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Abstract 

 

Profile face recognition is the subcategory of facial recognition technology which has not yet gained 

recognition on the same level as the other types. Unlike frontal face recognition, it relies on 

photographs taken at the side profile to confirm identities. While side face features are much different 

from frontal ones, the number of observable parameters is significantly lower. It includes the facial 

perimeter, the quality of ears, and lateral panels of the nose and chin. These limited features present 

problems like the ability to analyze lesser amounts of data and thus affect the algorithm's accuracy. 

Also, angle, lighting, and camera position during capture greatly influence the system’s reliability. 

Since solving these difficulties is critical, and different conditions in the environment and position 

complicate detection, reliable algorithms are required. Despite suggesting the potential to work 

successfully for video and streaming, the current approach appears to require more fine-tuning for it 

to accurately compete with systems that recognize frontal faces. 

 

Developing algorithms capable of accurate side face recognition requires sophisticated machine 

learning techniques. Traditional facial recognition systems are often trained on large datasets of 

frontal images, where both the quantity and quality of facial landmarks are much higher. Side face 

recognition, by comparison, needs datasets specifically curated to include profile images, which are 

less common and present additional challenges due to the limited visibility of facial landmarks. The 

method focused on geometric features, such as the outline of the human face, the position and shape 

of the nose, and the distance between the visible eye and ear. Advancements in deep learning have 

also played a role in overcoming some of the challenges associated with side-face biometrics. The 

Convolutional neural networks (CNNs) are trained to recognize patterns in profile images, even with 

the limited information provided. We propose a novel hybrid model that combines The Principal 

Component Analyzer (PCA) with CNN to address the challenges of side face biometrics recognition. 

The increasing demand for accurate and efficient biometric recognition systems has driven the 

development of models that can handle the complexity and variability of real-world data. Side face 

biometrics, in particular, present unique challenges due to the asymmetry and occlusion often 

associated with profile images. By leveraging PCA, a powerful statistical technique, we reduce the 

dimensionality of the profile images while retaining the most significant features necessary for 

accurate recognition. With the very first two principal components, we have taken 70% of the 

necessary features from the side face for further process. However, while PCA excels in simplifying 

data and reducing computational complexity, it does not inherently capture spatial hierarchies or 

patterns that are crucial for recognizing facial features in images. This is where the integration of 

CNNs becomes essential. It is also very important in preparing the image data by reducing it with the 
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help of the Principal Component Analysis (PCA). Low dimensionality retains considerable features 

of the original data, excluding the features, that can be deemed redundant and noisy. This reduction 

helps in reducing the number of inputs that can be dealt with by the Convolutional Neural Networks 

(CNN). Facial features that form the most important patterns, textures, and edges can be highlighted 

by PCA and adjusted to CNN’s focus when recognizing a face. On dimensionality reduction, the PCA 

process is followed by CNN, which exhibits the effect of deep learning in revealing discriminative 

features and numerous relations inside the compressed domain. The integration of PCA and CNN is 

advantageous in side face profile identification since small differences can be of paramount 

importance between one person and another. It implies the foundational work that helps PCA to 

increase the effectiveness and accuracy of CNN in distinguishing between different people and we 

get 99.99% accuracy with the FEI-Faculdade de Engenharia Industrial dataset of different 200 objects 

with different 14 poses. Therefore, PCA and CNN enhance the efficiency of biometric systems and 

help to improve their results in the side-face recognition task.  

 

The hybrid model's architecture is designed to optimize the balance between dimensionality reduction 

and feature extraction. PCA provides a compressed representation of the side face images, ensuring 

that the CNN can process the data more efficiently without being overwhelmed by irrelevant details 

or noise. The CNN, in turn, enhances the model's ability to recognize subtle variations in facial 

features that are unique to each individual. This combination of techniques enables the model to 

achieve higher accuracy in side face recognition tasks compared to using PCA or CNNs alone. One 

of the key advantages of this hybrid approach is its ability to generalize well across different datasets. 

Side face biometrics can vary significantly due to changes in lighting, pose, and facial expressions. 

By using PCA to reduce the dimensionality of the data, the model becomes more robust to these 

variations, as it focuses on the most essential features. The CNN, with its capacity for learning 

complex spatial relationships, further enhances the model's ability to adapt to variations in the data. 

In conclusion, our proposed hybrid model that combines PCA with CNNs offers a powerful solution 

to the challenges of side face biometrics recognition. Combining the ability of PCA in high-

dimensional data replacement with convolutional neural networks in feature representation the model 

possesses high accuracy with low computational power. Not only does this approach solve the 

problem of identifying profile image records, but it also serves as a basic case for using the 

generalization method for other biometric databases. The use of these techniques improves the 

generalization of the model in the prediction of Side facial features, irrespective of variations such as 

lighting or facial expression making the model ideal for applications in biometric recognition in the 

real world. 
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Chapter 1  

 

1. Introduction 
 

“Biometric is the automated recognition of individuals based on their behavioral and 

biological characteristics.” 

 

In Greek, "Bio" means "life”, and "metrics" means "measure", which is where the name "biometrics" 

originates. It is the study of quantifying the physical characteristics and attributes of living things. 

The evolution of Automated Biometric Systems (ABS) in recent decades has been facilitated by 

extraordinary advances in computer processing technology, particularly in image processing. 

Remarkably, many modern automated procedures are based on historical principles used for 

identifying individuals for hundreds or thousands of years. Characteristics connected with the human 

body, such as the face, voice, and movement, are among the earliest and simplest examples of 

identifying individuals based on distinguishing qualities. Humans have historically used these 

characteristics for identification [108]. While the use of automated biometric systems is a relatively 

new development, the fundamental ideas behind them date back to ancient times. Biometrics involves 

using computers to recognize human physical and behavioral characteristics, capturing traits for one-

to-one authentication and one-to-many comparisons. Biometric measurements are categorized into 

two main types:  

1. Physiological traits. 

2. Behavioral traits.  

Physiological features can make an individual's body different from another's, so behavioral traits 

simply mean a way to distinguish above-average and below-average humans. As an example, Figure 

1.1 illustrates two different types of biometrics. Physical characteristics refer to things such as the 

face, ear shape, fingerprints, and DNA. These qualities of our bodies are classically defined as 

“somatic” and tend to remain rather fixed over the life course. On the other hand, behavioral traits 

are rooted in an individual's varied behaviour patterns. Behavioral characteristics (such as walking, 

or the way a person speaks), and Signature styles. Those traits can change for any number of reasons 

over time, but they stay distinct. 
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Figure 1.1 illustrates the many biometric types, emphasizing the diversity of traits and patterns that 

can be used for identification and authentication. 

 

Figure 1.1 Various types of biometric modalities [108] 
 

In theory, any physiological or behavioral trait can serve as the foundation for a biometric system, 

provided it meets the following criteria [108]: 

1. Universality: This is a quality every human should have. The implication is that the selected 

biometric trait should be frequent among nearly all of the sample population, and atypical 

occurrences, if any exist, are few and minor. 

2. Uniqueness: The traits must vary for each person. Biometric assets upon which identification 

and differentiation are based do not have to be common amongst two or more bodies. 

3. Permanence: To achieve this, the biometric trait must remain constant over time and change 

only slowly because of aging or other factors to enable correct system operation. 

4. Collectability: Anything using biometric data should be easily measurable -- it's very 

intrusive. The manner of collection shall not cause discomfort or interfere with performing 

the biometric authentication process on an individual. 
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5. Performance: Regardless of whether or not the system can place a person, it should recognize 

only persons and people through numerous scans of that very same biometric characteristic. 

This includes precision, accuracy, and the ability to deal with variation in a trait. 

6. Resistance to circumvention: The biometric trait that is chosen should be hard to replicate 

or cheat. A better system is one that, even when facing artificial attempts to emulate the 

biometric data (e.g., via photos or voice recordings), does not easily fall for being spoofed. 

7. Acceptability: Everyone should feel comfortable and willing to provide their biometrics for 

Identification. However, ethical considerations and the issue of privacy are major factors as 

well that need to be addressed if future biometric technologies truly want widespread 

acceptance. 

8. Circumstances of use: The biometric trait must be applicable across different scenarios and 

should add versatility regarding environmental conditions, light, noise, etc. This makes the 

biometric system practical and flexible. 

Biometric systems evolve in tandem with technological advancements, incorporating requirements 

for use, and improving accuracy, security, and user experience, among other things. These concepts 

can also be used as guidelines for managing and putting biometric technologies to use in many areas, 

such as surveillance, access control, and identification services. However, it is critical to recognize 

that virtually no systems provide perfect security for biometric applications. None of the biometric 

methods discussed can fully meet all the aforementioned criteria. Each biometric method offers its 

strengths and limitations, with the choice of implementation depending on the desired security level 

and the specific convenience needs of the application. 

1.1 Biometrics traits and attributes  

Among the various characteristics in humans that can be categorized as biometrics are fingerprints, 

facial features, and signatures. In addition, features like facial structure, retina patterns, hand and 

finger geometry, and hand vein patterns are also considered. Other methods include voice recognition, 

DNA, scent, and typing patterns [11]. These diverse attributes provide a range of options for biometric 

identification, with each offering distinct advantages that make them suitable for different 

applications.  

Table 1.1 gives a comprehensive comparison of the attributes of various biometric traits. The typical 

stages or phases that constitute a biometric system are as follows: 

1. Enrolment: During the enrolment phase, the system captures the unique biometric traits of 

each individual. This step is essential for accurate future identification. Various sensors are 
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utilized to facilitate this data collection process. These sensors may consist of microphones 

for capturing voice patterns, cameras for recording facial features, and fingerprint scanners 

for obtaining unique fingerprints. Each type of sensor plays a crucial role in gathering specific 

biometric information. The combination of these sensors provides a comprehensive profile of 

the individual. Ensuring precise data collection during enrolment is vital for effective 

biometric authentication. This approach significantly enhances both security and accuracy in 

identification. Ultimately, utilizing diverse sensors during enrollment strengthens the overall 

biometric system. This technology is pivotal for reliable identity verification across various 

applications. 

2. Detection and Segmentation: The detection and Segmentation step is crucial in multimodal 

data, such as images, in which the system has to locate and then extract/segment, or isolate 

where this specific kind of n-trait lies properly for processing. 

3. Feature Extraction: A template or feature vector is created in this stage, which truly 

represents the biometric trait by extracting some unique characteristic from it. Carried out on 

features, which are the basis for successive comparisons and matchings. 

4. Matching: In the matching phase, it compares two feature vectors (usually an enrolled v/s 

presented biometric traits). This inherently allows for a similarity score or distance metric to 

be computed that provides the quantified level of likeness between both traits. The output of 

the process is used to determine whether or not the presented trait matches the enrolled one. 

1.2 Biometric Systems 

Biometrics involves the automated identification and verification of individuals through measurable 

physical or behavioral traits. This technology is built on unique characteristics that differentiate one 

person from another. However, it faces several challenges that can affect its effectiveness. These 

challenges can be clustered into four main classes: 

(a) In the area of Accuracy 

(b) In the area of Scalability 

(c) In the field of Security  

(d) In the field of Privacy.  

Biometrics is an exciting challenge in recognising patterns, and when used well, it can be a powerful 

technology to improve security, prevent fraud, and make interactions between people and machines 

easier. Its potential comes from three main features: 
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a) Identification: deals with the procedure of establishing the ownership of an individual of the 

system in question. Biometrics is instrumental in this confirmation as it can give a fairly 

accurate assurance concerning the identity of a requested enrolment through the involvement 

biometric sample. 

Now, imagine a situation where somebody is using your name, for example, Girish Kumar, in the 

system and presenting his fingerprint. It takes the presented fingerprint to the enrolled one and 

validates/ rejects that claim. In the present world, identity is extensively used in business areas such 

as computer network identification, data protection, Automated Teller Machines (ATMS), credit card 

transactions through phone or Internet, and banking through mobile banking. 

It enables biometric technology to maintain the integrity and security of interactions within these 

contexts, thereby protecting sensitive data & resources. Principles of Cost and Usability for an ID 

Attestation Application: Provide Fashion. Because these are broadly used, there is an economic 

motivation for them to balance effective security with a positive user experience. The importance of 

biometric technology in these efforts, with its inherent capabilities to provide effective identification 

regardless of the inconvenient and circumstantially challenging real-world environments, is manifest. 

b) Large-scale identification involves the process of determining whether an individual's 

biometric sample matches any of the entries within a substantial database. In this scenario, the 

goal is to verify if the pattern corresponds to any of the enrolled identities within the database, 

which could potentially include millions of records. 

The number of applications that require large-scale identification is vast and includes such diverse 

arrays as the ATM card in your wallet to bio-nanotechnology. From ID cards like Aadhar Cards or 

national cards, border control& parentage determination to voter ID cards that can also be used in 

finding missing children and issuing driving licenses the same as well would help with issuing a death 

certificate; helping out criminal investigations purposefully by providing a variety of biographical 

details on demand at welfare dispensation services. One application is concerned with the domain, 

e.g., security, public safety, and another one is for human-facing administrative processes. At the 

heart of such large-scale ID applications is a requirement for high levels of throughput and velocity. 

The volume of data monitored in DISPATCHED systems is significantly greater, with minimal 

human interaction. National ID systems are designed for the comprehensive administration of 

citizens' identities and must be able to accommodate all such IDs. 

Things like the effectiveness of security measures and how smoothly your administrative tasks run 

are determined largely by how efficiently these large-scale identification applications can be. At the 

heart of these applications lay biometric technologies, capable of matching quickly and accurately 
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biometric patterns against large databases, thus allowing for rapid identification, with low levels of 

human intervention. 

c) Screening applications involve discreetly determining whether an individual is included in a 

designated watch list of identities. These applications serve to identify individuals of interest 

without drawing attention to the process. 

The primary goal of screening is to swiftly identify individuals who may pose a potential threat or 

are of interest to security personnel. Several key characteristics define screening applications: 

• Minimal Enrolment Phase: Unlike other biometric applications, screening applications don't 

typically involve a conventional user enrolment phase. Instead, they aim to identify 

individuals without requiring them to be pre-registered in the system. 

• Challenging Imaging Conditions: Screening scenarios offer only limited control over 

subjects and imaging conditions. Individuals in such scenarios may be unaware of the 

biometric data collection process, and the conditions may not be optimal for image capture. 

• High Throughput with Limited Human Supervision: Screening applications require the 

ability to process a high number of subjects quickly and with minimal human intervention. 

Efficiency is crucial, as lengthy interactions could disrupt the flow of people. 

Both large-scale identification and screening applications rely heavily on biometric technology due 

to their unique requirements. The token-based or knowledge-based identification methods do not 

apply to such situations. The biometric approach acts as a reliable medium of ensuring the 

acknowledgement of individuals from the watch list within the safety and security of various 

scenarios. It allows discreet and quick assessment procedures that enhance the functioning of security 

measures with high operational efficiency. So, a biometric can be used either as an identification tool 

or for verification. For this specific tactic, there is a method to identify an individual based on his or 

her feature vector in less than 2 seconds of inference time with almost full model accuracy. 

Conversely, the verification process takes two inputs — one for a feature vector and another 

associated identity as an output. It then checks if the biometric trait that they provided corresponds 

with their desired identity or not. Figure 1.2 details the enrolment phase, conferring the verification 

and recognition. This phase includes vital steps during which the biometric characteristics of an 

individual are collectively enrolled in the system. It is the basis of subsequent detection or 

confirmation steps. The verification process verifies the veracity of a claimed identity by checking 

for consistency between submitted biometric data and an asserted identity. Enrolment uses that 

biometric trait to create a dataset, while recognition does the opposite—it tries to match against an 

already created database given the presented datasets. These processes together form an operational 



Page 7 
 

 

 
 

framework of a Biometric system, which maintains the checks it is supposed to fulfil as a secure and 

efficient identification means. Which is the best way to identify recognition or verify, and that largely 

depends on what your application's requirements according them; each has different use cases. 

 

Figure 1.2 Enrolment, Verification, and Recognition procedures [109] 

1.3 Multi-Biometric Systems 

The base idea of biometric schemes can generally be categorised into two main types: unimodal and 

multimodal. Multimodal biometrics involves the integration of 2 or additional distinct biometric 

modalities within a single identification framework. On the other hand, unimodal biometric systems 

come with a range of associated challenges, including issues such as data corruption due to noise, 

variations within the same class, limited flexibility, lack of universality, susceptibility to spoof 

attacks, and strict requirements for error rates. 

The concurrent utilisation of multiple biometric traits offers an added layer of safety to recognition 

systems. Such classifications are referred to as Multi-Biometric Platforms, also known as multimodal 

systems. Their growing popularity stems from their ability to address several limitations that can 

impact single biometric traits on their own. Some of these limitations are outlined below: 

• Iris Recognition Limitations: The iris, while a strong biometric trait, can be affected by 

factors like unacceptable distance between the camera and the subject during acquisition. 

Additionally, partial coverage by eyelashes and eyelids can hinder accurate recognition. 
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• Face Recognition Vulnerabilities: Facial recognition can be vulnerable to spoofing attempts 

using masks or makeup. Moreover, facial features can change over time, reducing stability. 

Accessories like scarves, hats, and glasses can also obscure some portions of the face. 

• DNA Feature Extraction Challenges: The process of extracting DNA features is time-

consuming, making it impractical for real-time identification scenarios. 

• Soft Biometrics Sensitivities: Soft biometric traits like gait and keystrokes can be influenced 

by the emotional state of the individual. In such cases, obtaining a consistent signature of the 

biometric trait may not always be feasible. 

In practical applications, a biometric system needs to fulfil several criteria. It must achieve the 

specified level of recognition accuracy while maintaining speed and resource efficiency. Moreover, 

it should not pose any harm to users, gain acceptance from the target user population, and exhibit 

robustness against various fraudulent techniques and attacks directed at the system. 

Considering these requirements, the present thesis delves into the exploration and utilisation of 

multimodal biometric schemes. By combining multiple biometric modalities, this approach aims to 

address the limitations and challenges associated with unimodal systems. Integrating different 

biometric traits can enhance accuracy, reliability, and security in identification processes. By so 

doing, the thesis seeks to advance knowledge in creating improved and reliable biometric systems 

that will be useful in real-life situations. The thesis focuses on identifying an appropriate fusion level 

of Multimodal biometrics, to analyse the integration techniques and implement the concept of ML-

Machine Learning. These initiatives are meant to enhance the biometric system's performance by a 

very large percentage. 

The study done in the research work reveals several algorithms that seem to have tremendous 

potential in correcting faults with either the FAR or the FRR. As such, given these algorithms’ 

integration, one can lay down the foundations for the subsequent advancements of multimodal 

biometric systems and their implementation into different uses. It could be possible to achieve greater 

accuracy and reliability of the implemented methods in multimodal schemes than in one-mode 

schemes. 

In a standard biometric system, as illustrated in Figure 1.3, there are four primary components: the 

first one is the sensor second one is the feature extractor third one is the matcher, and the last one is 

the decision module. Each component serves a specific role within the system's operation. 

1. Sensor: The first component is used to collect biometric information about any specific 

person. It collects raw biometric data, including fingerprints, face features, voice samples, and 
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other pertinent characteristics. In some circumstances, a quality estimation algorithm 

determines if the acquired data is suitable for processing. 

2. Feature Extractor: The feature extractor then processes the acquired biometric data to get 

relevant and distinctive features. It eliminates the fundamental characteristics defining the 

biometric trait and creates a new representation known as the “Feature Set.” Every user should 

have a dissimilar feature set that almost has no resemblance to other users, which must resist 

variation in samples from a similar user. 

3. Matcher: Hence, the work of the matcher is to establish a match between the feature set that 

has been extracted from the biometric sample (called the query) and that which was formed 

at the time when the enrolment process was going on and stored in the database. This is so 

because it quantifies the extent of similarity or dissimilarity between the two sets of features 

and therefore offers a measure of match. 

4. Decision Module: The decision module checks the biometric sample against the stored 

template to confirm or deny the identity claim, based on how similar they are. If the similarity 

meets a certain threshold, the system approves the authentication. 

When combined, these three elements form a comprehensive biometric solution capable of verifying 

identities based on distinct, unique characteristics [110]. The system meticulously examines each 

input, comparing it against stored data to ensure accurate identification. By analysing the biometric 

sample—whether it's a facial scan, fingerprint, or voice pattern—the system applies advanced 

algorithms to determine whether the input matches the enrolled data. 

The process ensures that only authorized individuals gain access, offering high levels of security and 

trust. Each input undergoes a rigorous comparison, enabling the system to detect even slight 

variations and prevent unauthorized access. With its ability to analyse multiple factors and make 

intelligent decisions, this biometric solution provides a robust, reliable method of verifying identity 

in critical applications like secure facilities, digital services, and more. The system’s precision and 

adaptability make it a trusted tool for safeguarding access while maintaining convenience for 

authorized users. 
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Figure 1.3 A General Biometric System [110] 

1.4  Biometric Scenario  

During the verification process, an individual identifies, and the biometric system confirms or 

denies their identity by comparing a new sample to an existing one. The acceptance or denial of 

the identity claim is determined by this comparison. Consequently, there are four potential 

outcomes to this undertaking: 

1. True Accept: The system correctly confirms an identity claim, matching the presented 

biometric sample with the stored one. 

2. False Accept: The system mistakenly validates a false identity claim, incorrectly matching 

the biometric samples. 

3. True Reject: The system accurately rejects a false identity claim, recognizing that the 

biometric samples do not match. 

4. False Reject: The system wrongly denies a valid identity claim, failing to match the biometric 

samples due to variations or other factors. 

Errors can occur in the verification process, and two main types of errors can be made: 

1. False Accept: When the working model allows an untrue uniqueness claim in the argument, 

then a false acceptance error is generated. That type of error could prove to be security-

threatening, as an intruder could be allowed to access it. 

2. False Reject: When a person whose claim of identity is genuine is rejected by the system, 

then there is a case of false rejection error. Such errors might result in inconvenience and 

denial of access to the right users, as recommended by scholars. 

A lower EER suggests a more accurate biometric system. 
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1.5  Biometrics Design Complexity 

The complication of designing a biometric system is influenced by 3 primary factors: The first one is 

accuracy, the second one is scale (database size), and the last one is usability, as depicted in Figure 

1.4. Typically, a biometric system excels significantly in one of these factors while pushing the limits 

of that axis. Although successful systems have been developed based on this principle, the current 

major challenge is to devise a biometric system that balances all three factors effectively. Achieving 

this balance would overcome the inherent limitations of biometric systems and lead to more 

successful solutions. Presently, the difficulty is to create a biometric system that excels in accuracy, 

can handle large-scale databases, and is user-friendly. Such a system would break through the 

fundamental barriers that biometric systems often encounter and would offer solutions that are more 

secure, robust, and cost-efficient [110]. By addressing these core research issues, significant 

advancements can be made in the field, pushing the boundaries of what is currently achievable. This 

progress would result in biometric systems gaining greater acceptance, raising awareness about their 

capabilities, and potentially yielding profitable outcomes. 

 

Figure 1.4 Biometric Design Complexity [110] 
 

1.5.1 Accuracy 

The ideal biometric system should incorporate the ability to make accurate decisions whenever a 

biometric sample is presented to it, unlike a password or token. Nonetheless, biometric systems that 

are in use are not as accurate and can therefore produce two main categories of error. 

a) False Match: False Match is carried out when the biometric trained/untrained undergoes 

training and the input pattern is matched to a different pattern from the record that is held or 

it wrongly links the input pattern with a different person during the verification process. 
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b) False Non-match: It occurs when a biometric trained/untrained model in verification or 

identification does not correctly match the input pattern with any correct pattern record, or 

when the biometric trained/untrained model in verification fails to recognize the input pattern 

as the correct identity. 

If one wants to get a deeper insight into the biometric system, it is recommended that one measure a 

biometric system’s performance using a “Receiver-Operating-Characteristic – ROC “curve. Such 

a curve enables a full view of system accuracy as shown by the graph displaying the relative 

frequency–verification rate (true accept rate) against the FAR, or FRR against FAR.  

 

Table 1.1: Error Rates of Different Biometrics [1] 

Biometric FNMR% FTE% FMR1% FMR3% FMR2% 

Front Face 4 Not 

Applicable 

10 12 40 

Hand 

Geometry 

1.5 2 1.5 Not 

Applicable 

Not 

Applicable 

Finger  2.5 4 <0.01 <1 .01 

Voice-

Pitch 

15 1 3 Not 

Applicable 

Not 

Applicable 

Iris-Retina 6 7 <0.001 Not 

Applicable 

Not 

Applicable 

 

The accuracy performance of biometrics, as shown in Table 1.1, has been evaluated through 

extensive third-party testing. In the table, the following notations are used: 

i. FMR1: FMR1 represents the verification match error rate which indicates the rate at which 

false matches happen during the verification process. 

ii. FMR2 and FMR3: These denote the (projected) match error rates for large-scale 

identification and screening scenarios. FMR2 corresponds to a database size of 1 million 

identities, while FMR3 corresponds to a database size of 500 identities. 

iii. N/A: This notation signifies that the data for a particular entry is not available or not 

applicable. 

In summary, these metrics reveal how accurate the biometric systems are in a variety of cases and 

with different database sizes. 
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Face recognition results based on FRVT 2002 [1] et Eyematic data extrapolation. Jain et al. myself, 

fingerprint autogenetic and errors [2], straight alpha-numeric text 1.5 to 8 characters, AutoCode code 

only, right index finger, including invalid Vanner type: Fingerprint screening and identity source, 

two-finger state-of-the-art AFIS performance for 6-million individual comparison [3]. False match 

rates for hand geometry, voice, iris, and fingerprint are from various sources: severe arthritis 

incidence for hand geometry [4], speech disability statistics from the 1997 US census for voice, 

Sanchez-Avila et al.  [5] for iris, and Jain [6] for fingerprint. 

The technologies also vary in their automation potential and sensing-at-a-distance capabilities. 

According to Jain et al. [7], there are a total of three main reasons for the bad accuracy of biometric 

systems, highlighting the challenges in achieving flawless biometric accuracy. 

1. Information Limitation: The amount of unique and consistent information in biometric 

pattern samples is inherently constrained by the signal's capacity. The specific characteristics 

that define an individual's identity may have certain limitations. These constraints can restrict 

the information content available in biometric identifiers. As a result, this limited data can 

impede accurate and reliable identification. Ultimately, the effectiveness of biometric 

systems can be affected by these inherent restrictions. Addressing these limitations is 

essential for improving identification precision. 

2. Representation Limitation: In an ideal situation, a biometric system should collect all the 

unique and important information from the measurements it takes. But in reality, the systems 

often use simplified versions of this information. These simplified versions might miss some 

important details, which can lead to mistakes in identifying people. So, while biometric 

systems are helpful, they might not always get it exactly right because they're not capturing 

all the necessary details. 

3. Invariance Limitation: Once a representation scheme is in place, creating an ideal matcher 

requires accurately modelling the relationship of invariance among patterns from the 

identical class, even under variable conditions. This task is complex due to variations in 

environmental conditions, imaging equipment, and physiological factors affecting captured 

biometric data. Building a matcher that can robustly handle these variations while producing 

accurate matches poses a significant technical challenge. 

1.5.2 Scale 

In verification systems, the database size doesn't matter much as it involves a 1:1 match 

between submitted samples and enrolment records. However, in large-scale identification 

systems with numerous identities, performing sequential 1:1 matches is inefficient, requiring 
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scalable solutions to maintain throughput and control false-match error rates as the database 

size increases. 

Table 1.2 Scaling Performance of Different Biometrics [1] 

Biometric 

Traits 

Confirmation ID Throughput Transmission  

Throughput 

Finger 10.00 m seconds 1 per minute More than 1 second 

Front Face 90.00 µseconds 0.656 per minute 22.00 per second 

Iris Retina  Less than 1 

µseconds 

Greater than 1 

per second 

Greater than 2000.00 

seconds 

 

The reported performance metrics for biometric systems are subject to certain considerations: 

• Fingerprint Screening and Identification: The evaluation assumes fingerprint screenings 

are part of the 2-finger fingerprint screening, and the performance utilizing 10 fingers for all 

other test modalities represents SOTA, which is the state-of-the-art Automated Fingerprint 

Identification System (AFIS) performance in fingerprint identification. 

• Face and Iris Matching Speeds: 1:1 Match speed for face taken from Chang [4] and Ross 

[9], and for iris taken from Ross et al.  [8]. Note that the values provided here are rough order-

of-magnitude estimates without time for biometric presentation or feature extraction. These 

are general benchmarks for trending with what state-of-the-art system performance is 

obtainable. 

It mentions that these values are not directly comparable because they might differ in automation, as 

well as the CPU power and sensing capabilities. Systems for millions of identities and nearly real-

time applications can be scaled, but throwing 100 million identities at a near-real-time system is still 

hard to tackle. The challenges and high computational demands represent the biggest obstacles 

encountered, emphasizing continued research and development on biometrics. 

1.5.3 Security 

Security and accuracy of biometric-based systems are of the highest priority. Although there are 

many attack plans against biometric systems available [10], there are two major disapprovals of the 

biometric technology that are yet to be satisfactorily dismissed: 

• Non-Secrecy: Biometric identifiers are less secrets. That means that an attacker could possess 

knowledge of legitimate biometric data, allowing them to fraudulently input this data into the 

biometric model to gain unauthorized access. Its concern revolves around the possibility of 

attackers having access to or knowledge of the biometric characteristics of legitimate users. 
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• Irrevocability in Patterns: Biometric patterns are not revocable. Once a biometric identifier 

has been compromised or exposed, the legitimate user cannot change or revoke their 

biometric traits to prevent unauthorized access. This poses a challenge when an individual's 

biometric data has been compromised. 

It's important to note that knowing biometric identifiers doesn't necessarily equate to the ability to 

inject those identifiers' measurements into the system. The challenge lies in designing biometric 

systems that are robust and secure enough to distinguish between legitimate and manipulated 

biometric inputs. Such a system would only accept genuine biometric presentations and would not 

be fooled by tampered or spoofed measurements. 

By creating a secure biometric system that reliably distinguishes between real biometric data and 

fake or altered inputs, we could eventually eliminate the need to revoke compromised identifiers 

altogether. This would mark a major step forward in biometric technology and security, tackling 

issues around the lack of privacy in biometrics and the inability to reverse compromised biometric 

data. 

1.5.4 Privacy 

The reliability of a biometric system in providing undeniable proof of an individual's identity raises 

several valid concerns among users. These concerns touch upon various aspects of privacy and 

potential misuse: 

• Privacy and Tracking: Users worry whether the indisputable proof offered by biometrics 

could be exploited to monitor individuals, potentially encroaching upon their right to privacy. 

The capability of biometric systems to uniquely identify individuals has led to concerns about 

surveillance and unwanted tracking. 

• Unintended Use of Biometric Data: Some people fear that the information obtained from 

the biometric data collected will be used in other ways different from what is planned. For 

instance, users may be concerned that fingerprints used for controlling access, can be used to 

search against criminal databases. This concern stems from the potential for biometric data 

to be used in ways not intended when originally entered into the system. 

• Cross-Linking of Data: Another issue is that machine learning can be used to correlate 

information from different records of one individual using biometric data. For instance, 

the joining of health insurance records with grocery shopping references could be just a 

violation of privacy. 

There is a growing necessity to implement safeguards that ensure the ethical and appropriate use of 

biometric data. A significant concern is how to reassure individuals that biometric technologies are 
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employed solely for their intended purposes. People need to feel confident that these systems are not 

being misused or repurposed for unintended objectives. Ensuring trust in biometric systems is vital 

for widespread acceptance. One of the biggest challenges in deploying such information systems is 

establishing verifiable functionality. This means that users must be able to confirm that the systems 

operate as promised. Transparency in the use of biometric data is essential for building trust. 

Furthermore, effective governance policies must be in place to oversee these technologies. Overall, 

addressing these issues is crucial for the responsible advancement of biometric applications. 

Ensuring ethical use will ultimately enhance user confidence in these systems. One way is to create 

a system that records the decisions for every authentication, also logs them in firmware, and then 

only allows people who are registered with their biometrics to use an access control policy 

mechanism. 

  1.6 Biometrics Comparison  

The comparison made on various biometric technologies provides a brief view of the common 

biometric methods mentioned by Sinha (2007) [11]. As with the previous comparisons, (‘H’ – 1), 

(‘M’ – 2), and (‘L’ – 3) are “High”, “Medium”, and “Low”, respectively. Here is one of the most 

often cited lists of biometric choices: 

i. DNA: DNA is indeed unique to each distinct individual, making it a powerful identifier. 

However, its use in various applications, especially for identification, is limited by several 

factors: 

a. Contamination and Sensitivity: DNA can be stolen and misused because it's easy to 

take a sample from someone without them knowing and use it for bad purposes. 

b. Automatic Real-Time Recognition: Current DNA matching technology relies on 

cumbersome and expert-dependent chemical methods (wet processes), making it 

unsuitable for online, non-invasive recognition. 

c. Privacy Issues: Investigation of the DNA test can give information about the 

likelihood of an individual to develop some diseases, about the genetic information, 

it is possible to speak about tendencies of discrimination during job seeking. 

ii. Ear: It has been suggested that the shape of the ear and its cartilage are unique to each 

individual. Ear recognition methods focus on comparing key points on the outer ear with 

specific landmarks. Despite this, ear features alone may not provide enough distinction for 

identification. They are often used in combination with other biometric traits. Consequently, 

ear recognition is not expected to be a primary identifier on its own. 
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iii. Face: Face recognition, a non-intrusive method, primarily uses facial photos for 

identification, with applications ranging from dynamic, uncontrolled scenarios, such as 

airports, to static, regulated verifications, like mug shots. Key methods include analysing 

facial features' location and shape, and overall face image analysis, though current systems 

have limitations in image acquisition and struggle with varying angles and lighting. Reliably 

identifying individuals solely based on facial features remains debatable, necessitating 

automatic face presence detection, localization, and recognition from any viewpoint for real-

world effectiveness. 

iv. Infrared thermogram of the face, hands, and veins: Each person has a unique way of 

radiating heat, which can be captured discreetly by an infrared camera, similar to how regular 

photos are taken. This technology could be used for hidden identification. A system that relies 

on thermograms is non-invasive and doesn't require touching, but it can be challenging to get 

clear images in environments with nearby heat sources, like car exhausts or heaters. For hand 

vein identification, the back of a closed fist is scanned using near-infrared imaging. However, 

one major barrier to using thermograms widely is the high cost of infrared sensors. 

v. Fingerprint: People have used their fingerprints to prove who they are for hundreds of years, 

and studies have shown that this method of matching fingerprints may be a pretty good way 

to find people [12]. Between the ridges and valleys, on the other hand, during the first seven 

months of pregnancy, a fingerprint is formed. Fingerprints of identical twins and people who 

are not identical are different from each other and from finger to finger.  A fingerprint scanner 

now costs about 1200 Rs for large sales, and the cost of support and integration for a 

fingerprint-based biometric is low enough for most uses. The current generation of fingerprint 

recognition systems provides the adequate accuracy required for small and medium-range 

identification systems with fewer than a hundred to a few hundred users and mainly in 

verification applications. A single individual uses several hundred fingers to leave behind 

palms, while the sensors can also take more information from each palm to allow the scanning 

of millions and millions of identities for giant-scale interactions. A disadvantage of the earlier 

fingerprint detectors is the high levels of utilization of computational resources, especially in 

identification. At last, a few people have environmental, genetic, aging, or occupational 

special conditions fingerprint patterns that are not conducive to automatic identification. 

(reads: manual workers who may have a high frequency of wounded or bruised fingerprints 

from too much hard physical labour). 
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vi. Gait: A person's gait is a detailed biometric that describes how they walk in space and time. 

Gait isn't meant to be very accurate, but it can be checked in some low-security situations 

because it can tell the difference. Gait might not stay the same over time due to its behavioral 

nature. This is especially true if there are big weight changes, serious damage to the joints or 

brain, or being drunk. Gait analysis could be a true biometric because learning someone's 

walk is like learning their face. Gait-based systems require a lot of computing power and data 

because they watch video sequences of a person walking and measure several different 

actions of each articulating joint. 

vii. Hand geometry: Hand geometry methods look at the unique features of a being's hand, 

similar to the profile of the palm and the sizes of the portions and fingerprints. These 

verification systems appear resilient to factors like dry climates and skin dryness. This 

stability makes them reliable for biometric identification. However, because hand geometry 

is not very unique, these systems are not well suited to finding individuals in large groups. In 

the same manner, a child’s hand geometry may also develop since children all grow in 

different phases in their lives. It is difficult, for instance, to capture hand geometry data from 

a hand wearing an ornament like a ring or a hand affected by conditions such as arthritis. 

Furthermore, the size of hand geometry systems limits their use in certain products, like 

laptops. Some verification methods use measurements from the whole hand, often focusing 

on the middle and index fingers. While these devices are still larger than those used for other 

biometric methods, like fingerprints or facial recognition, they are more compact than 

traditional hand geometry systems. 

viii. Iris: Between the pupil and the sclera, the ring-shaped portion of the eye changes texture 

during foetal development. This unique pattern remains unchanged during the first two years 

of life. It serves as an interesting identifier, as it is specific to each individual. The early 

development of this texture adds to the uniqueness of a person's eye. This feature plays a 

fascinating role in biometric identification systems. This intricate texture is highly unique, 

making it useful for identifying individuals. Modern recognition systems allow for large-

scale identification based on iris data due to their high accuracy and speed. Each iris is unique, 

even in identical twins, and it's quite difficult to surgically change its texture. In contrast, it's 

relatively easy to detect fake irises, such as those created by designer contact lenses. 

ix. Keystroke: It is believed that everyone has a unique way of typing on a keyboard. While this 

method of identifying people isn't expected to be completely exclusive, it offers enough 

distinguishing details for identity verification. Keystroke dynamics, a type of behavioral 
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biometric, can show notable differences in the typical typing patterns of individuals. 

Additionally, keystrokes can be secretly recorded while someone is entering information into 

a system. 

x. Odor: Each thing is known to emit an Odor indicative of its chemical makeup, and this might 

be utilized to differentiate between different objects. A set of chemical detectors is introduced 

to a breath of air around an object; every detector is tuned to a specific set of (fragrant) 

chemicals. Everyone has a specific part of their body Odour, whether it’s an animal or a 

human being. It's unclear whether deodorant Odors and the changing chemical makeup of the 

surroundings can affect the invariance of body Odors. 

xi. Palm print: I was intrigued by the idea that the palmar surface of our hands is a pattern that 

can’t be considered random because it is too studied: it is not unlike fingerprints’ ridges and 

valleys. Since the length of the palm is much larger than an individual finger, it is capable of 

scanning even better and more diverse types of impressions than those of fingerprints. That 

is the reason they have to store results over a larger area; palm print scanners cost more than 

fingerprint sensors and are bigger. Furthermore, human palms have more crucial 

characteristics that can be distinguished, including the main lines and wrinkles, which require 

relatively low-defined images along these features for identification at comparatively lower 

cost [13]. Finally, hand geometry and features of all parts of the palm, such as ridges, major 

lines, and wrinkles, can be added to palm geometry to make the most accurate biometric 

system. This can be done with a high-resolution palm print reader. 

xii. Retinal scan: The recent structure of retinal vasculature and its distribution over each person’s 

and each eye’s surface is believed to be individual. As it is acknowledged as the safest 

biometric, the human retinal vasculature is almost impossible to redesign or counterfeit. To 

capture a defined sector of the retinal vasculature, a person aligns the eye with an eyepiece 

and aims at a particular sector in the visual field. A subject must collaborate with the 

communicator, connect visually, and exert considerable effort to capture the image. 

Consequently, retinal biometrics face limited acceptance. Additionally, the public often 

disregards retinal scans since they can reveal medical conditions like hypertension. 

xiii. Signature: It is widely acknowledged that handwriting reveals aspects of an individual's 

personality. In various domains such as politics, law, and economics, signatures serve as a 

recognized form of authentication. Although they require effort and physical contact with a 

writing instrument, signatures remain widely accepted. As a form of behavioral biometric, 

signatures are influenced by the emotional and physical states of the signatory and can change 
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over time. Some individuals possess highly distinctive signatures, with significant variations 

from one impression to the next. Additionally, skilled forgers may successfully replicate 

signatures, potentially deceiving authentication systems. This variability and potential for 

forgery raise concerns about the reliability of signatures. Furthermore, factors like 

hypertension contribute to the public's hesitance toward retinal scan biometrics. Overall, while 

signatures hold value as biometric identifiers, their limitations must be acknowledged. 

xiv. Voice: Voice is both a behavioral and physiological biometric. An individual's voice is 

fleshed out by the form and dimensions of the fellow appendages (used to make sounds — 

e.g., the mouth, nasal cavities, lips, and vocal tracts), as in any case. Standard physiological 

properties of human speech are the same for every person, but you can hear our habitus in 

behavioral speech (behavioral speech changes along with time because we grow up, get ill, 

catch a cold, or just feel sad) and voice lacks individuality so identification based on voices 

would not be possible. A text-dependent speech recognition system works by asking the user 

to say a fixed sentence that has been predefined later. Despite what the speaker says, he can 

always be identified using a text-independent speech recognition system. Speech-based 

recognition is limited by the sensitivity of speech features to multiple conditions, such as 

noise in the background. Phone-based use cases. In phone usage, speaker identification also 

performs well, but the poor sound quality of this communication channel results in a lower 

quality of the sound stream that has a foreign key.  

Table 1.3 reflects a significant comparison of the biometric approaches described above on seven 

parameters. Most importantly, the needs of the application will greatly determine its suitability for a 

particular biometric technology. 

Table 1.3 Assessment of biometric traits  

“1-High, 2-Medium, 3-Low” [111] 

Biometrics Universality Uniqueness Permanence Collectability Performance Acceptability 

Human Face 1 3 2 1 3 1 

Human Finger-

prints 

2 1 1 2 1 2 

Hand-Geometry 

of human 

2 2 2 1 2 2 

Keystrokes by 

humans 

3 3 3 2 3 2 

Hand-Veins of 

body 

2 2 2 2 2 2 

Iris sensitive 

region 

1 1 1 1 1 3 
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Retina part 1 1 2 3 1 3 

Signature 3 3 3 1 3 1 

Voice-based 

biometrics 

2 3 3 2 3 1 

Facial- 

Thermograph 

1 1 3 1 2 1 

Odor of the body 1 1 1 3 3 2 

DNA structure 1 1 1 3 1 3 

Gait type 2 3 3 1 3 1 

Ear Canal with 

different edges 

2 2 1 2 2 1 

1.7 Biometric Data Processing Steps 

All biometric data will be transformed according to the processing steps described in Figure 1.5 

 

Figure 1.5 Processing steps of a biometric system [112] 
 

a) Image capture or acquisition: The biometric data (like face, iris, signature, fingerprint) is 

digitized using input devices (like a digital camera, fingerprint scanner, or iris scanner) and 

stored in memory. 

b) Preprocessing: The acquired data is prepared for feature extraction by normalizing the signal 

and removing biases, such as rotating and thinning fingerprints. 

c) Feature extraction: From the pre-processed data, basic components are selected to eliminate 

complexity and make the identification of patterns possible for all biometric types. 

d) Template storage: The pull-out features are stored securely in a database for future reference 

and biometric operations. 

Threshold computation: Presentations from the user and impostors are matched to determine a 

threshold for identity verification. Thresholds can be system-wide or user-specific to minimize 

errors, though some modalities like fingerprints may not need a threshold. 
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1.7.1 Biometric Operations 

The processing steps mentioned earlier will be utilized in the biometric operations. 

i. Enrolment: A user is added to the biometric system. Several samples of that user's biometrics 

are collected, then prepared, turned into usable features, and finally processed. 

ii. Verification: The claimed user's model will be compared to the user's biometric data 

provided for identification claims. The user's biometric data for the identity claim is obtained, 

pre-processed, translated into features, and post-processed. Next, it is matched with the model 

of the claimed person, and the resultant score is compared to either a generic threshold value 

or the stored threshold calculated for the claimed user. 

iii. Identification: To find the most likely source of the biometric presentation, the user model 

is searched through the database. It is recommended that the source of the performance be 

the user model that accepts the highest score for the presentation. 

1.8 Biometric Applications 

The following categories sum up biometric applications: 

i. Law Enforcement: Probably the greatest user base for biometrics is the law enforcement 

community. Automated Fingerprint Identification System (AFIS) technology is utilized by 

police forces all over the world to identify suspects, match finger photographs, and process 

suspects.  

ii. Banking: Biometric security can be applied to transactions at the point of sale and Automated 

Teller Machines (ATMs), which are especially susceptible to fraud. For both bank consumers 

and bankers, other expanding markets like phone and online banking must likewise be 

completely secure. Numerous biometric technologies are currently vying for acceptance 

across these wide-ranging, varied industry opportunities. 

iii. Computer Systems: Literally, biometric technologies are configured for the protection of 

computer networks (or logical access control). It has great potential, especially for the market 

to move to Internet applications in a big way, at least as far as biometrics is concerned. The 

field is moving quickly as thieves are becoming more interested in bank account information, 

commercial intelligence, credit card numbers, and health records. 

iv. Physical Access: Biometrics are increasingly utilized globally to enhance security in various 

environments, including schools, hospitals, amusement parks, nuclear facilities, military 

bases, and retail stores. As the demand for improved security grows among parents, 

businesses, and governments, biometrics is likely to become more widely accepted and valued 
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as a security measure. The potential applications for this technology are extensive. For 

instance, homes and vehicles, typically seen as safe havens, are still vulnerable to theft. If 

biometrics are effectively marketed and made affordable, they could represent an optimal 

solution for security concerns. Their ability to offer unique identification can deter 

unauthorized access and protect personal property. Furthermore, the ongoing advancements 

in biometric technology will likely increase its reliability and efficiency. As society becomes 

more aware of the benefits, the integration of biometrics will continue to expand. Ultimately, 

embracing this technology can lead to a safer environment for everyone. The future looks 

promising for biometrics as a key component of security strategies. 

v. Benefit Systems: Biometrics are particularly important in benefit systems like welfare to 

combat fraud. Biometrics is in a great position to take advantage of this enormous market 

opportunity, and suppliers are strengthening their already solid relationship with the benefits 

community. 

vi. Immigration: To fight terrorism and drug trafficking, a huge number of people are entering 

the country illegally, and the general number of people allowed to enter every country puts a 

lot of pressure on its immigration services. The government should be able to find people 

who break the law and sort out the legal travellers almost instantly and automatically. 

Biometric models are being used in many areas and purposes right now, so that these things 

can happen. A lot of new fingerprint technologies are used and studied by the US Immigration 

and Naturalisation Service. There are now methods in the United States that make it less 

likely for people who aren't supposed to be there to come here and control the movement of 

people who are allowed to stay.  

vii. National Identity: Local and national administrations are beginning to feel the support of 

biometric technologies in tasks of urban and population growth evaluation, identification of 

individuals, and combating vote rigging. This is usually by storing a biometric template on 

an ID card, which also serves as a national identification card. In this regard, fingerprint 

scanning is more efficient, and the projects have been launched in countries like South Africa, 

Jamaica, Lebanon, and the Philippines. 

viii. Time, Attendance, and Monitoring: There are time-card devices that are used to register as 

leaves for coming in, out, and on breaks for employees during the day closing traditions. 

Time governance software can be connected with biometrics to execute based on individuals 

and administrative accounting reports, and also when manual methods are taken over the 

system abuses end. 
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 1.9 Motivation of the Thesis 

The motivation for a thesis on Hybridized biometrics by considering Side-Face is driven by several 

key factors that address the restrictions of unimodal biometric systems and capitalize on the strengths 

of integrating multiple biometric modalities. Here are some detailed points that could form the basis 

of this motivation: 

i. Enhanced Security and Accuracy: 

a) Overcoming Limitations of Unimodal Systems: Unimodal biometric systems, which 

rely on a single type of biometric identifier (such as fingerprint, face, or iris), can be 

vulnerable to spoofing, noise, and variations in the data. Multimodal biometrics combine 

two or more identifiers, significantly improving accuracy and making it more difficult for 

impostors to breach the system. 

b) Reduction in Error Rates: Multimodal systems can lower both FAR by comparing 

different sources of biometric data, and hence lower FRR also. this means that multimodal 

systems provide more robust and reliable biometric identification and authentication. 

ii. Improved User Experience: 

a) Increased Accessibility: By integrating multiple modalities, systems can accommodate 

users who may have difficulty providing a particular biometric. For instance, individuals 

with worn-out fingerprints can use facial recognition or voice recognition as alternative 

identifiers. 

b) Flexibility and Convenience: Users can choose the modality that is most convenient for 

them in different contexts, enhancing the overall user experience and satisfaction with 

the biometric system. 

iii. Comprehensive Security Frameworks: 

a) Enhanced Anti-Spoofing Measures: Using multiple biometric traits lowers the chances 

of spoofing or imitation of the system by the attackers by a very big margin. For instance, 

although it is possible to forge a fingerprint to match a biometric scanner, it is going to 

be far more difficult to forge both the fingerprint and the iris at the same time. 

b) Layered Security Approach: Multimodal systems can implement a layered security 

approach, where different biometric modalities are used in non-matching stages of the 

authentication process, providing a higher level of security. 

iv. Technological Advancements: 
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a) Integration with Emerging Technologies: The rapid development of AI and ML 

algorithms enhances the ability to process and analyse multiple biometric inputs 

effectively. These technologies improve the performance and reliability of multimodal 

biometric systems. 

b) Interoperability and Scalability: Advances in sensor technology and data processing 

enable the seamless integration of various biometric modalities, making these systems 

more scalable and adaptable to different environments and applications. 

v. Addressing Privacy and Ethical Concerns: 

a) Improved Data Privacy: Multimodal systems can enhance data privacy by distributing 

biometric information across different modalities, making it harder for any single breach 

to compromise the entire identity of a user. 

b) Ethical Considerations: By providing a more accurate and secure form of identification, 

multimodal biometrics can reduce the chances of identity theft and fraud, which are 

significant ethical concerns in today's digital world. 

vi. Applications in Diverse Domains: 

a) Broader Applicability: Multimodal biometrics can be applied in several domains, 

including border control, financial services, healthcare, and personal devices, offering 

enhanced security and user convenience across different sectors. 

b) Support for Critical Infrastructure: In critical infrastructure areas, such as national 

security and defence, the reliability and robustness of multimodal biometric systems can 

provide crucial support in maintaining security and operational integrity. 

To address these reasons, a thesis on multimodal biometrics can make a big difference in the creation 

of safer, more reliable, and easier-to-use biometric systems. This will ultimately advance the field of 

biometric research and its practical uses in everyday life by looking at the side face of humans, which 

includes a portion of the side face and the most noticeable parts of the ear, which are called the 

auricle.  

  1.10 Objectives 

1) To apply pre-processing techniques on a standard data set of side images for detecting objects 

(side face) using a new object detector algorithm   

2) Identification of dominant attributes for model development by applying the feature selection 

technique. 
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3) To develop a hybrid biometric model on dominant attributes for verification using Auricle, 

Ear, and Side Face. 

4) Compare and analyze the model with the existing model. 

1.11 Problem Statement 

The dissertation assesses the process of integrating PCA and CNN to recognize people [115]. This 

said hybrid generalizes both these methods to improve the reliability and efficiency of biometric 

recognition systems. PCA works as a dimensionality reduction technique, making its input easier 

compared to complex datasets it deals with by identifying only relevant features, thus reducing 

computational load. By preserving the key aspects of facial images, PCA creates a more compact 

and cleaner representation of the data, making it easier for the CNN to handle. Subsequently, CNNs, 

recognized for their strong feature extraction abilities, are applied to the data processed by PCA. The 

CNN's multiple layers allow it to learn complex patterns and hierarchical representations of the facial 

features, improving the identification accuracy. The combination of PCA and CNN ensures both 

efficiency and high performance, as PCA reduces redundant information while CNN excels at 

classifying detailed facial features. The thesis demonstrates that this combined method enhances 

person identification accuracy, reduces computational overhead, and is particularly effective when 

working with large, high-dimensional datasets. This hybrid approach proves to be a robust solution 

for real-time biometric identification systems, achieving a balance between speed and precision. 

1.12 Thesis Organization  

I. Chapter 1: Introduction 

 

➢ This chapter introduces the topic of biometric systems and presents an outline and 

contributions of this Ph.D. thesis. 

 

II. Chapter 2: Literature Review 

 

➢ This chapter reviews related works and discusses the motivations for this thesis based on 

these previous studies. 

 

III. Chapter 3: Inspiration and Driving Forces Behind the Study 

 

➢ This chapter outlines face detection, feature extraction, and recognition processes, 

emphasizing their roles in effective human face identification using machine learning and 

deep learning techniques.  

 

IV. Chapter 4: Proposed System 
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➢ This chapter summarizes the application scenario, system performance, and 

implementation of the proposed system. 

 

V. Chapter 5: Conclusion and Future Work 

 

➢ The chapter summarizes the key contributions of the side face biometrics model and 

outlines future directions to enhance its accuracy, robustness, and applicability in real-

world scenarios. 
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  1.13 Summary 

Biometric attributes play a crucial role in modern identification and verification systems, enhancing 

security and simplifying the identification process. They facilitate the efficient delivery of various 

services across multiple sectors. Two main groups define these biometric characteristics: 

physiological and behavioral. Physiological biometrics covers traits including facial recognition, 

fingerprints, iris patterns, retinal scans, palm prints, and even DNA profiles. Each of these traits 

provides unique identifiers that can improve accuracy in authentication. As technology evolves, the 

applications of these biometric features are expanding. Their integration into systems enhances 

overall security and user experience. Understanding the different categories of biometric attributes 

is essential for effective implementation in identification processes. These characteristics are 

constant throughout a person’s life, and for this reason, they are useful when developing security 

systems. On the other hand, behavioral biometrics rely on a person’s behavior, not features of the 

physical nature. These are: voice recognition, gait recognition, and keystroke dynamics. Voice 

recognition analyzes the unique patterns in a person's speech, including pitch, tone, and accent. This 

biometric is commonly used in customer service applications and voice-activated systems like virtual 

assistants. Gait analysis examines the way a person walks, identifying individuals by factors such as 

stride length, posture, and body movements. It is an emerging technology that is particularly useful 

in surveillance and security, where people may not always be aware of being monitored. Biometric 

systems have a wide range of applications across various sectors. In security and access control, 

biometrics are used to authenticate individuals attempting to gain entry into secure areas, from 

corporate offices to airports. In surveillance, biometric systems help law enforcement agencies 

identify persons of interest from crowds in public places. Healthcare facilities use biometrics to 

verify patient identities and maintain secure medical records, while financial institutions deploy 

biometric systems to ensure secure transactions, such as in mobile banking apps and ATMs. 

While traditional biometric systems, such as frontal face recognition, are highly effective in 

controlled environments, they have limitations when it comes to real-world scenarios, particularly in 

surveillance where individuals may not be facing the camera directly. This is where side face 

biometrics comes into play. Side face recognition focuses on identifying individuals based on the 

geometry of their side profiles, which includes the contours of the ear, nose, chin, and jawline. This 

method is beneficial in real-time surveillance where cameras may capture people from various 

angles, making it an essential tool for improving identification accuracy in dynamic environments. 

To enhance side face recognition, a high level of integration among biometric traits is essential. This 
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approach can significantly improve both the correctness and consistency of recognition systems. By 

combining “side-face” recognition with other identification methods, such as ear biometrics, the 

system becomes more robust. Integrating these biometric traits allows for a comprehensive analysis, 

reducing the chances of errors. This multimodal system leverages the strengths of each trait for better 

performance. As a result, it can effectively differentiate between individuals in various conditions. 

Overall, this integration represents a promising advancement in biometric recognition technology. 

The method can work even when there is no frontal face data. This is mostly because of how the face 

looks from the side and how the ears are shaped. So, the hybrid method, which includes biometrics 

from both the frontal and side faces, is the best way to deal with the problems caused by the standard 

frontal face recognition threat. CNN is used in this system because it is very accurate and reliable. 

This makes it great for government surveillance, immigration control, car security, and even 

healthcare. Using side face biometrics in this hybrid model is a step forward in biometric recognition 

because we need systems that work well, are always on, and can be changed to fit people's needs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 30 
 

 

 
 

Chapter 2  

 

2. Literature Review 
 

Rising as the most often used biometric technology in recent years, facial recognition has also 

become the favoured method in computer vision and pattern identification. Since users of it do not 

have to engage with the device physically, its non-invasive character appeals especially to this 

simplicity of use, which lets one apply a great variety of ideas in many different disciplines. Facial 

recognition increases its adaptability since it can be done from a distance, unlike techniques like 

fingerprint or iris scanning. The technology is widely adopted for identity verification and 

authentication in various industries. Sectors like banking and commerce use it to enhance security 

measures. Additionally, it plays a significant role in surveillance systems and educational 

environments. The growing reliance on facial recognition reflects its effectiveness and convenience. 

As the technology continues to advance, its applications are likely to expand even further. Overall, 

facial recognition is reshaping how we approach identification and security. In banking, facial 

recognition enhances security by providing an additional layer of verification during transactions, 

particularly in online and mobile banking platforms, where customers can authenticate their identities 

through facial scans. This reduces fraud and ensures secure transactions. Similarly, in commerce, 

this technology is used for purposes like personalized shopping experiences, where retailers can 

analyze customer demographics and behaviour patterns based on facial data to offer tailored services. 

In addition, facial recognition is increasingly employed for contactless payments, allowing 

customers to complete transactions swiftly and securely by simply showing their faces to a camera. 

Security and surveillance are other significant areas where facial recognition plays a pivotal role. 

Law enforcement agencies use it to identify suspects, monitor public spaces, and prevent potential 

security threats. Its ability to analyze video feeds in real-time enables quick identification of persons 

of interest, ensuring faster response times in critical situations. Airports, public transportation 

systems, and crowded events utilize this technology for managing security without interrupting the 

flow of individuals, making it a highly effective tool for large-scale monitoring. In education, facial 

recognition is being used for automated attendance systems, where students’ faces are scanned as 

they enter classrooms. This not only saves time but also improves accuracy in tracking student 

participation. Additionally, it can be used for security on campuses, ensuring that only authorized 

individuals can access certain areas. Furthermore, facial recognition is being explored for use in 



Page 31 
 

 

 
 

online learning platforms to monitor student engagement and ensure the integrity of remote 

examinations. A typical biometric system consists of several key operations, as illustrated in Figure 

2.1 below. The essential stages of a standard biometric system encompass the subsequent steps: 

Initially, the image is captured via a camera or sensor. This is the system input, and the previously 

specified image will function as the input to the system. Subsequently, the analysis of the provided 

image is performed, assessing the geometric contours of the eyes, their dimensions, the prominence 

of the nose, positioning angles, mouth contour, and the angles of the facial structure. Upon extraction 

of features, the system juxtaposes them with a pre-existing facial data database to ascertain the 

individual's identity. This comparison leads to the final output, where the recognized identity of the 

individual is displayed or recorded. This entire process happens within seconds, making it both 

efficient and effective for real-world applications across various industries. 

 

 

Figure 2.1 Generic Biometric Identification System [112] 
ace recognition has consistently been a crucial application in pattern recognition, with its potential 

has increased recently. The advancements in recent years can be attributed typically to alterations in 

“Convolutional Neural Networks – CNNs” concerning the design of the face recognition issue. 

Convolutional Neural Networks (CNNs) are now the preeminent answer in this field, as they contain 

the distinctive ability to learn and properly represent individual facial features. The methods we have 

examined do not depend on the creation of predetermined facial characteristic characteristics, which 

are often extracted manually from facial photos. In contrast, CNNs employ deep learning algorithms 

to extract these properties from data. The transition to deep learning has revolutionized face 

recognition systems, enhancing their precision and scalability, especially in practical applications 

utilizing extensive training datasets. In their absence, previous face identification technologies 

incorporated conventional machine learning approaches including SVMs or NNs for identification. 

These methods proved well in some specific and limited conditions but failed in actuality mostly due 

to the intensity of light, facial movements, or changes in pose. The feature extraction by hand worked 

very well for the image set and was very efficient for small tasks, yet it could not handle the 

variability of the human faces in the way modern CNNs do. The advancement of computational 

power and deep learning algorithms has led to significant improvements in face recognition systems. 

These technologies leverage increased processing capabilities to handle large datasets effectively, 
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improve feature learning, and enhance accuracy across various applications. CNN-based face 

recognition has witnessed a lot of research developments, particularly on the problems of pose 

variations in real application conditions. In practical situations, an individual's face is not always 

completely visible or orientated to correspond with the frontal perspective, complicating the process 

of identification. CNNs, with their ability to learn hierarchical feature representations, have proven 

capable of mitigating some of these issues by focusing on both global and local facial features that 

remain consistent across different poses. However, even with these advancements, face recognition 

continues to be a challenging problem, particularly in unconstrained settings where image quality 

may be poor or the subject’s face is partially obscured. The advancement of these terms and factors 

can place a significant challenge even to the state-of-the-art algorithms that aim to identify or gather 

recognition from any person. Face verification from frontal to profile is one of the toughest problems 

in face recognition. It has become an important topic in computer visualization of images and 

biometrics. For real-world applications, like surveillance, the system may at best capture a profile or 

side view of the user's face with a partial face available for recognition. This approach tries to 

synthesize the appearance of the face as observed from its front even though we can only observe a 

profile image.  These methods were successful in increasing recognition rate notably in environments 

where pose variation is problematic, if not redundant. The field of side face biometrics, which 

focuses on analyzing a person’s face from a profile perspective, has also made considerable progress 

in recent years. This is an important area of study, as profile faces are commonly encountered in 

surveillance footage and other real-world scenarios. Traditional face recognition systems, which 

were primarily designed for frontal face images, struggled with recognizing faces from a profile 

view. However, new techniques in side face biometrics, powered by advances in CNNs and deep 

learning, have improved the accuracy of recognizing individuals from these challenging angles. By 

learning distinctive features from profile views, these systems can now perform more effectively in 

scenarios where full facial visibility is not available. In addition to pose variations, other factors like 

image quality, lighting conditions, and facial expressions continue to pose challenges for face 

recognition systems. Although CNNs are particularly effective in learning robust feature 

representations, their performance may deteriorate with low-quality input images or when the 

subject's face is partially obscured. To address these challenges, researchers are exploring various 

data augmentation techniques, such as creating synthetic training data to simulate different lighting 

conditions and occlusions. This enhances the system's ability to generalize to real-world situations, 

where such differences are unavoidable. Moreover, large-scale datasets have played a crucial role in 

the success of CNN-based facial recognition systems. The availability of diverse facial datasets, 
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containing millions of images with different poses, lighting conditions, and expressions, has enabled 

deep learning algorithms to learn more robust and generalizable facial features. These datasets allow 

CNNs to be trained on a wide variety of facial characteristics, making them more resilient to 

variations and improving their performance in recognizing faces in both controlled and uncontrolled 

environments. However, maintaining privacy and ethical considerations when using such large 

datasets has become an area of concern, as the use of personal facial data raises issues related to 

consent and data security. This chapter explores the existing literature on various biometric features 

with a focus on side face recognition. The primary aim of this study is to evaluate the accuracy of 

biometric identification in highly secure sectors, such as border control, access management, and 

civil identification. A thorough review of research in identification and other high-security domains 

was conducted. It was found that there are limited published studies addressing security analysis that 

integrate multiple biometric features into a hybrid system. 

2.1 Side Face Literature Review 

The advancement of automated face recognition technology is largely credited to the pioneering 

efforts of Woody B., C. Bisson, and H. Chan Wolf [113]. Their groundbreaking work laid the 

foundation for what has become a crucial technology in numerous fields, including social media, 

security, and beyond. Today, automated face recognition is integral to various applications, 

enhancing both convenience and security in our daily lives. In the mid-1960s, specifically during the 

years 1964 and 1965 [56], these innovators laid the groundwork for what would become a 

transformative area of research and development. Woody Bledsoe, who is often credited as one of 

the foundational figures in the field, spearheaded efforts to explore the potential of computers in 

identifying and recognizing human faces [113]. His work was not in isolation; he collaborated closely 

with Helen Chan Wolf and Charles Bisson, two other key figures who significantly contributed to 

these early efforts. 

Bledsoe's research during this period was groundbreaking. He, along with his colleagues, focused on 

developing algorithms and methods that could enable a computer to distinguish one human face from 

another—a task that, at the time, was incredibly challenging given the limitations of computational 

power and the nascent state of computer science. The research conducted by Bledsoe and his team 

involved the analysis of facial features and the creation of mathematical models that could be castoff 

to classify individuals based on these features [114]. The significance of their work cannot be 

overstated. They were among the first to consider the problem of facial recognition systematically, 

applying computer science principles to what had previously been a purely human capability. Their 
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efforts laid the foundation for the algorithms and technologies that would later evolve into the 

sophisticated facial recognition systems we have today. Moreover, Bledsoe and his team were able 

to foresee the potential applications of facial recognition technology long before it became a 

mainstream concern. They recognized that if a machine could be taught to recognize faces, it could 

revolutionize security, law enforcement, and even personal identification. Their research, 

documented in various publications including those from 1966 and earlier, provided a roadmap for 

future researchers and engineers. 

Shuyi Li et al [120]. provides a comprehensive analysis of the integration of various hand-based 

biometric modalities, such as fingerprints, palm prints, and hand geometry, to enhance recognition 

accuracy and security. The authors discuss the advantages of multimodal systems over unimodal 

approaches, including improved robustness against spoofing and environmental challenges. They 

also examine different fusion strategies at various levels—sensor, feature, score, and decision—and 

evaluate their effectiveness. 

Wanchao Li[122] highlights the transition in aquaculture from single-modality systems, which face 

limitations in complex environments, to multimodal fusion approaches integrating visual, acoustic, 

and biosensor data for enhanced monitoring. Multimodality improves accuracy and robustness in 

tasks like fish tracking and behavior analysis. The authors emphasize the need for standardized 

datasets and evaluation frameworks to advance this field. They conclude that multimodal fusion 

holds great potential for transforming digital aquaculture. 

Despite the rudimentary nature of the technology at the time, the work of Bledsoe, Chan Wolf, and 

Bisson was instrumental in establishing the fundamental concepts of facial recognition. They were 

among the first to attempt to quantify facial features in a way that could be interpreted by a machine, 

a task that required not just technical expertise but also a deep understanding of both human anatomy 

and the emerging field of computer science. 

Facial Recognition is one of the enhanced techniques that employ the Face Area in a Scanner to 

Authorize the identity of a particular person. To do this, that particular system acquires the digitized 

image or a live frame of a person’s face, and through programmed algorithms, it is normally able to 

establish, quantify, compare specific facial features, and lastly, authenticate the fact that the person 

is in the database. Through these characteristics, the system is in a position to uniquely match the 

face and locate an existing record on the person; or determine that the face belongs to an individual 

among a specific group. 

A biometric AI application can be defined in this way as an application that uses unique biological 

patterns, mainly the texture and shapes of faces, for identification purposes. This technology is found 



Page 35 
 

 

 
 

in many areas such as security where it is used in surveillance and identification of suspects; in law 

enforcement; and in consumer electronics where it is used in authentication of forms of 

authentication of devices like smartphones and laptops. These systems are increasingly indispensable 

for enhancing security and comfort in all aspects of daily life. However, their widespread use has 

raised concerns about privacy, ethics, and the potential for misuse, given that they involve collecting 

and processing sensitive personal information. Despite these issues, facial recognition technology 

continues to develop and find applications in various fields, presenting both opportunities and 

challenges for the future. In Bledsoe's early study, facial markers such as the mouth and eye centers 

were manually marked and then computationally adjusted for posture variations. To establish 

identity, the system then automatically measured and compared the distances between landmarks. 

Fully automatic algorithms in facial recognition systems perform both the detection of facial 

landmarks and the subsequent recognition process. They require only the facial image, automatically 

identifying key features like eye centers and comparing them against a database for identification. In 

contrast, partially automatic algorithms focus solely on the recognition task, relying on pre-identified 

coordinates of facial features such as eye centers. These coordinates are manually or semi-

automatically determined and provided along with the facial image. Fully automatic systems are 

more comprehensive, while partially automatic systems require additional input for feature detection 

before recognition can occur[56]. 

 

Figure 2.2 a) 12 – face recognition fiduciary site of attention. b) The feature consists of 21 apparatuses: 10 

distance D1-D10 (controlled using (D4+D5)) and 11- Profile arcs (controlled using (A5+A6)) [58] 
 

A binary, black-and-white image is produced through the process of thresholding a grey-level profile 

image, where the black regions correspond to the facial area. Thresholding is a technique used to 

convert a grayscale image, which contains varying levels of intensity, into a specially converted 

binary image by selecting a specific amount of threshold value. All pixel values below this threshold 

are set to black, and those above it are set to white. This process simplifies the image by clearly 
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distinguishing the facial region, represented in black, from the background, which is rendered in 

white. 

After the binary image is generated, the subsequent step in the pre-processing stage includes 

extracting the framework the arc of the frontal portion of the outline around the facial picture. This 

contour represents the boundary of the facial region, capturing the outline of the face. Extracting this 

contour is crucial as it serves as the foundation for further analysis in identifying specific facial 

features. The extracted contour curve now undergoes scale-space filtering commonly used to process 

images at different scales or levels of detail. With the help of this filtering using different scale 

values, the system may recognize features of different scales and importance within the facial 

silhouette. At any contour curve, using this method, twelve fiducial markers are recognized and 

considered automatically. The fiducial markers that are found in the face may include the corner of 

the eyes, the tip of the nose, or the edge of the lips. They are useful for the extraction of the feature 

which is relevant later and deliver the most important feature traits information about the shape of 

the face. 

A collection of twenty-one feature attributes is obtained from these twelve fiducial markers. The 

distances between particular fiducial points, the angles these points produce, and other geometric 

aspects are examples of the measurements or qualities that these features indicate for the face. These 

attributes are used to capture the unique aspects of an individual's facial structure, making them 

valuable for tasks such as facial recognition, expression analysis, or other biometric applications. 

The most common approach widely used for measuring the dissimilarity of the vectors that resulted 

from the outline profiles is the Euclidean distance metric. It computes the distance between the points 

made by collection of coordinates in the n dimensional space and gives a measure of how close or 

diverse two vectors are. The process starts with Standardisation of feature characteristics, in which 

the data is put on a standard scale to enable accurate comparison afterwards. This normalisation is 

done using two appropriate fiducial markings which serve as references. These markings aid in 

registration of the feature vectors so that changes due to factors such as orientation or scale are kept 

to the lowest level.. By measuring the Euclidean distance between these normalised vectors, the 

degree of similarity between the outline profiles can be quantified. Smaller distances indicate higher 

similarity, while larger distances suggest greater dissimilarity. This method is essential for accurate 

classification and pattern recognition tasks. A total of 150 profiles, consisting of thirty individuals, 

were used for the experiments. [58].  

Shreyansh Sharma, Anil Saini, Santanu Chaudhury introduces an improved decentralized fuzzy vault 

scheme leveraging Blockchain for multimodal biometric user authentication [124]. The approach 
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ensures enhanced security and privacy, offering a scalable solution for authentication systems.Dilip 

Kumar Vallabhadas proposes a cancelable convolutional neural network framework for biometric 

template protection using iris and fingerprint modalities [125]. Reem Alrawili provides an in-depth 

analysis of biometric user authentication applications, evaluation metrics, and challenges. It offers 

valuable insights for advancing biometric technologies and their practical implementations [126]. 

Vipul Vekariya presents a multi-biometric fusion approach to enhance human authentication for 

information security[127]. Li Wan, Kechen Liu explores a deep learning-based approach for 

photoplethysmography biometric authentication, enabling continuous user verification [128]. 

2.2 Ear as a Biometrics 

The ear visualization can be done with either of the following three different methods:  

(I) taking an ear photograph 

(ii) pressing an ear on a flat piece of glass to take "earmarks" 

(iii) taking thermogram images of the ear.  

The lobe and the outer ear giving the ear its look is the most interesting part of the ear even though 

the whole shape and design of the ear offers a lot of advantages. The structure of the ears is perfectly 

formed and once this is formed it does not change at any other time in one's life. According to medical 

literature [37], after the first four months of infancy, the ear development and growth is proportional 

in the growth pattern. The description of the different parts of the ear and the detailed dissection of 

the several segments of the ear are described in Figure 2.1. Getting an ear scan is the most widely 

used research technique.  To identify a person, a picture is taken and then linked with earlier 

photographs. The primary application of earmarks is in the investigation of crimes. At the moment, 

earmarks are not recognized by courts, even though certain decisions are based on them. One way to 

tackle the issue of, say, hat hair, could be to use thermogram images. 

 

Figure 2.3 Anatomy of the ear [37] 

I. Helix-Rim 

II. Lobule 

III. Anthelix 
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IV. Concha 

V. Tragus 

VI. Antitragus 

VII. Crus of Helix 

VIII. Triangular Fossa 

IX. IncisureIntertregic 

 

 

Figure 2.4 Thermogram image. (Burge and others, 1998) [20] 

 

French criminologist Alphonse Bertillon was the first to notice the ear's potential as a biometric 

identifier. This groundbreaking insight laid the groundwork for further ear biometrics research.  In 

1949, American police officer Alfred Iannarelli carried out a thorough analysis of more than 10,000 

ear pictures to pinpoint 12 unique biological traits that may be used to identify individuals [37]. Even 

though there wasn't a complete theoretical framework at first, Iannarelli's study laid the groundwork 

for ear biometrics. His research brought attention to how distinctive the outer ear's anatomy is for 

individual identification [37]. Using a deformable model for ear alignment and recognition, Zhou 

and Zaferiou improved the field in 2017 by resolving some of the drawbacks of previous methods, 

building on this foundation [54]. Even though Iannarelli's work was crucial in showcasing the 

possibilities of ear biometrics, the discipline has advanced dramatically with more advanced 

techniques to boost identification accuracy and dependability [37]. Burge and Burger (1997) 

presented the theoretical feasibility of an ear biometric system with an emphasis on its consistency 

and uniqueness over time [22][23][24]. To characterize each ear as an adjacency graph, they devised 

a Voronoi diagram; however, distinguishing between ear and non-ear curves remained a considerable 

difficulty. Expanding upon these findings, Moreno et al. developed a novel multiple identification 

technique that enhances human recognition using outer ear images by combining neural classifiers 

with macro data retrieved via a compression network [43]. In a related development, Herly et al. 

improved the accuracy of ear-based identification systems by introducing a different feature mining 

method using force pitch conversion, in which photographs are used as sources of force fields. 
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Despite the limited scope of the original database experiments, the outcomes showed great promise 

[69]. To evaluate the geometric shape of the ear, Choras presented a feature extraction technique that 

used contour detection; nevertheless, the technique had problems with imprecise curve detection 

[28][29][30]. When Victor et al. compared the dependability of face and ear biometrics using 

principal component analysis, they discovered that the face was a more reliable biometric 

identification [37][51]. Chang et al. performed a similar analysis on a bigger dataset in a later study 

and discovered no discernible difference in the performance of face and ear biometrics [27]. This 

implies that although face recognition was thought to be more trustworthy at first, further in-depth 

analysis using bigger datasets may provide more accurate information on how effective ear 

biometrics are. Combining face and ear recognition in multimodal systems has significantly 

increased the efficacy of biometric systems. To classify ears, Zhang et al. established a blended 

approach that integrates Independent Component Analysis (ICA) with a Radial Basis Function 

(RBF) network [40]. This innovative method surpasses the performance of traditional Principal 

Component Analysis (PCA) by effectively capturing more relevant features for ear classification. 

ICA helps in isolating statistically independent components, while the RBF network classifies these 

features with high accuracy. The combination of these techniques results in a more robust and precise 

classification system, demonstrating significant improvements over PCA-based approaches. The 

primary drawback of this approach is its dependence on carefully managed imaging settings and 

accurate picture registration. On the other hand, Sana et al. created a novel ear biometric system that 

uses the Haar wavelet transform [50]. This system only needs two training photos to construct the 

database, which makes it more practical and accessible. This development shows the possibility of 

more adaptable and user-friendly biometric systems that can adjust to different demands and 

circumstances. Additionally, Gupta and Prakash proposed advanced recognition techniques for ear, 

[48]. These innovations represent significant progress in addressing previous limitations and 

improving the reliability of ear-based identification systems. 

Table 2.1 Feature extraction for ear using local descriptors with different approaches 

Authors Journal/ Conference Method 

adopted  

Database No. of 

validations 

Total 

number 

of 

images 

Accuracy 

(%) 

Burge and Burger[9] SPIE Conference on 

Biometric Technology for 
Human Identification 

Voronoi-diagrams Self Not Applied Not 

Applied 

Not 

Applicable 

Moreno[30] Conference: Intelligent 

Systems Design and 

Applications  

Geometric-

features 

Self 49 188 43 — 83 

Mu[31] IEEE Computer Society 

Conference on Computer 

Vision and   Pattern 

Geometrical USTB II 76 309 86 
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Recognition Workshops 

Choras, & Choras[17] Conference on Advances in 

Pattern Recognition  
Geometrical Self Not Applied Not 

Applied 

100 

Devi & Yahagi[19] Journal of Electronic Imaging SIFT CP 18 101 78.78 

Kumar & Zhang[27] Pattern Analysis and Machine 

Intelligence 

Log-Gabor 

wavelets 

UND 112 455 89.99 

Arbab & Zavar[2] ECCV International 

Workshop on Biometric 

Authentication  

SIFT  XM2VTS 62 250 91.5 

Rahman[36] Image vision computing Geometric 

features 

Self 110 350 87 

Choras  [26] Pattern Recognition Letters  Geometry on the 

outline of the ear 

Self 185 376 86.2 

Guo and Xu [20] Conference on Applied 

Research in Computer 

Science and Engineering 

LBPS & CNN USTB II 76 309 93.25 

Arbab-Zavar and Nixon  [1] Face Recognition Vendor 

Test 2002 

Log-Gabor  XM2VTS 63 250 85.57 

Hai-Long & Zhi-Chun  [21] La photographie judiciaire Wavelet 

transformation 

USTB II 76 309 85.67 

Badrinath & Gupta[17] International Conference on 

Advances in Pattern 
Recognition  

SIFT landmarks 

from ear models 

IITK 106 1050 95.32 

Kisku [38] Conference on Advances in 

Computational Tools for 
Engineering Applications 

SIFT from Color 

Segments 

IITK 400 800 96.93 

Nanni & Lumini  [45] Pattern Recognition  Gabor filters UND 114 464 84.11 

Xiaoyun & Weiqi  [52] International Conference on 

Cyber-Enabled Distributed 

Computing and Knowledge 
Discovery, CyberC 

Block partitioning 

with Gabor 

transform 

USTB I 60 180 99.99 

Bustard[25] Systems and Humans SIFT Point 

Matches 

XM2VTS 63 252 96.48 

De Marisco[31] Conference on Computer 

Vision and   Pattern 

Recognition 

PIFS UND 114 228 61 

Kumar [39] Pattern Recognition  Log-Gabor and 

SIFT 

IIT  

  Delhi I 

120 700 85 and 95 

Chan & Kumar [27] IEEE Transactions on Pattern 

Analysis and Machine 

Intelligence  

2D quadrature 

filter 

IIT  

Delhi I 

120 471 96.4 

Kumar & Wu [39] Pattern Recognition PE with Log 

Gabor filters 

IIT  

Delhi II 

220 753 95.8 

Prakash & Gupta  [48] Telecommunication Systems SURF and NN  IIT Kanpur  300 2066 97.6 

 

Paratim, Srangai, Partha, B. Mishra, and S. Dehuri designed a multimodal biometric system [59]. 

This method proposes the KDCV technique to enhance the identification and recognition of people 

by incorporating two kinds of face images that include profile faces as well as data of the ear. 

Through the combination of these two modalities, this system seeks to improve accuracy. Similarly, 

utilising side view and auricle photos, Susan EN, Ayman Abaza, and Thirimachos Bourlai 

investigated human recognition and provided insightful information about the efficacy of several 

biometric traits [60]. To improve system efficiency, Mostafa Akhaavasaffar, Ali Nakhaei, and 

Mostafa Mokhtari Ardakan integrated face and ear data and enhanced multimodal biometric 

authentication [61]. They did this by using a workable Swarm Optimisation method. 

https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-23/issue-5
https://dl.acm.org/toc/itpm/2003/25/9
https://dl.acm.org/toc/itpm/2003/25/9
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
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Facial identification from profile views, F.J. Chen Jongmoo Choi, Masi, S.H. Jungyeon K.J. Leeksut,  

S. Rawls,T. Hassner, Yue Wu, W. AbdAlmageed, M.P. Natarajan Ram Nevatia, G. M. Louis 

Philippe [62]. It prompted serious consideration of the CNN design and demonstrated robustness 

across many networks. These developments indicate a wider trend of combining multiple biometric 

modalities and refining algorithms to enhance the accuracy as well as dependability of biometric-

based authentication systems. These are essentially the landmarks, six of which are used to extract 

facial curves from cubic B-splines — crucial turning points. The facial curve divides, resulting in 

five segments, each of which yields 24 traits that can help recognition. The difficulties of employing 

side face photos as a biometric identifier are covered in another study. To correctly train the dataset, 

it highlights how crucial it is to determine the tangential points and precisely calculate the threshold 

value of images. Clear photos and accurate application of algorithms and techniques are necessary 

for side-view facial recognition to achieve a low error ratio and high accuracy. By resolving issues 

and improving side-view facial recognition system performance, this method seeks to provide more 

dependable and efficient biometric identification. Specifically, the FSLDA method combined with a 

fused multimodal recognition method based on both the ear and face biometrics provided satisfactory 

outcomes. When a rank one recognition rate was analyzed utilizing integrated systems, the recall rate 

of this system, assessed with the USBT and ORL databases for ear and face databases respectively 

and reached 98.5 percent. Furthermore, a two-model system that used ear and facial profile data 

performed even better, reaching a 97.98% recognition rate for this test.. This is higher than that of 

the other published methods in literature such as Principal Component Analysis (PCA)—94.44%, 

FSLDA—97.62%, and Kernel Fisher Discriminant Analysis (KFDA) —96.84%. This multimodal 

system has done betting performance, by combining more modalities and can be contributed to using 

well developed and large-sized database that leads to more strengths in the recognition module. This 

improved performance of combined facial and ear biometrics not only substantiates the integration 

power of multi-modality but also illustrates the benefit that combining multiple biometric modalities 

can provide over traditional single-modality approaches. Pose Normalization: Pose normalization is 

certainly a hot topic in the community due to its application in solving pose-independent face 

recognition using both “Generic Elastic Model-GEM” [70] and “Active Appearance-based Models 

AAM” [71]. These techniques were originally introduced in prior research and are commonly 

employed as a remedy for the challenges of inconsistencies in facial recognition [72]. This paper 

describes the GEM framework, a general model approach, and the synthesized pose-induced facial 

verification. GEM can robustly normalize the face by utilizing changes of both shape and appearance 

with pose. This process normalizes facial images for straightforward face models, which results in 
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improved recognition as recognition algorithms work better with regularly shaped front views of 

individual faces. It has been observed that Active Appearance-based Models (AAM) [71] is a good 

solution for pose variations. These models encode shape and texture information that is pose-relevant 

(i.e., clear facial likeness across different poses). AAM maps facial images into a common reference, 

considering both the shape and texture parameters to support pose-invariant comparison. 

Improvements in this ability improve the robustness of facial verification systems to many more 

challenging pose scenarios, albeit only incrementally [71]. GEM and AAM methods have been 

shown to lead to good pose-invariant face recognition systems [71][72]. Normalizing is an important 

part of facial recognition and leads to better results which are key research contributions in this field. 

The continuing evolution of these approaches and the development of new methods serve to greatly 

enlarge the potential for pose variation they can deal with, which will improve face recognition 

systems generally. The other issue with GEM and AAM is that while they give good accuracies in 

easily controlled conditions with a limited variation of the pose, it is highly likely that their 

performance will degrade significantly under more challenging real-world scenarios i.e. going from 

aside poses to characteristic facial expression poses. 

Researchers are exploring advanced subspace learning techniques for scenarios like those mentioned, 

focusing on Partial Least Square (PLS) and Canonical Correlation Analysis (CCA). Face bloggers 

suggest that these methods could enhance the generalization of deep face recognition systems, 

accommodating a broader range of poses and expressions in natural settings. Consequently, 

integrating these methodologies will be essential for developing an advanced face recognition system 

that remains largely invariant to varying conditions when properly trained. Advanced facial pose 

recognition has been done in the recent past by identification-based methods on multiple and CMU 

PIE data sets. For instance, a work presented in [75][76] records recognition performance of 27.1% 

in dealing with frontal profile images over Multiple datasets. These are encouraging findings but no 

suitable maximum values are given so capacity is not shown in unstructured uses of mobility. More 

studies have to be conducted to compare their effectiveness in these circumstances. 

The field of pose-invariant face recognition has recently shown huge promise within the generative 

end-to-finish approaches. These models posit that a latent factor explains transitioning between 

different identities and poses. Recent works have shown strong performance at constrained datasets 

such as [77]; however, these works often do not tackle the intra-dataset. In the same vein, [78] 

achieved impressive performance on unrestricted datasets as well as LFW with an authentication 

accuracy of 90.07% under open-set settings.  Another way to address pose variation is by using 

attribute-based recognition as exemplified in [79]. Posture changes tended to be in variant for this 
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calculation but to what extent features can effectively be computed or if profile faces will provide as 

much information as frontal ones remains uncertain. Although it is indeed a hard problem, the CFP 

dataset is used. 

J. Bhuvana [123] presents a robust image sensor fusion framework for multimodal biometric 

recognition, enhancing security and accuracy in mobile devices. 

2.3 Outcome Closure  

After performing extensive research in biometric identification, a variety of modalities have been 

examined, including fingerprints, iris scans, voice recognition, and facial recognition. Among these 

possibilities, facial recognition has surfaced as one of the most predominant and considered 

biometric techniques. This can be attributed to its non-intrusive characteristics and its broad 

applicability across multiple industries.  Within the region of facial recognition, both frontal face and 

side face (profile) biometrics have been considered for their respective strengths and weaknesses. 

While frontal face recognition has traditionally been the dominant approach, side face biometrics 

offers unique advantages in specific contexts, such as security and surveillance. Side face biometrics, 

by analyzing a person's profile, proves to be more useful in scenarios where full-frontal visibility 

may not be available, such as in crowded or real-time surveillance environments. This technique also 

shows potential in those circumstances where the targeted subject is unaware of being observed, 

offering a more covert and reliable approach to identity verification. After reviewing the relevant 

literature, it becomes clear that side face biometrics is a more effective approach in certain practical 

applications, as it handles pose variations more robustly and provides greater flexibility in real-world 

conditions. 

2.3.1 Accuracy 

• Studies on Accuracy: 

o Frontal face recognition has been traditionally popular due to its high accuracy in 

controlled environments. However, side face recognition has shown promising results 

in recent studies, particularly in diverse and unconstrained settings. 

o Research by Zhang et al. (2023) [66] demonstrated that side face biometrics could 

achieve accuracy rates comparable to frontal face recognition using advanced deep 

learning algorithms. 

• Challenges in Frontal Face Recognition: 

o Frontal face recognition systems' accuracy can be much influenced by changes in 

occlusions, lighting conditions, and facial expressions. 
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o Side face recognition systems are less affected by such variations, providing more 

consistent performance across different conditions. 

2.3.2 Security 

• Vulnerability to Spoofing: 

o Frontal face recognition systems are more susceptible to spoofing attacks using 

photographs or 3D masks. 

o Due to the difficulty of capturing and duplicating the profile features, Side-face 

biometrics offers a higher level of security against such attacks. 

• Liveness Detection: 

o Advanced side face biometric systems incorporate liveness detection techniques that 

further enhance security by ensuring that the subject is physically present during the 

authentication process. 

2.3.3 Usability 

• User Experience: 

o Frontal face recognition often requires users to position themselves directly in front 

of a camera, which can be inconvenient in dynamic environments. 

o Side face recognition allows for more natural interactions, as users can be identified 

while engaging in regular activities without needing to face the camera directly. 

• Applications in Surveillance: 

o Side face biometrics are particularly advantageous in surveillance applications where 

individuals may not always be facing the camera. 

o Studies by Liu et al. (2019) [68] highlight the effectiveness of side face recognition 

in identifying individuals in public spaces and enhancing security monitoring. 

2.3.4 Technological Advancements 

• Deep Learning and AI: 

o Deep learning and artificial intelligence taken together have substantially improved 

side face recognition systems' performance. 

o Side-face biometrics have benefited from the use of Generative Adversarial Networks 

(GANs) and Convolutional Neural Networks (CNNs), hence enhancing feature 

extraction and matching accuracy. 

• 3D Modelling: 

o Advances in 3-D Modelling and reconstruction have enabled more accurate side-face 

biometric systems by capturing the depth and contour of the face. 
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o These technologies provide a richer set of features for identification compared to 

traditional 2D frontal face images. 

Based on the extensive survey of the literature, it is evident that side face biometrics presents several 

advantages over frontal face recognition. The key points supporting this conclusion are: 

• Higher Accuracy: Advanced algorithms and 3D Modelling techniques have enhanced the 

accuracy of side face recognition. 

• Enhanced Security: Side-face biometrics offer greater resistance to spoofing attacks and 

incorporate robust liveness detection. 

• Improved Usability: The natural interaction and convenience of side face recognition make 

it suitable for dynamic environments and surveillance. 

• Technological Advancements: Ongoing study and development in AI and deep learning 

continue to drive improvements in side face biometrics. 

2.4 Identified Research Gaps  

• Limited Exploration of Frontal-Only Face Data: Most hybrid systems include full facial 

pose variation, but few studies focus on optimising performance when only frontal face 

images are available. 

• Understudied Impact of Missing Side Face Data: There's little analysis of how excluding 

side face views affects the accuracy and robustness of hybrid biometric recognition 

systems. 

• Lack of Modality Compensation Strategies: Few approaches explore how to compensate 

for the absence of side face images using other biometric modalities (e.g., gait, voice, or 

ear). 

• Insufficient Dataset Diversity: Publicly available biometric datasets often include side-

face views. There is a gap in curated datasets that simulate real-world conditions with 

restricted pose availability. 

• Fusion Techniques Not Optimized for Missing Modalities: Existing fusion algorithms 

often assume all modalities (including side face) are available. There is a need for adaptive 

or flexible fusion methods that perform well when side-face data is not provided. 
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2.5 Conclusion  

The convergence of multiple factors strongly indicates that side-face biometrics offers a more secure, 

accurate, and user-friendly solution for biometric identification. As technology continues to advance, 

this method is becoming an increasingly viable option, especially in scenarios where traditional 

front-facing biometric systems encounter limitations. A drawback of such a deployment of side-face 

biometrics is its reliance on an unconstrained environment and the availability of frontal images for 

processing. In many practical situations for example in surveillance, public security, or in times when 

granting access to some facilities and premises, side-face is more convenient than frontal one. Side-

face recognition is therefore most useful in situations where people might not be facing cameras 

straight or if light conditions and angles are changing. Moreover, new machine-learning methods 

and deep-learning procedures have enhanced the side-face biometric performance. Using deeper 

architectures—especially Convolutional Neural Networks (CNNs) and related systems—allows 

different approaches to extract more unique feature sets from profile images, rather than only from 

the frontal face, so improving accuracy in identification and verification relative to frontal-based 

models. Different from more traditional methods like iris or fingerprint scans, side-face biometrics 

offers a non-intrusive and user-friendly identifying solution. Unlike these methods, which demand 

close physical contact or direct interaction with scanning devices, side-face recognition can be 

seamlessly integrated into public settings. This technology allows identification to occur during 

routine activities without requiring individuals to stop, pose, or alter their behaviour, making it a 

more practical and accessible solution. Its convenience is particularly valuable in high-traffic areas 

such as airports, transportation hubs, and large public events, where both security and user experience 

are critical. By eliminating the need for active participation from users, side-face biometrics enhances 

the flow of people in these environments, reducing delays while maintaining robust security 

protocols. Another significant advantage of side-face biometrics is its adaptability in more 

challenging scenarios. This technology can successfully identify individuals in complex 

environments, such as crowded spaces or from video footage, where other methods might struggle. 

Its effectiveness in these contexts broadens its application, making it suitable for monitoring large 

areas without compromising accuracy. In scenarios requiring the rapid and efficient processing of 

large crowds, side-face recognition emerges as a highly scalable approach. Moreover, the capacity 

to acquire biometric data from many perspectives guarantees the reliability of identification systems, 

even in the absence of full-frontal photographs. Side-face biometrics provide a substantial 

improvement in security and ease, rendering it an optimal option for extensive use. 
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As the biometrics sector develops, side-face recognition should find great application in many other 

sectors. Improved security solutions presented by side-face biometrics will benefit industries 

including banking, financial services, law enforcement, and border control. Artificial intelligence 

and big data analytics inclusion in these systems is supposed to improve side-face recognition 

algorithm efficiency and accuracy. These improvements will enable side-face biometrics to take front 

stage in next-generation security systems as a reasonably affordable, contactless alternative to 

conventional approaches. With the convergence of technical advancements, useful applications, and 

improved user experience, side-face biometrics is poised to become a main feature of biometric 

identity. 
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Chapter 3  
 

 

3. Inspiration and Driving Forces Behind the Study   
 

Here, the study's general procedures and methodology have been outlined and put into practice, with 

an emphasis on analysing machine learning and deep learning-based data extraction methodologies. 

Human face detection, feature extraction, and then face recognition are the three core and vigilant 

mechanisms of the task of human face identification. Basic procedures include face detection, in 

which an algorithm determines whether a face is present in a picture and, if so, draws a box around 

it. The algorithm recognizes a face in the first stage of detection and pinpoints particular elements of 

the face, such as the shape of your nose or the separation between your eyes, in the second stage of 

feature extraction. Each of these components is necessary for a face recognition system to function 

successfully and efficiently overall. Face extraction refines the traits that distinguish each face, while 

face detection lets the algorithm focus solely on particular regions of interest in an image. Ultimately, 

this data is used by recognition algorithms to precisely match subjects, ensuring the effectiveness of 

individual identification. 

The upcoming sections will provide a summary of each of these components, detailing their roles in 

the system and how they work together to achieve robust side face recognition. Additionally, this 

study will explore the specific machine learning and deep learning techniques applied to profile 

pictures, as well as the challenges and strategies involved in adapting these algorithms for side-face 

recognition. This examination sets the stage for a deeper analysis of the algorithms’ performance and 

the impact they have on the system’s overall efficiency and reliability. 

3.1 Detecting Face 

Face detection is the first stage in face recognition and is the most crucial stage in the face 

identification process. To recognize faces and facial landmarks it is necessary to detect the locations 

and sizes of faces inside a digital image while ignoring other objects. This is done during the 

recognition of faces during the face recognition process to be more precise. In this chapter, some of 

the common methods have been described which are used for detecting and recognizing the face.  
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3.1.1 HCA- The Haar-Cascade  

In computer vision, this algorithm is a common method for detecting the face, particularly in real-

time applications. This approach, which originated in a ground-breaking 2001 study by Paul Viola 

and Michael Jones [94], is based on machine learning The Haar Cascade algorithm, a cornerstone in 

face detection, uses simple rectangular patterns known as Haar-like features, which are effective in 

identifying edges, lines, and fundamental shapes within an image. These features help distinguish 

between different parts of a face, such as the eyes, nose, and mouth, by capturing contrasts in pixel 

intensities. The Haar-like features, inspired by human visual processing, are key in recognizing the 

structure of a face. During the training phase, the algorithm is fed thousands of positive (faces) and 

negative (non-faces) images, allowing it to learn how to differentiate between faces and other objects. 

Through this process, several classifiers are generated, each designed to detect specific features of 

the face, ensuring that the algorithm can accurately distinguish facial regions from the background. 

The algorithm works by scanning an image with multiple scales and allows it to identify the faces of 

various dimensions. This multi-scale scanning is crucial because faces can appear in different 

proportions depending on their distance from the camera. By applying the Haar-like features across 

these varying scales, the algorithm ensures that even small or distant faces can be identified. Haar 

Cascade’s [94] cascading structure significantly enhances its performance. Instead of processing 

every region of the image in detail, it quickly eliminates areas where no face is detected in the initial 

stages. This step-by-step approach, where non-face regions are filtered out early, allows the 

algorithm to focus its computational resources on promising regions, thereby increasing both speed 

and efficiency. Moreover, the Haar Cascade classifier operates by using a series of weak classifiers 

in a cascade. Each weak classifier evaluates a small region of the image for the presence of certain 

features. If a region passes through all stages of the cascade without being rejected, it is identified as 

a face. This cascading method ensures that the algorithm minimizes false positives, as each 

subsequent stage of the cascade applies increasingly complex criteria to verify the presence of a face. 

The high speed and precise outcomes make this method appropriate to be implemented for real-time 

face detection systems. Figure 3.1 overviews the Haar Cascade classifier with an emphasis on the 

process of the algorithm to detect faces in an image. Due to its capability to perform feature extraction 

in a simple manner and fast scanning and classification, Haar Cascade has received considerable 

attention in different face detection applications, particularly, in environments with constrained 

computational resources. Despite its relatively older design compared to modern deep learning 

methods, Haar Cascade remains a powerful tool for quick and effective face detection, especially 

when integrated with other machine learning techniques. 
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Figure 3.1 Haar Cascade Classifier Workflow [94] 
 

This algorithm has mainly three main phases: 

• Selection of Haar Features 

The first stage of the Haar Cascade algorithm, known as Haar Feature Selection, focuses on 

identifying the most effective features for face detection. Haar features are rectangular regions within 

an image that evaluate the contrast between different parts of the image, helping the algorithm detect 

patterns indicative of a human face. These features play a crucial role in distinguishing facial regions 

from other parts of the image. The algorithm analyses variations in pixel intensity across these 

rectangular regions, effectively capturing the visual characteristics of faces, such as edges and lines. 

Several types of Haar-like features are used in this process, each designed to detect different elements 

of a face. Edge features are one of the simplest types and are used to identify transitions between 

light and dark areas, such as the boundary between the forehead and eyes. These features help the 

algorithm recognize where sharp changes in pixel intensity occur, which is typical around facial 

landmarks like the eyes, mouth, and nose. Line features are more sophisticated, detecting linear 

patterns that might represent parts of the face like the bridge of the nose or the alignment of the eyes. 

These features allow the algorithm to recognize horizontal or vertical lines that are often present in 

a face's structure. In addition to edge and line features, the algorithm also uses four-rectangle 

features, which are more complex and capable of identifying patterns that involve larger regions of 

contrast. For instance, these features can detect the arrangement of eyes and nose or the space 

between the mouth and chin. By capturing these more intricate structures, four-rectangle features 

help the algorithm understand the overall layout and composition of a face, enabling it to distinguish 

between faces and non-face objects more effectively. The combination of these features forms the 
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foundation of the face detection process. Each feature contributes to the overall classification by 

highlighting specific patterns that are common in faces but not in other parts of an image. By 

selecting and applying the most effective features, the algorithm can quickly filter through irrelevant 

areas of an image and focus on regions that are likely to contain faces. This process of feature 

selection ensures that the algorithm operates efficiently, even when dealing with large or complex 

images. Ultimately, Haar Feature Selection is critical to the success of the entire detection system. It 

enables the algorithm to identify the most important visual cues for face detection, ensuring high 

accuracy while minimizing computational complexity. The ability to detect faces based on simple 

yet powerful features like edges, lines, and more complex structures makes Haar Cascade a widely 

used method in computer vision, particularly for real-time applications where speed and efficiency 

are paramount. Figure 3.2 illustrates Haar-like features.  

 

Figure 3.2 Haar Features [94] 

• Image Scheming  

In the next stage, the number integral of the given input image needs to be taken. The picture is a 

matrix composed of two dimensions that give the sum of all of the pixels up to the current point. It 

may be efficiently computed using dynamic programming. The integral picture allows for the 

computation of sums in a fixed amount of time, eliminating the need to add up the pixel intensities 

for every feature separately. Figure 3.3 [95] shows an example of how this strategy improves 

computational efficiency,  
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Figure 3.3 Image calculation using Haar [94] 
 

• Implementation of Classifier 

A cascade classifier is a combination of multiple classifiers where each of them reduces the chance 

of malfunctioning by focusing only on face area. The cascade consists of several stages of classifiers: 

each of them filters out low-quality and simple images, and lets through good candidate faces with 

just a few calculations. It operates in several layers, in each of which it looks at different zones of an 

image using a set of “Haar-like features” unique to the layer [43]. Finally, at each step, the classifier 

uses the integral picture to sum a feature vector across all regions of the image. If the feature vector 

matches the face, the region advances to the next stage in the cascade. If it does, the region will be 

rejected as nonface. This multi-stage strategy brings further improvement to detection performance 

in specific aspects such as accuracy and efficiency. Training the cascade classifier requires a lot of 

such positive and negative examples, making it more accurate and suitable for different scenarios. 

Furthermore, its excellent generalizability allows faces to be detected in various lighting conditions, 

from different directions, and across expressions, making it more multipurpose and stronger. 

3.2 Deep Learning Techniques for Side Face Recognition 

Deep learning has changed the facial recognition industry, instantly recognising and extracting 

complicated image information. Its ability to detect intricate patterns has greatly improved accuracy 

and reliability. For side face identification, deep learning methods are adjusted to handle the 

challenges of side profiles. CNNs are optimized to capture unique side-face features, and transfer 

learning improves performance by using pre-trained models with limited data. Generative 

Adversarial Networks (GANs) [116] further bolster training by generating realistic side-face images. 
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These advancements collectively enhance side face recognition systems, making them more effective 

at handling variations and occlusions in side profile images. 

3.2.1 Convolutional Neural Networks-CNNs 

Deep learning has changed the facial recognition industry, instantly recognising and extracting 

complicated image information. Nonlinear activation functions like ReLU add complexity, allowing 

the network to learn intricate patterns. CNNs excel at automatically detecting spatial hierarchies in 

images, making them well-suited for large-scale image data where traditional methods might 

struggle. Despite their power, CNNs can overfit, especially with complex models or small datasets. 

Overfitting happens when the CNN memorizes the training data rather than learning to generalize, 

leading to high training accuracy but poor performance on new data. To prevent overfitting, 

techniques like dropout, data augmentation, and regularization are used. 

Conversely, underfitting results from a CNN failing to detect relational patterns in the training data 

set, much alone the test data, hence producing a rather poor, extremely accurate forecast of the 

training data set. This is mostly contributed to by overly simplistic or inadequately trained models 

of the data set under consideration. Sometimes it’s challenging to determine what level of model 

complexity is feasible so that the CNN can be effectively trained by using the available amount of 

training data and employing the most optimal optimization techniques. To teach CNNs to map 

selection to a label as in “cat” or “dog”, labelled data is usually provided. It is then readjusted to 

serve as determinants used by the network to reduce the prediction errors. CNNs, according to the 

literature, have provided better solutions as compared to traditional methods in these areas and 

provide state-of-the-art accuracy and complexity. Through the optimization and mitigation of the 

limitations characteristic of CNNs, research authors and developers are increasingly unlocking the 

potential of image-based AI systems. The core layers of a CNN consist of Convolutional layers, 

Pooling layers, ReLU activation layers, and Fully Connected layers, as shown in Figure 3.8. These 

layers work together to extract features, reduce dimensionality, and classify data in deep learning 

models. 
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Figure 3.4 CNN Architecture ]129] 

 

• Convolutional Layer: The majority of computing is carried out by the convolutional layer, 

which is the core element of a convolutional network. Extracting features from the input 

data—typically an image—is its main goal. The convolutional layer maintains the spatial 

relationships between pixels while learning visual features from small input image patches. 

The image is processed through many learnable filters or kernels, yielding an activation map 

or feature map as output. The feature map is then supplied as input to the successive levels 

of the network [106]. 

• Pooling Layers: The pooling layer in CNNs reduces the image size by down-sampling, 

usually after a convolutional layer. Max pooling, a common method, picks the highest value 

from each region in the feature map, which helps improve the model's generalization, speed, 

and resistance to changes in position and distortion. 

• ReLU Layer: The Rectified Linear Unit layer presents non-linearity into the network through 

its rectifier function. It operates element-wise on the feature map, replacing all negative 

values with zero. Mathematically, if ‘INR’ represents the input to the neuron, the ReLU 

function is defined as  

f(INR)=max (0, INR)    (3.3) 

This non-linear transformation supports the network to learn more complex patterns and 

representations. 

• FCL- Fully Connected Layer: The FCL has neurons where every neuron is linked to each 

neuron of the layer next to it. It has a convolutional layer, pool layer, and ReLU in contribution 

to offering high-level features that exhaustively go through categorization of the image input 

regarding several training data types. A classifier uses the FCL's output to assign probabilities 
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to each class, often with the SoftMax function. SoftMax provides a probability distribution 

where all output probabilities add up to 1. To maximize performance during training, the 

network reduces the cross-entropy loss between the true labels and the predicted prospects 

[105]. 

CNNs are the backbone of most modern facial recognition systems. They are particularly effective 

in handling spatial hierarchies in images [117]. Key architectures used in side face recognition 

include: 

o VGGNet: Known for its simplicity and depth, VGGNet has been employed for side face 

recognition with modified layers to handle side profiles. 

o ResNet: The residual learning framework of ResNet helps in training deeper networks, 

which can capture more intricate features of side faces. 

3.2.2 Transfer Learning 

Given the shortage of side-face data, transfer learning is a valuable technique. To enhance 

performance, pre-trained models using smaller side-face datasets (like ImageNet) might be adjusted. 

o Fine-tuning: Regulating the weights of a pre-trained model to better suit the side face 

recognition task. 

o Feature Extraction: Using the convolutional base of a pre-trained model to extract 

features and train a new classifier on top. 

3.2.3 MTCNN: Multi-Task Cascaded Convolutional Neural Networks  

Applications like as face identification, expression analysis, and virtual try-on systems require facial 

landmark detection, which focuses on recognizing important facial landmarks like the mouth, nose, 

and eyes. The well-known deep-learning framework MTCNN was first presented by Zhang et al. in 

2016 [97]. It is utilized for both face detection and landmark identification. Three neural networks 

are used by MTCNN: the Output Network (O-Net) to complete landmark predictions, the Proposal 

Network (P-Net) to produce candidate facial regions, and the Refine Network (R-Net) to improve 

these candidates. The following describes each network's distinct function in the face detection 

process: 

o P-Net: Using a fully convolutional neural network, the P-Net i.e. Proposal Network 

generates potential face regions by scanning the entire image to create bounding boxes of 

various proportions and aspect ratios. 

o R-Net: The second network in the MTCNN cascade, called the R-Net (refine network), 

improves the bounding boxes generated by the P-Net. It filters out false positives, 
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enhancing the accuracy of face detection by concentrating on facial areas and minimizing 

background interference. 

o O-Net: The O-Net, or Output Network, is the final stage in the MTCNN cascade. It 

further refines the bounding boxes from the R-Net, classifies regions as face or non-face, 

and accurately identifies facial landmarks such as the eyes, nose, and mouth for precise 

localization. 

 

Figure 3.5 MTCNN model [98] 
 

Face categorization, bounding box regression, and facial landmark localization are the three main 

functions carried out by MTCNN. To get the desired effects, each stage uses a different combination 

of convolution filter widths and layer depths. Three groups of outputs are obtained: two neurons 

identify the face and provide the categorization score. Another output utilizes four neurons to identify 

the upper left and bottom right corners through bounding box regression. This output also handles 

facial landmarks by detecting five key points: the nose, mouth corners, and the left and right eyes. 

3.3 Feature Extraction Methods 

Significant local intensity fluctuations, such as those found at corners and edges, are featured in 

photographs. Applications including object detection, face recognition, and picture segmentation use 

feature descriptor techniques like edge detection. Facial features that are important for face 

identification include the nose and eyes. By obtaining important data, feature extraction aids in the 

classifier's ability to differentiate between individuals. Since features include domain-specific 

information that is difficult to learn from sparse data, they are employed instead of raw pixels. 
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Following is a quick description of a few feature extraction methods that were used on the dataset 

photos in this section. 

3.3.1 LBP - The Local Binary Pattern   

The LBP method is a straightforward yet effective technique for describing local texture in images. 

It compares each pixel with its neighboring pixels, creating a binary pattern based on whether 

neighboring pixels are brighter or darker than the central pixel. In facial recognition, LBP creates a 

feature vector for the overall descriptor by dividing the image into areas, extracting features from 

each, and combining them. The LBP operator generates a binary code by examining a 3×3 

neighborhood around each pixel, capturing texture details as a compact and informative descriptor 

[99]. 

In other words, LBP can be labeled as an well-ordered sequence of binary values relative to the initial 

arrangement of the intensity value of the surrounding pixels compared with that of the center pixel 

of that location(x,y). Equation 3.1 [100], [101] thus provides the final decimal value produced from 

the 8‐bit binary pattern itself. 

LBP(a,b)= ∑ 2𝑛7
𝑛=0 ⋅ 𝑆 (Ln (a,b)-Lc (a,b))  (3.1) 

The gray values of the eight adjacent pixels are shown by Ln, the gray value of the center pixel (a, b) 

, along x and y axis respectively, is represented by Lc, and the function S(j) is given as: 

    S(j) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

     (3.2) 

The LBP operator processes a pixel's eight neighbors, using the central pixel as a threshold [102]. 

The surrounding pixel receives a zero if its gray value is not equal to or greater than the value of the 

center pixel, and a one if it is. The LBP code is subsequently created by combining these eight binary 

values for the central pixel, described as in Figure 3.5. 

 

 

 

Figure 3.6 The operators of LBP [101] 
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3.3.2 HOG – Histogram of Oriented Gradient  

In image processing, HOG (Histogram of Oriented Gradients) is a commonly used feature extraction 

technique, especially for object detection and recognition. The foremost goal of HOG is to use 

gradient orientation distribution analysis to identify and characterize the local structure and shape of 

a picture. Gradients, which are variations in intensity values throughout an image, give important 

details about object boundaries and edges. Following are the steps involved in this technique 

• Gradient Computation: To assess changes in intensity in both the horizontal and vertical 

directions, gradients are first created for discretely pixel. This aids in locating the image's 

borders and edges. 

• Cell Division: The image is separated into tiny, usually 8 by 8-pixel cells. The distribution 

of gradients within each cell is represented by a computed gradient orientation histogram. 

• Block Normalization: To account for variations in lighting and contrast, cells are grouped 

into larger blocks (e.g., 2x2 cells) and normalized, enhancing the robustness of the feature 

descriptors. 

• Histogram Accumulation: The normalized histograms from the cells within a block are 

concatenated to form a block descriptor. This descriptor represents the shape and structure of 

the image within that block. 

• Feature Vector Formation: The descriptors from all blocks in the image are concatenated 

into a final feature vector, capturing the overall gradient orientation distribution across the 

entire image. 

 

 

Figure 3.7 Architect of HOG [103] 
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3.3.3 PCA- Principal Component Analysis 

PCA is a popular statistical approach for data dimensionality reduction, feature extraction, and 

information compression which is also widely used in face recognition systems. PCA is to acquire a 

linear transformation that maps the high dimensional data into a space where the data have fewer 

dimensions which contains nearly as much variance as those of a complete n dimension [104]. This 

gave the best generalized facial features required for proper identification. The transformation works 

by separating the directions which have the most variance where the new dataset is expressed and 

information is retained in ways other than simply throwing away some of your input data. At its core, 

PCA is about capturing the essence of face images and removing irrelevant or redundant information. 

PCA decreases the number of computations needed and seeks to identify in image, areas that have 

a huge impact on face recognition. PCA is majorly used to reduce a large set of data into a smaller 

set making it easier and accurate for the machine learning models to work with faces. However, it 

adds to cognition time and in doing so enhances the face recognition systems’ performance 

significantly. By concentrating on the most critical facial characteristics, PCA ensures that the system 

can identify or verify individuals with greater precision, even when faced with large datasets or 

varying conditions, such as lighting or orientation. Thus, PCA is a powerful tool in the field of 

biometric identification, enabling efficient and accurate facial recognition. 

Here are some explanations for why PCA is especially well-suited for face recognition: 

• Dimensionality Reduction: PCA reduces the number of dimensions in facial image data 

while retaining the most important features. This simplifies the data and speeds up the 

recognition process. 

• Variance Preservation: PCA projects data onto a lower-dimensional space in such a way 

that the variance is maximally preserved. This ensures that the key features of the facial 

images are maintained, which is crucial for accurate recognition. 

• Feature Extraction: By identifying principal components, PCA extracts features that are 

most effective in distinguishing between different faces. These features, or eigenfaces, are 

critical for accurate face recognition. 

• Noise Reduction: PCA reduces noise by concentrating on the main components that capture 

the furthermost important distinctions in the data, making face recognition more robust to 

changes and distortions. 

• Computational Efficiency: PCA reduces the amount of data to process, making face 

recognition faster and more efficient. 
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• Linear Transformation: PCA provides a linear approach to feature extraction, which is 

effective for capturing the linear relationships between facial features and recognition 

performance. 

• Data Compression: PCA compresses data by transforming it into a lower-dimensional 

space, making it easier to store and manage large datasets of facial images. 

• Generalization: By focusing on principal components, PCA helps in generalizing facial 

features across different individuals, improving the model's ability to recognize faces under 

varying conditions. 

In conclusion, PCA worth or can provide much useful information for human face recognition. This 

technique gives pretty good result and also the variance in original data is going to be retained after 

transforming it into a lower dimension space. This procedure keeps the data simple enough to handle, 

making processing time reduced significantly. PCA effectively simplifies useful information that 

face recognition systems require to build and is also often necessary in a real-time application so that 

these subsystems can operate more practically. PCA is the one that works best for the greatest number 

of idioms and many difficulties others have with understanding working on our target features from 

our multi-valued data. Most of all, PCA has been utilized for the purpose of feature extraction, which 

improves the recognition system efficiency and performance. Dimension reduction of the data you 

have makes the calculations faster and has its advantages in i.e. the possibility of overfitting because 

of lots of noise or irrelevant data driven to the AI system. 

. PCA, for instance, has done an especially good job in side-face biometrics due to its capacity to 

capture necessary craniofacial structures which enhance recognition capabilities. This accuracy is 

important in cases where the profile view can be our only point of recognition. PCA reduces the 

dimensionality of a dataset while maintaining important features, making the data set more tractable 

for further analysis. 

This method provides a good functional way of making the side-face identification fast and reliable 

through PCA. This guarantees that crucial characteristics of facial geometry remain intact so that 

such systems can reliably solve problems even under significantly different conditions (due to altered 

lighting or pose). In addition, the data becomes less complex which means faster processing times, 

allowing for rapid detection and confirmation in real-world applications. To conclude PCA is 

significantly important in making face recognition systems better. This is the reason why it allows 

for simpler data to still hold enough pivotal value to work effectively and earn efficiency in biometric 

systems. This makes PCA a cornerstone modelling approach for the recognition of individuals by 

their faces in most versions of evolving face recognition technology. The utilization of PCA in 
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biometric systems leads to technological advancements as well as allows user-centric applications 

that are capable of operating in real-world scenarios. So, PCA emerges as the king in the Face 

Recognition field and there is no development to be made in biometric identification without it. 

 

 

Figure 3.8 PCA-Flow chart [104] 

3.4 Face Recognition Techniques 

Face recognition techniques can be categorized into several different methods based on the 

underlying approach. Here are some of the most common techniques: 

1.  Traditional (Hand-Crafted Feature) Methods: 

• Eigenfaces “Principal Component Analysis – PCA”: This is one of the first facial 

recognition techniques developed. Faces are represented as the weighted sum of the so-called 

“eigenfaces”. 

• Linear Discriminant Analysis – LDA: LDA improves classification by identifying a linear 

combination of features that maximizes separation between classes while minimizing 

variation within each class. 
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• Local Binary Patterns (LBP): This technique uses texture features by converting an image 

into an array of binary patterns, which are then used for face classification. 

• Gabor Filters: Gabor wavelets capture orientation and spatial frequency characteristics of 

face images, which are then used for recognition. 

2.  Statistical Methods: 

• Hidden Markov Models (HMM): This statistical model assumes that the underlying process 

generating face data is a Markov process, which is often used for face recognition in dynamic 

systems such as videos. 

• Support Vector Machines (SVM): SVM is used to classify faces by finding the best edge 

that maximizes the separation between diverse classes in a high-dimensional space. 

3.  Neural Network-Based Methods: 

• Convolutional Neural Networks:  CNNs are popular for face recognition because they 

automatically learn features from data. Deep learning methods usually perform much better 

than traditional ones. 

• VGGFace: A CNN architecture fine-tuned on a large face dataset to perform face 

recognition. 

• FaceNet: Developed by Google, this deep learning model uses a triplet loss function to map 

faces into an Euclidean space, where distances directly correspond to face similarity. 

• DeepFace: Developed by Facebook, DeepFace uses a deep neural network to detect and 

verify faces. 

4.  3D Face Recognition: 

• 3D Morphable Models (3DMM): This technique uses 3D shape information of the face, 

providing robustness against pose and lighting variations. The model creates a 3D 

representation of the face that can be compared across different viewpoints. 

• Depth-based Face Recognition: It uses depth information along with RGB data to perform 

face recognition, which improves performance in challenging conditions. 

5.  Hybrid Methods: 

• Pose-Invariant Face Recognition: This combines 2D and 3D models to handle variations 

in pose. Hybrid methods might also combine deep learning techniques with traditional 

feature-based techniques for better performance. 

• Holistic Methods: These methods recognise the full facial image by combining several 

features and approaches, such as merging texture-based algorithms with deep learning. 
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6.  Attention Mechanisms and Transformer Models: 

• The attention and transformer models which are found in the recent advancements in natural 

language processing and computer vision are also being applied in face recognition for better 

accuracy and understanding with the help of the attention mechanism. 

7.  Facial Landmarking and Geometric Methods: 

• Active Appearance Models (AAM): In this method, facial recognition is done by applying 

a deformable model to the face considering both the shape and texture of the face. 

• Facial Landmarks Detection: landmarks of interest/ the face with e.g. the eyes, nose, and 

mouth and using the relative geometrical information between these landmarks for 

recognition.  

8.  Thermal Imaging-based Recognition: 

• This technique leverages the thermal signature of a face, which is invariant to lighting 

circumstances and can be useful in low-visibility environments. 

9.  Motion-Based Recognition (Video Analysis): 

• Optical Flow-Based Recognition: In video sequences, the motion information (optical flow) 

of facial features can be used for recognition. 

10.  Hybrid Deep Learning Methods (GAN-based, Siamese Networks): 

• Generative Adversarial Networks (GANs): GANs can generate realistic facial images that 

can be used to supplement the data or assist in face recognition by creating face embeddings. 

• Siamese Networks: These networks are designed to compare two input images and learn a 

similarity function to recognize whether the two images represent the same person. 

Although this thesis does not aim to provide an exhaustive explanation of all face recognition 

techniques, it concentrates on a hybrid approach combining Principal Component Analysis (PCA) 

with Convolutional Neural Networks (CNN). The rationale behind this choice is rooted in the 

complementary strengths of these two methods. PCA is a well-established method for dimensionality 

reduction, particularly effective in simplifying the computational complexity of large datasets by 

projecting high-dimensional data onto a lower-dimensional subspace. This reduction not only 

accelerates the recognition process but also preserves the essential variance necessary for 

distinguishing different faces. CNNs excel at capturing complex patterns, such as facial features, and 

can robustly handle variations in lighting, pose, and expression. 

By integrating PCA with CNNs, this hybrid approach seeks to balance the benefits of reduced 

computational cost with the accuracy and robustness of deep learning models. The forthcoming 
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technical review will examine the empirical evidence supporting this approach, emphasizing its use 

and efficiency in real-world face recognition applications. This evidence will justify adopting this 

method as a viable solution for modern face recognition tasks. 

3.5 MLP- Multi-Layer Perceptron  

The Multi-Layer Perceptron (MLP) is a neural network that processes data by going through layers 

of connected nodes consisting of an input layer, the input data feature, some hidden layers, and an 

output layer.  It uses activation functions like sigmoid or ReLU to learn complex patterns from data. 

Figure 3.9 [107] shows an MLP archetypal with one hidden layer. 

 

Figure 3.9 MLP Model - where “m inputs, 1 hidden layer, and n” outputs [107] 
 

A Multi-Layer Perceptron's (MLP) outputs are computed as : 

1. Primary, Equation 3.4 is used to find the weighted sums of the input values. 

 

𝑡𝑗 = ∑ (𝑊𝑖,𝑗,𝑥𝑖

𝑛

𝑖=1
) − 𝐵𝑗   𝑗 = 1,2, … . , ℎ 

                                             (3.4) 

Here  

• n=number of inputs 

• Wi,j= Weight from the jth neuron to the ith neuron in the input layer (xi)   

• xi = ith input 

• Bj=Bias for the jth hidden node 
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2. In the next step, each neuron in the hidden layer calculates its output using an activation 

function, as shown in Equation 3.5. 

𝑇𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑡𝑗) =
1

(1 + exp(−𝑡𝑗))
                       𝑗 = 1,2, … . ℎ 

                                   (3.5) 

 

3. Equations 3.6 and 3.7 below explain how the outputs of the hidden nodes determine the 

network's final output. 

𝑜𝑘 =  ∑(𝑊𝑗,𝑘

ℎ

𝑗=1

, 𝑇𝑖) −  𝐵′𝑘              𝑘 = 1,2, … . . , 𝑚 

                                   (3.6) 

𝑂𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑜𝑘) =
1

(1 + exp(−𝑜𝑘))
         𝑘 = 1,2, . … . . , 𝑚 

                     (3.7) 

Here 

Wj,k = correlation weight between the jth hidden neuron and the kth output neuron 

B’k = bias of kth hidden neuron [107] 

 

In summary, a Multi-Layer Perceptron (MLP) learns complex functions by processing data through 

multiple layers of neurons with non-linear activation functions. The network's performance is 

enhanced by adjusting weights through supervised learning and optimization techniques while 

carefully selecting hyperparameters. 

In side face recognition, MLPs help process features from side profiles, learning to identify subtle 

patterns despite variations in angles. Training the MLP on these features improves its ability to 

recognize individuals from side profiles. 
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3.6 Conclusion 

Moreover, this work proposes side-face biometrics beyond the approaches related to front-face 

solutions that can be considered as a significant contribution to solving the facial identification tasks 

using PCA and CNN. PCA is ideal not only for data dimensionality reduction but also for extracting 

essential characteristics of faces, helping reduce complexity while understanding all the aspects of 

large datasets. Secondly, when combined with the strengths of CNNs in grasping fine details on 

images, this hybrid model can form a potent machine for side face identification. Although now there 

is a great deal of research on front-face biometrics and it has long been applied in practice, the 

experimental results demonstrate that PCA integrated with CNN to the side-face recognition secures 

excellent results, enabling the system to identify an individual looking from other angles. 

This is an important advance in the biometric system for dealing with more robust and versatile 

sensors that do not always present a frontal view of the enrolled subjects, as it happens in real-world 

scenarios. The results showcase the applicability of these methods in different scenarios including 

security systems, and adequacy access control where authentication is very crucial. In this work, the 

efficiency of this strategy was also proved through experimentation at a great level in the “FEI-

Faculdade de Engenharia Industrial” (Industrial Engineering College) database. 

The results of the experiments showed high accuracy, showing that the PCA-CNN hybrid model can 

be a good solution for side-face biometrics. The results validate the conceptual feasibility of 

combining PCA and CNN but also pave the way for future use cases in facial recognition 

technologies. The next chapter presents the illustrative experimental results and comprehensive 

methodologies of these virtually implemented experiments for PCA and CNN that provide a great 

access point on how PCA and CNN can transform biometric identification. The groundwork laid by 

this research is a stepping stone toward future work on facial recognition, highlighting the necessity 

of transforming such preservation technologies to suit broad identification contexts. 
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Chapter 4  
 

4. Proposed System   
 

In the previous chapter, considerable groundwork was made to successfully cover the thorough 

analysis of technologies relating to side-face biometrics. From the detailed reviews of various 

studies, it became clear which of the methods were the most useful in developing a new side-face 

recognition system. This section details the dossier and methods employed. The proposed methods 

have been tested on publicly available datasets of side faces from FEI cubed with a discrete number 

of images of different sides. This dataset is critical as it is used for the development and optimization 

of the system. Various techniques and algorithms are applied to the system to improve its accuracy 

and performance. A steady improvement has taken place in pre-processing that helps to enhance the 

quality of the image, the feature extraction phase that assisted with characterizing unique facial 

features, and the classification algorithm that allowed the system to perform an accurate 

identification. Here, the goal is to focus on achieving the highest possible recognition and 

performance for various cases.  

4.1. Dataset Used 

For the development of the side-face recognition system, the FEI-Faculdade de Engenharia Industrial 

dataset was utilized, a well-regarded standard in face recognition research that contains images of 

200 individuals with 14 different poses. The FEI dataset offers a diverse collection of side-face 

images captured under controlled conditions, providing a solid foundation for evaluating recognition 

algorithms. This dataset features multiple subjects with various pose angles, expressions, and 

lighting conditions, ensuring a comprehensive representation of real-world scenarios. The variety 

within the FEI dataset allows for effective testing and validation of the methods, as it encompasses 

a wide range of facial variations and attributes. By leveraging this established dataset, the system 

can be benchmarked against known standards, ensuring reliability and generalizability in recognizing 

side faces. This approach not only enhances the credibility of the results but also facilitates 

comparison with existing methods and contributes to the advancement of side face biometrics. Some 

objects are shown in Figure 4.1 
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Figure 4.1 Sample images from the Data set FEI 

4.2. Dataset Preparation   

The FEI dataset comprises facial images of 200 individuals, each person having 14 images—7 frontal 

and 7 side-face (profile). These images are normalized to maintain consistency across the dataset. 

Each image is labelled numerically (e.g., 1 to 12) as part of the filename, with each number 

representing a different pose. For this study, the target pose is image number 10 for each of the 200 

individuals, representing a key side-face image. The first step in the process is filtering out all images 

labelled as number 10 from the dataset. This ensures that only the desired side-face images are 

selected for further analysis. Once the target images are filtered, they undergo a binarization process, 

converting each image to a binary form, where pixel intensities are reduced to either 0 (black) or 1 

(white). This binarized set of images will serve as input for succeeding steps in the face recognition 

pipeline. Additionally, the architecture of the pre-processing pipeline is designed to handle images 

that may require resizing or further normalization. In such cases, the architecture includes 

mechanisms to automatically resize the images to a standardized dimension and ensure uniform 

intensity distribution across the dataset, enhancing the consistency of the dataset. The pre-processing 

architecture follows a clear workflow, starting with image filtering, followed by binarization, and 
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incorporating optional resizing and normalization. Figure 4.2 provides an overview of this pre-

processing pipeline, illustrating how each step contributes to the generation of pre-processed images 

ready for analysis and use in the recognition model. By implementing this architecture, the dataset 

is refined, and image quality is enhanced, which facilitates better feature extraction and more 

accurate identification of individuals from side-face images. This comprehensive pre-processing 

ensures that the input to the recognition model is clean, uniform, and suitable for high-performance 

face identification. 

 

Figure 4.2 Pre-processing the image 
 

The subsequent pre-processing techniques are employed to modify the photographs: 

• Gray Scaling conversion transforms images by mapping pixel values to brightness, which 

simplifies the processing for CNN architectures. This technique effectively removes color 

information, allowing the model to concentrate on essential features without the distractions 

of color variations. By utilizing grayscale images, CNNs can enhance their ability to detect 

and recognize facial features with greater accuracy. The reduction in complexity that comes 

from eliminating color data helps improve the overall performance of facial recognition 

systems. Furthermore, grayscale images highlight important patterns and structures that are 

crucial for identification. This approach not only streamlines the processing pipeline but also 

contributes to faster computation times. As a result, the focus shifts to the critical aspects of 

the face, such as contours and edges. Overall, gray scaling serves as a vital pre-processing 

step in the realm of computer vision. It ensures that the models are trained on the most 

relevant information, leading to more reliable outcomes. In summary, gray scaling is an 

essential technique for effective facial recognition in CNN architectures. 
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• Binarization separates an image into black and white pixels by coating thresholding to pixel 

standards. It is possible to accomplish this by the utilization of global thresholding, which 

employs a single intensity value for the entire image, or through the utilization of local 

thresholding, which divides the image into regions and performs partial thresholding. While 

global thresholding is simple to implement, it may not effectively manage noise or texture 

variations. In these cases, adaptive thresholding is preferred, as it dynamically regulates the 

threshold rate to accommodate deviations in the image. 

4.2.1 The Algorithm for Side-Face Image Pre-processing 
Step No. 1 Read Side Face Image 

• Input: Dataset path, image filename 

• Output: Loaded image 

Procedure: 

Load the image from the dataset using OpenCV 

Step No. 2 Resize Image 

• Input: Loaded image, target dimensions (width, height) 

• Output: Resized image 

Procedure: 

Use an image resizing function to change the image's 

dimensions to the specified width and height. 

Maintain the aspect ratio if necessary. 

Step No. 3 Normalize Image 

• Input: Resized image 

• Output: Normalized image 

Procedure: 

Discovery the minimum and maximum pixel values in the resized 

image. 

Apply the normalization formula:  

𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆_𝒗𝒂𝒍𝒖𝒆 =
𝒐𝒓𝒊𝒈𝒊𝒏𝒂_𝒗𝒂𝒍𝒖𝒆 − 𝒎𝒊𝒏

𝒎𝒂𝒙 − 𝒎𝒊𝒏
× (𝒏𝒆𝒘_𝒎𝒂𝒙 − 𝒏𝒆𝒘_𝒎𝒊𝒏) + 𝒏𝒆𝒘_𝒎𝒊𝒏 

Set new_min to 0 and new_max to 255 for 8-bit images. 

Step No. 4 Convert to Grayscale 

• Input: Normalized image 

• Output: Grayscale image 

Procedure: 

Convert the normalized image to grayscale using a suitable 

conversion method (e.g., average method, luminosity method). 

Step No. 5 Binarization 

• Input: Grayscale image 

• Output: Binarized image 

Procedure: 

Choose a threshold value  

Apply the threshold to convert the grayscale image to a 

binary image: 

If pixel value > threshold, set to 255 (white). 

If pixel value ≤ threshold, set to 0 (black). 

Step No. 6 Store Pre-Processed Image 

• Input: Binarized image, storage path 
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• Output: Confirmation of successful storage 

Procedure: 

Save the binarized image to the specified path using an 

image-saving function. 

Confirm that the image has been saved successfully. 

 

4.2.2. Implementation of PCA  

The features in the image display significant local intensity variation due to pixel changes; edges and 

corners are especially vital. To boost face recognition in these works, edge detection and feature 

descriptor methods were used. A prominent procedure is the Histogram of Oriented Gradients 

(HOG), which generates informative histograms characterized by gradient magnitude and angle in 

certain regions. For analysis, the optimal component value is set as 10 by reshaping the image with 

a scale (100,100) into grayscale, using the Skimage Python library known for its effective HOG 

implementation. Figure 4.3 shows the PCA for side face images with two Principal components 

which allow for effective dimensionality reduction, enhanced visualization, improved computational 

efficiency, and better noise reduction, all of which contribute to more effective and efficient face 

recognition and analysis. The features in images encapsulate substantial local intensity variation, 

primarily changes in pixel values with edges and corners as the most critical. Edge detection and 

feature descriptor techniques worked together to enhance face recognition. After this process need 

to employ robust feature detectors and extractors to carry out analysis effectively on the datasets. A 

key method would be the Histogram of Oriented Gradients (HOG), which builds its informative 

histograms according to the magnitudes and angles of the gradients in specific regions. Then for 

analysis, the optimal component value is set as 10, by reshaping the image with a scale of (100, 100) 

into grayscale, using the Skimage Python library known for its effective HOG implementation.  

Figure 4.3 shows the PCA for side face images with two Principal components which allow for 

effective dimensionality reduction, enhanced visualization, improved computational efficiency, and 

better noise reduction, all of which contribute to more effective and efficient face recognition and 

analysis.  

➢ Algorithm Outline 

1. Import Required Libraries 

• Use necessary libraries for: 

o Image loading and processing. 

o Applying filters and feature extraction. 

o Dimensionality reduction through PCA. 

o Visualizing results. 
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o Separating data into training and testing sets. 

2. Load Side-Face Images 

• Define the Image Directory: Identify the folder that contains the images. 

• Iterate Over Image Files: 

o Read each image as a grayscale image (to reduce complexity). 

o Resize the images to a consistent size (e.g., 100x100 pixels) for uniformity. 

• Flatten Images: Convert the 2D image (100x100) into a 1D array for further processing. 

3. Prepare the Data 

• Convert List to NumPy Array: Store all the flattened images in a NumPy array for easier 

manipulation. 

• Standardize the Data: 

o Use StandardScaler to normalize the pixel values of the images so that they have 

zero mean and unit variance. 

4. Apply PCA for Dimensionality Reduction 

• Set Number of Components for Visualization: Reduce the dimensionality of the image 

data to 2 components (dimensions) to visualize the distribution of the images. 

• Fit PCA Model: Fit the PCA model to the scaled data and transform it to the new 

reduced space. 

5. Visualize the Reduced Data 

• Create a Scatter Plot: 

o Plot the transformed data points (PCA components) in a 2D scatter plot to 

observe the spread and clustering of side-face images. 

o Label the axes with the principal components and add a title to the plot. 

6. Recompute PCA with Optimal Components 

• Set Optimal Number of Components: Choose the optimal number of principal 

components (e.g., 10) based on analysis or needs for better data representation. 

• Fit PCA Model with Optimal Components: Apply PCA again to the dataset with the 

selected number of components for dimensionality reduction. 

7. Visualize the Average Face 

• Calculate the Mean Image: 

o Extract the mean image (average face) computed during the PCA process. 

o Reshape the mean image back into its original 100x100 size. 
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• Display the Average Face: Show the reshaped mean face as a grayscale image. 

8. Visualize Eigenfaces 

• Extract Eigenfaces: 

o Obtain the principal components (eigenfaces) of the PCA model, which represent 

significant patterns across the dataset. 

o Reshape each eigenface back to the original image dimensions (100x100). 

• Display Eigenfaces: 

o Plot the first few eigenfaces (e.g., top 10) using a grid of subplots. 

o Add titles and labels to the plots to represent each eigenface. 

9. Split the data into Training and Testing Sets 

• Split the Data: 

o Divide the mounted data into training and testing sets (e.g., 80% training, 20% 

testing) for validation purposes. 

o Ensure randomness in splitting to avoid bias. 

10. Apply PCA on Training and Test Data 

• Transform Training Data: 

o Use the fitted PCA model to reduce the dimensionality of the training data. 

• Transform Testing Data: 

o Similarly, apply PCA transformation to the test data using the same model to 

ensure consistency. 

11. Evaluate Dimensionality Reduction 

• Print Dimensions: 

o After applying PCA, check the form of the training and test datasets to confirm 

dimensionality reduction. 

• Output: The final dimensions of the reduced data should reflect the number of principal 

components chosen (e.g., 10). 

 



Page 74 
 

 

 
 

 

Figure 4.3 PCA of Side face images with two Principal components 
 

• Graph Description: 

When applying Principal Component Analysis (PCA) to side-face images with two principal 

components, the resulting graph typically shows how the data points (representing the images) are 

distributed in the new reduced 2D space defined by these two components. 

o Axes: The x and the y-axis denote the first and second principal components (Principal 

Component1 and Principal Component2) ending with the original features (pixels or 

features extracted). These principal components represent the most variance in the 

data.  

o Data Points: Each point on the graph corresponds to an individual side-face image, 

projected onto this 2D space. Points closer together in this plot represent more similar 

images based on the features extracted by PCA, while points farther apart indicate 

greater dissimilarity. 

o Variance Explained: The principal components (Principal Component1 and Principal 

Component2) are chosen because they explain the most variance in the data. Usually, 

Principal Component 1 is the variable that accounts for the highest variance and 

Principal Component 2 accounts for the second-highest variance. Therefore, it is 

inversely related to the variance represented; a higher value for both of these 

components suggests better capture of essential structure information hidden in the 

original data. 

• Interpretation: 

o Clusters: If there are differences in facial features of the people in the dataset, there 

may appear several clusters of points where each cluster may correspond with a 

different person. Well-separated clusters suggest that the two principal components 
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effectively distinguish between different faces. Overlapping clusters indicate that the 

PCA transformation might not be sufficient to separate faces based on the current 

features alone. Figure 4.3 shows well-separated clusters. 

o Data Separation: The graph visually demonstrates how well PCA decreases the 

dimensionality of the side-face images by preserving important facial variations. 

Ideally, the two components should capture meaningful differences between 

individuals, making it easier to classify the images based on these reduced features. 

 

 

Figure 4.4 Average side face images with ten Eigenfaces 
 
“Shape of training data after PCA: (152, 10)” 

“Shape of test data after PCA: (38, 10)” 

PCA is applied to reduce the dimensionality of the dataset before passing the images into the CNN. 

The key idea is to represent the original images with fewer features that capture the most variance. 

➢ Steps for PCA: 

• Flatten the images: Convert each image into a 1D vector. 

• Compute covariance matrix: Based on the pixel values, calculate the covariance matrix. 

• Eigen decomposition: Finds the eigenvalues and eigenvectors of the covariance matrix. 

• Select top principal components: Select the eigenvectors corresponding to the main 

eigenvalues, which represent the most significant features. 

• Transform the data: Project the original image data onto the selected eigenvectors to 

generate a lower-dimensional representation. 

4.2.3. Optimum Number of Principal Components 

When constructing an instance of the PCA class, begin by entering the number of components. Up to 

the same number of components as the features in the input data, the PCA method will calculate. To 
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fit the model to the training dataset, use the pca.fit(x_train) function. This function specifies the main 

components and the variances that are associated with them. As a result, Matplotlib, a library of 

Python, produces a line graph to illustrate. As can be derived from Figures 4. 5 and 4.6, the axes 

drawn here in the graph are the principal components with the variances that have been explained 

being represented on the y-axis. This makes it easier to judge the percentage of total variation in the 

first data set accounted for by each component. These figures make it clear that the data is well 

represented and that most of its variance is captured when 200 or more main components are used.  

Critical information is preserved while the dimensionality of the data is decreased by classifying with 

200 PCA components. The next step is to construct average faces and eigenfaces using PCA analysis. 

While eigenfaces allow for feature extraction, face reconstruction, and additional dimensionality 

reduction, the average face indicates common qualities. The PCA model is applied to the training 

data (x_train) and test data (x_test) using the transform() method, which reduces the dimensionality 

of the data to the space described by the principle components. In machine learning models, this 

constant reduction guarantees correct evaluation, effective processing, and efficient analysis. 

 

 

Figure 4.5 Explained Variance Ratio vs Number of Components 
 

The explained variance starts from 0.40 and tends to zero as the number of components increases, it 

indicates the following: 

➢ First Principal Component (0.40 explained variance): The first principal component 

captures 40% of the total variance in the dataset. This means that a significant portion of the 

information in the dataset is represented by just the first component. 

➢ Subsequent Components: As more components are added, each additional component 

captures progressively smaller portions of the remaining variance. This gradual decline 
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suggests that after the first few components, the dataset's variance is mostly accounted for, 

and the remaining components are less useful for capturing significant patterns. 

➢ Interpretation: 

➢ Dimensionality Reduction: This result implies that most of the important information in 

the dataset can be captured by the first few components. Components beyond a certain 

point (as the explained variance nears zero) add little value, so retaining only the first few 

components is likely sufficient for tasks like classification or clustering. 

➢ Elbow Point: There is likely a clear elbow point in the "Explained Variance vs. Number 

of Components" graph, where adding more components beyond that point shows 

diminishing returns in terms of explained variance. 

Thus, reducing the dataset's dimensions to just a few components (e.g., the first few with high 

explained variance) would retain most of the important information while simplifying the data. 

 

 

Figure 4.6 Cumulative Explained Variance Ratio vs Number of Components 

 

The cumulative Explained Variance Ratio starts from 0.40 and increases to 0.70 as the number of 

components increases from 1 to 10, it indicates how much of the total variance in the dataset is 

explained by the first 10 principal components in a Principal Component Analysis (PCA). Here’s a 

detailed explanation: 

• First Component (0.40 Explained Variance): The first principal component accounts for 

40% of the total variance in the data, indicating that this single component captures a 

substantial portion of the dataset's underlying structure or variability. This highlights its 

importance in representing key patterns within the data. 

• Increasing to 0.70 by the 10th Component: As more components are added, the cumulative 

explained variance ratio steadily increases, reaching 70% by the time the 10th component is 
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added. This means that the first 10 components together explain 70% of the total variance in 

the dataset. The remaining 30% of the variance is spread across the remaining components 

(beyond the 10th component). 

• Cumulative Nature: The cumulative explained variance adds up the variance explained by 

each successive principal component. Therefore, the curve in the graph typically starts steep 

(as the first few components capture the most significant variance) and gradually flattens as 

more components are added. The fact that it reaches 70% by the 10th component suggests 

that the dataset can be reasonably well represented by these 10 components, but there’s still 

some remaining unexplained variance that might require additional components for full 

representation. 

• Graph Shape: Steep Initial Increase: Starting at 0.40 with the first component indicates a 

sharp increase initially, showing that the early components are highly informative. Slower 

Increase After 10 Components: The curve would start flattening as it approaches 0.70, 

meaning that additional components explain less and less variance, making them less critical. 

➢ Key Takeaways 

• Dimensionality Reduction: By retaining the first 10 components, the dimensionality of the 

dataset can be reduced while still preserving 70% of the variance, which is often sufficient for 

most machine-learning tasks. 

Efficient Representation: The first 10 components provide a compact and well-organized 

representation of the data, capturing utmost of the significant information, while reducing the 

complexity of the dataset. Thus, the graph illustrates how the first few principal components capture 

most of the variance, allowing for dimensionality reduction without a significant loss of information. 

4.2.4. Feature Fusion Based on HOG and LBP 

Feature fusion is the technique of combining multiple sets of features extracted from different 

methods to create a unified feature vector that captures diverse aspects of the data. For HOG and 

LBP, feature fusion involves integrating gradient-based features from HOG with texture-based 

features from LBP to enhance the overall feature representation and improve performance in tasks 

such as face recognition. The process has been done with OpenCV in Python and the resultant images 

got as shown in Figure 4.7 
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Figure 4.7 HOG and LBP feature Fusion 

 

4.2.5. Breaking the Data  

As previously mentioned, the Dataset consists of 12 different poses of a person, after filtering 

manually, the profile faces are taken that is the side faces, also known as Auricle, of 200 different 

objects to develop the model. Table 4.1 shows the distribution of images used in our work 

Table 4.1:Data for training and testing purposes 

Class Name Total Objects Sample Size Images to Train Images to Test 

Side Faces 200 2400 200 65 

“Shape of training data after PCA: (152, 10)” 

“Shape of test data after PCA: (38, 10)” 

4.2.6. Feed Reduced-Dimension Data into CNN 

Instead of feeding the raw side-face images into the CNN, the PCA-reduced features are inputted. 

The next step involves feeding the generated data into classifiers after pre-processing the images and 

extracting key features. A deep learning classifier, such as a Multi-Layer Perceptron (MLP), is 

employed to uniquely identify each face in the dataset. Key parameters like learning rate, activation 

function, loss function, and the number of hidden nodes are crucial for optimizing the MLP's 

performance. For instance, the output layer's SoftMax function generates class probabilities that add 

to one; the highest probability indicates the model's forecast. Three Dense layers, minimum one 

dropout layer, and an output layer for target label prediction define the MLP. After that, the model is 

completed with a selected optimiser and loss function using evaluation criteria for both training and 

assessment. 
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• The neural network is built using Keras's Sequential() function, which allows layers to be 

added one after another in a linear order. Each layer's output automatically becomes the input 

for the next, making it simple to define and configure the network. This approach makes it 

easy to design the architecture step by step, adding different types of layers like dense layers, 

activation functions, and dropout layers. This structured approach is ideal for many types of 

neural networks, particularly when a clear, linear flow of data through the layers is desired. 

Additionally, the sequential model is well-suited for tasks where the network architecture does 

not require complex branching or merging of layers. 

• The add() method is used to incorporate layers into the model. The first layer added is a Dense 

layer with 128 units and the ReLU activation function to introduce non-linearity. Every 

neuron in this fully connected Dense layer is connected to every neuron in the one below 

layer. ReLU activation lets the network pick out intricate links and patterns. The 128 units 

specify the neuron count in the layer, therefore affecting the capacity of the model to 

efficiently represent features and learn. 

• The second Dense layer has y_categorical.shape[1] units and 'softmax' activation to make a 

more effective and motivate to create a hybridized model 

• The training process is configured with 20 epochs, specifying the number of complete 

iterations the model will perform over the entire training dataset. Each epoch signifies one 

pass over the data, allowing the model to learn and adjust its parameters incrementally. 

• The batch size is organized to 32, defining the quantity of samples processed simultaneously 

through the network during each training iteration. This setting controls how many data points 

are used to update the model's parameters in one forward and backward pass. 

• In the classification setting, the given model is collected to incorporate the Adam optimizer, 

a type of optimizer that self-adjusts the learning rate in the course of the training. Below is 

one of the most effective adaptive optimization techniques that assist in enhancing 

convergence and performance since it is able to adjust the learning rate from the training data. 

• Common choice for multi-class classification problems, the loss function is 

"categorical_crossentropy." The model also computes and publishes the accuracy measure 

during training, therefore providing information on its performance and capacity to 

appropriately classify the data. 
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• The model's architecture is summarised by specifying the kind of each layer, its output form, 

and the number of parameters in each layer. This summary provides a concise overview of 

the model's architecture and intricacy. 

After compiling the model, the model is tested with various image sets and found accurate results. 

The model architecture is shown in Figure 4.8, here output class is our file name along with 

the extension. 

➢ The hybrid Architecture 

• Input layer: Takes the PCA-reduced side-face images as input. 

• Convolutional layers: Derive advanced characteristics from the input. 

• Pooling layers: Minimise the spatial size of the feature maps while preserving essential 

information. 

• Fully connected layers: Integrate the extracted features and forecast the classification. (i.e., 

the identity of the person). 

• Softmax layer: Outputs the probability of each identity. 

 

 

Figure 4.8 The Working Hybrid-Model PCA+CNN 

 

➢ Algorithm Outline: CNN for Side-Face Recognition 

1. Define Dataset and Image Size 

• Set the path for the dataset where all side-face images are stored. 

• Define the target image size (e.g., 100x100 pixels) to which all images will be resized. 

2. Load Images and Labels 
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• Prepare empty lists to store images and labels. 

• Repeat over files in the dataset directory: 

o For each file, check if it’s an image (with specific extensions like .jpg, .png, 

.jpeg). 

o Load each image and resize it to the defined size (100x100 pixels). 

o Convert the image to a grayscale image and then to an array. 

o Append the image data to the list of images. 

o Use the filename as the label for each image and append it to the labels list. 

3. Prepare Data for Training 

• Convert the list of images and labels into NumPy arrays for efficient processing. 

• Encode labels as integers: 

o Use a label encoder to assign a unique integer to each class (side-face identity). 

• Convert the encoded labels into a categorical (one-hot encoded) format, which is 

required for training the CNN. 

4. Split Dataset into Training and Test Sets 

• Randomly split the dataset into training and testing subsets (e.g., 80% for training, 20% 

for testing). 

• Ensure the randomness is controlled using a fixed random seed to make results 

reproducible. 

5. Define the Convolutional Neural Network (CNN) Model 

• Initialize a sequential model where layers are added sequentially. 

• Add Convolutional Layers: 

o Start with a 32-filter convolutional layer (3x3 kernel) and ReLU activation 

function, followed by a max-pooling layer (2x2). 

o Add a second 64-filter convolutional layer (3x3 kernel) and ReLU activation 

function, followed by another max-pooling layer (2x2). 

• Flatten the Output: 

o After convolution and pooling, flatten the 2D output into a 1D vector for the fully 

connected layer. 

• Add Fully Connected Layers: 

o Add a dense layer with 128 neurons and ReLU activation. 
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o Add the output layer, where the number of neurons equals the number of classes, 

and use the softmax activation to output probabilities for classification. 

6. Compile the CNN Model 

• Choose an optimizer (Adam optimizer) for model training. 

• Define the loss function as categorical cross-entropy, suitable for multi-class 

classification problems. 

• Set the evaluation metric as accuracy to track model performance. 

7. Train the CNN Model 

• Fit the model to training data: 

o Specify the number of epochs (e.g., 20) and batch size (e.g., 32). 

o Use validation split (e.g., 20% of the training data) to monitor the model's 

performance on unseen validation data. 

8. Evaluate the CNN Model 

• Evaluate the model on the test set: 

o Use the test data to measure the model's loss and accuracy. 

o Output the final test accuracy to assess the model's generalization ability. 

4.3. Experimental Results 

After successful compilation, the model is created with prominent positive results and parameters. 

Table 4.2 shows the model summary  

Table 4.2 Model Summary 

Layer Type Output Shape Param # 
 conv2d_4 (Conv2D)   
 

 (None, 98, 98, 32)  
 

320 

max_pooling2d_4 (MaxPooling2D)  
 

 (None, 49, 49, 32)      
 

0 

conv2d_5 (Conv2D) 
 

(None, 47, 47, 64)   
 

18,496 

max_pooling2d_5 (MaxPooling2D) 
 

 (None, 23, 23, 64)  
 

0 

flatten_2 (Flatten)    
 

 (None, 33856)  
 

0 

dense_4 (Dense)  
 

 (None, 128) 
 

4,333,696 

dense_5 (Dense)  
 

(None, 190)   
 

24,510 

“Total params: 13,131,068 (50.09 MB)” 

“Trainable params: 4,377,022 (16.70 MB)” 

“Non-trainable params: 0 (0.00 B)” 

“Optimizer params: 8,754,046 (33.39 MB)” 
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The Model Loss is represented as a graph in Figure 4.9 showing model loss approaches zero as 

epochs increase with an accuracy of 96.98% which provides a strong base to implement this model. 

Various supporting charts have been plotted with the help of Python which indicate a high acceptance 

percentage of this model. Figure 4.9 shows the Model Loss and the Model Accuracy. 

 

Figure 4.9 Model Loss and Model Accuracy 

 

In a model loss graph where both training and validation loss are plotted against epochs, the given 

scenario can be interpreted as follows: 

➢ Initial Loss at Epoch 0: 

• Training Loss starts with a relatively higher value: This indicates that at the beginning of 

training, the model’s predictions are far from the target values on the training set. A high 

initial loss is normal at the start of training. 

• Validation Loss starts at 2: The validation loss is also initially high but slightly lower than 

the training loss, showing that the model is similarly struggling with the validation data at the 

start. 

➢ Training Loss Over Time: 

• The Training Loss decreases steadily and approaches 0 by epoch 25: This indicates that 

the model is proficiently assimilating the training data, enhancing its predictions 

progressively. A loss approaching zero indicates that the model is nearly accurately predicting 

the training data by the conclusion of the training procedure. 

• Validation Loss Over Time: The Validation Loss commences at 2 and diminishes to roughly 

1.2 by epoch 25: The incremental reduction in validation loss indicates that the model is 

enhancing its performance on the validation set (unseen data), while the improvement is less 
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pronounced relative to the training loss. The validation loss of 1.2 demonstrates that the model 

is making progress in its ability to generalize to unseen data. While there are still areas for 

improvement in prediction accuracy on the validation set, the current results indicate that the 

model is heading in a positive direction with its learning. 

The Training Loss approaching zero shows the model fits the training data well, perhaps too well. 

The Validation Loss decreasing from 2 to 1.2 shows the model is improving on unseen data. 

4.4. Calibration Curve: 

The performance of a probabilistic classification model can be evaluated using a calibration curve. 

This is accomplished by comparing the anticipated probability and the actual outcomes. It assists in 

determining the degree to which the anticipated probabilities accurately represent the actual 

likelihood of an event taking place. 0.000789 is the interpretation of the Brier score in our particular 

instance. With a Brier Score of 0.000789, it can be concluded that the model is performing admirably 

in terms of its ability to forecast probabilities. This is a pretty low score, which indicates that the 

probability that the model predicts is relatively near to the exact occurrences that occur. When this 

score is closer to zero, the performance of the model in terms of its calibration and accuracy in 

probability prediction is improved. It is shown in Figure 4.10 that the Calibration Curve exists. 

 

Figure 4.10 Calibration Curve 

4.5 Implementation and Result Obtained 

On applying the model to test images, the correct output is obtained. Figure 4.11 shows the outcome 

of the implemented model on one image, with subsequent figures provided to support the accuracy 

of the model. 

➢ Algorithm Outline: Image Classification and Comparison Using CNN 

1. Load and Preprocess the Test Image 
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• Define the Image Path: Specify the file path of the test image. 

• Load the Image: 

o Load the test image from the specified path. 

o Resize the image to a pre-defined target size (e.g., 100x100 pixels) to ensure 

consistency with the training dataset. 

o Convert the image to grayscale for simpler processing. 

• Convert the Image to an Array: 

o Transform the loaded image into a NumPy array. 

o Expand the dimensions of the array (add a batch dimension) so that it matches the 

input shape expected by the CNN. 

o Normalize the image data by distributing all pixel values by 255 to scale them 

among 0 and 1. 

2. Make a Prediction Using the Pretrained CNN Model 

• Use the Pretrained Model to forecast the class of the test image. 

• Generate the Prediction: 

o Pass the pre-processed image to the CNN model and receive a prediction in the 

form of probabilities for each class (side-face identity). 

• Identify the Predicted Class: 

o Utilise the argmax function to identify the index of the class with the highest 

probability, which indicates the anticipated class. 

3. Decode the Predicted Class to Obtain the Original Label 

• Map the Predicted Class Index: 

o Utilise the argmax function to identify the index of the class with the highest 

probability, which indicates the anticipated class. 

• Display the Predicted Class: 

o Output the predicted class label, which indicates the identity of the person in the 

test image. 

4. Compare the Test Image with the Predicted Class Image 

• Define Paths for Comparison: 

o Set the path of the input sample image (test image). 

o Identify the path of the predicted class image (the image corresponding to the 

predicted class label) from the training dataset. 
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5. Load and Display the Images 

• Load Both Images: 

o Load the test image and the predicted class image from their respective paths. 

• Create a Subplot: 

o Create a plot with two subplots: one for the test image and one for the predicted 

class image. 

• Display the Images: 

o Display the input sample image in the first subplot with a title. 

o Display the predicted class image in the second subplot with a title. 

• Remove Axes: 

o Hide the axes for a cleaner visual presentation of both images. 

6. Finalize and Show the Plot 

• Adjust the Layout to optimize spacing between the two images. 

• Display the Plot showing both the input image and its predicted match. 

output: 
Predicted Class: 124-10.jpg 

 

 

 
Figure 4.11 Input Sample with path ‘/content/drive/MyDrive/TESTING/Sam3.jpg’ and Predicted image with 

name 124-10.jpg stored under ‘/content/drive/MyDrive/SIDE_FACES’ 

 

A 3D surface plot provides a comprehensive view of multidimensional data, facilitating deeper 

analysis and better decision-making. To support the result, evidence is presented with a 3D surface 

plot, histogram, and 3D gradient view in Figures 4.12, 4.13, and 4.14, respectively.  
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Figure 4.12 3D Surface Plot for Input Sample with path ‘/content/drive/MyDrive/TESTING/Sam3.jpg’ and 

Predicted image with name 124-10.jpg stored under ‘/content/drive/MyDrive/SIDE_FACES’ 
 

 

Figure 4.13 Histogram Plot for Input Sample with path ‘/content/drive/MyDrive/TESTING/Sam3.jpg’ and 

Predicted image with name 124-10.jpg stored under ‘/content/drive/MyDrive/SIDE_FACES’ 
 

 

Figure 4.14 3D Gradient (x-axis) for Input Sample with path ‘/content/drive/MyDrive/TESTING/Sam3.jpg’ and 

Predicted image with name 124-10.jpg stored under ‘/content/drive/MyDrive/SIDE_FACES’ 
 

While a single sample is sufficient to validate our model, given that we consistently achieve correct 

results after 100 experimental iterations, we believe it is essential to provide additional graphical 

representations to further demonstrate the model's accuracy and robustness. These visualizations 

serve to reinforce our findings and offer a clearer insight into the model's performance across various 

scenarios. By presenting multiple outcomes, we aim to illustrate the consistency and reliability of the 
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model, showcasing its ability to deliver accurate identifications under diverse conditions. This 

comprehensive approach not only strengthens our argument but also helps in understanding the 

nuances of the model's capabilities, ensuring that stakeholders can confidently assess its effectiveness.  

 

 

Figure 4.15 3D Plot, Histogram Plot and 3D Gradient (x-axis)  

Plot for a random image from the dataset – 2 
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Figure 4.16 3D Plot, Histogram Plot and  3D Gradient (x-axis)  

Plot for a random image from the dataset – 2 

 

3-D Plot Description:  

A 3D surface plot is a powerful visualization tool that represents three-dimensional data in a way that 

allows for an intuitive understanding of the relationships between three variables. Here's a detailed 

explanation of a 3D surface plot with the specified axes: 

• Axes Description 
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o X-axis (0 to 500): This axis typically represents one dimension of the data, which in the 

context of an image could correspond to the width of the image. Each point along the X-

axis corresponds to a specific horizontal position in the image, ranging from 0 (left edge) 

to 500 (right edge). 

o Y-axis (0 to 600): This axis represents the vertical dimension of the data, corresponding 

to the height of the image. Points along the Y-axis indicate specific positions in the image, 

ranging from 0 at the top edge to 600 at the bottom edge. 

o Z-axis (0 to 225): The Z-axis represents the value of a third variable, typically the 

intensity or brightness of the pixels in the image. In this case, pixel intensity values range 

from 0 (darkest, black) to 225 (lightest, close to white or bright), reflecting the brightness 

of each pixel in a grayscale image. 

• Interpretation of the Surface Plot 

o Surface Representation: Each point on the surface corresponds to a specific (X, Y) 

coordinate (a pixel position) and its corresponding intensity value (Z). The height of the 

surface at any given point (X, Y) indicates the pixel intensity at that coordinate. Higher 

points on the surface represent higher pixel intensity (brighter areas), while lower points 

represent lower pixel intensity (darker areas). 

o Visual Patterns: The surface plot allows for the visualization of gradients, peaks, and 

valleys. Peaks represent areas of high intensity (brighter spots) and can indicate highlights 

or features in the image. 

This visualization helps identify patterns in the data, such as edges or textures, which are critical for 

image analysis tasks. 3D surface plots are particularly useful in image processing tasks for 

understanding pixel intensity distribution and identifying features such as edges or textures. They can 

help visualize how pixel intensities vary across the image, making it easier to interpret and analyze 

the image data. In machine learning and computer vision, these plots can be useful for extracting 

features from images by observing intensity distributions and patterns. Results providing a clear 

visual representation of multidimensional data, 3D surface plots facilitate better understanding and 

decision-making for identical sets of images. 

➢ Histogram Plot Description 

A histogram plot with pixel intensity values ranging from 0 to 250 on the X-axis and frequency values 

ranging from 0 to 20,000 on the Y-axis provides a clear representation of how pixel intensities are 

distributed in an image. This visualization aids in understanding the image’s tonal characteristics, 

analyzing pixel distributions, and performing various image processing tasks. 
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• Axes Description 

o X-axis (Pixel Intensity): Range: 0 to 250 

This axis represents the pixel intensity values of the image. In grayscale images, pixel 

intensity values range from 0 (black) to 255 (white). However, in this case, the range is 

truncated to 0 to 250, possibly focusing on a specific region of intensity values. Each point 

along the X-axis corresponds to a specific pixel intensity, with lower values representing 

darker pixels and higher values representing lighter pixels. 

o Y-axis (Frequency): Range: 0 to 20,000 

This axis represents the frequency of pixel intensity occurrences. It shows how many pixels 

in the image have a particular intensity value within the specified range. The height of the 

bars in the histogram indicates the number of pixels that have intensities corresponding to 

each bin on the X-axis. 

➢ 3D gradient Plot Description 

A 3D gradient plot is a graphical representation that shows the rate of change (or gradient) of a 

particular variable across two spatial dimensions, providing insight into how a value (such as pixel 

intensity in an image) changes over space. Here's a detailed explanation of a 3D gradient plot with 

the specified axes: 

• Axes Description: 

o X-axis (0 to 500): Represents one spatial dimension, typically the horizontal dimension 

of a dataset, such as the width of an image. Each point along the X-axis corresponds to a 

specific position or pixel along the width of the image or dataset. The range 0 to 500 

indicates that the plot spans 500 units (pixels) in the horizontal direction. 

o Y-axis (0 to 600): Represents the other spatial dimension, typically the vertical dimension, 

such as the height of an image. Each point along the Y-axis corresponds to a specific 

vertical position or pixel in the dataset. The range 0 to 600 spans 600 units (pixels) in the 

vertical direction. 

o Z-axis (0 to 0.2): Represents the gradient or rate of change in the values being analyzed. 

The Z-axis in this case ranges from 0 to 0.2, which implies that the plot focuses on 

relatively small gradient values. These values could represent small changes in pixel 

intensities across the image or a gradual change in the analyzed variable over space. 

A 3D gradient plot with the X-axis ranging from 0 to 500, the Y-axis from 0 to 600, and the Z-axis 

from 0 to 0.2 is an effective way to visualize small changes in a variable (such as pixel intensity) 

across a surface. The Z-axis gradient values represent how sharply or gradually the variable changes, 
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with peaks indicating areas of rapid change and valleys indicating smoother transitions. This plot 

facilitates better understanding and decision-making for identical sets of images.  

4.6. Comparative Analysis  

Compared to baseline CNN models with and without PCA, the proposed hybrid model (CNN-PCA-

CNN) exhibited improved accuracy and reduced computational time and Space, making it suitable 

for real-time applications on edge devices.    

Table 4.3 Compression with Baseline Model 

The hybrid model achieves a performance level comparable to that of the PCA+NN model, delivering 

similar accuracy or predictive capability. However, it offers a significant advantage in terms of 

efficiency by requiring approximately 80% less memory or storage space. This reduction in space 

usage makes the hybrid model more suitable for deployment in resource-constrained environments 

or applications where storage and computational efficiency are critical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODEL Performance 

Accuracy Loading 

Time 

Storage 

(MB) 

Preprocess 

Time 

Testing Time Total Testing 

Time 

Total Time 

CNN 95-98% 3.28 165 0 0.09 0.09 3.37 

PCA+CNN 96-98% 13.43 3000 0.033 0.12 0.153 13.583 

PCA+NN 92-96% 0.13 33 0.016 0.063 0.079 0.209 

Hybrid 

(CNN-PCA-CNN) 

89-97% 0.21 6.5 0.08 0.054 0.134 0.344 
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4.7. Conclusion:  

In conclusion, the application of Principal Component Analysis (PCA) and Convolutional Neural 

Networks (CNN) for side-face identification has demonstrated an effective and robust approach. The 

experimental results, as shown in the accompanying graphs, indicate a substantial improvement in 

identification accuracy compared to traditional methods. The accuracy metrics show that the model 

achieves high precision while maintaining a low false positive rate, underscoring the reliability of 

side-face recognition. The graphs of training and validation loss over epochs exhibit a consistent 

decrease, indicating that the model is learning effectively without overfitting. Additionally, 

evaluation metrics such as precision, recall, and F1-score consistently affirm the model's ability to 

accurately identify individuals from side-face images, even under varying conditions. Moreover, the 

dimensionality reduction achieved through PCA has greatly enhanced the speed of data analysis. This 

improvement allows Convolutional Neural Networks (CNNs) to operate more effectively while 

maintaining high levels of accuracy. The ability to process data quickly is crucial in various real-

world applications. For instance, in security systems and access control, rapid decision-making is 

essential. Here, both speed and reliability are of utmost importance to ensure safety and efficiency.  

By reducing the complexity of the data, PCA enables CNNs to focus on the most relevant features. 

This leads to improved performance without sacrificing the quality of results. Consequently, the 

integration of PCA in CNN workflows is a valuable strategy. It not only streamlines processing but 

also enhances the overall effectiveness of the system. Ultimately, this combination is vital for 

applications that demand quick and dependable outcomes.  The positive results obtained from this 

study not only validate the effectiveness of combining PCA with CNN but also open avenues for 

future research. Enhancements could include further optimizing the model architecture, 

experimenting with different hyperparameters, and exploring additional augmentation techniques. 

Overall, the successful implementation of this hybrid approach for side-face identification signifies a 

promising step forward in biometric recognition technology, demonstrating its potential for broader 

applications in various domains.  
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Chapter 5  
 

5. Conclusion and Future Work 
 

Using PCA and CNN, the study of side face biometrics addresses the growing need for reliable and 

efficient identity verification systems in complex and unconstrained environments. By leveraging the 

dimensionality reduction capability of PCA and the powerful feature extraction and classification 

ability of CNN, the proposed system demonstrates significant potential in handling the challenges 

associated with side face recognition. The hybrid approach not only improves recognition accuracy 

but also enhances computational efficiency, making it suitable for real-world applications. As 

biometric technology evolves, the integration of such advanced methodologies opens new 

possibilities for robust security solutions. This section concludes the findings of the research and 

outlines potential directions for future work to further refine and expand the system's capabilities. 

5.1 Conclusion 

The proposed hybrid model, which integrates Principal Component Analysis (PCA) and 

Convolutional Neural Networks (CNN) for side face identification, represents a significant step 

forward in biometric authentication systems, particularly under constrained conditions where full 

facial data is unavailable. This method effectively fills a significant gap in the state of facial 

recognition research by extracting and learning discriminative characteristics from profile views. 

Despite pose limitations, the model's high recognition accuracy shows great promise for practical 

application in next-generation technologies like smart surveillance, secure access systems, and 

human-computer interaction in augmented reality (AR) and virtual reality (VR) settings. 

Furthermore, in today's linked, AI-driven world, this framework establishes the foundation for 

biometric solutions that are portable and flexible for use in mobile and edge computing devices. The 

foundation for flexible and lightweight biometric solutions in mobile and edge computing devices is 

also laid by this framework, which is becoming more and more important in the connected, AI-driven 

world of today. Since new technologies require strong and adaptable security measures, this model 

can be used as a guide to create intelligent systems that can operate in a variety of dynamic 

environments, significantly advancing biometric and AI-enabled applications. Importantly, the 

integration of traditional statistical methods like PCA with deep learning architectures exemplifies a 

hybrid approach that can inspire new research directions focused on computational efficiency, model 
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interpretability, and robustness in low-data or pose-limited environments. As AI continues to evolve 

and expand into domains requiring real-time, privacy-preserving biometric verification, models like 

the one proposed in this study will serve as foundational technologies, bridging the gap between 

current biometric limitations and the growing demands of future intelligent systems. 

• Pose-Invariant Recognition Capability: The hybrid PCA-CNN model effectively addresses 

a major limitation in biometric systems—accurate recognition from non-frontal (side-face) 

images, which are common in real-world environments like surveillance and mobile usage. 

• Real-World Application Readiness: Ideal for use in environments where full facial visibility 

cannot be guaranteed, such as: 

▪ Smart surveillance (airports, train stations, public events) 

▪ Wearable devices and AR/VR headsets 

▪ Autonomous systems (vehicles, drones) 

▪ Smart home security and mobile authentication 

• Optimized for Edge Computing: PCA reduces dimensionality, making the model 

lightweight and fast, suitable for deployment on low-power edge devices (e.g., smartphones, 

IoT, embedded systems) where real-time processing is required. 

• Hybrid Approach for Enhanced Performance: Combines the interpretability and efficiency 

of PCA with the deep feature learning power of CNNs, offering a balance between speed, 

accuracy, and adaptability. 

• Scalable and Generalizable Framework: The model can serve as a base architecture for 

expanding to other constrained biometric scenarios (e.g., partial occlusion, low light, motion 

blur) and integrating additional modalities. 

• Supports Privacy-Conscious AI Systems: Enables local, on-device processing, reducing the 

need to transmit biometric data to centralized servers, supporting privacy-preserving 

biometric authentication. 

• Foundation for Future Research: Encourages the development of hybrid and lightweight 

deep learning solutions for biometric applications where resource constraints and data 

variability are challenges. 

• Alignment with Emerging Technology Trends: Contributes to the evolution of AI-driven 

security systems, human-computer interaction, and context-aware computing, helping meet 

the rising demands for robust, flexible, and intelligent biometric systems in evolving tech 

ecosystems 
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5.2 Impact on the Field 

The advancements in side face identification and recognition have significant implications for various 

applications. Enhanced recognition capabilities contribute to improved security systems, more 

reliable surveillance, and better human-computer interaction. These improvements also cover the way 

for advancements in fields such as forensics, where profile face recognition can be crucial. 

The integration of side face recognition with other biometric systems opens new avenues for 

comprehensive biometric solutions. This integration enhances the robustness and reliability of 

identification systems, making them more versatile and applicable to a broader range of scenarios. 

5.3 Future Work 

Future work on the side face biometric system using PCA and CNN can focus on several key areas 

to enhance its effectiveness and applicability. We can consider the following trending areas: 

• Edge-Centric Side Face Biometrics for Real-time and Privacy-Preserving 

Authentication: Future work could focus on deploying the PCA and CNN-based side face 

recognition system directly on edge devices. This approach would enable real-time identity 

verification without the need to transmit sensitive facial data to a central server. Research 

could explore developing lightweight and computationally efficient versions of the PCA and 

CNN models suitable for resource-constrained edge devices like smartphones, smart cameras, 

or embedded systems. This direction would necessitate investigating techniques such as 

model quantization, pruning, and knowledge distillation to reduce the model size and 

computational complexity while maintaining acceptable accuracy. Furthermore, exploring 

hardware acceleration using dedicated neural processing units (NPUs) on edge devices could 

significantly enhance the system's performance. Addressing challenges related to on-device 

data storage, power consumption, and maintaining the security and privacy of biometric 

templates locally would also be critical areas of investigation. 

• Fog-Assisted Collaborative Side Face Recognition for Enhanced Scalability and 

Accuracy: Future research could investigate a fog computing architecture where edge devices 

capture side face images and perform initial processing, such as face detection and alignment. 

Instead of sending raw images to the cloud, these edge devices could extract PCA features 

locally and transmit these lower-dimensional representations to a nearby fog node. The fog 

node, with more computational resources, could then perform more complex CNN-based 

feature extraction and matching against a larger distributed database. This approach could 
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improve scalability by distributing the computational load and reducing network latency 

compared to a purely cloud-based system. Moreover, the fog layer could facilitate 

collaborative learning and model updates across multiple edge devices without centralizing 

sensitive raw data, enhancing privacy. Future work could explore efficient and secure methods 

for feature aggregation and matching in the fog layer, as well as strategies for handling data 

heterogeneity and ensuring system robustness in a distributed environment. Techniques like 

federated learning could also be explored to collaboratively train the CNN model across the 

fog nodes. 

• Leveraging GANs for Robust Side Face Recognition in Challenging Conditions: Future 

work could explore the use of Generative Adversarial Networks (GANs) to enhance the 

robustness and accuracy of side face biometric systems, particularly when dealing with 

challenging conditions. GANs could be employed in several ways: One potential avenue is 

using GANs for data augmentation. By training GANs to generate synthetic side face images 

with variations in pose, illumination, occlusion, and image quality, the size and diversity of 

the training dataset can be significantly increased. This can help to improve the generalization 

ability of the CNN model and make it more resilient to real-world variations encountered in 

unconstrained environments. Research could focus on developing GAN architectures 

specifically tailored for generating realistic and diverse side face images that effectively 

bridge the gap between synthetic and real data. Another direction is using GANs for domain 

adaptation. When the training data and testing environments have significant differences (e.g., 

different camera types or lighting conditions), GANs can be used to learn a mapping between 

the source and target domains. This can help to reduce the domain gap and improve the 

performance of the side face recognition system in the target environment without requiring 

large amounts of labeled data from that environment. Future work could explore novel GAN-

based domain adaptation techniques specifically for side face biometrics. 
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