implemented in python and evaluated using the  
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CNMC_2019 leukemia dataset. The proposed algorithm is tested against 15 transfer 

learning and machine learning methods for leukemia detection and it is found that the 

proposed approach performed better than 15 other existing leukemia detection 

approaches. 

Chapter 5 proposes a new soft computing-based algorithm namely, HP3PGA-3PGA 

(Hybrid Parallel Three Parent Genetic Algorithm – Three Parent Genetic Algorithm).  

The proposed HP3PGA-3PGA algorithm combines a multi-population-based parallel 

three-parent genetic algorithm (P3PGA) and a single-population-based three-parent 

genetic algorithm (3PGA). The proposed algorithm is tested using CEC2021 test suite 

consisting of 80 test functions. It was compared with other 10 recent algorithms. We 

also used the proposed algorithm to automatically evolve the near-optimal architecture 

of CNN for leukemia detection. This approach for leukemia detection is done in Python. 

The proposed approach is compared with 17 other methods for leukemia detection. The 

performance of HP3PGA-3PGA was observed to be quite good.  

Chapter 6 concludes the research and explores the future possibilities of the work. 
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Chapter 1 Introduction 

 

This chapter presents the foundation of our research work. It discusses the issues and 

challenges in the early detection of leukemia. This chapter explains the research 

objectives and gives a brief overview of leukemia detection methods. Section 1.1 

introduces the background of the research. Section 1.2 provides a summary of blood 

cancer and leukemia. Section 1.3 reviews traditional leukemia diagnosis methods. 

Section 1.4 presents the machine learning concept. Section 1.5 explains the 

convolutional neural networks. Soft computing methods are explained in section 1.6. 

Problem formulation is presented in section 1.7. Identification of research objectives is 

done in section 1.8. The research contributions are described in section 1.9, and section 

1.10 provides an overview of the thesis structure. 

1.1. Research Background 

Leukemia is a form of cancer that impacts the blood and bone marrow. It causes white 

blood cells (WBCs) to grow abnormally, disrupting the normal production and function 

of blood cells [1]. Traditional methods for diagnosing leukemia, like bone marrow 

biopsies, cytogenetic tests, and flow cytometry, are effective but require a lot of time 

and specialized knowledge. Detecting leukemia early is very important because it helps 

start treatment quickly, especially in fast-progressing cases like acute leukemia. Early 

treatment can slow the disease, improve recovery chances, and increase survival rates. 

Since different types of leukemia need different treatments, accurate diagnosis ensures 

patients get the right care. It also helps understand how the disease is progressing and 

responding to treatment, which is important for planning future care. 

Due to the complexity and variety of leukemia, there is a need for better diagnostic 

methods that are faster and more accurate [2]. Modern soft computing-based techniques 

offer promising solutions. These technologies can help develop automated systems to 

identify and classify leukemia early, improving treatment and care for patients [3]. 
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1.2. Blood Cancer and Leukemia 

1.2.1. Blood Components 

Blood is the basic fluid and element of life. Blood consists of nearly 55% plasma, 45% 

erythrocytes, and under 1% leukocytes and platelets. The bone marrow is where these 

blood cells are produced and then released into the bloodstream to carry out their 

intended functions.  

Red Blood Cells (RBCs), also called erythrocytes, carry oxygen from the lungs to all 

parts of the body. These red cells provide the oxygen to the different cells and the tissues 

of the human body and takes away the carbon dioxide from the different cells of human 

body. The white blood cell contains a nucleus and cytoplasm, and they are involved in 

the protection mechanism against infections. There is 1 white blood cell to every 600-

700 red cells of blood. White cells of blood produce antibodies and these cells are 

responsible for fighting against infections. They protect the body from the harmful 

bacteria, germs, and viruses. The white cells of the blood are categorized into 

agranulocytes (lymphocytes) and granulocytes.  

The white cells of the blood which are lymphocytes produce antibodies to protect the 

body against disease. Lymphocytes are found in the bone marrow, lymph nodes, 

lymphatic tissues, spleen, and other areas. Lymphocytes are classified into three 

primary types i.e. B cells, T cells, and NK cells. B cells develop the antibody particles 

and these antibody molecules are provided to the plasma membrane. T cells help control 

the immune system. T cells keep the human body away from the cancer cells and 

various pathogens and these cells are developed in the bone marrow. Natural Killer 

(NK) cells protect the human body against the tumor cells.  

Granulocytes are the subset of white cells of blood which are important in healing the 

damaged cells and these immune cells protect a human body against pathogens. 

Granulocytes are further classified into:  
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a) Neutrophils are the cells which fight against the infection and kills bacteria.  

b) Eosinophils are the cells which destroy the cancer cells and these cells are 

responsible in wrecking the certain parasites. 

c) Basophils are the cells which are involved in fighting viral infections and 

allergic responses. 

d) Monocytes are the cells which eliminate the infected and the dead cells. 

Platelets are responsible in blood clot formation and thus with the help of platelets, 

blood loss is prohibited. To every 20 red cells of the blood, there is a single platelet. 

Platelets are helpful in the process of blood coagulation and assist in controlling 

bleeding as they travel and accumulate to the area which bleeds. Plasma is the fluid 

component of blood that facilitates the transfer of nutrients, proteins, and various other 

molecules to ensure that various body parts can function. The whole process of the 

formation of plasma, platelets, and different cells of blood from the stem cell as shown 

in Figure 1.1 is called haematopoiesis. The different types of cells are formed and 

developed from the foundational microorganisms by a procedure known as separation. 

When blood cells are full grown and prepared to work, the matured blood cells at that 

point take themselves off from the bone marrow and move to the blood of an individual 

[4][5]. 

 

Figure 1.1 Formation of blood cells from stem cell 

1.2.1.1. Blood Cancer 

When abnormal cells, excessively grow, they cause blood cancer. This type of cancer  
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affects the development of the blood cells, and the functioning of the blood cells is also 

changed. Due to this, swollen lymph nodes, tiredness, nosebleeds, frequent infections, 

weight loss, and body pain occurs. Figure 1.2 illustrates that blood cancer can impact 

leukocytes, the lymphatic system, and plasma cells [6]. 

 

Figure 1.2 Types of blood cancer 

1.2.2. Leukemia 

Leukemia is a blood condition that begins in the bone marrow, a sponge-like tissue 

found in many bones. In individuals with Leukemia, there is an excessive generation of 

lymphoblasts in the bone marrow, as depicted in Figure 1.3, resulting in reduced 

immunity. 

Leukemia, or blood cancer, is a type of cancer that affects leukocytes. It is classified by 

the type of cancer cells, which can change into lymphoid or myeloid. It is also divided 

into two types based on how fast it grows: chronic and acute. Lymphocytes, also known 

as lymphoid cells, are impacted in lymphocytic leukemia, while myeloid leukemia 

affects bone marrow’s myeloid cells. 
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Figure 1.3 Leukemia blood cells [7] 

The excess production of B-cells is found in the lymphocyte category. Myeloid cells 

help in the development of red blood cells, white blood cells, and blood platelets. In 

acute leukemia, there is a rapid increase in abnormal blood cell growth, resulting in 

quickly developing symptoms. Abnormal blood cells take time to form in chronic 

leukemia [8]. 

1.2.2.1. Causes of Leukemia 

The exact and the certain reason of leukemia is not clearly determined. Some of the 

parameters which are incorporated as the causes of leukemia are ionizing radiation, 

smoking, earlier chemotherapy, a few synthetic concoctions, and down's ailment. The 

individuals with a family history of leukemia are equally at more serious hazard. After 

analysing the stage and type of leukemia, treatment is chosen [9]. The type of leukemia 

is the key factor in making the choice in the treatment, but other factors also play a very 

vital role.  

1.3. Diagnosis of Leukemia using Traditional Method 

Early detection of leukemia is a challenging issue because symptoms such as flu-like 

symptoms, weight loss, tiredness, and fatigue are frequently seen. Leukemia cases are 

typically identified by pathologists by analyzing blood smears under a microscope. The 

pathologists analyze a range of cells to identify leukemia. An indication of leukemia is 

when there is a rise in abnormal immature leukocytes and a decrease in other blood cell 

counts.  
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Many predictive models are built based on clinical knowledge and data which provide 

useful findings to identify the illness in its initial phases [10]. However, decision 

support system development for disease identification is still in its infancy stage. Figure 

1.4 shows the common methods used by doctors to diagnose leukemia. As shown in 

Figure 1.4, the traditional leukemia detection techniques are categorized into five 

categories namely physical exams, blood tests, bone marrow tests, imaging tests, and 

other tests [11]. The detail of each category is discussed in chapter 2 of this thesis. 

In the traditional method to detect leukemia, number of physical tests like bone marrow 

biopsy, bone marrow aspiration, cytometry etc. are conducted and the results of these 

tests are analysed by the haematologist oncologist whereas in convolutional neural 

network (CNN) and deep neural network (DNN) based approaches for the detection of 

leukemia, the blood cell image of the patient is provided to the model and then it is 

analysed whether the patient is suffering with leukemia or not. 

 

Figure 1.4 Traditional leukemia diagnosis methods 

1.4. Machine Learning 

According to Arthur Samuel, the definition of Machine Learning (ML) is: “the field of 

study that gives computers the ability to learn without being explicitly programmed.” 

Later, the definition was improved by Tom Mitchell as “A computer program is said to 

learn from experience E concerning some class of tasks T and performance measure P, 
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if its performance at tasks in T, as measured by P, improves with experience E.” It is a 

rapidly evolving field that has gained significant attention and importance in various 

domains. The primary goal of machine learning is to assist computers in enhancing their 

capabilities by gaining knowledge from previous experiences or data. This is achieved 

through the development and utilization of various techniques and algorithms that can 

identify patterns, extract insights, and utilize this information to make predictions or 

decisions using the available data. We can categorize machine learning techniques into 

3 groupings (i) Supervised Learning (SL), (ii) Unsupervised Learning (UL), and (iii) 

Reinforcement Learning (RL) techniques. Each category possesses distinct traits and 

finds its specific applications [12]. 

Machine learning comprises of statistical tools that learn from data. Self-learning 

algorithms of machine learning drive knowledge from the data. The available 

computational power can be used to apply advanced algorithms to uncover hidden 

patterns in data, infer relationships, and predict outcomes. Machine learning algorithms 

are used in solving the problems for which there is no mathematical solution. Machine 

learning is extensively utilized in email spam filters, natural language processing, voice 

recognition, recommendation systems, classification and clustering problems, robotics, 

object identification, image processing, and disease detection [13] etc.  

Machine learning models learn from the previous and historical data to create a model. 

This model can help predict the result for a new input. A machine learning model 

receives various types of data such as numerical, textual, visual, or audiovisual, and 

produces results that can be either a decimal number (such as the cost of a product or 

the speed of an autonomous vehicle) or a whole number identifying a group or type 

[14]. The different categories of the machine learning techniques are mentioned as 

below: 

1) Supervised Learning:-  These algorithms find a way to produce the desired 

output from a given input. Labeled data is given to the machine as input for 

training. During training, for a given input, the intended result is predetermined.  

In Supervised learning, algorithm or model learns a function that connects from  
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x to y, based on the labeled training examples (x, y). Algorithms trained by using 

labeled data allow us to make predictions about the unseen and future data.  The 

two main categories of supervised learning are classification and regression. 

Classification tries to analyze the category of the input data and thus predict the 

class label from a given list of discrete class labels. Classification can involve 

either binary or multiclass categories. In binary classification, the algorithm 

learns various set of rules to discriminate between two classes. Multiclass 

classification classifies the data in more than two classes (recognizing a digit 

from handwritten number) [15-16].  Regression on the other hand trains and 

predicts a continuous-valued response. 

2) Unsupervised Learning:- Unsupervised algorithms transform data in the form 

that is easier for humans and other algorithms to understand. Unlike supervised 

algorithms, in unsupervised algorithms, data contains only inductive signals 

without any description attached. Unlabeled data is used in unsupervised 

algorithms. Unlabeled means for a given set of input attributes xi1, xi2, xi3, ….xin 

the output attribute yi is not defined. Unsupervised algorithms analyze the 

structure of data to extract important and useful information without the 

supervision of a known outcome. The common application of the unsupervised 

algorithms is used to find the more informative representation of data by 

dimensionality reduction (using Principal Component Analysis) or clustering 

[17]. Clustering can be applied to organize unlabeled data into distinct clusters 

where each cluster will have some common features.  

3) Reinforcement Learning:- In this learning, the agent or system observes the 

environment, performs an action, and gets a reward in return. Reinforcement 

learning is feedback based, based on how well an action is performed, the 

rewards are decided. The aim is to maximize the reward via an exploratory trial 

and error approach. Robots use reinforcement learning to find the path, a chess 

engine decides a series of moves and the outcome of the game can result in 

either a victory or defeat, which is the reward [18-19]. 
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1.5. Convolutional Neural Networks 

A CNN is a type of neural network which is  used to find patterns in data. CNNs 

automatically detect patterns, like edges, shapes, and textures, in the data. This kind of 

network com various layers such as input, convolutional, pooling, flatten, and FC 

layers. A layer is a set of neurons that perform the same operation and have the same 

hyperparameters. A neuron is a basic function that takes several inputs and gives one 

output [20]. 

CNNs process image data more effectively and efficiently. They use convolution 

operations to find important features in images. CNNs used for classification tasks 

have two main parts: a feature extractor and a classifier. The feature extractor consists 

of convolutional blocks, which encompasses several convolutional layers. After these 

layers, a network has max pooling layers. The features in the image are found by 

convolutional layers and store in activation maps. The number of filters in a 

convolutional layer are decided during the design process, and the depth of the output 

depends on the number of filters. Pooling layers help reduce the size of activation 

maps, making the model more efficient and less likely to overfit. The classifier then 

uses the extracted features to calculate class probabilities through fully connected 

layers [21]. If there are more than two classes, a SoftMax layer is used to change the 

output into probabilities, showing the likelihood of each class for the image. The 

structure of a CNN is shown in Figure 1.5. 
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Figure 1.5. A CNN architecture 

The next sections explain in detail how the layers of a convolutional neural network 

work. 

1.5.1. Input Layer 

The very first layer in this network is the input layer. The input image of the dataset is 

provided to this layer. The input image can either grayscale or RGB. A grayscale image 

has one channel that displays shades of gray from black to white. An RGB image has 

three channels: red, green, and blue. Each channel shows the intensity of their 

respective colors. Figure 1.6 and Figure 1.7 shows the grayscale and RGB image 

respectively. 

1.5.2. Convolutional Layers  

A convolutional layer works like the "eyes" of a CNN. The neurons in this layer search 

for specific features in the image. The first layers look for simple features like edges, 

textures, colors, and contrast. The middle layers detect shapes, corners, and patterns, 

helping the network recognize parts of objects. The deeper layers find more complex  
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features like parts of objects, such as eyes or wheels or a cell. In the final layers, the 

network can identify full objects like a person, car, or dog.  

  

Figure 1.6 Grayscale image[22] Figure 1.7 A RGB image[22] 

The input to a convolutional layer is usually a 2D array, either the original image or 

the output from an earlier layer. The first convolutional layer receives the input image, 

which can be a grayscale or colour image. Convolutional layers use filters, also called 

kernels, to examine input images. The filter is placed over a part of the input, and its 

values are multiplied with the corresponding parts of the input. This gives a single 

number as the result. The filter then slides over the image with the stride value. Stride 

refers to number of pixels the kernel moves at a time. When the stride is smaller, more 

features are learned and when the stride is larger, fewer features are extracted. Another 

important parameter in CNN is padding. It adds additional pixels to the borders of the 

input image to keep the original size. There are various padding methods, such as zero 

padding, same padding, and valid padding. Zero padding is the most common because 

it is easy and efficient. It evenly adds zeros around the edges of the input image 

[23][24]. The output is processed using an activation function and stored in an 

activation map. The working of a convolutional block is shown in Figure 1.8. The size 

of the output feature in a 2D convolution is calculated using the formula: 

O=((N−F+2P)/S)+1                                                                (1.1) 

Where O denotes the output size and N denotes the input size (height or width), F is 

the size of Kernel, P indicates padding and S presents stride. The convolution 

operation is defined as: 
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𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖𝑚𝑎𝑔𝑒, 𝑓𝑖𝑙𝑡𝑒𝑟)  =  𝑠𝑢𝑚(𝑖𝑚𝑎𝑔𝑒 ∗  𝑓𝑖𝑙𝑡𝑒𝑟)         (1.2) 

The convolutional layers use the rectified linear unit (ReLU) activation function.  

                                    𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)                                  (1.3) 

where 𝑥 is the input value. The output of the function is the input value if it is zero or 

higher, and zero if it is less than zero. 

 

Figure 1.8 Working of a convolutional block 

1.5.3. Pooling Layers 

Pooling layers are included next to convolutional layers to decrease the size of the 

activation maps. They down-sample information from small regions in the feature 

map. Max pooling, which keeps the highest value from each area, and average or mean 

pooling, that finds the mean value are the two types of pooling. The number of 

parameters is decreased by the pooling layers, prevents overfitting, and focuses on the 

significant feature set, making the algorithm faster and more efficient [25]. 

1.5.4. Flatten Layer 

The flatten layer in a CNN changes multi-dimensional feature maps into a single, one-

dimensional line of data. This makes the data ready for the fully connected layers that  
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come next. After the convolutional and pooling layers find features, the flatten layer 

takes the output (like a 3D tensor, for example, 7*7*64) and reshapes it into a 1D 

vector (e.g., 3136 values). This step helps the network move from extracting features 

to classifying them [26]. The flatten layer makes sure all the features are kept and ready 

for the fully connected layers, which need 1D data for classification. 

1.5.5. Fully Connected Layers 

Fully connected layers (or dense layers) in a CNN are used to make the final decisions 

or predictions. Once the extraction of the feature set is done, the dense or FC layers 

combine the features to classify the data. In FC layers, every neuron is connected to 

the other neurons of upcoming layer. The one-dimensional input data is multiplied by 

different weights, and biases are added. Then, an activation function like ReLU or 

Softmax is used to get the output. The ReLU function is used in the first two fully 

connected layers. The last fully connected layer is usually followed by a softmax 

function in classification tasks to turn the output into probabilities, with each 

probability matching a class label. The fully connected layers help the network classify 

the image based on the features learned earlier [27]. 

The SoftMax function is defined as: 

softmax(𝒙)𝒊 = 𝒆𝒙𝒊∑𝒏𝒋=𝟏 𝒆𝒙𝒋                    (1.4) 

1.6. Soft Computing 

Soft computing is a collection of techniques designed to solve difficult problems by 

copying how humans think and make decisions. Unlike traditional computing, which 

needs exact answers, soft computing can handle uncertainty, estimation, and 

inaccuracy, making it useful for real-life problems. The techniques in soft computing 

include neural networks, fuzzy logic, genetic algorithms, and evolutionary computing 

[28]. These methods are used in many fields, like medical diagnosis, data analysis, and 

pattern recognition. Soft computing combines flexibility, adaptability, and strength to 

create smart systems that can solve difficult problems, like detecting diseases such as 

leukemia early. The various soft computing techniques are depicted in Figure 1.9. 
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Figure 1.9. Soft computing approaches 

In the past, healthcare decisions were only made by doctors or medical experts. 

However, a major issue in both developed and developing countries is the shortage of 

medical professionals in hospitals. With the development of soft computing algorithms, 

there has been an increased reliance on machines and intelligent systems to help with 

medical diagnosis. Soft computing is especially useful in medical imaging because it 

can handle the uncertainties in image data. Many predictive models are now being 

developed to diagnose diseases early based on clinic observations and data. However, 

disease detection systems are still in the early stages. Soft computing helps intelligent 

systems learn from uncertain environments and find the best solutions [29][30]. In 

healthcare, it can be applied in areas such as analysing clinical data, monitoring 

activities, diagnosing, and predicting diseases. 

1.6.1. Artificial Neural Network 

The structure and the functionality of the Artificial Neural Networks (ANNs) is 

modelled like how the human brain works. An artificial neural network is composed of 

a structured network with interconnected nodes, neurons, and multiple layers. Every 

neuron handles inputs and sends the output to the next layer. This continues until the 

network predicts the final output. Thus, a neuron calculates the combined weight of the 

input signals and measures it against a specific threshold value. If the input value is less 

than the threshold, the neuron will output -1, but if it is equal to or exceeds the threshold,  
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the output will be +1. ANN is powerful for recognizing patterns from big datasets, 

hence best for classification in medical diagnostics. The weights and biases of the ANN 

change as the training process progresses. This implies that they are highly adept at 

capturing the complex connections between inputs and outputs due to their nonlinear 

activation functions. Therefore, a well-trained neural network can make accurate 

predictions on new, unseen data by generalizing from previously seen data through 

nonlinear neuron interactions [31]. 

An ANN training algorithm was introduced in 1958 by Frank Rosenblatt, which 

provided a procedure to train a simple artificial neural network, i.e., a perceptron. To 

improve classification, the perceptron makes small changes to the weights to minimize 

the gap between the predicted result and the real output. In perceptron's training 

algorithm, the initial weight values are initialized, and then the perceptron is activated 

by applying the inputs. After that, the perceptron weights are updated, the iteration is 

increased, and the process keeps on repeating until convergence. Multiple layers of 

neurons comprise multi-layered neural networks. A multi-layered neural network has 

an input layer, one or more hidden layers, and an output layer [32]. The input signals 

are transmitted in the forward direction on a layer-by-layer approach. 

1.6.2. Fuzzy Logic 

In 1965, Lotfi A. Zadeh and Dieter Klaua introduced fuzzy sets. Fuzzy sets were 

developed by expanding the idea of traditional crisp sets. Crisp sets are based on binary 

logic, where an object can either belong to the set (1) or not (0). In contrast, fuzzy sets 

allow an object to belong to the set with a membership value that can range from 0 to 

1, meaning it can be partially in the set. This makes it possible to have a more flexible 

and continuous representation. Operations like union, intersection, inclusion, and 

complement can also be used with fuzzy sets, and their properties are studied in this 

framework.  

Fuzzy logic expands upon traditional boolean logic by introducing the theory of partial 

truth, allowing truth values to exist on a spectrum between completely true and false. 

This approach is useful in dealing with uncertainty and imprecision, which are common  
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in medical data [33]. Membership functions gain inputs into degrees of membership in 

fuzzy logic systems. Such fuzzy inputs undergo a set of rules for fuzzy output, which 

then can be defuzzied to get a crisp result. If-then rules in fuzzy logic help experts 

understand and modify complex decision-making processes [34]. Fuzzy logic uses 

words like high, medium, and low to describe variables instead of numbers, making it 

easier to understand and more like how humans think. 

1.6.3. Nature Inspired Computing Algorithms 

Our environment has been evolving for centuries, overcoming various challenges. 

These challenges inspire the creation of intelligent algorithms to solve complex 

problems. Algorithms inspired by natural processes are called "nature-inspired 

algorithms." Researchers have identified many benefits of these algorithms and divided 

them into categories like swarm intelligence, bio-inspired, physics/chemistry-based, 

and evolutionary algorithms. These nature-inspired algorithms are used to find the best 

solutions to problems. They are applied in fields like image recognition, pattern 

recognition, and finding the best routes in wireless networks [35][36].  

1.7. Problem Formulation 

Traditional methods for identifying leukemia, such as blood tests, bone marrow 

biopsies, and cytogenetic analysis, can be time-consuming and need expertise, resulting 

in possible treatment delays and variations in diagnostic accuracy. Furthermore, these 

methods require a lot of resources, making them less available in environments with 

limited resources. This highlights the importance of promptly and precisely identifying 

leukemia with the assistance of automated diagnostic tools, which can enhance 

precision, decrease analysis time, and improve diagnostic accessibility. Thus, there is a 

need for soft-computing based approaches that can select the near-optimal features from 

the blood smear images dataset automatically. Hence, this research work is devoted to 

the development of new soft-computing based image classification approaches that 

could apply to leukemia detection and other fields related to computer vision. 

 

 



29 

 

1.8. Research Objectives 

The goal of this research was to focus on the following objectives: 

1. To study, analyze and evaluate the performance of the various existing soft 

computing-based approaches for detection of Leukemia disease.  

2. To propose a novel soft-computing based approach for detection of Leukemia 

disease.  

3. To compare the proposed approach with existing approaches using few 

performance metrics.  

1.9. Research Contributions 

Major contribution of our research work is as below: 

1. VGG16-PCA-PB3C approach: We proposed the use of the VGG16 

architecture for feature extraction, PCA for feature reduction and PB3C for 

optimization, which enhances the accuracy in leukemia detection while 

reducing the computational complexity. 

2. VGG19-PCA-BBBC approach: We proposed the VGG19-PCA-BBBC 

model, which integrated VGG19, PCA, and BBBC to make improvements in 

the precision and performance of the leukemia detection in comparison to 

VGG16-PCA-PB3C approach. 

3. The HP3PGA-3PGA approach: We proposed the HP3PGA -3PGA algorithm 

that integrated the 3-Parent Genetic Algorithm with parallel processing. The 

proposed algorithm is validated on leukemia detection problem. The proposed 

algorithm evolves CNN architectures for leukemia detection automatically. 

1.10. Thesis Structure 

The following is the format of the remaining parts of this thesis. 

Chapter 2 presents the state-of-the-art survey of leukemia detection approaches. This 

chapter focuses on the area of application of image preprocessing, machine learning, 

and soft-computing in leukemia detection. The review underscored the challenges 

associated with leukemia diagnosis problem, particularly in dealing with large datasets  
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and potential information loss during digitization.  

Chapter 3 presents a new hybrid approach for leukemia detection which integrates 

Visual Geometry Group 16 (VGG16), Principal Components Analysis (PCA), and 

Parallel Big Bang Big Crunch (PB3C). The feature extraction process from the images 

using the customized VGG16 model is explained. The dimensionality reduction task of 

the extracted features using PCA is discussed in detail. The search and optimization 

based PB3C used for the optimal selection of the features is also highlighted in this 

chapter.   

Chapter 4 presents a novel algorithm called Visual Geometry Group 19 (VGG19) -

Principal Component Analysis (PCA) -Big Bang Big Crunch (BBBC). The deeper 

structure and the architecture of VGG19 is discussed in detail for the extraction of the 

deeper features from the blood smear images. The chapter also highlights the BBBC 

algorithm for the optimal feature selection. The results of this proposed approach are 

compared with the VGG16-PCA-PB3C approach and it is analysed that the VGG19-

PCA-BBBC outperformed VGG16-PCA-PB3C. 

Chapter 5 introduces a new algorithm called HP3PGA-3PGA (Hybrid Parallel Three 

Parent Genetic Algorithm – Three Parent Genetic Algorithm) for early leukemia 

detection. There are two stages of the algorithm in which it works in. The first stage is 

the multi-population stage and the second stage is the single-population. The multi-

population stage explores many possible solutions to find the best ones, while the 

single-population stage focuses on refining the solutions when there is less need for 

variety. Both phases use two types of three-parent genetic algorithms: Parallel Three 

Parent Genetic Algorithm (P3PGA) and Three Parent Genetic Algorithm (3PGA).  

Chapter 6 outlines the conclusion and potential future directions of our proposed work. 
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Chapter 2 Literature Review 

 

This chapter presents a state-of-the-art survey and a detailed analysis of the traditional 

leukemia detection approaches and the artificial intelligence-based leukemia detection 

approaches. The way leukemia is diagnosed has improved a lot over time. Doctors are 

using both traditional methods and the new artificial intelligence techniques for the 

detection of leukemia. Each method has its own advantages and disadvantages, 

affecting how accurate, fast, and effective the diagnosis is. The traditional and the 

manual detection of leukemia includes examining peripheral blood smear, bone marrow 

tests, cytochemical staining, flow cytometry, and cytogenetic tests. The manual 

detection process of the leukemia is lengthy, takes more time and is expensive. The 

results also depend on how experienced the pathologist is in examining different cell 

types. On the other side, artificial intelligence-based leukemia detection techniques are 

based on machine learning, transfer learning, convolutional neural network, nature 

inspired algorithms. These methods are popular in medical diagnosis because they can 

work quickly with difficult and unclear information. This chapter explains various 

traditional and AI based methods to detect leukemia along with their strengths and 

weaknesses. 

Section 2.1 of this chapter discusses the methodology for conducting the literature 

review for our research. Section 2.2 represents the literature work which is related to the 

traditional methods for leukemia detection. Section 2.3 presents the literature work 

related to artificial intelligence-based methods for leukemia detection. Section 2.4 

provides the research gap and section 2.5 summarizes the overall literature review 

section. 

2.1. Methodology for Conducting of Literature Review 

We conducted a bibliometric analysis to compile and evaluate the existing research for 

our literature review. This review included various scientific indexing services such as 

Scopus, IEEE Xplore, ScienceDirect, among others. The primary focus was on leukemia  
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detection, with the relevant terms divided into two groups: primary and secondary 

keywords. Table 2.1 provides the keywords selected for current and proposed search 

methodology for research. 

The literature review utilizes the method of Reporting Matters, such as the PRISMA 

method for Organized Reviews and Meta-Analyses [37][38]. This method involves 

inclusion criteria to choose the relevant articles to leukemia detection. The PRISMA 

flow diagram is shown in Figure 2.1. 

Table 2.1 Search keywords for leukemia detection using traditional and artificial 

intelligence-based approaches 

First level keyword leukemia detection 

Second level keyword using AND 
operator 

manual detection, Artificial intelligence- 
based approaches, Soft Computing 
algorithm 

Second level keyword using OR 
operator 

bone marrow test, flow cytometry, 
feature extraction, dimensionality 
reduction, Transfer learning, machine 
learning, deep learning, CNN, genetic 
algorithm, image classification 
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Figure 2.1 PRISMA approach for bibliometric analysis of leukemia detection 

approaches. 

The analysis included research papers published in different journals, conferences, and 

book chapters. Studies that did not provide enough details about their methods were 

excluded. This reduced the number of documents to 145, and each of the remaining 

studies was then evaluated based on its methodology. 

2.2. Traditional Methods for Leukemia Detection 

Traditional methods have been used for many years to detect leukemia and are important  
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for diagnosis. These include looking at blood samples under a microscope, doing bone 

marrow biopsies, using special stains to find leukemia cells, and checking cell markers 

with flow cytometry. Doctors also study chromosome changes with cytogenetic analysis 

to identify leukemia types. The strengths and weaknesses of each approach are discussed 

in the subsections. 

2.2.1. Peripheral Blood Smear 

Peripheral blood smear is one of the oldest and most basic methods for detecting 

leukemia. In this method, a drop of blood is placed on a glass slide, stained, and 

examined under a microscope. Hematologists check for changes in the size, shape, and 

maturity of blood cells, which may indicate leukemia. This method is simple, quick, and 

cost-effective, making it useful for initial screening. However, it has some weaknesses. 

The results can vary because they depend on the examiner’s experience, and it is not 

very effective at detecting small numbers of abnormal cells [39]. Additionally, it does 

not provide detailed genetic information, which is important for diagnosing and treating 

leukemia.  

2.2.2. Bone marrow biopsy 

A bone marrow biopsy usually takes a bone marrow sample from the hip bone for 

microscopic examination. This is an important procedure for diagnosing leukemia 

because it provides a detailed look at the cells in the bone marrow and can help detect 

leukemia cells. However, this procedure is painful and invasive, with risks of bleeding 

and infection. The interpretation of the results is very subjective and requires a high 

degree of expertise [40]. Additionally, since the sample comes from only a small part of 

the bone marrow, it may not fully represent the severity of the disease, which could lead 

to an incorrect diagnosis. 

2.2.3. Cytochemical Staining 

In cytochemical staining, special stains are used to highlight specific cell parts in bone 

marrow or blood samples. These stains help differentiate between different types of 

leukemia, such as periodic acid-Schiff for lymphoid cells and myeloperoxidase for 

myeloid cells. Cytochemical staining is useful for classifying leukemia subtypes, but it 
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is time-consuming and expensive because it often requires multiple steps and specific 

chemicals [41]. 

2.2.4. Flow Cytometry 

This method uses special antibodies with fluorescent labels to find specific markers on 

cells. A laser beam is then used to examine the cells. It is very useful for identifying 

different types of leukemia because it provides accurate details about the cells. However, 

it is very expensive and needs advanced technology and trained experts. It may also miss 

rare cells, and understanding the results can be difficult [42]. 

2.2.5. Cytogenetic Evaluation 

Cytogenetic analysis studies the chromosomes of leukemia cells to find genetic 

abnormalities. This includes techniques like fluorescence in situ hybridization (FISH) 

and karyotyping. These methods are especially important for detecting certain leukemia 

types, such as Philadelphia chromosome-positive chronic myeloid leukemia (CML). 

Cytogenetic analysis provides valuable genetic information, helping doctors understand 

the disease better. However, the process is time-consuming and requires high-quality 

samples. Additionally, some genetic defects may not be detected, which can lead to false-

negative results [43]. 

2.2.6. Molecular Diagnostics 

The latest methods for detecting leukemia are molecular diagnostics, such as polymerase 

chain reaction (PCR) and next-generation sequencing (NGS). These techniques help find 

the specific genetic mutations and translocations with high accuracy. Molecular 

diagnostics provide detailed and precise genetic information, making them very useful 

in diagnosis. However, they are expensive and need specialized lab equipment. 

Additionally, these tests produce a large amount of data, which requires advanced 

computer tools to analyze. This can be a challenge in some medical settings where such 

resources are limited [44]. Table 2.2 presents the traditional leukemia detection methods. 

 

 

 



36 

 

Table 2.2 Traditional leukemia detection methods 

Method 
Diagnosis 

Time  
Cost Strengths Weaknesses 

Peripheral 

Blood Smear 

[39] 

Fast Low 

Blood smear 

images are simple 

to use, easy for 

diagnosis, and cost-

effective, as they 

require no special 

equipment or 

training.  

It depends on 

examiner’s skill, may 

miss small changes, 

and does not provide 

genetic details which 

reduces accuracy. 

Bone 

Marrow 

Biopsy [40] 

Slow High 

A bone marrow 

biopsy allows 

doctors to closely 

examine the 

marrow's cells, 

giving them a clear 

understanding of 

its structure and 

function. 

Bone marrow biopsy 

is painful, risky (with 

infection and 

bleeding), and may 

sometimes miss 

important details, 

affecting its accuracy. 

Cytochemical 

Staining [41] 
Slow High 

Cytochemical 

staining is useful 

because it helps 

identify different 

types of leukemia, 

allowing doctors to 

choose the best 

treatment for 

patients. 

Cytochemical staining 

is time-consuming, 

costly, needs special 

chemicals and can 

have unclear results, 

making interpretation 

difficult. 
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Method 
Diagnosis 

Time  
Cost Strengths Weaknesses 

Flow 

Cytometry 

[42] 

Medium 
Very 

High 

Flow cytometry 

provides detailed 

information about 

cell types, helping 

doctors and 

researchers 

understand sample 

composition. It's 

very accurate in 

finding leukemia. 

Flow cytometry is 

expensive, needs 

advanced machines, 

requires skilled staff 

and may miss rare 

cells.  

Cytogenetic 

Evaluation 

[43] 

Slow High 

It is helpful for 

diagnosing certain 

types of leukemia 

by finding the 

genetic problems 

causing the disease. 

Cytogenetic analysis 

is slow, requires good 

samples, and may 

miss some genetic 

issues, leading to 

incomplete diagnoses. 

Molecular 

Diagnostics 

[44] 

Medium 
Very 

High 

Molecular 

diagnostics 

provides accurate 

and detailed genetic 

information, 

helping doctors 

understand diseases 

better and create 

targeted treatments. 

It's very expensive and 

needs advanced 

equipment. 
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Traditional methods for detecting leukemia, such as peripheral blood smear, bone 

marrow biopsy, cytochemical staining, flow cytometry, cytogenetic evaluation, and 

molecular diagnostics, are important for diagnosis. Each method has strengths and 

weaknesses as presented in Table 2.2. Some methods, like blood smear, are fast and 

affordable, while others, like molecular diagnostics, provide very accurate genetic 

details but are costly and need special labs. Many of these methods take a long time, 

require skilled experts, and may not detect rare or small changes in cells. Because of 

these challenges, AI-based leukemia detection is becoming more important.  

2.3. Artificial Intelligence based Methods for Leukemia Detection 

Artificial Intelligence can process large amounts of medical data quickly and accurately, 

reducing human mistakes and making diagnosis more efficient. Various AI-based 

techniques, such as machine learning, deep learning, neural networks, fuzzy logic, soft 

computing, and optimization methods, are being used to develop hybrid models for the 

fast and accurate detection of leukemia. These AI techniques are useful because they 

function like the human brain [45-47]. They can quickly identify the patterns and 

connections in data. This section presents various AI-based methods that combine 

different techniques to improve leukemia detection, along with their strengths and 

weaknesses. Researchers in various studies have proposed different models for leukemia 

detection along with their challenges in leukemia detection. Section 2.3.1 presents a 

literature review of machine learning-based models for leukemia detection. Section 2.3.2 

focuses on deep learning-based models for leukemia detection. Section 2.3.3 reviews 

various hybrid models that integrate machine learning, deep learning, and soft 

computing-based techniques 

2.3.1 Machine Learning based model for leukemia classification 

This section presents various machine learning-based studies used for leukemia 

detection. It also discusses different machine learning classifiers and techniques such 

as feature extraction, segmentation, feature selection, and data augmentation, as 

explored in various studies. 

Mamun et al. introduced an automated system for recognizing acute lymphoblastic  
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leukemia using peripheral blood smears [48]. The method began by using color 

thresholding to separate lymphocyte blood cells from the smear. Additional post-

processing methods involved using morphological operations and the watershed 

algorithm to segment individual lymphocyte cells. Statistical features were then 

extracted from these segmented cells to form a feature vector followed by a support 

vector machine (SVM) classifying the images based on the feature vectors. Similarly, 

with the use of an ALL IDB dataset, the proposed framework outperforms the baseline 

by reaching 99% accuracy, 98% sensitivity, 99% specificity, 99% precision, and 99% 

F1-score. Although the proposed model achieved outstanding accuracy, the ALL-IDB 

dataset contains a limited number of images. 

Liu and Hu developed an approach which classifies the Acute Myeloid Leukemia 

automatically. This study utilized total 50 bone marrow smear images of patients 

suffering with AML images from the Cancer Imaging Archive database [49]. The 

proposed model used random forest classifier and broad learning system for the 

classification purpose. The results were analyzed with a random forest model, BLS 

approach, and subtype classification. The model can classify AML into its subtypes, 

AML M1 and AML M2. The model provides an accuracy of 99.8% but a very small 

number of bone marrow images were used for training. 

Gupta et al. concentrated on the CNMC dataset, which includes more than 15,000 high-

resolution microscopic images of B-Lineage Acute Lymphoblastic Leukemia (B-ALL) 

[50]. The study tried to fix some of the problems with current machine learning tools for 

diagnosing B-ALL. One of the main issues with the ML tools is that these tools rely on 

some hand-picking important features and using small datasets. It detailed the IEEE ISBI 

2019 medical imaging challenge, where the training and test classification was 

conducted using the CNMC dataset. The study reviewed various machine learning 

methods for B-ALL diagnosis and found the best result in a recent competition achieved 

a score of 91%, which shows how much impact AI is making on improving B-ALL 

diagnosis and patient outcomes. This large, curated dataset from 118 subjects offers a 

solid base for building better AI tools, though its real-world impact depends on further 

testing with diverse cases. 
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Das et al. developed a new approach to detect leukemia. First, they pre-processed the 

input images by cleaning them up and removing extra data. Then, using an innovative 

blast cell segmentation technique, termed as Gini index-based Fuzzy Naïve Bayes, to 

identify and separate the cancer cells (blast cells) from the rest of the image [51]. This 

integrated the Gini Index for optimal feature selection with a Fuzzy Naïve Bayes 

classifier, refining the identification process. A new grading system has also been 

developed to accurately diagnose leukemia by counting the number of blast cells. An 

analysis of a large database of images revealed that this approach outperforms current 

methods, with an accuracy of 96%. However, this relies heavily on high quality blood 

smear images to sustain the preprocessing well.  

Saleem et al. provided the detailed view of various phases involved in AI based leukemia 

detection such as pre-processing of data, segmentation, feature extraction, feature 

selection, and image classification [52]. It is also discussed that most of the studies are 

conducted using ALL-IDB1, ALL-IDB2, ASH and other local datasets which are small. 

The overfitting problem occurs due to the unavailability of large balanced dataset. Due 

to the less images and imbalanced dataset, the classification accuracy is also decreased 

as deep learning methods need a large dataset for training a mode. So, this study 

explained in detail about the steps of image classification along with the challenges 

associated with the small or local datasets. 

Maurya et al. presented several ML and DL concepts applied for early detection and 

diagnosis of five types of cancers, namely: brain tumor, cervical cancer, breast cancer, 

skin cancer, and lung cancer [53]. This study looked at many different ML and DL 

methods, and compared them to each other using standard datasets and evaluation 

metrics. It also included a table that listed the benefits and drawbacks of each approach. 

Additionally, the study identified the biggest research challenges as the limited dataset 

availability for each type of cancer. 

Bharat et al. discussed in detail about the importance of nature-inspired computing 

methods in improved medical diagnostics, including disease detection and management 

[54]. Techniques like Genetic Algorithms (GAs) and optimization methods have made  
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significant progress in solving complex problems. These methods create a group of 

possible solutions and gradually improve them through processes like selection, 

crossover, and mutation, like how evolution works in nature. Over several generations, 

these processes lead to better solutions. This approach helps in selecting important 

features, classifying data, and optimizing processes, improving the accuracy of 

leukemia diagnosis. Research of different soft computing-based search and 

optimization techniques for leukemia detection has been reviewed, highlighting their 

benefits and limitations. 

Bouchet et al. explained a new approach for the segmentation of leukocytes in colour 

images [55]. The dataset consisted of one hundred colour images with acquisitions from 

the Cella vision blog. The algorithm chose a pixel identified as a white blood cell and 

used a similarity metric against the entire image to emphasize it over the background. 

The experimental results using this algorithm are of high performance, with 99.41% 

correctly classified leukocytes and 99.23% for the background. The accuracy of 

99.32%, precision of 99.41%, and recall of 99.24%, respectively was achieved. Despite 

the good accuracy of the proposed model, the dataset used for training has only 100 

images, which could lead to overfitting. 

Acharya et al. introduced a computer-aided diagnosis model for segmenting blood smear 

images and identifying AML stages [56]. The process involved capturing images, 

dividing them, extracting/selecting features, and categorizing them. Using 800 images 

from Kasturba Medical College Manipal and 200 from another dataset for training, and 

500 images for testing, the model utilized a new segmentation algorithm to precisely 

categorize AML stages, detect blast cells, extract cytoplasm, and separate overlapping 

cells. Feature selection used InfoGainAttributeEval and ranker search methods. The 

model achieved 99.81% accuracy in differentiating NRBC from WBC and an overall 

classification accuracy of 99.48%. The dataset used in this study is very limited and due 

to this there is instability in the model. 

Chen et al. demonstrated cellular feature engineering, using unsupervised clustering for 

identifying cellular phenotypes, offers quite enhanced analytic performance to analyze  



42 

 

digitized pathology slides, with an accuracy rate 0.925 and an AUC was 0.978. This 

approach outperformed mixed and supervised features, and various methods for feature 

fusion and selection, and patch-based CNN feature extraction as well [57]. The 

effectiveness of unsupervised feature extraction was demonstrated by analyzing stability 

and repetition of splitting, showing it is a useful diagnostic tool to identify CLL patients 

who show signs of disease progression in their tissue samples. Its strength could help 

pathologists in tough cases, but combining it with molecular data might provide even 

deeper insights. 

Shukla et al. suggested utilizing a Naive Bayes classifier as a fitness function to 

selectively identify highly effective genes to improve the accuracy of cancer 

classification [58]. Its effectiveness was assessed on ten biological datasets and 

contrasted with top computational intelligence methods for tumor prognosis. The 

suggested technique, which relies on experimental findings and statistical evaluations, 

surpasses current metaheuristic methods notably in convergence speed, classification 

precision, and optimal feature set identification. Among them, in six datasets, a 

classification accuracy of more than 98% was attained, and the maximum accuracy was 

achieved in the DLBCL dataset. This method’s hybrid TLBOGSA design enhances 

global search efficiency significantly. Table 2.3 shows the machine learning based 

leukemia detection approaches along with the limitation of every approach. 

Table 2.3 Machine Learning based leukemia detection methods 

Study 
Cancer 

Type 
Dataset Methodology 

Accuracy & 

Findings 
Limitations 

Mamun 

et al. [48] 
ALL ALL-IDB 

Color thresholding, 

Watershed 

segmentation, SVM 

classifier 

99% accuracy, 98% 

sensitivity, 99% 

specificity, 99% 

precision, 99% F1-

score 

Small dataset 

size 

Liu & 

Hu [49] 
AML 

Cancer 

Imaging 

Archive 

Random Forest & 

Broad Learning 

System (BLS) 

99.8% accuracy 
Only 50 

images used 
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Study 
Cancer 

Type 
Dataset Methodology 

Accuracy & 

Findings 
Limitations 

Gupta et 

al. [50] 
B-ALL 

CNMC 

dataset 

(15,000 

images) 

ML-based 

classification, IEEE 

ISBI 2019 Challenge 

91% accuracy 

Needs real-

world 

validation 

Das et al. 

[51] 
Leukemia 

Large 

database 

(unspecified

) 

Gini Index-based 

Fuzzy Naïve Bayes 

for blast cell 

segmentation 

96% accuracy 

Requires 

high-quality 

images 

Saleem 

et al. [52] 
Leukemia 

ALL-IDB1, 

ALL-IDB2, 

ASH, local 

datasets 

AI-based leukemia 

detection steps (pre-

processing, 

segmentation, feature 

extraction, 

classification) 

Highlights challenges 

of small/imbalanced 

datasets 

Overfitting 

due to small 

datasets 

Maurya 

et al. [53] 

Brain, 

Cervical, 

Breast, 

Skin, 

Lung 

Cancer 

Various 

datasets 

ML & DL 

comparison 

Discusses 

strengths/weaknesses 

of ML/DL 

Limited 

datasets for 

each cancer 

type 

Bharat et 

al. [54] 
Leukemia 

Multiple 

datasets 

Nature-inspired 

computing (Genetic 

Algorithms, 

Optimization) 

Enhanced leukemia 

diagnosis accuracy 

Computation

al complexity 

Bouchet 

et al. [55] 
Leukemia 

100 color 

images 

(Cella 

Vision blog) 

Leukocyte 

segmentation using 

similarity metric 

99.32% accuracy 
Small dataset 

(100 images) 

Acharya 

et al. [56] 
AML 

Kasturba 

Medical 

College 

Manipal 

(800 

images) + 

external 

(200 

images) 

New segmentation 

algorithm, feature 

selection 

(InfoGainAttributeEv

al) 

99.81% accuracy for 

NRBC vs WBC, 

99.48% overall 

Small dataset 

causes 

instability 

Chen et 

al. [57] 
CLL 

Pathology 

slides 

Unsupervised 

clustering & cellular 

feature engineering 

92.5% accuracy, 

AUC 0.978 

Needs 

molecular 

data 

integration 
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Study 
Cancer 

Type 
Dataset Methodology 

Accuracy & 

Findings 
Limitations 

Shukla et 

al. [58] 

Cancer 

(Multiple 

types) 

10 

biological 

datasets 

Naïve Bayes 

classifier + 

TLBOGSA hybrid 

for gene selection 

>98% accuracy on 6 

datasets 

Computation

al complexity 

 

Machine learning models have shown high accuracy in detecting leukemia, often over 

95%. Many studies have used advanced techniques for classification, feature extraction, 

and augmentation to improve diagnosis. Some have also introduced new ways to 

segment images and select important features, making the models more effective. 

However, many studies still use small and unbalanced datasets. Some only used 50 or 

100 images, which can make the models too focused on just that data and not work well 

on new data. A few did not clearly explain where their data came from. Without enough 

diverse data, these models may not work well in medical environments. Various 

research suggests that selecting better features can improve accuracy. To automatically 

extract the features, there was the need of deep learning-based approaches. 

2.3.2 Deep Learning based approaches for Leukemia Detection 

This section presents various existing deep learning-based studies. The most of these 

studies include CNN-based models to improve feature extraction and classification. 

Different deep learning architectures like ResNet, VGG, and DenseNet have been tested 

which automatically extract the features and no manual feature extraction is required. 

Sharma et al. developed a microscopic images-based leukemia classification model 

using Convolutional Neural Network [59]. The designed model is trained and tested 

using 108 images of ALL IDB1 dataset, which is publicly available. As the ALL IDB1 

dataset does not include segmented images of the blood cell, so a segmentation technique 

using nature inspired based approaches is also built. Using the proposed segmentation 

technique, the blood cells are segmented and further the training and classification is 

performed using CNN.  The classification accuracy with the proposed technique noticed 

around 99%. Although, this proposed leukemia classification model provides a very 
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good accuracy but the training and testing is performed on a very small dataset of 108 

images only. So, there is a problem of overfitting and bias in predictions.   

Abhishek et al. performed a binary classification task that was able to achieve 97% 

accuracy based on the fine-tuned VGG16 model [60]. On the three-class classification, 

ResNet50 with SVM achieved 95% accuracy while DenseNet121 with SVM achieved 

98.5% for AML and 97.1% for ALL. Average accuracies for three-class classification 

were 96.67% with ResNet50, 94% with VGG19, 93.67% with DenseNet121, and 

93.67% with MobileNet. In conclusion, deep learning methods are successful at 

classifying acute leukemia. The purpose of this paper was to introduce this dataset for 

future investigation and this work introduced a novel dataset of 500 images, expanded 

with ALL-IDB, to support high accuracies. 

Anagha et al. proposed a white blood cell detection tool using a CNN [61]. In this work, 

the Keras library along with TensorFlow was used as the backend. The model was 

subjected to training and testing on the cancer cell dataset CNMC2019, comprising 

images of segmented white blood cell regions from microscopic blood smears. It yielded 

a significant performance i.e. 91% with training set, and 87% with testing set. This solid 

accuracy shows CNNs can ease manual diagnosis, though larger datasets could 

strengthen it further. 

Anil et al. have concentrated on different deep learning methods for categorizing acute 

lymphoblastic leukemia [62]. This study used a type of artificial intelligence called deep 

convolutional neural networks to divide Acute Lymphoblastic Leukemia (ALL) into 

different categories based on the World Health Organization's classification system. This 

approach was able to do this without needing to use complex and time-consuming 

methods like image segmentation and feature extraction. They achieved an accuracy of 

94.12% in classifying B-cell and T-cell ALL images by utilizing the complete 

capabilities of a pre-existing CNN named AlexNet, along with the custom deep learning 

network, LeukNet.  

Abas et al. proposed a computerized detection system for diagnosing leukemia using 

deep learning algorithm. They developed a CAD3 system that detects and classifies three  
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varieties of white blood cells [63]. The study used a modified version of the YOLO v2 

algorithm, which is a type of deep learning technique. This algorithm was combined 

with another technique called CNNs, or convolutional neural networks. The data used 

to train the algorithm was specially prepared from 15 patients, and it did not use 

traditional image segmentation or preprocessing techniques. By dividing the problem 

into smaller parts, the algorithm was able to perform much better. CAD3 is capable of 

recognizing leukocytes with an average precision of 96% and classifying them with an 

accuracy of 94.3%. Moreover, CAD3 provides detailed WBC reports and its efficiency 

was further validated with additional datasets, including ALL-IDB1 and BCCD.  

Vieira et al. addressed CNNs defined on hypercomplex algebras to lymphocyte 

classification in digital microscopic images of blood smears, an important task in ALL 

diagnosis [64]. They ran eight HvCNNs and real-valued CNNs on this classification 

task. In their experiments, HvCNNs have outperformed their real-valued counterparts in 

terms of accuracy when using significantly fewer parameters. Notably, the highest 

accuracies that have appeared were exactly clifford algebras and HSV-encoded images. 

The presented approach was able to reach a mean accuracy of 96.6% for ALL-IDB2 

using a 50% train-test split, on par with the existing models but employing a much 

simpler network with less parameters. This simplicity could help in basic settings, but it 

needs testing on bigger datasets. 

Rastogi et al. introduced "LeuFeatx," a fine-tuned approach for leukemia diagnosis [65]. 

LeuFeatx excels in extracting critical features from the single-cell leukocyte microscopic 

images, outperforming the original VGG16 model. Analyses on three public datasets of 

white blood cells showed that classifiers using LeuFeatx features had better precision 

and sensitivity than recent studies on AML datasets, for seven different types of white 

blood cells. Utilizing the ALL_IDB2 dataset for binary classification, LeuFeatx 

demonstrated a 96.15% accuracy, highlighting the strength of its extracted 

characteristics. Overall, this approach emerged as a promising tool for the automation of 

leukemia diagnosis, however, future work suggests the need for larger, diverse, and high-

quality datasets. 
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Mallick et al. developed a way to identify when deep neural networks (DNNs) have 

converged by considering certain factors. These factors include using inputs that are not 

repetitive, having too many neurons in the network, and having enough hidden layers 

[66]. This approach employed a DNN to classify gene expression data, with a specific 

focus on bone marrow samples. Accordingly, a classifier with five layers is designed to 

differentiate ALL from AML. The network is trained with 80% of the data and provides 

the remaining 20% of the data for testing. The proposed DNN classifier brought an 

outstanding output that differentiated leukemia with an accuracy of 98.2%, sensitivity 

of 96.59%, and specificity of 97.9%. The proposed approach achieved good accuracy, 

but the dataset details are not clearly provided. Therefore, it is unclear how many images 

were used for training. 

Ansari et al. created a new image dataset showing Acute Lymphoblastic Leukemia 

(ALL) and Acute Myeloid Leukemia (AML). The images in this study were obtained 

from Shahid Ghazi Tabatabai Oncology Center in Tabriz ,totaling 184 images of ALL 

and 469 images of AML . They worked closely with experts in the field to help other 

scientists use machine learning to study and understand these diseases better [67]. In this 

study a Deep Neural Network (DNN) based on combined GAN and CNN is developed 

to learn the optimal features. The reason for using the combination of GAN and CNN 

networks in this work is that the data limitation in training has been solved by using 

GAN and the CNN classifies acute leukemia cells by using a simple, customized, end-

to-end architecture. The proposed CNN model included six layers for convolution and 

four layers for dense, using softmax as the activation function coupled with the Tversky 

loss function for classifying images of acute leukemia. The model was able to accurately 

distinguish between ALL and AML with a very high rate of 99%. The model was fast 

and precise, making it a useful tool for doctors and specialists in a clinical setting. 

However, its limitation is the use of a small dataset. 

Ananthu et al. conducted an extensive comparative evaluation of various deep learning 

models used to identify ALL in blood smear cell images, including those that were 

trained on the ALL-IDB2 dataset [68]. It was demonstrated that the performances 

amongst Xception, InceptionV3, and DenseNet201 were 87.97%, 88.92%, and 88.92%, 
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respectively, whereas ResNet50 and MobileNet gave the best performances amongst all 

with an accuracy of 95.28% and 97.88%, respectively. The limitation of the study is the 

small dataset used for training the model. 

Elhassan et al. proposed an advanced technique to deal with the imbalanced WBC 

distribution in blood samples by adopting an integrated approach using geometric 

transformation and deep convolutional autoencoder, namely the "GT-DCAE WBC 

augmentation model" [69]. Moreover, the perfect learning framework that incorporates 

WBC segmentation into deep learning for context-independent feature extraction is 

presented. Based on the designed architecture "two-stage DCAE-CNN a typical WBC 

classification model", the authors have classified a typical WBCs into eight classes. The 

obtained results were outstanding, classifying with 97% average accuracy, reaching a 

sensitivity of up to 97%, and a precision of 98%. Though the model achieved good 

accuracy, the dataset used to train the model is not clearly mentioned. 

Sridhar et al. proposed simple enhancements to the traditional neural network 

architectures and produced outstanding results in classifying malignant leukocytes [70]. 

The developed method showed marked interest for non-malignant and malignant cell 

recognitions with high precision. A deep learning approach was developed for 

classifying leukemic B-lymphoblasts. This study had a small dataset ALL-IDB and 

ASH, so they used a technique called data augmentation to make the data bigger. They 

also used a technique called transfer learning, which helps the network learn faster. This 

approach worked even better than a single network, and it was able to accurately 

identify leukemic B-lymphoblasts 95.59% of the time. 

Chand et al. presented a novel framework for the diagnosis of ALL based on 

convolutional neural networks [71]. It required neither the extraction of features nor 

pre-training, which made it particularly suitable for real-time applications. It involved 

only 41,626 tunable parameters, much less than those in the existing deep networks like 

AlexNet, VGG-Net, and ResNet 152. Despite the simplicity of this model, it showed 

100% accuracy for most of the different trials with a mean of 98.17% in two 

experiments: 98.62% with data split 80%-20% run over 20 epochs and 97.73% for a 
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60-48 image split run over 30 epochs. The dataset used for training and testing the 

model was ALL-IDB, which included fewer than 300 images. 

Muhamad et al. created a model for detecting and classifying white blood cells into five 

main types [72]. Manual identification of different WBC types is prone to errors, so an 

automatic system is preferred for accurate classification. Data were gathered from 

patients at the Hiwa Cancer Hospital in Sulaymaniyah, Iraq, encompassing five 

categories: basophil (37 images), eosinophil (440 images), lymphocyte (380 images), 

monocyte (421 images), and neutrophil (450 images), totaling 1,728 images. The 

classification utilized three distinct models, with the CNN model achieving an accuracy 

rate of 95.3%, MobileNetV2 reached 97.6%, and AlexNet attained 81.6%. This research 

created a standard for testing the accuracy of deep-learning models for detecting small 

blood cells in peripheral blood.  

Mohsin et al. proposed a technique for blood smear classification based on several deep 

learning architectures: SqueezeNet, ResNet-50, and AlexNet [73]. The backbone of 

their work is the utilization of the ALL dataset. They presented such models as the most 

suitable to this domain. AlexNet with 99% accuracy outperformed all other deep 

learning models such as SqueezeNet and ResNet-50. Although the models presented in 

this study achieved very good accuracy, they were trained on a very small dataset, which 

may lead to the problem of overfitting. 

Dibouliya et al. introduced a combined model which consisted of artificial neural 

networks and fuzzy logic to improve the overall performance of classification [74]. 

Since ResNet's backbone architecture achieved only 97% accuracy, efforts were made 

to create a solution with improved performance. Their new technique utilized the 

artificial neural network's effectiveness in task classification and integrated it with 

fuzzy logic to enhance feature extraction by managing the uncertainties in feature 

extraction. While combining these two, the hybrid model performed far better than the 

overall performance of these two methodologies. Simultaneously, this combinative 

technique covered the loophole of the traditional neural network model and achieved 

an accuracy rate as high as 99%. This new model shows that combining different  
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approaches can result in more accurate and reliable results, especially when classifying 

complex data. However, potential weakness in the paper includes increased 

computational complexity and need of validation on larger and diverse datasets. 

Boreiri et al. presented a new method for ALL detection from microscope cell images 

using a deep convolutional neuro-fuzzy network [75]. To increase the sample size, they 

used a data augmentation technique before training, since overfitting was occurring. 

Images were pre-processed by two-stage fuzzy colour segmentation, allowing only 

leukocytes, reducing image sizes to 64×64 pixels containing each single nucleus. 

Currently, the TSK fuzzy system model has reached an impressive average accuracy 

level of 97.31% when detecting ALL. This research has shown that using deep network 

architectures on a dataset of ALL-IDB1 data with a small sample size can improve 

performance. In this research, two new operations have been proposed for the TSK 

model. 

Aftab et al. proposed a way to diagnose leukemia using a special type of artificial 

intelligence called deep transfer learning CNN architecture [76]. They looked at small 

pictures of human blood cells and found that this method worked well. This model 

successfully recognized four kinds of leukemia. The approach utilized SBDL 

framework along with GoogleNet and obtained 97.33% accuracy. During the 

comparison, the model BigDL achieved a training accuracy of 96.42% and a validation 

accuracy of 92.69%. Overall, the BigDL model excels over the Keras model in 

performance and accuracy. The study acknowledges the potential limitations including 

computational complexity of the approach. 

Akalin et al. addressed the diagnosis of Acute Lymphoblastic Leukemia (ALL), a major 

leukemia type defined by the rapid overproduction of immature and cancerous white 

blood cells known as lymphoblasts [77]. Due to the aggressive nature of ALL, where the 

disease quickly spreads through the blood and to vital organs, rapid testing for early 

detection is crucial. This system employed the YOLOV4 algorithm and has been trained 

using images from the freely available ALL-IDB dataset, which are annotated by expert 

oncologists. The system was tested and achieved impressive success metrics, including  
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a success rate of 98.87%, precision of 99.08%, recall of 99.81%, specificity of 88.88%, 

and an F1- score of 99.44%. The challenge in this study is also the size of the dataset. 

The model is trained using less than 300 images. 

Chand et al. introduced a CNN for the detection of Acute Lymphoblastic Leukemia 

(ALL). Unlike traditional methods, the suggested approach does not require feature 

extraction or pre-training on external datasets, making it well-suited for real-time 

detection of leukemia [78]. This streamlines the process, enhancing its practicality for 

immediate diagnostic use. The framework is simpler compared to existing deep 

networks, with only 41,626 tunable parameters, significantly fewer than those in pre-

trained networks like AlexNet (over 60 million), VGG-Net has a parameter size of 138 

million, while ResNet 152 has a parameter size of 60.3 million. Having fewer parameters 

enabled the framework to function on a simple processor without requiring a GPU. 

Despite its lower number of parameters, the model achieved 98.17% accuracy. This 

method works well for smaller setups, but handling larger datasets could be a challenge. 

Mondal et al. utilized deep learning methods, specifically CNNs, to detect Acute 

Lymphoblastic Leukemia [79]. This method highlighted creating a weighted ensemble 

model by combining various CNN architectures to enhance classification accuracy. 

Various methods for preprocessing and augmenting the data were experimented to 

enhance generalization abilities. Each test was conducted using the publicly available 

C-NMC-2019 dataset. It was surprising that the ensemble model, which assigns weights 

based on kappa values in decreasing order, achieved an impressive accuracy of 86.2%. 

This strong performance shows it could be useful in clinical settings, but testing on 

different patient groups could make it even more reliable. 

Ghaderzadeh et al. introduced a public dataset for Acute Lymphoblastic Leukemia 

(ALL) detection, consisting of 3,562 peripheral blood smear (PBS) images from 89 

patients, including 25 healthy people and 64 ALL patients [80]. After segmenting with 

colour thresholding in the HSV colour space using a two channelled network, various 

CNN models were utilized for extracting features. DenseNet201 demonstrated the 

highest performance in diagnosis and classification. The developed deep learning model,  



52 

 

utilizing DenseNet201 as its foundation, attained an accuracy: 99.85%, sensitivity: 

99.52%, specificity: 99.89%. These near-perfect results show its diagnostic accuracy, 

but testing on larger, multi-center datasets could prove it works widely. 

Vogado et al. introduced LeukNet, a convolutional neural network (CNN) motivated 

from convolutional blocks of VGG-16, however, featuring smaller dense layers [81]. 

The settings in LeukNet were selected after assessing different CNN models and fine-

tuning techniques on 18 image datasets with varying resolution, colour, contrast, and 

texture features. The training dataset was expanded using data augmentation, leading to 

an accuracy of 98.61% in 5-fold cross-validation. To assess generalization, cross-dataset 

validation was used, achieving accuracies of 97.04%, 82.46%, and 70.24% on three 

different datasets, exceeding the current top methods. The study ended by stating that 

using deeper and more general CNNs might not be the best for tasks where the images 

used for classification are different from those used in pre-training. Also, validating 

across different datasets is highlighted as an excellent approach for evaluating a model's 

generalization capability, crucial for CAD systems. Table 2.4 presents the existing deep 

learning-based leukemia detection approaches along with the limitation of every 

approach. 

Table 2.4 Deep Learning based leukemia detection methods 

Study 
Cancer 

Type 
Dataset Methodology 

Accuracy & 

Findings 
Limitations 

Sharma et al. 

[59] 
ALL 

ALL-IDB1 

(108 

images) 

Nature-inspired 

segmentation + 

CNN 

99% accuracy 

Very small 

dataset, risk of 

overfitting and 

bias 

Abhishek et 

al. [60] 
AML, ALL 

Novel 

dataset of 

500 images 

+ ALL-IDB 

VGG16, 

ResNet50+SVM, 

DenseNet121+SVM 

Binary: 97%; 

3-class: up to 

98.5% 

Small dataset; 

need for 

validation 

Anagha et al. 

[61] 

WBC 

Detection 
CNMC2019 

CNN (Keras + 

TensorFlow) 

91% (train), 

87% (test) 

Limited dataset 

size 

Anil et al. 

[62] 

B-cell, T-cell 

ALL 

Not 

specified 

AlexNet + custom 

CNN (LeukNet) 

94.12% 

accuracy 

Dataset details 

missing 

Abas et al. 

[63] 
WBCs 

Custom (15 

patients), 

ALL-IDB1, 

BCCD 

Modified YOLO v2 

+ CNN (CAD3 

system) 

Avg. 

precision 

96%, 

Not using 

traditional 

segmentation; 

limited samples 
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Study 
Cancer 

Type 
Dataset Methodology 

Accuracy & 

Findings 
Limitations 

classification 

94.3% 

Vieira et al. 

[64] 

Lymphocyte 

(ALL) 
ALL-IDB2 

Hypercomplex 

CNNs (HvCNNs) 

Mean 

accuracy: 

96.6% 

Needs testing on 

bigger datasets 

Rastogi et al. 

[65] 
ALL, AML 

ALL-IDB2 

+ others 

Fine-tuned DNN 

(LeuFeatx) 

96.15% 

accuracy 

Small datasets, 

need for 

diversity 

Mallick et al. 

[66] 
ALL, AML 

Gene 

expression 

(unclear 

size) 

DNN (5 layers) 

98.2% 

accuracy, high 

sensitivity and 

specificity 

Dataset size not 

clear 

Ansari et al. 

[67] 
ALL, AML 

184 ALL, 

469 AML 

GAN + CNN 

(custom 

architecture) 

99% accuracy Small dataset 

Ananthu et 

al. [68] 
ALL ALL-IDB2 

CNNs (Xception, 

InceptionV3, etc.) 

Best: 

MobileNet 

97.88%, 

ResNet50 

95.28% 

Small dataset 

Elhassan et 

al. [69] 
WBCs 

Not 

specified 

GT-DCAE + 2-

stage CNN 

Avg. 97% 

accuracy, 

98% precision 

Dataset not 

clearly 

mentioned 

Sridhar et al. 

[70] 

B-

lymphoblasts 

(ALL) 

ALL-IDB, 

ASH 

Transfer learning + 

Data augmentation 

95.59% 

accuracy, 

improved 

malignant vs. 

non-malignant 

classification 

Small dataset 

Chand et al. 

[71] 
ALL 

ALL-IDB 

(<300 

images) 

CNN without 

feature extraction or 

pre-training 

98.17% avg. 

accuracy, 

100% in trials 

Small dataset 

Muhamad et 

al. [72] 

WBC 

classification 

Hiwa 

Cancer 

Hospital 

(1,728 

images) 

CNN, 

MobileNetV2, 

AlexNet 

MobileNetV2: 

97.6%, CNN: 

95.3%, 

AlexNet: 

81.6% 

Small dataset 

for basophils 

(37 images) 

Mohsin et al. 

[73] 
ALL ALL dataset 

SqueezeNet, 

ResNet-50, AlexNet 

AlexNet: 99% 

accuracy 

Small dataset, 

risk of 

overfitting 

Dibouliya et 

al. [74] 
Leukemia 

Not 

specified 

Hybrid ANN + 

Fuzzy Logic 
99% accuracy 

High 

complexity, 

needs larger 

dataset 

validation 
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Study 
Cancer 

Type 
Dataset Methodology 

Accuracy & 

Findings 
Limitations 

Boreiri et al. 

[75] 
ALL ALL-IDB1 

Neuro-fuzzy CNN 

+ TSK fuzzy 

segmentation 

97.31% 

accuracy 
Small dataset 

Aftab et al. 

[76] 

Leukemia (4 

types) 

Not 

specified 

SBDL + 

GoogleNet, BigDL 

GoogleNet: 

97.33%, 

BigDL: 

96.42% 

Computationally 

complex 

Akalin et al. 

[77] 
ALL 

ALL-IDB 

(<300 

images) 

YOLOV4 

98.87% 

accuracy, F1: 

99.44% 

Small dataset 

Chand et al. 

[78] 
ALL ALL-IDB 

Lightweight CNN 

(41,626 params) 

98.17% 

accuracy 

Struggles with 

large datasets 

Mondal et al. 

[79] 
ALL 

C-NMC-

2019 

Weighted CNN 

ensemble 

86.2% 

accuracy 

Needs testing on 

different patient 

groups 

Ghaderzadeh 

et al. [80] 
ALL 

3,562 PBS 

images (89 

patients) 

DenseNet201 + 

HSV thresholding 

99.85% 

accuracy, high 

sensitivity & 

specificity 

Needs multi-

center validation 

Vogado et al. 

[81] 
ALL 

18 datasets 

incl. ALL-

IDB 

LeukNet (light 

VGG-style CNN) 

Cross-

validation: 

98.61%, 

Cross-dataset: 

up to 97.04% 

Lower accuracy 

on diverse 

datasets 

Deep learning models, especially CNNs, are highly accurate in detecting leukemia as 

they perform automatic feature extraction. However, some models are complex and 

require a lot of computing power. Further, the performance and the stability of these 

models can be enhanced by hyperparameter tuning and integrating optimization 

algorithms.  

2.3.3 Soft Computing based hybrid approaches  
This section reviews several studies that use techniques like CNN models, transfer 

learning, genetic algorithms, and hybrid machine learning methods. These studies focus 

on improving feature extraction, classification, and model performance. They use 

advanced methods such as nature-inspired algorithms, ensemble learning, and boosting 

techniques to achieve better results. 

Chadaga et al. utilized three nature inspired-based feature selection techniques i.e. Harris  
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Hawks optimization, Salp Swarm optimization and mutual information for the selection 

of the features. Based on the selected features, different machine learning and 

explainable artificial intelligence (XAI) methods such as SHAP, LIME, EL15 and 

QLattice are used for assessing the survival rates among patients receiving 

hematopoietic stem cell transplantation [82]. A blood cell images dataset of 186 

cancerous and non-cancerous patients is considered in this study. Harris Hawks 

Optimization algorithm has selected 10 features, salp swarm optimization has selected 

13 features and Mutual information has selected total 10 features. Random forest, 

logistic regression, decision tree, K-nearest neighbors classifiers were stacked together 

to design the model STACKA. Adaboost, catboost and xgboost boosting algorithms 

were stacked together to design the model STACKB. STACKA and STACKB were 

combined to designed another model STACKC which provided the accuracy of 89% to 

predict the effectiveness of bone marrow transplant. This study provided a best view of 

various feature selection techniques, machine learning classifiers and the boosting 

algorithms but the size of the dataset used is small. 

Vishwaraj et al. discussed machine learning platform for cancer cell detection based on 

Waveguide Bragg Gratings [83]. Feature reduction is done with PCA and the neural 

network with multi-layer perceptron is utilized and are further connected to fully 

connected layers. The model used light reflection to find cancer and achieved an 

accuracy around 95%. It is mentioned that 666 images dataset was generated with the 

variations in the RI of the sample solution. Since, this study only used the generated 

data, it has not been checked with real samples.  

Wu et al. introduced a soft-computing approach for analyzing histopathology images 

with overlapped cells, specifically targeting lymphoma [84]. Their technique combines 

a deep learning network with a genetic algorithm to detect and separate overlapping cells 

and enhance the elliptical pattern of each cell. The uniqueness of this method is found 

in its implementation to medical image segmentation and analysis. Tested on a dataset 

of 50 lymphoma images, the method attained an average F1-score of 0.87 for cell 

segmentation and a Jaccard index of 0.77 for cell splitting. This approach could also be  
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further extended to other histopathology images for tasks like cell classification and 

feature extraction. A major limitation of this study is that it needs someone to manually 

go through the training data and label it, which can be a time-consuming and tedious 

task. Additionally, the study only used a small dataset to evaluate the model, which may 

not be representative of a larger population. Finally, the study did not compare its results 

to other advanced methods, which makes it difficult to know how it compares to other 

approaches.  

Priyadarshini et al., in their critical review related to research in skin cancer detection 

and classification, had focused on enhancing computer vision by using a machine 

learning approach [85]. They proposed a hybrid algorithm, named ELM-TLBO, by 

combining Extreme Learning Machine (ELM) with Teaching-Learning-Based 

Optimization (TLBO). This approach includes median filtering and fuzzy C-Means for 

image segmentation. The paper looked at what has already been done in this area and 

suggests some ideas for future research. It is analyzed that future research should focus 

on making the detection of leukemia more accurate and faster. The paper also mentioned 

that deep learning is being used more and more to help machines recognize and classify 

medical images. Experimental results showed high accuracy in melanoma detection. 300 

skin images were used for the testing and the proposed approach achieved 93.18% 

accuracy, outperforming several existing methods. The method’s strength lies in its 

quick training and effective parameter tuning, though it may stumble with complex 

image patterns. 

Nematzadeh et al. compared the GA with GWO and hence with EGS to make a point 

that metaheuristic methods were much more efficient and much faster to reach the best 

hyper-parameters [86]. This study has shown that GWO outperforms GA by obtaining a 

better performance with faster convergence. It improved performance in different 

biological and biomedical datasets, and it is directly recommended for non-machine 

learning expert users. A practical and effective way has been proposed for performing 

the tuning of hyper-parameters with better applications towards reaching accuracy in 

machine learning models. The testing was performed using 11 diverse datasets with 11 
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algorithms. It proves versatile, though its effectiveness may vary with highly complex 

or imbalanced data. 

Baby et al. concentrated on refining an ALL-detection system based on transfer learning 

that is efficient and simple [87]. One of the most advanced deep learning models, 

EfficientNet, was used to tackle the problems associated with feature extraction. This 

study made use of eight different variations of EfficientNet for feature extraction and 

presented a comparison of their results in terms of classification accuracy. An ensemble 

approach was executed, which combined three advanced classifiers: SVM, random 

forest, and logistic regression. Therefore, the suggested system reached a classification 

accuracy of 98.5%. The potential for reliable diagnosis of ALL at high accuracy levels 

in clinical settings allowed the proposed system to operate quickly. The challenge 

associated with this study is the missing details of the dataset. 

Devi et al. presented a Convolutional Leaky RELU design integrated with CatBoost 

and XGBoost for important feature extraction in image segmentation followed by 

classification [88]. The recommended approach involves binary classification and 

gradient boosting methods using CatBoost and XGBoost. The goal of developing 

convolutional leaky RELU with CatBoost is to reduce bias and achieve high accuracy. 

Conversely, combining Convolutional Leaky RELU with XGBoost is effective for 

addressing classification and regression issues, leading to improved algorithm 

performance and speed. In this work, test images are classified as ALL by using the 

CLR-CXG method. The proposed model achieves an accuracy of 97.12%; however, a 

local dataset was used for training, and its details are not provided. 

Rejula et al. introduced an enhanced ANFIS (Improved ANFIS or I-ANFIS) model for 

predicting leukemia data, utilizing Euclidean distance to compare trained and test feature 

data [89]. A novel ANFNN has been introduced, aiming to reduce computational 

complexity by partitioning the input space into localized regions using fuzzy clustering. 

The total count of fuzzy rules is determined by cluster separation and compactness using 

a validity function. A hybrid learning algorithm was applied to fine-tune the parameters 

of the model, integrating forward and backward passes. In the forward pass, node outputs  
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advance up to layer 4, and the remaining parameters are determined using the Least 

Square Estimate (LSE) technique. Error metrics are calculated for each individual node. 

During the backward pass, gradient descent updated the principal parameters. The 

Improved ANFIS model achieved high accuracy (97.14%), sensitivity (96%), and 

specificity (90%), and accurately classified all cell types, particularly in the microscopic 

blood cell ALL IDB dataset. There might be potential risks of overfitting due to reliance 

on a single dataset. 

Fauzi et al. compared how effective combining Principal Component Analysis (PCA) 

with Fuzzy Support Vector Machines (FSVM) is for cancer classification, in comparison 

to using FSVM by itself [90]. Experimental findings showed that the FSVM technique 

achieved an 87.69% accuracy without using PCA. However, when PCA is applied to the 

cancer data, reducing the feature set to 60, the classification accuracy significantly 

improved to 96.92%. Here, the study’s strengths lie in its innovative combination of 

FSVM with PCA, boosting accuracy by reducing noise and redundancy. The study 

acknowledges need for further validation on large datasets and insufficient discussion 

on how varying the PCA parameters might affect the overall performance. 

Ramya et al. introduced aa FBW based approach i.e. FBW-NN to identify AML [91]. 

The AML region is divided using a model called Adaptive Fuzzy Entropy (AFE), 

combining an ACM with FCM clustering. Following segmentation, feature sets are 

extracted at both the statistical and image level. The performance of the Artificial Neural 

Network (ANN) was enhanced using the Fractional Black Widow Optimization 

technique. By incorporating pre-trained models, the proposed method surpassed other 

advanced techniques when using the Munich AML Morphology dataset, achieving 0.96 

accuracy, 0.97 precision, and 0.97 recall. The results demonstrated that the FBW-NN 

outperforms other state-of-the-art methods, including pre-trained Deep Convolutional 

Neural networks (DCNN), Naïve Bayes, Convolutional Neural Networks (CNN), and 

Chronological Sine Cosine-based Actor-Critic Neural Networks (CSC-ACNN). 

However, the study did not extensively discuss the computational complexity or 

potential limitations of the FBWO algorithm. 
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Bai et al. introduced the method of deep neural network and the process starts with the 

preprocessing and segmentation of the input image [92]. In the mapper phase, the most 

important features were extracted to enhance the performance of the classification, 

based on the HHOA and WOA, which are combined into the algorithm named HHWO. 

The method is concluded by the severity analysis based on classification of levels of 

leukemia for improved treatment. The proposed technique of HHWO-enabled DNFN 

performed better 95.9% Accuracy, 96.5% sensitivity, and the specificity of 96.6%. The 

study’s strengths lie in the use of HHWO algorithm for feature extraction and 

integration of DNFN with Map Reduce framework, which enhanced the computational 

efficiency.  

Narayanan et al. introduced a technique for evaluating the accuracy of Acute Leukemia 

classification using two distinct ML classifiers: a combination of HFCM with a RF 

classifier, and a SVM classifier [93]. In this paper, the algorithms proposed for detecting 

and classifying Acute Leukemia include HyFMr and SVM. The Hybrid FCM and RF 

algorithm demonstrated 99.06% accuracy, 99.4% sensitivity, and 97.8% specificity in 

the experimental results. ROC curve analysis demonstrated the high effectiveness of 

the Hybrid FCM and RF classifier in diagnosing and classifying Acute Leukemia. The 

study used MATLAB for its development. The performance metrics for the SVM 

classifier have not been discussed. 

Dhal et al. presented the Enhanced Slime Mould Algorithm (ESMA), which integrated 

opposition-based learning and the mutation strategy of differential evolution, to attain 

segmentation of white blood cells (WBCs) without the need for illumination [94]. ISMA 

addressed the issue of local optima trapping in partitional clustering techniques. This 

research also looked at how lighting affects the way we group images in pathology, 

which is important for diagnosing diseases. They did this by studying the different 

colours in different colour spaces. Results indicated that clustering methods based on 

illumination or colour components could be successful for segmenting images. In 

particular, the combination of ISMA-KM with the "ab" colour channels in the CIELab 

colour space achieved more than 99% accuracy for segmenting nuclei. Additionally,  
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ISMA-KM showed the shortest execution time, whereas ISMA-RKM had the longest. 

ISMA demonstrated competitive performance on CEC2019 benchmark test functions 

compared to other recent nature-inspired optimization algorithms (NIOAs). This study 

lacks real-world noise handling, has execution time trade-offs (ISMA-RKM is slow), 

and does not compare with deep learning models, raising concerns about generalizability 

and parameter sensitivity. 

Jha et al. developed a leukemia detection technique which is based on sine/cosine 

method [95]. The blood smear images were segmented using a hybrid model based on 

entropy, resulting in the extraction of image-level and statistical features. These 

characteristics were fed into the classifier to identify leukemia. The Chrono-SCA-

ACNN enhanced weight optimization by incorporating the concept of time order into 

the Sine Cosine Algorithm (SCA). Tests carried out with the ALL-IDB2 dataset prove 

the efficiency of the approach, reaching an accuracy of 0.99, surpassing current 

classification methods. However, potential limitations include overfitting due to 

complex weight optimization and reliance on a single dataset (ALL-IDB2). Additionally, 

the computational cost of the entropy-based segmentation and actor-critic neural 

network may be high. 

Zakir et al. presented a non-invasive diagnostic technique that utilized medical images, 

employing a convolutional neural network (CNN) [96]. The suggested solution 

combined a CNN model with an ECA module and the VGG16 structure to improve 

feature extraction, increasing both feature representation and classification accuracy. 

The ECA module effectively distinguished between ALL cancer and healthy cell images 

despite their morphological similarities. Furthermore, different methods for 

enhancement are utilized to improve both the quality and quantity of the training data. 

With the CNMC dataset categorized into seven folds to consider subject-level 

differences, the model reached an accuracy of 91.1% in distinguishing between normal 

and cancerous cells. These results show that the new method can assist pathologists in 

finding key features in blood cell images to accurately diagnose ALL. The dataset used 

for training the model is not clearly mentioned. 
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Mounika et al. aimed to reduce identification time, improve diagnosis accuracy, and 

reduce costs related to specialized care in Acute Lymphoblastic Leukemia [97]. In this 

study, researchers used a dataset of 108 images of lymphocyte cells. To make it even 

bigger, they used a technique called image augmentation, which added more images to 

the dataset. This increased the total number of images to 3240. These augmented images 

were used for feature extraction with the MobileNetV2 model, while the XGBoost 

classifier was trained on the prediction of the respective labels. Advanced Models: 

GoogLeNet, ResNet50, and MobileNetV2 + SVM have shown that the proposed 

approach of MobileNetV2 + XGBoost achieved an accuracy rate of 99.07%, a precision 

rate of 99.35%, and a recall rate of 98.72%. The limitation of the study is the smaller 

number of images used for the training purpose. 

Khatter et al. focused on the development of an automated system for detecting and 

identifying blood diseases using patient data [98]. It emphasized the necessity of having 

an intelligent system that can analyze medical reports and assist doctors globally. The 

system, known as S-ANFIS, combined the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) with content curation and intelligence analysis. By analyzing different models 

and case studies, especially relating to diabetes, researchers customized S-ANFIS to 

outperform current techniques in forecasting chronic illnesses, achieving an accuracy 

level of 88.6%. The proposed system was tested on 1000 real blood samples. 

Rodrigues et al. proposed the joint approach based on a genetic algorithm combined 

with the ResNet-50V2 residual convolution neural network for predicting Acute 

Lymphoblastic Leukemia from microscopy images in ALL-IDB dataset [99]. 

Optimization of hyperparameters using GA is an important issue for this study since 

the manual tuning is challenging. The results were compared by using GA optimization 

against many other methods such as random search and Bayesian optimization. The 

findings showed that with GA, the model significantly improves its accuracy to 98.46%. 

The current findings pointed out the feasibility of computer vision strategies for 

practical applications in leukemia identification. 

Mahesh et al. proposed a new approach for the prediction of leukemia using microarray  
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gene data with Hybrid Ant Lion Mutated Ant Colony Optimization combined with 

Particle Swarm Optimization [100]. The main purpose of the hybrid model was 

selecting the best features for the purpose of classification. The key effectiveness of this 

novel approach was supported through an excellent prediction accuracy of 87.88%. 

Hence, this study underlines the potential of combining evolutionary algorithms in 

enhancing computational efficiency and accuracy about medical predictions.  

Sallam et al. described in their work how machine-learning classifiers could be useful 

in the diagnosis of ALL whether malignant or benign [101]. First, this method improved 

images through an adaptive threshold method, reducing errors and enhancing contrast. 

The grey wolf optimization approach was utilized to pick the key important feature sets 

from the images. Later, the ALL (acute lymphoblastic leukemia) data was classified 

using different classification techniques. The model turned in very impressive 

performance metrics, with accuracy rated 99.69%, sensitivity rated 99.5%, and 

specificity rated 99%. The limitation of this study is the very small size of the dataset 

used for training the model. 

Hosseinzadeh et al. presented a technique for identifying Acute Lymphoblastic 

Leukemia (ALL) [102]. The research examined various transfer learning models and 

feature selection was then carried out using various methods such as Genetic Algorithm, 

PCA, and ANOVA etc. Various classifiers have been tried out of which Multilayer 

Perceptron gave the best results. Further, the presented method has been used on 

classification of ALL and HEM using CNMC 2019 dataset. It scored a reasonable 

accuracy rated 90.71% and a sensitivity rated 95.76%, the best so far from many 

methods using the same dataset. It is discussed in the future work that hybrid models 

could be explored further to improve accuracy. 

Agustin et al. proposed a two-stage ANN integrated with PSO to classify immature 

white blood cells of the patients with ALL [103]. The first step deal with binary 

classification of lymphoid cell type, while the second step considers a binary 

classification of lymphoblast cell type. Five peripheral blood samples of ALL from the 

Sardjito Hospital were used to identify the model. Data preparation, selection of  



63 

 

relevant features, important characteristic extraction, and an application for the two-

step classification were the basic steps involved in this series since each is very 

important to assure the accuracy and efficiency of the obtained results. Its precision was 

later validated with the common methods of multiclass NN-BP and multiclass NN-PSO, 

which utilized a particle swarm optimization algorithm. The proposed method gave 

good accuracy at 86.92%, proving quite promising for development in further 

scenarios. This method makes it easier to find all the cells, but it hasn’t been tested on 

many samples yet. 

Sallam et al. introduced an improved technique for categorizing all subtypes of Acute 

Lymphoblastic Leukemia (ALL) by employing the k-means clustering algorithm [104]. 

The process begins with preprocessing of the images, followed by extracting key 

features that describe the images in detail. Next, the Enhanced Grey Wolf Optimization 

(EGWO) algorithm is applied to select the most significant features related to blood 

cell morphology. This is an approach where k-means clustering has identified optimal 

cluster centers based on certain parameters. In the presented approach here, several 

leading supervised classifiers have been compared, namely RF, KNN, SVM, and NB. 

It showed remarkable results with an accuracy of 99.22%, the precision rate of 99%, 

and the sensitivity of 99%. This method is very accurate compared to others, but it’s 

based on a dataset of 3,189 images. 

Veeraiah et al. suggested Mayfly optimization combined with a Generative Adversarial 

Network to improve the process of feature extraction and classification of various types 

of blood cancers [105]. A Hybrid Generative Adversarial System combined with 

Principal Component Analysis was also used within the feature extraction model. The 

model leverages semantic techniques and morphological procedures based on 

geometric features to carry out leukemia cell segmentation. The various leukemia types 

along with abnormal WBCs, were categorized by the MayGAN model. This model has 

proved to be highly efficient in finding out these different types of leukemia with high 

accuracy. MayGAN has been able to show improved performance as compared to 

existing and prevailing techniques in detecting white blood cell abnormalities through  
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geometric feature analysis. It exhibited excellent performance metrics: 99.8% as 

accuracy, 98.5% for precision, 99.7% for recall, and 97.4% for the F1-score. These 

good results are based on a dataset of 1,200 images, but more testing is needed on 

unstained samples. 

Balasubramanian et al. used deep learning method with an evolutionary algorithm to 

enhance white blood cell classification [106]. They adapted the PSO algorithm for 

hyperparameter optimization of considered CNN model. After the simplification 

process, the dataset included pictures from both LISC and BCCD datasets. This resulted 

in a model with an accuracy of 99.2%, sensitivity at 94.56%, specificity at 98.78%, and 

an AUC of 0.982. The findings were contrasted with alternative optimization methods 

like GAs, Differential Evolution, and GWO. In general, the findings suggested that PSO 

is highly efficient in optimizing CNN parameters to enhance sensitivity, making it a 

dependable tool for assessing blood cell count. This combination of PSO and CNN 

worked well for detecting the five WBC types, but larger datasets could help test its 

limits. 

Ahmad et al. have proposed a deeply advanced hybrid method for the efficient WBC 

subtypes classification [107]. Initially, the method acquired the optimal characteristics 

from the images of the leukocytes through transfer learning with pre-existing 

DenseNet201 and Darknet53 models. The extracted feature vector was optimized by 

applying an entropy-controlled marine predator algorithm meta-heuristic technique that 

could pick out only the most important features and reject the less informative ones. 

The refined feature set after this reduction was classified using various baseline 

classifiers with different kernel configurations. On testing upon public dataset with 

5000 images from five WBC subtypes, achieved an overall accuracy rated 99.9% along 

with minimal size of the feature vector by more than 95%. The superior convergence 

rates for the ECMPA compared with traditional meta-heuristic methods were also 

demonstrated. The sources of the dataset used are not clearly mentioned. 

Kumar et al. proposed a classification approach using CNN that automatically classified 

five types of peripheral blood cells: eosinophils, basophils, lymphocytes, monocytes,  
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and neutrophils, without any human interference [108]. They proposed the use of an 

improved SSO along with PSO for optimization on a large database of blood cell images 

that contributed to a significantly improved performance in the classification. They 

employed the CNN based on the architecture of VGG19, then trained by a self-

developed method to classify data with an accuracy rate of 98%. After optimizing this 

model by using the SSPSO technique, they have proposed a very accurate automated 

system for peripheral blood cell classification. The authors refined the model using 

10,674 images acquired from a clinical environment, which further improved the 

classification accuracy to 99%, along with significant enhancements in precision and 

the F1-score. 

Alrefai et al. proposed a method of cancer classification based on the ensemble learning 

approach, combining particle swarm optimization for feature selection [109]. The 

experiments showed high accuracy of this method on microarray datasets: 100% on 

leukemia, 92.86% on colon cancer, 86.36% on breast cancer, 100% on ovarian cancer, 

and 85.71% on central nervous system cancer. These results outperformed many of the 

prevailing methods and gives an indication that the model works well when compared 

with other existing methods. This approach improved performance by 12% over basic 

ensemble methods, but it depends on microarray data, which limits its use in other 

imaging areas. 

Alabdulqader et al. created a blood cancer model through supervised machine learning 

techniques [110]. The leukemia microarray gene dataset consisted of 22,283 genes. The 

promising challenges were imbalanced and high-dimensional data in the dataset were 

handled by applying the Chi-squared feature selection technique. The SMOTE-Tomek 

is a resampling technique that balances the dataset by generating synthetic samples, 

while Chi2 selects the most relevant genes for the model's training. This contribution 

presented the novelty of the weighted CNN model, which integrated support for three 

different CNN architectures for classification. Through comprehensive testing and 

comparisons with other advanced methods, the weighted CNN, when combined with 

SMOTE-Tomek and Chi2, achieved a remarkable accuracy of 99.9%, showcasing its 
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superior effectiveness. This method works well with gene data, but testing on images 

could make it more useful. 

Amin et al. presented a method for early-stage segmentation and classification of white 

blood cells (WBC) by converting RGB images to HSV and applying dual thresholding 

to the saturation component for WBC segmentation [111]. Deep learning models 

extracted features from AlexNet (FC8 layer), MobileNetV2 (Logits layer), ShuffleNet 

(node_202 layer), and ResNet-18 (FC1000 layer). A non-dominated sorting genetic 

algorithm (NSGA) was utilized to combine and optimize these feature vectors. The 

method was tested on the LISC, ALL_IDB1, and ALL_IDB2 datasets, achieving perfect 

accuracy (1.00) for classifying blast/non-blast cells, lymphocyte, neutrophil, monocyte, 

and eosinophil cells, and near-perfect accuracy (0.9992) for basophil cells, showing its 

capability to precisely recognize different types of WBC. 

Ay et al. presented a model for predicting heart disease and heart failure survival by 

integrating meta-heuristic feature selection algorithms: cuckoo search (CS), flower 

pollination (FPA), whale optimization (WOA), and harris hawk’s optimization (HHO) 

[112]. The model was tested on the cleveland heart disease and Faisalabad Institute of 

Cardiology datasets to determine the best population size for feature selection. For heart 

disease, the original dataset's highest F1-score is 88% using K-nearest neighbour (KNN), 

but the proposed method achieves 99.72% with KNN, FPA, and eight features. For heart 

failure, the original dataset's top F1-score is 70% with logistic regression (LR) and 

random forest (RF), while the new approach reaches 97.45% with KNN, HHO, and five 

features. The study highlights the value of meta-heuristic optimization, but applying it 

to other heart-related datasets, like ECG signals, could make it more useful. 

Shahzad et al. proposed an enhanced WBC classification technique including several 

preprocessing steps, CNN architectures, feature selection methodologies, and 

classifiers [113]. In the preprocessing step, the authors applied CLAHE to enhance the 

input images. Internally developed CNN architecture, ResNet50, and EfficientNetB0 

are used for feature extraction. Here, it used the selection of the most important features 

through ant colony optimization, combining them and classifying them with models  
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like SVM and QDA. Then it yields an accuracy of 98.44% on the blood cell images 

dataset. This approach shows strong feature fusion, but adding more WBC types, like 

basophils, could improve its diagnostic ability. 

Haznedar et al. compared the performance against some algorithms, such as 

backpropagation, some hybrid algorithms, genetic algorithms, Bayesian networks, 

support vector machines, and J48 decision trees [114]. The average accuracy of the 

obtained cancer types was 96.28% with FCM-based ANFIS optimized by the SA 

algorithm. This method showed significant improvement in classifying cancer gene 

expression data from DNA microarrays compared to the other algorithms. It worked well 

with five cancer datasets, which suggests it could be used for other gene expression 

problems, but it may need to be faster for larger datasets. 

Sampath et al. introduced a method to select key genes from cancer gene expression data 

for treatment by utilizing a tailored bio-inspired algorithm called cuckoo search with 

crossover [115]. This approach aimed to accurately classify various cancer sub-types 

from microarray technology. Studies were carried out on five standard cancer gene 

expression datasets. The findings demonstrated that CSC is more effective than 

conventional cuckoo search (CS) and other popular methods, with a 99% accuracy rate 

in classifying prostate, lung, and lymphoma data sets by utilizing the top 200 genes. CSC 

obtained accuracies of 96.98% and 98.54% for the leukemia. This high accuracy shows 

it could be useful for precision medicine, but testing the selected genes biologically 

could make it more effective for treatment. 

Li et al. introduced a new non-invasive testing technique that integrated AlexNet and 

Extreme Learning Machine networks to enhance diagnostic outcomes [116]. The 

technique was further improved by utilizing an upgraded edition of the Grasshopper 

Optimization Algorithm (GOA). Comparing to other advanced methods, simulations 

indicated that the suggested technique improves efficiency, reaching a 98% accuracy and 

a 93% sensitivity. 

Meenakshi et al. presented a Deep Features based CNN (DFCNN) for counting (WBC) 

from an image database, comprising three phases: feature extraction, selection, and  
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classification [117]. During feature extraction (AlexNet, GoogLeNet, and ResNet-50) a 

combined CNN structure, extracted almost 3000 features from the input data of images. 

To select features, a combination of Mayfly Algorithm and particle swarm optimization 

(HMA-PSO) was used, where PSO aids in updating the velocity of mayflies to select 

essential features. Different characteristics were categorized using a Recurrent Neural 

Network with Long Short-Term Memory (RNN-LSTM) into different types of WBCs. 

Utilizing MATLAB, the suggested approach has been evaluated using different metrics 

such as accuracy, recall, precision, specificity, and F1-score, surpassing the performance 

of current methods (MA-RNN and PSO-RNN) with a recall rate of 0.98, precision rate 

of 0.9, and accuracy rate of 0.97. 

Chen et al. introduced a model called Resnet101-9 ensemble, which utilized nine Resnet-

101 models trained and combined using majority voting to classify Acute Lymphoblastic 

Leukemia (ALL) in microscopic images [118]. Each Resnet-101 model was fine-tuned 

using transfer learning, integrating pre-trained Resnet-101 models, and optimizing 

algorithm hyperparameters via the Taguchi experimental method. These models have 

been trained and performance was evaluated based on microscopic images from the C-

NMC dataset. Accordingly, the Resnet101-9 ensemble had superior performances at 

reaching an accuracy of 85.11% and F1-score of 88.94%, experimental tests showed. 

Salama et al. created deep neural networks (DNNs) that were trained using the 10-

colour CLL MRD panel for CLL patients who received treatment [119]. The DNNs 

were used sequentially in a hybrid approach to classify CLL MRD, with expert analysis 

serving as the reference point. In another separate group of 34 samples, this 

combination method yielded an accuracy rate of 97.1%. Furthermore, there was a strong 

correlation between DNN and expert examination in detecting CLL cells as a 

percentage of total WBCs. The DNN decreased the time needed for gating to 12 seconds 

per case, in contrast to the 15 minutes per case required manually. 

Taino et al. suggested a method utilizing genetic algorithms [120]. The genetic 

algorithm's chromosome structure included four genes, with evaluation, selection, 

crossover, and mutation processes defined to optimize group separation using the highest  
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AUC scores and the fewest features. From histological images, 1512 features were 

extracted; different population sizes and iteration numbers were tested. The highest 

AUC with a value of 0.984 was derived when the initial population was set to 50 and 

iterations set to 50. On the other hand, the highest level of success i.e. AUC score of 

0.947 was attained. This method, by explaining methods, features, and their optimal 

configuration, is useful for recommendations for researchers studying pattern 

recognition in colorectal cancer and lymphoma studies. 

Alsuliman et al. improved the classifying autism spectrum disorder through the 

development of 16 optimized machine learning models including GWO-NB, GWO-

SVM and GWO-KNN [121]. Four optimization algorithms were used for feature 

selection: GWO, flower pollination algorithm, Bat Algorithm, and Artificial Bee 

Colony. These algorithms have been applied to optimize the wrapper feature selection 

method by identifying the most important features and enhancing model performances. 

The results demonstrated excellent performance, with the GWO-SVM model achieving 

the highest accuracies, reaching 99.66% on the PBC dataset and 99.34% on the GE 

dataset. 

Oyelade et al. introduced an innovative hybrid binary optimization technique for 

choosing important features in large datasets, utilizing a two-tier optimization 

framework with a sub-population selective mechanism [122]. In this approach, the 

optimizer with level-1 employs the binary Ebola optimization search algorithm 

(BEOSA) to mutate selected items, which were subsequently passed to a level-2 

optimizer that utilized either simulated annealing (SA) or firefly (FFA) algorithms. 

Additionally, nested transfer (NT) functions were incorporated to guide the behaviour 

of the level-1 optimizer. The proposed hybrid models, namely HBEOSA-SA, 

HBEOSA-FFA, and their NT-enhanced variants, have been tested on high-dimensional 

datasets. Experimental results on large, medium, and small datasets furnished 

classification accuracies: 0.995 by HBEOSA-FFA, 0.967 by HBEOSA-FFA-NT, and 

0.953 by HBEOSA-FFA.  

Aher et al. proposed a new approach, including a Recurrent Neural Network classifier  
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optimized by the Rider Chicken Optimization algorithm, to carry out efficient 

classification and detection of cancer [123]. Preprocessing of gene expression data was 

performed to make it ready for the classification stage, while dimensionality reduction 

was achieved by entropy-based gene selection. Then, by using the RNN that was trained 

with the RCO algorithm-a hybrid of Chicken Swarm Optimization (CSO) and Rider 

Optimization Algorithm (ROA)-the selected genes were classified. The performance of 

discussed method was evaluated with three datasets: Leukemia database, Small Blue 

Round Cell Tumor dataset, and Lung Cancer dataset. Its performance was measured 

against existing key performance metrics: sensitivity, specificity, and accuracy. RCO-

RNN obtained up to 95% in all these metrics, hence proving to be very effective for the 

classification task at hand.  

Table 2.5. Soft Computing-based hybrid leukemia detection approaches 

Study Cancer Type Dataset Methodology 
Accuracy & 

Findings 
Limitations 

Chadaga et al. 

[82] 

Post-

transplant 

survival 

(Blood 

cancers) 

Blood cell 

images of 186 

cancerous and 

non-cancerous 

patients 

Feature 

selection 

(HHO, Salp 

Swarm, Mutual 

Info) + XAI 

(SHAP, LIME) 

+ STACKA, 

STACKB, 

STACKC 

STACKC 

achieved 

89% 

accuracy in 

predicting 

bone marrow 

transplant 

success 

Small dataset 

Vishwaraj et al. 

[83] 

General 

Cancer 

Detection 

666 synthetic 

images 

ML on 

Waveguide 

Bragg Gratings 

+ PCA + MLP 

~95% 

accuracy 

using light 

reflection 

No real sample 

testing 

Wu et al. [84] Lymphoma 

50 

histopathology 

images 

Deep learning 

+ Genetic 

algorithm for 

overlapping 

cell 

segmentation 

F1-score: 

0.87, Jaccard 

index: 0.77 

Manual annotation, 

small dataset, no 

method comparison 

Priyadarshini et 

al. [85] 

Skin Cancer 

(Melanoma) 

300 skin 

images 

ELM-TLBO 

hybrid + fuzzy 

C-means + 

median 

filtering 

93.18% 

accuracy, 

fast training, 

good 

parameter 

tuning 

Struggles with 

complex patterns 
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Nematzadeh et 

al. [86] 

Multiple 

cancers 

(general ML 

tuning) 

11 biological 

& biomedical 

datasets 

GA, GWO, 

EGS for 

hyperparameter 

tuning 

GWO 

outperformed 

GA with 

faster 

convergence 

May vary with 

complex/imbalanced 

data 

Baby et al. [87] ALL 
Dataset details 

not provided 

Transfer 

learning using 

8 EfficientNet 

variants + 

SVM, RF, LR 

ensemble 

98.5% 

classification 

accuracy 

Dataset details 

missing 

Devi et al. [88] ALL 
Local dataset 

(unspecified) 

Convolutional 

Leaky ReLU + 

CatBoost + 

XGBoost 

97.12% 

accuracy 

Dataset details not 

provided 

Rejula et al. [89] 
Leukemia 

(ALL) 

ALL-IDB 

dataset 

Improved 

ANFIS (I-

ANFIS) using 

fuzzy 

clustering + 

LSE + gradient 

descent 

Accuracy: 

97.14%, 

Sensitivity: 

96%, 

Specificity: 

90% 

Risk of overfitting, 

single dataset 

Fauzi et al. [90] 
Cancer 

(general) 
Not specified 

FSVM alone 

vs. FSVM + 

PCA 

Accuracy 

improved 

from 87.69% 

to 96.92% 

using PCA 

Needs larger 

validation, PCA 

parameter tuning not 

explored 

Ramya et al. [91] AML 

Munich AML 

Morphology 

dataset 

FBW-NN 

using Adaptive 

Fuzzy Entropy 

+ FCM + ANN 

optimized with 

Fractional 

Black Widow 

Accuracy: 

0.96, 

Precision: 

0.97, Recall: 

0.97 

Computational 

complexity and 

FBWO limitations 

not discussed 

Bai et al. [92] Leukemia Not specified 

HHWO 

algorithm 

(HHO + WOA) 

+ DNFN + 

MapReduce 

Accuracy: 

95.9%, 

Sensitivity: 

96.5%, 

Specificity: 

96.6% 

Dataset not 

specified 

Narayanan et al. 

[93] 

Acute 

Leukemia 
Not specified 

HFCM + RF 

and SVM 

classifiers 

HFCM+RF: 

Accuracy: 

99.06%, 

Sensitivity: 

99.4%, 

Specificity: 

97.8% 

SVM performance 

not discussed 
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Dhal et al. [94] 

Leukemia 

(WBC 

Segmentation) 

Not specified 

Enhanced 

Slime Mould 

Algorithm + 

clustering in 

CIELab color 

space 

ISMA-KM 

achieved 

>99% 

segmentation 

accuracy 

No real-world noise 

handling, slow 

ISMA-RKM, no DL 

comparison 

Jha et al. [95] Leukemia ALL-IDB2 

Hybrid entropy 

segmentation + 

Chrono-SCA-

ACNN 

Accuracy: 

0.99 

Overfitting risk, 

high computational 

cost, single dataset 

Zakir et al. [96] ALL 

CNMC (7-

fold 

categorized) 

CNN + ECA 

module + 

VGG16 + 

enhancement 

techniques 

Accuracy: 

91.1% 

Dataset not clearly 

mentioned 

Mounika et al. 

[97] 
ALL 

108 

lymphocyte 

cell images 

augmented to 

3240 

MobileNetV2 

+ XGBoost 

Accuracy: 

99.07%, 

Precision: 

99.35%, 

Recall: 

98.72% 

Small original 

dataset 

Khatter et al. [98] 

Blood 

diseases 

(general) 

1000 real 

samples 

S-ANFIS 

combining 

ANFIS with 

content 

curation 

Accuracy: 

88.6% 

Limited to 

forecasting, specific 

case studies 

Rodrigues et al. 

[99] 
ALL ALL-IDB 

GA + ResNet-

50V2 

Accuracy: 

98.46% 

Focus on 

hyperparameter 

tuning, not broader 

model comparison 

Mahesh et al. 

[100] 
Leukemia 

Microarray 

gene data 

Hybrid ALO + 

ACO + PSO 

for feature 

selection 

Accuracy: 

87.88% 

No detailed dataset 

or comparison with 

DL methods 

Sallam et al. 

[101] 
ALL Not specified 

Adaptive 

thresholding + 

GWO + 

multiple 

classifiers 

Accuracy: 

99.69%, 

Sensitivity: 

99.5%, 

Specificity: 

99% 

Very small dataset 

Hosseinzadeh et 

al. [102] 

ALL and 

HEM 
CNMC 2019 

Transfer 

learning + 

feature 

selection (GA, 

PCA, 

Accuracy: 

90.71%, 

Sensitivity: 

95.76% 

Further hybrid 

models needed for 

better results 
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ANOVA) + 

MLP 

Agustin et al. 

[103] 
ALL 

5 samples 

from Sardjito 

Hospital 

Two-stage 

ANN with PSO 

for binary 

classification 

Accuracy: 

86.92%; 

better than 

NN-BP and 

NN-PSO 

Limited number of 

samples used 

Sallam et al. 

[104] 

ALL (All 

Subtypes) 
3,189 images 

K-means 

clustering + 

EGWO + RF, 

KNN, SVM, 

NB 

Accuracy: 

99.22%; 

Precision: 

99%; 

Sensitivity: 

99% 

Based on a single 

dataset 

Veeraiah et al. 

[105] 

Various 

Leukemia 

Types 

1,200 images 

Mayfly 

Optimization + 

GAN + PCA 

(MayGAN) 

Accuracy: 

99.8%; 

Precision: 

98.5%; 

Recall: 

99.7%; F1: 

97.4% 

Needs testing on 

unstained samples 

Balasubramanian 

et al. [106] 

WBC 

classification 

LISC and 

BCCD 

CNN with PSO 

for 

hyperparameter 

tuning 

Accuracy: 

99.2%; 

Sensitivity: 

94.56%; 

Specificity: 

98.78%; 

AUC: 0.982 

Larger datasets 

needed for testing 

Ahmad et al. 

[107] 

WBC 

Subtypes 

5,000 images 

(public) 

DenseNet201 

& Darknet53 + 

ECMPA + 

various 

classifiers 

Accuracy: 

99.9%; 

95%+ feature 

vector 

reduction 

Dataset source not 

clearly mentioned 

Kumar et al. 

[108] 

Blood Cell 

Types (5 

classes) 

10,674 clinical 

images 

VGG19-based 

CNN + SSO-

PSO 

optimization 

(SSPSO) 

Accuracy: 

99%; high 

F1-score and 

precision 

None major, very 

large dataset used 

Alrefai et al. 

[109] 

Leukemia & 

Other Cancers 

Microarray 

datasets 

Ensemble 

learning + PSO 

for feature 

selection 

Accuracy: 

100% 

(Leukemia); 

92.86% 

(Colon); 

others also 

high 

Limited to 

microarray data, not 

imaging 
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Alabdulqader et 

al. [110] 
Leukemia 

Microarray 

dataset 

(22,283 genes) 

Chi2 + 

SMOTE-

Tomek + 

weighted CNN 

(3 CNNs) 

Accuracy: 

99.9% 

Needs validation on 

imaging datasets 

Amin et al. [111] 

WBC 

(Various 

Types) 

LISC, 

ALL_IDB1, 

ALL_IDB2 

HSV 

conversion + 

thresholding + 

AlexNet, 

MobileNetV2, 

ShuffleNet, 

ResNet18 + 

NSGA 

Accuracy: 

1.00 for most 

cells, 0.9992 

for basophils 

None mentioned, 

very high 

performance 

Ay et al. [112] 

Heart Disease 

& Heart 

Failure 

Cleveland & 

Faisalabad 

datasets 

KNN + meta-

heuristics (CS, 

FPA, WOA, 

HHO) 

F1-score: 

99.72% 

(Heart 

Disease), 

97.45% 

(Heart 

Failure) 

Needs testing on 

ECG and other heart 

datasets 

Shahzad et al. 

[113] 
WBC 

Blood cell 

images 

CLAHE 

preprocessing, 

ResNet50 & 

EfficientNetB0, 

ACO for 

feature 

selection, 

SVM/QDA 

classifiers 

98.44% 

accuracy 

Limited WBC types, 

e.g., basophils 

missing 

Haznedar et al. 

[114] 

Multiple 

cancers 

Cancer gene 

expression 

(microarray) 

FCM-based 

ANFIS 

optimized with 

SA 

96.28% 

accuracy 

May be slower with 

large datasets 

Sampath et al. 

[115] 

Prostate, 

Lung, 

Lymphoma, 

Leukemia 

Microarray 

gene 

expression 

Cuckoo Search 

with Crossover 

(CSC) for key 

gene selection 

Up to 99% 

accuracy 

Biological 

validation needed 

for gene selection 

Li et al. [116] 
General 

cancer 

Microscopy 

images 

AlexNet + 

ELM + 

improved GOA 

98% 

accuracy, 

93% 

sensitivity 

Limited testing on 

varied datasets 

Meenakshi et al. 

[117] 
WBC 

WBC image 

dataset 

AlexNet, 

GoogLeNet, 

ResNet-50 + 

HMA-PSO + 

RNN-LSTM 

97% 

accuracy, 

98% recall 

Tested only on 

MATLAB 

environment 
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Chen et al. [118] ALL C-NMC 

Nine 

ResNet101 

models 

ensemble with 

Taguchi 

method 

85.11% 

accuracy, 

88.94% F1-

score 

Moderate accuracy, 

specific to ALL 

Salama et al. 

[119] 
CLL 

CLL MRD 

panel 

DNNs hybrid 

model, 

compared with 

expert analysis 

97.1% 

accuracy 

Limited dataset (34 

samples) 

Taino et al. [120] 
Colorectal & 

Lymphoma 

Histological 

images 

Genetic 

Algorithm, 

AUC-based 

optimization 

0.984 AUC, 

0.947 

success 

Focus on 

configuration, may 

lack biological 

insight 

Alsuliman et al. 

[121] 
Autism 

PBC & GE 

datasets 

16 optimized 

ML models, 

GWO-based 

feature 

selection 

Up to 

99.66% 

accuracy 

Limited to autism 

datasets 

Oyelade et al. 

[122] 
Various 

High-

dimensional 

datasets 

HBEOSA-SA, 

HBEOSA-FFA 

hybrid models 

Up to 99.5% 

accuracy 

Complex setup, may 

be hard to scale 

Aher et al. [123] 

Leukemia, 

Lung Cancer, 

SBRCT 

Gene 

expression 

data 

RCO-RNN 

(Rider Chicken 

Optimization 

with RNN) 

95% 

accuracy, 

sensitivity, 

specificity 

Performance based 

on 3 datasets only 

 

Table 2.5 present soft computing-based hybrid leukemia detection approaches along 

with the limitation of every approach. From the existing studies shown in Table 2.5, we 

observed that many of the existing studies used very small or unclear datasets which 

may lead to biased results and overfitting. Many approaches also rely on manual data 

labeling, which is time-consuming. Some models might be overfitting because they were 

tested on just one small dataset. In some cases, important details like dataset information 

or method comparisons were missing. Computational complexity is another issue, as 

advanced models require high processing power and time. So, it may be hard to use in 

real hospitals or labs. Finally, even if some models showed high accuracy, they did not 

deal with problems like large data handling. 
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2.4. Research Gap 

This literature survey highlights key problems in the existing leukemia detection 

methods. The traditional leukemia detection methods are invasive, painful, and 

expensive. They are also time consuming and results vary as per the expertise of the 

pathologist or doctor. The artificial intelligence-based approaches are highly applicable 

but the major issue with these approaches is the lack of enough diverse dataset, which 

makes it hard for models to work well. Further, we observed that deep neural network-

based approaches are providing promising results but to achieve the good results, the 

sizes of the models are not considered. We analyzed that the focus of most existing 

research works is on accuracy only. From this survey, we observed that there are very 

few approaches available that are automatically evolving the architecture of the specific 

leukemia detection models. Thus, there is a need of new neural architecture search-

based approaches for leukemia detection. 

2.5.  Summary 

This chapter classifies the leukemia detection approaches into two broader groups, 

traditional methods, and artificial intelligence-based leukemia detection methods. 

Further, artificial intelligence-based techniques are divided into three groups, machine 

learning based, deep learning based, and hybrid approaches. An extensive survey has 

been carried out for the available leukemia detection approaches. In this survey, we 

observed that the traditional leukemia detection methods are painful and time 

consuming. The computer based intelligent approaches can be implemented for 

leukemia detection but they require large and diverse datasets, focus on both accuracy 

and sizes of the model, and requires the expertise to decide the architecture of an 

intelligent leukemia detection model. 
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Chapter 3 VGG16-PCA-PB3C: A Hybrid PB3C and Deep 

Neural Network based approach for Leukemia Detection 

This chapter presents a new hybrid soft computing-based approach for leukemia 

detection. The proposed approach integrates Visual Geometry Group 16 (VGG16), 

Principal Components Analysis (PCA), and Parallel Big Bang Big Crunch (PB3C) for 

leukemia detection. In the proposed approach, the VGG16 is used to analyse and extract 

the important features from the blood smear images. PCA is used with VGG16 to 

decrease the dimensionality of the extracted feature sets and preserves the important 

features required for leukemia detection. Further, all important principal components 

are picked by the PB3C optimization approach. These are near optimal features to be 

used by a deep neural network-based classifier for the detection of leukemia. The 

VGG16-PCA-PB3C hybrid model is designed to increase accuracy and make the model 

training easier. 

3.1. Introduction  

Classification is the process of categorizing an object or instance based on its features 

or characteristics. There are many features describing each instance, so the 

classification problems deal with high-dimensional data. High-dimensional data often 

includes features that are unnecessary or irrelevant. These features may give repeated 

or even misleading information about the class of an instance. This can make 

classification models less accurate and slower. As the number of features increases, the 

"curse of dimensionality" becomes a problem. This means that training a classifier 

effectively requires many more examples, which can be very challenging. Feature 

selection (FS) helps to solve this problem. It involves picking a smaller set of important 

and useful features by removing the ones that are irrelevant or redundant [124]. This 

makes classification models more efficient and accurate. This chapter proposed the 

VGG16, PCA and PB3C integrated approach for the leukemia detection. 
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The major contribution of this chapter is as below: 

1.  Proposed a hybrid soft computing-based VGG16-PCA-PB3C approach to 

detect leukemia from blood cell images. 

2. The proposed leukemia detection approach is tested on the CNMC_2019 

dataset. 

3. The proposed algorithm is compared with the existing 13 leukemia detection 

approaches. 

Section 3.1 presents the introduction. Section 3.2 discusses the Visual Geometry Group 

16 (VGG16) technique. Section 3.3 presents the Principal Component Analysis 

approach for dimensionality reduction. The PB3C optimization algorithm is presented 

in Section 3.4. Section 3.5 presents the proposed soft computing-based hybrid approach 

for leukemia detection. Section 3.6 discusses the CNMC_2019 dataset. Section 3.7 

presents the results and the discussion. Section 3.8 summarizes the chapter. 

3.2.Visual Geometry Group 16 (VGG16) 

VGG16 is a Convolutional Neural Network which is pre-trained and it uses transfer 

learning. In transfer learning, the feature extractor of the pre-trained model also called 

encoder is used to extract the features and a classifier is trained to learn the weights for 

the new dataset. VGG16 was designed by the Visual Geometry Group (VGG) at Oxford 

University in 2014. The name "VGG16" comes from the architecture's 16 layers, which 

comprises of 13 convolutional, 5 max pooling, and 3 FC layers [125][126]. In VGG16, 

the features are obtained by the convolutional and pooling layers from the images and 

the FC layers are utilized for classification. VGG16 was trained on a large dataset called 

ImageNet, which contains over 14 million images labelled with 1000 various classes, 

such as objects, and scenes. Since VGG16 was trained on a large and diverse dataset, it 

learned to identify various features like edges of the object, the object’s texture, and 

different shapes or patterns of the object, which can be useful for recognizing various 

objects in new images. The architecture of VGG-16 is presented in Table 3.1. 
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Table 3.1 VGG16 architecture 

VGG-16 

Layers 

No. of 

Filters 

Filter 

Size 

No. of 

Stride 

No. of 

Padding 

Output 

Dimension 

Equation 

Input Layer It takes the image of size 224*224*3, uses no function and having 

same output dimension i.e. 224*224*3 

Convolutional 

Layer 1 

64 3*3*3 1 1 224*224*64 𝑍1= 𝑓(𝑋∗ 𝑊1 + 𝑏1) 

Convolutional 

Layer 2 

64 3*3*64 1 1 224*224*64 𝑍2= 𝑓(𝐴1∗ 𝑊2+ 𝑏2) 

Max-Pooling 

Layer 1 

Applies max 

operation over a 

2*2 window 

2 - 112*112*64 𝐴1= 𝑃1(𝑍1) 

Convolutional 

Layer 3 

128 3*3*64 1 1 112*112*128 𝑍3= 𝑓(𝐴2∗ 𝑊3+ 𝑏3) 

Convolutional 

Layer 4 

128 3*3*128 1 1 112*112*128 𝑍4= 𝑓(𝑍3∗ 𝑊4 + 𝑏4) 

Max-Pooling 

Layer 2 

Applies max 

operation over a 

2*2 window 

2 - 56*56*128 𝐴2= 𝑃2(𝑍2) 
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VGG-16 

Layers 

No. of 

Filters 

Filter 

Size 

No. of 

Stride 

No. of 

Padding 

Output 

Dimension 

Equation 

Convolutional 

Layer 5 

256 3*3*128 1 1 56*56*256 𝑍5= 𝑓(𝐴3∗ 𝑊5 + 𝑏5 

Convolutional 

Layer 6 

256 3*3*256 1 1 56*56*256 𝑍6= 𝑓(𝑍5∗ 𝑊6+ 𝑏6) 

Convolutional 

Layer 7 

256 3*3*256 1 1 56*56*256 𝑍7= 𝑓(𝑍6∗ 𝑊7+ 𝑏7) 

Max-Pooling 

Layer 3 

Applies max 

operation over a 

2*2 window 

2 - 28*28*256 𝐴3= 𝑃3(𝑍4) 

Convolutional 

Layer 8 

512 3*3*256 1 1 28*28*512 𝑍8= 𝑓(𝐴4∗ 𝑊8+ 𝑏8) 

Convolutional 

Layer 9 

512 3*3*512 1 1 28*28*512 𝑍9= 𝑓(𝑍8∗ 𝑊9 + 𝑏9) 

Convolutional 

Layer 10 

512 3*3*512 1 1 28*28*512 𝑍10= 𝑓(𝑍9∗ 𝑊10+ 𝑏10) 
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VGG-16 

Layers 

No. of 

Filters 

Filter 

Size 

No. of 

Stride 

No. of 

Padding 

Output 

Dimension 

Equation 

Max-Pooling 

Layer 4 

Applies max 

operation over a 

2*2 window 

2 - 14*14*512 𝐴4= 𝑃4(𝑍7) 

Convolutional 

Layer 11 

512 3*3*512 1 1 14*14*512 𝑍11= 𝑓(𝐴5∗ 𝑊11+ 𝑏11) 

Convolutional 

Layer 12 

512 3*3*512 1 1 14*14*512 𝑍12= 𝑓(𝑍11∗ 𝑊12+ 𝑏12) 

Convolutional 

Layer 13 

512 3*3*512 1 1 14*14*512 𝑍12= 𝑓(𝑍12∗ 𝑊13+ 𝑏13) 

Max-Pooling 

Layer 5 

Applies max 

operation over a 

2*2 window 

2 - 7*7*512 𝐴5= 𝑃5(𝑍10) 

Fully 

Connected 

Layer 1 

It flattens the input into a vector of size 25088 and 

performs a linear transformation to the input using a 

bias vector of size 4096 and a weight matrix of size 

25088*4096. The output dimension is 4096. 

𝑌1= 𝑓(𝑍13⋅ 𝑉1 + 𝑐1) 

Fully 

Connected 

Layer 2 

It transforms the input linearly using a bias vector of 

size 4096 and a weight matrix of size 4096*4096. 

The output dimension is 4096. 

𝑌2= 𝑓(𝑌1⋅ 𝑉2 + 𝑐2) 
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VGG-16 

Layers 

No. of 

Filters 

Filter 

Size 

No. of 

Stride 

No. of 

Padding 

Output 

Dimension 

Equation 

Fully 

Connected 

Layer 3 

It transforms the input linearly using a bias vector of 

size 1000 and a weight matrix of size 4096*1000. 

The output dimension is 1000. 

𝑌3= 𝑓(𝑌2⋅ 𝑉3 + 𝑐3) 

SoftMax 

Layer 

The SoftMax function is used on the input to turn it 

into probabilities for 1000 different classes. The 

result has 1000 values. 

𝑆 = 𝜎(𝑌3) 

The layer wise features extracted by the VGG16 encoder are shown in Table 3.2. 

Table 3.2 Features extracted by VGG16 encoder layers 

VGG 16 Encoder Layers Convolution Layers 

Included 

Features Extracted 

Input Image - 224*224*3 = 150528 

First Convolution Block Conv 1_1, Conv 1_2 222*222*64 = 3154176 

Second Convolution Block Conv 2_1, Conv 2_2 220*220*64 = 3097600 

Max Pooling - 110*110*64 = 774400 

Third Convolution Block ConV 3_1, ConV 3_2, 

ConV 3_3 

108*108*128 = 1492992 

Max Pooling - 54*54*128 = 373248 

Fourth Convolution Block ConV 4_1, ConV 4_2, 

ConV 4_3 

50*50*256 = 640000 

Max Pooling - 25*25*256 = 160000 
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Fifth Convolution Block ConV 5_1, ConV 5_2, 

ConV 5_3 

23*23*512 = 270848 

Max Pooling - 7*7*512 = 25088 

3.3.Principal Component Analysis (PCA) 

PCA (Principal Component Analysis) is a common method used to reduce the number 

of features in a dataset. It helps simplify the data by focusing on the most important 

information. It works by transforming the original dataset, which may have many 

variables, into a new dataset with fewer variables, called principal components (PCs). 

These PCs capture the most important variations in the data. The PCs are created by 

combining the original features in such a way that they are uncorrelated [127][128]. 

The Principal Component Analysis (PCA) algorithm works by reducing the 

dimensionality of a dataset while retaining the most important information. The 

working of the PCA algorithm is shown in Algorithm 3.1. 

Algorithm 3.1: Principal Components Analysis Algorithm 

This database is shown as a matrix 𝐷 = 𝑁𝑀 matrix:  

Let ith row of this matrix D be represented by a vector 𝐷𝑖  =  𝑥1, 𝑥2, … , 𝑥𝑀.  

Step 1: Find the Mean of Di as given below:  

                   𝜇𝑖 =  1𝑀  ∑ 𝐷𝑖𝑗𝑀𝑗=1    (3.1) 

Step 2: Calculate the 𝑁𝑀 matrix 𝛷 as follows:  

                     𝜙𝑖𝑗  =  𝐷𝑖𝑗  − 𝜇𝑖                                 (3.2) 

Step 3: Find the covariance matrix:  

                   𝐶 =  𝛷  𝜙𝑇                                 (3.3) 

Step 4: Determine the eigenvalues of 𝐶 ∶  𝜆1  𝜆2,, . . . , 𝜆𝑀  

Step 5: Find the eigenvectors of 𝐶 ∶  𝑢1, 𝑢2, . . . , 𝑢𝑀  

Step 6: Sort the eigenvectors from highest to lowest and choose the top “𝑘” eigenvalues. 

The first step in the PCA algorithm is to find the average of all the features in the  
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dataset. These mean features are subtracted from each feature of the dataset. This step 

will provide us zero mean features. These zero mean data is used to calculate the 

covariance matrix, which measures the relationships between the different features (or 

pixels) in the dataset. Next, the algorithm computes the eigenvectors and eigenvalues 

of the covariance matrix. The eigenvectors show the directions where the data varies 

the most (these are called the principal components), and the eigenvalues tell us how 

much variation each of these directions explains. The eigenvectors are arranged from 

highest to lowest according to their eigenvalues, and the top k eigenvectors (with the 

largest eigenvalues) are chosen for making decisions. This process reduces set of 

features and retains the essential feature set which makes the data easier to work with 

and improving model performance. The output of this step is a matrix with reduced 

dimensions, where each column represents a principal component capturing a specific 

aspect of the original data's variation [129].  

3.4.Parallel Big Bang Big Crunch (PB3C) 

The Parallel Big Bang Big Crunch Algorithm (PB3C) is a multi-population algorithm 

used for feature selection in machine learning. Feature selection is the process of 

picking the most useful features from a large set of features to improve the performance 

of a model. The algorithm is inspired by the big bang and big crunch theories from 

cosmology. PB3C is an improved version of single population based BBBC algorithm 

which is discussed in detail in chapter 4 of this thesis.  

The PB3C algorithm works by iterating between two main phases: the big bang and the 

big crunch. In the big bang phase, multiple populations of random candidate solutions 

(set of features) are created. In the big crunch phase, every candidate solution’s fitness 

is evaluated in all the populations, and the solutions are ranked based on their 

performance. The best solutions are selected, and the search focuses on these solutions 

to refine them further. The best optimal solution from each population, called the "local 

best" i.e. lbest is selected. Then, the gbest solution is chosen from the lbest candidate 

solutions [130][131]. The algorithm then updates the local best solutions by exchanging 

their genes with the global best solution with a certain probability. Afterward, new set  
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of features are created by BB step. These new feature sets are created by making small 

random adjustments to the global best solution. This process continues until a stopping 

criterion is met, indicating that a near-optimal solution has been found. The working of 

parallel big bang big crunch algorithm is shown in Algorithm 3.2. 

Algorithm 3.2: Parallel Big Bang Big Crunch Algorithm 

Begin 

   /* Big Bang Phase Starts */ 

        Create ‘N’ random populations, with each population containing ‘M’ candidate 
solutions 

   /* Big Bang Phase Ends */              

   While TC is not reached           // TC is termination condition 

    /* Big Crunch Phase Starts */ 

      For i=1 to N 

a) Calculate the fitness of all the candidate solutions of ith population. 

b) Sort the population from highest to lowest based on their fitness value.  

c) Select the local best candidate solution lbest (i) from the ith population. 

      End  

        From amongst “N” lbest candidate solutions, select the globally best gbest 

candidate  

        Solution 

       With a certain probability, replace the gene of lbest (i) candidate solution with the 

gene of gbest candidate solution 

     /* Big Crunch Phase Ends */ 

   /* Big Bang Phase Starts */ 

Calculate new candidate solutions around gbest by adding/subtracting a small 

random number. 

   /* Big Bang Phase Ends */              

     End while 

End 

3.5. Proposed Soft computing Based Hybrid Leukemia Detection Approach  

This section proposes a new hybrid soft computing-based leukemia detection approach. 

The proposed approach combines VGGG16 neural network architecture with PCA and 

the PB3C algorithm to select the near-optimal features for the detection of leukemia.  
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The working of the proposed approach is shown in Figure 3.1 and Algorithm 3.3. As 

shown in Figure 3.1, the proposed approach works in four phases, i) Feature extraction 

using VGG16, ii) Dimensionality reduction using PCA, iii) Optimal feature selection 

using PB3C, and iv) Classification of leukemia using fully connected layers.  

 

Figure 3.1 Proposed soft computing-based approach for leukemia detection 

As shown in Figure 3.1, the proposed approach starts with feature extraction phase. The 

features from the dataset are extracted using the VGG16 convolutional neural network. 

For the feature extraction purpose, the blood cell images from the pre-processed 

CNMC_2019 dataset are fed into the convolutional and pooling layers of the VGG16 

model. The details of the CNMC_2019 dataset is mentioned in section 3.6 of this thesis. 

The flattening layers of the VGG16 model extracts 25088 features per image from the 

leukemia dataset. The VGG16 model’s fully connected layers are not used during this  
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feature extraction process. Instead, these layers are saved for the final step of the 

proposed approach, where they help in detecting leukemia. The number of features 

extracted by the VGG16 model are very large. After feature extraction, some features 

may be redundant, irrelevant, or contain overlapping information that does not 

effectively support the classification task. To overcome this, Principal Component 

Analysis (PCA) is used to reduce dimensionality by retaining the most significant 

features and eliminating those that are less useful. 

The second phase of the proposed approach is the dimensionality reduction using PCA 

algorithm. In PCA, the relationships between features are measured using a covariance 

matrix. Then, principal components are found using eigenvalues and eigenvectors. The 

eigenvectors show the main directions of variation, and eigenvalues indicate how much 

variation they explain. The best principal components with the most variations are kept, 

making the feature maps smaller and simpler. For the dimensionality reduction purpose, 

the features extracted by VGG16 are provided to PCA. The PCA considered 1145 

principal components out of 25088 features extracted by VGG16. All 1145 principal 

components are representing 99% of the variance. To reduce dimensionality while 

preserving most of the important information, PCA was applied with a variance 

retention threshold of 99%, resulting in the selection of 1145 principal components. It 

captures nearly all the essential patterns in the data while eliminating less informative 

components. After feature reduction using PCA, we regenerated the data from principal 

components. This reconstruction step helps evaluate how much of the original 

information is preserved after dimensionality reduction and allows us to estimate the 

extent of data loss introduced by PCA. The regenerated data was compared with actual 

data (features selected by VGG16) using Mean Squared Error (MSE) metric. MSE 

measures the average squared difference between the original and reconstructed values. 

The computed MSE was 0.0450%. 

Since, PCA is an unsupervised method, it does not know which features help with 

classification. It only keeps the ones that show the most variation in the data. So, the 

features reduced by PCA are given to PB3C for further selection.  
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The third phase of the proposed method is selection of important features using the 

PB3C algorithm. For the feature selection purpose, we created four populations. Each 

population consists of four feature subsets i.e. the candidate solutions. Each candidate 

solution contains 200 features. The size of the feature subset remains same for all the 

populations. PB3C algorithm provides the 200 near optimal features. We selected the 

feature set size as 200 because increasing it beyond 200 did not improve the 

classification accuracy, and decreasing it below 200 reduced the accuracy.  

In the final phase of the proposed approach, the DNN trains the model and detects 

leukemia. The optimized feature set from the PB3C algorithm is sent to the dense layers 

for classification. The first two fully connected layers use the ReLU activation function, 

and the last layer uses the softmax function to classify the data. 

Algorithm 3.3: VGG16-PCA-PB3C algorithm 

Step 1: Let D be a dataset comprising N-sized images, D = {I1, I2, I3, …., IN} where every 

image Ii is labeled with Oi ϵ {True, False}, shows whether leukemia is present or not. The 

objective is to train an intelligent model to diagnose leukemia in an unseen image. 

Step 2: Preprocess the images dataset D. In preprocessing resize each image in dataset D to 

224 × 224 pixel and normalized it. The preprocessing function 𝒫 can be defined as mentioned 

in equation 3.1:  

 𝐼𝑖′=  𝒫(Ii) =  
𝑟𝑒𝑠𝑖𝑧𝑒(𝐼𝑖,224,224)255                         (3.1) 

Extract features from dataset D using a pretrained VGG model denoted as 𝜗. The VGG16 

model (𝜗) is employed without final classification layer and is defined in equation 3.2.                                                                   𝐹𝑖 =  𝜗(𝐼𝑖′)                                       (3.2) 

Step 3: Reduce dimensionality of extracted features using PCA algorithm. The PCA 

transformation 𝜏 reduces the dimensionality of features to 𝜅 components and it is described in 

equation 3.3:                                                                     𝜓i = 𝜏(Fi) = FiW                      (3.3) 

 Where W is a weight matrix consists of top eigenvectors of the covariance matrix computed 

from feature vector. 

Step 4: Select optimal set of features (S) using bio inspired Parallel Big Bang Big Crunch 

(PB3C) Algorithm using equation 3.4: 

                                                                   Zi = S(𝜓i)                    (3.4) 
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Train a Deep Neural Network ‘N’ of selected optimal Zi features 

Step 5: Evaluate the performance of developed model using different measures like accuracy, 

precision and recall. 

End 
 

The proposed algorithm begins with feature extraction using the VGG16 model, where 

preprocessed blood cell images from the CNMC_2019 dataset are resized to 224x224 

pixels and passed through the VGG16 model to extract feature maps. Next, 

dimensionality reduction is performed using PCA by calculating the covariance matrix, 

computing eigenvalues and eigenvectors, ranking them, and selecting the top k 

eigenvectors to form a reduced feature set. The PB3C algorithm is then applied for 

feature selection, alternating between the BB and the BC phase. This process keeps 

going until a stopping rule is reached and the optimal feature set is returned. Finally, 

the optimized features are used to train a deep neural network (DNN) for leukemia 

detection. 

3.6. Dataset  

For the validation purpose, we used CNMC_2019 (Classification of Normal versus 

Malignant Cells) leukemia patients’ dataset. The dataset is prepared by Laboratory 

Oncology, AIIMS, New Delhi. The CNMC_2019 dataset consists of 15384 pre-

segmented images. The dataset consists of two classes i.e. ALL and HEM. Here ALL 

represents the  blood smear images of acute lymphoblastic leukemia patients and HEM 

represents the blood smear images of normal people [132]. Each image in the dataset 

has a size of 450×450 pixels.  

  

Figure 3.2 Microscopic blood cell 

images of leukemia patient  

Figure 3.3 Microscopic blood cell 

 images of normal person  

The CNMC_2019 dataset deals only with one type of leukemia i.e. ALL. The sample  
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blood cell images from the CNMC_2019 dataset is shown in Figure 3.2 and 3.3. Figure 

3.2 displays the microscopic blood cell images of leukemia patients and Figure 3.3 

shows the blood smear images of normal person. 

3.7. Results and Discussion 

The proposed algorithm is implemented using python for the testing purpose. We 

compared how well the proposed approach performs with 13 existing leukemia 

detection methods for the performance analysis purpose. We compared the proposed 

approach with 6 transfer learning-based approaches and 7 machine learning approaches. 

Table 3.3 and Figure 3.4 show the comparison of proposed approach with 6 existing 

transfer learning-based approaches. Table 3.4 and Figure 3.5 show the comparison of 

proposed approach with other 7 machine learning-based approaches. The proposed 

approach is compared on different performance metrics namely accuracy, precision, 

recall, and F1-score. From Table 3.3, and Table 3.4, Figure 3.4, and Figure 3.5, it is 

noticed that the proposed approach VGG16-PCA-PB3C achieved 95.38% accuracy, 

97.75% precision, 95.60% recall and 96.67% F1-score whereas without PB3C i.e. 

VGG16-PCA achieved 91.04% accuracy, 96.77% precision, 90.91% recall and 93.75% 

F1-score. VGG16 achieved 89.05% accuracy, 96.77% precision, 88.24% recall and 

92.31% F1-score. These results clearly show that the proposed method is better than 

the existing methods. 

Table 3.3 Comparison of proposed VGG16-PCA-PB3C approach with existing 

transfer learning-based approaches 

CNN Architecture Accuracy Precision  Recall  F1 Score  

Inception V3 86.01% 94.68% 85.58% 89.90% 

CNN+ECA+VGG16 

[96] 91.1% - - - 

TL+(GA,PCA)+MLP 

[102] 90.71% - 95.26% - 
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CNN Architecture Accuracy Precision  Recall  F1 Score  

ResNet101 ensembled 

models [118] 85.11% - - 88.94% 

VGG16 89.05% 96.77% 88.24% 92.31% 

VGG19 90.65% 96.63% 89.58% 92.97% 

VGG16-PCA 91.04% 96.77% 90.91% 93.75% 

VGG16-PCA-PB3C 95.38% 97.75% 95.60% 96.67% 

Table 3.4 Comparison of proposed VGG16-PCA-PB3C approach with existing 

machine learning based approaches 

Classifier Accuracy Precision  Recall  F1 Score  

SVM 74.8% 69.91% 76.78% 73.19% 

Random Forest 81.20% 79.67% 81.66% 80.65% 

Logistic Regression 83.20% 82.11% 83.47% 82.78% 

K Nearest Neighbour 62% 71.54% 59.45% 64.94% 

Decision Tree 70% 69.10% 69.67% 69.38% 

Bagging 67.60% 69.91% 66.15% 67.98% 

ML based 

Classification, IEEE 

ISBI 2019 Challenge 

[50] 91% - - - 

VGG16-PCA-PB3C 95.38% 97.75% 95.60% 96.67% 
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As shown, the proposed DNN gives much better accuracy, sensitivity, specificity, and 

F1-score compared to the existing methods. The performance of the proposed model is 

represented in Figure 3.4 and Figure 3.5  respectively. 

 

Figure 3.4 Comparison of VGG16-PCA-PB3C with transfer learning-based 

approaches 

 

Figure 3.5 Comparison of VGG16-PCA-PB3C with existing machine learning-based 

approaches 
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The combination of the pre-trained VGG-16 model, PCA layer, PB3C algorithm, and 

fully connected classification layer leads to great performance.  

3.8. Summary 

This chapter proposed a new soft computing-based approach called VGG16-PCA-

PB3C for leukemia detection from blood cell images. The proposed approach uses the 

VGG16 model to extract features and applies PCA to reduce the size of the leukemia 

dataset’s feature map. The best set of features are then picked by PB3C approach. The 

proposed approach was trained and tested using the CNMC dataset, which contains 

labelled blood cell images. The VGG16-PCA-PB3C approach is implemented in 

python and compared with existing 13 leukemia detection approaches. The 

performance results showed that the proposed approach outperformed the existing 

approaches on leukemia detection problem.  
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Chapter 4 VGG19-PCA-BBBC: An Intelligent Framework 

for Leukemia Detection 

Feature selection (FS) is an important step in data preparation that picks out a smaller 

set of useful features to improve how well machine learning models perform. However, 

the process is quite challenging due to the vast number of feature combinations to 

explore. This chapter focuses on the extraction and the selection of optimal feature set 

from the images of the blood cell for leukemia classification.  This chapter proposes a 

new VGG19-PCA-BBBC based approach for leukemia detection. The proposed 

approach integrates Visual Geometry Group 19 (VGG19), Principal Component 

Analysis (PCA) and Big Bang Big Crunch (BBBC) algorithm for leukemia detection. 

The VGG19, with its deeper structure and additional convolutional layers, can extract 

deep features effectively. PCA minimizes the dimensions of the extracted features and 

find the principal components. The BBBC method is used to select the near optimal 

features and make the process faster. Finally, the FC layers are utilized for the 

classification purpose of leukemia. 

The proposed approach is implemented in Python and compared with 15 other leukemia 

detection methods. From performance results, we observed that the VGG19-PCA-

BBBC approach outperformed all other existing approaches of leukemia detection. 

The major contribution of the chapter is given below. 

1. Proposed a VGG19-PCA-BBBC architecture for leukemia detection. 

2. The proposed leukemia detection approach is validated on the CNMC_2019 

dataset. 

3. The proposed approach is compared with 15 other leukemia detection 

approaches. 

Section 4.1 introduces the VGG19 and its architecture, section 4.2 presents 

dimensionality reduction with principal component analysis, and section 4.3 explains 

optimization with the BBBC algorithm. Section 4.4 presents the proposed method for 
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leukemia detection. Section 4.5 explains the results and section 4.6 provides a summary 

of the chapter. 

4.1. VGG19 and its Architecture 

VGG19 is a pre-trained convolutional neural network which is used for the image 

recognition tasks. It was created by researchers in 2014 at Oxford University for the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). This DNN was 

trained on the ImageNet dataset and has 19 layers in total. There are 16 convolutional 

layers and 3 FC layers [133]. The conv layers use small 3x3 filters to obtain the features 

from the images. These small filters help to get detailed features with less 

computational effort. The ReLU (Rectified Linear Unit) activation function is used after 

every convolutional layer. VGG19 model also includes the max pooling layers. The 

obtained feature map’s spatial dimensions are then decreased by the max pooling layers. 

Based on the features obtained, the final three FC layers of the VGG19 model are used 

for the classification purpose.  The architecture of VGG19 includes: 

i) Input Layer 

ii) Convolutional Layers 

iii) Filters 

iv) Padding 

v) Activation Function 

vi) Max-pooling layers 

vii) Fully Connected Layers 

viii) Softmax Activation 

The VGG19 takes as input an image with dimensions 224x224x3, where 3 represents 

the RGB colour channels. VGG19 consists of five convolutional blocks as described in 

Table 4.1.  
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Table 4.1 VGG19 Convolutional layer blocks 

Block 1 Conv layers: 2 with each layer having 64 filters.  

Max pooling 

layer 

follows 

filters. 

Block 2  Conv layers: 2 with each layer having 128. 

Block 3 Conv layers: 4 with each layer having 256 filters.  

Block 4 Conv layers: 4 with each layer having 512 filters. 

Block 5 Conv layers: 4 with each layer having 512 filters followed 

by layer: max pooling. 

All the convolutional layers of block 1, 2, 3, 4, and 5 use 3x3 filters. As the network 

deepens, the number of the filters in every layer increases. Stacking multiple 

convolutional layers helps the model to understand complex and detailed patterns 

within the images. VGG19 uses the same padding to ensure the image size stays the 

same after each convolution. This means adding zeros around the edges of the input. 

This way, the output size remains the same as the input size. After each convolutional 

block, max-pooling is applied with filter size 2x2 and stride 2. This layer makes the 

image smaller by reducing its size (width and height) by half, while retaining the most 

important features found by the convolutional layers. Max pooling selects the largest 

value from a 2x2 area in the input. This reduces the size of the feature map. The problem 

of overfitting can be prevented by reducing the number of parameters. After going 

through both convolutional and max-pooling layers, the final feature map from the max-

pooling layer is then flattened to a single dimension. Further, the flattened vector acts 

as an input for a fully connected layer. The last fully connected layer uses the softmax 

function to classify and generate the result [134-135]. 

The layered architecture of VGG19 is represented in Table 4.2.  
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Table 4.2 VGG19 layers architecture 

Layer 

Type 

No. of 

Filters 

Filter 

Size  
Stride  Padding 

Output 

Dimensions 
Equation 

Input 
Input size 224 * 224 * 3, uses no function, and same output dimension as 

that input:  224 * 224 * 3. 

Conv 

Layer 1 
64 3 x 3 1 1 

224 x 224 x 

64 X1=f(W1∗X+b1) 

Conv 

Layer 2 
64 3 x 3 1 1 

224 x 224 x 

64 X2=f(W2∗X1+b2) 

Max 

Pooling 1 
- 2 x 2 2 0 

112 x 112 x 

64 X3=MaxPool(X2) 

Conv 

Layer 3 
128 3 x 3 1 1 

112 x 112 x 

128 X4=f(W3∗X3+b3) 

Conv 

Layer 4 
128 3 x 3 1 1 

112 x 112 x 

128 X5=f(W4∗X4+b4) 

Max 

Pooling 2 
- 2 x 2 2 0 

56 x 56 x 

128 X6=MaxPool(X5) 

Conv 

Layer 5 
256 3 x 3 1 1 

56 x 56 x 

256 X7=f(W5∗X6+b5) 

Conv 

Layer 6 
256 3 x 3 1 1 

56 x 56 x 

256 X8=f(W6∗X7+b6) 

Conv 

Layer 7 
256 3 x 3 1 1 

56 x 56 x 

256 X9=f(W7∗X8+b7) 

Conv 

Layer 8 
256 3 x 3 1 1 

56 x 56 x 

256 X10=f(W8*X9+b8) 

Max 

Pooling 3 
- 2 x 2 2 0 

28 x 28 x 

256 X11=MaxPool(X10) 

Conv 

Layer 9 
512 3 x 3 1 1 

28 x 28 x 

512 X12=f(W9*X11+b9) 

Conv 

Layer 10 
512 3 x 3 1 1 

28 x 28 x 

512 X13=f(W10*X12+b10) 

Conv 

Layer 11 
512 3 x 3 1 1 

28 x 28 x 

512 X14=f(W11*X13+b11) 
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Layer 

Type 

No. of 

Filters 

Filter 

Size  
Stride  Padding 

Output 

Dimensions 
Equation 

Conv 

Layer 12 
512 3 x 3 1 1 

28 x 28 x 

512 X15=f(W12*X14+b12) 

Max 

Pooling 4 
- 2 x 2 2 0 

14 x 14 x 

512 X16=MaxPool(X15) 

Conv 

Layer 13 
512 3 x 3 1 1 

14 x 14 x 

512 X17=f(W13*X16+b13) 

Conv 

Layer 14 
512 3 x 3 1 1 

14 x 14 x 

512 X18=f(W14*X17+b14) 

Conv 

Layer 15 
512 3 x 3 1 1 

14 x 14 x 

512 X19=f(W15*X18+b15) 

Conv 

Layer 16 
512 3 x 3 1 1 

14 x 14 x 

512 X20=f(W16*X19+b16) 

Max 

Pooling 5 
- 2 x 2 2 0 7 x 7 x 512 

X21=MaxPool(X20) 

Fully 

Connected 

1 

This flattens the input into a vector 

of size 25088, and linear 

transformation to input with bias 

vector of size 4096, and weight 

matrix of size 25088 * 4096 results 

in 4096-dimensional output. 

1 x 4096 

X22=f(W17⋅X21+b17) 

Fully 

Connected 

2 

It executes linear transformation of 

the input; the bias vector is of size 

4096 and the weight matrix of the 

size 4096 * 4096. Output 

dimension: 4096. 

1 x 4096 

X23=f(W18⋅X22+b18) 

Fully 

Connected 

3 

It performs a linear transformation 

of the input; the bias vector is of 

size 4096 and the weight matrix is 

of size 4096 * 4096. Output 

dimension: 2. 

1 x 2 (For 

leukemia 

detection) Y=f(W19⋅X23+b19) 

  

Softmax 

Apply the SoftMax function over 

the input; the outcome is to 

normalize the vector into a 

probability distribution over 2 

classes. Output dimension: 2. 

1 x 2 𝑆 = 𝜎(𝑌) 
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The layered architecture of VGG19 model in the graphical form is presented in Figure 

4.1 whereas the custom VGG19 architecture used in the proposed method for feature 

extraction is shown in Figure 4.2.  

 

Figure 4.1 Architecture of VGG19 model for feature extraction and classification 

 

Figure 4.2 Customized architecture of VGG19 model for feature extraction 
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In the proposed approach, convolutional layers, max pooling layers and a flattening 

layer are used to extract features. The pretrained CNN's fully connected layers are not 

used during feature extraction. 

4.2. Principal Component Analysis for Dimensionality Reduction 

The PCA method is used to make the dataset smaller by reducing the number of 

features. The working of the PCA technique is already discussed in the chapter 3 of this 

thesis. 

4.3. Big Bang Big Crunch Algorithm for Optimization 

The big bang big crunch algorithm is an optimization method inspired by the universe's 

evolutionary processes, specifically the "Big Bang" and "Big Crunch" theories. This 

algorithm mimics two major phases in the creation and contraction of the universe: the 

"Big Bang" and the "Big Crunch." The big bang theory was first proposed by Georges 

Lemaitre in 1921. The big bang theory says that the Universe began as a very hot and 

dense point, called a singularity, around 13.8 billion years ago. This point suddenly 

expanded in a huge explosion, causing the universe to grow and cool down. As the 

universe expanded, matter and atoms began to form, and over time, gravity pulled them 

together to create galaxies, stars, and planets. The big crunch phase suggests that the 

particles converge towards a single point, representing the collapse of the universe to a 

singularity. It suggests that if the universe's expansion slows down, gravity might 

eventually pull everything back together, causing the universe to collapse into a single 

point again, like its original state. In this scenario, galaxies would move closer together 

and eventually merge [136]. This process of exploration and exploitation makes the 

BBBC algorithm an effective tool for optimization tasks in various fields, such as 

feature selection and optimizing machine learning models [137-139]. The working of 

BBBC is presented in algorithm 4.1. 
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Algorithm 4.1: Big Bang Big Crunch 

Begin 

Step 1: Initialize population size ‘N’, maximum iterations ‘T’, and bounds of search 

space. Generate initial population of candidate solutions randomly. Each candidate 

solution consists of ‘G’ genes.  

Step 2: while termination criteria not met  

\* The termination criteria is maximum number of iterations*\ 

 Step 3: for t = 1 to T: 

                     Evaluate fitness of random candidate solutions in the population. 

Step 4: Select the best candidate solution from the population. The best candidate 

solution is called as elite.    

Step 5: Create a new population around the elite by adding or subtraction a small 

random number in it. 

Step 6: Check the limits and violations and correct it if needed. 

Step 7: End While 

Step 8: Return elite. 

End 

4.4. Proposed VGG19-PCA-BBBC Approach for Leukemia Detection  

This section proposes a new VGG19-PCA-BBBC based approach for leukemia 

detection. The proposed approach is the combination of VGG19-PCA and BBBC 

algorithm where VGG19 is used for feature extraction, PCA for dimensionality 

reduction and BBBC algorithm for near optimal feature selection. This approach builds 

upon the VGG16-PCA-PB3C method discussed in Chapter 3, where VGG16, with 13 

convolutional and 3 fully connected layers was used to extract relevant image features. 

While VGG16 already provides a substantial number of features, the proposed 

approach uses VGG19, which includes three additional convolutional layers (16 in 

total). These added layers enable VGG19 to extract finer and more expressive features. 
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Since VGG19 already captures high-quality features, it requires a less complex 

optimization strategy. PB3C works well and gives good results. Since it uses the Big 

Bang Big Crunch process in parallel, it becomes more complex and requires more 

computational resources and time. BBBC is a single population-based search and 

optimization algorithm. Thus, BBBC algorithm is used to choose the most useful 

features from the features extracted by VGG19. BBBC is an ideal fit, offering efficient 

and effective feature selection without the added computational complexity of multi-

population methods. 

The working of the proposed approach is shown in Figure 4.3 and Algorithm 4.2. As 

shown in Algorithm 4.2 and Figure 4.3, the proposed approach works in four steps. The 

first step is extracting features. The second step is reducing the dimensions. The third 

step is selecting the important features, and the fourth step is detecting leukemia. 

The first step in the proposed approach is to extract features which is accomplished by 

VGG19 convolutional neural network. The pre-processed blood smear images of 

CNMC_2019 dataset is passed through the convolutional and pooling layers of VGG19. 

The output received from final convolutional layer is a high-dimensional feature map, 

representing the most informative aspects of the image. Max pooling layers are used to 

reduce the size of the feature maps while keeping the important information. During 

the feature extraction step, the fully connected layers of VGG19 are not used. These 

layers are used later in the final step to detect leukemia. 

For the leukemia detection purpose, we provided the images dataset to convolutional 

layers of VGG19. VGG19 extracts features from the dataset. The extracted features are 

useful for further classification task. The details of the features extracted by the 

convolutional and pooling layers of VGG16 and VGG19 are mentioned in Table 4.3. 
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Table 4.3 Layer wise features extracted by VGG16 and VGG19 

Layer Name 
Output Shape 

(VGG16) 

Number of 

Extracted 

Features 

(VGG16) 

Output Shape 

(VGG19) 

Number of 

Extracted 

Features 

(VGG19) 

block1_conv1 224×224×64 3,211,264 224×224×64 3,211,264 

block1_conv2 224×224×64 3,211,264 224×224×64 3,211,264 

block1_pool 112×112×64 802,816 112×112×64 802,816 

block2_conv1 112×112×128 1,605,632 112×112×128 1,605,632 

block2_conv2 112×112×128 1,605,632 112×112×128 1,605,632 

block2_pool 56×56×128 401,408 56×56×128 401,408 

block3_conv1 56×56×256 802,816 56×56×256 802,816 

block3_conv2 56×56×256 802,816 56×56×256 802,816 

block3_conv3 56×56×256 802,816 56×56×256 802,816 

block3_conv4 — — 56×56×256 802,816 

block3_pool 28×28×256 200,704 28×28×256 200,704 

block4_conv1 28×28×512 401,408 28×28×512 401,408 

block4_conv2 28×28×512 401,408 28×28×512 401,408 

block4_conv3 28×28×512 401,408 28×28×512 401,408 

block4_conv4 — — 28×28×512 401,408 

block4_pool 14×14×512 100,352 14×14×512 100,352 

block5_conv1 14×14×512 100,352 14×14×512 100,352 

block5_conv2 14×14×512 100,352 14×14×512 100,352 

block5_conv3 14×14×512 100,352 14×14×512 100,352 

block5_conv4 — — 14×14×512 100,352 

block5_pool 7×7×512 25,088 7×7×512 25,088 

Table 4.3 presents the various layers, output shape, and number of extracted features of 

VGG16 and VGG19. There are five different blocks each consist of convolutional and 

pooling layers. Both block 1 and block 2 contains two convolutional layers and one 



104 

 

pooling layer in VGG16 and VGG19. Block 3, block 4 and block 5 contains three 

convolutional and one pooling layer in case of VGG16 and four convolutional layers 

and one pooling layer in case of VGG19.The total number of features extracted by 

VGG16 and VGG19 remain same i.e. 25088. The difference between VGG16 and 

VGG19 is in the extraction of the deeper feature by the extra layers of VGG19 which 

were not present in VGG16. VGG19 extracts more refined features through extra 

convolutional layers, even though the final feature vector is the same shape. The details 

of the VGG16 and VGG19 architectures is presented in Table 4.4. 

Table 4.4 Comparative Analysis of VGG16 and VGG19 architecture 

Aspect VGG16 VGG19 

Conv Layers 13 16 

Final Feature Map Shape 7×7×512 7×7×512 

Total Features Extracted 25,088 per image 
25,088 per 

image 

Depth of Representation Shallower Deeper 

Feature Richness High Slightly Higher 

Trainable Parameters ~138M ~144M 

Training Time Faster Slower 

VGG16 has 13 convolutional layers, and VGG19 has 16. The extra 3 layers in VGG19 

are added in blocks 3, 4, and 5. Both models give the same final output size (7×7×512), 

but VGG19 applies more convolution operations before each pooling step. This helps 

it learn better and more detailed patterns. More layers mean the model passes through 

more ReLU activations and can understand more complex shapes and textures. Each 

extra layer enables deeper neurons in VGG19 to see a slightly larger portion of the 

image, which helps capture finer details. But VGG19 is bigger and slower, with about 

144 million parameters to learn, while VGG16 has 138 million. So, VGG19 may need 

more time to train and can overfit if the dataset is small. Due to the larger size and 

slower speed of VGG19, we are using the simple Big Bang–Big Crunch (BB-BC) 

optimization algorithm in the VGG19-PCA-BBBC approach instead of the parallel 

version of BB-BC to reduce computational load and manage processing time 

effectively. 
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The second phase in the proposed approach is dimensionality reduction. After feature 

extraction, the obtained feature maps are very large and may contain redundant 

information. To reduce the feature map's complexity and prevent overfitting, PCA is 

applied. First, the covariance matrix of the feature set is computed to measure the 

relationships between different features. Eigenvalues and eigenvectors are determined 

by performing calculations using the covariance matrix. The principal components are 

represented by the eigenvectors and they are perpendicular to each other. The principal 

components are ranked by their corresponding eigenvalues, which reflect how much 

variance each component explains. Only the best principal components that capture the 

most variance are retained, reducing the feature set's dimensionality. 

After reducing the dimensionality, PCA selected 1222 principal components from the 

25088 features extracted by VGG19. To select the near optimal features for 

classification, the principal components selected by PCA are provided to the 

optimization algorithm BBBC. The MSE is 0.0358%, which means the data loss was 

very small. 

The third phase of the proposed approach is the selection of the near-optimal features. 

BBBC algorithm is used for the feature optimization and selection. As shown in 

algorithm 4.2, for the feature selection purpose, the BBBC algorithm starts with the Big 

Bang phase. In Big Bang phase, a population of feature sets is created by randomly 

generating the candidate solutions. These candidate solutions represent various subsets 

of the features. The fitness of each feature subset is calculated. After the exploration in 

the Big Bang phase, the algorithm enters a Big Crunch phase where it selects the feature 

set with the best fitness. The best candidate solution is called the elite. Then, a new 

population is created by adding or subtracting a small random number to the elite. Now, 

the fitness of each feature set is calculated and the feature set with best fitness is 

considered for the further exploration.  

The algorithm keeps repeating the big bang and big crunch phases until a stopping 

condition is met. Common stopping conditions are reaching the maximum number of 

iterations, when the population becomes stable, or when a solution is found that meets  
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the desired classification accuracy for leukemia detection. The switching between 

exploration and exploitation allows the BBBC algorithm to find the near-optimal 

solutions quickly.  

For the feature selection purpose, we considered ten candidate solutions in the 

population of feature subsets. Each feature subset contains 200 features. After 

optimization, BBBC selected 200 optimized features out of the original 1222 principal 

components. These selected features are then passed to the final classifier for leukemia 

detection. 

If BBBC is not used after PCA, all 1222 features are used, which increases training 

time and may include less useful data. This can reduce accuracy and make the model 

slower. BBBC selects only the most helpful 200 features, removing noise and saving 

time. It helps the model run faster, use less memory, and give better results. The results 

of the proposed approach with and without BBBC are shown in Table 4.5. 

In the last step of the proposed approach, the model is trained based on the best selected 

features. The detection of leukemia is also done in this step by the fully connected 

layers. Once the feature set has been optimized by the BBBC algorithm, it is directed 

to fully connected layers for classification purposes. The input which is transferred to 

dense layers is an optimized feature set. The activation function ReLU (Rectified Linear 

Unit) is used in the first two fully connected layers, and a softmax function is applied 

in the final fully connected layer. 

The methodology presented in Figure 4.3 utilized the population-based BBBC 

algorithm to find the best solution by optimizing the features extracted with the 

customized VGG19 model and then reduced by PCA. 
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Figure 4.3 Proposed soft computing-based approach for leukemia detection 

Algorithm 4.2 represents the working of proposed soft computing-based approach. 

Algorithm 4.2: VGG19-PCA-BBBC algorithm 

BEGIN 

Step 1: Feature Extraction using VGG19 

a) Preprocess the CNMC_2019 images dataset named as I to resize each image of I to 224x224 

pixels. This preprocessed dataset is called as Ipreprocessed. 

b) Pass Ipreprocessed through the customized VGG19 architecture to extract feature map Fpooled 

Step 2: Dimensionality Reduction using PCA 

a) Compute covariance matrix 

C=Cov(Fpooled) 

b) Compute eigenvalues λi and eigenvectors vi of the covariance matrix 

 Cvi=λivi for all i 

c) Rank the eigenvectors based on eigenvalues λi:  

Ranked_eigenvectors=Sort(vi,λi) 

d) Select top k eigenvectors to form Freduced 

Freduced=SelectTop(vi,k) 
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Step 3: Feature Selection using BBBC Algorithm 

1. BIG BANG PHASE 

a) Generate initial population of candidate solutions S1,S2,…,Sn by randomly selecting feature 

subsets from Freduced. 

b) Evaluate fitness f(Si) of each candidate solution Si 

 f(Si)=Fitness(Si) 

2. BIG CRUNCH PHASE 

a) Sort all the candidate solutions of the population as per their fitness f(Si). 

b) Select the candidate solution with best fitness value (elite). 

S′=elite 

3. BIG BANG PHASE 

a) Create a new population around S′ by adding or subtracting a small number to/from S′.   

4. REPEAT STEP 2 AND STEP 3 UNTIL STOPPING CONDITION IS NOT MET 

5. RETURN ELITE.  

Step 4: Model Training using dense layer for Leukemia Detection 

END 

4.5. Results and Discussion 

For the testing purpose, we implemented the proposed algorithm in python. The 

proposed approach is tested on CNMC_2019 dataset. To analyse its performance, we 

compared the results of the proposed approach with 15 other leukemia detection 

approaches. For the performance analysis purpose, we compared the proposed approach 

with 8 transfer learning-based approaches and 7 machine learning approaches. Table 

4.5 and Figure 4.4 displays a comparison between the proposed approach and 8 existing 

transfer learning-based methods. Table 4.6 and Figure 4.5 compare the proposed 

approach with 7 other machine learning-based models. The proposed approach is 

evaluated using performance metrics like accuracy, recall, precision, and F1-score. 

From Table 4.5, Table 4.6, Figure 4.4, and Figure 4.5, we can see that the proposed 

approach VGG19-PCA-BBBC achieved 96.24% accuracy, 97.83% precision, 96.77% 

recall, and 97.30% F1-score. In comparison, VGG16-PCA-PB3C achieved 95.38% 

accuracy, 97.75% precision, 95.60% recall, and 96.67% F1-score. VGG19-PCA 

achieved 93.02% accuracy, 95.51% precision, 94.44% recall and 94.97% F1-score. 
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These results clearly indicate the supremacy of the proposed approach in comparison 

with existing approaches.  

Table 4.5 Comparison of proposed VGG19-PCA-BBBC with existing transfer 

learning-based approaches 

CNN Architecture Accuracy Precision  Recall  F1 Score  

Inception V3 86.01% 94.68% 85.58% 89.90% 

CNN+ECA+VGG16 

[96] 91.1% - - - 

TL+(GA,PCA)+MLP 

[102] 90.71% - 95.26% - 

ResNet101 ensembled 

models [118] 85.11% - - 88.94% 

VGG16 89.05% 96.77% 88.24% 92.31% 

VGG19 90.65% 96.63% 89.58% 92.97% 

VGG16-PCA 91.04% 96.77% 90.91% 93.75% 

VGG19-PCA 93.02% 95.51% 94.44% 94.97% 

VGG16-PCA-PB3C 95.38% 97.75% 95.60% 96.67% 

VGG19-PCA-BBBC 96.24% 97.83% 96.77% 97.30% 

Table 4.6 Comparison of proposed VGG19-PCA-BBBC with existing 

machine learning-based approaches 

Classifier Accuracy Precision  Recall  F1 Score  

SVM 74.8% 69.91% 76.78% 73.19% 
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Classifier Accuracy Precision  Recall  F1 Score  

Random Forest 81.20% 79.67% 81.66% 80.65% 

Logistic Regression 83.20% 82.11% 83.47% 82.78% 

K Nearest Neighbour 62% 71.54% 59.45% 64.94% 

Decision Tree 70% 69.10% 69.67% 69.38% 

Bagging 67.60% 69.91% 66.15% 67.98% 

ML based 

Classification, IEEE 

ISBI 2019 Challenge 

[50] 91% - - - 

VGG16-PCA-PB3C 95.38% 97.75% 95.60% 96.67% 

VGG19-PCA-BBBC 

(Proposed Approach) 96.24% 97.83% 96.77% 97.30% 

 

Figure 4.4 Comparison of VGG19-PCA-BBBC with transfer learning approaches 
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Figure 4.5 Comparison of VGG19-PCA-BBBC with existing machine learning-based 

approaches 

This high performance is likely due to the combination of the VGG19 architecture, 

PCA, BBBC algorithm, and fully connected classification layer. This indicates that the 

deeper VGG19 architecture combined with the BBBC optimization algorithm can 

capture more discriminative features for leukemia detection, resulting in more accurate 

classifications. 

4.6. Summary 

This chapter proposed a new soft computing-based approach, named as VGG19-PCA-

BBBC for detecting leukemia detection from peripheral blood cell images. The 

proposed approach utilizes VGG19 architecture to extract deep features, applies PCA 

to reduce the size of the leukemia dataset. Further, the near-optimal features are selected 

using BBBC algorithm. The CNMC dataset, which contains labelled peripheral blood 

cell images, was used to train and test this proposed soft computing-based approach. 

The results showed that the proposed soft computing-based approach performed better 

than other existing leukemia detection approaches.  
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Chapter 5 HP3PGA-3PGA: A New Hybrid Soft Computing 

based Algorithm for Early Detection of Leukemia 

This chapter proposes a new hybrid soft computing-based algorithm for early detection 

of leukemia. The proposed algorithm works in two different phases: a multi-population 

phase and a single population phase. The multi-population phase focuses on exploring 

a wide range of near-optimal solutions, while the single-population phase is suitable for 

refining a solution when diversity is less of a concern. Both phases are implemented 

using two variations on three parent genetic algorithms namely Parallel Three Parent 

Genetic algorithm (P3PGA) and Three Parent Genetic Algorithm (3PGA). The 

proposed algorithm is implemented in MATLAB software and tested on 80 standard 

benchmark functions of CEC 2021 test suite. The performance of the proposed 

algorithm is compared with the 10 recent algorithms. The performance results clearly 

show that the proposed algorithm is better than the other 10 algorithms. 

Further, we validated the proposed algorithm to evolve the near optimal architecture of 

CNN. The HP3PGA-3PGA based neural architecture search method is implemented in 

python and tested against 17 other methods for diagnosing leukemia. 

The major contributions of this chapter are as below: 

1. Proposed a new hybrid bio inspired HP3PGA-3PGA search & optimization 

algorithm. 

2. The proposed algorithm is tested on 80 functions from the CEC-2021 

Benchmark suite and compared with 10 recent algorithms.  

3. Proposed a HP3PGA-3PGA based Neural Architecture Search (NAS) approach 

to evolve near optimal CNN architecture for leukemia detection in blood smear 

images. 

4. The proposed NAS approach is compared with existing 17 leukemia detection 

approaches.  

Section 5.1 introduces genetic algorithm and the 3-parent genetic algorithm. In Section  
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5.2, the HP3PGA-3PGA algorithm is proposed. Section 5.3 includes the simulation and 

performance analysis. Section 5.4 presents the HP3PGA-3PGA based neural 

architecture search approach for leukemia detection. Section 5.5 concludes the chapter. 

5.1. Introduction 

A genetic algorithm is a simple way to solve a problem by copying how nature works. 

It starts with variety of possible solutions, called chromosomes. The best solutions are 

picked and slightly changed to make new ones by using the methods inspired by natural 

processes. These strategies consist of selection (choosing the optimal solutions from 

the existing population), crossover (merging two or more solutions to create a new one), 

and mutation (introducing minor, random alterations to a solution for diversity) [140].  

 

Figure 5.1 Three parent genetic algorithm concept 

A new set of solutions is made to replace some or all the old ones. This cycle of 

evaluation, selection, crossover, mutation, and replacement keeps repeating. It 

continues until a stopping condition is met, such as reaching a set number of generations 

or achieving an optimal fitness level. The algorithm keeps improving the solutions step 

by step until an optimal solution is found. 
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The concept of 3PGA as shown in Figure 5.1 is an enhancement of the traditional GA 

by introducing a third parent into the recombination process [141-144]. The extension 

is to provide increased genetic diversity and convergence rates by the recombination of 

genes from three rather than two parents, as generally the case in traditional GAs. 

5.2. Proposed Hybrid Bio Inspired Algorithm 

This section introduces the new Hybrid P3PGA-3PG Algorithm, which combines the 

strengths of both parallel population and single population-based search & optimization 

algorithms. It brings together the operations of three-parent and parallel three-parent 

algorithms. The proposed hybrid algorithm has proven valuable in optimization, as it 

attempts to reduce the possibility of being trapped by a local optimum and to increase 

the possibilities of finding the global optimum. P3PGA's multi population based global 

search capability allows for a thorough investigation of the solution space, while the 

hybridization techniques refine local searches by integrating it with 3PGA. The 

working of proposed P3PGA-3PGA is shown in algorithm 5.1. 

Algorithm 5.1: HP3PGA-3PGA Algorithm 

Begin 

Step1: Let NP be the number of populations, N be the number of individuals 

(candidate) in each population, i ∈ {1,2,…..,NP} 

Initialize each population randomly by respecting all bounds and violations 

Set gen = 1 

WHILE gen <= TC: 

for i = 1 to NP: 

Apply mitochondrial modification on the ith 2-parent (2P) population to 

produce ith 3-parent (3P) population. This is done by adding and/or 

subtracting a small random number in it. 

Combine the 2P population and 3P population using equation 5.1 

  Pcombined[i]=P2[i] ∪ P3[i]                                                                    

(5.1)  

Evaluate and record fitness of each individual of Pcombined[i].  

Apply Genetic process to generate new 2P. 

a) Select top N best individuals from the combined population Pcombined 

that maximize fitness using equation 5.2. 

             2P[i] = topN(Pcombined[i])                                                   (5.2)        

       where topN is the N top features of Pcombined[i]                  
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b) With high probability Pc, perform crossover in 2P[i].  

c) With a low probability, mutate offsprings. 

d) Evaluate fitness of 2P[i]. Idenfity and update the local best individual 

lbest in Pcombined[i] 

e) Replace the weak candidate solutions with stronger offspring by keeping 

the size fixed of 2P[i]. 

f) Check and correct the bounds of 2P[i] (if needed). 

     end for (i) 

For i = 1 to NP: 

       Replace the gene of lbest[i] with corresponding gene of gbest[i], with a certain 

probability. 

    End for (i) 

Step 2: Evaluate fitness of each population and update the globally best 

individual gbest amongst all populations. Set counter1 = 0 and counter2 = 0 

Step 3: IF 3PGA_switch_flag is true then go to step 4; otherwise, go to step 5 

Step 4: IF counter1 = 0 THEN 

 Select gbest candidate solution and generate a new population around 

it. (The new population is two parents “2P”) for the 3PGA algorithm. 
Set counter1 = 1 

END_IF 

Perform mitochondrial changes in “2P” population and create a new 
“3P” population. 
Evaluate the fitness of all candidate solutions in the population of “3𝑃”. 
Select “N” best candidate solution from “3P” population and again 
create “2P” population using the general genetic process. 
Compute gbest from “2𝑃” population and set counter2 = 1 

Go to step 3. 

END_IF 

Step 5:  IF counter2 = 1 THEN 

Create population “NP” population around 3PGA gbest 

             ENDIF 

Step 6: Go to step 2. 

End_while 

End 

The proposed hybrid P3PGA-3PGA algorithm can be considered one step forward in 

genetic algorithms, which iteratively evolves populations of candidate solutions by 

switching between multi population and single population behaviour of P3PGA and 3 

PGA algorithms. It first initializes several random populations. Each population is a set  
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of individuals or candidate solutions within prescribed bounds. In each generation, a 3P 

population is made by adding or subtracting a small random number to the current 2P 

populations. This process is performed to correct the mitochondrial defects in each 

population. Further for every population, the general genetic operations like selection, 

crossover, and mutation are performed. After these genetic operations, the local best 

and global best are found. Now, the gene of the local best from each population is 

replaced with the gene of the global best solution based on a decided probability. This 

is known as combination operation between the lbest and gbest candidate solutions. 

After the specific number of iterations, switch to 3PG algorithm. For, 3PG algorithm, 

form the new population by slightly adjusting the global best through the addition or 

subtraction of a small random number. Now the single population has been created. 

This single population is called as 2P of 3PGA. Generate a new 3P population around 

the 2P population. After this, evaluate the performance of new 3P population and 

perform all genetic operations on it. The alternation between 3PGA and P3PGA 

continues for the maximum number of iterations.  

5.3. Simulation and Performance Analysis 

5.3.1. Simulation Results 

For the testing purpose, we implemented HP3PGA-3PGA algorithm in Matlab. The 

proposed algorithm is tested on different benchmark functions of the CEC-2021 test 

bench suite. CEC 2021 test suite consists of eight category and each category contains 

10 different types of benchmark functions. Thus, CEC 2021 test suite consists of 80 

benchmark functions.  We conducted 25 trials on each function of CEC 2021 test suite. 

Thus, a total number of 2000 trials (25*80) were conducted to evaluate the performance 

of the proposed algorithm. To evaluate the performance of the proposed algorithm, we 

calculated the average error across 25 trials for each function. Simulations were carried 

out on desktops with a 3.8GHz Core i7 processor, and 16GB RAM. Table 5.1 lists all 

the functions from the test bench suite CEC 2021 [145]. The performance results of the 

proposed algorithm are compared with 10 recent advanced algorithms, namely, 

APGSK_IMODE (Adaptive Parameters Gaining Sharing Knowledge and Improved 

Multi operator Differential Evolution algorithm), DEDMNA (Differential Evolution  
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with Distance-based Mutation-selection), MadDE (Improved DE through Bayesian 

Hyperparameter Optimization), RB_IPOP_CMAES_PPMF, J21 (Self-adaptive 

Differential Evolution Algorithm with Population Size Reduction for Single Objective 

Bound-Constrained Optimization), NL-SHADE-RSP (LSHADE algorithm with 

Adaptive Archive and Selective Pressure), SOMA-CLP (Self-organizing Migrating 

Algorithm with Clustering-aided migration and adaptive Perturbation), MLS-LSHADE 

(Multi-start Local Search Algorithm with L-SHADE),  L-SHADE-OrdRW (LSHADE 

based on ordered and roulette-wheel-based mutation), and PBO (Pollination Based 

Optimization).  

Table 5.1 Various functions of CEC2021 test suite. 

Name of Function Number Origin of 

Function 

𝑭𝒊 ∗ 

Unimodal Function, also known as 

Sphere Function 

F1 CEC2017  100 score 

Basic Functions, also known as 

Rastrigin Function 

F2 CEC2014  1100 score 

Basic Functions, also known as Ackley 

Function 

F3 CEC2017  700 score 

Basic Functions, also known as 

Griewank Function 

F4 CEC2017  1900 score 

Hybrid Functions, also known as 

Rosenbrock Function 

F5 CEC2014  1700 score 

Hybrid Functions, also known as 

Weierstrass Function 

F6 CEC2017  1600 score 

Hybrid Functions, also known as 

Schwefel Function 

F7 CEC2014 2100 score 

Composition Functions Set – 1 F8 CEC2017 2200 score 

Composition Functions Set – 2 F9 CEC2017 2400 score 

Composition Functions Set – 3 F10 CEC2017 2500 score 
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Search range: [-100,100] D 

As shown in Table 5.1, there are total number of 10 functions of CEC2021 test suite. 

These functions are used to evaluate single-objective optimization algorithms and 

compare the performance of new algorithms with the existing ones. These functions are 

built upon CEC2017 and CEC2014 test suites. Each function is represented by an 

identifier from F1 to F10. CEC2021 test suite functions are categorized into four types: 

1.  Unimodal function (also known as sphere function and is represented by F1) 

2.  Basic functions ( Rastrigin function - F2, Ackley function – F3 and Griewank 

function -F4) 

3. Hybrid functions ( Rosenbrock function – F5, Weierstrass function – F6 and 

Schwefel function – F7) 

4. Composition function ( Set 1 - F8, Set 2 - F9 and Set 3 - F10).  

The unimodal function is used to test the convergence ability of optimization 

algorithms. Basic and hybrid functions test the exploration ability, while composition 

functions evaluate the optimization algorithm’s adaptability to complex landscapes. Fi* 

represents the best-known function value after transformations like shifting and 

rotation. A higher Fi* value indicates that the function is more complex. The search 

range defines the domain of input variables and specifies that all input variables for 

these functions must lie within the specified range.  

The performance of the HP3PGA-3PGA along with other algorithms of the standard 

test bench suite for CEC2021 is shown in Table 5.2. The evaluation is conducted on 10 

benchmark functions (F1 to F10) (as shown in Table 5.1). These functions undergo eight 

different transformations: 

1. Basic 

2. Bias 

3. Shift 

4. Rotation 

5. Bias and Shift 

6. Bias and Rotation 
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7. Shift and Rotation 

8. Bias, Shift, and Rotation 

Each transformation makes the function more complex. The numerical values represent 

the error or deviation from the optimal solution. The smaller numbers mean the result 

is better. 

Table 5.2 Performance results of HP3PGA-3PGA along with other algorithms on the 

standard test bench suite for CEC2021 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

  Basic 

APGSK_ 

IMODE 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

DEDMNA 0.000000 0.000000 2.18E+00 1.28E-01 0.000000 3.56E-03 5.68E-04 0.000000 0.000000 4.80E+01 

MadDE 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

RB_IPOP 

_CMAES 

_PPMF 

0.000000 2.67E-01 9.23E+00 1.02E+00 3.78E+01 1.43E+00 7.50E+00 0.000000 1.94E-07 4.80E+01 

J21 0.000000 0.000000 5.63E+00 2.43E-01 0.000000 3.40E-02 7.97E-03 0.000000 0.000000 4.64E+01 

NL-

SHADE-

RSP 

0.000000 0.000000 0.000000 1.43E-02 0.000000 6.87E-03 1.38E-03 0.000000 0.000000 1.93E-03 

SOMA-

CLP 
0.000000 1.04E-01 3.61E+08 3.60E-01 0.000000 3.11E-02 2.15E-03 0.000000 0.000000 7.71E+02 

MLS- 

LSHADE 
0.000000 0.000000 2.25E+00 6.58E-03 0.000000 1.83E-03 0.000000 0.000000 0.000000 6.92E-03 

L-SHADE-

OrdRW 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.09E-06 

PBO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

HP3PGA-

3PGA 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

  Bias 

APGSK_ 

IMODE 

0.00 E + 

00 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.99E-04 

DEDMNA 0.000000 1.50E+01 9.82E+00 4.42E-01 
3.58E + 

00 

3.74E – 

01 

1.57E - 

01 

3.62E + 

00 
0.000000 5.14E+01 

MadDE 0.000000 0.000000 0.000000 0.000000 0.000000 8.73E-06 0.000000 0.000000 0.000000 0.000000 

RB_IPOP 

_CMAES 

_PPMF 

0.000000 3.06E-01 8.87E+00 1.01E+00 3.49E+01 1.20E+00 1.45E+01 0.000000 1.98E-07 6.69E+01 

J21 0.000000 1.62E+01 1.16E+01 8.44E-01 4.35E+00 1.32E+00 3.53E-01 1.59E+01 0.000000 5.16E+01 
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Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

NL-

SHADE-
RSP 

0.000000 5.46E+00 5.05E+00 3.83E-01 3.31E+00 4.19E-01 1.93E-01 4.24E+01 0.000000 4.81E+01 

SOMA-

CLP 
5.07E-08 1.61E+06 1.60E+03 9.94E-01 7.16E+07 4.52E-01 6.99E-01 1.83E+01 0.000000 5.27E+01 

MLS- 
LSHADE 

0.000000 0.000000 0.000000 0.000000 0.000000 7.81E-07 0.000000 0.000000 0.000000 4.48E-03 

L-SHADE-
OrdRW 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.62E-08 0.000000 0.000000 1.94E-06 

PBO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.18E+01 

HP3PGA-

3PGA 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

  Shift 

APGSK_ 
IMODE 

0.000000 0.000000 1.05E+01 2.77E-01 0.000000 
1.91E – 

02 
1.27 E-

03 
4.06 

E+01 
9.33E+ 

01 
3.90E+02 

DEDMNA 0.000000 0.000000 4.81E+00 1.56E-01 0.000000 5.31E-03 
5.10 E-

04 
1.40E+01 

8.67E+ 
01 

3.73 
E+02 

MadDE 0.000000 0.000000 1.09E+01 1.88E-01 0.000000 1.62E-02 1.42E-03 8.79E+01 9.33E+01 4.00E+02 

RB_IPOP 

_CMAES 

_PPMF 

0.000000 
2.75E 

+02 

1.12E+ 

01 
1.06E+00 1.25E+02 5.06E+01 3.04E+01 9.72E+01 2.56E+02 4.00E+02 

J21 0.000000 2.08E-03 
1.02 

E+01 

2.54E -

01 
0.000000 2.54E-02 5.62E-03 0.000000 1.10E+02 3.63E+02 

NL-

SHADE-

RSP 

0.000000 0.000000 1.02E+01 9.42E-02 0.000000 7.57E-03 2.01E-03 5.45E-01 8.01E+01 3.90E+02 

SOMA-

CLP 
0.000000 9.23E-02 2.93E+06 3.58E-01 7.92E-06 2.42E-02 2.65E-03 7.19E-01 1.52E+02 3.94E+02 

MLS- 

LSHADE 
0.000000 2.08E-02 1.01E+01 1.21E-01 0.000000 4.45E-02 7.03E-03 6.23E+01 2.14E+02 3.87E+02 

L-SHADE-

OrdRW 
0.000000 4.37E-02 1.09E+01 1.89E-01 6.17E+00 2.71E-01 2.98E-01 1.00E+02 3.19E+02 4.00E+02 

PBO 0.000000 6.95E+00 
1.15 

E+01 

4.74 E-

01 

1.18E+ 

01 

6.73 E- 

01 

4.47 E-

01 
0.000000 1.00E+02 4.00E+02 

HP3PGA-

3PGA 
0.000000 6.25E-02 0.000000 5.39E-01 0.000000 7.92E-02 1.11E-02 0.000000 3.27E+02 4.00E+02 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

  Rotation 

APGSK_ 

IMODE 
0.000000 

1.84 

E+01 

1.34 

E+01 

2.14E- 

01 
4.10E+00 

2.74 E-

01 
1.12E-01 

6.25E+ 

01 
8.84E+01 2.79E+02 

DEDMNA 0.000000 1.63E+01 
1.16 

E+01 
4.37E-01 

1.20 
E+01 

1.76E- 
01 

1.88E- 
01 

5.48 
E+01 

8.33E+01 3.68E+02 

MadDE 0.000000 1.23E+01 1.36E+01 3.51E-01 1.10E+00 3.26E-01 2.33E-01 9.60E+01 9.00E+01 3.98E+02 

RB_IPOP 

_CMAES 

_PPMF 

0.000000 4.98E+02 1.14E+01 7.86E-01 1.14E+02 4.68E+01 7.50E+01 9.61E+01 2.05E+02 4.18E+02 
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Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

J21 0.000000 
2.16 

E+01 
1.17E+01 7.96E-01 1.73E+00 5.17E-01 

1.37 

E+00 

9.31 

E+00 

9.00 

E+01 
3.18E+02 

NL-

SHADE-

RSP 

0.000000 1.21E+01 1.33E+01 1.30E-01 6.20E+00 2.97E-01 7.83E-02 2.39E+01 7.52E+01 3.98E+02 

SOMA-

CLP 
2.10E-07 4.34E+06 1.38E+01 2.15E-01 1.77E+06 3.33E-01 1.96E-01 3.35E+01 1.91E+02 3.99E+02 

MLS- 

LSHADE 
0.000000 1.87E+01 1.31E+01 4.01E-01 6.33E+00 6.39E-01 4.38E-01 6.55E+01 1.00E+02 3.88E+02 

L-SHADE-

OrdRW 
0.000000 5.20E+00 1.18E+01 3.36E-01 2.90E+01 5.81E-01 2.29E+00 1.00E+02 2.90E+02 4.28E+02 

PBO 1.56E+01 1.51E+01 1.07E+01 5.39E-01 7.79E+01 1.32E+00 1.36E+00 1.14E+01 3.79E-04 3.98E+02 

HP3PGA-

3PGA 
0.000000 3.19E+02 2.84E+01 1.37E+00 3.00E+02 1.21E+02 4.20E-01 1.02E+02 3.78E+02 3.99E+02 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

  Bias and Shift 

APGSK_ 

IMODE 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

DEDMNA 0.000000 0.000000 2.14E+00 1.28E-01 0.000000 3.56E-03 4.75E-04 0.000000 0.000000 4.80E+01 

MadDE 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

RB_IPOP 

_CMAES 

_PPMF 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

J21 0.000000 0.000000 4.71E+00 2.39E-01 0.000000 3.27E-02 1.98E-02 0.000000 0.000000 4.64E+01 

NL-
SHADE-

RSP 

0.000000 0.000000 0.000000 1.34E-02 0.000000 7.48E-03 1.12E-03 0.000000 0.000000 2.07E-03 

SOMA-

CLP 
0.000000 1.19E-01 3.46E+07 3.08E-01 0.000000 2.84E-02 2.95E-03 0.000000 0.000000 4.98E+07 

MLS- 

LSHADE 
0.000000 0.000000 2.32E+00 3.29E-03 0.000000 1.53E-04 0.000000 0.000000 0.000000 7.21E-03 

L-SHADE-

OrdRW 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

PBO 0.000000 3.12E-01 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.80E+01 

HP3PGA-

3PGA 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.01E-03 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

  Bias and Rotation 

APGSK_ 

IMODE 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.88E-04 

DEDMNA 0.000000 1.50E+01 9.82E+00 4.42E-01 3.58E+00 3.74E-01 1.57E-01 3.62E+00 0.000000 5.14E+01 

MadDE 0.000000 0.000000 0.000000 0.000000 0.000000 3.15E-05 0.000000 0.000000 0.000000 0.000000 
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Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

RB_IPOP 

_CMAES 
_PPMF 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

J21 0.000000 1.62E+01 1.13E+01 8.39E-01 4.34E+00 1.33E+00 3.41E-01 1.24E+01 0.000000 5.16E+01 

NL-

SHADE-

RSP 

0.000000 6.46E+00 5.27E+00 4.30E-01 2.10E+00 4.23E-01 2.13E-01 4.41E+01 0.000000 5.17E+01 

SOMA-
CLP 

6.97E-08 2.41E+07 1.56E+07 1.08E+00 7.19E+07 4.62E-01 3.07E-01 3.77E+01 0.000000 5.21E+01 

MLS- 

LSHADE 
0.000000 0.000000 0.000000 0.000000 0.000000 8.75E-07 0.000000 0.000000 0.000000 4.29E-03 

L-SHADE-

OrdRW 
0.000000 0.000000 0.000000 0.000000 0.000000 6.29E-08 0.000000 0.000000 0.000000 1.37E-06 

PBO 0.000000 3.12E-01 0.000000 3.25E-01 0.000000 4.49E-01 0.000000 0.000000 0.000000 5.16E+01 

HP3PGA-

3PGA 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

  Shift and Rotation 

APGSK_ 

IMODE 
0.000000 0.000000 1.09E+01 2.61E-01 0.000000 1.83E-02 1.09E-03 5.00E+01 9.67E+01 3.70E+02 

DEDMNA 0.000000 0.000000 4.81E+00 1.56E-01 0.000000 5.31E-03 5.08E-04 1.40E+01 8.67E+01 3.73E+02 

MadDE 0.000000 8.33E-03 1.09E+01 1.93E-01 0.000000 1.45E-02 1.55E-03 9.40E+01 9.00E+01 4.00E+02 

RB_IPOP 

_CMAES 
_PPMF 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

J21 0.000000 2.08E-03 9.85E+00 2.49E-01 0.000000 3.38E-02 7.72E-03 0.000000 1.04E+02 3.89E+02 

NL-

SHADE-

RSP 

0.000000 0.000000 1.09E+01 1.01E-01 0.000000 5.71E-03 4.90E-03 0.000000 7.60E+01 4.00E+02 

SOMA-

CLP 
0.000000 1.06E-01 9.79E+02 3.48E-01 0.000000 2.94E-02 2.91E-03 3.42E-03 1.27E+02 3.87E+02 

MLS- 

LSHADE 
0.000000 3.12E-02 9.82E+00 1.58E-01 0.000000 3.24E-02 5.70E-03 5.20E+01 1.95E+02 3.90E+02 

L-SHADE-

OrdRW 
0.000000 3.33E-02 1.09E+01 1.94E-01 6.16E+00 3.98E-01 2.47E-01 1.00E+02 3.19E+02 4.00E+02 

PBO 0.000000 3.54E+00 2.44E+00 3.22E-01 4.38E-01 6.49E-01 7.27E-01 0.000000 1.00E+02 4.00E+02 

HP3PGA-

3PGA 
0.000000 2.50E-02 1.12E+01 5.08E-01 0.000000 3.51E-01 3.48E-01 0.000000 1.04E+02 4.00E+02 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

  Bias, Shift and Rotation 

APGSK_ 

IMODE 
0.000000 9.67E+00 1.38E+01 

1.78E-

01 
3.93E+00 3.57E-01 5.43E-02 6.62E+01 9.41E+01 2.79E+02 

DEDMNA 0.000000 1.63E+01 1.16E+01 
4.37E-

01 
1.20E+01 1.76E-01 1.88E-01 5.48E+01 8.33E+01 3.68E+02 



123 

 

Function Ƒn 1 Ƒn 2 Ƒn 3 Ƒn 4 Ƒn 5 Ƒn 6 Ƒn 7 Ƒn 8 Ƒn 9 Ƒn 10 

MadDE 0.000000 2.16E+01 1.40E+01 
3.72E-

01 
9.63E-01 3.02E-01 1.72E-01 9.13E+01 9.00E+01 3.98E+02 

RB_IPOP 

_CMAES 

_PPMF 

0.000000 5.53E+02 1.05E+01 
8.66E-

01 
9.35E+01 4.97E+01 1.21E+02 9.71E+01 1.72E+02 4.15E+02 

J21 0.000000 2.16E+01 1.15E+01 
7.95E-

01 
1.70E+00 5.17E-01 1.91E+00 1.14E+01 9.00E+01 3.38E+02 

NL-

SHADE-
RSP 

0.000000 1.45E+01 1.31E+01 
1.38E-

01 
5.03E+00 3.01E-01 2.78E-02 3.24E+01 7.97E+01 3.88E+02 

SOMA-
CLP 

7.61E-08 6.91E+06 1.35E+01 
2.00E-

01 
3.15E+08 2.73E-01 1.84E-01 2.81E+01 2.63E+02 3.89E+02 

MLS- 
LSHADE 

0.000000 1.82E+01 1.26E+01 
3.80E-

01 
5.15E+00 7.30E-01 3.02E-01 7.06E+01 9.12E+01 3.84E+02 

L-SHADE-

OrdRW 
0.000000 4.06E+00 1.15E+01 

3.47E-

01 
2.89E+01 5.75E-01 2.80E+00 1.00E+02 2.92E+02 4.28E+02 

PBO 4.49E+00 3.95E+00 1.45E+01 
2.29E-

01 
4.41E+01 6.77E-01 2.40E+00 1.29E+01 1.00E+02 3.98E+02 

HP3PGA-

3PGA 
0.000000 3.19E+00 2.84E+01 

1.73E-
01 

3.00E+01 1.79E-01 1.89E+00 1.21E+01 9.90E+01 3.99E+02 

 

As shown in table 5.2, the performance of different algorithms was evaluated under 

different transformations. In the basic transformation, HP3PGA-3PGA gave perfect 

results with zero error for all functions. Some other algorithms, like MadDE and PBO, 

also did well with mostly zero errors. But DEDMNA and RB_IPOP_CMAES_PPMF 

had problems with some functions. In the bias transformation, where a constant value 

is added to the function, HP3PGA-3PGA was not affected and still gave zero error. But 

algorithms like DEDMNA and J21 had higher error values, which means they found it 

harder to handle biased functions. 

In the shift transformation, where the function is moved to another position, HP3PGA-

3PGA still worked well overall but showed some errors in functions like F10. 

RB_IPOP_CMAES_PPMF had large errors in several functions. In the rotation 

transformation, which makes the function more complicated, HP3PGA-3PGA had 

some trouble with F2 and F9. RB_IPOP_CMAES_PPMF did even worse, especially 

on F2. When bias and shift transformations were used together, HP3PGA-3PGA still 

gave very good results with almost zero error. But SOMA-CLP showed very high error 

values and struggled more. In the bias and rotation transformation, HP3PGA-3PGA 
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again gave zero error, showing that it is strong in handling such changes. However, 

DEDMNA and NL-SHADE-RSP were affected badly and gave high errors. 

HP3PGA-3PGA is one of the best algorithms overall. It gives excellent results in many 

transformations and often gets zero error, especially in bias transformations.  It 

struggles slightly in specific cases, such as function F10 in the shift transformation, and 

functions F2 and F9 in the rotation transformation. But it still outperforms most other 

algorithms. 

5.3.2. Performance Analysis  

The HP3PGA-3PGA algorithm consistently performed well, especially in situations 

where other algorithms faced difficulties, such as when bias, shift, and rotation were 

combined. Table 5.3 summarizes how the HP3PGA-3PGA performed on the CEC2021 

benchmarks. As shown in Table 5.3, the algorithm HP3PGA-3PGA has higher 

performance on 49 benchmark functions of CEC2021 test bench suite. Thus, it is ranked 

on number 1. APGSK_IMODE on the other hand performed best on 48 benchmark 

functions of CEC2021 and ranked on number 2. Similarly, MadDE performed well on 

47 benchmark functions which made it ranked on number 3 and L-SHADE-OrdRW 

and PBO performed best on total 41 benchmark functions and ranked on number 4. The 

overall results of the simulations demonstrate the outstanding performance of 

HP3PGA-3PGA.  

Table 5.3 Comparison of HP3PGA-3PGA performance on CEC 2021 benchmarks 

Benchmark Algorithm 

Best 

(Unmatched) 

Best 

(Matched)  

Overall 

Best 

 Ranking 

in Total 

HP3PGA-3PGA 
1 48 49 1 

APGSK_IMODE 
2 46 48 2 

MadDE 2 45 47 3 

L-SHADE-OrdRW 
2 39 41 4 

PBO 3 38 41 4 

RB_IPOP_CMAES_PPMF 
8 23 31 5 



125 

 

Benchmark Algorithm 

Best 

(Unmatched) 

Best 

(Matched)  

Overall 

Best 

 Ranking 

in Total 

NL-SHADE-RSP 
4 17 21 6 

MLS-LSHADE 
0 20 20 7 

DEDMNA 3 15 18 8 

J21 1 14 15 9 

SOMA-CLP 0 7 7 10 

 

The ranking is based on four key performance indicators: 

1. Best (Unmatched) – Number of times an algorithm was the best but not matched 

by others. 

2. Best (Matched) – Number of times an algorithm was the best but shared the spot 

with others. 

3. Overall Best – Total number of times the algorithm performed at the highest 

level (sum of unmatched and matched). 

4. Ranking in Total – Final ranking based on overall performance. 

The HP3PGA-3PGA algorithm is the best performer in the CEC 2021 benchmark tests. 

It ranks first and outperformed all other optimization algorithms. It has 49 best scores, 

with 48 of them being matched (where other algorithms also performed well) and 1 

unmatched (where it was the only one to perform best). This shows that HP3PGA-

3PGA is highly reliable. Among other algorithms, APGSK_IMODE and MadDE 

performed well. APGSK_IMODE ranked second and MadDE ranked third. 

APGSK_IMODE has 48 best scores, with 46 of them being matched (where other 

algorithms also performed well) and 2 unmatched (where it was the only one to perform 

best). MadDE has 47 best scores, with 45 of them being matched (where other 

algorithms also performed well) and 2 unmatched (where it was the only one to perform 

best). Both algorithms performed well, but they are not as consistent and reliable as 

HP3PGA-3PGA. 

L-SHADE-OrdRW, PBO, and RB_IPOP_CMAES_PPMF are average-performing  
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algorithms. L-SHADE-OrdRW and PBO ranked fourth with 41 top score whereas 

RB_IPOP_CMAES_PPMF ranked fifth with 31 top score. These algorithms perform 

well but are not as strong as the top three. They use traditional optimization methods, 

which may limit their flexibility in solving complex problems. Algorithms like NL-

SHADE-RSP and MLS-LSHADE learn slowly and did not perform well. SOMA-CLP 

got very less score, showing it has trouble with complex problems.  

The results show that HP3PGA-3PGA is the best algorithm for solving complex 

optimization problems. It performs well in finding new solutions and improving old 

ones. APGSK_IMODE and MadDE are strong competitors, but they are less stable and 

reliable. Traditional optimization algorithms like L-SHADE and 

RB_IPOP_CMAES_PPMF are still competitive but not as adaptable as newer methods. 

The lower-ranked algorithms struggle with difficult problems. Overall, HP3PGA-

3PGA is the most powerful and reliable algorithm in this comparison. 

5.4. HP3PGA-3PGA based Neural Architecture Search (NAS) Approach  

This section proposed a HP3PGA-3PGA based NAS approach for leukemia detection 

from blood smear images. We implemented the proposed HP3PGA-3PGA approach to 

create a near-optimal CNN architecture for leukemia detection. For the implementation 

purpose, the proposed approach optimized the different hyperparameters of CNN. For 

the testing purpose, we used CNMC_2019 blood smear images dataset. The proposed 

approach begins with the initialization of different populations of CNN architectures.  

Each population contains different candidate solutions. Every candidate solution is a 

CNN architecture. In one candidate solution (CNN architecture), there could be 

different genes. In our proposed neural architecture search approach, the genes are 

referred as hyperparameters. The hyperparameters [146] and their boundary values are 

shown in Table 5.4. For the optimization purpose, we used same steps as mentioned in 

Algorithm 5.1. The proposed approach optimizes the hyperparameters of CNN on 

different numbers of convolutional layers. First, it evolves the architecture of CNN on 

1 convolutional layer. If it achieves the acceptable accuracy, then provide the optimal 

architecture otherwise increment in the convolutional layer by 1 and evolve the neural  
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architecture again. This process continues until the acceptable results are not achieved. 

In our proposed approach, the best candidate solution means the best accuracy of the 

CNN architecture. For the leukemia detection purpose, the termination criteria to stop 

the training process of proposed approach is as below:  

The model training process would be stopped if any of the following condition is 

satisfied: 

• Adding a new hidden (Con2d) layer did not improve the test accuracy. 

or 

• If greater than 98% test accuracy is achieved. 

Table 5.4 Hyper-Parameters considered for CNN optimization 

Hyper-Parameter Value Range 

Number of Convolutional Layers Between 1 and 10 

Number of Filters Between 1 and 64 

Size of Filters Between 1 and 10 

Neurons in Fully Connected Layers From 32 to 1024 

Batch Size From 8 to 512 (in powers of 2) 

Number of Epochs Between 1 and 20 

Optimizers Available 
SGD, Adadelta, Adam, Adagrad, 

RMSprop, Ftrl, Nadam, Adamax 

 

5.4.1. Implementation and Performance of the Proposed Leukemia Detection 

Approach 

To check how well the proposed leukemia detection method works, we implemented it 

in Python, along with other existing methods. The proposed hybrid bio-inspired 

leukemia detection algorithm is evaluated on CNMC_2019 blood smear images dataset. 

The model performance was tested with 100 iterations.  The proposed method obtained 

an accuracy of 98.99% in generation 82. Table 5.5 gives a view of best accuracies  
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obtained by CNN on CNMC_2019 dataset.  

Table 5.5 Accuracy levels for HP3PGA-3PGA based CNN on the CNMC_2019 

dataset 

Number of 

Convolutional 2D 

Layers 

Generation with 

Best Accuracy 

Best Accuracy (%) 

1 65 81.11% 

2 75 89.21% 

3 82 98.99% 

From Table 5.6, we observed that the proposed HP3PGA approach achieved 98.99% 

accuracy whereas VGG19-PCA-BBBC and VGG16-PCA-PB3C achieved 96.24% and 

95.38% accuracy respectively. VGG19-PCA and VGG16-PCA models achieved 

93.02% and 91.04% accuracy. Further, VGG19 and VGG16 models achieved 90.65% 

and 89.05% accuracy. From these results, we can see that the proposed approach is 

ranked number 1 compared to the other 17 methods. VGG19-PCA-BBBC and VGG16-

PCA-PB3C scored the second and third positions. VGG19-PCA and VGG16-PCA 

ranked on fourth and fifth positions respectively.  

Table 5.6 Comparison of proposed HP3PGA-3PGA approach with existing machine 

learning and transfer learning approaches 

Model Accuracy Precision  Recall  F1 Score  

SVM 74.80% 69.91% 76.78% 73.19% 

Random Forest 81.20% 79.67% 81.66% 80.65% 

Logistic Regression 83.20% 82.11% 83.47% 82.78% 

K Nearest Neighbour 62% 71.54% 59.45% 64.94% 

Decision Tree 70% 69.10% 69.67% 69.38% 

Bagging 67.60% 69.91% 66.15% 67.98% 

ML based 

Classification, IEEE 91% - - - 
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Model Accuracy Precision  Recall  F1 Score  

ISBI 2019 Challenge 

[50] 

Inception V3 86.01% 94.68% 85.58% 89.90% 

CNN+ECA+VGG16 

[96] 91.10% - - - 

TL+(GA,PCA)+MLP 

[102] 90.71% - 95.26% - 

ResNet101 

ensembled models 

[118] 85.11% - - 88.94% 

VGG16 89.05% 96.77% 88.24% 92.31% 

VGG19 90.65% 96.63% 89.58% 92.97% 

VGG16-PCA 91.04% 96.77% 90.91% 93.75% 

VGG19-PCA 93.02% 95.51% 94.44% 94.97% 

VGG16-PCA-PB3C 95.38% 97.75% 95.60% 96.67% 

VGG19-PCA-BBBC 96.24% 97.83% 96.77% 97.30% 

Proposed Approach 98.99% 99.20% 98.40% 98% 

From Table 5.6, we observed that the proposed HP3PGA-3PGA approach outperforms 

all other approaches in the different performance evaluation metrics namely, accuracy, 

precision, recall, and F1 score. With an accuracy of 98.99%, precision of 99.20%, recall 

of 98.40%, and an F1 score of 98%, the proposed approach clearly overcomes the 

performance of traditional machine learning models like Logistic Regression (83.20% 

accuracy), Random Forest (81.20% accuracy) and SVM (74.80% accuracy), which 

show much lower performance. Even compared to transfer learning models, the 

proposed approach was giving better performance. We considered different transfer 

learning-based hybrid models like VGG19-PCA-BBBC (96.24% accuracy), VGG16-

PCA-PB3C (95.38% accuracy), VGG19-PCA (93.02 % accuracy), CNN-ECA-VGG16 

(91.1% accuracy), VGG16-PCA (91.04% accuracy) , TL-PCA-MLP (90.71%  
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accuracy) and VGG19 (90.65% accuracy). While these models perform well, they are 

not as accurate or reliable as compared to the proposed approach. Overall, the proposed 

approach excels in feature extraction, accuracy, and handling complex problems, 

making it the most powerful and reliable solution among all the models tested. 

5.5. Summary 

This chapter proposed a new hybrid P3PGA and 3PGA bio-inspired search & 

optimization algorithm. The performance for proposed algorithm was evaluated against 

80 standard benchmark functions of CEC2021 and the results were compared to 10 

existing benchmarking algorithms. In addition, the proposed hybrid bio-inspired 

algorithm has been used to develop the near-optimal architecture for CNN.  The results 

of NAS approach revealed that proposed algorithm is significantly outperforming other 

17 leukemia detection algorithms. The proposed approach improves various parameters 

such as Accuracy, Recall, Precision and F1-score for the task of leukemia detection. 

The highest accuracy in this research work is observed as 98.99%, demonstrating our 

model's strong performance and outperforming existing artificial intelligence models in 

the field. In summary, the hybrid P3PGA and 3PGA method provides robust and 

promising outcome for various prevailing optimization issues, with the characteristics 

and capabilities to expand the field of evolutionary computation. 
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Chapter 6 Conclusion and Future Scope 

6.1. Conclusion 

In this thesis, one hybrid soft computing-based search and optimization algorithm and 

three soft computing-based leukemia detection approaches are proposed. The proposed 

soft computing-based hybrid algorithm is named as HP3PGA-3PGA. HP3PGA-3PGA 

is the hybrid version of 3PGA and P3PGA algorithm. The proposed algorithm was 

tested on 80 benchmark functions of CEC2021 test suite. The HP3PGA-3PGA was 

contrasted with 10 existing benchmarking algorithms. 

This thesis also proposed three soft computing-based leukemia detection approaches. 

The proposed three approaches are named as VGG16-PCA-PB3C, VGG19-PCA-

BBBC, HP3PGA-3PGA neural architecture search approach. All the three approaches 

are tested on CNMC_2019 dataset. 

Chapter 1 presents the motivation behind our research work. It introduces leukemia, 

traditional leukemia detection methods and challenges in leukemia detection. This 

chapter also discusses machine learning and its different techniques. The chapter 

presents problem formulation and objectives of the thesis.  

Chapter 2 presents an overview of the related work in the field. The review of the 

literature is divided into two main parts. Part 1 contains various traditional methods for 

leukemia detection. This study was carried out to recognize the constraints of the 

conventional methods for detecting leukemia. Traditional methods are painful, 

expensive, slow, and rely heavily on a doctor’s skill. Part 2 of the survey contains 

various AI-based methods for leukemia detection. Computer vision approaches are 

useful but struggle due to small and non-diverse datasets. This shows the need for new 

approaches that can automatically create better models for leukemia detection. 

Chapter 3 presents a new soft computing-based hybrid approach VGG16-PCA-PB3C 

for leukemia detection. The proposed approach integrates VGG16, PCA, PB3C. The 

features from the blood cell images are extracted by VGG16. PCA is used to make the  
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extracted features simpler by reducing their number. From the extracted features, the 

near optimal features are selected by the multi population based PB3C algorithm. The 

deep neural network is trained for leukemia detection using the selected features. 

Python is used to implement the proposed approach. The proposed approach is 

compared with 13 other leukemia detection algorithms, and it is found that the proposed 

approach with 95.38% accuracy performed better than all of them. 

Chapter 4 presents a novel soft computing-based approach VGG19-PCA-BBBC for 

leukemia detection. In this proposed approach, VGG19, PCA, and the Big Bang Big 

Crunch (BBBC) algorithms are integrated. VGG19 was used to extract deep features, 

PCA was used to reduce the size of feature maps, and BBBC, a single-population 

optimization algorithm, was used to select the optimal features. The chosen features 

were used to train a deep neural network for detecting leukemia. The method was 

implemented in Python and tested on the CNMC_2019 leukemia dataset of blood cell 

images. The proposed approach was compared with 15 other leukemia detection 

methods, and it was found that the proposed approach with 96.24% accuracy performed 

better than other existing approaches. 

Chapter 5 proposes a new soft computing-based hybrid algorithm called Hybrid Parallel 

Three Parent Genetic Algorithm – Three Parent Genetic Algorithm (HP3PGA-3PGA). 

This algorithm combines a multi-population parallel algorithm P3PGA with a single-

population algorithm 3PGA. The HP3PGA-3PGA algorithm was tested on the 

CEC2021 test suite, which includes 80 test functions, and compared with 10 other 

benchmarking algorithms. The algorithm is also used to automatically design a near-

optimal architecture of a CNN for leukemia detection. The results showed that 

HP3PGA-3PGA (98.99% accuracy) outperformed all the other 17 leukemia detection 

approaches. 

Chapter 6 concludes the study and outlines the future possibilities for further research. 

6.2. Future Scope 

This thesis has presented one bio inspired computing algorithm and three soft  
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computing-based leukemia detection approaches. The proposed leukemia detection 

approaches are validated on CNMC_2019 dataset of blood cell images. The flexibility 

and adaptability of the models developed herein can be easily applied toward other 

forms of cancer, or even to other types of diseases where early detection is so important. 

It is expected that all three proposed leukemia detection approaches could be used to 

solve different kinds of machine learning problems. In future, the proposed approaches 

could be applied to deal with highly complex and non-linear problems such as plant 

disease detection, plant classification, landmark recognition, and natural language 

processing. The proposed HP3PGA-3PGA algorithm can also be used for routing in 

wireless mess networks, routing in integrated circuits, and power efficiency in wireless 

sensor networks. In future, the proposed soft computing-based search and optimization 

algorithm can be converted into multiobjective based algorithm. The multi objective 

algorithm can evolve the near optimal architecture with less complexity and high 

accuracy. These multi objective algorithm-based models would be light weighted and 

suitable for low configuration mobile devices. 
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